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Abstract

This thesis is about logic of space. In it we use various techniques of modal logic and

topology to devise a class of increasingly stronger logics of space. The underlying

intuition is that for lots of applications spatial intuition and spatial reasoning seem

basic. And this not only in applications such as guiding robots or automated vehicles

through real three-dimensional space, but also for such diverse applications as rea-

soning about knowledge, processing and updating of information. The thesis makes

some initial steps in understanding the structure of space with efficient languages of

modal logic, with an ultimate aim of applying them to cognitive settings.
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Chapter 1

Introduction

This thesis is about modal languages for spatial structures, and some new logics

to which these give rise. But does space need a new logic? After all, since the

Greeks, geometry has done fine as a mathematical theory, and we know a lot about

its properties, both at the level of formal derivations and of meta-properties of axiom

systems. And the 20th century has even added further mathematical theories of

space, such as topology, and mathematical morphology, based on linear algebra. All

this is true, and yet it seems of interest to describe spatial structures by the simplest

possible logical formalisms bringing out their combinatorics in a perspicuous, and

perhaps even low-complexity manner. The guiding example for us here is Tarski’s

analysis of topology in a modal language, with modal box as an interior operator,

showing that the modal logic S4 is the complete and decidable logic of at least this

basic structure. Tarski and McKinsey [56] also showed that S4 is the logic of specific

structures such as the reals with their standard order topology, discovering tight

connections between Kripke models and patterns of subsets on metric spaces like the

reals.

Interest in modal logics for reasoning about space is picking up these days. To

mention just a few sources, there is the work on topological spaces by the Georgian

School of L. Esakia [34], [33] and his students (G. and N. Bezhanishvili, D. Gabelaia

[20], [4], [21], [39]), which is being extended these days to richer hybrid languages

1



CHAPTER 1. INTRODUCTION 2

allowing for reference to specific named points and other expressive extensions. An-

other strand is the pioneering work by Mints [58] on simplifications of the original

Tarski-McKinsey proof, which has in turn inspired work in Amsterdam and New Mex-

ico ([4],[1], [20]). Another line concerns extensions of the basic topological framework

with continuous maps, adding a temporal, or dynamic logic dimension to the system

([30], [31], [32], [6], [48], and also the forthcoming chapter by Mints and Kremer in

[2]).

Related again to the original topological setting is the epistemic-topological frame-

work of [59]. And there are many other modal approaches, including logics of affine

and projective geometries ([66], [7], [8]). Much of this work will be collected in the

forthcoming Handbook of Spatial Reasoning [2], edited by M. Aiello, J. van Benthem,

and I. Pratt. Of course, there are also other possible logical approaches, using first-

order languages in the tradition of Tarski’s Elementary Geometry, or higher-order

ones. For these, the same Handbook is a good source (cf. the chapters by Pratt,

Balbiani, Goranko & Vakarelov, and Andréka & Németi), while Kerdiles’ Thesis [46]

is a nice sample of spatial analysis in a minimal framework of Peircean ‘conceptual

graphs’.

In the general area of modal logics of space, the specific topic of this thesis can

be described as follows. To us, spatial structure only comes into its own with at least

two dimensions, and one very natural way of creating two-dimensional structures is

by the formation of products. Product constructions for logical purposes have been

proposed for many different reasons (cf. [12]), and there is quite some literature on

this subject in modal logic (cf. [38]), sparked off largely by Gabbay and Shehtman

[37]. But the main emphasis so far has been on using products of Kripke models

with binary accessibility relations, as a sort of minimal way of combining information

from different dimensions. Instead, we shall be mainly interested in products of

topological spaces with various topologies on them. To us this seems an interesting

area for experimenting with new spatial languages. At the same time, however, our

approach also generalizes that of Gabbay and Shehtman, and it even provides a more

flexible setting for combination of modal logics.

We now turn to the description of our specific topics and results.
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Chapter 2, Modal Logics of Products of Topologies, introduces the horizontal and

vertical topologies on the product of topological spaces and studies their relationship

with the standard product topology. Our main contributions are:

1. A new definition of topological products with horizontal and vertical topolo-

gies introduced on the Cartesian product as a generalization of the Gabbay-

Shehtman product construction for Kripke frames,

2. A completeness result showing that the minimal logic of this class of topological

spaces is the fusion logic S4 ⊕ S4. Thus, in the topological product setting,

various ‘interference principles’ that hold in the relational case and turn out to

be notoriously difficult to analyze computationally are absent.

3. The systematic correspondence analysis of additional interaction axioms and

their topological and set-theoretic content,

4. It is shown that the modal logic of products of topological spaces with horizontal

and vertical topologies is the fusion S4⊕ S4.

5. We axiomatize the modal logic of products of topological spaces with horizontal,

vertical, and standard product topologies.

6. We prove that both of these logics are complete for the product of rational

numbers Q×Q with the appropriate topologies.

The material in this chapter is based largely on two papers: [16] and [52]. The

first one has been coauthored with J. van Benthem, G. Bezhanishvili, and B. ten Cate

and is in the process of review by Studia Logica. The latter one is with B. Löwe and

will appear in The Logic Journal of the IGPL.

Chapter 3 investigates what happens when we introduce a linear ordering in our

topological spaces. This corresponds to the natural idea of looking in a space along

some direction. Our approach combines ideas from temporal logic ([62], [26], [44])

with topological semantics, but with the following new twist. Some earlier attempts

at studying this combination have, as in the above, considered products of relational
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models, witness Venema’s well-known modal ‘compass logic’ [71]. The result is high

modal expressive power (leading to undecidability), and on the other hand poor

topological expressive power. Other authors have added an explicit order to the

topology: Shehtman is an important example [64]. This also leads to logics of clear

spatial interest, but hard to axiomatize: cf. [21]. Our new proposal is to strike a

middle ground, and have modal operators whose interpretation combines the order

and the topology, stating that a proposition is true in an open neighborhood along a

certain direction. Moreover, as in Chapter 2, we show how to lift this to a family of

modalities in products of ordered topological spaces. Our main results are

1. A complete axiomatization of the the logic of generalized order topologies on

our models in this language on one topo-dimension,

2. A complete axiomatization in one dimension for Q,

3. A complete axiomatization in one dimension for N,

4. A completeness result for the specific structure Q×Q viewed as a product space,

5. A completeness result for the specific structure N×N viewed as a product space.

We believe that our arguments will also settle the complete logic of order topologies,

but this still remains to be clarified.

Finally, we make a perhaps surprising turn. Topological semantics in its earlier

phases has always served a dual purpose. On the one hand, it described spatial

structures, but on the other, it also served as a modelling for intuitionistic logic, and

hence as a sort of epistemic semantics. In Chapter 4, we take this idea further and

introduce topological semantics for epistemic logic, generalizing the usual Hintikka-

style relational models [43]. By itself, this idea has also been pursued in [59], but they

use a somewhat idiosyncratic language, instead of going all out as we do, identifying

agents with topologies on some given space. Our generalization turns out to have

several new consequences. One is that we can model the various different senses of

common knowledge proposed in Barwise, for which no satisfactory modelling existed.
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Another is that we can discuss combinations of groups of agents in greater generality

than has been possible so far.

Our results include:

1. A new analysis of modal fixed-point procedures in topological semantics,

2. A completeness result for a multi-agent topological semantics,

3. Introduction of several new kinds of topological ‘agents’.

This chapter is based on the paper The Geometry of Knowledge with J. van

Benthem that appeared in [22].

Finally in the concluding chapter, we point out some further related results that

we have obtained in the area and several fruitful directions for further research. The

main results we mention are:

1. Some decidability questions for the Topo-Compass Logic of Chapter 3,

2. A generalization of products of modal logics into a hybrid logic setting,

3. A completeness transfer result similar to that in the relational setting,

4. An undecidability result for a temporal logic in a hybrid product setting.

Our hope is that this thesis makes a contribution to the recent upsurge of interest

in both the logic of space, and the products of modal logics.



Chapter 2

Modal Logics for Products of

Topologies

We introduce the horizontal and vertical topologies on the product of topological

spaces, and study their relationship with the standard product topology. We show

that the modal logic of products of topological spaces with horizontal and vertical

topologies is the fusion S4 ⊕ S4. We axiomatize the modal logic of products of

topological spaces with horizontal, vertical, and standard product topologies. We

prove that both of these logics are complete for the product of rational numbers

Q×Q with the appropriate topologies

2.1 Introduction

The study of products of Kripke frames and their modal logics was initiated by

Shehtman [63]. A systematic study of multi-dimensional modal logics of products of

Kripke frames can be found in Gabbay and Shehtman [37], and for an up to date

account of the most important results in the field we refer to Gabbay et al. [38]. We

recall that for given two frames F = 〈W,S〉 and G = 〈V, T 〉, the ‘horizontal’ and

‘vertical’ relations on the product W × V are defined as follows.

(w, v)R1(w′, v′) iff wSw′ and v = v′

(w, v)R2(w′, v′) iff w = w′ and vTv′

6
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Amongst many other results, Gabbay and Shehtman proved that if L1 and L2 are

modal logics complete with respect to frame classes F1 and F2 defined by universal

Horn conditions and closed under taking disjoint unions, then the logic L1 × L2 of

the class of products

F1 × F2 = {〈W × V, R1, R2〉 : 〈W,S〉 ∈ F1 and 〈V, T 〉 ∈ F2}

is axiomatized by the fusion L1 ⊕ L2 plus the two additional principles of commu-

tation com = !1!2p ↔ !2!1p and convergence (also known as the Church-Rosser

principle) chr = "1!2p → !2"1p. In particular, since S4 is complete with respect

to the universal Horn class of reflexive and transitive frames, the product S4× S4 is

axiomatized as S4⊕ S4 plus com and chr.

It is known that topological semantics generalizes Kripke semantics for S4. In

this paper we consider products of topological spaces. We generalize the notions of

horizontal and vertical relations to horizontal and vertical topologies and study their

relationship with the standard product topology. We show that the modal logic of

products of topological spaces with horizontal and vertical topologies is S4⊕S4, and

the interaction principles com and chr only become valid when further restrictions

are made on the topological spaces under consideration.

Since the topological setting strongly suggests adding the ‘true product topology’,

we also investigate the modal logic of products of topological spaces with all three

topologies: horizontal, vertical, and the standard product topology. We show that

the modal operator associated with the product topology is not definable in terms of

the modal operators associated with the horizontal and vertical topologies, and we

axiomatize the modal logic of products of topological spaces with all three topologies.

This chapter is organized as follows. In Section 2.2 we recall some basic facts

about topological semantics of S4 and present a new proof of completeness of S4 with

respect to the rationals. We also review the definitions of the fusion S4⊕S4 and the

product S4× S4. In Section 2.3 we introduce the horizontal and vertical topologies,

and investigate their relationship with the standard product topology. Section 2.4 is

concerned with the commutation and convergence principles in the topological setting,
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while Sections 2.6 and 2.7 contain completeness results for modal languages with

operators corresponding to the horizontal, vertical, and standard product topologies.

In the concluding Section 2.8 we point out some of the remaining open questions.

2.2 Preliminaries

2.2.1 Topological completeness of S4

If we interpret the modal operators ! and " in topological spaces as the interior

and closure operators, then the complete modal logic of all topological spaces is S4

(McKinsey and Tarski [56]). A much stronger result, also due to McKinsey and

Tarski, states that S4 is in fact the complete modal logic of any metric separable

dense-in-itself space. In particular, S4 is the complete modal logic of the real line

R, the rational line Q, or the Cantor space C. An alternative proof of completeness

of S4 with respect to C can be found in [58], and that with respect to R in [4]. In

the subsequent sections we will need completeness of S4 with respect to Q. In order

to make the paper self-contained, we present here an alternative proof of this fact,

which might be of an independent interest.

To this end, recall that a topological space is a structure 〈X, τ〉 where τ ⊆ ℘(X)

contains ∅ and W and is closed under arbitrary unions and finite intersections. The

elements of τ are called open sets. If, in addition, τ is closed under arbitrary inter-

sections, then 〈X, τ〉 is said to be Alexandroff. A topological model is a structure

M = 〈X, τ, ν〉, where 〈X, τ〉 is a topological space and ν is a valuation assigning

subsets of X to propositional variables of the modal language. Then for x ∈ X, the

modal operators ! and " are interpreted as follows.

x |= !ϕ iff ∃U ∈ τ : x ∈ U and ∀y ∈ U(y |= ϕ)

x |= "ϕ iff ∀U ∈ τ : if x ∈ U then ∃y ∈ U(y |= ϕ)

A topo-bisimulation between two topological models M = 〈X, τ, ν〉 and M ′ = 〈X ′, τ ′, ν ′〉
is a non-empty relation ! ⊆ X ×X ′ such that if x ! x′ then

(i) Base: x ∈ ν(p) iff x′ ∈ ν ′(p), for any propositional variable p
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(ii) Forth condition: x ∈ U ∈ τ implies that there exists U ′ ∈ τ ′ such that

x′ ∈ U ′ and for every y′ ∈ U ′ there is y ∈ U with y ! y′

(iii) Back condition: x′ ∈ U ′ ∈ τ ′ implies that there exists U ∈ τ such that

x ∈ U and for every y ∈ U there is y′ ∈ U ′ with y ! y′

Points x in M and x′ in M ′ are said to be topo-bisimilar if there is a bisimulation !
in which x ! x′.

An important feature of topo-bisimulations that will be used throughout is that

they preserve truth of modal formulas [3].

Let T2 be the infinite binary tree with the (reflexive and transitive) descendant

relation. Formally, T2 can be defined as 〈W,R〉, where W = {0, 1}∗ is the set of finite

strings (including the empty string) over {0, 1} and sRt iff ∃u : s · u = t.

In our proof of completeness we will rely on the following two well-known results.

Theorem 2.2.1 (van Benthem-Gabbay) S4 is complete with respect to T2.

Proof For a proof see, e.g., [42, Theorem 1 and the subsequent discussion]. The

proof uses the fact that every finite rooted S4-frame is a bounded morphic image of

T2. "

Theorem 2.2.2 (Cantor) Every countable dense linear ordering without endpoints

is isomorphic to Q.

Proof For a proof see, e.g., [51, Page 217, Theorem 2]. "

Remark 2.2.3 We recall that if 〈X, <〉 is a linearly ordered set and x, y ∈ X with

x < y, then the open interval (x, y) is defined as the set {z ∈ X : x < z < y}. If

we view linearly ordered sets as topological spaces using the set of open intervals as

a basis for the topology, then it follows from Cantor’s theorem that every countable

dense linear ordering without endpoints is (as a topological space) homeomorphic to

Q.

We are now ready to proceed with the proof.

Theorem 2.2.4 S4 is complete with respect to Q.
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Proof As we pointed out earlier, this result is a particular case of the McKinsey

and Tarski theorem [56]. An alternative proof can be extracted from [4]. Here we

give yet another proof of this result, which we will build on in Sections 2.6 and 2.7 to

obtain our two main completeness results.

Our strategy is as follows. We use completeness of S4 with respect to T2, view

T2 as an Alexandroff space, define a dense subset X of Q without endpoints, and

establish a topo-bisimulation between X and T2. This will allow us to transfer coun-

terexamples from T2 to X, which by Cantor’s theorem is order-isomorphic, and hence

homeomorphic to Q.

Let X =
⋃

n∈ω Xn, where X0 = {0} and

Xn+1 = Xn ∪ {x−
1

3n
, x +

1

3n
| x ∈ Xn}

Claim 2.2.5 For n > 0 and x, y ∈ Xn, x /= y implies |x− y| ≥ 1
3n−1 .

Proof By induction on n. If n = 1, then X1 = {0, 1,−1}, and so x /= y implies

|x − y| ≥ 1. That the claim holds for n = k + 1 is also not hard to see. Note that

if u, v ∈ Xn−1 with u /= v, then, by induction hypothesis, |u − v| ≥ 1
3n−2 and hence

|(u + 1
3n−1 )− (v − 1

3n−1 )| ≥ 1
3n−1 . "

It follows from Claim 2.2.5 that 〈X, <〉 is a countable dense linear ordering without

endpoints, thus order-isomorphic, and hence homeomorphic to Q. It also follows that

for each x ∈ X with x /= 0 there exists nx with x ∈ Xnx and x /∈ Xnx−1, and that

there is a unique y ∈ Xnx−1 with x = y− 1
3nx−1 or x = y + 1

3nx−1 . Therefore, the open

X-intervals (x− 1
3nx , x + 1

3nx ) form a basis for the order-topology on X.

Now we define f from X onto T2 by recursion (cf. Figure 2.4(a)): If x = 0 then

we let f(0) be the root r of T2; if x /= 0 then x ∈ Xnx −Xnx−1 and we let

f(x) =

{
the left successor of f(y) if x = y − 1

3nx−1

the right successor of f(y) if x = y + 1
3nx−1

Claim 2.2.6 f is open and continuous.

Proof We recall that a basis for the Alexandroff topology on T2 is B = {Bt}t∈T2
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where Bt = {s ∈ T2 : tRs}. To show that f is open, for a basic open X-interval

(x − 1
3nx , x + 1

3nx ), we show that f(x − 1
3nx , x + 1

3nx ) = Bf(x). Indeed, if y ∈ (x −
1

3nx , x + 1
3nx ) then ny > nx, and so f(x)Rf(y). Conversely, if f(x)Rt then it follows

from the definition of f (by induction on the distance between f(x) and t in the tree)

that there exists y ∈ (x− 1
3nx , x + 1

3nx ) such that f(y) = t. Thus f is open.

To show that f is continuous it suffices to show that for each t ∈ T2, the f -inverse

image of Bt is open. Let x ∈ f−1(Bt). Then tRf(x). So f(x − 1
3nx , x + 1

3nx ) =

Bf(x) ⊆ Bt. Thus there exists an open interval I = (x− 1
3nx , x + 1

3nx ) of x such that

I ⊆ f−1(Bt), implying that f is continuous. "
To complete the proof, if S4 /1 ϕ, then by Theorem 2.2.1, there is a valuation ν

on T2 such that 〈T2, ν〉, r /|= ϕ. Define a valuation ξ on X by ξ(p) = f−1(ν(p)). Since

f is continuous and open and f(0) = r, we have that 0 and r are topo-bisimilar.

Therefore, 〈X, ξ〉, 0 /|= ϕ. Now since X is homeomorphic to Q, we obtain that ϕ is

also refutable on Q. "
Note that the above completeness proof can also be seen as a representation ar-

gument. More precisely, we showed that every finite rooted S4-frame is a continuous

and open image of Q.

2.2.2 The fusion S4⊕ S4

Let L!1!2 be a bimodal language with modal operators !1 and !2. We recall that the

fusion of S4 with itself, denoted by S4 ⊕ S4, is the least set of formulas containing

S4-axioms for both !1 and !2, and closed under modus ponens, substitution, !1-

necessitation, and !2-necessitation.

S4 ⊕ S4-frames are triples 〈W,R1, R2〉, where W is a nonempty set and R1 and

R2 are reflexive and transitive. We call such a frame rooted if there is a w ∈ W such

that for all v ∈ W , it holds that (w, v) ∈ (R1 ∪R2)∗, where (R1 ∪R2)∗ is the reflexive

transitive closure of R1 ∪R2.

Theorem 2.2.7 (Kracht-Wolter and Fine-Schurz) S4 ⊕ S4 has the finite model

property; in fact, S4⊕ S4 is complete with respect to finite rooted S4⊕ S4-frames.

Proof For a proof see, e.g., [38, Page 196, Theorem 4.2]. "
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Figure 2.1: T2,2. The solid lines represent R1 and the dashed lines represent R2. The
dotted lines at the final nodes indicate that the pattern repeats on infinitely.

Let T2,2 denote the infinite quaternary tree such that each node of T2,2 is R1-

related to two of its four immediate successors and R2-related to the other two; both

R1 and R2 are taken to be reflexive and transitive. Formally T2,2 can be defined as

〈W,R1, R2〉, where W = {0, 1, 2, 3}∗, sR1t iff ∃u ∈ {0, 1}∗ : s · u = t, and sR2t iff

∃u ∈ {2, 3}∗ : s · u = t (see Figure 2.1). Clearly T2,2 is a rooted S4⊕ S4-frame.

Proposition 2.2.8 S4⊕ S4 is complete with respect to T2,2.

Proof See Appendix A. "

2.2.3 The product S4× S4

For two S4-frames F = 〈W,S〉 and G = 〈V, T 〉, define the product frame F ×G to be

the frame 〈W × V, R1, R2〉, where for w,w′ ∈ W and v, v′ ∈ V ,

(w, v)R1(w′, v′) iff wSw′ and v = v′

(w, v)R2(w′, v′) iff w = w′ and vTv′

The frame F×G can be viewed as an S4⊕S4-frame by interpreting the modalities

!1 and !2 of L!1!2 as follows.

(w, v) |= !1ϕ iff ∀(w′, v′) if (w, v)R1(w′, v′) then (w′, v′) |= ϕ

(w, v) |= !2ϕ iff ∀(w′, v′) if (w, v)R2(w′, v′) then (w′, v′) |= ϕ

Let S4× S4 denote the logic of products of S4-frames. As we pointed out in the

introduction, the product logic S4 × S4 is axiomatized by adding the following two

axioms to the fusion S4⊕ S4:
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com = !1!2p ↔ !2!1p

chr = "1!2p → !2"1p

By the Sahlqvist theorem, com and chr have the following first-order correspon-

dents:

∀x∀y(∃z(xR1z ∧ zR2y) ↔ ∃z(xR2z ∧ zR1y))

∀x∀y∀z((xR1y ∧ xR2z) → ∃w(yR2w ∧ zR1w))

Besides R1 and R2, there is yet another (reflexive and transitive) relation on the

product W × V defined componentwise:

(w, v)R(w′, v′) iff wSw′ and vTv′

This allows us to interpret yet another modal operator ! in F × G:

(w, v) |= !ϕ iff ∀(w′, v′) if (w, v)R(w′, v′) then (w′, v′) |= ϕ

However, since in product frames we have that R = R1◦R2, !ϕ becomes equivalent

to !1!2ϕ, and so ! turns out to be definable in terms of !1 and !2. As we will

see shortly, in the subtler setting of topological products, the analogue of ! is not

modally definable in terms of the analogues of !1 and !2.

2.3 Product spaces and product topo-bisimulations

2.3.1 Horizontal and vertical topologies

Let X = 〈X, η〉 and Y = 〈Y, θ〉 be two topological spaces. Recall that the standard

product topology τ on X × Y is defined by letting the sets U × V form a basis for τ ,

where U is open in X and V is open in Y . Let I denote the interior operator and C

denote the closure operator of τ .

We will define two additional one-dimensional topologies on X×Y by ‘lifting’ the

topologies of the components.
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Suppose A ⊆ X × Y . We say that A is horizontally open (H-open) if for any

(x, y) ∈ A there exists U ∈ η such that x ∈ U and U × {y} ⊆ A. Similarly, we say

that A is vertically open (V-open) if for any (x, y) ∈ A there exists V ∈ θ such that

y ∈ V and {x} × V ⊆ A. If A is both H- and V-open, then we call it HV-open.

H-closed, V-closed and HV-closed sets are defined similarly. Let τ1 denote the set of

all H-open subsets of X × Y and τ2 denote the set of all V-open subsets of X × Y .

It is easy to verify that both τ1 and τ2 form topologies on X × Y . We call τ1 the

horizontal topology and τ2 the vertical topology. The closure and interior operators

Ci and Ii for τi can be defined in the usual way (i = 1, 2).

Remark 2.3.1 It is obvious that a set open in the standard product topology is both

horizontally and vertically open. That is τ ⊆ τ1 and τ ⊆ τ2. However, the converse

inclusions don’t hold in general. In fact, we will show below that I is not modally

definable by means of I1 and I2.

The interpretation of the modal operators !1 and !2 of L!1!2 in 〈X × Y, τ1, τ2〉
is as expected:

(x, y) |= !1ϕ iff (∃U ∈ τ1)((x, y) ∈ U and ∀(x′, y′) ∈ U . (x′, y′) |= ϕ)

(x, y) |= !2ϕ iff (∃V ∈ τ2)((x, y) ∈ V and ∀(x′, y′) ∈ V . (x′, y′) |= ϕ)

The modalities "1 and "2 are defined dually. Furthermore, all the usual notions,

such as satisfiability and validity, generalize naturally to this new language.

The one-dimensional nature of the horizontal and vertical topologies is emphasized

by the following proposition.

Proposition 2.3.2 1. A formula ϕ constructed from the Booleans and the modal

operator !1 is valid in 〈X × Y, τ1, τ2〉 iff ϕ is valid in 〈X, η〉.

2. A formula ϕ constructed from the Booleans and the modal operator !2 is valid

in 〈X × Y, τ1, τ2〉 iff ϕ is valid in 〈Y, θ〉.

Proof See Appendix A. "
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The most easily visualized examples of products of topological spaces in our sense

are structures like the real plane R× R, or its rational variant Q×Q which plays a

crucial role in our completeness results below. In these cases, the H- and V-topologies

reproduce the topology of the underlying number line, but on the product, our modal

language also describes iterated patterns of open sets from both topologies.

More generally, our horizontal and vertical topologies on product spaces generalize

a key theme from the usual semantics of modal logic. It is well-known that topological

semantics of modal logic generalizes relational semantics for normal extensions of S4.

Indeed, with every S4-frame 〈W,R〉 there corresponds the topological space 〈W, τR〉,
with τR being precisely the R-upward closed subsets of W . Now, for S4-frames

F = 〈W,R〉 and F′ = 〈W ′, R′〉, let F × F′ = 〈W × W ′, R1, R2〉 be their product,

as defined in the Introduction. Then τR1 and τR2 are precisely the horizontal and

vertical topologies on the product space W ×W ′. This shows that our topological

product construction is a faithful generalization of the usual product construction

for Kripke frames. What our later completeness and representation results show is

that this generalization drops the special interaction axioms valid for the binary case.

Rather than being general features of a product construction as such, these axioms

turn out to be special effects of working with very special topologies, viz. Alexandroff

topologies.

This loss of interaction axioms has to do with the ‘looseness’ of the connection

between H- and V-topologies in products. But this looseness also has a positive

counterpart, which is well-known from other areas in logical semantics. Moving to

a more general class of models usually weakens the logic, but enriches the language.

Topological products support many further topologies beyond our two ‘conservative

copies’ for their component topologies. And hence there is scope for a richer family

of modalities. One very natural addition from a topological perspective is the ‘true

product topology’, whose modal logic we will axiomatize later on on top of that for

the H- and V-topologies. But we think there are many further natural candidates

for topologies on product spaces. Cf. [17] for some examples in the case of epistemic

logic, where topologies model agents’ knowledge and uncertainty, and new topologies

on products model various forms of knowledge for groups of such agents. A few more
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comments on these themes are found in Section 2.8 below.

2.3.2 Failure of com and chr on R× R

We saw in the previous subsection that whenever topological spaces X and Y are rep-

resentable as S4-frames (are Alexandroff), then the horizontal and vertical topologies

on their product X × Y can be defined from the horizontal and vertical relations

on the product of these frames. In other words, our topological setting generalizes

the case for products of Kripke frames. Nevertheless, there are crucial differences

between these two settings. In particular, both com and chr, while valid on products

of Kripke frames, can be refuted on topological products. To stimulate intuitions

before plunging into general theory, we exhibit their failure on R× R.

(a) Failure of com: Let

ν(p) = (
⋃

x∈(−1,0)

{x}× (x,−x)) ∪ ({0}× (−1, 1)) ∪ (
⋃

x∈(0,1)

{x}× (−x, x))

(see Figure 2.2a). Then there is a basic horizontal open (−1, 1)× {0} such that (0, 0)

is in it and every point in (−1, 1) × {0} sits in a vertically open subset of p. Thus,

!1!2p is true at (0, 0). On the other hand, there is no vertical open containing (0, 0)

in which every point sits inside a horizontally open subset of p, implying that !2!1p

is false at (0, 0).

(b) Failure of chr: Let ν(p) =
⋃
{{ 1

n}× (− 1
n , 1

n) : n ∈ N} (see Figure 2.2b). Then

in any basic horizontal open around (0, 0) there is a point that sits in a basic vertical

open in which p is true everywhere. Thus, "1!2p is true at (0, 0). On the other hand,

since the horizontal closure of ν(p) is ν(p) ∪ {(0, 0)} and since the vertical interior of

ν(p)∪{(0, 0)} is ν(p), we have that (0, 0) is not in I2(C1(ν(p))), implying that !2"1p

is false at (0, 0).

As we will see in Section 2.4, the structure of these counterexamples on R× R is

not accidental. We will show under which circumstances they can be reproduced in

other products of topological spaces.
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(-1,1)

(-1,-1)

(b)

p

(0, 0)

(1,-1)

(1,1)

(1/n,1/n)

(1/n,-1/n)

p

(0, 0)

(1,1)

(1,-1)

(0,1)

(0,-1)

(a)

Figure 2.2: Counterexamples for com and chr on R× R.

2.3.3 Product topo-bisimulations

As in Kripke semantics, an appropriate notion of bisimulation plays crucial role in

understanding and developing topological semantics. In this subsection we general-

ize the notion of topo-bisimulation introduced in Section 2.2.1 to topological models

equipped with several topologies. We will use it to show that the standard product

interior is not definable in terms of the horizontal and vertical interiors. Another

important application of multi-dimensional topo-bisimulations will come in the com-

pleteness proofs below.

We exhibit the case of two topologies, but the generalization to any number of

topologies is straightforward.

Definition 2.3.3 Let M = 〈X, τ1, τ2, ν〉 and M ′ = 〈X ′, τ ′1, τ
′
2, ν

′〉 be topological mod-

els equipped with two topologies each. A 2-topo-bisimulation is a nonempty relation

! ⊆ X ×X ′ such that if x ! x′ then the following hold for i = 1, 2:

(i) Base: x ∈ ν(p) iff x′ ∈ ν ′(p), for any proposition variable p

(ii) Forth condition: x ∈ U ∈ τi implies that there exists U ′ ∈ τ ′i such that

x′ ∈ U ′ and for all z′ ∈ U ′ there exists z ∈ U with z # z′

(iii) Back condition: x′ ∈ U ′ ∈ τ ′i implies that there exists U ∈ τi such that

x ∈ U and for all z ∈ U there exists z′ ∈ U ′ with z # z′
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The 2-topo-bisimulation # is called total if it is defined for all elements of X and

X ′, i.e., dom(#) = X and rng(#) = X ′. The fundamental invariance property of

2-topo-bisimulations is given by the following proposition.

Proposition 2.3.4 Let M = 〈X, τ1, τ2, ν〉 and M ′ = 〈X ′, τ ′1, τ
′
2, ν

′〉 be topological

models equipped with two topologies each, and let x # x′ for some 2-topo-bisimulation

# ⊆ X ×X ′. Then for every modal formula ϕ in L!1!2 we have that M, x |= ϕ iff

M ′, x′ |= ϕ.

Proof The proof is a straightforward generalization of the 1-topo-bisimulation ver-

sion found in [3] and we omit the details of the induction. "
Definition 2.3.3 and Proposition 3.2.5 apply to arbitrary topological models M, M ′

with two (or, via a straightforward generalization, more than two) topologies each.

By analogy with Kripke semantics, one can think of such models as fusion models.

In the special case when M and M ′ consist of product spaces with the horizontal and

vertical topologies, the 2-topo-bisimulation # is called a product topo-bisimulation.

Topo-bisimulations are useful for showing that properties are not definable in

our language. A nice example of this is given in Proposition 2.3.5 below. For two

topological spaces X and Y , consider the product space 〈X × Y, τ, τ1, τ2〉, where τ

stands for the standard product topology, τ1 for the horizontal topology, and τ2 for

the vertical topology. We recall that !1 and !2 are interpreted via the horizontal

and vertical topologies, while ! is interpreted via the standard product topology.

Proposition 2.3.5 ! is not definable in the language L!1!2.

Proof It is sufficient to find two product models M = 〈X × Y, τ1, τ2, ν〉 and M ′ =

〈X ′ × Y ′, τ ′1, τ
′
2, ν

′〉 with (x, y) ∈ X × Y and (x′, y′) ∈ X ′ × Y ′, and a product topo-

bisimulation !⊆ (X×Y )×(X ′×Y ′) such that (x, y) ! (x′, y′), that M, (x, y) |= "p,

and that M ′, (x, y) /|= "p. Since all formulae in the language L!1!2 are preserved by

product topo-bisimulations and "p is not, we conclude that "p is not equivalent to

any formula of L!1!2 (or to any infinite conjunction of such formulae for that matter).

It follows that neither is !p.

For the product space we take Q×Q. Let ν(p) = {( 1
n , 1

n) : n ∈ N} and ν ′(p) = ∅.
Let also ! be the identity relation on (Q×Q)\{( 1

n , 1
n) : n ∈ N}. It is not hard to see
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that ! is a product topo-bisimulation between the models 〈Q×Q, ν〉 and 〈Q×Q, ν ′〉
that connects (0, 0) to (0, 0). Since (0, 0) is in the closure of ν(p), we have that

〈Q×Q, ν〉, (0, 0) |= "p. On the other hand, it is obvious that 〈Q×Q, ν ′〉, (0, 0) |= !¬p.

"
Another example for the use of topo-bisimulations is Proposition 2.3.6. Given

topological product spaces 〈X × Y, τ1, τ2〉 and 〈X ′ × Y ′, τ ′1, τ
′
2〉, we say that a map

f : X × Y → X ′ × Y ′ is HV -continuous if it is continuous with respect to both

horizontal and vertical topologies, and that f is HV -open if it is open withe respect to

both topologies. HV -open HV -continuous bijections are called HV-homeomorphisms.

Note that if X is homeomorphic to X ′ and Y is homeomorphic to Y ′, then X × Y is

HV-homeomorphic to X ′ × Y ′. For U ⊆ X × Y , we say that U is a HV -open subset

of X × Y if U is both H- and V -open in X × Y .

Proposition 2.3.6

1. Surjective HV -continuous HV -open maps preserve validity of formulas of L!1!2.

2. HV -open subsets preserve validity of formulas of L!1!2.

Proof (1) Let 〈X × Y, τ1, τ2〉 and 〈X ′ × Y ′, τ ′1, τ
′
2〉 be given, and let f : X × Y →

X ′ × Y ′ be surjective, HV -continuous, and HV -open. For a valuation ν ′ on X ′ × Y ′

we can define a valuation ν on X×Y by putting ν(p) = f−1(ν ′(p)). Then it is easy to

verify that f is a total 2-topo-bisimulation between the models M = 〈X×Y, τ1, τ2, ν〉
and M ′ = 〈X ′ × Y ′, τ ′1, τ

′
2, ν

′〉. It follows that whenever a formula of L!1!2 is refuted

on the latter model, it can also be refuted on the former one.

(2) is proved similar to (1). "

2.4 Correspondence for com and chr

As we have seen above, unlike products of Kripke frames, products of topological

spaces do not always validate com and chr. In this section we specify those classes of

products of topological spaces in which com and chr hold. We start by investigating
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the validity of com. It is useful to split com into com→ = !1!2p → !2!1p and

com← = !2!1p → !1!2p.

Let X = 〈X, η〉 be a topological space. We recall that X is Alexandroff if the

intersection of any family of open sets is again open. We call X κ-Alexandroff if the

intersection of any family of open sets of cardinality κ is again open; that is, η′ ⊆ η

and |η′| ≤ κ imply
⋂

η′ ∈ η.

Proposition 2.4.1 If X = 〈X, η〉 is κ-Alexandroff and |Y | ≤ κ, then X × Y |=
com← and Y × X |= com→.

Proof We show that X×Y |= com←. That Y×X |= com→ is proved symmetrically.

Suppose for a point (x, y) ∈ X × Y and a valuation ν on X × Y we have that

(x, y) |= !2!1p. Then there exists a neighborhood V of y such that for each z ∈ V

there is a neighborhood Uz of z with Uz × {z} ⊆ ν(p). Since |V | ≤ κ and X is

κ-Alexandroff, we have that U =
⋂
{Uz : z ∈ V } ∈ η. But then U × V ⊆ ν(p),

implying that (x, y) |= !1!2p. "

Corollary 2.4.2 If X is Alexandroff, then X ×Y |= com← and Y ×X |= com→ for

any topological space Y.

Proof It is sufficient to observe that every Alexandroff space is κ-Alexandroff for

every cardinal κ, and apply Proposition 2.4.1. "
It follows that if both X and Y are Alexandroff, then X × Y |= com. Given the

well-known correspondence between Kripke frames for S4 and Alexandroff topologies,

the above corollary sheds some topological light on the validity of com on products

of Kripke frames.

The converse of Corollary 2.4.2 does not hold. For instance, every topology com-

mutes with the discrete topology of any cardinality. Thus, it can happen that X or

Y are not Alexandroff and yet X × Y |= com. However, if X and Y coincide, then

the converse of Corollary 2.4.2 holds. To see this, for x ∈ X, let ηx denote the set of

all neighborhoods of x.

Lemma 2.4.3 If X is not Alexandroff, then there is a point x ∈ X such that
⋂

ηx /∈
η.
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Proof Since X is not Alexandroff, there exists a set B of opens such that
⋂

B /∈ η.

Let x ∈
⋂

B. Obviously
⋂

ηx ⊆
⋂

B and
⋂

B =
⋃
{
⋂

ηx : x ∈
⋂

B}. If
⋂

ηx were

open for every x ∈
⋂

B, then
⋂

B would be open. Therefore, there exists x ∈
⋂

B

such that
⋂

ηx is not open. "

Proposition 2.4.4 If X is not Alexandroff, then X × X /|= com← and X × X /|=
com→.

Proof We show that X × X /|= com←. The case for X × X /|= com→ is symmetric.

Since com← is equivalent to "1"2p → "2"1p, it is enough to show that X × X /|=
"1"2p → "2"1p. As X is not Alexandroff, by Lemma 2.4.3 there exists x ∈ X such

that
⋂

ηx /∈ η. Let ηx = {Ui}i∈I . We order I by putting i ≤ j iff Ui ⊇ Uj. Since

Ui, Uj ∈ ηx implies Ui ∩ Uj ∈ ηx, it follows that (I,≤) is a directed partial order. Let

J = {i ∈ I : ∃j ≥ i with Ui − Uj /= ∅}. We show that J is cofinal in I. If not, then

there exists i ∈ I such that for any j ≥ i we have Ui−Uj = ∅. Therefore, Ui = Uj for

any j ≥ i. Thus,
⋂

ηx =
⋂

i∈I Ui =
⋂

j≥i Ui = Ui ∈ η, a contradiction. For i ∈ J let

j ≥ i be such that Ui−Uj /= ∅ and pick xi ∈ Ui−Uj. Then {xi}i∈J is a net converging

to x. Let ν be a valuation on X × X such that ν(p) = {(xi, xj) : i, j ∈ J and i ≤ j}.
For U ∈ ηx and i ∈ J , let Uj = U ∩ Ui. Then i ≤ j. Since J is cofinal in I we can

assume that j ∈ J . Therefore, (xi, xj) ∈ ν(p). It follows that (xi, x) |= "2p. Thus,

(x, x) |= "1"2p. On the other hand, for any U ∈ ηx and for any xj ∈ U we have

(Ui × {xj}) ∩ ν(p) = ∅ for any i ∈ J with i > j. Therefore, (x, x) /|= "2"1p. "
From Corollary 2.4.2 and Proposition 2.4.4 we obtain the following characteriza-

tion of Alexandroff spaces.

Corollary 2.4.5 The following conditions are equivalent:

1. X is Alexandroff.

2. X × X |= com.

3. X × Y |= com← for every topological space Y.

4. Y × X |= com→ for every topological space Y.
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We end this section by investigating validity of chr in the products of topological

spaces.

Proposition 2.4.6 If either X or Y is Alexandroff, then X × Y |= chr.

Proof Let X = 〈X, η〉 and Y = 〈Y, θ〉. First suppose that X is Alexandroff. So

every x ∈ X has a least neighborhood Ux. If for a valuation ν on X × Y and a point

(x, y) ∈ X × Y we have that (x, y) |= "1!2p, then there exists z ∈ Ux such that

(z, y) |= !2p. Therefore, there exists V ∈ θy such that {z}× V ⊆ ν(p). But then for

every u ∈ V we have (x, u) |= "1p, implying that (x, y) |= !2"1p.

Now suppose that Y is Alexandroff. So every y ∈ Y has a least neighborhood Vy.

If for a valuation ν on X ×Y and a point (x, y) ∈ X×Y we have that (x, y) |= "1!2p,

then for every U ∈ ηx there exists z ∈ U such that {z} × Vy ⊆ ν(p). But then for

every u ∈ Vy and for every U ∈ ηx there exists z ∈ U such that (z, u) ∈ ν(p). Thus,

(x, y) |= !2"1p. "
Since Kripke frames for S4 correspond to Alexandroff topologies, the above propo-

sition gives a topological insight into the soundness of chr with respect to products of

Kripke frames. Even though the converse of Proposition 2.4.6 is not in general true,

similar to the case with com, we have that if X and Y coincide, then the converse

does indeed hold.

Proposition 2.4.7 If X is not Alexandroff, then X × X /|= chr.

Proof Let x ∈ X, ηx = {Ui}i∈I , J ⊆ I, and the net {xi}i∈J be chosen as in the

proof of Proposition 2.4.4. We define a valuation ν on X × X by putting ν(p) =
⋃

i∈J({xi}×Ui). Then it is easy to verify that (x, x) |= "1!2p but (x, x) /|= !2"1p. "
Propositions 2.4.6 and 2.4.7 lead to yet another characterization of Alexandroff

spaces.

Corollary 2.4.8 The four equivalent conditions in Corollary 2.4.5 are equivalent to

the following one:

(5) X × X |= chr.
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2.5 Cardinal Spaces and chr and com

In this section, (Corollaries 2.5.3 & 2.5.5), we give an example for non-Alexandroff

spaces X and Y such that

X,Y |= com→ & chr.

For this, we define the cardinal space of cardinality κ, denoted by cardκ as

follows: The underlying set of the space is κ ∪ {∞} where ∞ /∈ κ. The open neigh-

bourhood base for each α ∈ κ is {{α}}, the open neighbourhood base for ∞ is

{{ξ ; α < ξ < κ} ∪ {∞} ; α ∈ κ}.

The topology of cardκ is the discrete topology on κ and a point at infinity that is

infinitely far away (can be reached only by sequences cofinal in κ). An alternative

way of viewing these spaces is as the ordinal topology on the ordinal κ + 1 with all

limit points below κ removed.

Note that for infinite cardinals κ, the cardinal space cardκ is not Alexandroff, and

for uncountable cardinals κ, it is not first-countable.

2.5.1 Bimodal formulae in products of cardinal spaces

If µ ≤ ν are ordinals, and γ ∈ ν, we can form the Cantor Normal Form of γ to the

base µ:

γ = µαn · γn + µαn−1 · γn−1 + . . . + µα1 · γ1 + γ0.

We write Sµ(γ) := γ0 and call it the scalar term of γ to the base µ.

Lemma 2.5.1 If µ ≤ ν are cardinals, γ < µ and β < ν, then there is some β <

η < ν such that Sµ(η) ≥ γ.

Proof Let ξ := Sµ(β). If ξ ≥ γ, then η := β + 1 does the job. Otherwise, there is

a unique 0 < σ < µ such that γ = ξ + σ. Let η := β + σ. "

Theorem 2.5.2 Let κ and λ be cardinals. Then the following are equivalent:

1. cardκ, cardλ |= ♦1♦2 p → ♦2♦1 p, and
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2. λ < cf κ.

Proof “(i)⇒(ii)”. Suppose cf κ ≤ λ. We’ll construct a subset of cardκ × cardλ

that constitutes a counterexample to com→. Let A = {αγ ; γ < cf κ} ⊆ κ be an

increasing enumeration of a cofinal subset of κ. We define a subset of κ×λ as follows:

〈αγ, β〉 ∈ X : ⇐⇒ γ ≤ Scf κ(β).

Note that Scf κ(β) < cf κ, so if you fix an element β ∈ λ and look at the horizontal

section Xβ = {α ; 〈α, β〉 ∈ X}, then each of these sets has cardinality less than cf κ.

In particular, none of these can be cofinal in κ (.).

Moreover, if you fix αγ ∈ A and look at the vertical section

Xαγ = {β ; 〈αγ, β〉 ∈ X},

then this set is cofinal in λ (..) by the following argument: Take an arbitrary β < λ.

By Lemma 2.5.1 applied to cf κ ≤ λ, we find β < η < λ such that Scf κ(η) ≥ γ. But

that means that 〈αγ, η〉 ∈ X, so β < η ∈ Xαγ .

By (.), the horizontal closure of X is X itself: none of the elements of the form

〈∞, β〉 are reached by horizontal sections of X. By (..), the vertical closure of X is

X ∪ A × {∞}. Of course, since A is cofinal in κ, the horizontal closure of A × {∞}
includes the point 〈∞,∞〉.

But then

vcl(hcl(X)) = X ∪ A× {∞}, yet

hcl(vcl(X)) = X ∪ A× {∞} ∪ {〈∞,∞〉}.

But this means that

cardκ, cardλ /|= ♦1♦2 p → ♦2♦1 p.

“(ii)⇒(i)”. Assume that λ < cf κ. We have to show that cardκ, cardλ |=
♦1♦2 p → ♦2♦1 p, so we have to show for every subset X of the product that

hcl(vcl(X)) ⊆ vcl(hcl(X)). Note that the only point for which the order of hori-

zontal and vertical closures matters is the point 〈∞,∞〉, so the we are done if we can
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show that

〈∞,∞〉 ∈ hcl(vcl(X)) implies 〈∞,∞〉 ∈ vcl(hcl(X)).

Without loss of generality, X ⊆ κ× λ.

If 〈∞,∞〉 ∈ hcl(vcl(X)), there is a cofinal set C ⊆ κ of cardinality cf κ such that

for all γ ∈ C, we have

〈γ,∞〉 ∈ vcl(X).

This in turn means that for each such γ, the vertical section Xγ = {β ; 〈γ, β〉 ∈ X}
must be cofinal in λ. In other words, if you fix η ∈ λ, then

X∗
>η := {〈α, β〉 ∈ X ; β > η} ∩ (κ× C)

must have cardinality at least cf κ.

For each β ∈ λ, let

Pβ := {〈α, β〉 ∈ X ; α ∈ C}.

The family {Pβ ; η < β < λ} is a partition of X∗
>η into at most λ many pieces.

Consequently, by the pigeon hole principle, there must be a β∗ > η such that Pβ∗ has

cf κ many elements. But since Pβ∗ ⊆ Xβ∗ and C was cofinal in κ, this means that

〈∞, β∗〉 ∈ hcl(X).

Since η was arbitrary, we just showed that the set of such β∗ is cofinal in λ, and

thus 〈∞,∞〉 ∈ vcl(hcl(X)). This was the claim. "

Corollary 2.5.3 For ℵ0 ≤ λ < cf κ, cardκ and cardλ are non-Alexandroff spaces

such that com← holds in cardκ×cardλ. In particular, this is true in cardℵ1×cardℵ0.

Also, com→ holds in cardℵ0 × cardℵ1.

Theorem 2.5.4 Let κ and λ be cardinals. Then the following are equivalent:

1. cardκ, cardλ |= ♦1!2 p → !2♦1 p, and

2. cf λ /= cf κ.
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Proof “(i)⇒(ii)”. Suppose that ϑ := cf κ = cf λ. Let A = {αγ ; γ < ϑ} ⊆ κ and

B = {βγ ; γ < ϑ} ⊆ λ be increasing enumerations of cofinal subsets. Define

X := {〈αγ, β〉 ; β ≥ βγ, γ < ϑ} ∪ {〈αγ,∞〉 ; γ < ϑ}.

Then for each γ < ϑ, {∞}∪{β ; βγ ≤ β < λ} ⊆ Xαγ which is an open neighbourhood

of∞ in cardλ. Consequently, 〈αγ,∞〉 ∈ vint(X). Since A was cofinal in κ, this means

that 〈∞,∞〉 ∈ hcl(vint(X)).

Yet, for each β ∈ λ there is an upper bound for Xβ: if βγ ≤ β < βγ+1, then

Xβ ⊆ {α ∈ κ ; 0 ≤ α < αγ+1}.

That means that hcl(X) doesn’t contain any element of the form 〈∞, β〉, and so

〈∞,∞〉 /∈ vint(hcl(X)).

“(ii)⇒(i)”. The symmetry of chr makes sure that we only have to check the case

cf κ < cf λ.

To start, let us notice that for subsets X of cardκ × cardλ, we always have that

hcl(vint(X))\{〈∞,∞〉} ⊆ vint(hcl(X)),

since the elements of κ× λ are not affected by any of the interior and closure opera-

tions. Thus, we only have to show

〈∞,∞〉 ∈ hcl(vint(X)) implies 〈∞,∞〉 ∈ vint(hcl(X)).

Fix X such that 〈∞,∞〉 ∈ hcl(vint(X)). This means that there is some cofinal

set A = {αγ ; γ < cf κ} ⊆ κ such that A × {∞} ⊆ vint(X), so for each γ, there is

some βγ < λ such that

{∞} ∪ {β ; βγ ≤ β < λ} ⊆ Xαγ .

The set {βγ ; γ < cf κ} has cardinality cf κ < cf λ, so β∗ := sup{βγ ; γ < cf κ} < λ.

But then for every β > β∗, we have that A ⊆ Xβ, and so 〈∞, β〉 ∈ hcl(X). This means
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that {∞} ∪ {β ; β∗ < β} is an cardλ-open neighbourhood contained in (hcl(X))∞,

so 〈∞,∞〉 ∈ vint(hcl(X)). "

Corollary 2.5.5 For ℵ0 ≤ cf κ < cf λ, cardκ and cardλ are non-Alexandroff spaces

such that chr holds in cardκ× cardλ. In particular, this is true in cardℵ0 × cardℵ1.

Corollaries 2.5.3 and 2.5.5 together answer Question ?? negatively:

cardℵ0 , cardℵ1 |= chr & com→ &¬com←, and

cardℵ1 , cardℵ0 |= chr & com← &¬com→.

2.6 The logic of product spaces

As we saw in the previous section, both com and chr can be refuted on products of

topological spaces. This suggests that the complete logic of all products of topological

spaces is weaker than S4×S4. The main goal of this section is to show that this logic

is S4⊕ S4. In fact, we will show that S4⊕ S4 is complete with respect to Q×Q.

Theorem 2.6.1 S4⊕ S4 is complete with respect to Q×Q.

Proof By Proposition A.0.1, S4⊕ S4 is complete with respect to the infinite qua-

ternary tree T2,2 = 〈W,R1, R2〉. We view T2,2 as equipped with two Alexandroff

topologies defined from R1 and R2. To prove completeness of S4 ⊕ S4 with respect

to Q×Q we take the X constructed in the proof of Theorem 2.2.4, define recursively

a HV-open subspace Y of X×X and a continuous open map g from Y onto T2,2 with

respect to both topologies: this will allow us to transfer counterexamples from T2,2

to Y , then from Y to X ×X, and finally from X ×X to Q×Q.

Let Y =
⋃

n∈ω Yn, where Y0 = {(0, 0)} and

Yn+1 = Yn ∪ {(x−
1

3n
, y), (x +

1

3n
, y), (x, y − 1

3n
), (x, y +

1

3n
) | (x, y) ∈ Yn}

Claim 2.6.2 Y is a HV-open subspace of X ×X.
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Proof Let (x, y) ∈ Y . Then x ∈ (x − 1
3nx , x + 1

3nx ) ⊆ X. Therefore, (x, y) ∈
(x− 1

3nx , x + 1
3nx )× {y} ⊆ Y . Thus, Y is a H-open subspace of X ×X. That Y is a

V-open subspace of X ×X is proved symmetrically. "
A similar argument as before shows that for each (x, y) ∈ Y such that (x, y) /=

(0, 0) there exists n(x,y) with (x, y) ∈ Yn(x,y)
and (x, y) /∈ Yn(x,y)−1, and that there is a

unique (u, v) ∈ Yn(x,y)−1 such that (x, y) = (u± 1

3
n(x,y)−1 , v) or (x, y) = (u, v± 1

3
n(x,y)−1 ).

We define g from Y onto T2,2 by recursion (cf. Figure 2.4(b)): If (x, y) = (0, 0)

then we let g(0, 0) be the root r of T2,2; if (x, y) /= (0, 0) then (x, y) = (u± 1

3
n(x,y)−1 , v)

or (x, y) = (u, v ± 1

3
n(x,y)−1 ) for a unique (u, v) ∈ Yn(x,y)−1, and we let

g(x, y) =






the left R1-successor of g(u, v) if (x, y) = (u− 1

3
n(x,y)−1 , v)

the right R1-successor of g(u, v) if (x, y) = (u + 1

3
n(x,y)−1 , v)

the left R2-successor of g(u, v) if (x, y) = (u, v − 1

3
n(x,y)−1 )

the right R2-successor of g(u, v) if (x, y) = (u, v + 1

3
n(x,y)−1 )

Claim 2.6.3 g is open and continuous with respect to both topologies.

Proof Let τ1 and τ2 denote the restrictions of the horizontal and vertical topologies

of X × X to Y , respectively. We prove that g is open and continuous with respect

to τ1. That it is open and continuous with respect to τ2 is proved symmetrically. We

observe that

{(x− 1

3n(x,y)
, x +

1

3n(x,y)
)× {y}|(x, y) ∈ Y }

forms a basis for τ1. We also recall that a basis for the Alexandroff topology on T2,2

defined from R1 is B1 = {B1
t }t∈T2,2 where B1

t = {s ∈ T2,2 : tR1s}.
To see that g is open, let (x− 1

3
n(x,y) , x+ 1

3
n(x,y) )×{y} be a basic open for τ1. Then

the same argument as in Claim 2.2.6 guarantees that g((x− 1
3

n(x,y) , x+ 1
3

n(x,y) )×{y}) =

B1
g(x,y). Thus g is open. To see that g is continuous it suffices to show that for each

t ∈ T2,2, the g-inverse image of B1
t belongs to τ1. Let (x, y) ∈ g−1(B1

t ). Then

tR1g(x, y). So g((x − 1
3

n(x,y) , x + 1
3

n(x,y) ) × {y}) = B1
g(x,y) ⊆ B1

t . Thus there exists an

open neighborhood U = (x− 1
3

n(x,y) , x+ 1
3

n(x,y) )×{y} of (x, y) such that U ⊆ g−1(B1
t ),

implying that g is continuous. "
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To complete the proof, if S4⊕S4 /1 ϕ, then by Proposition A.0.1, there is a valua-

tion ν on T2,2 such that 〈T2,2, ν〉, r /|= ϕ. Define a valuation ξ on Y by ξ(p) = g−1(ν(p)).

Since g is continuous and open with respect to both topologies and g(0, 0) = r, we

have that (0, 0) and r are 2-topo-bisimilar. Therefore, 〈Y, ξ〉, (0, 0) /|= ϕ. Now since

Y is a HV-open subset of X ×X, we obtain that ϕ is refutable on X ×X. Finally,

Theorem 2.2.4 implies that X is homeomorphic to Q. Therefore, X × X is HV-

homeomorphic to Q×Q, and hence ϕ is also refutable on Q×Q. "

Corollary 2.6.4 S4⊕ S4 is the logic of products of arbitrary topologies.

It follows that the logic of products of arbitrary topologies is decidable and has

a PSPACE-complete satisfiability problem [65]. This stands in contrast with the

satisfiability problem for S4× S4, which turned out to be undecidable [40].

Let us say that a logic L in the language L!1!2 has the finite topo-product model

property if any non-theorem of L is refuted on a finite product space. Then the logic of

products of arbitrary topologies does not have the finite topo-product model property

as finite spaces are Alexandroff, and hence validate com and chr.1 This remark is

not to be confused with the non existence of finite Kripke models: it follows from

Theorem 2.2.7 that every non-theorem of S4⊕S4 does indeed fail on a finite model.

2.7 Adding the true product interior

So far, we have only focused on the horizontal and vertical topologies on the product

space, by analogy to products of relational structures. However, the topological

semantics suggests a further addition to the language. In this section we investigate

the modal logic of products of topological spaces with all three horizontal, vertical,

and standard product topologies. We add to the language L!1!2 an extra modal

operator ! with the intended interpretation as the interior operator of the standard

product topology.

1In fact, the same argument implies that no logic in the interval [S4⊕S4,S4×S4[ has the finite
topo-product model property.
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For two topological spaces X = 〈X, η〉 and Y = 〈Y, θ〉, we will consider the product

〈X × Y, τ, τ1, τ2〉 with three topologies, where τ is the standard product topology, τ1

is the horizontal topology, and τ2 is the vertical topology. Then ! is interpreted as

follows.

(x, y) |= !ϕ iff ∃U ∈ η and ∃V ∈ θ : U × V |= ϕ

Since τ ⊆ τ1 ∩ τ2, we obtain that the modal principle

!p → !1p ∧!2p

is valid in product spaces. Our main goal in this section is to show that adding

this principle to the fusion of three copies of S4 axiomatizes the logic of products of

topological spaces (with three topologies).

Definition 2.7.1 Let L!,!1,!2 be a modal language with three modal operators !,

!1, and !2. We define the topological product logic TPL as the least set of formulas

in L!,!1,!2 containing all axioms of S4⊕ S4⊕ S4 plus the axiom !p → !1p ∧ !2p,

and closed under modus ponens, substitution, and !-, !1-, and !2-necessitation.

Let T6,2,2 denote the infinite six branching tree such that each node of T6,2,2 is R-

related to all six of its immediate successors, R1-related to the first two, and R2-related

to the last two; R, R1, and R2 are taken to be reflexive and transitive. Formally T6,2,2

can be defined as 〈W,R,R1, R2〉, where W = {0, 1, 2, 3, 4, 5}∗,

sRt iff ∃u ∈ {0, 1, 2, 3, 4, 5}∗ : s · u = t

sR1t iff ∃u ∈ {0, 1}∗ : s · u = t

sR2t iff ∃u ∈ {4, 5}∗ : s · u = t (see Figure 2.3)

Theorem 2.7.2 TPL is complete with respect to T6,2,2.

Proof See Appendix A. "
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Figure 2.3: T6,2,2. The solid lines represent R, the dashed lines represent R1, and the
dotted lines represent R2. We assume that all dashed and dotted lines are also solid.

Figure 2.4: The first stages of the labelling in the completeness proofs for (a) S4, (b)
S4⊕ S4, and (c) TPL.
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Theorem 2.7.3 TPL is complete with respect to Q×Q.

Proof Our strategy is similar to that of the proof of Theorem 2.6.1. By Theorem

A.0.8 TPL is complete with respect to T6,2,2 = 〈W,R, R1, R2〉. We view T6,2,2 as

equipped with three Alexandroff topologies defined from R, R1, and R2. So for

completeness of TPL with respect to Q×Q it is sufficient to show that there exists

a total 3-topo-bisimulation between the X ×X defined in the proof of Theorem 2.6.1

and T6,2,2.

We define h from X×X onto T6,2,2 by recursion following the inductive definition

of X (cf. Figure 2.4(c)): If (x, y) = (0, 0) then we let h(0, 0) be the root r of T6,2,2;

if (x, y) /= (0, 0) then there is a unique (u, v) that is labelled before (x, y) such that

(x, y) = (u ± 1

3
n(x,y)−1 , v) or (x, y) = (u, v ± 1

3
n(x,y)−1 ) or (x, y) = (u ± 1

3
n(x,y)−1 , v ±

1

3
n(x,y)−1 ). Then we let

h(x, y) =






the left R1-successor of h(u, v) if (x, y) = (u− 1

3
n(x,y)−1 , v)

the right R1-successor of h(u, v) if (x, y) = (u + 1

3
n(x,y)−1 , v)

the left R2-successor of h(u, v) if (x, y) = (u, v − 1

3
n(x,y)−1 )

the right R2-successor of h(u, v) if (x, y) = (u, v + 1

3
n(x,y)−1 )

the first remaining R-successor if (x, y) = (u + 1

3
n(x,y)−1 , v + 1

3
n(x,y)−1 )

or (x, y) = (u− 1

3
n(x,y)−1 , v − 1

3
n(x,y)−1 )

the last remaining R-successor if (x, y) = (u + 1

3
n(x,y)−1 , v − 1

3
n(x,y)−1 )

or (x, y) = (u− 1

3
n(x,y)−1 , v + 1

3
n(x,y)−1 )

Claim 2.7.4 h is open and continuous with respect to all three topologies.

Proof The argument that h is open and continuous with respect to τ1 and τ2 carries

over directly from Claim 2.6.3. The same technique can be used to show that h is

open and continuous with respect to τ . To see this, we observe that

{(x− 1

3n(x,y)
, x +

1

3n(x,y)
)× (y − 1

3n(x,y)
, y +

1

3n(x,y)
) : (x, y) ∈ X ×X}

form a basis for τ on X ×X. We also observe that a basis for the topology on T6,2,2
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defined from R is B = {Bt}t∈T6,2,2 where Bt = {s ∈ T6,2,2 : tRs}.
To see that h is open, let (x− 1

3
n(x,y) , x+ 1

3
n(x,y) )× (y− 1

3
n(x,y) , y + 1

3
n(x,y) ) be a basic

open for τ . Then the same argument as in Claim 2.6.3 guarantees that

h((x− 1

3n(x,y)
, x +

1

3n(x,y)
)× (y − 1

3n(x,y)
, y +

1

3n(x,y)
)) = Bh(x,y).

Thus h is open. To see that h is continuous it suffices to show that for each t ∈ T6,2,2,

the h-inverse image of Bt belongs to τ . Let (x, y) ∈ h−1(Bt). Then tRh(x, y). So

h((x− 1

3n(x,y)
, x +

1

3n(x,y)
)× (y − 1

3n(x,y)
, y +

1

3n(x,y)
)) = Bh(x,y) ⊆ Bt.

Thus there exists an open neighborhood U = (x− 1
3

n(x,y) , x + 1
3

n(x,y) )× (y− 1
3

n(x,y) , y +
1

3
n(x,y) ) of (x, y) such that U ⊆ h−1(Bt), implying that h is continuous. "

To complete the proof, if TPL /1 ϕ, then by Theorem A.0.8, there is a valu-

ation ν on T6,2,2 such that 〈T6,2,2, ν〉, r /|= ϕ. Define a valuation ξ on X × X by

ξ(p) = h−1(ν(p)). Since h is continuous and open with respect to all three topolo-

gies and h(0, 0) = r, we have that (0, 0) and r are 3-topo-bisimilar. Therefore,

〈X ×X, ξ〉, (0, 0) /|= ϕ. Now since X ×X is homeomorphic to Q×Q with respect to

all three topologies, it follows that ϕ is also refutable on Q×Q. "

Corollary 2.7.5 In the language L!,!1,!2, TPL is the logic of products of arbitrary

topologies.

Incidentally, (using Kripke semantics) it is easy to show that TPL is a conservative

extension of S4⊕ S4, and that S4⊕ S4 is a conservative extension of S4. Therefore,

Theorem 2.2.4 becomes a corollary of Theorem 2.6.1, while Theorem 2.6.1 becomes

a corollary of Theorem 2.7.3.

2.8 Conclusions and further directions

We introduced the horizontal and vertical topologies on the product of two topological

spaces and we showed that the modal logic of products of topological spaces with two
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horizontal and vertical topologies is the fusion S4⊕ S4. In addition, we axiomatized

the modal logic of products of topological spaces with three horizontal, vertical, and

standard product topologies. We conclude by mentioning several open questions that

arise naturally from this study.

2.8.1 Special spaces

Although we showed that S4 ⊕ S4 is complete with respect to 〈Q × Q, τ1, τ2〉, and

that TPL is complete with respect to 〈Q × Q, τ, τ1, τ2〉, it is still an open question

what the logics of 〈R× R, τ1, τ2〉 and 〈R× R, τ, τ1, τ2〉 are.

Since Alexandroff spaces can be represented as S4-frames, it follows from Gabbay

at al. [38] that the modal logic of the products of Alexandroff spaces (with horizontal

and vertical topologies) is S4× S4. On the other hand, it is still unknown what the

modal logic is of the products of Alexandroff spaces with arbitrary topological spaces.

We conjecture that this logic is S4⊕ S4 + com← + chr.

2.8.2 Enriching the language

From a topological perspective, our topological completeness result for S4⊕S4 seems

to suggest that the basic modal language is not expressive enough to model interesting

interactions between horizontal and vertical topologies. This suggests to consider

richer languages. In adding ! we have made the first step in this direction, but there

are several others that can be taken. For instance, adding the universal modality or

nominals.

A very natural extension of the language would be with the common knowledge

operator. In the standard Kripke setting, there are several ways of defining common

knowledge, but they all turn out to be equivalent (see [10]). In [17] we examine two

most prominent such ways and show that in the topological setting the two are in

fact distinct. The first defines the common knowledge as an infinite conjunction of

claims in the original language, and the second takes common knowledge to be the

greatest fixed point of an operator. Thus in our setting the two are:
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1. C1,2ϕ := an infinite conjunction of all finite nestings of !1 and !2:

ϕ ∧!1ϕ ∧!2ϕ ∧!1!2ϕ ∧ . . .

2. K1,2ϕ := the greatest fixed point of the operator λX.([|φ|] ∩ I1X ∩ I2X), as in

the following formula of the modal µ-calculus:

νp.(ϕ ∧!1p ∧!2p)

We argue in [17] that the common knowledge as the greatest fixed point is most

interesting from the topological perspective.

2.8.3 Further exploration of the connection with Kripke se-

mantics

We have shown that the topological setting has greater power of discrimination than

the relational setting. In particular, topological products validate less principles than

products of Kripke frames, and the true product interior modality is not definable in

terms of the horizontal and vertical modalities. Several further lines of study might

help us understand better the difference between topological products and relational

products. Here, we will name two.

Given topological spaces 〈X, η〉 and 〈Y, θ〉, call a subset of X×Y a block if it is of

the form A×B for some A ⊆ X and B ⊆ Y . Next, call a valuation ν for the product

〈X × Y, τ1, τ2〉 admissible if it assigns to each propositional letter a finite union of

blocks. Interestingly, when attention is restricted to admissible valuations only, the

interaction principles com and chr become valid again. In fact, we conjecture that the

logic obtained in this way (when no restrictions are made on the topological spaces

themselves) is precisely S4× S4.

The second line of study concerns generalizations of the product construction on

Kripke frames. One such generalization is obtained by restricting the universe of

admissible product subsets (see, e.g., [14]). The latter is a well-known strategy in



CHAPTER 2. MODAL LOGICS FOR PRODUCTS OF TOPOLOGIES 36

relational algebra and arrow logic (see Chapter 7 of [15]). In particular, over such

generalized relational products we have that com and chr are no longer valid, and that

the product ! is no longer definable as !1!2. This similarity suggests a connection

between topological products and generalized relational products.

Incidentally, we believe that the product construction discussed in this paper is

of independent interest. Like the fusion and the Kripke product operation, it induces

an operation on modal logics. Given normal modal logics L1, L2 above S4, we can

define L1 ×t L2 as the bi-modal logic of the class of products of topological spaces of

L1 and L2 (with horizontal and vertical topologies). One of our main results, then,

tells us that S4×t S4 = S4⊕ S4. More generally, it is not hard to see that

(L1 ⊕ L2) ⊆ (L1 ×t L2) ⊆ (L1 × L2)

Many questions arise from this perspective. For instance, does decidability transfer

under ×t?



Chapter 3

Combining Order and Topology:

Topo-Directional and

Topo-Compass Logics

3.1 Introduction

In this chapter we investigate topological multi-modal logics which recognize direc-

tionality. Adding direction, for instance left-right, or compass directions, seems a

natural step in the programme of adding extra expressive power to languages for rea-

soning about space. In particular in the product spaces of chapter 2, adding compass

directions seems very natural. In this chapter, however, we start with a one dimen-

sional case, to get a better sense of what is involved. In this way we obtain a class of

what can best be viewed as interval temporal logics.

We will enable the modalities to recognize directionality by incorporating a linear

ordering into the topological interpretation. This places this chapter in between two

significant current trends in modal logic. On the one hand, there is the topological

interpretation, described in more detail in Chapter 2, and on the other the topic

of modal logic over linear orders. The latter has been introduced by Segerberg in

[62] and studied a great deal since in temporal logic. [For more recent work, see for

instance [44].]

37
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More recently, within the general trend of combining modal logics, [c.f. [38]] the

combination of topological logic with various logics of linear orders have been studied.

A key example is Shehtman: [64]. In the most basic case, one combines our topological

modality ! with the temporal modalities F, P for the linear order. The appropriate

frames are then triples (X, τ, <) consisting of a set X, a topology τ on X, and a linear

ordering < on X. A model M adds a valuation function and the key clauses of the

truth definition read as follows:

M, x |= !φ iff ∃U ∈ τ, ∀y ∈ U,M, y |= φ

M, x |= Fφ iff ∃y, x < y, and M, y |= φ

M, x |= Pφ iff ∃y, y < x, and M, y |= φ

In the simplest case, there is no interaction between τ and <, therefore the minimal

logic of the models is likely to be the fusion of S4 and the minimal logic for linear

orders, although we are not aware of a published proof of this.

In more interesting cases, however, the topology and the order are related. In

particular, consider the order topology whose base is defined the collection of open

intervals of the form {z ∈ X | x < z < y}. The general logic of order topologies has

not been studied as far as we know. But there are completeness results for order

topologies on specific structures. Shehtman axiomatized the logic for the case of the

rational numbers Q, and his proof was considerably simplified by Gerhardt in his

Master Thesis [41].

The most challenging open problem in this area appears to be an axiomatization

of order topology on R. This has proved surprisingly difficult, but an interesting new

approach is found in some recent research on this question by G. Bezhanishvili, N.

Bezhanishvili, and C. Kupke [21].

It is worth noting that the logic of !, F, P over order topology on linear orders can

be embedded into the the stronger temporal logic of Until/Since via the equivalences:

!p ≡ S(=, p) ∧ p ∧ U(=, p)

Fp ≡ U(p,=)

Pp ≡ S(p,=).
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The Since/Until logics for the general linear orders, Q, and R are all known and well

studied [44]. So in this specific case we are really asking for perspicuous axiomatiza-

tion of fragments.

This is not true, of course, for general order topology. Cf. the order topologies on

Minkowski space in [73], [74], or [42].

In this chapter, however, we want to introduce a new perspective and integrate

topology and order in a more intimate fashion.

3.2 Topo-Directional Logic

It seems that what is interesting about order topologies is that they integrate an order

and a topology. In this chapter we follow that line of thought, and instead of having a

separate modality for the topology and a pair of modalities for the order, we introduce

a pair of directional modalities that in their semantics combine the topology and the

order, rather than treating them as separate notions.

To begin with, our language will be a propositional bimodal language TDL with

the modalities !L and !R (to be read ‘box left’ and ‘box right’ respectively). Later

on in a product setting we will have four such modalities for compass directions.

3.2.1 Semantics

Definition 3.2.1 A topo-directional structure X is a triple (X, τ, <), where X is a

set, τ a topology on X, and < a linear ordering of X.

A model M is defined with as a topo-directional structure plus a valuation function

ν : At → ℘(X). The interesting cases of the truth definition are:

M, x |= !Rφ iff ∃U ∈ τ, x ∈ U and ∀z ∈ U, if x < z, then M, z |= φ,

M, x |= !Lφ iff ∃U ∈ τ, x ∈ U and ∀z ∈ U, if z < x, then M, z |= φ.

Corresponding to each box we define a diamond dual in the usual way:

"Rφ =def. ¬!R¬φ.
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0

p

-1 1

Figure 3.1: Truth definition for !Rp.

"Lφ =def. ¬!L¬φ.

Semantically this amounts to

M, x |= "Rφ iff ∀U ∈ τ , if x ∈ U then ∃z ∈ U, x < z, and M, z |= φ

Or in words, "Rφ is true if φ points are strictly approaching the current point from

the right, and,

M, x |= "Lφ iff ∀U ∈ τ , if x ∈ U then ∃z ∈ U, z < x, and M, z |= φ

Or in words, "Lφ is true if φ points are strictly approaching the current point from

the left.

To visualize the truth definitions, we think of !R modality as saying that φ holds

in some neighborhood of current point along a direction, i.e. in this case to the right.

In Figure 3.1, we assume we are working with standard metric topology on R.

Since p is true in the interval (0, 1), it is true everywhere to the right of 0 in the open

(−1, 1) say, and hence !Rp is true at 0.

In general, however, there is no immediate connection between the ordering <

and the topology τ , i.e., the topology is not necessarily the order topology defined

by means of <. For instance, we could take the topology to be the standard metric

topology on R2 and the ordering defined as follows,

{(x, y) <′ (x′, y′) iff x < x′ or x = x′ and y < y′
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where < is the standard ordering of the reals.1 Here we have an ordering and a

topology that cannot be defined in terms of this ordering in any obvious way.

The semantics is of independent interest on a temporal interpretation. If we are

working in some order topology, we can think of !Rp as expressing the fact that p

will be the case for a while in the future, and, similarly, of !Lp as expressing the

fact that p has been true for a while. Referring to the earlier since until temporal

language, our two modalities can again be defined:

U(p,=) (p is true until the top becomes true, i.e., p will be true for a while) and

S(=, p) p has been true for a while.

3.2.2 Expressive Power

Since it is a kind of temporal language, we want to situate the langauge of Topo-

Directional Logic within the class of related languages over topo-directional struc-

tures. As we will see, the logic is sufficiently independent from its immediate logical

relatives to be studied on its own as a temporal logic. Its closest relatives are the

modal logic S4 with the topological interpretation, the basic temporal logic of F, P

interpreted over a linear order < and their combined language !, F, P over a topology

equipped with an order. As we will see although as one should expect our modalities

!R and !L are definable in the language of until and since, none of the above weaker

relatives define !R and !L.

Fact 3.2.2 The standard topological modality ! is definable in the language of TDL.

!p can be defined as !Lp ∧ p ∧ !Rp. This should be no surprise, since we intended

the language as a more expressive addition to the standard topo-semantics.

To measure the expressive power of our language, we need an appropriate notion

of bisimulation. For a start, here is a useful perspective. Using the given topology τ ,

we can in addition define two topologies τR, τL via the following bases:

1The ordering is known in the literature as the alphabetic ordering.
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BτR = {U ′ ⊂ X |∃U ∈ τ, ∃x ∈ U, and U ′ = {y ∈ U |x < y or x = y}}

and

BτL = {U ′ ⊂ X |∃U ∈ τ, ∃x ∈ U, and U ′ = {y ∈ U | y < x or x = y}}

It is easily seen that τR, τL are topologies.

Fact 3.2.3 The standard topological bisimulation [see Chapter 2] with respect to

topologies τR and τL preserves formulae of the language of TDL in the sense that a

bimodal formula φ is true in the TDL model at a point x iff φ interpreted topologically

is true in the bisimilar point x′ in the bimodal topological model.

Thus we can look for models of modal formula in the TDL langauge in the

standard topological semantics. In particular, we can use Alexandroff topologies,

or Kripke frames to find appropriate models.

There is of course no guarantee in general that for a model bisimilar in the standard

sense there will be an ordering <, and a topology τ such that at bisimilar points

formulae are all true under the semantics of TDL. For that we need a stronger

notion of bisimulation.

Definition 3.2.4 Let M = (X, τ, <, ν) and M ′ = X ′, τ ′, <′, ν ′) be Topo-Directional

models. A topo-directional bisimulation is a nonempty relation ! ⊆ X ×X ′ such

that if x ! x′ then the following hold:

(i) Base: x ∈ ν(p) iff x′ ∈ ν ′(p), for any proposition variable p

(ii) Forth condition R: x ∈ U ∈ τ implies that there exists U ′ ∈ τ ′ such that

x′ ∈ U ′ and for all z′ ∈ U ′, if x′ <′ z′ then there exists z ∈ U, x < z and z # z′

(iii) Forth condition L: x ∈ U ∈ τ implies that there exists U ′ ∈ τ ′ such that

x′ ∈ U ′ and for all z′ ∈ U ′, if z′ <′ x′ then there exists z ∈ U, z < x and z # z′

(iv) Back condition R: x′ ∈ U ′ ∈ τ ′ implies that there exists U ∈ τ such that

x ∈ U and for all z ∈ U , if x < z, then there exists z′ ∈ U ′, x′ <′ z′ and z # z′
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(iv) Back condition L: x′ ∈ U ′ ∈ τ ′ implies that there exists U ∈ τ such that

x ∈ U and for all z ∈ U , if x < z, then there exists z′ ∈ U ′, x′ <′ z′ and z # z′

Proposition 3.2.5 Let M = (X, τ, <, ν) and M ′ = (X ′, τ ′, <′, ν ′) be topo-directional

models, and let x # x′ for some topo-directional bisimulation # ⊆ X×X ′. Then for

every modal formula ϕ in the language of TDL we have that M, x |= ϕ iff M ′, x′ |= ϕ.

Proof The proof is a straightforward induction on depth of formulae. "
As usual, the notion of bisimulation can be applied in undefinability results. For

instance,

Fact 3.2.6 F, P are not definable in the language of TDL.

Proof We let X be R and X ′ be (0, 1) ⊂ R. Further, we let ν(p) = {−2, 2}, and

ν ′(p) = ∅. Then obviously M, 0 |= Fp ∧ Pp and M ′, 0 /|= Fp ∨ Pp. It can be checked

that the identity relation on (0, 1) is a topo-directional bisimulation on which 0 # 0.

Since Fp, Pp are true in in one of the bisimilar points and false in the other, the

formulae cannot be definable in the language of TDL. "

Corollary 3.2.7 Until and Since are not definable in the language of TDL.

We now turn to results showing that TDL itself is not definable in in the modal

logics of its components.

Fact 3.2.8 !L,!R are not definable in the language of basic temporal logic.

Proof If !L, !R were definable with F, P , then we could define ! in the language

of F and P alone, which is known to be impossible. "

Fact 3.2.9 !L,!R are not definable in the language of the interior operator ! alone.

Proof Let X,X ′ be R, ν(p) = {r ∈ R | r < 0}, ν ′(p) = {r ∈ R | r > 0}. Then the

following function is a topo-bisimulation

f(r) = −r

But note that this bisimulation does not preserve the formulas of TDL. For

instance !Rp is true at 0 in X ′ but it is false at 0 in X. "
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Using a similar argument we can prove

Fact 3.2.10 !L,!R are not definable in the language of basic temporal logic together

with the interior operator !.

Proof "

3.3 Minimal Logic of TDL

In this section, we examine the logic of the language of TDL over its most general

class of models. The axioms that we find, seem of independent interest and increase

our understanding of what TDL is about.

3.3.1 Axioms

We need the following four axioms:

4R !Rp → !R!Rp

4L !Lp → !L!Lp

LR1 (p ∧!Rp ∧!Lp) → !R!Lp

LR2 (p ∧!Rp ∧!Lp) → !L!Rp

Here the first two formulae are the usual .4 axioms. But the latter two are more

interesting.

LRi stand not only for ‘left-right’, but also for ‘linearity’ since, as we will see in

the soundness proof below, they reflect the linearity of the underlying ordering.

These axioms have Sahlqvist form2, and their respective first-order correspondents

are as follows:

Fact 3.3.1 LR1 corresponds to

FO− LR1 ∀x∀y((RRxy ∧RLyz) → (x = z ∨RRxz ∨RLxz))

LR2 corresponds to

FO− LR1 ∀x∀y((RLxy ∧RRyz) → (x = z ∨RRxz ∨RLxz))

2For more on Sahlqvist correspondence see, for instance, [25].



CHAPTER 3. COMBINING ORDER AND TOPOLOGY 45

With some abuse of notation, we baptize our logic.

Definition 3.3.2 Let TDL = K4⊕K4 ∪ {LR1,LR2}.

Recall that K4⊕K4 stands for the fusion of K4 with itself.

Definition 3.3.3 A two-relation Kripke frame F = (W,RL, RR) is a TDL-frame,

if RL, RR are transitive, and they jointly satisfy FO− LR1 and FO− LR2.

The following results follows from general modal completeness theory:

Lemma 3.3.4 TDL is sound and complete with respect to the class F of TDL-

frames.

Proof We simply note once again that all axioms have Sahlqvist form. "
The preceding result is not yet what we want, however, because it refers to rela-

tional Kripke frames instead of the topo-directional frames which are our real concern.

3.3.2 Soundness

Let us first check that TDL is indeed sound for the intended semantics.

Proposition 3.3.5 The axioms and rules of TDL are valid in topo-directional mod-

els.

Proof The proofs that Necessitation and Modus Ponens preserve truth are stan-

dard. We show only that axioms 4R and LR1 are valid. Proofs that 4L and LR2 are

valid are symmetric.

For 4R, assume that M, x |= !Rp. Then, there is an open U ∈ τ , and for all y ∈ τ ,

if x < y, then M, y |= p. It would suffice to show that for any such y, M, y |= !Rp.

But, we can take the open set U , and indeed, for any z in U , if (x <)y < z then

M, z |= p.

For LR1, assume that M, x |= (p ∧ !Rp ∧ !Lp). We wish to prove that M, x |=
!R!Lp. The assumption implies that x is in an open U , and for all y ∈ U , M, y |= p

(c.f. the proof that !p is definable in TDL). It now suffices to show than at every

point y in U to the right of x, !Lp holds. But once again this is the case, since for

all z ∈ U , if z < y, M, z |= p.

"
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Note that the verification of soundness uses both transitivity and linearity of the

given ordering.

The next step is to prove that the axioms of TDL as complete for the actual topo-

directional semantics over the class of general topo-directional frames. The proof,

which we leave for a different occasion, proceeds by unravelling of the TDL-frames

into a linear ordering.

Conjecture: TDL is complete for its intended semantics.

Instead, in this chapter we concentrate on several more restricted classes of topolo-

gies and prove decidability and completeness for those.

3.4 The logic TDLGO over the class of generalized

order topologies

A natural question to ask is what the logic of topo-directional frames for which the

topology τ is the order topology for <? In this section we explore this question.

To begin with at least, we will use a slightly generalized definition of order topol-

ogy.

Definition 3.4.1 Suppose that (X, <) is a linearly ordered set. The class G(X,<)

is the class of topologies τ on X for which there is a base B such that

1. Every open interval of (X, <) is in B

2. If Y is in B, then Y is an interval of (X,<) (that is, either Y is an open, (left

or right) half-closed, or closed interval of (X, <)).

Thus G associates with every linearly ordered set (X, <) a set of topologies τ on X.

Condition 1 ensures that all open intervals belong to τ . Condition 2 allows for more

than just the open intervals of (X,<) to be open in τ . Note that the standard order

topology on (X,<), for which a base consists of just the open intervals of (X, <),

belongs to G(X,<), and so G(X, <) represents a generalization of the notion of order

topology.



CHAPTER 3. COMBINING ORDER AND TOPOLOGY 47

Definition 3.4.2 A structure (X, <, τ) for which τ is in G(X,<) is called a gener-

alized order topology.

We begin with some preliminary observations. We shall see that the axioms we

had for TDL simplify dramatically when we give ourselves the extra information that

the ambient topology is a generalized order topology.

Fact 3.4.3 The following principles are valid in every (generalized) order topology:

LRGO1 !Rp → !R!Lp

LRGO2 !Lp → !L!Rp

Proof LRGO1: Let M be some model over some order [generalized] topology O
and M, x |= !Rp. Then there is an open interval (y, z) [or [y, z), (y, z], [y, z]] for

y < x < z, and by the truth definition every point in the interval (x, z) makes p true.

Hence at every point in the interval (x, z), !Lp is true, and thus !R!Lp is true at x

as desired. LRGO2 is shown to be valid in a similar way.

"
The two principles have Sahlqvist form, and their first-order correspondents are:

FO− LRGO1 ∀x∀y∀z((RRxy ∧RLyz) → RRxz)

FO− LRGO2 ∀x∀y∀z((RLxy ∧RRyz) → RLxz)

Remark 3.4.4 LRGOi implies LRi, for i ∈ {1, 2}.

Remark 3.4.5 The transitivity of RR and FO− LRðO1 are equivalent to the fol-

lowing principle:

∀x∀y∀z((RRxy ∧ (RRyz ∨RLyz)) → RRxz)

The modal formula that corresponds to this principle is:

RLGO !Rp → !R(!Rp ∧!Lp)

Similarly, the transitivity of RL and FO− LRGO2 are equivalent to:

∀x∀y∀z((RLxy ∧ (RLyz ∨RRyz)) → RLxz)
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The modal formula that corresponds to this principle is:

LRGO !Lp → !L(!Lp ∧!Rp)

We opted for the original version in order to keep the relation with the general topolog-

ical case more transparent and the axioms more basic and simpler. We will however

freely use the fact that the two are equivalent.

Definition 3.4.6 The logic TDLGO is K4⊕K4 ∪ {LRGO1,LRGO2}

Definition 3.4.7 Call a two relation Kripke frame F = (W,RL, RR), a TDLGO-

frame, if it it is transitive in both RR and RL and it satisfies FO− LRGO1 and

FO− LRGO2.

Fact 3.4.8 TDLGO is sound and complete with respect to the class of TDLGO-

frames.

Proof We simply observe that all axioms are Sahlqvist. "

3.5 Decidability of TDLGO

We will show that TDLGO has the strong finite model property, that is, given a

formula φ, if φ is satisfiable, it is satisfied on a model with at most 2|φ| points. Since

we can effectively list all models of some finite size, the decidability follows. We will

show not that the logics have finite topological model property, but rather that with

respect to standard Kripke frames they have the desired property.

Recall that TDLGO is complete with respect to the class of frames F , for F ∈
F , F = (W,RN , RS), where RN , RS are transitive and they jointly satisfy (FO −
NSGO1 − 2). Given a formula φ satisfied on such a frame F , we now wish to

construct a finite frame F ′ that also satisfies the formula. We will use the standard

technique of filtrating a model on the frame F through the subformulae of φ. Neither

the transitivity nor (FO−NSO1− 2) are preserved by the standard filtration, so we

will need to adjust the definition to ensure that the resulting model has the required

relational properties.
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Definition 3.5.1 A set of formulae Σ is closed under subformulae if for all formulae

φ,ψ, if φ ∨ ψ ∈ Σ then φ,ψ ∈ Σ; if ¬φ ∈ Σ then, φ ∈ Σ; and finally if "∗φ ∈ Σ then

φ ∈ Σ, for ∗ ∈ {N, S}.

Definition 3.5.2 Let M = (F , ν) be a model as above satisfying φ, and let Σφ be

the set of subformulae of φ. We define $φ on the states of M by

x $φ y iff for all ψ in Σφ : M, x |= ψ iff M, y |= ψ.

Since $φ is an equivalence relation, as usual, we denote the equivalence class of a

point with respect to $φ by |x|φ. Now we say that a model Mφ
f = (W f , Rf

N , Rf
S, νf )

is a filtration if it satisfies:

1. W f = {|x|φ |x ∈ W},

2. If RNxy then Rf
N |x|φ|y|φ,

3. If RSxy then Rf
S|x|φ|y|φ,

4. If Rf
N |x|φ|y|φ then for all "Nψ ∈ Σφ, if M, y |= φ then M,x |= "Nφ,

5. If Rf
S|x|φ|y|φ then for all "Sψ ∈ Σφ, if M, y |= φ then M, x |= "Sφ,

6. νf (p) = {|x|φ |M,x |= p} for all p ∈ Σφ.

Theorem 3.5.3 If φ is satisfied in M then it is satisfied in the filtration model Mφ
f ,

if one exists.

Proof See, for instance, [25], pp. 78–79. "

Proposition 3.5.4 There is a filtration that preserves transitivity for RN , RS, as

well as (FO −NSGO1− 2), if the original model M satisfies these properties.

Proof We define the relations Rf
N and Rf

N as follows:

Rf
N |x|φ|y|φ iff

(i) for all ψ ∈ Σφ, if "Nψ ∈ Σφ and M, y |= ψ ∨"Nψ then M,x |= "Nψ; and

(ii) for all ψ ∈ Σφ, if M, y |= "Sψ then M, x |= "Nψ.
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Similarly,

Rf
S|x|φ|y|φ iff

(i) for all ψ ∈ Σφ, if "Sψ ∈ Σφ and M, y |= ψ ∨"Sψ then M,x |= "Sψ; and

(ii) for all ψ ∈ Σφ, if M, y |= "Nψ then M,x |= "Sψ.

We show that the model M
′f
φ based on the frame with relations Rf

N and Rf
S defined

above is a filtration, and that underlying frame satisfies the appropriate relations.

We first show that the model M
′f
φ is a filtration. The clauses 1 and 6 are satisfied

by definition. Furthermore, 4 and 5 follow from the clause (i) in the definition of

Rf
N and Rf

S. The interesting clauses are 2 and 3. We prove 2 only. Assume that

RNxy. Then, for any ψ whatsoever, if ψ is true at y then "Nψ is true at x, and by

transitivity of RN , if "Nψ is true at y, then the same formula is true at x. Thus

clause (i) holds. For (ii) suppose that "Sψ is true at y, where ψ is any formula. We

need to show that "Nψ is true at x. If "Sψ is true at y, then there is a z such that

RSyz and ψ is true at z. By (FO − NSGO1), we know that RNxz, that is, "Nψ

is true at x, as desired. Thus, M
′f
φ is indeed a filtration, but to show that it is an

appropriate finite model, we need to show that transitivity holds for both relations,

and that (FO −NSGO1− 2) are satisfied.

(Transitivity)

Assume that Rf
N |x|φ|y|φ and Rf

N |y|φ|z|φ. We show that Rf
N |x|φ|z|φ by showing

that clauses (i) and (ii) hold for x and z. For (i), assume that M, z |= ψ ∨ "Nψ.

Then, by (i) for y and z, M, y |= "Nψ, and again by (i) for x and y M, x |= "Nψ.

For (ii), assume that M, z |= "Sψ. Then by (ii) for y and z, M, y |= "Nψ, and thus

by (i) for x and y, M, x |= "Nψ.

(FO −NSGO1− 2)

We prove only that (FO-NSGO 1) is preserved. The proof that (FO-NSGO 2)

is preserved is symmetric. Assume that Rf
N |x|φ|y|φ and Rf

S|y|φ|z|φ. We show that

Rf
N |x|φ|z|φ by showing that clauses (i) and (ii) hold for x and z. For (i), assume

that M, z |= ψ ∨ "Nψ. Then either M, z |= ψ or M, z |= "Nψ. If the former, then

M, y |= "Sψ and hence by clause (ii) for Rf
N |x|φ|y|φ, M, x |= "Nψ as desired. If the

latter, then then M, y |= "Sψ by clause (i) for Rf
N |y|φ|z|φ, and again M, x |= "Nψ.
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For (ii) assume that M, z |= "Sψ. Then by clause (i) for Rf
S|y|φ|z|φ, M, y |= "Sψ,

and by clause (ii) for Rf
N |x|φ|y|φ, M,x |= "Nψ as desired. "

Corollary 3.5.5 TDLGO has a finite model property, that is, if a formula has a

model on a TDLGO-frame, then it has a model on a finite TDLGO frame.

We can also observe that the complexity of the logic is between PSPACE since

the logic contains S4 and EXPTIME, as this is the upper bound set by filtration.

We will need the finite model property in the completeness proof, which shows

that

Theorem 3.5.6 TDLGO is a complete logic of generalized order topology.

Our strategy for the completeness is to use the fact that the logic is complete

for finite TDLGO-frames. We will provide a procedure for unravelling such frames

into linear orders that are modally equivalent to the original frames, but under the

topo-directional semantics rather than original Kripke semantics. This procedure is

akin to various embedding procedures we use in Chapter 2.

Let F = (W,RL, RR) be a finite rooted TDLGO-frame satisfying some formula

φ at the root x0. We will build a linear order O and a labelling function f from O

onto F such that if a ∈ O, x ∈ F and f(a) = x, then a and x are modally equivalent

(albeit under different semantics).

Definition 3.5.7 We define cycling functions r : W ×N → W and l : W ×N → W

as follows.

Let y1, ..., yn be the finite (and possibly empty) set of RR successors of x in F . If the

set is nonempty, then we let r(x, 1) = y1, ..., r(x, n) = yn, r(x, n + 1) = y1, ..., r(x, n +

n) = yn, .... In other words, r(x, i) infinitely cycles through all finitely many RR

successors of x. If the set is empty, then for all i we let r(x, i) = x. Similarly, let

z1, ..., zm be the finite (and possibly empty) set of RL successors of x in F . If the set is

nonempty, then we let l(x, 1) = z1, ..., l(x,m) = zm, l(x,m+1) = z1, ..., l(x,m+m) =

zm, .... Else, we let l(x, i) = x.
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Definition 3.5.8 We will have the ordering, O =
⋃

n∈ω On, and the labelling func-

tion, f : X ⊆ O → W is
⋃

n∈ω fn, where On, fn, are defined inductively as follows:

O0 = {0} and f0(0) = x0, the root of W .

Let On, fn be defined. We simultaneously define On+1, fn+1 as extensions of On,

fn.

(R) For any o ∈ On, y ∈ W , if fn(o) = y, then:

If the set of RR successors of y ∈ F is nonempty, then add o + 1
3n to On+1 and let

fn+1(o + 1
3n ) = r(y, n + 1).

(L) Similarly, for any o ∈ On, and y ∈ W , if fn(o) = y then:

If the set of RL successors of y ∈ F is nonempty, then add o− 1
3n to On+1 and let

fn+1(o− 1
3n ) = r(y, n + 1).

Nothing is in On+1, fn1 except in virtue of the clauses (R) and (L), and member-

ship in On, fn.

Next we define an ordering and a generalized order topology on O.

Definition 3.5.9 (i) For o, o′ ∈ O, we say that o < o′ iff in Q with the standard

ordering, o < o′.

(ii) We define topology τO via the following base. For all o, o′ ∈ O, {o′′ | o < o′′ <

o′} is in the base. In addition,

(iii) if f(o) = y and in F y has no RL successors, then all sets of the form

{o′ |∃o′′o ≤ o′′ < o′}. Symmetrically,

(iv) if f(o) = y and in F y has no RR successors, then all sets of the form

{o′ |∃o′′o′ < o′′ ≤ o}.

Fact 3.5.10 In the structure (O,<, τO), < is a linear ordering, and τO is a gener-

alized order topology.

Definition 3.5.11 We say that a sequence s converges to a point o ∈ O from the

right iff

(i) for all o′ the interval (o′, o] is not open.
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(ii) for all oi ∈ s, oi < o, and

(iii) for any p < o there is a oi ∈ s, and p < oi < o.

Similarly, a sequence s converges to a point o ∈ O from the left iff

(i) for all o′ the interval [o, o′) is not open.

(ii) for all oi ∈ s, o < oi, and

(iii) for any p, if o < p then there is a oi ∈ s, and o < oi < p.

Fact 3.5.12 Given O and some valuation V : At → O, for any formula φ

(i) (O, <, τO, V ), o |= "Rφ iff there is a sequence s converging to o from the right

and every oi ∈ s, (O, V ), oi |= φ, and

(O,<, τO, V ), o |= "Lφ iff there is a sequence s converging to o from the left and

every oi ∈ s, (O, V ), oi |= φ.

Lemma 3.5.13 (i) RRxy ∈ F iff for every o ∈ O, if f(o) = x then there is a

sequence s converging to o from the right, and for every oi ∈ s, f(oi) = y.

(ii) RLxy ∈ F iff for every o ∈ O, if f(o) = x then there is a sequence s converging

to o from the left, and for every oi in the sequence, f(oi) = y.

Proof (i), (⇒) Suppose that RRxy and that for some o, f(o) = x. Let n be the

least such that o ∈ On. Then since the set of RR-successors of x is nonempty, o + 1
3n

is added to On+1 and fn+1(o + 1
3n ) = r(x, n + 1). By the same reasoning, o + 1

3n+1

is added to On+2 and fn+2(o + 1
3n+1 ) = r(x, n + 2), and in general, for every m ∈ N

O contains the sequence o + 1
3n+m which approaches o. Since the sequence is labelled

by the cycling function r(x, n + 1 + m) which cycles through RR-successors of x, a

countable subsequence of o + 1
3n+m that approaches o from the right will be labelled

by y, as desired. Furthermore, since x has an actual RR successor, for no o′ is the

interval [o, o′) in the base of τO, and hence not in τO.

(⇐) Let s be a sequence approaching o from the right, and let o appear for the

first time in On. First we consider the possibility that x has no RR successors. Then

for some o′, (o′, o] is in τO, and thus no sequence approaches o from the right, and

certainly not s. So we can assume that x has at least one RR successor. Now we

consider what happens in the interval (o, o + 1
n3 ).
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Claim: for every p ∈ (o, o+ 1
n3 ) ⊂ O, RRxf(p). We know by assumption that there

is some z, RRxz and f(o + 1
n3 ) = z. Furthermore, in On+1 there is no points between

o and o+ 1
n3 (by construction of On+1 from On). Now by inspecting the definition, we

can see that in On+m for m > 1, the points that procedure adds to this interval are

all labelled by right successors of x, or left and right successors of those, or the left

and right successors of those, etc., or left successors of z and left and right successors

of those, etc.

In other words, all labels in the interval are accessible along RR ∪ RL from x in

finitely many steps starting with a RR step. But then all those points are accessible

from x via RR in one step by axiom LRGO.

Finally, if s approaches o then for any oi ∈ s, if oi is in (o, o + 1
n3 ), then RRxf(oi),

and thus RRxy as desired.

(ii) is proved symmetrically.

"

Theorem 3.5.14 For any formula φ of our language, and any valuation V , on F ,

(F , V ), x |= φ iff for every o ∈ O, if f(o) = x, then ((O, <, τO), f−1 ◦ V ), o |= φ.

Proof The base case for propositional variables is given to us by the definition of

the valuation on O. For inductive hypothesis (skipping the obvious boolean cases)

we assume that the property holds for ψ to prove that it holds for "Rψ, "Lψ. We

consider one of these cases only.

(⇒) Assume that (F , ν), x |= "Rψ. Then there is a point y, RRxy and (F , ν), y |=
ψ. Let o be an arbitrary point such that f(o) = x. Then by Lemma 3.11, there is a

sequence of y points approaching o from the left, and then again by Fact 3.5.12 and

inductive hypothesis, ((O,<, τO), f−1 ◦ ν), o |= "Rψ.

(⇒) Pick an arbitrary o such that f(o) = x and assume that ((O, <, τO), f−1), o |=
"Rψ. Then by 3.5.12, there is a sequence s converging to o from the right and every

oi ∈ s, (O, ν), oi |= ψ. Since F is finite, there is a subsequence s′ approaching o

such that for every o′i ∈ s′, f(o′i) = y for some y ∈ F , and by inductive hypothesis

(F , ν), y |= ψ. But by 3.11, RRxy, and hence (F , ν), x |= "Rψ, as desired. "
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This finalizes the proof the completeness proof for TDLGO for the class of gener-

alized order topologies. We have shown that if a formula φ has a counter model on a

TDLGO-frame, then a linearly ordered set O can be constructed and equipped with

a generalized order topology that invalidates the same formula on topo-directional

semantics.

As interesting as generalized order topologies are, their main interest still lies in

the fact that they provide a convenient base system and a set of methodologies for

proving interesting facts about specific order topologies. In the following sections we

look at few examples of specific order topologies.

3.6 The logic TDLQ over rational numbers

In this section we explore the logic of !R and !L on the standard order topology on

Q. This logic is slightly stronger than TDLGO, stemming from the fact that Q is

not only equipped with an order topology, but the order is also dense.

Thus, since for every point q ∈ Q there is a sequence of points strictly approaching

it, additional consistency principles are valid:

Fact 3.6.1

DR : "R=

DL : "L=

are valid on Q.

Let D4 be logic that to basic normal modal logics K adds principles D and 4.

Definition 3.6.2 We call the logic D4⊕D4 ∪ {LRO1,LRO2}, TDLQ

Definition 3.6.3 Call a two relation Kripke frame F = (W,RL, RR), a TDLQ-

frame, if it it is transitive and serial3 in both RR and RL and it satisfies FO− LRO1

and FO− LRO2.

3I.e. every point has at least one successor.
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Fact 3.6.4 TDLQ is sound and complete with respect to the class of TDLQ frames.

Proof We simply observe that all axioms are Sahlqvist. "
We are of course interested in a completeness for topo-directional semantics on

the actual Q.

Theorem 3.6.5 On the topo-directional semantics, the logic TDLQ is sound and

complete with respect to the singleton class {Q} with the standard ordering and the

standard order topology.

Given the proof of completeness of TDLGO for generalized order topologies, the

proof for Q is rather straightforward. Since every TDLQ-frame is also a TDLGO-

frame, we can use the same unravelling procedure given a TDLQ-frame F to obtain

a linear ordering and a topology (O,<, τO). The main difference is in the following

lemma:

Lemma 3.6.6 If F is a TDLQ-frame then

(i) (O,<) is isomorphic to Q,

(ii) τO is the usual order topology on Q.

Proof (ii) is obvious since every point always has both RR and RL successors so

the clauses (iii) and (iv) of definition of the base of τO never apply.

For (i) we note that since, once again, every point has both a RR and RL successor,

for any point o ∈ On, both o + 1
n3 and o− 1

n3 are always in n + 1. Thus O = X where

X =
⋃

n∈ω Xn, where X0 = {0} and

Xn+1 = Xn ∪ {x−
1

3n
, x +

1

3n
| x ∈ Xn}

And we proved in Chapter 2 (Claim 2.2.5 and immediate vicinity) that X is

isomorphic to Q. "
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Thus for any formula φ that has a counterexample on a TDLQ-frame, a coun-

terexample can be constructed on (Q, <, τO)) which proves the completeness.

Lemma 3.6.7 The logic a TDLQ has a finite model property.

Proof This follows from the fact that the finite model property of TDLGO was

proved via a filtration together with the fact that filtrations preserve consistency

principles "R=, "L= [see for instance [25]]. "

3.7 The logic TDLN over natural numbers

Topo-directional logic of the natural numbers with the standard ordering and the

standard order topology (N, <, O) turns out to be rather trivial. This as we will see

stems from the fact that in this topology all singletons are open and thus !L⊥ and

!R⊥ are valid.

3.7.1 Axioms

The logic TDLN consists of TDLGO ∪ {!L⊥,!R⊥}.
It is a well known fact that the axiom !L⊥ corresponds to ∀x∀y¬RLxy and

similarly !R⊥ corresponds to ∀x∀y¬RLxy.

Definition 3.7.1 We call a frame on which both RL and RR are empty a TDLN-

frame.

The following is only a slight extension of the well-known result:

Fact 3.7.2 TDLN is complete with respect a singleton frame SINGL = ({x}, RL, RR),

where RL = RR = ∅

Once again we are seeking a way of transferring this completeness result onto N
with the topo-directional semantics.



CHAPTER 3. COMBINING ORDER AND TOPOLOGY 58

3.7.2 Soundness

Let us first check that TDLN is indeed sound and complete for N on the intended

topo-directional semantics.

Proposition 3.7.3 The axioms and rules of TDLN are valid in topo-directional

models.

Proof The only axiom worth checking is !L⊥ (or symmetrically !R⊥). As we

remarked earlier, every singleton n is open in (N, <, O). For instance, 5 can be

defined as (4, 6). Thus at 5, to continue with the example, there is an open, viz.

(4, 6), such that, for all n ∈ (4, 6), if n < 5 then n makes ⊥ true (since there is no

such n). Thus !L⊥ is true at 5. "
Let N∅ = (N, RL, RR) where RL = RR = ∅.

Fact 3.7.4 The function f from N∅ onto SINGL such that ∀n, f(n) = x is a p-

morphism.

For completeness for topo-directional semantics we need the following two obser-

vations:

If there is a smallest open U around a point x in a topo-directional structure, then

for any formula φ, !Lφ is true at x iff φ is true at every y ∈ U such that y < x and

symmetrically, !Rφ is true at x iff φ is true at every y ∈ U such that x < y.

Thus for any point n in (N, <, O), !Lφ is true at n iff for all m ∈ {n} such that

m < n, that is, all m in the empty set, m makes φ true. Similarly, for an n′ in

N∅ = (N, RL, RR), !Lφ is true in n′ iff for all m such that RLnm, or once again, all

m in the empty set, m makes φ true. Thus, assuming that the valuation ν is the

same for N∅ and (N, <, O), n makes φ true in N∅ iff n makes φ true in N∅, that is the

completeness follows.

Corollary 3.7.5 TDLN is complete for any discrete linear order, finite or infinite,

and thus for all finite linear orders.
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3.8 The logic TDLO over the class of (standard)

order topologies

The topo-directional logic of the class of standard order topologies defined in the

usual way via the base for all x, y ∈ O,

{z |x < z < y}

turns out to be stronger than TDLGO. We end the discussion of TDL language

with some observations about the logic of standard order topologies. The following

additional principles are valid in every order topology:

LRSO1 "L!R⊥ ↔ "L!L⊥
LRSO2 "R!L⊥ ↔ "R!R⊥

Fact 3.8.1 (i) !R⊥ is true at a point o in an order topology (O,<) iff (a) o has an

immediate < successor on the right, i.e., there is o′, o < o′ and ∀o′′ ∈ O ¬(o < o′′ <

o′), or else (b) o is the right endpoint, i.e., ¬∃o′o < o′.

(ii) !L⊥ is true at a point o in an order topology (O, <) iff o (a) has an immediate

< successor on the left, or else (b) o is the left endpoint, i.e., ¬∃o′o′ < o.

Proof (i) Suppose that for some point o, neither a nor b hold, and o makes !R⊥
true. That is, for any basic open set U , of the form o1 < o < o2 there is a point o3,

o1 < o < o3 < o2, and since = holds at o3, and U was arbitrary basic set, it follows

that for every open that o is in, there is a point on the right of that open that makes

= true, in that is o makes "R= (i.e. ¬!R⊥) true, contrary to supposition.

(ii) is proved symmetrically.

"

Fact 3.8.2 LRSO1 and LRSO2 are valid in every order topology.

Proof (LRSO1) For some order topology (O,<), some valuation ν, and some point

o ∈ O let ((O, <), ν), o |= "L!R⊥. What that means by Fact 3.8.1 is that there is a

sequence of pairs (o1, o2) approaching o form the right, such that, o2 is the immediate
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right successor of o1. But once again by Fact 3.8.1, at every such o2 makes !L true,

and hence "L!L⊥ is true at o as desired. The argument is similar if we assume that

"L!L⊥ is true at o.

The argument for LRSO2 is analogous.

"

Fact 3.8.3 In standard Kripke semantics,

(i) the first-order correspondent of LRSO1 is:

FOLRSO1 (∃yRLxy ∧ ∀z¬RRyz) ↔ (∃yRLxy ∧ ∀z¬LLyz) and

(ii) the first-order correspondent of LRSO2 is:

FO− LRSO2 (∃yRRxy ∧ ∀z¬RLyz) ↔ (∃yRRxy ∧ ∀z¬LRyz).

Definition 3.8.4 Let TDLO be the logic TDLGO ∪ {LRSO1,LRSO2}.

Definition 3.8.5 Let TDLO-frame be a TDLGO-frame that in addition satisfies

FO− LRSO1 and FO− LRSO2.

Lemma 3.8.6 The logic TDLO is complete with respect to the class of all TDLO-

frames.

Proof Once again by observing that all axioms have Sahlqvist form. "
We leave the reader with a couple of questions about this system.

Question 3.8.7 If FOLRSO1 and FOLRSO2 are true in a model, then are they

true in a filtration of that model?

Question 3.8.8 Is TDLO is complete with respect to the class of topo-directional

frames based on order topologies?

Our hypothesis in fact is that additional axioms are needed for the completeness

over standard order topologies but for now we leave this as an open question.
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3.9 Topological Compass Logic

So far we have looked at logics on a single topology and and a linear ordering in the

language of TDL. In line with the main topic of this dissertation, we now consider

a product space with topo-directional modalities on two dimensions. As we will see,

the two dimensional variant of TDL is best seen as a topological variant of Venema’s

Compass Logic from [71]. As in Chapter 2, we will generalize from the products of

Kripke frames to topological product spaces.

Our goal in this section is to define a topological version of the basic compass logic

introduced in [71]. Recall that in its simplest incarnation, the language of compass

logic contains four interrelated boxes !N ,!S,!E and !W (to be read ‘box north’,

‘south’, ‘east’, and ‘west’ respectively). Structures for this language contain two

linear orders, (T1, <1) and (T2, <2). The valuation function assigns sets of ordered

pairs from T1×T2 to propositional variables. (T1, <1) is the horizontal and (T2, <2) the

vertical dimension on the cartesian grid. Formulas are built from a countable set of

propositional variables At, using boolean connectives ¬,∧,∨,→, and modal operators

above. Models are then quintuplesM = (T1, <1, T2, <2, ν), where ν : At → ℘(T1×T2).

Truth is defined recursively (skipping the obvious boolean cases):

M, (x, y) |= p iff (x, y) ∈ ν(p)

M, (x, y) |= !Nφ iff ∀z ∈ T2, if y <2 z, then M, (x, z) |= φ

M, (x, y) |= !Sφ iff ∀z ∈ T2, if z <2 y, then M, (x, z) |= φ

M, (x, y) |= !W φ iff ∀z ∈ T1, if x <1 z, then M, (z, y) |= φ

M, (x, y) |= !Eφ iff ∀z ∈ T1, if z <1 x, then M, (z, y) |= φ

This logic has found many applications and a variety of extensions have been

considered. For more information about variants and axioms, we refer the reader to

[2].
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The main drawback of this family of logics is that it describes the two dimensional

grid so closely, that it facilitates encoding of the grid and thus in most cases the

logics end up undecidable. The undecidability of this logic is closely connected to

the undecidability of the product logic K4×K4 on standard Kripke frames via the

connection of this logic with two orthogonal direction fragment of compass logic such

as for instance north-west [For more on undecidability of K4 ×K4, see [40]]. This

suggests that the topological approach may give us an interesting decidable compass

logic. In this chapter we show two examples of decidable topo-compass Logic. But

before any task of measuring the complexity of this logic can be undertaken, we first

have to see what the logic is. Axiomatizing the topo-variant of Venema’s compass

logic over the products Q×Q and N×N and proving that logic decidable is the task

of the remainder of this chapter.

We will work with the language of the basic compass logic.

Let X1 = (X1, τ1, <1) and X2 = (X2, τ2, <2) be topo-directional structures.

Definition 3.9.1 Topo-compass structures are tuples X = (X, τV , τH , <V , <H), where

X = X1 × X2, τH and τV are horizontal and vertical topologies derived from τ1, τ2

respectively, and where the order satisfies

(x, y) <H (x′, y′) iff x <1 x′ and y = y′,

and

(x, y) <V (x′, y′) iff x = x′ and y <2 y′.

Thus, a topo-compass structure is a topological product of two topo-directional

structures.

Next, a valuation function ν assigns propositional variables to subsets of X1×X2.

A topo-compass model M is a pair (X , ν), where X is a topo-compass structure and ν

a valuation. It is often convenient to spell outM as a quintuple (X, τH , τV , <H , <V ν).

The truth clauses for the booleans are defined in the standard way and are the same

as in the case of the standard modal semantics. The interesting difference lies in
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the truth definitions for the modal operators. The novelty is guided by the topo-

directional semantics:

M, (x, y) |= p iff (x, y) ∈ ν(p)

M, (x, y) |= !Nφ iff ∃U ∈ τV , (x, y) ∈ U

and ∀(x, z) ∈ U, if (x, y) <V (x, z), then M, (x, z) |= φ

M, (x, y) |= !Sφ iff ∃U ∈ τV , (x, y) ∈ U

and ∀(x, z) ∈ U, if (x, z) <V (x, y), then M, (x, z) |= φ

M, (x, y) |= !W φ iff ∃U ′ ∈ τH , (x, y) ∈ U ′

and ∀(z, y) ∈ U ′, if (x, y) <H (z, y), then M, (z, y) |= φ

M, (x, y) |= !Eφ iff ∃U ′ ∈ τH , (x, y) ∈ U ′

and ∀(z, y) ∈ U ′, if (z, y) <H (x, y) then M, (z, y) |= φ

Put in words, !Nφ, for instance, is true at a pair (x, y) if and only if there is

a vertical open, (x, y) is in that open, and all of the northern portion of that open

makes φ true.

Corresponding to each box, a diamond dual is defined in the usual way.

Example 3.9.2 Take both topologies to be R with the standard order topology. Then

the topologies induced by the boxes are all variously directed versions of Sorgen-

frey topology. Thus the topology induced by !N has as its base the set B!N =

{[(x1, x2), (x1, y2)) |x1, x2 ∈ R, y2 ∈ Q}. The topology induced by !S on the other

hand is B!S = {((x1, x2), (x1, y2)] | x1, x2 ∈ R, y2 ∈ Q}.

3.10 Axioms

Definition 3.10.1 Let TC be the following axiom set. We take the K4 axioms and

rules for all of !N ,!S,!E and !W , and we add the following two pairs of interaction
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principles:

NS1 (p ∧!Np ∧!Sp) → !N!Sp

NS2 (p ∧!Np ∧!Sp) → !S!Np

EW1 (p ∧!W p ∧!Ep) → !W !Ep

EW2 (p ∧!W p ∧!Ep) → !E!W p

That is, TC is the fusion TDL⊕TDL.

3.10.1 Completeness on abstract frames

Each axiom in TC has Sahlqvist form, and thus we have

Fact 3.10.2 The standard Kripke first-order conditions corresponding to NS1, NS2

and EW1, EW2 are:

FO−NS1 ∀x∀y((RNxy ∧RSyz) → (x = z ∨RNxz ∨RSxz))

FO−NS1 ∀x∀y((RSxy ∧RNyz) → (x = z ∨RNxz ∨RSxz))

FO− EW1 ∀x∀y((RW xy ∧REyz) → (x = z ∨RW xz ∨RExz))

FO−NS1 ∀x∀y((RExy ∧RW yz) → (x = z ∨RW xz ∨RExz))

By the Sahlqvist theorem, once again, we have

Lemma 3.10.3 TC is sound and complete with respect to the class of Kripke frames

F, for F ∈ F, F = (W,RN , RS, RW , RE) where all four relations are transitive, and

they jointly satisfy FO−NS1, FO−NS2 and FO− EW1, FO− EW2.

While of interest, this is not the main result we would like to have. What we

would like to answer is

Question 3.10.4 Is TC complete for the class of arbitrary topo-compass structures?

and perhaps more generally,

Question 3.10.5 Is the logic of the class of arbitrary topo-compass structures de-

cidable?
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As in the case of TDL we will dwell on these issues on a different occasion. For

the purposes of this thesis, and as an example, we show that the logics over Q × Q
and N× N are finitely axiomatized and decidable.

3.11 TCQ, the complete logic for Q×Q

Definition 3.11.1 The logic TCQ is the fusion TDLQ⊕TDLQ.

Definition 3.11.2 We call a frame F = (W,RN , RS, RW , RE), a TCQ-frame if

RN , RS, RW , RE are transitive and serial, and the following hold:

FO−NSQ1 ∀x∀y∀z((RNxy ∧RSyz) → RNxz)

FO−NSQ2 ∀x∀y∀z((RSxy ∧RNyz) → RSxz)

FO− EWQ1 ∀x∀y∀z((RW xy ∧REyz) → RW xz)

FO− EWQ2 ∀x∀y∀z((RExy ∧RW yz) → RExz).

Proposition 3.11.3 TCQ is sound and complete for the class of TCQ-frames.

Proof Once again, all axioms in TCQ have Sahlqvist form. "

Proposition 3.11.4 TCQ is complete for the class of pointed finite TCQ-frames.

Proof We observe that a fusion logic of a logic with a finite model property has

finite model property. "
To prove completeness for Q × Q we are going to unravel an arbitrary pointed

finite TCQ-frame F into a subset of Q × Q. The procedure combines our strategy

for proving that S4 ⊕ S4 is complete for Q × Q of 2and the unravelling procedure

that we used in Definition 3.5.8 above.

From Chapter 2 we borrow the set,

Y =
⋃

n∈ω Yn, where Y0 = {(0, 0)} and

Yn+1 = Yn ∪ {(x−
1

3n
, y), (x +

1

3n
, y), (x, y − 1

3n
), (x, y +

1

3n
) | (x, y) ∈ Yn}

The results of 2 already tell us that Y can be viewed as a subset of X ×X, where

X is isomorphic to Q. Thus to show completeness for Q×Q it is sufficient to define

a map f from Y onto W in F which has the following property:
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Let ν be some valuation on F .

Lemma 3.11.5 Then for all TC formulae φ, and any y ∈ Y ,

(F , ν), f(y) |= φ on the relational semantics ⇐⇒ (Y, f−1 ◦ ν), y |= φ on the

topo-compass semantics.

To prove this we use a slight modification of Definition 3.5.8.

Definition 3.11.6 For each stage n we take set Yn. We will define fn with the help

of cycling functions. This time around, we will have four cycling functions, one for

each relation in F , but things are otherwise unchanged.

We define cycling functions e : W ×N → W , w : W ×N → W , n : W ×N → W ,

and s : W × N → W as follows.

Let y1, ..., yn be the finite and nonempty set of RE successors of x in F . Let

e(x, 1) = y1, ..., e(x, n) = yn, e(x, n + 1) = y1, ..., e(x, n + n) = yn, .... In other words,

e(x, i) infinitely cycles through all finitely many RE successors of x.

Next, let z1, ..., zm be the finite and nonempty set of RW successors of x in F . We

let w(x, 1) = z1, ..., w(x,m) = zm, w(x, m + 1) = z1, ..., w(x,m + m) = zm, ....

Further, let y1, ..., yn be the finite and nonempty set of RN successors of x in F .

Let n(x, 1) = y1, ..., n(x, n) = yn, n(x, n + 1) = y1, ..., n(x, n + n) = yn, ....

Finally, let z1, ..., zm be the finite and nonempty set of RS successors of x in F .

We let s(x, 1) = z1, ..., s(x,m) = zm, s(x,m + 1) = z1, ..., s(x,m + m) = zm, ....

We are ready now to define fn for every n. The function f will then be defined as
⋃

n∈ω fn

fn is defined inductively as follows:

f0((0, 0)) = x0, the root of W .

Let fn be defined. We define fn+1 : Yn+1 → W as an extension of fn.

For any (p, q) ∈ Yn, x ∈ W , if fn((p, q)) = x, then:

(E) Let fn+1((q, p− 1
3n ) = e(x, n + 1).

(W) Let fn+1((q, p + 1
3n ) = w(x, n + 1).

(N) Let fn+1((q + 1
3n , p) = n(x, n + 1).

(S) Let fn+1((q − 1
3n , p) = r(x, n + 1).



CHAPTER 3. COMBINING ORDER AND TOPOLOGY 67

In the following two results, (i, j) ∈ {(E, east), (W, west), (N , north), (S,, south)},

Lemma 3.11.7 Rixy ∈ F iff for every (q, p) ∈ Y , if f((q, p)) = x then there is

a sequence s converging to (q, p) from the direction j, and for every (q′, p′) ∈ s,

f((q′, p′)) = y.

Proof The proof of this lemma is identical to that of with the two extra cases. "

Fact 3.11.8 At a pair (p, q) in a model M = (Y, ν) based on any valuation ν,

M, (p, q) |= "iφ iff there is a sequence of points s approaching (p, q) from the direction

j and every (p′, q′) ∈ s makes φ true.

Proof By inspection of truth conditions for "i. "
We can now prove Lemma 3.11.5 by induction on the complexity of formulae.

The base case where φ is a propositional variable is given definition of valuation

on Y , and boolean cases are sufficiently simple.

The interesting cases are the four cases of modal formulae. We prove one such

case. Let φ be of the form "Eψ. Then we reason as follows:

(F , ν), f((q, p)) |= "Eψ iff there is a z ∈ W,REf((q, p))z, and (F , ν), z |= ψ.

By Lemma 3.11.7 and induction hypothesis,

there is a z ∈ W,REf((q, p))z, and (F , ν), z |= ψ iff there is a sequence s converg-

ing to (q, p) from the east, and for every (q′, p′) ∈ s, (Y, f−1 ◦ ν), (q′, p′) |= ψ.

But by 3.11.8,

there is a sequence s converging to (q, p) from the east, and for every (q′, p′) ∈ s,

(Y, f−1 ◦ ν), (q′, p′) |= ψ iff (Y, f−1 ◦ ν), (q, p) |= "Eψ. "
This completes the main steps of the completeness proof as we can now argue in

the following way. Suppose that there is model based on TCQ-frame that satisfies

some formula φ. Then we can find a point in Y that also satisfies φ by the reasoning

above, and since Y is a subset of X ×X for X isomorphic to Q, we can satisfy φ on

Q×Q, as desired.

Fact 3.11.9 TCQ is decidable.
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Proof TCQ is a fusion TDLQ⊕TDLQ, TDLQ has finite model property, TCQ
also has a finite model property as fusion preserves complexity for complexity classes

PSPACE and above. "

Question 3.11.10 What is the complexity of satisfiablity checking for TCQ?

Thus TCQ is our first example of an interesting decidable compass logic based on

the topological semantics. The next example is also informative, even though perhaps

less intricate.

3.12 TCN, the complete logic for N× N

Let TCN be the fusion TDLN⊕TDLN.

Theorem 3.12.1 TCN is the complete logic of N× N on topo-compass semantics.

Fact 3.12.2 Once again, we make the observation that TCN on relational semantics

is complete for a frame consisting of a single point with all four relations empty.

Thus a map that maps every point in N × N onto a single point with empty

relations can be easily proved to preserve modal formulae from the topo-compass

semantics to the relational semantics on the single point, and completeness follows.

Corollary 3.12.3 TCN in decidable, and its complexity is NPTIME.

Question 3.12.4 What is the logic of products topo-directional frames based on gen-

eralized order topologies? Is it TDLGO⊕TDLGO? What is its complexity?

And finally,

Question 3.12.5 What is the logic of products topo-directional frames based on

standard order topologies? Is it TDLO⊕TDLO? What is its complexity?
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3.13 Conclusion

This chapter has shown that there are interesting languages that mix topology and

ordering that are different form just adding interior box to temporal operators. We

have found some new complete logics, and we have also shown how the style of

product analysis developed in 2, extends to this new setting. Of course, new open

questions now arise. One example is finding the complete logic of order topologies; we

stand by our conjecture but we haven’t proved it yet. Another interesting challenge

is axiomatizing the complete logic in our mixed language for the product R × R.

Finally, we mention that there are also complexity and decidability issues here, for a

brief discussion see Chapter 5.



Chapter 4

The Geometry of Knowledge

The most widely used attractive logical account of knowledge uses standard epistemic

models, i.e., graphs whose edges are indistinguishability relations for agents. In this

chapter, we discuss more general topological models for a multi-agent epistemic lan-

guage, whose main uses so far have been in reasoning about space. We show that

this more geometrical perspective affords greater powers of distinction in the study

of common knowledge, defining new collective agents, and merging information for

groups of agents.

4.1 Epistemic logic in its standard guise

4.1.1 Basic epistemic logic

Epistemic logic is in wide use today as a description of knowledge and ignorance for

agents in philosophy [43], computer science [35], [77], game theory [23], and other

areas. In this chpter, we assume familiarity with the basic language of propositional

epistemic logic, interpreted over multi-agent S4 models whose accessibility relations

are reflexive and transitive. Alternative model classes occur, too, such as equivalence

relations for each agent in multi-agent S5–but our discussion is largely independent

from such choices. The key semantic clause about an agent’s knowledge of a proposi-

tion says that Kiφ holds at a world x if and only if φ is true in all worlds y accessible

70
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2 1

pp

Figure 4.1: In the black central world, 1 does not know if p, while 2 does know that
p. In the world to the left, 1 does know that p, so in the central world, 2 does not
know if 1 knows that p.

for i from x. That is, the epistemic knowledge modality is really a modal box !iφ.

For technical convenience, we will use the latter notation for knowledge in the rest

of this paper. The main modern interest in epistemic logic has to do with analyzing

iterated knowledge of agents about themselves and what others know, for purposes

of communication and interaction. Cf. [9], [13] on systems that combine epistemic

logic and dynamic logic to describe information update in groups of agents. A simple

example of how the basic logic works is the model in Figure 4.1.

The universally valid principles in our models are those of multi-agent S4. In an

epistemic setting, the usual modal axioms get a special flavor. E.g., the iteration

axiom !1φ → !1!1φ now expresses ‘positive introspection’: agents who know some-

thing know that they know it. More precisely, we have S4-axioms for each separate

agent, but no valid further ‘mixing axioms’ for iterated knowledge of agents, such

as !1!2φ → !2!1φ. Indeed, the latter implication fails in the above example. For

instance, in the world on the left, 1 has no uncertainties, and so 1 knows that 2 knows

that p. But 2 does not know there that 1 knows that p, because the latter assertion

is false in the central world. Another way of describing the set of valid principles is

as a fusion S4 ⊕ S4 of separate logics S4 for each agent, a perspective of ‘merging

logics’ to which we will return below. In what follows, we shall mostly work with

two-agent groups, G = {1, 2}, since most phenomena of interest can be studied there.

Generalizations to finite k-agent cases are straightforward.
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4.1.2 Group knowledge

Perhaps the most interesting topic in an interactive epistemic setting has been the

discovery of various notions of what may be called group knowledge. Two well-known

examples are as follows:

1. EGφ: every agent in group G knows that φ,

2. CGφ: φ is common knowledge in the group G.

The latter notion of group knowledge is much stronger than the former. It has been

proposed in the philosophical, economic and linguistic literature as a necessary pre-

condition for coordinated behavior between agents, cf. [47]. The usual semantic

definition of common knowledge runs as follows:

M,x |= C1,2φ iff for all y with x (R1 ∪R2)
∗y, M, y |= φ

where x(R1 ∪R2)∗y if there is a finite sequence of successive steps from either of the

two accessibility relations connecting x to y. This relation is the reflexive transitive

closure of the union of the relations for both agents. The key valid principles for

common knowledge are the following additional axiom and rule:

Equilibrium Axiom: C1,2φ ↔ (φ ∧ (!1C1,2φ ∧!2C1,2φ))

Induction Rule: +p→(!1(q∧p)∧!2(q∧p))
+p→C1,2q

This logic is known as S4C
2 . It has been shown to be complete and decidable in [35]

via a simple variation on similar proofs for propositional dynamic logic.

But there are still further interesting notions of knowledge for a group of agents. A

prominent one is so-called implicit knowledge, DGφ, which describes what a group

would know if its members decided to merge their information:
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M, x |= D1,2φ iff for all y with xR1 ∩R2y, M, y |= φ

where R1∩R2 is the intersection of the accessibility relations for the separate agents.

This new notion is technically somewhat different from the earlier two in that, unlike

universal and common knowledge, it is not invariant under modal bisimulations of

epistemic models. It also involves a new phenomenon of independent epistemic inter-

est: viz. merging the information possessed by different agents. The latter topic will

return throughout this paper.

4.1.3 Agents as epistemic accessibility relations

We can also think of new notions of group knowledge as introducing new agents. E.g.,

CG defines a new kind of S4-agent, since R(1∪2)∗ was again a pre-order. Note that

R1 ∪R2 by itself is not a pre-order, so the new ‘agent’ corresponding to the fact that

‘everybody knows’ would have different epistemic properties. In particular, it would

lack positive introspection as to what it knows. In contrast, the relation R1 ∩R2 for

DG is again an S4-agent as it stands, since Horn conditions like transitivity and re-

flexivity are preserved under intersections of relations. So, given a group of individual

agents, our logical models suggest new agents. In particular, with two S4-agents 1, 2,

two additional ones supervene on these, one weaker, one stronger:

R1 ∩R2

↗ ↖

R1 R2

↖ ↗
(R1 ∪R2)∗
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All this seems quite rich as an account for epistemic agents. And yet, there are

indications that this framework is not yet flexible enough for its tasks.

4.1.4 Alternative views of common knowledge

Despite the success of the standard epistemic logic framework, there are still doubts

about its expressive power and sensitivity. Some recurrent complaints seem endemic

to logical approaches as such, like the vexing problem of logical omniscience: agents

automatically know all laws of the system. But a more serious concern is the lack

of epistemic distinctions in the standard modal setting. Notably, in his well-known

critical paper [10], Barwise claimed that a proper analysis of common knowledge must

distinguish three different approaches, that we may label

1. countably infinite iteration of individual knowledge modalities,

2. the fixed-point view of common knowledge as ‘equilibrium’,

3. agents’ having a shared epistemic situation.

He then showed how to distinguish all three in a special situation-theoretic frame-

work. As we will see below, however, Barwise’s distinctions make sense in mainstream

logic too–provided that we move to a broader topological semantics for the epistemic

language involving products of models for individual agents. But before we do that,

let us first analyze the reason why standard epistemic logic fails to distinguish the

first two options. The third notion of ‘shared understanding’ is somewhat more mys-

terious, and harder to grasp in a standard relational modal setting. We will have a

stab at it in the richer topological models of Section 2.

4.1.5 Computing epistemic fixed-points

The above Equilibrium Axiom for the common knowledge operator CGφ shows how it

may be viewed as defining a fixed-point of an epistemic operator λX.φ∧!1X ∧!2X.
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In conjunction with the Induction Rule, it may even be seen to be a greatest fixed-point

definable in the standard modal µ-calculus as:

CGφ := νp.φ ∧!1p ∧!2p.

With a perhaps more familiar modal µ-operator, its existential variant would be

defined as a smallest fixed-point

"C
Gφ := µp.φ ∨"1p ∨"2p.

As usual, a greatest fixed-point is defined as the fixed-point of a descending approxi-

mation sequence defined over the set of ordinals. We write [|φ|] for the truth set of φ

in the relevant model where evaluation takes place:

C0
1,2φ := [|φ|],

Cκ+1
1,2 φ := [|φ ∧!1(Cκ

1,2φ) ∧!2(Cκ
1,2φ)|],

Cλ
1,2φ := [|

∧
κ<λ Cκ

1,2φ|], for λ a limit ordinal.

Finally, we let C1,2φ := Cκ
1,2φ where κ is the least ordinal for which the approximation

procedure halts: i.e., Cκ+1
1,2 φ = Cκ

1,2φ. This approximation procedure must stop at

some ordinal because the operator F applied is monotonic, a fact which is guaranteed

by the positive occurrence of the propositional variable p in the body of F ’s definition.

As a result, the approximation sequence for a greatest fixed-point operator always

descends to subsets, and hence it must stop eventually. In general µ-calculus, reaching

this stopping point may take any number of ordinal stages. A standard example is

the least-fixed-point formula µp.!p which computes the so-called ‘well-founded part’

of the binary accessibility relation for the modality. But in certain cases, stabilization

is guaranteed to occur by the first infinite stage.
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Fact 4.1.1 In every relational epistemic model, the approximation procedure for the

common knowledge modality stabilizes at κ ≤ ω.

This simple behavior is most easily understood by observing that knowledge modal-

ities !i distribute over any infinite conjunction. Thus, !i(
∧

n<ω Cn
1,2φ) is simply

∧
n<ω !iCn

1,2φ which is equivalent to
∧

n<ω Cn
1,2φ. More generally, stabilization for a

formula νp.φ(p) is guaranteed by stage ω in any model just in case the syntax defin-

ing the monotone approximation operator is constrained as follows [15]. The formula

φ(p) must be a disjunction whose members are constructed using only

1. arbitrary literals (¬)q,

2. any epistemic formulas that do not contain q at all,

3. conjunctions and universal modalities.

The preceding Fact says that the fixed-point approach to common knowledge and that

with countably infinite conjunctions of repeated knowledge modalities are equivalent

in the standard setting, as νp.φ ∧!1p ∧!2p is equivalent to

K1,2p := φ ∧!1φ ∧!2φ ∧!1!2φ...

This equivalence is often considered a technical convenience. But it may also indicate

that our standard models are too weak to make a relevant distinction, and that

more general models are needed. As we shall see, these two definitions of common

knowledge are different in a topological modelling for epistemic logic— and even

stronger ones can then be modelled, resembling Barwise’s use of ‘shared situations’.

4.1.6 Merging Information

Many further interesting issues are raised by a multi-agent epistemic setting. In

particular, multi-agent models will often arise by merging models for separate agents,
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or groups of agents, so that common knowledge for the whole group becomes possible

at all. One natural way of combining models for two or more agents emphasized in

the recent literature on combining modal logics employs products of their underlying

frames.

Sometimes one also adds the direct product relation R1,2 which requires successor

steps in both components. But in the present setting, this is definable as the rela-

tional composition of R1 and R2 in any order.

This way of combining modal logics is explored in detail in [38]. As we mention in

Chapter 2, the separate logics of the component frames are preserved in the product.

But the really interesting question is what happens in the joint language containing

both modalities !1 and !2, which can express interaction between epistemic agents.

As noted, product frames automatically validate com, !1!2p ≡ !2!1p, and chr,

"1!2p → !2"1p. But note that these two principles were not valid in the general

fusion logic S4 ⊕ S4 of epistemic agents, as we saw earlier. Figure 2.2 in Chapter

2 provided a formal counterexample to com. To put such a scenario in words: a

student may know that the teacher knows the answer to questions on the test, while

the teacher does not know if the student knows the answer. Moreover, if com does

become valid, common knowledge trivializes, since any finite sequence of knowledge

modalities will be equivalent to one of !1,!2 or !1!2.

Now there are other notions of merge for epistemic models, and the preceding collapse

of common knowledge need not occur with other operations. Often, merging informa-

tion for single agents or groups of agents is more naturally viewed as an operation on

models, rather than frames. And in that case, the necessity of obtaining a consistent

atomic valuation on pairs of worlds may complicate the above product construction,

and thereby block com and chr. We discuss this issue briefly in Section 4.2.7 But

for our purposes later on with analyzing common knowledge, frame products are im-

portant, provided we generalize them, again, to a wider topological setting. In that

case, the two undesirable epistemic interaction laws no longer hold, and the above

trivialization of common knowledge goes away.
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We have now accumulated enough motivation for looking into broader alternative

semantics for a multi-agent language, which should be fine-grained enough to distin-

guish different notions of common knowledge, while being sufficiently robust to still

provide a plausible version of epistemic logic. We find this in the following mathe-

matical generalization of relational models.

4.2 Epistemic Models in Topological Semantics

4.2.1 From graphs to topological spaces.

The major alternatives to relational semantics for modal logics that we emphasize

in this thesis, and historically even the earlier approach, employs topological models.

Topology is an abstract mathematical theory of space, emphasizing qualitative notions

of open environment, closure, boundary, or connectedness. All topological modalities

in this chapter satisfy the axioms of the modal logic S4, which reflect key properties

of the topological interior operation. The interesting epistemic details then lie in the

interaction among such modalities.

There is a way to view topological semantics as a generalization of standard modal

model theory. The general connection between the two classes of models for modal

or epistemic languages is best seen in the fact that standard relational models can be

viewed as a special kind of topological spaces via the following notion.

Definition 4.2.1 A topological space X is Alexandroff if every intersection of open

sets of X is again open.

Any Alexandroff topology X = 〈X, τ〉 induces a standard relational frame 〈X, R〉
with a reflexive transitive relation Rxy iff y ∈

⋂
{U ∈ τ |x ∈ U}. Conversely, any

reflexive transitive relational frame 〈X, R〉 induces an Alexandroff topology by taking

the sets Ux = {y |Rxy} for each x ∈ X as a basis for τ . It is easily shown that

topological interpretation of modal formulas in a relational model yields the same

results as in their associated Alexandroff spaces, and vice versa. In this way, modal
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logics of relational models describe special sets of topological models. But in general,

topological models include settings without a clear relational counterpart. E.g., the

standard topologies on Q and R are clearly not Alexandroff: any singleton set (a

non-open) is the intersection of the open intervals containing it.

There is a recent revival of interest in modal S4 interpreted over topological spaces,

because of its applications to spatial reasoning. [1] and [4] survey the expressive

power of S4 and its extensions for this purpose. We will use a few results from this

spatial line later on. But before we cite them, let us make a connection with our

major concern of what agents know.

4.2.2 Topology and information

Dating back to the 1930s, there has also been a more epistemic use of topological

models, viz. for intuitionistic logic, cf. [70]. In that case, open sets are rather

interpreted as ‘pieces of evidence’, e.g., about the location of a point, reflecting the

intuitionistic idea of truth-as-provability. We can generalize this idea to epistemic

logic, reading the above truth condition for a knowledge modality !ip as saying that

there exists a piece of evidence for agent i (viz. an open set in i’s topology) which

validates the proposition p. Alternatively, we could also think of the topology as a

collection of theories or data bases that an agent has at its disposal. [72] contains

more abstract versions of this idea. As we will see, one of the side benefits of this

information-based interpretation of the epistemic language is that common knowledge

arises in a group of agents precisely when they share the same piece of information.

But first, we explore the new handle that we get on the issue of merging information

structures for different agents.

From the results of Chapter 2 we know that we can use products of topological

models to combine agents, and further it follows that the fusion S4⊕ S4 is the logic

of two epistemic agents combined into one framework using topological products,

without any dramatic interaction enforced as in the case of products of relational

frames. This result gives us the technical means to analyze different versions of
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common knowledge in a concrete setting of merged multi-agent models.

4.2.3 Common knowledge in product spaces

The earlier definitions of common knowledge still make sense in topological models.

For instance, countably infinite iteration of all finite sequences of alternating knowl-

edge modalities for the individual agents 1, 2 is as before:

K1,2p :=
∧ω

n Kn
1,2p,

with Kn
1,2p defined inductively as follows:

K0
1,2p := p

Kn+1
1,2 p := !1(Kn

1,2p) ∧!2(Kn
1,2p)

And the same is true for the fixed-point definition

C1,2φ := νp.φ ∧!1p ∧!2p,

provided we make the appropriate adjustments in computing fixed points. In par-

ticular, the monotone operations generated by formulas positive in p now work a

bit differently from before. In relational models, the operator !i applied to a set X

yielded !i(X) = {y |∀x(Riyx → x ∈ X)}, making the modality a bounded universal

quantifier. In topological semantics, however, the relevant operator is

!i(X) = {y |∃U ∈ τi &∀x(x ∈ U → x ∈ X)}

This reads a modality as an existential quantifier over open sets followed by a universal

quantifier over elements of those sets. This two-quantifier combination complicates
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matters when approximating greatest or smallest fixed-points. Indeed, the definitions

of common knowledge by fixed-points and by countably infinite iteration will now

diverge. Here is a first indication why this may happen. The topological semantics

validates the finitary logic S4, but it diverges from the relational validities in its

infinitary behavior.

Fact 4.2.2 Topological interior does not distribute over infinite conjunctions:

!i

∧

n

pn is not always equivalent to
∧

n

!ipn

Proof Take the standard topology on Q. Define a valuation ν with, for all n,

ν(pn) = (− 1
n , 1

n). Note that the intersection of these open sets is the singleton 0.

Then
∧

n !ipn is true at 0, whereas !i

∧
n pn is not true anywhere. "

This result, though suggestive, is not yet a proof that the two definitions of com-

mon knowledge diverge. To do that, we will show that given a set p, the operator

K1,2p does not always define a horizontally and vertically open set. Since the fixed-

point version of C1,2p is always open in both these senses, the two cannot be the same.

We construct the relevant example by choosing a countable sequence of points in

the rational plane Q×Q horizontally converging to the origin (0, 0). The first point

in the sequence makes !1p true but not !2!1p, the second !1!2p, !2!1p but not

!2!1!2p, etc. This is possible by Theorem 2.6.1 for the logic of !1,!2: no finite

iteration level of knowledge implies the next in the fusion logic S4 ⊕ S4, and hence

situations as described must exist in suitable models over Q × Q. In particular, at

each point of the sequence, K1,2 will be false, and hence !1K1,2p is false at the origin

(0, 0). It then remains to show that K1,2p itself does hold at (0, 0), but this will

happen because of a well-chosen total valuation ν(p) for p on Q × Q. To make this

work, we make a number of more precise observations– while also slightly changing

the formulas involved:

Theorem 4.2.3 K1,2p → !1K1,2p is not valid on topological product spaces.

Let ψn be the formula !1(Kn
1,2p) → !2(Kn

1,2p).
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Fact 4.2.4 (a) For all n, ψn is not a theorem of the fusion logic S4⊕ S4.

(b) There is a model Mn on Q×Q such that Mn, (0, 0) /|= !2(Kn
1,2p),

and for all q ∈ Q,Mn, (q, 0) |= Kn
1,2p.

Proof As for (a), one can easily construct finite fusion frames invalidating any given

principle ψn.

(b) Since S4 ⊕ S4 is complete for Q × Q, by (a) there is a model M ′
n such that

M ′
n, (0, 0) /|= ψn, that is,

M ′
n, (0, 0) |= !1(K

n
1,2p)

as well as

M ′
n, (0, 0) /|= !2(K

n
1,2p).

It follows that there is an open interval ((−q, 0), (q, 0)) and every (q′, 0) in this interval

satisfies Kn
1,2p. By Locality (Proposition 2.3.6 in Chapter 2), in (−q, q)×Q with the

valuation from M ′
n restricted to this space it is still true that !2(Kn

1,2p) fails at (0, 0)

and that Kn
1,2p holds at each point (q′, 0). But (−q, q)×Q is homeomorphic to Q×Q

itself, and hence the valuation of M ′
n transfers to Q×Q via the homeomorphism.

Fact 4.2.5 There is a sequence of positive irrational numbers converging to 0 such

that for any two adjacent numbers r, r′ in the sequence, the distance r−r′ is a rational

number.

Take for instance
√

2,
√

2−1,
√

2−1.4,
√

2−1.41, etc. Next, for each rational interval,

we form squares S1, S2, ... of decreasing sizes over these intervals bounded by the

separating irrationals [see Figure 4.2]. In the above example, the first square would

be (
√

2,
√

2− 1)× (−1
2 ,

1
2), the second (

√
2− 1,

√
2− 1.4)× (−0.2, 0.2), etc. Each of

these squares is still homeomorphic to the rational plane Q×Q with some valuation

for the proposition letter p.

Now, we create a new big model M over Q × Q as follows. In the sequence of

squares Sn, we embed the earlier counter-examples Mn into Sn in such a way that its

horizontal axis becomes the horizontal axis of the square Sn. This ensures that Kn
1,2p

holds everywhere on Sn’s X−axis while !2(Kn
1,2p) fails somewhere on it. Outside of



CHAPTER 4. THE GEOMETRY OF KNOWLEDGE 83

(0,0)
xxx

Figure 4.2:

the squares, we put every point of the total rational plane in V (p). Now we can prove

the earlier informal assertion.

Claim 4.2.6 (a) M, (0, 0) |= K1,2p

(b) M, (0, 0) /|= !1K1,2p.

Proof (a) We will prove that for all n, Kn
1,2p holds at (0, 0). The proof is by induc-

tion. First note that any point on the y axis or to the left of it (except (0, 0)) sits in

an open circle interior in which p is true everywhere. Inside such a circle, these points

evidently satisfy all formulas Kn
1,2p, and hence by Locality again, they also satisfy all

these formulas in the whole model M .

Now we consider the origin (0, 0). The base step is simple: K0
1,2p is true by the

definition of ν(p). Next consider the inductive step Kn
1,2p ⇒ Kn+1

1,2 p, where Kn+1
1,2 p

is !1(Kn
1,2p) ∧ !2(Kn

1,2p). We show that the two conjuncts hold separately. To see

that !2(Kn
1,2p) holds at (0, 0) we need an open set ((0, y), (0,−y)) with Kn

1,2p true at

each point in this set. Evidently, this formula holds at (0, 0) itself by the inductive

hypothesis. And it holds at any other point on the Y axis by the preceding observation

about open p-circles.

Next we show that !1(Kn
1,2p) holds at (0, 0). This time we need an interval of the

form ((−y, 0), (x, 0)) with Kn
1,2p true at every point in the interval. Here, points in

((y, 0), (0, 0)) are covered by the observation about open p-circles again, and the origin
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itself by the inductive hypothesis. Then, looking toward the right, by the construction

of the squares Sn, we know that Kn
1,2p holds everywhere at the horizontal axis of Sn,

and the same obviously remains true for Sm with m > n. Thus, for the desired right

end-point (x, 0) we can take any point on the horizontal axis of the square Sn. Since

every point in ((0, 0), (x, 0)) is in some Sm for m ≥ n, we have the desired interval,

and hence !1(Kn
1,2p) is true at the origin. In this connection, the idea behind our

‘gluing’ the squares at irrationals was that inside Q×Q, there are then no boundary

points to consider.

(b) To see that !1K1,2p fails at (0, 0), we observe that in any horizontal open

interval I around (0, 0) there is a point where K1,2p fails. Note that for some n, the

horizontal axis of Sn is a subset of I, by our construction of ever smaller squares Sn,

and hence there is a point inside our interval where !2(Kn
1,2p) fails, and hence also

K1,2p, as desired. "

Corollary 4.2.7 K1,2p is not equivalent to C1,2p in topological models.

Corollary 4.2.8 Stabilization of the fixed-point version of C1,2X may occur later

than ordinal stage ω.

Thus, the topological setting achieves a natural separation between the first two

definitions of common knowledge that Barwise distinguished. Moreover, our method

raises further issues. First, it is rather ‘logicky’, and one might want a concrete

independently motivated set of points in the rational plane for which the separation

occurs. Also, it would be of interest to determine the exact (countable) ordinals at

which epistemic fixed-point definitions do stabilize in this model.

This still leaves Barwise’s third account of common knowledge in terms of ‘shared

situations’. We shall return to this matter in Section 4.2.6.

4.2.4 Complete logic of common knowledge on topo-products

Now what is the basic logic of the greatest fixed-point common knowledge modality

C1,2 on topological models? Perhaps surprisingly, the general answer is: ‘the same
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as that for relational S4-models’. The reason is that the usual system S4C
2 already

has principles for common knowledge that are satisfied by the fixed-point definition.

Moreover, that system is complete w.r.t. relational models [35], and the latter are

Alexandroff topological models at the same time. More interesting is what happens

in our topological product models. In fact, the logic does not change here either, but

this time, the argument takes a little more thought.

Theorem 4.2.9 S4C
2 is complete for products of arbitrary topologies. In fact it is

even the complete logic of Q×Q.

The completeness argument runs along the lines of the proof of Theorem 2.6.1 in

Chapter 2. By the usual completeness proof with respect to relational models, any

non-theorem of S4C
2 fails on some finite rooted modal model. Next, such a model can

be unravelled via a bisimulation into the double-binary branching tree T2,2 with an

appropriate valuation. Now we do the labelling construction described in the proof

of Theorem 2.6.1. In the end, this procedure produced a topo-bisimulation between

the given model on T2,2 and some model on the rational plane Q×Q. Now the only

thing we need to observe is that topo-bisimulations do not just preserve truth values

of ordinary modal formulas. They also evidently preserve truth values of formulas in

any modal language allowing infinite conjunctions and disjunctions of formulas. And,

the latter observation gives us exactly what we need to transfer counterexamples to

formulas in the epistemic language with common knowledge viewed as a fixed-point

operator.

Fact 4.2.10 Topological bisimulations preserve arbitrary fixed-point formulas.

Proof In any given model M , any modal fixed-point formula φ is equivalent to

some modal formula φ(α) which has no fixed-point operators any more, but which

uses infinite conjunctions and disjunctions up to a size determined by the ordinal

α to ‘unwind’ approximation sequences. What this α is depends on the size of the

model M . Moreover, it does not matter if we unwind up to any higher ordinal. Now,

suppose that some fixed-point formula φ is true at M, s, and E is a bisimulation

connecting s to t in a model N, t. Let α∗ be the maximum of the unwinding ordinals
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for φ in the two models M , N . Then φ(α∗) is true at s in M , and therefore also true

at t in N . It follows that the original fixed-point formula φ is true in N, t. "
Even so, given the difference between C1,2φ and K1,2φ that we have now found, a

new completeness question arises, yet to be solved:

Question:

What is the complete logic of K1,2φ?

Given all this emphasis on geometrical models like the rational plane, can we really

claim that they are also epistemically relevant? Our discussion only shows their use

as visualizations of abstract distinctions. Whether there is any deeper informational

meaning to Q×Q still remains to be seen.

In the remainder of this paper, we discuss some further aspects of the topological

semantics for knowledge, analogous to those raised in Section 4.1.

4.2.5 More on epistemic agents as topologies

In relational semantics, agents were really just accessibility relations. Likewise, in our

topological models, agents are topologies! As was explained in Section 4.2.2, what

the agent knows in a world of some model is what holds there according to the box

modality of its topology. Let us now draw some comparisons with the situation in

Section 4.1.3, where two agents 1, 2 generated at least two further ‘introspective col-

lective agents’, one being their supremum R(1∪2)∗ leading to common knowledge, and

the other their infimum R1 ∩ R2 leading to ‘implicit knowledge’ for the group. The

topological semantics gives us interesting counterparts to these operations.
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Remark.

Introspection principles If we are less strict in our logic, without requiring positive

introspection, then many further options arise, just as with relational models. If we

are more strict, as in relational S5-models with negative introspection, then we must

only use topologies that do satisfy the axiom φ → !"φ. It is easy to see that, on T0

spaces in which all singletons are closed, imposing this principle makes the topology

discrete, trivializing the epistemic logic. But then, even a weak separation axiom like

T0 is not plausible epistemically. On general spaces, φ → !"φ corresponds to the

property that every set is a subset of the interior of its closure. Unpacked further this

says that:

∀x, ∃U ∈ τ : x ∈ U & ∀y ∈ U, y ∈ V ∈ τ : x ∈ V

This means the space is a union of open sets whose points have the same open

neighbourhoods – which is a topological counterpart of relational S5 models.

Our favorite setting for studying new collective agents are the product models that

we used so far. We start with a simple but perhaps surprising observation. Common

knowledge as a greatest fixed-point corresponds to taking the following very natural

operation on the given topologies for the individual agents. Consider the intersection

τ1∩2 of the earlier topologies τ1 and τ2 on a product space. It is easy to see that this

is again a topology: all closure conditions are satisfied. Now we observe the following

connection:

Fact 4.2.11 ∀M∀x, M, x |= C1,2φ iff M, x |= [1 ∩ 2]φ

Proof We will show that the truth sets [|C1,2φ|] and [|[1 ∩ 2]φ|] are identical in all

models. First, [|C1,2φ|] ∈ τi for i ∈ {1, 2} since the truth set is a fixed-point of νp.φ∧
!1p ∧ !2p. But then [|C1,2φ|] ∈ τ1∩2 by the definition, and so [|C1,2φ|] ⊆ [|[1 ∩ 2]φ|].
Next, [|[1 ∩ 2]φ|] satisfies [|!i[1 ∩ 2]φ|] = [|[1 ∩ 2]φ|] for i ∈ {1, 2}. Hence [|[1 ∩ 2]φ|]
is a fixed-point. Since [|C1,2φ|] is the greatest fixed-point, [|[1 ∩ 2]φ|] ⊆ [|C1,2φ|]. "
It is worth observing that this argument holds in general, for any two given topolo-

gies on some space, not just the vertical and horizontal ones in products. In fact,
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intersection of topologies is the counterpart, under the model-to topology transfor-

mation sketched earlier, of taking the reflexive transitive closure of given accessibility

relations.

Thus, we also expect a topological counterpart for the earlier operation of rela-

tional intersection, which modelled implicit group knowledge DG. This should be

the union of two topologies, and then closing off in the minimal way that produces a

topology again. The result is the sum topology τ1 + τ2 which takes all pairwise inter-

sections of opens of the two topologies as a basis. The latter topology need not always

be of great interest. E.g., on our recurrent topo-product Q × Q, it will just be the

discrete topology, making every point an open. From an informational perspective,

this means that merging the information that we get about points in the horizontal

and vertical directions fixes their position uniquely.

The result of all this is again an inclusion diagram:

τ1 + τ2

↗ ↖

τ1 τ2

↖ ↗
τ1∩2

Let us now return to the three distinctions made in [10]. So far, we have separated

the countably infinite conjunction view from the greatest fixed-point view of common

knowledge. What about the third view of having a ‘shared situation’? In some ways,

using the intersection topology seems to model this. Its opens are precisely those

information pieces that are accepted by both agents. But if that is the case, then

we have not separated the second and third notions. Fact 4.2.11 tells us precisely

that the two amount to the same thing. But topological product models have further

resources! In particular, so far, we have not discussed what topologists would call
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the real product topology τ on spaces X × Y . This topology is defined by letting the

sets U × V form a basis, where U is open in X and V is open in Y . An example

is the natural metric topology on the plane Q × Q, used briefly in the argument for

Claim 4.2.6, with open circles around points as neighbourhoods. The agent corre-

sponding to this new group concept τ only accepts very strong collective evidence for

any proposition. Here are two relevant results from Chapter 2:

Theorem 4.2.12 The epistemic box modality for the true product topology is not

definable in the language of the separate modalities !1, !2, even when we add fixed-

point operators.

Theorem 4.2.13 The complete logic including the true product topology is the small-

est normal modal logic in the language of three modalities !,!1,!2 that contains (i)

the S4 axioms for !1,!2 and !, (ii) !p → !1p and !p → !2p.

Thus, we have found an even stronger notion of common knowledge that might be

said to model Barwise’s third stage. Nevertheless, there are some difficulties with this

identification. For instance, unlike the preceding two operations of intersection and

union closure, true product topology has no general definition on arbitrary models

for our language, as it exploits the product structure essentially. This makes it rather

specialized, and this same fact is also reflected in the poverty of the complete logic

given above. Nevertheless, there are also interesting logical aspects to this situation.

In contrast with the sequential quantification embodied in the greatest fixed-point

reading of common knowledge, the true product modality reads more like a branching

quantifier as defined in [11]. We do not know what to make epistemically of this

tantalizing analogy at this stage.

4.2.6 Operations that are safe for topo-bisimulation

To illustrate the preceding notions of knowledge and agency a bit further, we add a

brief digression on simulations between topological models.
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In relational semantics for modal languages, most natural operations f(R1, R2)

have the property of being safe for bisimulation, that is,

• any given bisimulation between two models w.r.t. the relations R1, R2 is also a

bisimulation for the relation f(R1, R2).

This says that the new operation stays at the same level of model structure as the

old. The regular operations of composition, union, and iteration on binary relations

are all safe in this sense, while a typical non-safe operation is intersection. Safety is a

natural extension of invariance for static formulas to dynamic transition relations ([15]

has a complete characterization of all first-order definable safe operations). Safety

constrains the repertoire of definable transition relations within one given model. In

general process theories, new relations can also be constructed out of old while forming

a new model at the same time, as happens with products for concurrent processes

in Process Algebra. In that setting, safety for operations generalizes to respect for

bisimulation, e.g., if we let ∼= signify bisimulation:

• if M ∼= M ′ and N ∼= N ′, then f(M, N) ∼= f(M ′, N ′).

Most natural product operations show respect for bisimulation. As a check on our new

notions, we can also look at operations on topologies in the same way, substituting

the above topological bisimulations for the usual relational ones.

Of the repertoire of regular operations, only a small part matters in our perspec-

tive. When working only with reflexive transitive relations, composition and union

by themselves do not qualify as operations, and we need to take ∗-closures. And for

reflexive-transitive R1, R2, (R1∪R2)∗ and (R1; R2)∗ yield even the same relation. The

topological counterpart for the latter operation was intersection of topologies τ1 ∩ τ2,

as noted above. Fact 2.23 expressed the observation that the modality for this is the

same as the common knowledge fixed-point modality for the modal operators [τ1], [τ2].

The latter is invariant for topological bisimulations by earlier observations. Indeed

we have the following

Fact 4.2.14 Intersection of topologies is safe for topological bisimulation.
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Figure 4.3:

Proof Let E be a relation between topological models M, N which is a topological

bisimulation for their two separate topologies, as in Figure 4.3.

For a start, let sEt, and s ∈ U with U in τ1 ∩ τ2. Since E is a bisimulation w.r.t.

τ1, there is a τ1-open set V in M ′ such that every point v ∈ V is E-related to some

point u in U . Likewise, there is an τ2-open set W in M ′ such that every point v ∈ W

is E-related to some point u in U . Now, it may be tempting to take the intersection

of V and W at t for the required matching neighbourhood of U , but this need not

be open in either topology. Instead, we consider every E-link between points u in

U and points v in the union V ∪W . Using the bisimulation properties again, there

are again both τ1 and τ2-open neighbourhoods for all such points u, which satisfy

the backward zigzag condition toward U . Continuing this procedure countably many

times, the union of all these successively produced subsets of M ′ is both τ1- and τ2

open, and moreover, it still satisfies the correct backward zigzag condition w.r.t. the

original open neighbourhood U of s in M . The argument in the opposite direction is

similar. "
This result may sound strange because intersection of binary relations led to non-

invariance for bisimulation. But the topological counterpart of this operation was the

sum topology τ1 + τ2 defined above, and its behaviour is indeed unsafe.

Fact 4.2.15 Taking the sum of topologies is not safe for topological bisimulation.

The counterexample is the same as for the relational case. Consider the two three-

point models of Figure 5, with their topologies plus a binary relation E between their
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Figure 4.4:

points as indicated.

Note that the sum topology on the left-hand side has the singleton set {s} as an

open, whereas the sum topology on the right has only the whole two-element space

for a non-empty open. Also, the relation E is a bisimulation for both topologies τ1

and τ2. Next, consider the link sEt, with the open subset {s} on the left. The only

matching open set on the right can be {s′, v}, but this fails to satisfy the backward

zigzag condition, as sEv does not hold. "
Finally, more general operations may produce new topologies over combined spaces.

Our characteristic example was topological product.

Fact 4.2.16 Topological products τ1 × τ2 respect topological bisimulation.

Proof Let E1 be a bisimulation w.r.t. τ1 between models M, M ′, and likewise E2 a

bisimulation w.r.t. τ2 between models N, N ′. Now define a bisimulation E between

M ×N , M ′ ×N ′ by setting:

(s, t)E(s′, t′) iff sE1s
′ and tE2t

′.

Given Definition 2.3.3, it is completely straightforward to check that E is a bisimu-

lation w.r.t both topologies on the product. "
In contrast to this, taking a product of two topological spaces with the true product

topology τ introduced a little while ago does not respect topological bisimulation.
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The reason is the earlier fact that the true product modality ! is not invariant for

topological bisimulations w.r.t. the two component topologies.

4.2.7 Merging information revisited

Finally, we make a few comments on the issue of merging epistemic situations. We

have shown that products of topological spaces are a natural setting for combining

knowledge by different agents, and for distinguishing various forms of knowledge in

the group of all agents. But as in Section 4.1, there is a broader question behind

this. Our topological products are just one way of merging information models. The

general subject of merging epistemic models goes far beyond the scope of this paper

(cf. [?] for more on this topic). We only make one general point here which seems

relevant to our move from relational semantics to topological models.

In general, we need to specify what we want to happen with existing knowledge

and ignorance of agents when merging their information. Suppose we are given two

epistemic models M for group G1 and N for G2, where G1, G2 overlap. In that case,

we may want to require that the intersection group does not learn anything new in

the ‘merge model’ M ∗N , at least w.r.t. formulas in its old language. This situation

is reminiscent of the process of amalgamation of relational models in semantic proofs

of the interpolation theorem for the basic modal language (cf. [?] for an elementary

exposition). Such proofs often start with a G1∩G2 bisimulation between models M, s

and N, t, which serves as an initial connection between the two different settings.

The relevant merge M ∗N then turns out to be a submodel of the full product M ×
N , viz. just those pairs which stand in that bisimulation. One then shows that

the projections from pairs to the original models M , N are bisimulations for the

separate languages. Hence, formulas in the intersection of the two languages retain

one unambiguous truth value: the one they had before under the bisimulation. In the

case of interpolation theorems for shared modalities, this amalgamation construction

has to be complicated, but the point remains the same. General merging of models

for groups of agents may presuppose some initial connection, and its effects on modal

formulas can be prescribed to some extent. In particular, we need not accept all pairs
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in a product as members of a merge model. Once we do this, the connection between

topological models and relational models becomes more complicated, as we could

also try to get the results of this paper with sub-product constructions on relational

models.

4.3 Conclusion

Topological semantics for epistemic logic is a natural extension of the usual rela-

tional modelling. It provides distinctions that can be used to differentiate between

various notions of common knowledge, and define various sorts of collective agents.

Also, using product spaces, topological semantics suggests ‘low-interaction’ merges

for epistemic models for separate groups of agents. Thus, we believe that there are

good reasons for further development of this currently still marginal perspective.



Chapter 5

Conclusions and Further Directions

Exploring spatial structure by means of modal languages and their logics is still in

an experimental stage. We know that there are some elegant and tractable modal

fragments of full topology or geometry, which motivate us to look for more. But

once we venture into new languages beyond the safe territory explored by Tarski and

other pioneers, things can get hard. A typical example is the surprising difficulty

in obtaining completeness when adding natural further structure to the topological

interior modality. For instance, despite many interesting results of [48], the complete

dynamic topological logic of the reals with an added continuous function has yet

to be axiomatized. And the same is true for the ongoing efforts by Shehtman [64]

and the recent work of G. and N. Bezhanishvili, and C. Koepke from [21] mentioned

earlier of axiomatizing the complete topological order logic of the reals. Part of this

may be inevitable combinatorial complexity, part also the issue of choosing a most

appropriate modal language–not too weak, and not too strong–describing the relevant

spatial structures in a most ‘transparent’ format. Against this background, we see

the main results of this thesis as follows.

In Chapter 2, we have introduced the notion of topological product models as a

natural way of obtaining further spatial structure. We have shown how to axioma-

tize these, bringing out the true features of combination in a topological sense–while

avoiding the technical peculiarities of products of relational Kripke frames. Of course,

much further structure could be studied on product models, but our results on true

95
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product topology give some hope that more can be done along the lines of this chap-

ter. Next, in Chapter 3, we have provided a new take on combining topology and

ordering, avoiding earlier complexity by mixing the two in the definition of a new di-

rectional neighborhood modality. Again, we found that this leads to complete logics,

and interesting follow-up issues, also in product spaces. Finally, Chapter 4 provides

additional evidence that all this is not aimless generalization. We show how our prod-

uct models make sense in epistemic logic, with information of agents now viewed as

topological structure, in line with intuitionistic semantics [72] and Scott’s information

systems [61]. Here, too, we feel that many new patterns and complete logics, can be

found, either on geometrical analogies or equivalently, on an epistemic interpretation

of the models.

Nevertheless, what we have so far is obviously just a sequence of first steps. In

the remainder of this chapter, we briefly discuss a few directions where we foresee

further results, partly based on results that we have already obtained - but which in

their present state did not fit yet into the general line of this thesis.

5.1 Products in richer modal languages

The most obvious first-order extension of modal languages these days uses hybrid

languages (cf. [5] [27]). In particular, hybrid modal languages have been introduced

into topology in [39], and [67]. While we have not looked yet at what these expressive

extensions would do for our product languages, we have undertaken one preliminary

study. The following result is from [28]. Consider the product of relational frames

defined in Chapter 4 in the style of [37]. We show how enriching the language with

quite modest modal operations will allow us to capture the ordered pair construction

in a direct and perspicuous manner. For this purpose we use a hybrid language, adding

nominals naming specific worlds. The following sequence of results shows that this is

a fruitful perspective. In particular, we get a completeness transfer result.

Definition 5.1.1 Products of frames. For all frames F = (W,R) and G = (W ′, R′),

let F × G = (W × W ′, RH , RV ), where (x, y)RH(x′, y′) iff xRx′ and y = y′; and

(x, y)RV (x′, y′) iff x = x′ and yR′y′.
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Definition 5.1.2 Products of hybrid logics. For any hybrid logics L1, L2, we define

PROD(L1, L2) to be the smallest hybrid logic that contains the fusion of the L1 and

L2 and the following axioms, and that is closed under the usual inference rules for

hybrid logic (including the Name and Paste rules, c.f. [27]).

1. com : "H"V i ↔ "V "Hi

2. chr : "H!V p → !V "Hp

3. uc : "H("V i ∧"V j) → !V ("Hi → !H(j → i))

4. disjV : "V (i ∧"Hj) → !V ("Hj → i)

5. disjH : "H(i ∧"V j) → !H("V j → i)

Proposition 5.1.3 Let L1 and L2 be hybrid logics preserved under disjoint union.

For all F,G, if F |= L1 and G |= L2 then F×G |= PROD(L1, L2).

Proof Suppose F = (W,R) |= L1 and G = (W ′, R′) |= L2. By closure under

disjoint union, it follows that (W × W ′, {((x, y), (x′, y′)) | xRx′ & y = y′}) |= L1

and (W ×W ′, {((x, y), (x′, y′)) | x = x′ & yR′y′}) |= L2. From this, it follows that

F×G satisfies the fusion of L1 and L2. That the other five axioms are satisfied can

be checked by immediate inspection. "

Proposition 5.1.4 Let F be a point-generated 2-frame, and let L1, L2 be hybrid

logics extending K4. If F |= PROD(L1, L2), then F is isomorphic to the product of

two (point-generated) frames satisfying L1 and L2 respectively.

Proof Let F = (W,RH , RV ) be generated by w, and let FH
w and FV

w be the subframes

of (W,RH) and (W,RV ) respectively, generated by w. Notice that since L1 and L2

extend K4, both RH and RV are transitive. By chr and uc, it follows that for all

x ∈ FH
w and y ∈ FV

w , there is a unique z ∈ F such that xRHz and yRHz. Let

f : FH
w×FV

w → F be the function that maps every pair (x, y) to this unique convergence

point z. We will show that f is an isomorphism.
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• f is surjective. Consider any point z ∈ F. By point-generatedness, z is reachable

from w in a number of steps by the relation RH ∪RV . By repeated application

of commutativity and transitivity, it follows that there are points x and y such

that wRHx, xRV z, wRV y and yRHz. Notice that x ∈ FH
w and y ∈ FV

w . By the

definition of f , f(x, y) = z and therefore, z is in the range of f .

• f is injective. Suppose f(x, y) = f(x′, y′). then by definition of f , we have the

following situation:

By DisjH and DisjV it follows immediately that x = x′ and y = y′.

• f(x, y)RHf(x′, y′) iff xRHx′ and y = y′. First, suppose f(x, y)RHf(x′, y′). Then

by the definition of f , we have the following situation: By comm, there must be

a point x′′ such that xRHx′′ and x′′RV f(x′, y′). By uc, it follows that x′′ = x′

and therefore, xRHx′. That y = y′ follows directly from the disjV axiom.

Next, suppose xRHx′ and y = y′. Then we have the following situation: By

chr, there must be a z such that x′RV z and f(x, y)RHz. By uc, it follows that

z = f(x′, y′), and therefore f(x, y)RHf(x′, y′).

• f(x, y)RV f(x′, y′) iff x = x′ and yRV y′. Analogous to the previous claim.

Finally, since F |= PROD(L1, L2), it follows that (W,RH) |= L1, and therefore by

closure under generated subframes, FH
w |= L1. Similarly, FV

w |= L2. "

Corollary 5.1.5 Let L1 and L2 be hybrid logics preserved under disjoint unions of

frames. A point generated 2-frame satisfies PROD(L1, L2) iff it is isomorphic to a

product of (point-generated) frames satisfying L1 and L2 respectively.

Corollary 5.1.6 If PROD(L1, L2) is frame complete, then it is complete for the

products of L1- and L2-frames.

For further details on this and related results, we refer the reader to the forth-

coming [28], which is the more extensive study of product frames in hybrid logic.
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5.2 First-order extensions

In the limit, the obvious language to consider when studying frame products is first-

order logic. Indeed, there are quite a few results from classical model theory that apply

here. E.g., we know that the first-order formulas preserved under the formation of

products are the generalized Horn sentences [29]. Such results can interact with modal

model theory. E.g., [53] contains an extensive study of interpolation theorems for

modal logics whose frame classes are closed under direct products. The corresponding

algebras have amalgamation properties which underlie interpolation properties by a

Robinson joint-consistency argument. (C.f. also the discussion of merging epistemic

models at the end of Chapter 4.) Now, indeed, the Gabbay-Shehtman construction

does not form direct products in the classical sense. It rather forms ‘interleaved

products’ keeping their operations separate as follows:

(x, y)R1(z, u) iff xR1z and y = u,

(x, y)R2(z, u) iff x = z and yR2u.

Such products are well-known from the theory of concurrency, and logical studies

of ‘Process Algebra’ ([18], [45]). In this case, it is not preservation that we want, but

rather some systematic information on how truth of first-order statement about R1

in F and about R2 in G influence truth of statement sin the combined language in

the product model F × G. We give one sample result, concerning the information

models of [12], where again this type of product construction occurs. In the latter

setting, the component models also have proposition letters p, q, which get lifted to

componentwise unary predicates in the product:

(x, y) |= P1 iff x |= p

(x, y) |= P2 iff x |= p,

Now it is easy to prove the following decomposition result.

Theorem 5.2.1 There is an algorithm taking first-order formulas φ in the language

of R1, R2, P1, P2 into Boolean combinations BC of first-order formulas in the separate
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first-order languages of R1, P and R2, P such that for any product F ×G, F ×G |= φ

iff BC holds when its component formulas are interpreted in ‘their’ models F ,G.

The proof of the theorem replaces quantifier ∃x in the language of the product by pairs

of quantifiers ∃x1∃x2, and in atoms of the form, say, R1xy it rewrites to Rx1y1 and

x2 = y2. The resulting first-order formula can be rewritten to a boolean combination

of the required kind.

This sort of result suggests that we could also aim for ‘decomposition results’ on

our product models, provided that we do not interpret proposition letters as arbitrary

sets of ordered pairs, but only as ‘blocks’ of the forms Y × G, F × Y .

5.3 Constraints on product operations

We have not studied our product operations as a mathematical construction per se.

In the literature on product models, however, there are some general constraints that

such constructions should satisfy. Of greatest relevance to us seems the following.

In Process Algebra, operations O forming new transition systems should ‘respect

bisimulation’ (cf.[19], [57], [15]), that is,

If M is bisimilar to N , and M ′ is bisimilar to N ′, ..., then O(M,N, ...) is bisimilar

to O(M ′, N ′, ...).

This stipulation constrains possible operations on models, though not very deeply.

Van Benthem in [15] studied some constraints on defining formats for model oper-

ations satisfying a sort of ‘constructive’ version of respect, viz. that the value of

bisimulation be definable in some sense out of the given ones for the arguments. [45]

is an extensive study of classification results for first-order definable operations that

respect bisimulation, even though the notion also makes sense for arbitrary logical

languages defining products. In our setting of Chapter 2, it is easy to prove an

analogue of respect by routine inspection of the clauses for topo-bisimulation:

Proposition 5.3.1 If M is topo-bisimilar to M ′, and N is topo-bisimilar to N ′,

then M ×N is topo-bisimilar to M ′ ×N ′.
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But there is also another way of formulating constraints here, viz. in terms of equiv-

alence of theories in the given language. For example, in [36], we have that,

If F is elementarily equivalent to F ′, G is elementarily equivalent to G ′, then the

direct products F × G and F ′ × G ′ are elementarily equivalent.

Such results are not always obvious. For instance, it is still an open question

whether elementary equivalence of argument models implies elementary equivalence

for the binary linear product of models in the sense of Chu-spaces [60]. More generally,

connections between the Feferman-Vaught analysis of products and our topological

setting would be an interesting subject to explore.

Likewise, we have not been able to determine whether our topological product

construction M ×N of Chapter 2 preserves modal equivalence of its arguments: i.e,

having the same modal theory in the distinguished world. We conjecture that the

answer is positive, since the definition of the product seems so simple–but a direct

reduction as in the above result for Barwise-Seligman products seems much harder,

because of the non-componentwise treatment of proposition letters in our products.

5.4 Decidability and complexity

All our earlier topics in this thesis have complexity aspects. For instance, in Chapter

2, we were able to show that the complexity of modal product logic does not go

up from the component logics, since both S4 and S4 ⊕ S4 are PSPACE-complete.

More generally, however, we know that forming product model can be dangerous,

as products form a natural grid pattern that can be used in principle to encode

undecidable Tiling Problems (for basic introduction to tiling, see for instance [25]).

Indeed, there exist very simple examples of undecidable modal logics that are obtained

in this way: S4 × S4 is a relevant example (cf. [40]). Likewise, it is known that

Venema’s compass logics in a two-dimensional plane are undecidable [55].

Nevertheless, as we have seen some of our languages, especially the mixed topo-

logical order modalities of Chapter 3, tread a fine line between expressive power and

undecidability. In particular, we have the following result:
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Proposition 5.4.1 TCQ, the logic of the topo-compass language over Q × Q is

decidable. Further, its complexity is between PSPACE and EXPTIME.

Conjecture 5.4.2 The complexity of TC is between PSPACE and EXPTIME.

The proof of this claim is in currently in the works, but if the conjecture holds,

topo-compass logic would retain some of the advantages of Venema’s approach while

avoiding the undecidability.

Nevertheless, decidability and undecidability of modal product logics is a very

tricky area (cf. [38], [40], [54]). Here is a result from the earlier-mentioned working

paper [28] showing this for the case of, again, products of relational models. We start

with a known decidability result.

Theorem 5.4.3 The fusion of the minimal temporal hybrid logic Kt with itself Kt⊕
Kt is decidable.

However, grid encoding and tiling problems strike in the following, apparently not

much stronger combination:

Theorem 5.4.4 The product logic of Kt ⊗Kt is undecidable.

Let Kt be the basic temporal hybrid logic. That is, the basic hybrid logic in the

language with a countable set NOM of nominals i, j, ..., a countable set PROP of

propositional variables, p, q, .... The formulae are defined recursively:

φ := p | i | ¬φ |φ ∧ ψ |@iφ |Fφ |Pp |Gp |Hp

where i ∈ NOM , p ∈ PROP , F and P are existential modalities and G and H are

the corresponding universal modalities. Let Kt ⊗ Kt be the hybrid product of this

logic with itself. That is,

Kt ⊗Kt = Log{F1 ⊗ F2 | F1,F2 ∈ Fr(Kt)}
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where the product F1⊗F2 of Kripke frames F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉 is the

frame 〈W1 ×W2, Rh, Rv〉 in which for all x, x′ ∈ W1, y, y′ ∈ W2,

〈x, y〉Rh〈x′, y′〉 ⇔ xR1x
′ & y = y′

and

〈x, y〉Rv〈x′, y′〉 ⇔ x = x′ & yR2y
′.

A model M over such a frame F1⊗F2 is an ordered pair (F1⊗F2, V ), V : PROP ∪
NOM → ℘(W1 × W2) where for any propositional variable p ∈ PROP , V (p) ⊆
W1 ×W2 and for any nominal i, V (i) is a singleton subset of W1 ×W2.

To prove theorem 5.4.4, we construct a temporal formula ψ from a given modal

formula φ such that ψ is satisfiable in a temporal product model iff φ is globally

satisfiable in a modal product model.

Obtaining ψ from φ.

First we translate φ which is in the standard modal language of "v and "h into

the temporal product language Fv, Fh and Pv, Ph by simply translating "v to Fv and

"h into Fh. We call the resulting formula Tr(φ).

ψ is then the conjunction of the following formulae (in the brackets, for the later

reference, we include a semantic role the formulae will play in the construction):

(i) i ∧ @iFv= ∧ @iFh= (Ensures that we are evaluating at i, both vertical frame

and the horizontal frame have at least 2 points.)

(ii) @i¬Fhi, @i¬Fvi (Ensures that the point i does not see itself either along Rh

or along Rv.)

(iii) @iGvGvPvi (Says that every point vertically reachable is reachable in one

vertical step.)

(iii’) @iGhGhPhi (The horizontal version of (ii).)

(iv) @iGv¬Fvi (No vertical successor of i has i as vertical successor.)

(iv’) @iGh¬Fhi (The horizontal version of (iii).)

(v) @iGvGhTr(φ) where Tr(φ) is the above translation of φ into the temporal

language. (Simulates the universal modality U .)
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Definition 5.4.5 A formula φ is globally satisfiable in K × K model iff there is

product frame F × G and a modal valuation V , that is, a valuation V : PROP →
℘(F × G), such that for all pairs (x, y) ∈ F × G, (F × G, V ), (x, y) |= φ.

Proposition 5.4.6 φ is globally satisfiable in a K ×K model iff ψ is satisfiable in

a hybrid Kt ⊗Kt model.

Proof (=⇒) Let F ×G with some modal valuation V be the K×K model globally

satisfying φ. We build a rooted temporal model F ′ ⊗ G ′ that satisfies ψ at the root

(x, y) as follows. Let F = (W1, R1), and G = (W2, R2). Then in F ′ = (W ′
1, R

′
1),

W ′
1 = W1 ∪ {x}, and R′

1 = R1 ∪ {(x,w) |w ∈ W1}. Similarly, in G ′ = (W ′
2, R

′
2),

W ′
2 = W2 ∪ {y}, and R′

2 = R2 ∪ {(y, u) |u ∈ W2}. We define a hybrid valuation V ′

over F ′ ⊗ G ′ from V by (w, u) ∈ V ′(p) if w ∈ W1, u ∈ W2 and (w, u) ∈ V (p), for all

p ∈ PROP . We let V ′(j) = {(x, y)} for all j ∈ NOM .

We then want to show the following.

Claim 5.4.7 The identity is a standard modal bisimulation between (F×G, V )(w, u)

and (F ′×G ′, V ′)(w, u) for w /= x, u /= y, in other words, for any formula χ built from

the booleans, Fv and Fh, (F × G, V )(w, u) |= χ iff (F ′ × G ′, V ′)(w, u) |= χ.

But Tr(φ) by construction only involves Fv and Fh, that is, no Pv or Ph. Since

φ was true everywhere in (F × G, V ), given the valuation V ′, for all w /= x, u /=
y, (F ′ × G ′, V ′)(w, u) |= Tr(φ).

Claim 5.4.8 i-v’ are all true at (x, y) in (F ′ ⊗ G ′, V ′).

(⇐=) Let (F1 ⊗ F2, V ), (x, y) |= ψ, with V a hybrid valuation, F1 = (W1, R1) and

F2 = (W2, R2). We want to extract a modal product model (F ′
1 × F ′

2, V
′) such that

for each pair (w, v) ∈ F ′
1 × F ′

2, (F ′
1 × F ′

2, V
′), (w, v) |= φ.

We define (F ′
1 × F ′

2, V
′) as follows. F ′

1 = (W ′
1, R

′
1) where W ′

1 = W1 − {x}, R′
1 =

R1 % W ′
1, that is, the restriction of R1 to W ′

1. Similarly, F ′
2 = (W ′

2, R
′
2) where

W ′
2 = W2−{y}, and R′

2 = R2 % W ′
2. For V ′ we stipulate that V ′(p) = (V (p)∩W ′

1×W ′
2).

We want to show that



CHAPTER 5. CONCLUSIONS AND FURTHER DIRECTIONS 105

Fact 5.4.9 (1) F1 × F2 is well defined. This amounts to showing that W ′
1 ×W ′

2 is

nonempty.

(2) The identity is a standard modal bisimulation between (F ′
1×F ′

2, V
′)(w, v) and

(F1 ⊗ F2, V )(w, v).

Proof For (1), by (i) both W1 and W2 have at least two points, and thus W1 −
{x}×W2 − {y} contains at least one pair. To prove (2) we need to show that:

(a) (w, v) ∈ V (p) iff (w, v) ∈ V ′(p),

(b) for (w, v) ∈ W ′
1 ×W ′

2, (w, v)R1(w′, v) iff (w, v)R′
1(w

′, v),

(c) for (w, v) ∈ W ′
1 ×W ′

2, (w, v)R2(w, v′) iff (w, v)R′
2(w, v′).

(a) is immediate from the definition of V ′.

(b) Since R′
1 ⊂ R1, the ‘if’ direction is immediate. To show that (w, v)R1(w′, v)

only if (w, v)R′
1(w

′, v), it is sufficient to show that if w /= x and (w, v)R1(w′, v), then

w′ /= x. But this follows by (iv), since by (iii) we know that for all u, (x, y)R1(u, y).

Thus if for some u, (u, y)R1(x, y) we would have (F1 ⊗ F2, V ), (x, y) |= @iFvFvi, and

thus the negation of (iv) would hold at (x, y) as well. Since we are working in a

product frame, it follows that for no u ∈ W ′
1 and no w′ ∈ W ′

2, (u,w′)R′
1(x, w′).

(c) We prove (c) symmetrically using (iii’) and (iv’). "
Since the identity is a bisimulation, for any modal formula χ and its temporal

translation Tr(χ),

(F ′
1 × F ′

2, V
′), (w, v) |= χ iff (F1 ⊗ F2, V ), (w, v) |= χ.

In particular, if we can show that for all pairs (w, v) ∈ W ′
1×W ′

2, (F1⊗F2, V ), (w, v) |=
Tr(φ), we would have shown that φ is globally satisfied in (F ′

1 × F ′
2, V

′) as desired.

Fact 5.4.10 φ is globally satisfied in (F ′
1 × F ′

2, V
′).

Proof Let (w, v) be an arbitrary pair in W ′
1 × W ′

2. It is sufficient to show that

(x, y)R2(x, v)R1(w, v). Then by (v), Tr(φ) is true at (w, v). To see that (x, y)R2(x, v)R1(w, v)

observe that by (iii) and (iii’) respectively, xR1w and yR2v.

"
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This completes the reduction of global satisfiability in K ×K to satisfiability in

Kt ⊗Kt and thus the proof of undecidability of Kt ⊗Kt.

Again, the general issue would be whether this sort of undecidability argument

also crops up in topological product models, where the grid directions are not directly

accessed by relational modalities.

5.5 Conclusion once more

In this thesis, we have given new languages for spatial structures, with an emphasis on

modal description of product models introducing more than one spatial ‘dimension’.

We have developed some basic model theory, and completeness theory. But, as our

discussion in this final chapter clearly shows: the area is open for many further rounds

of questions, and hence new research!



Appendix A

Plug-And-Play Unravelling and

other issues

In this appendix, we clear some of the remaining issues from Chapter 2. We start with

an unravelling procedure that enables us to prove completeness of transitive reflexive

multi-modal logics with respect to certain kinds of trees.

We will first prove that,

Proposition A.0.1 S4⊕ S4 is complete with respect to T2,2.

Proof

Let F be a finite S4⊕S4 frame, and let w0, w1, ... be an enumeration of its nodes

starting with the root. We show how to label T2,2 with the nodes of F in such a way

that the labelling is a bounded morphism from T2,2 onto F.

But the unravelling procedure is more general and we will describe it in most

general terms.

Let G be a finite or countable frame on the set W ′ and Ri for i ∈ {1, ...n} be

finitely many transitive reflexive relations on that frame, and let l : W ′ → N be an

enumeration of W ′.

Definition A.0.2 A finite R′
i-plug for a node x is the binary branching tree de-

scribed as follows: The root of the tree is the node x. The root is then R′
i related to

two distinct points, on the left to a copy of x, and on the right to y such that l(y)

107
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Figure A.1: A finite and a countable plug.

is the the least number such that Rixy, i.e., the first point in the enumeration of x’s

successors. The right successor is then a leaf in the tree and the left successor is

further related to two points, the left a copy of x and the right the second successor

of x on the enumeration of W ′, z. And so on: the right is a leaf, and the left has two

successors, x itself and another successor of x until all successors are exhausted. See

Figure A.1. The finite plug is pictured on the left. Obviously, if x has finitely many

successors, then the R′
i plug for x is finite.

A countable R′
i-plug for a node x is needed when the logic in question lacks finite

model property. A slight modification of the definition of the finite plug is required to

ensure that every copy of x indeed sees all of the successors of x from the original

frame F . Let x be a node and l(y) < l(z) < l(w), ... . Then as before, we start

with the root x. The root is again related to two distinct points, a copy of x on the

left and a copy of y, the first successor of x in the enumeration, on the right. The

right successor is then a leaf in the tree and the left successor is further related to two

points, but this time both points are copies of x. In the next round the left is related to

two points, the left one a copy of x and the right one a copy of z, the second successor

in the enumeration. The right successor is always a leaf, and the left is related to two

copies of x. And so on. Once again, Figure A.1 is telling.

In the case of S4⊕ S4, F can always be made finite so both R1 and R2 plugs for
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any given point will be finite. Note that since every point in a reflexive frame has a

successor, plugs will always consist of at least the root and two successors. Note also

that every point in a plug is either a leaf or it has exactly two successors.

We define,

Definition A.0.3 Plug-and-play tree for G as the infinite 2n-ary branching tree

constructed as follows. The tree starts with R′
1 plug for the root of G. Then in

the next round every R′
1, R

′
2..., R

′
n leaf of the finite tree is replaced by its respective

R′
1, R

′
2, ..., R

′
n plugs until the tree has no more leafs.

Fact A.0.4 In the plug and play tree for G, every point has exactly two successors

along each of the relations R′
i.

Fact A.0.5 For any point y in a R′
i plug for x, y is a leaf if y /= x, and y sees itself

as a leaf in a finitely many steps that go through other copies of y alone, if y = x.

The transitive closure of plug-and-play tree for G is the R′
1, R

′
2, ...R

′
n transitive

(and reflexive if needed) closure of that tree. We will call the resulting infinite tree,

Tn×2.

Fact A.0.6 By transitivity and reflexivity of Ri ∈ G, every point y such that R′
ixy

in Tn×2 is a copy of a point z such that Rixz in G.

Fact A.0.7 The map f : Tn×2 → W ′ that sends every copy of x in Tn×2 to x is a

p-morphism with respect to each of R1, R2, ...Rn.

Proof We show (i) if R′
ix
′y′, then Rif(x′)f(y′), and (ii) if Rixy, then for each x′

such that f(x′) = x there is a y′ such that R′
ix
′y′.

(i) Let R′
ix
′y′. Then Rif(x)f(y) by Fact A.0.6.

(ii) Since by A.0.5, every point in a plug either is a leaf or it sees itself as a leaf

and every leaf is replaced with a plug for that leaf that contains all of its successors,

every point sees all of its original successors.

"
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Thus applying the plug and play method to T2,2, for any frame F we can obtain

an unravelling of F to T2,2 with a p-morphism f : T2,2 → W , that is, the singleton

T2,2 is complete for S4⊕ S4.

The following is ever so slightly more complex to demonstrate:

Theorem A.0.8 TPL is complete with respect to T6,2,2.

Proof We will show how to unravel an arbitrary countable rooted TPL frame F to

T6,2,2 in such a way that there is a natural p-morphism from T6,2,2 onto F . For this we

use plug-and-play technique above, except that we need to make a slight adjustment.

The tree T3×2 that we obtain via the plug and play from a TPL-frame F is not quite

a TPL frame since it does not satisfy the requirement that R1, R2 ⊆ R. We ensure

that the tree we get satisfy this property by simply stipulating that if R′
1xy then R′xy

and if R′
2xy then R′xy. Because this was true of the points in the original frame, it

can be shown that the p-morphism f still has the required properties. "

Proposition A.0.9 1. A formula ϕ constructed from the Booleans and the modal

operator !1 is valid in 〈X × Y, τ1, τ2〉 iff ϕ is valid in 〈X, η〉.

2. A formula ϕ constructed from the Booleans and the modal operator !2 is valid

in 〈X × Y, τ1, τ2〉 iff ϕ is valid in 〈Y, θ〉.

Proof (1) (⇒)Let there be a model M over X with a valuation ν such that for

some x, M, x /|= φ. Define a valuation ν ′ over X × Y as follows: 〈x1, x2〉 ∈ ν ′(p)

iff x1 ∈ ν(p). For a formula ψ built from propositional variables, ∧,¬, and !1, it is

shown by induction that M, x |= ψ iff 〈X × Y, ν ′〉, 〈x, x2〉 |= ψ.

(⇐) Let 〈X × Y, ν ′〉, 〈x, x2〉 /|= ψ and let y ∈ ν(p) iff 〈y, x2〉 ∈ ν ′(p). For relevant ψ,

it is proved by induction that M, x |= ψ iff 〈X × Y, ν ′〉, 〈x, x2〉 |= ψ.

The proof of (2) is symmetric. "
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Quantum Query Complexity and Distributed Computing

ILLC DS-2004-02: Sebastian Brand

Rule-based Constraint Propagation: Theory and Applications

ILLC DS-2004-03: Boudewijn de Bruin

Explaining Games. On the Logic of Game Theoretic Explanations

ILLC DS-2005-01: Balder David ten Cate

Model theory for extended modal languages

ILLC DS-2005-02: Willem-Jan van Hoeve

Operations Research Techniques in Constraint Programming

ILLC DS-2005-03: Rosja Mastop

What can you do? Imperative mood in Semantic Theory

ILLC DS-2005-04: Anna Pilatova

A User’s Guide to Proper names: Their Pragmatics and Semanics

ILLC DS-2005-05: Sieuwert van Otterloo

A Strategic Analysis of Multi-agent Protocols

ILLC DS-2006-01: Troy Lee

Kolmogorov complexity and formula size lower bounds

ILLC DS-2006-02: Nick Bezhanishvili

Lattices of intermediate and cylindric modal logics

ILLC DS-2006-03: Clemens Kupke

Finitary coalgebraic logics



ILLC DS-2006-04: Robert Špalek
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