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INTRODUCTION

PARSIMONY IN APPLYING LOGIC

When one wants to use logic to formalize a problem in such diverse �elds as philosophy,
linguistics or computer science�, the first dif�culty one encounters is the following:

What is the appropriate logic which fits my speci�c problem?

There are two parameters in the above question which have to be made clear: appro-
priateness and �t. Assume that one has indeed good reasons to use formal logicl.

It is easy to make the first criterion precise: the logic should contain enough ex-
pressive power to give an accurate description of the problem. A good example is
Propositional Dynamic Logic (PDL) (cf. Harel [Har84]), which is expressive enough to
formalize the regular programming constructions. Another example is ��rst~order (F0)
logic, which is expressive enough to capture most of mathematical reasoning.

Whether a logic �ts a speci�c problem, is a question which seems harder to answer.
While the appropriateness criterion asks for enough expressive power, a good fit could
mean that there is not too much. In this view, the two criteria become necessary and
sufficient conditions on the expressive power of a logic. Clearly, there is more to say
about fit, but we stay with expressive power for a moment. The expressive power of a
logic is closely connected to its complexity. In the article titled Sources of Complezrityt
Content versus Wrapping, J. van Benthem describes this situation as follows:

Any description of a subject carries its own price in terms of complexity. To
understand what is being described, one has to understand the mechanism of the

language or logic employed, adding the complexity of the encoder to the subject
matter being encoded. Put more succinctly, �complexity is a package of subject

matter plus analytic tools�. ([Ben94:b], p.1)

Since one of the main advantages of a formalized problem is that one can make de�nite
statements about the complexity of the problem, Efélgse �t between the complexity
of the encoder and that of the subject matter seems to be a sine qua non. As van
Benthem describes:

. . .working logicians in linguistics or computer science often have the gut

feeling that the styles of reasoning they are analyzing are largely decidable (. . . ),
but it is hard to give any mathernatical underpinning of these working intuitions.

([Ben94b] , p.9)

Could it be that the logic they used is appropriate, but does not fit in the sense that
it contains an excess of expressive power? After all, when proving decidability, one
proves decidability of the encoder, not of the subject matter.

1In the broad sense that a syntax and a semantics are precisely de�ned, so that a mathematical
investigation of that logic itself becomes possible.
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Two good examples of logics, carefully designed for the problem at hand, are the
�above mentioned PDL and the Lambek Calculus (cf. Lambek [Lam58], van Benthem
[Ben88]). Both are decidable. Both? can be viewed as a fragment of Relation Alge-
bra, which is undecidable. Besides being decidable, these two logics have found many
applications besides their original purposes.

This brings us to a second point one should make about the �tness condition, and
which might conflict with the previous one. How close should the fit between logical
language and problem be? If we use only binary relations in the description of the
problem, should we then abandon unary predicates in our logic? Should we always
include all Booleans? One should be liberal here, and allow �natural� logics, which
are rich enough to express the original problem, but which fit well with respect to
complexity. ,

To conclude, when designing a logic for a specific problem, it seems to pay off to do
one�s conceptual homework. Instead of taking the well~driven paths and diving straight
into deep water, assuming a beginner�s mind seems to be more fruitful: What are the
operations needed? What are the objects to be modeled and how much mathematical
structure is needed to model them? What are the models? etc. If the conceptual
homework is done well at this early stage of the work, there is reason to be con�dent
in the complexity results later on.

In subsequent chapters, we will investigate decidable versions of relation algebra
(cf. e.g., Jénsson [Jo&#39;n91] or Maddux [Mad91b], for an introduction) and of first-order
logic (with �nitely or infinitely many variables). Stating and motivating the results,
we will hardly refer to applications, letting the future decide whether these weakened
logics can indeed play a role as sketched above.

The results presented here can be viewed as additions to the tool~box of the ap-
plied logician. Since these two logics are well~known and frequently used, it seems
indispensable to have �computationally well�behaved� versions of them as well.

ARROW LOGIC. As is well known, the classical models for relation algebras are not
�nitely axiornatizable (Monk [Mon64], Andréka [And91a]), their equational theory is
highly undecidable (Tarski�Givant [TG87], Andréka et al. [AKN+94]), and the corre-
sponding logic does not even have the weakest form of Craig Interpolation (Sain�Simon
[SS94]). Almost the only positive thing one can mention is its enormous expressive
power. (E.g., in Tarski~~Givant [TG87] it is shown that this formalism is expressive
enough to formalize set theory.)

The research project of looking for weakened decidable versions of relation algebra
became known under the name of Arrow Logic (cf. van Benthem [Ben91a], Venema
[Ven91], [Ven94]). If we take the name �arrow logic� in its original sense, it stands
roughly for the whole landscape of possible semantic modelings for the �logic of tran-
sitions�, using the language of relation algebras.

The ideas and techniques, we use for obtaining and investigating this landscape are
not restricted to arrow logic in the sense described above, but can be used for almost
every family of modal logics (including FO logic). For this reason, we will also use

2When forgetting for a moment the Kleene * in PDL.
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arrow logic in a broader sense, namely as the process of �hunting for the computational
core� of undecidable logics. (Hunting is, after all, what arrows are made for. . .

COMPUTATIONAL coar. AND RELATIVIZATION. Fix a logical language L. By the
computational core of E, we denote the class of all semantic modelings of £ Whose £
theory is decidable. Given an undecidable semantically de�ned logic, we would like to
indicate which features of the semantics are responsible for its undecidability. So, that
part of the class of the decidable semantic modellings which is closest to the original is
especially interesting. We will see that the Well~investigated operation of relatzpization
(cf. Henkin�Monk-Tarski [Hl\/lT71]) brings us in several cases to the computational
core, while keeping most features of the original semantics.

By changing the semantics we get our first rnetarlogical question: is the new de-
cidable logic �nitely axiomatizable? Moreover, in Andréka��Németi~Sain [ANS94b] it
is pointed out that interpolation has an important computational aspect. Besides
decidability and �nite axiomatizability, we will also study this third aspect of the com-
putational core.

AGENDA. Summing up, we will study the computational core of two logics: Arrow
Logic and First~~Order Logic. Their algebraic counterparts are the classes of relation
algebras and cylindric algebras, respectively. Both are classes of algebras of relations.
We focus attention on three main aspects of the computational core: deoidabélity, �nite
azciomatizability and interpolation.

We will state and prove our results in the framework of algebraic logic (cf. Andréka�
Monk7Németi [AMN91]). We use techniques from both algebraic and modal logic.
Most of the proofs and the theorems also have a very de�nite modal~logical character,
making them understandable for readers with a modal~logical, but Without an algebraic
background.

ORGANIZATION. In the first chapter, we introduce the two families of logics �Arrow
Logic and F0 Logic / Cylindric Modal Logic�« whose algebraic counterparts we will study
in the subsequent chapters. For each logic, we will investigate all reducts systematically,
and in some cases expansions with a strong operation (like the Kleene * or the difference
operator) as well. For each logic treated here, we will investigate the three aspects of
the computational core given above plus Beth �s de�nability property. In chapter 2, we
de�ne these logics and their algebraic counterparts more precisely. Decidability of the
algebraic counterparts of several versions of these logics is investigated in chapter 3.
In chapter 4, we find axiomatizations for decidable, but still natural versions of rela-
tion algebra/ arrow logic. In chapter 5, we focus on amalgamation and interpolation
properties of the investigated algebraic varieties and logics. The last chapter is about
arrow logic proper. We show how the earlier algebraic results give rise to equivalent
statements at the logical level, and we investigate several strengthenings of the basic

language.



4 INTRODUCTION

APPLICATIONS IN ORGANIZATION AND MANAGMENT THEORY. This piece was de-
veloped while working at the Center for Computer Science in Organization and Man-
agment ( CCS OM ), a part of the faculty of humanities. An important line of research
at CCSOM is the reconstruction of arguments in the theory of organization and man-
agment, by formalizing them in (model extensions of) �rst~order logic (cf, Péli et
al. [PM94], [PBMN94] and Bruggeman [Bru94]). We had extensive discussions about
which logics to use for this purpose. The �nal choice for first-�~order logic (With addi-
tional modalities for actions and preferences, cf, Huang [Hua94]) was made because 1) a
classical �monotonic� consequence relation seemed to capture the argument structure,
2) large parts of the theory are concerned with (binary) relations, and 3) �rst~order
logic is relatively well~known. While formally recovering the argument structure, We
discovered that large parts were relatively simple (e.g., only �monotonicity reasoning�
was involved). This led us to look at the weakened versions of first�order logic and
arrow logic described here. An important part of the work remains to be done: see
whether we can indeed use the weakened logics to capture the original arguments and
to obtain further insights in (the complexity of) its structure.
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MAIN THEMES

1.1 ARROW LOGIC IS,THE MODAL LCGIC OF TRANSI-
TIONS

Arrow logic is a widely applicable system, being able to formalize many different notions
from various disciplines like mathematics, computer science, linguistics and cognitive
science (for an early application, see de Bakker�~de Roever [BR73]). Its most highlighted
application area is that of dynamic sevnantics, which uni�es insights from all of the
above mentioned �elds. For more information on these applications of arrow logic, we
refer the reader to Venerna [Ven94]; for the dynamic perspective on semantics, see van
Benthem [Ben9la].

In each of these �elds, if one takes a �dynamic viewpoint�, transitions (e. g., between
cognitive states or between registers of a computer) become the basic object of interest.
The intuitive idea of a transition between two states A and B is that of an arrow leading
from A to B . Dynamic meaning, as given by a set of transitions, can be described as
a set of arrows. Arrow logic itself can be viewed as the modal logic of arrows.

The language of arrow logic is based on the language of relation algebras (that is,
Booleans plus operators for composition and converse of binary relations, and a con-
stant denoting the identity relation) allowing some modi�cations. &#39;\/Vhile the language
of arrow logic is relatively �xed, its semantics is highly dependent on the relevant ap-
plication. We will see that there are at least two very natural semantics for arrow logic:
directed graphs and directed multigraphs. From a mathematical point of view, arrow
logic can be viewed as the enterprise of providing the language of relation algebras (cf.
Jonsson~~Tarski [JT52l, Henkin~l\/lonk-~Tarski [HMT85]) with new semantics.

MODELS FOR ARROW LOGIC

In the rest of this section, we describe a natural part of the landscape of arrow models.
First we have to answer what an arrow is.

An arrow is a directed connection between two points.

Then we have two choices for drawing arrows as �>.

0 Errtensional mew: identify an arrow with the pair (beginpoint, endpomt). Then a
set of arrows is nothing more than a directed graph or an ordinary binary relation.

0 Intensional view: do not identify arrows with ordered pairs, but only require that
an arrow has a unique begin~ and end~point. Sets of arrows are then directed
mnltigmphs.
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So we can think of an arrow as an object equipped with two functions, say lo and 11,
providing the arrow with its begin� and endpoint. (cf. Vakarelov [Vak92b]).

Having sketched what arrows are, we ask ourselves what constitutes an arrow model.
Its domain should consist of arrows and, depending on the applications, there can
be various existential conditions on the domain. This resembles common practice in
modal logic: for different applications, there are different conditions on the accessibility
relation(s). Here we give four examples of natural conditions on arrow models. Note
that with the extensional view, the first three conditions taken together imply that the
domain is an equivalence relation, i.e., a disjoint union of Cartesian squares. We state
these conditions for models in which we identify arrows with pairs. Let V Q U X U be
the domain of an arrow model:

(1) Reflexivity (um) E V => (mu), (v,v) E V
(2) Symmetry (u,v) E V => (ma) 6 V
(3) Transitivity (u,v), (v,w) E V => (u,w�) E V
(4) Classical/ Square V is a full Cartesian product

We gave two ways of modeling arrows, an extensional and an intensional one. There is
a third viewpoint (cf. van Benthem [Ben91a], [Ben93]): arrows are just abstract objects
which one can compose, take their inverse, and which might be �identity arrows�. This
View leads to the concept of an arrow frame, which is nothing more than a usual Kripke
frame, where we call the worlds arrows, and there are accessibility relations which give
meaning to the non~Boolean connectives (e.g., a ternary relation C which gives meaning
to the binary connective which stands for composition). We will call models over these
frames, abstract arrow models.

We call the whole range of modellings from abstract arrow models to �concrete�
Cartesian square models, the landscape of arrow logic.

LOGICAL AND COMPUTATIONAL CORE

Johan van Benthem, [Ben94b] stresses the difference between universal (Horn) condi-
tions on the domains of the models of a logic and conditions with existential import.
The purely universal (Horn) �rstworder requirements should, in his opinion, be viewed
as the logical core of the semantics, while all conditions with existential import belong
to some negotiable mathematical part. Thus, the core of the theory of transitions
should be given by universal conditions. One is importing extra mathematical truth,
if one asks for existential conditions as well. Note that we are not claiming that such
existential conditions are forbidden, or anything like that, we only want to stress that
such a theory will be about transitions performed in a speci�c contemt. The general
theory of transitions should indeed be Valid in all possible contexts.

Taking this into account, we can View arrow models without any existential con�
ditions as the genuine logical core of arrow logic. We mentioned three aspects of the
notion of computational core: decidability, �nite axiornatizability and interpolation.
One of the main results of this work is that we show that for arrow logics of directed
graphs, the requirement of transitive domains forms a borderline in the landscape. If
we consider the three conditions, re�exivity, symmetry and transitivity, then an arrow
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logic of directed graphs has any of the three aspects mentioned above if and only if
the domains of the models are not neccessarily transitive relations (cf. section 6.2.1).
So We can conclude that the �logical core� of the theory of transitions is part of its
�computational core�.

For this reason, we make a distinction between weak and strong existential condi-
tions on models. A weak existential condition is a function with just one argument (e. g.,
the requirement of re�exive or symmetric universes), a strong condition is a function
with more arguments (like transitivity of the universe).

1.2 CYLINDRIC MODAL LOGIC IS THE MODAL LOGIC OF

ASSIGNMENTS

A similar analysis applies to �I&#39;Si3�OI�Cl8I&#39; logic and assignments. When we perform this
analysis, we see that, as was also the case with relational logic, classical FO models
turn out to be the most restrictive class of models. Again, below this class we find a
whole landscape of natural classes of models (cf. e.g., Németi [Ném92] and van Benthem
[Ben94a]). Let us look at the basic declarative statement of F0 logic: M )= 45 [cu], i.e.,
truth of a formula qt at a model M given an assignment oz. The most prominent citizens
of F0 logic are the quanti�ers, whose meaning is de�ned as follows:

M 9: 3&#39;v,¢ [04 <i£��> (Sid e Dom(M)) : M i: gt [ail

Here, org�, is the assignment obtained from or by changing the value of U; to d, and
leaving everything else �xed. There is an obvious �modal� View on this de�nition.
Given a domain D of a model M, let A = �D be the set of assignments, and de�ne a

set of (equivalence) relations EU�. on A X A by Oz Em ,8 41% (V22) ¢ 1),) : ae(vj) 2 �(vj).
Moving the assignment to the front, We get a familiar modal pattern:

M,cr):31);<15<(=&#39;-i§f=>(3�EA):<3zE,,5,3&M,�)=q5

So, just like we viewed relational logic as an instance of the modal logic of transitions,
We can view F0 logic as one particular instance of the modal logic of assigmrLents. The
appropriate name for the resulting family of logics, seems to  cylindric modal logic,
originating with Yde Venema (cf. [Ven91], [Ven93]).

MODELS FOR CYLINDRIC MODAL LOGIC

Assuming for the momenta beginners mind, we can redo the whole analysis of arrows,
but now for assignments. Let us do that brie�y. Suppose we are in Llw, FO logic
with countably many variables. Assignments should give meaning to each variable
vi  E w). So, just like abstract arrows, assignments have..to be objects equipped with,
in this case to many, functions Ii, each assigning a value of the domain to the variable
vi. Viewed from this perspective, the arrows from the previous section are assignments
for £2, F0 logic with 2 variables.
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As with arrows, there is an intensional and an extensional viewpoint on assign-
ments. Again, the classical View would be to identify an assignment oz with the tuple
(l;(a) : i 6 L0), but it is conceivable that one has an application in mind where this rigid�
ity is not wanted�. As the area of intensional assignments is, to our knowledge, yet
almost completely unexplored? we will concentrate here exclusively on the extensional
ones.

As before, one faces a second ontological problem: which assignments should be
present in the models? Should it, given a domain D of discourse, be a full Cartesian
power of D as in classical FO logic? Again, it seems more reasonable to make this just
one option out of many. An option which is justified when the universe of discourse is
the realm of mathematical objects (indeed, the primary intended application of classical
F0 logicl), but an option which needs justi�cation when applied to other areas. Apart
from the question how many variables are needed for an application3 there seem to be
four basic options, completely analogous to the arrow logic case. Given a model M, let
A Q ��Dom(M) be the set of assignments.

(1) A is closed under substitutions
(2) A is closed under permutations
(3) A is closed under �paths�
(4) A is a full Cartesian product

We briefly explain what we mean with these requirements: (1) means that if Oz� 6 A,
then also L23.� 6 A (i.e., if assignments are pairs, this means that A is a re�exive
relation). (2) means that if 04 E A and 71&#39; is a permutation of the coordinates of 04,
then also 7roz E A (i.e., A is a symmetric relation in the pair»~case). (3) means that if
oz,� E A & oz Ev, �, then (37 E A) : oz Ev]. 7 & lj(�y) = l,(;3). (If assignments are pairs,
this is the same as requiring that the set of assignments is an equivalence relation.)
See the picture below for i = 1 and j = 0.

� 7 (1.1)

So we have a similar situation as before. There is a whole landscape of possible semantic
modelings with at the bottom the models with abstract assignments, and somewhere

�In natural language, assignments can be seen as taking care of anaphoric binding of pronouns.
One can easily imagine two examples of a written text with two ways of binding which have the same
effect, but one is more di�icult to understand than the other. Since anaphoric binding requires an
active process from the reader, one could say that the �assignment instructions� differ, one being
more difficult to perform than the other. This links up with the View that the existential quanti�ers
are a kind of program constructions (cf. Groenendijk-~Stol<h0f [GS9l]). There is no a priori reason to
equate two programs which happen to have the same input /output behavior.

2An exception is the nwdimensional arrow logic of D. Vakarelov [Vak92a] which technically deals
with intensional assignments but which seems to have other applications.

3That this is not a trivial issue is shown by Tarski�Givant [TG87], who show that one can build
up set~theory, hence the whole of meta�n&#39;1athematics, using only 3 variables.
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near the top, the �drawable� assignment models, meeting more and more existential
demands (see [Ben94a] for such a picture).

When one chooses not to have all assignments available for each model, one has to
introduce an extra parameter ~the set of available assignments~ in the truth de�nition.
The basic declarative statement then becomes

M, A l: (/> [oz] for A an appropriate subset of ��Do1n(M)

Clearly, this notion of truth is weaker than the classical one, since in the classical
case there is only one appropriate set of assignments: A :2 ���Dom(M The key validity
which fails in the more general semantics is commutativity of the quanti�ers Elv,-Eloy-gt 4->
371,-30,-<;§. This is valid only if we make the (strong) requirement of closure under
�paths�. N émeti [Ném86] showed that it is precisely this validity which is the cause
of the undecidability of F0 logic. The existential requirements given above lead to,
at least, �ve natural classes of F0 models in which assignments are oz�tuples. These
models were introduced by Németi in [Ném86]. Let Ca stand for F0 logic with cr many
variables. De�ne K� as the class of F0 models whose set of assignments can be any
subset of the domain. Formally

K� �-2 {M = ((0,1),/1) ; (3,1) is a so model and A c_: an}
Let K�; denote the subclass of K� in which the set of assignments is closed under taking
substitutions, Kj�, the subclass consisting of models which are closed under permuta~
tions, and Kg}, the subclass consisting of models which are closed under both. Let

Sub� denote the classical FO models with A = �D. The models are related as given in
�gure 1.1. It is Well known that for oz 2 3, £01 is undecidable when interpreted on the

0/

cubes 
     
     oz

5\ 
     
     K3:,/ 
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1.3 RELATIVIZATION

In algebraic logic, both for the algebraic counterparts of arrow logic and of F0 logic,
the non�square and non�~cubic extensional models have been studied relatively deeply,
under the heading of relativization (cf. e.g., Henkin et al. [HMT+81], Maddux [Mad82]
and Resek-Thompson [RT9l}). The emphasis, however was different from what we
have sketched above. As the name �relativization� indicates, the non�standard models
were viewed as being derived from the standard classical ones, while in our set~up,
the classical models appear as a very special case of the more basic (relativized) mod-
els. Recently, Andréka, van Benthem, Monk and Németi ([AT88], [Ben94a], [Mon91],
[N ém91]) started promoting their study as structures which are interesting indepen-
dently of their square or cube versions. Before, relativized algebras were not really
studied in their own right�, but as a tool to obtain results for the standard modelss.
Apart from that, one can view relativization as a way of turning negative results into
positive ones, since several relativized versions of cylindric and relation algebras do
have the nice properties of being decidable, �nitely axiomatizable and having an inter~
polation theorem, which their classical counterparts lack.

1.4 FINE STRUCTURE OF DEFINABILITY

In one sense, we can still view the �above logics with their more general semantics as
being derived from the classical ones, because we used the same logical language. But
just as we assumed a beginners mind when looking at the semantics, it pays to do the
same at the syntactical level. Which �natural� operations on sequences do we want to
express? Clearly, the existential quantifiers, changing one coordinate of a sequence, are
among them. They are term�de�nable in arrow logic only once we have re�exive and
symmetric domains, so it might be useful to add them in other cases too. We illustrate
this point with the example of the quanti�ers.

QUANTIFIERS AS PROGRAM INSTRUCTIONS. If we view the existential quantifier as
a program instruction to change the value of a particular (set of) variables(s) ~as is
done in dynamic semantics (cf. [GS9l])~, we can get insights by looking at the regular
program constructions. Let the set {3.r,~ : i E L0} be the atomic programs. We would
like to have �programs� for sequencing, choosing, and iterating as well. Iteration, 3(.r*),
can be expressed just by 3:13, since Z-°l$3a:¢ is equivalent to 327$. Sequencing, El(:(:; 3;), is
built into the language, because (3(a:; y)q5 <�~> 3:c3yqb). The same holds for choice, since
(3(:v U y)gzS <�> Hatgt V 3;:/qi).

By the commutative law of the quanti�ers, it doesn�t matter in which order we

�As an illustration we mention the book [HM&#39;I�_+81], from which it turns out that the authors know
much about cylindric relativized set algebras, but they treat this knowledge as secondary, hence they
do not include a large part of this knowledge in the book.

5Because of this, the technique of relativization was studied quite extensively (cf. [HMT7l] Chap-
ter 2.2), but that is not what we are interested in now. We are interested in the relativized algebras
in their own right.
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change the variables, making §lx3y more something like parallel execution. So we can
write 3(x Fl y)q5 as 3a:Ely¢> or Sig/312(1), because their order does not matter. But the
commutative law only holds in models satisfying the �path� condition. In models
Without that condition, we cannot term�de�ne this very natural operation of changing
several places simultaneously. So it might be desirable to have them as primitive
operators in the general casee. So, if we change the classical semantics, we have good
reasons for changing the vocabulary as well. Natural operations which were term�
de�nable before, and which we therefore �forget�, need not be de�nable in the general
case. The general~model analysis shows us the �ne structure of the expressive power
of the original vocabulary.

These observations give rise to a research area which is at present almost completely
unexplored. Besides changing the semantics of well~known logics to �turn negative
results into positive ones�, one should reconsider the basic vocabulary as well. We
could describe this field as follows:

Relativize to obtain positive results, and then strengthen the expressive
power as much as possible while keeping the positive results.

Besides adding what was term�de�nal5le before, one could also add new operations,
like the Kleene * to relation algebras or the universal modality? to cylindric algebras
of in�nite dimension. We will encounter this theme in the chapter on arrow logic, in
which we add several operations (e.g., Kleene *) to the vocabulary, and in chapter 4,
in which we expand the vocabulary of relation algebras with the difference operator.

1.5 BAO�s AND GENERAL MODAL LOGIC

Both arrow logic and cylindric modal logic have intimate connections with algebraic
logic. The classical models of arrow logic are given by the full (or square) relation set
algebras and those of cylindric modal logic by the full (or cubic) cylindric set algebras.
Both classes of algebras belong to the class of Boolean Algebras with Operators (BAO�s).
There is a very strong connection between the three concepts: BAO�s, general modal
logic and relational Kripke frames. This connection is given in �gure 1.2, taken from
Brink [l3ri93].
For a brief explanation of the picture, we freely quote from Venerna [Ven94]. The
relation (a) between general modal logic and Boolean algebras with operators is very
tight; for instance BAO�s appear as the Lindenbaum�Tarski algebras of general modal
logics. The relation (b) is closely connected to the work of Kripke, with relational
Kripke frames providing a semantics for modal logics. The relation (c) was studied in

6S. Corner and D. Vakarelov independently suggested to study these operations, both with mo~
tivations from computer science (e.g. data�base theory) (cf. Comer [Com91] and Diintsch [Diin91]).
These operations are known in the cylindric algebra literature as Cr, where I� can be any set of indices.
The operators Cy are studied in van LaInbalgen~Simon [LS94] in the context of relativized cylindric
algebras (see also Comer [Comm] and Simon [Sim90]).

7The universal modality is a special case of the above described parallel execution or the Cr�s.
With the universal modality one changes all coordinates simultaneously. Clearly Cp, for in�nite F, is
not even de�nable on the classical models.
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Relational Frames General Modal Logic

Boolean Algebras with Operators

FIGURE 1.2: CONNECTIONS BETWEEN THREE FIELDS

J énsson and Tarski�s overview article on BAO�s [JT52], long before the work of Kripke.
In that paper they started, what is now known as, the duality theory between BAO�s
and Relational Krip/ce Frames (see Goldblatt [Gol88], [(30193] for a recent overview).

From a mathematical perspective, both the development of arrow logic and of
cylindric modal logic can be seen as �lling in the modal part of the above picture,
where the other two parts already existed. This work started explicitly with Venema�s
dissertation [Ven91]. Besides dealing with these two speci�c cases of BAO�s and general
modal logic, We will, when possible, treat them in a uniform manner, using the theory
of BAO�s as a unifying framework. In section 4.5 we show that every BAO can be
represented as an algebra of relations. For modal logic this means that every modal
logic can be viewed as a multi�dimensional modal logic (cf. [Ven91]).



2

THE ALGEBRAS AND THE Looms

In this chapter, we de�ne the cast of this piece, and fix notation for the coming chapters.
We also provide a short review of that part of duality theory between BAO�s and Kripke
frames that will be used later on. In the first section, we deal in a general Way with
BAO�s. In the second section, we provide some basic algebraic notions and some
duality theory. In the next section, we explain why relativization is an important tool
for studying the core of a logic. In the last two sections, we focus on two well�known
classes of BAO�s: relation algebras and cylindric algebras.

2.1 BAO�s, GENERAL MODAL LOGIC AND KRIPKE FRAMES

2.1.1 BooLEAN ALGEBRAS WITH OPERATORS

BooLEAN ALGEBRAS WITH OPERATORS (BAO�s). Almost all algebras in this work
are normal Boolean Algebras with Operators. An algebra Q1-= (A,V, /\, -�,0,1,<>z&#39;>;&#39;¬1
is a Boolean Algebra with Operators (BAO) if (A, V, A, ��-,0, 1) is a Boolean Algebra
(BA), and every operation 0,;  E I) is additive in each of its arguments. Here,
additivity means that the operator distributes over join, as in (for a unary operator)
0(7) V72) = 071 V072. This property is also referred to as distributivity. An operation
is called normal, if it equals 0, whenever one of its arguments equals 0. In algebraic
logic, a (normal) distributive operation is called an operator, in modal logic, operators
are called modalities. Note that by this de�nition every zero~ary operation is a normal
operator. In the rest of this work, �operator� means �normal operator�, and �BAG�
means �normal BAO�. &#39;

SIMILARITY TYPES. It is useful to introduce a special similarity type for BAO�s. Let
0 be a set of operation symbols, and p : O �> to a function assigning to each symbol
in 0 a �nite rank or arity. By a BAD type S, we mean the pair (0, p). We usually
assume that the rank of the operations is known, and identify 5 with 0. An algebra
21 is of BAO�~type S := (O, p) if and only if 521 is a BA expanded with the operators in
0, having their rank specified by ,0. As a variable ranging over operators We use 0. If
S is given, we use 8A5 for the class of all BAO�s of type S. If S consists of only one
operator, say 0, Whose arity is clear from the context, we write BAO.

TERMS, EQUATIONS AND VALIDITY. Given a set of variables X and a BAO~type
S �&#39;= (0, p), We use Term5(X) to denote the set of terms constructed from variables in
X using the Booleans and the operation symbols in 0. With Eqlang5(X), we denote the
set of equations {T1 = T2 : 71,7; E Term5(X)}. If we don�t say anything about X, we

13
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assume it is countable. We use X, y, Z to denote algebraic variables, and T, 7&#39;], T2 to denote
arbitrary terms. The set of variables occuring in 7&#39; is denoted by var(T). An assignment
from the set of variables X into an algebra 21 is a map 12 : X -�-> A. The pair (2l,h)
is called an algebrawaluation pair. An equation �T�(X1, . . . ,x,,) : *r1(x1, . . . ,x,,) of BAD
type S is valid in an algebra 21 of that type if for every assignment h : {X1 , . . . ,xn} -->
A, T(h(X1), . . . , h(xn)) equals "r1(h(x1), . . . , h(x,,)) in Qt. An equation e is valid in a class
of algebras K if e is Valid in every 2t 6 K. Both kinds of validity are denoted by
The set of equations valid in K is denoted by Eq(K). Using this notation We can give
the following de�nition of speci�c classes of BAO�s. For example, if S 2 (Q7, 2), then
BAS or BAG denotes the following class of algebras:

BAWE� {Q12 (A,v,/\,�,0,1,C?): (A,V,/\,��,0,1) e BA&2t p: o(x,o) = <9(o,x) :0
8521 I: U(xVy,z) == Q?(x,z) VQ7(y,z)
«W l: <?<x,yvz) = <7(><,y) v<?(x,z)}

If E is a set of equations in EqlangS(X), then BA5(§3) denotes the class {Q1 6 BAS
Qt #2 2}. We call such equationally de�ned classes �abstract classes�.
A class K of algebras is called a variety ill it is de�nable by a set of equations. l.e.,
there exists a set of equations 2, such that every algebra of the type of K validates E if
and only if it is a member of K. We call a variety �nitely aziomatizable if it is de�nable
by a �nite set of equations.

UNIVERSAL FORMULAS AND QUASPEQUATIONS. Fix a BAO~type S 2 (0,/2) and
an equational language Eqlang5(X A universal formula of type S is a FO formula
build up from equations in Eq|angS(X) using conjunction, disjunction and negation.
A universal formula gb is valid in an algebra 21 if (Z) is true for every assignment h in
Qt. The universal theory of a class of algebras K, denoted by Univ(K), consists of the
universal formulas which are valid in every algebra in K.
A quasi~equation is a universal formula of the form e1& . . .8567, => 80. Validity of
quasi~equations is de�ned as for universal formulas. The quasi-equational theory of
a class K is denoted by Qeq(K). A class of algebras is called a quasi�variety if it is
de�nable by a set of quasi�equations. Clearly, every variety is a quasi~variety.

2.1.2 RELATIONAL KRIPKE FRAMES AND MODELS

As shown already in J6nsson~Tarsl«:i [J T52], to each class of l3AO�s of type S = (0, p)
there belongs a class of structures or frames of a very similar type, which can be seen
as a �semanticsl� for the (abstract) class BAS.

CANONICAL FRAMES. Fix a type S = (O,p). Let Rt 6 BA5. By 5.ifQl, we denote
the set of ultra�lters of Qt. 921+ denotes the frame (i1fQl,R°)<>e0, in which each R0 is a

�Fhe word semantics is put between quotes, because it can be argued that this �semantics�_ is just
a.s abstract as the equationally given class of BAO�s. See the long quotation from Henkin�Monk�Tarski
[HMT71] in the beginning of section 4.5 for such an argument.
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p<> + 1~�ary relation on Elf?! de�ned as follows:

R°yac1...a:,,o <d=ef¢(Vx1...x,,<> 6 A) : ([x1 6 a:1&...&x,,¢ 6 mpg] =:> <>(x1,...,x,,o) E y)

In the literature, the frame 91+ is called the ultrafilter or canonical frame or the canonical
atom structure of the algebra 21. Note that in this de�nition we follow the modal logical
practice of putting the �result� as the first argument, whereas in [J T52] and in [Gol88l
the result is the last argument.

FRAMES OF TYPE 5&#39;. A frame F is of type S 2 (0,p) iii .73: (W,R°)OE0, W is a
set and, for every 0 E O, the relation R0 is a subset of POHW. K5 denotes the class
of all frames of type 5. Since K5 is a class of F0 structures, We can speak about K5
in the F0 language with (p<> + 1)�ary predicate symbols R0, one for every 0 in 0.
We call this language the F0 frame language of type 5. As a convention, the Roman
capital F corresponding to the script capital f denotes the domain of the frame .77.

COMPLEX ALGEBRAS. Given a set W, �P(l/V) denotes the powerset of W, and
�,]3(l/V) the Boolean powerset algebra (�P(VV),U,�,��W,(ll,W) of W. Given a frame
.7: = (VV, R°)0E0 of type S, We de�ne its complex algebra, denoted by .7+, as the algebra
(�I3(W), <>)oEo. The operators are de�ned, using their corresponding frame relations,
as follows. For X1, . . . ,x,,o subsets of W and O a p<>�ary operator we de�ne

<>(x1,...,x,,o) (E {y E W 2 (Elan; ...ac,,<; E l/V)(R°g/1:1 ...a:,,¢&ac1 E x1& . . .&:::,,o E xpo)}

If K is a class of frames, we use K+ to denote the class {Qt : 91 E fl" for some .7 E K}.
Note that we de�ned K+ so that it is closed under isomorphisms. If K is a class of
BAO�s, Cm�1K denotes the class of frames {.75 : .7� E K}.

KRIPKE MODELS. Let K be a class of frames of type S, let .7 E K, and let Term5(X)
be the set of 3 terms generated from a set of variables X. Let v be a function from
X to  We call v the valuation of the variables. We call M = (.7-",v) a (Kripke)
model (over .7).
Given a model M 2 (f,v), we de�ne the truth relation N� between the elements of
the domain of M and the terms from Term 5(X ) inductively as follows. For 23 E F, We
de�ne

l\/I,:c 1% x <g> :c E v(x) for all variables x E X
M,:cll- ��¢ 4% l\/l,.7;IVT
M,a:ll-T1V7&#39;2 <Lf�> lVl,:l?ll�T10I&#39;l\/l,.�Ell�T2
l\/l.,.�L�ll�<>(T1,...,Tp<)) <23 (Ely1..�.g/Po¬F):R°a:y1...y,,<>&:M,y1H�r1&...&

M,y,,o It 7&#39;00

If M is clear from the context, we usually omit it from this relation. VVe equate the
domain of a model with the domain of its underlying frame.
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VALIDITY AT MODELS, FRAMES AND CLASSES or FRAMES. We use MM to denote
the set  E Dom(M) : M,:2: I}� T}, hence E7�]]M gives us the meaning of T in model M.
In the following de�nition we de�ne validity of equations at models, frames and classes
of frames.

M I: T1 :2 T2 <g> [71]];/I =: ([T2]]M
fl=T1=T2  (VM=(f,v)):M|:73=r2
K}:7&#39;1=:7&#39;2 4-32> (VJ-°EK):.7"}=7&#39;1=7&#39;2

Let gb be a universal formula build up from equations in EqlangS(X Validity of ()5
in a Kripke model M = (.7:,v) is de�ned recursively in the standard FO way using V
the clause for the atomic formulas (the equations) given above. We have the following
connection between validity at models and validity at algebra�valuation pairs:

(]7,v) }= <15 <==> .7-�L (:2 gt for the assignment v

Given a class K of frames of type S and an equational language Eqlangs (X) with X
an in�nite set of variables, we use Eq(K) to denote the set of equations valid in K. The
next fact provides the connection between the de�ned validity relations on frames and
on algebras.

FACT 2.1.1. 
     
     M = (.7:,v) }: T1 : T2 <===> 77+ l= T1 = T2 for the assignment v

f%3T1=T2 <-33:} .:F+l»=�7&#39;1=T2
Kl:T1:T2 2) K+f:T1::*r2
E<1(K) = Eq(K+)

2.1.3 GENERAL MODAL LOGIC

A general modal logic of BAO~type S is a propositional logic expanded with the 1nodal~
ities from S . We will de�ne logics semantically. ln three steps we give the language,
the class of models and the meaning of the formulas in each model.

FORMULAS �ARE� TERMS. What we call terms of type S in algebra, are called well
formed formulas (Wff�s) in modal logic. Algebraic variables correspond to logical propo-
sitional variables.

MODELS. The semantics of a general modal logic of type S is given by Kripke models
over frames of that type.

MEANING. The evaluation of Wff�s in a model is provided by the truth definition given
above. A wff 7" is true in a Kripke model M :2 (.77, V) iff [[T]]M = F. This will be denoted
by M f: 1*. Truth at a frame and truth at a class of frames is de�ned analogously as
done above for equations. This is denoted by .77 I: 7� and K (:2 7�, respectively. If F is a
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EQUATIONS AND FORMULAS. There is a straightforward correspondence between al-
gebraic equations and modal logical formulas. Because we always assume the Booleans,
we can restrict ourselves to equations of the form 7&#39; = 1. This restriction is warranted,
because BA )= 7&#39;; = T2 if and only if BA l: (T1 <��> T2) 2 1. Here, (T1 <��> T2) abbreviates
(-73 V T2) A (~72 V T1). If we �x a set of terms Term 5(X ) and a general modal-logical
language Fml which use the same operations, then any bijection between the alge-
braic variables and the logical propositional variables can be extended to a translation
function it 2 Fml ��> Term_g(X) such that for every frame .77 of type S we have:

(VTEFml): .7-�(=7 <==> .7C)=T#=l
(VTETermg(X)): fl=T=l <==> f)=T�#
(V&#39;r1,7�2 E Term5(X))_: .7: |=r1 =72 <=:> .77 l=�7�1_# <~�>1-2-#

The two languages are just notational variants of each other.

GENERAL MODAL LOGIC. Let a BAD type S = (O,p) be �xed, let P be a countably
in�nite set of propositional variables, and let K be a class of frames of type S. A tuple
(FmIg(P), Mod(K), l!~5) is called a general modal logic Q/\/l£(K) if

0 Fml5(P) is the smallest set such that
�- P Q Fm|5(P),
�� if gb,2l> E Fm|5(P), then also -vgzi (�negation�), ¢> /\ 1/2 (�conjunction�) and

q5 V it (�disjunction�) are in Fml5(P),
- for all 0 E 0, if (1);, . . . ,c]5,,o E Fm|5(P), then also <>(qS1, . . .,z;S,,o) E Fm|5(P)

0 Mod (K) denotes the class of all Kripke models over frames in K.
0 its denotes the truth relation de�ned above.

When the type 5&#39; is clear from the context, we usually omit it as a subscript in the
notions de�ned above. A wff q� is valid in the logic QM£(K) if gt is true in every model
from Mod(K). We denote this by K l: (t or )=K <1).

LOGICAL CONSEQUENCE. In logic, it is not the validity relation between models and
wff�s which plays the central role, but the consequence relation between (sets of ) Wff�s.
Consequence relations are also denoted by �)2�. There are two standard ways of
de�ning a consequence relation, a local one and a global one. Both make sense in their
appropriate application domain; in modal logic the local one is most often used, while
in algebraic logic the global one is dominant�. There is no difference in symbolism
between the two notions, which is a common cause of confusion. Here we will make the
distinction by a superscript I� or 9"�. Let Q./Vl,C(K): (Fml(P), Mod(K), ll-) be a general
modal logic. Let I� Q Fm|(P) and <75 E Fml(P). We de�ne the consequence relations
):="�� and }=9"� as follows

r4={gc¢ <£�.���.é> (VM ¬Mod(K)):[[I�])M §[[¢]]M «
r)=;�°¢ <f%> (\7�MEMod(K)):l\/Il=1�=>l\/Itzqb

2For a comparison of the two see e.g., Venema [Ven91], Appendix B.
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Note that if I� = (D, the two notions coincide. Also note that {g/21, . . . , q�n} lz�lo do 4:
(at: 1&...&¢f = 1=.> es? 2 1) e Qeq(K+).

2.2 REVIEW or BASIC DUALITY THEORY

CORRESPONDENCE, CANONICITY AND SAHLQVIST FORMS

In this section, we indicate when we can reason at the frame level in order to obtain
results at the algebraic level. It is attractive to reason at the frame level because it is
usually easier. Everything in this section is built upon the following basic fact which
can be found in [JT52]. Before we state it we recall some notions (see e.g., [HMT71]
or [BS81]).

HOMOMORPHISMS AND EMBEDDINGS. If 21 and 93 are algebras of the same type,
then a function h : A --�> B is called a homomorphism from Q1 to Qk if it commutes
with all the operations. If h is surjective, Q? is called a homomorphic image of Q1.
lf h. is injective, it is called an embedding, and Qt is isomorphic to a subalgebm of 3
Embeddings are denoted by arrows with a tail �>��>�. If Ql can be embedded in �:8, We

WriteQ1§Q3orQ1>�haQ3.
FACT 2.2.1. Every BAG Qt is embeddable in (Qt+)+ by the canonical embedding func-
tion eA : A ����-> �P(U.fQl), which is de�ned as eA(x) (gr {cc E 54fQl : x E  The algebra
(Ql+)+ is called the canonical embedding algebra of QL

CORRESPONDENCE. Correspondence theory (cf. van Benthem [Ben84]) is concerned
With equations e of BAO�type S which correspond to a condition z� on type 5 frames
in the first order frame language of type S such that

.7-�l:e<=>.7~&#39;l=¢>

When 6 and d) stand in this relation, we say that the equation e de�nes the condition
gb, or that e corresponds to rt. We call condition 915 the frame correspondent of e.
Some well�~known examples (see e.g., [JT52]) in BAO�type (O, 1) are the equations
x 3 Ox, 00x 3 OX and <>�<>�x 3 x which correspond to re�exivity, transitivity and
symmetry of the binary relation R0, respectively.

CAN ONICITY. We call an equation canonical if it is preserved under taking canonical
embedding algebras. Hence an equation e is canonical if

Qllze <==> (Ql+)+l=e

(Note that the ¢: direction is trivially satis�ed.) A variety which is closed under
canonical embedding algebras is called a canonical variety. Hence every class of algebras
which is de�ned by a set of canonical equations is a canonical variety. Especially
interesting are canonical equations which de�ne F0 conditions on frames. The three
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equations given above are examples of these. Then the following holds. Let e be a
canonical equation which corresponds to condition q�.

canonicity corres ondencees 3:�~�1t=¬ (91+)+l=6 9i+l=</>

REPRESENTING CANONICAL VARIETIES. Canonical equations which correspond to a.
FO condition give rise to easy representation theorems in the following way. For a class
K of algebras, SK denotes theqclass of all its subalgebras. Note that if K is a class of
frames, then SK+ is closed under isomorphisms.

FACT 2.2.2. Fix a BAO-�type S. Let e E Eq|ang5(X) be a canonical equation which
corresponds to a frame condition (,6. Let K be the class of all frames of type S which
validate ()5. Then SK+ is a canonical variety. In fact BA5(e) 2 SK+.

PROOF. Because e is a canonical equation, the class BAS(e) is a canonical variety.
We continue with the proof of the equality.

(2) Let 9!. E SK+. Then 21 S 7+ for some .7: E K. But then, .77 )2 gt, and, since q�
corresponds to 6:, also .771� t: e. Since equations are preserved under taking subalgebras,
also Qt f: e, whence 91 E BAS(e). Note that we only used the correspondence part.

(Q) Let 221 E BAS(e). By fact 2.2.1, 521 3 (2l+)+. Since (2 is canonical, (Q1+)+ I: e.
But then, by correspondence, 21+ l: Q5. Hence 21+ 6 K, so 21 E SK+. QED

Clearly, this fact also holds for sets of canonical equations. If K is a class of frames and
SK+ is a variety, we call it a complex va1&#39;z&#39;ety3.

POSITIVE AND SAHLQVIST EQUATIONS. We brie�y review the correspondence the-
ory of Sahlqvist equations (Sahlqvist [Sah75]), which is surveyed in de R.ijke-Venerna
[RX/91]. VVe do not recall the de�nition of Sahlqvist equations, since we will almost
only deal with the easier and better�known positive equations (cf. [HMT71] p.440). A
term 7� is called positive if it does not contain any occurrence of the symbol �, for
complementation; an equation is called positive if both its terms are positive.

Let an arbitrary BAO similarity type S be �xed. The set of Sahlqvist equations of
type S is a strictly larger set than the set of positive equations (in the wider sense�)
(cf. [R\/&#39;91) Remark 3.6). An example of a Sahlqvist equation which is not positive is
the equation <>�<>��x 3 x given above. Another example is x";�(x;y) /\ y = O, which
is equivalent to the last axiom of relation algebras (HA5) (see 2.4.11).

The most interesting aspect of Sahlqvist equations (and hence of positive ones), is
the following fact (for a proof, see [RV91] Thm 3.5).

FACT 2.2.3. Fix a type 5&#39;. Let e be a Sahlqvist equation in type S. Then there exists
an effectively obtainable5 sentence qt» in the FO language of type S such that (2.1) and

3This name was introduced by R. Goldblatt [G-0188]).
4A term is positive in the wider sense if there is no subterm beginning with �� which contains an

occurrence of a variable. It is assumed that the Boolean constants 0 and 1 are in the language. An
equation is positive in the wider sense if both its terms are. See [HMT71] Remark 2.7.16.

5See the proof of Thin 3.3 in [RX/91) for an algorithm.
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(2.2) below hold. in particular, e is canonical.

J��}=q5 <2:-.> f+}:e (2.1)
Qt|==e ¢�_-> 2L.,.}=<;s (2.2)

So, if S is a set of Sahlqvist equations, and K3 is the class of all frames satisfying
the frame correspondents of the equations in 2, then the class BA5(E) is a canonical
variety which equals SKE.

REASONING IN FRAMES INSTEAD or ALGEBRAS. There is another advantage of
working with Sahlqvist equations. As Venema writes in [Ven91]:

Maybe the nicest aspect of (2.1) and (2.2) is that it frees us from giving tedious
algebraic derivations for Sahlqvist equations, allowing us to focus on reasoning
in atom structures. ([Ven91] page 11)

This move from algebras and the algebraic description language to frames and their F0
description language is justified by the following fact (for a proof: see [RV91] Prop 4.1).

FACT 2.2.4. Let V be a canonical variety, and el and eg two Sahlqvist equations with
first order correspondents 451 and qz�g. T hen,

Cm&#39;1Vl:¢1<-+452 «:1? Vl:e1+�+e2

CONSTRUCTIONS ON KRIPKE FRAMES

We recall the part of the duality theory between BAO�s and relational Kripke frames
which will be used later on. We rely on Goldblatt�s overview article [Gol88]. When
we use different terminology, we provide the terms used there in footnotes. The facts
reported here can be found in Cor 3.2.5, Thm 3.3.1 and lemma 3.4.1 in [Gol88].

OPERATIONS ON CLASSES OF ALGEBRAS. Recall the following operations on classes
of algebras from universal algebra (we use them in the sense of [I-lMT71]). Let K be a
class of algebras.

IK class of all isomorphic copies of members of K
SK class of all subalgebras of members of K
PK class of algebras isomorphic to direct products of rnembers of K
UpK class of algebras isomorphic to ultraproducts of members of K
HK class of all honiomorphic images of members of K
SirK class of all subdirectly irreducible members of K
EmbK class of all canonical embedding algebras of members of K
Rd {K class of all I reducts of members of K
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VARIETIES AND QUASI-VARIETIES. By Birkhoff�s theorem a class of algebras is a.
variety if it is closed under taking H, S and P. In general, HSPK is a variety, and it is
the smallest one containing K. A variety V is said to be generated by K if V = HSPK.
A similar theorem states that a class of algebras is a quasiwariety if it is closed under
taking S, P and Up. In general, SPUpK is a quasi~variety, it is the smallest one
containing K, and it is said to be generated by K (see [BS81] Thin V2.25).

OPERATIONS ON CLASSES OF FRAMES. We will use the following operations on
frames.

ZigK class of all zigzagmorphic images of frames in K
DuK class of all disjoint unions of systems of frames in K
GSK class of all generated subframes of members of�/�K
GspK class of all point generated subframes of K
UeK class of all ultra�lter extensions of members of K

Rd[K class of all I reducts of members of K

ZIGZAGMORPHISMS. Let .77 and Q be two frames of the same type. A function f :
F ~+> G is called a zigzagmovjohism� if it is a surjective homomorphism7, and it has the
zigzag property, meaning that, for every 72 + 1 ary relation R,

RGf(J:)y1...y,,  EF):RFa:y;...y:,&f(y§)=:y;&...&f(y;,) ==y,,

If f 2 F �+> G is a zigzagmorphism, Q is called the zigzagmorphic image of .7. We denote
this by .77 �f» Q. It is easy to see that, for two models M = (f, V1) and N = (Q,v;;), and
a zigzagmorphism f : F ~++ G which agrees on the valuations of the variables:8

for every term T, and for every at E F : l\/1,2: I!- �T <===> N, it �I�

The operation of taking zigzagmorphic images corresponds to taking subalgebras in
the following way. If h : A �-�~+ B and X _C; B, we use h"1[X] to denote the set
{X E A 2 h(x) E X}. Let Ql,§3 be BAO�s of the same type. If h : A ��> B, we use h+ to
denote the function from 5J.f�B to ilf Qt, de�ned by h+(u) §f h�1[u]. Let .7, Q be frames
of the same type. If f : F -~��> G, then f� denotes the function from 79 (G) to 73
de�ned by f+(x) "=��i� f~1[x].

FACT 2.2.-5.  If h 2 A >��> B is an embedding of Qt into �B, then 11+ : ilf� �» mm is a
zigzagmorphism from 88+ onto Ql+.
(ii) If f : F �» G is a zigzagmorphism from .7: onto Q, then f+ : 73(0) >�+ 73  is an
embedding of W� into fl�.

Sin [Gol88], these are called bounded epimorphisms.
7111 the model�theoret2&#39;c sense, hence for every relation R in the similarity type: RFzo . . .a:,, implies

RGf(mg)...f(x,,).
�lie, for every variable x, f*v1(x) : v;;(x).
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DISJOINT UNIONS. Let (.7}),E1 be a system of disjoint frames which are all of type
S. Then the disjoint union 21.75} is the frame  : 2&#39; E I},U{R2~° : i E I})oe_<;.
If (21,-),�E1 is a system of algebras, H, flu denotes their direct product.

FACT 2.2.6. (21.77,-)+ is isomorphic to H1.7-1+.

(PO1NT�)GENERATED SUBFRAMES. The frame construction which corresponds to
taking homornorphic images is that of taking generated subfmmesg. If .77 is a frame, then
.77� is a generated subframe of J7 if  F� Q F, (ii) the relations R� are the restrictions
of R to F�, and (iii) for every n + 1 ary relation R and for all :7: E F&#39;,y1, .  E F, if
Raryl . . . ya, then y; . . .y,, E F &#39;. If a subframe is generated by a singleton, it is called a
point-�genemted subfmme (i.e., f� is the smallest generated subframe containing that
singleton).

FACT 2.2.7.  The complex algebra of a point~generated subframe is subdirectly
irreducible.

(ii) For any class K of frames, (GspK Q K & DuK Q K) :> K 2 DuGspK.
(iii) If .7: is (isomorphic to) a generated subframe of Q, then .7+ is a homomorphic
image of Q���.
(iv) If 21. is a homomorphic image of 28, then QL+ is isomorphic to a generated subfrarne
of 23+.

ULTRAFILTER EXTENSIONS. If f is a frame, then the frame (}"��)+ is called its ul-
tm�lter extension 10. It is the dual �tWo~step construction� of taking canonical em-
bedding algebras. We say that a class of frames K reflects ultm�lter extensions if,

whenever (.7+)+ E K, also .7 E K. We use ITeK to denote the class of frames
{.77:FEQ&(Q+)+ GK}.

REDUCTS. Reducts of frames are defined in the usual model�theoretic sense.

CHARACTERIZATION OF EQUATIONALLY DEFINABLE FRAME"&#39;CLASSES. We say that
a class K of frames is equationally de�nable if there exists a set of equations A such
that K is the class of all frames which Validate A. For V a variety, we de�ne Ky (13! {.77 :
7� E V}, and, for K a class of frames, we define VK (lg HSPK+.

FACT 2.2.8. K is equationally de�nable ifl" K = KVK.

Pnoor. (:>)feK <==:> fl=Eq(K) 4:: J��}=Eq(VK) <=> }"+eVK <:=> fe

Kv 
     
     (¢:K)J�"eK¢=>feKvK<=>f+eVK<=>J�f==Eq(K) QED
The overall situation is described in the next theorem. The theorem shows that the

four constructions discussed above are very fundamental. In a sense, this is the frame
analogue of Birkhoff�s theorem. The theorem in this generality can be found in [Gol88]

9Called inner substructures in [Gol88]
1°Called canonical extension in [(30188].
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(Thin 3.7.7). For classes of frames of type (0, 1), the theorem is in van Benthem
[Ben79]. (See also Goldblatt��-Thomason [GT74], van Bentham [Ben83], [Ben91b].)

THEOREM 2.2.9 (VAN BENTHEM-�GOLDBLATT). For K any class offrames, the fol»
lowing are equivalent.

(i) K is closed under the formation of ultra�lter extensions, generated subframes, dis-
joint unions, zigzagmorphic images and it reflects ultra�lter ezzttensions.

(ii) K :: KVK and VK is canonical.
(iii) K 2 KV for some canonical variety V.

2.3 RELATIVIZATION AND THE LOGICAL coma

In this small section, we introduce the operation of relativization, and show why it is
so important when we Want to �nd the logical core of a logic. We will restrict ourselves
to general modal logics of the kind introduced above.

SUBFRAMES AND UNIVERSAL SENTENCES. In chapter 1, we argued that the logical
core of a logic should not contain any existential import. For general modal logics
Q./Vl£(K), this means that K should be a universal class. The operation on classes of
frames K which gives us the smallest universal class in which K is contained, is that
of taking substructures. The notion of substructure is used in the F0 modektheoretic
sense. VVe recall the de�nition (cf. e.g., [CKQO] or [Hod93]). Let T:  R,v)iEI be a
frame. A frame 55" = 04/�, 1391-61 is a substructure or subframe of T if W� Q VV, and
the relations in f� are the restrictions of the relations in T to W�. We denote the
subframe of T with domain W� by .7: F1/VI. If K is a class of frames, SubK denotes the
class of all subframes of frames in K.

LOGICAL CORE. Let Q./\/1/.",(K) : (Fml, Mod(K), H-) be a. general modal logic. The log-
ical core of Q/\/l£(K) is the general modal logic Q/\/llC(SubK) 2 (Fml, Mod(SubK), H-).

RELATIVIZATION. In [HMT71] (Def 2.2.1) an operator ERII, of relativizing algebras
of the cylindric type is introduced. For arbitrary BAO�s it is de�ned as follows. Let
Qt = (A,/\,��,f,:),~.g1 be a BAD, and suppose b E A. Let Rl;,Q1d==ef{x A b : X E A}.
For all x1,...,x,, 6 RIM, let x1 /\�x2 �gm/\x2, �-�x1(if=f --X1 /\ b, and fi&#39;(x1,...,x,,) �El
f,�(X1,...,Xn) /\ Z2. Let £7iI;,Qlq&#39;?f(I1�llg,2l,/\�,�-�,f,�),-61. We refer to 9�~�.(;,Ql as the algebra
obtained by relativizing the BAO Q1 to I). For K a class of algebras, RIK (9! {Sm;,�B :
%EKandbEB}.

In sharp contrast with the operators H, S and P, equations are in general not
preserved under R1. Below, we characterize which Sahlqoist equations are preserved
under R1. We end this paragraph with a technical lemma about relativization which
will be useful later on.

LEMMA 2.3.1.  R1 is a closure operator, i.e., K Q RIK, RIRIK 2: RIK, and
K§L=>RlKQRlL.
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(ii) SR1 = SRlS = RISRI,
(iii) Rl commutes with P and Up.
(iv) If the class V is a quasimvariety, then SRIV is a quasiwariety.

PROOF.  and (ii). Straightforward.
(iii). Cf. [HMT71], Thin 2.2.8. &#39;
(iv). Since V is a quasi~variety, it is closed under SPUp. By part (iii), the operator
PUp commutes with R1. It follows from (ii) and the universal algebraic facts that
PS g SP and UpS 3 SUp that SRIV is closed under SPUp. So it is a quasi~variety. 

     
     QED

CONVENTION. In the sequel, we will speak about the class of relativized relation
algebras. In such a. context, we use �relativi7;ed� as an abbreviation for �subalgebras
of relativized�. We always take subalgebras as well, because �even if the original class
is a variety~ only relativizing can lead to a highly complex class of algebras (i.e.,
in general, they are not closed under subalgebras anymore). Examples of this are
SRJCAQ aé RlCAO, and SRICSO, 75 RICSO, when as > 2 (cf. [HMT71], 5.5.6 and 5.5.7)
and SRIRRA 75 RIRRA and SRIRA ¢ RIRA (cf. Andréka [And88]). (These classes of
algebras will be de�ned in the coming two sections.)

RELATIVIZATION AND SUBFRAMES. The following proposition establishes the con-
nection between relativizations and subframes. It shows why relativization is a key
tool for �nding the core of a logic.

PROPOSITION 2.3.2.  For any frame .7-&#39; and set W Q F, (.7-"[W)+ 2 £�R{wf+. Hence
RlK+ = (SubK)+.
(ii) Ifv = sPK+, then SBJV = SP(SubK)+.
(iii) Let e be a canonical equation which de�nes a F0 frame condition (e.g., a Sahlqvist
equation). Then e is preserved under taking relativizations if and only  e corresponds
to a universal sentence.

PROOF.  By the de�nitions.
(ii). By  and lemma 2.3.1.
(iii). Let V be the variety de�ned by e. The conclusion follows immediately from the
following statement:

v =- RIV ¢==> Cm�1V = subcix�v

VVe prove the statement:
(=>). .7: E SubCm&#39;1V :> .7 = Qfgi for some 9*" E V and C� Q G. The algebra .7� is
in V, because .7+ = (Q[G:)+ 2 9�t{(;:Q+ and the assumption. But then, .77 E Cm�"1V.
(<2). v =�. s(cm*�v)+ -.= S(SubCm�1V)+ = SR1(Cm�1V)*" = R1sR1(cm&#39;1v)+ =
RlS(SubCm"1V)+ == RlS(Cm"1V)+ 2* RIV (the last step follows, because V is canon-
ical). QED
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2.4 RELATION ALGEBRAS, ARROW LOGIC AND ARROW
FRAMES

In this section, we concentrate on the similarity type of relation algebras, and deal
exclusively with the extensional view of arrows. In chapter 6, we will return to the
intensional view. We sketch a landscape of interesting classes of relation algebras which
all contain the class RRA, and provide a menu of the properties we will investigate. To
facilitate these investigations, we do some correspondence theory, which enables us to
do most of our reasoning at the frame�level.

The study of algebras of binary relations goes back to de Morgan, Schroder and
Peirce. Recent works which are both a good introduction to the field, and which also
cover the history are Givant [Giv91], Jonsson [Jon91], Maddux [Mad91b] and Tarski~
Givant [TG87]. For a mathematical introduction, of. [HMT85]. For history, cf. also
Maddux [Mad91a], Pratt [Pra92] and Annelis~Houser [AH91]. A gentle introduction
designed for beginners, is the 1994 version of Németi [NéIn91].

2.4.1 RELATION ALGEBRAS AND ARROW FRAMES

De�ne BA�! as the class of all BAO�s with one binary in�x operator �;� (called
�cornpOsition�), one unary post�x operator �V� (called �converse�) and one con-
stant �id� (called �identity�). Vile will use rel as an abbreviation for the BAO type
{(;, 2),(",1), (id,0)}. The abstract class BA": is obtained by an abstraction over the
concrete relations (i.e., sets of pairs) of concrete relation algebras. Concrete relation
algebras and their Operations are defined as follows. For 5 a sequence, we use 3, to
denote the i�th coordinate of 3. For V Q U X U a binary relation over some set U,
de�ne a ternary relation Cy, a binary relation Fy and a unary one IV on V as follows:

CV ii-etf {(a:,3/,2) E 3V : $0 :: y0&3/1 = 308521: 921}
FV fl-:61?  E 2V : $0 2: y1&x1 =y0}
lv 4;: {:2:EV:.r0::3:1}

An algebra Q1: (�.}3(V), oV,�&#39;1V , ldv) is called afull relativized relation set algebra. if �J3(V)
is the Boolean powerset algebra with domain �P(V), and the operators are defined as
follows. For x, y Q V we de�ne:

xoty d-"Sal {HUGV:(3yz¬V)(CV:cyz&yEX&2Ey)}
X� cg {yo 6 V : (Ely E V)(FV:::y& y E x)}
ldv (g {ac E V: Ivar}

We attach a superscript V to the operators because, since V is only a subset of a
Cartesian product U X U, the meaning of the operators is dependent on V. We note
that, for X, y Q V, xov y = (xoy) Fl V , in which 0 is the usual relation composition, and
similarly for the other two operations. For this reason, We call the algebras relativized.

An equivalent de�nition of these algebras can be given using the notion of pair-
frames. The notion Of an ar7&#39;ow~fmme, defined below, is known in the literature (of.
e.g., Maddux [Mad82]); the name is due to Johan van Bentheni.
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DEFINITION 2.4.1.  A structure .7: (V,CV,FV,lV) is called a pair�frame if V Q
U X U for some set U , and the relations are de�ned as given above.
(ii) If V Q U X U, then }7,,(,,&#39;,,(V) denotes the pair�frarne with domain V. The base
of this pairframe, denoted by Base(V), is de�ned as {u E U : (312 E U)((u,v) E
V or (v,u) 6 V}.
(iii) A structure .7: := (W, C, F, l) is called an arrawwfmme if W is a set, C Q 3W, F Q 2W
and l Q W.
(iv)  denotes the class of all pair�~frames, and KT� the class of all arrOW~frames.

FACT 2.4.2.  If F is a pairmframe, then f+ is a full relativized relation set algebra.
(ii) If 21 is a full relativized relation set algebra, then 21 -2 (.T},,"-.,(1�))+.
(iii) BA��� = S(K&#39;��)+.

PROOF.  and (ii) follow from the definitions. (iii) follows from fact 2.2.1. QED

PAIR~FRAMES VS ARR,OW~FRAMES. We make the difference between complex alge-
bras of arrOw�frames and complex algebras of pairwframes clear by the notation for the
Operators. We use the notation for abstract (equationally de�ned) operators for com-
plex algebras of arrow�frarnes, and the usual set~theoretic notation for the operators of
concrete (i.e., set�-theoretically de�ned) complex algebras of pair~�fraInes. Our notation
is summarized in table 2.1. If V is clear from context, we sometimes forget about it
in oV,"1V and ldv. For the relations FV and F which give meaning to converse, we
sometimes use the (partial) functions fv and f, respectively (see section 2.4.3 below).

pair~frames arrOw~frames

I I
operator relation operator relation

0, 0� Cv ; C
U17 -1�, FVafV V F7 f
Id, Idv Iv id 1

TABLE 2.1: RELATION ALGEBRAIC OPERATORS AND THEIR FRAME RELATIONS

The great advantage of pair~frames is that we can draw pictures which immediately
explain the meaning of the terms. In Kripke frames, one usually draws the elements
of the domain (the �worlds�) as points, and indicates the (accessibility) relations by
arrows. In pair---eframes, the �worlds� are pairs (u,v) which are drawn as an arrow
going from u to &#39;0, and the accessibility relations need not be drawn, since they are
implicit in the arrows. One can say that in pair�frames the accessibility relations are
coded inside the worlds. To avoid confusion? we draw abstract arrow-~frarnes as Kripke
frames. In �gure 2.1, we establish our convention for drawing accessibility relations.
At the left are the pair~frames, and at the right the arrow��frames.
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~ IIx 0 X X

FIGURE 2.1: (ACCESSIBILITY) RELATIONS IN PAIR-FRAMES AND ARROW~FRAMES

2.4.2 A LANDSCAPE OF RELATION ALGEBRAS AND RELATIVIZED

VERSIONS

In this section, we de�ne a landscape of (relativized) relation algebras, and look at
several properties of the classes which inhabit this landscape. We start with de�ning
the classes.

DEFINITION 2.4.3. Let R. stand for re�ezcive, S for symmetric, and T for transitive.
Let H Q {R,S,T We use �V is an H relation�, to abbreviate that V has the
properties mentioned in H. De�ne:

(E {.7 E  : F is an H relation}
K:§§SQ déf {f E  : F = U X U for some set U}

SRIRRA �L-�° s(K;:; +
SRIHRRA :5: S(K;:iII)+
RRA -3- S(K§&#39;§l1zs2~)+

We will refer to Kggisq as the square pair~frames , and to RS as the locally square�
01168.

RELATIVIZATION. We explain our notation. In section 2.3, We introduced the opera-
tor R1 of relativization. In the de�nition above, we put constraints on the relativization
in the subscript H. For instance, RlR(K;§5Q)�&#39; means that we only relativize with re-
�escive relations. By Writing out the de�nitions, one sees that RRA 2 SRIRSTRRA =
SRlR5T(K§�:i5Q)+, and the names given to the relativized classes are correct. That is,
we can start out with de�ning only the class RRA and obtain the others by relativizing
and taking subalgebras. We gave a direct de�nition of the relativized classes to em-
phasize that the choice for a Cartesian product or an equivalence relation (as in the
case of RRA) is just an option out of many, and that the relativized relation algebras

set�The reason for this name is that Kggggs equals the class {.77 6 KW� : (Wu, 2;) E F)(2{u, U} Q
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have a natural de�nition on their own Without referring to RRA. VVE have chosen for
the �relativized names� to stay close to the literature.

THE LANDSCAPE AND ITS PROPERTIES

The above de�ned classes of algebras can be ordered as given in �gure 2.2 (X ��~> Y
denotes X 2 Y). It is not difficult to show that all the inclusions except the one labeled
with = are strict.

RRA = SRIRSTRRA

/R
SR1 R5 RRA SRISTRRA

SRIRTRRA 
     
     SRISRRA

SRIRRRA SRITRRA

SRIRRA

FIGURE 2.2: THE LANDSCAPE OF ALGEBRAS OFIBINARY RELATIONS

One aim of this work is to study systematically all the classes in �gure 2.2. For all of
these classes, we will look at the following properties:

a whether they are varieties
0 Whether they are �nitely axiomatizable
0 whether their equational/universal theories are decidable
9 whether they enjoy amalgamation, interpolation and de�nability properties

These notions will be made precise later on. Our intention here is to present an overview
of what is known, and to indicate What we will add to this knowledge. We start with
what is known about the pair�fraInes with a transitive domain.

THEOREM 2.4.4 (TARSKI). RRA is a variety and RRA = SP(K;§§.SQ)+.

This theorem gives us the following corollary.

COROLLARY 2.4.5. For all H Q {R,S,T}, the class SRIIIRRA is a quasiwariety.

Paoor. lmrnediate by 2.3.1. QED
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discriminator term (cf. [ANS94a]), and, by the universal algebraic fact that any quasi-
variety with a discriminator term is a variety (cf. Németi [Ném91] Thm 9.2), we are
done. When T E H , this is the only property from the above list which is positive.
Results  and (ii) in the next theorem are due to Andréka~Nérneti, the ones in (iii)
and (iv) to Németi~Sain  [ANS94a]).

THEOREM 2.4.6 (ANDREKAMNEMETIMSAIN).
Let {T} Q H Q {R,S, T}. Then SRlHRRA has the following negative properties.�

(i) it is a variety, but not aaziomatizable by �nitely many equations,
(ii) its equational theory is unclectdable,
(iii) amalgamation and interpolation fail, and
(iv) the Beth de�nability property of the corresponding (arrow) logic fails.

Because of this theorem, We concentrate on the case with T ¢ H. In table 2.2, we
summarize the results of the above theorem, and We contrast them with the results We
will find in the subsequent chapters for the cases when T Q H. In the last column, we
give the sections Where we deal with these results.

" �H g {R,S} {T} g H g {R,S, T} section 7
SRIHRRA SRIHRRA

a variety yes yes 4.2 l-
0 fin. axiomatizable yes no 4.2
by equations
0 decidable eq. yes no 3.2

theory 
     
     0 generated by its yes no 3.2
�nite members

0 interpolation of yes no 5.4
inequalities

TABLE 2.2: RESULTS ABOUT THE LANDSCAPE BELOW RRA

We will prove the positive results in table 2.2 by working with arrOw~frames. It will
turn Out that, for each class H with H Q {R, 5&#39;}, we can de�ne musing �nitely many
canonical equations~ a class of arrow-frames which has the same equational theory.
These equations correspond to simple and intuitive F0 conditions on arrowwframes.
For this reason, We will hardly speak in the algebraic language about the classes of
relation algebras. Instead We use the simpler FO language of arrow-frames. In the
next subsection, we introduce the conditions we will work with, and get familiar with
them. After that, we show how these conditions can be de�ned by means of equations.

2.4.3 ARROW~FRAMES

CONDITIONS ON ARROWWFRAMES. Consider the conditions (01) �� (C15) on arrow»
frames given below. Note that the first twelve conditions are all universal Horn sen~
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tences, and are valid on all pair~frarnes. Condition (C13) is valid on symmetric pair~
frames (i.e., pair~frames whose domain is a symmetric relation), and conditions (C14)
and C15) 011 re�exive ones.

(C1) Va:y(F:z:y :> Fyzc) (C10) \&#39;/xyz(Fxy&Fa:z => 3/ = 2)
(C2) V:c(|a: => Cmrx) (C11) \7�xyz(Cxyz&ly => cc :2 2)
(C3) Vx(la: => Frat) (C12) Va:yz(C$yz&|z :> :1: 2: y)
(C4) Va:yzv(Ca:yz&Fyv :> Czvcv) (C13) Vx3y(F:z:y)
(C5) V5vyzv(C:I:yz&Fzv =:> Cyaxv) (C14) V:c3y(ly&C:2:y;v)
(C5) V;2:yz(C:cyz & lac => Fzy) (C15) V:1:Ely(ly&Ca:a:y)
(C7) V:z:yzv(Ca:yz&C9:va:&|v <=> Cacyz&Cyvy&Iv)
(C3) Va:yzv(C;vyz&Cyyv&|v <==> C3:yz&C2vz&lv)
(C9) Vxyzv(C;z7yz&Czzv&lv <::=> Cxy2&C:c2:v&|v)

TABLE 2.3: CONDITIONS ON ARROW*FRAMES

The meaning of these conditions is most easily grasped by checking their validity using
the proposed way of drawing pair~frames. We brie�y go through the list. The meaning
of (C1) and (C10) is easy: every arrow has at most one converse and the converse
relation is symmetric (i.e., if we look at the relation as a partial function f, it says
that if fa: is defined, then so is ffac and it equals 1:. (C13) Says that every arrow has a
converse. Conditions (02) and (C3) state that an identity arrow is its own converse,
and can be decomposed in itself. The meaning of (C4) and (C5) becomes clear by the
following pictures:

X X

Condition (C5) states that if an identity arrow is decomposed in y and 2, then 3; and
z are converses. Conditions (C7) � (C9) express the fact that each arrow can have at
most one identity arrow (its �domain�) at its tail, and one at its head (its �range�).
If an arrow is a pair (u,,v), then its domain is (u,u), and its range is (22,72). So, if we
can decompose st into y and 2&#39;; then (if they are de�ned) the domain of IL� equals the
domain of y (C7), the range of 3; equals the domain of 2 (C8), and the range of .2 equals
the range of at (C9). Conditions (C14) and (015) State that for every arrow, its domain
and range are defined. The meaning of (C11) and (C12) is obvious.

PARTIAL FUNCTIONS FOR CONVERSE, DOMAIN AND RANGE.

By the conditions (C7), (C9), (C 111) - (C12), we have three partial functions living in our
frames. If one assumes (C13) �- (C15) as well, they will be total. It is useful to make
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them explicit, so de�ne

def
fx =: y <==> Fry otherwise 1� is unde�ned

at; = y ¢"iif&#39;I> Cxyx & ly otherwise  is unde�ned
3:, =2 y <g> Crazy & ly otherwise  is unde�nedex

So, if they are de�ned, fa: gives the converse arrow of ac, and the functions ac; and 2:,
(l for left and 7* for right) give, what we called above, the domain and the range of
9:, respectively. In other words: the two functions give us the left and the right �end-
point� of an arrow. It is convenient to have explicit symbols in our algebraic language
corresponding to the two de�ned functions: de�ne 53, x d==ef (id /\x);1 and 5? x g 1;(id /\x).
Their meaning is given by the following three equations. This is easy to see by writing
out the de�nitions.

5,1,7 = {$Z£L�(¬T}
s�,�7&#39; = {:1:::z:,Er}
7�� 2 {:r:f:1:ET}

The notation 52- comes from cylindric algebra theory, in which 5; is used as the sub-
stitution operator. Note that if the meaning� of p is a binary relation, the meaning of
s�,�p is given by the set {(55, y) : (y, y) is in the meaning of

Note that, onre�exive and symmetric pair~frames, the three functions give us all
permutations with repetitions of a pair (u, U) which are different from (u, v).

Unary operators whose accessibility relation is a total function have the nice prop-
erty that they distribute over the Booleans (they are Boolean endomorphisms). If the
relation is a partial function, then the operator distributes only over meet and join.
For complementation of such an operator, only the weaker �-Ox /\ O1 2 <>~�x holds.
Both sides of this equation say that a �world� has a �successor� and x is not true at
that �successor�.

Using the de�ned functions, We can formulate the following useful consequences of
the frame conditions given above (see Prop.2.4.7 below)�.

(To) f,  and  are partial functions and f is idempotent

(T1) l2:=>at==f(:2:)=:L&#39;;=x, 
     
     (in particular: if la: then all three functions are de�ned on :r)

(T2) Fry ::> 321 = y, & 27,. = y;
(T3) C:1cyz:>sc;=yg&y,=21&z,=:c,
(T4) 1�,  and  are total

If f is a total function, we can write (T2) in a simpler way as 3:; = (f:::)r and 1�, 2: (f:r);.
Since, by de�nition, I32; and Ixr, (T1) implies that 3:; = ($1); = (an), and 3),. = (113,), =
($T)1.

uln F0 logic 59 P710211 would be written as 3�U()(.P&#39;U(]l}1 /\ 1:0 2 221) or equivalently P121 121. So the
variable 221 is substituted for &#39;00.

�If we use two partial functions f and g, then fa: = gy means that either both fa: and gy are
unde�ned, or they are both de�ned and far 2 gy. Idempotency of a partial function f means that if
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PROPOSITION 2.4.7. (i) (0,) ~ (012) 1: (T0) � (T3)
(33) (C1) �� (015) i: (To) " (T4)

- PROOF. (T0): Functionality follows from (C7), (C9), (C10) � (C12). ldempotency of 1�
follows from (C1
(T1): L&#39;z: (C2)&#39;�§£>(C3) Cxscrr & Fm" <§&#39;��(;> as 2 fa: 2 cc; 2 xr.
(T3): This is just a short way of summarizing (C7) �- (C9).
(T2) 1 Suppose Fry, and suppose 11:; is de�ned. Then Fwy & C:c:c;:1c. Then, by (C5), we
get Canacy, hence, by (T3), (:z:;),. =: y,. Finally, by (T1), (9:1), = :12; : yr. Now suppose
2:; is not de�ned: assume that y, is de�ned, and derive a. contradiction in the same way
as above using (C4). The other condition is proved in a similar way.
(T4): That these three functions are total, follows from (C13) � (C15). QED

APPROXIMATIONS OF (REFLEXIVE OR SYMMETRIC) PAlR�FRAMES.  COUISQ, COX}-
ditions (C1) - (C15) are not arbitrarily chosen. They can be used to de�ne classes
of arrowwfrarnes Km, (H Q {R,S which have the same equational theory as the
classes of pair~frames H. We prove this in chapter 4. These classes are given in
the next de�nition. In �gure 2.3, we present the inclusions between these classes of
arrow�frames and pair~frames. All relations are strict. When an arrow is labeled by eq,
this means that the two classes have the same equational theory (of. theorem 4.2.1).
In the diagram at the right, these relations are given for the varieties generated by
these frame classes. (That these classes are actually varieties will be shown in the next
subsection.)

DEFINITION 2.4.8.

Kg� 4.-E-� {yr 6 K"� :1� g: (0.) � (own
Kzts �s {I e Ks� : 1* l=(C13)}
K3}: d���ef {7 E K57� 3 7� l= (C14)»(C15)}
Kiflzs = K1335; 0 Kifé

2.4.4 ARROW CORRESPONDENCE

The next proposition shows how we can de�ne the conditions (C1)-(C15) by canonical
equations. It follows that the classes S(K:§,�g)+ (H Q (R, S are �nitely axiomatizable
canonical varieties (cf. 2.4.10).

PROPOSITION 2.4.9. For 1 _<_ 2&#39; 3 15, every equation (A,) given below is canonical,
and it corresponds to the frame condition (C,:). The cor&#39;re3po7Ldence of 2, and �7~.9 hold
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1
K§§:1zsT

I

Kiifzas 
     
     eq

K1-el KrelsetR setS

II K7535 1
eq eq

KS3
I IK332 T K32

eq

Krel

Krel

RRA

SRIRSRRA

SRIRRRA g SRISRRA
I S(K;?1&#39;*zs + I

SRIRRA

s<K:as>+ I S(K£?é)*�

s<K::&#39;>+ 
     
     BArel

33
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only when 11 and 12 are assumed.

(01) Va=y(Fwy => F2/J2) (A1) X A y� S (XV A y)�
(C2) V3:(|:c :> Ca::z:2:) (A1) id : id ; id
(C3) Vx(|ac 21> Fzczc) (A3) x A id 3 x��
(C4) V:cyz&#39;u(Cxyz&Fyv => Czvzc) (A4) x";��(x;y) 3 ��y
(C5) Va:y2v(C9:yz&Fzv => Cyzvv) (A5) �(x;y);y" 3 ��x
(C5) �v&#39;:I:yz(C:ry2 & lm => Fzy) (A6) x;�(xV) 3 �� id
(C7) V:vyzv(C1:yz&:C:vv:1:&|v <==> C:cyz&Cyvy&lv) (A7) [(x A id);y];z = (X A id);[y;z]
(Cg) V:1:yzv(C:I:yz&Cyyv&Iv <==> Ca:yz&Czvz&|v) (A3) [x;(y A id)];z 2 x;[(y A id);z]
C9) V:cyzv(C:cyz&Czzv&lv 4==> Ca:yz&C:m:v&lv) (A9) [x;y];(z A id) = x;[y;(z A id)](

(C111) V:cyz(F:Ey&F.7:z => 3/ 2 z) (A111) X" A y" 3 (X A y)"
(C11) Vmyz(Ca:yz&|y => :1: = 2) (A11) id ;x 3 x
(C11) V.&#39;23yz(Car:yz&lz =3 :12� = 3/) (A12) X; id 3 x
(C13) Va:3y(Fa3y) (A13) 1� 2 1
(C14) V:1:3y(ly&C:cya:) (A14) x 3 id ;x
(C15) V:c3y(ly&Ca3:cy) (A15) x 3 x; id

PROOF. Straightforward, since all equations are, orare equivalent to, positive equa-
tions (see the claim below).

CLAIM 1. All the axioms can be given using only Boolean meet, top, and the non
Boolean operators (i.e., with positive equations). Axioms (A4) and (A5) are equivalent
to x A (y";z) 3 y��;(z A (y;x)) and x A (y;z") 3 (y A (x;z));z", respectively. Axiom (A6)
is equivalent to id A(x;y) 3 x;(y A X").

PROOF OF CLAIM. The equivalences are easy to show by using that (A4) �� (A6) are
Sahlqvist equations and 2.2.4. 4

As an example we show the correspondence of one side of (C7), which is a convenient
reformulation of the �real� correspondent of (A7). This real correspondent is (2.3)
below. The (=¢) half of condition (C7) follows from (2.3) using condition (C11).

Crnyz & Cyvw & lv :3» (Bu) 2 Czwu 8.: Cuwz (2.3)

Let  denote [(x A id);y];z 3 (x A id);[y;z].

CLAIM 2. $3: (A375) «:=> 7-�): (2.3)

PROOF OF CLAIM. Clearly,  holds on every frame satisfying (2.3). For the other
side, suppose an arrow frame f validates  We have to show that .77 validates
(2.3). Assume the antecedent of (2.3). Let x,y,z be variables, and de�ne a valuation
such that v(x) = {v},v(y) 2  and v(z) 2  Then (.7-",v),:L* it [(x A id);y];z, which
is the antecedent of  Because f validates (A15), the point so will also validate the
consequent of this equation. But then, by the given valuation, there exists a u such
that the consequent of (2.3) holds. QED

Let AX g ((A1) �- (.4,5)}. De�ne BA"�(AX) �E-E� {m 6 BA�� : 21 1:: AX}.
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THEOREM 2.4.10. The four varieties given below are canonical.

<2�) BA*��((A1> � (An) = S<K:7&#39;)+
(ii) BAMUAI) " (1413)) = S(K:i§)+
 BArel((Ai) � (A12), (/414)» (1415)) = S(K:ii2)+
(W) BAreI((A1) &#39; (Anal) = S(K:iizs)+

PROOF. Immediate by 2.4.9 and fact 2.2.2. QED

REMARK 2.4.11. Tarski proposed the following axioms in order to approximate the
equational theory of the variety RRA. We list them, together with their F0 correspon-
dents on arrow-frames.

(RAD) the BA"" axioms�
(RA1) (x;y);z = x;(y;z) V:L&#39;yzuv((C:L�yz & Cyuv) => E|w(C;vuw & CwUz))

Va:yzuv((Cacyz & Czuv) => 3w(Cxwv & Cw}/u))
(RA2) X; id = X V:c3z(|z & Czvacz)

Vary/z(Ca:yz & lz :=> (1: 2 y)
(RA3) (x�)" = X Varizlh/(Fwy & Fyat)
(RA4) (x;y)" 2 ";X" V:cyz(3w(Facw & Cwyz) ¢=> 3uv(Fuy & F222 & C:I:vu))
(RA5) xV;�-(x;y) 3 ��y \&#39;/a:yzv((C:z:yz&Fyv) :> Czvx)

The variety {QL 6 BA�! : Qt }:= (RAG) �� (R/15)} is called RA (the variety of Relation
Algebras, cf. [HMT85] Def 5.3.1). The axioms (RAG) �- (RA5) are called the RA axioms.

All the RA axioms show up in a weakened form in our list (A1) �- (A12). We deleted
the existential import of the RA axioms by appropriate intersections. The associativity
axiom returns as the three weakened forms of associativity (A7) �� (A9). The weakened
form of axiom (RA2) is x; id = X/\  id), which is equivalent to axiom (A12). Assuming
(A10), axiom (A1) is equivalent to the more appealing (x")� 2: X /\ 1�, which is a
weakened form of (RA3). To delete the existential import from (RA4), one has to
rewrite it as ((x /\ 1");(y /\ l"))" 2 (x";yV) /\ 1�. By reasoning in frames, it is easily
seen that this weakening follows from (A4) and (A5). (RA5) �nally, is the only RA
axiom without existential import; this is our (A4).

2.4.5 ARROW LOGIC

Arrow logic .is the general modal logic ~in the sense of section 2.1.3~ of the type rel =
;," ,id} of relation algebras. In the literature, one can find many notations for these

three operators. We will use the following: the composition operator is given by a
binary in�x operator �O�, converse is denoted by a unary pre�x operator �®� and for
the identity constant we use �id� as before. We use an underline to denote the duals

of the operators, so _@¢ <g> -v®-145 and 4531!) <g§> ~1(-~45 0 -vi/2). So, arrow logic is a
propositional logic with countably many variables {pi : �l < co}, enriched with a binary
modality �I�, an unary �®� and a constant �id�. Models are provided by arr0w�fmmes

�Le, a. BA axioinatization plus equations which state that ; and � are normal operators.
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.7: 2: (W, C, F, I) plus a valuation v. The modalities are interpreted on these models as
follows:

M,acH~ id #1:-4 ix
M,acH-69¢ <4-=e=f=> (ElyEW):F$y&M,yH~q5
M,xI}~qf>02/2 $3 (3y,zEW):C:cyz&M,yH-¢&M,zH~2,b

In this way, an arrow logic AL(K) �lg (Fml,e;({p,~ : i < w}), Mod(K), H-M) is completely
determined by its speci�c class of arrow�frames. Yde Venema wrote a nice overview
article about arrow logic ([Ven94]).

ALGEBRAIZATION or ARROW LOGIC. If wealgebraize an arrow logic of a class of
frames K in the sense of algebraic logic (cf. e.g., Andréka et al. [ANSK94]), we get the
class of algebras SPK+. Statements about meta�logical properties of the general modal
logic Q/\/l£&#39;.(K) translate into equivalent algebraic statements about the class SPK+.
(Cf. [ANSK94] for such equivalence theorems about completeness, compactness, decid-
ability and interpolation.) In the coming three chapters, we will investigate algebraic
counterparts of arrow logic of pair�fraInes. The algebraic counterparts of the arrow
logics of the classes of paireframes H are the classes of relativized relation algebras
SRIHRRA. in chapter 6, we transform the obtained results back into meta-logical
statements about arrow logic.

2.5 CYLINDRIC ALGEBRAS, CYLINDRIC MODAL LOGIC AND

ALPHA FRAMES

In this section, we introduce algebras and frames of the cylindric similarity type. The
section is set up analogously to the previous one about the relational similarity type.
In subsection 2.5.4, we compare the two types of algebras.

The standard work on cylindric algebras is the monograph Henkin~Monk�-Tarski
Parts I and H ([HMT71], {HMT85]). A book with a lot of information about relativized
cylindric algebras is Henkin et al. [HMT"�8l]. A Very extended survey, including the
most recent developments, of this field is Németi [Ném91]. In our terminology and
notation we follow [HMT71].

2.5.1 CYLINDRIC ALGEBRAS AND ALPHA FRAMES

Let 0: be any ordinal. Define Boo, as the class of all BAO�s with or many unary operators
�cf, one for each i < oz, and constants �d,~j�, one for each i, j < 04. The elements ��d,j�
are called diagonals, and the operators �C,-7� cylindri�cations. We use a superscript C9�
to denote this speci�c similarity type�. These algebras are the appropriate abstract
version of the cylindric set algebras de�ned below. Let V Q �U, for some set U; de�ne

15 The name Boa comes from [HMT71], in which B00. is called the class of all Boolean algebras with
operators of dimension oz. Using our convention, we should have called this class BA°yl°�.
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a set of binary relations 2-32� Q V X V, and a set of unary relations D}; Q V for each
i, j < oz as follows

C-I-"-S-f {SEVZS,�=8j}
5}� �i�?�.� {(s,r)EV><V: forallj¢i,s,-=9",-}

We call an algebra Qt: (�J3(V), C}/,  a full cylindiic relativized set algebra of dimen-
sion 0:, if �J3(V) is the Boolean powerset algebra with domain 73(V), and the operators
are defined as follows: &#39;

C}/(X) � {sEV:(3r):sEY1&#39;&7�Ex}
 é {.sEV:D,l;s}

When V is clear from the context, we will suppress the superscript V.
The relations 3- and Dgj give rise to the notion of assignment-frames of dimension

oz. We call their abstract counterparts owframes. Venema [Ven93] calls assignment�
frames in which the domain consists of a full Cartesian product V = �U, cubes. There
is an obvious analogy with the square pair�frames.

DEFINITION 2.5.1.  A structure .7: = (V, 5}�, D3)�. K0 is called an assignment�fmme
of dimension 0: if V Q �U for some set U , and the relations are de�ned as above.
(ii) If V Q �U, then .7-&#39;a3(V) denotes the assignment~frame with domain V.
(iii) A structure .7 = (W,T�, Eli)�-<0, is called an oi~f7&#39;ame if W is a set, T� Q l/V X W
and E� Q W.
(iv) K35� denotes the class of all assign1nent~frames of dimension Cr, and K�-""3 the class
of all a-frames.

Clearly, if .7 is an assignnient-frame, then }7+ is a full cylindric relativized set alge-
bra. If .77: (W,Ti, E&#39;7)m.<a is an oi~�frame, then .7� = (�13(Vi/),c,«,d,vJ-),-J-(C, denotes the
complex algebra of .77. The meaning of the C,»�s and d,~j�s are computed as above, but
now using the abstract relations Ti and E� . Fact 2.2.1 implies that B00, = S(K�3"")+.

SUBSTITUTIONS. In order to de�ne more restricted classes of assignmentnframes, we
de�ne the notion of substitutions of sequences. For .9 an 0/. sequence, let f  denote
that sequence 7* which equals 2: on its i~th coordinate, and agrees with s on all other
coordinates. We call f ;.(s) the substitution of the jmth coordinate of s for the i�th
coordinate. Substitution functions are de�nable on assignment-frames of dimension cr
in the following way. For i, j < oz, de�ne the (partial) substitutionfunction  on V Q �U
as follows. For 3, 7* E V, ifi 96 j, then fj�-s 2: 7� iff (s E,� 7�&D,j7°). lfi = j, then f;(s) = s.
The function f; corresponds to the operation 5; which is de�ned as Sjx d:=ef C¢(x /\ DU)
ifi 75 j, and SEX :2 X ifi = j. By these de�nitions, S;-x = {s E V : fjls E X}.

NOTATION. Again, we make the difference between �abstract� and �concrete� oper�
ations clear in the notation. Table 2.4 summarizes it. The �abstract� versions of the

operator 5} and the function  are de�ned in the next subsection.
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assignment~frames _ cwframes

I l
operator relation operator relation

C,� E; C,� T�

Di!" Dev� day E7�
5} J3� 5} J�?

TABLE 2.4: CYLINDRIC ALGEBRAIC OPERATORS AND THEIR FRAME RELATIONS

2.5.2 CYLINDRIC RELATIVIZED SET ALGEBRAS

We de�ne three special classes of assignment�fra1nes by imposing one or more of the
existential requirements mentioned in section 1.2.

DEFINITION 2.5.2.

Kzzit g {f e K22?� : (vs e F)(Vz&#39;,j < a><fz�s e F)}
K:z£:: �%-&#39;i� {f e Kai� 2 (vs e F)(a{3:&#39; :I< a} g F)}
 dz� {.77 6 Kg?� : F = �U for some set U}

The first class is the cylindric algebraic analogue of the re�exive pair~frames, the
&#39; second of the locally square , and the third of the square pairwfrarnes. In the next

de�nition, we relate the classes of assignment~frames to classes of cylindric (relativized)
set algebras which are knowyn from the literature�. Note that, by de�nition, these
classes are closed under isomorphisms (since SK+ = ISK+). Our notation differs from
the convention introduced in [HMT85], because there the class Crsa is not closed under
isomorphisms (i.e., Crso, is de�ned in [HMT85] as the class S{.75+ : .77 E K§Z§�}).
DEFINITION 2.5.3 (CYLINDRIC (RELATIVIZED) SET ALGEBRAS). Let a be any 0I��
dinal.

crs..  s(K:zé�>+, D0�  s<K:zi�5>+
Ga 43 S(K§�é§�é)+, RC/My dé SP(K§Z2°§)+

These four classes are related as follows: RCA� C_Z Go, Q D,, Q Crsa. When Q! S 1, all
four classes become equal. When or > 1, the inclusions are strict. This can be seen by
the following equations:

D2 #2 Cg dgl 2 1 but CTS2 % �C0 dgl = 1
G2 ll: �" doi S C0 C1 * 6301 but D2 V: ~&#39; Cl�l E C0 C1 �" doi
RCA2 *2 C0 C1 X &#39;�" C1 C9 X  G2 % C0 C1 X 7- C1 C0 X

SURVEY OF PROPERTIES. In table 2.5, we present a survey of basic metawmathematical
properties of these four classes of algebras. The symbol �I� in the table stands for
2 < 0: < w, and the symbol ��II�� for Oz 2 w. The sources of the theorems which are

1&#39;3Crsc, (for Cylindric Relativized Set Algebras) and RCA, (for Representable Cylindric Algebras)
are de�ned in [HMT85]. The class Do, is de�ned in [AT88], and the class Ga in [Ném9�2].
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summarized in this table are provided in notes immediately below the table. When
0 3 CM g 2, all the properties except interpolation are positive for all four classes".
Interpolation holds for all classes when oz g 1, and for CF52 and D2 (see 5.4.6). For G2,
we don�t know the answer, and the interpolation property fails for RCA; (a result due
to S. Comer [Com69]). .

D. Resek and R. Thompson ([RT91]) provided axiomatizations of the varieties Crsa
and D0,, for oz any ordinal. H. Andréka ([AT88], [Mon91]) provided simpler axiom
systems and proofs for these two theorems. The axiomatizations are recalled in the
next section, because We need them later on. R. Thompson claims to have a �nite
axiomatization of the class Ga, but he did not reveal the axioms. Due to a result of
D. Monk ([Mon69]), the variety RCA�, is not �nitely axiomatizable if as > 2. Németi
showed that for C2 > 2, the variety Crsc, is not �nitely axiomatizable, not even by �nitely
many equation schemes (cf. [HMT85]). For related and strengthened results, see the
remarks immediately below Thm 4 in [Ném91]. The decidability issues for these classes
were settled by Tarski and N émeti.

The trend in the table is similar to what we have seen with relation algebras, be it
that the contrast is not so striking. When Ct > 2, all properties fail for the class RCAO,
(the class of subalgebras of algebras whose domain is a. disjoint union of full Cartesian
products). As We have seen with relation algebras, properties tend to turn positive,
once We abandon the requirement of full Cartesian products.

Crsa DO, GO, RCA,
1 ll I H l H I ll

0 variety yes1 yes} 7 yes� yes? yes3 yes3 ye.s4 yes� h
0 fin. (schema) not no1 yes? yes? yes?� yes3 n05 n05

fxd:/)31c£i<2;l:i1l:l:be13:. yes6 yes� yes5 ? yes6 yes6 n07 n07
Ehgeeirriirated by 7 �.7 yess �.7 7 7 no7 7107
ll: fi . . b

10 intgrprglezintiohrzf yes9 yes9 yes9 yes9 ? ? now now
inequalities

�I� stands for 2 < 04 < w and �II� for O: = w.

1 Németi [HMT85] Thm 5.5.10, 5.5.12, 5.5.13 5 Németi [Ném92] Thin 10
2 Resek�Thon1pson, Andréka [M0n91], [AT88] 7 Tarski [HMT85] Thrn 4.2.18
3 Thompson unpublished 8 Thin 3.3.1 in here
4 Henkin~Tarski [HMT85] Thin 3.1.103 9 Thm 5.4.6 in here
5 Monk [HMT85] Thm 4.1.3 10 Comer, Pigozzi [Pig72] Tab 2.4.1, 2.4.2

TABLE 2.5: PROPERTIES OF CYLINDRIC (RELATIVIZED) SET ALGEBRAS

�These results can be found in or derived from [HMT71] and [HMT85].
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2.5.3 CORRESPONDENCE AND COMPLETENESS

�We now recall the axiornatizations of Crsa and DO. The axioms of Crsa and a soundness
and completeness proof can be found in Monk [M01191], but we note that} due to a mis-
print, axiom (A63) given below is missing from his list. For a simpler reformulation and
an easier soundness proof of the last axiom, we refer to van Lambalgen�~Simon [L894].
The DC, axioms and a nice completeness proof can be found in Andréka�Thompson
[AT88]. We provide a slight reformulation of the Do, axioms, which makes the connec�
tion with the norrrelativized axioms a bit clearer, and which will be helpful in the next
chapter. In order to compare the axioms with the well investigated cylindric algebra
axioms CA, we list them here as Well, together with their corresponding conditions on
ozwframes (cf. [HMT71] Thm 2.7.40). The side-conditions in the de�nition apply to ~
both the equation and the frame condition.

DEFINITION 2.5.4 (CA AXIOMS).

(A1) X 3 C,-x (C1) Va:T�lm:v. _ _
(A2) c,- C1-x _<_ c,- x (C2) V;L�yz(T�:cy & Tlyz => T&#39;a:z)
(A3) x 3 - Ci �� Ci x (C3) Vmy(T�:1;y => T�y;r) _ �
(A4) c,- cj X :: cj c,- x (C4) \/:z7yz&#39;(T&#39;a:y & T7yz => 3w(T� saw & T�wz))
(A5) CL,� 2 1  V£CE�;l? &#39; �
(As) cm A dkj) = dij (Cs) va:(E*Ja: => 3:/<.T��w & W & fr9�*�y>> if k ¢ {M}

Va7y(T&#39;f¢y & Eky & Evkpjy :$ E"x) if is ¢
(A7) dgj /\c,«(d,�j Ax) 3 x (C7) Vxgz/(E"$ &: T�:L*y & E�y 23> 1: = 3;) iii 75 j

De�ne the class CAQ� of cylindric algebras of dimension oz, as the subclass of B0,,
which validates all instances with indices smaller than oz of the axioms (A1) - (A7).

Note that all axioms, except number 3, are positive equations, and that axiom 3 is
equivalent to the positive equation x A c,; y g c,~(c,- x /\ y).

CORRESPONDENCE RESULTS

The correspondence results in this paragraph are all stated without proof. The latter
are trivial, because all equations are positive.

SUBSTITUTIONS. De�ne the abstract substitution relation  as follows: if i 2 j, then
= :12, and if 2&#39; 75 j, then fjla: = y <25-i:e£> Tiny & Elly.

PROPOSITION 2.5.5. The axioms (A2),(A3),(A5), (A63) and (A7) are suj�cient to
make  a totolfunction. Without (A5) and (A52), it is a partial function.

Paoor. Straightforward. QED

We also de�ne the abstract substitution operator 5;, in a similar way as we did above
for the concrete one: ifi = j, then S} x (E-if x, and ifi ¢ j, then 5; x E! c,»(x/\ dij). Using
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this operator, we can rewrite axioms 6 and 7 to the ones given below, making it clear
that these axioms are about the relation between the substitutions and the diagonals.

(As) do = $5� do if 79 953&#39;
(A71) dij /\S.�7<X _<_ X

AXIOMS FOR D0,. Consider the following two equations and F0 frame conditions. The
frame conditions correspond to these equations Whenever the substitution functions are
total. &#39;

(A4+) 5i5iX.=-� Sisix _ , (04+) V$(fz{.fi$ 7-
(AMGR) sf-°s;s{ns§c" ck x 2: sfns§"s}s"; ck x (CMGR) V:cy(�T�.�f,:"f,{1fJ�-fik(1:)y <=>

if is s {z�,j,m},m 9! {M} T�°f;{f;f.�"f,�§.(:v):<1)

Axiom 4+ is the weakened version of axiom 4. This becomes clear, when We write the
de�nitions out, and get c,>(cj(x /\ djk) /\ dik) :2 C]-(c,»x /\ dik) /\ djk). The second axiom
is called the merry go round equation. The axioms 1 ��- 3,4+,5 - 7 and (AMGR) are
sufficient to axiomatize D0, (see 2.5.7 below).

AXIOMS FOR Crsa. The axioms which are su�icient to axiomatize the variety Crsa
(3 3 Cr 3 w) are far more complicated. We mentioned above that no finite axiom-
atization is possible. The in�nite axiomatization consists of all CA axioms without
existential import, plus the ones given immediately below� (cf. [Mon91]). We need
some notation in order to formulate the in�nite set of axioms (8) conveniently. We use
[i/ for the function in �oz which sends 2&#39; to j and �xes all other elements.

(A5...) C1,, = dji (Cm) \7�wE�J&#39;_a_: <==>�E"":z:
(A55) dgj Adjk S Chic (C51,) V.73(E�.�/U & Ejkfl.� => Elkrli)
(A53) Ck(d,�k /\ClL-J�) _<_ Clij   85 Eiky & Ekjy 3-? Ei]$)

if is Q
(A8) 5;: Ck� -~ Cm X /\ lllek dzuu) S C2� X

subject to condition  below

Axiom (A3) corresponds on or--frames toV(C3) below�, and is subject to the same
condition

(C3) V1230 . . . $n(H El"(l)$,, & Th" f;-&#39;;�a:,,:I:,,_;&: . . .&T�� f]l11.�K1CC0 2?» Ti.�L&#39;n5Cg)
IeK

(>1<) where K : {i1, . . . ,i,,,k1, . . .,k,,}\{z&#39;},1/ = [in/j,,]o. . .o[z&#39;,A/j1] and km� ¢ ([z&#39;m/jm]o
...o [£1/j1])*(K) for all m < 72.

�Note that (A55) follows from (A1),(A5) and (A55). We leave it to be consistent with [Mon91).
19The condition should be read as follows: if all functions are de�ned and the antecedent holds then

the consequent holds. Note that the functions do not contain any existential import. in this way. The
condition could be written equivalently as a universal Horn sentence without the substitution functions
as follows: delete all occurrences of fj�-i�s for i = j, and, ifi % j, rewrite Tkf;-oz, y as Tim, z&E�7z&T�°z, y
using new variables.
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COMPLETENESS RESULTS

DEFINITION 2.5.6. Let 0: be any ordinal greater than 0.
(i) The class K33 is de�ned as the class of orframes which satisfy all instances with
indices smaller than 0: of conditions (C1) � (C3), (CH), (C5) �� (C7) plus (CMGR).
(ii) The class K31� is that class of oz�frarnes which satis�es all instances with indices
smaller than or of the conditions (C1) � (C3), (C5),(C5a), (C51,), (C65), (C7) and the
set of axioms (C3).

Let AX be a set of equations. Boo,(AX) denotes the class {91 6 B00 : 21 }: AX

THEOREM 2.5.7 (RESEKrTHOMPSON). Let a be any ordinal greater than 1. Then
Crso, and D,, are canonical varieties. In particular:

(ll B°a((A1) � (Asla (Ash (Asa): (A512): (Aeg)» (Ada (Asll
(ii) B°a((A1)&#39; (A3): (A4+)» (As) � (A7): (AMGRD

PROOF. (i). Cf. [M01191] Thm 9.4.
(ii). The axioms 1 - 3,4*, 5 �- 7 and MGR are su�icient to axiomatize Du (cf. [AT88]
Thrn 1).

ll 
     
     1|s<K:?��>+ 

     
     s<K::�}5*>+Crsa 

     
     DaH 

     
     II

(A4,) d,~k/\c,-cixgc,icjx ifk¢{i,j}
So the only difference between the two axiom systems is that 4* is replaced by 4+.
But, assuming axioms 1~3 and 5-7, these two axioms are equivalent (cf. Thompson,
[Tho90], Prop 1). QED

REMARK 2.5.8. Whenever Oz equals 0 or 1, the cases are much simpler. In case
a = 0, we have Crsa = D, = RCA�, = BA. When a equals 1, Crsa = D,,, 2 RCA�, .2
Boa((A1) � (A3), (A5)). The class CF52 can be axiomatized by the equations (A1) -
(A3), (A5), (A5,,), (A7) (cf. [HMT85] Thm 5.5.5).

2.5.4 CYLINDRIC ALGEBRAS AND RELATION ALGEBRAS

We brie�y compare the two types of algebras. Both are algebras of relations. Rela�
tion algebras are algebras of binary relations, and cylindric algebras of dimension C1
are algebras of cwary relations. Cylindric algebras of dimension or are the algebraic
counterpart of F0 logic with or many variables. The expressive power of RRA equals
that of F0 logic with 3 variables and only binary predicate symbols. (For a purely
algebraic formulation of this result, see [HMT85] section 5.3.) We will compare the
pair~frames and the Z:\.SSlgIII1�1¬I1l3"&#39;fI�aIIl¬)S of dimension 2. V Recall the �path�~~condition
from section 1.2.
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PROPOSITION 2.5.10.  Let V be a re�exive and symmetric binary relation. Then
.7-�,,,,,<,.(V) |r: C},/x =1oV (ldv /\(1oV x)) and .7-&#39;,,,,;,.(V) Ir: CYX = (ldv /\(x 0V 1)) 0V 1.
(ii) Let V be a binary relation satisfying the path�princz&#39;ples. Then .7",,.,,~r(V) }= CE,/X =
1 ov x and .7-�,m~,(V) ]= C}/x = x ov 1.

PROOF.  Cf. 6.3.1. (ii). Immediate by the previous proposition. QED

2.5.5 CYLINDRIC MODAL LOGIC

An excellent exposition of cylindric modal logic (CML) can be found in Venerna [Ven93]
and [Ven91]. Here, we brie�y sketch the basic idea of this system. The aim of CML
is to study and devise a propositional modal formalism which is as expressive as first
order logic. This can be done by restricting the syntax of F0 logic in such a way that
it behaves like a (multi)�modal propositional logic. We brie�y describe this restriction.
For a discussion of such a restricted syntax versus the usual syntax of F0 logic (as well
as their equivalence when we have in�nitely many variables) We refer to [Ném91].

Suppose we have a language of F0 logic with the constraint that there are oz many
variables (Where oz is a �xed but arbitrary ordinal), and that the only admissible atomic
formulae are of the form 7). = vj (i, j < 04) or R(vgv1 . . .11,� . . .),-<(,. Then the equalities
vi =: vj can be seen as constants 6,7, and in writing the atomic relations we might
as Well leave out the variables since, due to their fixed order, they do not contain
any information. But then, we are in a rnulti�~modal propositional logic enriched with
constants. As was explained in section 1.2, we can look at the quanti�ers 31); as if they
were modal operators <>,-. So we can de�ne the language of CMLC, as a multi~�rnodal
propositional language with a set of constants {6i,~ : i, j < Oz} and Cr many modal
operators 0,. The meaning of the formulas is naturally given in terms of a~frames.
Here are the key clauses. Let .77 be an orframe (l/l/�,T�i,E"�i),<,,~<(,, M = (f,v) a model
and w E W:

lVl,&#39;LU ll� 61]� ¢(}=�é> Eljw
M,w ll- <>,»¢ <$5> (312 e W) zriwv & M,v at gs

Note that if we use orcubes instead, we get the classical F0 interpretation of the
modalized F0 formulas.

Using the equivalence theorems mentioned in section 2.4.5, and the fact that the
algebraic counterpart of a cylindric modal logic of a class K of a�frames is the class of
algebras SPK+, all results in table 2.5 can be transformed into results about cylindric
modal logic.
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DECIDABILITY

In this chapter, We focus on decidability for theories of relativized relation algebras
SRIHRRA for H Q {R, S,T} (see 2.4.3) and of the variety of cylindric relativized set
algebras D0, (see 2.5.3). Our main results are that the universal theory of the class
SRlHRRA is decidable if and only if T ¢ H , and that for �nite 0:, the universal theory
of D0. is decidable.

This chapter is organized as follows. In the first section, We introduce the method
of �ltration which We will use for obtaining decidability results. This method is quite
powerful: using it, We can show that the uvziversal theory of a variety is decidable. In
the second section, we apply this method to relativized relation algebras and in the
third, to the variety D,,,.

3.1 FILTRATIONS

We will use the We1l~known and widely applied �ltration technique from modal logic
(cf. Hughes-Creswell [HC84]), to show that, in favorable circumstances, the universal
theory of a class of algebras is decidable. The idea of the �ltration method can be
described as follows. Given a class K of frames, a frame .7: E K, a universal formula ()5
and a model M = (.�F, v) which falsifies gt, we use the set of subterms of terms occurring
in equations in (15 to create a �nite model (.7:*, v*) such that .7-"* also belongs to K, and
Q5 still fails. The �nite model is called the �filtration�.

l/Ve will now make this idea precise. In the remainder of this section, an arbitrary
BAO-type S and a language EqlangS(X), for an arbitrary in�nite set of variables X
are �xed. Terms are supposed to be S&#39;~terms constructed from variables in X.

DEFINITION 3.1.1 (FILTRATION). Let M 2 (.7:,v) be a model of type S and E a set
of 5&#39;~terms which is closed� under taking subterms and under the Boolean operations.
De�ne an equivalence relation Eg Q F X F as follows:

(V111,?) E F):w Ego §>(\&#39;/7&#39; E E) [l\/I,w|1-T <-��*-> M,vlE- T]

Let "25 denote the equivalence class 10/22, and identify equivalence classes 17;� with the
sets of terms {T E E : M,w I!- T}.
We call alinodel M* =: (.77*,v*) a �ltration of M through E if:

(i) T� is of type 5&#39;.

(ii) F*�.�if{m;weF}
�We say that a set X is closed under an n~ary operation f if, whenever T1, . ..,Tn E X, we have

f(T1,...,Tn) E
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(iii) v*(x) "3 {if} e F* 2X 6 m}, for all variables x e 2:.
(iv) min and max , given below, hold for every operator in 5&#39;

The relations in the �ltration are denoted by a superscript *, like in R°*. F or an n-ary
operator 0 and R0 Q "+117, the relation in .7: Corresponding to this operator, min and
max are de�ned as follows:

min R°a:0...:z:,,=>R°*&#39;:2�:5...5:�;
max (V<>(n,...,r,,) E E3) : ((R°*&#39;:E§§...§/2&7; E y:&...&~r,, 63/") =>

<>(T1,...,r,,) EEC")

As their names indicate, min provides a lower~bound, and max an upper~bound for
R°*. They are designed to make the following lemma true.

LEMMA 3.1.2 (TRUTH-LEMMA). Let M* = (.7-&#39;*,v*) be a �ltration of M = (.7-&#39;,v)
through 2. Then (i)~(iii) below hold.

(i) (V7 6 E)(\/DEE F*) : T e �:5 <-22> M*,z5n� 7&#39;
(ii) (VT 6 �;)(va: 6 F) : M,a: u« 1&#39; ¢:.=> M*,?ill~ 7&#39;
(iii) Let (,5 be a Boolean combination of equations between terms in E.

ThenMl=q5 <==-�.> M*l=gb.

PROOF.  A straightforward induction on the complexity of the terms. We show
how min and max take care of the operators. Let 0 be a unary operator. Let 07&#39; E Z.
We compute:
(=>) 07 6 �af(§f$>M,:4: lb 07% (fly 6 F) : R°;vy&M,y 1+ 7 => (by min and ind.
hyp.) (Ely E F*) : R°*?z:�y& M*,§jz+ 7- <£�> M25 11- or.
(<2) M*,E �It Or <3�-°1§>(3"y E F*) ; R°*§y& M*,�3] It &#39;r => (by max and ind. hyp.)
(>7 6 3:�.

(ii). Immediate by
(iii). By induction, using (ii). i QED

Note, that neither a �ltration needs to be �nite, nor that .77 E K => .77� E K holds. It
follows from the next proposition that for every model and for every set E, �ltrations
always exist. Call a �ltration minimal for R°* if it is defined minimally, that is

0.. _._def , __,___�- ..,_.__7- O
R*:I:0...;z:,,<===>(El93£,...a:n).:L0.-:r§)&...&:1c,,�a:§2&R

and call it maximal for 120* if it is de�ned maximally, as in

R°*i_7;7...y;<¥é» (�V/<>(&#39;r1,...,*r,,) e 23) ; [(n eyT&...&¢,, 6:27;) =><>(7&#39;1,...,&#39;rn) ere]

A �ltration is called minimal if it is minimal for all the relations, and similarly for
�maximal�.

PROPOSITION 3.1.3. If R°* is de�ned minimally or maximally, then it satis�es min
and max .

PROOF. This is a straightforward generalization of the corresponding statement in
[H084]. &#39; QED
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FILTRATIONS LEAD TO DECIDABILITY

The following notion leads in favourable cases to strong deeidability results.

DEFINITION 3.1.4 (ADMITS FILTRATIONS). Let K be a class of frames of type S.
K admits �ltrations if for any �nite set of Swterms X , any .77 E K and any model
M = (.7,v), there exists a set of S~terms E Q X and a �ltration (.77*,v*) of M through
X such that 7* is �nite and it belongs to K.

We call the set X} 2 X above, the closure set of X. It is, by de�nition 3.1.1, closed
under taking subterms and under the Boolean operations. For K a class of frames and
2 a set of terms, we Call Z3 �nite modulo K if there exists a �nite subset A of 2 such
that (VT 6 ):)(37&#39;&#39; E A) : K l: &#39;r 2 7". For any class K of frames, the closure under the
Boolean operations of every �nite set of terms is �nite modulo K. If E is �nite modulo
K, then any filtration of a K frame through E is �nite.

Let K be a class of algebras or frames. With FinK we denote the class of all �nite
members of K. Recall that a universal formula is a Boolean combination of equations,
and that the universal theory of a class K of algebras is denoted by Univ(K).

LEMMA 3.1.5 (FILTRATION LEMMA). Let K be a class offrames.
(i) If K admits �ltrations, then Univ(K+) = Univ(FinK+).
(ii) IfK is basic elementary (i.e., de�nable by a single F0 sentence) and admits �ltra-
tions, then the universal theory of Kl� is decidable. &#39;

PROOF.  Assume that K admits �ltrations. Clearly, Uhiv(K+) Q Univ(FinK+).
For the other side, suppose gb ¢ Univ(K+). Then there exists a frame .77 E K and
a model M 2 (f,v) such that M b�: (ii. Let X be the set of subterms of all terms
occurring in equations in (15. Then X is �nite. Since K admits �ltrations, there exists a
frame .7-"* E FinK and a model M* 2 (.F*, v*), which is a �ltration of M through some
set E Q X. But then, 3.1.2.(iii) implies that M* bé a5, whence <75 ¢ Univ(FinK+).
(ii). Assume the antecedent. By an obvious change in the proof of Fact 1.4 in van
Benthem [Ben84], We can recursively enumerate the set Univ(K+). Since K is de�nable
by a single F0 sentence, we can also recursively enumerate all the �nite frames of K. By
part  of this lemma, Univ(K+) 2 Univ(FinK+). So we have a recursive enumeration
of the complement of Univ(K+) as well. Hence, Univ(K+) is decidable. QED

COROLLARY 3.1.6. Let K be a basic elementary class of frames which admits �ltra-
tions. Then (i)~(iii) below hold.

(i) Univ(SK+) is decidable.
(ii) Univ(SK+) = Univ(FinSK+).
(iii) The variety generated by Kl is generated by its �nite members.

PROOF. By the Filtration Lemma and preservation of universal formulas under S.
QED
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USING FILTRATIONS. Suppose we want to use �ltrations for proving decidability of
Univ(SK+). The main di�iculty in such a proof is to ensure that the �ltration is both
�nite and belongs to the class K. For this last property, we have to ensure that the
�ltration satis�es the conditions which de�ne that class. This problem will usually lead
us to extend the closure set in such a way that we can still control these conditions in
the �ltration. So the �art� in �ltration proofs is to make the closure set large enough
to control the conditions, but at the same time small enough in order to end up with
only a �nite number of equivalence classes.

In general, existential conditions of the form V§:&#39;(q5 �~�> Bgz�lr), in which <1) and 21)
are constructed using atoms, conjunction and disjunction (and maybe negation), are
very difficult or impossible to control in �ltrations. Ensuring the existence of elements
satisfying the consequent of such a condition usually leads to a closure set which is
too large. Positive F0 formulas� are always preserved, because the �ltration map is a
homomorphism (by the min condition) (cf. [CKQO] Thm 3.2.4). With universal (Horn)
conditions we may have some hope that a �ltration will work.

LOCAL FINITENESS

The next lemma is a simple but important tool in �ltration proofs. It provides us with
a semantic way of showing that we can close a set of terms under some operations
without losing �niteness. We recall the de�nition of locally �nite (classes of) algebras
from [B881].

DEFINITION 3.1.7.  An algebra is locally �nite if all its �nitely generated3 subal-
gebras are �nite.
(ii) A class K of algebras is locally �nite if every member of K is locally �nite.
(iii) A frame is locally �nite if all its �nitely generated subframes are �nite.
(iv) A class K of frames is locally �nite if every member of K is locally �nite.

LEMMA 3.1.8.  Let K be a class offrames. IfK is locally �nite and GspK is �nite,
then the variety generated by K+ is locally �nite.
(ii) If a variety V is locally �nite, then the closure of any �nite set of terms under all
operations of V is �nite modulo V.

PROOF.  Assume the antecedent. By duality theory, Eq(K) = Eq(GspK), hence
I-ISP(K)+ = HSP(GspK)+. By the assumption, (GspK)+ is a �nite set of �nite
algebras. Then, by Thin ll.10.16 in [B381], HSP(GspK)+ is locally �nite.
(ii). This holds, because the �nitely generated free algebras in V are �nite. QED

So, if a class K of algebras is locally �nite, then a �ltration becomes trivial and will
always work. More interesting classes of algebras are not locally �nite, but they might
have reducts which are. That means that we can close a �nite set under the operations

2A formula. is said to be positive iff it is built up from atomic formulas using only the connectives
A, V and the quanti�ers V. 3.

3% is a �nitely generated subalgebra of �B iii Qt is a subalgebra of %, and there exists a finite set
X Q B such that A 2 �{Y : X Q Y, and Y is a subuniverse of
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of that reduct without losing �niteness. In the �ltration proofs for SRIHRRA (for
H Q {R, S and DC, this feature will be a crucial part.

DIGRESSIONZ EXPANSIONS WITH THE UNIVERSAL MODALITY

In this small section, We show what happens to a class K of frames when we expand
the language of K with the so called universal modality. This section is an aside and
is not needed to understand the rest of this chapter. Let K be any Class of frames of
BAO-type S. De�ne

K� �g {r= (W, R�, U),.¬S : (W, R�),~65 e K and U = W x W}

So, K0 is of BAO~type S expanded with a unary operator 0. Set Bx (lg ��<>��x, and de�
�ne O in the standard Way, given below, using the relation U. Let .7-" = (W, Rl, U),~¬S E
K�. For .7� = (�.I3(l/V),f&#39;.,<))f.*;_;S and X C; W we de�ne:

<>xd=ef{w¬W:(ElxEW)(Uwa:&:1:Ex)}
The operator 0 is called the universal modality, because it has the following behaviour:
Ox 2 0, if x = 0, and ox = 1 otherwise. It is easy to see that a class of BAO�s has such
an operator i� it has a discriminator term. Hence the variety generated by (KU)+ is a
discriminator variety, and we can use all the powerful techniques which are available
for them (for de�nitions and applications, see e.g., [ANS94a]).

THEOREM 3.1.9. K admits �ltrations if and only  KC� admits �ltrations.

PROOF. From right to left is obvious. For the other side, suppose that K admits
�ltrations. Let .70 = (W, R�, U ),~E5 E K:, and let XE be a �nite set of terms in the
expanded language which is closed under taking subterms. Let MU = (.7D,v) be a
model. We have to �nd a �nite �ltration of MD through some set E Q X D, which
belongs to the class K�.

We will use that, for every term 7&#39;, Ni� l: (Or = 1 or ()7 =2 0). Create the set X01
from the set X D by replacing every occurrence of a subterrn of the form OT in a term
with O or 1. E.g., if f(<)r,<>r1) 6 X0, then {f(1,l),f(1,0),f(O,1),f(0,0)} C X01.
Clearly, this is a �nite set in the old language. Hence, by assumption, we can �nd a
set E Q X�, a frame 35* = (VV*,R�*),-55 E K and a �nite model M* 2 (J-"*,v*) which
is a �ltration of the U ~free part of the model M� through 23.

Let U* r: W� X W*. De�ne .775� as (W*, R�, U*),:¬_g, and M * as (.7�"C�*,v*). Clearly,
Tm� is �nite and belongs to KB. VVe claim that MC� is a �ltration of MD through the
set E U X D. For the universal relation U*, min and max are trivially satis�ed. For the
other operators, min is still true. So we have to show that 1) E U X &#39;3 is closed under
subterms and the Boolean operations, 2) E3 = 5-�__:(§;UXo), and 3) max is satis�ed for
the old operators. These three claims follow from (3.1) below.

(VT 6 XU)(3T&#39; E X�) : MD l: r = T� (3.1)

(3.1) follows from the de�nition of X 01 and the fact that EVIG }: (Or : 1 or or 2: 0).
QED
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ASIDE ON COMPLETENESS. In favourable cases it is easy to �nd an axiomatization
of the variety generated by (KD)+. Let AX§ stand for the set consisting of

0 equations which say that 0 is an S5�diamond4
0 an equation f (X1, . . . ,x,,) _<_ <)x1 /\ . . . /\ Ox� for every n�-ary operator f in S

THEOREM 3.1.10. Let K be a class of frames of type 5&#39;. Assume that SKJ� is a
canonical variety which can be aziomattzed by a set of equations AX , and that ZigK =
Cm"1(SK+). Then the class SP(KD)+ is a canonical variety which can be aztiomatized
by AX u AX§.

PROOF. Assume the condition of the theorem. The conclusion follows using straight-
forward duality computations from the following two facts, the proof of which only
involves standard 55 arguments. Note that all the equations we add are positive,
hence canonical.

(i) AX U AX 59 axiornatizes the variety S(KDI)&#39;*�, in which K�! is the class of frames
from Cm"1(SK+) expanded with an equivalence relation U which extends all other
relations5.

(ii) K�! 2: Du{.77= (W, Rf, U)iES : (W,Ri),g5 E ZigK& U = W X I/V} = DuZigKD Q
ZigDuKD QED

3.2 RELATTVIZED RELATION ALGEBRAS

Recall the set of equations (A1) � (A15) and their corresponding frame conditions
(C1)�� (C15) from 2.4.9. We show that varieties de�ned by several subsets of (A1) - (A15)
are generated by their �nite members, and that their universal theories are decidable.
This fact can be applied to prove the same statement for the varieties of relativized
relation algebrass SRIHRRA for H Q {R, S The application has to wait until the
next chapter in which we show that these varieties can be axiomatized by the given

equations (cf. 4.2.5).

THEOREM 3.2.1. Let E be a set of equations such that {(A1) - (A3), (A7) �-(/112)} _C_
2 Q {(A1) -� (A15)}. Then the variety BA"3&#39;(E) has the following properties:

(i) un;v(BA"�(2)) is decidable.
(ii) un;v(BA"�(2)) = Univ(FinBA�&#39;(E)).
(iii) BA�&#39;(Z3) is generated by its �nite members.

The theorem follows from lemma 3.2.3. We prove it after that lemma. Contrast this
theorem with the following result by Andréka et al. ([AKN+94]). The theorem states
that associativity of composition leads to undecidability.

THEOREM 3.2.2 (ANDR§3KA ET AL.). Let E be a set of equations such that {x;(y;z) =
(x;y);z} Q E _C_ {e : RRA tr: e}. Then the equattonal theory of B/3383(2) is undectdable.

"They are: ()0 :2 U, ()(x V y): Ox V Oy, x g Ox, COX : Ox and x /\ ()y 3 O(y /\ Ox).
5Forma.lly: T: (W, R�, U);6, 6 KC�! iff 1) Riliel 6 Cm&#39;t(SK+), 2) U is an equivalence

relation, and 3) for every n + 1 place relation IE�, R.�y:c1 . . .ac,, 21> Uyml Se:  & Uyacn.
6That SR1 R5 RRA is generated by its �nite members was shown in Németi [Ném87].
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LEMMA 3.2.3. Let 2 be a. set of frame conditions such that {(C1) -� (C&#39;3),(C&#39;7) �
(C12)} Q E Q {(C1) �~ (C&#39;15)}. Then the class Kg�? {.7 E K�� : .7 )2 E} admits
�ltmtions.

PROOF. As indicated in section 2.4.3, we have three (partial) functions living in the
frame classes for which we want to prove the lemma. The main difficulty in the proof
will be to ensure that in the �ltration these functions still behave correctly. To accom-
plish this, we have to close the closure set under the operators id,s(1),s�1� and V. This
is not dangerous, since our axioms are strong enough to ensure that such a closure
set remains �nite modulo Kg. This last, crucial, part in the proof follows immediately
from the next claim. Recall that the accessibility relations corresponding to id, s(1,,s�1�,"
are l, (.)1,  and 1�, respectively (see section 2.4.3), and that (see the proof of 2.4.7)
the conditions {(C1) - (C3), (C7) �- (C12)} imply conditions (T 0) and (T1) below.

(T0) f,  and  are partial functions and f is idempotent
(T1) la: => ct : f(:r) = 3:1: my

CLAIM 1. Let K be any class of arroW�frames which validates (T0) and (T1). Then
the variety generated by the {V, A, ��, 0, 1, id,s�f, sgf }«reduct of K+ is locally �nite.

PROOF OF CLAIM. Let K be as stated in the claim. By 3.1.8, it is su�icient to
show that every {l, f, (.)g, (.),}~point�generated subframe of each member of K is �nite
(i.e., the {l,f, (.)1, (.),.}�reduct of K is locally finite), and that we have only �nitely
many of them. Let .7: E K and as E F be arbitrary. Since .7� t: (To),(T1), we can
write the frame as .7:-&#39;= (VV, Q1�, ()1, (.),., I). By de�nition of the functions  and (.),,
it holds that if they are de�ned on ac, then I22; and l;2:,. Conditions (To) and (T1)
imply that the subframe which is {f , (.)l, (.)T, l}~generated by  can be described as
({a:,a:;,sr,,fa:,(fa:)1,(fa:),.},f,;,,.,l), so it is �nite. Up to isomorphism, there are only
finitely many such point~generated subframes. 4

Let K; be as in the lemma. Let .7: (Vi/,C, F, l) E Kg, M = (.7,v) be a model, and let
X be a finite set of terms. Let the closure set CL(X) be the smallest set containing
X U{ id} which is closed under taking subterms, s�1�,s(1,," and the Boolean operations. Let
.7� = (W*, C*, F*, l*), and let (.7-�*,v*) be the minimal �ltration of M through CI/(X).
Conditions  and (ii) of the next claim give us that Kg admits �ltrations.

CLAIM 2.  W* is finite, and (ii) .77� E Kg.

PROOF OF CLAIM.  The proof of 2.4.7 implies that K}: t: (T;)),(T1). So, by
claim 1, the closure set is finite modulo K; (use 3.1.8.(ii)). So there are only �nitely
many equivalence classes, and W* is �nite.
(ii). VVe need to show that .7* I: Z. We need another claim. From now on, we suppress
the subscript aux) in ECMX).

CLAIM 3. The following statements hold for the above .77 and E.

la: & :c E 27&#39; => I17� (3.2)

Fa:y&F:2c&#39;::&a:E.r&#39; =i> y~Ez (3.3)
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Frry & an E 9:� => (32) : F.7:&#39;z (3.4)
Caryn: & ly & :1: E :13� => (32) : C:z:&#39;2:1:&#39; & lz & y E z (3.5)
Camry & ly & x E 32&#39; :> (3.2) : Ca:&#39;a7&#39;z & I2 & y E 2: (3.6)

Paoor or CLAIM. (3.2). Immediate since id 6 CL(X).
(3.3). Assume the antecedent. We compute:
7 E y <:=$ (since CL(X) is closed under V) T� E E <:=> T" E is-&#39; 4: T E E.
(3.4). Assume the antecedent. Then 1� E 31?, whence 1*� E ?, so 32 : F23�;/.
(3.5). Assume the antecedent. Then 5}, 1 = id ;1 E 3?, hence also in -:37, so there exists a
2 such that Ca:�z;z:� & lz. To show that y E 2, suppose that 7* E �y. We compute:
7&#39; E 3/� <=> (since CL(X) is closed under taking s(1,) s},&#39;r E 2? <2 53,7 6 :7 <==:>
7&#39; E �z�.

(3.6) is similar to (3.5), use here closure under 5?. 4

Now we are ready to prove that .7-"* E: Z. We first show that it satis�es the set
{(C1) � (C3), (C7) �� (C12)} of conditions which are always in 2. Conditions (C1) � (C3)
are immediate because of the minimal �ltration. Conditions (C7) �� (C9) are all similar;
we show the => side of (03) as an example. Assume the antecedent. Then (by the
minimal de�nition of C*) there exists (a:� E :r,y�" E y" E y� E y,z� E z,v" E 12� E 1))
such that Car�y�z� & Cy�y�&#39;v� & lv�. By (3.2) also lv�, so by (C12) we have y�" = y�, and
by (3.6) and (3.2), (3v�� E 22�) : Cy&#39;y�v"� & lv"&#39;. By (C8) we obtain Cz�v�"z� and, by
de�nition of C*, C*§,"v",E. Condition (C10) is immediate by (3.3), and conditions (Cu)
and (C12) by (3.2).

The rest of the conditions in 2 may vary. We show for each of the conditions
(C4) � (C6), (C13) - (C15) that, if .F satis�es the condition, than .7-"* satis�es it too. For
(C4), suppose C*§E,§],�z&#39;& F*&#39;y",�17. Then there exists (x� E x,z� E z,v� E v&y&#39; E � E 3;)
such that Cx�y&#39;z&#39; &; Fy�v�. By (3.3) and (3.4) we �nd Fy�v" & v� E v� for some 1)".
Then, by (C4), Cz�v�:c�, so, by the de�nition of C*, C*"z�, 75,51 Condition (C5) can be
shown similarly. For (C6) use (3.2). Conditions (C13) -� (C15) are guaranteed because
the �ltration is minimal. QED

PROOF OF THEOREM 3.2.1. Let BA&#39;eI(E) be a variety as stated in the theorem. Let
E� be the class of frame conditions corresponding to the equations in 2. Then, by 2.4.9
and 2.2.2, BA�l(}3) = SK+,. The conclusion of the theorem follows from 3.2.3 and
3.1.6. QED

3.3 RELATIVIZED CYLINDRIC ALGEBRAS

I. N émeti has shown that the equational theories of the classes of cylindric relativized
set algebras Crso, and G, are decidable, for all oz g u), and similar for D0,, provided that
0: is �nite. (Cf. [Nérn86] or Thin 10 in the updated version [Ném92]; for the de�nition
of these classes see section 2.5.) ln [Ném86]7 he raised the open problem whether, if
a is �nite, these varieties are generated by their �nite members, and if their quasi~
equational theories are decidable as well. We show that, for �nite oz, the class of frames

7This is remark 12 in the 1992 version [Ném92].
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corresponding to Du admits �ltrations. Using this result, we can solve these two open
problems for D0,. For the other classes, we refer to remark 3.3.4 below.

THEOREM 3.3.1. Leta be any �nite ordinal.
(i) The class Do, is generated by its �nite members.
(ii) The universal theory of Do, is decidable, and Univ(D,,,) = Univ(FinD,,,).

These results follow in a straightforward way from the fact that the class of oz�fraInes
K��,� (see 2.5.6) admits �ltrations. We will prove the theorem, having shown the next
lemma.

LEMMA 3.3.2. [for is �nite, then the class K3115� admits �ltrations.

As was the case with relation algebras, a �ltration is possible when we close under
taking substitutions. in the proof of the lemma, we need the following proposition.

PROPOSITION 3.3.3. Let as Z 1 be �nite and K Q Kg���. Then the variety generated
by the {V,/\,�,0,1,d,j,s}};,j<a�~reduct of K+ is locally �nite.

PROOF. Let P Q �U, for some �nite av 2 l and T E K�zia. To use 3.1.8, we must
show that every {f,&#39;:},,j<o,~point~generated subframe of .77 is �nite, and there are only
�nitely many of them. (Note that the unary relations Di, do not generate any new
elements, so we do not need to take them into account.) Let :3 E F be arbitrary. The
domain of the subframe which is {f,�:},<J~<a~generated by  equals the set  E F :
(3lc)(h. =  o...of;»:) for (im,jm <  Because? 6 Kg�, h(:c) is in "�{a:g, . . . ,:ra_1}.
Hence, because or is �nite, the frame generated by  is �nite. Up to isomorphism,
there are only �nitely many such point-�generated subfrarnes. QED

PROOF OF LEMMA 3.3.2. �When ct = 0, we just have Boolean algebras, and the
statement is trivial. When 0: = 1, the class  forms the class of modal frames with
one binary equivalence relationg. It is known that this last class admits �ltrations (see
e.g., [HC84], Thm 8.7). In the sequel, let 04 be any �nite ordinal larger than 1.

Let .7=(l�V,T�,E&#39;l) 6 K33�, M = (}&#39;,v) a model, and X a �nite set of terms.
Let CL(X) be the smallest set containing X U {djj 2 i, j < oz}, which is closed under
subterms, the Boolean operations and the s;.�s. De�ne:

W* d�-cg {TE : w E W}
E-&#39;77&#39;*?c&#39; <3�?-&#39;§> dg,� E T

def
T�*r,y <==> [c,~7&#39;EZf<==>c,~7&#39;¬§]

Let 37* = (W*, T�, Em), and define v* : �ua�r(CL(X)) ��+ 73(W*) in the standard way.
CLAIM 1. M* = (f�*,v*) is a �ltration of M through CL(X).

PROOF OF CLAIM. V/Ve have to show that min and max hold. For E�, this is im-
mediate. For T�, this follows from the proof of Thin 8.7 in [HC84]. 4

The next claim states that this �ltration Works.

8And a trivial nnary relation E00 which holds for every element of every frame.
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CLAIM 2. (i) W* is �nite, and (ii) 97* e K,�;f,�,�,��.
PROOF on CLAIM. (i). By 2.5.7, S(K�§�,&#39;§�)+ = D0 2 S(K§�,j:�,�3)+. Hence Eq(K:§�1�§*) =
Eq(K:f,f:&#39;l�)). Since Kgfjfj, (_I Kgz��, it follows from 3.3.3 that C&#39;L(X) is �nite modulo
But then it is also �nite modulo K:§�,�;�, whence W* is �nite.
(ii). We have to show that .7� satis�es the conditions de�ning K:§�1l§&#39; (cf. 2.5.6). The
first three conditions make the T� equivalence relations. This follows immediately from
the de�nition of the T�. The other conditions, which deal with the substitutions and
the diagonals, are handled in a uniform way using the next claim.

CLAIM 3.

E"*�:E <.-==> E�7:2: (3.7)
5:" = 1/� =>  =2  (3.8)

fjix :: y <==> T�*3:�,&#39;g& E�7*&#39;gj ifi ;A 3� (3.9)
PROOF OF CLAIM. The first two statements follow from the closure under the diag~
onals and the s;�s.
(3.9). The direction from left to right is immediate by min . For the other side, assume
2&#39;  and Ti*T,"y&#39;& Ei-�i*§. .We have to show that ii =  We compute:

(Q): refs? ¢=-4 s;i7-ee<-�i��i> C,-(T/\d,&#39;_,&#39;)Ef  c,;(r/\d,&#39;,v)/\d.�,~E�(g)7"Ey.
(_C_): 7&#39; E § «<5-33 T /\ d,-,- E §:> (by (A1), and because CL(X) is closed under taking
s§�s) c,~(r /\ dij) ii-ref 53¢ E 1/� :> (by T�*e,y) 5327� E E <===> T E  4
Set  �itef  By (3.8) above, this is well de�ned. It follows from conditions (C5)
and (C6) that, if i # j, we have .7: [= Va:3y(T�a3y & Eijy). By min, this also holds in
the �ltration. But then, by (3.9), the ff�-.* are total functions which are de�ned correctly.
If the f} are total functions, we can rewrite conditions (C5) and (C7) to the following
(note the correspondence with (A6!) and (A7:)):

(C6,)  <==> Eklfikx ifk
(C71) E�.7: => av :2

Now we can easily check the other conditions. (CH) holds by de�nition of  Con-
dition (C5) holds by (3.7). The others we spell out.

(C6,): E�i*zc* 41-3 EH3: ESE; E&#39;v&#39;f,.&#39;°x £22» E&#39;=2�*}2?§ <91�-> E�°j*f,7�*Ec�.
(C7,); Ewe 3�� E�7a: �E-3" f;�a.» = cc =>  = as 4% f;&#39;*e -_~ 3:.
For (C MC R), assume the antecedent T� f,:"&#39;*  ff� f,.�°*  By the de�nition of T�,
the consequent holds iff [ck T E § <==> ck &#39;r E f;{*f}*f{"*  We compute:
Ck 7&#39; 6 3 <==> (by T��*f£"*f3;.*f}*f."*(�f)�])
cmewm��m &>
Ck 1 ¬ f;Z�f%zf,�f.�°(a3) <==>
sfsgs�nsff Ck 7&#39; E if 1 (by (A1g[GR))
sgsznsgsfc ck &#39;r E 50� <==>
cne�nmmm 4%
cnenn�wen
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The other side of (CMGR) is shown similarly. We checked all conditions, whence
f* E Kf,?1&#39;§�.. QED

PROOF OF THEOREM 3.3.1. Let 0: be �nite. The class of frames K:f�1l§&#39; is basic ele-
mentary, and admits �ltrations by the previous lemma. By 2.5.7, the class S(K:§�,§O�)+
is a variety which equals D3. Then the theorem follows from 3.1.6. QED

REMARK 3.3.4. We brie�y return to the two other (decidable) classes of cylindric
relativized set algebras Crsa and G0. For G0,, a similar proof as given above for Da
awaits an axiornatization which is at present unknown to us. For Crsa, a �ltration
proof is more dif�cult than the present one, since it is axiomatized by in�nitely many
axioms which are rather complicated. Note that for Cr 3 2 the above �ltration proof
goes through for Crso, (see 2.5.8 for the axiomatization of these classes).

CONJECTURE 3.3.5. The above given �ltration proof goes through for Crso, and G0,.

REMARKS 3.3.6. When we compare the proof for the decidability of Eq(Da) given
here with the one of Nérneti, we can conclude that proving the stronger statement is
easier, and has a larger pay~off. As the above remarks show however, using �ltrations
in a simple way needs a (�nice�) axiornatization. Moreover, to show decidability the
axiomatization should be �nite as well. The more complicated, but powerful mosaic
method, which is developed in [Ném92], does not need an axiomatization, and also
works when a class is not generated by its �nite members.

We now give an example where decidability cannot be shown by the �ltration
method. Define the variety NCAO, of N onwcommutative Cylindric Algebras as the class
of those algebras of the cylindric type which satisfy all CA axioms except (A4). That
is,

NCAL, �*3! {Q1 6 B0,, ; 21 i: (A1) � (A3), (A5) � (A7)}
For oz > 1, by the completeness theorem for D0,, this class is not representable as
subalgebras of complex algebras of assignment frames, but it clearly equals the class
of subalgebras of complex algebras of a~frarnes which satisfy the frame conditions
corresponding to its axioms. Németi showed, using the mosaic method, that for finite
oz, Eq(NCA,,,) = Eq(FinNCAO,), hence its equational theory is decidable (cf. [N ém92]
Thm 5). He also showed, for 1 < Oz, that Qeq(NCA,,) 52$ Qeq(FinNCA,,,). But then, the
class of frames generating NCAO, cannot admit �ltrationsg, because that would imply
that the quasi�equational theory of NCAQ equals Qeq(FinNCAO,).

3.4 CONCLUDING REMARKS

The decidability results for relativized relation algebras lead to several decidable arrow
logics. These logics might be used for applications where the complexity of the problem
is low. The price we had to pay was the loss of associativity of composition (cf. 3.2.2).
To get decidable versions of F0 logic a similar price has to be paid: one should give

9Note that the problem is not in the conditions, but in the fact that the sjwreduct is not locally
�nite.
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up the commutativity of the quanti�ers (cf. [Ném92]).
We conclude this chapter with some questions.

1. It seems that in BAO�s, or in general modal logic, decidability is indeed closely
connected to the form of the F0 theory of the class of frames. Existential quan-
ti�ers clearly form a dangerous point. Van Benthem [Ben93] conjectures that
all modal logics (with one unary diamond) which are complete with respect to
a class of frames de�ned by a �nite Universal Horn theory are decidable. This
problem is still open, and the results in Kracht [Kra93] show that one has to be
careful, extending this conjecture to arbitrary similarity types.
By the well�~known translation (cf. van Benthem [Ben84]) of modal formulas to
F0 formulas, we know that every modal language is living inside a fragment
of F0 logic with �nitely many variables. lf the class of frames is elementary,
one can derive the �modal validities� using a F0 derivation system. One can
View this translation as an �application� of F0 logic to modal logic. Then the
obvious question arises: In which F0 logic is modal logic living? A possible way
of proving van Benthem�s conjecture would be to show that these modal logics
are living in a F0 logic whose consequence relation P l: (,5 is decidable for �nite
sets of sentences F. A possible candidate could be the FO logic corresponding to
the variety Da.

2. A question related to the previous one is the following. E. Orlowska [Orl9l]
shows that modal logics are interpretable in the class RA of relation algebras,
and she defines a relational proof system for several modal logics. The purpose
is to prove both theorems and meta-theorems of modal logic within the theory
of relation algebras. This is nice, except that in several cases there is a mismatch
in complexity: a decidable modal logic is interpreted in the undecidable logic of
relation algebras. Would it be possible �using Qrlowska�s translation function�-
to interpret decidable modal logics in decidable weakened versions of relation
algebras, and obtain results similar to hers?

3. We have shown that ~for �nite or the variety Dc, is generated by its �nite mem-
bers. What we do not know however, is if these �nite algebras are isomorphic
to ones with a �nite base�). The problem whether every non Do, valid equation
can be refuted on an algebra with a finite base is still open. This property is
sometimes called the �nite base property.

�The two�e1ement algebra with a universe consisting of the empty set and the set {(n, n) : n < w}
is a �nite D2 whose base to is in�nite.
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REPRESENTATION & AXIOMATIZATION

To begin with,lin this chapter, we show for several classes K of pair-frames that SK+ is
a �nitely axiomatizable variety. We obtain these results by working at the frame level,
that is, we show that every frame which satis�es some speci�c �nite set of equationally
de�nable F0 conditions is representable as a. zigzagmorphic image of some (disjoint
union of) frame(s) in K. We start this chapter with a few general remarks about this
proof strategy (section 4.1). Section 4.2 is about the classes of relativized relation
algebras SRIHRRA, for H _C_ {R, S, T We show that these classes are �nitely axiom-
atizable varieties if and only if T ¢ H. The techniques we introduce here are used in
the next section to obtain quick results about subreducts of SRIRRA. In section 4.4,
we regain some of the expressive power of RRA, which was lost by relativization, by
adding the difference operator to the class SRIRS RRA. We can still �nitely axiomatize
this expansion. In the last section, We generalize our results to arbitrary Boolean al-
gebras with operators. We show that every BAO can be represented as an algebra of
relations.

4.1 AXIOMATIZING BAO�s BY REPRESENTING FRAMES

In this section, we show how we can find an axiornatization of a class of representable
BAO°s by working solely with frames. Suppose we are given a class of algebras in
which the operations are de�ned in a uniform set~~theoretic manner. (Note that this
implies that if two algebras are different, their universes are different.) "We will refer
to the closure under isomorphisms of such classes as representable or concrete classes.
In [Ném91], it is explained that both taking subalgebras and taking direct products
preserves the intuitive notion of representability. So, if a class of representable algebras
is de�ned as K+, for K some class of frames, then SPK* is a representable class too.
Thus we call a frame .77 representable as a K frame if 77+ E SPK+. Duality theory
then implies that .77 is representable as a K frame if the ultra�lter extension of .77
is a zigzagmorphic image of the ultra�lter extension of a disjoint union of frames in
K. If K is elementary and closed under disjoint unions, we can simplify this to the
requirement that the ultra�lter extension of .7: is a zigzagmorphic image of a frame in
K (use Thin 3.6.2 in [Go188]).

We now restrict ourselves to elementary K which are closed under disjoint unions.
Let K be such a class of frames. Lemma 3.6.5 and theorem 3.6.? in [Gol88j imply
that 1), SK+ := SPK+ 2: SPUpK+, hence SK+ is a quasiworiety, and 2), if SK+ is
a variety, it is canonical. Now suppose that SK+ is a variety. Let Kv Cg Cm&#39;�1SK+.
Because SK+ is a canonical variety, it equals the class SK�? Hence every frame in Ky

F
a7
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is representable as a K frame (ie, its ultra�lter extension is a zigzagmorphic image of
a K frame), so Ky = ITeZigK. This observation leads to the following fact.
FACT 4.1.1. Let K be an elementary class of frames which is closed under disjoint
unions. Then SK+ is a �nitely axiomatizable variety if and only if there exists a K

valid canonical equation e such that T.TeZigK = {.7 : .77 l: e}.
PROOF.  Assume the antecedent. We saw above that SK+ is canonical. Because
we have the Booleans, the class is axiomatizable by one equation 63. But then e is
canonical. The rest follows from the earlier observations._
(<=) Assume the antecedent. We must prove that 1), S(UeZigK)+ is a variety axiom-
atizable by e, and 2), SK+ = S(ITeZigK)+. 1) holds, because e is canonical. 2) follows
from a straightforward duality computation. QED

AN EXAMPLE: PA1R~FRAMES. We illustrate the strategy which is implied by the
last fact with the class of all pair~frames  Clearly, this class is closed under
disjoint unions. It is also easy to show that it is not closed under zigzagmorphic images
(e.g., show that the Kg�i valid frame condition (Fyzrac :> lvzr) is not preserved under
zigzagmorphisms). Because K��&#39; = SubK:§£5Q and K;:iSQ is elementary (cf. [Ven9l]),set
 is elementary�. So the class KT� is elementary and closed under disjoint unions.set
We want to show that S(K;:§)+ is a �nitely axiomatizable variety. By the last fact, it
is necessary and sufficient to de�ne a class K as the class of all�arrow~frames satisfying

some  valid canonical equation, and show that K =2 ITeZigK;:§. It turns out that
our task is even easier: in the next section we show that the class of arrow-frames Ki?� ,
which is de�ned as all frames satisfying the set of canonical equations (A1) �� (A12),
equals the class ZigK;§§.

4.2 RELATIVIZED RELATION ALGEBRAS

We prove that, for H Q {R, S}, the classes SR1 H RRA are �nitely axiomatizable canon�
ical varieties. This section is organized as follows. First, We state our main results.
Then we look at the reduct with only Booleans and composition, and show how to ax-
iomatize that fragment. In the next subsection, we introduce the concept of a mosaic
in order to deal with the additional difficulties coming from identity and converse, and
adapt the easy proof for the �composition only�~reduct.

4.2.1 MAIN RESULTS

FINITE AXIOMATIZABILITY

The next theorem might look a bit clumsy, but it nicely shows the �route� we follow
when we represent an abstract algebra. First, we embed it in a complex algebra over

1A F0 definition of any class of pairframes of the form (V, Q) with {CV} C_I Q Q {Cy, FV, IV},
and V a. binary H relation (H _C_ {R, S,T}) can be derived from Kuhler [Kuh94].
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an arrow~frame (its canonical embedding algebra), and then we embed this second
algebra in a complex algebra over a pair~frame. The axioms can be found on page 34.

THEOREM 4.2.1. Let H Q {R,S}. Then the class SRIHRRA is a �nitely a:z:iomatiz-
able canonical variety. In particular:

BA"�((A1)~<A12)> = s(K:i&#39;>+ == s(K:::)+ = SRIRRA
BA��<<A1>�(Am>> = s<K:i;>+ = s<K::is)+ = SR1sRRA
BArd((A1)"(A12)»(A14)»(A15)) 2 S(Kiii2)+ -�-�- S(K§§i12)+ 7&#39;� SRIRRRA
BATel((A1)"(A15)) = s(K:as>+ = S(K::iRS)+ -~ SRIMRRA

PROOF. The first equality in each row is theorem 2.4.10, the second follows from
lemma 4.2.3 below (use fact 2.2.5), and the third is the de�nition of the classes
SRIHRRA . QED

The theorem has the following corollary.

COROLLARY 4.2.2. Let H _C_ {R,S,T}. The variety SRIHRRA is �nitely ariomatiz�
able  and only ifT ¢ H.

PRQOF. By theorems 4.2.1 and 2.4.6. QED

LEMMA 4.2.3. Let H g {R,S}. Then Km, = zigK;g;,,.

To warm up, we will prove a representation theorem for the reduct which only contains
the composition operator and the Booleans. Rather surprisingly, no assumptions on
the frames are needed in order to represent them as pair�frames. After that, we prove
the above lemma in section 4.2.4.

REMARKS 4.2.4. Finite axiomatizability of SRIRSRRA was shown by R. Maddux
([Mad82], Thm 5.20). Maddux de�ned an axiomatic class WA (for weak associativ-
ity) by keeping all RA axioms, but replacing� the associativity axiom with the weaker
((id ;T);l);1 = (id ;T);(1;1), and showed that WA equals SRIRSRRA. The WA� axioms are
a bit different from ours, because We get our result as a by�product of the axiomatiza-
tion of SRIRRA. That this last class is �nitely axiomatizable was shown by R. Kramer
([Kra91], Thm 5.4). The proof of Kramer is rather syntactic and complicated. The
proof presented here uses a similar step�-by�step construction which Maddux used in
[Mad78] to prove3 axiomatizability of SRIRSRRA, together with the mosaics which
Németi introduced in [N ém86] to prove decidability for relativized versions of cylindric
(set) algebras. An advantage of this proofemethod is that it gives us easy results for
reducts as well.

2The situation is similar to the one with Da, the relativized version of the cubic cylindric set alge-
bras. To axiomatize Du, one needs to weaken the axiom which makes the cylindri�cations commute.
However, with Du, the extra merry�go-�round equation is needed for a complete axiomatization.

3111 [Mad82}, he gives another proof, not using the step~by~step construction.



60 REPRESENTATION & AXIOMATIZATION [42

DECIDABILITY

By the last theorem, the decidability results of the previous chapter also apply to the
classes SR1}; RRA. Part  of the theorem below was proved by Németi (p[Ném87]) for
the class SRIR5-RRA. All other results seem to be new.

THEOREM 4.2.5. Let H Q {R,S}. Then (i)«(iii) hold.
(i) The variety SRIHRRA is generated by its �nite members.
(ii) The universal theory of SRIHRRA is decidable.
(iii) UHlV(SR1yRRA) = Univ(FinSRlHRRA).

PROOF. By theorems 4.2.1 and 3.2.1. QED

COROLLARY 4.2.6. Let H Q {R,S&#39;, T}. Let P be any of the properties (i)�(iii) in the
previous theorem. Then SRIHRRA has P  and only ifT ¢ H.

PROOF. By theorems 4.2.5 and 2.4.6. QED

4.2.2 WARM UP: BOOLEANS WITH COMPOSITION

We present one part of the technique ~the step~by�step construction~ which We will
use to prove the above representation lemma (11.2.3), using a simple example. De�ne
the following two classes of frames:

KC �éf {.7:=(W,C):WisasetandCQWXWXW}
Kg� ¬13 {.772 (V,CV) : V Q UXU for some set U}

The next lemma is stated for �nite frames only, because we wanted to make the ex~
ample as simple as possible. In the proof of 4.2.3 (the analogous lemma for the whole
language), we represent frames of any cardinality.

LEMMA 4.2.7. Every �nite .77 6 KC is a zigzagmorphic image of some Q 6 KCset &#39;

PROOF. Let .77 = (W, C) 6 KC be �nite.� Step by step, we will construct a set of pairs
V and a function I : V �-> W. It is convenient to think of l as a labelling function,
which labels each element of V with an element of W. In each step n + 1, we will add
pairs to V", such that ln+1 is a homomorphism and for all pairs in V�, the function
l,,+1 has the zigzag property. The function will not have the zigzag property for the
pairs added in step 77. + 1, but we repair that in the next step. Hence, after to steps our
zigzagrnorphism is complete.

Construction.

Let U be some countable set. _
step 0 In this step, we ensure that l is surjective. Let V}, C U X U such that (1),
WV! = [V5], and (2), K] is irreflexive and disconnected, that is, (V.s,r E l/};)(Vz&#39;,j 3 1) :
3; = Tj <::> 3 2 r 852&#39; = j. Let Z0 be any bijection between V0 and W.
step n + 1 Let X� be the (finite) set of pairs which were added in the previous step.
For each (um) E X� and 3/,2 E W such that Cl,,(u,v)yz, do the following:
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Take an element 11) E U which was not used before, and add (u,w) and
(w,v) to V�. Then set l,,+;((u,w)) = y and l,,+1((w,v)) = 2 (see the
picture below).
De�ne V,,+1 as the result of all these additions to Vn, and Zn.� as the result
of these additions to l,,.

step to Set V d-�-&#39;3�, UK�, V,, and l �Ef UK�, In.
End of construction

CLAIM. Z : V ����> W is a zigzagmorphism from C] = (V, CV) onto .75: (W, C).

PROOF OF CLAIM. The function I is surjective by step 0. The zigzag property is
immediate by the construction. To show that l is a homomorphism we show by
induction that it is a homomorphism after every step. This is clear for V0, since
(Vzryz 6 V0) : �vCV:1:y2. Suppose it holds for step n and suppose Cyzryz, and at least
one of {ar,y,z} were added in the n+1~th step. Since We took a new point from
U for every �repair� We made, it follows from our construction that (3y�, 2� E W) :
Cl,,(sc)g/2� & l,,+1(y) :: y� & l,,+1(2) = 2�. But then Cl,,+1(:c)l,,+1(y)l,,+1(z). Hence, I is a
homomorphism after n + 1 steps. Clearly, I is a homomorphism after the limit step as
Well. QED

REMARK 4.2.8. The construction used above can be seen as a generalization of the
unraveling construction from standard modal logic to binary modalities (cf. Sahlqvist
[Sah75], de Rijke [Rij93]). In section 4.5, we will generalize the above construction to
operators of arbitrary arity. In the spirit of Proposition 6.3.5 in [Rij93], We can also
give a direct de�nition of the �unravelled pair�frame�. Let 5�� = (W,C) be a frame
such that the subframe generated by {CL} is again fa. De�ne the set B as the smallest
set such that

o ((a0,al),a) E B
0 s =  E B & 3yzC3:yz 22> {((u,s:Cwyz),y), ((s:C:vyz,�v),z)} Q B

Let V (hf (u, v) :  v), 3:) E  Using the argument given in the above proof,
it is straightforward to show that B is a zigzagmorphism from the frame (V, Cy) onto
fa.

REMARK 4.2.9. To get an idea how We will prove a similar representation theorem
for arrow�frames, the following might be useful. Think of the abstract frame as being
built from little frames ({:r,y,z},C:ryz) (:I:,y, 2 need not be different). Later, we call
these little frames mosaics. Clearly, each such frame is representable by a triangle
{(u,v), (u,w), (w,  If we needed to make a repair in the above construction, we
added the representation of a mosaic to the partially constructed graph using a. fresh



62 REPRESENTATION & AXIOMATIZATION [42

point. The intuitive idea is that in the construction we play a kind of domino game
in which the tiles (�represented mosaics�) may want one or more tiles being laid next
to them. If we play this game in�nitely, We can ful�ll the desires of each tile, and
thereby create a zigzagrnorphic pre~image of the frame which was to be represented.
The function will be a homomorphism precisely because we always took fresh points.

REMARK 4.2.10. The construction does not depend on the �niteness of .7. A similar
construction can be used to represent frames of any cardinality. The only difference is
that, in general, we have to make in�nitely many repairs in the inductive step. In the
next section, we show how to change the construction to represent in�nite frames as
well. Lemma 4.5.3 generalizes the last lemma in two ways: it is about frames of any
cardinality, and it represents frames where C can be any relation of rank higher than
2.

APPLICATION OF THE LEMMA. The above lemma leads to the following corollary.
The argument which is used in its proof will be used in many places in this Work.

COROLLARY 4.2.11. BA� = S(KC)+ :2 S(K§e,)+ is a canonical variety.

PROOF. S(KC)"� is axiomatizable by the BAO�axioms, and obviously it is a canonical
variety (use 2.2.1). Clearly, KC Q KC. On the other hand, each frame from KC isset
a zigzagmorphic image of a frame from Kit, by 4.2.7 and 4.2.10 (or alternatively by
4.5.3)4. But then, by duality, (KC)+ Q S(KC )+. Hence S(KC)+ = S(KC )+. QEDset set

4.2.3 REPRESENTATION BY MOSAICS

We now introduce the second concept of our method: mosaics. The next de�nition is
a bit more general than needed for our present purposes, but this generality Will be
useful when dealing with reducts. We shall expand the similarity type of arrow-Mframes
with the two partial functions  and  When a mosaic belongs to the class K�fl,
we can delete these expansions again, because these functions are de�nable there (see
2.4.7).

DEFINITION 4.2.12 (Mosmcs). Let fr-(W,C,f,(.),,(.),,i) be an arrow�frame ex~
panded with partial functions f,  and
(i) .7: is an (:3, y, z)�mosaic iii {:c,y, 2} Q W (cc, y, 2 need not be different), Cacyz holds,
and there is no proper subset of W which contains {:1:, y, 2} and which is closed under
the functions f,  and
The elements at, y, z are the generators of the (ac, y, 2)--mosaic.
(ii) An (m, y, 2)-«mosaic .7 is repairable if there exists a pair�frame ((u, U), (u, w), (w, v))~
mosaic gm,-,(V) with base {u,v,w} (u,v,w need not be different), and a surjective
function I : V ����> F such that

o l(u,v) = 3:, l(u,w) = y and l(w,v) = z,

�Lemma 4.2.7 gives us only that S(KC)&#39;l" 2 HSP(KC )+. It does so in the following way. It isset
obvious that KC allows �ltrations (any �ltration works), so S(KC)+ = HSP(FinKC�)+. Now apply the
lemma (and use the fact that SPK 2 SPSK).
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o l is a homomorphism for CV,
0 (Vs E V) : lys <==> ll(s) and
0 l commutes with f,  and  in the following strong sense: lfvs = fls means

that if one side is defined, then also the other, otherwise both sides are unde�ned,
and similar for  and  &#39;

We call the tuple (Q1m,.(V ),l, (u,v,w)) a repair of .75. Sometimes we also call the
pair-frame QW~,(V) a repair of .77.

REMARK 4.2.13. It is easy to see that in the class of locally square pair~frarnes K331,�
every mosaic is one of the three square pair-fran1es in �gure 4.1 below. In case 1, the
mosaic is generated by one identity arrow; in case 2, one of the three generators is an
identity arrow, and in case 3 none of the generators is an identity arrow. The set of

mosaics can be described as follows:

{~�*"pm({(u»v):(u»w)»(w»v)} UX})= X E {<u»u)a(v.v>a(w,w).<v.u>,(w:u)«(vlw)}
and u, v, 21) not necessarily different}

2

Mosaics will be used in the step~by�step construction to repair a situation Where we
have a pair 5 in the partially constructed graph, and Cl,,(s)yz & �»|y & ~42 holds in the
frame to be represented. Then We will add a repair of the (l,,(s), y, z)~mosaic to the
partially constructed graph. The de�nition of a repair ensures that we only have to
repair these situations.

0
I 3 (4.1)

The following fact will be useful later on.

FACT 4.2.14. Let .7: be an (:2:,y,z)~rnosaic and (Q,,,m.(V),l, (u,v,w)) a repair of .73.
Then

(i) For every point :9 E F , and for every pair 8 E V such that l(s) 2 x, and for every
function 1�, (.)g, (.),, the function is de�ned on 9: if and only if it is de�ned on .5.
(ii) If we View the partial functions as relations, then:

0 Z is a surjective homomorphism from g,,.,,»,.(V) onto .73,
0 Z has the zigzag property for L1�,  and

PROOF. Immediate by the de�nitions. QED
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REPAIRING MOSAICS

The next proposition contains the heart of the proof of lemma 4.2.3. VVe only need
the axioms in the proof of this proposition. For gluing mosaics together, no additional
axioms are needed, just as in the �composition-�only� case. Recall that Kffi is the class
of arrow-frames which satisfy conditions (C1) -�� (C12) from 2.4.9.

PROPOSITION 4.2.15.  Every (a:,y,z)~mosaic .7 E Ki?� is repairable.
(ii) Every (:c,y,z)~~mosaic .7: E Ki?� is uniquely repairable up to isomorphism. Hence,
given a base {u,v,w} we can speak about the repair of .7
(iii) Llet H C; {R, S}. If an (.r,y,z) �mosaic .7 belongs to Km], then its repair belongs
to K::tH&#39; A

PROOF.  Let .77 6 K3� be an (:z:,y,z)~-mosaic. In the proof, we use the KS�
theorems (Tg)�"(T3) from 2.4.7. Recall that these theorems should be read as if the
functions are partial (e.g., 2:; = y; means that either they are both unde�ned, or they
are both defined and :13; = 3/1).

VVe get the first insight by looking at the possible I �valuation� of the generators .r, y
and 2. The third column in the table below expresses the fact that if two of the three
generators are identity arrows, then so is the third one. So we have only the cases with
three, one or zero identity generators. All these results follow from conditions (011)
and (C12). The results in the last column follow from (T11) � (T 3) and (06). This will
become obvious if we look at the cases separately below.

(9: y z result I size of domain F
1 I I I rzyzrz [FI = 1
2 I I impossible
3 I I impossible
4 I ~"v#y,a3#Z 2SIFI.<.4
5 I I impossible
6 I as = 2 ¢ y 2 3 [F] g 4
7 I = y # 2 2 S  3 4
8 1 S I I S 9

We will look at the remaining cases one by one.
case 1. In case 1, by (T1), the mosaic consists of just one element, and clearly that

is isomorphic to the pair~fran1e .7,,,m({(u,
case 4. In case 4, (C6) and (C1) imply f(y) 2 2 & f(z) = 3;. By (T3) and (T1), we

have 9: = 931 r: at, = fr : y; = 2... If y,. is not defined, the domain of the mosaic equals
{:1:, 3,1,2}, and we repair it by the pair�frame at the right in figure 4.2.

These �gures should be read as follows. At the left, we draw the mosaic which is to
be repaired. and at the right the repair. An :1: attached to an arrow (u, v) means that
:1: is represented by (u, v) (in other words l(u, v) =2

It follows from the argument given above that the ((u, u), (u, w), (w, u))-~-mosaic and
the function I as given in figure 4.2 form a repair of the mosaic at the left. This is
easily checked using the provided pictures.
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p ...........  ..........  w

1  .E r y<) Z
x=xl=xr=fx O 

     
     x (4.2)

We continue with case 4. If yr is defined, (C4) (because Cyyyr & Fyz) implies that
Cyrzy- By (T1)? yr : (3/r)r : (yr)! 2  Again by (T3): 21 = yr: SO We add <w1w)
to the mosaic, and set l(w, w) = y. (see �gure 4.3).

This picture really covers two cases: the one Where y 76 2, and the one where y = 2
(which implies that :2: = yr). For the argument given above, this distinction does not
matter: so we really covered both cases. All arguments in the sequel cover the cases
when some of the points in the mosaic happen to be equal.

In a case 4 mosaic, the functions f,  and  cannot generate further points, so
we are done.

yr=zl
;1\_

  yr

.i ..........  .......  w

1   r y() 2
x==xl=xr=fx O 

     
     X (4.3)

cases 6 and 7. If the functions are all de�ned, cases 6 and 7 are very similar to
case 4. We treat case 6 only. Case 7 mosaics are handled similarly. If an, and f are
not de�ned, we represent 3: by (um) (u 75 v), and y by (u,u), and we are done (see
�gure 4.4). If as, is de�ned, We add (12, 7,1) as well, and set l(v,11) z: x:,. If is defined,
(C5) implies Cyxf and (if at, is de�ned as Well) Crrf which lands us back in the
two situations of case 4. We treated all possible case 6 mosaics.

V

yd (4.4)

y=yl=yPfy=x1 x=z
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Z(w,v) 2 2, and u,7.),w are all different. Depending on the presence of other arrows
in the mosaic, we have to add more pairs. First, suppose 3:; is de�ned. Then by (T 3),
2:; r: y;, and we can represent it by (u,  Similarly for y, =: 2:; and 2, = :1:,. If f is
de�ned, we need to represent that by (w,  Then Cg/(w, 22), (w, u), (a, v), but by (C4)
also Czf(y)a: (see �gure 4.5).

fy ...........  Z W

Eh 
     
     v (4.5)

Use (C5) in the similar situation where f(z) is defined, and (C4) and (C5) when two or
more of f(;1:), f and f are de�ned. To see that the function I behaves correctly on
parts like {(21, u), (u, w), (w, u), (w, w)}, reason as in case 4. If all functions are de�ned,
the representation looks as in �gure 4.6.

1:21

fz

X1-�Y xr-:2r
fx » (4.6)

We covered all case 8 mosaics. So We covered all possible mosaics, and we have �nished
the proof of part  of the proposition. Parts (ii) and (iii) are immediate by the proof
of part (i), in combination with fact 4.2.14(i). QED

MOSAICS OF AN ARROW��FRAME. Mosaics are very small arrow�frames which tend
to live in bigger frames. For an arroW»frame .77 = (W, C, f, I) E KW, we de�ne the notion
of an (x,y,z)~mosaic of .77 as follows. An (.7:,y,z)-mosaic Q is an (a3,y,z)~mosaic of
f if G E W and the relations in Q are the restrictions of the relations in .7: to G. We
can say the following things about these (ac, y, z)~mosaics of f.

FACT 4.2.16.  Let H Q {R,S}. If.�/7 E K:.%1, then every (a:,y,z)�m0saic off is in
K;;&#39; .
(ii)Hlf .77 E Kffl, and {a:,y,2} _C_ F such that Czcyz, then there exists a unique (:1:,y,z)~
mosaic of .77.

(iii) If .77 E Kifl, and  or  is a total function, then every point in F belongs to
some (:c,y,z)~mosa.ic of F.
(iv) If T 6 K3�, and both  and  are not total functions, then the only points
which are not part of any (22, 3;, z)�mosaic of .7 are those points 1: such that alas, and
which generate a subframe consisting only of  or of {safer}. Each such (point-
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4.2.4 PROOF or LEMMA 4.2.3

We are ready for the proof of 4.2.3. We first give a sketch of the proof, after that we
de�ne the construction formally.

PROOF-IDEA. Let .7: (W, C, F, I) E KI?� be arbitrary. Let M be the set of all (m, y, 2)
mosaics of .77. We want to copy the step~by~step procedure from 4.2.7. There, our
mosaics were much simpler, and all of them could be repaired in the same way. In the
present proof, we repair whole mosaics at once. Then it is easy to see that we only
need to repair situations where we have Cl(;z:)yz& -1|y& -vlz. (So we only need to repair
case 4 and case 8 mosaics.) Since we know that we can repair each mosaic, we know
that we can make any necessary reparation. So, by construction, we ensure that the
function I has the zigzag property. The more difficult question is whether the function
l is a homomorphism. In the simple situation of 4.2.7, We could prove that l was a
homomorphism, because we took fresh points every time we connected two mosaics in
the representation. Since we took fresh points there, no other CV relations came into
existence in the representation, except the ones we explicitly constructed ourselves.
But here We can always take fresh points too, because we only need to add mosaics
with CZ(:r)yz & ply & -vlz, whence we should represent 3/ and 2 by non�identity pairs.
But then, again the only new Cg/~relations are the ones of the added (represented)
mosaic.

PROOF OF LEMMA 4.2.3. Let H Q {R,S}. We have to show that the class Km,
equals the class ZigK§:iH. The validity arguments in the beginning of section 2.4.3
show that 1, Q  Since Km, is closed under zigzagmorphism, this implies
ZigK:::H Q  The other side follows immediately from the next two statements.

(i) Every .77 E KI?� is a zigzagmorphic image of some Q 6 Kg.
(ii) Let X Q {(013), (C34), ((715)). If in addition .7 |= X, then also Q l: X.

(i). Let .772 (W, C, F, l) E KI?� be arbitrary. Let M be the set of all (:v,y, 2)�mosaics
of .77. By 4.2.16, every mosaic in A4 belongs to Kffl. So, by 4.2.15, all of them are
repairable. We now define the necessary construction, interspersing it with the argu-
ment why it works.

Construction

Let U be an in�nite set such that {U} 2  \/Ve will use the elements of U to construct
the pairs of the representation. The condition ensures that U is large enough for this
purpose. Let P dz-if {:13 E W 2 (Vyz)-1(Cxy2VCy:1:zV Cyza:)) be the set of �loose� points
(points which are not part of any mosaic). We represent the subframes generated by
these loose points as stated in fact 4.2.16.(iv). l.e., by a subset 7"ep(P) of U X U, such
that all the representations are pairwise disjoint.

step 0 Let V0 C U X U be the pairwise disjoint union of rep(P) and all representations
of mosaics in M such that {U \ Base(V},)| =  Let In be the function given by these
representations.
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CLAIM 1. Z0 is a surjective homomorphism which satis�es the zigzag property for I, F
and the substitution functions. This last claim is spelled out below.
(Va: 6 V9) : Flg(x)y => (3y&#39; E V0) : F�/my� & l0(y�) : y
(Va: 6 V3) : Clo(a:)lg(.r)y & ly :» (3y&#39; 6 Va) : Cvzzry� & l0(y�) = y
(V3: 6 V3) : Cl0(:r)yl0(:2:) & ly =3> (3y� 6 Va) : CVa:y�:L&#39; & l0(y�) = y

PROOF OF CLAIM. Z0 is surjective, because we represented all loose points, and (see
4.2.16) all other points belong to at least one mosaic. By fact 4.2.l6.(iv), Z0 is a
zigzagmorphism for the part rep(P). Z0 is a homomorphism, because, by 4.2.15 it
is one for every mosaic separately, and all the representations of separate mosaics
and rep(P) are disjoint. The function lg satis�es the zigzag property for l, F and the
substitution functions, because we represented mosaics. 4

step n+1 Let X" be the set of pairs which were added in the previous step. Create
for each 3 E X� a function5 gs : {yz : Cl,,(s)yz & *-«ly & �1lz} �> (U \ Base(V,,)) such
that

I all g3�s are injective,
0 the ranges of the g3�s are pairwise disjoint, and
&#39; lU \ Usex,.(g2�)| = W

Such a set of functions clearly exists. They guarantee that we use a brand new element
from U for every mosaic we add, and that the set U \ Base(V,,+1) stays large enough
to continue the construction using new elements.
For every 3 E X,,, and for every 3;, 2 E W such that Cl,,(s)yz & �=|y & -«lz, we repair
the (ln(s),y,z)~mosaic of .7 by the ((sg,s1), (sg,g3(yz)), (gs(yz), s1))«mosaic, and add
that representation to V", in this way creating V,,+,. De�ne In� as the extension of Zn
in which the new pairs are mapped as given by the repairs of the mosaics. This can be
described formally as follows: de�ne

REP� Cg (.77,,a.+(S&#39;), h, (sg,s1,g3(yz))) :3 E X�, Cl,,(s)yz & -wly & -«I2 and
(.77,,.m(.S&#39;), h, (30, s1,g3(yz))) is the repair of the (l,,(s). y, z)~mosaic of .75}

Then set:

II V71 U  3 <]:P¢l§7�(S)vha(30a51:g8(yZ)�)) E REPni
I" U  : (fP0iT(S)7hv (S0331vg3(yZ))) E REPW}

Vn+1
ln+1

In� is well defined, because for every repair (.7L-W,-r(S), h, (30, 31, gs(yz))) E REP� and
for every 1� E S O V� it holds that Mr) 2 ln(r). This follows from the de�nition of
repair of a mosaic. �

CLAIM 2. Let n < as be arbitrary. Then (i)~(iii) below hold.
(i) Zn is a surjective homomorphism;
(ii) In satis�es the zigzag property for l and F;
(iii) Let n > 0. ln satis�es the zigzag property for C for all elements of V,,_1, i.e.,

(V3 6 V,,_1)(\/yz E W) 2 (Cl,,.1(s)yz :» (33/,2� E V�) 2 CVsy&#39;z�&l,,(y&#39;) = y&l,,(2�) 2 2:).

5If f : X ���+ Y then we use f�(X) or �if the domain is clear by the context~ f� to denote the
range of f.



4.3] Rsnucrs or RELATIVIZED RELATION ALGEBRAS 69

PROOF OF CLAIM. The proof is by induction on 72. By the previous claim, (i), (ii)
and (iii) restricted to the substitution functions hold for lo and VB. Assume they hold
for Zn and V�.
(i). Suppose a pair 3 was added in the n+1�th step. Since 5 is part of a mosaic,
homomorphism is guaranteed for Iv and FV. For CV we are in precisely the same
simple situation as before. Since we always used fresh points, 5 will only stand in CV
relations with elements of the mosaic it is a part of, and they are guaranteed by the
mosaic proposition.
(ii). That Zn� has the zigzag property for l and F is, given that 1,, has, immediate
because we represented whole mosaics.
(iii). Suppose s was added in step 72 and Cl,,(s)3/2. If -wly and ~1l2, we added the needed
previmages in step n+1. In the three other cases, the needed pre~images are either 3
itself or (sg,s0) or (s1,s1), and since 3 is part of a mosaic, these were why induction
hypothesis» already in V". &#39; 4

step (.0. Set V �iii um, V, and H-3� UN, 1,,
End of construction

CLAIM 3. l is a zigzagmorphism from the pair~frame .7~",,,,,~,(V) onto the arrowwframe
J�.

PROOF OF CLAIM. l is surjective by step 0. ln is a homomorphism for every step, so
I is one too. I is zigzag, because each added point is repaired in the next step. 4

With the last claim we �nished the proof of part  of the lemma. We are almost done.
(ii). If T satis�es one or more of the conditions (C13), (C14), (C15), this means that the
corresponding function is always de�ned. Hence, by 4.2.14.(i), in every representation
of a mosaic the corresponding function is always de�ned, so the representation veri�es
these conditions. QED

4.3 REDUCTS or RELATIVIZED RELATION ALGEBRAS

We look at subreducts of SRIHRRA, for each H Q {R,S, T}. For Q Q {id," , ;} and
H Q {R,S,T}, we denote the ({V,/\, -,0, 1} U Q)~subreduct of the class SRIHRRA
by SRlgRdQRRA. This notation is warranted, because (cf. [I-lMT71]):

SRdQSRlHRRA = SRdQRlHRRA = SRl;;RdQRRA (4.7)

REMARK 4.3.1. Andréka~Nérneti [ANS94a] showed that whenever T E H and ; E
Q, the class SRl;;RdQRRA is neither �nitely axiomatizable nor decidable. For this
reason, we concentrate on the case without T. The case where T E H and ; ¢ Q is
uninteresting, because transitivity does not in�uence the behaviour of the operators
except composition. Whenever Q Q {idf }, 4.8 below holds (cf. [ANS94a], Thm
2.1.64).

=  =
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AXIOMATIZABILITY

We start our investigation with an easy theorem.

THEOREM 4.3.2. For any Q Q {id," , ;} and H Q {R,S,T}, the class SRlgRdQRRA
is a quasiwariety.

PROOF. This follows from the universal algebraic facts (cf. [HMT71] and [HMT85])
that (1) RRA is a variety, hence it is closed under S1�-�Up, (2) the operator SPUp
commutes with SR1 and SRd, (3) 4.7 above, and (4) every class closed under SPUp
is a quasi~variety. QED

In virtue of the above theorem we will investigate for all interesting choices of Q and H
whether the class SRlHRdqRRA is a variety. It turns out that, for every Q, the class
SRlRdQRRA is a �nitely axiomatizable canonical variety. If we consider subreducts
for other choices of H, the situation is not so uniform. Some are not varieties, some
are, and for some, we don�t know the answer. Table 4.1 lists the results we do have. As
a contrast, we add the results for subreducts of RRA (recall that RRA = SR1 R5TRRA)
in the �fth column. These results can be found in [ANS94a]. It is easy to show that the
subreducts of RRA with composition are varieties, because they have a discriminator
term. This is not the case when we do not have a transitive relation. For completeness�
sake, we add the results for the full language at the bottom.

HOW TO READ TABLE 4.1. In the left column, We list the operators of the sub-
reduct involved. The next four columns stand for the four different relativizations

we have studied in the previous section. Each item in the table stands for the class
SRlHRdQRRA in which Q is given by the row and H by the column. A V means
that the class SRIHRIIQRRA is a �nitely axiornatizable canonical variety. We give the
axiomatizations in table 4.2 below. With V* we denote that the class is a Variety, but
it is not axiomatizable by �nitely many equations. A QV means that the class is not
a variety, but it is a �nitely axiornatizable quasiwvariety, and a QV? denotes that we
only know that it is a quasi~variety (it might still be a variety).

any re�exive symmetric re�exive and T re�., symm. and 1
relation relation relation symmetric rel. transitive rel.

� SRIRRA SRIRRRA SRl5RRA SRlR5RRA +t SRIRSTRRA = RRA
id V QV V QV _ QV
" V QV V QV QV

L ", id V QV V QV QV
; v QV7 Qv&#39;-� Qv" v*
;,V V QV? V QV? V*
;, id L v v Qv? Qv? + v* 3
;," ,id V V V V V*

TABLE 4.1: SUBREDUCTS or RELATIVIZED RELATION ALGEBRAS
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We summarize the axiomatization results in the following theorem. We prove them in
section 4.3.1. The axioms are listed in table 4.2.

THEOREM 4.3.3. The following classes are all �nitely aaviomatizable canonical vari-
eties:

(VQ _C_ {;," ,id}) : SRlRdQRRA
SRl5Rd{;d}RRA
(\7�{�} Q6) Q {;,",id}) : SRlgRdQRRA
SR1RRd{,,;d}RRACOCO

DECIDABILITY OF THE REDUCTS

Above, we have stated that Whenever T E H and ; E Q, the equational theory of the
resulting class is undecidable. For all other classes in table 4.1, the results are positive.

THEOREM 4.3.4. Let K be any class occuring in table 4.1. The universal theory of K
is decidable if and only if K is not marked with V*.

PROOF. The undecidability results can be found in [ANS94a]. Here, we prove de-
cidability for all classes not marked with V*. For the three quasi-varieties in the last
column, the claim follows from (4.8) above and the argument given below. So we are
left with the first four columns. By 4.2.5, we know that the universal theories of the first
four classes in the bottom row are decidable. The following chain of reasoning shows
that we can decide universal sentences in the reductrlanguage, using a decision proce-
dure for the full language. Let gt be a universal sentence in the reduct Q Q {id," , ;}.
Then:

SRlHRdQRRA l: (/2 4::-> (by equality (4.7) above)
SRdQSRlHRRA }: ¢ ¢=:> (universal sentences are preserved under S)
RdQSRlH RRA }: ¢ 4:» ((35 is in the language of
SRIHRRA l: ¢

QED

There is also an opposite direction possible. Instead of taking reducts, we can expand
the language with operators like the cylindrifications C0 and C1, or the universal rnodal~
ity O which are termmde�nable in RRA (though not always when we relativize). We
can also expand the language with operations which are not even RRA de�nable, such
as the Kleene *. We will look at this direction of research in the next section, and in
chapter 6.

4.3.1 AXIOMATIZING THE REDUCTS

We investigate the reducts in table 4.1, following the order of that table. Here is a
sketch for the first four cases.
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REDUCTS WITHOUT COMPOSITION

ONLY IDENTITY. It is straightforward to see that this subreduct is axiomatizable
by the BA axioms Whenever H = ID or H 2 S. Relativizing with a re�exive (and
symmetric) relation does not yield a variety. To see this, take the complex algebra of
the square pair�frame .7�}m&#39;r(2{u, v}) (u, # 12). It is easy to check that relativizing with
{(u, 12), (1),  is a homomorphism onto the 4~element BA in which id = 0. Clearly, this
algebra is not representable as a (subalgebra of a) complex algebra of a re�exive (and
symmetric) pair�frame. Hence, for H 2  or H = R3, the class SRlHRd{;d}RRA is not
closed under homomorphisms: so it is not a variety. It is a �nitely axiomatizable quasi-
variety, however. If we add the quasiwequation (id = 0 => 0 := 1) to the BA axioms, then
every non~trivial algebra contains a non-zero identity. This quasi�-equation de�nes the
frame condition El;r(a: = 2:) => 3;z:(la:).

ONLY CONVERSE. The subreduct with only converse is axiomatizable by axioms (A1)
and (Aw). This follows from 4.2.16.(iv). If we want a symmetric relativization, we
add axiom (A13). The counterexample given in the previous paragraph shows, here as
Well, that relativizing with a re�exive relation is not a variety. But this is repairable
by adding the quasi~~equation (TV : ��7&#39; => 1 = 0) which de�nes the frame condition
3a:(3c = x) => 3m(fat 2:

CONVERSE AND IDENTITY. Clearly, it is sufficient to add axiom (A3) to the axioms
given above to get axiomatizations for SRlRd{;d,~}RRA and SRl5Rd{;d,v}RRA, re-
spectively. Again, the above counterexample kills the re�exive relativization. Adding
the quasi~equation (id =2 0 21> 0 = 1) helps us out here.

CONVERSE, IDENTITY AND THE SUBSTITUTIONS. If we add the substitution opera-
tors S? and 5,1, to the similarity type of converse and identity, then all relativizations
become �nitely axiomatizable canonical varieties. Because transitivity also does not
in�uence the behaviour of the substitutions, it holds that SR1R5Rd{;d3~�sé�s(£}RRA 2
SRd{;d!-�5�i],5c1>}RRA. These results hold, because the proof for the re�exive and sym-
metric case in [ANS9-�-la] (Thin 2.1.64) goes through.

RBIDUCTS WITH COMPOSITION

The subreducts considered so far were extremely simple, because there were only �nitely
many �nite subdirect irreducible algebras to consider.. If We add composition, we
get in�nitely many subdirect irreducible algebras (e.g., every complex algebra of a
connected directed graph is one). In order to axiomatize these subreducts, We use the
step�by~step construction and the mosaic idea again. In the construction, no axioms
are needed, so it again suffices to see whether we can repair mosaics. The proofs are
simple adaptations of the proof for the full language. We sketch the changes involved.

ONLY COMPOSITION. For arbitrary relativizations, We treated this subreduct already
in 42.11. For the others, we do not know the answer.
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COMPOSITION AND CONVERSE. If we consider both converse and composition, the
representation is a simple adaptation of the case with only composition. De�ne mo«
saics as before, but forget about the functions for $3, and 5? (so they are only closed
under �converse arrows�). Represent each mosaic using non~�identity pairs only. It is
straightforward to see that we only need (A4) and (A5) besides the converse axioms
(A1) and (A10). For a symmetric relativization, it is enough to add (A13). We do not
know the answer for re�exive and for re�exive�and~symn1etric relativizations.

COMPOSITION AND IDENTITY. This subreduct is the most interesting one. In several
applications of arrow logic, the converse operator does not have a natural interpretation,
so it would be nice if it is not needed. It is also interesting, because we do need an
extra axiom besides the ones mentioning composition and identity we had already. In
a sense, this subreduct shows the �hidden power� of the axiom (A4) (recall that (A4)
is the RA axiom (R/15)). We do not know whether relativizing with symmetric or
re�exive�and�symmetric relations is a variety.

We use the same construction as before. Rede�ne the concept of a mosaic by
forgetting the function for converse. VVe have to repeat the analysis of 4.2.15, and check
carefully whether we used axioms mentioning converse to prove something concerning
identity and composition only. Clearly, we need all axioms which do not mention
converse. Having them, we get the same five possible situations as in the proof of
4.2.15. For case 1, we do not need converse. In case 4, We used condition (C4), which
mentions the frame relation F for converse, to show that, if 3/1 was defined, we had
Cylzy. So here we need a new axiom, namely

(C22) Cr;/2 & lac & Cyyv & Iv ==> Cozy

In cases 6, 7 and 8, there are no �converse arrows�. So, if we find a canonical equation
de�ning (C22), we are done. We propose the following:

(A22) (X3(ld /\�(Y§X)))§Y S " id

PROPOSITION 4.3.5. Assume condition (C12). Then for any arrow frame .7: r: (W, C, I),
«.7 l: (C22) ¢=> .77 |=(/122). The equation (A22) is canonical.

PROOF. (A22) is a Sahlqvist equation. A positive equation which does the same job
was found by Andras Simon. It is id /\((x;(y /\ id));z) g (x;(y /\ id /\(z;x)));z. QED

Clearly, if we add axioms (A14) and (A15) to the ones above, We get an axiomatization
for the reflexive relativization.

SUMMARY OF THE RESULTS. We summarize these results about subredncts in ta-

ble 4.2. We do not mention the BAO axioms in this table, but of course they are
assumed as well.
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Variety Axiomatizable by axioms
V SRlRd{;d}RRA (0

SRl3Rd{;d}RRA (0
SRlRd{v}RRA (A1 ),SRl5Rd{~» } RRA (A1), 

     
     ) 
     
     )(A

(A10): (A13)
(A3): (A10)
(A3l:(A1o)a(A13)

SRlRd{v,;d}RRA (A1,
SR1SRd{v,;d}RRA (A3,

SRlRd{;}RRA 0)
SR1Rd{;,v}RRA (A1), (A4): (As)» (Am)
SR15Rd{;,v}RRA (A1), (A4 (A5), (Am), (A13)

SR1Rd{;�;d}RRA (A2), (A7 A9; 
     
     .4). 

     
     ) - (

SR1RRd{;,;d}RRA L (A2), (A7) �( 9
.0411), (A12), (A22)
» (A11): U112)» C414)» (A15): (A22)__...J

TABLE 4.2-. AXIOMATIZATIONS or SUBREDUCTS or RELATIVIZED RELATION AL-

GEBRAS.

4.4 ADDING THE DIFFERENCE OPERATOR
-.

We add the dz�erence operator to the similarity type of relation algebras. This operator
adds quite some expressive power to the language (see e.g., de Rijke [Rij93], Sain [Sai88],
Venema [Ven91]). A variety with this operator becomes a discriminator variety, so all
the powerful tools and techniques of these varieties become available. The difference
operator is a natural operator to add to this similarity type. As is shown in [Ven91l,
it is termwde�nables on the square algebras of relations. It is however not terrn~
de�nable on the relativized ones we studied in this chapter7. It will turn out that if we
add the difference operator to the variety SRIRSRRA, We keep decidability and �nite
axiomatizability (theorems 4.4.4 and 4.4.3).
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�P(W) to  For x Q VV, set:

DWX if {w¬W:(3vvEW):v;£w&vEx}
<>Wx �ltd {wEW:(3vEW):vEx}

If there is no danger of confusion, we suppress the superscript W with these operations
(but it should be noted that their behaviour depends on the choice of W�). For obvious
reasons, the operation D is called the dz�erence operator. 0 is the universal modality
we saw before. It is easy to see that we can ternrde�ne the universal modality as
Ox lg Dx U x. Since D is a unary operator, its meaning is given on frames by a
binary relation. On the intended �concrete� frames this will be the inequality relation,
on �abstract� frames we will use the letter R for this relation. VVe will also use the

notation given above for abstract operators.
For H Q {R, S, T}, we de�ne the following classes of frames and algebras.

KD::iH �%� {f=<v,cv,t».:v,¢> = <v.cv,fv.Iv> <�: K::iH}
SRlHRRA+ D �E sP(KD;:§,,)+ is-� sP{(ap(V),oV,-1�, ldv, DV) : V is an H relation}
RRA+D %� SP{f= (V, CV,FV, lV,;é) : V = U x U for some set U}+

REMARK 4.4.2. As we said, RRA is term~de�nably equivalent with RRA+D (cf.
[Ven91] Prop 3.3.8). On the other hand, RRA = SRIRSTRRA, but RRA+ D is a strict
subvariety of SRlR5TRRA+ D. It is strict, because the equality Dx 2: (1;x;- id) V
(� id ;x;1) (i.e., the de�nition of D on the squares) does not hold in the latter class. In
this section, We concentrate on the class SRlR5RRA+ D.

AXIOMATIZABILITY. The next theorem is a joint result with Szabolcs Mikulas, lstvan
Németi and Andras Simon.

THEOREM 4.4.3. SRIRSRR/\+D is a �nitely aziomatizable canonical variety.

A purely algebraic proof, without any correspondence results can be found in [M MN S94].
Here we will follow another road8. We show that the class SR1 RSRR/\+ D equals a fi-
nite axiomatizable canonical variety S(K)+ for K some class of arrovwframes expanded
with a binary relation R. We prove the theorem in section 4.4.3.

DECIDABILITY. Since we enlarged the expressive power of our language consider~
ably, getting closer to the undecidable variety RRA, it becomes an interesting question
Whether or not the equational theory of the class SRlR3RRA+ D is decidable, or even
generated by its finite members. The �rst question is answered positively, the second
is still open.

3It is quite interesting to see, how the two different styles of proof lead to two quite different
axiomatizations. The axioms given here are the equations corresponding to the (intuitive) frame
conditions, which we found in the representation proof. The axioms given in [MMNS94] are a direct
description of the behaviour of the difference operator, and are maybe more intuitive as (quasi�
)equa.tions themselves.
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THEOREM 4.4.4 (ANDR1§KA, MIKULAS, NE�;MET1).
The equotional theory of SRlg5RRA+ D is decidable.

Paoor. Cf. [AMN94]. QED

4.4.2 FIRST EXERCISE: BOOLEAN ALGEBRAS WITH D

To get some intuition about the difference operator, we brie�y sketch how it behaves
when added to BA. The difficulties we encounter later are very similar to those in
this simple case. A good overview article on D is chapter 3 in de Rijke [Rij93]. The-
orems 4.4.5 and 4.4.6 below were proved independently by several authors; for their
history, see [Rij93].

De�ne KDM as the class of all frames J7 = (l/V,  Recall that BA can be de�ned
as IS{�13(W) : W is a set}. We de�ne the class BA+ D as follows:

BA+ D lg SP(KDm)+ (lg SP{(SB(W), DW) : W is some set}
De�ne the class KD as the class of all frames .77 2 (W, R) satisfying conditions (C 15) and
(C17) below. BAD((/115) - (/-117)) denotes the class of all BAO�s of BAO�type (D, 1)
which satisfy equations (A16) and (A17) below.

(015) Rosy => Rya: (A15) X /\ Dy 3 D(y /\ Dx)
(C17) R:z:y&Ryz => :6 = zV Rxz (A17) DDX 3 (XV Dx)

Note that these two equations ensure that the de�ned 0 becomes a complemented
closure operator (in modal�logical terms: an S5-type modality).
THEOREM 4.4.5. BAD((A16) -� (A17)) = S(KD)+ = BA+ D

PROOF. The first equality follows from the positive form of the equations. Because
BA+D is de�ned as SP(KD_m)+, it is sufficient to show that 1) KDM Q KD, and 2)
every frame in KD is a disjoint union of zigzagmorphic images of frames from KDM.
Clearly (C16) and (C17) hold for the inequality relation, so 1) holds. To show the second
equality, we reason at the frame level. To pin down the inequality relation, we need
that it is irre�emive and almost universal.

(Irr) (VJ?) :-vRa::1:
(AU) (Vnzy) : :1: 95 3; => Rwy

Because irrefiexivity is not preserved under zigzagmorphisms, it is not de�nable by
an equation. (AU) is not de�nable either, because it is not preserved under disjoint
unions. The next picture shows an average KD frame. It -consists of a disjoint union of
frames in which R is almost universal.
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So We know that the problems are caused by disjoint unions and zigzagmorphisms. As
happened before however, they can be solved by them as well.

CLAIM. Every .7: E KD is a disjoint union of zigzagmorphic images of frames from
KD.set-

PROOF OF CLAIM. The disjoint union part is clear by the picture. Let F = (l/V, R) l:
(AU In order to Show that T is a zigzagniorphic image of a frame (l/V&#39;,;é), we
just have to copy the R-~refle:m&#39;ve points. So, let W� gf W U {;r� : Rccat}, and de�ne
Q::(l/V� De�ne the obvious zigzagmorphism l 2 W� ���+ W�, as  = :1: and
l(3:�) 2: 1:. 4

The theorem follows from the claim using 2.2.5, 2.2.6 and the universal algebraic fact
that PS 3 SP. QED

THEOREM 4.4.6. Eq(BA+ D) is decidable.

PROOF. Take a minimal �ltration of a KDM model. It is straightforward to show
that the �ltration satis�es (AU Hence it satis�es (C15) and (C17). By 4.4.5 this is
enough. QED

4.4.3 CORRESPONDENCE AND REPRESENTATION

We prove the �nite axiomatizability result for SRlR5RRA+ D in the same spirit as we
did without the D operator. First we de�ne a �nitely axiornatizable class of arrow~
frames expanded with a binary relation R. Then we show that each frame of that class
can be represented as a member of KD:::RS.

CORRESPONDENCE

De�ne the following abbreviationsgz domx if id /�\(x; 1) and ran X (1.? id /\(1;x). Recall
that Ox was de�ned using the difference operator as XVD x. VVe abbreviate (:17 = yVRa:y)
by Um. Consider the conditions (C18) � (C23) in table 4.3 below on arroW~fraInes
F =(W,C,F,(.);, (.),.,l,R) expanded with a binary relation R, which interprets the
difference operator. VVe assume that  and  are total functions. Conditions
(C33) and (C19) express that the frame relation for the universal modality 0 contains
all other frame relations. We will use (C20) in its equivalent form cc; = y1& y, =
Z1 & �R9:,.z, ¢ Cxyz. If R would be the inequality relation, then (C21) states that an
arrow is uniquely determined by its domain and range, and (C20) together with its
inverse Cwyz 2:» :17; = guy, = 2185 4,. 2 st, (i.e., (T3)), states that composition can be
characterized in terms of the domain and range functions. Clearly, whenever R is the
inequality relation, these four conditions are valid on locally square pair~frames.
De�ne the following class of frames:

KD:§§S �E? {]�":=(W,C,f,l,R) ; (W,C,f,I) e K:;:;,,_., & f ;=(o16)� ( 3.)}
9Note that dom is the conjugate of 55, and ran the conjugate of S? in the sense of [JT52]. l.e., we

can describe the meaning of domx as the set {far : as E 1&#39;}.
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(C18) F303! =�r� U363! (A18) Y� S 03/
(C19) Czcyz 2? Uazy & Uasz (A19) y;z 3 <)y /\ ()2
(C211) :3; = 3118; y, z: 21 :> Cacyz V Rxrzr (A20) s(1,dom(y;domz) _<_ y;z V $9 D ranz
(C21) Rzzzy <:=> Ra:1y1V Retry, (A21) D y = s,1,D dom y V 5(1) D ran y

TABLE 4.3: CONDITIONS AND EQUATIONS FOR ARROWWFRAMES WITH D

The next proposition shows that we can indeed de�ne these frame conditions by the
given canonical equations�). Recall that every arrow�frame satisfying conditions (C1) �
(C15) is a zigzagmorphic image of a locally square pairwframe (see 4.2.3).

PROPOSITION 4.4.7.  Equations (A13) �� (A21) are canonical;
(ii) Assume that an expanded arrow-frame .77 = (W, C,f, I, R) satis�es conditions (C1) -
(C15). Then, for 18 3 2&#39; 3 21, .7 I: (O5) <==> .77 )2 (A1).

PROOF.  (A13) �� (A21) are positive equations.
(ii). This follows from a straightforward Sahlqvist computation. QED

SOME CONSEQUENCES OF (01) �-� (C720). Conditions (D1) � (D4) below are derivable
from (C1) �� (C211). (D1) and (D2) are just variants of (C211). (D3) and (D4) express
that if at; =2 y; and 33,. = y, and one of the two pairs is R irreflexive (i.e., an abstract
singleton), then .&#39;13 equals y.

PROPOSITION 4.4.8. The following theorems follow from conditions (C1) �� (C20):

(D1) �&#39;R-7319185 3/r 7&#39;: Z185 Zr = -73-r 3&#39;} C33?/Z  331: :91 & �&#39;R$ryr :> in 7&#39; 3/
(D2) 11:1: y; & �Ry,z; & 2, = ac, 2:) Czcyz (D4) -Ra3;y1& as, = y,. :> 9: :2 y

PROOF. Recall conditions (To) - (T3) from 2.4.7. (D1) and (D2) follow from (C211),
(C4), (C5) and (T2). For (D3), assume its antecedent. Use (T1) and (T2) to derive that
($1); &#39;2 a:1,--IRa:,(fy); & (fy), =: (301),. Then (D2) implies that Czmarfy, and (C5) that
ffy = 3:. But then, idempotence of f implies 112� = y. (D4) follows easily from (D3). QED

(D3) and (D4) are similar to (C21), but (C21) does not follow from (C1) � (C20).

PROPOSITION 4.4.9. (01) ~� (C211) bi: (C21).

PROOF. Take the two�elen1ent (x1,a:,:I:)-mosaic .7 E K�lis (here 1:, 2 $1) expanded
with R which validates (R333: & R331�; & "IR£L&#39;(3,&#39;1) (hence also -RavTx,). It satis�es (C1) ��
(C720), but I10l3 (C21). QED

�The assumption that a frame should satisfy all the axioms (C1) ~ (C15) is unnecessarily strong.
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REPRESENTATION (moon or THEOREM 4.4.3)

The �nite axiomatizability theorem follows in a straightforward way from the next
representation lemma. We prove the theorem after the lemma. Recall that (AU)
denotes (:3 75 y => Racy).

LEMMA 4.4.10.  Each .7 E KD:f§2S consists of a disjoint union offmmes satisfying
(AU).
(ii) Each .7: E KD,r,f1&#39;;5 which satis�es (A U) is 0, zigzagmorphic image of some 9 E
KD::iRs- &#39;

PROOF.  Let .7-&#39;2 (W,C,f,l,R) E KD:§§2S. De�ne a binary relation E on W as
(:2: E y <g> 3: = 3/ V Rccy). Conditions (C15) and (C17) imply that E is an equivalence
relation. We denote the equivalence class of as by SE 0% { y E W 2 as E  De�ne for each
equivalence class a frame T; (Li (SE, C�, f�, I� , R�) in which the relations are the restrictions
to 5:�. We claim that each .77; |= (AU), and F is a disjoint union of the system of frames
(.75; : as E F }.This proves part  The first part of the claim is immediate. For the
second, it suffices to show that each ff is a subframe of .73 generated by �sir�, which is
precisely the point of conditions (C13) and (C19).

(ii). The proof of part (ii) consists of two steps, corresponding to the two things which
can go wrong with the accessibility relation of the difference operator. First we show
that f is a zigzagmorphic image of a pair-frame expanded with a relation R which
satis�es (AU In the second step, We make this relation irre�exive, thereby turning it
into the inequality relation. These two steps are given in the schema below.

step I step II

full language $eKD;;},S J. g,,,,-,(V)eKo;;},S J1 7i,m,(H)eKD§§§R5

(#
D�fTee reduct 7* 5 Kzrriizs �� g*zm&#39;r(V*) E Kiiizzs

Let .7: (W,C,f, l, R) E KD:f;{S satisfy (AU). By lemma 4.2.3, we may assume that
the R�free reduct .7-&#39;* of f is a zigzagmorphic image, say by function 1*, of a pair�frame
Q&#39;*,,,,,~,(V*) = (V*, Cy- , �x» , IV«), for some re�exive and symmetric relation V* with base
U *.

STEP I. The problem with the representation g*,,,,,-,(V*) is that it may contain two
different pairs at and y which get mapped to one R�irrefleXive point in .7-&#39;. This will
prevent extending the zigzagmorphism 1* to one for R as well. To eliminate this problem
we create a new pair�-frame Q,,,,,,,.(V). De�ne an equivalence relation E on the base U *

as follows: d f8(Vu,v E U*) : u E v ¢=$ u = v or -vRl*(u,u),l*(v,v)

CLAIM 1.  E is an equivalence relation;
(ii) u E U => Z*(u,u) = l*(v,v).

PROOF OF CLAIM. Because f 1:: (AU). 4
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Set, 
     
     U �El U*/E

V �E� {(u/E,v/E)EU><U:(u,v)¬V"}

De�ne a function Z : V ��> F as Z(u/E,v/E} (gfl*(u�,v&#39;), for some u� E u/E and
v� 6 12/2. Note that, by the de�nition of V, for every pair (u/E, v/E) E V, there exist
a pair (u&#39;, U�) E V� such that u E u� and v E 12&#39;. Hence, I is defined for every element
in V. The next claim states that this is a real de�nition.

CLAIM 2. lis well de�ned. That is, for every (u, U), (u&#39;, U�) E V*, if u E u� and v E &#39;22�,
then l*(u,v) 2 l*(u&#39;,v�).

PROOF OF CLAIM. Suppose (u,v),(u�,v&#39;) E V*, u E u� and v E 12�. VVe have four
cases, according to whether 71, = u� and v 2 v�. If 21. = u� and v = v�, the statement is
trivial. So assume otherwise:

Case 2: [u 75 u� 85%) ¢ v�]. Then the de�nition of 5 implies that �1Rl* (u,u), l* (u&#39;, u�)
and -vRl* (v, v)l*(v� , 7)�) hold. Since 1* is a zigzagmorphisrn for the relational operators,
this means that -R(l* (u, v));, (l*(u�, v&#39;))1 and -vR(l*(u, v)),., (l*(u�, v�)), hold. Then con�
dition (C21) implies that �:Rl��(u,v), l*(u&#39;,v�). So, by (AU), l* (u, 1)) = l*(u�, 12�).

Case 3 and 4: [u 2: u� & ~rRl*(&#39;u,v),l*(v&#39;,v�) ] and [-1Rl*(u,u),l*(u�,u&#39;) & v = 12&#39;].
These cases are solved in a similar Way, but now using conditions (D3) and (D4) from
4.4.8. 4

To �nish the first step of the proof, de�ne an accessibility relation RV on the paireframe

gm,-,(V) as Rvasy <51�=e~1�> Rl(:v)l(y). Call this frame Q = (V, CV,fv, Iv, RV). The next claim
states that we have accomplished our first goal.

CLAIM 3.  V is a re�exive and symmetric relation;
(ii) 9 l= 9: 75 11 => Rvxy;
(iii) The function I is a zigzagmorphism from Q onto the frame .7-&#39;.

Pnoor or CLAIM. (i). Obvious.
(ii). We Will denote u/E by H. We prove the claim by contraposition:

-RV (&#39;21, 7)�), (QTJJ7) <=> (using Wel1~de�nedness of l)
~rRl* (u, 2)), l* (u� , 21&#39;) $1222�; (using that l* is a zigzagmorphism)
  & -rRl* (&#39;1), U), l* (v&#39;, 1)�) => (de�nition of 5)

(iii). All steps in this proof except homomorphism for CV are straightforward by
claim 2. To Show that l is a homomorphism for CV, suppose {(17, 73), (TLEL7), $436)} g
V. We have to show that Cl(7I, &#39;17), 1 (ii, &#39;15), l(Tu&#39;,�) holds. By de�nition of V, We have
u,u�,v,v�,w,w� E U*, {(u,v),(u�,w),(w�,v�)} Q V*, and u E u�,w E w� and v E 22&#39;.
By the de�nition of l, it is sufficient to show that Cl* (u, 71), l*(u&#39;,&#39;w), l* (w�,v&#39;) holds.

There are several cases, depending on why the points are equivalent. One easy
case is this. If u = u�,w = w� and v = 12�, then, since l* is a homomorphism, we
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of equivalent points, the re�exive pairs at those points are mapped to an R~irreflexive
arrow. For these cases, we need condition (C20) and the fact that .7: (= (AU The
next claim helps.

CLAIM 4. If J7 6 KDEIQS and J-" (2 (AU), then

.7 (= (:3; = y1& y, = 2; & 2, = rs, & (*vRa21y; V -=Ry,~z; V -wRz,zL&#39;,)} =:> Cmyz

In words: if :81 = y;&y, = 2,852? = 11:, and at least one of the pairs ($1,y1), (~y,z;), (2,, R7,.)
is R irre�exive (i.e., an �abstract singleton�), then .�I? can be decomposed into y and 2.

PROOF OF CLAIM. This follows from (C20), (D1), (D2) and (AU). 4

We show with an example how this Claim helps us out. Suppose -aRl*(u,u)l* (u&#39;,u&#39;)
and w := w� and v m 22�. Because l* is a zigzagmorphism we have l* (u, u) 2 (l*(u, &#39;v));,
and similarly for the others. This implies that

So by the above claim, Cl*(u, 1)), l* (u�, w), l*(w�, v�), whence also Cl(E, ii), l(U, EU), l(Tu", 5),
which is what we had to prove. 4

The general situation is sketched in �gure 4.1 below. At the top We draw the situation
in V*, and at the bottom the situation in .77. The dotted arrows denote the �function 1*.
The dashed arrows denotethe functions  and  in the frame .7. By Claim 1.(ii), the
re�exive pairsvat two equivalent points are mapped to the same place (e.g., l* (u, u) =
l"�(u&#39;,u�)).

1*<u,v>

FIGURE 4.1: I IS A HOMOMORPHISM FOR THE RELATION C
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STEP II. Since the frame Q, constructed in the previous step, is a. pair~frame, we
only have to make RV the inequality. Since Q )= (AU), it suffices to make RV irre�emive.
De�ne the following two sets:

BAD if {u E U: Rv(u,u)(u,u) }
COPIES 4%� {(u�,u&#39;) :u 6 BAD} u {(v,u�),(u�,v) ; (u,v) e V,u e BAD&u as 1;}

Without loss of generality we may assume that COPIES is disjoint from V. Let
�H=(H,CH,fH,lg,#) e KD§§§R5 be given by the set H �*.-9.� V u COPIES. De�ne
p : H ����> V as the unique function such that

o p [ V is the identity function,
0 p((u�,u�)) (3-Err (u,u) if u 6 BAD, and
0 p((u&#39;,v)) �lg (u,v) and p((v,u�)) �ii! (mu) if u 99 v and u 6 BAD.

The next clairn states that, for RV we did enough. That is, we only copied RV re�exive
arrows.

CLAIM 5.  (V27 6 V) : (Ry/93.73 ¢==> there exists a copy of £13 in COPIES);
(ii) (Vim 6 H) = ((1: as 2/ &p(~&#39;6) = p(y)) => Rvp(9«")I>(y))-

PROOF OF CLAIM.  Suppose R;/(u,v)(u,v) for some (um) E V. If u = 2:,
then the claim holds by de�nition. So, suppose 11. :,£ 22. Then: RV (u,v)(u,v) $32�;
Rv{u,u)(u,u) V Rv(v,v)(v,v) <==:> u 6 BAD or v 6 BAD <===> (u�,v) E COPIES
or (u,v&#39;) E COPIES.
(ii) follows from (i), since two pairs of H can only be mapped to the same pair in V,
when they are copies of each other. . 4

CLAIM 6. p is a zigzagmorphism from H onto 9.

PROOF OF CLAIM. Clearly p is surjective. That 13 is a zigzagmorphism for RV is
immediate by claim 5. For I and 1� this is straightforward to check For C observe that,
if {(u,&#39;u), (u,w), (w, 71)} C_I H, then either they all are in V, or one pair is in V and
the other two are in COPIES. The next picture might be helpful. At the left is the
situation in Q with u 6 BAD (so, {(u�,w), (u�,v)} Q COPIES), and at the right its
representation in H.

W W

4

With these two steps we have �nished the proof, because our original frame .77 will be
a zigzagmorphic image of the frame H by the function l o p. QED

We �nish this section with the proof of the finite axiomatizability theorem.
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PROOF OF THEOREM 4.4.3. Proposition 4.4.7 implies that the class S(KD:f;z3)+ is a
�nitely axiomatizable canonical variety. So it is suf�cient to show that SP(KD::iR5)+ =
S(KD:f_i33)+. By soundness, KDESRS _C_ KD:f}{S. By the previous lemma, KD:f§S Q
DuZigKD::iR5-. So by duality and PS 3 SP, (KD:f}IzS)+ Q SP(KD::iRS)+. Hence the
two varieties are equal. QED

FURTHER ROADS: COUNTING MODALITIES. De�ne the following operations from

73&#39;(W) to P(W): 
     
     <>�Wx �Er W if |x[ _>_ n, else <>"Wx :2 (Z)

The �counting modalities� O� are also known under the name of graded modalities (cf.
e.g., Fine [Fin72], van der Hoek [Hoe92]). The difference operator is termwde�nably
equivalent with the two �counting modalities� ()1 and ()2, by the following definitions:
(we use T ~�> T1 to abbreviate -7� V T1)

<)1xqEfxVDx, Ozxgf D(x/\Dx), Dxd=L°f<>1x/\(x�+02x)

A well investigated class is BA+n~times:

BA+n~tz&#39;mes d:-if SP{i2l :2 (�J3(W), <>"W)g<,,<w 2 W is some set}

Mikulas-Németi [MN94] showed that the equational theory of the expansion� of the
class SR1 RSRRA with the set of operations {<)" : 0 < n < cu} is decidable. They also
showed that it is a variety, axiomatizable by �nitely many schemas.

APPENDIX. COMPLETENESS WITH THE IRREFLEXIVITY RULE

A �nite axiomatization of the equational theory of the variety SR1 RSRR/\+ D is easily
obtained, using the irre�ezivity rule. We show this, using the similar theorem of
Venema with respect to the class RRA (cf. [Ven91] Thm 3.3.37). He showed that, if we
add the irre�ezivity rule for the (term de�nable!) difference operator to the RA axioms
(see 2.4.11), we get an axiomatization of RRA. The irre�exivity rule is de�ned as
follows: Let t(x1, . . . ,x,,) denote an arbitrary term generated from variables X1, . . . ,x,,.
De�ne 0x�§fx/\ -�Dx.

OX0 3 t(x1,...,x,,) if X0 does not occur among X1, . . . ,x,,
t(x1,...,xn) = 1Irre�exivity Rule

When added to the axioms for the di�erence operator, this rule makes the frame
relation for the difference operator irre�exive (see [Ven91] for details). Let 2 denote

�We de�ne this and similar classes by adding the new modalities to the full complex algebras of
the old class and take the SP closure of that, Le.

SRl;;RRA+n~tz&#39;mes �*2� SP{�21 .~. <q3(V),o",&#39;1" ,Id", <>"")(,<m,, : V is an H relation}
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the derivation system consisting of the axioms and rules of equational logic, the BAO~
axioms for the similarity type of SRlR5RRA+ D and axioms (A1) � (A20). We want
to use Venema�s powerful SD~theorem ([Ven91], Thrn 2.7.7) to prove that 23 plus the
irre�exivity rule enumerates Eq(SRlR5RRA+ D). In order to use that theorem, the
derivation system has to satisfy the following requirements:

1. All its axioms are in Sahlqvist form.
2. It is a versatile similarity type (meaning that for every operator all its conjugates

are ternkde�nable).
2 contains the axioms (A15) and (A17).

4. For every nr-ary non-�-Boolean operator f, 2 contains f (X1, . . . ,x,,) g OX1 /\ . . . /\
OX7l«&#39;

9°

PROPOSITION 4.4.11. 23 satis�es the requirements 1�4 above.

PROOF. Requirements 1, 3 and 4 are obvious. For 2, note that D and �� are self
conjugate, and that the two conjugates of �;� can be de�ned as follows: x l> y déf x";y
and x <1 y 43 x;y�� (cf. Prop 6.3.6 here or Def 3.3.35 in [Ven91]). QED
Let 2+ be the derivation system which is obtained by adding the irre�exivity rule to
2. We are ready to formulate the completeness theorem.

THEOREM 4.4.12. 23+ l- r = o 4:-=> SRlR5RRA+ D l: 7 = a

PaooF. De�ne the class Ko;f;;§_ as pr: (W,C,F, |,¢) :1? 1: (01) �� (C20)}. Using
Venema�s SD~theorem and 4.4.7 and 4.4.11, we �nd that

2+ 9- T = 0 «:=> KD:§,�§§_ l: 7� = 0 (4.9)

The theorem then follows from the next claim.

CLAIM 1. KD:§;g_ = IKD;:;RS

PROOF OF CLAIM. The inclusion from right to left is immediate since all conditions
listed are valid on pair�frames. For the other side, we make use of the following
observation. Every frame .77� E KD:f,l§_ satis�es the following conditions (by proposi-
tions 2.4.7, 4.4.8 and the fact that R is the inequality relation)

(T0) (.)(, (.)T,f are total functions
(T1) l:v=>ac=f(x):=:z:;=x,.
(T2) an :2 (tic). and :12, = (for);
(T3) Ca:yz¢m;=y1&y,.=2;&z,«=:t,

(S1) :01:-y;&ar:,=y,=>:L�=y
(S2) .t&#39;;=y;&y,=z;&a:r=z,.=>Ca3yz

VVe will adopt the representation for square pair�frames in [Ven9l] (proof of Thm 3.3.26)
to our situation. The idea of the proof comes from the fact that, once the domain of a
concrete pair-frame is a re�exive relation, we can identify the elements it of the base
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set of that relation with the identity pairs (u, u). Thus we will represent each abstract
arrow 3; by the pair (x,,a:,). Let .7 = (W,C,f, |,#) E KD:f)§§_. De�ne a pair~frarne
QM,-,a(V) = (V, Cy,fV, IV,  over the set

Vd=e=f{(y,z) E (l X l):(3:I:E l/V)(;1:;=y&:c,,=z)}

CLAIM 2.  V is a re�exive and symmetric relation;
(ii) The function l : W/&#39; --9 V de�ned as Z (:5; (231, arr) is a frame isomorphism between
.7: and Q,,a,:,(V).

PROOF OF CLAIM.  For re�exivity, let (um) E V. Then (3.9: E W) : :13; = u&:c, =
7). By (T1) : u = 931 =2 ($1); = (301),, whence (u,u) E V. Similarly, (0,1)) E V. For
symmetry use (T 2) and (T0).
(ii). I is a bijection.
Surjectivity is immediate by the de�nition of V, and injectivity follows from (51).
l is a homomorphism.
For I by (T1), for I� by (T2), for C by (T3), and for 96 because I is a bijection.
F1 is a homomorphism too.
Because l is a bijection, and, by (T0), 1&#39; is a function, the part for �F was proved in the
previous claim. For IV, if Ivlaz then 3:; = zrr. Use (T1) and (S1) to derive that :12; 2 zc.
But then laws. For CV, suppose Cvlzclylz. This holds if and only if (by de�nition)
9:; = y;,y, = 21 and 2,. 2 32,. But then, by (S2), we have Cwyaz. 4

We proved that KD:f,l§_£g_ 2: IKD;::RS. 4

So, KD:f)§§_ 2 IKD:::RS. The complex algebras of this last class generate the variety
SRlR5RRA+ D. Hence We are done. QED

REMARK 4.4.13. We did not need axiom (A21) in the presence of the irre�exivity
rule, because it became derivable. From the above completeness result, and the fact
that (A21) is independent of the other axioms (cf. 4.4.9), it follows that the irreflexivity
rule is not conservative when added to the axioms (A1) �� (A20).

4.5 REPRESENTING BAO�s AS ALGEBRAS OF RELATIONS

In this section we leave the algebras of binary relations, and go to algebras of relations
of arbitrary rank. We generalize the notion of composition to relations of any �nite
rank, and show that for this generalization, we have a representation theorem similar
to the one for the �composition only� reduct of SRIRRA (42.11).

4.5.1 INTRODUCTION AND MOTIVATION

INTRODUCTION. In chapter 2 and in the previous sections of this chapter, we have
seen two motions of representability for �abstract� (equationally defined) BAO°s, cor-
related with two notions of semantics for the corresponding modal logics. The �rst,
easy one, was a representation using Kripke frames. In the sequel, this will be called
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a relational representation, or relational semantics. Recall that, by fact 2.2.1, every
BAG can be represented as a subalgebra of a complex algebra of a Kripke frame.

In the previous three sections, we did quite some work to obtain also a second
representation, using pair-�frames. These frames are completely determined by their
universes. In these frames, the accessibility relations are already present (�coded�)
in the worlds. Our motivation for studying pair~frames was that we wanted to draw
arrows as real arrows. In [HMT71l, this second kind of representation is called, in the
context of cylindric algebras, a geometrical representation. VVe will use the same term
here (and also geometrical semantics). A geometrical representation is �concrete� in
the sense that 1) if two algebras are different then their universes are different, and
even 2) the operations are set«theoretically de�ned.

MAIN RESULT. In this section, we will show that every BAO has, besides a relational
representation, also a concrete geometrical repre.sentatz&#39;on as a subalgebra of an algebra
whose universe consists of sets of sequences and whose operations are de�ned in set�~
theoretic terms (theorem 4.5.6). 80, every BAO can be represented as an algebra of
relations. In modal~logical terms, this means that every general modal logic can be
viewed as a malti~dimensional modal logic (cf. [Ven91]). A concrete example of this
result is 4.2.11. There we showed that every BAO of type (;,2) is isomorphic to a
subalgebra of an algebra 91 = (�,}3(V),oV) for some binary relation V (ol/is ordinary
relation composition relativized to V Theorem 4.5.2 below generalizes this result to
all operators of rank higher than 1.

MOTIVATION. To motivate this representation, we quote a part from [HMT71], in
which the two representations are compared in the context of cylindric algebras. Clearly,
these remarks have a very general character. Theorem 2.7.43(ii) in the quotation is the
theorem that for any or, CA0, = S(Kg(a)+. (Here Kg� is the class of ocmfrarnes which
satisfy the frame conditions corresponding to the CA axioms.)

The results known in modern mathematics as representation theorems have
as a rule the following character: in each of them a class K of �abstractly� de�ned
mathematical structures is considered, a subclass L of this class is singled out,
and it is shown that every structure in K is isomorphic to some structure in L; the
proof frequently consists in effectively correlating, with any given structure (&#39;3 in
K, its isomorphic image in L ~the representative of C7. The value of a representa
tion theorem depends both on the scope of the class K and on such properties of
members of L as simplicity of structure and �concreteness� of notions involved
in their construction.

In the case of relational representability the scope of the representation the-
orem 2.7.43(ii) is wide: the class K consists of all CA�s. The class L is formed
by the complex algebras of cylindric atom structures (authors note: Kg�a is the
class of, What is here called, �cylindric atom structures") and their subalgebras.
The Boolean operations in these representatives are �concrete�, well~~deterrnined
set�theoretical notions used in constructing Boolean set algebras. On the other
hand, the extra--Boolean operations are de�ned in terms of the fundamental re~
lations of cylindric atom structures (authors note: the relations Ti and E�)
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and have therefore as �abstract� a character as the corresponding notions in
arbitrary CA�s. Hence 2.�/&#39;.4.9(7Ii) is not �what could be regarded as (1 satisfactory
representation theorem for arbitrary cylindric algebras. (emphasis by   .

. . . the notion of geometrical representability is intuitively much more satis
factory and valuable than that of relational representability. The generalized
cylindric set algebras, which serve as representatives under this notion, are in a
sense �concrete� algebraic structures (or, at any rate, structures which are much
more �concrete� than arbitrary CA�s). All the fundamental operations and distin�
guished elements of these algebras are de�ned in straightforward set~theoretical
terms; the de�nitions are uniform for all algebras involved, and, as a consequence,
each of the algebras is uniquely determined by its universe. ([HMT71], remark
2.7.46)

Besides the advantages described above, there is also an important methodological
application of the geometrical semantics of BAO�s. Namely, as it turns out from Németi
[Ném91], algebras of relations have a powerful methodology, and it does not matter too
much What the basic operations are (from the point of View of the applicability of that
theory). Therefore, efforts have been made by many researchers to base as many logics
on algebras of relations as possible. The present result is a considerable step forward in
this program. It shows that the algebraic�logical counterpart of general modal logics
can be chosen to be a kind of algebras of relations.

ORGANIZATION OF THIS SECTION. Except for some standard de�nitions from chap-
ter 2, section 4.5 can be read independently from the rest of this Work. It is organized
as follows. In section 4.5.2, we introduce a generalization of binary composition to
n~ary composition of n~ary relations. We show that BAO�s with one n~ary operator
(n 2 2) can be represented as algebras of n~ary relations. The operator is represented
as nrary composition. Moreover, if we add the conjugates of that operator, we can
keep this rather natural representation. In section 4.5.3, we show how We can represent
every BAO as an algebra of relations.

NOTATION. With BAO We. always mean normal BAO. We use 11&#39; to denote a sequence
of variables ug, . . . , u,, for arbitrary n, as well as the product notation  = u,-. As
variables ranging over n�tuples we use 8 and 7*; 3, denotes the 2�-~th element of 3.
Besides O, we will use ft to denote equationally de�ned non-�-Boolean operators; for
their represented counterparts we sometimes use F�. As before, ,0 provides each operator
with its arity. We use I as an index set for the operators of an algebra.

4.5.2 n�ARY COMPOSITION AND ITS CONJUGATES

In this section, we study algebras of relations with rather special operators. Let V Q "U
for some set U and or g w, and let Qt be an algebra with universe 73(V The simplest

. . (11operations we use are the diagonals D}; *2  E V : 5, 2: sj}.
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n-�ARY COMPOSITION. The major operator in this section is a generalization of binary
composition to n~ary relations. We use CV to denote this operator (the context provides
its speci�c arity). The n~ary operator av has the following de�nition. Suppose that
or = n for some �nite n _>_ 1, and X0, . . . ,x,,,_1 are subsets of V Q �U. Then:

(m0,ac1,...,:::,.-1) E oV(x0,x1,...,x,,_1) <3§f:> (;vg,.r1,...,x,,-1) E V &
(3z):( (z,:r1,...,a:,,_1)Exg &

(.130,Z,$g, . . . ,CL&#39;n-1) E X} &

<ZI3�0., . . . ,.�l,�,,_.2,Z) E Xn._])

For oz 2: 1, we get the well-known operation of cylindri�cation; for 0: :=: 2, we get
ordinary composition of binary relations (in reverse order). For convenience we use the
substitution function f ; (cf. section 2.5). Then we can de�ne av easily as follows:

oV(x0,...,x,,__1)�§{{s E V : (3z)(fgs Ex(,&...& f�z��1s Ex,,_1)}

Note that 0V is dependent on the universe V. Since all our operators will be relativized,
we usually. suppress this superscript.

TLWARY COMPOSITION OF RELATIONS OF HIGHER RANK. In the next section, we
use n~ary composition operators on sets of relations with rank higher than n, say as.
The idea uses that the operator works only on a speci�c n�long part. On that part, it
behaves just like n~ary composition. We de�ne these operators as follows. Let V E �U,
j,j + (n �� 1) < oz, and let P = (j,j + 1, . . . ,j + (n � 1)) be a sequence of consecutive
numbers:

o1~(x0,...,x,,_1) (ire.-f {s E V 2 (Elz)(f:°s E xg&...& ff��� 3 E x,,,_1)}

Again, or is relativized to V. The de�nition of 093,4) on sets of 7-ary relations is given
schematically below: (a ��-�� indicates that any element is allowed at this place)

<$:yaaab7Cav>w) E &#39;(2,3,4)(x0»X19x2)
IT

(3:,y,a,b,c,v,w) E V&
(32) :( (�a"&#39;:Z7b>C1�a"&#39; 6 X0 &

("&#39;7""9aaz9 *3�) E X185
<�7�">a7bvza""7&#39;"> E X2)

CONJUGATES OF n-ARY COMPOSITION. Conjugates of operators were studied in
Jénsson~Tarski [JT52]. There the emphasis is on conjugates of unary operators. Con-
jugates of binary (relation) composition (�residuals�) occur in Birkhoff [Bir67). Recent
papers which are largely devoted to conjugates of relation composition are J6nsson�
Tsinakis [JT93], Jipsen [Jip92], J6nsson~Jipsen�Rafter [NR] and Andréka�Németi
[AN]. Pratt [Pra90a] has applications in computer science.
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DEFINITION 4.5.1. Let 91 2: (A,V,~�,f°,...,f") be a BAO, in which all operators
have rank n. VVe call 521 fully conjugated if Qt satis�es the following equations (for all
1 3 2&#39; 3

Xi 
     
     Xiff�(x1,...,x§S1,-�fi(x1,...,~�x;,...,x,,),x;+1,...,x,,) 

     
     f�(x1,...,x,_1,��f�(x1,...,�x,,...,x,,),xi+1,...,x,,)I/\ I/\

CBAO" denotes the class of all fully conjugated BAO�s With operators of rank n.

We tend to give to a special role, and will usually denote it by 0. We call 1� the i~th
conjugate of 0. We use Q)� to denote the conjugates of 0V. On V Q "U, they are
de�ned as follows:

Q7i(x0,...,x,,_1)�§f {.9 E V: (32 E U)(f:"]fg,_13 E xg&...& f:�1f;&#39;;�_i 3 E x.,,i.1)}

f  f {:5 3 is the result of replacing 5) by 8,�, and 3; by 2. As an example, Consider a 4~a.ry
operator Q92, which is the second conjugate of 0V:

(:r(,,;v1,:c2,9:3) E C72(x0,x1,x2,x3) <9�(3�£> (acg,a:1,m2,:v3) E V&
(32) :( (x1,z,x2,.r3) E X0 &

(.�L&#39;g,Z,3I2,£L�3) E X186
(£Ug,Z,£E1,¬I33) E X2 &
($022,-�1»"2»151) 6 X3)

For n :2 1, we get cylindri�cation again (cylindri�cation is sel�conjugate). For n = 2,
we get the conjugates of binary 0, which are usually denoted by <1 and I>. The familiar
left and right residuals \ and / of 0 (see e.g. J énsson [J én91]) can be de�ned by :r\y d:-if -
(gv !> �-y) and :3/y dg �� (��:c <1  (For a direct de�nition of these operations see
section 6.3.2.) Equations 4.10~4.13 below, which are precisely the conjugate conditions
from 4.5.1 for binary operators, are valid� on every (relativized) algebra of binary
relations. �

X 0 (X\y) S y (4-10)
y S x\(>< 0 y) (4-11)
(X/y) 0 y S x (4-12)
x S (xoy)/y (413)

GEOMETRICAL REPRESENTATION OF BAO�S WITH ONE OPERATOR

We generalize the result (42.11) for binary composition from the beginning of this
chapter. We show that every BAO with one n1�ary operator can be represented as an
algebra of n~ary relations, in which the operator is n��ary composition. With 72 = 1, we
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are in (diagonal�free) cylindric set algebras of dimension 1, and that axiomatization
is well~known: the operator has to be a complemented closure operator. Once n > 1,
the situation changes radically: only the BAO axioms are needed for representation.
We say that an algebra Q! = (A, V, �-,f�.),-6; satis�es the BAO axioms iff Qt satis�es the
BA axioms plus equations which state that every fl is normal and additive in each of
its arguments.

THEOREM 4.5.2. Let K �E {EL = (A,V, �,<>) : Q1 satis�es the BAO axioms}. If 0 is
an n�ary (n 2 2) operator, then K 2&#39; IS{(i;3(V),oV) : V Q "U for some set U}. Here
0V is n~a7&#39;y composition relativized to V.

PROOF. The theorem follows from lemma 4.5.3 below, in the same way as 4.2.11
followed from 4.2.7. The proof of 4.5.3 is a straightforward generalization of the step-
by»step construction introduced in the proof of 4.2.7. QED

LEMMA 4.5.3. Let it 2 2. Every frame .77 = (W, R) with R Q "+1W is a zigzagmorphic
image of a frame 9 :=(V, R), in which V Q "U for some set U, and R is de�ned as
follows:

(Vy,:r1,...,:r,, E V) :Ry;2:1  <dif&#39;>  :: oV({:c1},...,{a:n})

PROOF. Fix some n 2 2, and a frame .7:=(W&#39;,R.) with R Q �+11/V. Step by step
we create the frame 9 and a zigzagmorphisrn l : V ��> W, just as we did before
with binary composition. To make the proof more perspicuous, we use a different
scheduling of the repairs. Instead of repairing all �zigzag faults� of all sequences which
were added in the previous step, we only repair one sequence at each step. Using a
suitable scheduling function for the construction, this will have the same effect as our
earlier construction.

Choose an in�nite ordinal is such that  3 ts. Let P be a set of cardinality [re];
we will use this set to create V. In this new setup we need a function which directs
the construction process. So, let a : is -��-> �P be a function such that

(V5 6 "P)(V/\ < I-c)(3u < Is) : /\ 3 I/&a(u + 1) = s

In Andréka~l\/Iikulas [AM9-4a], it is shown that such a function always exists. Condition
# ensures that we will make every necessary repair. At each step, we construct a tuple
G0, = (Ua,Vo,,l,,) such that for all or 3 is :

0 U0 Q P

. Va Q nUoz
o lo, 2 V, ���> W is a surjective homomorphism

After the math step, all necessary repairs will have been made, whence l has the zigzag
property as well. This will prove the claim.

Construction

step 0 Take U0 C P such that IP \ U0 2 rs, and take V0 C "U0 such that H/5] 2
and (Vs,&#39;r E l/E;)(Vi,j < n) : S,� =2 7") <2) 3 : 7*&i = j. Let 13 be any bijection
between V}, and W.
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step oz+1 Let a(oz + 1) =: 3.
If 5 ¢ Va, then UM; "E U,,, 1,,� ii� 1,, and V,� �-2 V0,.
Else, do the following. De�ne a function� ga+1 : {if 2 Rlasfi} ��> (P \ U�) such
that gt,� is injective and [P \ g;+1| = rs. Since we have chosen K, and P large
enough, such a function will always exist. Now set :

Um-1 �3%� U01 u 922+,
VH1 2: V0, U U,<,,{f� 1 E s E "P : Rl,,,s,2&#39;Id f 9c1)+ ( )
la+1 ��e- la U Ui<n{< f ;a+1(a) 3»  5 Rla377

Limit Step If C2 is a limit ordinal, set

U0 Kéf U�<oz U�v viii�? U�éa Vi?» la �£1� U�<ar 2/3

Note that G,, is created with a limit step.
End of Construction

Finally, de�ne Q� = (V,,, R), in which R is de�ned as above, and set l = In.

CLAIM. The function Z 2 V,, ��-�> W is zigzagmorphisrn from 9 onto F.

PROOF OF CLAIM. The function Z is surjective by step 0. For the zigzag property,
suppose Rl(s)11&#39;. Suppose 3 was added in the )\-th step. Then, by condition # on
the scheduling function 0, there exists an ordinal 1/ + 1 such that /\ < 1/ + 1 < Is and
0�(V + 1) = .9. But then, 711,. . .,r,,_1 were added in this step, such that 1�, = fgv�m s
and l,,+1(r,) =  Hence, by de�nition, we have Rsrg . . . 7�,,_1 and l(r,~) =2

The function I is a homomorphism, if it is one for every step. We show this by
induction on the construction. Z0 is a homomorphism, because in step 0, all sequences
are disconnected. Suppose la, is a. homomorphism. Let Rsrg . . . r,,-1, with 3, 7&#39;0, . . . , r,,_1
all in VQ,+1, and at least one of them is in (Vo,+1 \ Va). Because the conditions on g(,,_,.1
ensure that we use a brand new element from P for every repair, S 6 Va, T0, . . . ,r,,..1 6
Va� \ Va, and Rl0,slo,+;r0 . . . ,l,,+17*,,_;. Hence la� is a homomorphism. Finally, in
limit steps, nothing can go wrong. So l is a homomorphism. QED

GEOMETRICAL REPRESENTATION OF CONJUGATED BAO�S

Now we turn to the class of conjugated l3AO�s, and show how to adjust the preceding
proof. Let K� denote the class of all frames .7: = (W, R0, R1, . . . , R"), in which all theC071
relations are n + l�-ary, and which satisfy condition con for all i with 1 3 i S 72:

(con) 1i�.°(y,:2:1,...,a:,~,...,:c,,) <==> R�(:r;,a:1,...,x,_1,y,av,+1,...,:1;,,)

THEOREM 4.5.4. Let 2 _<_ n < co. Then:

CBAO" = S(K� + = IS{(�,;?(V),0V,(71,...,§7") : V _C_ "U for some set U}C071

laltecall that if f : X -�+ Y, then we use f�(X) or f* to denote the range of f.
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PROOF. The first equality follows immediately from the Sahlqvist form of the equa-
tions. The second equality follows, by a now very familiar argument, from the next
claim.

CLAIM 1. Every .7: 6 K2,�, is a zigzagmorphic image of a frame 9� =2 (V, R0, R1 , . . . ,R�),
in which V Q �U for some set U , RO is de�ned as in 4.5.3, and the relations for the
conjugates in Q are de�ned as follows:

R�(y,s1,...,;c,,) 49-.�-*.é> {y} = c9*({:c,},...,{a:,,})
PROOF OF CLAIM. We use a similar construction as in the previous proof except for
a change in the inductive step. Note that, by the de�nitions of the R�, con holds in Q.
Here is the modified inductive step. instead of one single function 95,�, we create such
a function for each of the operators (we omit the subscript �+1 from now on). De�ne
g� : {12&#39;: R°l,,,s7I ---�b (P\ U0), and for 1 3 2&#39; 3 n, g� : {11&#39;: Rll0,s&#39;1&#39;[ -��-9 (P\ U,,,) such
that

0 all g� are one to one
o the ranges of the g� are pairwise disjoint
&#39; lP\(Uog:�gn(9i)*)l :5

Now set, 
     
     Ua+1 3-� Ua U Ungign (g&#39;)*

T/�+1 3 Va U    3  Rolasill
U U15,-5,,,,~<,, {f ;}T(i,,, f§,_, s : R�l,,,si&#39;I}

la.� �� la U U,-Sn {(f 5,0�, .9,12&#39;(])) 2 Rolasii}
U UK,-9,, ,<,, {( ;:g,,, fg&#39;,_, s,2&#39;i(j)) ; Rilas�}

CLAIM 2. I is a zigzagmorphism from Q onto J7.

PROOF OF CLAIM. The same argument as before shows that l is surjective and has
the zigzag property, given the new inductive step. Next, we show by induction that l
is a homomorphism for R0. In step 0, this is obvious. Suppose I is homomorphic for
R0 for all elements in V0,. By the conditions on the g�, there is only one Way in which
new elements can come to stand in the R�) relation, and that is when Rllasfl holds for
some s,z&#39; and 12&#39; with a(a +1) 2 5. Then We added r1, . . . ,r,, such that l,,+1(7",-) =:
lfi 2&#39;: 0, then R°s,&#39;r1,... ,r,,. But, then also R°la.Hs,la+1(&#39;r1), . . .,l0,+1(7�,,). lfi ¢ 0,
then Rls,r1, . . . ,&#39;r,,. Thus, by con, R°r,,r1,. . . ,r,_1,s,r,~+,,...,rn. But, since these
1*, were added for R�, We have R�l,,,(s),l,,+1(7";),. . . ,la+1(7",,). By con in .7, we then
have R°l(r,), l(r1), . . . ,l(7&#39;,~_1), 1(5), l(r,-+1), . . . , l(&#39;r,,). So we find

(>k*) R°y,::;1,. . . ,a:n => R°l(y),l(a3;), . . .,l(a:,,)
Therefore, &#39;10,.� is a homomorphism for R0. To show the same for the other relations,
suppose R�(y, 2:1, . . . , :2:,,) and compute:

Rl(y,a31,...,a:,,) <==> by con
R°;I:;,:r1,...,a:,-1,y,;r,+1,...,3:n =>
R°l(x,-),l(:c1),...,l(a:,_1),l(y),I(:1;,_H),...,l(:v,,) <==> bycon
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Therefore, la� is a homomorphism in general. Thus, I is a homomorphism. Hence, it
is a zigzagmorphism. 4

We �nished the proof. QED

4.5.3 GEOMETRICAL REPRESENTATION or ARBITRARY BAO�s

Now we generalize 4.5.2 to algebras with arbitrarily many operators. The Work pre-
sented in this subsection is the result of a cooperation with lstvan Németi and lldiko
Sain. We know already how to represent BAO�s with one operator of arity higher than
1. Before we prove the general theorem, we show how to represent BAO�s with a unary
operator or a constant.

LEMMA 4.5.5. Let K dzef {Q1 = (A, V, �, 0) :2l satis�es the BAO axioms}.
(i) If<> is a constant, then K 2 IS{B 2 (�,]3(V),D31) : V Q U X U for some set U}.
(ii) If<> is a unary operator, then K = IS{Q3 := (�}3(V), F) : V _C_ UXU for some set U},

in which F(x) (133 xovx.

PROOF.  Let Qt E K, and let 0 be a constant. Its canonical frame is 21+ = (W, R),
with R <_I W. Let U be an in�nite set such that [U X U | 2  De�ne a function
Z : W ����-> U X U such that Z is injective, and (Vu E W) : Ru 4:�; (lu)g = (lu)1. De�ne
.7: = (l*(W), {.9 E l*(W) : so = s1}). It is immediate that Z is a frame isomorphism.
Using the argument given before, this is su�icient to prove the lemma.
(ii). Clearly, F(x) is normal and additive. For the other side, suppose that 21 =
(A,V,�-,0) E K, and that O is unary. Let 21� = (A,V,��,f), Withf binary, be de�
�ned from 21 by f(7&#39;,&#39;r1) lg <>(r /\ T1). Then Qi� is ternrde�nably equivalent to Qt by
0(7) dz-if f(7&#39;, 7&#39;).

Clearly, f is normal, and it is additive because of distribution of V over A. Hence
We can apply 4.5.2, and represent 21&#39; as a subalgebra of B� = (�J3(V),oV), in which
V 9; U X U for some set U, and 0V is binary. De�ne Q = (�.}3(V), F), using F(7&#39;) 4:-if 1-ovr
as above, and we get the desired algebra. QED

Now we know how to represent every operator separately as an operation on relations,
we are ready for the general theorem.

THEOREM 4.5.6. Let Kd=�e-f {Q1 "-2 (A,V,�,f�i),-GI : Qt satis�es the BAO axioms}, for
I Q ca. Then,

K = IS{% 2: (�,13(V),Fi),eI : V _C_ �U for some set U},

where

1. 01 == (2&#39; Hi� =p(f�) S 1}!) + 5301&#39; W� =P(1") = nil)
2. the nullary operators F� are D,-,
3. the anary operators Ft are op(x,x), for some I� E 2oz
4. the wary operators F� are nwary op, for some P E "or
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2&-�-(A,V,�-,f,g,h)i
1 canonical frame

221+ = (W, Rf, R3, R�)
/ 1 \, split the frame

(W, Rf) (VV, R3) (W, R�)
T ll T lg T Z3 zigzag morphisms

� <v..R§> <1/5.11%) <v3.R&#39;;>
\ l ,/ glue together

7 �= (V, R�, R3,R">
i complex algebra

-7+ = (�«¥3(V)» °(o,1)» &#39;(2,3,4)» D56)

FIGURE 4.2: ROAD-«MAP or THE moor or 4.5.6

PROOF. It is easy to see that the relevant operators are normal and additive. We
continue with the representation part of the theorem. Let  = (A, �, VJ�),-E1 E K, and
let Ql+ = (W, R�),.¬I. Again, we create a frame J7 2 (V, R�) {E I, and a zigzagrnorphism
l 2 V ��+ W. The proof consist of two parts. In the first, we split ?2t+ into frames
(W, B�), one for each operator. Then we apply 4.5.2 and 4.5.5, obtaining zigzagmorphic
pre��images for each of these frames. In the second part, we glue these prewimages
together, and obtain the desired frame .77.

We describe the proof for the case of three operators f,g and h with p(f) : 2,
p(g) = 3, and p(h) = 0. A �road�map� of this proof is given in �gure 4.2. It will be
clear from the proof how to extend it to any set of operators.

Applying 4.5.2 and 4.5.5 to the three frames (VV, Rf), (W, R�) and (W, R�) one gets
three frames .71 = (V1,R§), .77; == (l/§,R§) and .773 7- (V§;,R§), in which V1 and V3 are
binary relations on sets U1 and U3, respectively, and 1/3 is a ternary relation on some
set U2. The relations R, are de�ned as stated before. The frames (W, Rf), (W, R5),
and (W, R�) are zigzagmorphic images of .751, .72, and 7:3 by the functions 11,12, and 23,
respectively.

We now describe the �gluing� part. De�ne .7" 2: (V, Rf,Rg, Rh) as follows:

V �:95 {s67(U1UU2UU3) ; (s.,,s,) EV1&(s2,s3,s4) e V285
(35»36) E V3 35 l1((~3o»51l) = l2((32a33a54)) = l3((3sa56))}

R�(x.y.2) <f1~�é~> {as} = -m<{y},{z}>
Rg(5cay7z>v) égg  : &#39;(2,3,4)({3/}v{Z}rlv})
R�(a;) <ge=f> 175 = $3

By writing out de�nitions, we see that Rf(;r, y, 2) iii R§((a:g,a:1), (y0,y1), (20, 21)), and
similarly for the two other relations. Now, de�ne a function p : V ��+ W as p(s) =
l1(<S(),S1>).

CLAIM. p is a zigzagmorphism from .77 onto QL+.
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PROOF OF CLAIM. p is surjectioe. Let u E W, then (because l1,Z2,l3 are surjective)
there exists :1: E V1, 3} E V2 and 2 6 V3, such that l1(x) 2 l2(y) 2 l3(z) = n. Thus,
(320, 3:1, yo, y1,y3, 20, 21) is in V, and its p�image equals u.
p is a homomorphism. Suppose that Rl(m,y,z) holds:

R�(a:,y, 2) <=> (by definition of V and R�)
R§((a:0,a:1), (y0,y1), (zo, 21)) 2-) (Z1 is a homomorphism)
Rf(l1(($0»9«"1))= Ml?/0:3/1))»l1((Zoa Z1)» g>
R�(I>(:v),P(y)»P(Z))

Because p(s) = l1((s0, 31)) 2 l2((s2, 33, 34)) = l3((s5, 35)), the proofs for R5 and Rh are
similar.

p is zigzag. Suppose R3(p(s),y1,y2,y3) holds. Then, since I; is zigzag and p(s) =
l2((32,53,S4)), We �nd .7/1�>y2�»y3� 5 Vi, Such that R§((32, 33,84>»y1�»3/2�; 93�) 35 lzfl/J") 2
y,-. Choose 7�,t,v E V which agree on the second, third and fourth coordinate with
y1I,y2I,y3I, respectively. Since all labelling functions are surjective we can �nd such
r,t, 11. By de�nition of R3 and p, we have R55, r,t, v and p(7�) 2 yl, p(t) = 3/2 &p(v) =
y3. The proofs for Rf and R" are similar. 4
We have proven the theorem for this special case. Note that 04 = 7 = 2 -  + 2 -
Hf + 3-  Looking at the road~map of this proof, we see immediately that it can
be extended to any set of operators. QED

4.6 CONCLUDING REMARKS

Combination of the mosaic-idea and the step�~by~step construction led to simple ax-
iomatizations for relativized relation algebras. The given proof also gave us easy char~
acterizations for reducts of SRIRRA. Relativization moreover, still gives us positive
results if We add the powerful difierence operator. The last section showed that the
step-~by-step proof is quite widely applicable, and so are algebras of relations. We
conclude with some questions.

1. Are the reducts labelled with QV? in table 4.1, �nitely axiomatizable? Are they
varieties?

2. There exists a nice duality theory between BAO�s and relational Kripke frames.
Is there something similar between BAO�s and the concrete frames we obtained
in section 4.5?

3. The axiornatization for SRIRRA was obtained by showing that we could F0 ax-
iomatize the class of all zigzagmorphic images of all pair�fraInes, and then �nding
canonical equations which characterized these F0 axioms. It seems possible to
obtain this result in a purely F0 proof~-theoretical manner. This would go as fol-
lows. It follows from the preservation arguments in van Benthem [Ben83] that, if
a class K is de�ned by a F0 theory I�, then ZigK is de�ned by all F0 consequences
of I� which can be Written in the following form:

construct from atoms and falsum, and use only /\,V,\/ and 3, plus
restricted universal quanti�cation.
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So the class of all zigzagmorphic images of an elementary frame class is itself
elementary. Let E� be the above given F0 de�nition of ZigK. The task is to �nd
a (�nite) set of ZigK valid F0 sentences 2� such that Z� {:2 E, and E� is de�nable
by canonical equations. Is this a feasible strategy? How general is it?



g 5
AMALGAMATION & INTERPOLATION

In this chapter, we look at a third fundamental aspect of core logics: interpolation
properties. In [ANS94b], it is shown that Craig interpolation has a strong computa-
tional aspect (cf. also Rodenburg [Rod91b], [Rod91a], [R,od92]). A theorem-~prover for
a logic with the interpolation property can be set up in a modular Way, with channels
between different databases through which only limited information (the interpolants)
can �oat. In many situations, this modular set~up will reduce the search space, and
.make the theorem--prover more efficient. VVe will also study the related notion of Beth
de�nability. For the two main logics under investigation in this work, we have the
following results:

0 For H Q {R,S&#39;,T}, the arrow logic of H pair~frames (i.e., Q/\/l.C(K§§:H)) has
interpolation and Beth definability iff T ¢ H.

o The cylindric modal logics of the classes of assignment frames Kgfg�� and Kgzio� (oz
any ordinal) have interpolation and Beth de�nability.

The crucial step in an interpolation argument is the construction of a model out of
two other models (cf. e.g., Hodges [Hod93], Thin 6.6.3, or van Benthem [Ben94a], ap-
pendix 12). This construction ~known as amalgamationw is of interest on its own, be-
cause it has further applications. (E.g., the step�by~step constructions in the previous
chapter can be seen as a repeated process of amalgamating algebras; see also [Hod93]
Sec.6.4fI&#39;.) In this chapter, We concentrate on algebraic amalgamation, and then de-
rive interpolation properties on the logic side. There is a long tradition of connecting
interpolation properties of logics with amalgamation properties of the corresponding
classes of algebras (cf. e.g., Pigozzi [Pig72], Czelakowski [Cze81], Németi [Ném83], Sain
[Sai90], Maksimova [Mak91a], Andréka et.al. [ANSK94], [ANS94c], [AN94]).

ORGANIZATION. In the �rst section, we state the de�nitions of interpolation and
amalgamation, and summarize their connections. A summary of these connections
is given in table 5.1. In section 5.2, we introduce a new operation on frames, called
zigzag products, and use it to give a structural description of a large class of BAO�s
which allow a very strong form of amalgamation (lemma 5.2.6). In the next section, we
study preservation of F0 sentences under taking zigzag products. We give a syntactic
description of a large class of BAO�s with amalgamation, and of a large class of general
modal logics with interpolation and Beth de�nability (theorems 5.3.5 and 5.3.6). In
section 5.4, we apply these general results to the classes of BAO�s and logics that we
have studied before. In appendix 5.6, we give a reformulation of amalgamation in terms
of frames, and show how this formulation can be used to �nd quick proofs of failure of
amalgamation.

97
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Convention

Throughout this chapter, we always assume that we have the Boolean O and 1.

5.1 AMALGAMATION, INTERPOLATION AND DEFINABIL-�
ITY

We state the de�nitions of the three notions in the title, and present the connections
between them which are known from the literature. A summary can be found in
table 5.1.

5.1.1 AMALGAMATION

We start with several kinds of amalgamation properties. Note that 3uper�amalga,mation
(SUPAP)1 requires a partial ordering on the algebras.

DEFINITION 5.1.1 (AMALGAMATION). Let K be a class of algebras.

1. K has the Embedding Property (EP) if, for any 2l,%,<Z E K, and embeddings
f, h such that �B «L 21 >53 68, there exists 50 E K, and embeddings m, n such that
n�oie 
     
     co

;/ NQ (5.1)
K �

21

2. K has the Amalgamation Property (AP) if 1 can be strengthened2 by requiring
thatmofznoh.

3. K has the Strong Amalgamation Property (SAP) if 2 can be strengthened by
requiring3 that m*(B) H n*(C&#39;) 2 (m o f)*(A).

4. K has the Super Amalgamation Property (SUPAP) if 2 can be strengthened by
requiring that for all x E B ,y E C,

m(x) 3 n(y) => (32 E A) :x _<_ f(z) & h(z) g y
n(y) 3 m(x) => (32 E A) 2 y 3 h(z)&f(z) 3 x

�SAP seems to be the common abbreviation in the literature for Strong Amalgamation. Unfortu-
nately, Maksimova uses SAP to abbreviate Super Amalgamation in [Mak91a].
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REMARKS 5.1.2. Kiss et al. [KMPT83] contains a Vast amount of information about
EP, AP, SAP and other related concepts, together with a very extended bibliography
of the field. The de�nition of SUPAP is due to L. Maksimova (cf. [Mak91a]).

The amalgamation property (AP) speaks about amalgamating algebras in such a
way that the amalgam agrees on the common subalgebra. If the amalgamation is
strong, the common subalgebra is the only overlap between the two algebras in the
amalgam. Every super amalgamation is also strong: as is easy to see by rewriting the
extra condition foij SAP to the equivalent statement (5.2).

(Vx E B,Vy E C) 2 m(x) = n(y) :> (32 E A) : x =: f(z) &y 2 h(z) (5.2)

We call the element 2, as it occurs in condition (5.2) above and in the condition for
SUPAP, an interpolant. Figure 5.1 contains a simple example, in Boolean algebras, of
a strong amalgamation which is not super. To have a super amalgamation in this case,
not only I) and a must be atoms, but ~�b and ��c as well.

FIGURE 5.1: STRONG�, BUT NOT SUPER-AMALGAMATION

For classes of (ordered) algebras, the differences between AP, SAP and SUPAP are
illustrated by the following examples. The variety of distributive lattices has AP but
not SAP. Maksimova has shown the existence of a variety V of BAO~type (O, 1) (V is
a variety of closure algebras) with SAP that lacks SUPAP ([Mak91b], Thm 1).
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SURJECTIVENESS or EPIMORPHISMS. A "notion which is often studied together with
amalgamation is surjectiveness of epimorphisms (ES) (cf. [KMPT83]). This notion is
closely related to Beth�s definability property (see below). We recall the de�nition from
[KMPT83]. Let K be a class of algebras, 21, it E K and f 2 A ��+ B a homomorphism.
The function f is called an epimorphism of K (apt for short) iff for all Q E K and
all h,g E Hom(%,Q:) we have (hf = gf => h = g). The class K has ES iff every
epimorphism f as above is onto �.8.

CONNECTIONS. The above de�ned notions interact in the following Way.

PROPOSITION 5.1.3. Let K be a class of algebras.
(i) K has SUPAP :5 K has SAP => K has AP => K has EP.
(ii) K has SAP =-> K has ES
(iii) If K is a quasi�variety, then K has SAP if and only if K has AP and ES

PROOF.  By the de�nitions and (5.2) above. (ii)�--(iii). Cf. [KMPT83] Prop 1.10
and 6.3. QED

5.1.2 INTERPOLATION AND DEFINABILITY

CRAIG INTERPOLATION. W. Craig proved the interpolation theorem for �rst order
logic in 1957 ([Cra57]). Since then, many papers appeared on (failure of) interpolation
in other logics. Craig�s interpolation theorem can be formulated for general modal logics
in two different ways�*. Let QM£(K) 2: (Fml(P), Mod(K), H-) be a general modal logic
in the sense of section 2.1.3. We say that Q�./\/l£(K) has the Strong Craig Interpolation
property (SCl) if, for any two formulas qb�b E Fm|(P), if l:.-Kit ��> it, then there is a
formula� E Fml(P) such that l:K(q5 -��> 6�)/\(¢9 �-9 1t�), and 0 is constructed from variables
in both g5 and lb. The formula 0 is called an interpolant. We say that Q./\/l,C(K) has the
Weak Craig Interpolation property (WCI) if, for any two formulas gb and 2/), if 935 }:=f(I° zlv,
then there is a 9 such that qb [:f(I° 0 and 0 l:=;�(l° zlr, and 0 is constructed from variables
in both qi and

ALGEBRAIC INTERPOLATION. It is straightforward to give �translations� of interpo-
lation properties at the algebraic level. These translations can be found for instance
in [Pig72] or [Mak91a]. We only recall the translation of SCI. Let K be a class of
algebras with a partial ordening 3. We say that K has the interpolation property of
inequalities (IPI) if, for any terms 7,71 such that K |= &#39;r _<_ T1, there is a term T2 with
var(r2) Q var(r) � var(r1) and K l: r 3 T2 _<_ T}.

PROPOSITION 5.1.4. Let K be a class offrames. The class of algebras SPK�l�_ has IPI
 and only if the logic Q./\/l£(K) has SCI.

PROOF. This follows using the translation between modal~logical formulas and alge-
braic terms. QED

4They only differ with the global consequence, because with the local consequence we have d) ,�::�°"
Qlb :> :loc
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BETH�S DEFINABILITY PROPERTY. A meta~logical property which is often studied
in conjunction with interpolation is Beth de�nability (BD). A logic has this property
if, for every implicit de�nition there is an explicit de�nition. These notions are de�ned
as follows (cf. [CK90] p.90). Let Q./\/l£(K) be an arbitrary, but �xed general modal
logic, with a set of formulas Fml(P). Let p and p� be two new propositional variables
not in P. Let 2(1)) be a set of formulas in the language Fml(PU {p}), and let §3(p&#39;) be
the corresponding set in Fm|(P U {p&#39; }), formed by replacing p everywhere by p� . VVe
say that 2(1)) de�nes p implicitly iff

3(1)) U 3(1)�) t=i�<�° P H .29�

53(1)) is said to de�ne p ercplicitly iff there exists a formula 0 E Fm|(P) such that

3(P) l=%&#39;° 9 H P

DEFINABILITY, DEDUCTION TERMS, AND INTERPOLATION

There is a strong connection between the notions of strong and weak interpolation and
de�nability. In Andréka� �émeti [AN94] it is shown that in general neither strong in-
terpolation implies the weak one, nor strong interpolation implies de�nability. In many
cases however, the �expected� implications hold. The counterexamples constructed in
[AN94] show that both assumptions on the logic in the next theorem are really needed.
Below we give a simple counterexample (5.1.8) to the implication SCI => BD.

DEFINITION 5.1.5. A general modal logic QM£(K) has a local deduction term if, for
any two formulas gt, 7]), there exists a formula f(g2$), built up from propositional variables
in cg�), such that

(i) gt #4� w <==> H M) -+ «A,
(ii) For an 9, {¢.f(<J5) �> 9} H6� 0.

THEOREM 5.1.6. Let QM£(K) be a general modal logic with a local deduction term.
(i) If Q./\/l£(K) has strong interpolation, it also has weak interpolation.
(ii) If Q./\/l£(K) has strong interpolation and is compact, it has Beth de�nability.

PROOF.  Obvious. (ii). Because the proof of Beth de�nability from interpolation
for F0 logic in [CK90] (Thm 2.2.20) goes through. QED

The assumptions of compactness and a local deduction term are very often ful�lled in
general modal logics. It follows from the next theorem that they are satis�ed for every
general modal logic which is strongly sound and complete with respect to an extension
of the standard K derivation system5. This result is stated in Czelakowski [Cze81]
p.339 for modal logics of type (0, 1) and attributed to Perzanowski [Per73].

THEOREM 5.1.7. Let K be a class offrames.� If SPK+ is a variety, than Q./\/l£(K) is
compact and has a local deduction term.

5That is, a derivation system consisting of all propositional tautologies, distribution axioms for all
modalities, as rules modus ponens, universal generalization and substitution, plus additional axioms.
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PROOF. Suppose the antecedent. Thm 3.2.20 in [ANSK94] implies that Q./�/l£(K) is
compact iff SPK+ is a quasi�variety. Hence QM£(K) is compact. We continue with
showing that QM£(K) has a local deduction term. We prove the claim for a �nite
similarity type, since it is more instructive. The same proof goes through for in�nite
types as well. Let K be of �nite BAO type S. We de�ne the following abbreviations:

(5)7 �L-� V{f(r,1,...,1),f(1,T,1,...,1)...f(1,...,1,r):feS}
517 �-2? --(S)-7&#39;

df7&#39;0 =3 7&#39;

T�! I-if T"/\[.5&#39;]T"

Because we assumed that the similarity type is �nite, (S)T is well de�ned. In the
terminology of van Benthem [Ben83], w it T" iff 7" holds everywhere in the n~th hull
around w. We use the same de�nitions for the logical language. Using a similar
argument as in Prop 2.33 in [Ben83] we �nd that q� t:{&#39;(I° ip <2-::> {¢>" : n < w} |=:f{�� 1/2.
Because SPK is variety, also fzifc is compact. But then there exists a n such that
95 l=f&#39;<l° 2/) <:=> I=K qt" ���+ 2,0. Clearly, c5� also satis�es the second condition of a
deduction term. QED

EXAMPLE 5.1.8. We give an example of a logic which has strong interpolation, but
doesn�t have Beth de�nability. Stronger examples (e.g., in which the logic is also
compact and has WCI) based on the same logic can be found in [AN 94]. This logic is
known from temporal logic and the theory of program specifications, and described for
instance in Andréka et al. [AGM+94]. We de�ne the logic Tp as a tuple (Fml, Mod(K), It)
in which

0 Fml is the smallest set containing countably many variables, and as connectives
it has the Booleans and two unary modalities Fi and N.

0 K = {(w,0,succ)}
0 It is defined for the modalities as:

(VnEw): nlFFi<,15 439:3 OH-q�
(V72 E cu) : n H- N<}5 435% succ(n) ll~ (15

In [AGl\/I+94] (Thm 2.2.4), a weakly complete axiomatization is given for this logic.
On top of the basic K derivation system, the following four axioms are needed.

(1) Finp H �Fir (2) N��P +-> "NP
(3) Fip <-9 FiFip (4) Fip (--9 NFip

By their Sahlqvist form, it is easy to see that these axioms characterize the class of
all frames .7: (W, f, n), with f and n total functions, fit =  and far 2 fmv. Call
this class L. Then Q,/Vl£(L) has strong interpolation by 5.3.6 way below. The logics
Q/\/l£(L) and Tp have the same validities, hence Tp has SCI. In [AN94] (Thm 2), it is
shown that Tp lacks BD. An implicit de�nition -�of the point 0� is given which cannot
be made explicit. The de�nition is {Fip. N-xp}.



5.1] AMALGAMATION, INTERPOLATION AND DIEFINABILITY 103

5.1.3 CONNECTIONS: AMALGAMATION, INTERPOLATION AND DE-

FINABILITY

We present the connections between amalgamation properties of a class of BAO�s SPK+
on the one hand, and interpolation and de�nability properties of a general modal logic
Q.M£(K) on the other. All results are known, or derived easily from the literature.

THEOREM 5.1.9. Let K be a class offmmes.
(i) If SPK+ has SUPAP, then Q./\/l£(%K) has SCI.
(ii) (MAKSIMOVA, MADARASZ). If SPK+ is a variety, then SUPAP of SPK+ is equiv»
alent with SCI of Q/\/l£(K). ,
(iii) If SPK"&#39; has AP, then QM£(K) has WCI.
(iva) If SPK+ is a variety, then AP of SPK+ is equivalent with WCI of QM£(K).
(ivb) (CZELAKOWSKI) If Q./\/l.C(K) is compact and has a local deduction term, than
AP of SPK+ is equivalent with WCI of Q./\/l£(K).
(V) (NI§ME�I�I) SPK+ has ES if and only if QMC(K) has BD.
The results in this theorem, together with those of the previous two subsections, are
summarized in table 5.1. Left of the dotted line in the middle, are the properties
of the class of algebras SPK+. At the right are the properties of the general modal
logic Q/\/l.C(K). The numbers attached to the implications provide the reference to
the theorems used. The implications written with a black arrow hold always. The
dashed arrows denote implications which hold only when the conditions mentioned
in the theorem are met. lf SPK+ is a variety, then all implications hold. The next
corollary provides the logical counterpart of the strong amalgamation property.
COROLLARY 5.1.10. Let K be a class of frames and SPK* a variety. Then SPK+
has SAP if and only if Q./Vl£(K) has BD and WCI.

PROOF. By 5.1.3.(iii) and 5.1.9.(iva) and (v). QED

PROOF OF THEOREM 5.1.9.  Suppose L drd SPK+ has SUPAP. The conclusion
follows from the following claim and 5.1.4.

CLAIM. L has IPI.

PROOF OF CLAIM. Suppose L l: T 3 T1. Create the following three L~free algebras:
{§L(var(*r)),%;_(var(7�3)) and &,_(va7�(7&#39;) Q vm*(&#39;r1)). All three belong to L. 3L(var(7") H
var(�r1)) can be embedded into the other two by the identity mappings f and h. So we
have

%L(va&#39;r�(7-)) «L 3L(var(T) U var(7-1)) 3+ [5-";_(UaT�(�f1))
Since L has SUPAP, there exists an algebra Q! E L which is a super---amalgam, say
with functions m,n such that $L(var(7�)) >7�n> 521 +1: {¬L(var(&#39;r;)). But then (because
L l: 7� 3 T1), 21 l: 771(7) 3 n(7&#39;1). Hence, by the super condition, there exists an element
T2 6 DOII1(§L(�U(1.7�(T)� var(&#39;r1))) such that {§L(oar(T)) l: 7� 3 f(Tg) and §g_(�ua7"(r1)) f:
h(r2) 3 T1. Because f and h are identity mappings, the bottom algebra is generated
by the common variables, and the algebras are L»-free, we have L t: 7&#39; 3 7&#39;2 _<_ 7&#39;1, and
va,7�(T2) _C_ var(&#39;r) � va7�(7�1). 4
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.2 �����  ��������� --
SUPAP  SCI

5;� �.5
SAP   �I

1  : -.

I A  ....  V :_
:11 AP  WCI ;

ES ; BD

1) Proposition 5.1.3 4) Theorem 5.1.9.(v)
2) Theorem 5.1.9.(i) and (ii) 5) Theorem 5.1.6.
3) Theorem 5.1.9.(iii) and (iv) &#39;

TABLE 5.1: SUMMARY OF CONNECTIONS BETWEEN AMALGAMATION, INTERPOLA�
TION AND DEFINABILITY

(ii). For unary similarity types, this equivalence may be proved in the same way as
done for varieties with one unary operator in {Mak92] ([Ma.k94]). The general result
can be found in [Mad94].
(iii). Cf. Pigozzi [Pig72] remarks 1.2.15. For a history of this result, we refer to these
remarks.

(iv). Part (b) follows from [Cze81] Thm 3. The requirements on the deduction term
in that theorem are a bit different. But assuming compactness, they follow from the
formulation given here. Part (a) is a consequence of part (b) by 5.1.7.
(v). Cf. [Ném83]. QED

5.2 ZIGZAG PRODUCTS

We introduce a new operation on frames, called zigzag products. This notion has close
connections with both amalgamation and bisimulation. We use it to give a structural
description of a large class of varieties which have superamalgamation (lemma 5.2.6).

In what follows we use the following operations on frames: taking subframes,
products and subdirect products. All these notions are used in the FO model~�the0retic
sense. We recall the de�nitions (cf. e.g., [CKQO] or [Hod93]). The notion of a subfmme
was de�ned in section 2.3. Let (.7-";).;¬1 be a system of frames of the same type. The
frame 9 2&#39;: �ief� is the direct product of the frames (.73,-),r¬;, if G =  : 2&#39; E I) 2 33¢ E
 and the relations are de�ned coordinate~wise. A frame Q is a subdirect product of
a system of frames (.7-]),~E 1, if it is a subframe of the direct product H1-¬1.77�) and the
projections are surjective.

DEFINITION 5.2.1 (ZIGZAG PRODUCTS). Let (}",-).,.E, be a system of frames of the
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same type. Any substructure of the direct product Hie] .7-} from which the projections
are zigzagmorphisms, is called a zigzag product of (.77,~),>¬ 1. A zigzag product of a �nite
system of frames is called a finite zigzag product.

So, a zigzag product is a subdirect product with the additional condition that the
projections have the zigzag property.

5.2.1 ZIGZAG PRODUCTS, BISIMULATION AND AMALGAMATION

We Show that the three concepts mentioned in the title are very closely connected.

DEFINITION 5.2.2 (BISIMULATION). Let F and Q be frames of BAO type S. Let
B C; F x G.
(i) We call B a bisimulation between .77 and 9 if for any relation R of type S:

(1) if a:B:c� & Rfacy1...y,,, then (3y�1,...,y;l E G) zy,-By; & Rgac�y�1 .
(2) similarly in the other direction

(ii) A bisimulation B between .7: and Q is called a zigzag connection between .7 and Q
if the domain of B equals F and its range equals G.

A thorough treatment of bisirnulations can be found in de Rijke [Rij93]. Note that
if B is a zigzag connection and B is a function, then B is a zigzagmorphism from F
onto Q. The next proposition states the connection between bisimulations and zigzag
products. It shows that binary zigzag products form an elegant tool to describe all
zigzag connections between two frames.

PROPOSITION 5.2.3. Let .7 and Q be frames of the same type and B Q F X G. Then
B is a zigzag connection if and only if (F X (])[B is a zigzag product.

PROOF. Because the relations in the product are defined coordinate-wise, and ($17,115,)
is an element of the domain of the zigzag product iff a:B:2:�. QED

If (f X G) [B is a zigzag product, we use no and 771 to denote the projections. The next
two propositions indicate the connections between zigzag products and amalgamation.

Paoposmom 5.2.4. If g 3; J: 1�. H, than INSEP �.�°.� (33,;/) e G x H : f(;z:) = h(y)}
is a zigzag connection, the frame (9 X �H)[lNSEP is a zigzag product ofg and H, and

diagram (5.3) commutes: (Q X HNINSEP

V N
9 H (5.3)

\ /
.7:

PROOF. Straightforward. QED



106 AMALGAMATION & INTERPOLATION [5.2

If G -1:» .7: «h� H, we call elements :1: 6 Q31 6 H with f(x) 2 h(y), inseparables, because
the common frame J7 cannot separate the two. By the a.b�ove proposition, inseparable
ac and y bisimulate.

PROPOSITION 5.2.5. Let f,Q,7&#39;(f, .7 be frames of the same type.
(i) If the left diagram of (5.4) commutes, then the right diagram of (5.4) commutes (it
is an amalgamation
(ii) If the left diagram of (5.4) commutes, J :  E G X H : f(:zc) = h(y)}, and m
and n are the two projections, then the amalgamation at the right is super.

.7 .7+

9 H 0* 71+ (5.4)

.77 .74�

PROOF.  Straightforward.
(ii). Assume the antecedent. We show the super condition only. That is, if m��� (X) _<_
n+(y), then there exist an interpolant z. (The second condition is analogous.) Suppose
that m+(x) 3 n��(y). Let 2 �E-ezf  E F : as E x}. The de�nition of 1�� implies that
x 3 f+(z). In order to show that h+(z) _<_ y, suppose that y E h"&#39;(z). Then for some
a: E x, h(y) = f So 9: and y are inseparable. Since J contains all inseparable pairs,
(9:,y) E m+(x). But then, by assumption, (:z:,y) E n+(y), whence 3/ E y. QED

ZIGZAG PRODUCTS AND UNRAVELING. Zigzag products are also connected to unrav-
elling. For instance, the We1l�known unravelling of the frame  to the
frame (w,succ) can be described as an in�nite zigzag product of the frames pre-
sented in the �gure below. Take that substructure of the product which contains
(0,0,...), (O,1,1 . . .),(O, 1,2,2 . .  . . .. It is easy to see that this is a zigzag product
which is isomorphic to the frame (to, succ).

0

O l iiiiiiiiii it
(3 
     
     (5-5)

Note that the frames are precisely what one gets via a step-~by-step unraveling proce-
dure of
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5.2.2 THE ZIGZAG PRODUCT LEMMA

The next lemma is an improvement of lemma 3 in Németi [Ném85l. Németi used this
lemma to prove SAP for the class Crsa (Ct any ordinal). At the end of this section, we
compare the two results.

LEMMA 5.2.6 (ZIGZAG PRODUCT LEMMA). Let K g BAO and L a class of struc-
tures, both of BAO type S. Assume that (i)�(iii) below hold.

(i) L is closed undertaking �nite zigzag products7
(ii)f¬L=>.�F+¬K
(iii)Q1EK=>2l+¬L

Then K has SUPAP.

Conditions (ii) and (iii) always hold when K is a canonical variety and L = Cm�1K.
The next proposition states some implications of conditions  and (iii), and shows
its range of applicability.

PROPOSITION 5.2.7. Let K Q BAO and L a class of structures, both of BAO type 5.
Assume conditions (ii) and (iii) of the previous lemma. Then

(i) K is closed undertaking canonical embedding algebras, whence SK = SL+.
(ii) If K is a variety, then it is a canonical, complex variety K : SL+.
(iii) If L reflects altrafilter ea:tension.s, then L = Cm�1K.

PROOF. Straightforward. QED

PROOF OF LEMMA 5.2.6. Assume conditions (i)�(iii) of the lemma. Let 21,93, <2 6 K
such that 98 <�f�< Q1 51 :2. We have to Show that there exists a 33 E K which is a.
super~~amalgam for Q «L 221 >3» :2. Instead of anialgarnating directly, we first embed
these algebras in their canonical embedding algebras. Condition (iii) implies that
2z..,e.,,¢+ e L. By 2.2.5; 23.. 1°: 21., �I: at. By 5.2.4, the set INSEP"-if {(a:,y) ;
f+(zc) = h.,.(y)} is a zigzag connection. Let .7 be the zigzag product (211; X %+) IINSEP.

&#39;By 5.2.4, the projections are zigzagmorphisms which commute with f+ and h+. To
continue, We need claim 1 below. Here, we use f# to abbreviate (f+)+, and (3,; to
denote the canonical embedding function from A to &#39;P(£lf 91) (which is Dom((2l+)+)).

CLAIM 1. In figure (5.2) below, the following are equivalent:

f+ 0 7n) 2 h+ 0 7r; (5.6)
71&#39;3" o f# = 7r1+o h# (5.7)

7r§&#39;oeBof : vrfoecoh (5.8)

PROOF or CLAIM. (5.6 =>5.7): by 5.2.5(i).
(5.7 => 5.8): by the fact that e3 0 f 2 f# o (5,; and ea 0 h 2: h# o eA.
(5.8 => 5.6): by Writing out the de�nitions. 4

7In general, a. system of frames has many zigzag products; closure under zigzag products means
that each of them is a member of the class.
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}~+

W? V
(�3+)+ (¢+)+

FIGURE 5.2: AMALGAMATING as L 21 it e

So, by claim 1, the algebras EB and (21 can be embedded into 77+ by 72-3&#39; o e B and vrf 0 ea,
respectively, and the diagram commutes (i.e., (7r{,* 0 eg) 0 f = (7r§�" 0 ea) 0 h). So
% <�f-< 91 ll» 0,� is amalgamated in f+, which is a member of K by conditions  and (ii).

To conclude, we have to show that the amalgamation is super. That is, condition
V (5.9) below holds (the second condition is analogous).

(Vx e B)(Vy e C) : 7r3"eg(x) g 7r;*eC(y) => (32 e A) :x g f(z) & 15(2) g y (5.9)
Assume the antecedent� of (5.9) for arbitrary x E B and y E C. First suppose there
exists some 2 E A with x =2:  (The argument for y 2: h(z) is the same.) Then,
7r[,*&#39;eB(x) 2* 7r3"eBf(z) = (because the diagram commutes) 7r1+eC«h(z) S (assumption)
vrfegy. But then, since the functions are homomorphisms, h(z) 3 y. Now assume
x E B \ f*(A) and y E C \ h*(A). Suppose to the contrary that there is no interpolant.
We have to show that #3� e ,9(x) ,{ 7r1+eC(y). Since the amalgam is a complex algebra of
a frame which contains all inseparable pairs from §3+ and ¢£+, it suffices to show the
existence of a pair of inseparable ultra�lters (u, 1)) from (5.1f% X iii (2) such that X E u and
y ¢ 2). Create the set {z E A : X 3 f(z)} U {-2 E A : h(z) 5 y}. By the assumptions
that X ¢ f *(A), y ¢ h*(A) and there is no interpolant, this set has the �nite intersection
property. So it can be extended to an ultra�lter w E Llf�. Since x and y do not belong
to the images of 21, f*  can be extended to an ultra�lter u E 2.623 containing X,
and h*(&#39;w) to an ultra�lter v E Life: containing ���y. Because f+(u) = w = h+(v), the
ultra�lters u and 12 are inseparable. We are done. QED

REMARKS 5.2.8. Looking at the above proofs, the antecedent of the Zigzag Product
Lemma might have done with the Weaker condition of being closed under �INSEP
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products�, instead of �nite zigzag products. Here, by the INSEP product of Q -is
J: «h� H we mean the frame (Q X &#39;H)fINSEP, with INSEP as above. Call K closed
under INSEP products if, for every .T,Q,7�l E K such that Q I» .7: «h- H, their INSEP
product also belongs to K. We have chosen to work with �nite zigzag products for
the following two reasons. First, we wanted a natural notion which might have other
applications. Moreover, it allows us to use the F0 model theory, developed about
subdirect products. Second, closure under INSEP products is still stronger than SUPAP
of the corresponding variety. In the appendix to this chapter, We show how to adjust
INSEP products in order to get an equivalent formulation of (S)AP in terms of frames.

Using the implication SUPAP => SCI, the Zigzag Product Lemma leads to a de�
scription of a large class of general modal logics with SCI. Van Benthem [Ben94a] shows
how the binary zigzag product construction can be used for a direct, modelwtheoretic,
proof of SCI.

Several persons observed the similarity between the INSEP product construction
and the pull���back construction in category theory. We Show that, in general, there is
no connection between the two notions. Let K be the class of frames {F = (VV, R) :

R g; W x W}, and Zig &#39;43-.� {f ; (3f,Q e K)(}� 3» 9)}. Let C be the category (K, Ztg).
We claim that

(i) K is closed under INSEP products, but
(ii) C� is not closed under pull~backs.

(i) is obvious. For (ii), let Q = ({a.,b},2{a,b}) and F = ({o},2{a}). Clearly .7-" is a
zigzagmorphic image of Q. The INSEP product of Q ~«» .77 <+- Q is the frame Q X Q.
There are several zigzag products of Q with itself which also produce a commuting
diagram (e.g., Q itself and the disjoint union of Q and a copy of Q). Now, suppose
H is a pull~back for Q �» .7 «� Q. Then, because a pullwback is minimal, H must be
isomorphic to Q. But Q is not a zigzagmorphic image of the disjoint union of Q and a
copy of Q. Hence �H is not a pull~back.

COMPARISON WITH AN EARLIER RESULT

Németi ([Ném85]) proved that the class Crso, (for any ordinal oz) has SAP, using
lemma 5.2.9 below. The zigzag product lemma is an improvement of this result. We
brie�y compare the two lemmas. Recall that 80,, denotes the restriction of the class
BAO to all algebras of the cylindric similarity type of dimension oz. If 2t 6 B00. and .77 is
an or-frame, then 521 Q� 75+ states that Qt is compact and .7: is a saturated representation
for 21. For their precise de�nitions, we refer to De�nition 2 in ém85].

LEMMA 5.2.9 (N133ME�1�I). For any oz, let K Q B0,, and letL denote a class ofcwframes.
Assume that (i�)~-(iii�) hold. �

(i�) L is closed under taking substructures of �nite products of members of L
(,ii�)feL:.->f+eK
(iii�) K g I{21 e K: (Elf e L)(�2l Q� }"+)}.

Then K has SAP.
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Besides the fact that Németi�s lemma is about strong amalgamation and the Zigzag
Product Lemma about the stronger super amalgamation, there are three further dif-
ferences. The �rst is that 5.2.6 holds for all BAO�s, while 5.2.9 is only stated for
the BAO�s of the cylindric type. This is not a serious difference, as is pointed out in
Sain [Sai90]. The second difference lies in condition (iii). In the proof of lemma 1.2
in [Sai90], it is shown how condition (iii�) follows from the fact that K is a canonical
variety. If K is a. variety, then conditions (ii) and (iii) imply that it is canonical. So,
if K is a variety, condition (iii�) is weaker than (iii), hence in this respect 5.2.9 is more
general. However, for many applications (including Crsa), the easier condition (iii)
already works.

The important difference between the two lemmas lies in condition  Ildiké Sain
pointed out that (i�) is too strong. There are several examples of canonical varieties
satisfying (i), (ii) and (iii) but not (i�) (e.g., the classes $4.1, SRLRSRRA and D,,,, as we
will see later). So they enjoy SAP (and even SUPAP) by the Zigzag Product Lemma,
but not by 5.2.93. In [Sai90] (Problem 1.4), Sain asks for a stronger version of 5.2.9
which is still natural but has wider applicability. Lemma 5.2.6, and its consequence
5.3.5 below, can be seen as an answer to this problem.

5.3 PRESERVATION

In general, validity is not preserved under taking (�nite) zigzag products. The following
(canonical) equations are examples of this phenomenon (cf. 5.4.12 and 5.6.6). We state
them, together with their frame correspondents.

DDx_<_xVDx Va:yz((Rry&Ry2) => (:r=zVR:cz))
c0 c1 x _<_ C1 C0 x V;2:yz((T°.ry 85 Tiyz) => Elw(T�a:w & T°wz))
(x;y);z 3 x(;y;z) \7�:cyzuv((C.2:yz & Cyan) => Elw(C.ruw & Cwvz))

In this section, we give a partial answer to the question which FO sentences are pre-
served under (�nite) zigzag products. This leads to versions of the zigzag product
lemma which are particularly easy to apply (theorems 5.3.5 and 5.3.6). VVe call a
F0 sentence a (�nite) zigzag product sentence if it is preserved under (�nite) zigzag
products.

A F0 sentence 9:5 is a special Horn sentence iii (1) is a conjunction of sentences
of the form (Vf)(1b -> 6�) with 6 atomic, and it a positive formula. Every universal
Ham sentence is a special Horn sentence. The special Horn sentences are precisely
the sentences preserved under subdirect products (cf. [CK90], exercise 6.2.10). Since
zigzag products are subdirect products, every special Horn sentence is a zigzag product
sentence. The set of �nite zigzag product sentences turns out to be larger. To illustrate
what sentences can be preserved (and how) we look at the modal variety 54.1. The

3This does not follow from 5.2.9, but in the case of SRl,q3RRA and Du, SUPAP follows from the
proof of that lemma. We have to use the following easy fact. If a variety V has SUPAP, then any
strengthening of V with equations which do not contain variables has SUPAP too. The class Da can
be obtained by adding the equations (C6) to Crsa. SRlR5RRA is obtained from the variety SRIRRA
by adding the equations id ;l = 1 and 1� =: l.
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example also shows that the distinction between �nite and arbitrary zigzag products
is important.

5.3.1 ILLUSTRATION: THE MODAL VARIETY 34.1

De�ne the variety 54.1 as the class of all BAO�s of type (0, 1) which satisfy the equal�
ities T, 4, and M below. Here, Dx 4.5! -0-X as usual.

T x _<_ Ox
4 <><>x g <>x

M D<>x _<_ <>EJx

De�ne K543 as the class of all frames .77 = (W7, R) in which W is a set, and R Q W X W
is a transitive and re�exive relation which satis�es

\7�a:3y(R:1:y & �v�z(Ryz => 3; =:  (5.10)

Condition (5.10) expresses that each point 1� has an R~1ast point y after it. Typical
examples of K 54¢ frames are transitive re�exive trees of �nite depth. A typical non�
example is the frame (N, 3) of the natural numbers.

THEOREM 5.3.1 (Lmmow). 54.1 = S(K54,1)+ is a canonical variety, and cm~1s4.1 =
Ks�.

PROOF. Cf. Bull~Segerberg [B884] section 14. QED

The next proposition irnplies ~by the Zigzag Product Lemma� that $4.1 has the super
amalgamation property.

PROPOSITION 5.3.2.  K544 is closed under �nite zigzag products.
(ii) K541 is not closed under in�nite zigzag products.

PROOF.  We give the proof for a binary zigzag product. This is sufficient, since
every �nite zigzag product is isomorphic to a repetition of binary zigzag products.
Let Q: (WC, R0) and H: (WH,RH) be in KS�, and let .7: (WF,RF) be a zigzag
product of Q and H. We have to show that .7 E K 54,1. Since re�exivity and transitivity
are expressed by universal Horn sentences, .75 will satisfy them. We now show that it i
satis�es (5.10) as Well. For convenience, we introduce a (Skolem) function f which
provides each point with an R~last point. Let (at, y) E W*&#39;&#39;�. We have to show that it
is R�related to an endpoint. The argument is illustrated in �gure 5.11 below. Since
RGa:fG.7:, there must be a pair (fG:1:,z1,) E F such that RF(3c,y)(fG:£,u). Also, since
RHu, fHu, We �nd RF(fGa?,u)(v, fHu), for some 2). Because fay: is an endpoint, fGa:
must equal �U. Then, RF (cc,  (fG."L�, fyu) by transitivity. Because the projections are
hoinomorphisms, (fgar, fHu) is an endpoint. &#39;
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<x,y>-�-��-��-���a- <f(x),u>--�������-> <f(x),f(u)©

x-�-����-:> f(x)Q u���--�~���> f(u)© (5.11)
(ii). We show the existence of a frame which is a zigzag product of ca many frames in
K341, but which itself does not belong to K5�. We will use Von Neumann notation
for ordinals (e.g., n =2 {0, 1, . . .,n ��  We claim that the frame (cu, Q) ¢ K544 is an
in�nite zigzag product of the system of frames ((72, Q))g<,,<w. All these �nite frames
belong to K544. De�ne a system of morphisms fn : w -���> n via Vi < n :  2: 2&#39;
and Vi 2 n :  2 n �� 1. Clearly, all these functions are zigzagmorphisms from
(to, Q) onto (72, Q). To bring this into the shape of a zigzag product, de�ne a function
g : w �--> �to by g(n) 2: (0, 1, 2, . . . ,n � 1,n,n,. .  De�ne a binary relation 4 on g*(w)
by as 4 y iff (Vz&#39;)(a3; 5 31,). The frame (g* (ca), 4) is isomorphic to the frame (cu, Q), and
it is an infinite zigzag product of the system of frames ((71, Q))0<,,<w. QED

5.3.2 A PARTIAL SOLUTION

We syntactically describe a part of the �nite zigzag product sentences. In the next
de�nition and lemma, We temporarily use Mod(2) in its FO model�theoretic sense: for
a set E of F0 sentences of type S, Mod(§3) denotes the class of all structures of type
S which validate 2.

DEFINITION 5.3.3. Let E be a F0 theory in BAO type S. We call 2 clausi�able if
there exists a set of function symbols \I&#39;, and 3. F0 theory I� in the language S U �I1 such
that:

(i) Rdg Mod(I�) Q Mod(E),
(ii) I� consists of special Horn sentences (e.g., of universal Horn sentences),
..i(11 ) For every .77, Q E Mod(§3), and every zigzag connection B between .77 and Q, there

exists expansions .7�, Q� E Mod(I�) such that Rd3f* = .7: and Rd5Q* 2: Q, and
for every n-�placefunction  E �If: 2:133/1, . . . ,;z:,,By,, => f(:c1, . . . ,:v,,)Bf(y1, . . . ,yn).

Examples of obviously clausi�able theories are the sets of conditions de�ning the classes
A I I .K3}, for H Q {R, S}, and Ki,� 0� and K§",�1§� (see sections 2.4 and 2.5). Another example

is the class K5.� from the previous subsection (the function to be added is a Skolem
function).

LEMMA 5.3.4. Let E be a PO theory in BAO type S. IfE is clausi�able, then Mod(§3)
is closed under �nite zigzag products.

PROOF. Suppose X] is clausi�able. Let I� be as in 5.3.3. Let Q and H be in Mod(E),
and let J be a zigzag product (in type S) of Q and H. We have to show that .7 E
Mod(§3). (Again We only need to look at binary zigzag products.) It follows from 5.2.3
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that Dorn(.7) is a zigzag connection in type 5 between G and H. Hence, by clause
(iii) of 5.3.3, we can expand Q and H to Q*,H* E Mod(I�) satisfying the conditions
of that clause. De�ne the new functions on J coordinate-�wise (i.e., f*7 (331, . . . ,  =
(fg�(7r0ac1,...,7r0a:n),f7r(7r1ac1,...,&#39;K1:z:n)) ), and call this frame J*. Now J* is closed
under these functions, and .7� is a zigzag product of Q* and 7-(* in the expanded
language. Since F consists of special Horn sentences, Mod(l�) is closed under zigzag
products. Hence .7� is in Mod(I�). But then, by clause (i), J is in Mod(Z3). QED

Using this lemma, we can provide a user~friendly version of the zigzag product lemma.

THEOREM 5.3.5. Let V Q BAO be a canonical variety, de�ned by a set of equations
which correspond to a F0 theory Z. IfE is clausi�able,� then V has SUPAP.

PROOF. By the Zigzag Product Lemma and 5.3.4. QED

For general modal logics, this theorem can be formulated as follows.

THEOREM 5.3.6. Let Q/\/i£(K) be a canonical general modal logic. If K can be de-
fined by a clausi�able set of F0 sentences, then QM£(K) has both strong and weak
interpolation, as well as Beth de�nability.

PROOF. By the previous theorem and the results in table 5.1. QED

5.4 APPLICATIONS TO RELATION AND CYLINDRIC ALGE-

BRAS

In this section, we apply the general results obtained so far to the classes of relativized
relation and cylindric algebras and their logical counterparts: arrow logic and cylindric
modal logic / FO logic.

5.4.1 RELATION ALGEBRA AND ARROW LOGIC

THEOREM 5.4.1.  Let H Q {R,S}. The variety of relativized relation algebras
SRIHRRA enjoys super amalgamation and interpolation of inequalities.
(ii) All reducts of relativized relation algebras considered in table 4.2 have SUPAP and
IPI.

PROOF. SUPAP follows from the axiomatizations (4.2.l and 4.3.3) by 5.3.5. Then
IPI follows, using 5.1.9.(ii). QED

COROLLARY 5.4.2. Let P be any of the properties ES, AP, SAP, SUPAP, or IPI.
Let H Q {R,S,T}. Then SRIHRRA has P if and only ifT ¢ H.

PROOF. By 2.4.6, the previous theorem and the implications in table 5.1. QED
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STRONGER FORMS OF INTERPOLATION

The requirement on the interpolant is precisely the same as in Craig�s theorem for F0
logic. Lyndon strengthened Craig�s theorem for F0 logic by adding more requirements�
(cf. [CK90] Thm 2.2.24). Johan van Benthem suggested another strengthening of the
interpolation property (cf. [Ben94a]). We say that a. class K has the strengthened �and�
(�or�) IPI if it has IPI with the additional requirement that the interpolant must
be constructed from Booleans using only non~Boolean operators which occur in the
antecedent and (or) the consequent. The strengthened forms of Craig interpolation
are de�ned similarly.

THEOREM 5.4.3. The variety SRIRRA has the strengthened �or� IPI, but it lacks the
strengthened �and� IPI.

PROOF. We �rst show that �and� IPI fails. SRIRRA |= id g (~�x V x��). The an-
tecedent and the consequent do not share any variables nor operators, so the only
interpolants are 0 and 1. But neither quali�es. By 5.4.1.(ii), for every Q Q {;," ,id},
the Qwsubreduct of SRIRRA has IPI. To show that SRIRRA has �or� IPI, we use that
we can find the interpolant in the appropriate subreduct. This follows because, for
every equation e in the Q~subreduct, SRlRdQRRA I: e 41> SRIRRA }: e (cf., the
proof of 4.3.4). QED

REMARK 5.4.4. Constants play a special role in interpolation, witness the easy failure
of �and� IPI above, and also below in 5.4.9. A reasonable weakening of strengthened
�and� IPI is to allow the interpolant to be constructed from Booleans, all constants
in the similarity type, and non~constant non-�Boolean operators which occur in the
antecedent and in the consequent. It is not unlikely that this weakened form of �and�

. IPI holds for SRIRRA. The technique presented in van Benthem [Ben94a] to prove
�and� IPI for the diagonal�free reduct of Crso, is applicable here as well. This technique
may also be used to prove stronger forms of IPI for the other classes described in
theorem 5.4.1.

ARROW LOGIC. For arrow logics, these results give rise to the following theorem.

THEOREM 5.4.5.  Let H Q {It,S&#39;}. The arrow logic of the class of pair�frame.s
K3513 has 50], W01, and BD.
(ii) The arrow logic of the class of all pair~frames  has strengthened �or� 5&#39; CI.

PROOF. By the last two theorems, using the implications in table 5.1. QED

5.4.2 CYLINDRIC ALGEBRA AND FIRST ORDER LOGIC

THEOREM 5.4.6. Let oa be any ordinal. The varieties of cylindric 7&#39;elatz&#39;vized set alge-
bras Crsa and Dc, have SUPAP and IPI.

9�Every relation symbol (excluding identity) which occurs positively in the interpolant occurs
positively in both the antecedent and the consequent, and similar for negative occurence�.
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PROOF. By the same argument as used in 5.4.1. Now use the axiomatizations pro-
vided in 2.5.7. QED

For Crsa, we can do a bit better. We need to de�ne some notions. Let 0 3 oz 3 w and
let T be a. term of the cylindric type cyloz. By ind(&#39;r), We denote the smallest ordinal
7 3 oz such that all indices occurring in d,-J-�s and C,-�s in 7&#39; are smaller than 7.
DEFINITION 5.4.7. Let V0, Q Boo, be a variety and O 3 oz 3 cu. We say that Va
has the va&#39;riable~restm&#39;cted IPI if for all 7�, T1 such that Va |r: 7� 3 73, there exists an
interpolant T2 such that

1. var(7&#39;2) Q va.r(r) H va.r(73)
2. ind(T2) 3 ma:1:(ind(&#39;r),ind(T1))
3. V.,}=r3T23T1

We say that V0, has the very varz&#39;able~restrz&#39;cted IPI if condition 2 can be strengthened
to z&#39;nd(7&#39;2) Q z&#39;nd(7&#39;) � ind(r1).
If We only consider the cylindrifications, �very va.riable~restricted IPI� is �strengthened
�and� IPI�. The (very) variablewwrestricted SCI is de�ned for cylindric modal logic in
a similar way.

THEOREM 5.4.8. For any oz with 0 3 oz 3 cu, Crso, has the varlableerestricted IPI.

PROOF. By the same argument as given above for SRIRRA. One needs the following
result, which is part of lemma 10.10 in [Ném92]: Let 7 3 a be finite and let 7 =
ma;v(z&#39;nd(7"),ind(7&#39;1)). Then, Crsa f: "r 3 7&#39;1 <==> Crs., f: 7&#39; 3 7&#39;1. QED
The next theorem shows that, by dropping the diagonals, one can strengthen this result
to very variable-restricted IPI (a result by van Benthem). Crsa itself does not have
this property.

THEOREM 5.4.9.  (VAN BENTHEM) Let 0 3 a 3 w. The d2&#39;agonal~free reduct of
Crsa has the very vam&#39;a.ble�&#39;restricted IPI.
(ii) Let 3 3 oz 3 co. Crso, does not have the very variable~&#39;restrz&#39;cted IPI.

PROOF.  Cf. [Ben94a] appendix 12.
(ii). Let T = -C1~�-dm and 0 = (�� C1 � dm V�- C1 dlg). Then�) CTS3 l: 7&#39; 3 0. Neither
7� nor 0 uses variables, and 1 is the only common index. 80 for very variable�restricted
interpolation, we would need a term 7 which uses only the index 1, and which does
not use any variable. Then 7 must be built up from Boolean 0 and 1, using only the
operator C1 and Booleans. The value of any such term is 0 or 1. But neither 0 nor 1 is
an interpolant for the above T and or. , QED

CYLINDRIC MODAL LOGIC. We show What these results mean for cylindric modal
logic (and hence for F0 logic).

THEOREM 5.4.10. Let 0 _<_ oz 3 4.0.
(i) The cylindric modal logics of the classes Kg?� and K233) of ciwdimensional assign-
ment frames have SCI, WC] and BD.

10111 F0 logic, 7&#39; 3 0 would be written as (Vmvg 2 711) --r ((312115 : D3) �> (Vvyvl = 122)).
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(ii) The cyllndric modal logic of the class K33?� has the variable-restricted SCI; but
0: > 2, not the very varz&#39;able�restricted SCI.

(iii) (VAN BENTHEM) The dgj �free reduct of the cylindric modal logic of K3?� has the
very &#39;uarzable-restricted SCI.

PROOF. By theorems 5.4.6, 5.4.8 and 5.4.9. QED

In terms of F0 logic, part (ii) of the above theorem implies that an interpolant in
restricted� F0 logic with the generalized K� semantics from section 1.2, does not
need more variables than occur in contexts as 37),; or 72,- = 2)) in the antecedent or the
consequent. One can contrast this result with the following fact about classical F0
logic. Let L. stand for restricted classical FO logic with no function symbols and only
11, variables. Hajnal Andréka [AVBNQ3] proved that, for �nite n 2 2, £,, lacks SCI.
But, since Cw has that property (for sentences), We can �nd an interpolant in some
larger .C,,+k. D. Gabbay has asked whether there exists a bound on ls which would
depend only on n. The theorem says there isn�t.

THEOREM 5.4.11 (ANDREKA). Let n 2 2. Then £,, lacks 501 in the following strong
sense. There are £2 sentences (t, 1/) such that [:2 gb -�+ 212, but for no L3,. formula (9 in the
common vocabulary ofgb and it, |:: gt �-> 0 and }: 9 ��> 1/} hold.

5.4.3 EXPANSIONS WITH THE DIFFERENCE OPERATOR AND COUNT-
ING MODALITIES

If we add the difference operator to the above logics, then amalgamation, interpolation
and de�nability disappear. The problem is that the difference operator gives us a
limited way of counting (recall that �assuming the Booleans- the difference operator
is terIn~de�nably equivalent with the counting modalities {G1, <)2}). Andréka-Nén&#39;1eti-
Sain [ANS94c] showed that, if we add all counting modalities to BA-l~ D, tl1e positive
properties reappear. They also showed that, with relativized relation and cylindric
algebras, this strategy need not work.

The next theorem is a joint result with lldiko Sain. De�ne the class Crsa+ D as
follows

Crsa+ D �g SP{f= (V, 2)�, D5,  : V Q �U for some set U}+
i.i<0r

The expansions with D of D0,,Ga and RCAQ are de�ned in a similar way, following
de�nition 2.5.3.

THEOREM 5.4.12.  BA+[) lacks the embedding property
(ii) RRA+ D lacks EP.
(iii) Let H C_I {R,S,T}. SRIHRR/-\+ D lacks EP.
(iv) Let or be finite. RCA,,+D lachs EP.
(V) Let oz be arbitrary. Crs0,+ D, Da+ D and Ga+ D lack EP.

�Meaning that there are no function symbols, and that every atomic sentence is of the form
Rvmvl, . . .,vC,_1 (see section 2.5.5).
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It follows from this theorem that the universal F0 (Sahlqvist) sentence Va:yz((R;ry&Ryz) =;>
(r = 2 V 12332)) (i.e., pseudo~transitivity of D) is not a �nite zigzag product sentence.

PROOF.  Take the following three algebras from BA+ D: 52L = (W), {a, l)}}, U, �� , D),
�B: (�33({a,b,c}),D) and Q: (2B({a,b}),D) (a,b,c are all different). Clearly, Q1 can be
embedded into 93 and 02. Suppose that �B and Q can be embedded into an algebra
50 E BA+ D, by functions m and n, respectively. Then &#39;33 should contain three atoms as
images of the singletons of �.8. But then, one singleton, say {a}, of G has to be mapped
to a �non�singleton� in 33. So Q )2 <)2{a} : 0 and Z) l: <>2n({a}) = 1, which leads to a
contradiction.

(ii). RRA+ D is term~de�nably equivalent with RRA (cf. [Ven9l] Prop 3.3.). But RRA
does not have EP (cf. McKenzie [McK66]). &#39;
(iii). The same counterexample as in  works here as well. Expand the algebras
52L, �.8 and Q� with the operators of the relational type. Let all singletons be below the
identity (i.e., for instance a = (a, a), b = (b, b), c := (c,  Then the three algebras are
in SR.lR5TRRA+ D. 91 can again be embedded into �B and <2. But again, we can not
embed Q3 and 0: into one algebra.
(iv). For oz 5 1, this follows from (i), since then RCAo,+ D is termwde�nably equivalent
with BA+ D. For �nite oz larger than 1, RC/\o,+ D is term~definably equivalent with
RCA�, (cf. [Ven91] Prop 4.2.15). But RCAQ does not have EP for 2 3 cr < w (cf. Comer
[Com69]).
(V). Use the same counterexample as in (i), and change it as in (iii). QED

The above theorem has the following consequences in the realm of logical calculi.

THEOREM 5.4.13. The following logics with the di�erence operator lack WCI and
SCI.

9 propositional logic with D
0 the D�zacpansion of the arrow logic QM£(K::§H), for all H Q {R,S&#39;, T} or H =

3Q
o the D~e$pansion of the cylindric modal logic Q./\/l£(K), for K one of KS5�, K�zg,

 for any 0:, or K 2  for finite cu.

PROOF. The difference operator makes all classes which occur in theorem 5.4.12 dis~
criminator varieties. Then the theorem follows from the previous one by the implica-
tions in table 5.1. QED

I. Sain [Sai94) settled the question of the de�nability property (BD) for these logics.

THEOREM 5.4.14 (SAIN).  Propositional logic with D has BD
(ii) Let H E {R,S&#39;,T} or H = SQ. The D~e:z:pan5ion of Q./\/f£(K::£H) lacks BD.
(iii) Let 2 3 oz 3 w, and  Q K Q Kid". The Deerpansion Q/l/l£I(K) lacks BD.

PROOF�. The proof goes by showing that ES does not hold in the SP closure of the
complex algebras of the frame classes. The proof of this last statement is an adaptation
of Sain�s counterexample given in the proof of [Sai90), Thm 2. QED
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EXPANSIONS WITH COUNTING MODALITIES. Andréka~Németi�Sain showed that, if
we add all counting modalities to propositional logic with D, interpolation and de�n~
ability reappear ([ANS94c], Thin 15). Németi�~Sain [Sai94] showed that these properties
still fail when we add all counting modalities to the arrow logic of the class of pair~
frames Kgg�g, for H = SQ or H Q {R, S, T}, or to the cylindric modal logic of the class
of all assignment frames Kg�i, for 2 3 Q! _<_ w. This can also be shown by an adaptation
of Sain�s counterexample. One kills this proof, however, by adding all of the following
operations. For V Q �U, i < oz, 72 some �nite ordinal and T Q V, de�ne

<>?&#39;r(i:e:l{s¬V: |{7�¬T:8E,&#39;7�H>�rL}
It is an open problem, whether we retrieve BD in this logic by adding all these counting
modalities�.

5.5 CONCLUDING REMARKS

In section 2.3 we de�ned the logical core of a general modal logic QM £( K) as the logic
of the class which satis�es all universal F0 conditions that are valid in K. What we
have shown here is that the logical core in a stricter sense ~that part which satis�es all
universal H orn de�nable conditions� behaves as it should with respect to interpolation.
We saw that universal non-Horn conditions, like pseudo~transitivity of the difference
operator, can kill the interpolation property. This might lead us to conclude that the
logical core of a logic should be its universal H om part (allowing extra function symbols
as in 5.3.3). In other words, instead of obtaining the core by adding all subframes (as
in section 2.3), we add all �nite zigzag products. Then we always obtain interpolation
and Beth de�nability. We end with two questions.

1. Is there a syntactic characterization of the �nite zigzag product sentences�?
2. All arrow logics with interpolation had the finite model property (frnp). W. Rant-

enberg ([Rau83] Problem 2) asked whether there is a modal logic with strong
interpolation, but without the fmp. L. Maksirnova gave a positive answer to this
question ([Mak91a] Thm 7). Is there also a general modal logic Whose class of
frames is closed under �nite zigzag products, but which lacks the fmp?

5.6 APPENDIX: REFORMULATION OF (S)AP WITH AP-�
PLICATIONS

One can weaken the INSEP product construction from the proof of the zigzag product
lemma to obtain an equivalent formulation of (S)AP using frames. We will use this

�Note that these counting modalities have a. local character: they count often we can change a
sequence at a coordinate i. In F0 logic, they can be de�ned as follows (let R be a binary predicate):

<>5�Rv0v1 #5-e=f> 3-v2,...,vn+g(/\{v,v gévj :2 3 2&#39;,j 3 n+2&i¢j}/\Rv2v1 /\.../\Rv,,+2v1)
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fact for simple proofs that certain classes of algebras lack AP. A similar analysis is
possible for the embedding property and superanialganiation.

5.6.1 THE EQUIVALENCE LEMMA

LEMMA 5.6.1. Let K Q BAO and L a class of frames, both of BAO type S. Assume

that 
     
     (i) L is closed under zigzagmorphic images

(ii)J��eL=>f+eK 
     
     (iii)QlEK=>91+EL

Then (1) and (2) are equivalent:
(1) K has AP

(2) (VQl,Q3, 02 E K)(Vf, h) ifii <�f�< Qt  Q, then there exists .77 E L satisfying.�
(a) Dom(f&#39;) _C_I_ (Dom(�B+) X Dom(¬+)) f INSEP (this makes the diagram commute)
(b) the projections 770 and 7a�; are zigzagmorphisms from .7: onto 13+ and 61+, respec-

tively.

LEMMA 5.6.2. Let K, L and conditions (i)�(iii) be as in the previous lemma. Then
(1) and (2) below are equivalent.

(1) K has SAP
(2) Condition (2) from the previous lemma strengthened with (c):
(c) (Vx E (B \ f*(A))(Vy E (C&#39;\ h*(A))(3u 6 Dom(f)) : X E 7rg(u) <==> y g! 7r1(u)

Before we prove these lemmas, we sketch how the frame .7 in condition (2) relates to
the IN SEP product construction which was de�ned in 5.2.8, andiused in the proof of
the zigzag product lemma. By de�nition, that construction satis�es conditions (a) and
(b), and it is easy to show that it also satis�es condition  On the other hand, the
frame .77 from (2) need not be an INSEP product of 88+ and 62+. Its domain is a subset
of (B, x C_,_) restricted to INSEP, and the projections are surjective, but it need not
be the Whole of INSEP. The second difference is that .7� validates only a subset of
the relations that a subdirect product validates (because the projection functions are
homomorphisms). It has to validate just enough; to make the projections zigzag as well.
In -5.6.4 below, We give an example of BAD variety V which has SUPAP, but whose
class of frames Cm"1V is neither closed under INSEP~, nor under zigzag~products.

PROOF OF LEMMA 5.6.1. Assume conditions (i)-A-(iii).

(2) :>  Assume  Let 2l,%,¢ E K such that 15 «L 91 >1 Q. By assumption, we
find a frame .7: E L satisfying conditions (a) and  The restriction to INSEP implies
that f+ 0 W0 2 12+ 0 TF1. So, by claim 1 in the proof of 5.2.6, the algebras 21, K G: can be
amalgamated in 55+ by the embeddings vrj o 613 and 7rf" o eg. Since .7: E L, by condition
(ii), .751� E K. Thus K has AP.
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the de�nitions one sees that the upper diagram at the left in (5.12) below commutes.
We will de�ne a frame .77 satisfying (a) and (b) which is a zigzagmorphic image of 13+
(see the diagram at the right). This is enough since, by assumption, &#39;33 E K, by (iii)
50+ 6 L, and then by (i), .77 E L.

.7�

33+ ,3 
     
     I
+ "1

\ (5.12)
91+

�
Define a function 17 : Dom(�D+) ��->  2 as E Dom(CD+)} by p(:c) E
(m+(:z:),  De�ne a frame .77 of the type of 33+ by Dom(.7-") drzef {(m+($), n+(:v )
at E Dom(©+)} and Rfp(y)a:1...x,, <51-§�£> (3:53 ..  = 30,- & R�°+y:1:�1...:Lr�n.

we ®

/8 f+ 71+ Q. «_3+ 
     
     N 
     
     Qt 
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states an equivalence however, we can apply it to obtain negative results as well.
Especially with �nite frames, the conditions in (2) are easy to handle, and they give
rise to simple counterexamples. We will give several of these counterexamples in the
next section. For a streamlined application of 5.6.1, we use the following result.

LEMMA 5.6.3. Let K _C__ BAO and L a class of frames, both of BAO type S. Assume
conditions (i)�(iii) of lemma 5.6.1. Then we have:

1. If there exist �nite frames .77,Q,H E L and zigzagmorphtsms f,h such that Q 3;
.7 «:5 H, and there exists no J E L satisfying (a) and (b) below, then K does not
have AP.

2. If (1) can be strengthened by replacing the subset relation in (a) by an equality,
then K does not have SAP.

(3.) J g (G x H) IINSEP
(b) the projections are ztgzagmorplzisms.

PROOF. Assume conditions (i)~(iii).

(1). Assume the antecedent of  By condition (ii), .7�+,Q�",7*t+ E K and Q4� {:4
.77+ 5:: 71+. Since the frames (and hence their complex algebras) are �nite, they are
isomorphic to the canonical frames of their complex algebras (i.e., e.g., .77 % (.7-"+)+).
But then, by 5.6.1, K does not have AP.
(2) follows from the observation that (a), together with (c) of 5.6.2, ensures that with
�nite frames the domain of ._7 equals INSEP. (Because on �nite algebras, atoms cor-
respond one to one with ultra�lters.) QED

SUPAP WITHOUT ZIGZAG PRODUCTS. We give an example of a canonical variety
of BAO�s which has SUPAP, although this cannot be shown by the zigzag product
lemma. We de�ne the following classes:

Kgvfad (El {.7-&#39;= (W/, R�)0<,»<w 2 Ri Q l+1W & (Riggs; H.517,� 4-::> 171 ...:c,- distinct)}
Vgrad lg SP(Kgrad)+

Note that each frame in Kym; is uniquely determined by its universe. In [ANS94c]
Thm 15, We �nd the following facts about Vgmd: it is a canonical discriminator variety
which has SUPAP, and it is tern1�de�nably equivalent to the variety BA + n�ttmes of
Boolean algebras expanded with all counting modalities O". The general modal logic of
the class Kym; has SCI, WCI, and BD. Because Vgmd is a canonical variety, conditions
(ii) and (iii) of the zigzag product lemma are fulfilled for V9,�; and Cm"1Vgmd. We
show that SUPAP cannot be proved using the zigzag product lemma, because condition
(i) is not satis�ed.

THEOREM 5.6.4. Cm"1Vgmd is neither closed under zigzag products nor under IN-
SEP products.

PROOF. We use the following fact, which is easy to check: Vgmd )2 (Olx /\ <>ly) g
(<>2(x,y) V <>1(x A  This positive equation corresponds on frames of Cm&#39;1V9m_d to
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the condition V9:yz((R1:1:y & R1302) => (y = 2 V Rzscyz). So, every frame in Cm�1Vgm,1
satis�es this condition. Take a .7: E Kym; with F :: {a,, b} (a and b are different). It
is not difficult to see that F X .77 is a zigzag product of .77 with itself (see �gure 5.3).
In .7 X .73, the binary relation R1 is the universal relation, the relation R2 is as in
the picture, and all other relations are empty. The frame .77 X .7: can not belong
to Cm"1Vgmd, because it does not validate the above condition. This shows that
Cm"1Vgmd is not closed under zigzag products. The same example shows that it
is not closed under INSEP products either. For, the frame Q = ({w},Rl)0<Kw with
Rlxx, 1222223292, and, for all z" > 2, R� = @, is a zigzagmorphic image of J7, and  X .7" is
an INSEP product of the frames .7-", Q, and .77. QED

(32,/��~�\.
<a,b> <b,a>

W

C)/��\
<a,a> <b,b>

\*F:;r"U 
     
     oz/\

�/23 :49 
     
     F

FIGURE 5.3: COUNTEREXAMPLE FOR THEOREM 5.6.4.

5.6.2 APPLICATIONS OF THE EQUIVALENCE LEMMA

We now show how to apply 5.6.1 in order to obtain negative results. We give five
Sahlqvist equations which will typically kill the amalgamation property, all well�known
from algebraic logic or modal logic. Consider the equations in table 5.2. ( 1) is usually
referred to as density, (2) as the C&#39;hurch�Rosser property, (3) is the not~bra,nching
axiom from temporal logic, (4), commutativity of the C,� �s comes from cylindric algebra
theory, and corresponds to commutativity of F0 quanti�ers, and (5) is one half of the
associativity axiom from relation algebras. De�ne �ve classes of algebras K,- C BAG,
with K1, K2 and K3 of type {(0, 1)}, K4 of type {(CO, 1), (C1, 1)}, and K5 of type  ,2)},
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Equation F0 correspondent

(1) OX 3 <><>x V:1:yRa:y :> ElzRazrz & Rzy
(2) <>C|x g El<>x V:1;yzRaty & R172 => §lwRyw & Rzw
(3) Ox A <>y g <>(x A <>y) V <>(y /\ Ox) \7�:vyz(Rxy & R5112 =;> (Ryz V Rzy))
(4) c,- c,- x _<_ cj c,- x V:ryzT�:cy & Tjyz => 3wTj:rw & Tiwz
(5) (x; y); z 3 x; (y; z) V2:yzuvCa:yz & Cyuv => 3tC:nut & Ctvz

TABLE 5.2: EQUATIONS WHICH CAN KILL AP

PROOF. By the Sahlqvist form of the equations. QED

THEOREM 5.6.6. None of the above K,- has the amalgamation property.

In the counterexamples to come, the whole argument is given in the pictures. We ex-
plain how they work. Zigzagmorphisms are given by dotted lines, accessibility relations
in frames by fat arrows (an arrow leading from J? to y means that Rwy). A possible
amalgam is always given at the top of such a picture. We do not draw the projections,
since they are coded in the names of the points in the amalgam.

PROOF. Each proof has the following ingredients. We construct three �nite frames
f,Q,�H E L,-, and zigzagmorphisms f,h such that Q 5:» .7: <2 H. Then we show that
there cannot be a J E L,~, satisfying conditions (a) and (b) from lemma 5.6.3. By that
lemma and 5.6.5, this is enough to prove the theorem. If .9� is a frame, then F denotes
its domain and its relations are given by RF .
CLAIM 1. K1 does not have AP.

PROOF OF CLAIM. De�ne .}r,Q,&#39;H as in �gure 5.4. Clearly, all of them belong to
L1. De�ne functions f : G ��-�> F by  = a:# and f(b*) 2: b#, and h : H ��> F by
h.(a:I) = a3# and f (b*I) :2 b#. It is easy to see that f and h are zigzagmorphisms. Since Q
and H are isomorphic, it is enough to check one of the two. The other counterexarnples
are set up in the same way. Now suppose there exists .7 6 L1 satisfying (a) and
Then R7 (a,aI), (b, bl), so there should be a z E J with R7 (at, al), 2: 85 R32, (12, bl). But
then, by condition (b), 2 2 (c,dI): whence 2 ¢ INSEP, a contradiction with (a). 4

CLAIM 2. K2 does not have AP.

PROOF OF CLAIM. De�ne .7-&#39;,Q,�H E L2 as in figure 5.5. De�ne f 2 G -�-> F by
 = £l7# and f(e*) 2 e#, and h : H -��> F by h(:rI) = a&#39;# and f(d*I) :2 d#. Then
f and h are zigzagmorphisms. Again, suppose there exists .7 E L1 satisfying (a) and
(b). Then R�7(a,aI), (I), bl) & R�7(a,aI), (e,cI). So, there should be a z E J such that
R*7(b, bl), z & R3 (c,cI), 2. But then, by (b): 2 = (d, e�), which contradicts  4

CLAIM 3. K3 does not have AP.

PROOF OF CLAIM. This example is a bit different from the others. Here, it is not
an existential quanti�er, but a disjunction which causes trouble. Figure 5.6 speaks for
itself. 4
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<b,b�> 
     
     Ks

<c,d�>

F

FIGURE 5.4: COUNTEREXAMPLE FOR K1

CLAIM 4. K4 does not have AP.

PROOF OF CLAIM. We only give the picture (�gure 5.7). We use dotted lines for To
and black ones for T�. The argument; is the same as for K1. 4

CLAIM 5. K5 does not have AP.

PROOF OF CLAIM. Drawings are more difficult to make with ternary relations. We
will denote elements by arrows (head, tail), and de�ne Crcyz <==> 93(0) =2 y(0)&3/(1) =
2(0) & 1) = 2(1), staying close to the intuition that C denotes composition. But we
cannot equate an arrow with an ordered pair, whence C does not give relational com~
position, but �composition in rnultigraphs�. VVe will exploit that C is not a function.
For clarity, we also give the relations depicted in figure 5.8:

Cg (�ii-�E�f {<a7b:c)9 <b9d)e>7 <O&#39;7dv$)a <x9e7C>7<a7d*a$*>7 (x*7e*sC*)}
C� �El {(011, bl,cI), (b!,d/,el), (aI,dI,:z:I), (3:/,6/,c/), (al,d*/,1:*/), (a:*/, e*/,c*/)}
Cf gf {(a#,b#,c#),(b#,d#,e#),(a#,d#,x#),(a#,d#,:::*#),(x#,e#,c#),(a:*#,e#,c#)}

De�ne f and h such that (V3; 6 {t1,b,c,d,e}) : f(y) = f(y*) 2 y# 2: h(yI) :: h(y*I),
 = :v# = h(:z:*I), and  : ac*# =  Then f and /1 are zigzagmorphisms.
Now, suppose there exists ,7 E L; satisfying (a) and  Then (7 is as in the figure, so
there must be a 2 as denoted by the dashed arrow. But then by (b), 2 = (ac, 2:1), which
contradicts (a). QED



&#39; 5.6] APPENDIX: REFORMULATION or (S)AP WITH APPLICATIONS
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<b,b�>  <c,c�>
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126 AMALGAMATION & INTERPOLATION

FIGURE 5.7: COUNTEREXAMPLE FOR K4

FIGURE 5.8: COUNTEREXAMPLE FOR K5



6

APPLICATIONS TO ARROW LOGIC

Having �nished our algebraic��logical investigations, we return to arrow logic proper,
and see what we have learnt. Besides transforming earlier results into �arrow language� ,
we give several expansions of the latter (eg, with Kleene star, slashes and cylindrifi�
cations). We end the chapter with �a two~sorted version of arrow logic (proposed by
Johan van Benthem [Ben93]).

This chapter can be read independently from the previous ones. We do not repeat
earlier de�nitions, but they can easily be found using the index.

Convention

We will only use the local consequence relation de�ned in section 2.1.3,
except for Beth�s definability property, which is meant in the global sense.
Hence we omit the superscript, and merely write IE2, reserving |=9&#39;° for the
exceptions.

6.1 INTRODUCTION

Arrow logic was introduced intuitively in section 1.1, and de�ned more precisely in
section 2.4.5.

MODELS FOR ARROW LOGIC. There are at least three classes of models available for
arrow logic:

0 (abstract) Kripke models (i.e., arrowwfrarnes)
0 directed graphs (i.e., pair~frarnes)
o directed rnultigraphs

We argued that intuitively, graphs and multigraphs are preferable to Kripke models,
because of their more concrete �pictorial� character. Within directed (multi)graphs
we can make further distinctions, depending on the availability of arrows. Thus, we
find a landscape ranging from the class of all directed (multi)graphs to the class of
�square� (multi)graphs (where the set of arrows is a full Cartesian product U X U,
for some set U of �states�). In between the two ends, we investigate any combination
of the following three requirements on universes of pair�frames: reflexivity, symmetry
and transitivity (cf. �gure 2.2). ln what follows, we focus mainly on directed graphs.
With these models, the requirement of transitive domains forms the borderline between
positive and negative meterlogical properties (cf. section 6.2.1). In section 6.2.2, we
surnrnarize the known results about Inultigraphs.
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LANGUAGES FOR ARROW LOGIC. The propositional language with extra connectives
for composition, converse and identity is the core language of arrow logic (mainly for
historical reasons, because this is the language of relation algebras). Clearly, these
are not all connectives which are interesting when reasoning about arrows. In the
literature, we can �nd the following extras: the j) modalities from Vakarelov�s work
on arrow logic (cf. [Vak92b] and also Venema [Ven89], [Ven9l]), which correspond
to the cylindric diamonds O0, O1 and to the two �domino� modalities; the slashes
(�residuals�), which are the semi-dua.ls of the conjugates of the composition modality
(see section 4.5.2), and the Kleene star. For a pair-frame .7�, a model M = (.7, V), and
sc 6 F we de�ne:

M,.»c:+ (z�j)¢> é%> (ay) ; .r,- =y,&M,y u� g5 (i,j e {o,1})
M,;rH-qb\¢ 435$ (Vyz)2(:vo=y1,yg=z0,z1=:z:1&M,yIl-q5)=>M,zl!~1/J
M,:c$Iezp/¢ $5 (Vyz):(x0=y0,x1=zg,z1==y1&M,zll�¢)=>M,yH~z/2
M,a: ll- ¢* <2�-f=,�» M,x ll� gb or at can be �nitely decomposed into arrows where gt holds

Here is the meaning of the new operators in pictures:

10 �IL�

in 4 N
u�--���«><oo>«> � � <o1>¢&#39; � � <n>¢&#39; "

U} U) 7.1)

V thenz/2J\f¢  wand
u-��-W v u��-�����>¢/«zs � � ¢\¢

Other connectives which we might add �without a speci�c �arrow�behaviour�~ are
the universal modality (cf. sec 3.1), the difference operator, and counting or graded
modalities (cf. sec 4.4)1. We repeat their de�nitions for convenience:

U

M,a:lf- oqs <§%> (Ely) : M,yH-<15
M,:cIl~Dq5 ¢�1-�3-.> (3y):a:75y&M,yI%¢

fM,xH- <>"¢ <93�-,�>  E F: M,wH-  _>_ n
The reason that these operators are less well-studied is that most of them become
termwdefinable in the core language, when interpreted on the square pair�-frames.

PROPOSITION 6.1.1. In the arrow logic of square pair~fmmes AL(K::§5Q), the follow-
ing connectives are de�nable:  (i,j E {0,1}),\,/,(>,D,(>1,02,<)3.

PROOF. The expressive power of this arrow logic equals that of first order logic with
three variables and only binary predicate symbols (cf. [HMT85] Thm 5.3.16). All these
connectives can be de�ned using only three variables. QED

These connectives are no longer de�nable over larger classes of models. So it is inter-
esting to see what happens with them on non~square models. We look at several such
expansions in section 6.3. For each one, we investigate the complete landscape that
was drawn above.

�Sam [Sai88] argues that the difference operator is well~suited to study program veri�cation. This
might be a reason to add D to arrow logic, when applied in computer science.
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TWO-SORTED ARROW LOGIC. Arrow logic is similar to Propositional Dynamic Logic
(PDL; cf. Harel [Har84]), in the sense that both logics are designed to reason about
transitions or programs. The difference is that in PDL we can also reason about the
input/ output behavior of programs. Program expressions are interpreted at transitions;
but in addition, we have state formulas that can be interpreted at states. In arrow logic,
we can only interpret at transitions. Johan van Benthem ([Ben93]) introduced a two�
sorted version of arrow logic in which we can reason about states as well. In section 6.4,
we study such a system with a pair~frame semantics. We compare this system with
PDL, and with the related �Peirce Algebras� (cf. Brink et al. [BBS94]).

PRELIMINARIES

Recall the de�nition of arrow logic AL(K) from section 2.4.5. We need to de�ne a�
derivation system for arrow logic. The de�nition given below (of, [Ven94]), is a straight-
forward generalization of the well~known K axiornatization for unary modal logic. For
every general modal logic, such a derivation system exists. A formula at is derivable
from the K axioms if and only if the equation? q5# =2 1 is derivable from the BAO
axioms in equational logic. lf we add azcioms to the K derivation system, and their
corresponding equations to the BAO axioms, this correspondence remains.

DEFINITION 6.1.2. A derivation system for arrow logic is a pair (A, R) with A a set
of axioms and R a set of derivation rules. A derivation system is called normal if A
contains the following axioms:
(CT) all classical tautologiesa
(DB) ((PVP�) N1) H (P-qVp� -4), (P&#39;(¬1V<1&#39;)) H (p°qVp-<1�)

®(pVq) H ®pV®q
and R contains the rules of Modus Ponens, Universal Generalization and Substitution:
(MP) ¢>. <25 -+ It / 1/2
(U3) <75 / <I5:¢» $2.45

<,b /982$ �
(SUB) gt / oqé for 0 a map uniformly substituting formulas

for propositional variables in formulas.

A normal derivation system is called orthodox if (M P), (U G) and (SUB) are the only
derivation rules of the system. For any set E of formulas, Q(Z3) denotes the orthodox
derivation system having axioms 2, (CT) and (DB). A formula is a theorem of the
derivation system A 2: (A, R), notation A I" (:3, if gt is the last item (tn of a sequence
qég, . . . , (tn of formulas such that each ct, is either an axiom or the result of applying
a rule to formulas {$0, . . . ,q&#39;>,_1}. A formula </) is derivable from a set of formulas F,
notation: F FA c/), if there are e/1,...,&#39;y,, in T� such that A F (73 /\  /\ 79,) �-> #2.
A derivation system A is sound with respect to a class K of (arrow) frames, if every
theorem of A is valid in K, complete if every Kwvalid formula is a theorem of A.

2The function it denotes the trivial translation from logical formulas to algebraic terms. See
section 2.1.3.

301" any �nite axiomatization of the Boolean (propositional) part.



130 APPLICATIONS TO ARROW Locnc [62

Notation: A F gt <==:> K l: 45. It is strongly sound and strongly complete, if
I� FA ¢ <===> F k=K o5 (l==K is the local consequence).

ln the next de�nition, we formulate the meta�logical properties we will study.

DEFINITION 6.1.3. Let Q�./\/l£(K) 2 (Fml(P), Mod(K),!k) be a general modal logic of
some fixed type S.

(i) Q/\/l£(K) is decidable if the set of validities {Q5 6 Fml(P) : t=K Q5} is a decidable set.
(ii) Q./Vl£(K) has the �nite frame property  if every formula ct which is not GA/l£(K)
valid can be falsi�ed on a �nite frame from K.

(iii) Q/\/l£(K) admits a (strongly) sound and complete �nite asciomatization by an or-
thodox derivation system, if there exists a �nite set of formulas E C Fml(P) such that
0(2) is a (strongly) sound and complete derivation system for Q/\/l£(K).
(iv) A logic is canonical if the canonical frame of the Lindenbaum�Tarski algebra4 of
QM£(K) is a member of K.
(V) Strong and weak Craig interpolation and Beth de�nability are as de�ned in sec-
tion 5.1.2.

6.2 THE cons LANGUAGE

6.2.1 ARROW LOGIC or DIRECTED GRAPHS

The preceding chapters already drew a landscape of arrow logics for pair�-frames. We
considered the class of square pair�frames Kgg�sq, and the classes H in which the
universe of the frames is an H relation. Here H E {R, S,T}, and R stands for �re-
flexive�, S for �symmetric� and T for �transitive�. Kgggsq equals the closure under
disjoint unions of the class K:§lR3T. Hence the logics AL(K:§£5Q) and AL(K;§iR5T) are
equivalent. For this reason, we do not mention the arrow logic AL(K§§§5Q) explicitly.
Thus, the three preceding chapters lead to the following general description of arrow
logics.

THEOREM 6.2.1. The arrow logic AL(K;:iH) is decidable i��T ¢ H.

THEOREM 6.2.2. The arrow logic AL(K::iH) admits a strongly sound and complete
�nite amiomatization by an orthodox derivation system 2�"T ¢ H .

Let H Q {R, 5}. Recall that �# denotes the translation from algebraic terms into
logical formulas (e.g., (X/\id 3 x")�# 2 (p/\id) �~> ®p). Recall the algebraic equations
(A1) - (A15) from 2.4.9. De�ne no �£4 (:11)-# � (A12)"#}, 235 4.2� 29, o {(A13)�#},
2,; �E 29. u {(414)-#, (A15)�#} and 2&5 �£2 2;; u 25.

THEOREM 6.2.3. Let H Q {R,S}. The derivation system S2(EH) is strongly sound
and complete with respect to the arrow logic AL(K:§l

�The Lindenbaum�Tarsl(i algebra of a logic Q/\/l£(K) is the term algebra Qt generated by the set
of propositional variables, factored out by Q/\/t£(K) equivalence. Its canonical frame is 2l+. The
canonical model of a logic is the model (91+.v), where v is de�ned by v(p) = {w E Dom(Ql+) :p E w}.
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THEOREM 6.2.4. Let P be any of strong interpolation, weak interpolation or Beth
defimibility. The arrow logic AL(K;§§H) has P ijfT ¢ H.

We prove all theorems at once, using our earlier results about the varieties S(K§§iH)+.

PROOF. Recall that, for any general modal logic QM£(K) , and for any formula (/5 in
the language of that logic:

1=:K<;S <==:> K+l=g/>#=1 <==> HSPK+}_�.¢#=1

(Thin 6.2.1) By 4.2.6.
(Thin 6.2.2) This follows from 4.2.2, which stated that the canonical varieties S(K:§§H)��
are �nitely axiomatizable iii T ¢ H.
(Thin 6.2.3) By 4.2.1. We also give a direct proof. Let A : §2(XlH) be the derivation
system for AL(K§�:lH). Assume F VA (25. Let M = (.7-Iv) be the canonical model of the
derivation systems. Then |[T]}M ;{  It follows from 2.4.9 that .77 E Km}, and from
4.2.3, that .7-" is a zigzagmorphic image of some frame Q E K�3":£H. But then, there is a
model M� = (Q,v&#39;) in which �I�]]M, ;<_ [[43]]M,, whence I� t: ¢ is not valid in AL(K§:iH).
(Thm 6.2.4) The positive side is 5.4.5. The negative side follows from 5.4.2, using the
implications in table 5.1. QED

PROBLEM 6.2.5. It is unknown whether the decidable arrow logics AL(K;T§{H) for
H Q {R, S} also have the �nite frame property. By 3.2.3, We do know that the logics
of the strictly larger classes of abstract arrow�frames AL(K:f1l1), which are logically
equivalent to AL(K:§iH), have the �nite frame property.

THE BORDER or �COMPUTATIONAL NICE BEHAVIOUR�

We argued that there are at least three important aspects to the notion of the computa-
tional core of a logic: decidability, �nite axiomatizability and interpolation. The above
theorems show that, for the arrow logics of pair�frames, the border of �computational
nice behaviour� is transitivity of the universe.

In the next section, We consider expansions of the core language. The next two
theorems show that, for these expansions, transitivity also leads to negative results.
Let Q denote any subset of  E {0. l}),\, /, O, D, <>"(0 < n <  AL(K§:iH)+Q
denotes the expansion of the arrow logic .4L(K:§§H) with connectives in

THEOREM 6.2.6. Let {T} Q H C; {R,S,T}. AL(K�;:§H)-l-Q is undecidable.

PROOF. By 6.2.1 and the fact that all the expansions are conservative. QED

THEOREM 6.2.7 (ANDRé1<A). Let {T} g H Q {R,S,T}. AL(K§§§H)+Q does not
admit a �nite sound and complete ariomotization by an orthodox derivation system.

PROOF. Cf. [And91a]. QED

5 So .&#39;F is the ultra�lter frame of the ternvalgebra, factored out by the congruence {(95, 11;) : Q(EH) l-
tt ��> it}, and the valuation of the propositional variables is given by v(p) d:�e*f {u E F : p E
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Such general results are not available for interpolation and definability. We inspected
the proofs for failure of these properties, and they all seem to go through with the new
�connectives added.

CONJECTURE 6.2.8. Let {T} _C; H g; {R,S, T}. Let P be any of SCI, WCI or BD.
AL(K§§f,H)+Q does not have P.

6.2.2 ARROW LOGIC OF DIRECTED MULTIGRAPHS

We now turn to directed multigraphs. Arrow logic for directed multigraphs was �rst
studied by D. Vakarelov ([Vak92b]), using a propositional language with the four 3&#39;)
modalities. A. Arsov added the operators from relation algebras to this type (see Arsov
et al. [AM94b] and below). A. Kuhler ([Kuh94]) provided a �nite axiornatization of
arrow logic in the relational type of directed rnultigraphs and of locally square (i.e.,
re�exive and symmetric) directed multigraphs. She used the same combination of
mosaics and step�by�step construction as ours in section 4.2. Thus, this combination
of ideas can be fruitfully applied in different situations.

With multigraphs, there are several reasonable ways of de�ning composition and
converse. (For identity, there is obviously just one de�nition.) Kuhler and Arsov
used the following de�nition. A directed multigraph is a tuple (Ar, 130,0, 1) with A7�
a set of arrows (�edges�), Po a set of points (�nodes�), and O and 1 two surjective
functions from A7" to P0, providing each arrow a with its head �a(O)� and its tail
�a(1)�, respectively. (Vakarelov calls these tuples arrow structures.) �We call a directed
multigraph locally square if (Var E Ar)(3yzw E A1�) 2  = y(1),a:(1) = y(0),:c(0) =
2(0) = z( 1)&.r( 1) == w(O) 2: 112(1). Arsov and Kuhler de�ne the following arrow�frames
from directed multigraphs. Let G 2 (Ar, Po, 0, 1) be a directed multigraph. Then the
frame fa = (Ar, Cg, Fa, lg) is a multigraph ar7�ow~fmme if

lgaz <g?:f> :23(0)=a:(1)
my <-9-�i�-> w(0)=y<1)&:c(1)
C0333/Z <94-*i> mm) = y<0),y(1)

H 21(0)
2(0) & 2(1) = a:(1)

De�ne,

AK ii-I {fa 1 G� is a directed multigraph}
AKRg �g {Fa : G is a locally square directed multigraph}

THEOREM 6.2.9 (KUHLER). AK and AKR5 admit strongly complete �nite axiomati-
zations by orthodox derivation systems.

PROOF. Cf. [Kuh94]. QED

THEOREM 6.2.10. AK and AKRS enjoy Craig interpolation and Beth de�nability.

PROOF. This follows from 5.3.6, The given axioms are Sahlqvist, and correspond to
(clausi�able) Horn theories. QED
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The above�mentioned result by Arsov is the following. The ) modalities are de�ned
on multigraphs, using the functions 0 and 1, as one would expect. For instance, if M
is a model over a multigraph frame, M, 3: It (OO)q5 <§�§�&#39;{-> (Ely) : 38(0) 2 y(0) & M, y H� gt.
THEOREM 6.2.11 (ARSOV). The expansions of AK and AKR5 with the  modali-
ties admit strongly complete �nite asciomatizations by orthodox derivation systems.

Pnoos. Cf. [AM94b]. QED

THEOREM 6.2.12. The expansions of AK and AKR3 with the  modalities enjoy
interpolation and de�nability.

PROOF. All axioms are in Sahlqvist form, and correspond to universal Horn sentences.
Again, use 5.36. QED

PROBLEM 6.2.13. It is unknown whether these arrow logics of directed multigraphs
are decidable.

6.3 EXPANSIONS OF THE CORE LANGUAGE

In this section, we expand the core language with the modalities discussed in the
introduction:

0 ) modalities (sec 6.3.1)
0 slashes (without converse) (sec 6.3.2)
0 universal modality, difference operator and counting modalities (sec 6.3.3)
o Kleene star (plus the universal modality) (sec 6.3.4)

We denote expansions of an arrow logic AL(K) with a set of operators Q as AL(K)+Q.

6.3.1 CYLINDRIC DIAMONDS AND DOMINOS

The four j) modalities were studied by Y. Venema ([Ven89], [Ven91]) in twowdimensional
modal logic (i.e., directed graphs), and by D. Vakarelov and A. Arsov in the context
of multigraphs ([AM94b], [Vak92b]).

PROPOSITION 6.3.1. The four  modalities are term-de�nable in the arrow logic
/U3(K§§iz1) ??f{R»5} .C_ H:

(00)¢ +�-> (id/\(¢oT))oT (ll)q5 6--) To(id/\(Toq5))
(0l)q3 <~> (id /\(T 0  0 T (10>q5 <��> T 0 (id /\((;5 0 T))

PROOF. �Ne show one example:

(u,v) 1I� (OO)<f) $3
(31/) :  1:�) 1% <1�) <=:=> (by re�exivity and symmetry)

(u,u) 1+ id /\(¢.T) 4%
(�Ll,,�U> it (id /\(g./> 0 T)) 0 T

QED
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Let us see what happens if we add them to the arrow logic of non locally~square pair~
frames. Let AL(K§§lj) be the arrow logic of H pair�frames, expanded with the
four  modalities.

AXIOMS FOR AL(K:§§H)+(7}j). We provide complete axioms for AL(K:§§H)+(ij), to�
gether with their frame correspondents�. Note that (V1) �� (V3) are valid in multigraphs
as Well. Let H Q { R, S }, and let A?) be the following derivation system:
(i) The AL(K;§§H) derivation system
(ii) Distribution axioms and (U G) rules for the four new modalities.
(iiii) A complete axiomatization for the  reduct (cf. [Vak92b]). For 2&#39;, j, k 6 {0,1}:

(V1) p ��>  R�:�:xa: H
(W) (P/\ (W2) -+ (iJ&#39;)(q /\ (25):?) Rfircy => R_�yx 7
(Vs) (%&#39;J&#39;)(J&#39;k)P --> (it)? R�xy & R�°2/2 => R�°:vz

iv Axiomsl overnin the interpla between the old and the new connectives:8 8 Y

(V1) id /\p -�>  lac ré Rijxm
(V5) 63>}? �-> (01);) A (10);) Ferry => Rmasy & Rmasy
(V25) p 0 q -~> (00)(p /\ (10)q) /\ (11)q Cryz =,�> R.°°:cy & Rmyz & Ruxz
(V7) (02&#39;)(id Ap) �» (id /\p) 0 T Rofzvy & 13/ => Cxyx for i 6 {(),1}
(V8) (1z&#39;)(id /\p) ��> T 0 (id Ap) R�a:y & ly => Carry for i E {O, 1}

THEOREM 6.3.2. Let H Q {R, S}. The derivation system Ag,� is strongly sound and
complete with respect to AL(K:§§H)+(tj).

PROOF. For AL(K;§iRS) +  the theorem follows from the results for the core
language plus 6.3.1. VVe continue with the other cases. Strong completeness follows,
because every expanded arrow�frame .7: = (W,C, F, l,R&#39;7 )1.� j <] which satis�es (V1) -
(V3), is a zigzagmorphic image of a pair~fra.me in which the accessibility relations
for the j)�s are de�ned as one would expect. (For example, R¬,°:z:y <1i��g> $0 2- go.)
A straightforward adaptation of the graph~construction in chapter 4 will show this.
This result also follows from ArsOv�s proof ([AM94b]). He also used a step�by�step
construction to build a directed multigraph. The latter is a bit more involved, because
of the abundance of arrows in multigraphs. If we add the (not multigraph valid) axioms
(Am) - (A12) to his list, they collapse into the set of Ag?) axioms, and the constructed
multigraph will be a graph. QED

Tusomm 6.3.3. Let H g {as}. AL(K;:§,,)+(z&#39;7&#39;) is decidable.

PROOF. To show decidability of AL(K_:§ij), �ltrate a frame satisfying the At?�
axioms as was done without the (z&#39;j)�s (cf. the proof of 3.2.3), using the technique

5The correspondence between the axioms and the frame conditions (V7) and (V8) holds only as-
suming the AI,(K;§f) axioms. Without them, we should change (V7) to q /\ (0z&#39;)(id /\p) -�> (id /\p) o q,
and make a similar change for (V8).

7Assuming the AL(K:§§) axioms, axiom 4 follows from 5 and 6. We leave it for aesthetic reasons.
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described in [Vak92b] to handle the new operators. Vakarelov proves that the logic
with only the (-i j ) modalities admits �ltrations using the following trick (see [Vak92b]
Thin 4.4), Ensure that the closure set CL(X) satis�es the following condition:

if for some 2&#39;,j E {O,1},i(z&#39;j)g15 E CL(X), then for any z&#39;,j E {0, 1} : (z&#39;j)gb E CL(X)

De�ne the R� relations in the �ltration as follows:

R�*3:",y «% (V(z&#39;j)<,6 e CL(X))(Vk e {0, 1}) ; M,x t|- (ii,-)¢ <=;. M,y It (jz.:)¢

In [Vak92b] (Thm 4.4), it is shown that min and max are guaranteed, and that the
�ltration satis�es (V1) �  In the proof for the combined language, it is easy to

A show that conditions (V4) - (V8) hold as wells. � QED

THEOREM 6.3.4. Let H Q {R,S}. AL(K§::H)+(z&#39;j) enjoy interpolation and Beth
de�nability.

PROOF. Immediate from the given axiomatizations and 5.3.6. QED

COROLLARY 6.3.5. Let H g {R,S,T}.
(i) AL(K:::H)-i-(zij) admits a �nite aasiomatization ijfT ¢ H.
(ii) AL(K;:;,,)+(z&#39;j) is decidable z&#39;�"T g; H.

6.3.2 SLASHED Anaow LOGIC

We now study a version of arrow logic in which we drop the converse operator, and
have the slashes instead. We take the conjugates9 of 0 as primitive operators. The
conjugates <1 and l> of 0 are the semi~duals of the slashes, as explained in section 4.5.2.
Their meaning is given by the accessibility relation C of the or

M,:ctF¢I>1/2 <3�-§�;> 3y,z:Czy:1:&M,ylF¢&M,zH�2/2
M,:vH~¢<H/2 <§é> 3y,z:Cy:z:z&M,y|Fd>&M,zl|~1/2

On pair�frames, these de�nitions work as follows:

«N /N w\»�(L &#39;1) &#39;11,
<I5i>¢ ¢><H/)

11, �U

PROPOSITION 6.3.6. On locally square pair-frames, the similarity types {o,®,id},
{o,<l,id}, {o,[>,id} and {o,<1,{>,id} are interde�nable.

SThe only non ~»trivial part is to show (V7) and (V3). Here one should realize that, using (V6), the
implication in V7) and V3) can be strengthened to a biconditional. Then use the fact that the closure
set is closed under taking 5; Q3 (i.e., (id /\d)) 0 T and T 0 (id /\gb)). .

9The intuitive explanation of this notion is that the conjugates are the �backward looking� versions
of the operator 0, in a similar way as P is the backward looking version of F in temporal logic.
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PROOF. De�ne the triangles from converse: as in ¢ <1 1/; <�-+ q� o ®¢. To show that
this works, one only needs symmetry. On the other hand, de�ne converse from the
triangles: as in ®¢&#39;> <�+ (id <1 gt). To show that this de�nition works, one only needs
re�exivity. QED

So, on symmetric frames, we can choose the relational type, since it is easier to han-
dle. For applications however, the �slashed� version might be more natural. See, for
instance, Pratt�s action logic, with slashes as dynamic implication [Pra90b], or R0-
orda�s extension of the Lambek Calculus with Booleans ([ROo91]). The motivation for
converse is usually weaker than for composition and identity. Note, in this respect,
that the converse-~free reduct of arrow logic behaves just as nicely as arrow logic with
converse (cf. section 4.3 on reducts).

Let SAL H (for slashed arrow logic) stand for the arrow logic of type {o, <1, D, id}
over all H pair~frames (H Q {R,S, The only interesting new cases are those
with H = W or H 2 R. (The same similarity type was studied under the name
�CARL� by Sz. Mikulas in [Mik94]. In that paper only abstract arrOw~frames were
studied.) In section 4.5.2, we have seen that, without the identity constant, the four
axioms (L1) �� (L4) below, are sufficient for a complete axiomatization (of. 4.5.4). These
are well~known from the Lambek Calculus: they say that the three operations are
conjugates. If we add the identity constant, we �nd a complete axiomatization by a
straightforward implementation�) of the mosaic idea into the graplrconstruction for
the identity-free case. Here is the resulting derivation system.

AXIOMS FOR SALH. Let ASAL be the derivation system consisting Of
(i) Distribution laws and U G~rules for the modalities {o, <1, D}
(ii) Translations of the equations which axiomatize the converse-free reduct of the pair-

frames (i.e., the axiomatization of the variety SRlRd{;,;d} RRA given in table 4.2).
(iii) The conjugate axioms:

(L1) 19 - (29\<1) ~> 9, (132) q --> p\(p - (1)
(133) (11/91) 0 <1 --+ P, (L4) 10 -+ (P 0 <1)/q

(iv) Axioms which give <1 and D their �converse� behaviour. Assuming all the other
axioms, the latter correspond to the given frame conditions.

(L5) (pDid)/\(qDid)�+(p/\q)I>id lx&Ca:yz&C;cy�z:>y=y�
(L6) (id<lp)/\(id<1q)-�>id<1(p/\q) l3:&Ca:yz&C:2:yz�:>2=z�

The derivation system Affu� is obtained by adding the axiom (id OT /\ T 0 id) to ASAL.

THEOREM 6.3.7. Let H = 0) or H =: R. The derivation system A}"}AL is strongly
sound and complete with respect to SAL H.

�The trick is that one closes mosaics under �coiiverses� as defined by <3 and (>. For instance, de�ne
a (partial) function f �lac = y if and only if 3z(Cz.i&#39;y & I2), and close mosaics under this function (and
its natural dual fl�).
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PROOF. As mentioned above, this is a straightforward adaptation of earlier ideas. 
     
     QED

THEOREM 6.3.8. SAL and SALR enjoy interpolation and Beth de�nability.

PROOF. Immediate from the given axiomatization and 5.3.6. QED

CONJECTURE 6.3.9. We conjecture that SAL admits �ltrations, hence that it is also
decidable.

Since the slashes are de�nable in AL(K&#39;s"§j&#39;.H) if S E H, we have the following corollary.

COROLLARY 6.3.10. Let H Q {R,S&#39;,T}. SAL}; admits a finite axiomatization
T g; H.

6.3.3 UNIVERSAL MODALITY, DIFFERENCE OPERATOR AND COUNT-

ING MODALITIES

We quickly mention some relevant results which can be extracted from our previous
analysis.

UNIVERSAL MODALITY

PROPOSITION 6.3.11. Let H Q {R, S, T}. The universal modality O is de�nable in
AL(K;;;,, z&#39;��T e H.
PROOF. Because SP K"&#39; + is a discriminator variety i�? T E H cf. ANS94a .setH 

     
     QED

AL(K�;lH)+<) denotes the expansion of AL(K§§lH) with the universal modality <).

THEOREM 6.3.12. Let H Q {R, S}. Then AL(K§f;lH)+(> is decidable, admits a strongly
complete �nite aaziomatization, and enjoys interpolation and Beth de�nability.

PROOF. Strong completeness follows from 3.1.10. This theorem can be applied, be-
cause Cm�1S(K::§H)+ = Kffll = ZigK§:§H (cf. 4.2.3). All the axioms we add are
canonical and correspond to universal Horn sentences, so clausi�ability, whence SCI,
WCI and BD are preserved. Decidability follows from 3.1.9 and the fact that the class
Kile}, admits �ltrations (cf. 3.2.3). QED

COROLLARY 6.3.13. Let P� be any of the properties mentioned in theorem 6.3.12.
Then AL(K;g;,,)+<> has P z�r ¢ H.

DIFFERENCE OPERATOR

The difference operator D was extensively discussed in chapter 4. We added this oper-
ator to the variety of locally square relation algebras, and saw that a �nite equational
axiomatization was possible. The price paid for this extra expressive power was that
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de�nability property, by a result of I. Sain (see 5.4.14). The logic is still decidable, by
a result of Andréka, Mikulas and Németi ([AMN94]); but we do not know whether this
can be shown by �ltration.

THEOREM 6.3.14. AL(K;§lRS)+ D admits a �nite aaviomatizaiion by an orthodox deriva-
tion system, and it is decidable. The logic lacks Beth de�nabillty and interpolation.

PROOF. Finite axiomatizability follows from 4.4.3. In addition, we show how inter-
polation fails. Formula (6.1) below is a counterexample. Recall that O"�q5 stands for
�there are at least n gt--worlds�, and that, assuming the Booleans, {G1, 02} and the D
operator are interwde�nable.

l<>�(p /\ id) /\ <>�(~&#39;z> /\ id)] -+ [(<>�q /\ <>�oq) -> (<>2q V <>2&#39;*q)l (5-1)
The intuitive meaning is the obvious truth: �if there are three identity worlds, then
there are three worlds�. An interpolant can only be constructed using the constants T
and id. But then, we cannot express that there are three identity worlds (we can only
count up to two with the difference Operator). QED

REMARK 6.3.15. For stronger negative results with respect to interpolation and de-
�nability, we refer to 5.4.13 and 5.4.14. D�expansiOns for classes of pair�frames which
are larger than K;§$RS have not yet been investigated.

COUNTING MODALITIES. The counting modalities were brie�y discussed in sections 4.4
and 5.4.3. We state some known results about their addition to arrow logic of pair-
frames.

THEOREM 6.3.16 (M1KULAs»Ni�3ME&#39;r1). Let H g {R,S, T}. AL(K;§§H)+{<>" : Q <
n < w} is decidable i�&#39;T ¢ H.

PROOF. Cf. [MN 94]. QED

THEOREM 6.3.17 (MIKULAs�«N1~iMET1). AL(K�,T§§RS)+{<>" : O < n < co} is strongly
completely azriomatizable by an orthoolozz; derivation system with finitely many axiom
schemas.

PROOF. Cf. [MN94]. QED

The last theorem is an unpublished result by Németi~Sain.

THEOREM 6.3.18 (N1"i3METI��SAIN). Let H g (R, S, T} 07*}! ~_- SQ. AL(K;:§,,)+{<>� ;
0 < n < co} lacks interpolation and Beth de�nabillty.

6.3.4 THE KLEENE STAR

We start by de�ning the meaning Of Kleene * on arrow�frames, using a special acces-
sibility relation. After that, we prove our main result, roughly saying that, if a �nitely
axiornatizable canonical arrow logic admits �ltrations, we have a weakly complete �nite
derivation system for its expansion with *. Using our �ltration and axiomatization re-
sults from previous chapters, this gives us several complete and decidable *~expansions
of pair arrow logics.
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REMARK 6.3.19. Some of our results could be derived using the ideas and results in
van Benthem [Ben93]. The disadvantage of the type of proof presented there is that
for every different arrow logic, one has to adjust the argument considerably. Moreover,
most of its work is in proving the �nite frame property for the logic without *. Since
we know this already for several arrow logics, we tried to �nd a proof which separates
the latter issue from the di�iculties arising from adding *. The result (lemma 6.3.20)
is widely applicable, and provides a means of reducing the problem of axiomatizing
an arrow logic with * to the problem of finding an appropriate �ltration for that logic
without *.

MEANING OF THE KLEENE STAR. The intuitive meaning of the Kleene star on arrow��
frames is given as follows:

M, 3: it Q5� <:=:> at is a gb arrow, or .2: can be �nitely C~deco1nposed into gt arrows

Note that the star is not a modality, because it does not distribute over disjunction. It
is normal and monotonic. We make its meaning precise, using an accessibility relation
between points and sets of points. Here, we will use the concept of a mountain. Let
.77 = (W, C, F, I) be an arroW~frame. f&#39;-mountains are defined inductively:

o for all an 6 W, the tuple (a:,(ll,  is an .F~mountain
o if Cxyz, and (y,Y1,B1) and (z,Y},B2) are .77~mountains,

then (at,  U Y1 U Y3), (B1 U B2)) is an ]-&#39;�mountain
0 these are all the .7-lmountains.

Every mountain (a:,Y, B) represents a �nite decomposition of :1: into arrows from B.
We de�ne the accessibility relation for * on a frame F = (W, C, F, l) as a relation S; Q

W X �P(l/V): 
     
     Sf(a7,B) <fi=e§> (BY Q C) 2 (ac,Y, B) is an }"-mountain

This relation is completely determined by the domain of .7 and the relation C. N ow
the meaning of <,z5* can be defined as follows:

M -.� or-, v),:1: 1% ¢* <11.-�33>(ElB g W) ; S7(:c,B) & B ; [MM

If AL(K) is an arrow logic of any type containing at least the composition operator,
AL(K)+* denotes its expansion with *. Note that We do not change the class of models,
only the set of formulas and the truth de�nition.

COMPACTNESS. Let gt� stand for the disjunction of all formulas containing n copies
of Q5 separated by o�s and brackets. (E.g., q53 2 q� 0 (¢ 0 Q5) V (45 0 Q5) 0 gt.) Intuitively, ¢>*
is equivalent to the in�nite disjunction of all q�". Clearly, {�1q§" : 72 < to} l: --43*, but
gt� is always satis�able together with any �nite set of *1¢"�s. This shows that the logic
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OBTAINING COMPLETENESS. Van Benthem [Ben93] proposed the following axioms
and (unorthodox) rule for *, which are easily seen to be valid�.
(1*) 10 -+ P�
(3*) 29* -13* -* 19*

l� <5 --> 1b, l� 1/I 0 lb -> 1/I
l� 95* -9 lb

The next lemma shows that these often suffice for weakly axiomatizing �"~~expansions
of arrow logics.

*~rule

LEMMA 6.3.20 (STAR LEMMA). Let AL(K) be an arrow logic of any type containing
at least the composition operator. Suppose AL(K) is canonical and asciomatizable by
a derivation system  If AL(K) admits �ltrations, with the restriction that the
�ltration for the accessibility relation C for the composition operator is minimal, then
AL(K)+* is weakly completely aztiomatizable by the derivation system obtained from
52(2) by adding the axioms (1*), (2*) and the >z<~rule. Moreover, if AL(K) is �nitely
axiomatizable, then AL(K)+* is decidable.

REMARK 6.3.21. The restriction on the relation C is not crucial. If we do not know
that the �ltration for C is minimal, it is sufficient that the closure set C�L(X) (through
which we �ltrate) satis�es (<b* E CL(X) => (b* 0 CW� 6 CI/(X Since the �ltrations we
used in chapter 3 for arrow»~frames are minimal for C, this Weaker version of the lemma
is suf�cient here.

PROOF OF LEMMA 6.3.20. Let AL(K) be a canonical arrow logic which admits �l-
trations with the mentioned restriction, and which is axiomatizable by  Let 5203*)
be the derivation system obtained from 52(2) by adding the * axioms and rule. We have
to show that S2(E*) forms a Weakly complete axioinatization of AL(K)+*. So assume
Q(E*) l7� qb. Let M = (.7-",v) be the canonical model� of the derivation system S2(E*).
Because AL(K) is canonical, and We assumed that the derivation system is complete
for AL(K), the frame .77 is a member of K. The problem with this model (due to the
failure of compactness) is that it includes ultra�lters containing a formula ib* without
any �Witness� 2/)". Hence, such an ultra�lter cannot be �finitely C�decomposed into �l,b
arrows�. We will solve this problem by creating a �nite model.

Let X �75 be the set of subforrnulas of gb. This set will contain formulas of the form if�.
From the point of View of the old logic, these mean nothing, so we can just regard them
as propositional variables�. Then X �-9 can be viewed as a (�nite) set of formulas in

11 At the frame level, (1*) and (2�) correspond to
conditions V.�ES�7:flI{£l2} and Cmyz & .S"7�yB1 & SJEZB2 => Sfx(B1 U B2), respectively. The following
version of the rule is valid for global consequence.

<2» =9� 1/2, 1/� 212 l=9�° is
-"���T>"T=737/3"""�

12 See footnote 5 for a de�nition.

�Note that the only important thing is the outermost " subformula (ie, (1) 0 q")� is regarded as a
propositional variable).
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the old (*-free) language. By assumption, we can �ltrate the canonical model through
a set C�L(<é) Q X V�, obtaining a �nite model M* 2 (.7-�*,v*), in which the relation C is
de�ned minimally. De�ne v* only on the �real� propositional variables. Recall that We
used F to denote the domain of the frame .7, and that a �minimal filtration� meant

that 
     
     def

C*:�1:�,§,�z&#39;<==> (Eluvw E F) :Cuvw&f=iZ&&#39;3&#39;/&#39;2 �&�§=�fu&#39;

Note that we also use a superscript * to denote the �ltration. (In this proof, a super-
script * only denotes the Kleene star if it is attached to a formula.) By assumption,
.7� E K and .7-"* is �nite. We are almost ready if we can prove the truth�lemma:

CLAIM 1 (TRUTH LEMMA). (T) (Vtb E CL(q£-))(Vw E F) :1,b 6 �iii <=> M*,mu~ 7,/;

PROOF� OF CLAIM. By induction on the complexity of 112. By assumption, we can
perform the inductive proof for all connectives except * (because min and max are
satis�ed for all the �old� modalities). For *, we need additional work. In the sequel, we
use 6�� to denote the formula which uniquely describes the point E in the filtration�.
For every formula 1/2* in the closure set, we de�ne a formula which describes the set of
points in the �ltration where 112* holds by the truth de�nition. De�ne this formula as:

«pit �*2?� \/{6�� : M�m n~ 2/;*}

Because F� is finite, Wt is a formula.

CLAIM 2. (V¢* E C�L(c;S)) : S2(Z3*) l- gb* <-�> «pit.

PROOF OF CLAIM. Suppose that W� E C7L(gb). We start with the easy side.
Q(Z*) F 1/J# ��-+ v,[J*. Suppose that $99� 6 w, for an arbitrary w E F. We have to show
that ii)� E w. By the de�nition of 1/2# and the truth de�nition, we should show that
(6.2) below holds (this is suf�cient, because 1/2* E E <:=> 1,!� E

[(ElY C C*) : (iD&#39;,Y, B) is an .7:*-(mountain ] & B Q {[1/JEM. => 15* E W (6.2)

We do an induction on the �height of the mountains�, measured by the cardinality
of the set Y. So we do a double induction. Call the induction hypothesis for the
t1�utl1�l¬II11�I1a lHl, and the one for this claim IH2. �

[Y] = 0. Suppose (E, (ll, B) is an .77*~--mountain and B Q [[1/J]]M.. Then, by de�nition,
B :2 {T17}, whence M*,�zU H- 2/). But then, by H11, 7,!) E 717, and by axiom (1*), 7/2* E E.

ll�) =: 72+ 1. \/Ve may assume that (6.2) holds for all smaller Y. Suppose (TD, Y, B) is
an .77*~mountain and B Q . By definition of mountains, we can �nd :1]??? such that
C""i7,&#39;g7,�f, and (:77, Y1,B1) and (}:7,Y2, B2) are }"*~»mountains with Y = (Y1UY§U(E,§,Tz� ),
B =2 (B; U B2), and Y, and Y2 are strictly smaller than Y. So IH2 implies that 12* E E

�See (HC84] p.137 how one can de�ne such a formula. Note that, u ECLW) &#39;1) <22:-> l� 6� <�> 6�
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and W� 6 T2�. Now we use our assumption of a minimal de�nition for C and compute

C*&#39;z7,y,;~&#39;& z,b* 6 :z7& w* E 2&#39; ¢==> (assumption)
(3u,v,:z:) : Cuv:z:&�&#39;:= �w&#39;,&#39;27= y&�a?= :z�& ¢* 6 y& 211* E 22> (because W E CL(¢))
10* E v & W E :6 => (by de�nition of C)
W o W E u => (axiom (2*))
1/)� E u :> (because W� E C&#39;L(¢>) and ii = 7:17)
112* E "v7

This �nishes the first half of the claim. The crucial step for the other half is the next
claim.

CLAIM 3. For all 6��,6� belonging to 1/J#, Q(§3*) |� 6"� o 6� ��> 2/)#.

PROOF OF CLAIM. Suppose otherwise. Then 6"� 0 6� /\ -v¢:# is consistent. Let u be
a maximally consistent extension of 6�� 0 6� A ~w,b# (that is, an ultrafilter containing
6"� 0 6" A --1/)#). Then the canonical frame 7: has 10�, v� with Cuw�v&#39; & 6"� E w� & 5" E 12�.
Hence in the �ltration, C*TL&#39;,1�u", 5. By de�nition of �l�#, To� It 1/2*&"u� H- 2,b*, hence� It ¢r*o2/)*.
Thus, �ii l: W and 6� belongs to 2/2#�, whence F 6� �-> «Ni and 1,/;# E u, a contradiction.

4

To prove SZ(Z") l- 1,b* --�> ip#, we now proceed as follows. We have t� 1/1 �-> 113*�, since
I- it <-�> V{6�� : �¢ 6 w} by propositional logic and the fact that 1,!� E C&#39;L(gz�>). By claim 2,
using distribution of 0 over V: F 1%� 0 wt �-> 1/;#. So, by the =c<�rule, l- 1,b* ��> 2/2#. 4

Now we are ready to �nish the proof of the trutlrlemma with the inductive step for *.
Suppose that 211* ¬ CL(<;5). Then 1/)� 6 @345 ?/J* E w <:==> (claim 2) 1,59% 63 w 422:»
6Wew&M*,2�u�«+zp*<i�1�?§>M*,�u;&#39;«+2p*. 4

We now conclude our main proof. Henceforth, We may assume that (T) holds for all
formulas in C&#39;L(¢). Now, since Q()3*) if q�, there exists a w E F (the universe of the
canonical frame) such that ¢ ¢ w: whence, by (T), M*,&#39;27 1)� (15. Since M* is an AL(K)+"
model, We have AL(K)+* bf: gt. This proves weak completeness. Because M* is �nite,
we have also shown that AL(K)+* has the �nite frame property. If the old logic is
�nitely axiomatizable, the expansion is �nitely axiomatizable, so it is also decidable.

QED

APPLICATIONS or THE STAR LEMMA

THEOREM 6.3.22. Let H <__I_ {R, S}. The logic AL(K§§lH)+* admits a weakly complete
aatiomatization by the AL(K;§lH) derivation system extended with azcioms (1*) and (2*)
and the *�rule. *

THEOREM 6.3.23. Let H Q {R,S�}. The logic AL(K::§H)+* is decidable.

We prove the two theorems together.
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PROOF. Let H Q {R,S&#39; Lemma 4.2.3 states that the class of arroweframes Km,
(cf. 2.4.8) equals the class of zigzagrnorphic images of the class of pair-frames Kg��.
lt follows that AL(K::§H)+* is equivalent to AL(K:f},)+*, because the meaning of *
is determined by the accessibility relation C of the composition operator. But then,
it suf�ces to prove the theorem for the arrow logics AL(K�,&#39;;�}1»)+*. These logics are
canonical, �nitely axiomatizable, and ~by the proof of 3.2.3~ they allow �ltrations in
the restricted sense of lemma 6.3.20. Now apply that lemma. QED

Once T E H , the old arrow logic becomes undecidable, hence its corresponding class
of frames cannot allow �ltrations, and the above proof does not go through. We have
our usual corollary. lnterpolation and de�nability must await further investigations.

COROLLARY 6.3.24. Let H g {R,S,T}.
(i) AL(K§§{H)+* admits a weakly complete �nite axiomatization  T ¢ H .
(ii) AL(K:�§H)+* is decidable i�"T ¢ H.

EXPANSION WITH THE UNIVERSAL MODALITY. A debatable aspect of the above
theorem is that its derivation system is unorthodox, because We added an inference
rule. With the universal modality O in the language, we can replace the *~rule with
axiom (3*):

(3*) D((p �> 4) /\ (q -q -> 61))--> (p* -+ <1)

If E1 is the dual of the universal modality, this axiom is valid on pair~frames, and we
can derive the xwrule from it. The next theorem states that we can also axiomatize

this expansion of AL(K:§$H)+*.

THEOREM 6.3.25. Let H Q {R,.S&#39;}. AL(K§:iH)+{*,<>} admits a weakly complete
aaziomatization by the following derivation system:

(i) The AL(K§f;§H) derivation system
(ii) An 55 aariomatization for 0 (cf. e.g., [HC84])
(iii) Axioms (8);: ��> Op and p 0 q �+ Op /\ <>q for the interaction of O with the
old connectives�

(iv). Axioms (1*), (2*) and (3*) for the Kleene star.

Timonm 6.3.26. Let H g {R,S}. AL(K;g;,,)+{*,<>} is decidable.

We prove the two theorems together.

PROOF. We give a proof~-sketch. Take the canonical model M = (.73, V) of the deriva-
tion system given in the theorem. Filtrate it as described in the proof of 3.2.3. De�ne
the relation U* for the O in the �ltration by U "55,? <�£�§�f&#39;> (Oil) 6 3:� <:=> 02,!) E  Then
(by Thin 8.7 in [HC84]), this is a �ltration and U * is an equivalence relation. Since
both the relations for composition and converse are de�ned minimally, the axioms in
(iii) hold. De�ne the star in the filtration. and use the Star Lemma to prove the truth~~
lemma. Suppose the point which falsi�ed the non»-derivable formula was �iii. Generate
the subframe from FIE. Here the formula is still falsi�ed, and U * will be the universal

�Note that p� ~�+ Op is derivable.
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relation. Clearly this frame is �nite. Because its frame validates all the arrow-logical
axioms, it is a zigzagmorphic image of a pair~fra.me in which 0 is the universal modal-
ity. Since the meaning of star is determined by the relation CV for the composition
operator, the formula. will still fail in this pair-frame. QED

6.4 Two��SoRTED ARROW LOGIC

One can also develop a two sorted arrow logic of pair~frames, as proposed by van
Benthem ([Ben93]) in the context of abstract arrow�frames. This logic can reason
about two domains: both states and transitions. The new language has appropriate
modalities to reason within the two domains, and to reason about connections between
them. In de Rijke [Rij93], the importance of rnany~sorted modal logics is stressed.
All applications mentioned there can also be performed in our framework, without
occurring undecidability.

THE CONNECTIVES. The proposed logic has a two�sorted language of state asser~
tions (with rneta~�variables qt, 1/), . .  and transition formulas or programs (with n1eta~�
Variables 7r1,7r2, . .  Two new connectives, taken from propositional dynamic logic,
provide the connection between the two sorts:

M,xH- (7r)q5 <§.=�§:> (3y):M,(:1:,y)lt7r&M,yH-gz�
M,(a3,y)ll�¢>�.7 <éi&#39;§§> 9:=y&M,:rl+~gb

Van Benthem proposed three simpler connectives� from which these two can be de-
fined (see 6.4.3 below). Note the similarity of L and R with the operators 5}, and 5&#39;1�,
respectively�.

M, (say) It Lgb <9_"�_�°:~ M,:c 1+ 96
M, (a:,y) It R45 <7�-i&#39;�§°:» M,y H� gt
l\/1,512. it Dr <d=¬3=f&#39;> M, (a:,2:) It 7r

Schematically, we can represent the language as follows (see van Benthein [Ben91a],
for an explanation of the concepts mode and projection):

�-> modes ��>

L, R, 7
propositional logic arrow logic

interpreted on states interpreted on transitions
<�- projections 4-

D,

�In the terminology of [Ben91a], D is the only perrnutation-invariant projection which is a Boolean
homomorphism, and L and R are the only such modes which are Boolean homomorphisms.

�Please do not confuse D with the difference operator D. This D stands for diagonal, and L and
R for le� and right, respectively.
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The D and �.7 connectives make most sense in re�exive pairvfrarnes. If we have a
symmetric domain as well, Ld> and R35 become interde�nable. Hence, from now on we
will work in this class of frames.

DEFINITION 6.4.1. State assertions ST and programs PR are the smallest sets satis-
fying:

o {qg : 2&#39; < w} Q ST and, if (15,?!) 6 ST and 7r 6 PR, then -1gé,(qbV&#39;:/2),D7r 6 ST
0 {pi : i < w}U{id} Q PR, and if 7l&#39;1,7l&#39;g 6 PR and Q5 6 ST, then -�7r1,(7r1U7r2),®7r1,

(W10 7F2),L¢ E

Here, ��-� denotes the negation of a program, �U� the disjunction of two programs
(for conjunction, we use ��H��). For the Boolean top, we use �T�, for the arrow logical
one, we use �1�. We will use ��->� for material implication in both sorts. Now we can
de�ne propositional dynamic arrow logic of locally square pairvframes.

DEFINITION 6.4.2. DAL�,-T is a triple (Fml, Mod, 1%) in which:

0 Fml :2 ST U PR

0 M 2 (Ar,P0,vPR,v5T) is a D/lL,,,,,�, model if Ar is a re�exive and symmetric
binary relation with base Po, and VPR : {pg : 71 < cu} ��> �P(A&#39;r) and VST : {q,~ :
i < w} ����> P(Po) are valuation functions for the propositional variables in PR
and ST, respectively. Mod is the class of all such models.

o W gives meaning to the formulas in every model. ST~formulas are interpreted on
the set P0 (of states) and PR~f0rmulas on the set Ar (of arrows) as one would
expect for the given connectives. For the new connectives, it was de�ned above.

The next proposition shows that DAL,,a,~, is strong enough to capture the mode and
projection from PDL.

PROPOSITION 6.4.3. On re�exive and symmetric pair-frames, the languages
{o,®,id,L,D} and {o,®,id,?,  are equally earpressrue.

PROOF. First, We express R,�? and  in DALPW, just as in [Ben93]. We need
symmetry of the universe for the first, and reflexivity and symmetry for the last clause.

R05 H ®(L¢)
$7 <�-> id �L¢3
(7r)¢> <�> D(7r 0 Lo)

On the other hand, with 7 and  as primitives, one can express L and D as follows:

Lqb H (W01
D7? 4-> (ld�7«�)T

For these definitions, only re�exivity is needed. QED
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DECIDABILITY

THEOREM 6.4.4. DALW, is decidable.

PROOF. We can give a direct proof, adjusting our previous �ltration. An easier way
is provided by the fact that in AL(K§§§R5), one can encode all the state assertions of
DAL,,,,,«,., viewed as programs which hold only at identity arrows. De�ne the following
inductive translation function ° from DALI,�-T formulas to arrow logical formulas:

I9? = P2� qf� = <1.-Hid
(-70° �" -&#39;(7F°) (�&#39;<.«�>)° = -(¢°)md

(7HU7r2)° = 7F§�U7?§ (¢V1/�)° = (¢°U1/J°)md
(L¢)° = (id�q5°)o1 (D7r)° = 7r°�id

id° = id

(®7r)° = ®(7F°)
(7T1�7T2) -"-� (77i"7T§)

An easy induction shows that a formula. is DAL,,a,~, valid if and only if its translation
is AL(K::§RS) valid. (Cf. Brink et al. [BBS94] for a similar translation). But then, We
can decide DALW-T formulas in the decidable logic AL(K§§lR5). QED

COMPLETENESS

Next, we provide a complete axiomatization for DALI,�-,.. As in chapter 4, we first
de�ne abstract DAL frames, then we restrict that class to a suitable class KM, and
show that every frame from K4,� is a zigzagmorphic image of a DALWT frame.

DEFINITION 6.4.5.  .7 2 (Ar,Po,C,F,l,l,d) is a DAL frame if  A7� is a set
(of arrows), (2) P0 is a set (of begin and end points of arrows), (3) (Ar, C, F, l) is an
arrow-frame, (4) l : A1� ���-a P0 is a function (providing each arrow with its starting
point), and (5) d : P0 ���-> Ar is a function (providing each point with the identity
arrow on that point). The meaning of the two new connectives on these frames is:

(Viz; 6 Ar): M,:r {F L45 <=d�4&#39;> M,l(ar) H� ¢
(Vw¬Po): M,wH~ D71� <§�-8;} M,d(w)H-7r

(ii) Kdu; is the class of all DAL frames which satisfy:

(D9) conditions (C1) -� (C15) from section 2.4.318
(D1) l and d are total functions
(D2) (Vw E Po) : l(d(w))
(D3) (Vw E P0) :10 2 l(d(w))
(D4) (Vz E Ar) : Ix => as :
(D5) (Vary 6 Ar) : Czcyzr & lg => l(:z:) =

18These are the requirements on (Ar, C, F,l) which suffices for a. representation as a re�exive and
symmetric pair�-frame.
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(iii) Let V Q U X U be a symmetric and re�exive relation. De�ne .7-"R(V) (Elf (V, V},, CV,
F1/,lV,lV,dV), in which V0 : Base(V), the relations CV, FV, IV are de�ned as in sec�
tion 2.4, and (�V�(a,&#39;v) E V) : lv((a,v)) = 11, and (V11) 6 V5) : dV(w) = (112,211). These
frames are called DAL�,-, frames.

THEOREM 6.4.6. DAL,,,,,»,. is strongly completely azniomatizable by adding the follow�
ing axioms to the basic derivation system.�

(DA0) all AL(K::iR5) axioms
(DA1) L and D distribute over negation
(DA2) Did
(DA3) DLQ5 4-) gb
(DA4) id -�-> (LD7r <~�> 71&#39;)
(DA5) (id �Lqt) o 1 <�+ Lq�

PROOF. Soundness is easy to check. As for completeness, it is easy to see that any
DAL frame satis�es the axioms iff it satis�es conditions (D0) � (D5) (because all
axioms are Sahlqvist formulas). So, by the now familiar argument, it suffices to show
that any frame .7: 6 K4�; is a zigzagmorphic image of some frame 5&#39;-��R(V), for V a
re�exive and symmetric relation. The relevant �two~�sorted zigzagmorphisrn� works
as follows: Let T: <AT&#39;F, PoF,CF, FF, IF, lF,dF) and Q: (ATG, PoG,CG, FG, IG, lG,dG)
be in K,g,,1. The functions 12 1 ATP �-�-> Ara and p* : POF ��-> P00 constitute a
zigzagmoiphism if (1) p is a zigzagrnorphism for the C,F,l part,  p* is surjective,
and (3) (Via G POF) :p(dF(w)) 2 dG(p*(w)) and (V1: 6 ATP) :p*(lF(:::)) = lG(p(:r)).

Let F = (Ar,Po,C,F,|,l,d) E Kdaz. By lemma 4.2.3, the reduct (Ar,C,F,l) is
a zigzagmorphic image of some locally square pairmframe (V, CV, FV, Iv), say by the
function p : V �-��+ Ar. Take the frame f�R(V) and de�ne p* : V0 ��-> Po as p*  =
l(P(dv(w)))-
CLAIM. The functions p and p� form a. zigzagmorphism from f7Z(V) onto .7.

PROOF OF CLAIM. We have to show that (1) p* is surjective, (2) p(dv(�w)) = d(p*(w))
and (3) p*(lV,(a:)) =  Let us compute.

(1) Suppose w 6 P0, then d(w) 6 A7". Because 13 is surjective and (by condition
(D2)) l(d(w)), there is some :1: E V such that p(:c) = d(w) & |V(;1r). Since I;/(:29), also
.~c =(dv<a>, whence pm)  l(P(dv(3?o))) = z<p<$>> = z<cz<w>> �i� w-_

(2) Let in 6 VI). Then, by de�nition, I;/(dv(w)), whence by assumption, |(p(dV(w))),
by (D4)? P(dV(w)) = d(l(P(dv(w))))f1(P*(w))-
(3) Let it E V. Then, by definition, CV:l7,dV(lV(£l2)),£U and lVclV(lV(a:)). Because p

is a zigzagmorphism, Cp(:c),p(dV(ly(x))),p(:c) and lp(clV(ZV(:r))). Then, (D5) implies
that z<p<a:>> = z<p<dV<zv<w->>>> �iii *<zv<x>>. em»

DEFINABILITY AND INTERPOLATION

THEOREM 6.4.7. DAL,,M-T enjoys Craig interpolation and Beth (le�nability.

19I.e., we add (U0) rules for L and D and distribution axioms L(q V q�) v» (Lg U Lqf  and
D(p U p�) 6*)� (Dp V Dp&#39;) to the basic derivation system for arrow logic de�ned in 6.1.2.
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PROOF. Immediate by the given axiomatization, the frame correspondents and 5.3.6. 
     
     QED

CONCLUSION. We have seen that making arrow logic two�sorted can be done without
losing any of the positive properties of the one~sorted system. This is also the conclu-
sion of [Ben93] in the context of Kripke frames. What is new here is that the logic can
be given a natural pair~frame semantics, which is �nitely axiomatizable. This logic

� also behaves well from the computational point of view: it is decidable and it has the
interpolation property.

6.4.1 CONNECTIONS WITH OTHER SYSTEMS

PROPOSITIONAL DYNAMIC LOGIC. We brie�y compare DALI,�-,. with propositional
dynamic logic (PDL). As we have seen, the Kleene star can be added to the arrow
logical part of DALJW, , which yields a PDL��like system over locally square pair�«frames.
For this comparison, de�ne that subclass of KM; in which composition is associative,
namely: Kj�f iizef {F 6 Kda; : .7: }= 7r] 0 (W2 o 723;) H (7r1 0 772) 0 713;}. (Remark 2.4.11 gives
the frame correspondent of this axiom.) Note that K53? validates all RA axioms, so it
inherits all negative properties of RA.

PROPOSITION 6.4.8.  Every *~f7°ee PDL formula which is valid in PDL, is also
valid in 32",�.
(ii) All *~free PDL axioms, except (7r1)(7rg)q5 �+ (7r1 0 7r2)</5, are valid in Kdal.

PROOF. The validities follow from a straightforward computation. The following
DAL�,-, model is a counterexample for (7r1)(7r2)q5 ��> (W1 0 7r-,;)g/). Its domain consists
of the set (2{u,v} U 2{v,w}). Let v5T(q) 2: {w}, vPR(p1) = {(u,v)}, and vPR(p2) =
{(v,w)} Then u H� (p1)(pg)q, but u ly� (pl op2)q.

U 
     
     � 6.3

p/  < >
It �LU,q 

     
     QED

WEAK PEIRCE ALGEBRAS

Peirce Algebras are discussed in Brink et al. [BBS94] and in de Rijke [Rij93]. They have
several applications in computer science and knowledge engineering. De Rijke ([Rij93]
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PEIRCE ALGEBRAS. We copy the de�nition from [Rij93l. A Peirce Algebra is a two
sorted algebra (£R,�J3, :f) in which SR E RA and 98 6 BA. The binary operator �z� is
a function from R X B to B, called Peirce product, and the unary operator �C� is a
function from B to R. The operators which form the connections between the two
sorts have to satisfy (P1) � (Pg) below.

(P1) 7�3(<1>V1l�)=(7FI¢)V(7T=¢) (P5) 01<J5=0
(P2) (7r1 V 7r2) : g/> = (713 :¢) V (vrg : <15) (P5) 7r�� &#39; ��(7r :  3 ��qS
(P3) 7V1 3(7"23¢)=(7T1§7F2)1<l5 (P7) <J5C 1�-¢
(P4) idzg/>245 (Pg) (7r:1)°=7r;1

The intended models are subalgebras of direct products of tWo�sorted algebras
((.7,,a,:,(U X U))+,�,}3(U), (.).,L) for some set U.

PEIRCE ALGEBRAS AND D.4LI,a,-T. As We have seen,  and D are interde�nable
in DAL,,,�~,. So the intended models of Peirce Algebras are that subclass of DALW,-T
models in which the set of pairs is a full Cartesian square. Axiomatically, the only
difference between the relational part of Peirce Algebras and that of DAL,,,,,;, is that in
Peirce Algebras composition is associative, While in DAL,,,,,~, it is only weakly associa-
tive. The next proposition tells us that this is the only important difference between
DALW, and Peirce Algebras. Here are the trivial translations from the above axioms
into the DALI,� language.

(Pl) <vr><¢»vz/)>«�+<«>qsv<vr>~ (Pg) <o>¢«--»i
(P4) (7nU7r2)</><-+(7r:)<z5V(7T2)¢ (.2) <®vr>-<vr>as-~»~¢
(P4) (&#39;rr1)(7r2)<1>+-�>(m°7r2)<I5 <P4> <L¢>T«->¢
(P4) <2d>«;>«�»¢ (Pg) L<vr>i&#39;«-mi

PROPOSITION 6.4.9. (i) DALW, l: (P1�),(P;£),(Pg,_),(P;),(Pg),(Pg),(P;),(P�_).
(ii) DALW be (Pé..), (PL)-
(iii) K327 (Pl) - (Pl)-

PROOF.  By direct calculation. (ii). For (P§_,), this was proved in 6.4.8. We give
a counterexample to L(7r)T �-> 71&#39; o 1. Let the domain of model M be the re�exive and
symmetric closure of {(u, 1)), (u,w)} and set vPR(p) =  Then (mm) It L(p)T,
but (u,w)lVpn1.

V (6.4)
(iii). By direct calculation. QED

Thus, 3:? is at least as strong as the logic of Peirce Algebras. Conversely, consider
the class of Representable Weak Peirce Algebras (RWPA), whose relational component
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consists only of subalgebras of complex algebras of locally square pairframes. (l.e., an
RWPA is an algebra of the form (ERAS, (.).,L) with :R _<_ (fW,~,(V))+ and Q5 3 ¬]3(l/5),
for a re�exive and symmetric relation V with base V0.) By proposition 6.4.3, the
algebraic version of DAL,,,,,~, is (term~de�nably equivalent to) the class RWPA. All
earlier positive results for DALW,-r, which do not hold in Peirce Algebras, carry over
to RWPA, So the strategy of obtaining positive results by widening the class of models
to the �logical core�, also works for Peirce Algebras.

6.5 CONCLUDING REMARKS

We did two things to obtain computationally well~behaving versions of arrow logic of
pair~~frames. First, we weakened the requirements on the universes. We saw that tran-
sitivity of the universe forms the borderline between positive and negative behaviour.
Second, we strengthened the expressive power of the wel1�behaving arrow logics. We
saw that in most cases it is possible to add connectives while keeping the positive re
suits, and that for these strengthened logics the borderline is again transitivity. For
further �ne~tuning, We learned the following. First, strengthening the derivation sys-
tem Q({p 0 (q 0 7*) <�> (p 0 q) 0 r}) with axioms valid on square pair�frames, leads to
undecidability (Thm 3.2.2). Second, adding operators like D, which lead to a lim�
ited way of counting, result in the loss of interpolation and Beth de�nability. Further
research in this area could consider the following questions:

1. We only focused on decidability vs. undecidability. What are the changes in
complexity if we change the models or the vocabulary?

2. We always assumed all Booleans. What is the precise role of them in the negative
results? (For some answers, see [AKN+94] (on (un)decidability) and Andréka
[And89], [And91b] (for �nite axio1natizability).)

3. How far can we_ go with strengthening the vocabulary�? l.e., which expansions
lead to undeeidability, or lack of �nite axiomatizability?

4. In which areas of? for instance, computer science can we fruitfully apply the de-
cidable non�associative arrow logics instead of the undecidable relation algebras?

5. Where can we fruitfully apply the decidable nonwcommutative F0 logics? Is it
possible to explain the abundance of decidability in modal logic by showing that
all decidable logics can be interpreted in a fragment of a decidable F0 logic?
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SAMENVATTING

We onderzoeken verscheidene verzwakte vormen van eerste orde logica en van de Iogica
van binaire relaties die Wordt gegeven door representeerbare relatie algebras. De be-
langrijkste reden om de twee welbekende en veel gebruikte logicas te verzwakken is hun
complexiteit: de theorie van beide systemen is onbeslisbaar. Deze logicas Worden niet
alleen toegepast in gebieden Waar deze complexiteit nodig is, zoals in de wiskunde, ma,a.r
ook in tal van andere disciplines (informatica, linguistiek, sociale Webenschappen) waar
de problemen vaak eenvoudiger (i.e., beslisbaar) zijn. Om deze reden is het gewenst om
nieuwe versies te ontwikkelen die Wat betreft semantiek en uitdrukkingskracht zo dicht
mogelijk bij het origineel staan, maar die een beter computationeel gedrag vertoneh.

In eerste orde logica komt de verandering er op neer dat, gegeven een model M 2
(D, I ), de verzameling bedelingen slechts een deelverzameling is van �� D, en niet, zoals
in het klassieke geval, gelijk is aan ���D. In hoofdstuk 3 tonen We beslisbaaxheid aan
van zo�n verzwakte eerste orde logica met behulp van �ltratie. In hoofdstuk 5 kijken
we naar de Craig interpolatie en Beth de�nieerbaarheid van de zwakkere logicas.

De verzwakking van de logica van binaire relaties is door J. van Benthem �ar-
row logic�, of �pijl�logica�, gedoopt. Dit is een modale logica, geinterpreteerd op een
vetzameling pijlen, met modaliteiten voor compositie en converse van pijlen, en een
(constante) modaliteit die aangeeft dat het begin� en eindpunt van een pijl dezelfde
is. In dit werk identi�ceren we pijlen met het paar (beginpunt, eindpunt). We on-
derzoeken het gehele spectrum van pijklogicas Waar het domein van de modellen een
binaire relatie is die voldoet aan een combinatie van de eisen {re�exiviteit, symmetrie,
transitiviteit, Cartesisch product}. In� hoofdstuk 3 kijken We naar beslisbaarheid, in
het volgende hoofdstuk naar eindige axion1atiseerbaa.rheid, en in hoofdstuk 5 naar in-
terpolatie en Beth de�nieerbaarheid. Onze resultaten zijn in één zin samen te Vatten:
een pijI�logi(:a heeft één of meer van deze positieve eigenschappen clan en slechts dan
alleen als de domeinen van de modellen niet noodzakelijk transitieve relaties zijn.

Het onderzoek wordt uitgevoerd binnen het raamwerk van de algebraische logica.
Dit betekent dat we eerst de algebraische tegenhangers Van de logische systemen bestu�
deren, en dan do resultaten vertalen naar de logische kant. In hoofdstuk 6 plukken
we de vruchten voor pijl�logica van de voorafgazmde algebraische studie. Daarnaast
onderzoeken We enige uitbreidingen van de taal. Daar zien we hetzelfde beeld als
voorheen: transitiviteit vormt de grens tussen positieve en negatieve computationele
eigenschappen.

165





Titles in the ILLC D1&#39;sse1�ta.tion Series:

Transsentential Meditations; Ups and downs in dynamic semantics
Paul Dekker

ILLC Dissertation series 1993-1

Resource Bounded Reductions

Harry Buhrman
ILLC Dissertation series 1.99512

Efficient M etamathematics
Rineke Verbrugge
ILLC Dissertation series 1993~3

Extending Modal Logic
Maarten de Rijke
ILLC Dissertation series 1993-4

Studied Flexibility
Herman Hendriks
ILLC Dissertation series 1993-5

Aspects of Algorithms and Complexity
John Tromp
ILLC Dissertation series 1993~6�

The Noble Art of Linear Decorating
Harold Schellinx

ILLC Dissertation series 1994-1

Generating Uniform User�Interfaces for Interactive Programming Environments
Jan Willem Cornelis Koorn

ILLC Dissertation series 1.994-2

Process Theory and Equation Solving
Nicoline Johanna Drost

ILLC Dissertation series 1.9.94-3

Calculi for Constructive Communication, a Study of the Dynamics of Partial States
Jan Jaspars
ILLC Dissertation series 19944

Eayecutable Language De�nitions, Case Studies and Origin Tracking T echniqnes
Arie van Deursen

ILLC Dissertation series 1.9.94~5

Chapters on Bounded Arithmetic E3 on Provability Logic
Domenico Zambella



ILLC� Dissertation series 1994-6
Adventures in Diagonalizable Algebras
V. Yu. Shavrukov

ILLC� Dissertation series 1.9.94-7

Learnable Classes of Categorial Grammars
Makoto Kanazawa

ILLC Dissertation series 1994-8

Clocks, Trees and Stars in Process Theory
Wan Fokkink

ILLC Dissertation series 1994-9

Logics for Agents with Bounded Rationality
Zhisheng Huang
ILLC Dissertation series 1994-10

On Modular Algebraic Prototol Speci�cation
Jacob Brunekreef

ILLC Dissertation series 1.995-1

Investigating Bounded Contraction
Andreja Prijatelj
ILLC Dissertation series 1995-2

Algebraic Relativization and Arrow Logic
Maarten Marx

ILLC Dissertation series 19.95-3


