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INTRODUCTION

The main results of this thesis are on axiomatizations of parts of intu-
itionistic systems, i.e. on the relationships between certain formal sys-
tems based on intuitionistic logic. We do not discuss here in any detail
the axiomatization of intuitionistic mathematics, but we shall attempt to
give sufficient explanations so as to enable the reader without special-
ized logical knowledge to understand at least the general drift of our

work.

Before giving an outline of the contents of this thesis, we shall present
some rough descriptions introducing intuitionistic arithmetic and elemen-
tary analysis, realizability, theories with generalized inductive defini-
tions and systems with choice sequences, all of which play an important

role in our outline. The reader may, if (s)he wishes, skip to the discus-

sion on bar induction and consult these descriptions when needed.

a) HA, intuitionistic arithmetic (or Heyting arithmetic), is similar to
first order classical arithmetic (Peano arithmetic PA), except that

the logic is intuitionistic. Its quantifiers range over N.

b) EL, elementary analysis, is (roughly) obtained from HA by adding
function variables (a,b,c,...) and function quantifiers for func-
*
tions from N to N. EL is a slight variant in which the function

variables a,b,c,... are replaced by a,B,Y,... -

c) The notation {-}(*) (Kleene brackets) indicates partial recursive
function application: {x}(y) =~ z means that the algorithm with code

x applied to argument y 1is defined and yields z.



d)

ECT

e)

£)

Kleene's realizability is an interpretation which makes systematically
explicit the constructive reading of existence (3) and disjunction
(v), using recursive functions. For example Vx3yA(x,y) 1is said to be
realizable iff there is a recursive function ¢ with code 2z such that
A(x,{z}(x)) holds for all x. For arithmetical A, the principle 'A
is true iff A is realizable' can be axiomatized by a single schema
ECTO, i.e. we have

HA+ECT, - A<> (A is realizable)

0

and

HA F (ECT0 is realizable).

ECT0 has the form ({z}(x)+ means {z}(x) is defined)

Vx (Ax > JyBxy) +IzVx(Ax > {2z} (x)+ A B(x,{z}(x)));

here A is almost negative, i.e. A contains no vV, and 3 only in

front of prime formulae.

ID, is an extension of HA containing generalized inductive definitions,

1
a typical example of which is the definition of the class 0 of the

'recursive ordinals' by Kleene and Church.

Finally, certain systems such as C$ will be mentioned: these are ex-
tensions of EL with choice sequences o,B,Y,... which intuitively may
be thought of as ranging over choice sequences. This is expressed in
CS and related systems by the adoption of certain intuitionistic

continuity axioms, such as
VadnA(a,n) + VaImInVB € a mA(B,n)

(if Vo3dnA(o,n), then we can find for each o an n and an initial
segment om of o such that for all B with initial segment om
A(B,n) holds).

Elimination of choice sequences is a method of translating statements
of CS into statements not involving choice variables, i.e. a trans-

lation into the 'choice-free' part of CS.



Bar induction.

Bar induction, implicit already in L.E.J. Brouwer's writings (e.g. [Br271]),
is an axiom schema of intuitionistic analysis first formulated explicitly

by S.C. Kleene in [KV65], in the following form (D for 'decidable'):

BID Va3xP (ax) A
vn(Pn Vv =Pn) A
> Q<>
vn(Pn-+Qn) A

Vn(VyQ(n*§) +Qn)

Here one should think of the n as ranging over codes for finite sequences
of natural numbers; * is concatenation, § is short for the sequence <y>
of length 1, an <> is the empty sequence.

By the first two premises, the set of sequences n such that Vmdn -Pm
form a well-founded tree (which we think of as growing upwards); the third
and fourth hypotheses say that Q holds at the top nodes of this tree and
that, if Q holds for all immediate successors n*§ of a node n, then

Q holds for n itself; the conclusion then states that Q holds at the
root <> of the tree.

Bar induction may be viewed as an induction principle over the 'universal
tree' of all finite sequences, ordered by initial segment relation; it is

closely related to transfinite induction.

A more general version is (M for monotone):

BI VaEle(&x) A
Vonm(Pn > P(nkm)) A
Vn(Pn+Qn) A
vn(VyQ(n*§) +Qn)

> Q<>,

BIM can be reduced to BID on assumption of intuitionistic continuity
axioms ([HK66]; see also [T77], p.1010sq.). By taking Q equal to P in
BIM, we get
BI Va3xP (ox) A

Vom(Pn>P(n¥m)) A p > P<>,

Vn(VyP (n*§) > Pn)



As observed by R. Grayson [FH79], BI and BI_ are equivalent, since BIL

follows from BI by taking Pn := VmQ(nxm) ?n BI. One may also considzr a
generalization, where the o range over some subtree of the universal tree.
In this thesis, we shall consider trees T definable by (essentially) an
arithmetical formula, i.e. not containing sequence variables. If T is
such a tree (i.e. T = {xIA(x)}, with no sequence variables in A ), then we

write aeT for Vn(&neT). Thus we obtain the schema EBI:

EBI VaeT3xP (ax) A 1
Vnm(n*meT A Pn+P(nkm)) A > P<>.
Vn e T(Vy(n*$eT » P(n*§)) - Pn)

Classically, EBI is easily seen to follow from BID: put Pn := Qn :=

(Pn Va(neT)) in BID. Intuitionistically, this is by no means obvious.

Before discussing results on BI and EBI, we shall introduce some notation.
We call a theory T, extending T, conservative over T, [w.r.t. the
set S of formulae] if

for all A [eS]): I, FA=T FA .

1

Notation: T, >T, [I,>% I 1. For >7.(HA)

Il and 22 prove the same arithmetical theorems, we say that they are

we shall write >3r' If

arithmetically equivalent and write I, =, 7T,- If I,, I, only prove
the same negative (i.e. v-, 3-free) arithmetical theorems, we write
TI :ar__ Tz.

From the work done by Troelstra [T80], it follows that BI and EBI have
the same proof-theoretic strength. This is done by proving

* = .
) EL*+EBI = ID;
combining this with EL* +BI =, IDB ([KT70]; IDB = EL + inductively
defined neighbourhood functions) and §3.6 of [T80] yields the result.
The principal goal of this thesis is to show that we even have

(2) EL¥ +EBI = _ ID
~ ar

a2

i.e. all arithmetical consequences of EBI hold in LQ] and vice versa.



3. Outline of contents and description of methods.
In the proof of (1) we can distinguish the following steps:

7) EBI is reduced to EBI*, i.e. EBI restricted to trees of the form
{xIVi < 1th(x) (x)ie A}. This requires an axiom of partial choice
(see 2.5, 2.6 of [T80]), which is derivable from ECTO.

%) EBI* is reduced to EBI**, i.e. EBI* restricted to trees of the form

{x|Vvi < 1th(x) (x)is A}, A almost negative. Here ECT, is needed.

217) A theory gg* is defined, in which EBI™* holds.

Zv) By an elimination tramslation, Qg*-*ECTO is interpreted in IDB* +

+ ECTO.

v) Using realizability and a result of Sieg on theories of inductive

definitions, it is shown that IDB+ECT0 Ear— 121.
If we wish to prove (2) by a sequence of steps analogous to (i) - (v), it
seems that it might be useful to have a theory T containing a choice
principle C comparable with ECTO, and which is not merely proof-theoreti-
cally equivalent to, but even conservative over HA. An example of this is

the result by Goodman [Go76]:

3) HAY + AC >=HA;

here ﬂéw is an extension of HA with functionals of higher type, and AC is

an axiom of choice for all higher types in ﬂéw. However, AC is not strong

enough to replace ECT, in the steps (i) and (ii).

0
In [Be79], M. Beeson gave a proof for (3) using generalized realizability
and forcing (the proof is not essentially different from Goodman's proof).
Inspection of Beeson's proof shows that in fact all generalized-realizable
arithmetical formulae are provable in HA, which suggests that it is possi-
ble to find a stronger choice principle (e.g. axiomatizing the realizabil-

ity Beeson uses) which is still realizable.

A.S. Troelstra suggested the following approach to prove (2): take a theory
with an abstract notion of application (in the sense of Feferman's theories
in [Fe75], [Fe791]), consider abstract realizability for these theories,
find a choice principle axiomatizing it and prove a result analogous to

(3) using the Goodman-Beeson method. Then extend that theory to one like



Qﬁ* in [T80] which contains EL* + EBI, reduce this theory by means of an
elimination translation and show that the resulting theory is arithmeti-

cally equivalent to ID,. Troelstra also suggested to consider a formula-

1
tion of Feferman's theories in which compound terms are no longer abbrevi-

ations, but really belong to the language itself.

The reason why Feferman did not admit compound terms in the language of
his formal systems lies probably in the fact that the application is in-
tended to be an abstract version of the so-called Kleene-bracket—applica-
tion {-}(+), which is essentially partial. So allowing compound terms
yields partial terms - terms which do not automatically refer to existing
objects, and for this no provisions have been made in ordinary intuition-

istic predicate logic.

A practical way to deal with partial terms and objects is to add an exis—
tence predicate E to the language, with 'T exists' or 't refers to an
existing object' as intended meaning for Et. This idea is worked out by
D.S. Scott in [Sc79]. In this article, he also shows that description
terms (terms TA signifying 'the unique object satisfying A ') can be
treated very elegantly in systems with an existence predicate. In chapter
I, we discuss descriptions, give a general definition of description
operators with which partial functions can be formed and consider the
consequences of adding such operators to several logics and the theories
based on them. In particular, we give a syntactical proof that adding
function symbols for definable partial functions is conservative, also

for systems based on intuitionistic logic.

Our investigations of Feferman's systems and the existence predicate led
us to the definition of AggE, a theory with partial application and in-
duction over N. éggE is a conservative extension of both HA and EL: this
makes it appropriate for our purpose. However, when looking at term models
for éggE, we discovered that adding the axiom Vxy(Exy) (i.e. applica-
tion is total) is conservative for arithmetical formulae. Therefore we
defined the theory APP with total application (which permits us to drop
all references to E). APP is conservative over HA and our starting point

for the study of EBI. All this can be found in chapter II.

The definition of realizability for APP is quite straightforward: it is

an abstract version of Kleene's realizability for HA. As it is well-known
that Kleene's realizability is axiomatized by ECTO, it will not be a sur-
prise that the realizability of APP is axiomatized by an abstract version



of ECTO, which we call EAC:
EAC Vx (Ax »~3yB(x,y)) =+ IfVx(Ax »B(x,fx))

where A is a negative formula (i.e. contains no Vv or 3).

To show that APP +EAC > HA, wedeveloped our variant of the Goodman-
Beeson method to prove (3): we add Hilbert's e-symbol (a sort of Skolem
function) to APP which makes all arithmetical theorems of APP +EAC de-

rivable, and use forcing to make the axioms governing e true.

For an extension of this conservation result to extensions of APP with
inductive definitions, the soundness of both realizability and forcing
w.r.t. these extensions is required. It appears that APP admits a per-

spicuous treatment of this.

In a digression we show that the method we used for the conservation

result on APP +EAC can also be applied to show MLOD>-§A: MLO is the

basic part of Martin-Lof's extensional type theory. The natural interpre-

tation of Mlo in APP corresponds to an extensional realizability e, and

ML, > HA is obtained via Hilbert's € and forcing. Unfortunately, we have
not found an axiomatization of e: this is due to the fact that, contrary
to ordinary realizability, e is not idempotent. This digression on ML

0
ends chapter III.

Now that we know that APP +EAC is conservative over HA, we are ready for

~~

the investigation of EBI. To APP +EAC we add choice sequences, variables

*

for trees and inductively defined functionals: the result is a theory II

in which EBI holds. In a number of steps we reduce IT to ID,. An im-
portant step (corresponding with (iv) above) is done by means of an inter-
pretation which has two equivalent formulations: elimination translation
and forcing over a site, i.e. a category with a Grothendieck topology on it.
The category involved consists of trees, with the inductively defined
functionals as morphisms. As in [KT70], where the elimination translation
for CS is treated in extenso, the soundness proof relies on several clo-

sure properties of the set(s) of inductively defined functionals.

The proof method used in all chapters is the method of Znterpretations.

A typical situation is: there are two theories T, and T, with a trans-

1 2

lation * of formulae of I in formulae of L,- Now if * is sound,



i.e. if

we call * an interpretation of T, in T,. If also T, 6 >T (i.e. T.FA =

1
=’IIFA) and if S = {AIIZI—A*—bA}, then we have

>

The advantage of the method by interpretation is that the proofs are usu-
ally obviously constructive. Often conservation results can also be ob-
tained by model-theoretic methods; but then the reasoning is not always
obviously constructive. Forcing as treated here may be seen as a syntactic
version of a semantic method; the formalization (i.e. the transformation
into a syntactic translation) is needed here to transform a model-construc-

tion into a result about formal systems.

. A preliminary version of Chapter I appeared as Report 82-21, 'Descriptions
in mathematical logic', of the Department of Mathematics, University of
Amsterdam. Chapter I is also published in Studia Logica, under the same
title.



§1.

CHAPTER I. DESCRIPTIONS IN MATHEMATICAL LOGIC

Introduction,

A description is a definition of some object by means of a predicate
satisfied by exactly one object. If A(x) 1is such a predicate (i.e. if
3!xA(x)), then we write Ix.A(x) for the object described by A(x). Ix

binds the variable x and is called a descriptor (or description operator).

Description operators are almost as old as mathematical logic. Written as
[xe], IE, (7x) or 1o they appear in Peano [P89], Frege [Fr93] ,
Whitehead & Russell [WRIOJ] and Hilbert & Bernays [HB34]. All these authors
discuss the well-known problematic aspect of descriptions: what to do with
Ix.A(x) 1if 3!xA(x) 1is not (yet) known? We present the three main solu-
tions.

A) Admit Ix.A(x) as a term only in case F3'xA(x); this restrictive
solution is adopted by Hilbert & Bernays and by Kleene [K152].

B) Let Ix.A(x) be the unique x such that A(x) if 3!xA(x), and
something else otherwise. This is the solution of Peano and Frege,
also of Bernays [BF58], Quine [Q63] and Scott [Sc67].

C) Explain Ix.A(x) as a 'figure of speech’' by giving a contextual defi-
nition in which B(Ix.A(x)) 1is replaced by 3Iy(Vx(A(x) «+>x=y) AB(y)).
This approach we find in Whitehead & Russell and in Scott's [Sc791].

Outline of the rest of this chapter.
In §2 we discuss the cases A, B, C and introduce function descriptors
(2.6) which slightly generalize Ix. The last three sections are devoted

to Scott's variant of C: §3 contains two versions of his logic with



2.2.

existence predicate as described in [Sc79], in §4 we prove that adding
function descriptors to a theory based on any of these logics yields a
definitional extension, and finally in §5 we consider theories with func-

tion quantifiers.

. How to handle Ix.A(x).

Solution A) of 1.2 is of course very safe, but it has the following
disadvantages:

7) as T F A 1is undecidable for most theories T, we are unable to
decide generally whether some expression containing Ix.A 1is a term
(there is a trivial but unelegant solution for theories with a decid-
able proof-predicate: index Ix.A with the code of a proof of
JlxA);

72) it excludes descriptions Ix.A(x) which exist conditionally, i.e.
for which we have F B » 3!xA(x).

A mitigated version of A) can be found in Stenlund [St73], [St75]. He

presents a natural deduction system extended with prime formulae t e I

(t a term-like expression) with the intended meaning 't is a term' (i.e.

t refers to an object), and the rule 3I!xA(x) = Ix.A(x) € I.
Solution B) can be rendered by

the x satisfying A(x) 1if 3I!xA(x);
(1) Ix.A(x) = {
'something else' if “13!xA(x).

Frege [Fr93] and Peano LP89] choose something like {x|A(x)} for 'some-
thing else’, Quine [Q63] works with @, and Scott [Sc67] takes some
object * outside the intended domain. The method works rather well for
classical theories, but yields an undesired side-effect in the intuition-

istic case: as a consequence of (1) we get
(B>3!xA(x)) » Ix(B~>A(x))

which does not hold intuitionistically. We can sidestep this by weakening
(1) to

I!1xA(x) >~ A(Ix.A(x))



2.3.

2.4,

2.5.

11

and restricting the axioms VxA(x) - A(t), A(t) > IxA(x) to I-free
terms t: then the meaning of Ix.A(x) 1is left unspecified as long as
3!xA(x) 1is not known. A more systematic elaboration of this idea is

described in 2.4.

Whitehead & Russell [WR10J] considered B(Ix.A(x)) as an abbreviation of
(2) 3IxA(x) A 3y(A(y) AB(y)).

As it stands, this is ambiguous, for e.g. 1B(Ix.A(x)) can mean

T (A!1xA(x) A Fy(A(y) AB(y))) or 3!xA(x) A Jy(A(y) A 1B(y)), and these
formulae are not equivalent. Therefore Whitehead & Russell required the
scope of a description Ix.A(x) be indicated: this is the context B for

which Ix.A(x) 1is explained as in (2). So we can axiomatize Ix.A(x) by
B(Ix.A(x)) <+ (3!xA(x) A Iy(A(y) AB(¥)))

if B is the scope of Ix.A(x).

A nice and elegant variant of this approach is given by Scott in [Sc79].
He introduces a logical system equipped with a unary predicate E to build
formulae Et with the intended meaning 't exists'; quantification is

allowed only over existing terms. Scott's description axiom reads
Vy (y=Ix.A(x) <> Vx(A(x) <> x=y)).

The concept of scope is not needed anymore, for instead of 'the scope of

Ix.A(x) 1is B' we now can write B(Ix.A(x)) A E Ix.A(x) .

Scott describes an elimination translation for descriptions and sketches
a proof of the conservativity of adding a descriptor to a theory based on
E - logic (logic with predicate E), thereby generalizing the results in
[HB34], [K152],[St75]. Scott's proof is semantical, based on two facts:
1°) a completeness proof for E-logic, e.g. relative to Kripke-semantics;
the models obtained are Q -structures for a complete Heyting algebra
£
2°) the construction of a sheaf-completion (sheafification) of the
Q ~ structure.

In this proof, (20) is constructive, but (lo) not, since the completeness



2.6.

proofs for Kripke-semantics are classical. However, as pointed out to us

by A.S. Troelstra, this non-constructive feature can be removed as follows

by the use of a more general notion of model:

30) first give a completeness proof via the Lindenbaum-algebra construc-—
tion, for models over a Heyting algebra A which is not necessarily
closed;

47) then transform the model into a model over a complete Heyting algebra
by using a constructive method for embedding any Heyting algebra
A into a complete Heyting algebra § preserving the operators A,

v, », 1 and all already existing sup's and inf's (such a method has
been given, independently, by R.J. Grayson and I. Moerdijk).

However, this method as it stands is certainly non—elementary: (40) in

particular uses second order logic with comprehension. Another way of con-

structivizing the semantical argument as sketched by Scott would be the
formalization of the completeness argument in a suitable classical system
conservative over the corresponding intuitionistic system for ng - sen—
tences; see Smoryfiski's paper [Sm82].

No doubt this second method can be made to work, but it is very indirect.

And it may well be that a closer analysis of the constructive semantical

proof outlined above would show us that the non-elementary character of

this proof was, proof-theoretically, only apparent. Nevertheless we think
it worthwhile to give here an easy and straightforward syntactical argu-

ment, which can be formalized in primitive recursive arithmetic.

Let A = A(;,y). Sometimes one does not only want the object 1Iy.A, but
also the (partial) function which maps every X onto the unique y such
that A(;,y) if this y exists. For this purpose we introduce the function
descriptors dy(;) which bind the variables vy, %X and are axiomatized

by

4AX Vxz(z = (dy (X) .A)%X <> Vy(A(X,y) <> y=2)).

Another approach is to add X —abstraction, axiomatized by
Vx;(x = (A;.t); > X = t[§:=_z>]) :

then ﬂy(;).A can be defined by A;.(Iy.A). Besides, A —abstraction is
definable from ﬂy(;) by taking AX.t i= (dy(;).t =y).
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2.7. REMARK. It is not strictly necessary to use d instead of I, since we
may write Ix.A[;:=_€] for (:Ix(;).A)-E; the same holds for adding X - ab-
straction. However, working with d (as we shall do in the sequel) has the

technical advantage that :Ix(?) .A contains no free variables.

§3. Logic with existence predicate.

We present two systems LE, LE— of intuitionistic predicate logic with
existence predicate E, the second of which is equivalent to the version
Scott introduced in [Sc79] (see 3.6). Instead of intuitionistic logic we
might as well take classical or any intermediate logic. A generalisation

to many-sorted logic is straightforward.

3.1. Our language contains predicate symbols E, =, ... (metavariable P ) and
function symbols (metavariable f ). Building terms and formulae goes as
usual. We write t for a (possibly empty) sequence of terms Elseeest
Pt stands for P(t],...,tn), £t for f(t],...,tn), s=t for
S)= Ep A .. As =t AT and Et for Et, A ... A Etn A T. Besides

1 1 1
the axioms and rules for intuitionistic propositional logic, we have

EAX Et <+ 3Ix(x=t) (x not in t)
=AX Vx (x=x) A Vxyz(x=z A y=2z +x=y)
> >
Pt » Et
STR {
> >
Eft -~ Et
Ps A s=t > Pt
SUB { - > > > >
Efs A s=t » fs=ft
VAX vxA > Alx:=y]
3AX Alx:=y] + 3xA
A>B A>B
V=R A->VxB IR 3xA>B
(x not free in A) (x not free in B)

The system thus defined we call LE.
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3.2.

3.3.

3.4.

3.5.

The weakening L,E— of LE is obtained by taking as quantifier axioms and

rules:
VAX VxA A Ey + Alx:=y)
3AX Alx:=y] A Ey > 3xA
- AAEx~>B - AAEx~+B
VR A>VxB IR IxA+B
(x not free in A) (x not free in B)
LEMMA.

i) LEF A< LE F 3xEx A Ey >~ A, where y are the free variables
in A.
it) If Q is a prime formula and x occurs in Q but not in t, then
LE F Q[x:=t] <> 3x(QAx=t).
i¢7) In LE, LE we have FAlx:=s] A s=t - Alx:=t], provided no

variables in s, t become bound in A.

PROOF. i) <« is trivial, = is proved with induction over the length of a

proof of A in LE (use 3-R™ to eliminate Ez with 2z not in A from

the antecedent).

ii) First show Q[x:=t] > Et (using STR), then prove x=t ~
(Q«>Q[x:=t]) (using SUB); combining this with EAX gives the desired
result.

iii) An easy formula induction. Use (ii) to deal with prime formulae. d

COROLLARY. Quantification over existing terms is allowed, i.e. we have,
in LE and Lg':

L VxA A Et > Alx:=t], I-Alx:=t] A Et »> 3xA.
PROOF. By EAX and AX  we have EE- F Et - 3y(t=y A (VXA AEy > Alx:=y]));
now apply 3.3.(iii). Similarly for 3Ix. [

COROLLARY. If we add Et for all terms t (or Efx for all function
symbols f£) to LE, we get full intuitionistic predicate logic.

In view of 3.3.(i) we can say that LE is about inhabited domains, whereas

the domain of L,E'— is possibly empty. So ,I\...E,- is more general than LE ;
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on the other hand, LE - with its slightly simpler formalism - is prefer-
able as a base for mathematical theories, as these usually have an inhab-

ited domain.

Scott's logic in [Sc79] (SL for short; we consider the variant with strict-
ness axioms) has a somewhat different axiomatization, but the same theorems

as 'I:,E—:
LEMMA. SL F A« LE F A.

PROOF. An easy verification. The only non-trivial part is the demonstra-
tion that the rule of substitution A = Alx:=t] of SL is a derived rule

of LE . O

Conservation results.

In this section we prove that adding function descriptors (see 2.6) to a

theory based on LE or Lg— yields a definitional extension (theorem 4.12).

DEFINITION. Let T, L, be two theories such that I extends 'IZ’

i.e. the language of 12 is a sublanguage of I‘l and all theorems of
Then T

I, are provable in T is a definitional extension of T, if

there is a mapping d?l L(Il) > 11(12) satisfying ’
i) d commutes with the logical operators;

ii) if A in the language of 22, then 22 F A<« d(A);

iii) I F A« d(a);

iv) I FA = I, F d(a).

Notation: T, 24, or I, 21,

Note that 2 is transitive, i.e. I, 235,214 implies I 200q I3

By (ii), (iv) one has I] 2T

= T conservative over T

2 1 2°

The proof of theorem 4.12 contains the following steps.

a) First we add one function description :Iy(;).A(;,y) (¢ for short) to
LE (or LAE_). For simplicity we assume ;=x, so ¢ 1is a one-place
function.

b) We generalize (a) to: add ¢ to a theory based on LE (or LQ_).

c) Then we repeat (b) a finite number of times to obtain the extension of
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a theory with the function descriptions @seees@ s where the defining
formula A. of (pj only contains @, if i< j.

d) Finally we turn to the extension T(d) of a theory with function
descriptors, and argue that any subtheory of T(d) with only finitely
many function descriptions is isomorphic to some extension of T as
described under (c).

We successively prove that the extensions described in (a) - (d) are defi-

nitional.

. Let A = A(x,y) be a formula of LE, containing no free variables besides

X, y, nor the variable z. We define LE(A,p) by adding to LE the func-

tion symbol ¢, the axiom
AX(A,¥) Vxy(Vz(A(x,2z) <> y=z) < @x=y)

and extending the axioms and rules of LE with instances containing ¢.
So LE(A,9) 1is LE plus a function ¢ which maps x onto the unique y
such that A(x,y) if this y exists, and is undefined otherwise. L,E-(A,@)

is defined similarly.

To show that LE(A,9p) 2 LE, LE_(A,(D) > L.E.- hold, we define an interpre-
tation * of LE(A,9) into LE. The effect of * is the elimination of
@ by contextual definitions at the prime formula level.

We adopt the following conventions, extending those stated in 3.1. x
stands for the (possibly empty) sequence of variables Xpsees¥ s similarly
for ;, ;, 4. M EERED A is a fixed sequence of variables; they are called
the y -variables. All formulae B of LE(A,p) are supposed to be -
indexed: this means that all occurrences of @ in B are indexed with
positive integers in such a way that in any prime formula Q of B, the
indices of occurrences of ¢ in Q are mutually different, and also dif-
ferent from the indices of the y-variables occurring in Q. So, in gen-
eral, the ¢ -indexing of B is not unique: but it will be seen from the
definition of * that B* does not depend (except for renaming of bound
variables) on the ¢ -indexing of B.

V;, 3;, 3'x are defined as follows:

VZB = ‘v’x1Vx2. . .Van,

2] =
3IXB 3x13x2. . .E!an,



3'¥B := 32Vx(B <> x =

> .
So 3!xB means: there is exactly one sequence x <X such that B

100
holds. We state some properties of arx:

4.5. LEMMA.
©) 3!XB <> 3xB A Vxz(B AB[x:=z]>x=2).
ii) Let X' be some permutation of X. Then 3'xB <> 3'x'B.
iii) Let xu be the concatenation of X and u. If the U do not occur
in B and the x not in C, then H!Q(BAC) < 3'¥B A 3rac.

Zv) 3'xB > (3x(BAC) A3x(BAD) < Ix(BACAD)).
PROOF. Straightforward. For (iii) and (iv), use (i). ]

4.6. DEFINITION. First two auxiliary definitions:

t =t if t ¢@-free

f__t> = fg, where E abbreviates Elseeest s
§(t) =0 if t @-free

G(cpit) = 8(t) +1

§(£8) = 8(E) = max(8(t)),...,8(t )

s(PE) = 8(D)

§(BAC) = §(BVC) = §(B>C) = max(8(B),86(C))
§(TIB) = 8(VxB) = §(3xB) = §(B).

Now we simultaneously define ¢ and *:

e(t) =T if t is @-free
e(@;t) = A(t,y)* A Et*
> > - .
e(ft) = e(t), where e(t) abbreviates e(tl) A ced A e(tn);
(P_E)* = EI!_};e(t) A 3§(e(-€) AP_E), where ; is a sequence of

y —variables satisfying: v in Sr) iff $; occurs in T.

* commutes with all logical operators.
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This definition looks circular at first sight, but with induction over
§(B) one can easily show that it is a good definition (A is ¢ -free,

hence 6(A(t,yi)) = §(Et) = G(QDit)-l).

FACTS.
z) B¥ is ¢-free;
%) B¥ <> B if B @-free;
711) (Ecpit)* <~ a!yiA(t,yi)* A (Et)*;
iv) (cpit=x)* <~ Vyi(A(t,yi)* > x=yi) A (Et)* AEx.

LEMMA. LE(A,9) 2, LE, LE (A,9) 2, LE .

~

PROOF. By the definition of * and 4.7.(ii), it suffices to show:

1) LE (A,0) F B < B¥;
1I) LE(A,9) F B = LE | B*;
111) LE (A,9) F B = LE | B*.

In the proofs of I -III which follow, we make the following simplifying
assumptions (without essential loss of generality): P and f are unary,
; are the 'mew' y-variables of t, ;' those of s . We also write

A =B for: A~> B derivable in the system under consideration; analogous-—

ly for <= .

I): induction over §&(B).
§(B) = 0: then B is @-free. Use 4.7.(ii).
§(B) > 0: first we show, for all t with §&§(t) < 6(B):

(1) LE (A,0) b t=x < (t=x)*.
a variable: trivial.

a)

t
b) t=fs. Now e(t) =e(s), t=£fs and we have

fs=x e Iz(s=z A fz=x) (by STR and EAX)
<> Jz((s=z)* A fz=x) ((1) for t:=s)
= 3z(3!ye(s) ATy (e(s) As=z) A fz=x)
> B!Sr)e(s) A El;(e(s) A £5=x)

= (fs=x)*.



c) t= kpis: now &(s) = §(Es) = G(A(s,yi)) and 6(s) < 6(t) < 8(B), so

q)is =x < ‘v’yi(A(s,yi) <~ x=yi) A Es A Ex (by AX(A,9))
= Vyi(A(s,yi)*Hx=yi) AEs* A Ex (ind. hyp.)
L g ((pis=x)* (by 4.7.(iv)).

Now we continue the proof of B <> B*.

B Erime: assume B=Pt, x not in t . Now

Pt < Ix(Px A x=t) (by STR and EAX)
<= Ix(Px A (x=t)*) (by (1))
= 3x(Px A 3!ye(t) ATy (e(t) Ax=t))
e 3!ye(t) AJy(e(t) APL) (by 3.3.(ii))
= (Pt)*.

B_ not prime: trivial, for * commutes with all logical operators.

II) We only have to look at EAX, STR, SUB and AX(A,p), for * commutes

with the logical operators.

EAX:
Et* = 3!ye(t) Ady(e(t) AEL)
= 313e(t) ATy (e(t) A3x x=t) (by EAX)
= 3x(3!ye(t) ATy (e(t) Ax=t))
= (Ix x=t)*.
STR:
Pt* = 3!ye(t) Ady(e(t) APL)
= 3!3e(t) A3y (e(t) AEL) (by STR)
= (Et)*.

The proof of (Eft)*-> (Et)* 1is similar. (E(pit)**(Et)* follows from
4.7.(1i1).

AX(A,0)* = Vxy(Vz(A(x,2)* <> (y=2)*) <> (0;x=y)%)
= Vxy(Vz(A(x,2)* < y=z2) <> Vy (A(x,y)* < y=y.))
(by 4.7.(iv)),

and this is a tautology.

SUB:
(Ps)* A (s=t)* =
= 3!3'e(s) A3y'(e(s) APs) A 3!yy'(e(s) Ae(t)) A
A 33y’ (e(s) Ae(t) As=t)
= 3!y'e(s) A3!ye(t) A3y (e(s) APs ATy (e(t) As=D))
(by 4.5.(iii),(iv))
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= 3'3e(t) A Jy(e(t) APL) (by SUB)
= (Pt)*.

(Efs)* A (s=t)* > (fs=ft)*: analogously.

Let SUB(¢) be Emis As=t > wis =¢Gt. Before showing LE F SUB(®)*, we
observe that EsAs=t > Et and A(s,yi) A s=t > A(t,yi) are derivable in
LE(A,9) -SUB(¢) (inspection of the proof of 3.3.(iii); recall that A(x,y)
is ¢-free), so their * - interpretation holds in LE in virtue of this

proof up to here. Now

(Emis)*A (s=t)*
= 3y, (A(s,y;))* A (Es)* A (s=£)* (by 4.7.(iii))
= 3y, (A(s,y))* A (Es)* A HlyjA(t,yJ-)* A (Et)* A
* * =
Aﬂyiyj(A(s,yi) AA(t,yj) Ay yj)
Al Al
= El.yie(cpis) A B.yje(wjt) A
x * * * =
Aﬂyiyj(A(S,yi) A (Es) /\A(t,yj) AED* Ay, yj)
= = *
(0;s wjt) .
I1I): completely similar. Use (Ex)* = Ex to deal with the quantifier

rules and axioms of LE . [
Now we consider theories.

4.9

DEFINITION. Let T be a theory based on LE, A= A(x,y) a formula of T
with at most x,y free. Then the extension T(A,9) of T is formed by
adding to LE(A,9) all axioms of T and all instances containing ¢ of

axiom schemes (A(A],...,An) for all A ..,An) of T. Similarly for

1°°
theories based on LE .

4.10. LEMMA. T(A,9) 2, T (T based on LE or LE ).

PROOF. Follows directly from lemma 4.8 and from A(A
= Aa],...,80 . O

*
1""’An) =

4.11. Generalisations.

a) A= A(xl,...,xn,y): now ¢ is an n-place function. The treatment is

completely analogous.

b) We can extend T' = T(A,9) to T" =T'(B,y): here B B(;,y) is a

formula of T' and possibly contains ¢. Now TI" 2 T' 2T, so

~

T" 2 T. This can be repeated a finite number of times to obtain

n
T = :
I(A,...,A 5 @

~

l,...,wn), where Ai contains wj only if 1i> j;
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we then have In Zd T, where d is the composition of n-1 interpre-
tations * as defined in 4.6.

c) More generally, we can add function descriptors dy(;) to T (see
2.6). The extension T(d) 1is defined in the same way as T(A,Q) in

4.9, and we have
THEOREM. T(d) <s a definitional extension of T.

PROOF. We use subtheory for a restriction of T(d) (i.e. its axioms and
rules) to some extension of the language of T with only finitely many
function descriptions.

Let IO be such a subtheory, and let jy(;).A ..,:ly(;).An be the func-

5
tion descriptions occurring in Io’ ordered alcording to increasing
length (i.e. number of symbols); so :ly(;).Ai occurs in Aj only if

j > 1i.

One straightforwardly verifies that T is isomorphic to In (as de-
scribed in 4.11.(b)) by the mapping e induced by :iy(x).Ai — ?, - Now
put ¢ =doe (the d from 4.11.(b)) and we get Io Zc T.

We also observe that, if the formula B of T(d) belongs to (the language
of) I, and to another subtheory Ié za I (c' defined in the same way
as c), then c(B) and c'(B) are equal modulo renaming of bound vari-
ables.

Now we can define an interpretation of T(d) into T by B F——+ c(B),
where c¢ 1is the mapping (as described above) of the smallest subtheory
containing B into T . It is easily verified that this interpretation

satisfies (i) - (iv) of definition 4.1. 0O

Extensions to systems with function variables.

This final section is devoted to extending theorem 4.12 to theories with
quantification over functions. We distinguish two variants, depending on
whether the function quantifiers range over total or partial functionms.

For simplicity only one-place functions are considered.

. We extend the language with function variables o,B,... . The natural

rules and axioms for quantification are:

VFAX VoA + Ala:=8]

HFAX Ala:=8] » J0A
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5.3.

A-~>B A~>B
VFR A - VaB 3FR JaA > B
(a not free in A) (o not free in B)
The two theories LEF., LEF, are obtained by adding to LE these axioms

and rules, and also the axiom schema

FAXT (VxEt(x) -~ JaVx ax =t(x)) A VaVxEox
resp.
FAXP JoVxy (t(x) =y +> ax =1y) (o not in t).

It is clear that in LEFT

all (partial) functions definable by a term of the language.

(LEFP) the function quantifiers range over

Let us see what happens when we add 4 to LE.ET, LEEP. Taking
(dy(x) .A(x,y))x for t in FAXT yields

AC! Vx3!yA(x,y) - JaVxA(x,0x);
in the same way, FAXP entails APC!, an axiom of unique partial choice:
APC! JaVxy (Vz(A(x,2) <> z=y) <> ax=y).

We shall show that AC! resp. APC! axiomatize the extension of LEFT

resp. LEFP with 4 - terms.
THEOREM. LEFT(:I) + AC! <Zs a definitional extension of LEFT +AC!.

PROOF. A straightforward extension of the reasoning in 4.2-4.12. To the
definition of t, 6(t) and €(t) we add at=oat, 6&(at)=6(t), &(VaB) =
= 8§(3aB) =8§(B), e(at) = e(t).

To extend 4.8, we only have to check L,,@ET+AC! + (FAXT)*. We argue as
in 4.8 under SUB: in LEET(d) —FAXT one can derive Et - 3!z z=t, so
by the proof up to here we have LEET+AC! - FAX, - Et* > (3lz z=1t)*.

Now
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(VxEt)* = (Vx3!lz z=t)*

Vx3!z(3!7e () A3y (e(t) Az=t))

3avx(3!Fe(t) Ady(e(t) Aax=t))  (by AC!)
(3avx ax =t)*

4

so we have (FAXT)* (for (VaVxEax)* =VaVxEox) . 0
THEOREM.  LEF,(d) +APC! s a definitional extension of LEE, +APC!.

PROOF. Analogous to 5.3. To check L§£P+APC! - (FAXP)*, we observe
that LE.EP(:I) -FAXP F t=u <> Vz(t=2z +> z=u), so (arguing as in 5.3)

L”E”EP+APC!-FAXP F (t=u)* <> Vz(t=2z <> z=u)*. Now

(FAX_P)* = JaVxu(ax=u <> t=u)*
<> JaVxu(ax =u <> Vz(t =z <> z=u)¥)

= JaVxu(ax =u <> Vz(H!;e(t) AH;(e(t) At=2z) <> z=u))

and this is an instance of APC!. [

REMARK. As a corollary of 5.3, one obtains Kleene's result on the con-
servativity of adding p-terms (i.e. the so-called Kleene bracket nota-
tion {e}(x) =~ y) to a two-sorted theory of arithmetic and recursive

functions with A - abstraction and AC! (see [K169]).
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CHAPTER II. THE THEORIES APP AND éggE.

Introduction

In this chapter, we present two closely related theories, APP and égEE.
Both are one-sorted theories based on intuitionistic logic about a uni-
verse of objects (among which combinatorial constants and the natural
numbers) which can be applied to one another. In APP this application
is total, in éggE partial: to express this, éng is equipped with an
existence predicate E . In fact, AQQE is just APP based on LE (see
Ch.I) instead of ordinary intuitionistic predicate logic.

We establish some properties of APP and QQEE, the most important
being that both theories are conservative extensions of HA (intuition-—
istic arithmetic). Together with its expressive power and flexible char-
acter this makes APP an interesting theory for metamathematical inves-

tigations (see the next chapters).

Outline of the rest of this chapter.

In §2 we give the definition of APP and éggE; some related literature
is discussed briefly. We compare APP and QEQE in §3 and prove that
all recursive functions are definable in both theories. This is used in
§4 to show that AQEE is conservative over HA and EL (elementary in-
tuitionistic analysis). §5 is about term models: the logic-free theories
APT(+) and APT are presented with which we investigate term reduction
for AEEE resp. APP. By formalizing the term model for APP in éggE
we are able to show that APP is conservative over AQEE w.r.t. numeri-
cal formulae; from this and §4 it follows that APP 1is conservative over

HA.

~S



§2. The formal systems APP and QEE.

2.1. DEFINITION of APP.

Constants: Kk, s (projector and substitutor),
P> Py» Py (pairing and inverses),

0, S, Pd (zero, successor and predecessor),

A (definition by cases).
Variables: a,b,c,...,x,y,2 (possibly with indices).
Terms: i) all variables and constants are terms;

ii) if o and 1 are terms, then so is o(t)

(o applied to 1).

Prime formulae: let o, T be terms. Then
o=1 (0 Zs equal to T)
Tt e N (1 78 a natural number)

are prime formulae.

Formulae: built up from prime formulae, using A, >,
v, 3.

Before we give the axioms and rules of APP, we state some abbreviations

and conventions.

We write p, 0, T, T', Tys Tosees for arbitrary terms. The usual conven-

tions are adopted for dropping superfluous parentheses, so e.g. poT =

= (p(0))(1). m, n are used for numerical variables, so e.g. VnA abbre-

viates Vn(n € N > A).

T, L, 1, v, «> are defined by

T := (0=0) L:=(0=1)
TA = A-> 1L
AV B :=3n((n=0->A) A (In=0 > B))

A <> B := (A>B) A (B~>A)

We also define
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<0,T> :=

().

i
1,2,3,... := 80, S(S0), S(8(s0)) ,...

pot
p;t (i=1,2)

(o # 1) := (0 =1).

X denotes a sequence of variables XpseesX 3 similar for T (terms),
IS (formulae). Substitution: olx :=1] (Alx:=1]) 1is the term (formula)

obtained from ¢ (A) by replacing every (free) x by Tt.
Now we give the rules and axioms of APP.

Logical axioms and rules: we take the following axiomatization of intui-

tionistic predicate logic with equality.

>AX A-~> A
VAX VxA > Alx :=1]
JAX Alx :=1] » 3xA
A
PRI 54
A~>B B~>C
PR2 TAsC
A A->B
PR3 3
A->B A~>C
PR4 A-rZBAC)
PR5 arp) g
A~ (B~>C)

N.B. The rules PR4, PR5 are double rules, i.e. their 'upside-down' version

is also a rule.

A->B .
V-R A5 VB (x not free in A)
A->B .
3-R SASE (x not free in B)
=AX Vx (x=x) A Vxyz(x=z A y=z +x=y)

SUB x=y > zx=zy A xz=yz A (xeN > yeN)



Non-logical axioms:

kaX
sAX
pPAX
0AX
SAX
PdAX

AAX

IND

kxy = x

sxyz = xz(yz)

p,(pxy) = x A p,(pxy) =y
0eN

xeN->SxeNASx#0

27

Pd0O=0 A (xeN > Pdx e NAPd(Sx) =x)

Xx,yeN A x#y > Auvxx =u AAuvxy =v

A(0) A Vx(xeNAA(x) > A(Sx)) = VxeN A(x)

This completes the definition of APP.

2.2. DEFINITION of APPE.

EAX

STR

SUB

Constants, variables, terms:

Prime formulae: as in APP, .

Formulae: as in APP.
Abbreviations: as in APP,

Logical axioms and rules:

as in APP.

and also Et (1 exists).

and: o=~T := EoVET > 0=T.

APPE is based on LE (see

~r~

Ch.I). This means that VAX, 3JAX, SUB of

APP are replaced by

Et < Ix x=1

=1 > Eo A ET
{‘reN—>E‘r

Eot > Eo A ET

oeNAo=T > T€eN
{ Epo Ao=1 > po=pt

Eop A0=T > gp=1p
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2.3.

3.2.

VAX VxA » Alx :=y]
JAX Alx :=y] > 3xA
Non-logical axioms: as in APP, but sAX 1is replaced by
E
sAX Esxy A sxyz=~xz(yz)

Some remarks.

APPE is virtually the same as the 'applicative and inductive part' of

Feferman's applicative theories described in [Fe75] and [Fe79] (see also
[RT84], a review of these papers). In Feferman's theories, however, com-

pound terms are abbreviations which are explained using the predicate

\J '

App(%,y,z) with the intended meaning 'x applied to y yields z': so
e.g. 0T=p is inductively defined by 3Ixyz(x=0Ay=TA z=p AApp(xX,y,z)).
Following a suggestion by A.S. Troelstra, we combined Feferman's approach
with Scott's E -1logic (see [Sc79]) and formulated QP;EE, where compound
terms are no longer abbreviations but an integral part of the language.
ARIjE has, in common with Feferman's weak theories, a straightforward
interpretation in HA via Kleene brackets (see §4); in fact, égI:E may
be viewed as an abstract description of Kleene-bracket-application. Going
one step further brings us to APP in which application is total and the
existence predicate E is no longer needed. In APP we can write down
any term we like without bothering about existence. The price we have to
pay for this carelessness is a more extemsive proof that APP is conser-
vative over HA, wusing formalization in QP;RE of a term model for APP
(85).

Some properties of APP and APPE.

In this section we compare APP with APP°, and show that X -abstrac-
tion and the recursive functions are definable in both theories. But first

we note that, by Ch.I, 3.4 we have (recall that A.EBE is based on LE):

LEMMA. AI’PE F VxAAET » Alx :=1], Alx :=t1]AEt > 3IxA.
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3.3. LEMMA. In ;A'I\"EE are derivable:
~AX T=T A (PMOAPT>OT)

SUB(=) o~T > popTAop=~TpA(ceN>TeN) A (Eoc >ET).

PROOF. If Et, then 3x x=7 (by EAX), so 3Ix(x=1Ax=1), hence
Ix(t=1) (by =AX and 3.2), i.e. T=71. So we have t=t1 for any term T.
Assume p=~0, p~T1, EoVEt. If Eo, then p=0 so Ep, hence p=r1
and we have (by =AX and 3.2) o=7t; similar if Et. Thus we get the

righthand part of ~AX.

SUB(~): analogous. [

3.4. LEMMA. 1) APP | o=1 > plx:=0l=plx:=t]A (Alx:=0] «+> Alx:=1])

ii) APNIjE F ot > plx:i=ol[x:=1] A (Alx:=0] > Alx:=1])

PROOF. 1) Assume o=t. Now pl[x:=0l=p[x:=1] 1is proved using SUB,
and Alx:=0]<«>Alx:=1] by formula induction, using SUB, =AX and
polx:=0]=p[x:=1] if A prime.

ii) The proof is analogous to (ii), reading everywhere = for =

and using 3.3. 0O

3.5. LEMMA. 1i) Q.P;RFA=’;A££EI—nyExy->A.

ii) Let the mapping *: ér;_gE->;Ag13 be given by Et |— 7.
Then

APPE A = APP F A
PROOF. i) First we show
E
(@D APP” |- VxyExy -+ Et  for all terms T
with induction over the complexity of T.
T a constant: for any constant ¢, Ec follows from the axiom on c¢ and
STR.

T a variable, y say: by =AX we have Vx x=x so with VAX y=y, hence
Ey (by STR).
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T=T,T,: use Vxy Exy and the induction hypothesis.
Now the result follows from (1) and Ch.I, 3.5.
ii) A straightforward induction over the length of a proof of A

in APPE .0

Now we shall show that in APP and APPE )\ - abstraction, a fixed point
operator ¢, a recursor R and a minimum operator u are definable. By
3.5.(ii) it suffices to give the proofs only for APPE. In APP, how-

ever, a simpler definition is often possible.

3.6. LEMMA. For every term t, there is a term Ax.T satisfying
i) ggE F Exx.T A (Eo >~ (Ax.1)o=1[x:=0]);
ii) APP F (Ax.1)0 =1lx:=0].

PROOF . i) Induction over the complexity of T.

a) 1T is a constant, or a variable # x: put Ax.tT:=kt. Et, so
EAx.T; if Eo, then (Ax.T1)o=kto=1=1lx:=0].

b) T=x: put Ax.t :=skk. EXx.t follows from sAXE; if Eo, then
(Ax.1)0 = skko ~ko (ko) =0 =1[x:=0].

c) TE'rsz: put Ax.‘r:=s()\x.‘r])()\x.12).

By ind. hyp.: E)\x.'t] and E)\x.'rz, so with sAXE and 3.2 we have

Exx.t. If Eo, then

(AX.T)0 =~ s()\x.'r])()\x.rz)c

R

()\x.Tl)c((Xx.‘rz)o)

o rl[x:=c]'rz[x.=o] (ind. hyp.)

R

‘r]‘rz[x.=o]'zt[x:=o]
ii) Follows directly from (i), 3.5.(ii) and the fact that

(o=~1)* 1is equivalent to o=1. [

Remark. Note that we can simplify the definition of Ax.T in APP by
adding clauses Ax.T :=kt, Ax.Tx:=71 if x not in t. For APPE, this

cannot be done without the risk of losing EXx.t.



3.7.

3.8.

LEMMA. (Fixed point construction.) There is a term ¢ satisfying
i) QE F E¢x A pxy 2x(¢x)y;
ii) APP | ¢xy =x(¢x)y.
PROOF . i) Define
X :=Azy.x(zz)y, ¢ = AX.XX -
By 3.6.(i) Ex, and
¢x = xx = (Azy.x(zz)y)x = Ay.x(xx)y
so E¢x; also
¢xy = x(xx)y = x(¢x)y.

ii) follows from (i) and 3.5.(ii). O
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Remark. ¢' :=XAx.x'x' with ¥x' :=Xz.x(zz) also works in APP: we even

get ¢'x = x'x' = (Az.x(z22))x' = x(x'x') = x(¢'x). However, we do not

have AP;I:E F E¢'x.

LEMMA. (Existence of a recursor.) There is a term R satisfying:
i) A_P;EE F Rxy0=xA (n#0 > Rxyn=>yn(Rxy(Pdn)));
ii) APP | Rxy0O=xA (n#0 > Rxyn=yn(Rxy(Pdn))).

PROOF. Define

r :=Afn.A(kx) (A\z.yz(£(Pdz)))nOn, R := Axy.¢r .
Now Rxy0 = ¢r0
=~ r(¢r)0

R

A(kx) (Az.yz(¢r(Pdz)))000

kx0 = x

R
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if n#0, then

Rxyn

R

érn

R

r(¢r)n

R

A(kx) (Az.yz(¢r(Pdz)))nOn

R

(Az.yz(¢r(Pdz)))n

R

yn(¢r(Pdn))

R

yn(Rxy(Pdn)) .

ii) follows from (i) and 3.5.(ii). O

Remark. Instead of r we might have taken r' :=Xfn.Ax(yn(f(Pdn)))n0 in
APP. In %E this does not work, for we cannot prove in general that
yn(f(Pdn)) exists, which we need to apply AAX in the proof that

Rxy0 = x.

Before we turn to the minimum operator, we define the following.
3.9. DEFINITION.
i) m+n := Rm(kS)n

ii) =x<y := x,yeNA3In(x+Sn=7y); X>y 1= y<x

iii) Adm(f) := Vn(fneN) Vv 3In(£fn=0 A Vm<n(fmeN))

It is easy to verify m+0 = m, m+Sn = S(m+n) and the well-known prop-—
erties of <, >.

Only for f satisfying Adm(f) we can find the least n with fn=0 (if
such an n exists); this is a consequence of the fact that we have defini-

tion by cases (A) only on N.

3.10. LEMMA. There is a term u satisfying:
i) APPE b Adn(f) > (uf=n <> £n=0 A Va<n fm>0)

ii) idem for APP.



PROOF. 1) Define

f = Ax.f(Sx)

M := Axf.A(k0) (Ag.S(xg)) (£0)0f"

U = ¢M

Now

pf =~ ¢Mf

~ M(oM) £

=~ Muf
A(k0) (Ag.S (ug)) (£0)0£"
{ k0f =0 if f0=0

R

R

Og.Sg)Et =~ suE") if £050
So

fOe N > (£0=0 Auf=0) v (£0>0 A uf =uf+ +1)

Now we prove (i) with induction over n, assuming Adm(f).
a) n=0: Adm(f) >~ fOeN, so f0=0 «+> uf=0.
b) n+1: observe that Adm(f) implies (Adm(f+) A f0eN) Vv £0=0.
Ind. hyp.: Adm(f') > (uf' =n <> £'0=0 A Vm<n £'m>0).
Now Hf=ntl <> uf ~uf +1 =n+l A £0>0
> uf =nA£050
> £'n=0AVm<n £'m>0 A £0>0
<> f(n+l) =0 AVm <n+l fm>0.

ii) follows from (i) and 3.5.(ii). ]
Remark. In APP, M' := )\xf.AO(S(xf+))(fO)0 also works. u' := ¢M'

fails in &E, for we cannot prove uf=0 if f0=0, as we do not

know ES(u f+) .
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3.11.

84.

THEOREM. ALl (general) recursive functions are definable in APP and
éggE, in the following sense:

for any k -ary recursive f, there is a term t_. of APP

with £( y~n = app‘®) | n.
m .. .,m ) 2n = APP Tgmp...m =D,

m times

Here m s the numeral S(S(...(80)...)).

PROOF. It is obvious that the constant zero function (k0), the succes-
sor function (S) and the projection functions I;(Axl...xn-xi) are
definable in APP and éggE. For closure under composition, recursion
and minimalisation we use A —abstraction, R and p . Two remarks are to
be made:

i) at first sight, R and p give us only closure under recursion and
minimalisation without parameters. For closure with parameters, we use

A — abstraction as follows. Suppose we want to define, given f and g,

the function h satisfying

hx0 = fx,
h;(n+l) o~ g;n(h;n).
. . . -> > ->
One readily verifies that h :=2Ax.R(fx) (Am.gx(Pdm)) works.
ii) The condition Adm(f) in 3.10 is dealt with as follows: if

m%n[g(g,x)=0]==n, then g(ﬁ,n)ﬂxo AVn'<n g(;,n)>0, so (by the induction

hypothesis) Adm(rgﬁ) holds. g

Comparing APPE with HA and EL.

In this section we give embeddings of HA and EL in A.PPE and vice

~

. E . .
versa. As a consequence, we obtain that APP is conservative over HA
and EL.
22

. The theory HA. We recall that the constants of HA are 0, S and

function symbols for all primitive recursive functions, the prime formulae
have the form s=t, and the non-logical axioms are IND and the usual

axioms for the constants. For a complete definition, see [T73].
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We first embed HA in &gE. Define ' : HA > é.f_gE by
0 :=0 X =X for all variables x
$(6)° = 8(t)
Bt senest ) 5= T (e e (E))
(¢ a prim. rec. function symbol, ‘r¢ as in 3.11)
(s=t)° = (s"=t")
° commutes with the propositional operators

[ o
(VxA) := VxeNA

o o
(IxA) := IxeN A

4.2, LEMMA. i) If t <s a term of HA and X are its variables, then

APPE FXeN >t eN.

ii) If A Zs a formula of HA and X are its variables, then
E > o
HAFA = APP F xeN->A .

PROOF. i) An easy induction over the complexity of t.
ii) Induction over the length of a proof of A. For the axioms on the
constants of HA we use 3.11; the quantifier axioms and rules follow

from (i) and the condition x e€N. O

Now we go the other way round, but instead of HA we take HA* := ME(:I),
where ME is HA based on the logic LE plus Et for all terms t

of HA, and ME(:I) is the extension with d, as defined in Ch.I, 4.11
(c). ME is obviously conservative over HA, so by Ch.I, 4.12 the

same holds for M*.

The Kleene bracket notation is defined in AHA* by

{+}(*) = xxy.{x}(y) := du(x,y).3z(Txyz AUz =u)
where T is the Kleene predicate and U the result-extracting function
(they satisfy Txyz ATxyz' - Uz=Uz'). For terms t containing only
variables and constants of HA and {-<}(*) we have the so-called

N\ - abstraction, which satisfies

EAx.t A {Ax.t}(x) =~ t.
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4.4,

4.5,

This is proved in Kleene [K169], Lemma 41. (A proof can be given by re-
peated use of the s-m—-n theorem of recursion theory and induction on

the construction of t.)

Now we define ': é.gle > .\Hé*'

0' :=0 x' = x for all variables x
S' = Ax.x+l Pd' := Ax.x=1
p' = Axy.j(x,y) p{ = I\x.ji(x) (i=1,2)

(j is some prim. rec. pairing function, with prim. rec.

inverses j], j2)
k' := Axy.x
s' = MAxyz.{{x}(2) H{y}(2)}

A' := Auvxy.(u.sg|x-y| + v.sg|x-y|)

' commutes with all logical operators.

LEMMA. APPE F A - mA® | A'.

PROOF. Straightforward induction over the length of a proof of A in

APPE. The logical rules and axioms are trivial, for commutes with all

logical operators and APPE, ﬂé* are both based on LE. IND 1is present
in both theories, and the axioms for the constants follow from the defini-

\J

tion of and the properties of {-}(+) and Ax. O

LEMMA. i) HA®* F t°' = t;

A
ii) H*F A" < a.

PROOF. Straightforward inductions over the complexity of t resp. A. In

the proof of (ii), we use (i) for the case of A prime. 0
THEOREM. HA F A <> APP® | A° for closed A.

PROOF. = follows from 4.2.(ii), < from 4.4, 4.5.(ii) and the fact that

HA* is comservative over HA. O
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4.7. Now we turn to EL, intuitionistic elementary analysis. This is an ex-—
tension of HA, obtained by:
- adding variables a, b, ¢, d, ... and quantification for functions
from N to N, and a recursor R;
- allowing A - abstraction over numerical terms, axiomatized by
(Ax.t)x = t;

- adding a quantifier-free axiom of choice:
QF-AC Vx3IyA(x,y) > JaVxA(x,ax) (A quantifier-free)

For a complete description of EL we refer to [T73].
Convention. We write te (N=N) for Vn tneN.

We extend ° of 4.1 to °: gg+ggE as follows:
a := a for all function variables a
(Rt$)° 1= R(ED) (47) (the R at the right is the same as
o o in 3.8)
(Ax.t) = Ax.(t )
(<P(t))° = (¢°)(t°) (¢ a function term)
(VaA)® := Vae (N=N) A°

(3a8)° := 3ae (N=N) A

4.8. LEMMA. i) If t <s a numerical term of EL and ;:, a are its free
variables, then

&E F XeNAaae (N=N) » t° eN.

ii) If ¢ %s a function term of EL and ;, a2 are its free variables,
then

APPE b xeNAZ e (N=N) » ¢ c(=N).
iii) If A <s a formula of EL and ;, 3 are its free variables, then

ELF A = APP® b XeNAZe (N=N) + A°.
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4.9.

PROOF. (i) and (ii) are proved simultaneously, with induction over the
complexity of t resp. ¢ . (iii) is proved as 4.2.(ii). We use 3.6.(i)
for the axiom on Ax, (i) and (ii) for the quantifier axioms, and for

QF-AC we argue as follows. By

r=s — |r-s| =0

Or=s F—1<|r-s| =0
r=s A t=ub—> |r-s|+|t-u] =0
r=s VvV t=uf—> |r-s[ . [t—u].= 0
r=s > t=ub— (1°|r-s|) - |t-u] =0

we reduce QF-AC to Vx3yt(x,y) =0 »> JaVxt(x,ax) =0 . Under ° this becomes
(modulo equivalence) Vm3n to(m,n) =0 » Jae (N=N) Vm e’ (m,am) =0 and this
is derivable in APPE, as we can take u()\n.to (m,n)) for a (one easily

checks Adm()\n.to(m,n)) and ae N=N)). 0O

With the extension of HA to NHQ* in 4.3 in mind, we extend EL to a

theory EL* with (-|-), partial continuous function application. In

E}: we have

- equality between function terms (¢ =y) and an existence predicate
E for both numerical and function terms;

- two-sorted LE as logic;

- Et, E¢ for all terms t, ¢ of EL;

- mnot function descriptors, but functor descriptors db(;), so we have
new function terms of the form (:Ib(;).A) (3);

- the axiom a=b +> Vx ax = bx.

Let EL' be EL+equality between function terms. EL' 1is conservative

over EL (interpret ¢ =y by Vx ¢x=9¢x) and ,EL* is comservative

over EL' (Ch.I, 4.12), so EL* is a conservative extension of EL.

We assume coding for n - tuples of natural numbers, written as
<xl,...,xn>, to be defined as usual in EL, and also ax :=

<al0,...,a(x-1)>. We define partial continuous function application

(-

*) in EE* as follows:

(-

+) =Xab.(a|b) :=

:= dc(a,b) .VxIy(a(<x>*by) = cx+1 AVz<y a(<x>xbz) =0)
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Kleene proved ([KL69], Lemma 41) that, for any function term ¢ containing

only variables and constants of EL and

MA'a.¢ such that

(+|*) there is a function term

EA'a.$ A (A'a.cb]a) ~ ¢ .

See also [T73], p.73-75.

Now we define ": AP;I:E > 'E”I: as follows:
x" = 1(x) (1 is a fixed injective assignment of vari-
ables of &E to function variables of
L)
0" := Ax.0
S" := A'a.(Ax.ax+l)
Pd" := A'a.(Ax.ax"1)
p" := A'ab.(Ax.j(ax,bx))
p;.: 1= A'a.()\x.ji(ax)) (i=1,2)
k" := A'ab.a
s" := A'abe.((ale)|(b]e))
A" := A'abed.(Ax(ax.sg|cx-dx| +bx.sg|cx-dx|))
(o)™ = (o"|1")
(o=1)" := (¢"=1")
(ET)" := ET"
(teN)" := IxVy (t")y=x

" commutes with the propositional operators

(VxA)" = Vx"A"

(3xA)" := 3x"A"

4.10. LEmmA.  APPEF A = EL* b A"

PROOF. As for 4.4. 0O
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4.11. LEMMA. Let ;, ;, g, T be sequences of variables of EL satisfying

"=3, °"=2%. Wewrite C for the formula /1\ Vy a;y=x; A

A /i\ Vyz(biy= (cillx.y)z). Let t, ¢, A be resp. a numerical term, a
function term and a formula of EL, all with free variables among ;,
>

b. Then:

i) E,L* Fc - vy t°"y=t;
i) EL*FC > vyzoy=(" " Pxay)z;

iii) EL*Fc - " < ).

PROOF. Induction over the complexity of t, ¢ resp. A. (i) and (ii) are
proved simultaneously; they are used in the proof of (iii) for the case

A prime. 0

4.12. THEOREM. If A is a sentence of EL, then
E o
ELFA < APP F A .

PROOF. = follows from 4.8.(iii), < from 4.10, 4.11.(iii) and the fact that

* . .
EL" is conservative over EL. [

§5. Term models for QI;EE and APP.

We define in this section two logic-free theories APT(+) and APT to

investigate term reduction and term models for APPE resp. APP.

5.1. DEFINITION. APT(+) 1is the following theory:

Constants: as in APP (0, S, Pd, p, Py» Pys k, s, A)

Terms: the closed terms of APP.
Formulae: ™V (1 Zs in normal form),
NT (t 28 a numeral),

o#1 (0 and 1 are different numerals),
o> 1 (0 reduces in one step to 1),

o 21 (0 reduces to 1).
Axioms and rules:

Nt

N0 NSt
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5.3.
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Nt Nt O#T
ST #0 0 #ST So #ST
ct for all constants c
¥ ¥ Tt v TV oV t¥
pT+ pot¥ kTt STV soTt
™ oY 1V p¥ o¥ Nt Nt
Aty Aoty Apot¥ TV
Nt
PdO >, 0 PA(ST) >, T
TV TV ¥
p](por) >0 pz(pw) >0 kot >0
ot Nt oy T#T'
800T >, pt(oT) Soott >, 0 Boott’ > o
0>1'r G>]T p>10 g 2T
T 2T
0o >, ot ap >, TP RS
Conventions. 0 =T means: 0 and 1 are identical terms. We abbreviate
(021 and TV¥) to O 2= T¥.
LEMMA. In APT(V) we have:
i)  otv = (ov and TV);
ii) (ov and o 2 1) =»0=T1,
PROOF. i) Inspection of the axioms and rules of APT(¥).
ii) It is clear that it suffices to show:
it is impossible that o+ and o T.
Assume oV, O > T Inspection of the axioms and rules learns that the
proof of o >l T ends with the rule o' > ' = po' >]o‘r' or the rule
o' >y ' >0’ >, t'p. With (i), we now get v, o' > t'. Repeating
this argument, we end up with ct, c > ‘r*, c some constant - and

this is impossible. 0

1
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5.4.

5.5.

LEMMA. (the Church-Rosser property for APT(4)).

(1) p20, and p 20, = for some T, 0 271 and 0, 2 T .

PROOF. We adapt Rosser's original proof for combinatory logic ([R351;
see also [Ba81], Exercise 7.4.13).
First we define égg(&)*, which is obtained from APT(+) by writing

everywhere >, for > and adding as new axiom and rule:

O, 2% T) Oy >% T

91927 11Ty

We can interpret APT(#)* in APT(Y¥) by reading everywhere 2> for >,

so APT(+)* is conservative over APT(4).

Then we prove the so-called Diamond property for >,:

(2) P % 0y and o >, 0, = for some 1, o, >, T and 0, >, T.

2 1 2

This is done with induction over the length of the proofs of p >, 9,

and p >, Oy We treat a typical case: p = ko]p] and the last rule

above p >y 0, is o ¥ = koo, >4 0.

There are three possibilities to be distinguished:
i) 9y =p = kolpl: put T :=o0,.

ii) 9, =0, put T :=0,.
1
>*0i; hence put T :=0

iii) o, = kolp! with o >, 0 Pl x p;: by o+ and 5.3.(ii) we

v

have oy i

1 1 1
Pls SO kclp 1

Finally, by a well-known argument, (2) implies (1). [

COROLLARY (of 5.4 and 5.3.(ii); uniqueness of normal form).

o221,y agnd 0 =2 T,¥y = T

1 2 =T

1 2°

We now state a characteristic property of APT(4):
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5.6. LEMMA. Let o be a subterm of t. Then

r211+ = for some 9y o>ol+.

PROOF. Induction over the length of a proof of 1 2 T

"
e

i) T z Easy, use 5.3.(i).
ii) t> 1, 2 T,. A typical case: T = k‘rzp and the last rule above

T T, is pt = k‘rzp > Ty We look at the different positions of
o in T.
a) o =T : put o, =T

i
b) cEk‘tz: put o, := le‘

c) o=k : put ol:=k.

d) o 1is a subterm of Tyt apply the induction hypothesis.

e) o0 1is a subterm of p : by pt+ and 5.3.(i) we have o+, so
put 0]:= ag.

Other cases are treated analogously. 0

Now we can form a term model for APPE.

5.7. DEFINITION.
T := {1]| T a term of APT(+) }
ET := {teT| APT(+) F 1¢ }

NT := {teT| APT(+) F Nt }

We interpret

g =T by Fpo €ET(c 2 p and T 2 p),
ET by Jp e ET(T 2 p),

TeN by Jp e NT(T = p),

Vx, 3y by Vx ¢ ET, 3JyeET.

5.8. THEOREM. This interpretation is sound.

PROOF. Most axioms and rules are easy. We briefly discuss the non-trivial
cases:

Vxyz(x=2z A y=z > x=y): use 5.5.
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TeN > Et: recall that Nt = 1+ 1is a rule of APT(Y).
Eot -~ EOAET: use 5.6.
ceNAOo=1 > TeN: use 5.5.

Epo A 0=1 > po=pt1: assume Epo, o=1, i.e. po 2p ¥, 020"y T 20"V,

1T~

By 5.6: p 2p'y, so pt 2p'c'. By 5.5: po =2p
conclude pt1 2 p]+, sO PO = pT.

Eop A 0=1 » 0p =1p: analogous.

sxyz = xz(yz): 1if Espot, 1i.e. spot 2 1'V, we obtain (by spoT 2

> pt(ot) and 5.4, 5.5) pt(ot) 2 1'+, so spot = pt(ot); on the other
hand, if Ept(ot), i.e. pt(ot) =2 "+ we get (by spot 2 pt(oT))

spotT 2 t'"v and again spot = pt(ot). O
5.9. COROLLARY. Let o, 1 be closed terms. Then
i) %E F ET < (1 2 p+ for some p);
ii) QE,EE Ft1eN & (t2p and Npo for some p);

iii) APPEI—0=T — (0 2p+ and T 2 p¥v for some p).

5.10. REMARKS. i) By 5.9, we may call this interpretation a free model.
ii) We can strengthen AAX to

AAX+ Auvxx =u A (x#y = Auvxy =v),

which yields decidability of = for existing objects (for we have 0#1,
(x=y > AOlxy = 0) and (x#y - AOlxy = 1)) and definition by cases on
the universe of all existing objects. A term model for &E+AAX+ is

obtained as follows: change APT(¥) into ér;l(#)"' by dropping formulae

o#1 and the A-reduction rules, and adding as new rules

gy TV oy ¥ 'V '

. ..
Aoott >0 Apott’ > o for all T, t' with T#71';

then prove the Church-Rosser property for APT(+)+ (the proof rums anal-

ogous to 5.4) and define an interpretation as in 5.7.

Now we set out for a term model of APP.



5.11. DEFINITION. The theory APT 1is defined as: APT(Y)
of the form T+ (so several rules and axioms
axioms) .

5.12. LEMMA. (The Church-Rosser property for APT).

In APT we have
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without formulae

disappear, some rules become

chrl and 0202=f0rsome1,012T and OZZT.
PROOF. As for 5.4: skip all formulae t+. 0
5.13. Now we interpret APP as follows (recall the definition of T and NT
in 5.7):
o=T becomes JoeT (60 2p and T = p);3
TeN becomes JpeNT T 2 p3
Vx, 3y become VxeT, 3yeT.
5.14. THEOREM. This is a sound interpretation.

PROOF. As for 5.8. We look at some non-trivial axioms:
Vxyz(x=z A y=2z > x=y): assume p=T, 0=71, 1i.e.
20", T20'. Now, by 5.12, p' 2 1' and o' 2 7'
p21'" and o 2 1', 1i.e. p=o0.

x=y AxeN~>yeN: assume o=T1, 0eN, i.e. 0 21
o 20', No'. Now, by 5.12, o' 2p, t' 2 p for some

spection of the rules and axioms of APT,

] 1

imply o' = p; so we have 1 2 ¢', No', i.e. T €N.

5.15. We want to use this term model to show that APP

we see that

We assume

p2p', T2p" and
for some 1', so
, T 21' and

p; but, by in-

No' and o' 2 p
]

is conservative over

to be

HA. HA is embedded in APP by the translation * defined in 4.1:
observe that A* is always a formula of APP.

formalized in such that

i)

HA
for any formula A of APT

3) APTFA = HAF APTFA';
ii) the following formalized instance of 5.12 holds:

APT
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5.16.

5.17.

5.18.

5.19.

(4) %"rmFTZIﬂjAFA’E‘IFTZE—l*m=n.

It is an easy but tedious affair to show that any reasonable formalisation

Ca makes (3) and (4) true.

LEMMA. Let ¢ be a prim. rec. function symbol in the language of HA,
and let 1 = T be the corresponding term of APP (see 3.11). Then
(5) HAF ¢(@) =n <> "APThm > n .
PROOF. We need the following theorems of APT:
i) (Ax.1t)o 2 tlx:=0];

ii) Rot0 2 o, Rot(Sm) 2 tn(Rotn).

Their derivations run parallel to the proofs of 3.6 resp. 3.7, 3.8.
Now we can prove (5) with induction over the definition of ¢ (¢ 1is de-

fined using S, A -abstraction and R, see 3.11). 0

DEFINITION. T, app - HA 1is the formalized version of the interpretation

described in 5.13.

LEMMA. APP - A = HAF AT,

PROOF. Formalize 5.14. [

LEMMA. Let A=A(n) be a formula of HA. Then

(6 HA F A T o AG)

PROOF. Without loss of generality we may assume that the prime formulae

of A have the form ¢(;E) =n, ¢ a primitive recursive function symbol.

Now we can prove (6) with induction over the logical complexity of A.

A prime: by our assumption, A = (¢(r-|;) =n). Now (¢(17n>) =n)°T =

= (r¢§=g)T = l_Elp € NT(APT T r:E 2p and APTln 2 p)j;- thzs last formula
is equivalent to I_APT F T¢IE > r_1_|, and (6) follows from 5.16.

Roro~

A not prime: easy. 0O



5.20. THEOREM.

APP is conservative over HA, <.e. if A is a sentence of

HA, then

PROOF .
O

APP F A° > HAF A.

< follows from 4.2.(ii) and 3.5.(ii), = from 5.18 and 5.19.

47
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§1.

CHAPTER III. THE THEORY APP + EAC.

Introduction.

. EAC (extended axiom of choice) is the following schema:

EAC Vx(A(x) »3yB(x,y)) > IfVx(A(x) >B(x,£fx))

A negative (i.e. contains no VvV, 3).

In this chapter the theory APP +EAC 1is considered. We show (among other
things) that it is incompatible with classical logic and conservative over

HA.

~S

. Outline of the rest of this chapter.

First we consider the relation between EAC and several other schemata
(§2). Via éggE some of the results are transferred to HA and EL.

In §3 we define realizability, an interpretation of APP into itself which
appears to be axiomatized by EAC. The same holds for QggE, and we con-—
clude that realizability in AQEE is an abstract version of the well-
known realizability interpretations devised by Kleene for HA and EL
(see [K145]1, [K169] and also [T73]).

§4 and §5 are devoted to proving that APP +EAC 1is conservative over

APP w.r.t. arithmetical formulae, and hence over HA. We define APP(e)
by adding Skolem functions e, for arithmetical A to APP: now

égz(e) F A« 3x xrA for arithmetical A, so APP(e) is conservative
over APP +EAC w.r.t. arithmetical formulae. APP(e) is reduced to APP

in §5 by forcing, and the result follows. In §6 we generalize to
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extensions of APP with inductive definitions.

A digression is made in §7, where we consider Martin-Lof's basic theory

of extensional types ML.. We interpret HA in ML, and ML, in APP;

0 0 0
the composition of these interpretations can be extended to an extensional
realizability e, by means of which we show that ML, is conservative
over HA.

EAC and other schemata,

. We consider several schemata S, and prove either APP+EAC } S or

APP +EAC+S | L. Most of the results also hold for APPE and consequent-
ly have their analogue in HA and EL, via the translations described
in Ch.II, §4.

+
DEFINITIONS. EAC , AC, ACV, RDC (relativized dependent choices),

*
IPN, IPN,

shift), DEQ (decidable equality) and KS (Kripke's schema) denote the

*

IP (independence of premises), DNS (double negation
following schemata:

Eac’ Vx(A(x) > 3yB(x,y)) ~ 3EVx(A(x) » B(x,fx))

+ . . o . .
(so EAC is EAC without the restriction to negative A)

AC Vx3yB(x,y) - JEVxB(x,fx)

ac, Vx(A(x) VB(x)) + IEVx((fx =0 AA(x)) vV (fx =1 AB(x)))

RDC vx(A(x) >3y (A(y) AB(x,y)) » Vx(A(x) >3£(f0=x AVnB(fn,f(n+1))))
IPN (1A »> 3nB(n)) » 3n( 1A > B(n))

TP} (A » 3nB(n)) » 3n(A > B(n)) (A negative)

" (A>3xB(x)) ~ Ix(A~>B(x)) ( A negative)

DNS Vx 1 TTA(x) >~ 171vxA(x)

DEQ Vxy(x=y vV x#y)

KS 3f(Vn fneNA (A«~>3n fn=0))



50

2.3.

2.4.

2.5.

FACT. EAC' = EAC = AC = AC, .

LEMMA. APP +EACT F L.

~r~

PROOF. Take

A(x) := Fy(xx#y), B(x,y) := (xx#y) in EAC+,

get (observing that Vx(3y(xx#y) - Jy(xx#y)) 1is true):

Now put x

0

IEVx Py (xx #y) > xx # fx).

f, then

IE(Iy(£f #y) > £f #£f)
If N3y (ff #y)

3fvy 1 I (FE=y)
IfE(TIEE=0 AT TIEE=1)
IETTN(EE=0 A ££=1)

IETTO=1) = 1.

*

then we

We shall now show APP +EAC } RDC, IP . To derive RDC, we need what

could be called a Normal Form Lemma for APP +EAC:

LEMMA. For any formula A of APP there is a negative formula

A = A (%)

(x not free in A) such that

APP +EAC F A < 3xA™ (x).

PROOF. Formula induction, using the definition of v, "1 (see Ch.II,

2.1) and the equivalences

(1)

(ii)

(iii)

(iv)

(EIxAl(x) A3xA2(x)) <~ EIx(AI(p]x) /\A2(p2x)),

(3x4, (0) > 3, (1)) > 3xVy (A, (5) >4, (xy)),

Vy3xA, (x,y) < IxWA, (xy,7),

EIyEIxA](x,y) — HXA](Plx,PZX)-



(i), (iv) hold in APP, (ii) and (iii) require EAC. O
2.6. LEMMA. APP +EAC F RDC.

PROOF. Assume

M Vx(A(x) - 3y(A(y) AB(x,¥)))

By 2.2 there is a negative formula A (x,z) with
(2) APP +EAC F A(x) < 3zA (x,z),

so, combining (1) and (2), we have

(3 Vxz(A (x,2) > 3yu(A (y,u) AB(x,))).
Now define

A'(x) = A (P x,ppx),
(4)
B'(x,y) := B(p]x,p]y),

then, by (3)
(5) V(A" (x) > 3y(A'(y) AB'(x,¥))).

Applying EAC to (5) (observe that A' 1is negative), we find some g
with

(6) Vx(A'(x) > (A'(gx) AB'(x;8x)).

Assume A'(x) and define h := Rx(kg), then (by Ch.II, 3.8)
(7) hOo = x, h(n+1) = g(hn).

From (6) and (7) we obtain, using induction:

VnB' (hn,h(n+1))
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so we have
Vx(A'(x) > 3h(h0=x A VnB' (hn,h(n+1)))).
With (4):
vxz(A (x,2z) > Fh(h0 =pxz A vnB(p | (hn) ,p | (h(n+1)))))
so, by (2) and putting f := An.p](hn):
vx(A(x) + 3E£(f0=x A VnB(fn,f(n+1)))),

which is the conclusion of RDC. ([

2.7. LEMMA. APP +EAC - IP*.

PROOF. Assume
A » 3xB(x),

A negative. By EAC:
3fVy(A>B(fy))

where y 1is some variable not in A, B. Put y := O:
3f (A +B(£0))

hence (application is total in APP)
Ix(A+B(x)).

s

For IPN, IP; the situation is completely different:

2.8. LEMMA. i) APR+EAC+IP kL ;

ii) APR+AC+IPy k- L
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PROOF. 1) We start with the following instance of IPN:

(71 0xxeN > 3In(xx+l1=n)) > 3In( 1 IxxeN > xx+l=n).
We quantify over x and apply EAC: this is permitted, for 1 IxxeN -

+ 3n(xx+] =n) is equivalent to 1 lxxeN > xx+l eN, a negative

formula:

FEVx((TT TxxeN > xx+1 eN) > fxe N A (1 TxxeN > xx+] =£fx)).

IE((TTEfeN > ff+l eN) > ff e N A (1 1ff e N > ff+l = £ff))
= 3Jf((TT1ffeN > ff+l e N) » (ff eN A ff+1 =ff))
= 3JFT(TT£ff eN » £f+] e N)
= 3JE( T 1ffeN A TT£ff+l €N)
= IV T(ffeN A Tff+]l e N)

= 1771 = 1.

ii) We start with xxeN - 3n(xx+1=n), which is derivable in APP. By

IP; and quantification over x:
VxIn(xx € N > xx+1 =n).

Now we apply AC:

JEVx(fx e N A (xx € N > xx+1 =fx)).

f(ffeN A (ffeN > ff+1 =£f)) = 3If(ff+1=£ffeN) = L. o

This and the next lemma show that APP +EAC is essentially non-classical.

2.9. LEMMA. i) APP +DNS +ACV F Ly

ii) APP+DEQ+AC, F L.
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PROOF. i) By logic Vx 1 1(xx=1V xx#1), so with DNS:
qx(xx =1V xx#1).

By AC,:

T3V ((fx=0 A xx=1) v (fx=1 A xx#1)).
Put x := f:
TN3IE((fE£=0 A f£=1) v (f£=1 A £f££#1))

and this is a contradiction.
ii) DEQ 1implies Vx(xx=1 V xx#1); now proceed as under (i), without
7. 0

2.10. COROLLARY.  APP If AC, .

PROOF. APP +DEQ is conmsistent, for AAX = DEQ and APP+AAX' has a
model (see Ch.II, 5.10). O

Finally we combine AC and KS:

2.11. LEMMA. APP+AC+KS | L .

PROOF. Take KS with A := xx¢ N, and quantify over x:

Vx3f(Vn fneN A (xx ¢ N <> 3n fn=0)).

By AC, we find a g with

(1) Vx(Vn gxne N A (xx ¢ N <> 3n gxn=0)).

Define h := Ax.u(gx), then (by Ch.II, 3.10)

(2) Vx(3n gxn=0 <> hxeN),

for Vn gxneN. Now put x :=h in (1):

Vn ghn=0 A (hh ¢ N <> 3n ghn=0)
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and this contradicts (2). 0O

With exception of 2.7 (APP +EAC F IP*) and 2.9.(ii) (A,EE+DEQ+ACV o

- . E
F 1), all results for APP of this section can be transferred to APP :

2.12. LEMMA.
i) APPE +EACT F 1;
ii) ApPE + EAC I RDC;
E E *
iii) APP +EAC+IPNI-L, APP +AC+IPN|-1;
iv) AppE + DNs +AC, b 13
v) Ar;gE+AC+KS FoL.

PROOF. As above. The only modification, concerning the proof of (ii), are
a) read Ai(T) A Et  for Ai('l') if 1 is a compound term (i=1,2) in the
proof of 2.5;

b) replace (4) in 2.6 by A'(x) := A-(p]x,pzx) A Eplx A Epzx,

B'(x,y) := B(p]x,ply) A Ep x A Ep,y. 0

2.13. The interpretations ': Agle > M* (Ch.II, 4.3) and ": ;A,Ij,gE > EL*

(Ch.II, 4.9) enable us to obtain from lemma 2.12 some results for HA and
EL. To see which schemata in HA, EL correspond to EAC, we have to
find out what happens with negative formulae when going from 'ANP"BE via
HA®, EL* to nHa, EL.

We claim: negative formulae in QE}ZE correspond (modulo logical equiva-
lence) to almost negative formulae in HA and EL. As usual, we call a
formula almost negative if it contains no vV, and 3 only in front of

prime formulae. To justify our claim, we prove two lemmata.

2.14. LEMMA. Let P be a prime formula of mE, x not tn P. Then:

i) there is a term t=t(x) in HA such that

10

(1) HA P <> 3x t(x) =0;

ii) there is a function term ¢ = ¢(x) of EL such that

no

(2) ELF P <~ Vy3dx ¢(x)y=0.
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PROOF. i) Let P = (o=1). By applying

o=1<+> 3x(0=x A T=X)
0T = x <> 3yz(0=y A T=2 A yz=X)

3x(A A 3JyB) +> 3xy(AAB) (y not in A)
we find PI"”’Pn with
E >
APP™ | P < EIx(Pl Ao APn)

and the Pi equal to xy=z, x=y or x=c (c a constant). By Ch.II,
4.4

HA* F P J(PlA...AR)).

Now (x=y)'" = (x=y), (x=c¢) = (x=c¢), (xy=2)'" = (x}(y)=2)"
and this is equivalent to 3u(d>T(x,y,u) =0 A Uu=12z) where ¢ 1is the
primitive recursive characteristic function of Kleene's T-predicate. By
Ch.II, 4.3 we get

HA + P'° — El;:(Ql Ao AQm)
where the Qi are prime formulae of HA. Using

s=t > |s-t| =0
s=0At=0 F— s+t =0
IxyA(x,y) = 3xA(]x,5,%)

we find a t = t(x) satisfying (1).

If P = (Et) them P <> 3Ix x=1, and we proceed as above. P = (teN)

is treated as P = (Et), for (teN)' = (E1)'.

ii) We need the following two facts:

*
a) If ¢ = ¢(a) is a function term of EL , then
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3) EL* F VavyIxvz <y ¢(a)z = $(£5 )23
here fn is a function term satisfying

(n)x if x < lth n,
fnx = {
0 if x > 1th n.

(3) expresses that function terms of .E,E* are continuous in their func-
tion parameters.

b) We extend E”Q* conservatively to gg** by adding Kleene-brackets,
in the same way as for HA (Ch.II, 4.3). Now, if ¢ = ¢(;{)) is a func-
tion term of E.I:,* without function variables, then there is a term t =

= t(;,y) of %* such that
%%k > >, >
(4) EL  F Vxy ¢(x)y = t(x,y).

(3) and (4) are proved in a straightforward way by term induction.
Now we prove (ii). Let P = (6=1), so P" = Vy(o"y=1"y). Without loss
of generality we assume that a is the only function variable in o¢" and

™: o"=0"(a), 1"=1"(a). By (3):
E‘L.'* F P" <> Vy3x3n(ax=n A o"(fn)y='r"(fn)y).

By (4), we can find s = s(n,y), t = t(n,y) in HA* such that

L op" o VyEleIn(gx=n A s(n,y) =t(n,y)).

EL
Now we proceed as under (i) to find a ¢ which satisfies (2).
P=Et: P" = JaVy(ay=1'"y) = VyIx(t"y=x) (for EL has the axiom QF-AC);
now continue as above.
P=(teN): P" = 3zVy(t'"y=2z) = Vy(t"y=1"0), so this case is reduced to
P=(c=1), too. d

Now we go the other way round:

LEMMA. Let P be a prime formula of HA, with free variables x, ;
Then there is a term t of Q'EE such that
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APPE F JeN » ((3x)° > 1eN).

ii) Let P be a prime formula of EL, with free variables x, ;, a, b.

Then there are terms o, t of &E such that

APPE F TeN A a0 e =) » ((3xP)° < 0 eN),

APPE b x,7 e N A Be (N=N) » ((3aP)° <> TeN).

PROOF. Without loss of generality we assume P = (t=0), so (EIxP)o =
= 3xeN t°=0. By Ch.II, 4.2.(ii) (soundness of o) we have

AP;IE'E + ;eN > ‘v’xeN(toeN),
so, with Ch.II, 3.10:
QNEE F ;eN > (IxeN t°=0 — u()\x.to) eN).

ii) The first part is proved as (i), the second part is reduced to the

first by observing that (3) in the proof of lemma 2.14 implies
EL } 3a t(a) =0 «> 3n t(fn) =0.

]

COROLLARY. The negative formulae of QP;RE correspond exactly (modulo

equivalence) with the almost negative formulae in HA and EL. More

precisely:

i) a formula A of HA <s almost negative (modulo equivalence) iff
there is a negative formula B of QQE with HA b A < B'o;

ii) <dem for EL.

PROOF. i) =: replace all subformulae (EIxP)D of A° by t1eN, accor-
ding to 2.15.(i). The result we call B. B is negative, and by 2.15.(i)
and Ch.II, 4.5.(ii) we obtain HAF A <> B .

"and ° commute with the logical connectives, so by 2.14.(i) we get

=
. to .
B negative =B almost negative.

ii) As (i). O
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2.17. DEFINITION. 1i) ECTO (extended Church's thesis) is the following schema
in HA:

ECT0 Vx(A(x) »3IyB(x,y)) > JeVx(A(x) »3z(Texz A B(x,Uz))),

A almost negative.
ii) GC (generalized continuity) is the EL - schema

GC Va(A(a) ~3bB(a,b)) > 3cVa(A(a) »3Ib(b = (c|a) AB(a,b)))

A almost negative,

where b= (c]a) abbreviates Vx3Jy(c(<x> % ;y) = bx+l A Vz<y c(<x> * az) =0).

2.18. LEMMA. i) APPE+EACH A = HA+ECT) kA"

ii) APPE+EACK A = EL+GCF A",

PROOF. This extension of Ch.II, 4.4 and 4.10 follows from EAC = = ECT

"o

EAC = GC. 0

0’

We define some other schemata in HA, EL:

2.19. DEFINITION. 1i) ECTS, GC+ are ECT0 resp. GC without the restriction

to almost negative A.
ii) CTO, C are ECT0 resp. GC with A := T.

iii) RDC, is the following schema of EL:

RDC, Va(A(a) >3b(A(b) AB(a,b))) =~
> Va(A(a) »3e((e)g=a A VnB((c) ,(c) . .))

where (c)n = Ax.c(G(n,x)).

2.20. LEMMA. i) NHQ+ECT8 F o1
ii) gg+GC+ o1

iii) EL+GC k RDC;
iv) HA+ECT)+ 1Pk L;

v) HA+CT,+DNS | 1;

0
vi) EL+C+DNS | L.
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2.21.

§3.

3.1.

PROOF. Follows from 2.12, 2.18 and Ch.IL, 4.4 and 4.10. For (iii) we need
VoVy3z(c|Ax.n)y =z ~ 3c'VnVy c;y'=(c|hx.n)y, and this is derivable with
help of QF-AC. [

REMARKS .

Several of the results of this section are known in the literature, some-
times in a slightly different form:

i) Feferman proves (in [Fe79], IV.10) that IO-PAC F L (the proof is
due to Friedman). Now IO can be seen as a strengthening of gggE in
which Feferman's AC 1is comparable with EAC+, and the proof also works
to show AQEE-FEAC+ oo

ii)  In [Ba73], Barendregt cites a proof by D.S. Scott that the classical
first order theory of combinatory logic conflicts with AC. The same
proof yields APP +AC +classical logic F 1.

iii) Troelstra shows in [T69], 16.3 that KS (even in a weaker version)
is incompatible with enumeration principles such as CTO. In [Be79al,
Beeson gives a proof (by Luckhardt) that C+KS F 1: C is a theory re-
lated to APP® in which AC 1is derivable. The proof is essentially the
same as that of 2.11.

iv) EQ-+ECTS L was proved in [T73], 3.2.20; there (3.4.14) one also

finds a proof of HA+ECT + 1Py F L, due to Beeson [Be72].

0

Realizability.

In this section we define an interpretation of APP into itself called
realizability, an abstract version of Kleene's recursive realizability

for HA (see [K145]). Realizability in APP 1is axiomatized by EAC, and
we use this fact to present a syntactically defined class of formulae for
which APP +EAC is conservative over APP. The definition of realizabil-

ity is adapted for APPE and the results for APP are transferred to

APPE. Finally we turn to HA and EL, via the translations and

of Ch.II, §4.

DEFINITION. trA (1 realizes A) is defined as follows:

P =P for prime P
wwr(AAB) := TrA A pZTgB

Py
tr(A~>B) := Vx(xrA->1xrB)
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TrVxA = Vx(TxrA)

tIxA := p,tr(Alx :=p 1))

3.2. FACTS. i) trA is a negative formula;
ii) (trA)(x :=0] = tlx :=olr(Alx :=0]), if x not bound in A nor
in TrA.

3.3. THEOREM. APP | A = APP |} trA for some term t.

PROOF. Induction over the length of a derivation of A in APP. For this
one uses the following, which are verified easily (we assume y not in o,

T):

Ax.xr(A~>A)

Ay.ytr(VxA > Alx :=1])

Ay.ptyr(Alx := 1]~ 3xA)

TrA=iy.1r(B >A)

or(A>B), tr(B~>C) = Ay.1(0y)r(A~>C)

orA, tr(A~>B) = t0rB

or(A+B), (A~>C) = Ay.p(oy) (1y)r(A > (BAC))
(A > (BAC)) = Ay.p,(1y)2(A~>B), Ay.p,(ty)r(A~C)
((AAB) » C) = Ayz.t(pyz)r(A > (B+C))

(A > (B>C)) = Ay.1(p;y) (p,y)r((AAB) > C)
(A ~>B) = Ayx.tyr(A~>VxB)

(A~>B) = Ay.tlx :=p]y](p2y)1:(3xA—>B)

p(Ax.0) (Axyzu.0)r =AX

Ax.p(p00) (Ay.0)rsSuB

OrkAX, sAX

pOOrpAX

0r0AX

Ax.p00rSAX

PO (Ax.p00)rPdAX
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Ax.p00rAAX
Ayu.R(p,y) (xz. (p,y)x(p0z)) PIND
O

To be able to show that EAC 1is realized, we need to know that negative

formulae are not affected by r.
3.4, LEMMA. APP F A < 3Ix xrA «— Vx xrA if A negative.
PROOF. Simple, with formula induction. [

3.5. LEMMA. There 78 a term 1 such that

APP | trEAC,

Z.e. 1 realizes every instance of EAC.

PROOF. Take
T 1= )\z.p()\x.p](sz))(Axv.pz(sz))

and assume zrVx(A(x) >3yB(x,y)) (A negative), i.e.
qu(uz:A(x) > pz(zxu)gB(x,pl(zxu))).

We put u := 0 and use OgA(x) > Jv ng(x) (3.4):

va(vl_ﬂ_A(x) > pz(ZXO)EB(x,p] (zx0))),

p()\x.p] (zx0)) (Axv.pz(sz))gilfo(A(x) +B(x,fx)),

and conclude TrEAC. [
For the axiomatization of »r we now only need the next lemma.

3.6. LEMMA. APP+EAC A < 3x xrA, for all A.

PROOF. Formula induction.
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A prime, A = BAC: trivial resp. easy.

A =B>C: 3x xr(B>C) = IxVy(yrB>xyrC); by EAC (recall that yrB is
negative) this is equivalent to 3y yrB » 3x xrC and we can apply the
induction hypothesis.

A = VyB: 3x xrVyB = 3IxVy xyrB, which is equivalent to Vy3x xrB (by
EAC); now use the induction hypothesis.

A =_3yB: 3Ix xrdyB = Ix plegB[y :=plx], this is equivalent to 3xy xrB

and (by the induction hypothesis) to 3yB. [
3.7. THEOREM. APP - 3x xrA <> APP +EAC I A.

PROOF. If APP F 3x xrA then also APP +EAC | 3x xrA; now by 3.6 and
modus ponens APP +EAC | A.

On the other hand, if APP+EAC } A, then APP F C+A with C a conjunc-
tion of instances of EAC. By 3.3:

(1) APP | Vx(xrC > 1xrA) for some T,
and by 3.5
(2) APP | orC for some o ;

now (1) and (2) yield APP F 3x xrA. [0

Theorem 3.7 is the basis for the conservation results we shall prove in

this and the next section. A direct consequence of 3.7 is

3.8. LEMMA. APP +EAC <s conservative over APP with respect to the class
of formulae {A|APP } (3x xrA) ~A}.

PROOF. Evident, by 3.7. 0O

Now we define syntactically a class T of formulae of APP and prove
I c {A|APP F (3x xrA) >A}. We assume the notions of positive and negative

occurrence to be known, and recall that Vv is defined using 3.

3.9. DEFINITION. T := {Alall negatively occurring subformulae are 3 -free}.
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3.10.

3.12.

LEMMA. A e T = APP } (3x xrA) >A.

PROOF. Formula induction.
A prime, A = BAC: easy.

A=B~+>C: let B>Ce 'y, then B 3J-free and C € I'. Assume

Ix(xr(B~>C)), 1i.e. 3IxVy(yrB->xyrC), so 3Iy(yrB) - 3Iz(zrC). Now (by
3.4) B » 3y(yrB), so with the induction hypothesis we get B->C.

A =_VyB: let VyB € T', then B e I'. Assume 3Ix(xrVyB), i.e.
IxVy(xyrB), so Vy3x(xrB). With the induction hypothesis we get VyB.
A = 3JyB: let 3yB e T, then B e I'. Assume 3Ix xriyB, i.e.

Ix ple_ﬂ_B[y :=p|x], so 3Jy3dx xrB. With the induction hypothesis we get
Jy. 0O

THEOREM. APP +EAC <s conservative over APP with respect to T .
PROOF. Combine 3.8 and 3.10. [

Now we turn to ;AE,IN’E. The definition of r has to be modified in order
to ensure TrA > Et: this property of r is required in the soundness
proof, e.g. to deal with modus ponens (PR3): if orA, tr(A->B) (i.e.
Vx(xrA + txrB)) we need Eo to conclude TOrB.

Another difference is that we no longer have A <> Vx(xrA) for negative
A. This is a consequence of partial application, which makes that we
neither have Vx xr(T~->T), but only for those x with Vy Exy. Neverthe-—
less, we can save the essentials of 3.4 and 3.10 by taking Tt,rA instead

A

of Vx(xrA), with 1, a 'canonical realizer' for A whose definition

A
only depends on the logical form of A.

DEFINITION. i) For éPNRE, trA is defined as follows:

TrP := Et AP for prime P

A
s

~
>
>
=

~

I

= pl‘rgA A pzugB

tr(A+B) := ET A Vx(xrA~>1xrB)

S
<
E
n

Vx (txrA)

Tr3xA 3= Ep T A pzug(A[x :=plr])

.. . . E
ii) We define T A a negative formula of APP, by:

A’
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S =0 for prime P
Taap ‘= PTaTg
Tas>B *° Tyxp = Ax.rB

. . E .
We collect everything we know about »r in APP in one theorem.

3.13. THEOREM.

i) AN_E“EE F trA~>Et;
ii) rA s a negative formula;
iii) (trA)(x :=0] = tlx :=0lr(Alx :=0]), <f x is not bound in A

or in TrA;

iv) APP" A = APPE b rA for some t;
v) APPP F A > 3xxrA < 1A for megative A;
vi) for every instance EAC(A,B) of EAC there is a term N
(depending on A, not on B) with
E
APP | oAgEAC(A,B);
vii) ﬁE +EAC F A < 3x xrA;
viii) APPE b 3x xrA e APPE +EAC | A;
ix) let T be defined as in 3.9, but now for the language of ér;gE,
then
AeTl = Q.P;_E‘EI- (3x xrA) >A;
x) ANQ_IN’E +EAC 7s conservative over APP E with respect to T.

PROOF. i), ii), iii) Formula induction.

iv) As 3.3. The new axioms of APNQE are dealt with as follows:
Ay.pt0r (ET > 3x(x=1));

Ay.0r(3x(x=1) *Et);

the components of STR and SUB are realized by

Ay.0, Ay.p00;

Ax.xyr(VxA +Alx :=y1);

Ax.pyxr(Alx :=y]~3xA);
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pO(Ax.O)gSAxE.

v) Formula induction.

vi) Take N Az.p()\x.pl(zxrA))(Axv.pZ(zxrA)) and proceed as in the
proof of 3.5, using ‘rAl_r'A(x) > 3v vrA(x).

vii) Formula induction, as 3.6.

viii) As 3.7.

ix) Analogous to 3.10.

x) As 3.11. O

Before we transfer theorem 3.13 to HA we define a slight modification

of ANI"EE.

3.14

DEFINITION. APP];' is APPE plus quantifiers VxeN, 3yeN (they are

not abbreviations, but part of the language). Of course, the axioms

VNAX VxeN A <> Vx(xeN-=>A)

INAX IJxeN A <« Ix(xeNAA)
are added, and we extend the definition of »r with

rVxeN A := VxeN T1xrA,

rIxeN A :=p 1eN A pz-rg_'A[x :=p]r].

1

Theorem 3.13 holds for ég_]g]i:

VWNAX, 3NAX are realized by p(Axyz.x)(Ax.x00) resp.
pQx.p(p %) (PO (p,x))) (x.p(p %) (P, (P,x))) .

as well: one only has to observe that

From here till the end of this section, r denotes realizability in APP?.

3.15. DEFINITION. Realizability in NHQ* is denoted by tr A and defined by

1

tr A = (tong) ',

3.16. REMARK., Kleene's original realizability may be defined for M* as

follows:

tgk(s] =sz) i= Et/\s1 =s,
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tr, (AAB) := j (D) A A j,(0)nB
tgk(A+B) := Et A Vx(xgkA > {t}(x)ng)

tr, VxA = vx {t}(x)r A

tg_’kile i= Ejl(t) A jz(t)lgk(A[x :=jl(t)])

r. ~is virtually the same as » i.e. we have

k 1?

*
HA F tr A trA.

This can be verified with formula induction, using %* F £ = t,

AO' <> A (Ch.II, 4.5) and (for A=VxB) the definition of TtVxeN B in
APET.
3.17. LEMMA. i) HAYF 'z A o (irA”)';

i) HA"F 'z Al o (zA)!

PROOF. i) 'z A = (t''rA”)’ (def. of 2))
= ((xea’)x =1 ") (3.13. (iii))
= (xeA”)'[x:=1"""] (by def. of ')
gt Gra”)'[xi=1') (Ch.1I, 4.5.(i))
= ((ngo)[x =1])! (by def. of ')
= (trA°)" (3.13.(iii))

\] 1
ii) With formula induction (using %* Foel =t, A o~ A) we prove

%* F (‘tg'_A'o)' <> (trA)'; from this (ii) follows, for by (i) we have
m* F (tra"*)" e A, 0

Now we have the following pendant of 3.13:

3.18. THEOREM.
i)MI-A=>M*I—tgA for some t ;

ii) M* FA <« 3xxrA for negative A ;

iii) I;I_A;* realizes ECT, ;

iv) +ECT) FA < 3xxrA;

~Hé*
v) HA*F 3x xrA e HAT4ECT kA

1



vi) Llet T be defined as in 3.9.(ii) but now for the language of

HA, then A ¢ ro= HAY F (3x Xz &) > A

. * . . .
vii) HA +I~:CT0 18 conservative over @* with respect to T.

PROOF. i) Let X be the free variables of A. Then

HA*F A = APRT R XeN o> A (Ch.TI, 4.2.(ii))
- AP b XN > A’ (3.13.(iv))
= HA* F (trA”)! (Ch.II, 4.4)
- HA® F T'rA (3.17.(1))

ii) If A negative, then so is Ao, and by 3.13.(v)
Agg? FxeN»> (A" < 3x xrA’).

By Ch.II, 4.4, 4.5:
HA® F A < 3x(xxa’)!

this is just (ii).

and by the definition of T

iii) Let ECTO(A,B) be an instance of ECTO,
> (EAC(AO,BO))', so by (i) there is a term t with

(1 m* tr ((EAC(A",B°))" » ECT(4,B)).
By 3.13.(vi) and Ch.II, 4.4:
BA* F (0, 0rEAC(A",B"))".
With 3.17.(ii):
(2) m* - vo'g](EAc(A°,B°))'.
We combine (1) and (2):

HA®  {t}(o,0")r ECT (4,B).

then EA* F ECTO(A,B) >
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iv) By 3.13.(vii) and 2.18.(i):
HAY +ECT) kA7 < 3x(xra”)';

now apply 3.17.(i).

v) Follows from (iii) and (iv), as in 3.7.

vi) If A e T then A° e I'; now the result follows from 3.13.(ix), as
in (ii).

vii) Follows from (v) and (vi). 0O

REMARKS.

i) Using ": gr,;gE > EE* (defined in Ch.II, 4.9) and g;gg (= w? +
quantifiers Vxe (N=N), 3Jye (N=N)), we can define r, for EL* by
tng = (tong)". r, is equivalent to the realizability for functions
first formulated in Kleene & Vesley's [KV65]; see also [T73]. With GC

instead of ECTO, a theorem like 3.18 can be given for r,-
ii) We sketch how to show that APP, ANI\’_I\"E have the disjunction property
(DP), the existence property (EP) and the numerical existence property

(EP(N)):

DP FAVB = A or | B,
EP F 3IxA(x) = | A(1) for some term T,
EP(N) F 3x e N A(x) = F A(n) for some numeral n.

To prove these properties for a theory, onme often uses the so-called g¢-
realizability, a modification of r (see e.g. Troelstra [T73]). Following
an idea by Grayson [Gr81], we define another variant g of r:

TQ_(A->B) = Vx(xg_A->'rx€B) A (A+>B),

the other clauses are like those for r.

g has the characteristic property
Q)] F (3x xgA) > A for all A.

The soundness proof for g runs parallel to that for r: the 'realizing

terms' are the same. So if | 3xA(x) then F 1g3xA(x) for some T,
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§4.

4.2,

i.e. I—pz‘rgA(pl‘r), hence (by (1)) I-A(p]'r), and we have EP. For
EP(N) we use the term model of Ch.II, 5.13 by which we have F TeN =

>}l t=n for some n; DP follows from EP(N).

iii) Feferman gives in [Fe75], [Fe79] a definition of r for his applica-
tive systems on which our theories APP, AI’PE are inspired. He proves
soundness without formulating an axiomatization result. The results we

. * *
derived for »r, and HA', and for r, and EL are not new: they can

1
all be found in [T73].

Skolem functions and forcing.

We are going to prove that APP +EAC is conservative over HA in this
section. This is done by the introduction and elimination of Skolem
functions for arithmetical formulae 3InA(n), denoted by €a (the choice
of notation is inspired by Hilbert's € -symbol; see 4.22). We start with

defining APP(e) by adding the e, to APP.

DEFINITION. i) A formula A = A(:) is called arithmetical if:

a) all its quantifiers range over N, i.e. occur in contexts VyeN,

Jz € N;

b) all its free variables are restricted to N, so A = AAXeN.

ii) APP(e) 1is APP plus constants €, for every arithmetical formula

A
A = A(myn) of APP(e), and the schema €AX: this is

cAX(A) Vn(3nA(m,n) > 3n(A(m,n) An=eA§))

for all arithmetical A.

LEMMA.
i) APP(e) F A « 3x xrA for negative Aj;
ii) APP +EAC - A = APP(e) F A for arithmetical A.

PROOF. i) As for APP (3.4).
ii) Let A be arithmetical, APP+EAC F A. Then APP } 3x xrA (by 3.7),

hence

(1) APP(e) F 3x xrA.
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By €AX, we have 3nB($,n) > B(?n,eBm) for all subformulae 3InB of A,

so we find a negative formula A~ of APP(e) with
(2) APP(e) F A — A,

By (i), (2) implies

(3) APP(e) b Vx(xrA~>txrA ) for some T.

As A is negative we have, by (i)

(%) APP(e) F 3x xrA” ~ A™.

Now (1), (2), (3), (4) yield

APP(e) F A.

0

With 4.2.(ii) we are one step away from the desired conservation result:

only
(5) APP(e) F A = APP | A for arithmetical A

is required. We prove (5) as follows. If APP(e) F A, then

£E+EAX(AO) +... 4 eAX(An) F A for some A "An' The instances

02"

eAX(Ai) are eliminated one by one by forcing. To show this, we start with

APP(E,AO): this is APP + the constant € + (eAX(AO) with € instead of € ).
0

For APP(E,AO) we define foreing, an interpretation in APP.

CONVENTION. We use the set-and-element notation Te€¢A (T a term, A a

formula), with the meaning Alx :=1].

DEFINITION. i) Let M = M(x) be a formula of APP. We say that M is

a monotid if:

APP | Ax.x e M;

APP |- f, geM > Ax.f(gx) e M.
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4.5,

f, g, h, ... are used for elements of a monoid M.

ii) Let M be a monoid. ”—M A (A 7s forced by M) is defined by

Il—M P := VEeM 3geM VheM Ple :=£(g(h0))] (P prime)
||-M (AAB) := H-M A A H—M B

II-M (A+B) := Vf eM(II—M (Ale :=fel) » II—M (Ble :=£fel))

Ihy VxA = Vx II-M A

H-M IxA = VfeM 3geM Ix II—M (Ale :=£f(ge) D)

If it is not important which monoid M is meant, or if this is clear from

the context, we write | for II—M and Vf, 3g for VfeM, JgeM.

The thing to do now is to prove the soundness of |l as interpretation
of APLE(E’AO) in APP. Unfortunately this is not possible: the special
monoid MO we need to get eAX(AO) forced (see 4.15) does not yield e.g.
I, 3x x=€¢. The problem lies in quantification over terms containing
€, and forces us to the following detour: we define a weakening
AMI\’"E(e,AO)- of Q!;g(e,AO) for which we can prove that H-MO is sound,

and we show that APP(e,AO) can be interpreted in APP(e,AO)-.

DEFINITION. i) QRQ(S,AO)- is APB(e,A)) with VAX (VxA-Alx:=t)),
3AX (Alx :=1]-+3xA) restricted to T not containing € and with =AX,
SUB and the axioms for the constants (except € ) written with terms
(possibly containing ¢ ) instead of variables.

ii) The mapping €. ~Anlf'lz(e,AO) > ANR(E’AO)_ is defined by

X 1= Xe (x a variable)
€
¢ :=¢ (c a constant)
(o) := o%<f
€ e _ €
(o=1) = (0 =1)

(te N)e := Ix e N(x=re)

© commutes with the logical operators.
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LEMMA.
i) APR(e,A)) F o=1 > (Alx :=0] < Alx :=1));
ii) ARR(e,80)" F (VxeN A)% <> Vx e N(A[xe :=x]),

(3x eN A)E > 3x e N(A®[xe :=x1);
iii) w(e,Ao)— A% A for A arithmetical and closed;
iv) APR(e,Ap) F A = APR(e,A))” F A%

PROOF. i) As Ch.II, lemma 3.4.(i). We need the term variant of =AX,

SUB here, since we no longer have quantification over all terms.

ii) (Vx eN A)E = Vx(3y e N(y =xe) +A€) = VxVy e N(y = xe ->A€) =

= Vxe N(Aefxe =x]);
the last equivalence follows from (i), the fact that x occurs only in
the context =xe in Ae, and from VyeN Ix y=xe (put x:=ky). Simi-

larly for the second half.
iii) Follows from (ii), by formula induction.

iv)  Induction over the length of a proof of A.

Propositional axioms and rules: trivial.

VAX: by (i) and the definition of € we have (Alx :='t:|)€ = A%[x := Ae.f];
now Ae.tt is e - free, so we have vxA® > (Alx :=T])€ in QEQ(E,AO)—,
ice. (AX2)S.

JAX: analogously.

V-R, 3-R: easy.

=AX, SUB: follow from the corresponding axioms formulated with terms in
QﬁPg(e,AO)_.

Axioms for the constants (except €): idem.

IND: follows from (ii).

eAX(AO): follows from (iii). O

Now we set out to show

(1) for all monoids M,
APR(e,A)) " - eAX(A)) F A = APP b (lby A);

(2) APP F (Il—-M eAX(Ay)) for some monoid M.
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4.8.

Before proving (1) we rewrite the definition o

tions

oA := Vf Ale :=fel,

VA := Vf3g Ale :=f(ge)];

f [ . We use the abbrevia-

the symbol O is borrowed from modal logic, V can be compared with o ¢

in modal logic (especially S4).

We adopt the (natural) convention to work out
so VOA = Vf3go(Ale :=f(ge)]) = VE3gvh Ale :=
o, ARR(e,A)" > ABR(e,A))” by

o .

P := VoP (P prime)

(arB)” = a7 A BY

(a-B)" := aa”~3)

vxa)?  := vxa”

Exa)”  := vaxa”

o

then |F A= A[e:=0].

We list some properties of O, V:

LEMMA. In APP(e,Aj)” - cAX(Aj) we have

3 FA = Foa,

(4) OA ~> A,

(%) OA > OOA,

(6) VVA > VA,

@) VA > oVA,

(8) oA > VA,

9) o(A+B) > (DA->0OB),
(10) o (A>B) > (VA>YVB),
(11) VxOA > OVxA.
PROOF. (3):

Ale :=fel; analogously for rules. So if | A,
F vE Ale :=fel, i.e. F DA,

o,

£(g(he))].

then F Ale

V from the outside:

If we now define

if A is an axiom of Qr;g(e,Ao)_ - (-:AX(AO), then so is
1= fel,

hence
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(4)-(11): follow from the definition of O,V and from the fact that M

is a monoid. 0O

4.9. LEMMA. In A,r;g(e,AO)' - eAX(A)) we have

(12) O(AAB) <> (DA ADB),
(13) V(AAB) > (VAAVB),
(14) Vo(A AB) <> (VoA AVaB),
(15) o(oA > B) < oO(DA->0OB),
(16) V(A+B) > (oA~VB),
a7 OVxA <> VxOA,

(18) VWxA > VxVA,

(19) IxoA > 03xA,

(20) 3xVA > V3xA.

PROOF. (12)-(20) can all be derived from (3)-(11) but sometimes a simpler
proof is found by writing out the definitions of O,V . We only give the
proof of (14), which is rather involved.

12 13

>: Vo(AAB) + V(oDAAoB) - (VoA AVaoB).
<3 FA~> (B>(AAB))
= | ooo(A~> (B> (AAB))) (by (3))
= | oVoA > aova(B+ (AAB)) (by (9), (10))
= |- oVoA > (VooB > Vvo(A A B)) (by (9), (16), (10))
= | VoA -~ (VoB ~Vo(A A B)) (by (7), (5), (6))

= | (VoA AVOoB) ~Vo(AAB).

0
4.10. LEMMA. In APB(e,A;) - cAX(A)) we have
(1) A" o A" o w
. . o o o o ..
PROOF. By (4), (8), it suffices to show A - DA, VA > A . This is

done with formula induction: we treat the case A=B - C, which is least

trivial.
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A=8+C: A° = 0@E”>c% 2 ooE®>c%) = oa”;
1K
VAEl = VU(BD—>CB 4_’,7 DV(Bn—rcu) 16 D(DBD—>VCD) > n(BD—>CD) =

= A",
0

. LEMMA. APP(e,A))” - eAX(Aj) b A = APP(c,A)) - eAX(A)) NS

PROOF. Induction over the length of a proof of A.
o o L. .
>AX: (A>A) = U(AD->A ) and this is derivable, by (3).

vAX: (VxA-~Alx =11 = o(vaA" > Alx := 11D now Alx :=117 = A%[x := 1]

(for 1 is € -free), so (AXZ)D is derivable, using (3).

Iax:  (Alx :=T]->EIxA)|:| = o(Alx :=117>vaxa™) = oA [x :=11->vaxA"): for
the last step we used (21) and the fact that 1 is ¢ - free. The

last formula is derivable using (3) and (10).
PR1-4: straightforward.

PRS: ((AAB)+0)7 = 0((a"ABM) »c™) = 0> 37> =

& o> 38°+c") 8 o@”»a@”>c?)) & on®-o@?-c?) -

= (A~ @->cn".
V-R: easy.

4 3
3-R: (A-B)" = 0"+ > 478" » @a">38") > co@E"+3") =

9 ovaxa®->veY) U owvaxa®-38") = (3xa-B)°.

All non-logical axioms except IND can be written in the form PAQ »> R
with P, Q, R prime. Now O(PAQ > R) 3 ooo(PAQ > R) 2,10

9,10 14

o(va(P AQ) »VoR) =+ o(VoP AVOQ-+VoOR) = (PAQ »> R)n, so this last

formula is derivable, since O(PAQ -+ R) 1is (by (3)).

IND: IND” = o(A(0)” AVx D(x e NAA)T+A(SK)T) + Vx o(xeN>A(X)T)) and
this formula follows from UIND(AD) (using (5), (9), (11), (21)),
which is derivable (by (3)).

o

LEMMA. APR(e,A) - €AX(A)) F A = APP b Ale :=0J.

PROOF. Evident. 0
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LEMMA. ﬁ(e,AO)_ - eAX(A)) F A = APRF (IF A).
PROOF. Recall IFA = A”[e :=0] and combine 4.11 and 4.12. O

LEMMA. A = (I A) <Zf A does not contain €.

PROOF. Easy: we only need that a monoid is inhabited (it is, by Ax.x).
0

With lemma 4.13 we proved (1) of 4.7. We now define the monoid MO needed
for (2) of 4.7:

DEFINITION.

My = (£]VA(Vx(fxm=xm) v 3n(A, (@,n) AVx(fxm=n)))].

LEMMA. Mo is a monoid.

PROOF. AX.X € M0 is obvious. To prove closure under ° (composition of
functions), we argue as follows. Assume f, g ¢ MO; we want fog € MO,

i.e. for all m
(22) Vx (£ (gx)m = xm) v an(Ao(ﬁ,n) AVx(£(gx)m=n)).

feMO,

I): geM, so Vx(gxm=xm) (IA) or an(AO(E,n)AVx(gx3=n)) (IB).

so Vx(fxfn}=m_';) (I) or Eln(AO(E,n)AVx(fx;=n)) (11).

IA): let x be arbitrary. Now f(gx)r-n>=gxfn>=m+n, hence Vx(f(gx);;=xx;),

which implies (22).

> > .
IB): now Ao(m,n) AVx(gxm=n) for some n. Let x be arbitrary, then
f(gx)a=gxt-ﬁ=n, hence EIn(AO(t_E,n) AVx(f(gx)t—n>=n)) and this im-

plies (22).

I1): now Ao(ﬁ:,n)/\Vx(fxrn=n) for some n. Let x be arbitrary, then
f(gx);ﬁ=n, hence ﬂn(Ao(E,n)AVx(f(gx)$=n)) and this implies
(22).

O

. LEMMA. APP | (ll—Mo eAX(A))) .

PROOF. Without loss of generality we assume A0 = Ao(m,n), so m=m.
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We let f, g, h, f', g', h' range over M Now |k eAX(Ao) =

0° M
0
H—M (Vm(meNABn(neNAAO(m,n) - EIn(neNAAO(m,n) An=€m)));
0

AO(m,n) is € -free, so by 4.14 this is equivalent to

(23) Vm‘v’f(ElnAo (m,n) ->VgEIhEIn(AO (m,n) A

AVE'Ig'Vh'(n=(fogohof'og'oh")Om))).
(23) follows from

(24) A0 (m,nO) Age M0 > EIhEIn(A0 (m,n) AVx(n=g(hx)m)).

We prove (24). Assume Ao(m,nO), geMO. By the definition of MO’ we can

distinguish two cases:

i) Vx(gxm=xm). Define h := )\xy.AnO(xy)my, so h}!:|1'1=n0 and hxm' =

if m'#m; hence heM0 and Vx g(hx)m=n0, so

3 h3n(Ao(m,n) AVx(n=g(hx)m)).

= xm'

ii) Bn(AO(m,n) AVx(gxm=n)). Now put h := Ax.x and we have
3h3n(Ao (m,n) AVx(n=g(hx)m)).

Now (24) is proved, and we conclude ll—M

0

4.18. LEMMA. APB(e,A)) kA = APRF (I, A).
0

€AX(A0) .0

PROOF. Combine 4.13 and 4.17. 0O
4.19. LEMMA. APP(e,A;) A = APPF A for arithmetical A.

PROOF. If égg(e,Ao) F A, then (by 4.6.(iii), (ii)) égg(e,AO) F A, so

(with 4.18) APP F H—M A; now apply 4.14 to obtain APP F A. [
0

4.20. THEOREM. APP+EACF A = APP } A for arithmetical A.

PROOF. Let A be arithmetical, and assume APP +EAC | A. Then APP(e)l-A
by 4.2.(iii), so APP +eAX(Ap) +... +€AX(An) F A. By applying 4.19 n+l

times (for A An) we get APP F A. 0

0*"°

4.21. COROLLARY. APP +EAC s conservative over HA.

PROOF. Combine theorem 5.20 of Ch.II with 4.20. [
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REMARKS.

i) The idea of Skolem functions first appeared in Skolem [Sk20]. In
Hilbert's [H23] we find the logical function <t(A) or ra(A(a)) with the
axiom A(t(A)) » A(a); he also mentions the relation with the axiom of
choice. In classical logic, T(A) can be thought of as the Skolem func-
tion of 1A; moreover, quantification can be defined with Tt by

Va A(a) := A(ta(A(a))), Ja A(a) := 'WA(ra('TA(a))). In [H26], Hilbert
uses for the first time the symbol ¢ named after him, in the axiom

A(a) > A(eA).

ii) In [Go76], Goodman proves that gﬁw-+AC is conservative over HA.
His proof is based on the interpretation (akin to realizability) of géw
into his arithmetic theory of constructions ATC; in [Go73] he showed
that ATC 1is conservative over HA via an argument resembling both
forcing and the elimination of choice sequences. He presents a more direct
proof in [Go78] using what he calls relativised realizability, a combina-
tion of realizability and forcing. Beeson gives in [Be79] another proof

in which realizability and forcing are used separately. Our proof of

APP +EAC conservative over APP 1is based on a study of Beeson's argument.

Inductive definitions.

In this section we introduce inductive definitions and investigate to
what extent they are preserved under realizability and forcing. In either
case the monotonicity of the predicate operator associated with the induc-

tive definition plays a decisive role.

CONVENTIONS. We extend the set—and-membership notation as follows:

AcB := Vx(xeA > xeB)

A=B (= AcB A BcA

AnB = AAB

A=B := A>B

We use P, Q as free unary predicate variables, and the rule

F A(P) = F A(B) for all formulae B .
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Predicate operators are written T with the meaning given by

A’
T € PA(B) := 1 ¢ A[P :=B].

5.2. DEFINITION. Inductive definitions are considered as first-order defini-~
tions of the least fixed point of predicate operators: for such an opera-

tor T = PA’ we introduce the predicate constant IF and the axioms
ID(r,I.):

IDI(T,I) I(I) < I,

IDZ(I‘,IF) I'(P) cP - II‘ c P.

5.3. DEFINITION. A predicate operator T = Ty is called monotone if

FPcQ~>T(P)c<T(Q).

5.4. LEMMA. If P occurs only positively in A, then Ty 18 monotone.
PROOF. Easy, with formula induction. 0

Now let T be some theory, e.g. an extension of APP, for which r is

sound, i.e.

THA = TF trA for some term 1.

5.5. DEFINITION. i) The mapping ¥ is defined by

N (x)IP(A[x := (x)z]) if A is a formula,
ry®" =T, (89,
P" :=P, P a predicate variable.
ii)
L

ORI NI &

0T = Axy.tx(0oxy).
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iii) We extend the definition of » (3.1) by

(o eP) := <0,1> € P (P a predicate variable).

LEMMA. i) tr(ocA) = <o,7> € A';

ii) tr(acB) < AT ¢ 1(8D);
iii) 1 <s monotone;

iv) o(z(a)) = o-1(A).

PROOF. i) A is a predicate variable P : immediate, by 5.5.(iii) and

P’ = p.

A a formula: <o,t> en® = ((x)zg(A[x 1= (x)]]))[x i=<0,1>] = w(Alx :=0]) =
(o eh).

A is of the form I‘B(C): then

<0,1> A" = <0,1> ¢ I‘Br(Cr) = <o,1> e B[P :=C"] =
= <o,t> ¢ BT [PY :=C"] = <0,1> € (B[P :=C])¥ =
= 1r(o e B[P :=C]) (for B[P :=C] 1is a formula)
= 1r(oe I‘B(C)) .
ii) w(AcB) = r(Vx(xeA+>xeB))
= VxVu(ul:(x €A) > 'rxug(x €B))
<> Vxu(<x,u> € AF > <X,TXU> € Br)
Eand

Vx(x e A" + <) 5T (1) > € BF)

= AT c1 ().
iii) By 5.4.
iv) a(z(8)) = g(Alx :=<(x) |, 7(x), (x),>]1)
= Alx :=<(x)|,‘r(x)l(x)2>][x :=<(x)l,o(x)1(x)2>]
= Alx :=<(x) |, 7(x) | (6(x) | (%) ))>]
= Axy.1x(oxy) (A)
= o-1(A).
0
In the sequel, we write ' for I‘Ar if T = I‘A, and I° for II‘r if

I=Il"'
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5.7. LEMMA. If T <s monotone, then

T+ID(r",1°) F (ID(r,I) is realized).

PROOF. IDI: by IDI(I",IF), we have I'(I") cI'; wusing Axy.xP=P, we
get Fr(lr) CAxy.x(Ir), i.e.

Axy.xr (T(I) < 1).

ID2: since T is monotone and » is sound for T, we have, for some term

g 2
(1 Vu(Pcu(Q » I''(P) cou(r'(Q))).

We want Tr(T(P)cP > IcP) for some T, i.e.

(€)) wW(rT () cv(®) » 1" cv(P)).
Assume
(3) rf (@) < v(@).

By (1) (u:=t1v, P:=1v(P), Q:=P):

T (P) c v (P) ~ I (1v(P)) co(v) (TF (),
1o

) I (tv(P)) © o(v) (' (P)).
(3) implies (using 5.6.(iii) and (iv)):
(5) () (I (R)) € a(v)+v(P).
Combining (4) and (5):

(6) I (zv(P)) < o(tv)-v(P).
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Now if v = og(1v)+*v then
) r (v (P)) < w(P),
so by ID2(Fr,Ir) we get
" < (P,

the conclusion of (2). So we are ready if 1tv = o(tv)+v holds. Here we

use the fixed point operator ¢ of Ch.II, 3.7: put

T = ¢(Axv.o(xv)-v),
then

w = ¢(Axv.o(xv)v)v = (Axv.o(xv)*v)tv = g(1Vv)*Vv

and we are done. [

Now we turn to forcing. Let T(e) be an extension of T with the constant
€

¢ and axioms for €. We assume that the combination of and II—M (M
a monoid in T) 1is sound for T(e), 1i.e.
T(e) FA = Tk (Ih(&9).
DEFINITION. i) For convenience, we put
£I-a = Ik (A%Te :=£e1),
g2f := f,geM A JheM(g=£foh).
ii) The mapping is defined by
AT = (0, Ik Alx = (0D if A is a formula,

F _ F
(I'A(B)) = T'AF(B ),
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iii) [6) = (x| (), = £}.

iv) We extend the definition of [k by

f IF (teP) := <1,£>€P.

5.9. LEMMA. i) f |F (t€A) = <1,f> eAF;
ii) £ Ik (A»B) < vg2f(g IF A~ g I B);
iii) £ |[F VxA < vx(f |} A);

iv) £ Ik (AcB) < AT c ([£) »B5).

PROOF. i) A is a predicate variable P: by PF =P and 5.8.(iv).
A a formula: <rt,f> Al = f - (Alx :=711) = £ - (teA).
A is of the form FB(C): then

<t,f> eAF = <1,f>¢ I"BF(CF) = <1,f> € BF[P = CF]

<1,f> € BF[PF := CF] = <t1,f> € (B[P := C])F

fl-(tre (BL[P:=Cl)) (for B[P :=C] 1is a
formula)

fl-(te I'B(C)).

ii) £l (A>B) = I- (A%[e :=fel>B e :=fel)
= Vg( I (A®[e :=fel{e :=gel) » I (BS[e := felle :=gel))
= Vg( I (A°[e :=£(ge)]) > Ik (B[ :=£(ge) D))
= Vg(feg I-A » fog I B)

< Vg 2£f(g A > g I-B).

iii) Trivial.

iv) fll-(AcB) flFVx(xeA > xeB)

VxVg 2 f(g - (xeA) > g - (xeB))
> Vx(x e AT > (G, 2f > xeB))
= aF ¢ (15 =8H.

0

From now on, we write I‘F for T and IF for II‘F if

AF
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5.10. LEMMA. If T <s monotone, then
F _F
T+ID(I ,I") F Ax.x |- ID(T,I).

PROOF. 1IDI: by IDI(IY,1¥), we have rF(1F)c1f; as 1f c (Iax.x)=»1),

we get FF(IF) c ([Ax.x) =>IF), i.e. Ax.x |F(T(I)cI).
ID2: we want Ax.x |[F(P'(P)cP > IcP), i.e. for all feM

(8) ¥ () c ([£) =) » 1F c ([£) =P).
So assume
rF () e ((£) =P).
This implies
9 (L£) =¥ (®)) < (L) =P).
I' is monotone and |l is sound, so we have
Qe ([£) =B) » I' (Q) c ([£) =T ().
Now put Q := ([f)=P), then we get
rF ey »p) < (o) =rf@)).
Together with (9):

rF(e) =p) < ([£)=P);

with 102(rf,1F

), this yields
¥ < ([£)»P),

the conclusion of (8). 0O
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5.11.

5.12.

5.13.

5.14.

DEFINITION. 1) IDI is the axiom scheme of non-iterated inductive defi-

nitions in APP, 1i.e. the instances of IDI are ID(I',I) with T = I‘A

where A is a formula in the language of APP, containing P only posi-
tively. Such predicate operators I' are called positive.

ii) I, := ];LA+(IDI for the language of HA).

Now we are able to prove some conservation results.

THEOREM. APP +EAC + ID, <s conservative over APP +ID

1 1°
PROOF. One easily verifies: if T positive, then so are I‘r, I‘F. By

5.4, all T occurring in ID, are monotone, so by 5.7, 5.10 r and ”-M

1
(M any monoid) are sound for MQ+IDI. Now we can extend 3.7, 4.2.(iii)
and 4.20 to APP + ID’ and the result follows. [

LEMMA. APP+1ID, <s conservative over ID,-

PROOF. As Ch.II, 5.11-5.20. For the analogue of 5.19 we must show

*T
I,k (@el)™” < nely,

where T =T,, (teI)*=(t*eI*) with I‘*=I‘*, (TEI)T=
T A TI' T T
= (1 € II‘T) with Ty = I‘AT.

A
This is proved using

A=B-~>1I, =1 .
I‘A 1-‘B

]

THEOREM. APP +EAC +ID, <s conservative over ID

1 1°

PROOF. Combine 5.12, 5.13. 0O



§6.

87

Martin - L6f's theory ML -

. The mapping n HA ~ ML

In this final section we turn to the basic theory ML, of extensional
types by Martin-Lof. We do not give an extensive description, but refer
the reader to [Ma75] and [Ma82] by Martin-Lof and to [DT84] by Diller &
Troelstra, which contains a survey of @0 on which our treatment is
based.

We concentrate on the relation between @0 and HA. In [DT84] one finds
the interpretations N oof HA into %0 and * , mapping ~m~0 into
&E (which is called APP there): dropping formulae Et in the defi-
nition of * results in a mapping of @0 in APP as defined in Ch.II
(i.e. with total application). We prove here that Lﬂso is conservative
over HA. This is done by defining extensional realizability e for
APP, which can be considered as the composition of " and *; the rest
of the argument closely follows the proof of the conservation theorem for

APP +EAC (see §4). Finally, we discuss the problem of axiomatizing e .

0
See [DT84], 5.5. We assume that the primitive recursive functions of HA
are defined using 0, S, k, s, r and that these constants also occur in
@0. Then:

(s=t)"

I(N,s,t)
arB)” = zx a8
(A—>B)A = I'IxeAA.BA
VnA(n)A = ﬂneN.AA(n)

InA(n)" = Tn e N.A"(n)

Without proof we state:

LEMMA. If the free variables of the HA-formula A are among m s then
> A
HAF A =’~MLVOI-(meN=>teA) for some term t ;

here m e N abbreviates the context m eN,.. -»m €N. 0
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6.3. The mapping *. ML, - APP.
See [DT841, 6.3. * associates with every formula A of &0 a formula
A* = A*(x,y) which we suggestively write {(x,y)|A*}. We identify r of
ML, with the recursor term R of APP (see Ch.II, 3.8) and e of ML

~0
with 0. Then

0

*
N

{(x,y) |x,y eN A x=y}

1(a,s,t) = {(0,0)](s,t) € A*}

{(£,8) |Vxy ((x,y) € A > (fx,gy) € B¥(x)))

(G [ (@), () ) €A™ A ((0),,(9),) ¢ B¥((x) )}

Mx e A.B(x)*

Ixe A.B(x)*

6.4. LEMMA. ML b s=teA = APRF (s,t) cA.

PROOF. See 6.3.1 in [DT84]. 0

We now combine " and * in the following definition of extensional real-
izability e for APP:

6.5. DEFINITION. (o,t)eA is defined by

(0,7)elp, =p,) =0=1=0Ap =p,

(o,1)e(p e N) =g=T1eN

(0,00e(AAB) = ((0);,(1) )eAr((0),,(1),)eB

(0,7)e(A~>B) = Vxy((x,y)eA + (ox,Ty)eB)
(0,1)evxA(x)  := Vx((0,T)eA(x))
(0,1)e3xA(x) = Ix((o,1)eA(x))

TeA abbreviates (t,T)eA.

6.6. LEMMA. i) (o,t)eA > (1,0)eA;
ii) (0,1)eVnA(n) <> Vn(on,tn)eA(n);

iii) (o,1)ednA(n) (0)] = ('t)] €N A ((0)2,(T)Z)gA((0)I)-

PROOF. Straightforward. [
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Before we prove that e is sound, we establish our. claim that. its. restric-
tion to HA 1is the composition of and *. For simplicity, we assume

that HA is a subtheory of APP.
6.7. LEMMA. APP F (0,7) €A™ <> (0,7)eA for A in HA.

PROOF. Induction over the logical complexity of A:
A prime: then A= (s=t). Now

A = 1w,s,0),

A%

A" = {(0,0)|(s,t) eN A s=t}, so

*

(cr,'r)eAA = (oc=1=0As=teN);
as we have APP F seN, teN (for s, t are terms of HA), this is
equivalent to =t Ao=1=0, i.e. (0,T)eA.
A=BAC:

(0,1) ea™ = (6,1) € (x e BN.cH*

= (@), () B A ((9) 5, (1)) e ™

n

(0,7)e(BAC), by ind. hyp.

A= B>C:
(0,0 ea™ = (0,1 e MxeB .Y
= Vxy((x,y) € ™ (ox,Ty) € CA*)
= (0,1)e(B+C), by ind. hyp.
A = VnB(n):
(o,1) eAA* = (0,1) € (TIxeN.B(n)A)*
= Vxy((x,y) eN > (ox,1y) € B(x)A*)
= Vx e N(ox,1y) € B(x)A*
= (o,T)eVx eN B(x), by ind. hyp. and 6.6.(ii).
A_= 3nB(n):

(0,0 ea™ = (0,7) € Gn eNB@Y*
= ((9) (DD eN A ((9),,(D),) e B D™

(0,7)edx(x e NAB(x)), by ind. hyp. and 6.6.(iii).

m
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6.8.

6.9.

6.10.

LEMMA. (Soundness of e.) APP F A = APP | teA for some closed
term T.
PROOF. For the propositional axiom and rules we can copy the correspond-

ing parts of the proof in 3.3. VAX and 3AX are e -realized by Mx.x;

for Vv-R, 3-R we have that the conclusion is e -realized by the same
term as the premiss; here we use that the term realizing the premiss is
closed. The realizing terms for the non-logical axioms are different

form those of the soundness proof for r, but are not hard to find. We

give some examples:

<0,Axy.0>e =AX,
Ax.<<0,0>,) y.y>eSUB,

Ayx.R(y) 1 (Auv. (y)2<Pdu,v>)gIND.

0

As in 84, we use the extension APP(e) of APP to prove A <> 3x xeA

for arithmetical A.

DEFINITION of Ty for arithmetical A.

Ty =g =0

1 2

TN = p

Taag T TarTp”

A5 1= k‘tB

TvnA = )‘n.TA

- - . _ >

T3nB := <5Am,1‘A[n 1= eAm]> if A= A(m,n).
LEMMA. PFor arithmetical A:
i) APP(e) F A"TAEA,‘
ii) APP(e) F 3xy((x,y)ed) >A.
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PROOF. Simultaneous induction over A.

A prime, A_= BAC: easy.

A =3B~C:

i)

ii)

>
"

Assume B-~C. By the induction hypothesis, we have 3Ixy((x,y)eB)~>B
and C->TC_e_C, so 3Jxy((x,y)eB) "TCEB. By logic and 6.6.(iii) this
implies ny((x,y)gB—>(‘rC,'rC)gC), i.e. ‘rAgA.

Assume 3Ixy((x,y)e(B~+C)), i.e. 3xyVzu((z,u)eB > (xz,yu)eC). Together
with B->TBEB and 3vw((v,w)eC~+C) (by the induction hypothesis)
this yields B-~C.

Vn(n e N+B(n)): as above, using 6.6.(ii).

b
]

In(neNAB(n)):

i)

ii)

O

Assume 3n eN(B(n)), then (by €AX) B(;,e;ﬁ). The induction hypoth-
esis gives us B(;,n) > TBEB(E,H), so with substitution we get
AgA.
Assume 3xy((x,y)e(3neN B(n))), i.e.

TB[n := eﬁ]gB(r-;,eg) i.e. T

Elxy((x)1 = (y)l eN A ((x)z,(y)z)gB((x)])), so by induction hypothesis
Elx((x)I eN A B((x)l)), i.e. 3neN B(n).

COROLLARY. APP(e) F A <> 3x xeA for arithmetical A. ]

THEOREM. ML. <s conservative over HA.

PROOF. Assume gol-teAA, t some term of ML

0

0° A a formula of HA.

By 6.4:

*
APP | t ™.

With 6.7:

By 6.11, and the fact that APP(e) extends

APP | teA.

i

AME,R(Q F A’

so with 4.19:

APR b A
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6.13.

and hence (for APP is conservative over HA)

A F A.

|

REMARKS.
i) It is tempting to think that (x,y)eA is a transitive relation in

x and y, i.e.

(p,0)eA A (0,T)eA > (p,T)eA.

However, the proof by formula induction breaks down at A = 3zB(z), for

we do not have, in general

3z((p,0)eB(z)) A3z((o,T)eB(2)) ~ Iz((p,T)eB(z)).

Neither are we able to derive (o,T)eA ~ oeA. As a consequence, we have

no proof of the projectiveness of e: this is the property

Ixy ((x,y)ed) <> Juv((u,v)e(3xy((x,y)el)))

This last fact blocks the (obvious) way to an axiomatization result for
e, viz. the way we followed in §3 when treating r.

ii) Other versions of extensional realizability have been defined and
studied in [Be82] by Beeson and [Gr82] by Grayson. Our definition differs
from those in that it is based on the fact that APP allows quantifica-

tion over all objects.
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CHAPTER IV. EXTENDED BAR INDUCTION

Introduction,

In this chapter, we study the principle of extended bar induction (EBI).
Our main result is that APP +EBI proves the same arithmetical theorems

as ID (theorem 5.8; see Ch.III, 5.11 for a definition of LQ]). As a

1
corollary, we obtain

EL* +EBI is comservative over ID. nL(HA) .

1

* . .
To formulate EBI, we extend APP to APP by adding new variables a,
B, ... for sequences of objects; they may occur without restriction in

terms and formulae. We add the following quantifier rules and axioms:

A~>B .
VRSEQ A5VoB (a not free in A)
A->B .
aRSEQ m ((! not free in B)
VAXSEQ YoAa > AB
EIAXSEQ AB » JaAa

The other new axioms are:

SEQAX]I VaVn3x (on = x)
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1.7.

SEQAX2 Vx3aVn(xn = an)
SEQAX3 VaB3dyVn(yn = <an,Bn>)

SEQAX4 Yax3B(BO =x AVn(B(n+l) =an))

N.B. The axioms VxAx—>At, At ->3xAx remain restricted to T e L(APP);

as a consequence, we do not have e.g. 3Ix(x=aqa).

REMARK.

ér;lj* is the first part of extending APP to I";, a theory with choice
sequences (see §2). In this sense, AP;E'* is comparable with gﬂg* (see
[T771, 5.2).

It is consistent to assume a, B, ... in APP* to be lawlike (if we

consider the objects of APP to be lawlike). This follows from
(1) ;Agg* ¥ T1Va3xvn(an =xn),

. *
a consequence of 1.5. So the sequences o, B, ... in APP  are not
really choice sequences yet - that requires CS - like axioms, viz. ECSI-4

in 2.1. See also 2.6.

. . - * .,
The interpretation A of a formula A = A(a,B,...) of APP in APP
is straightforward: replace the sequence variables a,8, ... by object

variables a,b, ...

LEMMA. APP* F A = APP F A .

PROOF. Straightforward. 0O

COROLLARY. m* is conservative over APP. 0O

The sequences ao,B, ... we introduced above can be looked at from two
points of view:

i) as objects (not in the range of the variables x, y, ... of APP)
with some special properties as stated in the axioms: the correspond-
ing equality is o =8, equality between objects;

ii) as sequences of objects a0, al, ... : here the appropriate equality

is a =B, where = is defined by

(0 =1) := Vn(on=1n).
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Warning: the rdle of =, = is not the same as in other publications on

choice sequences.

Now it is the second point of view which concerns us here, and we would

like to have the following substitution property:
(2) a=8 > (Aa <> AB).

. . . * . . .
(2) is derivable in APP in case a occurs regularly in Aa, i.e. only

in contexts ot where T 1is a natural number.

1.8. DEFINITION. i) A formula A of égg* is called regular if all its free
sequence variables occur regularly in A.
ii) A formula A is called totally regular if all its (free and bound)

sequence variables occur regularly in A.

We do not want to restrict our formal language to regular formulae in or-
der to obtain (2): that would require a complicated definition of differ-
ent sorts of terms, conflicting with the type-free and flexible character
of APP. To be able to formulate a weaker but valid version of (2), we
use a well-known method for making predicates extensional: define

e _ - .
A(al,...,an) := 38 Ao Aan"Bn‘AA(Bl""’Bn))’

1° n

here @pse.sa are the sequence variables occurring free in A. Now

A is always regular and we have, in APP*:

A > A®
A < A% for regular A

=B+ ((a)® < AR)°).

1.9. Some notation and conventions,

A finite sequence XgoeeesX is coded by an object f iff:

fO0 =n
o |
f(i+l) = X (0 £1i<n).
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.

This coding is not unique, of course: one easily constructs f, g with
fO0 = g0 = n, Vi<n(f(i+l1) =g(i+1)) and f(n+l) #g(n+l1). However, we
shall write KyseeesXp > for f satisfying (3), but only in cases

where no ambiguity can occur.

It is not hard to define in APP the functions (-)_ , lth, * , =, .

<> satisfying

(<x0""’xn-l>)i = x; (0 <i<nm)

1th(<x0, e ,xn_]>) =n

<x0,...,xn_]>*<y0,...,ym_]> = <x0,...,xn_l,y0,...,ym_l>
g = <x>
1th(<>) =0

an = <al,...,a(n-1)>.
The equivalence relation ~ between finite sequences is defined by
x~y = (lth x=1th yeN A Vi<1lth x ((x)i = (y)i).

* 1s also used to denote concatenation of a finite sequence with an in-
finite one: if a is (thought of as) an infinite sequence a0, al,...,

then

m

X if m<n,
(<x0,...,xn_]>*a)m = {

a(n-m) if m=>n.
In the sequel, we shall often use the notation ¢x’ defined by

¢x = da.p(x*a).

1.10. We adopt a set—and-membership notation, defined by

TeA := Alx :=1]
AcB := Vx(xeA~>xeB)
A=ZB := AcB A BcA
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AnB := AAB

A=B := A+>B.
We also put

Tex := 1th xeN AVi<1thx(‘ri=(x)i)

TeA := Vn(tneA)

TeA 1= x*T €A

x

N := 1th xeNAVi<1thx((x)ieN)

N := Vn(xn € N)

Tree(A) := Vxe A(lth xeN) A
Vxy(x~y A XeA >yehA) A
<>e€ AA

Vxy(x*y e A > x e A) A

Vx € Ady (x*§ € A) .

VReA... :=Vx(ReA~>... ).

1.11. To the equivalence relations ~ (for finite sequences) and = (for sets),

we add:

o=t := Vn(on=1n),

[ := Va e A($a = Ya)

s

£z,8:=Va eA(fa =ga).

These relations satisfy the following properties.

1.12. LEMMA.

i) X~y AaeEXx > a€ey ;

ii) x~y A xeA A Tree(A) > yed;
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iii) X~y > X*a Zy*a;

iv) x~y A Tree(A) =~ AXEAy;

v) aIB - &n~§n;

vi) aZB Aaex > Bex;

vii) ¢=Aw A XeA A Tree(A) - ¢X=Ax:px;
viii) A=ZB > A=B;

ix) A=B A Tree(A) > Tree(B);

x) Tree(A) - AEA<>.

PROOF. Easy. [

Definition of EBI.

We define

Bar(A,P) := Va eKEInP(&n),
Mon(A,P) := Vxy(x*y € AAPx >P(x*y)),

Ind(A,P) := Vx e A(Vy(x*§ ¢ A>P(x*§)) >Px).
Now EBI(A,P) reads

Tree(A) ABar(A,P) AMon(A,P) AInd(A,P) > P<>.

EBI(A) is EBI(A,P) for all regular Pe¢ L(QP;I:*), and EBI is EBI(A)
for all AeL(APP) (hence not containing sequence variables). BI is

defined as EBI (N<w) .

For more information on EBI see [T80], §l.

N.B. Our EBI corresponds with EBI" in [ T80 ]; moreover, our restric-

tion on A in the definition of EBI does not play a role there.

The main. result of this chapter is:
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THEOREM. APP* +EBI and ID, prove the same arithmetical theorems.

1

Here 1D is HA+1ID,, i.e. intuitionistic arithmetic + non-iterated

inductive definitions with positive operator form (see Ch.III, §5).

As a corollary, we have
* . :
EL +EBIar is conservative over ID, n L(HA),

where EBIar is EBI(A) for all arithmetical A.
The steps of the proof of (3) are:

. * . * . .
i) we formulate a theory I,> an extension of APP with tree vari-

ables, inductively defined sets and choice-sequence-like axioms for

a, By, ... 3 EBI 1is derivable in TT;

. * .. . . .

ii) II is interpreted in 22 (a theory without sequence variables) by
forcing, which can also be formulated as an elimination translation

in the sense of [KT70] and [T80];

iii) 12 is reduced to 13, a theory without tree variables;

iv) I3 is shown to be contained in APP +EAC + 1D ;

v) as was proved in Ch.3, §5, APP +EAC+ID, proves the same arithmet-

1

ical theorems as ;s

vi) finally we observe, using a result by Sieg [BFPS81], that D, and
521(0) prove the same arithmetical theorems, and we show that

ID](O) is contained in APP*-+EBI, which closes the circle.

The theory IT.
In this section we define the theory T

*
N 1
that T, F EBI.

and show, among other things,

The language of IT consists of that of égg* plus variables S, T, ...

for trees and the constants U (the universal tree) and IO (for induc-

. . . * .
tively defined sets of functions). Il has tree terms, defined as follows:

i) U and all tree variables are tree terms;
ii) if V, W are tree terms, then so is V xW;

iii) if V is a tree term and T a term, then Vr is a tree term.
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New prime formulae are Te€V. and Tte IO(V’)’ V a tree term. We assume

x, L 1., [ 1, tobe defined satisfying

0’ 1

SKyaeees X PXYgaeaenY 1> T SSKLYTs e <K LY >3

[<x0”"’xn-l>]i = <(x0)i,...,(xn_l)i> (i=0,1),

*

Now we can give the new rules and axioms of I:

A->B .
VRTR ASVIE (T not free in A)

A->B .
BRTR STASE (T not free in B)
VAxTR VTA(T) + A(S)

anTR A(S) ~» 3ITA(T)

TRAX1 Tree(T) for all tree variables T

TRAX2 TeU <> 1th TeN

TRAX3 oeVTHr*oeV

TRAX4 TeVXWﬁETJOeVA[T]Iew

TRAX5 Tree(A) - 3T(T =A) for Ae L-(&)

(i.e. Ael(APP), A v-, 3-free)

TRAX6 VIVx(x e T - 3S(S ETX))
TRAX7 VIT'aS(S=TxT")
TRAX8 IO(T) = IO(T< S)

In IAXI-3, I,

objects). In the rest of this chapter, we shall often use ¢ and ¢ for

AX we use ¢, f as variables of APP (i.e. ranging over

elements of some IO(T), and £, g, h, ... for elements of some
I](S,T).

I,AX1 VaeT(da=x%x) > ¢ € IO(T)

IOAXZ VR € T_(¢ﬁ_e IO (Tﬁ)) > ¢e IO(T)
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I_AX3 Vx e TV¢[IyVa € Tx(tpa =y) VV¥§ e Tx('b? e P(x*§)) > ¢ € Px]

+> Vxe T(IO(Tx) cP(x))

I AX Va e§erI](S,T)EIB e T(B = fa)

here I, 1is defined by

1

fe I](S,T) <~ Vn(Ax.fxn e IO(S)) AVaeS(faeT).

In the next five axioms, A and B contain no free sequence variables

besides those shown.

ECS1 VaeT Aa > VaeT Aa for prime A

ECS2 VIVE € I] (T,U) (Va e T A(fa) + Vo €T B(fa)) -+ Vo(Aa~>Ba)
ECS3 Va € TIxA(0,x) ~ 3¢ € IO(T)Va €T A(a,pa)

ECS4 Va e T3RA(a,B) > If € I,(T,0)Va eT A(a,fa)

EAC Vx (Ax ~3yB(x,y)) > IfVx(Ax > B(x,fx))

A v-,3-free.

2.2. REMARKS.

A)

B)

Not all tree terms V satisfy Tree(V): e.g. for V = T, this is
only the case if TteT.

By IOAX1—3-, IO(T) is an inductively defined set of functions ¢
defined on sequences o with Vn(aneT) (so o is an 'infinite branch'
of T). IOAX] states that all constant functions ¢ are in IO(T),
by IOAXZ one can prove e.g. that Aa.a0, Ao.al, ... are in IO(T);
the schema IOAX3 expresses that IO(T) is the smallest set satis-—
fying IOAXI and IOAXZ.

I](S,T) is a set of functions from S to T, and consists by defini-
tion of those functions the projection of which are elements of

IO(S).

IO(T), II(S,T) are sometimes called Io-resp. I. -sets. They are

1
investigated in §3.
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2.3,

2.4,

2.5.

*
1
ences (besides the choice of APP resp. EL as basic system):

C) Comparing T, with gg* in [T80], we observe the following differ-

i) IT has tree variables, whereas Q§* has type constants (types
are subsets of N).
It is shown in [T80] (2.5, 2.6) that EBI(A) (EBI"(A) in the
notation used there), A a subtree of N<w, can be reduced to
EBI(B<w), BcN; however, this method of reduction is based on
decidable equality on N, and can therefore not be applied in
our context (unless we would restrict EBI to subtrees of
N,

Tree variables in g*

1
A . . *
it is weaker than its counterpart in (S .

are needed to formulate the axiom ECS2;

ii) the functionals in IO(T), II(S,T) are not coded by neighbour-

hood functions as in g§* (using Ko’ K0 T), but are di-
b

rectly present in IT; this allows a more direct treatment

(cf. §3).

*
1

trees definable in APP; hence IOAX1—3 may be thought of as

a schema of non-iterated inductive definitions. In gg*, how-

iii) the trees in T, for which IO(S) is defined can be seen as

ever, the defining formula of a type o0 may contain inductively
defined sets Ko’ which makes the defining axioms of the Kr

equivalent to finitely iterated inductive definitionms.

We now give some properties of IT.

In some proofs, we use facts about

IO’ I] which are proved afterwards in §3.
LEMMA. VT3a(aeT).

PROOF. Tree(T), so VxeTIy(x*§eT). With EAC: 3IfVxe T(x*<fx>eT).

Now define

a(nt+l) := f(an),

then Vn(aneT). 0

COROLLARY. VT3a(o eT) (by SEQAX2).



2.6.

2.8.

2.9.

103

*

. . *
| 1s a proper extension of APP .

We show that T
LEMMA. I,T F T1VadxVn(xn =an).

PROOF. Assume Va3xVn(xn=an), then (by ECS3) VoaVn(¢an=an) for some

¢ € IO(U). But by 3.10.(i) such a ¢ 1is continuous, so the value of ¢a

is determined by an initial segment of a: contradiction. [J

. COROLLARY. I* properly extends ﬁ*-

1

PROOF. Combine 2.6 with (1) in 1.3. 0O

DEFINITION. We define four schemata: EAD, ECS2', ECS3' and ECS4'.
EAD is a weakening of the axiom of analytic data AD in [T80]; ECS2'
is a relativized version of ECS2; ECS3' and ECS4' are extensions of
ECS3 and ECS4 to arbitrary regular formulae A.

EAD Aa > 3T3f ¢ I (T,U) (38 eT(fB=a) AVB eT A(£B))

ECS2' VSVf£ € I] (5,T)(Va €S A(fa) >Va € S B(fa)) ~ Vo € T(Aa > Ba)

in EAD, ECS2', A contains no free sequence variables besides a.
ECS3' Va e TIxA(a,x) ~+ 353y € S3¢ € I,(SxT)Va €T Ao, (yxa))

ECS4' Vo € TIBA(a,B) » 3S3y € SAf € I,(SxT,U)Va e T A(a,f(yxa))

in ECS3', ECS4', A is regular and may contain free sequence variables

besides a.

LEMMA. i) EAD and ECS2 are equivalent, Z.e.
*
Z] - ECS2 | ECS2 <> EAD.

.. * '

ii) L I ECS2'.

PROOF. 1i) : by logic, we have

VsVg € I, (S,U) (Va €S A(ga)) ~

+ Vo e SITIf € I,(T,0)(38 eT(fB=ga) AVB eT A(fB));
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to see this, take T := S, f := g. So, by ECS2 we have
Va(Aa >3T3f € I, (T,U) (38 eT(fB=a) AVB e T A(fB)))

i.e. EAD.

«: assume
Q) VIVE € I, (T,U) (Va €T A(fa) >Va € T B(fa)),
take any o and assume Aa. By EAD:

3s3g € 1,(S,U)(3B < S(gB =) AVB €S AgR))
so, by (1)

3S3g € Il (S,U)(3B € S(gB=0a) AVB S A(gB))

and hence Ba, by the substitution property of =.

ii) Easy, take aeT A A(a) for A. O

2.10. LEMMA. i) For regular A, we have in g’;‘
(2) Va e SYB € T A(a,B) <> Va e SXT A(ﬂoa,‘n]a)

(see 3.6 for a definition of Ty 1r1).
ii) Tk ECS3', ECS4'.

PROOF. i) By SEQAX3, we have Va e SVB e T3y e SxT (y =axB) (axB is
defined in 3.6) and, by 3.8.(v) and IIAX, we also have

Vy € SxT3a € S38 ef(noy =a A Y= B). Together with the substitution
property for = w.r.t. regular formulae (1.8) this yields (2).

ii) We first prove ECS3'. Assume
Va e TIxA(a,x)

where A is regular. Without loss of generality we assume that A con-
tains as free sequence variables besides o only BO and BI, so

A= A(a,x,Bo,B,). Let B := BOXBI then, by (i)



VYa efaxA(u,x,woB,w]B).

By EAD (which is derivable in * by 2.9.(i)), there are S,

~|’
feI (S,0), €S with fy,=8 and

Yo
Vy € SVao eTE!xA(a,x,ﬂo(fy) ’T) (fv)).
Apply (i):
Va e SXT EIxA(woa,x,no(f(w]a)) o) (f(nla))).
Now with ECS3:
3¢ € I, (SXT)Va € SXT A(mga,a,mo (£(m @) ,m, (£(r )
which is equivalent to
3¢ € Iy (SXT)Vy €S VaeT Ala,d(yxa) 2T (£Y) 7, (£Y))

hence (take Yy := o> and use fY0=B, B=BOXB] and (i))

3¢ € I, (SXT)Va € T A, (vxa),B,8,)
SO

3s3y € S3¢ € I,(SXT)Va e T Ax,¢(yxa),B,8 ).
ECS4' 1is derived analogously. [

DEFINITION. EIUS, extended induction over unsecured sequences, is

defined by

EIUS VS Vy €S V¢ € I,(SxT) n (SxT = N)

105

(Va €T Q(a(¢(yxa))) A Mon(T,Q) A Ind(T,Q) ~Q<>).

LEMYA. T} k- EIUS.

PROOF. Use IOAX3 with
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¢ eP(x) := ¢¢ ((SXT)X = N) AVa efx Q(x*a(¢p(yxa))) A

AMO“(T’Q) A Ind(T,Q)
to prove

VxeT VyeS Vo e Io((SXT)x) n ((S>‘T)x = N)

(YoeT Q(x*a (¢ (yxa))) AMon(T,Q) A Ind(T,Q) +Q(x));

then take x := <>. For details, see 3.2.1 and 5.7.4 in [KT70]. O
2.13. LEMMA. T] k EBI(A) for AeLl (ARR).

PROOF. Assume Tree(A), then A=T for some T (by TRAX5); and by
ECS3'

Vo eT 3n P(&n) >

> 3S Iy eS Tp e Io(SXT) n (SXT = N)Va e T P(a(d(yxa)))

for regular P. Now apply EIUS. [J
2.14. THEOREM. T} F EBI(A) for all AeL(ARR).

PROOF. Let AeL(APP). By Ch.III, 2.5 we have xeA < 3yA (x,y) for
some A ¢ L'(é,gg) . Assume Tree(A), Bar(A,P), Mon(A,P), 1Ind(A,P),
and define

xk = >\n.(()()n)0 k,

SO <Xps...,X Sk <(x0)0""’(xk—l)0>’ and put

n-1

xeB := lthx e NAVn<1lthx A_(xn,((x)n)l),

Q(x) := P(x]'th x ).

X €B means: xlthx €A and, for every n<lthx, ((x)n)] is the
'witnessing information' that X" €A,

One easily derives Tree(B), Bar(B,Q), Mon(B,Q), Ind(B,Q); hence by 2.13
(observe that Bel (APP)) Q<>, so P<> (for <>O=<>). 0
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Inductively defined functionals,

. DEFINITION. T% 1is obtained from T

Here we establish the properties of IO’ II that are needed in §2 and

§4. For this, we define the theories I* and T

2 2°

*

2 1
if we also drop the sequence variables o, B, ... , their axioms and rules,

AX1, 3 and IIAX by the object variables a, b,

0
g- So I, is an extension of APP +EAC with tree

variables and inductively defined sets of functionals.

by omitting the axioms ECSI-4;

and replace o,B in I

we get the theory T

LEMMA. T3 - A = I,FA,

where ~: T. + T, is the extension of the mapping _ of 1.3 to z;.

2 ~2

PROOF. As in 1.4. 0O

COROLLARY. T <s comservative over T

~2 2°
LEMMA. In ;I;; we have
i) aEBAaeTA¢eIO(T) > ¢a =¢B;
ii) azeAaeTAfell(T,S) > fo = fB;
iii) $=p¥ A ¢€IO(T) > weIO(T);
iv) fETg A feI](T,S) > geIl(T,S);
v) SeT » I (T) <I)(8);
vi) S, €T, AT,cS, > I,(T,T,) <L (5,,8));
vii) qbeIo(T) > ¢=T¢<>.

PROOF. (i), (iii) and (v) are proved using I AX3, taking for ¢ € P(x)

0
respectively

VaB(aei/\aEB > ¢a=¢B),

vy (p ET ¢ > Y EIO(TX))
be
L
and
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LR N CIH

also TRAX8 1is used.
(ii), (iv), (vi) follow from (i), (iii), (v) and the definition of

(vii) follows from (i) (for a = <>xa). 0O
. * B .
3.5. LEMMA. i) I'Z F ¢eIO(T) <> VyeT(lthy=n > ¢yeIO(Ty)),

ii) let ¢eI (D), ¢eT =N, then

Vi (Vo eT(wa(¢a) € IO(TE(W))) < YeI (D).

PROOF. i) The case n=0 follows from 1lthy=0+>y ~ <>, T=T_

and ¢=pé.,. Forn=1, « follows with IOAXZ, > with I AX3 where

0
¢ eP(x) := Ve Tx(¢§ € IO(Tx*?))' For n>1, use induction over N.
ii) Use (i) and IOAX3 with
¢ e P(x) :=

¢ € (Tx = N) > Vy(Va e Tx(¢&(¢a) € IO(Tx*a(dba

0

3.6. DEFINITIONS. We define

axf := An.<an,Bfn>

Moo= Aan. (cm)i (i=20,1)

X* = AQ.X*Q

feg := Aan.<fon,gon>
fog := Aa.f(ga)
3.7. LEMMA. i) Vn()\a.aneIO(T));

ii) Vo e IO(T)Vx(Aot.x(d:a) € IO(T));

iii) V¢,pe IO(T) (Aa.<pa,pa> € IO(T)).

))) > b eI (T)).



109

PROOF. i) induction over N, using I_AX1,2.

0
ii) induction over IO.
iii) double induction over Ly 0
3.8. LEMMA.
i) Aa.da+l € IO(T);
ii) )\a.aeII(T,T);
iii) o, € IO(T) - Aa.max(¢a,ypa) € IO(T);
iv) xeT»x*eIl(Tx,T);
v) niell(ToxT],Ti) (i=0,1);
vi) Vf € Il(S,Tl)Vg € I](S,TZ) (feg € I](S,’I‘l XTZ))'
PROOF.

i) by 3.7.(ii).
ii) by 3.7.(i) and the definition of I
iii) combine 3.7.(iii), (ii).
iv) use IOAXI, 3.7.(1) and the definition of I].
v) by 3.7.(i) and the definition of 1I,.

1
vi) by 3.7.(ii1). O

For the important lemma 3.11 we need not only to know that all ¢ e IO(T)
are continuous, but also that any such ¢ has a modulus § e IO(T) n (T=N)

which is also its own modulus; analogous for II(S,T).

3.9. DEFINITION. Let ¢ eI (T), feI (S,T).

i) smod¢ := § e (T=N) AVaB e T(a(8a) =B(8a) » $a=9¢B);

ii) § eMO(T) = S e IO(T) ASmod S

iii) dModf := de (N = (S=N)) AVnVaB € S(a(dna) = 8(dna) +~ fan = £Bn).
iv) de Ml (S) := Vn(dne MO(S)) .

3.10. LEMMA. i) Vée IO(T)36 eMO(T) (§mod ¢);

ii) Vfe I,(s,T)3deM, (S)(dMod £).
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3.11.

PROOF. i) Use IOAX3 with ¢ e P(x) := 36§ EMO(TX)(6m0d¢).

- Va eTx(¢a=y): take § := Xa.O.
- Assume V§e¢ TXEI(S € MO(Tx*?) (8 mod ¢§) .
By EAC:
3DVY € Tx(Dy eMy (Tx*?) A Dy mod ¢?) .
Define

§' := Xa.D(a0) (An.a(n+1))+I1,

then G'eIO(Tx) (by IOAXZ and 3.8.(i)), &'mod¢ and &'mods’'.

ii) Assume f ¢ II(S,T), so by the definition of II we have
Vn()\ot.fomeIo(S)). With (i):

vn3s eMO(S) (8§ mod Aa. fan) ;
using EAC, we find some D with

Vn(DneMO(S) ADnmod Aa.fan).

Now define d by

{do := DO

d(n+1) := Xa.max(dna,D(n+1)a),

then deM](S) (by 3.8.(iii), induction over n) and dModf. ]

LEMMA. (Closure of 1,-and 1, -sets under composition.)

0 1
i) Vo e IO(S)Vf €L, (5,T) (¢of € IO(T));
ii) VE eI (S,T)Vg eI (S",S)(feg e (58",T)).

PROOF. i) We use IOAX3 with ¢ € P(x) := VPerI](T,SX)(¢°feIO(T)).
- Va eS_X(¢ot=y): then ¢of 1is also constant on T, and (by I AXI1) in

Iy(T).

0
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- Assume

(1 V9 €S VIVE eI (T8, 2) (¢5of € 15(D)),

and let geI](T,Sx). Then Aa.gaOeIO(T), so by 3.10.(i) & modia.gal

for some § eMO(T). Now let aeT be arbitrary and define 2z := ga0.
Then

VB € T3 5q) (8(a(80)%B)0 = 2).
Define

h := ABn.g(a(Sa)*B) (n+1),
then, by 3.7.(i), for all n

AB.hBn = AB.g(a(Sa)*B) (n+1) € IO(TE(GQ)),

so he I](T- S’i) by the definition of I

2(s0)’ Now

1

¢?°h AB.¢ (<g(a(8a)*B)0>*An.g(a(Sa)*B) (n+1))

AB.¢(g(a(8a)*B))
= (¢°g)a(6u)

By (1), ¢?°h € IO(TE(Ga))’ so with 3.5.(ii) we have ¢oge IO(T).
ii) Easy, use Aa.((feg)a)n= (Aa.(fa)n)eg, (i) and the definition of

I,. 0O

LEMMA. Let GeMO(T), and let A satisfy

(2) Vx € TVpq(Va e T_(pa = qa) » (A(x,p) > A(x,d))).

Then:

i) Yo € T3¢ € IO(T&(M))A(E(Ga) »$) > 3 e I (DVa €T A(a(sa) V3 (s0))3
ii) Va e TIE € 1) (T3 4y »S)A@(60),£) >3g e I (T,8)Va e T A (60) 85 5.
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PROOF. i) Assume Va efa‘»eIO(TE(Ga))A(E(Ga),M. Using EAC, we find
a ¢ with
(3) VYo € T(%a € IO(Ta(éa)) A A(a(Sa),%a)).

We also have, by 2.5, Vx e T3IB(B eTx); EAC gives us an F with
VxeT(erfx), i.e. VxeT(x*FxeT).

Now define, for aeT:

1= a(8a)*F(a(da)),

%
then adef and 6((16) = 8o (for 8mod8) so Ed(é(aa))=&(6u); also,
by d8modS§
(4) VB € T&(aa)((“““)*ﬁ)s zad).

Define

Y = Aa. (@a‘s) (An.o(n+éa))

then, by (4)

(5)

V8 efa(sa)(w;(ﬁa)e =¢a68).

Now (3) gives

Va ef(%t‘s € IO(Ta(da)) A A(&(éa),¢a6))

so, with (2) and (5)

Va ET(W&(‘SG) € IO(T&((SC!)) A A(a(ﬁu)yw&(aa)))

With 3.5.(ii):

3 e Io(T)Va €T A(a(Sa) ""&(sa))'

ii) Analogously. 0O
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3.13. LEMMA. et eeM(T), feI,(S,T), aeS. Then
35 €M (S)VB EEE(M) (£(a(8a)*B) € fa(e(fa))).

Remark. The existence of & follows from the continuity of € and f;

8 eMO(S) requires a more subtle argument.

PROOF . feI](S,T) implies (by 3.10.(ii)) dModf for some deMl(S),

so
VnVoe SVB € Sa(dna) (f(e(dna)*B) € fan).
Define
§ := Xa.d(e(fa))a,
then

VoeS VB e S&(éa) (£(a(8a)*B) € fa(e(fa))).
It remains to be shown that & e IO(S) and SmodS§. Now ¢ eMO(T),
feIl(S,T), so e°feIo(S); let neMO(S), nmodeof (using 3.10.(i)),
then

6) Yo €S 3nVB €§&(na) (e°£) (a(na)*B) =n.

Now, by definition of §

Va €§[‘35(na) =2B.d((e°£) (a(na)*B)) (a(na)*B)]
so, by (6)
Va €S 3n (83 (na) = A8.dn(a(na)*g) = (dnjg e oy
By 3.5.(i) we get Vo e_S‘(Ga(na) EIO(Sa(na))) and with 3.5.(ii) this

gives 6 ¢ IO(S).

To see that &modé§, assume &(éa)=§(6a), i.e.

¢)) a(d(e(fa))a) = B(d(e(fa))a).
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deM(S), so Vn(dneM (S)), hence (7) implies
(8) d(e(fa))a = d(e(fa))B.
Also dModf, so with (8)

fa(e(fa)) = £B(e(fa));

with emode this yields e(fa) = €(fB). Combining this with (8), we con-
clude d(e(fa))o = d(e(fB))B, i.e. Sa=68. [

§4. Forcing.

4.1. In this section we interpret l* in I'Z' This interpretation is presented

1
in two ways: first as an elimination translation (in the sense of [KT70] and

[T80]), which is somewhat easier to understand, then as a definition of forc-

ing, which has a more semantic flavour.

. To describe the elimination translation, we consider VaeS, 38eT as
quantifiers, not as abbreviations of Va(aeS » ... ) etc; Vo, 38 are
read as VoeU, 38eU. Also VYm, 3In are considered as quantifiers rang-
ing over N. Now the elimination translation for formulae without free se-

quence variables reads

P =P (P prime)

A>B = A B
I_‘v’xA—l = ‘v’xrA—l
r_Hx.A—I = E!x’_A—l
r\;’nA_I = ‘v’nrA—I
ro.1 1

w
B
n
5
>
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r
I_‘v’TA—I = VT A_l
I_3TA—I = 3T ’_A—I
rVa eT Pot.—I = VaeT Pa (P prime)

I_\7’c>teT_(A/\B)_I = I_Vae'_fA A VaeT B

I_Va eT(Aa—>Ba)—I = VSVf € II(S,T) (J_Voz €S A(I:'c:z)_I > I_Va €S B(fa)—l)
I_Va eT VxA—I = Vx rVa €T A_l

I_Va €T Elex_I =3¢ e IO(T) I_Va €T A(qbcvt)—l

I_Va €T VnA—| Vn rVa €T A—I

r‘v’a €T ElnA—I

36 € Iy(D) n (T = W) "Va T A(oa) |

r‘v’a eTVBeS A(U.,B)—I

Vf € II(TXS,T)Vg € Il (TxS,S)

r —
Va € TxS A(fc:z,get)—I

rVa €T 3B €S A(ot,B)_|

Jg e Il (T,S) r‘v’a €T A(Ot,g(l)—l

l_Va eT VS A_I Vs I_Vu. eT A_I

MVaeTasa' =3s vaeTa'

’_Elae'_f Ac:n—I = Ja ef’_Aa_I

A few examples:

i) I_SEQAXI—l

-
Va Vn 3x(an = x)—I

= Vn I'—\7’01 Ix(on = x)_I

vn 3¢ € I0 (v) l_Vot(om; (pom)—I

= Vn 3¢ € IO(U)Va(an =¢a);
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4.3.

4.4,

£
v

4.6.

using 3.7.(i) and 3.2, we see that this interpretation of SEQAXl 1is true
in I’Z'

ii) I_s;‘zcmxz—' - "vx3a Vn(xn = an)—l

= Vx JaVn(xn=an),

which is also true in IZ‘

r
iii) Va 3xVn(an = xn)—I 3¢ e 10 ) r‘v’ot Vn(an = zt’ctn)_I

J¢e€ IO v) Vana(an = tbom)_I

I e IO(U) VnVa(an = ¢an),

and this is definitely not true in T for by 3.2 and 3.10.(i) the

2’
value of ¢a 1is completely determined by an initial segment of a.

Now we turn to forcing. First we introduce the concept of distimguished
terms of some formula A: these are certain term occurrences in A,
usually indicated by 3 (= Pl"”’pn)' Sometimes they are underlined to
distinguish them, and we write A = A(;) or A= A(E). This concept is

needed for the following important definition.

DEFINITION. Let A be a formula with distinguished terms ;, and let f

be some term. The restriction of A along f is defined by
A1f := Alp :=pi1£f],

where ;1f stands for p1°f,...,pn°f; they are exactly the distinguished
terms of AIf.

. EXAMPLES.

Z, ..l & 1if A contains no distinguished terms.

i1) (pa=yb)1f = ((9of)a=(po£)b).

In the definition of forcing we shall give in a moment, we associate to
x*
1
A) of I’Z' If A contains the choice variables Apseeest free, then we

every formula A of T and tree variable T a formula T | A (T forces

associate the free APP -variables f, ,...,f to o .,...,a_ and put
o~ 1 n 1 n
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T |+ A(a],...,un) := VS(f],...,fneIl(S,T) >

> S Ik ACE 0.0 ).

For formulae without free sequence variables and with distinguished terms

> .
p, we define

T IFP := Va e T(P[p :=pal) for prime P
TIFAAB =T IFAATIFB

T IFA>B := VSVfe II(S,T)(S I- (A1£) + S I+ (B1f))
T IF Vxa 1= Vx(T IFA)

T Ik 3xA(x) 3= 3¢ € Lo (T)(T IFA())

T |l VnA := vn(T I-4)

T |k 3nA =3¢ eI (D) n (T = N)(T IFA@D))

T I vsA := VS(T [FA)

T IF 3sA := 3S(T I-A)

T IF YaA(a) :

VSVE e I (S,T)Vg e I, (S,U) (s I (A1£) (g))
N.B. (A1f)(g) 1is to be read as (A1f)[a :=g]

T IF 3oA(a) := 3ge I (T,U)(T I-A(g))

4.7. EXAMPLES.

i) T |F SEQAX] = T |F Va Vn3x(on=x)
= VSVf € I,(S,T)Vg € I(S,U) (S Il (Vn3x(on =x)) 1fla :=gJ)
= VSvg e Il(S,U)(S - (Vo3x(an =x))[a :=gl)
= VSVg € I,(S,U) (S I VnIx(gn =x))
= Vs¥g eI, (S,U)Vnd¢ € IO(S) SI-(gn=9¢)

= VSVg e I1 (S,U)vni¢p € IO(S)Va € S(gan = ¢a)

ii) T IF SEQAX2 = T |k Vx 3aVn(xn=an)

= Vx T |l 3aVn(xn =an)
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= Vx3g € II (T,U) T II-Vn(xn =gn)

= Vx3dg e Il (T,U)VnVa e T(xn = gan)

iii) T |F Va3dxVn(on =xn) =

= VSVf ¢ I] (S,T)Vg e II (5,0) S I (3xvn(an =xn))1£f)[a :=g]

VSVg € L (S,U) S lI-3xVn(gn = xn)
= VSVg e I] (S,U)3¢ € IO(S) S ll-Vn(gn = ¢n)
= VSVg e I1 (S,U)3¢ € IO(S)VnVa € S(gan = ¢pan)
To show that forcing and the elimination translation are equivalent inter-

pretations, we need the so-called monotonicity property of |F (proved
in 4.10), and 4.12.(iii).

LEMMA. For totally regular formulae A we have

L,ETIFAG « VaeT aGw .

PROOF. Formula induction. Most cases are trivial or easy, except
A = VB eFB(E,B). By 4.12.(iii), T I-VB eFB(;,B) is equivalent to

(1) VSVE e I (S,T)Vg e I,(S,T') (S I-B(po£,g));
also
rVa eT VB eT—'B(f;m,B)—l =
= Vf 1 ] 1 r TRTTR (2 a
= eI](TxT ,T)VgeIl(TxT ,T')  Va e TxT'B(p(fa),ga) ,
which is equivalent to
(2) VE' e I, (TXT',T)Vg' e I (TxT',T') (IxT" I- B(g',pof").

(1) > (2) is evident: take S := TxT'. For (2) > (1) we argue as follows.
By 4.10, (2) implies
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(3) VE' e II(TXT',T)Vg' € II(TXT',T’)VSVh € I](S,TXT’)

(S I-B(g'oh,pof'oh)).

Now take h := feg, f' := Tys 8 use 1v0°(f®g) Esf,

11]°(f®g) Esg, and we get (1). 0

We shall now prove some lemmata needed for the soundness theorem for |[I.

LEMMA. (substitution).
i) p=pq > (TI-A(R) < T IFA(Q);
ii) TIl-A(t) < T lIFAQQa.1), T a term of L(APP).

PROOF. Straightforward, with formula induction. [
LEMMA. (monotonicity).

T Il-A <> VSVf ¢ Il(S,T)(S - (A1£)).

PROOF. <« follows from Aa.aeI](T,T) (3.8.(ii)).
+ is proved with formula induction: as an example, we treat the cases
A=3xB and A =VoaB.

A=3xB(x): assume T I~3xB(x), 1i.e.

3¢ € IO(T) T I-B(¢) -
By induction hypothesis:

3¢ € IO(T) VSVE € II(S,T) S - (B1£) (¢o£)
so, with lemma 3.11.(i):

VSVE € I,(S,T)3p € I, (S) S I~ (B1£) (¥)

i.e. VSerI](S,T) S - 3xB(x).

A=VoB(a): assume T I-VaB(a), i.e.

VSVE € II(S,T)Vg € I](S,U) S I+ (B1£) (g);
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1.

with lemma 3.11.(ii):
VS'VE' e I](S’,T) VS Vf € Il(S,S')Vg € I](S,U) S - (B1f'1f)g

i.e. VS'Vf' eI](S’,T) S'" I (VaB(a)1£'). 0O

LEMMA. (bar-property).

V6 €M (T) (Va ET(T; a) I (A1a(8a)*)) <> T [FA).

(8

PROOF. <« follows from the previous lemma and lemma 3.8.(iv). = requires

formula induction: we consider the key cases A=B-C, A=3xB.

A=B>C: assume &eM(T) and Vae_’f(Tz Ik ((B>C)1a(sa)x)), i.e.

(8a)

) Va e TVSVf ¢ I, (S,TE(Ga))(S Il- (B1(a(8a)*)ef) +S I (C1(a(Sa)*)of))

and let geIl(S,T), beS. By lemma 3.13:

(2) 3n €M (S)Va EEE(nb)@(B(nb)*a) € gb(8(gb))).

Define h by
h := Aan.g(b(nb)*a) (n+s(gb)),
then (gb(8(gb))*)°h = go(b(nb)*) (by (2)) and hel (Sp oy Toris(gn)))

(by 3.7.(i), 3.8.(iv), 3.11.(ii)). So, by (1) (a := gb, S := SI;(nb)’
f := h):

(3) SE(nb) I (B1ge (b(nb)*)) ~ Sﬁ(nb) I (C1ge(b(nb)*)) -
Since we also have (lemma 4.10 with f := (E(nb)*))
(4) S I-B1g ~ S5 (nb) I- (B1ge(b(nb)*))

and, by induction hypothesis

(5) Vb e§(SS(nb) Il- (C1ge(b(nb)*)) ~ S ll-C1g)
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we get (combining (3), (4), (5))
VsVg € I,(S,T)(S I-Blg > S I-c1g)

i.e. SI-B~>C.

A=3xB(x): assume & ¢ M, (T) and Vace T(Tz(éa) I- (3xB(x)1(a(8a)*))),

Va eT3p ¢ IO(T;(Ga))(T;(Ga) I (B1(a(sa)*)) ($))-
By 3.12.(i) and 4.9.(i):

3y € I, (T)Va € T(T3 a I (81 (a(8a)*)) (yo (a(8a)*))).

(6
With the induction hypothesis:
39 € I, (D) (T IFB()),

i.e. TIi-3xB(x). O

LEMMA.

i) TIl-Vo An < T |FVx(xeN > Ax);

ii) Tl-3n An <+ T |3x(xeNAAX);

iii) TI-VYoeS Aa <> VI'Vfe I,(T',T)Vg e I,(T",8)(T’ I- (A1£) (g))s
iv) Tl30eS Aa 3g e I (T,8)(T I-A(g));

v) T I-A(fg) <> T IFA(f°g);

vi) (T I-A1f > T |-B1£f) = F VI(T I (A~+B));

vii) if A contains no free sequence variables and no distinguished

terms, then:

a) Sl-A < TI-A;

b) T I-3xA < 3x(T IFA);

viii) if Ael(L), then (TIFA) < A,
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PROOF. i), ii) Easy, write out the definition of T I-Vx... , T I-3x..
and use 4.10.
iii) VaeS Ao abbreviates Va(Vn(oneS) - Aa), so writing out

T I-VoeS Ao yields

VI'VE € I, (T',T)Vg e I, (T',U)VI"Vh e I  (T",T")

(¥nVa e T"(g(ha)n € 8) ~ T" I ((A1£) (g)1h));
this is equivalent to (use 3.4.(vi), 3.11.(ii))

VI'VE e I (T',T)Vg e I, (T',UVI"Vh e I (T",T")

(geh e II (T",8) > T" |- (A1feh) (goh)),

and it is not hard to see that this is equivalent to the second formula

of (iii).

iv)  Easy.

v) Formula induction.

vi) Easy.

vii) a): by 4.5 and the fact S IA = S |- (A1f).

b): T I-3xAx = 3¢ € IO(T) (T Il-FA¢); as ¢ is continuous, we have

¢o(yx) 1is constant, for some yeT, so by 4.10 and 4.9.(i)
Ix(Ty |[FA(Aa.x)); hence 3x(T I-Ax), by (a) and 4.9.(ii).

viii) Formula induction: use (vi). 0

4.13. THEOREM. (Soundness.)

IJFA = I,k VT IFA).

PROOF. Induction over the length of a proof of A.

Logical axioms and rules of APP:

A~>A, Vx Ax~At: trivial, for t contains no choice variables.

At >3Ix Ax: wuse 4.9.(ii) and I AXI.

--------- 0

—— : trivial, by 4.5.
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% : easy, by 3.11.(ii).

% : easy, by 3.8.(ii).

AA—?;# ¢ trivial.

%‘:ﬂz—%: assume T IFAAB->C, i.e.

(6) VSVE e I](S,T)(S IFAME£AS |I-B1f > S |I-C1£).

This implies
VSVE € I, (S,T)VS8'Vg € I,(S",8) (S I-A1£og A S |- Blfog > S |- Clfog).
Distribute VS, Vge I] (s',S):

VSerI](S,T)(VS'Vge I](S',S) S'" IFA1fog >

> ¥8'Vg el (8',8)(S' lIl-B1fog -~ S' ll-C1feg)).
With 4.10:

@)) VSerIl(S,T)(S I-A1f »

VS'Vg e I (S',8)(8" I-Blfog > S' Ik C1fog))

i.e. TI~A~> (B>C).

The other way round is easier: take S' := S, g := Ax.x in (7) and we
get (6).

AL-»% : trivial.

—ﬁéx%: assume T |[FA~>B, i.e.

(8) VSVE ¢ II(S,T)(S I (A1£)(x) ~ S I-B1f).

Let fe I](S,T) and assume
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S I~ (A1£) (¢) for some GeIO(S).
By 3.10.(i) &émod¢ for some GeMO(S). Now, by 4.11:

VaeS s- Il- (A1£0 (a(8a)*)) (4o (a(Sa)*)).

(8a)

Since &mod¢, we have

VaeS3IxVb e SE(Ga)¢(a(63)*b) =X,

.

so, with 4.9.(ii)

VaeS3xs- y I @a1fo (a(sa)*)) (x).

(8a

With (8) this gives

‘~7’ae§(32l Il-B1(fo (a(sa)*)))

(8a)

which implies (by 4.11) S |-B1f.

So we have shown
VSVE € II(S,T) (36(S ll- (A1£) (¢) > S II-B1f)

i.e. TI-(3xA~B).

Non-logical axioms of APP: most of them present no problems. We only

consider IND:

assume T |FAOlIf and T |FVn(An->A(n+1))I1f, 1i.e.
Vn VS Vg € I](S,T) (S IFAmfoeg - S [FA(n+1)1fog); then Vn(T |-An1f
> T ll-FA(n+1)1£f), so with T |FAO1f we get Vn(T |[-An).

. * .
Axioms and rules of APP" for sequence variables:

VRSEQ; let A=A(_§), B=B(u,§). Now EZFW(T I (A+B)) reads

T, F VT(f,g € I,(s,1)

> VS'Vh eI (5',5)(s" IFA(f1h) > S' I-B(goh,f1h)));
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-

we quantify over S, jf, g, take S' :=S, T :=1U, h :=ix.x and get
T, F VsVE,g e 1 (5,0(s IFA() > s I-B(g,D));

now take f := fohok and use 3.11.(ii) and I,(5,1) <I,(S,U) (by 3.4.
(vi)):

I,k VS"T(f e I,(8",T)>VS'Vh eI (S',8")VsVk € I,(S,8")

(s I-A(Eohok) > Vg e T (5,0) (S Ik B(g,Eohok)))) .
Distribute VS, Vk eI](S,S') and apply 4.5:

T, F vI(f e I,(58",T) > VS'Vh e T (S',8") (8" I-A(Eon) ~

> V8'Vk € I (S,8")Vg € 1,(S,0) (S II-B(g, Fohok))))

i.e. 22 F VI(T Il- (A~>VaB)).

EIRSEQ: as above, but simpler: write out U I (A-+B) and use I](S,T) c
< 1,(s,0).

VaAa ~AB: let A=A(a,_y>). Now T - (VoAo -+ AB) reads

g.he I,(5,T) > V8'Vk e 1,(S",8)(V8"V1 e I (S",8")

VE T (58",0)(s" Il- ACE,hoko1)) ~ S' ll- A(gok,hok))

and this holds in T,: to see this, take S" :=S, 1 := Ax.x, f := gok

2
and use I](S,T) CI](S,U).

AB~>30Ad: let A=A(a,y). Now T I (AB~3aAa) reads

g.h e I,(S,T) > ¥S'Vk e 1,(S",8)(S" I- A(gok,hok) -

> 3f eI (S',0)(s' I- ACE,hek)))

which evidently holds (take f := gok).
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SEQAX1: T ll-VoVn3x(an=x) reads (see 4.7.(i))

VSVg € Il (S,U) Vni¢ e IO(S)Va € S(gan = ¢a)

and this holds by the definition of II(S,U).

SEQAX2: T |~Vx Jo Vn(xn=on) reads (4.7.(ii))
Vx3g € I1 (T,U) VnVa e T(xn = gan)

and this is a consequence of IOAXI and the definition of I

SEQAX3: T II-VoB Iy Vn(yn = <an,Bn>) reads

VSVE € II (S,U)VS'Vg € I] (8',S)Vh ¢ I] (s',u)
Jk € I] (S,U)VnVa € S'(kan = <f(ga)n,han>)
and this follows from 3.8.(vi) and 3.11.(ii).
SEQAX4: T |l-Yax 38(BO=xAVn(B(n+1) =an)) reads
VSVfE € II (S,U0) vx3g ¢ II (S,U)(Va e S(gal =x) A
A VnVa e S(ga(n+1) = fan))

and this follows from the definition of I’(S,U).

. *
Tree_axioms_and rules of I

VRTR, E!RTR, VAXTR, EIAXTR: easy, since VT, 3T commute with |[.

TRAX1-8: also easy, for they do not contain sequence variables.

I AX1: S I (Va eT(da=x) ~ ¢ € IO(T)) reads

0

VS'(VS"Vg e I, (S",T)Va €S"(¢(ga) =x) > ¢ ¢ I,(t)

and this holds in T (take S" :=T, g := AX.X).

2

zoé}_(g: easy, as it contains no sequence variables.
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IO@_Q: using (3x Ax~>B) <> Vx(Ax>B) and (AVB->C) <> ((A>C)A(B~>C)),
we can rewrite IOAX3 without Vv and 3. Now the proof of T I IOAX3
is analogous to that for T |- IND.

I AX: T I-Va e§]Vf € I](SI ,SZ)SB e§2Vn(Bn=fom) reads

1
1 1 1
vT VgeII(T ,S])erI](Sl,SZ)BheI](T ’SZ)

VaeT' Vn (han= f(ga)n)

and this follows from 3.11.(ii).

ECSI: S I-(YaeT Aa > Yo eT Aa) reads (remember that A is prime)
VS'(VaeT Aa > VS"Vf ¢ I,(s",T)¥ € STA(fb))

and this follows from the definition of Il'

ECS2: both S I-(Ya(Aa~>Ba)) and S - (VIVE e I,(T,U)(Va eT A(fa) »

+ VaeT B(fa))) are equivalent to
VIVE € I](T,U)(T I-Af > T I-Bf);

use 4.7.(iv) for the second equivalence.

ECS3: S |-Va eT3xA(a,x) and S -3¢ ¢ IO(T)VaeT A(a,¢0) are equivalent

to

3 € I (T) (T IFAQx.x,4)) .

ECS4: analogous to ECS3.

EAC: easy, by 4.12.(vii) (recall that EAC does not contain free

sequence variables).

|

We complete the picture of IT, I, and Ik as follows.
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.14. THEOREM. 1i) Let A be a completely regular formula of ZT Then

I F A (TR,

ii) Let A be a formula of I, Then

T, kA< (TIFA).

PROOF. i) With formula induction we show, for completely regular A:
I} F VaeT A(pa) < T IFAG);

from this (i) follows.

A prime: by ECSI.

A=BAC, A=VxBx: easy.

A=B->C: simple, use ECS2.

A=VBBR: by the definition of Il- and the induction hypothesis we see
that T IFVBB(;,B) is equivalent to

(1) VSVE € L (S,T)Vg € I,(S,U)Va € § B(p(fa),ga);

now (1) <> Vo eT VBB(ga,B): < is evident; for -+, take S := TxU,
f := Tys 8 =M and use substitution for = (A is regular, hence B).
A=3BBB: use ECS4 and the induction hypothesis.

A =3xBx: analogous.

ii) We prove with formula induction:
I, FAG < TIFAG),

- . -> . > >
here the p are constant parameters with value x, i.e. Va pa=x. From

this (ii) follows.

A prime, A=BAC, A=B~>C, A=VyB: easy.

A=3yBy: now T I~ EIyB(y,;) =3¢ IO(T) (T II—B(¢,;)); by the induction
hypothesis and 3.10.(i) this is equivalent to

36 eMO(T)EI(b € IO(T)(G mod ¢ A

A Va EE(TE((S&) I-B(p1(a(8a)+),9°(a(8a)*))))
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. First we define a new theory I, which looks like T
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i.e. (by 4.4.(1))

38 € MO(T)EI¢ € IO(T) (S mod ¢ A

—_ 5 -
A Va e T3y (TE(Ga) II-B(p1(a(sa)x),rz.y))).
With the induction hypothesis:
36 € M (T)3¢ € I)(T) (Smod ¢ AVa e T 3y B(X,¥))

i.e. EIyB(;,y). 0

Reduction to LQI .

In this section the proof of our main theorem is completed.

I,» but without tree
variables. Let IOAXI'—3’ be the following axiom schemata ( A an arbi-

trary negative formula of APP):

IOAX] ' Tree(A) AVa cA(pa=x) + ¢ € IO(A)
' -
IOAXZ Tree(A) AVR € A(¢)’€ € IO(A)‘E)) > ¢ € IO(A)
IOAX3’ Tree(A) AVx € AV4[3IyVa eKX(tba =y) v(V§ e A(¢? eP(xx§)) >¢ e P(x))] +
> Vx eA(IO(Ax) cP(x))
Now T, := APR+I AXI1'-3'+EAC.

THEOREM. T, kA = I3 FA for Ae L(f£3).

PROOF. A detailed proof would be long and tedious, so we confine our-
selves to a sketch. Let zf be an arbitrary subtheory of IZ with only

2
finitely many instances of TRAX5, say for the formulae A "An' We

1o
assume FV(Ai) C{x,zi}, i=1l,...,n (the variable x 1is used to define
;= (lthx eN)

£
2

the set Ai; see 1.9). For technical reasons, we add AO

to the list A]""’An' We shall define an interpretation : I,~>1T

3
satisfying
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f f
I, FaA = I3 F A

from this the theorem follows.
The naive idea for £ is: replace formulae VT A[Tj eT]j by

n

{go(Tree(Ai)-*A[Ai(rj)]j).
But this is not enough, for the Ai may contain parameters, and we also
have to deal with the closure conditions VIVx(x e T->3S(S ETX)) (TRAX6)
and VTT'3S(S =TxT') (TRAX7). This leads us to considering the 'universe
of trees' of Ig, which consists of the trees defined by AO""’An’
closed off under taking subtrees and products.

We recall the notation x, [ ]0, L ]l from 2.1 and define the following

notation:
< >
X = X,
0 1= [xylo, e L [xyll;
here y = Ygreeeo¥y>s Vi < Oor 1l (i=0,...,n). Such a sequence y is
called a 0-1-sequence and we call %  the y -projection of x.
An example:
<1,0,0> _
X = [[[x]llo]o.

We now have e.g.

b'q e(T]xTz)XT3 And x<o’0> eT] A x<0’]> eT2 A x<1> eT3.
The idea now is to code the trees of the 'universe of trees' of lg by
quintuples y, z, u, v, m which satisfy
i) z, u, v are finite sequences with length m;

ii) z 1is a sequence of parameters;

iii) u 1is a finite sequence of different finite O0-1 -sequences;
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iv) v 1is a sequence of natural numbers <n;

v) <>, z, u, v, m code a tree which contains y.
(i) - (v) are collected in Adm(y,z,u,v,m):

Adm(y,z,u,v,m) := 1thz = lthu = 1thv = mAme NA
Vi <m(1th(u)i eNA (v)i eN) A
Vij <m((u)i = (u)j >i=j)aA
Vi <mVk < lth(u)i(((u)i)k€ {0,1}) A
Tree(T( <>,x,z,u,v,m)) A

T( <>,y,2z,u,v,m),
where

n
T(,x,2,0,v,m) = Vi<n( A G=m); > o0 Piealz =@,
j=0
We call {x|T(y,x,z,u,v,m)} the tree coded by y,z,u,v,m; it consists

of those x for which holds:

for any 1i<m, the (u)i—projection of y*x 1is in the tree

defined by the formula A(v) with parameters (z)i.
i

Now the definition of £ is as follows.

(‘t;’TB)f Vyzuvm(Adm(y,z,u,v,m) > (BLT :=T(y,x,z,u,v,m)])f)

(ElTB)f dyzuvm(Adm(y,z,u,v,m) A (BLT :=T(y,x,z,u,v,m)])f)

commutes with Vx, 3y, A, VvV, - and leaves prime formulae

unchanged.

By this definition of £ , we get formulae like Te (T(y,x,z,u,v,m))c and
Te€ (T(y] » X 525U,V ,m]) x T(yz, X ’ZZ’UZ’VZ’mZ)); to interpret these we

recall the conventions
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TeA := Alx :=1]

‘l.‘er 1= o*T €A

from 1.9, and adopt the following:

TelU := 1tht €N,

T €AXB := [‘t]oeA A ['r]l € B.
We check the soundness of £ in the version
ha = 1k oF 0,

where T are the free tree variables of A. By the definition of £ , we

only have to inspect the rules and axioms concerning trees, and EAC.

VRTR’ EIRTR, VAXTR, EIAXTR: easy.

TRAX1: (VT(T::ee(T)))f follows from the definition of Adm.

TRAX2-4: trivial, by the conventions mentioned above.

TRAX5: we only have instances with Ai’ 1 <i<n. Now
A (x,2) © T(<>,x,2, <>,1I,1)

and, by Tree(Ai(x,z)), we have Adm( <>,Z, <>,;,1).

TRAX6: if T is coded by vy, 2z, u, v, m, then take y*x, z, u, v, m as

code for S (ETx).

TRAX7: if T is coded by y, z, u, v, m and T' by y', z', u', v', n',

then take yxy', zxz', <(“)0*6""’(“)m—l*a’(“')o*i"“’(“')m'-1*7>’

vxv', mtm' as a code for S (=TxT").

TRAX8: easy, for in Iy we have

Tree(A) A Tree(B) A A=B -~ IO(A) EIO(B)

for Ael (APP) (to be proved with induction over IO(A), IO(B)), and

also Tree(A) » A=A __.
< >
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EAC: it is enough to show that Af is negative if A is. By the defini-
tion of £ we only have to check that T(y,x,z,u,v,m) 1is negative, and
this follows from the fact that the Ai are negative (by the restriction
on TRAX5).

This ends the proof. [

Now we compare I, with APP +EAC+ID, (see Ch.III, §5 for inductive

1
definitions).

5.3. LEMMA. T,k A = APP+EAC+ID, kA for A e L(APP).

PROOF. We shall show that IOAX1-3' follow from IDI' Let BA = BA(P,z)

be defined by (we write <x,¢> for z):

B, (P,<x,9>) := [3yVa(¥n(x*an € A) >pa=y) Vv

V Vy(x*§ € A+<x*?,¢?> eP)] »><x,¢> €P.

I‘B is the predicate operator with
A

z € I‘BA(P) e BA(P,z).

We write IA for I]‘ (T abbreviates Ty ), the least fixed point of

I‘BA; by ID] we have

(n I‘(IA) < IA’
(2) ') <P ~» IACP.

Now we define IO(Ax) explicitly by
¢ € IO(Ax) = <X,9> € IA;

writing out (1), (2) and substituting ¢eIo(Ax) for <x,¢5>eIA and

¢ e P(x) for <x,¢>eP yields IOAXI'-3', even without the condition
Tree(A). O
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5.4. THEOREM. APP*+EBIF A = ID kA for Aecl(HA).

PROOF. Let APP*+EBI F A, AecL(HA). Then, by 2.11:
17k A

By 4.13 and 4.14.(ii) (A 1is a fortiori in the language of 22):
I kA

By 5.2 and 5.3:
APP +EAC + 1D, F A.

Finally, by Ch.III, 5.13:
I, I A.

]

To establish that ID. axZomatizes the arithmetical fragment of APP +EBI,

1
we prove the converse of the previous theorem. We shall use a result by

Sieg, for which we first need a definition.

5.5. DEFINITION. Let {-}(+) be the Kleene-bracket-notation as introduced in
Ch.II, 4.3. Without loss of generality we may assume that Vn {0}(n) = O.
We define the axioms OAX1-3:

0AX1 0e0
0AX2 vo({x}(n)+ A {x}(n) €0) > xe0
0AX3 A0) A Vx[Vn({x}(n)+ AA({x}(n))) ~Ax] > Vx e 0 Ax

0 is called the inductively defined tree class of the first order. We

also put

IDI(O) := 0AXI1 + 0AX2 + 0AX3,

Qﬁm:=g+mﬁm.
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5.6. THEOREM. (Sieg). 1D, and 121(0) prove the same arithmetical theorems.

PROOF. Follows from [BFPS81], Ch.III, Theorem 3.2.3. [

5.7. LEMMA. 1D, (0) A = APR*+BIF A.

PROOF. We interpret xe0 by
(N Vo ¢ N*3n(£x(an) =0 A Vm < n(fx(am) >0))
where f is the function satisfying

fx <> = x,

fx(y*2) = {fxy}(z).

We verify that O0AX1-3 become derivable in APP* +BI under this inter-
pretation. OAX1 and OAX2 follow, without using BI, by writing out
their interpretation and using the definition of f; for O0AX3 we do need

BI. Assume

i) A0,

ii)  Vx(vn A({x}(n)) »~ A(x)),

iii) xe0, i.e. VaeN 3n(fx(an) =0 AVm <n(fx(am) >0)).

Put
By := Vz «ENq‘j A(fx(y*z)).

Then

a) Bar(N"“,B), by (i), (ii) and Vn({0}(n) =0);

b) Mon(N<w,B), by the definition of B3

¢) Ind(N"“,B), by (ii) and the definition of f3

d) Tree(N"").

So with BI we get B <>, hence A(fx <>), i.e. Ax. We conclude
vxe 0 Ax, so O0AX3 is derived. [

5.8

THEOREM. APP*+EBI F A < ID kA for Ael(H).

PROOF. Combine 5.4 and 5.7. 0O
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5.9.

We now formulate the principal corollary. Let Eg* be the theory EL
(see Ch.II, 4.7), but with a, B, ... as sequence variables. In EL*
we can write down Tree(A), Bar(A,P), Mon(A,P), Ind(A,P) and EBI(A,P)
just as in égg* (now x, y range over natural numbers); EBI for E&*
is defined as EBI(A,P) for all Pe L(Ek*) and all AeL(HA).

THEOREM. EL* +EBI and ID, prove the same arithmetical theorems.

PROOF. We interpret EL* in ApPpP* by extending the interpretation
of HA into APPE (Ch.II, 4.1) with the identity for Va, Ja. It is not
difficult to show that A° always is a regular formula; this is used to

obtain
EL*+EBI A = T | &’
Combining this with 5.4 and Ch.II, 4.5.(ii) we get

EL*+EBI F A = ID, - A,

the first half of the theorem. The proof for the inverse implication runms

parallel to 5.7. [
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III. Notation.

Theories.
APP 11.2.1 , I11.5.11
ApPE I1.2.2 1,0 1v.5.5
APE} I11.3.14 LE I.3.1
APP* .1.2 LE 1.3.2
APP(¢) I11.4.1 LE(A,) 1V.5.5
APP(€,A)) II1.4.2 LE(A,0)” IV.5.5
APB(e,4,) III.4.4 LEE, 1.5.1
APT I1.5.11 LEE | I1.5.1
APT(4) I1.5.1 LEF, (3) 1.5.3
apT($)* 11.5.10 LEE(3) 1.5.3
cs* v.2.2 M, 1I1.6
EL 11.4.7 T(d) I.4.11
EL* I11.4.9, T .2.1
1v.5.8 I, Iv.3.1
HA I1.4.1 g; v.3.1
" 11.4.3 I, 1v.5.1

Axioms, rules, schemata.

AC II1.2.2 DP ITI.3.19
AC! I1.5.2 EAC III.1.1
Ac, I11.2.2 Eac’ I11.2.2
APC! 1.5.2 EAD Iv.2.8
AX(A,0) 1.4.3 EAX 1.3.1,
BI V.1.13 11.2.2
ct, III.2.21 EBI v.1.13
DEQ III.2.2 EBI" Iv.1.13

DNS I1I1.2.2 EBI(A) Iv.1.13



EBI(A,P)

EBI
ar

ECS1-4
ECS2'-4"

ECT0

+
ECT0

EIUS
EP

EPN

FAXP

FAXT

GC

cct

IOAXI—3

1_qt
IOAX] 3

I]AX

D,
D, (0)
ID(r,Ip)
IND

p*

P

IP

Z % =2

kAX

KS
0Ax1-3
pAX
PdAX

PRI-5

IV.1.13
Iv.1.14
Iv.2.1
Iv.2.8
I1I1.2.17
I11.2.19
Iv.2.11
III.3.19
III.3.19
I.5.1
I.5.1
I11.2.17
I11.2.19
Iv.2.1
Iv.5.1
Iv.2.1
III.5.11
IvV.5.5
III.5.2
I1.2.1
I11.2.2
I11.2.2
I1I1.2.2
I1.2.1
I11.2.2
Iv.5.5
I1.2.1
I1.2.1

I1.2.1

QF-AC
RDC

RDC]

SAX

SAX

sAXE
SEQAX1-4

STR

SUB

SUB(=2)
TRAX1-8
AAX
AAX

eAX
eAX(A)

VAX

VAX

Vphx

VAXSEQ

VAXTR

VNAX

11.4.7
II1.2.2
II1.2.19
I1.2.1
I1.2.1
11.2.2
.1.2
1.3.1,
11.2.2
1.3.1,
I1.2.1,
I1.2.2
11.3.3
.2.1
I1.2.1
I1.5.10
II1.4.1
I11.4.1
1.3.1

I1.2.1,
I1.2.2
1.3.2
I1.5.1
IV.1.2
v.2.1
III.3.14
I.3.1

I1.2.1

I.3.2
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3AX

HFAX

HAXSEQ

3AXTR

INAX

1.5.1
v.1.2
.2.1
1.3.1,
11.2.1,
I1.2.2
1.3.2
I1.5.1
v.1.2
v.2.1
II1.3.14

Interpretations.

d :

I] e Iz
LE(A,9) ~ LE

ApPE > app

Th(APT) ~ HA
APR > HA
APE > ARP

*'*HA*

AR > APP
ARR(,A0) > ARP

APR(e,A)) > APP

0AX

I.4.1
I.4.6
I1.3.5
IT.4.1
I1.4.3
I11.4.7
I1.4.9
II.5.15
I1.5.17
III.3.1
III.3.15
III.3.16
I11.3.19
III.3.19
I1I.4.4

I11.4.4

I.3.1,
I1.2.1
1.3.2

I.5.1

v.1.2
v.2.1
I11.2.1
1.3.1,
I1.2.1
I1.3.3

I1.2.1



Variables, metavariables.

P,
Q,
a,
Py

m,

a,

£

.

APR(e,A)) > ARR(e,A))”

APR(e,A)) > APR(e,Aq)

T-1

MxT(e) > T

() > 1
B > ML,
ML, > APE

APP > APP
*

]

)
*+T
)

1]

Byonn

b,
O,

n,

.

Cheney X, ¥

Tyure

c, dy...

h,...

I.3.1
I1.5.1

y Z
I1.2.1
I1.2.1
I1.4.7
I1I.4.4
I1I1.5.1
Iv.1.2
Iv.2.1
Iv.2.1
Iv.2.1

Iv.2.1

I1.2.1

III.4.5

III.4.7

III.5.5

I11.5.8

I11.5.8

III.6.1

III.6.3

I11.6.5

Iv.4.2

IV.4.6
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Other notation and symbols.

A Iv.1.10 s 11.2.1

Bar Iv.1.13 S 11.2.1

E 1.3.1 T I1.5.7

ET 11.5.7 Tree IV.1.10

Ix I.1.1 U Iv.2.1

I 1I1.5.2 A Iv.2.1

1" I11.5.6

¥ II1.5.9 r I111.3.9

Ind IV.1.13 T, II1.5.1

I, I, v.2.1 rt I11.5.6

k 11.2.1 rf I11.5.9

1th IV.1.9 A 11.2.1

mod 1v.3.9 8 1.4.6

Mod Iv.3.9 € T.4.6, I11.4.2
Mon Iv.1.13 €5 111.4.1

M 1I1.4.4 Ax 1.2.6, 11.3.6, II.4.7
M, III.4.15, 1vV.3.9 Ax I1.4.3

M, Iv.3.9 Aa 11.4.9

N II1.2.1, II.5.1 u 11.3.10

N IV.1.10 Tos T 1V.3.6

N IV.1.10 T I11.3.12, II1.6.9
NT 11.5.7 o) 1.4.2

0 1V.5.5 LIRRERRN 1.4.2

P I1.2.1 ¢ 11.3.7

Pys Py I1.2.1 ¢x Iv.1.9

Pd I1.2.1

R I1.3.8, II.4.7



4y (%)

I.2.6
I.4.4

I.4.4

I1.2.1
I1.2.1
I1.2.1
I1.2.1
II.5.1
III.4.7

I11.4.7

11.4.7, II1.5.1
III.5.1
III.5.5
IV.1.9, Iv.3.6
1v.2.1, IV.3.6
IV.3.6
1v.3.6

IV.4.4

1.4.1

1.4.1, II.5.1,
II1.5.8

II.2.1, III.4.3,

Iv.1.10, IvV.4.2

3

()5 (),

{+3()

11.2.2

II.5.1

I1.5.2, III.5.1,
IV.1.7, IV.1.11
III.5.1

Iv.1.9

Iv.1.11

IV.1.11

I1.2.1

I1.2.1

I1.2.1

II.4.3

I1.4.9

III.5.8
I1.4.9, IV.1.9
Iv.1.9

IvV.1.9

Iv.2.1

1.4.6, I1.3.11,
II1.5.5, IV.4.3
Iv.1.9, 1Iv.1.10
IV.1.9, IV.1.10
1.3.1, I.4.4,

I1.2.1, IV.4.3,
Iv.1.9, Iv.1.10,

Iv.2.1
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SAMENVATTING

In dit proefschrift worden formele theorieén van intuitionistische logica
en intultionistische wiskunde bestudeerd. Hoofddoel van het onderzoek is
het karakteriseren van het rekenkundig fragment van de theorie EL +EBI,
elementaire analyse plus het axiomaschema van 'uitgebreide versperrings-—
inductie' (Extended Bar Induction). De weg naar dit doel voert ons in
hoofdstuk I langs intuitionistische logica met descriptoren: dit zijn
operatoren die, toegepast op een formule A(x), het unieke object x met

de eigenschap A opleveren (indien zo'n object bestaat). In hoofdstuk II
bestuderen we twee theorieén APP en éggE, beide gebaseerd op type-vrije
applicatie; in APP 1is deze applicatie totaal, in éng partieel. Aange-
toond wordt dat APP een conservatieve uitbreiding is van HA | intuitio-
nistische rekenkunde. Hoofdstuk III is gewijd aan APP plus EAC, een
'uitgebreid keuze-axioma' (Extended Axiom of Choice). Ook APP + EAC

blijkt conservatief over HA te zijn. Een zijpad voert over aan het eind
van dit hoofdstuk naar MLO’ de basis van P. Martin-Lof's extensionele
typen-theorieén. In het vierde en laatste hoofdstuk betrekken we het axioma
EBI in het onderzoek. Via een aantal uitbreidingen van APP met o.a.
keuzerijen en boomvariabelen reduceren we EIL + EBI tot de theorie lB]’
intuitionistische rekenkunde uitgebreid met (niet-geitereerde) inductieve

definities.






STELLINGEN
bij het proefschrift
Theonies of Type-free Application and Extended Bar Induction

van Gerard R. Renardel de Lavalette

Aan de theorie APP, gedefinieerd in hoofdstuk II, §2 van dit proefschrift
kan een bewijsbaarheidspredikaat pOA worden toegevoegd, met de betekenis

p 1is een bewijs van A. Een natuurlijke axiomatisering is:

A <> Jp(poA)

pO(AAB) < (p)]DA A (p)an
pO(A+B) < (p), O(Yq(qOA > (p),qOB))
pOVxAx > (p), B (Vx((p),x OAx))
podxAx <« (p), DA(p),

Zij Qggn de aldus gedefinieerde theorie. Dan geldt, voor formules A van

i) APP+AC Kk A = APP” I A,

ii) APP° F A = APP+EAC | A.
Uit (ii) en uit stelling 4.21 van hoofdstuk III van dit proefschrift volgt:

ses o .
iii) APP~ conservatief over HA.

Zij A-+B een afleidbare formule in de intuitionistische predikatenlogica,
en zij I de interpolant van A-+B, verkregen uit het bewijs van

K. Schiitte van de interpolatiestelling voor de intuitionistische predikaten
logica in diens artikel "Der Interpolationssatz der Intuitionistischen

Pradikatenlogik". Dan geldt:

elke predikaatletter die een strikt positief voorkomen
heeft in I, komt strikt positief voor in A en posi-

tief in B.

Hierbij is het begrip strikt positief voorkomen gedefinieerd door: p komt



strikt positief voor in A als p uitsluitend in positieve subformules

van A voorkomt.

K. SCHﬁTTE, Der Interpolationssatz der
intuitionistischen Pradikaten-
logik, Mathematische Annalen 148,
p. 192-200 (1962).

Zij {t(n)}:=0 een rij reéle getallen waarvoor geldt

t(0) =0
t(1) 1
t(n+2) = a<t(n) + 2b-t(n+l) (n20)

waarbij ab # 0, b2+a > 0. Dan geldt

i
@ (27) S
) 2 g +b+/b’+a als b<0

izo vt

[}
]

+ b - /b2-+a als b>0

ol

Problem E2922 (proposed by Roger
Cuculiére, Paris, France),
American Mathematical Monthly 89
(1), p. 63 (1982).

zij
Vk={(a ad)la,ezZ/n, i=1 k}
n o) lag , yeoe

de verzameling van rijtjes met lengte k van niet-negatieve gehele getallen
kleiner dan n. Twee elementen 3= (al,...,ak) en g = (bl""’bk) van
Vﬁ worden equivalent genoemd als er een getal d 1is met 0<d <k, zodanig
dat

a =b

1 d+1° 2

2 = bd+2’ oo

Ap-d+1

. > >
Notatie: a ~ b

Er geldt: het aantal equivalentieklassen ”V:/~I|van V: wordt gegeven door



k -
V¥~ =

1 d’
= ] o@d)-n
K gk

dd’

Hierbij is ¢ de indicator-functie van Euler.

Dankzij de mogelijkheid van kunstlens-implantatie is de grijze staar de bes

behandelbare ouderdomskwaal.

De toevoeging van een correspondentierubriek, waarin op korte termijn bekno
te reacties op verschenen artikelen geplaatst kunnen worden, zal de waarde

van menig wetenschappelijk tijdschrift ten goede komen.

In hoofdstuk 6 van zijn proefschrift Judging geeft H.J.M. Boukema een logi-
sche analyse van een arrest van het Europese Hof van Justitie. Hiertoe ge

bruikt hij de propositielogica in de zgn. Poolse notatie. Hij concludeert:

'The above analysis of the Van Duijn Case by means of the
propositional calculus of modern logic and the examination
of the arguments of this case by means of counter-formula
method do not let the Court's reasoning appear as logically

sound in all respects.'’

(H.J.M. Boukema, Judging, Tjeenk
Willink, 1980, p. 128).

Zowel zijn keuze van het logisch systeem als deonzorgvuldige wijze waarop d
auteur de betreffende gedeelten van het arrest in logische formules vertaal

ondermijnen deze conclusie.

'Hardy va lui rendre visite a 1'hGpital, et lui dit qu'il a pris un taxi.
Ramanujan demande le numéro de la voiture: 1729. "Quel beau nombre!
s'écrie-t-il; c'est le plus petit qui soit deux fois une somme de deux
cubes!" En effet, 1729 est égal a 10 au cube plus 9 au cube, et aussi 3 12
au cube plus 1| au cube. I1 fallut six mois @ Hardy pour le démontrer, et le

~ < ' . . . '
méme probléme n'est pas encore résolu pour la quatriéme puissance.

(L. Pauwels & J. Bergier, Le matin des
magiciens, Editions Gallimard, 1960,

p. 555-556.)

De auteurs van dit citaat getuigen van een ernstige onderschatting van
Hardys rekenkundige vermogens, Of van een gebrek aan eigen vaardigheid op

dit gebied.



