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Abstract. This paper studies the relation between persuasive argumen-
tation and the speaker’s epistemic attitude. Dung-style abstract argu-
mentation and dynamic epistemic logic provide the necessary tools to
characterize the notion of persuasion. Within abstract argumentation,
persuasive argumentation has been previously studied from a game-
theoretic perspective. These approaches are blind to the fact that, in real-
life situations, the epistemic attitude of the speaker determines which
set of arguments will be disclosed by her in the context of a persuasive
dialogue. This work is a first step to fill this gap. For this purpose we ex-
tend one of the logics of Schwarzentruber et al. with dynamic operators,
designed to capture communicative phenomena. A complete axiomatiza-
tion for the new logic via reduction axioms is provided. Within the new
framework, a distinction between actual persuasion and persuasion from
the speaker’s perspective is made. Finally, we explore the relationship
between the two notions.

Keywords: Argumentation Frameworks · Dynamic Epistemic Logic ·
Persuasion and Argument Labellings

1 Introduction

Persuasion is probably the most relevant motivation of arguing and debating.
Roughly defined, we could say that a piece of argumentation is persuasive when-
ever the speaker succeeds to align the hearer with her goal. Within the traditional
divide of liberal arts of the trivium between logic, grammar and rhetoric, per-
suasive communication has been mostly the object of rhetoric (see [12]), with
minor interest for its formal aspects. The main objective of this paper consists
in studying persuasive argumentation using a well-known formal tool: abstract
argumentation frameworks [10]. Abstract argumentation frameworks place our-
selves in a dialectical perspective, where the strength of an argument is measured

? The research activity of Antonio Yuste-Ginel is supported by MECD-FPU
2016/04113. Carlo Proietti gratefully acknowledges funding received from the Euro-
pean Commission (Marie Skodowska-Curie Individual Fellowship 2016, 748421) and
Sveriges Riksbanken (P16-0596:1) for his research.



2 Proietti and Yuste-Ginel

in terms of its relation to other arguments.4 Besides, the notion of persuasion we
are going to argue for can be read in dialectical terms too. Concretely, persua-
sion will be defined in terms of how the hearer assesses her arguments after the
communication has taken place – and not in terms of her disposition to act in a
certain way. For this purpose, we make use of the notion of justification status
of an argument proposed by [24]. Hence, persuasion is going to be understood
as a change in the hearer’s justification status of a specific argument, the issue
of the exchange, that fits the speaker communicative goal.

In addition to this dialectical flavour, our main conceptual contribution con-
sists in taking into account the epistemic attitudes of the involved agents in
order to provide a realistic notion of persuasive communication. An important
antecedent in the study of persuasive communication from a formal perspective
is [23], where dialogical logic is used to define different kinds of persuasive dia-
logues. Closer to our approach, previous works in abstract argumentation have
investigated the question of persuasive argumentation from a game-theoretic
point of view. Such approaches are mostly based on debate-game scenarios where
the participants disclose arguments in turns, under the presupposition that they
either know everything about the arguments available to their opponent [17] or
that they don’t consider them as relevant for their strategy [18]. These assump-
tions seem to be too strong when applied to real-life argumentative scenarios.
First, communication does not necessarily unfolds as an exchange of single ar-
guments in rigid turns. More importantly, it looks that it is precisely what the
speaker thinks of the hearer’s argumentative situation that makes her decide
which arguments to disclose to persuade her. Indeed, there are cases in which,
at an initial situation, the speaker can find a persuasive piece of argumentation
but, due to her misinformation about the hearer, she ends up in a new situation
in which the original goal of communication is not reachable any more.

Dynamic Epistemic Logic (DEL) is the mathematical study of informational
changes [7], where information is understood in terms of the epistemic attitudes
(knowledge and belief) of a set of agents. Previous works have studied rela-
tions between argumentation frameworks and epistemic logic [20,21,13,19]. For
instance, [20,21] have focused on explaining the way that beliefs emerge from the
set of arguments owned by an agent. Here, we introduce another problem: how
the beliefs of the speaker determine the set of arguments that will be disclosed in
the context of a discussion. For this aim, we propose a dynamic extension of one
of the logics presented in [19], strongly related to the work of [2], that allows to
reason about epistemic attitudes concerning the argumentative knowledge-base
of other agents and about the effects of argumentative communication. In line
with DEL, disclosure is encoded as a specific update of the model after an ar-
gument is announced. For our purposes we assume that the hearer is somehow
“credulous”: she will accept all the information that the speaker sends. As far
as we know this is the first approach that combines tools imported both from

4 See [14] for this notion of dialectics and [1] for its relation to argumentation frame-
works.
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AFs and DEL.5 Its main contribution consists of a complete axiomatization of
a dynamic logic of argumentative disclosure L!+(A) and its doxastic/epistemic
extensions.

The rest of this paper is organized as follows. Section 2.1 presents the pre-
liminary concepts. In Section 2.2 we define communication within multi-agent
frameworks and then introduce a notion of persuasion, understood as a change
of the hearer’s justification status of a given argument according to the speaker’s
goal. We also show how, in real-life situations, the information of the speaker
about the hearer’s information is crucial in order to perform persuasive argu-
mentation. In Section 3 we extend one of the epistemic-argumentation logics of
[19] with two dynamic modalities, meant to capture communicative phenom-
ena. We provide a complete axiomatization for such extension via reduction
axioms. In Section 4, we combine the AF tools with DEL to define the concept
of epistemic-based persuasive arguments. We argue that this notion is more re-
alistic than plain persuasion when applied to real-life argumentative scenarios.
Finally, we discuss some relations between epistemic-based persuasion and plain
persuasion. We close the paper by pointing out some future possible directions
(Section 5).

2 Persuasive Communication

In this section we first recall the concepts that are needed for our notion of
persuasion, namely, that of argumentation framework, its multi-agent version,
argument (complete) labelling and justification status. Later on, we discuss how
argumentative communication and persuasive argumentation can be modelled
with the mentioned list of notions.

2.1 Preliminaries

Definition 1 (Argumentation Framework [10]). An argumentation frame-
work (AF, for short) is a pair (A, ) where A 6= ∅ is a set of arguments and
 ⊆ A×A is called the attack relation.

For the purposes of this work we restrict our attention to finite AFs. Among
others, AFs have been applied in several contexts to model multi-agent argu-
mentative scenarios [4,18,16,19,17] where the agents’ (partial) information is
represented as a subgraph of a larger argumentative pool. Such scenarios are
captured by the following definition.

Definition 2 (Multi-agent Argumentation Framework). A multi-agent
argumentation framework (MAF) for a non-empty and finite set of agents Ag
is a triple (A, , {Ai}i∈Ag) such that (A, ) is an AF (called the Universal

5 Nevertheless, some papers [8,9] have combined tools from propositional dynamic
logic and abstract argumentation. We will come back to them in the conclusions
(Section 5).
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Argumentation Framework (UAF)) and Ai ⊆ A. Given a MAF and an agent
i ∈ Ag, agent i’s subgraph is defined as (Ai, i) where  i= ∩(Ai ×Ai).

Remark 1. Note that, given a MAF and an agent i ∈ Ag, we have that (Ai, i) is
an AF. Note, also, that the way in which agents’ subgraphs are defined amounts
to assume, following [19], that agents share the same logical framework. That
is to say, given two arguments a, b ∈ A, if the agent is aware of them, then she
thinks that a attacks b if and only if it is actually the case that a attacks b. We
add that this way of defining an agent’s subgraph amounts also to assume that
agents are somehow ideal reasoners: they cannot fail to see a conflict between
arguments, e.g. an undercut or a rebuttal, where there is one.

In what follows, we restrict our attention to 2-agents AFs (2-AF for short), i.e.
we assume that Ag = {1, 2} and denote 2-AFs as (A, , A1, A2). Given a 2-AF,
a pointed 2-AF is a tuple (A, , A1, A2, a) where a ∈ A1 ∩ A2. In a pointed
2-AF (A, , A1, A2, a), the UAF (A, ) is intended to represent all the relevant
arguments about the issue a while each Ai is intended to represent the arguments
that agent i is aware of.

The semantics of an AF (A, ) is presented in terms of its extensions [10]. An
extension of (A, ) is a set of arguments B ⊆ A that meets certain conditions to
be an “acceptable” opinion. Typically, the minimal conditions for B are conflict-
freeness (no a, b ∈ B attack each other) and defense of its own arguments (for
any c that attacks b ∈ B there is some b′ ∈ B that attacks c). Any set that has
these two properties is said to be admissible. Any admissible set that is equal to
the set of arguments it defends is said to be complete. In [4,6] an alternative but
equivalent approach to Dung’s semantics is offered in terms of labellings. For our
present purposes we only introduce the notion of a complete labelling,

Definition 3 ((Complete) Argument Labelling). Let (A, ) be an AF. An
argument labelling is a total function L : A → {in, out, undec}. Furthermore, a
labelling L for (A, ) is said to be complete iff for all a ∈ A it holds that:

– L(a) = in iff for all c ∈ A s.t. c a: L(c) = out
– L(a) = out iff there is a c ∈ A s.t c a and L(c) = in

It is not difficult to show that, for any complete labelling, the set of arguments
that are labelled in forms a complete extension and, viceversa, from any com-
plete extension B we easily obtain a complete labelling where all and only the
arguments in B are labelled in.

An AF (A, ) may contain more than one complete extension. Based on this,
[24] defines the justification status of an argument relative to an AF in terms of
its membership to complete labellings.

Definition 4 (Justification Status). Let (A, ) be an AF and let a ∈ A.
The justification status of a is the outcome yielded by the function JS : A →
℘({in, out, undec}) defined as:

JS(a) := {L(a) | L is a complete labelling of (A, )}
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As noted in [24], two of the eight possible outcomes of JS are excluded.
First, ∅ is never a possible outcome of JS, since, as proved in [10], there is
always at least a complete extension. Second, the value {in, out} is also excluded
from the range of JS, since it can be proven that if in, out ∈ JS(a), then
undec ∈ JS(a). Let us denote by JS∗ the set of the six possible justification
status of an argument.

Notation. Let (A, , A1, A2, a) be a 2-AF, let B ⊆ A, we use JSB(a) to
refer to the justification status of a w.r.t. (B, ∩(B ×B)). Note that JSAi(a)
denotes the justification status of a for agent i. For the sake of readability, we
sometimes write JSi(a) instead of JSAi(a).

The authors of [24] give the following names to the possible outcomes of
JS: {in} is called strong accept ; {in, undec} is called weak accept ; {undec} is
called determined borderline; {in, out, undec} is called undetermined borderline,
{out, undec} is called weak reject and {out} is called strong reject. The following
total pre-order defines an acceptance hierarchy of an argument with respect to
an AF:

strong accept > weak accept > determined borderline = undetermined
borderline > weak reject > strong reject

2.2 Communication and Persuasion

For the sake of simplicity, we assume that 1 is the speaker (or sender), i.e., the
one that is trying to persuade while 2 is the hearer (or receiver).

Definition 5 (Communication Step). Given a pointed 2-AF G = (A, 
, A1, A2, a) and B ⊆ A1, a communication step is a triple (G, B,GB) where GB
is called the resulting pointed 2-AF and it is defined as GB := (A, , A1, A

B
2 , a)

where AB
2 = A2 ∪B.

Remark 2. First, agent 2 (the hearer) is assumed to always perform an open
update [16], i.e., 2 always trusts 1 and incorporates all the received information
into her subgraph. Second, the disclosure policy of 1 is left undecided, since our
objective is to investigate how should 1 discloses her available information in
order to persuade 2.

Note that JSAi∪B(a) (see notation above) denotes the justification status of
a for agent i after B has been communicated. For the sake of readability, we
sometimes write JSBi (a) instead of JSAi∪B(a). With these ingredients in mind,
we are able to define a persuasive communication as one where the speaker
reaches to align the hearer’s justification status with her intended goal.

Definition 6 (Persuasive Communication). Given a communication step
(G, B,GB) and a goal of communication for the speaker goal ∈ JS∗. The commu-
nication step is said to be persuasive iff JSB2 (a) = goal. Furthermore, a goal is
said to be achievable through B ⊆ A1 iff (G, B,GB) is persuasive. In general, a
goal is said to be achievable iff there is some B through which goal is achievable.
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Remark 3. Given a pointed 2-AF (A, , A1, A2, a) and a goal ∈ JS∗, we have
that goal is achievable w.r.t. (A, , A1, A2, a) iff there is an A′2 ⊆ A such that:

A2 ⊆ A′2, A′2 \A2 ⊆ A1 and JSA
′
2(a) = goal.

Note that persuasion is not always possible. In particular if A2 = A (2 has access
to all relevant information) and goal 6= JS2(a) (the goal is not trivial), then we
have that goal is not achievable: there is no B ⊆ A1 s.t. JSB2 (a) = goal. Besides,
goal is not achievable when  is well-founded in (A, , A1, A2, a) and goal is
not {in} nor {out}. As shown by [10], in such case there is only one complete
extension (which is grounded, preferred and stable) in (A, ) and in any of its
possible subgraphs (since the relation  is a fortiori well-founded there).

Our main objective can be reformulated now in more precise terms: given
a pointed 2-AF (A, , A1, A2, a) and a goal ∈ JS∗, how can 1 select a set of
arguments B ⊆ A1 such that (G, B,GB) is persuasive? In order to define a
persuasive disclosure policy for agent 1 (the speaker), we could adopt an external
view and take into account all the relevant information (A, A1 and A2 together
with  ). If we adopt such a perspective, then a persuasive policy consists in
selecting any set that produces persuasion. Nevertheless, this does not capture
what agents do when they are actually trying to persuade another. In these cases,
the speaker’s information about the hearer’s information is crucial to adopt a
successful strategy. Let us make this point clear through the following example.

Example 1 (A bloody crime). A murder was committed in Amsterdam last night.
The main suspect, called Mr. 1, is being interrogated by the famous detective
Ms. 2. The suspect wants to persuade 2 that he is innocent (a), i.e., goal = {in}.
Unfortunately for him, he was seen by several witnesses holding a bloody knife
in his hands close to the crime scene (b). He does possess two potential alibis.
First, 1 has a (well-known criminal) identical twin brother (c). Nevertheless, and
unknown to Ms. 2, his twin brother was in Venice the night of the crime (f).
Besides, 1 used to work in a butcher’s nearby (d) but he was fired a week ago (e).
Imagine that 2 owns e because she has done the proper interrogations before.
Figure 1 represents a pointed 2-AF depicting the story. Note that JS1(a) =
JS2(a) = {out} (both agents think that 1 is not innocent). Note also that 1
will succeed if he discloses c but he will fail if he discloses either d or {c, d}.
Even more, if he discloses either d or {c, d}, then goal is not achievable in the
resulting graph. This shows that 1’s election is crucial in order to reach his goal
(proving himself innocent). It also suggests that, within the art of persuasion,
some mistakes turn out to be irreparable. In a real-life situation, 1 will chose
between c and d according to his information about 2’s information.

3 A Dynamic Epistemic Logic for Argumentation

A question arises naturally from Example 1: how could we represent 1’s epistemic
states (belief and knowledge) about 2’s argumentative state? One simple way to
do so, using tools imported from standard epistemic logic and awareness logic
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• c• f

• d• e

• b • a

2
2

a: “1 is innocent”
b: “1 was seen close to the crime scene”
c: “1 has a twin brother living in the city”
f : “1’s twin brother was in Venice last night”
d: “1 works in a butcher’s nearby”
e: “1 was fired from the butcher’s a week ago”

Fig. 1. A pointed 2-AF for Example 1.

[11], is offered in [19] under the name of L1. In order to avoid confusion, let us
just simply call it L. In this section, we first recall the syntax and semantics of
L. After that, we propose a dynamic extension of L, named L+. L+ is designed
to capture the notion of communication step (see Definition 5) within a DEL
framework. We close the section by offering a complete axiomatization for the
dynamic extension via reduction axioms.

3.1 Syntax and Semantics of L

Given an AF (A, ) and a finite set of agents Ag, the language L(A,Ag) is
generated by the following Backus-Naur form (BNF, in what follows):

ϕ ::= ownsi(a) | ¬ϕ | ϕ ∧ ϕ | �iϕ a ∈ A i ∈ Ag

ownsi(a) is intended to mean “i is aware of argument a” and �iϕ is intended to
mean “i believes (knows) that ϕ”. In what follows, we assume that Ag = {1, 2}
and restrict our attention to L(A).

Definition 7 (Model, Truth and Validity). An L(A)-model (or simply, a
model) is a triple M = (W,R,D) where W 6= ∅ is set of possible worlds,
R : Ag → ℘(W ×W ) assigns an accessibility relation to each agent, and D :
(Ag × W ) → ℘(A) is an awareness function, intended to represent the set of
arguments each agent is aware of in each world. For notational convenience, we
abbreviate (w, v) ∈ R(i) as wRiv and a ∈ D(i, w) as a ∈ Di(w). Furthermore,
we assume that for every i, j ∈ Ag and every w, u ∈W , it holds that:

1. If wRiu, then Di(w) = Di(u)
2. If wRiu, then Dj(u) ⊆ Di(w)

Let us denote by M the class of all models. Given a model M = (W,R,D), a
pointed model is a pair (M,w) s.t. w ∈W . Truth in pointed models is defined as
usual for propositional connectives. We just make explicit the clauses for ownsi
and �i:

M,w � ownsi(a) iff a ∈ Di(w)

M,w � �iϕ iff M,w′ � ϕ for all w′ such that wRiw
′
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A formula ϕ ∈ L(A) is said to be valid, denoted by � ϕ, iff it is true in all
pointed models for L(A).

Condition 1. means that awareness of arguments is fully introspective with re-
spect to belief (knowledge). In other words, if an agent is aware of an argument,
then she believes (knows) so and if she is not aware of an argument, then she
believes (knows) so. Note that, if we assume that Ri is serial (which holds both
for the standard notion of belief and knowledge), then Condition 1 also im-
plies that � �iownsi(a) → ownsi(a), i.e., if an agent believes (knows) that she
is aware of an argument, then she is right. Condition 2, defined by the axiom
¬ownsi(a)→ �i¬ownsj(a), captures the intuition according to which if an agent
is not aware of an argument, then she thinks that no one else is aware of it. Since
we want to discuss both knowledge and belief, no restriction on Ri is imposed in
Definition 7. Given an accessibility relation Ri, we say that Ri is an epistemic
relation iff it is a pre-order (reflexive and transitive) and we say that it is a
doxastic relation iff it is serial, transitive and euclidean.

Let ((W,R,D), w) be a pointed model for L(A), we have that (A, ,D1(w),D2(w))
is a 2-AF (see Definition 2); let us call (A, ,D1(w),D2(w)) the 2-AF induced by
(M,w). Furthermore, let (A, ,D1(w),D2(w)) be the 2-AF induced by (M,w),
a pointed 2-AF induced by (M,w) is just a tuple (A, ,D1(w),D2(w), a) s.t.
a ∈ D1(w) ∩ D2(w). Note that a pointed model and one of its induced pointed
2-AFs represent both the argumentative situation of each agent with respect
to a debate about a and their epistemic attitudes with respect to the other
agent’s argumentative situation. Analogously, let G = (A, , A1, A2) be a 2-AF,
a pointed model for G is a pointed model ((W,R,D), w) such that A1 = D1(w)
and A2 = D2(w).

Proposition 1. Let (A, , A1, A2) be a 2-AF. If Ai * Aj, then there does not
exist any pointed model for (A, , A1, A2) s.t. Rj is reflexive.

In other words, if j is not at least as well informed as i (in a strong sense of
informedness [5]), then j cannot have any knowledge about (A, , A1, A2).

Example 2 (A bloody crime, revisited). Recall the story of Example 1 and the
2-AF shown in Figure 1. A pointed model for it is shown in Figure 2. Note that,
since the relation  is the same in every possible world, we can dispense with
its representation. Nevertheless, awareness sets do change from world to world,
so they must be included in the figure. Note that both R1 and R2 are doxastic
relations. It is also simple to see that M,w0 � �1(¬owns2(e)) ∧ owns2(e) (1
believes (wrongly) that 2 is not aware of e (the counter-argument to one of 1’s
alibis).

3.2 A Dynamic Extension of L

Communication steps (see Definition 5) can be now represented in DEL style,
as model transformers.
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1 : A

2 : {a, b, e}
w0

1 : A

2 : {a, b}
w1

1 : {a, b}
2 : {a, b, e}

w2

1

2

1,2

1,2

Fig. 2. Pointed model for the 2-AF of Figure 1
.

Definition 8 (Communication Model). Given a pointed model (M,w) =
((W,R,D), w) for L(A), the communication pointed model (M,w)+b := ((W,R,D+b), w)
shares domain, accessibility relations and distinguished world with (M,w). The
only difference is in the awareness function D+b : (Ag×W )→ ℘(A), defined by
cases for each i ∈ Ag and each v ∈W as follows:

Di(v) ∪ {b} if b ∈ D1(w)
Di(v) otherwise

For notational convenience, we sometimes abbreviate (M,w)+b as M+b, w.

Remark 4 ((·)+b is a local update). This way of defining the updated model is
somehow non-standard. Note that the function (·)+b goes from pointed models
to pointed models; and not from models to models, as it is the case in public
announcement logics and logics with substitution operators [22,15]. Informally,
the effect of an action changes if we move from one world to another, i.e., the
action is local.

Example 3 (Communication Models). Figure 3 extends the model of Figure 2
and it shows the effects of the action (·)+d when it is applied to different pointed
models. Note that (M,w0)+d 6= (M,w0) but (M,w2)+d = (M,w2). Since the
precondition of the action holds in w0 (d ∈ D1(w0)), we have that in the com-
munication model (M,w0)+d argument d has been added to the awareness sets of
both agents in every world. However, if the action takes places in (M,w2), where
the precondition does not hold (a /∈ D1(w2)) the action (·)+d has no effects.

We can easily go from the disclosure of single arguments to the disclosure of

sets of arguments: given B = {b1, ..., bn} ⊆ A, define (M,w)+B as (M,w)+b···
+bn

1 .
In order to talk about the action (·)+a, we need to enrich the language with a
dynamic modality. Define L+(A) as the language generated by the following
BNF:

ϕ ::= ownsi(a) | ¬ϕ | ϕ ∧ ϕ | �iϕ | [+a]ϕ a ∈ A i ∈ Ag
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1 : A

2 : {a, b, e}

w0

1 : A

2 : {a, b}

w1

1 : {a, b}
2 : {a, b, e}

w2

1

2

1,2

1,2

1 : A

2 : {a, b, d, e}

w0

1 : A

2 : {a, b, d}

w1

1 : {a, b, d}
2 : {a, b, d, e}

w2

1

2

1,2

1,2

(M,w0)+d

(M,w2)+d

Fig. 3. Communication Model

For any B = {b1, ..., bn} ⊆ A, we define the shorthand [+B]ϕ := [+b1]...[+bn]ϕ.
The notion of truth is extended to the new class of formulas as expected:

M,w � [+b]ϕ iff M+b, w � ϕ

Remark 5. Definition 8 is enough to capture at least three of our intuitions.
First, M,w � owns1(b) works as a precondition for the action to have any effect;
intuitively, the speaker needs to be aware of what she communicates. Second, if
M,w � owns1(b), then M+b, w � owns2(b); i.e., if the precondition holds, then
the hearer gets the communicated argument. Third, if M,w � owns1(b), then
M+b, w � �k

Ag(owns1(b)∧owns2(b)) and any k ∈ N; i.e. if the precondition holds,
then the awareness of the communicated argument by both agents becomes
common belief (knowledge). Note, however, that the communication model must
be refined if we count with more than two agents and we want to model cases of
private communication (for instance, by removing R-arrows just for the speaker
and the hearer).

3.3 Completeness

We provide an axiomatization for L+(A). All systems are extensions of K, con-
sisting of axioms (Taut) and (K), and are closed under both inference rules.

– A extends K with axioms (PI) and (GNI).6

– BA extends A with axioms (D), (4) and (5).
– KA extends A with axioms (T ), (4) and (5)

Besides, we denote byMK (resp.MB) the class of all models where every Ri is
an epistemic (resp. a doxastic) relation.

6 PI stands for positive introspection and GNI for generalized negative introspection.
The latter captures standard negative introspection as a special case where the
indexes i and j are the same.
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Theorem 1 (Soundness and Completeness for the static fragments).
The proof system A (respectively AK, AB) is sound and complete w.r.t the class
of all models (resp. w.r.t. MK, MB).

Proving soundness of all the mentioned systems is straightforward. Completeness
proofs can be found in the Appendix.

Axioms
All propositional tautologies (Taut) ` �i(ϕ→ ψ)→ (�iϕ→ �iψ) (K)
` ownsi(a)→ �iownsi(a) (PI) ` ¬ownsi(a)→ �i¬ownsj(a) (GNI)
` ¬�i ⊥ (D) ` �iϕ→ ϕ (T)
` �iϕ→ �i�iϕ (4) ` ¬�iϕ→ �i¬�iϕ (5)
Rules
From ϕ→ ψ and ϕ, infer ψ MP From ϕ infer �iϕ NEC

Table 1. Axioms for the static fragments

Reduction Axioms for [+a] Using Theorem 1, we obtain completeness results for
the dynamic extensions (with [+a] and its semantics) for all the three static logics
(A,AK and AB). This is done by providing a set of reduction axioms for [+a].
Reduction axioms are valid formulas of the form [a+]ϕ ↔ ψ s.t. the dynamic
operator is “pushed inside” in the formula on the left side of the equivalence. A
full set of reduction axioms plus the rule of substitution of equivalents enable us
to find a provably equivalent formula in the static logic for every formula in the
dynamic logic. The reader is referred to the Appendix and to [7,15] for further
details.

In order to find the full set of reduction axioms for our new modality [+a],
we take a small detour. First, we show that [+a] is definable in terms of another
dynamic modality [a!] (the public announcement of argument modality). Then,
we offer the full set of reduction axioms for [a!]. We start by defining the new
language. Given an AF (A, ) and Ag = {1, 2}, the language L!+(A) is generated
by the following BNF:

ϕ ::= ownsi(a) | ¬ϕ | ϕ ∧ ϕ | [a!]ϕ | [+a]ϕ a ∈ A i ∈ Ag

The language L!(A) is the result of removing the [+a]ϕ-clause.

Definition 9 (Announcement Model). Given a model for L(A), M = (W,R,D)
and an argument a ∈ A, let us define the announcement model as Ma! =
(W,R,Da!) that shares domain and accessibility relations with M and only varies
in the awareness function, defined for every i ∈ Ag and every w ∈ W as
Da!

i (w) = Di(w) ∪ {a}.7
7 The operation (·)a! can be understood as a special case of public substitution [22,15].

From the perspective of dynamic awareness logic [2], the same action can be under-
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Remark 6. Note that both operations, (·)a+ and (·)a!, always return a model
inside the same class (no matter if we pick up an arbitrary one fromM,MK or
MB). Since none of the operations alters the accessibility relation, we just have
to check that Conditions 1. and 2. from Definition 7 are satisfied by any output
of (·)a! and (·)a+. Details are left to the reader.

Remark 6 assures that both L!+ and L! are interpreted on the same class of
models as L. Now, the truth clauses for the remaining formulas are as before.
As for [a!]ϕ, we add the following clause to the definition of truth:

M,w � [a!]ϕ iff Ma!, w � ϕ

Table 2 shows the full list of reduction axioms for [+a] and [a!].8 The following
proposition is crucial to obtain soundness and completeness for the dynamic
extensions of the logics mentioned so far.

Proposition 2. Schemata shown in Table 2 are valid and the rule SE preserves
validity.

We consider the axiom system A!+ (resp. AK!+ and AB!+) that extends A (resp.
AK, AB) with the axioms and rule of Table 2.

Theorem 2 (Completeness of L+!). The axiom system A!+ (resp. AK!+ and
AB!+) is sound and complete w.r.t. the class of models M (resp. MK and MB).

` [+a]ϕ↔ (owns1(a)→ [a!]ϕ) ∧ (¬owns1(a)→ ϕ) (Def+)
` [a!]ownsi(a)↔ > (Atoms=)

` [a!]ownsi(b)↔ ownsi(b) where a 6= b (Atoms 6=)
` [a!]¬ϕ↔ ¬[a!]ϕ (Negation)
` [a!](ϕ ∧ ψ)↔ ([a!]ϕ ∧ [a!]ψ) (Conjunction)
` [a!]�iϕ↔ �i[a!]ϕ (Box)

From ϕ↔ ψ, infer δ ↔ δ[ϕ/ψ] SE

Table 2. Reduction Axioms for L+!(A)

4 Epistemic-based Persuasive Arguments

In this section we combine the tools of Section 2 (AFs) and Section 3 (DEL) in
order to define a notion of persuasive argument based on the perspective of the
speaker. For this we need to take into account the speaker’s epistemic situation.

stood in terms of the consider action, with the only difference that here arguments
(and not formulas) are the content of announcements. A detailed comparison be-
tween the three operations is out of the scope of this paper.

8 In Table 2 δ[ϕ/ψ] is the result of substituting one or more occurrences of ψ in δ by
ϕ.
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As our previous analysis suggests, “being persuasive from the speaker’s perspec-
tive” does not guarantees actual persuasiveness (Definition 6), which heavily
relies on external conditions. However, it is possible to provide sufficient condi-
tions for the former to imply the latter. In other words, it is possible to isolate
some epistemic conditions that are “safe” for the speaker, they guarantee that
the communication is going to be persuasive. Let us first define persuasiveness
from the speaker’s perspective.

Definition 10 (Epistemic-based persuasive arguments). Let (M,w) be a
pointed model, let (A, ,D1(w),D2(w), a) be a pointed 2-AF induced by (M,w)
and let goal ∈ JS∗ be a goal of communication, we say that a set B ⊆ D1(w)

is persuasive from 1’s perspective iff JSD
+B
2 (w′)(a) = goal for all w′ ∈ W s.t.

wR1w
′.

Informally, a set of arguments is persuasive from the speaker’s perspective iff it
is persuasive in all her accessible AFs. An epistemic-based disclosure policy is
just one that selects any set of arguments known (believed) to be persuasive by
the speaker.

Definition 10 makes strong use of the notion of justification status. Conse-
quently, persuasive sets cannot be described using L+. However, and due to the
fact that we are working with finite AFs, we can get closer to this objective and
express the “all accessible AFs” part of the definition. First, let us define the
following shorthand in L(A):

2graph(C) :=
∧
a∈C

owns2(a) ∧
∧
b/∈C

¬owns2(b) for any C ⊆ A

The intuitive reading of 2graph is “C is 2’s subgraph” and, indeed, it holds
that M,w � 2graph(C) iff C = D2(w). Again, since A is finite, we can fix an
enumeration of its subsets ℘(A) = {A1, ..., An}. With these two tools in mind,
we can obtain:

Proposition 3. Given a pointed model (M,w) for L(A), an enumeration of
the subsets of A, {A1, ..., An} = ℘(A), and a goal ∈ JS∗ we have that B ⊆ A is
persuasive from the speaker perspective iff there is an index m (with 1 ≤ m ≤ n)
s.t.:

M,w � �1[+B](
∨

1≤i≤m

2graph(Ci)
∧

m<i≤n

¬2graph(Ci))

and JSCi(a) = goal for every 1 ≤ i ≤ m.

It is immediate to show that if �1 is not a factive attitude (R1 is not reflexive)
then not any set that is persuasive from 1’s perspective is ensured to be actu-
ally persuasive. More importantly, when the speaker lacks of knowledge about
the hearer argumentative situation, she runs the risk of committing irreparable
mistakes, as shown in the following example:

Example 4 (Wrong belief and persuasion). Recall the communication model de-
picted in Figure 3. Let us assume that w0 is the real world and recall that
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goal = {in}. Note that the set {d} (the butcher’s alibi) is persuasive from 1’s
perspective. Note, however, how she is wrong since in (D+d

2 (w0), ) we have that
JS2(a) = {out} (because 2 owns the counter-argument e). Even more, it can
be easily shown that goal = {in} is not achievable in (A,D+d

1 (w0),D+d
2 (w0), ),

i.e. if 1 discloses d, he will not longer be able to persuade 2 of his innocence

Remark 7 (Fully specific knowledge (belief) and epistemic-based persuasive sets).
Note that M,w � �1[+B]2graph(C) can be read has “1 has fully specific knowl-
edge (belief) about the effects of communicating B”, i.e., the speaker is sure
about what the hearer’s subgraph will be after the communication. Note, also,
that M,w � �1[+B]2graph(C) and JSC(a) = goal is a sufficient but not neces-
sary condition for B to be persuasive from the speaker perspective in (M,w).

On the other side, it is immediate to show that if R1 is reflexive (�1 is a
factive attitude) then any set that is persuasive from 1’s perspective is actually
persuasive. However, factivity of �1 is not a necessary condition for this. The
next proposition shows that it is sufficient for the speaker to have a “good
enough” belief in order to guarantee persuasion:

Proposition 4. Given a pointed model (M,w) for L(A), let B ⊆ A be per-
suasive from the speaker’s perspective. Let Ai be the set of all ai such that
M,w � owns2(ai) ∧ ¬�1owns2(ai). If Ai 6 D+B

2 (w) \Ai then B is persuasive.9

In other words, if the arguments 2 is aware of unbeknownst to 1 (e.g. e in our
example) are such that they don’t conflict with the set of arguments 2 is expected
by 1 to have after communicating B, then the communication turns out to be
persuasive. This is a consequence of the fact that the justification status of an
argument a only depends on the upstream of a [24].

5 Closing Words and Future Work

Summing up, we defined persuasion based on the notion of justification status
of an argument [24]. We then provided a dynamic extension for the logic L1 of
[19] in order to capture the communicative aspects of persuasive argumentation.
Furthermore, we have shown that the new logic is axiomatizable via reduction
axioms. Using this logic, we distinguished persuasive arguments from epistemic-
based persuasive arguments. We argued that the second notion is more realistic
to model real-life argumentative scenarios. Finally, we discussed some of the
epistemic conditions for a set of arguments to be actually persuasive.

There are several open branches for future work; let us just mention two of
them. First, one of the main assumptions of our framework is that hearers always
perform an open update [16], i.e., they incorporate whatever the speaker says
into their AFs. Nevertheless, this is not the case in many situations, where the

9 Given an AF (A, ) and two sets of arguments B,C ⊆ A, the attack relation is
lifted from single arguments to sets of arguments as follows: B  C iff ∃b ∈ B,∃c ∈
C(b c)
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hearer might suspect that the speaker is acting dishonestly and, consequently, she
might revise her AFs more prudently. Second, we recall that neither the notion
of persuasion nor its epistemic-based counterpart are definable in the proposed
logic. Augmenting the expressive power of the logic –using, for instance, similar
techniques to those employed in [8,9]– in order to fully reason about persuasive
argumentation inside the language looks a promising step for future work. Among
other things, it might allow us to isolate not only sufficient epistemic conditions
for a set of argument to be persuasive but also necessary ones.
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Appendix: Notes and Proofs

Notes

Note 1. As mentioned, we have assumed that 1 is always the speaker while 2 is
the hearer. Nevertheless, this logical setting can be easily generalized in order
to model argumentative dialogues (where the role speaker/hearer changes in
turns). Definition 8 should be extended to obtain a different operation (·)ai for
each i ∈ Ag where the precondition is, consequently, a ∈ ownsi(w). Furthermore,
the language must also be extended with the clause [+ia]ϕ for each a ∈ A,
i ∈ Ag. The completeness result presented below can be easily extended for such
generalization.

Note 2 ((·)+b as a global update). An alternative way of understanding the action
(·)+b (see Definition 7) such that the update becomes world-independent, i.e.
(·)+b goes from models to models, works as follows. First note that we still
need a suitable notion of actual world so that we can express the precondition
according to which the speaker has to be aware of b in the actual world for (·)+b

to have any effect. Hence, our former notion of pointed model is now simply
called a model, i.e., a model is a tuple M = (W,w,R,D). A pointed model is
now a pair ((W,w,R,D), v) where v ∈ W . Here w represents the actual world.
The definition of (·)+b stays the same (see Definition 8), but note that now
the function (·)+b goes from models to models. Finally, the notion of truth is
redefined in pointed models as usual for the rest of the operators and it is the
following one for [+b]:

(W,w,R,D), v � [+b]ϕ iff (W,w,R,D)+b, v � ϕ

Proofs

All the proofs follow standard methods. We just include some of them here for
illustration.
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Proposition 1

Proof. Let G = (A, , Ai, Aj) be a 2-AF model, let (M,w) be a pointed model
for G, i.e., Ai = Di(w) and Aj = Dj(w). Suppose, for the sake of contradiction,
that Ai * Aj but Rj is reflexive. We have that there is an argument a ∈ A s.t.
a ∈ Ai but a /∈ Aj or equivalently a ∈ Di(w) but a /∈ Dj(w). But since Rj is
reflexive, we know that wRjw. The last two assertions contradict Condition 2
of Definition 7.

Completeness of the static logics. Definition of deduction from assumptions
(Γ `∗ ϕ), consistent set (Γ 0∗⊥) (where ∗ ∈ {A,AK,AB}) and maximal consis-
tency are standard [3]. Let us denote by MC∗ the class of all maximal consistent
sets in ∗ ∈ {A,AK,AB}. When the context is clear or irrelevant, we just write
MC.
For the proof of the next two claims, the reader is referred to [3] (p. 199).

Proposition 5 (Properties of MC-sets). Let Γ ∈MC:

– For every ϕ ∈ L(A): ϕ ∈ Γ or ¬ϕ ∈ Γ
– If Γ ` ϕ, then ϕ ∈ Γ

Lemma 1 (Lindenbaum). Let Γ ⊆ L(A), if Γ 0⊥, then there is a Γ ′ ∈ MC
s.t. Γ ⊆ Γ ′.

Definition 11 (Canonical Model). Given a language L(A), define the canon-
ical model M c = (W c,Rc,Dc) as:

W c := {Γ ⊆ L(A) | Γ ∈MC}

ΓRc
i∆ iff {ϕ ∈ L(A) | �iϕ ∈ Γ} ⊆ ∆
a ∈ Dc

i (Γ ) iff ownsi(a) ∈ Γ

Lemma 2 (Canonicity). Given L(A), its canonical model M c is a model.

Proof. All we need to show is that conditions 1 and 2 of Definition 7 are sat-
isfied by M c. For Condition 1, let us suppose that ΓRc

i∆ (*). Suppose that
a ∈ Dc

i (Γ ), by definition this is equivalent to ownsi(a) ∈ Γ . From this we obtain
Γ ` ownsi(a) and note that, by monotonicity of ` and Ax (PI) we have that
Γ ` ownsi(a) → �iownsi(a). Applying modus ponens we get Γ ` �iownsi(a).
By Lemma 5 we have that �iownsi(a) ∈ Γ . This, together with (*) and the
definition of Rc

i implies ownsi(a) ∈ ∆ which is equivalent by definition of Dc to
a ∈ Dc

i (∆). We have proven the left to right inclusion, for the right to left, the
proof is analogous to Condition 2, where (GNI) is applied with i = j
As for Condition 2, suppose ΓRc

i∆ (*). Suppose a ∈ Dc
j(∆). The latter is equiv-

alent by definition to ownsj(a) ∈ ∆, which implies ∆ ` ownsj(a). Now, suppose,
reasoning by contradiction, that a /∈ Dc

i (Γ ). This is equivalent by definition
to ownsi(a) /∈ Γ . By Proposition 5 we have that ¬ownsi(a) ∈ Γ which implies
Γ ` ¬ownsi(a). Using axiom (GNI) and MP we have that Γ ` �i¬ownsj(a). This,
together with (*) and the definition of Rc, implies ¬ownsj(a) ∈ ∆ and hence
∆ ` ¬ownsj(a) that contradicts the consistency of ∆. Therefore, a ∈ Dc

i (Γ ).
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Lemma 3 (Existence Lemma). If ♦iϕ ∈ Γ , then there is a ∆ ∈ W c s.t.
ΓRi∆ and ϕ ∈ ∆.

Since �i is a normal modal operator, the proof is completely standard. The
reader is referred to [3] (pp. 200-201).

Lemma 4 (Truth Lemma). For each Γ ∈W c and and each ϕ ∈ L(A):

ϕ ∈ Γ iff M c, Γ � ϕ

Proof. The proof is by induction on the construction of ϕ (see [3] chapter 4).

Finally Theorem 1 follows from the Truth Lemma by the typical argument.

Completeness for the dynamic extensions For the completeness of A!+,
AK!+ and AB!+, we apply the general method described in [15]. Let us show
some of the details.

Proposition 2

Proof. Proving that SE preserves validity can be done by induction of the con-
struction on ϕ. The proof is simple but long, so we leave it for the reader. Note
that in standard awareness logic [11], this is not generally the case, since aware-
ness sets do not need to be closed under logical equivalence. In L, however, the
range of awareness operators is restricted to arguments, and therefore soundness
of SE is guaranteed.
As for the validity of the reduction axioms, let us just show two cases. Let (M,w)
be a pointed model:

– � [+a]ϕ↔ (owns1(a)→ [a!]ϕ) ∧ (¬owns1(a)→ ϕ)
“→”. Suppose M,w � [+a]ϕ. This is true iff M+a, w � ϕ. Let us reason
by cases. If a /∈ D1(w), then the first conjunct is trivially true. For the
second conjunct, note that if a /∈ D1(w), then M+a, w = M,w. We can
then substitute M+a, w by M,w and obtain M,w � ϕ which implies M,w �
¬owns1(a)→ ϕ. Now, if a ∈ D1(a) then the second conjunct is trivially true.
For the first conjunct we have that if a ∈ D1(a), then M+a, w = Ma!, w.
By substituting equals in the hypothesis we obtain Ma!, w � ϕ which is
equivalent by the semantic definition of [a!] to M,w � [a!]ϕ.
“←”. This direction is analogous, each of the cases (a ∈ D1(w) and a /∈
D1(w)) makes one of the conjuncts trivially true and allows us to obtain
the true consequent of the other. With that information is easy to deduce
M,w � [+a]ϕ.

– � [a!]�iϕ↔ �i[a!]ϕ
Suppose M,w � [a!]�iϕ. This is true iff Ma!, w � �iϕ (Definition 9) iff
Ma!, w′ � ϕ for every w′ s.t. wRiw

′ (Definition 7) iff M,w′ � [a!]ϕ for every
w’ s.t. wRiw

′ (substituting equivalents of Definition 9 in the last assertion)
iff M,w � �i[a!]ϕ (Definition 7).

Definition 12 (Complexity measures).
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+-depth Define
+
n: L!+(A) → N that returns the number of nested [+a] in ϕ for any

a ∈ A. More detailed:
+
n (ownsi(a)) := 0,

+
n (?ϕ) :=

+
n (ϕ) where ? ∈

{¬,�i, [a!]}, +
n (ϕ ∧ ψ) := max(

+
n (ϕ),

+
n (ψ)) and

+
n ([+a]ϕ) := 1+

+
n (ϕ).

Depth Define d : L!(A) → N as d(ownsi(a)) = 0, d(?ϕ) = 1 + d(ϕ) where ? ∈
{¬,�i, [a!]} and d(ϕ ∧ ψ) = max(d(ϕ), d(ψ)).

O-depth Define O : L!(A)→ N that returns the number of nested operators in ϕ. More
detailed: Od(ownsi(a)) = 0, Od(¬ϕ) = Od(�iϕ) := Od(ϕ), Od(ϕ ∧
ψ) := max(Od(ϕ), Od(ψ)), and Od([a!]ϕ) = 1 +Od(ϕ).

Ord Define Ord : L!(A)→ N that returns the depth of the outermost occurrence of
[a!]. More detailed: Ord(ownsi(a)) := 0, Ord(¬ϕ) = Ord(�iϕ) := Ord(ϕ),
Ord(ϕ ∧ ψ) := max(Ord(ϕ), Ord(ψ)), Ord([a!]ϕ) = 1 + d(ϕ).

Lemma 5 (From L!+(A) to L!(A)). For every ϕ ∈ L!+(A), there is a ψ ∈
L!(A) s.t. `A!+ ϕ↔ ψ.

Proof. By induction on
+
n (ϕ). If

+
n (ϕ) = 0, we have that ϕ ∈ L!(A), and by

(Taut) we have that ` ϕ↔ ϕ, so we are done.

Assume as induction hypothesis that for every ϕ ∈ L!+(A) s.t.
+
n (ϕ) ≤ k,

there is a ψ ∈ L!(A) s.t.: `A+! ϕ ↔ ψ. Suppose
+
n (ϕ) = k + 1. Take every

δi ∈ sub(ϕ) s.t.
+
n (δi) ≤ k. Note that by induction hypothesis we have that

there is a δ′i ∈ L!(A) s.t.: `A+! δi ↔ δ′i. By SE we have that ` ϕ↔ ϕ[δi/δ
′
i]. Note

that
+
n (ϕ[δi/δ

′
i]) = 1. It is easy to see that (Def+) and SE assures the existence

of a formula ψ ∈ L!(A) for every ϕ s.t
+
n (ϕ) = 1 satisfying `A+! ϕ ↔ ψ.

In particular, we have that there is a ψ ∈ L!(A) s.t.: `A+! ϕ[δi/δ
′
i] ↔ ψ. By

transitivity of ↔ we have that `A+! ϕ↔ ψ.

Remark 8. For every ϕ ↔ ψ ∈ {(Atoms=) − (Box)} it holds that Ord(ϕ) >
Ord(ψ).

Lemma 6. For every ϕ ∈ L!(A) s.t. Od(ϕ) = 1 there is a ψ ∈ L(A) s.t. `A+!

ϕ↔ ψ.

Proof. Suppose Od(ϕ) = 1, the rest of the proof is by induction on Ord(ϕ).
For the basic case, suppose Ord(ϕ) = 0, then ϕ ∈ L(A) and ` ϕ↔ ϕ, so we

are done.
Suppose, as induction hypothesis, that for every ϕ ∈ L!(A) s.t. Ord(ϕ) ≤ k there
is a ψ ∈ L(A) s.t. `A+! ϕ ↔ ψ. Now, suppose Ord(ϕ) = k + 1. We have, by
definition of Ord, that there is [a!]δ ∈ sub(ϕ) s.t. Ord([a!]δ) = k + 1. Note that,
since Od(ϕ) = 1, then Od([a!]δ) = 1 (there are no nested announcements in
[a!]δ) and therefore there is an axiom in Table 2 of the form `A+! [a!]δ ↔ δ′. By
Remark 8, Ord([a!]δ) > Ord(δ′). By the induction hypothesis we have that there
is a σ ∈ L(A) s.t. `A+! δ′ ↔ σ. By transitivity of ↔ we have that `A+! [a!]δ ↔ σ
and, by SE, `A+! ϕ ↔ ϕ[[a!]δ/σ]. We can repeat the same argument for every
δi ∈ sub(ϕ) s.t. Ord(δi) = k + 1. It is clear than the resulting formula ψ is in
L(A) and that `A+! ϕ↔ ψ.



20 Proietti and Yuste-Ginel

Lemma 7 (From L!(A) to L(A)). For every ϕ ∈ L!(A) there is a ψ ∈ L(A)
s.t. `A+! ϕ↔ ψ

Proof. By induction on Od(ϕ). The atomic case is straightforward since, if
Od(ϕ) = 0, then ϕ ∈ L(A) and we are done. As for the inductive step, sup-
pose as induction hypothesis that for every ϕ ∈ L!(A) s.t Od(ϕ) ≤ k there is a
ψ ∈ L(A) s.t. `A+! ϕ↔ ψ. Suppose Od(ϕ) = k + 1. Then, there is a δ ∈ sub(ϕ)
s.t. Od(δ) ≤ k. By the induction hypothesis we have that there is a δ′ ∈ L(A) s.t.
`A+! δ ↔ δ′ and by SE it holds that `A+! ϕ↔ ϕ[δ/δ′]. We can repeat the same
argument for every δi ∈ sub(ϕ) s.t. Od(δi) ≤ k. Note that, since Od(δ′i) = 0, we
have that Od(ϕ[δi/δ

′
i]) = 1 and by SE `A+! ϕ↔ ϕ[δi/δ

′
i]. By Lemma 6 we have

that there is a ψ ∈ L(A) s.t. `A+! ϕ[δi/δ
′
i]↔ ψ and by transitivity of ↔ it holds

that `A+! ϕ↔ ψ.

Theorem 2

Proof. We prove completeness for A!+ w.r.t. M, the other two cases are com-
pletely analogous. Let ϕ ∈ L!+(A), suppose � ϕ. By lemmas 5 and 7 and transi-
tivity of ↔ we have that there is a ψ ∈ L(A) s.t. `A+! ϕ ↔ ψ. From soundness
of A+! and the initial hypothesis it follows that � ψ and, by completeness of A
we have that `A ψ. Since A+! is an extension of A, we have that `A+! ψ. By SE
we obtain `A+! ϕ.
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