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person; to Juan José, for remaining close even after moving to Silicon Valley;
and to Gabriel, Javier, Adrio, and Sebas, for years of dungeons and dragons and
music and books.

Coming back to the subject of the thesis, I want to thank again Balder, Bre-
anndán, Carlos and Rosella for the stimulating work we did together and for
allowing me to use material from it here; Aline for helping me with the samenvat-
ting; Marco Vervoort, for his very handy timetable for making sure a promotion
happens when and as planned; Ria Rettob and Marjan Veldhuisen for all their
help.

Finally, I wish to thank my supervisors, Maarten and Jan, for taking the risk
of allowing a relative outsider to the field (me) to come into the ILLC, for giving
me the right mix of guidance and freedom, for being there whenever I needed
help of any sort, and for all I learned with them.

Amsterdam Juan Heguiabehere
October, 2003.

x



Chapter 1

Introduction

The purpose of computing is insight,
not numbers.

– Richard Hamming

1.1 What is Logic good for?

Formal logic is the study of necessary truths and of systematic methods for clearly
expressing and rigorously demonstrating such truths.

When confronted with a modeling task, logic can be used to capture a situation
(a property of the world, a machine state, a cognitive state, the state of a database,
. . . ); given the inference mechanisms allowed by the logic, we can then derive
implicit or explicit information about the situation being modeled. During its
long history, logic has been used to analyze phenomena ranging from planning
in robotics or scheduling in railways to natural language processing [CGM+97,
BBKdN98, CGV02]. The value of logic as a tool comes from its power to validate
complex assertions; if the premises are true and our reasoning is correct, our
conclusion is guaranteed to be also true.

In this thesis we are interested in “classical” logics, that is, in logics that work
on exact (“crisp”) input and that only admit two truth values: true and false.
While this may not always be the best choice, it is very much the norm for the
settings in which we are interested in in this thesis: modal and hybrid satisfiability
testing and dynamic first order logic theorem proving.

1.2 Working with Logic

Logic is useful in any context in which the notion of inference is relevant. In
particular, logic can be used to certify that computer programs perform their

1



2 Chapter 1. Introduction

assigned task (if formally stated) [Hoa69], or that reactive systems have the de-
sired behavior, or that a theory is consistent. Sometimes, however, the task of
determining whether or not a statement follows from a theory is so huge as to be
intractable for humans; this led to the development of programs to automate the
inference tasks [Rob65, DP60, Smu68]. More specifically, automated tools exist
to support the following reasoning tasks (among others)

• satisfiability checking: the task of determining whether a given formula or
set of formulas in a certain logic is possibly true.

• validity checking: the task of determining whether a given formula or set of
formulas in a certain logic is necessarily true.

• model checking: the task of determining whether a given formula in a certain
logic is true, given a model.

• model generation: the task of finding out which model, if any, makes a given
formula true.

But there is also a further reason to develop general-purpose automated reasoning
tools: Having a computer program carry out the reasoning tasks lets us experi-
ment with theories, concentrate on the modeling tasks, handle bigger problems
than we could on our own. Ideas become more tangible, and if a tool is well
implemented, it is possible that people will use it for things the authors never
dreamed of. In a sense, having a reasoning tool empowers a logic to come out
of the books and get its hands dirty (hopefully for a clean cause). This thesis is
then about automated reasoning tools : how one can make a tool for automated
reasoning, how to tell if it is any good, how to make it better, and how it can be
useful.

In this thesis we will focus almost exclusively on satisfiability checking. The
purpose of this work is to explore some of the algorithms that enable computers
to perform automated satisfiability checking, as well as their implementation and
assessment. We will discuss some of the ways in which logic can be put to use
through automated reasoning, and the importance of testing in the evolution of
automated reasoning tools.

1.3 The Road Ahead

The rest of this thesis is organized in two main parts. Part I, Evaluation in Modal
and Hybrid Theorem Proving, deals with current and existing efforts in the field
of modal and hybrid logic theorem proving, and the importance of evaluation in
the design and comparison of theorem provers as well as in the evaluation of the
benchmarks themselves. In Chapter 2 we’ll review the evolution of benchmarking
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in modal logic theorem proving, and introduce a hybrid logic benchmark. In
Chapter 3 we talk about the different methods for translating Modal Logic to
First Order Logic (FOL), to take advantage of the years of development that went
into FOL theorem proving, and how different methods compare. In Chapter 4 we
describe another approach to theorem proving in non-classical logics: developing
your own specialized theorem prover. We describe the theory and implementation
of HyLoRes, a resolution-based theorem prover for hybrid logics; we also describe
how testing was an integral part of development.

In Part II, Programming with Dynamic First Order Logic, we explore the use
of Dynamic First Order Logic (DFOL) as a programming language. In Chap-
ter 5 we give some background to the ‘formulas as programs’ paradigm; we in-
troduce the concept of an executable interpretation of DFOL(∪, σ), and describe
two increasingly faithful approximations to the interpretation. In Chapter 6 we
explain why DFOL(∪, σ) is a good candidate for a programming language and
describe a Hoare calculus for it. In Chapter 7 we describe a tableau calculus for
DFOL(∪, σ) which gives an even better approximation to the executable inter-
pretation of DFOL(∪, σ) and can be used as a programming language engine, and
in Chapter 8 we describe the implementation of such an engine and show some
example runs.

In Part III, Conclusion, we reflect on what was learned from Parts I and II,
what they had in common, and where they would meet.

Parts of Chapter 2 were originally published in [HdR01] and [AH03]; Chapter 3
contains material from [AGHdR00]; Chapter 4 is an extension of [AH02a]. Most
of Chapter 7 was originally published in [vEHN01].

Before embarking on our trip, we will review the notions and notation required
for reading the material in later chapters. In addition, the next few sections
provide the reader with an overview that should help situate the logics and issues
investigated in this thesis.

1.4 A Plethora of Logics

We present now the general logical framework in which this work is set. Outside of
propositional logic [GvMW00], the best known logic, the one which has the most
tools developed for it, is First Order Logic (FOL). The satisfiability problem for
first order logic is undecidable, in spite of which a myriad of reasoning tools exist;
see [CAS]. These tools have reached impressive levels of optimization, but the fact
remains that the underlying problem is undecidable. So, if the problem at hand
can be stated in terms of a less expressive logic which has a decision procedure,
that’s already an improvement (at least in principle). Also, sometimes FOL does
not offer the right perspective for the task at hand, so that a logic with the
same expressive power, yet different syntax or semantics, will be better suited.
Specifically, the following three logics will play a leading role in this thesis:
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PDLModal Logic

Hybrid LogicsDPL PDL w/names

FOL
too small

too small too smallwrong approach

specializes

generalizes

inspires

DFOL

too small

DFOL Hoare

Figure 1.1: Relationships between the logics introduced

• first order logic [Fit96].

• modal and hybrid logic [BdRV01].

• dynamic first order logic [GS91].

But we will encounter even more logics. In Figure 1.1 we provide a diagrammatic
overview of the logics we will shortly introduce. The labels on the arrows indicate
some aspect of the relation between the logics involved.

We will now provide formal definitions as well as some examples and discus-
sions that should help understand their raison d’être.

1.4.1 First Order Logic

First order logic, by far the most widely studied logic, was first formulated in 1879
by Frege. It provides a formal framework for quantified expressions of the form
‘all computers use Windows’ or ‘there is a computer that does not crash’. Even
though it cannot quantify over properties, its satisfiability problem is already
undecidable: for some sentences of FOL, it is not possible to ascertain whether
they could be true or not. We will now introduce the logic proper.

1.4.1. Definition. [Syntax] Let REL be a countable set of relational symbols,
each with its own arity, let FUN be a countable set of function symbols, each with
its own arity, and let CON and VAR be countable sets of constant and variable
symbols respectively. We call S = 〈REL,FUN,CON,VAR〉 a signature. The well-
formed terms over this signature are defined as follows:

TERMS := c | x | f(t1, . . . , tn),
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where c ∈ CON, x ∈ VAR, f ∈ FUN with arity n, and t1, . . . , tn ∈ TERMS. The
well-formed formulas over the signature are

FORMS := > | R(t1, . . . , tn) | ¬φ | (φ1 ∧ φ2) | ∃x(φ),

where R ∈ REL with arity n, t1, . . . , tn ∈ TERMS, x ∈ VAR and φ, φ1, φ2 ∈
FORMS. We take ∨,→,↔ and ∀ as defined symbols.

1.4.2. Definition. [Semantics of FOL]: A model over a signature S is a pair
M = (D, I), where D is a nonempty set, called the domain of M, and I is an
interpretation; to every f ∈ FUN of arity n, it associates a function fI : Dn → D,
and to every R ∈ REL of arity n, a relation RI ⊆ Dn. To every element c of
CON, it associates an element of D. An assignment in a model M = (D, I) is
a mapping g : VAR → D. Given an assignment g for M, x ∈ VAR and m ∈ D,
we define gx

m (an x-variant of g) by gx
m(x) = m and gx

m(y) = g(y), for y 6= x.
Now, given a model M and an assignment g every term in the language can be
evaluated to an element of D:

I(x) = g(x)

I(f(t1, . . . , tn)) = I(f)(I(t1), . . . , I(tn)).

And the satisfiability relation, then, is as follows:

M |= >[g] always

M |= R(t1, . . . , tn)[g] iff I(R)(I(t1), . . . , I(tn))

M |= ¬φ[g] iff M 6|= φ[g]

M |= φ1 ∧ φ2[g] iff M |= φ1[g] and M |= φ2[g]

M |= ∃x(φ)[g] iff M |= φ[gx
m] for some m ∈ D.

1.4.2 Restrictions

Sometimes the full expressive power of FOL is not necessary; in those cases, we
might be able to model our problem using logics that are less expressive but more
tractable. It is also possible that a logic is as complex as FOL, but is better suited
at describing the situation at hand. In this subsection we review a small number
of restrictions of first order and second order logic.
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Modal Logic. Modal logic is a powerful and flexible tool for working with re-
lational structures [BdRV01]. It’s very well behaved, robustly decidable [Var97],
and allows us to reason about relational structures such as those found in math-
ematics, computer science and linguistics. Modal and modal-like logics such as
temporal logic, description logic, and feature logic, have had a long history in
artificial intelligence, both as an area of foundational research and as a source
for useful representation formalisms and reasoning methods [FHMV95, HS97],
and the recent advent of agent-based technologies and the Semantic Web have
dramatically increased the need for efficient automated reasoning methods for
modal logic [FHMV95, PSHvH02]. But there are things that can’t be expressed
in modal logic: the gains in decidability have a price in expressiveness.

1.4.3. Definition. [Syntax] Let REL be a countable set of relational symbols,
and PROP a countable set of propositional variables. The well-formed formulas
of the modal language ML in the signature 〈REL,PROP〉 are

FORMS := > | p | ¬φ | φ1 ∧ φ2 | [R]φ

where p ∈ PROP, R ∈ REL and φ, φ1, φ2 ∈ FORMS.

The operator 〈R〉 is defined as ¬[R]¬, i.e. they are dual operators.

1.4.4. Definition. [Semantics] Given a signature 〈REL,PROP〉, a (modal) model
M is a triple M = 〈M, {Ri}, V 〉 such that M is a non-empty set, {Ri} is a set
of binary relations on M , and V : PROP → Pow(M).

Let M = 〈M, {Ri}, V 〉 be a model, m ∈ M . Then the satisfiability relation
is defined as follows:

M,m 
 > always
M,m 
 p iff m ∈ V (p), p ∈ PROP

M,m 
 ¬φ iff M,m 6
 φ
M,m 
 φ1 ∧ φ2 iff M,m 
 φ1 and M,m 
 φ2

M,m 
 [R]φ iff ∀m′.(R(m,m′) =⇒ M,m′ 
 φ)

Modal logic allows us then to talk about properties of elements of a given domain,
which are themselves connected to each other by one or more relations. What
we can’t do with modal logic, however, is tell these elements apart; two different
elements of the same model can satisfy the same set of modal formulas and
therefore be indistinguishable to the logic. Now, we could go back to FOL, but
we can also see if we can add expressive power to the modal language and still
preserve decidability. This has been carried out in a number of ways, as we shall
see below.
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Hybrid Logics. In hybrid logics, the relational structures of modal logics are
kept, but we add the capability to refer to individual elements of M , thus going
beyond the expressive power of modal logic. Some of the additions increase
the complexity of the satisfiability problem, while others go so far as making it
undecidable, but basically hybrid logics can be tailored so that their expressivity
and complexity are matched to the problem at hand. Hybrid logics can be said to
span the expressivity and complexity gap between modal logic and FOL; see [HyL]
for a thorough introduction and extensive bibliography. Still, hybrid logics are
not the only way in which one can extend modal logic; we’ll look at some more
ways later.

1.4.5. Definition. [Syntax] Let REL be a countable set of relational symbols,
PROP a countable set of propositional variables, NOM a countable set of nominals,
and SVAR an infinite, countable set of state variables. We assume that these sets
are pairwise disjoint. We call SSYM = NOM∪SVAR the set of state symbols, and
ATOM = PROP ∪ NOM ∪ SVAR the set of atoms. The well-formed formulas of
the hybrid language H(@, ↓) in the signature 〈REL,PROP,NOM, SVAR〉 are

FORMS := > | a | ¬φ | φ1 ∧ φ2 | [R]φ | @sφ | ↓x.φ,

where a ∈ ATOM, x ∈ SVAR, s ∈ SSYM, R ∈ REL and φ, φ1, φ2 ∈ FORMS.

Note that all types of atomic symbol (i.e., proposition symbols, nominals and
state variables) are formulas. Further, note that the above syntax is simply that
of ordinary (multi-modal) propositional logic extended with clauses for @sφ and
↓x.φ. Finally, the difference between nominals and state variables is simply that
nominals cannot be bound by ↓, whereas state variables can.

The notions of free and bound variable are defined as in first order logic, with
↓ as the only binding operator. A sentence is a formula containing no free state
variables.

The basic hybrid language is H, basic modal logic extended with nominals.
Further extensions are usually named by listing the added operators; we are
interested in the logics H(@) and H(@, ↓), which also adds state variables.

1.4.6. Definition. [Semantics] A (hybrid) model M is a triple M = 〈D, {Ri}, V 〉
such that D is a non-empty set, {Ri} is a set of binary relations on D, and
V : PROP ∪ NOM → Pow(D) is such that for all nominals i ∈ NOM, V (i) is a
singleton subset of D.

An assignment g for M is a mapping g : SVAR → D. Given an assignment g,
gx

m is defined as for FOL. Assignments are not needed when dealing with H(@).

Let M = 〈D, {Ri}, V 〉 be a model, m ∈ D, and g an assignment. For any
atom a, let [V, g](a) = {g(a)} if a is a state variable, and V (a) otherwise. Then
the satisfiability relation is defined as follows:
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M, g,m 
 > always
M, g,m 
 a iff m ∈ [V, g](a), a ∈ ATOM

M, g,m 
 ¬φ iff M, g,m 6
 φ
M, g,m 
 φ1 ∧ φ2 iff M, g,m 
 φ1 and M, g,m 
 φ2

M, g,m 
 [R]φ iff ∀m′.(R(m,m′) =⇒ M, g,m′ 
 φ)
M, g,m 
 @sφ iff M, g,m′ 
 φ, where [V, g](s) = {m′}
M, g,m 
 ↓x.φ iff M, gx

m,m 
 φ.

Named elements can now be distinguished, and we can express properties
which were not expressible before: the formula (↓x.[R]¬x) is true in every element
of a model if and only if the accessibility relation R for that model is irreflexive,
something not expressible in modal logic.

Propositional Dynamic Logic. While Propositional Dynamic Logic(PDL) is
a modal logic, by all accounts, it is not a restriction of first order logic (as modal
and hybrid logic), but rather a restriction of second order logic. Propositional
Dynamic Logic deals with actions as modalities; usually, the represented actions
are atomic programs, and the elements of the domain therefore reflect the relevant
state of the computer running them. With this interpretation in mind, many
natural operators on programs (i.e., relations) suggest themselves, such as ∪ (non-
deterministic choice), ; (sequential composition), and the Kleene star ∗ (iteration).
See [HKT84] for a thorough introduction. Here’s a brief overview of the standard
repertoire of PDL operators, with their intended meanings:

[α]A After every execution of α, A holds
α1;α2 Do α1 and then do α2

α1 ∪ α2 Do either α1 or α2 non-deterministically
α∗ repeat α some finite number (possibly zero) of times
A? Test A; continue if A is true, otherwise fail.

1.4.7. Definition. [Syntax] Let AP be a set of atomic programs, and PROP a
set of atomic formulas. Then the formulas A and the programs α are defined as:

FORMS := ⊥ | p | A1 → A2 | [α]A,
PROGS := π | α1;α2 | α1 ∪ α2 | α∗ | A?

where p ∈ PROP, π ∈ AP, A,A1, A2 ∈ FORMS, and α, α1, α2 ∈ PROGS.

1.4.8. Definition. [Semantics] A model for this language would be a structure
of the form M = (S, {Rα : α ∈ PROGS}, V ) with Rα a binary relation on S for
each program α and V : PROP → S a valuation. We want to consider models
that reflect the intended meanings of the program combinations; a model is con-
sidered standard if the Rα satisfy the following conditions:
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Rα1∪α2
= Rα1

∪Rα2
,

Rα1;α2
= Rα1

Rα2
= {(s, t) | ∃v(sRα1

v ∧ vRα2
t)},

Rα∗ = (Rα)∗ =
⋃

k<ω(Rα)k,
RA? = {(s, s)} | s |= A},

The semantics of a PDL formula, then, are as follows:

M, s 
 ⊥ never
M, s 
 p iff s ∈ V (p)
M, s 
 A1 → A2 iff M, s 
 A1 implies M, s 
 A2

M, s 
 [α]A iff sRαt implies M, t |= A

Combinatory PDL. Next we consider an extension of PDL: Combinatory
PDL [PT85, PT91], which adds nominals and the universe program. This brings
about a huge increase in expressive power, accompanied by undecidability. The
main insight behind Combinatory PDL was the search for a dynamic logic that
would allow for an axiomatic definition of the intersection between two modalities;
this is particularly relevant for parallel, or concurrent, computing [Pel85].

1.4.9. Definition. [Syntax] Let AP and PROP be the sets of atomic programs
and atomic formulas, as in PDL, and NOM be the set of names. The letter
ν 6∈ NOM ∪ PROP ∪ AP will be called the universe program. Then the formulas
FORMS and programs PROGS of the language are defined as:

FORMS := ⊥ | p | n | A1 → A2 | [α]A,
PROGS := π | ν | α1;α2 | α1 ∪ α2 | α∗ | A?

where p ∈ PROP, π ∈ AP, n ∈ NOM, A,A1, A2 ∈ FORMS, and α, α1, α2 ∈
PROGS.

1.4.10. Definition. [Semantics] A model for CPDL is a quadruple M = (M,R, χ, V ),
where M is a non-empty set (the set of states), and the other three are functions:

R : PROGS → Pow(M 2),
χ : NOM →M ,
V : FORMS → Pow(M),

R satisfies the following requirements:

Rν = M2,
Rα∪β = Rα ∪Rβ,
Rα;β = RαRβ = {(s, t) | ∃v(sRαv ∧ vRβt)},
Rα∗ = (Rα)∗ =

⋃

k<ω(Rα)k,
RA? = {(s, s)} | s |= A}
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where sRαt is (s, t) ∈ Rα.
Given this model, the semantics of CPDL are as follows:

M, s 
 ⊥ never
M, s 
 n iff s = χ(n), for n ∈ NOM

M, s 
 p iff s ∈ V (p)
M, s 
 A1 → A2 iff M, s 
 A1 implies M, s 
 A2

M, s 
 [α]A iff sRαt implies M, t |= A

1.4.3 Extensions

After having reviewed a number of restrictions of first order and second order
logic, we will now examine some extensions of first order logic that play an im-
portant role in this thesis.

Dynamic First Order Logic

Dynamic Predicate Logic (DPL) was introduced by Groenendijk and Stokhof [GS91]
as a first step towards a compositional, non-representational theory of discourse
semantics. Like we did with hybrid logics, we will now present the family of
dynamic first order logics, obtained by using DPL as a base logic and extending
it with additional operators, some of which we will use to arrive at an useful
executable program interpretation.

The difference between DPL and first order logic proper resides mostly in their
semantics, in that the meaning of a DPL sentence is not captured by its truth
conditions but by the way it changes the information state of the interpreter; a
sentence takes us from one state of information to another, and its meaning is
given by how it does so [GS91]. This feature of DPL makes it very straightforward
to supply it with an executable program interpretation, with the advantage that
any programming language based on such an interpretation will have a clear and
natural semantics.

For example, the FOL formula φ1 ∧ φ2 is true in a model M under an as-
signment g iff both φ1 and φ2 are true under that assignment, while in DPL the
formula φ1;φ2 (sequential composition, the DPL analogue to ∧) carries us from
an assignment s to an assignment u iff there is an assignment t such that φ1 car-
ries us from s to t and φ2 carries us from t to u. We will now formally introduce
DPL.

1.4.11. Definition. [Syntax of DPL] Let PRED be a countable set of predicate
symbols, each with its own arity, and let CON and VAR be countable sets of
constant and variable symbols respectively. The DPL language is then given by
the following production rules:

TERMS := v | c
FORMS := ∃v | P t̄ | t1

.
= t2 | ¬(φ) | φ1;φ2
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where v ∈ VAR, c ∈ CON, P ∈ PRED, t, t1, t2 ∈ TERMS, and φ, φ1, φ2 ∈ FORMS.

DPL has been extended with a variety of operators, some([Vis98, GS90]) coming
from the original linguistic perspective and some [vEHN01] from the ’formulas as
programs’ perspective; a survey of extensions of DPL can be found in [tCvEH01].
In this work we will consider the logics resulting of the extension of DPL with
operators for nondeterministic choice (φ ∪ φ), explicit substitutions (σ), local
variable declaration (∃∃ v(φ)) and iteration (φ∗), as well as the inclusion of function
symbols in the signature. We will give the name Dynamic First Order Logic
(DFOL) to the extension of DPL with function symbols.

1.4.12. Definition. [DFOL and Extensions] Given a signature for FOL, the
syntax for DFOL and extensions is the appropriate fragment of the following:

TERMS := v | c | f(t1, . . . , tn) (Terms)
FORMS := ∃v | P t̄ | t1

.
= t2 | ¬(φ) | φ1;φ2 | (φ1 ∪ φ2) | (Formulas)

| (φ1 ∩ φ2) | ∃∃ v(φ) | σ | σ̆ | φ̆ | φ∗

where v ∈ VAR, c ∈ CON, P ∈ PRED, f ∈ FUN, t1, t2, . . . , tn ∈ TERMS, and
φ, φ1, φ2 ∈ FORMS. We will write t̄ for (t1, . . . , tn). The names for the extensions
are given as DFOL(X), where X is a subset of {∪,∩,∃∃ , σ, σ̆, }̌. A substitution σ
is a function VAR → TERMS that makes only a finite number of changes, i.e.,
σ has the property that dom(σ) = {v ∈ VAR | σ(v) 6= v} is finite. We will use
rng(σ) for {σ(v) | v ∈ dom(σ)}. During the rest of this work, we will use the
letters ρ, θ, σ to denote substitutions. An explicit form (or: a representation) for
substitution σ is a sequence

[σ(v1)/v1, . . . , σ(vn)/vn],

where {v1, . . . , vn} = dom(σ), (i.e., σ(vi) 6= vi, for only the changes are listed),
and i 6= j implies vi 6= vj (i.e., all variables in the domain are mentioned only
once). We will use [] for the empty substitution, i.e. the substitution that has
empty domain and therefore changes nothing. We will call these representations
bindings. A definition we will need is the one of syntactic composition of bindings:

1.4.13. Definition. [Syntactic composition] The syntactic composition of two
bindings θ and ρ (notation θ ◦ ρ) is defined in the following way:
Let θ = [t1/v1, . . . , tn/vn] and ρ = [r1/w1, . . . , rm/wm] be binding representations.
Then θ ◦ ρ is the result of removing from the sequence

[θ(r1)/w1, . . . , θ(rm)/wm, t1/v1, . . . , tn/vn]

the binding pairs θ(ri)/wi for which θ(ri) = wi, and the binding pairs tj/vj for
which vj ∈ {w1, . . . , wm}.
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We will omit parentheses where it doesn’t create syntactic ambiguity, and
allow the usual abbreviations: we write ⊥ for ¬([]), ¬P t̄ for ¬(P t̄), t1 6= t2 for
¬(t1

.
= t2), φ1 ∪ φ2 for (φ1 ∪ φ2). Similarly, (φ→ ψ) stands for ¬(φ;¬(ψ)), ∀v(φ)

for ¬(∃v;¬(φ)), φn for (φ; · · · ;φ
︸ ︷︷ ︸

n

) and
⋃v

M..N φ for (([M/v];φ) ∪ · · · ∪ ([N/v];φ)),

assuming M,N ∈ N and M ≤ N . A formula φ is a literal if φ is of the form P t̄
or ¬P t̄, or of the form t1

.
= t2 or t1 6= t2. The complement φ of a formula φ is

given by: φ := ψ if φ has the form ¬(ψ) and φ := ¬(φ) otherwise. We abbreviate
¬¬(φ) as ((φ)), and we will call formulas of the form ((φ)) block formulas.

We can think of formula φ as built up from units U by concatenation. For
formula induction arguments, it is sometimes convenient to read a unit U as the
formula U ; [] (recall that [] is the empty binding), thus using [] for the ‘true’
formula. This formula has the same semantics as U ; see Definition 1.4.16. In
other words, we will silently add the [] at the end of a formula list when we need
its presence in recursive definitions or induction arguments on formula structure.

Binding in DFOL(σ,∪)

The extension of DFOL that we will be using as the core of most of Part II is
DFOL(σ,∪); DFOL augmented with nondeterministic choice and simultaneous
bindings. Here follow some definitions and results that we will need later on.

Bindings θ are lifted to (sequences of) terms and (sets of) formulas in the
familiar way:

1.4.14. Definition. [Binding in DFOL(σ,∪)]

θ(ft1 · · · tn) := fθ(t1) · · · θ(tn)

θ(ρ) := θ ◦ ρ

θ(ρ;φ) := (θ ◦ ρ)φ

θ(∃v;φ) := ∃v; θ′φ where θ′ = θ\{t/v | t ∈ TERMS}

θ(P t̄;φ) := Pθt̄; θφ

θ(t1
.
= t2;φ) := θt1

.
= θt2; θφ

θ((φ1 ∪ φ2);φ3) := θ(φ1;φ3) ∪ θ(φ2;φ3)

θ(¬(φ1);φ2) := ¬(θφ1); θφ2

Note that it follows from this definition that

θ(((φ1));φ2) = ((θφ1)); θφ2.

Thus, binding distributes over block: this accounts for how ((· · ·)) insulates dy-
namic binding effects.
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The composition θ ·ρ of two bindings θ and ρ has its usual meaning of ‘θ after
ρ’, which we get by means of θ · ρ(v) := θ(ρ(v)). It can be proved in the usual
way, by induction on term structure, that the definition has the desired effect,
in the sense that for all t ∈ T , for all binding representations θ, ρ: (θ ◦ ρ)(t) =
θ(ρ(t)) = (θ · ρ)(t).

Here is an example of how to apply a binding to a formula:

[a/x]Px; (Qx ∪ ∃x;¬Px);Sx

= Pa; [a/x](Qx ∪ ∃x;¬Px);Sx

= Pa; ([a/x]Qx;Sx ∪ [a/x]∃x;¬Px;Sx)

= Pa; (Qa;Sa; [a/x] ∪ ∃x;¬Px;Sx)

The binding definition for DFOL fleshes out what has been called the ‘folklore
idea in dynamic logic’ (Van Benthem [vB96]) that syntactic binding [t/v] works
semantically as the program instruction v := t (Goldblatt [Gol92]), with seman-
tics given by s[[v := t]]Mu iff u = s[[[t]]Ms /v]. To see the connection, note that
v := t can be viewed as DFOL shorthand for ∃v; v = t, on the assumption that
v /∈ var(t). To generalize this to the case where v ∈ var(t) and to simultaneous
binding, auxiliary variables must be used. The fact that we have simultaneous
binding represented in the language saves us some bother about these.

In standard first order logic, sometimes it is not safe to apply a binding to a
formula, because it leads to accidental capture of free variables. The same applies
here. Applying binding [x/y] to ∃x;Rxy is not safe, as it would lead to accidental
capture of the free variable y. The following definition defines safety of binding.

1.4.15. Definition. [Binding θ is safe for φ]

θ is safe for ρ always

θ is safe for ρ;φ : ⇐⇒ θ ◦ ρ is safe for φ

θ is safe for P t̄;φ : ⇐⇒ θ is safe for φ

θ is safe for t1
.
= t2;φ : ⇐⇒ θ is safe for φ

θ is safe for ∃v;φ : ⇐⇒ v /∈ var(rng θ′) and θ′ is safe for φ

where θ′ = θ\{t/v | t ∈ TERMS}

θ is safe for ¬(φ1);φ2 : ⇐⇒ θ is safe for φ1 and θ is safe for φ2

θ is safe for (φ1 ∪ φ2);φ3 : ⇐⇒ θ is safe for φ1;φ3 and θ is safe for φ2;φ3

Note that there are φ with [] not safe for φ. E.g., [] is not safe for [y/x]∃y;Rxy,
because [y/x] is not safe for ∃y;Rxy.

Given a first order signature and a model M = (D, I), the semantics of DFOL is
given as a binary relation on the set DVAR, the set of all variable maps (valuations)
in the domain of the model. We impose the usual non-empty domain constraint
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of FOL: any DFOL model M = (D, I) has D 6= ∅. If s, u ∈ DVAR, we use
s ∼v u to indicate that s, u differ at most in their value for v, and s ∼X u to
indicate that s, u differ at most in their values for the members of X. If s ∈ DVAR

and v, v′ ∈ VAR, we use s[v′/v] for the valuation u given by u(v) = s(v′), and
u(w) = s(w) for all w ∈ VAR with w 6= v.

M |=s P t̄ indicates that s satisfies the predicate P t̄ in M according to the
standard truth definition for classical first order logic. [[t]]Ms gives the denotation
of t in M under s. If σ is a substitution and s a valuation (a member of DVAR),
we will use sσ for the valuation u given by u(v) = [[σ(v)]]Ms . Then, the semantics
of DPL and its extensions is defined inductively:

1.4.16. Definition. [Semantics of extensions of DPL]

s[[∃v]]
M
u iff s ∼v u

s[[P t̄]]
M
u iff s = u and M |=s P t̄

s[[t1
.
= t2]]

M
u iff s = u and [[t1]]

M
s = [[t2]]

M
s

s[[¬(φ)]]Mu iff s = u and ¬∃t with s[[φ]]Mt

s[[φ1;φ2]]
M
u iff ∃t s.t. s[[φ1]]

M
t and t[[φ2]]

M
u

s[[φ1 ∪ φ2]]
M
u iff s[[φ1]]

M
u or s[[φ2]]

M
u

s[[φ1 ∩ φ2]]
M
u iff s[[φ1]]

M
u and s[[φ2]]

M
u

s[[∃∃ v(φ)]]Mu iff ∃s′, u′ s.t. s ∼v s
′, u ∼v u

′, s′ [[φ]]u′ , and [[v]]Ms = [[v]]Mu

s[[σ]]Mu iff u = sσ

s[[σ̆]]Mu iff s = uσ

s[[φ̆]]Mu iff u[[φ]]Ms

s[[φ
∗]]Mu iff s = u or ∃t s.t. s[[φ]]Mt and t[[φ

∗]]Mu

We will denote by [[φ]]Ms the set of all assignments u such that s[[φ]]Mu .

The connection between syntactic binding and semantic assignment is formally
spelled out in the following:

1.4.17. Lemma (Binding Lemma for DFOL(σ,∪)). For all models M, all
M-valuations s, u, all formulas φ, all bindings θ that are safe for φ:

s[[θφ]]Mu iff s[[θ;φ]]Mu .

Proof. Induction on the structure of φ. a

Immediately from this we get the following:

1.4.18. Proposition. DFOL(σ,∪) has greater expressive power than DFOL(σ,∪)
with quantification replaced by definite assignment v := d.
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Proof. If φ is a DFOL(σ,∪) formula without quantifiers, every binding θ is safe
for φ. By the binding lemma for DFOL(σ,∪), φ is equivalent to a DFOL(σ,∪)
formula without quantifiers but with trailing bindings. It is not difficult to see
that both satisfiability and validity of quantifier free DFOL(σ,∪) formulas with
binding trails is decidable, while DPL is known to be as expressive as FOL [GS91],
which is undecidable. a

In fact, the tableau system presented in Chapter 7 constitutes a decision
algorithm for satisfiability or validity of quantifier free DFOL(σ,∪) formulas,
while the trailing bindings summarize the finite changes made to input valuations.

The Lattice of DPL Extensions. The following figure represents the lattice
of all possible extensions of DPL with operators from {∪,∩, ,̌ σ, σ̆,∃∃ } (union, in-
tersection, converse, simultaneous substitution, converse substitution, hiding) [tCvEH01].
It indicates which operators can be defined in terms of which; the labels on the ar-
rows indicate counterexamples to equal expressivity, i.e., formulae from the lower
language that don’t have a counterpart in the upper language.

DPL,DFOL(̌ )

DFOL(σ)

[f(x)/x
]

DFOL(∪), DFOL(∪, )̌

∃x∪∃y

DFOL(σ̆)

[f(x)/x]ˇ

DFOL(∪, σ)

∃x∪∃y [f(x)/x
]

DFOL(̌ , σ), DFOL(̌ , σ̆)
DFOL(σ, σ̆), DFOL(̌ , σ, σ̆)

[f(x)/x
]

[f(x)/x]ˇ

DFOL(∪, σ̆)

∃x∪∃y

[f(x)/x]ˇ

DFOL(∪, ,̌ σ), DFOL(∪, ,̌ σ̆)
DFOL(∪, σ, σ̆), DFOL(∪, ,̌ σ, σ̆)

∃x∪∃y
[f(x)/x

][f(x)/x]ˇ

DFOL(X ⊆ {∪,∩, ,̌ σ, σ̆,∃∃ })
where X ∩ {∩,∃∃ } 6= ∅

∃∃x(x=y;∃y;Rxy)

Note that all 64 combinations of the six operators are present in the diagram.
The diagram makes immediately clear which extensions of DPL are closed un-
der converse: precisely those which are in the same node of the lattice as the
corresponding version of DPL with converse operator. Adding Kleene star gives
an isomorphic lattice for DFOL(∗) and its extensions: none of the distinctions
collapse because the same counter-examples to equal expressivity still work.
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1.5 The Correctness Problem

How do we know if a program will always perform the task it was written to carry
out? We can do some trial runs for which we know the intended output, but that
is not a guarantee of correctness; the process is only informative if the program
fails, or if we can run it on every possible input, which is usually not feasible.
But we can turn to logic for an answer: in general, the purpose of a program is
to achieve a desired state transformation, and a specification is a “declarative”
description of such a transformation. That is, it specifies the desired net effect
of a transformation without concerning itself about how this effect is achieved in
a particular implementation. The classical method of Hoare [Hoa69] presents a
specification as a pair (A,B) of expressions in a FOL over an underlying data
structure, meaning that the task of the required program is to bring the data
structure from any state satisfying A to a state satisfying B. Then, a way of
checking whether a program fulfills a specification is to have a language that lets
us talk about specifications and programs and a calculus that lets us reason in
that language. If we can prove that the calculus preserves correctness and covers
all the possible correct combinations, then we can check any program against its
specifications, or use the calculus to help build the program.

1.5.1 Alma-0 : Executable First Order Logic

The correctness analysis of a program in the manner just described is made much
simpler if the programming language has a faithful translation into logical for-
mulas: this is one of the insights behind the Alma-0 programming language (see
[AB98, ABPS98]). Alma-0 extends a subset of Modula-2 (an imperative program-
ming language) with a number of declarative constructs inspired by the logic
programming paradigm. A translation is given from the extensions into FOL,
and the semantics of the extensions is then stated in terms of an executable in-
terpretation of FOL [Apt00, Ver03]. We will give more details on this perspective
in Chapter 5, where we give the executable program interpretation of DFOL.

1.5.2 DFOL and correctness

In the usual correctness reasoning, we distinguish between partial and total cor-
rectness, the difference being that total correctness ensures termination. In
DFOL, negation is expressed as a test of failure to terminate successfully; there-
fore, even for partial correctness we must examine at the same time both cor-
rectness and termination. We distinguish two main kinds of correctness rules
for DFOL: universal and existential. The existential rules guarantee termination
and the existence of at least one output state which satisfies the postcondition,
while universal rules are equivalent to partial correctness: i.e. they guarantee that
all resulting states will satisfy the postcondition but do not guarantee successful
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termination. We express existential correctness by (A)φ(B), and universal cor-
rectness as {A}φ{B}. Total correctness is proved when we derive both universal
correctness and existential correctness for the same program, although > will suf-
fice as the postcondition for the existential case. Of course, existential correctness
might result in a different precondition, but then the conjunction of the universal
and existential preconditions will guarantee total correctness. Formally, the two
kinds of correctness boil down to the following:

M |= (A)φ(B) ⇐⇒ ∀g (M |=g A =⇒ ∃h (g[[φ]]Mh ∧M |=h B))

M |= {A}φ{B} ⇐⇒ ∀g (M |=g A =⇒ ∀h (g[[φ]]Mh =⇒ M |=h B))

1.5.3 Dynamo

Dynamo is an imperative programming language whose semantics are defined in
terms of DFOL(∪, σ), in a similar manner as Alma-0 is defined in terms of an
executable interpretation of FOL. The Hoare calculus for DFOL(∪, σ) mentioned
above is then directly applicable to Dynamo. Dynamo programs have a purely
declarative dynamic semantics. There are no side effects, and no control features.
See Van Eijck[vE98a, vE99b] for a more thorough introduction.

Figure 1.2 introduces the Dynamo syntax by means of a translation to the
language of DFOL. The translation fixes the intended meaning of every Dynamo
construct.

Figure 1.2: Translation from Dynamo to DFOL.

({S1; . . . ;Sn})
◦ := S◦

1 ; . . . ;S
◦
n

({S1| . . . |Sn})
◦ := S◦

1 ∪ . . . ∪ S
◦
n

(true)◦ := []
(false)◦ := ¬[]
(t1 = t2)

◦ := t1
.
= t2

(P t̄)◦ := P t̄
(some v)◦ := ∃v
(some v1, . . . , vn)◦ := ∃v1; . . . ;∃vn

(v := t)◦ := [t/v]
(v + +)◦ := [(v + 1)/v]
(find v in [N..M ] with S)◦ :=

⋃v
M..N S

◦

(do N times S)◦ := (S◦)N

(if S1 S2 else S3)
◦ := (¬¬S◦

1 ;S
◦
2) ∪ (¬S◦

1 ;S
◦
3)

(let v1 = t1 · · · vn = tn in S)◦ := [t1/v1, · · · , tn/vn];S◦

(not S)◦ := ¬S◦
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1.6 The Role of Evaluation

Usually, theoretical studies are not enough to provide sufficient insight on the
effectiveness and behavior of complex systems such as satisfiability solvers. For
one thing, worst-case complexity analysis is never influenced by optimisations,
which as we will see have a very strong influence on the behavior of satisfiability
solvers. As a complement, then, empirical evaluations have to be used. In the area
of propositional satisfiability checking there is large and rapidly expanding body
of experimental knowledge; see e.g., [GvMW00]. In contrast, empirical aspects of
modal satisfiability checking have only recently drawn the attention of researchers.
We now have a number of test sets, some of which have been evaluated extensively
[BFH+92, HS96, GS96, HS97, HPSS00]. In addition, we also have a clear set of
guidelines for performing empirical testing in the setting of modal logic; these
were proposed by Horrocks, Patel-Schneider, and Sebastiani [HPSS00], building
on work by Heuerding and Schwendimann [HS96]. We contend that empirical
testing is an integral part not only of the design and evaluation of theorem provers,
but also of the tests themselves, and can (and should) strongly influence the
development of both.

We will now start Part I, with an overview of empirical evaluation in modal
and hybrid logics.



Part I

Evaluation in Modal and Hybrid
Theorem Proving
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Here we will survey current and past methods of evaluating modal and hybrid
theorem provers, as well as some ways of approaching the satisfiability problem
in modal and hybrid logics. We will introduce first the indirect method: trans-
lating formulas from our logic into FOL, and then performing resolution on the
translated formulas, and then the direct method: developing our own theorem
prover. Also, we make explicit the role of empirical evaluation in the development
of theorem provers.





Chapter 2

How Long is a Ruler?

The police protects us from the bandits.
Who protects us from the police?

Comparing theorem provers

Our aim in this chapter is to discuss empirical evaluation methods for modal
theorem provers, and see if an evaluation method for hybrid logic provers can be
developed, given the strong link between modal and hybrid logic. Now, empiri-
cal comparison of theorem provers is conceptually simple: given a representative
sample of the problems they are meant to solve, a criterion for comparison is es-
tablished such as mean run time, and the performances are compared. However,
some complications arise when trying to define what ‘representative’ problems
are, and perhaps ‘real life’ problems are too few or still too difficult. In that
case, artificial problems must be supplied, and there are several criteria that the
test sets must comply with. Since our goal is to develop an evaluation method
for hybrid logics, it’s only natural that we study the existing efforts for modal
logic. Heuerding and Schwendimann [BHS00] stated a set of criteria for evaluat-
ing modal theorem proving benchmarks, which was later expanded by Horrocks,
Patel-Schneider and Sebastiani [HPSS00]. We will start, in Section 2.1 by giving
an overview of these criteria. We will then review the existing modal test sets,
particularly with respect to these criteria, in Sections 2.3, 2.4 and 2.5. Finally,
we will discuss a new test methodology for hybrid logic, also in Section 2.5.

2.1 Fitness criteria for modal test sets

To be able to assess the quality of test methodologies for modal theorem proving,
we will review a number of ‘common sense’ criteria that have been proposed in
the literature.

23
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Reproducibility. Reproducibility of experiments is fundamental in science;
anybody should be able to run the same experiment to confirm the result. Ap-
plied to theorem proving, this means that the formulas used, or the algorithm to
generate them, must be made available. In the case of random generation, this
would include the ‘seeding’ of the random generator. Also, if the generating al-
gorithm is provided, variants of the test can be developed, for example to extend
the target logic [AH03].

Representativeness. Ideally, a test set should cover as much as possible of the
input space, and span the whole range of sources of difficulty. Of course, there is
no complete catalogue of sources of difficulty, so a test set should at least cover
a large area of inputs. If the problems are limited to a narrow area of the input
space, we run the risk of not assessing the real capabilities of the provers if they
are to be run on arbitrary formulas.

Valid vs. not valid balance. Uncertainty with respect to the satisfiability of
the formulas in the test should be maximum: the provers should not a priori have
any information as to whether the formula is satisfiable or not, and furthermore
there should be about as many satisfiable as unsatisfiable formulas in the set;
satisfiable and unsatisfiable formulas might present different sources of difficulty,
and we want a fast answer from our prover in either case.

Difficulty. The set should provide a challenge to the provers being tested; if
the problems are too easy, the resource consumption will reflect mostly startup
costs, which do not scale with problem difficulty. Also, some problems should be
too hard for the current provers: as the proving techniques evolve, this helps the
test remain current.

Termination. The test should terminate in a reasonable amount of time, with
a meaningful result. If all inputs are too hard, there will be no information gained
even if the benchmark can be run in a short time.

These criteria give rise to the following, more specialized considerations:

Parameterisation. One way to achieve a good coverage of the input space is
to make the generating algorithm accept parameters that allow the problems to
span large areas of the input space. There should be enough parameters to allow
for a good coverage, but not so many that covering a specific part of the input
space would take an inordinate amount of experiments.
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Control. It is very useful for the generating algorithm to have parameters
that control monotonically features of the problems like valid/not valid balance,
modal/propositional balance, difficulty, etc. Monotonicity is very important: it
allows us to leave out uninteresting areas of the input space, and to control the
problem features independently of other parameters.

Modal vs. propositional balance. A modal prover should be adept at both
propositional and ‘purely modal’ reasoning tasks; therefore, a test set should
provide enough challenge for both aspects of modal reasoning.

Data organization. It should be possible to summarize the results of the
benchmark, and to plot them to see the qualitative behavior of the evaluated
provers.

Focus on narrow problems. Special ad-hoc sets may serve to measure the
behavior of the systems with respect to specific difficulty sources; even though
they do not provide a complete assessment of the capabilities of theorem provers,
they are a good complement of a test set that spans large areas of the input space.

Redundancy. Ideally, many of the formulas in a complex problem should play
a part in determining its satisfiability status; that is, it should not be decided by
a small subset of the formulas. While a solver that recognizes redundancy in a
set is desirable, redundant problems should not be a significant part of the test
suite, as they can be rendered trivial by the handling of the redundancy.

Triviality. When a small part of a formula dictates the satisfiability of the
whole, independently of the rest, the formula is said to be trivial. Trivial problems
should not be a significant component of the test set, even if recognizing trivial
problems is of course a desirable capability of theorem provers.

Artificiality. If there is an application in mind for the systems, problems gen-
erated should be of a similar nature to those coming from application inputs.
Otherwise, the results of the test may not reflect the suitability of the systems for
the task at hand. Note that ’real life’ problems might not fulfill any of the other
criteria, and indeed a specific system might be the best for the problem type at
hand, and not for the general case.

Size. The problems should not be too big with respect to their difficulty; we
are not as interested in processing of big files as in algorithm efficiency.
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2.2 Real-world Problems

When the logic at hand is used for real-world applications, there is a source
of problems whose representativity cannot be contested. They are, after all,
the problems the provers should excel at, if we want them to be useful as well
as interesting objects of study. Common downsides of this kind of input often
include not having enough real-world problems to provide sufficient testing, and
that as provers advance old inputs usually become trivial to solve.

In the following sections, we will come back to these criteria as we discuss the
merits of the different test methodologies.

2.3 Hand-tailored Problems

The Balsiger, Heuerding and Schwendimann test set

The Balsiger, Heuerding and Schwendimann test set [BHS00] was used in the
TANCS ’98 comparison, and represents one of the first attempts at having a
comprehensive test set for the comparison of modal theorem provers. It consists
of nine classes of provable formulas and nine classes of unprovable formulas, pa-
rameterized by a number in N. The performance score of a prover in each class is
given by the highest numbered problem in that class that the prover can solve in
less than 100 seconds. There are nine different types of problem, each with both
a satisfiable and an unsatisfiable class associated to it. The purpose of parame-
terization was to have a test set which could present harder problems as provers
became more advanced; the complexity of each formula in a class is expected to
be exponential on its parameter. There is a base problem for each class, which
is then made more complex using several techniques, and there was an effort to
make the problems resistant to simple optimization.

However, dramatic advances in the field yielded provers which could solve any
formula in most of the categories; the increase in complexity from instance to
instance was not exponential any more [HPSS00]. Nevertheless, the test remains
very useful for development of modal theorem provers, as it gives a quick way to
evaluate improvements to the program, and performance in the different classes
might confirm whether optimizations work as planned or not.

Extending the set for hybrid logics Extending the test set to create hybrid
formulas is in principle possible, but as we have seen, there would be a poor
coverage of the problem space and the tricks to ‘hide’ the formulas are sooner or
later rendered harmless by optimization.
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2.4 Random Problems: Modal QBF

Other than the previously described test set, all empirical test sets for modal
logic are parameterised random formula generators. The first random generation
technique used in testing modal decision procedures, the random 3CNF2m

test
methodology, was proposed in [GS96]; its subsequent development is described
in, for instance, [HPSS00], and the latest version is presented in [PSS03]. After
having gone through a series of revisions, this methodology is considered to be
well understood. In between revisions of 3CNF2m

, the random modal quantified
Boolean formula test set was proposed by Massacci [Mas99], and used in the 1999
and 2000 editions of the TANCS system performance comparisons [TAN]. We’ll
examine the Modal QBF set now, and the 3CNF test set family in Section 2.5.

2.4.1 The Random Modal QBF Test Set

The random modal QBF test set is based on the idea of randomly generating
quantified boolean formulas (QBFs) and then translating these into modal logic.
Let us explain these two steps in more detail.

Generating QBFs

Recall that QBFs have the following shape [GJ79]: Q1v1 . . .Qnvn CNF (v1, . . . , vn).
That is, QBFs are prenex formulas built up from proposition letters, using the
booleans, and ∀v β and ∃v β (where v is any proposition letter).

What is involved in evaluating a QBF? We start by peeling off the outermost
quantifier; if it’s ∃v, we choose one of the truth values 1 or 0 and substitute it
for the newly freed occurrence of v; if it’s ∀v, substitute both 1 and 0 for the
newly freed occurrences of v. In short, while evaluating QBFs we are generating
a tree, where existential quantifiers increase the depth, and universal quantifiers
force branching.

In the random modal QBF test set, 4 parameters play a role: c, d, v, k:

• The parameter c is the number of clauses of the randomly generated QBF.

• The parameter d is the alternation depth of the randomly generated QBF;
it is not the modal depth of the modal translation. (More on this below.)

• The parameter v is the number of variables used per alternation.

• And k is the number of different variables used per clause.

The QBF-validity problem is the problem of deciding whether a QBF without
free variables is valid; it is known to be PSPACE-complete [GJ79]. For every
fixed valued of d we can capture the problems in ΣP

d in the polynomial hierarchy;
PSPACE can only be reached by an unbounded value of d.
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Here’s a concrete example. Using d = 3 and v = 4 we can generate

∀
4

︷ ︸︸ ︷
v34v33v32v31 ∃

4
︷ ︸︸ ︷
v24v23v22v21 ∀

4
︷ ︸︸ ︷
v14v13v12v11 ∃

4
︷ ︸︸ ︷
v04v03v02v01

︸ ︷︷ ︸

3

CNF (v01, . . . , v34).

Each clause in CNF (v01, . . . , v34) has k different variables (default 4) and each
is negated with probability 0.5. The first and the third variable (if it exists) are
existentially quantified. The second and fourth variable are universally quantified.
This aims at eliminating trivially unsatisfiable formulas. Other literals are either
universal or existentially quantified variables with probability 0.5. The depth of
each literal is randomly chosen from 1 to d.

By increasing the parameter d from odd to even, a layer of existential quanti-
fiers is added at the beginning of the formula, and, conversely, when d increases
from even to odd, a layer of universal quantifiers is added. The impact of increas-
ing d on the shape of the QBF trees may be visualized as in Figure 2.1, for the
case where v = 2.
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Figure 2.1: The shape of QBF trees for v = 2

Translating QBFs into Modal Logic

The QBF that is produced by the random generator is translated into the basic
modal logic as introduced in 1.4.3, using a variant of an encoding that is originally
due to Ladner [Lad77]. The core idea underlying the translation is to capture,
by means of a modal formula, the ‘peel off quantifiers and substitute’ evaluation
process for a given input QBF. The translation forces branching in the structure
of the possible model whenever a universal quantifier is found in the original
formula, keeps the branches separate, and makes sure there are enough modal
levels in the model. It forces the structure of the possible model to be a tree, and
the resulting formula is satisfiable iff the original formula is.

Here’s a detailed example. The formula φ = ∀v4v3∃v2v1 (v1 ∨¬v2 ∨¬v3 ∨¬v4)
(generated with parameters v = 2, d = 1, c = 1, default encoding) translates into
the conjunction of the following formulas.
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• The matrix φ must be true everywhere in the model:
∧4

m=1 2
m(v1 ∨ ¬v2 ∨

¬v3 ∨ ¬v4), where 2
m is a sequence of m occurrences of the 2 operators.

• Keep values of proposition letters forever, adding one per level, in order of
quantifier appearance:

–
∧3

m=1(2
m(v4 ∨ 2(¬v4)) ∧ 2

m(¬v4 ∨ 2(v4))) ∧

–
∧2

m=1(2
m(2(v3 ∨ 2(¬v3))) ∧ 2

m(2(¬v3 ∨ 2(v3)))) ∧

– 2(2(2(v2 ∨ 2(¬v2)))) ∧ 2(2(2(¬v2 ∨ 2(v2))))

• Force branching on universally quantified variables: 3v4∧3¬v4∧2(3v3)∧
2(3¬v3).

• Force tree depth (note that the first two levels are covered by the previous
two formulas): 2(2(3(>)))) ∧ 2(2(2(3(>))))).

The parameters c, k, v and d that are used in the generation process are
related to the final modal formula in the following way. The (maximum) number
of clauses is c · k + (v · (d + 1))2 + bv · (d + 1)/2c. The (maximum) number of
proposition letters is v · (d+ 1). And the (maximum) modal depth is v · (d+ 1).
These maximums obtain when c is high enough compared to v ·(d+1) to cover all
the possible proposition letters. The file size for the translated formula is linear
in c, and polynomial in v and d, but usually we are not interested in very big
values of the last two, so this is not much of a problem.

Fitness of the test set

Some of the fitness criteria (reproducibility, representativeness, parameterisation
for example) can be evaluated by an analysis of its description; others like diffi-
culty, termination or size require empirical testing. We benchmarked a few theo-
rem provers, aiming not to evaluate the state of the field (we left some prominent
systems out, for example) but to evaluate the test set itself.

Settings

To evaluate the QBF test set, we used 3 satisfiability solvers for modal logic. First,
we used the general first order prover SPASS [SPA], version 1.0.3, extended with
the layered translation of modal formulas into first order formulas as presented
in [AGHdR00]. Second, we used MSPASS version V 1.0.0t.1.2.a [MSP]. And,
third, we used *SAT version 1.3 [Tac99].

Our experiments were run on a Pentium III 800 MHz with 128 MB of memory,
running RedHat Linux 7.0.

For our measurements we had to translate the modal QBF files to the formats
of the various provers we were using, and in one case we were also were converting
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the formulas from modal to first order logic. We checked that the resulting file
sizes were linear in c, even though the linear coefficient varied from one solver to
another.

Our main measurements concerned both CPU time elapsed (with a 10800 sec-
ond timeout) and a time independent measure: the number of clauses generated
for SPASS plus layering and for MSPASS, and the number of unit propagations
for *SAT.1

Findings

We first ran the standardized tests provided by the TANCS competition: 64
instances randomly generated with c = 20, v = 2, d = 2, and default settings for
the remaining parameters. See Figure 2.2.
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Figure 2.2: The standardized tests provided by TANCS, used for SPASS,
MSPASS, and *SAT. (Left): clauses generated/unit propagations per problem
instance, log scale. (Right): CPU time (seconds) per problem instance, log scale.

While the number of clauses generated by resolution provers and the num-
ber of unit propagations in *SAT are not directly comparable as a performance
measurement, they do give an indication of the relative difficulty of a problem
(or problem set). As such, we can see that the difficulty of a problem varies with
the method used to solve it. The correlation between time elapsed and clauses
generated/unit propagations varies widely between the methods. In fact, for this
test the *SAT times are so low as to be completely dominated by startup costs
and don’t really inform us about relative problem difficulty.

Next we ran a number of sweeps, with each of three provers, with v = 2
and increasing d from 1 to 4 (and to 5 in the case of *SAT), while increasing

1Unit propagations came out to be a less than perfect indicator of resource consumption in
the general case, although for this benchmark it was roughly as informative as the number of
assignments found.
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c from 1 to 100 (or to the maximum number of clauses allowed by the rest of
the parameters, whichever was lower). The resulting CPU times and the number
of clauses generated/unit propagations are depicted in Figure 2.3; the curves
for d = 1, d = 2 do not extend to the right-hand side of the plots, as the
formulas being generated with these settings are simply too small to be be able
to accommodate a larger number of different clauses.

Several things are worth noting about Figure 2.3. First, the sets display an
easy-hard-easy pattern familiar from propositional satisfiability testing [GvMW00].
The shape of the curves is strongly dependent on the solver used. Moreover,
the patterns seem to vary from not-too-hard-hard-easy in some cases (SPASS,
d = 1, d = 2, d = 4) to not-too-hard-hard-hard in others (SPASS, d = 4;
MSPASS, d = 3, d = 4) to not-too-hard-hard-not-too-hard in yet others (SPASS,
d = 3;*SAT, d = 2, d = 3, d = 4, d = 5).

Second, for both SPASS and MSPASS we see that curves cross each other; this
is most clearly visible in (a), where the number of clauses generated by SPASS
are displayed,but it also shows up in (b) where the CPU times for SPASS are
shown. Hence, for SPASS (and to a lesser extent for MSPASS) the d parameter
does not influence the difficulty of the problems being generated in a monotonic
way.

Third, the time elapsed (displayed in (b), (d), and (f)) has a very strong
dependence on file size: after the hard region has been crossed and the elapsed
time tends to decrease, it actually starts going up again. The impact of input
file size and I/O is most noticeable for MSPASS (plot (d)); but even in the case
of *SAT, where the number of unit propagations remains more or less constant
after the hard region has been traversed, the CPU times start going up: this
increase is entirely due to input file size and I/O2. In Figure 2.4 we have plotted
the growth of the input file size against c, and against d. The file size can be
approximated by 11500+c∗485, while the preprocessing performed by the layered
translation brings this up to 20000 + c ∗ 930. Remarkably, the translated file for
MSPASS is smaller than the original input file. (For the purposes of illustration,
we have also indicated what the input file size would be for the first order prover
Bliksem [Bli].)

When we increased the v parameter, we saw similar curve shapes as for v = 2.
In Figure 2.5 we have displayed results of running *SAT with v = 2 (top) and
with v = 3 (bottom). Notice that the humps indicating the hard regions are
higher for v = 3 than for v = 2, indicating that the problems are harder; hence,
the CPU times are not as strongly dominated by file size and I/O aspects as in
the case where v = 2. The fact that the hard regions are ‘wider’ than for v = 2
indicates that we are not only getting harder problems, but also that the fraction
of hard problems is increasing.

2Our filesystem runs over a network: performance in local filesystems is very likely to be
much better.
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Figure 2.3: SPASS, MSPASS, and *SAT on QBF test sets, v = 2, d = 1 . . . 4
(5), 64 samples/point. (Left): clauses generated/unit propagations, log scale.
(Right): CPU time in seconds, log scale.
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Let us return to the phenomenon observed in Figure 2.3, where it was found
that the d parameter does not monotonically control difficulty. We can observe
this even clearer when we plot d along the x-axis, as in Figure 2.6. Note that the
phenomenon is strongly prover dependent: it clearly shows up for SPASS (with
the layered translation) as shown in (a); it is somewhat visible with MSPASS
(b), but not at all with *SAT (c). Further experimental work has shown that
this ‘staircase phenomenon’ is also present with larger values of v for SPASS.
The phenomenon is related to the special way in which QBFs grow: existential
quantifiers are added to the original QBF when d is increased from odd to even,
universal quantifiers when d is increased from even to odd; see Figure 2.1. The
former simplifies matters for SPASS with the layered translation, while the latter
makes matters considerably harder for that solver.3

One central concern with any test set, synthetic or not, is parameterization:
to which extent can we choose the difficulty of the problem and of exploring the
input space? In the QBF test set the difficulty can easily be controlled: the v
parameter controls it monotonically, the d parameter also with some caveats. It
seems, however, that v and d do not control truly independent dimensions of the
problem space. More precisely, combinations of v and d for which the value of
v · (d + 1) coincides have very similar curves, as can be seen in Figure 2.7. This
suggests that v · (d + 1) is the dimension along which the QBF problem space
should be explored, instead of either v or d independently. (As an aside, it is clear
from Figure 2.7 that with increasing values of v · (d + 1), the truly hard region
for a given setting of parameters moves to the right as we increase the number of
clauses.)

An important aspect that we have not discussed so far is the satisfiable vs.
non-satisfiable fraction. The parameter c does indeed allow us to control the

3Note that the staircase phenomenon will not be observed if one only performs the stan-
dardized TANCS test as this test only involves a single value of d.
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Figure 2.7: *SAT results for v = 2–4, d = 1–5, and c = 1–100, 64 samples/point.
The numbers in brackets indicate the value of v · (d+ 1).

satisfiability fraction: it goes from 1 to 0 monotonically with c. However, there
are remarkably few values of c for which the satisfiable fraction is 1; see Figure 2.8.
In line with Figure 2.8 (a), we have found satisfiable fractions of about 20% in
many repeated runs of the standardized 20/2/2 TANCS test (see Figure 2.2).
Moreover, there is a heavy ‘tail’ of unsatisfiable problems, as indicated by the
curves in Figure 2.7. And contrary to intuition, the constrainedness of problems
does not seem to depend very strongly on the d parameter; for a fixed v, increasing
d from odd to even doesn’t shift the satisfiable fraction graph by any noticeable
amount. The constrainedness of the underlying models, then, remains unchanged
despite the addition of more variables and the increase in depth.

Finally, recall that a modal formula is trivially satisfiable iff it is satisfiable
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on a model with a single node [HPSS00, HS97]. Clearly, trivial satisfiability is
not a problem for modal QBF test sets. Because of the highly structured form
of the randomly generated QBFs, the resulting modal formulas always contain
3-subformulas, thus avoiding trivial satisfiability.

Evaluating the evaluator

The general criteria for evaluating modal test methodologies put forward in Sec-
tion 2.1, boil down to demanding a reproducible sample of an interesting portion
of the input space with appropriate difficulty. To conclude this section, here’s a
brief discussion of these criteria as they relate to our setting.

By its very nature, reproducibility is guaranteed for the modal QBF test set.
The modal QBF test set seems to represent just a restricted area of the whole
input space; that is, it scores low on representativeness. There are three reasons
for this. First, the QBF test set provides poor coverage of the satisfiable region;
most of the hard modally encoded QBF-formulas generated with values of v and d
that are within reach of today’s tools, are unsatisfiable, as suggested by Figure 2.8.
Second, the modally encoded QBFs are of a very special shape, which seems to
lead to the so-called staircase phenomenon for some solvers. And third, the v and
d parameters end up being substantially overlapping and interrelated as part of
the translation of QBFs into modal formulas. A strong point in favor of the QBF
test set is that it is possible to generate hard problems with a large modal depth
which are still within reach of today’s modal satisfiability solvers; in this respect
the QBF random test methodology fares better than, for instance, the 3CNF2m

test methodology, as reported in [PSS03].

The levels of difficulty offered by the modal QBF test set are certainly suffi-
cient, as they range from next to trivial to too hard for today’s systems. Related
to this, the tests terminate and provide information in a reasonable amount of
time.

In conclusion, then, the random modal QBF test methodology provides useful
test sets that should, however, not be used as the sole measure in the evaluation
of modal satisfiability solvers.

Random QBF and Hybrid Logic. It would be possible to fit nominals and
te @-operator into a random QBF translation framework, but there is no natural
way to fit the ↓ operator. QBF does not actually capture the complexity class of
the H(@, ↓) logic, which is undecidable, and we have just seen that the coverage
of the input space is not so thorough even in the modal case. We have to keep
looking.
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2.5 Random problems: Random CNF

2.5.1 3SAT

The satisfiability problem for propositional logic has been widely investigated,
since it has many applications such as timetabling, code optimization, or cryp-
tography. It is known that random CNF clauses of three or more literals capture
the complexity of the satisfiability problem for the logic [GJ79], and that random
CNF problems of more than 3 literals can be linearly encoded into CNF formu-
las of exactly 3 literals each. Therefore, even though there are many real-world
problems and test sets available for propositional logic, one of the best known
and most used test sets for propositional logic is Random 3SAT: a conjunction of
L clauses of 3 random propositional literals each, chosen from a set of N differ-
ent propositional variables. Since Propositional 3CNF has become the de facto
standard random test set for propositional satisfiability testing [GvMW00], devel-
oping a modal version of the test set has naturally received a lot of attention. We
will see now how propositional 3SAT has been expanded into modal and hybrid
CNF formula generation.

2.5.2 Random Modal CNF

In this test set, the formulas to be checked for satisfiability are randomly generated
CNF2m

formulas. A CNF2m
formula is a conjunction of CNF2m

clauses, where
each clause is a disjunction of a certain number of either propositional or modal
literals. A literal is either an atom or its negation, and modal atoms are formulas
of the form 2iC, where C is a CNF2m

clause. A 3CNF2m
formula is a CNF2m

formula where all clauses have exactly 3 literals.

The latest version [PSS03] of this generator accepts five main parameters: the
maximum modal depth D, the number of propositional variables N , the number
of modalities m, the number of clauses L, and the probability p of an atom
occurring at depths less than d being purely propositional. Although the usual
number of literals per clause is 3, the generator gives a great degree of control
over the clause size. In fact, both modal/propositional balance and clause size
probability distributions can be specified either as constants or as a function of
modal depth.

Given these parameters, a CNF2m
formula of depth D is a set of L clauses,

each made up of a number (chosen randomly according to the clause size proba-
bility distribution) of distinct modal CNF disjuncts, each consisting of either

• a proposition from the set {P1, . . . , PN}, or

• (if D > 0) a disjunct 2rC, where 2r ∈ {21, . . . ,2m}, and C is a CNF2m

clause of depth (D − 1).
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The way this test method works is the following: all the parameters but L are
fixed, and then a range for L is selected that covers the transition from ‘only
satisfiable formulas generated’ to ‘only unsatisfiable formulas generated’. For
values of L covering this range, a tuple of the parameters’ values is defined. A
fixed number of formulas (usually a hundred or more) is generated and given as
input to the prover under test, generally with a time limit. Satisfiability rates,
median/90th percentile of CPU time elapsed, and other possible indicators are
plotted against either L or L/N .

The original 3CNF2m
test set had a series of problems with respect to the fit-

ness criteria we introduced [HS97, HPSS00]. One concerned redundancy : as the
original generator did not check for repetition of propositional variables inside
the same clause, the generated formulas could contain propositional tautologies.
This made the effective size of a problem much smaller. The same problem was
detected for the modal atoms [GGST98]. The other problem was triviality : for
certain values of the generator’s parameters, the formulas generated contained
enough purely propositional clauses that they could be solved without recourse
to modal reasoning. This methodology has now gone through a series of improve-
ments, and is believed to be fully compliant with the fitness criteria.

CNF and hybrid logics The random modal CNF generation is very appealing
to us as a method for generating hybrid formulas: it is simple to expand, its
triviality issues are under control, and (at least for modal logic) it provides the
most coverage of the input space. We decided to use the CNF2m

test set as a
base for our hybrid test set;

We used the latest version of the generator [PSS03] to develop a test set for
hybrid logics to benchmark the HyLoRes prover [AH02b].

2.5.3 Random Hybrid CNF

Why is a new test set necessary? In Chapter 4 we will introduce HyLoRes,
a theorem prover for hybrid logics based on direct resolution [AH02b]. We made
extensive use of empirical testing to evaluate our development work on the basic
algorithm, but the available test sets were not sufficient to evaluate the prover
on the aspect that was most distinguishing of HyLoRes, that is, its ability to deal
with hybrid formulas. We had a few handcrafted hybrid formulas, but in order to
do some exploration of the hybrid satisfiability space we needed a more thorough
tool. We decided to expand the algorithm presented in the latest version of the
modal CNF test set to generate hybrid logic formulas.

Basic Idea. We decided to make as few changes as possible to the algorithm
described in [PSS03], and add the @, ↓ and A (universal modality) operators.
This requires us to talk not about modal depth, but about operator depth, which
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is defined as the level of nesting of a specific operator, independently of the others.
For example, the formula

@n1
(p1 ∨ ↓x1.(p2 ∨ 31(x1 ∨ @x1

n1) ∨ 31(p2 ∨ p3)))

has modal depth 1, @-depth 2, and ↓-depth 1. Also, instead of propositions we
use atoms of hybrid logic, that is, propositions, nominals, and state variables.

Parameters. The program accepts as parameters:

• The maximum nesting of operators, D (generalizes modal depth)

• The number of propositional variables, nominals, and state variables, Np, Nn

and Nx

• The number of modalities, Nm

• The number of clauses, L

• The distribution of probabilities for clause size (a list [f1, . . . , fn], with fi

the relative frequency of clauses of size i)

• The probability for a disjunct of being non-atomic, pop

• The relative frequencies of modalities, @-operators, ↓ operators, and the
universal modality as main operator in non-atomic disjuncts, pmod, pdown, pat,
and puniv

• The relative frequencies of propositions, nominals and state variables when
the disjunct is an atom, pprop, pnom, and psvar

• The probability for any literal of appearing negated, pneg

• The number of instances to generate, numinst

Given these parameters, a hybrid CNF formula of depth D is a set of L clauses,
each made up of (a number between 1 and n chosen with relative frequencies
[f1, . . . , fn] of) distinct hybrid CNF disjuncts, each consisting of either

• a proposition from the set {P1, . . . , PNp
}, or

• a nominal from the set {n1, . . . , nNn
}, or

• a state variable from the set {x1, . . . , xNx
}, or

• (if D > 0)

– a disjunct 2rC, where 2r ∈ {21, . . . ,2Nm
}, and C is a random hybrid

CNF clause of depth (D − 1), or

– a disjunct @nC, where n ∈ {n1, . . . , nNn
}, and C is a random hybrid

CNF clause of depth (D − 1), or

– a disjunct ↓xr op C, where xr ∈ {x1, . . . , xNx
}, op is one of {@,2,A}

and C is a random hybrid CNF clause with depth (D − 1), or

– a disjunct AC, where C is a random hybrid CNF clause of depth
(D − 1).
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Algorithm Used. The algorithm used to generate the formulas is as follows:

gen clauses(params)
for i := 1 to L do Cli := gen cl(params);
return (

∧L
i=1 Cli);

gen cl(params)
nd := rnd length(params.C);
nop := rnd numops(nd, params);
Atoms := rnd atoms(params, nd − nop);
Ops := rnd opsd(nop, params);
OC := {};
foreach opi in Ops

OC := OC ∪ {opi (gen cl(params{depth := depth − 1))}
return(

∨
OC ∨

∨
Atoms);

rnd numops(nd, params)
if (params.depth = 0) then 0
else rnd fc d(nd, params.pop);

rnd atoms(params, nat)
if (nat = 0) then {}
else Atoms := rnd atoms(params, nat − 1);

atom := rnd atom(Atoms, params);
return(Atoms ∪ atom);

rnd ops(n, params)
if (n = 0) then {}
else Ops := rnd ops(params, n − 1);

op := rnd op(params);
return(Ops ∪ op);

Figure 2.9: Test generation structure

The outline of the algorithm used to generate hybrid CNF formulas is given in
Figure 2.9. The function rnd atom(Atoms, params) returns a random atom not
in the set Atoms, respecting the relative frequencies of the different types of atom
as given in params. rnd fc(nd, params.pop) takes as arguments the number of
disjuncts nd and the proportion of non-atomic disjuncts in a clause, params.pop.
If prop = nd · params.pop is an integer, it returns prop, otherwise it returns dprope
with probability prop−bpropc, or bpropc otherwise (probability dprope − prop).
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This prevents the accidental creation of clauses in which all disjuncts are atomic,
which has been a source of triviality in early modal CNF test set generators [HS97,
HPSS00, PSS03]. rnd op(params) returns an operator according to the relative
frequencies stated in params, optionally enforcing maximum nesting per operator.
A special case is the ↓ operator, which always precedes another operator; the
reason is explained later.

Differences with the random modal CNF generator. In the presence of
multiple modalities, the satisfiability operator and the universal modality, the
notion of modal-depth becomes rather involved. In hGen, we work instead with a
global notion of depth defined as operator nesting (this together with the prob-
abilities for each operator, allows strict control over the generation of formulas
for fragments of H(@, ↓,A) defined in terms of operator nesting). Clause size
probability distribution is kept constant. This departs from the generator pre-
sented in [PSS03]: in that generator, it is possible to select a different clause size
distribution and modal/propositional balance for each modal depth; we are not
convinced such a feature can be meaningfully generalized to hybrid logic in a
practical way. We calculate the maximum nesting per operator from its probabil-
ity of appearance and the total depth D; whether the calculated depths should
be enforced or not can be set from the command line. Since we’re generating
binders and variables, we ensure that every appearing variable is bound, and we
force bound variables to appear.

New redundancy sources. The extended expressivity of the target languages
that hGen can handle introduces new redundancy sources; the following cases are
handled by hGen.

For all φ, ↓xi.(xi ∨ φ) is a tautology, and conversely for all φ, ↓xi.(¬xi ∨ φ) is
equivalent to ↓xi.φ. Such formulas are never generated by hGen. Moreover, the ↓
operator does not cause its argument clause to be evaluated at another element
in the model, allowing for formulas of operator depth > 0 that still require no
model exploration. hGen introduces ↓ only in expressions of the form ↓xi(¬)2jφ,
↓xi(¬)@nj

φ, or ↓xi(¬)Aφ. Otherwise the clause would be equivalent to one in
which all the atomic disjuncts are outside of the scope of the ↓ (since we’re
banning the bound variable from appearing at the same level it is bound in),
effectively altering the clause size. There are two cases to consider when we want
to place the ↓ operator, the difference being whether we are enforcing maximum
nesting to be per operator or global: if global, then no further considerations
are necessary, but if the maximum nesting is enforced per operator, then it can
happen that all possible occurrences of @,2j and A have already appeared when
we select the ↓, in which case it will be replaced by an atom.

With respect to the @ operator, for any φ, @n1
(n1 ∨ φ) is a tautology, and

@n1
(¬n1 ∨ φ) is equivalent to @n1

φ. Again, such formulas are not generated by
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hGen: when generating the argument clause for an operator of the form @nC, the
nominal n is never chosen by rnd atoms.

Implementation. hGen is implemented in Haskell; it can be compiled with
GHC 5.04 [GHC]. The use of random generators (an eminently imperative task)
in the context of a purely functional language is transparently handled through a
State monad; we keep the random seed as the state, and all functions that need
to generate random numbers are monadic. See [Wad95] for more about monads
in functional programming.

Using hGen as a modal test set. Since we are extending the language of
the formulas generated with the modal CNF algorithm, it is important to verify
that constraining the generator to modal formulas produced similar results to
those obtained with the generator from [PSS03]. We decided to run a series of
benchmarks and see if the results compared, in terms of mean difficulty, location
of the easy-hard-easy pattern, and shape of the satisfiability fraction plot.

Experimental setting. We used a 1.6 GHz Pentium 4 computer running Linux
Red Hat 7.3 for the tests, and fixing all the parameters but L, we ran the tests
for L/N going from 1 to 80, with 50 instances per data point, for N going from 3
to 8. Modal depth was fixed at 1. We set the parameters of the generator to only
produce modal formulas, and checked whether the runs showed any variations
with respect to runs of the Modal CNF test set for equivalent parameter sets.
The prover we used for this benchmark was *SAT [*SA]; we ran the tests with a
timeout of 300 seconds.

Results. The results are displayed in Figure 2.10. The first row displays the
satisfiable/unsatisfiable fractions; the second row shows the median of the CPU
time used for every data point, and the third row shows the 90th percentile of
the CPU times. The experiment confirmed that, for equivalent parameter sets,
the behavior of both test sets was very similar, in terms of location of the sat-
isfiable/unsatisfiable transition and overall difficulty4. We are aware that the
number of problems per data point (50) is not the best, and maybe 100 samples
per data point would give more accurate results and smoother curves; this can
be considered preliminary testing.

Of course, the Modal CNF test set allows for specification of clause size proba-
bility distribution and modal/propositional balance as a function of modal depth,
while the hybrid CNF generator only accepts constant distributions, so the rela-
tionship between the test sets is more one of overlap than one of inclusion. One
intriguing thing that can be seen in the 90th percentile graphs is a second “hump”

4Our filesystem is networked, which means it takes longer for files to load; this accounts for
the steady increase in solve times as a function of L/N . We apologize for the inconvenience
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in the graph, for N = 8, around L/N = 50, in both plots. We plan to further
investigate the phenomenon.
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Figure 2.10: Results of the comparison between Hybrid and Modal CNF

2.6 Conclusion

We have given an overview of the different empirical test methodologies for modal
theorem provers, and we have seen that since there are many criteria, each test set
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has its own place. The Heuerding and Schwendimann test set focuses on narrow
problems and can be used with developing modal theorem provers, although it
cannot distinguish between mature provers; the random modal QBF test set
provides nontrivial doable problems of a good modal depth, however the coverage
of the input space is poor, and the results obtained with it might not carry over to
other areas of the input space; finally, the random CNF2m

generator can produce
formulas that range all over the input space, and we think is the one to use
for empirical comparison of mature modal theorem provers. We will be using
all the modal test sets, however, to estimate the relative merits of the different
translations from modal logic into FOL in Chapter 3. We also introduced a new
test set generator, based on modal CNF2m

that produces random hybrid CNF
formulas; this test set will be useful for testing HyLoRes in Chapter 4.



Chapter 3

Modal Theorem Proving:
Translations into First Order Logic

Not knowing is like not seeing.
–Old Spanish proverb

3.1 Introduction

For many years, the main logic used in automated theorem proving has been clas-
sical logic. However, as we have seen in Chapter 1, for some applications other
logics may be more suitable, be it because they express more naturally the con-
cepts at hand, or because the full expressive power of classical logic is not needed,
or not sufficient. Sometimes, then, we want to work with other logics; we have
in that case the choice of developing tools which are specific to the logic, usu-
ally from scratch, or take advantage of the wealth of tools available for classical
FOL, if a suitable translation from our logic exists. Broadly speaking, there are
three general strategies for modal theorem proving: (1) develop purpose-built cal-
culi and tools [PS98, *SA]; (2) translate modal problems into automata-theoretic
problems, and use automata-theoretic methods to obtain answers [PSV02]; and
(3) translate modal problems into first order problems, and use general first order
tools [MSP]. The advantage of indirect methods such as (2) and (3) is that they
allow us to re-use well-developed and well-supported tools instead of having to
develop new ones from scratch.

In this chapter we focus on the third option: translation-based theorem prov-
ing for modal logic, where modal formulas and reasoning problems are translated
into first order formulas and into reasoning problems to be fed to first order the-
orem provers. Since most of the state of the art first order theorem provers are
based on resolution, one aspect we will pay particular attention to is the inter-
action between the translated formulas and the mechanics of resolution-based
theorem proving. The rest of this chapter is organized as follows: first, we will
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introduce the basics of resolution-based theorem proving; then, we will recall
the relational translation from modal logic to FOL [vB83], and we’ll show how
we run into trouble if we want to perform resolution on the resulting formulas.
Then we will discuss an alternative strategy for improving the effectiveness of FO
provers on (translated) modal input:the functional translation [ONdRG00], which
has been integrated with the SPASS first order theorem prover, resulting in the
MSPASS theorem prover [MSP]. Finally, we will introduce an improvement on
the relational translation: the layered translation [AGHdR00], and show its effects
on resolution-based theorem proving.

3.2 Resolution Theorem Proving in a Nutshell

Resolution theorem proving was invented by Robinson [Rob65]; the basic idea
behind it is to derive new formulas from a set of given ones, by applying certain
inference rules, in the hope of arriving at a contradiction. We refer to [BG01] for a
detailed exposition. When no more formulas can be inferred, and a contradiction
has not been derived, the conclusion is that the formula is satisfiable; we have then
arrived at a saturation. When implementing a resolution-based theorem prover,
a key problem that has to be solved is finding a good strategy for choosing, at
each step, which formulas to process and which inference rules to use in order to
minimize the search space.

The resolution rule. The resolution principle for propositional logic is stated
as follows:

A ∨B ¬A ∨ C
B ∨ C

The rationale for the resolution rule is that for both A ∨ B and ¬A ∨ C to be
true in the same model, either B will have to be true (when A is false) or C will
have to be true (when A is true). Since A will be either true or false, we can infer
B ∨ C (the resolvent of A ∨ B and ¬A ∨ C) from these premises. This extends
to first order logic in the following way:

A ∨ C ¬B ∨D
(C ∨D)σ

where σ is the mgu of the atomic formulas A and B, and factoring :

C ∨ A ∨B
(C ∨ A)σ

where σ is the most general unifier (mgu) of the atomic formulas A and B. For-
mulas are assumed to be in clause form. That is, a conjunction of clauses, which
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are defined as quantifier-free disjunctions of literals. A literal is an expression
A (positive literal) or ¬A (negative literal), where A is an atomic formula, or
atom. An atom is an expression P (t1, . . . , tn), where P is a predicate symbol of
arity n and t1, . . . , tn are terms. All variables are implicitly universally quanti-
fied; any variables originally existentially quantified are replaced by skolem terms ;
that is, terms of the form f(x1, . . . , xn), where f does not otherwise appear in
the formula and x1, . . . , xn are universally quantified at the position where the
existential quantifier appears. The search for a contradiction consists of system-
atically applying the inference rules until either a contradiction is found or no
further rules can be applied. Resolution with factoring is refutationally complete
for first order logic without equality; that is, a contradiction can be inferred from
any unsatisfiable set of clauses [BG01].

Reasoning with equality. Improving the behavior of resolution-based meth-
ods with respect to the equality predicate has naturally received a lot of attention,
given the relevance of reasoning with equality in mathematics, logic and computer
science. In principle, a set of formulas can be expanded with a series of axioms
about equality to ensure the properties of equality are respected (monotonicity,
symmetry, transitivity, reflexivity), but this usually results in the generation of
excessive numbers of unnecesary clauses. Robinson and Wos [RW69] discovered
another way of dealing with equality: treating it as part of the logical language,
and developing dedicated inference rules for first order logic with equality. An
example of this is the paramodulation rule:

C ∨ s ' t D
(C ∨D[t]p)σ

, if σ = mgu(s,D|p),

where D |p is the subterm of D at position p, and D[t]p denotes the result of
replacing in D this subterm by p. The addition of paramodulation to resolution
and factoring has been proved refutation complete, under the presence of the
reflexivity axiom x ' x [Bra75].

Given that all the rules presented generate new clauses, therefore extending
the search space, a very important aspect of resolution theorem proving is do-
ing an efficient search. Also, some of the generated clauses will be redundant,
and some will make preexisting clauses redundant. Accordingly, for most refuta-
tional provers, a substantial part of the program is devoted to guiding the proof
effort and discarding redundant clauses to prune the search space. While the
worst-case complexity is not affected, the average case performance gains can be
dramatic [BG01, Vor01].
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3.3 Translations from Modal Logic to First Or-

der Logic

After our quick reminder of basic facts on first order resolution, we turn to map-
ping modal logic into FO formulas, keeping in mind that our goal is to use a first
order prover to determine their satisfiability status.

3.3.1 The Relational Translation

Our first step will be to define suitable first order languages that we can translate
to. Let Index be an index set. Consider the language ML as presented in
Definition 1.4.3, with REL = {R}, and the multi-modal language MML, with
REL = {Ra | a ∈ Index}. The vocabulary of the first order language FO1 has
unary relation symbols P corresponding to the proposition letters in PROP, and
a single binary relation symbol R. Instead of a single binary relation symbol R,
the vocabulary of the first order language FO2 has binary relation symbols Ra,
for every a ∈ Index .

Models for ML and MML can also be viewed as models for the corresponding
first order languages FO1 and FO2, respectively. To interpret the unary relation
symbols, we simply look up the values of the corresponding proposition letters in
the valuation.

3.3.1. Definition. [Relational Translation] The relational translation ST (φ) of
uni-modal formulas φ into first order formulas of FO1, is defined as follows. Let
x be an individual variable.

ST x(p) = P (x) (3.1)

ST x(¬φ) = ¬ST x(φ)

ST x(φ ∧ ψ) = ST x(φ) ∧ ST x(ψ)

ST x(3φ) = ∃y (Rxy ∧ ST y(φ)). (3.2)

In (3.1), P is the unary relation symbol corresponding to the proposition letter
p; in (3.2), the variable y is fresh. Observe how (3.2) reflects the truth definition
for the modal operator 3. The translation ST is easily extended to a translation
taking multi-modal formulas into FO2, by using the relation symbol Ra instead
of just R in the translation of the modal operator 〈a〉.

For example, the modal formula 2(p→ 3p) translates into the first order formula
∀y (Rxy → (Py → ∃z (Ryz ∧ Pz))).

One can show that a modal formula is satisfiable if and only if its relational
translation is [vB83]. This effectively embeds the modal languages considered here
into first order languages, and, thus, opens the way to solving modal problems by
first order means. The resulting first order fragments can be described as follows.
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3.3.2. Definition. [Modal Fragment] Let x be an individual variable. The
modal fragment MF of FO1 is built up from unary atoms Px, using negation,
conjunction, and guarded quantifications of the form ∃y (Rxy ∧ α[x 7→ y]) and
∀y (Rxy → α[x 7→ y]), where y is fresh, and α[x 7→ y] is the result of replacing
all free occurrences of x in α by y, and α(x) ∈ MF only has x free. Observe that
the relational translation maps modal formulas into MF. The modal fragment of
FO2 is defined analogously.

We have seen a method to verify (un)satisfiability of formulas in FOL, and a way
of translating modal formulas into FOL: we will now see how the two interact.

3.3.3. Example. Consider the formula 2(p→ 3p) again; it is clearly satisfiable.
Proving this in first order logic amounts to showing that the translation of the
formula, ∀y(Rxy → (Py → ∃z(Ryz ∧ Pz))) is satisfiable, or equivalently, that
the following set of clauses is satisfiable.

1. {¬R(c, y), ¬P (y), R(y, f(y))}

2. {¬R(c, z), ¬P (z), P (f(z))}.

The clauses have two resolvents (fn is f applied n times):

3. {¬R(c, c), ¬P (c), ¬P (f(c)), P (f 2(c))}

4. {¬R(c, f(z)), R(f(z), f 2(z)), ¬R(c, z), ¬P (z)}.

Clauses 2 and 4 resolve to produce

5. {¬R(c, f 2(z)), R(f 2(z), f 3(z)), ¬R(c, f(z)), ¬R(c, z), ¬P (z)}.

Clauses 2 and 5 resolve again to produce an analogue of 5 with even higher
term-complexity, etc. None of the clauses is redundant and can be deleted; in
the limit our input set has infinitely many resolvents. This shows that standard
resolution does not necessarily terminate for relational translations of satisfiable
modal formulas.

What went wrong in Example 3.3.3? First, to obtain the resolvent in step 3,
a positive and negative binary literal were resolved; note that these literals (or
rather: the modal operators from which they derive) live at different modal depths
in the original modal formula 2(p → 3p). This resolution step is useless: the
negative R-literal derives from the 2-operator which occurs at modal depth 0,
and the positive R-literal comes from the 3-operator which occurs at modal
depth 1. Unless we explicitly stipulate so (by means of axioms), different modal
depths are completely independent and should not resolve. A similar comment
can be made about the resolvent obtained in step 4, where a positive and negative
unary literal corresponding to the two occurrences of the proposition letter p were
resolved upon.

A number of solutions have been proposed for this problem: we’ll review
here the functional translation [ONdRG00] and the layered relational transla-
tion [AGHdR00].
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3.3.2 The Functional Translation

The functional translation is based on an alternative semantics of modal logic.
The fundamental idea is to represent each binary relation as a set of (partial
or total) functions. It appeared simultaneously and independently in a number
of publications: see [Ohl88, LFdC88, Her89, Zam89, AE92]. We give a short
introduction of the translation as presented in [ONdRG00]

3.3.4. Proposition. For any binary relation R on a non-empty set W there is
a set AFR of accessibility functions, that is, a set of partial functions γ : W → W ,
such that

∀x, y (R(x, y) ⇐⇒ (∃γ ∈ AFR γ(x) = y))).

To avoid quantification over function symbols, a list notation is introduced, in
which any term γ(x) is written as [xγ]. [·, ·] denotes the functional application
operation which is defined to be a mapping from a domain W to the set of
all partial functions over W . So complex terms of the form γm(· · · (γ2(γ1(x))))
become terms of the form [[[[xγ1]γ2] · · · ]γm]. Of course, when the accessibility
relation R is not serial, it cannot be properly represented by any set of total
functions. As the target logic for the translation demands total functions ([xγ] is
a first order term and will always have an interpretation), a special element ⊥ is
adjoined to the domain W of the model at hand. Now, every function γ will map
the elements which have no successor under R to the special element ⊥, and a
special ’dead end’ predicate, deR, is introduced, defined as follows:

3.3.5. Definition. The dead-end predicate, representing the absence of succes-
sors, is defined as

∀x(deR(x) ⇐⇒ ∀γ(γ ∈ AFR → [xγ] = ⊥)).

3.3.6. Theorem. Let R be a binary relation on a set W , and let W⊥ = W∪{⊥}.
Then, the following defines R in terms of a set AFR of total functions γ : W⊥ →
W⊥:

∀x, y(W (R(x, y) ⇐⇒ (¬deR(x) ∧ ∃γ (γ ∈ AFR ∧ [xγ] = y)))),

where deR is defined in 3.3.5

3.3.7. Definition. A functional frame is a 4-tuple F = (W, de,AF, [·, ·]), where
W is a non-empty set, de is a subset of W , AF is a set of total functions γ : W →
W , and [·, ·] : W × AF → W the functional application operation.
A functional model is a pair F = (F , P ), where F is a functional frame, and P is
a valuation. The new truth definition for the diamond operator is

F, w |= 3A iff w 6∈ de and ∃γ(AF (F, [wγ] |= A)),

and dually for the box operator.
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3.3.8. Definition. Following [Sch97], we choose as our target a many-sorted
logic with a sort hierarchy and set declarations for function symbols [Wal94]. In
this logic, a sort symbol can be viewed as a unary predicate and it denotes a
subset of the domain. For the functional translation we introduce the sorts W
and AF . The variables x, y, z, . . ., are assumed to be of the sort W ; the functional
variables are denoted by λ1, λ2, . . ., and are of sort AF . The sort of the operator
[·, ·] is W × AF → W . The functional translation FT (t, A) is defined as follows:

FT (t, p) = p(t)

FT (t,¬A) = ¬FT (t, A)

FT (t, A ∨B) = FT (t, A) ∨ FT (t, B)

FT (t, A ∧B) = FT (t, A) ∧ FT (t, B)

FT (t,3A) =

{

∃γ(AF (FT ([tγ], A))) if R is serial,

¬de(t) ∧ ∃γ(AF (FT (tγ, A))), otherwise

FT (t,2A) =

{

∀γ (AF (FT ([tγ], A))) if R is serial,

¬de(t) → ∀γ (AF (FT (tγ, A))), otherwise

While the functional translation results in great improvements for theorem prov-
ing over the relational translation, as seen for example in Figure 4.5(b), we believe
we can improve the performance for theorem proving without departing so much
from the inspiration behind the relational translation.

We will boost the performance of resolution procedures on the relational trans-
lation of modal formulas by making literals living at different modal depths syn-
tactically different. The mathematical justification for these ideas is provided
by a strong form of the tree model property, as we will explain in the following
section.

3.3.3 The Tree Model Property

To increase the performance of general first order theorem provers on ‘modal
input’, we will feed them with information about its modal character. More
precisely, we will aim to encode by syntactic means the fact that basic modal
logic enjoys a very strong form of the tree model property. In recent years, the
latter has been identified as one of the semantic key features explaining the good
logical and computational behavior of many modal logics; see [Grä01, Var97] for
two very accessible presentations.

First, by a tree T we mean a relational structure (T, S) where T , the set of
nodes, contains a unique r ∈ T (called the root) such that ∀t ∈ T (S∗rt); every
element of T distinct from r has a unique S-predecessor; and S+ is acyclic; that
is, ∀t (¬S+tt). (Here, S+ and S∗ denote the transitive and reflexive, transitive
closure of S, respectively.)
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A tree model (for the uni-modal language ML) is a model M = (W,R, V ),
where (W,R) is a tree. A tree-like model for the multi-modal language MML is a
model (W, {Ra | a ∈ Index}, V ) such that (W,

⋃

aRa) is a tree. A logic L has the
tree model property if every L-satisfiable formula is satisfiable at the root of a tree
or tree-like model for L. Observe that the tree model property is incomparable
to the finite model property; there are modal logics where the former fails but
the latter holds, and vice versa. For example, the logic H(@) has the finite model
property but not the tree model property, and the fixed point logic with chop
(FLC) has the tree model property but not the finite model property [LS02].

3.3.9. Proposition. [BdRV01]

1. The basic uni-modal logic of the language ML has the tree model property.

2. The basic multi-modal logic of the language MML has the tree model prop-
erty.

Many modal logics, including K and K(m), enjoy stronger versions of the tree
model property, where the degree of the tree model can be bounded by the size
of the formula [BdRV01]. But K and K(m) enjoy an even stronger version of
the tree model property. The key notion here is that of layering, both w.r.t.
tree models and w.r.t. formulas. Tree (or tree-like) models come with a lay-
ering induced by the depth of the nodes. Likewise, the parse tree of a modal
formula induces a natural formula layering, where new layers begin immedi-
ately below nodes labeled by modal operators. For instance, in 2(p → 3p),
the 2 occurs in layer 0, while the 3 occurs in layer 1, with its argument in
layer 2. Next, the modal depth, mdepth(φ), of a uni-modal or multi-modal
formula φ is defined as follows. Proposition letters p have mdepth(p) = 0;
mdepth(¬ψ) = mdepth(ψ); mdepth(ψ∧χ) = max(mdepth(ψ),mdepth(χ)), while
mdepth(3ψ) = mdepth(〈a〉ψ) = 1 + mdepth(ψ).

3.3.10. Proposition. Let φ be a modal formula, and M be a tree (or tree-like)
model with root w such that M, w |= φ.

Let ψ be a subformula of φ which occurs in formula layer l and which has
modal depth k. To determine the truth value of ψ we only need to consider nodes
at tree depth i, where l ≤ i ≤ k + l.

In words: there is a direct correlation between formula layers and layers in a
tree (or tree-like) model; as a consequence, literals occurring at different formula
layers should not resolve and need not be combined.

3.3.4 The Layered Translation

From Uni-Modal to First Order. The key idea behind our improved trans-
lation of modal formulas into first order formulas is to label unary and binary
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relations according to the number of modal operators nested within a modal for-
mula. For instance, the formula p is translated into P0x, while the formula 3p
becomes ∃y (R1xy∧P1y). The index 1 of the relation symbols R1 and P1 measures
the modal depth of the modal formula.

To motivate the translation of uni-modal ML formulas into an intermedi-
ate multi-modal language, consider the following examples, where we use new
operators and new proposition letters each time we change modal depth:

33p 7→ 3132p2

2(p→ 3p) 7→ 21(p1 → 32p2).

If we then apply the relational translation (Definition 3.3.1) to the intermedi-
ate multi-modal representations, we obtain ∃y (R1xy ∧ ∃z (R2yz ∧ P2z)) and
∀y (R1xy → (P1y → ∃z (R2yz ∧ P2z))), respectively. Observe that the prob-
lematic derivation from the relational translation of 2(p→ 3p) in Example 3.3.3
is no longer possible with the new first order translation.

To make things precise, we need an intermediate multi-modal language MML,
whose collection of modal operators is {3i | i ≥ 0}.

3.3.11. Definition. Let φ be a uni-modal formula. Let n be a natural number.
The translation Tr(φ, n) of φ into the intermediate modal language MML is
defined as follows:

Tr(p, n) := pn

Tr(¬ψ, n) := ¬Tr(ψ, n)

Tr(ψ ∧ χ, n) := Tr(ψ, n) ∧ Tr(χ, n)

Tr(3ψ, n) := 3n+1Tr(ψ, n+ 1).

Our next aim is to show that the intermediate translation Tr preserves satisfia-
bility.

3.3.12. Proposition. Let φ be a uni-modal formula. If φ is satisfiable, then so
is its intermediate multi-modal translation Tr(φ, 0).

Proof. By Proposition 3.3.9 we may assume that φ is satisfiable at the root w of
a tree model M = (W,R, V ). Since M is a tree model, for every state v ∈ W
there exists a unique path of R-steps from the root w to v; let d(w, v) denote the
length of this path.

We define a model N = (W, {Rn+1 | n ≥ 0}, V ′) for the intermediate multi-
modal language MML by taking its universe to be W , the universe of M. Its
relations are defined by stipulating that Rn+1(u, v) holds iff d(w, u) = n and
R(u, v) both hold. We complete the definition of N by defining the valuation V ′:
for every proposition letter p and every state v ∈ W such that d(w, v) = n, we
put v ∈ V ′(Tr(p, n)) iff v ∈ V (p).
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We leave it to the reader to show that for every uni-modal formula φ, every
state v and every n such that d(w, v) = n, we have M, v |= φ iff N , v |= Tr(φ, n).
From this the lemma follows. a

3.3.13. Proposition. Let φ be a uni-modal formula. If its intermediate multi-
modal translation Tr(φ, 0) is satisfiable, then so is φ.

Proof. Let Tr(φ, 0) be satisfied at some state w in some model M for the in-
termediate multi-modal language MML. As before we may assume that M is
a tree-like model with root w. We define a uni-modal model N which differs
from M in that it has only one relation (R) and in its valuation. The relation
R consists of all pairs (u, v) such that (u, v) ∈ Rn+1 and d(w, u) = n, where
d(w, u) is the length of the path from w to u (in M). The valuation V ′ of our
model N is defined as follows: for every proposition letter p, for every v such
that d(w, v) = n, we put v ∈ V (p) iff v ∈ V (Tr(p, n)), where V is M’s valuation.
One can then show that if d(w, v) = n, then M, v |= Tr(φ, n) iff N , v |= φ. This
implies the lemma. a

3.3.14. Definition. The layered relational translation is the composition of Tr
and ST .

3.3.15. Theorem. Let φ be a uni-modal formula. Then φ is satisfiable iff its
layered relational translation ST (Tr(φ, 0)) is.

We contend that the layered translation greatly improves the performance of
resolution procedures for the satisfiability problem of translated modal formulas.

3.4 Comparing the approaches: Experimental

results

We will now see how the different translations compare, in terms of the efficiency
for resolution theorem proving. We will compare the layered translation approach
with both the relational translation and the functional translation, using the test
sets reviewed in Chapter 2. We do the comparisons separately to better appreciate
the differences: the formulas that result from the relational translation take so
long to solve that showing results for the three translations together would not
permit a correct appreciation of the difference between formulas created with
the layered and functional translations. Before going into the test results, we
comment on the problem sets and theorem provers used in our experiments.

The Problem Sets To evaluate our tree-based heuristics, we have run a
series of tests on a number of problem sets. To compare the relational and layered
translations, we used the Heuerding and Schwendimann test set and the modal
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QBF test set; provers take too long with the relational translation of Modal CNF
formulas. For the comparison between the functional and layered translation, we
found that easy modal CNF runs were feasible, so we used the modal CNF for
that test.
The Theorem Provers. The comparisons between the layered and relational
translations were performed on a Sun ULTRA II (300MHz) with 1Gb RAM,
under Solaris 5.2.5, with SPASS version 1.0.3 and MSPASS version V 1.0.0t.1.3.
SPASS [SPA] is an automated theorem prover for full sorted first order logic
with equality that extends superposition by sorts and a splitting rule for case
analysis; it has been in development at the Max-Planck-Institut für Informatik
for a number of years. MSPASS [MSP] is an enhancement of SPASS (Version
1.0.0t) with a translator of modal formulae, formulae of description logics, and
formulae of the relational calculus into sorted first order logic with equality. For
the comparison between the layered and functional translations, a Pentium IV
PC with 256MB RAM running RedHat Linux 7.3 was used.

SPASS was invoked with the auto mode switched on; no sort constraints were
built, and both optimized and strong Skolemization were disabled.

Layered vs Relational: Heuerding and Schwendimann. Table 3.1 dis-
plays the maximum number of problems of the Heuerding and Schwendimann
test set solved in less than 100 seconds each, the standard timeout for this test,
by the layered and relational translations. We see that he layered translation
outperformed the relational translation, being able to solve harder instances in
almost all categories. Interestingly, categories k ph p and k ph n are known to be
propositionally hard; in these categories, the effect of layering is not expected to
be very noticeable, and indeed these are the only categories in which the layered
translation does not improve upon the relational translation (apart from k lin p,
which is too easy for both).

Translation branch d4 dum grz lin path ph poly t4p
p n p n p n p n p n p n p n p n p n

relational 3 3 3 1 3 1 5 0 21 4 4 2 5 5 5 4 0 0
layered 8 8 11 7 21 21 21 21 21 5 7 4 5 5 13 14 13 6

Table 3.1: Comparison using the Heuerding and Schwendimann test set.

Layered vs Relational: Modal QBF. To explore the behavior of our heuris-
tics in a larger portion of the landscape of the K-satisfiability problem, we gen-
erated sets of 10 random modal QBF problems for different sets of parameters.
Table 3.2 compares the average time in CPU seconds and number of clauses gen-
erated for the two translations: layered and relational. “C/V/D” in the first
column denotes the number of clauses, the number of variables, and the depth
used in the generation. Columns labeled by “M” show the orders of magnitude
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C/V/D Average Time M Average Clauses M
Layered Relational Layered Relational

5/2/1 0.53469 9.6222 1 726 5695 1
10/2/1 0.41734 3.9909 1 546 2367 1
15/2/1 0.10859 0.13172 0 10 10 0
5/2/2 0.66141 450.44 3 437 27029 2

10/2/2 0.78297 370.09 3 500 22306 2
15/2/2 0.75656 147.38 2 473 11368 1
5/2/3 36.048 N/A N/A 10714 N/A N/A

10/2/3 58.996 N/A N/A 15395 N/A N/A
15/2/3 94.192 2094.4 1 20786 45798 0
5/2/4 20.362 N/A N/A 3121 N/A N/A

10/2/4 33.084 N/A N/A 4971 N/A N/A
15/2/4 35.068 N/A N/A 5358 N/A N/A
5/2/5 1136.1 N/A N/A 48546 N/A N/A

10/2/5 2896 N/A N/A 91767 N/A N/A
15/2/5 3758.2 N/A N/A 106870 N/A N/A
5/3/1 7.1862 2047.9 2 4372 105960 1

10/3/1 9.752 2324.2 2 5390 108110 1
15/3/1 14.066 1506.8 2 6687 72605 1
5/3/2 7.0931 N/A N/A 1804 N/A N/A

10/3/2 8.3192 N/A N/A 2221 N/A N/A
15/3/2 9.3902 N/A N/A 2687 N/A N/A
5/3/3 1445.2 N/A N/A 52153 N/A N/A

10/3/3 4045.1 N/A N/A 107800 N/A N/A
15/3/3 4865.4 N/A N/A 119150 N/A N/A

Table 3.2: Comparison using the Modal QBF test set.

of the difference between the preceding two columns, i.e., round(−1∗ log(N/N ′)).
We used a time out of 3 hours on a shared machine; N/A indicates that a value
is not available due to a time out.

As can easily be seen from Table 3.2, our improved translation method out-
performed the relational translation in every case, both in computing time (CPU
time) and number of clauses generated; this is not only an average behavior but
it was observed in each instance. For some configurations the drop in computing
time is as much as three orders of magnitude. The average number of clauses
generated was nearly always smaller by at least one order of magnitude.

In Figure 3.1 we display a sample from our experimental results: 64 instances
of the 10/3/1 configuration. The top curve indicates the CPU time needed by the
relational translation, and the bottom one the CPU time needed by the layered
translation. Note that the relational translation can be very sensitive to certain
hard problems, which results in significant differences between easy and hard
instances; the layered method responds in a much more controlled way to hard
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Figure 3.2: Easy-hard-easy.

problems. Interestingly, the curves follow each other, even at many orders of
magnitude of difference. This shows that our heuristics do not change the nature
of the problem: they simply make it much easier for the resolution prover.

The latter phenomenon can also be observed more globally. The plots in
Figure 3.2 were obtained with V = D = 2, while C ranged from 2 to 40. Fig-
ures 3.2 (a) and (b) show the number of clauses generated and the CPU time
needed, respectively, for the relational and layered method, while 3.2 (c) plots
the proportion of satisfiable instances as C increases. The curves for the rela-
tional and layered methods are very similar, with the layered method lacking
the sharp lows and highs that seem to be characteristic for the relational method.
Both display a clear easy-hard-easy behavior, but the layered translation improves
performance by several orders of magnitude. Note that the biggest improvements
are achieved in the satisfiable region, i.e., for C < 26.

Once we were confident that the layered method consistently displayed a good
behavior and a significant improvement over the relational translation, we ran the
standardized tests provided by TANCS (64 instances randomly generated with
the 20-clauses/2-variables/2-depth parameters); see Figure 3.3 for the outcomes.

Finally, to obtain the results in Figure 3.4 we generated 64 instances of prob-
lems for 2 and 3 variables with depths ranging from 1 to 6, again with a time out
of 3 hours. The figure shows the average values we obtained. We ran the same
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Figure 3.3: Standard TANCS test 20/2/2.

tests with the relational instead of the layered translation, but even for mod-
erate depths the computing time and number of clauses exceeded the available
resources.
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Figure 3.4: The Staircase Effect

Layered vs Functional: Modal CNF. We performed a comparison of the
layered and functional translations using the Random Modal CNF test set. We
generated a set for C = 3, D = 1, N = 3, L = 1 − 60, and the results are shown
in Figure 3.5. Figure 3.5 (a) shows the satisfiable/unsatisfiable proportion as a
function of L/N . Which was of course identical for both translations, since we
feed them the same formulas and there were no timeouts. Figure 3.5 (b) shows
the mean CPU time used by each prover on the formulas, also as a function of
L/N

One thing which is apparent from this figure is that for both translations the
peak difficulty does not correspond to the point of maximum uncertainty with
respect to satisfiability; this could be a characteristic of resolution-based modal
theorem proving, since it does not happen with other provers [PSS03].
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Figure 3.5: Layered - Functional translations comparison.

3.5 Conclusion

We have reviewed different ways of translating modal formulas into first order
logic, and seen how the translation method affects the performance of first order
theorem provers when checking the satisfiability of those formulas.
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Layered vs Relational. Layering proved to be very useful: a simple improve-
ment to the relational translation means that a modal formula will take orders of
magnitude less effort to check for satisfiability.

Layered vs Functional. The functional translation enjoys a wider applicabil-
ity than that of the layered translation; since it does not depend on the strong
version of the tree model property we are using, it can be applied to modal logics
that do not have it, such as S4. The price to pay in this case is the replacement
of relation symbols with functions : the translated formulas are not in the modal
fragment any more.

Other layering inspired techniques. Other variations on the tree model
property and layering have been explored. In [PSV02], a very competitive automata-
based method of checking modal satisfiability is presented, which is based on the
automaton accepting all tree models of the formula. In [BGdR03], the tree model
property is used to encode modal satisfiability problems into constraint satisfac-
tion problems, and an algorithm to solve them is proposed; initial experiments
show the approach to be promising.



Chapter 4

Modal and Hybrid Theorem Proving –
Direct Resolution

“The problem, Mendieta,
is that nature is as wicked

as it is wise.”
Roberto Fontanarrosa

4.1 Resolution for Modal-Like Logics

Designing resolution methods that can directly (without translation into large
background languages) be applied to modal logics, received quite some atten-
tion in the late 1980s and early 1990s; see for example [Min89, EdC89]. Given
the simplicity of propositional resolution and the fact that modal languages are
sometimes viewed as “simple extensions of propositional logic,” we might expect
modal resolution to be as simple and elegant. However, direct resolution for
modal languages proved to be a difficult task. Intuitively, in basic modal lan-
guages the resolution rule has to operate inside the box and diamond operators
to achieve completeness. This leads to more complex systems, less elegant re-
sults, and poorer performance, ruining the “one-dumb-rule” spirit of resolution.
In [AdNdR01] a resolution calculus for hybrid logics addressing these problems
was introduced: the hybrid machinery is used to “push formulas out of modali-
ties” and in this way, feed them into a simple and standard resolution rule.

In this chapter we describe HyLoRes, an automated theorem prover based on
the calculus introduced in [AdNdR01], with special emphasis on implementation
details. Indeed, the aim of this chapter is to give a fairly detailed account and
assessment of the main optimizations that went into HyLoRes.

The Logic. We will use the language of hybrid logic as introduced in Definitions
1.4.5 and 1.4.6 ; we present the syntax again for ease of reference. The well-formed

61
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formulas of the hybrid language H(@, ↓) in the signature 〈REL,PROP,NOM, SVAR〉
are

FORMS := > | a | ¬φ | φ1 ∧ φ2 | [R]φ | @sφ | ↓x.φ,

where a ∈ ATOM, x ∈ SVAR, s ∈ SSYM, R ∈ REL and φ, φ1, φ2 ∈ FORMS.

4.2 The Rules

We will now describe the resolution calculus implemented in HyLoRes. We need
a normal form that guarantees formulas will have a unique representation with
respect to negation, so we define the following rewriting procedure nf on formu-
las of H(@, ↓). Let φ be a formula in H(@, ↓), nf (φ) is obtained by repeated
application of the rewrite rules nf until none is applicable:

¬@tψ
nf

; @t¬ψ

¬↓x.ψ
nf

; ↓x.¬ψ

¬¬ψ
nf

; ψ

Clauses are sets of formulas in this normal form. To determine the satisfiability
of a sentence φ ∈ H(@) we first notice that φ is satisfiable iff @tφ is satisfiable,
for a nominal t not appearing in φ. Define the clause set ClSet corresponding to
φ to be ClSet(φ) = {{@tnf (φ)}}. Next, let ClSet∗(φ) – the saturated clause set
corresponding to φ – be the smallest set containing ClSet(φ) and closed under
the rules shown in Figure 4.1.

(∧)
Cl ∪ {@t(φ1 ∧ φ2)}

Cl ∪ {@tφ1}
Cl ∪ {@tφ2}

(∨)
Cl ∪ {@t¬(φ1 ∧ φ2)}

Cl ∪ {@tnf (¬φ1), @tnf (¬φ2)}

(RES)
Cl1 ∪ {@tφ} Cl2 ∪ {@t¬φ}

Cl1 ∪ Cl2

([R])
Cl1 ∪ {@t[R]φ} Cl2 ∪ {@t¬[R]¬s}

Cl1 ∪ Cl2 ∪ {@sφ}
(〈R〉)

Cl ∪ {@t¬[R]φ}

Cl ∪ {@t¬[R]¬n}
Cl ∪ {@nnf (¬φ)}

, for n new.

(@)
Cl ∪ {@t@sφ}

Cl ∪ {@sφ}

(SYM)
Cl ∪ {@ts}

Cl ∪ {@st}
(REF)

Cl ∪ {@t¬t}

Cl
(PARAM)

Cl1 ∪ {@ts} Cl2 ∪ {φ(t)}

Cl1 ∪ Cl2 ∪ {φ(t/s)}

Figure 4.1: Resolution calculus for the logic H(@)
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Let us briefly explain the rules. The (RES) rule is the known resolution rule.
To understand the ([R]) rule, keep in mind the relational translation of the 2

operator, from Definition 3.3.1:

ST x(¬(3φ)) = ¬(∃y (Rxy ∧ ST y(φ)))

Or, equivalently,

ST x(¬(3φ)) = ∀y (¬Rxy ∨ ¬ST y(φ))

Here, x plays the role of t. In essence, what happens with this rule is that
the “hidden” universally quantified variable y, which should only be unified to R-
successors of x, is both created and unified behind the scenes, when anR-successor
of x is available, and resolution is applied. R-successors of x are created by the
(〈R〉) rule, which can be seen as a form of skolemization which only introduces
constants. This way, unification is controlled, to the point that free variables are
not needed in the calculus. The (∧) and (∨) rules break down complex formulas
into their components; the calculus can resolve on complementary formulas of
arbitrary complexity, which can save time but is not in itself a complete method.
The (@) rule simplifies formulas into equivalent formulas to achieve a unique
representation, much like the transformation into negation normal form does for
negation, and the (SYM), (REF) and (PARAM) rules all deal with equality
between nominals: since nominals can only be true of one element in the model,
whenever we encounter a formula of the form @st, that can only be true if s and
t are true on the same element of the model. Hence, (SYM) represents symmetry
(if s and t denote the same element of the model, formulas true in s will also
be true in t), (REF) represents reflexivity (every nominal is true in the element
of the model it denotes), and (PARAM) is the paramodulation rule, adapted to
equality between nominals.

The computation of ClSet∗(φ) is in itself a sound and complete algorithm for
checking satisfiability of H(@), in the sense that φ is unsatisfiable if and only if
the empty clause {} is a member of ClSet∗(φ) [AdNdR01].

The ↓ operator. To be able to account for hybrid sentences using ↓ we need
only extend the calculus with the rule

(↓)
Cl ∪ {@t↓x.φ}

Cl ∪ {@tφ(x/t)}
.

The full set of rules is a sound and complete calculus for checking satisfiability of
sentences in H(@, ↓) [AdNdR01].

4.2.1. Example. We prove that ↓x.〈R〉(x∧ p) → p is a tautology. Consider the
clause set corresponding to the negation of the formula:
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1. {@i((↓x.¬[R]¬(x ∧ p))∧¬p)} by (∧)
2. {@i↓x.¬[R]¬(x ∧ p)}, {@i¬p} by (↓)
3. {@i¬[R]¬(i ∧ p)}, {@i¬p} by (〈R〉)

4. {@i¬[R]¬j}, {@j(i∧p)}, {@i¬p} by (∧)
5. {@ji}, {@jp}, {@i¬p} by (PARAM)
6. {@ip}, {@i¬p} by (RES)
7. {}

Here we see the calculus in action; the underlining reflects the operators or
formulas that trigger the rule. In step 2, we see how the variable x is bound to
the nominal in which the ↓ operator is evaluated. In step 3, the 〈R〉 rule creates a
new nominal j, “connects” it to i through R, and creates a clause that states that
the argument of 〈R〉 is true in j. Step 5 shows us the effect of paramodulation:
since i and j refer to the same element in the model, formulas satisfied on j must
also be satisfied on i, and vice versa.

4.3 The Given Clause Algorithm

HyLoRes implements a version of the “given clause” algorithm [Vor01], which
is the underlying framework of many current state of the art resolution-based
theorem provers [SPA, Bli, Hil03]; our version is shown in Figure 4.2. A brief
explanation of the functions on that figure follows:

• normalize(A) applies nf to formulas in A and handles trivial tautologies
and contradictions.

• computeComplexity(A) determines length, modal depth, number of literals,
etc. for each of the formulas in A; these values are used by select to pick
the given clause.

• infer( given,A) applies the resolution rules to the given clause and each
clause in A. If the rules (∧), (∨), (〈R〉) or (↓) are applicable, no other
rule is applied as the clauses obtained as conclusions by their application
subsume the premises.

• simplify(A,B) performs subsumption deletion, returning the subset of A
which is not subsumed by any element in B.

• notRedundant( given) is true if none of the rules (∧), (∨), (¬[R]) or (↓) was
applied to given.

4.4 Implementation

HyLoRes is implemented in Haskell (ca. 3500 lines of code), and compiled with the
Glasgow Haskell Compiler (GHC) Version 5.04. We use Happy 1.13 to generate
the parser. GHC produces fairly efficient C code which is afterward compiled into
an executable file. Thus, users need no additional software to use the prover. The
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input: init: set of clauses
var: new, clauses, inuse: set of clauses
var: given: clause

clauses := {}; inuse := {}; new := normalize(init)
if {} ∈ new then return “unsatisfiable”
clauses := computeComplexity(new)
while clauses 6= {} do

{* Selection of given clause *}
given := select(clauses); clauses := clauses – {given}

{* Inference *}
new := infer(given, inuse); new := normalize(new)
if {} ∈ new then return “unsatisfiable”

{* Subsumption deletion *}
new := simplify(new, inuse ∪ clauses)
inuse := simplify(inuse, new)
clauses := simplify(clauses, new)

{* Initialization for next cycle *}
if notRedundant(given) then

inuse := inuse ∪ {given}
clauses := clauses ∪ computeComplexity(new)

return “satisfiable”

Figure 4.2: Structure of the given clause algorithm.

HyLoRes site (http://www.illc.uva.nl/~juanh/HyLoRes) provides executables
for Solaris (tested under Solaris 8) and Linux (tested under Red Hat 7.0 and
Mandrake 8.2). The original Haskell code is also made publicly available under
the GPL license [GNU].
We will see now how HyLoRes handles the formula from Example 4.2.1 :

4.4.1. Example. Input file:

begin

!((down (x1 dia (x1 & p1) )) -> p1)

end

Execution:
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(juanh@banaan 149) hylores -f test.frm -r

Input:

{[@(N0, (-P1 & Down(X1, -[R1]-(P1 & X1))))]}

End of input

Given: (1, [@(N0, (-P1 & Down(X1, -[R1]-(P1 & X1))))])

CON: {[@(N0, -P1)][@(N0, Down(X1, -[R1]-(P1 & X1)))]}

Given: (2, [@(N0, -P1)])

Given: (3, [@(N0, Down(X1, -[R1]-(P1 & X1)))])

ARR: {[@(N0, -[R1]-(P1 & N0))]}

Given: (4, [@(N0, -[R1]-(P1 & N0))])

DIA: {[@(N-2, (P1 & N0))][@(N0, -[R1]-N-2)]}

Given: (5, [@(N-2, (P1 & N0))])

CON: {[@(N-2, P1)][@(N-2, N0)]}

Given: (6, [@(N-2, N0)])

PAR (0,-2): {[@(N-2, (P1 & N-2))][@(N-2, -[R1]-(P1 & N-2))]

[@(N-2, Down(X1, -[R1]-(P1 & X1)))][@(N-2, -P1)]

[@(N-2, (-P1 & Down(X1, -[R1]-(P1 & X1))))]}

Given: (7, [@(N-2, P1)])

Given: (8, [@(N-2, -P1)])

RES: (7, [])

The formula is unsatisfiable

Clauses generated: 11

Elapsed time: 0.0

Here we see the prover giving a step by step account of the clause chosen as given,
the rules applied to it, and the results. Lines starting with CON, ARR, DIA, PAR

and RES respectively indicate application of the (∧), (↓), (〈R〉), (PARAM) and
(RES) rules, with the remainder of the corresponding lines showing the result
of applying such rules. A number is assigned to each clause when it becomes
the given clause; it is shown when the clause is displayed. In the case of the
(PARAM) rule, the nominals involved are shown between brackets, and in the
case of the (RES) rule, the numbers of the clauses involved are shown before the
corresponding resolvent. We see that the proof follows closely the steps given
in Example 4.2.1, except that the paramodulation rule actually generates more
clauses than previously shown.

In addition to HyLoRes, a graphical interface called xHyLoRes implemented in
Tcl/Tk was developed. It uses HyLoRes in the background and provides full file
access and editing capabilities, and a more intuitive control of the command line
parameters of the prover, in the manner of Spin/XSpin [X S]. A screenshot of
xHyLoRes can be seen in Figure 4.3.
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Figure 4.3: A screenshot of xHyLoRes.

4.5 The Gory Details

4.5.1 Data Structures

The design of HyLoRes is modular with respect to the internal representation of
the different kinds of data. We have used the Edison package [Oka01] (a library
of efficient data types provided with GHC) to implement most of the data types
representing sets. The basic data types we created are as follows.

State and Output Monads. Functional programming does not allow for
global variables or side effects; in a function, all input must be passed as an
argument and all consequences must be part of the returned value. For some
applications, this can result in functions having very long and unintuitive lists of
arguments, and contrived output types. In Haskell, a particular data type called
monad is used to overcome this problem. The internal state of the given clause
algorithm (the sets clauses , inuse and new , the data structures used for sub-
sumption checking, the control information, etc) is represented as a combination
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of a state and an output monads [Wad95]; the former provides transparent access
to the internal state of the program from the monadic functions that perform
inference, while the latter handles all printing services with no need of further
parameters in the function signatures. In addition, the use of monads allows the
addition of further structure (hashing functions, etc.) to optimize search, with
minimum re-coding. We have already experienced the advantages of the monad
architecture as we have been able to test different data structures and improve
the performance of some of the most expensive functions with great ease.

Formulas. We took advantage of the possibility of defining recursive data types
in Haskell, with the result that the data type definition closely resembles the
definition given in Section 1.4.5:

data Formula

= Taut | Nom Int | Prop Int | Var Int | Neg Formula | Con [Formula]

| At Int Formula | Atv Int Formula | Down Int Formula

| Box Int Formula

deriving (Ord, Eq)

The integers in the definition represent the different elements of their correspond-
ing sets, i.e. Nom 1 represents the element n1 in the set NOM, and so on. Con-
junctions are stored as the Con constructor plus a list of conjuncts, to allow for
n-ary conjunctions.

Clauses and Sets of clauses. The given clause algorithm at the heart of Hy-

LoRes deals with three main repositories of clauses: clauses , that holds the eligible
candidates por processing; inuse, that holds the clauses which can interact with
the given clause, and new , where the clauses that result from the application of
the rules go. The different clause sets and their clauses have different access pat-
terns and aggregate information and need a different data type for each. clauses
uses the UnbalancedSet type provided by the Edison library which is specially
optimized for search; as in every cycle the given clause has to be selected from
this set, the comparison of clause scores is given as the ordering function, so the
given clause can be selected without having to examine the whole set. The ele-
ments of clauses are tuples containing the clause proper (represented also as an
UnbalancedSet), a complexity measure which depends on the chosen order for
clause selection, and the clause number.

In new , clauses are stored as UnbalancedSets while new itself is a list of
clauses, as all its elements have to be processed one by one in each cycle. inuse
is a list of pairs composed of the clause number and a clause represented also as
a list, as both clauses and formulas in clauses need to be accessed one by one in
every cycle.
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4.5.2 Optimizations

The first implementation of HyLoRes was very näıve and as a result was terribly
inefficient. We then proceeded to adapt and apply well established first order
resolution optimizations to the hybrid environment, with encouraging results.

Ordered resolution with selection. HyLoRes actually implements a version
of ordered resolution with selection [BG01], where the application of the (RES)
and ([R]) rules are restricted to certain selected formulas in the clause. Ordered
resolution with selection greatly reduces the size of the saturated set, preventing
the generation of certain clauses, without compromising the completeness of the
calculus. Interestingly, the proof of completeness of ordered resolution with se-
lection for H(@, ↓) [AG03] closely follows the proof in [BG01], based on a step
by step construction of a Herbrand model for any consistent input clause set.
Once more, hybrid logics seem to provide the appropriate framework to merge
first order and modal ideas.

Formula indexing. Formulas are indexed using a mapping between formulas
and integers, in which indexes for positive and negative occurrences of the same
formula will be equal except for the sign. As the (RES) rule involves searching
for complementary formulas, searching for clauses to resolve with is made more
efficient by storing the clauses in inuse as ordered lists of the indexes. This
indexing is much simpler than in the case of first order, as clauses do not have
free variables.

Subsumption checking. Whenever a clause A follows from another clause B
in the clause set, A is said to be subsumed by B, and can be ignored, reducing the
search space while maintaining correctness. We consider two main types of sub-
sumption checking: forward subsumption (when new clauses are redundant w.r.t.
old clauses) and backward subsumption (when old clauses are redundant w.r.t.
new clauses).Finding out which clauses can be discarded is one of the – or perhaps
“the” – most expensive operations in resolution based theorem provers [Vor95].
HyLoRes uses a simple version of subsumption checking where a clause C1 sub-
sumes a clause C2 if C1 ⊂ C2. Version 0.5 of the prover implemented this test
very inefficiently, checking the subset relation element by element, and clause by
clause. In the latest prototype, a set-at-a-time subsumption checking algorithm
which uses a clause repository structured as a trie [Vor95] was implemented, with
dramatic improvements (see Section 4.6). We also noticed that while forward sub-
sumption is essential, many times backward subsumption does not really make a
difference. This is also the case for some first order logic provers; see [RSV01].

The clause repository is organized as a list of tries, in the following manner.
The clauses are inserted and queried as ordered lists of integers. The repository
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is a list of tries, in which each node represents a formula and each path that ends
in a leaf node represents a clause.

4.5.1. Example. The set of clauses

{ {1, 2, 3}, {1, 2, 4}, {1, 2, 8}, {1, 4, 5}, {1, 4, 7, 8},

{1, 4, 7, 9, 10}, {2, 3, 9}, {2, 7, 9}, {2, 7, 8, 10}, {2, 7, 8, 11} }

is stored as shown in Figure 4.4.
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Figure 4.4: Trie representation for a set of clauses

When inserting a clause, if its head is the root of any of the visible tries then we
insert its tail into that trie, otherwise we add a branch to the current node and
insert the clause there. In this way, all clauses are represented as a path from
one of the root nodes to a leaf, so that all the clauses that are extensions of a
particular path are stored as branching from it. The fact that the formulas in the
clause are ordered gives us the possibility to optimize search, both by having a
unique representation and by knowing when it will be useless to keep searching.
The clause repository holds both the clauses in inuse and the ones in clauses , so
as to check for (forward or backward) subsumption against just one set of clauses,
which also eliminates the cost of transferring clauses from one trie to the other
when a clause is moved from clauses to inuse. Subsumption checking has then
become very efficient, and indeed it brought a speed up of about two orders of
magnitude to the prover.

In forward subsumption, the clauses in new are checked one by one for sub-
sumption by the clauses in inuse or clauses , as follows: for each clause C in new ,
for each of the visible tries Ti in the repository, if the root of Ti is in the checked
clause, all the branches of Ti are successively checked for the elements of the
clause that are greater than the root. If we reach the end of any branch, then the
clause is subsumed by the repository and the search stops. If we find any element
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not present in C, none of the clauses represented by the current path subsumes
C and we can proceed to the next trie. If the root of the next trie is greater than
the maximum element in C, no match will be possible and the search ends.

In backward subsumption, the clauses in new are checked one by one for
subsumption of the clauses in inuse or clauses , as follows: for each clause C in
new , for each of the visible tries Ti in the repository whose root is less than or
equal to the head of the clause (the smallest element), if the root of Ti is equal
to the head of C, we check the branches of Ti for existence of the elements in the
tail of C, and if the root of Ti is less than the head of C we check the branches of
Ti for existence of the whole clause. When we find a match for the last element
of the clause, we know that all the paths that originate from Ti are subsumed by
the clause: we retrieve all of them, and examine the next trie. When we reach a
Ti with a root greater than the head of C, the search ends.

Input analysis. At this moment, HyLoRes performs a very simple analysis of
its input. It checks for the presence of the [R], 〈R〉,@ and ↓ operators and for
nominals in order to know which rules will need checking for applicability. For
example, if the ↓ operator does not appear in the input, then the (↓) rule is
switched off and never attempted. Most first order provers perform a far more
detailed analysis of the input and decide heuristics and settings on account of
their findings.

Application of the rules. The rules of the underlying resolution calculus (as
shown on Figure 4.1) are applied in such a way as to make the sets of clauses
grow as slowly as possible. For example, the (¬∧) rule is checked first of all, and
if it’s applied then no other rule is applied, and also the given clause is not added
to inuse (the antecedent and consequent clauses are equivalent, but this does not
show in our implementation of subsumption checking). The same is true of (∧).
Then (RES) is applied, and the empty clause is searched for in the result before
proceeding with the rest of the rules.

Another thing that helps pruning the search space is postponing the creation
of new nominals (by application of the 〈R〉 rule) until the clause set is saturated
for the current set of prefixes. Whenever the 〈R〉 rule can be applied, the appli-
cation is postponed until clauses is empty. In a sense, this can be interpreted as
exhausting the possibilities of doing propositional reasoning before doing modal
reasoning.

Paramodulation. Since we need to do equality reasoning between nominals,
we can once more take advantage from experience in first order resolution. In [BG98],
Bachmair and Ganzinger develop in detail the modern theory of equational rea-
soning for first order saturation based provers. Many of the ideas and optimiza-
tions discussed there can and should be implemented in HyLoRes. In the current
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version, paramodulation is done näıvely, the only “optimization” being the ori-
entation of equalities so that we always replace nominals by nominals which are
lower in a certain ordering.

4.6 Testing

During the development of HyLoRes, we made extensive use of the modal test
sets described in Chapter 2 to evaluate the performance of the prover and guide
design decisions. Some results are shown in Figure 4.5.

Hand-tailored tests. Figure 4.5 (a) represents a set of runs of the Balsiger,
Heuerding and Schwendimann test set [BHS00], with different criteria for selecting
the given clause, and the description logic prover RACER [RAC], version 1-6r2,
included as a reference. Even when most of this test set has become trivial for
mature modal provers, it still provided a quick way to evaluate the prover in the
early stages.

Random tests: Random Modal QBF test set. Figure 4.5 (b) shows a run
of several versions of HyLoRes and other provers over a very easy area of the Ran-
dom Modal QBF test set [Mas99]. The X axis represents the number of clauses in
the original QBF formula, and the Y axis represents the average time for solving
an instance, with 64 samples/datapoint. The problems range from being all satis-
fiable at the left, to being all unsatisfiable at the right. We benchmarked HyLoRes

0.5 (no formula indexing, no clause repository), HyLoRes 0.9 (formula indexing,
clause repository, backward subsumption still using clause-at-a-time comparison)
and HyLoRes 1.0 (now with backward subsumption using set-at-a-time compar-
ison). We also ran SPASS v. 1.0.3 [SPA] with the standard translation to first
order logic, MSPASS v. 1.0.0t.1.3 [MSP], *SAT version 1.3 [*SA], and RACER
v. 1-6r2 on this test, to compare with more mature provers; in general the times
for these provers only reflect start up times, as revealed by the absence of the
easy-hard-easy pattern. This test set allowed us to gauge the progress of HyLoRes

as we added optimizations to it, although since QBF derived modal formulas have
a very rigid structure, as we have seen in Chapter 2, a good performance on this
test set was not a guarantee of good performance overall.

Random tests: Random Modal CNF test set. As explained in Section 2.5,
this test set [PSS03] generates random modal CNF formulas directly. We ran the
test for C = 2.5, V = 3 and D = 1; Figure 4.5 (c) represents median time
elapsed as a function of (number of clauses/number of variables). The timeout
value was 100 seconds: again, it was too easy for mature provers to compare
their performances, while for HyLoRes there were a few timeouts in the hardest
area. Figure 4.5 (d) plots the satisfiable/unsatisfiable fractions in the test we just
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Figure 4.5: HyLoRes and Modal test sets

described. There are zones of the plot in which the sum of the satisfiable and
unsatisfiable fractions is less than 1; this is due to timeouts, as the sum represents
the fraction of problems solved before the time limit.

Random tests: Random Hybrid CNF test set. An important drawback of
these test sets though, is that they only provide purely modal input. We present
now some preliminary tests of the hybrid capabilities of HyLoRes, evaluated using
hGen, the generator introduced in Section 2.5.

In Figure 4.6 (a) and (b) we start with a purely modal base case, with C = 2,
Np = 3, D = 1, and gradually add nominals to the mix; that is, with Nn = 5
we keep psvar = 0 and do one run with pprop = 1, pnom = 0, one with pprop = 9,
pnom = 1, and one with pprop = 8, pnom = 2. The timeout was 300 seconds.
Figure 4.6 (a) shows the median time elapsed, while Figure 4.6 (b) shows the
proportion of problems solved. Here we see that even slight increases of the
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quantity of nominals the difficulty rises sharply; this highlights the fact that
optimizing paramodulation is crucial. Figure 4.6 (c) and (d) shows the effect of
increasing the proportion of @-operators, starting from the same base case. We
see that the difficulty changes very little (although the peak moves to the right),
and the satisfiable/unsatisfiable transition moves to the right as we increase the
proportion of @-operators. This is to be expected, in a sense, since the presence
of nominals in a formula triggers the paramodulation rule (which tends to create
a state explosion), while the @-operator triggers the much more benign @-rule,
which just simplifies the given clause.
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Figure 4.6: Hybrid CNF tests – Adding Nominals and @

4.7 Conclusion

The prototype is not yet meant to be competitive when compared with state of
the art provers for modal-like logics like DLP, *SAT, MSPASS or RACER. On
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the one hand, the system is still in a preliminary stage of development (only
very simple optimizations for hybrid logics have been implemented), and on the
other hand the hybrid language and the languages handled by the other provers
are related but different. H(@, ↓) is undecidable while the target languages of
the other provers are decidable. And even when comparing the fragment H(@)
for which HyLoRes implements a decision algorithm, the expressive powers are
incomparable (H(@) permits free Boolean combinations of @ and nominals but
lacks, for example, the limited form of universal modality available in the T-Box
of DL provers [Are00]).

There certainly remain many things to try and improve in HyLoRes. The next
steps in its development include

– a better treatment of paramodulation;

– support for the universal modality A [GP92] (which would allow us to
perform inference in full Boolean knowledge bases of the description logic
ALCO);

– saving the saturated clause set, if any, for querying;

– and improve input analysis and heuristics.

But the main goal we pursued during the implementation of this prototype has
largely been achieved: direct resolution can be used as an interesting, and perhaps
even competitive, alternative to tableaux based methods for modal and hybrid
logics.
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In this second part we will review the concept of formulas-as-programs, and
introduce an executable interpretation of DFOL. The interpretation works as a
specification: the way in which the desired computational effect is to be achieved
is not part of the interpretation. This allows us to devote Chapter 6 to define
a Hoare calculus for the logic, without worrying about the internal state of the
language engine: if the engine is faithful to the executable program interpretation,
the calculus applies to it. After introducing the calculus, in Chapter 7 we will
introduce a new version of the Dynamo engine, which is certainly a departure
from the state machine of Chapter 5: since we want to be faithful to DFOL
semantics, why not use a tableau prover as the engine? This has proved to have
advantages and disadvantages, as we will see in Chapter 8. Figure 4.7 gives a
dependency map for this part.





Chapter 5

The Executable Program Interpretation
for Dynamic First Order Logic

5.1 Introduction

In this chapter we will introduce the DFOL perspective on the “formulas as pro-
grams” paradigm as presented in [AB98]. In essence, by interpreting formulas as
actions on a certain data structure, and having such actions respect the semantics
of the corresponding formulas, we obtain a programming language that possesses
both the power of imperative programming and a declarative semantics. We will
give some background on formulas as programs, sketch the computational process
approximation to DFOL(∪) as proposed in [vE98b], and suggest some extensions.
This is not how we will ultimately implement Dynamo, but it is provided to give
some insight on the use of DFOL extensions for programming.

5.2 FOL and Programming

The idea of using FOL as a programming language is not new: a language con-
sisting of formulas in the Horn fragment of FOL was presented in [Kow74], and
marked the start of the development of the logic programming field. The benefit
of having a declarative semantics for a programming language is that it makes
programs easier to understand, modify and verify, since having a dual reading of
a program as a logical formula makes it much simpler to reason about its cor-
rectness. The problem with the Horn fragment was that it was not expressive
enough for programming purposes. Prolog, the first logic programming language,
was then extended in order to reach the desired expressivity, but many of the ex-
tensions were extralogical : arbitrary programs cannot be read as logical formulas
anymore, and soundness and completeness results have not yet been conclusively
extended to programs including negation. Also, even ‘pure’ PROLOG programs
can be hard and unintuitive to verify in a rigorous way, in part because of the

81
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use of recursion. To remedy the situation without sacrificing too much expres-
sivity, Apt and Bezem [AB98] proposed a different approach, called formulas as
programs, where a computation mechanism is suggested that relies exclusively
on the basics of first order logic and replaces recursion with (bounded) iteration.
The core idea is to consider the expression v = t, where v is a variable and t is a
term, as an assignment if the value of v is not known, and as a test if it is. If t
is not a grounded expression, the procedure returns an error. For any valuation
α, we say that a term (or atom) is α-closed if all variables appearing in it have a
value under α; an expression of the form v = t is called an α-assignment; if v is
a variable, t is a term, and v is not α-closed but t is.

This approach was extended in a number of ways: non-recursive procedures,
sorts (ie types), arrays, and bounded quantification (bounded iteration and bounded
choice). Recently there has been work on viewing FOL as a constraint logic pro-
gramming language [AV02], introducing the possibility of storing non-grounded
atoms as constraints, which greatly reduces the number of cases in which an error
is returned.

5.3 Computational Process Approximations to

DFOL(∪)

Following this approach, our process approximation to DFOL(∪) results from in-
terpreting identity statements, in suitable contexts, as assignment actions, and
existential quantification as unassignment actions. That is, when a variable be-
comes existentially quantified, any value it might have assigned is lost, and it
becomes free to be assigned again. The reason for this is given by the semantics
of DFOL(∪): let’s review what the syntax and semantics of DFOL(∪) were.

5.3.1 DFOL(∪)

Let a first order signature be given. We assume that variables can be built from a
set VAR of initial variables by means of appending indices. Let f and P range over
the function and relation symbols, with arities n as specified by the signature.
We assume that terms range over the natural numbers, and that f and P denote
recursive functions and predicates on N. As stated in Definition 1.4.12, the terms
and formulas of DFOL(∪) over this signature are given by:

TERMS := vt1,...,tn | f t̄ (Terms)
FORMS := ∃v | P t̄ | t1

.
= t2 | ¬((φ)) | φ1;φ2 | (φ1 ∪ φ2) (Formulas)

where v ∈ VAR, t, t1, t2 ∈ TERMS, t ∈ TERMS × · · · × TERMS, and φ, φ1, φ2 ∈
FORMS.
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In Definition 1.4.16 we introduced the semantics of DPL and extensions, and
hinted at an alternative way to interpret the semantics of a formula φ, as a
function from assignments to sets of assignments. Let’s spell that interpretation
out in more detail:

5.3.1. Definition. [Functional Interpretation of DFOL(∪) in a model M =
(D, I)] For N,N1, N2 ∈ N, t, t1, t2 ∈ TERMS,

(v[t1] · · · [tn])s := s(vts
1
,...,tsn)

(ft1 · · · tn)s := I(f)ts1 · · · t
s
n

[[⊥]]s := ∅

[[Pt1 · · · tn]]s :=

{

{s} if (ts1, . . . , t
s
n) ∈ I(P )

∅ otherwise.

[[t1
.
= t2]]s :=

{

{s} if ts1 = ts2
∅ otherwise.

[[∃v]]s := {s′ ∈ DV | s′ ∼v s}

[[¬φ]]s :=

{

{s} if [[φ]]s = ∅

∅ otherwise.

[[φ1;φ2]]s :=
⋃
{[[φ2]]s′ | s

′ ∈ [[φ1]]s}

[[φ1 ∪ φ2]]s := [[φ1]]s ∪ [[φ2]]s

We extend the logic with the following constructs:

[[φ0]]s := {s}

[[φN+1]]s := [[φ;φN ]]s

[[φt]]s := [[φts ]]s

[[∪v
N1..N2

φ]]s :=

{

[[v = N1;φ]]s ∪ · · · ∪ [[v = N2;φ]]s if N1 ≤ N2

∅ otherwise.

[[∪v
t1..t2

φ]]s :=

{

[[v = t1;φ]]s ∪ · · · ∪ [[v = t2;φ]]s if ts1 ≤ ts2
∅ otherwise.

In this interpretation of formulas as functions from valuations to sets of valuations,
existential quantification would require the set [[∃x]]s to consist of all the valuations
u such that s ∼x u. Since our domain D is usually N , computing this set is not
possible. Therefore, by uninitializing the variable, we simply desist from trying
all possible values of x, in favor of trying to find those that make the rest of the
formula true.

Computation states are partial maps from the set of variables to values in the
domain of quantification; if a state s does not have a value for v but does have
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values for all variables occurring in t, then v
.
= t and t

.
= v can be interpreted as

instructions to extend s with the pair (v, ts).
What we want from an executable process interpretation is the following: (1)

if the interpretation computes an answer valuation, then that answer is correct
according to the semantics of DFOL, and (2) if the executable process inter-
pretation returns a negative answer then there are no answers according to the
semantics of DFOL.

This notion can be formalized as follows. Let A be the set of all possible
valuations, ie {s ∈ DX | X ⊆ VAR}. We introduce the notation ts =↓ when
t is s-closed and ts =↑ when it is not. A set of computed states may contain
an uninformative state •, signifying that at least one computation attempt was
given up. We measure the degree of informativeness of an answer by means of a
suitable ordering v on P(A ∪ {•}) defined by:

A v B := (• ∈ A ∧ A− {•} ⊆ B) ∨ (• /∈ A ∧ A = B).

This makes (P(A ∪ {•}),v) into a complete partial order (CPO), with {•} as
bottom element.

For s ∈ A, let s◦ := {b ∈ DVAR | s ⊆ b}. Let •◦ := {•}. Lift this operation to
subsets of A ∪ {•} by means of A◦ :=

⋃

s∈A s
◦.

Then, a computation procedure F : L → A → P(A ∪ {•}), where L is a
language of DFOL, is a faithful approximation of DFOL if for all φ ∈ L, all
s ∈ A:

(Fφ(s))
◦ v

⋃

b∈s◦

[[φ]]b.

The computational strengths of procedures F,G : L → A → P(A ∪ {•}),
can be compared by lifting our v ordering to the level of computation maps, as
follows:

F v G := ∀φ ∈ L ∀s ∈ A : Fφ(s) v Gφ(s).

A computation procedure G is a better approximation to DFOL than F if F v G
and G is faithful to DFOL. In [vE98b], a computation mechanism faithful to
DFOL is presented; we will now give a brief review, and present an improvement
on it.

5.3.2. Definition. [State] The output a (alt. b, . . .) of a computation is repre-
sented as a triple (a, ga, la) ((b, gb, lb), . . .), where a is a valuation, ga is a list of
global variables, meaning those that are not existentially quantified, and la is a
list of local or existentially quantified variables. The reason for this is the inter-
action between the use of equality as assignment and the treatment of negation:
intuitively, we consider the evaluation of ¬φ to fail if the evaluation of φ succeeds
without making global assignments. We want to distinguish between cases in which
extension of the input assignment occurs inside a negated formula from the “nor-
mal” case in which it occurs in a positive context. We call unsafe those cases
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in which extension of the input assignment occurs during evaluation of negated
formulas, because they result in, well, unsafe conclusions. For example, we want
the formula x

.
= 1 to succeed on the empty assignment ε (and assign 1 to x), but

we do not want ¬(x
.
= 1) to fail on ε, as it would mean that there is no x that is

equal to 1. Note that the formula ¬(∃x;x
.
= 1) must fail on any input; hence the

need to distinguish between variables that are local, ie existentially quantified,
and global, or free. In cases where a computation would be unsafe or there is
insufficient data to perform it, we ’give up’ on the computation, and its output
will be the • state. Then, our state for the executable process interpretation
function is of type ((A×P(VAR)×P(VAR))∪{•}), and our executable interpre-
tation function proper is of type FORMS × ((A × P(VAR) × P(VAR)) ∪ {•}) →
{A × P(VAR) × P(VAR)} ∪ {•}, where (T1 ∪ T2) means “either type T1 or type
T2”.

5.3.3. Definition. [Safe states] A state b is safe for (a, ga, la) if b 6= • and
la ∪ gb ⊆ dom(a).

5.3.4. Definition. [Risky states] A set of states B is risky for (a, ga, la) if B 6= ∅,
but no member b of B is safe for (a, ga, la).

5.3.5. Definition. [Executable process interpretation for DFOL]

[{φ}](•) := {•}

[{⊥}](a, ga, la) := ∅

[{Pt1 · · · tn}](a, ga, la) :=







{(a, ga, la)} if Pt1 · · · tna-closed, Pt1 · · · tn ∈ I(P ),

∅ if Pt1 · · · tna-closed, Pt1 · · · tn 6∈ I(P ),

• if Pt1 · · · tnnot a-closed.

[{∃v}](a, ga, la) := {(a − {v/va}, ga, la ∪ {v})}

[{¬φ}](a, ga, la) :=







{(a, ga, la)} if [{φ}](a, ga, la) = ∅

∅ if ∃ b ∈ [{φ}](a, ga, la)with b safe for(a, ga, la)

{•} if [{φ}](a, ga, la) is risky for (a, ga, la)
[{φ1;φ2}](a, ga, la) :=

⋃
{[{φ2}](b) | b ∈ [{φ1}](a, ga, la)

[{φ1 ∪ φ2}](a, ga, la) := [{φ1}](a, ga, la) ∪ [{φ2}](a, ga, la)

This far, we are simply checking a formula against a valuation; the treatment of
.
= that follows is what makes our system a computation engine.
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[{(t1
.
= t2)}](a, ga, la) :=







{(a, ga, la)} if t1, t2 a-closed, ta
1

= ta
2
,

∅ if t1, t2 a-closed, ta
1
6= ta

2
,

{(a ∪ {v/ta
2
}, ga, la)} if t1

.
= t2 an a-assignment with

t1 ≡ v, va =↑, ta
2

=↓, v ∈ la

{(a ∪ {v/ta
2
}, ga ∪ {v}, la)} if t1

.
= t2 an a-assignment with

t1 ≡ v, va =↑, ta
2

=↓, v 6∈ la

{(a ∪ {v/ta
1
}, ga, la)} if t1

.
= t2 an a-assignment with

t2 ≡ v, va =↑, ta
1

=↓, v ∈ la

{(a ∪ {v/ta
1
}, ga ∪ {v}, la)} if t1

.
= t2 an a-assignment with

t2 ≡ v, va =↑, ta
1

=↓, v 6∈ la

{•} if t1, t2 not a-closed

and not an a-assignment

5.4 DFOL(∪) as a Programming Language

We will give a few examples of DFOL(∪) formulas, viewed as programs. The
formula

(x ≥ y; z
.
= x) ∪ (x < y; z

.
= y)

will check whether z is equal to max (x, y). If we want to assign the maximum of
x and y to z, we first unassign it by existential quantification:

∃z; ((x ≥ y; z
.
= x) ∪ (x < y; z

.
= y))

DFOL, viewed as a programming language, gives a new perspective on a funda-
mental feature of imperative programming, the destructive assignment command
x := t. Take the command x := x+1 that increments x. This cannot be rendered
as identity, for the identity x = x+1 either gives an error message (in cases where
the input valuation is not defined for x) or it fails, on the natural numbers at
least (for there is no n ∈ N with n = n + 1). But if we implement the use of an
auxiliary (‘shadow’) variable x′ and dynamic quantification over both x and x′,
we can express x := x+ 1 with the DFOL formula

x′ = x+ 1;∃x;x = x′;∃x′,

where the final ∃x′ is used for unassigning x′ for future uses.
If we assume that each regular variable v comes with a unique shadow v ′ we

can abbreviate this as v J t; we call this safe assignment.

5.5 Moving Closer to DFOL(∪) Semantics

In the first incarnation of our executable interpretation, the program state is ei-
ther a triple (a, ga, la) or •. This means that if a statement x

.
= t is not a-closed
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and not an a-assignment, the result has to be the uninformative state •. For
example, if x

.
= 2;x

.
= y is computed in a state ε (undefined for every variable),

then the result is {{x/2, y/2}} (there is a single output state that maps both of
x, y to 2). If we interchange the statements, and compute x

.
= y;x

.
= 2 for input

state ε, the result is the completely uninformative set {•}, while the assignments
that satisfy the two formulas are exactly the same. We believe we can produce
an interpretation that is a better approximation to the semantics of DFOL, since
the same valuation that satisfies the first formula satisfies also the second one. To
accomplish this we extend the states with some further components. The fourth
component is a list of literals Pt1 · · · tn, t1

.
= t2, ¬Pt1 · · · tn, ¬t1

.
= t2. Since as-

signments to global variables inside negated formulas make the computation path
unsafe, we will, when in the appropriate mode, save v

.
= t as a constraint rather

than perform a global assignment to v. The two execution modes we distinguish
are B(uild) and C(onstrain). We will now present the execution mechanism as
a set of transition rules; in the rules where the execution mode does not matter
but has to remain the same during a given transition step, we will use m as a
variable ranging over B,C. Also, we will need to keep track of the set of variables
used somewhere in the current list of unresolved literals. If v is used in the list of
unresolved literals, a dynamic quantifier action ∃v would sever the literals that
include v from the computation path, so we need to keep track of such situations.
We will introduce a new register na for constraint variables needed by state a. A
state a will now look like (a, ga, la, na, La,ma), where

• a is a partial valuation,

• ga is the set of global variables,

• la is the set of local variables,

• na is the set of variables needed in a stored constraint,

• La is the list of literals stored as constraints,

• ma is either b or c, the execution mode of the state a.

The role of these components in the state transitions will become clear when
introduce the transition rules.

When, in build mode, we cannot perform an atomic test or cannot execute an
equality statement (either as a test or as an assignment) due to missing values
in the input, we store the atom after substituting the values of the current state
and add the variables that are still needed to the set of needed variables. When,
in constrain mode, we cannot perform an atomic test or execute an equality as
a test statement due to missing values in the input, we do the same. Then, if a
variable in na is assigned a value, the corresponding literals in La are updated,
and evaluated if they become a-closed or a-assignments (a reduction step). This
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can cause yet more variables from na to be assigned values, which triggers yet
another reduction.

5.5.1 • and 0 propagation

For conceptual clarity, we use an explicit failure state 0. Computation of φ
from state a fails if all φ-computation paths starting from a end in 0. We will
sometimes need this to ensure that no further reduction attempts will be made
on a. Both 0 and the improper state •, for ‘I don’t know’, are treated as a states
from which no recovery is possible.

•
φ

−→ • 0
φ

−→ 0

5.5.2 Atomic Predicate Test

In case we cannot perform an atomic test due to missing values in the input, we
store the set of needed variables (those for which no values were available), along
with the literal. If a is the input valuation and Pt1 · · · tn is the predicate, the
a-instance of Pt1 · · · tn is given by Pta1 · · · t

a
n , and the set of needed variables by:

var(ta1..t
a
n). A test that fails produces a transition to the failure state. It makes

no difference whether we are in build mode or constrain mode.

Pt1 · · · tn a-closed and (ta1, . . . , t
a
n) ∈ I(P )

(a, ga, la, na, La,ma)
Pt1···tn−→ (a, ga, la, na, La,ma)

Pt1 · · · tn not a-closed

(a, ga, la, na, La,ma)
Pt1···tn−→ (a, ga, la, na ∪W,L;Pta1 · · · t

a
n,m

a)
W = var(ta1..t

a
n)

Pt1 · · · tn a-closed and (ta1, . . . , t
a
n) /∈ I(P )

(a, ga, la, na, La,ma)
Pt1···tn−→ 0
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5.5.3 Equality

If an assignment to v makes the valuation grow, then we have to adjust the
list of needed variables (by removing v from it), and the list of constraints (by
performing the substitution v/d, where d is the computed value for v). However,
even if an equality t1

.
= t2 is an assignment for the current valuation, we need not

always perform the assignment: we will only do so when the assignment is to a
local variable (dynamically bound in the current context), or to a global variable
while we are in build mode. When we are in constrain mode all identities that
are not tests will be put on the constraint list. We will use L[v/d] for the result
of performing substitution [v/d] to every member of L.

The simplest case is the case where t1
.
= t2 is a test. In this case it makes no

difference whether we are in build or constrain mode. Again, we model failure
explicitly by means of a transition to 0. We get:

t1
.
= t2 a-closed and ta1 = ta2

(a, ga, la, na, La,ma)
t1
.
=t2−→ (a, ga, la, na, La,ma)

t1
.
= t2 a-closed and ta1 6= ta2

(a, ga, la, na, La,ma)
t1
.
=t2−→ 0

If t1
.
= t2 is an assignment to a variable v that is local to the current context,

the assignment is performed, the variable v is removed from the list of needed
variables, and the relevant substitution [v/d] is performed on the list elements.
It makes no difference whether we are in build or constrain mode:

t1
.
= t2 an a-assignment with t1 ≡ v, va =↑, ta2 =↓, v ∈ la

(a, ga, la, na, La,ma)
t1
.
=t2−→ (a ∪ {v/ta2}, g

a, la, na − {v}, La[v/ta2],m
a)

t1
.
= t2 an a-assignment with t2 ≡ v, va =↑, ta1 =↓, v ∈ la

(a, ga, la, na, La,ma)
t1
.
=t2−→ (a ∪ {v/ta1}, g

a, la, na − {v}, La[v/ta1],m
a)

If t1
.
= t2 is an assignment to a variable v that is global to the current context,

what we will do depends on the execution mode. In build mode, we perform the
assignment, remove v from the list of needed variables, and carry out the relevant
substitution [v/d] on the list elements. In constrain mode, we save the identity
on the list.
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t1
.
= t2 an a-assignment with t1 ≡ v, va =↑, ta2 =↓, v /∈ la

(a, ga, la, na, La, b)
t1
.
=t2−→ (a ∪ {v/ta2}, g

a ∪ {v}, la, na − {v}, La[v/ta2], b)

t1
.
= t2 an a-assignment with t1 ≡ v, va =↑, ta2 =↓, v /∈ la

(a, ga, la, na, La, c)
t1
.
=t2−→ (a, ga, la, na ∪ {v}, L; ta1

.
= ta2, c)

t1
.
= t2 an a-assignment with t2 ≡ v, va =↑, ta1 =↓, v /∈ la

(a, ga, la, na, La, b)
t1
.
=t2−→ (a ∪ {v/ta1}, g

a ∪ {v}, la, na − {v}, La[v/ta1], b)

t1
.
= t2 an a-assignment with t2 ≡ v, va =↑, ta1 =↓, v /∈ la

(a, ga, la, na, La, c)
t1
.
=t2−→ (a, ga, la, na ∪ {v}, L; ta1

.
= ta2, c)

Finally, for input states where t1
.
= t2 is neither an assignment nor a test, we

save the identity on the list.

t1
.
= t2 not an a-assignment and not a-closed

(a, ga, la, na, La,ma)
t1
.
=t2−→ (a, ga, la, na ∪W,L; ta1

.
= ta2,m

a)
W = var(ta1, t

a
2)

5.5.4 Predicate Test Reduction

For efficiency reasons, we indicate the results of a reduction resulting in failure
by means of a transition to 0. This prevents the futile application of other rules
to the state: we make sure that there are no transitions from 0.

Due to the fact that identity statements make the valuation grow, test predi-
cates on the unresolved literal list may turn into grounded literals (literals with-
out variables, i.e., ∅-closed literals), in which case we can perform the test. It
does not matter where a test literal occurs on the list. We indicate this with
L(Pt1 · · · tn). In the same context, L() indicates the result of removing all occur-
rences of Pt1 · · · tn from the list L.
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Pt1 · · · tn grounded and (t1, . . . , tn) ∈ I(P )

(a, ga, la, na, L(Pt1 · · · tn),ma)
r

−→ (a, ga, la, na, L(),ma)

Pt1 · · · tn grounded and (t1, . . . , tn) /∈ I(P )

(a, ga, la, na, L(Pt1 · · · tn),ma)
r

−→ 0

Pt1 · · · tn grounded and (t1, . . . , tn) /∈ I(P )

(a, ga, la, na, L(¬Pt1 · · · tn),ma)
r

−→ (a, ga, la, na, L(),ma)

Pt1 · · · tn grounded and (t1, . . . , tn) ∈ I(P )

(a, ga, la, L(¬Pt1 · · · tn),ma)
r

−→ 0

5.5.5 Equality Test Reduction

In case an equality or inequality on the unresolved literal list is a test for the
current input, the treatment is as for atomic tests.

t1, t2 grounded and t1 = t2

(a, ga, la, na, L(t1
.
= t2),m

a)
r

−→ (a, ga, la, na, L(),ma)

t1, t2 grounded and t1 6= t2

(a, ga, la, na, L(t1
.
= t2),m

a)
r

−→ 0

t1, t2 grounded and t1 6= t2

(a, ga, la, na, L(¬t1
.
= t2),m

a)
r

−→ (a, ga, la, na, L(),ma)

t1, t2 grounded and t1 = t2

(a, ga, la, na, L(¬t1
.
= t2),m

a)
r

−→ 0

5.5.6 Assignment Reduction

If an equality occurs anywhere in the unresolved literal list that is an assignment
for the current input, then it can be used to extend the input valuation, provided
we are in build mode.
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t1
.
= t2 an a-assignment with t1 ≡ v, va =↑, ta2 =↓, v ∈ la

(a, ga, la, na, L(t1
.
= t2), b)

r
−→ (a ∪ {v/ta2}, g

a, la, na − {v}, L()[v/ta2], b)

t1
.
= t2 an a-assignment with t1 ≡ v, va =↑, ta2 =↓, v /∈ la

(a, ga, la, na, L(t1
.
= t2), b)

r
−→ (a ∪ {v/ta2}, g

a ∪ {v}, la, na − {v}, L()[v/ta2], b)

t1
.
= t2 an a-assignment with t2 ≡ v, va =↑, ta1 =↓, v ∈ la

(a, ga, la, na, L(t1
.
= t2), b)

r
−→ (a ∪ {v/ta1}, g

a, la, na − {v}, L()[v/ta1], b)

t1
.
= t2 an a-assignment with t2 ≡ v, va =↑, ta1 =↓, v /∈ la

(a, ga, la, na, L(t1
.
= t2), b)

r
−→ (a ∪ {v/ta1}, g

a ∪ {v}, la, na − {v}, L()[v/ta1], b)

5.5.7 Quantification

If we encounter a quantifier ∃v in a state with a list L with at least one literal
with v occurring in it, then we are in trouble. The bookkeeping device for the
set of needed variables for list reduction is na. In case v ∈ na, there is nothing
we can do but go to the state of irrecoverable error. The reason is that there is
an unresolved test involving v on the list, and that test cannot be postponed any
further.

v ∈ na

(a, ga, la, na, La,ma)
∃v
−→ •

If ∃v is executed in a state (a, ga, la, na, La,ma), and none of the literals in
L needs v, we throw away the old a-value of v (if any), and put v in the local
variable register.

v ∈ dom(a), v /∈ na

(a, ga, la, na, La,ma)
∃v
−→ (a− {v/va}, ga, la ∪ {v}, na, La,ma)
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5.5.8 Negation

As the treatment of negation is rather involved, some preliminary definitions are
useful. Here is a definition of a reduced computation.

a
φ

−→r b :≡ either a
φ

−→ b and there is no b′ with b
r

−→ b′

or a
φ

−→ a1
r

−→ · · ·
r

−→ b, and there is no b′ with b
r

−→ b′.

We define a◦ by means of:

(a, ga, la, na, La,ma)◦ := (a, dom(a), ∅, na, La, c).

In other words, a◦ denotes the result of putting the list of global variables of a
equal to the domain of the valuation, making the list of local variables of a empty,
and putting the state in constrain mode.

In terms of
φ

−→r we define the set of all outcomes of computations φ starting
from a◦, as follows:

Oa(φ) := {b | a◦ φ
−→r b}.

In other words, Oa(φ) is the set of all fully reduced output states that are the
result of executing φ in state a◦.

Next, note that if we take care to always execute formulas in the scope of
negation in constrain mode (this is part of the definition of a◦), no global assign-
ment ever takes place (as is easily verified by inspection of the rules). In constrain
mode, instead of assigning a new value to a global variable v, we put a constraint
on v on the list. In other words, the members b of Oa(φ) will all be safe, in the
sense that they all will satisfy gb = dom(a).

The members of Oa(φ) fall in the following categories:

• b is simple if b has the form (b, gb, lb, ∅, ∅, c). A simple state is one with an
empty list of literals.

• b is constrained if b has the form (b, gb, lb, na, La, c), with na 6= ∅, L 6= ∅.

• b = 0: the failed state.

• b = •: the don’t know state.

In cases where the set of outcomes Oa(φ) contains at least one simple state, we
know that the embedded computation has succeeded, so the computation of ¬φ
from a should fail (we should get an explicit transition to 0):

b ∈ Oa(φ) with b simple.

a
¬φ
−→ 0
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If Oa(φ) = {0}, we know that the embedded computation has failed, so the
computation of ¬φ from a should succeed:

Oa(φ) = {0}

a
¬φ
−→ a

If the set Oa(φ) − {0} is non-empty and contains only constrained states, we
can dualize it. If l is an atom or identity A, then l̄ is its negation ¬A; if c is a
negated atom or identity ¬A, then c̄ is the unnegated literal A. We call c̄ the
complement of c.

Dualisation of a list of constrained states means constructing all lists of literals
that result from picking the complement of a literal on the constraint list of each
of the constrained states, provided no variable in such a literal is in the local
variable list.

The reason for the proviso is that negating a constraint with an existentially
quantified variable cannot be expressed as a literal constraint on variables. At a
later stage we might wish to take such ‘universal constraints’ on board as well,
but here we refrain from doing so, and in such cases we simply admit defeat and
give up. The function U from lists of states to P({•}) indicates whether dualizing
a list of states gives rise to universal constraints:

U(b1, . . . ,bn) :=

{

{•} if for some j with 1 ≤ j ≤ n, var(Lbj) ∩ lbj 6= ∅,

∅ otherwise.

Extracting the dual lists of constraints from a list of constrained states is done
with D, defined as follows:

D(b1, . . . ,bn) := {(c̄1; · · · ; c̄n) | cj ∈ Lbj , var(cj) ∩ l
bj = ∅ for 1 ≤ j ≤ n}.

Since a set of states represents the disjunction of all the possible execution
paths to the present, and the list of literals in each state is to be read as a
conjunction, the dualization is simply the result of negating the whole disjunction
while keeping the disjunctive form. E.g., if b1 has constraint list L1 = (Px;Rxy)
and b2 has constraint list L2 = (Qx;¬Sxz), and x, y /∈ lb1 , x, z /∈ lb2 , then

D(b1,b2) = {(¬Px;¬Qx), (¬Px;Sxz), (¬Rxy;¬Qx), (¬Rxy;Sxz)}.

If L is a list of literals, var(L) is its list of needed variables.
We now use dualization to compute the continuations of a state a, given

negated constrained states b1, . . . ,bn. Assume that a has the form (a, ga, la, na, La,ma):

Da(b1, . . . ,bn) := {(a, ga∪vL′, la, na∪var(L′), La;L′,ma) | L′ ∈ D(b1, . . . ,bn)}∪U(b1, . . . ,bn).

where vL′ is the set of global variables present on L′.
The next rule uses dualisation to compute appropriate lists of literals.
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B = Oa(φ) − {0} 6= ∅, all members of B constrained,b ∈ Da(B)

a
¬φ
−→ b

Finally, we need a rule to specify the cases where the negation cannot be
correctly computed. This happens when • ∈ Oa(φ), while Oa(φ) does not contain
any simple states.

No b ∈ B = Oa(φ) simple, • ∈ B

a
¬φ
−→ •

5.5.9 Composition, Union, Bounded Search/Choice

Nothing out of the ordinary here. Using a,b, c as shorthand for (a, ga, la, na, La,ma)
etc, we get:

a
φi−→ b

a
φ1∪φ2

−→ b
i ∈ {1, 2} a

φ1

−→ b b
φ2

−→ c

a
φ1;φ2

−→ c

a
φ0

−→ a

a
φ

−→ b b
φN

−→ c

a
φN+1

−→ c

(a, ga, la, na, La,ma)
φt

−→ •
ta =↑

(a, ga, la, na, La,ma)
φN

−→ b

(a, ga, la, na, La,ma)
φt

−→ b
ta = N

(a, ga, la, na, La,ma)
∪v

t1..t2
φ

−→ •

ta1 =↑

(a, ga, la, na, La,ma)
∪v

t1..t2
φ

−→ •

ta2 =↑

(a, ga, la, na, La,ma)
v=j;φ
−→ b

(a, ga, la, na, La,ma)
∪v

t1..t2
φ

−→ b

ta1 = M, ta2 = N,M ≤ j ≤ N
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5.6 Ways of Running the Dynamo Execution

Process

It is convenient to define the outcome of a Dynamo computation process as a set
of reduced states. Let a valuation a be given. Then the state based on a is the
state sa given by:

(a, dom(a), ∅, ∅, ∅, b).

The result of running φ from state sa is given by:

Rsa
(φ) := {b | ∃a such that sa

φ
−→ a

r
−→ b}.

In other words, the result will not contain states with grounded literals on their
constraint lists, for such grounded literals represent tests that can be applied, and
they will be applied during the

r
−→ steps.

In addition, it may be useful to check the constraint lists for consistency, by
means of applying a rule like the following:

l ∈ L ∧ l̄ ∈ L

(a, ga, la, na, La,ma)
r

−→ 0

As a special case, we have execution from the state of minimal information
s∅ = (∅, ∅, ∅, ∅, ∅, b).

Also special is the case where Dynamo execution starts out from a test state
for φ, i.e., from an initial valuation a with var(φ) ⊆ dom(a), where var(φ) is the
list of variables that occur dynamically free in φ. One should be able to prove
that if execution starts out from a test state for φ the states that result from the
execution will not be constrained.

A final possibility that should be noted here is execution of φ from an initial
state that imposes a list of constraints L, say with valuation a:

(a, dom(a), ∅, var(Ls), Ls, b).

This can be useful for putting initial constraints on computed solution sets.

5.7 Faithfulness to DFOL(∪)

The new notion of state of a computation requires us to redefine also the notion
of faithfulness to DFOL(∪): now, a state will represent possible valuations in the
following way:
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Fa :=







{b ∈ DV | a ⊆ b,∀l ∈ La(M |=b l)} if a 6∈ {•,0},

{•} if a = •,

∅ if a = 0.

Notice that there is no guarantee that Fa 6= ∅ even if a 6= 0; there might be
no valuation b that simultaneously satisfies all the ungrounded literals.

5.7.1. Theorem (Conditional forward property). Suppose a
φ

−→ b, with
la ∪ gb ⊆ dom(a), na ⊆ nb, Lb extends La. Then a � a′ implies there is a b′ � b

with a′ φ
−→ b′.

5.7.2. Theorem (Faithfulness to DFOL(∪)). The execution mechanism is

faithful to DFOL(∪), in the following sense: for all M, φ: if a
φ

−→ b, b 6= •,
la ∪ gb ⊆ dom(a), then either:

• b 6= 0 and for all a′ ∈ Fa there is a b′ ∈ Fb with a′ [[φ]]Mb′ ,

• b = 0 and for all a′ ∈ Fa, [[φ]]Ma′ = ∅

Proof. By induction on the structure of φ. We will show the proof for the case of
negation for illustration.

Assume that there are a, b such that a
¬φ
−→ b, b 6= •, la ∪ gb ⊆ dom(a).

Assume further that b 6= 0. Then, we must prove that for all a′ ∈ Fa there is a
b′ ∈ Fb with a′ [[φ]]Mb′ .

If b 6= 0, there are two main possibilities:

• b = a. This happens when Oa(φ) = 0. In turn, by inductive hypothesis,
we know that if Oa(φ) = 0, then Oa′(φ) = 0 for any a′ ∈ Fa.

• b ∈ a(Oa(φ)−{0}), with all members of Oa(φ)−{0} constrained. We know
that for all members of a(b1, . . . ,bn), the variables from the newly added
constraints are in the global variable list gb. Since by hypothesis la∪gb ⊆ a,
extending a will not produce any simple b ∈ Oa′(φ); all the atoms in the
literal lists of Oa′(φ) will be already grounded. Otherwise the elements of
Oa′(φ) will not be 0 or • because of the inductive hypothesis. Then, the
lists of literals in the elements of Da′(Oa′(φ) − {0}) will be the same as for
a, which means that the new dualized states will simply be extensions of
the previous ones.

If b = 0, then this means that there is a simple element of Oa(φ) − {0};
by inductive hypothesis, the corresponding element of Oa′(φ) − {0} will also be
simple, therefore [[φ]]Ma′ = ∅ a
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5.8 Conclusion

We have presented an interpretation of DFOL formulas as programs, and an ex-
ecution mechanism for DFOL(∪). This allows us to write imperative programs
which have a declarative semantics, which in turn makes it very simple to verify
that programs perform the tasks for which they are written; however, the treat-
ment of negation is a bit involved, and universal quantification usually results
in the • state. Seeking a way to solve this problem, we decided that since we
were trying to approximate the semantics of the logic, we might as well do it
with semantic tableaux [Smu68]. In the next chapter we will present a calculus
designed for the verification of DFOL programs; later we will present the tableau
engine which went into the latest version of Dynamo.



Chapter 6

Hoare Calculus for DFOL

6.1 Hoare Calculus

In Chapter 1 we introduced the concept of using logic for program verification:
we will expand on the subject now. If we want to be able to use logic to verify
the correctness of a program, we will need a language in which properties of the
program can be expressed, with a set of rules that allow us to construct well-
formed formulas. This is called an assertion language and its wffs are assertions.
Of course, we also need a proof system: the axioms and rules that let us prove our
assertions. This proof system should have the property, naturally, that it only
allows us to prove true assertions; ideally it should allow us to prove any true
assertion.

The Hoare calculus deals with a logic (the Hoare logic) in which one can for-
mulate propositions about the correctness of programs. If we call the assignment
of values to variables a state, and A and B are assertions about a state, a pro-
gram φ satisfies the specification (A,B), if for any state g satisfying A the state
reached by executing φ satisfies B. However, the possibility that a program does
not terminate at all must be taken into account, so we distinguish between partial
correctness:

{A}φ{B} ⇐⇒ ∀g(M |=g A =⇒ ∀h( g[[φ]]Mh =⇒ M |=h B))

and total correctness:

[A]φ[B] ⇐⇒ ∀g(M |=g A =⇒ ∀h(( g[[φ]]Mh =⇒ M |=h B) ∧ [[φ]]Mg 6= ∅))

Thus given a specification (A,B), we may consider that the job of the program-
mer is to find a program φ such that {A}φ{B}, or even [A]φ[B] is true. The
Hoare calculus provides us with the means to derive true assertions about atomic
statements, and to combine them into true assertions about programs.

99
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6.2 Why the Executable Interpretation of DFOL

is particularly adequate for programming

The idea behind the executable interpretation of DFOL is precisely to have a
programming language whose semantics are devoid of side effects or control fea-
tures; the Hoare calculus for such a language would be clean and simple. We
presented the interpretation in the previous chapter; now it becomes clear why it
is important to have a declarative semantics for the language. If we were to have
the calculus deal with the program state as defined in Chapter 5, it would be
too cumbersome and impractical. Instead, we can trust the that interpretation
is faithful to DFOL and work with the much cleaner semantics of the logic itself.

We will expand on the language presented in Chapter 5 to include explicit
bindings (σ); we’ll also suggest rules for dealing with the hiding operator (∃∃ x(φ))
and with the Kleene star operator at the end of the chapter.

As we stated on 1.4.12, given a signature of function and predicate symbols,
the syntax of DFOL(∪, σ,∃∃ , ∗) is as follows:

t ::= v | f t̄ (Terms)
φ ::= σ | ∃v | P t̄ | t1

.
= t2 | ∃∃ x(φ) | ¬(φ) | φ1;φ2 | (φ1 ∪ φ2) | φ

∗ (Formulas)

6.3 The Rules

As we said in Chapter 1, the use of negation as failure forces us to adopt a slightly
different set of correctness criteria. We have then two kinds of correctness rules:
existential and universal. Their meaning is the following:

M |= (A)φ(B) ⇐⇒ ∀g (M |=g A =⇒ ∃h ( g[[φ]]Mh ∧M |=h B))

M |= {A}φ{B} ⇐⇒ ∀g (M |=g A =⇒ ∀h ( g[[φ]]Mh =⇒ M |=h B))

Note that universal correctness is equivalent to the old partial correctness, but
existential correctness does not guarantee that all terminating executions of φ
satisfy the postcondition. We can see, however, that if φ satisfies {A}φ{B}
and (A)φ(>), then total correctness is achieved. Note also that universal and
existential correctness rules are interdependent for the case of negation. Now,
we enunciate the rules of the calculus. This is an adaptation and expansion of a
calculus presented by van Eijck and de Vries [vEdV92] for a different extension
of DFOL.

There are also rules for defined Dynamo constructs, such as bounded iteration
and bounded choice. As the constructs are defined in terms of operators for which
there is a rule already, these rules are derived from the basic rules too, and are
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Figure 6.1: Universal correctness rules:

Existential quantification: {∀xA}∃x{A}

Substitution: {Aσ}σ{A}

Equality: {(t1 = t2) → A}t1
.
= t2{A}

Predicates: {Pt→ A}Pt{A}

Negation:

(A)φ(>)

{A ∨B}¬(φ){B}

Sequential composition:

{A}φ1{B} {B}φ2{C}

{A} (φ1;φ2) {C}

Union:

{A}φ1{C} {B}φ2{C}

{A ∧B} (φ1 ∪ φ2) {C}

Rule of consequence:

{A}φ{B}

{A′}φ{B′}
if M |= (A′ → A) and M |= (B → B ′)

Filter Rule:

{A}φ{B} {C}φ{⊥}

{A ∨ C}φ{B}

called admissible rules. All that is needed for them is to prove that they follow
from the basic rules.

6.3.1. Lemma (Dynamo constructs). The following rules are admissible:

Bounded iteration Bounded search

Universal correctness:

{A}φ{A}

{A}φn{A}

{A}φ{B}

{∀v ∈ {N, . . . ,M} : A}
⋃v

N..M φ{B}

Existential correctness:

(A)φ(A)

(A)φn(A)

(A)φ(B)

(∃v ∈ {N, . . . ,M} : A)
⋃v

N..M φ(B)

Proof. We first consider universal correctness for the constructs. We show that
bounded iteration is admissible by induction on the number of iterations.
For n = 0, we have g[[φ

0]]Mh iff g = h. So, {A}φn{A} is trivially true.
If {A}φn{A} =⇒ {A}φn+1{A}, then ∀n ∈ N, {A}φn{A}
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Figure 6.2: Existential correctness rules:

Existential quantification: (∃xA)∃x(A)

Substitution: (Aσ)σ(A)

Equality: (A ∧ (t1 = t2))t1
.
= t2(A)

Predicates: (A ∧ Pt)Pt(A)

Negation:

{A}φ{⊥}

(A)¬(φ)(A)

Sequential composition:

(A)φ1(B) (B)φ2(C)

(A)(φ1;φ2)(C)

Union:

(A)φ1(C) (B)φ2(C)

(A ∨B)(φ1 ∪ φ2)(C)

Rule of consequence:

(A)φ(B)

(A′)φ(B′)
if M |= (A′ → A) and M |= (B → B ′)

Combination Rule:

{A}φ{B} (C)φ(>)

(A ∧ C)φ(B)

Now we can apply the sequential composition rule:

{A}

n
︷ ︸︸ ︷

φ; . . . ;φ{A} {A}φ{A}

{A}φ; . . . ;φ
︸ ︷︷ ︸

n+1

{A}
Seq.comp

where the left premise comes from the inductive hypothesis.
For the case of bounded search, we know that

{Aσ}σ{A} {A}φ{B}

{Aσ}(σ;φ){B}
Seq. comp

So, the correctness condition for each disjunct can be expressed as {A[i/v]}([i/v];φ){B},
and then the whole expression can be derived by repeated application of the Union
rule:

{A[N/v]}([N/v];φ){B} . . . {A[M/v]}([M/v];φ){B}

{
∧M

i=N A[i/v]}
⋃v

N ···M (φ){B}
Union

Finally,
∧M

i=N A[i/v] is true under g iff for all values of i between N and M , A[i/v]
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is true under g. That is, we can apply the Consequence rule to prove

∀v ∈ {N, . . . ,M} : A =⇒
∧M

i=N A[i/v] {
∧M

i=N A[i/v]}
⋃v

N ···M (φ){B}

{∀v ∈ {N, . . . ,M} : A}
⋃v

N ···M (φ){B}
Cons

Now we show how the existential version of these rules is admissible. We start
with bounded iteration, again arguing by induction on the number of iterations:
For n = 0, we have g[[φ

0]]Mh iff g = h. So, (A)φn(A) is trivially true.
If (A)φn(A) =⇒ (A)φn+1(A), then ∀n ∈ N, (A)φn(A)
Now we can apply the sequential composition rule:

(A)

n
︷ ︸︸ ︷

φ; . . . ;φ(A) (A)φ(A)

(A)φ; . . . ;φ
︸ ︷︷ ︸

n+1

(A)
Seq.comp

where the left premise comes from the inductive hypothesis.
For the case of bounded search, we know that

(Aσ)σ(A) (A)φ(B)

(Aσ)(σ;φ)(B)
Seq. comp

So, the correctness condition for each disjunct can be expressed as (A[i/v])([i/v];φ)(B),
and then the whole can be derived by application of the Union rule:

(A[N/v])([N/v];φ)(B) . . . (A[M/v])([M/v];φ)(B)

(
∨M

i=N A[i/v])
⋃v

N ···M (φ)(B)
Union

Finally,
∨M

i=N A[i/v] is true under g iff there is a value of i between N and M
such that A[i/v] is true under g. That is,

∃v ∈ {N, . . . ,M} : A =⇒
∨M

i=N A[i/v] (
∨M

i=N A[i/v])
⋃v

N ···M (φ)(B)

(∃v ∈ {N, . . . ,M} : A)
⋃v

N ···M (φ)(B)
Cons

a

There are two properties that make a proof calculus useful. The most basic is
soundness : it should never produce false statements. The other, complementary
property, is completeness : one should be able to obtain every true statement that
is expressible in the calculus. Clearly, while not achieving absolute completeness
is bad, not achieving soundness is catastrophic. We will now test our calculus for
these two properties.
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6.4 Soundness

Soundness (Existential rules):

M ` (A)φ(B) =⇒ ∀g(M |=g A =⇒ ∃h( g[[φ]]Mh ∧M |=h B)),

that is, if we can derive (A)φ(B) in a model M, then for all states g satisfying
A, there must exist a state h such that g[[φ]]Mh and h satisfies B.

Soundness (Universal rules):

M ` {A}φ{B} =⇒ ∀g(M |=g A =⇒ ∀h( g[[φ]]Mh =⇒ M |=h B)),

that is, if we can derive {A}φ{B} in a model M, then for all states g satisfying
A, all states h satisfying g[[φ]]Mh must also satisfy B.

6.4.1. Theorem. Soundness of the calculus: The calculus presented in Figures
6.1 and 6.2 is sound.

Proof. We argue by induction on the structure of φ. That is, if all the axioms
are logically valid, and for every model M the application of an inference rule on
formulas valid in M results in a formula valid in M, then the derivations obtained
with the calculus will always be valid. We start our proof with the axioms and
rules for universal correctness.

• ∃x: Suppose we have derived {∀xA}∃x{A}. Then we must prove that if
there is an assignment g under which ∀x(A) is true, and furthermore there
is a successful execution of ∃x terminating in assignment h, then A must be
true in h. We know that (1) g[[∃x]]

M
h iff g and h differ at most in the value

of x, and (2) M |=g ∀xA iff no matter what the value of g(x),M |=g A.
Therefore, for all d ∈ D, if h = gd

x, then M |=h A.
From (1) and (2), we know that ∀h( g[[∃x]]

M
h ,M |=h A).

• σ: Suppose we have derived {Aσ}σ{A}. Then we must prove that if there
is an assignment g under which Aσ is true, and furthermore there is a
successful execution of σ terminating in assignment h, then A must be true
in h. We know that (1) g[[σ]]Mh iff h = gσ, with σ = [t1/x1, . . . , tn/xn], and
(2) M |=g Aσ iff M |=g A[t1/x1, . . . , tn/xn], so M |=h A, for
h = g[t1/x1, . . . , tn/xn].

• Pt: Suppose we have derived {Pt =⇒ A}Pt{A}. Then we must prove that
if there is an assignment g under which Pt =⇒ A is true, and furthermore
there is a successful execution of Pt terminating in assignment h, then A
must be true in h. We know that g[[Pt]]

M
h iff h = g and Pt is true in g. As

h = g, (M |=h Pt ∧ Pt→ A) =⇒ M |=h A.
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• t1
.
= t2: Analogous to Pt.

• ¬(φ): Suppose we have derived {A ∨ B}¬(φ){B}, and that the premises
themselves are sound. Then we must prove that if there is an assignment g
under which A ∨B is true, and furthermore there is a successful execution
of ¬(φ) terminating in assignment h, then B must be true in h. We know
that (1) g[[¬(φ)]]Mh iff g = h and there is no i such that g[[φ]]Mi .
(2) M |=g A ∨B iff M |=g A or M |=g B.
(3) (A)φ(>) iff for all g that satisfy A there is an h such that g[[φ]]Mh .
By (3), for those g such that M |=g A, there is no h such that g[[¬(φ)]]Mh .
For those g such that M |=g B, all h such that g[[¬(φ)]]Mh will be equal to
g, so M |=h B.

• φ1;φ2: Suppose we have derived {A}φ1;φ2{C}. Then we must prove that
if there is an assignment g under which A is true, and furthermore there is
a successful execution of φ1;φ2 terminating in assignment h, then C must
be true in h.

We know that (1) {A}φ1{B} iff for all g under which A is true, all h such
that g[[φ1]]

M
h will make B true.

(2) {B}φ2{C} iff for all g under which B is true, all h such that g[[φ2]]
M
h

will make C true.
(3) g[[φ1;φ2]]

M
h iff there is an i such that g[[φ1]]

M
i and i[[φ2]]

M
h .

By (1) and (3), there is an i such that g[[φ1]]
M
i , i[[φ2]]

M
h , and M |=i B.

By (2) and (3), M |=h C.

• φ1 ∪ φ2: Suppose we have derived {A}φ1 ∪ φ2{C}. Then we must prove
that if there is an assignment g under which A∧B is true, and furthermore
there is a successful execution of φ1 ∪ φ2 terminating in assignment h, then
C must be true in h. We know that (1) {A}φ1{C} iff for all g under which
A is true, all h such that g[[φ1]]

M
h will make C true.

(2) {B}φ2{C} iff for all g under which B is true, all h such that g[[φ2]]
M
h

will make C true.
(3) g[[φ1 ∪ φ2]]

M
h iff g[[φ1]]

M
h or g[[φ2]]

M
h .

(4) M |=g A ∧B iff M |=g A and M |=g B.
So, if g[[φ1]]

M
h , by (1) and (4), M |=g C.

So, if g[[φ2]]
M
h , by (2) and (4), M |=g C.

• Filter Rule: Suppose we know that (1){A}φ{B} and (2){C}φ{⊥}. Then we
must prove that if there is an assignment g under which (A∨C) is true, and
furthermore there is a successful execution of φ terminating in assignment
h, then B must be true in h. We know that (3) (A∨C) is true in g iff A is
true in g or C is true in g
Suppose there is a g such that (A ∨ C) is true in g, and assume there is
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an h such that g[[φ]]Mh . By (2) and (3), A is true in g. Then, by (1), and
assumption, B is true in h.

Existential rules: We proceed to show the existential correctness rules to be
sound, again by induction on the structure of φ.

• ∃x: Suppose we have derived (∃x : A)∃x(A). Then we must prove that if
there is an assignment g under which ∃x : A is true, there is a successful
execution of ∃x terminating in assignment h under which A is true. Let’s
assume such a g exists. We know that g[[∃x]]

M
h iff g and h differ at most in

the value of x. We also know that M |=g (∃xA) iff there is a d0 ∈ D such
that A is true in gd0

x .
We can assume h = gd0

x , and then we know that g[[∃x]]
M
h , and A is true in

h.

• σ: Suppose we have derived (Aσ)σ(A). Then we must prove that if there is
an assignment g under which Aσ is true, then there is a successful execution
of σ terminating in assignment h under which A is true. Let’s assume
then that such a g exists. We know that g[[σ]]Mh iff h = gσ. That is, h =
g[t1/v1, . . . , tn/vn] always exists.
Now, M |=g (Aσ) iff M |=g[t1/v1,...,tn/vn] (A); that is, A is true in h, for
h = g[t1/v1, . . . , tn/vn].

• Pt: Suppose we have derived (A ∧ Pt)Pt(A). Then we must prove that
if there is an assignment g under which (A ∧ Pt) is true, then there is a
successful execution of Pt terminating in assignment h under which A is
true. Let’s assume then that such a g exists. Now, (A∧Pt) is true under g
iff M |=g A ∧M |=g Pt, and g[[Pt]]

M
h iff h = g and Pt is true in g. So such

an h always exists, and M |=h A.

• Equality tests: Same as for Pt.

• ¬(φ): Suppose we have derived (A)¬(φ)(A), knowing that {A}φ{⊥}. Then
we must prove that if there is an assignment g under which A is true, then
there is a successful execution of ¬(φ) terminating in assignment h under
which A is true. Let’s assume then that such a g exists. We have then that
(1) if g makes A true then there is no h such that g[[φ]]Mh .
(2) g[[¬(φ)]]Mh iff g = h and there is no i such that g[[φ]]Mi .
By (1) and (2), we have that ∃h = g : g[[¬(φ)]]Mh , and as h = g, M |=h A.

• (φ1 ∪ φ2): Suppose we have derived (A ∨ B)(φ1 ∪ φ2)(C), knowing that
(A)φ1(C) and (B)φ2(C). Then we must prove that if there is an assignment
g under which A∨B is true, then there is a successful execution of (φ1∪φ2)
terminating in assignment h under which C is true. Let’s assume then that
such a g exists. We have: (1) If g satisfies A, then there is an h such that
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g[[φ1]]h, and h satisfies C.
(2) If g satisfies B, then there is an h such that g[[φ2]]h, and h satisfies C.
We know that (3) g[[(φ1 ∪ φ2)]]

M
h iff g[[φ1]]

M
h or g[[φ2]]

M
h .

Now, (4) M |=g (A ∨B) iff A is true in g or B is true in g.
Let us assume first that A is true in g. Then, by (1), there is an h1 such
that g[[φ1]]

M
h1

and C is true.
Now, if B is true in g, by (2), there is an h2 such that g[[φ2]]

M
h2

and C is true.
Then, by (3) and (4), there is an h such that g[[(φ1 ∪ φ2)]]

M
h and C is true.

• φ1;φ2: Suppose we have derived (A)(φ1 ∪ φ2)(C), knowing that (A)φ1(B)
and (B)φ2(C). Then we must prove that if there is an assignment g under
which A is true, then there is a successful execution of φ1;φ2 terminating
in assignment h under which C is true. Let’s assume then that such a g
exists. We have: (1) If g satisfies A, then there is an h such that g[[φ1]]h,
and h satisfies B.
(2) If g satisfies B, then there is an h such that g[[φ2]]h, and h satisfies C.
(3) g[[φ1;φ2]]

M
h iff there is an i such that g[[φ1]]

M
i and i[[φ2]]

M
h .

By (1), there is an i such that g[[φ1]]
M
i that satisfies B.

Then, by (2), there is an h such that i[[φ2]]
M
h that satisfies C.

Now, by (3), g[[φ1;φ2]]
M
h .

• Combination Rule: Suppose we have derived (A ∧ C)φ(B), knowing that
(A)φ(B) and {C}φ{>}. Then we must prove that if there is an assignment
g under which A ∧ C is true, then there is a successful execution of φ
terminating in assignment h under which B is true. Let’s assume then that
such a g exists. We know that (1) for all g that make A true, all h such
that g[[φ]]Mh will make B true.
(2) for all g that make C true, there is an h such that g[[φ]]Mh .
(3) M |=g A ∧ C iff M |=g A and M |=g C.
By (2) and (3), there is an h such that g[[φ]]Mh .
By (1) and (3), B is true in h.

a

6.5 Completeness

We shall prove completeness of the calculus for formulas in DFOL(σ,∪)

6.5.1. Theorem. (Completeness of the calculus): For all models M, and all
programs φ ∈ DFOL(σ,∪),
if M |= {A}φ{B} and M |= (C)φ(D), then {A}φ{B} and (C)φ(D) are derivable
in H + T , where T = Th(M) (the theorems of M).
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Proof. By simultaneous induction on the structure of φ. We define the predi-
cates wup(φ,B) (weakest universal precondition) and wep(φ,B)(weakest existen-
tial precondition) as

M |=g wup(φ,B) ⇐⇒ ∀h( g[[φ]]Mh =⇒ M |=h B),
M |=g wep(φ,B) ⇐⇒ ∃h( g[[φ]]Mh ∧M |=h B),

and we prove that the calculus gives the wlp(φ,B) for the universal rules and the
wep(φ,B) for the existential rules. As these predicates are the weakest precon-
dition, they must be implied by any precondition for the triples to hold; we can
then use the consequence rule to derive any valid Hoare triple we may encounter.

• ∃x:

M |=g wup(∃x,B) ⇐⇒ ∀h(g[[∃x]]
M
h =⇒ M |=h B)

⇐⇒ ∀h(g ∼x h =⇒ M |=h B)

⇐⇒ ∀d ∈ D : (M |=gd
x
B)

⇐⇒ M |=g ∀xB

Since the wup(∃x,B) is equivalent to ∀xB, we know that for all g, A implies
wup(∃x,B). Then, by the consequence rule,

A→ ∀xB {∀xB}∃x{B}

{A}∃x{B}
Cons

We can limit ourselves then to prove that the antecedent given by the rules
is always the weakest precondition for each rule.

M |=g wep(∃x,D) ⇐⇒ ∃h(g[[∃x]]
M
h ∧M |=h D)

⇐⇒ ∃h(g ∼x h ∧M |=h D)

⇐⇒ ∃d ∈ D : (M |=gd
x
D)

⇐⇒ M |=g ∃x(D).

• x
.
= t:

M |=g wup(x
.
= t, B) ⇐⇒ ∀h(g[[x

.
= t]]Mh =⇒ M |=h B)

⇐⇒ ∀h((g = h ∧M |=g x = t) =⇒ M |=h B)

⇐⇒ M |=g (x = t) → B
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M |=g wep(x
.
= t,D) ⇐⇒ ∃h(g[[x

.
= t]]Mh ∧M |=h D)

⇐⇒ h = g ∧M |=g x = t ∧M |=h D

⇐⇒ M |=g x = t ∧D.

• σ:

M |=g wup(σ,B) ⇐⇒ ∀h(g[[σ]]Mh =⇒ M |=h B)

⇐⇒ ∀h(h = gσ =⇒ M |=h B)

⇐⇒ M |=g Bσ

M |=g wep(σ,D) ⇐⇒ ∃h(g[[σ]]Mh ∧M |=h D)

⇐⇒ ∃h(h = gσ ∧M |=h D)

⇐⇒ M |=g Dσ.

• ¬φ:

Assume M |= {A}¬(φ){B}. To prove: M ` {A}¬(φ){B}.

By inductive hypothesis, we have that

M |=g (wep(φ,>)) =⇒ M `g (wep(φ,>))

M |=g (wup(φ,⊥)) =⇒ M `g (wup(φ,⊥))

M |=g (wup(¬(φ), B)) ⇐⇒ ∀h(g[[¬(φ)]]Mh =⇒ M |=h B)

⇐⇒ ∀h((h = g ∧ ¬∃i(g[[φ]]Mi )) =⇒ M |=h B)

⇐⇒ ∀h((h = g ∧ ¬M |=g wep(φ,>)) =⇒ M |=h B)

⇐⇒ ∀h(h = g =⇒ M |=g (wep(φ,>) ∨B))

⇐⇒ M |=g (wep(φ,>) ∨B)

We know that M |= {A}¬(φ){B}, and that this means M |=g (A →
wup(¬(φ), B)), and therefore M |=g (A → (wep(φ,>) ∨ B)) Then, M `
(A→ (wep(φ,>) ∨B)).

Existential case: Assume M |= (C)¬(φ)(D). To prove: M ` (C)¬(φ)(D)

M |=g (wep(¬(φ), D)) ⇐⇒ ∃h(g[[¬(φ)]]Mh ∧M |=h D).

⇐⇒ ∃h(h = g ∧ ¬∃i(g[[φ]]Mi ∧M |=h D))

⇐⇒ M |=g wup(φ,⊥) ∧M |=g D

⇐⇒ M |=g (wup(φ,⊥) ∧D)
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So, by definition of weakest existential precondition and inductive hypoth-
esis, M |=g (C)¬(φ)(D) =⇒ M `g (wup(φ,⊥) ∧D),
which means we can derive M ` (C)¬(φ)(D).

• φ1;φ2: By induction hypothesis, we have that

M ` {wup(φ2, B)} φ2 {B},

M ` {wup(φ1,wup(φ2, B))} φ1 {wup(φ2, B)}

so that the sequential composition rule will result in

{wup(φ1,wup(φ2, B))} φ1;φ2 {B}

We should prove then that M |=g wup(φ1;φ2, B) → wup(φ1,wup(φ2, B)).
Assume M |=g wup(φ1;φ2, B). To prove: M |=g wup(φ1,wup(φ2, B))

– If @h(g[[φ1]]
M
h ), the result is trivially true.

– If ∃h(g[[φ1]]
M
h ), then :

∗ if @i(h[[φ2]]
M
i , the result is again trivially true.

∗ if ∃i(h[[φ2]]
M
i , then M |=i B, and then M |=g wup(φ1,wup(φ2, B))

The existential counterpart is analogous: by induction hypothesis,

(wep(φ2, B)) φ2 (B),

(wep(φ1,wep(φ2, B))) φ1 (wep(φ2, B))

so that the sequential composition rule will result in

{wep(φ1,wep(φ2, B))} φ1;φ2 {B}.

We should prove then that wep(φ1;φ2, B) =⇒ wep(φ1,wep(φ2, B)).
Assume M |=g wep(φ1;φ2, B). To prove: M |=g wep(φ1,wep(φ2, B))
As M |=g wep(φ1;φ2, B), we know that ∃i(g[[φ1;φ2]]

M
i ∧M |=i B).

Now, that means that ∃h(g[[φ1]]
M
h ∧ h[[φ2]]

M
i ), and therefore

M |=g wep(φ1,wep(φ2, B))

• φ1 ∪ φ2: By induction hypothesis, we have that

M ` {wup(φ1, B)} φ1 {B},

M ` {wup(φ2, B)} φ2 {B}

By the Union rule,

M ` {wup(φ1, B) ∧ wup(φ2, B)} (φ1 ∪ φ2) {B}
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We should prove then that M |=g wup(φ1 ∪ φ2, B) → (wup(φ1, B) ∧
wup(φ2, B)).
So, assume M |=g wup(φ1 ∪ φ2, B). To prove: M |=g wup(φ1, B) ∧
wup(φ2, B)

M |=g wup(φ1 ∪ φ2, B) ⇐⇒ ∀h(g[[φ1 ∪ φ2]]
M
h =⇒ M |=h B)

⇐⇒ ∀h((g[[φ1]]
M
h ∨g [[φ2]]

M
h ) =⇒ M |=h B)

Assume ∃h(g[[φ1 ∪ φ2]]
M
h ). Then, we know that M |=h B.

Now, assume ¬M |=g wup(φ1, B). If g[[φ1]]
M
h , then there is an h such that

g[[φ1∪φ2]]
M
h ∧M |=h ¬B, which contradicts M |=g wup(φ1∪φ2, B). Similarly

for wup(φ2, B), so M |=g wup(φ1 ∪ φ2, B) =⇒ M |=g (wup(φ1, B) ∧
wup(φ2, B)), and by inductive hypothesis M `g (wup(φ1, B)∧wup(φ2, B))
So, if M |= {A}φ1 ∪ φ2{B}, then M ` (A→ (wup(φ1, B) ∧ wup(φ2, B))).
Now for the existential part: Assume M |= (A)(φ1 ∪ φ2)(B). To prove:
M ` (A)(φ1 ∪ φ2)(B).

M |=g (wep(φ1, B)) ⇐⇒ ∃h(g[[φ1]]
M
h ∧M |=h B),

M |=g (wep(φ2, B)) ⇐⇒ ∃h(g[[φ2]]
M
h ∧M |=h B)

By inductive hypothesis, we have that

M |=g (wep(φ1, B)) =⇒ M `g (wep(φ1, B))

M |=g (wep(φ2, B)) =⇒ M `g (wep(φ2, B))

By the Union rule,

(wep(φ1, B))φ1(B) (wep(φ2, B))φ2(B)

(wep(φ1, B) ∨ wep(φ2, B))φ1 ∪ φ2(B)

To prove: M |= (A =⇒ wep(φ1, B) ∨ wep(φ2, B)). We know that M |=
(A → wep(φ1 ∪ φ2, B)); if we assume there is a g such that M |=g A, we
must prove that M |=g (wep(φ1, B) ∨ wep(φ2, B)).

M |=g wep(φ1 ∪ φ2, B) =⇒ ∃h(g[[φ1 ∪ φ2]]
M
h ∧M |=h B)

=⇒ ∃h((g[[φ1]]
M
h ∨ g[[φ2]]

M
h ) ∧M |=h B)

=⇒ M |=g wep(φ1, B) ∨M |=g wep(φ2, B)

M |=g wep(φ1 ∪ φ2, B) =⇒ M |=g wep(φ1, B) ∨M |=g wep(φ2, B)

Then, M |=g A→ wep(φ1, B) ∨M |=g wep(φ2, B),

concluding our proof.

a
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We now have a calculus that allows us to verify both partial and total cor-
rectness for DFOL(σ,∪) formulas under the executable interpretation presented
in Chapter 5. If the execution mechanism of Dynamo is faithful to the executable
interpretation, then our calculus is also useful for verification of Dynamo pro-
grams. In the next chapter, we will present an execution mechanism that is even
closer to the semantics of DFOL(σ,∪); since we want to respect the semantics of
a logic, we will use a theorem prover to run our programs. But first we want to
propose two additions to the language that make it much more expressive: local
variable declaration and WHILE loops, or in logical terms, the ∃∃ operator and the
Kleene star operator.

6.6 Extending the Language

The calculus as presented deals with the language of DFOL(σ,∪). We will now
present rules for dealing with two possible extensions to the core language: the ∃∃
operator and the Kleene star operator, which give us the possibility to use local
variables and unbounded iteration, respectively.

6.6.1 The Hiding operator

The semantics of ∃∃ x(φ) tell us that we can ‘hide’ the value of the variable x and
treat it as if it was unassigned while we execute φ, and recover it afterwards.
An use for the ∃∃ operator is to have local variable declarations; for example the
formula ∃∃ z(z

.
= x;∃x;x

.
= y;∃y; y

.
= x) swaps the values of x and y, with z being

used as an auxiliary variable only within the scope of the ∃∃ operator. This means
that any value that z might have had prior to the execution of the formula is
restored when execution terminates.

Let’s see how the Hoare calculus rules for that would look:

Universal correctness:

{A}φ{B}

{∀xA}∃∃ x(φ){B}
x not free in B

Existential correctness:

(A)φ(B)

(∃xA)∃∃ x(φ)(B)
x not free in B

We also need an axiom that states that ∃∃ x(φ) does not alter the value of x:

{A}∃∃ x(φ){A}
free(A) ∪ change(φ) ⊆ {x}

with change(φ) being the set of variables that can be changed by execution of
(φ).
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Soundness

Soundness - Universal rule:
Suppose we have derived {∀xA}∃∃ x(φ){B}, for x not free in B. Then we must
prove that if there is an assignment g under which A is true, and furthermore
there is a successful execution of ∃∃ x(φ) terminating in assignment h, then B must
be true in h.

Assume that there exist g, h such that M |=g A, and g[[∃∃ x(φ)]]h. We must
prove that M |=h B. We know that {A}φ{B} and that x is not free in B;
now, if M |=g ∀xA, then for any g′ ∼x g, M |=g′ A. Recall that g[[∃∃ x(φ)]]h iff
∃g′, h′(g ∼x g′,g′ [[φ]]h′ , h′ ∼x h, h(x) = g(x)) Since we have assumed g[[∃∃ x(φ)]]h,
then we know those g′, h′ exist. Now, as g′ ∼x g and M |=g ∀xA, we know that
indeed M |=g′ A. By inductive hypothesis, we know then that M |=h′ B, and
since h ∼x h

′ and x is not free in B, M |=h B.
Soundness - Existential rule:
Suppose we have derived (∃xA)∃∃ xφ(B), for x not free in B. Then we must
prove that if there is an assignment g under which ∃xA is true, then there is a
successful execution of ∃∃ x(φ) terminating in assignment h under which B is true.
Let’s assume then that such a g exists. We know that (A)φ(B), and that x is not
free in B. If M |=g ∃xA, then there is a d ∈ D such that M |=g1

A, for g1 = gd
x.

We also know that g[[∃∃ x(φ)]]h iff ∃g′, h′(g ∼x g′,g′ [[φ]]h′ , h′ ∼x h, h(x) = g(x)).
Then, we can set g′ = g1, and by inductive hypothesis we know there is an h1

such that g′ [[φ]]h′ , with M |=h′ B, and furthermore g′ ∼x g. We only need to take
h(x) = g(x) and h ∼x h

′ to have an h such that g[[∃∃ x(φ)]]h, and since x is not free
in B, M |=h B.

Completeness

To prove completeness of the calculus including the ∃∃ x(φ) rule, we simply expand
the proof for the core language with the following:

Completeness - Universal rule:
Under the condition that x not free in B, by induction hypothesis, we have that

M |= {wup(φ,B)}φ{B} =⇒ M ` {wup(φ,B)}φ{B}

We want to prove that M |= {A}∃∃ x(φ){B} implies M |= (A→ (∀x(wup(φ,B)))).
Assume that M |= {A}∃∃ x(φ){B}, and that we have a g such that M |=g A. We
want to prove that for any d ∈ D, M |=gd

x
wup(φ,B). By the semantics of ∃∃ and

the definition of wup(φ,B), we know that for any d ∈ D, either there exist h, h′

such that gd
x
[[φ]]h′∧h ∼x h

′∧M |=h B (and since x is not free in B, also M |=h′ B),
or there is no h′ such that gd

x
[[φ]]h′ . Now, by definition of wup(φ,B), we have that

M |=gd
x

wup(φ,B), for arbitrary d ∈ D, and therefore M |=g ∀x(wup(φ,B)).
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Now, the existential half is the same; we know that

M |= (A)∃∃ x(φ)(B)

M ` (wep(φ,B))φ(B)

Now, we should prove that M |= (A → (∃x(wep(φ,B)))), for x free in B.
Assume there is a g such that M |=g A. This means there exists an h such
that g[[∃∃ xφ]]h, and that M |=h B. This again means there exist d ∈ D and
assignments h, h′ such that gd

x
[[φ]]h′ ∧ h ∼x h

′ ∧M |=h B (and since x is not free
in B, also M |=h′ B). In other words, M |=g (∃x(wep(φ,B)), and therefore
M |= (A→ (∃x(wep(φ,B)))).

6.6.2 The Kleene star

We have presented a set of rules that allow us to reason about correctness of
programs in DFOL(σ,∪). While this is already a powerful language, it is still
missing unbounded iteration. If we add the Kleene star operator, we become
able to express the WHILE statement, achieving Turing completeness. As with
explicit bindings, since the Kleene star operator semantics have been defined in
this framework, we can already talk about correctness of programs that include
it; we can add it to the executable interpretation later. The Dynamo version of
WHILE would be the following:

(while S1 S2)
◦ := (¬¬S◦

1 ;S
◦
2)

∗;¬S◦
1

Universal correctness:

{A}φ{A}

{A}φ∗{A}

Existential correctness:

{A}φ{A} (t = i)φ(t < i)

(A)φ∗(A ∧ t < N)

Soundness – Universal:
Suppose we have derived {A}φ∗{A}. Then we must prove that if there is an as-
signment g under which A is true, and furthermore there is a successful execution
of φ∗ terminating in assignment h, then A must be true in h.
We know that: (1) g[[φ

∗]]Mh iff g = h or there is an i such that g[[φ]]Mi and i[[φ
∗]]Mh ;

(2){A}φ{A}means that for all g under which A is true, all h that verify g[[φ]]Mh
also make A true.
Proof by induction on the number of iterations of φ:

• 0 iterations : g = h, so trivially h makes A true whenever g does.

• n + 1 iterations: We assume that A is true under g and that there exist
g1 . . . gn such that g[[φ]]Mg1

∧ . . . ∧ gn−1
[[φ]]Mgn

and A is true under gn , and
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we must prove that if there are g1 . . . gn+1such that g[[φ]]Mg1
∧ . . .∧gn

[[φ]]Mgn+1
,

then A is true under gn+1.
We have that A is true under gn, and gn

[[φ]]Mgn+1
. By (2), A is true under gn+1.

Soundness – Existential:
We have that (1) ∀g : M |=g A,∃h : g[[φ]]Mh =⇒ M |=h A.
(2) ∀g : M |=g (t = i),∃h :g [[φ]]Mh ∧M |= (t < i).
(3) g[[φ

∗]]Mh ⇐⇒ g = h ∨ ∃i : g[[φ]]Mi ∧ i[[φ
∗]]Mh .

Assume ∃g : M |=g A. To prove: ∃h : g[[φ
∗]]Mh ∧M |=h A ∧ (t < N).

We can use strong induction as follows:
∀i ∈ N,
if for all j lesser than i, that from any g that satisfies (A∧ t = j) we can execute
φ∗ and reach an h that satisfies (A ∧ t <N) means that for any g that satisfies
(A∧ t = i) we can also execute φ∗ and reach an h that satisfies (A∧ t<N), then
for all i ∈ N, for any g that satisfies (A ∧ t = i) there is an h such that g[[φ

∗]]Mh
and which satisfies (A ∧ t<N).
So, assume (4) ∀i ∈ N, (∀j<i ∀g : M |=g (A ∧ t= j) =⇒ ∃h : g[[φ

∗]]Mh ∧M |=h

(A ∧ t<N)).
To prove: ∀g : M |=g (A ∧ t = i) =⇒ ∃h : g[[φ

∗]]Mh ∧M |=h (A ∧ t < N)
From (1) and (2), we know that ∃h1 : g[[φ]]Mh1

∧M |=h1
(A ∧ t<i).

Now, h1 satisfies (3), and by (4), h1
[[φ∗]]Mh ∧M |=h (A ∧ t<N).

Completeness of the Kleene star rules Completeness of rules for unbounded
iteration has of course the problem that preconditions might not be first order
definable. We introduce the notion of expressive models [vBV92]:

6.6.1. Definition. A model (D, I) is expressive if weakest preconditions (φ,B)
are first order definable in it, for every φ, and B.

Examples of expressive models are all finite models, as well as the natural num-
bers. Note however that this is not a common property of models.

Even then, proving completeness of the rules for the Kleene star was possible
only for the universal correctness rule:
For every expressive model M, assuming M |= {A}φ∗{B}, we must prove M `
{A}φ∗{B}, under the assumption that M |= {A}φ{B} =⇒ M ` {A}φ{B}.
We assume there exists an assignment g such that M |=g A, and an assignment
h such that g[[φ

∗]]h(1).
If M |= {A}φ∗{B}, by semantics of ∗, we have that M |= (A → B). Consider
C = wup(φ∗, B). It is clear from the premises that M |= (A→ C). Now, there is
the trivial case in which M |= {A}φ{⊥}. In this case, the only h that satisfies (1)
is h = g. Also, by inductive hypothesis, M |= {A}φ{⊥} =⇒ M ` {A}φ{⊥}.
Then, we can derive M ` {A}φ∗{B}:
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{A}φ{⊥} ⊥ → A

{A}φ{A}

{A}φ∗{A} A→ B

{A}φ∗{B}

In the nontrivial case, there is an assignment h such that g[[φ]]h. Now,

M |=g A =⇒ M |=g wup(φ∗, B)

M |=g wup(φ∗, B) ⇐⇒ M |=g B ∧ wup((φ;φ∗), B)

⇐⇒ M |=g B ∧ wup(φ,wup(φ∗, B))

⇐⇒ M |=g B ∧ wup(φ,C)

In particular, M |= (C→B). As per definition of wup, M |= {C}φ{C}. Then,
by induction hypothesis, we have that M ` {C}φ{C}. Then,

A→ C

{C}φ{C}

{C}φ∗{C} C → B

{A}φ∗{B}

The main problem for proving the completeness of the existential correctness
rules lies in that one of the antecedents is an universal correctness statement; we
can’t switch focus from universal to existential correctness without going through
negation.

6.7 Conclusion

We have now presented a way to verify Dynamo programs; the calculus has been
proved sound and complete for the core language, and rules for extensions have
been proposed. In the next chapter, we will see how to go even closer to the
semantics of DFOL, and also propose an executable interpretation for both the
Kleene star and the ∃∃ operator. We will also see how infinitary logic may be used
for reasoning about DFOL(∗).



Chapter 7

Tableau Reasoning with DFOL

7.1 Introduction

We have shown how to make sure the semantics of a formula in DFOL(σ,∪)
follow a given specification. In Chapter 5 we introduced an executable program
interpretation for formulas in DFOL(∪), but we were not quite happy with the
result; it gave up all too often, and we had to simulate negation-as-failure, which
was a bit involved and did not make it particularly easy to deal with universal
quantification.

Our plan now is to introduce an executable interpretation to DFOL(σ,∪),
which is more faithful to the semantics, and works in a completely different way:
it is a tableau calculus. We start by describing a tableau calculus for DFOL(σ,∪)
making intensive use of our theory of explicit binding. The explicit bindings
represent the intermediate results of calculation that get carried along in the
computation process. We illustrate with examples from standard first order rea-
soning, imperative programming, and derivation of postconditions for imperative
programs. Later, we develop an infinitary calculus for DFOL(∪, σ,∃∃ , ∗), and pro-
vide a completeness proof, and finally we enunciate some of the relationships with
existing calculi. The first calculus that are the subject of this chapter forms the
computation and inference engine of Dynamo, our toy programming language for
theorem proving and computing with DFOL.
Let us consider a signature Σ; we will call LΣ the DFOL(σ,∪) language over Σ.
The key relation we want to get to grips with in this chapter is the dynamic
entailment relation that is due to [GS91]:

7.1.1. Definition. [Entailment in DFOL] φ dynamically entails ψ, notation
φ |= ψ, if and only if:

for all LΣ models M, all valuations s, u for M, if s[[φ]]Mu then there is
a variable state u′ for which u[[ψ]]Mu′ .

117
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In the calculus we will need the function input(φ), the set of variables that
have an input constraining occurrence in φ (with φ ∈ LΣ), Let var(t̄) be the
variables occurring in t̄. The definition of input(φ) is as follows:

7.1.2. Definition. [Input constrained variables of LΣ formulas]

input(θ) := var(rng(θ))

input(θ;φ) := var(rng(θ)) ∪ (input(φ)\dom(θ))

input(∃v;φ) := input(φ)\{v}

input(P t̄;φ) := var(t̄) ∪ input(φ)

input(t1
.
= t2;φ) := var{t1, t2} ∪ input(φ)

input(¬(φ1);φ2) := input(φ1) ∪ input(φ2)

input((φ1 ∪ φ2);φ3) := input(φ1;φ3) ∪ input(φ2;φ3).

The following proposition (the DFOL counterpart to the finiteness lemma
from classical FOL) can be proved by induction on formula structure:

7.1.3. Proposition. For all LΣ models M, all valuations s, s′, u, u′ for M, all
LΣ formulas φ:

s[[φ]]Mu and s ∼
VAR\input(φ) s

′ imply ∃u′ with s′ [[φ]]Mu′ .

7.2 Tableaux for DFOL(σ,∪)

7.2.1 Adaptation of Tableaux to Dynamic Reasoning

In classical tableau theorem proving, we want to check the entailment relation by
looking for a possibility of making the antecedent φ true and the consequent ψ
false. If that fails, then we conclude that ψ does follow from φ; and if it succeeds
we can build a counterexample from any tableau branch that remains open; see
[vB86].

Instead of the original method of keeping a formula we want to make true
and one we want to make false, and two rules for each operator (one for the false
side and one for the true side), we have one formula Φ we want to make true,
and two (types of) rules for each operator; one for positive and one for negative
occurrences. Consider for example the tableau rule for disjunction in classical
logic; a tableau splitting rule like ∨ has the node with the disjunction φ∨ψ above
the two branches with the disjuncts φ and ψ. The rule ∨ serves as the ‘true side
rule’, and is matched by a rule ¬∨ for dealing with the ‘false side’.

φ ∨ ψ
\\��

φ ψ

¬(φ ∨ ψ)

¬(φ)

¬(ψ)
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In the dynamic version of FOL, order matters: the sequencing operator ‘;’ is not
commutative in general. Suppose Φ were to consist of ∃x;Px and ¬Px. Then
if we read Φ as ∃x;Px;¬Px, we should get a contradiction, but if we read Φ as
¬Px;∃x;Px then the formula has a model that contains both P s and non-P s.

Suppose Φ were to consist of just ∃x;Px;¬(Qx ∪ Sx). Then we can apply
the ¬∪ analogue of ¬∨ to Φ, but we should make sure that the results of this
application, ¬Qx and ¬Sx, remain in the scope of ∃x;Px. In other words, the
result should be: ∃x;Px;¬Qx;¬Sx (or ∃x;Px;¬Sx;¬Qx: being negated formu-
las, ¬Qx and ¬Sx are interchangeable), with both ¬Qx and ¬Sx in the dynamic
scope of the quantifier ∃x. In the tableau calculus to be presented, we will ensure
that negation rules ¬o take dynamic context into account, and that all formulas
come with an appropriate binding context, to be supplied by explicit bindings.

Local Bindings Versus Global Substitutions. As a rule, we don’t apply
bindings to formulas unless it is needed; in fact, when processing a formula φ
with a binding θ, we store the formula θ;φ and apply the binding only as needed,
for example when processing an atom. We can see tableau theorem proving as
the process of building a domain D and finding out whether the requirements
imposed on D by Φ are consistent, by decomposing the formulas into positive
and negative facts and seeing that there is no contradiction between them. We
will employ an infinite set Fsko of skolem functions, with Fsko ∩ FUN = ∅, plus
a set of fresh variables X, with VAR ∩ X = ∅. Call the extended signature Σ∗,
and the extended language LΣ∗ . Let TΣ∗ be the terms of the extended language,
and TVAR

Σ∗ the terms of the extended language without occurrences of members of
X (the frozen terms of LΣ∗). We have then two instances of grounding: ground
terms, those without any variables, and frozen terms, without variables from X.
We extend the notion to literals, and call an LΣ∗ literal frozen if it contains only
frozen terms.

The variables in X will function as universal tableau variables [Fit96]. Where
the bindings of the variables from VAR are local to a tableau branch, the bindings
of the variables from X are global to the whole tableau. Next to the (local)
bindings for the variables VAR of LΣ, we introduce (global) substitutions σ for
the fresh variables X in LΣ∗ , and extend these to (sequences of) terms and (sets
of) formulas in the manner of Definition 1.4.14. A substitution σ is a unifier of
a set of (sequences of) terms T if σT contains a single term (sequence of terms).
It is a most general unifier (mgu) of T if σ is a unifier of T , and for all unifiers ρ

of T there is a θ with σ = θ · ρ. Similarly for formulas. Note that only unifiers
for global substitutions (the term maps for the global tableau variables from X)
will ever be computed.

The definitions and results on binding extend to bindings with values in TΣ∗ ,
and to substitutions (domain ⊂ X, values in TΣ∗). Still, the global substitutions
play an altogether different role in the tableau construction process, so we use a
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different notation for them, and write (representations for) global substitutions
as

{x1 7→ t1, . . . ,xn 7→ tn}.

7.2.2 Tableaux for DFOL(σ,∪) Formula Sets

If Σ is a first order signature, a DFOL(σ,∪) tableau over Σ is a finitely branching
tree with nodes consisting of (sets of) LΣ∗ formulas. A branch in a tableau T is
a maximal path in T . We will follow custom in occasionally identifying a branch
B with the set of its formulas.

Let Φ be a set of LΣ formulas. A DFOL(σ,∪) tableau for Φ is constructed by
a (possibly infinite) sequence of applications of the following rules:

Initialization The tree consisting of a single node [] is a tableau for Φ.

Binding Composition Suppose T is a tableau for Φ and B a branch in T . Let
φ ∈ B ∪ Φ, let θ; ρ occur in φ, and let φ′ be the result of replacing θ; ρ in
φ by θ ◦ ρ. Then the tree T ′ constructed from T by extending B by φ′ is a
tableau for Φ.

Expansion Suppose T is a tableau for Φ and B a branch in T . Let φ ∈ B ∪ Φ.
Then the tree T ′ constructed from T by extending B according to one of
the tableau expansion rules presented in subsection 7.2.3, applied to φ, is a
tableau for Φ.

Equality Replacement Suppose T is a tableau for Φ and B a branch in T .
Let t1

.
= t2 ∈ B ∪ Φ or t2

.
= t1 ∈ B ∪ Φ, and L(t3) ∈ B ∪ Φ, where L is

a literal. Suppose t1, t3 are unifiable with MGU σ. Then T ′ constructed
from T by applying σ to all formulas in T , and extending branch σB with
L(σt2) is a tableau for Φ.

Closure Suppose T is a tableau for Φ and B a branch in T , and L,L′ are literals
in B ∪ Φ. If L,L′ are unifiable with MGU σ then T ′ constructed from T

by applying σ to all formulas in T is a tableau for Φ.

A tableau branch can be considered a conjunction of formulas: all of them have
to be true for that particular branch to remain open. Since we want to include
treatment of identities, the closure of a branch is more involved than in classical
free variable tableaux. When checking for closure, we can consider variables
from VAR as existentially quantified: occurrence of Pv along branch B does not
mean that everything has property P , but rather that the element called v has
P . We can freeze the parameters from X by mapping them to fresh parameters
from VAR. Applying a freezing substitution to a tableau replaces references to
‘arbitrary objects’ x, y, . . . , by ‘arbitrary names.’ We can then determine closure
of a branch B in terms of the congruence closure of the set of equalities occurring
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in a frozen image σB of the branch. See [BN98], Chapter 4, for what follows
about congruence closures.

If Φ is a set of LΣ∗ formulas without parameters from X, the congruence
closure of Φ, notation ≈Φ, is the smallest congruence on T that contains all the
equalities in Φ. In general, ≈Φ will be infinite: if a

.
= b is an equality in Φ,

and f is a one-placed function symbol in the language, then ≈Φ will contain
fa

.
= fb, ffa

.
= ffb, fffa

.
= fffb, . . .. Therefore, one uses congruence closure

modulo some finite set instead.

Let S be the set of all sub-terms (not necessarily proper) of terms occurring in
a literal in Φ. Then the congruence closure of Φ modulo S, notation CCS(Φ), is
the finite set of equalities ≈Φ ∩ (S×S). We can decide whether t

.
= t′ in CCS(Φ);

[BN98] gives an algorithm for computing CCS(G), for finite sets of equalities G
and terms S, in polynomial time.

7.2.1. Definition. t ≈ t′ is suspended in a frozen LΣ∗ formula set Φ if t
.
=

t′ ∈ CCS(Φ). We extend this notation to sequences: t̄ ≈ t̄′ is suspended in Φ if
t1 ≈ t′1, . . . , tn ≈ t′n are suspended in Φ.

A frozen LΣ∗ formula set Φ is closed if either ¬(θ) ∈ Φ (recall that ⊥ is
an abbreviation for ¬([])), or for some t̄ ≈ t̄′ suspended in Φ we have P t̄ ∈ Φ,
¬P t̄′ ∈ Φ, or for a pair of terms t1, t2 with t1 ≈ t2 suspended in Φ we have
t1 6= t2 ∈ Φ.

A tableau T is closed if there is a freezing substitution σ of T such that each
of its branches σB is closed.

7.2.3 Tableau Expansion Rules

Note that we can take the form of any LΣ∗ formula to be θ;φ, by prefixing or
suffixing [] if necessary. The tableau rules have the effect that bindings get pushed
from left to right in the tableaux, and appear as computed results at the open
end nodes.

Conjunctive Type. Here are the rules for formulas of conjunctive type (type
α in the Smullyan typology):
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θ; Pt; φ

Pθt

θ; φ

θ; t1
.
= t2; φ

θt1
.
= θt2

θ ◦ [θti/v]; φ

where θti = v ∈ VAR, i ∈ {1, 2}

θ; t1
.
= t2; φ

θt1
.
= θt2

θ; φ

where θti /∈ VAR, i ∈ {1, 2}

¬(θ; (φ1 ∪ φ2); φ3)

¬(θ; φ1; φ3)

¬(θ; φ2; φ3)

θ; ((φ1)); φ2

((θ; φ1))

θ; φ2

θ; ¬(φ1); φ2

¬(θ; φ1)

θ; φ2

Call the formula at the top node of a rule of this kind α and the formulas at
the leaves α1, α2. To expand a tableau branch B by an α rule, extend B with
both α1 and α2.

Disjunctive Type. The rules for formulas of disjunctive type (Smullyan’s type
β):

¬(θ; Pt; φ)
HHH

���
¬Pθt ¬(θ; φ)

¬(θ; t1
.
= t2; φ)
aaa

!!!
θt1 6= θt2 ¬(θ; φ)

θ; (φ1 ∪ φ2); φ3
HHH

���
θ;φ1;φ3 θ;φ2;φ3

¬(θ; ¬(φ1); φ2)
aaa

!!!
((θ; φ1)) ((θ; ¬φ2))

Call the formula at the top node of a rule of this kind β, the formula at the
left leaf β1 and the formula at the right leaf β2. To expand a tableau branch B
by a β rule, either extend B with β1 or with β2.

Universal Type. Rule for universal formulas (Smullyan’s type γ):

¬(θ; ∃v; φ)

¬(θ ◦ [x/v]; φ)

Here x is a universal variable taken from X that is new to the tableau. Call
the formula at the top node of a rule of this kind γ(v), and the formula at the
leaf γ1. To expand a tableau branch B by a γ rule, extend B with γ1.
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Existential Type. Rule for existential formulas (Smullyan’s type δ):

θ; ∃v; φ

θ ◦ [skθ;∃v;φ(x1, . . . ,xn)/v]; φ

Here x1, . . . ,xn are the universal parameters upon which interpretation of
∃v;φ depends, and skθ;∃v;φ(x1, . . . ,xn) is a skolem constant that is new to the
tableau branch.1

By Proposition 7.1.3, {x1, . . . ,xn} is a subset of input(θ;∃v;φ), or, since no
members of X occur in φ or in dom(θ), a subset of X∩input(θ) = X∩var(rng(θ)).
From this set, we only need2

{x1, . . . ,xn} := X ∩ var(rng(θ � (input(φ)\{v}))).

Call the formula at the top node of a rule of this kind δ(v), and the formula
at the leaf δ1. To expand a tableau branch B by a δ rule, extend B with δ1.

The tableau calculus specifies guidelines for extending a tableau tree with
new leaf nodes. If one starts out from a single formula, at each stage only a finite
number of rules can be applied. Breadth first search will get us all the possible
tableau developments for a given initial formula, but this procedure is not an
algorithm for tableau proof construction; it doesn’t tell us how to choose which
branch to expand or what to freeze variables from X to. We’ll see the algorithm
implementing this calculus in chapter 8.

7.3 Soundness of the Calculus

Valuations for Σ∗ models M = (D, I) are functions in VAR ∪X → D. Any such
function g can be viewed as a union s ∪ h of a function s ∈ VAR → D and a
function h ∈ X → D (take s = g � VAR and h = g � X). For satisfaction in
Σ∗ models we use the notation s∪h[[φ]]Mu , to be understood in the obvious way.
In terms of this we define the notion that we need to account for the universal
nature of the X variables.

7.3.1. Definition. Let φ ∈ LΣ∗ , M = (D, I) a Σ∗ model, s, u ∈ VAR → D.

1It is well-known that this can be optimized so that the choice of skolem constant only
depends on θ; ∃v; φ.

2In an implementation, it may be more efficient to not bother about computing input(φ),
and instead work with {x1, . . . ,xn} := X ∩ var(rng(θ)).
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Then ∀
s [[φ]]M iff for every h : X → D there is a u : VAR ∪ X → D with

s∪h[[φ]]Mu . We say: s universally satisfies φ in M.
For any tableau T we say that C(T ) if there is an Σ∗ model M, a branch B

of T and a VAR valuation s for M such that every formula φ of B is universally
satisfied by s in M.

7.3.2. Lemma. If s universally satisfies φ in M, and σ is a substitution on X

that is safe for φ, then s universally satisfies σφ in M.

Proof. If ∀
s [[φ]]M then for every X valuation h in M there is a VAR∪X valuation

u in M with s∪h[[φ]]Mu . Thus for every h in M there is a VAR∪X valuation u in
M with

s∪hσ [[φ]]Mu ,

and therefore for every h in M there is a VAR ∪ X valuation u in M with

s∪h[[σ;φ]]Mu .

Since σ is safe for φ we have by the binding lemma that [[σφ]]M = [[σ;φ]]M, and
it follows that s universally satisfies σφ in M. a

With this, we can show that the tableau building rules preserve the C(T )
relation.

7.3.3. Lemma (Tableau Expansion Lemma).

1. If tableau T for Φ yields tableau T ′ by an application of binding composition,
then C(T ) implies C(T ′).

2. If tableau T for Φ yields tableau T ′ by an application of a tableau expansion
rule, then C(T ) implies C(T ′).

3. If tableau T for Φ yields tableau T ′ by an application of equality replacement,
then C(T ) implies C(T ′).

4. If tableau T for Φ yields tableau T ′ by an application of closure, then C(T )
implies C(T ′).

Proof. 1. Immediate from the fact that θ; ρ and θ◦ρ have the same interpretation.
2. All of the α and β rules are straightforward, except perhaps for the α

equality rules. The change of θ to θ ◦ [θti/v], where θtj = v (i, j ∈ {1, 2}, i 6= j,)
reflects the fact that θt1

.
= θt2 gives us the information to instantiate v.

The γ rule. Assume ¬(θ;∃v;φ) is universally satisfied by s in M. We may
assume that θ is safe for ∃v;φ. If x ∈ X, x fresh to the tableau, then θ ◦ [x/v]
will be safe for φ, and ¬(θ ◦ [x/v];φ) will be universally satisfied by s in M.
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The δ rule. Assume s universally satisfies θ;∃v;φ in M. By induction on
tableau structure, dom(θ) ⊂ VAR. Define a new model M′ where skθ;∃v;φ is
interpreted as the function f : Dn → D given by

f(d1, . . . , dn) := some d for which φ succeeds in M

for input state sθ[d1/x1, . . . , dn/xn, d/v].

By the fact that s universally satisfies θ;∃v;φ in M and by the way we have
picked x1, . . . ,xn, such a d must exist. Then s will universally satisfy θ ◦
[skθ;∃v;φ(x1, . . . ,xn)/v];φ in M′, while universal satisfaction of other formulas
on the branch is not affected by the switch from M to M′.

3 and 4 follow immediately from Lemma 7.3.2. a

7.3.4. Theorem (Soundness). If φ, ψ ∈ LΣ, and the tableau for φ;¬(ψ) closes,
then φ |= ψ.

Proof. If the tableau for φ;¬(ψ) closes, then by the Tableau Expansion Lemma,
there are no M, s such that ∀

s [[φ;¬(ψ)]]M. Since φ, ψ ∈ LΣ, there are no M, s, u
with s[[φ;¬(ψ)]]Mu . In other words, for every Σ model M and every pair of variable
states s, u for M with s[[φ]]Mu there has to be a variable state u′ with u[[ψ]]Mu′ . Thus,
we have φ |= ψ in the sense of Definition 7.1.1. a

7.4 Derived Principles

Universal Quantification. Immediately from the definition of ∀v(φ) we get:

θ;∀v(φ1);φ2

((θ ◦ [x/v];φ1))

θ;φ2

where x ∈ X new to the tableau

Blocks Detachment. A sequence of blocks ±(φ1); . . . ;±(φn), where ±(φi) is
either ((φi)) or ¬(φi), yields the set of its components, by a series of applications
of distribution of the empty substitution over block or negation. This is useful,
as the formulas ±(φ1), . . . ,±(φn) can be processed in any order. In a schema:

±(φ1); . . . ;±(φn)

±(φ1)
...

±(φn)
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Negation Splitting. The following rules are admissible in the calculus:

¬(φ;¬(ψ);χ)
HHH

���
((φ;ψ)) ¬(φ;χ)

¬(φ; ((ψ));χ)
aaa

!!!
((φ;¬(ψ))) ¬(φ;χ)

Negation splitting can be viewed as the DFOL guise of a well known principle
from modal logic: 2(A ∨ B) → (3A ∨ 2B). To see the connection, note that
¬(φ;¬(ψ);χ) is semantically equivalent to ¬(φ;¬(ψ ∪ ¬(χ))), where ¬(φ;¬ · · · )
behaves as a 2 modality.

7.5 Some Examples

In the examples we will use v0, v1, . . . as 0-ary skolem terms for v, etcetera.

Syllogistic Reasoning. Consider the syllogism:

∀x(Ax→ Bx),∀x(Bx→ Cx) |= ∀x(Ax→ Cx).

This is an abbreviation of (7.1).

¬(∃x;Ax;¬Bx),¬(∃x;Bx;¬Cx) |= ¬(∃x;Ax;¬Cx) (7.1)

The DFOL(σ,∪) tableau for this example, a tableau refutation of

¬(∃x;Ax;¬Bx);¬(∃x;Bx;¬Cx); ((∃x;Ax;¬Cx))

is in Figure 7.1.

Reasoning about ‘<’. Consider example (7.2).

y < x;¬(∃x;∃y;x < y). (7.2)

This is contradictory, for first two objects of different size are introduced, and
next we are told that all objects have the same size. The contradiction is derived
as follows:

y < x;¬(∃x;∃y;x < y)

y < x

¬(∃x;∃y;x < y)

¬([x1/x,x2/y];x < y)

¬x1 < x2

{x1 7→ y,x2 7→ x}

×
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¬(∃x;Ax;¬Bx);¬(∃x;Bx;¬Cx); ((∃x;Ax;¬Cx))

¬(∃x;Ax;¬Bx)

¬(∃x;Bx;¬Cx)

((∃x;Ax;¬Cx))

(([x1/x];Ax;¬Cx))

Ax1

(([x1/x];¬Cx))

¬Cx1

(([x1/x]))

¬([x/x];Ax;¬Bx)hhhhhhhhhhhhh

(((((((((((((
¬Ax

{x 7→ x1}

×

¬([x/x];¬Bx)

Bx

¬([y/x];Bx;¬Cx)
XXXXXXXXXX

����������
¬By

{x 7→ x1,y 7→ x1}

×

¬([y/x];¬Cx)

Cy

{x 7→ x1,y 7→ x1}

×

Figure 7.1: DFOL(σ,∪) Tableau for Syllogistic Reasoning (7.1).
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Computation of Answer Substitutions. The following example illustrates
how the tableau calculus can be used to compute answer substitutions for a query.

x < 3;x
.
= 5 ∪ x

.
= 2

x < 3

x
.
= 5 ∪ x

.
= 2

b
b

bb

"
"

""
x
.
= 5

[5/x]

x
.
= 2

[2/x]

A combination with model checking or term rewriting (see [DHK98]) can be
used to get rid of the left branch. Adding the relevant axioms for < would achieve
the same. See the next example.

More Reasoning about <. Assume that 1, 2, 3, . . . are shorthand for s0, ss0, . . ..
We derive a contradiction from the assumption that 5 < 2 together with two ax-
ioms for <. See Figure 7.2, with arrows connecting the literals that effect closure.

Computation of Answer Substitutions, with Variable Reuse. Figure 7.3
demonstrates how the computed answer substitution stores the final value for x,
under the renaming x1. Because of the renaming, the database information for
x1 does not conflict with that for x.

Closure by Equality Replacement. This example illustrates closure by means
of equality replacement, in reasoning about ∃x;∃y;x 6= y;∃x;¬(∃y;x 6= y). Note
that x1, y1, x2 serve as names for objects in the domain under construction. What
the argument boils down to is: if the name x2 applies to everything, then it cannot
be the case that there are two different objects x1, y1. See Figure 7.4.

The first application of equality replacement in Figure 7.4 unifies x with x1

and concludes from x2
.
= x, x1 6= y1 that x2 6= y1. The second application of

equality replacement unifies y with y1 and concludes from x2
.
= y, x2 6= y1 that

x2 6= x2.

Loop Invariant Checking. To check that x = y! is a loop invariant for y :=
y + 1;x := x ∗ y, assume it is not, and use the calculus to derive a contradiction
with the definition of !. Note that y := y + 1;x := x ∗ y appears in our notation
as [y + 1/y]; [x ∗ y/x]. See Figure 7.5. A more detailed account would of course
have to use the DFOL definitions of +, ∗ and !.
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¬(∃x;x < 0); 4 < 2;¬(∃x;∃y; sx < sy;¬x < y)

¬(∃x;x < 0)

4 < 2

¬(∃x;∃y; sx < sy;¬x < y)

¬([x/x];x < 0)

¬x < 0

¬([y/x, z/y]; sx < sy;¬x < y)hhhhhhhhhhh

(((((((((((
¬sy < sz

{y 7→ 3, z 7→ 1}

×

(([y/x, z/y];x < y))

y < z

{y 7→ 3, z 7→ 1}

3 < 1

¬([y1/x, z1/y]; sx < sy;¬x < y)hhhhhhhh
((((((((

¬sy1 < sz1

{y1 7→ 2, z1 7→ 0}

×

(([y1/x, z1/y];x < y))

y1 < z1

{y1 7→ 2, z1 7→ 0}

2 < 0

{x 7→ 2}

×

Figure 7.2: More Reasoning about <.
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x
.
= 0;x

.
= y ∪ y

.
= 2;∃x;x

.
= 2

x
.
= 0

[0/x];x
.
= y ∪ y

.
= 2;∃x;x

.
= 2

XXXXXXXX

��������
[0/x];x

.
= y;∃x;x

.
= 2

0
.
= y

[0/x, 0/y];∃x;x
.
= 2

[x1/x, 0/y];x
.
= 2

x1
.
= 2

[x1/x, 0/y, 2/x1]

[0/x]; y
.
= 2;∃x;x

.
= 2

2
.
= y

[0/x, 2/y];∃x;x
.
= 2

[x1/x, 2/y];x
.
= 2

x1
.
= 2

[x1/x, 2/y, 2/x1]

Figure 7.3: Computation of Answer Substitutions, with Variable Reuse

Loop Invariant Detection. This time, we inspect the code [x∗(y+1)/x]; [y+
1/y] starting from scratch. Since y is the variable that gets incremented, we may
assume that x depends on y via an unknown function f . Thus, we start in a
situation where fy = x. We check what has happened to this dependency after
execution of the code [x ∗ (y + 1)/x]; [y + 1/y], by means of a tableau calculation
for fy

.
= x; [x ∗ (y + 1)/x]; [y + 1/y]; fy

.
= x. See Figure 7.6. The tableau shows

that [x ∗ (y + 1)/x]; [y + 1/y] is a loop for the factorial function.

Postcondition Reasoning for ‘If Then Else’. For another example of this,
consider a loop through the following programming code:

i := i+ 1; if x < a[i] then x := a[i] else skip. (7.3)

Assume we know that before the loop x is the maximum of array elements a[0]
through a[i]. Then our calculus allows us to derive a characterization of the value
of x at the end of the loop. Note that the loop code appears in DFOL(σ,∪) under
the following guise:

[i+ 1/i]; (x < a[i]; [a[i]/x] ∪ ¬x < a[i]).

The situation of x at the start of the loop can be given by an identity x = m0
i ,

where m is a two-placed function. To get a characterization of x at the end, we
just putX = x (X a constant) at the end, and see what we get (Figure 7.7). What
the leaf nodes tell us is that in any case, X is the maximum of a[0], .., a[i + 1],
and this maximum gets computed in x.
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∃x;∃y;x 6= y;∃x;¬∃y;x 6= y

[x1/x, y1/y];x 6= y;∃x;¬∃y;x 6= y

x1 6= y1

[x2/x, y1/y];¬∃y;x 6= y

¬[x2/x,x/y];x 6= y

x2
.
= x

{x 7→ x1}

x2 6= y1

¬[x2/x,y/y];x 6= y

x2
.
= y

{y 7→ y1}

x2 6= x2

×

Figure 7.4: Reasoning With Equality

x = y!; [y + 1/y]; [x ∗ y/x];x 6= y!

[y!/x]; [y + 1/y]; [x ∗ y/x];x 6= y!

[y!/x, y + 1/y]; [x ∗ y/x];x 6= y!

[y + 1/y, y! ∗ (y + 1)/x];x 6= y!

y! ∗ (y + 1) 6= (y + 1)!

Figure 7.5: Loop Invariant Checking.
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fy
.
= x; [x ∗ (y + 1)/x]; [y + 1/y]; fy

.
= x

fy
.
= x

[fy/x]; [x ∗ (y + 1)/x]; [y + 1/y]; fy
.
= x

[fy ∗ (y + 1)/x]; [y + 1/y]; fy
.
= x

[fy ∗ (y + 1)/x, y + 1/y]; fy
.
= x

f(y + 1)
.
= fy ∗ (y + 1)

[fy ∗ (y + 1)/x, y + 1/y]

Figure 7.6: Loop Invariant Detection.

x = m0
i ; [i+ 1/i];x < a[i]; [a[i]/x] ∪ ¬x < a[i];X = x

[m0
i /x]; [i+ 1/i];x < a[i]; [a[i]/x] ∪ ¬x < a[i];X = x

[m0
i /x, i+ 1/i];x < a[i]; [a[i]/x] ∪ ¬x < a[i];X = x

[m0
i /x, i+ 1/i];x < a[i]; [a[i]/x];X = x ∪ [m0

i /x, i+ 1/i];¬x < a[i];X = xhhhhhhhhhhhh

((((((((((((
[m0

i /x, i+ 1/i];x < a[i]; [a[i]/x];X = x

m0
i < a[i+ 1]

[m0
i /x, i+ 1/i]; [a[i]/x];X = x

[i+ 1/i, a[i+ 1]/x];X = x

X = a[i+ 1]

[i+ 1/i, a[i+ 1]/x]

[m0
i /x, i+ 1/i];¬x < a[i];X = x

¬m0
i < a[i+ 1], [m0

i /x, i+ 1/i];X = x

¬m0
i < a[i+ 1]

X = m0
i

[m0
i /x, i+ 1/i]

Figure 7.7: Postcondition Reasoning For (7.3).
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7.6 Completeness

Completeness for this calculus can be proved by a variation on completeness
proofs for tableau calculi in classical FOL. First we define trace sets for DFOL(σ,∪)
as an analogue to Hintikka sets for FOL. A trace set is a set of DFOL(σ,∪) for-
mulas satisfying the closure conditions that can be read off from the tableau
rules. Trace sets can be viewed as blow-by-blow accounts of particular consistent
DFOL(σ,∪) computation paths (i.e., paths that do not close).

7.6.1. Definition. A set Ψ of LΣ∗ formulas is a trace set if the following hold:

1. ¬(θ) /∈ Ψ.

2. If φ ∈ Ψ, then φ /∈ Ψ.

3. If θ;φ ∈ Ψ, then θφ ∈ Ψ.

4. If α ∈ Ψ then all αi ∈ Ψ.

5. If β ∈ Ψ then at least one βi ∈ Ψ.

6. If γ(v) ∈ Ψ, then γ1(t) ∈ Ψ for all t ∈ T VAR

Σ∗ (all terms that do not contain
variables from X).

7. If δ(v) ∈ Ψ, then δ1(t) ∈ Ψ for some t ∈ T VAR

Σ∗ (some term t that does not
contain variables from X).

This definition is motivated by the Trace Lemma:

7.6.2. Lemma (Trace Lemma). The elements of every trace set Ψ are simul-
taneously satisfiable.

Proof. Define a canonical model M0 in the standard fashion, using congruence
closure on the trace set Ψ over the set of terms occurring in Φ, to get a suitable
congruence ≡ on terms. Next, define a canonical valuation s0 by means of s0(v) :=
[v]≡ for members of VAR and s0(sk

0
i ) = [sk0

i ]≡ for 0-ary skolem terms. Verify that
so satisfies every member of Φ in M0. a

To employ the lemma, we need the standard notion of a fair computation
rule. A computation rule is a function F that for any set of formulas Φ and any
tableau T , computes the next rule to be applied on T . This defines a partial
order on the set of tableaux for Φ, with the successor of T given by F . Then
there is a (possibly infinite) sequence of tableaux for Φ starting from the initial
tableau, and with supremum T ∞. A computation rule F is fair if the following
holds for all branches B in T ∞:

1. All formulas of type α, β, δ occurring on B or in Φ were used to expand B,
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2. All formulas of type γ occurring on B or in Φ were used infinitely often to
expand B.

7.6.3. Theorem (Completeness). For all φ, ψ ∈ LΣ: if φ |= ψ then there is
a tableau refutation of φ;¬(ψ).

Proof. Let T 0, . . . be a sequence of tableaux for φ;¬(ψ) constructed with a fair
computation rule, without closure rule applications, and with supremum T ∞.
Define a freezing map σ∞ on T∞ in the standard fashion (see, e.g., [Häh01]).
In particular, let (Bk)k≥0 be an enumeration of the branches of T ∞, let (φi)i≥0

be an enumeration of the type γ formulas of T ∞, and let xijk be the variable
introduced for the j-th application of γ formula φi along branch Bk. If (tj)j≥0 is
an enumeration of all the frozen terms of T ∞, we can set σ∞(xijk) := tj for all
i, j, k ≥ 0. Note that σ∞ is not, strictly speaking, a substitution since dom(σ∞)
is not finite.

Suppose σ∞T∞ contains an open branch. Then from this branch we would get
a trace set, which in turn would give a canonical model and a canonical valuation
for φ;¬(ψ), and contradiction with the assumption that φ |= ψ. Therefore,
σ∞T∞ must be closed.

Since the tree T∞ is finitely branching and all formulas having an effect on
closure are at finite distance from the root, there is a finite T n with σ∞T n closed.
Finally, construct an MGU σ for T n on the basis of the part of σ∞ that is actually
used in the closure of T n, and we are done. a

7.6.4. Theorem (Computation Theorem). If φ is satisfiable, then all bind-
ings θ produced by open tableau branches B satisfy s[[φ]]Msθ

, where M is the canon-
ical model constructed from B, and s the canonical valuation.

Proof. Let T 0, . . . be a sequence of tableaux for φ constructed with a fair compu-
tation rule, without closure rule applications, and with supremum T ∞. Consider
σ∞T∞, where σ∞ is the canonical freezing substitution. Then since φ is satis-
fiable, σ∞T∞ will have open branches (Bk)k≥0 (the number need not be finite).
It follows from the format of the tableau expansion rules that every open branch
will develop one binding.

A binding θ 6= [] occurs non-protected in a formula of the form θ;ψ. Check
that the tableau expansion rules on formulas of the forms ((ψ)) or ¬(ψ) never yield
(nontrivial) non-protected bindings. Check that each application of an α, β, γ or
δ rule to a formula with a non-protected binding extends a branch with exactly
one non-protected binding. It follows that every tableau branch Bk has a highest
node where a formula of the form θ appears. This θ can be thought of as the
result of pulling the initial binding [] through the initial formula φ. For every
such Bk and θ there is a finite T n with a branch Bk′ that already contains (a
generalization of) θ.

It can be proved by induction on the length of Bk′ that s[[φ]]Msθ
, for M the

canonical model and s the canonical valuation for that branch. a
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Note that the computation theorem gives no recipe for generating all correct
bindings for a given φ. Specifying appropriate computation rules for generating
these bindings for specific sets of DFOL(σ,∪) formulas remains a topic for future
research.

Variation: Using the Calculus with a Fixed Model. Computing with
respect to a fixed model is just a slight variation on the general scheme. The
technique of using tableau rules for model checking is well known. Assume that
a model M = (D, I) is given. Then instead of storing ground predicates Pθt̄
(ground equalities θt1

.
= θt2), we check the model for M |= Pθt̄ (for [[θt1]]

M =
[[θt2]]

M), and close the branch if the test fails, continue otherwise. Similarly,
instead of storing ground predicates Pθt̄ (ground equalities θt1

.
= θt2) under

negation, we check the model for M 6|= Pθt̄ (for [[θt1]]
M 6= [[θt2]]

M), and close the
branch if the test fails, continue otherwise.

7.7 Extending the Language

7.7.1 Local variables: the Hiding operator

Consider the language of DFOL(σ,∪,∃∃ ), that is, the extension of the logic we
have been using with the ∃∃ operator. This extension gives a ‘classical’ existential
quantifier to DFOL, and it is therefore quite straightforward to state tableau rules
to handle it:

θ; ∃∃ v(φ1); φ2

θ;φ1[skθ;∃v;φ(x1, . . . ,xn)/v]; φ2

where again x1, . . . ,xn are the universal parameters upon which interpretation
of ∃v;φ depends, and skθ;∃v;φ(x1, . . . ,xn) is a skolem constant that is new to the
tableau branch. The rule for the negated hiding operator would be just the same
as the γ-rule:

θ; ¬(∃∃ v(φ1)); φ2

¬(θ ◦ [x/v];φ1)

θ;φ2
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where x is a universal variable taken from X that is new to the tableau. In
fact, since the difference between the classical and dynamic interpretations of the
existential quantifier lies in this context in the scope of the quantifier, negation
brings them to the same form, and the rule for negated ∃∃ operator is the same as
the γ rule. Soundness and completeness for rules involving this operator follow
from soundness and completeness of the δ and γ rules.

7.7.2 Iteration: the Kleene star

Let us now add the Kleene star operator, making our language DFOL(σ,∪, ∗);
The intended relational meaning of φ∗ is that φ gets executed a finite (≥ 0)
number of times. This extension is then a full-fledged programming language.

The semantic clause for φ∗ runs as follows:

s[[φ
∗]]Mu iff either s = u

or ∃s1, . . . , sn(n ≥ 1) with s[[φ]]Ms1
, . . . , sn

[[φ]]Mu .

It is easy to see that it follows from this definition that:

s[[φ
∗]]Mu iff either s = u or ∃s1 with s[[φ]]Ms1

and s1
[[φ∗]]Mu . (7.4)

Note, however, that (7.4) is not equivalent to the definition of s[[φ
∗]]Mu , for (7.4)

does not rule out infinite φ paths.

Let φn be given by: φ0 := [] and φn+1 := φ;φn. Now φ∗ is equivalent to ‘for
some n ∈ N : φn’.

What we will do in our calculus for DFOL(σ,∪, ∗) is take (7.4) as the cue to
the star rules. This will allow star computations to loop, which does not pose
any problem, given that we extend our notion of closure to ‘closure in the limit’
(see below).

The calculus for DFOL(σ,∪, ∗) has all expansion rules of the DFOL(σ,∪)
calculus, plus the following α∗ and β∗ rules.

α∗ expansion rule. Call ψ∗ the star formula of the rule.

¬(φ;ψ∗;χ)

¬(φ;χ)

¬(φ;ψ;ψ∗;χ)
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β∗ expansion rule. Call ψ∗ the star formula of the rule.

φ;ψ∗;χ
XXXX

����
φ;χ φ;ψ;ψ∗;χ

To see that the α∗ rule is sound, assume that s universally satisfies ¬(φ;ψ∗;χ)
in M = (D, I). By (7.4), this means that there is at least one h : X → D for
which there is no u with s∪h[[φ;χ]]Mu and no u with s∪h[[φ;ψ;ψ∗;χ]]Mu . Thus, s
universally satisfies ¬(φ;χ) and ¬(φ;ψ;ψ∗;χ) in M.

For the β∗ rule, assume that s universally satisfies φ;ψ∗;χ in M. Then for
every h : X → D there are u, u′ with s∪h[[φ]]Mu and u[[ψ

∗;χ]]Mu′ . Then, by (7.4),
either u[[χ]]Mu′ or there is a u1 with u[[ψ]]Mu1

and u1
[[φ∗

1;χ]]Mu′ . Thus, s universally
satisfies either φ;χ or φ;ψ;ψ∗;χ in M.

Closure in the Limit. To deal with the inflationary nature of the α∗ and β∗

rules (the star formula of the rule reappears at a leaf node), we need a modification
of our notion of tableau closure. We allow closure in the limit, as follows.

7.7.1. Definition. An infinite tableau branch closes in the limit if it contains
an infinite star development, i.e., an infinite number of α∗ or β∗ applications to
the same star formula.

Example of Closure in the Limit. We will give an example of an infinite
star development. Consider formula (7.5):

¬∃w¬(∃v; v = 0; (v 6= w; [v + 1/v])∗; v = w). (7.5)

What (7.5) says is that there is no object w that cannot be reached in a finite
number of steps from v = 0, or in other words that the successor relation v 7→ v+1,
considered as a graph, is well-founded. This is the Peano induction axiom: it
characterizes the natural numbers up to isomorphism. What it says is that any set
A that contains 0 and is closed under successor contains all the natural numbers.
The fact that Peano induction is expressible as an L∗

Σ formula is evidence that
L∗

Σ has greater expressive power than FOL. In FOL no single formula can express
Peano induction: no formula can distinguish the standard model (N, s) from the
non-standard models. In a non-standard model of the natural numbers it may
take an infinite number of s-steps to get from one natural number n to a larger
number m.

The expressive power of LΣ
∗ is the same as that of quantified dynamic logic [Pra76,

Gol92]. Arithmetical truth is undecidable, so there can be no finitary refutation
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∃w¬(∃v; v
.
= 0; (v 6= w; [v + 1/v])∗; v

.
= w)

[w1/w]¬(∃v; v
.
= 0; (v 6= w; [v + 1/v])∗; v

.
= w)

¬([w1/w, 0/v]; (v 6= w; [v + 1/v])∗; v
.
= w)

¬([w1/w, 0/v]; v
.
= w)

¬([w1/w, 0/v]; v 6= w; [v + 1/v]; (v 6= w; [v + 1/v])∗; v
.
= w)

0 6= w1

¬([w1/w, 1/v]; (v 6= w; [v + 1/v])∗; v
.
= w)

¬([w1/w, 1/v]; v
.
= w)

¬([w1/w, 1/v]; v 6= w; [v + 1/v]; (v 6= w; [v + 1/v])∗; v
.
= w)

1 6= w1

¬([w1/w, 2/v]; (v 6= w; [v + 1/v])∗; v
.
= w)

¬([w1/w, 2/v]; v
.
= w)

¬([w1/w, 2/v]; v 6= w; [v + 1/v]; (v 6= w; [v + 1/v])∗; v
.
= w)

2 6= w1

¬([w1/w, 3/v]; (v 6= w; [v + 1/v])∗; v
.
= w)

¬([w1/w, 3/v]; v
.
= w)

¬([w1/w, 3/v]; v 6= w; [v + 1/v]; (v 6= w; [v + 1/v])∗; v
.
= w)

3 6= w1

¬([w1/w, 4/v]; (v 6= w; [v + 1/v])∗; v
.
= w)

¬([w1/w, 4/v]; v
.
= w)

¬([w1/w, 4/v]; v 6= w; [v + 1/v]; (v 6= w; [v + 1/v])∗; v
.
= w)

4 6= w1

¬([w1/w, 5/v]; (v 6= w; [v + 1/v])∗; v
.
= w)

...

×

Figure 7.8: ‘Infinite Proof’ of the Peano Induction Axiom.



7.7. Extending the Language 139

system for L∗
Σ. The finitary tableau system for LΣ is evidence for the fact that

DFOL(σ,∪) validity is recursively enumerable: all non-validities are detected by
a finite tableau refutation. This property is lost in the case of L∗

Σ: the language
is just too expressive to admit of finitary tableau refutations.

Therefore, some tableau refutations must be infinitary, and the tableau devel-
opment for the negation of (7.5) is a case in point. Let us see what happens if we
attempt to refute the negation of (7.5). A successful refutation will identify the
natural numbers up to isomorphism. See Figure 7.8. This is indeed a successful
refutation, for the tree closes in the limit. But the refutation tree is infinite: it
takes an infinite amount of time to do all the checks.

7.7.2. Theorem (Soundness Theorem for L∗
Σ). The calculus for

DFOL(σ,∪, ∗) is sound:

For all φ, ψ ∈ L∗
Σ: if the tableau for φ;¬(ψ) closes then φ |= ψ.

The modified tableau method does not always give finite refutations. Still, it
is a very useful reasoning tool, more powerful than Hoare reasoning, and more
practical than the infinitary calculus for quantified dynamic logic developed in
[Gol82, Gol92]. Dynamic logic itself has been put to practical use, e.g. in KIV, a
system for interactive software verification [Rei95]. It is our hope that the present
calculus can be used to further automate the software verification process.

Precondition/postcondition Reasoning. For a further example of reasoning
with the calculus, consider formula (7.6). This gives an L∗

Σ version of Euclid’s
GCD algorithm.

(x 6= y; (x > y; [x− y/x] ∪ y > x; [y − x/y]))∗;x
.
= y. (7.6)

To do automated precondition-postcondition reasoning on this, we must find a
trivial correctness statement. Even if we don’t know what gcd(x, y) is, we know
that its value should not change during the program. So putting gcd(x, y) equal
to some arbitrary value and see what happens would seem to be a good start. We
will use the correctness statement z

.
= gcd(x, y). The statement that the result

gets computed in x can then take the form z
.
= x. The program with these trivial

correctness statements included becomes:

z
.
= gcd(x, y);

(x 6= y; (x > y; [x− y/x]; z
.
= gcd(x, y) ∪ y > x; [y − x/y]; z

.
= gcd(x, y)))∗;

x
.
= y; z

.
= x.

(7.7)
We can now put the calculus to work. Abbreviating

(x 6= y; (x > y; [x− y/x]; z
.
= gcd(x, y) ∪ y > x; [y − x/y]; z

.
= gcd(x, y)))∗

as A∗, we get:
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z
.
= gcd(x, y);A∗;x

.
= y; z

.
= xhhhhhhhhhhhh

((((((((((((
[gcd(x, y)/z];x

.
= y; z

.
= x

x
.
= y, gcd(x, y)

.
= x

[gcd(x, y)/z];A;A∗;x
.
= y; z

.
= xhhhhhhhh

((((((((
x > y

gcd(x, y)
.
= gcd(x− y, y)

[gcd(x, y)/z, x− y/x];A∗;

x
.
= y; z

.
= x

y > x

gcd(x, y)
.
= gcd(x, y − x)

[gcd(x, y)/z, y − x/y];A∗;

x
.
= y; z

.
= x

The second split is caused by an application of the rule for ∪. By the soundness
of the calculus any model satisfying the annotated program (7.7) will satisfy one
of the branches. This shows that if the program succeeds (computes an answer),
the following disjunction will be true:

(x
.
= y ∧ gcd(x, y)

.
= x)

∨ (x > y ∧ gcd(x, y)
.
= gcd(x− y, y) ∧ φ)

∨ (y > x ∧ gcd(x, y)
.
= gcd(x, y − x) ∧ ψ)

(7.8)

Here φ abbreviates [gcd(x, y)/z, x − y/x];A∗;x
.
= y; z

.
= x and ψ abbreviates

[gcd(x, y)/z, y − x/y];A∗;x
.
= y; z

.
= x. From this it follows that the following

weaker disjunction is also true:

(x
.
= y ∧ gcd(x, y)

.
= x)

∨ (x > y ∧ gcd(x, y)
.
= gcd(x− y, y))

∨ (y > x ∧ gcd(x, y)
.
= gcd(x, y − x))

(7.9)

Note that (7.9) looks remarkably like a functional program for GCD.

7.8 Completeness for DFOL(σ,∪, ∗)

The method of trace sets for proving completeness from Section 7.6 still applies.
Trace sets for DFOL(σ,∪, ∗) will have to satisfy the obvious extra conditions.
In order to preserve the correspondence between trace sets and open tableau
branches, we must adapt the definition of a fair computation rule. A computation
rule F for L∗

Σ is fair if it is fair for LΣ, and in addition, the following holds for
all branches B in T ∞:

• All formulas of type α∗, β∗ occurring on B or in Φ were used to expand B.

We can again prove a trace lemma for DFOL(σ,∪, ∗), in the same manner as
before: Again, open branches in the supremum of a fair tableau sequence will
correspond to trace sets, and we can satisfy these trace sets in canonical models.
The definition of trace sets is extended as follows:
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7.8.1. Definition. A set Ψ of L∗
Σ∗ formulas is a ∗-trace set if the following

hold:

• Ψ is a trace set,

• If β∗ ∈ Ψ then at least one β∗
i ∈ Ψ.

• If φ;ψ∗;χ ∈ Ψ, then there is some n ≥ 0 with φ;ψm;χ /∈ Ψ for all m > n.
Similarly for ((φ;ψ∗;χ)).

• For all φ, ψ, χ it holds that ¬(φ;ψ∗;χ) /∈ Ψ.

Note that the final two requirements are met thanks to our stipulation about
closure in the limit. In the same manner as before, we get:

7.8.2. Theorem (Completeness for L∗). For all φ, ψ ∈ L∗: if φ |= ψ then
the tableau for φ;¬(ψ) closes.

So we have a complete logic for DFOL(σ,∪, ∗), but of course it comes at a
price: we may occasionally get in a refutation loop. However, as our tableau
construction examples illustrate, this hardly affects the usefulness of the calculus.

7.9 Related Work

Comparison with tableau reasoning for (fragments of) FOL. The present
calculus for DFOL can be viewed as a more dynamic version of tableau style rea-
soning for FOL and for modal fragments of FOL. Instead of just checking for valid
consequence and constructing counterexamples from open tableau branches, our
open tableau branches yield computed answer bindings as an extra. The con-
nection with tableau reasoning for FOL is also evident in the proof method of
our completeness theorems. Our calculus can be used for FOL reasoning via the
following translation of FOL into DFOL:

(P t̄)• := P t̄

(¬φ)• := ¬φ•

(φ ∧ ψ)• := φ•;ψ•

(φ ∨ ψ)• := φ• ∪ ψ•

(∃xφ)• := ((∃x;φ•))

(∀xφ)• := ¬(∃x;¬φ•)

It is easy to check that for every FOL formula φ it holds that φ• = ((φ•)), i.e., all
FOL translations are DFOL tests. Moreover, the translation is adequate in the
sense that for every FOL formula φ over signature Σ, every Σ-model M, every
valuation s for M it holds that M |=s φ iff s[[φ

•]]Ms .
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Connection with Logic Programming. The close connection between tableau
reasoning for DFOL and Logic Programming can be seen by developing a DFOL
tableau for the following formula set:

∀xA([], x, x),∀x∀y∀z∀i(A(x, y, z) → A([i|x], y, [i|z])),¬∃xA([a|[b|[]], [c|[]], x).

This will give a tableau for the append relation, with a MGU substitution {x 7→
[a|[b|c|[]]]} that closes the tableau, where x is the universal tableau variable used
in the application of the γ rule to ¬∃xA([a|[b|[]], [c|[]], x). The example may
serve as a hint to the unifying perspective on logic programming and imperative
programming provided by tableau reasoning for DFOL. We hope to elaborate this
theme in future work.

Comparison with other Calculi for DFOL and for DRT. The calculus
developed in [vE99a] uses swap rules for moving quantifiers to the front of for-
mulas. The key idea of the present calculus is entirely different: encode dynamic
binding in explicit bindings and protect outside environments from dynamic side
effects by means of block operations. In a sense, the present calculus offers a full
account of the phenomenon of local variable use in DFOL.

Kohlhase [Koh00] gives a tableau calculus for DRT (Discourse Representation
Theory, see [Kam81]) that has essentially the same scope as the [vE99a] calculus
for DPL: the version of DRT disjunction that is treated is externally static, and
the DRT analogue of ∪ is not treated.

Kohlhase’s calculus follows an old DRT tradition in relying on an implicit
translation to standard FOL: see [SE88] for an earlier example of this. Kohlhase
motivates his calculus with the need for (minimal) model generation in dynamic
NL semantics. In order to make his calculus generate minimal models, he replaces
the rule for existential quantification by a ‘scratchpaper’ version (well-known from
textbook treatments of tableau reasoning; see [Hin88] for further background, and
for discussion of non-monotonic consequence based on minimal models generated
with this rule). First try out if you can avoid closure with a term already available
at the node. If all these attempts result in closure, it does not follow from this
that the information at the node is inconsistent, for it may just be that we have
‘overburdened’ the available terms with demands. So in this case, and only in
this case, introduce a new individual.

This ‘exhaustion of existing terms’ approach has the virtue that it generates
‘small’ models when they exist, whereas the more general procedure ‘always in-
troduce a fresh variable and postpone instantiation’ may generate infinite models
where finite models exist. Note, however, that the strategy only makes sense for
a signature without function symbols, and for a tableau calculus without free
tableau variables.

Kohlhase discusses applications in NL processing, where it often makes sense
to construct a minimal model for a text, and where the assumption of mini-
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mality can be used to facilitate issues of anaphora resolution and presupposition
handling.

Comparison with Apt and Bezem’s Executable FOL. Apt and Bezem
present what can be viewed as an exciting new mix of tableau style reasoning
and model checking for FOL. Our treatment of equality uses a generalization of
a stratagem from their [AB98]: in the context of a partial variable map θ, they
call v

.
= t a θ assignment if v /∈ dom(θ), and all variables occurring in t are in

dom(θ). We generalize this on two counts:

• Because our computation results are bindings (term maps) rather than maps
to objects in the domain of some model, we allow computation of non-
ground terms as values.

• Because our bindings are total, in our calculus execution of t1
.
= t2 atoms

never gives rise to an error condition.

It should be noted for the record that the first of these points is addressed in
[Apt00]. Apt and Bezem present their work as an underpinning for Alma-0, a
language that infuses Modula style imperative programming with features from
logic programming (see [ABPS98]). In a similar way, the present calculus provides
logical underpinnings for Dynamo, a language for programming with an extension
of DFOL. For a detailed comparison of Alma-0 and Dynamo we refer the reader
to [vE98b].

Connection with WHILE, GCL. It is easy to give an explicit binding se-
mantics for WHILE, the favorite toy language of imperative programming from
the textbooks (see e.g., [NN92]), or for GCL, the non-deterministic variation on
this proposed by Dijkstra (see, e.g. [DS94]). DFOL is in fact quite closely related
to these, and it is not hard to see that DFOL(σ,∪, ∗) has the same expressive
power as GCL. Our tableau calculus for DFOL(σ,∪, ∗) can therefore be regarded
as an execution engine cum reasoning engine for WHILE or GCL.

Connection with PDL, QDL. We can see that there is also a close connection
between DFOL(σ,∪, ∗) on one hand and propositional dynamic logic (PDL) and
quantified dynamic logic (QDL) on the other. QDL is a language proposed in
[Pra76] to analyze imperative programming, and PDL is its propositional version.
See [Seg82, Par78] for complete axiomatizations of PDL, [Gol92] for an exposition
of both PDL and QDL, and for a complete (but infinitary) axiomatization of
QDL, [HKT84] for an overview, and [Har79] for a a study of QDL and various
extensions. In PDL/QDL, programs are treated as modalities and assertions
about programs are formulas in which the programs occur as modal operators.
Thus, if A is a program, 〈A〉φ asserts that A has a successful termination ending
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in a state satisfying φ. As is well-known, this cannot be expressed without further
ado in Hoare logic.

The main difference between DFOL(σ,∪, ∗) and PDL/QDL is that in the
former the distinction between formulas and programs is abolished. Everything
is a program, and assertions about programs are test programs that are executed
along the way, but with their dynamic effects blocked. To express that A has
a successful termination ending in a φ state, we can just say ((A;φ)). To check
whether A has a successful termination ending in a φ state, try to refute the
statement by constructing a tableau for ¬(A;φ).

To illustrate the connection with QDL and PDL, consider MIX, the first of
the two PDL axioms for ∗:

[A∗]φ→ φ ∧ [A][A∗]φ. (7.10)

Writing this with 〈A〉,¬,∧,∨, and replacing ¬φ by φ, we get:

¬(¬〈A∗〉φ ∧ (φ ∨ 〈A〉〈A∗〉φ)). (7.11)

This has the following DFOL(σ,∪, ∗) counterpart:

¬(¬(A∗;φ); (φ ∪ (A;A∗;φ))). (7.12)

For a refutation proof of (7.12), we leave out the outermost negation.

¬(A∗;φ); (φ ∪ (A;A∗;φ))

¬(A∗;φ)

(φ ∪ (A;A∗;φ))

¬φ

¬(A;A∗;φ)
XXXX

����
φ

×

(A;A∗;φ)

×

The tableau closes, so we have proved that (7.12) is a DFOL(σ,∪, ∗) theorem
(and thus, a DFOL(σ,∪, ∗) validity).

We will also derive the validity of the DFOL(σ,∪, ∗) counterpart to IND, the
other PDL axiom for ∗:

(φ ∧ [A∗](φ→ [A]φ)) → [A∗]φ. (7.13)

Equivalently, this can be written with only 〈A〉,¬,∧,∨, as follows:

¬(φ ∧ ¬〈A∗〉(φ ∧ 〈A〉¬φ) ∧ 〈A∗〉¬φ). (7.14)
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The DFOL(σ,∪, ∗) counterpart of (7.14) is:

¬(φ;¬(A∗;φ;A;¬φ);A∗;¬φ). (7.15)

We will give a refutation proof of (7.15) in two stages. First, we show that (7.16)
can be refuted for any n ≥ 0, and next, we use this for the proof of (7.15).

φ;¬(A∗;φ;A;¬φ);An;¬φ. (7.16)

Here is the case of (7.16) with n = 0:

φ;¬(A∗;φ;A;¬φ);¬φ

φ

¬(A∗;φ;A;¬φ)

¬φ

×

Bearing in mind that A is a dynamic action and φ is a test, we can apply the
rule of Negation Splitting (Section 7.4) to formulas of the form ¬(An;φ;A;¬φ),
as follows:

¬(An;φ;A;¬φ)
PPPP

����
((An;¬φ)) ¬(An+1;¬φ)

Note that ¬(An;φ;A;¬φ) can be derived from ¬(A∗;φ;A;¬φ) by n applications
of the α∗ rule. Using this, we get the following refutation tableau for the case of
(7.16) with n = k + 1:

φ;¬(A∗;φ;A;¬φ);Ak+1;¬φ

φ

¬(A∗;φ;A;¬φ)

Ak+1;¬φ

...

¬(Ak;φ;A;¬φ)
PPPP

����
((Ak;¬φ))

×

¬(Ak+1;¬φ)

×

The left-hand branch closes because of the refutation of φ;¬(A∗;φ;A;¬φ);Ak;¬φ,
which is given by the induction hypothesis.

Next, use these refutations of ¬φ, A;¬φ, A2;¬φ, . . . , to prove (7.15) by
means of a refutation in the limit, as follows:



146 Chapter 7. Tableau Reasoning with DFOL

φ;¬(A∗;φ;A;¬φ);A∗;¬φ

φ

¬(A∗;φ;A;¬φ)

A∗;¬φ
XXXXX

�����
¬φ

×
A;A∗;¬φ

XXXXX
�����

A;¬φ

×
A2;A∗;¬φ

PPPP
����

A2;¬φ

×
A3;A∗;¬φ

HHH
���

A3;¬φ
. . .

This closed tableau establishes (7.15) as a DFOL(σ,∪, ∗) theorem. That clo-
sure in the limit is needed to establish the DFOL(σ,∪, ∗) induction principle is
not surprising. The DFOL ∗-rules express that ∗ computes a fix-point, while the
fact that this fix-point is a least fix-point is captured by the stipulation about
closure in the limit. The induction principle (7.15) hinges on the fact that ∗

computes a least fix-point.

Goldblatt [Gol82, Gol92] develops an infinitary proof system for QDL with
the following key rule of inference:

If φ→ [A1;A
n
2 ]ψ is a theorem for every n ∈ N, then φ→ [A1;A

∗
2]ψ is a theorem.

(7.17)
To see how this is related to the present calculus, assume that one attempts to
refute φ → [A1;A

∗
2]ψ, or rather, its DFOL(σ,∪, ∗) counterpart ¬(φ;A1;A

∗
2;¬ψ),

on the assumption that for any n ∈ N there exists a refutation of φ;A1;A
n
2 ;¬ψ.

φ;A1;A
∗
2;¬ψhhhhhhhhh

(((((((((
φ;A1;¬ψ

×
φ;A1;A2;A

∗
2;¬ψhhhhhhhhh

(((((((((
φ;A1;A2;¬ψ

×
φ;A1;A2;A2;A

∗
2;¬ψhhhhhhhh

((((((((
φ;A1;A2;A2;¬ψ

×
φ;A1;A2;A2;A2;A

∗
2;¬ψXXXXX

�����
φ;A1;A2;A2;A2;¬ψ

×

. . .
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We can close off the φ;A1;A
n
2 ;¬ψ branches by the assumption that there

exist refutations for these, for every n ∈ N. The whole tableau gives an infinite
β∗ development, and the infinite branch closes in the limit, so the tableau closes,
thus establishing that in the DFOL(σ,∪, ∗) calculus validity of ¬(φ;A1;A

∗
2;¬ψ)

follows from the fact that ¬(φ;A1;A
n
2 ;¬ψ) is valid for every n ∈ N.

7.10 Conclusion

Starting out from an analysis of binding in dynamic FOL, we have given a tableau
calculus for reasoning with DFOL. The format for the calculus and the role of
explicit bindings for computing answers to queries were motivated by our search
for logical underpinnings for programming with (extensions of) DFOL. The DFOL
tableau calculus presented here constitutes the theoretical basis for Dynamo, a
toy programming language based on DFOL. To find the answer to a query, given
a formula φ considered as Dynamo program data, Dynamo essentially puts the
tableau calculus to work on a formula φ, all the while checking predicates with
respect to the fixed model of the natural numbers, and storing values for variables
from the inspection of equality statements. If the tableau closes, this means
that φ is inconsistent (with the information obtained from testing on the natural
numbers), and Dynamo reports ‘false’. If the tableau remains open, Dynamo
reports that φ is consistent (again with the information obtained from inspecting
predicates on the natural numbers), and lists the computed bindings for the
output variables at the end of the open branches. But the Dynamo engine also
works for general tableau reasoning, and for general queries. Literals collected
along the open branches together with the explicit bindings at the trail ends
constitute the computed answers. We report on the development of Dynamo in
the next chapter.





Chapter 8

Implementing Dynamo

Before enlightenment, the mountain is a mountain.
While seeking enlightenment, the mountain is a floating mirage,

at once real and ephemeral, at once there and not there.
After enlightenment, the mountain is a mountain.

– Zen folklore

8.1 Introduction

We have so far presented a way of interpreting DFOL formulas as programs, a
method of verifying correctness of such programs, and a tableau calculus that can
be implemented as an engine for the language. What we need now is to do the
implementation, so we can use the language for programming and exploring the
concepts so far introduced.

Before developing the tableau calculus, we had other implementations of Dy-
namo, based on the state machines described in Chapter 5 but we were having
a bit of trouble with negation; when a negated formula succeeded with ‘complex
states’, we put the result back into state form by dualizing the result, which was
basically applying De Morgan’s laws to the set of states (taking into account that
the set represents a disjunction and the states conjunctions), so that its nega-
tion would again be a set of states. This gave us the idea of actually using a
tableau calculus to carry out the computations. Now we have a calculus that
deals with these matters in a much more natural way, but knows nothing about
simple arithmetic; still, we are closer now to DFOL semantics.

We report here on our efforts to bring the two capabilities together; the pur-
pose of this implementation is to test the appropriateness and efficiency of the
tableau method for implementation of a programming language.

149
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Free Variable Tableaux

We follow the guidelines given in [Fit96] for the handling of universally quantified
variables: the formulas in each branch are organized as a list, and we always
process the fomula at the head of the list. When the formula is not of type γ,
the formula itself is removed from the list, and is replaced by the formulas that
result from applying the corresponding rule. When the γ-rule is applied, the
formula can not be discarded, but is then moved to the end of the list, to enable
the other formulas in the branch to be processed. The branches themselves are
also organized as a list; whenever the γ-rule is applied, the algorithm leaves the
branch and goes on to the next one in the list.

Closing the Tableau. In its original version, when the algorithm expands
the tableau until the γ rule has been applied a predetermined number of times,
the program tries to close all branches, by finding the substitution that will
close all of them simultaneously. Essentially, it will sequentially, starting from
the empty substitution, find all extensions of the current substitution that close
the branch, and try to close the rest of the branches starting from each of the
extensions. If no substitution that closes the entire tableau is found, the tableau
is considered ‘not solved’; either the formula is satisfiable, or the γ rule will
have to be applied a higher number of times, usually starting from scratch. In
the Dynamo implementation, the γ rule is applied at most once per branch (it
might not be needed), and then closure is attempted. If closure is not reached,
and at least one branch consists only of atoms, the tableau is open, otherwise
the algorithm does another pass through the already expanded tableau and tries
again until closure is reached.

8.2 The Dynamo Engine

8.2.1 The Programming Language

Dynamo is implemented in Haskell; compiles under GHC version 5.04. As before,
we chose Haskell over other programming languages because of its small semantic
gap between the program and its task, its being strongly typed, and the fact that
it compiles into an executable program instead of requiring an interpreter.

8.2.2 The Algorithm

The way we implemented the free variable tableaux is shown in Figure 8.1.

• The function init branch(form) initializes the branch data structure, with
the input formula as the only element of the formula list.
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input: form: formula;
input: query: list of variable schemes
var: Branches, New branches: list of branches
var: current: branch

Branches := {init branch(form)};
{* Main loop *}
while (close branches(Branches)= False

and all atomic branch(Branches) = False) do
New branches := ∅;
{* Single step *}
foreach current in Branches do
{* Infer until univ. quant. or out of formulas *}
New branches := New branches ∪ single step(current);

Branches := New branches;

if (close branches(Branches)= True
then return “unsatisfiable”
else return (extract values(query, Branches))

Figure 8.1: Structure of the Dynamo engine

• The function single step(current) applies the rule that corresponds to the
type of formula at the head of the list in the branch; if the type is γ, after
applying the corresponding rule the formula is copied at the end of the for-
mula list and the function returns. Otherwise, single step is applied to all
the branches that result from application of the rule, until the formula list
is empty or the γ-rule is processed. If the result of applying a rule is a new
atom, (ground) closure is checked for. If the branch is found to close, it is
removed from the result list.

• The function close branches attempts to close all branches, one by one;
it calls close branch for each branch, and carries a list of all the freez-
ing substitutions that close all processed branches. If a branch can not be
closed by any of the existing freezing substitutions (or an extension of one),
the procedure returns False.

• The function close branch(current) attempts to find complementary atoms
in the branch, first through the congruence closure and failing that through
unification with a universally quantified variable. It accepts as parameters
the list of atoms in the branch, the computed congruence closure, and a
freezing substitution, and returns whether the branch can be closed or not,
and the substitution that closes it if possible.

• The function all atomic branch(branches) looks for a branch made up
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entirely of atoms. Since it is called after a test for closure, the presence of
such a branch always indicates that the tableau will never close.

• The function extract values(query, Branches) extracts the values of the
required variables from the open tableau branches.

8.3 Tableau reasoning for DFOL

Here we review the main departures from a tableau prover for FOL; the data
structure, which had to take into account the handling of equality, and the im-
plementation of the rules.

8.3.1 Data Structures

The main data structure in this implementation is the branch. A branch is a tuple
consisting of a list of formulas, a list of universally quantified variables present
in the branch, a congruence, and a list of atoms. The list of formulas contains
the formulas to be processed, the list of universally quantified variables holds
the variables that would serve as arguments for skolem functions, the congruence
keeps track of equalities between terms, and the list of atoms carries the list of
atomic facts that is searched for complementary assertions. The program state
is a tuple containing the list of branches, and the indexes of the last universal
variable and the last skolem function instantiated. The program state is reached
through a state monad, and is therefore transparent to most functions in the
program.

8.3.2 Rules

Rule Extensions. Many of the tableau rules of Chapter 7 included both lead-
ing substitutions and trailing formulas, which were actually optional and could
be replaced by a tautology; that had to be made more explicit in the program,
which multiplied the number of rule instances. For example, one of the cases of
the β-rule is:

θ; (φ1 ∪ φ2); φ3
HHH

���
θ;φ1;φ3 θ;φ2;φ3

In this case, both θ and φ3 are optional; only (φ1 ∪ φ2) is required to be non-
empty, so the rule has to fire on (θ; (φ1∪φ2);φ3), (θ; (φ1∪φ2)), ((φ1∪φ2);φ3) and
(φ1∪φ2). We solved the problem in part by placing the empty substitution at the
start of the input formula, since the rules themselves ensure all resulting formulas
will start with a substitution, but the trailing formulas still force us to duplicate
the rules. The reason for the trailing formulas is precisely that the rules push a
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substitution through the whole: order is not important in FOL, but it matters a
lot in DFOL.

Blocking. Block formulas, given their nature as assertions, were given special
treatment: when a block formula is found, a new tableau is created for it, with
the same data as the current branch but only the blocked formula in the formula
list, and evaluated. If it results in many branches, the rule creates branches in-
corporating the list of atoms of each new branch to copies of the current branch.
In this way we block the dynamic effects that would result from existential quan-
tification inside the blocked formula, but keep any atomic checks that were not
grounded at the time of evaluation.

Universal Quantification. A problem with universal quantification is that it
represents a ‘standing order’: unlike the other rules, the γ-rule does not consume
the formula it processes, and it can be processed again. If a limit to the number
of times the γ-rule can be applied were known, the logic would be decidable. The
engine will run forever on satisfiable problems in which all branches have a γ-type
formula; we are looking for ways in which it can be detected that a new application
of the γ rule will be redundant. We also need to ensure fairness, as stated in
Section 7.6; ensuring that for all branches B of the fully expanded (possibly
infinite) tableau Tinf , all the α-, β-, and δ-type formulas present either in B or in
the original formula Φ are used to expand B, and that all γ-type formulas present
in φ or B are used to expand B infinitely often. Our computation rule makes
sure this happens: formulas are kept in a list, α-, β-, and δ-type formulas are
always discarded and replaced by the resulting formula(s), while γ-type formulas
are put at the end of the list while the formulas resulting from applying the rule
are still placed in the head of the list.

8.4 Extensions to the Calculus

After implementing the free variable tableau, there was still something to be done:
we want the engine to do some computation, and maybe even support equational
reasoning. The following is an account of our efforts.

8.4.1 Indexed Variables

Having indexed variables is very useful for programming, since it enables us to
write a program for the general case of a problem; we don’t need to write n
programs to sort arrays of size 2 . . . n. But then we have a problem:

[4/k] ◦ [8/l[k], 6/l[4]] = ?
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We must either make sure that the indexes are grounded or allow composition of
substitutions to fail when the result would be inconsistent. Since we find it hard
to figure out why someone would want to assign values to unspecified elements of
an array, we chose the first option. In [AB98], the corresponding requirement is
that all indexes have to be grounded, and the term to be substituted for the index
variable must be also grounded; we relax the requirement in that the substituting
term can be non-grounded. Another idea to consider is to treat bindings of the
form [t/v[k]] and formulas of the form v[k]

.
= t , where k is not grounded, as

instances of t1
.
= t2, that is, add the equality to the list of atoms.

8.4.2 Teaching Dynamo to Add

Something that might not be apparent in the description of Chapter 7 is that the
handling of terms does not contemplate interpreted function symbols other than
.
=. While this is a specialized behavior for theorem provers, it is crucial for a
programming language: we want the language to be able to do basic arithmetic,
such as necessary for incrementing a counter or specifying a range. We added
then interpretation of +, −, ∗ and div (integer division) to the language. Still,
something was missing, since expressions could be indirectly ground (as in x

.
=

y; y
.
= 4; z

.
= x+ 2), so we added a lookup to the congruence closure in the term

evaluation. Also, formulas of the type φt and
⋃v

t1,t2
required evaluation of the

terms in the rule body. We also included interpretation of <,≤,≥,< for ground
terms.

8.4.3 What to do with the Equations

After a formula is determined to be satisfiable, there are two possible outcomes
for each branch: either the complete list of atoms has been grounded, found
consistent, and discarded, or some values are still to be computed and we are
left with a set of ungrounded atoms. Now, this set itself could be unsatisfiable
(consider the atoms {a > b, b > c, c > a}, or a set of equations). We have
not included equation solving in Dynamo; possible solutions include coupling
an algorithm for equation solving to the tableau algorithm [ABC+02], calling
an external program to solve the equation system, and encouraging potential
programmers to try and make their programs give values to their variables; we’re
aiming for a language with an imperative flavor after all.

8.5 Example runs

We will show now some examples that highlight improvements of the implemen-
tation over previous versions of the engine and over the calculus as presented.



8.5. Example runs 155

8.5.1. Example. [Blocks puzzle] Let’s consider a classical AI puzzle [Ram87]:
we have a pile of three blocks, which are either green or red. The bottom block is
red, and the top block is green; we don’t know the color of the middle brick. The
question is: Is there a green brick on top of a red brick? The Dynamo version of
the puzzle is as follows:

[juanh@banaan dynamo]$ cat tests/aipuzzle

/* program puzzle ;*/

begin

G 1;R 3 ;

O 1 2; O 2 3;

not (some k;!(G k);!(R k ));

not (some x; G x ;some y; R y ; O x y );

end

? () true

Here, the Gx and Rx predicate represents being green and red, respectively,
and Oxy represents “block x is over block y”. We state the facts about the
disposition and coloring of the blocks, and that a block is either green or red.
Then, we state that there never is a green brick on top of a red brick, and call
Dynamo:

[juanh@banaan dynamo]$ ./dynamo tests/aipuzzle

Input:

G{[1]};R{[3]};O{[1,2]};O{[2,3]};

!(Ex k;!(G{[k]});!(R{[k]}));

!(Ex x;G{[x]};Ex y;R{[y]};O{[x,y]})

End of input

Formula is False

Elapsed time: 3.0e-2

Previous versions of Dynamo would just return the • state, since by design they
don’t deal with universal quantification.

8.5.2. Example. [Computation of Answer Substitutions] In the example on
Chapter 7, we hinted that while the tableau engine itself did not know about
the semantics of <, the left branch could be eliminated by model checking or
term rewriting, or adding the relevant axioms for <. We do a limited form of
model checking (interpretation of <,<=,<=,< for ground terms), so here is how
the problem looks like in Dynamo:
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[juanh@banaan dynamo]$ cat tests/union

/* program union;*/

begin

x<3;

begin

x=5 or x=2

end

end

? (x) true

and how Dynamo reacts:

[juanh@banaan dynamo]$ ./dynamo tests/union

Input:

<{[x,3]};x==5 U x==2

End of input

Formula is True

"x=2"

[<{[x,3]}]

Elapsed time: 0.0

The line under “x = 2” tells us that the condition x < 3 is still active: we
probably need to remove ‘constraint’ atoms once the constraint is fulfilled by the
model.

8.5.3. Example. [More computed answers: the Eight Queens Problem] This is
actually a classical Dynamo example program: all versions have been able to
solve it. What makes it special in this case is that the engine had to be able
to add and substract, address values in an array, and evaluate terms in the rule
body. We found that there are a lot of things to improve on the new engine:
the old Dynamo solved the problem in 5.3 seconds, while the current Dynamo
took 37.3 seconds. We take comfort that the new engine, while more ponderous,
can tackle many more problems than the previous ones, and that this is but a
proof-of-concept implementation.

[juanh@banaan dynamo]$ cat tests/8queens

/* program Nqueens(f[]) ;*/



8.5. Example runs 157

begin

n = 8;

some k; k := 0;

do n times

begin

k := k + 1;

find r in [1 .. n] with

begin

r = f[k];

not (find i in [1 .. k-1] with

(f[i] = r or f[i] = r + (k - i) or f[i] = r - (k - i)) )

end

end

end

? (f[]) true

[juanh@banaan dynamo]$ ./dynamo tests/8queens

Input:

n==8;Ex k;[(k,0)];Do n times ([(k,+([k,1]))];Choose (r:=1..n) with r==f[k];

!(Choose (i:=1..-([k,1]))

with [[[[f[i]==r]] U [[f[i]==+([r,-([k,i])])]] U [[f[i]==-([r,-([k,i])])]]]]))

End of input

Formula is True

f[8]=3; f[7]=6; f[6]=4; f[5]=2; f[4]=8; f[3]=5; f[2]=7; f[1]=1;

f[8]=3; f[7]=5; f[6]=2; f[5]=8; f[4]=6; f[3]=4; f[2]=7; f[1]=1;

f[8]=5; f[7]=2; f[6]=4; f[5]=7; f[4]=3; f[3]=8; f[2]=6; f[1]=1;

f[8]=4; f[7]=2; f[6]=7; f[5]=3; f[4]=6; f[3]=8; f[2]=5; f[1]=1;

f[8]=5; f[7]=7; f[6]=2; f[5]=6; f[4]=3; f[3]=1; f[2]=4; f[1]=8;

f[8]=4; f[7]=7; f[6]=5; f[5]=2; f[4]=6; f[3]=1; f[2]=3; f[1]=8;

f[8]=6; f[7]=4; f[6]=7; f[5]=1; f[4]=3; f[3]=5; f[2]=2; f[1]=8;

f[8]=6; f[7]=3; f[6]=5; f[5]=7; f[4]=1; f[3]=4; f[2]=2; f[1]=8;

f[8]=5; f[7]=2; f[6]=4; f[5]=6; f[4]=8; f[3]=3; f[2]=1; f[1]=7;

f[8]=4; f[7]=2; f[6]=8; f[5]=6; f[4]=1; f[3]=3; f[2]=5; f[1]=7;

f[8]=5; f[7]=3; f[6]=1; f[5]=6; f[4]=8; f[3]=2; f[2]=4; f[1]=7;

f[8]=6; f[7]=3; f[6]=1; f[5]=8; f[4]=5; f[3]=2; f[2]=4; f[1]=7;

f[8]=4; f[7]=2; f[6]=5; f[5]=8; f[4]=6; f[3]=1; f[2]=3; f[1]=7;

f[8]=4; f[7]=6; f[6]=1; f[5]=5; f[4]=2; f[3]=8; f[2]=3; f[1]=7;

f[8]=5; f[7]=8; f[6]=4; f[5]=1; f[4]=3; f[3]=6; f[2]=2; f[1]=7;

f[8]=6; f[7]=3; f[6]=5; f[5]=8; f[4]=1; f[3]=4; f[2]=2; f[1]=7;

f[8]=4; f[7]=7; f[6]=3; f[5]=8; f[4]=2; f[3]=5; f[2]=1; f[1]=6;

f[8]=3; f[7]=5; f[6]=7; f[5]=1; f[4]=4; f[3]=2; f[2]=8; f[1]=6;

f[8]=3; f[7]=7; f[6]=2; f[5]=8; f[4]=5; f[3]=1; f[2]=4; f[1]=6;

f[8]=3; f[7]=5; f[6]=2; f[5]=8; f[4]=1; f[3]=7; f[2]=4; f[1]=6;

f[8]=8; f[7]=2; f[6]=5; f[5]=3; f[4]=1; f[3]=7; f[2]=4; f[1]=6;

f[8]=3; f[7]=1; f[6]=7; f[5]=5; f[4]=8; f[3]=2; f[2]=4; f[1]=6;

f[8]=7; f[7]=4; f[6]=2; f[5]=5; f[4]=8; f[3]=1; f[2]=3; f[1]=6;

f[8]=5; f[7]=7; f[6]=2; f[5]=4; f[4]=8; f[3]=1; f[2]=3; f[1]=6;

f[8]=4; f[7]=2; f[6]=8; f[5]=5; f[4]=7; f[3]=1; f[2]=3; f[1]=6;

f[8]=5; f[7]=2; f[6]=8; f[5]=1; f[4]=4; f[3]=7; f[2]=3; f[1]=6;

f[8]=4; f[7]=1; f[6]=5; f[5]=8; f[4]=2; f[3]=7; f[2]=3; f[1]=6;

f[8]=5; f[7]=1; f[6]=8; f[5]=4; f[4]=2; f[3]=7; f[2]=3; f[1]=6;

f[8]=7; f[7]=2; f[6]=4; f[5]=1; f[4]=8; f[3]=5; f[2]=3; f[1]=6;

f[8]=8; f[7]=2; f[6]=4; f[5]=1; f[4]=7; f[3]=5; f[2]=3; f[1]=6;

f[8]=3; f[7]=5; f[6]=8; f[5]=4; f[4]=1; f[3]=7; f[2]=2; f[1]=6;
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f[8]=4; f[7]=8; f[6]=5; f[5]=3; f[4]=1; f[3]=7; f[2]=2; f[1]=6;

f[8]=4; f[7]=2; f[6]=7; f[5]=3; f[4]=6; f[3]=8; f[2]=1; f[1]=5;

f[8]=6; f[7]=3; f[6]=7; f[5]=2; f[4]=4; f[3]=8; f[2]=1; f[1]=5;

f[8]=3; f[7]=7; f[6]=2; f[5]=8; f[4]=6; f[3]=4; f[2]=1; f[1]=5;

f[8]=3; f[7]=6; f[6]=2; f[5]=7; f[4]=1; f[3]=4; f[2]=8; f[1]=5;

f[8]=7; f[7]=2; f[6]=6; f[5]=3; f[4]=1; f[3]=4; f[2]=8; f[1]=5;

f[8]=3; f[7]=6; f[6]=8; f[5]=2; f[4]=4; f[3]=1; f[2]=7; f[1]=5;

f[8]=2; f[7]=4; f[6]=6; f[5]=8; f[4]=3; f[3]=1; f[2]=7; f[1]=5;

f[8]=2; f[7]=6; f[6]=8; f[5]=3; f[4]=1; f[3]=4; f[2]=7; f[1]=5;

f[8]=4; f[7]=8; f[6]=1; f[5]=3; f[4]=6; f[3]=2; f[2]=7; f[1]=5;

f[8]=8; f[7]=4; f[6]=1; f[5]=3; f[4]=6; f[3]=2; f[2]=7; f[1]=5;

f[8]=6; f[7]=3; f[6]=1; f[5]=8; f[4]=4; f[3]=2; f[2]=7; f[1]=5;

f[8]=4; f[7]=6; f[6]=8; f[5]=2; f[4]=7; f[3]=1; f[2]=3; f[1]=5;

f[8]=7; f[7]=4; f[6]=2; f[5]=8; f[4]=6; f[3]=1; f[2]=3; f[1]=5;

f[8]=2; f[7]=6; f[6]=1; f[5]=7; f[4]=4; f[3]=8; f[2]=3; f[1]=5;

f[8]=6; f[7]=3; f[6]=7; f[5]=4; f[4]=1; f[3]=8; f[2]=2; f[1]=5;

f[8]=3; f[7]=8; f[6]=4; f[5]=7; f[4]=1; f[3]=6; f[2]=2; f[1]=5;

f[8]=1; f[7]=6; f[6]=8; f[5]=3; f[4]=7; f[3]=4; f[2]=2; f[1]=5;

f[8]=7; f[7]=1; f[6]=3; f[5]=8; f[4]=6; f[3]=4; f[2]=2; f[1]=5;

f[8]=2; f[7]=7; f[6]=3; f[5]=6; f[4]=8; f[3]=5; f[2]=1; f[1]=4;

f[8]=6; f[7]=3; f[6]=7; f[5]=2; f[4]=8; f[3]=5; f[2]=1; f[1]=4;

f[8]=3; f[7]=6; f[6]=2; f[5]=7; f[4]=5; f[3]=1; f[2]=8; f[1]=4;

f[8]=5; f[7]=7; f[6]=2; f[5]=6; f[4]=3; f[3]=1; f[2]=8; f[1]=4;

f[8]=6; f[7]=2; f[6]=7; f[5]=1; f[4]=3; f[3]=5; f[2]=8; f[1]=4;

f[8]=3; f[7]=6; f[6]=2; f[5]=5; f[4]=8; f[3]=1; f[2]=7; f[1]=4;

f[8]=2; f[7]=8; f[6]=6; f[5]=1; f[4]=3; f[3]=5; f[2]=7; f[1]=4;

f[8]=8; f[7]=3; f[6]=1; f[5]=6; f[4]=2; f[3]=5; f[2]=7; f[1]=4;

f[8]=6; f[7]=1; f[6]=5; f[5]=2; f[4]=8; f[3]=3; f[2]=7; f[1]=4;

f[8]=7; f[7]=3; f[6]=8; f[5]=2; f[4]=5; f[3]=1; f[2]=6; f[1]=4;

f[8]=2; f[7]=5; f[6]=7; f[5]=1; f[4]=3; f[3]=8; f[2]=6; f[1]=4;

f[8]=5; f[7]=3; f[6]=1; f[5]=7; f[4]=2; f[3]=8; f[2]=6; f[1]=4;

f[8]=7; f[7]=5; f[6]=3; f[5]=1; f[4]=6; f[3]=8; f[2]=2; f[1]=4;

f[8]=6; f[7]=3; f[6]=1; f[5]=7; f[4]=5; f[3]=8; f[2]=2; f[1]=4;

f[8]=3; f[7]=6; f[6]=8; f[5]=1; f[4]=5; f[3]=7; f[2]=2; f[1]=4;

f[8]=5; f[7]=1; f[6]=8; f[5]=6; f[4]=3; f[3]=7; f[2]=2; f[1]=4;

f[8]=1; f[7]=5; f[6]=8; f[5]=6; f[4]=3; f[3]=7; f[2]=2; f[1]=4;

f[8]=7; f[7]=3; f[6]=1; f[5]=6; f[4]=8; f[3]=5; f[2]=2; f[1]=4;

f[8]=6; f[7]=4; f[6]=2; f[5]=8; f[4]=5; f[3]=7; f[2]=1; f[1]=3;

f[8]=5; f[7]=2; f[6]=6; f[5]=1; f[4]=7; f[3]=4; f[2]=8; f[1]=3;

f[8]=5; f[7]=1; f[6]=4; f[5]=6; f[4]=8; f[3]=2; f[2]=7; f[1]=3;

f[8]=6; f[7]=4; f[6]=1; f[5]=5; f[4]=8; f[3]=2; f[2]=7; f[1]=3;

f[8]=4; f[7]=2; f[6]=7; f[5]=5; f[4]=1; f[3]=8; f[2]=6; f[1]=3;

f[8]=2; f[7]=5; f[6]=7; f[5]=4; f[4]=1; f[3]=8; f[2]=6; f[1]=3;

f[8]=5; f[7]=7; f[6]=1; f[5]=4; f[4]=2; f[3]=8; f[2]=6; f[1]=3;

f[8]=2; f[7]=7; f[6]=5; f[5]=8; f[4]=1; f[3]=4; f[2]=6; f[1]=3;

f[8]=1; f[7]=7; f[6]=5; f[5]=8; f[4]=2; f[3]=4; f[2]=6; f[1]=3;

f[8]=5; f[7]=8; f[6]=4; f[5]=1; f[4]=7; f[3]=2; f[2]=6; f[1]=3;

f[8]=4; f[7]=8; f[6]=1; f[5]=5; f[4]=7; f[3]=2; f[2]=6; f[1]=3;

f[8]=4; f[7]=7; f[6]=1; f[5]=8; f[4]=5; f[3]=2; f[2]=6; f[1]=3;

f[8]=6; f[7]=2; f[6]=7; f[5]=1; f[4]=4; f[3]=8; f[2]=5; f[1]=3;

f[8]=6; f[7]=8; f[6]=2; f[5]=4; f[4]=1; f[3]=7; f[2]=5; f[1]=3;

f[8]=6; f[7]=4; f[6]=7; f[5]=1; f[4]=8; f[3]=2; f[2]=5; f[1]=3;

f[8]=1; f[7]=7; f[6]=4; f[5]=6; f[4]=8; f[3]=2; f[2]=5; f[1]=3;

f[8]=4; f[7]=7; f[6]=5; f[5]=3; f[4]=1; f[3]=6; f[2]=8; f[1]=2;

f[8]=3; f[7]=6; f[6]=4; f[5]=1; f[4]=8; f[3]=5; f[2]=7; f[1]=2;

f[8]=4; f[7]=1; f[6]=5; f[5]=8; f[4]=6; f[3]=3; f[2]=7; f[1]=2;

f[8]=5; f[7]=3; f[6]=8; f[5]=4; f[4]=7; f[3]=1; f[2]=6; f[1]=2;

f[8]=5; f[7]=7; f[6]=4; f[5]=1; f[4]=3; f[3]=8; f[2]=6; f[1]=2;

f[8]=4; f[7]=6; f[6]=8; f[5]=3; f[4]=1; f[3]=7; f[2]=5; f[1]=2;

f[8]=3; f[7]=6; f[6]=8; f[5]=1; f[4]=4; f[3]=7; f[2]=5; f[1]=2;

f[8]=5; f[7]=7; f[6]=1; f[5]=3; f[4]=8; f[3]=6; f[2]=4; f[1]=2;

Elapsed time: 37.31
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8.6 Conclusion

We have now provided a platform on which to experiment on the concepts pre-
sented in Chapters 5, 6 and 7; this opens the way to cross-checking the contents
of these chapters, and even as it is their culmination it serves as a background
to their study. Implementation is the true test for theories; teaching a tableau
prover to do simple arithmetic can be hard. Also, we found that the use of a
theorem prover as a language engine demands a major increase in its capabilities
to be worthwhile.

Next steps for Dynamo include adding equational reasoning capabilities, get-
ting it to run faster, adding data types, the ∃∃ operator and the Kleene star, and
implementing a tool to verify Dynamo programs using the calculus presented in
Chapter 6.
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Chapter 9

Conclusion

Computers are useless;
they can only give you answers.

–Pablo Picasso

We started out this journey with the intention of improving both the under-
standing and the landscape of automated reasoning tools for a variety of logics;
in the course of this work, a translator from multi-modal logic into first order
logic, a hybrid logic resolution theorem prover, a hybrid logic test set generator
and a DFOL programming language were designed and implemented.

9.1 On Empirical Evaluation

and Modal-like Satisfiability Testing

In Part I of the thesis we focused on putting modal logic to work; in particular, we
were interested in different ways of implementing solvers for the modal satisfiabil-
ity problem. We saw how empirical evaluation is useful not only for comparison
of competing reasoning tools, but also for guidance and evaluation in the develop-
ment of said tools, as well as evaluation of the test sets themselves. We also saw
the importance of having a proper test set in the case of HyLoRes development;
had we developed hGen first, the urgency of improving paramodulation treatment
would have been much more apparent. We also saw two different ways of putting
a particular logic to work: having a tool to translate it into a logic that has tools
already developed for it, in this case FOL, or writing a tool from scratch. Each
method has its advantages and disadvantages: the translation method can be
very easy to do in a näıve way, but improving it requires tweaking the translation
with an eye on the workings of the tool we want to work with, which will require
substantially more involvement and is always limited. The custom tool way also
has its own compromises: on the one hand, one has complete control over the
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inner workings of the tool, but on the other hand it tends to be a much bigger
effort.

9.2 On DFOL programming

In Part II, we concentrated on one thing we can do with one logic, and all the
ways in which we can look at it. We took DPL, extended it until it was expressive
enough for programming, and stated an executable program interpretation for it.
We reviewed the first two versions of the Dynamo engine, and decided that getting
closer to DFOL semantics would be simpler if we abandoned the state machine
approach and used a tableau prover for the engine instead. In the meantime,
we provided a Hoare calculus for verification of Dynamo programs, which being
inspired in the semantics of the logic instead of the program state, is the same for
any incarnation of the Dynamo engine. In the end, we implemented Dynamo, in
the course of which we learned that while a theorem prover has no trouble with the
concept of negation-as-failure, things like simple arithmetic and equality reasoning
require the engine to be significantly enlarged. Another desired functionality, the
Kleene star, had to be postponed; the study of how to do unrestricted looping
and still produce meaningful results falls out of the scope of the present work.
One thing that can be done is take advantage of the lazy processing engine of
Haskell, and report models as they appear.

9.3 Threaded through:

Haskell and Scientific Programming

The translators from modal to first order logic, HyLoRes, hGen, and all versions of
Dynamo, all share a common property: they have been written in Haskell. The
main benefit of programming in Haskell was that since we did not have to worry
about all the little details of how we wanted our computation carried out, we
had more time to consider optimizations to the bigger details of the algorithms
and data structures; it is also less trouble to change them in order to experiment.
Ultimately, if one wants a really fast program and can devote the time and re-
sources to developing it, the imperative way will always work better, although
it is always superseded by hardware-specific machine coding, which in turn is
bested by task-specific hardware design. There is something else to be said for
this ordering, which is that the insights gained for each approach are increasingly
different: the tasks performed and therefore the knowledge required focus more
and more on where the data goes and how cleverly it is stored, recalled and up-
dated. But all these optimizations are vulnerable to improvements in algorithm
quality ; developing better heuristics and better data organization usually results
in more dramatic results than fine-tuning your loops or using custom hardware,
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and more importantly, gives a better insight on the nature of the problem.

9.4 Equality Reasoning

Another thing that became a common theme between the two parts of this thesis
is the need for equality reasoning treatment. Both in HyLoRes and in the Dynamo
engine, we found some manifestation of equality being a stone in our shoe. Were
these stones equal? Well... since tableaux and resolution are dual methods, the
problems posed by equality are perforce different; also, in Dynamo we want the
solution to the set of equations, while in HyLoRes we do not have interpreted
function symbols and are looking for contradictory statements.

9.5 One Logic to Find them, one Logic to Bind

them?

The two main threads in this work are not parallel, but come together in a
place slightly outside this thesis. DFOL is, after all, a dynamic logic: it has
tests, which either fail or succeed, and other operators bring us from states to
(sets of) states. Furthermore, Hoare logic can be expressed in terms of First
Order Dynamic Logic [Har79], so in a sense all the logics covered here belong
to the family of ’modal-like’ logics. In fact, there is a way to express the Hoare
calculus we introduced entirely in DFOL, since the meaning of both existential
and universal correctness triples can be encoded in it: we can write {A}φ{B} as
A• → (φ → B•), and (A)φ(B) as A• → (φ;B•), where ·• is a translation from
FOL to DFOL. So it is revealed; the formulas of DFOL can be seen as modalities,
where the ‘worlds’ in a model are the assignments, and the transitions are of course
regulated by the usual semantics of DFOL: tests represent transitions to either
the failure state or the current state, an assignment to a variable v represents a
transition to a v-variant of the current state, and so on.

9.6 Final Remarks

A theory is useful only when it is used; it is our hope that the tools developed in
the course of preparing this work make the involved logics more useful than they
already are, by providing a testing lab to try out ideas and see how they work.
And how well they do.

On the course of this study, then, some tools apt for studying and experi-
menting with nonclassical logics have been developed:

• HyLoRes: http://www.science.uva.nl/~juanh/hylores
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• Dynamo: http://www.science.uva.nl/~juanh/dynamo

• hGen: http://www.science.uva.nl/~juanh/hGen
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Samenvatting

Formele logica is de studie van noodzakelijke waarheden en systematische meth-
oden met als doel deze waarheden helder uit te drukken en rigoreus te demonstr-
eren. Dit proefschrift gaat over de automatisering van de conclusies die mogelijk
zijn gemaakt door zekere logica’s, over de evaluatie van deze automatiserings
methoden en mogelijke toepassingen hiervoor.

De afgelopen jaren is de efficientie van het automatische bewijzen van stellin-
gen voor modale logica enorm toegenomen, tegelijkertijd is het gebied van eval-
uatie van deze stelling bewijzers gerijpt. We zullen een aantal van de strategieën
zien die gebruikt worden om middelen voor automatisch redeneren voor deze
logicas te ontwikkelen en zien wat de rol is van empirische beoordeling in dit pro-
ces. We zullen ook zien hoe Dynamic Predicate Logic (DPL) gëınterpreteerd kan
worden als programmeer taal, en hoe programma’s die geschreven zijn in die taal
gemakkelijk formeel gecontroleerd kunnen worden. Uiteindelijk zullen we zien hoe
automatisch redeneren gebruikt kan worden als een motor voor berekeningen.
Dit werk gaat dan over middelen: hun ontwikkeling, beoordeling en mogelijke
toepassingen.

Dit proefschrift is ingedeeld in twee hoofd gedeeltes. Deel I, Evaluation in
Modal and Hybrid Theorem Proving, gaat over de huidige en bestaande pogingen
op het gebied van stelling bewijsvoering in modale en hybride logica en het belang
van beoordeling in het ontwerp en vergelijking van stelling bewijzers evenals in
de beoordeling van de standaarden zelf. In Hoofdstuk 2 zullen we de evolutie van
de standaardisering in modale logica stelling bewijsvoering bespreken en zullen
we een hybride logica standaard introduceren. In Hoofdstuk 3 spreken we over
de verschillende methoden voor het vertalen van modale logica naar First Order
Logic (FOL), over het voordeel te gebruiken van de jaren van ontwikkeling die
zijn gegaan in FOL stelling bewijsvoering en over hoe verschillende methoden te
vergelijken. In Hoofdstuk 4 beschrijven we andere kijk op stelling bewijsvoer-
ing in niet klassieke logica: ontwikkeling van jouw eigen gespecialiseerde stelling
bewijzer. We beschrijven de theorie en implementatie van HyLoRes, een oploss-
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ing gebaseerde stelling bewijzer voor hybride logica; we beschrijven ook hoe het
testen een onaangetast deel van de ontwikkeling was.

In Deel II, Programming with Dynamic First Order Logic, onderzoeken wij
het gebruik van Dynamic First Order Logic (DFOL) als een programmeer taal.
In Hoofdstuk 5 geven we enige achtergrond van het concept model ’formules als
programma’s’; we introduceren het concept van een uitvoerbare interpretatie van
DFOL(∪), en beschrijven twee steeds betrouwbaar wordende benaderingen van de
interpratie. In Hoofdstuk 6 leggen we uit waarom DFOL(∪, σ) een goede kandi-
daat is voor een programmeer taal en beschrijven we een Hoare calculus daarvoor.
In Hoofdstuk 7 beschrijven we een reken tabel voor DFOL(∪, σ) die zelfs een
betere benadering geeft voor de uitvoerbare interpretatie van DFOL(∪, σ) en kan
gebruikt worden als een programmeer taal moter en in Hoofdstuk 8 beschrijven
we de implementatie van zo’n moter en laten we een aantal voorbeeld runs.

In Deel III, Conclusie, kijken we terug op wat er geleerd is in de delen I en II,
wat ze gemeenschappelijk hebben en waar ze elkaar ontmoeten.



Abstract

Formal logic is the study of necessary truths and of systematic methods for clearly
expressing and rigorously demonstrating such truths. This thesis is about the
automation of the inferences made possible by certain logics, about the evaluation
of these automation methods, and some possible uses for them.

The last few years have seen a huge increase in the efficiency of theorem
provers for modal and modal-like logics, and together with it the field of evaluation
of these theorem provers has matured considerably. We will see some of the
strategies used to develop automatic reasoning tools for these logics, and the role
of empirical evaluation in this process. We will also see how Dynamic Predicate
Logic (DPL) can be interpreted as a programming language, and how programs
written in that language can be easily subjected to formal verification. Finally, we
will see how automated reasoning can actually be used as a computation engine.
This work is then about tools : their development, evaluation, and possible uses.

This thesis is organized in two main parts. Part I, Evaluation in Modal and
Hybrid Theorem Proving, deals with current and existing efforts in the field of
modal and hybrid logic theorem proving, and the importance of evaluation in
the design and comparison of theorem provers as well as in the evaluation of the
benchmarks themselves. In Chapter 2 we’ll review the evolution of benchmarking
in modal logic theorem proving, and introduce a hybrid logic benchmark. In
Chapter 3 we talk about the different methods for translating Modal Logic to
First Order Logic (FOL), to take advantage of the years of development that went
into FOL theorem proving, and how different methods compare. In Chapter 4 we
describe another approach to theorem proving in non-classical logics: developing
your own specialized theorem prover. We describe the theory and implementation
of HyLoRes, a resolution-based theorem prover for hybrid logics; we also describe
how testing was an integral part of development.

In Part II, Programming with Dynamic First Order Logic, we explore the use
of Dynamic First Order Logic (DFOL) as a programming language. In Chap-
ter 5 we give some background to the ‘formulas as programs’ paradigm; we in-
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troduce the concept of an executable interpretation of DFOL(∪), and describe
two increasingly faithful approximations to the interpretation. In Chapter 6 we
explain why DFOL(∪, σ) is a good candidate for a programming language and
describe a Hoare calculus for it. In Chapter 7 we describe a tableau calculus for
DFOL(∪, σ) which gives an even better approximation to the executable inter-
pretation of DFOL(∪, σ) and can be used as a programming language engine, and
in Chapter 8 we describe the implementation of such an engine and show some
example runs.

In Part III, Conclusion, we reflect on what was learned from Parts I and II,
what they had in common, and where they meet.
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