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INTRODUCTION

PARSIMONY IN APPLYING LOGIC

When one wants to use logic to formalize a problem in such diverse fields as philosophy,
linguistics or computer science, the first difficulty one encounters is the following:

What is the appropriate logic which fits my specific problem?

There are two parameters in the above question which have to be made clear: appro-
priateness and fit. Assume that one has indeed good reasons to use formal logic'.

It is easy to make the first criterion precise: the logic should contain enough ex-
pressive power to give an accurate description of the problem. A good example is
Propositional Dynamic Logic (PDL) (cf. Harel [Har84]), which is expressive enough to
formalize the regular programming constructions. Another example is first—order (FO)
logic, which is expressive enough to capture most of mathematical reasoning.

Whether a logic fits a specific problem, is a question which seems harder to answer.
While the appropriateness criterion asks for enough expressive power, a good fit could
mean that there is not too much. In this view, the two criteria become necessary and
sufficient conditions on the expressive power of a logic. Clearly, there is more to say
about fit, but we stay with expressive power for a moment. The expressive power of a
logic is closely connected to its complerity. In the article titled Sources of Complexity:
Content versus Wrapping, J. van Benthem describes this situation as follows:

Any description of a subject carries its own price in terms of complexity. To
understand what is being described, one has to understand the mechanism of the
language or logic employed, adding the complexity of the encoder to the subject
matter being encoded. Put more succinctly, “complexity is a package of subject
matter plus analytic tools”. ([Ben94b], p.1)

Since one of the main advantages of a formalized problem is that one can make definite
statements about the complezity of the problem, & close fit between the complexity
of the encoder and that of the subject matter seems to be a sine qua non. As van
Benthem describes:

...working logicians in linguistics or computer science often have the gut
feeling that the styles of reasoning they are analyzing are largely decidable (... ),
but it is hard to give any mathematical underpinning of these working intuitions.

([Ben94b}, p.9)

Could it be that the logic they used is appropriate, but does not fit in the sense that
it contains an excess of expressive power? After all, when proving decidability, one
proves decidability of the encoder, not of the subject matter.

1Tn the broad sense that a syntax and a semantics are precisely defined, so that a mathematical
investigation of that logic itself becomes possible.
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Two good examples of logics, carefully designed for the problem at hand, are the
‘above mentioned PDL and the Lambek Calculus (cf. Lambek [Lam58], van Benthem
[Ben88]). Both are decidable. Both? can be viewed as a fragment of Relation Alge-
bra, which is undecidable. Besides being decidable, these two logics have found many
applications besides their original purposes.

This brings us to a second point one should make about the fitness condition, and
which might conflict with the previous one. How close should the fit between logical
language and problem be? If we use only binary relations in the description of the
problem, should we then abandon unary predicates in our logic? Should we always
include all Booleans? One should be liberal here, and allow “natural” logics, which
are rich enough to express the original problem, but which fit well with respect to
complexity. .

To conclude, when designing a logic for a specific problem, it seems to pay off to do
one’s conceptual homework. Instead of taking the well-driven paths and diving straight
into deep water, assuming a beginner’s mind seems to be more fruitful: What are the
operations needed? What are the objects to be modeled and how much mathematical
structure is needed to model them? What are the models? etc. If the conceptual
homework is done well at this early stage of the work, there is reason to be confident
in the complexity results later on.

In subsequent chapters, we will investigate decidable versions of relation algebra
(cf. e.g., Jénsson [J6n91] or Maddux [Mad91b], for an introduction) and of first-order
logic (with finitely or infinitely many variables). Stating and motivating the results,
we will hardly refer to applications, letting the future decide whether these weakened
logics can indeed play a réle as sketched above,

The results presented here can be viewed as additions to the tool-box of the ap-
plied logician. Since these two logics are well-known and frequently used, it seems
indispensable to have “computationally well-behaved” versions of them as well.

ARROW LOGIC. As is well known, the classical models for relation algebras are not
finitely axiomatizable (Monk [Mon64], Andréka [And91a]), their equational theory is
highly undecidable (Tarski-Givant [TG87], Andréka et al. [AKN*04]), and the corre-
sponding logic does not even have the weakest form of Craig Interpolation (Sain-Simon
[SS94]). Almost the only positive thing one can mention is its enormous expressive
power. (E.g., in Tarski-Givant [TG87] it is shown that this formalism is expressive
enough to formalize set theory.)

The research project of looking for weakened decidable versions of relation algebra
became known under the name of Arrow Logic (cf. van Benthem [Ben9la), Venema
[Ven91], [Ven94]). If we take the name “arrow logic” in its original sense, it stands
roughly for the whole landscape of possible semantic modelings for the “logic of tran-
sitions”, using the language of relation algebras.

The ideas and techniques, we use for obtaining and investigating this landscape are
not restricted to arrow logic in the sense described above, but can be used for almost
every family of modal logics (including FO logic). For this reason, we will also use

2When forgetting for a moment the Kleene * in PDL.
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arrow logic in a broader sense, namely as the process of “hunting for the computational
core” of undecidable logics. (Hunting is, after all, what arrows are made for. ...)

COMPUTATIONAL CORE AND RELATIVIZATION. Fix a logical language £. By the
computational core of L, we denote the class of all semantic modelings of £ whose £
theory is decidable. Given an undecidable semantically defined logic, we would like to
indicate which features of the semantics are responsible for its undecidability. So, that
part of the class of the decidable semantic modellings which is closest to the original is
especially interesting. We will see that the well-investigated operation of relativization
(cf. Henkin-Monk-Tarski [HMT71]) brings us in several cases to the computational
core, while keeping most features of the original semantics.

By changing the semantics we get our first meta-logical question: is the new de-
cidable logic finitely axiomatizable? Moreover, in Andréka—~Németi-Sain [ANS94b] it
is pointed out that interpolation has an important computational aspect. Besides
decidability and finite axiomatizability, we will also study this third aspect of the com-
putational core.

AGENDA. Summing up, we will study the computational core of two logics: Arrow
Logic and First-Order Logic. Their algebraic counterparts are the classes of relation
algebras and cylindric algebras, respectively. Both are classes of algebras of relations.
We focus attention on three main aspects of the computational core: decidability, finite
aztomatizability and interpolation.

We will state and prove our results in the framework of algebraic logic (cf. Andréka~-
Monk-Németi [AMN91]). We use techniques from both algebraic and modal logic.
Most of the proofs and the theorems also have a very definite modal-logical character,
making them understandable for readers with a modal-logical, but without an algebraic
background.

ORGANIZATION. In the first chapter, we introduce the two families of logics ~Arrow
Logic and FO Logic/Cylindric Modal Logic— whose algebraic counterparts we will study
in the subsequent chapters. For each logic, we will investigate all reducts systematically,
and in some cases expansions with a strong operation (like the Kleene * or the difference
operator) as well. For each logic treated here, we will investigate the three aspects of
the computational core given above plus Beth’s definability property. In chapter 2, we
define these logics and their algebraic counterparts more precisely. Decidability of the
algebraic counterparts of several versions of these logics is investigated in chapter 3.
In chapter 4, we find axiomatizations for decidable, but still natural versions of rela-
tion algebra/arrow logic. In chapter 5, we focus on amalgamation and interpolation
properties of the investigated algebraic varieties and logics. The last chapter is about
arrow logic proper. We show how the earlier algebraic results give rise to equivalent
statements at the logical level, and we investigate several strengthenings of the basic
language.
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APPLICATIONS IN ORGANIZATION AND MANAGMENT THEORY. This piece was de-
veloped while working at the Center for Computer Science in Organization and Man-
agment (CCSOM), a part of the faculty of humanities. An important line of research
at CCSOM is the reconstruction of arguments in the theory of organization and man-
agment, by formalizing them in (modal extensions of) first—order logic (cf, Péli et
al. [PM94], [PBMN94] and Bruggeman [Bru94]). We had extensive discussions about
which logics to use for this purpose. The final choice for first—order logic (with addi-
tional modalities for actions and preferences, cf, Huang [Hua94]) was made because 1) a
classical “monotonic” consequence relation seemed to capture the argument structure,
2) large parts of the theory are concerned with (binary) relations, and 3) first~order
logic is relatively well-known. While formally recovering the argument structure, we
discovered that large parts were relatively simple (e.g., only “monotonicity reasoning”
was involved). This led us to look at the weakened versions of first-order logic and
arrow logic described here. An important part of the work remains to be done: see
whether we can indeed use the weakened logics to capture the original arguments and
to obtain further insights in (the complexity of) its structure.
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MAIN THEMES

1.1 ARROW LOGIC IS THE MODAL LOGIC OF TRANSI-
TIONS

Arrow logic is a widely applicable system, being able to formalize many different notions
from various disciplines like mathematics, computer science, linguistics and cognitive
science (for an early application, see de Bakker—de Roever [BR73]). Its most highlighted
application area is that of dynamic semantics, which unifies insights from all of the
above mentioned fields. For more information on these applications of arrow logic, we
refer the reader to Venema [Ven94]; for the dynamic perspective on semantics, see van
Benthem [Ben91a].

In each of these fields, if one takes a “dynamic viewpoint”, transitions (e.g., between
cognitive states or between registers of a computer) become the basic object of interest.
The intuitive idea of a transition between two states A and B is that of an arrow leading
from A to B. Dynamic meaning, as given by a set of transitions, can be described as
a set of arrows. Arrow logic itself can be viewed as the modal logic of arrows.

The language of arrow logic is based on the language of relation algebras (that is,
Booleans plus operators for comgposition and converse of binary relations, and a con-
stant denoting the identity relation) allowing some modifications. While the language
of arrow logic is relatively fixed, its semantics is highly dependent on the relevant ap-
plication. We will see that there are at least two very natural semantics for arrow logic:
directed graphs and directed multigraphs. From a mathematical point of view, arrow
logic can be viewed as the enterprise of providing the language of relation algebras (cf.
Jénsson~Tarski [JT52], Henkin—Monk~-Tarski [HMT85]) with new semantics.

MODELS FOR ARROW LOGIC

In the rest of this section, we describe a natural part of the landscape of arrow models.
First we have to answer what an arrow is.

An arrow is a directed connection between two points.
Then we have two choices for drawing arrows as —.

o Extensional view: identify an arrow with the pair (beginpoint, endpoint). Then a
set of arrows is nothing more than a directed graph or an ordinary binary relation.

o Intensional view: do not identify arrows with ordered pairs, but only require that
an arrow has a unique begin— and end-point. Sets of arrows are then directed
multigraphs.
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So we can think of an arrow as an object equipped with two functions, say l; and I,
providing the arrow with its begin— and endpoint (cf. Vakarelov [Vak92b]).

Having sketched what arrows are, we ask ourselves what constitutes an arrow model.
Its domain should consist of arrows and, depending on the applications, there can
be various existential conditions on the domain. This resembles common practice in
modal logic: for different applications, there are different conditions on the accessibility
relation(s). Here we give four examples of natural conditions on arrow models. Note
that with the extensional view, the first three conditions taken together imply that the
domain is an equivalence relation, i.e., a disjoint union of Cartesian squares. We state
these conditions for models in which we identify arrows with pairs. Let V C U x U be
the domain of an arrow model:

(1) Reflexivity (u,v) € V = (u,u), (v v) €V
(2) Symmetry (u,v) €V =>(v,u) €V
(3) Transitivity (u,v), (v,w) € V = (u,w) €

(4) Classical/Square V is a full Cartesian product

We gave two ways of modeling arrows, an extensional and an intensional one. There 1s
a third viewpoint (cf. van Benthem [Ben91a], [Ben93]): arrows are just abstract objects
which one can compose, take their inverse, and which might be “identity arrows”. This
view leads to the concept of an arrow frame, which is nothing more than a usual Kripke
frame, where we call the worlds arrows, and there are accessibility relations which give
meaning to the non—-Boolean connectives (e.g., a ternary relation C which gives meaning
to the binary connective which stands for composition). We will call models over these
frames, abstract arrow models.

We call the whole range of modellings from abstract arrow models to “concrete”
Cartesian square models, the landscape of arrow logic.

LOGICAL AND COMPUTATIONAL CORE

Johan van Benthem, [Ben94b)| stresses the difference between universal (Horn) condi-
tions on the domains of the models of a logic and conditions with existential import.
The purely universal (Horn) first-order requirements should, in his opinion, be viewed
as the logical core of the semantics, while all conditions with existential import belong
to some negotiable mathematical part. Thus, the core of the theory of transitions
should be given by universal conditions. One is importing extra mathematical truth,
if one asks for existential conditions as well. Note that we are not claiming that such
existential conditions are forbidden, or anything like that, we only want to stress that
such a theory will be about transitions performed in a specific context. The general
theory of transitions should indeed be valid in all possible contexts.

Taking this into account, we can view arrow models without any existential con-
ditions as the genuine logical core of arrow logic. We mentioned three aspects of the
notion of computational core: decidability, finite axiomatizability and interpolation.
One of the main results of this work is that we show that for arrow logics of directed
graphs, the requirement of transitive domains forms a borderline in the landscape. If
we consider the three conditions, reflexivity, symmetry and transitivity, then an arrow
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logic of directed graphs has any of the three aspects mentioned above if and only if
the domains of the models are not neccessarily transitive relations (cf. section 6.2.1).
So we can conclude that the “logical core” of the theory of transitions is part of its
“computational core”. :

For this reason, we make a distinction between weak and strong existential condi-
tions on models. A weak existential condition is a function with just one argument (e.g.,
the requirement of reflexive or symmetric universes), a strong condition is a function
with more arguments (like transitivity of the universe).

1.2 CYLINDRIC MODAL LOGIC IS THE MODAL LOGIC OF
ASSIGNMENTS

A similar analysis applies to first—order logic and assignments. When we perform this
analysis, we see that, as was also the case with relational logic, classical FO models
turn out to be the most restrictive class of models. Again, below this class we find a
whole landscape of natural classes of models {cf. e.g., Németi [Ném92] and van Benthem
[Ben94a]). Let us look at the basic declarative statement of FO logic: M = ¢ [o], i.e.,
truth of a formula ¢ at a model M given an assignment . The most prominent citizens
of FO logic are the quantifiers, whose meaning is defined as follows:

Mk Juid [a] €5 (3d € Dom(M)) : M = ¢ [od)]

Here, o is the assignment obtained from a by changing the value of v; to d, and
leaving everything else fixed. There is an obvious “modal” view on this definition.
Given a domain D of a model M, let A = “D be the set of assignments, and define a
set of (equivalence) relations =,, on A x A by a =,, 3 N (Vu; # vi) : afv)) = B(v;).
Moving the assignment to the front, we get a familiar modal pattern:

Myal3ve <SS 38eAd) o=, SEMBE¢

So, just like we viewed relational logic as an instance of the modal logic of transitions,
we can view FO logic as one particular instance of the modal logic of assignments. The
appropriate name for the resulting family of logics, seems to be cylindric modal logic,
originating with Yde Venema (cf. [Ven91], [Ven93]).

MODELS FOR CYLINDRIC MODAL LOGIC

Assuming for the moment, a beginners mind, we can redo the whole analysis of arrows,
but now for assignments. Let us do that briefly. Suppose we are in £, FO logic
with countably many variables. Assignments should give meaning to each variable
v; {1 € w). So, just like abstract arrows, assignments have.to be objects equipped with,
in this case w many, functions [;, each assigning a value of the domain to the variable
v;. Viewed from this perspective, the arrows from the previous section are assignments
for £,, FO logic with 2 variables.



8 MAIN THEMES [1.2

As with arrows, there is an intensional and an extensional viewpoint on assign-
ments. Again, the classical view would be to identify an assignment o with the tuple
(li(e) : 1 € w), but it is conceivable that one has an application in mind where this rigid-
ity is not wanted!. As the area of intensional assignments is, to our knowledge, yet
almost completely unexplored? we will concentrate here exclusively on the extensional
ones.

As before, one faces a second ontological problem: which assignments should be
present in the models? Should it, given a domain D of discourse, be a full Cartesian
power of D as in classical FO logic? Again, it seems more reasonable to make this just
one option out of many. An option which is justified when the universe of discourse is
the realm of mathematical objects (indeed, the primary intended application of classical
FO logic!), but an option which needs justification when applied to other areas. Apart
from the question how many variables are needed for an application® there seem to be
four basic options, completely analogous to the arrow logic case. Given a model M, let
A C “Dom(M) be the set of assignments.

(1) A is closed under substitutions
(2) A is closed under permutations
(3) Ais closed under “paths”

(4) A is a full Cartesian product

We briefly explain what we mean with these requirements: (1) means that if o € A,
then also o% € A (i.e., if assignments are pairs, this means that A is a reflexive
relation). (23 means that if o € A and 7 is a permutation of the coordinates of ¢,
then also 7o € A (i.e., A is a symmetric relation in the pair-case). (3) means that if
a,B € Aka=, B, then (3y € A) : o =, v & () = Li(B). (If assignments are pairs,
this is the same as requiring that the set of assignments is an equivalence relation.)
See the picture below for i = 1 and 5 = 0.

g v (1.1)

U

o v

So we have a similar situation as before. There is a whole landscape of possible semantic
modelings with at the bottom the models with abstract assignments, and somewhere

!In natural language, assignments can be seen as taking care of anaphoric binding of pronouns.
One can easily imagine two examples of a written text with two ways of binding which have the same
effect, but one is more difficult to understand than the other. Since anaphoric binding requires an
active process from the reader, one could say that the “assignment instructions” differ, one being
more difficult to perform than the other. This links up with the view that the existential quantifiers
are a kind of program constructions (cf. Groenendijk-Stokhof [GS91]). There is no a priori reason to
equate two programs which happen to have the same input/output behavior.

2 An exception is the n—dimensional arrow logic of D. Vakarelov [Vak92a] which technically deals
with intensional assignments but which seems to have other applications.

3That this is not a trivial issue is shown by Tarski-Givant [TG87], who show that one can build
up set-theory, hence the whole of meta—mathematics, using only 3 variables.
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near the top, the “drawable” assignment models, meeting more and more existential
demands (see [Ben94a] for such a picture).

When one chooses not to have all assignments available for each model, one has to
introduce an extra parameter —the set of available assignments— in the truth definition.
The basic declarative statement then becomes

M, A E¢[o] for A an appropriate subset of “Dom(M)

Clearly, this notion of truth is weaker than the classical one, since in the classical
case there is only one appropriate set of assignments: A = “Dom(M). The key validity
which fails in the more general semantics is commutativity of the quantifiers Jv;dv;¢ «
Jv;dvip. This is valid only if we make the (strong) requirement of closure under
“paths”. Németi [Ném86] showed that it is precisely this validity which is the cause
of the undecidability of FO logic. The existential requirements given above lead to,
at least, five natural classes of FO models in which assignments are a—tuples. These
models were introduced by Németi in [Ném86]. Let £, stand for FO logic with o many
variables. Define K“ as the class of FO models whose set of assignments can be any
subset of the domain. Formally

K* ¥ (M = ((D,I),A) : (D, I) is a FO model and A C *D}

Let K% denote the subclass of K in which the set of assignments is closed under taking
substitutions, K§ the subclass consisting of models which are closed under permuta-
tions, and K§p the subclass consisting of models which are closed under both. Let
K% ... denote the classical FO models with A = *D. The models are related as given in

cubes

figure 1.1. It is well known that for o > 3, £, is undecidable when interpreted on the

gubes
P\
K

o

o
S

o
P

/
N\,

Ficure 1.1: LANDSCAPE OF FO MODELS

classical models (cf. [HMT85]). But, as soon as we are willing to abandon the strong
existential conditions on the assignments sets, we arrive in a more pleasant area. Then
the logical core of FO logic is part of its computational core. Istvan Németi showed
that, for all @ < w, £, is decidable when interpreted on K* and K§p, and for all o < w,
when interpreted on K§ and K$ ([Ném92], Thm 4.2).
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1.3 RELATIVIZATION

In algebraic logic, both for the algebraic counterparts of arrow logic and of FO logic,
the non—square and non—cubic extensional models have been studied relatively deeply,
under the heading of relativization (cf. e.g., Henkin et al. [HMT*81], Maddux [Mad82]
and Resek-Thompson [RT91]). The emphasis, however was different from what we
have sketched above. As the name “relativization” indicates, the non-standard models
were viewed as being derived from the standard classical ones, while in our set-up,
the classical models appear as a very special case of the more basic (relativized) mod-
els. Recently, Andréka, van Benthem, Monk and Németi ([AT88], [Ben94a], [Mon91],
[Ném91]) started promoting their study as structures which are interesting indepen-
dently of their square or cube versions. Before, relativized algebras were not really
studied in their own right*, but as a tool to obtain results for the standard models®.
Apart from that, one can view relativization as a way of turning negative results into
positive ones, since several relativized versions of cylindric and relation algebras do
have the nice properties of being decidable, finitely axiomatizable and having an inter-
polation theorem, which their classical counterparts lack.

1.4 FINE STRUCTURE OF DEFINABILITY

In one sense, we can still view the above logics with their more general semantics as
being derived from the classical ones, because we used the same logicel language. But
just as we assumed a beginners mind when looking at the semantics, it pays to do the
same at the syntactical level. Which “natural” operations on sequences do we want to
express? Clearly, the existential quantifiers, changing one coordinate of a sequence, are
among them. They are term—definable in arrow logic only once we have reflexive and
symmetric domains, so it might be useful to add them in other cases too. We illustrate
this point with the example of the quantifiers.

QUANTIFIERS AS PROGRAM INSTRUCTIONS. If we view the existential quantifier as
a program instruction to change the value of a particular (set of) variables(s) —as is
done in dynamic semantics (cf. [GS91])-, we can get insights by looking at the regular
program constructions. Let the set {3z; : ¢ € w} be the atomic programs. We would
like to have “programs” for sequencing, choosing, and iterating as well. Iteration, 3(z*),
can be expressed just by 3z, since dzJx¢ is equivalent to Jz¢. Sequencing, I(z;y), is
built into the language, because (3(z;y)¢ « Jz3y¢). The same holds for choice, since
(F(zUy)p « Jzg V Tyd).

By the commutative law of the quantifiers, it doesn’t matter in which order we

*As an illustration we mention the book [HMT*81], from which it turns out that the authors know
much about cylindric relativized set algebras, but they treat this knowledge as secondary, hence they
do not include a large part of this knowledge in the book.

®Because of this, the technique of relativization was studied quite extensively (cf. [HMT71] Chap-
ter 2.2), but that is not what we are interested in now. We are interested in the relativized algebras
in their own right.
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change the variables, making Jx3y more something like parallel execution. So we can
write 3(z M y)¢ as Jzdyé or Jydzd, because their order does not matter. But the
commutative law only holds in models satisfying the “path” condition. In models
without that condition, we cannot term—define this very natural operation of changing
several places simultaneously. So it might be desirable to have them as primitive
operators in the general case®. So, if we change the classical semantics, we have good
reasons for changing the vocabulary as well. Natural operations which were term-
definable before, and which we therefore “forget”, need not be definable in the general
case. The general-model analysis shows us the fine structure of the expressive power
of the original vocabulary.

These observations give rise to a research area which is at present almost completely
unexplored. Besides changing the semantics of well-known logics to “turn negative
results into positive ones”, one should reconsider the basic vocabulary as well. We
could describe this field as follows:

Relativize to obtain positive results, and then strengthen the expressive
power as much as possible while keeping the positive results.

Besides adding what was term-definable before, one could also add new operations,
like the Kleene * to relation algebras or the universal modality” to cylindric algebras
of infinite dimension. We will encounter this theme in the chapter on arrow logic, in
which we add several operations (e.g., Kleene *) to the vocabulary, and in chapter 4,
in which we expand the vocabulary of relation algebras with the difference operator.

1.5 BAQO’S AND GENERAL MODAL LOGIC

Both arrow logic and cylindric modal logic have intimate connections with algebraic
logic. The classical models of arrow logic are given by the full (or square) relation set
algebras and those of cylindric modal logic by the full (or cubic) cylindric set algebras.
Both classes of algebras belong to the class of Boolean Algebras with Operators (BAQ’s).
There is a very strong connection between the three concepts: BAQO’s, general modal
logic and relational Kripke frames. This connection is given in figure 1.2, taken from
Brink [Bri93].

For a brief explanation of the picture, we freely quote from Venema [Ven94]. The
relation (a) between general modal logic and Boolean algebras with operators is very
tight; for instance BAO’s appear as the Lindenbaum-Tarski algebras of general modal
logics. The relation (b) is closely connected to the work of Kripke, with relational
Kripke frames providing a semantics for modal logics. The relation (c) was studied in

8S. Comer and D. Vakarelov independently suggested to study these operations, both with mo-
tivations from computer science (e.g. data—base theory) (cf. Comer [Com91] and Diintsch [Diin91]).
These operations are known in the cylindric algebra literature as Cr, where I' can be any set of indices.
The operators Cr are studied in van Lambalgen—Simon [1.S94] in the context of relativized cylindric
algebras (see also Comer [Com91] and Simon [Sim90}).

"The universal modalily is a special case of the above described parallel execution or the Cp’s.
With the universal modality one changes all coordinates simultaneously. Clearly Cr, for infinite T, is
not even definable on the classical models.
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Relational Frames General Modal Logic

Boolean Algebras with Operators

FIGURE 1.2: CONNECTIONS BETWEEN THREE FIELDS

Jénsson and Tarski’s overview article on BAQ’s [JT52], long before the work of Kripke.
In that paper they started, what is now known as, the duality theory between BAO’s
and Relational Kripke Frames (see Goldblatt [Gol88], [Gol93] for a recent overview).

From a mathematical perspective, both the development of arrow logic and of
cylindric modal logic can be seen as filling in the modal part of the above picture,
where the other two parts already existed. This work started explicitly with Venema’s
dissertation [Ven91]. Besides dealing with these two specific cases of BAO’s and general
modal logic, we will, when possible, treat them in a uniform manner, using the theory
of BAO’s as a unifying framework. In section 4.5 we show that every BAO can be
represented as an algebra of relations. For modal logic this means that every modal
logic can be viewed as a multi-dimensional modal logic (cf. [Ven91}).



2
THE ALGEBRAS AND THE LoOGICS

In this chapter, we define the cast of this piece, and fix notation for the coming chapters.
We also provide a short review of that part of duality theory between BAO’s and Kripke
frames that will be used later on. In the first section, we deal in a general way with
BAO’s. In the second section, we provide some basic algebraic notions and some
duality theory. In the next section, we explain why relativization is an important tool
for studying the core of a logic. In the last two sections, we focus on two well-known
classes of BAO’s: relation algebras and cylindric algebras.

2.1 BAO’S, GENERAL MODAL LOGIC AND KRIPKE FRAMES

2.1.1 BOOLEAN ALGEBRAS WITH OPERATORS

BOOLEAN ALGEBRAS WITH OPERATORS (BAQ’s). Almost all algebras in this work
are normal Boolean Algebras with Operators. An algebra 2= (A,V,A,—,0, L, Owier
is a Boolean Algebra with Operators (BAO) if (A4,V,A,—,0,1) is a Boolean Algebra
(BA), and every operation ©; (i € I) is additive in each of its arguments. Here,
additivity means that the operator distributes over join, as in (for a unary operator)
O(r1Vry) = O VOT,. This property is also referred to as distributivity. An operation
is called normal, if it equals 0, whenever one of its arguments equals 0. In algebraic
logic, a (normal) distributive operation is called an operator, in modal logic, operators
are called modalities. Note that by this definition every zero—ary operation is a normal
operator. In the rest of this work, “operator” means “normal operator”, and “BAQ”
means “normal BAO”. '

SIMILARITY TYPES. It is useful to introduce a special similarity type for BAQ’s. Let
O be a set of operation symbols, and p : O — w a function assigning to each symbol
in O a finite rank or arity. By a BAO type S, we mean the pair (O, p). We usually
assume that the rank of the operations is known, and identify S with O. An algebra
2 is of BAO-type S = (O, p) if and only if 2 is a BA expanded with the operators in
O, having their rank specified by p. As a variable ranging over operators we use <. If
S is given, we use BA® for the class of all BAO’s of type S. If S consists of only one
operator, say <, whose arity is clear from the context, we write BA®.

TERMS, EQUATIONS AND VALIDITY. Given a set of variables X and a BAO-type
S = (0, p), we use Termg(X) to denote the set of terms constructed from variables in
X using the Booleans and the operation symbols in O. With Eqlang¢(X), we denote the
set of equations {ry = 7, : 71,75 € Termg(X)}. If we don’t say anything about X, we

13
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assume it is countable. We use x,y, z to denote algebraic variables, and 7,7y, 7 to denote
arbitrary terms. The set of variables occuring in 7 is denoted by var(r). An assignment
from the set of variables X into an algebra 2 is a map h : X — A. The pair (%, h)
is called an algebra-valuation pair. An equation 7(xy,...,X,) = 71(x1,...,X,) of BAO
type S is valid in an algebra 2 of that type if for every assignment h : {x;,...,X,} —
A, T(h(xy), ..., h{xs)) equals 71 (A(x1), ..., h(xs)) in A. An equation ¢ is valid in a class
of algebras K if e is valid in every % € K. Both kinds of validity are denoted by f=.
The set of equations valid in K is denoted by Eq(K). Using this notation we can give
the following definition of specific classes of BAO’s. For example, if S = (©,2), then
BA® or BAY denotes the following class of algebras:

BAY & o = (4,V,A,—,0,1,Q) : (4,V,A,—,0,1) € BA&L2 = V(x,0) = V(0,x) =0
&ukEQ(xVy,z) =Qx,z) VOy,z)
&k QxyVvz)=90(x,y) VOx2)}

If T is a set of equations in Eqlangg(X), then BAS(Z) denotes the class {2 € BA®
2 = £}. We call such equationally defined classes “abstract classes”.

A class K of algebras is called a variety iff it is definable by a set of equations. I.e.,
there exists a set of equations T, such that every algebra of the type of K validates ¥ if
and only if it is a member of K. We call a variety finitely aziomatizable if it is definable
by a finite set of equations.

UNIVERSAL FORMULAS AND QUASI-EQUATIONS. Fix a BAO-type S = (O, p) and
an equational language Eqlangg(X). A universal formula of type S is a FO formula
build up from equations in Eqlangg(X) using conjunction, disjunction and negation.
A universal formula ¢ is valid in an algebra 2 if ¢ is true for every assignment h in
2. The universal theory of a class of algebras K, denoted by Univ(K), consists of the
universal formulas which are valid in every algebra in K.

A quasi-equation is a universal formula of the form e;& ... &e, = ¢,. Validity of
quasi-equations is defined as for universal formulas. The quasi-equational theory of
a class K is denoted by Qeq(K). A class of algebras is called a quasi-variety if it is
definable by a set of quasi—equations. Clearly, every variety is a quasi-variety.

2.1.2 RELATIONAL KRIPKE FRAMES AND MODELS

As shown already in Jénsson—Tarski [JT52], to each class of BAO’s of type S = (O, p)
there belongs a class of structuresor frames of a very similar type, which can be seen
as a “semantics"” for the (abstract) class BA®.

CANONICAL FrRAMES. Fix a type S = (O,p). Let % € BAS. By uf2, we denote
the set of ultrafilters of 2. 2, denotes the frame (Uf2, R®)oc0, in which each R°isa

The word semantics is put between quotes, because it can be argued that this “semantics” is just
as abstract as the equationally given class of BAO’s. See the long quotation from Henkin-Monk-Tarski
[HMT71] in the beginning of section 4.5 for such an argument.
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p< + 1-ary relation on Uf % defined as follows:
R°yz, e Tpo &y (VX1 ... %0 € A) 1 ([x1 € 21& ... &Xpo € Tpo] = Ox1,...,%0) € Y)

In the literature, the frame 2 is called the ultrafilter or canonical frame or the canonical
atom structure of the algebra 2. Note that in this definition we follow the modal logical
practice of putting the “result” as the first argument, whereas in [JT52] and in [Gol88]
the result is the last argument.

FRAMES OF TYPE S. A frame F is of type S = (0, p) iff F=(W,R%),c0, W is a
set and, for every O € O, the relation R® is a subset of #°*'W. K5 denotes the class
of all frames of type S. Since K% is a class of FO structures, we can speak about K%
in the FO language with (pO + 1)-ary predicate symbols R®, one for every ¢ in O.
We call this language the FO frame language of type S. As a convention, the Roman
capital F' corresponding to the script capital F denotes the domain of the frame F.

COMPLEX ALGEBRAS. Given a set W, P(W) denotes the powerset of W, and
P(W) the Boolean powerset algebra (P(W),U,N,—% @, W) of W. Given a frame
F=(W,R®),p of type S, we define its complez algebra, denoted by F*, as the algebra
(B(W),O)oco. The operators are defined, using their corresponding frame relations,
as follows. For xy,...,x%,0 subsets of W and © a pO-ary operator we define

O(X1y -« vy Xp0) det {yeW:(3z;...2,0 € W) (R yz, o zpokiry € &L &zpe € X,p0)}

If K is a class of frames, we use K* to denote the class {2 : 2 & F* for some F € K}.

Note that we defined K* so that it is closed under isomorphisms. If K is a class of
BAO’s, Cm™'K denotes the class of frames {F : F* € K}.

KRIPKE MODELS. Let K be a class of frames of type S, let F € K, and let Termg(X)
be the set of S terms generated from a set of variables X. Let v be a function from
X to P(F). We call v the valuation of the variables. We call M = (F,v) a (Kripke)
model (over F).

Given a model M = (F,v), we define the truth relation I+ between the elements of
the domain of M and the terms from Terms(X) inductively as follows. For z € F, we
define

def

M,z Ik x = z€v(x) for all variables x € X

M,z -7 PN M,z Wfr

Mzl 7V &Y Myzkrnor Mz

M,z Ik O, Tho) def (1. yp0 € F): Rzy; ... y,0 &My k1 & ... &
M, y0 I+ Tpo

If M is clear from the context, we usually omit it from this relation. We equate the
domain of a model with the domain of its underlying frame.
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VALIDITY AT MODELS, FRAMES AND CLASSES OF FRAMES. We use [r],; to denote
the set {z € Dom(M) : M,z IF 7}, hence [r],, gives us the meaning of 7 in model M.
In the following definition we define validity of equations at models, frames and classes
of frames.

MEn=mn N Inly = [y
FeEn=n && WM=(FVv)):MEn=mn
KEn=mn el (VFeK): FEn=n

Let ¢ be a universal formula build up from equations in Eqlangg(X). Validity of ¢
in a Kripke model M = (F,v) is defined recursively in the standard FO way using
the clause for the atomic formulas (the equations) given above. We have the following
connection between validity at models and validity at algebra—valuation pairs:

(Fv)E¢ < Ft=¢ for the assignment v

Given a class K of frames of type S and an equational language Eqlangg(X) with X
an infinite set of variables, we use Eq(K) to denote the set of equations valid in K. The
next fact provides the connection between the defined validity relations on frames and
on algebras.

Facr 2.1.1.
M=(Fv)En=n <> F'En =rn forthe assignment v
f‘:leTz = f+}»:T1=T2
KEn=mn &= KtEn=mn
Eq(K) = Eq(K%)

2.1.3 GENERAL MobpaL LoGIC

A general modal logic of BAO-type S is a propositional logic expanded with the modal-
ities from S. We will define logics semantically. In three steps we give the language,
the class of models and the meaning of the formulas in each model.

FORMULAS “ARE” TERMS. What we call terms of type S in algebra, are called well
formed formulas (wff’s) in modal logic. Algebraic variables correspond to logical propo-
sitional variables.

MoDELs. The semantics of a general modal logic of type S is given by Kripke models
over frames of that type.

MEANING. The evaluation of wif’s in a model is provided by the truth definition given
above. A wif 7 is true in a Kripke model M = (F,v) iff [r],; = F. This will be denoted
by M k= 7. Truth at a frame and truth at a class of frames is defined analogously as
done above for equations. This is denoted by F = 7 and K = 7, respectively. If I'is a
set of formulas, we use [I'],, to abbreviate N{[r],; : 7 € T'}.
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EQUATIONS AND FORMULAS. There is a straightforward correspondence between al-
gebraic equations and modal logical formulas. Because we always assume the Booleans,
we can restrict ourselves to equations of the form 7 = 1. This restriction is warranted,
because BA |= 71 = 7, if and only if BA = (1, « ) = 1. Here, (1 « 7;) abbreviates
(=71 V1) A (=72 V 11). If we fix a set of terms Termg(X) and a general modal-logical
language Fml which use the same operations, then any bijection between the alge-
braic variables and the logical propositional variables can be extended to a translation
function # : Fml — Termg(X) such that for every frame F of type S we have:

(Vr € Fml) : FEr e FRt=1
(Vr € Termg(X)) : Fer=1 < Flkrt
(Vr,m €Termg(X)): Fln=n < FEnteon?

The two languages are just notational variants of each other.

GENERAL MoDAL LoGIc. Let a BAO type S = (O, p) be fixed, let P be a countably

infinite set of propositional variables, and let K be a class of frames of type S. A tuple
(Fmls(P),Mod(K), IFs) is called a general modal logic GML(K) if

o Fmlg(P) is the smallest set such that
- P (._; leS(P)a
— if ¢,% € Fmls(P), then also ¢ (“negation”), ¢ A ¢ (“conjunction”) and
¢ V9 (“disjunction”) are in Fmls{P),
~ forall & € O,if ¢1,...,¢,0 € Fmlg(P), then also O(d1,...,¢,0) € Fmls(P)
o Mod(K) denotes the class of all Kripke models over frames in K.
¢ |5 denotes the truth relation defined above.

When the type S is clear from the context, we usually omit it as a subscript in the
notions defined above. A wif ¢ is valid in the logic GM L(K) if ¢ is true in every model
from Mod(K). We denote this by K = ¢ or ¢ ¢.

LOGICAL CONSEQUENCE. In logic, it is not the validity relation between models and
wif’s which plays the central réle, but the consequence relation between (sets of) wif’s.
Consequence relations are also denoted by “E". There are two standard ways of
defining a consequence relation, a local one and a global one. Both make sense in their
appropriate application domain; in modal logic the local one is most often used, while
in algebraic logic the global one is dominant?. There is no difference in symbolism
between the two notions, which is a common cause of confusion. Here we will make the
distinction by a superscript °¢ or #°. Let GML(K)= (Fml(P), Mod(K), ) be a general
modal logic. Let I' C FmI(P) and ¢ € FmI(P). We define the consequence relations
E='¢ and 9" as follows

TR <5 (WM e Mod(K)) : [Ty C [6ly
T & (YWMeModK) MET=ME¢

For a comparison of the two see e.g., Venema [Ven91], Appendix B.
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Note that if I' = @), the two notions coincide. Also note that {¢;,...,¢,} Fﬁla Py >
(o =1&.. . &o* =1= ¢¥ =1) € Qeq(KH).

2.2 REVIEW OF BASIC DUALITY THEORY

CORRESPONDENCE, CANONICITY AND SAHLQVIST FORMS

In this section, we indicate when we can reason at the frame level in order to obtain
results at the algebraic level. It is attractive to reason at the frame level because it is
usually easier. Everything in this section is built upon the following basic fact which
can be found in [JT52]. Before we state it we recall some notions (see e.g., [HMT71]

or [BS81]).

HOMOMORPHISMS AND EMBEDDINGS. If 9 and B are algebras of the same type,
then a function h : A — B is called a homomorphism from 2 to B if it commutes
with all the operations. If h is surjective, B is called a homomorphic wmage of .
If h is injective, it is called an embedding, and % is isomorphic to a subalgebra of 8.
Embeddings are denoted by arrows with a tail “—~”. If 2 can be embedded in B, we

. h
write 4 < B or A — B.

FAcT 2.2.1. Every BAO 2 is embeddable in (2,)* by the canonical embedding func-

tion e4 : A — P(Uf2), which is defined as e4(x) & {z € 42 : x € z}. The algebra
(%4)7 is called the canonical embedding algebra of .

CORRESPONDENCE. Correspondence theory (cf. van Benthem [Ben84]) is concerned
with equations e of BAO-type S which correspond to a condition ¢ on type S frames
in the first order frame language of type S such that

FlEe < FE¢

When e and ¢ stand in this relation, we say that the equation e defines the condition
®, or that e corresponds to ¢. We call condition ¢ the frame correspondent of e.
Some well-known examples (see e.g., [JT52]) in BAO-type (<, 1) are the equations
x < Ox, OOx € Ox and ©—<C—x < x which correspond to reflexivity, transitivity and
symmetry of the binary relation R®, respectively.

CanoniciTy. We call an equation canonical if it is preserved under taking canonical
embedding algebras. Hence an equation e is canonical if

Ake & W) T Ee

(Note that the < direction is trivially satisfied.) A variety which is closed under
canonical embedding algebras is called a canonical variety. Hence every class of algebras
which is defined by a set of canonical equations is a canonical variety. Especially
interesting are canonical equations which define FO conditions on frames. The three
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equations given above are examples of these. Then the following holds. Let e be a
canonical equation which corresponds to condition ¢.

canonicity correspondence
= gEU

A€ ()" Ee A = ¢

REPRESENTING CANONICAL VARIETIES. Canonical equations which correspond to a
FO condition give rise to easy representation theorems in the following way. For a class
K of algebras, SK denotes the class of all its subalgebras. Note that if K is a class of

frames, then SK* is closed under isomorphisms.

FacT 2.2.2. Fix a BAO-type S. Let e € Eglangg(X) be a canonical equation which
corresponds to a frame condition ¢. Let K be the class of all frames of type S which
validate ¢. Then SK* is a canonical variety. In fact BA®(e) = SK*.

PROOF. Because ¢ is a canonical equation, the class BAS(e) is a canonical variety.
We continue with the proof of the equality.

(2) Let 2 € SK*. Then 2% < F* for some F € K. But then, F | ¢, and, since ¢
corresponds to e, also F* = e. Since equations are preserved under taking subalgebras,
also o |= e, whence 2 € BAS(e). Note that we only used the correspondence part.

(C) Let 2 € BA®(e). By fact 2.2.1, 4 < (%;)*. Since e is canonical, (2,)* | e.
But then, by correspondence, 2, = ¢. Hence 2, € K, so % € SK™. QED

Clearly, this fact also holds for sets of canonical equations. If K is a class of frames and
SK is a variety, we call it a complez variety®.

POSITIVE AND SAHLQVIST EQUATIONS. We briefly review the correspondence the-
ory of Sahlquist equations (Sahlqvist [Sah75]), which is surveyed in de Rijke-Venema
[RV91]. We do not recall the definition of Sahlqvist equations, since we will almost
only deal with the easier and better-known positive equations (cf. [HMT71] p.440). A
term 7 is called positive if it does not contain any occurrence of the symbol —, for
complementation; an equation is called positive if both its terms are positive.

Let an arbitrary BAO similarity type S be fixed. The set of Sahlqvist equations of
type S is a strictly larger set than the set of positive equations (in the wider sense?)
(cf. [RV91] Remark 3.6). An example of a Sahlqvist equation which is not positive is
the equation &—O—x < x given above. Another example is x7;—(x;y) Ay = 0, which
is equivalent to the last axiom of relation algebras (RAs) (see 2.4.11).

The most interesting aspect of Sahlqvist equations (and hence of positive ones), is
the following fact (for a proof, see [RV91] Thm 3.5).

Fact 2.2.3. Fixatype S. Let e be a Sahlqvist equation in type S. Then there exists
an effectively obtainable® sentence ¢ in the FO language of type S such that (2.1) and

3This name was introduced by R. Goldblatt ([Gol88]).

1A term is positive in the wider sense if there is no subterm beginning with — which contains an
occurrence of a variable. It is assumed that the Boolean constants 0 and 1 are in the language. An
equation is positive in the wider sense if both its terms are. See [HMT71] Remark 2.7.16.

®See the proof of Thm 3.3 in [RV91] for an algorithm.
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(2.2) below hold. In particular, e is canonical.

Flk¢ <= Ftke (2.1)
ke < U k9 (2.2)

So, if T is a set of Sahlqvist equations, and Ky is the class of all frames satisfying
the frame correspondents of the equations in ¥, then the class BA®(X) is a canonical
variety which equals SKi.

REASONING IN FRAMES INSTEAD OF ALGEBRAS. There is another advantage of
working with Sahlqvist equations. As Venema writes in [Ven91]:

Maybe the nicest aspect of (2.1) and (2.2) is that it frees us from giving tedious
algebraic derivations for Sahlqvist equations, allowing us to focus on reasoning
in atom structures. ([Ven91] page 11)

This move from algebras and the algebraic description language to frames and their FO
description language is justified by the following fact (for a proof, see [RV91] Prop 4.1).

Fact 2.2.4. Let V be a canonical variety, and e; and e, two Sahlqvist equations with
first order correspondents ¢; and ¢;. Then,

Cm V¢ od = VEe o6

CONSTRUCTIONS ON KRIPKE FRAMES

We recall the part of the duality theory between BAQO’s and relational Kripke frames
which will be used later on. We rely on Goldblatt’s overview article [Gol88]. When
we use different terminology, we provide the terms used there in footnotes. The facts
reported here can be found in Cor 3.2.5, Thm 3.3.1 and lemma 3.4.1 in [Gol88].

OPERATIONS ON CLASSES OF ALGEBRAS. Recall the following operations on classes
of algebras from universal algebra (we use them in the sense of [HMT71]). Let K be a
class of algebras.

1K class of all isomorphic copies of members of K

SK class of all subalgebras of members of K

PK class of algebras isomorphic to direct products of members of K
UpK  class of algebras isomorphic to ultraproducts of members of K
HK class of all homomorphic images of members of K

SirK class of all subdirectly irreducible members of K

EmbK class of all canonical embedding algebras of members of K
Rd;K class of all I reducts of members of K
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VARIETIES AND QUASI-VARIETIES. By Birkhoff’s theorem a class of algebras is a
variety if it is closed under taking H, S and P. In general, HSPK is a variety, and it is
the smallest one containing K. A variety V is said to be generated by K if V = HSPK.
A similar theorem states that a class of algebras is a quasi-variety if it is closed under
taking S, P and Up. In general, SPUpK is a quasi-variety, it is the smallest one
containing K, and it is said to be generated by K (see [BS81] Thm V.2.25).

OPERATIONS ON CLASSES OF FRAMES. We will use the following operations on
frames. :

ZigK class of all zigzagmorphic images of frames in K
DuK  class of all disjoint unions of systems of frames in K
GsK  class of all generated subframes of members of K
GspK class of all point generated subframes of K
UeK  class of all ultrafilter extensions of members of K
Rd;K class of all I reducts of members of K

ZIGZAGMORPHISMS. Let F and G be two frames of the same type. A function f :
F — @G is called a zigzagmorphism?® if it is a surjective homomorphism’, and it has the
zigzag property, meaning that, for every n + 1 ary relation R,

ROf(@)yr-- yn = (3yh .. vn € F): Rfayi .y, & f(4h) =pn & ... & F(yh) = ym

If f: F - Gis azigzagmorphism, G is called the zigzagmorphic image of . We denote

this by F EA G. It is easy to see that, for two models M = (F,v;) and N = (G, v3), and
a zigzagmorphism f : F' - G which agrees on the valuations of the variables:®

for every term 7, and for every 2 € F : M,z -7 <= N, f(z) b7

The operation of taking zigzagmorphic images corresponds to taking subalgebras in
the following way. If h : A — B and X C B, we use h™![X] to denote the set
{x € A:h(x) € X}. Let 2,% be BAO’s of the same type. If h: A — B, we use hy to
denote the function from 4f % to 1§, defined by hy(u) & h™[u]. Let F,G be frames
of the same type. If f : F' — G, then f* denotes the function from P (G) to P (F)
defined by f*(x) & f-1[x].

Facr 2.2.5. (i) If h: A — B is an embedding of & into B, then h, : 4fB — 42 is a
zigzagmorphism from B, onto 9,.

(ii) If f: F - G is a zigzagmorphism from F onto G, then f* : P(G) — P (F) is an
embedding of Gt into F*.

5In [Gol88], these are called bounded epimorphisms.
In the model-theoretic sense, hence for every relation R in the similarity type: Rz ...z, implies
R f(z0) ... f(zn).

8j.e., for every variable x, f*v;(x} = v3(x).



22 THE ALGEBRAS AND THE LOGICS [2.2

DisjoINT UNIONS. Let (F;)icr be a system of disjoint frames which are all of type
S. Then the disjoint union ¥; F; is the frame (U{F; : 1 € I},U{R? : 1 € I})oes.
If (Ui)icr is a system of algebras, []; %; denotes their direct product.

Fact 2.2.6. (X;F:)" is isomorphic to []; 7.

(POINT—)GENERATED SUBFRAMES. The frame construction which corresponds to
taking homomorphic images is that of taking generated subframes®. If F is a frame, then
F' is a generated subframe of F if (i) F' C F, (ii) the relations R' are the restrictions
of R to F', and (iii) for every n + 1 ary relation R and for all z € F'|y,,...y, € F, if
Rxyy ... yn, thenyy ...y, € F'. If a subframe is generated by a singleton, it is called a
point-generated subframe (i.e., F' is the smallest generated subframe containing that
singleton).

Fact 2.2.7. (i) The complex algebra of a point-generated subframe is subdirectly
irreducible.

(i1) For any class K of frames, (GspK C K & DuK C K) = K = DuGspK.

(iii) If F is (isomorphic to) a generated subframe of G, then F* is a homomorphic
image of G*.

(iv) If 2 is a homomorphic image of B, then 2, is isomorphic to a generated subframe
of B,.

ULTRAFILTER EXTENSIONS. If F is a frame, then the frame (F*), is called its ul-
trafilter extension '°. It is the dual “two-step construction” of taking canonical em-
bedding algebras. We say that a class of frames K reflects ultrafilter extensions if,
whenever (F*), € K, also F € K. We use UeK to denote the class of frames
{F:F2G& (G € K}

RepucTs. Reducts of frames are defined in the usual model-theoretic sense.

CHARACTERIZATION OF EQUATIONALLY DEFINABLE FRAME-CLASSES. We say that
a class K of frames is equationally definable if there exists a set of equations A such
that K is the class of all frames which validate A. For V a variety, we define Ky def {F:

F* €V}, and, for K a class of frames, we define Vg & HSPK+.
Facr 2.2.8. K is equationally definable iff K = Ky, .

Proor. (=) F €K < FEENK) < FEEVk) < FreVkx < Fe¢
Ky
(€)FeK < FeKy & FreVx < F EEq(K) QED

The overall situation is described in the next theorem. The theorem shows that the
four constructions discussed above are very fundamental. In a sense, this is the frame
analogue of Birkhoff’s theorem. The theorem in this generality can be found in [Gol88]

®Called inner substructures in [Gol88]
WCalled canonical extension in [Gol88)].
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(Thm 3.7.7). For classes of frames of type (<, 1), the theorem is in van Benthem
[Ben79]. (See also Goldblatt-Thomason [GT74], van Benthem [Ben83], [Ben91b].)

THEOREM 2.2.9 (VAN BENTHEM-GOLDBLATT). For K any class of frames, the fol-
lowing are equivalent.

(1) K is closed under the formation of ultrafilter extensions, generated subframes, dis-
joint unions, zigzagmorphic images and it reflects ultrafilter extensions.

(ii) K=Ky, and Vg is canonical.

(i) K= Ky for some canonical variety V.

2.3 RELATIVIZATION AND THE LOGICAL CORE

In this small section, we introduce the operation of relativization, and show why it is
so important when we want to find the logical core of a logic. We will restrict ourselves
to general modal logics of the kind introduced above.

SUBFRAMES AND UNIVERSAL SENTENCES. In chapter 1, we argued that the logical
core of a logic should not contain any existential import. For general modal logics
GML(K), this means that K should be a universal class. The operation on classes of
frames K which gives us the smallest universal class in which K is contained, is that
of taking substructures. The notion of substructure is used in the FO model-theoretic
sense. We recall the definition (cf. e.g., [CK90] or [Hod93]). Let F = (W, R;);; be a
frame. A frame F' = (W', R}),., is a substructure or subframe of F if W' C W, and
the relations in F' are the restrictions of the relations in F to W'. We denote the
subframe of F with domain W' by Fiy.. If K is a class of frames, SubK denotes the
class of all subframes of frames in K.

LocIicAL corRE. Let GML(K) = (Fml, Mod(K), IF) be a general modal logic. The log-
ical core of GM L(K) is the general modal logic GM L(SubK) = (Fml, Mod(SubK), I+).

RELATIVIZATION. In [HMT71] (Def 2.2.1) an operator Ri, of relativizing algebras
of the cylindric type is introduced. For arbitrary BAO’s it is defined as follows. Let
% = (A,A,—, fi)ier be a BAO, and suppose b € A. Let R ¥ {xAb:x e A}
For all x;,...,x, € RLY, let x; A’ xo o Axe, ='x1 & —x; A b, and JHET 'S def
filxt, ..., %) Ab. Let nrya & (RLA N, ', f)icr. We refer to %1% as the algebra
obtained by relativizing the BAO 2 to b. For K a class of algebras, RIK & {91, :
% € Kand b € B}

In sharp contrast with the operators H, S and P, equations are in general not
preserved under R1. Below, we characterize which Sahlguist equations are preserved
under Rl. We end this paragraph with a technical lemma about relativization which

will be useful later on.

LemMA 2.3.1. (i) Rl 4s a closure operator, i.e., K C RIK, RIRIK = RIK, and
KCL=RIKCRI.
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(ii) SRI = SRIS = RISRI
(i1) RI commutes with P and Up.
(iv) If the class V is a quasi-variety, then SRIV 1s a quasi-variety.

ProoF. (i) and (ii). Straightforward.

(1i). Cf. [HMT71], Thm 2.2.8.

{(iv). Since V is a quasi-variety, it is closed under SPUp. By part (iii), the operator

PUp commutes with R1. It follows from (ii) and the universal algebraic facts that

PS < SP and UpS < SUp that SRIV is closed under SPUp. So it is a quasi—variety.
QED

CONVENTION. In the sequel, we will speak about the class of relativized relation
algebras. In such a context, we use “relativized” as an abbreviation for “subalgebras
of relativized”. We always take subalgebras as well, because —even if the original class
is a variety— only relativizing can lead to a highly complex class of algebras (i.e.,
in general, they are not closed under subalgebras anymore). Examples of this are
SRICA, # RICA, and SRICs, # RICs, when o > 2 (cf. [HMT71], 5.5.6 and 5.5.7)
and SRIRRA # RIRRA and SRIRA # RIRA (cf. Andréka [And88]). (These classes of

algebras will be defined in the coming two sections.)

RELATIVIZATION AND SUBFRAMES. The following proposition establishes the con-
nection between relativizations and subframes. It shows why relativization is a key
tool for finding the core of a logic.

PROPOSITION 2.3.2. (i) For any frame F and set W C F, (Flw )t = RiwF*. Hence
RIK* = (SubK)™.

(i) If V = SPK*, then SRIV = SP(SubK)*.

(iii) Let e be a canonical equation which defines a FO frame condition (e.g., a Sahlquist
equation). Then e is preserved under taking relativizations if and only if e corresponds
to a universal sentence.

PRrROOF. (i). By the definitions.

(11). By (i) and lemma 2.3.1.

(iii). Let V be the variety defined by e. The conclusion follows immediately from the
following statement:

V=RIV <> Cm~'V = SubCm™'V

We prove the statement:

(). F € SubCm™'V = F = Gl for some G € V and G’ C G. The algebra F* is
in V, because F* = (Gie)t = Rie:G* and the assumption. But then, 7 € Cm™'V.
(«). V =S(Cm™'V)* = $(SubCm™'V)* = SRI(Cm™'V)* = RISR{(Cm™'V)* =
RIS(SubCm™V)* = RIS(Cm™'V)* = RIV (the last step follows, because V is canon-
ical). QED
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2.4 RELATION ALGEBRAS, ARROW LOGIC AND ARROW
FRAMES

In this section, we concentrate on the similarity type of relation algebras, and deal
exclusively with the extensional view of arrows. In chapter 6, we will return to the
intensional view. We sketch a landscape of interesting classes of relation algebras which
all contain the class RRA, and provide a menu of the properties we will investigate. To
facilitate these investigations, we do some correspondence theory, which enables us to
do most of our reasoning at the frame-level.

The study of algebras of binary relations goes back to de Morgan, Schréder and
Peirce. Recent works which are both a good introduction to the field, and which also
cover the history are Givant [Giv91], Jénsson [J6n91], Maddux [Mad91b] and Tarski-
Givant [TG87]. For a mathematical introduction, cf. [HMT85]. For history, cf. also
Maddux [Mad9la], Pratt [Pra92] and Annelis-Houser [AH91]. A gentle introduction
designed for beginners, is the 1994 version of Németi [Ném91].

2.4.1 RELATION ALGEBRAS AND ARROW FRAMES

Define BA™ as the class of all BAO’s with one binary infix operator “” (called
“composition”), one unary postfix operator “~” (called “converse”) and one con-
stant “id” (called “identity”). We will use rel as an abbreviation for the BAO type
{(;,2),{,1),(id, 0)}. The abstract class BA™ is obtained by an abstraction over the
concrete relations (i.e., sets of pairs) of concrete relation algebras. Concrete relation
algebras and their operations are defined as follows. For s a sequence, we use s; to
denote the i—th coordinate of s. For V C U X U a binary relation over some set U,
define a ternary relation Cy, a binary relation Fy and a unary one ly on V as follows:

Cv ¥ {(zy2) eV in=p&n=a&s=u1])
Fv = {{a,y) €2V iz =y &y = yo}
L, o {z eV izyg=uz}
An algebra 2= ((V),0" 71" |I1d") is called a full relotivized relation set algebra if (V')
is the Boolean powerset algebra with domain P(V), and the operators are defined as
follows. For x,y C V we define:
xoVy ¥ {zeV:(Qyze V)(Crayz&yex&z€y)}
x1Y d-_-e‘f {zeV:(3yeV)Fray&ye€x)}
Id” Y eV}

We attach a superscript V' to the operators because, since V is only a subset of a
Cartesian product U x U, the meaning of the operators is dependent on V. We note
that, for x,y C V, xo"y = (xoy) NV, in which o is the usual relation composition, and
similarly for the other two operations. For this reason, we call the algebras relativized.

An equivalent definition of these algebras can be given using the notion of pair-
frames. The notion of an arrow-frame, defined below, is known in the literature (cf.
e.g., Maddux [Mad82}); the name is due to Johan van Benthem.
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DEFINITION 2.4.1. (i) A structure F =(V,Cy,Fy,ly) is called a pair—frame if V' C
U x U for some set U, and the relations are defined as given above.

(i) f V C U x U, then Fpir(V) denotes the pair-frame with domain V. The base
of this pair-frame, denoted by Base(V), is defined as {u € U : (Jv € U)({u,v) €
V or (v,u) € V}.

(iii) A structure F = (W, C,F,1) is called an arrow—frame if W is aset, C C *W,F C *W
and | C W.

(iv) K¢ denotes the class of all pair-frames, and K™ the class of all arrow-frames.

FacT 2.4.2. (i) If F is a pair-frame, then F is a full relativized relation set algebra.
(i) If 2 is a full relativized relation set algebra, then % = (Fpqir (1%))F.
(ii1) BA™ = S(K™)*.

ProoF. (i) and (ii) follow from the definitions. (iii) follows from fact 2.2.1. QED

PAIR-FRAMES VS ARROW-FRAMES. We make the difference between complex alge-
bras of arrow—frames and complex algebras of pair-frames clear by the notation for the
operators. We use the notation for abstract (equationally defined) operators for com-
plex algebras of arrow—frames, and the usual set—theoretic notation for the operators of
concrete (i.e., set—theoretically defined) complex algebras of pair—frames. Our notation
is summarized in table 2.1. If V is clear from context, we sometimes forget about it
in o¥,71" and I1d”. For the relations Fy and F which give meaning to converse, we
sometimes use the (partial) functions fy, and f, respectively (see section 2.4.3 below).

pair-frames

arrow—frames

operator relation | operator relation
o, o¥ Cy ; C
=1 Fyfy - F, f
id, td¥ Iy id I

TABLE 2.1: RELATION ALGEBRAIC OPERATORS AND THEIR FRAME RELATIONS

The great advantage of pair—frames is that we can draw pictures which immediately
explain the meaning of the terms. In Kripke frames, one usually draws the elements
of the domain (the “worlds”) as points, and indicates the (accessibility) relations by
arrows. In pair-frames, the “worlds” are pairs (u,v) which are drawn as an arrow
going from u to v, and the accessibility relations need not be drawn, since they are
implicit in the arrows. One can say that in pair-frames the accessibility relations are
coded inside the worlds. To avoid confusion, we draw abstract arrow—frames as Kripke
frames. In figure 2.1, we establish our convention for drawing accessibility relations.
At the left are the pair-frames, and at the right the arrow-frames.
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‘ I
Ix O X *
FIGURE 2.1: (ACCESSIBILITY) RELATIONS IN PAIR-FRAMES AND ARROW-FRAMES

2.4.2 A LANDSCAPE OF RELATION ALGEBRAS AND RELATIVIZED
VERSIONS

In this section, we define a landscape of (relativized) relation algebras, and look at

several properties of the classes which inhabit this landscape. We start with defining
the classes.

DEFINITION 2.4.3. Let R stand for reflexive, S for symmetric, and T for transitive.
Let H C {R,5,T}. We use “V is an H relation”, to abbreviate that V' has the
properties mentioned in H. Define:

Krel, ' [FeK®:Fisan H relation}
Kitso Y (FeK®:F=UxU for some set U}

SRIRRA & g(Kre)+

SRIzRRA ¥ (K )+
RRA ES(Kittpsr)t

We will refer to KZE{SQ as the square pair-frames , and to K™ oo as the locally square'!
ones.

RELATIVIZATION. We explain our notation. In section 2.3, we introduced the opera-
tor Rl of relativization. In the definition above, we put constraints on the relativization
in the subscript g. For instance, RIR(Kf;giSQ)"’ means that we only relativize with re-
flezive relations. By writing out the definitions, one sees that RRA = SRlgzs7RRA =
SRIRST(K?:iSQ)“', and the names given to the relativized classes are correct. That is,
we can start out with defining only the class RRA and obtain the others by relativizing
and taking subalgebras. We gave a direct definition of the relativized classes to em-
phasize that the choice for a Cartesian product or an equivalence relation (as in the
case of RRA) is just an option out of many, and that the relativized relation algebras

set

' The reason for this name is that K7¢ .. equals the class {F € KI% : (V(u,v) € F)(*{u,v} C F)}.
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have a natural definition on their own without referring to RRA. We have chosen for
the “relativized names” to stay close to the literature.

THE LANDSCAPE AND ITS PROPERTIES

The above defined classes of algebras can be ordered as given in figure 2.2 (X — Y
denotes X D Y'). It is not difficult to show that all the inclusions except the one labeled
with = are strict. ~

RRA = SRlzs7RRA

TS

SRlzsRRA SRIlsrRRA

SR1.rRRA
SRI1;RRA
SRI1;RRA SRI1;RRA
SRIRRA

FIGURE 2.2: THE LANDSCAPE OF ALGEBRAS OF BINARY RELATIONS

One aim of this work is to study systematically all the classes in figure 2.2. For all of
these classes, we will look at the following properties:

e whether they are varieties

o whether they are finitely axiomatizable

e whether their equational/universal theories are decidable

¢ whether they enjoy amalgamation, interpolation and definability properties
These notions will be made precise later on. Our intention here is to present an overview
of what is known, and to indicate what we will add to this knowledge. We start with
what is known about the pair—frames with a frensitive domain.

THEOREM 2.4.4 (TARSKI). RRA is a variety and RRA = SP(Kl&s0)*.

This theorem gives us the following corollary.

COROLLARY 2.4.5. For all H C {R,S,T}, the class SRIgRRA is a quasi-variety.
Proor. Immediate by 2.3.1. QED

For H C {R,S,T}, the class SRIzRRA need not be a variety (it need not be closed
under homomorphisms). Therefore, for any H C {R,S,T} we will state whether the
class SR1zRRA is a variety. Whenever T € H, the answer is easy. Then we have a
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discriminator term (cf. [ANS94a]), and, by the universal algebraic fact that any quasi-
variety with a discriminator term is a variety (cf. Németi [Ném91] Thm 9.2), we are
done. When T € H, this is the only property from the above list which is positive.
Results (i) and (ii) in the next theorem are due to Andréka—Németi, the ones in (iii)
and (iv) to Németi-Sain (cf. [ANS94al).

THEOREM 2.4.6 (ANDREKA-NEMETI-SAIN).
Let {T} C H C{R,S,T}. Then SRIgRRA has the following negative properties:
(i) it is a variety, but not aziomatizable by finitely many equations,
(i) its equational theory is undecidable,
(iii) amalgamation and interpolation fail, and
(iv) the Beth definability property of the corresponding (arrow) logic fails.

Because of this theorem, we concentrate on the case with T ¢ H. In table 2.2, we
summarize the results of the above theorem, and we contrast them with the results we
will find in the subsequent chapters for the cases when 7' ¢ H. In the last column, we
give the sections where we deal with these results.

HC{R,S} {T}CHCI{R,S T} section
SR1yRRA SR14RRA
& variety yes yes 4.2
¢ fin. axiomatizable ves no 4.2
by equations
o decidable eq. yes no 3.2
theory
o generated by its ves no 3.2
finite members
¢ interpolation of ves no 5.4
inequalities

TABLE 2.2: RESULTS ABOUT THE LANDSCAPE BELOW RRA

We will prove the positive results in table 2.2 by working with arrow-frames. It will
turn out that, for each class K¢, with H C {R, S}, we can define ~using finitely many
canonical equations— a class of arrow-frames which has the same equational theory.
These equations correspond to simple and intuitive FO conditions on arrow—frames.
For this reason, we will hardly speak in the algebraic language about the classes of
relation algebras. Instead we use the simpler FO language of arrow—frames. In the
next subsection, we introduce the conditions we will work with, and get familiar with
them. After that, we show how these conditions can be defined by means of equations.

2.4.3 ARROW-FRAMES

CONDITIONS ON ARROW-FRAMES. Consider the conditions (Cy) — (C}5) on arrow—
frames given below. Note that the first twelve conditions are all universal Horn sen-
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tences, and are valid on all pair-frames. Condition (C}3) is valid on symmetric pair-
frames (i.e., pair-frames whose domain is a symmetric relation), and conditions (Cy4)
and (Cjs) on reflezive ones.

Vzy(Fzy = Fyz) (Cro) Vryz(Fry&Fzz = y = 2)
Vz(lz = Cozz) (Ch1) Vryz(Cayz&ly = z = 2)
Va(lz = Frz) (Ch2) VYayz(Cryz&lz = z =y)
(
(

a0
T = g e g

Vzyzv(Cryz&Fyv = Czuz) Ci3) VzIy(Fzy)
(Cs) Vzyzu(Cryz&Fzv = Cyzv) Ci) VYzIy(ly&Cayz)
(Cs) Vayz(Caxyz & lz = Fzy) (Cys) VzIy(ly&Czzy)

(C7) Vzyzv(Cryz&Crvz&lv <= Cayz&Cyvy&iv)
(Cs) Vzyzv(Cryz&Cyyv&ly <= Czyz&Czvz&lv)
(Cy) Vayzv(Cryz&Czzv&lv <> Cryz&Crzv&lv)

TaBLE 2.3: CONDITIONS ON ARROW-FRAMES

The meaning of these conditions is most easily grasped by checking their validity using
the proposed way of drawing pair—frames. We briefly go through the list. The meaning
of (C}) and (Cyo) is easy: every arrow has at most one converse and the converse
relation is symmetric (i.e., if we look at the relation as a partial function f, it says
that if fz is defined, then so is ffz and it equals z. (Ci3) says that every arrow has a
converse. Conditions (C;) and (Cs) state that an identity arrow is its own converse,
and can be decomposed in itself. The meaning of (Cy) and (Cs) becomes clear by the
following pictures:

X X

Condition (Cs) states that if an identity arrow is decomposed in y and z, then y and
z are converses. Conditions (C7) — (Cs) express the fact that each arrow can have at
most one identity arrow (its “domain”) at its tail, and one at its head (its “range”).
If an arrow is a pair {u,v), then its domain is (u,u), and its range is (v,v). So, if we
can decompose z into y and z, then (if they are defined) the domain of z equals the
domain of y (Cy), the range of y equals the domain of z (Cs), and the range of z equals
the range of 2 (Cy). Conditions (Cy4) and (Cys) state that for every arrow, its domain
and range are defined. The meaning of (C1;) and (Ci,) is obvious.

PARTIAL FUNCTIONS FOR CONVERSE, DOMAIN AND RANGE.
By the conditions (C7), (Cy), (Cia) — (C12), we have three partial functions living in our
frames. If one assumes (Cy3) — (C)5) as well, they will be total. It is useful to make



2.4] RELATION ALGEBRAS, ARROW LOGIC AND ARROW FRAMES 31

them explicit, so define

def

far=y < Fuay otherwise f is undefined
=y &y Cayz & ly otherwise (.); is undefined

=y & Czzy & ly otherwise (.), is undefined

w

So, if they are defined, fz gives the converse arrow of z, and the functions z; and z,
(I for left and r for right) give, what we called above, the domain and the range of
x, respectively. In other words: the two functions give us the left and the right “end-

point” of an arrow. It is convenient to have explicit symbols in our algebraic language

corresponding to the two defined functions: define s} x & (id Ax);1 and s9x & 1;(id Ax).

Their meaning is given by the following three equations. This is easy to see by writing
out the definitions.

ss7 = {z:z; €7}
it = {z:z, €7}
™ = {z:fz €7}

The notation s;- comes from cylindric algebra theory, in which s§ 1s used as the sub-
stitution operator. Note that if the meaning'? of p is a binary relation, the meaning of
s} p is given by the set {(z,y) : (y,y) is in the meaning of p}.

Note that, on reflexive and symmetric pair—frames, the three functions give us all
permutations with repetitions of a pair (u,v) which are different from (u,v).

Unary operators whose accessibility relation is a total function have the nice prop-
erty that they distribute over the Booleans (they are Boolean endomorphisms). If the
relation is a partial function, then the operator distributes only over meet and join.
For complementation of such an operator, only the weaker —Ox A O1 = O—x holds.
Both sides of this equation say that a “world” has a “successor” and x is not true at
that “successor”.

Using the defined functions, we can formulate the following useful consequences of
the frame conditions given above (see Prop.2.4.7 below)!®.

(To) f, ()i and (), are partial functions and f is idempotent
(Tl) lx=>x=f(a:)=$,=x,
(in particular: if Iz then all three functions are defined on )
(T2) FW = I = Yy & Ty =Y
(T3) Cayz=m=n&ky,=2&z =2,
(Ty) f, (.); and (.), are total

If f is a total function, we can write (T3) in a simpler way as z; = (fz), and 2z, = (fz),.
Since, by definition, lz; and lz,, (T}) implies that 2; = (z;); = (%), and 2, = (z,), =

(56,-)1.

2In FO logic s Pugv; would be written as Juo(Pvovy A v = v;) or equivalently Pvyvy. So the
variable vy is substituted for vg.

13If we use two partial functions f and g, then fz = gy means that either both fz and gy are
undefined, or they are both defined and fz = gy. Idempotency of a partial function f means that if
fx is defined, then ffr = .
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PropPOSITION 2.4.7. (i) (C)) — (Ca) E (Ty) — (T3)
(i) (C1) = (Chs) | (To) = (Tw)

- PrOOF. (T}): Functionality follows from (C7),(Cy),{Cro) — (Ci2). Idempotency of f
follows from (C4).

(Th): 1z (@K ¢ ror & For & 7 = fz = z) = Ty

(T3): This is just a short way of summarizing (Cy) — (Cy).

(T3) : Suppose Fry, and suppose z; is defined. Then Fzy & Czziz. Then, by (Cs), we
get Czjzy, hence, by (T3), (z1), = y,. Finally, by (T1), (z1)» = 21 = y,. Now suppose
z; is not defined: assume that y, is defined, and derive a contradiction in the same way
as above using (Cy). The other condition is proved in a similar way.

(T}): That these three functions are total, follows from (Cy3) — (Cs). QED

APPROXIMATIONS OF (REFLEXIVE OR SYMMETRIC) PAIR-FRAMES. Of course, con-
ditions (Cy) — (Cys) are not arbitrarily chosen. They can be used to define classes
of arrow—frames K75, (H C {R,S}) which have the same equational theory as the
classes of pair-frames K™, . We prove this in chapter 4. These classes are given in
the next definition. In figure 2.3, we present the inclusions between these classes of
arrow—frames and pair—frames. All relations are strict. When an arrow is labeled by eq,
this means that the two classes have the same equational theory (cf. theorem 4.2.1).
In the diagram at the right, these relations are given for the varieties generated by
these frame classes. (That these classes are actually varieties will be shown in the next
subsection.)

DEFINITION 2.4.8.

Kyt & (Fek:FE(G)-(Cn)}
Kt € {FeKy:FE(Cu)
Kk € {FeKy:FE(Cu),(Ci)}
Kihs & KghnKig

2.4.4 ARROW CORRESPONDENCE
The next proposition shows how we can define the conditions (C;)-(C}5) by canonical

equations. It follows that the classes S(K™¢, )" (H C {R, S}) are finitely axiomatizable
canonical varieties (cf. 2.4.10).

PROPOSITION 2.4.9. For 1 <1 < 15, every equation (A;) gien below s canonical,
and it corresponds to the frame condition (C;). The correspondence of 2, and 7-9 hold
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only when 11 and 12 are assumed.

(C1) Vzy(Fzy = Fyz) (A1) xAy” < (x7Ay)~
(C2) Vz(lz = Czzzx) (42) id=id;id

(C3) Vz(lz = Fzz) (A3) xAid <x~

(Cy) Vzyzv(Cryz&Fyv = Czuz) (A1) x73=(xy) < ~y
(Cs) Vzyzv(Cayz&Fzv = Cyav) (As) —(xy)y~ £ —x
(Cs) Vzyz(Cayz & lz = Fzy) (A¢) x—(x7)< —id

(Cr) Vayzv(Cryz&Crur&lv <= Cryz&Cyuydlv) (A7) [(xAid)jyl;z = (x Aid)sly;z]
(Cs)  Vzyzv(Coyz&Cyyv&lv <= Coyz&Czuz&lv) (As) [x(y Aid)];z = x;[(y Aid);z]

(Cy)  Vzyzv(Cryz&Czzv&ly <= Czyz&Crzv&lv) (4g) [xyli(z Aid) = xly;(z Aid)]
(Cro) Veyz(Fzy&Frz = y = 2) (Ap) x Ay~ <(xAy)~

(Cn) Vzyz(Cayz&ly = z = 2) (A1) idix <x

(Ci2) Vryz(Cxyz&lz = z =y) (A12) x;id <x

(Ci3) VaIy(Fzy) (A3) 17 =1

(Cia) VzIy(ly&Cayz) (Ag) x<idx

(Cis) VaIy(ly&Czzy) (Ais) x < x;id

PROOF. Straightforward, since all equations are, or are equivalent to, positive equa-
tions (see the claim below).

CramMm 1. All the axioms can be given using only Boolean meet, top, and the non
Boolean operators (i.e., with positive equations). Axioms (A4) and (A;) are equivalent
toxA(y~;z) <y7i(zA(yx)) and x A (y;z7) < (y A (x;2));27, respectively. Axiom (A4s)
is equivalent to id A(x;y) < x;(y Ax™).

ProoF OF CLAIM. The equivalences are easy to show by using that (A4) — (As) are
Sahlqvist equations and 2.2.4. <

As an example we show the correspondence of one side of (C7), which is a convenient

reformulation of the “real” correspondent of (A7). This real correspondent is (2.3)
below. The (=) half of condition (C7) follows from (2.3) using condition (Cy;).

Czyz & Cyvw & v = (Ju) : Cavu & Cuwz (2.3)
Let (A5) denote [(x Aid);yl;z < (x Aid);]y;z].
CLAIM 2. F |= (47) <= FE(23)

PrROOF OF CLAIM. Clearly, (A5) holds on every frame satisfying (2.3). For the other
side, suppose an arrow frame F validates (A5). We have to show that F validates
(2.3). Assume the antecedent of (2.3). Let x,y,z be variables, and define a valuation
such that v(x) = {v},v(y) = {w} and v(z) = {z}. Then (F,v),z I+ [(x Aid);y};z, which
is the antecedent of (AF). Because F validates (A5), the point z will also validate the
consequent of this equation. But then, by the given valuation, there exists a u such
that the consequent of (2.3) holds. QED

Let AX C {(A;) — (4;5)}. Define BA™(AX) % {2 € BA™ : o = AX]}.
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THEOREM 2.4.10. The four varieties given below are canonical.

(i) BA™((A;) - (A1) = S(KiO)*
(i) BA™((A1) — (A1) = S(Kj)*
(i) BA™((A1) = (A1), (Au), (A1s)) = S(KIh)*
(iv) BA™((A1) - (A1) = S(Kjfrs)*
PrOOF. Immediate by 2.4.9 and fact 2.2.2. QED

REMARK 2.4.11. Tarski proposed the following axioms in order to approximate the
equational theory of the variety RRA. We list them, together with their FO correspon-
dents on arrow-frames.

(RA;) the BA™ axioms'
(RA4;) (x;y);z = x;(y;2) Veyzuv((Czyz & Cyuv) = Fw(Czuw & Cwvz))
Veyzuv((Ceyz & Czuv) = Jw(Czwv & Cwyu))

(RA;) x;id =x Ve3z(lz & Crzz)
Veyz(Coyz & lz =z = y)
(RA43) (x7)" =x Vedly(Fry & Fyz)

(RAy) (xy)~ =y 5 x~ Veyz(Jw(Fzw & Cwyz) <= Juv(Fuy & Fvz & Czou))
(RAs) x7;—(xy) < -y  Vayzu((Coryz&Fyv) = Czuz)

The variety {2 € BA™ : 2 |= (RA;) — (RAs)} is called RA (the variety of Relation
Algebras, cf. [HMT85] Def 5.3.1). The axioms (RAg) — (RAs) are called the RA axioms.
All the RA axioms show up in a weakened form in our list (A4;) — (A;2). We deleted
the existential import of the RA axioms by appropriate intersections. The associativity
axiom returns as the three weakened forms of associativity (A7) — (As). The weakened
form of axiom (RAy) is x;id = xA (1;id), which is equivalent to axiom (A;;). Assuming
(Ag0), axiom (A,;) is equivalent to the more appealing (x~)~ = x A 1™, which is a
weakened form of (RA;). To delete the existential import from (RA,), one has to
rewrite it as (x A 17 );(y A1)~ = (x7;¥y~) A 1~. By reasoning in frames, it is easily
seen that this weakening follows from (A4,) and (As). (RAs) finally, is the only RA
axiom without existential import; this is our (A4).

2.4.5 ARROW LOGIC

Arrow logic is the general modal logic —in the sense of section 2.1.3- of the type rel =
{;,~ ,id} of relation algebras. In the literature, one can find many notations for these
three operators. We will use the following: the composition operator is given by a
binary infix operator “e” converse is denoted by a unary prefix operator “®”and for
the identity constant we use “id” as before. We use an underline to denote the duals
of the operators, so ®@¢ PN ~@-¢ and perp P 1Y =(—¢ @ =1p). So, arrow logic is a
propositional logic with countably many variables {p; : « < w}, enriched with a binary
modahty “e” anunary “®” and a constant “id”. Models are provided by arrow-frames

H1e., a BA axiomatization plus equations which state that ; and ~ are normal operators.
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F = (W,C,F,I) plus a valuation v. The modalities are interpreted on these models as
follows:

M,z I id &y
M,z I ®¢ AN (Fye W) :Fey&M,yi-¢

M,zlpoyp <& (Fy,ze W) : Coyz &M,y o &M,z I ¢

In this way, an arrow logic AL(K) def (Fmla({pi : ¢ < w}),Mod(K),F¢) is completely
determined by its specific class of arrow-frames. Yde Venema wrote a nice overview
article about arrow logic ([Ven94]).

ALGEBRAIZATION OF ARROW LOGIC. If we algebraize an arrow logic of a class of
frames K in the sense of algebraic logic (cf. e.g., Andréka et al. [ANSK94]), we get the
class of algebras SPK*. Statements about meta—logical properties of the general modal
logic GML(K) translate into equivalent algebraic statements about the class SPK*.
(Cf. [ANSK94] for such equivalence theorems about completeness, compactness, decid-
ability and interpolation.) In the coming three chapters, we will investigate algebraic
counterparts of arrow logic of pair-frames. The algebraic counterparts of the arrow
logics of the classes of pair-frames K¢ are the classes of relativized relation algebras
SR1zRRA. In chapter 6, we transform the obtained results back into meta-logical
statements about arrow logic.

2.5 CYLINDRIC ALGEBRAS, CYLINDRIC MODAL LOGIC AND
ALPHA FRAMES

In this section, we introduce algebras and frames of the cylindric similarity type. The
section is set up analogously to the previous one about the relational similarity type.
In subsection 2.5.4, we compare the two types of algebras.

The standard work on cylindric algebras is the monograph Henkin-Monk-Tarski
Parts [ and II ([HMT71], [HMT85]). A book with a lot of information about relativized
cylindric algebras is Henkin et al. [HMT+81]. A very extended survey, including the
most recent developments, of this field is Németi [Ném91]. In our terminology and
notation we follow [HMT71].

2.5.1 CYLINDRIC ALGEBRAS AND ALPHA FRAMES

Let o be any ordinal. Define Bo, as the class of all BAO’s with & many unary operators
“c;”, one for each 1 < «, and constants “d;;”, one for each ¢, j < . The elements “d;;”
are called diagonals, and the operators “c;” cylindrifications. We use a superscript '@
to denote this specific similarity type!®. These algebras are the appropriate abstract
version of the cylindric set algebras defined below. Let V' C U, for some set U; define

15The name Bo, comes from [HMT71], in which Bo,, is called the class of all Boolean algebras with
operators of dimension a. Using our convention, we should have called this class BAV!x,
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a set of binary relations =Y C V x V, and a set of unary relations DV C V for each
1,] < o as follows

Dy, « {s €V :s =s;}
=V & (s eV xV: forall j £1, s; =7}

We call an algebra 2= (B(V),CY,D})) a full cylindric relativized set algebra of dimen-
sion a, if P(V) is the Boolean powerset algebra with domain P(V'), and the operators
are deﬁned as follows:

CV(x) ¥ {sevV:@r):s=r&rex}
DY ¥ {seV:DYs}

When V is clear from the context, we will suppress the superscript V.

The relations =; and D;; give rise to the notion of assignment-frames of dimension
a. We call their abstract counterparts a—frames. Venema [Ven93] calls assignment—
frames in which the domain consists of a full Cartesian product V = *U, cubes. There
is an obvious analogy with the square pair-frames.

DEFINITION 2.5.1. (i) A structure F = (V, =Y, D}}). i< 18 calledan assignment—-frame
of dimension o if V C °U for some set U, and the relations are defined as above.

(i) If V C U, then F,,(V') denotes the assignment-frame with domain V.

(iil) A structure F = (W, T", EY); i, is called an a~frame if W is a set, T C W x W
and B CW.

(iv) K denotes the class of all assignment—frames of dimension «, and K% the class
of all a-frames.

Clearly, if F is an assignment-frame, then F* is a full cylindric relativized set alge-
bra. If F=(W,T", E”'j)i’Ka is an a~frame, then Ft = (P(W), ¢;, dij)ij<a denotes the
complex algebra of F. The meaning of the ¢;’s and d;;’s are computed as above, but
now using the abstract relations 7" and E". Fact 2.2.1 implies that Bo, = S(K%¥'*)*.

SUBSTITUTIONS. In order to define more restricted classes of assignment—frames, we
define the notion of substitutions of sequences. For s an « sequence, let fi(s) denote
that sequence r which equals z on its i—th coordinate, and agrees with s on all other
coordinates. We call f ij(s) the substitution of the j-th coordinate of s for the «—th
coordinate. Substitution functions are definable on assignment-frames of dimension o
in the following way. Fori,j < «, define the (partial) substitution function f]‘ onV C U
as follows. For s,7 € V,ifi # j, thenfis = r iff (s =; r& Dyjr). If i = j, thenf(s) = s.
The function f; corresponds to the operation S} which is defined as Sjx e (x A Dyj)
if 1 # j, and Six = x if ¢ = j. By these definitions, Sjx = {s € V : fis € x}.

NOTATION. Again, we make the difference between “abstract” and “concrete” oper-
ations clear in the notation. Table 2.4 summarizes it. The “abstract” versions of the
operator S} and the function f} are defined in the next subsection.



38

THE ALGEBRAS AND THE LocIcs

assignment—frames o—frames

operator relation | operator relation
C,’ =y C; ™
Dy D dij EY
Si fi S H

TABLE 2.4: CYLINDRIC ALGEBRAIC OPERATORS AND THEIR FRAME RELATIONS

2.5.2 CYLINDRIC RELATIVIZED SET ALGEBRAS

We define three special classes of assignment—frames by imposing one or more of the
existential requirements mentioned in section 1.2.

DEFINITION 2.5.2.

eyl def eyla |
KsetD (;"'f {]: € Kset .
cyla def eylo |
K {F e K&~

setG -
eyl def eyla
Kcube - {f € Kset

(Vs € F)(Vi,j < a)(fls € F)}
(Vs e F)(*{si:i <a} C F)}
: F = U for some set U}

The first class is the cylindric algebraic analogue of the reflezive pair-frames, the
" second of the locally square , and the third of the square pair-frames. In the next
definition, we relate the classes of assignment-frames to classes of cylindric (relativized)
set algebras which are known from the literature!®. Note that, by definition, these
classes are closed under 1somorphlsms (since SK* = ISK*). Our notation differs from
the convention introduced in [HMT85], because there the class Crs, is not closed under
isomorphisms (i.e., Crs, is defined in [HMT85] as the class S{F* : F € K%*}).

set

DEFINITION 2.5.3 (CYLINDRIC (RELATIVIZED) SET ALGEBRAS). Let o be any or-
dinal.

Crsq fﬁ (Kﬁg t, Do j—“e’: (Czi?))+
G, & (Ki’éi“é), RCA, ¥ sSPKZ)*

These four classes are related as follows: RCA, € G, € D, € Crs,. When o < 1, all
four classes become equal. When o > 1, the inclusions are strict. This can be seen by
the following equations:

D, E cdn =1
G, E —du <%c—dn
RCA; EF coax=c¢¢x

but Crs; [ codar =1
but Dy [ —du < ¢ —dn
but Gy | coax=c¢x

SURVEY OF PROPERTIES. Intable2.5, we present a survey of basic meta—mathematical
properties of these four classes of algebras. The symbol “I” in the table stands for
2 < o < w, and the symbol “II” for & = w. The sources of the theorems which are

6Crs, (for Cylindric Relativized Set Algebras) and RCA, (for Representable Cylindric Algebras)
are defined in [HMT85]. The class D, is defined in [AT88], and the class G, in [Ném92].
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summarized in this table are provided in notes immediately below the table. When
0 < a < 2, all the properties except interpolation are positive for all four classes'’.
Interpolation holds for all classes when o < 1, and for Crs, and D, (see 5.4.6). For Gy,
we don’t know the answer, and the interpolation property fails for RCA; (a result due
to S. Comer [Com69]). :

D. Resek and R. Thompson ([RT91]) provided axiomatizations of the varieties Crs,
and D, for « any ordinal. H. Andréka ([AT88], [Mon91]) provided simpler axiom
systems and proofs for these two theorems. The axiomatizations are recalled in the
next section, because we need them later on. R. Thompson claims to have a finite
axiomatization of the class G,, but he did not reveal the axioms. Due to a result of
D. Monk ([Mon69]), the variety RCA, is not finitely axiomatizable if a > 2. Németi
showed that for o > 2, the variety Crs,, is not finitely axiomatizable, not even by finitely
many equation schemes (cf. [HMT85]). For related and strengthened results, see the
remarks immediately below Thm 4 in [Ném91]. The decidability issues for these classes
were settled by Tarski and Németi.

The trend in the table is similar to what we have seen with relation algebras, be it
that the contrast is not so striking. When a > 2, all properties fail for the class RCA,
(the class of subalgebras of algebras whose domain is a disjoint union of full Cartesian
products). As we have seen with relation algebras, properties tend to turn positive,
once we abandon the requirement of full Cartesian products.

Crsqy D, Gq RCA,

I 11 1 11 I I I 11
e variety yes' yes' | yes® yes® | yes® yes® | yes* yes?
e fin. (schema) no'  no' | yes? yes? | yes® yes® | no® no®
axiomatizable
o decidable eq. yes® yes® | yes® 7 | yes® yes® | no”  no”
theory
e generated by ? ?7 | yes® 7 ? ?7 | no” no
its fin. members
e interpolation of | yes® yes® | yes® yes® | ? ? | not® no'
inequalities

“I” stands for 2 < o < w and “II” for o = w.

Németi [HMT85] Thm 5.5.10, 5.5.12, 5.5.13 ©  Németi [Ném92] Thm 10
Resek-Thompson, Andréka [Mon91], [AT88] 7  Tarski [HMTS85] Thm 4.2.18
Thompson unpublished ¥  Thm 3.3.1 in here

Henkin~Tarski (HMT85] Thm 3.1.103 % Thm 5.4.6 in here

Monk [HMT85] Thm 4.1.3 1% Comer, Pigozzi [Pig72] Tab 2.4.1, 2.4.2

Gt e W o

TABLE 2.5: PROPERTIES OF CYLINDRIC (RELATIVIZED) SET ALGEBRAS

1" These results can be found in or derived from [HMT71] and [HMTS5].
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2.5.3 CORRESPONDENCE AND COMPLETENESS

We now recall the axiomatizations of Crs, and D,. The axioms of Crs, and a soundness
and completeness proof can be found in Monk [Mon91], but we note that, due to a mis-
print, axiom (Ag<) given below is missing from his list. For a simpler reformulation and
an easier soundness proof of the last axiom, we refer to van Lambalgen-Simon [LS94].
The D, axioms and a nice completeness proof can be found in Andréka-Thompson
[AT88]. We provide a slight reformulation of the D, axioms, which makes the connec-
tion with the non-relativized axioms a bit clearer, and which will be helpful in the next
chapter. In order to compare the axioms with the well investigated cylindric algebra
axioms CA, we list them here as well, together with their corresponding conditions on
a—frames (cf. [HMTT71] Thm 2.7.40). The side-conditions in the definition apply to
both the equation and the frame condition.

DerFINITION 2.5.4 (CA AXIOMS).

(A1) x<c¢x (Cy) VzT'azz

(A2) cicix<gx (Cy) Vayz(Tizy & T'yz = T'zz)

(Asz) x< —¢—¢x (C3) Vay(Tizy = T'yz)

(Ay) cicjx=rcjcx (Cy) Vayz(Tizy & T7yz = Jw(T?zw & T wz))

(A5) d,j,' =1 (Cs) V:cE“x

(A¢) cildinAdij) =dij (Cs) Va(EYz = y(Trzy & E%*y & EMy)) if k ¢ {3, j}
Vay(T*zy & E*y & EY¥y = EYz)  if k ¢ {1,5}

(A7) dijAci(di Ax) < x (Cr) Vay(EPz & Tlzy & EVly = z =y) ifi#7

Define the class CA,, of cylindric algebras of dimension «, as the subclass of Bo,
which validates all instances with indices smaller than « of the axioms (A,) — (A7).

Note that all axioms, except number 3, are positive equations, and that axiom 3 is
equivalent to the positive equation x A ¢;y < ¢;(¢;x Ay).

CORRESPONDENCE RESULTS

The correspondence results in this paragraph are all stated without proof. The latter
are trivial, because all equations are positive.

SUBSTITUTIONS. Define the abstract substitution relation f} as follows: if ¢ = 7, then
def

fle =x,and if i # j, then flz =y & T'ay & EYy.

PROPOSITION 2.5.5. The azioms (A,),(A3),(As), (Ae>) and (A7) are sufficient to
make f]’ a total function. Without (As) and (Agy), it is o partial function.

Proor. Straightforward. QED

We also define the abstract substitution operator s}, in a similar way as we did above

for the concrete one: if ¢ = j, then s} x ¥ x, and if 4 # 7, then s; x & ¢i(xAdij). Using



2.5] CYLINDRIC ALGEBRAS, CYLINDRIC MODAL LOGIC AND ALPHA FRAMES 41

this operator, we can rewrite axioms 6 and 7 to the ones given below, making it clear
that these axioms are about the relation between the substitutions and the diagonals.

(Aw) dij=sfdi; ik#j
(A.7I) dij /\S}X S X

AxioMms FOR D,. Consider the following two equations and FO frame conditions. The
frame conditions correspond to these equations whenever the substitution functions are
total. '

(Agy) 525{;"? sisix . (Cay)  Va(fifiz= fl::flgx)
(Aucr) sisjshsicix =spsPsisicix (Cuor) Vay(T* i fififf (2)y <=

Axiom 4+ is the weakened version of axiom 4. This becomes clear, when we write the
definitions out, and get ¢;(c;(x A djx) A dix) = ¢j{C;x A dix) Adjx). The second axiom
is called the merry go round equation. The axioms 1 — 3,44,5 — 7 and (A ygr) are
sufficient to axiomatize D, (see 2.5.7 below).

AXioMs FOR Crs,. The axioms which are sufficient to axiomatize the variety Crs,
(3 € a £ w) are far more complicated. We mentioned above that no finite axiom-
atization is possible. The infinite axiomatization consists of all CA axioms without
ezistential import, plus the ones given immediately below’® (cf. [Mon91]). We need
some notation in order to formulate the infinite set of axioms (8) conveniently. We use
[¢/7] for the function in *a which sends 7 to j and fixes all other elements.

(A5a) d,’j = d]',' (C5a) V(BEUCB <==>‘Eji$ '

(Ass) di Adjr < dik (Cst) Va(EYz & E*z = E™ax) '

(As<) cildix Adij) < dij (Cog) Vay(T*zy & E*y & E¥y = Evz)
if k & {1,7}

(Ag) S;»" Chp v - S;ll Cpy, XA HIEK dlu(l) <X

n

subject to condition (*) below
Axiom (Ag) corresponds on a-frames to (Cg) below!®, and is subject to the same

condition ().

(Cs) Vzo...2n([[ B"Van & T* firapzn & .. &T" fllozo = T z,30)
leK

(x) where K = {i1,...,tn, k1, .., ku}\{i}, v = [in/Ju]o. . .0[is/j1] and ki1 & ([in/Jm]o
coco i/ (K) for all m < n.

B Note that (As) follows from (A;),(Ajz) and (Ag<). We leave it to be consistent with [Mon91].

19The condition should be read as follows: if all functions are defined and the antecedent holds then
the consequent holds. Note that the functions do not contain any existential import in this way. The
condition could be written equivalently as a universal Horn sentence without the substitution functions
as follows: delete all occurrences of f1’s for i = j,and, if i # j, rewrite T* fiz, y as T'z, 2& BV 2&T* 2,y
using new variables.
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COMPLETENESS RESULTS

DEFINITION 2.5.6. Let o be any ordinal greater than 0.

(i) The class K%' is defined as the class of a~frames which satisfy all instances with
indices smaller than « of conditions (C,) — (C;),(Cy4), (Cs) — (Cr) plus (Cirer)-

(i) The class K& is that class of a—frames which satisfies all instances with indices
smaller than « of the conditions (C;) — (C;),(Cs),(Csa), (Css), (Ce<), (Cr) and the

set of axioms (Cs).
Let AX be a set of equations. Bo,(AX) denotes the class {2 € Bo, : 2 |= AX}.

THEOREM 2.5.7 (RESEK-THOMPSON). Let o be any ordinal greater than 1. Then
Crs, and D, are canonical varieties. In particular:

(i) Boa((A1) = (As), (As), (Asa), (Asp), (Ass), (A1), (As)) S(Ky™)+ Crsq
(ii) Boa((A1) — (As), (Ass), (As) — ( ),(Aucr)) = S(Kip)* = Da

Proor. (i). Cf. [Mon91] Thm 9.4.
(ii). The axioms 1 — 3,4%,5 — 7 and M GR are sufficient to axiomatize D, (cf. [AT88]
Thm 1).

i
Il

(Ag) djpAcjaix<cicix if k¢ {i,5}

So the only difference between the two axiom systems is that 4« is replaced by 4-.
But, assuming axioms 1-3 and 5-7, these two axioms are equivalent (cf. Thompson,

[Tho90], Prop 1). QED

REMARK 2.5.8. Whenever a equals 0 or 1, the cases are much simpler. In case
a = 0, we have Crs, = D, = RCA, = BA. When « equals 1, Crs, = D, = RCA, =
Bo,((A;) — (A3),(As)). The class Crsy can be axiomatized by the equations (A;) —
(Ag), (As), (A5a), (A'() (Cf [HMT85] Thm 555)

2.5.4 CYLINDRIC ALGEBRAS AND RELATION ALGEBRAS

We briefly compare the two types of algebras. Both are algebras of relations. Rela-
tion algebras are algebras of binary relations, and cylindric algebras of dimension «
are algebras of a—ary relations. Cylindric algebras of dimension o are the algebraic
counterpart of FO logic with o many variables. The expressive power of RRA equals
that of FO logic with 3 variables and only binary predicate symbols. (For a purely
algebraic formulation of this result, see [HMT85] section 5.3.) We will compare the
pair-frames and the assignment—frames of dimension 2. Recall the “path”--condition
from section 1.2.

PROPOSITION 2.5.9. Let V be a binary relation. Then V is transitive and symmetric
iff V is an equivalence relation off V satisfies the path—principles.

ProOOF. Straightforward. QED

The next proposition shows why the cylindrifications Cy and C; are not taken as prim-
itive operators in relation algebras.
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PROPOSITION 2.5.10. (i) Let V be a reflezive and symmetric binary relation. Then
Fpair(V) E CYx=10Y (IdV A(10Y x)) and Fpeir (V) | CVx = (1d¥ A(x 0" 1)) 0" 1.

(ii) Let V be a binary relation satisfying the path-principles. Then Fpuir(V) | CYx =
10Y x and Fpuir(V) E CVx = x0" 1.

Proor. (i). Cf. 6.3.1. (ii). Immediate by the previous proposition. QED

2.5.5 CYLINDRIC MODAL LoOGIC

An excellent exposition of cylindric modal logic (CML) can be found in Venema [Ven93]
and [Ven91]. Here, we briefly sketch the basic idea of this system. The aim of CML
is to study and devise a propositional modal formalism which is as expressive as first
order logic. This can be done by restricting the syntax of FO logic in such a way that
it behaves like a (multi)-modal propositional logic. We briefly describe this restriction.
For a discussion of such a restricted syntax versus the usual syntax of FO logic (as well
as their equivalence when we have infinitely many variables) we refer to [Ném91].

Suppose we have a language of FO logic with the constraint that there are o many
variables (where « is a fixed but arbitrary ordinal), and that the only admissible atomic
formulae are of the form v; = v; (4,7 < &) or R(vpv; ... ;.. .)ica- Then the equalities
v; = v; can be seen as constants 6;;, and in writing the atomic relations we might
as well leave out the variables since, due to their fixed order, they do not contain
any information. But then, we are in a multi-modal propositional logic enriched with
constants. As was explained in section 1.2, we can look at the quantifiers Jv; as if they
were modal operators ©;. So we can define the language of CML, as a multi-modal
propositional language with a set of constants {;; : 7, < «} and o many modal
operators ¢;. The meaning of the formulas is naturally given in terms of a—frames.
Here are the key clauses. Let F be an a~frame (W, T*, E*); jco, M = (F,v) a model
and w € W:

M, w I 6;; &y gy
M,wi O S5 (FveW): Thwo &M,v I+ ¢

Note that if we use a—cubes instead, we get the classical FO interpretation of the
modalized FO formulas.

Using the equivalence theorems mentioned in section 2.4.5, and the fact that the
algebraic counterpart of a cylindric modal logic of a class K of a—frames is the class of
algebras SPK™, all results in table 2.5 can be transformed into results about cylindric
modal logic.






3
DECIDABILITY

In this chapter, we focus on decidability for theories of relativized relation algebras
SRIzRRA for H C {R,S,T} (see 2.4.3) and of the variety of cylindric relativized set
algebras D, (see 2.5.3). Our main results are that the universal theory of the class
SRI15RRA is decidable if and only if T' € H, and that for finite o, the universal theory
of D, is decidable.

This chapter is organized as follows. In the first section, we introduce the method
of filtration which we will use for obtaining decidability results. This method is quite
powerful: using it, we can show that the universal theory of a variety is decidable. In
the second section, we apply this method to relativized relation algebras and in the
third, to the variety D,.

3.1 FILTRATIONS

We will use the well-known and widely applied filtration technique from modal logic
(cf. Hughes—Creswell [HC84]), to show that, in favorable circumstances, the universal
theory of a class of algebras is decidable. The idea of the filtration method can be
described as follows. Given a class K of frames, a frame F € K, a universal formula ¢
and a model M = (F,v) which falsifies ¢, we use the set of subterms of terms occurring
in equations in ¢ to create a finite model (F*,v*) such that F* also belongs to K, and
¢ still fails. The finite model is called the “filtration”.

We will now make this idea precise. In the remainder of this section, an arbitrary
BAO-type S and a language Eqlangg(X), for an arbitrary infinite set of variables X
are fixed., Terms are supposed to be S—terms constructed from variables in X.

DEFINITION 3.1.1 (FILTRATION). Let M = (F,v) be a model of type S and ¥ a set
of S—terms which is closed! under taking subterms and under the Boolean operations.
Define an equivalence relation =g C F X F as follows:

(Vw,ve F):iw=gv £ (Vr e D) M,wirt <= M,vi 7]

Let w denote the equivalence class w/=y, and identify equivalence classes W with the
sets of terms {r € ¥ : M,w IF 7}.
We call a'model M* = (F*,v*) a filtration of M through ¥ if:

(i) F* is of type S.

(i) F* ¥ {w:w e F}

1We say that a set X is closed under an n-ary operation f if, whenever 7y,...,7, € X, we have
f(Tl,.‘.,Tn) [ X
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(iii) v*(x) & {w € F* : x € w}, for all variables x € .
(iv) min and max , given below, hold for every operator in S

The relations in the filtration are denoted by a superscript *, like in R®*. For an n-ary
operator & and R® C "*1F, the relation in F corresponding to this operator, min and
max are defined as follows:

min R°zy...z, = R™*%;... 75
max (VO(r,...,7) €X): (R*TW .. Th&n e &.. & €yn) =
O(T1y.. ., Tn) €T)

As their names indicate, min provides a lower-bound, and max an upper-bound for
R®*. They are designed to make the following lemma true.

LEMMA 3.1.2 (TRUTH-LEMMA). Let M* = (F*,v*) be a filtration of M = (F,v)
through ©. Then (1)-(iii) below hold.

(i) (VTEL)VEEF*):T€T < M Tt
(i) (Vre)Vz e F): M,z b7 <> M" T
(ii1) Let ¢ be a Boolean combination of equations between terms in .

Then M | ¢ < M* = ¢.

PRrROOF. (i). A straightforward induction on the complexity of the terms. We show
how min and max take care of the operators. Let © be a unary operator. Let Or € 3.

We compute:

(=) Or € & Mz ik Or < (3y € F) : R°zy & M,y I+ 7 = (by min and ind.

hyp.) (37 € F*): RO*Zg&M", g I 1 &L M* 7 I+ OT.

(€)M 71 Or &L (3g € F*) : R®*Zy & M*,7 i+ 7 = (by max and ind. hyp.)
orex

(i1). Immediate by (i).

(ii1). By induction, using (i1). ‘ QED

Note, that neither a filtration needs to be finite, nor that 7 € K = F* € K holds. It
follows from the next proposition that for every model and for every set X, filtrations
always exist. Call a filtration minimal for R®* if it is defined minimally, that is

R — = I
R¥%y.. 5, €5 (3. ..2)) T =ap & .. & Ty =2, & R®), ... 7

i

and call it mazimal for R®* if it is defined maximally, as in
ROZT ... Tn <% (YO(r,...,7) €5): [(n €Tk .. . &7 €F) = O(m,...,T) € 7]

A filtration is called minimal if it is minimal for all the relations, and similarly for
“mazimal”.

PRrROPOSITION 3.1.3. If R®* is defined minimally or mazimally, then it satisfies min
and max .

Proor. This is a straightforward generalization of the corresponding statement in
[HC84]. ' QED
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FILTRATIONS LEAD TO DECIDABILITY

The following notion leads in favourable cases to strong decidability results.

DEFINITION 3.1.4 (ADMITS FILTRATIONS). Let K be a class of frames of type S.

K admits filtretions if for any finite set of S-terms X, any F € K and any model
M = (F,v), there exists a set of S—terms & 2 X and a filtration (F*,v*) of M through
Y such that F* is finite and it belongs to K.

We call the set © D X above, the closure set of X. It is, by definition 3.1.1, closed
under taking subterms and under the Boolean operations. For K a class of frames and
¥ a set of terms, we call ¥ finite modulo K if there exists a finite subset A of ¥ such
that (V7 € £)(37' € A) : K| 7 = 7'. For any class K of frames, the closure under the
Boolean operations of every finite set of terms is finite modulo K. If ¥ is finite modulo
K, then any filtration of a K frame through ¥ is finite.

Let K be a class of algebras or frames. With FinK we denote the class of all finite
members of K.  Recall that a universal formula is a Boolean combination of equations,
and that the universal theory of a class K of algebras is denoted by Univ(K).

LEMMA 3.1.5 (FILTRATION LEMMA). Let K be a class of frames.

(i) If K admits filtrations, then Univ(KT) = Univ(FinK*).

(i) If K is basic elementary (i.e., definable by a single FO sentence) and admits filtra-
tions, then the universal theory of KT is decidable.

PROOF. (i). Assume that K admits filtrations. Clearly, Univ(K*) C Univ(FinK™").
For the other side, suppose ¢ & Univ(K*). Then there exists a frame 7 € K and
a model M = (F,v) such that M [~ ¢. Let X be the set of subterms of all terms
occurring in equations in ¢. Then X is finite. Since K admits filtrations, there exists a
frame F* € FinK and a model M* = (F*,v*), which is a filtration of M through some
set & 2 X. But then, 3.1.2.(iii) implies that M* }= ¢, whence ¢ ¢ Univ(FinK™).

(ii). Assume the antecedent. By an obvious change in the proof of Fact 1.4 in van
Benthem [Ben84], we can recursively enumerate the set Univ(K™*). Since K is definable
by a single FO sentence, we can also recursively enumerate all the finite frames of K. By
part (i) of this lemma, Univ(K™) = Univ(FinK*). So we have a recursive enumeration
of the complement of Univ(K*) as well. Hence, Univ(K*) is decidable. QED

COROLLARY 3.1.6. Let K be a basic elementary class of frames which admits filtra-
tions. Then (1)-(iil) below hold.

(i) Univ(SK) is decidable.

(i) Univ(SK*) = Univ(FinSK™).

(iii) The variety generated by K* is generated by its finite members.

ProOr. By the Filtration Lemma and preservation of universal formulas under S.
QED
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USING FILTRATIONS. Suppose we want to use filtrations for proving decidability of
Univ(SK*). The main difficulty in such a proof is to ensure that the filtration is both
finite and belongs to the class K. For this last property, we have to ensure that the
filtration satisfies the conditions which define that class. This problem will usually lead
us to extend the closure set in such a way that we can still control these conditions in
the filtration. So the “art” in filtration proofs is to make the closure set large enough
to control the conditions, but at the same time small enough in order to end up with
only a finite number of equivalence classes.

In general, ezistential conditions of the form VZ(¢ — 3§), in which ¢ and ¥
are constructed using atoms, conjunction and disjunction (and maybe negation), are
very difficult or impossible to control in filtrations. Ensuring the existence of elements
satisfying the consequent of such a condition usually leads to a closure set which is
too large. Positive FO formulas® are always preserved, because the filtration map is a
homomorphism (by the min condition) (cf. [CK90] Thm 3.2.4). With universal (Horn)
conditions we may have some hope that a filtration will work.

LOCAL FINITENESS

The next lemma is a simple but important tool in filtration proofs. It provides us with
a semantic way of showing that we can close a set of terms under some operations

without losing finiteness. We recall the definition of locally finite (classes of) algebras
from [BS81].

DEFINITION 3.1.7. (i) An algebra is locally finite if all its finitely generated® subal-
gebras are finite.

(ii) A class K of algebras is locally finite if every member of K is locally finite.

(iii) A frame is locally finite if all its finitely generated subframes are finite.

(iv) A class K of frames is locally finite if every member of K is locally finite.

LEMMA 3.1.8. (i) Let K be a class of frames. If K is locally finite and GspK 1s finite,
then the variety generated by K is locally finite.

(ii) If a variety V is locally finite, then the closure of any finite set of terms under all
operations of V 1s finite modulo V.

PrROOF. (i). Assume the antecedent. By duality theory, Eq(K) = Eq(GspK), hence
HSP(K)* = HSP(GspK)". By the assumption, (GspK)™* is a finite set of finite
algebras. Then, by Thm 11.10.16 in {BS81}, HSP(GspK)* is locally finite.

(ii). This holds, because the finitely generated free algebras in V are finite. QED

So, if a class K of algebras is locally finite, then a filtration becomes trivial and will
always work. More interesting classes of algebras are not locally finite, but they might
have reducts which are. That means that we can close a finite set under the operations

2 A formula is said to be positive iff it is built up from atomic formulas using only the connectives
A, V and the quantifiers ¥, 3.

390 is a finitely generated subalgebra of B iff U is a subalgebra of B, and there exists a finite set
X C Bsuchthat A= ({Y : X €V, and Y is a subuniverse of 2}.
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of that reduct without losing finiteness. In the filtration proofs for SR1FRRA (for
H C {R,S}) and D, this feature will be a crucial part.

DIGRESSION: EXPANSIONS WITH THE UNIVERSAL MODALITY

In this small section, we show what happens to a class K of frames when we expand
the language of K with the so called universal modality. This section is an aside and
is not needed to understand the rest of this chapter. Let K be any class of frames of
BAO-type 5. Define

KO {F = (W, R, U)cs: (W, R)ies € Kand U = W x W}
So, K® is of BAO-type S expanded with a unary operator ¢. Set Cix A —¢—x, and de-
fine ¢ in the standard way, given below, using the relation U. Let F = (W, R',U);.¢ €
K®. For F* = (P(W), f*,0) sies and x C W we define:
Oxd-—elf{w EW (FzeW) (Uwz &z €x)}

The operator ¢ is called the universal modality, because it has the following behaviour:
Ox =0, if x = 0, and ¢x = 1 otherwise. It is easy to see that a class of BAO’s has such
an operator iff it has a discriminator term. Hence the variety generated by (K”)* is a
discriminator variety, and we can use all the powerful techniques which are available
for them (for definitions and applications, see e.g., [ANS94a]).

THEOREM 3.1.9. K admits filtrations if and only if K admits filtrations.

Proor. From right to left is obvious. For the other side, suppose that K admits
filtrations. Let F°=(W,R',U),.s € K°, and let X® be a finite set of terms in the
expanded language which is closed under taking subterms. Let M® = (F% v) be a
model. We have to find a finite filtration of M" through some set £ D X, which
belongs to the class K.

We will use that, for every term 7, M” |= (¢7 = 1 or 07 = 0). Create the set X!
from the set X® by replacing every occurrence of a subterm of the form ¢7 in a term
with 0 or 1. E.g., if f(07,0m) € X", then {f(1,1), f(1,0), f(0,1), f/(0,0)} Cc X'
Clearly, this is a finite set in the old language. Hence, by assumption, we can find a
set £ 2 X%, a frame F* = (W*, R*);es € K and a finite model M* = (F*,v*) which
is a filtration of the U~free part of the model M® through ¥.

Let U* = W* x W*. Define 77 as (W*, R, U*)ics, and M as (F7* v*). Clearly,
F©* is finite and belongs to K. We claim that M™ is a filtration of M® through the
set ©UX". For the universal relation U*, min and max are trivially satisfied. For the
other operators, min is still true. So we have to show that 1) £ U X" is closed under

subterms and the Boolean operations, 2) =y = =(yuxu), and 3) max is satisfied for
the old operators. These three claims follow from (3.1) below.
Vre X3 e x" )y M kr=17 (3.1)

(3.1) follows from the definition of X' and the fact that M” |= (07 = 1 or 07 = 0).
QED
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ASIDE ON COMPLETENESS. In favourable cases it is easy to find an axiomatization
of the variety generated by (K")*. Let AX¢ stand for the set consisting of

e equations which say that ¢ is an S5-diamond*

e an equation f(xi,...,X,) < 0x1 A ... A Ox, for every n—ary operator f in S

THEOREM 3.1.10. Let K be a class of frames of type S. Assume that SK¥ 1s a
canonical variety which can be aziomatized by a set of equations AX, and that ZigK =
Cm™'(SK*). Then the class SP(K®)* is a canonical variety which can be aziomatized

by AX U AXQ.

PROOF. Assume the condition of the theorem. The conclusion follows using straight-
forward duality computations from the following two facts, the proof of which only
involves standard S5 arguments. Note that all the equations we add are positive,
hence canonical.

(i) AX U AX? axiomatizes the variety S(K®/)*, in which K% is the class of frames
from Cm™!(SK*) expanded with an equivalence relation U which extends all other
relations®.

(i) K% = Duf{F = (W,R",U);cs : (W, R')ics € Zigk& U = W x W} = DuZigK" C
ZigDuK" QED

3.2 RELATIVIZED RELATION ALGEBRAS

Recall the set of equations (A;) — (A;5) and their corresponding frame conditions
(C1)~(C5) from 2.4.9. We show that varieties defined by several subsets of (4;)—(A5)
are generated by their finite members, and that their universal theories are decidable.
This fact can be applied to prove the same statement for the varieties of relativized
relation algebras® SR1zRRA for H C {R,S}. The application has to wait until the
next chapter in which we show that these varieties can be axiomatized by the given
equations (cf. 4.2.5).

THEOREM 3.2.1. Let T be a set of equations such that {(A;) — (As), (A7) — (A12)} C
T C {(A;) = (Ai5)}. Then the variety BA™ () has the following properties:

(i) Univ(BA™(S)) is decidable.

(ii) Univ(BA™ (%)) = Univ(FinBA™(X)).

(iii) BA™ (X)) is generated by its finite members.

The theorem follows from lemma 3.2.3. We prove it after that lemma. Contrast this
theorem with the following result by Andréka et al. ([AKN*94]). The theorem states
that associativity of composition leads to undecidability.

THEOREM 3.2.2 (ANDREKA ET AL.). Let & be a set of equations such that {x;(y;z) =
(x;y);z} € = C {e:RRA [z ¢}. Then the equational theory of BA™(X) is undecidable.

4They are: 00 =0, O(xVy) = 0xV dy, x < Ox, 0Ox = Ox and x A Oy < O(y A Ox).

SFormally: F=(W,R\,U);c; € KW iff 1) (W,R')ie; € Cm™'(SK*), 2) U is an equivalence
relation, and 3) for every n + 1 place relation R', R'yzy ...z, = Uyr:1 & ... & Uyz,.

8That SRIgsRRA is generated by its finite members was shown in Németi [Ném87).
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LEMMA 3.2.3. Let & be a set of frame conditions such that {(Cy) — (Cs),(Cy) —

(Ci2)} € T C {(C1) = (Cis)}. Then the class Ky & {F € K™ : F |= S} admits
filtrations.

PROOF. As indicated in section 2.4.3, we have three (partial) functions living in the
frame classes for which we want to prove the lemma. The main difficulty in the proof
will be to ensure that in the filtration these functions still behave correctly. To accom-
plish this, we have to close the closure set under the operators id,s},s) and ~. This
is not dangerous, since our axioms are strong enough to ensure that such a closure
set remains finite modulo Kg. This last, crucial, part in the proof follows immediately
from the next claim. Recall that the accessibility relations corresponding to id, s}, s?,~
are 1, (.);,(.)r and f, respectively (see section 2.4.3), and that (see the proof of 2.4.7)
the conditions {(C}) — (C3),(C7) — (Ci2)} imply conditions (Ty) and (7}) below.

(To) f, ()i and (.), are partial functions and f is idempotent
() =>z=1(z)=z =1,

CramM 1. Let K be any class of arrow-frames which validates (Tp) and (T}). Then
the variety generated by the {V,A, —,0,1,id,s},s},~ }-reduct of K* is locally finite.

Proor oF CLAIM. Let K be as stated in the claim. By 3.1.8, it is sufficient to
show that every {I,f,(.);, (.),}-point-generated subframe of each member of K is finite
(ie., the {L,f, ()i, (.)r}-reduct of K is locally finite), and that we have only finitely
many of them. Let F € K and z € F be arbitrary. Since F | (Tp),(71), we can
write the frame as F = (W, C,f,(.);,(.)r,1). By definition of the functions (.); and (.),,
it holds that if they are defined on z, then lz; and lz,. Conditions (T}) and (7})
imply that the subframe which is {f, (.);, (), 1}-generated by {z} can be described as
({z, 2, 2, fz, (f2), (f2), }, 1,1, 4,1}, so0 it is finite. Up to isomorphism, there are only
finitely many such point-generated subframes. <

Let Ky be as in the lemma. Let F=(W,C,F,I} € Kg, M = (F,v) be a model, and let
X be a finite set of terms. Let the closure set CL(X) be the smallest set containing
XU{id} whichis closed under taking subterms, s, s}, and the Boolean operations. Let
Fr=(W*,C* F* I*), and let (F*,v*) be the minimal filtration of M through CL(X).

Conditions (i) and (ii) of the next claim give us that Ky admits filtrations.
CramM 2. (i) W* is finite, and (ii) F* € Kg.

ProOF OF CLAIM. (i). The proof of 2.4.7 implies that Ky = (T),(T1). So, by
claim 1, the closure set is finite modulo K§ (use 3.1.8.(ii)). So there are only finitely
many equivalence classes, and W* is finite.

(i1). We need to show that F* = . We need another claim. From now on, we suppress
the subscript ¢1(x) In Z¢p(x)-

CramMm 3. The following statements hold for the above F and =.

lz&kzrz=2 = I (3.2)
Fry&Fa'z&z=2 = y==z (3.3)
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Fry&z=2 = (3z):Fz (3.4)
Coyr&ly&z =2 = (F2):Cl2d' &lz&y=2 (3.5)
Crzy&ly&z=2' = (F2):Cr2&lz&y=2 (3.6)

PRrROOF OF CrLAIM. (3.2). Immediate since id € CL(X).

(3.3). Assume the antecedent. We compute:

T €7 <= (since CL(X)is closed under ~) 7~ € T <= 7~ €7’ < T €.
(3.4). Assume the antecedent. Then 1~ € Z, whence 1~ € 2, so 3z : Fz'z.

(3.5). Assume the antecedent. Then s} 1 =1id;1 € 7, hence also in 2/, so there exists a
z such that Cz'zz' & lz. To show that y = z, suppose that r € §. We compute:

T €7 4= (since CL(X) is closed under taking s}) si7 € T <= si7 € 2 <
TEZ.

(3.6) is similar to (3.5), use here closure under s{. <

Now we are ready to prove that F* = X. We first show that it satisfies the set
{(C1) = (C3),(Cr) = (Ch2)} of conditions which are always in ¥.. Conditions (C}) —(Cs)
are immediate because of the minimal filtration. Conditions (C7) —(Cy) are all similar;
we show the => side of (Cs) as an example. Assume the antecedent. Then (by the
minimal definition of C*) there exists (¢' = ¢,y =y =y =y,2 = 2, v" = =v)
such that Cz'y'2' & Cy"y"v' & W". By (3.2) also Iv', so by (C}3) we have y"" = y", and
by (3.6) and (3.2), (Fv" = ') : Cy'y'v" & . By (Cg) we obtain Cz'v"2' and, by
definition of C*, C*z,7,%. Condition (Cjo) is immediate by (3.3), and conditions (Cu)
and (Ci2) by (3.2).

The rest of the conditions in ¥ may vary. We show for each of the conditions
(C4) — (Cs), (Ci3) — (Ci5) that, if F satisfies the condition, then F* satisfies it too. For
(C4), suppose C*Z, 7,2 & F*y, 0. Then there exists (' = z,2' = 2,0 =v&y =" = )
such that Cz'y'z’ & Fy"v'. By (3.3) and (3.4) we find Fy’ " & v" = v' for some v"
Then, by (Cy), C2'v"7', so, by the definition of C*, C*%,%,Z. Condition (Cs) can be
shown similarly. For (C’e) use (3.2). Conditions (Cy3) — (015) are guaranteed because
the filtration is minimal. QED

PROOF OF THEOREM 3.2.1. Let BA™(Z) be a variety as stated in the theorem. Let
¥ be the class of frame conditions corresponding to the equations in ¥. Then, by 2.4.9
and 2.2.2, BA™(Z) = SK{,. The conclusion of the theorem follows from 3.2.3 and
3.1.6. QED

3.3 RELATIVIZED CYLINDRIC ALGEBRAS

1. Németi has shown that the equational theories of the classes of cylindric relativized
set algebras Crs, and G, are decidable, for all & < w, and similar for D, provided that
o is finite. (Cf. [Ném86] or Thm 10 in the updated version [Ném92]; for the definition
of these classes see section 2.5.) In [Ném86]" he raised the open problem whether, if
« is finite, these varieties are generated by their finite members, and if their quasi-
equational theories are decidable as well. We show that, for finite «, the class of frames

"This is remark 12 in the 1992 version [Ném92].
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corresponding to D, admits filtrations. Using this result, we can solve these two open
problems for D,. For the other classes, we refer to remark 3.3.4 below.

THEOREM 3.3.1. Let o be any finite ordinal.

(1) The class D, is generated by its finite members.
(i) The universal theory of Do 1s decidable, and Univ(D,) = Univ(FinD,).

These results follow in a straightforward way from the fact that the class of a—frames
K (see 2.5.6) admits filtrations. We will prove the theorem, having shown the next

lemma.
LEMMA 3.3.2. If a is finite, then the class KYs' admits filtrations.

As was the case with relation algebras, a filtration is possible when we close under
taking substitutions. In the proof of the lemma, we need the following proposition.

PROPOSITION 3.3.3. Let a > 1 be finite and K C K& Then the variety generated
by the {V,A,=,0,1,dij,5% }i j<a—reduct of K¥ is locally finite.

PrOOF. Let F C U, for some finite « > 1 and F € K To use 3.1.8, we must
show that every {f!}; jc,—point-generated subframe of F is finite, and there are only
finitely many of them. (Note that the unary relations D;; do not generate any new
elements, so we do not need to take them into account.) Let ¢ € F be arbitrary. The
domain of the subframe which is {f}}; jca~generated by {«} equals the set {h(z) € F :
(Fk)(h = filo...0f) for (im,jm < @)} Because F € K%, h(z) is in *{zq, ..., Zeo1}-
Hence, because « is finite, the frame generated by {z} is finite. Up to isomorphism,
there are only finitely many such point—generated subframes. QED

Proor or LEMMA 3.3.2. When o« = 0, we just have Boolean algebras, and the
statement is trivial. When o = 1, the class K%}y forms the class of modal frames with
one binary equivalence relation®. It is known that this last class admits filtrations (see
e.g., [HC84], Thm 8.7). In the sequel, let & be any finite ordinal larger than 1.

Let F= (W, T, EY) € K¥* M = (F,v) a model, and X a finite set of terms.
Let CL(X) be the smallest set containing X U {d;; : 4,5 < «}, which is closed under
subtermus, the Boolean operations and the sj.’s. Define:

wr Y (wiwew)
EV*F <§é§> di; €T
def

T*7,7 & [GT€T < T €T
Let F* = (W*, T, E'*), and define v* : var(CL{X)) — P(W?*) in the standard way.
Cramv 1. M* = (F*,v*) is a filtration of M through CL(X).

Proor oF CLAIM. We have to show that min and max hold. For E¥. this is im-
mediate. For T%, this follows from the proof of Thm 8.7 in [HC84]. <

The next claim states that this filtration works.

8And a trivial unary relation E® which holds for every element of every frame.
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CLamM 2. (i) W* is finite, and (i) F* € KZp.

PROOF OF CLAIM. (i). By 2.5.7, S(KJ5)* = D, = S(K3)*. Hence Eq(Kjf’g‘) =
Eq(K!%). Since K% C K, it follows from 3.3.3 that C'L(X) is finite modulo K%/%.
But then it is also finite modulo Kﬁ%’g”, whence W* is finite.

(ii). We have to show that F* satisfies the conditions defining K%y (cf. 2.5.6). The
first three conditions make the T* equivalence relations. This follows immediately from
the definition of the T%. The other conditions, which deal with the substitutions and
the diagonals, are handled in a uniform way using the next claim.

CrLamM 3.

E"E <= EYz (3.7)
T=y = flo=fly (3.8)
flz=7 < T'T7&E"y ifi#j (3.9)

Proor oF CrLaiM. The first two statements follow from the closure under the diag-

onals and the s;’s.

(3.9). The direction from left to right is immediate by min . For the other side, assume

i # j and T™%, 7 & E'7*5. We have to show that § = f]‘:r We compute:

(Q:Tefir e sireT &L (rAdy) €T &5 (T Ad) A dy €7 F T ew

(C) €Y <> 1 Ady € 7= (by (A,)), and because CL(X) is closed under taking
)c,("r/\d,,)—-s‘TEy@(byT’*xy)erm@Tef' <

Set f‘*" o iy fiz. By (3.8) above, this is well defined. It follows from conditions (C;)
and (Cs) that if i # j, we have F |= Vady(T'zy & EYy). By min, this also holds in
the filtration. But then, by (3.9), the fi* are total functions which are defined correctly.
If the f} are total functions, we can rewrite conditions (Cs) and (C7) to the following
(note the correspondence with (Ag¢) and (Ar)):

(Ce) Ez <> EFiflz ifk+#;
(Cr) Eiz=z=fiz

Now we can easily check the other conditions. (Cs.) holds by definition of f}*. Con-
dition (Cs) holds by (3.7). The others we spell out.
(Cgl) Etj*—« gg Eij (CG’) Ek;flc f’___g Ekj*fk def Ek]*fk*——_
(Crp): EV*z Evg (% flz=z= f':v =7 &L rE=1z
For (Cprgr), assume the antecedent T f m fo* f’* fk*(as) y By the definition of T**,
the consequent holds iff [ck TEY <= &7 € fI' I i ()] We compute:
GwTEY = (by THfp" *f’*f“f"’*(w) 0
€ SR &S
T € [ fafifi (o) =

sksis? Sk. CGTET < (by (Amcr))
’~ Tsis kT €T =

T def
core AR 4L

a7 € fi' S F (@)
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The other side of (Cygr) is shown similarly. We checked all conditions, whence
F* e K5, QED
PROOF OF THEOREM 3.3.1. Let « be finite. The class of frames K%/ is basic ele-
mentary, and admits filtrations by the previous lemma. By 2.5.7, the class S(K¥)+

is a variety which equals D,. Then the theorem follows from 3.1.6. QED

REMARK 3.3.4. We briefly return to the two other (decidable) classes of cylindric
relativized set algebras Crs, and G,. For G,, a similar proof as given above for D,
awaits an axiomatization which is at present unknown to us. For Crs,, a filtration
proof is more difficult than the present one, since it is axiomatized by infinitely many
axioms which are rather complicated. Note that for o < 2 the above filtration proof
goes through for Crs, (see 2.5.8 for the axiomatization of these classes).

CoNJECTURE 3.3.5. The above given filtration proof goes through for Crs, and G,.

REMARKS 3.3.6. When we compare the proof for the decidability of Eq(D,) given
here with the one of Németi, we can conclude that proving the stronger statement is
easier, and has a larger pay—off. As the above remarks show however, using filtrations
in a simple way needs a (“nice”) axiomatization. Moreover, to show decidability the
axiomatization should be finite as well. The more complicated, but powerful mosaic
method, which is developed in [Ném92], does not need an axiomatization, and also
works when a class s not generated by its finite members.

We now give an example where decidability cannot be shown by the filtration
method. Define the variety NCA, of Non—commutative Cylindric Algebras as the class
of those algebras of the cylindric type which satisfy all CA axioms except (A,). That
is,

NCA, € {2 € Bog : 2 |= (A1) — (As), (As) — (A7)}

For o > 1, by the completeness theorem for D, this class is not representable as
subalgebras of complex algebras of assignment frames, but it clearly equals the class
of subalgebras of complex algebras of a-frames which satisfy the frame conditions
corresponding to its axioms. Németi showed, using the mosaic method, that for finite
a, Eq(NCA,) = Eq(FinNCA,), hence its equational theory is decidable (cf. [Ném92]
Thm 5). He also showed, for 1 < o, that Qeq(NCA,) # Qeq(FinNCA,). But then, the
class of frames generating NCA,, cannot admit filirations®, because that would imply
that the quasi-equational theory of NCA, equals Qeq(FinNCA,).

3.4 CONCLUDING REMARKS

The decidability results for relativized relation algebras lead to several decidable arrow
logics. These logics might be used for applications where the complexity of the problem
is low. The price we had to pay was the loss of associativity of composition (cf. 3.2.2).
To get decidable versions of FO logic a similar price has to be paid: one should give

®Note that the problem is not in the conditions, but in the fact that the s}~reduct is not locally
finite.
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up the commutativity of the quantifiers (cf. [Ném92]).
We conclude this chapter with some questions.

1. It seems that in BAO’s, or in general modal logic, decidability is indeed closely

connected to the form of the FO theory of the class of frames. Existential quan-
tifiers clearly form a dangerous point. Van Benthem [Ben93] conjectures that
all modal logics (with one unary diamond) which are complete with respect to
a class of frames defined by a finite Universal Horn theory are decidable. This
problem is still open, and the results in Kracht [Kra93] show that one has to be
careful, extending this conjecture to arbitrary similarity types.
By the well-known translation (cf. van Benthem [Ben84]) of modal formulas to
FO formulas, we know that every modal language is living inside a fragment
of FO logic with finitely many variables. If the class of frames is elementary,
one can derive the “modal validities” using a FO derivation system. One can
view this translation as an “application” of FO logic to modal logic. Then the
obvious question arises: In which FO logic s modal logic living? A possible way
of proving van Benthem’s conjecture would be to show that these modal logics
are living in a FO logic whose consequence relation I' |= ¢ is decidable for finite
sets of sentences I'. A possible candidate could be the FO logic corresponding to
the variety D,.

2. A question related to the previous one is the following. E. Orlowska [Orl91]
shows that modal logics are interpretable in the class RA of relation algebras,
and she defines a relational proof system for several modal logics. The purpose
is to prove both theorems and meta-theorems of modal logic within the theory
of relation algebras. This is nice, except that in several cases there is a mismatch
in complexity: a decidable modal logic is interpreted in the undecidable logic of
relation algebras. Would it be possible —using Orlowska’s translation function-
to interpret decidable modal logics in decidable weakened versions of relation
algebras, and obtain results similar to hers?

3. We have shown that —for finite o— the variety D, is generated by its finite mem-
bers. What we do not know however, is if these finite algebras are isomorphic
to ones with a finite base!®. The problem whether every non D, valid equation
can be refuted on an algebra with a finite base is still open. This property is
sometimes called the finite base property.

10The two—element algebra with a universe consisting of the empty set and the set {(n,n) : n < w}
is a finite Dy whose base w is infinite.



4
REPRESENTATION & AXIOMATIZATION

To begin with, in this chapter, we show for several classes K of pair-frames that SK* is
a finitely axiomatizable variety. We obtain these results by working at the frame level,
that is, we show that every frame which satisfies some specific finite set of equationally
definable FO conditions is representable as a zigzagmorphic image of some (disjoint
union of) frame(s) in K. We start this chapter with a few general remarks about this
proof strategy (section 4.1). Section 4.2 is about the classes of relativized relation
algebras SR1zRRA, for H C {R,S,T}. We show that these classes are finitely axiom-
atizable varieties if and only if T ¢ H. The techniques we introduce here are used in
the next section to obtain quick results about subreducts of SRIRRA. In section 4.4,
we regain some of the expressive power of RRA, which was lost by relativization, by
adding the difference operator to the class SR1zgsRRA. We can still finitely axiomatize
this expansion. In the last section, we generalize our results to arbitrary Boolean al-
gebras with operators. We show that every BAO can be represented as an algebra of
relations.

4.1 AXioMATIZING BAQO’S BY REPRESENTING FRAMES

In this section, we show how we can find an axiomatization of a class of representable
BAQ’s by working solely with frames. Suppose we are given a class of algebras in
which the operations are defined in a uniform set-theoretic manner. (Note that this
implies that if two algebras are different, their universes are different.) We will refer
to the closure under isomorphisms of such classes as representable or concrete classes.
In [Ném91], it is explained that both taking subalgebras and taking direct products
preserves the intuitive notion of representability. So, if a class of representable algebras
is defined as K*, for K some class of frames, then SPK" is a representable class too.
Thus we call a frame F representable as a K frame if 7+ € SPK*. Duality theory
then implies that F is representable as a K frame if the ultrafilter extension of F
is a zigzagmorphic image of the ultrafilter extension of a disjoint union of frames in
K. If K is elementary and closed under disjoint unions, we can simplify this to the
requirement that the ultrafilter extension of F is a zigzagmorphic image of a frame in
K (use Thm 3.6.2 in [Gol88]).

We now restrict ourselves to elementary K which are closed under disjoint unions.
Let K be such a class of frames. Lemma 3.6.5 and theorem 3.6.7 in [Gol88] imply
that 1), SK* = SPK* = SPUpK™, hence SK* is a quasi-variety, and 2), if SK* is
a variety, it is canonical. Now suppose that SK* is a variety. Let Ky ' CmISK*.
Because SK* is a canonical variety, it equals the class SK{7. Hence every frame in Ky

4
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is representable as a K frame (i.e., its ultrafilter extension is a zigzagmorphic image of

a K frame), so Ky = GeZigK. This observation leads to the following fact.

Facr 4.1.1. Let K be an elementary class of frames which is closed under disjoint
unions. Then SK* is a finitely ax1omat1zable variety if and only if there ex1sts a K

valid canonical equation e such that UeZng {F : F e}l

PROOF. (=) Assume the antecedent. We saw above that SK* is canonical. Because
we have the Booleans, the class is axiomatizable by one equation e. But then e is
canonical. The rest follows from the earlier observations.

(«=) Assume the antecedent. We must prove that 1), S(UeZigK)™ is a variety axiom-

atizable by e, and 2), SK* = S(UergK)+ 1) holds, because € is canonical. 2) follows
from a straightforward duality computation. QED

AN EXAMPLE: PAIR-FRAMES. We illustrate the strategy which is implied by the
last fact with the class of all pair-frames K. Clearly, this class is closed under
disjoint unions. It is also easy to show that it is not closed under zigzagmorphic images
(e.g., show that the K¢ valid frame condition (Fyzz = lyz) is not preserved under
zigzagmorphisms). Because K7¢ = SubKiZ,SQ and K%, is elementary (cf. [Ven91]),
Krel is elementary®. So the class KT is elementary and closed under disjoint unions.

We want to show that S(K™)* is a finitely axiomatizable variety. By the last fact, it
is necessary and sufficient to define a class K as the class of all'arrow—{frames satisfying

some K" valid canonical equation, and show that K = UergKgg. It turns out that

our task is even easier: in the next section we show that the class of arrow—frames K7§',
which is defined as all frames satisfying the set of canonical equations (A4;) — (Ai3),

equals the class ZigK"e!.

set

4.2 RELATIVIZED RELATION ALGEBRAS

We prdve that, for H C {R, S}, the classes SR1zRRA are finitely axiomatizable canon-
ical varieties. This section is organized as follows. First, we state our main results.
Then we look at the reduct with only Booleans and composition, and show how to ax-
iomatize that fragment. In the next subsection, we introduce the concept of a mosaic
in order to deal with the additional difficulties coming from identity and converse, and
adapt the easy proof for the “composition only”-reduct.

4.2.1 MAIN RESULTS
FINITE AXIOMATIZABILITY

The next theorem might look a bit clumsy, but it nicely shows the “route” we follow
when we represent an abstract algebra. First, we embed it in a complex algebra over

1A FO definition of any class of pair—frames of the form (V, Q) with {Cv} C @ € {Cv,Fv.Iv},
and V a binary H relation (H C {R,S,T}) can be derived from Kuhler [Kuh94].
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an arrow-frame (its canonical embedding algebra), and then we embed this second
algebra in a complex algebra over a pair-frame. The axioms can be found on page 34.

THEOREM 4.2.1. Let H C {R,S}. Then the class SRIgRRA is a finitely aziomatiz-
able canonical variety. In particular:

BA™((4;) — (A1) = S(Ki)t = S(K)* = SRIRRA

BA™! (A1) — (A13)) = S(KH)* = S(Ki4s)* = SRIsRRA
BA™((A) — (A12), (Aus), (415)) = S(KIh)T = S(Kdz)* = SRIRRA
BA™!((41) — (Ai5)) = S(Kiths)t = S(Kfzs)* = SRIpsRRA

Proor. The first equality in each row is theorem 2.4.10, the second follows from
lemma 4.2.3 below (use fact 2.2.5), and the third is the definition of the classes
SRIZRRA . QED

The theorem has the following corollary.

CoroLLARY 4.2.2. Let H C {R,S,T}. The variety SRIgRRA is finitely aziomatiz-
able if and only if T & H.

PrROOF. By theorems 4.2.1 and 2.4.6. QED
LeMMA 4.2.3. Let H C {R,S}. Then KT = ZigKTel,.

To warm up, we will prove a representation theorem for the reduct which only contains
the composition operator and the Booleans. Rather surprisingly, no assumptions on
the frames are needed in order to represent them as pair-frames. After that, we prove
the above lemma in section 4.2.4.

REMARKS 4.2.4. Finite axiomatizability of SRIzsRRA was shown by R. Maddux
([Mad82], Thm 5.20). Maddux defined an axiomatic class WA (for weak associativ-
ity) by keeping all RA axioms, but replacing? the associativity axiom with the weaker
((id;7);1);1 = (id;7);(1;1), and showed that WA equals SR1zsRRA. The WA axioms are
a bit different from ours, because we get our result as a by-product of the axiomatiza-
tion of SRIRRA. That this last class is finitely axiomatizable was shown by R. Kramer
([Kra91], Thm 5.4). The proof of Kramer is rather syntactic and complicated. The -
proof presented here uses a similar step-by-step construction which Maddux used in
[Mad78] to prove® axiomatizability of SR1zsRRA, together with the mosaics which
Németi introduced in [Ném86] to prove decidability for relativized versions of cylindric
(set) algebras. An advantage of this proof-method is that it gives us easy results for
reducts as well.

2The situation is similar to the one with D, the relativized version of the cubic cylindric set alge-
bras. To axiomatize D, one needs to weaken the axiom which makes the cylindrifications commute.
However, with D,, the extra merry-go-round equation is needed for a complete axiomatization.

3In [Mad82], he gives another proof, not using the step- by-step construction.
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DEcipaBILITY

By the last theorem, the decidability results of the previous chapter also apply to the
classes SRIFRRA. Part (i) of the theorem below was proved by Németi ([Ném87]) for
the class SR1zsRRA. All other results seem to be new.

THEOREM 4.2.5. Let H C {R,S}. Then (i)-(iii) hold.
(1) The variety SRIgRRA is generated by its finite members.
(i1) The universal theory of SR1zRRA is decidable.
(iii) Univ(SRIgRRA) = Univ(FinSRI15RRA).

Proor. By theorems 4.2.1 and 3.2.1. QED

COROLLARY 4.2.6. Let H C{R,S,T}. Let P be any of the properties (i)-(iii) in the
previous theorem. Then SRIFRRA has P if and only +f T ¢ H.

ProorF. By theorems 4.2.5 and 2.4.6. QED

4.2.2 WaARrM Upr: BOOLEANS WITH COMPOSITION

We present one part of the technique —the step-by-step construction— which we will
use to prove the above representation lemma (4.2.3), using a simple example. Define
the following two classes of frames:

KC ¥ (F=(W,C):Wisasetand CCWxWxW}
KS, def {F =(V,Cy): V C UxU for some set U}

The next lemma is stated for finite frames only, because we wanted to make the ex-
ample as simple as possible. In the proof of 4.2.3 (the analogous lemma for the whole
language), we represent frames of any cardinality.

LEMMA 4.2.7. Every finite F € K€ is a zigzagmorphic image of some G € K&

set”

PROOF. Let F=(W,C) € K¢ be finite. Step by step, we will construct a set of pairs
V and a function [ : V — W. It is convenient to think of [ as a labelling function,
which labels each element of V' with an element of W. In each step n + 1, we will add
pairs to V,, such that l,4; is a homomorphism and for all pairs in V;,, the function
l,+1 has the zigzag property. The function will not have the zigzag property for the
pairs added in step n + 1, but we repair that in the next step. Hence, after w steps our
zigzagmorphism is complete. »

Construction.

Let U be some countable set. '
step 0 In this step, we ensure that ! is surjective. Let V5 C U x U such that (1),
[W| = |Vo|, and (2), V is irreflexive and disconnected, that is, (Vs,r € V5)(Vi,j < 1) :
s;=r; <= s=r&i =] Letl; be any bijection between V5 and W.

step n+1 Let X, be the (finite) set of pairs which were added in the previous step.
For each {u,v) € X, and y,z € W such that Cl,{(u, v)yz, do the following:



4.2] RELATIVIZED RELATION ALGEBRAS 61

Take an element w € U which was not used before, and add (u,w) and
(w,v) to V. Then set l,41({u,w)) = y and l,;({w,v)) = 2z (see the
picture below).

Define V,,4; as the result of all these additions to V,, and [,,;; as the result
of these additions to [,.

stepw Set VY Unco Vo and 1 % Un<w ln-
End of construction

Cram. 1:V — W is a zigzagmorphism from G = (V, Cy') onto F = (W, C).

Proor oF CrLAIM. The function ! is surjective by step 0. The zigzag property is
immediate by the construction. To show that ! is a homomorphism we show by
induction that it is a homomorphism after every step. This is clear for V;, since
(Vzyz € Vy) : ~Cyxyz. Suppose it holds for step n and suppose Cyzyz, and at least
one of {z,y,z} were added in the n+1-th step. Since we took a new point from
U for every “repair” we made, it follows from our construction that (3y',z' € W) :
Clo(z)y'2' & ln41 (y) = y' & lny1(2) = 2. But then Clyyy (2)lny1(y)lnga(2). Hence, lis a
homomorphism after n + 1 steps. Clearly, [ is a homomorphism after the limit step as
well. QED

REMARK 4.2.8. The construction used above can be seen as a generalization of the
unraveling construction from standard modal logic to binary modalities (cf. Sahlqvist
[Sah75], de Rijke [Rij93]). In section 4.5, we will generalize the above construction to
operators of arbitrary arity. In the spirit of Proposition 6.3.5 in [Rij93], we can also
give a direct definition of the “unravelled pair-frame”. Let F, = (W, C) be a frame
such that the subframe generated by {a} is again F,. Define the set B as the smallest
set such that

e ({a0,al),a) € B
o s=((u,v),z) € B& Iy2Czyz = {{(u,s:Czyz),y), ((s:Cayz,v),2)} C B

Let V% {{u,v) : (32)({(u,v),z) € B)}. Using the argument given in the above proof,
it is straightforward to show that B is a zigzagmorphism from the frame (V, Cy') onto
Fa.

REMARK 4.2.9. To get an idea how we will prove a similar representation theorem
for arrow—frames, the following might be useful. Think of the abstract frame as being
built from little frames ({z,y, z}, Czyz) (z,y,z need not be different). Later, we call
these little frames mosaics. Clearly, each such frame is representable by a triangle
{(u,v), (u,w), (w,v)}. If we needed to make a repair in the above construction, we
added the representation of a mosaic to the partially constructed graph using a fresh
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point. The intuitive idea is that in the construction we play a kind of domino game
in which the tiles (“represented mosaics”) may want one or more tiles being laid next
to them. If we play this game infinitely, we can fulfill the desires of each tile, and
thereby create a zigzagmorphic pre-image of the frame which was to be represented.
The function will be a homomorphism precisely because we always took fresh points.

REMARK 4.2.10. The construction does not depend on the finiteness of 7. A similar
construction can be used to represent frames of any cardinality. The only difference is
that, in general, we have to make infinitely many repairs in the inductive step. In the
next section, we show how to change the construction to represent infinite frames as
well. Lemma 4.5.3 generalizes the last lemma in two ways: it is about frames of any

cardinality, and it represents frames where C can be any relation of rank higher than
2.

APPLICATION OF THE LEMMA. The above lemma leads to the following corollary.
The argument which is used in its proof will be used in many places in this work.

COROLLARY 4.2.11. BA’ = S(K®)* = S(KS,,)t is a canonical variety.

set

Proor. S(K)* is axiomatizable by the BAO-axioms, and obviously it is a canonical
variety (use 2.2.1). Clearly, K$,, C K¢. On the other hand, each frame from K® is
a zigzagmorphic image of a frame from K§,,, by 4.2.7 and 4.2.10 (or alternatively by

setl?

4.5.3)*. But then, by duality, (K)* C S(KS,)*. Hence S(K®)* = S(KE,,)*. QED

set

4.2.3 REPRESENTATION BY MOSAICS

We now introduce the second concept of our method: mosaics. The next definition is
a bit more general than needed for our present purposes, but this generality will be
useful when dealing with reducts. We shall expand the similarity type of arrow-frames
with the two partial functions (.); and (.),. When a mosaic belongs to the class KI§,
we can delete these expansions again, because these functions are definable there (see

24.7).

DEFINITION 4.2.12 (Mosaics). Let F=(W,C,f, (), () 1) be an arrow-frame ex-
panded with partial functions f, (.); and (.),.

(i) F is an (z,y, z)-mosaic iff {z,y,z} C W (z,y, 2z need not be different), Czyz holds,
and there is no proper subset of W which contains {z,y, z} and which is closed under
the functions f, (.); and (.),. ,

The elements x,y, z are the generators of the {z,y, z)-mosaic.

(i) An (2, y, z)-mosaic F is repairable if there exists a pair-frame ((u, v), (u, w), (w, v))~
mosaic Gpqir(V) with base {u,v,w} (u,v,w need not be different), and a surjective
function ! : V. — F such that

o l{u,v) =z, l{u,w) =y and l{w,v) = 2,

4Lemma 4.2.7 gives us only that S(K®)* = HSP(KS,,)*. It does so in the following way. It is

obvious that K€ allows filtrations (any filtration works), so S(K®)* = HSP(FinK®)*. Now apply the
lemma (and use the fact that SPK = SPSK).
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o [is a homomorphism for Cy,

o (VseV):lys < li(s) and

o | commutes with f,(.); and (.), in the following strong sense: Ilfys = fls means
that if one side is defined, then also the other, otherwise both sides are undefined,
and similar for (.); and (.),. ’

We call the tuple (Gpuir(V), 1, (u,v,w)) a repair of F. Sometimes we also call the
pair—frame Gy, (V') a repair of F.

REMARK 4.2.13. It is easy to see that in the class of locally square pair-frames K7¢ ¢
every mosaic is one of the three square pair-frames in figure 4.1 below. In case 1, the
mosaic is generated by one identity arrow; in case 2, one of the three generators is an
identity arrow, and in case 3 none of the generators is an identity arrow. The set of

K¢l mosaics can be described as follows:

{Fpair ({(w,0), (w,w), {w, )} UXY) 2 X C {{u, ), (v,0), {w,w), (v, u), {w,u), (v, w)}

and u, v, w not necessarily different}
2

Mosaics will be used in the step—by-step construction to repair a situation where we
have a pair s in the partially constructed graph, and Cl,(s)yz & =ly & =z holds in the
frame to be represented. Then we will add a repair of the (I,(s),y, z)-mosaic to the
partially constructed graph. The definition of a repair ensures that we only have to
repair these situations.

O

1 3 (4.1)

The following fact will be useful later on.

Facr 4.2.14. Let F be an (z,y, z)-mosaic and (Gpair (V), 1, (v, v,w)) a repair of F.
Then

(i) For every point € F, and for every pair s € V such that [(s) = z, and for every
function f, (.), (), the function is defined on z if and only if it is defined on s.
(i) If we view the partial functions as relations, then:

e [ is a surjective homomorphism from G, (V) onto F,
o [ has the zigzag property for |,f,(.); and (.),

Proor. Immediate by the definitions. QED
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REPAIRING MOSAICS

The next proposition contains the heart of the proof of lemma 4.2.3. We only need
the axioms in the proof of this proposition. For gluing mosaics together, no additional
axioms are needed, just as in the “composition—only” case. Recall that K7 is the class
of arrow—frames which satisfy conditions (C;) — (C}3) from 2.4.9.

PROPOSITION 4.2.15. (i) Every (z,y,z)~mosaic F € KI¢' is repairable.

(ii) Bvery {(z,y,z)-mosaic F € K¢ is uniquely repairable up to isomorphism. Hence,
giwen a base {u,v,w} we can speak about the repair of F.

(iii) Let H C {R,S}. If an {x,y,z)-mosaic F belongs to KItl;, then its repair belongs
to Kot~

Proor. (i). Let F € K% be an (z,y,z)-mosaic. In the proof, we use the K7
theorems (Ty)-(T3) from 2.4.7. Recall that these theorems should be read as if the
functions are partial (e.g., 2; = y; means that either they are both undefined, or they
are both defined and z; = y;).

We get the first insight by looking at the possible | “valuation” of the generators z,y
and z. The third column in the table below expresses the fact that if two of the three
generators are identity arrows, then so is the third one. So we have only the cases with
three, one or zero identity generators. All these results follow from conditions (Chy)
and (C};). The results in the last column follow from (Ty) — (73) and (C4). This will

become obvious if we look at the cases separately below.

z y z|result size of domain F
11t b 1 z=y=2 |F| =1
211 1 impossible
311 | | impossible
411 r#yz#z| 2< |F| <4
5 I 1| impossible
6 I z=z#y 2< |F] <4
7 lla=y#z 2< |F| <4
8 1< <

We will look at the remaining cases one by one.

case 1. In case 1, by (T}), the mosaic consists of just one element, and clearly that
is isomorphic to the pair-frame Fpqir({{u, u)}).

case 4. In case 4, (Cy) and (C) imply f(y) = 2 & f(z) = y. By (T3) and (T1), we
have z = z; = z, = fr = y; = z,. If y, is not defined, the domain of the mosaic equals
{z,y, z}, and we repair it by the pair-frame at the right in figure 4.2.

These figures should be read as follows. At the left, we draw the mosaic which is to
be repaired, and at the right the repair. An z attached to an arrow (u,v) means that
= is represented by {(u,v) (in other words [{u,v) = ).

It follows from the argument given above that the ({u,u}, (u, w), {(w, u))-mosaic and
the function [ as given in figure 4.2 form a repair of the mosaic at the left. This is
easily checked using the provided pictures.
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P A= £ z w
x=xl=xr=fx Q
X (4.2)

We continue with case 4. If y, is defined, (Cy) (because Cyyy, & Fyz) implies that
Cy,zy. By (Tl)a Yr = (yr)r = (yr)l = f(yr) Again by (T3)7 2| = Y, 50 we add <wsw)
to the mosaic, and set [{(w,w) =y, (see figure 4.3).

This picture really covers two cases: the one where y # z, and the one where y = 2
(which implies that 2 = y,). For the argument given above, this distinction does not
matter: so we really covered both cases. All arguments in the sequel cover the cases
when some of the points in the mosaic happen to be equal.

In a case 4 mosaic, the functions f, (.); and (.), cannot generate further points, so
_ we are done.

yr=zl
EAS
rool 4
.' ............ f .. Z w
1 T y() z
x=xXl=xr=fx ()
X (4.3)

cases 6 and 7. If the functions are all defined, cases 6 and 7 are very similar to
case 4. We treat case 6 only. Case 7 mosaics are handled similarly. If z, and f(x) are
not defined, we represent « by (u,v) (u # v), and y by (u,u), and we are done (see
figure 4.4). If z, is defined, we add (v,v) as well, and set I{v,v) = x,. If f(z) is defined,
(Cs) implies Cyzf(z) and (if z, is defined as well) Cz,f(z)x, which lands us back in the

two situations of case 4. We treated all possible case 6 mosaics.

y=yl=yr=fy=xI x=z v

O (49)

case 8. Case 8 finally will be repaired with a mosaic consisting of at least 3 non
reflexive pairs. There are 64 = |P({i, z,,fz,y,,fy,fz})| subcases. The heart of the
representation is a triangle {(u,v), (u,w), (w,v)}, with I{u,v) = z, l{u,w) = y and
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H{w,v) = z, and u,v,w are all different. Depending on the presence of other arrows
in the mosaic, we have to add more pairs. First, suppose z; is defined. Then by (T3),
x; = yi, and we can represent it by (u,u). Similarly for y, = 2z and 2, = z,. If f(y) is
defined, we need to represent that by (w, u). Then Cy(w, v}, (w, u), (u,v), but by (Cy)
also Czf(y)x (see figure 4.5).

fy .............. z w

AN
v (4.5)

Use (C5) in the similar situation where f(z) is defined, and (Cy) and (Cs) when two or
more of f(z),f(y) and f(2) are defined. To see that the function [ behaves correctly on
parts like {{u, u), (u, w), (w,u), (w,w)}, reason as in case 4. If all functions are defined,
the representation looks as in figure 4.6.

r=z1

xl=y Xr=21

fx » (4.6)

We covered all case 8 mosaics. So we covered all possible mosaics, and we have finished
the proof of part (i) of the proposition. Parts (ii) and (iii) are immediate by the proof
of part (i), in combination with fact 4.2.14(3). QED

MOSAICS OF AN ARROW~FRAME. Mosaics are very small arrow—frames which tend
to live in bigger frames. For an arrow—frame F = (W, C,f,1) € K'{!, we define the notion
of an {z,y, 2z)-mosaic of F as follows. An (z,y,z)-mosaic G is an (z,y, z)—mosaic of
F if G C W and the relations in G are the restrictions of the relations in F to G. We
can say the following things about these (z,y, z)-mosaics of F.

Facr 4.2.16. (i) Let H C {R,S}. If F € K}, then every (&, y, z)-mosaic of F is in
Kret..

(ii)HIf F € K¢ and {z,y,2z} C F such that Czyz, then there exists a unique (z,y,z)-
mosaic of F.

(i) If F € K%', and (.); or (.), is a total function, then every point in F belongs to
some (z,y, z)-mosaic of F.

(iv) If F € K%', and both (.); and (.), are not total functions, then the only points
which are not part of any (z,y, z)-mosaic of F are those points 2 such that -lz, and
which generate a subframe consisting only of {z} or of {z,fz}. Each such (point-
)generated subframe is a zigzagmorphic image of the pair—frames Fpqir({{u,v)}) and

fpair({(“v”)a (U’u)}) (u # ’U), respeCtiVGIY'
PrROOF. By the definitions and 4.2.15. QED



4.2] RELATIVIZED RELATION ALGEBRAS 67

4.2.4 PROOF OF LEMMA 4.2.3

We are ready for the proof of 4.2.3. We first give a sketch of the proof, after that we
define the construction formally.

PROOF-IDEA. Let F=(W,C,F,1) € K7 be arbitrary. Let M be the set of all {z,y, z)
mosaics of F. We want to copy the step-by-step procedure from 4.2.7. There, our
mosaics were much simpler, and all of them could be repaired in the same way. In the
present proof, we repair whole mosaics at once. Then it is easy to see that we only
need to repair situations where we have Cl(z)yz & —ly & —lz. (So we only need to repair
case 4 and case 8 mosaics.) Since we know that we can repair each mosaic, we know
that we can make any necessary reparation. So, by construction, we ensure that the
function [ has the zigzag property. The more difficult question is whether the function
[ is a homomorphism. In the simple situation of 4.2.7, we could prove that [ was a
homomorphism, because we took fresh points every time we connected two mosaics in
the representation. Since we took fresh points there, no other Cy relations came into
existence in the representation, except the ones we explicitly constructed ourselves.
But here we can always take fresh points too, because we only need to add mosaics
with Cl(z)yz & —ly & —lz, whence we should represent y and z by non-identity pairs.
But then, again the only new Cy-relations are the ones of the added (represented)
nmosaic.

ProoF OF LEMMA 4.2.3. Let H C {R,S}. We have to show that the class K¢}
equals the class ZngretH The validity arguments in the beginning of section 2.4.3
show that K7, C KIf,. Since K7 is closed under zigzagmorphism, this implies
ZigKTel, C Kreh. The other side follows immediately from the next two statements.

rel

(i) Every F € K¢l is a zigzagmorphic image of some G € K¢,
(ii) Let X C {(C13),(C4),(Cy5)}. If in addition F = X, then also G = X.

(i). Let F=(W,C,F,1) € KI§! be arbitrary. Let M be the set of all {z,y, z)-mosaics
of 7. By 4.2.16, every mosaic in M belongs to K™¢'. So, by 4.2.15, all of them are
repairable. We now define the necessary construction, interspersing it with the argu-
ment why it works.

Construction

Let U be an infinite set such that |U] > |W]. We will use the elements of U to construct
the pairs of the representation. The condition ensures that U is large enough for this
purpose. Let P % {z € W: (Vyz)~(Cayz V Cyzz V Cyzz)} be the set of “loose” points
(points which are not part of any mosaic). We represent the subframes generated by
these loose points as stated in fact 4.2.16.(iv). Le., by a subset rep(P) of U x U, such

that all the representations are pairwise disjoint.

step 0 Let V4 C U x U be the pairwise disjoint union of rep(P) and all representations
of mosaics in M such that |U \ Base(V;)| = |U]. Let [y be the function given by these
representations.
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CramM 1. [ is a surjective homomorphism which satisfies the zigzag property for LLF
and the substitution functions. This last claim is spelled out below.

(Vz € Vp) : Flo(z)y = Gy eVo):Fvay &b(y) =y

(Vz € Vo) : Clo(a)o(z)y & ly = (Fy e Vo) : Cyzay' & lb(y) =y

Yz € Vo) : Clo(z)ylo(z) &ly = (T € V) : Cyay'zs & lo(y') =y

ProoFr oF CLAIM. I is surjective, because we represented all loose points, and (see
4.2.16) all other points belong to at least one mosaic. By fact 4.2.16.(iv), l, is a
zigzagmorphism for the part rep(P). [y is a homomorphism, because, by 4.2.15 it
is one for every mosaic separately, and all the representations of separate mosaics
and rep(P) are disjoint. The function [, satisfies the zigzag property for |,F and the
substitution functions, because we represented mosaics. -«

step n+1 Let X, be the set of pairs which were added in the previous step. Create
for each s € X,, a function® g, : {yz : Cl,(s)yz & —ly & —lz} — (U \ Base(V},)) such
that

e all g,’s are injective,

e the ranges of the g,’s are pairwise disjoint, and

* [U\ Usex,(99)] = U]
Such a set of functions clearly exists. They guarantee that we use a brand new element
from U for every mosaic we add, and that the set U \ Base(V, ;1) stays large enough
to continue the construction using new elements.
For every s € X,,, and for every y,z € W such that Cl,(s)yz & —ly & —lz, we repair
the (I,(s),y, z)-mosaic of F by the {(so, 1), (s0, 9s(¥2)), (9s(y2), 51))-mosaic, and add
that representation to V,, in this way creating V, ;. Define [, as the extension of [,
in which the new pairs are mapped as given by the repairs of the mosaics. This can be
described formally as follows: define

REP, & (Fpair (S), b, (0,51, 95(y2))) : s € Xy, Clp(s)yz & —ly & Iz and
(Fpair(S), hy (0,51, 95(y=))) is the repair of the (l,(s),y, 2z)-mosaic of F}

Then set:

fn+1 = Vn U {S : (fpair(s)vh,(50751398(3/3)')) € REPn}
ln+1 = ln U {h : (fpair(S),h, (su,sl,gs(yz))) € REPH}

la4y is well defined, because for every repair (Fpair (S), b, (S0, $1,95(y2))) € REP, and
for every r € SNV, it holds that h(r) = [,(r). This follows from the definition of
repair of a mosaic. '

CLAIM 2. Let n < w be arbitrary. Then (i)-(iii) below hold.

(1) 1, is a surjective homomorphism;

(i1) I, satisfies the zigzag property for | and F;

(iii) Let n > 0. [, satisfies the zigzag property for C for all elements of V,,_1, i.e.,
(Vs € Vou1)(Vyz € W) 1 (Claca(s)yz = (T, 2" € Vo) : Cusy'2'&ln(y') = y&la(2') = 2).

51 f : X — Y then we use f*(X) or —if the domain is clear by the context- f* to denote the
range of f.
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Proor oF CraiM. The proof is by induction on n. By the previous claim, (i), (ii)
and (iii) restrictéd to the substitution functions hold for /y and V;. Assume they hold
for I, and V.

(). Suppose a pair s was added in the n+1-th step. Since s is part of a mosaic,
homomorphism is guaranteed for ly and Fy. For Cy we are in precisely the same
simple situation as before. Since we always used fresh points, s will only stand in Cy
relations with elements of the mosaic it is a part of, and they are guaranteed by the
mosaic proposition.

(). That l,4; has the zigzag property for | and F is, given that [, has, immediate
because we represented whole mosaics.

(ili). Suppose s was added in step n and Cl,(s)yz. If =ly and =1z, we added the needed
pre-images in step n+1. In the three other cases, the needed pre-images are either s
itself or (sg, sp) or (s1, 1), and since s is part of a mosaic, these were ~by induction
hypothesis— already in V,,. «
step w. Set V¥ U, o, Vs and 1 ¥ U, 1.
End of construction

Cram 3. [is a zigzagmorphism from the pair-frame Fp,;, (V') onto the arrow—frame

F.

Proor oF CraiM. [ is surjective by step 0. [, is a homomorphism for every step, so
l is one too. [ is zigzag, because each added point is repaired in the next step. <

With the last claim we finished the proof of part (i) of the lemma. We are almost done.
(ii). If F satisfies one or more of the conditions (Cy3), (Ci4), (Cis), this means that the
corresponding function is always defined. Hence, by 4.2.14.(1), in every representation
of a mosaic the corresponding function is always defined, so the representation verifies
these conditions. QED

4.3 REDUCTS OF RELATIVIZED RELATION ALGEBRAS

We look at subreducts of SR1zRRA, for each H C {R,S,T}. For Q C {id,~,;} and
H C {R,S,T}, we denote the ({V,A,—,0,1} U Q)-subreduct of the class SR1yRRA
by SRIgRdgRRA. This notation is warranted, because (cf. [HMTT71]):

SRd,SRIZRRA = SRdRIzRRA = SR1;RdoRRA (4.7)

REMARK 4.3.1. Andréka-Németi [ANS94a] showed that whenever T € H and ; €
@, the class SRIzRdoRRA is neither finitely axiomatizable nor decidable. For this
reason, we concentrate on the case without T. The case where T € H and ; € Q is
uninteresting, because transitivity does not influence the behaviour of the operators
except composition. Whenever @ C {id,” }, 4.8 below holds (cf. [ANS94a], Thm
2.1.64).

SRIRSRdQRRA - SRleTRdQRRA = SRdQRRA (48)
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AXIOMATIZABILITY
We start our investigation with an easy theorem.

THEOREM 4.3.2. Forany Q C {id,”,;} and H C {R,S,T}, the class SRIgRdgRRA

s @ quasi-variety.

ProOF. This follows from the universal algebraic facts (cf. [HMT71] and [HMT85})
that (1) RRA is a variety, hence it is closed under SPUp, (2) the operator SPUp
commutes with SR1 and SRd, (3) 4.7 above, and (4) every class closed under SPUp
is a quasi—variety. QED

In virtue of the above theorem we will investigate for all interesting choices of () and H
whether the class SRIzRdgRRA is a variety. It turns out that, for every @, the class
SRIRdgRRA is a finitely axiomatizable canonical variety. If we consider subreducts
for other choices of H, the situation is not so uniform. Some are not varieties, some
are, and for some, we don’t know the answer. Table 4.1 lists the results we do have. As
a contrast, we add the results for subreducts of RRA (recall that RRA = SRlgsrRRA)
in the fifth column. These results can be found in [ANS94a]. It is easy to show that the
subreducts of RRA with composition are varieties, because they have a discriminator
term. This is not the case when we do not have a transitive relation. For completeness’
sake, we add the results for the full language at the bottom.

How TO READ TABLE 4.1. In the left column, we list the operators of the sub-
reduct involved. The next four columns stand for the four different relativizations
we have studied in the previous section. Each item in the table stands for the class
SR1zRdoRRA in which @ is given by the row and H by the column. A V means
that the class SRz RdgRRA is a finitely axiomatizable canonical variety. We give the
axiomatizations in table 4.2 below. With V* we denote that the class is a variety, but
it is not axiomatizable by finitely many equations. A QV means that the class is not
a variety, but it is a finitely axiomatizable quasi-variety, and a QV’ denotes that we
only know that it is a quasi-variety (it might still be a variety).

any reflexive  symmetric reflexive and refl., symm. and

relation  relation relation  symmetric rel. transitive rel.
SRIRRA SRIzRRA SRIsRRA  SRIzsRRA SRIzs7RRA = RRA

id \Y% Qv \ Qv Qv

~ \Y Qv \ Qv Qv

~,id \ Qv \ QV Qv

; \Y% QVv’ QV’ QV’ Vv*

e \ QVv? \ QV’ V*

id v \ QVv’ QV’ V>

7, id \Y \ \ \ A%

TABLE 4.1: SUBREDUCTS OF RELATIVIZED RELATION ALGEBRAS



4.3] REDUCTS OF RELATIVIZED RELATION ALGEBRAS 71

We summarize the axiomatization results in the following theorem. We prove them in
section 4.3.1. The axioms are listed in table 4.2.

THEOREM 4.3.3. The following classes are all finitely aziomatizable canonical vari-
eties:

(VQ C {;,7,id}) : SRIRdgRRA

SRIsRdqRRA

(V{"} €@ C{;,,id}) : SRIsRdgRRA

SRIzRdy;iq;RRA

® & o o

DECIDABILITY OF THE REDUCTS

Above, we have stated that whenever T € H and ; € @, the equational theory of the
resulting class is undecidable. For all other classes in table 4.1, the results are positive.

THEOREM 4.3.4. Let K be any class occuring in table 4.1. The universal theory of K
s decidable if and only if K is not marked with V*.

ProOF. The undecidability results can be found in [ANS94a]. Here, we prove de-
cidability for all classes not marked with V*. For the three quasi-varieties in the last
column, the claim follows from (4.8) above and the argument given below. So we are
left with the first four columns. By 4.2.5, we know that the universal theories of the first
four classes in the bottom row are decidable. The following chain of reasoning shows
that we can decide universal sentences in the reduct-language, using a decision proce-
dure for the full language. Let ¢ be a universal sentence in the reduct @ C {id,~,;}.
Then:

SRIzRdAgRRA | ¢ <« (by equality (4.7) above)
SRdoSRIFRRA | ¢ <= (universal sentences are preserved under S)
RdgSRIZRRA | ¢ <= (¢ is in the language of Q)
SRI1zRRA E ¢

QED

There is also an opposite direction possible. Instead of taking reducts, we can expand
the language with operators like the cylindrifications ¢y and ¢;, or the universal modal-
ity ¢ which are term-definable in RRA (though not always when we relativize). We
can also expand the language with operations which are not even RRA definable, such
as the Kleene *. We will look at this direction of research in the next section, and in
chapter 6.

4.3.1 AXIOMATIZING THE REDUCTS

We investigate the reducts in table 4.1, following the order of that table. Here is a
sketch for the first four cases.
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REDUCTS WITHOUT COMPOSITION

ONLY IDENTITY. It is straightforward to see that this subreduct is axiomatizable
by the BA axioms whenever H = ) or H = S. Relativizing with a reflexive (and
symmetric) relation does not yield a variety. To see this, take the complex algebra of
the square pair-frame F,;, (*{u, v}) (u # v). It is easy to check that relativizing with
{{u, v}, (v,u)} is a homomorphism onto the 4-element BA in which id = 0. Clearly, this
algebra is not representable as a (subalgebra of a) complex algebra of a reflexive (and
symmetric) pair-frame. Hence, for H = Ror H = RS, the class SRlgRdjq}RRA is not
closed under homomorphisms: so it is not a variety. It is a finitely axiomatizable quasi-
variety, however. If we add the quasi-equation (id = 0 = 0 = 1) to the BA axioms, then
every non~trivial algebra contains a non-zero identity. This quasi-equation defines the
frame condition Jz(z = z) = Jz(lz).

ONLY CONVERSE. The subreduct with only converse is axiomatizable by axioms {A;)
and (Ajp). This follows from 4.2.16.(iv). If we want a symmetric relativization, we
add axiom (A;3). The counterexample given in the previous paragraph shows, here as
well, that relativizing with a reflezive relation is not a variety. But this is repairable
by adding the quasi-equation (7~ = —7 = 1 = 0) which defines the frame condition
Az(z = z) = Jz(fz = z).

CONVERSE AND IDENTITY. Clearly, it is sufficient to add axiom (A;) to the axioms
given above to get axiomatizations for SRIRd4-}RRA and SRIsRdq-1RRA, re-
spectively. Again, the above counterexample kills the reflexive relativization. Adding
the quasi-equation (id = 0 = 0 = 1) helps us out here.

CONVERSE, IDENTITY AND THE SUBSTITUTIONS. If we add the substitution opera-
tors 7 and s} to the similarity type of converse and identity, then all relativizations
become finitely axiomatizable canonical varieties. Because transitivity also does not
influence the behaviour of the substitutions, it holds that SRleRd{-,d,v7sé’s?}RRA =
SRd 4 - 51 <}RRA. These results hold, because the proof for the reflexive and sym-
metric case in [ANS94a] (Thm 2.1.64) goes through.

REDUCTS WITH COMPOSITION

The subreducts considered so far were extremely simple, because there were only finitely
many finite subdirect irreducible algebras to consider.. If we add composition, we
get infinitely many subdirect irreducible algebras (e.g., every complex algebra of a
connected directed graph is one). In order to axiomatize these subreducts, we use the
step-by-step construction and the mosaic idea again. In the construction, no axioms
are needed, so it again suffices to see whether we can repair mosaics. The proofs are
simple adaptations of the proof for the full language. We sketch the changes involved.

ONLY COMPOSITION, For arbitrary relativizations, we treated this subreduct already
in 4.2.11. For the others, we do not know the answer.
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COMPOSITION AND CONVERSE. If we consider both converse and composition, the
representation is a simple adaptation of the case with only composition. Define mo-
saics as before, but forget about the functions for sj and s{ (so they are only closed
under “converse arrows”). Represent each mosaic using non-identity pairs only. It is
straightforward to see that we only need (A;) and (As) besides the converse axioms
(A1) and (Ayg). For a symmetric relativization, it is enough to add (4;3). We do not
know the answer for reflexive and for reflexive-and-symmetric relativizations.

COMPOSITION AND IDENTITY. This subreduct is the most interesting one. In several
applications of arrow logic, the converse operator does not have a natural interpretation,
so it would be nice if it is not needed. It is also interesting, because we do need an
extra axiom besides the ones mentioning composition and identity we had already. In
a sense, this subreduct shows the “hidden power” of the axiom (4,) (recall that (4,)
is the RA axiom (RA;)). We do not know whether relativizing with symmetric or
reflexive-and-symmetric relations is a variety.

We use the same construction as before. Redefine the concept of a mosaic by
forgetting the function for converse. We have to repeat the analysis of 4.2.15, and check
carefully whether we used axioms mentioning converse to prove something concerning
identity and composition only. Clearly, we need all axioms which do not mention
converse. Having them, we get the same five possible situations as in the proof of
4.2.15. For case 1, we do not need converse. In case 4, we used condition (Cy), which
mentions the frame relation F for converse, to show that, if y; was defined, we had
Cy;2y. So here we need a new axiom, namely

(Co2) Czyz &z & Cyyv & lv = Cozy

In cases 6, 7 and 8, there are no “converse arrows”. So, if we find a canonical equation
defining (Cy;), we are done. We propose the following;:

(Az2) (g(idA—(y;x)))y £ ~id

PROPOSITION 4.3.5. Assume condition (C3). Then for any arrow frame F = (W, C, 1),
F E(Cy) <> F E(Ax). The equation (Ayy) is canonical.

PROOF. (Aj) is a Sahlqvist equation. A positive equation which does the same job
was found by Andras Simon. It is id A((x;(y A id));z) < (x;(y Aid A(z;x)));z. QED

Clearly, if we add axioms (Ay4) and (A4;5) to the ones above, we get an axiomatization
for the reflexive relativization.

SUMMARY OF THE RESULTS. We summarize these results about subreducts in ta-
ble 4.2. We do not mention the BAO axioms in this table, but of course they are
assumed as well.
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Variety Axiomatizable by axioms
SRIRd¢q}RRA )
SRIsRdqRRA 0
SRle{V}RRA (A}), (Alg)
SRlst{v}RRA (A}), (Al ) Alg)
), (4
1), (4s)

SRle{v,,d}RRA (A1 B 3) (Al())
SRIsRd - is;RRA | (4;),(43), (A1), (As3)
SRIRd;;RRA 0
SRIRd , -;RRA ( 1), (A4), (4s), (Aso)

SRIsRd;,-}RRA | (A1), (A4),(A4s), (A1), (A1s)

SRIRdy; qyRRA (Ag) (A7) = (A), (A11), (Ar2), (A22)
SRIzRdA,ig)RRA | (A42), (A7) — (Ag), (A1), (Ar2), (A1a), (Ass), (Az2)

TABLE 4.2: AXIOMATIZATIONS OF SUBREDUCTS OF RELATIVIZED RELATION AL-
GEBRAS.

4.4 ADDING THE DIFFERENCE OPERATOR

-

We add the difference operator to the similarity type of relation algebras. This operator
adds quite some expressive power to the language (see e.g., de Rijke [Rij93], Sain [Sai88],
Venema [Ven91]). A variety with this operator becomes a discriminator variety, so all
the powerful tools and techniques of these varieties become available. The difference
operator is a natural operator to add to this similarity type. As is shown in [Ven91],
it is term-definable® on the square algebras of relations. It is however not term-—
definable on the relativized ones we studied in this chapter’. It will turn out that if we
add the difference operator to the variety SRIzsRRA, we keep decidability and finite
axiomatizability (theorems 4.4.4 and 4.4.3).

This section is organized as follows. We start with the main results. In the following
section, we gently introduce the difference operator by showing what happens if we add
it to Boolean Algebras. In section 4.4.3, we do some correspondence theory and prove
the finite axiomatizability theorem. In an appendix to this section, we show how one
can obtain an easy finite axiomatizability result if one allows the so called irreflexivity
rule.

4.4.1 INTRODUCTION AND RESULTS

DEFINITION 4.4.1. Let W be a set. We define the following unary operations from

SDefine it as D7 def (Lim;—id) V (~id;m;1). See Def 3.3.7 and Prop 3.3.8 in [Ven91].
"This follows from the fact that these relativized varieties are not discriminator varieties
([ANS94al), and any variety containing the difference operator has a discriminator term.
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P(W) to P(W). For x C W, set:

DVx % {fweW: : (weW):v#w&kvex}
oWx « fweW:(FveW): vex}

by

If there is no danger of confusion, we suppress the superscript ¥ with these operations
(but it should be noted that their behaviour depends on the choice of W). For obvious
reasons, the operation D is called the difference operator. ¢ is the universal modality

we saw before. It is easy to see that we can term—define the universal modality as

def . . . . . .
0x = DxUx. Since D is a unary operator, it’s meaning is given on frames by a

binary relation. On the intended “concrete” frames this will be the inequality relation,
on “abstract” frames we will use the letter R for this relation. We will also use the
notation given above for abstract operators.

For H C {R, S, T}, we define the following classes of frames and algebras.

KDgﬁH dze.'f {f=<V,CV,fv,lv,7/:) : <V3CV:fV?IV> € K;:ifl}
SRIFRRA+D ¥ SP(KD™,)* % SP{(p(V),0",~",1d",D") : V is an H relation}
RRA+D & SP{F=(V,Cv,Fv,ly,#) : V =U x U for some set U}*

REMARK 4.4.2. As we said, RRA is term—definably equivalent with RRA+D (cf.
[Ven91] Prop 3.3.8). On the other hand, RRA = SRIlzsrRRA, but RRA+D is a strict
subvariety of SRIpsPRRA4D. It is strict, because the equality Dx = (1;x—id) V
(—id;x;1) (i-e., the definition of D on the squares) does not hold in the latter class. In
this section, we concentrate on the class SR1sRRA+D.

AXIOMATIZABILITY. The next theorem is a joint result with Szaboles Mikulés, Istvan
Németi and Andras Simon.

THEOREM 4.4.3. SRIzsRRA+D s a finitely aziomatizable canonical variety.

A purely algebraic proof, without any correspondenceresults can be found in [MMNS94].
Here we will follow another road®. We show that the class SR1zsRRA+ D equals a fi-
nite axiomatizable canonical variety S(K)* for K some class of arrow-frames expanded
with a binary relation R. We prove the theorem in section 4.4.3.

DECIDABILITY. Since we enlarged the expressive power of our language consider-
ably, getting closer to the undecidable variety RRA, it becomes an interesting question
whether or not the equational theory of the class SRI1zsRRA+ D is decidable, or even
generated by its finite members. The first question is answered positively, the second
is still open.

81t is quite interesting to see, how the two different styles of proof lead to two quite different
axiomatizations. The axioms given here are the equations corresponding to the (intuitive) frame
conditions, which we found in the representation proof. The axioms given in [MMNS94] are a direct
description of the behaviour of the difference operator, and are maybe more intuitive as (quasi-
Jequations themselves.
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THEOREM 4.4.4 (ANDREKA, MIKULAS, NEMETI).
The equational theory of SRIpsRRA+ D is decidable.

Proor. Cf. [AMNO4]. QED

4.4.2 FIRST EXERCISE: BOOLEAN ALGEBRAS WITH D

To get some intuition about the difference operator, we briefly sketch how it behaves
when added to BA. The difficulties we encounter later are very similar to those in
this simple case. A good overview article on D is chapter 3 in de Rijke [Rij93]. The-
orems 4.4.5 and 4.4.6 below were proved independently by several authors; for their
history, see [Rij93].

Define KDy,,; as the class of all frames F = (W, #). Recall that BA can be defined
as IS{PB(W) : W is a set}. We define the class BA+ D as follows:

BA+D % SP(KD,..)* & SP{(p(W),D") : W is some set}

Define the class KD as the class of all frames F = (W, R) satisfying conditions (C}s) and
(Cy7) below. BAP((As¢) — (Air)) denotes the class of all BAO’s of BAO-type (D, 1)
which satisfy equations (A;6) and (A;7) below.

(Ci6) Ray = Ryz (A15) xADy<D(yADx)
(Ci7) Ray&Ryz=x=2VRrz (A;z) DDx<(xVDXx)

Note that these two equations ensure that the defined ¢ becomes a complemented
closure operator (in modal-logical terms: an S5-type modality).

THEOREM 4.4.5. BAP((Aj) — (4;7)) = S(KD)* =BA+D

ProoF. The first equality follows from the positive form of the equations. Because
BA+D is defined as SP(KD,,)™, it is sufficient to show that 1) KD, C KD, and 2)
every frame in KD is a disjoint union of zigzagmorphic images of frames from KDse.
Clearly (Cy) and (Cy7) hold for the inequality relation, so 1) holds. To show the second
equality, we reason at the frame level. To pin down the inequality relation, we need
that it is irreflezive and almost universal.

(Irr) (Vz):-Rzz
(AU) (Vzy):z#y = Ray

Because irreflexivity is not preserved under zigzagmorphisms, it is not definable by
an equation. (AU) is not definable either, because it is not preserved under disjoint
unions. The next picture shows an average KD frame. It consists of a disjoint union of
frames in which R is almost universal.
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So we know that the problems are caused by disjoint unions and zigzagmorphisms. As
happened before however, they can be solved by them as well.

CrLamM. Every F € KD is a disjoint union of zigzagmorphic images of frames from
KDyet-

Proor oF CrLaiM. The disjoint union part is clear by the picture. Let F = (W,R) =
(AU). In order to show that F is a zigzagmorphic image of a frame (W', #), we
just have to copy the R-reflexive points. So, let W’ Ewu {z' : Rzz}, and define
Gg=(W',#). Define the obvious zigzagmorphism | : W — W, as [(z) = z and
(') = . <

The theorem follows from the claim using 2.2.5, 2.2.6 and the universal algebraic fact
that PS < SP. QED

THEOREM 4.4.6. Eq(BA+D) is decidable.

Proor. Take a minimal filtration of a KDy, model. It is straightforward to show
that the filtration satisfies (AU). Hence it satisfies (Cyg) and (Cy7). By 4.4.5 this is
enough. QED

4.4.3 CORRESPONDENCE AND REPRESENTATION

We prove the finite axiomatizability result for SR1pgRRA+ D in the same spirit as we
did without the D operator. First we define a finitely axiomatizable class of arrow—
frames expanded with a binary relation R. Then we show that each frame of that class
can be represented as a member of KD™% ..

CORRESPONDENCE

Define the following abbreviations®: dom x & g A(x; 1) and ranx i A(1;x). Recall
that 0x was defined using the difference operator as xVD x. We abbreviate (z = yVRzy)
by Uz. Consider the conditions (Cis) — (Cy;) in table 4.3 below on arrow-frames
F=(W,C,F,()1,(.)s,|,R) expanded with a binary relation R, which interprets the
difference operator. We assume that (.); and (.), are total functions. Conditions
(Cs) and (C\g) express that the frame relation for the universal modality ¢ contains
all other frame relations. We will use (Cy) in its equivalent form z; = y, & y, =
z1 & -Re,z, = Caxyz. If R would be the inequality relation, then (Cy;) states that an
arrow is uniquely determined by its domain and range, and (Cy) together with its
inverse Cxyz = = = y,y, = 21 & 2z, = 2, (i.e., (T3)), states that composition can be
characterized in terms of the domain and range functions. Clearly, whenever R is the
inequality relation, these four conditions are valid on locally square pair-frames.
Define the following class of frames:

KDjfhs = {F=(W,CALR) 1 (W,Cf,1) € Kiths & F |= (Crg) = (Cn)}

9Note that dom is the conjugate of s}, and ran the conjugate of s? in the sense of [JT52]. Le., we
can describe the meaning of domx as the set {fjz 1z € 7}.
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(C1s) Fzy = Uzy (A1s) y~ < 0y

(Ch9) Cayz = Uzy & Uzz (Az) y z< Oy Az

(Cy) mi=yi&y, =2z = CzyzVRa,z, (An) s dom(y, domz) < y zVsiDranz
(Ca1) Rzy <= Rayyi V Ry, (431) Dy=siDdomyVs]Drany

TABLE 4.3: CONDITIONS AND EQUATIONS FOR ARROW-FRAMES WITH D

The next proposition shows that we can indeed define these frame conditions by the
given canonical equations'®. Recall that every arrow—frame satisfying conditions (Cj)—
(Cys) is a zigzagmorphic image of a locally square pair-frame (see 4.2.3).

PROPOSITION 4.4.7. (i) Equations (Ajs) — (A21) are canonical;
(ii) Assume that an expanded arrow-frame F =(W,C,f,1,R) satisfies conditions (Cy) —
(Cys). Then, for 18 <i <21, F E(C) < F k= (4).

PrROOF. (i). (A1s) — (Az1) are positive equations.
(ii). This follows from a straightforward Sahlqvist computation. QED

SOME CONSEQUENCES OF (C;) — (Cy). Conditions (D) — (Ds) below are derivable
from (Cy) — (C). (D4) and (D,) are just variants of (Cy). (Ds) and (D,) express
that if z; = y; and z, = y, and one of the two pairs is R irreflexive (i.e., an abstract
singleton), then z equals y.

PROPOSITION 4.4.8. The following theorems follow from conditions (C1) — (Ca):

(DI) “Rey &y, =2 & 2, =2, = Cryz (DB) =y &-Re,y, >z =y
(Dy) mi=yi&-Ry,zi&z, =2, =>Ceyz  (Dy) Ruyp&a, =y, =>r=y

PROOF. Recall conditions (Tp) — (T3) from 2.4.7. (D;) and (D,) follow from (Cs),
(Cy), (Cs) and (T3). For (Ds), assume its antecedent. Use (T7) and (T3) to derive that
(z))1 = 1, -Rz, (fy); & (fy), = (x1)r. Then (D,) implies that Cxzfy, and (Cs) that
ffy = z. But then, idempotence of f implies ¢ = y. (D,) follows easily from (Ds). QED

(D3) and (D,) are similar to (Cy;), but (Cy) does not follow from (C1) — (Cy).
PROPOSITION 4.4.9. (Cy) — (C2) = (Ca1)-
ProoF. Take the two-element (z;,z,)-mosaic F € K'¢hs (here z, = z;) expanded

with R which validates (Rzz & Rzz; & =Rz;z;) (hence also =Rz, z,). It satisfies (Cy) —
(CQ()), but not (021). QED

10The assumption that a frame should satisfy all the axioms (C;) — (Cy5) is unnecessarily strong.
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REPRESENTATION (PROOF OF THEOREM 4.4.3)

The finite axiomatizability theorem follows in a straightforward way from the next
representation lemma. We prove the theorem after the lemma. Recall that (AU)
denotes (z # y = Rzy).

LEMMA 4.4.10. (i) Each F € KDIth consists of a disjoint union of frames satisfying
AU).

gii) l)?ach F € KD:?II{S which satisfies (AU) is a zigzagmorphic image of some G €
KDt ps- '

PROOF. (i). Let F=(W,C,f,I,R) € KD'%. Define a binary relation = on W as
(z=y&z=yv Rzy). Conditions (Cys) and (Cy7) imply that = is an equivalence
relation. We denote the equivalence class of s by 7% {y e W : 2 = y}. Define for each

equivalence class a frame JFy & (z,C',f',I,R) in which the relations are the restrictions
to T. We claim that each 7 |= (AU), and F is a disjoint union of the system of frames
{Fz : ¢ € F}.This proves part (i). The first part of the claim is immediate. For the
second, it suffices to show that each F% is a subframe of F generated by %, which is
precisely the point of conditions (Cyg) and (Cyg).

(ii). The proof of part (ii) consists of two steps, corresponding to the two things which
can go wrong with the accessibility relation of the difference operator. First we show
that F is a zigzagmorphic image of a pair-frame expanded with a relation R which
satisfies (AU). In the second step, we make this relation irreflexive, thereby turning it
into the inequality relation. These two steps are given in the schema below.

step 1 step II

!
full language F € KD7§hs  « Gpair(V) € KDIfhs & Hpair(H) € KD™8 1g

l‘
D—free reduct F* € K:ﬂzs «  Gpur(VY) e K;giRS

Let F=(W,C,f,},R) € KD[tks satisfy (AU). By lemma 4.2.3, we may assume that
the R—free reduct F* of F is a zigzagmorphic image, say by function I*, of a pair-frame
G*pair (V*) = (V*,Cys, fys, Iy+), for some reflexive and symmetric relation V* with base

STEP I. The problem with the representation G*,4:-(V*) is that it may contain two
different pairs z and y which get mapped to one R-irreflexive point in F. This will
prevent extending the zigzagmorphism I* to one for R as well. To eliminate this problem
we create a new pair-frame G, (V). Define an equivalence relation = on the base U*
as follows:
VuvelU) u=vE u=vor SR (u, u), " (v, v)
CramM 1. (i) = is an equivalence relation;
(i) v = v = u,u) = *(v,v).

ProOF oF CLAIM. Because F = (AU). <
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Set,
v o« U=
Vv ¥ {(u/z=v/=) e UxU:(u,v) eV}

Define a function [ : V — F as l{u/=,v/=) ¥ I*(u/,'), for some v’ € u/= and
v’ € v/=. Note that, by the definition of V| for every pair {u/=,v/=) € V, there exist
a pair (u',v') € V* such that v = v’ and v = v'. Hence, [ is defined for every element
in V. The next claim states that this is a real definition.

CLAM 2. [is well defined. That is, for every (u,v), (u',v') € V*,ifu = v and v = 1/,
then I*(u,v) = I*{v',0').

Proor oF CLAIM. Suppose (u,v),(v,v') € V* v = ' and v = v'. We have four
cases, according to whether v = ' and v = v'. If u = «' and v = ¢/, the statement is
trivial. So assume otherwise:

Case 2: [u # u' & v # v']. Then the definition of = implies that ~RI*(u, u}, I* (v, u')
and ~RI* (v, v)I*(v',v') hold. Since * is a zigzagmorphism for the relational operators,
this means that =R(I*{u, v));, (I*(u',v")); and -~R(I*(u, v}),, (I*(%',v')), hold. Then con-
dition (Cy) implies that —RI*{u,v), I*(u',v"). So, by (AU), I*(u,v) = I*(v/,v").

Case 3 and 4: [u = v/ & ~RI*{v,v),*(v,v'} | and [-RI*(u,u), * (v, v’} & v = V']
These cases are solved in a similar way, but now using conditions (D;) and (Dy) from
4.4.8. <

To finish the first step of the proof, define an accessibility relation Ry on the pair-frame
Gpair (V) as Ryzy << RI(x)l(y). Call this frame G = (V, Cy, fy, v, Ry). The next claim
states that we have accomplished our first goal.

CrLamM 3. (i) V is a reflexive and symmetric relation;

(i) G =z #y = Rvay;
(iii) The function ! is a zigzagmorphism from G onto the frame F.

PrOOF OF CLAIM. (i). Obvious.
(i1). We will denote u/= by @. We prove the claim by contraposition:

=Ry (@, ), (W, ") = (using well-definedness of [)
=RI*(u, v), (v, v') g (using that [* is a zigzagmorphism)
SR (u,u), F(u, u') & R (v, v), (v, 0') = (definition of =)

\I

(ii1). All steps in this proof except homomorphism for Cy are straightforward by
claim 2. To show that ! is a homomorphism for Cy, suppose {{(u, ), (¥, w), (w,7)} C
V. We have to show that Cl{w,7), (T, W), [(w,7) holds. By definition of V, we have
u, v, v, w2 € U*, {{u,v), (W, w), (w',v}} CV* and v = v',w=w and v = v'.
By the definition of [, it is sufficient to show that Cl*(u,v), I*(v', w), I*(w',v') holds.
There are several cases, depending on why the points are equivalent. One easy
case is this. If v = v/, w = v and v = ¢/, then, since [* is a homomorphism, we
have CI*(u,v), I*{u, w), [*{w,v). In all other cases, for at least one of the three pairs



4.4] ADDING THE DIFFERENCE OPERATOR 81

of equivalent points, the reflexive pairs at those points are mapped to an R-irreflexive
arrow. For these cases, we need condition (Cy) and the fact that F = (AU). The
next claim helps.

CLAIM 4. I F € KD} and F = (AU), then
FE [mi=wnky, =2&2 =2, & (-Reyy vV -Ry, 21 V =Rz, z,)] = Cayz

In words: if 2; = yi&y, = z&2, = z, and at least one of the pairs (1, 1), (yr21), {2r> 2;)
is R irreflexive (i.e., an “abstract singleton”), then 2 can be decomposed into y and 2.

ProoF oF CLAIM. This follows from (Cy),(D1),(D2) and (AU). <

We show with an example how this claim helps us out. Suppose =RI*(u,u)l*(v', u')
and w = w' and v = v'. Because [* is a zigzagmorphism we have I*{u,u) = (I*(u,v))s,
and similarly for the others. This implies that

—'R(l*(uv U))I(l*(u’,w»l & (l*<u’vw>)r = (l*<w’a7},))l & (l*<wivv’))r = (l*(u,”“))r

So by the above claim, CI*(u, v), I*(v', w), I*(w', v'), whence also Cl{w, 7), [(@, @), @, 7),
which is what we had to prove. <

The general situation is sketched in figure 4.1 below. At the top we draw the situation
in V*, and at the bottom the situation in F. The dotted arrows denote the function I*.
The dashed arrows denote the functions (.); and (.), in the frame F. By Claim 1.(ii), the
reflexive pairs at two equivalent points are mapped to the same place (e.g., I*(u,u) =
*{u,u')). »

*<w,w>

Praw’,v.>

N
I*<u,v>

FIGURE 4.1: | IS A HOMOMORPHISM FOR THE RELATION C
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STEP II. Since the frame G, constructed in the previous step, is a pair-frame, we
only have to make Ry the inequality. Since G k= (AU), it suffices to make Ry irreflexive.
Define the following two sets:

BAD ¥ fueU: Ry (u,u) (u,u) }
COPIES ¥ {(u,w):u€ BAD}U{(v,u'),(u',v): (u,v) € V,u € BAD & u # v}

Without loss of generality we may assume that COPIES is disjoint from V. Let
H=(H,Cq,fy,lg,#) € KD, be given by the set H ¥ V U COPIES. Define
p: H — V as the unique function such that

e p | V is the identity function,

o p((u', ') ¥ (u,u) if u € BAD, and

o p({«/,)) ¥ (u,v) and p({v,u')) ¥ (v,u) if u # v and u € BAD.
The next claim states that, for Ry we did enough. That is, we only copied Ry reflexive
arrows.

CramM 5. (i) (Vz € V) : (Ryzz <= there exists a copy of z in COPIES);
(@) (Vz,y € H) : ((z # y & p(z) = p(y)) = Rvp(2)p(y)).

ProoF oF CLAIM. (i). Suppose Ry (u,v){u,v) for some (u,v) € V. If u = v,

then the claim holds by definition. So, suppose u # v. Then: Ry (u, v){u,v) &y
Ry (u, u)(u,u) V Ry (v,v)(v,v) <= u € BAD orv € BAD «= (u',v) € COPIES
or (u,v') € COPIES.

(ii) follows from (i), since two pairs of H can only be mapped to the same pair in V,
when they are copies of each other. . «

CLAM 6. pis a zigzagmorphism from H onto G.

Proor oF CLAM. Clearly p is surjective. That p is a zigzagmorphism for Ry is
immediate by claim 5. For | and f this is straightforward to check For C observe that,
if {(u,v),(u,w),(w,v)} C H, then either they all are in V, or one pair is in V' and
the other two are in COPIES. The next picture might be helpful. At the left is the
situation in G with u € BAD (so, {{v/,w), (v',v)} C COPIES), and at the right its
representation in H.

w

«

With these two steps we have finished the proof, because our original frame F will be
a zigzagmorphic image of the frame H by the function / o p. QED

We finish this section with the proof of the finite axiomatizability theorem.



4.4] ADDING THE DIFFERENCE OPERATOR 83

rel

PROOF OF THEOREM 4.4.3. Proposition 4.4.7 implies that the class S(KDjps)* is a

finitely axiomatizable canonical variety. So it is sufficient to show that SP(KD™ )t =

S(KD’ths)*. By soundness, KD[¢ps C KD'¢hs. By the previous lemma, KDhs C
DuZigKD™® ... So by duality and PS < SP, (KDfps)* C SP(KDjis)t. Hence the
two varieties are equal. QED

FURTHER ROADS: COUNTING MODALITIES. Define the following operations from
P(W) to P(W):
o"Wx ¥ Wi x| > n, else 0"x =0

The “counting modalities” (™ are also known under the name of graded modalities (cf.
e.g., Fine [Fin72], van der Hoek [Hoe92]). The difference operator is term-definably
equivalent with the two “counting modalities” ¢' and 0%, by the following definitions:
(we use T — 71 to abbreviate —7 V 1)

oxExvDx, 0% D(xADX), Dx ¥ o!x A (x = 02x)

A well investigated class is BA+n-times:
BA+n-times & SP{2 = (PB(W), 0" Yocncw : W is some set }

Mikulds-Németi [MN94] showed that the equational theory of the expansion'! of the
class SRIzsRRA with the set of operations {0" : 0 < n < w} is decidable. They also
showed that it is a variety, axiomatizable by finitely many schemas.

APPENDIX. COMPLETENESS WITH THE IRREFLEXIVITY RULE

A finite axiomatization of the equational theory of the variety SR1psRRA+ D is easily
obtained, using the irreflezivity rule. We show this, using the similar theorem of
Venema with respect to the class RRA (cf. [Ven91] Thm 3.3.37). He showed that, if we
add the irreflezivity rule for the (term definable!) difference operator to the RA axioms
(see 2.4.11), we get an axiomatization of RRA. The irreflexivity rule is defined as
follows: Let t(xy,...,%,) denote an arbitrary term generated from variables x;,...,X,.

Define Oxdzefx/\ - D x.

0O Xo S t(xla"'axn)
Xy %) =1

Irreflexivity Rule if xo does not occur among X;, . .., %y

When added to the axioms for the difference operator, this rule makes the frame
relation for the difference operator irreflexive (see [Ven91] for details). Let ¥ denote

11\We define this and similar classes by adding the new modalities to the full complex algebras of
the old class and take the SP closure of that, i.e.

SR RRA+n-times % SP{A = (P(V),0%,"" ,1d", 0™ Yocncw : V is an H relation}
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the derivation system consisting of the axioms and rules of equational logic, the BAO~
axioms for the similarity type of SR1zsRRA+ D and axioms (A;) — (Ay). We want
to use Venema’s powerful SD-theorem ([Ven91], Thm 2.7.7) to prove that ¥ plus the
irreflexivity rule enumerates Eq(SRlzgsRRA+ D). In order to use that theorem, the
derivation system has to satisfy the following requirements:

1. All its axioms are in Sahlqvist form.

2. It is a versatile similarity type (meaning that for every operator all its conjugates

are term-definable).

Y contains the axioms (Ayq) and (A4;7).

4. For every n-ary non-Boolean operator f, & contains f(xi,...,%;) < 0x; A ... A
Xy

w

PROPOSITION 4.4.11. X satisfies the requirements 1-4 above.

Proor. Requiremeni;s 1, 3 and 4 are obvious. For 2, note that D and ~ are self-
conjugate, and that the two conjugates of “;” can be defined as follows: x b y & X7y
and x <4y ¥ x;y~ (cf. Prop 6.3.6 here or Def 3.3.35 in [Ven91]). QED

Let ©* be the derivation system which is obtained by adding the irreflexivity rule to
Y. We are ready to formulate the completeness theorem.

THEOREM 4.4.12. Ttk 7=0 <= SRIzsRRA+DE7T=0

PROOF. Define the class KDJigs_ as {F = (W,C,F,I,#) : F k= (C}) - (Ch)}. Using
Venema’s SD-theorem and 4.4.7 and 4.4.11, we find that

Sthr=0 <= KDlifs_ E=T=0 (4.9)
The theorem then follows from the next claim.
Cramv 1. KD = IKD™ .

Proor oF CLAIM. The inclusion from right to left is immediate since all conditions
listed are valid on pair-frames. For the other side, we make use of the following
observation. Every frame F € KD7$/% _ satisfies the following conditions (by proposi-

tions 2.4.7, 4.4.8 and the fact that R is the inequality relation)

(To) ()1, (1), f are total functions

(M) le=>z=1)=g =21,

(Ty) 2 = (fz), and z, = (fz);

(Ts) Cayz>m=yi&y,=z&z2 =2,

(S) mi=y&z, =y, =y
(S2) mi=y&ky,=zn&z, =2 = Cryz

We will adopt the representation for square pair-frames in [Ven91] (proof of Thm 3.3.26)
to our situation. The idea of the proof comes from the fact that, once the domain of a
concrete pair—frame is a reflexive relation, we can identify the elements u of the base
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set of that relation with the identity pairs (u,u). Thus we will represent each abstract
arrow z by the pair {z,2,). Let F = (W,C,f,L,#) € KD7¢%s_. Define a pair—frame
Gpair(V) = (V,Cy, v, lv, #) over the set

VY (y,2) e(Ixl): (Fz e W) (o =y &a, = 2)}

CramM 2. (i) V is a reflexive and symmetric relation;

(ii) The function { : W — V defined as I(z) (2, x,) is a frame isomorphism between
F and Gpair (V).

PRrROOF OF CLAIM. (i). For reflexivity, let (u,v) € V. Then (3z € W) : z; = u&az, =
v. By (Ty) : v = o = (&)1 = (21)r, whence (u,u) € V. Similarly, (v,v) € V. For
symmetry use (T3) and (Tp).

(i1). ! is a bijection.

Surjectivity is immediate by the definition of V', and injectivity follows from (S)).

! is a homomorphism.

For | by (Ty), for f by (T3), for C by (T3), and for # because [ is a bijection.

[~! is a homomorphism too.

Because [ is a bijection, and, by (Ty), f is a function, the part for f was proved in the
previous claim. For ly, if lylz then z; = z,. Use (T1) and (S;) to derive that z; = z.
But then lz. For Cy, suppose Cylzlylz. This holds if and only if (by definition)

=1,y = z; and 2z, = z,. But then, by (S), we have Czyz. <
We proved that KDTfrs_ = IKDI ps- <

So, KDIFs_ = IKD! 4s. The complex algebras of this last class generate the variety
SR1;sRRA+ D. Hence we are done. QED

REMARK 4.4.13. We did not need axiom (A ) in the presence of the irreflexivity
rule, because it became derivable. From the above completeness result, and the fact
that (A ) is independent of the other axioms (cf. 4.4.9), it follows that the irreflexivity
rule is not conservative when added to the axioms (4;) — (Az).

4.5 REPRESENTING BAQO’S AS ALGEBRAS OF RELATIONS

In this section we leave the algebras of binary relations, and go to algebras of relations
of arbitrary rank. We generalize the notion of composition to relations of any finite
rank, and show that for this generalization, we have a representation theorem similar
to the one for the “composition only” reduct of SRIRRA (4.2.11).

4.5.1 INTRODUCTION AND MOTIVATION

INTRODUCTION. In chapter 2 and in the previous sections of this chapter, we have
seen two notions of representability for “abstract” (equationally defined) BAQO’s, cor-
related with two notions of semantics for the corresponding modal logics. The first,
easy one, was a representation using Kripke frames. In the sequel, this will be called
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a relational representation, or relational semantics. Recall that, by fact 2.2.1, every
BAO can be represented as a subalgebra of a complex algebra of a Kripke frame.

In the previous three sections, we did quite some work to obtain also a second
representation, using pair-frames. These frames are completely determined by their
universes. In these frames, the accessibility relations are already present (“coded”)
m the worlds. Our motivation for studying pair-frames was that we wanted to draw
arrows as real arrows. In [HMT71], this second kind of representation is called, in the
context of cylindric algebras, a geometrical representation. We will use the same term
here (and also geometrical semantics). A geometrical representation is “concrete” in
the sense that 1) if two algebras are different then their universes are different, and
even 2) the operations are set-theoretically defined.

MAIN RESULT. In this section, we will show that every BAO has, besides a relational
representation, also a concrete geometrical representation as a subalgebra of an algebra
whose universe consists of sets of sequences and whose operations are defined in set—
theoretic terms (theorem 4.5.6). So, every BAO can be represented as an algebra of
relations. In modal-logical terms, this means that every general modal logic can be
viewed as a multi-dimensional modal logic (cf. [Ven91]). A concrete example of this
result is 4.2.11. There we showed that every BAO of type (;,2) is isomorphic to a
subalgebra of an algebra % = (PB(V),0") for some binary relation V (0¥ is ordinary
relation composition relativized to V). Theorem 4.5.2 below generalizes this result to
all operators of rank higher than 1.

MoTivATION. To motivate this representation, we quote a part from [HMT71], in
which the two representations are compared in the context of cylindric algebras. Clearly,
these remarks have a very general character. Theorem 2.7.43(ii) in the quotation is the
theorem that for any o, CA, = S(K&*)*. (Here K& is the class of a—frames which
satisfy the frame conditions corresponding to the CA axioms.)

The results known in modern mathematics as representation theorems have
as a rule the following character: in each of them a class K of “abstractly” defined
mathematical structures is considered, a subclass L of this class is singled out,
and it is shown that every structure in K is isomorphic to some structure in L; the
proof frequently consists in effectively correlating, with any given structure & in
K, its isomorphic image in L —the representative of &. The value of a representa-
tion theorem depends both on the scope of the class K and on such properties of
members of L as simplicity of structure and “concreteness” of notions involved
in their construction.

In the case of relational representability the scope of the representation the-
orem 2.7.43(ii) is wide: the class K consists of all CA’s. The class L is formed
by the complex algebras of cylindric atom structures (authors note: Kg{a is the
class of, what is here called, “cylindric atom structures”) and their subalgebras.
The Boolean operations in these representatives are “concrete”, well-determined
set—theoretical notions used in constructing Boolean set algebras. On the other
hand, the extra—~Boolean operations are defined in terms of the fundamental re-
lations of cylindric atom structures (authors note: the relations 7% and EV )
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and have therefore as “abstract” a character as the corresponding notions in
arbitrary CA’s. Hence 2.7.43(%1) is not what could be regarded as a satisfactory
representation theorem for arbitrary cylindric algebras. (emphasis by MM). [...]

... the notion of geometrical representability is intuitively much more satis-
factory and valuable than that of relational representability. The generalized
cylindric set algebras, which serve as representatives under this notion, are in a
sense “concrete” algebraic structures (or, at any rate, structures which are much
more “concrete” than arbitrary CA’s). All the fundamental operations and distin-
guished elements of these algebras are defined in straightforward set-theoretical
terms; the definitions are uniform for all algebras involved, and, as a consequence,
each of the algebras is uniquely determined by its universe. ([HMT71], remark
2.7.46)

Besides the advantages described above, there is also an important methodological
application of the geometrical semantics of BAO's. Namely, as it turns out from Németi
[Ném91], algebras of relations have a powerful methodology, and it does not matter too
much what the basic operations are (from the point of view of the applicability of that
theory). Therefore, efforts have been made by many researchers to base as many logics
on algebras of relations as possible. The present result is a considerable step forward in
this program. It shows that the algebraic-logical counterpart of general modal logics
can be chosen to be a kind of algebras of relations.

ORGANIZATION OF THIS SECTION. Except for some standard definitions from chap-
ter 2, section 4.5 can be read independently from the rest of this work. It is organized
as follows. In section 4.5.2, we introduce a generalization of binary composition to
n—ary composition of n-ary relations. We show that BAO’s with one n—ary operator
(n > 2) can be represented as algebras of n—ary relations. The operator is represented
as n—ary composition. Moreover, if we add the conjugates of that operator, we can
keep this rather natural representation. In section 4.5.3, we show how we can represent
every BAO as an algebra of relations.

NoTATION. With BAO we always mean normal BAO. We use @ to denote a sequence
of variables ug, ..., u, for arbitrary n, as well as the product notation (i) = u;. As
variables ranging over n—tuples we use s and 7; s; denotes the i-th element of s.
Besides ©, we will use f* to denote equationally defined non-Boolean operators; for
their represented counterparts we sometimes use F'. As before, p provides each operator
with its arity. We use I as an index set for the operators of an algebra.

4.5.2 n-ARY COMPOSITION AND ITS CONJUGATES

In this section, we study algebras of relations with rather special operators. Let V C *U
for some set U and o < w, and let 2 be an algebra with universe P(V'). The simplest

, . def
operations we use are the diagonals Dj; = {s € V 1 5; = 5;}.
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n~ARY COMPOSITION. The major operator in this section is a generalization of binary
composition to n-ary relations. We use oV to denote this operator (the context provides
its specific arity). The n-ary operator ¢ has the following definition. Suppose that
a = n for some finite n > 1, and xg, ..., X,_; are subsets of V C ®U/. Then:
(€0, 1, ..., Tae1) € (X0, %1, ..., Xn_1) & (To,21,...,Znq) €V &
(3z): ( (z,21,-..,%n1) € %0 &
(xo,z,:ﬁz,...,mn_l)exl &

<ZIJ’Q, . ,.’17,,_2,Z> € Xn..])

For a = 1, we get the well-known operation of cylindrification; for o = 2, we get
ordinary composition of binary relations (in reverse order). For convenience we use the
substitution function f} (cf. section 2.5). Then we can define oV easily as follows:

oV (X0s . X)) E s €V (F)(flsex&... & £ s €x,4)}

Note that ¢V is dependent on the universe V. Since all our operators will be relativized,
we usually. suppress this superscript.

n—~ARY COMPOSITION OF RELATIONS OF HIGHER RANK. In the next section, we
use n-ary composition operators on sets of relations with rank higher than n, say a.
The idea uses that the operator works only on a specific n-long part. On that part, it
behaves just like n—ary composition. We define these operators as follows. Let V C U,
Shi+m—-1)<o,andlet T = (5,5+1,...,5 + (n — 1)) be a sequence of consecutive
numbers:

or (X0, Xne1) B {s €V (@) E s €x0&.. . & £I 1 5 € xy)}

Again, er is relativized to V. The definition of e 3 4 on sets of 7-ary relations is given
schematically below: (a “~” indicates that any element is allowed at this place)

(a:,y,a,b,c,‘v,w) € '(2,3,4)(X07x1,x2)
i)
(z,y,a,b,c,v,w) € V&
(BZ)Z( (—,-—,z,b,c, 7"“) € XO&
(“,——,CL,Z,C, v") € xl&
(“,"",G,b,Z,*‘,"‘) € XZ)

CONJUGATES OF n—ARY COMPOSITION. Conjugates of operators were studied in
Jénsson-Tarski [JT52]. There the emphasis is on conjugates of unary operators. Con-
jugates of binary (relation) composition (“residuals”) occur in Birkhoff [Bir67]. Recent
papers which are largely devoted to conjugates of relation composition ‘are Jénsson-
Tsinakis [JT93], Jipsen [Jip92], Jénsson-Jipsen-Rafter [JJR] and Andréka-Németi
[AN]. Pratt [Pra90a] has applications in computer science.
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DEFINITION 4.5.1. Let 4 = (4,V,—,f% ...,f") be a BAO, in which all operators
have rank n. We call % fully conjugated if 2 satisfies the following equations (for all
1<i<n)

f‘_’(xl,...,xi~1,~fi(x1,...,~xi,...,xn),x,-“,.‘.,xn) < X
£y, ey Xty =FO(Xay ey =Xiy ooy X )y Xig 1y oo o5 %n) S X

CBAO” denotes the class of all fully conjugated BAQ’s with operators of rank n.

We tend to give f° a special role, and will usually denote it by ©. We call f! the i~th
conjugate of O. We use O' to denote the conjugates of . On V C "U, they are
defined as follows:

Q?"(xo,...,xn_l)dzef (seV:(@ze D)) _seExk.. & FUEr s € xp1)}

fif {;‘, s is the result of replacing s; by s;, and s; by z. As an example, consider a 4-ary
operator O, which is the second conjugate of oV

(IQ,LEI,JL‘Q,Q?g) € 02(X0,X1,X2,X3) 455—21? (.’130,331}1'2,1?3) eV
(3z): ( {z1,2,72,23) €Ex &
($0,Z,$2,$3> € %X &
(mg,z,$1,$3) € Xo &
<:EQ,Z,332,$1) € XS)

For n = 1, we get cylindrification again (cylindrification is self-conjugate). For n = 2,
we get the conjugates of binary o, which are usually denoted by < and . The familiar
left and right residuals \ and / of o (see e.g. Jénsson [Jén91]) can be defined by z\y o
(z > —y) and z/y & _ (~z < y). (For a direct definition of these operations see
section 6.3.2.) Equations 4.10-4.13 below, which are precisely the conjugate conditions
from 4.5.1 for binary operators, are valid'? on every (relativized) algebra of binary
relations. 4

xo (x\y) <y (4.10)
y <x\(xoy) (4.11)
(x/y)oy < x (4.12)
x < (xoy)fy (4.13)

GEOMETRICAL REPRESENTATION OF BAO’S WITH ONE OPERATOR

We generalize the result (4.2.11) for binary composition from the beginning of this
chapter. We show that every BAO with one n-ary operator can be represented as an
algebra of n—ary relations, in which the operator is n—ary composition. Withn =1, we

120nce we see that x > y = x~! oy, in which ~! is the operation of taking converses, we notice
that (2) is just another way of writing the last axiom of relation algebras xtPol=(xoy)] € ~y.
(cf. [HMTS5] definition 5.3.1) These equations are also very familiar from the Lambek Calculus (see
Lambek [Lam58] or van Benthem [Ben88}).
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are in (diagonal-free) cylindric set algebras of dimension 1, and that axiomatization
is well-known: the operator has to be a complemented closure operator. Once n > 1,
the situation changes radically: only the BAO axioms are needed for representation.
We say that an algebra % = (A4,V, —,f');c; satisfies the BAO azioms iff U satisfies the
BA axioms plus equations which state that every f* is normal and additive in each of
its arguments.

THEOREM 4.5.2. Let K {2 = (4,V, -, O) : & satisfies the BAO azioms}. If <& is
an n-ary (n 2 2) operator, then K = IS{(P(V), ") : V C *U for some set U}. Here
oV is n-ary composition relativized to V.

ProoF. The theorem follows from lemma 4.5.3 below, in the same way as 4.2.11
followed from 4.2.7. The proof of 4.5.3 is a straightforward generalization of the step—
by-step construction introduced in the proof of 4.2.7. QED

LEMMA 4.5.3. Letn > 2. Everyframe F =(W, R) with R C "*'W is a zigzagmorphic
image of a frame G =(V,R), in which V C "U for some set U, and R is defined as
follows:

(Vy,21,...,20 € V) : Ryay ... zp &5 {y} = ({z1},..., {za})

Proor. Fix some n > 2, and a frame F = (W, R) with R C "*'W. Step by step
we create the frame § and a zigzagmorphism [ : V — W, just as we did before
with binary composition. To make the proof more perspicuous, we use a different
scheduling of the repairs. Instead of repairing all “zigzag faults” of all sequences which
were added in the previous step, we only repair one sequence at each step. Using a
suitable scheduling function for the construction, this will have the same effect as our
earlier construction.

Choose an infinite ordinal x such that [W| < k. Let P be a set of cardinality |x];
we will use this set to create V. In this new setup we need a function which directs
the construction process. So, let ¢ : K — ™ P be a function such that

#) (Vse"P)VA<k)(Fv<kr): A<v&o(v+1)=s

In Andréka-Mikulads [AM94a], it is shown that such a function always exists. Condition
# ensures that we will make every necessary repair. At each step, we construct a tuple

Go = (Uy, Va, 1o} such that for all o < & :
e Uy CP
o V,C"U,
o I, : Vo — W is a surjective homomorphism

After the x—th step, all necessary repairs will have been made, whence [ has the zigzag
property as well. This will prove the claim.

Construction

step 0 Take Uy C P such that [P\ Uy| = &, and take Vy C "Uj such that |V;| = |[W|
and (Vs,7 € Vo)(Vi,j <n):si=r; <> s=r&i=j. Letl, be any bijection
between V; and W.
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step o+ 1 Let o(a+1) = s.
If s ¢ Vy, then Unys % U, loss & 1y and Voyy € V..
Else, do the following. Define a function®® g1 : {¥ : Rlas@} — (P \ Uy) such
that gg4; is injective and |P \ g4,,] = . Since we have chosen k and P large
enough, such a function will always exist. Now set :

Ua+1 z_%z U, U 9;.,,1

Vari £ Vo U Uicalf) @8 € "P 1 Rlas, @}
def

lat1 = L U U{(f ga+1(u)su( 1)) : Rlasi}

Limit Step If o is a limit ordinal, set

def

» def . df
Z UpcaUs, Vo= Upca Vo la =

Uﬂ<a

Note that G, is created with a limit step.
End of Construction

Finally, define G = (V,,R), in which R is defined as above, and set | = I.
CraM. The function ! : V, — W is zigzagmorphism from § onto F.

PRrROOF OF CLAIM. The function ! is surjective by step 0. For the zigzag property,
suppose Rl(s)@. Suppose s was added in the A-th step. Then, by condition # on
the scheduling function o, there exists an ordinal ¥ + 1 such that A < v +1 < « and

o(v +1) = s. But then, rq,...,r,_; were added in this step, such that r; = fg @S
and l,41(r;) = @(z). Hence, by definition, we have Rsrg . ..7,—1 and I(r;) = @(3).

The function [ is a homomorphism, if it is one for every step. We show this by
induction on the construction. [y is a homomorphism, because in step 0, all sequences
are disconnected. Suppose I, is a homomorphism. Let Rsrg ... 7p_1, with 8,79, ..., Tn—1
all in V,41, and at least one of them is in (Va4 \ V,). Because the conditions on ga.41
ensure that we use a brand new element from P for every repair, s € Vi, 7o,...,Ta—1 €
Va1 \ Va, and Rlgslapi7o ..., lag17n—1. Hence lot1 is a homomorphism. Finally, in
limit steps, nothing can go wrong. So ! is a homomorphism. QED

GEOMETRICAL REPRESENTATION OF CONJUGATED BAOQO’s

Now we turn to the class of conjugated BAQ’s, and show how to adjust the preceding
proof. Let K denote the class of all frames F = (W, R®, R',..., R"), in which all the
relations are n + 1-ary, and which satisfy condition con for all z with 1 < < n:

(con) RO(y,1,...,Tiy...,Tn) <> RUziyT1y . Tic1s Yy Ti1s - - -2 Tn)
THEOREM 4.5.4. Let 2 <n < w. Then:

CBAO™ = S(K™, )* = IS{(B(V),e",01,...,0") : V C U for some set U}

13Recall that if f: X — Y, then we use f*(X) or f* to denote the range of f.
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PrOOF. The first equality follows immediately from the Sahlqvist form of the equa-
tions. The second equality follows, by a now very familiar argument, from the next
claim.

CramM 1. Every F € K¢, is a zigzagmorphic image of a frame ¢ = (V,R°, R}, ..., R")
in which V' C "U for some set U, R® is defined as in 4.5.3, and the relations for the
conjugates in G are defined as follows:

Ri(y,z1,...,2.) €5 {3} = O'({z1}, ..., {za})

PROOF OF CLAIM. We use a similar construction as in the previous proof except for
a change in the inductive step. Note that, by the definitions of the R’, con holds in G.
Here is the modified inductive step. Instead of one single function g, , we create such
a function for each of the operators (we omit the subscript 441 from now on). Define
9% :{@: R®lsi} — (P\ U,), and for 1 < i < n, ¢* : {@ : Ril,s@} —> (P \ U,) such
that

e all ¢' are one to one

e the ranges of the g* are pairwise disjoint

hd |P\(U0§iSn(gi)*)l =K

2

Now set,
U = Uy U Us<i<n (gi)*
Vay1 = Vo U Ujen {f ]gi(lﬁ) 5: Rolasﬁ} 3
U Uicicn, j<n {f ;{(ﬁ) £ s Rysi
lot1 = lo U Uj<n {(f ;O(ﬁ‘) 5, ﬁ(])) : Rolasu}

U Uigignjan {{E g T2, 5, 8()) : Rilasii}
CLAIM 2. [is a zigzagmorphism from G onto F.

ProOF OoF CLAIM. The same argument as before shows that [ is surjective and has
the zigzag property, given the new inductive step. Next, we show by induction that [
is a homomorphism for R®. In step 0, this is obvious. Suppose [ is homomorphic for
R for all elements in V. By the conditions on the g', there is only one way in which
new elements can come to stand in the R relation, and that is when R'l,s# holds for
some 5,7 and @ with o(e+1) = s. Then we added y,..., 7, such that lo4(r;) = 7(5).
If i = 0, then R®s,ry,...,7,. But, then also ROlos18, lap1(r1)y o lagr(ra). T3 #£ 0,
then R's, 7y, ... ,Tn- Thus, by con, R%r;,rq,... 3T i1y S, Tigl, - - -, Tn. But, since these
r; were added for R', we have R'1,(s),lat1(r1), ... Jlat1(rn). By con in F, we then
have R®1(r;), I(ry), ..., (ric1), 1(s), U{rig1), - - ., 1(ra). So we find

() Ry, zy,...,2, = ROU(y), l(z1), ..., U z,)
Therefore, lo4; is a homomorphism for R®. To show the same for the other relations,

suppose R'(y, zy,. .., z,) and compute:

Ri(y,21,...,2,) <= by con
ROz, @1, . iy, Yy Titd, - - -, Tn = (%)
ROUa;), Wz1), ..., Umic1), U{y), Uzig1), ..., l(zy) <= by con
Rll(y)>l(:c1)> s lzn)
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Therefore, lo4; is a homomorphism in general. Thus, [ is a homomorphism. Hence, it
is a zigzagmorphism. <

We finished the proof. QED

4.5.3 GEOMETRICAL REPRESENTATION OF ARBITRARY BAO’S

Now we generalize 4.5.2 to algebras with arbitrarily many operators. The work pre-
sented in this subsection is the result of a cooperation with Istvdn Németi and Ildiké
Sain. We know already how to represent BAQ’s with one operator of arity higher than
1. Before we prove the general theorem, we show how to represent BAO’s with a unary
operator or a constant.

LEMMA 4.5.5. Let K {2t = (A,V,—,O) : % satisfies the BAO azioms}.

(i) If O is a constant, then K = IS{B = (P(V),Do1) : V C U x U for some set U}
(ii) If © is a unary operator, then K = IS{B = (P(V),F) : V C UxU for some set U},
in which F(x) & xeVx.

PROOF. (i). Let % € K, and let © be a constant. Its canonical frame is 20, = (W, R},
with R C W. Let U be an infinite set such that |[U x U| > |W|. Define a function
. W — U x U such that [ is injective, and (Vu € W) : Ru <= (lu)o = (lu);. Define
F = (I*(W),{s € (W) : sp = 1}). It is immediate that [ is a frame isomorphism.
Using the argument given before, this is sufficient to prove the lemma.

(ii). Clearly, F(x) is normal and additive. For the other side, suppose that % =
(A,V,—,0) € K, and that © is unary. Let &' = (4,V,—,f), with f binary, be de-
fined from % by f(7,71)  &(r A 7). Then ¥ is term-definably equivalent to 2 by
() f(r, 7).

Clearly, f is normal, and it is additive because of distribution of V over A. Hence
we can apply 4.5.2, and represent %' as a subalgebra of 8' = (B(V),*"), in which
V C U x U for some set U, and ¢V is binary. Define 8 = (B(V),F), using F(7) eV r
as above, and we get the desired algebra. QED

Now we know how to represent every operator separately as an operation on relations,
we are ready for the general theorem.

THEOREM 4.5.6. Let K% {u = AV, — )., ¢ % satisfies the BAO axioms}, for
iel

I Cw. Then,
K=1S{®8 = (B(V),F)ic; : V C °U for some set U},

where
1 a=(2-|{f : p(f) < 1}!) + T (n- |{fi: p(f)) = n})
2. the nullary operators F' are Dy;

3. the unary operators F' are ep(x,x), for some I € *a
4. the n-ary operators F' are n-ary er, for some I' € "a
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%A= (4,V,—f,gh)

l canonical frame
A, = (W, Rf, R%, R")
Ve 1 . split the frame
(W, Rf) (W, R®) (W, R™)
Th Tl T13 zigzag morphisms
" (i, R)) (V2, RS) (V3,R)
N l e glue together
F = (V,R/ R& R"
l complex algebra

Ft= ("B(V)v‘(0,1}7.(2,3,4)9[)56)
FIGURE 4.2: ROAD-MAP OF THE PROOF OF 4.5.6

PROOF. It is easy to see that the relevant operators are normal and additive. We
continue with the representation part of the theorem. Let A= (4,-, V,f“)‘-E ; €K, and
let 2y = (W, R'),.;. Again, we create a frame F = (V, R ier» and a zigzagmorphism
11V — W. The proof consist of two parts. In the first, we split 24 into frames
(W, R'), one for each operator. Then we apply 4.5.2 and 4.5.5, obtaining zigzagmorphic
pre-images for each of these frames. In the second part, we glue these pre-images
together, and obtain the desired frame F.

We describe the proof for the case of three operators f,g and h with p(f) = 2,
p(g) = 3, and p(h) = 0. A “road-map” of this proof is given in figure 4.2. It will be
clear from the proof how to extend it to any set of operators.

Applying 4.5.2 and 4.5.5 to the three frames (W, Rf), (W, R#) and (W, R") one gets
three frames F; = (V;,RY), 7, = (V2,RE) and F3 = (V5,R}), in which V; and Vi are
binary relations on sets U; and Us, respectively, and V; is a ternary relation on some
set Up. The relations R; are defined as stated before. The frames (W, Rf), (W, R8),
and (W, R") are zigzagmorphic images of Fi, F3, and F3 by the functions I, l,, and I3,
respectively.

We now describe the “gluing” part. Define 7 = (V, R, R8, R") as follows:

1% Y (se (W UTUU) : (s0,5) € Vi & {52, 53,84) € Va &
(s5,56) € V3 & li((s0,51)) = la{s2, 83, 84)) = I5((s5,56))}

Ri(z,5,2) <5 {2} = en({y}.{z})

R8(z,y,2,0) <5 {2} = euan({y}, {z}, {v})

R"(2) &y g =z

By writing out definitions, we see that R(x,y, z) iff R ({20, 1), (y0,%1), (0, z1)), and
similarly for the two other relations. Now, define a function p : V — W as p(s) =

11 ({s0,81))-

CLAIM. pis a zigzagmorphism from F onto 2.
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PROOF OF CLAIM. p is surjective. Let u € W, then (because [, 15,5 are surjective)
there exists z € V4, y € V, and z € V3, such that [;(z) = l,(y) = l3(2) = u. Thus,
(z0, T1, Y0, Y1, Y3, 20, z1) is in V', and its p-image equals u.

p 15 @ homomorphism. Suppose that Rf(z,y, z) holds:

Rf(z,y,2) <= (by definition of V and R')
Rﬁ((mg,xl), (Y0, 91), {20, 21)) = (I is a homomorphism)

R (L ({20, 20)), i (w0, 31)), ({20, 21))) €5

R'(p(z),p(y),p(2))

Because p(s) = 1 ({so, 51)) = l2({s2, 83, 54)) = l3({s5, 56)), the proofs for R® and R" are
similar.

p is zigzag. Suppose RE(p(s),y1,Ys,ys) holds. Then, since I is zigzag and p(s) =
12(<327 53, S4>)7 we find Yil, Yol ysl € "/27 such that Rg((82, 33, ‘94)’ il yal, y3,) & lz(yj,) =
y;. Choose r,t,v € V which agree on the second, third and fourth coordinate with
1!, yal, y3!, respectively. Since all labelling functions are surjective we can find such
r,t,v. By definition of R® and p, we have R8s, 7, t,v and p(r) = y1, p(t) = y2 & p(v) =
ya. The proofs for R' and R" are similar. <

We have proven the theorem for this special case. Note that « =7 = 2-|{h}| +2-
I{f}] +3-|{g}]- Looking at the road-map of this proof, we see immediately that it can
be extended to any set of operators. QED

4.6 CONCLUDING REMARKS

Combination of the mosaic-idea and the step~by-step construction led to simple ax-
iomatizations for relativized relation algebras. The given proof also gave us easy char-
acterizations for reducts of SRIRRA. Relativization moreover, still gives us positive
results if we add the powerful difference operator. The last section showed that the
step-by-step proof is quite widely applicable, and so are algebras of relations. We
conclude with some questions.

1. Are the reducts labelled with QV’ in table 4.1, finitely axiomatizable? Are they
varieties?
2. There exists a nice duality theory between BAO’s and relational Kripke frames.
Is there something similar between BAO’s and the concrete frames we obtained
in section 4.57
3. The axiomatization for SRIRRA was obtained by showing that we could FO ax-
iomatize the class of all zigzagmorphic images of all pair-frames, and then finding
canonical equations which characterized these FO axioms. It seems possible to
obtain this result in a purely FO proof-theoretical manner. This would go as fol-
lows. It follows from the preservation arguments in van Benthem [Ben83] that, if
a class K is defined by a FO theory I, then ZigK is defined by all FO consequences
of I which can be written in the following form:
construct from atoms and falsum, and use only A,V,V and 3, plus
restricted universal quantification.
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So the class of all zigzagmorphic images of an elementary frame class is itself
elementary. Let 3 be the above given FO definition of ZigK. The task is to find
a (finite) set of ZigK valid FO sentences ¥’ such that ' = %, and %' is definable
by canonical equations. Is this a feasible strategy? How general is it?
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AMALGAMATION & INTERPOLATION

In this chapter, we look at a third fundamental aspect of core logics: interpolation
properties. In [ANS94b], it is shown that Craig interpolation has a strong computa-
tional aspect (cf. also Rodenburg [Rod91b}, [Rod91a], [Rod92]). A theorem~-prover for
a logic with the interpolation property can be set up in a modular way, with channels
between different databases through which only limited information (the interpolants)
can float. In many situations, this modular set—up will reduce the search space, and
.make the theorem-prover more efficient. We will also study the related notion of Beth
definability. For the two main logics under investigation in this work, we have the
following results:

o For H C {R,S,T}, the arrow logic of H pair—frames (i.e., GML(K5y)) has
interpolation and Beth definability iff T ¢ H.

e The cylindric modal logics of the classes of assignment frames K and K% (o
any ordinal) have interpolation and Beth definability.

The crucial step in an interpolation argument is the construction of a model out of
two other models (cf. e.g., Hodges [Hod93], Thm 6.6.3, or van Benthem [Ben94a), ap-
pendix 12). This construction ~known as amalgamation— is of interest on its own, be-
cause it has further applications. (E.g., the step—by-step constructions in the previous
chapter can be seen as a repeated process of amalgamating algebras; see also [Hod93]
Sec.6.4ff.) In this chapter, we concentrate on algebraic amalgamation, and then de-
rive interpolation properties on the logic side. There is a long tradition of connecting
interpolation properties of logics with amalgamation properties of the corresponding
classes of algebras (cf. e.g., Pigozzi [Pig72], Czelakowski [Cze81], Németi [Ném83], Sain
[Sai90], Maksimova [Mak91la], Andréka et.al. [ANSK94], [ANS94c], [ANO4]).

ORGANIZATION. In the first section, we state the definitions of interpolation and
amalgamation, and summarize their connections. A summary of these connections
is given in table 5.1. In section 5.2, we introduce a new operation on frames, called
zigzag products, and use it to give a structural description of a large class of BAO’s
which allow a very strong form of amalgamation (lemma 5.2.6). In the next section, we
study preservation of FO sentences under taking zigzag products. We give a syntactic
description of a large class of BAQ’s with amalgamation, and of a large class of general
modal logics with interpolation and Beth definability (theorems 5.3.5 and 5.3.6). In
section 5.4, we apply these general results to the classes of BAO’s and logics that we
have studied before. In appendix 5.6, we give a reformulation of amalgamation in terms
of frames, and show how this formulation can be used to find quick proofs of failure of
amalgamation.

97
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Convention
Throughout this chapter, we always assume that we have the Boolean 0 and 1.

5.1 AMALGAMATION, INTERPOLATION AND DEFINABIL-
ITY
We state the definitions of the three notions in the title, and present the connections

between them which are known from the literature. A summary can be found in
table 5.1.

5.1.1 AMALGAMATION

We start with several kinds of amalgamation properties. Note that super-amelgamation
(SUPAP)! requires a partial ordering on the algebras.

DEFINITION 5.1.1 (AMALGAMATION). Let K be a class of algebras.

1. K has the Embedding Property (EP) if, for any 2,%,¢ € K, and embeddings
f, h such that 8 Lo ¢, there exists D € K, and embeddings m,n such that

8.5 0 .
D
% . (5.1)
N %
A

2. K has the Amalgamation Property (AP)if 1 can be strengthened? by requiring
that mo f =noh.

3. K has the Strong Amalgamation Property (SAP) if 2 can be strengthened by
requiring® that m*(B) N n*(C) = (mo f)*(A).

4. K has the Super Amalgamation Property (SUPAP) if 2 can be strengthened by
requiring that for all x € B,y € C,

m(x) Snly) = (3z€4):x< flz)&h(z) <y
n(y) Sm(x) = (3z€A):y < h(z)& f(z) <x

1SAP seems to be the common abbreviation in the literature for Strong Amalgamation. Unfortu-
nately, Maksimova uses SAP to abbreviate Super Amalgamation in [Mak91a).

?We use this to abbreviate that, if we strengthen 1 by adding the requirement mo f = no#h to the
conclusion, then the stronger version of 1 will still hold in K.

3An equivalent formulation of this strengthening is: m*(B \ AN 2 (C\R*(4)) = 0.
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REMARKS 5.1.2. Kiss et al. [KMPT83] contains a vast amount of information about
EP, AP, SAP and other related concepts, together with a very extended bibliography
of the field. The definition of SUPAP is due to L. Maksimova (cf. [Mak91a]).

The amalgamation property (AP) speaks about amalgamating algebras in such a
way that the amalgam agrees on the common subalgebra. If the amalgamation is
strong, the common subalgebra is the only overlap between the two algebras in the
amalgam. Every super amalgamation is also strong: as is easy to see by rewriting the
extra condition for SAP to the equivalent statement (5.2).

(Vx € B,Yy € C):m(x) =nly) = (3z€ A) :x = f(z) &y = h(z) (5.2)

We call the element z, as it occurs in condition (5.2) above and in the condition for
SUPAP, an interpolant. Figure 5.1 contains a simple example, in Boolean algebras, of
a strong amalgamation which is not super. To have a super amalgamation in this case,
not only b and ¢ must be atoms, but —b and —c as well.

FIGURE 5.1: STRONG-, BUT NOT SUPER-AMALGAMATION

For classes of (ordered) algebras, the differences between AP, SAP and SUPAP are
illustrated by the following examples. The variety of distributive lattices has AP but
not SAP. Maksimova has shown the existence of a variety V of BAO-type (¢, 1) (V is
a variety of closure algebras) with SAP that lacks SUPAP ([Mak91b], Thm 1).
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SURJECTIVENESS OF EPIMORPHISMS. A notion which is often studied together with
amalgamation is surjectiveness of epimorphisms (ES) (cf. [KMPT83]). This notion is
closely related to Beth’s definability property (see below). We recall the definition from
[KMPT83]. Let K be a class of algebras, 2,8 € Kand f: A — B a homomorphism.
The function f is called an epimorphism of K (epi for short) iff for all ¢ € K and
all h,g € Hom(%,¢) we have (hf = gf = h = g). The class K has ES iff every
epimorphism f as above is onto B.

CONNECTIONS. The above defined notions interact in the following way.

PROPOSITION 5.1.3. Let K be a class of algebras.
(i) K has SUPAP = K has SAP = K has AP = K has EP.
(i) K kas SAP = K has ES
(iii) If K ¢s a quasi-variety, then K has SAP if and only if K has AP and ES

PROOF. (i). By the definitions and (5.2) above. (ii)-(iii). Cf. [KMPT83] Prop 1.10
and 6.3. QED

5.1.2 INTERPOLATION AND DEFINABILITY

CRAIG INTERPOLATION. W. Craig proved the interpolation theorem for first order
logic in 1957 ([Cra57]). Since then, many papers appeared on (failure of) interpolation
in other logics. Craig’s interpolation theorem can be formulated for general modal logics
in two different ways*. Let GML(K) = (FmI(P),Mod(K), ) be a general modal logic
in the sense of section 2.1.3. We say that GM L(K) has the Strong Craig Interpolation
property (SCI) if, for any two formulas ¢, € Fml(P), if k¢ — 1, then there is a
formula § € Fml(P) such that =¢(¢ — 0)A(8 — 1), and 6 is constructed from variables
in both ¢ and ¢. The formula 6 is called an interpolant. We say that GM L(K) has the
Weak Craig Interpolation property (WCI) if, for any two formulas ¢ and v, if ¢ }::f(lo Y,
then there is a § such that ¢ ={° 8 and 8 |=§° ¢, and 6 is constructed from variables
in both ¢ and 4.

ALGEBRAIC INTERPOLATION. It is straightforward to give “translations” of mterpo-
lation properties at the algebraic level. These translations can be found for instance
in [Pig72] or [Mak9la]. We only recall the translation of SCI Let K be a class of
algebras with a partial ordening <. We say that K has the interpolation property of
inequalities (IP1) if, for any terms 7,7 such that K = 7 < 7y, there is a term 7, with
var(ry) C var(r) Nvar(n) and K7 < 1 < 7.

PROPOSITION 5.1.4. Let K be a class of frames. The class of algebras SPK* has IPI
of and only if the logic GML(K) has SCI.

ProoF. This follows using the translation between modal-logical formulas and alge-
braic terms. QED

4They only differ with the global consequence, because with the local consequence we have ¢ f=/¢°
’l,b PR hlac @__> ‘l;’)
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BETH’S DEFINABILITY PROPERTY. A meta-logical property which is often studied
in conjunction with interpolation is Beth definability (BD). A logic has this property
if, for every implicit definition there is an ezplicit definition. These notions are defined
as follows (cf. [CK90] p.90). Let GML(K) be an arbitrary, but fixed general modal
logic, with a set of formulas Fml(P). Let p and p’ be two new propositional variables
not in P. Let £(p) be a set of formulas in the language Fmi(P U {p}), and let Z(p') be
the corresponding set in Fml(P U {p'}), formed by replacing p everywhere by p’. We
say that Z(p) defines p implicitly iff

S USE) B P e
%(p) is said to define p explicitly iff there exists a formula 6 € Fml(P) such that

Ep) Ek" 6o p

DEFINABILITY, DEDUCTION TERMS, AND INTERPOLATION

There is a strong connection between the notions of strong and weak interpolation and
definability. In Andréka-Németi [AN94] it is shown that in general neither strong in-
terpolation implies the weak one, nor strong interpolation implies definability. In many
cases however, the “expected” implications hold. The counterexamples constructed in
[AN94] show that both assumptions on the logic in the next theorem are really needed.
Below we give a simple counterexample (5.1.8) to the implication SCI = BD.

DEFINITION 5.1.5. A general modal logic GML(K) has a local deduction term if, for
any two formulas ¢, 1, there exists a formula f(¢), built up from propositional variables
in ¢, such that

(i) ¢ &’ ¥ <= Bx f(9) -9,

(ii) For all 8, {6, f(¢) — 0} EK° 6.

THEOREM 5.1.6. Let GML(K) be a general modal logic with a local deduction term.
(i) If GML(K) has strong interpolation, it also has weak interpolation.
(i) If GML(K) has strong interpolation and is compact, it has Beth definability.

PROOF. (i). Obvious. (ii). Because the proof of Beth definability from interpolation
for FO logic in [CK90] (Thm 2.2.20) goes through. QED

The assumptions of compactness and a local deduction term are very often fulfilled in
general modal logics. It follows from the next theorem that they are satisfied for every
general modal logic which is strongly sound and complete with respect to an extension
of the standard K derivation system®. This result is stated in Czelakowski [Cze81]
p.339 for modal logics of type (©, 1) and attributed to Perzanowski [Per73].

THEOREM 5.1.7. Let K be a class of frames. If SPKY is a variety, then GML(K) is
compact and has a local deduction term.

5That is, a derivation system consisting of all propositional tautologies, distribution axioms for all
modalities, as rules modus ponens, universal generalization and substitution, plus additional axioms.
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PROOF. Suppose the antecedent. Thm 3.2.20 in [ANSK94] implies that GM L(K) is
compact iff SPK* is a quasi-variety. Hence GML(K) is compact. We continue with
showing that GML(K) has a local deduction term. We prove the claim for a finite
similarity type, since it is more instructive. The same proof goes through for infinite
types as well. Let K be of finite BAO type S. We define the following abbreviations:

($)yr & V{f(r 1,00, f(L 1, ) L f(, L 1,7) s f e S)
Slr ¥ (S)—r
70 o

et A [5)en

Because we assumed that the similarity type is finite, (S)7 is well defined. In the
terminology of van Benthem [Ben83], w I 7" iff 7 holds everywhere in the n—~th hull
around w. We use the same definitions for the logical language. Using a similar
argument as in Prop 2.33 in [Ben83] we find that ¢ E§° ¥ <= {¢":n < w} L .
Because SPK is variety, also |={¢° is compact. But then there exists a n such that
¢ E Y = Exk ¢" — 9. Clearly, ¢" also satisfies the second condition of a
deduction term. QED

EXAMPLE 5.1.8. We give an example of a logic which has strong interpolation, but
doesn’t have Beth definability. Stronger examples (e.g., in which the logic is also
compact and has WCI) based on the same logic can be found in [AN94]. This logic is
known from temporal logic and the theory of program specifications, and described for
instance in Andréka et al. [AGM*94]. We define the logic Tp as a tuple (Fml, Mod(K), )

in which

o Fml is the smallest set containing countably many variables, and as connectives
it has the Booleans and two unary modalities Fi and N.

o K= {{w,0, succ)}

o [ is defined for the modalities as:

(Vnew): nirFig & org

(Vnew): nikNg <&& suce(n) IF ¢

In [AGM*94] (Thm 2.2.4), a weakly complete axiomatization is given for this logic.
On top of the basic K derivation system, the following four axioms are needed.

(1) Fimp e =Fip (2) N=-p« =Np
(3) Fip e FiFip (4) Fip « NFip

By their Sahlqvist form, it is easy to see that these axioms characterize the class of
all frames F = (W, f,n}, with f and n total functions, fo = ffz and fz = fnz. Call
this class L. Then GML(L) has strong interpolation by 5.3.6 way below. The logics
GML(L) and Tp have the same validities, hence Tp has SCI. In [AN94] (Thm 2), it is
shown that Tp lacks BD. An implicit definition ~of the point 0 is given which cannot
be made explicit. The definition is {Fip, N-p}.
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5.1.3 CONNECTIONS: AMALGAMATION, INTERPOLATION AND DE-
FINABILITY

We present the connections between amalgamation properties of a class of BAQ’s SPK*
on the one hand, and interpolation and definability properties of a general modal logic
GML(K) on the other. All results are known, or derived easily from the literature.

THEOREM 5.1.9. Let K be a class of frames.

(i) If SPK™ has SUPAP, then GML(K) has SCIL.

(ii) (MAKSIMOVA, MADARASZ)- If SPK* is a variety, then SUPAP of SPK™* is equiv-
alent with SCI of GML(K). ,

(iii) If SPK' has AP, then GML(K) has WCIL.

(iva) If SPK™ is a variety, then AP of SPKY is equivalent with WCI of GML(K).
(ivb) (CzELAKOWSKI) If GML(K) is compact and has a local deduction term, then
AP of SPK is equivalent with WCI of GML(K).

(v) (NémETI) SPK* has ES if and only if GML(K) has BD.

The results in this theorem, together with those of the previous two subsections, are
summarized in table 5.1. Left of the dotted line in the middle, are the properties
of the class of algebras SPK*. At the right are the properties of the general modal
logic GML(K). The numbers attached to the implications provide the reference to
the theorems used. The implications written with a black arrow hold always. The
dashed arrows denote implications which hold only when the conditions mentioned
in the theorem are met. If SPK" is a variety, then all implications hold. The next
corollary provides the logical counterpart of the strong amalgamation property.

COROLLARY 5.1.10. Let K be a class of frames and SPK* a variety. Then SPK*
has SAP if and only if GML(K) has BD and WCI.

Proor. By 5.1.3.(iii) and 5.1.9.(iva) and (v). QED

ProOF OF THEOREM 5.1.9. (i). Suppose L 4f SPK+ has SUPAP. The conclusion
follows from the following claim and 5.1.4.

CrLaM. L has IPL

ProoF oF CLAIM. Suppose L = 7 < 7. Create the following three L-free algebras:
& (var(r)), §(var(n)) and F(var(r) Nvar(r)). All three belong to L. Fi(var(r) N
var(m)) can be embedded into the other two by the identity mappings f and h. So we
have

F(var(r)) L Fu{var(r) Nvar(m)) 2 F(var(m))

Since L has SUPAP, there exists an algebra 2 € L which is a super-amalgam, say
with functions m,n such that § (var(r)) == % < F(var(r;)). But then (because
LE 7<), %k m(r) < n(rn). Hence, by the super condition, there exists an element
7, € Dom(§ (var(r) Nvar(r;))) such that § (var(r)) E 7 < f(n) and F(var(n))
h(7;) < 1. Because f and h are identity mappings, the bottom algebra is generated
by the common variables, and the algebras are L-free, we have LEr<n<n,and
var(my) C var(r) Nwvar(r). <
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TABLE 5.1: SUMMARY OF CONNECTIONS BETWEEN AMALGAMATION, INTERPOLA-
TION AND DEFINABILITY

(ii). For unary similarity types, this equivalence may be proved in the same way as
done for varieties with one unary operator in [Mak92] ([Mak94]). The general result
can be found in [Mad94].

(iii). Cf. Pigozzi [Pig72] remarks 1.2.15. For a history of this result, we refer to these
remarks.

(iv). Part (b) follows from [Cze81] Thm 3. The requirements on the deduction term
in that theorem are a bit different. But assuming compactness, they follow from the

formulation given here. Part (a) is a consequence of part (b) by 5.1.7.
(v). Cf. [Ném83]. QED

5.2 ZIGZAG PRODUCTS

We introduce a new operation on frames, called zigzag products. This notion has close
connections with both amalgamation and bisimulation. We use it to give a structural
description of a large class of varieties which have super-amalgamation (lemma 5.2.6).

In what follows we use the following operations on frames: taking subframes,
products and subdirect products. All these notions are used in the FO model-theoretic
sense. We recall the definitions (cf. e.g., [CK90] or [Hod93]). The notion of a subframe
was defined in section 2.3. Let (F;)ic; be a system of frames of the same type. The
frame G = [[;¢; Fi is the direct product of the frames (F;)icr, if G = {{z; :i € I) : z; €
Fi} and the relations are defined coordinate-wise. A frame G is a subdirect product of

a system of frames (F)ics, if it is a subframe of the direct product I];c; F;, and the
projections are surjective.

DEeFINITION 5.2.1 (Z1GZAG PRODUCTS). Let {F;)icr be a system of frames of the
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same type. Any substructure of the direct product [];c; F; from which the projections
are zigzagmorphisms, is called a zigzag product of (F;)ics. A zigzag product of a finite
system of frames is called a finite zigzag product.

So, a zigzag product is a subdirect product with the additional condition that the
projections have the zigzag property.

5.2.1 ZIGZAG PRODUCTS, BISIMULATION AND AMALGAMATION
We show that the three concepts mentioned in the title are very closely connected.

DEFINITION 5.2.2 (BISIMULATION). Let F and G be frames of BAO type S. Let
BCFxd.
(i) We call B a bisimulation between F and G if for any relation R of type S:

(1) if 2Bz’ & R%xy; ... yn, then (3y},...,y, € G) : y;By. & R9z'y, ...y,

(2) similarly in the other direction

(ii) A bisimulation B between F and § is called a zigzag connection between F and G
if the domain of B equals F and its range equals G.

A thorough treatment of bisimulations can be found in de Rijke [Rij93]. Note that
if B is a zigzag connection and B is a function, then B is a zigzagmorphism from F
onto G. The next proposition states the connection between bisimulations and zigzag
products. It shows that binary zigzag products form an elegant tool to describe all
zigzag connections between two frames.

PROPOSITION 5.2.3. Let F and G be frames of the same type and B C F x G. Then
B is a zigzag connection if and only if (F X G)[B is a zigzag product.

PROOF. Because the relations in the product are defined coordinate-wise, and (z, z')
is an element of the domain of the zigzag product iff zBz'. QED

If (F x G)|B is a zigzag product, we use 7 and 7, to denote the projections. The next
two propositions indicate the connections between zigzag products and amalgamation.

PROPOSITION 5.2.4. If G 5 F & H, then INSEP ¥ {(z,) € G x H : f(z) = h(y)}
i8 a zigzag connection, the frame (G x H)|INSEP is a zigzag product of G and 'H, and

diagram (5.8) commutes: (G x H)INSEP
A
G H (5.3)
F

ProoF. Straightforward. QED
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g EA Fa H, we call elements € G,y € H with f(z) = h(y), inseparable®, because
the common frame F cannot separate the two. By the alove proposition, inseparable
z and y bisimulate.

PROPOSITION 5.2.5. Let F,G,H,J be frames of the same type.

(i) If the left diagram of (5.4) commutes, then the right diagram of (5.4) commutes (it
s an amalgamation).

(if) If the left diagram of (5.4) commutes, J = {(z,y) € G x H : f(z) = h(y)}, and m
and n are the two projections, then the amalgamation at the right is super.

N N

HY (5.4)

RN

ProOOF. (i). Straightforward.

(ii). Assume the antecedent. We show the super condition only. That is, if m™* (x) <
n*(y), then there exist an 1nterpolant z. (The second condition is analogous.) Suppose
that m*(x) < nt(y). Let z¥ {f(z) € F: z € x}. The definition of f* implies that
x < f*(z). In order to show that h*(z) <y, suppose that y € A*(z). Then for some
z € X, h{y) = f(z). So z and y are inseparable. Since J contains all inseparable pairs,
(z,y) € m*(x). But then, by assumption, {z,y) € n*(y), whence y € y. QED

ZIGZAG PRODUCTS AND UNRAVELING. Zigzag products are also connected to unrav-
elling. For instance, the well-known unravelling of the frame ({z}{(z,z)}) to the
frame (w,succ) can be described as an infinite zigzag product of the frames pre-
sented in the figure below. Take that substructure of the product which contains
(0,0,...),(0,1,1...),{(0,1,2,2...).... It is easy to see that this is a zigzag product
which is isomorphic to the frame (w, succ).

(1]

O

} ............
O
(5.5)

Note that the frames are precisely what one gets via a step-by-step unraveling proce-

dure of ({z}{(z,z)}).

5The term inseparable comes from Chang-Keisler [CK90]. It is used for a similar purpose in the
proof of Craig's Interpolation theorem for FO logic.
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5.2.2 THE ZIGZAG PRODUCT LEMMA

The next lemma is an improvement of lemma 3 in Németi [Ném85]. Németi used this
lemma to prove SAP for the class Crs, (o any ordinal). At the end of this section, we
compare the two results.

LEMMA 5.2.6 (Z1GzaG PrRODUCT LEMMA). Let K C BAO and L a class of struc-
tures, both of BAO type S. Assume that (i)-(iii) below hold.

(i) L 4s closed under taking finite zigzag products’

(i) Fel=>FreK

()yreK=>2,€lL
Then K has SUPAP.

Conditions (ii) and (iii) always hold when K is a canonical variety and L = Cm™'K.
The next proposition states some implications of conditions (ii) and (iii), and shows
its range of applicability.

PRrROPOSITION 5.2.7. Let K C BAO and L a class of structures, both of BAO type S.
Assume conditions (i) and (iii) of the previous lemma. Then

(i) K is closed under taking canonical embedding algebras, whence SK = SL*.

(ii) If K is @ variety, then it is a canonical, complex variety K = SL*.

(iii) If L reflects ultrafilter extensions, then L = Cm™ K.

Proor. Straightforward. QED

PROOF OF LEMMA 5.2.6. Assume conditions (i)—(iii) of the lemma. Let 2,B,¢ € K

such that 8 <—f—< A 2, ¢. We have to show that there exists a © € K which is a

super—amalgam for B Lol ¢ Instead of amalgamating directly, we first embed
these algebras in their canonical embedding algebras. Condition (iii) implies that

%,,%,,¢, € L. By 2.2.5: 8, & 9, < ¢,. By 524, the set INSEP ¥ {(z,y) :
fo(z) = hy(y)} is a zigzag connection. Let F be the zigzag product (%4 X B, )[INSEP.
By 5.2.4, the projections are zigzagmorphisms which commute with f, and k. To
continue, we need claim 1 below. Here, we use f* to abbreviate (fi)*, and e4 to

denote the canonical embedding function from A to P(uf2t) (which is Dom((24)")).

CrLamM 1. In figure (5.2) below, the following are equivalent:

from = hyom (5.6)
mgof* = nfoh?* (5.7)
i oegof = mioecoh (5.8)

Proor oF CLaIM. (5.6 =5.7): by 5.2.5(i).
(5.7 = 5.8): by the fact that ego f = ffoegandecoh = h#* o e4.
(5.8 = 5.6): by writing out the definitions. <

TIn general, a system of frames has many zigzag products; closure under zigzag products means
that each of them is a member of the class.
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F+
i N
(B4)* (e)*

h
FIGURE 5.2: AMALGAMATING B L U s &

So, by claim 1, the algebras % and ¢ can be embedded into F* by 7} oep and 7t oeq,
respectively, and the diagram commutes (ie., (1 o eg) o f = (7] o ec) o h). So

8 lalcis amalgamated in F*, which is a member of K by conditions (i) and (ii).
To conclude, we have to show that the amalgamation is super. That is, condition
(5.9) below holds (the second condition is analogous).

(Vx € B)(Vy € C) : nfep(x) < miec(y) = (Fz € A) :x < f) &h(z) <y (5.9)

Assume the antecedent of (5.9) for arbitrary x € B and y € C. First suppose there
exists some z € A with x = f(z). (The argument for y = h(z) is the same.) Then,
myep(x) = nfepf(z) = (because the diagram commutes) mfech(z) < (assumption)
niecy. But then, since the functions are homomorphisms, h(z) < y. Now assume
x € B\ f*(A) andy € C'\ h*(A). Suppose to the contrary that there is no interpolant.
We have to show that 7fep(x) £ 7iec(y). Since the amalgam is a complex algebra of
a frame which contains all inseparable pairs from B, and ¢, it suffices to show the
existence of a pair of inseparable ultrafilters (u,v) from (4§ B x 4§ €) such that x € v and
y ¢ v. Create theset {z € A:x < f(z)} U{-z € A: h(z) <y}. By the assumptions
that x ¢ f*(A),y € h*(A) and there is no interpolant, this set has the finite intersection
property. So it can be extended to an ultrafilter w € 4§ 2. Since x and y do not belong
to the images of %, f*(w) can be extended to an ultrafilter v € fB containing x,
and h*(w) to an ultrafilter v € Yf ¢ containing —y. Because fi(u) = w = hy(v), the
ultrafilters v and v are inseparable. We are done. QED

REMARKS 5.2.8. Looking at the above proofs, the antecedent of the Zigzag Product
Lemma might have done with the weaker condition of being closed under “INSEP
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products”, instead of finite zigzag products. Here, by the INSEP product of G R
F & H we mean the frame (G x H)[INSEP, with INSEP as above. Call K closed

under INSEP products if, for every F,G,H € K such that § X F& ‘H, their INSEP
product also belongs to K. We have chosen to work with finite zigzag products for
the following two reasons. First, we wanted a natural notion which might have other
applications. Moreover, it allows us to use the FO model theory, developed about
subdirect products. Second, closure under INSEP products is still stronger than SUPAP
of the corresponding variety. In the appendix to this chapter, we show how to adjust
INSEP products in order to get an equivalent formulation of (S)AP in terms of frames.

Using the implication SUPAP = SCI, the Zigzag Product Lemma leads to a de-
scription of a large class of general modal logics with SCI. Van Benthem [Ben94a] shows
how the binary zigzag product construction can be used for a direct, model-theoretic,
proof of SCL

Several persons observed the similarity between the INSEP product construction
and the pull-back construction in category theory. We show that, in general, there is
no connection between the two notions. Let K be the class of frames {F =(W,R) :

RCW x W}, and Zig (. 3AF,GeK)(F EA G)}. Let C be the category (K, Zig).
We claim that

(i) K is closed under INSEP products, but

(ii) C is not closed under pull-backs.
(i) is obvious. For (ii), let G = ({a,b},%{a,b}) and F = ({a},?*{a}). Clearly F is a
zigzagmorphic image of G. The INSEP product of G » F « G is the frame G x G.
There are several zigzag products of G with itself which also produce a commuting
diagram (e.g., G itself and the disjoint union of G and a copy of G). Now, suppose
H is a pull-back for G - F « G. Then, because a pull-back is minimal, H must be
isomorphic to G. But G is not a zigzagmorphic image of the disjoint union of G and a
copy of G. Hence H is not a pull-back.

COMPARISON WITH AN EARLIER RESULT

Németi ([Ném85]) proved that the class Crsq (for any ordinal «) has SAP, using
lemma 5.2.9 below. The zigzag product lemma is an improvement of this result. We
briefly compare the two lemmas. Recall that Bo, denotes the restriction of the class
BAO to all algebras of the cylindric similarity type of dimension o. If % € Bo, and F 1s
an a—frame, then % C F* states that % is compact and F is a saturated representation
for 2. For their precise definitions, we refer to Definition 2 in [Ném85].

LEMMA 5.2.9 (NEMETI). Forany o, let K C Boy and letL denote a class of a-frames.
Assume that (1")-(iii") hold. ‘
(") L is closed under taking substructures of finite products of members of L
({i)yFel=>FreK
() KCH{aeK: (@F el)(aC” FH}
Then K has SAP.
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Besides the fact that Németi’s lemma is about strong amalgamation and the Zigzag
Product Lemma about the stronger super amalgamation, there are three further dif-
ferences. The first is that 5.2.6 holds for all BAO’s, while 5.2.9 is only stated for
the BAO’s of the cylindric type. This is not a serious difference, as is pointed out in
Sain [Sai90]. The second difference lies in condition (iii). In the proof of lemma 1.2
in [Sai90], it is shown how condition (iii’) follows from the fact that K is a canonical
variety. If K is a variety, then conditions (ii) and (iii) imply that it is canonical. So,
if K is a variety, condition (iii’) is weaker than (iii), hence in this respect 5.2.9 is more
general. However, for many applications (including Crs,), the easier condition (iii)
already works.

The important difference between the two lemmas lies in condition (i). Ildiké Sain
pointed out that (i’) is too strong. There are several examples of canonical varieties
satisfying (i), (ii) and (iii) but not (i’) (e.g., the classes S4.1, SRLzsRRA and D,, as we
will see later). So they enjoy SAP (and even SUPAP) by the Zigzag Product Lemma,
but not by 5.2.9°. In [Sai90] (Problem 1.4), Sain asks for a stronger version of 5.2.9
which is still natural but has wider applicability. Lemma 5.2.6, and its consequence
5.3.5 below, can be seen as an answer to this problem.

5.3 PRESERVATION

In general, validity is not preserved under taking (finite) zigzag products. The following
(canonical) equations are examples of this phenomenon (cf. 5.4.12 and 5.6.6). We state
them, together with their frame correspondents.

DDx<xVDx Vayz({(Rzy & Ryz) = (z = 2 V Rzz))
Gax<egx  Vayz((Txy & T'yz) = Jw(T aw & TOwz))
(xy)iz < x(y;z) Vayzuv((Czyz & Cyuv) = Jw(Couw & Cwvz))

In this section, we give a partial answer to the question which FO sentences are pre-
served under (finite) zigzag products. This leads to versions of the zigzag product
lemma which are particularly easy to apply (theorems 5.3.5 and 5.3.6). We call a
FO sentence a (finite) zigzag product sentence if it is preserved under (finite) zigzag
products.

A FO sentence ¢ is a special Horn sentence iff ¢ is a conjunction of sentences
of the form (VZ)(¢y — 6) with § atomic, and ) a positive formula. Every universal
Horn sentence is a special Horn sentence. The special Horn sentences are precisely
the sentences preserved under subdirect products (cf. [CK90], exercise 6.2.10). Since
zigzag products are subdirect products, every special Horn sentence is a zigzag product
sentence. The set of finite zigzag product sentences turns out to be larger. To illustrate
what sentences can be preserved (and how) we look at the modal variety $4.1. The

8This does not follow from 5.2.9, but in the case of SRIpsRRA and D, SUPAP follows from the
proof of that lemma. We have to use the following easy fact. If a variety V has SUPAP, then any
strengthening of V with equations which do not contain variables has SUPAP too. The class D, can
be obtained by adding the equations {Cs) to Crs,. SR1zsRRA is obtained from the variety SRIRRA
by adding the equations id;1 = 1 and 1~ = 1.
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example also shows that the distinction between finite and arbitrary zigzag products
is important.

5.3.1 ILLUSTRATION: THE MODAL VARIETY S54.1

Define the variety S4.1 as the class of all BAO’s of type (<, 1) which satisfy the equal-
ities T, 4, and M below. Here, Ox 4 _&—x as usual.

T x<Ox
4 OOx < Ox
M OOx < Olx

Define K4 1 as the class of all frames F = (W, R) in which W is aset,and RC W xW

is a transitive and reflexive relation which satisfies
Vzdy(Rzy & Vz(Ryz = y = z)) (5.10)

Condition (5.10) expresses that each point = has an R-last point y after it. Typical
examples of Kg,, frames are transitive reflexive trees of finite depth. A typical non-
example is the frame (N, <) of the natural numbers.

THEOREM 5.3.1 (LEMMON). S4.1 = S(Kgs1)* is a canonical variety, and Cm™54.1 =
Ksaa.

Proor. Cf. Bull-Segerberg [BS84] section 14. QED

The next proposition implies ~by the Zigzag Product Lemma-~ that 54.1 has the super
amalgamation property.

PROPOSITION 5.3.2. (i) Ksq1 s closed under finite zigzag products.
(ii) Ksg1 18 not closed under infinite zigzag products.

ProOOF. (i). We give the proof for a binary zigzag product. This is sufficient, since
every finite zigzag product is isomorphic to a repetition of binary zigzag products.
Let G= (W%, RC) and H=(WH¥ R¥) be in Kgy.1, and let F = (WF,RF) be a zigrag
product of G and H. We have to show that F € Kgy ;. Since reflexivity and transitivity
are expressed by universal Horn sentences, 7 will satisfy them. We now show that it "
satisfies (5.10) as well. For convenience, we introduce a (Skolem) function f which
provides each point with an R-last point. Let (z,y) € W¥. We have to show that it
is R-related to an endpoint. The argument is illustrated in figure 5.11 below. Since
RS fCx, there must be a pair {fCz,u) € F such that R¥ (z,y)(f%z,u). Also, since
Ry, fy, we find RF (fSx,u)(v, f¥u), for some v. Because fCGz is an endpoint, fCx
must equal v. Then, RF (z,y){f%, ffu) by transitivity. Because the projections are
homomorphisms, {f¢z, f#u) is an endpoint. '
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0 T Y { 6,9 11 - S ———. <f(x),f(u)©

'S O —_— f(u)Q (5.11)

(ii). We show the existence of a frame which is a zigzag product of w many frames in
Kss.1, but which itself does not belong to Kg,;. We will use von Neumann notation
for ordinals (e.g., » = {0,1,...,n — 1}). We claim that the frame (w, C) ¢ Ksq, is an
infinite zigzag product of the system of frames ({n, C))ocncw. All these finite frames
belong to Kgs1. Define a system of morphisms f, : w — n via Vi < n : fali) = 1
and Vi > n : fu(i) = n — 1. Clearly, all these functions are zigzagmorphisms from
{w, €) onto (n, C). To bring this into the shape of a zigzag product, define a function
g:w—“wbyg(n) =(0,1,2,...,n~1,n,n,...). Define a binary relation < on g*(w)
by z < y iff (Vi)(zi < y;). The frame (¢*(w), <) is isomorphic to the frame (w, C), and
it is an infinite zigzag product of the system of frames ((n, C))ocn<w- QED

5.3.2 A PARTIAL SOLUTION

We syntactically describe a part of the finite zigzag product sentences. In the next
definition and lemma, we temporarily use Mod(%) in its FO model-theoretic sense: for
a set ¥ of FO sentences of type S, Mod(Z) denotes the class of all structures of type
S which validate X.

DEFINITION 5.3.3. Let I be a FO theory in BAO type S. We call & clausifiable if
there exists a set of function symbols ¥, and a FO theory I in the language S U ¥ such
that:

(1) RdsMod(T") C Mod(X),

(ii) T consists of special Horn sentences (e.g., of universal Horn sentences),

(iii) For every F,G € Mod(X), and every zigzag connection B between F and G, there
exists expansions F*,G* € Mod(T') such that RdsF* = F and RdsG* = G, and
for every n-place function f € ¥: 21 Byy,...,2,By, = f(z1,...,2)Bf(¥1,- -, Un)-

Examples of obviously clausifiable theories are the sets of conditions defining the classes
Kigl for H C {R, S}, and K& and K% (see sections 2.4 and 2.5). Another example
is the class Kg41 from the previous subsection (the function to be added is a Skolem
function).

LEMMA 5.3.4. Let T be a FO theory in BAO type S. If T is clausifiable, then Mod(X)
s closed under finite zigzag products.

PROOF. Suppose T is clausifiable. Let T' be as in 5.3.3. Let G and H be in Mod(X),
and let J be a zigzag product (ip type S) of G and H. We have to show that J €
Mod(X). (Again we only need to look at binary zigzag products.) It follows from 5.2.3
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that Dom(7) is a zigzag connection in type S between G and H. Hence, by clause
(iii) of 5.3.3, we can expand G and H to G*,H* € Mod(I') satisfying the conditions
of that clause. Define the new functions on J coordinate-wise (i.e., f7(zy,...,2,) =
(f9 (moz1, .-+, Mo%a), 1 (m121, . .., m12)) ), and call this frame J*. Now J* is closed
under these functions, and J* is a zigzag product of G* and H* in the expanded
language. Since I' consists of special Horn sentences, Mod(T') is closed under zigzag
products. Hence J* is in Mod(T'). But then, by clause (i), J is in Mod(X). QED

Using this lemma, we can provide a user—friendly version of the zigzag product lemma.

THEOREM 5.3.5. Let V C BAO be a canonical variety, defined by a set of equations
which correspond to a FO theory . If & is clausifiable, then V has SUPAP.

Proor. By the Zigzag Product Lemma and 5.3.4. QED
For general modal logics, this theorem can be formulated as follows.

THEOREM 5.3.6. Let GML(K) be a canonical general modal logic. If K can be de-
fined by a clausifiable set of FO sentences, then GML(K) has both strong and weak

interpolation, as well as Beth definability.

PROOF. By the previous theorem and the results in table 5.1. QED

5.4 APPLICATIONS TO RELATION AND CYLINDRIC ALGE-
BRAS

In this section, we apply the general results obtained so far to the classes of relativized
relation and cylindric algebras and their logical counterparts: arrow logic and cylindric
modal logic/FO logic.

5.4.1 RELATION ALGEBRA AND ARROW LOGIC

THEOREM 5.4.1. (i) Let H C {R,S}. The variety of relativized relation algebras
SRI1;RRA enjoys super amalgamation and interpolation of inequalities.

(ii) All reducts of relativized relation algebras considered in table 4.2 have SUPAP and
IPIL.

Proor. SUPAP follows from the axiomatizations (4.2.1 and 4.3.3) by 5.3.5. Then
IPI follows, using 5.1.9.(ii). QED

COROLLARY 5.4.2. Let P be any of the properties ES, AP, SAP, SUPAP, or IPL
Let H C {R,S,T}. Then SRIFRRA has P of and only of T ¢ H.

ProOOF. By 2.4.6, the previous theorem and the implications in table 5.1. QED
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STRONGER FORMS OF INTERPOLATION

The requirement on the interpolant is precisely the same as in Craig’s theorem for FO
logic. Lyndon strengthened Craig’s theorem for FO logic by adding more requirements®
(cf. [CK90] Thm 2.2.24). Johan van Benthem suggested another strengthening of the
interpolation property (cf. [Ben94a]). We say that a class K has the strengthened “and”
(“or”) 1IPI if it has IPI with the additional requirement that the interpolant must
be constructed from Booleans using only non-Boolean operators which occur in the
antecedent and (or) the consequent. The strengthened forms of Craig interpolation
are defined similarly.

THEOREM 5.4.3. The variety SRIRRA has the strengthened “or” IPI, but it lacks the
strengthened “and” IPI.

PRrOOF. We first show that “and” IPI fails. SRIRRA k= id < (=xV x™). The an-
tecedent and the consequent do not share any variables nor operators, so the only
interpolants are 0 and 1. But neither qualifies. By 5.4.1.(ii), for every @ C {;,~,id},
the )-subreduct of SRIRRA has IPI. To show that SRIRRA has “or” IPI, we use that
we can find the interpolant in the appropriate subreduct. This follows because, for
every equation e in the Q-subreduct, SRIRdgRRA |= ¢ <= SRIRRA [ ¢ (cf., the
proof of 4.3.4). QED

REMARK 5.4.4. Constants play a special role in interpolation, witness the easy failure
of “and” IPI above, and also below in 5.4.9. A reasonable weakening of strengthened
“and” IPI is to allow the interpolant to be constructed from Booleans, all constants
in the similarity type, and non-constant non-Boolean operators which occur in the
antecedent and in the consequent. It is not unlikely that this weakened form of “and”
- IPI holds for SRIRRA. The technique presented in van Benthem [Ben94a] to prove
“and” IPI for the diagonal-free reduct of Crs, is applicable here as well. This technique
may also be used to prove stronger forms of IPI for the other classes described in
theorem 5.4.1.

ARROW LOGIC. For arrow logics, these results give rise to the following theorem.

THEOREM 5.4.5. (i) Let H C {R,S}. The arrow logic of the class of pair—frames
Krely has SCI, WCI, and BD.
(i) The arrow logic of the class of all pair—frames K¢ has strengthened “or” SCI.

PrROOF. By the last two theorems, using the implications in table 5.1. QED

5.4.2 CYLINDRIC ALGEBRA AND FIrRST ORDER LoOGIC

THEOREM 5.4.6. Let o be any ordinal. The varieties of cylindric relativized set alge-
bras Crs, and D, have SUPAP and IPI.

®“Every relation symbol (excluding identity) which occurs positively in the interpolant occurs
positively in both the antecedent and the consequent, and similar for negative occurence”.
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PrOOF. By the same argument as used in 5.4.1. Now use the axiomatizations pro-
vided in 2.5.7. QED

For Crs,, we can do a bit better. We need to define some notions. Let 0 < o < w and
Jet 7 be a term of the cylindric type cyla. By ind(r), we denote the smallest ordinal
v < « such that all indices occurring in d;;’s and ¢;’s in 7 are smaller than ~.

DEFINITION 5.4.7. Let V, C Bo, be a variety and 0 < o < w. We say that V,
has the variable-restricted IPI if for all 7,7 such that V, = 7 < 71, there exists an
interpolant 7, such that

1. var(ry) C var(r) Nvar(r)

2. ind(7y) < maz(ind(r), ind(11))

3. Va7 < <
We say that V, has the very variable—restricted IPI if condition 2 can be strengthened
to ind(r;) C ind(r) Nind(ry).
If we only consider the cylindrifications, “very variable-restricted IP1” is “strengthened
“and” IPI”. The (very) variable-restricted SCI is defined for cylindric modal logic in
a similar way.

THEOREM 5.4.8. For any o with 0 < a < w, Crs, has the variable-restricted IPL

PROOF. By the same argument as given above for SRIRRA. One needs the following
result, which is part of lemma 10.10 in [Ném92]: Let v < « be finite and let v =
maz(ind(r),ind(m)). Then, Crsa E7 <1 <> Cs, T <7, QED

The next theorem shows that, by dropping the diagonals, one can strengthen this result
to very variable-restricted IPI (a result by van Benthem). Crs, itself does not have
this property.

THEOREM 5.4.9. (i) (vAN BENTHEM) Let 0 < @ < w. The diagonal-free reduct of
Crs, has the very variable-restricted IPL
(ii) Let 3 < o < w. Crsy does not have the very variable-restricted IPL

Proor. (i). Cf. [Ben94a] appendix 12.

(ii). Let 7= —¢; —dor and 0 = (—¢; —d12 V= di2). Then' Crs; |= 7 < 0. Neither
7 nor o uses variables, and 1 is the only common index. So for very variable-restricted
interpolation, we would need a term - which uses only the index 1, and which does
not use any variable. Then v must be built up from Boolean 0 and 1, using only the
operator ¢; and Booleans. The value of any such term is 0 or 1. But neither 0 nor 1 is
an interpolant for the above 7 and 0. | QED

CYLINDRIC MODAL LOGIC. We show what these results mean for cylindric modal
logic (and hence for FO logic).

THEOREM 5.4.10. Let 0 < a < w.
(i) The cylindric modal logics of the classes K and K% of a~dimensional assign-
ment frames have SCI, WCI and BD.

07y FO logic, 7 < o would be written as (Voyvp = v1) — {(Jnyoy = vy) — (Yorvy = vg)).



116 AMALGAMATION & INTERPOLATION [5.4

(ii) The cylindric modal logic of the class K%* has the variable-restricted SCI; but if
a > 2, not the very variable-restricted SCI.

(iii) (VAN BENTHEM) The di;—free reduct of the cylindric modal logic of KU has the
very variable-restricted SCI.

ProOOF. By theorems 5.4.6, 5.4.8 and 5.4.9. QED

In terms of FO logic, part (ii) of the above theorem implies that an interpolant in
restricted'! FO logic with the generalized K* semantics from section 1.2, does not
need more variables than occur in contexts as Jv; or v; = v; in the antecedent or the
consequent. One can contrast this result with the following fact about classical FO
logic. Let £, stand for restricted classical FO logic with no function symbols and only
n variables. Hajnal Andréka [AvBN93] proved that, for finite n > 2, £, lacks SCI.
But, since £, has that property (for sentences), we can find an interpolant in some
larger L,4r. D. Gabbay has asked whether there exists a bound on k& which would
depend only on n. The theorem says there isn’t.

THEOREM 5.4.11 (ANDREKA). Letn > 2. Then L, lacks SCI in the following strong
sense. There are L, sentences ¢, such that |= ¢ — b, but for no L, formula 0 in the
common vocabulary of ¢ and ¥, = ¢ — 8 and = 8 — ¥ hold.

5.4.3 EXPANSIONS WITH THE DIFFERENCE OPERATOR AND COUNT-
ING MODALITIES

If we add the difference operator to the above logics, then amalgamation, interpolation
and definability disappear. The problem is that the difference operator gives us a
limited way of counting (recall that —assuming the Booleans— the difference operator
is term—definably equivalent with the counting modalities {0*, 0*}). Andréka-Németi-
Sain [ANS94c] showed that, if we add all counting modalities to BA+ D, the positive
properties reappear. They also showed that, with relativized relation and cylindric
algebras, this strategy need not work.

The next theorem is a joint result with Ildiké Sain. Define the class Crs,+ D as
follows

Crse+D & SP{F=(V,=/, Dy, #)ika : V C °U for some set U}t

The expansions with D of D,,G, and RCA, are defined in a similar way, following
definition 2.5.3.

THEOREM 5.4.12. (i) BA+D lacks the embedding property (EP).
(ii) RRA+D lacks EP.
(iii) Let H C {R,S,T}. SRIyRRA+D lacks EP.
(iv) Let o be finite. RCA,+ D lacks EP.
(v) Let « be arbitrary. Crsq+D, Do+ D and Go+ D lack EP.

M Meaning that there are no function symbols, and that every atomic sentence is of the form
Ruvg,v1,...,04-1 (see section 2.5.5).
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Tt follows from this theorem that the universal FO (Sahlqvist) sentence Voyz((Rzy& Ryz) =
(z = 2V Rxz)) (i.e., pseudo-transitivity of D) is not a finite zigzag product sentence.

PROOF. (i). Take the following three algebras from BA+D: % = ({0, {¢,b}},U,—,D),
8= (p({a,b,c}),D) and ¢= (%({a,b}),D) (a,b,c are all different). Clearly, % can be
embedded into B and ¢. Suppose that B and ¢ can be embedded into an algebra
© € BA+ D, by functions m and n, respectively. Then D should contain three atoms as
images of the singletons of 8. But then, one singleton, say {a}, of ¢ has to be mapped
to a “non-singleton” in . So ¢ | ¢*{a} = 0 and ® |= 0’n({a}) = 1, which leads to a
contradiction.

(ii). RRA+D is term-definably equivalent with RRA (cf. [Ven91] Prop 3.3.). But RRA
does not have EP (cf. McKenzie [McK66}). :

(iii). The same counterexample as in (i) works here as well. Expand the algebras
2, % and ¢ with the operators of the relational type. Let all singletons be below the
identity (i.e., for instance a = (a,a), b = (b,b), ¢ = (c,c)). Then the three algebras are
in SRIzs7RRA+D. 2 can again be embedded into B and ¢. But again, we can not
embed B and ¢ into one algebra.

(iv). For a < 1, this follows from (i), since then RCA,+D is term-—definably equivalent
with BA+D. For finite o larger than 1, RCA,+D is term—definably equivalent with
RCA, (cf. [Ven91] Prop 4.2.15). But RCA, does not have EP for 2 < o < w (cf. Comer
[Com69]).

(v). Use the same counterexample as in (i), and change it as in (iii). QED

The above theorem has the following consequences in the realm of logical calculi.

THEOREM 5.4.13. The following logics with the difference operator lack WCI and
SCI

e propositional logic with D
e the D-ezpansion of the arrow logic GML(KI&y), for all H C {R,S,T} or H =

5Q
e the D-ezpansion of the cylindric modal logic GML(K), for K one of K?Zio‘, KCSZ:‘Z),
KSe. for any o, or K = K for finite .

Proor. The difference operator makes all classes which occur in theorem 5.4.12 dis-
criminator varieties. Then the theorem follows from the previous one by the implica-
tions in table 5.1. QED

I. Sain [Sai94] settled the question of the definability property (BD) for these logics.

THEOREM 5.4.14 (SAIN). (i) Propositional logic with D has BD
(ii) Let H C {R,S,T} or H = SQ. The D-ezpansion of GML(K ) lacks BD.
(iii) Let 2 < o S w, and KW ¢ K € K. The D -ezpansion GML(K) lacks BD.

ProOOF. The proof goes by showing that ES does not hold in the SP closure of the
complex algebras of the frame classes. The proof of this last statement is an adaptation
of Sain’s counterexample given in the proof of [Sai90], Thm 2. QED
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EXPANSIONS WITH COUNTING MODALITIES. Andréka-Németi-Sain showed that, if
we add all counting modalities to propositional logic with D, interpolation and defin-
ability reappear ([ANS94c], Thm 15). Németi-Sain [Sai94] showed that these properties
still fail when we add all counting modalities to the arrow logic of the class of pair—
frames K5y, for H = SQ or H C {R, S, T}, or to the cylindric modal logic of the class
of all assignment frames K¢, for 2 < o < w. This can also be shown by an adaptation
of Sain’s counterexample. One kills this proof, however, by adding all of the following
operations. For V C *U, ¢ < o, n some finite ordinal and 7 C V, define

orr¥isev: Hrer:s=r} >n}

It is an open problem, whether we retrieve BD in this logic by adding all these counting
modalities’?.

5.5 CONCLUDING REMARKS

In section 2.3 we defined the logical core of a general modal logic GM L(K) as the logic
of the class which satisfies all universal FO conditions that are valid in K. What we
have shown here is that the logical core in a stricter sense ~that part which satisfies all
universal Horn definable conditions— behaves as it should with respect to interpolation.
We saw that universal non-Horn conditions, like pseudo-transitivity of the difference
operator, can kill the interpolation property. This might lead us to conclude that the
logical core of a logic should be its universal Horn part (allowing extra function symbols
as in 5.3.3). In other words, instead of obtaining the core by adding all subframes (as
in section 2.3), we add all finite zigzag products. Then we always obtain interpolation
and Beth definability. We end with two questions.

1. Is there a syntactic characterization of the finite zigzag product sentences?

2. All arrow logics with interpolation had the finite model property (fmp). W. Raut-
enberg ([Rau83] Problem 2) asked whether there is a modal logic with strong
interpolation, but without the fmp. L. Maksimova gave a positive answer to this
question ([Mak91a] Thm 7). Is there also a general modal logic whose class of
frames is closed under finite zigzag products, but which lacks the fmp?

5.6 APPENDIX: REFORMULATION OF (S)AP WITH AP-
PLICATIONS

One can weaken the INSEP product construction from the proof of the zigzag product
lemma to obtain an equivalent formulation of (S)AP using frames. We will use this

12Note that these counting modalities have a local character: they count often we can change a
sequence at a coordinate 7. In FO logic, they can be defined as follows (let R be a binary predicate):

Ongo?)l 'g—;{? 3‘02,...,7}“.‘\.2(/\{?),' #v]« 12<4,5 < n+2&i¢j}/\R'DgUl Ao A Rupiovy)
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fact for simple proofs that certain classes of algebras lack AP. A similar analysis is
possible for the embedding property and super-amalgamation.

5.6.1 THE EQUIVALENCE LEMMA

LEMMA 5.6.1. Let K C BAO and L a class of frames, both of BAO type 5. Assume
that

(i) L is closed under zigzagmorphic images

(i) FelL=>FteK

()reK=>9%, €l
Then (1) and (2) are equivalent:

(1) K has AP

(2) (va, 8, ¢ € K)(Vf,h) if B Lal ¢, then there exists F € L satisfying:*®

(a) Dom(F) C (Dom(B,) x Dom(¢,)) [ INSEP (this makes the diagram commute)
(b) the projections my and w1 are zigzagmorphisms from F onto B, and €., respec-

tively.

LEMMA 5.6.2. Let K, L and conditions (1)—(iii) be as in the previous lemma. Then
(1) and (2) below are equivalent.

(1) K has SAP

(2) Condition (2) from the previous lemma strengthened with (c):

(c) (Vx € (B\ f*(A)(Yy € (C\ h*(4))(Fu € Dom(F)) : x € mo(u) > y & m(u)

Before we prove these lemmas, we sketch how the frame F in condition (2) relates to
the INSEP product construction which was defined in 5.2.8, and used in the proof of
the zigzag product lemma. By definition, that construction satisfies conditions (a) and
(b), and it is easy to show that it also satisfies condition (c). On the other hand, the
frame F from (2) need not be an INSEP product of 8, and ¢,. Its domain is a subset
of (B, x C,) restricted to INSEP, and the projections are surjective, but it need not
be the whole of INSEP. The second difference is that F validates only a subset of
the relations that a subdirect product validates (because the projection functions are
homomorphisms). It has to validate just enough, to make the projections zigzag as well.
In 5.6.4 below, we give an example of BAO variety V which has SUPAP, but whose
class of frames Cm™'V is neither closed under INSEP-, nor under zigzag-products.

PRrROOF OF LEMMA 5.6.1. Assume conditions (i)-(iii).

(2) = (1). Assume (2). Let %,%,¢ € K such that B Lale By assumption, we
find a frame F € L satisfying conditions (a) and (b). The restriction to INSEP implies
that f, om = hy om. So, by claim 1 in the proof of 5.2.6, the algebras %, 8, ¢ can be
amalgamated in F+ by the embeddings 7§ oep and 7j" oec. Since F € L, by condition
(ii), F* € K. Thus K has AP.

(1) = (2). Assume (1). Let 2,98, ¢ € K such that B Lale By assumption, %, %8, ¢
can be amalgamated in an algebra ® € K, by embeddings m and n. By writing out

13 Again we let INSEP def {{z,y) € Dom(B4) x Dom(€4+) : fy(x) = he(y)}
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the definitions one sees that the upper diagram at the left in (5.12) below commutes.
We will define a frame F satisfying (a) and (b) which is a zigzagmorphic i image of D
(see the diagram at the right). This is enough since, by assumption, © € K, by (i),
D4 €L, and then by (i), F € L.

1
D, p
e N .
B+ om n / \ (5.12)
B T+ hy ¢

Define a function p : Dom(D;) — {(my(z),ne(z)) : z € Dom(®+)} by p(z) &

(m(z),n4(x)). Define a frame F of the type of D, by Dom(F) ¥ {(m,(z), ny(z)) :
z € Dom(D,)} and R p(y)z; ...z, <5 (ot ... 2,)  p(a}) = z; & R®+yz! ... 2,

CLAM. (i) p is a zigzagmorphism from 9, onto F, and my = m o p, ny = m; o p;
(ii) F satisfies conditions (a) and (b) from the lemma.

ProoF oF CLAIM. (i). Immediate by the definitions of p and F.

(ii). (a) Suppose 2 € Dom(F). Then, (3z € Dom(D4)) : = = (m4(2),n4(2)). Then
f+m4(z) = hyny(z) implies that « € INSEP.

(b) Because m is a zigzagmophism and m, = 7, 0 p, 7, is a zigzagmorphism from F
onto B,. The argument for m; is similar. QED

Proor oF LEMMA 5.6.2. The proof is the same as the preceding one, except for the
extra condition of strong amalgamation.

(2) = (1). For the strengthenmg to SAP, we must show that (Vx € (B\ f*(A))(Vy €
(C\ h*(A)) : nfep(x) # miec(y). But that is immediate by condition (c).

(1) = (2). The next claim suffices.

CramM. If D is a strong amalgamation, then F satisfies condition (c).

Proor oF CLAIM. If D is a strong amalgamation, then (Vx € (B \ f*(4))(Vy €
(C\ h*(A)) : m(x) # n(y). But then, there is an ultrafilter v € 4§D such that
m(x) € u <= nly) € u. Hence x € my(u) <= y & n,.(u). Thus, there exists
az = (my(u),ny(u)) € Dom(F) and x € mo(z) < y & m(z). This is precisely
condition (c). QED

To obtain positive results, lemma 5.6.1 is more difficult to apply than the zigzag product
lemma. Especially, when proving SAP, condition (c) is awkward. Since this lemma
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states an equivalence however, we can apply it to obtain negative results as well.
Especially with finite frames, the conditions in (2) are easy to handle, and they give
rise to simple counterexamples. We will give several of these counterexamples in the
next section. For a streamlined application of 5.6.1, we use the following result.

LEMMA 5.6.3. Let K C BAO and L a class of frames, both of BAO type 5. Assume
conditions (i)-(iil) of lemma 5.6.1. Then we have:

1. If there ezist finite frames F,G,H € L and zigzagmorphisms f,h such that G EA
F & H, and there ezists no J € L satisfying (a) and (b) below, then K does not
have AP.

2. If (1) can be strengthened by replacing the subset relation in (a) by an equality,
then K does not have SAP.

(a) J C (G x H) [ INSEP

(b) the projections are zigzagmorphisms.

PROOF. Assume conditions (i)-(iii).
(1). Assume the antecedent of (1). By condition (i), 7*,G*,H* € K and G+ n

Fr ', H*. Since the frames (and hence their complex algebras) are finite, they are

isomorphic to the canonical frames of their complex algebras (i.e., e.g., F = (F*)4).
But then, by 5.6.1, K does not have AP.

(2) follows from the observation that (a), together with (c) of 5.6.2, ensures that with
finite frames the domain of J equals INSEP. (Because on finite algebras, atoms cor-
respond one to one with ultrafilters.) QED

SUPAP WITHOUT ZIGZAG PRODUCTS. We give an example of a canonical variety
of BAO’s which has SUPAP, although this cannot be shown by the zigzag product
lemma. We define the following classes:

Kpraa & {F=(W,R)ic, B C W & (Riyzy ... 2 <= x1...2; distinct)}
X SP(Kgraa)*

[~

Vgrad

Note that each frame in Kg,q is uniquely determined by its universe. In [ANS94c]
Thm 15, we find the following facts about Va4 it is a canonical discriminator variety
which has SUPAP, and it is term—definably equivalent to the variety BA + n-times of
Boolean algebras expanded with all counting modalities ¢". The general modal logic of
the class Kyyqq has SCI, WCI, and BD. Because Vyraq is a canonical variety, conditions
(i1) and (iii) of the zigzag product lemma are fulfilled for Vyqq and Cm™ ngd We
show that SUPAP cannot be proved using the zigzag product lemma, because condition
(1) is not satisfied.

THEOREM 5.6.4. Cm"lngd is neither closed under zigzag products nor under IN-
SEP products.

PROOF. We use the following fact, which is easy to check: Vgraa | (O'x A Oly) <
(O(x,y) V O'(x Ay)). This positive equation corresponds on frames of Cm ™'V, 4q to
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the condition Vayz((R'zy & R'zz) = (y = 2V R?zyz). So, every frame in Cm™ 'V,
satisfies this condition. Take a F € Kyqq with F = {a,b} (a and b are different). It
is not difficult to see that F x F is a zigzag product of F with itself (see figure 5.3).
In 7 x F, the binary relation R! is the universal relation, the relation R? is as in
the picture, and all other relations are empty. The frame F x F can not belong
to Cm"lvgmd, because it does not validate the above condition. This shows that
Cm™'V,,qq is not closed under zigzag products. The same example shows that it
is not closed under INSEP products either. For, the frame G = ({w}, Ry ic,, With
R'zz, R*zzz, and, for all i > 2, R' = 0, is a zigzagmorphic image of F, and F x F is
an INSEP product of the frames F, G, and F. QED

Ce—
) D)
F
FIGURE 5.3: COUNTEREXAMPLE FOR THEOREM 5.6.4.

5.6.2 APPLICATIONS OF THE EQUIVALENCE LEMMA

We now show how to apply 5.6.1 in order to obtain negative results. We give five
Sahlqvist equations which will typically kill the amalgamation property, all well-known
from algebraic logic or modal logic. Consider the equations in table 5.2. (1) is usually
referred to as density, (2) as the Church-Rosser property, (3) is the not-branching
aziom from temporal logic, (4), commutativity of the c;’s comes from cylindric algebra
theory, and corresponds to commutativity of FO quantifiers, and (5) is one half of the
associativity axiom from relation algebras. Define five classes of algebras K; C BAO,
with Ky, Kz and Kj of type {{O, 1)}, K4 of type {{co, 1), (c1, 1)}, and K; of type {(;,2)},
and five classes of frames L; of the corresponding type (here i denotes either the equation
or its FO correspondent from table 5.2):

Ki € {2eBAO:%fq}
L ¥ (F:FEd

PROPOSITION 5.6.5. For alli (1 <1< 5), conditions (1)-(iii) from lemma 5.6.1 hold.
Hence these classes are canonical varieties K; = S(L;)*.
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Equation FO correspondent
(1) Ox < OOx VzyRzy = dzRzz & Rzy
(2) ©0Ox < 0O0x VzyzRzy & Rzz = JwRyw & Rzw
(3) OxA Oy < O(xAOY)VO(yAOx) Vzyz(Rzy & Rzz = (RyzV Rzy))
(4) cicix < ¢ ex VzyzTizy & TVyz = JwT zw & T'wz
(3) (xy);z<x;(y;2) VzyzuvCryz & Cyuv = ItCaut & Ctvz

TABLE 5.2: EQUATIONS WHICH CAN KILL AP

Proor. By the Sahiqvist form of the equations. QED
THEOREM 5.6.6. None of the above K; has the amalgamation property.

In the counterexamples to come, the whole argument is given in the pictures. We ex-
plain how they work. Zigzagmorphisms are given by dotted lines, accessibility relations
in frames by fat arrows (an arrow leading from z to y means that Rzy). A possible
amalgam is always given at the top of such a picture. We do not draw the projections,
since they are coded in the names of the points in the amalgam.

PRroOOF. Each proof has the following ingredients. We construct three finite frames

F,G,H €L, and zigzagmorphisms f, h such that G 4 F & 1. Then we show that
there cannot be a J € L;, satisfying conditions (a) and (b) from lemma 5.6.3. By that
lemma and 5.6.5, this is enough to prove the theorem. If F is a frame, then F denotes
its domain and its relations are given by R .

CramM 1. K, does not have AP.

ProoF OF CLAIM. Define F,G,H as in figure 5.4. Clearly, all of them belong to
L,. Define functions f : G — F by f(z) = z# and f(b*) =%, and h: H — F by
h(zt) = x# and f(b*1) = b¥*. It is easy to see that f and h are zigzagmorphisms. Since G
and H are isomorphic, it is enough to check one of the two. The other counterexamples
are set up in the same way. Now suppose there exists J € L; satisfying (a) and (b).
Then R7 (a,at), (b,b1), so there should be a z € J with R7(a,ar),z & R7 z, (b, br). But
then, by condition (b), 2 = {c,ds): whence z ¢ INSEP, a contradiction with (a). <«

CraM 2. K, does not have AP.

Proor OF CLAIM. Define F,G,’H € L, as in figure 5.5. Define f : G — F by
f(z) = 2* and f(e*) = e#, and h : H — F by h(zt) = z* and f(d*1) = d¥. Then
f and h are zigzagmorphisms. Again, suppose there exists J € L, satisfying (a) and
(b). Then R7{a,at),(b,br) & R {a,ar),{c,cl). So, there should be a 2z € J such that
R7 (b,b1), z & R7{c,cl), ». But then, by (b): z = (d,€), which contradicts (a). <

Cramm 3. K; does not have AP.

Proor oF CLAIM. This example is a bit different from the others. Here, it is not
an existential quantifier, but a disjunction which causes trouble. Figure 5.6 speaks for
itself. <
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<b,b’>
V~~.

<c,d’>

F

FiGURE 5.4: COUNTEREXAMPLE FOR K,

CLAaIM 4. K, does not have AP.

ProoF OF CLAIM. We only give the picture (figure 5.7). We use dotted lines for T°
and black ones for T*. The argument is the same as for K. <

CLAIM 5. Kj does not have AP.

ProoOF OF CLAIM. Drawings are more difficult to make with ternary relations. We
will denote elements by arrows (head, tail), and define Czyz <= z(0) = y(0)&y(1) =
2(0) & z(1) = z(1), staying close to the intuition that C denotes composition. But we
cannot equate an arrow with an ordered pair, whence C does not give relational com-
position, but “composition in multigraphs”. We will exploit that C is not a function.
For clarity, we also give the relations depicted in figure 5.8:

¢ Y (abe), (bde), (a,d ), (2,6, ), (a,d*, 2*), (z*, e*, ¢*)}
CH Y L, bryeh), (b, dren), ar, di, oty (at et ), (ar, d* 1, a4, (21, €1, ¢ 1)}
cF & {(a#, 0% cH#), (b# d# o#), (a# 0¥ o#), (a¥,d¥ o' F), (a# et ct), (z*#, e# | #)}

Define f and h such that (Yy € {a,b,c,d,e}) : f(y) = f(y*) = y* = h(y!) = h(y*1),
f(z) = z* = h(z*1), and f(2*) = 2** = h(z1). Then f and h are zigzagmorphisms.
Now, suppose there exists J € L, satisfying (a) and (b). Then 7 is as in the figure, so
there must be a z as denoted by the dashed arrow. But then by (b), z = (z, z/), which
contradicts (a). QED
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APPENDIX: REFORMULATION OF (S)AP WITH APPLICATIONS

<d,e’>
l’ﬂ‘\
<bb'> \/ <c,c’>
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FIGURE 5.5: COUNTEREXAMPLE FOR K,

dfv -

<a,a’>
J

a#
F

FIGURE 5.6: COUNTEREXAMPLE FOR K3
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AMALGAMATION & INTERPOLATION

FIGURE 5.7: COUNTEREXAMPLE FOR K,

FIGUrE 5.8: COUNTEREXAMPLE FOR Kj;



6
APPLICATIONS TO ARROW LOGIC

Having finished our algebraic-logical investigations, we return to arrow logic proper,
and see what we have learnt. Besides transforming earlier results into “arrow language”,
we give several expansions of the latter (e.g., with Kleene star, slashes and cylindrifi-
cations). We end the chapter with a two-sorted version of arrow logic (proposed by
Johan van Benthem [Ben93}).

This chapter can be read independently from the previous ones. We do not repeat
earlier definitions, but they can easily be found using the index.

Convention
We will only use the local consequence relation defined in section 2.1.3,
except for Beth’s definability property, which is meant in the global sense.
Hence we omit the superscript, and merely write |=, reserving 9% for the
exceptions.

6.1 INTRODUCTION

Arrow logic was introduced intuitively in section 1.1, and defined more precisely in
section 2.4.5.

MODELS FOR ARROW LOGIC. There are at least three classes of models available for
arrow logic:

e (abstract) Kripke models (i.e., arrow—frames)
e directed graphs (i.e., pair-frames)
e directed multigraphs

We argued that intuitively, graphs and multigraphs are preferable to Kripke models,
because of their more concrete “pictorial” character. Within directed (multi)graphs
we can make further distinctions, depending on the availability of arrows. Thus, we
find a landscape ranging from the class of all directed (multi)graphs to the class of
“square” (multi)graphs (where the set of arrows is a full Cartesian product U x U,
for some set U of “states”). In between the two ends, we investigate any combination
of the following three requirements on universes of pair—frames: reflexivity, symmetry
and transitivity (cf. figure 2.2). In what follows, we focus mainly on directed graphs.
With these models, the requirement of transitive domains forms the borderline between
positive and negative meta-logical properties (cf. section 6.2.1). In section 6.2.2, we
summarize the known results about multigraphs.

127



128 APPLICATIONS TO ARROW LoOGIC 6.1

LANGUAGES FOR ARROW LOGIC. The propositional language with extra connectives
for composition, converse and identity is the core language of arrow logic (mainly for
historical reasons, because this is the language of relation algebras). Clearly, these
are not all connectives which are interesting when reasoning about arrows. In the
literature, we can find the following extras: the (i} ) modalities from Vakarelov’s work
on arrow logic (cf. [Vak92b] and also Venema [Ven89], [Ven91]), which correspond
to the cylindric diamonds ¢, < and to the two “domino” modalities; the slashes
(“residuals”), which are the semi-duals of the conjugates of the composition modality
(see section 4.5.2), and the Kleene star. For a pair—frame F, a model M = (F,v), and
z € F we define:

M,z (if)¢ €5 Fy):ei=y; &M,yk (i,5 € {0,1})

M,z - ¢\¢ LN (Vyz):(m0=y1,yg=z(),zl::El&M,yI!-qS):}M,leQ/)

M,z I-/d &ty (Vyz):(x(,:yg,:cl:zg,zlzyl&M,leé):M,yli-z/;

M,z i+ o* PN M,z It ¢ or = can be finitely decomposed into arrows where ¢ holds

Here is the meaning of the new operators in pictures:

w w w w w w
qs] ¢l Nﬁ N thenw] \w wl wenw
Yoo Y “Tong U “Tams Y M Taoys Y “Tele Y YTew "

Other connectives which we might add -without a specific “arrow-behaviour’— are
the universal modality (cf. sec 3.1), the difference operator, and counting or graded
modalities (cf. sec 4.4)'. We repeat their definitions for convenience:

Mzlkop €L (Fy):M,yr s

MzhkD¢ <5 (@) :z#y&Muyrs

M,z ik ong & Hwe F:Mwir¢} >n
The reason that these operators are less well-studied is that most of them become
term-definable in the core language, when interpreted on the square pair-frames.

PROPOSITION 6.1.1. In the arrow logic of square pair—frames AL(Kitsg), the follow-
ing connectives are definable: (i) (1,7 € {0,1}),\,/,0,D, 0%, 02, 03.

PrOOF. The expressive power of this arrow logic equals that of first order logic with
three variables and only binary predicate symbols (cf. [HMT85] Thm 5.3.16). All these
connectives can be defined using only three variables. QED

These connectives are no longer definable over larger classes of models. So it is inter-
esting to see what happens with them on non-square models. We look at several such
expansions in section 6.3. For each one, we investigate the complete landscape that
was drawn above.

Sain [Sai88] argues that the difference operator is well-suited to study program verification. This
might be a reason to add D to arrow logic, when applied in computer science.
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TWO-SORTED ARROW LOGIC. Arrow logic is similar to Propositional Dynamic Logic
(PDL; cf. Harel [Har84]), in the sense that both logics are designed to reason about
transitions or programs. The difference is that in PDL we can also reason about the
input/output behavior of programs. Program expressions are interpreted at transitions;
but in addition, we have state formulas that can be interpreted at states. In arrow logic,
we can only interpret at transitions. Johan van Benthem ([Ben93]) introduced a two-
sorted version of arrow logic in which we can reason about states as well. In section 6.4,
we study such a system with a pair-frame semantics. We compare this system with

PDL, and with the related “Peirce Algebras” (cf. Brink et al. [BBS94]).

PRELIMINARIES

Recall the definition of arrow logic AL(K) from section 2.4.5. We need to define a
derivation system for arrow logic. The definition given below (cf., [Ven94]), is a straight-
forward generalization of the well-known K axiomatization for unary modal logic. For
every general modal logic, such a derivation system exists. A formula ¢ is derivable
from the K axioms if and only if the equation? ¢# = 1 is derivable from the BAO
axioms in equational logic. If we add azioms to the K derivation system, and their
corresponding equations to the BAO axioms, this correspondence remains.

DEFINITION 6.1.2. A derivation system for arrow logic is a pair (A, R) with A a set
of axioms and R a set of derivation rules. A derivation system is called normal if A
contains the following axioms:
(CT) all classical tautologies®
(DB) ((pVp)eg) = (pegVp eq), (pe(aVd)) < (pegVped)
®(pVg) < @pV &g
and R contains the rules of Modus Ponens, Universal Generalization and Substitution:
(MP) 6,6 —v | ¥
(UG) ¢ [ de¢, e
¢ /89 -
(SUB) ¢ | o¢ for o a map uniformly substituting formulas
for propositional variables in formulas.

A normal derivation system is called orthodoz if (M P),(UG) and (SUB) are the only
derivation rules of the system. For any set & of formulas, Q(3) denotes the orthodox
derivation system having axioms ¥, (CT) and (DB). A formula is a theorem of the
derivation system A = (A, R), notation A I ¢, if ¢ is the last item ¢, of a sequence
do, ..., Py of formulas such that each ¢; is either an axiom or the result of applying
a rule to formulas {¢y,...,¢;—1}. A formula ¢ is derivable from a set of formulas T,
notation: I' Fa @, if there are 7,,...,7, in ' such that A F (A ... A7) — ¢
A derivation system A is sound with respect to a class K of (arrow) frames, if every
theorem of A is valid in K, complete if every K-valid formula is a theorem of A.

2The f{unction # denotes the trivial translation from logical formulas to algebraic terms. See
section 2.1.3.
30r any finite axiomatization of the Boolean (propositional) part.
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Notation: A F ¢ < Kk ¢. Itis strongly sound and strongly complete, if
I'ta ¢ <= T =« ¢ (F=x is the local consequence).

In the next definition, we formulate the meta-logical properties we will study.

DEFINITION 6.1.3. Let GML(K) = (Fml(P),Mod(K), ) be a general modal logic of
some fixed type S.

(i) GML(K) is decidable if the set of validities {¢ € Fml(P) : = $} is a decidable set.
(ii) GML(K) has the finite frame property (ffp) if every formula ¢ which is not GML(K)
valid can be falsified on a finite frame from K.

(iii) GML(K) admits a (strongly) sound and complete finite aziomatization by an or-
thodox derivation system, if there exists a finite set of formulas & € Fml(P) such that
Q(X) is a (strongly) sound and complete derivation system for GM L(K).

(iv) A logic is canonical if the canonical frame of the Lindenbaum-Tarski algebra* of
GML(K) is a member of K.

(v) Strong and weak Craig interpolation and Beth definability are as defined in sec-
tion 5.1.2.

6.2 'THE CORE LANGUAGE

6.2.1 ARROW LOGIC OF DIRECTED GRAPHS

The preceding chapters already drew a landscape of arrow logics for pair-frames. We
considered the class of square pair-frames Kitlsq, and the classes K’ in which the
universe of the frames is an H relation. Here H C {R,S5,T}, and R stands for “re-
flexive”, S for “symmetric” and T for “transitive”. K;:{SQ equals the closure under
disjoint unions of the class K7¢ ... Hence the logics AL(Kieso) and AL(KT% por) are
equivalent. For this reason, we do not mention the arrow logic AL(K;‘éiSQ) explicitly.
Thus, the three preceding chapters lead to the following general description of arrow
logics.

THEOREM 6.2.1. The arrow logic AL(KT¢. ) is decidable iff T ¢ H.

THEOREM 6.2.2. The arrow logic AL(KT% ) admits a strongly sound and complete
finite aziomatization by an orthodoz derivation system iff T ¢ H.

Let H C {R,S}. Recall that ~# denotes the translation from algebraic terms into
logical formulas (e.g., (xAid < x7)"# = (pAid) — ®p). Recall the algebraic equations
(A1) ~ (Ass) from 2.49. Define Ty & {(A4;)# — (4;5)#}, S5 % 55 U {(413)"#),
Tr % T U {(A10)#, (A15)"#) and Sps & T, U TS

THEOREM 6.2.3. Let H C {R,S}. The derivation system Q(Sy) is strongly sound

and complete with respect to the arrow logic AL(KI% ).

“The Lindenbaum-Tarski algebra of a logic GML(K) is the term algebra % generated by the set
of propositional variables, factored out by GML(K) equivalence. Its canonical frame is Ap. The
canonical model of a logic is the model (.v), where v is defined by v(p) = {w € Dom(%;) : p € w}.
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THEOREM 6.2.4. Let P be any of strong interpolation, weak interpolation or Beth
definability.. The arrow logic AL(KT¢ ) has P iff T ¢ H.

We prove all theorems at once, using our earlier results about the varieties S(Kre )t

PROOF. Recall that, for any general modal logic GML(K) , and for any formula ¢ in
the language of that logic:

Ex ¢ <= K Eo¢# =1 <> HSPK' 6% =1

(Thm 6.2.1) By 4.2.6.

(Thm 6.2.2) This follows from 4.2.2, which stated that the canonical varieties S(Kret )t
are finitely axiomatizable iff T ¢ H.

(Thm 6.2.3) By 4.2.1. We also give a direct proof. Let A = Q(Zy) be the derivation
system for AL(K!¢ ). Assume I' tfa ¢. Let M = (F,v) be the canonical model of the
derivation system®. Then [I']y; £ [¢]y- It follows from 2.4.9 that F € rel, and from
4.2.3, that F is a zigzagmorphic image of some frame G € Krel . But then, there is a
model M’ = (G,v') in which [I'ly;, £ [#], whence T' |= ¢ is not valid in ALK ).
(Thm 6.2.4) The positive side is 5.4.5. The negative side follows from 5.4.2, using the
implications in table 5.1. QED

PROBLEM 6.2.5. It is unknown whether the decidable arrow logics AL(Ky) for
H C {R, S} also have the finite frame property. By 3.2.3, we do know that the logics
of the strictly larger classes of abstract arrow—frames AL(Kf};), which are logically
equivalent to AL(K"¢ ), have the finite frame property.

THE BORDER OF “COMPUTATIONAL NICE BEHAVIOUR”

We argued that there are at least three important aspects to the notion of the computa-
tional core of a logic: decidability, finite axiomatizability and interpolation. The above
theorems show that, for the arrow logics of pair-frames, the border of “computational
nice behaviour” is transitivity of the universe.

In the next section, we consider expansions of the core language. The next two
theorems show that, for these expansions, transitivity also leads to negative results.

Let Q denote any subset of {(i7)(,7 € {0,1}),\,/,0,D,0"(0 < n < w)}. AL(K{g)+Q

denotes the expansion of the arrow logic AL(K% ;) with connectives in Q.

THEOREM 6.2.6. Let {T} C H C {R,S,T}. AL(KI%,)+Q is undecidable.
PRrOOF. By 6.2.1 and the fact that all the expansions are conservative. QED

THEOREM 6.2.7 (ANDREKA). Let {T} € H C {R,S,T}. AL(Ky)+Q does not
admit o finite sound and complete aziomatization by an orthodoz derivation system.

Proor. Cf [And91a]. QED

5 §o F is the witrafilter frame of the term-algebra, factored out by the congruence {(¢, ¥) : UEy) +
& « 1}, and the valuation of the propositional variables is given by v(p) d4ef {ue F:peu}.
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Such general results are not available for interpolation and definability. We inspected
the proofs for failure of these properties, and they all seem to go through with the new
connectives added.

CONJECTURE 6.2.8. Let {T} C H C {R,S,T}. Let P be any of SCI, WCI or BD.
AL(K™ 1) +Q does not have P.

6.2.2 ARROW LOGIC OF DIRECTED MULTIGRAPHS

We now turn to directed multigraphs. Arrow logic for directed multigraphs was first
studied by D. Vakarelov ([Vak92b]), using a propositional language with the four (i5)
modalities. A. Arsov added the operators from relation algebras to this type (see Arsov
et al. [AM94b] and below). A. Kuhler ([Kuh94]) provided a finite axiomatization of
arrow logic in the relational type of directed multigraphs and of locally square (i.e.,
reflexive and symmetric) directed multigraphs. She used the same combination of
mosaics and step-by-step construction as ours in section 4.2. Thus, this combination
of ideas can be fruitfully applied in different situations.

With multigraphs, there are several reasonable ways of defining composition and
converse. (For identity, there is obviously just one definition.) Kuhler and Arsov
used the following definition. A directed multigraph is a tuple (Ar, Po,0,1) with Ar
a set of arrows (“edges”), Po a set of points (“nodes”), and 0 and 1 two surjective
functions from Ar to Po, providing each arrow a with its head “a(0)” and its tail
“a(1)”, respectively. (Vakarelov calls these tuples arrow structures.) We call a directed
multigraph locally square if (Vo € Ar)(Iyzw € Ar) : z(0) = y(1),2(1) = y(0),2(0) =
2(0) = 2(1)& (1) = w(0) = w(1). Arsov and Kuhler define the following arrow—frames
from directed multigraphs. Let G = (Ar, Po,0,1) be a directed multigraph. Then the
frame F¢ = (Ar,Cq,Fg,lg) is a multigraph arrow-frame if

ez &% 2(0) = 2(1)

Fary &5 2(0) =y(1) & (1) = y(0)

Comyz &5 2(0) = y(0),5(1) = 2(0) & 2(1) = (1)
Define,

AK Y {Fs:Gis adirected multigraph}
AKpgs def {Fs : G is a locally square directed multigraph}

THEOREM 6.2.9 (KUHLER). AK and AKpg admit strongly complete finite aziomati-
zations by orthodoz derivation systems.

Proor. Cf. [Kuh94]. QED
THEOREM 6.2.10. AK and AKpgs enjoy Craig interpolation and Beth definability.

Proor. This follows from 5.3.6. The given axioms are Sahlqvist, and correspond to
(clausifiable) Horn theories. QED
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The above-mentioned result by Arsov is the following. The (ij) modalities are defined
on multigraphs, using the functions 0 and 1, as one would expect. For instance, if M
is a model over a multigraph frame, M, z I+ (00)¢ & (Fy) : 2(0) = y(0) &M,y I+ ¢.
THEOREM 6.2.11 (ARsoV). The expansions of AK and AKgs with the (ij) modali-
ties admit strongly complete finite aziomatizations by orthodoz derivation systems.

Proor. Cf. [AM94b]. QED

THEOREM 6.2.12. The expansions of AK and AKps with the (ij) modalities enjoy
interpolation and definability.

ProoF. All axioms are in Sahlqvist form, and correspond to universal Horn sentences.
Again, use 5.3.6. QED

PROBLEM 6.2.13. It is unknown whether these arrow logics of directed multigraphs
are decidable.

6.3 EXPANSIONS OF THE CORE LANGUAGE

In this section, we expand the core language with the modalities discussed in the
introduction:

e (ij) modalities (sec 6.3.1)

e slashes (without converse) (sec 6.3.2)

e universal modality, difference operator and counting modalities (sec 6.3.3)

e Kleene star (plus the universal modality) (sec 6.3.4)
We denote expansions of an arrow logic AL(K) with a set of operators @ as AL(K)+Q.

6.3.1 CYLINDRIC DIAMONDS AND DOMINOS

The four (i5) modalities were studied by Y. Venema ([Ven89], [Ven91]) in two-dimensional
modal logic (i.e., directed graphs), and by D. Vakarelov and A. Arsov in the context
of multigraphs ([AM94b], [Vak92b]).

PROPOSITION 6.3.1. The four (ij) modalities are term~definable in the arrow logic
AL(Kyy) if {R,S} C H:

(00)¢p « (idA(peT))eT (11} To(idA(To¢))
(01)¢p « (idA(Tegp))eT (10)p < T e(idA(peT))

ProoF. We show one example:

{(u,v) I {00)¢ PN
() (wv) I é &= (by reflexivity and symmetry)
(u,u) IFidA(P o T) by

(u,v) F (idA(peT))eT

QED
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Let us see what happens if we add them to the arrow logic of non locally-square pair—
frames. Let AL(KI%,)+(ij) be the arrow logic of H pair—frames, expanded with the
four (i) modalities.

Axroms FOR AL(K7gy)+(ij). We provide complete axioms for ALK )+(i]), to-
gether with their frame correspondents®. Note that (V;) — (V;) are valid in multigraphs
as well. Let H C {R, S}, and let Agj ) be the following derivation system:

(i) The AL(K™¢,) derivation system

(ii) Distribution axioms and (UG) rules for the four new modalities.

(iiii) A complete axiomatization for the (ij) reduct (cf. [Vak92b]). For 7,7,k € {0,1}:

Vi) p— (it)p R‘:’:xm )
(V2) (pA(is)g) — (i) A (i)p) RYzy = Riyz
(Vs) (i) (ik)p — (zk)p R¥zy & R*yz = R*zz

(iv) Axioms’ governing the interplay between the old and the new connectives:

(Vi) idAp— (ij)p Iz = Rizx

(Vs) ®@p— (01)p A (10)p Fry = RYzy & R¥xy

(V) pegq— (00)(pA(10)g) A (11)g Czyz = R%zy & Ryz & RV'zz

(Vz) (0i)(id Ap) — (idAp) e T RY%zy & ly = Cayx for i € {0,1}
(Ve) (1e)(id Ap) — T e (id Ap) RYzy & ly = Caay for7 € {0,1}

THEOREM 6.3.2. Let H C {R,S}. The derivation system Agj) is strongly sound and
complete with respect to AL(KT¢ 5)+(i5).

Proor. For AL(Kips) + (ij), the theorem follows from the results for the core
language plus 6.3.1. We continue with the other cases. Strong completeness follows,
because every expanded arrow—-frame F = (W,C,F,I RV )i j<1 Which satisfies (V) —
(Vs), is a zigzagmorphic image of a pair—frame in which the accessibility relations
for the (1j)’s are defined as one would expect. (For example, R¥zy &L oy = Yo-)
A straightforward adaptation of the graph~construction in chapter 4 will show this.
This result also follows from Arsov’s proof ([AM94b]). He also used a step-by-step
construction to build a directed multigraph. The latter is a bit more involved, because
of the abundance of arrows in multigraphs. If we add the (not multigraph valid) axioms
(Azo) = (A12) to his list, they collapse into the set of Al ! axioms, and the constructed
multigraph will be a graph. QED

THEOREM 6.3.3. Let H C {R,S}. ALK ,)+(ij) is decidable.

PROOF. To show decidability of AL(K7%,)+(ij), filtrate a frame satisfying the A}
axioms as was done without the (ij)’s (cf. the proof of 3.2.3), using the technique

5The correspondence between the axioms and the frame conditions (V7) and (V3) holds only as-
suming the AL(K7S) axioms. Without them, we should change (V7) to g A (07)(id Ap) — (idAp) e g,
and make a similar change for (Vg).

" Assuming the AL(K7&) axioms, axiom 4 follows from 5 and 6. We leave it for aesthetic reasons.
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described in [Vak92b] to handle the new operators. Vakarelov proves that the logic
with only the (ij) modalities admits filtrations using the following trick (see [Vak92b)
Thm 4.4). Ensure that the closure set CL(X) satisfies the following condition:

if for some 7,5 € {0, 1},(1])¢ € CL(X), then for any ¢,5 € {0,1} : (ij)¢ € CL(X)
Define the R relations in the filtration as follows:
Rz, 7 & (V(ij)¢ € CL(X))(Vk € {0,1}) : M,z I (ik)¢ <= M,y I (jk)¢

In [Vak92b] (Thm 4.4), it is shown that min and max are guaranteed, and that the
filtration satisfies (V) — (V3). In the proof for the combined language it is easy to
“show that conditions (V) — (Vs) hold as well®. QED

THEOREM 6.3.4. Let H C {R,S}. AL(KI&y)+(ij) enjoy interpolation and Beth
definability.

PROOF. Immediate from the given axiomatizations and 5.3.6. QED

COROLLARY 6.3.5. Let H C {R,S,T}.
(1) AL(K? ) +(ij) admits a finite aziomatization off T & H.
(i) AL(KT! ) 4+(i7) is decidable iff T ¢ H.

6.3.2 SLASHED ARROW LOGIC

We now study a version of arrow logic in which we drop the converse operator, and
have the slashes instead. We take the conjugates® of e as primitive operators. The
conjugates < and > of e are the semi-duals of the slashes, as explained in section 4.5.2.
Their meaning is given by the accessibility relation C of the e

M,z d D> 9 N Jy,z: Czyz &M,y - ¢ &M,z IF 2
M,z &L Ay, z: Cyzz &M,y - ¢ &M,z I+ 9

On pair-frames, these definitions work as follows:

/\ N\

(A VR — U e 1)

> ¢

PROPOSITION 6.3.6. On locally square pair-frames, the similarity types {o,®,id},
{o,<,id}, {®,1>,id} and {e,<,>>,id} are interdefinable.

8The only non-trivial part is to show (V7) and (V3). Here one should realize that, using (Vs), the
implication in {V7) and V) can be strengthened to a biconditional. Then use the fact that the closure
set is closed under taking s} ¢ (i.e., (idA@) e T and T » (id Ag)).

9The intuitive exp]anatmn of this notion is that the conjugates are the * backw ard looking” versions
of the operator e, in a similar way as P is the backward looking version of F in temporal logic.
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PROOF. Define the triangles from converse: asin ¢ < 1 « ¢ o ®1. To show that
this works, one only needs symmetry. On the other hand, define converse from the
triangles: as in ®¢ « (id < ¢). To show that this definition works, one only needs
reflexivity. QED

So, on symmetric frames, we can choose the relational type, since it is easier to han-
dle. For applications however, the “slashed” version might be more natural. See, for
instance, Pratt’s action logic, with slashes as dynamic implication [Pra90b], or Ro-
orda’s extension of the Lambek Calculus with Booleans ([Ro091]). The motivation for
converse is usually weaker than for composition and identity. Note, in this respect,
that the converse-free reduct of arrow logic behaves just as nicely as arrow logic with
converse (cf. section 4.3 on reducts).

Let SALy (for slashed arrow logic) stand for the arrow logic of type {e, <, >, id}
over all H pair—frames (H C {R,S,T}). The only interesting new cases are those
with H = @ or H = R. (The same similarity type was studied under the name
“CARL” by Sz. Mikulds in [Mik94]. In that paper only abstract arrow-frames were
studied.) In section 4.5.2, we have seen that, without the identity constant, the four
axioms (L)~ (L,) below, are sufficient for a complete axiomatization (cf. 4.5.4). These
are well-known from the Lambek Calculus: they say that the three operations are
conjugates. If we add the identity constant, we find a complete axiomatization by a
straightforward implementation'® of the mosaic idea into the graph-construction for
the identity-free case. Here is the resulting derivation system.

AXIOMS FOR SALy. Let ASAL be the derivation system consisting of

(i) Distribution laws and UG-rules for the modalities {e, <, >}

(ii) Translations of the equations which axiomatize the converse-free reduct of the pair—
frames (i.e., the axiomatization of the variety SRIRdy,;4jRRA given in table 4.2).

(iii) The conjugate axioms:

(L1) pe(\g) = ¢, (L2) ¢—p\(pegq)
(Ls) (p/g)eq—p, (L) p— (peq)/q

(iv) Axioms which give < and 1> their “converse” behaviour. Assuming all the other
axioms, the latter correspond to the given frame conditions.

(Ls) (ppid)A(g>id) — (pAg)D>id lo & Coyz & Cay'z = y = ¢/
(Le) (dap)A(id<ag)—id<a(pAq) lz&Cryz& Cays' = 2= 2

The derivation system A% is obtained by adding the axiom (ideT AT eid) to ASAL,

THEOREM 6.3.7. Let H = () or H = R. The derivation system AL is strongly
sound and complete with respect to SALy.

10The trick is that one closes mosaics under “converses” as defined by < and . For instance, define
a (partial) function f92 = y if and only if 32(Czay & 12), and close mosaics under this function (and
its natural dual f%).
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PROOF. As mentioned above, this is a straightforward adaptation of earlier ideas.
QED

THEOREM 6.3.8. SAL and SALy enjoy interpolation and Beth definability.
ProOOF. Immediate from the given axiomatization and 5.3.6. QED

CONJECTURE 6.3.9. We conjecture that SAL admits filtrations, hence that it is also
decidable.

Since the slashes are definable in AL(K™ ) if S € H, we have the following corollary.

COROLLARY 6.3.10. Let H C {R,S,T}. SALg admits a finite axiomatization iff
T¢H.

6.3.3 UNIVERSAL MODALITY, DIFFERENCE OPERATOR AND COUNT-
ING MODALITIES

We quickly mention some relevant results which can be extracted from our previous
analysis.

UNIVERSAL MODALITY

PROPOSITION 6.3.11. Let H C {R,S,T}. The universal modality ¢ is definable in
AL(K™ ) if T € H.

PROOF. Because SP(K’¢ )t is a discriminator variety iff 7 € H (cf. [ANS94a]).
QED

AL(KTe 2)+0 denotes the expansion of AL(K[Ey) with the universal modality 0.

THEOREM 6.3.12. Let H C {R,S}. Then AL(K5y)+0 is decidable, admits a strongly
complete finite axiomatization, and enjoys interpolation and Beth definability.

PROOF. Strong completeness follows from 3.1.10. This theorem can be applied, be-
cause Cm™IS(K™ )t = Kieh = ZigKrel, (cf. 4.2.3). All the axioms we add are
canonical and correspond to universal Horn sentences, so clausifiability, whence SCI,
WCI and BD are preserved. Decidability follows from 3.1.9 and the fact that the class
Krel admits filtrations (cf. 3.2.3). QED

COROLLARY 6.3.13. Let P be any of the properties mentioned in theorem 6.5.12.
Then AL(K™ 2 )4+0 has P iff T ¢ H.

DIFFERENCE OPERATOR

The difference operator D was extensively discussed in chapter 4. We added this oper-
ator to the variety of locally square relation algebras, and saw that a finite equational
axiomatization was possible. The price paid for this extra expressive power was that
the variety lost the amalgamation property. The corresponding logic does not have
the interpolation property (a counterexample is given below). We even lost Beth’s
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definability property, by a result of I. Sain (see 5.4.14). The logic is still decidable, by
a result of Andréka, Mikulds and Németi ([AMNO4]); but we do not know whether this
can be shown by filtration.

THEOREM 6.3.14. AL(KT® )+ D admits a finite aziomatization by an orthodoz deriva-
tion system, and it is decidable. The logic lacks Beth definability and interpolation.

ProoF. Finite axiomatizability follows from 4.4.3. In addition, we show how inter-
polation fails. Formula (6.1) below is a counterexample. Recall that ¢™¢ stands for
“there are at least n ¢—worlds”, and that, assuming the Booleans, {0*,0?} and the D
operator are inter—definable.

[0*(p Aid) A 0N (=p Aid)] — [(0'g A 0'=g) — (0%q V 02=g)] (6.1)

The intuitive meaning is the obvious truth: “if there are three identity worlds, then
there are three worlds”. An interpolant can only be constructed using the constants T
and id. But then, we cannot express that there are three identity worlds (we can only
count up to two with the difference operator). QED

REMARK 6.3.15. For stronger negative results with respect to interpolation and de-
finability, we refer to 5.4.13 and 5.4.14. D—expansions for classes of pair-frames which
are larger than K% »< have not yet been investigated.

COUNTING MODALITIES. The counting modalities were briefly discussed in sections 4.4
and 5.4.3. We state some known results about their addition to arrow logic of pair—
frames.

THEOREM 6.3.16 (MIKULAS-NEMETI). Let H C {R,S,T}. AL(K[4z)+{0" : 0 <
n < w} 1s decidable iff T ¢ H.

Proor. Cf. [MN94]. QED

THEOREM 6.3.17 (MIKULAS-NEMETI). AL(KT4,)+{0" : 0 < n < w} is strongly
completely aziomatizable by an orthodoz derivation system with finitely many aziom
schemas.

Proor. Cf. [MN94]. QED
The last theorem is an unpublished result by Németi—Sain.

THEOREM 6.3.18 (NEMETI-SAIN). Let H C {R,S,T} or H = SQ. AL(KI%5)+{o" :
0 < n < w} lacks interpolation and Beth definability.

6.3.4 THE KLEENE STAR

We start by defining the meaning of Kleene * on arrow—frames, using a special acces-
sibility relation. After that, we prove our main result, roughly saying that, if a finitely
axiomatizable canonical arrow logic admits filtrations, we have a weakly complete finite
derivation system for its expansion with *. Using our filtration and axiomatization re-
sults from previous chapters, this gives us several complete and decidable *—expansions
of pair arrow logics.
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REMARK 6.3.19. Some of our results could be derived using the ideas and results in
van Benthem [Ben93]. The disadvantage of the type of proof presented there is that
for every different arrow logic, one has to adjust the argument considerably. Moreover,
most of its work is in proving the finite frame property for the logic without *. Since
we know this already for several arrow logics, we tried to find a proof which separates
the latter issue from the difficulties arising from adding *. The result (lemma 6.3.20)
is widely applicable, and provides a means of reducing the problem of axiomatizing
an arrow logic with * to the problem of finding an appropriate filtration for that logic
without *.

MEANING OF THE KLEENE STAR. The intuitive meaning of the Kleene star on arrow-
frames is given as follows:

M,z I+ ¢* <= 1 is a ¢ arrow, or z can be finitely C~decomposed into ¢ arrows

Note that the star is not a modality, because it does not distribute over disjunction. It
is normal and monotonic. We make its meaning precise, using an accessibility relation
between points and sets of points. Here, we will use the concept of a mountain. Let
F =(W,C,F,1) be an arrow—frame. F-mountains are defined inductively:

o for all z € W, the tuple (z,0, {z}) is an F~mountain

e if Czyz, and (y,Y;, B;) and (z,Y;, By) are F-mountains,
then (z, ({{zyz)} UY; UY)),(By U B,)) is an F~mountain

e these are all the F-mountains,

Every mountain (z,Y, B) represents a finite decomposition of z into arrows from B.
We define the accessibility relation for * on a frame F = (W, C,F, 1) as a relation S C
W x p(W):

5%(z,B) €& 3y € Q) : (2,7, B) is an F-mountain

This relation is completely determined by the domain of F and the relation C. Now
the meaning of ¢* can be defined as follows:

M= (F,v),z¢* <L (3BCW): 5 (¢, B) & B C [¢]y

If AL(K) is an arrow logic of any type containing at least the composition operator,
AL(K)+* denotes its expansion with *. Note that we do not change the class of models,
only the set of formulas and the truth definition.

CoOMPACTNESS. Let ¢" stand for the disjunction of all formulas containing n copies
of ¢ separated by e’s and brackets. (E.g., ¢* = ¢ e (¢ o)V (¢ o ¢)e¢.) Intuitively, ¢*
is equivalent to the infinite disjunction of all ¢". Clearly, {-¢" : n < w} = —¢", but
¢* is always satisfiable together with any finite set of ~¢"’s. This shows that the logic
is not compact, and that means that we can only hope for weak completeness in the
presence of the star.
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OBTAINING COMPLETENESS. Van Benthem [Ben93] proposed the following axioms
and (unorthodox) rule for *, which are easily seen to be valid!!.

(1) p—p*
(2) prop" —p*
Fo—d Fep >y
F¢*— 9
The next lemma shows that these often suffice for weakly axiomatizing *-expansions
of arrow logics.

*—rule

LEMMA 6.3.20 (STAR LEMMA). Let AL(K) be an arrow logic of any type containing
at least the composition operator. Suppose AL(K) is canonical and aziomatizable by
a derwation system QUX). If AL(K) admits filtrations, with the restriction that the
filiration for the accessibility relation C for the composition operator is minimal, then
AL(K)+* is weakly completely aziomatizable by the derivation system obtained from
QX)) by adding the azioms (1*),(2*) and the x—rule. Moreover, if AL(K) is finitely
axiomatizable, then AL(K)+* is decidable. :

REMARK 6.3.21. The restriction on the relation C is not crucial. If we do not know
that the filtration for C is minimal, it is sufficient that the closure set CL(X) (through
which we filtrate) satisfies (¢* € CL(X) = ¢* ¢ ¢* € CL(X)). Since the filtrations we
used in chapter 3 for arrow-frames are minimal for C, this weaker version of the lemma
is sufficient here.

Proor or LEMMA 6.3.20. Let AL(K) be a canonical arrow logic which admits fil-
trations with the mentioned restriction, and which is axiomatizable by Q(X). Let Q(5*)
be the derivation system obtained from (X)) by adding the * axioms and rule. We have
to show that (X*) forms a weakly complete axiomatization of AL(K)+*. So assume
Q(Z*) ¥ ¢. Let M = (F,v) be the canonical model'? of the derivation system Q(T*).
Because AL(K) is canonical, and we assumed that the derivation system is complete
for AL(K), the frame F is a member of K. The problem with this model (due to the
failure of compactness) is that it includes ultrafilters containing a formula »* without
any “witness” ¢". Hence, such an ultrafilter cannot be “finitely C-decomposed into 1
arrows”. We will solve this problem by creating a finite model.

Let X? be the set of subformulas of ¢. This set will contain formulas of the form *.
From the point of view of the old logic, these mean nothing, so we can just regard them
as propositional variables'®. Then X? can be viewed as a (finite) set of formulas in

HAt the frame level, (1M and (2%) correspond to
conditions Ve S7z{z} and Czyz & S7yB, & §¥zB; = $7z(B; U B,), respectively. The following
version of the rule is valid for global consequence.

GNP, oty
=

¥ See footnote 5 for a definition.
3Note that the only important thing is the outermost * subformula (ie., (po¢™)" is regarded as a
propositional variable).
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the old (*~free) language. By assumption, we can filtrate the canonical model through
a set CL(¢) D X?, obtaining a finite model M* = (F*,v*}, in which the relation Cis
defined minimally. Define v* only on the “real” propositional variables. Recall that we
used F to denote the domain of the frame F, and that a “minimal filtration” meant
that

C7,75,24S Guwe F): Ckow kT =0&T=0&Z=1

Note that we also use a superscript * to denote the filtration. (In this proof, a super-
script * only denotes the Kleene star if it is attached to a formula.) By assumption,
F* € K and F* is finite. We are almost ready if we can prove the truth-lemma:

CramM 1 (TrutH LEMMA). (T) (Vo € CL(¢))(NVw € F):yp €W <= M" W ¢

ProoOF OF CLAIM. By induction on the complexity of 1. By assumption, we can
perform the inductive proof for all connectives except * (because min and max are
satisfied for all the “old” modalities). For *, we need additional work. In the sequel, we
use 6* to denote the formula which uniquely describes the point @ in the filtration'.
For every formula 9* in the closure set, we define a formula which describes the set of
points in the filtration where ¢* holds by the truth definition. Define this formula as:

o* {8 M T )
Because F* is finite, ¢¥# is a formula.
CLaM 2. (Vo* € CL(¢)) : QT*) Fy* o o#,

PRroOOF OF CLAIM. Suppose that ¥* € CL(¢). We start with the easy side.

Q(T*) + # — ¢*. Suppose that ¥# € w, for an arbitrary w € F. We have to show
that 1* € w. By the definition of ¥* and the truth definition, we should show that
(6.2) below holds (this is sufficient, because ¢* € W <= ¥* € w).

(@Y € C*): (w,Y, B) is an F*-mountain | & B C [¢]y. > ¢ €® (6.2)

We do an induction on the “height of the mountains”, measured by the cardinality
of the set Y. So we do a double induction. Call the induction hypothesm for the
truth-lemma IH1, and the one for this claim IH2.
[Y| = 0. Suppose (w, 8, B) is an F*-~mountain and B C [¢].. Then, by definition,
B = {w}, whence M*,@ I 1. But then, by IH1, ¢ € W, and by axiom (1%), ¢* € W.
[¥| =n+1. We may assume that (6.2) holds for all smaller Y. Suppose (@, Y, B) is
an F*~mountain and B C [¢],;.. By definition of mountains, we can find 7, % such that
C*w,7,%, and (7, Y1, By) and (Z, Y3, By) are F*~mountains with Y = (Y} uY,U(w,7, %)),
= (B, U By), and Y; and Y} are strictly smaller than Y. So IH2 implies that ¢* €

14Gee [HCB4] p.137 how one can define such a formula. Note that, u =cpg) v &= b 8" < 67



142 APPLICATIONS TO ARROW LOGIC [6.3

and ¥* € Z. Now we use our assumption of a minimal definition for C and compute

Cw,7,7&Y* € & ¢* € Z <> (assumption)

(Fu,v,2) : Cuvz & T=W,T=F&T=2& ¢ €& Y* € Z=> (because ¢* € CL(9))
Y* € v&yY* € x = (by definition of C)

Y* e p* € u = (axiom (2%))

Y* € u=> (because ¢¥* € CL(¢) and 7 = W)

Yrew

This finishes the first half of the claim. The crucial step for the other half is the next
claim.

CrLAM 3. For all §,6” belonging to ¢#, Q(T*) I 6% e 67 — ¥,

PrOOF OF CLAIM. Suppose otherwise. Then 6* & §Y A =¥ is consistent. Let u be
a maximally consistent extension of §* & §” A —p* (that is, an ultrafilter containing
& 6% A —p*). Then the canonical frame F has w', v’ with Cuw'v' & 6% € w' & 6 € v'.
Hence in the filtration, C*%, W, 7. By definition of ¥ @ I+ ¢*&T I+ ¢*, hence ¥ I Pre*,
Thus, 7 |= 9* and 6* belongs to ¥#, whence I 6* — # and ¢* € u, a contradiction.

<

To prove Q(T*) F ¢* — ¥# we now proceed as follows. We have P — ¥ since
F 4 e V{6 : ¥ € w} by propositional logic and the fact that 1) € CL(¢). By claim 2,
using distribution of e over V: F y# o y# — ¢#. So, by the x—rule, F * — ¥#. 4

Now we are ready to finish the proof of the truth-lemma with the inductive step for *.
Suppose that ¢* € CL($). Then ¢* € W €& * € w <= (claim 2) ¥* € w <=
67 € wd M*, W I p* <L M* w1 o*. <

We now conclude our main proof. Henceforth, we may assume that (T) holds for all
formulas in CL(#). Now, since Q(T*) If ¢, there exists a w € F (the universe of the
canonical frame) such that ¢ ¢ w: whence, by (T), M*, W ¥ ¢. Since M* is an AL(K)+*
model, we have AL(K)+* [£ ¢. This proves weak completeness. Because M* is finite,
we have also shown that AL(K)+* has the finite frame property. If the old logic is
finitely axiomatizable, the expansion is finitely axiomatizable, so it is also decidable.

QED

APPLICATIONS OF THE STAR LEMMA

THEOREM 6.3.22. Let H C {R,S}. The logic AL(KI )+ admits a weakly complete
aziomatization by the ALK y) derivation system extended with azioms (1*) and (2*)
and the x-rule. ‘ '

THEOREM 6.3.23. Let H C {R.S5}. The logic AL(KI¢ ) +* is decidable.

We prove the two theorems together.
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Proor. Let H C {R,S}. Lemma 4.2.3 states that the class of arrow-frames Krel,
(cf. 2.4.8) equals the class of zigzagmorphic images of the class of pair-frames Krel ..
It follows that AL(KI%,)+* is equivalent to AL(Kf;)+", because the meaning of *
is determined by the accessibility relation C of the composition operator. But then,
it suffices to prove the theorem for the arrow logics AL(K[f,)+*. These logics are
canonical, finitely axiomatizable, and ~by the proof of 3.2.3~ they allow filtrations in

the restricted sense of lemma 6.3.20. Now apply that lemma. QED

Once T € H, the old arrow logic becomes undecidable, hence its corresponding class
of frames cannot allow filtrations, and the above proof does not go through. We have
our usual corollary. Interpolation and definability must await further investigations.

COROLLARY 6.3.24. Let H C {R,S,T}.
(1) AL(K¢ ) +* admits a weakly complete finite aziomatization iff T ¢ H.
(i) ALK y)+* is decidable ff T ¢ H.

EXPANSION WITH THE UNIVERSAL MODALITY. A debatable aspect of the above
theorem is that its derivation system is unorthodox, because we added an inference
rule. With the universal modality ¢ in the language, we can replace the *-rule with
axiom (3*):
(3) O((p—a)Algea—q) (P —9)

If O is the dual of the universal modality, this axiom is valid on pair-frames, and we
can derive the x—rule from it. The next theorem states that we can also axiomatize
this expansion of AL(K7¢)+*.

THEOREM 6.3.25. Let H C {R,S}. AL(Kg)+{*, 0} admits a weakly complete
axiomatization by the following derivation system:

(i) The AL(Ke ) derivation system

(ii) An S5 aziomatization for ¢ (cf. e.g., [HC84])

(iii) Azioms ®p — Op and pe g — Op A Oq for the interaction of O with the
old connectives's

(iv). Azioms (1*),(2*) and (3*) for the Kleene star.
THEOREM 6.3.26. Let H C {R,S}. ALK ¢ 5)+{*, 0} is decidable.

We prove the two theorems together.

PROOF. We give a proof-sketch. Take the canonical model M = (F,v) of the deriva-
tion system given in the theorem. Filtrate it as described in the proof of 3.2.3. Define
the relation U* for the ¢ in the filtration by U*Z,7 L (0 € T <= 0¥ €7). Then
(by Thm 8.7 in [HC84]), this is a filtration and U* is an equivalence relation. Since
both the relations for composition and converse are defined minimally, the axioms in
(i) hold. Define the star in the filtration, and use the Star Lemma to prove the truth-

lemma. Suppose the point which falsified the non-derivable formula was W. Generate

the subframe from . Here the formula is still falsified, and U* will be the universal

15Note that p* — Op is derivable.
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relation. Clearly this frame is finite. Because its frame validates all the arrow-logical
axioms, it is a zigzagmorphic image of a pair—frame in which ¢ is the universal modal-
ity. Since the meaning of star is determined by the relation Cy for the composition
operator, the formula will still fail in this pair-frame. QED

6.4 TWO-SORTED ARROW LOGIC

One can also develop a two sorted arrow logic of pair-frames, as proposed by van
Benthem ([Ben93]) in the context of abstract arrow-frames. This logic can reason
about two domains: both states and transitions. The new language has appropriate
modalities to reason within the two domains, and to reason about connections between
them. In de Rijke [Rij93], the importance of many-sorted modal logics is stressed.
All applications mentioned there can also be performed in our framework, without
occurring undecidability.

THE CONNECTIVES. The proposed logic has a two-sorted language of state asser-
tions (with meta-variables ¢, 1, ...) and transition formulas or programs (with meta—
variables 7y, m,...). Two new connectives, taken from propositional dynamic logic,
provide the connection between the two sorts:

M,z I+ (7)o LN (Fy) M, {(z,y) F &M,y I ¢

M, {(z,y) IF ¢? LN r=y&M,z I+ ¢

Van Benthem proposed three simpler connectives'® from which these two can be de-
fined (see 6.4.3 below). Note the similarity of L and R with the operators s} and s?,
respectively!’.

M, (z,y) Lo <& Mz

M, {z,y) + R¢g <& M,y ¢
M,z i D7 &l M, {(z,z) b m

Schematically, we can represent the language as follows (see van Benthem [Ben91a],
for an explanation of the concepts mode and projection):

— modes —

L,R,?
propositional logic arrow logic
nterpreted on states interpreted on transitions
+ projections «
D, ()¢

%In the terminology of [Ben91a}, D is the only permutation—invariant projection which is a Boolean
homomorphism, and L and R are the only such modes which are Boolean homomorphisms.

}"Please do not confuse D with the difference operator D. This D stands for diagonal, and L and
R for left and right, respectively.
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The D and ? connectives make most sense in reflexive pair-frames. If we have a
symmetric domain as well, Lé and R¢ become interdefinable. Hence, from now on we
will work in this class of frames.

DEFINITION 6.4.1. State assertions ST and programs PR are the smallest sets satis-
fying:

o {gi:i<w}CSTand,if ¢,% € ST and 7 € PR, then =¢, (¢ V ¢),Dr € ST
e {p; i <w}U{id} C PR, and if m, 7, € PR and ¢ € ST, then ~m, (m Umy), @1,
(myem),Lép €PR

Here, “—" denotes the negation of a program, “U” the disjunction of two programs
(for conjunction, we use “N”). For the Boolean top, we use “T”, for the arrow logical
one, we use “17. We will use “—” for material implication in both sorts. Now we can
define propositional dynamic arrow logic of locally square pair-frames.

DEFINITION 6.4.2. DALy, is a triple (Fml,Mod, I+) in which:

e Fml=STUPR

e M = (Ar, Po, VPR,VST> is a DALy, model if Ar is a reflexive and symmetric
binary relation with base Po, and v*® : {p; : i < w} — P(Ar) and v®T : {g :
i < w} — P(Po) are valuation functions for the propositional variables in PR
and ST, respectively. Mod is the class of all such models.

e I gives meaning to the formulas in every model. ST-formulas are interpreted on
the set Po (of states) and PR—formulas on the set Ar (of arrows) as one would
expect for the given connectives. For the new connectives, I+ was defined above.

The next proposition shows that DALy, is strong enough to capture the mode and
projection from PDL.

PROPOSITION 6.4.3. On reflezive and symmetric pair-frames, the languages
{o,®,id,L,D} and {e,®,id,?,(.).} are equally expressive.

PROOF. First, we express R,? and (.). in DALyr, just as in [Ben93]. We need
symmetry of the universe for the first, and reflexivity and symmetry for the last clause.

R¢ « (Lo
@7 « idNL¢
(m)¢ o D(meLg)

On the other hand, with 7 and (.). as primitives, one can express L and D as follows:

Lo < ¢7e1
Dr « (idnx)T

For these definitions, only reflexivity is needed. QED



146 APPLICATIONS TO ARROW LoGiC [6.4

DEciDABILITY

THEOREM 6.4.4. DAL, is decidable.

Proor. We can give a direct proof, adjusting our previous filtration. An easier way
is provided by the fact that in AL(KI¢ ), one can encode all the state assertions of
DAL, viewed as programs which hold only at identity arrows. Define the following

inductive translation function ° from DALy, formulas to arrow logical formulas:

P} = pi g = ¢Nid
(=7m)° = —(=°) (-d)° = —(¢°)Nid
(mUm)° = wiuUng (V) = (p°Ux°)Nid
(L) = (idng°)el (Dr)° = #°Nid
id° = id
(@r)° = &(n°)
(rrem)° = (nfen3)

An easy induction shows that a formula is DALpy,ir valid if and only if its translation
is AL(K¢ 5s) valid. (Cf. Brink et al. [BBS94] for a similar translation). But then, we
can decide DALy,;r formulas in the decidable logic AL(K¢ ). QED

COMPLETENESS

Next, we provide a complete axiomatization for DALyir. As in chapter 4, we first
define abstract DAL frames, then we restrict that class to a suitable class Kaar, and
show that every frame from Ky, is a zigzagmorphic image of a DALy, frame.

DEFINITION 6.4.5. (i) F = (Ar, Po,C,F,I,1,d) is a DAL frame if (1) Ar is a set
(of arrows), (2) Po is a set (of begin and end points of arrows), (3) (Ar,C,F,1) is an
arrow—frame, (4) [ : Ar — Po is a function (providing each arrow with its starting
point), and (5) d : Po — Ar is a function (providing each point with the identity
arrow on that point). The meaning of the two new connectives on these frames is:

(Ve € Ar): M,z Lo &L M, {z)IF ¢

(Yw € Po): M,wiDr && M,d(w) I+ =

(ii) Kgar is the class of all DAL frames which satisfy:

(Do) conditions (Cy) — (Cis) from section 2.4.3
(Dy) 1 and d are total functions

(D2) (Yw € Po) : l(d(w))

(D3) (Yw € Po) : w = I(d(w))

(Dy) (Vz € Ar) : lz = z = d(I(z))

(Ds) (Vzy € Ar) : Coyz & ly = I(z) = I(y)

18These are the requirements on (Ar,C,F,1) which suffices for a representation as a reflexive and
symmetric pair-frame,
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(iii) Let V C U x U be a symmetric and reflexive relation. Define R(V) def (V. Vo, Cy,s
Fy,lv,ly,dy), in which Vy = Base(V), the relations Cy,Fy,ly are defined as in sec-
tion 2.4, and (V{u,v) € V) : ly({u,v)) = v and (Vw € V;) : dv(w) = (w,w). These
frames are called DAL, frames.

THEOREM 6.4.6. DAL, is strongly completely aziomatizable by adding the follow-

ing azioms to the basic derivation system:'

(DAo) all AL(K 8 ps) azioms
(DA;) L and D distribute over negation
(DA;) Did

(DAs) DL$ o

(DA,) id — (LD7 & )

(DAs) (idNL¢)e1 & Lo

PROOF. Soundness is easy to check. As for completeness, it is easy to see that any
DAL frame satisfies the axioms iff it satisfies conditions (Do) — (Ds) (because all
axioms are Sahlqvist formulas). So, by the now familiar argument, it suffices to show
that any frame F € Kgy is a zigzagmorphic image of some frame FR(V), for V a
reflexive and symmetric relation. The relevant “two-sorted zigzagmorphism” works
as follows: Let F = (Arf PoF ,CF FFIF ¥ dF)and G= (Ar€, Po%,CY FC 15,16, dC)
be in Kgo;. The functions p : Arf — Ar© and p* : Pof — Po% constitute a
zigzagmorphism if (1) p is a zigzagmorphism for the C,F, | part, (2) p* is surjective,
and (3) (Vw € PoF) : p(dF(w)) = dO(p*(w)) and (Vz € ArF) : p*(IF(z)) = I(p()).

Let F = (Ar, Po,C,F,1,1,d) € Kg. By lemma 4.2.3, the reduct (Ar,C,F,1) is
a zigzagmorphic image of some locally square pair-frame (V,Cv,Fv,lv), say by the
function p : V —> Ar. Take the frame FR(V) and define p* : V5 — Po as p*(w) =
p(dv ().

CraiM. The functions p and p* form a zigzagmorphism from FR(V') onto F.

PROOF OF CLAIM. We have to show that (1) p* is surjective, (2) p(dv (w)) = d(p*(w))
and (3) p*(lv(z)) = l(p(z)). Let us compute.

(1) Suppose w € Po, then d(w) € Ar. Because p is surjective and (by condition
(D,)) 1(d(w)), there is some @ € V such that p(z) = d(w) & ly(z). Since ly(z), also
v = dy (w0), whence p*(s0) < Up(dy (20))) = U(p(2)) = (d(w)) ‘=’

(2) Let w € V;. Then, by definition, ly (dyv(w)), whence by assumption, (p(dv(w))),
so by (Dy): p(dy(w)) = d(l(p(dv(w)))) = d(p" (w)).

(3) Let z € V. Then, by definition, Cyz,dy (Iv(2)),z and lydy(lv(z)). Because p
is a zigzagmorphism, Cp(z), p(dv(ly(z))),p(z) and Ip(dy(ly(z))). Then, (Ds) implies
that (p(x)) = Up(dy (v (2)))) = p* (b (2)). QED

DEFINABILITY AND INTERPOLATION

THEOREM 6.4.7. DALy enjoys Craig interpolation and Beth definability.

9] e we add (UG) rules for L and D and distribution axioms L(g V ¢') « (Lg U Lg ) and
D(pup') « (DpVv Dp') to the basic derivation system for arrow logic defined in 6.1.2.



148 APPLICATIONS TO ARROW LoGIC [6.4

ProOF. Immediate by the given axiomatization, the frame correspondents and 5.3.6.
QED

CONCLUSION.  We have seen that making arrow logic two—sorted can be done without
losing any of the positive properties of the one-sorted system. This is also the conclu-
sion of [Ben93] in the context of Kripke frames. What is new here is that the logic can
be given a natural pair-frame semantics, which is finitely axiomatizable. This logic

“also behaves well from the computational point of view: it is decidable and it has the
interpolation property.

6.4.1 CONNECTIONS WITH OTHER SYSTEMS

PROPOSITIONAL DYNAMIC LOGIC. We briefly compare DALpgir with propositional
dynamic logic (PDL). As we have seen, the Kleene star can be added to the arrow
logical part of DALy, which yields a PDL-like system over locally square pair-frames.
For this comparison, define that subclass of Ko in which composition is associative,
namely: K333 et {(FeEKi:FlEme(men) o (mem)e 73}. (Remark 2.4.11 gives
the frame correspondent of this axiom.) Note that K% validates all RA axioms, so it
mherits all negative properties of RA.

PROPOSITION 6.4.8. (i) Every *~free PDL formula which is valid in PDL, is also

ass

'Ual’l’d Zn dal*
(ii) All *~free PDL azioms, ezcept (m ){(m)p — (1) @ ), are valid in K.

ProOF. The validities follow from a straightforward computation. The following
DALpsir model is a counterexample for (m;){m)¢ — (m;  m;)¢. Its domain consists
of the set (*{u,v} U?{v,w}). Let v*T(q) = {w}, v"R(p1) = {{u,v)}, and vPR(p,) =
{{v,w)} Then u I (p)(p2)q, but u If (p; ® p)q.

v
’ 6.3
YR (63
u w,q
QED

WEAK PEIRCE ALGEBRAS

Peirce Algebras are discussed in Brink et al. [BBS94] and in de Rijke [Rij93]. They have
several applications in computer science and knowledge engineering. De Rijke ([Rij93]
p.104) asks for an “arrow version of Peirce algebras which is sufficiently expressive for
applications but is still decidable”. The logic DAL,,;, might be an answer to this
question?. To conclude, we present a weakened version of Peirce Algebras with some
nice properties that Peirce Algebras lack.

201¢ DALy, is still not expressive enough, we can add for instance the difference operator or the
Kleene star. It follows from the previous results that, except if we add both, decidability remains.
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PEIRCE ALGEBRAS. We copy the definition from [Rij93]. A Peirce Algebrais a two
sorted algebra (®,%,:°) in which % € RA and % € BA. The binary operator “” is
a function from R x B to B, called Peirce product, and the unary operator “*” is a
function from B to R. The operators which form the connections between the two
sorts have to satisfy (P;) — (Ps) below.

(P) m:(pVep)=(m:¢)V(r:9) (Ps) 0:6=0

(Py) (mVm):id=(m:¢)V(m:¢) (F) 77 :~(r:¢)< —¢
(Ps) m:(mp:¢)=(m;m): ¢ (Pr) ¢°:1=¢

(P4) ld¢=¢ (Pg) (71'.1)0271';1

The intended models are subalgebras of direct products of two-sorted algebras
{(Fpair(U x U, B(U), ()., L) for some set U.

PEIRCE ALGEBRAS AND DALy,,. As we have seen, (.). and D are interdefinable
in DALyqr. So the intended models of Peirce Algebras are that subclass of DALy,
models in which the set of pairs is a full Cartesian square. Axiomatically, the only
difference between the relational part of Peirce Algebras and that of DALy, is that in
Peirce Algebras composition is associative, while in DALy, it is only weakly associa-
tive. The next proposition tells us that this is the only important difference between
DALypgr and Peirce Algebras. Here are the trivial translations from the above axioms
into the DALy, language.

(P)) (m)(¢V) o (meV (i (F5) (O L

(Py) (mUm)d o (m)dV (m)d (F) (®m)=(m)d — ¢
(Pg) (m)(ma)¢ & (m @ ma)d (Pr) (LH)T « ¢

(Py) (id)p ¢ (P)) L(mMT ermel

PROPOSITION 6.4.9. (i) DALpair = (P}), (P3), (Ps), (Ph), (P%), (Pg), (P1), (Ps.)-
(ii) DAme’r V: (Pé-r)’ (Pé,_,).

(iii) Kgi = (P1) — (F3)-

Proo¥F. (i). By direct calculation. (ii). For (P;_,), this was proved in 6.4.8. We give
a counterexample to L{n)T — 7 e 1. Let the domain of model M be the reflexive and
symmetric closure of {{u,v), (u,w)} and set v"R(p) = {(u,v)}. Then (u,w) I L{p)T,
but (u,w) f pe 1.

v

/ (6.4)

U e W
(iii). By direct calculation. QED

Thus, K% is at least as strong as the logic of Peirce Algebras. Conversely, consider
the class of Representable Weak Peirce Algebras (RWPA), whose relational component
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consists only of subalgebras of complex algebras of locally square pair-frames. (L.e., an
RWPA is an algebra of the form (®,%, ()., L) with ® < (Fpeir (V) and 8 < $(V4),
for a reflexive and symmetric relation V' with base V;.) By proposition 6.4.3, the
algebraic version of DALy, is (term-definably equivalent to) the class RWPA. All
earlier positive results for DALy, which do not hold in Peirce Algebras, carry over
to RWPA. So the strategy of obtaining positive results by widening the class of models
to the “logical core”, also works for Peirce Algebras.

6.5 CONCLUDING REMARKS

We did two things to obtain computationally well-behaving versions of arrow logic of
pair-frames. First, we weakened the requirements on the universes. We saw that tran-
sitivity of the universe forms the borderline between positive and negative behaviour.
Second, we strengthened the expressive power of the well-behaving arrow logics. We
saw that in most cases it is possible to add connectives while keeping the positive re-
sults, and that for these strengthened logics the borderline is again transitivity. For
further fine-tuning, we learned the following. First, strengthening the derivation sys-
tem Q({pe(qer) & (peg)er}) with axioms valid on square pair-frames, leads to
undecidability (Thm 3.2.2). Second, adding operators like D, which lead to a lim-
ited way of counting, result in the loss of interpolation and Beth definability. Further
research in this area could consider the following questions:

1. We only focused on decidability vs. undecidability. What are the changes in
complexity if we change the models or the vocabulary?

2. We always assumed all Booleans. What is the precise réle of them in the negative
results? (For some answers, see [AKNT94] (on (un)decidability) and Andréka
[And89], [And91b] (for finite axiomatizability).)

3. How far can we go with strengthening the vocabulary? ILe., which expansions
lead to undecidability, or lack of finite axiomatizability?

4. In which areas of, for instance, computer science can we fruitfully apply the de-
cidable non-associative arrow logics instead of the undecidable relation algebras?

5. Where can we fruitfully apply the decidable non-commutative FO logics? Is it
possible to explain the abundance of decidability in modal logic by showing that
all decidable logics can be interpreted in a fragment of a decidable FO logic?
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SAMENVATTING

We onderzoeken verscheidene verzwakte vormen van eerste orde logica en van de logica
van binaire relaties die wordt gegeven door representeerbare relatie algebras. De be-
langrijkste reden om de twee welbekende en veel gebruikte logicas te verzwakken is hun
complexiteit: de theorie van beide systemen is onbeslisbaar. Deze logicas worden niet
alleen toegepast in gebieden waar deze complexiteit nodig is, zoals in de wiskunde, maar
ook in tal van andere disciplines (informatica, linguistiek, sociale wetenschappen) waar
de problemen vaak eenvoudiger (i.e., beslisbaar) zijn. Om deze reden is het gewenst om
nieuwe versies te ontwikkelen die wat betreft semantiek en uitdrukkingskracht zo dicht
mogelijk bij het origineel staan, maar die een beter computationeel gedrag vertonen.

In eerste orde logica komt de verandering er op neer dat, gegeven een model M =
(D, I), de verzameling bedelingen slechts een deelverzameling is van “D, en niet, zoals
in het klassieke geval, gelijk is aan “D. In hoofdstuk 3 tonen we beslisbaarheid aan
van zo'n verzwakte eerste orde logica met behulp van filtratie. In hoofdstuk 5 kijken
we naar de Craig interpolatie en Beth definieerbaarheid van de zwakkere logicas.

De verzwakking van de logica van binaire relaties is door J. van Benthem “ar-
row logic”, of “pijl-logica”, gedoopt. Dit is een modale logica, geinterpreteerd op een
verzameling pijlen, met modaliteiten voor compositie en converse van pijlen, en een
(constante) modaliteit die aangeeft dat het begin- en eindpunt van een pijl dezelfde
is. In dit werk identificeren we pijlen met het paar (beginpunt, eindpunt). We on-
derzoeken het gehele spectrum van pijl-logicas waar het domein van de modellen een
binaire relatie is die voldoet aan een combinatie van de eisen {reflexiviteit, symmetrie,
transitiviteit, Cartesisch product}. In hoofdstuk 3 kijken we naar beslisbaarheid, in
het volgende hoofdstuk naar eindige axiomatiseerbaarheid, en in hoofdstuk 5 naar in-
terpolatie en Beth definieerbaarheid. Onze resultaten zijn in één zin samen te vatten:
een pijl-logica heeft één of meer van deze positieve eigenschappen dan en slechts dan
alleen als de domeinen van de modellen niet noodzakelijk transitieve relaties zijn.

Het onderzoek wordt uitgevoerd binnen het raamwerk van de algebraische logica.
Dit betekent dat we eerst de algebraische tegenhangers van de logische systemen bestu-
deren, en dan de resultaten vertalen naar de logische kant. In hoofdstuk 6 plukken
we de vruchten voor pijl-logica van de voorafgaande algebraische studie. Daarnaast
onderzoeken we enige uitbreidingen van de taal. Daar zien we hetzelfde beeld als
voorheen: transitiviteit vormt dé grens tussen positieve en negatieve computationele
eigenschappen.
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