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Abstract. Instantial Neighbourhood Logic (INL) has been introduced
recently as a language for neighbourhood frames where existential infor-
mation can be given about what kind of worlds occur in a neighbourhood
of a current world. Apart from its semantics, its proof theory and bisimu-
lation games have also been studied. However, conspicuously absent from
the treatment of INL is the notion of descriptive frames.
This is the gap that we are closing in this paper. We introduce descrip-
tive frames for INL and we prove that these are dual to boolean algebras
with instantial operators (BAIOs), which give the algebraic semantics
of INL. Our methods for establishing this duality make essential use of
coalgebra: we observe that BAIOs are algebras for a functor on the cate-
gory of boolean algebras and show that this functor is dual to the double
Vietoris functor (i.e. the composition of the Vietoris functor with itself),
thus obtaining a dual equivalence between double Vietoris coalgebras
and BAIOs. The proof of our main result is then completed by show-
ing that double Vietoris coalgebras correspond precisely to descriptive
frames. As a corollary we obtain that every extension of INL is sound
and complete with respect to descriptive frames, that descriptive frames
enjoy the Hennessy-Milner property, and as a result, that finite neigh-
bourhood frames enjoy the Hennessy-Milner property.

Keywords: Duality · Modal logic · Instantial Neighbourhood Logic ·
Descriptive frames · Coalgebra.

1 Introduction

The concept of duality arises in many areas of mathematics, logic and computer
science. The first duality milestone in algebraic logic was the Stone representa-
tion theorem [31], which described the categorical duality between boolean alge-
bras and so-called Stone spaces. Subsequently, many representation and duality
theorems have been established, including a representation theorem for Riesz
spaces [38], Priestley duality for distributive lattices [28], and Esakia duality for
(bi-)Heyting algebras [12–14, 9].
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The first representation theorem in the realm of modal logic was given by
Jónsson and Tarski [20]. Although op. cit. does not mention modal logic explic-
itly, it introduces relational semantics and uses the representation theorem to
relate algebraic and relational semantics. The full duality between boolean alge-
bras with operators and descriptive general frames was established by Goldblatt
[16], and many other dualities ensued [19, 8, 15, 25].

These dualities are useful because they provide two, algebraic and geometric,
perspectives on the same object and allow one to translate results from the
algebraic language to the geometric one via (descriptive) frames, and vice versa.
For example, this was a key ingredient in Sambin and Vaccaro’s simplified proof
of the celebrated Sahlqvist completeness theorem in modal logic [30].

A novel system of modal logic for reasoning about neighbourhood frames,
called Instantial Neighbourhood Logic (INL), was recently introduced in [3]. The
modalities in INL give existential information about what kind of worlds occur
in a neighbourhood of a current world. Motivations for investigating this logic
range from topology to games, and from modelling notions of evidence to belief
revision. Surprisingly however, a duality result is still absent from the theory of
INL, despite an abundance of recent interest in the logic [32, 39, 2, 1, 40].

This is the gap we are filling in this paper. We introduce a suitable notion of
descriptive frames for INL and prove a (categorical) duality between descriptive
INL-frames and boolean algebras with instantial operators (BAIOs). The latter
give the algebraic semantics for INL and play the same rôle for INL that boolean
algebras with operators play for normal modal logic [7, 10] and boolean algebras
with monotone operators for monotone modal logic [17, 18].

Our main technical tool for establishing this duality is coalgebra. Coalgebras
arise as the dual notion of algebras for a functor and have found many applica-
tions in logic and computer science. For example, they are a natural setting for
dealing with non-wellfounded data structures such as streams or infinite trees,
and, triggered by Moss’ paper on coalgebraic logic [26], they have become a
widely-used framework for describing semantics for modal logics [29, 24, 22, 21].

A key feature of the coalgebraic perspective on duality is that, in a sense, it
isolates the essential part of the duality. In the case of modal logic, the traditional
approach of Jónsson-Tarski duality considers modal algebras as boolean algebras
with operators, and directly constructs the dual Kripke frames. From the point
of view of coalgebra, this turns out to really be a duality between functors. Once
we identify modal algebras as the algebras for a certain functor on the category
of boolean algebras and recognise its dual functor as the Vietoris functor, the
duality between algebras and coalgebras for these two functors, which piggy-
backs Stone duality, is a trivial consequence. The same approach works well for
other variations of modal logic such as monotone modal logic [18] or positive
modal logic (which piggy-backs on Priestley duality) [27]. While these examples
have been re-cast in this style with hindsight, we believe that this coalgebraic
approach serves as a useful blueprint for establishing dualities for new logics.
If a logical system and its algebras are given, and a natural candidate for dual
“descriptive frames” is suggested, then proceed as follows:
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1. Describe the algebras of the logic as algebras for a functor.
2. Find the dual functor T.
3. Show that T-coalgebras are equivalent to descriptive frames.

In the current paper we use this strategy to prove a duality theorem for
INL. First, we observe that BAIOs are algebras for a functor on the category of
boolean algebras and homomorphisms. Second, we recall that it was observed
in [3] that the neighborhood semantics of INL corresponds to coalgebras for the
double covariant powerset functor. Since Kripke frames are coalgebras for the
covariant powerset functor, and modal algebras are dual to Vietoris coalgebras,
this suggests that BAIOs should be dual to coalgebras for the double Vietoris
functor. We verify that this is indeed the case. Lastly, we show that our descrip-
tive frames are precisely the “double Vietoris coalgebras”, in the sense that the
categories are isomorphic. Hence, these descriptive frames are dual to BAIOs.

A rather trivial step in this proof is the representation of BAIOs as algebras
for a functor I; the functor is simply read off from the defining equations of
BAIOs. It was observed by Lutz Schröder (private communication) that the
logic INL can be translated into the composition of standard modal logic with
itself, and vice versa, in a semantics-preserving manner. This suggests that we
could optionally have represented BAIOs as algebras for the functor M◦M, where
M is the functor whose algebras correspond to modal algebras. Since M is dual to
the Vietoris functor, the dual equivalence of M◦M-algebras with double Vietoris
coalgebras would follow directly (in fact, as a special case of a more general result
in [23]). While this alternative approach has a certain elegance to it, we have
opted for a more direct representation of INL-algebras here. The main benefit is
that our proof gives a quite standard canonical model construction for INL and
its extensions, without a detour via a translation. This makes the duality better
suited for dealing with issues like canonicity and Sahlqvist completeness, which
we hope to address in future work. We obtain the equivalence of INL-algebras
with algebras for M ◦ M as a corollary. Our proof also gives a representation
of the double Vietoris functor where the topology is described in terms of the
INL-modalities, rather than two layers of box and diamond modalities.

As a corollary of our main duality theorem we obtain that every extension of
INL is sound and complete with respect to descriptive frames, that descriptive
frames enjoy the Hennessy-Milner property, and as a result, that finite INL-
frames enjoy the Hennessy-Milner property.

Outline. The paper is structured as follows: In Section 2 we recall the definitions
of Instantial Neighbourhood Logic and its semantics, algebras and coalgebras,
Stone duality, and the Vietoris functor. In Section 3 we define boolean algebras
with instantial operators and descriptive INL-frames. The main results of the
paper appear in Section 4, where we prove that the category of BAIOs is dually
equivalent to the category of coalgebras for the double Vietoris functor, and
in Section 5, where we identify coalgebra for the double Vietoris functor with
descriptive INL-frames. Finally, we provide some applications of the developed
theory in Section 6, and discuss possible direction for future work in Section 7.
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2 Preliminaries

2.1 Instantial neighbourhood logic

We briefly recall the language and semantics of instantial neighbourhood logic
from [3]. The language L(Prop) of instantial neighbourhood logic over some
arbitrary but fixed set Prop of proposition letters is defined recursively by

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | �(ϕ1, . . . , ϕn;ϕ),

where p ∈ Prop and n ∈ ω. Observe that we have a countably infinite number
of modal operators: one for each n ∈ ω. Formulas in L(Prop) can be interpreted
in neighbourhood frames, which we shall call INL-frames.

Definition 2.1. An INL-frame is a pair (X,N) comprised of a set X and a
neighbourhood functor N : X → PPX, where P is the (covariant) powerset
functor. A neighbourhood model is a tuple (X,N, V ) where (X,N) is a neigh-
bourhood frame and V : Prop→ PX is a valuation of the proposition letters.

An INL-morphism from (X,N) to (X ′, N ′) is a map f : X → X ′ such that

N ′(f(x)) = {f [a] | a ∈ N(x)},

for all x ∈ X. Here f [a] denotes the direct image of a under f . An INL-morphisms
(X,N, V )→ (X ′, N ′, V ′) between neighbourhood models is an INL-morphism f
between the underlying frames which additionally satisfies

x ∈ V (p) iff f(x) ∈ V ′(p)

for every p ∈ Prop.
Write INL and INLM for the categories of neighbourhood frames and neigh-

bourhood models, respectively, with their corresponding notion of morphism.

The interpretation of INL formulas in a neighbourhood model (X,N, V ) is
defined recursively, where the classical connectives are treated in the standard
manner. For the modalities, let x 
 �(ϕ1, . . . , ϕn;ψ) if there is a neighbourhood
w ∈ N(x) of x such that y 
 ψ for all y ∈ w, and for each ϕi there is yi ∈ w
such that yi 
 ϕi. We write JϕK = {x ∈ X | x 
 ϕ} and say that x satisfies ϕ
if x ∈ JϕK. Two states are called logically equivalent if they satisfy precisely the
same formulas.

The interpretation of the modalities can be conveniently reformulated using
the following notion of witnesses.

Definition 2.2. Let X be a set and w, a1, . . . , an, b subsets of X. We say that
w witnesses (a1, . . . , an; b) if and only if w ∩ ai 6= ∅ for all i ∈ {1, . . . , n} and
w ⊆ b. We say that w co-witnesses (a1, . . . , an; b) if and only if w ⊆ ai for some
i ∈ {1, . . . , n} or w ∩ b 6= ∅.
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It is straightforward to see that in a neighbourhood model (X,N, V ) a state x
satisfies �(ϕ1, . . . , ϕn;ψ) if there is a w ∈ N(x) witnessing (Jϕ1K, . . . , JϕnK; JψK).

Definition 2.3. Let (X,N) be a neighbourhood frame. Define the map m�,n :
(PX)n+1 → PX by

m�,n(a1, . . . , an; b) = {x ∈ X | ∃w ∈ N(x) which witnesses (a1, . . . , an; b)}.

When there is no danger of confusion, we suppress the subscript n from m�,n.

Yet another way to view the interpretation of the modalities in a neighbour-
hood model is via the equality J�(ϕ1, . . . , ϕn;ψ)K = m�(Jϕ1K, . . . , JϕnK, JψK).

2.2 Stone Duality

Write BA for the category of boolean algebras and homomorphisms, and Stone
for the category of Stone spaces and continuous functions.

The contravariant functor uf : BA → Stone takes a boolean algebra B to
the collection ufB of ultrafilters of B topologized by the base B̃ = {L b M | b ∈
B}, where L b M = {u ∈ ufB | b ∈ u}. The action of uf on a homomorphism
h : B → B′ in BA is defined by (ufh)(u′) = h−1(u′). In the converse direction,
the contravariant functor clp : Stone→ BA takes a Stone space to its boolean
algebra of clopens and a continuous function to its inverse. The functors uf and
clp constitute a dual equivalence between BA and Stone.

2.3 Algebra, Coalgebra, and the Vietoris functor

We recall the definitions of algebras, coalgebras, and the Vietoris functor.

Definition 2.4. Let F be an endofunctor on a category C. An F-coalgebra is a
pair (c, γ) such that γ : c → Fc is a morphism in C. An F-coalgebra morphism
(c, γ) → (c′, γ′) is a morphism f : c → c′ in C satisfying γ′ ◦ f = Ff ◦ γ. The
collection of F-coalgebras and F-coalgebra morphisms constitutes the category
Coalg(F).

The dual notion of a coalgebra is that of an algebra: an F-algebra is a mor-
phism γ : Fc → c in C, an F-algebra morphism (c, γ) → (c′, γ′) is a morphism
f : c→ c′ in C such that γ′ ◦ Ff = f ◦ γ, and they form the category Alg(F).

Coalgebras for an endofunctor on Set are used to describe systems [29], but
can also be used to characterise the frame semantics for a wide variety of modal
logics [24]. In particular, as noted in [3, Section 7.5], we have:

Proposition 2.5. The category INL of INL-frames and INL-morphisms is iso-
morphic to Coalg(PP).

In the realm of modal logic a well-known example of a category of algebras
is the category MA of modal algebras: we have MA ∼= Alg(M), where M is
an endofunctor on the category BA of boolean algebras and homomorphisms
defined as follows:
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Definition 2.6. For a boolean algebra B let MB be the free boolean algebra
generated by the set {�a | a ∈ B}, modulo the relations �a ∧ �b = �(a ∧ b)
and �> = >. This assignment extends to an endofunctor on BA by defining
the action of M on a homomorphism h : B → B′ via Mh(�a) = �h(a) and
extending this (uniquely) to MB.

A prime example of a category of coalgebras for an endofunctor on a cate-
gory different from Set is the category DGF of descriptive general frames and
appropriate morphisms. This is isomorphic to the category of coalgebras for the
Vietoris functor V on Stone, the category of Stone spaces and continuous func-
tions [23]. We recall the definition of the Vietoris functor on Top (originally
introduced by Leopold Vietoris for compact Hausdorff spaces [37], see also [19,
Section III.4] for a localic perspective), which restricts to the Vietoris functor V
on Stone.

Definition 2.7. For a topological space X let V′X be the set of compact subsets
of X topologized by

�a = {b ∈ V′X | b ⊆ a}, �a = {b ∈ V′X | b ∩ a 6= ∅},

where a ranges over the open sets of X. This is called the Vietoris topology. For
a continuous function f : X → X′ define V′f : V′X → V′X′ : c 7→ f [c], i.e. V′f
is the direct image of f . Then V′ defines a functor on Top called the Vietoris
functor.

It is well known that V′ restricts to an endofunctor on Stone, which we
denote by V. Moreover, if X is a Stone space then the topology on VX is generated
by �a, �a, where a ranges over the clopen subsets of X. The fact that V is the
(Stone) dual of M then implies

MA ∼= Alg(M) ≡op Coalg(V) ∼= DGF,

where we use ∼= to indicate an isomorphism of categories and ≡op for a dual
equivalence. For details we refer to [23].

3 BAIOs and general frames

In this section we define boolean algebras with instantial operators (BAIOs) and
general INL-frames.

A boolean algebra with instantial operators comprises of a boolean algebra
B and an ω-indexed family of functions, reflecting the infinite number of modal
operators in INL, and provide algebraic semantics for instantial neighbourhood
logic. They play the same rôle for INL that modal algebras play for normal
modal logic [10, 7] and boolean algebras with monotone operators for monotone
modal logic [17, 18].

A general INL-frame is an INL-frame together with a collection of “admissible
subsets” which is closed under certain operations. As usual, these admissible
subsets form a BAIO. In the converse direction, we will show that every BAIO
gives rise to a general INL-frame.
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Definition 3.1. A boolean algebra with instantial operators is a pair (B, (fn)n∈ω)
consisting of a boolean algebra B and an ω-indexed set of functions fn : Bn+1 →
B satisfying the following equations for all n ∈ ω:

(B1) fn(a1, . . . , an−1,⊥; b) = ⊥;
(B2) fn(a1, . . . , ai, ai+1, . . . , an; b) = fn(a1, . . . , ai+1, ai, . . . , an; b);
(B3) fn(a1, . . . , an; b) ≤ fn(a1, . . . , an ∨ a′n; b ∨ b′);
(B4) fn(a1, . . . , an; b) ≤ fn(a1, . . . , an ∧ b; b);
(B5) fn(a1, . . . , an; b) ≤ fn+1(a1, . . . , an, c; b) ∨ fn(a1, . . . , an; b ∧ ¬c);
(B6) fn+1(a1, . . . , an+1; b) ≤ fn(a1, . . . , an; b);
(B7) fn(a1, . . . , an; b) ≤ fn+1(a1, . . . , an, an; b).

A morphism between BAIOs (B, (fn)n∈ω) and (B′, (f ′n)n∈ω) is a boolean algebra
homomorphism h : B → B′ which satisfies

h(fn(a1, . . . , an; b)) = f ′n(ha1, . . . , han;hb)

for all ai, b ∈ B and n ∈ ω. The collection of BAIOs and BAIO morphisms forms
a category (a variety of algebras, in fact) denoted by BAIO.

Every INL-frame (X,N) gives rise to a BAIO, namely its complex algebra.

Example 3.2. Let (X,N) be an INL-frame. Let PX be the powerset of X
viewed as a boolean algebra and define fn(a1, . . . , an; b) = m�(a1, . . . , an; b).
Then it is easy to verify that (PX, (fn)n∈ω) is a BAIO. This is called the complex
algebra of (X,N).

Example 3.3. Recall that Prop is an arbitrary but fixed set of proposition
letters and let L = L(Prop) be the collection of instantial formulas as defined
in Subsection 2.1. Write ϕ ≡ ψ if two formulas are provably equivalent in the
axiomatization given in [3, Section 4] and write [ϕ] for the equivalence class of
ϕ under ≡. Then L/≡ is a BAIO, where fn([ϕ1], . . . , [ϕn]; [ψ]) is defined to be
[�(ϕ1, . . . , ϕn;ψ)]. This is of course the free BAIO generated by Prop, and is
known as the Lindenbaum-Tarski algebra.

Towards a duality theorem for BAIOs, we define general INL-frames. These
are INL-frames together with a subalgebra of their complex algebra.

Definition 3.4. A general INL-frame is a triple (X,N,A) such that (X,N) is
an INL-frame and A ⊆ PX is a collection of admissible sets that is closed under
boolean operations and the operation m� : (PX)n+1 → PX (see Definition 2.3).

A general INL-morphism from (X,N,A) to (X ′, N ′A′) is an INL-morphism
f : (X,N) → (X ′, N ′) satisfying f−1(a′) ∈ A for all a′ ∈ A′. Write G-INL for
the category of general INL-frames and general INL-morphisms.

Since every algebra is a subalgebra of itself, every INL-frame can be seen as
a general INL-frame:

Example 3.5. If (X,N) is an INL-frame, then setting A = PX yields a general
INL-frame.
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Example 3.6. For a BAIO (B, (fn)n∈ω), let ufB be the collection of ultrafilters

of B and let B̃ = {L a M | a ∈ B}, where L a M = {u ∈ ufB | a ∈ u}. Define a
neighbourhood function N for ufB via

N(u) = {d ⊆ ufB | fn(a1, . . . , an; b) ∈ u whenever

d witnesses (L a1 M, . . . , L an M; L b M)}.

Then (ufB,N, B̃) is a general INL-frame.

In the converse direction of Example 3.6 we have the functor F : G-INL →
BAIO which sends a general INL-frame (X,N,A) to (A, (m�,n)n∈ω).

One can now ask whether G-INL can be restricted to a category of descrip-
tive INL-frames such that the restriction of F to these descriptive frames gives
rise to a dual equivalence with BAIO. This turns out to be the case for the
following definition of descriptive INL-frames:

Definition 3.7. A general INL-frame (X,N,A) is called:

– differentiated if for any two distinct points x, y ∈ X there is a ∈ A such that
x ∈ a and y /∈ a;

– compact if
⋂
A′ 6= ∅ for any subset A′ of A with the finite intersection

property;
– crowded if for all x ∈ X and d ⊆ X such that d /∈ N(x) we can find
a1, . . . , an, b such that d witnesses (a1, . . . , an; b) while no d′ ∈ N(x) witnes-
ses (a1, . . . , an; b).

A descriptive INL-frame is a general INL-frame that is differentiated, compact
and crowded. Denote by D-INL the full subcategory of G-INL whose objects
are descriptive INL-frames.

The notion of crowdedness is the INL analogue of the tightness condition for
normal modal logic [7, Definition 5.65]. Intuitively, it states that N(x) is, in a
sense, determined by the admissible subsets. In passing, we make the following
observation, the proof of which is straightforward.

Proposition 3.8. Let (X,N) be an INL-frame and suppose X is finite. Then
A = PX is the unique set of admissible sets making (X,N,A) a descriptive
INL-frame.

We aim to prove the following duality result:

Theorem 3.9. We have a dual equivalence

D-INL ≡op BAIO.

In order to prove this, we adhere to the strategy suggested in the introduction.
First we identify BAIO with the category of algebras for some functor I on BA,



Duality for Instantial Neighbourhood Logic via Coalgebra 9

then we determine the (Stone) dual of I, and finally, we show that descriptive
INL-frames are precisely coalgebras for this dual functor. In a diagram:

BAIO D-INL

Alg(I) Coalg(VV)

Theorem 3.9

Theorem 4.2 Theorem 5.1

Theorem 4.12

(1)

Concretely, the dual equivalence from Theorem 3.9 will be given by the construc-
tion from Example 3.6 and the subsequent paragraph, see Remark 5.7 below.

4 Duality

We show that BAIOs are algebras for the functor I : BA → BA, and that I is
the (Stone) dual of the double Vietoris functor VV on Stone. As a consequence
we obtain an algebra/coalgebra duality in Theorem 4.12.

Definition 4.1. Let B be a boolean algebra. Abbreviate (a; b) = (a1, . . . , an; b)
for an (n + 1)-tuple of elements of B. Let IB be the boolean algebra generated
by �(a1, . . . , an; b), where n ∈ ω and ai, b ∈ B, subject to the relations

(I1) �(a,⊥; b) = ⊥;
(I2) �(a1, . . . , ai, ai+1, . . . , an; b) = �(a1, . . . , ai+1, ai, . . . , an; b);
(I3) �(a, c; b) ≤ �(a, c ∨ c′, b ∨ b′);
(I4) �(a, c; b) ≤ �(a, c ∧ b; b);
(I5) �(a; b) ≤ �(a, c; b) ∨�(a; b ∧ ¬c);
(I6) �(a, c; b) ≤ �(a; b);
(I7) �(a1, . . . , an; b) ≤ �(a1, . . . , an, an; b).

For a homomorphism f : B → B′ define If : IB → IB′ on generators by

(If)(�(a1, . . . , an; b)) = �(f(a1), . . . , f(an); f(b)).

The assignment I determines an endofunctor on BA, called the instantial functor.

Item I2 of Definition 4.1 allows us to put the ai in any desired order. In I4
equality holds because of I3 and in I7 equality hold because of I6. The proof of
the following theorem is standard.

Theorem 4.2. BAIO = Alg(I).

As stated in the introduction, it seems reasonable to expect that the double
Vietoris functor VV is the dual of I under the dual equivalence between boolean
algebras and Stone spaces. We prove that this is indeed the case. More concretely,
we give a natural isomorphism

uf ◦ I ◦ clp→ VV. (2)



10 N. Bezhanishvili, S. Enqvist and J. de Groot

We first work towards an isomorphism uf ◦ I ◦ clpX ∼= VVX, where X is a Stone
space. Lemma 4.11 then states that the collection of these isomorphisms is in fact
natural. This ultimately proves the duality between (the categories of) I-algebras
and VV-coalgebras (Theorem 4.12).

We commence by giving an alternative subbase for the double Vietoris topol-
ogy, which is tailored to our specific needs.

Proposition 4.3. Let X be a Stone space. The topology on VVX is generated
by the clopen subbase

�(a1, . . . , an; b) = {W ∈ VVX | ∃w ∈W s.t. w witnesses (a1, . . . , an; b)},
�(a1, . . . , an; b) = {W ∈ VVX | ∀w ∈W w co-witnesses (a1, . . . , an; b)},

where the ai, b range over the clopen subsets of X.

Proof. The given sets are clopen in VVX, because

�(a1, . . . , an; b) = �( �a1 ∩ · · · ∩ �an ∩�b)

and

�(a1, . . . , an; b) = �(�a1 ∪ · · · ∪�an ∪ �b).

In order to show that they are a subbase for the topology on VVX, we must
show that �A and �A are boolean combinations of clopens of the form �(a; b)
and �(a; b), where A is clopen in VX. Note that A can be written as the finite
intersection of finite unions of clopens in VX of the form �a, �a. Moreover, we
may assume that there is a single diamond in each finite union because diamonds
distribute over unions. So we may write A =

⋂n
i=1

(
� a1 ∪ · · · ∪ �ami ∪ �bi

)
.

This implies

�A =

n⋂
i=1

�
(
� a1 ∪ · · · ∪�ami ∪ �bi

)
=

n⋂
i=1

�(a1, . . . , ami ; bi).

Similarly, writing A as a finite union of finite intersections, �A can be expressed
as a finite union of clopens of the form �(a1, . . . , an; b). ut

We note that the statement of Proposition 4.3 holds for any topological space
X if we require the ai and b to be range over the open subsets of X. The proof
of this is slightly more involved because it crucially uses compactness of the
elements of VX.

Remark 4.4. Recall that ultrafilters correspond bijectively to homomorphisms
into 2, the two-element boolean algebra. For an ultrafilter u in B let p : B → 2
be the corresponding homomorphism. Then p(b) = > iff b ∈ u. We will use these
two perspectives interchangeably.

We now define a map ξ : uf ◦ I ◦ clpX → VVX, where X is a Stone space.
These will form the components of the intended natural transformation from
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(2). Although such a map can be defined for any Stone space X, and therefore
the definition actually yields a Stone-indexed collection of maps (ξX)X∈Stone,
we shall refrain from writing this subscript until Theorem 4.11, where we prove
that this collection is a natural transformation.

Intuitively, to an ultrafilter p we want to attach a closed subset Wp of VX
which satisfies Wp ∈ �(a1, . . . , an; b) if and only if p(�(a1, . . . , an; b)) = >.
In our definition, we guarantee the implication from left to right by “killing
the witnesses”: If p(�(a1, . . . , an; b)) = ⊥, then we make sure that none of the
witnesses of (a1, . . . , an; b) is in Wp. In other words, we stipulate that Wp be
disjoint from �a1 ∩ · · · ∩ �an ∩�b.

Definition 4.5. For a Stone space X, define ξ : uf ◦ I ◦ clpX→ VVX by sending
an ultrafilter p to

Wp = VX \
⋃
{ �a1 ∩ · · · ∩ �an ∩�b | p(�(a1, . . . , an; b)) = ⊥}.

Since Wp is the complement of a union of clopen subsets of VX, it is closed
in VX, hence an element of VVX. Therefore ξ is well defined. For the converse
direction we need the following definition.

Definition 4.6. For a Stone space X, define

θ : VVX→ uf ◦ I ◦ clpX : W 7→ pW ,

where pW : I(clpX)→ 2 is given on generators by

pW : I ◦ clpX→ 2 : �(a; b) 7→
{
> if W ∈ �(a; b)
⊥ otherwise

Lemma 4.7. The assignment θ is well defined.

Proof. In order to show that θ is well defined, we need to show that pW is an
ultrafilter, that is, a boolean algebra homomorphism I ◦ clpX → 2. Since I is
defined by generators and relations it suffices to show that the images of the
generators under pW satisfy the relations I1 through I7. We leave this straight-
forward verification to the reader. ut

The following lemma provides the key ingredient for proving that ξ and θ are
continuous and inverses of each other.

Lemma 4.8. Let X be a Stone space. We have

Wp ∈ �(a; b) if and only if p(�(a; b)) = >.

Proof. If p(�(a; b)) = ⊥, then by construction Wp /∈ �(a; b). So suppose Wp /∈
�(a, b). Then for every witness w of (a, b) there exists (cw, dw) which is witnessed
by w and is such that p(�(cw, dw)) = ⊥.

The collection of witnesses is the set A = �a1 ∩ · · · ∩ �an ∩ �b. This is a
closed set of VX, and it is covered by the collection

{ �cw,1 ∩ · · · ∩ �cw,mw ∩�dw | w ∈ A}.
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Clearly this set is an open covering of A, so by compactness of VX there must
be a finite subcover of A. That is

A ⊆
⋃
w∈A′

( �cw,1 ∩ · · · ∩ �cw,mw ∩�dw),

where A′ is some finite subset of A serving as an index. Now it follows from
Lemma 4.9 below that p(�(a; b)) = ⊥. ut

The following technical result is motivated by the proof of Lemma 4.8.

Lemma 4.9. Let X be a Stone space, ai, b, cj , d ∈ clpX. Suppose A = �a1∩· · ·∩
�an∩�b is covered by the finite set {Ci = �ci,1∩· · ·∩ �ci,ni∩�di | 1 ≤ i ≤ m}.

Suppose p : I ◦ clpX→ 2 is a point and p(�(ci,1, . . . , ci,ni ; di)) = ⊥ for all Ci in
the given cover. Then p(�(a1, . . . , an; b)) = ⊥.

Proof. If A = ∅ the lemma is trivial, so henceforth we shall assume A 6= ∅.

Part 1. Since (clearly) b ∈ A there must be a Ci containing b. Call this C =

�c1∩· · ·∩ �ck∩�d. Now consider bj := b\cj . This is not in C. If it is not in A,
then we must have cj ⊇ ai for some i, because clearly bj ⊆ b. If it is in A, then
it must be in another element of the cover, say, Cj = �cj1 ∩ · · · ∩ �cjnj ∩�dj .
Observe that bj = b \ cj ⊆ dj .

Next, consider bj,k := b \ (cj ∪ cjk), where 1 ≤ k ≤ nj . If this is not in A,
then we must have ai ⊆ cj ∪ cjk for some i. If it is in A, then it must be in one of
the elements of the cover, say, Cjk = �cjk,1 ∩ · · · ∩ �cjk,njk ∩�djk. Note that
bj,k is not in C and not in Cj by construction. Again, observe that bj,k ⊆ djk.
Continuing this way gives a tree, see the diagram below for intuition.

Each bj1,j2,...,jk = b \ (cj1 ∪ cj1j2 ∪ · · · ∪ cj1j2···jk) is in none of the preceding
cover elements. Since we started with a finite cover, this process must terminate,
i.e. the branches of our tree must be finite. That is, at some point bj1,j2,...,jk is not
in A, and since clearly bj1,j2,...,jk ⊆ b, it must be the case that bj1,j2,...,jk /∈ �ai
for some ai, i.e. we must have ai ⊆ (cj1 ∪ cj1j2 ∪ · · · ∪ cj1j2···jk).

Part 2. Now we have set ourselves up for the proof of the proposition. We will
use rule I5 finitely many times. The first step is:

�(a; b) ≤ �(a, c1; b) ∨�(a; b \ c1). (3)

We continue using I5 as follows: given an element of the form �(a, c; bj1,j2,...,jk)
we verify what is the lowest entry ` such that cj1j2···jk` is not in c, and apply I5
using this. It can be seen that (3) above is also obtained in this way. Thus the
first two iterations are:

�(a; b) ≤ �(a, c1; b) ∨�(a; b \ c1)

≤ �(a, c1, c2; b) ∨�(a, c1; b2) ∨�(a, c11; b1) ∨�(a; b1,11)

For an entry, we cannot proceed if either all cj1···jk,` from a Cj1···jk in the tree
already occur in c, or if the thing we subtract from b, i.e. cj1∪cj1j2∪· · ·∪cj1j2···jk
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b

C

b1 = b \ c1 b2 = b \ c2

C1 C2

b1,1 =
b \ (c1 ∪ c11)

b1,2 =
b \ (c1 ∪ c12)

b2,1 =
b \ (c2 ∪ c21)

b2,2 =
b \ (c2 ∪ c22)

C11 C12 C21 C22

contains one of the ai (for then cj1j2···jk,` is not defined). In the first case, we
have

�(a, c; b \ (cj1 ∪ cj1j2 ∪ · · · ∪ cj1j2···jk))

≤ �(cj1···jk,1, . . . , cj1···jk,nj1···jk ; dj1···jk).
(4)

The inequality follows from using I6 a lot, and applying I3 to the fact that
bj1,j2,...,jk ⊆ dj1···jk . As the right hand side of (4) is one of the elements in the
cover, we get

p(�(a, c; b \ (cj1 ∪ cj1j2 ∪ · · · ∪ cj1j2···jk)))

≤ p(�(cj1···jk,1, . . . , cj1···jk,nj1···jk ; dj1···jk)) = ⊥.

In the second case, we get ⊥ because the intersection of one of the ai and bj1j2···jk
is empty, and we use I4 and I1.

Since this procedure is finite, this yields �(a; b) ≤ ⊥, as desired. ut

As a corollary of Lemma 4.8 we obtain the following lemma.

Lemma 4.10. The maps θ and ξ are continuous and each others inverses.
Hence ξ is a homeomorphism.

Proof. We first prove continuity. The open subsets of uf ◦ I ◦ clpX are generated
by L�(a; b) M = {p | p(�(a; b)) = >}, where (a; b) = (a1, . . . , an; b) is an (n+ 1)-
tuple of clopen subsets of X. We have

θ−1L�(a; b) M = θ−1({p | p(�(a; b)) = >})
= {W ∈ VVX |W ∈ �(a; b)} = �(a; b),

which is clopen in VVX. Similarly ξ−1(�(a; b)) = {p |Wp ∈ �(a; b)} = L�(a; b) M.
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We now show prove ξ ◦ θ and θ ◦ ξ are identities. For the former, observe
that Lemma 4.8 implies p(�(a; b)) = > iff Wp ∈ �(a; b) iff pWp

(�(a; b)) = >.
So p and pW coincide on the generators of I(clpX), therefore p = pWp and hence
θ ◦ ξ = iduf◦I◦clpX.

To see that ξ ◦ θ = idVVX, note that it suffices to show that W and WpW

are in the same generating opens of the topology. Since the diamond is dual to
the box it suffices to show that W /∈ �(a; b) iff WpW /∈ �(a; b). This is easy:
W /∈ �(a; b) iff pW (�(a, b)) = ⊥ iff WpW /∈ �(a; b). The first “iff” holds by
definition of θ, the second by Lemma 4.8. ut

Each Stone space X gives rise to a homeomorphism ξ, so we get a transfor-
mation (ξX)X∈Stone : uf ◦ I ◦ clp→ VV. This transformation is in fact natural:

Lemma 4.11. The collection ξ = (ξX)X∈Stone : uf ◦ I ◦ clp → VV is a natural
isomorphism.

Proof. We have already seen that ξX is a homeomorphism for every Stone space
X (i.e. an isomorphism in Stone), so it is left to show naturality. That is, where
f : X→ X′ is a continuous function we need to show that

uf ◦ I ◦ clpX VVX

uf ◦ I ◦ clpX′ VVX′

ξX

uf◦I◦clpf VVf

ξX

commutes. Since elements of a Stone space are uniquely determined by the clopen
sets in which they are contained, it suffices to show that for all p ∈ uf ◦ I ◦ clpX
and ai, b ∈ clpX we have

VVf(ξX(p)) ∈ �(a; b) iff ξX′(uf ◦ I ◦ clpf(p)) ∈ �(a; b).

This follows from a straightforward computation:

VVf(ξX(p)) ∈ �(a; b) iff ξX(p) ∈ (VVf)−1(�(a; b))

iff ξX(p) ∈ �(f−1a; f−1b)

iff p(�(f−1a; f−1b)) = >
iff p(I ◦ clpf(�(a; b))) = >
iff uf ◦ I ◦ clpf(p)(�(a; b)) = >
iff ξX′(uf ◦ I ◦ clpf(p)) ∈ �(a; b)

We conclude that (ξX)X∈Stone is indeed a natural isomorphism. ut
As an immediate corollary we obtain the main theorem of this section.

Theorem 4.12. We have a dual equivalence

Alg(I) ≡op Coalg(VV).

As V is dual to the functor M on boolean algebras, we obtain the following
corollary which confirms the intuition that INL is “modal logic taken twice”.

Corollary 4.13. The functor I is naturally isomorphic to the composition M◦M.
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5 Descriptive frames as coalgebras

We show that the descriptive frames from Definition 3.7 are precisely coalgebras
for the double Vietoris functor VV.

Theorem 5.1. We have

D-INL ∼= Coalg(VV).

A helpful tool in the proof of Theorem 5.1 is the notion of the largest repre-
sentative of a set d ⊆ X in a general INL-frame (X,N,A).

Definition 5.2. Let (X,N,A) be a general INL-frame and d ⊆ X. Then we
define the largest representative of d to be

d =
⋂
{a ∈ A | d ⊆ a}.

This is of course the topological closure of d in the topology on X generated
by the clopen base A. It enjoys the following useful properties.

Lemma 5.3. Let (X,N,A) be a general INL-frame, d ⊆ X and a1, . . . , an, b ∈
A. Then d witnesses (a1, . . . , an; b) if and only if d does.

Proof. We show that d ∩ ai 6= ∅ iff d ∩ ai 6= ∅ and d ⊆ b iff d ⊆ b. It is easy to
see that this proves the lemma. Suppose d ∩ ai 6= ∅. Since d ⊆ d we also have
d ∩ ai 6= ∅. Conversely, if d ∩ ai = ∅ then d ⊆ X \ ai and since the latter is in
A we have d ⊆ X \ ai. This implies d ∩ ai = ∅. Next suppose d ⊆ b, then by
definition d ⊆ b, because b ∈ A. Conversely, if d ⊆ b we have d ⊆ d ⊆ b. ut

Lemma 5.4. Let (X,N,A) be a descriptive INL-frame, d ⊆ X and x ∈ X.
Then d ∈ N(x) if and only if d ∈ N(x).

Proof. This follows directly from the proof of Lemma 5.3. ut

The following two lemmas describe the object part of the isomorphism from
Theorem 5.1.

Lemma 5.5. Let (X, γ) be a VV-coalgebra. Write X for the space underlying X
and let Nγ(x) = {d ⊆ X | d ∈ γ(x)}. Then (X,Nγ , clpX) is a descriptive INL
frame.

Proof. We know that clpX is closed under boolean operations and it follows
from continuity of γ that clpX is closed under m�. Furthermore, (X,Nγ , clpX)
is differentiated because X is Hausdorff and compact because X is compact.

Lastly, we show that it is crowded. Suppose c /∈ Nγ(x). Without loss of
generality we may assume c to be closed, hence an element of VX, because we
know from Lemma 5.3 that c and c witness precisely the same tuples. It follows
from the definition of Nγ that c /∈ γ(x). Since γ(x) is a closed subset of VX, there
must be a basic clopen �a1 ∩ · · · ∩ �an ∩ �b containing c and disjoint from
γ(x). Therefore c witnesses (a1, . . . , an; b) while none of the elements in γ(x)
witness (a1, . . . , an; b). It then follows from the definition of Nγ and Lemma 5.3
that none of the d ∈ Nγ(x) witness (a1, . . . , an; b). Therefore (X,Nγ , clpX) is
crowded. ut
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Lemma 5.6. Let (X,N,A) be a descriptive INL-frame, write X for the set X
topologized by the clopen subbase A and let γN : X → VVX : x 7→ {c ∈ VX | c ∈
N(x)}. Then (X, γN ) is a VV-coalgebra.

Proof. The topological space X is zero-dimensional because A is closed under
complementation (hence is a clopen base). Moreover, X is compact Hausdorff
because (X,N,A) is compact and differentiated, so X is a Stone space.

In order to show that γN is well defined, we need to show that γN (x) is a
closed subset of VX for every x ∈ X. Suppose c ∈ VX and c /∈ γN (x). Then
c /∈ N(x), and because (X,N,A) is crowded we can find (a1, . . . , an; b) which is
witnessed by c but by none of the elements in N(x). This implies c ∈ �a1 ∩
· · · ∩ �an ∩�b and �a1 ∩ · · · ∩ �an ∩�b is disjoint from γN (x). Thus we have
found an open neighbourhood of c disjoint from γN (x) so γN (x) is closed in VX.

For continuity of γN , it suffices to show that γ−1N (�(a1, . . . , an; b)) is clopen
in X for all a1, . . . , an, b ∈ A. This is a consequence of the fact that A is closed
under m�, because

γ−1N (�(a1, . . . , an; b)) = m�(a1, . . . , an; b).

We conclude that (X, γN ) is a VV-coalgebra. ut

We proceed with the proof of Theorem 5.1.

Proof of Theorem 5.1. First we verify that the assignments from Lemmas 5.5
and 5.6 define a bijection between descriptive INL-frames and VV-coalgebras.
Let (X, γ) be a VV-coalgebra. Lemma 5.5 assigns to this the descriptive INL-
frame (X,Nγ , clpX). We know that the topology on X generated by clpX yields
the topological space X, so applying Lemma 5.6 to (X,Nγ , clpX) yields the VV-
coalgebra (X, γNγ ). Furthermore, for a closed set c ∈ VX we have c ∈ γNγ (x) iff
c ∈ Nγ(x) iff c ∈ γ(x), hence γ = γNγ and (X, γ) = (X, γNγ ).

Conversely, suppose given a descriptive INL-frame (X,N,A). Write τA for
the topology on X generated by the (clopen) base A and let X = (X, τA). Then
Lemma 5.6 sends (X,N,A) to (X, γN ), which is in turn send to (X,NγN , clpX)
by Lemma 5.5. We know that the clopen sets of τA are precisely the sets in A,
so clpX = A. Comparing the neighbourhood functions gives

d ∈ N(x) iff d ∈ N(x) (Lemma 5.4)

iff d ∈ γN (x) (Lemma 5.6)

iff d ∈ NγN (x) (Lemma 5.5)

iff d ∈ NγN (x) (Lemma 5.4)

and therefore (X,N,A) = (X,NγN , clpX). This proves the isomorphism on ob-
jects.

Let (X, γ) and (X′, γ′) be two VV-coalgebras and f : X → X ′ a function.
We claim that f is a VV-coalgebra morphism if and only if it is a general INL-
morphism. If f is a general INL-morphism then clearly it is continuous. Since it
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is an INL-morphism moreover the diagram

X X ′

PPX PPX ′

f

Nγ Nγ′

PPf

(5)

commutes. It follows immediately that

X X ′

VVX VVX ′

f

γ γ′

VVf

(6)

commutes, so f is an VV-coalgebra morphism.
Conversely, if f is continuous and (6) commutes, then (5) commutes because

d ∈ Nγ′(f(x)) iff d ∈ Nγ′(f(x)) iff d ∈ γ′(f(x)) iff d ∈ VVf(γ(x)) iff d ∈
PPf(Nγ(x)) iff d ∈ PPf(Nγ(x)). The last “iff” follows from Lemma 5.4. It is
a general INL-morphism because continuity implies that f−1 sends admissible
subsets to admissible subsets. ut

We have now completed the strategy outlined in diagram (1). As a corol-
lary we obtain Theorem 3.9, whose formulation we copy here for the reader’s
convenience.

Theorem 3.9. We have a dual equivalence

D-INL ≡op BAIO.

Remark 5.7. Careful inspection of the definitions shows that the duality in
Theorem 3.9 is given on objects by the construction in Example 3.6 and the
subsequent paragraph.

6 Applications

We will give two applications of our results for completeness of INL-based logic
and theory of INL-bisimulations.

6.1 Completeness

An extension of INL is any set of INL-formulas which contains INL (that is, all
the INL-formulas valid on all INL-frames) and is closed under the rules of Modus
Ponens and (RE). The latter states that for formulas α, β and ϕ, if α↔ β, then
ϕ[α/β] holds, where ϕ[α/β] is the result of possibly replacing some occurrences
of α in ϕ by β (see [3]).

It is well known that every modal logic is sound and complete with respect
to its algebraic semantics [10, 7, 22]. From the main completeness result of [3] it
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follows that BAIOs provide an algebraic semantics for INL. Then the standard
argument yields that every extension L of INL is sound and complete with
respect to the class of BAIOs validating L. Moreover, as a direct corollary of
Theorem 3.9, we obtain:

Theorem 6.1. Every extension of INL is sound and complete with respect to
descriptive INL-frames.

6.2 Bisimulations

We briefly discuss bisimulations for INL and derive a Hennessy-Milner property
for descriptive INL-frames. We work in a setting without proposition letters, but
all results carry over to the setting with proposition letters.

Recall the definition of a bisimulation, in its coalgebraic form:

Definition 6.2. Let (X,N) and (X ′, N ′) be neighbourhood frames. A relation
B ⊆ X × X ′ is an INL-bisimulation if there exists a neighbourhood function
M : B → PPB such that

X B X ′

PPX PPB PPX ′

N

π π′

M N ′

PPπ PPπ′

commutes. Two states are called bisimilar if they are linked by a bisimulation.

Since PP weakly preserves pullbacks, bisimilarity and behavioural equivalence

coincide. In particular, if (X,N) (Z,M) (X ′, N ′)
f f ′

is a cospan in INL

(witnessing behavioural equivalence of some states), then the pullback of f and
f ′ in Set is a bisimulation.

Define bisimulations between descriptive frames as follows:

Definition 6.3. A descriptive INL-bisimulation between (X, γ) and (X′, γ′) is
a subspace B ⊆ X × X′ such that B is a bisimulation between the underlying
neighbourhood frames.

In [11] the notion of Λ-bisimulation is introduced, where Λ is a so-called (char-
acteristic) modal signature for an endofunctor on Stone. It is straightforward
to see that the interpretation of INL in descriptive INL-frames can be translated
to the setting used in op. cit. Moreover, an easy computation shows that every
descriptive INL-bisimulation in the sense of Definition 6.3 is a Λ-bisimulation.
We expect that the converse holds as well but at present do not have a proof of
this. We leave it as an interesting open question.

We now prove a Hennessey-Milner property for descriptive INL-frames. This
is the INL analogue of [5, Corollary 3.9].
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Theorem 6.4. Let (X, γ) and (X′, γ′) be descriptive frames. Then x ∈ X and
x′ ∈ X′ are logically equivalent iff they are behaviourally equivalent iff they are
linked by a descriptive INL-bisimulation.

Proof. Logical equivalence implies behavioural equivalence because every two
logically equivalent states are identified by the theory map to the canonical
model (i.e. the final object in D-INL). If x and x′ are behaviourally equivalent
then there are morphisms in D-INL such that f(x) = f ′(x′). The pullback of
f and f ′ viewed as functions in Set is a bisimulation between the underlying
neighbourhood frames (by the text following Definition 6.2). Moreover, this pull-
back is closed in X × X′ because pullbacks in Stone are computed as in Set.
Hence behavioural equivalence implies bisimilarity. Lastly, bisimilarity implies
logical equivalence by design. ut

We can apply this theorem to all INL-frames that carry a descriptive struc-
ture, that is, to (X,N) ∈ INL such that there exists A making (X,N,A) a
descriptive INL-frame.

Corollary 6.5. Suppose the INL-frames (X,N) and (X ′, N ′) both carry a de-
scriptive structure. Then between these frames, bisimilarity coincides with logical
equivalence.

Restricting this corollary entails [3, Theorem 3.1], the Hennessy-Milner prop-
erty for finite frames, because all finite neighbourhood frames carry a descriptive
frame structure (see Proposition 3.8).

Theorem 6.6. Let (X,N) and (X ′, N ′) be finite neighbourhood frames. Then
bisimilarity coincides with logical equivalence.

7 Conclusion and future work

In this paper we introduced descriptive frames for the Instantial Neighbourhood
Logic (INL) and showed that these frames are dual to BAIOs, the algebras for
INL. Coalgebra provided a key for obtaining this duality. We first presented
BAIOs as algebras for the functor I on the category of boolean algebras. We also
represented descriptive INL-frames as coalgebras for the double Vietoris functor
VV on the category of Stone spaces. Finally, we showed that the category of I-
algebras is dual to the category of VV-coalgebras, leading to the desired duality
result. As a corollary we obtained that every extension of INL is sound and
complete with respect to descriptive INL-frames. One interesting question for
future work is whether one can obtain an analogue of the celebrated Sahlqvist
completeness and correspondence result for extensions of INL.

We recall that the Vietoris functor V is dual to the functor M on the category
of boolean algebras (Section 2). Intuitively M freely adds one layer of normal
modalities to a boolean algebra. We showed in this paper that BAIOs can be
represented as algebras for M ◦ M (Section 4). Therefore, BAIOs can be seen
as “modal algebras squared” and INL itself is, in a way, “the basic modal logic
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squared”. This provokes the question of what “modal algebras cubed” looks like,
i.e. what logic and algebras correspond to the functor M ◦ M ◦ M, and similar
questions for the n-fold composition of M.

Recall that monotone neighbourhood logic EM algebraically corresponds to
a functor N on boolean algebras which intuitively adds one layer of monotone
modalities to a boolean algebra [17, 18]. This generates a question whether NN-
algebras and the corresponding logic admit an “INL-style axiomatization”.

Another related formalism that would be interesting to investigate is that of
positive INL. The algebras for this logic are distributive lattices with instantial
operators (DLIOs):

Definition 7.1. A distributive lattice with instantial operators (DLIO) is a tuple
(D, (fn)n∈ω, (gn)n∈ω) consisting of a distributive lattice D and two collections
of ω-indexed maps fn, gn : Dn+1 → D such that: (1) The fn satisfy (B1) to
(B7) from Definition 3.1, where, in absence of negation, we reformulate (B5) as

fn(a1, . . . , an; b) ≤ fn+1(a1, . . . , an, c; b) ∨ fn(a1, . . . , an; b ∧ d),

whenever c ∨ d = >; (2) The gn satisfy relations dual to the ones for fn; and
(3) The fn and gn satisfy the duality axioms

gn+1(a1, . . . , an, b
′; b) ∧

m∧
i=1

gn(a1, . . . , an; a′i ∨ b)

≤ gn(a1, . . . , an; b) ∨ fm(a′1, . . . , a
′
m; b′)

(D1)

and

fn(a1, . . . , an; b) ∧ gm(a′1, . . . , a
′
m; b′)

≤ fn+1(a1, . . . , an, b
′; b) ∨

m∨
i=1

fn(a1, . . . , an; a′i ∧ b).
(D2)

These are of course algebras for a endofunctor J on the category DL of dis-
tributive lattices and homomorphisms. In analogy with the results of this paper,
one would expect that descriptive frames for positive INL are isomorphic to
coalgebras for the double convex Vietoris functor Vc on the category of Priestley
spaces, as this is the Priestley space analogue of the Vietoris functor [27, 6, 33].
We expect the following duality result:

Conjecture 7.2. We have a dual equivalence

Alg(J) ≡op Coalg(VcVc).

Finally, related to positive INL, an interesting question is to consider the
geometric logic analogue of INL and to verify a slogan of [4], which in the case
of INL will read as

Geometric INL = Positive INL + Scott continuity.

If correct, this may also provide a novel algebraic presentation of the double
Vietoris powerlocale studied extensively by Vickers [35, 36, 34].
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