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Chapter 1

Introduction

Syntactic structure plays a central role in most theories of language, but it cannot
be directly observed. An important question, therefore, is whether there is a
relation between syntactic structure and immediately observable properties of
language, such as the statistics of the words and sentences that we hear and read.
Finding such a relation has important consequences for the problem of language
acquisition by children, as well as implications for the theory of syntax itself. It
can also be used in engineering language processing systems.

This thesis addresses the problem of finding the relation between the sur-
face statistics of a language and its hidden syntactic structure by developing a
parser which attempts to capture this relation. The parser is tested to determine
its agreement with the syntactic structure which linguists assign to utterances.
While this approach does not try to model the way humans learn and process
language, the design of the parser relies on some well-known properties of lan-
guage and language processing by humans. By selecting both the representation
of syntactic structure and the language statistics in a way which agrees well with
these properties of language, the resulting relation, as coded by the parser, is
simple.

1.1 Background

One of the more notable facts about language is that children can learn it without
explicitly being informed of its structure and meaning, as already observed by
Saint Augustine in his Confessions (I 8):

Passing hence from infancy, I came to boyhood, or rather it came
to me, displacing infancy. Nor did that depart (for whither went it?)
and yet it was no more. For I was no longer a speechless infant, but
a speaking boy. This I remember; and have since observed how I
learned to speak. It was not that my elders taught me words (as,

1



2 Chapter 1. Introduction

soon after, other learning) in any set method; but I, longing by cries
and broken accents and various motions of my limbs to express my
thoughts, that so I might have my will, and yet unable to express
all I willed, or to whom I willed, did myself, by the understanding
which Thou, my God, gavest me, practise the sounds in my memory.
When they named any thing, and as they spoke turned towards it, I
saw and remembered that they called what they would point out by
the name they uttered. And that they meant this thing and no other
was plain from the motion of their body, the natural language, as it
were, of all nations, expressed by the countenance, glances of the eye,
gestures of the limbs, and tones of the voice, indicating the affections
of the mind, as it pursues, possesses, rejects, or shuns. And thus
by constantly hearing words, as they occurred in various sentences, I
collected gradually for what they stood.1

Saint Augustine’s theory of language learning certainly may sound plausible to
the modern reader,2 but, whether correct or not, it merely describes the learning
of the meaning of words (and only of some words, for that matter). This is
at best a modest beginning, since to properly understand and use language, a
child does not only need to learn the meaning of individual words, but must also
understand how these can be combined to produce complex linguistic structures,
such as sentences. The way the words are arranged together is described by the
syntax of the language, and different languages not only use different words, but
also have different syntactic structures. A child must, therefore, not only learn the
meaning of individual words but must also learn the rules governing the syntax of
the language. Because these rules are abstract, they cannot be learned simply by
associating them with objects in the real world. At the same time, this abstract
nature of syntactic rules and their relatively loose connection with meaning have
made syntax one of the most formally described components of natural language.
For these formal syntactic systems, concrete learning algorithms can be designed
and tested. Such an algorithm is the subject of the present work.

When studying natural language learning, one may consider various methods
by which the rules governing the use and interpretation of a language can be
deduced from exposure to utterances of that language. There may be different
ways and settings in which this goal can be achieved and the way children acquire
their first language may represent only one possible method for doing so. Here
I will use language acquisition to refer to child language acquisition, the specific
process by which children learn their first language, while language learning will
refer more generally to any method of learning.

Language acquisition by children is, of course, not merely a specific instance
of natural language learning but also the most successful learning method known

1English translation by Edward Bouverie Pusey.
2who has not read Wittgenstein’s Philosophical Investigations.



1.2. Some Roads not Taken 3

to date. This is not surprising, as it is only the successful learning of language
by children which allows natural languages to exist at all and the acquisition
process thus defines the range of possible languages (Deacon 1997; Kirby and
Hurford 2002; Zuidema 2003). The possibility remains, however, that additional
learning methods exist. This is especially true if the setting in which learning
takes place is not identical to that in which children learn their first language.
For example, a computer may be required to learn the syntax of a language from
written text. This input is clearly very different from the speech signal which a
child is exposed to when acquiring a language, and may require different learning
algorithms. This does not mean, however, that such learning algorithms are not
relevant to the study of child language acquisition. I will discuss this later on in
the introduction.

There are many ways to approach the problem of language learning and of
syntax learning in particular. These approaches differ not only in the solutions
they offer, but in the questions they pose and in the way they set out to answer
these questions. Of the many roads available, I have chosen to travel down one:
to design and test empirically (on large corpora of text) an algorithm which learns
to parse from unannotated example sentences. This thesis does not, therefore,
address the question of child language acquisition directly but is concerned with
the more general problem of language learning.

Before going down this road, the introduction is a fitting place to take a quick
look down the roads not taken. I therefore begin with a very brief mention of
other approaches to the study of language learning and acquisition: in psychology,
in theoretical linguistics and in theoretical computer science. This should allow
the reader to place the current work within a wider context, but the emphasis is
on mentioning, rather than discussing, the main alternative approaches. I then
go on to explain what one may expect to learn from the approach adopted in
this thesis, which uses real language input (though not necessarily that which is
available to children) to simulate learning on a computer (rather than observing
it in children). Next, taking a first step down the road chosen, I look more
closely at previous computer algorithms designed to learn syntactic structure in
settings similar to those I use. Having thus looked at all the roads I could have
taken, I conclude the introduction by describing the road I have taken and those
properties of it which I find most attractive.

1.2 Some Roads not Taken

1.2.1 Psychological and Linguistic Approaches

The obvious way to study language acquisition is to observe small children as
they learn their first language. This has become a thriving field of research within
modern psychology (see Ingram (1989) for work up to the late 80’s and Tomasello



4 Chapter 1. Introduction

and Bates (2001) for more recent work). This research has produced an impressive
body of observations and theory, but it remained largely incompatible with most
of the theories linguists developed for adult language. This is no major problem
when studying the first stages of language acquisition in very young children, but
as older children, acquiring more complex linguistic skills, become the subject
of research, the problem becomes increasingly pressing. From the point of view
of many linguists, the psychological study of the development of language in
children has failed to deal with the true complexities of adult language which
must be acquired by children (Pinker 1984).

An alternative approach to the study of language acquisition has developed
within the field of linguistics, with the end point of the acquisition process, the
adult language, as its starting point. Following Chomsky (1965), linguists com-
pare different languages to identify those properties which all languages have in
common. This approach has become known as principles and parameters (Chom-
sky and Lasnik 1993). The assumption is that a learning procedure only has to
be defined for the idiosyncratic properties of each language while the common
properties of all languages can be assumed to be innate. This has been the
main program of Chomskian linguistics, which attempts to identify a universal
grammar for all languages and a set of parameters which distinguishes different
languages and must be learned.3 Using this framework, one could then hope to
be able to go back to the child development data and discover the exact way
in which children actually discover the values of the parameters for the specific
language they are exposed to.

Chomsky (1965) distinguished between linguistic theories which have descrip-
tive adequacy and theories which also have explanatory adequacy. A theory with
descriptive adequacy correctly describes the structures found in different lan-
guages while a theory which has explanatory adequacy must also explain how
the rules used to describe the structures of each language can be deduced from
examples of that language. Chomsky (p. 26) claims that “gross coverage of a
large mass of data can often be attained by conflicting theories; for precisely this
reason it is not, in itself, an achievement of any particular theoretical interest or
importance.” Therefore, only the condition of explanatory adequacy can allow us
to decide between the conflicting theories. In this way, the problem of language
acquisition (and specifically, the acquisition of syntax) has moved center stage in
linguistic study. Even without actually achieving explanatory adequacy (some-
thing which has not yet been achieved), the need for it has been a driving force
behind linguistic research, especially within the Chomskian tradition.

One could imagine the child and adult centered approaches to the study of lan-
guage acquisition working towards each other, but instead, two belligerent camps
have formed, with child centered approaches attempting to stretch child language

3Chomsky (1965) points out that the idea of a universal grammar goes at least as far back
as the 18th century.
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all the way up to adult language and adult centered approaches attempting to
stretch adult language all the way down to child language. Comprehensive theo-
ries covering the full process of language acquisition have been developed within
both approaches (see Tomasello (2003) for an example of the child centered ap-
proach and Pinker (1984) for an acquisition theory based on formal mechanisms
developed for adult language). The two approaches remain largely incompatible,
probably because they seem to align well with opposing stances in traditional
controversies about language and human cognition in general, such as the debate
about nativism vs. empiricism. Child centered approaches to language acqui-
sition, the modern variant of which are often usage based theories (Langacker
1987; Langacker 1991; Tomasello 2006), tend to take an empiricist stance and
emphasize the use of general cognitive capabilities of abstraction, generalization
and analogy in language acquisition and use. In contrast, adult centered theories
are based on some form or other of universal grammar, which is often complex
and is assumed to be an innate, language specific, human capability, thus taking
a nativist stance. This debate is still raging, but as it is mainly a debate about
language acquisition and not about language learning, it is of no concern to the
present work.

1.2.2 Theoretical Mathematical Models

Because much of what happens in the process of learning a language is invisible
to us, researchers have been concerned with identifying settings which allow lan-
guages to be learned in principle (whether children actually use those methods
or not). The hope is that the range of theoretical possibilities (once identified)
is sufficiently constrained to allow for the correct theory to be selected based
on the observed behavior of children. Linguists have been pursuing such a goal
in their search for universal grammar by attempting to identify the similarities
between different existing languages. As syntactic theory became increasingly
formalized in twentieth century linguistics, it became possible (and tempting) to
try to formalize the process by which the syntax of a particular language can
be learned from example sentences of that language. Researchers in the field of
computational learning theory who are interested in grammatical inference look
for mathematical models which would allow them to define learnable classes of
languages and algorithms for selecting one language out of such a class based on
example sentences from the target language.

The seminal theoretical work in this field is Gold (1967), which defined an
abstract model of the learning process and criteria for successful learning. The
learner is assumed to receive one example after the other from the target language
and can, at each step, make a guess as to the grammar of that language. The
learner is allowed to err at first, but after a finite number of steps must converge
to a correct grammar. Gold showed in his paper that if the learner assumes that
the grammar can be any context free grammar and if all the learner has to go on
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is an arbitrary sequence of sentences in the language, then there is no algorithm
which guarantees convergence to a correct grammar. In Gold’s terminology, this
means that the class of context free grammars is not learnable in the limit from
positive examples. Because most linguists believe that a grammar has to be
at least context free to allow for the phenomena observed in natural language
syntax, Gold’s negative result has been widely (and sometimes wildly) cited in
the linguistic and cognitive literature (see Johnson (2004) for discussion). It was
used, among others, to support the innateness of language or to dismiss Gold’s
paradigm of learning altogether (since, as we know, languages are learnable).

While Gold’s theorem was for many a final statement (for good or bad), for
many others (including Gold) it was only a starting point. In the decades that
followed, researchers looked for variations of the original setting which could allow
linguistically relevant classes of languages to be learnable. One possible variation
is to change the definition of success, for example by introducing a probabilistic
success criterion (e.g. Valiant 1984). Another approach is to search for specific
learnable classes of grammars within the original setting of Gold’s paper (e.g.
Kanazawa 1998). Gold’s negative results apply to large classes of grammars,
but they do not necessarily hold for sub-classes of these classes. Because many
languages in the classes Gold used are not plausible candidates for human lan-
guages, sub-classes of these classes, which better describe the range of possible
human languages, may be learnable. Several surveys of these results are available
(Lee 1996; Sakakibara 1997; de la Higuera 2005). While this line of research has
created a significant body of theoretical results, its relevance to the empirical
study of language acquisition remains limited because the grammatical systems
considered were usually not powerful enough by the standards of modern theo-
retical and computational linguistics and because even when positive learnability
results were achieved, they often made unrealistic assumptions about the input
and resources available to the learner (such as noiseless input or very long con-
vergence time). While some algorithms were implemented, most were not tested
on real natural language data.

1.3 The Road Taken: Empirical Computational

Models

Even before Gold’s theoretical work and possibly also before Chomsky’s intro-
duction of explanatory adequacy as a goal for theoretical linguistics, researchers
in artificial intelligence were attempting to build computer systems which could
learn grammars from text (Lamb 1961). These efforts continued from the early
60’s until today, ranging from simulations (working with toy grammars and lan-
guages) to systems applied to large corpora of real language. The algorithm
described in the present work falls into this last class of models and has been
applied to large collections of natural language sentences (see chapter 7).
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While some of these computer systems (and especially the simulations) were
designed to simulate the process of language acquisition by children, an important
difference between this line of research and previously mentioned approaches to
the study of language learning is that often the immediate motivation behind
the construction of language learning computer systems is not necessarily to shed
light on the problem of language acquisition by children but, instead, the need to
solve some engineering problem. This is not to say that researchers developing
such algorithms ignore the question of language acquisition by children, but it
does mean that they do not feel committed to psychologically plausible algorithms
and are driven more by the success of the algorithm on the specified task rather
than its psychological modeling accuracy.

1.3.1 The Task

When it comes to syntax, the main (but not only) engineering task studied is
parsing. A parser is an algorithm which takes an utterance as input and outputs
the syntactic structure of that utterance. Since the syntactic structure of an
utterance cannot be directly observed, different linguistic theories may assign
different syntactic structures to the same utterance. The syntactic structures
defined by some of these theories may be very complex, but at the most basic
level syntactic structure is either described in terms of dependency links (from one
word to another) or by grouping words together into syntactic units. Dependency
links indicate that some relation holds between the words (such as the relation
between an adjective and the noun it modifies or between a verb and its object).
The grouping of words into units reflects the observation that these groups of
words can function as a unit, or a constituent . For example, in the sentence
the dog barked, the two words the dog can be replaced by a single pronoun it.
This implies that in some ways the dog is a single unit. While the most obvious
examples of dependencies and constituents are non-controversial, there are many
cases which are debatable. Therefore, the construction of a parser always implies
a choice of syntactic theory. When working with annotated corpora, one often
adopts the decisions made by the annotators as to the syntactic structure. I will
do so as well, but I will also discuss some of the choices made by the annotators
in chapter 4.

The learning algorithms I study here are algorithms which learn to parse a
language by examining unannotated example sentences. This can be referred to
as unsupervised parsing , in contrast to supervised parsing, where an algorithm
learns to parse a language from syntactically annotated examples.

1.3.2 Why Study Unsupervised Parsing?

Both supervised and unsupervised parsers use some form of learning to replace
the traditional method of designing parsers by manually writing a set of gram-
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mar rules for each language. While using a supervised parser reduces the effort
involved in writing grammar rules, it also requires a significant amount of manual
labor because for each new language (and domain) to be parsed, one needs to
syntactically annotate a large enough corpus of text. In an unsupervised learn-
ing approach, however, all that one needs to do is feed the learning algorithm
with sufficiently many unannotated examples of the target language and domain.
Since large amounts of electronic text are now available for many languages,
this approach is by far the cheapest method. It is therefore appealing, from an
engineering point of view, to have algorithms which can learn to parse in an un-
supervised way. While such algorithms are yet to achieve parsing accuracy even
close to that achieved by other methods, recent years have seen a new surge of
interest in the development of unsupervised parsing algorithms, with significant
improvement over past results (Klein and Manning 2002; Klein and Manning
2004; Dennis 2005; Bod 2006a; Bod 2006b).

Beyond the engineering motivation, the implementation of learning computer
systems remains highly relevant to the study of language learning because it
is the only approach which can test what happens when a proposed algorithm
interacts with real language input. While psychological and linguistic theories
are mostly based on individual examples picked out by the researchers and while
mathematical models only make general theoretical assumptions about the input
available to the learner, implementing computer models and testing them on
large corpora of real language allows the cumulative effect of numerous examples
to be studied. In this respect, this approach is the closest to studying language
acquisition in its natural settings.

Even when a computational model is clearly not psychologically realistic, its
success in learning syntactic structure has important implications to the study
of language and language acquisition because such successful learning indicates
a relation between the surface structure of a language and its hidden syntactic
structure. Even if the method by which this relation is established is not actually
used by children acquiring a language, the relation is still an empirical property
of the language and may be used by children in some other way in the process of
language acquisition.

This brings us to another reason for developing learning algorithms for syntac-
tic structure, one which goes back to Harris (1946). In that paper, Zellig Harris
proposed a “formalized procedure for describing utterances directly in terms of
sequences of morphemes” which covers “an important part of what is usually
included under syntax.” The procedure proposed by Harris, which groups to-
gether sequences of words by the contexts in which they appear, is known as
the distributional method and has become the starting point of many modern
grammar induction algorithms. Harris himself, however, was not interested in
the problem of language acquisition but rather in providing an explicit procedure
for describing syntactic structure to replace “the use of diverse undefined terms
and a reliance on semantic rather than formal differentiation” in the description
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of syntactic structure. Harris thus attempted to establish syntactic analysis as
an empirical science which has sequences of words uttered by a speaker rather
than the cognitive processes taking place in that speaker’s mind as its subject
matter. This approach, which is behaviorist in nature, lost much of its popularity
(together with behaviorism in general) after the cognitive revolution of the 50’s.
Beyond the general shift in linguistics from the study of surface structure to the
study of the cognitive processes involved in language processing, one of the rea-
sons that linguists abandoned distributional methods in the study of grammar is
their failure to achieve significant results, just as grammar induction algorithms
failed for many years to achieve even modestly good results on real language
input. Whether a purely distributional approach can indeed teach us anything
important about the syntactic structure of language remains to be seen, but I
believe that if successful algorithms can be designed to infer syntactic structure
from unannotated examples then this should certainly have implications for the
theory of syntax and can serve as an empirical method (which does not rely on
human judgments) for discovering the syntactic structure of language. Just as one
does not need to be a behaviorist to study behavior, one does not need to deny
the relevance of cognition to linguistics in order to use distributional methods in
the study of language. While current methods are still too weak to contribute
directly to the study of syntax in the way Harris envisioned it, advances made
in recent years may indicate that algorithms can discover at least some of the
syntactic structure of a language. In this way, Harris’s original program of com-
ing up with a formalized procedure for describing an “important part of what is
usually included under syntax” remains a valid goal for research with significant
benefits to our understanding of language; if it succeeds.

1.3.3 On the Use of Meaning in Learning Syntax

Whatever the approach taken, acquisition of language by children remains rele-
vant because the fact that children can learn language without getting explicit
information about its structure means that language learning is possible, at least
in principle. Of course, there is significant debate as to the exact information
available to children when they acquire their language (and specifically syntax)
and it is clear that a computer can never be exposed to the full experiences of
the child. One central question is whether syntax can be learned independently
from meaning (semantic or pragmatic). Many theories of language acquisition,
such as Pinker (1984), are based on semantic bootstrapping, where the child first
learns the meaning of some words and then uses this acquired knowledge to de-
duce the syntactic structure of sentences in which these words appear. While this
seems to be a simple process for acquiring syntactic knowledge, it has also been
shown (Landau and Gleitman 1985; Gleitman 1990) that knowledge of syntactic
structure is necessary for the correct learning of the meaning of many words,
when a linguistic utterance can only be mapped onto an observed situation if the
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syntactic structure of the utterance is known to the child. This process of syn-
tactic bootstrapping can work together with semantic bootstrapping to learn both
meaning and syntax. How the two may be combined and which role is played by
each component remains an open question.

Implementing semantic bootstrapping in a fully formalized system has been
attempted by several researchers, both theoretically, within Gold’s paradigm of
learning (Hamburger and Wexler 1975; Tellier 1998; Dudau-Sofronie et al. 2001;
Oates et al. 2003), and in actual computer systems (Anderson 1977). The main
problem with all these systems is that they do not learn the semantics as a child
does, but take the semantic representation as input together with the utterance
describing the situation. These semantic representations are stipulated by the
designers of the algorithms, and can all be suspected of encoding syntactic in-
formation which needs to be learned by the child. The discussion whether these
properties are semantic or syntactic is irrelevant, as the question remains how a
child can learn them from the input available. Moving the syntax into the seman-
tics does not solve the problem, but only avoids it. This is also the reason why
computer systems designed to use semantics (such as Anderson’s) were toy sys-
tems designed to prove a cognitive theory rather than systems designed towards
a specific application. From an engineering point of view, to use the semantic
information required by these systems would require semantically annotated cor-
pora, so for all practical purposes it is simpler to use syntactic annotations to
begin with.

Because the most readily available input for a computer program attempt-
ing to learn the syntax of a language is unannotated sentences (without any
information about their meaning or context) most algorithms remain entirely
distributional in nature. The objection that this is not the way children learn
their language does not detract from the importance of these algorithms, if they
are successful. Success of such algorithms is both useful in constructing language
processing systems and in understanding the relations between the surface struc-
ture of language and its syntactic structure. This is also the approach I adopt in
the present work.

1.3.4 A Brief Survey of Syntactic Induction

Over the years, many systems for learning the syntax of natural languages were
proposed and implemented. This section is a brief survey of these systems and
the principles used in their design. I discuss only systems which were actually
implemented and which take unannotated example utterances of a language as
input.

Until recently, most of these systems learned a context free grammar. A
context free grammar (CFG) consists of a finite set of rules of the form X →
Y1, . . . , Yn, which can be used to replace (rewrite) the symbol X by a sequence of
symbols Y1, . . . , Yn. Beginning with a single start symbol S, rules can be applied
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repeatedly until a sequence of words is formed (X cannot be a word, so words
cannot be rewritten). Given a sentence to be parsed, a CFG parser looks for a
sequence of rule applications which generates that sentence from S. The sequence
of rule applications defines the syntactic units (constituents) of the sentence: the
sequence of words which was generated from a single symbol X is a unit and
X is the label of that unit (e.g. X = noun phrase). Since there may be more
than one way to generate a sentence with the same CFG, the parser must have
a way to select one of the possible parses. A standard way of doing so is to use
a probabilistic context free grammar (PCFG) in which every rule is assigned a
probability (the probabilities of all rules with the same left hand side must sum
to 1). The rule probabilities induce a probability for each parse and the parser
selects the most probable one.4

Most of this section is dedicated to the description of various algorithms which
learn the syntax of a language by inducing a (probabilistic) context free grammar.
At the end of this section I describe some more recent algorithms which do not
use CFG induction but instead define various ways of inducing a parser directly.
These algorithms turn out to be far more successful than the older CFG induction
algorithms and I conclude the section with a short discussion of what is, in my
opinion, the main reason for this difference.

Distributional Clustering

Many grammar induction algorithms use a method of distributional clustering
which may be traced back to Harris (1946):

The procedure [. . . ] consists essentially of repeated substitution:
e.g. child for young boy in Where did the — go?. To generalize this,
we take a form A in an environment C D and then substitute
another form B in place of A. If, after such substitution, we still have
an expression which occurs in the language concerned, i.e. if not only
CAD but also CBD occurs, we say that A and B are members of
the same substitution-class, or that both A and B fill the position

C D , or the like.

Because Harris was not interested in language induction but in structural
description, he allowed the decision as to whether CAD and CBD are in the
language to be taken by a linguist. When this procedure is used to induce a
grammar, the decision whether A and B are members of the same substitution
class is based not on the linguistic judgments of a linguist but on the occurrence
of both CAD and CBD in a corpus of utterances in the language being learned.
This method has been the cornerstone of many grammar induction algorithms

4For more detailed definitions of CFG and PCFG, see, for example, Jurafsky and Martin
(2000).
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beginning with Lamb (1961), and has since been used also by many others (Cook
et al. 1976; Wolff 1982; Mori and Nagao 1995; Adriaans et al. 2000; van Zaanen
2000; Clark 2001; Solan et al. 2005). Some additional algorithms from the 60’s
and 70’s based on this method are mentioned in the survey of Pinker (1979). The
term environment used by Harris has been replaced by context in the more recent
literature.

While the idea seems simple and straightforward, there are several funda-
mental problems in implementing it successfully. Several of these were already
mentioned in Harris’s original paper. The first problem that Harris mentions is
that:

In some languages, relatively few morphemes occur in exactly the
same environments as others: poem occurs in I’m writing a whole
— this time but house does not. Both morphemes, however, occur
in That’s a beautiful —. Shall we say that poem and house belong
in general to the same substitution class, or that they have some
environments in common and some not?

This problem worsens when it is not a linguist who has to decide whether a certain
sentence appears in a language but a corpus is used to make such decisions. Even a
large corpus contains only a small fraction of the utterances which may reasonably
be produced in a language and even if two sequences of words can, in principle,
appear in a certain environment, it may very well be that no evidence for this
will be found in the corpus. To solve this problem, algorithms generally do not
require that sequences of words appear in exactly the same contexts in order
to cluster them together and some overlap of contexts is considered sufficient.
The exact criterion used may vary from simple clustering of any two sequences
appearing in the same context (van Zaanen 2000) to complex algorithms based
on the combination of different contexts (Adriaans et al. 2000).

Part-of-Speech Induction

One task on which the clustering by context technique has proven successful is
the induction of parts-of-speech, that is, the assignment of a class label to each
word. This is a subtask of the general clustering task because it only considers
single words (rather than sequences of words) for substitution. Using only the
most frequent words in the corpus as contexts, various clustering methods have
been used to induce part-of-speech tags (Schütze 1995; Clark 2000). This is not
only a useful result in itself but may also serve as a first step in the induction
of a grammar. For this reason, most recent syntactic induction algorithms take
sequences of part-of-speech tags rather than words as their input. This con-
siderably simplifies the problem of identifying sequences appearing in identical
contexts, because both the sequences and the contexts are drawn from a much
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smaller set of possible symbols. In practice, the part-of-speech tag sequences are
often taken from an annotated corpus rather than being induced.

Identifying Constituents

A second problem with the distributional method identified by Harris is that
when sequences of words are considered for substitution, the substitution classes
created by the method may contain sequences of words which are not constituents
at all:

Since our procedure now permits us to make any substitution of
any sequences, it may become too general to produce useful results.
For example, we might take the utterance I know John was in and
substitute certainly for know John, obtaining I certainly was in. This
substitution conceals the fact that the morphemes of I know John was
in can be said as two utterances instead of as one.

Harris goes on to mention other respects in which certainly and know John differ
and then suggests that “substitution of sequences be so carried out as to satisfy
all manipulations of that environment which forms the frame of the substitution.”
Even if such a procedure can be carried out by a linguist, it certainly cannot be
carried out by an algorithm which only has a small subset of the utterances in
the language to work with and does not know how to identify all permissible
manipulations of a given environment.

For this reason, some clustering-based induction algorithms (Mori and Nagao
1995; Clark 2001) explicitly define a procedure to distinguish between sequences
(of part-of-speech tags) which are constituents and those which are not. Mori
and Nagao make the assumption that sequences (of part-of-speech tags) which
represent constituents are less constrained as to what precedes and follows them
than non-constituent sequences and implement this by setting a threshold on
appropriate conditional entropy functions for the right and left contexts of a
sequence. Clark uses a criterion which is based on the assumption that the
mutual information between the left and right context of a sequence is higher for
constituents than for non-constituents. These two methods seem to implement
similar intuitions in different ways. The algorithm of Solan et al. (2005) does not
explicitly distinguish between constituents and non-constituents but does seem to
use a method similar in nature (but not in detail) to that of Mori and Nagao (1995)
in order to detect “significant patterns” which eventually become the constituents
of the analysis. Other clustering algorithms do not have an explicit procedure
for identifying constituents, but instead rely on the grammar rule construction
procedure (described below) to implicitly prefer rules describing constituents.
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Inducing the Grammar Rules

Having clustered sequences of symbols and possibly having determined which
of these are candidate constituents, all sequences in a cluster can be replaced,
wherever they appear in the corpus, by a new single symbol representing the
cluster. This is represented by defining a set of context free rules which have the
new symbol as their left hand side and the sequences in the cluster as their right
hand side. Because the sequences in different clusters may overlap, replacing
all occurrences in the corpus of sequences from one cluster by a single symbol
can destroy the sequences which are part of another cluster. For this reason,
the induction algorithm must determine which cluster to substitute first. Having
performed the substitution, the process can be repeated.

Most algorithms (Cook et al. 1976; Wolff 1982; Mori and Nagao 1995; Clark
2001) use an objective function to decide which grammar rule to create at each
step. These objective functions are all similar in nature (but not necessarily in
detail) and may be traced back to Solomonoff (1964), who defined a Bayesian
probability function which has to be maximized by the grammar induction al-
gorithm. This probability function is P (D|G)P (G), where P (G) is the a-priori
probability of the grammar and P (D|G) is the probability of the observed data
(corpus) given the grammar. The a-priori distribution is usually taken to be such
that smaller grammars have higher probability. Maximizing the Bayesian proba-
bility function is equivalent to minimizing − log(P (D|G))− log(P (G)) which is a
description length criterion. The quantity − log(P (G)) is seen as describing the
size of the grammar and − log(P (D|G)) is seen as the length of the data after be-
ing encoded by the grammar. This is often interpreted as a compression criterion
because a good grammar which captures the regularities of a language should
allow the data to be encoded compactly. While details vary, most algorithms use
some variant of this function (either in its Bayesian or description length form) for
rule selection. An exception is Solan et al. (2005), who uses the “most significant
pattern” (which resembles the constituency criterion of Mori and Nagao 1995) as
a criterion for substitution.

Because substituting a single symbol for a constituent immediately destroys all
non-constituent sequences which overlap (but do not contain) that constituent,
the process of rule selection can potentially eliminate non-constituent clusters.
The burden of doing so correctly is placed on the objective function by which
rule selection is determined. By filtering out non-constituent clusters before the
rule selection step, Mori and Nagao (1995) and Clark (2001) increase the chances
of this happening.

The algorithms of van Zaanen (2000) and Adriaans et al. (2000) are an ex-
ception to this process in that they do not substitute and re-cluster after each
substitution but instead continue to use the clustering on the original text. While
van Zaanen (2000) proposes different heuristics to decide between conflicting con-
stituents in the text, Adriaans et al. (2000) simply create a set of rules from their
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clustering without going back to the original text (and thus do not have to deal
with conflicting constituents). Of course, when parsing with these rules, only
non-crossing units are created, but it is not entirely clear whether there is any
mechanism in the algorithm which allows constituent clusters to be preferred over
non-constituent clusters.

Syntagmatic and Paradigmatic Merging

When a clustering algorithm creates a grammar rule and substitutes all sequences
in a cluster by the left hand side (non-terminal) symbol of the rule, it actually
makes two decisions: first, it identifies each of the sequences as a constituent
and, second, it identifies these constituents as being substitutable for each other.
Borrowing structuralist terminology, some authors (Wolff 1982; Stolcke 1994) re-
fer to these operations as syntagmatic merging (grouping words into syntactic
units) and paradigmatic merging (grouping units into substitution classes). Stol-
cke (1994) also names them chunking and merging (respectively). In a chunk
(syntagmatic merge) step, a single sequence of symbols is replaced, wherever it
appears in the corpus, by a new non-terminal symbol and an appropriate context
free rule is added to the grammar. In a merge (paradigmatic merge) step, sev-
eral different non-terminals are merged into a single non-terminal. This approach
was already applied in the algorithms of Cook et al. (1976) and Wolff (1982).
Because chunking is used, one can restrict merging (clustering) to single symbols
appearing in the same context, rather than having to cluster sequences of differ-
ent lengths as in the original Harris method. Cook et al. make use of this and
only allow merging of single symbols while Wolff seems to retain the possibility of
merging sequences of symbols (in addition to chunking). Both algorithms decide
which of the many possible chunking or merging operations to perform at each
step based on the improvement on an objective function resulting from such an
operation.

Stolcke (1994) goes one step further and does not use context at all as a
criterion for merging. Instead, merging can be performed between any two non-
terminals and which merge or chunk to perform depends only on the improvement
on an objective function resulting from such a merge. Thus, the full burden of
success is put on the shoulders of the objective function and its correct design be-
comes critical. It is interesting to note that Stolcke (p. 88) observes that chunking
often must be combined with merging to achieve an improvement on the objec-
tive function. This seems to suggest that while the separation of merging and
chunking is conceptually elegant, the two operations must be performed together
and the separation is in practice undone.
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Highest Likelihood PCFG

The induction algorithms mentioned so far are sometimes referred to as structure
search algorithms, because they search for the grammar which optimizes the
objective function by constructing a set of grammar rules. An alternative is
parameter search, in which the set of possible rules is fixed and only the probability
of each rule (in a probabilistic context free grammar) has to be determined. The
search is then for the probability distribution which maximizes the likelihood of
the observed data. This process may assign some rules a zero (or very small)
probability, thus eliminating them effectively from the grammar. It is therefore
possible to start with a relatively large set of possible rules and hope that the
parameter search will only assign large probabilities to a small subset of them.

Of the two components of the objective function used in the structural search
algorithms, we are left with only one: P (D|G), the likelihood of the data given
the probabilistic grammar. The a-priori probability of the grammar is no longer
used. This may seem to suggest that the a-priori probability of the grammar is
not needed to begin with, but this is not true. Parameter search algorithms must
restrict the possible grammar rules they allow because, otherwise, the maximum
likelihood is achieved by the trivial grammar in which every sentence in the
corpus is generated by a single rule and the probability of the rule is equal to
the relative frequency of the sentence in the corpus. The selection of the initial
set of grammar rules to which a non-zero probability may be assigned becomes
a critical issue in the design of parameter search algorithms. While this may be
difficult to achieve in a way which is not biased towards specific languages, it is
also probably not reasonable to assume that all context free grammars should
remain a-priori possible, as is assumed by most structure search algorithms.

One advantage of parameter search algorithms is that a relatively efficient
algorithm has been developed for finding a local maximum for the likelihood
function. This algorithm, called the inside-outside algorithm (Baker 1979; Lari
and Young 1990), begins with some initial setting of the rule probabilities and
re-estimates these probabilities on a corpus until a local maximum of the corpus
likelihood is reached. While this seems encouraging at first, attempts to induce
grammars using this algorithm (Carroll and Charniak 1992) proved disappointing.
One reason for failure which the authors propose is that the algorithm tends to
converge to local maxima which are not good grammars. A different reason,
suggested in Klein and Manning (2002), is a poor choice of the set of possible
grammar rules in these experiments. Later experiments (Pereira and Schabes
1992; Schabes et al. 1993) showed that this algorithm works successfully when it
is trained on bracketed sentences, but no successful application of the algorithm
to the induction of PCFGs from unannotated text is known to me.
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Non-CFG Syntactic Induction

Despite some slow progress, the performance of algorithms which induce a con-
text free grammar (probabilistic or not) remains disappointing. While some al-
gorithms were reported to successfully induce toy grammars, none seemed to
succeed on the task when confronted with real linguistic data. The standard syn-
tactic task in computational linguistics is parsing and it is therefore reasonable
to evaluate grammar induction algorithms on the parsing accuracy they achieve.
Even when algorithms were able to produce some output on real language input,
the accuracy of the parses remained low.

In the last decade, new induction algorithms have been proposed which no
longer rely on context free grammars. Instead, various probabilistic models of
syntactic structure are used and induction is performed by searching for the pa-
rameters which maximize the likelihood of the corpus data. The parse assigned
to a sentence is then simply the structure with the highest probability (given
the induced parameters). These algorithms use either a constituency (bracket-
ing) representation of syntactic structure (Klein and Manning 2002; Bod 2006a;
Bod 2006b; Bod 2007a) or a dependency (link) representation of syntactic struc-
ture (Yuret 1998; Paskin 2002; Klein and Manning 2004; Smith and Eisner 2005;
Smith and Eisner 2006).

The probability assigned by these models to a syntactic structure is based on
the product of the probabilities assigned to the “building blocks” of the structure.
In the case of CCM (Klein and Manning 2002), these building blocks are the
constituent and non-constituent sequences of parts-of-speech in the structure as
well as the contexts of these sequences. The probability distributions induced by
the algorithm then specify the probability of a certain sequence of parts-of-speech
(or context) as a constituent or a non-constituent (see figure 1.1 for details). In
the case of the different variants of U-DOP (Bod 2006a; Bod 2006b; Bod 2007a),
the building blocks are subtrees of the syntactic structure and the probabilities are
the probability of using each subtree in a derivation (see figure 1.2 for details).
Both these models require the syntactic trees to be binary branching. When
dependency models are used, the building blocks are the dependency links and
the probability distribution describes the probability of two parts-of-speech (or
words, in the case of Yuret 1998) being joined by a link. In DMV, Klein and
Manning (2004) also added a probability describing the non-attachment of a
head beyond its last argument (see figure 1.1 for details). This model has also
been used by Smith and Eisner (2005) and Smith and Eisner (2006) with different
likelihood maximization techniques.

Many of these recent algorithms perform significantly better than context free
grammar induction algorithms. While no CFG induction algorithm has ever been
reported to do better on English than the right-branching heuristic (which simply
brackets every word together with all words to its right), many recent algorithms
(Klein and Manning 2002; Klein and Manning 2004; Smith and Eisner 2005;
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CCM:

S - sentence (part-of-speech sequence): 0 NN 1 NNS 2 V BD 3 IN 4 NN 5

B - bracketing (boolean matrix): [ [ 0 NN 1 NNS ] 2 [ V BD 3 [ IN 4 NN 5 ] ] ]

Bij = true ⇐⇒ bracket from i to j:

0 1 2 3 4 5
t t t 0

t 1
t t 2

t t 3
t 4

5

αij - parts-of-speech from i to j (e.g. α02 = NN NNS).
xij - the context of αij (e.g. x02 = � − V BD).

CCM defines a probabilistic model P (S,B) = Pbin(B)P (S|B) with Pbin a uniform
distribution over all binary branching bracketings and

P (S|B) =
∏

i<j

P (αij|Bij)P (xij|Bij)

DMV:

Projective dependency structure D of sentence S (see section 4.1 for definitions):

NN NNS
ww

V BD
ww &&

IN
&&

NN root
yy

Each dependency d is a link from a head h to a dependent a.

DMV defines the following generative probabilistic model for P (D,S):

D(h) - dependency structure rooted at h (D = D(root)).

depsD(h, l/r) - dependents of h (in D) to the left/right of h.

adj = true iff no dependent has yet been generated in the current direction.

P (D(h)) =

∏

dir∈{l,r}





∏

a∈depsD(h,dir)

PSTOP(¬STOP|h, dir, adj) P (a|h, dir)P (D(a))





× PSTOP(STOP|h, dir, adj)

Figure 1.1: Klein and Manning’s CCM (2002) and DMV (2004) models. The EM
algorithm (with the sentences S as observed and bracketing B or dependencies D
as unobserved) is used to search for the model parameters which (locally) max-
imize the likelihood of the (unannotated) corpus. Each sentence is assigned the
most probable structure (bracketing/dependency) according to these parameters.
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Every sentence (part-of-speech
sequence) in the input corpus
is assigned all possible binary
trees:

S

NNS X

VBD X

JJ NNS

S

NNS X

X

VBD JJ

NNS

S

X

X

NNS VBD

JJ

NNS

S

X

NNS X

VBD JJ

NNS

S

X

NNS VBD

X

JJ NNS

All subtrees are extracted: S

NNS X

X

VBD X

JJ NNS

S

NNS X

X NNS

etc.

Each subtree t in this collection is assigned a probability:

U-DOP: P (t) =
|t|

∑

t′:r(t′)=r(t) |t
′|

where r(t) is the root node of t (S or X) and |t| is the number of
times t appears in the subtree collection.

UML-DOP: Expectation maximization beginning with U-DOP’s estimates.

U-DOP∗: Using the DOP∗ estimator of Zollmann and Sima’an (2005).

A derivation constructs a tree from subtrees:

S

NNS X

VBD X

JJ NNS

= S

NNS X

◦ X

VBD X

JJ NNS

The probability of a derivation is the product of the probabilities of the subtrees
it uses: P (t1 ◦ . . . ◦ tn) =

∏

i P (ti). The probability of a tree is the sum of
probabilities of all its possible derivations: P (T ) =

∑

{t1◦...◦tn=T}

∏

i P (ti). In
practice, only the most probable derivations are summed.

The parse assigned to a sentence is the tree with the highest probability.

Figure 1.2: Bod’s U-DOP (Bod 2006b), UML-DOP (Bod 2006a) and U-DOP∗

(Bod 2007a) algorithms.
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Smith and Eisner 2006; Bod 2006a; Bod 2006b; Bod 2007a) do significantly
better than this baseline (see chapter 7 for details).

1.3.5 From Grammar Induction to Parser Induction

The move away from context free grammars has significantly improved the pars-
ing accuracy of unsupervised parsers. While some of this improvement can be
attributed to the details of the design or to the use of the expectation maximiza-
tion technique, I would like to suggest that it is the move from grammar induction
to parser induction which has contributed most to the improvement.

We have seen that the construction of a context free grammar requires two
types of decisions to be made: syntagmatic (which sequences of words are con-
stituents) and paradigmatic (which sequences can be substituted for each other).
These are two aspects inherent to what we expect from any grammar and nei-
ther can be ignored in the process of induction. In contrast, unlabeled parsing,
which only requires the parser to identify the constituents (or dependency links)
but does not require them to be labeled, is purely syntagmatic (by definition).
A parser induction algorithm can therefore focus on learning to detect syntactic
units while ignoring substitutability. Indeed, none of the recent successful al-
gorithms (Klein and Manning 2002; Klein and Manning 2004; Bod 2006a; Bod
2006b; Bod 2007a) can determine which constituents are substitutable. Even
when contexts are used (as in the CCM algorithm of Klein and Manning 2002)
they are only used to determine the probability that the sequence appearing inside
the context is a constituent and not to decide which sequences can be substituted
for each other. Another example is the memory based algorithm of Dennis (2005),
which uses alignment just as in older clustering algorithms but stops short of cre-
ating substitution classes. Instead, it directly uses the alignments to make parsing
decisions.

In contrast to these parser induction algorithms, grammar induction algo-
rithms need to perform both syntagmatic and paradigmatic induction. In prac-
tice, the emphasis was always on the paradigmatic aspect of the induction. This
is implied in Stolcke’s (1994) comment that syntagmatic merges must usually be
followed by paradigmatic merges to produce any improvement on his objective
function. This shows that while formally both syntagmatic and paradigmatic re-
lations are learned, it is only the paradigmatic relation which is the driving force
behind the induction process. It is not surprising therefore that such algorithms
produce poor parsers. The few grammar induction algorithms that did incorpo-
rate some explicit mechanism to distinguish constituents from non-constituents
(Mori and Nagao 1995; Clark 2001) seem to have gained in parsing accuracy from
this. Still, it was only when the focus shifted completely from substitutability to
the detection of constituents that parsing accuracy began to improve significantly.
Substitutability, the essential idea of the Harris method, which has been seen as
a starting point for the induction process for so long, turns out to be unnecessary
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in unsupervised parsing.
This does not mean that substitutability is not an important linguistic notion

or that grammars are not an important linguistic tool (in generating new sen-
tences, for example) but it does mean that the first step in the learning of syntax,
the discovery of the structure of the utterances, can be done without them. Sub-
stitutability can then be learned based on this syntactic structure rather than
being used to determine it.

This having been said, the notion of substitutability still plays one important
role in recent unsupervised parsing algorithms: they all use part-of-speech se-
quences in place of words as their input (with the exception of Yuret 1998). One
may wonder whether this is necessary. In this thesis I suggest that the answer
is probably no and I present an unsupervised parser which completely does away
with substitutability, even at the word level.

1.4 The Road Taken: Learning to Parse Incre-

mentally

The present thesis is about parser induction. It takes the view that the identifi-
cation of syntactic units and relations in an utterance does not require the notion
of substitution or the definition of a grammar. It makes this explicit by defining
a non-deterministic parser and learning a parsing function which decides among
the various parsing options open to the non-deterministic parser.

When designing an unsupervised parser, it is useful to look at the way hu-
mans process language even if one is not interested in cognitive modeling and it
is useful to look at the common properties of languages even if one is not look-
ing for a universal grammar. Of the many properties of language and language
processing discovered by researchers, I have chosen to make primary use of three:
the incrementality of human language processing, the skewness of syntactic tree
structures and the Zipfian distribution of words. All these are fundamental and
universally accepted properties of language. The use of these properties leads to
a greedy parser in which both parsing and learning are local. As a result, learning
and parsing are fast, but not at the expense of parsing accuracy, which remains
high by current unsupervised parsing standards.

1.4.1 Incrementality

Humans interpret language as it is being heard or read, and do not have to
wait for the end of an utterance to determine the structure and meaning of its
beginning. This is referred to as the incrementality of human language process-
ing, and has been thoroughly studied by psycholinguists (see e.g. Crocker et al.
2000). While incrementality is widely acknowledged to be a property of human
language processing, most grammars are not specifically designed to be applied
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incrementally and most standard parsers are not incremental. Even in a grammat-
ical framework such as combinatory categorial grammar (Steedman 2000), which
is supposed to easily accommodate incremental parsing, wide coverage parsers
(Hockenmaier and Steedman 2002; Clark and Curran 2004) are not incremental.
Thus, in computational linguistics, incrementality is usually seen as an additional
burden on the design of a system rather than as a useful tool in its development.
But incrementality can be most useful, because it considerably constrains the
possibilities a language interpreter has to consider (Church 1980). In the specific
case discussed in the present work, this interpreter is a parser which has to de-
termine the syntactic structure of an utterance. While in most standard parsing
algorithms the end of the utterance can potentially affect the parse of the begin-
ning of the utterance, this cannot happen in an incremental parser. As a result,
an incremental parser has fewer possibilities to consider at each step. This not
only restricts the search space for the parser but also simplifies the task of the
learning algorithm because the learning algorithm only has to learn to distinguish
between the possibilities the parser may choose from.

The problem encountered by incremental parsers is that in some utterances
the structure of the beginning of the utterance remains ambiguous until a disam-
biguating word is reached. This seems to be a problem for incremental parsing,
but is actually dependent on the syntactic representation chosen: a structure
which is ambiguous in one representation is not necessarily ambiguous in another
representation, which may leave the ambiguous feature underspecified until the
disambiguating word is reached. Not every ambiguity may be solved in this way
and linguists have long been aware of the fact that humans can easily handle
some ambiguities while having problems processing others (Bever 1970). Psy-
cholinguists have developed various explanations for this difference between am-
biguities and some of these proposals are representational in nature: only the
difficult ambiguities are ambiguous in the proposed representations (Weinberg
1993; Weinberg 1995; Gorrell 1995a; Gorrell 1995b; Sturt and Crocker 1996).
This will be discussed in section 4.3. In the present work I adopt a similar ap-
proach and develop a new link based representation of syntactic structure which
is well suited for incremental parsing.

1.4.2 Skewness

The syntactic structure of natural language is skewed. This simply means that
when the syntactic structure of an utterance is represented by a tree, each node
in the tree has at least one short branch (figure 1.3a). The shorter the shortest
branch is, the greater the skewness. In chapter 4, I examine several syntactically
annotated corpora to show that a significant degree of skewness can be found in
those annotations. The syntactic representation I introduce in this thesis easily
captures this skewness.

In contrast, phrase based representations of syntactic structure, such as con-
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omdat
((

de manoo de vrouwoo ziet
eegg

omdat

de man

de vrouw
ziet

omdat

de man de vrouw
ziet

(a) This syntactic tree of a Dutch phrase is
skewed because under every node there is a
branch of length at most 2. The shortest
branch is sometimes on the left and some-
times on the right.

(b) When the syntactic tree (bottom) is de-
rived from the dependency structure (top)
by creating a node for every head and all its
direct and indirect dependents, the tree is
even more skewed because under every node
there is a branch of length 1.

Figure 1.3: An example of skewed syntactic trees.

text free grammars, allow (a-priori) any tree structure and, therefore, a learning
algorithm for such representations must discover by itself the skewness property
of syntactic trees. However, if this property is indeed universal, there is no need
to burden the learning algorithm with its discovery and it is possible to code
skewness directly into the parser.

The other extreme is taken by dependency structures (see section 4.1), in
which a head word is connected by links to all its dependents (which may, in
turn, be heads of other dependents). The straightforward way to construct con-
stituents from a dependency structure is to create for each head word a constituent
covering it together with all its direct and indirect dependents (figure 1.3b). The
resulting tree is skewed because every head word is attached immediately under
the node it heads. This skewness is too strong, however, especially for sentential
constructions that combine a subject with a predicate (see the example in fig-
ure 1.3 and chapter 4 for details). Therefore, the skewness defined by dependency
structures must be relaxed.

The syntactic representation I introduce here is based on links between words,
and can easily capture the skewness of syntactic structure in a way similar to
that of dependency structures. However, by labeling each link by a number (its
depth) the representation allows the degree of skewness to be lower than that of
dependency structures. I will argue in chapter 4 that the resulting skewness is
close to that which is actually observed in natural language.
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1.4.3 The Incremental Parser

Having defined a representation for syntactic structure, the next step is to define
an efficient parser for that representation, that is, an algorithm which takes an
utterance as input and outputs the syntactic structure of that utterance. While
the syntactic representation I use was chosen to facilitate incremental parsing, it
is the parser I describe which actually implements this incrementality. By doing
so, it also defines an exact notion of incrementality (since there are multiple ways
of doing so). From now on, I will refer to this simply as the incremental parser.

The syntactic formalism used by the parser ensures that the parser can only
output skewed syntactic structures, thus eliminating many spurious candidate
structures from the search space. The incrementality of the parser further restricts
the search space, thus simplifying parsing even further. If the incrementality and
skewness coded in the syntactic representation and parser roughly resemble those
of natural languages then this reduction of the search space should not come at
the expense of the accuracy of the parser.

The basic incremental parsing algorithm is non-deterministic: at each step it
specifies a set of links which may be added to the parse, but does not determine
which of these links to add. This is not surprising, since different languages
require different parsing decisions to be made. Classically, such idiosyncratic
properties of a language are coded for the parser by a grammar of the language.
In the case of the incremental parser, this is replaced by a parsing function which
selects, at each step, one of the options available to the parser. It is the parsing
function which has to be learned by the induction process. The learning process
is simplified if the parsing function only needs to code the idiosyncratic properties
of a language and not the universal properties of language parsing. In the present
work, skewness and incrementality were coded as universal properties.

1.4.4 Learning and the Zipfian Distribution

To learn the parsing function, the algorithm I present here makes use of the Zipfian
distribution of words. Zipf’s law states that words in a language obey a power
law probability distribution, which roughly means that there is a small number of
words which are very frequent and many words which are extremely infrequent.
This has often been seen as a curse in computational linguistics, because it means
that many words are too infrequent to collect meaningful statistics for. I suggest,
however, that one should not see the glass as half empty, but as half full: a
relatively small number of frequent words appears almost everywhere and most
words are never too far from such a frequent word. The frequent words can
therefore guide the parsing and learning process. This is also the principle behind
successful part-of-speech induction.

The Zipfian distribution is a property of words, not of parts-of-speech (which
cluster many infrequent words, such as nouns, under a single tag). Therefore, in
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contrast to most modern syntactic induction algorithms, it is not only possible
but also desirable to use the algorithm I present here directly on words and not
on part-of-speech sequences. No clustering is performed at any level and the
algorithm works entirely locally. Instead of using parts-of-speech, the algorithm
labels each side of each word by its neighbors in the text and, recursively, by the
labels of these neighbors. Parsing is then directly guided by these labels. Due
to the Zipfian distribution of words, high frequency words dominate the lists of
labels and parsing decisions for words of similar distribution are guided by the
same labels. This not only simplifies the induction process, but also allows much
greater flexibility, since the exact label used at each parse step may depend on
the parsing context. In addition, the labels on the left and right side of each word
may remain independent.

1.4.5 Bootstrapping

The final ingredient in the learning process is bootstrapping. The learning process
is nothing more than a simple process of collecting statistics which result from the
parsing process: as an utterance is parsed, the parse determines for the learning
process which statistics to collect (a somewhat similar idea can be found in Yuret
1998). The statistics of each word are simply collected from the properties of
words which are adjacent to it according to the parse. The notion of adjacency
depends on the parse assigned to the utterance and will play a central role in the
algorithm.

Because learning is merely the collection of statistics resulting from parsing,
the learning process is open-ended and additional training text can always be
added without having to re-run the learner on previous training data. Learning
does not slow parsing much and experiments show that parsing (which is at the
rate of thousands of words per second) is slowed down by about 20% when learning
is turned on. This means that, potentially, learning can always remain turned
on. This is appealing both for engineering purposes and for cognitive modeling.

One risk of using a bootstrapping process, where learning is influenced by
what has been learned before, is that incorrect conclusions reached at the be-
ginning of the learning process reinforce themselves through bootstrapping and
cannot be gotten rid of. This is similar in some respects to the problem of search
algorithms getting stuck at local minima. I will argue (section 6.2.2) that the
learning algorithm I propose does not have this problem.

1.5 Organization of this Thesis

The parsing and learning algorithms are described in chapters 2, 3 and 6. Chap-
ter 2 introduces the basic definitions of common cover links, the syntactic repre-
sentation being used, and some of their main properties. The main algorithm in
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this chapter (Algorithm 2.6.5) converts common cover link structures into equiv-
alent bracketings. This can be done incrementally, in parallel with parsing and
allows the output of the parser to be compared with standard annotation.

Chapter 3 introduces the non-deterministic incremental parsing algorithm (Al-
gorithm 3.3.1) and proves that it can indeed construct every bracketing incremen-
tally. Next, parsing functions are introduced (Definition 3.4.1) and these functions
are used to define a deterministic parsing algorithm (Algorithm 3.4.2).

Chapter 6 completes the description of the algorithm. It describes a frame-
work for inducing a parsing function based on a family of greedy parsing functions
(Definition 6.1.3). The learning process selects one of the functions in this family
based on a statistics update algorithm (Algorithm 6.2.2). This framework leaves
some aspects of the algorithm unspecified and section 6.3 specifies a simple in-
stantiation of this framework, given by a lexical update algorithm for learning
(Algorithm 6.3.1) and a weight function (section 6.3.2) for the parsing functions.

Chapters 4 and 5 describe the syntactic representation and parser in more
detail. Chapter 4 discusses the linguistic properties of the common cover link
representation and of the incremental parser. It also discusses in detail the skew-
ness of syntactic structure. Chapter 5 details all the mathematical properties
of the representation and the incremental parser and proves all claims made in
previous chapters. The chapter is technical and can be skipped in first reading.
It was written to be self-contained, so statements (such as definitions, claims and
algorithms) given in previous chapters are repeated in this chapter. To make it
easier to locate these statements, they are assigned a number in each chapter in
which they appear and both numbers are indicated when the statement is made.

Finally, chapter 7 reports on experiments conducted with the algorithm on
several real language corpora.

A short description of some of the main contributions of this work was previ-
ously published in Seginer (2007).



Chapter 2

Common Cover Links

This chapter is about syntactic structure at its most basic level, that which is
usually represented by unlabeled bracketing (constituency structure) or unlabeled
dependencies. It is about the representation of the structure without specifying
any mechanism (such as a grammar) for generating it. While this structure is
probably not a complete syntactic description, it is part of almost any syntactic
theory. Moreover, many basic linguistic tests can be used to detect the existence
of a constituent or a dependency without naming it. The naming of the detected
structure is then often more theory dependent than the detection itself. Therefore,
unlabeled syntactic structure is a structure in its own right. This is the structure
I will be looking at here.

Almost all linguistic theories use either bracketing or dependencies to describe
this basic syntactic structure. The two representations are similar, but not equiv-
alent. The goal of this chapter is to introduce a new representation which shares
some of the advantages of both bracketing and dependencies but also has addi-
tional properties not shared by either. The differences are small, but significant.
Subsequent chapters will show how these differences allow incremental parsing
and aid in learning of the structure from unannotated example utterances.

After giving a quick informal preview of the syntactic representation which
will be used and the way it is used in parsing, I formally define the representation.
This representation, called common cover links, is based on directed links between
words and is therefore similar (but not identical) to dependency structure. The
chapter begins by defining the common cover links assigned to an utterance based
on the bracketing (constituency) structure of that utterance. It is then shown that
certain subsets of the common cover links (called shortest common cover link sets)
contain all the information needed to reconstruct the bracketing on which they
are based. Because the construction of a shortest common cover link set from
the bracketing may involve some free choices, the shortest common cover link set
representation is actually slightly more expressive than bracketing. The relation
between shortest common cover link sets and dependencies will be evident in the

27



28 Chapter 2. Common Cover Links

examples given and will be discussed in detail in chapter 4.

Every common cover link has a depth. An empirical observation central to
the present work is that links of depth 0 and 1 seem sufficient to describe the
syntactic structures which appear in natural language. This is a simple and
succinct description of the property usually referred to as the skewness of syntactic
trees: every syntactic sub-tree of natural language has at least one short branch.
Restricting the depths of the common cover links to 0 and 1 is a simple way
of building this property into the syntactic model. Many structures which are
not possible syntactic structures are thus removed immediately from the set of
structures which should be considered when parsing and learning. As a result,
both parsing and learning are greatly simplified. Except for the beginning of the
present chapter, where the general case with no restrictions on the depths of links
is discussed, I will concentrate throughout the rest of this work only on common
cover links with depth 0 or 1. This simplifies the analysis and keeps it focused
on the linguistically relevant structures.

Using bracketing to define the shortest common cover link sets means that
the definition cannot be used to construct shortest common cover link sets when
the bracketing is not known. To be able to use common cover links directly for
parsing, a characterization of shortest common cover link sets which is based only
on the relations between the links is needed. Such a characterization is given in
the last part of this chapter. Since this characterization does not make any use
of bracketing, it makes the shortest common cover link sets an independent rep-
resentation of syntactic structure and allows them to be used directly in parsing
(chapter 3). This characterization is used as the definition of the shortest common
cover link sets in all subsequent chapters. In fact, the original definition based on
bracketing was only given to motivate the choices made in the characterization
of the shortest common cover link sets.

One of the important consequences of the characterization of shortest common
cover link sets is that the restriction of a shortest common cover link set to a seg-
ment of the utterance is itself a shortest common cover link set for that segment.
This allows common cover link structures to be defined for incomplete utterances
(which are not uncommon in actual language use) and allows incremental parsing
(chapter 3).

This chapter only gives the main mathematical properties of the common cover
links which are relevant for parsing and linguistic processing. This is accompa-
nied by some linguistic examples, but both thorough linguistic and mathematical
analysis are postponed until after the common cover link parser is described in
chapter 3. Chapter 4 then discusses the linguistic aspects of the system and chap-
ter 5 provides the full mathematical analysis, including proofs of all claims made
in the present chapter.
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2.1 A Quick Preview

In a tree, each subtree has words (leaf nodes) which are highest up in the subtree.
In the present work, I define common cover links to point from a highest leaf node
in a subtree to other leaf nodes in the same subtree. For example, in the following
tree structure, the word chased is one of three words which are highest in the tree
rooted at A and the only word which is highest in the subtree rooted at B. The
diagram shows two (out of several) common cover links which are induced by the
tree structure:
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the dog

The relation described by common cover links plays an important role in
many linguistic theories. For example, it is closely related to the property of c-
command, which is central to Government and Binding theory (Haegeman 1994).
It is also a weaker version of the head-dependent relation in dependency theories:
while dependency describes a relation of direct domination between words, the
common cover link relation is close to the relation of domination, the transitive
closure of direct domination. The relationship between common cover links and
dependency structures is the subject of chapter 4.

In the present work I use the common cover links not merely as a property
derived from tree structures but as a means of fully describing these structures.
To be able to reconstruct the original tree from the common cover links, it is
important to know how deep the source node of the link is in the subtree for
which it was created. This is the depth of the link. It is not important, however,
to know how deep the target of the link is (this can be discovered from other
links). Continuing the previous example, the depth of the link from chased to cat
is larger than the depth of the link from chased to the because chased is deeper
down in the tree rooted at A than in the subtree rooted at B:

A

oooooooooooo

OOOOOOOOOOOO

��
��

��
�

??
??

??
? B

��
��

��
�

??
??

??
??

the cat chased

1

__

0
((

��
��

��
�

??
??

??
?

the dog

A bracketing and a tree structure are two equivalent ways of representing the
structure of a sentence. This example can, therefore, also be given in bracketing
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notation (which will be used from now on):

[ [ the cat ] [ chased

1
xx

0
%%

[ the dog ] ] ]

Common cover links are so named because a link from x to y of depth d means
that every bracket, except for d brackets, which covers x must also cover y. Let
us consider a simple link structure:

x 0 // y 0 // z

These links have a simple transitivity property: if every bracket which covers x
also covers y and every bracket which covers y also covers z, then every bracket
which covers x covers z. This means that the only bracket which covers x must
also cover y and z. If there are no additional links, the resulting bracketing
structure is:

[ x 0 // [ y 0 // z ] ]

It can be seen here that the bracket which covers x, y and z is not created by

a single link but is the result of combining the two links. In fact, the link x
0
→ y

does not, in itself, determine any single bracket. At the same time, each common
cover link may depend on several brackets.

Parsing with common cover links (chapter 3) is a greedy process and links are
added one by one and (roughly) from left to right. In the above example, when

the parser first adds the link x
0
→ y, it makes a decision which is only part of

what will eventually become the decision to create a bracket covering x, y and z.
The way a common cover link parser constructs this bracket is very different from
the way this is done in phrase based parsing. While a phrase based parser must
first create a bracket covering y and z (if it is bottom-up) or hypothesize such a
bracket (if it is top-down), the common cover link parser first determines that the
bracket covering x must also cover y and only afterwards determines the structure
of the subtree y is part of. In this way, the incremental (left to right) common
cover link parser splits the parsing problem into different steps than phrase based
parsers (including incremental parsers such as shift-reduce parsers).

An additional example shows even more clearly the difference between com-
mon cover link parsing and phrase based parsing. The common cover link parser
may create the following structure:

x 0 // y z0oo

The two links imply that the parser has determined that there is a bracket which
covers x and y and that there is a bracket which covers z and y. This, however,
leaves several possibilities open, including [ [ x y ] z ] and [ x [ y z ] ]. To decide
between these possibilities, the parser needs to add additional links. For example,
adding a link from x to z results in the following bracketing:

[ x 0 //
0 ))

[ y z ] ]0oo
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As in the previous parsing example, the way parsing is split into steps in this case
is very different from the way in which a phrase based parser can split the problem.
In the present work I will argue that this offers several important advantages.

2.2 Basic Definitions

I begin with several basic definitions. Let W be a finite set of word types . An
utterance is a sequence of words U = 〈x1, . . . , xn〉 in W . The order of the words in
the sequence is the order in which the words are uttered. I will use the (culturally
biased) convention of saying that a word x is to the left of word y if x precedes
y in the utterance. Since the sequence 〈x1, . . . , xn〉 is a function from {1, . . . , n}
to W , the utterance U is equal to the set {〈i, xi〉}

n
i=1. Each element 〈i, xi〉 in this

set is a word token. When no confusion can arise, I will refer to both word types
and word tokens as words. Any sub-sequence 〈xi, . . . , xj〉 of consecutive words
(1 ≤ i ≤ j ≤ n) is a bracket over the utterance. I will use lower-case letters (x, y,
. . . ) to denote word tokens and upper-case letters (X, Y , . . . ) to denote brackets.
I will treat brackets as sets of word tokens. The bracket Y covers the bracket
X if X ⊂ Y (strict inclusion) as sets of word tokens. Similarly, the bracket X
covers the word token x if x ∈ X. I will write [x, y] for the bracket covering
all word tokens between x and y including x and y. I will also write [x, y) (or
(y, x]) for [x, y] \ {y} and (x, y) for [x, y] \ {x, y}. The order of x and y is not
important, so [x, y) = (y, x]. Two brackets X and Y are non-crossing brackets if
either X ∩ Y = ∅, X ⊆ Y or Y ⊆ X.

2.2.1 (5.1.1). Definition. [bracketing] A bracketing of an utterance is a set
of non-crossing brackets over that utterance such that every word in the utterance
is covered by at least one bracket.

2.2.2 (5.1.2). Definition. [depth in a bracketing] Let C be a bracketing over
an utterance U . The word x is of depth d under B in C if x ∈ B ∈ C and d is the
maximal number of brackets X1, . . . , Xd ∈ C such that x ∈ X1 ⊂ . . . ⊂ Xd ⊂ B.
In particular, if x ∈ B ∈ C and there is no bracket X ∈ C such that x ∈ X ⊂ B
then the depth of x under B in C is zero.

Notation I write dC
B(x) for the depth of x under B in C. When the bracketing

is fixed by the context, I will simply write dB(x).

Notation I write BC
d (x) for the unique bracket B ∈ C such that x is of depth

d under B in C, if such a bracket exists. Whenever the bracketing is determined
unambiguously by the context I will simply write Bd(x) instead of BC

d (x).
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Because the brackets in a bracketing C are non-crossing, a word x cannot be of
the same depth under two different brackets in C and therefore BC

d (x) is unique.
Clearly, BC

d (x) does not always exist but, since the definition of a bracketing
requires that every word in the utterance be covered by at least one bracket, it
follows that BC

0 (x) always exists. This is the smallest bracket covering x in C.
Different words covered by a bracket B may have different depths under B.

The words of minimal depth under B play an important role in the definition
of common cover links. This is related to the fact that the head of a linguistic
phrase is of minimal depth under the bracket representing the phrase (see more in
chapter 4). Because not every word of minimal depth is also a linguistic head and
because linguistic theories differ in the words they identify as heads (chapter 4) I
avoid here using the term head and instead use the neutral term minimal depth:

2.2.3 (5.1.3). Definition. [word of minimal depth] Let C be a bracketing.
A word x is of minimal depth under B ∈ C if x ∈ B and for every y ∈ B,
dC

B(x) ≤ dC
B(y).

A bracket B may cover several words which are of minimal depth under B.
All these words must, of course, have the same depth under B. This depth is
therefore a characteristic of the bracket, which I will refer to as the height of the
bracket B:

2.2.4 (5.1.4). Definition. [bracket height] Let C be a bracketing and B ∈ C.
The height of B in C is minx∈B dC

B(x).

As will turn out later on, one of the important characteristics of syntactic
structures is that the heights of all brackets are restricted to either 0 or 1.

2.3 Common Cover Links

The common cover links provide a link representation of the syntactic structure
of utterances. This representation should contain at least all the information
which is contained in the constituency structure (bracketing) of an utterance.
Therefore, a common cover link representation of an utterance should determine
a unique bracketing of the utterance. Moreover, it should be possible to represent
any bracketing in this way. To represent a bracket B, common cover links are
defined from each word x of minimal depth under B to all other words in B.
The word x may be of minimal depth under different brackets, but for each such
bracket this depth must be different. To distinguish the links belonging to these
different brackets, the links are assigned a depth.
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2.3.1 (5.1.5). Definition. [common cover link] A common cover link of
depth d over an utterance U is a triple (x, y, d) ∈ U 2 × (N ∪ {0}) where x 6= y.

I write x
d
→ y for the link (x, y, d), and the link is said to be from x to y. The

word x is the base of the link and y is its head .

Notation Back and forth links between two words play an important role in the
theory which will be presented here. Moreover, Lemma 5.1.14 shows that, in all
common cover link sets which will be used to describe linguistic structures, back
and forth links between two words must be of equal depth. I will therefore write

x
d

� y ∈ L to indicate that for a set of common cover links L, both x
d
→ y ∈ L and

y
d
→ x ∈ L. When describing a set L of common cover links it is often convenient

to be able to indicate whether L contains any common cover link, of whatever
depth, between two given words. I therefore write x → y ∈ L to indicate that

there exists some d such that x
d
→ y ∈ L. Similarly, I write x→ y /∈ L to indicate

that there does not exist any d such that x
d
→ y ∈ L.

2.3.2 (5.1.6). Definition. [common cover links of a bracketing (RC)] Let C
be a bracketing over an utterance U . The set RC of common cover links for C is

the set of common cover links over U such that x
d
→ y ∈ RC iff x is of minimal

depth d under the smallest bracket B ∈ C such that x, y ∈ B.

Let BC
0 (x), . . . , BC

n(x) be the brackets under which x is of minimal depth. From
the definition of C it follows that there are links of depth 0 from x to all other
words in BC

0 (x) and links of depth d > 0 from x to all words in BC
d (x) \BC

d−1(x):

[ xi1 . . . xi2 [. . . x . . .]Bd−1(x)

d
{{

d

��
d

''

d

##
xi3 . . . xi4 ]Bd(x)

The following example shows the full common cover link set RC for a simple
bracketing C:

[ [ w ]
1

;;

1

<<

1

==[ x
1

zz
0

!!

0

  
[ y //

0 z ] ] ]oo

To see what sort of common cover link sets are created for the constituency
structure of typical linguistic utterances, let us examine two simple (and typical)
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sequences of parts-of-speech with their bracketing. The part-of-speech sequence
describing a typical simple verb phrase (in English) is [V [N ] [PP [DT N ]]]
(where V is a verb, N a noun, DT a determiner and PP a preposition). This has
the following common cover links, all of which are of depth 0:

[ V
0 )) )) )) ))

[ N ] [ PP
))0 ''

[ DT
//

0 N ] ] ]oo

The simple sentence [ [DT N ] [V [N ]] ] has both common cover links of depth 0
and of depth 1:

[ [ DT
//

0

1 (( ((

N ]oo

1 && ''
[ V

1
eegg

0 ))
[ N ] ] ]

Given the set RC it is simple to calculate the bracketing C from which it was
derived by following the simple procedure outlined below.

2.3.3 (5.1.29). Algorithm. [simple bracket reconstruction from RC]

1. For every word x, construct the smallest bracket which covers x and all y

such that x
0
→ y ∈ RC (this bracket is B0(x)).

2. Having constructed Bd(x) (d ≥ 0) and if there are links x
d+1
→ y in RC,

construct Bd+1(x) by constructing the smallest bracket which covers Bd(x)

and all words y such that x
d+1
→ y ∈ RC.

Notation I write A(L) for the result of applying the simple bracket reconstruc-
tion algorithm (Algorithm 2.3.3) to a set of common cover links L.

It is easy to see (Lemma 5.1.30) that, for any bracketing C, this procedure
reproduces C from RC, that is, A(RC) = C. The algorithm can, of course, be
applied to any set of common cover links L to produce a set of brackets. In
general, however, it is easy to verify that A(L) is not necessarily a bracketing
(because brackets may cross).

As will be seen in the following sections, this algorithm is a theoretical rather
than a practical tool. In practice, subsets of RC are used and then other algo-
rithms must be applied to reconstruct the bracketing. The simple reconstruction
algorithm is, however, used in several proofs in chapter 5.
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2.4 Representative Subsets

The process outlined in Algorithm 2.3.3 for the reconstruction of a bracketing
C from RC may construct a bracket multiple times. This happens when some
bracket X ∈ C has more than one word of minimal depth d under X. When this
is the case, the common cover links of depth d of any of the words of minimal
depth d under X are sufficient to reconstruct the bracket X. It is then possible
to discard the links of depth d of some (but not all) of these words without losing
the ability to reconstruct the bracket.

At this point it is important to notice a subtle difference in the reconstruction
process between links of depth 0 and other links. When a word x has no link

x
d
→ y ∈ RC for 1 ≤ d then no bracket Bd(x) is constructed (because this bracket

would be identical to Bd−1(x), which has already been constructed). On the

other hand, when a word x has no links x
0
→ y ∈ RC, a bracket B0(x) = 〈x〉 is

constructed, because this bracket cannot be constructed in any other way. For
this reason it is not possible to discard the links of depth 0 of a word x even if they
result in a bracket being multiply constructed, because discarding the links would
lead to the construction of an incorrect bracket 〈x〉. For links of non-zero depth
there is no such problem and they may be discarded without losing the ability to
reconstruct C by the algorithm. The process of discarding links will be referred
to as selecting representatives for the bracket X. The selection of representatives
results in a representative subset of RC, which is defined as follows:

2.4.1 (5.1.18). Definition. [representative subset] Let C be a bracketing. A
subset R ⊆ RC is a representative subset of RC iff:

1. For every x
0
→ y ∈ RC also x

0
→ y ∈ R.

2. For every X ∈ C, if d is the height of X then there is at least one word x of

minimal depth d under X such that for every x
d
→ y ∈ RC also x

d
→ y ∈ R.

This word x is a representative for the bracket X.

3. For every word x and every depth d if x
d
→ y ∈ R and x

d
→ z ∈ RC then

x
d
→ z ∈ R.

The first part of the definition ensures that all links of depth 0 are in R. The
second part ensures that for each bracket at least one word remains from which
the bracket can be reconstructed. Finally, the last part of the definition ensures
that either all or none of the links of depth d based at x are discarded (otherwise
bogus brackets are created by the reconstruction algorithm).

The representative subsets for the examples given above are easily calculated.
For the first example, [V [N ] [PP [DT N ]]], the only representative subset of
RC is RC itself, because RC contains only links of depth 0. The second example,
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[ [DT N ] [V [N ]] ] has three words (DT , N and V ) which are of minimal depth
1 under the top bracket. Any combination of these words can be chosen as
the representatives of this top bracket. The following diagram gives the three
minimal representative subsets of RC for this example, in which the top bracket
has exactly one representative. The solid links are in the representative subset
while the dotted links are in RC but not in the representative subset:

[ [ DT
//

0

1 (( ((

N ]oo

1 && ''
[ V

1
eegg

0 ))
[ N ] ] ] [ [ DT

//
0

1 (( ((

N ]oo

1 && ''
[ V

1
eegg

0 ))
[ N ] ] ]

[ [ DT
//

0

1 (( ((

N ]oo

1 && ''
[ V

1
eegg

0 ))
[ N ] ] ]

2.5 Shortest Common Cover Link Sets

By looking at the examples given above, it is immediately clear that many of
the links in the representative subsets of RC are redundant, even when a minimal
representative subset is selected. Formally, this can be seen from the following
transitivity property which allows longer links in RC to be deduced from shorter
links (the proof is in chapter 5).

2.5.1 (5.1.16). Lemma (linear transitivity of RC). Let RC be the common

cover link set of a bracketing C. If y ∈ (x, z), x
d1→ y ∈ RC and y

d2→ z ∈ RC then

x
d
→ z ∈ RC with the following depth (See figure 2.1):

1. If y → x ∈ RC then d = max(d1, d2).

2. Otherwise d = d1.

Linear transitivity can be used to further reduce the set of links needed to
reconstruct a bracketing by removing from a representative subset any links which

x
d1 //

max(d1,d2)

""w
o

g _ W O
G

yoo
d2 // z

(a) with x← y

x
d1 //

d1

""w
o

g _ W O
G

y
d2 // z

(b) without x← y

Figure 2.1: Linear transitivity of the common cover links in RC.
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can be deduced from shorter links in the set. Such a reduced set is a shortest
common cover link set :

2.5.2 (5.1.19). Definition. [shortest common cover link set] Let C be a
bracketing. A set S ⊆ RC is a shortest common cover link set if there is a

representative subset R of RC such that x
d
→ z ∈ S iff x

d
→ z ∈ R and there is no

word y ∈ (x, z) such that x
d1→ y ∈ R and y

d2→ z ∈ R.

The shortest common cover link set is so named because it uses the shortest
possible links to represent the structure. For every representative subset R of RC

the shortest common cover link set contained in that set is determined uniquely,
so I write S(R) for this set. A larger representative subset will usually (but not
always) result in a larger shortest common cover link set. For the verb phrase
example given above, for which RC was the only representative subset, S(RC) is
given in the next diagram, where solid links are in S(RC) and dotted links are in
RC \ S(RC):

[ V
0 )) )) )) ))

[ N ] [ PP
))0 ''

[ DT
//

0 N ] ] ]oo

In the second example given (that of a sentence part-of-speech sequence) the
three minimal representative subsets result in the following three shortest common
cover link sets (solid links are in the shortest common cover link set and dotted
links are in the representative subset):

[ [ DT
//

0

1 (( ((

N ]oo [ V
0 ))

[ N ] ] ] [ [ DT
//

0 N ]oo

1 && ''
[ V

0 ))
[ N ] ] ]

[ [ DT
//

0 N ]oo [ V

1
eegg

0 ))
[ N ] ] ]

The shortest common cover links sets in these examples are already more
similar to standard dependency structures than the full common cover link set of
the bracketing. However, some differences are still evident, such as the back and
forth links between the determiner (DT ) and noun (N). The relation between the
shortest common cover links and dependency structures is discussed in chapter 4.

We can now see that there are good linguistic reasons for having allowed
representatives to be chosen before calculating the shortest common cover link
set. Consider the simple utterance [ [Here] [it] [goes] ]. Three words, here, it and
goes are of minimal depth 1 under the top bracket. The utterance therefore has
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the following set RC of common cover links (all of which are of depth 1) and the
shortest common cover link set S(RC) based on RC:

[ [ Here ]

1 ((

1

''

[ it ]
1

hh

1 ((

[ goes ] ]
1

hh

1

gg
[ [ Here ]

1 ((

[ it ]
1

hh

1 ((

[ goes ] ]
1

hh

RC S(RC)

This does not seem to reflect the fact that goes is the head of the utterance.
However, since any of the three words can be selected as a representative of the
top bracket, selecting the verb as the only representative results in the following
representative subset, Rgoes (dotted links are in RC \ Rgoes). This set is also its
own shortest common cover link set and agrees with the standard dependency
analysis of this utterance.

[ [ Here ]

1 ((

1

''

[ it ]
1

hh

1 ((

[ goes ] ]
1

hh

1

gg

The fact that not all shortest common cover link sets derived from a bracketing
are linguistically acceptable should not be surprising. It only reflects the fact
that, just like dependencies, shortest common cover link sets contain additional
information not always available in the bracketing, namely, the identity of the
heads.

2.6 Reconstructing the Bracketing

This section shows that any bracketing can be correctly reconstructed from any
of its shortest common cover link sets. This means that any shortest common
cover link set contains all the information which is available in the bracketing
from which it was constructed and therefore that the shortest common cover
set representation is at least as expressive as bracketing. This is theoretically
interesting, but the practical implications of the reconstruction of the bracketing
are also important. The parser described in chapter 3 produces a shortest common
cover link set as the parse result. To produce a standard bracketing, the shortest
common cover link set must be converted into a bracketing. The emphasis in
this section will therefore be not only on showing that the bracketing can be
reconstructed from a shortest common cover link set, but also to give an efficient
algorithm for doing so. Moreover, because the parser of chapter 3 is incremental,
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I will also present here an incremental algorithm for converting the links into
brackets. In this way, as the words of an utterance become available one by
one, both a set of common cover links and a corresponding bracketing can be
assigned to the prefix of the utterance already processed. In on-line processing
situations it is often not clear when the end of the utterance is reached (a speaker
may pause before continuing or terminate the utterance at any point) and it may
be desirable to assign a syntactic analysis for every prefix of the utterance as
it become available. In these situations, the incremental parser and bracketing
algorithm can, at any moment, provide other processing modules with a parse
(links and bracketing) of whatever part of the utterance was already processed.
If and when the utterance is continued, this parse can be extended.

As mainly or only links of depth 0 and 1 seem to be needed to describe
linguistic structures (section 4.4) the general claim that any bracketing can be
reconstructed from any of its shortest common cover link sets is of mathematical
rather than linguistic interest. Since the general reconstruction algorithm is also
more complex than the algorithm when the links are all of depth 0 or 1, I will
restrict the discussion in the present section to common cover links which satisfy
this condition. The general case will be proved in the mathematical chapter of
this work (section 5.2). An incremental bracket reconstruction algorithm is only
given for the linguistically relevant case of links of depth 0 and 1.

2.6.1 Simple Reconstruction

I assume throughout this section that all links are of depth 0 or 1 (though some
of the lemmas may also hold without this restriction). The reconstruction of the
bracketing is conceptually performed in two steps. First, using linear transitivity
(Lemma 2.5.1) a representative subset is constructed from the shortest common
cover link set. Next, the brackets are deduced from the representative subset. In
the present section I present a simple algorithm which works in exactly this way.
In practice, the two steps can be combined to give more efficient algorithms, as
in the incremental algorithm presented in section 2.6.3.

Let C be a bracketing and let S be a shortest common cover link set for this
bracketing. Because S was created from some representative subset R ⊆ RC it
may be that not all links in RC can be deduced from S by linear transitivity.
At the same time, it may also be that links in RC \ R can be deduced by linear
transitivity from S. Therefore, simply taking the set of links deducible by linear
transitivity from S does not necessarily produce a representative subset of RC.
Since the bracketing C can only be correctly reconstructed from a representative

subset of RC, we need a way to determine whether a given link x
d
→ y ∈ RC is in

a representative subset R ⊂ RC. The following lemma shows that this is easy to
determine for the minimal representative set R(S) which contains S (the lemma
also implies that this minimal set is unique, see Corollary 5.1.22).
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2.6.1 (5.1.20). Definition. [minimal representative subset] Let C be a brack-
eting and let S be a shortest common cover link set for this bracketing. A repre-
sentative subset R ⊆ RC is a minimal representative subset containing S if S ⊆ R
and there is no representative subset R′ such that S ⊆ R′ ⊂ R.

2.6.2 (5.1.21). Lemma. Let C be a bracketing, let S be a shortest common cover
link set of RC and let R(S) be a minimal representative subset containing S. If

x
d
→ y ∈ RC then x

d
→ y ∈ R(S) iff there is some z such that x

d
→ z ∈ S.

Having a way to determine whether a link is in R(S), the reconstruction al-
gorithm can now be described. Let C be a bracketing and let S be a shortest
common cover link set for this bracketing. The reconstruction algorithm main-
tains a set L of links which is initialized to be equal to S. By applying Lemma
2.6.2, the algorithm makes sure that each link it adds to the set L is in R(S),
the unique minimal representative subset containing S. The algorithm looks at
pairs of words x,z at increasing distance from each other. If there is y ∈ (x, z)

such that x
d1→ y ∈ L and x

d2→ z ∈ L then, by linear transitivity, there is a link

x
d3→ z ∈ RC. The algorithm needs to determine d3 and then determine whether

the link is in R(S).
Since d1, d2 ≤ 1 it follows from linear transitivity (Lemma 2.5.1) that d3 ≤

max(d1, d2) ≤ 1. Moreover, by linear transitivity, if d1 = 1 then also d3 = 1.
If d1 = 0 then there are two possibilities (again, by linear transitivity). If there
is a link from y to x (in RC) then d3 = d2 and if there is no such link then
d3 = d1. By Lemma 5.1.14, back and forth links between words must be of the
same depth and, therefore, if a link from y to x is in RC, it must be of depth
d1 = 0. Therefore, this link is also in R(S) (because all links of depth 0 are in a
representative subset of RC). Since the algorithm works incrementally with words
of increasing distance from each other, this link, if it exists, was already added to

L, (that is, y
0
→ x ∈ RC iff y

0
→ x ∈ L). The algorithm can therefore determine

d3. Having determined d3, the algorithm uses Lemma 2.6.2 to decide whether

x
d3→ y is in R(S). If it is, it is added to L. The process continues until no more

links can be added. This shows that when the process terminates, L ⊆ R(S).
From the definition of shortest common cover link sets it is then immediate that
L = R(S).

Having calculated R(S) from S, the bracketing can be calculated from R(S)
using the simple bracket reconstruction algorithm (Algorithm 2.3.3). It is not
difficult to verify (see Lemma 5.1.30) that if all links are of depth 0 and 1 then
this algorithm correctly reconstructs the bracketing C from any representative
subset of RC (and in particular from R(S)). The requirement that the depth
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of all links is 0 or 1 is crucial here. The claim does not necessarily hold if this
condition does not hold.

2.6.2 Paths

The main key to the reconstruction of the bracketing from a shortest common
cover link set is linear transitivity, which allows a common cover link to be deduced
from a sequence of shorter common cover links. Such sequences play a central
role in the structure of shortest common cover link sets and will be referred to as
link paths or simply as paths. These paths are defined as follows.

2.6.3 (5.1.26). Definition. [linear path] Let U be an utterance. A sequence
x1, . . . , xm of words in U is a linear path from x1 to xm in U (written x1−. . .−xm)
iff for each 1 < i < m xi ∈ (xi−1, xi+1).

2.6.4 (5.1.27). Definition. [link path] Let L be a set of common cover links
over an utterance U and let x, y ∈ U . An L-path from x to y is a set of links
{

xi
di→ xi+1

}m−1

i=1
in L such that x1− . . .−xm is a linear path, x1 = x and xm = y.

In particular, for every x ∈ U , there is an empty L-path from x to x.

Notation I write x
L
→ y if there is an L-path from x to y and x

d,L
→ y if there is

an L-path from x to y which begins with a link of depth d.

Let RC be a common cover link set of a bracketing C and let S be a shortest
common cover link set of RC. Linear transitivity implies that if there is an S-path

from x to y (x
S
→ y) and x 6= y then there is a link x→ y ∈ RC. The depth of this

link may depend on links which are not on the S-path from x to y. The fact that
these links may be in RC but not in S is the main source of complication in the
reconstruction of RC and the bracketing C. But while the depth of a link cannot
be deduced from the links in the link path connecting its two ends, it follows from
the linear transitivity lemma (Lemma 2.5.1) that the depth of the first link in a
link path is a lower bound on the depth of the combined link (Lemma 5.1.28).

This is the reason for introducing the notation x
d,L
→ y.
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2.6.3 Incremental Reconstruction

The algorithm described in section 2.6.1 is simple but not very efficient because
it first has to calculate all links in R(S) (many of which are redundant) and only
then deduces the bracketing. A simple (more efficient) algorithm can reconstruct
C directly from S by assigning brackets incrementally to prefixes [x1, xk] of U . As
before, reconstruction is restricted to the case in which all links are of depth 0
or 1.

2.6.5 (5.4.1). Algorithm. [incremental reconstruction from S] Given is a

set of links S of depth 0 or 1 over an utterance 〈x1, . . . , xn〉. Let Sk = {x
d
→ y ∈

S : x, y ∈ [x1, xk]} be the restriction of S to [x1, xk]. The algorithm updates a
bracketing B.

• Initialize B = {〈x1〉}.

• For each k = 2, . . . , n perform the following modifications of B, in the given
order:

1. For every link xi
0
→ xk ∈ Sk, extend all brackets in B which cover xi

to cover xk.

2. For every link xi
1
→ xk ∈ Sk:

(a) Extend all brackets which cover BB
0 (xi) to cover xk.

(b) If there is no x
d
→ y ∈ Sk−1 such that x ∈ BB

0 (xi) and y /∈ BB
0 (xi),

add a bracket which covers xk and BB
0 (xi).

3. If there is no xi such that xk
0
→ xi ∈ Sk and xk ∈ BB

0 (xi) then add to

B the smallest bracket which covers xk and every x such that xk

0,Sk→ x.

4. If there is xk
1
→ xi ∈ Sk then add to B (if it is not already in B) the

smallest bracket which covers xk and every x such that xk
Sk→ x.

• Output B.

This algorithm is much less intuitive than the algorithm given in the previous
section. The following theorem shows that it does have the required property
that when given as input a shortest common cover link set of any bracketing C,
the algorithm is guaranteed to reconstruct C. The proof of this theorem is given
in section 5.4 and uses the characterization of the shortest common cover link
sets described in the next section.
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2.6.6 (5.4.9). Theorem (reconstruction). Let C be a bracketing over an
utterance U = 〈x1, . . . , xn〉 and let S be a shortest common cover link set for this
bracketing. If S contains only links of depth 0 or 1 then applying Algorithm 2.6.5
to S outputs C. The algorithm runs in time linear in the length of U .

The next section shows (Lemma 2.7.4) that if S is a shortest common cover
link over U then the sets Sk used by the incremental reconstruction algorithm
are also shortest common cover link sets (on the prefixes [x1, xk] of U). It follows
that at each step the algorithm constructs a valid bracketing which corresponds
to the structure assigned to the prefix by Sk.

2.7 Characterization of Shortest Common Cover

Link Sets

In the previous sections the common cover link set and its subsets were defined
based on bracketing. When parsing an utterance, the bracketing is not known and
the parser needs to create a set of links which is a shortest common cover link set
for a bracketing on that utterance. It is therefore necessary to determine the con-
ditions on a set of links which make it a shortest common cover link set for some
bracketing. Only sets which satisfy these conditions should be constructed by the
parser. Since this restricts the possible sets which need to be considered, these
conditions also have implications for learning, as will be discussed in chapter 6.

The following conditions characterize the shortest common cover link sets of
bracketings over an utterance U . As in previous sections, the conditions are
restricted to the case where the depth of the links is either 0 or 1. This seems
enough to handle most or all linguistic cases (see section 4.4) and significantly
simplifies the conditions.

2.7.1 (5.3.1). Definition. [characterization] Let L be a set of common cover
links of depth 0 or 1 over U . The set L is said to satisfy the characterizing
conditions if for every w, x, y, z ∈ U the following conditions hold:

1. Monotonicity : if y ∈ (x, z], x
d1→ y ∈ L and x

d2→ z ∈ L then d1 ≤ d2.

2. Minimality : if x
d1→ z ∈ L then there is no y ∈ (x, z) such that x

L
→ y and

y
L
→ z.

3. Connectedness : if x
L
→ z and y ∈ (x, z) then x

L
→ y.

4. Blocking : if w
d1→ z ∈ L and, for some y ∈ U and x ∈ (w, z), x

L
→ w and

x
d2→ y ∈ L then d1 = 1 and d2 = 0.
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5. Equality : if y ∈ [x, z), x
d1→ z ∈ L, z

d2→ y ∈ L and y
L
→ x then d1 = d2.

6. Resolution: if y ∈ (x, z), x′ ∈ (x, y], x
d1→ x′ ∈ L and x′ L

→ y and if

z′ ∈ (z, y], z
d2→ z′ ∈ L and z′ L

→ y then there is v ∈ [x, z] such that either

x
d1→ v ∈ L and v

L
→ z or z

d2→ v ∈ L and v
L
→ x.

The best way to understand these conditions is to look at the constructions
which are forbidden by each condition.

1. Monotonicity : forbids x 1 //
0 ))y z . This condition reflecting the fact

that the depth of x under the smallest bracket covering x and y cannot be
greater than its depth under the smallest bracket covering x and z.

2. Minimality : forbids link structures such as x 0 //
0 ))y 0 // z , because in

such a structure the longer link can be deduced from the shorter links by
linear transitivity, contrary to the definition of shortest common cover link
sets.

3. Connectedness : forbids links structures such as x
0 ))y z , because

if x is of minimal depth under the smallest bracket covering x and z then it
must also be of minimal depth under the smallest bracket covering x and y.

4. Blocking : this condition is somewhat more complex than the previous ones.
It forbids various different configurations, including the following typical
examples:

w = y //
0

0
&&

xoo z w //
0

1
((xoo 1 // y z

y w //
0

1
%%

xoo

1
xx

z

In all these configurations, the link from w to z implies that there should also
be a link from x to z and, therefore, the link from w to z is not in the shortest
common cover link set because it can be deduced by linear transitivity.

Blocking does allow, however, the link configuration w = y //
0

1
&&

xoo z .
The difference between this example and the previous ones has to do with
the selection of representatives (Definition 2.4.1). In the last example, the
link from y to z is of depth 1 and it is possible to select y and not x as the
representative of the corresponding bracket. However, if the link from y to
z is of depth 0 or if there is a link of depth 1 based at x (as in the previous
examples) then x must be selected as a representative and the configuration
is forbidden.
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5. Equality : This condition requires that d1 = d2 in configurations such as the
following:

x = y
d1 // z
d2

oo x //
0

d1 ''
yoo zd2
oo

This is because in these cases both x and z are of minimal depth under the
smallest bracket covering them and their depth under this bracket must be
the same.

6. Resolution: This is the most complicated condition. It applies to the fol-
lowing link structure, where it is possible that x′ = y or z′ = y (or both):

x d1
// x′ L // y z′Loo zd2

oo

When such a configuration exists, there is a bracket Bx covering x and y
and a bracket Bz covering z and y. Since both these brackets cover y and
they may not cross, either z ∈ Bx or x ∈ Bz. If z ∈ Bx then, since x is of
minimal depth under Bx, there must be a link path from x to z. Similarly,
if x ∈ Bz there must be a link path from z to x. The link path from x to z
or from z to x resolves the question of whether it is Bx which covers z or
Bz which covers x. Not only must one of these link paths exist, it must also
begin with an appropriate depth. In the simplest cases (when x′ = y = z′)
the resolution condition forbids configurations such as:

x 0 //
1

''
y z0oo x 0 //

1
''

y z0oo

1
gg

These examples clarify some of the reasons behind the definition of the char-
acterizing condition, but do not prove that the conditions indeed characterize
shortest common cover link sets. The correctness of the characterization is stated
by the following theorem, (which is proved in chapter 5):

2.7.2 (5.3.2). Theorem (characterization). Let L be a set of common cover
links of depth 0 or 1 over U . There exists a bracketing C over U such that L is
a shortest common cover link set of C iff L satisfies the characterizing conditions
of Definition 2.7.1.

The characterization is given by six simple properties, each of which is easy to
check on a set of links. The following lemma shows that none of these conditions
is redundant.

2.7.3 (5.3.3). Lemma. For each of the six conditions in Definition 2.7.1, there
is a set of links L which violates that condition but satisfies all other conditions.
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One important and easily verified property of this characterization is that if
it is satisfied by the full set of links L then it must also be satisfied by L[x,y] =

{u
d
→ v ∈ L : u, v ∈ [x, y]}, the restriction of L to a segment [x, y] ⊆ U .

2.7.4 (5.3.4). Lemma. Let L be a set of common cover links over an utterance

U and let L[x,y] = {u
d
→ v ∈ L : u, v ∈ [x, y]} be the restriction of L to a segment

[x, y] ⊆ U . If L satisfies the characterizing conditions then so does L[x,y].

In particular, this holds for any prefix [x, y] of the utterance U . This property
of the characterization conditions means that when parsing incrementally the set
of links assigned each prefix of an utterance must be a shortest common cover
link set for that prefix. Each prefix is therefore always assigned a valid parse.

2.8 Conclusion

This chapter defined the shortest common cover link sets induced by a bracketing
and showed that a bracketing can always be reconstructed from any of the shortest
common cover link sets it induces. To make the shortest common cover link sets a
syntactic representation in their own right, characterizing conditions for shortest
common cover link sets were given. These conditions will from now on be seen
as the definition of these link sets.



Chapter 3

Parsing

The common cover links of the previous chapter were designed with parsing in
mind. It is the purpose of the present chapter to show that parsing can be
performed using such links and that using common cover links indeed offers ad-
vantages to a parser. One advantage of the common cover link representation
was already mentioned in the previous chapter: the restriction of the depth of
links to 0 and 1 seems to capture the skewness of natural language parse trees.
A parser which only outputs links with depth 0 and 1 thus avoids even having to
consider many alternative parses which are not valid for natural languages. This
considerably restricts the parser’s search space.

An additional advantage of using common cover links in parsing is that this
representation lends itself easily to incremental parsing. Incremental parsing is
the ability to perform parsing as the words of an utterance are being received
one by one. An incremental parser can assign a structure to whatever prefix of
the utterance it has already received without having to wait for the end of the
utterance. This is usually considered a useful property for the parser to have,
for two reasons. First, in on-line tasks (such as speech processing) an analysis of
the input is often required before the full utterance has been received. Second,
psycholinguistic evidence suggests that humans process language incrementally
(Crocker et al. 2000). Cognitive modeling of language processing would therefore
require some sort of incremental parsing. In the present work, however, incre-
mentality was adopted for a third reason - it restricts the possibilities the parser
must consider and (no less importantly) the possibilities a learner has to consider
when learning to parse incrementally (see chapter 6). This argument is based
indirectly on the psycholinguistic evidence for incremental processing: if humans
can parse incrementally then there is no need to consider the end of the utterance
before making parsing decisions about a prefix of that utterance. Of course, for
this to work, the incrementality of the parser has to be similar to that of the
human processor. The version of incrementality introduced here is probably only
a rough approximation of the incrementality of human language processing, but

47
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it does already seem to be beneficial in allowing simple learning and parsing with
state-of-the-art accuracy.

This chapter begins with section 3.1, which defines what incremental parsing
is. Having defined incremental parsing, I go on to investigate (in section 3.2) the
conditions which must be imposed on an incremental parser so that it outputs a
valid common cover link structure. The parser is required to output a shortest
common cover link set and the characterizing conditions of the previous chapter
can be combined with the requirements of incrementality to define the set of links
the incremental parser may add at each step. This leads to the definition of the
incremental parsing algorithm in section 3.3. It is shown that this algorithm
only outputs shortest common cover link sets and that it can output any shortest
common cover link set. This parsing algorithm is not deterministic. The choices
left unspecified in the algorithm must be filled in by defining appropriate choice
functions. These functions are defined in section 3.4 an are the subject of learning
in chapter 6.

3.1 Incremental Parsing

For parsing to be incremental, the parser must construct the syntactic structure
as the utterance is being read. This is no exact definition and leaves much room
for variation. First, the unit of incrementality must be chosen, that is, how much
input may be read at each step of processing before structure is assigned? What
humans exactly do is not entirely clear so the most simple and natural choice is
to assign structure with each additional word read. Of course, smaller phonetic
units or larger combinations of words could also be considered as the unit of
incrementality but it then becomes a non-trivial task just to determine what the
size of each incremental step should be. For this reason, most incremental models
(including the one I present here) take the single word (as defined by the written
language) to be the unit of incrementality. This is probably a little simplistic and
somewhat arbitrary (because of a certain arbitrariness of writing systems) but (as
work with written text has often shown) is a very reasonable first approximation.

Having chosen the unit of incrementality, we must determine what parsing
decisions the parser is required to take at each incremental step and whether
these decisions may be undone later on. Of course, if all parsing decisions may be
postponed or undone by subsequent steps, the parser cannot be considered incre-
mental since it can effectively perform parsing after having read the full utterance.
Most incremental parsers are therefore not allowed to change any decision already
made and are not allowed to postpone decisions indefinitely. To avoid running
into trouble by making hasty decisions, many incremental parsers are allowed to
perform underspecified parsing decisions which are left for subsequent steps to
specify. The fact that underspecification has to be used seems to be the direct
result of the fact that most incremental parsers are based on non-incremental
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syntactic formalisms and parsers. As these formalisms were not designed for in-
crementality, their use without underspecification often requires the incremental
parser to commit itself to decisions it cannot make.

The key to successful incremental parsing seems to be the ability to detect
the structural relations which are fixed by each prefix of the utterance. Adding
these relations to the syntactic structure (as they become fixed) but nothing more
should result in the correct parse. These relations should be neither weaker than
is required for constructing the syntactic structure nor stronger than the parser
can commit itself to (see section 4.3 for an analysis of one linguistic aspect of this
requirement). These relations are often weaker than the relations described by
formalisms designed for non-incremental parsing and therefore must be described
by underspecified versions of those formalisms. In this sense, common cover links
represent a weaker relation than the standard dependency relation. While a de-
pendency link from x to y indicates that y is the head of an argument of x, a
common cover link from x to y only indicates that y is part of an argument of x.
Common cover links represent (some sort of) a domination relation while a de-
pendency link represents direct domination (a complete discussion of the relation
between dependencies and common cover links appears in chapter 4). Common
cover links can therefore be used directly for incremental parsing without having
to use underspecification.

An incremental dependency parser is often defined as a dependency parser
which assigns a single connected structure to every prefix of an utterance (Nivre
2004). This requirement is probably intended to stop the parser from leaving the
utterance as a sequence of unconnected words until the end of the utterance is
read and only then connect them all together in the last step. As Nivre notes, this
requirement is too strong because it cannot handle constructions where a head
has several arguments which appear to its left. In this work I therefore adopt a
different definition of incrementality which at each incremental step allows the
parser to add links only between the last word read and the words preceding
it. This seems to me a much more natural definition of incrementality and I will
show that under this definition any bracketing can be constructed by the common
cover link incremental parser.

Given an input utterance U , the parser needs to construct a set S of common
cover links over U . The set S should be a shortest common cover link set for
some bracketing C of U . As in the previous chapter, because linguistic structures
seem to use mainly or only links of depth 0 or 1 (see section 4.4) the discussion
here assumes that this restriction on the depth of the links holds. I begin with
some definitions to describe the incrementality of the process.

Notation Given an utterance U , I write xk(U) for the k’th word in U (when
there is no risk of confusion, I simply write xk). I also write Uk for the prefix
[x1(U), xk(U)] of length k of U . Similarly, if S is a shortest common cover link
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set for a bracketing over U , I write Sk for the set {x
d
→ y ∈ S : x, y ∈ Uk}, the

restriction of S to Uk.

The following definition defines incrementality for common cover link parsing.
All it allows the parser to do as it reads the word xk(U) is to add links between
xk(U) and words previously read (that is, words in Uk−1).

3.1.1 (5.5.1). Definition. [incremental parsing]

1. A common cover link parser is a function P on the set of utterances such
that, for any utterance U , P(U) is a shortest common cover link set over
U .

2. The parser P is incremental if for every prefix Uk of U , P(Uk) = Sk is a
shortest common cover link set over Uk and, for each 2 ≤ k ≤ n, Sk−1 ⊆ Sk

and Sk \ Sk−1 contains only links which have one end at xk(U).

What makes incremental parsing at all possible is the fact that if S is a
shortest common cover link set over an utterance U then the restriction Sk of S
to a prefix Uk of U is itself a shortest common cover link set for a bracketing of
Uk (Lemma 2.7.4). This contrasts with many other formalisms (mainly phrase
structure based) which often do not assign a well-formed representation to the
prefixes of an utterance.

3.2 Conditions on Incremental Parsing

After the parser has calculated Sk−1 based on Uk−1, it reads the next word, xk,
and needs to determine which links should be added to Sk−1 to form Sk. The
incrementality of the parser requires the links added in this step to have one end
at xk. To ensure that the set of links Sk assigned by the parser to each prefix Uk

is a shortest common cover link set, the six characterizing conditions of Definition
2.7.1 must be satisfied.

The links are added one by one. The monotonicity , minimality , blocking
and equality conditions must be satisfied with each link being added because
once any of these conditions is violated, the violation cannot be repaired by
adding additional links. The connectedness condition can be repaired after being
violated but it is much simpler not to allow it to be violated in the first place.
Therefore, the parser only adds links such that these five condition are satisfied
with every link being added. For the last characterizing condition, resolution, it
is not always possible to avoid its violation but it is always possible to repair such
a violation (section 3.2.3). Therefore, once such a violation is created, the parser
must continue to add links until the violation is repaired.
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3.2.1 The Adjacency Properties

The first four characterizing properties (monotonicity, minimality, connectedness
and blocking) are the adjacency properties . To ensure the preservation of the
adjacency properties, a link should be added only from a word to another word
adjacent to it according to the following definition. Adjacency also specifies the
minimal depth of such a link.

3.2.1 (5.5.2). Definition. [adjacency] Let L be a set of common cover links
of depth 0 or 1 over an utterance U . A word y is adjacent to x with depth d ≤ 1
relative to L (written x aL

d y) iff for every z ∈ (x, y):

1. x
L
→ z (connectedness).

2. z → y /∈ L (minimality).

3. There is no w ∈ U such that z
1
→ w ∈ L and z

L
→ x (blocking).

The depth d is 1 iff there exists z ∈ (x, y) such that z
L
→ x (blocking) or x

1
→ z ∈ L

(monotonicity). Otherwise, d = 0.

An adjacency x aL
d y is unused if x→ y /∈ L.

Notation I write x aL y if there exists d ≤ 1 such that x aL
d y.

If a link is added from a word to another word which is not adjacent to it
(or with a depth which is smaller than that of the adjacency) then at least one
of the four adjacency properties is violated. The need to maintain the adjacency
properties (for each link added) implies that adjacency is a necessary condition
for adding a link between words. Therefore, the incremental parser only adds
links where adjacency is satisfied.

Adjacency is a necessary condition for adding a link, but, as the next lemma
shows, adjacency in itself is not a sufficient condition to ensure minimality and
blocking. As is also shown by the lemma, to ensure these two properties hold,
links may only be added between words which are not already covered by a link,
as defined by the following definition.
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3.2.2 (5.5.3). Definition. [covering links] A pair of words 〈x, y〉 in an utter-

ance U is covered by a link u
d′

→ v over U if x ∈ (u, v) and y ∈ [u, v]. The pair
〈x, y〉 is covered by a set L of common cover links over U if there exists a link

u
d′

→ v ∈ L such that u
d′

→ v covers 〈x, y〉.

3.2.3 (5.5.4). Lemma. Let U be an utterance. Let L be a set of common cover
links over U such that all links in L are of depth 0 or 1.

1. If L satisfies the adjacency properties and if x aL
d y and the pair 〈x, y〉 is not

covered by L then, for any d ≤ d′ ≤ 1, L ∪ {x
d′

→ y} satisfies the adjacency
properties.

2. There exists a set L and a link x
d′

→ y such that L satisfies all characterizing

conditions of Definition 2.7.1, x aL
d y for d ≤ d′ but L ∪ {x

d′

→ y} violates
minimality or blocking.

As the parser adds links to the parse, new adjacencies may be created while
other adjacencies may be blocked. As long as the parser only adds links between
adjacent words which are not covered, the adjacency properties are guaranteed to
hold at every step. The following lemma describes the adjacencies of each word
when these conditions are satisfied. It shows that consecutive words are always
adjacent, that if x→ y then y is adjacent to x and that every word x has at most
one unused adjacency on each side, that is, a word which is adjacent to x but not
attached to x by a link from x. The unused adjacency is always the adjacency
furthest away from x.

3.2.4 (5.5.5). Lemma. Let L be common cover link set over an utterance U
such that all links in L are of depth 0 or 1 and such that L satisfies the adjacency
properties.

1. If x and y are consecutive words in the utterance then x aL
0 y and y aL

0 x.

2. If x
d′

→ y ∈ L then x aL
d y for some d ≤ d′.

3. If, for y1 ∈ (x, y2), x aL
d1

y1 and x aL
d2

y2 then x
d′

→ y1 ∈ L for some d1 ≤ d′

(in words: on each side of x there is at most one unused adjacency and this
word is the adjacent word furthest away from x on that side).

These properties of adjacency apply to any parser which constructs a set of
common cover links by adding links one by one in such a way that the adjacency
properties are preserved. In particular, this holds for incremental parsing. The
next sections look at the remaining two properties: equality and resolution.
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3.2.2 Equality

Equality can and must be preserved with every link added by the parser, because
once equality is violated, this violation cannot be repaired by adding additional
links. Equality imposes a simple restriction on the possible depth assigned to a

link. When the parser wants to add a link x
d
→ y to a set of links L, it has to

check two possibilities:

1. If y
L
→ x then d must be equal to the depth of the first link in the L-path

from y to x.

2. If there is z such that y ∈ (x, z), z
d′

→ x ∈ L and y
L
→ z then d must be

equal to d′.

As long as L satisfies the adjacency properties, connectedness and minimality
imply that these two cases cannot occur simultaneously. Directional uniqueness
(Lemma 5.1.25) implies that, in the second case, z is determined uniquely. There-
fore, equality imposes at most a single requirement for d. This value of d may,
however, conflict with the minimal value for d imposed by adjacency.1 In such
cases, the link cannot be created. The following definition summarizes the con-
ditions a link has to satisfy for the parser to be allowed to add it to the set of
links the parser is constructing. The definition imposes incrementality by only
allowing the link to be added if one of its ends is at the last word having been
read by the parser.

3.2.5 (5.5.6). Definition. [incrementally addable link] Let L be a set of
common cover links over a prefix Uk of an utterance U such that all links in L are
of depth 0 or 1 and such that L satisfies the adjacency properties and equality.

A link x
d′

→ y is incrementally addable to L over Uk iff:

1. (incrementality) xk ∈ {x, y} ⊆ Uk and d′ ≤ 1.

2. (adjacency) For some d ≤ d′, x aL
d y is an unused adjacency in L.

3. (non-covered) L does not cover the pair 〈x, y〉.

4. (equality) The set L ∪ {x
d′

→ y} satisfies equality.

5. (forcing) If there is u
1
→ x ∈ L such that y ∈ [u, x) then d′ = 1.

1An example of such a conflict is give by the following diagram (solid links are in L) where
adjacency requires that the depth of the link from x to y be 1 while equality requires this depth
to be 0:

x
//

0
))j g _ W T

•oo y0oo
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3.2.3 Resolution

The last property the parser has to maintain is resolution. This property, however,
cannot be maintained with every link added, because in many cases a resolution
violation can be repaired only by a link which was not addable at the time the
violation was created. A simple (and typical) example of this is shown in the

following diagram, where the link z
0
→ x (which repairs the resolution violation)

is not addable before the link z
0
→ y (which creates the violation) is added:

x 0 // y z0oo
0uu

In this, resolution differs from all other characterizing properties.
A resolution violation is defined for a pair of words such that there is a word

between them at which link paths from these two words meet. For a given pair
of words there may be more than one word between them at which paths from
the two words meet. What is important for the resolution property is the depth
of the first link on the two paths which meet. As can be seen in the following
example, these depths may depend on the word at which the two paths meet.

x 0 //
1 **

y1 y2 z0oo
1tt

For this reason, the definition of a resolution violation must also specify the
depths of the first links in the two meeting paths.

3.2.6 (5.5.7). Definition. [resolution violation] Let L be a set of links over
an utterance U such that all links in L are of depth 0 or 1. A tuple 〈x, z, d1, d2〉
is a resolution violation in L if x, z ∈ U , x ∈ [x1(U), z) and there are y ∈ (x, z),

x′ ∈ (x, y] and z′ ∈ (z, y] such that x
d1→ x′ ∈ L, x′ L

→ y, z
d2→ z′ ∈ L and z′ L

→ y

but there is no v such that either x
d1→ v ∈ L and v

L
→ z or z

d2→ v ∈ L and v
L
→ x.

A tuple 〈x, z, d1, d2〉 is a minimal resolution violation in L if there is no res-
olution violation 〈u,w, d3, d4〉 in L such that [u,w] ⊂ [x, z] or [u,w] = [x, z] and
d3 > d1.

3.3 The Parser Algorithm

Given this definition of resolution violation, the incremental parser algorithm can
be stated.

3.3.1 (5.5.8). Algorithm. [incremental parser] Let U be an utterance of
length n. The algorithm maintains a set L of common cover links.
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• Initialize L = ∅ and k = 2.

• While k ≤ n:

1. If there is a minimal resolution violation 〈x, z, d1, d2〉 in L, add an

addable link u
d
→ v such that u, v ∈ [x, z] and such that if u = x then

d = d1 and if u = z then d = d2.

2. Otherwise, increment k by 1 or add to L a link incrementally addable
to L over Uk.

As long as there are no resolution violations, the algorithm may repeatedly
choose whether to add a link (if an addable link exists) or to go on to the next
input word. When a resolution violation is created, the parser must first resolve
this violation before going on to the next word. To show that the algorithm is
well defined, it must be shown that multiple minimal resolution violations never
impose conflicting requirement on the link to be added and that as long as a
minimal resolution violation exists, an addable link as required by the algorithm
can be added. Showing that such a link exists also shows that the algorithm can
repair any resolution violation created (because the number of possible links to
be added is finite). Finally, it has to be shown that this algorithm can construct
any shortest common cover link over U . This is summarized by the following
theorem.

3.3.2 (5.5.17). Theorem (incremental parser correctness). The incre-
mental parser, Algorithm 3.3.1, is well-defined and always outputs a shortest com-
mon cover link set. Moreover, it can output any common cover link set.

3.4 Parsing Functions

The incremental parser described above is a nondeterministic algorithm. It spec-
ifies a set of links which may be added at each step but does not indicate which
of these links should be added (if at all). A deterministic incremental parser is an
algorithm which specifies how the nondeterministic algorithm should make this
choice in every step. This is defined in terms of a parsing function which performs
a single parse step - adding one link or none to a given set of links over a given
prefix of an utterance.

3.4.1. Definition. [parsing function] A function P which maps every utter-
ance U and common cover link set L over that utterance to another common
cover link set L′ over that utterance is a parsing function iff:
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1. L ⊆ L′ and |L′ \ L| ≤ 1.

2. If {l} = L′ \ L then l is incrementally addable to L over U .

3. If L has a minimal resolution violation 〈x, z, d1, d2〉 then L′ \ L = {u
d
→ v}

such that u, v ∈ [x, z] and if u = x then d = d1 and if u = z then d = d2.

The parsing function can be used to create a deterministic parser by applying
the parsing function repeatedly to a prefix of the utterance. Every time the
parsing function adds no links, the next word in the utterance may be read and
the parsing function can be applied to the new (extended) utterance prefix.

3.4.2. Algorithm. [deterministic incremental parser] Let P be a parsing
function and let U be an utterance of length n. The algorithm maintains a set L
of common cover links.

• Initialize L = ∅ and k = 2.

• While k ≤ n:

1. Let L = P(L,Uk).

2. If L remains unchanged, increment k.

Since the parsing function P completely determines the behavior of the pars-
ing algorithm, I will usually simply refer to the parsing function as the parser.
Chapter 6 presents a family of parse functions and a learning procedure to select
one of these functions based on a sequence of unannotated example utterances.

3.5 Conclusion

This chapter defined an incremental common cover link parser. The incremental-
ity of the parser was defined in terms of the links the parser may add at each step:
these links are required to have one end at the last word received by the parser.
This seems a more natural definition of incrementality than that often used for
dependency parsing, where the parser is required to construct a connected de-
pendency structure for each prefix of the utterance being parsed. In contrast to
this connected structure based definition of incrementality, which has problems
dealing with left branching structures, the definition of incrementality introduced
in this chapter has no such limitation. The incremental parser is shown to be
able to construct any bracketing.

The incremental parser adds links one by one to create a shortest common
cover link set for the utterance it is parsing. Several properties were defined to
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describe the links the parser may add at every step. The most important of these
properties is adjacency, which considerably restricts the set of links which may be
added at each step. In particular, a link from x to y may be added only if there is
already a link path from x to each of the words between x and y. Thus, a link can
be added to y only if y appears directly next to an already constructed syntactic
unit ’headed’ by x. This property is a direct consequence of the definition of the
shortest common cover link sets and has consequences for learning, as described
in chapter 6.





Chapter 4

Linguistic Analysis

The previous chapters defined and described the formal properties of common
cover links and an incremental parser based on these links. The present chapter
discusses the linguistic properties of the common cover link representation and
of incremental parsing. While chapter 2 concentrated on the relation between
common cover links and bracketing (constituent structure), the link-based nature
of the representation suggests that it may be more closely related to another stan-
dard linguistic formalism: dependency structures. The present chapter therefore
begins, in section 4.1, by presenting some basic properties of dependency struc-
tures which are then used in section 4.2 to compare common cover links and
dependencies. It is shown that probably every dependency link of a sentence is
also a common cover link and that most (but not all) these dependency links are
in a shortest common cover link set of the sentence. At the same time, there
are many common cover links which are not dependency links. The three main
differences between dependency structures and shortest common cover link sets
are then discussed: exocentric structures, link depths and adjacency.

Because sentences with a syntactically ambiguous prefix pose a challenge for
incremental parsers, they have been used extensively by psycholinguists to study
the human incremental parser. It turns out that humans can easily handle some
initial ambiguities while failing to process others correctly without performing
conscious reanalysis. In section 4.3, I discuss this problem, known as reanalysis,
and show how the common cover link incremental parser can successfully handle
at least some of the initial ambiguities which humans can process without diffi-
culty. I also indicate briefly some similarities between common cover link parsing
and models put forward by psycholinguists to describe the difference between
easy and difficult reanalysis.

An assumption made several times in the previous chapters is that common
cover links of depth 0 and 1 are sufficient to describe the constituency structure
of natural languages. In section 4.4, I look more closely at this hypothesis by
examining the bracketing found in several annotated corpora. While no definite
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conclusions can be drawn from such a survey, the data seems to suggest that the
depth of common cover links needed to describe constituency structure is indeed
bounded by a small number. Where links of depth greater than 1 may be needed,
it is shown that either the analysis is debatable, or that the problem is better
handled by extending the common cover link representation in ways other than
allowing links of depth greater than 1. Since the need for these extensions is
independent of the link depth issue, this suggests that links of depth 0 and 1 are
probably sufficient.

The final section of this chapter, section 4.5, describes certain linguistic struc-
tures which require the extension of the common cover link representation. These
include non-projective dependency structures, coordination and relative clauses.
The possible extensions are sketched but left to be fully specified in future work.

4.1 Dependency Structures

Dependencies describe the syntactic structure of utterances by a set of (possibly
labeled) directed links between pairs of words. Every such link connects a head
word to a word which is a dependent of that head. This dependent may itself be
a head with its own dependents. The syntactic structure of a sentence is then
given by a directed (possibly labeled) graph where each directed link points from
a head to one of its dependents (see examples below). A basic relation induced
by dependencies is the domination relation: a word x dominates a word y in a
dependency structure if the structure contains a directed path from x to y.

Notation I write D(U) ⊆ U × U for the set of dependencies assigned to the
utterance U . If 〈h, d〉 ∈ D(U) then there is a dependency from the head h to
the dependent d. This is a directed graph whose vertices are the words of U
and whose edges are the dependency links. For x, y ∈ U , I write x >D(U) y if x
dominates y in D(U) (in most cases this will indeed be a strict order).

Despite the long history of dependency based syntactic analysis, there con-
tinues to be considerable disagreement between dependency based theories as to
which dependency relations hold for various linguistic utterances. For example,
while all dependency theories agree that a determiner has a dependency rela-
tion with the noun it belongs to, there is no agreement as to which is the head
and which is the dependent of this relation. Many, such as Mel’čuk (1988), an-
alyze the noun as the head and the determiner as the dependent while others,
such as Hudson (1990), prefer the determiner as the head. In some cases, theories
even disagree as to whether dependency relations are sufficient to describe certain
syntactic constructions, such as coordination (John and Mary). While Mel’čuk
(1988) sees the first conjunct (John) as the head of this construction, Hudson
(1990) claims that coordination and dependency are different relations altogether
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and must be represented differently in the syntactic theory. Even though these
differences are significant, they are mostly irrelevant for the comparison with
common cover link structures.

4.1.1 No-Loop Conditions on Dependencies

Despite the many differences among them, almost all dependency theories require
that the dependency structure D(U) be a directed acyclic graph (DAG). This
means that there cannot be a directed path in the graph which leads from a
word to itself (in particular, a dependency link may not connect a word to itself).
This is equivalent to saying that the domination relation is a strict order. This
requirement is strengthened in many theories, such as Mel’čuk (1988), to the
requirement that the dependency structure must be a rooted directed tree. This
means that the (undirected) graph of D(U) is a tree and there is a root word
(typically the main verb) which dominates all other words in the utterance. In
particular, every word except the root word is a dependent of exactly one head
word.

Regardless of the theory being used, rooted trees are by far the most common
dependency structure. It seems that the main reason for relaxing the rooted tree
requirement is the need to find a satisfactory representation for relative clauses.
Theories which impose the rooted tree condition are forced to assign the following
dependency analysis to a sentence containing the relative clause he read :

the bookoo
&&

he readoo was //
ww

lost

In this analysis, he read is seen as a modifier of the book. Though this saves
the rooted tree condition, it does so at the expense of hiding the important fact
that the book is the object of the verb read. When the rooted tree condition is
relaxed, the following dependency structure may be assigned to better describe
the relation between read and the book. This analysis follows, for example, the
annotation guidelines of the Corpus Gesproken Nederlands (Hoekstra et al. 2003).

the bookoo he readoo
xx

was //
ww

lost

If we look at the dependency links assigned to the word read under the first
analysis, they are very different from the dependency links assigned to this verb
(by all theories) in the sentence He read the book :

he readoo
''

the bookoo



62 Chapter 4. Linguistic Analysis

Under the second analysis, though, the links are exactly the same, except for the
linear position of the object the book.

Such relative clause examples (and other similar examples) are the main source
of violations of the rooted tree condition by dependency theories.1 These exam-
ples not only satisfy the directed acyclic graph condition but actually also satisfy
a stronger condition: the graphs have no undirected loops, that is, the undirected
graph (in which the direction of the dependencies is ignored) is a tree. I will refer
to this as the directed tree condition (as opposed to the rooted directed tree condi-
tion described above). It seems that most dependency theories which impose the
directed acyclic graph condition also satisfy the directed tree condition. The two
conditions are not equivalent, of course, as can be seen in the following example
which is a directed acyclic graph, but not a directed tree: x // ))y zoo .

4.1.2 Projective Dependency Structures

An additional condition which may be imposed on dependency structures is
that they be projective. A dependency structure D(U) is projective if for any
〈h, d〉 ∈ D(U) and any x ∈ (h, d) (that is, x between h and d in the linear or-
der of U), h >D(U) x. It was discovered in the early 60’s by Lecerf (1960) and
Hays (1964) that this condition holds for many sentences in many languages.
Depending on the specific linguistic theory, the projectivity condition may fail in
different constructions. All theories agree, however, that this condition fails for
some sentences. One construction in which projectivity fails is a simple English
question:

what are //
''

you doing
ww

1Hudson’s Word Grammar (Hudson 1990) allows violations of the directed acyclic graph
requirement but distinguishes (in a later version of the theory, Hudson 2003) between depen-
dencies which are in the surface structure and other dependencies. It seems that the surface
dependencies do not violate even the rooted tree requirement. For example, the relative clause
example given above is assigned the following dependency structure, where only the links above
the sentence and at the sentence level are part of the surface structure.

the bookoo
&&

he readoo
ff was //

vv
lost

When all dependencies are taken into account, many of Hudson’s examples (not only relative
clauses) violate the directed acyclic graph condition. It seems that Hudson’s notion of depen-
dency codes many relations which are not part of other dependency theories. It is, therefore,
probably best to compare standard dependencies only to Hudson’s surface dependencies.
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A more complicated violation of projectivity can be found in Dutch:

(ik denk dat) ik Jan Marie zag
ww

// helpen
ww vv

No dependency based theory I am aware of has an analysis of these structures
which is projective.

While it is not claimed by anyone that projectivity holds for all sentences,
everybody agrees that it holds for many sentences (and for large parts of most
sentences). As a result, projectivity can be used as a simplifying assumption
about dependency structures without losing too much in the accuracy of the
model. This assumption is adopted by many computational models papers (Klein
and Manning 2004; Nivre and Scholz 2004; McDonald et al. 2005).

One reason why projectivity is often used as a simplifying assumption is that
there is a strong connection between projectivity and bracketing structures. Pro-
jectivity holds if and only if, for every head, the head and all the words it dom-
inates form a sequence of consecutive words in the utterance. This means that,
given a projective dependency structure, it is possible to construct a bracketing
by creating, for each head, a bracket covering the head and all words which it
dominates. Given this bracketing, it is clearly easy to reconstruct the original
dependency structure (the head of each bracket is the word of depth 0 under the
bracket). This shows an equivalence between a subset of bracketing structures
and projective dependency structures. In contrast, when a dependency structure
is not projective it is not possible to construct an equivalent bracketing in the way
outlined above because there is some head h such that a bracket covering h and
all words it dominates also covers additional words. For example, in the English
question what are you doing (whose non-projective dependency structure is given
above) the bracket covering doing and all its dependents (what) must cover the
whole sentence, just like the bracket covering are (the root of the dependency
tree) and all its dependents. In the resulting bracketing, [[what ] are [you] doing ],
it is no longer possible to determine whether it is are or doing which is the root
of the dependency structure.

4.2 Dependencies and Common Cover Links

From the basic mathematical properties of dependency structures described in
the previous section it is already clear that shortest common cover link sets are
not dependency structures. This can be seen in the shortest common cover link
set in figure 4.1(b), which contains both a directed loop (from the to boy and
back) and an undirected loop (know, sleeps, boy, the, know). Despite this for-
mal difference, it is apparent from figure 4.1 that there are also many similarities
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[ [ I ] [ know
yy ''

[ [ the boy ]oo [ sleeps ] ] ] ]
zz

(a) dependency structure

[ [ I ] [ know
1yy

0

''0 %%
[ [ the

0 // boy ]oo [ sleeps ] ] ] ]
1zz

(b) shortest common cover link set

Figure 4.1: A (possible) dependency structure and a shortest common cover link
set of the sentence I know the boy sleeps.

between the two syntactic representations. In particular, every link in the depen-
dency structure in figure 4.1(a) is also a link in the shortest common cover link
set in figure 4.1(b). It is therefore worthwhile to look more closely at the sim-
ilarities and differences between the two representations. Section 4.2.1 explains
why dependencies are probably always common cover links and often (though not
always) belong to a shortest common cover link set. The following three sections
describe the three main differences (all seen in figure 4.1) between dependency
structures and shortest common cover link sets:

1. Exocentric constructions (section 4.2.2): constructions with more than one
head, such as the noun phrase the boy in figure 4.1(b), where there are links
going back and forth between two words.

2. Link Depths (section 4.2.3): common cover links have a depth assigned to
them.

3. Adjacency (section 4.2.4): the link from know to sleeps in figure 4.1 requires
a common cover link path (but no dependency path) from know to each
word between know and sleeps.

Of these three, adjacency is by far the most important and is the main prop-
erty which enables incremental parsing and simplifies learning (as described in
chapter 6).

Because the definition of common cover links is based on bracketing, common
cover links can only describe projective dependency structures and the comparison
in the present section will be restricted to such structures. While projectivity is
a reasonable first approximation of linguistic structure, it is clearly inadequate
for the description of many common constructions. The question of how the
common cover link representation may be extended to handle such non-projective
structures will be discussed (but not solved) in section 4.5.
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4.2.1 Are Dependencies Common Cover Links?

In dependency structures, every linguistic unit consists of a head word and its
dependents. Every such unit is a constituent and there is, therefore, a bracket
which covers the head and all its dependents. I will call this bracket the head’s
maximal bracket (which may differ somewhat from a head’s maximal projection
as defined in Government and Binding theory, see Haegeman 1994). If the head
is of minimal depth under its maximal bracket then there is a common cover link
(in RC) from the head to every other word in the bracket and, in particular, every
dependency link is also a common cover link.

To see whether every dependency link is also a common cover link, it remains
to check whether the head is indeed always of minimal depth under its maximal
bracket. Since every dependent is itself a head of a constituent, every dependent
is inside its own bracket and cannot be of depth less than 1 under the head’s
maximal bracket. This means that as long as the head is of depth at most 1
under its maximal bracket, it is of minimal depth under it. For this to hold, there
should be at most one bracket which contains the head but not all its dependents.

We can distinguish between internal dependents of a head, which are inside
the smallest bracket covering the head, and external dependents which are not
inside this bracket. As long as there is only one level of external dependents (that
is, a bracket covering the head and some of its external dependents must cover
all external dependents) the head remains of depth at most 1 under its maximal
bracket and there are common cover links from the head to all its dependents. If,
however, there are several levels of external arguments and brackets may cover
the head together with only some of its external dependents, the head may be
of depth 2 or higher under its maximal bracket. It may then be that one of the
external dependents is of smaller depth than the head under the head’s maximal
bracket. In this case, there is no common cover link from the head to that
dependent but, instead, a link from the dependent to the head. If such cases
exist, not every dependency is also a common cover link.

The question remains whether heads may have external dependents at all and
if yes, whether there may be more than one level of external dependents. The
answer may be theory dependent, but at least in one case, that of the subject of a
sentence, most theories seem to agree that the subject of a sentence is not inside
the verb phrase, the smallest bracket covering the main verb of the sentence. It
is also usually agreed that the subject of a sentence is a dependent of the main
verb (or other predicate) of the sentence (but see section 4.2.2 for an alternative
analysis). Under this standard analysis, the subject is an external dependent of
the main verb (see Haegeman (1994) p. 72). Beyond this example, I am not aware
of any other case where there is general agreement that a dependent is external or
where more than one level of external dependents is allowed. One can, however,
find annotated corpora where the annotation does actually distinguish between
different levels of external dependents (that is, there are brackets covering the
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head with only some of its external dependents). A detailed analysis of several
such examples will be carried out in section 4.4. All these examples seem to
allow reasonable alternative analyses which require at most one level of external
dependents.

To conclude this discussion, it seems that either most or all dependencies are
also common cover links. The only exceptions may result from constructions
where a head has more than one level of external dependents. If they exist at all,
such constructions are relatively rare. The question whether they exist is strongly
related to the question whether there are common cover links of depth greater
than 1. This is discussed in section 4.4.

Are Dependencies in the Shortest Common Cover Link Set?

While dependency links are also common cover links (of various depths) the oppo-
site is not true and it is easy to see that there are many common cover links which
are not dependency links. It is, however, more interesting to compare dependency
links not to the full set of common cover links (RC) but to the shortest common
cover link sets (which are actually used for parsing). Often, dependency links
appear in a shortest common cover link set, but this is not necessarily always so.
Sometimes this also depends on the dependency analysis chosen. For example, if
we adopt an analysis in which the determiner and not the noun is the head of a
noun phrase then the dependency structure for the example in figure 4.1 becomes:

[ [ I ] [ know
yy ''

[ [ the boy ]oo [ sleeps ] ] ] ]
xx

The dependency link from sleeps to the is a common cover link in the set RC of
this sentence but does not appear in the shortest common cover link set given
in figure 4.1(b) (it also does not appear in any other shortest common cover link
set, because of the link from sleeps to boy).

Despite such examples, the agreement between dependency structures and
shortest common cover link sets is significant and most dependencies do appear
in shortest common cover link sets. The following sections describe the most
important differences between these two structures.

4.2.2 Exocentric Constructions

The first difference between the shortest common cover link sets and dependen-
cies is that in some constructions there are back-and-forth common cover links
between words or constituents (something which is not possible with dependen-
cies). One place where this happens is in the structure of the smallest multi-word
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constituents, namely, noun phrases. In such a constituent, every word has a com-
mon cover link to every other word in the constituent and therefore the shortest
common cover links connect every word to the word adjacent to it inside the
constituent. This means that there are back-and-forth links between every two
adjacent words in the constituent. In the simplest case, a noun phrase such
as [DT N] has the shortest common cover link structure [DT � N] but its de-
pendency structure is either [DT → N] or [DT ← N] (depending on the linguistic
theory). This can be seen in the structure of the noun phrase the boy in figure 4.1.
This common cover link structure cannot be a dependency structure under any
linguistic theory because it violates the directed acyclic graph condition.

The common cover link structure assigned to noun phrases agrees well with the
difficulty linguists have in deciding whether it is the determiner or the noun which
is the head of the noun phrase. It has even been recently suggested (Beavers 2003)
that a noun phrase has no single head, that is, that noun phrases are exocentric
constructions. The common cover link structure supports this point of view by
giving both the determiner and the noun an equal status. If linguists find it
difficult to agree which is the head of a noun phrase, wouldn’t it also be easier
for a learning algorithm if it doesn’t have to decide which is the head? The
common cover link representation allows a learner to avoid making this decision.
This difference between the dependency and common cover link analysis of noun
phrases may seem small, but because noun phrases are the most frequent (and
probably also most important) building blocks of a sentence, this translates into
numerous differences in the actual assignment of links.

A similar difference between dependencies and the shortest common cover
link sets can be observed in the attachment of a subject to a verb phrase. In
dependency structures, there usually is a dependency link from the verb to the
subject. In the common cover link set (RC) there are common cover links of depth
1 both from the subject to the verb and from the verb to the subject:

[ [ The //
0

1 )) ))

boy ]oo

1 (( ))

[ saw
1

hhhh

0 **
[ him ] ] ]

Whether links in one or both directions are selected for the representative subset
being used (and therefore also for the shortest common cover link set being used)
is not specified by the representation itself but remains to be decided separately
(by the linguistic theory or parser). This means that the common cover link
representation can either have only a link from the verb to the subject or have
links going back and forth between them. In the first case, this results in an
analysis of the subject as an external argument of the verb, in agreement with
dependency based theories as well as many other modern linguistic theories (e.g.
Haegeman (1994) p. 71). In the second case, a more traditional linguistic analysis
is adopted, in which the sentence is an exocentric construction resulting from the
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combination of a subject with a predicate as two elements of equal status, none of
which dominates the other (see e.g. Potter (1950) p. 91 or Hudson (1987) p. 113).

As these two examples show, common cover links allow an exocentric repre-
sentation of linguistic structures, something which is not possible in dependency
structures. Some exocentric constructions in a shortest common cover link set
are determined by the bracketing represented by the link set while others are
optional. This has to do with the free choice involved in the definition of a rep-
resentative subset (section 2.4): when the exocentric construction is of common
cover links of depth 0, the construction is determined by the bracketing while
exocentric constructions of links of non-zero depth are optional and depend on
the choice of representatives. In this sense, bracketing lies between dependency
structures and shortest common cover link sets: exocentric constructions of links
of depth 0 can be represented by a bracketing while exocentric constructions of
links of non-zero depth cannot.

To see how this is reflected in the bracketing, let us first consider a simple
bracket covering two words. If both these words are of depth 0 under the bracket
(as in [x y]) then there must be depth 0 back and forth links between the words,

[x //
0 y]oo , and the structure is exocentric. If, on the other hand, there is an

additional bracket around one of the two words, as in [x [y]], then there is only

a link from x to y and the structure is not exocentric ( [x 0 // [y]] ). In both
of these cases the bracketing determines whether the structure is exocentric. If
there are brackets covering each of the two words (as in [[x] [y]]) then the links
connecting the two words are of depth 1 and either one or both words may be
chosen as representatives of the bracket. If both words are chosen as represen-
tatives ( [[x] //

1 [y]]oo ) then the structure is exocentric while if only one word is

chosen as the representative ( [[x] 1 // [y]] ) the structure is not exocentric. Here
the bracketing does not indicate whether the construction is exocentric or not.
This is one of the cases where shortest common cover link sets are more expressive
than bracketing.

It should be stressed that the common cover link representation (as such)
allows exocentric structures but does not define which structures actually are
exocentric. This remains to be determined by the specific linguistic theory (or
parser) which is used to assign the syntactic structure. It may be that exocentric
structures do not exist at all and that dependencies are indeed sufficient for
describing any syntactic structure. Such a conclusion must be the result of careful
linguistic inquiry and not merely the by-product of a choice of constraints on the
representation (however appealing their simplicity may seem). The fact that
linguists have come up with exocentric analyses of syntactic structures suggests
that this option should remain open in the formalism being used. Moreover, the
difficulty linguists have in determining the head of structures such as noun phrases
shows that the answer to this question is not simple. Indeed, it may be that there
is no single answer and that different levels of linguistic analysis result in different
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heads (see Zwicky (1985) and Hudson (1987)). The learning algorithm of the next
chapter is able to detect many head-dependent relations (such as those between a
verb and its object or a preposition and its argument) but assigns an exocentric
structure to noun phrases. This may be seen as empirical evidence suggesting an
exocentric analysis of noun phrases at least at the basic level of syntactic analysis
which is distributional rather than semantic.

4.2.3 Common Cover Link Depth

The second difference between common cover links and dependencies is that each
common cover link has a depth. These depths impose restrictions on the possi-
ble link configurations through the characterizing properties of Definition 2.7.1.
In contrast, most dependency based formalisms label dependency links by la-
bels which represent different syntactic or semantic relations (such as subject of,
agent of or purpose of, depending on the specific theory). There may be some
correlation between the depth of common cover links and the labels assigned to
dependencies in some theories, but I am not aware of any dependency based sys-
tem in which the labels have the same implications as the depths of common
cover links have for possible allowed structures.

While having links of different depths is certainly necessary if we want to be
able to describe all possible bracketings, one may wonder whether the depth is also
necessary when only bracketings describing syntactic structure are considered.
The answer was already given in the previous section which describes the common
cover links joining the subject of a sentence with the verb phrase. Whether one
adopts an exocentric or dependency based analysis of this relation, the subject and
the verb phrase are joined by links of depth 1. This is important when calculating
the bracketing (constituency) structure associated with a certain link structure.
As can be seen in the example of figure 4.1(a), the bracketing of the sentence I
know the boy sleeps cannot be calculated from the unlabeled dependencies because
there is no way of knowing that the subject I should be outside the minimal
bracket covering the verb know while the object the boy sleeps should be inside
it. Of course, if the dependency links from the verb know were labeled as subject
and object then it would have been possible to add a rule which specifies that the
subject is an external argument (and should not be inside the minimal bracket
covering the verb know) while the object is and internal argument (and should
be inside that bracket). This is equivalent to adding a depth property to every
dependency link.

Apart from joining the subject and the verb phrase, are there additional con-
structions which require links which are of non-zero depth? This is not entirely
clear. In some annotation schemes (such as the one used in the Wall Street Jour-
nal Corpus) one can find bracketings such as [[the chairman] [of [the board ]]] of
a noun phrase with a modifier. This sort of bracketing requires links of depth 1.
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The bracket [the chairman] is not, however, usually accepted as a constituent be-
cause it fails most constituency tests (it cannot be replaced by a pronoun such as
it or be moved). Therefore, if we assume (as I do) that the bracketing represents
constituency structure then the correct bracketing should not mark the chairman
as a constituent and links of depth 0 are sufficient to represent the structure. I
return to this discussion in section 4.4.

4.2.4 Adjacency

The most fundamental difference between dependency structures and shortest
common cover link sets is the result of the connectedness characterizing condi-
tion in Definition 2.7.1. In dependency structures, when a head h dominates a
constituent D, there is a dependency link from h to the head d of D and this is
the only link from h to D. In contrast, the connectedness condition on shortest
common cover link sets requires that if there is a link from h to d then there
must also be a path of links from h to every word between h and d. In particular,
there is a common cover link from h to the word in D which is closest to h. This
word need not necessarily be the head of D. We can see this in figure 4.1, where
the shortest common cover link set contains common cover links from know to
both the (the closest word in the constituent to know) and sleeps (the head of the
constituent). In contrast, there is a dependency link from the head know only to
the dependent sleeps, which is the head of the constituent the boy sleeps.

Whether the shortest common cover link set contains links from h to D other
than to the word in D closest to h depends on the structure of D. If, for example,
D is a minimal bracket (a noun phrase), there is a single link from the head h
to the word inside D closest to h. This means that while a verb has a common
cover link to the noun in the subject constituent, it has a common cover link to
the determiner in the object constituent:

[ [ DT
//

0 N ]oo [ V

1xx 0 %%
[ DT

//
0 N ] ] ]oo

This is not surprising if one recalls that the common cover links cannot determine
whether it is the determiner or the noun which is the head of the noun phrase.
Therefore, any of the two words will do for attachment and the closest one to the
verb is chosen. With dependency links, such an attachment is not possible. Once
the theory we use has determined whether it is the determiner or the noun which
is the head of the noun phrase, the dependency links from the verb to the subject
and the object must both attach to the determiner or both attach to the noun.

When the head d of the constituent D is the only word of minimal depth in
D, the shortest common cover link set must contain a link from h to d. This
then results in a structure similar to that in figure 4.1(b). An additional example
of this form can be found in Dutch, where the phrasal complement of omdat
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(because) is to the right of omdat but has its own dependents to the left of the
head (the verb ziet):

[ omdat

0

))

0

))0 ++
[ [ de //

0 man ]oo [ [ de //
0 vrouw ]oo ziet ] ] ]

0
jj

1

ii

because the man the woman sees

In this example, there is a link from the head omdat to the leftmost word of each
dependent inside the constituent headed by ziet (the phrase de man de vrouw ziet
which means the man sees the woman).

This structure of shortest common cover link sets is behind the adjacency
condition (Definition 3.2.1) used by the incremental parser. The most important
property this condition imposes on the parser is that the parser needs to consider
adding a link from x to y only if there is already a path of links from x to all
words between x and y. In the above Dutch example, this means that as the
arguments of the verb ziet are read, they are attached to omdat even though
they are not dependents of omdat. When the verb ziet is read, it is adjacent to
omdat and a link from omdat to ziet can be created. This adjacency has not only
a formal definition but also an intuitive meaning: the verb ziet is immediately
next to a syntactic unit (already constructed by the incremental parser) which
is “headed” by omdat and contains the two constituents de man and de vrouw.
It can therefore be attached to this syntactic unit and this may be done by a
link from the “head” of the unit. At the same time, a link from ziet to its
closest dependent, de vrouw, can be created. Once this link is created, the next
dependent, de man becomes adjacent and can be attached to the verb.

In this way, the attachment of the sentential complement of omdat is per-
formed in several steps, with the words attached one by one under the head
omdat. Even before the full complement is read, the parser already determines
that whatever is to the right of omdat is part of its complement. This can be
done without actually knowing what the head of the complement is. When a
dependency representation is used, this is not possible because there is only one
dependency link from the head omdat : to its dependent ziet.

[ omdat
))

[ [ de man ]oo [ [ de vrouw ]oo ziet ] ] ]
jjii

When the words are read one by one, the parser can only add the dependency
link from omdat to ziet when all words have been read. Therefore, before the



72 Chapter 4. Linguistic Analysis

verb ziet is read, the different elements of the phrase remain unattached to each
other. This seems to be different from what we feel happening when hearing such
a phrase. Consider a similar English example: because the man saw the woman.
When the speaker of this phrase pauses after uttering only the first three words,
because the man, we already feel that the man is part of the reason described by
the clause, even though the head of this complement (the verb saw) has not yet
been heard and therefore the dependency from because to the clause has not yet
been created. In this sense it seems that incremental parsing with common cover
links is more similar to what we feel happening when humans parse such phrases.

Such an argument, based on introspection, cannot be taken as evidence for
anything, but may serve to motivate closer inspection of the issues involved. These
were studied extensively by psycholinguists interested in sentence processing. One
phenomenon studied in this context is known as reanalysis : the seeming ability
of humans to switch from one syntactic analysis to another while processing a
sentence incrementally. The next section shows how cases of easy reanalysis,
where humans do not seem to have much trouble changing from one analysis to
another, do not actually involve any change in the analysis when parsing with
common cover links.

4.3 Reanalysis

In the psycholinguistic literature on sentence processing, reanalysis refers to sit-
uations where the human incremental parser has to modify decisions made in
previous stages of the parse. In the following three examples (taken from Sturt
and Crocker 1996), the syntactic analysis of the sentence remains ambiguous un-
til the word in boldface is read. Psycholinguistic experiments show that before
reaching the disambiguating word, people tend to adopt the globally incorrect
reading and must therefore modify their analysis when the disambiguating word
is reached:

(1) a. John knows the truth hurts.

b. While Philip was washing the dishes crashed onto the floor.

c. The boat floated down the river sank.

While the first sentence (1a) does not seem to cause any difficulty, sentences (1b)
and (1c) cause considerable difficulty in reading. These two are garden path sen-
tences, where the prefix of the sentence (before the disambiguating word) leads
the reader down an incorrect analysis.2 To correctly interpret the garden path

2Dick de Jongh suggested the following explanation for the term garden path sentence: Alice

walked down the garden path after path attracting her attention.
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sentences, the reader must consciously reanalyze them when the disambiguating
word is reached and may have to restart processing from the beginning. The mea-
surable difficulty people have processing garden path sentences serves as empirical
evidence for the incrementality of human language processing.

While sentence (1a) is not a garden path sentence and does not seem to
cause any processing difficulty, its prefix is also ambiguous until the word hurts
is reached. This is because the verb knows can take either a noun phrase or a
sentence as a complement. After the prefix John knows the truth has been read,
it is not yet known whether the truth is the noun phrase complement of knows
or merely the subject of the sentential complement the truth hurts. In terms of
dependencies, these are two very different analyses, because the first requires a
dependency to be created from knows to the truth while the other does not:

[ [ John ] [ knows
zz ((

[ the truth ] ] ]oo

[ [ John ] [ knows
ww ''

[ [ the truth ]oo [ hurts ] ] ] ]
yy

What, then, should an incremental parser do after reading the prefix John knows
the truth? If it assigns a dependency link from knows to the truth, it may have
to undo this link when the verb hurts is read. If it decides not to add this link, it
fails to assign a correct parse to John knows the truth in case this is the complete
sentence. One possibility is that the prefix John knows the truth is first parsed
to have the truth as a noun phrase complement of knows and that this parse is
reanalyzed if and when the verb hurts is read. Experiments in (Sturt et al. 1999)
indeed detect a certain delay in reading when the disambiguating word (hurts)
is reached in this sort of sentences. This is unconscious reanalysis which people
can perform without difficulty (the measured delay is small) as opposed to the
conscious reanalysis involved in processing garden path sentences.

To explain the difference between the two types of reanalysis, conscious and
unconscious, researchers have suggested different models which allow the modi-
fications needed for unconscious reanalysis but exclude the modifications needed
for conscious reanalysis (Abney 1989; Pritchett 1992; Lewis 1993). An alternative
adopted by others is to look for underspecified representations of syntactic struc-
ture such that parsing decisions do not have to be undone in cases of unconscious
reanalysis (but do have to be undone in cases of conscious reanalysis). This ap-
proach is attractive because it derives the restrictions on structural modification
from the syntactic representation being used.

Many of the suggestions along this line are based on description theory (D-
theory), first proposed in Marcus et al. (1983). D-theory is a framework for
describing syntactic trees which takes domination rather than direct domination
as the basic relation for specifying the tree structure. Several authors (Weinberg
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1993; Weinberg 1995; Gorrell 1995a; Gorrell 1995b; Sturt and Crocker 1996),
have used this basic framework to put forward their own models for sentence
processing. The use of domination (rather than direct domination) to describe
tree structures can explain the ease with which the unconscious reanalysis takes
place in processing John knows the truth hurts. When parsing the prefix John
knows the truth, the parser only determines that knows dominates the truth but
does not determine whether this is also direct domination. Since knows dominates
the truth both in John knows the truth and in John knows the truth hurts, the
parser does not need to change this decision when the word hurts is reached. This
explains why reanalysis in this case is easy. In the garden path sentence (1b), on
the other hand, no such easy solution is available. After having read the prefix
while Philip was washing the dishes, the parser must decide whether washing
dominates the dishes. The initial parse preferred by humans (and which is often
correct) has the dishes as an object of washing. Therefore, a domination relation
must be created from washing to the dishes. However, when the disambiguating
word crashed is reached, the analysis has to be altered so that the dishes are
the subject of crashed and while Philip was washing is a modifier of crashed. In
this analysis, washing does not dominate the dishes anymore. As a result, even
when working with the weaker relation of domination, this example requires the
parser to undo previous parsing decisions. This explains why this is a garden
path sentence which requires conscious reanalysis.

Common cover link parsing has much in common with D-theory based models
in that the relation represented by common cover links is closer to domination
than to direct domination (but the relation is not actually the domination relation,
as evidenced by the possibility of directed common cover link loops). This then
leads to the same difference in reanalysis between the examples given above.
Consider the common cover link structures of the sentences John knows the truth
and John knows the truth hurts :

[ [ John ] [ knows
1ww 0 %%

[ [ the
0 // truth ] ] ]oo

[ [ John ] [ knows
1ww

0

''0 %%
[ [ the

0 // truth ]oo [ hurts ] ] ] ]
1yy

The first four words, John knows the truth, are connected by the same links in both
structures. This means that when the word hurts is reached, only the two links
connecting it to the prefix of the structure need to be added. Incrementality is
preserved and reanalysis is easy (in terms of common cover links there is actually
no reanalysis). The garden path sentence (1b), on the other hand, causes common
cover link parsing the same problem it causes D-theory based approaches. At first,
a common cover link is created from washing to the dishes to allow the analysis in
which the dishes is the object of washing. Then, when crashed is reached, this link
needs to be removed. This is not allowed in incremental parsing, in agreement
with the difficulty experienced by humans when processing this sentence.
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I have only discussed very few examples here. Reanalysis comes in many
different forms (and languages) and its difficulty may depend not only on syntactic
structure but also on meaning, priming, length of phrases and other factors. It
was not my intention to present common cover links as a cognitive model of
language processing. Rather, I wanted to show that incremental parsing with
common cover links can handle (at least some) initial ambiguities in sentence
structure when these do not seem to pose problems for humans. This means that
the incrementality of the parser does not in itself form an obstacle to correct
parsing. Of course, the parser may still fail on garden path sentences, but, as
these are also difficult for humans, we may expect them to be rare.

4.4 Are Links of Depth 0 and 1 Sufficient?

In section 4.2.1 we saw that if every dependency head is of depth at most 1
under its maximal bracket (the smallest bracket covering it together with all its
dependents) then every dependency link is also a common cover link. This holds
if every dependency head has at most one level of external dependents, that
is, there is at most one bracket which covers the head but does not cover all its
dependents. If this assumption holds and if we accept the basic assumption behind
dependency structures, that every syntactic constituent has a head word, then all
common cover links are of depth 0 or 1. In section 4.2.2 we saw, however, that
common cover links allow us to describe constituents which are exocentric and
do not have a head word. While such exocentric constructions may, theoretically,
be a source of common cover links of depth greater than 1, the examples of
exocentric constructions given in section 4.2.2 do not require such links. This
was because those exocentric constructions all had at least one component which
had a head with no external dependents (and therefore had a head of depth 0).
In fact, in the only case which definitely seems to require an external dependent
(the subject of a sentence) the exocentric construction was an alternative to the
external dependent construction.

It is, therefore, an appealing hypothesis that common cover links of depth 0
and 1 are sufficient to describe all syntactic structures. In terms of dependen-
cies, this hypothesis is equivalent to assuming that no head has more than one
level of external dependents (as defined above) and that exocentric constructions
all have at least one component which has a head and no external arguments.
Whether this holds is an empirical linguistic question: there are bracketings which
require links of depth greater than 1 but it is not clear whether these bracket-
ings are possible descriptions of linguistic structure. This also depends on what
the brackets represent. Throughout this work I assume that brackets represent
linguistic constituents.

The answer to this question is, of course, theory dependent, but, to give a
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first rough assessment of the possible constructions which need to be examined, I
looked at the bracketings assigned to sentences in several syntactically annotated
corpora. While these corpora represent only one form of annotation of specific
domains of specific languages, they all contain complex sentences which are likely
to reveal complex syntactic structures needing link depths greater than one, if
such structures exist.

For these experiments I used the same corpora used in the experiments of
chapter 7: the Wall Street Journal Corpus (version 2.0) for English, the Negra
Treebank (version 2.0) for German and the Chinese Treebank (version 5.0) for
Chinese. Each bracket in the annotation was considered equivalent to the set of
words it covers (see details in section 7.2). I then calculated the height of each
bracket (Definition 2.2.4). This height is equal to the depth of the links needed
to represent the bracket.

Of the 730,024 brackets in the Wall Street Journal Corpus which cover more
than one word, 1,693 were of height 2 and none were of height 3 or higher. Of
the 141,977 brackets in the Negra Corpus which cover more than one word, 11
were of height 2 and none were of height 3 or more. Finally, of the 330,079
brackets in the Chinese Treebank which cover more than one word, 17,382 were
of height 2 and 253 were of height 3. No brackets were of height 4 or more.
Considering that many of the sentences in these corpora are long and contain
complex constructions, these numbers seem to suggest that the height of brackets
in syntactic structures is bounded by a small number. It is also clear that there
are considerable differences between the different corpora. While the number of
brackets of height 2 in the Negra Corpus is negligible and the number of brackets
of height 2 in the Wall Street Journal Corpus is very small, around 5% of the
brackets in the Chinese Treebank are of height 2. These differences may be due
to real differences between the languages (and domains) or to differences between
annotation schemes. The very low number of brackets of height 2 in the Negra
Corpus is probably the result, among other things, of the fact that this corpus
was originally annotated with dependency structures and only then converted
into bracket annotation.

A closer look at the brackets of height 2 (or more) reveals that most of them
fall into several distinct categories. I here describe these categories and discuss
their analysis. For each category type I report below the number of brackets of
height 2 or more which remain after removing brackets of that category.

Coordinator-less coordination This is a sequence of parallel phrases or sen-
tences which could have been joined by a coordinator (such as and) but instead
were only separated by punctuation (comma, semicolon or full stop). Only coordi-
nations without a coordinator create a bracket of height 2 because when a coordi-
nator is used, the coordinator itself is of depth 0 under the bracket. Coordinator-
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less coordinations account for the majority of brackets of depth greater than 1.
Many of these are coordinations of full sentences. Ignoring the full sentence co-
ordinations, there were only 922 brackets of height 2 in the Wall Street Journal
Corpus, 5 brackets of height 2 in the Negra Corpus and 10944 brackets of height
2 in the Chinese Treebank. There were also 8 brackets of height 3 in the Chinese
Treebank. Ignoring all coordinations without a coordinator (such as coordina-
tions of two NPs separated by commas) there were 99 brackets of height 2 left
in the Wall Street Journal Corpus, no brackets of height 2 in the Negra Corpus
and 6542 brackets of height 2 in the Chinese Treebank. There were no brackets
of height 3 or more left in the Chinese Treebank after this step.

As already mentioned in section 4.1, linguists differ as to the analysis of co-
ordination. The parallel nature of the coordinates in a coordination suggests to
some linguists (Hudson 1990; Goodall 1987; Muadz 1991; Moltmann 1992) that
the relation between these coordinates is different from the subordination rela-
tion which holds between heads and their dependents. If this approach (which
I believe to be correct) is adopted, there should also be no common cover links
between coordinates but an alternative relation should be used instead. This is
certainly true when the coordination is between full sentences. Therefore, while
the common cover link representation should be extended to properly handle co-
ordination, I do not think that adding common cover links of depth greater than
1 is the solution and I do not consider coordination structures to be sufficient
evidence against the hypothesis that all common cover links are of depth 0 and 1.
I will discuss the possible extension needed to handle coordination in some more
detail in section 4.5.2.

Preverbal modifiers in the Chinese Treebank The majority of the 6542
brackets of height 2 in the Chinese Treebank which remain after the previous step
are a result of the way preverbal modifiers are annotated in the Chinese Treebank.
In Chinese, some dependents of the verb appear before the verb and others after
the verb. In addition to the subject, various modifiers of the verb can appear
between the subject and the verb (this can also be found in English, but to a lesser
extent). The annotators of the Chinese Treebank have chosen to annotate the
subject and the preverbal modifiers as two different levels of external dependents
of the verbs. This means that they are annotated at different bracketing levels
and are outside the smallest bracket containing the verb. The following example
of such a structure is taken from the Chinese Treebank annotation guide (Xue
and Xia 2000):

(IP (NP-SBJ (PN )) 
    (VP (ADVP (AD )) 
        (VP (VV ) 
            (NP-OBJ (NN )))) 
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Because the adverb (ADVP) is outside the smallest VP (verb phrase) bracket, an
additional VP bracket is created. The subject (NP-SBJ) is then attached to this
VP by creating an additional bracket (IP). This means that the annotation has
three different brackets covering the verb (VV) and its dependents and as a result
the verb is of depth 2 under its maximal bracket (IP). When the subject and the
preverbal modifier are themselves complex structures, the IP bracket may be of
height 2. The question is whether this is the best analysis of these structures. In
the Wall Street Journal Corpus we can find a similar structure:

( (S

(NP-SBJ (DT The) (NN company) )

(ADVP (RB also) )

(VP (VBD adopted)

(NP (DT an) (JJ anti-takeover) (NN plan) ))

(. .) ))

Here, the bracketing is different from that given in the Chinese Treebank. In the
English annotation, both the subject and the adverb are external dependents of
the verb at the same level. As a result, the verb is at depth 1 under its maxi-
mal bracket S. There is, in fact, also a third possible analysis: the adverb may
be included inside the lowest VP while only the subject remains outside it. I
think this should be the preferred analysis because when the adverb in English
follows the verb, it is always put inside the lowest VP. It seems that whether
the adverb appears before or after the verb should not cause any fundamental
change to the constituency structure. A similar case is mentioned in the Chi-
nese Treebank annotation guide, where (on p. 25) it is stated that a preverbal
QP (quantifier phrase) should appear outside the lowest VP while a postverbal
QP should appear inside it. This is supposed to distinguish between obligatory
dependents (arguments) which appear inside the lowest VP and optional depen-
dents (non-arguments) which appear outside this VP. To keep the annotation
decisions simple (p. 8) it was decided by the annotators of the Chinese Treebank
that preverbal dependents are always optional while postverbal dependents are
always obligatory. Whether this is a good criterion for optionality, I cannot say,
but as the annotation of the English corpus shows, there is no reason for keeping
optional dependents out of the lowest VP. There is, therefore, no need to create
an extra VP level and the two VP levels can be collapsed into one. After doing
so (together with removing coordinator-less coordination) only 530 brackets of
height 2 remained in the Chinese Treebank.

Chinese verb compounds The annotation guide for the Chinese Treebank
states (on p. 85) that verb compounds (verbs composed of several individual
verbs) should be treated in the same way as monolithic verbs (composed of one
word). At the same time, compound verbs are bracketed together while a single
verb is not bracketed. Clearly, the bracketing of the compound verbs together
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is meant to indicate that these form together a unit, but such a unit is not a
constituent (just as a single verb is not a constituent without its arguments). I
therefore removed all brackets grouping compound verbs together. After doing so
(in addition to the modifications described above), 455 brackets of height 2 were
left in the Chinese Treebank.

Nouns modified by a relative clause in English Of the 99 brackets of
depth 2 which remain in the Wall Street Journal Corpus after coordinator-less
coordination brackets are removed, the great majority (73) are the result of a
noun which has both a modifier and a relative clause attached to it. One variant
of such a construction is:

(NP-SBJ

(NP

(NP (DT A) (NN form) )

(PP (IN of)

(NP (NN asbestos) )))

(RRC

(ADVP-TMP (RB once) )

(VP (VBN used)

(NP (-NONE- *) )

(S-CLR

(NP-SBJ (-NONE- *) )

(VP (TO to)

(VP (VB make)

(NP (NNP Kent) (NN cigarette) (NNS filters) )))))))

In this example, the noun phrase a form is first modified by a modifier of asbestos
and then by a relative clause. Each modifier adds a level of bracketing, resulting
in a bracket of height 2. This analysis assumes that a form is a constituent which
needs to be bracketed separately. However, as already mentioned above, the pair
a form fails most constituency tests (such as substitution by it or movement)
and is not usually accepted as a constituent. Moreover, just as the modifiers of
a verb are inside the minimal bracket covering the verb, the modifiers of a noun
may be claimed to be inside the smallest bracket covering the noun. In this case,
the bracket covering the lowest level NP is extended to also cover the modifiers
and is merged with the higher level NP. In the example above, this means that
the resulting bracketing is [a form [of asbestos]]. Under this analysis, there is no
bracket of height 2.

Remaining brackets of height 2 After removing the brackets covered by
the four cases mentioned above, I was left with 26 brackets of height 2 in the
Wall Street Journal Corpus, no brackets of height 2 in the Negra Corpus and
455 brackets of height 2 in the Chinese Treebank. The brackets were removed
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automatically, so some brackets which should have been removed by the three
conditions above may have slipped through. For example, of the 26 brackets
of height 2 remaining in the Wall Street Journal Corpus, 6 seem to be cases of
coordinator-less coordination which were not removed automatically because of
mistakes in the annotation or in the removal algorithm. Similarly, in the Chinese
Treebank, preverbal modifiers were put into the lowest verb phrase, but similar
constructions with non-verbal predicates were not modified.

The number of brackets of height 2 remaining in the Wall Street Journal
was small enough for them to be examined individually. Of the 26 brackets,
6 are coordinator-less coordinations which were not removed automatically, 4
were addresses (which should probably not be assigned a syntactic structure at
all) and 6 were cases where two arguments of a verb were put together into a
bracket (which I believe to be an incorrect analysis). The remaining 10 cases
contain several obvious annotation mistakes as well as some cases which I could
not figure out. I believe none of these can be considered as conclusive evidence
for brackets of height 2 being necessary in any construction.

With Chinese being all Greek to me and 455 brackets of depth 2 remaining,
I was unable to perform a similar analysis of the Chinese Treebank. Instead, I
checked how many of the remaining brackets of height 2 were caused by a bracket
covering a single word. Because brackets covering only a single word do not
serve to group words together into constituents, they may seem redundant. This
is not entirely true because these brackets serve to distinguish between a head
(which is not inside a single-word bracket) and its single word dependents (which
are inside such a bracket). For example, in the verb phrase [leave [it]], the verb
leave is the head while it is the dependent. The brackets covering a single word
in the corpus may therefore either cover heads (and therefore be redundant) or
cover dependents (in which case they are not redundant). However, one would
expect that if there is a construction in a language which requires brackets of
height 2 then this construction does not appear only with single-word dependents.
Therefore, removing the single-word brackets should leave us with some height 2
brackets if they exist in the language.

Having removed brackets covering a single word (on top of the previous
steps), only 8 cases of brackets of height 2 remained. Some of these seem to be
coordinator-less coordinations (which slipped through the previous steps) while
others I could not explain. As with the Wall Street Journal Corpus, I believe
none of these examples can be considered as conclusive evidence for brackets of
height 2 being necessary in any construction.

While this study of the corpus data is only preliminary and covers only a small
number of corpora, I believe it provides strong indications that the heights of
brackets needed to describe constituency structures is bounded by a low number.
Whether the maximal bracket height is indeed 1 (as hypothesized) cannot be
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conclusively determined, but it does seem that many of the brackets of height
higher than 1 in the corpora fall into a small number of constructions all of which
have an analysis which may be debated. It therefore seems to me that before
attempting to extend the common cover link algorithms to handle links of depth
greater than 1 it is better to consider other possible modifications and extensions.
Some of these are mentioned in the following section.

4.5 Extensions of the Common Cover Link Rep-

resentation

The definition of common cover links was based on bracketing and chosen in such
a way that a bracketing could be reconstructed from the links. The main aim was
not to improve on the representation of the final syntactic structure but rather to
allow it to be constructed incrementally. As a result, common cover links can be
used to represent any bracketing, but not much more, thus inheriting the basic
limitations of bracketing. Solutions to some of these limitations can be found in
various systems of dependency structures. The link-based nature of the common
cover links should make it easy to adopt some of these solutions to extend the
common cover link representation. This should be done in a way which preserves
the incrementality of the parser.

In this section I describe several linguistic constructions for which I find an ex-
tension of the current system necessary: non-projective structures, coordination
and relative clauses. While non-projective structures are no problem for almost
all dependency based systems, coordination and relative clauses are handled in
fundamentally different ways by different dependency based theories. This shows
that these remain problematic linguistic structures and it is not my intention to
solve these problems here. I would like, however, to point out those solutions
found in the literature which are best suited for extending not only the represen-
tation as such but also its learnability.

4.5.1 Non-Projective Structures

Probably the most obvious limitation of bracketing as a representation of syn-
tactic structure is that without additional descriptive mechanisms it can only
describe linguistic structure in terms of continuous constituents. This is equiva-
lent to the projectivity restriction on dependency structure which was described in
section 4.1.2. While projectivity holds for many sentences (and for large parts of
most sentences), we have seen that even the structure of simple English questions
is not projective.

The remedy to this problem is to remove the projectivity restriction. When
working with dependencies, this is usually done by simply removing any restric-
tions on the linear order of the words in the dependency structure (leaving only
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restrictions on its structure as a directed graph). Because the common cover links
are a link-based representation, it may seem that the projectivity restriction can
be removed in the same way. This is not so simple, however, because we would
like to preserve those properties of the common cover links which make incremen-
tal parsing and learning possible. This means, for example, that if a head h has a
dependent constituent D then there should be a link from h to the word in D clos-
est to h. I believe that the best way to define this is to first define noncontinuous
bracketings. A noncontinuous bracketing has all the properties of a bracketing
except that brackets are not restricted to sequences of consecutive words but may
be arbitrary subsets of the words in the utterance. The noncrossing bracket con-
dition must still be preserved and common cover links can be defined as before.
It then remains to select an appropriate form of transitivity to remove redundant
links. Because brackets are no longer continuous, linear transitivity is no longer
sufficient. Depending on the version of transitivity chosen, different variants of
the representation may result.

I did not carry out the mathematical analysis for common cover links defined
in this way but I believe that it involves no fundamental problems. The main
question is whether completely removing the projectivity restriction does not
allow far greater flexibility than is actually available in natural language syntax.
Since introducing unnecessary freedom into the representation makes parsing and
learning more difficult, it is worthwhile examining the linguistic data for possible
conditions which may restrict the possible structures.

4.5.2 Coordination

Coordination involves two or more structures which play a parallel role. The
simplest forms of coordination involve either two nouns (such as John and Mary)
or two full sentences (such as John walks and Mary sings). In these two cases,
which coordinate either the smallest or the largest syntactic units, the coordi-
nates are two independent units of the same syntactic type which are joined by a
coordinator (such as and) to form a new unit with syntactic properties similar to
those of the original units. In a bracketing this is typically described by putting
each of the coordinates as well as the coordination as a whole into a bracket,
resulting in structures such as [[John] and [Mary ]]. If the brackets are labeled,
the coordination as a whole receives the same label as each of the coordinates.
This seems (at first) to appropriately represent the symmetry between the two
coordinates.

In dependency structures, even the simplest coordination John and Mary is
problematic because of the inherent asymmetry of the dependency relation. One
way to solve this problem is to claim, as Mel’čuk (1988) does, that the relation
between the two coordinates is not entirely symmetric. In this way, Mel’čuk ar-
rives at the structure John → and → Mary for coordination. Many linguists,
such as Hudson (2003) find this analysis unsatisfactory and claim that depen-
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dencies describe a subordination relation which is inherently different from the
coordination relation. Such dependency based theories can then no longer use a
single relation to describe syntactic structure but must use two different relations:
dependency (subordination) and coordination.

While bracket based descriptions of syntactic structure do not seem to have the
same problems that dependencies have in describing simple coordination struc-
tures, brackets also run into problems when arguments are shared between co-
ordinated units. The simplest example of such shared arguments is a shared
subject, as in John walked and laughed. Since the subject is an external ar-
gument and is not inside the verb phrase, this sentence can still be handled
quite easily by a bracketing which puts the two verb phrases together in a single
bracket: [[John] [walked and laughed ]]. Things become more complicated when
the object and not the subject is shared, as in John bought and Mary ate the
chocolate (these structures are known as right node raising structures). Here,
the object the chocolate has to be inside both verb phrases and it is no longer
possible to claim that a simple bracketing adequately describes the coordination
structure. Things are further complicated by gapping constructions such as John
bought chocolate and Mary, flowers in which a verb is shared by two sets of coor-
dinated arguments. Examples such as these (and many others) have motivated
also researchers working with phrase structure as their main descriptive device to
seek extensions of the basic representation. The main proposals (Goodall 1987;
Muadz 1991; Moltmann 1992) suggested different ways of adding an additional
dimension to phrase markers such that parallel phrases could be represented side
by side. Essentially, this is not very different from dependency based theories
which add a coordination relation to the dependency relation.

When allowing coordination to be represented by a different relation than
subordination, the interaction between the two relations must be specified. As
an example, the interaction between the two relations in Hudson’s dependency
based Word Grammar is given by the dependency-in-coordination principle:

Any dependency between a word inside one conjunct of a coordination
and a word outside the coordination must also be shared by one word
in every other conjunct of the same coordination.

This means that units which are coordinated need to share their dependencies
with the units outside the coordination. For example, in the sentence John bought
and Bill read the book, both verbs must share a dependency link with the object
the book :3

John boughtoo
and oo the book//

Bill readoo

3The diagram shows that we must also find a place for the coordinator and in the structure.
Hudson makes it part of the second coordinate but I decided to keep the symmetry and write
it as a modifier of the coordination as a whole.
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One can imagine a similar extension of the common cover link representation
in which a coordination relation is added and coordinates are allowed to share
links. Because coordinated units are parallel and share their common cover link
structure, the common cover links remain the same as in structures which involve
no coordination. This means that the incremental properties of the common cover
links can be preserved and that the basic decision process as to where to add a
common cover link (the parsing function) can remain similar to that used when
no coordination is involved. Since most relations in a sentence are subordination
and not coordination, also the learning of the subordination relation (as coded in
the parsing function) can remain unchanged. The incremental parser will have to
be extended to allow parallel units and a decision function will have to be added
to decide when units should be put in parallel to each other.

4.5.3 Relative Clauses

Relative clauses are another linguistic structure whose analysis has been much
debated. A relative clause modifies a noun phrase by specifying the role the noun
phrase plays in the relative clause. For example, in the sentence the book he read
was lost, the noun phrase the book is modified by the relative clause he read which
specifies that the book in question is the one which is the object of the verb read
in the relative clause. In a bracket based representation of syntactic structure,
relative clauses can be bracketed together with the noun phrase they modify:
[[the book ] [[he] read ]]. Most linguists find this insufficient because it does not
represent the fact that the book is modified by its role as the object of the relative
clause. When working with a phrase structure representation the only solution is
to add a trace marker, which is essentially a dependency link from the verb read
to the noun phrase the book.

Since some links seem to be necessary to properly describe relative clauses
and because common cover links are already similar in many ways to dependency
links, I will consider from now on only the dependency structures which may be
assigned to noun phrases modified by relative clauses. I have already discussed
this briefly in section 4.1.1, where the following two dependency structures are
given as possible representations of relative clause constructions:

the bookoo
&&

he readoo was //
ww

lost

the bookoo he readoo
xx

was //
ww

lost

The second structure seems more satisfactory because it clearly indicates that the
noun phrase the book is modified by its role as the object of the relative clause
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he read. It is also attractive because it assigns each word in the phrase the book
he read the same link structure as in the sentence he read a book :

he readoo
''

the bookoo

The only difference is in the order of the words, which means that the basic link
structure which was learned for the simple sentence can also be used to parse the
relative clause construction. This simplifies learning but requires some flexibility
to be added to the common cover link representation. Specifically, a shortest
common cover link set cannot have two links entering the same word from the
same side (Lemma 5.1.25). This means that the definition of the shortest common
cover link set must be modified in some way to allow a satisfactory parse of relative
clause constructions.

4.5.4 Word Order

To properly handle relative clauses in the way sketched in the previous section
would require the parser to be able to recognize that the arguments of a head do
not always appear in the same order. This flexibility of word order is not required
only for relative clauses but can appear in almost any construction, depending
on the language and how free its word order is. While this is an important issue
which has to be dealt with, allowing for free word order has nothing to do with
the link representation itself but depends only on the parsing function being used.
The parsing functions defined in chapter 6 allow for flexible word order only to
the extent that they allow for ambiguous constructions. This is certainly not
a satisfactory solution for languages with significant word order freedom, but
proper treatment of free word order is beyond the scope of the current work and
is left for the future.

4.6 Conclusion

Common cover links clearly have much in common with dependencies and can
be seen as representing a somewhat weaker relation. While the relation remains
strong enough to allow effective parsing, it is weak enough to allow exocentric
constructions and, even more importantly, incremental parsing. The main chal-
lenge for an incremental parser is to avoid assigning an incorrect structure to
the prefixes of sentences which are initially ambiguous. While even humans fail
on some ambiguities (so-called garden path sentences) other ambiguities can be
handled without difficulty. Because the relation represented by common cover
links is weaker than dependency, the common cover link parser can successfully
handle some such initial ambiguities by avoiding being committed to structures
which must be modified later in the parse. This allows for successful incremental
parsing in cases which are difficult for parsers working directly with dependencies.





Chapter 5

Mathematical Analysis and Proofs

This chapter contains the full formal mathematical analysis of the structures
and algorithms defined and used in previous chapters. In addition to proving all
claims which appear in those chapters it also describes some additional properties
of common cover link sets which were not essential there. This chapter is technical
in nature and does not contain any linguistic motivation or examples. For these,
the reader is referred to the preceding chapters. This chapter has been written
to be self-contained and therefore repeats all the definitions and claims which
appear in other chapters. However, it contains very little beyond the technical
details and it is assumed the reader is familiar with the previous chapters.

The order of presentation in this chapter is somewhat different from that of
previous chapters. Specifically, the reconstruction of a bracketing from a shortest
common cover link set is proved after the characterization of the shortest common
cover links is proved. After repeating the definition given in chapter 2, section 5.1
proves some simple basic properties of the common cover link sets, including linear
transitivity and some simple reconstruction properties. Section 5.2 then provides
a general algorithm which can reconstruct any bracketing from any of its shortest
common cover link sets. This is the last section which does not impose any
restriction on the common cover link sets. The following sections deal only with
common cover link sets where all links are of depth 0 or 1. Section 5.3 proves
the characterization of shortest common cover link sets with links of depth 0 and
1. The next section, section 5.4, returns to the bracket reconstruction problem.
It proves the correctness of the incremental reconstruction algorithm for links of
depth 0 and 1. The last section, section 5.5, focuses on the properties relevant
to parsing. It investigates the adjacency property used in parsing, defines the
incremental parsing algorithm and proves the correctness of this algorithm.

87
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5.1 Basic Definitions and Properties

For ease of reference, I begin by repeating the definitions of section 2.2. Let W
be a finite set of word types . An utterance is a sequence of words 〈x1, . . . , xn〉
in W . The order of the words in the sequence is the order in which the words
are uttered and will be said to be ordered ’from left to right’. Seen as a function
from {1, . . . , n} to W , the sequence 〈x1, . . . , xn〉 is equal to the set {〈i, xi〉}

n
i=1.

Each element 〈i, xi〉 in this set is a word token. When no confusion can arise,
I will refer to both word types and word tokens as words. Any sub-sequence
〈xi, . . . , xj〉 of consecutive words (1 ≤ i ≤ j ≤ n) is a bracket over the utterance.
I will use lower-case letters (x, y, . . . ) to denote word tokens and upper-case
letters (X, Y , . . . ) to denote brackets. I will treat brackets as sets of word
tokens. The bracket Y covers the bracket X if X ⊂ Y (strict inclusion) as sets
of word tokens. Similarly, the bracket X covers the word token x if x ∈ X. I will
write [x, y] for the bracket covering all word tokens between x and y including x
and y. I will also write [x, y) (or (y, x]) for [x, y] \ {y} and (x, y) for [x, y] \ {x, y}.
The order of x and y is not important, so [x, y) = (y, x]. Two brackets X and Y
are non-crossing brackets if either X ∩ Y = ∅, X ⊆ Y or Y ⊆ X.

5.1.1 (2.2.1). Definition. [bracketing] A bracketing of an utterance is a set
of non-crossing brackets over that utterance such that every word in the utterance
is covered by at least one bracket.

5.1.2 (2.2.2). Definition. [depth in a bracketing] Let C be a bracketing over
an utterance U . The word x is of depth d under B in C if x ∈ B ∈ C and d is the
maximal number of brackets X1, . . . , Xd ∈ C such that x ∈ X1 ⊂ . . . ⊂ Xd ⊂ B.
In particular, if x ∈ B ∈ C and there is no bracket X ∈ C such that x ∈ X ⊂ B
then the depth of x under B in C is zero.

Notation I write dC
B(x) for the depth of x under B in C. I will also write BC

d (x)
for the unique bracket B ∈ C such that x is of depth d under B in C, if such a
bracket exists. When the bracketing is fixed by the context, I will simply write
dB(x) for dC

B(x) and Bd(x) instead of BC
d (x).

5.1.3 (2.2.3). Definition. [word of minimal depth] Let C be a bracketing.
A word x is of minimal depth under B ∈ C if x ∈ B and for every y ∈ B,
dC

B(x) ≤ dC
B(y).

5.1.4 (2.2.4). Definition. [bracket height] Let C be a bracketing and B ∈ C.
The height of B in C is minx∈B dC

B(x).
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5.1.5 (2.3.1). Definition. [common cover link] A common cover link of
depth d over an utterance U is a triple (x, y, d) ∈ U 2 × (N ∪ {0}) where x 6= y.

I write x
d
→ y for the link (x, y, d), and the link is said to be from x to y. The

word x is the base of the link and y is its head .

5.1.6 (2.3.2). Definition. [common cover links of a bracketing (RC)] Let C
be a bracketing over an utterance U . The set RC of common cover links for C is

the set of common cover links over U such that x
d
→ y ∈ RC iff x is of minimal

depth d under the smallest bracket B ∈ C such that x, y ∈ B.

5.1.1 Basic Properties of the Common Cover Link Set

This section begins by giving some very elementary (and simple) properties of
bracketings and the minimal depth relation. In the second part of this section,
some basic properties of the common cover link set are given, including several
transitivity properties. The most important case of transitivity is that of lin-
ear transitivity, which is used in the definitions and algorithms of the following
sections.

Elementary Properties of Bracketing

5.1.7. Lemma. Let C be a bracketing, X,Z ∈ C and X ⊂ Z. If Y1, . . . , Yd ∈ C is
a maximal subset of C such that X ⊂ Y1 ⊂ . . . Yd ⊂ Z then {Y1, . . . , Yd} = {Y ∈
C : X ⊂ Y ⊂ Z}.

Proof. By definition, {Y1, . . . , Yd} ⊆ {Y ∈ C : X ⊂ Y ⊂ Z}. Let X ⊂ Y ⊂ Z.
For each i, X ⊂ Yi and therefore Y ∩ Yi 6= ∅. Because brackets in C do not cross,
either Y ⊆ Yi or Yi ⊂ Y . Because of the maximality of the chain Y1, . . . , Yd there
is an i such that Y = Yi (otherwise Y can be added to create a longer chain). �

5.1.8. Lemma. Let C be a bracketing and let x ∈ X ∈ C. If X1, . . . , Xd ∈ C is a
maximal subset of C such that x ∈ X1 ⊂ . . . Xd ⊂ X then {X1, . . . , Xd} = {Y ∈
C : x ∈ Y ⊂ X}.
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Proof. The proof is identical to the proof of Lemma 5.1.7. �

5.1.9. Lemma. Let C be a bracketing. If B,C ∈ C, x, y ∈ C ⊆ B then dB(x) −
dC(x) = dB(y)− dC(y).

Proof. If C = B, the claim is trivial, so assume C ⊂ B. Let X1, . . . , Xdx
∈ C

and Y1, . . . , Ydy
∈ C be maximal chains such that x ∈ X1 ⊂ . . . ⊂ Xdx

⊂ B and
y ∈ Y1 ⊂ . . . ⊂ Ydy

⊂ B. By Lemma 5.1.8 and the definition of depth, C =
XdC(x)+1 = YdC(y)+1. By Lemma 5.1.7, {XdC(x)+2, . . . Xdx

} = {YdC(y)+2, . . . Ydy
}

and therefore dB(x)− dC(x) = dB(y)− dC(y). �

5.1.10. Lemma. Let C be a bracketing. If B,C ∈ C, x ∈ C ⊂ B and x is of
minimal depth under B then x is of minimal depth under C.

Proof. By definition, C = Bd1
(x) and B = Bd2

(x) for some d1 < d2. Assume
by contradiction that there exists y such that C = Bd3

(y) with d3 < d1. It follows
from Lemma 5.1.9 that B = Bd3+(d2−d1)(y) and since d3 + (d2 − d1) < d2 this
contradicts the assumption that x is of minimal depth under B. �

5.1.11. Lemma. Let C be a bracketing. If x
d
→ y ∈ RC then Bd(x) exists and is

the smallest bracket in C which covers both x and y.

Proof. By definition of RC, x
d
→ y ∈ RC implies that there is a minimal bracket

B ∈ RC which covers x and y and x is of depth d under B. By definition,
B = Bd(x). �

Basic Properties of Common Cover Link Sets

5.1.12. Lemma (connectedness). Let C be a bracketing. If x
d
→ y ∈ RC and

z ∈ (x, y) then there is a link x
d′

→ z ∈ RC for some d′ ≤ d.

Proof. By the assumptions of the lemma, y ∈ Bd(x) and x is of minimal depth
under this bracket. Since z ∈ (x, y), there is a bracket covering x and z and the
minimal such bracket is Bd′(x) for some d′ ≤ d. By Lemma 5.1.10, x is of minimal

depth under Bd′(x) and therefore x
d′

→ z ∈ RC. �
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5.1.13. Lemma. Let C be a bracketing. If Bd(x) exists and x is of minimal depth

under Bd(x) then Bd(x) = {x} ∪
⋃

0≤d′≤d

{

y : x
d′

→ y ∈ RC

}

.

Proof. Assume Bd(x) exists and x is of minimal depth under Bd(x). By Lemma

5.1.11, if x
d′

→ y ∈ RC for some d′ ≤ d then y ∈ Bd′(x) ⊆ Bd(x). At the same
time, if y ∈ Bd(x) \ {x} then there is d′ ≤ d such that Bd′(x) is the minimal
bracket covering x and y. By Lemma 5.1.10, x is of minimal depth under Bd′(x),

so x
d′

→ y ∈ RC. �

5.1.14. Lemma (back and forth equality). Let C be a bracketing and as-

sume x
d1→ y ∈ RC and y

d2→ x ∈ RC then d1 = d2.

Proof. By Lemma 5.1.11, since x
d1→ y ∈ RC, x is of minimal depth d1 under

the smallest bracket B in C which covers both x and y. Because y
d2→ x ∈ RC,

y is of minimal depth d2 under B. Since the minimal depth under a bracket is
unique it follows that d1 = d2. �

5.1.15. Lemma (transitivity of RC). Let C be a bracketing. If x
d1→ y ∈ RC

and y
d2→ z ∈ RC and x 6= z then x

d
→ z ∈ RC for some d ≤ max(d1, d2).

Proof. Assume the assumptions of the lemma hold. By definition, x, y ∈ Bd1
(x)

and y, z ∈ Bd2
(y). Since y ∈ Bd1

(x) ∩ Bd2
(y) and brackets do not cross, either

Bd2
(y) ⊆ Bd1

(x) or Bd1
(x) ⊂ Bd2

(y).

• Case 1: Bd2
(y) ⊆ Bd1

(x). Since z ∈ Bd2
(y), there is a bracket covering z

and x and the minimal such bracket is B = Bd(x) for some d ≤ d1. By

Lemma 5.1.10, x is of minimal depth under Bd(x) and therefore x
d
→ z ∈ RC.

• Case 2: Bd1
(x) ⊂ Bd2

(y). Since y ∈ Bd1
(x) and is of minimal depth

under Bd2
(y), it follows from Lemma 5.1.10 that y is of minimal depth

under Bd1
(x). The depth of x and y under Bd1

(x) must be the same and,
therefore, by Lemma 5.1.9, the depth of x and y under Bd2

(y) must also be
the same. Therefore, Bd2

(y) = Bd2
(x) and x is of minimal depth under this

bracket. Since y
d2→ z ∈ RC, Bd2

(y) is the smallest bracket in C covering
y and z. Since brackets do not cross, Bd2

(x) = Bd2
(y) is also the smallest

bracket covering x and z, so x
d2→ z ∈ RC.

�
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5.1.16 (2.5.1). Lemma (linear transitivity of RC). Let RC be the common

cover link set of a bracketing C. If y ∈ (x, z), x
d1→ y ∈ RC and y

d2→ z ∈ RC then

x
d
→ z ∈ RC with the following depth (See figure 2.1):

1. If y → x ∈ RC then d = max(d1, d2).

2. Otherwise d = d1.

Proof. Assume that the assumptions of the lemma hold. This is a special

case of transitivity (Lemma 5.1.15) and therefore x
d
→ z ∈ RC for some d ≤

max(d1, d2). By connectedness (Lemma 5.1.12), d ≥ d1. We are either in case 1
or case 2 of the previous proof:

• Case 1: Bd2
(y) ⊆ Bd1

(x). In this case d ≤ d1 which implies d = d1. If
y → x ∈ RC then Bd1

(y) = Bd1
(x) which implies d2 ≤ d1. This completes

the proof in this case.

• Case 2: Bd1
(x) ⊂ Bd2

(y). We saw that in this case y is of minimal depth

under Bd1
(x), so y

d1→ x ∈ RC. We also saw that d = d2. It remains to show
that d1 ≤ d2, which follows from Bd2

(x) = Bd2
(y).

�

5.1.17. Lemma (crossing links). Let C be a bracketing. If, for y ∈ (x, z),

y
d1→ x ∈ RC and x

d2→ z ∈ RC then d1 ≤ d2 and there is a link x
d1→ y ∈ RC.

Proof. Assume the assumptions of the lemma hold. Because y
d1→ x ∈ RC,

Bd1
(y) is the smallest bracket in C which covers both x and y. Similarly, Bd2

(x)
is the smallest bracket in C which covers x and z. Because y ∈ (x, z), y ∈ Bd2

(x)

and therefore Bd1
(y) ⊆ Bd2

(x). Since x
d2→ z ∈ RC, x is of minimal depth under

Bd2
(x) and (by Lemma 5.1.10) must also be of minimal depth under Bd1

(y). It

follows that d1 ≤ d2 and x
d1→ y ∈ RC. �

5.1.2 Representative and Shortest Common Cover Link
Sets

This section examines some of the relations between the common cover link set,
the representative subsets and the shortest common cover link sets.
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5.1.18 (2.4.1). Definition. [representative subset] Let C be a bracketing. A
subset R ⊆ RC is a representative subset of RC iff:

1. For every x
0
→ y ∈ RC also x

0
→ y ∈ R.

2. For every X ∈ C, if d is the height of X then there is at least one word x of

minimal depth d under X such that for every x
d
→ y ∈ RC also x

d
→ y ∈ R.

This word x is a representative for the bracket X.

3. For every word x and every depth d if x
d
→ y ∈ R and x

d
→ z ∈ RC then

x
d
→ z ∈ R.

5.1.19 (2.5.2). Definition. [shortest common cover link set] Let C be a
bracketing. A set S ⊆ RC is a shortest common cover link set if there is a

representative subset R of RC such that x
d
→ z ∈ S iff x

d
→ z ∈ R and there is no

word y ∈ (x, z) such that x
d1→ y ∈ R and y

d2→ z ∈ R.

It is clear from the definition that a common cover link set RC may have more
than one representative subset (an example of this was given in section 2.4). It
is also clear from the definition that given a representative subset R of RC, there
is a unique shortest common cover link set derived from it.

Notation I write S(R) for the shortest common cover link set induced by the
representative subset R.

While a representative subset determined a shortest common cover link set
uniquely, The opposite is not true. Different representative subsets (of the same
bracketing) may result in the same shortest common cover link set. An example
of this can be based on the examples given in section 2.4. Consider two represen-
tative subsets for the bracketing [ [DT N ] [V [N ]] ]. The first, R1, has the first N
as the only representative of the top bracket while the second set, R2, has both
N and DT as representatives of the top bracket. The following diagram shows
that both these representative subsets reduce to the same shortest common cover
link set (solid links are in S(Ri) and dotted links in Ri \ S(Ri)):

[ [ DT
//

0 N ]oo

1 && ''
[ V

0 ))
[ N ] ] ] [ [ DT

//
0

1 (( ((

N ]oo

1 && ''
[ V

0 ))
[ N ] ] ]

R1 R2
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In this example one representative subset (R1) is contained in the other (R2).
This suggests that if only minimal representative subsets are considered then a
shortest common cover link set does determine a representative subset uniquely.
This turns out to be indeed the case, as shown by Corollary 5.1.22 below. This

corollary follows from a lemma which, given a link x
d
→ y ∈ RC and a shortest

common cover link set S of RC determines whether x
d
→ y is in the minimal

representative subset containing S. The lemma states that a link x
d
→ y ∈ RC is

in the minimal representative subset containing a shortest common cover link set

S if and only if S contains a link with the same base and depth as x
d
→ y. This

lemma plays an important role in the reconstruction of the bracketing C from S
in section 5.2.

5.1.20 (2.6.1). Definition. [minimal representative subset] Let C be a brack-
eting and let S be a shortest common cover link set for this bracketing. A repre-
sentative subset R ⊆ RC is a minimal representative subset containing S if S ⊆ R
and there is no representative subset R′ such that S ⊆ R′ ⊂ R.

5.1.21 (2.6.2). Lemma. Let C be a bracketing, let S be a shortest common cover
link set of RC and let R(S) be a minimal representative subset containing S. If

x
d
→ y ∈ RC then x

d
→ y ∈ R(S) iff there is some z such that x

d
→ z ∈ S.

Proof. Assume that the assumptions of the lemma hold and x
d
→ y ∈ RC.

First assume that x
d
→ y /∈ R(S). By the definition of a representative subset

(Definition 5.1.18) it follows that there is no link x
d
→ z ∈ R(S) for any word z

and in particular there is no such link in S.

To prove the other direction, assume that x
d
→ y ∈ R(S). Let z be the closest

word to x in [x, y] such that x
d
→ z ∈ RC. I will show that x

d
→ z ∈ S (which

proves the lemma). Assume, by contradiction, that x
d
→ z /∈ S. I will show that

this implies that there is a representative subset R such that S ⊆ R ⊂ R(S),
contradicting the minimality assumption on R(S).

Because x
d
→ y ∈ R(S), it follows by the definition of a representative subset

that also x
d
→ z ∈ R(S). Since x

d
→ z /∈ S there must be w ∈ (x, z) such that

x
d1→ w ∈ R(S) and w

d2→ z ∈ R(S). Since z is the closest word to x in [x, y] with a

link x
d
→ z ∈ R(S) it follows that d1 6= d. By linear transitivity (Lemma 5.1.16),

it follows that d = d2 > d1 and (together with back and forth equality, Lemma

5.1.14) that w
d1→ x ∈ RC. This means that both x and w are of minimal depth

under Bd1
(x) = Bd1

(w) which is the smallest bracket covering them both. Since

d > d1, it follows from x
d
→ y ∈ RC and Lemma 5.1.9 that both x and w are of
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minimal depth under Bd(x) = Bd(w). Since x
d
→ z ∈ R(S) and w

d
→ z ∈ R(S),

both x and w are representatives of Bd(x) in R(S). Therefore, the set R which is

constructed from R(S) by discarding all links x
d
→ v ∈ R(S) is a representative

subset of RC. Since there is no link x
d
→ v ∈ S, S ⊆ R ⊂ R(S) in contradiction

to the minimality assumption of R(S). So x
d
→ z ∈ S after all. �

5.1.22. Corollary (uniqueness of R(S)). Let C be a bracketing and let S be
a shortest common cover link set of RC. There is a unique minimal representative
subset R(S) of RC containing S.

Proof. This follows immediately from Lemma 5.1.21. �

The next lemma shows that the different depths of links used in RC must also
all be used in every shortest common cover link set of RC. In particular, this
means that when the depth of links is restricted to 0 and 1, it does not matter
whether this restriction is defined on the common cover link set RC or on the
shortest common cover link set.

5.1.23. Lemma. Let C be a bracketing and let S be a shortest common cover link
set of RC. For every 0 ≤ d, there is a link of depth d in RC iff there is a link of
depth d in S.

Proof. Since S ⊆ RC, it is enough to show that if there is a link of depth d
in RC then there is a link of depth d in S. Assume there is a link of depth d in
RC and let R be a representative subset of RC such that S = S(R). It is obvious
from the definition of representative subsets that there is a link of depth d in R.

If x
d
→ z ∈ R but x

d
→ z /∈ S then, by definition, there is y ∈ (x, z) such that

x
d1→ y ∈ R and y

d2→ z ∈ R. By linear transitivity, either d1 = d or d2 = d. This

shows that x
d
→ z ∈ R and x

d
→ z /∈ S imply that there is a shorter link of depth

d in R. This argument can be repeated for this shorter link. Since the length of
links is bounded from below, this shows that there is a link of depth d in S. �

5.1.3 Directional Uniqueness

In the process of parsing it is useful to assume the directional uniqueness property:
for every word z there is at most one link entering it from each side. When the
depth of links is restricted to 0 and 1, this property follows directly from the
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characterization of the shortest common cover link set and there is no need to
make explicit use of directional uniqueness. When there is no restriction on the
depth of links, this property is no longer automatic and it may be useful to enforce
it in some way. As long as linguistic considerations restrict links to depth 0 or
1, this remains of theoretical interest and is used in several of the proofs in this
chapter.

5.1.24. Definition. [directional uniqueness] Let L be a set of common cover
links over an utterance U . The set L has the directional uniqueness property if

for any x, y, z ∈ U such that z /∈ [x, y], x
d1→ z ∈ L and y

d2→ z ∈ L implies x = y.

The directional uniqueness property is useful because it restricts the space of
link combinations the parser needs to consider: when the parser has two candidate
links entering the same word from the same side, it must select one or the other.
The following lemma shows that it is reasonable for the parser to assume the
directional uniqueness property of the links because this property holds for at
least some shortest common cover link sets of any bracketing. Moreover, when
the depth of links is limited to 0 and 1 (see section 4.4), any shortest common
cover link set has the directional uniqueness property.

5.1.25. Lemma (directional uniqueness). Let C be a bracketing and let S
be a shortest common cover link set for RC. There is a shortest common cover
link set S ′ for RC such that S ′ ⊆ S and S ′ has directional uniqueness. Moreover,
if the depth of links in S is 0 or 1, S has directional uniqueness.

Proof. Assume the assumptions of the lemma hold. Assume z /∈ [x, y], x
d
→ z ∈

S and y
d2→ z ∈ S. If x = y then directional uniqueness is not violated. Therefore,

assume without loss of generality that y ∈ (x, z). Since x
d
→ z ∈ L it follows from

connectedness (Lemma 5.1.12) that x
d1→ y ∈ RC for some d1 ≤ d.

Let R(S) be the smallest representative subset of RC such that S ⊆ R(S).

If x
d1→ y ∈ R(S) then x

d
→ z ∈ S and y

d2→ z ∈ S contradict the definition of

the shortest common cover link set. Therefore, x
d1→ y ∈ RC \ R(S). If d1 = d

then because x
d
→ z ∈ R(S) also x

d
→ y ∈ R(S), which is a contradiction. From

linear transitivity (Lemma 5.1.16) the only remaining possibility is that d1 < d

and d = d2. If d, d2 ≤ 1 then d1 = 0 and the link x
d1→ y ∈ R(S), which is a

contradiction. This shows that if the depth of links in S is 0 or 1, then directional

uniqueness holds. The only possibility left is that 1 < d = d2 and x
d1→ y ∈ RC

which implies (by linear transitivity) that y
d1→ x ∈ RC. Therefore, both x and y

are representatives of Bd(x) = Bd2
(y) in R(S). There therefore exists a smaller

representative subset R′ ⊂ R(S) in which only one of x and y is a representative
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of Bd(x). At most one of the links x
d
→ z and y

d2→ z is in R′ and therefore the
smallest common cover link set S ′ ⊂ S derived from R′ does not contain this
violation of directional uniqueness. This can be repeated until no violations of
directional uniqueness remain, resulting in the set S ′ required by the lemma. �

5.1.4 Paths

Since linear transitivity can be apply repeatedly, a single link in the common
cover link set RC may be represented in a shortest common cover link set of RC

by a sequence of links. Such sequences of links are defined as link paths :

5.1.26 (2.6.3). Definition. [linear path] Let U be an utterance. A sequence
x1, . . . , xm of words in U is a linear path from x1 to xm in U (written x1−. . .−xm)
iff for each 1 < i < m xi ∈ (xi−1, xi+1).

5.1.27 (2.6.4). Definition. [link path] Let L be a set of common cover links
over an utterance U and let x, y ∈ U . An L-path from x to y is a set of links
{

xi
di→ xi+1

}m−1

i=1
in L such that x1− . . .−xm is a linear path, x1 = x and xm = y.

In particular, for every x ∈ U , there is an empty L-path from x to x.

Notation I write x
L
→ y if there is an L-path from x to y and x

d,L
→ y if there is

an L-path from x to y which begins with a link of depth d.

The next lemma gives two simple properties of link paths in a shortest common
cover link set and their relation with links in the common cover link set and in
the representative subset which induces the shortest common cover link set.

5.1.28. Lemma. Let C be a bracketing and let R be a representative subset of
RC. Let S be the shortest common cover link set induced by R.

1. If x→ y ∈ R then x
S
→ y.

2. If x
S,d
→ y then there is d′ ≥ d such that x

d′

→ y ∈ RC.
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Proof.

1. Assume the assumptions of the lemma hold and x
d
→ y ∈ R. The proof is

by induction on the distance between x and y. If the distance is 1 (x and y
are consecutive words) then it follows directly from the definition of S that

x
d
→ y ∈ S. Assume now that the distance is greater than 1. If x

d
→ y ∈ S

then the claim holds. Otherwise, by the definition of S, there is w ∈ (x, y)

such that x
d1→ w ∈ R and w

d2→ y ∈ R. By the induction hypothesis, x
S
→ w

and w
S
→ y, which together imply x

S
→ y, as required.

2. Assume that
{

xi
di→ xi+1

}m−1

i=1
is an S-path from x1 to xm. The proof of

the first part of the lemma is by induction on the number of links in the
S-path. If m = 2 then the claim is immediate from linear transitivity
(Lemma 5.1.16). If m > 2 then, by the induction hypothesis, there is a link
x2 → xm ∈ RC. Again, using linear transitivity the claim follows.

�

This lemma is not sufficient to reconstruct a representative subset from a
shortest common cover link set S because an S-path from x to y does not specify
the depth of the link from x to y in the representative subset. To overcome this
problem (and others) a more sophisticated algorithm is need. This algorithm is
given in section 5.2.

5.1.5 Simple Reconstruction Algorithm

The simple reconstruction algorithm can reconstruct a bracketing C from its com-
mon cover link set RC and if all links in RC are of depth 0 and 1, the algorithm
can also reconstruct C from any representative subset of RC. While this algorithm
is not of practical significance, it is used as a theoretical tool in some proofs.

5.1.29 (2.3.3). Algorithm. [simple bracket reconstruction from RC]

1. For every word x, construct the smallest bracket which covers x and all y

such that x
0
→ y ∈ RC (this bracket is B0(x)).

2. Having constructed Bd(x) (d ≥ 0) and if there are links x
d+1
→ y in RC,

construct Bd+1(x) by constructing the smallest bracket which covers Bd(x)

and all words y such that x
d+1
→ y ∈ RC.
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Notation I write A(L) for the result of applying the simple bracket reconstruc-
tion algorithm (Algorithm 5.1.29) to a set of common cover links L.

5.1.30. Lemma (simple reconstruction). Let C be a bracketing.

1. A(RC) = C.

2. If all links in RC are of depth 0 and 1 then for any representative subset R
of RC, A(R) = C.

Proof. Let A0(x) be the bracket constructed for each x in the first step of the
algorithm and let Ad(x) be the bracket constructed by the algorithm from the
links of depth d based at x.

1. Assume that the input to the algorithm is RC. I show that for every x and
d, Ad(x) is constructed iff BC

d (x) exists and x is of minimal depth under
BC

d (x) and that in this case Ad(x) = BC
d (x). This proves the claim because

every bracket has a word which is of minimal depth under it. The proof is
by induction on d.

Let d = 0. The algorithm always constructs A0(x). Because, by definition,
every word is covered by some bracket in C) BC

0 (x) always exists. Because
d = 0, x must be of minimal depth under BC

0 (x). That BC
0 (x) = A0(x)

follows directly from Lemma 5.1.13.

Now let d > 0. The bracket Ad(x) is constructed iff there is a link x
d
→ y ∈

RC. By the definition of RC and Lemma 5.1.11, there exists x
d
→ y ∈ RC iff

BC
d (x) exists, x is of minimal depth under BC

d (x) and there is a y such that
BC

d (x) is the minimal bracket covering x and y. This holds iff BC
d (x) exists

and x is of minimal depth under BC
d (x).

It remains to show that in this case Ad(x) = BC
d (x). By the induction

hypothesis, Ad(x) is the minimal bracket covering BC
d−1(x) and {y : x

d
→

y ∈ RC}. By Lemma 5.1.13, Ad(x) = BC
d (x).

2. Assume that RC only contains links of depth 0 and 1 and let R be a rep-
resentative subset of RC. Since all links in RC are of depth 0 and 1, every
bracket in C is either of height 0 or 1. Also, the reconstruction algorithm
clearly only constructs brackets A0(x) and A1(x).

By definition, all links of depth 0 in RC are also in R. Therefore, the case
d = 0 of the previous part of the proof applies here and A0(x) is constructed
iff BC

0 (x) exists and then A0(x) = BC
0 (x). This covers the reconstruction of

brackets of height 0.
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By the definition of representative subsets, B ∈ C is of height 1 iff there is a
representative x (for R) such that B = BC

1 (x). This holds iff there is some

y such that x
1
→ yRC and, for every y, x

1
→ y ∈ R iff x

1
→ y ∈ RC. This

holds iff A1(x) is constructed. In this case the previous part of the proof
applies and A1(x) = BC

1 (x).

�

The second part of the simple reconstruction lemma cannot be extended to
representative subsets without restriction of the depth of links because the induc-
tion argument assumes that Ad−1(x) is constructed before Ad(x). This can only
be guaranteed for d = 1 because, for d > 1, it may be that x is a representative
of BC

d (x) but not of BC
d−1(x). This problem is addressed by the general bracket

reconstruction algorithm in section 5.2.

5.2 Bracket Reconstruction

This section shows that a bracketing C can always be reconstructed from a shortest
common cover link set S of RC, regardless of the depth of the links in RC. Because
linguistic structures do not seem to have links of depth greater than 1, the general
case discussed in this section is of mathematical rather than linguistic interest.
The reader who is interested only in the linguistic aspects of the method may
safely skip this section.

When the depth of links is allowed to be greater than 1, the algorithm given
in section 2.6.1 does not work anymore. In order to calculate R(S) (the smallest
representative subset containing S) the algorithm needs to apply linear transi-
tivity to links in S. To deduce a link by linear transitivity, the algorithm needs
to determine both the endpoints of the link and its depth. Given y ∈ (x, z) and

two links x
d1→ y ∈ RC and y

d2→ z ∈ RC, linear transitivity (Lemma 5.1.16) im-

plies that there is a link x
d3→ z ∈ RC. If d1 ≥ d2 then d3 = d1 and there is no

problem. However, when d1 < d2, the algorithm must know whether there is a

link y
d′

→ x ∈ RC. When the depth of links is limited to 0 and 1, the depth of

the link y
d′

→ x is always 0 (Lemma 5.1.14) and the link is in the representative

subset R(S). However, when the depth is not bounded, the link y
d′

→ x may be in
RC but not in R(S). Since the algorithm given in section 2.6.1 reconstructs R(S)
(rather than RC), it cannot determine the depth d3 in these situations.

Even if an algorithm has properly calculated the representative subset R(S),
it cannot apply the simple bracket reconstruction algorithm (Algorithm 5.1.29) to
infer the bracket from R(S). This is because the algorithm constructs a sequence
of bracket B0(x), B1(x), . . . independently for each word x. To construct Bd+1(x)
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the algorithm needs to know Bd(x). When 1 ≤ d it may be that x is not a
representative word of Bd(x) and therefore the bracket cannot be constructed
from links based at x but needs to be constructed as Bd(y) for some other word
y. As a result, Bd+1(x) can only be calculated after Bd(y) has been created. The
algorithm has to identify that Bd(y) is indeed also Bd(x).

Both these problems can be solved simultaneously. I will show below (Lemma

5.2.7) that to determine the depth of a link x
d3→ z inferred by linear transitivity

from links x
d1→ y and y

d2→ z it is sufficient to know the bracketing reconstructed
by Algorithm 5.2.1 from links in R(S) which have their endpoints in [x, z). At
the same time, I will show Algorithm 5.2.1 can reconstruct C from any of its
representative subsets. The combination of these two algorithms allows C to be
reconstructed from S by calculating links in R(S) incrementally for words further
and further apart, each time calculating the bracketing implied by those links.

5.2.1 Reconstruction from Representative Subsets

Let C be a bracketing and let S be a shortest common cover link set of RC. Let
R(S) be the smallest representative subset of RC such that S ⊆ R(S) and let

R[x,z)(S) = {v
d
→ w ∈ R(S) : v, w ∈ [x, z)} be the restriction of R(S) to

[x, z). The following algorithm can be used to calculate a bracketing of [x, z)
from R[x,z)(S).

5.2.1. Algorithm. [brackets from any links] Given a set L of common cover
links over an utterance U , the algorithm creates a bracketing B over U . For every
word x ∈ U and −1 ≤ d, the algorithm maintains sets of brackets Md(x) ⊆ B.

• Initialize B = ∅ and for every x ∈ U , initialize M−1(x) = {〈x〉} and Md(x) =
∅ for 0 ≤ d.

• For each d = 0, . . . , max{d′ : u
d′

→ v ∈ L} and for every x ∈ U , if Md−1(x)

is not empty and either d = 0 or there exists a link x
d
→ y ∈ L:

◦ Add to B the smallest bracket B which covers all brackets in Md−1(x)

and all y ∈ U such that x
d
→ y ∈ L.

◦ Add B to Md(z) for each z ∈ B such that z = x or:

1. There exists z
d′

→ w ∈ L for some d ≥ d′.

2. There are no d < d′ and z
d′

→ w ∈ L such that w ∈ B.

• Output B and Md(x) for all x ∈ U and 0 ≤ d.
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When this algorithm is applied to a representative subset R of some brack-
eting C, the following theorem guarantees that the bracketing produced by the
algorithm is equal to C:

5.2.2. Lemma. Let C be a bracketing over an utterance U and let R be a repre-
sentative subset of RC. Let B be the bracketing produced by Algorithm 5.2.1 from
R, then B = C.

The proof of this theorem makes use of two lemmas. For a set R of common

cover links on U and for [u, v] ⊆ U , I write R[u,v] = {x
d
→ y ∈ R : x, y ∈ [u, v]},

which is the restriction of R to [u, v].

5.2.3. Lemma. Let C be a bracketing over an utterance U and let R be a repre-
sentative subset of RC. For [u, v] ⊆ U , let B and Md(x) (x ∈ [u, v], 0 ≤ d) be the
output of Algorithm 5.2.1 when applied to the links R[u,v] and the utterance [u, v].
For every x ∈ [u, v] and 0 ≤ d, either Md(x) is empty or Md(x) = {BC

d (x)∩ [u, v]}
and x is of minimal depth (in C) under BC

d (x).

Proof. I write Bd(x) for BC
d (x) and B̂d(x) for BC

d (x) ∩ [u, v]. First, I show that
if X ∈ Md(x), X = B̂d(y) and y is of minimal depth under Bd(y) (in C) then
X = B̂d(x) and x is of minimal depth under Bd(x) (in C). If x = y then this
is trivial. Assume, therefore, that x 6= y. Since B̂d(y) ∈ Md(x), x ∈ Bd(y) and

there is a link x
d′

→ z ∈ R for some d < d′ such that z /∈ Bd(y). This implies that
x ∈ Bd(y) ⊂ Bd′(x) and that x is of minimal depth under Bd′(x). By Lemma
5.1.10, x is also of minimal depth under Bd(y) which implies that Bd(y) = Bd(x).
Therefore, X = B̂d(x), as required.

It remains to show that if X ∈Md(x) then there exists y such that X = B̂d(y)
and y is of minimal depth under Bd(y) (in C). The proof is by induction on d.

For d = 0, if X ∈ M0(x) then, by definition and Lemma 5.1.13, there is

y ∈ [u, v] such that X = {y} ∪ {z : y
0
→ z ∈ R[u,v]} = ({y} ∪ {z : y

0
→ z ∈

R}) ∩ [u, v]. This bracket is B0(y) ∩ [u, v] = B̂0(y). Trivially, y is of minimal
depth under B0(y), which completes the proof of the induction basis.

Now assume that the lemma holds for d − 1 and we prove it for d. Let
X ∈ Md(x). By definition, there is a y such that Md−1(y) is not empty, there

is a link y
d
→ z ∈ R[u,v] and X is the smallest bracket covering

⋃

Md−1(y) and

{z : y
d
→ z ∈ R[u,v]}. By the induction hypothesis, Md−1(y) = {B̂d−1(y)} and

therefore, by Lemma 5.1.13 X = (Bd−1(y) ∩ [u, v]) ∪ ({z : y
d
→ z ∈ R} ∩ [u, v])

which is B̂d(y). Because y
d
→ z ∈ R[u,v], y is of minimal depth under Bd(y). This

completes the proof. �



5.2. Bracket Reconstruction 103

5.2.4. Lemma. Let C be a bracketing over an utterance U and let R be a repre-
sentative subset of RC. For [u, v] ⊆ U , let B and Md(x) (x ∈ [u, v], 0 ≤ d) be the
output of Algorithm 5.2.1 when applied to the links R[u,v] and the utterance [u, v].
The following holds:

1. For every X ∈ B there is a Y ∈ C such that X = Y ∩ [u, v].

2. If X ∈ C and X ⊆ [u, v] then X ∈ B.

Proof. I write Bd(x) for BC
d (x) and B̂d(x) for BC

d (x) ∩ [u, v].

1. If X ∈ B then by the definition of the algorithm, there is x ∈ [u, v] and
0 ≤ d such that X ∈ Md(x). By Lemma 5.2.3, X = Bd(x) ∩ [u, v], as
required.

2. If X ∈ C and X ⊆ [u, v] then X = Bd(x) for some representative x ∈ [u, v]

of X in R. This means that either d = 0 or there is a link x
d
→ y ∈ R[u,v].

In either case, the algorithm creates a bracket from x and places it in B
and Md(x). By Lemma 5.2.3 this bracket is Bd(x) ∩ [u, v] = Bd(x), which
completes the proof.

�

The proof of Lemma 5.2.2 is now trivial.

Proof. This follows directly from Lemma 5.2.4 by taking [u, v] = U . �

A simple corollary of this lemma is that the brackets B produced by the
algorithm on [u, v] are non-crossing.

5.2.5. Corollary. Let C be a bracketing over an utterance U and let R be a
representative subset of RC. For [u, v] ⊆ U , let B be the brackets output by
Algorithm 5.2.1 when applied to the links R[u,v] and the utterance [u, v]. The
brackets in B are non-crossing.

Proof. This follows directly from Lemma 5.2.4. �

5.2.2 A Version of Linear Transitivity

This section presents a version of linear transitivity lemma which makes use of
Algorithm 5.2.1. This form of linear transitivity is given in Lemma 5.2.7. Its
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proof makes use of the following corollary of the original linear transitivity lemma
(Lemma 5.1.16).

5.2.6. Corollary. Let RC be the common cover link set of a bracketing C. If

y ∈ (x, z), x
d1→ y ∈ RC and y

d2→ z ∈ RC then there is a common cover link from

x
d
→ z ∈ RC and the following holds:

1. If d1 ≥ d2 then d = d1.

2. If d1 < d2 then if x /∈ Bd2−1(y) then d = d1 and otherwise d = d2.

Proof. Assume the assumptions of the corollary hold. That there is a link

x
d
→ z ∈ RC and that if d1 ≥ d2 then d = d1 is immediate from Lemma 5.1.16.

Assume therefore that d1 < d2. Since y
d2→ z ∈ RC, y is of minimal depth

under Bd−2(y) and (by Lemma 5.1.10) also under Bd′(y) for any d′ ≤ d2. If

x ∈ Bd2−1(y) this implies that there is y
d′

→ x ∈ RC for some d′ < d2 and by
linear transitivity, d = max d1, d2 = d2. If x /∈ Bd2−1(y) then, since d1 < d2,

x /∈ Bd1
(y) and therefore y

d1→ x /∈ RC. By Lemma 5.1.14, y → x /∈ RC and, by
linear transitivity, d = d1. �

It is now possible to state and prove the modified linear transitivity lemma.

I continue to use the notation R(S)[x,z) = {v
d
→ w ∈ R(S) : v, w ∈ [x, z)}.

5.2.7. Lemma. Let C be a bracketing over an utterance U and let S be a shortest
common cover link set of RC. Let R(S) be the minimal representative subset which
contains S. Let B be the set of brackets output by Algorithm 5.2.1 when applied

to the links R(S)[x,z) and the utterance [x, z) ⊆ U . If y ∈ (x, z), x
d1→ y ∈ RC and

y
d2→ z ∈ RC then there is a link x

d
→ z ∈ RC such that:

1. If d1 ≥ d2 then d = d1.

2. If d1 < d2 then if BB
d2−1(y) exists and x /∈ BB

d2−1(y) then d = d1. Otherwise
d = d2.

Proof. That BB
d2−1(y) is well-defined follows from Corollary 5.2.5. The lemma

follows from Corollary 5.2.6. All that needs to be shown is that under the condi-
tions of the lemma x /∈ BC

d2−1(y) iff BB
d2−1(y) exists and x /∈ BB

d2−1(y).

Assume first that x /∈ BC
d2−1(y). Since y

d2→ z ∈ RC and y ∈ (x, z) it follows
that BC

d2−1(y) ⊆ [x, z). By Lemma 5.2.4, BC
d′(y) ∈ B for every d′ ≤ d2 − 1.

This means that BB
d2−1(y) exists and BB

d2−1(y) ⊆ BC
d2−1(y) and therefore also

x /∈ BB
d2−1(y), as required.
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To prove the other direction, assume that BB
d2−1(y) exists and x /∈ BB

d2−1(y).
By Lemma 5.2.4 this means that there is a sequence of brackets X1 ⊂ X2 ⊂ . . . ⊂
Xd2−1 in C such that for each 1 ≤ i ≤ d2− 1, BB

i (y) = Xi ∩ [x, z). Since these are
all different brackets covering y it follows that BC

d2−1(y) ⊆ Xd2−1. Since x /∈ Xi,
also x /∈ BC

d2−1(y), which completes the proof. �

5.2.3 Putting It All Together

The version of the transitivity lemma given by Lemma 5.2.7 allows us to calculate
C from any shortest common cover link set S of RC by using Algorithm 5.2.1.
Working incrementally with words further and further apart, the set R(S) can
be calculated as follows. For two words x, z we can assume that R(S)[x,z) and

R(S)[z,x) have already been calculated. Whether there are links x
d
→ z and z

d
→ x

in RC and what their depth is can then be determined by the transitivity lemma
given above (Lemma 5.2.7). Whether the link is in R(S) can then be determined
(just as in the limited depth case) by Lemma 5.1.21. The set R(S)[z,x] can then
be calculated by Algorithm 5.2.1 and the process can be continued. In this way
we find R(S) and the bracketing C can be calculated using Algorithm 5.2.1.

5.3 Characterization of Shortest Common Cover

Link Sets

In this section I give a characterization of shortest common cover link sets which
contain only links of depth 0 and 1. I will refer to sets of common cover links
which contain only link of depth 0 and 1 as 0,1-common cover link sets (and
will refer more specifically to 0,1-shortest common cover link sets, 0,1-RC, etc.).
Recall that by Lemma 5.1.23 it does not matter whether the 0,1 restriction is
imposed on the common cover link set RC or on the shortest common cover link
set.

5.3.1 The Characterization

I begin with the definition of the characterizing properties and the theorem which
shows that these properties indeed characterize the 0,1-shortest common cover
link sets.
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5.3.1 (2.7.1). Definition. [characterization] Let L be a set of common cover
links of depth 0 or 1 over U . The set L is said to satisfy the characterizing
conditions if for every w, x, y, z ∈ U the following conditions hold:

1. Monotonicity : if y ∈ (x, z], x
d1→ y ∈ L and x

d2→ z ∈ L then d1 ≤ d2.

2. Minimality : if x
d1→ z ∈ L then there is no y ∈ (x, z) such that x

L
→ y and

y
L
→ z.

3. Connectedness : if x
L
→ z and y ∈ (x, z) then x

L
→ y.

4. Blocking : if w
d1→ z ∈ L and, for some y ∈ U and x ∈ (w, z), x

L
→ w and

x
d2→ y ∈ L then d1 = 1 and d2 = 0.

5. Equality : if y ∈ [x, z), x
d1→ z ∈ L, z

d2→ y ∈ L and y
L
→ x then d1 = d2.

6. Resolution: if y ∈ (x, z), x′ ∈ (x, y], x
d1→ x′ ∈ L and x′ L

→ y and if

z′ ∈ (z, y], z
d2→ z′ ∈ L and z′ L

→ y then there is v ∈ [x, z] such that either

x
d1→ v ∈ L and v

L
→ z or z

d2→ v ∈ L and v
L
→ x.

5.3.2 (2.7.2). Theorem (characterization). Let L be a set of common cover
links of depth 0 or 1 over U . There exists a bracketing C over U such that L is
a shortest common cover link set of C iff L satisfies the characterizing conditions
of Definition 5.3.1.

Because of the many different conditions involved, the proof of this theorem
is quite long. I therefore split the proof into two parts. Section 5.3.2 shows that
the characterization conditions are necessary and section 5.3.3 shows that they
are sufficient. Before I begin with this proof, it is best to first prove a few simple
properties of the characterization. First, I show that the characterization contains
not redundant properties.

5.3.3 (2.7.3). Lemma. For each of the six conditions in Definition 5.3.1, there
is a set of links L which violates that condition but satisfies all other conditions.

Proof. For each condition, I give below an example which violates that condition
and satisfies all other conditions:

1. Monotonicity: x 1 //
0 ))y z

2. Minimality: x 0 //
0 ))y 0 // z
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3. Connectedness: x
0 ))y z

4. Blocking: Several different violation examples are given here (these are not
needed for the proof but are interesting in themselves):

w = y //
0

0
&&

xoo z w //
0

1
((xoo 1 // y z

y w //
0

1
%%

xoo

1
xx

z

5. Equality: Two examples are given here, one for the case x = y and one for
the case x 6= y:

x = y
0 // z
1

oo x //
0

1
''

yoo z0oo

6. Resolution: Here, too, several examples are given:

x 0 // y z0oo x 0 //
1

''
y z0oo

x 0 //
1

''
y z0oo

1
gg

�

The next important property of the characterization is that if it is satisfied

by the full set of links L then it must also be satisfied by L[x,y] = {u
d
→ v ∈ L :

u, v ∈ [x, y]}, the restriction of L to a segment [x, y] ⊆ U .

5.3.4 (2.7.4). Lemma. Let L be a set of common cover links over an utterance

U and let L[x,y] = {u
d
→ v ∈ L : u, v ∈ [x, y]} be the restriction of L to a segment

[x, y] ⊆ U . If L satisfies the characterizing conditions then so does L[x,y].

Proof. The only two conditions in which a certain configuration requires ad-
ditional links are connectedness and resolution. In both these cases, the link is
inside the segment of the utterance which caused the requirement. Therefore,
if the conditions are satisfied on the full utterance, they are also satisfied on a
segment of the utterance. �
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5.3.2 Characterization Conditions are Necessary

5.3.5. Lemma (Characterization Conditions are Necessary). Let C be
a bracketing such that RC contains links of depth 0 or 1. If S is a shortest common
cover link set for RC, then the conditions in Definition 5.3.1 hold for S.

Proof. Assume that S is as in the assumptions of the lemma and let R(S) be
the minimal representative subset of RC such that S ⊆ R(S).

1. Monotonicity : By the definition of RC, there cannot be two links from x
to y with different depths. For y = z this proves the property immediately
and for y ∈ (x, z) it proves the property using Lemma 5.1.12.

2. Minimality : Assume y ∈ (x, z), x
d1→ z ∈ S, x

S
→ y and y

S
→ z. There is

y′ ∈ (x, z) such that x
S
→ y′ and y′ d2→ z ∈ S (for some d2). By Lemma

5.1.28, there exists d3 such that x
d3→ y′ ∈ RC. By monotonicity, d3 ≤ d1 and

since d1 ≤ 1 either d3 = 0 or d3 = d1 = 1. In either case, since x
d1→ z ∈ S

it follows that x
d3→ y′ ∈ R(S). Together, x

d3→ y′ ∈ R(S), y′ d2→ z ∈ S and

x
d1→ z ∈ S which is in contradiction to the definition of a shortest common

cover link set.

3. Connectedness : Assume first that x
d1→ z ∈ S and y ∈ (x, z). By Lemma

5.1.12, there exists d2 ≤ d1 such that x
d2→ y ∈ RC. Since d1 ≤ 1, either

d2 = 0 or d1 = d2 = 1. In either case x
d2→ y ∈ R(S) which implies, by

Lemma 5.1.28, that x
S
→ y, as required.

Assume now that x
S
→ z and y ∈ (x, z). Let x′ d1→ z′ ∈ S be a link in

an S-path from x to z such that y ∈ [x′, z′). By definition, x
S
→ x′. If

y = x′, we are done. Otherwise, by what has been shown above, x′ S
→ y

and together with x
S
→ x′ we get x

S
→ y.

4. Blocking : Assume that the assumptions of the property hold. I begin by
showing that d1 = 1. Assume, by contradiction, that d1 = 0. By Lemma

5.1.28, x
S
→ w implies x

d
→ w ∈ RC. This together with d1 = 0 implies, by

Lemma 5.1.17, that d = 0 and, therefore, x
0
→ w ∈ R(S). By transitivity

(Lemma 5.1.15), x
0
→ z ∈ RC and because the depth of the link is 0,

x
0
→ z ∈ R(S). By connectedness, w

S
→ x, which implies that w

d′

→ x ∈

RC. Since x
0
→ w ∈ RC, it follows from Lemma 5.1.14 that d′ = 0 and

therefore w
0
→ x ∈ R(S). This together with x

0
→ z ∈ R(S) contradicts the

assumption that w
0
→ z ∈ S. This completes the proof that d1 = 1.
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Next, I show that d2 = 0. Assume, by contradiction, that d2 = 1. Since x
S
→

w, x
d
→ w ∈ RC. Applying transitivity (Lemma 5.1.15) to this link together

with w
1
→ z ∈ S implies that x

d′

→ z ∈ RC. Since, by assumption, x
1
→ y ∈

S, also x
d′

→ z ∈ R(S) (whether d′ = 0 or d′ = 1). By connectedness, w
S
→ x

and therefore w
d′′

→ x ∈ RC. Since it was shown that d1 = 1, w
1
→ z ∈ S

and therefore w
d′′

→ x ∈ R(S). Together, w
d′′

→ x ∈ R(S), x
d′

→ z ∈ R(S) and

w
1
→ z ∈ S contradict the definition of S as a shortest common cover link

set.

5. Equality : Assume y ∈ [x, z), x
d1→ z ∈ S and z

d2→ y ∈ S. If y = x

then d1 = d2 by Lemma 5.1.14. Assume now that y 6= x and y
S
→ x. Since

y
S
→ x, it follows from Lemma 5.1.28 that y

d3→ x ∈ RC. By linear transitivity

(Lemma 5.1.16) and Lemma 5.1.14, z
d1→ x ∈ RC. By connectedness, x

S
→ y.

If y
0
→ z ∈ RC then y

0
→ z ∈ R(S) and (by Lemma 5.1.28) y

S
→ z, which

together with x
S
→ y and x

d1→ z ∈ S contradicts minimality. Therefore,

either y
1
→ z ∈ RC or there is no link from y to z in RC. In either case linear

transitivity (applied to z
d1→ x ∈ RC, z

d2→ y ∈ S and y
d3→ x ∈ RC) implies

that d1 = d2.

6. Resolution: Assume that y ∈ (x, z), x′ ∈ (x, y], x
d1→ x′ ∈ L, x′ L

→ y and

z′ ∈ (z, y], z
d2→ z′ ∈ L, z′ L

→ y. Since x
S
→ y and z

S
→ y, it follows from

Lemma 5.1.28 that there are links x
dxy

→ y ∈ RC and z
dzy

→ y ∈ RC. Therefore,
y ∈ Bdxy

(x) ∩ Bdzy
(z) and, because brackets do not cross, either Bdxy

(x) ⊆

Bdzy
(z) or Bdzy

(z) ⊆ Bdxy
(x). This means that either x

dxy

→ z ∈ RC or

z
dzy

→ x ∈ RC. Assume (without loss of generality) that x
dxy

→ z ∈ RC.

If dxy = 0 then x
0
→ y ∈ R(S), x

0
→ z ∈ R(S) and (by Lemma 5.1.28)

x
S
→ z. The link x

d1→ x′ ∈ S is the first link on an S-path from x to y.

Let v be such that x
d
→ v ∈ S is the first link on the S-path from x to z.

By Lemma 5.1.28, x
0
→ y ∈ R(S) implies that d1 = 0 and x

0
→ z ∈ R(S)

implies that d = 0 and therefore the resolution property holds.

Assume now that dxy = 1. Let w1
1
→ w2 ∈ S be the first link of depth 1

on an S-path from x to y (by linear transitivity such a link exists). Since

w1
1
→ w2 ∈ S and w2

S
→ y, it follows that w1

1
→ y ∈ R(S). If w1 = x, then

x
1
→ y ∈ R(S) and therefore also x

1
→ z ∈ R(S), which implies (by Lemma

5.1.28) that x
S
→ z. Let x

d
→ v ∈ S be the first link in an S-path from x

to z. If v ∈ (x,w2) then, by connectedness, v
S
→ w2, which together with

x
d
→ v ∈ S and x

1
→ w2 ∈ S contradicts minimality. Therefore, v ∈ [w2, z]
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and monotonicity (from x
1
→ w2 ∈ S) implies that d = 1. This completes

the proof in this case.

It remains to consider the case where w1 6= x. By the choice of w1 and w2,

x
0
→ w1 ∈ R(S) and this together with w1

1
→ y ∈ R(S) (shown above) and

x
1
→ y ∈ RC implies (by linear transitivity, Lemma 5.1.16) that w1

0
→ x ∈

R(S). Because x
1
→ z ∈ RC it follows from transitivity (Lemma 5.1.15) that

w1
d′

→ z ∈ RC and because y ∈ (w1, z) and w1
1
→ y ∈ R(S) it follows that

w1
1
→ z ∈ R(S). Therefore, by Lemma 5.1.28, w1

S
→ z. Similarly, because

x
0
→ w1 ∈ R(S), x

S
→ w1. Together with w1

S
→ z this means that x

S
→ z.

Let x
d
→ v ∈ S be the first link in the S-path from x to z thus constructed.

The link x
d
→ v ∈ S is also the first link on an S-path from x to w1 and, since

x
0
→ w1 ∈ R(S), it follows (by linear transitivity) that d = 0 (x

0
→ v ∈ S).

It remains to show that d1 = 0 (that is, x
0
→ x′ ∈ S). By monotonicity, it is

enough to show that x′ ∈ (x, v]. Assume, by contradiction, that v ∈ (x, x′).

By connectedness (from v
S
→ z), v

S
→ x′ which together with x

0
→ v ∈ S

and x
d1→ x′ ∈ S contradicts minimality. Therefore, x

0
→ x′ ∈ L and this

completes the proof.

�

5.3.3 Characterization Conditions are Sufficient

To prove that the characterizing conditions in Definition 5.3.1 are sufficient for a
set of links L to be a shortest common cover link set for some bracketing, I first
define a set P (L) of links based on the link paths in L. I then use the simple
reconstruction algorithm (Algorithm 5.1.29) to create a set of brackets from this
set of links. After showing that this set of brackets is a bracketing, I prove that
L is a shortest common cover link set for this bracketing.

The Link Sets P ∗(L) and P (L)

This section defines the sets of links P ∗(L) and P (L) which are based on L-paths.
It then proves a series of properties of these sets of links. These properties are of
two types. First, variants of the characterizing conditions are shown to hold for
P ∗(L) and P (L). Next, different transitivity properties of P ∗(L) and P (L) are
proved.
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5.3.6. Definition. [path links] Let L be a set of common cover links over an
utterance U . The following sets of common cover links are induced by L:

1. The set P ∗(L) of candidate path links induced by L is a set of common cover

links such that x
d
→ y ∈ P ∗(L) iff x 6= y and x

L
→ y. The depth d is 1 if the

following condition holds and 0 otherwise:

there are u ∈ [x, y) and v ∈ (u, y] such that u
1
→ v ∈ L, x

L
→ u, u

L
→ x

and v
L
→ y.

2. The set P (L) of path links is the subset of P ∗(L) such that

(a) x
0
→ y ∈ P (L) ⇐⇒ x

0
→ y ∈ P ∗(L).

(b) x
1
→ y ∈ P (L) ⇐⇒ x

1
→ y ∈ P ∗(L) and there is some z such that

x
1
→ z ∈ L.

5.3.7. Lemma (unique link path). Let L be a 0,1-common cover link set over
an utterance U . If L satisfies the monotonicity, minimality and connectedness
characterizing properties of Definition 5.3.1 then for every x, y ∈ U there is at
most one L-path from x to y.

Proof. Assume the assumptions of the lemma hold and assume, by contradic-
tion, that there are two different L-paths from x to y. By monotonicity, for every
two words x and y there is at most one link from x to y. Therefore, a link path
is identified by the linear path it is based on. If the link paths are different then
they should also be based on different linear paths, P1 and P2. If P1 ⊂ P2 then
the minimality property is violated. Therefore, there is z ∈ P1 \ P2. There are
two consecutive words u, v in the path P2 such that z ∈ (u, v). Since u, v are

consecutive in P2, there is d such that u
d
→ v ∈ L. By connectedness, u

L
→ z and

z
L
→ v. These links together with the link u

d
→ v ∈ L violate minimality and

therefore contradict the assumptions. �

This uniqueness property will allow me, for now on, to simply refer to “the
path” in L from x to y. As mentioned in the proof, the monotonicity property
implies that given a 0,1-set of links L which satisfies the characterizing properties
of Definition 5.3.1, an L-path can be identified with the linear path it is based
on. This will be used in the following proofs.

5.3.8. Corollary. Let L be a 0,1-common cover link set over an utterance
U . If L satisfies the characterizing properties of Definition 5.3.1 then, for every
x, y ∈ U , P (L) contains at most one link from x to y.
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5.3.9. Corollary. Let L be a 0,1-common cover link set over an utterance U .

If L satisfies the characterizing properties of Definition 5.3.1, x
d
→ y ∈ P ∗(L)

and P is an L-path from x to y then d = 1 iff:

there is x1
1
→ x2 ∈ P such that x1

L
→ x.

Proof. By Definition 5.3.6, if x
d
→ y ∈ P ∗(L) then d = 1 iff there are u ∈ [x, y)

and v ∈ (u, y] such that u
1
→ v ∈ L, x

L
→ u, u

L
→ x and v

L
→ y. This means that

u and v are on an L-path from x to y and, by Lemma 5.3.7, this is the path P .
�

5.3.10. Lemma (monotonicity of P ∗(L)). Let L be a 0,1-common cover link
set over an utterance U . Assume that L satisfies the characterizing properties in

Definition 5.3.1. If y ∈ (x, z], x
d1→ y ∈ P ∗(L) and x

d2→ z ∈ P ∗(L) then d1 ≤ d2.

Proof. Assume the assumptions of the lemma hold. If d1 = 0, there is nothing
to prove. If y = z then the claim follows directly from Corollary 5.3.8. Assume,
therefore, that y 6= z and d1 = 1. Let P1 be the L-path from x to y and let

P2 be the L-path from x to z. By Corollary 5.3.9, there is x1
1
→ x2 ∈ P1 ⊆ L

such that x1
L
→ x. Let y1 and y2 be consecutive words in P2 such that y2 is the

first word in P2 which is not in [x, y]. By connectedness, x
L
→ y1 and y1

L
→ y,

which implies, by path uniqueness (Lemma 5.3.7), that y1 is on P1. If y1 ∈ [x, x1)

then x1
L
→ x implies x1

L
→ y1 and blocking is violated. Therefore, y1 ∈ [x1, y].

If y1 = x1 then monotonicity implies that y1
1
→ y2 ∈ L and since x1

L
→ x this

implies x
1
→ z ∈ P ∗(L), as required. If y1 ∈ (x1, y] then, since y1 is on P1,

x2 ∈ (x1, y1] and it follows from path uniqueness that x1
1
→ x2 ∈ P2. therefore,

by the definition of P ∗(L), x
1
→ z ∈ P ∗(L), as required. �

5.3.11. Lemma (connectedness of P (L)). Let L be a 0,1-common cover link
set over an utterance U . Assume that L satisfies the characterizing properties in

Definition 5.3.1. If y ∈ (x, z) and x
d
→ z ∈ P (L) then there is d′ such that

x
d′

→ y ∈ P (L).

Proof. This follows directly from the connectedness of L, link monotonicity
(Lemma 5.3.10) and the definition of P (L). �
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5.3.12. Lemma. Let L be a 0,1-common cover link set over an utterance U .

Assume that L satisfies the characterizing properties in Definition 5.3.1. If x
L
→ y,

z
L
→ x and w1

0
→ w2 ∈ L is a link on the L-path from x to y then there is no

word u ∈ (w1, w2) on the L-path from z to x.

Proof. Assume the assumptions of the lemma hold. If w1 /∈ [x, z) then the
lemma is obvious. Assume, therefore, that w1 ∈ [x, z). Assume, by contradiction,
that there is u ∈ (w1, w2) on the L-path from z to x. Since u is on the path from

z to x, u
L
→ x and by connectedness it follows that u

L
→ w1. This together with

the link w1
0
→ w2 contradicts blocking. �

5.3.13. Lemma. Let L be a 0,1-common cover link set over an utterance U .

Assume that L satisfies the characterizing properties of Definition 5.3.1. If x
L
→ y,

z
L
→ x, w1 ∈ [x, z] and w1

1
→ w2 ∈ L is a link on the L-path from x to y, then w1

is on the L-path from z to x.

Proof. Assume the assumptions of the lemma hold. If w1 = z then the lemma
is obvious. Assume, therefore, that w1 ∈ [x, z). Let u1 and u2 be two consecutive
words on the L-path from z to x such that u2 is the first word in this path which
is in [x,w1]. We need to show that u2 = w1. Assume, by contradiction, that
u2 ∈ [x,w1). By assumption, u1 ∈ (w1, z]. Since w1 is on the path from x to y,

w1
L
→ y and by connectedness w1

L
→ u1. This link together with w1

1
→ w2 ∈ L

and u1
d
→ u2 ∈ L contradict blocking. This shows that u2 = w1 and completes

the proof. �

The following example shows that when x
L
→ y and y

L
→ x it is possible to

have a link w1
0
→ w2 ∈ L on the L-path from x to y such that neither w1 nor w2

is on the L-path from y to x:

x 1 // w1
// w2

//oo 0 yoo 0

1

xx

5.3.14. Corollary. Let L be a 0,1-common cover link set over an utterance
U . Assume that L satisfies the characterizing properties of Definition 5.3.1. If

x
0
→ y ∈ P (L) and y

0
→ x ∈ P (L) then there is z ∈ (x, y] such that x

0
→ z ∈ L

and z is on the L-paths from x to y and from y to x.

Proof. Because x
0
→ y ∈ P (L), the first link in the L-path from x to y is

x
0
→ z ∈ L with z ∈ (x, y]. Let u1

d
→ u2 ∈ L be the unique link in the L-path



114 Chapter 5. Mathematical Analysis and Proofs

from y to x such that z ∈ [u1, u2). If d = 0 then, by Lemma 5.3.12, z = u1,
which proves the claim. To complete the proof, I show that d = 1 leads to a
contradiction. Assume d = 1. By Lemma 5.3.13, u1 is on the path from x to y
and, since u2 ∈ [x, z), it follows from Lemma 5.3.12 that u2 = x. By equality,
d = 0, contrary to the assumption. �

5.3.15. Lemma (equality in P ∗(L)). Let L be a 0,1-common cover link set
over an utterance U . Assume that L satisfies the characterizing properties of

Definition 5.3.1. If x
d1→ y ∈ P ∗(L) and y

d2→ x ∈ P ∗(L) then d1 = d2.

Proof. Assume the assumptions of the lemma hold. Because of the symmetry
in the conditions on x and y it is sufficient to prove that if d1 = 1 then d2 = 1.
Assume, therefore, that d1 = 1. This means that there are two consecutive words

w1 and w2 on the L-path from x to y such that w1
1
→ w2 ∈ L and w1

L
→ x. By

Lemma 5.3.13, w1 is on the L-path from y to x. Let u1 and u2 be two consecutive
words on the L-path from y to x such that u2 is the first word on this path
which is in [w1, w2). By connectedness (since w2 is on the L-path from x to y

and therefore w2
L
→ y), w2

L
→ u1. Similarly by connectedness (since u2 is on the

L-path from y to x and therefore u2
L
→ x), u2

L
→ w1. If u1 ∈ (w2, y] then it

follows by blocking from w2
L
→ u1 that u1

1
→ u2 ∈ L. If u1 = w2 then it follows by

equality from w1
1
→ w2 ∈ L and u2

L
→ w1 that u1

1
→ u2 ∈ L. By Lemma 5.3.13,

u1 is on the L-path from x to y and therefore u1
L
→ y. Together with u1

1
→ u2 ∈ L

this shows that d2 = 1. �

The following lemma shows that linear transitivity holds for links in P ∗(L):

5.3.16. Lemma (linear transitivity of P ∗(L)). Assume L is a 0,1-common
cover link set over an utterance U . Assume that L satisfies the characterizing

properties of Definition 5.3.1. If y ∈ (x, z), x
d1→ y ∈ P ∗(L) and y

d2→ z ∈ P ∗(L)

then x
d
→ z ∈ P ∗(L) where:

1. If there is a link y
d3→ x ∈ P ∗(L) then d = max(d1, d2).

2. Otherwise, d = d1.

Proof. Assume the assumptions of the lemma hold. Since x
L
→ y and y

L
→ z, it

follows that x
L
→ z and therefore x

d
→ z ∈ P ∗(L). If d1 = 1 then there are two

consecutive words w1 and w2 on the L-path from x to y such that w1
1
→ w2 ∈ L
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and w1
L
→ x. Since w1 and w2 are also on the path from x to z, it follows that

d = 1, as required.
Assume now that d1 = 0. To complete the proof we need to show that if d = 1

then d2 = 1 and y
L
→ x. Assume that d = 1. There are two consecutive words u1

and u2 on the path from x to z such that u1
1
→ u2 ∈ L and u1

L
→ x. If u1 ∈ [x, y)

then (because the path from x to y is a prefix of the path from x to z) d1 = 1,
contrary to the assumption. Therefore, u1 ∈ [y, z) and since the path from y to
z is a suffix of the path from x to z, u1 and u2 are consecutive words on the path

from y to z. Because y ∈ [u1, x) and u1
L
→ x, it follows from connectivity that

u1
L
→ y, which implies that d2 = 1. �

The next lemma gives an additional transitivity property for P ∗(L). The
general transitivity property (Lemma 5.1.15) holds for RC but not necessarily for
any of its representative subsets or shortest common cover link sets. This is due
to the optionality of some of the depth 1 links. This is reflected in the following

lemma in an extra condition (the link y
1
→ w ∈ L) which is needed to ensure the

existence of the link y
d′

→ z not only in P (L) but even in P ∗(L).

5.3.17. Lemma (crossing transitivity of P ∗(L)). Let L be a 0,1-common
cover link set over an utterance U . Assume that L satisfies the characterizing

properties of Definition 5.3.1. If y ∈ (x, z), y
L
→ x and x

d
→ z ∈ P ∗(L) then:

1. If d = 0 then y
0
→ z ∈ P ∗(L).

2. If d = 1 and there exists a link y
1
→ w ∈ L then y

d′

→ z ∈ P ∗(L) for some
d′ ≤ 1.

Proof. Assume the assumptions of the lemma hold. The cases d = 0 and d = 1
are proved separately. First assume that d = 0. Let w1 and w2 be consecutive
words on the L-path from x to z such that w2 is the first word on the path such
that w2 /∈ [x, y]. I will show that w1 = y. Assume, by contradiction, that w1 6= y.

This means that w1 ∈ [x, y). Because y
L
→ x it follows from connectedness

that y
L
→ w1 and blocking implies that w1

1
→ w2 ∈ L. If w1 = x then d = 1,

contradicting the assumptions. Therefore w1 ∈ (x, y). Now let v1 and v2 be
two consecutive words on the L-path from y to x such that v2 is the first word

in the path such that v2 /∈ [w1, y]. If v1 6= w1 then because w1
L
→ z it follows

from connectedness that w1
L
→ v1. But then w1

1
→ w2 ∈ L and v1

d′′

→ v2 ∈ L

contradict blocking. Therefore, v1 = w1 and it follows that w1
L
→ x. But now,

because w1
1
→ w2 ∈ L is on the path from x to z, it follows from the definition
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of P (L) that d = 1, which contradicts the assumption. This shows that w1 6= y

leads to a contradiction and therefore w1 = y. Since w1
L
→ z, this implies that

y
d′

→ z ∈ P ∗(L) for some d′. If d′ = 1 then linear transitivity of P ∗(L) (Lemma
5.3.16) implies that d = 1, which contradicts the assumption. Therefore, d′ = 0

and y
0
→ z ∈ P ∗(L).

Now assume that d = 1 and there exists a link y
1
→ w ∈ L. As before, let

w1 and w2 be two consecutive words on the L-path from x to z such that w2 is
the first word on the path such that w2 /∈ [x, y]. It must be that w1 = y because

otherwise the link from w1 to w2 together with y
L
→ w1 (from connectedness) and

y
1
→ w ∈ L contradict blocking. Therefore, y

L
→ z and y

d′

→ z ∈ P ∗(L) for some
d′. �

5.3.18. Lemma (resolution in P (L)). Let L be 0,1-common cover link set
over an utterance U . Assume that L satisfies the characterizing properties of

Definition 5.3.1. If y ∈ (x, z), x
d1→ y ∈ P (L) and z

d2→ y ∈ P (L) then either

x
d1→ z ∈ P (L) or z

d2→ x ∈ P (L).

Proof. Assume the assumptions of the lemma hold and that y ∈ (x, z), x
d1→

y ∈ P (L) and z
d2→ y ∈ P (L). The proof is by induction on n = n1 + n2 where

n1 and n2 are the number of links in the L-paths from x to y and from z to y
(respectively).

Basis: The basis of the induction is n1 = n2 = 1. This means that x
d1→ y ∈ L

and z
d2→ y ∈ L. By the resolution property, there exists v ∈ (x, z) such that

either x
d1→ v ∈ L and v

L
→ z or z

d2→ v ∈ L and v
L
→ x. Assume, without loss of

generality, that x
d1→ v ∈ L and v

L
→ z. If there is no L-path from v to x then,

by linear transitivity (Lemma 5.3.16), x
d1→ z ∈ P ∗(L). Because x

d1→ y ∈ L, it

follows from the definition of P (L) that x
d1→ z ∈ P (L), as required.

Assume, therefore, that v
L
→ x. If v ∈ (x, y) then, by connectedness (from

v
L
→ z), v

L
→ y, which together with x

d1→ v ∈ L and x
d1→ y ∈ L contradicts

minimality. Similarly, if v ∈ (y, z) then, by connectedness (from z
d2→ y ∈ L and

v
L
→ x), z

L
→ v and v

L
→ y which together with z

d2→ y ∈ L contradicts minimality.

Therefore, either v = y or v = z. If v = z then x
d1→ z ∈ L ⊆ P (L) and the claim

holds. If v = y then, by linear transitivity, if d1 = 1 or if y
0
→ z ∈ P ∗(L) then

x
d1→ z ∈ P (L), as required. Assume, therefore, that d1 = 0 and y

1
→ z ∈ P ∗(L).
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By Lemma 5.3.15, z
1
→ y ∈ L (that is, d2 = 1). Because v

L
→ x and y = v, by

linear transitivity, z
1
→ x ∈ P (L), which completes the proof of the induction

basis.

Induction Step: Assume the claim holds up to n−1 and assume that n1+n2 =

n. By definition, x
L
→ y and z

L
→ y. Let x

dx→ x′ and z
dz→ z′ be the first links in the

L-paths from x to y and from z to y (respectively). By the resolution property,

there is v ∈ (x, z) such that either x
dx→ v ∈ L and v

L
→ z or z

dz→ v ∈ L and v
L
→ x.

Assume, without loss of generality, that x
dx→ v ∈ L and v

L
→ z. This implies

that there exists d such that x
d
→ z ∈ P ∗(L). If d1 = 1 then, by monotonicity in

P ∗(L) (Lemma 5.3.10), d = 1 and (by definition of P (L)) x
1
→ z ∈ P (L), which

proves the claim.

Assume, therefore, that d1 = 0. If d = 0 then x
0
→ z ∈ P (L) and the claim

holds. Assume, therefore, that d = 1. Let w1
1
→ w2 ∈ L be the first link of

depth 1 on the L-path from x to z (by linear transitivity such a link exists).
That d1 = 0 implies (by linear transitivity) that dx = 0 and therefore w1 6= x.

Therefore, x
0
→ w1 ∈ P (L). By linear transitivity, because d = 1, this means

that there is a link w1
0
→ x ∈ P (L). There remain two cases: w1 ∈ (x, y) and

w1 ∈ [y, z).

• Case 1: w1 ∈ (x, y). Let v1
d′

→ v2 ∈ L be the link in the L-path from x to y

such that w1 ∈ (v1, v2]. If w1 ∈ (v1, v2) then, by connectedness v1
L
→ w1 and

w1
L
→ v2, contradicting minimality. Therefore, w1 is on the L-path from x

to y. By linear transitivity (using x
0

� w1 ∈ P (L)), w1
d1→ y ∈ P (L). Since

the L-path from w1 to y is shorter than that from x to y, it follows from the

induction hypothesis applied to the links w1
d1→ y and z

d2→ y, that either

w1
d1→ z ∈ P (L) or z

d2→ w1 ∈ P (L). Since x
0

� w1 ∈ P (L), this shows that

either x
d1→ z ∈ P (L) or z

d2→ x ∈ P (L), as required.

• Case 2: w1 ∈ [y, z). Since w1
1
→ w2 ∈ L and w2

L
→ z, it follows that

w1
1
→ z ∈ P (L). By connectedness (from z

d2→ y ∈ P (L)) and the equality

of depth of opposite links, z
1
→ w1 ∈ P (L) and, by monotonicity, z

1
→

y ∈ P (L) (that is, d2 = 1). By linear transitivity, since w1
0
→ x ∈ P (L),

z
1
→ x ∈ P ∗(L). Since z

1
→ y ∈ P (L), also z

1
→ x ∈ P (L), which proves the

claim.

�
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Constructing a Bracketing From P (L)

The next lemma shows that if L satisfies the characterizing properties of Definition
5.3.1 then applying the simple reconstruction algorithm (Algorithm 5.1.29) to
P (L) results in a bracketing of the utterance. Subsequent lemmas will show that
L is a shortest common cover link set for this bracketing.

5.3.19. Lemma (bracketing from P (L)). Let L be a 0,1-common cover link
set over an utterance U . Assume that L satisfies the characterizing properties of
Definition 5.3.1. If A is the result of applying the simple reconstruction algorithm
(Algorithm 5.1.29) to P (L) then A is a bracketing.

Proof. Assume the assumptions of the lemma hold. It is obvious from the
definition of the simple reconstruction algorithm that every word is covered by
at least one bracket. It therefore remains to show that no brackets cross. Let
B1, B2 ∈ A be such that B1∩B2 6= ∅. By the definition of the algorithm, there are
x, y ∈ U such that B1 was created from links based at x and B2 was created from
links based at y. By monotonicity and connectedness of P (L) (Lemma 5.3.10 and

Lemma 5.3.11), for every z ∈ B1 \ {x} there is a link x
d
→ z ∈ P (L) (for some d)

and for every z ∈ B2 \ {y} there is a link x
d
→ z ∈ P (L) (for some d). If x = y,

it follows directly from Lemma 5.3.10 that B1 and B2 do not cross.
To prove the lemma it is sufficient to show that if there exists z ∈ B1 \ B2

then u ∈ B2 implies u ∈ B1. Assume, therefore, that z ∈ B1 \ B2. Without
loss of generality we can assume that z /∈ (x, y] (because if z ∈ (x, y] then also
x ∈ B1 \ B2 and we can take z = x). Let u ∈ B2. It is enough to prove the
claim for all u /∈ [x, y) because y ∈ B2 and therefore by proving the claim for
all u /∈ [x, y) we also prove that y ∈ B1, which implies that, for any u ∈ [x, y),
u ∈ B1.

Let u ∈ B2 such that u /∈ [x, y). If u ∈ [z, x] then u ∈ B1, as required.
Assume, therefore, that u /∈ [z, x]. If z ∈ [y, u] then z ∈ B2, contrary to the
assumption. Because u /∈ [x, y) and z /∈ (x, y], u and z are outside (x, y) and,
because z /∈ [y, u] and u /∈ [z, x], u and z cannot be on the same side of (x, y),
implying that x, y ∈ [z, u]. There are two case:

• Case 1: x ∈ [z, y). There are three cases here, y
0
→ x ∈ P (L), y

1
→ x ∈

P (L) and no link from y to x in P (L).

If y
0
→ x ∈ P (L) then, because y

0
→ z /∈ P (L) (otherwise z ∈ B2), we

have that z 6= x and (by linear transitivity for P ∗(L), Lemma 5.3.16) x
1
→

z ∈ P (L) and x
0
→ y ∈ P (L). If u = y, we are done and otherwise, by

assumption, y
d′

→ u ∈ P (L). By linear transitivity for P ∗(L), it follows that

x
d′

→ u ∈ P ∗(L) and since z ∈ B1 and x
1
→ z ∈ P (L) we have that u ∈ B1.
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If y
1
→ x ∈ P (L) then (by linear transitivity for P ∗(L)) y

1
→ z ∈ P (L).

Since z /∈ B2 it follows that B2 is constructed only from links of depth 0
based at y. This means that if v ∈ B1 ∩ B2 ∩ [x, y] then v 6= x and either

v = y or y
0
→ v ∈ P (L). Since B1 and B2 intersect, such a v exists. If v = y

then x
d′

→ y ∈ P (L) and, by equality of opposite links (Lemma 5.3.15),

d′ = 1. If v ∈ (y, x) then, by resolution (Lemma 5.3.18), x
1
→ v ∈ P (L) and

x
1
→ y ∈ P (L). By linear transitivity x

1
→ u ∈ P (L) and since v ∈ B1 this

implies that u ∈ B1, as required.

Finally, assume that there is no link from y to x. Because the brackets B1

and B2 intersect, there is v ∈ [x, y] such that v ∈ B1 ∩ B2. If v = x then

y
d
→ x ∈ P (L), which contradicts the assumptions. Therefore, v ∈ (x, y].

If v = y then x
d
→ y ∈ P (L) directly from v ∈ B1. If v ∈ (x, y) then

x
d1→ v ∈ P (L) and y

d2→ v ∈ P (L) and by resolution for P (L) (Lemma

5.3.18), either x
d1→ y ∈ P (L) or y

d2→ x ∈ P (L). By the assumption,

x
d1→ y ∈ P (L). Since v ∈ B1, also y ∈ B1. Moreover, since there is no link

from y to x, it follows from linear transitivity that x
d1→ u ∈ P (L). This

shows that u ∈ B1 and completes the proof for this case.

• Case 2: x ∈ [u, y). Because x ∈ [u, y), x 6= z and y 6= u. Therefore,

there are links x
d1→ z ∈ P (L) and y

d2→ u ∈ P (L). By connectedness
(Lemma 5.3.11) and equality of opposite links (Lemma 5.3.15), there are

links x
d
→ y ∈ P (L) and y

d
→ x ∈ P (L) (for d ≤ d1, d2). If d1 = 0 then by

crossing transitivity (Lemma 5.3.17) there is a link y
0
→ z ∈ P (L), which

contradicts the assumption that z /∈ B2. Therefore, d1 = 1 (x
1
→ z ∈ P (L)).

By the definition of P (L), this means that there is a word x′ such that

x
1
→ x′ ∈ L. Crossing transitivity and the definition of P (L) then imply

that x
d′

→ u ∈ P (L). Since z ∈ B1 and d′ ≤ d1 we have that u ∈ B1, as
required.

�

The set of links P (L) is a representative subset of RA for the bracketing A
created from P (L) by applying the simple reconstruction algorithm. To show
this, we need the following lemma.

5.3.20. Lemma. Let L be a 0,1-common cover link set over an utterance U .
Assume that L satisfies the characterizing properties of Definition 5.3.1. Let A
be the result of applying the simple reconstruction algorithm (Algorithm 5.1.29)
to P (L). If, for x ∈ U , Ad(x) is the bracket generated by the algorithm from
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links based at x of depth at most d then x is of minimal depth (in A) under these
brackets and A0(x) = BA

0 (x). If A0(x) 6= A1(x) then A1(x) = BA
1 (x).

Proof. Assume the assumptions of the lemma hold. By definition and the

connectedness of P (L), A0(x) = {x} ∪ {y : x
0
→ y ∈ P (L)}. Since A is a

bracketing (Lemma 5.3.19), to show that A0(x) = BA
0 (x) it is sufficient to show

that if there is a bracket B such that x ∈ B ⊆ A0(x) then B = A0(x). Assume
that B is such a bracket. There are some y and d ≤ 1 such that B = Ad(y).

Because A0(x) ⊆ A1(x), we can assume that y 6= x. Because y ∈ A0(x), x
0
→ y ∈

P (L) and because x ∈ Ad(y) there exists d′ such that y
d′

→ x ∈ P (L). By equality

of opposite links in P (L) (Lemma 5.3.15), d′ = 0 (y
0
→ x ∈ P (L)). Let z ∈ A0(x)

(z 6= x). There is a link x
0
→ z ∈ P (L) and by either linear transitivity (Lemma

5.3.16) or crossing transitivity (Lemma 5.3.17) it follows that y
0
→ z ∈ P (L).

Therefore, A0(x) ⊆ Ad(y), which shows that B = A0(x), as required. Clearly, x
is of minimal depth (0) under A0(x).

Now assume that A1(x) 6= A0(x). By definition, A0(x) ⊂ A1(x). Because
A is a bracketing, to show that A1(x) = BA

1 (x), it is sufficient to show that if
there is a bracket A0(x) ⊂ B ⊆ A1(x) then B = A1(x). Assume that B is such
a bracket. There is a y such that B = Ad(y). As before, there exists d′ ≤ 1

such that x
d′

→ y ∈ P (L) and y
d′

→ x ∈ P (L). If d = 0 then, by the first part
of the lemma, y /∈ A0(x) and therefore d′ = 1. At the same time, x ∈ A0(y)
and therefore d′ = 0. This contradiction shows that d = 1 and d′ = 1. By the

definition of P (L) this means that there exists w such that y
1
→ w ∈ L. Let

u ∈ A1(x), u 6= x. There is a link x
d1→ u ∈ P (L). Since y

1
→ x ∈ P (L), by either

linear transitivity or crossing transitivity (and using y
1
→ w ∈ L), it follows that

there is d2 ≤ 1 such that y
d2→ u ∈ P (L). Therefore, u ∈ A1(y), showing that

A1(x) = B, as required. The proof also showed that B = A1(y) which proves
that x is of minimal depth under A1(x). �

Characterization Is Sufficient

It is now possible to show that the properties given in the characterization (Defi-
nition 5.3.1) are sufficient to ensure that a set of links is a shortest common cover
link set for some bracketing. The following lemma shows that a set of links L
which satisfies the characterization properties is a shortest common cover link
set for the bracketing produced from P (L) by the simple bracket reconstruction
algorithm.

5.3.21. Lemma. Let L be a 0,1-common cover link set over an utterance U . If
L satisfies the characterizing properties of Definition 5.3.1 then there exists a
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bracketing C such that L is a shortest common cover set for C. Moreover, P (L) is
the smallest representative subset of RC such that L ⊆ P (L) and the application
of the simple reconstruction algorithm (Algorithm 5.1.29) to P (L) outputs C.

Proof. Assume the assumptions of the lemma hold. Let C be the result of
applying the simple reconstruction algorithm (Algorithm 5.1.29) to P (L). By
Lemma 5.3.19, C is a bracketing. By lemma Lemma 5.3.20, every bracket in C is
of height 0 or 1. By the same lemma (and using its notation) if B ∈ C is of height
0 then for every x ∈ B of depth 0 under B, B = A0(x). If B ∈ C is of height 1
then B = A1(x) for some x ∈ B. This shows that P (L) is a representative subset
of RC.

Let S be the shortest common cover link set induced by P (L). I will show

that S = L. If x
d
→ y ∈ S then x

d
→ y ∈ P (L) and, by definition, there is no

z ∈ (x, y) such that x
d1→ z ∈ P (L) and z

d2→ y ∈ P (L). If the L-path from x
to y consists of more than one link in L then there does exists such a z (if there

is a link w1
1
→ w2 ∈ L on the path from x to y take z to be the first w1 for

which this holds and otherwise take an arbitrary z on the path). This shows that

x
d
→ y ∈ L. Therefore S ⊆ L.

Now let x
d
→ y ∈ L. If x

d
→ y /∈ S then (because x

d
→ y ∈ P (L)) there is

z ∈ (x, y) such that x
d1→ z ∈ P (L) and z

d2→ y ∈ P (L). It then follows that x
L
→ z

and z
L
→ y, which contradicts the minimality of L. This shows that x

d
→ y ∈ S

and therefore, together with what has been shown above, that L = S.
It remains to show that P (L) is the smallest representative subset of RC such

that L ⊆ P (L). By the definition of P (L), x
1
→ y ∈ P (L) implies that there is

some z such that x
1
→ z ∈ L. By Lemma 5.1.21 this is exactly the condition for

the inclusion of the link x
d
→ y in the smallest representative subset of RC which

contains L. This shows that P (L) is indeed equal to this set. �

5.4 Incremental Reconstruction

Given a 0,1-shortest common cover link set S, there is an efficient incremental
algorithm which reconstructs the bracketing represented by S.

5.4.1 (2.6.5). Algorithm. [incremental reconstruction from S] Given is a

set of links S of depth 0 or 1 over an utterance 〈x1, . . . , xn〉. Let Sk = {x
d
→ y ∈

S : x, y ∈ [x1, xk]} be the restriction of S to [x1, xk]. The algorithm updates a
bracketing B.

• Initialize B = {〈x1〉}.
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• For each k = 2, . . . , n perform the following modifications of B, in the given
order:

1. For every link xi
0
→ xk ∈ Sk, extend all brackets in B which cover xi

to cover xk.

2. For every link xi
1
→ xk ∈ Sk:

(a) Extend all brackets which cover BB
0 (xi) to cover xk.

(b) If there is no x
d
→ y ∈ Sk−1 such that x ∈ BB

0 (xi) and y /∈ BB
0 (xi),

add a bracket which covers xk and BB
0 (xi).

3. If there is no xi such that xk
0
→ xi ∈ Sk and xk ∈ BB

0 (xi) then add to

B the smallest bracket which covers xk and every x such that xk

0,Sk→ x.

4. If there is xk
1
→ xi ∈ Sk then add to B (if it is not already in B) the

smallest bracket which covers xk and every x such that xk
Sk→ x.

• Output B.

The rest of this section show that this incremental reconstruction algorithm
correctly reconstructs any bracketing C from any of its shortest common cover
link sets S (as long as RC contains only links of depth 0 or 1). To do so, I use
the properties of the set of links P (S) as described in the previous section. It is
assumed throughout this section that the depth of all links is either 0 or 1.

Let C be a bracketing over an utterance U = 〈x1, . . . , xn〉 and let S be a
shortest common cover link set for C. I refer to the steps carried out by the incre-
mental reconstruction algorithm for a given value of k as loop k of the algorithm.
I write Ik(S) for the set of brackets constructed by the incremental algorithm by
the end of loop k, where I1(S) is defined to be the initial bracketing {〈x1〉}. I

also write Sk = {x
d
→ y ∈ S : x, y ∈ [x1, xk]} for the restriction of the set S to

[x1, xk] and A(P (Sk)) for the set of brackets produced from P (Sk) on [x1, xk] by
Algorithm 5.1.29. By Lemma 5.3.21, to prove the correctness of the incremental
reconstruction algorithm, it is enough to show that A(P (Sn)) = In(S). I will
show this by showing by induction that A(P (Sk)) = Ik(S) for every k.

Since S is a shortest common cover link set, it satisfies all characterizing
conditions of Definition 5.3.1. By Lemma 5.3.4, any restriction Sk of S must also
satisfy these characterizing conditions. Therefore, Sk is a shortest common cover
link set for a bracketing on [x1, xk]. As shown in Lemma 5.3.21, this bracketing
is A(P (Sk)) and P (Sk) is the minimal representative subset of RA(P (Sk)) which
contains Sk. This also means that any of the properties of P (S) proved in the
previous section hold for P (Sk).
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5.4.1 Generators

Brackets in A(P (Sk)) are most easily studied by referring to the word for which
they were constructed by the reconstruction algorithm. Such a word will be
referred to as a generator of the bracket. A single bracket may have more than
one generator and we are interested in the first such generator to appear in the
utterance. Formally, this is defined as follows:

5.4.2. Definition. [bracket generator] Let C be a bracketing over an utterance
U = 〈x1, . . . , xn〉 such that all links in RC are of depth 0 or 1 and let S be a shortest
common cover link set for C.

1. For x ∈ [x1, xk], Gk
d(x) = {x} ∪ {y : ∃d′ ≤ d s.t. x

d′

→ y ∈ P (Sk)} is the
bracket in A(P (Sk)) generated by x and depth d.

2. A word x ∈ [x1, xk] is a generator of B in A(P (Sk)) iff there exists d ≤ 1
such that B = Gk

d(x).

3. A generator x of B (inA(P (Sk))) is the leftmost generator of B (inA(P (Sk)))
if for every other generator x′ of B (in A(P (Sk))), x′ ∈ (x, xk].

The following lemma describes conditions which imply that two words are
generators of the same bracket.

5.4.3. Lemma. Let C be a bracketing over an utterance U = 〈x1, . . . , xn〉 such
that all links in RC are of depth 0 or 1 and let S be a shortest common cover link
set for C.

1. If x, y ∈ [x1, xk] are such that x
0
→ y ∈ P (Sk) and y

0
→ x ∈ P (Sk) then:

(a) Gk
0(x) = Gk

0(y).

(b) If there are u,w such that x
1
→ u ∈ Sk and y

1
→ w ∈ Sk then for d ≤ 1,

Gk
d(x) = Gk

d(y).

2. If x, y ∈ [x1, xk] are such that x
1
→ y ∈ P (Sk) and y

1
→ x ∈ P (Sk) then

Gk
1(x) = Gk

1(y).

Proof. Assume the assumptions of the lemma hold.

1. Assume that x, y ∈ [x1, xk] are such that x
0
→ y ∈ P (Sk) and y

0
→ x ∈

P (Sk).

(a) Since x
0
→ y ∈ P (Sk), y ∈ Gk

0(x) and since y
0
→ x ∈ P (Sk), x ∈ Gk

0(y).
If z 6= x, y then by crossing transitivity (Lemma 5.3.17) and linear

transitivity (Lemma 5.3.16), x
0
→ z ∈ P (Sk) ⇐⇒ y

0
→ z ∈ P (Sk).

Therefore, Gk
0(x) = Gk

0(y).
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(b) Assume that there are u,w such that x
1
→ u ∈ Sk and y

1
→ w ∈ Sk.

That Gk
0(x) = Gk

0(y) has been shown already. By crossing and linear

transitivity and by the existence of the links x
1
→ u ∈ Sk and y

1
→ w ∈

Sk, it follows that, for z 6= x, y, x
1
→ z ∈ P (Sk) ⇐⇒ y

1
→ z ∈ P (Sk).

Therefore, Gk
1(x) = Gk

1(y).

2. Assume that x, y ∈ [x1, xk] are such that x
1
→ y ∈ P (Sk) and y

1
→ x ∈

P (Sk). Since x
1
→ y ∈ P (Sk), y ∈ Gk

1(x) and, similarly, x ∈ Gk
1(y). Because

x
1
→ y ∈ P (Sk), by definition there is u such that x

1
→ u ∈ Sk. Similarly,

there is w such that y
1
→ w ∈ Sk. It therefore follows from crossing and

linear transitivity that, for z 6= x, y and d ≤ 1, x
d
→ z ∈ P (Sk) iff there is

d′ ≤ 1 such that y
d′

→ z ∈ P (Sk). This shows that Gk
1(x) = Gk

1(y).

�

5.4.4. Lemma (bracket generator). Let C be a bracketing over an utterance
U = 〈x1, . . . , xn〉 such that all links in RC are of depth 0 or 1 and let S be a shortest
common cover link set for C.

1. If B ∈ A(P (Sk)) then there exist x ∈ B and d ≤ 1 such that B = Gk
d(x).

2. If x is the leftmost generator of Gk
d(x) and there are z ∈ Gk

d(x) and d′ such

that z
d′

→ xk+1 ∈ Sk+1 then z ∈ [x, xk].

3. If there exists z ∈ Gk
d(x)\Gk−1

d (x) such that z 6= xk then d = 1, x
1
→ xk ∈ Sk

and there is u ∈ [x1, x) such that x
0
→ u ∈ P (Sk−1), u

0
→ x ∈ P (Sk−1) and

u
1
→ v ∈ Sk−1 for some v.

4. If x 6= xk is the leftmost generator of Gk
d(x) then either Gk

d(x) = Gk−1
d (x)

or Gk
d(x) = Gk−1

d (x) ∪ {xk}.

5. If x is the leftmost generator of Gk
d(x) then either Gk+1

d (x) = Gk
d(x) or

Gk+1
d (x) = Gk

d(x) ∪ {xk+1}.

6. If x 6= xk+1 then x is the leftmost generator of Gk
d(x) iff x is the leftmost

generator of Gk+1
d (x).

7. If, for B ∈ A(P (Sk)), there is a link x
d
→ y ∈ Sk such that x ∈ B and

y /∈ B, then d = 1 and B = Gk
0(x). Moreover, if z is a generator of B then

x is a generator of Gk
d(z) for d ≤ 1.

Proof. Assume the assumptions of the lemma hold.
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1. That there exists a generator x of B is immediate from the construction of
A(P (Sk)) by the simple reconstruction algorithm (Algorithm 5.1.29).

2. Assume that x is the leftmost generator of Gk
d(x) and that there are z ∈

Gk
d(x) and d′ such that z

d′

→ xk+1 ∈ Sk+1. If z = x then z ∈ [x, xk], so assume

from now that x 6= z. Since z ∈ Gk
d(x), there is a link x

d′′

→ z ∈ P (Sk). If

z
0
→ xk+1 ∈ Sk+1 then it follows immediately from blocking that z ∈ (x, xk].

Assume, therefore, that z
1
→ xk+1 ∈ Sk+1 and assume that z /∈ [x, xk]. I

will show that this leads to a contradiction. It follows from z ∈ Gk
d(x) and

blocking that x
0
→ z ∈ P (Sk). From z

1
→ xk+1 ∈ Sk+1 it follows from

connectedness for P (L) (Lemma 5.3.11) that z
d′′′

→ x ∈ P (Sk+1). Since

x
0
→ z ∈ P (Sk), x

0
→ z ∈ P (Sk+1). By the equal depth of opposite links,

z
0
→ x ∈ P (Sk+1) and since x, z ∈ [x1, xk], z

0
→ x ∈ P (Sk). If d = 0

then, by Lemma 5.4.3, Gk
d(x) = Gk

d(z), in contradiction to the assumption
that x is the leftmost generator Gk

d(x). Assume, therefore, that d = 1 and

Gk
1(x) 6= Gk

0(x). It follows that there is a link x
1
→ w ∈ P (Sk) and therefore

there is a link x
1
→ u ∈ Sk. By crossing transitivity this means that there

is a link x
d′′′

→ xk+1 ∈ P (Sk+1) which together with z
0
→ x ∈ P (Sk+1) and

z
1
→ xk+1 ∈ Sk+1 contradicts the minimality property of Sk+1.

3. Assume that z ∈ Gk
d(x) \ Gk−1

d (x) and z 6= xk. There is a link x
d′

→ z ∈
P (Sk) \ P (Sk−1) such that d′ ≤ d. Since z 6= xk, the Sk-path from x to z

is also an Sk−1-path and therefore x
d′

→ z ∈ P ∗(Sk−1). By definition, since

x
d′

→ z /∈ P (Sk−1), the only possibility is that d′ = 1 (and therefore d = 1)

and there is no link x
1
→ w ∈ Sk−1 but there is a link x

1
→ xk ∈ Sk. Since

x
1
→ z ∈ P (Sk) and there is no w ∈ [x1, xk−1] such that x

1
→ w ∈ Sk−1, it

follows that there are two consecutive words u and v on the Sk−1-path from

x to z such that u
1
→ v ∈ Sk−1, x

0
→ u ∈ P (Sk−1) and u

0
→ x ∈ P (Sk−1).

If u ∈ (x, xk) then it follows from transitivity that u
d′′

→ xk ∈ P (Sk) which

together with x
0
→ u ∈ P (Sk−1) and x

1
→ xk ∈ Sk contradicts the minimality

property of Sk. Therefore, u ∈ [x1, x), which completes the proof.

4. Assume that x 6= xk is the leftmost generator of Gk
d(x). Assume, by con-

tradiction, that z ∈ Gk
d(x) \ Gk−1

d (x) and z 6= xk. By the previous part

of the lemma, d = 1, x
1
→ xk ∈ Sk and there is u ∈ [x1, x) such that

x
0
→ u ∈ P (Sk−1), u

0
→ x ∈ P (Sk−1) and u

1
→ v ∈ Sk−1. By Lemma 5.4.3,

u is a generator of Gk
d(x) in contradiction to the assumption that x is the

leftmost generator of Gk
d(x).



126 Chapter 5. Mathematical Analysis and Proofs

5. Assume that x is the leftmost generator of Gk
d(x). Assume, by contradiction,

that z 6= xk+1 and z ∈ Gk+1
d (x) \Gk

d(x). As above, this implies that d = 1,

x
1
→ xk+1 ∈ Sk+1 and there is u ∈ [x1, x) such that x

0
→ u ∈ P (Sk),

u
0
→ x ∈ P (Sk) and u

1
→ v ∈ Sk. If Gk

d(x) = Gk
0(x) then, by Lemma

5.4.3, u is a generator of Gk
d(x). If Gk

d(x) 6= Gk
0(x) then there is w ∈ [x1, xk]

such that x
1
→ w ∈ Sk. It then again follows from Lemma 5.4.3 that u is a

generator of Gk
d(x). In either case u is a generator of Gk

d(x), in contradiction
to the assumption that x is the leftmost generator of Gk

d(x).

6. Assume x is the leftmost generator of Gk
d(x) and y is the leftmost gener-

ator of Gk+1
d (x) (that is, Gk+1

d′ (y) = Gk+1
d (x)). By definition, y ∈ [x1, x].

Specifically, y 6= xk+1 and, therefore, by a previous part of the lemma,
Gk

d′(y) = Gk+1
d′ (y) \ {xk+1}. Similarly, Gk

d(x) = Gk+1
d (x) \ {xk+1}. Since

Gk+1
d′ (y) = Gk+1

d (x), this shows that Gk
d′(y) = Gk

d(x) and since x is the
leftmost generator of this bracket and y ∈ [x1, x] it follows that x = y, as
required.

7. Assume that B ∈ A(P (Sk)) and there is x
d
→ y ∈ Sk such that x ∈ B and

y /∈ B. Let z be a generator of B and let dB be such that B = Gk
dB

(z). If
z = x then the claim is obvious. Assume, therefore, that x 6= z. Because

x ∈ B, there is a link z
d′

→ x ∈ P (Sk) for d′ ≤ dB.

If z ∈ (x, y) then, by blocking, d = 1 and z
0
→ x ∈ P (Sk). By Lemma

5.1.17, also x
0
→ z ∈ P (Sk). If x ∈ (z, y) then y /∈ B implies (by linear

transitivity) that x
0
→ z ∈ P (Sk), z

0
→ x ∈ P (Sk) and d = 1. In either

case, this means that Gk
0(z) = Gk

0(x). If Gk
1(z) 6= Gk

0(z) then there is a link

z
1
→ w ∈ Sk and, by Lemma 5.4.3, Gk

1(z) = Gk
1(x). Moreover, by crossing

or linear transitivity, y ∈ Gk
1(z). Since y /∈ B, B = Gk

0(z) = Gk
0(x).

�

5.4.2 Correctness of Incremental Reconstruction

Because several different cases need to be considered in the proof thatA(P (Sk)) =
Ik(S), I split the proof into several lemmas.

5.4.5. Lemma. Let C be a bracketing over an utterance U = 〈x1, . . . , xn〉 such
that all links in RC are of depth 0 or 1 and let S be a shortest common cover link
set for C. If, for some 1 < k ≤ n, A(P (Sk−1)) = Ik−1(S) and B ∈ A(P (Sk))
such that B = Gk

dB
(x) for x 6= xk then B ∈ Ik(S).
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Proof. Assume that the assumptions of the lemma hold, A(P (Sk−1)) = Ik−1(S)
and B ∈ A(P (Sk)) is as in the lemma. Let x be the leftmost generator of
B = Gk

dB
(x). By the assumption, x 6= xk. Let B′ = Gk−1

dB
(x). By definition,

B′ ∈ A(P (Sk−1)) = Ik−1(S). By Lemma 5.4.4, either B = B ′ or B = B′ ∪ {xk}:

• Case 1: B = B′. If there are no z ∈ B ′ and dzxk
such that z

dzxk→ xk ∈ Sk

then B′ is not extended by loop k and, since B ′ ∈ Ik−1(S), it follows that
B = B′ ∈ Ik(S), as required.

Assume, therefore, that there do exist z ∈ B ′ and dzxk
such that z

dzxk→ xk ∈
Sk. By directional uniqueness (Lemma 5.1.25) there is only one such z in

B′. By definition, either z = x or x
d′

→ z ∈ P (Sk−1) for some d′ ≤ dB.

First, I show that B ′ = Gk−1
0 (x). If this does not hold then dB = 1 and

there is u ∈ B′ such that x
1
→ u ∈ P (Sk−1). By transitivity (Lemma 5.3.17)

for x ∈ (z, xk), by linear transitivity (Lemma 5.3.16) for z ∈ (x, xk) and

trivially for x = z this implies that x
d′′

→ xk ∈ P (Sk) for d′′ ≤ dB and
therefore xk ∈ B, contrary to the assumption.

Next, I show that dzxk
= 1 and either x = z or x

0
→ z ∈ P (Sk−1) and

z
0
→ x ∈ P (Sk−1):

1. Assume x = z. If dzxk
= 0 then xk ∈ B, contrary to the assumption.

2. Assume x ∈ (z, xk). By blocking, dzxk
= 1 and x

0
→ z ∈ P (Sk−1).

By connectedness and the equality of depth of opposite links (Lemma

5.1.14), z
0
→ x ∈ P (Sk−1).

3. Assume z ∈ (x, xk). Since z ∈ B′ = Gk−1
0 (x), x

0
→ z ∈ P (Sk−1). By

linear transitivity, if either dzxk
= 0 or there is no link z

0
→ x ∈ P (Sk−1)

then x
0
→ xk ∈ P (Sk), which implies that xk ∈ B, contrary to the

assumption.

By Lemma 5.4.3, since B′ = Gk−1
0 (x), and either x = z or x

0
→ z ∈ P (Sk−1)

and z
0
→ x ∈ P (Sk−1), B′ = Gk−1

0 (z), which, by Lemma 5.3.20, is the
smallest bracket covering z. Together with dzxk

= 1, this implies that
B′ is not extended by loop k of the incremental algorithm and therefore
B′ ∈ Ik(S), as required.

• Case 2: B = B′∪{xk}. Since xk ∈ B, there is a link x
dxxk→ xk ∈ P (Sk) with

dxxk
≤ dB. By connectedness, it follows that [x, xk−1] ⊂ B′. By definition,

there is an Sk-path from x to xk. Let z
dzxk→ xk ∈ Sk be the last link in

this path. Since [x, xk−1] ⊂ B′, z ∈ B′. If dzxk
= 0 then step 1 of loop k
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extends B′ to cover xk and therefore B ∈ Ik(S). If dzxk
= 1 then there are

two possibilities:

1. There is no link z
0
→ x ∈ P (Sk−1) or there is u ∈ B ′ such that

x
1
→ u ∈ P (Sk−1). In either case, B ′ is not the minimal bracket

covering z and therefore step 2a of the incremental algorithm extends
B′ to cover xk. The resulting bracket is B and therefore B ∈ Ik(S).

2. z
0
→ x ∈ P (Sk−1) and B′ = Gk−1

0 (x). Since z ∈ B ′, x
0
→ z ∈ P (Sk−1).

By linear transitivity, dxxk
= 1 (that is, x

1
→ xk ∈ P (Sk)) and, since

xk ∈ B, dB = 1. By the definition of P (Sk), this implies that there

is u ∈ [x1, xk] such that x
1
→ u ∈ Sk. Since dB = 1, B′ = Gk−1

0 (x) =

Gk−1
1 (x) and therefore u = xk. Since z

1
→ xk, directional uniqueness

implies that x = z.

I next show that there is no link u
d
→ v ∈ Sk−1 such that u ∈ B′

and v /∈ B′. Assume, by contradiction, that such a link exists. Since

u
d
→ v ∈ Sk−1, v 6= xk and therefore v /∈ B. But, since u ∈ B ′,

x
0
→ u ∈ P (Sk−1) and, since x

1
→ xk ∈ Sk, this implies (by transitivity)

that x
d′

→ v ∈ P (Sk) for some d′ ≤ 1. Since dB = 1, v ∈ B, which is a
contradiction.

Since there is no link u
d
→ v ∈ Sk−1 such that u ∈ B′ and v /∈ B′, step

2b of the algorithm creates a bracket which covers xk and the minimal
bracket covering z (which is B ′). This bracket is B and therefore
B ∈ Ik(S).

�

5.4.6. Lemma. Let C be a bracketing over an utterance U = 〈x1, . . . , xn〉 such
that all links in RC are of depth 0 or 1 and let S be a shortest common cover link
set for C. If, for some 1 < k ≤ n, A(P (Sk−1)) = Ik−1(S) and B ∈ Ik(S) such
that xk /∈ B then B ∈ A(P (Sk)).

Proof. Assume the assumptions of the lemma hold, A(P (Sk−1)) = Ik−1(S) and
B is as in the lemma. Since any bracket created by the incremental algorithm in
loop k must cover xk, it follows that B ∈ Ik−1(S) = A(P (Sk−1)) and B was not
extended by the incremental algorithm in loop k. There are two possibilities:

1. There exist no z ∈ B and d such that z
d
→ xk ∈ Sk. Since B ∈ A(P (Sk−1)),

B = Gk−1
dB

(x) for some x ∈ [x1, xk−1]. To prove that B ∈ A(P (Sk)) it is

enough to show that there is no d ≤ dB such that x
d
→ xk ∈ P (Sk) because

then B = Gk−1
dB

(x) = Gk
dB

(x) ∈ A(P (Sk)).
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Assume, by contradiction, that there exists dxxk
≤ dB such that x

dxxk→ xk ∈

P (Sk). There is an Sk-path from x to xk. Let z
dzxk→ xk ∈ Sk be the last

link in this path. By assumption, z /∈ B. By connectedness, there is a

link x
dxz→ z ∈ P (Sk) and, by monotonicity, dxz ≤ dxxk

≤ dB. Because,

by assumption, there is no link x
1
→ xk ∈ Sk, there is no u such that

x
1
→ u ∈ Sk \Sk−1 and because z 6= xk it follows that x

dxz→ z ∈ P (Sk−1) and
therefore z ∈ B, in contradiction to the assumption that no z ∈ B and d

exist such that z
d
→ xk ∈ S.

2. There exists z ∈ B such that z
1
→ xk ∈ Sk and B is the smallest bracket

in Ik−1(S) = A(P (Sk−1)) covering z. Therefore, B = Gk−1
0 (z). Since

z
1
→ xk ∈ Sk, z

0
→ xk /∈ P (Sk) and therefore B = Gk

0(z) ∈ A(P (Sk)).

�

5.4.7. Lemma. Let C be a bracketing over an utterance U = 〈x1, . . . , xn〉 such
that all links in RC are of depth 0 or 1 and let S be a shortest common cover link
set for C. If, for some 1 < k ≤ n, A(P (Sk−1)) = Ik−1(S) and B ∈ Ik(S) was
created by step 1 or step 2 of loop k then B ∈ A(P (Sk)).

Proof. Assume the assumptions of the lemma hold, A(P (Sk−1)) = Ik−1(S) and
B ∈ Ik(S).

• Case 1: B was created by step 1 or step 2a of loop k. The bracket B was
created by extending a bracket B ′ ∈ Ik−1(S) = A(P (Sk−1)). This means

that there is z ∈ B ′ such that z
d
→ xk ∈ Sk. Let x be the leftmost generator

of B′ in A(P (Sk−1)) and let dB′ be such that B′ = Gk−1
dB′

(x). By Lemma

5.4.4, z ∈ [x, xk). Since z ∈ B′, x = z or x
d′

→ z ∈ P (Sk−1) for some
d′ ≤ dB′ .

If B was created by step 1 of the loop then z
0
→ xk ∈ Sk and, by linear

transitivity, it follows that x
d′

→ xk ∈ P (Sk). Therefore, since d′ ≤ dB′ ,
xk ∈ Gk

dB′
(x).

If B was created by step 2a of the loop then z
1
→ xk ∈ Sk and B′ is not

the smallest bracket covering z in Ik−1(S) = A(P (Sk−1)). This means that

B′ 6= Gk−1
0 (z) and, therefore, either x 6= z and there is no link z

0
→ x ∈

P (Sk−1) or dB′ = 1 and there is a link x
1
→ v ∈ P (Sk−1). In either case, by

linear transitivity, there is a link x
d′′

→ xk ∈ P (Sk) with d′′ ≤ dB′ . Therefore,
xk ∈ Gk

dB′
(x).
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In either case, xk ∈ Gk
dB′

(x). Since x is the leftmost generator of Gk−1
dB′

(x),

it follows from Lemma 5.4.4 that Gk
dB′

(x) = Gk−1
dB′

(x) ∪ {xk}. This means

that [x, xk−1] ⊆ Gk−1
dB′

(x) = B′ and, therefore, B = Gk
dB′

(x) ∈ A(P (Sk)), as
required.

• Case 2: B was created by step 2b. This means that there is z ∈ [x1, xk−1]

such that z
1
→ xk. Let B′ be the smallest bracket covering z in Ik−1(S).

Because Ik−1(S) = A(P (Sk−1)), Lemma 5.3.20 implies that B ′ = Gk−1
0 (z).

B is, by definition, the smallest bracket covering Gk−1
0 (z) and xk. Let x

be the leftmost generator of Gk−1
0 (z), so Gk−1

0 (x) = Gk−1
0 (z). There is no

x
1
→ y ∈ Sk−1 (because if there was, then y /∈ Gk−1

0 (x) = B′ and this
contradicts the conditions of step 2b). This implies, by definition, that

there is also no link x
1
→ y ∈ P (Sk−1) and, therefore, Gk−1

0 (x) = Gk−1
1 (x).

Since z
1
→ xk and either x = z or x

0
→ z ∈ P (Sk−1), xk ∈ Gk

1(x). Since
x is the leftmost generator of Gk

1(x), it follows from Lemma 5.4.4 that
Gk

1(x) = Gk−1
1 (x)∪{xk}. The bracket Gk

1(x) is the smallest bracket covering
Gk−1

1 (x) and xk and, therefore, B = Gk
1(x) ∈ A(P (Sk)), as required.

�

Up to this point the lemmas dealt with brackets which either are created in
steps 1 and 2 of loop k or are not changed by loop k. It remains to prove that the
brackets created in steps 3 and 4 of loop k are exactly those brackets in A(P (Sk))
whose leftmost generator is xk.

5.4.8. Lemma. Let C be a bracketing over an utterance U = 〈x1, . . . , xn〉 such
that all links in RC are of depth 0 or 1 and let S be a shortest common cover
link set for C. If, for some 1 < k ≤ n, A(P (Sk−1)) = Ik−1(S) then a bracket
B is generated by step 3 or 4 of loop k iff B ∈ A(P (Sk)) and xk is the leftmost
generator of B.

Proof. Assume the assumptions of the lemma hold and A(P (Sk−1)) = Ik−1(S).
Let B be the set of brackets maintained by the incremental algorithm when it
begins steps 3 of loop k.

• Case 1: B = Gk
0(xk). The bracket Gk

0(xk) has a generator x 6= xk in

A(P (Sk)) iff x
0
→ xk ∈ P (Sk) and xk

0
→ x ∈ P (Sk) (that this is necessary is

by definition and that this is sufficient is by Lemma 5.4.3). Using Corollary

5.3.14, this holds iff there is xk
0
→ xi ∈ Sk such that xi

0
→ xk ∈ P (Sk)

(and xi is then a generator of Gk
0(xk)). If xi 6= xk is a generator of Gk

0(xk)
then, by Lemma 5.4.5, Gk

0(xk) = Gk
0(xi) ∈ B. This means that xk is the

leftmost generator of Gk
0(xk) iff there is no xi such that xk

0
→ xi ∈ Sk and
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xk ∈ BB
0 (xi). This is exactly the condition for creating a link by step 3 of

loop k and therefore a bracket is created by this step iff xk is the leftmost
generator of Gk

0(xk). Assume this holds. I next show that the bracket
created is Gk

0(xk).

By definition, x ∈ Gk
0(xk) \ {xk} iff xk

0
→ x ∈ P (Sk). If xk

0
→ x ∈ P (S)

then (by linear transitivity) xk

0,Sk→ x, which shows that x is inside the

bracket created by step 3. Now assume that xk

0,Sk→ x. It follows that

xk
d
→ x ∈ P ∗(Sk) for some d ≤ 1. If d = 1 then, by definition of P ∗(Sk),

there exists y ∈ (xk, x) such that xk
0
→ y ∈ P ∗(Sk) and y

0
→ xk ∈ P ∗(Sk).

Since (by definition) both these links are also in P (Sk), it follows from
Lemma 5.4.3 that Gk

0(xk) = Gk
0(y), contrary to the assumption that xk

is the leftmost generator of Gk
0(xk). Therefore, d = 0 and, by definition,

xk
0
→ x ∈ P (Sk) which shows that x ∈ Gk

0(xk). Therefore, the bracket
created by step 3 is contained in Gk

0(xk), which together with what has
been already shown shows that the two brackets are equal, as required.

• Case 2: B = Gk
1(xk) 6= Gk

0(xk).

Let B′ be the set of brackets maintained by the incremental algorithm when
it begins steps 4 of loop k. By what has been shown above, B′ = B ∪

{Gk
0(xk)}. By definition, Gk

1(xk) 6= Gk
0(xk) iff there is a link xk

1
→ xi ∈ Sk.

Therefore, if Gk
1(xk) = Gk

0(xk) step 4 does not add any bracket. I will next

show that if there exists a link xk
1
→ xi ∈ Sk then the bracket defined in

step 4 of the loop is equal to Gk
1(xk). Therefore, if Gk

1(xk) 6= Gk
0(xk), step

4 adds Gk
1(xk) to B′ iff Gk

1(xk) /∈ B′. By Lemma 5.4.5 and Lemma 5.4.7,
Gk

1(xk) /∈ B′ iff its leftmost generator is xk, which means that step 4 adds
Gk

1(xk) to B′ iff xk is the leftmost generator of Gk
1(xk), as required.

To complete the proof, assume that there exists a link xk
1
→ xi ∈ Sk (and

therefore also Gk
1(xk) 6= Gk

0(xk)). Let C be the minimal bracket covering xk

and all x such that xk
Sk→ x. This is the bracket created by step 4 and it

remains to show that C = Gk
1(xk). Let x ∈ Gk

1(xk) \ {xk}. By definition,

xk → x ∈ P (Sk), which means that xk
Sk→ x. Therefore x ∈ C which

implies that Gk
1(xk) ⊆ C. Now let x ∈ C \ {xk}. By definition, xk

Sk→ x and

xk
d
→ x ∈ P ∗(Sk) for some d ≤ 1. Because xk

1
→ xi ∈ Sk, it follows from

the definition of P (Sk) that xk
d
→ x ∈ P (Sk). Therefore, x ∈ Gk

1(xk) which
shows that C ⊆ Gk

1(xk), which together with the opposite inclusion shown
above proves that C = Gk

1(xk).

�
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Collecting all these lemmas together allows the correctness of the incremental
bracket reconstruction algorithm to be proved.

5.4.9 (2.6.6). Theorem (reconstruction). Let C be a bracketing over an
utterance U = 〈x1, . . . , xn〉 and let S be a shortest common cover link set for this
bracketing. If S contains only links of depth 0 or 1 then applying Algorithm 5.4.1
to S outputs C. The algorithm runs in time linear in the length of U .

Proof. Assume the assumptions of the theorem hold. I will show that for every
1 ≤ k ≤ n, A(P (Sk)) = Ik(S). This proves the theorem because the bracketing
In(S) is the bracketing output by the incremental algorithm and the bracketing
A(P (Sn)) = A(P (S)) = C (by Lemma 5.3.21).

The case k = 1 follows directly from the definitions (I0(S) = {〈x1〉} and
A(P (S1)) = {〈x1〉}). The induction step from k−1 to k follows from the lemmas
proved above.

To complete the proof, I show that the algorithm runs in time linear in the
length of U . From directional uniqueness (Lemma 5.1.25), it follows that at each

step of the algorithm there is at most one link xi
0
→ xk ∈ Sk or xi

1
→ xk ∈ Sk. It

can then be easily verified that with an appropriate implementation, steps 1 and
2 of the algorithm loop can each be performed in constant time. Similarly, it is

easy to check that the longest paths xk

0,Sk→ x and xk
Sk→ x can be maintained by

the algorithm in linear time. Steps 3 and 4 of the algorithm loop can then also
be carried out in constant time. �

5.5 Incremental Parsing

A common cover link parser is required to output a shortest common cover link
set for the utterance it is parsing. I also require that the parser be incremental,
that is, it should read the words of the utterance one by one and as each word
is read, may add only links between that word and previously read words. To
define incremental parsing, the following notation is used.

Notation Given an utterance U , I write xk(U) for the k’th word in U (when
there is no risk of confusion, I simply write xk). I also write Uk for the prefix
[x1(U), xk(U)] of length k of U . Similarly, if S is a shortest common cover link

set for a bracketing over U , I write Sk for the set {x
d
→ y ∈ S : x, y ∈ Uk}, the

restriction of S to Uk.

It is now possible to define incremental common cover link parsing.
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5.5.1 (3.1.1). Definition. [incremental parsing]

1. A common cover link parser is a function P on the set of utterances such
that, for any utterance U , P(U) is a shortest common cover link set over
U .

2. The parser P is incremental if for every prefix Uk of U , P(Uk) = Sk is a
shortest common cover link set over Uk and, for each 2 ≤ k ≤ n, Sk−1 ⊆ Sk

and Sk \ Sk−1 contains only links which have one end at xk(U).

Incremental parsing is well-defined because, by Lemma 5.3.4, if S is a shortest
common cover link set over an utterance U then the restriction Sk of S to a prefix
Uk of U is itself a shortest common cover link set for a bracketing of Uk.

The parser adds links to the parse one by one. To ensure that the set of
links Sk constructed by the incremental parser for a prefix Uk of an utterance is
indeed a shortest common cover link set, the set Sk must satisfy the characterizing
conditions of Definition 5.3.1. The first five conditions, monotonicity, minimality,
connectedness, blocking and equality are satisfied with every link added to the
parse. The last property, resolution, cannot be always satisfied but, when it is
violated, the violation can always be repaired by adding additional links. What
links may be added in each step is described in the following sections.

5.5.1 Adjacency

I begin with the first four properties, monotonicity, minimality, connectedness
and blocking which I call the adjacency properties . To ensure that the adjacency
properties are satisfied with each link being added, a link should be added from
a word x to a word y only if y is adjacent to x and the pair 〈x, y〉 is not covered
by previous links, as defined and shown by the following definitions and lemma.

5.5.2 (3.2.1). Definition. [adjacency] Let L be a set of common cover links
of depth 0 or 1 over an utterance U . A word y is adjacent to x with depth d ≤ 1
relative to L (written x aL

d y) iff for every z ∈ (x, y):

1. x
L
→ z (connectedness).

2. z → y /∈ L (minimality).

3. There is no w ∈ U such that z
1
→ w ∈ L and z

L
→ x (blocking).

The depth d is 1 iff there exists z ∈ (x, y) such that z
L
→ x (blocking) or x

1
→ z ∈ L

(monotonicity). Otherwise, d = 0.
An adjacency x aL

d y is unused if x→ y /∈ L.
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Notation I write x aL y if there exists d ≤ 1 such that x aL
d y.

5.5.3 (3.2.2). Definition. [covering links] A pair of words 〈x, y〉 in an utter-

ance U is covered by a link u
d′

→ v over U if x ∈ (u, v) and y ∈ [u, v]. The pair
〈x, y〉 is covered by a set L of common cover links over U if there exists a link

u
d′

→ v ∈ L such that u
d′

→ v covers 〈x, y〉.

5.5.4 (3.2.3). Lemma. Let U be an utterance. Let L be a set of common cover
links over U such that all links in L are of depth 0 or 1.

1. If L satisfies the adjacency properties and if x aL
d y and the pair 〈x, y〉 is not

covered by L then, for any d ≤ d′ ≤ 1, L ∪ {x
d′

→ y} satisfies the adjacency
properties.

2. There exists a set L and a link x
d′

→ y such that L satisfies all characterizing

conditions of Definition 5.3.1, x aL
d y for d ≤ d′ but L ∪ {x

d′

→ y} violates
minimality or blocking.

Proof.

1. Assume that L and x
d′

→ y are as in the first part of the lemma and let

L′ = L ∪ {x
d′

→ y}. Monotonicity and connectedness of L′ are immediate
from the definition of adjacency.

Assume, by contradiction, that L′ does not satisfy minimality. There is,

therefore, a link u1
d′′

→ u2 ∈ L′ and v ∈ (u1, u2) such that u1
L′

→ v and v
L′

→ u2.

If u1
d′′

→ u2 = x
d′

→ y then v
L
→ y for v ∈ (x, y), in contradiction to the

assumption that x aL
d y. Therefore, u1

d′′

→ u2 ∈ L. Let w
d′′′

→ u2 be the last
link in the L′-path from u1 to u2 via v. Clearly, w ∈ [v, u2) ⊂ [u1, u2). By the

connectedness of L, u1
L
→ w and since L satisfies minimality, w

d′′′

→ u2 /∈ L,

so w
d′′′

→ u2 = x
d′

→ y. But, then, for u1
d′′

→ u2 ∈ L, it holds that x ∈ (u1, u2)
and y ∈ [u1, u2]. Therefore, L covers 〈x, y〉, contrary to the assumptions of
the lemma. So L′ satisfies minimality after all.

Assume, by contradiction, that L′ does not satisfy blocking. There are,

therefore, u1
d1→ u2 ∈ L′, v ∈ (u1, u2) and v

d2→ w ∈ L′ such that v
L′

→ u1 and

either d1 = 0 or d2 = 1. If u1
d1→ u2 = x

d′

→ y then v ∈ (x, y), v
d2→ w ∈ L

and v
L
→ x which implies that either there is no adjacency x aL

d y (if d2 = 1)
or d = 1, in which case 0 = d1 = d′ < d. In either case, this contradicts
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the assumptions of the lemma. Therefore, u1
d1→ u2 ∈ L. As before, the

covering condition in the assumptions of the lemma imply that every link
on the L′-path from v to u1 must be in L and, therefore (because L satisfies
blocking), d1 = 1. By the assumption that either d1 = 0 or d2 = 1, this

implies d2 = 1 and (because L satisfies blocking) v
d2→ w /∈ L, which means

that v
d2→ w = x

d′

→ y. If y = w ∈ [u1, u2] then (because x = v ∈ (u1, u2)

and u1
1
→ u2 ∈ L) L covers 〈x, y〉, contrary to the assumption. Therefore,

y = w /∈ [u1, u2] and there remain two possibilities to examine: u1 ∈ (x, y)

and u2 ∈ (x, y). In either case, by connectedness of L, u1
L
→ x. If u1 ∈ (x, y)

then u1
L
→ x and u1

1
→ u2 ∈ L contradict the assumption that x aL

d y. Now

assume that u2 ∈ (x, y). If x
L
→ u2 then this together with u1

L
→ x is

a contradiction to the minimality of L. But if there is no L-path from x
to u2 then this contradicts the adjacency x aL

d y. In either case we get a
contradiction, which proves that L′ does satisfy blocking, after all.

2. It is sufficient to give here two simple examples. A violation of minimal-
ity is given by: w // ))x //___ y and a violation of blocking is given by:

w x //___ yoouu
. The solid links in the diagrams are in L. All links are of

depth 0.

�

The following lemma describes the adjacencies of each word when the set of
links satisfies the adjacency properties.

5.5.5 (3.2.4). Lemma. Let L be common cover link set over an utterance U
such that all links in L are of depth 0 or 1 and such that L satisfies the adjacency
properties.

1. If x and y are consecutive words in the utterance then x aL
0 y and y aL

0 x.

2. If x
d′

→ y ∈ L then x aL
d y for some d ≤ d′.

3. If, for y1 ∈ (x, y2), x aL
d1

y1 and x aL
d2

y2 then x
d′

→ y1 ∈ L for some d1 ≤ d′

(in words: on each side of x there is at most one unused adjacency and this
word is the adjacent word furthest away from x on that side).

Proof. Let L be as in the lemma.

1. If x and y are consecutive words in the utterance then (x, y) is empty and
it follows directly from the definition that x aL

0 y and y aL
0 x.
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2. Let x
d′

→ y ∈ L. That x aL
d y for d ≤ d′ follows directly from the adjacency

properties of L.

3. Assume that y1 ∈ (x, y2), x aL
d1

y1 and x aL
d2

y2. Since x aL
d2

y2, it follows by

definition that x
L
→ y1. Assume, by contradiction, that x→ y1 /∈ L. There

is, therefore, v ∈ (x, y1) such that x
L
→ v and v → y1 ∈ L. But v → y1 ∈ L

contradicts the definition of x aL
d1

y1. Therefore, x
d
→ y1 ∈ L, after all.

From the monotonicity and blocking of L it follows directly that d1 ≤ d.

�

5.5.2 Incremental Parser

This section defines the incremental parsing algorithm and proves its correctness.
It is shown that the parser always outputs a shortest common cover link set and
that any shortest common cover link set can be produced by the incremental
parser.

The Incremental Parsing Algorithm

The definition of the incremental parsing algorithm requires the definition of those
links which may be added to the parse at each step. The conditions imposed on
these links are a combination of incrementality, adjacency, equality and an ad-
ditional condition (forcing) which is required to ensure that resolution violations
can be properly repaired.

5.5.6 (3.2.5). Definition. [incrementally addable link] Let L be a set of
common cover links over a prefix Uk of an utterance U such that all links in L are
of depth 0 or 1 and such that L satisfies the adjacency properties and equality.

A link x
d′

→ y is incrementally addable to L over Uk iff:

1. (incrementality) xk ∈ {x, y} ⊆ Uk and d′ ≤ 1.

2. (adjacency) For some d ≤ d′, x aL
d y is an unused adjacency in L.

3. (non-covered) L does not cover the pair 〈x, y〉.

4. (equality) The set L ∪ {x
d′

→ y} satisfies equality.

5. (forcing) If there is u
1
→ x ∈ L such that y ∈ [u, x) then d′ = 1.
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An additional definition required by the incremental algorithm is that of a
resolution violation.

5.5.7 (3.2.6). Definition. [resolution violation] Let L be a set of links over
an utterance U such that all links in L are of depth 0 or 1. A tuple 〈x, z, d1, d2〉
is a resolution violation in L if x, z ∈ U , x ∈ [x1(U), z) and there are y ∈ (x, z),

x′ ∈ (x, y] and z′ ∈ (z, y] such that x
d1→ x′ ∈ L, x′ L

→ y, z
d2→ z′ ∈ L and z′ L

→ y

but there is no v such that either x
d1→ v ∈ L and v

L
→ z or z

d2→ v ∈ L and v
L
→ x.

A tuple 〈x, z, d1, d2〉 is a minimal resolution violation in L if there is no res-
olution violation 〈u,w, d3, d4〉 in L such that [u,w] ⊂ [x, z] or [u,w] = [x, z] and
d3 > d1.

With the definition of incrementally addable links and resolution violations,
the incremental parsing algorithm is simple.

5.5.8 (3.3.1). Algorithm. [incremental parser] Let U be an utterance of
length n. The algorithm maintains a set L of common cover links.

• Initialize L = ∅ and k = 2.

• While k ≤ n:

1. If there is a minimal resolution violation 〈x, z, d1, d2〉 in L, add an

addable link u
d
→ v such that u, v ∈ [x, z] and such that if u = x then

d = d1 and if u = z then d = d2.

2. Otherwise, increment k by 1 or add to L a link incrementally addable
to L over Uk.

Correctness of the Parsing Algorithm

The rest of this section is dedicated to the proof of Theorem 5.5.17 which shows
that the incremental parser is well-defined, always outputs a shortest common
cover link set and can output any shortest common cover link set. This proof
relies on several lemmas.

The first lemma describes a simple property of link paths which follows from
the adjacency properties.

5.5.9. Lemma. Let L be a set of common cover links over an utterance U such
that all links are of depth 0 or 1 and such that L satisfies the adjacency properties.

If y ∈ (x, z], x
L
→ y, w ∈ [x, y] and w

L
→ z then w is on the L-path from x to y.
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Proof. Assume that L, x, w, y and z are as in the assumptions of the lemma.

By connectedness, x
L
→ y implies x

L
→ w and w

L
→ z implies w

L
→ y. Therefore,

w is on an L-path from x to y and since, by Lemma 5.3.7, this path is unique,
the claim holds. �

The next two lemmas describe the possibilities available to an incremental
parser when it creates links between an already parsed prefix Uk of an utterance
and the next word xk+1. The lemmas show that any shortest common cover link
set can be constructed by an incremental parser which only adds links between
adjacent words which are not covered by previously constructed links. Moreover,
they show that at most one link can be constructed in this way from Uk to xk+1.

Notation I write Rk = {x
d
→ xk ∈ Sk} for the set of links in Sk \ Sk−1 which

end at xk and Lk = {xk
d
→ x ∈ Sk} for the set of links in Sk \ Sk−1 which begin

at xk. The length of a link x
d
→ y over U is |x

d
→ y| = |(x, y]|, the size of the set

(x, y]. This is the distance between x and y in U .

5.5.10. Lemma. Let C be a bracketing over an utterance U such that all links in
RC are of depth 0 or 1 and let S be a shortest common cover link set for C. Let
Sk ⊆ L ⊆ Sk+1.

1. The set Rk+1 contains at most one link.

2. If Rk+1 = {x
d′

→ xk+1} then x aL
d xk+1 for some d ≤ d′.

3. If xk+1
d′

→ x ∈ Lk+1 then xk+1 a
L
d x for some d ≤ d′ iff {l ∈ Lk+1 : |l| <

|xk+1
d′

→ x|} ⊆ L.

Proof. Assume that L is as in the lemma.

1. That Rk+1 contains at most one link follows directly from directional unique-
ness (Lemma 5.1.25).

2. Assume that Rk+1 = {x
d′

→ xk+1}. Since Sk+1 satisfies monotonicity,
minimality, connectedness and blocking, it follows from Lemma 5.5.5 that
x a

Sk+1

d xk+1 for some d ≤ d′. By directional uniqueness, for any y ∈

Uk \ {x}, y → xk+1 /∈ Sk+1. The adjacency x a
Sk+1

d xk+1 therefore depends
only on links over Uk and therefore x aL

d xk+1.
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3. Let xk+1
d′

→ x ∈ Lk+1 and assume that there is y ∈ (xk+1, x) such that

xk+1
d′′

→ y ∈ Lk+1 (a link shorter than xk+1
d′

→ x). Assume, also, that

xk+1 a
L
d x for some d ≤ d′. By definition of adjacency, xk+1

L
→ y. Every

L-path is also an Sk+1-path and since xk+1
d′′

→ y ∈ Sk+1 is the Sk+1-path

from xk+1 to y and by the minimality of Sk+1 it follows that xk+1
d′′

→ y is

also the L-path from xk+1 to y and therefore xk+1
d′′

→ y ∈ L, as required.

Now assume that {l ∈ Lk+1 : |l| < |xk+1
d′

→ x|} ⊆ L. By Lemma 5.5.5,

xk+1 a
Sk+1

d′′ x for some d′′ ≤ d′. Any link Sk+1 \ L can only block the
adjacency of x to xk+1 or increase its d. Therefore, xk+1 a

L
d x for some

d ≤ d′′ ≤ d′, as required.

�

5.5.11. Lemma. Let L be a set of common cover links of depth 0 or 1 over the
prefix Uk+1 of an utterance U .

1. For any x ∈ Uk, the pair 〈xk+1, x〉 is not covered by L.

2. If, for some x ∈ Uk, x
d′

→ xk+1 ∈ L then, for any y ∈ Uk \ {x}, y aL
d xk+1

implies that 〈y, xk+1〉 is covered by L.

Proof. Let L be a set as in the assumptions of the lemma.

1. That the pair 〈xk+1, x〉 is not covered by L is immediate from the definition
of a covering link.

2. Assume that , for some x ∈ Uk, x
d′

→ xk+1 ∈ L, y ∈ Uk \ {x} and y aL
d xk+1.

If x ∈ (y, xk+1) then the link x
d′

→ xk+1 ∈ L contradicts the adjacency of
xk+1 to y. Therefore, y ∈ (x, xk+1) and the pair 〈y, xk+1〉 is covered by

x
d′

→ xk+1 ∈ L.

�

Additional lemmas needed to prove the correctness of the incremental al-
gorithm describe the state of the parser at any point in the processing of an
utterance. A single step of the algorithm is either an addition of a link or the in-
crementation of the last word position indicator k. The following notation will be
used to describe the internal state of the parser after i steps have been performed.
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Notation A complete run of the parser over an utterance U is denoted by θ(U).
The first i steps of a run θ(U) are denoted by θi(U). The internal state of the
incremental parser after the completion of θi(U) is 〈L(θi(U)), k(θi(U))〉 where
L(θi(U)) is the set of links the parser has constructed in θi(U) and k(θi(U)) is the
value of the last word position indicator k after θi(U). Finally, for any l, I write

Sl(L(θi(U))) for the restriction {x
d
→ y ∈ L(θi(U)) : x, y ∈ Ul} of L(θi(U)) to

the utterance prefix Ul.

It is easy to check that at each step of the incremental parser the set of links
maintained by the parser satisfies the adjacency properties.

5.5.12. Lemma. Let θ(U) be a run of the parser over an utterance U . For every
i, L(θi(U)) satisfies the adjacency properties and equality.

Proof. The proof is by induction on i. The claim clearly holds for i = 1. Because
of the adjacency and non-covered conditions in the definition of an addable link
(Definition 5.5.6) it follows from Lemma 5.5.4 that if L(θi−1(U)) satisfies the
adjacency properties then so does L(θi(U)). That equality holds at each step
follows from the equality condition in the definition of an addable link. �

It now remains to show that the resolution property is satisfied by the set of
links generated by the incremental parsing algorithm. The proof of this property
is more complicated because the resolution property can be violated at some
intermediate steps of the parse. The following lemma describes some properties
of the resolution violations which may be created by the incremental parser.

5.5.13. Lemma. Let θ(U) be a run of the parser over an utterance U and let
〈L, k〉 = 〈L(θi(U)), k(θi(U))〉 be the state of the parser for a prefix θi(U) of the
run. If Sk−1(L) is a shortest common cover link set and 〈x, z, d1, d2〉 is a resolution
violation in L then z = xk(U) and the following holds:

1. There is y ∈ (x, xk) and x′ ∈ (x, y] such that xk
d2→ y ∈ L, x

d1→ x′ and

x′ L
→ y.

2. If 〈x′, x′
k, d

′
1, d

′
2〉 is a resolution violation in L then d2 = d′

2 .

3. If y ∈ (x, xk) and x′ ∈ (x, y] are such that x
d1→ x′ ∈ L, x′ L

→ y and

xk
d2→ y ∈ L then for any w ∈ (x, y], there is no L-path from w to xk and,

for any w ∈ [x1, y], if xk
d
→ w ∈ L then d = d2.

4. If there is v ∈ (x, xk] such that x
d
→ v ∈ L and v

L
→ xk then d = d2 = 1.
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5. There is no L-path from xk to x.

Proof. Assume the assumption of the lemma holds and Sk−1(L) is a shortest
common cover link set. Assume that 〈x, z, d1, d2〉 is a resolution violation in L. If
x, z ∈ Uk−1 then this is a resolution violation in Sk−1(L), in contradiction to the
assumption that Sk−1(L) is a shortest common cover link set. Since, by definition,
x ∈ [x1(U), z), it follows that z = xk(U).

1. By definition, there are y ∈ (x, z), x′′ ∈ (x, y] and z′ ∈ (z, y] such that

x
d1→ x′′ ∈ L, x′′ L

→ y, z
d2→ z′ ∈ L and z′ L

→ y. To complete the proof of
this part of the lemma, it is enough to show that there is x′ ∈ (x, z′] such

that x
d1→ x′ and x′ L

→ z′. Assume, by contradiction, that no such x′ exists.
Specifically, y 6= z′ follows and there exist z′′ ∈ (z′, y] and d3 such that

z′
d3→ z′′ ∈ L and z′′ L

→ y. Since x, z′ ∈ Uk−1 and since Sk−1(L) is a shortest
common cover link set, it follows from resolution that there is x′ ∈ [x, z′]

such that either x
d1→ x′ ∈ L and x′ L

→ z′, or z′ d3→ x′ ∈ L and x′ L
→ x.

If z′ d3→ x′ ∈ L and x′ L
→ x then (because z

d2→ z′ ∈ L) 〈x, z, d1, d2〉 is not
a resolution violation, contrary to the assumption. Therefore, there exists

x′ ∈ (x, z′] such that x
d1→ x′ ∈ L and x′ L

→ z′, which completes the proof.

2. Let i0 be the first step such that k(θi0(U)) = k. The proof is by induc-
tion, showing that the claim holds for L(θj(U)) for every i0 ≤ j ≤ i. Since
Sk−1(L) is a shortest common cover link set, there are no resolution viola-
tions in L(θi0(U)) and the claim holds.

Assume the claim holds for j − 1. By the previous part of the lemma, any

resolution violation created in step i0 < j is created when a link xk
d
→ y

is added by the parser. All resolution violations created by adding such
a link are of the form 〈x, xk, d1, d〉 (same d in all violations). Therefore, if
there are no resolution violations in L(θj−1(U)) then all resolution violations

in L(θj(U)) (if any) were created by adding a link xk
d
→ y at step j and

therefore all are of the form 〈x, xk, d1, d〉 and the claim holds. If there
were resolution violations in L(θj−1(U)) then, by the induction hypothesis,
they were all of the form 〈x, xk, d1, d〉 with the same d. By the incremental

parser algorithm, if the algorithm adds a link xk
d′

→ y in step j then d′ =
d. Therefore, any new violation created in this step is also of the form
〈x, xk, d1, d〉 (with the same d) and the claim d′

2 = d2 holds.

3. Let y ∈ (x, xk) and x′ ∈ (x, y] be such that x
d1→ x′ ∈ L, x′ L

→ y and

xk
d2→ y ∈ L. Let w ∈ [x1, y]. Assume that xk

d
→ w ∈ L. If w = y it is

obvious that d = d2, so assume that w ∈ [x1, y). By Lemma 5.5.5 and the
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definition of incrementally addable links, the link xk
d
→ w ∈ L was added

by the parser after the link xk
d2→ y was added and therefore also after

the resolution violation 〈x, xk, d1, d2〉 was created. By the algorithm of the
incremental parser, it follows that d = d2, as required.

Assume now that w ∈ (x, y]. I now show that there is no L-path from w to

xk. Assume, by contradiction, that w
L
→ xk. If w ∈ (x, x′) then, by Lemma

5.5.9, w is on the L-path from x to x′, in contradiction to the assumption

that x
d1→ x′ ∈ L. Therefore, w ∈ [x′, y] and, by connectedness, x′ L

→ w.

Together with x
d1→ x′ ∈ L and w

L
→ xk, this contradicts the assumption

that 〈x, xk, d1, d2〉 is a resolution violation.

4. By the first part of the lemma, there are y ∈ (x, xk) and x′ ∈ (x, y] such

that xk
d2→ y ∈ L, x

d1→ x′ ∈ L and x′ L
→ y. Assume that v ∈ (x, xk] such

that x
d
→ v ∈ L and v

L
→ xk. By the previous part of the lemma, v ∈ (y, xk].

If d = d1 then 〈x, xk, d1, d2〉 is not a resolution violation, contrary to the
assumption. Therefore, d 6= d1. Because x′ ∈ [x, v), monotonicity implies
that d1 < d and therefore d = 1. If v = xk, d1 < d also implies that the

link x
1
→ xk ∈ L was added to the set before the resolution violation was

created. By the forcing property of incrementally addable links, this implies

that d2 = 1. If v ∈ (y, xk) then v
L
→ xk implies, by blocking, that d2 = 1.

5. By the first part of the lemma, there are y ∈ (x, xk) and x′ ∈ (x, y] such

that xk
d2→ y ∈ L, x

d1→ x′ ∈ L and x′ L
→ y. Assume, by contradiction, that

xk
L
→ x. Let xk

d
→ w ∈ L be the first link in this path. If w ∈ (xk, y) then, by

connectedness (from w
L
→ x), w

L
→ y which together with xk

d
→ w ∈ L and

xk
d2→ y ∈ L contradicts the minimality property of L. Therefore, y ∈ [w, xk)

and, by part 3 of the lemma, d = d2. This means that xk
d2→ w ∈ L and

w
L
→ x, in contradiction to the assumption that 〈x, xk, d1, d2〉 is a resolution

violation. This shows that there is no L-path from xk to x, after all.

�

Now it can be shown that the incremental parser is well-defined. The one
respect in which the algorithm is possibly not well-defined is in the requirement
that, as long as there is a resolution violation, the algorithm must continue adding
addable links (of a given depth) and is not allowed to advance to the next word.
The following lemma shows that as long as there is a resolution violation, an
appropriate addable link exists.

5.5.14. Lemma (incremental parser is well-defined). Let θ(U) be a run
of the parser over an utterance U and let 〈L, k〉 = 〈L(θi(U)), k(θi(U))〉 be the state
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of the parser for a prefix θi(U) of the run. If Sk−1(L) is a shortest common cover
link set and 〈x, xk, d1, d2〉 is a minimal resolution violation in L then there is a

link u
d
→ v which is incrementally addable to L over Uk and such that u, v ∈ [x, z]

and if u = x then d = d1 and if u = z then d = d2.

Proof. Assume the assumption of the lemma hold and Sk−1(L) is a shortest
common cover link set. Assume that 〈x, xk, d1, d2〉 is a minimal resolution viola-
tion in L and (using the first part of Lemma 5.5.13) let y ∈ (x, xk) and x′ ∈ (x, y]

be such that xk
d2→ y ∈ L, x

d1→ x′ ∈ L and x′ L
→ y. By Lemma 5.5.13, there

is no L-path from xk to x and for every w ∈ (x, y], there is no L-path from w

to xk and if xk
d
→ w ∈ L then d = d2. This shows that there exists v ∈ [x, y)

such that xk a
L
d2

v is an unused adjacency in L. I will show that xk
d2→ v is an

incrementally addable link to L over Uk. The incrementality and adjacency con-
ditions in the definition of incrementally addable links hold here by definition. By
Lemma 5.5.11, the pair 〈xk, v〉 is not covered by L and, therefore, the non-covered
condition holds. It remains to show that the equality and forcing conditions hold.

If there is z ∈ (v, xk] such that v
d
→ z ∈ L and z

L
→ xk then v ∈ [x, y) together

with parts 3 and 4 of Lemma 5.5.13 imply that v = x and d = d2. Therefore,

xk
d2→ v satisfies the equality condition for an L-path from v to xk.

Now assume that for some z ∈ [x1, v], z
d
→ xk ∈ L. As before, z ∈ [x1, x].

If z = x then, by Lemma 5.5.13, d = d2, so equality and forcing hold. If z ∈

[x1, x) then the link z
d
→ xk must have been added before the resolution violation

〈x, xk, d1, d2〉 was created. This means that it must have been added before the

link xk
d2→ y. If d = 1, this means that when xk

d2→ y was added, forcing required

that d2 = 1 and therefore both equality and forcing hold for the link xk
d2→ v.

If d = 0 then, by blocking (because v ∈ (z, xk)), there is no L-path v
L
→ z and

therefore equality holds. Forcing holds trivially. This completes the proof. �

An immediate corollary of this last lemma is that the incremental parser
eventually repairs any resolution violation it creates.

5.5.15. Corollary. Any run of the incremental parser, Algorithm 5.5.8, out-
puts a shortest common cover link set.

Proof. All that needs to be shown is that the parser always terminates and that
when the parser increments the counter k, the set of links L maintained by the
parser has no resolution violation (the adjacency and equality properties hold for
L at every step of the parser, by the definition of an addable link and Lemma
5.5.4). This follows directly from Lemma 5.5.14, which shows that as long as
a resolution violation exists, there are addable links which the parser can add.
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Since the number of links is finite, the parser must terminate and the output of
the parser contains no resolution violation. �

Next, I show that any shortest common cover link set can be constructed by
some run of the incremental parser.

5.5.16. Lemma. Let S be a shortest common cover link set over an utterance U
of length n such that all links in S are of depth 0 or 1. There is a run θ(U) of
the incremental parser such that L(θ(U)) = S and k(θ(U)) = n + 1.

Proof. To prove the lemma, I show that if the length of U is n then there is a
run θ(U) such that for every k ≤ n there exists ik such that L(θik(U)) = Sk and
k(θik) = k + 1. The proof is by induction on k. For k = 1 the claim is obvious
since S1 contains no links.

Assume now that the claim holds for ik. By directional uniqueness (Lemma

5.1.25) there is at most one link of the form x
d
→ xk+1 (x ∈ Uk) in Sk+1 \ Sk and

all other links in this set are of the form xk+1
d
→ x (x ∈ Uk). Let l1, . . . , lm be the

links in Sk+1 \ Sk ordered as follows. All links of the form xk+1
d
→ x (x ∈ Uk) are

ordered by increasing length. The (at most one) link x
d
→ xk+1 (x ∈ Uk) appears

immediately after all links which are shorter or equal to it in length and have a
smaller depth than it.

Because the adjacency condition for a link li does not depend on links lj
for i < j, it follows from Lemma 5.5.10 and Lemma 5.5.11 that adding the
links l1, . . . , lm in this order adds each link when it is incrementally addable (the
satisfaction of the equality condition in the definition of an incrementally addable
link follows directly from the fact that Sk+1 is a shortest common cover link set
and the satisfaction of the non-covered and forcing conditions follows directly
from the ordering chosen).

It remains to show that when a resolution violation is created, the links can
still be added in the given order. Assume that after links l1, . . . , li have been
added there is a resolution violation and 〈x, xk+1, d1, d2〉 is the minimal resolution

violation. This resolution violation must have been created by a link lr = xk+1
d2→

v for some r ≤ i. Since the resolution violation does not exist in Sk+1, it must be
repaired by one of the links li+1, . . . , lm.

Assume li+1 = w
d
→ xk+1 (w ∈ Uk). If the resolution violation is repaired by

li+1, then w ∈ [x, xk+1) and if w = x then d = d1. Therefore, in this case li+1 can
be added by the incremental parser algorithm. Assume now that the resolution
violation is repaired by some lp with i+2 ≤ p. It follows that lp must have depth
d2 and both its ends have to be in [x, xk+1]. By the definition of the ordering,

for every j ≤ i, lj = xk+1
dj

→ wj with dj < d. In particular this holds for lr
and therefore d2 < d. Also by the definition of the ordering, for every i + 2 ≤ j,
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lj = xk+1
dj

→ wj such that either d ≤ dj or |li+1| < |lj|. Since dp = d2 < d it follows

that |li+1| < |lp| and therefore w ∈ (x, xk+1), which implies that li+1 = w
d
→ xk+1

can be added by the incremental parser algorithm.

Assume now that li+1 = xk+1
d
→ w (w ∈ Uk). Since the resolution violation is

repaired by one of the links li+1, . . . , lm and can only be repaired by a link with
both ends in [x, xk+1] it follows from the definition of the ordering of the links
that li+1 has both its ends in [x, xk+1]. It remains to show that d = d2. If the

resolution violation is repaired by a link lj = xk+1
d′

→ v (i + 1 ≤ j) then d′ = d2.
Since r < i+1 ≤ j, it follows from the ordering of the links and monotonicity that

d = d2. If the resolution violation is repaired by a link lj = v
d′

→ xk+1 (i + 1 < j)
then by the definition of the ordering of the links, d2, d < d′. This implies that
d2 = d = 0, as required. �

Together, these lemmas prove the correctness of the incremental parser.

5.5.17 (3.3.2). Theorem (incremental parser correctness). The incre-
mental parser, Algorithm 5.5.8, is well-defined and always outputs a shortest com-
mon cover link set. Moreover, it can output any common cover link set.

Proof. This follows directly from Corollary 5.5.15 and Lemma 5.5.16 �

Time Complexity of the Incremental Parser

It is not difficult to see that with appropriate data structures it is possible to
maintain the list of addable links in total time (for parsing the whole utterance)
which is linear in the length of the utterance. This includes the extraction of the
subset of addable links which may be added when there is a resolution violation.
Because of directional uniqueness (Lemma 5.1.25), at most one link can enter
a word on each side. This means that the total number of links in a shortest
common cover link set cannot exceed 2n−2, where n is the length of the utterance.
Therefore, if there is a constant time oracle which selects at each step the link to
be added to the parse, the parser runs in linear time in the length of the utterance.

At the same time, if a deterministic version of the parser needs to consider
all possible addable links before selecting a link, the total number of links it may
have to consider may be quadratic in the length of the utterance. If considering
each link can be done in constant time (as it often can) the parser run-time
complexity has an upper bound which is quadratic in the length of the utterance.
In practice, links between consecutive words are often preferred (see section 6.3.2)
and when such links are possible, other links are not considered. While this does
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not reduce the theoretical upper bound on the parser’s run-time complexity, it
does in practice considerably speed up the parser. Experiments (section 7.4.9)
suggest that in practice, the run-time complexity of the parser can be close to
linear in the length of the utterance.



Chapter 6

Learning and Parsing

The incremental parser Algorithm 3.3.1 is nondeterministic. It specifies a set
of links which may be added at each step but does not indicate which of these
links should be added (if at all). This is not surprising, since the algorithm is
not language specific and different languages require different parsing decisions.
To create a deterministic parser, further specification of the algorithm is needed.
Part of this specification may be universal and common to all languages, while
part of it must remain language specific. Given a set of example utterances from
a language, it is then the task of the learning algorithm to induce the language
specific part of the parsing algorithm.

To create a deterministic parser from the nondeterministic parser, parsing
functions were introduced in chapter 3. These functions determine which link
(if any) should be added at each step in the parse of an utterance. The present
chapter describes a specific family of parsing functions and a learning algorithm
which selects one of these functions. The properties common to all the functions
in the family are the universal part of the algorithm while the properties specific
to each function are the language specific component of the algorithm, which has
to be learned.

The parsing function family is lexicalized. This means that any language spe-
cific information used by the parser to make parsing decisions must be associated
with some word. This association is represented by a lexicon which is a func-
tion mapping every word to a lexical entry containing information relevant to the
linking of that word with other words. When the parser needs to decide whether
to link two words, it accesses the lexical entries of these two words and makes its
linking decision based on the information found there. The difference between
parsing functions in the family can therefore be expressed in terms of the lexicon
function. It is the task of the learning algorithm to construct the lexicon.

Every lexical entry in the lexicon holds lists of labels. These labels describe
the contexts in which the word appears and take over the role played by parts-
of-speech in standard parsing algorithms. The calculation of the labels is local

147
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and, unlike most standard induction algorithms, does not require any clustering
or global optimization. Parsing is then directly guided by these labels. Due to the
Zipfian distribution of words, high frequency words dominate these lists of labels
and parsing decisions for words of similar distribution are guided by the same
labels. This method contrasts with standard induction algorithms which first
cluster words into classes based on their most frequent neighbors (as in Schütze
1995; Clark 2000) and then use these induced classes for parsing. By avoiding
parts-of-speech, these two steps are collapsed here into one. This not only greatly
simplifies the induction process, but also allows much greater flexibility, since
the exact label which is used at each parse step may depend on the parsing
context. In addition, the labels on the left and right side of each word may
remain independent.

Using the labels and the relations between them, basic linking properties are
bootstrapped for each word. These properties describe how the word should be
linked with other words when their labels match. This bootstrapping process is,
again, local.

The parsing function family defines a way to convert the labels and linking
properties stored for each word in the lexicon into parsing decisions. This part of
the algorithm, common to all parsing functions in the family, is local and greedy.
At each step, it calculates a weight for every link which the incremental parser
may add at that step. The link with the largest non-zero weight is then added to
the parse and the process is repeated. When all possible links are assigned a zero
weight, the next word is read and parsing continues with this extended prefix of
the utterance.

The first two sections in the chapter describe a general architecture for a
lexicalized parsing function family with bootstrapping based learning and greedy
parsing: section 6.1 defines the greedy parser and section 6.2 defines the learning
process. One specific proposal for such a function family is given in section 6.3.

6.1 The Parsing Function Family

6.1.1 Greedy Parsing Functions

The parsing function family I will define in this section is a set of parsing functions
(as defined in Definition 3.4.1). These parsing functions are greedy: at each step
of the parse, they calculate a non-negative weight for each of the links which may
possibly be added at that step and if there is a non-zero weight link, the link with
the highest weight is added. Once all addable links are assigned a zero weight,
no link is added by the parsing function and, by the definition of the incremental
parser (Algorithm 3.4.2), the next word is added to the prefix and the process is
repeated with the extended prefix. Formally, the weight function and the greedy
parsing function are defined as follows:
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6.1.1. Definition. [weight function] A function Wt is a weight function if
its range is the non-negative real numbers and its domain is all possible tuples

〈Uk, L, x
d
→ y〉 such that Uk is an utterance prefix, L is a set of links over Uk and

x
d
→ y is addable to L over Uk (Definition 3.2.5).

6.1.2. Definition. [greedy parsing function] A function P is a greedy parsing
function iff P is a parsing function (Definition 3.4.1) and there is a weight function
Wt such that:

1. If P(Uk, L) = L then Wt(Uk, L, x
d
→ y) = 0 for all links x

d
→ y addable to

L over Uk.

2. If P(Uk, L) = L∪ {x
d
→ y} then Wt(Uk, L, x

d
→ y) > Wt(Uk, L, x′ d′

→ y′) for

any link x′ d′

→ y′ 6= x
d
→ y addable to L over Uk.

This is a greedy parsing algorithm, optimizing every parse step rather than
attempting to optimize the parse as a whole. This contrasts with many other
unsupervised learning algorithms (such as Klein and Manning 2004; Bod 2006a;
Bod 2006b) which assign every utterance the binary parse tree which maximizes
some objective function (over binary trees). The function Wt has Uk and L as
arguments, so it may attempt to optimize globally at least over all possible parses
extending L over the prefix Uk. However, because the incrementality of the parser
does not allow any changes to be made at this stage to links over Uk−1, the range
of possibilities is very limited: the parser must be prefix greedy. The weight
functions I actually consider in this chapter are even greedier than required by
the definition because they calculate each weight locally based on the two ends
of the link and almost without considering alternative addable links.

This greedy behavior is justified by the incremental nature of language pro-
cessing by humans. Optimization over the full utterance is simply impossible if
parsing decisions have to be made before the end of the utterance is processed.
If the incrementality of the parser roughly resembles that of human processing,
the incrementality of the parser should not in itself cause parsing errors except
in those cases where humans are also likely to err. It is reasonable to assume
that utterances which humans initially parse incorrectly (garden path sentences)
are relatively infrequent because of the obvious problems in communication they
create. In spoken language, garden path sentences are infrequent because most
garden path effects can be corrected by appropriate intonation. In written lan-
guage, writers are expected to correct garden path sentences. Whatever the
frequency of garden path sentences, it seems that humans use different cognitive
processes for initial parsing and for recovering from garden path parsing failures
(the more difficult cases actually seem to require completely conscious analysis of
the problematic sentence). This is also the approach I will take here, where the
parser is not expected to correctly parse garden path sentences. It is assumed
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that some other mechanism (not specified here) is responsible for recovering from
garden path errors, possibly by adding information to the prefix of the utterance.
This enrichment of the prefix should be sufficient for the incremental parser to
select the correct parse for the prefix. Applying the incremental parser to this
enriched utterance should then result in the correct parse.

6.1.2 A Lexicalized Family of Parsing Functions

Depending on the weight function used, different greedy parsing functions can
be defined. The assumption I make here is that any language can be parsed by
a greedy parsing function, but that different languages require different weight
functions. Given examples of the target language, a learning algorithm must be
defined to select the weight function which is to be used to parse that language.
Not all possible weight function need to be considered, of course, and the set of
weight functions from which the learning algorithm can choose defines a family of
parsing functions. There may be much in common between the different weight
functions in a family of parsing function. To capture this, I define a parsing
function family as being based on a single parameterized weight function, Wt(θ).
Each value of the parameter θ then defines a parsing function in the family.

In the present chapter I use lexicon functions as the parameter θ. A lexicon
is a function which assigns every word x a lexical entry (using algorithmic termi-
nology I will say that the lexicon stores for each word x a lexical entry). Each
such lexical entry is a sequence of adjacency points, holding statistics relevant
to the decision whether to link x to some other word when that word becomes
adjacent to x. These statistics are given as strengths assigned to labels and link-
ing properties. Multiple adjacency points are needed for each word because a
word may have more than one link and each of these links may have different
properties. This is similar to the specification of the arguments of a word in
standard linguistic theories, but the adjacency points may differ from standard
arguments, reflecting the differences between shortest common cover link sets and
the standard dependency structure.

The Lexicon

Let W be the set of words in the corpus. The set of labels L(W ) = W × {0, 1}
consists of two labels based on every word w: a class label (w, 0) (denoted by [w])
and an adjacency label (w, 1) (denoted by [w ] or [ w]). The two labels (w, 0) and
(w, 1) are said to be opposite labels and for l ∈ L(W ) I write l−1 for the opposite
of l. In addition to the labels, there is also a finite set P of linking properties
(P ∩ L(W ) = ∅). This set of properties is fixed for each version of the algorithm
and will be specified below. It typically consists of elements such as In and Out
describing inbound and outbound link strengths.

An adjacency point is a function A : L(W )∪ P → R which assigns each label
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in L(W ) and each linking property in P a real valued strength. For each A, #(A)
is the count of the adjacency point - the number of times the adjacency point
was updated (see below). Based on this count, I also define a normalized version
of A: Ā(l) = A(l)/#(A).

A lexicon L is a function which assigns each word w ∈ W a lexical entry
(. . . , Aw

−2, A
w
−1, A

w
1 , Aw

2 , . . .). Each of the Aw
i is an adjacency point for the adja-

cency position i (relative to w). A negative index i indicates an adjacency position
to the left of w while a positive index indicates an adjacency position to the right
of w. As the absolute value of the index i increases, Aw

i describes adjacencies
further away from w, with Aw

−1 and Aw
1 describing the direct adjacencies .

Lexicalized Greedy Parsing Function Family

Having defined the lexicon, it is now possible to define the parsing function family
which will be used for the rest of this chapter:

6.1.3. Definition. [lexicalized greedy parsing function family] A set PF of
greedy parsing functions is a lexicalized family if there is a function Wt such that
for every parsing function P ∈ PF there is a lexicon L such that Wt(L) is the
weight function defining P .

Since each of the functions in PF is uniquely defined by a lexicon function
L, I will write PL for a specific parsing function in the family PF . Because it is
often more natural to refer to PF in algorithmic terms, I will simply call it the
parser and a specific parsing function PL will then simply be the parser using
lexicon L.

Of course, as long as the function Wt is not specified, the relation between
the lexicon L and the weight function it defines, Wt(L), can be quite arbitrary.
For the definition to be useful, however, the function Wt(L) has to be closely
related to the function L it is based on. A specific choice for the function Wt will
be defined in section 6.3.2. For the definition of this function to make any sense
it is first necessary to consider the learning process which constructs the lexicon.

6.2 The Learning Process

Given a sequence of training utterances (Ut)0≤t, the learner constructs a sequence
of lexicons (Ls)0≤s beginning with the zero lexicon L0 (which assigns a zero
strength to all labels and linking properties). At each step, the learner uses
the parsing function PLs

based on the previously learned lexicon Ls to extend
the parse L of an utterance Ut. It then uses the result of this parse step (together
with the lexicon Ls) to create a new lexicon Ls+1 (it may be that Ls = Ls+1).
This operation is a lexicon update. The process then continues with the new
lexicon Ls+1. Any of the lexicons Ls constructed by the learner may be used
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for parsing any utterance U , but as s increases, parsing accuracy should improve.
This learning process is open-ended: additional training text can always be added
without having to re-run the learner on previous training data.

6.2.1 Lexicon Update

The incremental parser Algorithm 3.3.1 may only add a link from x to y when y
is adjacent to x (Definition 3.2.1). This adjacency must, by definition, be unused
(that is, there should not already be a link from x to y). The lexical entry of x
should therefore hold statistics about the words that appear in unused adjacencies
of x. When parsing, comparison of these statistics with the word y which actually
appears in an unused adjacency of x determines whether a link should be created
from x to y.

Empty Adjacencies

The adjacency relation was defined in Definition 3.2.1 as a relation between two
positions in an utterance. In the context of parsing this is sufficient, because links
can only be created between such positions. For learning, however, adjacency
should also cover empty positions, that is, positions where no word appears. For
example, if a word appears at the beginning of a sentence, it is adjacent to the
left edge of the sentence, an empty position. It therefore does not have a link
connecting it to the left in this sentence. If this happens often, it may indicate
that also when the word appears in the middle of the sentence it should not have
a link to the word to its left. In general, empty adjacencies are identical in all
respects to normal adjacencies except for the absence of a word at the adjacency
position. As a result, if a certain adjacency of a word is often empty this is a
strong indication that also when the adjacency is not empty no link should be
created. This observation is at the heart of the whole learning algorithm (compare
this with the remarks in Klein and Manning 2004 (and Collins 1999 cited there)
concerning the importance of including termination probabilities in dependency
parsing models).

Empty adjacencies differ from standard adjacencies only in that there is no
word in the adjacent position. This happens when the adjacent position falls out-
side the utterance (at the beginning or end of the utterance) or when punctuation
blocks access to the adjacent position (indicating that a link cannot be created
between the two words). I leave it open for now which adjacencies are blocked
by which punctuation, as this remains to be specified for each different parsing
function family (and may even be language specific).

6.2.1. Definition. [empty adjacency] Let L be a set of common cover links
of depth 0 or 1 over an utterance U = 〈x1, . . . , xn〉. Let U ′ = 〈∅l, x1, . . . , xn, ∅r〉.
A word x ∈ U has an empty adjacency of depth d ≤ 1 relative to L over U if one
of the following holds:
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1. Over U ′, x aL
d ∅l or x aL

d ∅r.

2. Over U , x aL
d y and the adjacency is blocked by punctuation.

Empty adjacencies are well-defined because any common cover link set L over
U is also a common cover link set over U ′.

Notation To distinguish between the different empty adjacencies, the following
notation is used. The obvious notation x aL

d ∅l and x aL
d ∅r is used to indicate

the empty adjacencies at the left and right edges of the utterance (respectively).
Empty adjacencies resulting from punctuation are written as x aL

d ∅
p
y where y

is the word at the adjacency position and p is the blocking punctuation symbol.
The symbols ∅l, ∅r and ∅py are the empty symbols .

Update Positions

To collect statistics relevant to the decision whether a word x should be linked to
a word y which is adjacent to x, the lexical entry of x is updated by α’s which are
adjacent to x, where these α’s are either words or empty symbols. This section
describes the algorithm which determines which positions (empty or not) in an
utterance containing x are used to update x.

To understand which adjacent positions should be used to update the statistics
of a word x, it is necessary to understand the way in which adjacencies change
as links are added to the parse. By Lemma 3.2.4, at each parse step, x may
have multiple adjacencies, but has at most one unused adjacency on each side.
Because of the incrementality of the parser, only one side of each word is active
at each step. Therefore, at each parse step, at most one unused adjacency of each
word may be used to add a link. However, in the course of the parse of a single
utterance, a word x may have several different words y as unused adjacencies.
Which of these should be used to update the lexical entry of x?

Let us examine how the unused adjacencies of x change in the course of pars-
ing. The unused adjacency of x can change either by the addition of a link from
x to its unused adjacency y or by the addition of another link.

1. When a link is added from x to y, y remains adjacent to x but the adja-
cency is not unused anymore. Moreover, y also remains adjacent to x in all
subsequent steps of the parse (see Lemma 3.2.4). In this case I will say that
the unused adjacency was used. When an adjacency is used, a new unused
adjacency may be created (no new unused adjacency is created only when
it is blocked by blocking as in Definition 3.2.1).
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2. When a link other than a link from x to y is added, the unused adjacency
y of x may (but does not have to) be replaced by a new unused adjacency
y′. In this case y is no longer adjacent to x and therefore I will say that the
unused adjacency was moved. No other adjacency of x can change in case
the link being added is not from x to y.

Consider the following example. The adjacencies of the word x1 are ∅l, x2 and
x3 while the adjacencies of x2 are x1 and x3:

x1 0 // x2 x3

A link may now be added from x2 to x3 and the parser may then read the next
word, x4:

x1 0 // x2 0 // x3 x4

The adjacency x3 of x2 becomes a used adjacency and x4 becomes a new unused
adjacency of x2. The word x1 remains an adjacency of x2 (x1 is an unused
adjacency of x2 but because of the incrementality of the parser, this adjacency
cannot be used anymore and will remain unchanged in all subsequent parse steps).
The addition of a link from x2 to x3 also causes the unused adjacency of x1 to
move from x3 to x4. After this change the adjacencies of x1 are ∅l, x2 and x4.

If an unused adjacency of x should be used and a link should be created
then the lexical entry should be updated by words which typically appear in the
position to be attached, that is, the last position the adjacency was moved to. If
the unused adjacency should remain unused, then it will often be moved until it
becomes an empty adjacency (which cannot be moved anymore). Either way, to
properly describe the linking behavior of x, the lexical entry of x must be updated
by the last position each unused adjacency of x was moved to. A simple way to
determine whether an unused adjacency has stopped moving is to wait until the
full utterance has been parsed and then update each word x by its adjacency
positions relative to that final parse.

Notation Given an utterance U , a word x ∈ U and a shortest common cover
link set L over U , the positions adjacent to x relative to L can be divided into
two sets: adjacency positions to the left of x and adjacency positions to the right
of x. Each of these sets of adjacency positions can be ordered by increasing dis-

tance from x. I write
(

αL,U
i (x)

)(−m)

i=(−1)
and

(

αL,U
i (x)

)n

i=1
for the (possibly empty)

symbols appearing at the adjacency positions to the left and right (respectively)
of x (relative to L over U). The index i, which I refer to as the adjacency index
increases in absolute value with the distance of the adjacency position from x.
When no confusion is possible, I may drop U , L or x from this notation.
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Using this notation, the update algorithm, which formalizes the discussion
above, can be formulated. It updates the symbol at adjacency position αL,U

i (x)
on the adjacency point Ax

i . Such an update specifies the values of Ax
i in the new

lexicon Ls+1 based on its values in the current lexicon, Ls (see section 6.3.1 for
details). Any value not updated remains unchanged from Ls to Ls+1.

6.2.2. Algorithm. [lexicon update algorithm] Given an utterance U and a
lexicon Ls, use Ls to parse U . When the parser has produced a final parse L,
update the lexicon Ls as follows: for every x ∈ U and every adjacency index i of
x (relative to L over U), update Ax

i (in Ls) by the symbol αL,U
i (x).

An important property of adjacency (given in Lemma 3.2.4) is that the first
adjacency position of each word is always the position immediately preceding or
following that word in the utterance. As this is entirely independent of the links
assigned by the parser, it implies that the symbols by which the direct adjacency
points Ax

(−1) and Ax
1 are updated are entirely independent of Ls.

The following example should clarify the picture. Assume that the parser
is parsing the sentence give the boy this book. Assume that having read the first
three words, the parser (based on Ls) assigns the following (correct) link structure
and reads the next word this :

give 0 // the //
0 boyoo this

As observed above, regardless of the links assigned by the parser, Agive

(−1) is updated

by ∅l, Agive
1 is updated by the, Athe

(−1) is updated by give, etc. The update of Agive
2

now depends on the way in which the parser will decide to attach the determiner
this to the prefix. If a link is added from boy to this or from the to this then this
will not be adjacent to give in the final parse of the utterance:

give 0 // the //
0

&&
boyoo // this

However, if both these links (from the and boy to this) receive a zero weight from
the weight function (as will turn out to be the case) then this will be adjacent
to give in the final parse (this does not depend, for example, on whether a link
is created from give to this). Therefore, Agive

2 will be updated by this, which is
indeed the second argument of the verb.

One possible problem with the update algorithm is that the adjacency posi-
tions used to update entries in a lexicon Ls depend on parsing decisions based
on entries in Ls. Such a process may lead to the perpetuation of errors found in
the lexicon Ls. It seems, however, that under reasonable assumptions about the
structure of language this does not happen. The assumption needed for this to
hold is that, sufficiently often, syntactic structure is simple. More precisely, the
syntactic simplicity assumption is:
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6.2.3. Assumption. [syntactic simplicity] In the correct parses of a language,
two consecutive adjacency positions of a word x are separated sufficiently often by
a non-branching structure, that is, one in which all links are between consecutive
words.

Having discovered one adjacency position of a word x, the algorithm correctly
identifies the next adjacency position of x if it correctly constructs the links
between the words separating the two adjacency positions. As will be seen later,
if all these links are between consecutive words then their weights only depend
on direct adjacency points (entries of the form Ay

(−1) and Ay
1). Therefore, if the

learning algorithm correctly learns the direct adjacency points, it will also use
the correct adjacency positions to update x. Since, as mentioned above, the
adjacency positions by which the direct adjacency points are updated do not
depend on the link structure assigned by the parser, there is no inherent problem
with the update algorithm.

This argument is in no way a proof that x is actually updated by the correct
adjacency position. To actually prove this, we would have to show that the parser
can indeed deduce the correct links from the direct adjacency points. That the
position used in updating the direct adjacency point does not depend on the link
structure is a necessary but not a sufficient condition for this to hold. Moreover,
the term “sufficiently often” used in the definition of the syntactic simplicity con-
dition remains vague because its exact definition (how often is sufficient) depends
on other details of the learning algorithm and, even more crucially, on proper-
ties of natural languages. Of course, one can prove the correctness of a learning
algorithm given certain assumptions about natural languages, but as long as we
do not have a sufficiently accurate theory of natural languages, the correctness of
a learning algorithm remains an empirical question. What the argument above
does show, however, is that there is no inherent problem with the update algo-
rithm using the parser to determine the update positions. For now, this will have
to do.

6.2.2 Prefix Independence

The problem raised at the end of the previous section for the update algorithm
is a special case of a general problem. The learning process makes use of the
lexicon Ls to construct the next lexicon Ls+1. This allows bootstrapping, where
properties already learned are used to induce additional properties. For example,
the second argument of a verb can only be correctly identified when the parser is
already able to identify and construct the first argument of the verb. Because of
such examples, it is certainly sensible and perhaps even necessary for the learning
process to make use of information already learned in previous steps.

A seemingly fundamental problem with this approach is that it is difficult
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to determine whether any parameter being learned has already stabilized to its
correct value or whether additional learning is necessary for such convergence.
If a parameter p1 is used to learn another parameter p2 before p1 has stabilized
to its correct value, this may result in incorrect learning for p2. The problem is
made worse if the parameter p1 is used to learn p1 itself (this can happen directly
or, more commonly, indirectly, where p1 is used in learning p2 and p2 is used in
learning p1). I will refer to this as the positive feedback problem where an initial
incorrect value learned for p1 is used by the learning algorithm to reinforce that
incorrect value, thus making it impossible to recover from an initial error.

To avoid these problems, the learning algorithm should be able to recover from
any initial error given sufficiently many additional examples. This also means
that if the language properties change during the learning process, the learning
algorithm can adapt to these changes (given sufficiently many examples). Since in
the model presented here learning and parsing happen together and continuously,
the learning algorithm can adapt to changes in the language being processed. The
number of examples needed for such an adaptation depends on how strong the
evidence for the initial setting of the parameters is.

To formalize these intuitions, I give here a simple condition which describes
when bootstrapping is correctly performed and that ensures that a learning al-
gorithm does not have the positive feedback problem. In subsequent sections,
where the details of the learning algorithm are given, it will be easy to see that
this condition indeed holds.

Let p be a parameter calculated by a learning algorithm φ. For every finite
sequence of examples e1, . . . , en the learning algorithm receives as input, the algo-
rithm outputs a value for p. I write φp(e1, . . . , en) for this value and will assume
it to be a real number.

6.2.4. Definition. [prefix independence] A learning algorithm φ is prefix in-
dependent for parameter p iff for any sequences of examples e′1, . . . , e

′
k and (ei)1≤i,

limn→∞ |φp(e
′
1, . . . , e

′
k, e1, . . . , en) − φp(e1, . . . , en)| = 0. The algorithm φ is prefix

independent iff it is prefix independent for all its parameters.

The prefix independence condition is simple. It requires that whatever deci-
sion the learning algorithm reaches based on some initial set of examples can be
undone by observing sufficiently many additional examples. This ensures that
the learning algorithm does not have to know whether a certain learned param-
eter p1 has stabilized to its correct value before it can use it in learning another
parameter p2. The algorithm can simply use the value of p1 in every learning
step, whether this value has already stabilized to its correct value or not. Once
the value of p1 has stabilized to its correct value, prefix independence ensures
that sooner or later the value for p2 induced by the learning algorithm will be
sufficiently close to the value induced by the algorithm had its estimate for the
value of p1 been correct (in some miraculous way) from the very beginning.
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The prefix independence condition also rules out the positive feedback prob-
lem. If e1, . . . , ek, e′1, . . . , e

′
k and (ei)k+1≤i are sequences of examples then prefix in-

dependence implies that |φp(e1, . . . , ek, ek+1, . . . , en)−φp(e
′
1, . . . , e

′
k, ek+1, . . . , en)| =

0. This means that two sequences of examples which differ only in some initial
examples are equivalent in terms of learning. When a learning algorithm has
positive feedback, this property is violated. If two different choices of initial
examples e1, . . . , ek and e′1, . . . , e

′
k lead to different values for φp then these two

values continue to be reinforced by subsequent examples and the difference does
not converge to 0. Therefore, as long as prefix independence can be shown to
hold, the algorithm cannot have positive feedback.

Actually proving that prefix independence holds may be anything from trivial
to very difficult, depending on the specific algorithm (the most difficult cases are
those where values of several parameters are each used in learning all the others).
In the learning algorithms I present here, the proof of prefix independence is usu-
ally very simple (except for the adjacency update position which was discussed in
the previous section). In fact, the algorithms were designed with prefix indepen-
dence in mind and only algorithms for which prefix independence was easily seen
to hold were considered. Interestingly, when prefix independence was violated
in the course of development, this was immediately evident in the results of the
experiments.

6.3 Basic Parsing Function Family

The previous sections outlined a general framework for a lexicalized parsing func-
tion family with bootstrapping based learning and greedy parsing. For a com-
plete unsupervised parsing algorithm, two components still have to be specified.
The first is the adjacency point update algorithm, that is, what happens when
the lexicon update algorithm (Algorithm 6.2.2) updates the adjacency point Ax

i

by a symbol α. The second component to be specified is the weight function

Wt(L, Uk, L, x
d
→ y). One specific proposal for these two components, which I

will call the basic parsing function family, is specified in this section.

6.3.1 Adjacency Point Update

The basic parsing function family uses a set of four linking properties P =
{Stop, In∗, In,Out}. Roughly, for each side of each word, Stop specifies the
strength of non-attachment, In and Out specify the strength of inbound and out-
bound links and In∗ is an intermediate value in the induction of inbound and
outbound strengths. The update of Ax

i by a symbol α is given by operations
Ax

i (p) += f(Aα
(−1), A

α
1 ) which make the value of Ax

i (p) in the new lexicon Ls+1
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equal to the sum Ax
i (p) + f(Aα

(−1), A
α
1 ) in the old lexicon Ls. Two basic functions

are used in describing the algorithm:

Sign(i) =

{

1 if 0 < i
−1 otherwise

•A
α
i =

{

true if @l ∈ L(W ) : Aα
i (l) > Aα

i (Stop)
false otherwise

The update algorithm uses these function and the normalized version Ā of the
adjacency points to update Ax

i :

6.3.1. Algorithm. [adjacency point update] Update Ax
i by symbol α as

follows:

• Increment the count of the adjacency point:

#(Ax
i ) += 1

• If α is an empty symbol or if x and α are words separated by stopping
punctuation (full stop, question mark, exclamation mark, semicolon, comma
or dash):

Ax
i (Stop) += 1

• Otherwise:

◦ for every l ∈ L(W ):

Ax
i (l

−1) +=

{

1 if l = [α]
Āα

Sign(−i)(l) otherwise

(In practice, only l = [α] and the 10 strongest labels in Aα
Sign(−i) are

updated. Because of the exponential decay in the strength of labels in
Aα

Sign(−i), this is a good approximation.)

◦ If i = −1, 1 perform the following bootstrapping:

Ax
i (In∗) +=











−1 if •A
α
Sign(−i)

+1 if ¬•A
α
Sign(−i) ∧ •A

α
Sign(i)

0 otherwise

Ax
i (Out) += Āα

Sign(−i)(In∗)

Ax
i (In) += Āα

Sign(−i)(Out)
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Discussion

To understand the way the labels and properties are calculated, it is best to look
at some examples. The following table gives the linking properties and strongest
labels for the determiner the as learned from the complete Wall Street Journal
corpus (only Athe

(−1) and Athe
1 are shown):

the
A−1 A1

Stop 12897 Stop 8
In∗ 14898 In∗ 18914
In 8625 In 4764
Out -13184 Out 21922
[the] 10673 [the] 16461
[of ] 6871 [a] 3107
[in ] 5520 [ the] 2787
[a] 3407 [of] 2347
[for ] 2572 [ company] 2094
[to ] 2094 [’s] 1686
[on ] 2009 [in] 1388
[that ] 1495 [ U.S.] 1199
[and ] 1489 [and] 1129
[at ] 1149 [to] 876

A strong class label [w] indicates that the word w frequently appears in con-
texts which are similar to the. A strong adjacency label [w ] (or [ w]) indicates
that w either frequently appears next to the or that w frequently appears in the
same contexts as words which appear next to the.

Most of the labels which appear in the entry of the are not surprising. Both
on the left and on the right, the has both [the] and [a] as class labels. This is
not surprising because the and a are the most frequent determiners and it is only
natural that they label words which appear in determiner contexts. On the left,
the is also labeled by the adjacency labels based on several prepositions: [of ],
[in ], [for ], etc. This is not surprising and it should only be pointed out that all
labels are based on very frequent words.

On the right side of the, the labels are somewhat less expected. Two of the
labels, [ company] and [ U.S.] are simply nouns which are common in the corpus
the parser has been trained on. When training on another corpus, these labels will
disappear, possibly being replaced by other frequent nouns. This simply reflects
the fact that while closed class words (such as determiners and prepositions) are
frequent because of the syntax of English, open class words (such as nouns) are
frequent in a corpus because of its semantic content. This means that closed class
based labels will be more stable across different corpora than open class labels.
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More surprising on the right side of the is the label [ the]. At first sight this
may suggest that the word the is often followed in the corpus by the word the.
This is, of course, not the case. The reason the label [ the] appears on the right
side of the is that the word the is often followed by nouns or adjectives which may
also appear without a determiner. When a noun or adjective appears without a
determiner, it appears in a position which is often taken by a determiner. This
noun or adjective is therefore labeled (on the left) by the class label [the] which, in
turn, labels the with [ the]. Is this label incorrect? That depends on how we use
it to reach parsing decisions. In the next section we will see that because the label
[the] is far more frequent than [ the], it will dominate parsing decision. Therefore,
the will be attached to the word following it as if it and not the following word
is the determiner.

The property Stop counts the number of times a boundary appeared next to
the. Because the can often appear at the beginning of an utterance but must be
followed by a noun or an adjective, it is not surprising that Stop is stronger than
any label on the left but weaker than all labels on the right. In general, it is
unlikely that a word has an outbound link on the side on which its Stop strength
is stronger than that of any label. The opposite is not true: a label stronger than
Stop indicates an attachment but this may also be the result of an inbound link,
as in the following entry for to, where the strong labels on the left are a result of
an inbound link:

to
A−1 A1

Stop 822 Stop 48
In∗ -4250 In∗ -981
In -57 In -1791
Out -3053 Out 4010
[to] 5912 [to] 7009
[% ] 848 [ the] 3851
[in] 844 [ be] 2208
[the] 813 [will] 1414
[of] 624 [ a] 1158
[a] 599 [the] 954
[according ] 573 [of] 889
[for] 551 [would] 717
[expected ] 435 [n’t] 604
[and] 346 [and] 546

For this reason, the learning process is based on the property •A
x
i which indi-

cates where a link is not possible. Since an outbound link on one word is inbound
on the other, the inbound/outbound properties of each word are then calculated
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by a simple bootstrapping process as an average of the opposite properties of the
neighboring words.

The update of the first property, In∗, is based on the assumption that if •A
α
i

often holds (on the adjacent word α) then it is unlikely that the updated word x
has an inbound link. More precisely, the normalized value of the first property In∗

is Āx
i (In∗) = P (¬•A

α
Sign(−i)∧•A

α
Sign(i))−P (•A

α
Sign(−i)) where the probability space

is uniform over all words α which appear adjacent to x (that is, empty adjacencies
are excluded). The two events •A

α
Sign(−i) and ¬•A

α
Sign(−i) ∧ •A

α
Sign(i) are disjoint

and their union is •A
α
(−1)∨ •A

α
1 . Therefore, Āx

i (In∗) is negative if over all words α
adjacent to x which have a Stop stronger than any other label this happens more
often on the side of α which faces (may be attached to) x. Assuming that the
frequency of this property due to noise is equal on both sides, a negative value of
Āx

i (In∗) indicates that no inbound link is likely, while a positive value indicates
that such a link is likely. As will be seen below, the linking properties are only
used when there is already an indication that a link should be created, so the
difference between a negative an a positive value here should only be interpreted
as conditional on there being some link between the words.

The value learned for Āx
i (In∗) is, of course, only a first approximation. Since

an inbound link for one word is an outbound link for the adjacent word, Āx
i (Out)

is the average value of Āα
i (In∗) on adjacent words α and Āx

i (In) is a similar
average over Āα

i (Out). If the value of Āx
i (In∗) is correct for sufficiently many x’s,

such averaging helps correct errors for those words where errors did occur in the
first step.

The linking properties are only calculated for the direct adjacency positions
Ax

(−1) and Ax
1 . The reason for this will become clear in the next section.

6.3.2 The Weight Function

To simplify notations, I will assume from now on that the lexicon L, the prefix

Uk and the set of links L are fixed and will therefore simply write Wt(x
d
→ y) for

Wt(L, Uk, L, x
d
→ y). At each step in the parse, the weight function Wt(x

d
→ y)

must assign a non-negative weight to each link x
d
→ y which may be added by

the incremental parser, Algorithm 3.3.1, to the set of links L over the utterance
prefix Uk = 〈x1, . . . , xk〉. The weight could be assigned directly based on the In
and Out linking properties of the lexical entries of x and y, but this method is
not satisfactory for several reasons:

• The values of the linking properties on low frequency words are not reliable,
as they are based on very few examples.

• The values of these properties on x and y may conflict. For example, should

the value of Out on x or In on y be used for the link x
d
→ y?
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• Some words are ambiguous and require different linking in different contexts.
Using the In and Out properties of a word directly would result in the word
having the same links in all contexts.

To solve these problems, the weight of the link x
d
→ y is based on the linking

properties of the best matching label between x and y. This label represents the
relation between x and y and is usually a frequent word with reliable statistics.
Moreover, when one of the words among x and y is far more frequent than the
other, it is the properties of the frequent word which dominate the weight function
(because the frequent word will be a label of the infrequent word, but not the
other way around). This solves many of the problems related to infrequent words
and seems to make smoothing unnecessary.

The use of the best matching label also explains why the learning algorithm
only calculates the linking properties for the direct adjacency points Ax

(−1) and

Ax
1 . When a link x

d
→ y may be added to the parse, y must be adjacent to

x relative to L (the links already constructed by the parser). This means that
there is a path of links all the way from x to the word directly adjacent to y.
We can therefore see x and all words separating it from y as one unit headed by
x which the parser may attach to y. Whether such an attachment should take
place is determined in two steps. First, the appropriate adjacency point Ax

i of x
is matched with Ay

Sign(−i) to determine the best matching label. Here, a different
index i may be used for each attachment of x, to reflect the different arguments a
word may have. Each such match may result in a different best matching label (or
in no matching label at all). For y, the direct adjacency Ay

Sign(−i) is used because,
taken as a whole, the unit headed by x which is considered for attachment to y is
directly adjacent to y. Having determined the best matching label between the
unit headed by x and y, the linking properties of the best matching label can
be seen to represent the relation between the full unit headed by x and y. Since
these two are directly adjacent, only the direct adjacency points of the matching
label are used. For this reason, only the linking properties of direct adjacency
need to be learned.

Preference for Direct Adjacency

The weight function has a preference for attaching directly adjacent (that is,
consecutive) words before attaching more distant words. Formally, this is defined
as follows:

• If x0 and y0 are directly adjacent, x0
d0→ y0 is addable to L over Uk and

Wt(x0
d0→ y0) > 0 then for any x and y which are not directly adjacent,

Wt(x
d
→ y) = 0.



164 Chapter 6. Learning and Parsing

This is the only part of the weight function which is not entirely local and depends
not only on the lexical entries of the two words x and y but also on the weight of
other links.

Calculating the Best Matching Label

A label l is a matching label between Ax
i and Ay

Sign(−i) if Ax
i (l) > Ax

i (Stop) and

either l = (y, 1) or Ay

Sign(−i)(l
−1) > 0. The match strength of l is:

s(l) =

{

Āx
i (l) if l = (y, 1)

min(Āx
i (l), Ā

y

Sign(−i)(l
−1)) otherwise

The best matching label at Ax
i is the matching label l with the maximal match

strength (in practice, as before, only the top 10 labels in Ax
i and Ay

Sign(−i) are

considered).
The best matching label from x to y is calculated between Ax

i and Ay

Sign(−i)

such that Ax
i is on the same side of x as y and was either already used to create

a link or is the first adjacency point on that side of x which was not yet used.
This means that the adjacency points on each side have to be used one by one,
but may be used more than once. The reason is that optional arguments of x
usually do not have an adjacency point of their own but have the same labels as
obligatory arguments of x and can share their adjacency point. The Ax

i with the
strongest matching label is selected, with a preference for the unused adjacency
point (that is, if the unused adjacency point produces a best matching label, this
label is taken). As in the learning process, label matching is blocked between
words which are separated by stopping punctuation.

Calculating the Link Weight

The best matching label l = (w, δ) from x to y can be either a class (δ = 0) or an
adjacency (δ = 1) label at Ax

i . If it is a class label, w can be seen as taking the
place of x and all words separating it from y (which are already linked to x). If
l is an adjacency label, w can be seen to take the place of y. The calculation of

the weight Wt(x
d
→ y) of the link from x to y is therefore based on the strengths

of the linking properties of Aw
σ where σ = Sign(i) if l = (w, 0) and σ = Sign(−i)

if l = (w, 1). In addition, the weight is bounded from above by the best label
match strength, s(l). This is because a weak match means that the label is weak
either on x or on y and therefore the resulting link weight should not be high.

• If l = (w, 0) and Aw
σ (Out) > 0:

Wt(x
0
→ y) = min(s(l), Āw

σ (Out))
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• If l = (w, 1):

◦ If Aw
σ (In) > 0:

Wt(x
d
→ y) = min(s(l), Āw

σ (In))

where if Aw
σ (In∗) < 0 and Aw

σ (Out) ≤ 0 then d = 1 and otherwise
d = 0.

◦ Otherwise, if |Aw
σ (In∗)| ≥ |Aw

σ (In)| and Aw
σ (In∗) > 0:

Wt(x
0
→ y) = min(s(l), Āw

σ (In∗))

• If Aw
σ (Out) ≤ 0 and Aw

σ (In) ≤ 0 and either l = (w, 1) or Aw
σ (Out) = 0:

Wt(x
0
→ y) = s(l)

• In all other cases,

Wt(x
d
→ y) = 0.

The first case is the most obvious. If l = [w] is a class label of x then it can
be seen to represent the unit headed by x which covers x and all words between
x and y. The normalized strength of its outbound link property Out is therefore
the strength assigned to the link from x to y (if this strength is negative, the
weight is zero).

When l = (w, 1), the best matching label is an adjacency label of x and w
can be seen to represent y. Therefore, the inbound link properties of w should be

used to determine the weight of the link x
d
→ y. If the property In has positive

strength, its normalized strength is used as the weight of the link. The link may,

however, be either of depth 0 or of depth 1. A link x
1
→ y attaches x to y but

does not place y inside the smallest bracket covering x. It is therefore a weaker
attachment than a depth 0 link. This is indicated by a negative value of In∗.
There is, however, one exception. If Out is positive, then a link in the opposite

direction (y
d
→ x) is indicated. Since this link is based on the Out property, it is

a link of depth 0 (as in the first case of the weight function) and because back

and forth links between words must be of equal depth, also the link x
d
→ y must

be of depth 0.
If the strength of In is negative but the absolute value of In∗ is greater than

that of In, then In∗ is considered a more reliable indication for the existence of
a link. In this case, therefore, a positive normalized strength for In∗ would be

the weight assigned to the link x
d
→ y. The depth of the link is always 0 in this

case based on the same logic as above: if the link was already deduced at the
first bootstrapping stage, In∗, then it indicates the stronger attachment of depth
0 links.
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To explain the third case, recall that s(l) > 0 means that the label l is stronger
than Stop on Ax

i . This implies a link unless the properties of w block it. One
way in which w can block the link is to have a positive strength for the link in
the opposite direction. Another way in which the properties of w can block the
link is if l = (l, 0) and Aw

σ (Out) < 0, that is, if the learning process has explicitly
determined that no outbound link from w (which represents x in this case) is
possible. The same conclusion cannot be drawn from a negative value for the
In property when l = (w, 1) because, as with standard dependencies, a word
determines its outbound links much more strongly than its inbound links.

Let us return to the example of the lexical entry of the word to as learned
from the Wall Street Journal corpus:

to
A−1 A1

Stop 822 Stop 48
In∗ -4250 In∗ -981
In -57 In -1791
Out -3053 Out 4010
[to] 5912 [to] 7009
[% ] 848 [ the] 3851
[in] 844 [ be] 2208
[the] 813 [will] 1414
[of] 624 [ a] 1158
[a] 599 [the] 954
[according ] 573 [of] 889
[for] 551 [would] 717
[expected ] 435 [n’t] 604
[and] 346 [and] 546

On the left side of to, all linking properties have a negative strength. The

potential link x
d
→ y may, for example, be a link from to to going in the sequence

going to. The label [to] is then the best matching label for this link. Since this is
a class label, it represents the position of x, that is, of the word to in this example
(unsurprisingly, it is quite common for frequent words such as determiners and
prepositions to be represented by their own class label). Therefore, the outbound
linking property on the left side of the lexical entry of to must be used to calculate
the weight of the link. Since the strength of Out is negative, the weight of the
link is zero and no link is created.

Let us now consider the opposite link going
d
→ to. Here the best matching

label is the adjacency label [ to]. Again, the left side linking properties of to are
used. This time, however, the inbound rather than the outbound link properties
are used. While these properties too are negative, the resulting weight is positive,
because the third case of the weight function is applicable.
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6.3.3 Simplified Basic Parsing Function Family

Examining the weight function defined for the basic parsing function family, one
may wonder whether the use of the inbound link properties In∗ and In cannot be
simplified. Specifically, in the second case of the weight function (l = (w, 1)) it
may be simpler to always use only the value of Aw

σ (In) as the link weight rather
than sometimes also using Aw

σ (In∗). The weight function then becomes:

• If l = (w, 0) and Aw
σ (Out) > 0:

Wt(x
0
→ y) = min(s(l), Āw

σ (Out))

• If l = (w, 1) and Aw
σ (In) > 0:

Wt(x
d
→ y) = min(s(l), Āw

σ (In))

where if Aw
σ (In∗) < 0 and Aw

σ (Out) ≤ 0 then d = 1 and otherwise d = 0.

• If Aw
σ (Out) ≤ 0 and Aw

σ (In) ≤ 0 and either l = (w, 1) or Aw
σ (Out) = 0:

Wt(x
0
→ y) = s(l)

• In all other cases,

Wt(x
d
→ y) = 0.

I will refer to this as the simplified basic parsing function family. As the
experiments reported in chapter 7 show, the two versions of the basic parsing
function family perform quite similarly, with sometimes one performing somewhat
better and sometimes the other.

6.3.4 On the Use of Punctuation

It is well known that using punctuation can improve the parsing accuracy of
supervised parsers (Gregory et al. 2004). This is not surprising, as punctuation
is intended to aid the human reader in understanding the text. For this reason,
it also makes sense to use punctuation when the parser is unsupervised. Since
punctuation is part of the original text, not of the annotation, its use does not
compromise in any way the unsupervised nature of the algorithm. If unsupervised
parsing is seen as an engineering problem, punctuation should certainly be used
wherever it is available.
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Klein (2005) removes punctuation in an attempt to make the data “better
represent the data available to a human learner” (p. 14). The claim is that
punctuation does not appear in the spoken language from which children learn.
Klein qualifies this claim by pointing out that “it is arguable that at least some
punctuation is correlated with information in an acoustic signal, e.g. prosody”.
Indeed, the relation between punctuation and prosody is not simple. It is well
accepted that the two are related but that there is no one-to-one mapping. On
the one hand, there is evidence (Altenberg 1987; Croft 1995) that there is a strong
correlation between prosodic and syntactic boundaries. On the other hand, when
Gregory et al. (2004) tried to use prosodic cues instead of punctuation when
parsing transcribed speech, they discovered that punctuation improved parsing
accuracy but prosodic cues decreased parsing accuracy. It should be stressed,
however, that Gregory et al. do not claim that this proves that prosody cannot
be used to improve parsing but only that their parsing methods could not make
use of their specific coding of prosodic cues.

This still leaves open the question whether ignoring punctuation can make
the algorithm more relevant to research on language acquisition by children. The
question is not restricted only to punctuation, of course, but can be extended to
the whole question of using written text to study issues in language acquisition.
Even the transcribed text of child directed language is not a perfect representa-
tion of the input a child acquiring a language receives but because of the need to
evaluate parsing accuracy against a syntactically annotated corpus, unsupervised
parsers have actually been applied in recent years mainly to newspaper text (see
the experiments in chapter 7). The first sentence of one such newspaper corpus,
the Wall Street Journal Corpus, reads: Pierre Vinken, 61 years old, will join the
board as a nonexecutive director Nov. 29. The question whether the two commas
here are indeed correlated with the prosody which may have been used in uttering
this sentence in the presence of a young child seems to be of secondary impor-
tance when considering the relevance of such examples to language acquisition.
Moreover, singling out punctuation as unrepresentative of the input available to
children while fully relying on the segmentation of the text into sentences and
words seems unjustified to me.

There is not only no good reason to ignore punctuation but it is probably
important to include punctuation in the model as long as it is the best substitute
we have for the prosody available in the acoustic signal. This is because even if
prosodic cues are not described accurately by punctuation, they play a similar
role in constraining the syntactic structure without actually being part of it.
Incorporating punctuation into the input available to the learner and the parser
therefore creates a place in the model for cues going beyond the bare sequence of
words and which are not directly part of the parse tree. Of course, the details of
the algorithm may have to be changed when punctuation is replaced by prosodic
cues, but this is also true of the treatment of words when written text is replaced
by an acoustic signal. Even if the details may have to change, I believe that
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the principles may remain unchanged. In fact, the treatment of punctuation as
defined above for the basic parsing function family is very crude and would have
to be refined even for punctuation, but I believe that it correctly captures the
principle that stopping punctuation should block links between words. In the
present specification, all links are blocked by all stopping punctuation but this
should be refined so that only some links are blocked.

6.4 Conclusion

In this chapter I presented a general architecture for a lexicalized family (Defi-
nition 6.1.3) of greedy parsing functions (Definition 6.1.2). The greedy parsing
functions are based on a weight function which depends on a lexicon. The lexical
entries in this lexicon consist of a sequence of adjacency points, each assigning
weights to labels and linking properties. The architecture also specifies the learn-
ing process and which symbol is used to update each adjacency point at each step
in the learning process (Algorithm 6.2.2).

A specific proposal for such a parsing function family was then fleshed out.
This included the specification of how an adjacency point should be updated by
each symbol and how the linking properties should be bootstrapped from the
labels assigned each adjacency point (Algorithm 6.3.1). Finally, it specified the
weight function which uses the labels and linking properties to assign a weight to

each link x
d
→ y (section 6.3.2). This weight function was based on the linking

properties of the best matching label between x and y.
The correctness of the parser function family and the learning algorithm is a

matter of empirical examination. Some experiments conducted with these algo-
rithms are reported in the next chapter. Of course, many choices had to be made
and even within the framework proposed here many variants and modifications
of the basic algorithm may be considered. Only a thorough empirical examina-
tion of these different alternatives, comparing the strengths and weaknesses of
each variant on different corpora, may reveal the properties of syntactic structure
which we are looking for. In this work the emphasis was on setting up the frame-
work for the syntax learning task rather than on a thorough examination of the
alternatives available within this framework.

I would like to conclude this chapter by pointing out which of the choices made
in the design of the algorithm seem to me to be of a potentially lasting nature and
which are more ad-hoc. This only refers to choices made within the framework
outlined here, that is, to the choice of linking properties, update algorithm and
weight function.

The way the labels are updated seems to me to be appropriate. Having
examined the lexical entries of many words (admittedly, mainly in English) I
believe that the labels and their strengths are an appropriate starting point for a
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bootstrapping algorithm. Similarly, the use of the properties of the best matching
label between two words to determine the weight of the link between them seems
to me appropriate and solves many of the standard problems in parsing, such as
ambiguity and sparsity of the training corpus (which contains very few examples
for most words but very many examples for the most frequent words). Also
the use of the predicate •A

α
i as the starting point for the bootstrapping process

seems to me to belong in future versions of the algorithm. Beyond this, I have
opted for the simplest possible version of the algorithm, with only three linking
properties derived directly from the predicate •A

α
i . There is no doubt that the

linking properties and their bootstrapping can be refined to distinguish between
different situations. For example, a link added to solve a resolution violation is
probably of a different nature than a link used to extend a structure by attaching
an argument to a head. The current proposal treats all links equally, thus leading
to many mistakes when resolving resolution violations.

These observations reflect my experience working with this model, but only
further modifications and experiments can confirm or refute the validity of these
observations.



Chapter 7

Experiments

7.1 Introduction

Natural language is a natural phenomenon and any theory of natural language
should therefore be evaluated by testing it empirically. Such testing is complicated
because much of natural language theory deals with entities, such as meaning and
syntactic structure, which are not directly observable and measurable. One way
to solve this problem is to make use of the fact that language is produced and
interpreted by humans and is therefore a reflection or part of cognitive processes.
Empirical questions about language can then be coined as questions about these
language related cognitive processes and psychological experiments can be set up
to examine the correctness of different linguistic hypotheses. This is the domain
of psycholinguistic research. While these methods can reveal much about natural
language, it is often difficult (and always expensive) to conduct well-controlled
psychological experiments to test some of the deeper and more complex parts of
linguistic theory. Moreover, the interpretation of the results of psycholinguistic
experiments is often difficult and depends on the linguistic theoretical framework
being used.

A weaker version of this approach is to examine the judgments of humans
about different linguistic questions (such as grammaticality and structure) in
uncontrolled settings. The number of subjects in these experiments is often as
small as one and the subject may often be the linguist herself or a colleague.
The subject is then often aware of the purpose of the experiment and may be
required to have sufficient knowledge of the theory behind it to be able to answer
the question. These are all considered fatal flaws in the setting of a psychological
experiment, but the ease with which such experiments may be conducted means
that a considerable body of evidence has been collected, which cannot be ignored.
This method (together with simple introspection) has long been used by linguists
and underlies much of linguistic theory.

One version of these sort of experiments, which is relevant to the present
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chapter, is the annotation of corpora. An annotator is given guidelines (usually
with examples) as to how a corpus of language should be annotated. The an-
notator then uses these guidelines together with his natural competence in the
language to annotate the corpus. The annotation guidelines certainly constrain
the annotation the annotator can produce but do not determine it completely (as
evidenced by the fact that a computer could not perform the same task). The
choices made by the annotator within the constraints of the guidelines reflect the
cognitive processes involved in performing the annotation. When the same corpus
is annotated by several annotators, the annotations can be compared. Similari-
ties between the annotations reflect (within the constraints of the guidelines) the
common and stable parts of the cognitive processes involved.

The approach to linguistics outlined above, which sees the connection between
form and meaning (and therefore also cognition) as the main subject of linguistic
study is known as the mediationalist view of linguistics. A very different approach
to linguistics is one which focuses on the combinatorial structure of language
rather than on its relation with cognition. This is known as the distributional
view of linguistics (see Huck and Goldsmith (1996) for further discussion). In the
distributional approach, the main source of linguistic evidence is unannotated
corpora (to the extent that such corpora exist, as any writing system is already a
form of annotation). The goal of research is to discover structural relations which
hold in these corpora.

This approach seems appealing because it does not have to deal (at least
directly) with hidden cognitive entities and with the general messiness of human
cognition. An experiment is simply the application of an algorithm to some
corpus. The problem with such experiments is to meaningfully interpret their
results. The mere fact that an algorithm has produced some output on a corpus
does not in itself mean much: the algorithm simply calculates the value of some
property (simple or complex) on the corpus.

The first way of showing that such a property is linguistically meaningful is
to show that the value of the property remains stable across different corpora.
This is then a discovery of a linguistic invariant. Many such linguistic invariants
can be discovered, but most of them result in little generalization. For example,
calculating the most frequent preposition appearing with a verb does not gener-
alize beyond a specific verb in a specific language and is sometimes even domain
dependent. This is still very useful information if one wishes to construct a dic-
tionary, but does not lead to any theoretical generalization about the structure
of language.

An example of a generalization which can be discovered by this method is
the Zipfian distribution of words, which states that words in a language obey a
power law probability distribution. This law seems to hold with little variation
across different languages and domains and can be verified to hold without having
to make any reference to the meaning of language or to any related cognitive
processes. But Zipf’s law is a rare exception. Very few linguistic generalizations
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have been discovered or proved by strictly distributional methods.

Because it turns out to be so difficult to arrive at any significant linguistic
results based on purely distributional methods, researchers have introduced the
use of annotated corpora. When these corpora are annotated by humans (as is
usually the case) this introduces mediationalist results into the distributionalist
method. The annotated corpora may be used both as input for an experiment
and to evaluate the results of that experiment. Specifically, one can compare the
output of an algorithm on an unannotated corpus with an annotated version of
the corpus.

The first and most important question in the present work is whether there is
a relation between the surface statistics of languages and their hidden syntactic
structure and whether the suggested unsupervised incremental parser is a (rough)
approximation of such a relation. In other words, can the incremental parser (and
its learning algorithm) deduce the hidden syntactic structure of a language from
example utterances in the language? To test this, the output of the incremental
parser on an unannotated corpus can be compared with an annotated version of
that corpus. If the agreement between the two is sufficiently good, the parser
must have discovered at least part of the syntactic structure.

The annotation of a corpus depends very much on the linguistic theory used
by the annotators as well as on various arbitrary decisions made when defining the
annotation guidelines. It is, of course, unreasonable to expect an unsupervised
parser to capture all the arbitrary choices made when annotating a corpus. This
means that when the parser fails to agree with the annotation, this may reflect
not only errors on the part of the parser but also legitimate alternative syntactic
analyses. If, however, the parser and the annotation agree on more of the analysis
than could be expected by chance (or by some trivial method) this can be seen as
a clear indication that the parser has captured some syntactic structure which is
also present in the annotation. So, while failure can be blamed on the annotation,
success cannot be an artifact of the annotation, as long as the success threshold
is set sufficiently high.

The present chapter is dedicated to experiments conducted with several an-
notated corpora and shows that the agreement between the parses produced by
the incremental parser and the annotation of these corpora is better not only
than that which would have been expected by chance but even better than some
higher success threshold. This can be seen as evidence that the learning algorithm
successfully discovers at least some of the syntactic structure of these corpora.

7.2 Experiments and Evaluation

For the experiments, corpora annotated for syntactic structure were needed. Be-
cause the parser treats words as atomic units and performs no morphological
analysis of words, only languages with a weak morphological component were
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WSJ Negra CTB

empty -NONE- tags starting with * -NONE-
punctuation , . : “ ” -LRB- -RRB- $. $, $*LRB* $*RRB* PU
currency $ #

Table 7.1: Tags used to categorize the empty, punctuation and currency symbol
leaf types in each corpus.

chosen for the experiments. This leaves one with a variety of languages with dif-
ferent syntactic structures for which large syntactically annotated corpora exist.
Of these, I used those corpora which have recently been used by other researchers
(Klein and Manning 2002; Klein and Manning 2004; Bod 2006a; Bod 2006b) to
evaluate unsupervised parsing: the Wall Street Journal Corpus version 2.0 (Mar-
cus et al. 1993) for English, the Negra Treebank version 2.0 (Skut et al. 1997) for
German and the Chinese Treebank version 5.0 (Xue et al. 2002). For the first two
corpora I used the same version used by the researchers cited above, so results are
completely comparable. For the Chinese Treebank, I used the latest version 5.0
while Klein and Manning used version 3.0. The differences between the versions
of the Chinese Treebank are significant and therefore the results are not directly
comparable (see section 7.4 for additional discussion of the differences).

For each corpus, the complete plain text of the corpus (including punctuation)
was used for learning. This first pass produced a lexicon (as described in chap-
ter 6) which was then used to parse different subsets of the corpus (as specified
below). These parses were evaluated against the annotation in the corpus. To
allow easy comparison, I used the same evaluation method and all the subsets of
the corpora used in the work cited above (as well as additional subsets). In this
I followed the specifications given in chapter 2 of Klein (2005).

7.2.1 Input to the Parser

The input to the parser (the plain text) was extracted from the annotated cor-
pora. All three treebanks use the same labeled bracketing annotation format for
syntactic structure (but with different labels). The leaves of the annotated tree
structures are either words, punctuation and currency symbols or empty nodes.
To determine the type of each leaf, its part-of-speech tag (in the annotation) was
used. Table 7.1 gives the tags used for each corpus to determine which nodes
are empty nodes, currency symbols or punctuation symbols. All other leaf nodes
were considered to be words (these included, among others, symbols such as ’%’).

Klein does not treat currency symbols as words because in spoken language
they are not pronounced in the same place as they appear in the written text
(as opposed to ’%’ which is written and spoken in the same position). Because
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Klein is interested in the implications of his work to the acquisition of language
by children, he tries to make the input to his algorithm as similar as possible to
the spoken input children may be exposed to. While any claims made about child
language acquisition based on work with the Wall Street Journal Corpus must be
tenuous, I adopt Klein’s decision not to treat currency symbols as words. This
simplifies the comparison of the results of the different parsing algorithms and
the treatment of currency symbols makes little difference for the overall results
(as Klein himself stresses). Only the Wall Street Journal Corpus contains such
currency symbols.

Having categorized the tokens appearing in the leaves of the annotated sen-
tences in each corpus, the words and the punctuation symbols were taken as the
input to the parser (while empty nodes and currency symbols were discarded).
The words were converted to all lower-case (so that a token of a word at the begin-
ning of a sentence will be identical to the token of that word appearing elsewhere
in a sentence). The resulting sequence of words and punctuation symbols is very
similar to that which could have been extracted directly from the plain corpus
text except that word segmentation was determined by the annotation. Usually
this agrees with the trivial segmentation based on white space between words, but
in some cases the annotation splits single plain text tokens. For example, in the
Wall Street Journal Corpus, the word weren’t is split into two tokens: were and
n’t. While this perhaps deviates from strictly working with plain text, it does not
seem to be of significant importance and greatly simplifies the evaluation against
the annotated corpus (and comparison with previous work).

While punctuation was included in the input made available to the parser,
only the words were considered to occupy a position in the syntactic structure
of the sentences. Punctuation was therefore only treated as indicating some
structural properties rather than being part of the structure itself. The length
of sentences is then defined to be the number of words in each sentence. Subsets
of sentences of bounded length were then extracted from each corpus. I write
WSJX, NegraX and CTBX for the subset of sentences of length less than or
equal to X of the Wall Street Journal Corpus, the Negra Treebank and the
Chinese Treebank, respectively. The plain text of the full corpora was used for
learning while evaluation was performed on different subsets of the corpora. These
subsets include all those subsets on which previous authors (Klein and Manning
2002; Klein and Manning 2004; Bod 2006a; Bod 2006b) report their results.

There are three differences between the input used here and the input used in
Klein and Manning’s and Bod’s experiments. These should be examined closely
to ensure that the comparison between the experiments is valid.

1. Both Klein and Manning’s and Bod’s algorithms parse from sequences of
parts-of-speech. In most experiments, part-of-speech sequences are ex-
tracted directly from the annotated corpus. In some of Klein and Manning’s
experiments, the part-of-speech sequences were induced from the words of
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the sentences using an unsupervised tagger similar to that of Schütze (1995)
(see section 2.1.4 of Klein (2005) for details). In the present work, all learn-
ing and parsing is performed directly from plain text as it could have been
extracted from the original source of the text. This means that results
are directly comparable only for those tests which Klein and Manning con-
ducted on their automatically labeled corpus. They did this only for the
WSJ10.

2. Neither Klein and Manning nor Bod use the punctuation available in the
corpus while my algorithm uses punctuation whenever it finds it beneficial
to do so. I have explained already in section 6.3.4 why I believe the use of
punctuation does not compromise the unsupervised nature of the parser. If
other algorithms choose to ignore this information available in plain text,
they may do so. The results of the experiments remain comparable. This
having been said, I also report (in section 7.4.5) parsing results without
punctuation and analyze the effect punctuation has on the accuracy of the
incremental parser.

3. Klein, Manning and Bod use the same reduced subsets of the corpora both
for training and for evaluation. My algorithm uses the full corpora for
training and only the reduced subsets for evaluation. This may suggest
that my algorithm uses significantly more training data. However, because
my algorithm parses directly from plain text, the true comparison is with
the amount of data needed not only to train the other parsers on part-
of-speech sequences but also for training an unsupervised tagger to induce
these sequences. When Klein and Manning do induce the part-of-speech
sequences they do so using not only the full Wall Street Journal Corpus but
also additional 1994-1996 Wall Street Journal newswire (Klein 2005). The
training data I use are therefore less and not more than that used by others
for comparable tasks.

7.2.2 Evaluation

The results were evaluated by comparing the unlabeled bracketing produced by
the parser with the unlabeled bracketing in the annotated corpora. Because
empty nodes, punctuation and currency symbols are not part of the parse pro-
duced by the parser, a bracket is defined (as in section 2.2) as the set of word
tokens it covers. Brackets in the annotated corpora are labeled and may cover
leaf nodes which are not words. Therefore, when these brackets were reduced
to the set of words they cover, some brackets which were different in the anno-
tation may have reduced to identical brackets and may even have disappeared
(for example, a bracket covering a single empty node). The reduction did not
change, however, the constituency relations between words in the sentence, that
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is, which words belong to the same constituents. This is the relation on which the
parser was evaluated and the evaluation was therefore performed by comparing
the brackets (as sets of words) produced by the parser with those annotated in
the corpus. Brackets covering only a single word indicate a trivial constituent
and were therefore ignored in the comparison.

Let P be the set of brackets produced by the parser on a corpus C and let
B be the set of brackets annotated in the corpus (both sets after the reduction
described above and the removal of single word brackets). Two scores were used
to evaluate the accuracy of the parse produced by the parser: unlabeled precision,
UP(P,B), and unlabeled recall, UR(P,B):

UP(P,B) =
|P ∩B|

|P |

UR(P,B) =
|P ∩B|

|B|

These two numbers represent (respectively) what fraction of brackets suggested by
the parser were indeed correct and what fraction of the brackets in the annotated
corpus were discovered by the parser. These are standard measures of parsing
accuracy and follow exactly the evaluation in previous work (Klein and Manning
2004; Bod 2006a; Bod 2006b). One possible objection to this evaluation metric is
that the top bracket (which covers the whole sentence) is also included. Because
this bracket is trivial this tends to increase the score. This does not matter
much, though, because the absolute precision and recall values do not mean much
anyway if they are not 0 or 1.0 (what does a UP of 0.6 say about a parser?). What
is important is that these scores allow us to compare the performance of the parser
with different baselines and with other parsers.

To condense the evaluation metric into a single number, the harmonic mean
of precision and recall is often reported:

F1(P,B) =
2 · UP(P,B) · UR(P,B)

UP(P,B) + UR(P,B)

This form of averaging penalizes a low score in one of its components more severely
than the standard arithmetic mean (a score of 0 in one component and 1 in the
other results in a 0 F1 score). It is customary to report the scores as percentage
numbers (ranging between 0 and 100 rather than 0 and 1) and I follow this
convention here.

7.3 Baselines

The evaluation scores condense the performance of a parser into a single number
(or two). This hides many of the details of the parser’s performance but allows
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a quick first analysis of the parser: did it manage to detect syntactic structure
successfully or not? The answer is seldom a simple yes or no. Parsers almost never
achieve a perfect score so the question remains whether a certain score indicates
success or not. A rough answer to this question can be given by comparing the
scores of the parser to scores achieved by other methods. These methods then
define the threshold values for different levels of success. These are often referred
to as baselines for the evaluation.

Random Baseline The lowest level of success is usually taken to be the score
achieved by generating parses randomly. Any parser scoring not much better
than such random parses cannot be claimed to detect any syntactic structure.
However, there are many ways of generating random parses and these may result
in different baselines. Each method of generating random parses may be biased
towards less or more linguistically plausible parses.

Left/Right Branching Baseline A second baseline often used is the left-
branching or right-branching parsing heuristic. This heuristic assigns any ut-
terance 〈x1, . . . , xn〉 either the right-branching parse [x1 [x2 . . . [xn−1, xn] . . .] ] or
the left-branching parse [ [. . . [x1, x2] . . . xn−1] xn] (B = {〈xi, . . . , xn〉}

n−1
i=1 and

B = {〈x1, . . . , xi〉}
n

i=2, respectively). This heuristic captures the strong left or
right branching tendency found in many languages: most heads tend to take
their arguments on the same side of the head. Such a tendency is a linguis-
tic property of the language and discovering that a language has it is already
a discovery of linguistic structure. Therefore, scoring above the left and right
branching baselines is in no way a minimal threshold for success. In fact, it seems
that Klein and Manning (2002) were the first to propose an unsupervised parser
which does better than the right branching heuristic for English.

Left/Right Branching with Punctuation Since the way the incremental
parser uses punctuation is fixed and not learned, it is interesting to introduce an
additional baseline, combining the left or right branching heuristic with punctu-
ation. The right (left) branching parse is induced by the shortest common cover
link set in which there is a link from each word to the word to its right (left).
The right (left) branching with punctuation baseline is then defined to be the
bracketing induced by the shortest common cover link set in which there is a
link from every word to the word to its right (left) unless they are separated
by stopping punctuation. The effect of punctuation on the left/right branching
heuristic coded in this baseline is similar to the effect of punctuation on the parses
produced by the incremental parser, where no links are allowed to cross stopping
punctuation.
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Klein and Manning report left-branching, right-branching and random baselines
for their results. Their random baseline uses a uniform distribution over all binary
trees with a given number of leaves. Their results show that for all three corpora
(WSJ, Negra and CTB) the right-branching baseline is higher than the random
baseline. I therefore only use the left and right branching baselines (with and
without punctuation) as the lowest baselines against which parsing results are
compared.

7.4 Results and Discussion

7.4.1 Results

The incremental parsing algorithm was evaluated for both the basic pars-
ing function family (section 6.3) and the simplified parsing function family (sec-
tion 6.3.3). In the following tables these are referred to as the incremental and
simplified incremental algorithms (respectively). For each of the three corpora,
the parser first learned a lexicon using the plain text of the full corpus and then
the parser with this lexicon was evaluated on different subsets of the corpus with
bounded sentence lengths. For each corpus these subsets were the sentences of
length up to 10 words, up to 20 words and up to 40 words as well as the full
corpus.

All three languages tested have some right branching tendency (to a greater
or lesser degree). To test whether the parser can also handle languages with a
left branching tendency, the learner and parser were also applied to the reversed
sentences of each language.1 Because the parser is incremental, learning and
parsing from the reversed language is not the same as learning and parsing the
original language. Each experiment was therefore conducted twice: once for the
original language and once for the reversed language. Parsing of the reversed
language will be referred to as right to left parsing.

The parsing results are summarized in the tables which appear in the following
pages. Each table is divided into three sections. The top section gives the left
and right branching baselines (with and without punctuation) for each subset of
each corpus. The second section gives the results reported by other researchers
(Klein and Manning 2004; Bod 2006a; Bod 2006b) for unsupervised parsing from
sequences of parts-of-speech (as read from the annotated corpus). The algorithms
CCM, DMV and DMV+CCM(POS) are from Klein and Manning (2004) while
U-DOP and UML-DOP are from Bod (2006a) and Bod (2006b). The bottom
section of each table reports parsing results directly from plain text. These are
mainly the results for the different variants of the incremental parser of the present
work. In addition, for the WSJ10 there are also results for Klein and Manning’s
DMV+CCM algorithm when running from automatically induced sequences of

1I would like to thank Alexander Clark for suggesting this to me.



180 Chapter 7. Experiments

WSJ10 WSJ20
(7422 sentences) (25523 sentences)

Algorithm UP UR UF1 UP UR UF1

Baselines
Right-branching 55.2 70.0 61.7 42.4 55.9 48.2
Right-branching+Punct. 59.1 74.4 65.8 50.4 64.9 56.7
Left-branching 25.7 32.6 28.7 15.2 20.0 17.2
Left-branching+Punct. 28.2 35.5 31.5 19.3 24.9 21.8

Parsing from POS
DMV 46.6 59.2 52.1
CCM 64.2 81.6 71.9
DMV+CCM (POS) 69.3 88.0 77.6
U-DOP 70.8 88.2 78.5
UML-DOP 82.9

Parsing from plain text
DMV+CCM (DISTR.) 65.2 82.8 72.9
Incremental 75.6 76.2 75.9 65.7 63.7 64.7
Incremental (right to left) 75.9 72.5 74.2 66.0 59.6 62.6
Simplified Incremental 75.3 76.1 75.7 65.5 63.6 64.5
Simplified Incremental (right to left) 75.7 72.6 74.1 65.8 59.6 62.5

WSJ40 Full WSJ
(47385 sentences) (49208 sentences)

Algorithm UP UR UF1 UP UR UF1

Baselines
Right-branching 35.4 47.4 40.5 34.5 46.3 39.5
Right-branching+Punct. 44.5 57.7 50.2 43.8 56.8 49.4
Left-branching 10.6 14.1 12.1 10.1 13.5 11.6
Left-branching+Punct. 15.2 19.7 17.2 14.8 19.2 16.7

Parsing from POS
U-DOP 63.91

UML-DOP 66.41

Parsing from plain text
Incremental 58.9 55.9 57.4 58.1 55.0 56.5
Incremental (right to left) 59.3 52.2 55.6 58.4 51.3 54.6
Simplified Incremental 58.7 55.9 57.2 57.9 55.0 56.4
Simplified Incremental (right to left) 59.0 52.3 55.5 58.1 51.3 54.5

1Unlike other results reported here, the results for U-DOP and UML-DOP on WSJ40 were
calculated on a random 90/10 split of WSJ40, not the full WSJ40. This probably doesn’t
change the results much (Bod 2006a).

Table 7.2: Parsing results for the Wall Street Journal Corpus.
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Negra10 Negra20
(75421 sentences) (15675 sentences)

Algorithm UP UR UF1 UP UR UF1

Baselines
Right-branching 33.9 60.1 43.3 21.8 42.2 28.8
Right-branching+Punct. 35.4 62.5 45.2 24.7 46.9 32.4
Left-branching 27.4 48.6 35.1 16.8 32.5 22.2
Left-branching+Punct. 29.5 52.1 37.7 20.6 39.2 27.0

Parsing from POS
DMV 38.4 69.5 49.5
CCM 48.1 85.5 61.6
DMV+CCM(POS) 49.6 89.7 63.9
U-DOP 51.2 90.5 65.4
UML-DOP 67.0

Parsing from plain text
Incremental 51.0 69.8 59.0 39.2 54.7 45.7
Incremental (right to left) 50.4 68.3 58.0 37.9 52.1 43.9
Simplified Incremental 45.3 65.6 53.6 33.6 51.0 40.5
Simplified Incremental (right to left) 44.8 63.8 52.6 32.0 47.2 38.1

Negra40 Full Negra
(20301 sentences) (20602 sentences)

Algorithm UP UR UF1 UP UR UF1

Baselines
Right-branching 17.6 35.0 23.4 17.2 34.2 22.8
Right-branching+Punct. 20.9 40.4 27.6 20.1 39.8 27.1
Left-branching 13.1 26.0 17.4 12.7 25.2 16.9
Left-branching+Punct. 17.6 33.9 23.1 17.2 33.3 22.7

Parsing from plain text
Incremental 34.8 48.9 40.6 34.3 48.2 40.1
Incremental (right to left) 32.9 45.5 38.2 32.3 44.8 37.6
Simplified Incremental 29.4 45.5 35.7 29.0 44.9 35.3
Simplified Incremental (right to left) 27.2 40.7 32.6 26.7 40.0 32.0

1The number of sentences in Negra10 reported here (7542) is significantly larger than the
2175 sentences reported for Negra10 in Klein and Manning (2004) and Klein (2005). However,
the left and right branching scores reported here are identical to those reported by Klein and
Manning. This suggests that the corpora used are identical and that the difference in reported
number of sentences has its source elsewhere.

Table 7.3: Parsing results for the Negra Corpus.
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CTB10 v3.0
(2437 sentences)

Algorithm UP UR UF1

Baselines
Right-branching 29.0 53.9 37.8
Left-branching 26.3 48.8 34.2

Parsing from POS
CCM 34.6 64.3 45.0
DMV 35.9 66.7 46.7
DMV+CCM(POS) 33.3 62.0 43.3
U-DOP 36.3 64.9 46.6
UML-DOP 47.2

CTB10 v5.0 CTB20 v5.0
(4626 sentences) (9491 sentences)

Algorithm UP UR UF1 UP UR UF1

Baselines
Right-branching 43.3 60.4 50.4 32.4 40.7 36.1
Right-branching+Punct. 46.6 64.4 54.1 40.9 49.7 44.9
Left-branching 30.8 42.9 35.8 19.0 23.9 21.2
Left-branching+Punct. 34.6 47.9 40.2 27.8 33.7 30.4

Parsing from plain text
Incremental 54.2 55.1 54.6 48.7 40.4 44.1
Incremental (right to left) 49.6 58.6 53.7 41.8 41.6 41.7
Simplified Incremental 53.4 61.5 57.2 48.4 47.3 47.8
Simplified Incremental (right to left) 50.0 60.4 54.7 42.6 43.6 43.1

CTB40 v5.0 Full CTB v5.0
(16323 sentences) (18787 sentences)

Algorithm UP UR UF1 UP UR UF1

Baselines
Right-branching 23.5 29.2 26.0 19.7 24.6 21.8
Right-branching+Punct. 37.0 43.1 39.8 35.7 41.2 38.3
Left-branching 12.7 15.8 14.1 10.5 13.2 11.7
Left-branching+Punct. 23.8 27.7 25.6 22.3 25.7 23.9

Parsing from plain text
Incremental 43.9 33.5 38.0 42.2 31.6 36.1
Incremental (right to left) 34.0 32.8 33.4 30.5 29.6 30.0
Simplified Incremental 44.2 40.8 42.4 42.8 38.9 40.8
Simplified Incremental (right to left) 35.2 34.9 35.0 32.0 31.7 31.9

Table 7.4: Parsing results for the Chinese Treebank versions 3.0 and 5.0.
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parts-of-speech (Klein and Manning 2004; Klein 2005). Klein, Manning and Bod
report results only for the shortest sentences in each corpus (up to length 10), the
only exception being Bod’s results for WSJ40. Parsing directly from plain text
is only reported by Klein and Manning for WSJ10. Where results do not appear
in the tables below, they were not reported by the researchers.

7.4.2 Baselines

Before examining the parsing accuracy of the incremental parser, let us first
examine the baselines calculated for the corpora. For all subsets of all corpora,
the right-branching heuristic performs better than the left-branching heuristic.
Moreover, right-branching scores significantly better on the English corpus than
on the other two corpora and somewhat better on Chinese than on German. This
agrees with what we know about the structure of these languages: English is a
strongly right-branching language while Chinese and German have both right and
left branching constructions.

Adding punctuation to the left/right-branching heuristic always improves the
performance of the heuristic. As sentences become longer, this improvement
becomes more significant. This is not surprising because punctuation is used to
segment long sentences into smaller segments and as sentences become longer
they typically consist of more such segments. The effect of using punctuation is
strongest for Chinese, somewhat weaker for English and significantly weaker for
German.

It is interesting to note the big difference between the right-branching scores
calculated by Klein and Manning for CTB10 version 3.0 and those calculated
here for CTB10 version 5.0. This shows that the two versions of the corpus are
very different in the sort of syntactic trees they contain. It is not clear to me
whether this is due merely to a difference in annotation or to a more fundamental
difference in the types of short sentences which appear in the two versions of the
corpus.

7.4.3 Incremental Parsers Compared with Baseline

A first rough analysis of the success of the incremental parser in discovering syn-
tactic structure can be based on the comparison of its evaluation scores with
those of the highest baseline, right-branching with punctuation. Since this base-
line codes significant information about the language being parsed it provides a
reasonably high threshold for success.

The incremental parser using the simplified basic parsing function family
achieves a higher F1 score than the right-branching baseline with punctuation
on all subsets of all corpora. On the Chinese Treebank the difference is small but
on the other corpora it is quite significant. Moreover, on all subsets of the WSJ
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and Negra corpora, all versions of the incremental parser have an F1 score above
the baseline.

Because the right-branching (with punctuation) baseline typically creates more
brackets than the incremental parser, the incremental parser improves more on
the baseline precision than on the recall. On the subsets of the Wall Street Journal
Corpus, all versions of the incremental parser improve on the baseline precision
but score either a bit higher or somewhat lower than the baseline recall. On the
subsets of the Negra Corpus, all versions of the incremental algorithm improve
both on the precision and the recall of the baseline. Finally, on the subsets of the
Chinese Treebank, recall of all incremental parsers is lower than the baseline but
the precision of the left-to-right incremental parsers is higher than the baseline
precision.

To summarize, the simplified incremental parser always succeeds to improve
in total on the baseline but on the Chinese Treebank this improvement is small.
Improvement is most significant on the Negra Corpus where both precision and
recall are improved significantly and consistently. On the Wall Street Journal
Corpus improvement on the baseline is mostly due to improvement on precision
rather than on recall. This is probably because the right-branching tendency of
English is the strongest among the languages tested.

In absolute terms, parsing was most successful on English and least success-
ful on Chinese, with German somewhere in between. This pattern is common
to all unsupervised parsers (and probably also to most supervised parsers) and
reflects the fact that English has been the main language of study in modern
linguistics and even more so in computational linguistics (the present work be-
ing no exception to this). As a result, English has a simpler syntactic structure
than other languages when viewed through the linguistic and computational tools
we commonly use. Whether English is also simpler in structure in some theory
independent way is a question which is open to debate.

7.4.4 Comparing Different Incremental Parser Variants

Having compared the incremental parser to the baseline, we can now compare
the different versions of the incremental parser. In general, the differences in
performance are not great. On the Negra Treebank the basic parsing function
family does somewhat better than the simplified basic parsing function family
while on the Chinese Treebank it is the other way around. On the Wall Street
Journal Corpus the two versions of the algorithm achieve practically identical
accuracy.

Left-to-right (forward) parsing scores consistently better than right-to-left
(backward) parsing on all subsets of all corpora. The only exceptions are the
precision on subsets of the Wall Street Journal Corpus and recall on the small
subsets of the Chinese Treebank. In both cases, right-to-left parsing improves
only marginally on left-to-right parsing. In general, the difference in parsing
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WSJ10 Negra10 CTB10
Algorithm UP UR UF1 UP UR UF1 UP UR UF1

No Punctuation 68.7 65.5 67.1 39.8 61.2 48.2 48.5 47.8 48.1
Punct. in Learning 74.1 73.9 74.0 50.6 69.0 58.4 53.1 53.5 53.3
With Punctuation 75.6 76.2 75.9 51.0 69.8 59.0 54.2 55.1 54.6

WSJ40 Negra40 CTB40
Algorithm UP UR UF1 UP UR UF1 UP UR UF1

No Punctuation 47.4 43.3 45.3 22.8 37.6 28.4 29.1 22.0 25.1
Punct. in Learning 54.0 50.7 52.3 33.4 46.8 39.0 38.7 29.5 33.5
With Punctuation 58.9 55.9 57.4 34.8 48.9 40.6 43.9 33.5 38.0

Table 7.5: The effect of punctuation on the incremental parser. This table com-
pares parsing accuracy of the incremental parser when punctuation is completely
ignored, when it is used only in learning and when it is also used in parsing.

accuracy between left-to-right and right-to-left parsing is small, suggesting that
the incremental parser can handle both right and left branching structures. The
consistent advantage of forward parsing over backward parsing should not be sur-
prising because humans use and process language from beginning to end and not
the other way around. Left-branching languages are therefore not simply mirror
images of right-branching languages and it is not unlikely that these mirror im-
ages contain constructions which are difficult to parse incrementally (and would
therefore not appear in a real left-branching language).

7.4.5 The Effect of Punctuation

To examine the effect the use of punctuation has on the accuracy of the
incremental parser, I repeated the experiments without punctuation. Table 7.5
shows how parsing accuracy of the incremental parser changes with the type
of punctuation information available to the parser. It can be seen that when
the parser completely ignores punctuation, its performance deteriorates quite
significantly on all corpora. However, when punctuation is available to the parser
while learning, but not while parsing, parsing accuracy is already much better. On
all short sentence corpora and on Negra40, parsing accuracy is then quite close to
parsing accuracy with full punctuation. This shows that while punctuation does
assist directly in making correct parsing decisions (in the parsing phase) it is
even more significant in helping the algorithm learn the correct linking properties
of words. Because these properties are statistical in nature, this means that
occasional errors in punctuation should have relatively little effect on the accuracy
of the parser. As sentence length increases, it becomes more and more important
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to use punctuation directly in parsing (and not only in learning). This is no
surprise, since punctuation is intended to assist the human reader in deciphering
the structure of long and complicated sentences.

7.4.6 Comparison with Other Parsers

Direct comparison between the incremental parser and the unsupervised parsers
of others (Klein and Manning 2004; Bod 2006a; Bod 2006b) is complicated by the
fact that most of Klein and Manning’s and all of Bod’s2 results are reported for
parsing from sequences of part-of-speech as extracted from the annotated corpus
while the incremental parser was tested on learning and parsing directly from
plain text. All unsupervised parsing algorithms from part-of-speech sequences
can be converted into unsupervised parsers from plain text by combining them
with algorithms for the unsupervised induction of parts-of-speech. This was done
by Klein and Manning for their CCM algorithm in Klein and Manning (2002) and
for the DMV+CCM algorithm in Klein and Manning (2004). In both cases only
the WSJ10 corpus was parsed. These results should be directly comparable with
parsing results of the incremental parser but the results for the CCM algorithm
reported in Klein and Manning (2002) use a somewhat different evaluation metric
than the one used in all later papers (including the present work). It seems that
the difference between the two metrics is not significant (see chapter 2 of Klein
2005 for details), as can be seen in table 7.6, which summarizes parsing results
on the WSJ10 for the incremental parser and for Klein and Manning’s CCM and
DMV+CCM algorithms.

As can be seen in table 7.6, using induced parts-of-speech resulted in some
degradation in the parsing accuracy of both the CCM and the DMV+CCM mod-
els. The DMV+CCM model does better than the CCM model both when parsing
from the corpus part-of-speech sequences and when parsing from induced part of
speech sequences. All versions of the incremental parser achieve a higher F1 score
than either CCM or DMV+CCM parsing from induced part-of-speech sequences.
The incremental parser scores somewhat lower than DMV+CCM on recall but
higher on precision. Comparing DMV+CCM with the results in table 7.5 shows
that when no punctuation at all was used by the incremental parser it scored
worse than DMV+CCM (but still with higher precision) while using punctuation
only in the learning phase resulted in a somewhat higher F1 score than that of
DMV+CCM.

It is tempting to try to draw conclusions from Klein and Manning’s experi-
ments about the effect using induced parts-of-speech may have on the performance
of unsupervised parsers parsing from sequences of parts-of-speech. However, two
experiments using the same corpus and two related parsing algorithms can hardly

2In Bod (2007a) and Bod (2007b), U-DOP∗, a variant of U-DOP, is applied directly to words,
as a component in a machine translation algorithm. This does not provide results comparable
to other experiments reported in this chapter.
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WSJ10
(7422 sentences)

Algorithm metric UP UR UF1

Parsing from POS
CCM old 63.8 80.2 71.1
CCM new 64.2 81.6 71.9
DMV+CCM new 69.3 88.0 77.6

Parsing from plain text
CCM (DISTR.) old 56.8 71.1 63.2
DMV+CCM (DISTR.) new 65.2 82.8 72.9
Incremental new 75.6 76.2 75.9
Incremental (right to left) new 75.9 72.5 74.2
Simplified Incremental new 75.3 76.1 75.7
Simplified Incremental (right to left) new 75.7 72.6 74.1

Table 7.6: Parsing results on the WSJ10 for different algorithms. The ‘new’
evaluation metric is the metric defined in section 7.2.2 while the ‘old’ evaluation
metric is the one defined in section 2.2.5 of Klein (2005).

provide sufficient evidence for any such conclusions. In fact, even the conclusion
that using induced parts-of-speech must necessarily degrade parsing performance
is not necessarily true. For example, Prescher (2005) showed that unsupervised
refinement of the labels annotating the Wall Street Journal Corpus can improve
the parsing performance of unlexicalized PCFG parsers. Unsupervised induction
of parts-of-speech may, in principle, have a similar effect on unsupervised parsing
algorithms. It is probably true, however, that at the current state of unsuper-
vised part-of-speech induction and unsupervised parsing we are more likely to
see a degradation in performance when using induced parts-of-speech. How large
this degradation may be is also not clear. The CCM algorithm F1 score drops by
7.9 percentage points when using induced parts-of-speech while the DMV+CCM
algorithm’s F1 score drops by only 4.7 percentage points when using the same
induced parts-of-speech.

All this having been said, it is still interesting to be able to roughly compare
the incremental parser with unsupervised parsers which were not tested with
induced parts-of-speech and on corpora for which induced part-of-speech exper-
iments were not conducted. For such a comparison I will assume that induced
part-of-speech F1 scores are approximately 5 percentage points lower than the F1

scores for the same parser parsing from the annotated parts-of-speech. Using this
rough rule, the incremental parser scores within two, three and four percentage
points from the best performing parser (UML-DOP) on the WSJ10, Negra10 and
WSJ40 corpora (respectively). These are all the corpora on which comparison is
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at all possible (comparison on the Chinese Treebank is not possible because of the
significant difference between the versions of the corpus used in the experiments).
It is therefore possible to draw a rough conclusion that the incremental parser
achieves a similar level of performance to that of the best unsupervised parsers
currently available.

7.4.7 Error Analysis

To get some idea of the sort of errors made by the incremental parser, one
can look at parsing accuracy for different types of brackets and at the types of
brackets where errors are most frequent. Two ways of defining bracket type are by
the sequence of parts-of-speech covered by the bracket and by the non-terminal
assigned to the bracket (in the annotated corpus).

Table 7.7 lists the part-of-speech tag sequences which the incremental parser
most often over- or under-proposed as brackets. Since short part-of-speech tag
sequences are far more frequent than longer sequences, this analysis emphasizes
local errors. Such errors are not only significant in themselves, but also play a
role in the errors made in larger brackets, since an incorrect common cover link
affects all brackets which cover that link. Most links are short and therefore most
errors are reflected both in small and large brackets (which cover those smaller
brackets). It is the smaller brackets, however, which most clearly indicate what
type of error was made. This is also the reason why I have only used data from
sentences of up to 10 words to perform the error analysis. In general, error analysis
of the full corpora resulted in qualitatively similar results (with differences which
mainly seem to stem from local structure distribution differences between the
short-sentence and full corpora).

Of the sequences in table 7.7, some are both frequently over-proposed and
under-proposed by the parser. Such sequences are mainly fragments of noun
phrases (such as DT NN in English, ART NN in German and NN NN in Chi-
nese) which can either be a complete noun phrase or part of a noun phrase. If the
sequence is a complete noun phrase and the parser creates an outbound link of
depth 0 based at the sequence, the bracket covering it is destroyed, and the parser
fails to propose the sequence. On the other hand, if the sequence is only part of
a noun phrase and the parser fails to connect it (with back-and-forth links) to
the rest of the noun phrase, the sequence is incorrectly proposed as a bracket.
Precision and recall for most of these sequences are reasonably high, but because
these sequences are very frequent in the corpus, they contribute significantly to
the total errors made. In the English and Chinese corpora precision for these
sequences is higher than recall, suggesting that in parsing English and Chinese
noun phrases, the parser fails to attach the parts of a noun phrase more often
than it attaches words to a noun phrase which do not belong to it. In the Ger-
man corpus, the situation is reversed, with precision lower than recall for noun
phrase fragments. At least partially this has to do with the annotation of the
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Over-proposed # UP Under-proposed # UR

WSJ10
NNP NNP 220 71.8 DT NN 451 75.6

DT NN 156 89.9 NNP NNP 306 64.7
POS NN 139 0.0 NNP POS 151 5.6
JJ NN 120 66.2 JJ NNS 132 73.0

PRP VBZ 107 20.7 NN NNS 123 55.4
PRP VBD 105 16.0 DT JJ NN 114 77.5
RB VBN 90 15.9 JJ NN 106 68.9
JJ NNS 82 81.3 DT NNS 103 76.2
NN NN 64 56.2 CD CD 103 84.3

NNP NNP NNP 63 53.0 CD NNS 95 59.9
Negra10

ART NN 946 56.2 ART NN 501 70.8
ADJA NN 376 51.2 APPR ART NN 269 50.6
CARD NN 219 35.2 APPR NN 214 57.7

ART ADJA NN 200 61.8 NE NE 184 62.6
NN VVFIN 138 0.7 ADJA NN 140 73.8
KON NN 125 0.0 ART ADJA NN 140 69.8

ART NN VVFIN 118 3.3 APPR NE 133 60.3
NN VVPP 103 5.5 NN KON NN 111 24.5

ADJA NN NE 102 1.0 APPRART NN 86 80.7
NN VAFIN 99 0.0 APPR ADJA NN 80 56.8

CTB10
DEG NN 222 0.0 NN NN 573 31.2
NN NN 183 58.7 NR NN 257 38.5
DEC NN 132 0.0 CD M 184 37.8
NN VV 92 32.8 VV NN 164 57.7
AD VV 90 53.6 JJ NN 161 37.4
NR VV 87 3.3 NN NN NN 132 25.0
VV NN 81 73.4 NR NN NN 110 34.1
NR NN 69 70.0 AD VV 95 52.3

NN NN NN 49 47.3 NN DEG 91 1.1
JJ NN 41 70.1 P NN 88 39.7

Table 7.7: Part-of-speech sequences most over- and under-proposed as brackets
by the incremental parser. For each sequence, the table gives the number of times
the sequence was over- or under-proposed and the unlabeled precision (for over-
proposed sequences) and recall (for under-proposed sequences). Top brackets
are not included. In CTB10, utterances of type FRAG (which have no internal
structure in the annotation) are ignored.
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Simple tags Compound tags
Tag Frequency Recall Tag Frequency Recall

WSJ10
NP 11746 62.4 VP 8710 77.5
VP 8712 77.5 NP 6744 65.1
PP 3883 82.4 NP-SBJ 3023 54.1
S 1598 67.5 PP 1635 78.6

SBAR 656 73.3 S 1068 65.5
ADJP 634 51.1 NP-PRD 773 71.3
ADVP 343 66.8 PP-CLR 593 86.8

QP 183 35.0 NP-SBJ-1 570 49.3
SQ 94 70.2 PP-DIR 557 93.5

PRN 93 66.7 SBAR 437 71.6
Negra10

NP 5746 58.9 NP-SB 2721 50.0
PP 3754 55.8 PP-MO 2145 52.1
VP 1330 62.7 NP-OA 1128 59.3
S 746 54.0 VP-OC 1120 61.3

AP 587 32.0 PP-MNR 1037 69.1
MPN 554 63.5 NP-GR 577 78.2
CNP 424 23.3 NP-PD 336 72.3
AVP 215 37.7 MPN-NK 279 61.3
VZ 111 97.3 PP-*T1* 257 34.2
NM 83 8.4 NP 253 79.8

CTB10
NP 3744 33.2 VP 3435 52.7
VP 3447 52.7 NP 1129 23.2
IP 1102 37.6 NP-SBJ 1035 39.2
PP 478 32.4 NP-OBJ 822 42.5
QP 393 30.8 IP 645 39.8

DNP 376 0.3 DNP 375 0.2
CP 301 2.7 QP 263 21.7
LCP 157 53.5 CP 256 0.8
PRN 109 44.0 IP-OBJ 219 36.5
DP 77 24.7 NP-PN 192 14.6

Table 7.8: Recall accuracy of the most frequent non-terminal tags. The columns
on the left give the statistics for the basic tags (e.g NP in NP-SBJ) while the
columns on the right give the statistics for the full compound tags. Top brackets
are not included. In CTB10, utterances of type FRAG (which have no internal
structure in the annotation) are ignored.
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corpus: prepositional phrases (PPs) are assigned a flat structure. For example,
the PP in den Vordergrund, is annotated as a single constituent, without any in-
ternal structure. The parser, however, creates a constituent for den Vordergrund,
which results in the sequence ART NN being incorrectly proposed (relative to the
annotation: most linguists would argue that den Vordergrund is a constituent).

Table 7.8 allows us to look at the parsing accuracy of noun phrases from a
different perspective. The left column of the table gives the recall accuracy for
all noun phrases (NPs) in each corpus. This can be compared with the recall
accuracy of subsets of noun phrases given in the right column of the table. We
can see that subject noun phrases in English and in German (NP-SBJ and NP-
SB) have a somewhat lower recall than the average noun phrase. This is possibly
due to incorrect attachment of the noun phrase to the verb on its right (such an
attachment is correct if the depth of the link is 1 but incorrect if the depth of the
link is 0). In Chinese, both subject and object noun phrases (NP-SBJ, NP-OBJ)
have a somewhat higher recall accuracy than the average noun phrase while it is
other noun phrases (NP, NP-PN) which have lower recall. This is probably the
result of the many complex compound nouns in the Chinese Treebank. The NP
and NP-PN labels (as well as other labels) are used to annotated parts of these
compound nouns while NP-SBJ and NP-OBJ are used to annotated the full noun
phrase. While even detecting the full noun phrases is not simple for the parser,
detecting their internal structure seems even harder.

A second group of over-proposed part-of-speech sequences are sequences which
end in a verb. Such sequences are the result of failure by the parser to attach
the verb to the argument on its right. This may be combined with attachment
to the argument on the left (typically the subject) by a link of depth 0 instead
of depth 1. These mistakes are frequent because of the high frequency of the
part-of-speech sequences involved but they do not reflect a systematic error in
the analysis. In fact, as can be seen in table 7.8, verb phrases (VPs) have a
relatively high recall rate in all languages. Had the parser systematically created
subject-verb constituents, VP recall would have been much lower.

One error of this type is worth mentioning specifically. In the WSJ10, the
constituent PRP VBZ is often created in sentences of the form “. . . ” (s)he said.
The pronoun he (or she) is attached by the parser to the verb said but the parser
fails to extend this bracket to also cover the object of the verb, which in this case
precedes the subject. Because this is a very common construction in the WSJ10,
it results in many errors.

The noun and verb phrase errors are the most common errors made by the
parser, but at the same time, many noun phrases and verb phrases are parsed
correctly. These errors, therefore, are not the result of a systematically incorrect
analysis but the result of incorrect properties assigned to specific words. This
may suggest that the bootstrapping mechanism, which is supposed to transfer
properties from one word to the other, is too weak and fails to correct errors
made in some words by using the properties assigned to other words.
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A different source of errors is the incorrect attachment of certain function
words and particles. In English, the possessive particle ’s (part-of-speech tag
POS) is attached to the right instead of to the left. This may be the result of the
parser’s failure to recognize the ambiguous nature of ’s, which is also a contraction
of the verb is. In German, conjunction words such as und (part-of-speech tag
KON) are attached only to the right, while the annotation places the conjunction
word together with both its conjuncts in a single bracket. Finally, in Chinese both
the noun complementizer (part-of-speech DEG) and the relative clause marker
(part-of-speech DEC) are attached incorrectly to the right instead of to the left.

7.4.8 Non-Binary Branching Bracketing

A bracketing C over an utterance U is binary branching if U ∈ C and every bracket
X ∈ C is a union X = X1 ∪ X2 of brackets X1, X2 ∈ C. One fundamental dif-
ference between the incremental parser and the unsupervised parsing algorithms
of Klein, Manning and Bod is that the algorithms of Klein, Manning and Bod
always produce a binary branching bracketing while the incremental parser can
produce any bracketing. The syntactic annotation found in the corpora is also
not necessarily binary branching. This is reflected in the parsing results of the
different algorithms. The binary branching parsers typically produce more brack-
ets than are found in the annotation and therefore tend to have high recall scores
and low precision. The incremental parser, on the other hand, produces typically
fewer brackets and therefore its precision and recall values are closer to each other
(and to their F1 average).

There are two reasons to require that the parser produce only binary branch-
ing structures. The first reason is practical - restricting the range of possible
structures the parser and learning algorithm need to consider. The second is
theoretical - some linguistic theories claim that all linguistic structures must be
binary branching (e.g. chapter 2 section 5 of Haegeman 1994). If one accepts the
assumption that syntactic structure must be binary branching then the annota-
tion of the corpora is shallow - it does not give the full syntactic structure, since
it is not binary branching.

While a full discussion of this question is beyond the scope of this chapter,
it is interesting to look at table 7.9, where the number of brackets proposed by
different parsing algorithms is compared with the number of brackets annotated
in the different corpora. Since all binary branching bracketings of a sentence have
the same number of brackets, a single entry in the table is sufficient to describe
the number of brackets produced by all parsers which produce binary branching
bracketings (CCM, DMV, DMV+CCM, U-DOP and UML-DOP). The last entry
in the table describes the effect of punctuation on binary branching bracketing: a
binary branching bracketing is generated between stopping punctuation symbols.
This is the number of brackets generated for the right-branching heuristic with
punctuation.
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WSJ10 Full WSJ Negra10 Full Negra

Annotation 35302 730024 20201 141977
Incremental 35588 (1.01) 691179 (0.95) 27624 (1.37) 199563 (1.41)
Simplified Inc. 35696 (1.01) 694337 (0.95) 29268 (1.45) 219556 (1.55)
Binary 44826 (1.27) 979146 (1.34) 35833 (1.77) 282882 (1.99)
Binary+Punct. 44430 (1.26) 947202 (1.30) 35651 (1.76) 274080 (1.93)

CTB10 Full CTB
Annotation 14229 330079
Incremental 14468 (1.02) 247366 (0.75)
Simplified Inc. 16399 (1.15) 299996 (0.91)
Binary 19845 (1.39) 412190 (1.25)
Binary+Punct. 19684 (1.38) 380645 (1.15)

Table 7.9: Number of brackets annotated in each corpus and the number of
brackets produced by different parsing algorithms methods. Brackets covering a
single word are not included. The number in parentheses is the ratio with the
number of brackets found in the annotation.

Since a binary branching bracketing is a maximal set of non-crossing brackets,
it is not surprising to see that both the annotation and the incremental parses
contain fewer brackets than the binary branching bracketing. It is interesting,
though, that the incremental parser produces significantly fewer brackets than a
binary branching bracketing restricted by punctuation. This shows (again) that
the incremental parser does not merely produce a variant of the right-branching
with punctuation heuristic. Finally, on the Wall Street Journal Corpus, where
the incremental parser does best, it produces more or less the same number of
brackets as in the corpus annotation. The incremental parser captures, therefore,
the same depth of syntactic structure as that used by the corpus annotators. Since
the incremental parser is completely unsupervised, this suggests that the corpus
annotation does capture some natural level of syntactic structure. This is not
necessarily the full syntactic structure but it has its distinct defining properties
which may be inferred from the distributional properties of the text.

7.4.9 Parsing Speed

One of the advantages of the incremental parser is that it is very fast. Ta-
ble 7.10 gives the time the incremental parser required for learning and parsing
the different corpora on a standard Intel Centrino laptop (1.86GHz). Because
different variants of the algorithm required more or less the same amount of time,
the time is reported only for the basic parsing function family (parsing from left
to right). Learning was always performed from the full corpus and therefore no
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Learning Parsing
Corpus total (sec.) words/sec. total (sec.) words/sec.

WSJ10 12 4354
Full WSJ 321 3203 262 3925
Negra10 10 4319
Full Negra 83 3656 71 4274
CTB10 6 4078
Full CTB 132 3264 105 4104

Table 7.10: Learning and parsing time for the incremental parser using the basic
parsing function family.

execution time is reported for learning on subsets of the corpus. From the table it
can be seen that the word per second rate changes very little as the length of the
sentences increases. This suggests that the parsing algorithm is linear (or close to
linear) in the length of the sentence. Because sentences are parsed as part of the
learning process, learning from a full corpus is somewhat slower than parsing a
full corpus. However, the difference in speed is not very significant, which is not
surprising since learning is nothing but a simple update of the adjacency point
statistics during the parsing process.

7.5 Conclusion

The experiments described in this chapter allow a first rough analysis of the incre-
mental parser’s ability to capture the syntactic structure of different languages.
This was done by measuring the accuracy with which the parser succeeded in re-
producing the syntactic annotation of English, German and Chinese corpora. A
comparison of these results with a threshold for success based on the right branch-
ing with punctuation baseline showed that the incremental parser was successful
in capturing some of the syntactic structure of all three languages. Parsing was
most successful on English and least successful on Chinese, with German some-
where in-between.

Because the parser is incremental, parsing from left to right is not the same as
parsing from right to left. The incremental parser was therefore tested on parsing
the test corpora in both directions. The differences in performance were small on
all corpora, showing that the incremental parser is not inherently biased towards
right-branching structures and can handle left-branching languages. While the
differences in performance were small, parsing backwards (from right to left) re-
sulted in somewhat lower scores than parsing forward (from left to right) on all
corpora. This should not be surprising since languages are typically used in the
forward direction and the mirror image of a language may violate certain basic
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properties of natural languages (such as the possibility to process it incremen-
tally). Left-branching languages are not simply mirror images of right-branching
languages.

Comparison with other unsupervised parsing algorithms proposed in recent
years is only possible in a rather rough way because most of these parsers were
not tested on parsing from plain text. The comparison shows that the incremen-
tal parser achieves an accuracy comparable with that of the best unsupervised
parsers available today and its high efficiency allows it to handle unrestricted real
language corpora, something which is more of a challenge for other methods. It
is also clear that the parses produced by the incremental parser are different from
those produced by other unsupervised parsers. This suggests that the different al-
gorithms have different strengths and weaknesses and opens the way to combining
the strengths of the different parsers to achieve higher parsing accuracy.

It remains tempting to compare the output of the parsing algorithm on many
different unannotated corpora in an attempt to discover syntactic invariants. This
has the same appeal as the purely distributionalist approach: it frees one from
the variety and arbitrariness of annotation schemes and the linguistic theories
they are based on. Moreover, it allows one to use the algorithm for languages
and domains where little or no annotated resources are available. On the other
hand, it is completely uncharted waters. It is not at all clear what should count
as invariance across different corpora and domains. Moreover, even if one can
discover such invariants, it is not clear how one can show that these are non-
trivial and syntactic in nature. For these reasons, I have chosen not to explore
this possibility in the present work. However, I do find it an interesting question
for future research.





Chapter 8

Conclusions

On the way to constructing a learning algorithm for syntactic structure, this
thesis introduced three main new components: a syntactic representation, an
incremental parser and a learning algorithm. While each component serves as
the foundation for the next one, it is also interesting in its own right.

The common cover link representation of syntactic structure shares many of
the basic properties of dependency links. At the same time, it allows structures
which dependencies do not allow. These include exocentric constructions and
structures of a lesser degree of skewness than that of dependency structures.
Most crucially, the common cover links represent a relation which is weaker than
that defined by dependencies and is similar to that which has been proposed in
various psycholinguistic models. For the purpose of the present work, the main
advantage of this weaker relation is that it allows incremental parsing, but if it
indeed models cognitive processing more accurately than dependencies then this
may have additional consequences for syntactic analysis. These properties are not
stipulated but are logical consequences of a few simple definitions. This simplicity
makes this representation a good starting point for future extensions.

The incremental parser which is defined for the common cover link represen-
tation is also an interesting contribution in its own right. It provides a simple and
efficient framework for incremental parsing. One specific instance of this parsing
model was developed in this thesis, but many other algorithms, supervised as well
as unsupervised, may be designed to perform parsing within this framework. The
design of the parser is dictated in large part by the definition of incrementality
and the properties of the representation which must be preserved at each step of
the parse. As with the representation, the small number of arbitrary decisions in
the design may make it a good starting point for future extensions.

At the heart of the third component, the learning algorithm, lies a simple la-
beling scheme, which constructs the labels not only based on adjacent words but
also on the labels of those words. These sets of labels can be seen as providing
a transformation of the original corpus, and very simple statistics on this trans-
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formation are all that is used to deduce the syntactic structure. To convert these
statistics into parsing decisions, the best matching labels between words are used
to determine the links between those words. By using the best matching label,
two common problems in parsing are solved together: ambiguity and infrequent
words. While many of the details of the learning algorithm must be refined, I
believe that the labeling scheme and the use of the best matching label are sound
methods which can remain at the heart of future extensions of the algorithm.

Linguistically, the subject of this thesis is the discovery of relationships be-
tween the hidden syntactic structure of a language and the statistics over its
surface structure. To make such a relationship visible, both the syntactic repre-
sentation and the surface structure statistics must be chosen carefully. Applying
a transformation on either side, the statistics or the syntactic representation, may
reveal relationships which would otherwise remain hidden.

While working on this thesis, I have spent much time examining the statistics
of corpora through various transformations, eventually converging onto the label-
ing transformation presented here. When it became apparent that the statistics
over the label transformation resemble the syntactic properties of the language,
I began to adjust the syntactic representation. This was a back and forth pro-
cess, working at both ends, the statistics and the representation, until they finally
met. I can hardly pretend that the two sides match perfectly, and the process
should be continued with more data and patience. This is, I feel, the essence of
the empirical method, which remains close to the data and is driven by what it
observes.
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Samenvatting

De syntactische structuur van taal is niet direct observeerbaar maar speelt een
belangrijke rol in de taalkunde. De vraag die dit proefschrift probeert te beant-
woorden is wat de relatie is tussen de observeerbare taal (de woorden en zinnen
die wij horen en lezen en hun frequenties) en de syntactische structuur van taal.
Dit is een belangrijke vraag in de taalkunde omdat ze sterk verbonden is met fun-
damentele vragen over de structuur van taal en de manier waarop kinderen hun
moedertaal leren. Een manier om deze vraag te beantwoorden is een algoritme te
ontwerpen dat data aangaande zinnen in een taal bijhoudt en deze data gebruikt
om de syntactische structuur van zinnen in de taal te bepalen. Dit proces leert de
syntactische structuur van een taal aan de hand van niet-geannoteerde voorbeel-
den (voorbeelden zoals ze in de taal voorkomen zonder extra informatie). Het
algoritme codeert een relatie tussen de bijgehouden data van de observeerbare
taal en de syntactische structuur. Als het algoritme tenminste een deel van de
syntactische structuur van een taal weet te bepalen kunnen we zeggen dat het
algoritme een benadering is van de relatie tussen de observeerbare taal en haar
syntactische structuur. Zo’n algoritme heet een unsupervised parser (letterlijk:
niet-begeleide ontleder). Dit proefschrift gaat over een voorstel voor een bepaalde
unsupervised parser. Door de parser op corpora van verschillende talen te testen
wordt aangetoond dat het algoritme een deel van de syntactische structuur van
deze talen weet te ontdekken.

De relatie beschreven door de unsupervised parser is niet alleen afhankelijk
van de keuze van welke data worden bijgehouden maar ook van de keuze van een
bepaalde representatie van de syntactische structuur. De juiste representatiekeuze
is om die reden belangrijk voor het vereenvoudigen van de parser. Het eerste deel
van het proefschrift beschrijft een volledig nieuwe representatie van syntactische
structuur (common cover links) en een parseermethode geschikt voor deze nieuwe
representatie.

De common cover links maken het gemakkelijk voor de parser gebruik te ma-
ken van twee belangrijke eigenschappen van natuurlijke taal die ik vooronderstel:
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taal wordt door mensen incrementeel verwerkt en de syntactische structuren van
taal zijn scheef (elke deelboom van een ontledingsboom heeft een korte tak). Door
het gebruik van common cover links kan er een incrementele parser worden ge-
definieerd die de syntactische structuur geleidelijk opbouwt terwijl de woorden
van een zin een-voor-een worden ingelezen. Deze representatie zorgt er ook voor
dat alleen scheve syntactische bomen kunnen worden geproduceerd door de par-
ser. Als gevolg hiervan is het aantal mogelijkheden dat de parser in beschouwing
hoeft te nemen sterk beperkt. Dit maakt het parseren simpel en snel en maakt
de relatie tussen de observaties van de taal en de beslissingen die de parser moet
nemen eenvoudig.

Het tweede deel van het proefschrift beschrijft de data die de parser bijhoudt
en hoe deze worden gebruikt tijdens het parseren. Belangrijk is dat een nieuwe
zin eerst wordt geparseerd en dat pas daarna de data van de zojuist geparseerde
zin worden bijgehouden. De parser wordt op deze wijze geleidelijk verbeterd:
nieuwe data worden toegevoegd aan de oude data en samen worden ze gebruikt
om de volgende zin te parseren en meer data te verzamelen.

De data worden voor ieder woord apart bijgehouden. Voor elk woord bestaan
de data uit labels die de frequentie tellen van woorden die naast het woord voor-
komen en van de labels van die woorden. Op basis van deze labels worden simpele
eigenschappen gëınduceerd die bepalen hoe woorden met elkaar kunnen worden
verbonden tijdens het parseren. Als gevolg van de Zipfdistributie van woorden
in natuurlijke talen hebben labels gebaseerd op frequente woorden de grootste
invloed op de eigenschappen van alle woorden. Op deze manier vervangen de
meest frequente labels de traditionele woordsoorten. Het induceren van de eigen-
schappen van een woord wordt uitgevoerd door het optellen van eigenschappen
van andere woorden. Dat maakt het leerproces net als het parseren simpel en
snel.

De parser is getest op drie corpora, in het Engels, Duits en Chinees. Bij ieder
van deze drie talen weet de parser een deel van de syntactische structuur van de
taal te ontdekken. De parser behaalt veel efficiënter dan eerder geconstrueerde
unsupervised parsers ongeveer even goede resultaten.
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