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Abstract

In my thesis, I show that Order Logic interpreted over preorders provides a unifying
framework for individuals and groups to analyze believe and preference change. Order
Logic is a modal logic with three modalities complete for the class of transitive and
reflexive frames whose fragments and extensions yield various formalisms to analyze
the dynamics of beliefs and preferences. The analysis proceeds in two steps: 1) I
give static logics for belief and preference and 2) I introduce dynamic modalities to
analyze actions over models. I investigate four kinds of doxastic and preference logics:
Relational Doxastic Logic, Binary Preference Logic, Ceteris Paribus Logic and Group
Order Logic. The actions I consider are of two kinds. In a first time, I integrate
three well-known dynamic actions. The first one is public announcement, the second
lexicographic upgrade and the last preference upgrade, exemplifying state elimination,
state reordering and link cutting respectively. In a second time, I introduce new kinds
of actions: agenda expansion and agent promotion. All actions are incorporated into
static logics via compositional analysis, appealing to reduction axioms. This uniform
completeness strategy consists in giving axioms that transform formulas with action
modalities to equivalent formulas in the static language, reducing completeness of the

dynamic logic to that of the static one.
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Chapter 1

Introduction

1.1 Case example

I used to believe that my good friend Robert had never been to Europe. I have known
him for a long time and he had told me on various occasions that he had never set foot
in Europe. One day, while walking in Paris, [ saw a silhouette that looked strangely
familiar. Since I did not know anybody in Paris, my first reaction was to infer that
this person was just a member of my species looking like other members I had seen
before. Getting closer to the person, however, I started thinking that his hair and
jacket looked strangely like Robert’s. My belief that Robert had never been to Europe
was getting more seriously challenged. Yet, I was not ready to change it, since Robert
had never told me about plans to go to Europe; he is quite sedentary. Knowing him
well, I had serious doubts that he could have planned to go without telling me. I thus
formed the belief that there was a man in Paris who looked surprisingly like my dear
friend.

But when I heard the stranger saying: “Patrick, mon ami”, I suddenly realized
that Robert was in Paris. I then had a conflict in my beliefs. On the one hand, I
believed that Robert had never been to Europe. On the other hand, I believed that
Robert was in Paris. Furthermore, since I believe that Paris is in Europe and that
if Robert is in Paris, then he is in Europe, I formed the belief that Robert was in
Europe, following my belief in the rule of Modus Ponens. Ithen had a contradiction in
my beliefs, namely that Robert was and was not in Europe. This contradiction called
for a revision and several alternatives were available to me. I could have stopped
believing that Paris was in Europe, but that would have shaken the very core of my

beliefs about the world in which I live. Had I stopped believing in Modus Ponens, my

1



2 CHAPTER 1. INTRODUCTION

revision would have affected my entire knowledge. No, all I had to do was to drop my
belief that Robert had never been to Europe - as well as some accompanying beliefs.
Once he had told me the story of his presence in Paris, I have formed new beliefs
about Robert and added them to my stock of existing beliefs. I have also retracted
other beliefs that did not cohere with the new information, for example that Robert
had never crossed the Atlantic Ocean or seen the Eiffel tower.

Living in a dynamic world with incomplete information about it, changing beliefs
facing new information is something we do on a daily basis. Being rational animals,
however, our belief changes are not arbitrary; I did not start believing in vampires
because I saw Robert in Paris and I will believe that 2 4+ 2 = 4 until I die. This
non-arbitrariness in belief change is a sign of rationality in action; changeability is a
common feature of rationality. But change does not only occur with beliefs. It is also
typical, perhaps even more importantly, with preferences. Let us pursue the story to

illustrate this.

Once I had given a greeting hug to Robert, I invited him for a drink. Robert said
that he would prefer wine over beer and beer over coffee. Paris is not a good place
to have beer, so I decided to take Robert for wine. But how did I know that Robert
would actually prefer wine over coffee? He did not explicitly tell me so. I made the
inference because I expected his preferences to be transitive, for I know Robert to
be a rational man; if he prefers wine over beer and beer over coffee, then he must
prefer wine over coffee. Off we were to get wine. Of course, as we were having wine,
I ordered some cheese. In the platter, there was Camembert and goat cheese. Robert
was only eating the latter, claiming to prefer it over Camembert. I told him that
Camembert is not the same in Paris as he was used to and convinced him to try it.
He did and indeed liked it better than the goat cheese. This triggered an update
in his preferences. Various reactions might have been expected from him. It might
have been that the experience of tasting the Camembert was so strong as to reverse
his preference altogether, or it might have been that Robert took it as an exception:
“yes I do prefer goat cheese over Camembert, in general, but I must confess that this
Camembert is much better.”

This again illustrates rational attitudes facing new information, this time about
preferences. Just as with beliefs, it is reasonable to expect principles underlying
preference change and Logic to be an appropriate tool to formalize them. There is still
another aspect of preference and belief change that is important, namely group belief

and preference change. Rationality is not something that applies only to individuals.
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Consider the following continuation of my encounter with Robert in Paris.

After our wine and cheese snack, Robert and I decided to share a desert. Among
the choices offered to us, we both preferred chocolate and strawberry deserts, in that
order, but Robert told me that he was allergic to nuts. This automatically ruled out
the chocolate cake, as the waiter informed us. In that case, by my commitment to
participate in a group decision about the desert, I had to comply and accept that
my first choice would not be satisfied. The rational choice for the group consisting of

Robert and I was to order the strawberry desert.

Analysis

The story of my encounter with Robert in Paris reflects the kind of reasoning inves-
tigated in my thesis: belief and preference change, for individuals and groups. When
I have updated my belief that Robert had never been to Europe, I have performed
what is called belief revision. When I have inferred that Robert prefers wine over
coffee, I have applied a principle of Preference Logic: transitivity. If the experience
of tasting Camembert had led Robert to change his preferences so that Camembert
became better than Goat Cheese for him, then he would have upgraded his preference
for Camembert. If, instead, he had taken the experience as an exception to a rule,
then he would have included it under a ceteris paribus clause - everything else being
equal. Finally, when Robert and I have decided to opt for the strawberry desert
instead of the chocolate cake, we have aggregated our preferences so as to maximize
satisfaction - and minimize death toll.

This simple story exemplifies cases of casual belief and preference change that we
take for granted, but for which entire forests have been transformed into research
papers and books. For instance, my reluctance to conclude that Robert was in Paris,
appealing to appearance patterns in the human kind, reflected an important problem
in belief revision: to find an economical and effective revision policy. I was not
expecting to meet Robert in Paris and I tried to make minimal changes to explain
the strange encounter. But when the incoming information was too strong, I was
forced to revise them, and I did it in a way that fundamental beliefs, such as the
geography of the world or logical inferences, were untouched. Minimal change is
usually linked to a hierarchy among beliefs, often called entrenchment of beliefs, and
a great deal of research has been conducted to provide conditions of entrenchment

that guide minimal revision (see for instance [22]).



4 CHAPTER 1. INTRODUCTION

The story is also an illustration of notions to be conceptualized and formalized,
not a list of problems to be solved with mathematical tools; this is intentional. Con-
trast it with old problems such as the barber who only shaves those who do not shave
themselves, or recent problems such as Sleeping Beauty, both appealing to Mathe-
matics for solutions. I do not intend to use Logic along these lines. There are similar
problems that pertain to belief and preference, think of various paradoxes coming out
of solution concepts in game theory, for example backward induction, but my inves-
tigation is not oriented towards them. I am drawing more into the logical analysis
than mere problem solving.

My standpoint is thus primarily analytical, geared towards conceptualization. I do
not claim, however, that all there is to belief and preference is definable and derivable
from Logic; that would be foolish. I think, rather, that beliefs and preferences are
better understood in a dynamic environment and that taking a stance on dynamics of
beliefs and preferences shows something that is left out in more traditional cumulative
and static stories. We change our mind all the time, but we do it rationally and Logic
is a good tool to investigate this. I am thus conceptually committed to the claim that
rationality is not only a static state of mind prescribing beliefs and preferences to
be held over others, but also a disposition to behave in certain ways facing incoming
information and changing environment. My logical standpoint, focusing on dynamics,
is thus innovative from a philosophical point of view and enriches existing analytical
treatments.

Of course, another important outcome of my approach is to provide advances in
Logic itself. Indeed, the systems developed in this thesis come with a plethora of
formal and mathematical results. This other aspect of my research is prominent in
the various chapters, which contains both conceptual analysis of concepts relevant
in Philosophy and technical results important in Mathematics. Logic is thus a nice
intermediate setting between the two disciplines.

Hence, my thesis is another step in the quest for understanding concepts and
their usage in daily life, a step taken with the help of Logic, more specifically Modal
Logic. This choice deserves a discussion which occupies most of the Introduction.
I am of the opinion that Logic is an important tool in Philosophy that has become
underestimated and even neglected in the last decades. I hope to dispel curses against
it by defending its usage and the outcomes expected from it. Doors have been shut
between Philosophy and Logic which should be re-opened before they become sealed
for good.



1.2. MODELING AND MODAL LOGIC 3

1.2 Modeling and Modal Logic

To formalize dynamics, a great deal of work needs to be done to find appropriate
static notions; this is is made clear in the various results obtained throughout the
thesis. For the static models of belief and preference, 1 follow a tradition initiated
by von Wright in [75] and championed, to name landmarks, in the seminal work of
Hintikka in Epistemic Logic [31] and Prior in Temporal Logic [51]. This tradition is
to use Modal Logic as a tool for the conceptual analysis of notions like permission
(von Wright), knowledge and belief (Hintikka) and time (Prior). Likewise, I take
a standard Modal Logic, but with an interpretation as Order Logic, which I use to

formalize various notions of belief and preference.

This choice needs justification, since the Modal Logic I use is expressively quite
limited. Firstly, I only use Propositional Modal Logic and thus do not resort to the
expressive power of first-order quantifiers. Due to its expressive limitations, Modal
Logic can only make general distinctions; it cannot give a fine-grained analysis of its
concepts. Secondly, Modal Logic is inherently qualitative in that it can talk about
being more or less plausible, or more preferred - as we will see repeatedly - but cannot
express quantitative notions, for example of having a belief of degree 0.95 in x. Modal
Logic is thus only a fragment of First-Order Logic, which is itself expressively limited
compared to probabilistic models that rely on the full power of Mathematics. Why
then should one restrains her inquiries in a system which is thus limited, when stronger

ones are available?

My answer is that this relative poverty of Modal Logic is precisely what makes
it advantageous. Firstly, it forces one to make concepts explicit and be clear-minded
about what is claimed. If one is not clear about the notions to be formalized, the
logic obtained will yield unwanted principles. Vice versa, the principles assumed by
the logic provide clear grounds for philosophical discussions. This has been the case,
for instance, with the positive introspection epistemic axiom K¢ — KKyp: if I know
o, then I know that I know it. This axiom has initiated a big debate about the
notion of knowledge. Secondly, Modal Logic is also closer to realistic applications of
its concepts in computer science. It is for one decidable, unlike First-Order Logic, but
shares with it nice formal properties such as compactness, and is of course complete.
There is a balance between conceptual expressive power and practical application,
and Modal Logic finds a nice equilibrium between the two. In the same line of

thoughts, my thesis can be seen as lying in between conceptual work in philosophy
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and foundational work in computer science and artificial intelligence. I hope that
this situation will actually help building bridges between them. Finally, constraints
given by the expressive power of Modal Logic force creativity, both in finding general
principles that would still hold in more expressive systems, but also in being able
to draw conclusions that may seem hidden in the generality of the approach. If one
can formalize notions of belief and preference in Modal Logic, then one shows a firm
understanding of the concepts.

Furthermore, the worries about Modal Logic could be turned around against pro-
ponents of richer languages, namely that one should not use a system stronger than
what is to be explained. There is no reason to have a formalization of belief change
depending ultimately on the continuum hypothesis! Modal Logic is not sufficient to
encompass all there is to say about belief and preference, granted, but then Mathe-
matics with no restrains would be saying too much. Going bottom-up, starting with
poor languages and enriching them as we go along is just as valuable as a top-down
approach, giving oneself unlimited expressive powers to begin with and then looking
for weaker systems with better control. My hope is that the two approaches will
meet in the middle, but for that we need workers from both ends of the tunnel, and
I choose the Modal Logic one.

Following this discussion, I need to be honest about the terminology used in
this thesis. When I talk about beliefs and preferences, I mean some primitive and
encompassing notions, the kind that can be formalized and put (theoretically) inside
a machine. These notions are thus only a part of the full notions of belief and
preferences that humans and other animals possess. For instance, although I talk
about plausibility order and hierarchies of beliefs, I do not differentiate between basic
beliefs, such as that the sky is blue, or more abstract ones, such as a belief in God;
anything that can be expressed in a proposition is subject to be a belief in this thesis,
likewise with preferences. Beliefs are thus not ordered according to kinds, origins or
formations, but solely with respect to plausibility. It is about this hierarchy in terms
of plausibility that Modal Logic can reason efficiently. The problem of formalizing
this kind of simplified notion is already difficult and is a good starting point. If we
can get that straight, then we may undertake more complex analysis that might lead
to a richer understanding of belief and preference change.

My contribution to the conceptual analysis of the concepts of belief and preference
is more important with respect to their dynamic aspect. In this regard, formal tools

are more decisive, as they can clearly display rules that govern belief and preference
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change. In a modal logic setting, the dynamics can be firmly grasped and the relative

poverty of statics yields a perspicuous analysis of dynamics.

Lakatos and positive heuristic of a programme

In developing logics for beliefs and preferences, one is prone to stay confined to in-
trospective analysis, isolated in her arm-chair investigation. By moving to dynamics,
however, one opens horizons to other disciplines, such as Computer Science, embed-
ding her research in a growing inter-disciplinary scientific paradigm. The dynamic
logical approach situates modeling in a scientific endeavor, bringing out links to other
disciplines that may have been unforeseen otherwise. I make a little digression here
and argue that the kind of modeling I use does exactly that by echoing Lakatos’ ac-
count of the development of physics in Philosophy of Science, in particular what he

calls the positive heuristic of a research programme in [35]:

“The positive heuristic sets out a programme which lists a chain of ever
more complicated models simulating reality: the scientist’s attention is
riveted on building his models following instructions which are laid down
in the positive part of his programme. He ignores the actual counterex-

amples, the available ‘data’.” (Op. cit., p.50)

To support this claim, Lakatos takes the example of Newton and the development of
his programme for a planetary system. Newton’s first studies were with a two-body
system consisting of a fixed point-like sun and a moving point-like planet. Once he
could manage this simple system, he moved to a two-body system revolving around
a common center of gravity. This change, claims Lakatos, was not motivated by
available data, since no anomaly was yet present in the model itself. Eventually,
Newton created a system in which the sun and the planets were not point-like objects
anymore, motivated by the fact that there cannot be infinite density. An so on and
so forth until he could publish the Principia. The point is that Newton started with
a simple unrealistic model and transformed his results into a research programme
which gradually handled complicated planetary systems. Each step were motivated

by obvious shortcomings of previous models which he had endorsed to get his system

going.

“Most, if not all, Newtonian ‘puzzles’, leading to a series of new vari-

ants superseding each other, were foreseeable at the time of Newton’s first
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naive model and no doubt Newton and his colleagues did foresee them:
Newton must have been fully aware of the blatant falsity of his first vari-
ants. Nothing shows the existence of a positive heuristic of a research
programme clearer that this fact: this is why one speaks of ‘models’ in

research programmes.” (Op. cit. p.51)

To this claim, one could add that the development of Dynamic Logic and in a broader
scope of artificial intelligence is just as good an example of the existence a positive
heuristic of a research programme, one which we are witnessing in progress and to
which I am contributing in the present thesis.! The notions of belief and preference
outlined in my thesis are defeasible empirically, but the principles they sustain might
be at the core of more complex philosophical investigations which would be defeated

themselves if they ignored them.

1.3 Preorders, statics and dynamics

A general result coming out of my thesis - although not contained in a single the-
orem - is that a great deal of belief and preference change can be understood by
analyzing comparative structures, interpreted as plausibility for belief or betterness
for preference. To accomplish this, two things needs to analyzed: 1) statics and 2)
dynamics.

The class of static comparative structure over which I base all the research in
this thesis is the class of preorders. Preorders are reflexive and transitive relations
that provide qualitative hierarchy between states. They can be seen as graphs whose
nodes are sets of equivalent states with respect to the order, as in Figure 1.1. In the
figure, states to the right are higher (or better or more plausible) in the order, for
instance states u and v are higher (or better or more plausible) than state t. Two
states are put in the same cluster if they are of equal rank with respect to the order,
for example states u and v. Finally, two states are incomparable if neither is higher
than the other, for instance states u and s.

In this thesis, the class of preorders provides a uniform setting to investigate
notions of belief and preference, depending on which interpretation is given to the

order. In the case of belief, I use preorders to say that ¢ is believed if it is true in the

'T do not wish to claim that I am in a similar situation as Newton, one of the greatest minds of
all time... oh I will: it’s just like Newton!
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(3

Figure 1.1: Graphical representation of a preorder, where states are equivalent with
respect to the order if they are in the same cluster, and states to the right are ranked
higher than those to the right.

most plausible worlds according to a plausibility relation. For example, ¢ is believed
in the structure represented in Figure 1.1, if the figure is interpreted as providing a
plausibility order, since ¢ is true in all states that are most plausible - to the right. In
the case of preference, various notions of preference can be defined over preorders, one
of them stating that ¢ is preferred to ¢ if every (-state is better than every i-state
in a preorder interpreted as a betterness relation. This is the case in Figure 1.1.

Figure 1.1 represents, in a simplistic way, one of the main point of my thesis,
namely that from a logical point of view, beliefs and preferences can be understood
as comparative reasoning and a logic for preorders provides the core of this kind of
reasoning.

For the dynamics part, my investigation falls under the growing paradigm of Dy-
namic Logic (cf. [72]). Dynamic Logic is the study of model change, either over
states or accessibility relations. Three kinds of actions can be performed over static
models: 1) adding or eliminating states, 2) reordering states, or 3) adding or elimi-
nating accessibility links. A simple case of world elimination is illustrated in Figure
1.2. Formally, a dynamic structure is superposed over a static one: one starts with
a static model and performs an action over it to end-up in a different static model.
This might best be understood via completeness results, as is apparent in the various

chapters. Completeness results for dynamification of static logics use the technique
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Figure 1.2: TIllustration of the dynamic action of removing —A-states from a static
structure.

of compositional analysis via reduction azxioms, which consists in giving principles
that analyze the effect of actions from the point of view of the original model in
which they are performed. In other words, actions are encoded in static models and
compositional analysis shows how to decode them.

Dynamic Logic can be seen as giving a constructive notion of dynamics, in the
sense that it formalizes explicitly how models are transformed, as opposed to a postu-
lational approach - especially when talking about belief change - which can be seen as
providing desiderata of specific actions without describing how they work on models.
Both approaches are valuable, but my thesis shows how the constructive one is better
suited for the unifying treatment of belief and preference change in Order Logic.

Chapter 2 is devoted to a logic defined over the class of preorders, called Order
Logic, and introduces three exemplars of dynamic actions which recur throughout the
thesis. The rest of the chapters build on Order Logic, by isolating belief (Chapter
3) and preference (Chapter 4) fragments, or by considering extensions, the Ceteris
Paribus Logic (Chapter 5) and Aggregation Logic (Chapter 6).> Order Logic is thus
a good balance between its preference and belief fragments and its ceteris paribus
and aggregation extensions. In the next section, I give a more detailed overview of
the thesis.

1.4 Overview of the thesis

The main thrust of my thesis is a logical study of preorders and various interpretations
that yield formalisms for belief and preference change. Every chapter is constructed
in the same way. Each chapter first presents static models and give their complete
axiomatization. Completeness results occupy an important place in my thesis. One

reason is that they are intrinsically important: with them, one can see the logical

2The content of Chapters 2 to 5 is taken from two published papers, [23] for Chapter 3 and [68]
for the three others. Chapter 6 presents unpublished material so far.
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inferences, or patterns of reasoning, that various semantics sustain. They also secure
semantics, for they show that one has control over it. Another reason for spending
efforts on completeness results is their applicability in the second division of each
chapter: dynamics. Indeed, once the static part is settled, each chapter proceeds to
the dynamification of the static models. This is made via the introduction of known
actions, such as public announcement (Chapters 3 and 4), or of new actions, guided by
special features of the static models (Chapters 5 and 6). Again, completeness results
for the dynamification play an important role. Here, however, I use the technique of
compositional analysis (cf. [33, 70, 72]). Compositional analysis reduces completeness
of a dynamic system to the completeness of the static one via reduction axioms, hence
the importance of completeness results for the static parts.

Chapter 2 sets the stage for the next chapters and is devoted to an uninterpreted
logic defined over the class of preorders. This logic, called Order Logic, is a simple
multi-modal logic with one diamond ©= defined over a weak relation < and a second
diamond ©< defined over the strict subrelation < of <. In addition, I introduce in
the basic language the existential modality Fy, which is true at a state if ¢ is true
somewhere in the model. The existential modality is of tremendous help in the next
chapters, as it can distinguish minimal states, and so express doxastic statements, or
talk about global features of models, thus expressing preferences of the kind “every
p-state is better than every i-state”.

Order Logic is in itself a standard modal logic that can be found, perhaps crypti-
cally, in most introductory books. A similar language was studied by Boutilier in [8],
although Boutilier takes as primitive inverse modalities and defines the existential
modality with it; this is formally equivalent. The language I use originated more
recently in [71] and [73], and was applied in [41, 55]. In all of these, the logic is
referred to as Preference Logic, but I decided to call it Order Logic, reserving the ter-
minology of preference for the binary preference logic studied in Chapter 4. I prefer
this nomenclature for the general logic, and the more specific terms ‘Doxastic’ and
‘Preference Logic’ presented in the other chapters. The completeness result for Order
Logic is taken from [68] and is based on the technique of bulldozing introduced by
Segerberg in [58].

For the dynamic parts of this chapter, I introduce three well-known actions: 1)
public announcement ([72]), 2) lexicographic upgrade ([67]) and 3) preference upgrade
([69]). I choose these three actions because they exemplify important kinds of actions:

1) world-elimination, 2) reordering and 3) link-cutting. Furthermore, the second
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and third action have been introduced with the intent of dynamifying beliefs and
preferences respectively. It is thus natural to see how they apply in my setting. The
last section of Chapter 2 shows how the technique of compositional analysis is applied

throughout the thesis, thus facilitating its recurrences in future chapters.

Chapter 3 shows that the framework of the previous chapter is adequate for what
it is meant to do with respect to Dynamic Logic and beliefs: formalizing belief change.
This chapter is embedded in a tradition initiated in the seminal belief revision paper
[1] (see also [22]) and formalized in Modal Logic by Segerberg in various papers (see
[40] for the most recent presentation). Segerberg’s logic, called Dynamic Dozastic
Logic (DDL), is modeled using what he called onions, which are like Lewis’ systems
of spheres (cf. Lewis73), but centered around a set of world instead of a single
world. To see how this approach to belief revision can be treated inside Order Logic,
I investigate a generalization of DD L over non-connected systems of spheres. One
contribution on the static part is the generalization of Segerberg’s models to include
non-linear systems of spheres, thus allowing to deal with relational belief revision.
This in itself provides a nice extra to the linear, or functional, analysis of belief
change. To introduce dynamics, I first show how Relational Doxastic Logic can be
seen as a fragment of Order Logic. To achieve this, however, one obvious obstacles
has to be overcome, namely that Segerberg uses neighborhood models, whereas Order
Logic is set in a standard Kripkean framework. One important theorem here is that an
important fragment of Relational Doxastic Logic is equivalent to a conditional logic,
investigated independently by Veltman ([74]) and Burgess ([10]), called the Minimal
Conditional Logic. 1 finally show how van Benthem’s lexicographic action can be
introduced in Relational Doxastic Logic by the standard method of compositional

analysis alluded to above.

In Chapter 4, I investigate a different fragment of Order Logic, the fragment of
binary preferences. Binary preferences are statements of the form ¢ P, comparing
two sentences and saying that one is preferred to the other. This was von Wright’s
approach in his seminal [76], a work to which I appeal on various occasions, especially
as being the investigator of the notion of ceteris paribus preferences, the main topic
of Chapter 5. Here, the existential modality of Order Logic is used to capture the
global feature of binary preference statements. For instance, one may say that ¢ is
preferred to 1 if every p-state is better than every v-state, or if one p-state is better
than every i-state, and so on. Many binary preference statements can be defined in

this fashion and I present eight definitions, written in the form ¢ <, ¥ or ¢ <5 7,
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to take two examples. Again, these fragments have been studied in [71, 73, 41, 55]
and [68]. Once I have shown how each of these binary preference definitions lead
to fragments of Order Logic, I focus on a specific fragment, the <., fragment, and
axiomatize it, following [68]. Similar results for the < 5 fragment can be found in
[26]. Finally, T introduce dynamics, this time focusing on preference upgrade; this is
straightforward, and follows results of [69].

Chapter 5 is the best instantiation of the interplay between Logic and Philosophy
described in the beginning of this introduction. I consider therein the notion of ceteris
paribus - translated as all other things being equal - and give a thorough logical
analysis. ‘Ceteris paribus’ belongs to the folklore of many disciplines, ranging from
Economics (cf., [49]) to Philosophy of Science (cf., [12]), but is never precisely defined
nor used in consistent ways. The formalization I provide originated in the work of
von Wright [76] and was further analyzed in [19]. So-called ceteris paribus clauses are
typically used to account for defeaters of laws ([20]), so that laws can still be stated
even though they may fail on occasions ruled out by the ceteris paribus clauses. 1
differentiate between two main general meaning ascribed to these clauses, which I call
the equality and normality reading of ceteris paribus and I then focus my attention
on the former one. The equality reading of ceteris paribus is naturally analyzed in a
logical setting, and the reasoning it sustains is displayed explicitly. This is of great
conceptual value, but the logic also raises interesting mathematical questions, since
ceteris paribus variants of logics are situated in between basic and Infinitary Modal
Logic, a situation which was monopolized by Propositional Dynamic Logic and the
p~calculus so far. Again, this raises interesting formal questions between the two
approaches.

For the dynamics, I show how one can introduce public announcement and pref-
erence upgrade; this is easy. The more interesting part is in the new kind of actions
suggested by Ceteris Paribus Logic, interpreted in terms of research agenda and the
addition of formulas to the agenda. The subject of a research agenda, however, seems
to be better situated in a multi-agent setting and this calls for a logic of aggregation,
provided in the next and final chapter.

Finally, Chapter 6 presents another extension of the language of Order Logic, this
time with so-called nominals, to get a system of aggregation. I call the The result-
ing logic Group Order Logic. The results of this chapter are based on those of [2].
The interest of this latter paper is in providing a mechanism for the aggregation of

preference relation, called lexicographic reordering, which satisfies nice aggregation
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properties, such as independence of irrelevant alternatives, without being dictatorial.
2] thus presents a possibility result, to be contrasted with the famous Arrow’s impos-
sibility result ([6]) in social choice theory or more recent ones in the field of judgment
aggregation (see for example [18]). My contribution in this Chapter is to modalize the
algebraic approach of [2] and to show that the logic consists in the simple extension
of Order Logic with nominals. I also investigate group binary preferences and show
how to introduce the action of public announcement and preference upgrade in the
logic; again, this is straightforward. Finally, I introduce yet another kind of action,
this time over so-called priority graphs providing hierarchies among agents. The new
action is that of promotion of an agent inside a (sub)group.

Beliefs and preferences hang together in various areas. They both play, for in-
stance, an important role in game theory, but their interaction is so complicated and
rich that there is still a lot to be understood from a logical point of view. The unifying

system presented in this thesis might shed some lights on their interplay.



Chapter 2
Setting the stage: Order Logic

For every logic presented in the thesis, I work in two stages. I first present the
static logic and then introduce dynamics as transformations on models, either over
the states or the relations. In most cases, dynamification is performed by introducing
well-known actions, but I also discuss new kinds of actions in Chapters 5 and 6,
building on ceteris paribus and group preference logics. In this preparatory chapter,
I give the basic framework whose fragments and extensions are the subject of the
remaining chapters.

The static logic advocated in this chapter is a basic modal logic with three dia-
monds, one defined over the accessibility relation =<, the other over its strict subre-
lation < and the last one, the existential modality. The class of models targeted is
isolated by the accessibility relation <, which is restrained to preorders, i.e., reflexive
and transitive models. Various notions of preferences and beliefs are defined over
this class, but to start with, I take a more general standpoint and talk about Order
Logic. Order Logic has been at the core of different systems under various guises. The
version [ use is based on the work of a few authors in selected papers, in particular
Boutilier [8] and van Benthem, van Otterloo and Roy [71].!

My choice for preorders over connected orders is guided by the following consid-
erations. With connected orders, three comparisons obtain: 1) x is better than y,
2) y is better than x and 3) indifference between = and y. With preorders, a fourth
kind of comparison can be made, namely 4) z and y are incomparable. The differ-
ence between incomparability and indifference is an important one, both for beliefs

and preferences, and this is my reason to start my investigations with preorders. This

!The results presented in this chapter have been obtained in collaboration with van Benthem and
Roy, soon to be published in [68].

15
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choice becomes important in Chapter 3, since most research in belief revision has been
conducted over connected orders. One reason might be that the conditional aspect of
belief revision makes a treatment over preorders almost intractable. An advantage of
the constructive dynamic approach used in Chapter 3 is to dissolve these problems,
by formalizing belief revision inside a standard Kripkean framework.

The background for the basic dynamic logic tools presented in section 2.2 can be
found in several places. In this chapter, I focus on three basic actions: 1) public
announcement [72], 2) lexicographic upgrade [67] and 3) preference upgrade [69].
These three actions provide a nice sample of typical actions over models, respectively
1) state elimination, 2) relation change and 3) link cutting. More actions could
be analyzed in a similar fashion, but I prefer a standpoint closer to the intended

interpretation of the basic language.

2.1 Order Logic

Let PROP be a set of propositional letters. The starting language, denoted Lo, is
inductively defined by the following rules:

Lo=p|leVi|-p|O%p| 0| Ep

The class of formulas of Ly is denoted ‘FORM’. The intended reading of OS¢ is
“p is true in a state that is considered to be at least as good as the current state”,
whereas that of O<¢ is “p is true in a state that is considered to be strictly better
than the current state”. Eo is interpreted as “there is a state where ¢ is true”.?

[ write O<¢ to abbreviate ===, and use O0<¢ and Uy for the duals of O<¢

and E¢ respectively.

Order models

Definition 2.1.1 [Models] An order model 9 is a triple M = (W, <, V) where W
is a set of states, < is a reflexive and transitive relation (a preorder) and V is a
standard propositional valuation. The strict subrelation < is defined in terms of <:

u<v:=u=x0v&notv =< u Finally, a pointed order model is a pair 91, u where

2T could let the language have multi-agents by indexing the modalities with members of a set of
agents. I omit this in the present chapter for ease of notation and readability. When the need for
multi-agent arises, I will make it explicit.
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ueWw. <

Interpretation

Definition 2.1.2 [Truth definition] Formulas of Lo are interpreted in pointed order

models.

MoukE=Dp iff weV(p)

M, u = —p iff M u b p

MoulEeVy iff MulE@or MulE=1p
MupE OS¢ iff Just u=xv&MolEep
MupEOSp if FJust u<v&MoEp
MulE Ep iff Just MokEp

<

Definition 2.1.3 A formula ¢ is said to be satisfiable in a model M if there is a

state u such that 9, u |= ¢ and valid if it is true at every state in every model. <

Expressive power

From time to time, I appeal to the notions of modal equivalence and bisimulation to
investigate the expressive power of the various logics presented in the thesis. These
notions are by now well-understood (see for instance [7]) and I content myself with

listing the definitions and proposition required latter on.

Definition 2.1.4 [Modal equivalence] Two pointed models 9, v and M, v are modally
equivalent, noted M, u «~ M, v, iff they satisfy exactly the same formulas of Lo, i.e.
Vo € FORM, M, u = ¢ iff M v = p. N

Definition 2.1.5 [Bisimulation] Two order pointed models 9%, u and ', v are bisim-
ilar (written 9, u < M, v) if there is a relation R C M x M’ such that:

1. If sRt then for all p € PROP, s € V(p) iff t € V'(p),

2. (Forth) if sRt and s < s’ (s < ') then there is a ¢’ € W’ such that ¢t <" ¢’
(t <"t respectively) and s'Rt’,

3. (Back) if sRt and t ="' (¢t <" t') then there is a s € W such that s < 5" (s < &
respectively) and s'Rt’,
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4. For all s € W, there is a t € W' such that sRt, and

5. For all t € W/, there is a s € W such that sRt.

Definition 2.1.5 defines a notion of what is often called a total bisimulation, due
to clauses 4 and 5, which are included to take care of the existential modality in

Proposition 2.1.6.

Proposition 2.1.6 For every u € M and o € M, if M, u < M, v, then M, u «
M, v.

Proposition 2.1.6 can be used, for instance, to show that the modality &<y is not
definable in terms of O=¢ - even though the strict relation < is defined in terms of

=<. I prove this in the following Fact.

Fact 2.1.7 The modality O< is not definable with <.

Proof. A simple bisimulation argument establishes this latter claim. Let there
be two models My = {u} with <= {(u,u)}, Vi(p) = {u} and My = {s,t} with
=o= {(s,t),(t,t)}, Vo(p) = {s,t}. Then, p is strictly better at s, since there is a
state ¢ such that s < t&t A s and M, ¢t = p, but p is not strictly better at u. But
modal formulas of Lo are invariant under bisimulation, thus v and s satisfy the same

formulas. Therefore, L» cannot define the strict subrelation < of <. QED

Axiomatization

Let us call A%© the logic of order models. This logic has two well-known fragments,
namely S4 for = and S5 for £. For <, the logic contains K. In addition, there

are interaction axioms relating the three modalities. A“¢ is thus axiomatized by:
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O(p = ) — (05p — O%Y) (1)
O<(p = ) = (0%p — O<Y) (22)
Bly — ) — (Bp — EY) (23)

p — OS¢ (2.4)

¢ — By (2.5)

OSOSp — OS¢ (2.6)

EE¢ — Eg (2.7)

o = UFEyp (2.8)

OSp — Eyp (2.9)

FOSp — Op (2.10)

FOSO<p — O<p (2.11)

FO<OSp — O<p (2.12)

P AOZY — (O V OS (P A Op)) (2.13)

Ar, has the usual rules of Modus Ponens (if ¢ and ¢ — 1 are provable, then ¢ is
provable) and Necessitation (if ¢ is provable, then Ot is provable, where O stands
for any of the box-modalities). I did not include a transitivity axiom for &< as it is

derivable:
Fact 2.1.8 Transitivity of &< is derivable, i.e., F O<O<p — O<op.

Proof. Assume that - O<O<¢, then Axiom 2.10 implies that = O=O<p. By Axiom
211, F O<¢. QED

Fact 2.1.8 reflects that, in order models, transitivity of < is derived from transitivity

of <. Similarly, Axioms 2.9 and 2.10 together imply that - O<p — Eo.

Completeness of Ly

It is not trivial to show completeness with respect to the class of models where <
is irreflexive, for this property is not expressible in ordinary modal logic, as I have
already shown. Known techniques to cope with this difficulty include the introduction
of the “Gabbay Irreflexivity Rule” [21], “bulldozing” the canonical model [58] or
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extending the language with hybrid modalities. I resort to the bulldozing technique
below.

Order models present a further challenge, namely that < in our modal is a specific
strict subrelation of <, as I have stressed numerous times now. If < is the intended
strict subrelation of <, then I say that < is adequate with respect to <. The following

definition makes this precise.

Definition 2.1.9 A relation < is called adequate with respect to < if the following

are equivalent:

1. w=<w

2. (a) w=wvand
(b) v A w.

If only the direction from (2) to (1) holds, then the relation < is said to be quasi-
adequate with respect to <. <

It should be clear that Axiom 2.10 takes care of the implication from (1) to (2.a), and
I show below how to adapt the bulldozing technique to ensure that (2.b) also holds.
Quasi-=<-adequacy is taken care of by Axiom 2.13, as the following correspondence

argument shows.

Fact 2.1.10 1. If a model M is based on a quasi-<-adequate frame, then M, u =
P AOSY — (O V OS(p A OSp)) for every state u.

2. For every frame §, if § E o AN OStp — (O<¢p V OS(h A OS¢)) |, then § is

quasi-<-adequate.
Proor or Fact 2.1.10

1. Take any model based on a quasi-<-adequate frame, and a state u € W such
that MM, u = ¢ A ©=¢. This means that there is a v such that u < v and
M, v = 1. Now, either v < u or not. In the first case, M, v | ¥ A OS¢,
and thus 9, u = O=( A OS¢). In the second case, because 9 is based on a
quasi-<-adequate frame, u < v. Therefore, M, u = <.

2. Suppose that v < v and v £ u. Take a model 91 with a valuation V on § such
that V(p) = {u} and V(q) = {v}. Thus, M,u = p A O=¢. By Axiom 2.13,
M,u = O<qV O=(q A OSp). Thus, for some w, either u < w&w = v (i.e.,

u < v) - and we are done - or u < v < u.
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Infinite strict ordering

Q_
@_

Figure 2.1: The canonical model 97t° and its bulldozed counterpart B, where the
<-clusters are replaced with infinite strict orderings, indicated with the dotted line
in the picture. The bulldozing technique I use describes just how to get appropriate
strict orderings.

<

Theorem 2.1.11 The logic A*© is sound and complete with respect to the class of

order models.

Proof.

Over order models, it is a routine argument to show soundness for K, S4 and S5,
as well as for the inclusion Axioms 2.11 and 2.12. Soundness of Axiom 2.13 was shown
in Fact 2.1.10 and I have shown in Fact 2.1.8 that transitivity of &< is derivable.

For completeness, I show that every A“©-consistent set ® of formula has a model.
I appeal to the standard definition of the canonical model ¢ = (W, <, V) for A%© (cf.
[7]). T also use the fact that I can extend ® to a maximally consistent set (MCS) I’
that contains every formula E or its negation. I call theset {¢ : Fp € I' or Up € I'}
the E-theory of I', and I call the restriction of 901¢ to the set of MC'S A that have
the same E-theory as I' its E-submodel. In the F-submodel, E is a genuine global
modality and, by Axiom 2.10, this submodel contains the submodel generated by I'.
From now on, when referring to 91, I mean one of its F-submodels. I also use u, v
to refer to MC'S in W.

It is a standard result of modal logic that every consistent set ® is satisfiable
in 9¢, but this model is not an order model in the intended sense. To see this, I
introduce some terminology. Given an order model 9, a subset C' of W is called a
<-cluster iff u < v for all u,v € C'; <-clusters are defined in the same way. Clearly,
if a model contains <-clusters, it is not <-adequate, thus not an order model. The
difficulty in showing completeness for the class of order models is to guarantee the

absence of <-clusters in 91¢. This is exactly what the “bulldozing” technique achieves
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(cf. [7, p.221-222]). The crux of this transformation is to substitute infinite strict
orderings for <-clusters, as shown in Figure 2.1. The following lemma is required in

the main proof.

Lemma 2.1.12 For any =<-cluster C' in M, if any two states u,v € C' are such that
u < v then for all s,t € C, s < t.

Proof. Assume that, within a <-cluster C', there are two states u,v € C such that
u < v. I show that for any s,¢t in C, s < t. This amounts to showing that ¢<¢ € s
for any ¢ € t. Consider an arbitrary ¢ € t. Since C is a =-cluster, OS¢ € v, and
u < v implies that O<O=p € u, from which it follows that ¢<¢ € u by Axiom 2.13.
But since C' is a =-cluster, OSO<p € s, and Axiom 2.11 implies that O<¢ € s, as

required. QED

Bulldozing is now applied to those clusters containing <-links. This is done by the

following steps:

1. Index the =<-clusters that contain < links with an index set I.

2. Choose an arbitrary strict ordering <% on each C;. Observe that, by Lemma

2.1.12, any <’ so chosen is a subrelation of < on C;.
3. For each cluster C}, define Cf as C; X Z.
4. Build the bulldozed model Bull(9¢) = (B, <’, <’, V') as follows.

e Call W~ the set of MCS that are not <-clusters (W—{J,.,; C;), and let
B=W~"UU,es Cf}. [ use x,y, z... to range over elements of B. Note that
if © ¢ W~ then x is a pair (u,n) for u € W and n € Z.

e Define the map 8 : B — W by fB(z) = z if 2 € W~ and f(z) = u
otherwise, i.e., if = is a pair (u,n) for some u and n.

e Now, the key step of the construction: defining, in a truth-preserving way,
an adequate version of <. There are four cases to consider:

Case 1: z or yisin W ™. In this case the original relation < was adequate
(cf. Definition 2.1.9), and is thus directly copied into Bull(9M°): x <"y
iff 5(z) < B(y).

Case 2: f(x) € C;, B(y) € Cj and i # j. Here, f(x) and [(y) are in
different clusters and the original < link between them is adequate.

Put again z <’ y iff B(x) < 5(y).
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Case 3: ((z),8(y) € C; for some . In this case, z = (u,m) and y = (v, n)
for some m,n. There are two sub-cases to be considered:
Case 3.1: If m # n, use the natural strict ordering on Z: (u,m) <’
(v,n) iff m < n.
Case 3.2: Otherwise, if m = n, use the adequate (i.e. strict) sub-

relation <’ chosen above: (u,m) < (v,m) iff u <" v.

e To define the relation =’, there are again two cases to be considered, in

order to make <" adequate:

Case 1: If x € W~ or y € W, take the original relation <: = <’ y iff
Blz) = By)
Case 2: Otherwise (z and y are not in W), take the reflexive closure of

<rxXyiff x <" yorx=y.
e The valuation on Bull(9M°) is based on the valuation on MM = € V'(p) iff
B(z) € V(p).

Bull(9M°) is, as indented, an adequate model:

Observation 2.1.13 Bull(9M°) is <'-adequate.

PROOF OF OBSERVATION In 901¢, given that Axiom 2.12 is a Sahlqvist formula, if
u = v and v £ u, then u < v. This property is transferred to Bull(99°) if u and v
are in different =<-clusters, or if they are not in the same cluster and then u <" v by
definition. If u and v are in the same <-cluster, then <’ is constructed so as to be
adequate by taking <’ to be the reflexive closure of <’. This implication would not

hold in 991¢ only in <-clusters. <

All that remains to be shown is that Bull(9t°) and the canonical model satisfy
the same formulas. This is done by showing that Bis = {(x,u), (u,z) : u = B(x)} is

a total bisimulation.

CLAIM 1 Bis is a total bisimulation.

Proor or CrLAIM 1 Observe first that 3 is a surjective map, which establishes
totality. The definition of V' yields the condition on proposition letters automatically.

It remains to show that the back and forth condition hold for <’ and <.
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(=) Forth condition: assume that x <" y. Given that Bis is total, all I have to show

is that there is a uw € W such that f(z) < u = [(y). If either z or y € W~ the
result follows directly from case 1 of the definition of =<’. Otherwise, if z = v,
then axiom T imply that 3(x) = ((y). Finally, if x # y, then case 2 of the
definition of <" implies that x <" y. But then cases 2, 3.1 and 3.2 of <" imply
that f(x) < B(y), and so B(z) = B(y), since < is included in < by Axiom 2.10.

Back condition: assume that G(z) =< u. I have to find a y € B such that
B(y) = w and x =" y. The only tricky case is when f(z) and w are in the
same <-cluster. This means that = = (v, m) for some m. Take any y such that
y = (u,n) and m < n. By the definition of <’ x <"y and so x <’ y by case 2
of the definition of <’.

(=") The argument for < follows the same steps as for <. I indicate the key obser-

vations. It should be clear that for all z,y € B, if <" y then 5(z) < (y). 1
show that if f(x) < w then there is a y € B such that <" y and ((y) = .

1. If wis in W, then 87! (u) is unique and = <" 37 (u).
2. If u € C; for some i, B~ (u) is the set {(u,n) : n € Z}. If f(x) € W~ or
B(x) € C; with i # 7, let y = (u,n) for an arbitrary element of this set.

3. Finally, if 8(z) and u are in the same cluster. Then x = (v, m) for some
m € Z. Take any n such that m < n, then the pair y = (u,n) has the

required properties.

This concludes our proof of the completeness theorem for Le. QED

2.2 Dynamics

In the remainder of this chapter, I introduce the three main actions of 1) public

announcement, 2) lezicographic upgrade and 3) preference upgrade. 1 then discuss

a general technique for completeness results, known as compositional analysis via

reduction axioms, which I use numerous times in the thesis. Compositional analysis

is a way of getting completeness for extended dynamic languages by reducing the

analysis of the action modalities to the static language, thus reducing completeness

of the dynamic language to that of the static one.
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Figure 2.2: The effect of publicly announcing A

Public announcement

A public announcement of some information A is simply the truthful announcement
of A. If A is true at a state u and is announced, then all = A-state are deleted from the
model along with accessibility relations from A to —A-states. Public announcements
are represented by modalities of the form (!A)p for every A and the modalities are

interpreted by:

MulE (lA)p if MupEA&M|a,ulE= @ (2.14)

where 9| 4 is the submodel whose domain is given by the set of states that satisfy
A (W|4) with a corresponding restriction of the accessibility relation to W|4. The
effect of announcing A is depicted in Figure 2.2. The left model is divided into two
zones, the A and the —A-zones. The right model is the result of publicly announcing

A, thus eliminating all —A-states as well as the relations to or from —A-states.

Lexicographic upgrade

Lexicographic upgrade, denoted ‘ft A’, was first analyzed in the dynamic logic ap-
proach to belief revision by van Benthem in [67]. His goal was to provide a framework
for belief revision in a dynamic setting, rather than a conditional one as, for instance,
in DDL (cf. [40]). His approach is advantageous over traditional alternatives found
in the literature in various ways. Firstly, it is all worked-out in a modal logic setting,
rather than with conditionals. This is technically advantageous because the language
is much simpler and comes with many technical results that apply to it directly. Sec-
ondly, it is not restricted to revisions with factual information, as is the case in DDL.
Finally, it can deal with iteration in a straightforward way, something that has been
a major problem in belief revision.

Lexicographic upgrade, unlike public announcement, acts on links between states
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A A A A

Figure 2.3: lustration of lexicographic upgrade

rather than on states themselves. It can be seen as an adjustment on the relation
so as to make incoming information of most importance. Van Benthem ([67], p.141)

describes it in the following way:

“f P is an instruction for replacing the current ordering relation < be-
tween worlds by the following: all P-worlds become better than all —P-

worlds, and withing those two zones, the old ordering remains.”

In the notation of propositional dynamic logic (PDL, cf., [50])%, the updated
relation <™ is defined by:

<M= (245 = 24) U (7-4; < 72A) U (7-A4; T3 24) (2.15)

A graphical representation of lexicographic upgrade is provided in Figure 2.3. The
model on the left is again divided into two zones and links are seen to go across the
zones in two directions. After A has been upgraded, the links within each zones are
preserved, links from A to —A are reversed and a link is added from every —A-state
to every A-state.

The language of Order Logic with lexicographic upgrade is L» augmented with a

lexicographic upgrade modality (f A)¢, whose semantics is given by:
Mouk= (A iff Mua,uEe (2.16)
where 901 = (W, =™ V).

Preference upgrade

In [69], van Benthem and Liu showed that a preference upgrade can be seen as a

relation change. The relation change they describe is that of a public suggestion

3For a good introduction to PDL, see [7].
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Figure 2.4: Illustration of preference upgrade

to make A better than —A, i.e., the change in the model is such that every links
from —A-state to A-state is deleted while keeping the relation unchanged in the two
respective zones. Preference upgrade is denoted by # A and its action on models can
defined by the following:

Definition 2.2.1 Given a model 9 = (W, X, V), the upgraded model by A is given
by Mya = (W, #4 V) where

<FA—< {(u,v) : Mu = A&LM, v = ~A} (2.17)

<

In the notation of PDL, the updated relation <#4 is defined by:
<#FA=< _(7-A4; <; 7A) (2.18)

Preference upgrade is depicted in Figure 2.4. As above, to get an Order Logic
with preference upgrade, one augments Lo with a modality (#A)e with semantics

given by:

Mou k= (#A)e iff Mueauly (2.19)

Axiomatization and completeness

A great tool that came about with the rise of dynamic logic is the so-called composi-
tional analysis via reduction arioms. Reduction axioms analyze the effect of actions
in the base language, thus reducing the completeness of the extended logic to that
of the basic one. Reduction axioms have a twofold advantage: 1) they provide an
explicit analysis of actions on models and 2) they provide completeness for free. For

instance, a typical principle analyzing epistemic effect of public announcement is the
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following reduction axiom:
(1AYCp «— ANO(lA)p (2.20)

Axiom 2.20 can be read as stating that a (-state is accessible after the public an-
nouncement of A if and only if A is true in the current world, thus can be announced,
and there is an accessible state which becomes a (-state after the announcement of

A. Formally, the validity of Axiom 2.20 can be seen by the following argument:

Mou = (A)Cp iff MulE A&, u = Op (2.14)
iff MupEA&Tv:u=<|10&M|4,vE ¢ (Truth-Definition)
iff MupEA&Tv:u=<v&M v (A)p (2.14])
iff MulEALM uE O(A)e (Truth-Definition)
ifft MukE=ANO(A)e (Truth-Definition)

Notice the important step from line 2 to line 3. In the first direction, since
u =< |av, also M|4,v = A. Furthermore, u < |[4v = u < v, by definition. In the
other direction, MM, v = (1A)p = M, v = A. Hence u < v, M, u = A and M,v = A
implies that u < |4v.

One striking feature of axiom 2.20 is that, on the left-hand side, the action modal-
ity (!A) is outside the scope of &, whereas on the right-hand side, it is inside it. Since
there are reduction axioms for every component of the basis language, one can push
the action modalities all the way to propositional letters, where they do not act any

further and can be fully eliminated.

Theorem 2.2.2 The Order Logic with public announcement, lexicographic and pref-
erence upgrade is aziomatized by 1) A*° and 2) the following reduction axioms for

each of the action modalities:

(lA)p < AAp (2.21)
(1A= = AN=(A)e (2.22)
(lLA) (e Vi) « (A)pV (A)) (2.23)
(AYOSp «— ANOS(1A)p (2.24)
(1AYO<p «— ANO(A)p (2.25)
(I AYEp «— ANE(A)p (2.26)
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(hMA)p < p (2.27)
(M A o (A (2.28)
(M A(eVY) < (MAeV T AY (2.29)
(M A)O=p = ANOS(AN(N A)p)
Vo mAANOS(RAA () Ap)
V. —SANEANTD Ap) (2.30)
(MA)OTp & ANOT(AN(N A)p)
Vo SAANOS(RAAN (T A)p)
V. —SANEANT Ap) (2.31)
(M A Ep « E( Ay (2.32)
(#Ap < p (2.33)
(#HA)—p — ~(#A)p (2.34)
(#HA)(PVY) « (FA)eV (#AY (2.35)
(#AOZp = ANOS(AN(#A)p)
Vo —mANOS(#A)p (2.36)
(#HA)OTp = ANOT(AN (F#A)p)
Vo mANOS(#A)p (2.37)
(#HAEp — E(#A)p (2.38)

Proof. Notice first that no special work has to be done for the completeness part,
since the axioms reduce the analysis of an arbitrary formula of the extended language
to that of Lo and the corresponding complete logic A“©. To see this, consider an
arbitrary formula ¢. Working inside-out, consider (one of) the innermost occurrence
of an action modality. By applying successively the relevant axioms listed above until
only propositional letters are in the scope of that modality, its occurrence can be
eliminated using the relevant axiom among 2.21, 2.33 or 2.27. This procedure can be
iterated until ¢ is transformed into and equivalent formula ¢’ containing no action

modalities. The completeness of the extended logic is therefore reduced to that of
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AFo.
Thus, unlike in most cases of completeness proofs, the interesting part for dynamic
logic is the soundness of the axioms! The soundness of axiom 2.24 has already been

proved in the discussion preceding the statement of the theorem. I show that Axioms
2.36 and 2.30 are also sound. First Axiom 2.36:

M, u = (#AOSp iff Mya,uf OS¢
iff Elv:uj#Av&Dﬁ#A,v):gp
iff Jo:u=FAo&M o= (#A)p (%)

Now, either 9, u = A or M, u = —A. In the first case, since u <#4 v, it must
be that u < v and MM, v = A. Thus, (%) iff v : v V&M v | AN (#A)p iff
Mu = ANOS(ANA (F#A)p). In the second case, u <#4 v iff u < v, thus (%) iff
Juiu 2 v&MvE (#A)p iff M uE —ANOS(F#A)p.

Second, Axiom 2.30:

M,u = (f A)OSp iff Mya,ul= OS¢
iff Ju:u <M o&Mea,vE=p
iff Jv:u=xMo&MoE () Ae ()

Now, many cases need to be considered: 1) M, u = A, 2) Mu = -A, 3) Mo E= A
and 4) 9, v = = A. Given that u <™ v, the first case implies that 9, v = =A. Thus,
() iff Ju:u K0 &M v AN A iff Mu = ANOS(AA (T A)p). Now, assume
that M, u | —A. If M, v = —A, then (xx) iff Jv :u V&Moo E AN A)p
iff M u | AN OS(=A A (ff A)p). The remaining case is when 9, u | —A and
M, v |= A. In this case, regardless of whether v < v or not, it must be that v <™ v
and () iff Ju: Mo E AN A iff Mu = -ANE(AN () A)g). This completes
the proof. QED

Summary

This concludes the exposition of Order Logic. In this chapter, the main contribu-
tion is the completeness Theorem 2.1.11, whose proof applies Segerberg’s bulldozing
technique. The technique has been used on various occasions, but not in the present
setting of Order Logic interpreted over preorders. In the remainder of the thesis, I
show how Order Logic fulfills its telos in providing a general setting to formalize belief

and preference change for individuals and groups. In the next two chapters, I look at
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two important fragments of Lo: the relational belief and universal binary fragments.
As was argued in the introduction, these two logics can easily be embedded into Pref-
erence Logic via definitions making essential use of the existential modality. In the
remaining chapters, I look at extensions, one to incorporate ceteris paribus clauses

and the other to aggregation of orders into group ones.
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Chapter 3
Relational Belief Revision

When I have revised my belief that Robert had never been to Europe, I had to
incorporate a belief that Robert had to use some means of transportation to cross
the ocean. Given our times, it was more likely that Robert had taken a plane to
Europe rather than a ship, so I have revised my beliefs by incorporating the belief
that Robert had taken a plane to Europe, but I had no clue what company he had
been flying with. Was it an American or a European airline? Northwest Airlines, Air
France, Lufthansa...? I did not know and it was over my capacities to use such a fine
grained plausibility order and return a unique revised belief set. It may have seem
natural for me to endorse a relational revision attitude instead, and get a multitude of
new belief sets, each having the new belief that Robert had taken a plane to Europe,
but in each one with a different airline. Which one of these new belief sets is accurate
would have to be decided by extra-logical means: asking Robert.

The initial motivation for a formalization of relational beliefs was to get a gener-
alization of the functional approach to belief revision known as AGM (cf. [1]). AGM
is functional in the sense that an AGM revision operator, given a belief set I' and
a sentence ¢, returns the unique revised belief set IV minimal with respect to some
ordering. The problem was first studied by Rabinowicz and Lindstrém in [39] and by
Cantwell in [11].

I consider that the best logical analysis of the AGM paradigm so far is found in
Segerberg’s work on Dynamic Dozastic Logic (DDL, cf. [40, 59, 60, 61] ). I thus take
D DL has the paradigm of belief revision and the starting point of my investigation in
this chapter. My goal is to show that a generalization of DDL to a relational doxastic
system is best treated as a fragment of Order Logic. To achieve this, however, some

preparatory work has to be done on the static models, since DDL is framed in a

33
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conditional logic setting and its semantics uses different kinds of models, closer to
neighborhood semantics. Hence, a great deal of work in this chapter is to bring
this kind of semantics closer to that of Order Logic. 1 first generalize DDL to a
relational doxastic logic, called Broccoli Logic (BL). T then show how Broccoli Logic
can be dynamified by introducing the dynamic action of lexicographic upgrade. Let

me elaborate.

Brocceoli Logic is based on two basic modalities, [p]¢ and [p)1). The first modality
is a standard conditional modality whose semantics is very close to that of Minimal
Conditional Logic (MCL, cf. [10]). In fact, and this is one important result in this
chapter (Theorem 3.3.14), the [p]¢ fragment of Broccoli Logic is the same as MCL,
but in a different guise. The second modality, however, presents some difficulty and I
have not succeeded in identifying the exact fragment of Order Logic that corresponds
to full BL. This is a question pertaining to conditional logic that I leave open,
although I present preliminary steps for a solution in the appendix. Nevertheless,
Broccoli Logic is a fragment of Order Logic, as I show in Theorem 3.3.3. On the
basis of this standpoint, I show how Broccoli Logic can be dynamified by incorporating

lexicographic upgrade.

Introducing dynamics into BL in this fashion is where I am parting from DDL
and this deserves a justification. Since the inaugural work [1], most of the research
in belief revision has been conducted in what I call the postulational paradigm - as
opposed to the constructive paradigm discussed below. In this approach to belief
revision, one provides a set of principles that any revision policy should satisfy. For
instance, given a belief set T (a theory) and a formula ¢, the revision of T' by ¢ is
written as T o and a typical postulate of belief revision is that ¢ € T x ¢, stating
that ¢ is part the belief set T" * ¢ obtained by revising T with ¢. A postulational
approach provides a set of postulates in that spirit and a typical theorem about
revision is along the following lines: an operator x is a belief revision operator iff it
satisfies every postulate. A set of revision postulates can thus be understood as a set
of desiderata that a revision operator - any one (cf. [54]) - should satisfy, but they do
not identify a single operator nor do they describe what actions on a model a revision
operator performs. DDL follows this tradition by providing a direct translation of
the AGM postulates in the object language, using two translation keys (cf. [40]): 1)
from ¢ € T in AGM to By in DDL and 2) from ¢ € T * ¢ in AGM to [xp|B in
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DDL. With this translation manual, for instance, the AGM postulate:
T+ C Cn(TU{p})

becomes the DD L axiom:
[xp] B — B(p — 1)

Under the constructive paradigm, as we have seen in chapter 2, the emphasis is
on the actions. Here, one chooses her favorite revision policy, explicitly describes its
effects on static models, and then shows how to analyze it via compositional analysis.
This paradigm is the one adopted in this thesis and I show in the present Chapter
that relational belief revision can be understood in this fashion. Hence, I bring BL
under the scope of Order Logic in two steps: 1) I show that its static part is a
sublogic of Order Logic and 2) I show that its dynamification can be treated inside
the constructive paradigm.

Before we proceed, let me say a final word about the result presented in Appendix
A. As I have stated above, I have not succeeded in providing a complete system
for BL with its two modalities [p]i) and [p)1) - one source of difficulty is given in
Section 3.2. I have, however, succeeded in proving a completeness result for the
Minimal Relational Logic. 1 call this logic minimal in the same way that K is a
called a minimal modal logic with respect to S4 and S5. I have thus succeeded in
axiomatizing the minimal logic containing the modalities [p]¢ and [p)¢). This is an
interesting result in itself, but more relevant to the field of neighborhood logic, which

is tangential to the main thrust of this thesis.

3.1 Doxastic Logic

In this section, I make an excursion in the general doxastic logic defined over preorders.
In the next section, I move to a conditional approach, dynamic doxastic logic. In
subsequent sections, I show that the two approaches are fundamentally similar, via
the representation Theorem 3.3.14.

It is typical in logic to define beliefs in terms of a plausibility order and say that
@ is believed, written ‘B¢’ if it is true in every most plausible state in the order.
In Order Logic, one can represent this by interpreting < as a plausibility order and
say that u is most plausible if there is no v such that u < v. A semantics for belief

operators is thus usually given as:
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(4 ¢
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Figure 3.1: Single figure representing both the absolute belief in ¢ and the conditional
belief [¢]1. Most plausible states, those to the right, are all ¢ and 1)-states.

Definition 3.1.1
M, ul= By iff 9, v = ¢ for all most plausible states v. (3.1)

<

Definition 3.1.1 provides a notion of absolute belief and is represented in Figure 3.1.

The notion of ‘absolute belief’ is definable in Lo, as the following fact establishes.

Fact 3.1.2 By s definable in Lo. That is:
M,u =By iff MukEUDOL — ) (3.2)

Proof. In the first direction, Assume that 9%, u = By, then MM, v = ¢ for every
most plausible v-state. Let w be arbitrary such that O<_L, then there is no w’ such
that w < w’, i.e., w is a most plausible state. Thus 9, w = O<L — . Therefore,
M, u = U(O<L — ¢). In the other direction, Assume that 9, u = By, then there
is a most plausible v-state such that 9%, v | —p. But since v is most plausible,
Mo | O<L, thus M, v = OSL A =, ie, Mo E (0L — ). Therefore,
Mu U@L — ). QED

More generally though, beliefs are often formalized as conditional statements: )
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is true in the most plausible p-states. This is sometimes written in Lewis’s notation
as ‘o O— 9’ or as ‘B(1¥|¢)’, but in this thesis, I use Chellas’ notation ([14]) and write
‘[p]1” instead. The semantics for the more general conditional belief, again depicted

in Figure 3.1, is given by:
Definition 3.1.3
M u = [ply iff M, v = for all most plausible ¢ — states v. (3.3)

<

As was the case with absolute beliefs, conditional beliefs can be defined in Lp:

Fact 3.1.4 [p]¢) is definable in Lo. That is:
M ul=[plY iff MupEUlpA—-0%p — 1)) (3.4)

Proof. The proof is similar to the proof of Fact 3.1.2. In the first direction, assuming
that 1) is true in every most plausible p-state, it is clear that v is true whenever
o A O is. In the other direction, if 9, u [~ [p]w), then there is a most plausible
p-state v such that 9, v = —p. Thus, M, v = ¢ A =O<p A =), which implies that
M, u e U(p A0S — 1)), as required. QED

In the next section, I consider the conditional approach to doxastic logic for belief

revision.

Belief revision and DDL

Belief revision is the study of theory change in which a set of formulas is ascribed to an
agent as a belief set revisable in the face of new information (cf., [22, 53]). A dominant
view in belief revision is the so-called AGM paradigm, which describes a functional
notion of revision (cf. [1]). A natural semantics in terms of sphere systems (cf. [37])
was given by Grove in [24] and a logical axiomatization was extensively studied by
Segerberg (cf. [40]). The resulting logic is called “dynamic doxastic logic” (DDL). In
this section, I present the outline of the static core of DDL. The fragment of DDL
that I consider here is a simple propositional language augmented with a conditional

modality [p]i.
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Figure 3.2: Ilustration of the semantics for the conditional belief [¢]i).

DDL models are based on what Segerberg calls onions. An onion is simply a

linearly ordered sphere system that satisfy the limit condition:

Definition 3.1.5 [Onions| Let W be a nonempty set. An onion O C P(W) is
a linearly ordered set of subsets of W satisfying the following condition (the limit
condition): for all X C U :

JOonX #0=32c0st. W eOYNX#Dif ZCY)

<

The limit condition states that every set intersecting an onion intersects a smallest
element. Let W be a set of sets, and let W e X ={Y € W :Y N X # (}. Segerberg
uses the more succinct notation ‘Zu(W e X))’ to express that Z is minimal in W, in
the sense that there is no Y in W properly contained in Z. In the case of onions,
due to linearity, it is natural to write Zu(O e X). The limit condition can then be

written as:

JOonX #0=32,(0eX).

The semantics for conditionals [¢]), depicted in Figure 3.2, is given by:

Definition 3.1.6
M, u k[l iff VZu(Oe[p|)(ZN][p| C[¥]) (3.5)

<

An alternative presentation of conditional logic, available since the beginnings

of research in this field, is with selection functions ([62]). In my setting, selection
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functions are illuminating for the axiomatization of the static core of DDL, and for

discussion about the generalization sought for later.

Definition 3.1.7 [Selection functions] A function f : P(W) — P(W) is a selection
function if it satisfies the following conditions, where X, Y C W :

FX) € X (INC)
XCY = (F(X)£0= f(¥) £0) (MON)
XCY = (XNfY)#£0= f(X)=XNf(Y)) (ARR)

<

The third condition is called the Arrow condition. The Arrow condition is a source
of difficulty in generalizing this setting to the non-linear case.

Let W be a finite set and let F' be a selection function on W. Let

Sni1 = SpUF(W —=5,)

Since W is finite, there is a smallest m such that S,,.1 = S,,. I leave to the reader to
verify that the set O = {S,, : n < m} is an onion and that Op and F agree.! Hence,

models for onions may be given in terms of selection functions.

Definition 3.1.8 [Onion selection models| Let W be a set, F' a selection function
on W and V a valuation on a given set of propositional variables, then the triple

M = (W, F,V) is an onion selection model. <
The truth-definition for the modality [¢]t) in onion selection models is given by:

M, uE [y iff F(le]) € [¢]. (3.6)

The axiomatization of the static core of DDL, or onion logic, builds on the three

conditions for selection functions given in Definition 3.1.7.

'Op and F agree iff
1. OpNX #0 = FX = X NS} for some k.

2. OpNX=0=FX=10.
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Theorem 3.1.9 The complete logic for onions consists of the following set of axioms:

() = —[p] (3.7)

[p]( — 0) — ([¢l — [¢]0) (3.8)
[e]e (3.9)

(@) — (V)T (3.10)

() = ([p A0 = [pl(v — 0)) (3.11)

Axioms 3.9, 3.10 and 3.11 are obvious analogues of conditions (INC'), (MON) and
(ARR) of definition 3.1.7. The total resulting system is Lewis’ famous conditional
logic VC' without an assumption of centrality, provided that we add an assumption
of centrality (cf. [37, 44]).

Relational doxastic logic

To get a proper modal logic for relational beliefs, I introduce a further generalization
of the conditional presented in Definition 3.1.3. Instead of defining a conditional belief
[¢]1 in terms of the (unique) set of minimal ¢-states, I define it in terms of multiple
sets of minimal ¢-states whose members are mutually incomparable. I use two kinds
of conditional beliefs, respectively written as ‘[p]i)" and ‘[p)e)’. T call the resulting

logic ‘relational conditional belief” logic. Its language is defined by the following rules:

Lg=p|lony | o | el | [p)¢

The intended reading of the modalities is: “1 is true at every state in every set of
minimal (-states” and “i is true in at least one state in each sets of minimal (-
states”, respectively. In terms of revision by ¢, one can think of the modalities as
standing for “¢) is believed in every revision by ¢” and “i is consistent with every
revision by ¢”, respectively.

Models for this logic are based on a generalization of onions, called broccoli flowers
in [23]. In a relational setting, the limit condition can be generalized in various ways

and I consider two options below.

Definition 3.1.10 [Broccoli flowers] Let W be a nonempty set. A broccoli flower
B C P(W) is a set of subsets satisfying some generalized limit condition - to be

specified below. 4



3.1. DOXASTIC LOGIC 41

There are (at least) two ways to specify the generalized limit condition of Definition
3.1.10. I present two obvious candidates. Let B|X = {Y N X : Y € B}. For all
X CW,if UBNX # 0, either:

ISCBYY eBYNX £A0=3Z e S(ZuBeX)ANZCY)) (3.12)
ISCBYY €eBYNX £0=3ZeS(ZNX)u((BX)e X)AZCY)). (3.13)

Intuitively, a generalized limit condition states that every set intersecting a broccoli
flower intersects every members of a set S of smallest elements of the flower. In the
first case, the members of S are minimal sets of the broccoli flower that have a non-
empty intersection with X. In the second case, the members of S have a minimal

intersection with X. In the remainder of this chapter, I work with 3.12.

Definition 3.1.11 [Broccoli models] 9 = (W, {B, }uew, V) is a broccoli model if W
is a set of worlds, {B,}uew is a family of broccoli flowers for each world v € W

satisfying 3.12, and V' is a valuation assigning sets of worlds to propositions. <

In what follows, I suppress the index .

Definition 3.1.12 [Broccoli semantics| I say that ¢ is true at world u in a broccoli
model M, written M, u F ¢ iff (taking standard truth definitions for the propositional

and the Boolean cases):

M, uk el iff VZu(Be|p))(ZN el C ] (3.14)
Muk o)y iff VZu(Be|p))(ZN|plN]p|#0) (3.15)

Here, as usual, |p| = {u: M, u E ¢}, the associated proposition to .

Figure 3.3 illustrates the semantics of both operators. In the left figure, all minimal

@-sets are contained in [¢], and [¢] intersects each minimal p-set in the right figure.
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Figure 3.3: Broccoli semantics of the operators [p]¢ and [p)i).

3.2 Generalized selection functions

As we have seen above, the semantics for Onions can be given in two different ways,
in a sphere system representation or with selection function. In this section, I outline
difficulties in providing a semantics for BL with a generalized notion of selection
functions. I show what properties generalized selection function should satisfy in
broccoli models, and 1 point to a difficulty of the generalization, namely to find an
appropriate Arrow condition for broccoli models.

Consider the issue of generalizing the format of selection functions for onions to a
non-linear setting. (/NC') and (MON) are easily generalized in BL to the following
conditions, for all X,Y C U:

YeFX)=Y CX (INC*)
YCXand3Ze F(Y)st. Z#0=3Z € F(X)st. Z#0) (MONY)

with the identical corresponding axioms 3.9 and 3.10. On the one hand, if ={¢|T € u
for some world u € U (i.e. if there is no revision by ) then [p]¢ € u by Axiom A.7.
But if there is no revision by ¢, then F'(X) is empty, and (/NC*) holds vacuously.
On the other hand, if there is a revision by ¢, then 3.9 and (I NC*) express the same
thing, namely that members of F(|p|) are contained in |p|. Similar considerations
will convince the reader that 3.10 and (MON™*) go together.

A difficulty arises when attempting to generalize condition (ARR) in a similar
fashion, as the condition seems to require linearity.? One way to see this is by looking
at the failure of axiom 3.11 in broccoli models. Only one half of 3.11 can be kept
in BL, viz. (p)t — ([p AN¥]0 — [p](¥ — 0)). The other half makes a crucial
appeal to linearity, as may be seen from the counter-model of figure 3.4. It is an open

question to find an appropriate generalization of (ARR) that yields a generalized

2The exact relationship between the Arrow condition and linearity is still an open question.
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Figure 3.4: Counter-model to (p)y — ([¢|(¢¥ — ) — [¢ A]0)

selection function for BL. This promises to be a difficult task. But instead of pursuing
this enterprise further, I show in the remainder of this chapter that Broccoli Logic
can be treated inside Order Logic, thus facilitating the quest for a dynamic system

appropriate for relational doxastic logic.

3.3 Broccoli logic and Order Logic

In this section, I show that static BL is a fragment of Order Logic. Firstly, assuming
models to be finite?, I show that the broccoli operators [¢]i and [p)1) can be translated
in Lo. Secondly, I show that the [p]i) fragment of BL, which I call BL™ is identical to
Minimal Conditional Logic (MCL). This latter result show exactly which fragment
of Order Logic BL™ is.

In the remainder of this chapter, I go back and forth between Order Models and
Broccoli Models. For this, I appeal to the following definitions. Once again, assuming

models to be finite.

Definition 3.3.1 Let B be a broccoli model. An induced order model P is given
by MB = (W, <, =), where < is such that 1) Vo € W,z < x and 2) Vo,y € W and
XYeB XCYrxe X andy € Y — X implies that y < x. <

An induced an order model from a broccoli model is pictured in Figure 3.5.

Definition 3.3.2 Let 9t be an order model. Let C(z) = {y € W : x < y}, then
BROC () = {C(x) : x € W} is the Induced Broccoli Model. <

Figure 3.6 shows how to get a broccoli model from an order model.

3] make this assumption to avoid complications with the limit condition. Furthermore, one may
argue that the intuitions for BL are better understood in the finite case. For a good discussion of
finite models vs infinite models with the limit assumption, see [38]. Notice also that this issue does
not arise in Order Logic, giving yet another motivation to work with it.
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Figure 3.6: Induced broccoli model (dotted lines) from a finite order model (arrows).

Since models are finite, a generalized limit condition for BROC(9N) obtains for

free. Therefore, the semantics for the broccoli operator makes sense in this context:

BROC(M), uk [ply iff VZu(BROC(u)e|p|)(ZNe| € |¢)) (3.16)
BROC(M),uk [p)¢ iff VZu(BROC(u) e |o))(Z N e[ N[y #0)  (3.17)

Looking at Figures 3.5 and 3.6 make it clear that the classes of finite broccoli
and order models are the same. Thus, it makes sense to compare different languages
over them. In the next theorem, I show that the modalities ]y and [¢)1) can be

expressed in Lo.

Theorem 3.3.3 Let B be a Broccoli model, then

Bouk[ply & M ubEU(e— OS((p ADS—p) AD% (¢ —¢))) (3.18)
Bouk[p) & ME ul Ul — OS(p A ADSp)) (3.19)

Proof. First, equation 3.18. In the first direction, assume that 9%, u = [¢]¢, then
VZu(B e |o|)(Z N el C [¢]). Let v be a state such that M, v = . Then, v € YV
for some Y € B. There are two cases to consider: 1) Y is minimal in B 2) y
is not minimal in B. In the first case, M5 v E o A O=p, and Z N |p| C |[¢]
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implies that 95 v = O%(¢ — ). In the second case, by the generalized limit
condition, 37 € S(Zu(B e |p|) N Z C Y)). By the induced relation < (Definition
3.3.1), Vw € ZN|p|,v < w. Take any state w in ZN|p|, then MP w | p AO<=p and
V' 2w 2w € ZN|pl, Mw' | @A Therefore, M, u = U(p — O (e ADOZ(p —
0))).

In the second direction, assume that MZ u = U(p — OZ(p ADZ (¢ — 1)), then
Vo:MBokEp=3v=3w: M wkEpAO-p&MB wE 03%(p — ¢). Consider
such a w and let Z € B be such that {v:v < w v &MB v | o} NZ # 0. By
the generalized limit condition, there is a Z’ C Z minimal in B such that {v : v <
w=v &MBvEeyNZ #0. Then Z' N |p| C ||, since MP w = O (o — ).
Therefore, by the broccoli truth-definition, B, u |= [¢]i, as needed.

A similar argument establishes the second equation, as can be seen by realizing
that the right-hand-side of 3.19 states that for every ¢-state, there is a minimal
p-state that is also a ¢/-state. The detail of this proof are left to the reader. QED

Theorem 3.3.3 shows that BL can be treated inside Order Logic. There are many
further mathematical question that could be treated here, especially with respect to
the limit condition over infinite models, but I do not treat them here. Instead, I show
that more can be achieved with respect to the [p]i) fragment of BL, by showing that
it is identical to MCL.

Minimal Conditional Logic

Minimal conditional logic (MCL) was studied by Stalnaker, Pollock, Burgess and
Veltman to capture the idea that a conditional ¢ = ¢ is true if an only if the
conjunction ¢ A = is less possible than the conjunction ¢ A ¢, and no more. Their
modeling comes with a reflexive and transitive =<-order for each world x and no
spheres need occur. In a sphere system, two worlds lying on the same sphere agree on
which worlds are farther away and which are closer. This assumption is dropped in
MCL: if two worlds = and y are equally far away in the underlying order from world
u and if some world z is farther away than y, then no conclusions may be drawn
as to whether z is farther from w than x - or vice versa. Instead of changing the
onion picture by allowing non-linearly ordered sphere system as in BL, M C'L ignores
spheres altogether. In this section, I show that the logic of [¢]¢) under the minimal
conditional or the broccoli interpretation is the same, i.e., that the [p|y) fragment of

Ly is the same as minimal conditional logic.
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Minimal Conditional Logic

Definition 3.3.4 A Minimal conditional logic model is a triple (U,{<;}sev}, V),

where U and V are as above, and <, is a preorder for each x € U. <

The relation y <, z may be read as “according to world z, world y is no farther
away than world z”. Let W, = {y : Jz,y =<, z} be the zone of entertainability
for world w € U. Intuitively, worlds outside the zone of entertainability for u are
worlds so far away that their distance from any given world is not evaluable. The
minimal conditional logic language contains a set of propositional variables, together

with negation —, disjunction V and a counterfactual modality [¢] for every formula

©.
Definition 3.3.5 [MCL semantics] A formula [¢]t) is true at world u in a model 90,
written I, u & [, iff:

VyMybEep= 3z, MzEp&Vw <, 2z, Mw = ¢ = Mw E 1)) (3.20)

<

From inspection of the truth-condition, the following fact is immediate, giving a

first hint at the main result, Theorem 3.3.14, of this section:

Fact 3.3.6 The modality [plYp of MCL is definable in Lo by:

It & Ulp = O=(p AD=(¢ — ¥))) (3.21)

Notice that the semantic definition of [p]|¢ does not contain a minimality condition.
If models are finite, however, then there is a minimal set of worlds z € U such that
z € (V(e)NV(1)). In this case, Definition 3.3.5 becomes:

Definition 3.3.7 [MCL semantics| A formula [p]1) is true at world u in the model
M, written M, u E [p], iff:

Yy MulE = (X :Vze X, 2 <, y&M, 2z = o Ap&Vw <, 2(IM, w = ¢))3.22)

<

Figure 3.7 depicts a simple model satisfying [p]¢. There are two minimal p-worlds,

z and 2’, and 9 is true at both worlds. Hence, 1 is true at every minimal ¢-world.
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L _>e
AS)

Figure 3.7: Simple model such that [p]t) is true at world w. The dotted arrows stand
for sequences of <-related worlds.

Axiomatization

Theorem 3.3.8 (Burgess [10]) The following set of axioms, with the same set of

rules as for minimal relational logic presented in section A.1, is complete for MCL:

o] (3.23)

[el A [pl0 =[] (¥ A 0) (3.24)
[p](v A 6) — [p]Y (3.25)

[olt Alel0 — [ A 00 (3.26)
[l A OTY — [p VOl (3.27)

Here are some examples of derivable theses.

Example 3.3.9 MCLF [py A [p A1) — [¢]0

Proof. Assume 1) - [p]¢) and 2) - [p A]6. By Axiom 3.23 - [p A =¢)](p A —p) and
by Axiom 3.25, - [ A—1p]=1). Hence, by monotonicity in the consequent (3.25 again),
F [ A =](=¢ V ). Now, from assumption 2) and Axiom 3.25, - [p A ¢¥](— V 0).
Combining the latter two results, F [¢](—% Vv #). But since F [¢]i) by assumption (1),
- [¢]0, as desired. QED

Example 3.3.10 MCLF (o) — ()T

Proof. I prove the contrapositive. Assume that = [¢0] L. Then both F [1)]=¢ and
- [¢]e. Hence, by Axiom 3.26, & [t A ¢]=1p. But = [-¢) A p](=9) A ¢) is an instance
of Axiom 3.23 and by Axiom 3.25, - [-¢) A ¢|—t). Therefore, b [¢]—). QED

Example 3.3.11 MCLF [o A]0 — [¢](vp — 0).
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Proof. Assume F [pA1]0. By monotonicity, b [pAY](=VE). But - [pA—)] (=) V).
Therefore, = [p](— V 0), i.e., F [p](p — 0). QED

As can be seen from Axiom 3.23 and examples 3.3.10 and 3.3.11, 3.9, 3.10 and one
direction of 3.11 of section 3.2 are derivable in M CL. Thus, MCL has the properties
sought for in BL, and I show that it has all the properties of BL. The general reason

behind these considerations becomes clear in the next subsection.

BL™ = MCL

A finite MCL model M = (U, <,V) can be transformed into a broccoli model by
constructing a broccoli flower at each world of 9. This is made precise in the following

definition, a generalization of Definition 3.3.2.

Definition 3.3.12 Let 9t be an minimal conditional model. Let C,(y) = {z € W :
y =<; 2z}, then BROC(z) = {C(y) : y € W,} is the Induced Broccoli flower at .
Finally, an induced Broccoli Model BROC (9M) is given by:

BROC(OMM) = {BROC(x) : x € W} (3.28)

<

The main result of this section now follows from Lemma 3.3.13.
Lemma 3.3.13 M,z F [¢|¢ iff BROC (M), x F [p].

Proof. In the one direction, assume that 9, z F [p|). To simplify notation, I write
C, instead of C(w). Let Cpu(BROC(x) @ |p|), and let v € Cy, N |p|. By the truth
definition for [p]i, 3z <, v such that M, z F p and Vy <, 2, M,y | o = M,y = .
Now, if v £, z, then z < v, which implies that C, C C, C C,, (the latter inclusion
uses the transitivity of <,), contradicting the minimality of C,,. Thus, v € |¢|, which
implies that C,N|¢| C [¢|. Therefore, since v was chosen arbitrarily, BROC(IM), x F
o]0

In the other direction, assume that BROC(IM), x F [p]¢ and suppose that M, y F
¢ for some y € U. Then C, N |p| # 0. Hence, 3C,, C C,, such that C,u(BROC(x) o
ll), since M is finite, and C,, N || C [¢|. But since C, € Cy, w <, y. Assume that
w is not a minimal world satisfying ¢ A ¢ with respect to <, then Jw’ <, w such
that 91, w’' E ¢ A . This implies that C!, C C,, and C!, N || N || # B, contradicting
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the minimality of C,. Therefore, w is a minimal world satisfying ¢ A 1) and since
w <, y, we get that 9, x F [p]). QED

Now for the main theorem:

Theorem 3.3.14 BL~ = MCL.

Proof. To show that MCL is BL, I show 1) that all axioms of Section 3.3 are valid
in BL, whose semantics were given in section 3.1 and 2) that if a principle is not
derivable in M C'L, then there is a broccoli countermodel.

Showing that the MCL axioms are valid in the BL-models of Section 3.1 is
straightforward. I show that Axiom 3.26 is valid and leave the others to the reader.
Let 99t be an arbitrary broccoli model and let u € U be arbitrary. If =(¢|T ¢ u,
i.e., if there is no revision by ¢, then the thesis is vacuously true. Hence, assume
that there is a revision by ¢. Assume furthermore that 9, u F [p]i) A [p]6. Since
M, u E (@)Y, || N || # 0. Let Zu(B e |p A1p|) be a minimal set of B intersecting
| A |. Then for every z € Z,x € || N || implies that z € |p| C |f]. Hence,
M, uE [pA]6.

To show that if a principle is not provable in MCL, then there is a broccoli
countermodel to ¢, I use the completeness result of Burgess. If MCL F/ ¢ for some
¢, then there is a finite model MM = (U, <, V) and a world w € U such that 9, u &
. * By Lemma 3.3.13, BROC(OM),u ¥ ¢. Therefore, BROC(9M) is a broccoli
countermodel to ¢. This completes the proof of Theorem 3.3.14. QED

Corollary 3.3.15 BL s decidable.

As was noticed above, Theorem 3.3.14 shows that the logic of [p]¢) under the
minimal conditional or the broccoli interpretation is the same, and so are their ax-
iomatizations. Thus, Theorem 3.3.14 yields a completeness theorem for the [p]y)
fragment of broccoli logic. The axiomatization of the full language Lz over broccoli
models, or over M C'L models, is still an open question. Nevertheless, Theorem 3.3.3
shows that the full logic is still a fragment of Order Logic and I rely on this fact to

introduce dynamics in the next section.

4Burgess proves that M CL has the finite model property.
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3.4 Dynamics

In this section, I show how to incorporate lexicographic upgrade in the full static
broccoli language £3.° To make this work properly, £z has to be expanded with the
existential modality Ey, and of course with a lexicographic upgrade modality (ft A)p.
The resulting language, called Lz+, is defined by:

L+ =ploANd ||| )y ]| Ee|(f Ap

Theorem 3.4.1 The complete logic of relational dozastic logic is aziomatized by 1)

some complete static relational dozastic logic® and 2) the following reduction azioms:

(M Alely = EAN M A)yp) ANANT Al Ay

Vo SE(AND A)p) A A)el(h Ay (3.29)
(M Ay <= EANMN A)yp) NANT Ap)(t A)d

Vo SE(AND A)p) A A)e)(h Ay (3.30)

Proof. It is enough to show the soundness of 3.29 and 3.30.

For the first direction of 3.29, assume that 9, u = (I A) ], then My4, u = [@]P.
By the truth-definition 3.1.12, VZu(Bya e |p])(ZN]|e| C |¢]). Now, either Jw" € M4
such that My, w' = A A ¢ or not. In the first case, when MM, u = E(A A (f A)yp),
because of the lexicographic upgrade, it must be that every Zu(By.4 e|¢|) is such that
(Z01o] € JAAY]), 50 VZu(B o |A A Ap)(Z 0 AA (G Al € [AA () AYb).
Therefore, M, u = [A A (f A)p](f A)ib. In the second case, when I, u = -E(AA ({
A)p), the minimal z-states satisfying ¢ in 91,4 are the same as in M, and they satisfy
¥ after the upgrade, so MM, u = [(f+ A)@]{(1t A), as needed.

In the other direction, consider first the case where M, u |= E(A A (f A)p). This
says that there exists a state v that becomes a ¢-state after the upgrade by A. Now,
M, u b= [AA (1 Al Ay implies that YZu(B e |4 A (h A)pl)(Z N AA (f A)g| C
|(f A)ep|). Hence, VZu(Brao|ANp|)(ZN|ANg| C |¢]). Now, because of the upgrade

of A-states in B, the sets Z minimal in B4 e |[A A ¢| are the same as those minimal

°Notice that [67] takes a more general standpoint on dynamics for belief revision, of which
lexicographic upgrade is but one instance. I choose to work with the lexicographic upgrade as it is
simple in character and makes a clear case for the constructive approach.

6This is still an open question, although a complete axiomatization for the [¢]) fragment has
been obtained in Theorem 3.3.14.
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in Byae|p|. Thus, VZu(Byae|e|)(ZN|e| C |¢]), which implies that 9y 4, u = [p]e).
Therefore, M, u = (It A)lp]y. Finally, assume that M, u = —E(A A (f} A)yp).
This says that after upgrading A, there is no state v such that M, v = A A ¢.
Hence, the sets Z minimal in By4 e |¢| are the same as those in B e |[({ A)p|. Now,
M, = [( A)p)(h Ay implies that YZu(B e [(ff A)el)(Z 1 [ Ayl € [ AY]).
Hence, VZu(Bya o |¢|)(Z N || C [¢]), which implies that My 4, u = [p]tp. Therefore,
M, u = (f A)|p]Y, and this completes the proof.

Now, for the first direction of 3.30, assume that 9, u = (1t A)[p)1, then My 4, u =
(o)1) By the truth-definition 3.1.12, VZu(Bya @ |¢])(Z N |¢| N || # 0). Now, either
Jw" € My 4 such that My 4, w' = AAp or not. In the first case, when MM, u = E(AA(f
A)p), because of the lexicographic upgrade, it must be that every Zu(Bya o |¢l) is
such that (ZN|p|N|AAY| £ D), soVZu(Be AN A ) (ZN[AAN{T A)e|N|AA
Ay # 0). Therefore, M u = [A At A)p){(ft A)ip. In the second case, when
M, u = -E(AN () A)p), the minimal z-states satisfying ¢ in My, are the same as
in M, and for every set of minimal states among them, at least one of them satisfy ¢
after the upgrade, so 9, u |= [(f} A)p) (1 A)1, as needed.

In the other direction, consider first the case where MM, u = E(A A ({ A)yp).
This says that there exists a state v that becomes a p-state after the upgrade by A.
Now, M, u = [AA( A)e) (It A)t implies that VZu(B e |[AA (t A)e|)(Z N |A A {{
Al O [ AY| £ ). Hence, YZu(Bya o |A A 9l)(Z N [AA | 0 [4] £ 0). Now,
because of the upgrade of A-states in B, the sets Z minimal in By, @ |A A | are the
same as those minimal in By, e |p|. Thus, VZu(Bya @ |¢])(Z N || N || # 0), which
implies that My 4, u = [p)y. Therefore, M, u = (f# A)[p)1. Finally, assume that
M, u = -E(ANA{{ Ayp). This says that after upgrading A, there is no state v such
that M, v = A A ¢. Hence, the sets Z minimal in B4 @ || are the same as those in
Be|(h A)p|. Now, M, u |= [(1 A)p[(ft A)¢ implies that VZu(B e [(1 A)p|)(Z N [(f
Ayol N[ A)p| # 0). Hence, YZu(Bya @ [¢])(Z N @] N || # 0), which implies that
Mya,u = [p). Therefore, M, u = (It A)[¢)1, and this completes the proof.  QED

Alternative approach via translation in Lo

There is yet another way of getting compositional analysis for lexicographic upgrade
by translating everything into Order Logic and performing reduction there. I show in
the next Chapter that this method is better suited for binary preference statements,

since once the reduction is performed inside Order Logic, one can translate back in
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the binary preference fragment, thus obtaining reduction axioms for free. In the case

of relational doxastic logic, I have not succeeded in translating back in the Broccoli

language, but the investigation is illuminating enough to be worthwhile.

To simplify the proof of the next theorem, the following lemmas, proved in Ap-

pendix A, are needed.

Lemma 3.4.2 Let x stand for either < or <, then:

(MAOY & A—-0(A—(f Ay
A A DA () A))
AN —A—=UA— (t Ayp)

Lemma 3.4.3
AN A AT (=) & AND A AT (AN A)p — (1 A)Y)
Lemma 3.4.4

AN A (AT (e —19) & ~AND A
A O (AN A — ( A)Y)
AN UAND Ae — (T A)y)

Theorem 3.4.5 Given the following abbreviations:

Bo= AN A AO=(AA (T A) — (T A))

(3.31)

(3.32)

(3.33)

v o= CANR A ADEEAN T A = ( A)g) AUAA ( Ayp — ( A))

o= AN Ae AT Ay ADS(A = (T A)-e)
7= AN A A AP ABT (A = (1 A)me) AU(A = (1 A)—e)

the reduction azxioms for (It A)[e|v and (It A)[e) are given by:

(1t Alelv & [AA D Al Ay AU Ayp A=A) — (0= V E))
(h A)p)v & Ul Ayp = (AN OZF) V (mAAO=H) V (mANEP))]

Let us first look at the proof and then discuss what the principles state.

(3.34)
(3.35)
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Proof. I use the following abbreviations:
a = pAD%(p =)
o = p A ¢ AN |:|<—|(p
(M Alely & (hAU(p — O=a) (Fact 3.3.3)
& U A)(p — 0=a) (Thm 2.2.2)
& U A — (ff A)O=a) (Thm 2.2.2)
s Ul A — ANOS(AN(] A)a)
Vo mAANOS(RAN () A)a)
V. SAANEAANT Aa) (Thm 2.2.2)
& Ul Ay — (ANOSB)V (mANOSY) V (mA N ER)]
(3.4.3 and 3.4.4)
& Ul((h Ayp AA— O=F)A((h Ayp A=A) — (0= V EB)]  (Logic)
S UM AeANA—= OB AU A)p A—A) — (OSyV EB)) (Modal Logic)
& [AND AR AP AT A)p A=A) — (057 V EB)) (Fact 3.3.3)
(M Ay & (AU — 0%0) (Fact 3.3.3)
s U A)(p — ©56) (Thm 2.2.2)
s U Ap — (ff A)O=0) (Thm 2.2.2)
& Ul Ayp — ANOS(AA (1 A)6)
Vo mAANOS(=ANA(f A)6)
V. SAANE(AAN(f A)D)] (Thm 2.2.2)
s Ul Ay — (ANS=F)V (RANOSY)V (mANEF)]

(3.4.3 and 3.4.4)

QED

The technique of the proof is quite clear. The first step is to translate a formula
of the form (ff A)[¢]v into Lo and then using facts about Order Logic to find the

reduction principles for the original formula. Ideally, as is the case for binary prefer-

ence statement in the next chapter, one can translate back into the smaller language,

thus obtaining reduction principles for free, by mechanical manipulations.

Let us consider what Axiom 3.34 state. The right-hand-side, as was the case

previously, distinguishes various cases, depending on whether there is a state v such
that Mya,v = A A p. If this is the case, then we recover [A A (ft A)p|(f A)¢, as in



o4 CHAPTER 3. RELATIONAL BELIEF REVISION

Theorem 3.4.1. Otherwise, the second conjunct explains what happens if the formula
is evaluated in a —A-state. Fither there are accessible states in the model before
upgrade where ({ A)y holds, which can be either A or = A states, analyzed by ~. If
not, the appeal to the existential modality becomes crucial. Here, it must be that the
most plausible ¢-states after upgrade were in the A-region, but that that region was

not accessible in 91, hence the appeal to E[.

Summary

Order Logic has passed its first test of providing a nice setting to investigate relational
doxastic logic and its dynamics. Problems left open in the direct investigation starting
with minimal relational logic are easily solved by seeing it as a fragment of Order
Logic. Dynamics can be applied directly to Lz, provided that a complete system for
the full broccoli logic can be obtained - an open question. By using translation inside
Lo, however, we get reduction axioms for free, by mechanical manipulations using
Theorem 2.2.2. The axioms are complex, admittedly, but this is to be expected, given
the complexity inherent in Broccoli Logic. Seeing relational doxastic logic as Broccoli
Logic with two operators || and [p)1) is a first contribution of this chapter. A second
important result is the representation Theorem 3.3.14 giving rigid boundaries to the
fragment BL™ or Order Logic. Finally, the Minimal Relational Logic presented in
Appendix A is a new system, which hopefully proves to be fruitful in future research
in relational belief revision. In the next chapter, I investigate another important

fragment of Order Logic: the binary preference fragment.



Chapter 4
Binary Preference Logic

When Robert said that he preferred wine over beer, he meant something more general
than the mere comparison of two objects (or states, as in Order Logic). His statement
was about wine and beer in general. In a similar fashion, preferring blue over red
is a general standpoint, not a specific comparison. Nevertheless, there are cases of
preferences between particulars, for instance of a book over another one, or of this
person over that one. When Robert, after having tasted the cheeses presented to
him, acknowledged that he preferred the Camembert over the goat cheese, he was
then comparing the two token cheeses in the platter. Preferences thus operate at
two levels: 1) over simple objects and 2) over sets of objects. The first level is the
one covered by Order Logic, whereas the second one is the subject of the present
chapter, in which I show how to lift preferences over objects to preferences over sets
of objects.

Corresponding to this stratification of preferences over objects and sets of objects,
there are two approaches investigating the relation between the two levels. The first
one is top-down, from general preferences to specific comparisons, the second one
bottom-up, from basic preferences over objects to general preferences. The difference
may be illustrated as follows. I may say, in the top-down approach, that I prefer this
car over that one because the former is blue and the latter red, and I prefer blue over
red. Going bottom-up, I would say instead that I prefer blue over red because I prefer
every blue object to every red object, including this blue car over that red one. The
top-down approach is investigated in a logical setting by Liu and de Jongh in [42].
Their strategy is to take as primitive a constraint sequence and derive preferences
over objects from it. For instance, if [ want to buy a house and my constraints are

such that I preferred living in a peaceful neighborhood at an affordable price and
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within reasonable distance from my work (in this order), then I would choose my
house accordingly. The preference of the house settled as my final choice is for the
one that maximizes satisfaction of my constraints.

Both approaches are advantageous in their own right and I see them as being
complementary rather than in opposition. I do not, however, pursue this issue further
here. I refer to Liu’s Ph.D. thesis [41] for a more thorough discussion of the top-
down vs bottom-up approaches to preferences. In this chapter, I opt for the bottom-
up approach, taking basic preferences over states (Order Logic) and deriving global
preferences over sets of objects, or propositions.

An important work in the field of preference logic, to which I pay special attention
in the present chapter and the next one, is the seminal work of von Wright [76]. This
work itself takes roots in Halldén [25] on the logic of betterness. There is indeed a very
close kinship between the two books, but I take von Wright as being more fundamental
to my investigations.! Von Wright gives us enough material for the purpose of this
thesis, and historical considerations of his work is the subject of Section 4.1.

A side remark, before we proceed, is that Order Logic, as presented in Chapter
2, has been called ‘Preference Logic’ in other presentations (notably [68, 8, 71]). The
reasons for that should become clear in the present chapter: due to the existential
modality, order logic can express numerous preferential statement. But to read a for-
mula of the form &Sy as a preference of ¢ is indeed abusive; preferential statements
are typically comparative: I prefer x over y. To say that I prefer z without comparing
x to anything else would, but for exceptional cases, be meaningless as a preferential
statement. For this reason, I choose to take Order Logic as a general logic of com-
parison in Chapter 2, which can be instantiated as plausibility, in the case of beliefs
in Chapter 3, or as betterness, in the case of preferences in the present Chapter.

The chapter is divided as follows. I first provide historical consideration on pref-
erence logic seen from a logical point of view, focusing on von Wright’s seminal work
[76] in Section 4.1. In Section 4.2, I show how the Order Logic of Chapter 2 can be
used to express a plethora of binary preferential statements between propositions. In
Section 4.3, I focus on one of these fragments, the VV fragment. Finally, in Section
4.4, T introduce dynamics in the latter fragment with the preference upgrade action

already discussed in Chapter 2. One important feature that has been left out in the

LOne reason for choosing von Wright is his insistence on the notion of ceteris paribus preferences,
the main subject of Chapter 5, which turned out to yield very interesting logical results. Von
Wright’s insight on ceteris paribus yet again proved to be fruitful and leading to interesting logical
systems. More about this later.
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discussion so far is the notion of ceteris paribus preferences; I reserve this for Chapter
5.

4.1 Von Wright’s preference logic: Historical con-

siderations

Adequately understanding von Wright’s conception of ceteris paribus preferences is
a difficult task, given the lack of semantic considerations in his work. Leaving this
scholarly task aside, I appeal to what appears to be his fundamental intuitions and
use them as landmarks to situate my proposal.

Von Wright uses a propositional language whose propositional variables range
over states of affairs, augmented with a binary preference relation P such that “pPq”
expresses that the states of affairs p are preferred to the states of affairs q. There is
a restriction in the inductive definition of the language, namely that in ‘@0 Py’ ‘p’
and ‘0" can only be ‘factual’ propositional formulas, i.e., formulas without preference
operators. Von Wright’s formalism, as is commonly the case in the early development
of modal logic, is almost purely syntactical. Essentially, given a preference statement,
one manipulates it syntactically until it is in what von Wright calls normal form. If the
resulting sentence is consistent, then so is the original sentence. This whole procedure
of sentence manipulation can be seen as giving the meaning of von Wright’s notion of
preference. Indeed, his whole discussion can be summarized in the following syntactic

principles:

L. Py — =(yPy)
2. pPY NYPE — pPE
3. 0Py = (p A —)P(—p A1)

4. (a) pP(YVE) =P ApPg
(b) (V)P =pPEAYPS
5. Py = [(@ AT)P(p A1) A [(@ A —r)P(¢ A =r)], where r is any propositional

variable not occurring in either ¢ or .

The first two principles express asymmetry and transitivity of preference respectively,

and are typical assumptions about preferential relations. The asymmetry of the
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relation is obvious with a notion of strict preference; if one strictly prefers p to ¢,

then it is not the case that one also strictly prefers ¢ to p.

Transitivity has a strong intuitive appeal, although it has often been questioned
(see, for a good discussion, [27]). I leave the discussion of paradoxes involving tran-
sitive preferences aside. From a 