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4 Place Selections Revisited

4.1 Introduction  Now that we have definitions of randomness based on two entirely different
ideas, to wit, place selections (Chapter 2) and statistical tests (Chapter 3), we must investigate
the relations between these definitions. The main philosophical differences are summarized in
the Introduction to Chapter 3 and we shall not repeat them here. In this chapter, we shall be
interested primarily in the extensional relation between von Mises' proposal and that of
Martin-Löf. Prima facie, an obstacle to a mathematical investigation of this relation is that, as
it stands, von Mises' definition is not formal and does not lead to a well-defined set of random
sequences, whereas Martin-Löf's definition does determine such a set. We therefore cannot in
any literal sense determine the extensional relationship, but we may ask, for example, how one
could introduce admissible place selections in Martin-Löf's framework (note that Martin-Löf's
definition as such accords no privileged position to place selections). We shall do so in two
steps: sections 4.2-5 contain a quantitative study of the behaviour of random sequences under
place selections and 5.6 adds admissibility.
It is perhaps best to view these investigations along the following lines: we take some
mathematical model for Kollektivs, in this case  random sequences (according to any of the
definitions of Chapter 3) and we investigate their adequacy for the expression of von Mises'
ideas. In a similar vein, Kamae [40] chooses as a formalisation of Kollektivs the Bernoulli
sequences (definition 2.5.1.3) and investigates how these sequences behave under a special
class of admissible place selections, the entropy zero sequences (see section 5.6). We do not
claim finality for any of these formalisations; we are interested in constructing mathematical
models  for some of von Mises' ideas, even if these models are only partial or in some respects
defective.
While the results of 4.5 show that random sequences share many of the desiderata of
Kollektivs, section 4.6 elaborates on Ville's theorem (2.6.2.2) and shows that there are some
properties of random sequences which need not be satsfied by Kollektivs, when these are
defined using some countable set of place selections. The law of the iterated logarithm is one
such property, but not the only one. The novelty of the argument of 4.6 is mainly that it is
based as directly as possible on the philosophical differences between strict frequentism and
the propensity interpretation uncovered in Chapter 2.
We now give an outline of the contents of this chapter. In sections 4.2-5 we state precisely and
prove the "principle of homogeneity" first mentioned in 2.5: if x is a Kollektiv with respect to

(1–p,p), so is almost every subsequence of x. The main result is Theorem 4.5.2, the version of
the principle adapted to Martin-Löf's definition of randomness. The really hard part is 4.4,
where we prove various effective versions of Fubini's theorem. In section 4.6 we give a new
proof of Ville's theorem, which says that for any countable set of place selections , one can
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construct a Kollektiv x with respect to which approaches its limiting relative frequency 
from above, thus contradicting the law of the iterated logarithm. The philosophical
significance of Ville's theorem was discussed at length in 2.6.2.2. The idea of the new proof is
to construct a non-atomic measure µ on 2ω such that µ(C( )∩Rw( )c) = 1, where C( ) denotes

Church-randomness (with parameter ). We then have at one stroke continuously many
Church-random sequences which are not (weakly) random, but the main advantage of the
proof is that it also provides an explanation of this phenomenon.

4.2 Place selections from a modern perspective  The starting point of our investigations is
proposition 2.3.2.2 (von Mises [67,58]):

An admissibly chosen subsequence of a Kollektiv is again a Kollektiv, with

the same distribution.

Using recursive place selections one obtains countably many subsequences of a Kollektiv
which are themselves Kollektivs, but we noted in 2.5.2 that a "true" Kollektiv was likely to
satisfy a stronger property, dubbed the "principle of homogeneity":

If x is a Kollektiv with respect to (1–p,p), then so is almost every subsequence

of x.

To put the conjecture in a form susceptible to mathematical analysis, we recall some notation
from Chapter 2.

4.2.1 Definition  Let x, y ∈ 2ω and suppose that y contains infinitely many ones. Then x/y ∈
2ω is determined by

(x/y)k = xm  if  m is the index of the kth 1 in y.

One may now state the principle of homogeneity as follows:
If x is a Kollektiv with respect to distribution (1–p,p), then µp{x| x/y is a
Kollektiv w.r.t. µp} = 1.

This statement is still only semi-formal, since we have not said what we mean by "Kollektiv".
We now examine two possible formalizations.
It seems that the first attempt to prove a principle of homogeneity was Steinhaus' [94,305]. He
showed (curiously, without mentioning either von Mises or Kollektivs):

4.2.2 Theorem  x ∈ LLN(p) iff for all q ∈ (0,1): µq{y| x/y ∈ LLN(p)} = 1.

While this interesting in itself and will be useful to us later, it is defective as a formulation of
the principle of homogeneity. It would be satisfactory only if LLN(p) could be replaced by,
say, C( ,p), for arbitrary countable sets of place selections ; but the proof does not yield
this. Hence typical Kollektiv-like behaviour is not incorporated in the theorem. Indeed, we
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know of no probabilistic proof which accomplishes this (except for the slightly differently
oriented work of Kamae).

In Martin-Löf's set-up, we identify Kollektivs with random sequences and we may prove the
principle of homogeneity in the following form (Theorem 4.5.2):

Let p ∈ (0,1) be computable and suppose that ν is a non-atomic computable

measure on 2ω. Then for x ∈ R(µp), ν{y/ x/y ∉ R(µp)} = 0.

The "almost all" clause in the principle of homogeneity thus refers, not to some specific
measure, but to all computable non-atomic measures, indicating (at least for the constructivist)
the extreme smallness of the set of subsequences which are not themselves Kollektivs.
But note that the theorem itself does not speak of admissibility (unless we define: y is
admissible with respect to x if x/y ∈ R(µp)); it has a purely quantitative character. A direct

formulation of admissibility must wait until 5.6, when we have at our disposal the notion of
Kolmogorov-complexity.  There, the techniques used in proving the above theorem will be
helpful. One final remark on the principle of homogeneity: it will be observed that the
principle states a necessary condition for randomness, whereas Steinhaus' theorem (4.2.2)
states a necessary and sufficient condition. We comment on the difference in  4.5.

For completeness' sake, we prove the principle of homogeneity not only for (Martin-Löf)
randomness, but for all notions of randomness introduced in Chapter 3. In the case of weak
randomness this leads to considerable complexities, but this part of 4.4 can be skipped: section
4.3, lemma 4.4.1 and Theorem 4.4.4 suffice to understand the proof of the main theorem
(4.5.2).

4.3 Preliminaries  Eventually, in section 4.5, we shall prove
Let p ∈ (0,1) be computable and suppose that ν is a non-atomic computable measure
on 2ω. Then for x ∈ R(µp), ν{y/ x/y ∉ R(µp)} = 0.

Here R(µp) refers to Martin-Löf's definition of randomness (3.2.1.4), but the result holds as
well if we replace R(µp) by Rw(µp) (definition 3.2.1.5). For the notions of Gaifman and Snir

introduced in section 3.2.4 there is an analogous result if we replace "computable" by
"strongly computable". In this section we present some preparatory lemmas and motivate the
construction to follow.

The method used in the proof of the main theorem is based on the following observations. The
first lemma was already mentioned in section 2.5.

4.3.1 Lemma  (Doob [20]) Let p ∈ (0,1). If Φ: 2ω → 2ω is a place selection, A a Borel subset
of 2ω, then µp{x| Φx ∈ A} ≤ µpA. If µp(domΦ) = 1, then we have in fact equality for all A.
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Proof  See Schnorr [88,23].                                                                                                

4.3.2 Lemma  For all p ∈ (0,1), for all non-atomic measures ν on 2ω, for all Borel subsets A
in 2ω: µp×ν{<x,y>| x/y ∈ A} = µpA.

Proof  If y contains infinitely many ones, /y: 2ω → 2ω is a total place selection. Since ν is
non-atomic, the set of y's having only finitely many ones has measure zero. We may therefore
write, using the previous lemma and Fubini's theorem:   µp×ν{<x,y>| x/y ∈ A} =

  =  ∫1
{<x,y>| x/y ∈ Α}

dµp×ν  =  ∫µp{x| x/y ∈ Α}dν  =  µpA(y) .     

4.3.3 Lemma  If O ⊆ 2ω  is ∑1, then the set {<x,y> ∈2ω×2ω | x/y ∈ O} is ∑1, with

Gödelnumber primitive recursive in the Gödelnumber for O.

Proof  It suffices to prove the lemma for O = [w]. Now observe that the operation / is

completely determined by the operation /': ∪n(2n×2n) → 2<ω, as follows:

(v/'u)k  = vm if m is the index of the kth 1 in u;

and /' is primitive recursive.        

Lemma 4.3.1 suffices to show that for computable p ∈ (0,1), Rw(µp) is closed under the action
of recursive place selections with domain of full measure. Let Φ be a recursive place selection

and suppose µp(domΦ) = 1. If N = ∩nOn is a total recursive sequential test with respect to µp,

then Φ−1N = ∩nΦ−1On is ∏2 and by lemma 4.3.1, µpΦ−1On = µpOn, so that Φ−1N is a total

recursive sequential test with respect to µp. Obviously, for Martin-Löf's R(µp) we have also

invariance under recursive place selections whose domain has measure less than one.

Now let µ,ν be computable measures on 2ω. In Chapter 3 we defined (total) recursive
sequential tests as subsets of 2ω, but definitions 3.2.1.2-3 are easily generalized to the space
2ω×2ω and the measure µ×ν. We may then state the most useful consequence of the preceding

lemmas as follows:

4.3.4 Lemma  Let p ∈ (0,1) be computable and suppose ν is a computable measure on 2ω. If
N is a (total) recursive sequential test in 2ω with respect to µp, then {<x,y>| x/y ∈ N} is a
(total) recursive sequential test with respect to µp×ν. Similarly, for n ≥ 2, if N is ∏n µp-nullset



99

in 2ω, then {<x,y>| x/y ∈ N} is a ∏n µp×ν-nullset in 2ω×2ω.

This lemma suggests the following strategy for proving the main theorem. Since R(µp)c is a
recursive sequential test with respect to µp, the last lemma implies that for any computable
measure ν, {<x,y>| x/y ∈ R(µp)} is a recursive sequential test with respect to µp×ν. By
Fubini's theorem, µp{x| ν{y| x/y ∈ R(µp)} > 0} = 0. We are done if we can show that this set
of x's is in fact contained in a recursive sequential test with respect to µp. That this is so, will

be proven in the next section.

4.4 Effective Fubini theorems  Let µ,ν be computable measures on 2ω. This section
addresses the following question: if N ⊆ 2ω×2ω is a (total) recursive sequential test with
respect to µ×ν, is it possible to construct a (total) recursive sequential test M with respect to µ
such that {x| νNx > 0} ⊆ M? The answer is yes, but the construction is somewhat complicated,

especially in the case of total recursive sequential tests. We also treat briefly the analogous
question for ∏n µ×ν-nullsets.

In the following pages we shall often use the phrase "[a real] bn,.. is computable, uniformly in

(the parameter(s)) n,...". This phrase should be interpreted as: "There exists a total recursive
function g such that g(n,...) is a Gödelnumber for an algorithm which computes bn,...".

The first lemma is in essence due to Sacks (see Sacks [87] or Kechris [42]). For the definition
of strongly computable measures, the reader is referred to 3.2.1.1.

4.4.1 Lemma  (i) Let ν be a computable measure on 2ω and suppose that A is a ∑0 subset of
2ω×2ω. Then the function x → νAx is of the form

νAx  =  ∑
k=1

n

ck·1Ck
(x),

where Ck is a ∑0 subset of 2ω and ck is a computable real. In addition, if ν is strongly
computable, then the sets {a ∈ | ck < a} and {a ∈ | ck > a} are recursive. (ii) Let ν be a
computable measure on 2ω and suppose that A is a ∑1 subset of 2ω×2ω. Then the set {<a,x> ∈

×2ω | νAx > a} is ∑1. (iii) Let ν be a strongly computable measure on 2ω. If A  ⊆ 2ω×2ω is
∑n, then the set {<a,x> ∈ ×2ω| νAx > a} is ∑n. If A is ∏n, then {<a,x> ∈ ×2ω| νAx > a} is
∑n+1.

Proof  (i) Using if necessary a suitable tiling of A, we may write A as a disjoint union

A  =  ∪([wi]×[vi])
i=1

m
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such that all wi have the same length n (hence the [wi] are either disjoint or identical). Then
we have, for all x

νAx  =  ∑
x(n) = w

i

    ν[vi].

If we define for k ≤ 2n, Ck := [u] for the kth word u in 2n and

ck :=  ∑
Ck = w

i

ν[vi]  (where  ∑
Ø

 ν[vi]  =  0),

then ck has the required properties and

νAx  =  ∑
k=1

2
n

 ck·1Ck
(x).

(ii) Let A = {<x,y>| ∃n R(n,x,y)}, where R is a recursive relation. Write Am := {<x,y>| ∃n≤m
R(n,x,y)}, then Am is ∑0. We have

{<a,x>| νAx > a}  =  {<a,x>| ∃m (νAx
m > a)},

and the result follows by (i).
(iii) If A is ∏1, then A = {<x,y>| ∀n R(n,x,y)} for some recursive relation R. Put Am :=
{<x,y>| ∀n≤m R(n,x,y)}, then Am is ∑0 and we may write

{<a,x>| νAx > a}  =  {<a,x>| ∃δ∈ +∀m (νAx
m > a+δ)},

and for strongly computable measures ν this set is ∑2, by (i). The result now follows by

induction on n.                                                                                                                       

4.4.2 Theorem  Let µ,ν be strongly computable measures on 2ω. Suppose that N ⊆ 2ω×2ω is a
∏n µ×ν-nullset. Then {x| νNx > 0} is a ∑n+1 µ-nullset.

Proof  {x| νNx > 0} = {x| ∃a ∈ +(νNx > a)} is ∑n+1 by lemma 4.4.1 and a µ-nullset by

Fubini's theorem.  

Theorem 4.4.2 is slightly unsatisfactory, in that one would like to have "∏n" instead of "∑n+1"

in the conclusion of the theorem. We do not know whether the above estimate is exact. We
can show, however, that in general "∑n+1" cannot be replaced by "∑n". Namely, we construct a
∏2 λ×λ-nullset in 2ω×2ω such that {x| λNx > 0} is not contained in a ∑2 λ-nullset. Let M be a
total recursive sequential test (with respect to λ) which contains LLN( )c (see section 3.3).
Consider N := {<x,y>| x/y ∈ M}. By lemma 4.3.3, N is ∏2 and by lemma 4.3.2, λ×λN = 0.
Suppose {x| λNx > 0} were contained in a ∑2 set B with λB = 0. If x ∈ LLN( )c, then by
Theorem 4.2.2, {y| x/y ∈ LLN( )c} = 1; hence λNx = 1 and thus x ∈ B. Therefore Bc ⊆



101

LLN( ). But this is impossible since LLN( ) is first category while Bc is residual: the first
statement is obvious and the second statement follows since Bc is a Gδ set which is dense by

λBc = 1.

In what follows, we shall often refer to computable real-valued functions on 2ω, the recursion-
theoretic analogue of the continuous real-valued functions of constructive analysis (see e.g.
Bishop–Bridges [6,38]). We therefore introduce

4.4.3 Definition  f: 2ω →  is computable if it is recursively uniformly continuous, i.e. if for
some total recursive h: ω → :

            for all n, for all x,y:  if |x – y| < h(n), then |f(x) – f(y)| < 2-n.

The first part of lemma 4.4.1 implies that if ν is a computable measure and A ⊆ 2ω×2ω is ∑0,
then the function x → νAx is computable.

The effective Fubini theorem for recursive sequential tests can fortunately be obtained easily
by formalizing the proof of Theorem 14.1 in Oxtoby [80].

4.4.4 Theorem  Let µ,ν be computable measures on 2ω and suppose that N ⊆ 2ω×2ω is a
recursive sequential test with respect to µ×ν. Then {x| νNx > 0} is contained in a recursive

sequential test with respect to µ.

Proof  Let N = ∩nOn ⊆ 2ω×2ω be a recursive sequential test with respect to µ×ν. Uniformly

in n, we construct ∑1 sets Bn ⊆  2ω such that µBn ≤ 2-n and {x| νNx > 0} ⊆ Bn. Choose n.

Clearly µ×ν∪k>nOk ≤ 2–n. ∪k>nOk is of the form ∪i[wi]×[vi] and the sequence ([wi]×[vi])i

covers N infinitely often, that is, each <x,y> ∈ N is contained in infinitely many cylinders
[wi]×[vi] of the sequence.
Define a sequence of functions fk, k≥0, by

f0 (x) = 0 for all x

fk(x) = ∑
{i≤k| x∈[w

i
]}

ν[vi],  for k≥1.

fk is a computable stepfunction, fk: 2ω → [0,1], fk ≤ fk+1 and

fk+1(x) – fk(x)  =  {
ν[vk+1]       if x ∈ [wk+1]

0 otherwise.
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Clearly

∫fkdµ  =  ∑
i=1

k

∫(fi – fi-1)dµ  =  ∑
i=1

k

µ[wi]·ν[vi]  ≤  2-n.

Define Bn := {x| ∃k fk(x) > 1} (remember that the fk depend implicitly on n!). Obviously, Bn is
∑1, uniformly in n. Moreover, {x| νNx > 0} ⊆ Bn: choose x such that νNx > 0, then a fortiori
for some y, <x,y> ∈ N. Hence for infinitely many i: <x,y> ∈ [wi]×[vi]. Let (i') be the sequence
of indices for which x ∈ [wi']. For any y ∈ Nx, for infinitely many i': y ∈ [vi']. Hence the
sequence ([vi'])i' covers Nx infinitely often, so ∑i'ν[vi'] must diverge (otherwise, we could
cover Nx with open sets of arbitrarily small ν−measure). It follows
that, still for this particular x, lim fk(x) = ∞ and
thus, for some k, fk(x) > 1, i.e. x ∈ Bn.

k→∞

Clearly then, ∩nBn is the required recursive sequential test if we can show that µBn ≤ 2-n.

Now if we put Am := {x| ∃k≤m fk(x) > 1}, Bn is the limit of the Am. Since fk ≤ fk+1,

µAm  =  ∫1Am
dµ  <  ∫fmdµ  ≤  2-n  for all m,

and so µBn ≤ 2-n.     

4.4.5 Corollary  Let µ,ν be computable measures on 2ω. Suppose that U is the universal
recursive sequential test with respect to µ×ν and that U' is the universal recursive sequential
test with respect to µ. Then U' = {x| νUx > 0}.

Proof  By the preceding theorem, {x| νUx > 0}⊆ U'. On the other hand, U'×2ω ⊆ U.      

Consequently, if N is a recursive sequential test, {x| νNx > 0} need not be contained in a total

recursive sequential test, since such a test cannot be universal, as we have seen in Chapter 3.
This fact necessitates a separate effective Fubini theorem for total recursive sequential tests.
The reader not especiallly interested in total recursive sequential tests is free to stop here and
may proceed directly to section 4.5.

Our next object is to prove

4.4.6 Theorem  Let µ,ν be computable measures on 2ω. Let N ⊆ 2ω×2ω be a total recursive
sequential test with respect to µ×ν. Then {x| νNx > 0} is contained in a total recursive

sequential test with respect to µ.

This theorem can presumably be proved by formalizing proofs of Fubini's theorem from



103

constructive analysis. However, since we allowed ourselves the use of classical logic and
mathematics, a more direct approach is possible. The key of the proof consists in the
following observation:

If O ⊆ 2ω×2ω is a ∑1 set such that µ×νO is computable and if the image
measure π is defined by π[0,s] := µ{x| νOx ≤ s}, for 0 ≤ s ≤1, then the set of
points of continuity of π has a ∏2 definition.

Since the set of points of continuity is dense, it follows from an effective version of the Baire
Category Theorem, that π has a recursively enumerable dense set of computable points of
continuity. From then on, the going is easy.
Our proof strategy is fairly opportunistic: whenever possible, we borrow the requisite
algorithms from constructive analysis (e.g. the functions g(u,v,·) defined below, are taken
from Bishop and Cheng [7]); but the proofs that these algorithms are in fact total are entirely
classical (e.g. lemma 4.4.12).

We now proceed to the proof of Theorem 4.4.6. Write N = ∩nOn, On+1
 ⊆ On, On ∈ ∑1,

µ×νOn computable (uniformly in n) and ≤ 2-n. Define on [0,1] the image measure πn as

follows:

πn[0,s] :=  µ{x| νOx
n ≤ s},  0 ≤ s ≤ 1.

πn need not be a computable measure, but nevertheless, as we shall see, some integrals with
respect to πn are computable. We use this fact to compute πn[0,s] for a recursively enumerable

dense set of computable reals s.

4.4.7 Definition  For u,v ∈ [0,1]∩ , u<v, we determine a function g(u,v,·) as follows:

g(u,v,t)  =  {
1 t<u

(v-t)/(v-u) u≤t≤v

0 v<t.

Let u0<v0<u1<v1 be rationals. The functions f(u0,v0,u1,v1,·) are defined by

f(u0,v0,u1,v1, t) :=  min {1 – g(u0,v0, t),  g(u1,v1, t)}.

Before we can motivate the introduction of these auxiliary functions, we need a lemma.

4.4.8 Lemma  The integrals

∫
[0,1]

 g(u,v,t)dπn(t) ,   ∫
[0,1]

f(u0,v0,u1,v1, t)dπn(t)
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are computable uniformly in the parameters n,u,v and n,u0,v0,u1,v1 respectively.

Proof  For this lemma we are indebted to constructive analysis, and in particular to the
constructive theory of integration developed in [6], [7] and [9]. Observe that

(i)    ∫
[0,1]

g(u,v,t)dπn(t)  =  ∫
2ω

g(u,v,νOx
n)dµ(x);

(ii)   g(u,v,νOx
n)  =  min {1, 

v – u

(v – min (νOx
n,v))

};

(iii) there exists a recursive family of ∑0 sets Cn,k such that each On can be written as a

disjoint union On = ∪kCn,k. We then have, for all x:

νOx
n  =  ∑

k=1

∞

νCx
n,k   and   ∑

k=1

∞

∫
2ω

νCx
n,kdµ(x)  =  ∫

2ω

νOx
ndµ(x)  =  µ×νOn  is

computable, uniformly in n.

(iv)  the function x → νCx
n,k is com  

 

putable (by lemma 4.4.1) and

∫
2ω

νCx
n,kdµ(x)  is computable, both uniformly in n and k.

Call a function h integrable (with respect to µ) if there exists a sequence (hm) of computable
functions such that h = ∑mhm µ-a.e. and ∑m∫hmdµ is computable (cf. [6,226]). Then the

function x → νOx is integrable (by (iii) and (iv)) and Theorem 2.18 of Bishop-Bridges [6,230]

may be translated to our recursion–theoretic setting to show that the operation min(·,·)
preserves integrability. Hence f and g are integrable (by (i) and (ii)).                      

Now consider a computable real s and rationals u0,v0,u1,v1 such that u0<v0<s<u1<v1.
Obviously,  ∫g(u0,v0,t)dπn(t) ≤ πn[0,s] ≤ ∫g(u1,v1,t)dπn(t), and by the preceding lemma the

terms on the left hand side and on the right hand side are computable. What remains to be
done, is to find a computable estimate of the difference

∫g(u1,v1,t)dπn(t) – ∫g(u0,v0,t)dπn(t).

 For certain s, this can be achieved using the functions f(u0,v0,u1,v1,t).

4.4.9 Definition  s ∈ [0,1] is an atom of πn if πn{s} > 0. s ∈ [0,1] is a point of continuity of πn

(abbreviated: s is p.c. of πn) if πn{s} = 0.

The key of the proof of Theorem 4.4.6 is that the set of p.c.'s of the πn has a ∏2 definition.
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4.4.10 Lemma  s ∈ [0,1] is p.c. of all πn iff

(*) ∀n ∀ε>0 ∃δ>0 ∃u0,v0,u1,v1 v0<s–δ<s+δ<u1  &  f(u0,v0,u1,v1, t)dπn(t)( ∫
2ω

< ε),

where the quantifiers "∀ε" and "∃δ" range over the rationals. Moreover, (*) is a ∏2 statement.

Proof  The first statement is obvious as soon as we realize that the condition "v0<s–δ<s+δ<u1"
in (*) means that f(u0,v0,u1,v1,t) equals 1 on   (s–δ,s+δ). The second statement follows from

lemma 4.4.8.       

The ∏2 definition of the property "s is p.c. of all πn" enables us to apply the following

effective version of the Baire Category Theorem:

4.4.11 Lemma  Let G be a dense ∏2 subset of [0,1]. Then G contains a recursively

enumerable dense subset of computable reals.

Proof  Formalize a proof of the Baire Category Theorem (e.g. Oxtoby [80,2]).                  

Combining these lemmas, we get

4.4.12 Lemma  There exists a recursively enumerable dense set D of computable points of
continuity of all πn.

Proof  By lemma 4.4.10 the set of p.c. of all πn has a ∏2 definition. This set is dense in [0,1],
since the set of s which are an atom for some πn is countable (this argument is non-

constructive). Now apply the preceding lemma.                                                             

We are now almost done.

4.4.13 Lemma  Let s ∈ [0,1] be a computable point of continuity of all πn. Then πn[0,s] is

computable, uniformly in n.

Proof  Choose ε > 0. We must effectively determine u < v < u' < v' such that

(1)  ∫g(u,v,t)dπn(t) ≤ πn[0,s] ≤ ∫g(u',v',t)dπn(t)
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(2)  ∫g(u',v',t)dπn(t) – ∫g(u,v,t)dπn(t) < ε.

Choose recursively enumerable sequences of rationals (bk), (ck) such that for all k, bk < s < ck

and ck – bk < 2-k. By lemma 4.4.10 there exist (for this particular ε) δ > 0 and rationals u0 < v0

< u1 < v1 such that v0 < s–δ < s+δ < u1 and ∫f(u0,v0,u1,v1,t)dπn(t) < ε. Choose   k large enough

so that s – bk < δ/4  and  ck – s < δ /4.
Define u:= bk – δ/4, v:= bk, u':= ck and v'= ck + δ/4. Then v0 < u < v < s < u' < v' < u1, hence
(1) holds and ∫g(u',v',t)dπn(t) – ∫g(u,v,t)dπn(t) ≤ ∫f(u0,v0,u1,v1,t)dπn(t) < ε.         

Now let D be the set constructed in lemma 4.4.12. Theorem 4.4.6 follows if we can show that

∪
s∈D

∩
n

{x| νOx
n > s}

is contained in a total recursive sequential test with respect to µ.
By lemma 4.4.1, for s ∈ D,

{x| νOx
n > s}  ∈  ∑1.

Moreover, since

(i)   µ{x| νOx
n > s} is computable, uniformly in n (by lemma 4.4.13)

(ii)  µ∩
n

{x| νOx
n > s} =  0 by Fubini's theorem,

we can determine a recursively enumerable infinite sequence (nk) of natural numbers such that

for all k

µ{x| νOx

nk > s} < 2–k.

Because On+1 ⊆ On

∩n {x| νOx
n > s}   =   ∩k {x| νOx

nk > s};

and

∩k {x| νOx

nk > s}

is a total recursive sequential test with respect to µ. By lemma 3.2.3.8, the union of these tests
over D is contained in a total recursive sequential test with respect to µ. But this union equals
{x| νNx > 0}. This concludes the proof of Theorem 4.4.6.                                        

4.5 Proof of the principle of homogeneity  Classically, a subset E of 2ω has absolute

measure zero if for every finite non-atomic measure µ on 2ω we can find a Borelset A such
that E ⊆ A and µA = 0. Hausdorff constructed an example of such a set of cardinality ℵ1 (and
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this is the best possible result).
This concept can be transferred to the constructive realm as follows: E ⊆ 2ω is recursively

small if for every computable  finite non-atomic measure µ on 2ω, we can find a Borelset A
such that E ⊆ A and µA = 0.
Theorems 4.5.2-3 will show that if x ∈ R(µp) (Rw(µp)), then the set {y| x/y ∉ R(µp)} ({y| x/y
∉ Rw(µp)}) is recursively small. (In another sense, these sets are quite large, since they are

residual.) For completeness' sake, we begin with the corresponding result for n-randomness.
Strongly computable measures were defined in 3.2.1.1. We say that p ∈ (0,1) is strongly

computable if the sets {a∈ | a > p} and {a∈ | a < p} are both ∆1. If p ∈ (0,1) is  strongly
computable, then µp is a strongly computable measure.

4.5.1 Theorem  Let ν be a non-atomic strongly computable measure on 2ω and let p ∈ (0,1)
be strongly computable. For n ≥ 2, if x is n–random with respect to µp, then ν{y| x/y is not n–
random with respect to µp} = 0.

Proof  It suffices to show that for each ∏n µp×ν-nullset N, {x| ν{y| x/y ∈ N} > 0} is contained
in a ∑n+1 µp-nullset. By lemma 4.3.4, {<x,y>| x/y ∈ N} is a ∏n µp×ν-nullset. Since µp is

strongly computable, we may now apply Theorem 4.4.2.                                  

4.5.2 Theorem  Let p ∈ (0,1) be computable. If x ∈ R(µp), then {y| x/y ∉ R(µp)} is

recursively small.

Proof  Let ν be a non-atomic computable measure. Since R(µp)c is a recursive sequential test
with respect to µp, lemma 4.3.4 implies that {<x,y>| x/y ∉ R(µp)} is a recursive sequential test
with respect to µp×ν. Now apply Theorem 4.4.4.    

4.5.3 Theorem  Let p ∈ (0,1) be computable. If x ∈ Rw(µp), then {y| x/y  ∉ Rw(µp)} is

recursively small.

Proof  Let N be a total recursive sequential test with respect to µp. Let ν be a non-atomic
computable measure. By lemma 4.3.4, {<x,y>| x/y ∈ N} is a total recursive sequential test
with respect to µp×ν. Now apply Theorem 4.4.6.                                                                 

4.5.4 Remarks  (i) The principle of homogeneity thus holds true for a wide class of
definitions of randomness based on probabilistic laws, although we needed three different
proofs to show this. The common core of these proofs is that the operation / is measure-
preserving and also preserves arithmetical structure; the differences result from the fact that
the Fubini-property needs a separate verification in each case.
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(ii) Looking back on what we have accomplished, we see that, at least in a quantitative sense,
von Mises' intuitions can be salvaged: if we provisionally identify Kollektivs with random
sequences (in Martin–Löf's sense), then the set of subsequences of a Kollektiv which are not
themselves Kollektivs is exceedingly small. Alternatively, we might say that Martin-Löf's
definition and its variants capture at least some of von Mises' intentions. Observe that, from
von Mises' point of view, the preceding theorems should not be interpreted as a result on the
extremely small probability  of the set {y| x/y ∉ R(µp)}.

(iii)  If we compare Theorem 4.2.2 with the preceding theorems, we see that the latter state a
necessary condition for randomness, whereas the first is a necessary and sufficient condition
for satisfying the law of large numbers. We doubt whether the preceding theorems admit a
converse. Perhaps there is a converse if we strengthen the consequences using compositions of
recursive selections and random selections, in the following sense.
If Φ is a recursive place selection (with generating function φ as in definition 2.5.1.1) such
that µpdomΦ = 1, define /Φ by

(x/Φy)k = xm if m is the index of the kth 1 in y and φ(x(m–1)) = 1.

Since /Φ satisfies lemmas 4.3.1-3, the preceding theorems hold with / replaced by /Φ.

Various other theorems on the operation / can be derived along these lines, the most
interesting of which is perhaps the following. Let  x/˚y be defined as  x/y, except that we now
look at the zeros of y. Hence, when viewed as sets of natural numbers, x/y ∪x/˚y = .

4.5.4 Theorem  Let p ∈ (0,1) be computable. If x ∈ R(µp), then the set {y| <x/y,x/˚y> ∉
R(µp×µp)} is recursively small.

Proof  Let ν be a computable non-atomic measure. We show first that µp×ν{<x,y>| <x/y,x/˚y>
∈ A×B} = µpA·µpB. As in lemma 4.3.2, it suffices to show that for fixed y, µp{x| x/y ∈ A,x/˚y
∈ B} = µpA·µpB. We need only verify this equality for A = [w], B= [v]. But {x| x/y ∈ [w],
x/˚y ∈ [v]} = [u], where |u| = |w| + |v| and u consists of w and v intertwined. Hence µp[u] =
µp[w]·µp[v]. From here on, the argument is entirely similar to the arguments above.

To interpret this theorem, recall that we defined two Kollektivs z0, z1 to be independent if the
pair  <z0,z1> is a Kollektiv with respect to the product distribution (cf. 2.4.1). Having
formalized Kollektivs as random sequences, it seems reasonable to formalize a pair of
independent Kollektivs as an element of R(µp×µp) (such pairs are invariant under recursive

place selections, they satisfy the law of the iterated logarithm etc.). We saw in 2.4.1 that a
lawlike partition of a Kollektiv into two (or more)  Kollektivs yields provably independent
Kollektivs and we remarked that this feature reflects the assumed independence of successive
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tosses. We now see that also in this context a principle of homogeneity obtains: "almost
every" partition, whether lawlike or not, produces independent Kollektivs.

4.6 New proof of a theorem of Ville  In 2.6.2.2, we stated Ville's theorem as follows:

Given a countable set of place selections Φ: 2ω → 2ω we can construct x ∈ 2ω such that

(i)   x ∈ domΦ implies Φx ∈  LLN( )

(ii)  for all n  
n
1∑

k=1

n

xk ≥ .

,  for all Φ ∈ 

C(p), the set of Church-random sequences with parameter p, was defined in 2.5.1.7. Since
property (ii) contradicts the law of the iterated logarithm and all (weakly) random sequences
satisfy the law of the iterated logarithm (as was shown in section 3.3), we have as a
consequence C( )∩R(λ)c ≠␣Ø (although of course R(λ) ⊆ C( )). Thus C( ) and R(λ), which

have very different philosophical justifications, differ also extensionally.
We need not repeat here the discussion on the philosophical significance of Ville's theorem
given in 2.6.2.2; in the present section we are concerned only with its proof. Ville's argument
[99,55-69] has a combinatorial character and consists roughly speaking in replacing  by a
different set ' of place selections Ψ such that if Ψ, Ψ' ∈ ', then Ψ   and Ψ' are "disjoint".
This notion of disjointness is best illustrated by means of an example. Let (pn) be an
enumeration of the prime numbers and let Ψn be the place selection that chooses all indices
which are a power of pn. Then no two Ψn choose the same index and in this case it is very

easy to construct an x which satisfies specifications (i) and (ii). By adroitly manipulating place
selections, Ville is able to reduce the general case to something very like the above example.

Without denying the ingenuity of Ville's construction, it seems worthwhile to try to derive the
theorem from first principles, that is, as an expression of the philosophical differences between
strict frequentism and the propensity interpretation uncovered in Chapter 2. In other words, we
want to show that the different interpretations of probability underlying the definitions of
Church-random sequences and (Martin-Löf) random sequences, namely probability as relative
frequency and coordinate-wise probability respectively, themselves imply that C( )∩R(λ)c ≠
Ø.

In the introduction to Chapter 3 we observed that, from the point of view of strict frequentism,
the distribution (1–p,p) on {0,1} should not be associated with a unique measure on 2ω, to wit,
µp, but rather with a whole class of measures, namely all those which in a certain sense

determine the same limiting relative frequencies 1–p and p. Existence theorems should not be
affected when we replace one measure from this class by another. We may therefore state
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Conjecture 1  Let π = ∏n(1–pn,pn) be a product measure such that lim pn = p and let
n→∞

 be a countable set of place selections. Then not only µpC( ,p) = 1, as was shown in

Theorem 2.5.2.3, but also πC( ,p) = 1.

On the other hand, the definition of (weakly) random sequences at first sight seems to involve
a unique measure, namely µp. This impression is confirmed by the discussion of Martingales

in 3.4, where it was seen that their definition seemed to require (constant) probabilities at
individual coordinates. One way to state this seeming dependence upon the underlying
measure is as follows:

Conjecture 2  If π = ∏n(1–pn,pn) with lim pn = p but pn ≠ p for all n, then πR(µp) =
n→∞

0. By the 0–1 law, πR(µp) is either one or zero and the first case seems to be excluded by the

above argument.

Both conjectures, taken together, would give us the required proof of Ville's theorem from
first principles, for if π satisfies the hypothesis of Conjecture 2, we would have
π(C(p)∩R(µp)c) = 1. But, although Conjecture 1 can indeed be proven (see corollary 4.6.3),
Conjecture 2 is false. First impressions notwithstanding, R(µp) is not that sensitive
to the choice of the underlying measure: there exist π = ∏n(1–pn,pn) such that  lim pn = p

k→∞

and pn ≠ p for all n, for which πR(µp) = 1.
On the other hand, the idea that the extensional difference between C(p) and R(µp) is due to a

difference in sensitivity to the choice of the measure is correct, but it should be formulated
more carefully. Although for a computable product measure π = ∏n(1–pn,pn), πR(µp) = 1 does
not imply that pn = p for all n, it does imply that ∑n(p–pn)2 < ∞, in other words, that pn

converges to p rather fast.We then get a proof of Ville's theorem if we take a computable
product measure π for which the marginals pn converge slowly to p, for in that case
π(C(p)∩R(µp)c) = 1 (Theorem 4.6.1).

The result we derive in this way differs from Ville's original formulation in two minor
respects:
– not only is C(p)∩R(µp)c non-empty, it has the cardinality of the continuum;
– on the other hand, the proof does not yield that for every π such that π(C(p)∩R(µp)c) = 1,
already π(C(p)∩LIL(µp)c) = 1, where LIL(µp) is the set of sequences which satisfy the law of
the iterated logarithm for µp. Indeed, the proof cannot yield such a result, since it is false for
some π with π(C(p)∩R(µp)c) = 1. But for some very slowly converging π, we do have that
π(C(p)∩LIL(µp)c) = 1, thus strengthening Ville's theorem in its original formulation.
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The reader may wonder why we persistently formulate these results for C(p) instead of for
C( ,p), for arbitrary countable sets  of place selections. The answer is that R(µp), due to its

recursion theoretic structure can only be reasonably compared with C(p). For very slowly
converging π, however, we have, for arbitrary , π(C( ,p)∩LIL(µp)c) = 1.

This section is organized as follows. We first prove Ville's theorem along the lines sketched
above (Theorem 4.6.1) and we comment on the significance of the proof (Corollary 4.6.6 and
following discussion). The reader may then proceed to Chapter 5; the rest of the section
generalizes Corollary 4.6.6 to measures which are not product measures and is not essential to
the main argument.

We prove Ville's theorem in the following form:

4.6.1 Theorem  Let p ∈ (0,1) be a computable real. There exists a non-atomic computable
measure π such that π(C(p)∩Rw(µp)c) = 1. A fortiori, π(C(p)∩R(µp)c) = 1 and C(p)∩Rw(µp)c

has the cardinality of the continuum.

The measure will be a computable product measure π = ∏n(1–pn,pn) such that lim pn = p
k→∞

and π⊥µp. In fact, the proof will show that for any such measure π, π(C(p)∩Rw(µp)c) = 1.

4.6.2 Lemma  Let π = ∏n(1–pn,pn) be a computable product measure. Then πC(p) = 1
iff lim pn = p.

n→∞

Proof  ⇒ Suppose not. Then for some rational ε > 0, at least one of the sets {n| pn > p+ε}, {n|
pn < p–ε} is infinite, say the first set. By the computability of π this set is recursively

enumerable, hence contains an infinite recursive subset. Using this subset, we can define a
recursive place selection Φ such that πΦ-1(LLN(p)) = 0, a contradiction.
⇐ For this direction, no assumption of computability or recursiveness is needed. So let Φ
be a place selection and π a measure of the form π = ∏n(1–pn,pn) such that lim pn = p

n→∞

and assume that pn ≠ 0 for all n (which is no essential restriction). We show that π(domΦ) =
π(domΦ∩Φ−1(LLN(p))). Given Φ and its generating function φ (as in definition 2.5.1.1), we
define a partial function θ: 2ω×ω → ω as follows:
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(1)   domθ  =  domΦ

(2)   if x ∈ domΦ, then  θ(x,n)  =  1 + min{k | n  =  ∑
j=1

k

φ(x(j))}.

Assume first that π(domΦ) = 1 Define random variables Zn: 2ω → by

Zn(x)  =  
p

θ(x,n)

x
θ(x,n)   for x ∈ domΦ  and  Zn(x)  =  1  otherwise.

Let Bn denote the algebra generated by the cylinders of length n. Let π denote the
expectation with respect to π and π(…|Bn) the conditional expectation with respect to π and
Bn. We then have

(3)   π(Zn) = 1  for all n:  π(Zn) =  ∑
k=n

∞

       ∫
{x|θ(x,n) = k}

     Zndπ  =  

=  ∑
k=n

∞

pk
–1·π{x| θ(x,n) = k & xk = 1} =  ∑

k=n

∞

pk
–1·pk·π{x| θ(x,n) = k} =

∑
k=n

∞

π{x| θ(x,n) = k} = 1.=

The third equality is a consequence of the fact that {x| θ(x,n) = k} ∈ Bk–1 and {x| xk = 1} ∈
Bk, so that these events are independent with respect to π. The last equality follows from the
assumption that π(domΦ) = 1.

(4)   π(Zn|Bn–1)(x) = 1 for all x: by definition, π(Zn|Bn-1) is Bn-1–measurable 

and satisfies for B ∈ Bn-1  ∫
B

Zndπ = ∫
B

π(Zn|Bn-1)dπ.

Now  ∫
B

Zndπ  =  ∑
k=n

∞

        ∫
{x|θ(x,n) = k}∩Β

xk·pk
-1dπ  =  ∑

k=n

∞

pk
-1·π{x| θ(x,n) = k & xk = 1}∩ Β  =

=  ∑
k=n

∞

pk
-1·pk·π{x| θ(x,n) = k}∩ Β  =  πB.  Since π(Zn|Bn-1)  is constant on

cylinders of length n–1, this implies that π(Zn|Bn-1) equals 1 ev ywhereer .

(5)  Since lim pn = p ∈ (0,1),
there is δ ∈ (0,1) and n0 ∈  such that for n ≥ n0: δ < pn

n→∞

< 1–δ. Then, again for n ≥ n0:  0 ≤ Zn ≤ pn
-1 < δ–1, hence the Zn are uniformly bounded.

By Theorem 3 in Feller [26,243]:
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lim
n→∞ n

1∑
k=1

n

Zk(x)  =  lim
n→∞ n

1∑
k=1

n

 
p

θ(x,k )

x
θ(x,k )   =  lim

n→∞ n
1∑

k=1

n

 
p

θ(x,k )

Φ(x)k   =  1  π–a.e.

But, generally, if (an) and (bn) are sequences of positive reals,

lim
n→∞

bn = p  and  lim
n→∞ n

1∑
k=1

n

 
bk

ak   =  1, then  lim
n→∞ n

1∑
k=1

n

ak  =  p.if

Hence, still under the assumption π(domΦ) = 1:

lim
n→∞ n

1∑
k=1

n

 Φ(x)k  =  p.

We now drop the assumption. Note that π(domΦ∩Φ−1(LLN(p))) = π(domΦ) is equivalent to
π(Φ−1LLN(p)|domΦ) = 1 (under the assumption π(domΦ) > 0, but otherwise there is nothing
to prove), so for the general case it suffices to replace in the above proof π by π(…|domΦ).

4.6.3 Corollary  Let be a countable set of place selections and π = ∏n(1–pn,pn) a
product measure such that lim pn = p. Then πC( ,p) = 1.

n→∞

We next investigate the sensitivity of R(µp) to the underlying measure.

4.6.4 Lemma  Let µ,ν  be computable measures on 2ω. µ⊥ν is equivalent to either of the

following statements: (i) there exists a total recursive sequential test N with respect to µ such
that νN = 1;  (ii) for each rational ε > 0, there exists a ∏1 set A such that νA > 1–ε and µA =

0.

Proof  Trivially, (i) and (ii) imply µ⊥ν. For  µ⊥ν implies (i) we use the following equivalence

µ⊥ν  iff  ∀ε>0 ∃C∈∑0 (νC > 1–ε & µC < ε)

and we take advantage of the ∏2 statement on the right hand side. Let f: + →∑0 be a total
recursive function which for each ε in + gives f(ε) in ∑0 such that νf(ε) > 1– ε and µf(ε) < ε.

Such a function exists by the computability of µ and ν. Let N = ∩n∪if(2-i-n-1). Obviously N

is ∏2. Since for each n and i, µf(2-i-n-1) < 2-i-n-1, µ∪if(2-i-n-1) is computable (see the proof of

the first effective Borel–Cantelli lemma (3.3.1)).  Hence N is a total recursive sequential test

with respect to µ. On the other hand, for each n and all i, ν∪if(2-i-n-1) ≥ νf(2-i-n-1) ≥ 1–2-i-n-1,

so ν∪ if(2-i-n-1) = 1. For (i) implies (ii), reverse the roles of µ and ν in (i), obtaining N =
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∩ nO n  such that µN = 1, νN = 0 and each On in ∑1 ; then some (On)c will do.

The following beautiful criterion for singularity of product measures is due to Kakutani [39]1.

4.6.5 Lemma  Let µ = ∏n(1–pn,pn), π = ∏n(1–qn,qn) be product measures on 2ω such that for
some δ > 0 and all n, δ < pn,qn < 1–δ. If ∑n(pn– qn)2 diverges, then µ and π are mutually
singular; on the other hand, if ∑n(pn– qn)2 converges, then µ and π are equivalent.

It follows from the zero-one law that product measures on 2ω are either singular or equivalent,
but Kakutani's theorem provides us with a criterion to distinguish these cases and this is what
we shall use to finish the proof of Theorem 4.6.1.

Let pn:= p·(1 + (n+1)- ), π = ∏n(1–pn,pn), then π is computable and since ∑n(p – pn)2 =
∑np2·n-1 = ∞, π⊥µp. By corollary 4.6.3, πC(p) = 1. By lemma 4.6.4, πR(µp) = 0. This

completes the proof of Theorem 4.6.1.   

We may extract the following information from the proof of Theorem 4.6.1:

4.6.6 Corollary  Let π = ∏n(1–pn,pn) be a computable product measure, p ∈ (0,1) a

computable real.
(i)   πC(p) = 1 iff lim pn = p

n→∞

(ii)  πR(µp) = 1 iff ∑n(p – pn)2 converges.
(iii) π(C(p)∩R(µp)c) = 1 iff lim pn = p but ∑n(p – pn)2 diverges.

n→∞

4.6.7 Remark  We saw in 2.6.2.2 that there exist countably many recursive place selections Φ
such that Kollektivs of Ville's type can never belong to the domain of Φ. But if x ∉ domΦ,
then the statement "x ∈ domΦ  implies Φx ∈ LLN(p)" is uninformative. (A failure is

significant only when preceded by a serious effort.) Similarly, although we have formally
proved that π(C(p)∩R(µp)c) = 1 if π satisfies the right hand side of (iii), the theorem and its

corollary are interesting only for a subclass of the recursive place selections, namely for those
Φ for which π(domΦ) = 1 if π is a product measure whose marginals converge to p.

The reader will have noticed undoubtedly that Ville's theorem in its original formulation uses
the law of the iterated logarithm essentially, whereas it is absent from our proof. This leads to
the following question: is the difference between C(p) and R(µp) due entirely to the law of the
iterated logarithm, in the sense that each sequence in C(p)∩R(µp)c fails to satisfy it?
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Interestingly, it is a corollary of Theorem 4.6.1 that this is not so: if π is, e.g., the product
measure ∏n(1–pn,pn) with pn = p·(1 + (n+1)– ), then π assigns measure one to the set of
sequences which satisfy the law of the iterated logarithm (for µp). To see this, we need a

general form of the

Law of the iterated logarithm  (Kolmogorov [45])

Let µ  =  ∏n(1 – qn ,qn ) be a product measure and define the variance sn by sn:= ∑
k=1

n

qn· (1 – qn ).

Then

(1)   for β > , for µ–a.a. x:  ∃m ∀n≥m |∑
k=1

n

xk – ∑
k=1

n

n·qk| < β 2snloglogsn1

(2)   for β < 1,  for µ–a.a. x:  ∀m ∃n≥m ∑
k=1

n

xk – ∑
k=1

n

n·qk > β 2snloglogsn

       for β < 1,  for µ–a.a. x:   ∀m ∃n≥m ∑
k=1

n

n·qk – ∑
k=1

n

xk > β 2snloglogsn .

If all qn are equal to p, we get back the form of the law stated in 2.6.2.2. Let LIL(µp) denote
the set of sequences which satisfy the law for the measure µp. Let π be the product measure
constructed above. We show that πLIL(µp) = 1.

If for instance for some  α < 1,

π{x| ∃m ∀n≥m ∑
k=1

n

xk > p·n  –  α 2n·p·(1–p)loglogn } = 1,

so that πLIL(µp) = 0, then, by the general form of the law of the iterated logarithm, for β > 1

and n sufficiently large:

p·n + p·∑
k=1

n

k+1

1
  –  β 2snloglogsn   >  p·n –  α 2n·p·(1–p)loglogn ,

hence

p·∑
k=1

n

k+1

1
  >  β 2snloglogsn   –  α 2n·p·(1–p)loglogn ;

but this is easily seen to be false, since the left hand side is O(√n), whereas the right hand side
is O(√(nloglogn)). An analogous argument for the upper bound then shows that πLIL(µp) = 1.
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On the other hand, it is possible to construct uncountably many Church-random sequences
(with parameter p) which do not satisfy the law of the iterated logarithm (for µp) if we use
product measures µp whose marginals converge to p slower than those of π. Choose a such
that –  < a < 0 and put qn:= p·(1 + (n+1)a), µ := ∏n(1–qn,qn).
We now do have, for α < 1,

µ{x| ∃m ∀n≥m ∑
k=1

n

xk  >  p·n  –  α 2n·p·(1–p)loglogn } = 1;

by the general form of the law of the iterated logarithm, it suffices to show that for some β > 1

and all n sufficiently large:

p·n  +  p·∑
k=1

n

(k+1)a  –  β 2snloglogsn   >  p·n  –  α 2n·p·(1–p)loglogn ;

in other words, that

p·∑
k=1

n

(k+1)a >  β 2snloglogsn   –  α 2n·p·(1–p)loglogn .

But now the left hand side is O(na+1), with a+1 >  and the right hand side is still
O(√(nloglogn)). Hence not only µ(C(p)∩R(µp)c) = 1 (since µ⊥µp), but also µ(C(p)∩LIL(µp)c)

= 1.

We may thus conclude that a part of, but only a part of, the difference between C(p) and R(µp)
is caused by the law of the iterated logarithm. The proof of Theorem 4.6.1 shows that Church–
random sequences may also fail to satisfy properties which are essentially different from the
law of the iterated logarithm.

The rest of this section is rather technical: we investigate what remains of Corollary 4.6.6 if
we drop the assumption that π be a product measure. We now obtain a theorem which
connects the different concepts of randomness with different types of convergence of
measures.

4.6.8 Definition  Let µ and ν be measures on  2ω and let T: 2ω → 2ω be the left shift. We say
that the sequence of measures (µT–n)n∈  converges strongly to ν if for all Borel sets A,
lim µT–nA = νA. We say that (µT–n)n∈   converges weakly to ν if for all Borel sets A
n→∞

such that ν∂A = 0 (where ∂A is the boundary of A), lim µT–nA = νA.
n→∞

The next lemma considerably simplifies the last condition:
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4.6.9 Lemma  (See Billingsley [4].)  (µT–n)n∈   converges weakly to ν if for all cylinders

[w]: lim µT–n[w] = ν[w].
n→∞

Part (i) of Corollary 4.6.6 can now be restated thus:  πC(p) = 1 iff (πT–n)n∈   converges

weakly to µp. We shall see presently that one half of this result can be salvaged even without

the assumption that π be a product measure.

4.6.10 Theorem  Let µ be a measure such that for all place selections Φ recursive in µ, if
µ(domΦ) = 1, then µ(Φ−1LLN(p)) = 1. Then (µT–n)n∈  converges weakly to µp. In particular,
if µ is computable and µC(p) = 1, then  (µT–n)n∈  converges weakly to µp.

Proof  Suppose not; then there exists a smallest binary string s such that 
lim µT–n[s] ≠

n→∞

µp[s]. Without loss of generality we may suppose that for some rational  ε > 0, for some
sequence (Ni) recursive in µ and for all i:

µT
–Ni[s]  >  µp[s] + ε.

Define for this particular sequence (Ni) and for all binary words v a place selection Ψv by

ψv(x(m))  =  {
∃i (Ni + |v| = m) & ∃u∈2<ω(uv = x(m))1     if

otherwise0 .

Recall that "v⊂w" means that v is a strict initial segment of w and that ‹› denotes the empty

string.
Claim 1

∀w∈2<ω (∀v⊂w lim
n→∞ n

1∑
k=1

n

Ψv(x)k = p → lim
n→∞ n

1∑
i=1

n

1[w](T
Ni  =  µp[w]).x)

Proof of claim 1  We use induction on w. If w = 1, the hypothesis of the claim implies that

lim
n→∞ n

1∑
k=1

n

Ψ‹›(x)k = p,

which is by definition of Ψ‹› equivalent to

lim
n→∞ n

1∑
i=1

n

1[1](T
Nix) = p.
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Suppose the claim holds for w. Note that

n
1∑

i=1

n

1[w](T
Nix)

n
1∑

i=1

n

1[w1](T
Nix)

   =   
|Ψw(x(Nn))|

∑
k=1

|Ψw(x(Nn))|

Ψw(x)k

.

The hypothesis of the claim implies that the right hand side converges to p; the hypothesis of
induction implies that the denominator of the left hand side converges to µp[w]. It follows that
the numerator of the left hand side must converge to µp[w1]. This concludes the proof of

claim 1.

Claim 2  Under the hypothesis of the theorem, for  α  = 0,1:

  ∈2<ω   µ( omΨv) = 1 & µ{x| lim
n→∞ n

1∑
i=1

n

1
[vα]

(T
Nix) = µp[vα]} = 1.∀ dv

Proof of claim 2  We use induction on v. Trivially, µ(domΨ‹›) = 1 and hence for α = 0,1:

µ{x| lim
n→ n

1∑
i=1

n

1
[α]

(T
Nix) = µp[α]} = 1,

∞

by claim 1 and the hypothesis of the theorem. Suppose the claim holds for u⊂v, then again by

claim 1 and the hypothesis of the theorem:

µ{x| lim
n→∞ n

1∑
i=1

n

1[v](T
Nix) = µp[v]} = 1.

It follows that  µ–a.e. v occurs infinitely often  at coordinates starting with an index Ni+1;
hence µ(domΨv) = 1. Then, as a consequence of claim 1 and the hypothesis of the theorem:

µ{x| lim
n→∞ n

1∑
i=1

n

1
[vα]

(T
Nix) = µp[vα]} = 1.

This concludes the proof of claim 2.

Claim 2 implies that for the particular string s determined at the outset,

µ{x| lim
n→∞ n

1∑
i=1

n

1[s ](T
Nix) = µp[s]} = 1.

By the dominated convergence theorem,
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lim
n→∞ n

1∑
i=1

n

µT
–Ni[s]  =  lim

n→∞
 ∫
2ω

n
1∑

i=1

n

1[s](T
Nix)dµ(x)  =  

=  ∫
2ω

lim
n→∞ n

1∑
i=1

n

1[s](T
Nix)dµ(x)  =  µp[s],

a contradiction.                                                                                                                       

A converse to the theorem is not to be expected. Indeed, the conclusion of the theorem is
probably too weak; it is plausible that the hypothesis implies some kind of asymptotic
independence condition.

We next generalize the second part of Corollary 4.6.6 to arbitrary computable measures.

4.6.11 Lemma  Let µ, ν be computable measures such that µ is not absolutely continuous with
respect to ν. Then for some total recursive sequential test N with respect to ν, µN > 0.

Proof  We showed in Example 3.4.6 that one can define a recursive sequential test N with
respect to ν such that µN > 0, using the likelihood ratio µ[w]/ν[w]. For reasons explained at

length in 3.4, it is difficult, if not impossible, to prove that N is a total recursive sequential test
with respect to ν. We therefore borrow an idea of Gaifman and Snir [34,518]. Choose ε > 0.
Since µ is not absolutely continuous with respect to ν, there exists a sequence (Ci) of ∑0 sets

such that µ∩ iCi > ε and ν∩ iCi = 0. Let (Dk) be a recursive enumeration of the ∑0 sets.

Define

f(n):=  min{k > n | µDk > ε & νDk < 2-k}.

Let N = ∩n∪m≥nDf(m), then µN > ε. That N is a total recursive sequential test is shown by an

argument similar to the proof of the effective first Borel–Cantelli lemma, 3.3.1.         

Gaifman [34,519] asks whether µ and ν can already be separated by a ∏1 set. An affirmative

answer would follow from lemma 4.6.4 in the unlikely event that the Lebesgue decomposition
of µ with respect to ν, namely µ = µ0 + µ1, where µ0<<ν and µ1⊥ν, can be achieved with
computable µ0, µ1. It is more probable, however, that one can produce a counterexample to

computable Lebesgue decomposition in this way.

4.6.11 Lemma  µ is absolutely continuous with respect to µp iff (µT–n)n∈  converges strongly

to µp.
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Proof  ⇒ T is strongly mixing with respect to µp, i.e. for f,g in L1(µp), lim ∫(f˚Tn)·gdµp

n→∞

= (∫fdµp)·(∫gdµp). Let g in L1(µp) be a Radon–Nikodym derivative of µ with respect to µp,
 then for all Borel sets A: µA = ∫g·1Adµp. Hence lim µT–nA = lim ∫g·(1A˚Tn)dµp =

n→∞ n→∞

 µpA·(∫gdµp) = µpA.

⇐ (proof due to M.S. Keane) Suppose µ is not absolutely continuous with respect to µp. Let A
be a Borel set with µpA = 0 and such that µA > 0 is maximal. We construct a Borel set B such
that µpB = 0 and for all n, µT–nB = µA. Let B1: = TA. Claim: B1 is also Borel. For we can
split T into two homeomorphisms T0: [0] → 2ω, T1: [1] → 2ω defined by Ti(ix) = x, for i =
0,1. Since the Ti are homeomorphisms, the sets Ti(B∩ [i]) are Borel; but  TB =
T0(B∩[0])∪T1(B∩[1]). Clearly µpB = 0. Since T–1B1⊇A and A was chosen to have maximal
µ-measure, µT–1B1 = µA. For each n, repeat the above argument with Tn replacing T, yielding

Bn. Put B:= ∪nBn, then µpB = 0 and µT–nB = µA for all n.             

4.6.12 Theorem  Let µ be a computable measure. Then µR(µp) = 1 iff (µT–n)n∈   converges

strongly to µp.

Proof  By lemma 4.6.11, µR(µp) = 1 implies that µ is absolutely continuous with respect to
µp. The converse is trivial. Now apply the previous lemma.                                             

4.7 Digression: the difference between randomness and 2-randomness  We are interested
in the size of the difference between R(λ) and R2(λ), the randomness notion that was defined
in 3.2.4.1. We have seen in 3.2.4 that R(λ)∩R2(λ)c is non-empty. On the other hand, by

lemma 4.6., there is no computable measure µ such that µ(R(λ)∩R2(λ)c) = 1: if µR2(λ) = 1,
then µ⊥λ, which implies µR(λ) = 0. (Note that, for all we know, there might be a computable
µ such that µ(R(λ)∩R2(λ)c) > 0.)
We now show, as an application of the techniques developed in 4.1-6, that R(λ)∩R2(λ)c is
indeed large: there exists a non-atomic ∆2 definable measure µx such that µx(R(λ)∩R2(λ)c) =

1.
To prove this,  we need a random measure, that is,  a family of measures (µx)

x∈2ω
 defined as 

follows:

µx = ∏n(1–pn
x,pn

x),  where  pn
x  =  {

3/4   if xn = 1

1/4  if xn = 0.

It is easily shown that for each Borel set B, the mapping x → µxB is measurable. Hence we
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may define a measure µ on 2ω by

µ(A×Β)  =  ∫
A

µxBdλ(x).

µ is obviously computable, hence R(µ) is well defined. Using a construction exactly parallel to
the Fubini theorem for recursive sequential tests (Theorem 4.4.4), one can demonstrate that for
all x ∈ R(λ), µxR(µ)x = 1. For this, it suffices to show that for each recursive sequential test N
with respect to µ, {x| µxNx > 0} is contained in a recursive sequential test with respect to λ.
This can be done if we change slightly the definition of the functions fk occurring in the proof

of Theorem 4.4.4. We now put

f0 (x) = 0 for all x

fk(x) = ∑
{i≤k| x∈[w

i
]}

µ [vi],  for k≥1x
;

the rest of the proof then goes through almost literally.

We now show that for x ∈ R(λ), R(µ)x ⊆ R(λ). For this, it suffices to show that the mapping
π2: 2ω×2ω → 2ω defined by π2<x,y> = y is such that for any recursive sequential test N with
respect to λ, π2

–1N is a recursive sequential test with respect to µ, for in that case, <x,y> ∈
R(µ) implies y ∈ R(λ). (Observe that x ∈ R(λ) implies that R(µ)x ≠ Ø.) Now π2

–1N is
obviously ∏2 and is a recursive sequential test, since for all Borel sets A: µπ2

–1A = λA.

We thus have that for each x ∈ R(λ), µxR(λ) = 1. In particular, this is true of the ∆2 sequence
constructed in 3.2.2.3. Fix such a ∆2 definable µx; this µx is then recursive in Ø'. It is not
difficult to see that µx⊥λ; either by Kakutani's theorem (4.6.5) or by observing that R(µ) ⊆
R(λ×λ)c and applying the Fubini theorem 4.4.4 to conclude that for x ∈ R(λ), λR(µ)x = 0.

Since our µx is singular to λ, we may perform the construction of lemma 4.6.4 (ii) recursively

in Ø', to obtain a ∆2 definable sequence (Cn) of ∑0 sets Cn, such that λ∩nCn = 0 and µx∩nCn

> 0. Now ∩nCn is ∏2, hence µxR2(λ)c > 0 and since R2(λ)c is a tailset and µx a product

measure, we get in fact µx(R(λ)∩R2(λ)c) = 1.

Notes to Chapter 4

1. A simple proof of Kakutani's theorem has recently been published by S.D. Chatterji. See
S.D. Chatterji, Martingale theory: An analytical formulation with some applications in
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analysis, in: Letta (ed.), Probability and analysis, Lecture Notes in Mathematics 1206,
Springer-Verlag (1986).


