
Knowledge and Games:
Theory and Implementation

Andreas Witzel

Knowledge and Games:
Theory and Implementation

ILLC Dissertation Series DS-2009-05

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 904
1098 XH Amsterdam

phone: +31-20-525 6051
fax: +31-20-525 5206
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/

Knowledge and Games:
Theory and Implementation

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof. dr. D. C. van den Boom

ten overstaan van een door het college voor promoties
ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel
op donderdag 3 september 2009, te 12.00 uur

door

Simon Andreas Witzel

geboren te Freiburg, Duitsland

Promotiecommissie:

Promotor:
Prof. dr. K. R. Apt

Overige leden:
Prof. dr. J. F. A. K. van Benthem
Prof. dr. D. J. N. van Eijck
Prof. dr. B. Löwe
Prof. dr. J.-J. Ch. Meyer
Prof. dr. R. Parikh
Dr. U. Endriss

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The investigations were supported by a GLoRiClass fellowship funded by the
European Commission (Marie Curie Early Stage Research Training Mono-Host
Fellowship MEST-CT-2005-020841).

Copyright c© 2009 by Andreas Witzel

Cover art based on Thief: The Dark Project, c© 1998 Eidos Interactive.
Used by permission.

Printed and bound by Ipskamp Drukkers.

ISBN: 90–5776–193–9

Contents

Acknowledgments ix

Introduction 1

1 Guarding common knowledge 13
1.1 Introduction . 13

1.1.1 Motivation . 13
1.1.2 Related work . 15
1.1.3 Plan of the chapter . 16

1.2 Preliminaries . 16
1.2.1 CSP . 17
1.2.2 Graph theory . 19
1.2.3 Symmetric electoral systems 21

1.3 Setting the stage . 22
1.3.1 Pairwise synchronization 22
1.3.2 Peer-to-peer networks . 24
1.3.3 G-symmetry . 26

1.4 Results . 27
1.4.1 Positive results . 27
1.4.2 Negative result . 30

1.5 Conclusions . 34

2 Knowledge in interaction structures 37
2.1 Introduction . 37

2.1.1 Motivation . 37
2.1.2 Plan of the chapter . 38

2.2 Preliminaries . 38
2.3 Properties of knowledge . 41
2.4 Conclusions . 47

v

2.4.1 Related work . 47

2.4.2 Possible extensions . 48

3 Strategies in interaction structures 51

3.1 Introduction . 51

3.1.1 Motivation . 51

3.1.2 Plan of the chapter . 53

3.2 Preliminaries . 53

3.3 Iterated strategy elimination . 55

3.3.1 Completed communication 55

3.3.2 Intermediate states . 59

3.4 Epistemic foundation . 63

3.4.1 Epistemic language and states 63

3.4.2 Correctness result . 64

3.5 Distributed implementation . 67

3.5.1 T operator approach . 69

3.5.2 Knowledge module approach 70

3.6 Conclusions . 73

3.6.1 Related work . 73

3.6.2 Possible extensions . 75

4 Epistemic reasoning in computer games 77

4.1 Introduction . 77

4.1.1 Motivation . 78

4.1.2 Plan of the chapter . 79

4.2 Programming with knowledge . 79

4.3 Related work . 81

4.3.1 Existing games . 81

4.3.2 Research . 82

4.4 Potential applications . 84

4.4.1 Catching the Thief . 84

4.4.2 Adding credence to Assassin’s Creed 86

4.5 Implementation study for Thief 87

4.5.1 Knowledge module . 87

4.5.2 Expected impact on gameplay 89

4.6 Conclusions . 90

4.6.1 Explicit knowledge programming 90

4.6.2 Alternatives and extensions 91

4.6.3 Cognitive considerations 92

4.6.4 Final words . 93

vi

5 Coalition formation: A generic approach 95
5.1 Introduction . 95

5.1.1 Approach . 95
5.1.2 Related work . 96
5.1.3 Plan of the chapter . 97

5.2 Comparing and transforming collections 97
5.3 TU-games . 98
5.4 Individual values . 101
5.5 Stable partitions . 104
5.6 Stable partitions and merge/split rules 106
5.7 Applications . 109

5.7.1 Coalitional TU-games . 109
5.7.2 Hedonic games . 112
5.7.3 Exchange economy games 113

5.8 Conclusions . 114

6 Time constraints in mixed auctions 115
6.1 Introduction . 115

6.1.1 Motivation . 115
6.1.2 Approach . 116
6.1.3 Plan of the chapter . 117

6.2 Bidding language . 117
6.2.1 Transformations and time points 118
6.2.2 Valuations . 118
6.2.3 Bids . 119
6.2.4 Time constraints . 120
6.2.5 Semantics . 121
6.2.6 Syntactic sugar . 122
6.2.7 Expressive power . 124

6.3 Winner determination . 125
6.3.1 WDP with time constraints 125
6.3.2 Original integer program 127
6.3.3 Modified integer program 128
6.3.4 Valuation for the auctioneer 130
6.3.5 Computational complexity 132

6.4 Intervals . 133
6.5 Conclusions and related work . 134

6.5.1 Related work . 134
6.5.2 Possible extensions . 134

7 Outlook 137

Bibliography 141

vii

Index 155

Samenvatting 159

Abstract 161

viii

Acknowledgments

First of all, I am indebted to my supervisor Krzysztof Apt, who was always
available for discussion and counsel, and who skillfully provided guidance while
at the same time leaving ample freedom for my own ideas. With his help, a
sufficiently coherent research plan evolved, where initially there were only vague
conceptions.

I would like to thank Johan van Benthem, Jan van Eijck, Ulle Endriss, Benedikt
Löwe, John-Jules Meyer, and Rohit Parikh for agreeing to be on my thesis
committee, and for many insightful and pleasant discussions at various occasions.
In particular, I am grateful to Rohit Parikh for being an incredibly dedicated host
during a very inspiring summer at the Graduate Center in New York City; to Ulle
Endriss for providing helpful guidance and interesting opportunities for teaching
and collaborations; and to Benedikt Löwe for countless interesting discussions, help
and suggestions for projects and collaborations, as well as his tireless administrative
support as GLoRiClass project coordinator.

Speaking of administrative support, my time at ILLC, and partly at CWI,
would have been impossible without Karin Gigengack, Tanja Kassenaar, Monique
Laurent, Ingrid van Loon, Peter van Ormondt, and Marjan Veldhuisen, who are
perpetually busy sustaining the great working environment. René Goedman was
a reliable source of good mood at the entrance (unfortunately somewhat less
frequently after we got outsourced to another building), and Marco Vervoort
helped with the Dutch translation of the abstract of my dissertation.

At work outside the office, there were countless people I met on conferences, had
interesting discussions with, or interacted with academically in various other ways.
Especially I would like to thank Aaron Archer for inviting me to AT&T Shannon
Research Laboratory in New Jersey, Ronald Fagin whom I visited at IBM Almaden
Research Center, David Pennock who introduced me to Yahoo! Research New York
City, as well as Rahul Bendre, Jelle Gerbrandy, Ethan Kennerly, Willemien Kets,
Martin Magnusson, and Achim Rettinger, with whom I had helpful discussions,
enjoyable collaborations, long email conversations, and entertaining activities.

ix

In the office, many people made life enjoyable. With Cédric Dégremont,
Pietro Galliani, Nina Gierasimczuk, Umberto Grandi, Nicole Immorlica, Jarmo
Kontinen, Vangelis Markakis, Jakub Szymanik, Joel Uckelman, Yun Qi Xue, and
Jonathan Zvesper I had awesome times at work, on conferences, and travelling. I
am especially thankful to Jakub, with whom I not only shared an office during
this whole adventurous time, but also many highs and lows connected to it and
to life in general. Almost like a big brother, he has been a source of calmness,
confidence and fun at the same time. Jonathan has been a great research and
conference/travel mate, and many a night was spent discussing logic and life with
his culinary support. I would like to thank Jonathan and Nina for proofreading
parts of my dissertation. Finally, a very enjoyable tradition of overtime at the
office has been established with Cédric, Nina, Jakub, Jarmo, Pietro and QiQi, at
times leaving us with red eyes and trembling hands.

Naturally, there were also people with whom I did not work together, and still
had good moments. I would not want to miss the hours I spent chatting, laughing,
musicizing, learning about language, life, and myself, with Olivia Ladinig and
Salvador Mascarenhas. It was great living with Olivia and the other boaties Tikitu
de Jager, Olga Grigoriadou, and Stefan Bold, and, in postdiluvian times, with Inés
Crespo, Craig Rea, and QiQi. I am thankful to many other ILLC people for the
good times we had at parties and other occasions: Edgar Andrade-Lotero, Gaëlle
Fontaine, Michael Franke, Amélie Gheerbrant, Umberto Grandi, Eric Hielscher,
Daisuke Ikegami, Lauri Keskinen, Szymon Klarman, Marijn Koolen, Lena Kurzen,
Henrik Nordmark, Brammert Ottens, Eric Pacuit, Petter Remen, Raul Leal Ro-
driguez, Olivier Roy, Federico Sangati, Merlijn Sevenster, Jonathan Shaheen, Leigh
Smith, Marc Staudacher, Sarah Uckelman, and Fernando Velazquez-Quesada.

I am also very happy about the familiar faces from the past with whom I
kept contact during this time and enjoyed many occasions for biking, hiking, and
reality checks: Frank Blum, Anders Eriksson, Anne Fiedler, Richard Heidler,
Nicola Kaiser, Philipp Pulvermüller, Rafael Say, Bernd Schlabach, Martin Schmal,
Hendrik Skubch, Moritz Weeger, Till Winkler and my sister Miriam with her
young family.

Probably I forgot to mention one important person or other here (sorry, I will
invite you for a beer!). But most importantly, I would like to thank my parents,
who have been a constant source of support in whatever I did for the past 29
years; and QiQi, who has been with me in good and in difficult times, making
every day a special day—including even the stressful final days of this work.

Amsterdam/Santa Fe Andreas Witzel
July 2009

x

Introduction

Does she know what he knows? And if so, what is she going to do?
This dissertation takes a computer science perspective on questions of knowl-
edge and interaction and presents approaches for endowing artificial agents with
corresponding reasoning capabilities.

Background

Epistemic logic

Epistemic logic is the formal study of reasoning about knowledge, including
knowledge about knowledge (so-called higher-order knowledge). The modern field
of epistemic logic has been initiated by von Wright [158] and Hintikka [78]. More
recent treatments include work by Fagin et al. [60] and Meyer and van der Hoek
[100].

The fundamental idea for a formal model of agents’ knowledge is to consider
a set of possible worlds, or states in which the actual world may be, together with
indistinguishability relations between them, one for each agent. In each possible
world, certain atomic statements, or propositions, hold. Intuitively, an agent
knows whatever holds in all worlds which he cannot distinguish from (or which
he considers possible in) the actual world. In order to properly reflect certain
properties that the philosophical notion of knowledge is thought to possess, the
indistinguishability relations are usually required to be equivalence relations.

This relational semantics is often called Kripke semantics, and the involved
structures Kripke structures, due to the pioneering work in modal logic by Kripke
[87].

For clarification, consider the following example.1 Assume that for some reason,
Ann knows Bob’s bank PIN code. It then depends on her higher-order knowledge

1This example is taken from [17]. For simplicity, issues like possession of the physical bank
pass or effects of involving additional agents are abstracted away from.

1

2 Introduction

whether she can safely empty his bank account: she can do this only if she knows
that he doesn’t know that she knows the code—otherwise he would immediately
suspect her. Such a “safe” situation is modeled in Figure 1. In the actual world
on the left, Bob’s PIN is 1234. Bob considers another world possible, where his
PIN is still 1234 (he knows his PIN), but where Ann considers a world possible
where his PIN is not 1234. In the actual world, however, Ann only considers the
actual world possible. That is, Ann knows Bob’s PIN, Bob doesn’t know that she
knows it, and Ann in turn knows that he doesn’t know that she knows it.

PIN = 1234 PIN = 1234 PIN 6= 1234

B A

A,B A,B A,B

Figure 1: Model of a situation where it is safe for Ann (A) to empty Bob’s (B)
bank account.

In order to talk about such models formally, an epistemic language is used,
consisting of formulas with a clearly defined syntax. In the simplest case, the
language consists of letters for the atomic statements, certain logical connectives
to combine statements to more complex ones, and a knowledge operator for each
agent. For example, if we use p to denote that Bob’s PIN is 1234, the connectives
∧ and ¬ to denote “and” and “not”, and KA and KB as knowledge operators for
Ann and Bob, then the formula

KA(p ∧ ¬KBKAp)

means that Ann knows Bob’s PIN and knows that he doesn’t know that she knows
it. As we saw, this formula holds in the actual world in the model in Figure 1.

In general, one can reason, or deduce, in two fundamental ways. Semantically,
one can say, for example, that a formula follows from another formula if the former
holds in all models under consideration in which the latter holds. Syntactically,
one can use certain axioms and inference rules to reach a desired conclusion. We
are in this dissertation mostly concerned with semantic arguments.

Besides knowledge, one can also model the related notion of belief.2 The
difference is that, philosophically speaking, the concept of knowledge implies
correctness, while beliefs may be false. On the level of models, this is reflected by
using more general accessibility relations, which need not be equivalence relations.
For example, if we replace Bob’s indistinguishability between the actual and the
middle world in Figure 1 by a one-way accessibility from the actual to the middle

2In some contexts, one then speaks of doxastic logic, though in other contexts this term has
a more narrow definition referring to frameworks formalizing how beliefs are revised.

Introduction 3

world, we obtain the situation depicted in Figure 2 where Bob (mistakenly) believes
that Ann does not know his PIN.

PIN = 1234 PIN = 1234 PIN 6= 1234

B A

A A,B A,B

Figure 2: Model of a situation where Bob (B) mistakenly believes that Ann (A)
does not know his PIN.

A concept of particular importance is common knowledge (or belief), which
intuitively corresponds to the infinite iteration of mutual knowledge (or belief):

KBp, KAKBp, KBKAKBp, KAKBKAKBp, . . .

and so on ad infinitum. We illustrate this limit case in the upcoming subsection.

Distributed computing

Distributed computing is the formal study of programs, or processes, running
simultaneously on possibly different processing units. Typically, these processes
can coordinate and communicate in some way, which necessitates a study of their
joint behavior and the system they form as a whole. In particular, one can ask
what processes can be said to “know” about each other, each other’s state, and
each other’s knowledge. This is relevant, for example, for sharing resources or
ensuring correct or secret transmission of information. Consequently, issues around
knowledge in distributed systems have been studied using formalisms similar to
the one described above, among others, by Parikh and Ramanujam [116], Chandy
and Misra [39], and extensively by Fagin et al. [60].

Some intuitions about the concept of common knowledge can be drawn from a
classic example in distributed computing, introduced by Akkoyunlu et al. [1] and
Gray [70] and later independently considered by Rubinstein [129]. The example
in its most well-known version features two generals who are positioned with their
armies on two hilltops with no direct line of sight (and no mobile phones). They
need to launch a coordinated attack on their enemy in the valley. So one general,
let us call him A, sends a messenger to the other general, B, proposing a time
for the attack. Unfortunately, A has no way of knowing whether and when his
messenger will arrive to deliver the message. Since B is aware of this fact, upon
receiving the proposal he sends the messenger back to confirm. So far so good,
but B has no way of knowing whether and when his confirmation will be received.
And as long as it has not been received, A will not know that B received the

4 Introduction

original proposal, and thus A will not attack. Since A is aware of this fact, he
sends the messenger back to confirm. . . and before they know it, the generals are
trapped in an infinite loop.

It can be shown that what the generals need is common knowledge of the
original message, no finite level of mutual knowledge will suffice for their pur-
poses. Without compromises, and without sufficient time for exchanging infinitely
many confirmations, common knowledge can only be attained by synchronous
communication such as provided by a direct line of sight (or mobile phones).3

Game theory

Game theory, a framework for the formal study of strategic interaction, was
initiated by von Neumann and Morgenstern [104]. Many modern textbooks exist,
e.g., Osborne [106]. Issues of (common) knowledge and belief are a subject of
continuing interest in game theory, starting with work by Harsanyi [76] and
Aumann [12]. The interface of (epistemic) logic and game theory is currently
being actively studied, for example by van Benthem [18].

The basic idea of non-cooperative game theory is that agents, also called
players, act and interact without any institutions that would allow them to form
and enforce binding agreements for cooperation. At the heart of such a player lies
a payoff function, which models the payoff, or utility, which the player derives
from any given interaction. An interaction in this framework is taken to be a tuple
of simultaneous actions, or strategies, one for each player. A payoff function
then maps such strategy profiles, or joint strategies, to numbers representing
the utility.4 A rational player is assumed to aim at maximizing his utility.

For example, assume that Ann loves Indian food and isn’t too fond of Mexican
food, and that Bob likes Ann5 and really wants to eat in the same restaurant as
she does. So consider the actions of going to an Indian restaurant or going to
a Mexican restaurant. The according payoff functions can be specified using a
payoff matrix as in Figure 3.

Clearly, such payoff structures induce (or reflect) preferences : Ann (uncondi-
tionally) prefers the Indian over the Mexican restaurant, while Bob prefers Indian
over Mexican if Ann chooses Indian, and Mexican over Indian if she chooses
Mexican. If Bob does end up in a different restaurant than Ann, though, then he
would rather eat Mexican food than Indian.

3There are some subtleties regarding just how synchronous communication can actually be,
especially when mediated by communication devices. Monderer and Samet [101] show how
common belief can be seen to approximate common knowledge as uncertainty decreases. See
Chapter 1, Section 1.5, for some discussion in our context.

4We are not concerned with so-called extensive-form games, which consist of multiple actions
taken in turns. Suffice it to say that they can be represented in the normal form we describe
here.

5He hasn’t found out about his bank account yet.

Introduction 5

Ann

Bob
Indian Mexican

Indian 10, 10 10, 5
Mexican 0, 0 0, 10

Figure 3: Ann’s and Bob’s strategies and corresponding payoffs, giving for each
strategy profile first Ann’s and then Bob’s payoff.

In this example, going to the Mexican restaurant is strictly dominated for
Ann: no matter what Bob does, she always gets a strictly higher payoff from
choosing the Indian restaurant. The usual definition of a rational player implies
that such an action will not be chosen—it can be eliminated, leaving us with the
game in Figure 4.

Ann

Bob
Indian Mexican

Indian 10, 10 10, 5

Figure 4: The game after eliminating the Mexican restaurant choice for Ann.

It turns out that in this reduced game, Mexican is dominated by Indian for
Bob. Eliminating this strategy in turn, we end up with a trivial game where both
Ann and Bob are left with the single choice of going to the Indian restaurant.
This process, first considered by Dekel and Fudenberg [46], is known as iterated
elimination of strictly dominated strategies (IESDS).

So far we have taken an omniscient point of view and simply manipulated
the fully specified payoff matrix. If we put ourselves in a player’s shoes, however,
who may have incomplete information about other players’ preferences and
knowledge, then things get more involved. In our example, for Bob to safely
perform the last elimination, he needs to know that Ann eliminated the Mexican
restaurant choice—that is, he needs to know that Ann is rational and strictly
prefers the Indian restaurant.6 If we introduce a third player, Carol, who likes
Bob and wants to prevent him from being alone with Ann, then for her restaurant
choice Carol needs to know whether Bob knows what Ann prefers. The whole
elimination process then needs to be formulated in terms of knowledge, and
epistemic logic lends itself to that end.

If the players obtain their knowledge through some sort of communication,
then matters are somewhat simpler with synchronous communication, which, as
we saw above, creates common knowledge, superseding intermediate levels of
mutual knowledge and removing the need for confirmations. Such a setting is the

6Of course Ann could eliminate the choice for other reasons than rationality and dominance,
but let us stick with this explanation here.

6 Introduction

motivation for the main part of this dissertation, and we give some more intuition
and justification in the appropriate places.

Outside the main part, we deal with two other topics from game theory: firstly
combinatorial auctions, and secondly coalition formation.

Combinatorial auctions are auctions of multiple goods where the bidders can
bid on combinations of these goods. As in conventional single-item auctions,
the bidders transmit their bids to the auctioneer, who determines the winner
of the auction. However, in contrast to single-item auctions, in a combinatorial
setting bid representation and winner determination become rich and complex
issues; see, e.g., the book compiled by Cramton et al. [43] for a recent overview
of these and other topics. We consider a certain kind of combinatorial auction
where services transforming goods are offered, rather than conventional atomic
goods. These services then may be scheduled in such a way that the output of
one transformation can be used as input for another transformation. We examine
how preferences over such orderings of the offered transformations can be taken
into account.

Coalition formation belongs to the field of cooperative game theory, which
assumes that there is a way for players to form and enforce binding agreements.
The coalitions resulting from such agreements constitute the focus of interest on
two scales. From the individual player’s point of view, the questions concern what
he can, or should, get out of joining a coalition, and what coalitions he prefers
over others; and on a larger scale, the dynamics of coalitions are of interest, how
they form and change, and when they might be considered stable. The recent
textbook by Ray [123] provides an overview of these latter issues. We address
them under an operational viewpoint of merging and splitting coalitions.

Social networks

In the research field of social networks, one studies relationships and interdepen-
dencies among individuals. This field has been highly active in recent years, see,
e.g., the books by Jackson [83] and Goyal [69].

We are here especially interested in communication networks, that is, networks
which determine the possibilities for communication among the individual agents.
Sharing of information in social networks has been studied in probabilistic frame-
works, e.g., by Chamley [38]. Within logic, the relevance of epistemic issues in
communication networks has been recognized by a number of authors, e.g., by
van Benthem [20] and Pacuit and Parikh [109].

To illustrate some of the issues and subtleties involved, we give here an informal
instance of the framework we set up in the main part of this dissertation. We
look at communication about preferences among groups of agents, and we are
interested in the evolution of knowledge within such “group networks”, and in
how the agents can use that knowledge in order to choose their actions.

We formalize the assumptions we make later on. For now consider Figure 5,

Introduction 7

and remember that Bob likes Ann and Carol likes Bob, and how their choices
depend on each other. Shyness and jealousy forbid them to speak to each other
explicitly about coordination and preferences, so let us assume that communication
is limited, for example only through observing behavior.

Ann Bob

Carol

(a)

Ann Bob

Carol

(b)

Ann Bob

Carol

(c)

Figure 5: Three possible group configurations of Ann, Bob and Carol.

Figure 5 shows three possible group configurations of Ann, Bob and Carol.
In (a), Bob shares a communication platform with Ann and another one with
Carol. Through the former, he can learn about Ann’s preferences, and through
the latter, Carol can learn about Bob’s preferences (e.g., through observations
while pairwise eating at the same restaurant). However, Carol cannot learn about
Ann’s preferences. In (b), Carol can learn about Ann’s preferences, but she cannot
learn what Bob knows about Ann’s preferences (and she is too jealous to ask him
directly). Only in (c), where they all share the same communication platform,
they can all commonly learn about each other. In particular, Carol can then learn
about Ann’s preferences, and also that Bob knows them. She will then be able to
predict his choice of action, and choose her action accordingly.

Theory and Implementation

Epistemic logic and game theory have a strong focus on an external and descriptive
point of view.

In epistemic logic, this is already reflected by the fact that there is one central
model comprising all agents. It describes a modeler’s perspective on what the
agents can be said to know in a philosophical sense, and what they indeed will
be able to figure out if they are perfect reasoners; but it does not necessarily say
exactly how the agents in actuality arrive at that knowledge.7

Similarly, many concepts in game theory describe what situations rational
players will end up in, but not exactly how they might get there.

7There is a sizable but as yet somewhat inconclusive literature in computer science and game
theory concerning modeling of bounded rationality and reasoning capabilities; see, e.g., [59, 130].
We discuss these and related issues at various places, notably in Chapter 3, Section 3.6.

8 Introduction

Without doubt, epistemic logic does provide elegant and general mechanisms
to perform deductions and determine the truth value of statements. But those,
again, feel more like a tool for the modeler, typically without any claim that they
reflect what agents actually (can) do. So these mechanisms do not really try to
take an agent’s point of view and can, without any qualms, be arbitrarily complex.

This kind of criticism is not new. For example, Parikh [114] aims to model
more closely what and how we as humans actually know and believe. However,
the mainstream research focus does not lie on such approaches, nor on concrete
algorithmic realizations of epistemic reasoning, for example, within artificial agents.

Also in game theory, certain algorithmic characterizations exist, the procedure
of IESDS explained above being one example. However, IESDS still takes a
centralized perspective and operates on the fully specified payoff matrix. Tan and
Werlang [144], Brandenburger [30] and Börgers [28] have characterized mutual
beliefs about each other’s rationality and preferences that lead players to the
outcome of IESDS, but so far it has not been examined just what players can
do given some particular pieces of information, or how such information can be
arrived at and processed.

In the main part of this dissertation, we want to take a procedural and
subjective point of view: How might a player actually access his theoretically
ascribed knowledge, and how might he obtain the game-theoretic solution?

To this end, we are interested in restricting the general theories and obtaining
concrete implementations of simple fragments that can be proved correct with
respect to the general theoretical foundations. The aim of this approach is to
obtain practical implementations grounded in theory.

Chapter overview

Figure 6 shows how the chapters of this dissertation relate to its main concepts
and to each other. The main part of the dissertation is formed by Chapters 1–3,
which build upon each other and make a progression from knowledge and theory
to games and implementation. The remaining satellite chapters have either been
directly inspired by the main part (in the case of Chapter 4) or are related via
the same main concepts (in the case of Chapters 5 and 6). In the following, we
give more details on the contents of the chapters and the overall structure of the
dissertation.

The basic idea of the main part (Chapters 1–3) is to view computer processes,
or otherwise distributed programs, as players in a game-theoretic setting with
incomplete information. As such, they should be able to communicate in order to
obtain information, and to perform game-theoretic algorithms.

In particular, we focus on the IESDS algorithm described above, and a set-
ting where each player initially knows only his own preferences. Players can
communicate their preferences across a communication network, and as they

Introduction 9

Knowledge Games

Theory Implementation

Ch. 2Ch. 1 Ch. 3

Ch. 4Ch. 5

Ch. 6

Figure 6: Structure of this dissertation.

communicate, their knowledge changes and they can obtain more conclusive
elimination outcomes.

In order to obtain an actual implementation, we need to enable players to
actually compute their knowledge so that they can access what they theoretically
can be said to know. In order to make these computations efficient, we are
especially interested in a framework where knowledge is simple to maintain and
process. We therefore impose clear restrictions on the allowed communication,
and, for the reasons mentioned above, focus on synchronous communication.

We have illustrated the underlying approach, which we call explicit knowledge
programming,8 in [155].

In Chapter 1 (Guarding common knowledge), we establish the technical foun-
dations to support implementation of synchronous communication, and thus
the attainment of common knowledge, among computer processes represent-
ing players. To this end, we examine dialects of a process calculus which is
available in the form of programming languages.

We define a setting where processes are treated “on an equal footing”, in
the sense that none of them takes a special role in initiating or coordinating
communication. This is a prerequisite for interpreting processes as players
in arbitrary games, since the differences among them should only depend
on the strategies and preferences of a particular given game, and not be
predetermined through some a priori roles.

We then show that a certain guard construct is needed in the language in
order to implement correct programs in such a symmetric setting. Since

8Our term explicit knowledge programming is somewhat related to explicit knowledge and
algorithmic knowledge [113, 60]; however, it is mostly meant to contrast with knowledge-based
programs [61]. We give some more discussion on this in Chapter 3, Section 3.6.

10 Introduction

this construct is not commonly provided, our result practically identifies a
unique programming language suitable for our purposes.

This chapter is an extended version of [154].

In Chapter 2 (Knowledge in interaction structures), we define what we call
interaction structures, a concrete class of communication networks com-
patible with the findings from Chapter 1. We also specify what kind of
communication scenario we focus on, consisting of possible initial situations
and possible communication.

We then study properties of knowledge that results from such communication.
In particular, we investigate what is the impact of common knowledge of the
underlying interaction structure, and we establish that common knowledge
distributes over disjunction for formulas without negation. These results
can be used to simplify reasoning about knowledge in our setting.

This chapter builds on parts of [9], joint work with Krzysztof R. Apt and
Jonathan A. Zvesper.

Chapter 3 (Strategies in interaction structures) then turns towards the game-
theoretic and implementation-oriented side.

We study games in the presence of an interaction structure, which allows
players to communicate their preferences, assuming that each player initially
only knows his own preferences. We study the outcomes of IESDS that can
be obtained in any given state of communication.

The insights from Chapter 2 are used in order to prove that the outcomes of
IESDS which we establish indeed correctly reflect what the players know
in any particular situation. Building upon Chapter 1, we then describe a
distributed algorithm that implements IESDS locally in each player process.

This chapter extends unpublished joint work with Krzysztof R. Apt and
Jonathan A. Zvesper.

This rounds off the main part of the dissertation and starts the more loosely
related satellite chapters. The first of these has developed from the main part and
is close to it in spirit, with the difference that it focuses on a centralized rather
than a distributed approach, and that it considers computer games rather than
games in the strict sense of game theory.

In Chapter 4 (Epistemic reasoning in computer games), we argue that reasoning
about knowledge, including about each other’s knowledge, plays a crucial
role in real-life strategic and social interaction. We survey existing literature
and games which simulate such interaction, and show that this issue is
currently neglected.

Introduction 11

We give concrete scenarios from existing computer games which could profit
from incorporating such reasoning techniques and substantiate one of them
by describing a simple implementation intended for experimental evaluation.
Finally, we discuss a number of issues that arise when generalizing our
approach, some of which go beyond the scope computer games and are of
more general interest.

This chapter extends joint work with Jonathan A. Zvesper and Ethan Ken-
nerly, published as [156, 157].

The last two satellite chapters return to game theory, and in particular to the
areas of coalition formation and auctions.

Chapter 5 (Coalition formation: A generic approach) proposes an abstract
approach to coalition formation that focuses on simple merge and split rules
transforming partitions of a group of players.

We identify conditions under which every iteration of these rules yields a
unique partition. The main conceptual tool is a specific notion of a stable
partition.

The results are parametrized by a preference relation between partitions of
a group of players and naturally apply to coalitional TU-games, hedonic
games and exchange economy games.

This chapter is joint work with Krzysztof R. Apt, to appear as [8].

In Chapter 6 (Time constraints in mixed auctions), we extend the existing
framework of mixed multi-unit combinatorial auctions to include time con-
straints, present an expressive bidding language, and show how to solve the
winner determination problem for such auctions using an integer program-
ming implementation.

Mixed multi-unit combinatorial auctions are auctions where bidders can
offer combinations of transformations of goods rather than just simple goods.
For example, a transformation might take dough and water and yield bread.
This model has great potential for applications in the context of supply chain
formation, which is further enhanced by the integration of time constraints.

We consider different kinds of time constraints: they may be based on
either time points or intervals, they may determine a relative ordering of
transformations, they may relate transformations to absolute time points,
and they may constrain the duration of transformations.

This chapter is based on unpublished joint work with Ulle Endriss.

In Chapter 7 we give an outlook on possible future directions for implementing
epistemic logic.

Chapter 1

Guarding common knowledge

1.1 Introduction

1.1.1 Motivation

As described in the Introduction chapter, our goal is a distributed implementation
of a game-theoretic algorithm (see, e.g., [72] for a discussion of the interface
between game theory and distributed computing). In this chapter, we lay the
technical foundations to support such an implementation from a distributed
computing point of view.

Two important issues in the domain of game theory are knowledge, especially
common knowledge, and symmetry between the players, also called anonymity.
We describe these issues and the connections to distributed computing in the
following two paragraphs, before we motivate our choice of process calculus and
the overall goal of the chapter.

Common knowledge and synchronization. The concept of common knowl-
edge, first introduced by Lewis [92] building on ideas of Schelling [134], has been a
topic of much research in distributed computing [73] as well as in game theory [12].
When do processes or players “know” some fact, mutually know that they know
it, mutually know that they mutually know that they know it, and so on ad
infinitum? And how crucial is the difference between arbitrarily, but finitely deep
mutual knowledge and the limit case of real common knowledge?

In the area of distributed computing, the classical example showing that the
difference is indeed essential is the scenario of coordinated attack described in
the Introduction chapter. The game-theoretic incarnation of the underlying issue
is the electronic mail game by Rubinstein [129] (see [102] for a more recent
treatment).

The basic insight of these examples is that two agents who communicate
through an unreliable channel can never achieve common knowledge, and that

13

14 Chapter 1. Guarding common knowledge

their behavior under finite mutual knowledge can be strikingly different.
These issues have been analyzed in detail by Fagin et al. [60], in particular in a

separately published part [73], including a variant where communication is reliable,
but message delivery takes an unknown amount of time. Even in that variant,
which has also been looked at by Parikh and Ramanujam [116], it is shown that
only finite mutual knowledge can be attained.

However, in a synchronous communication act, sending and receiving of a
message is, by definition, performed simultaneously. In that way, the agents obtain
not only the pure factual information content of the message, but the sender
also knows that the receiver has received the message, the receiver knows that
the sender knows that, and so on ad infinitum. The communicated information
immediately becomes common knowledge.

Attaining common knowledge and achieving synchronization between processes
are thus closely related. Furthermore, synchronization is in itself an important
subject (see, e.g., [135]).

Symmetry and peer-to-peer networks.1 In game theory, it is usually as-
sumed that players are anonymous and treated on an equal footing in the following
sense: Any differences between them are only induced by the payoff structure
and the information state in a given game, while their names do not play a role
and no player is a priori distinguished from the others [106, 103]. If we want to
set up a system that allows processes to incarnate players in any given game, we
need to make sure that those processes are on an equal footing in a corresponding
sense. Even though the interaction structures we introduce later can take any
form, we need to be prepared for cases where the communication infrastructure is
in a certain sense symmetric. Such symmetric settings, as we see in this chapter,
constitute the crucial cases from the technical viewpoint of an implementation.

In distributed computing, a corresponding kind of symmetry among processes
is often a desideratum. Reasons to avoid a predetermined assignment of roles to
processes or a centralized coordinator include fault tolerance, modularity, and
load balancing [3].

We consider symmetry on two levels. Firstly, we assume communication
networks used by the processes to be symmetric to some extent in order not to
discriminate single processes a priori on a topological level; we formalize this
requirement by defining peer-to-peer networks. These networks are a special case
of the interaction structures we use in Chapters 2 and 3, but our results carry
over, as we discuss in Section 1.5. Secondly, processes in symmetric positions of
the network should have equal possibilities of behavior; this we formalize in a
semantic symmetry requirement on the possible computations.

1Please note that we are not dealing with fashionable incarnations such as file-sharing
networks, but merely use this name for a mathematical notion of a network consisting of directly
connected peers “treated on an equal footing”, i.e., not having a client-server structure or
otherwise pre-determined roles.

1.1. Introduction 15

Communicating Sequential Processes (CSP). Since we are interested in
synchronization and common knowledge, a process calculus which supports syn-
chronous communication through primitive statements clearly has some appeal.
We focus on one of the prime examples of such calculi, namely CSP, introduced
by Hoare [79] and later revised [80, 136]. It allows synchronous communication
by means of deterministic statements on the one hand and non-deterministic
alternatives on the other hand, where the communication statements occur in
so-called guards.

CSP has been implemented in various programming languages, among the
best-known of which is Occam [82]. We thus have at our disposal a theoretical
framework and programming tools which in principle could give us synchronization
and common knowledge “for free”.

However, symmetric situations are a reliable source of impossibility results,
see [63] for a recent collection. There exist different dialects of CSP, which differ
in what communication statements are allowed to appear in guards. We define
the relevant dialects later on, for now suffice it to say that the dialect CSPin

which was, for implementation-related reasons [33], chosen to be the theoretical
foundation of Occam is more sensitive to symmetric situations than the general
form CSPi/o . This has been proved formally by Bougé [29].

CSPin has been used throughout the history of Occam, up to and including its
latest variant Occam-π [150]. This restriction to CSPin generally tends to be the
case for implementations of CSP. One notable exception is a recent extension of
JCSP, a JavaTM implementation of CSP, by Welch et al. [151].

Some of the restrictions resulting in CSPin can in practice be overcome by
using helper processes such as buffers [84]. It is conceivable that such processes
could be used as mediators to coordinate and establish direct and synchronous
communication among the main processes. Therefore, our goal is to formalize the
concepts mentioned above, extend the notion of peer-to-peer networks by allowing
helper processes, and examine whether synchronization is feasible in either of these
two dialects of CSP. We come to the result that, while it can (straightforwardly)
be obtained in CSPi/o, it is impossible to do so in CSPin . For the setting of this
dissertation, we thus need to use one of the rare more general implementations
such as JCSP.

1.1.2 Related work

We extend work by Bougé [29], where a semantic characterization of symmetry for
CSP is given and fundamental possibility and impossibility results for the problem
of electing a leader in networks of symmetric processes are proved for various
dialects of CSP. More recently, this has inspired a similar work by Palamidessi
[110] on the more expressive π-calculus, but the possibility of adding helper
processes is explicitly excluded.

There has been research on how to circumvent problems resulting from the

16 Chapter 1. Guarding common knowledge

restrictions of CSPin . However, solutions are typically concerned only with the
factual content of messages and do not preserve synchronicity and the common
knowledge creating effect of communication, for example by relaying communica-
tion through buffers [84].

The same focus on factual information holds for general research on synchro-
nizing processes with asynchronous communication. For example, in [135] one
goal is to ensure that a writing process knows that no other process is currently
writing; whether this is common knowledge, is not an issue.

The problem of coordinated attack has also been studied for models in which
processes run synchronously [63]; however, the interesting property of CSP is that
processes run asynchronously, which is more realistic in physically distributed
systems, and synchronize only at communication statements.

Since we focus on the communication mechanisms, our results carry over to
other formalisms with synchronous communication facilities comparable to those
of CSP.

1.1.3 Plan of the chapter

In Section 1.2 we give a short description of CSP and the dialects that we are
interested in, define some basic concepts from graph theory, and recall the required
notions and results for symmetric electoral systems by Bougé [29].

In Section 1.3 we set the stage by first formally defining the problem of pairwise
synchronization that we examine. Subsequently, we give a formalization of peer-
to-peer networks which ensures a certain kind of symmetry on the topological
level, and describe in what ways we want to allow them to be extended by helper
processes. Finally, we adapt a concept from [29] to capture symmetry on the
semantic level.

Section 1.4 contains two positive results and the main negative result saying
that pairwise synchronization of peer-to-peer networks of symmetric processes is
not obtainable in CSPin , even if we allow extensions through buffers or similar
helper processes which might mediate between the main processes.

Section 1.5 offers a concluding discussion.

1.2 Preliminaries

We briefly review the required concepts and results from the CSP calculus in
Section 1.2.1, from graph theory in Section 1.2.2, and from [29] in Section 1.2.3.
For more details see [79, 117, 29].

1.2. Preliminaries 17

1.2.1 CSP

A CSP process consists of a sequential program which can use, besides the usual
local statements (e.g. assignments or expression evaluations involving its local
variables), two communication statements:

• P !message to send (output) the given message to process P ;

• P ? variable to receive (input) a message from process P and store it in the
given (local) variable.

Communication is synchronous, i.e., send and receive instructions block until
their counterpart is available, at which point the message is transferred and both
participating processes continue execution. Note that the communication partner
P is statically defined in the program code.

There are two control structures containing guarded commands, see Figure 1.1.
A guard is a Boolean expression over local variables (which, if omitted, is taken
to be true), optionally followed by a communication statement. A guard is open if
its Boolean expression evaluates to true and its communication statement, if any,
can currently be performed. A guard is closed if its Boolean expression evaluates
to false. Note that a guard can thus be neither open nor closed.

[guard1 → command1

� guard2 → command2

. . .
� guardk → commandk]

(a) Non-deterministic selection

∗[guard1 → command1

� guard2 → command2

. . .
� guardk → commandk]

(b) Non-deterministic repetition

Figure 1.1: Control structures in CSP.

The selection statement fails and execution is aborted if all guards are closed.
Otherwise execution is suspended until there is at least one open guard. Then one
of the open guards is selected non-deterministically, the required communication
(if any) performed, and the associated command executed.

The repetition statement keeps waiting for, selecting, and executing open
guards and their associated commands until all guards are closed, and then exits
normally; that is, program execution continues at the next statement.

We sometimes use the following abbreviation to denote multiple branches of a
control structure (for some finite set X):
�x∈Xguardx → commandx

Various dialects of CSP can be distinguished according to what kind of com-
munication statements are allowed to appear in guards. Specifically, in CSPin only
input statements are allowed, and in CSPi/o both input and output statements

18 Chapter 1. Guarding common knowledge

are allowed (within the same control structure). For technical reasons, CSPin

has been suggested from the beginning [79] and is indeed commonly used for
implementations, as mentioned in Section 1.1.1.

1.2.1. Definition. A communication graph (or network) is a directed graph
without self-loops. A process system (or simply system) P with communication
graph G = (V,E) is a set of component processes {Pv}v∈V such that for all
v, w ∈ V , if the program run by Pv (respectively Pw) contains an output command
to Pw (respectively input command from Pv) then (v, w) ∈ E. In that case we
say that G admits P . We identify vertices v and associated processes Pv and use
them interchangeably.

1.2.2. Example. Figure 1.2 shows a simple network G with the vertex names
written inside the vertices, and a CSPi/o program run by two processes which
make up a system P := {P0, P1}. Obviously, G admits P . The intended behavior
is that the processes send each other, in non-deterministic order, a message
containing their respective process name. Since communication is synchronous,
it is guaranteed that both processes execute each communication statement
synchronously at the time when the message is transmitted. In a larger context,
executing this code fragment would have the effect that the participating processes
synchronize, i.e., wait for each other and jointly perform the communication.
In terms of knowledge, this fact as well as the transmitted message (which can
of course be more interesting than just the process names) become common
knowledge between the processes.

0 1
(a) Network G

recd := false
sent := false
∗[¬recd ∧ Pi+1 ? x → recd := true
� ¬sent ∧ Pi+1 ! i → sent := true]

(b) Program of process Pi

Figure 1.2: Network and program run by P0 and P1 in Example 1.2.2. Addition
within process names here and in all further example programs is modulo 2.

1.2.3. Definition. A state of a system P is the collection of all component
processes’ (local) variables together with their current execution positions. A
computation step is a transition from one state to another, involving either
one component process executing a local statement, or two component processes
jointly executing a pair of matching (send and receive) communication statements.
The possible next computation steps are thus determined by the current state of
the system.

A computation is a maximal sequence of computation steps, i.e., a sequence
which is not a prefix of any other sequence of computation steps. A computation

1.2. Preliminaries 19

• is properly terminated if all component processes have completed their
last instruction,

• diverges if it is infinite, and

• is in deadlock if it is finite but not properly terminated.

1.2.4. Example. Figure 1.3 shows a computation of the system from Figure 1.2.
It is finite and both processes reach the end of their respective program, so it
is properly terminated. Note that the exact order in which, for example, the
processes get to initialize their local variables is non-deterministic, so there are
other computations with these steps exchanged. Only certain restrictions to the
order apply, e.g. that the steps within one process are ordered corresponding to its
program, or that both processes must have evaluated the Boolean guards before
they can participate in the subsequent communication.

P0 : assign false to recd
P1 : assign false to recd
P1 : assign false to sent
P0 : assign false to sent
P1 : evaluate Boolean guards
P0 : evaluate Boolean guards

P0, P1 : send 0 from P0 to P1’s variable x
P0 : assign true to sent
P0 : evaluate Boolean guards
P1 : assign true to recd
P1 : evaluate Boolean guards

P0, P1 : send 1 from P1 to P0’s variable x
P1 : assign true to sent
P0 : assign true to recd
P0 : evaluate Boolean guards and exit repetition
P1 : evaluate Boolean guards and exit repetition

Figure 1.3: A properly terminating computation of the system from Example 1.2.2.

1.2.2 Graph theory

We state some fundamental notions concerning directed finite graphs, from here
on simply referred to as graphs.

20 Chapter 1. Guarding common knowledge

1.2.5. Definition. Two vertices a, b ∈ V of a graph G = (V,E) are strongly
connected if there are paths from a to b and from b to a consisting of edges in E.
G is strongly connected if all pairs of vertices are.

Two vertices a, b ∈ V are directly connected if (a, b) ∈ E or (b, a) ∈ E; G
is directly connected if all pairs of vertices are.

1.2.6. Definition. An automorphism of a graph G = (V,E) is a permutation
σ of V such that for all v, w ∈ V ,

(v, w) ∈ E implies (σ(v), σ(w)) ∈ E.

The automorphism group ΣG of a graph G is the set of all automorphisms of G.
The least p > 0 with σp = id is called the period of σ, where by id we denote the
identity function defined on the domain of whatever function it is compared to.

The orbit of v ∈ V under σ ∈ ΣG is Oσ
v := {σp(v)|p ≥ 0}. An automorphism

σ is well-balanced if the orbits of all vertices have the same cardinality, or
alternatively, if for all p ≥ 0,

σp(v) = v for some v ∈ V implies σp = id.

We usually consider the (possibly empty) set Σwb
G \{id} of non-trivial well-balanced

automorphisms of a graph G, that is those with period greater than 1.

A subset W ⊆ V is called invariant under σ ∈ ΣG if σ(W) = W , i.e., if W
is an orbit under σ; it is called invariant under ΣG if it is invariant under all
σ ∈ ΣG.

1.2.7. Example. Figure 1.4 shows two graphs G and H and automorphisms
σ ∈ ΣG with period 3 and τ ∈ ΣH with period 2. Both are well-balanced since,
e.g., Oτ

1 = Oτ
3 = {1, 3} and Oτ

2 = Oτ
4 = {2, 4} all have the same cardinality. We

have ΣH = {id, τ}, so {1, 3} and {2, 4} are invariant under ΣH .

12

3
(a) Graph G, σ ∈ ΣG

1

2

3

4
(b) Graph H, τ ∈ ΣH

Figure 1.4: Two graphs with non-trivial well-balanced automorphisms, indicated
by gray, bent arrows.

1.2. Preliminaries 21

1.2.3 Symmetric electoral systems

We take over the semantic definition of symmetry from Bougé [29]. As discussed
there, syntactic notions of symmetry are difficult to formalize properly; requiring
that “all processes run the same program” does not do the job. We skip some
formal details which we are not going to use. The interested reader is referred
to [29].

1.2.8. Definition (adapted from [29, Definition 2.2.2]). A system P with
communication graph G = (V,E) is symmetric if for each automorphism σ ∈ ΣG

and each computation C of P, there is a computation C ′ of P satisfying the
following condition: For each v ∈ V , process Pσ(v) performs the same steps in C ′

as Pv in C, modulo changing via σ the process names occurring in the computation
(e.g. as communication partners).

The intuitive interpretation of this symmetry notion is as follows. Any two
processes which are not already distinguished by the communication graph G
itself, i.e., which are related by some automorphism, must have equal possibilities
of behavior. That is, whatever behavior one process exhibits in some particular
possible execution of the system (i.e., in some computation), the other process must
exhibit in some other possible execution of the system, localized to its position
in the graph by appropriate process renaming. Taken back to the syntactic level,
this is the case, for example, if both processes run the same program, which does
not make use of any externally given distinctive features like an ordering on the
process names.

1.2.9. Example. The system from Figure 1.2 is symmetric. It is easy to see that,
for example, if we swap all 0s and 1s in the computation shown in Figure 1.3,
we still have a computation of P. Note that programs are allowed to access the
process names, and indeed they do; however, they do not, for example, use their
natural order to determine which process sends first.

1.2.10. Example. On the other hand, consider the system Q = {Q0, Q1}
running the program in Figure 1.5. There is obviously a computation where
Q0 sends its process name 0 to Q1; since the two vertices of the communication
graph are related by an automorphism, symmetry would require that there also
be a computation where Q1 sends its process name 1 to Q0. However, such a
computation does not exist due to the use of the process name for determining
the communication role, so the system is not symmetric.

[i = 0 → Qi+1 ! i
� i = 1 → Qi+1 ? x]

Figure 1.5: Asymmetric program run by Q0 and Q1 in Example 1.2.10.

22 Chapter 1. Guarding common knowledge

We now recall a classical problem for networks of processes, pointed out by Le
Lann [90].

1.2.11. Definition (from [29, Definition 1.2.1]). A system P is an electoral
system if

(i) all computations of P are properly terminating and

(ii) each process of P has a local variable leader, and at the time of termination
all these variables contain the same value, the name of some process P ∈ P .

We now restate the impossibility result which our work builds on, combining
a graph-theoretical characterization with the symmetry notion and electoral
systems.

1.2.12. Theorem (from [29, Theorem 3.3.2]). Suppose a network G admits some
well-balanced automorphism σ different from id. Then G admits no symmetric
electoral system in CSPin .

1.3 Setting the stage

1.3.1 Pairwise synchronization

Intuitively, if we look at synchronization as part of a larger system, a process is
able to synchronize with another process if it can execute an algorithm such that
a direct communication (of any message) between the two processes takes place.
This may be the starting point of some communication protocol to exchange more
information, or simply be taken as an event creating common knowledge about
the processes’ current progress of execution.

Communication in CSP always involves exactly two processes and facilities for
synchronous broadcast do not exist, thus synchronization is inherently pairwise
only. This special case is interesting nevertheless and has been used as a setting
to examine knowledge-related issues, e.g., by Parikh and Krasucki [115]. Note
that JCSP supports broadcasts as an extension of communication to multiple
recipients, and as such can accommodate the interaction structures we deal with
in Chapters 2 and 3.

Focusing on the synchronization algorithm, we want to guarantee that it allows
all pairs of processes to synchronize. To this end, we require existence of a system
where in all computations, all pairs of processes synchronize. Most probably,
in a real system not all pairs of processes need to synchronize in all executions.
However, if one has an algorithm which in principle allows that, then one could
certainly design a system where they actually do; and, vice versa, if one has a
system which is guaranteed to synchronize all pairs of processes, then one can

1.3. Setting the stage 23

obviously use its algorithms to synchronize any given pair. Therefore we use the
following formal notion.

1.3.1. Definition. A system P of processes (pairwise) synchronizes Q ⊆ P
if all computations of P are finite and properly terminating and contain, for each
pair Pa, Pb ∈ Q, at least one direct communication from Pa to Pb or from Pb to
Pa.

1.3.2. Example. The system from Figure 1.2 synchronizes {P0, P1}.

Note that the program considered so far is not a valid CSPin program, since
an output statement appears within a guard. If we want to restrict ourselves to
CSPin (for example, to implement the program in Occam), we have to get rid
of that statement. Attempts to simply move it out of the guard fail since the
symmetric situation inevitably leads to a system which may deadlock.

To see this, consider the system P ′ = {P ′
0, P

′
1} with the program shown in

Figure 1.6. There is no guarantee that not both processes enter the second clause
of the repetition at the same time, since it is now only guarded by a local variable,
and then block forever at the output statement, waiting for each other to become
ready for input. A standard workaround [84] for such cases is to introduce buffer
processes mediating between the main processes, in our case resulting in the
extended system R = {R0, R

′
0, R1, R

′
1} shown in Figure 1.7.

recd := false
sent := false
∗[¬recd ∧ P ′

i+1 ? x → recd := true
� ¬sent → P ′

i+1 ! i; sent := true]

Figure 1.6: Program of process P ′
i potentially causing deadlock.

recd := false
sent := false
∗[¬recd ∧R′

i+1 ? x → recd := true
� ¬sent → R′

i ! i; sent := true]

(a) Program of main process Ri

Ri ? y
Ri+1 ! y

(b) Program of buffer process R′
i

0
0′

1
1′

(c) Underlying communication network

Figure 1.7: Extended system with main processes R0 and R1 and buffer processes
R′

0 and R′
1 together with the underlying communication network.

24 Chapter 1. Guarding common knowledge

While the actual data transmitted between the main processes remains the
same, this system obviously cannot synchronize {R0, R1}, since there is not even
a direct link in the communication network. This removes the synchronizing
and common knowledge creating effects of communication. Even though a buffer
might notify its main process when its message is delivered, then notify the
communication partner about the notification, and so on, synchronicity is not
restored and mutual knowledge only attained to a finite (if arbitrarily high) level,
as seen in the coordinated attack example discussed in the Introduction chapter.

The obvious question now is: Is it possible to change the program or use buffer
or other helper processes in more complicated and smarter ways to negotiate
between the main processes and aid them in establishing direct communications?

To attack this question, in the following Section 1.3.2 we formalize the kind
of communication networks we are interested in and define how they may be
extended in order to allow for helper processes without affecting the symmetry
inherent in the original network.

1.3.2 Peer-to-peer networks

The idea of peer-to-peer networks is to have nodes which can communicate
with each other directly and on an equal footing, i.e., there is no predetermined
client/server architecture or central authority coordinating the communication. We
first formalize the topological prerequisites for this, and then adapt the semantic
symmetry requirement to our setting.

1.3.3. Definition. A peer-to-peer network is a communication graph G =
(V,E) with at least two vertices (also called nodes) such that

(i) G is strongly connected,

(ii) G is directly connected, and

(iii) we have Σwb
G \ {id} 6= ∅.

In this definition,

(i) says that each node has the possibility to contact (at least indirectly) any
other node, reflecting the fact that there are no predetermined client/server
roles;

(ii) ensures that all pairs of nodes have a direct connection at least in one
direction, without which pairwise synchronization by definition would be
impossible; and

(iii) requires a kind of symmetry in the network.

1.3. Setting the stage 25

This last item is implied by the more intuitive requirement that there be some
σ ∈ ΣG with only one orbit, i.e., an automorphism relating all nodes to each
other and thus making sure that they are topologically on an equal footing. The
requirement we use is less restrictive and suffices for our purposes.

1.3.4. Example. See Figure 1.4 for two examples of peer-to-peer networks.

We consider extensions of a peer-to-peer network in order to allow for helper
processes while preserving the symmetry inherent in the network. The intuitive
background for this kind of extensions is that we view the peers, i.e., the nodes of
the original network, as processors each running a main process, while the added
nodes can be thought of as helper processes running on the same processor as
their respective main process. Communication connections between processors
are physically given, while inside a processor they can be created as necessary.

1.3.5. Definition. Let G = (V,E) be a peer-to-peer network, then G′ = (V ′, E ′)
is a symmetry-preserving extension of G iff there is a collection {Sv}v∈V

partitioning V ′ such that

(i) for all v ∈ V , we have v ∈ Sv;

(ii) all v ∈ V and v′ ∈ Sv \ {v} are strongly connected (possibly via nodes 6∈ Sv);

(iii) for all v, w ∈ V , E ′ ∩ (Sv × Sw) 6= ∅ iff (v, w) ∈ E;

(iv) there is, for each σ ∈ ΣG, an automorphism ισ ∈ ΣG′ extending σ such that
ισ(Sv) = Sσ(v) for all v ∈ V .

Note that, in general, the collection {Sv}v∈V may not be unique. When we
refer to it, we implicitly fix an arbitrary one.

Intuitively, these requirements are justified as follows:

(i) Each Sv can be seen as the collection of processes running on the processor
at vertex v, including its main process Pv.

(ii) The main process should be able to communicate (at least indirectly) in
both ways with each helper process.

(iii) While communication links within one processor can be created freely, links
between processes on different processors are only possible if there is a
physical connection, that is a connection in the original peer-to-peer network;
also, if there was a connection in the original network, then there should be
one in the extension in order to preserve the network structure.

(iv) Lastly, to preserve symmetry, each automorphism of the original network
must have an extension which maps all helper processes to the same processor
as their corresponding main process.

26 Chapter 1. Guarding common knowledge

1.3.6. Example. See Figure 1.8 for an example of a symmetry-preserving exten-
sion. Note that condition (iii) of Definition 1.3.5 is liberal enough to allow helper
processes to communicate directly with processes running on other processors,
and indeed, e.g. 2c has a link to 3. It also allows several communication links on
one physical connection, reflected by the fact that there are three links connect-
ing S2 to S3. Furthermore, (ii) is satisfied in that the main processes are strongly
connected with their helper processes, although, as e.g. with 2 and 2c, indirectly
and through processes on other processors.

1 1a

1c
1b

S1

2

2a

2c

2b

S2
3

3a 3c

3b

S3

(a) Symmetry-preserving extension of
the network from Figure 1.4(a).

1 1a

1c
1b

S1

2

2a

2c

2b

S2
3

3a 3c

3b

S3

(b) Extended automorphism ισ as re-
quired by Definition 1.3.5.

Figure 1.8: A symmetry-preserving extension (illustrating Definition 1.3.5).

We need the following immediate fact later on.

1.3.7. Fact. As a direct consequence of Definitions 1.3.3 and 1.3.5, any symmetry-
preserving extension of a peer-to-peer network is strongly connected.

1.3.3 G-symmetry

Corresponding to the intuition of processors with main and helper processes, we
weaken Definition 1.2.8 such that only automorphisms are considered which keep
the set of main processes invariant and map helper processes to the same processor
as their main process. There are cases where the main processor otherwise would
be required to run the same program as some helper process.

1.3.8. Definition. A system P whose communication graph G′ is a symmetry-
preserving extension of some peer-to-peer network G = (V,E) is called G-
symmetric if Definition 1.2.8 holds with respect to those automorphisms σ ∈ ΣG′

satisfying, for all v ∈ V ,

1.4. Results 27

(i) σ(V) = V , and

(ii) σ(Sv) = Sσ(v).

This is weaker than Definition 1.2.8, since there we require the condition to hold
for all automorphisms.

1.3.9. Example. To illustrate the impact of G-symmetry, Figure 1.9 shows a
network G and an extension where symmetry relates all processes with each other.
G-symmetry disregards the automorphism which causes this and considers only
those which keep the set of main processes invariant, i.e., the nodes of the original
network G, thus allowing them to behave differently from the helper processes.

Note that the main processes do not have a direct connection in the extension,
which is permitted by Definition 1.3.5 although it will obviously make it impossible
for them to synchronize.

1 2
(a) Network G

1

1a
S1

2

2a
S2

(b) Extension of G and an au-
tomorphism mixing main and
helper processes

1

1a
S1

2

2a
S2

(c) Extension of G and the only
automorphism taken into account
by G-symmetry

Figure 1.9: A network G and an extension which has an automorphism mixing
main and helper processes, disregarded by G-symmetry.

Now that we have formalized peer-to-peer networks and the symmetry-pre-
serving extensions which we want to allow, we are ready to prove positive and
negative results about feasibility of pairwise synchronization.

1.4 Results

1.4.1 Positive results

First, we state the intuition foreshadowed in Section 1.3.1, namely that CSPi/o

does allow for symmetric pairwise synchronization in peer-to-peer networks.

1.4.1. Theorem. Let G = (V,E) be a peer-to-peer network. Then G admits a
symmetric system pairwise synchronizing V in CSPi/o.

28 Chapter 1. Guarding common knowledge

Proof. A system which at each vertex v ∈ V runs the program shown in Figure 1.10
is symmetric and pairwise synchronizes V . Each process simply waits for each
other process in parallel to become ready to send or receive a dummy message,
and exits once a message has been exchanged with each other process.

for each w ∈ V do syncw := false
Win := {w ∈ V |(w, v) ∈ E}
Wout := {w ∈ V |(v, w) ∈ E}
∗[
�w∈Win

¬syncw ∧ Pw ? x → syncw := true
�w∈Wout¬syncw ∧ Pw ! 0 → syncw := true
]

Figure 1.10: The program run at each vertex v ∈ V in the proof of Theorem 1.4.1.

As a second result, we show that by dropping the topological symmetry
requirement for peer-to-peer networks, under certain conditions we can achieve
symmetric pairwise synchronizing systems even in CSPin .

1.4.2. Theorem. Let G = (V,E) be a network satisfying only the first two
conditions of Definition 1.3.3, i.e., G is strongly connected and directly connected.
If G admits a symmetric electoral system and there is some vertex v ∈ V such
that (v, a) ∈ E and (a, v) ∈ E for all a ∈ V , then G admits a symmetric system
pairwise synchronizing V in CSPin .

Proof. First, the electoral system is run to determine a temporary leader v′.
When the election has terminated, v′ chooses a coordinator v that is directly
and in both directions connected to all other vertices, and broadcasts its name.
Broadcasting can be done by choosing a spanning tree and transmitting the
broadcast information together with the definition of the tree along the tree, as
in the proof of [29, Theorem 2.3.1, Phase 2] (the strong connectivity which is
required there holds for G by assumption). After termination of this phase, the
other processes each send one message to v and then wait to receive commands
from v according to which they perform direct communications with each other,
while v receives one message from each other process and uses the obtained order
to send out the commands.

This can be achieved by running the following program at each process Pc,
c ∈ V , after having elected the temporary leader v′:

• If c = v′, choose some v ∈ V such that (v, a) ∈ E and (a, v) ∈ E for all
a ∈ V , and broadcast the name v; otherwise obtain the broadcast name.

• If c = v:

1.4. Results 29

– Receive exactly one message from each other process in some non-
deterministic order and remember the order:

W := V \ {v}
for each w ∈ W do orderw := −1
count := 0
∗[�w∈Worderw = −1 ∧ Pw ? x →

orderw := count
count := count+ 1

]

– Issue commands to the other processes according to the obtained
order:

for each a, b ∈ V \ {v}, a 6= b do
[ordera < orderb ∧ (a, b) ∈ E →

Pa ! “contact b”
Pb ! “listen to a”

� ordera ≥ orderb ∨ (a, b) 6∈ E →
Pb ! “contact a”
Pa ! “listen to b”

]
done

otherwise (i.e., c 6= v):

– Send dummy message to Pv:

Pv ! 0

– Execute the commands from v until one message has been exchanged
with each other process:

num := |V \ {c, v}|
∗[num > 0 ∧ Pv?m →

[m = “contact w” → Pw ! 0
� m = “listen to w” → Pw ? x
]
num := num− 1

]

1.4.3. Example. See Figure 1.11 for an example of a network which admits a
symmetric system pairwise synchronizing all its vertices in CSPin . The fact that
the network admits a symmetric electoral system can be established as for [29,
Fig. 4]. There the property is used that {1, 2} and {3, 4, 5} are invariant under
the network’s automorphism group and the associated processes can thus behave
differently; this property is not affected by the edges we have added (note that
the edges between the lower nodes are only in one direction).

30 Chapter 1. Guarding common knowledge

12

3

45

Figure 1.11: A network which by Theorem 1.4.2 admits a symmetric system
pairwise synchronizing all its vertices in CSPin . Note that the connections between
vertices 3, 4 and 5 are only in one direction.

This result could be generalized, e.g. by weakening the conditions on v and
taking care that the commands will reach the nodes at least indirectly. Since our
main focus is the negative result, we do not pursue this further.

1.4.2 Negative result

In the following we establish the main result of this chapter, saying that, even if
we extend a peer-to-peer network G by helper processes (in a symmetry-preserving
way), it is not possible to obtain a network which admits a G-symmetric system
pairwise synchronizing the nodes of G in CSPin .

To this end, we derive a contradiction with Theorem 1.2.12 by proving the
following intermediate steps (let G denote a peer-to-peer network and G′ a
symmetry-preserving extension):

• Lemma 1.4.4: If G′ admits a G-symmetric system pairwise synchronizing
the nodes of G in CSPin , it admits a G-symmetric electoral system in CSPin .

• Lemma 1.4.5: G′ has a non-trivial well-balanced automorphism taken into ac-
count by G-symmetry (i.e., satisfying the two conditions of Definition 1.3.8).

• Lemma 1.4.7: We can extend G′ in such a way that there exists a non-trivial
well-balanced automorphism (derived from the previous result), G-symmetry
is reduced to symmetry, and admittance of an electoral system is preserved.

1.4.4. Lemma. If some symmetry-preserving extension of a peer-to-peer network
G = (V,E) admits a G-symmetric system pairwise synchronizing V in CSPin ,
then it admits a G-symmetric electoral system in CSPin .

Proof. The following steps describe the desired electoral system (using the fact
that under G-symmetry processes of nodes ∈ V may behave differently from those
of nodes 6∈ V):

• All processes run the assumed G-symmetric pairwise synchronization pro-
gram, with the following modification for the processes in P := {Pv|v ∈ V }
(intuitively this can be seen as a kind of knockout tournament, similar to
the proof of [29, Theorem 4.1.2, Phase 1]):

1.4. Results 31

– Each of these processes has an additional local variable winning ini-
tialized to true.

– After each communication statement with some other P ∈ P , insert a
second communication statement with P in the same direction:

∗ If it was a “send” statement, send the value of winning.

∗ If it was a “receive” statement, receive a Boolean value, and if the
received value is true, set winning to false.

Note that, since the program pairwise synchronizes V , each pair of processes
associated to vertices in V has had a direct communication at the end of
execution, and thus there is exactly one process in the whole system which
has a local variable winning containing true.

• After the synchronization program terminates the processes check their local
variable winning. The unique process that still has value true declares itself
the leader and broadcasts its name; all processes set their variable leader

accordingly. As in the proof of Theorem 1.4.2, broadcasting can be done
using a spanning tree. The required strong connectivity is guaranteed by
Fact 1.3.7.

1.4.5. Lemma. For any symmetry-preserving extension G′ = (V ′, E ′) of a peer-
to-peer network G = (V,E), there is σ′ ∈ Σwb

G′ \ {id} such that σ′(V) = V and
σ′(Su) = Sσ′(u) for all u ∈ V .

Proof. Take an arbitrary σ ∈ Σwb
G \ {id} (exists by Definition 1.3.3) and let ι, to

save indices, denote the ισ required by Definition 1.3.5. If ι ∈ Σwb
G′ \ {id} we are

done; otherwise we can construct a suitable σ′ from ι by “slicing” orbits of ι
which are larger than the period of σ into orbits of that size. See Example 1.4.6
for an illustration of the following proof.

Let p denote the period of σ and pick an arbitrary v ∈ V . For simplicity, we as-
sume that σ has only one orbit; if it has several, the proof extends straightforwardly
by picking one v from each orbit and proceeding with them in parallel.

For all u ∈ Sv let pu := |Oι
u| and note that for all t ∈ Oι

u we have pt = pu,
and pu ≥ p since ι maps each Sv to Sσ(v) and these sets are pairwise disjoint. We
define σ′ : V ′ → V ′ as follows:

σ′(u) :=

{
ιpu−p+1(u) if u ∈ Sv

ι(u) otherwise.

Now we can show that

• σ′(V) = V , σ′ 6= id: Follows from ι �V = σ and pv = p and thus σ′ �V = σ
(where f �X denotes the restriction of a function f to the domain X)

32 Chapter 1. Guarding common knowledge

• σ′ ∈ ΣG′ : With (iv) from Definition 1.3.5 we obtain that, for u ∈ Sv, pu must
be a multiple of p, and σ′(Oι

u ∩ Sv) = ι(Oι
u ∩ Sv), thus σ′ is a permutation

of V ′ since ι is one. Furthermore, for t, u ∈ Sv, we have ιpt(pu−1)(t) = t and
ιpu(pt−1)(u) = u and therefore

(σ′(t), σ′(u)) = (ιpt−p+1(t), ιpu−p+1(u))

= (ιptpu−p+1(t), ιptpu−p+1(u)),

thus σ′ also inherits edge-preservation from ι.

• σ′(Su) = Sσ′(u), σ
′ well-balanced: The above-mentioned fact that for all u ∈

Sv we have σ′(Oι
u∩Sv) = ι(Oι

u∩Sv), together with (iv) from Definition 1.3.5
implies that also σ′(Su) = Sσ(u) for all u ∈ V . For all v′ ∈ V ′, well-
balancedness of σ and disjointness of the Su imply that σ′q(v′) 6= v′ for
0 < q < p. On the other hand, since each orbit of σ has size p and contains
exactly one element from Sv (namely v), we have that

σ′p(v′) = ι(pu−p+1)+(p−1)(v′) for some u ∈ Oι
v′

= ιpu(v′) = ιpv′ (v′) = v′.

1.4.6. Example. Consider the extended peer-to-peer network G′ shown in
Figure 1.12(a) with automorphism ισ as required by Definition 1.3.5. We illustrate
the construction of σ′ given in the proof of Lemma 1.4.5.

We have p = 2 (the period of σ = ισ �{1,2}), and we pick vertex v = 2. For
the elements of S2, we obtain p2 = p = 2 and p2a = p2b = p2c = 6 since, e.g.,
Oισ

2a = {2a, 1a, 2c, 1b, 2b, 1c}. Thus σ′ is defined as follows:

σ′(u) =


ι(u) if u = 2

ι5(u) if u ∈ S2 \ {2}
ι(u) if u ∈ S1.

This σ′ is depicted in Figure 1.12(b). All orbits have the same cardinality, namely 2,
and the remaining claims of Lemma 1.4.5 are also satisfied.

1.4.7. Lemma. Any symmetry-preserving extension G′ = (V ′, E ′) of a peer-to-peer
network G = (V,E) can be extended to a network H such that

(i) Σwb
H \ {id} 6= ∅, and

(ii) if G′ admits a G-symmetric electoral system in CSPin ,
then H admits a symmetric electoral system in CSPin .

1.4. Results 33

1

1a

1b

1c

2

2a

2b

2c

S1

S2

(a) ισ as required by Definition 1.3.5

1

1a

1b

1c

2

2a

2b

2c

S1

S2

(b) σ′ constructed from ισ as in Lemma 1.4.5

Figure 1.12: An extended peer-to-peer network G′ illustrating Lemma 1.4.5.

Proof. The idea is to add an “identifying structure” to all elements of V , which
forces all automorphisms to keep V invariant and map the Sv to each other
correspondingly (see Figure 1.13). Formally, let K = |V ′| and, denoting the
inserted vertices by i.,., for each v ∈ V let

Iv :=
K⋃

k=1

{iv,k}

Ev := {(v, iv,1)} ∪
K−1⋃
k=1

{(iv,k, iv,k+1), (iv,k+1, v)} ∪
⋃

w∈Sv

{(iv,K , w)},

and let

H := (V ′ ∪
⋃

v∈V Iv, E
′ ∪

⋃
v∈V Ev).

Now we can prove the two claims as follows.

(i) Let σ ∈ Σwb
G′ \ {id} with σ(V) = V and σ(Sv) = Sσ(v) for all v ∈ V (such a

σ exists by Lemma 1.4.5). Then we have

σ ∪
⋃

v∈V

⋃K
k=1{iv,k 7→ iσ(v),k} ∈ Σwb

H \ {id},

and thus Σwb
H \ {id} 6= ∅.

(ii) H is still a symmetry-preserving extension of G via (straightforward) exten-
sions of the Sv. The discriminating construction (notably the fact that the
vertices from V now are guaranteed to have more edges than any vertex not
in V , but still the same number with respect to each other) has the effect
that ΣH consists only of extensions, as above, of those σ ∈ ΣG′ for which
σ(V) = V and σ(Sv) = Sσ(v) for all v ∈ V . Thus, any G-symmetric system
with communication graph H is a symmetric system with communication
graph H.

34 Chapter 1. Guarding common knowledge

Additionally, the set of all iv,k is invariant under ΣH due to the distinctive
structure of the Iv, thus the associated processes are allowed to differ from
those of the remaining vertices. A symmetric electoral system in CSPin can
thus be obtained by running the original G-symmetric electoral system on
all members of G′ and having each v ∈ V inform iv,1 about the leader, while
all iv,k simply wait for and transmit the leader information.

1

1a
S1

2

2a
S2

1

1a

S1

2

2a

S2

Figure 1.13: The network from Figure 1.9, shown with an automorphism dis-
regarded by G-symmetry, and the extension given in Lemma 1.4.7 invalidating
automorphisms of this kind shown with the only remaining automorphism.

Now we have gathered all prerequisites to prove our main result.

1.4.8. Theorem. There is no symmetry-preserving extension of any peer-to-peer
network G = (V,E) that admits a G-symmetric system pairwise synchronizing V
in CSPin .

Proof. Assume there is such a symmetry-preserving extension G′. Then by
Lemma 1.4.4 it also admits a G-symmetric electoral system in CSPin . According
to Lemma 1.4.7, there is then a network H with Σwb

H \{id} 6= ∅ that admits a sym-
metric electoral system in CSPin . This is a contradiction to Theorem 1.2.12.

1.5 Conclusions

We have provided a formal definition of peer-to-peer networks and adapted
a semantic notion of symmetry for process systems communicating via such
networks. In this context, we have defined and investigated the existence of
pairwise synchronizing systems, which are directly useful because they achieve
synchronization, but particularly in our context because they create common
knowledge among processes. Focusing on two dialects of the CSP calculus, we
have proved the existence of such systems in CSPi/o , as well as the impossibility

1.5. Conclusions 35

of implementing them in CSPin , even when we allow additional helper processes.
We have also mentioned a recent extension to JCSP to show that, while CSPin

is less complex and most commonly implemented, implementations of CSPi/o are
feasible and do exist.

A way to circumvent our impossibility result is to remove some requirements.
For example, we have provided a construction for non-symmetric systems in CSPin .
In general, if we give up the symmetry requirement, CSPi/o can be implemented
in CSPin , as proved by Bougé [29, p. 197].

Another way is to tweak the definition or the assumptions about common
knowledge. Various possibilities have been discussed by Halpern and Moses [73].
By following the eager protocol they propose, common knowledge can eventually
be attained, but the trade-off is an indefinite time span during which the knowledge
states of the processes are inconsistent. This may not be an option, especially
in systems which have to be able to act sensibly and rationally at any time.
Alternatively, if messages are guaranteed to be delivered exactly after some fixed
amount of time, common knowledge can also be achieved, but this may not be
realistic in actual systems. Finally, possibilities to approximate common knowledge
are described. Approximate common knowledge or finite mutual knowledge may
suffice in settings where the impact decreases significantly as the depth of mutual
knowledge increases, as discussed, e.g., by Weinstein and Yildiz [149].

However, if one is interested in symmetric systems and exact common knowl-
edge, as is the case in our Chapters 2 and 3, then these results show that CSPi/o

is a suitable formalism while CSPin is insufficient.
Hoare [79] recognized in his initial paper on CSP that the exclusion of output

guards reduces expressivity and is programmatically inconvenient. Soon it was
deemed technically not justified [22, 33, 64] and removed in later versions of
CSP [80, p. 227].

Some existing proposals for implementations of input and output guards and
synchronous communication could be criticized for simply shifting the problems
to a lower level, notably for not being symmetric themselves or for not even being
strictly synchronous in real systems due to temporal imprecision [73]. However, it
is often useful to abstract away from implementation issues on the high level of
a process calculus or a programming language, as argued in a context similar to
ours by Kurki-Suonio [88, Section 10].

We therefore identify JCSP as the most natural platform for the implemen-
tation which we discuss in Chapter 3. Since the interaction structures used
there generalize our peer-to-peer networks, it is clear that our negative result
Theorem 1.4.8 still holds, excluding most other implementations of CSP. Vice
versa, JCSP supports broadcasts, i.e., synchronous communication with multiple
recipients, and is therefore suitable to implement our positive result Theorem 1.4.1
even in that more general setting.

Chapter 2

Knowledge in interaction structures

2.1 Introduction

2.1.1 Motivation

In this chapter, we introduce a framework for reasoning about communication
and knowledge within groups of agents, or players, in settings such as presented
in the Introduction chapter.

We assume that each player is a member of a number of groups, and that
he can communicate synchronously within each of them. These groups can be
thought to have the possibility to meet or communicate privately in some way, for
example by sharing a common language. Thus, there is what we call an inter-
action structure, a hypergraph of players, that determines the communication
possibilities. We are interested in studying what players can learn, what impact
common knowledge of the underlying hypergraph has, and what the properties of
the knowledge are that results from this communication.

The framework we set up here forms the epistemic foundation for our study of
reasoning about each other’s preferences in Chapter 3. In order to be able to cover
all the way from theory to implementation, we keep things simple. In particular,
we want to obtain a framework where knowledge has a simple structure, is local
in some sense and has properties which simplify reasoning about it.

For this reason, we impose clear restrictions while accommodating possibilities
for generalizations of the framework. For example, while we here only allow
players to communicate the information they initially have, in [9] we have lifted
this assumption to allow actual flow of information.

To illustrate our framework, consider the interaction structure in Figure 2.1. It
represents a situation where a student s is giving a talk to an audience {x, y, S, z}
including his supervisor S. Let us assume that the student got something wrong,
and the truth, p, is only known to the supervisor. Of course, the supervisor
would like to make p known to everybody in the audience. Due to the interaction

37

38 Chapter 2. Knowledge in interaction structures

s

Sx y z

p

Figure 2.1: Interaction structure during a talk given by s to audience {x, y, S, z}.

structure, his only options are to either raise his hand and say p out loud, or to
whisper p to his neighbors. However, the first option would embarrass the student
by making his lapse common knowledge. Since the supervisor is considerate, he is
only left with the second option.

In the generalization of our framework that we examine in [9], we consider it
possible that y turns to x and tells him what he just learned from S. However, in
the basic version of the framework that we examine in this chapter, we assume
that facts learned from others are not re-told. Arguably, in real life it happens
rarely that a remark made to one’s neighbor proceeds to make its way being
whispered through a whole chain of persons in the audience.

For more motivation and intuitive justification of the technical assumptions
we make here, see Chapter 3, Section 3.1.

2.1.2 Plan of the chapter

In the following Section 2.2, we set up the framework and clarify the restrictions
we impose. We examine this framework in detail in Section 2.3, where we also
prove various properties of knowledge. In Section 2.4 we discuss related work,
in particular two closely related frameworks from the literature, and draw some
conclusions. We look at some possible extensions in Section 2.4.2.

2.2 Preliminaries

We assume the following setup to be common knowledge among the players, which
is reflected in the formal semantics we introduce later on. This is roughly along
the lines of history-based models (see, e.g., Pacuit and Parikh [109], Fagin et al.
[60]).

We start with a set of players N . Each player i ∈ N has a private set Ati of
atomic propositions (atoms, or facts), of which we assume that only player i

2.2. Preliminaries 39

initially knows whether they are true.
The truth values of these facts are represented by a valuation, which can be

written as a set V ⊆ At containing those facts that are true, where At =
⋃

i∈N Ati.
By Vi, we denote V ∩ Ati, the restriction of V to i’s facts. We allow facts to
have certain dependencies, as is the case in Chapter 3, where the facts represent
preference orderings. For example, assume that p, q, r ∈ Ati, representing whether
i prefers chicken over beef, beef over fish, and chicken over fish, respectively. If
these interpretations, and i’s being consistent, are common knowledge, all players
will only consider valuations V such that from p, q ∈ V it follows that r ∈ V .
That is, for example, {p, q} will never be considered as possible valuation. To
accommodate this, we consider an arbitrary, non-empty class V of valuations, only
subject to two conditions: valuations are closed under intersection, that is,

for any V, V ′ ∈ V , we have V ∩ V ′ ∈ V ; (v1)

and valuations are independent across players, that is,

for any V, V ′ ∈ V and player i, we have Vi ∪
⋃

i6=j V
′
j ∈ V . (v2)

An interaction structure H is a hypergraph on the set N of players, that is,
a set of non-empty subsets of N , called hyperarcs.

Players can communicate their facts to any of their hyperarcs. We denote such
a message as tuple (i, A, p) with i ∈ A and p ∈ Ati; that is, i communicates his
fact p among the group A. A message is truthful with respect to a valuation V
if, indeed, p ∈ V , and it is H-compliant if A ∈ H. If the players consider only
H-compliant messages possible, then they know the underlying hypergraph H. So
if the model allows only H-compliant messages, the underlying hypergraph H is
common knowledge among the players; if it uses all messages, H is unknown.

A state, or possible world, (V,M) consists of a valuation V ∈ V with a set M
of truthful messages. An H-compliant state is one where M only contains
H-compliant messages.

We briefly discuss the assumptions mentioned above and made explicit in this
formalization. Firstly, we only allow messages of the form (i, ·, p) with p ∈ Ati.
That is, players only communicate basic facts that “belong” to them, and as such
are known to them initially. Secondly, this has the consequence that our definition
of truthfulness indeed entails that players can only send information they know
to be true, since p ∈ V with p ∈ Ati implies that i actually knows p. Thirdly, we
use unordered sets of messages, that is, without any temporal structure, since in
our setting it only matters whether a given message has been communicated or
not, and not when it was communicated.

If one allows sending of information that is not initially known, one has to be
more careful with the distinction of information that is known to be true versus
information that is true, but not known to be true. Truthful communication
usually allows information to be sent only in the former case. For this reason,

40 Chapter 2. Knowledge in interaction structures

Pacuit and Parikh [109] define truthfulness in mutual recursion with the semantics
of knowledge. In [9], we instead use the notion of an explanation for a message,
which is a sequence of messages with the same content, originating from the player
who initially knows the content. This leads to some temporal ordering on the
messages, in the sense that if the message (i, A, p) occurs with p 6∈ Ati, then it
becomes common knowledge in A that before that message there must have been
another message of the form (·, B, p) with i ∈ B, since otherwise i could not have
known p.

Returning to the formal setup, by a word over a set A ⊆ N we mean a finite
sequence w = i1 . . . ik where each i` ∈ A. By A∗ we denote the set of all words
over A, and we write Set(w) for the set of players occurring in w.

Now given a set of messages M and a word w, we introduce the following
notation:

Mw := {(·, A, ·) ∈M | Set(w) ⊆ A}
Facts(M) := {p | (·, ·, p) ∈M}.

So Mi (respectively, Mw) is the subset of the set of messages M that player i
received (respectively, that were communicated jointly to all the players in w; note
that the order in w does not matter), and Facts(M) is the set of facts that were
communicated in the messages in M . In particular, Facts(Mi) is the set of facts
that were communicated in the messages in M that player i received. Note that
(V,M) is a state if Facts(M) ⊆ V . Further, we define all set operations to act
component-wise on states, e.g. (V,M) ⊆ (V ′,M ′) iff V ⊆ V ′ and M ⊆M ′.

In order to represent the knowledge of the players we define an indistin-
guishability relation between states:

(V,M) ∼i (V ′,M ′) iff (Vi,Mi) = (V ′
i ,M

′
i).

In the semantics we present below, a player i is said to “know” a fact just
if that fact is true in every state that is indistinguishable for i from the actual
state. Of particular interest to us is the knowledge of groups G ⊆ N (always
assumed to be non-empty). Specifically we consider common knowledge among a
group (cf. [60, p. 23]). These are facts that everybody in the group knows, they
all know that they know, etc. To define this formally, we extend the individual
indistinguishability relation to groups: for G ⊆ N the relation ∼G is the transitive
closure of

⋃
i∈G ∼i.

We are interested in properties definable by the following epistemic lan-
guage L:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | CGϕ,

where the atoms p denote the facts in At, ¬, ∧ and ∨ are the standard connectives;
and CG is a knowledge operator, with CGϕ meaning ϕ is common knowledge
among G. We write Ki for C{i}; Kiϕ can be read “i knows that ϕ”. The positive

2.3. Properties of knowledge 41

language L+ is the sublanguage of L in which negation (¬) does not occur, and
a formula is propositional if it does not contain any knowledge operators.

The semantics for L is as follows:

(V,M) �H p iff p ∈ V,
(V,M) �H ¬ϕ iff (V,M) 2H ϕ,

(V,M) �H ϕ ∨ ψ iff (V,M) �H ϕ or (V,M) �H ψ,

(V,M) �H ϕ ∧ ψ iff (V,M) �H ϕ and (V,M) �H ψ,

(V,M) �H CGϕ iff (V ′,M ′) �H ϕ for each H-compliant (V ′,M ′)

with (V,M) ∼G (V ′,M ′).

We also use a special case of propositional entailment, namely, for any P ⊆ At
and p ∈ At, we write

P � p iff p ∈ V for all V ∈ V with P ⊆ V .

By �H ϕ we mean that ϕ is a tautology, that is (V,M) �H ϕ for all H-compliant
states (V,M). Note that for propositional ϕ this is equivalent to saying that
all valuations satisfy ϕ. Further note that, due to the way in which we defined
valuations, more formulas can be tautological than one might think, including
facts and positive propositional formulas. For example, if we consider the class
of valuations V = {∅, {q}, {p, q}}, then ¬p ∨ q is a tautology. For the class
V = {{p}, {p, q}}, p and thus also p ∨ q are tautologies.

By allowing only H-compliant states in the last clause of the semantics, the
underlying hypergraph H is assumed to be common knowledge. Assuming that
the hypergraph H is unknown turns out to be equivalent to the case where it
is common knowledge that the hypergraph H is complete, i.e., H = 2N \ {∅}.
This might seem counter-intuitive, but it reflects the fact that if the hypergraph
is unknown then every player must consider it possible that every set A ⊆ N
might be a hyperarc in H. To denote the corresponding semantics, we use � as
abbreviation for �H with H being the complete hypergraph.

For a word w = i1 . . . ik, we write Kw to abbreviate Ki1Ki2 · · ·Kik , and we
write ∼w to denote the concatenation ∼i1 ◦ · · · ◦ ∼ik .

Notice that (V,M) ∼G (V ′,M ′) iff there is w ∈ G∗ with (V,M) ∼w (V ′,M ′).
So an equivalent way of specifying the semantics for CG with non-singleton G is
as follows:

(V,M) � CGϕ iff (V,M) � Kwϕ for all w ∈ G∗. (?)

2.3 Properties of knowledge

We now study properties of knowledge that can be attained in our framework.

42 Chapter 2. Knowledge in interaction structures

Where does knowledge come from? We are interested in knowledge that
is obtained through communication. Due to our setup, certain non-trivial (non-
tautological) formulas are known even without any communication.

2.3.1. Example. With players N = {i, j, k}, H = {N}, p ∈ Ati, V = {p}, and
V = {∅, V }, we have

(V, ∅) �H Kj¬Kkp.

Intuitively, the only hyperarc in H through which player k could learn anything
from i is the one which also contains player j. So there is no way for i to tell k
anything “secretly”. Hence, with Mj = ∅, j also knows that Mik = ∅. That is, in
all states which j considers possible at (V,M), i has not told k that p, therefore
in all these states k does not know p (since p is not a tautology).

Indeed, this is commonly known among N , so that not only iterated, but
common knowledge exists without communication:

(V, ∅) �H CN¬CNp.

Lastly, knowledge about thirds can be obtained from communication not
concerning them:

(V, {(i, {i, j}, p)) �H Kj¬Kk¬p.

It can be noted that all of these examples include formulas using negation.
Since we want to examine knowledge obtained through communication, and since
we only need positive formulas in Chapter 3, we focus on these in the following.
Indeed, we establish in Theorem 2.3.10 that knowledge of non-tautological positive
formulas can only result from communication.

Common knowledge of H. We now examine the relevance of common knowl-
edge of the interaction structure H. Consider the following example.

2.3.2. Example. In Example 2.3.1, we had

(V, ∅) �H Kj¬Kkp.

On the other hand, we have

(V, ∅) 2 Kj¬Kkp,

since (V, ∅) ∼j (V, {(i, {i, k}, p)}).

So there are formulas for which knowledge of H matters. However, for positive
formulas it does not. In order to establish this, we first show the following
Lemma 2.3.3, which intuitively says that if a positive formula is true in some state,
then it remains true in any state where more facts are true or more communication
has taken place. Remember that � corresponds to �H with H being the complete
hypergraph, so the following carries over to general (not H-compliant) states
together with �.

2.3. Properties of knowledge 43

2.3.3. Lemma. For any ϕ ∈ L+ and H-compliant states (V,M) and (V ′,M ′)
with (V,M) ⊆ (V ′,M ′),

if (V,M) �H ϕ, then (V ′,M ′) �H ϕ.

Proof. We proceed by structural induction on ϕ. The only not completely obvious
case is when ϕ = CGψ with ψ ∈ L+. We show the claim for G = {i}; the
non-singleton case then follows by induction and (?).

Take an H-compliant state (V ′′,M ′′) such that (V ′,M ′) ∼i (V ′′,M ′′). Let

(V ′′′,M ′′′) := (Vi ∪
⋃

j 6=i V
′′
j ,Mi),

and note that V ′′′ is a valuation due to (v2). We have Facts(Mi) ⊆ Facts(M) ⊆ V ,
since (V,M) is a state. Also, Mi ⊆M ′

i = M ′′
i ⊆M ′′, so Facts(Mi) ⊆ Facts(M ′′) ⊆

V ′′, since (V ′′,M ′′) is a state. Hence,

Facts(M ′′′) = Facts(Mi) ⊆ V ∩ V ′′ =
⋃

i∈N(Vi ∩ V ′′
i) ⊆ V ′′′.

This shows that the messages in M ′′′ are truthful with respect to V ′′′, so (V ′′′,M ′′′)
is a state. Moreover, (V,M) ∼i (V ′′′,M ′′′). Assume now (V,M) �H Kiψ. Then
we obtain (V ′′′,M ′′′) �H ψ. Further, we have (V ′′′,M ′′′) ⊆ (V ′′,M ′′) since Vi ⊆
V ′

i = V ′′
i and Mi ⊆ M ′

i = M ′′
i due to (V ′,M ′) ∼i (V ′′,M ′′). Thus, by induction

hypothesis we obtain (V ′′,M ′′) �H ψ.

Now we can prove that common knowledge of H does not matter for positive
formulas.

2.3.4. Theorem. For any H-compliant state (V,M) and ϕ ∈ L+,

(V,M) � ϕ iff (V,M) �H ϕ.

Proof. We proceed by structural induction. The only non-trivial step is when
ϕ = CGψ with ψ ∈ L+.
(⇒) By induction hypothesis, (V,M) � CGψ implies (V,M) �H CGψ, since each
H-compliant state is a state.
(⇐) Assume to the contrary that (V,M) 2 CGψ. So there is a state (V ′,M ′) with
(V,M) ∼G (V ′,M ′) and (V ′,M ′) 2 ψ. Now let

M ′ �H := {(·, A, ·) ∈M ′ | A ∈ H}.

SoM ′ �H consists of allH-compliant messages inM ′. Now note that (V ′,M ′ �H) ⊆
(V ′,M ′), so from (V ′,M ′) 2 ψ we obtain that (V ′,M ′ �H) 2 ψ using Lemma 2.3.3
(which, as noted, also holds for general states and �). Since (V ′,M ′ �H) is H-
compliant, the induction hypothesis yields (V ′,M ′ �H) 2H ψ. Moreover, we also
have (V,M) ∼G (V ′,M ′ �H), since (V,M) is H-compliant and (V,M) ∼G (V ′,M ′).
Thus, (V,M) 2H CGψ.

In the remainder of this chapter, we are concerned with positive formulas, so
in view of this result, we restrict attention to �.

44 Chapter 2. Knowledge in interaction structures

Distributivity of knowledge over disjunction. We now establish that CG

distributes over disjunctions of positive formulas, starting with singleton G (that
is, Ki). Note that these results also hold if the disjunction is a tautology.

2.3.5. Lemma. For any ϕ1, ϕ2 ∈ L+, i ∈ N , and state (V,M),

(V,M) � Ki(ϕ1 ∨ ϕ2) iff (V,M) � Kiϕ1 ∨Kiϕ2.

Proof. To deal with the (⇒) implication assume that (V,M) 2 Kiϕ1∨Kiϕ2. Then
(V,M) 2 Kiϕ1 and (V,M) 2 Kiϕ2, i.e., there are (V ′,M ′) and (V ′′,M ′′) such that

(V,M) ∼i (V ′,M ′) and (V ′,M ′) 2 ϕ1, as well as

(V,M) ∼i (V ′′,M ′′) and (V ′′,M ′′) 2 ϕ2.

Let now
(V ′′′,M ′′′) := (Vi ∪

⋃
j 6=i(V

′
j ∩ V ′′

j),Mi),

and note that V ′′′ is a valuation due to (v1) and (v2). Then

Facts(M) ⊆ V, Facts(M ′) ⊆ V ′, and Facts(M ′′) ⊆ V ′′,

since (V,M), (V ′,M ′) and (V ′′,M ′′) are states. Moreover, Mi = M ′
i and Mi = M ′′

i .
So,

Facts(M ′′′) ⊆ Facts(M) ∩ Facts(M ′) ∩ Facts(M ′′)

⊆ V ∩ V ′ ∩ V ′′

=
⋃

j∈N(Vj ∩ V ′
j ∩ V ′′

j)

⊆ V ′′′.

This shows that the messages in M ′′′ are truthful with respect to V ′′′, and since
M ′′′ = Mi ⊆M , (V ′′′,M ′′′) is an H-compliant state.

Now since Vi = V ′
i = V ′′

i and Mi = M ′
i = M ′′

i , we have (V ′′′,M ′′′) ⊆ (V ′,M ′)
and (V ′′′,M ′′′) ⊆ (V ′′,M ′′). By Lemma 2.3.3, we obtain (V ′′′,M ′′′) 2 ϕ1 and
(V ′′′,M ′′′) 2 ϕ2, thus (V ′′′,M ′′′) 2 ϕ1 ∨ ϕ2. Furthermore (V,M) ∼i (V ′′′,M ′′′), so
(V,M) 2 Ki(ϕ1 ∨ ϕ2).

Further, the (⇐) implication immediately holds by the semantics.

2.3.6. Theorem. For any ϕ1, ϕ2 ∈ L+, state (V,M), and G ⊆ N ,

(V,M) � CG(ϕ1 ∨ ϕ2) iff (V,M) � CGϕ1 ∨ CGϕ2.

Proof. The claim follows directly from Lemma 2.3.5 and (?).

To easily see that this result does not hold if we allow negation, consider
ϕ = Ki(p ∨ ¬p) in the context of two players i, j ∈ N , p ∈ Atj, V = {∅, {p}}, and
(V,M) = (∅, ∅). We have (V,M) � ϕ, since the disjunction is a tautology, but
there is no way for i to know which disjunct is true.

Even with non-tautological disjunctions, the result does not hold, as we see in
the following example.

2.3. Properties of knowledge 45

2.3.7. Example. Consider N = {i, j, k}, p ∈ Atk, and V = {∅, {p}}. With

V = {p},
M = {(k, {i, k}, p)}, and

ϕ = Ki(Kjp ∨ ¬(Kjp ∨Kj¬p)),

we have (V,M) � ϕ, but again, i knows neither disjunct in (V,M). Intuitively,
having privately learned that p is true, i knows that j either also learned it, or
that j doesn’t know whether p is true, but i does not know which of these two
statements holds.

Knowledge obtained through communication. Another observation is that
mutual knowledge of any fact p ∈ At can only be obtained through corresponding
messages, and is thus inseparably tied to common knowledge. Note that the link
between mutual and common knowledge holds even in the case of tautological
facts, although then no communication is required. Remember that for P ⊆ At
and p ∈ At, by P � p we denote that p ∈ V for all valuations V with P ⊆ V .

2.3.8. Lemma. For any w ∈ N∗ with |Set(w)| ≥ 2, p ∈ At, and state (V,M),
the following are equivalent:

(i) (V,M) � Kwp,

(ii) Facts(Mw) � p,

(iii) (V,M) � CGp with G = Set(w).

Proof.
(i) ⇒ (ii): Assume that (ii) does not hold. That is, there is a valuation V ′ such
that Facts(Mw) ⊆ V ′ and p 6∈ V ′. Thus, (V ′,Mw) is a state and (V ′,Mw) 2 p.

Let i ∈ N be such that p ∈ Ati. Then V ′′ := V ′
i ∪

⋃
j 6=i Vj is a valuation due

to (v2). We thus get another state (V ′′,Mw) with (V ′′,Mw) 2 p.
Now fix j ∈ Set(w) with p 6∈ Atj, noting that such a j exists since |Set(w)| ≥ 2.

We then have (V,M) ∼j (V ′′,Mw). Since j ∈ Set(w) and both (V,M) ∼k (V,M)
and (V ′′,Mw) ∼k (V ′′,Mw) for all k ∈ N , we obtain (V,M) ∼w (V ′′,Mw), and
thus (V,M) 2 Kwp.
(ii) ⇒ (iii): Suppose that G = Set(w) and take m ∈Mw. Consider (V ′,M ′) such
that (V,M) ∼G (V ′,M ′). This means that for a sequence i1, . . . , ik of players from
G and some states (V 1,M1), . . . , (V k,Mk) we have

(V,M) ∼i1 (V 1,M1) ∼i2 · · · ∼ik (V k,Mk),

where (V ′,M ′) = (V k,Mk). But i1 ∈ G, so m ∈Mi1 , and consequently m ∈M1
i1
.

Also i2 ∈ G, so m ∈ M1
i2
, and consequently m ∈ M2

i2
. Continuing this way we

conclude that m ∈Mk
ik

, that is, m ∈M ′
ik

.

46 Chapter 2. Knowledge in interaction structures

This shows that Mw ⊆M ′. So, Facts(Mw) ⊆ V ′, since (V ′,M ′) is a state. But
by assumption, Facts(Mw) � p, so (V ′,M ′) � p. This proves (V,M) � CGp.

(iii) ⇒ (i): By (?).

We can extend this connection between mutual and common knowledge to
arbitrary positive formulas.

2.3.9. Theorem. For any G ⊆ N , ϕ ∈ L+, and state (V,M),

(V,M) � CGϕ iff (V,M) � Kwϕ for some w ∈ G∗ with Set(w) = G.

Proof. The direction (⇒) is by (?).

For (⇐), we proceed by structural induction. The base case is obtained from
Lemma 2.3.8. The induction step for disjunction follows by Theorem 2.3.6, and
for conjunction it follows directly by definition of the semantics. For ϕ = Kiψ, the
assumption (V,M) � KwKiψ yields, by induction hypothesis, that (V,M) � CG′ψ
for G′ = Set(w)∪ {i} = G∪ {i}, which by definition of the semantics implies that
(V,M) � CGKiψ.

Note that this result provides, for positive formulas, a simplified characterization
of the common knowledge operator, as compared with (?).

Finally, we establish that common knowledge can only be attained by a group
through some message (or messages) to the whole group. That is, unless some
formula ϕ is inherently common knowledge due to our setup (i.e., is tautolog-
ical), common knowledge of ϕ cannot be achieved by means of more limited
communications, for example point-to-point messages.

2.3.10. Theorem. For any G ⊆ N with |G| ≥ 2, non-tautological ϕ ∈ L+, and
state (V,M),

if (V,M) � CGϕ, then there is (·, A, ·) ∈M with G ⊆ A.

Proof. By Theorem 2.3.6 and the semantics, we can transform CGϕ into an
equivalent formula consisting only of disjunctions and conjunctions over formulas
of the form CGCG1 · · ·CG`

p with G1, . . . , G` ⊆ N . Since (V,M) � CGϕ and ϕ
is non-tautological, there is at least one of these formulas such that (V,M) �
CGCG1 · · ·CG`

p and p is non-tautological.

Fix now one such formula, and take w such that Set(w) = G. By (?) we
obtain (V,M) � KwCG1 . . . CG`

p, so by the semantics we have (V,M) � Kwp. By
Lemma 2.3.8 this implies Facts(Mw) � p. Since p is non-tautological, this implies
that Mw is non-empty, from which the claim follows.

2.4. Conclusions 47

2.4 Conclusions

2.4.1 Related work

In this chapter we studied various aspects of common knowledge in a simple
framework with synchronous communication. It is useful to clarify how our result
relate to the literature.

The problem of coordinated attack described in the Introduction chapter
demonstrates the close ties between simultaneous events and common knowledge.
We have seen that in our framework, a group’s attaining common knowledge of
formulas which are not initially common knowledge is indeed inseparably tied to
synchronous communication among that whole group.

Chandy and Misra [39] consider the flow of information in distributed systems
with asynchronous communication. They study how processes “learn” about states
of other processes and establish lower bounds on the number of messages required
to solve certain knowledge-related problems. In some sense this resembles our
work, even though we are looking for simplifications rather than lower bounds. The
main difference, though, is that hypergraphs, which are important in our context,
are equivalent to mere point-to-point graphs in the context of asynchronous
communication: Without guarantees on the delivery time, and without temporal
reasoning, the information content of receiving an asynchronous group message is
the same as that of receiving just a separate private message. Sending a group
message can thus be simulated by sending a separate message to each group
member.

Our study concerning the consequences of the assumption whether the under-
lying hypergraph is commonly known among the players brings our framework
somewhat closer to the area of social networks (see, e.g., Jackson [83]). Within
logic, the relevance of epistemic issues in communication networks has been recog-
nized by a number of authors, e.g. van Benthem [20]. However, to our knowledge
the only work that addresses these issues is Pacuit and Parikh [109] and, to some
extent, Roelofsen [126]. We now briefly discuss these frameworks and relate them
to our own.

Pacuit and Parikh [109] use a history-based model to study diffusion of infor-
mation in a communication graph, starting from facts initially known to individual
agents. Communicative acts are assumed to consist in an agent j “reading” an
arbitrary propositional formula from another agent i, with the precondition that i
knows that the formula holds. Communicative acts are restricted to a commonly
known, static, directed graph and, unlike in our case, are assumed to go unnoticed
by i. Using our notation for messages, a communicative act in that framework
can thus be denoted as (i, j, ϕ), and is only allowed to occur if there is an edge
from i to j in the communication graph, and only in states where Kiϕ holds
(that is, communication is truthful). The paper formalizes what conclusions,
beyond the mere factual content of messages, can be drawn using knowledge of

48 Chapter 2. Knowledge in interaction structures

the communication graph and, consequently, knowledge of the possible routes
along which certain information can have flown. In this sense, it is similar to our
extension [9] of the framework presented here.

Roelofsen [126] uses a model based on Dynamic Epistemic Logic (DEL) to
describe how some initial epistemic model evolves in a communication situation.
Communication is among subgroups and can contain arbitrary epistemic formulas.
That is, a message can be denoted as (A,B, ϕ), where A and B are groups
of players and ϕ is an epistemic formula, with the intuitive reading that the
players in B commonly learn that the players in A commonly know ϕ. Here, too,
truthful communication is assumed, so CAϕ is a precondition for such a message.
Further, communication is assumed to be truthful and is restricted to occur along
a hypergraph. However, the hypergraph is explicitly encoded in the model, and
thus (knowledge of it) is subject to change. In the spirit of DEL, this approach
lends itself best to an explicit modeling of all events, including the formation of
suspicions about undetected communications.

While under certain circumstances history-based modeling and DEL are equiv-
alent [21], our approach is more in the spirit of Pacuit and Parikh [109]. All
possible communications are modelled from the outset and suspicions about them
are not explicitly formed, and the underlying graph (in our case hypergraph) is
static and not included in the model.

On a conceptual level, our approach differs in its focus on identifying natural
conditions that allow us to prove stronger results about knowledge, such as
distributivity over disjunctions, or irrelevance of (common) knowledge of the
underlying hypergraph. We use these results in Chapter 3.

2.4.2 Possible extensions

We conclude by listing a number of natural extensions of the considered framework
that are worth to be studied further:

• By considering classes of valuations that only need to satisfy (v1) and (v2),
we allow certain dependencies among atoms. Alternatively, we could equip
the agents with logic theories that determine the dependencies among their
atoms. These theories could be common knowledge, or only partially known
to other agents.

• We could consider more complex messages than simple atomic facts, for
example propositional formulas, or even epistemic formulas. (Note, however,
that our messages can be more expressive than obvious at first glance. For
example, with V = {∅, {p}, {q}} a message containing p also entails ¬q. In
a limited way, messages can thus already contain non-atomic information.)
Also, we could study asynchronous communication, or a counterpart of the
blind copy feature familiar from e-mails.

2.4. Conclusions 49

• We could assume that the players have different knowledge of the underlying
hypergraph, by assuming that for all i we have H ⊆ Hi, where H is the
underlying hypergraph and Hi is its approximation known to i, and that
players learn H by exchanging messages. The messages would contain
information about which hyperarcs do not belong to H.

• Alternatively, we could study a setup in which each player has an indistin-
guishability relation over hypergraphs. This would allow us to model players’
partial knowledge of the underlying hypergraph.

• It would also be interesting to study the formation of interaction structures,
given certain epistemic goals or other strategic considerations. For example,
in the scenario discussed in Section 2.1.1, the supervisor might want to
change the interaction structure and create a hyperarc containing only him
and the rest of the audience, by asking the student to go and fetch his
grading records at the end of the talk.

Chapter 3

Strategies in interaction structures

3.1 Introduction

3.1.1 Motivation

Our aim in this chapter is to model situations similar to the example from the
Introduction chapter, and examine what players may be said to know in any
particular state of communication, how they can compute this knowledge, and
how they can use it to eliminate strategies.

There is a substantial amount of research within game theory on the implica-
tions of assumptions concerning players’ knowledge and beliefs [16]. In particular,
Tan and Werlang [144] have shown that if payoffs are commonly known and all
players are rational in a formal sense and commonly believe in each other’s ratio-
nality, they will only play strategies that survive iterated elimination of strictly
dominated strategies (IESDS, as explained in the Introduction chapter). Note
that we do not delve into the details of possible definitions of rationality here; in
our context the relevant implication is that rational players do not choose strictly
dominated strategies.

Another line of research stresses the relevance of locality in strategic games.
For example, in graphical games [85] the locality assumption manifests itself in
payoff functions which depend only on the strategies of players’ neighbors in a
graph structure over the set of players.

The framework we consider in this chapter applies a locality assumption to the
information about payoffs, rather than to the payoffs themselves. Concretely, we
use the framework of interaction structures from Chapter 2 and add the notion of
a strategic game to it. We assume that the players’ initial information only covers
their own preferences, and that they can communicate their preferences according
to the interaction structure. We study the outcomes of strategy elimination that
can be obtained in any given state of communication, including the situation when
all communication permitted by the interaction structure has taken place. Insights

51

52 Chapter 3. Strategies in interaction structures

from Chapter 2 are used in order to prove that the outcomes we establish indeed
correctly reflect what the players know in any particular situation. Building upon
Chapter 1, we then describe two ways to implement IESDS locally in each player
process in a distributed setting.

It is important to note that we do not examine strategic aspects of communica-
tion here. Firstly, that means that we do not allow players to lie; and secondly, that
we do not examine why players do, or what they should, communicate. Rather,
we examine what happens if they do.

To justify this focus, we can think of settings where the strategic aspects of
communication itself are not relevant. One possibility is if communication is not a
deliberate act, for example, if it occurs through observing behavior. If Ann keeps
going to Indian restaurants, she involuntarily communicates her food preference to
anyone observing her. Such communication is certainly more difficult to control,
and more laborious to fake, than mere words. In a sense it is inherently credible,
and research in social learning argues along similar lines [38, Ch. 3].

This also helps to explain another assumption we make, corresponding to the
framework from Chapter 2: Players only communicate their own preferences, since
communication about others’ preferences is either not inherently credible (if done
with words) or difficult to accomplish (if conveyed through behavior). One may
also assume that communicating about third parties is less common for privacy
reasons.

Overall, the hyperarcs of the interaction structure can then be viewed as
corresponding to groups who have occasions where they commonly observe each
other, for example colleagues sharing lunch time.

In more proactive settings, in particular in the case of communicating processes,
it may be more difficult to view communication as something not deliberate. Here,
ignoring strategic aspects of communication can be interpreted as bounds on the
players’ rationality or reasoning capabilities—they simply lack the capabilities to
deal with all implications and eventualities of an inherently rich phenomenon such
as communication. This holds in particular with such simple implementations as
what we obtain in Section 3.5.

Generally, strategic communication is a research topic on its own, with con-
troversial discussions (see, e.g., [132]) and many questions wide open. Crawford
and Sobel [44] have considered the topic in a probabilistic setting, and Farrell
and Rabin [62] have looked at related issues under the notion of cheap talk. Also
within epistemic logic, formalizations of the information content of strategic com-
munication have been suggested, e.g., by Gerbrandy [65]. But the topic is unclear,
and we choose not to focus on it here.

To sum up, we make the following assumptions:

• the players are rational;

• they initially know their own preferences;

3.2. Preliminaries 53

• they are part of an interaction structure and can communicate their own
preferences within any hyperarc they belong to;

• communication is truthful and synchronous, as in Chapter 2;

• the players have no knowledge other than what follows from these assump-
tions, and these are common knowledge.

These assumptions are reflected in the formalizations we make later on.
It is useful to clarify the relation between strategic games with interaction

structures and pre-Bayesian games, introduced by Ashlagi et al. [10]. In these
games, too, each player knows his payoff but does not know the payoffs of the other
players. In our setup this private knowledge aspect of pre-Bayesian games can be
trivially modelled by the empty interaction structure, or viewed as corresponding
to our initial situation. Due to the different nature of these frameworks, however,
the questions of interest are also different.

3.1.2 Plan of the chapter

This chapter is organized as follows. In the following Section 3.2, we review the
basic definitions concerning strategic games, optimality notions and operators on
restrictions of games. Next, in Section 3.3, we study the outcome of IESDS in the
presence of an interaction structure. We first look at the outcome that is arrived
at after all communication permitted in the given interaction structure has taken
place, and then detail the outcomes obtained in any particular intermediate state
of communication. The formulations we consider make no direct use of the notion
of knowledge.

The connection with knowledge is made in Section 3.4, where we prove the
outcomes we have obtained to be correct with respect to the epistemic framework
from Chapter 2, in the sense that the outcomes capture exactly what the players
can do given their partial knowledge of the game structure in any particular
state. In Section 3.5, we describe two ways of implementing our procedures in
a distributed setting. Finally, in Section 3.6, we suggest some future research
directions.

3.2 Preliminaries

By a strategic game (in short, a game) for players N = {1, . . . , n}, where n > 1,
we mean a tuple

(S1, . . . , Sn,�1, . . . ,�n),

where for each i ∈ N ,

• Si is the non-empty, finite set of strategies available to player i. We write
S to abbreviate the set of strategy profiles: S = S1 × · · · × Sn.

54 Chapter 3. Strategies in interaction structures

• �i is the preference relation for player i, so �i⊆ S×S. We are interested
in strict dominance, and therefore we consider strict orders as preference
relations (possibly induced by an underlying payoff structure, as expained
in the Introduction chapter).

As is customary in game theory, we denote the strategies of player i by si, possibly
with some superscripts. We also denote i’s strategy in a strategy profile s ∈ S by
si, and the tuple consisting of all other elements by s−i, i.e.,

s−i = (s1, . . . , si−1, si+1, . . . , sn).

Similarly, we use S−i to denote S1 × · · · × Si−1 × Si+1 × · · · × Sn, and for s′i ∈ Si

and s−i ∈ S−i we write (s′i, s−i) to denote (s1, . . . , si−1, s
′
i, si+1, . . . , sn). Finally,

we use s′i �s−i
si as a notational alternative for (s′i, s−i) �i (si, s−i). That is,

s′i �s−i
si means that, if the other players choose the strategies given by s−i, then

player i strictly prefers to choose s′i over si.
Fix now an initial strategic game G := (S1, . . . , Sn,�1, . . . ,�n). We say that

(S ′1, . . . , S
′
n) is a restriction of G if each S ′i is a non-empty subset of Si. We

identify the restriction (S1, . . . , Sn) with G.
To analyze iterated elimination of strategies from the initial game G, we view

such procedures as operators on the set of restrictions of G. This set together with
component-wise set inclusion forms a complete lattice.

For any restriction G ′ := (S ′1, . . . , S
′
n) of G and strategies si, s

′
i ∈ Si, we say

that si is strictly dominated by s′i on S ′−i if s′i �s′−i
si for all s′−i ∈ S ′−i.

1 Then
we introduce the following abbreviations (` stands for “local” and g stands for
“global”; the terminology is from Apt [5]):

• sd`(si,G ′) which holds iff strategy si of player i is not strictly dominated on
S ′−i by any strategy from S ′i (i.e., ¬∃s′i ∈ S ′i ∀s′−i ∈ S ′−i s

′
i �s′−i

si),

• sdg(si,G ′) which holds iff strategy si of player i is not strictly dominated on
S ′−i by any strategy from Si (i.e., ¬∃s′i ∈ Si ∀s′−i ∈ S ′−i s

′
i �s′−i

si).

So in sdg, the global version of strict dominance introduced by Chen et al. [40],
it is stipulated that a strategy not be strictly dominated by a strategy from the
initial game.

We call each relation of the form sd` or sdg an optimality notion. We
say then that the optimality notion φ used by player i is monotonic if for all
restrictions G ′′ and G ′ and strategies si,

G ′′ ⊆ G ′ and φ(si,G ′′) implies φ(si,G ′).
1We are interested in deterministic behavior, guided by deterministic knowledge, rather

than the study of equilibria or randomizing players. For this reason, we do not consider mixed
strategies here.

3.3. Iterated strategy elimination 55

As noted in [32, 5], sdg is monotonic, while sd` is not (though their respective
outcomes are equivalent in finite games, as discussed in the proof of Theorem 3.3.2).

Given an operator T on a finite lattice (D,⊆) and k ≥ 0, by T k we denote the
k-fold iteration of T , where T 0 = D (so the iterations start “at the top”) and put
T∞ :=

⋂
k≥0 T

k. We call T monotonic if for all D′, D′′ ⊆ D,

D′ ⊆ D′′ implies T (D′) ⊆ T (D′′).

Finally, an interaction structure H, as in Chapter 2, is a hypergraph on N ,
i.e., a set of non-empty subsets of A ⊆ N , called hyperarcs.

3.3 Iterated strategy elimination

In this section we define procedures for iterated elimination of strictly dominated
strategies.

Let us fix a strategic game G = (S1, . . . , Sn,�1, . . . ,�n) for players N , an
interaction structure H ⊆ 2N \ {∅}, and an optimality notion φ. In Section 3.3.1,
we look at the outcome that the players can obtain after all communication
permitted by H has taken place, that is, when within each hyperarc of H all of
its members’ preferences have been communicated. In Section 3.3.2, we then look
at the outcomes obtained in any particular intermediate state of communication.

The formulations we give here make no direct use of a formal notion of
knowledge. The connection with a formal epistemic model is made in Section 3.4.

All the iterations of the considered operators start at (S1, . . . , Sn).

3.3.1 Completed communication

Let us assume that within each hyperarc A ∈ H, all its members have shared all
information about their preferences. We leave the exact definition of communica-
tion to Section 3.3.2 and the epistemic formalization to Section 3.4, and focus on
an operational description for now.

For each group of players G ∈ N , let SG denote the set of those restrictions
of G which only restrict the strategy sets of players from G. That is,

SG := {(S ′1, . . . , S ′n) | S ′i ⊆ Si for i ∈ G and S ′i = Si for i 6∈ G}.

Now we introduce an elimination operator TG on each such set SG, defined as
follows. For each G ′ = (S ′1, . . . , S

′
n) ∈ SG,

TG(G ′) := (S ′′1 , . . . , S
′′
n),

where for all i ∈ N ,

S ′′i :=

{
{si ∈ S ′i | φ(si,G ′)} if i ∈ G
S ′i otherwise.

56 Chapter 3. Strategies in interaction structures

We call T∞
G the outcome of iterated elimination (of non-φ-optimal strate-

gies) on G. We then define the restriction G(H) of G as

G(H) := (G(H)1, . . . ,G(H)n),

where for all i ∈ N ,

G(H)i := T{i}
(⋂

A:i∈A∈H T
∞
A

)
i
.

That is, the ith component of G(H) is the ith component of the result of applying
T{i} to the intersection of T∞

A for all A ∈ H containing i. We call G(H) the out-
come of iterated elimination (of non-φ-optimal strategies) with respect
to H. Note that G(H) implicitly depends on φ.

Let us “walk through” this definition to understand it better. Given a player i
and a hyperarc A ∈ H such that i ∈ A, T∞

A is the outcome of iterated elimination
on A, starting at (S1, . . . , Sn). The strategies of players from outside of A are not
affected by this process. This elimination process is performed for each hyperarc
that i is a member of. By intersecting the outcomes, i.e., by considering the
restriction

⋂
A:i∈A∈H T

∞
A , one arrives at a restriction in which all such “group-

wise” iterated eliminations have taken place. However, in this restriction some of
the strategies of player i may be non-φ-optimal. They are eliminated using one
application of the T{i} operator. We illustrate this process, and in particular this
last step, in the following.

3.3.1. Example. Consider local strict dominance, sd`, in the following three-
player game G where the payoffs of players 1 and 2 and those of players 1 and 3
respectively depend on each other’s actions, but the payoffs of player 2 and 3 are
independent:

Pl. 1

Pl. 2, 3
L, l L, r R, l R, r

U 1, 1, 1 0, 1, 0 0, 0, 1 0, 0, 0
D 0, 1, 1 1, 1, 0 1, 0, 1 1, 0, 0

That is, for example, if player 1 chooses strategy U , player 2 chooses L, and
player 3 chooses r, then the payoff for player 1 is 0, player 2 gets 1, and player 3
gets 0. Now assume an interaction structure which reflects these payoff dependen-
cies, i.e., a hypergraphH = {{1, 2}, {1, 3}} (but note that this is just one particular
example, in general the interaction structure need not reflect the payoff dependen-
cies). We obtain T∞

{1,2} = ({U,D}, {L}, {l, r}) and T∞
{1,3} = ({U,D}, {L,R}, {l}).

The restriction defined by these two outcomes is ({U,D}, {L}, {l}), and in the final
step player 1 can now combine the results from his two independent interactions
and eliminate his strategy D by one application of T{1}. The outcome of the whole
process is thus G(H) = ({U}, {L}, {l}).

3.3. Iterated strategy elimination 57

In this example, the outcome with respect to the given interaction structure
coincides with the outcome of customary IESDS on the fully specified game matrix.
We should emphasize that this is not the case in general, and the purpose of
this example is simply to illustrate how the operators work. Example 3.3.3 later
on shows in a different setting how the interaction structure can influence the
outcome.

Note that when H consists of the single hyperarc N that contains all the
players, then for each player i,

⋂
A:i∈A∈H T

∞
A reduces to T∞

N , and this is closed
under application of each operator T{i}. So then, indeed, G(H) = T∞

N , that
is, G(H) in this special case coincides with the customary outcome of iterated
elimination of non-φ-optimal strategies.

In general, this customary outcome is included in the outcome w.r.t. any
hypergraph H. This result is established in Theorem 3.3.2, and Example 3.3.3
shows a case where the inclusion is proper.

3.3.2. Theorem. For φ ∈ {sd`, sdg} and for all hypergraphs H, we have T∞
N ⊆

G(H).

Proof. First, consider φ = sdg, and G ⊆ G′ ⊆ N . By definition, this implies that
for all restrictions G ′ we have TG′(G ′) ⊆ TG(G ′). Since φ is monotonic, so is the
operator TC for all C ⊆ N . Hence by a straightforward induction T∞

N ⊆ T∞
G for

all G ⊆ N , and consequently, for all players i,

T∞
N ⊆

⋂
A:i∈A∈H T

∞
A . (3.1)

Hence, for all i ∈ N ,

T∞
N = T{i}(T

∞
N) ⊆ T{i}(

⋂
A:i∈A∈H T

∞
A),

where the inclusion holds by the monotonicity of T{i}. Consequently T∞
N ⊆ G(H).

We now prove the same claim for φ = sd`. We need to distinguish the TC

operator for φ = sd` and φ = sdg. In the former case we write TC,` and in the
latter case TC,g. The reason that we use the latter operators is that they are
monotonic and closely related to the former operators. Namely, as noted in [4],
T∞

N,` = T∞
N,g, and the proof carries over for N replaced by an arbitrary C ⊆ N .

Now fix an arbitrary i ∈ N , then⋂
A:i∈A∈H T

∞
A,g =

⋂
A:i∈A∈H T

∞
A,`,

and by (3.1) for φ = sdg, T∞
N,g ⊆

⋂
A:i∈A∈H T

∞
A,g, so

T∞
N,` = T∞

N,g ⊆
⋂

A:i∈A∈H T
∞
A,`. (3.2)

Further, we have T∞
N,` = T∞

N,g and T∞
N,g = T{i},g(T

∞
N,g), so T∞

N,` = T{i},g(T
∞
N,`). Hence,

by (3.2) and monotonicity of T{i},g,

T∞
N,` = T{i},g(T

∞
N,`) ⊆ T{i},g(

⋂
A:i∈A∈H T

∞
A,`).

58 Chapter 3. Strategies in interaction structures

Also, for all i ∈ N and all restrictions G ′ we have, by definition,

T{i},g(G ′) ⊆ T{i},`(G ′),

so by the last inclusion

T∞
N,` ⊆ T{i},`(

⋂
A:i∈A∈H T

∞
A,`).

Consequently, T∞
N,` ⊆ G(H), as desired.

The inclusion proved in this result cannot be reversed, even when each pair of
players shares a hyperarc. The following Example 3.3.3 also proves the intuition
that such a graph structure can be less informative than a proper (non-degenerate)
hypergraph structure.

3.3.3. Example. Consider the following strategic game with three players. The
payoffs of player 1 and 2 here only depend on each other’s choices, and the payoffs
of player 3 only depend on the choices of player 2 and 3:

Pl. 1

Pl. 2
L R

U 0, 1 0, 0
D 1, 0 1, 1

Pl. 3

Pl. 2
L R

A 0 1
B 1 0

Payoff of players 1 and 2 Payoff of player 3

If we assume the hypergraph H that consists of the single hyperarc {1, 2, 3},
then the outcome of iterated elimination of non-φ-optimal strategies w.r.t. H
is the customary outcome which equals ({D}, {R}, {A}). Indeed, player 1 can
eliminate his strictly dominated strategy U , then player 2 can eliminate L, and
subsequently player 3 can eliminate B.

In contrast, if the hypergraph consists of all pairs of players, so H = {{1, 2},
{2, 3}, {1, 3}}, then the outcome of iterated elimination of non-φ-optimal strategies
w.r.t. H equals ({D}, {R}, {A,B}).

Informally, the reason for this difference is that in the latter case, player 3 can
eliminate B only using the fact that player 2 eliminated L, but this information is
available only to players 1 and 2.

To familiarize ourselves further with our definitions, we establish the following
intuitive monotonicity result. Say that H ′ extends H just if for each A ∈ H there
is A′ ∈ H ′ such that A ⊆ A′.

3.3.4. Proposition. If H ′ extends H and T is monotonic, then G(H ′) ⊆ G(H).

3.3. Iterated strategy elimination 59

Proof. We prove the following stronger proposition: If H ′ extends H and for each
G ∈ {{i} | i ∈ N} ∪H ∪H ′, TG is monotonic, then G(H ′) ⊆ G(H).

First note that for all restrictions G ′:

G ⊆ G′ implies TG′(G ′) ⊆ TG(G ′). (3.3)

To see this, suppose that G ⊆ G′. Then for all i ∈ N , either

• i ∈ G, in which case i ∈ G′, so TG(G ′)i = TG′(G ′)i, or

• i 6∈ G, in which case TG(G ′)i = G ′i ⊇ TG′(G ′)i.

In each case, TG′(G ′)i ⊆ TG(G ′)i.
From (3.3) and the monotonicity of TG and TG′ , it follows that:

G ⊆ G′ implies T∞
G′ ⊆ T∞

G . (3.4)

Now we show that if H ′ extends H, then
⋂

A′:i∈A′∈H′ T∞
A′ ⊆

⋂
A:i∈A∈H T

∞
A : Fix

i ∈ N and take some si 6∈ (
⋂

A:i∈A∈H T
∞
A)i. Then there is A ∈ H such that i ∈ A

and si 6∈ (T∞
A)i. Then since H ′ extends H, there is A′ ∈ H ′ such that A ⊆ A′, so

by (3.4), si 6∈ (T∞
A′)i ⊇

⋂
A′:i∈A′∈H′ T∞

A′ .
So, since each T{i} is monotonic,

G(H ′)i = T{i}
(⋂

A′:i∈A′∈H′ T∞
A′

)
i
⊆ T{i}

(⋂
A:i∈A∈H T

∞
A

)
i
= G(H)i.

3.3.2 Intermediate states

The setting considered in Section 3.3.1 corresponds to a state where within each
hyperarc, all its members have shared all information about their preferences.
Given the game G and the hypergraph H, the outcome G(H) defined there thus
reflects, assuming the process described in Section 3.1.1, what strategies players
who initially know only their own preferences can eliminate if they communicate
all they can communicate in H. We now define formally what communication
we assume possible, and then look at intermediate states, where only certain
preferences have been communicated.

Any player i can communicate his preferences to any A ∈ H with i ∈ A. We
take a message by i to consist of a preference statement s′i �s−i

si for si, s
′
i ∈ Si

and s−i ∈ S−i. We denote such a message by (i, A, s′i �s−i
si), and require that

i ∈ A and that it is truthful with respect to the given game G, that is, that indeed
s′i �s−i

si in G. Note that the fact that i is the sender is, strictly speaking, never
used. Thus, in accordance with the interpretation of communication described in
Section 3.1.1, we may drop the sender and simply say “the players in A commonly
observe that s′i �s−i

si”. An intermediate state now is given by the set M of
messages which have been communicated.

60 Chapter 3. Strategies in interaction structures

We now adjust the definition of an optimality notion to account for intermediate
states. An intermediate optimality notion φG,M (derived from an optimality
notion φ) uses only information shared among the group G in the intermediate
state given by M . That is, with singleton G = {i} only i’s preferences are used,
and with larger G only preferences contained in messages to G are used. For
example, sdg

G,M(si,G ′) holds iff

¬∃s′i ∈ Si ∀s−i ∈ S ′−i s
′
i �s−i

si if G = {i}
¬∃s′i ∈ Si ∀s−i ∈ S ′−i M �G� s

′
i �s−i

si otherwise,

where by M �G� s′i �s−i
si we mean that s′i �s−i

si is entailed by the messages
contained in M which G received. Specifically, M �G� s′i �s−i

si iff there are
(·, Gk, sk

i �s−i
sk+1

i) ∈ M for k ∈ {1, . . . , ` − 1} such that Gk ⊇ G, s1
i = s′i and

s`
i = si.

We can then define a generalization of the TG operator as follows:

TG,M(G ′) := (S ′′1 , . . . , S
′′
n),

where G ′ = (S ′1, . . . , S
′
n) and for all i ∈ N

S ′′i := {si ∈ S ′i | φG,M(si,G ′)}.

Note that, as before, S ′i remains unchanged if i 6∈ G, since then φG,M (si,G ′) always
holds. Indeed, for it to be false, there would have to be some message (i, G, ·) ∈M ,
which would imply i ∈ G.

Similarly, we now define the outcome of iterated elimination (of non-
φ-optimal strategies) with respect to H,M to be the restriction G(H,M),
where for i ∈ N

G(H,M)i := T{i},M
(⋂

A:i∈A∈H T
∞
A,M

)
i
.

Here, H denotes the closure of H under intersection. That is, H ⊆ H and if
A,A′ ∈ H then also A ∩ A′ ∈ H. This is necessary because certain information
may be entailed by messages sent to different hyperarcs. For example, with
(j, A, s′′j �s−j

s′j), (j, A
′, s′j �s−j

sj) ∈M , the combined information that s′′j �s−j
sj

is available to A ∩A′. Notice that this formulation leaves room for optimizations.
For example, one start by looking at M and only consider groups to which there
actually exist messages, but we do not focus on this issue here.

It is easy to see that in the case where the players have communicated all there
is to communicate, i.e., for

Mall
H := {(i, A, s′i �s−i

si) | i ∈ N,A ∈ H, si, s
′
i ∈ Si with s′i �s−i

si in G},

the intermediate outcome coincides with the previously defined outcome:

G(H,Mall
H) = G(H).

3.3. Iterated strategy elimination 61

This corresponds to the intuition that G(H) captures the elimination process when
all possible communication has taken place. In particular, all entailed information
has also been communicated in Mall

H , which is why we did not need to consider H
in Section 3.3.1.

Again, we “walk through” the definition of G(H,M). First, a local elimination
process is run on each hyperarc of H, using only information which has been
communicated there (which now no longer covers all members’ preferences, but
only the ones according to the intermediate state M). Then, in the final step,
each player combines his insights from all hyperarcs of which he is a member, and
he eliminates any strategies that he thereby learns not to be optimal.

3.3.5. Example. Consider again the game G from Example 3.3.1, and the initial
state where M = ∅.

We have T∞
A,M = G for all A ∈ H, that is, without communication no strategy

can “commonly” be eliminated. However, players 2 and 3 can “privately” eliminate
one of their strategies each, since each knows his own preferences. This fact and
the effect that this elimination cannot be iterated upon by other players are
captured in the final step performed by these respective players. The results of
the final steps are thus

T{1},M(
⋂

A:1∈A∈H T
∞
A,M) = ({U,D}, {L,R}, {l, r}),

T{2},M(
⋂

A:2∈A∈H T
∞
A,M) = ({U,D}, {L}, {l, r}),

T{3},M(
⋂

A:3∈A∈H T
∞
A,M) = ({U,D}, {L,R}, {l}),

so the overall outcome is

G(H,M) = ({U,D}, {L}, {l}).

Consider now the intermediate state

M ′ = {(2, {1, 2}, L �s−2 R) | s−2 ∈ S−2},

that is, a state where player 2 has shared with player 1 the information that for
any joint strategy of players 1 and 3, he prefers his strategy L over R. Then only
the result of player 1 changes:

T{1},M ′(
⋂

A:1∈A∈H T
∞
A,M ′) = ({U,D}, {L}, {l, r}),

while the other results and the overall outcome remain the same. If additionally
player 3 communicates all his information in the hyperarc he shares with player 1,
that is, if the intermediate state is

M ′′ = M ′ ∪ {(3, {1, 3}, l �s−3 r) | s−3 ∈ S−3},

62 Chapter 3. Strategies in interaction structures

then player 1 can combine all the received information and obtain

T{1},M ′′(
⋂

A:1∈A∈H T
∞
A,M ′′) = ({U}, {L}, {l}).

This is also the overall outcome G(H,M ′′), which coincides with the outcome
G(H,Mall

H) where all information has been communicated.

Let us now illustrate the importance of using entailment in intermediate optimality
notions and H (rather than H) in the definition of G(H,M).

3.3.6. Example. We look at a game involving four players, but we are only
interested in the preferences of two of them. The other two players serve merely
to create different hyperarcs. The strategies and payoffs of player 1 and 2 are as
follows:

Pl. 1

Pl. 2
L R

A 3, 0 1, 1
B 2, 0 1, 1
C 1, 1 0, 0
D 0, 0 5, 1

For player 3 and 4 we assume a “dummy” strategy each, denoted X and Y .
Consider the hypergraph

H = {{1, 2, 3}, {1, 2, 4}}

and the intermediate state

M = {(1, {1, 2, 3}, A �LXY B),

(1, {1, 2, 4}, B �LXY C),

(1, {1, 2, 3}, A �RXY C)}.

The fact that player 1, independently of what the remaining players do, strictly
prefers A over C is not explicit in these pieces of information, but it is entailed
by them, since A �LXY B and B �LXY C imply A �LXY C. However, this
combination of information is only available to {1, 2, 3} ∩ {1, 2, 4}.

Player 2 can make use of this fact that C is dominated, and eliminate his
own strategy L. If we now look at a state where player 2 has communicated his
relevant preferences,

M ′ = M ∪ {(2, {1, 2, 3}, R �αXY L) |α ∈ {A,B,D}},

we notice that player 1, in turn, can eliminate A and B, but only building upon
the initial combination of information available to {1, 2, 3} ∩ {1, 2, 4}. There is no
single hyperarc in the original hypergraph which has all the required information
available. It thus becomes clear that we need to take into account iterated
elimination on intersections of hyperarcs.

3.4. Epistemic foundation 63

3.4 Epistemic foundation

In this section, we provide an epistemic foundation for our framework. The aim
is to prove that the definition of the outcome G(H,M) correctly captures what
strategies the players can eliminate using all they “know”, in a formal sense.

We proceed as follows. First, in Section 3.4.1, we briefly introduce an epistemic
model formalizing the players’ knowledge. We draw upon results from Chapter 2.
In Section 3.4.2, we give a general epistemic formulation of strict dominance and
argue that it correctly captures the notion. Section 3.4.2 contains the main result
of our epistemic analysis, namely that the outcome G(H,M) indeed yields the
outcome stipulated by the epistemic formulation.

We focus on the global version of strict dominance, sdg, mainly because the
presentation is then more concise. However, our results about its outcomes carry
over to the local version due to the equivalence result mentioned in the proof of
Theorem 3.3.2.

3.4.1 Epistemic language and states

Again, we assume a fixed game G with strategies Si for each player i, and a
hypergraph H representing the interaction structure. Analogously to Chapter 2,
we use a propositional epistemic language with a set At of atoms which is
divided into disjoint subsets Ati, one for each player i, where

Ati = {s′i �s−i
si | si, s

′
i ∈ Si, s−i ∈ S−i}.

The set At describes all possible relative preferences between pairs of strategies.
We consider the usual connectives ∧ and ∨ (but not the negation ¬), and
a common knowledge operator CG for any group G ⊆ N of players. As in
Chapter 2, we write Ki for C{i}. By L+ we denote the set of formulas built from
the atoms in At using these two connectives and knowledge operators.

A valuation V is a subset of At, consisting of those atoms that are assumed
true. A concrete game G induces exactly one valuation which correctly represents
it, but since we need to model that players may not have full knowledge of the
game and may consider other preference orders possible, we need to allow other
options. However, since the setup is commonly known, players will only consider
valuations possible which indeed may reflect the preference ordering of some
game. Therefore, we require valuations V to be such that for each i and each
s−i ∈ S−i, the restriction V ∩ {· �s−i

·} represents a strict partial order. For
example, {s �a t} is a valuation (given a game with appropriate strategy sets),
while {s �a t, t �a u} and {s �a t, t �a s} are not. Note that such valuations
satisfy the properties (v1) and (v2) from Chapter 2, so the framework discussed
there can be applied.

Recall from Section 3.3.2 that a message from player i to A ∈ H has the
form (i, A, s′i �s−i

si), where i ∈ A, si, s
′
i ∈ Si, and s−i ∈ S−i. Truthfulness now

64 Chapter 3. Strategies in interaction structures

depends on the particular valuation under consideration. Concretely, a message
(·, ·, p) is truthful with respect to a valuation V if, indeed, p ∈ V .

A state, or possible world, is a pair (V,M), where V is a valuation and M
is a set of truthful (with respect to V) messages.

Our setting is an instance of the framework defined in Chapter 2, and the formal
semantics is as defined there (Section 2.2). We repeat here only the intuition
that CGϕ means that ϕ is common knowledge among G, that is, everybody in G
knows ϕ, everybody knows that everybody knows ϕ, etc. In particular, Kiϕ
means that player i knows ϕ. Our assumptions that player i from the beginning
knows the true facts in Ati, and that the basic assumptions from Section 3.1.1 are
commonly known among the players, are reflected in the setup we have described.

3.4.2 Correctness result

We here use our insights from Chapter 2 in order to prove that the T operator
defined in Section 3.3 is correct with respect to an epistemic formulation of our
setting.

We start by giving an epistemic formula describing the global version of
iterated elimination of strictly dominated strategies. Note that, in contrast to
the formulation in Section 3.2, this formula states when a strategy is known to be
strictly dominated.

We define, for i ∈ N and si ∈ Si,

dom1(si) := Ki

∨
s′i∈Si

∧
s−i∈S−i

s′i �s−i
si,

dom`+1(si) := Ki

∨
s′i∈Si

∧
s−i∈S−i

(
s′i �s−i

si ∨
∨

j∈N\{i}

dom`(sj)
)
.

That is, in the base case, player i knows that si is strictly dominated if i knows
that there is an alternative strategy s′i which, for all joint strategies of the other
players, is strictly preferred. Furthermore, after iteration `+ 1, i knows that si is
strictly dominated if i knows that there is an alternative strategy s′i such that, for
all joint strategies s−i of the other players, either s′i is strictly preferred or some
strategy sj in s−i is already known by j to be strictly dominated after iteration `.

We restrict attention to formulas dom`(si) with ` ∈ {1, . . . , ˆ̀}, where ˆ̀ =∑
i∈N |Si|. By the semantics of the considered formulas, there is some ` within

this range such that for all `′ ≥ `, dom`′ is equivalent to dom`. To reflect the fact

that this can be seen as the outcome of the iteration, we denote dom
ˆ̀
by dom∞.

As a first connection with the T operator defined in Section 3.3, we have
the following epistemic counterpart of Proposition 3.3.4. This is due to the fact
that, intuitively, if we look at states where all communication allowed by a given

3.4. Epistemic foundation 65

hypergraph has taken place, then knowledge (of positive formulas) can only grow
as that hypergraph grows.

3.4.1. Proposition. If H ′ extends H, then for any i ∈ N and si ∈ Si,

(V,Mall
H) � dom∞(si) implies (V,Mall

H′) � dom∞(si),

where Mall is as defined in Section 3.3.2.

Proof. Follows from Lemma 2.3.3 and the fact that dom∞(si) ∈ L+.

We now proceed to the main result of this section. We prove that the non-
epistemic formulation of iterated elimination of non-sdg-optimal strategies, as
given in Section 3.3, is correct with respect to the epistemic formulation of strict
dominance.

3.4.2. Theorem. For any strategic game G, hypergraph H, set of messages M
(truthful with respect to G), and i ∈ N ,

G(H,M)i = {si ∈ Si | (V,M) 2 dom∞(si)},

where V is the valuation induced by G.

In order to prove this result, we need some preparatory steps.

3.4.3. Lemma. For any ` ≥ 1, i ∈ N , si ∈ Si, and state (V,M),

(V,M) � dom`+1(si)

iff (V,M) �
∨

s′i∈Si

∧
s−i∈S−i

(
(Kis

′
i �s−i

si) ∨
∨

A:i∈A∈H

∨
j∈A\{i}

CAdom`(sj)
)
.

Proof. We have

(V,M) � dom`+1(si)

iff (by definition)

(V,M) � Ki

∨
s′i∈Si

∧
s−i∈S−i

(
s′i �s−i

si ∨
∨

j∈N\{i}

dom`(sj)
)

iff (by Lemma 2.3.5)

(V,M) �
∨

s′i∈Si

∧
s−i∈S−i

(
Kis

′
i �s−i

si ∨
∨

j∈N\{i}

Kidom
`(sj)

)
iff (V,M) �

∨
s′i∈Si

∧
s−i∈S−i

(
Kis

′
i �s−i

si ∨
∨

A:i∈A∈H

∨
j∈A\{i}

CAdom`(sj)
)
.

The last step holds by Lemma 2.3.8 and Theorem 2.3.9 since dom`(sj) = Kj(· · ·).

66 Chapter 3. Strategies in interaction structures

3.4.4. Lemma. For any ` ≥ 1, i ∈ A ∈ H, si ∈ Si, and state (V,M),

si 6∈ T `
A,M(S1, . . . , Sn)i iff (V,M) � CAdom`(si).

Proof. By induction on `. The base case follows straightforwardly from the
definitions. Now assume the claim holds for `. Then, focusing on the interesting
case where A 6= {i}, we have the following chain of equivalences:

si 6∈ T `+1
A,M(S1, . . . , Sn)i

iff (by definition)

si 6∈ T `
A,M(S1, . . . , Sn)i or ¬sdg

A,M(si, T
`
A,M(S1, . . . , Sn))

iff (by monotonicity of sdg)

¬sdg
A,M(si, T

`
A,M(S1, . . . , Sn))

iff (by definition)

∃s′i ∈ Si ∀s−i ∈ T `
A,M(S1, . . . , Sn)−i M �A� s

′
i �s−i

si

iff ∃s′i ∈ Si ∀s−i ∈ S−i M �A� s
′
i �s−i

si or

s−i 6∈ T `
A,M(S1, . . . , Sn)−i

iff ∃s′i ∈ Si ∀s−i ∈ S−i M �A� s
′
i �s−i

si or

∃j ∈ A \ {i} sj 6∈ T `
A,M(S1, . . . , Sn)j

iff (by induction hypothesis)

∃s′i ∈ Si ∀s−i ∈ S−i M �A� s
′
i �s−i

si or

∃j ∈ A \ {i} (V,M) � CAdom`(sj)

iff (by Lemma 2.3.8)

∃s′i ∈ Si ∀s−i ∈ S−i (V,M) � CAs
′
i �s−i

si or

∃j ∈ A \ {i} (V,M) � CAdom`(sj)

iff (V,M) �
∨

s′i∈Si

∧
s−i∈S−1

(
CAs

′
i �s−i

si ∨
∨

j∈A\{i}

CAdom`(sj)
)

iff (by Theorem 2.3.6)

(V,M) � CA

∨
s′i∈Si

∧
s−i∈S−1

(
s′i �s−i

si ∨
∨

j∈A\{i}

dom`(sj)
)

iff (V,M) � CAdom`+1(si).

We are now ready to prove the main result.

3.5. Distributed implementation 67

Proof of Theorem 3.4.2. We have:

si 6∈ G(H,M)i

iff (by definition)

si 6∈ T{i},M(
⋂

A:i∈A∈H T
∞
A,M)i

iff ¬sdg
{i},M(si,

⋂
A:i∈A∈H T

∞
A,M(S1, . . . , Sn))

iff ∃s′i ∈ Si ∀s−i ∈
⋂

A:i∈A∈H T
∞
A,M(S1, . . . , Sn)−i s

′
i �s−i

si

iff ∃s′i ∈ Si ∀s−i ∈ S−i s
′
i �s−i

si or

s−i 6∈
⋂

A:i∈A∈H T
∞
A,M(S1, . . . , Sn)−i

iff ∃s′i ∈ Si ∀s−i ∈ S−i s
′
i �s−i

si or

∃A : i ∈ A ∈ H s−i 6∈ T∞
A,M(S1, . . . , Sn)−i

iff ∃s′i ∈ Si ∀s−i ∈ S−i s
′
i �s−i

si or

∃A : i ∈ A ∈ H ∃j ∈ A \ {i} : sj 6∈ T∞
A,M(S1, . . . , Sn)j

iff (by Lemma 3.4.4)

∃s′i ∈ Si ∀s−i ∈ S−i s
′
i �s−i

si or

(V,M) �
∨

A:i∈A∈H

∨
j∈A\{i}

CAdom∞(sj)

iff (since s′i �s−i
si ∈ Ati)

∃s′i ∈ Si ∀s−i ∈ S−i (V,M) � Kis
′
i �s−i

si or

(V,M) �
∨

A:i∈A∈H

∨
j∈A\{i}

CAdom∞(sj)

iff (V,M) �
∨

s′i∈Si

∧
s−i∈S−i

(
(Kis

′
i �s−i

si) ∨
∨

A:i∈A∈H

∨
j∈A\{i}

CAdom∞(sj)
)

iff (by Lemma 3.4.3)

(V,M) � dom∞(si).

3.5 Distributed implementation

An epistemic model such as the one we have built and used in Chapter 2 and Sec-
tion 3.4 allows us to reason about the players’ knowledge. However, such a model
always takes the perspective of an outside observer, the modeler (in this case
us), and tells us what the players can be said to know, assuming they are perfect
reasoners. It thus ascribes knowledge to the players, without really telling us (or
them, for that matter) how exactly they might arrive at that knowledge. Similarly,
the T operator from Section 3.3 is formulated in a centralized way. How does the
situation look from the players’ point of view, and what reasoning mechanisms
might they use?

68 Chapter 3. Strategies in interaction structures

Obviously, it cannot be the case that each player simply maintains a copy
of our central model, or something equivalent to it, because the central model
contains information about the whole system and all players, which is not available
to an individual player. Of course, there may be situations where the players
would have access to such a central model; for example, a virtual world might
provide an interface to the control programs of its simulated inhabitants through
which they can query a centralized model maintained by the world, and thus find
out what they (can be said to) know. We explore this setting in Chapter 4, but in
a truly distributed system this is not possible.

The aim of this section is to “localize” both the T operator and the epistemic
model to obtain algorithms which can be executed by any player i himself. We
straightforwardly see that they correspond to “i’s part” of the centralized versions,
and are in that sense correct for the elimination outcome of i’s strategies, and for
i’s knowledge.

So, in Section 3.5.1, we directly implement an iterated elimination process
localized to player i, and we easily see that it coincides with the centralized version
of the T operator on i’s strategies. Correctness is thus implied by Section 3.4,
in the sense that the implementation really eliminates all strategies a player can
eliminate, given his theoretically ascribed knowledge.

In Section 3.5.2, we follow the approach we have described in [155, 157] and
called explicit knowledge programming, which involves encapsulating epistemic
information and algorithms in a knowledge module local to any player i. This mod-
ule processes the events that the player observes and enables him to transparently
evaluate a certain class epistemic formulas talking about i’s knowledge, which
includes the dom`(si) formulas. Again using the results from Section 3.4, we see
that the knowledge module is correct with respect to the given class of formulas.
Exploiting the restrictions of our setting, the knowledge module is computationally
simple, as opposed to, for example, a general, full-blown epistemic logic theorem
prover. In this sense, our approach is in accordance with Hayes [77]: such a knowl-
edge module is a system which “[has] a logical inference structure—[is] making
deductively valid inferences—without being a classical uniform theorem-prover
which just ‘grinds clauses together’.” See Section 3.6 for some more discussion on
this approach.

Common to both approaches is that the events a player observes need to
be kept track of. So we assume that the program of any player i stores and
can at any time access the initial strategy sets (S1, . . . , Sn) of the given game G,
the given interaction structure H, i’s own preferences �i induced by G, as well
as the messages Mi he has observed. For the sake of clarity, we use C(Mi) to
denote the transitive closure of the messages that have been observed by i. That
is, Mi ⊆ C(Mi), and if (j, A, s′′j �s−j

s′j), (j, A
′, s′j �s−j

sj) ∈ C(Mi), then also
(j, A ∩ A′, s′′j �s−j

sj) ∈ C(Mi).
Note that the algorithms we describe are symmetric in the sense of Chapter 1,

and thus JCSP lends itself as implementation platform.

3.5. Distributed implementation 69

Algorithm 1: Computing G(H,M)i using a T operator implementation

// compute
⋂

A:i∈A∈H T
∞
A,M

foreach A with i ∈ A ∈ H do1

(S ′1,A, . . . , S
′
n,A) := (S1, . . . , Sn);2

repeat3

changed := false;4

(S ′′1,A, . . . , S
′′
n,A) := (S ′1,A, . . . , S

′
n,A);5

foreach j ∈ A and sj ∈ S ′j,A do6

if ∃s′j ∈ S ′j,A ∀s−j ∈ S ′−j,A (j, A, s′j �s−j
sj) ∈ C(Mi) then7

S ′′j,A := S ′′j,A \ {sj};8

changed := true;9

end10

end11

(S ′1,A, . . . , S
′
n,A) := (S ′′1,A, . . . , S

′′
n,A);12

until not changed;13

end14

(S ′1, . . . , S
′
n) :=

⋂
A:i∈A∈H(S ′1,A, . . . , S

′
n,A);15

// compute T{i},M
S ′′i := S ′i;16

foreach si ∈ S ′i do17

if ∃s′i ∈ S ′i ∀s−i ∈ S ′−i s
′
i �s−i

si then18

S ′′i := S ′′i \ {si};19

end20

end21

return S ′′i ;22

3.5.1 T operator approach

Algorithm 1 describes an implementation of the T operator as defined in Sec-
tion 3.3.2. This implementation can straightforwardly be seen to execute directly
the definition of the T operator; the only noteworthy change occurs in line 7, where
we have Mi instead of M . This, however, does not make any difference, since
with i ∈ A we have (j, A, s′j �s−j

sj) ∈ Mi if and only if (j, A, s′j �s−j
sj) ∈ M .

Intuitively speaking, the evaluation of T∞
A,M only uses information shared by all

members of A, and thus locally available to each member.

The implementation is certainly not the most efficient one, for example, one
might first look at Mi in order to see which hyperarcs of H even need to be
considered. But for our purposes this suffices, and we now focus on the knowledge
module approach.

70 Chapter 3. Strategies in interaction structures

3.5.2 Knowledge module approach

In the alternative, modular approach, the player program explicitly uses the
epistemic formulation defined in Section 3.4.2, evaluating epistemic formulas of
the form dom` in order to test which strategies are known to be dominated. Since
we are here, as explained in Section 3.1.1, not examining exactly why certain
communications are performed, we do not discuss the whole player program in
detail. It can be thought of as a main loop consisting of communication statements
and, whenever communication has taken place, tests involving dom` formulas
in order to determine what strategies can currently be eliminated. Whenever
the player program encounters such an epistemic formula, it calls a function to
evaluate it.

This evaluation function is what we focus on here. It is provided by the
player’s knowledge module, which also keeps track of the relevant information
(i.e., the observed messages). We here provide an evaluation function for such
a knowledge module, using the results from Chapter 2. It correctly evaluates
a more general class of formulas than only the dom`: For any ϕ ∈ L+, at any
intermediate state M , it can efficiently compute whether (V,M) � Kiϕ, where V
is as induced by G.

Note that, even though (V,M) refers to all players, the knowledge module is
only allowed to use the information available to i, that is, �i and Mi. For this
reason, even though the formulation can be thought of as a model checking problem,
in general it is closer to a validity check: i has to check whether the formula
in question, Kiϕ, holds in all models compatible with his information; or, if we
represent his information as formulas ψ1, . . . , ψ`, whether � ¬(ψ1∧ . . .∧ψ`)∨Kiϕ.
While the exact relationship between model checking and testing for validity
depends on the concrete formalism, in general, testing for validity is intractable [74].
With the specific restrictions of our scenario, however, our case indeed turns out
to correspond to a rather simple instance of model checking, since all models
compatible with i’s information are equivalent with respect to i’s knowledge, so
only one of them needs to be checked.

The straightforward implementation is described in Algorithm 2. To test
whether a player i knows a formula ϕ ∈ L+, he needs to execute eval(i, ϕ). Recall
that, for a word w = i1 . . . i` ∈ N∗, we use Kw to abbreviate Ki1 . . . Ki` and Set(w)
to mean {i1, . . . , i`}.

The evaluation is done in a recursive way, directly reflecting the semantics as
defined in Chapter 2. It analyzes the formula at hand and evaluates its components,
collecting the K operators it sees on the way until an atom is reached, over which
the chain of collected K operators is then evaluated. This procedure is possible
due to the fact that K distributes over all connectives we use, as established in
Chapter 2. Some comments on particular lines of the algorithm follow:

Line 3 reflects that i knows his own preferences, and is in accordance with the
semantics of our model.

3.5. Distributed implementation 71

Algorithm 2: Knowledge evaluation function eval(w,ϕ) of player i

Input: w ∈ N∗, ϕ ∈ L+

Output: true if (V,M) � Kwϕ; false otherwise
switch ϕ do1

case p ∈ At2

if Set(w) ⊆ {i} and p ∈ Ati then return true iff p ∈�i;3

else if (·, A, p) ∈ C(Mi) with some A ⊇ Set(w) then return true;4

else return false;5

end6

case ϕ1 ∧ ϕ2 return eval(w,ϕ1) and eval(w,ϕ2);7

case ϕ1 ∨ ϕ2 return eval(w,ϕ1) or eval(w,ϕ2);8

case Kjϕ
′ with j ∈ N9

if Set(w)∪ {j} = {i} or there is A ∈ H with Set(w)∪ {j} ⊆ A then10

return eval(w ◦ i, ϕ′);11

else return false;12

end13

end14

Lines 4 and 5 reflect Lemma 2.3.8, with M equivalently replaced by Mi in line 5
since i ∈ Set(w) ⊆ A; intuitively, the respective message has been sent to A
if and only if i has observed it, since i ∈ A.

Line 11 is correct because of Lemma 2.3.5.

Line 12 corresponds to Theorem 2.3.10 and allows the evaluation to be cut off if
the set of collected K operators is not included in any A ∈ H.

In particular, this last point has the effect that the exponential blowup caused
by the recursive part of the dom` formulas depends on the hypergraph, rather than
on the set of players. This makes evaluation especially efficient for hypergraphs
with high locality.

While iterated elimination of strictly dominated strategies using the fully
specified payoff matrix is a simple procedure [86], in a general setting of incomplete
information, where arbitrary constellations of knowledge may occur, a player would
have to maintain individual models for each other player, including each other
player’s models of each other players, and so on. With the restrictions in our
scenario, these nested models collapse to one common model for each hyperarc,
which allows us to apply the simpler procedures we described. The complexity of
our algorithms therefore depends mainly on the hypergraph. In that sense, our
framework simplifies the computation of knowledge in a similar way as the graphical
games [85] mentioned in Section 3.1 simplify the computation of equilibria.

72 Chapter 3. Strategies in interaction structures

Pl. 1

Pl. 2
L R

U 0, 1 0, 0
D 1, 0 1, 1

(a) Payoff of players 1 and 2

Pl. 3

Pl. 2
L R

A 0 1
B 1 0

(b) Payoff of player 3

1. 1 concludes that U is dominated.
1’s picture now:

L R
D

L R
A
B

2. 2 communicates L �U R on {1, 2}
3. 2 communicates L �U R on {2, 3}
4. 2 communicates R �D L on {1, 2}
5. 2 communicates R �D L on {2, 3}
6. 1 communicates D � U on {1, 2}
7. 1 concludes that 2 knows that 1

knows that U is dominated.

8. 1 concludes that 2 knows that L is
dominated. 1’s picture now:

R
D

R
A
B

9. 2 concludes that 1 knows that U is
dominated. 2’s picture now:

L R
D

L R
A
B

10. 2 concludes that L is dominated.
2’s picture now:

R
D

R
A
B

11. 3 communicates B �L A on {2, 3}
12. 3 communicates A �R B on {2, 3}
13. Communication is complete.

Figure 3.1: Protocol of program run for the game from Example 3.3.3. Messages
are abbreviated, e.g., L �U R actually represents two messages: one containing
L �UA R and one L �UB R. When displaying a player’s current picture of the
game, we leave the matrix entries blank since the numerical payoffs are never
communicated, only the relative preferences.

3.6. Conclusions 73

3.5.1. Example. Consider again the game from Example 3.3.3 with the hyper-
graph H = {{1, 2}, {2, 3}, {1, 3}}. The game is depicted in Figure 3.1 together
with a protocol of a program run in which players communicate their preferences
and perform strategy elimination according to their respective current knowledge.

The outcome that the players arrive at after all communication allowed by H
has taken place is, as expected, the same as in Example 3.3.3, for the reasons
discussed there. While player 2 may deduce that player 3 would be able to
eliminate B if player 3 knew that player 2 eliminated L, from the communicated
information alone player 3 cannot deduce that.

Note that in this particular run, in line 8, player 1 computes player 2’s
knowledge before player 2 actually computes it in line 10. In that sense, player 1
for a certain amount of time ascribes knowledge to player 2 which player 2, strictly
speaking, does not have. We come back to this issue at the end of Section 3.6.1.

3.6 Conclusions

In this chapter, we looked at strategic games in the presence of interaction struc-
tures. We assumed that initially the players know only their own preferences, and
that they can truthfully communicate information about their own preferences
within their parts of the interaction structure. We defined operators to perform
iterated elimination of strictly dominated strategies in any given state of commu-
nication, along with an epistemic model, based on the framework from Chapter 2,
showing that the outcome of these operators is in a certain sense correct. We
also discussed distributed implementations of the resulting procedures, connecting
back to Chapter 1.

3.6.1 Related work

A few more remarks may be in place about how our approach of explicit knowledge
programming relates to related notions from the literature. The basic idea of the
closely related topics of explicit knowledge and algorithmic knowledge [111, 59,
121, 75] is to restrict the “classic”, logical notion of knowledge we have considered
so far, in order to reflect what an agent could be said to be able to compute,
rather than to logically know. One approach is to limit the accessibility relations
in certain ways, reflecting the assumption that considering, or accessing, other
possible worlds is computationally costly. However, these formalisms still take a
modeler’s point of view in order to reason about what such an agent can do, rather
than describing exactly how the agent does it. The ascribing is, in a sense, taken
to a higher level: Instead of knowledge itself, methods for computing knowledge
are ascribed to the agents, and the resulting central model is then used, again, by
the modeler in order to reason about what the agents can be said to be able to

74 Chapter 3. Strategies in interaction structures

compute. Naturally, the resulting logics may be more sophisticated and harder
than the basic logic of knowledge.

Our approach, while also involving restrictions, differs in where these restric-
tions are placed. We put them on the situations we consider, on the initial
knowledge and the ways in which additional knowledge can be created (e.g.,
communication), as well as on the class of epistemic statements we consider. This
is done in such a way that the agents, within these limits, are able to compute
the unrestricted logical notion of knowledge.

Another related approach is that of knowledge-based programs by Fagin et al.
[61]. It resembles our approach in that epistemic statements are allowed to
appear literally in the code of such programs. However, these knowledge-based
programs are used exclusively for specification and verification of so-called standard
programs, which do not contain epistemic statements. These resulting executable
programs behave as required by their knowledge-based specification, but they
are not assumed to actually “compute [the] knowledge in any way”. One may
thus say that they use their knowledge implicitly, and in a sense our T operator
implementation in Section 3.5.1 corresponds to such a standard program.

Our approach in Section 3.5.2 differs from the knowledge-based programs of
Fagin et al. [61] in that we allow epistemic statements in the actual executable
programs, thus giving them explicit access to their knowledge, through concrete
algorithms with which they can compute what they may be said to know by a
modeler. Reasons for this approach include the following ones. Firstly, we believe
that the abstraction level that epistemic statements provide are useful not only
for the specifier of a program, but also for the actual programmer, who may not
even be known at the time of specification, especially with today’s extensible
and open platforms. Secondly, programs containing epistemic statements can be
easier to maintain than programs that behave equivalently but are formulated on
a lower level, and the corresponding knowledge module (such as the one presented
in Section 3.5.2) can be updated and verified separately. See Chapter 4 for an
illustrating case study in the context of computer games.

It is important to note that, as we have seen in the context of Example 3.5.1.
this different viewpoint also makes our notion of knowledge somewhat different
from that of Fagin et al. [61]. Their notion of knowledge is defined in terms of
possible runs of the whole distributed system. Being aware of the system as a
whole and the exact programs of all its processes, the modeler who uses this notion
to reason about processes would not ascribe knowledge to one process concerning
knowledge of another process before ascribing that knowledge to that other process.
We, on the other hand, take the subjective viewpoint of an intelligent agent and
try to simulate epistemic reasoning of such an agent. In contrast to an external
modeler, the agent may not be aware of the complete system and the exact
internal workings of all other agents. An agent’s reasoning about others thus has
to be based on assumptions. One reasonable assumption seems to be that other
intelligent agents do check and use their knowledge at some point, at the latest

3.6. Conclusions 75

when it becomes relevant—when they need to act on it, which in our case is when
they finally pick their strategy. In a reasonably homogeneous society of agents,
if an agent can compute another agent’s knowledge, then that other agent can
certainly also do it himself; in a society with greatly varying reasoning skills, the
agents would need to model each other’s reasoning capabilities more explicitly. In
either case, the distinction whether other agents really possess certain knowledge
as soon as they would in principle be able to deduce it, or whether they only
possess it at the time when it becomes manifest in their actions, is interesting
from a philosophical point of view but impossible to determine for an agent and
irrelevant for choosing his own actions.

So knowing that some other agent knows something, strictly speaking, for
us rather means concluding that that other agent will be able to figure it out
whenever it is relevant. Arguably, this also reflects the best that we as humans
can do with an intangible concept such as others’ knowledge.

Note that this kind of temporary inconsistency across the agents’ knowledge
states is of a different nature than that occurring with the eager protocol discussed
in Chapter 1, Section 1.5. There, the inconsistency occurs on the level of ascribed
knowledge, and it may happen that agents act on inconsistent knowledge, which
is why we chose not to adopt that protocol. Here, in contrast, an agent correctly
ascribes “potential” knowledge to another agent, which that other agent merely has
not computed yet. Under the described assumption that the discrepancy between
ascribed and computed knowledge only lasts between two external actions by the
respective agent (i.e., the assumption that agents do compute their knowledge by
the time it becomes relevant for acting), this inconsistency never manifests itself.

3.6.2 Possible extensions

While the restrictions we have imposed may be so severe that our scenario seems
almost trivial, it has still served to explain our approach, and can be used as a
starting point for further considerations. In a bottom-up way, our analysis could
be extended in a number of ways:

• Allowing players to send information about the preferences of other players
that they learned through interaction. We have started to extend the
epistemic framework from Chapter 2 into that direction, see [9].

• Allowing other forms of messages, for example, messages containing infor-
mation that a strategy has been eliminated, or epistemic statements.

• Considering strategic aspects of communication, even if truthfulness is
required (should a certain piece of information be sent or not?)

• Considering formation or evolution of interaction structures, given strategic
advantages of certain interaction structures over others.

76 Chapter 3. Strategies in interaction structures

Ultimately, a setting of strategic communication and proactive behavior of querying
and telling (possibly false) information may be envisioned, involving agents that
plan under consideration of epistemic states, actions and goals. But, as mentioned
in Section 3.1.1, for such an open-ended framework much foundational work
remains to be done.

Chapter 4

Epistemic reasoning in computer games

4.1 Introduction

Higher-order knowledge, that is, knowledge about (someone else’s) knowledge, is
important in everyday social interaction.1 That importance is well-recognized in
logic and game theory (insofar as these disciplines extend to everyday life), see,
e.g., the work by van Ditmarsch [49] and by Brandenburger [31]. In this chapter,
we point out its relevance to computer games that incorporate simulations of social
interaction, by which we mean interaction with artificial agents and non-player
characters (NPCs). The most obvious examples of social interaction occur in
computer role-playing games (RPGs), interactive fiction (IF) and life simulation
games (such as The SimsTM), but we also show examples from other genres.

We substantiate one example using what we call explicit knowledge program-
ming, which we have proposed in [155] and used in Chapter 3 in this dissertation.
It consists in implementing a well-defined restricted epistemic logic within a
knowledge module, in order to provide epistemic statements on the programming
language level and thus give programs access to the knowledge they can be said
to have from a modeler’s point of view.

As a side note, we think that higher-order desires as well as beliefs are impor-
tant, and indeed the interplay between the two. For example, in an interaction
between A and B, it can be significant if A believes that B desires that A believe
such-and-such. Belief-desire-intention (BDI) architectures [122] currently do not
accommodate this kind of interactive (i.e., truly multi-agent) phenomena. Since
beliefs and knowledge are, from a logical point of view, better understood than
desires, we suggest to start by focusing on the former, and that is what we do in

1In this chapter we talk interchangeably about higher-order knowledge and higher-order belief.
There are philosophical subtleties at stake here, but they are not relevant for our purposes, for
which it is sufficient to stipulate that knowledge refers to true belief. Both have in common the
higher-order aspect, and that is what is crucial. We use the adjective epistemic to mean “of (or
about) beliefs (or knowledge)”.

77

78 Chapter 4. Epistemic reasoning in computer games

the rest of this chapter.

4.1.1 Motivation

Human beings are, on the whole, social animals: most of us derive much interest,
enjoyment and drama from interacting with other people. One important feature
recognized by psychologists is the so-called theory of mind [119], that is, the
ability to represent and to empathize with the mental states and attitudes of those
around us. A recent and popular theory by Baron-Cohen [15] argues that the
absence of any theory of mind is what causes such obstacles for people affected
with autism spectrum disorders to interact profitably with those around them.

The standard empirical test for a theory of mind, which develops in most
people around the age of four, is a test of the subject’s ability to represent and
“correctly” form higher-order beliefs, that is, to model other people as having
their own model of the world in their head, which in turn contains a model of
the subject’s model. This recursive notion can seem surprising, even paradoxical,
however the fact is that most people’s behavior is informed by some understanding
of higher-order beliefs.

Much of the enjoyment of many multiplayer games actually depends on dealing
with, and possibly exploiting, higher-order beliefs or knowledge. Cluedo, Diplo-
macy and Poker are examples of such knowledge games, as van Ditmarsch [49] has
called them; each of them illustrates in a different way that it can be enjoyable to
reason about the beliefs of others, particularly about the beliefs that they might
have about your beliefs, or others’ beliefs. If these games were to be played against
artificial opponents, with the aim that they be enjoyable, a very natural approach
would be to create an opponent who models the player, including the beliefs the
player has about the opponent, etc.

So it can be on the one hand “natural”, and on the other hand enjoyable, to
reason about higher-order knowledge. This is known within the logic community,
in fact van Ditmarsch [49] has given detailed formalizations of the epistemic mech-
anisms involved in real-world games of knowledge and suspicion such as Cluedo.
However, so far there has not been much focus on putting such formalizations to
work to support a computer simulation of a virtual game world, and in actual
computer games these mechanisms have been ignored. We therefore propose to
take this line of reasoning seriously, and argue that providing some facility for
higher-order reasoning to NPCs would enhance the aim that many games have:
being enjoyable simulations of human interaction.

The kinds of interactive situations that depend on higher-order knowledge
vary greatly, from trivial to subtle. The following example is so trivial in a normal
social context that it almost seems not worth mentioning: if I know that you
know something, I won’t tell you about it—unless I want you to know that I know.
Translated into a computer game context, if Ann knows that Bob knows that
the enemy is attacking Bob’s base, then she will not tell him that the enemy is

4.2. Programming with knowledge 79

attacking his base, unless she wants him to know that she knows (and is coming
to support him). So even this seemingly trivial example illustrates the importance
of higher-order reasoning in social interaction.

Increasingly, networked computers and game consoles have led to a rise in
the number and scale of multiplayer games. However, we do not believe that
this will diminish the need for social artificial intelligence in games, because in a
reasonably deep virtual world, there are always “boring” roles, such as quest-givers,
merchants, henchmen, and thugs. These are a few of the roles we have in mind
when advocating the use of some simple higher-order knowledge reasoning.

We return to some more interesting examples and potential applications later.
For now, we hope it is intuitively clear that a virtual world could be enhanced by
keeping track of what its virtual inhabitants (could be said to) believe or know,
and to provide a programming interface to access these beliefs and knowledge. A
programmer can then use these high-level notions in order to program (in this
context also called to script) behaviors of NPCs, or other relevant parts of the
virtual world.

4.1.2 Plan of the chapter

This chapter is built up as follows. In the next Section 4.2, we review our basic
approach to realizing these ideas. Then, in Section 4.3, we survey both actual
computer games and related research with respect to higher-order reasoning and
come to the conclusion that it is largely absent. We then give examples for possible
applications of our ideas in Section 4.4, and look at a prototype implementation
for one of them more closely in Section 4.5. Finally, Section 4.6 concludes.

4.2 Programming with knowledge

Our approach, proposed in [155], is based around epistemic logic, and since we
have used it in Chapter 3 in this dissertation, we recall it here only briefly.

The approach, which we call explicit knowledge programming, involves making
epistemic formulas available at the level of a programming language, for example
as conditions in if clauses. These statements are evaluated by a knowledge module
that processes those events in the world that affect the knowledge state of its
inhabitants. It may be implemented in the programming language itself, and thus
does not necessarily increase its expressivity. However, the modular approach
increases succinctness and flexibility, makes it possible to develop and verify the
epistemic processing of the program separately, and essentially gives the NPC
scripter a “black box”, so that he can directly use the familiar notions of belief
or knowledge in his program. At the same time, the knowledge module is firmly
grounded in a theoretical framework which gives a formal meaning to these notions.

80 Chapter 4. Epistemic reasoning in computer games

It is important to note that we are not proposing to make available every
formula that can be built from any arbitrary combination of atoms, connectives and
knowledge operators. Rather, for any given concrete application, a certain subclass
of formulas needs to be identified as relevant. In this way, the implementation can
remain tractable and meet efficiency requirements, which are particularly strict in
the case of real-time applications such as computer games.

In the case of simulating human agents that we are interested in here, the
limits to human cognitive faculties should be taken into account. So for example,
it presumably would not make sense to allow as queries to the knowledge module
epistemic formulas involving complex iterations, like: “Ann believes that Bob
believes that Carl doesn’t believe that Ann believes that Derek believes that it’s
raining” (see Section 4.6 for some more discussion on this). In addition to these
human limitations, in the case of NPCs like those mentioned above, for example,
a merchant might have a very restricted set of “interests”, and only be interested
in very specific kinds of knowledge. In any case, the specification of a knowledge
module ultimately includes a description of the epistemic formulas that it can
evaluate.

In [155] and in Chapter 3 in this dissertation, we were dealing with distributed
systems, where a knowledge module is instantiated for each process. We showed
the implementation to be sound with respect to the formal notion of knowledge
ultimately defined on the level of the underlying process calculus, CSP. Even
with the simple implementations we obtained, it was desirable to show that it
is in some sense “correct”. To this end, we used an epistemic logic formalism
based on Kripke semantics to model the occurring situations. The correctness of
the implementation then proceeds in two steps, which can roughly be stated as
follows:

• Argue that a particular model represents faithfully the intuitive situation
which we intended to capture.

• Prove that knowledge formulas are evaluated in the same way by process a
after the sequence of events σ as they are by agent a in the model after the
same sequence of events.

While this idea of formal grounding remains the same, in this chapter we are
dealing with a centralized framework. Since in a computer game there is a central
place where the game world is simulated (and where other models such as a physics
engine are already present), only one epistemic model needs to be maintained,
even in a scenario with several agents. In this sense, this setting is closer in
spirit to the typical viewpoint of epistemic logic, which is a central modeler’s
viewpoint. Rather than maintaining a separate model inside each agent, our
central model is fed with the events occurring in the game world, and queried by
the agents’ programs. Note, however, that this design decision is not fundamental,
since central models and internal models of individual agents correspond very

4.3. Related work 81

closely to each other [11]. For more discussion on related issues see Section 4.6
and Chapter 7.

One may question in how far a Kripke model formalism as an intermediate
step is justified. However, we know of no more philosophically grounded and
mathematically robust formalism with which to work in the context of reasoning
about higher-order knowledge. (In order to deal with various phenomena like so-
called explicit belief, or inconsistent beliefs, many other models have been proposed,
but these are all essentially refinements or variations of Kripke models—see, e.g.,
the survey by Meyer and van der Hoek [100, Sections 2.4 to 2.13].)

4.3 Related work

We briefly review the current state of the art with respect to epistemic modeling
in computer games, both in existing games and in (academic) research.

4.3.1 Existing games

The state of the art in commercial computer games is not easy to judge, since
computer game companies are not very interested in publishing the details of
their artificial intelligence (AI) implementations. So if one does not want to
rely on enthusiastic slogans from marketing departments, then the best sources
of information about computer game AI are private web pages like the one by
Rabin [120], where observations and analyses from playing, interview quotations,
and possibly the website creator’s own knowledge and experience as a game AI
programmer are carefully collected and presented. For an extensive overview of
online resources, see the compilation by Reynolds [125].

From these resources it becomes evident that epistemic reasoning is definitely
not in the focus of existing computer game AI, and we did not find any mention
of higher-order reasoning. For example, the highly acclaimed Radiant AI engine is
used in the RPG The Elder Scrolls: OblivionTM by Bethesda Softworks [23] to make
the game more lifelike. The following quotation is taken from an interview [153]
during the testing phase of the game AI:

One [non-player] character was given [by the testers] a rake and the
goal “rake leaves”; another was given a broom and the goal “sweep
paths,” and this worked smoothly. Then they swapped the items, so
that the raker was given a broom and the sweeper was given the rake.
In the end, one of them killed the other so he could get the proper
item.

Obviously, the characters did not mutually know their interests, or they could not
make use of that knowledge. Without seeing the implementation, it is difficult
to make suggestions as to how exactly one might build in a knowledge module,

82 Chapter 4. Epistemic reasoning in computer games

and, as mentioned in the beginning, a whole architecture incorporating beliefs and
desires is formally involved; however, the Radiant AI engine does seem to have
some kind of goal-oriented behavior rules,2 and it is very possible that epistemic
statements would find a natural place in them.

To us it seems natural that one would use a logic-based approach in order
to effectuate epistemic reasoning. Yet references in these directions are scarce.
Mäkelä [96] has suggested to use logic for NPC scripting; however, higher-order
epistemic reasoning is not considered, and that article is purely programmatic
and apparently the ideas have not been pursued further.

The clearest statement promoting the use of epistemic reasoning comes from
the famous IF writer Emily Short [140]:

Abstract Knowledge. One of the artificial abilities we might like to give
our NPCs, aside from the ability to wander around a map intelligently
and carry out complex goals, is the ability to understand what they
are told: to keep track of what items of knowledge they have so far, use
them to change their plans and goals, and even draw logical inferences
from what they’ve learned.

It is not clear whether this refers to higher-order knowledge, or whether “abstract”
is just meant to imply that the implementation should be generic and encapsulated
in something like a knowledge module; in any case, the currently existing IF
implementation of such ideas by Eve [58] is restricted to pure facts and does not
include any reference to the possibility of higher-order knowledge.

An interesting example of a game devoted to small-scale social interaction is
Façade by Mateas and Stern [99], a dialog-based graphical version of interactive
fiction with a detailed plot that revolves around an evening in a small group of
friends. Façade is grounded in academic research, and its authors use intricate
techniques to interactively generate the plot, including a behavior language [98].
That language allows to specify the behavior of the NPCs in a very flexible and
general way, but does not include facilities for explicitly dealing with knowledge
states. We do not suggest that this particular game would necessarily be improved
if our approach of explicit knowledge programming were adopted, but we do think
that it would make a natural addition to this language, and one that should make
the programmer’s job more straightforward.

4.3.2 Research

Again, where knowledge is considered, the concern seems to be exclusively domain
knowledge, or knowledge about facts in the game world, as in work by Ponsen

2Note, however, that the retail version of the game may be less sophisticated; as one referee
pointed out, “the version of Radiant AI that ended up in the game certainly does not have the
capabilities that Bethesda aimed for.”

4.3. Related work 83

et al. [118] and Spronck et al. [143]. A more general approach of using agent
programming languages to script NPCs (e.g.,by Leite and Soares [91]) inherits
the epistemic reasoning facilities of such languages—which tend to focus on facts.
The closest in spirit to higher-order modeling are attempts to detect the general
attitude of the human player (for example, aggressive or cautious) and to adjust
the game AI accordingly. But we could find no references to explicit higher-order
epistemic modeling.

The ScriptEase system by Cutumisu et al. [45] is an academic approach to
NPC scripting, which was motivated by the insight that the scripting process
needs to be simplified. It provides a graphical interface for generating behaviors
of characters in a commercial RPG. However, knowledge statements to steer the
behavior are not considered.

An interesting approach, described by da Silva and Vasconcelos [141], uses
deontic logic to specify NPC behavior in a rule-based fashion. While epistemic
issues are not considered there, a fusion of these two aspects could provide a highly
suitable system for scripting believable social agents.

In a similar way, the work by Magnusson and Doherty [95] is a highly promising
existing platform for implementing epistemic mechanisms. It consists in a virtual
game world that is based on a generic theorem prover for a logic of time and
action. Incorporating rules for epistemic reasoning into this framework seems like
a very natural extension.

Some literature on higher-order reasoning in multi-agent systems that does
not focus on computer games is also very relevant. Dragoni et al. [53] study the
specific problem of agent communication, in which agents weigh costs against
expected benefit of communication. The authors point out the importance of
using higher-order reasoning, in the form of beliefs about beliefs, when agents
make such assessments. Their particular interest is in formal representation of
belief abduction. We do not consider abductive reasoning here, but we recognize
that it is also important in our settings.

We also note that higher-order reasoning is discussed by Yin et al. [160]
in the context of a Petri Net method for designing “intelligent team training
systems”. The authors suggest that using Petri Nets can help to overcome
tractability issues in epistemic reasoning. However, they note that communication,
an important ingredient in the kind of social interaction we wish to simulate, “is
more complicated than Petri Nets can represent”. We do not consider the Petri
Net formalism further, but if progress is made in this area it could be of relevance.

Several rich platforms for multi-agent programming, including BDI architec-
tures, have been proposed (see, e.g., the recent survey by Bordini et al. [27]).
While these often do provide for explicit knowledge operators, they are never
higher-order.3 So these platforms allow for the use of conditions of the form “If
the agent knows that the cup is on the table, then . . . ”, but not “If the agent

3However, see [34] for a recent step towards higher-order modeling in an agent language.

84 Chapter 4. Epistemic reasoning in computer games

knows that the other agent knows that . . . ”.
One AI framework that does allow, and is explicitly designed for, handling

higher-order beliefs is the formalism of Interactive Partially Observable Markov
Decision Processes (I-POMDPs) by Gmytrasiewicz and Doshi [68]. It implements
hierarchies of nested probabilistic beliefs of agents about the world and about
each other,4 including Bayesian updating of such belief hierarchies. Since we here
focus on symbolic frameworks, we do not pursue this approach further.

4.4 Potential applications

In the following we illustrate how our approach could enhance potential or actually
existing computer games.

Knowledge games, as described in Section 4.1.1, are an obvious application area
for explicit knowledge programming, if they are to be implemented in a computer
game version with intelligent computer-controlled opponents. To what extent
a knowledge module here should implement the complete theoretical epistemic
model, depends on performance considerations as well as a good balance to make
the opponents challenging yet not super-human. We do not focus on such games
here.

As mentioned before, RPGs and life simulation games naturally try to simulate
realistic social interaction. Therefore, any real-life social interaction situation
involving knowledge can be viewed as potential application, if one wants to script
the required behavior rules into a virtual world.

For example, in real life the following behaviors might be observed in situations
where Ann would get an advantage from lying to Bob:

• if she knows that he doesn’t know the truth
then she might indeed lie;

• if she knows that he does know the truth
then she usually won’t lie;

• if she doesn’t know whether he knows the truth
then her decision may depend on other circumstances.

4.4.1 Catching the Thief

To be a bit more concrete and give an example set in an actually existing computer
game, we consider Thief: The Dark ProjectTM by Eidos Interactive [56]. This
game involves an interesting special case of “social interaction”: the player is a
thief, and as such, the best tactic most of the time involves remaining undetected
and avoiding confrontation.

4The framework is similar to (a finite version of) type spaces known from game theory.

4.4. Potential applications 85

if B(g, t_present):

if B(g, not B(t, g_present)):

g.ambush(t)

elif B(g, not B(t, B(g, t_present))):

g.attack_or_alarm_inconspicuously ()

else:

if not alarm_active:

g.alarm_quickly ()

else:

g.attack(t)

Listing 4.1: Pseudo-code for a guard in Thief: The Dark Project. B(x,y) stands
for “x believes y”, g stands for guard and t for thief.

While there are more obvious and ubiquitous applications for higher-order
reasoning generally in RPGs and life simulation games, in this somewhat unusual
social interaction setting it is certainly crucial to keep track of who knows (or
believes) what about whose presence, both for the player and for plausible and
challenging NPCs. Essentially, the thief player exploits the, possibly false, beliefs
of the guard regarding the player’s presence. Due to the simplicity of the guard’s
control program in the commercial game, the guard’s beliefs are in practice
perceived as either believing that the thief is, or may be, near (having seen him
or become suspicious in some other way), or not.

We conjecture that the entertainment value of a typical Thief scenario would
be enhanced by a guard that acts not only depending on his own beliefs about
the facts in the world, but also depending on what he believes the thief believes,
including what he believes the thief believes he believes.

Imagine an NPC that embodies a guard, hostile to the thief. Among his
behavior rules could be the following: If the guard believes that the thief is
present, but the guard also believes that the thief does not believe that the guard
is present, then the guard tries to ambush the thief. Under other conditions, the
guard may instead act inconspicuously and attack by surprise, or, if all else fails,
attack the thief openly. The pseudo-code in Listing 4.1 specifies several such rules,
depending on higher-order beliefs. How such beliefs can come about may vary: for
example, by causing or hearing noise, seeing the other one from behind, or facing
each other. When scripting these behaviors, the programmer need not worry
about this—it is the job of the knowledge module to take care of maintaining and
updating the knowledge states, taking into account whichever events occur in the
virtual world.

Once it is established exactly what kinds of epistemic formulas need to be used,
and what kinds of events can take place in the virtual world, one can go about
designing and implementing the knowledge module for the specific application in

86 Chapter 4. Epistemic reasoning in computer games

question. It depends on the class of formulas and on the events how straightforward
this implementation will be; but it may well turn out to be very efficient.

In Section 4.5 we return to this scenario in some more detail and describe a
simple example implementation of a corresponding knowledge module.

4.4.2 Adding credence to Assassin’s Creed

Assassin’s CreedTM by Ubisoft [146] presents another crisp case for higher-order
knowledge or beliefs. Altair (the player character) frequently has the optional
objective to Save a Citizen. To do this, Altair kills the guards that are accosting
the citizen. Vengeful guards nearby comment on the dead allies, which notifies
Altair that they know a murder has occurred. Because Altair is present, the
guards infallibly assume that Altair is the killer.

For higher-order reasoning, suppose that a guard partitions the crowd into
bystanders and suspects by observing who is armed. The guard observes speech
and body language of each bystander (technically voice-over callouts and animation
states) to infer beliefs of the bystander. As soon as the guard observes a bystander
who is responding to a murderer, the guard assumes the bystander’s target is the
killer. Observing the body language of the suspect (possibly Altair), the guard
may be able to infer whether the suspect believes that the guard is onto him.

Listing 4.2 shows pseudo-code of this higher-order analysis. Admittedly, such
a proposal would require further design, but the example illustrates reasoning yet
somewhat gullible guards, which a crafty assassin may delight in deceiving.

if B(g, murder_happened):

suspects = { x | B(g, is_armed(x)) }

bystanders = { x | B(g, not is_armed(x)) }

for b in bystanders:

if B(g, B(b, murder_happened)):

for s in suspects:

if B(g, B(b, is_killer(s))):

if B(g, B(s, B(g, is_killer(s)))):

g.shout(is_killer(s))

g.attack(s)

else:

g.whisper(is_killer(s))

g.ambush(s)

break

Listing 4.2: Pseudo-code for Assassin’s Creed. Again, B(x,y) stands for “x
believes y” and g stands for guard.

4.5. Implementation study for Thief 87

4.5 Implementation study for Thief

In this section, we substantiate our discussion from Section 4.4.1 by describing
an actual implementation of the knowledge module used in the pseudo-code in
Listing 4.1.

4.5.1 Knowledge module

We consider various ways in which relevant beliefs can come about: by causing or
hearing noise, seeing the other one from behind, or facing each other.

We want to emphasize again that the NPC scripter need not worry about the
details, he simply uses the familiar concept of belief in order to express the rules on
a high level. It is the job of the knowledge module to take care of maintaining and
updating the agents’ knowledge,5 taking into account whichever events occur in
the virtual world. As an agent’s control script is executed, the knowledge module
is queried and determines the truth value of any given formula.

We assume that the scene starts with thief and guard present and no events
having occurred, and that agents cannot enter or leave. Put differently, the guard
will not leave the scenario, and if the player does, the scenario ends. Note that this
assumption is not inherent in our approach and serves mostly to avoid unnecessary
complications. In the context of a computer game it is not too unnatural: game
worlds often are simulated per scene, and a scene starts and ends whenever the
player enters or leaves.

In our scenario, we consider the following events:

• bt, bg: The thief, respectively the guard, sees the other one from behind.

• nt, ng: The thief, respectively the guard, makes some noise. We limit this
to “relevant” events in the sense that, e.g., nt can only occur if the thief is
present.

• f : Thief and guard see each other face to face.

The epistemic effects of these events intuitively are as follows:

• bt: The thief believes that the guard is present; the guard never assumes
this event to occur, so this event does not affect the guard’s beliefs.

• nt: The guard believes a thief is present; the thief believes that, if a guard
is present, that guard believes that the thief is present.

• f : Thief and guard commonly believe that both are present.

5In our case beliefs rather than knowledge, but we stick with the name “knowledge module”.

88 Chapter 4. Epistemic reasoning in computer games

The effects of bg and ng are analogous, and all these effects are commonly believed.
For now, we assume that events are not forgotten. Note that a consequence of all
this is that after both ng and nt have occurred, guard and thief commonly believe
that both are present.

To model this situation formally, we use a modal logic model with history-based
semantics [116, 60]. We introduce two propositions, pt and pg, with the reading
that the thief, respectively the guard, is present. A valuation is a function that
assigns either true or false to each of these propositions, and can be denoted as a
set V containing those propositions that are to be assigned true.

The set of events, as above, is E = {bt, bg, nt, ng, f}. A history H is a
sequence of events. For a history H, by Ag(H) we denote the set of agents
involved in the events in H, i.e., Ag(H) ⊆ {t, g}, where naturally both t and
g are involved in any of {bt, bg, f}, and only t (respectively g) is involved in nt

(respectively ng). We also write H−e for any e ∈ E to denote the history obtained
by removing all occurrences of e from H. The empty history is denoted by ε.

A pair (V,H) is a state (or possible world) if and only if Ag(H) ⊆ V . So
the described initial situation is represented by the state ({pt, pg}, ε).

We now define accessibility relations 99Kt and 99Kg between states in our
history-based model. Intuitively, (V,H) 99Kt (V ′, H ′) means that in state (V,H),
t considers it possible that the state is (V ′, H ′). According to the intuitions
described above, we define these relations as follows:

(V,H) 99Kt (V ′, H ′) iff

{
t 6∈ V ′ and H ′ − ng = ε if t 6∈ V
t ∈ V ′ and H ′ = H − bg if t ∈ V .

Note that in the first of these two cases, ng is the only event which can occur in
H ′, so the condition boils down to saying that H ′ may be any sequence of ng. The
second case captures the intuition that t does not assume the possibility that he
is being seen from behind. The relation 99Kg is defined analogously.

We consider the doxastic language consisting of formulas of the following form:

ϕ ::= pt | pg | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Btϕ | Bgϕ.

The semantics is standard relational modal semantics, see [24]. Note that here we
do not impose further restrictions on the doxastic language, since our scenario is
simple enough for the knowledge module to evaluate all formulas efficiently.

If we merge all doxastically equivalent states, that is, all states that make the
same formulas true, our model can be depicted as in Figure 4.1.6

Note that, in contrast to our starting point from history-based semantics, this
representation is static in the sense that it does not grow (or shrink) over time,
as the world evolves and events occur. It is straightforwardly represented in any

6This is the so-called bisimulation contraction of our original model. Note that in our case, if
(V,H) and (V ′,H ′) are doxastically equivalent, so are (V,He) and (V ′,H ′e) for any event e.

4.5. Implementation study for Thief 89

0

1 : bg

2 : bt

3 : nt(bg)

4 : btbg

5 : ng(bt)

6 : btnt(bg)

7 : bgng(bt)

8 : f(bt)(bg)(nt)(ng)

9

10 : nt

11

12 : ng

13
bt

bg

nt

ng

bt

nt

ng

bg

nt

ng

bt ng

nt

ng

bg
nt

ng

nt

nt

ng

t
t

t

t

t

tt

t

t

g
g

g

g

g

gg

g

g

Figure 4.1: Representation of our doxastic model. The numbered nodes represent
states and are annotated with one of the equivalent possibilities of what events
have (optionally) taken place. Boxed states have V = {pt, pg}, a missing left
corner means pg 6∈ V , and a missing right corner means pt 6∈ V . State 0 represents
the initial situation. Solid arrows with black labels show event transitions, dashed
arrows and edges (the latter corresponding to bidirectional arrows) with gray
labels show accessibility relations. The following are omitted for clarity: reflexive
transitions for each optional event at each state; f -transitions from each boxed
state to 8; and reflexive accessibilities, except for g in states 2 and 6 and for t in
states 1 and 7.

programming language (our implementation uses Python), and the knowledge
module simply needs to keep track of which one is the current state.

Finally, note that while agents can have false beliefs, there is no need for
elaborate belief revision mechanisms in our simple scenario, since there is no way
for the agents to notice their false beliefs.

4.5.2 Expected impact on gameplay

In the original game, a common tactic for the thief is to shoot an arrow against a
wall, in order to cause a noise which will attract the guard (who has a behavior
rule along the lines of “if I hear a noise, I go there and look around”). It is
questionable how innocent such a noise is, and an actually reasoning guard would

90 Chapter 4. Epistemic reasoning in computer games

probably rather conclude that it is high time to ring the alarm instead of sniffing
around in the bushes. While this was likely a conscious design decision to give
the player an easy and obvious way to outwit that guard, we think that our
belief-based approach provides a more flexible solution.

Instead of rigidly connecting events to resulting behaviors, beliefs in our
approach act as an abstraction layer. The behaviors are defined depending on the
beliefs, and these beliefs are modeled independently.

This approach removes from the scripter the burden of having to decide
exactly which events cause what, and facilitates adjustments and more complex
dependencies. For example, in our scenario a more clearly innocent noise such
as breaking a twig will induce the guard to believe that there is a thief (who
accidentally caused that noise), which will then trigger the behavior rule that says
to ambush him.

We expect that our modest belief engine for the scenario we have described
encourages the original game’s tactics of misleading a guard. It also encourages
new tactics: The thief may play stupid and let himself be seen from behind by
the guard, who then again thinks he can do something sneakier than ringing the
alarm.

We also expect that our scenario encourages trepidation. A guard who has
actually noticed the thief without being noticed himself will act inconspicuously
while preparing a counter-attack. The blackjack is the weapon for subduing, which
has a short reach. A guard that pretends to not have noticed, will swing around
and stab with his sword first before the player’s blackjack is in range.

Overall, we expect that the player enjoyment and interest will increase.
Whether or not these expectations prove true remains to be seen in an experimental
evaluation, which we are planning to conduct in the future.

4.6 Conclusions

We have described a modular approach to adding (higher-order) knowledge opera-
tors to scripting languages for NPCs in various kinds of games. We have argued
and given examples to show that this systematic approach would help script
plausible or entertaining simulations that involve social interaction, where that
last term has a broad interpretation. We have surveyed existing work, in industry
and in academic research, and found that higher-order knowledge has not so far
been discussed or implemented in the context of computer games. Finally, we have
presented a simple implementation for one of the described example scenarios.

4.6.1 Explicit knowledge programming

The knowledge module we presented implements a centralized version of the
explicit knowledge programming approach we proposed in [155] and used in

4.6. Conclusions 91

Chapter 3. The fact that it is centralized makes it simpler from the outset than a
truly distributed setting: In a distributed setting, an agent would have to deduce
locally whether a given formula follows from his observations, that is, whether it
holds in all models which are compatible with the local observation and might thus
reflect the actual situation; in our centralized setting, the game engine has the
model of the actual situation available and only needs to check whether it satisfies
the given formula. This together with the simplicity of our scenario removes the
necessity of finding restrictions of the doxastic language or other optimizations:
about any conceivable model and implementation would be trivially tractable.

However, in all its simplicity our scenario still shows the advantages of the
modular approach introducing knowledge or beliefs as an abstraction layer and
separating the epistemic model from the agent’s control program. The knowledge
module can be refined independently to cope with new events or extensions, such
as probabilistic beliefs, with no need to change the behavior scripts. One extension
that is easy to incorporate into our knowledge module is decaying events, or
unstable states: If the guard makes some noise like whistling, he might have
forgotten about that when he 10 minutes later sees the thief from behind, and
therefore not conclude that the thief believes the guard is present. This could be
modeled by a spontaneous transition from state 5 to 2 after some time.

While one could implement some ad-hoc tracking of events in the agent control
program, this is error-prone and difficult to maintain, as already in our small test
scenario the exact dependencies on events are getting confusing: What does “if
nt or bg have occurred, but neither ng nor f have, then. . . ” mean? This quickly
gets even more confusing in larger scenarios—our approach certainly scales better
conceptually.

A critical issue with respect to scaling, however, is the possible explosion of
the number of states in the model. Mechanisms to generate the model only locally
as needed, and strategies for expanding, shrinking, or swapping out unused parts
of the model may be necessary. Techniques from the area of model checking [41]
will be useful for compactly representing and efficiently processing models.

4.6.2 Alternatives and extensions

The advantages of the representation we have used here is that it is straight-
forwardly stored using very simple data structures, and that it is static and
pre-computed, so there is no expense at run-time for maintaining the model.

A very interesting alternative is building on Dynamic Epistemic Logic (DEL,
see [52] for a recent textbook). Instead of one model representing all possible ways
in which the world may evolve, one would start with a model representing only
the initial situation. Events are represented as so-called update models, which are
applied to the current model as the events occur, transforming it to reflect the
resulting situation. See Chapter 7 for some discussion on this approach.

92 Chapter 4. Epistemic reasoning in computer games

An interesting suggestion that would also simplify reasoning is to consider so-
called interaction axioms between the belief modalities of the players. For example,
Lomuscio and Ryan [93] show that (2WD) is valid on two-player hypercubes, i.e.,
models that are based on the Cartesian product of an interpreted system’s state
space:

♦1�2p =⇒ �2♦1p. (2WD)

This can be read as “if agent 1 considers it possible that agent 2 knows p, then
agent 2 knows that agent 1 considers p possible.”. In a different context, van
Ditmarsch and Labuschagne [51] consider interaction axioms that characterize
different theories of mind, including “autistic” and “deranged”. It is an interesting
question whether interaction axioms might exist that capture agents that are fun
to interact with.

Another point worth noting is that we do not distinguish between knowledge
and true belief. There are many philosophical discussions concerning differences
between these two notions, and formally they are generally taken to be different
as well. Beliefs should really be revisable, for example, which is something we
have not considered here. A possible future direction of research would be to
use models and languages that take both belief and knowledge into account, for
example along the lines of Shoham and Leyton-Brown [139, Chapter 13]. Some
actions would then generate knowledge, while some would (only) generate belief.
This corresponds to the distinction van Benthem [19] draws between “hard” and
“soft” information. For example, if you see something then you might be said to
know it, but if somebody you do not entirely trust tells you something then you
might only believe it.

Finally, it may be desirable to get rid of manually designed behavior rules
altogether, and let the agents act purely based on their beliefs and some abstractly
defined goals. A very long-term vision is then to have an artificial guard that by
himself adopts behaviors similar to the ones we described, or to the tactics we
conjectured for the human thief in Section 4.5.2.

4.6.3 Cognitive considerations

Rather than working out “bottom-up” what class of epistemic statements are
needed for a certain setting or behavior, one may consider a more generic “top-
down” approach. Given that we want to simulate human social interaction, the
general question is: What class of formulas can humans be said to evaluate in
everyday life, consciously or not?

Some results from experimental game theory about levels of strategic thinking,
e.g., by Camerer [36], can be interpreted as being relevant to this question.
However, these experiments do not focus on everyday social interaction. For
example, the Beauty Contest game mentioned there might invoke conscious and
explicit reasoning about the other agents, while we believe that in real-life social

4.6. Conclusions 93

interaction, through years of experience, the requisite higher-order reasoning
processes may also occur on a more intuitive and reflexive level.

Furthermore, the experimental designs are in general not specifically concerned
with knowledge, so that at best the results can give us hints about the nesting
depth of knowledge operators. Clearly other criteria might define the class of
knowledge formulas that are of relevance in social interactions.

From the real-life example in the beginning of Section 4.4 it is clear that
formulas like

Ka¬Kbp

KaKbp

¬(KaKbp ∨Ka¬Kbp)

matter. However, that does not necessarily hold for all formulas with knowledge
nesting depth 2. Also, human reasoning capabilities may not be monotonic with
respect to this complexity measure. For example, for a special concept like common
knowledge, which in theory involves infinite depth, we may want to assume that
humans are able to cope with it, while this does not hold for “intermediate” depths
like 10000.

The main issue thus remains: How can we define this class of relevant formulas?
Results from experiments by Verbrugge and Mol [147] suggest that subjects

use first-order theory of mind (beliefs about others’ beliefs), but not “all kinds
of reasoning possible and useful in this context”. This supports the claim that
the depth of knowledge operators is not the only relevant criterion. It is further
reported that some subjects use second-order theory of mind, which corresponds
to third-order epistemic formulas.

While it is important to look at such questions in actual experiments, thought
experiments or observations from real life can also make their contribution. Work
by Parikh [112] is an excellent source for enlightening examples examining what
kinds of reasoning processes are going on in real life. They can be convincing
enough to remove the need for abstract and reproducible lab conditions, for
the benefit of being set in more natural environments, where human reasoning
capabilities possibly profit from experience and training in specific social situations.

4.6.4 Final words

As mentioned earlier, in computer games the goal of incorporating epistemic
reasoning may not necessarily be verisimilitude, because their ultimate objective
is enjoyment and entertainment. For analogy, car racing games such as Burnout
ParadiseTM by Electronic Arts Inc. [57] obviously employ rigid body dynamics for
traction and collision in a way that veers from verisimilitude and toward excitement.
Game physics engines have evolved from algorithms originally developed for
simulating physical bodies into frameworks for animating virtual toys. We hope

94 Chapter 4. Epistemic reasoning in computer games

that an epistemics engine comprised of algorithms originally developed to simulate
beliefs about the beliefs of other agents may evolve into a toolkit for cleverly
(mis)informing the minds of virtual playmates.

Chapter 5

Coalition formation: A generic approach

5.1 Introduction

5.1.1 Approach

Coalition formation has been a research topic of continuing interest in the area
of cooperative game theory. It has been analyzed from several points of view,
starting with Aumann and Drèze [13], who considered the static situation of
coalitional games in the presence of a given coalition structure (i.e., a partition of
the players).

In this chapter we consider the perennial question “how do coalitions form?”
by proposing a simple answer: “by means of merges and splits”. This brings us to
the study of a natural problem, namely under what assumptions the outcomes of
arbitrary sequences of merges and splits are unique.

These considerations yield an abstract approach to coalition formation that
focuses on partial comparison relations between partitions of a group of players
and simple merge and split rules. These rules transform partitions of a group of
players under the condition that the resulting partition is preferred. By identifying
conditions under which every iteration of these rules yields a unique partition we
are brought to a natural notion of a stable partition.

This approach is parametrized by a generic comparison relation. The obtained
results depend only on a few simple properties, namely irreflexivity, transitivity
and monotonicity, and do not require any specific model of coalitional games.

In the case of coalitional TU-games (we recall the definition in Section 5.3), the
comparison relations induced by various well-known orders on sequences of reals,
such as leximin or Nash order, satisfy the required properties. As a consequence
our results apply to the resulting comparison relations and coalitional TU-games.
We also explain how our results apply to hedonic games (games in which each
player has a preference relation on the sets of players that include him) and
exchange economy games.

95

96 Chapter 5. Coalition formation: A generic approach

This approach to coalition formation is indirectly inspired by the theory of
abstract reduction systems (ARS, see, e.g., [145]), one of the aims of which is a
study of conditions that guarantee a unique outcome of rule iterations. Apt [6]
exemplified another benefit of relying on ARS by using a specific result, called
Newman’s Lemma, to provide uniform proofs of order independence for various
strategy elimination procedures for finite strategic games.

5.1.2 Related work

Because of this different starting point underpinning our approach, it is difficult
to compare it to the vast literature on the subject of coalition formation. Still, a
number of papers should be mentioned even though their results have no immediate
bearing on ours.

In particular, rules that modify coalitions are considered by Yi [159] in the
presence of externalities and by Ray and Vohra [124] in the presence of binding
agreements. In both papers two-stage games are analyzed. In the first stage
coalitions form and in the second stage the players engage in a non-cooperative
game given the emerged coalition structure. In this context the question of stability
of the coalition structure is then analyzed.

The question of (appropriately defined) stable coalition structures often focused
on hedonic games. Bogomolnaia and Jackson [26] considered four forms of stability
in such games: core, Nash, individual and contractually individual stability. Each
alternative captures the idea that no player, respectively, no group of players has
an incentive to change the existing coalition structure. The problem of existence
of (core, Nash, individually and contractually individually) stable coalitions was
considered in this and other references, for example [142] and [35].

Recently, Bloch and Jackson [25] compared various notions of stability and
equilibria in network formation games. These are games in which the players
may be involved in a network relationship that, as a graph, may evolve. Other
interaction structures which players can form were considered by Demange [47],
who studied formation of hierarchies, and by Macho-Stadler et al. [94], who allowed
only bilateral agreements that follow a specific protocol.

Early research on the subject of coalition formation has been discussed by
Greenberg [71]. More recently, various aspects of coalition formation have been
discussed in a collection by Demange and Wooders [48] and in a survey by Marini
[97].

The approach we take here was studied by Apt and Radzik [7] in a limited
setting of coalitional TU-games and the comparison relation induced by the
utilitarian order.

5.2. Comparing and transforming collections 97

5.1.3 Plan of the chapter

This chapter is organized as follows. In Section 5.2, we set the stage by introducing
an abstract comparison relation between partitions of a group of players and
the corresponding merge and split rules that act on such partitions. Then, in
Section 5.3, we discuss a number of natural comparison relations on partitions
within the context of coalitional TU-games and in Section 5.4 by using arbitrary
value functions for such games.

Next, in Section 5.5, we introduce and study a parametrized concept of a
stable partition and in Section 5.6 relate it to the merge and split rules. Finally,
in Section 5.7 we explain how to apply the obtained results to specific coalitional
games, including TU-games, hedonic games and exchange economy games, and in
Section 5.8 we summarize our approach.

5.2 Comparing and transforming collections

Let N = {1, . . . , n} be a fixed set of players called the grand coalition. Non-
empty subsets of N are called coalitions. A collection (in the grand coalition
N) is any family C := {C1, . . . , C`} of mutually disjoint coalitions, and ` is called
its size. If additionally

⋃`
j=1Cj = N , the collection C is called a partition of N .

For C = {C1, . . . , Ck}, we define
⋃
C :=

⋃k
i=1Ci.

In this chapter we are interested in comparing collections. In what follows we
only compare collections A and B that are partitions of the same set, i.e., such
that

⋃
A =

⋃
B. Intuitively, assuming a comparison relation B, ABB means

that the way A partitions K, where K =
⋃
A =

⋃
B, is preferable to the way B

partitions K.
To keep the presentation uniform we only assume that the relation B is

irreflexive, i.e., for no collection A, ABA holds, transitive, i.e., for all collections
A,B,C with

⋃
A =

⋃
B =

⋃
C, ABB and BBC imply ABC, and that

B is monotonic in the following two senses: for all collections A,B,C,D with⋃
A =

⋃
B,

⋃
C =

⋃
D, and

⋃
A ∩

⋃
C = ∅,

ABB and C BD imply A ∪ C BB ∪D, (m1)

and for all collections A,B,C with
⋃
A =

⋃
B and

⋃
A ∩

⋃
C = ∅,

ABB implies A ∪ C BB ∪ C. (m2)

The role of monotonicity will become clear in Section 5.5, though property
(m2) will already be of use in this section.

5.2.1. Definition. By a comparison relation we mean an irreflexive and
transitive relation on collections that satisfies the conditions (m1) and (m2).

98 Chapter 5. Coalition formation: A generic approach

A comparison relation B is used only to compare partitions of the same set
of players. So partitions of different sets of players are incomparable w.r.t. B,
that is, no comparison relation is linear. This leads to a more restricted form of
linearity, defined as follows. We call a comparison relation B semi-linear if for all
collections A,B with

⋃
A =

⋃
B, either ABB or BBA.

In what follows we study coalition formation by focusing on the following two
rules that allow us to transform partitions of the grand coalition:

merge: {T1, . . . , Tk} ∪ P → {
⋃k

j=1 Tj} ∪ P , where {
⋃k

j=1 Tj}B{T1, . . . , Tk}

split: {
⋃k

j=1 Tj} ∪ P → {T1, . . . , Tk} ∪ P , where {T1, . . . , Tk}B{
⋃k

j=1 Tj}

Note that both rules use the B comparison relation “locally”, by focusing on
the coalitions that take part and result from the merge, respectively split. In
this chapter we are interested in finding conditions that guarantee that arbitrary
sequences of these two rules yield the same outcome. So, once these conditions
hold, a specific preferred partition exists such that any initial partition can be
transformed into it by applying the merge and split rules in an arbitrary order.

To start with, note that the termination of the iterations of these two rules is
guaranteed.

5.2.2. Note. Suppose that B is a comparison relation. Then every iteration of
the merge and split rules terminates.

Proof. Every iteration of these two rules produces by (m2) a sequence of partitions
P1, P2, . . . with Pi+1BPi for all i ≥ 1. But the number of different partitions is
finite. So by transitivity and irreflexivity of B such a sequence has to be finite.

The analysis of the conditions guaranteeing the unique outcome of such itera-
tions is now deferred to Section 5.6.

5.3 TU-games

To properly motivate the subsequent considerations and to clarify the status of the
monotonicity conditions we now introduce some natural comparison relations on
collections for coalitional TU-games. A (coalitional) TU-game is a pair (N, v),
where N := {1, . . . , n} and the value function v is a function from the powerset
of N to the set of non-negative reals1 such that v(∅) = 0.

For a coalitional TU-game (N, v) the comparison relations on collections are
induced in a canonic way from the corresponding comparison relations on multisets
of reals by stipulating that for collections A and B,

1The assumption that the values of v are non-negative is non-standard and is needed only to
accomodate for the Nash order, defined below.

5.3. TU-games 99

ABB iff v(A)B v(B), (5.1)

where for a collection A := {A1, . . . , Am}, we let v(A) := {̇v(A1), . . . , v(Am)}̇,
denoting multisets in dotted braces.

So first we introduce the appropriate relations on multisets of non-negative
reals. The corresponding definition of monotonicity for such a relation B is that,
for all multisets a, b, c, d of reals,

aB b and cB d imply a ∪̇ cB b ∪̇ d

and
aB b implies a ∪̇ cB b ∪̇ c,

where ∪̇ denotes multiset union.
Given two sequences (a1, . . . , am) and (b1, . . . , bn) of real numbers, we define

the (extended) lexicographic order on them by putting

(a1, . . . , am) >lex (b1, . . . , bn)

iff
∃i ≤ min(m,n) (ai > bi ∧ ∀j < i aj = bj)

or
∀i ≤ min(m,n) ai = bi ∧m > n.

Note that in this order we compare sequences of possibly different length.
We have, for example, (1, 1, 1, 0) >lex (1, 1, 0) and (1, 1, 0) >lex (1, 1). It is
straightforward to check that it is a linear order.

We assume below that a = {̇a1, . . . , am}̇ and b = {̇b1, . . . , bn}̇, and that a∗ is a
sequence of the elements of a in decreasing order, and define

• the utilitarian order:

a �ut b iff
∑m

i=1 ai >
∑n

j=1 bj,

• the Nash order:

a �Nash b iff
∏m

i=1 ai >
∏n

j=1 bj,

• the leximin order:

a �lex b iff a∗ >lex b
∗.

Moulin [103] considered these relations for sequences of the same length. For
such sequences, we discuss two other natural orders in Section 5.4. The intuition
behind the Nash order is that when the sum

∑m
i=1 ai is fixed, the product

∏m
i=1 ai

is largest when all ais are equal. So in a sense the Nash order favours an equal
distribution.

The above relations are clearly irreflexive and transitive. Additionally the
following holds.

100 Chapter 5. Coalition formation: A generic approach

5.3.1. Note. The above three relations are all monotonic both in sense (m1)
and (m2).

Proof. The only relation for which the claim is not immediate is �lex. We only
prove (m1) for �lex; the remaining proof is analogous.

Let arbitrary multisets of non-negative reals a, b, c, d be given. We define, with
e denoting any sequence or multiset of non-negative reals,

len(e) := the number of elements in e,

µ := (a ∪̇ b ∪̇ c ∪̇ d)∗ with all duplicates removed,

ν(x, e) := the number of occurrences of x in e,

β := 1 +
len(µ)
max
k=1

{ν(µk, a ∪̇ b ∪̇ c ∪̇ d)},

#(e) :=

len(µ)∑
k=1

ν(µk, e) · β−k.

So µ is the sequence of all distinct reals used in a ∪̇ b ∪̇ c ∪̇ d, arranged in a
decreasing order. The function #(·) injectively maps a multiset e to a real number
y in such a way that in the floating point representation of y with base β, the kth
digit after the point equals the number of occurrences of the kth biggest number
µk in e. The base β is chosen in such a way that even if e is the union of some
of the given multisets, the number ν(x, e) of occurrences of x in e never exceeds
β − 1. Therefore, the following sequence of implications holds:

a∗ >lex b
∗ and c∗ >lex d

∗ ⇒ #(a) > #(b) and #(c) > #(d)

⇒ #(a) + #(c) > #(b) + #(d)

⇒ #(a ∪̇ c) > #(b ∪̇ d)
⇒ (a ∪̇ c)∗ >lex (b ∪̇ d)∗

Consequently, the corresponding three relations on collections induced by (5.1)
are all semi-linear comparison relations.

As a natural example of an irreflexive and transitive relation on multisets of
reals that does not satisfy the monotonicity condition (m1) consider �av defined
by

a �av b iff (
∑m

i=1 ai)/m > (
∑n

j=1 bj)/n.

Note that for

a := {̇3}̇, b := {̇2, 2, 2, 2}̇, c := {̇1, 1, 1, 1}̇, d := {̇0}̇

5.4. Individual values 101

we have both a �av b and c �av d but not a ∪̇ c �av b ∪̇ d since {̇3, 1, 1, 1, 1}̇ �av

{̇2, 2, 2, 2, 0}̇ does not hold.
Further, the following natural irreflexive and transitive relations on multisets

of reals do not satisfy the monotonicity condition (m2):

• the elitist order:

a �el b iff max(a) > max(b),

• the egalitarian order:

a �eg b iff min(a) > min(b),

Indeed, we have both {̇2}̇ �el {̇1}̇ and {̇2}̇ �eg {̇1}̇, but neither {̇3, 2}̇ �el {̇3, 2}̇
nor {̇1, 0}̇ �eg {̇1, 0}̇ holds.

5.4 Individual values

In the previous section we defined the comparison relations in the context of
TU-games by comparing the values (yielded by the v function) of whole coalitions.
Alternatively, we could compare payoffs to individual players. The idea is that
in the end, the value secured by a coalition may have to be distributed to its
members, and this final payoff to a player may determine his preferences.

To formalize this approach we need the notion of an individual value function
φ that, given the v function of a TU-game and a coalition A, assigns to each
player i ∈ A a real value φv

i (A). We assume that φ is efficient, i.e., that it exactly
distributes the coalition’s value to its members:∑

i∈A

φv
i (A) = v(A).

For a collection C := {C1, . . . , Ck}, we put

φv(C) := {̇φv
i (A) | A ∈ C, i ∈ A}̇.

Given two collections C = {C1, . . . , Ck} and C ′ = {C ′
1, . . . , C

′
`} with

⋃
C =⋃

C ′, the comparison relations now compare φv(C) and φv(C ′), which are multisets
of |

⋃
C| real numbers, one number for each player. In this way it is guaranteed

that the comparison relations are anonymous in the sense that the names of the
players do not play a role.

In this section, to distinguish between comparison relations defined only by
means of v and those defined using both v and φ, we denote the former by Bv

and the latter by Bφ.
We now examine how these two different approaches for defining comparison

relations relate. To this end, we will clarify when they coincide, i.e., when given a
comparison relation defined in one way, we can also obtain it using the other way,
and when they are unrelated. We begin by formalizing the concept of anonymity.

102 Chapter 5. Coalition formation: A generic approach

5.4.1. Definition. Assume a coalitional TU-game (N, v).

• An individual value function φ is anonymous if for all v, permutations π of
N , i ∈ N , and A ⊆ N

φv
i (A) = φv◦π−1

π(i) (π(A)).

• v is anonymous if for all permutations π of N and A ⊆ N

v(A) = v(π(A)).

Note that for all A we have (v◦π−1)(π(A)) = v(A). Intuitively, φ is anonymous
if it does not depend on the names of the players and v is anonymous if it is
defined only in terms of the cardinality of the argument coalition.

The following simple observation holds.

5.4.2. Note. For any v and φ, if Bv and Bφ both realize the utilitarian order (as
defined in Section 5.3), then for all collections C and C ′, we have φv(C)Bφ φ

v(C ′)
iff v(C)Bv v(C

′).

Proof. Immediate since∑
A∈C

v(A) =
∑
A∈C

∑
i∈A

φv
i (A) =

∑
A∈C,i∈A

φv
i (A).

For other orders discussed in Section 5.3 no relation between Bv and Bφ holds.
In fact, we have the following results.

5.4.3. Theorem. Given v and Bv, it is in general not possible to define an
anonymous individual value function φ along with Bφ such that for all collections
C and C ′, we have φv(C)Bφ φ

v(C ′) iff v(C)Bv v(C
′). This holds even if we

restrict ourselves to anonymous v.

Proof. Consider the following game with N = {1, 2}:

v({1}) := 1 v({2}) := 1 v({1, 2}) := 2,

and take Bv to be the Nash order as defined in Section 5.3. This yields both

v({{1, 2}}) = {̇2}̇Bv {̇1, 1}̇ = v({{1}, {2}})

and
v({{1}, {2}}) 6Bv v({{1, 2}}).

5.4. Individual values 103

However, the symmetry of the game and anonymity of φ forces

φv({{1, 2}}) = {̇1, 1}̇ = φv({{1}, {2}}),

so we have either

φv({{1, 2}})Bφ φ
v({{1}, {2}}) and φv({{1}, {2}})Bφ φ

v({{1, 2}})

or

φv({{1, 2}}) 6Bφ φ
v({{1}, {2}}) and φv({{1}, {2}}) 6Bφ φ

v({{1, 2}}).

5.4.4. Theorem. Given v, φ and Bφ, it is in general not possible to define Bv

such that for all collections C and C ′, we have v(C)Bv v(C
′) iff φv(C)Bφ φ

v(C ′).
This holds even if we restrict ourselves to anonymous v, anonymous φ, and a
Nash or leximin order (as defined in Section 5.3) for Bφ.

Proof. Consider N = {1, . . . , 4} and

v(A) := 6 for all A ⊆ N

φv
i (A) :=

v(A)

|A|
.

Then we have

φv({{1}, {2, 3, 4}}) = {̇6, 2, 2, 2}̇
φv({{1, 2}, {3, 4}}) = {̇3, 3, 3, 3}̇,

which are distinguished by each of the mentioned Bφ, while

v({{1}, {2, 3, 4}}) = v({{1, 2}, {3, 4}}) = {̇6, 6}̇.

These results suggest that the two approaches for defining comparison relations
are fundamentally different and coincide only for the utilitarian order.

In the case of individual values we can introduce natural orders that have no
counterpart for the comparison relations defined only by means of v. The reason
is that for each partition P , φv(P) can be alternatively viewed as a sequence (of
payoffs) of (the same) length n. Such sequences can then be compared using

• the majority order :

(k1, . . . , kn) �m (`1, . . . , `n) iff |{i | ki > `i}| > |{i | `i > ki}|,

104 Chapter 5. Coalition formation: A generic approach

• the Pareto order :

(k1, . . . , kn) �p (`1, . . . , `n) iff

∀i ∈ {1, . . . , n} ki ≥ `i and ∃i ∈ {1, . . . , n} ki > `i.

The relation �m is clearly irreflexive and monotonic both in sense (m1)
and (m2). Unfortunately, it is not transitive. Indeed, we have both (2, 3, 0) �m

(1, 2, 2) and (1, 2, 2) �m (3, 1, 1), but (2, 3, 0) �m (3, 1, 1) does not hold. In
contrast, the relation �p is transitive, irreflexive, monotonic both in sense (m1)
and (m2).

5.5 Stable partitions

We now return to our analysis of partitions. One way to identify conditions
guaranteeing the unique outcome of the iterations of the merge and split rules is
through focusing on the properties of such a unique outcome. This brings us to
the concept of a stable partition.

We follow here the approach of Apt and Radzik [7], although now no notion of
a game is present. The introduced notion is parametrized by means of a defection
function D that assigns to each partition some partitioned subsets of the grand
coalition. Intuitively, given a partition P , the family D(P) consists of all the
collections C := {C1, . . . , C`} whose players can leave the partition P by forming
a new, separate, group of players ∪`

j=1Cj divided according to the collection C.
Two natural defection functions are Dp, which allows formation of all partitions of
the grand coalition, and Dc, which allows formation of all collections in the grand
coalition.

Next, given a collection C and a partition P := {P1, . . . , Pk}, we define

C[P] := {P1 ∩
⋃
C, . . . , Pk ∩

⋃
C} \ {∅}

and call C[P] the collection C in the frame of P . (By removing the empty set
we ensure that C[P] is a collection.) To clarify this concept consider Figure 5.1.
We depict in it a collection C, a partition P , and C in the frame of P (together
with P). Here C consists of four coalitions, while C in the frame of P consists of
three coalitions.

Intuitively, given a subset S of N and a partition C := {C1, . . . , C`} of S, the
collection C offers the players from S the “benefits” resulting from the partition
of S by C. However, if a partition P of N is “in force”, then the players from S
enjoy instead the benefits resulting from the partition of S by C[P], i.e., C in the
frame of P .

To get familiar with the C[P] notation, note that

• if C is a singleton, say C = {T}, then {T}[P] = {P1 ∩ T, . . . , Pk ∩ T} \ {∅},
where P = {P1, . . . , Pk},

5.5. Stable partitions 105

Collection C

Partition P

C[P]

Figure 5.1: A collection C in the frame of a partition P

• if C is a partition of N , then C[P] = P ,

• if C ⊆ P , that is, C consists of some coalitions of P , then C[P] = C.

In general, the following simple observation holds.

5.5.1. Fact. For a collection C and a partition P , C[P] = C iff each element
of C is a subset of a different element of P .

This brings us to the following notion.

5.5.2. Definition. Assume a defection function D and a comparison relation B.
We call a partition P D-stable if C[P]BC for all C ∈ D(P) such that C[P] 6=
C.

The last qualification, that is, C[P] 6= C, requires some explanation. Intu-
itively, this condition indicates that the players only care about the way they are
partitioned. Indeed, if C[P] = C, then the partitions of

⋃
C by means of P and

by means of C coincide and are viewed as equally satisfactory for the players in⋃
C. By disregarding the situations in which C[P] = C, we therefore adopt a

limited viewpoint of cooperation according to which the players in C do not care
about the presence of the players from outside of

⋃
C in their coalitions.

The following observation holds, where we call a partition P of N B-maximal
if for all partitions P ′ of N different from P , P BP ′ holds.

5.5.3. Theorem. A partition of N is Dp-stable iff it is B-maximal. In particular,
a Dp-stable partition of N exists if B is a semi-linear comparison relation.

Proof. Note that if C is a partition of N , then C[P] 6= C is equivalent to the
statement P 6= C, since then C[P] = P . So a partition P of N is Dp-stable iff for
all partitions P ′ 6= P of N , P BP ′ holds.

106 Chapter 5. Coalition formation: A generic approach

In contrast, Dc-stable partitions do not need to exist even if the comparison
relation B is semi-linear.

5.5.4. Example. Consider N = {1, 2, 3} and any semi-linear comparison re-
lation B such that {{1, 2, 3}}B{{1}, {2}, {3}} and {{a}, {b}}B{{a, b}} for all
a, b ∈ {1, 2, 3} with a 6= b.

Then no partition of N is Dc-stable. Indeed, P := {{1}, {2}, {3}} is not Dc-
stable, since for C := {{1, 2, 3}} we have C[P] = {{1}, {2}, {3}} 6B{{1, 2, 3}} = C.
Further, any other partition P contains some coalition {a, b} and is thus not
Dc-stable either, since then for C := {{a}, {b}} we have

C[P] = {{a, b}} 6B{{a}, {b}} = C.

In [7] another example is given for the case of TU-games and utilitarian order.
More precisely, a TU-game is defined in which no Dc-stable partition exists, where
B is defined through (5.1) using the utilitarian order �ut.

5.6 Stable partitions and merge/split rules

We now resume our investigation of the conditions under which every iteration of
the merge and split rules yields the same outcome. To establish the main theorem
of this chapter and provide an answer in terms of Dc-stable partitions, we first
present the following three lemmas about Dc-stable partitions.

5.6.1. Lemma. Every Dc-stable partition is closed under applications of the merge
and split rules.

Proof. To prove closure of a Dc-stable partition P under the merge rule assume
that for some {T1, . . . , Tk} ⊆ P we have {

⋃k
j=1 Tj}B{T1, . . . , Tk}. Dc-stability of

P with C := {
⋃k

j=1 Tj} yields

{T1, . . . , Tk} = {
k⋃

j=1

Tj}[P]B{
k⋃

j=1

Tj},

which is a contradiction by virtue of transitivity and irreflexivity of B.
Closure under the split rule is shown analogously.

Next, we provide a characterization of Dc-stable partitions. Given a partition
P := {P1, . . . , Pk} we call here a coalition T P -compatible if for some i ∈
{1, . . . , k} we have T ⊆ Pi, and P -incompatible otherwise.

5.6.2. Lemma. A partition P = {P1, . . . , Pk} of N is Dc-stable iff the following
two conditions are satisfied (see Figure 5.2 for an illustration of the following
coalitions):

5.6. Stable partitions and merge/split rules 107

(i) for each i ∈ {1, . . . , k} and each pair of disjoint coalitions A and B such
that A ∪B ⊆ Pi,

{A ∪B}B{A,B}, (5.2)

(ii) for each P -incompatible coalition T ⊆ N ,

{T}[P]B{T}. (5.3)

A

B

T

Partition P

A

B

T

Figure 5.2: P -compatible coalitions A and B and a P -incompatible coalition T as
in Lemma 5.6.2

Proof. (⇒) It suffices to note that for C = {A,B} we have C[P] = {A ∪B} and
for C = {T} we have {T}[P] 6= {T} by the P -incompatibility of T . Then (i)
and (ii) follow directly by the definition of Dc-stability.

(⇐) Transitivity, monotonicity (m2) and (5.2) imply by induction that for each
i ∈ {1, . . . , k} and each collection C = {C1, . . . , C`} with ` > 1 and

⋃
C ⊆ Pi,{⋃

C
}
BC. (5.4)

Let now C be an arbitrary collection in N such that C[P] 6= C. We prove that
C[P]BC. Define

Di := {T ∈ C | T ⊆ Pi},

E := C \
⋃k

i=1D
i,

Ei := {Pi ∩ T | T ∈ E} \ {∅}.

Note that Di is the set of P -compatible elements of C contained in Pi, E
is the set of P -incompatible elements of C, and Ei consists of the non-empty
intersections of P -incompatible elements of C with Pi.

Suppose now that
⋃k

i=1E
i 6= ∅. Then E 6= ∅ and consequently

k⋃
i=1

Ei =
k⋃

i=1

({Pi ∩ T | T ∈ E} \ {∅}) =
⋃
T∈E

({T}[P])
(m1),(5.3)
B E. (5.5)

Consider now the following property:

|Di ∪ Ei| > 1. (5.6)

108 Chapter 5. Coalition formation: A generic approach

Fix i ∈ {1, . . . , k}. If (5.6) holds, then{
Pi ∩

⋃
C

}
=

{⋃
(Di ∪ Ei)

} (5.4)
B Di ∪ Ei

and otherwise {
Pi ∩

⋃
C

}
=

{
Di ∪ Ei

}
.

Recall now that

C[P] =
k⋃

i=1

{
Pi ∩

⋃
C

}
\ {∅}.

We distinguish two cases.

Case 1. (5.6) holds for some i ∈ {1, . . . , k}.
Then by (m1) and (m2)

C[P]B
k⋃

i=1

(Di ∪ Ei) = (C \ E) ∪
k⋃

i=1

Ei.

If
⋃k

i=1E
i = ∅, then also E = ∅ and we get C[P]BC. Otherwise by (5.5),

transitivity and (m2)
C[P]B(C \ E) ∪ E = C.

Case 2. (5.6) does not hold for any i ∈ {1, . . . , k}.
Then

C[P] =
k⋃

i=1

(Di ∪ Ei) = (C \ E) ∪
k⋃

i=1

Ei.

Moreover, because C[P] 6= C, by Fact 5.5.1 a P -incompatible element in C exists.
So

⋃k
i=1E

i 6= ∅, and by (5.5) and (m2) we get, as before,

C[P]B(C \ E) ∪ E = C.

In [7] the above characterization was proved for coalitional TU-games and the
utilitarian order. We shall now use it in the proof of the following lemma.

5.6.3. Lemma. Assume that P is Dc-stable. Let P ′ be closed under applications
of merge and split rules. Then P ′ = P .

Proof. Suppose P = {P1, . . . , Pk}, P ′ = {T1, . . . , Tm}. Assume P 6= P ′. Then
there is i0 ∈ {1, . . . , k} such that for all j ∈ {1, . . . ,m} we have Pi0 6= Tj. Let
Tj1 , . . . , Tj`

be the minimum cover of Pi0 . In the following case distinction, we use
Lemma 5.6.2.

Case 1. Pi0 =
⋃`

h=1 Tjh
.

5.7. Applications 109

Then {Tj1 , . . . , Tj`
} is a proper partition of Pi0 . But (5.2) (through its general-

ization to (5.4)) yields Pi0 B{Tj1 , . . . , Tj`
}, thus the merge rule is applicable to P ′.

Case 2. Pi0 (
⋃`

h=1 Tjh
.

Then, for some jh, we have ∅ 6= Pi0 ∩ Tjh
(Tjh

, so Tjh
is P -incompatible.

By (5.3), we have {Tjh
}[P]B{Tjh

}, thus the split rule is applicable to P ′.

We can now present the desired result.

5.6.4. Theorem. Suppose that B is a comparison relation and P is a Dc-stable
partition. Then

(i) P is the outcome of every iteration of the merge and split rules.

(ii) P is a unique Dp-stable partition.

(iii) P is a unique Dc-stable partition.

Proof. (i) By Note 5.2.2, every iteration of the merge and split rules terminates,
so the claim follows by Lemma 5.6.3.

(ii) Since P is Dc-stable, it is in particular Dp-stable. By Theorem 5.5.3, for all
partitions P ′ 6= P , P BP ′ holds. So uniqueness follows from transitivity and
irreflexivity of B.

(iii) Suppose that P ′ is a Dc-stable partition. By Lemma 5.6.1, P ′ is closed under
applications of the merge and split rules, so by Lemma 5.6.3, P ′ = P .

This theorem generalizes [7], where this result was established for coalitional
TU-games and the utilitarian order. It was also shown that there exist coalitional
TU-games in which all iterations of the merge and split rules have a unique
outcome which is not a Dc-stable partition.

5.7 Applications

The obtained results do not involve any notion of a game. In this section, we show
applications to three classes of coalitional games. In each case we define a class of
games and a natural comparison relation for which all iterations of the merge and
split rules have a unique outcome.

5.7.1 Coalitional TU-games

To show that the obtained results naturally apply to coalitional TU-games, consider
first the special case of the utilitarian order, according to which, given a coalitional

110 Chapter 5. Coalition formation: A generic approach

TU-game (N, v), for two collections P := {P1, . . . , Pk} and Q = {Q1, . . . , Q`} such
that

⋃
P =

⋃
Q, we have

P BQ iff
∑k

i=1 v(Pi) >
∑`

i=1 v(Qi).

Recall that (N, v) is called strictly super-additive if for each pair of disjoint
coalitions A and B

v(A) + v(B) < v(A ∪B).

Further, recall from [108, p. 241] that, given a partition P := {P1, . . . , Pk} of
N and coalitional TU-games (P1, v1), . . . , (Pk, vk), their composition (N,⊕k

i=1vi)
is defined by

(⊕k
i=1vi)(A) =

k∑
i=1

vi(Pi ∩ A).

We now modify this definition and introduce the concept of a semi-union of
(P1, v1), . . . , (Pk, vk), written as (N,⊕k

i=1vi), and defined by

(⊕k
i=1vi)(A) :=

{
(⊕k

i=1vi)(A) if A ⊆ Pi for some i
(⊕k

i=1vi)(A)− ε otherwise,

where ε > 0.
So for P -incompatible coalitions the payoff is strictly smaller for the semi-

union of TU-games than for their union, while for other coalitions the payoffs
are the same. It is then easy to prove, using Lemma 5.6.2, that in the semi-
union (N,⊕k

i=1vi) of strictly super-additive TU-games, the partition P is Dc-stable.
Consequently, by Theorem 5.6.4, in this game, P is the outcome of every iteration
of the merge and split rules.

The following more general example deals with arbitrary monotonic comparison
relations, as introduced in Sections 5.3 and 5.4.

5.7.1. Example. Given a partition P := {P1, . . . , Pk} of N , with B being one of
the orders defined in Section 5.3, we define a TU-game for which P is the outcome
of every iteration of the merge and split rules.

Let

f(x, y) :=


x+ y if B is the utilitarian order

x · y if B is the Nash order

max{x, y} if B is the leximin order

and define

v(A) :=


1 if |A| = 1

max
B∪C=A

B,C disjoint
coalitions

{f(v(B), v(C))}+ 1 if |A| > 1 and A ⊆ Pi for some i

0 otherwise.

Then

5.7. Applications 111

(i) for any two disjoint coalitions A,B with A ∪B ⊆ Pi for some i, we have

v(A ∪B) > f(v(A), v(B))

by construction of v, and thus

• v(A ∪B) > v(A) + v(B) for utilitarian B;

• v(A ∪B) > v(A) · v(B) for Nash B;

• v(A ∪B) > max{v(A), v(B)} for leximin B.

Hence, in all cases {A ∪B}B{A,B}.

(ii) for any P -incompatible coalition T ⊆ N , we have

v(A) > 0 for all A ∈ {T}[P], and v(T) = 0.

Hence, {T}[P]B{T}.

Lemma 5.6.2 now implies that P is indeed Dc-stable, so Theorem 5.6.4 applies.

5.7.2. Example. Given a partition P := {P1, . . . , Pk} of N , with B being one of
the orders defined in Section 5.3 or the Pareto order from Section 5.4, we define a
TU-game and an individual value function for which P is the outcome of every
iteration of the merge and split rules.

Let

f(x, y) :=

{
|N | ·max{x, y}+ 1 if B is leximin or Pareto

x+ y otherwise,

define v as in Example 5.7.1, and define

φv
i (A) :=

v(A)

|A|
.

Then

(i) for any two disjoint coalitions A,B with A ∪B ⊆ Pi for some i, we have

v(A ∪B) > f(v(A), v(B))

again by construction of v, and thus

• for utilitarian or Nash B:
v(A ∪B) > v(A) + v(B), and since φv

i distributes the value evenly, in
all cases {A ∪B}B{A,B},

112 Chapter 5. Coalition formation: A generic approach

• for leximin or Pareto B:
v(A ∪B) > |A ∪B| ·max{v(A), v(B)},
thus φv

i (A ∪B) > max{v(A), v(B)} for all i,
thus {A ∪B}B{A,B} in all cases,

(ii) for any P -incompatible coalition T ⊆ N , {T}[P]B{T} as before.

Again, Lemma 5.6.2 implies that P is Dc-stable, and Theorem 5.6.4 applies.

5.7.2 Hedonic games

Recall that a hedonic game (N,�1, . . . ,�n) consists of a set of players N =
{1, . . . , n} and a sequence of linear preorders �1, . . . ,�n, where each �i is the
preference of player i over the subsets of N containing i. In what follows, we do
not need the assumption that the �i relations are linear. We use �i to denote
the associated irreflexive relation.

Given a partition P of N and a player i, we denote by P (i) the element of P
to which i belongs and call it the set of friends of i in P .

We now provide an example of a hedonic game in which a Dc-stable partition
w.r.t. to a natural comparison relation � exists.

To this end, we assume that, given a partition P := {P1, . . . , Pk} of N , each
player

• prefers a larger set of his friends in P over a smaller one,

• “dislikes” coalitions that include a player who is not his friend in P .

We formalize this by putting for all sets of players that include i

S �i T iff T ⊆ S ⊆ P (i),

and extending this order to coalitions that include player i and possibly players
from outside of P (i) by assuming that such coalitions are the minimal elements
in �i. So

S �i T iff either T (S ⊆ P (i) or S ⊆ P (i) and not T ⊆ P (i).

We then define, for any two partitions Q and Q′ of the same set of players,

QBQ′ iff, for i ∈ {1, . . . , n}, Q(i) �i Q
′(i) with at least one �i being strict.

(Note the similarity between this relation and the �p relation introduced in
Section 5.4.) It is straightforward to check that B is indeed a comparison relation
and that the partition P satisfies conditions (5.2) and (5.3) of Lemma 5.6.2. So by
virtue of this result, P is Dc-stable. Consequently, on the account of Theorem 5.6.4,
the partition P is the outcome of every iteration of the merge and split rules.

5.7. Applications 113

5.7.3 Exchange economy games

Recall that an exchange economy consists of

• a market with k goods,

• for each player i an initial endowment of these goods represented by a vector
~ωi ∈ Rk

+,

• for each player i a transitive and linear preference relation �i, using which
he can compare the bundles of goods, represented as vectors from Rk

+.

An exchange economy game is then defined by first taking as the set of
outcomes the set of all sequences of bundles,

X := {(~x1, . . . , ~xn) | ~xi ∈ Rk
+ for i ∈ N},

i.e., X = (Rk
+)n, and extending each preference relation �i from the set Rk

+ of all
bundles to the set X by putting, for ~x, ~y ∈ X,

~x �i ~y iff ~xi �i ~yi. (5.7)

This simply means that each player is only interested in his own bundle.
Then we assign to each coalition S the following set of outcomes:

V (S) := {~x ∈ X |
∑

i∈S ~xi =
∑

i∈S ~ωi and ~xj = ~ωj for all j ∈ N \ S}.

So V (S) consists of the set of outcomes that can be achieved by trading among
the members of S.

Given a partition P = {P1, . . . , Pk} of N = {1, . . . , n}, we now define a specific
exchange economy game with n goods (one type of good for each player) as follows,
where i ∈ N :

~ωi := characteristic vector of P (i),

~xi �i ~yi iff xi,i ≥ yi,i and ~xi �i ~yi iff xi,i > yi,i,

that is, each player’s initial endowment consists of exactly one good of the type of
each of his friends in P , and he prefers a bundle if he gets more goods of his own
type.

Now let ABB iff

∀A` ∈ A \B ∃~x ∈ V (A`) ∀j ∈ A`[(
∀~y ∈ V (B(j))~x �j ~y

)
∨

(
∀~y ∈ V (B(j))~x �j ~y ∧ |A`| < |B(j)|

)]
.

So a partition A is preferred to a partition B if each coalition A` of A not
present in B can achieve an outcome which each player of A` strictly prefers to

114 Chapter 5. Coalition formation: A generic approach

any outcome of his respective coalition in B, or which he likes at least as much as
any outcome of his respective coalition in B when that coalition is strictly larger
than A`. The intuition is that the players’ preferences over outcomes weigh most,
but in case of ties the players prefer smaller coalitions.

It is easy to check that B is a comparison relation. We now prove that the
partition P is Dc-stable w.r.t. B. First, note that by definition of the initial
endowments, for all ` ∈ {1, . . . , k} and coalitions A ⊆ P` there is an outcome
~zA ∈ V (A) which gives exactly |A| units of good j to each player j ∈ A. We
have ~zA �i ~x for all i ∈ A and ~x ∈ V (A). This implies that P is Dc-stable by
Lemma 5.6.2, since

(i) for each pair of disjoint coalitions A and B such that A ∪B ⊆ P`, we have
~zA∪B �i ~zA for each i ∈ A and ~zA∪B �i ~zB for each i ∈ B since |A∪B| > |A|
and |A ∪B| > |B|, thus {A ∪B}B{A,B},

(ii) for any P -incompatible T ⊆ N , A ∈ {T}[P], i ∈ A, and ~x ∈ V (T), we
have ~zA �i ~x (since player i can get in T at most all goods of his type from
his friends in P , which are exactly the same as in A), and |A| < |T |, thus
{T}[P]B{T}.

Consequently, in the above game, by Theorem 5.6.4 the partition {P1, . . . , Pk}
is the outcome of every iteration of the merge and split rules.

5.8 Conclusions

We have presented a generic approach to coalition formation, in which the only
possible operations on coalitions are merges and splits. These operations can take
place when they result in an improvement with respect to some given comparison
relation on partitions of the involved subset of players. Such a comparison relation
needs to satisfy only a few natural properties, namely irreflexivity, transitivity
and monotonicity, and we have given examples induced by several well-known
orders in the context of TU-games.

We have identified natural conditions under which every iteration of merges
and splits yields a unique outcome, which led to a natural notion of a stable
partition. We have shown that, besides general TU-games, our approach and
results also naturally apply to hedonic games and exchange economy games.

It would be interesting to extend this approach and allow other transformations,
such as transfers (moving a subset of one coalition to another) or, more generally,
swaps (exchanging subsets of two coalitions), as considered by Apt and Radzik [7]
in the setting of TU-games and the utilitarian order.

Chapter 6

Time constraints in mixed auctions

6.1 Introduction

6.1.1 Motivation

Combinatorial auctions are auction mechanisms where bidders can bid for sets of
goods rather than just single items. Despite the fact that solving a combinatorial
auction, i.e., finding an allocation of goods to bidders that will maximize the
sum of the prices offered by the bidders, is an intractable optimization problem,
combinatorial auctions have turned out to be an extremely useful tool with many
applications. See the textbook by Cramton et al. [43] for an overview.

In recent work, Cerquides et al. [37] have proposed an extension of the standard
combinatorial auction model, called mixed multi-unit combinatorial auctions
(or simply mixed auctions for short). In a mixed auction, bidders can offer
transformations, consisting of a set of input goods and a set of output goods,
rather than just plain goods. Bidding for such a transformation means declaring
that one is willing to deliver the specified output goods after having received the
input goods, for the price specified by the bid. Solving a mixed auction means
choosing a sequence of transformations that satisfies the constraints encoded by
the bids, that produces the goods required by the auctioneer from those he holds
initially, and that maximizes the amount of money collected from the bidders
(or minimizes the amount paid out by the auctioneer). Mixed auctions extend a
number of other types of combinatorial auctions: direct auctions, reverse auctions,
and combinatorial exchanges. A very promising application of mixed auctions is
supply chain formation [148].

In this chapter, we extend the framework of mixed auctions by allowing
bidders to specify constraints regarding the times at which they perform the
transformations offered in their bids. The motivation for this extension is that, in
a complex economy, the bidders (service providers) themselves may need services
from others and have their own supply chains, so the bidders may have preferences

115

116 Chapter 6. Time constraints in mixed auctions

over the timing of transformations and over their relative ordering. A notion of
time is already implicit in the original mixed auction framework as far as the
auctioneer is concerned, because he has to build a sequence of transformations, but
this is not the case for the bidders. In this work we seek to redress this imbalance.

6.1.2 Approach

Our contribution covers four types of time constraints:

• Relative time points: This is the simplest model. It associates each transfor-
mation with a time point and allows bidders to express constraints regarding
their relative ordering. For example, a bidder may want to offer trans-
formations X and Y , but only under the condition that X be executed
before Y .

• Absolute time points: This is an extension to the first model and in addition
allows for references to absolute time. For example, a bidder could specify
that transformation X can only be executed at time unit 15, or that it needs
to be executed at most 3 time units after transformation Y .

• Intervals: Alternatively, transformations may be associated with time in-
tervals, and bidders can express constraints on whether one transforma-
tion should be executed before, during, or after another transformation,
or whether two transformations need to be executed in overlapping time
intervals.

• Intervals with absolute durations: Combining the notions of interval and
absolute time, we can also express constraints on the duration of an interval.
For example, a bidder may want to specify that transformation X requires
at least 5 time units.

These constraint types can be freely mixed to, for instance, express an interval
taking place after a time point.

We also show how to model soft constraints, allowing bidders to offer discounts
in return for satisfying certain time constraints, and how to model the fact that
an auctioneer may sometimes be able to quantify the monetary benefit resulting
from a shorter supply chain. As in the original paper by Cerquides et al. [37], we
are working with the multi-unit variant of mixed auctions, where there may be
several copies of the same good available, but the restriction to single units is
certainly also of interest.

We define a bidding language for expressing combinatorial bids over trans-
formations with associated time constraints, we give a precise definition of the
winner determination problem, and we present an algorithm for solving it by
showing how the problem can be encoded as an integer program. As we will
see, our approach blends nicely into the existing framework of mixed auctions,

6.2. Bidding language 117

requiring surprisingly few modifications. This facilitates the integration of time
constraints with other extensions and optimizations discussed in the literature.

6.1.3 Plan of the chapter

The remainder of this chapter is structured as follows.

Section 6.2 defines a bidding language for mixed auctions with time constraints.
We give a formal semantics for this language by showing how any given bid
expression is mapped to a valuation function defined over sets of transformations
arranged on a time line, and we discuss its expressive power.

In Section 6.3 we formulate the winner determination problem. Building on
the original algorithm by Cerquides et al. [37], we show how to model it as an
integer program. For relative time constraints, the extension is particularly neat
and simple; to accommodate absolute time we show how to overcome a number of
conceptual and technical difficulties.

While Sections 6.2 and 6.3 cover the cases of constraints over relative and
absolute time points, Section 6.4 presents the extension to time intervals.

Finally, Section 6.5 concludes and briefly discusses related work.

6.2 Bidding language

In this section, we define and discuss a bidding language for mixed auctions with
time constraints.

We first define transformations with time points and then valuations, which
are functions used to model the preferences of bidders by mapping sets of such
transformations with time points to numerical values. We then define the syntax
and semantics of our bidding language. The purpose of a bidding language is to
encode a bidder’s valuation for transmission to the auctioneer.1 The basic idea is
to use a simple xor-language, of the kind familiar from standard combinatorial
auctions [105, 133] and mixed auctions [37], to express possible combinations
of transformations and associated prices, and to use time constraints to impose
conditions on the ordering of their execution.

We also add some syntactic sugar to the time constraint language which prima
facie seems to have very limited expressive power, and show that it is actually
surprisingly expressive. This is achieved by “borrowing” expressive power from
the underlying bidding language into the time constraint language. We conclude
this section by arguing that our bidding language is fully expressive over the class
of all “reasonable” valuations.

1Bidders may or may not wish to transmit their true valuation. This is an important issue,
but one that is entirely irrelevant for the representation of bids, as long as all necessary valuations
can be expressed.

118 Chapter 6. Time constraints in mixed auctions

6.2.1 Transformations and time points

Let G be the finite set of all types of goods under consideration. A transforma-
tion is a pair

(I,O) ∈ NG × NG.

An agent offering such a transformation declares that, when provided with the
multiset of goods I, he can deliver the multiset of goods O.

When agents submit their bid, they should be able to put restrictions on
the time points at which they offer to perform transformations. To this end, we
introduce a finite (but big enough) set of time point identifiers T . The time
points here are to be thought of merely as identifiers, not as variables having an
actual value. Agents are negotiating over sets of transformations with time point
identifiers

D ⊂ NG × NG × T ,

which we can write as sets of the form

{(I1,O1, τ 1), . . . , (I`,O`, τ `)}.

For example, {({}, {q}, τ1), ({r}, {s}, τ2)} means that the agent in question is able
to deliver q without any input at some time point τ1, and to deliver s if provided
with r at some time point τ2. Note that this is not the same as {({r}, {q, s}, τ)}.
In the former case, if another agent can produce r from q, we can get s from
nothing; in the latter case this does not work.

We assume that each time point identifier is used at most once, even across
bidders, and thus indeed identifies one particular transformation of one particular
bidder.

Note that this does not allow two transformations to be offered at the same
time point identifier. If a bidder wants to do that, he can instead offer a single
transformation with combined I and O.

6.2.2 Valuations

Since bidders may have preferences over the time points at which they perform
transformations, we first define a time line Σ of transformations to be a finite
sequence of transformations and “clock ticks” c. The latter stand for time passing
without any transformations allocated to the bidder. That is,

Σ ∈ (NG × NG ∪ {c})∗,

where ∗ denotes words as defined in Chapter 2, Section 2.2.
A valuation v maps a time line Σ to a real number p. Intuitively, v(Σ) = p

means that an agent with valuation v is willing to make a payment of p for getting
the task of performing transformations according to the time line Σ (intuitively, p

6.2. Bidding language 119

is usually negative, meaning that the agent is actually being paid for performing
the transformations). We write v(Σ) = ⊥ if v is undefined for Σ, i.e., the agent
would be unable to accept the corresponding deal.

For example, the valuation v given by

v(({oven, dough}, {oven, cake})) = −2

v(({oven, dough}, {oven, cake}); ({}, {bread})) = −3

v(({}, {bread}); ({oven, dough}, {oven, cake})) = ⊥

expresses that for two dollars I could produce a cake if given an oven and dough,
also returning the oven; for another dollar I could do the same and afterwards give
you a bread without any input; but I could not do it the other way round (which
should make you wonder whether you might be giving away too much dough in
the first case).

We say that a valuation v uses relative time if for all Σ we have that
v(Σ) = v(Σ − c), where Σ − c stands for Σ with all clock ticks c removed.
Otherwise v is said to use absolute time.

That is, in the context of relative time, valuations depend only on the relative
ordering of the transformations, while with absolute time valuations may depend
on the absolute time point at which a transformation occurs within a given
sequence. In the latter case, we interpret each step in the sequence as a time
unit (one second, one day, one week, . . .).

Note that the fact that we are dealing with a sequence agrees with the
assumption above that no two transformations can be offered at the same time point
identifier. Again, from the bidder’s side this can be overcome by simply combining
the two transformations that he would like to offer concurrently. In Section 6.3,
we get back to this issue from the auctioneer’s point of view, where it has slightly
more serious conceptual consequences. Note also that all transformations are
assumed to have the same duration of one time unit; in Section 6.4 we look at
how to deal with transformations of variable durations.

6.2.3 Bids

We are now ready to define the bidding language. An atomic bid bid(D, p) spec-
ifies a finite set of finite transformations with time points and a price. Intuitively,
submitting such a bid expresses the bidder’s willingness to perform the given
transformations for price p.

Constraints on the time points at which these transformations should be
scheduled will be added on top of this bid. But before we turn to that, we define
the rest of our bidding language. We restrict ourselves to the xor-language,
which is known to be fully expressive for standard (single-unit) combinatorial
auctions [105], and which, for multi-unit mixed auctions, has been shown to
subsume many other intuitively useful language constructs and to fully express a

120 Chapter 6. Time constraints in mixed auctions

class of valuations comprising most (if not all) intuitively sensible ones [37]. In
particular, it is not difficult to extend the auction framework presented in this
chapter to also handle the so-called or-operator [105, 37].

So we consider complex bids in xor normal form,

Bid = bid(D1, p1)xor . . .xorbid(Dn, pn),

with the intuitive interpretation that the bidder is willing to perform at most
one of the Dj and pay the associated pj. Note again that the used time point
identifiers are unique, also across the Dj.

6.2.4 Time constraints

We now define two variants of a time constraint language. The atomic con-
straints for relative time are all of the form τ < τ ′. For absolute time, we allow
the following (where τ, τ ′ ∈ T , ξ, ξ′ ∈ N):

τ = ξ τ < ξ τ > ξ

τ + ξ < τ ′ + ξ′ τ + ξ = τ ′ + ξ′

The reason why we distinguish between the two variants, even though the latter
may seem to subsume the former, is that the former is conceptually “safer”, at
least in our formalism which is based on sequences: Concepts like “before” and
“after” always make intuitive sense, while with absolute time we have to agree on
the time unit of a sequence step and take timing issues into account. This is not
always without difficulties, as noted in several places in this chapter; see, e.g., the
discussion in Section 6.3.3.

As an example, the atomic bid with time constraint

bid({ ({oven, dough}, {oven, cake}, τ1),
({}, {bread}, τ2)},−3)

τ1 < τ2

expresses the above fact that I am willing to sell you the bread only after I have
sold you the cake.

We allow time constraint formulas of the form

ϕ = γ1 ∧ . . . ∧ γν

with atomic constraints γι. A bidder submits a bid Bid together with a time
constraint formula ϕ (the atomic constraints of which refer to time point identifiers
occurring in Bid). Intuitively, this expresses that he is willing to perform according
to Bid, but only under the condition that ϕ is satisfied.

This condition is hard : the bidder will only accept if it is met. In Section 6.2.6
we give a method to express soft time constraints (associated with costs), and we
also show that disjunctions over time constraints can be expressed.

6.2. Bidding language 121

6.2.5 Semantics

Syntactically, we are thus dealing with complex bids with time points together
with constraint formulas over these time points:

bid(D1, p1)xor . . .xorbid(Dn, pn)

γ1 ∧ . . . ∧ γν .

In order to make the intuitive meanings explained above explicit, we now
specify a formal semantics. In the following, let Σ be a time line (clock ticks
allowed), let τ, τ ′ ∈ T , ξ, ξ′ ∈ N, and let ϕ and ϕ′ be time constraint formulas.
Let τ ∈ Σ denote the fact that τ is associated with some transformation in Σ,
and let Σ(τ) denote the sequence number (starting from 1) of the transformation
associated with τ , if τ ∈ Σ. For clarity, we may include the time point identifiers in
the sequence. For example, if Σ = ((I1,O1, τ 1); . . .), then τ 1 ∈ Σ and Σ(τ 1) = 1.

We inductively define a satisfaction relation � as follows:

Σ � τ ◦ ξ iff τ 6∈ Σ or Σ(τ) ◦ ξ, for ◦ ∈ {=, <,>}
Σ � τ + ξ < τ ′ + ξ′ iff τ ′ 6∈ Σ or

τ ∈ Σ and Σ(τ) + ξ < Σ(τ ′) + ξ′

Σ � ϕ ∧ ϕ′ iff Σ � ϕ and Σ � ϕ′

Relative time constraints are covered by omitting the + ξ and + ξ′, and
τ + ξ = τ ′ + ξ′ is defined to be an abbreviation for

τ + ξ < τ ′ + (ξ′ + 1) ∧ τ ′ + ξ′ < τ + (ξ + 1).

According to this semantics, time constraints over time point identifiers that
are fully included in Σ are interpreted as expected. Constraints over time point
identifiers not in Σ are simply ignored (they are always satisfied). Note that
the choice of semantics for constraints such as τ < τ ′ is somewhat arbitrary in
case only one of the time points being compared occurs in Σ. As an intuitive
justification for this detail of the semantics, τ may be thought of as a precondition
for τ ′, for instance, because some outcome of the first transformation is needed
for the second. In the case of τ + ξ = τ ′ + ξ′, this has the effect that either none
of the two mentioned transformations is included, or both are and must have the
specified distance. However, the exact details do not matter all that much, since
the bidding language allows specifying in all detail which transformations can
occur together and which cannot.

Using a more technical justification, we prefer this interpretation of constraints
because it turns out that it has a straightforward translation to integer constraints,
which we need for the implementation described in Section 6.3.3.

We say that a set of transformations D permits Σ if Σ consists of exactly the
transformations in D (and optionally clock ticks). In contrast to this definition,

122 Chapter 6. Time constraints in mixed auctions

in [37], different assumptions concerning free disposal are distinguished. Informally,
free disposal means that participants are always happy to accept more goods
than they strictly require; if they really have absolutely no use for them (or are
even bothered by them), they can dispose of them for free. Free disposal makes
intuitive sense for most every-day goods; however it is not as appropriate for
certain “goods” like nuclear waste. We do not delve further into this issue here
and continue without any free-disposal assumptions; however, we emphasize that
this is purely for the sake of clarity, and these assumptions could be built in with
only minuscule changes. In particular, the issue of free disposal as far as bidders
are concerned has no impact on the winner determination problem discussed in
Section 6.3; it only affects the definition of the semantics of the bidding language.

We now define the valuation expressed by an atomic bid Bid = (D, p) together
with a time constraint formula ϕ to be:

vBid,ϕ(Σ) =

{
p if D permits Σ and Σ � ϕ

⊥ otherwise.

Accordingly, the valuation expressed by a complex bid Bid = xorn
j=1 Bidj

together with a time constraint formula ϕ is (interpreting ⊥ as −∞):

vBid,ϕ(Σ) = max{vBidj ,ϕ(Σ) | j ∈ {1, . . . , n}}.
That is, out of all the applicable atomic bids Bidj (i.e., where vBidj ,ϕ(Σ) 6= ⊥), the
auctioneer is allowed to choose the one giving him maximum profit.

6.2.6 Syntactic sugar

The time constraint language seems rather limited at first glance, allowing only
conjunctions of atomic constraints. However, it turns out that additional expressive
power can be “borrowed” from the bidding language. We discuss two extensions
to the time constraint language, which can be rewritten into the core language by
using additional bid expressions.

Disjunctive time constraints. If a bidder wants to offer (I1,O1), (I2,O2)
and (I3,O3) with price p, where the third should take place after the second or
after the first, it seems natural to write

bid({(I1,O1, τ 1), (I2,O2, τ 2), (I3,O3, τ 3)}, p)
τ 1 < τ 3 ∨ τ 2 < τ 3,

with the obvious meaning of the disjunction ∨. This is not directly possible in
our time constraint language. However, it can be translated into

bid({(I1,O1, ϑ1), (I2,O2, ϑ2), (I3,O3, ϑ3)}, p)
xorbid({(I1,O1, ζ1), (I2,O2, ζ2), (I3,O3, ζ3)}, p)

ϑ1 < ϑ3 ∧ ζ2 < ζ3.

6.2. Bidding language 123

The choice which of the disjuncts to satisfy has been moved into the bid
expression and is determined by picking one of the atomic bids. Since their
variables are disjoint, this pick makes one conjunct of the transformed time
constraint formula vacuously true, while the other conjunct still needs to be
satisfied. Since it may perfectly well happen that both of the original disjuncts
are satisfied in the end, disjunction is the right notion here, even though it is
translated into an xor of bids.

For a general formulation, we allow a bid expression in xor normal form
together with a time constraint formula in disjunctive normal form:

n
xor
j=1

Bidj

ν∨
ι=1

ϕι,

where the ϕι are standard (conjunctive) time constraint formulas. The bidder
can thus conveniently express, e.g., several alternative partial orders over his
transformations. Let now σι for ι ∈ {1, . . . , ν} be substitutions (with disjoint
ranges), each mapping all variables occurring in the bid to fresh (used nowhere
else) ones. The resulting translation is

ν
xor
ι=1

n
xor
j=1

Bidjσι

ν∧
ι=1

ϕισι.

This may seem surprising, because in the original formulation the auctioneer
has two choices (which of the time constraint disjuncts to satisfy and which bid
to pick), and in the translation he loses the choice among the time constraints.
However, in return he gets the freedom to choose over the outer xor. As illustrated
in the example above, this boils down to choosing one of the fresh variable spaces,
which corresponds to choosing one of the original disjuncts. All the rest of the
transformed time conjunction does not have any effect, because it talks about
variables which do not occur in the chosen sub-bid. The auctioneer then proceeds
to pick a bid from the inner xor, just as before.

Soft time constraints. Soft constraints are constraints with associated costs.
Intuitively, such a constraint does not have to be satisfied, but if it is, then the
price of the bid is modified by the given cost (usually a discount to the auctioneer).

For example, if a bidder wants to bid on (I1,O1) and (I2,O2) for price p and
offer a discount, i.e., raise his bid by δ, if he gets to do the first before the second,
then he could write

bid({(I1,O1, τ 1), (I2,O2, τ 2)}, p)
(τ 1 < τ 2, δ).

124 Chapter 6. Time constraints in mixed auctions

Again, this expression can be translated:

bid({(I1,O1, ϑ1), (I2,O2, ϑ2)}, p)
xorbid({(I1,O1, ζ1), (I2,O2, ζ2)}, p+ δ)

ζ1 < ζ2.

In general, we can allow discounts depending on time constraint formulas
rather than only on single constraints, and also the possibility to specify several
alternative such discount options. Only one of these options should be applicable
(possible combinations can be expressed as separate options), which is why we use
xor to denote the alternatives, analogously to the xor of the bidding language.
We thus consider a bid expression in xor normal form together with a soft time
constraint formula,

n
xor
j=1

(Dj, pj)
ν

xor
ι=1

(ϕι, δι),

where the ϕι are time constraint formulas and the δι ∈ R (possibly 0). Again, let
σι for ι ∈ {1, . . . , ν} be substitutions, each mapping all variables occurring in the
bid to fresh ones. The resulting translation then is

ν
xor
ι=1

n
xor
j=1

(Djσι, pj + δι)
ν∧

ι=1

ϕισι.

Note that the two translations we discussed are completely analogous. The
difference is that the “exclusive” behavior of the bidding language xor carries
over to soft constraints in the sense that at most one discount will have an effect,
while it does not carry over to disjunctive constraints, since multiple disjuncts may
well end up being satisfied. Note also that the transformations can be combined.
For example, a soft time constraint could have a disjunctive condition.

The blowup resulting from the transformations is straightforwardly seen to be
linear in the number of disjuncts or of alternative discounts, respectively.

6.2.7 Expressive power

We say a valuation is finite if it has a finite domain (i.e., yields non-⊥ for finitely
many time lines only) consisting of finite sequences of finite transformations (i.e.,
with finite input and output). Having seen how versatile time constraints really are,
it may not be surprising that xor bids with time constraints are fully expressive
for finite valuations.

Concretely, xor bids with relative time constraints can express all finite
valuations that use relative time; xor bids with absolute time constraints can
express all finite valuations. To see this, simply take an xor bid with one atomic
bid bid(D, p) for each Σ in the domain of v, with D set to permit Σ and p set

6.3. Winner determination 125

to v(Σ), and impose the order corresponding to Σ using time constraints (note
that there may be several atomic bids with the same transformations in D, but
different time points).

For a discussion of the expressive power of mixed-auction bidding languages
(without time constraints but) with free disposal we refer to [37].

6.3 Winner determination

We now study the winner determination problem (WDP). This is the problem,
faced by the auctioneer, of determining which transformations to award to which
bidder, so as to maximize (minimize) the sum of payments collected (made), given
the bids of the bidders expressed in our bidding language. This may be interpreted
as computing a solution that maximizes revenue for the auctioneer, or social
welfare for the collective of bidders (if we interpret prices offered as reflecting
bidder utility). Note that we are interested in the algorithmic aspects of the
WDP. Game-theoretical considerations, such as how to devise a more sophisticated
pricing rule that would induce bidders to bid truthfully, are orthogonal to the
algorithmic problem addressed here. (We briefly comment on mechanism design
issues in Section 6.5, but this is not the topic of this chapter.)

For symmetry between bidders and auctioneer, we do not assume free disposal
for the auctioneer (just like for the bidders), i.e., he does not want to end up
with any goods except the required ones. Note, however, that the formulations
are easily adapted to allow free disposal (and we point out the necessary changes
along the way).

After formulating the WDP, we give an integer program [137] solving it and
discuss some further topics. We aim at keeping the descriptions short and focus on
the changes compared to the version from [37]. For more background and intuitive
explanations, see there. The advantage of this approach, besides showing how
few modifications are necessary and thereby how powerful the original framework
already is, is that it is modular and can (hopefully) be combined without too
much effort with other extensions or optimizations.

6.3.1 WDP with time constraints

The input to the WDP consists of

• a bid expression Bidi in xor normal form together with a conjunction of
time constraints ϕi, for each bidder i;

• a multiset Uin of goods the auctioneer holds in the beginning;

• and a multiset Uout of goods the auctioneer wants to end up with.

126 Chapter 6. Time constraints in mixed auctions

Let Bidij denote the jth atomic bid bid(Dij, pij) occurring within Bidi, let tijk
be a unique label for the kth transformation in Dij (for some arbitrary but
fixed ordering of Dij), and let τijk be the time point identifier associated with
transformation tijk. Let (Iijk,Oijk) be the actual transformation labelled with
tijk. Finally, let T be the set of all tijk.

An allocation sequence Σ resembles the time line we introduced before, but
can only contain transformations actually offered by some bidder, and each one at
most once. That is, Σ now is a permutation of a subset of T , possibly interspersed
with clock ticks c.

We write tijk ∈ Σ to say that the kth transformation in the jth atomic bid of
bidder i has been selected, and we write Σ(tijk) to denote the sequence number of
tijk (starting from 1) if tijk ∈ Σ.

By Σi we denote the projection of Σ to bidder i, that is, Σ with each tijk
replaced by (Iijk,Oijk, τijk) and all ti′jk replaced by c for i′ 6= i.

By (Im,Om) we denote the mth transformation in Σ. Thus, we have two ways
of referring to a selected transformation: by its position in the received bids (tijk)
and by its position m in the allocation sequence.

Given Σ, we can inductively define the bundle of goods held by the auctioneer
after each step (let g ∈ G be any good, and let M0 = Uin):2

Mm(g) = Mm−1(g) +Om(g)− Im(g) (6.1)

under the condition that

Mm−1(g) ≥ Im(g). (6.2)

Given a multiset Uin of goods available to the auctioneer, a multiset Uout of
goods required by the auctioneer, and a set of bids Bidi with time constraints ϕi,
an allocation sequence Σ is a valid solution if:

(i) For each bidder i, some Dij permits Σi, or Σi ∈ {c}∗.

(ii) For each bidder i, Σi � ϕi.

(iii) Equations (6.1) and (6.2) hold for each transformation (Im,Om) ∈ Σ and
each good g ∈ G.

(iv) For each good g ∈ G, M|Σ|(g) = Uout(g).
3

The revenue for the auctioneer associated with a valid solution Σ is the sum
of the prices of the selected atomic bids:∑

{pij | ∃k : tijk ∈ Σ}.

2Given a multiset S ∈ NG and an item g ∈ G, we write S(g) to denote the number of copies
of g in S.

3Replace = by ≥ to model free disposal.

6.3. Winner determination 127

Given multisets Uin and Uout of initial and required goods and a set of bids
with time constraints, the winner determination problem (WDP) consists in
finding a valid solution that maximizes the auctioneer’s revenue.

We now show how to solve the WDP using integer programming (IP). To
this end, we first review the original formulation from [37] and then discuss the
modifications required for dealing with time constraints.

6.3.2 Original integer program

In this part, we closely follow [37]. The main issue is to decide, for each offered
transformation, whether it should be selected for the solution sequence, and if so,
at which position. Thus, we define a set of binary decision variables xm

ijk ∈ {0, 1},
each of which takes on value 1 if and only if the transformation tijk is selected at
the mth position of the solution sequence.

The position number m ranges from 1 to an upper bound M on the solution
sequence length. For the time being, we take M = |T |, the overall number of
transformations, accommodating all sequences that can be formed using only
transformations (and not clock ticks).

Further, i ranges over all bidders; j ranges for each bidder i from 1 to the
number of atomic bids submitted by i; and k ranges for each atomic bid j of
bidder i from 1 to the number of transformations in that bid.

We use the following auxiliary binary decision variables: xm takes on value 1
if and only if any transformation is selected at the mth position; xijk takes on
value 1 if and only if transformation tijk is selected at all; and xij takes on value 1
if and only if any of the transformations in the jth atomic bid of bidder i are
selected.

The following set of constraints define a valid solution without taking time
constraints into account (i.e., neglecting (ii) in the valid solution definition above):

(1) Select either all or no transformations from an atomic bid (cf. (i) above):

xij = xijk (∀ijk)

(2) Select at most one atomic bid from each xor normal form bid (cf. (i) above):∑
j

xij ≤ 1 (∀i)

(3) Select each transformation at most for one position:

xijk =
∑
m

xm
ijk (∀ijk)

128 Chapter 6. Time constraints in mixed auctions

(4) For each position, select at most one transformation:

xm =
∑
ijk

xm
ijk (∀m)

(5) There should be no gaps in the sequence:

xm ≥ xm+1 (∀m)

Note that this is strictly speaking not required; indeed we drop this constraint
later on in order to allow clock ticks between transformations.

(6) Treating each Mm(g) as an integer decision variable, ensure that necessary
input goods are available (cf. (iii) above):

Mm(g) = Uin(g) +
m∑

`=1

∑
ijk

x`
ijk · (Oijk(g)− Iijk(g))

Mm(g) ≥
∑
ijk

xm
ijk · Iijk(g) (∀g ∈ G, ∀m)

(7) In the end, the auctioneer should have the bundle Uout (cf. (iv) above):4

MM(g) = Uout(g) (∀g ∈ G)

Solving the WDP now amounts to solving the following integer program:

max
∑
ij

xij · pij, subject to constraints (1)–(7)

A valid solution is then obtained by making transformation tijk the mth
element of the solution sequence Σ exactly when xm

ijk = 1.

6.3.3 Modified integer program

To implement time constraint handling (thus obeying (ii) in the definition of valid
solution given above), we first introduce an additional set of auxiliary binary
decision variables ym

ijk ∈ {0, 1}, taking on value 1 if and only if transformation tijk
is selected at the mth position or earlier in the solution sequence. This can be
achieved by adding the following constraint:

(8) ym
ijk should be 1 iff tijk ∈ Σ and Σ(tijk) ≤ m:

ym
ijk = ym−1

ijk + xm
ijk (∀ijkm),

with y0
ijk = 0.

We now give implementations for our two variants of time constraints.

4With free disposal, = would become ≥.

6.3. Winner determination 129

Relative time. Each bidder i’s time constraint formula is a conjunction of
atomic time constraints, and all bidders’ time constraints need to be satisfied.
The following set of integer constraints takes care of this.

(9a) For each τijk < τij′k′ occurring in
∧

i ϕi:

ym
ijk ≥ ym+1

ij′k′ (∀m).

In accordance with the time constraint semantics, if neither tijk nor tij′k′ occurs
in the solution sequence, this requirement is vacuously satisfied since both sides
stay 0. If tij′k′ does occur, then ym

ij′k′ will become 1 at some point m. In this case,

the requirement boils down to ym−1
ijk being 1 as well, so tijk must have occurred

already.
Solving the WDP with relative time constraints thus amounts to the same

optimization as before, but subject to constraints (1)–(8) and (9a).

Absolute time. In order to have an absolute notion of time, we need some way
of mapping points of a possible solution sequence to an absolute time line. The
simplest way is to interpret each sequence point itself as a time unit (a minute, a
day, a week, . . .), and this is the approach we take.

Before giving the formalization, we need to discuss some conceptual details. If
we interpret steps in the sequence as absolute time units, some issues arise which
did not matter before.

Firstly, while it may be acceptable to break time down into discrete steps
of equal duration, it is not so easy to defend that any transformation that can
possibly be offered should have exactly that duration.

Secondly, there is no reason why the auctioneer should wait for one transforma-
tion to end before commissioning the next transformation, which may be offered
by a different, idling bidder, unless the output of the former is needed as input to
the latter.

To some extent, these issues can be addressed by a purely conceptual extension
presented in Section 6.4. However, we leave it to future work to design frame-
works which handle time in a more flexible way and truly optimize for effective
parallelizations (which is a research field on its own). For our purposes, we simply
assume that the auctioneer is busy when he is delivering or receiving goods of some
particular transformation, and cannot deal with several bidders simultaneously.

To start the formalization, first of all we drop constraint (5). As mentioned,
it is not strictly speaking necessary anyway, and since now the bidders can refer
to arbitrary absolute time points, we actually might have to accept gaps in the
sequence.

Now a technical issue arises: The length of possible solution sequences is no
longer bounded by |T |. While it may be possible to find a correct bound by
looking at all numbers occurring in the bidders’ time constraints, we settle for a

130 Chapter 6. Time constraints in mixed auctions

different solution: The auctioneer manually specifies M , the maximum length of
the solution sequence.

At first glance this seems like a pure loss of generality; however the auctioneer
may profit from having some control over the size of the WDP he has to solve,
and he can always iterate over different values for M in his search for a good
solution. Economically speaking, it also makes sense that the auctioneer wants
some control over the length of his supply chain, rather than allowing an arbitrary
length. Indeed, he might have graded preferences over the time his supply chain
takes; in Section 6.3.4 we show how he can accomplish this, turning the ostensible
loss of generality into a feature.

We now give the integer constraints for handling absolute time constraints.

(9b) For each τijk + ξ < τij′k′ + ξ′ occurring in
∧

i ϕi:

ym+ξ′

ijk ≥ ym+ξ+1
ij′k′ (∀m);

for each τijk + ξ = τij′k′ + ξ′ occurring in
∧

i ϕi:

ym+ξ′

ijk = ym+ξ
ij′k′ (∀m)

(10) For each τijk ◦ ξ, with ◦ ∈ {=, <,>}, occurring in
∧

i ϕi:

xm
ijk = 0 (∀m 6 ◦ ξ).

Constraint (9b) requires some explanation. First of all, note that (9a), the
version for relative time, is covered as a special case. As indicated by the semantics,
the absolute time variant is thus an extension of the relative time variant. Secondly,
note that the second half of (9b) can be obtained from the first half if interpreted
as an abbreviation, as in Section 6.2.5. Now consider the case where ξ′ = 0.
Intuitively speaking, the time constraint then says that tijk must take place at
least ξ + 1 time steps before tij′k′ . That is, whenever tij′k′ is selected, tijk must
already have been selected for at least ξ + 1 time steps. In terms of the integer
program, this means that, for all positions m, ym

ij′k′ must be 0 unless ym−ξ−1
ijk was

already 1. Now it is only a small step to the formulation in (9b).
Solving the WDP with absolute time constraints amounts to the same opti-

mization as before, but subject to constraints (1)–(4), (6)–(8), (9b) and (10).
A valid solution is then obtained by making transformation tijk the mth

element of the solution sequence Σ if and only if xm
ijk = 1, and using a clock tick c

as mth element when there is no xm
ijk which equals 1 (i.e., when xm = 0).

6.3.4 Valuation for the auctioneer

Given that we decided to require the auctioneer to specify the maximum length M
of the solution sequence (for the absolute-time variant of the framework), we

6.3. Winner determination 131

may also want to give him the possibility to express more detailed preferences
over durations. This turns out to be achievable in a neat way, also enabling the
auctioneer to express graded preferences over the final bundles.

So let us assume that the auctioneer derives a certain value from a given supply
chain, depending on its overall duration and on its outcome, the bundle of goods
he owns in the end. Note that this discussion assumes absolute time; with relative
time, preferences over durations do not make much sense, but the results can
easily be adjusted to only model preferences over outcomes.

We thus assume the auctioneer’s valuation is a function

u : N× NG → R ∪ {⊥},

mapping duration/outcome pairs to a value or ⊥, meaning the duration/outcome
pair is not acceptable. This valuation can be incorporated into the WDP in the
following way.

After receiving the bids, the auctioneer decides on a maximum duration M
and creates an additional bid under an unused bidder identity:

xor
{(m,U) |u(m,U) 6=⊥}

bid({(U , {}}, τm,U)}, u(m,U)),

where } is a special token that does not occur as a good in any other bid, together
with time constraints: ∧

{(m,U) |u(m,U) 6=⊥}

τm,U = m.

The transformations in this bid are to be thought of as terminal transformations:
they denote the possible time points and outcomes at which a solution sequence
may end, and the associated values for the auctioneer. The idea is that using this
method, the auctioneer’s valuation can be expressed with almost no change to the
integer program.

Let us look at the requirements needed for the auctioneer’s valuation to work.

• The terminal transformations should only be used at the respective intended
positions in the sequence; this is ensured by the given time constraints.

• At most one of them should be used; this is ensured by the xor (and strictly
speaking also follows from the last point below).5

• At least one6 of them should be used; this can be ensured by setting
Uout = {}}.

5Even more strictly speaking, it also follows from the next requirement and the fact that
we assume no free disposal; we include it nevertheless for conceptual clarity and in order to
accommodate a possible free disposal assumption.

6This could read “exactly one”, but again, we want to accommodate a possible free disposal
assumption.

132 Chapter 6. Time constraints in mixed auctions

• The unique terminal transformation which is used should indeed constitute
the end of the solution sequence.7

For this last point, we need an additional integer constraint:

(11) No transformations are scheduled after a terminal transformation:

xm+1
ijk ≤ 1− ym

−1j′k′ (∀ijkj′k′m)

(−1 being the auctioneer’s “bidder identity”).

While the remaining requirements could also be encoded more directly and
more efficiently into the integer program, for clarity we here restrict ourselves to
this version using the high-level features of the bidding language.

Many further extensions and optimizations along these lines are conceivable.
We do not try to exhaust them here, but sketch only one example. The auctioneer
might want to extract some goods U from the supply chain by some intermediate
time point ξ, not necessarily at its end. To express this, he can add a transformation
(U , {�}, τ) with time constraint τ < ξ + 1 to his bid, and add � to Uout. Dropping
constraint (11) for this transformation, he makes it non-terminal. He can also
make this a soft requirement by including another transformation that yields �
from no input and attaching appropriate prices to the corresponding bids.

6.3.5 Computational complexity

The (decision problem underlying the) WDP for mixed auctions with time con-
straints is NP-complete. NP-hardness follows from NP-hardness of the WDP for
standard combinatorial auctions [127]. NP-membership follows from the fact that
the validity of a given allocation sequence can clearly be verified in polynomial
time. That is, in terms of (abstract) computational complexity, the integration
of time constraints does not have too much of an impact when compared to the
original mixed-auction model [37].

This is also the reason why time constraints seem to fall into place so easily
in our case, which may be somewhat unexpected given the amount of research
dedicated to handling them (see, e.g., [138]): Most of those research efforts are
directed towards tractability, which in our context does not have such a high
priority since even without any optimizations, time constraints do not increase
the complexity already inherent in the underlying framework.

Consequently, not much has changed with respect to the complexity of the
integer programming formulation. While there is room for optimizations, the
number of variables we introduce is of the same order as in the original formulation:
O(n2), where n is the number of transformations occurring in the bids submitted.

7As a last remark, this requirement could be dropped if we did assume free disposal and all
bids’ prices were positive.

6.4. Intervals 133

The most recent work on winner determination algorithms for mixed auctions
has tried to reduce the number of decision variables needed so as to improve
performance [67, 107]. Due to the modular nature of our approach, we are
optimistic that it will be possible to take advantage of these optimizations and
integrate them with the extensions for handling time constraints presented here.
In this chapter, our focus has been on presenting the basic model of mixed auctions
with time constraints, and on demonstrating the feasibility of the approach.

6.4 Intervals

As discussed before, it is desirable to allow transformations to overlap or take
place during other transformations, and to allow transformations to have different
durations (meaningful mostly in the variant with absolute time).

One step towards this goal, which can be expressed in our framework without
any modifications, is to allow for a transformation to specify an interval during
which it takes place, rather than only a single time point identifier.

Interval handling is pure syntactic sugar in our framework. To represent a
transformation that takes place during an interval, we include two time point
identifiers: start time and end time. Internally, intervals are reduced to two
transformations with single time points and an appropriate time constraint:

(I,O, [τ, τ ′])
(I, ∅, τ), (∅,O, τ ′)
τ < τ ′

Since the replacement takes place within a single atomic bid, it is guaranteed
that either both the start and end transformations will be selected, or neither.
That is, the interval transformation remains intact.

The usual interval relations (see the interval calculus by Allen [2]; due to
sequentiality we consider only the strict relations) can be defined as macros
yielding standard time constraints:

[τ1, τ
′
1] before [τ2, τ

′
2] τ ′1 < τ2

[τ1, τ
′
1] overlaps [τ2, τ

′
2] τ1 < τ2 ∧ τ ′1 < τ ′2

[τ1, τ
′
1] during [τ2, τ

′
2] τ2 < τ1 ∧ τ ′1 < τ2

With absolute time, absolute restrictions on the durations can also be imple-
mented:

duration([τ, τ ′]) > ξ τ + ξ < τ ′

duration([τ, τ ′]) < ξ τ ′ < τ + ξ

duration([τ, τ ′]) = ξ τ ′ = τ + ξ

Note that expressions like duration(·) > duration(·) are not so straightforwardly
expressible in our framework, but arguably also much less useful in the context of
specifying bids.

134 Chapter 6. Time constraints in mixed auctions

6.5 Conclusions and related work

We have presented an extension to the existing framework of mixed multi-unit
combinatorial auctions [37], enabling bidders to impose time constraints on the
transformations they offer.

In the original framework, the auctioneer is free to schedule the offered trans-
formations in any way suitable to achieve his desired outcome, while bidders are
left with no control over this process. Our work redresses this asymmetry, thus
representing an important step towards a more realistic model of supply chain
formation, where bidders themselves may have supply chains or other factors
restricting the possible schedules for performing certain transformations.

Starting from a very basic core language for expressing time constraints, we
have given various extensions, many purely syntactic, showing the somewhat
unexpected power inherent to the core language.

We have also extended the integer program given in [37] to handle time
constraints. Our extensions are modular in a way that will facilitate combining
them with other extensions and optimizations for mixed auctions, such as [67, 107].

6.5.1 Related work

Time constraints have been applied to different types of combinatorial auctions
in the literature. For example, Hunsberger and Grosz [81] extend an existing
algorithm for winner determination in combinatorial auctions to allow precedence
constraints when bidding on roles in a prescribed action plan (“recipe”). Collins
[42] permits relative time constraints in a combinatorial reverse auction over
combinations of tasks, and the efficiency of various approaches to solving the
winner determination problem is tested.

Auction frameworks involving time have also been fruitfully applied to problems
of distributed scheduling. In the work of Wellman et al. [152], time constraints do
not enter separately, but rather time slots are the actual objects being auctioned,
and game-theoretic properties and mechanism design issues are discussed.

While it would be interesting to examine whether the insights about efficiency
and alternative approaches to handling time could be applied to our framework,
the roles, tasks, and time slots being auctioned in those contributions are “atomic”,
and the formulations and results do not easily translate to transformations in the
context of mixed auctions.

6.5.2 Possible extensions

Concerning mechanism design, the remarks by Cerquides et al. [37] still apply.
The bottom line is that, with finite valuations, the incentive-compatibility of the
Vickrey-Clarke-Groves (VCG) mechanism carries over from standard combinatorial
auctions to mixed multi-unit combinatorial auctions with time constraints. It

6.5. Conclusions and related work 135

is a question of independent interest, whether and how this can be extended to
non-finite valuations when still allowing only finite bids.

Other topics for future work include the exact interplay between the various
syntactic extensions we have given, defining a uniform general language, and
determining whether some of the features can be implemented in more direct (and
efficient) ways than through the translation to the core language used in this work.
The same holds for the underlying bidding language, where operators such as or
may be executed more efficiently than through translation to xor. Finally, an
empirical analysis needs to be performed, including testing and optimizing our
integer program.

Chapter 7

Outlook

One main topic of this dissertation has been what we called explicit knowledge
programming : giving artificial agents access to the knowledge one can theoretically
ascribe to them, by way of providing epistemic statements in a programming
language, made feasible by considering scenarios with well-defined restrictions.
We believe that this approach is worth exploring in a more systematic way.

As illustrated in Chapter 4, simulations of virtual worlds, and in particular
computer games, form a rich playground and testbed for formalisms and imple-
mentations. In the artificial intelligence (AI) community, this has been realized,
among others, by Laird and van Lent [89]. Such environments therefore are a
natural starting point for exploring a practical perspective on reasoning about
knowledge in interaction, about which we give some thoughts in this chapter.

We start by briefly describing a logic framework which seems highly suitable
for this endeavour.

Dynamic Epistemic Logic (DEL). DEL is a sophisticated and intuitive
formalism for reasoning about epistemic situations and change. It was initiated by
Gerbrandy and Groeneveld [66] and Baltag et al. [14]. The book by van Ditmarsch
et al. [52] provides a recent overview.

The fundamental idea of DEL is to add a dynamic aspect to epistemic logic,
which can be represented on the level of models. Besides the (main) model
describing a given situation as illustrated in the Introduction chapter, DEL has
action models describing actions (or events).

An action model has a similar structure as the main model, but its nodes
represent possible actions, including an actual action, and its edges represent the
agents’ uncertainties with respect to these possible actions. For example, if Ann
sees Bob showing the ace of spades to Eve, but Ann cannot see which card it is,
she will also consider it possible that he is showing her the queen of hearts (or
any other card).

An action model can be applied to a model using a product update operation

137

138 Chapter 7. Outlook

which yields a new model reflecting the situation after the corresponding action
has occurred. Actions which not only affect the epistemic situation but change
actual facts in the world have been examined [50], but the more widely studied
purely epistemic actions already suffice for many interesting scenarios, for example
knowledge games as described in Chapter 4.

Using DEL in simulated worlds. One way to employ DEL (or logic systems
in general) is through its axioms. These fundamental truths and rules can be used
to deduce any valid formula. A possible approach then is to combine a virtual
world that uses deductive planning, such as the one by Magnusson and Doherty
[95], with axioms for epistemic reasoning. In this way, the planning agents would
be enabled to reason about the epistemic preconditions and consequences of their
actions and the epistemic parts of their goals.

However, as throughout this dissertation, we here focus on a model-based
viewpoint. In the following, we describe some issues and possibilities on the way
towards realistic implementations.

There are a number of reasons why we believe that DEL, and in particular
a model-based approach, is very suitable for introducing epistemic reasoning to
computer-simulated worlds:

• A centralized model comprising all agents lends itself naturally to simulated
worlds, where there already is a central controller providing agents with
information such as current vision and other physical senses.1

• Importantly for real-time applications, a model-based approach can allow
for more efficient evaluation of epistemic formulas than a deduction-based
approach.

• The DEL model is updated as events occur to reflect the current state
of affairs. It does not retain information about past states, as other, for
example history-based, frameworks do; this keeps the model manageable.

• Focusing on the model, rather than the axioms, is more intuitive (in particular
in the case of DEL), which makes it easier to find suitable optimizations
and restrictions of the logic. A model-based implementation can also be
more straightforward to inspect and debug than a heap of formulas and
deductions.

• The data structures for DEL models and the operations for updates are
straightforwardly represented in any programming language.

1However, the centralized viewpoint is not vital to our aim of implementing DEL, and any
results and techniques obtained for a centralized model are likely transferable to autonomous
agents with internal epistemic models, due to close correspondences between these viewpoints [11].

139

As illustrated in Chapter 4, artificial agents acting in a simulated world can then,
for example, use epistemic conditions to branch over alternative program paths.
Whenever an epistemic formula is encountered, the knowledge module, which
maintains the DEL model, is queried to evaluate it. Thus, agents gain access to
their knowledge and beliefs just like they receive information about their physical
senses from the central simulation controller.

Issues. The biggest problem of a model-based approach is that the model to be
maintained can be very large. The number of possible configurations of atoms is
exponential in the number of atoms, and in order to keep track of higher-order
knowledge, the same configuration of atoms may even need to be embodied in
several states. In DEL, update operations exacerbate this problem further: the
product operation prima facie increases the size of the model exponentially.

Correspondingly, implementations of DEL are rare. There exists one generic
implementation of DEL models and operations (DEMO, [54]). However, without
precautions the models quickly become too large to handle, and it is unclear to
what extent realistic scenarios stay manageable in the long run.

Real-time simulation environments, having to simulate concurrently all parts
and aspects of the world, make efficiency of both representation and processing a
top priority, especially in computer games aimed at customary home computers.

Thus, the crucial point is to find compact ways of representing models, examine
how exactly updates affect the size of the model in the long run, and find conditions
on actions and epistemic formulas under which an implementation becomes feasible.
In order to obtain results that are relevant for general applications, this needs
to be done in a more generic and systematic way than what we have done in
Chapters 3 and 4.

In the following, we discuss some starting points for tackling these issues.

Representation and evaluation of models. Besides ensuring that the main-
tained model is always the smallest of all equivalent ones,2 the model needs to
be represented in a way that can be stored efficiently. This is one of the central
points in the area of model checking [41], and that area can thus serve a starting
point for finding techniques for compact representation and efficient evaluation.

However, DEL brings an additional twist in the form of update operations.
These should operate directly on the compact representation of the model, without
having to blow up the model in some intermediate steps. Since this adds a
requirement to the representation techniques, they need to be revisited and
adapted where necessary.

Restrictions on events. One way to avoid uncontrolled exponential growth of
the model as events occur is to impose restrictions on the classes of events that

2This is the so-called bisimulation contraction.

140 Chapter 7. Outlook

will be taken into account in the simulation. For example, the events considered
in Chapter 4 have an effect only the first time they occur. This can be seen by
noting that the order in which different events occur does not matter, and that
any event occurring twice in a row has the same effect as only one occurrence.

Along similar lines, more general classes of events which are commutative and
idempotent in an adequate sense may be of relevance. It may also be possible
to identify other technical conditions which make updates “well-behaved” in the
long run. It is then necessary to examine what these conditions imply on the
logical level, what configurations of knowledge they give rise to, and whether the
resulting classes of events are useful in practice.

In the DEL community there is increasing interest in issues such as what
events are equivalent, how updates behave in the long run, and whether models
ultimately stabilize. This line of research, initiated by Ruan [128], Sadzik [131],
and van Eijck et al. [55], is closely related to the aim of finding classes of events
that are suitable for implementations.

Restrictions on epistemic formulas. Naturally, the class of epistemic formu-
las that are to be evaluated by the knowledge module has a direct impact on its
efficiency. Imposing restrictions, for example, on the nesting depths of knowledge
and belief operators allows to bound the evaluation time of formulas, and to prune
down the model: information that is never going to be queried does not need to
be modeled. Note also that there is some interplay between the different kinds of
restrictions. For example, similarly to what we have seen in Chapter 2, certain
restrictions on initial situations and events make certain formulas equivalent, since
models discriminating them will never occur. In this sense, there are corresponding
restrictions of events and formulas.

Here, too, the update operation should be specialized to these restrictions and
operate directly on pruned models. That is, rather than generating a temporary
model and pruning it down, it should, if possible, avoid generating unnecessary
information in the first place.

In the proposed context of virtual worlds, the ultimate goal is to maximize
efficiency while retaining realism, or enjoyability in the case of computer games.
Therefore, as described in Chapter 4, Section 4.6.3, insights about human cognition
need to be used in order to find suitable epistemic languages. Conversely, technical
restrictions that allow for efficient implementations can be examined on a logical
level to find possible application scenarios.

Conclusion. Overall, we believe that an implementation-oriented perspective
can provide new and useful stimuli for future directions of the mentioned lines of
research.

Bibliography

[1] E. A. Akkoyunlu, K. Ekanadham, and R. V. Huber. Some constraints and
tradeoffs in the design of network communications. In Proceedings of the
fifth ACM symposium on Operating systems principles (SOSP-5), pages
67–74, Austin, Texas, 1975. ACM. Cited on p. 3.

[2] James F. Allen. Maintaining knowledge about temporal intervals. Commu-
nications of the ACM, 26(11):832–843, 1983. Cited on p. 133.

[3] Gregory R. Andrews. Concurrent Programming: Principles and Practice.
Addison Wesley, 1991. Cited on p. 14.

[4] Krzysztof R. Apt. Relative strength of strategy elimination procedures.
Economics Bulletin, 3(21):1–9, 2007. Cited on p. 57.

[5] Krzysztof R. Apt. The many faces of rationalizability. The B.E. Journal of
Theoretical Economics, 7(1):Article 18, 2007. Cited on pp. 54 and 55.

[6] Krzysztof R. Apt. Uniform proofs of order independence for various strategy
elimination procedures. The B.E. Journal of Theoretical Economics, 4(1):
Article 5, 2004. Cited on p. 96.

[7] Krzysztof R. Apt and Tadeusz Radzik. Stable partitions in coalitional games.
arXiv.org, http://arxiv.org/abs/cs.GT/0605132, 2006. Cited on pp. 96,
104, 106, 108, 109, and 114.

[8] Krzysztof R. Apt and Andreas Witzel. A generic approach to coalition
formation. International Game Theory Review, 2009. To appear. Cited on
p. 11.

[9] Krzysztof R. Apt, Andreas Witzel, and Jonathan A. Zvesper. Common
knowledge in interaction structures. In Proceedings of the 12th Conference
on Theoretical Aspects of Rationality and Knowledge (TARK XII), 2009. To
appear. Cited on pp. 10, 37, 38, 40, 48, and 75.

141

http://arxiv.org/abs/cs.GT/0605132

142 Bibliography

[10] Itai Ashlagi, Dov Monderer, and Moshe Tennenholtz. Resource selection
games with unknown number of players. In Hideyuki Nakashima, Michael P.
Wellman, Gerhard Weiss, and Peter Stone, editors, Proceedings of the
Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems, pages 819–825, Hakodate, Japan, 2006. ACM Press. Cited on p. 53.

[11] Guillaume Aucher. Perspectives on Belief and Change. PhD thesis, Université
de Toulouse and University of Otago, 2008. Cited on pp. 81 and 138.

[12] Robert J. Aumann. Agreeing to disagree. The Annals of Statistics, 4(6):
1236–1239, 1976. Cited on pp. 4 and 13.

[13] Robert J. Aumann and Jacques H. Drèze. Cooperative games with coalition
structures. International Journal of Game Theory, 3:217–237, 1974. Cited
on p. 95.

[14] Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. The logic of
public announcements, common knowledge, and private suspicions. In Itzhak
Gilboa, editor, Proceedings of the 7th Conference on Theoretical Aspects
of Rationality and Knowledge (TARK-98), pages 43–56, Evanston, Illinois,
1998. Morgan Kaufmann. Cited on p. 137.

[15] Simon Baron-Cohen. Mindblindness. The MIT Press, 1995. Cited on p. 78.

[16] Pierpaolo Battigalli and Giacomo Bonanno. Recent results on belief, knowl-
edge and the epistemic foundations of game theory. Research in Economics,
53(2):149–225, 1999. Cited on p. 51.

[17] Johan van Benthem. Logical dynamics of information and interaction. Book
in preparation, 2009. Cited on p. 1.

[18] Johan van Benthem. Logic in games. Book in preparation, 2009. Cited on
p. 4.

[19] Johan van Benthem. Dynamic logic for belief revision. Journal of Applied
Non-Classical Logics, 17(2):129–155, 2007. Cited on p. 92.

[20] Johan van Benthem. One is a lonely number: Logic and communication.
In Zoé Chatzidakis, Peter Koepke, and Wolfram Pohlers, editors, Logic
Colloquium 2002, volume 27 of Lecture Notes in Logic, pages 96–129. A K
Peters, 2006. Cited on pp. 6 and 47.

[21] Johan van Benthem, Jelle Gerbrandy, and Eric Pacuit. Merging frameworks
for interaction: DEL and ETL. In Dov Samet, editor, Proceedings of the
11th conference on Theoretical aspects of rationality and knowledge (TARK
XI), pages 72–81, Brussels, Belgium, 2007. ACM. Cited on p. 48.

Bibliography 143

[22] Arthur Bernstein. Output guards and nondeterminism in “Communicating
Sequential Processes”. ACM Transactions on Programming Languages and
Systems, 2(2):234–238, 1980. Cited on p. 35.

[23] Bethesda Softworks. The Elder Scrolls: Oblivion.
http://www.elderscrolls.com/games/oblivion_overview.htm, 2006.
Cited on p. 81.

[24] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic.
Cambridge University Press, 2001. Cited on p. 88.

[25] Francis Bloch and Matthew Jackson. Definitions of equilibrium in network
formation games. International Journal of Game Theory, 34(3):305–318,
2006. Cited on p. 96.

[26] Anna Bogomolnaia and Matthew O. Jackson. The stability of hedonic
coalition structures. Games and Economic Behavior, 38(2):201–230, 2002.
Cited on p. 96.

[27] Rafael H. Bordini, Lars Braubach, Mehdi Dastani, Amal El Fallah
Seghrouchni, Jorge J. Gomez-Sanz, Joao Leite, Gregory O’Hare, Alexander
Pokahr, and Alessandro Ricci. A survey of programming languages and
platforms for Multi-Agent systems. Informatica, 30(1):33–44, 2006. Cited
on p. 83.

[28] Tilman Börgers. Weak dominance and approximate common knowledge.
Journal of Economic Theory, 64(1):265–276, 1994. Cited on p. 8.

[29] Luc Bougé. On the existence of symmetric algorithms to find leaders in
networks of communicating sequential processes. Acta Informatica, 25(2):
179–201, 1988. Cited on pp. 15, 16, 21, 22, 28, 29, 30, and 35.

[30] Adam Brandenburger. Knowledge and equilibrium in games. The Journal
of Economic Perspectives, 6(4):83–101, 1992. Cited on p. 8.

[31] Adam Brandenburger. The power of paradox: some recent developments
in interactive epistemology. International Journal of Game Theory, 35(4):
465–492, 2007. Cited on p. 77.

[32] Adam Brandenburger, Amanda Friedenberg, and H. Jerome Keisler. Fixed
points for strong and weak dominance, 2006. Working paper. Cited on p. 55.

[33] Gael N. Buckley and Abraham Silberschatz. An effective implementation
for the generalized Input-Output construct of CSP. ACM Transactions on
Programming Languages and Systems, 5(2):223–235, 1983. Cited on pp. 15
and 35.

http://www.elderscrolls.com/games/oblivion_overview.htm

144 Bibliography

[34] Nils Bulling and Koen V. Hindriks. Communicating rational agents: Se-
mantics and verification. Technical Report IfI-09-02, Institut für Informatik,
Technische Universität Clausthal, 2009. Cited on p. 83.

[35] Nadia Burani and William S. Zwicker. Coalition formation games with
separable preferences. Mathematical Social Sciences, 45(1):27–52, 2003.
Cited on p. 96.

[36] Colin F. Camerer. Behavioural studies of strategic thinking in games. Trends
in Cognitive Sciences, 7(5):225–231, 2003. Cited on p. 92.

[37] Jesús Cerquides, Ulle Endriss, Andrea Giovannucci, and Juan A. Rodŕıguez-
Aguilar. Bidding languages and winner determination for mixed multi-unit
combinatorial auctions. In Manuela Veloso, editor, Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI-2007), pages
1221–1226, Hyderabad, India, 2007. Cited on pp. 115, 116, 117, 120, 122,
125, 127, 132, and 134.

[38] Christophe P. Chamley. Rational herds: Economic models of social learning.
Cambridge University Press, 2004. Cited on pp. 6 and 52.

[39] K. Mani Chandy and Jayadev Misra. How processes learn. Distributed
Computing, 1(1):40–52, 1986. Cited on pp. 3 and 47.

[40] Yi-Chun Chen, Ngo Van Long, and Xiao Luo. Iterated strict dominance in
general games. Games and Economic Behavior, 61(2):299–315, 2007. Cited
on p. 54.

[41] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 1999. Cited on pp. 91 and 139.

[42] John Edgar Collins. Solving combinatorial auctions with temporal constraints
in economic agents. PhD thesis, University of Minnesota, 2002. Cited on
p. 134.

[43] Peter Cramton, Yoav Shoham, and Richard Steinberg, editors. Combinatorial
Auctions. MIT Press, 2006. Cited on pp. 6 and 115.

[44] Vincent P. Crawford and Joel Sobel. Strategic information transmission.
Econometrica, 50(6):1431–1451, 1982. Cited on p. 52.

[45] Maria Cutumisu, Curtis Onuczko, Matthew McNaughton, Thomas Roy,
Jonathan Schaeffer, Allan Schumacher, Jeff Siegel, Duane Szafron, Kevin
Waugh, Mike Carbonaro, Harvey Duff, and Stephanie Gillis. ScriptEase: a
generative/adaptive programming paradigm for game scripting. Science of
Computer Programming, 67(1):32–58, 2007. Cited on p. 83.

Bibliography 145

[46] Eddie Dekel and Drew Fudenberg. Rational behavior with payoff uncertainty.
Journal of Economic Theory, 52(2):243–267, 1990. Cited on p. 5.

[47] Gabrielle Demange. On group stability in hierarchies and networks. Journal
of Political Economy, 112(4):754–778, 2004. Cited on p. 96.

[48] Gabrielle Demange and Myrna Wooders. Group Formation in Economics:
Networks, Clubs, and Coalitions. Cambridge University Press, 2005. Cited
on p. 96.

[49] Hans van Ditmarsch. Knowledge Games. PhD thesis, Groningen University,
2000. Cited on pp. 77 and 78.

[50] Hans van Ditmarsch and Barteld Kooi. Semantic results for ontic and
epistemic change. In Giacomo Bonanno, Wiebe van der Hoek, and Michael
Wooldridge, editors, Logic and the Foundations of Game and Decision
Theory (LOFT 7), volume 3 of Texts in Logic and Games, pages 87–117,
Amsterdam, 2008. Amsterdam University Press. Cited on p. 138.

[51] Hans van Ditmarsch and Willem Labuschagne. My beliefs about your beliefs:
a case study in theory of mind and epistemic logic. Synthese, 155(2):191–209,
2007. Cited on p. 92.

[52] Hans van Ditmarsch, Wiebe Hoek, and Barteld Kooi. Dynamic Epistemic
Logic. Springer, 2007. Cited on pp. 91 and 137.

[53] Aldo Franco Dragoni, Paolo Giorgini, and Luciano Serafini. Mental states
recognition from communication. Journal of Logic and Computation, 12(1):
119–136, 2002. Cited on p. 83.

[54] Jan van Eijck. DEMO—a demo of epistemic modelling. In Johan van Ben-
them, Benedikt Löwe, and Dov Gabbay, editors, Interactive Logic: Selected
Papers from the 7th Augustus de Morgan Workshop, London. Amsterdam
University Press, 2008. Cited on p. 139.

[55] Jan van Eijck, Ji Ruan, and Tomasz Sadzik. Action emulation. Draft paper,
2008. Cited on p. 140.

[56] Eidos Interactive. Thief: The Dark Project.
http://www.eidosinteractive.com/games/info.html?gmid=34, 1998.
Cited on p. 84.

[57] Electronic Arts Inc. Burnout Paradise.
http://burnout.ea.com, 2008. Cited on p. 93.

http://www.eidosinteractive.com/games/info.html?gmid=34
http://burnout.ea.com

146 Bibliography

[58] Eric Eve. Epistemology, Version 4. Extension for Inform 7: A Design
System for Interactive Fiction Based on Natural Language.
http://www.inform-fiction.org/I7Downloads/Extensions/Eric%

20Eve/Epistemology, 2007. Cited on p. 82.

[59] Ronald Fagin and Joseph Y. Halpern. Belief, awareness, and limited reason-
ing. Artificial Intelligence, 34(1):39–76, 1987. Cited on pp. 7 and 73.

[60] Ronald Fagin, Joseph Y. Halpern, Moshe Y. Vardi, and Yoram Moses.
Reasoning about knowledge. MIT Press, 1995. Cited on pp. 1, 3, 9, 14, 38,
40, and 88.

[61] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Knowledge-based programs. Distributed Computing, 10(4):199–225, 1997.
Cited on pp. 9 and 74.

[62] Joseph Farrell and Matthew Rabin. Cheap talk. The Journal of Economic
Perspectives, 10(3):103–118, 1996. Cited on p. 52.

[63] Faith Fich and Eric Ruppert. Hundreds of impossibility results for distributed
computing. Distributed Computing, 16(2):121–163, 2003. Cited on pp. 15
and 16.

[64] Robert E. Filman and Daniel P. Friedman. Coordinated Computing: Tools
and Techniques for Distributed Software. McGraw-Hill, Inc, 1984. Cited on
p. 35.

[65] Jelle Gerbrandy. Communication strategies in games. Journal of Applied
Non-Classical Logics, 17(2):197–211, 2007. Cited on p. 52.

[66] Jelle Gerbrandy and Willem Groeneveld. Reasoning about information
change. Journal of Logic, Language and Information, 6(2):147–169, 1997.
Cited on p. 137.

[67] Andrea Giovannucci, Meritxell Vinyals, Juan A. Rodŕıguez-Aguilar, and
Jesús Cerquides. Computationally efficient winner determination for mixed
multi-unit combinatorial auctions. In Proc. 7th International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS-2008).
IFAAMAS, 2008. Cited on pp. 133 and 134.

[68] Piotr J. Gmytrasiewicz and Prashant Doshi. A framework for sequential
planning in Multi-Agent settings. Journal of Artificial Intelligence Research,
24:49–79, 2005. Cited on p. 84.

[69] Sanjeev Goyal. Connections: An introduction to the economics of networks.
Princeton University Press, 2007. Cited on p. 6.

http://www.inform-fiction.org/I7Downloads/Extensions/Eric%20Eve/Epistemology
http://www.inform-fiction.org/I7Downloads/Extensions/Eric%20Eve/Epistemology

Bibliography 147

[70] Jim Gray. Notes on data base operating systems. In Rudolf Bayer, Robert M.
Graham, and Gerhard Seegmüller, editors, Operating Systems, An Advanced
Course, volume 60 of Lecture Notes in Computer Science, pages 393–481.
Springer-Verlag, 1978. Cited on p. 3.

[71] Joseph Greenberg. Coalition structures. In Robert J. Aumann and Sergiu
Hart, editors, Handbook of Game Theory with Economic Applications, vol-
ume 2 of Handbook of Game Theory with Economic Applications, chapter 37,
pages 1305–1337. Elsevier, 1994. Cited on p. 96.

[72] Joseph Y. Halpern. A computer scientist looks at game theory. Games and
Economic Behavior, 45(1):114–131, 2003. Cited on p. 13.

[73] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge
in a distributed environment. Journal of the ACM, 37(3):549–587, 1990.
Cited on pp. 13, 14, and 35.

[74] Joseph Y. Halpern and Moshe Y. Vardi. The complexity of reasoning about
knowledge and time. I. Lower bounds. Journal of Computer and System
Sciences, 38(1):195–237, 1989. Cited on p. 70.

[75] Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Algorithmic knowl-
edge. In Proceedings of the 5th conference on Theoretical aspects of reasoning
about knowledge (TARK V), pages 255–266, Pacific Grove, California, 1994.
Morgan Kaufmann Publishers Inc. Cited on p. 73.

[76] John C. Harsanyi. Games with incomplete information played by ”Bayesian”
players, I-III. Management Science, 14(3, 5, 7):159–182, 320–334, 486–502,
1967. Cited on p. 4.

[77] Patrick J. Hayes. In defence of logic. In Proceedings of the 5th International
Joint Conference on Artificial Intelligence (IJCAI 1977), pages 559–565,
Cambridge, MA, USA, 1977. Cited on p. 68.

[78] Jaakko Hintikka. Knowledge and Belief: An Introduction to the Logic of the
Two Notions. Cornell University Press, 1962. Cited on p. 1.

[79] C. Antony R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666–677, 1978. Cited on pp. 15, 16, 18, and 35.

[80] C. Antony R. Hoare. Communicating Sequential Processes. Prentice-Hall,
Inc, 1985. Cited on pp. 15 and 35.

[81] Luke Hunsberger and Barbara J. Grosz. A combinatorial auction for col-
laborative planning. In Proc. 4th International Conference on MultiAgent
Systems. IEEE Computer Society, 2000. Cited on p. 134.

148 Bibliography

[82] INMOS Ltd. occam 2 Reference Manual. Prentice-Hall, 1988. Cited on
p. 15.

[83] Matthew O. Jackson. Social and Economic Networks. Princeton University
Press, 2008. Cited on pp. 6 and 47.

[84] Geraint Jones. On guards. In Traian Muntean, editor, Parallel Programming
of Transputer Based Machines, pages 15–24, Amsterdam, 1988. IOS Press.
Cited on pp. 15, 16, and 23.

[85] Michael Kearns, Michael L. Littman, and Satinder Singh. Graphical models
for game theory. In Jack S. Breese and Daphne Koller, editors, Proceedings of
the 17th Conference in Uncertainty in Artificial Intelligence, pages 253–260,
Seattle, Washington, 2001. Morgan Kaufmann. Cited on pp. 51 and 71.

[86] Donald E. Knuth, Christos H. Papadimitriou, and John N. Tsitsiklis. A
note on strategy elimination in bimatrix games. Operations Research Letters,
7(3):103–107, 1988. Cited on p. 71.

[87] Saul Kripke. Semantical analysis of modal logic I: Normal modal propo-
sitional calculi. Zeitschrift fur mathematische Logik und Grundlagen der
Mathematik, 9:67–96, 1963. Cited on p. 1.

[88] Reino Kurki-Suonio. Towards programming with knowledge expressions. In
Proceedings of the 13th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pages 140–149, St. Petersburg Beach, Florida,
1986. ACM Press. Cited on p. 35.

[89] John E. Laird and Michael van Lent. Human-level AI’s killer application:
Interactive computer games. AI Magazine, pages 15–25, 2001. Cited on
p. 137.

[90] Gérard Le Lann. Distributed systems, towards a formal approach. Informa-
tion Processing, 77:155–160, 1977. Cited on p. 22.

[91] João Leite and Lúıs Soares. Evolving characters in role playing games.
In Cybernetics and Systems, Proceedings of the 18th European Meeting on
Cybernetics and Systems Research (EMCSR 2006), volume 2, pages 515–520,
Vienna, 2006. Cited on p. 83.

[92] David Lewis. Convention: A Philosophical Study. Harvard University Press,
1969. Cited on p. 13.

[93] Alessio Lomuscio and Mark Ryan. Ideal agents sharing (some!) knowledge.
In Proceedings of the 13th European Conference on Artificial Intelligence
(ECAI’98), page 557–561. John Wiley & sons, 1998. Cited on p. 92.

Bibliography 149

[94] Inés Macho-Stadler, David Pérez-Castrillo, and Nicolás Porteiro. Sequential
formation of coalitions through bilateral agreements in a cournot setting.
International Journal of Game Theory, 34(2):207–228, 2006. Cited on p. 96.

[95] Martin Magnusson and Patrick Doherty. Logical agents for language and
action. In Proceedings of the Fourth Artificial Intelligence and Interactive
Digital Entertainment Conference (AIIDE-08), Stanford, 2008. Cited on
pp. 83 and 138.

[96] Sami Mäkelä. NPC Scripting and Reasoning about the NPC behaviour.
WorldForge: The Original Open Source MMO Project.
http://www.worldforge.org/project/newsletters/November2001/

NPC_Scripting, 2001. Cited on p. 82.

[97] Marco Marini. An overview of coalition & network formation models for
economic applications. Working Papers 0712, University of Urbino Carlo
Bo, Department of Economics, 2007. Cited on p. 96.

[98] Michael Mateas and Andrew Stern. A behavior language: Joint action and
behavioral idioms. In Life-like Characters: Tools, Affective Functions and
Applications. Springer, 2004. Cited on p. 82.

[99] Michael Mateas and Andrew Stern. Façade: An experiment in building a
fully-realized interactive drama. In Game Developers Conference, Game
Design track, 2003. Cited on p. 82.

[100] John-Jules Ch. Meyer and Wiebe van der Hoek. Epistemic Logic for AI
and Computer Science. Cambridge University Press, 1995. Cited on pp. 1
and 81.

[101] Dov Monderer and Dov Samet. Approximating common knowledge with
common beliefs. Games and Economic Behavior, 1(2):170–190, 1989. Cited
on p. 4.

[102] Stephen Morris. Coordination, communication, and common knowledge:
A retrospective on the electronic-mail game. Oxford Review of Economic
Policy, 18(4):433–445, 2002. Cited on p. 13.

[103] Hervé Moulin. Axioms of Cooperative Decision Making. Cambridge Univer-
sity Press, 1988. Cited on pp. 14 and 99.

[104] John von Neumann and Oskar Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, 1944. Cited on p. 4.

[105] Noam Nisan. Bidding languages for combinatorial auctions. In Peter
Cramton, Yoav Shoham, and Richard Steinberg, editors, Combinatorial
Auctions. MIT Press, 2006. Cited on pp. 117, 119, and 120.

http://www.worldforge.org/project/newsletters/November2001/NPC_Scripting
http://www.worldforge.org/project/newsletters/November2001/NPC_Scripting

150 Bibliography

[106] Martin J. Osborne. An Introduction to Game Theory. Oxford University
Press, New York, 2003. Cited on pp. 4 and 14.

[107] Brammert Ottens and Ulle Endriss. Comparing winner determination
algorithms for mixed multi-unit combinatorial auctions. In Proc. 7th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2008). IFAAMAS, 2008. Cited on pp. 133 and 134.

[108] Guillermo Owen. Game Theory. Academic Press, New York, third edition,
2001. Cited on p. 110.

[109] Eric Pacuit and Rohit Parikh. Reasoning about communication graphs. In
Johan van Benthem, Benedikt Löwe, and Dov Gabbay, editors, Interactive
Logic, volume 1 of Texts in Logic and Games, pages 135–157, London, 2007.
Amsterdam University Press. Cited on pp. 6, 38, 40, 47, and 48.

[110] Catuscia Palamidessi. Comparing the expressive power of the synchronous
and asynchronous pi-calculi. Mathematical Structures in Computer Science,
13(05):685–719, 2003. Cited on p. 15.

[111] Rohit Parikh. Knowledge and the problem of logical omniscience. In
Proceedings of the Second International Symposium on Methodologies for
intelligent systems, pages 432–439, Charlotte, North Carolina, 1987. North-
Holland Publishing Co. Cited on p. 73.

[112] Rohit Parikh. Levels of knowledge, games, and group action. Research in
Economics, 57(3):267–281, 2003. Cited on p. 93.

[113] Rohit Parikh. Logical omniscience, volume 960 of Lecture Notes in Computer
Science, pages 22–29. Springer, Berlin, 1995. Cited on p. 9.

[114] Rohit Parikh. Sentences, belief and logical omniscience, or what does
deduction tell us? The Review of Symbolic Logic, 1(04):459–476, 2008. Cited
on p. 8.

[115] Rohit Parikh and Paul Krasucki. Communication, consensus, and knowledge.
Journal of Economic Theory, 52(1):178–189, 1990. Cited on p. 22.

[116] Rohit Parikh and Ramaswamy Ramanujam. Distributed processes and the
logic of knowledge, volume 193 of Lecture Notes in Computer Science, pages
256–268. Springer, Berlin, 1985. Cited on pp. 3, 14, and 88.

[117] Gordon D. Plotkin. An operational semantics for CSP. In Dines Bjørner,
editor, Formal Description of Programming Concepts – II, pages 199–225,
Amsterdam, 1983. North-Holland. Cited on p. 16.

Bibliography 151

[118] Marc Ponsen, Pieter Spronck, Héctor Muñoz-Avila, and David W. Aha.
Knowledge acquisition for adaptive game AI. Science of Computer Program-
ming, 67(1):59–75, 2007. Cited on p. 83.

[119] David Premack and Guy Woodruff. Does the chimpanzee have a theory of
mind? Behavioral and Brain sciences, 1(4):515–526, 1978. Cited on p. 78.

[120] Steve Rabin. AI Wisdom.
http://www.aiwisdom.com/, 2009. Cited on p. 81.

[121] Ramaswamy Ramanujam. A discussion on explicit knowledge. In Krister
Segerberg, editor, The Parikh project: Seven papers in honour of Rohit,
volume 1996:18 of Uppsala prints and preprints in philosophy, pages 92–101.
Filosofiska Institutionen, Uppsala Universitet, 1996. Cited on p. 73.

[122] Anand S. Rao and Michael P. Georgeff. BDI agents: From theory to practice.
In Proceedings of the First International Conference on Multi-Agent Systems,
pages 312–319, 1995. Cited on p. 77.

[123] Debraj Ray. A Game-Theoretic Perspective on Coalition Formation. Oxford
University Press, 2008. Cited on p. 6.

[124] Debraj Ray and Rajiv Vohra. Equilibrium binding agreements. Journal of
Economic Theory, 73(1):30–78, 1997. Cited on p. 96.

[125] Craig Reynolds. Game Research and Technology. Reynolds Engineer-
ing & Design.
http://www.red3d.com/cwr/games/, 2007. Cited on p. 81.

[126] Floris Roelofsen. Exploring logical perspectives on distributed information
and its dynamics. Master’s thesis, ILLC, University of Amsterdam, 2005.
Cited on pp. 47 and 48.

[127] Michael H. Rothkopf, Aleksandar Pekeč, and Ronald M. Harstad. Compu-
tationally manageable combinational auctions. Management Science, 44(8):
1131–1147, 1998. Cited on p. 132.

[128] Ji Ruan. Exploring the update universe. Master’s thesis, University of
Amsterdam, 2004. Cited on p. 140.

[129] Ariel Rubinstein. The electronic mail game: Strategic behavior under
”Almost common knowledge”. The American Economic Review, 79(3):
385–391, 1989. Cited on pp. 3 and 13.

[130] Ariel Rubinstein. Modeling Bounded Rationality. The MIT Press, 1998.
Cited on p. 7.

http://www.aiwisdom.com/
http://www.red3d.com/cwr/games/

152 Bibliography

[131] Tomasz Sadzik. Exploring the iterated update universe. Technical report
PP-2006-26, ILLC, University of Amsterdam, Amsterdam, 2006. Cited on
p. 140.

[132] David Sally. Can I say ”bobobo” and mean ”There’s no such thing as cheap
talk”? Journal of Economic Behavior & Organization, 57(3):245–266, 2005.
Cited on p. 52.

[133] Tuomas Sandholm. Algorithm for optimal winner determination in com-
binatorial auctions. Artificial Intelligence, 135(1–2):1–54, 2002. Cited on
p. 117.

[134] Thomas C. Schelling. The Strategy of Conflict. Harvard University Press,
1960. Cited on p. 13.

[135] Fred B. Schneider. Synchronization in distributed programs. ACM Transac-
tions on Programming Languages and Systems, 4(2):125–148, 1982. Cited
on pp. 14 and 16.

[136] Steve Schneider. Concurrent and Real Time Systems: The CSP Approach.
John Wiley and Sons, Inc, 1999. Cited on p. 15.

[137] Alexander Schrijver. Theory of linear and integer programming. John Wiley
& Sons, Inc., New York, NY, USA, 1986. Cited on p. 125.

[138] Eddie Schwalb and Llúıs Vila. Temporal constraints: A survey. Constraints,
3(2):129–149, 1998. Cited on p. 132.

[139] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge University Press,
2009. Cited on p. 92.

[140] Emily Short. Conversation. Emily Short’s Interactive Fiction.
http://emshort.wordpress.com/writing-if/my-articles/

conversation, 2007. Cited on p. 82.

[141] Flávio S. Corrêa da Silva and Wamberto W. Vasconcelos. Rule schemata
for game artificial intelligence. In Advances in Artificial Intelligence -
IBERAMIA-SBIA 2006, Ribeirão Preto, Brazil, 2006. Springer. Cited on
p. 83.

[142] Tayfun Sönmez, Suryapratim Banerjee, and Hideo Konishi. Core in a simple
coalition formation game. Social Choice and Welfare, 18(1):135–153, 2001.
Cited on p. 96.

http://emshort.wordpress.com/writing-if/my-articles/conversation
http://emshort.wordpress.com/writing-if/my-articles/conversation

Bibliography 153

[143] Pieter Spronck, Marc Ponsen, Ida Sprinkhuizen-Kuyper, and Eric Postma.
Adaptive game AI with dynamic scripting. Machine Learning, 63(3):217–248,
2006. Cited on p. 83.

[144] Tommy Chin-Chiu Tan and Sérgio Ribeiro da Costa Werlang. The bayesian
foundations of solution concepts of games. Journal of Economic Theory, 45
(2):370–391, 1988. Cited on pp. 8 and 51.

[145] Terese. Term Rewriting Systems. Cambridge Tracts in Theoretical Computer
Science 55. Cambridge University Press, 2003. Cited on p. 96.

[146] Ubisoft. Assassin’s Creed.
http://assassinscreed.us.ubi.com, 2007. Cited on p. 86.

[147] Rineke Verbrugge and Lisette Mol. Learning to apply theory of mind.
Journal of Logic, Language and Information, 17(4):489–511, 2008. Cited on
p. 93.

[148] William E. Walsh, Michael P. Wellman, and Fredrik Ygge. Combinato-
rial auctions for supply chain formation. In Proceedings of the 2nd ACM
Conference on Electronic Commerce, 2000. Cited on p. 115.

[149] Jonathan Weinstein and Muhamet Yildiz. Impact of higher-order uncertainty.
Games and Economic Behavior, 60(1):200–212, 2007. Cited on p. 35.

[150] Peter Welch. An occam-pi Quick Reference, 1996–2008.
https://www.cs.kent.ac.uk/research/groups/sys/wiki/

OccamPiReference. Cited on p. 15.

[151] Peter Welch, Neil Brown, James Moores, Kevin Chalmers, and Bernhard
Sputh. Integrating and extending JCSP. In Alistair A. McEwan, Steve
Schneider, Wilson Ifill, and Peter Welch, editors, Communicating Process
Architectures. IOS Press, 2007. Cited on p. 15.

[152] Michael P. Wellman, William E. Walsh, Peter R. Wurman, and Jeffrey K.
MacKie-Mason. Auction protocols for decentralized scheduling. Games and
Economic Behavior, 35(1–2):271–303, 2001. Cited on p. 134.

[153] Wikipedia. The Elder Scrolls IV: Oblivion.
http://en.wikipedia.org/w/index.php?title=The_Elder_Scrolls_

IV:_Oblivion&oldid=96078473#Radiant_A.I., 2006. (The relevant
section was removed in later revisions, since according to the ‘discussion’
page it concerned “Radian [sic] AI’s behavior prior to the game release.
Listing all these examples is beyond the scope of this article.”). Cited on
p. 81.

http://assassinscreed.us.ubi.com
https://www.cs.kent.ac.uk/research/groups/sys/wiki/OccamPiReference
https://www.cs.kent.ac.uk/research/groups/sys/wiki/OccamPiReference
http://en.wikipedia.org/w/index.php?title=The_Elder_Scrolls_IV:_Oblivion&oldid=96078473#Radiant_A.I.
http://en.wikipedia.org/w/index.php?title=The_Elder_Scrolls_IV:_Oblivion&oldid=96078473#Radiant_A.I.

154 Bibliography

[154] Andreas Witzel. Symmetric and synchronous communication in peer-to-peer
networks. In Philippe Audebaud and Christine Paulin-Mohring, editors,
Proceedings of the 9th International Conference on Mathematics of Program
Construction (MPC’08), volume 5133 of Lecture Notes in Computer Science,
pages 404–421, Marseille, France, 2008. Springer. Cited on p. 10.

[155] Andreas Witzel and Jonathan A. Zvesper. Epistemic logic and explicit
knowledge in distributed programming (short paper). In Lin Padgham,
David Parkes, Jörg P. Müller, and Simon Parsons, editors, Proceedings of
the 7th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2008), Estoril, Portugal, 2008. Cited on pp. 9, 68, 77, 79,
80, and 90.

[156] Andreas Witzel and Jonathan A. Zvesper. Higher-order knowledge in
computer games. In Proceedings of the AISB’08 Symposium on Logic
and the Simulation of Interaction and Reasoning, volume 9 of AISB 2008
Convention, pages 68–72, Aberdeen, Scotland, 2008. The Society for the
Study of Artificial Intelligence and Simulation of Behaviour. Cited on p. 11.

[157] Andreas Witzel, Jonathan A. Zvesper, and Ethan Kennerly. Explicit knowl-
edge programming for computer games. In Proceedings of the Fourth Artificial
Intelligence and Interactive Digital Entertainment Conference (AIIDE 2008),
Stanford, California, 2008. AAAI Press. Cited on pp. 11 and 68.

[158] Georg Henrik von Wright. An essay in modal logic. Studies in logic and the
foundations of mathematics. North-Holland Publishing Company, Amster-
dam, 1951. Cited on p. 1.

[159] Sang-Seung Yi. Stable coalition structures with externalities. Games and
Economic Behavior, 20:201–237, 1997. Cited on p. 96.

[160] Jianwen Yin, Michael S. Miller, Thomas R. Ioerger, John Yen, and Richard A.
Volz. A knowledge-based approach for designing intelligent team training
systems. In Agents, pages 427–434, 2000. Cited on p. 83.

Index

accessibility relation, 2, 88
action, 4

model, 137
algorithmic knowledge, 73
allocation sequence, 126
anonymous

comparison relation, 101
individual value function, 102
players, 14
value function, 102

atom, see atomic proposition
atomic

bid, 119
proposition, 1, 38, 63, 87
time constraint, 120

automorphism, 20
axiom, 2, 91, 138

belief, 2
belief-desire-intention (BDI), 77
bid, 119

complex, 120
with time constraints, 121

bidding language
xor, 119

bisimulation contraction, 88, 139
buffer, 23

cheap talk, 52
coalition, 6, 97

P -compatible, 106
formation, 6, 95
grand, 97

coalitional TU-game, see TU-game
collection

in a coalition, 97
in the frame of a partition, 104

combinatorial auction, 6
mixed multi-unit, 115

communication
graph, 18
network, 6, 18
reliable, 14
statement, 17
synchronous, 4, 14, 17
unreliable, 13

comparison relation, 97
computation, 18
connectedness, 20
connective, 2, 63
coordinated attack, 3, 13, 47
CSP, 15

CSPi/o , 17
CSPin , 17

deadlock, 19
deduction, 2
defection function, 104
distributed computing, 3
domain knowledge, 82

155

156 Index

doxastic logic, 2
dynamic epistemic logic, 91, 137

efficiency
individual value function, 101

electoral system, 22
electronic mail game, 13
elimination

of strategies, 5
epistemic language, 40, 63
epistemic logic, 1
event, 88

model, 137
exchange economy game, 113
explicit

belief, 81
knowledge, 73

explicit knowledge programming, 9,
68, 73, 79, 90, 137

expressive power
of bidding language, 124

extensive form game, 4

fact, see atomic proposition
formula, 2
free disposal, 122

game, 4, 53
graphical, 51, 71
hedonic, 112
pre-Bayesian, 53

game theory, 4
cooperative, 6
non-cooperative, 4

guard
CSP, 17

history, 88
hypergraph, 39, 55

IESDS, see iterated elimination
IF (interactive fiction), 77
incomplete information, 5
indistinguishability relation, 1, 40

individual value function, 101
anonymous, 102

interaction structure, 37, 39, 55
interactive fiction, 77
intermediate optimality notion, 60
intermediate state, 59
invariance

under automorphism, 20
iterated elimination, 5

outcome w.r.t. H, 56
outcome w.r.t. H,M , 60

JCSP, 15, 35
joint strategy, 4

knowledge, 1
common, 3, 13, 40
higher-order, 1, 77
mutual, 3, 13
operator, 2, 40, 63

knowledge games, 78
knowledge module, 68, 70, 79, 87, 139
knowledge-based program, 74
Kripke structure, 1

language, 2
life simulation game, 77

message, 39, 59, 63
H-compliant, 39

mixed auction, 115
mixed strategy, 54
model, 1
model checking, 70, 139
monotonic

comparison relation, 97
operator, 55
optimality notion, 54

non-player character (NPC), 77
normal form

game, 4

Occam, 15
Occam-π, 15

Index 157

optimality notion, 54
orbit, 20
order

egalitarian, 101
elitist, 101
lexicographic, 99
leximin, 99
majority, 103
Nash, 99
Pareto, 104
utilitarian, 99

outcome
of IESDS w.r.t. H, 56
of IESDS w.r.t. H,M , 60

partition, 97
B-maximal, 105
D-stable, 105
preferred, 98

payoff matrix, 4
peer-to-peer network, 24
period, 20
permit

time line, 121
player, 4
positive language, 40
possible world, 1, 39, 64, 88
preference, 4
preference relation

exchange economy, 113
Hedonic game, 112

process
CSP, 17

process system, 18
projection

of an allocation sequence, 126
proposition, see atomic proposition
propositional formula, 41

rational, 4, 51
reasoning, 2
relational semantics, 1
restriction

of a game, 54
revenue

of mixed auction, 126
role-playing game (RPG), 77

script, 79
semantics, 1
semi-linear

comparison relation, 98
social networks, 6
state

H-compliant, 39
of the world, 1, 39, 64, 88
process system, 18

strategic game, 53
strategy, 4, 53

dominated, 4, 54
joint, 4
profile, 4, 53

symmetry, 14
G-symmetry, 26
-preserving extension, 25
process system, 21

synchronization, 23
syntax, 2

tautology, 41
termination

proper, 19
theory of mind, 78, 93
time

line, 118
point, 118

time constraint, 116
absolute, 120
disjunctive, 122
formula, 120
interval, 133
relative, 120
soft, 123

transformation, 118
truthful, 39, 59, 64
TU-game, 98, 109

158 Index

update model, 91
utility, 4

valid solution
for mixed auction, 126

validity, 70
valuation, 39, 63, 87, 118

finite, 124
induced by game, 63
undefined, 119

value function, 98
anonymous, 102

well-balanced
automorphism, 20

winner determination problem, 127
word, 40

Samenvatting

Weet zij wat hij weet? En zo ja, wat gaat ze doen?

Dit proefschrift biedt een informatica-perspectief op vragen over kennis en
interactie, en presenteert manieren om kunstmatige agents uit te rusten met de
bijbehorende redeneringsvermogens. We beperken algemene kaders van epistemis-
che logica en speltheorie, om praktische implementaties te verkrijgen gefundeerd
in de theorie.

Het fundamentele idee van het hoofddeel van het proefschrift (hoofdstukken 1
tot 3) is om computer processen, of anderszins gedistribueerde programma’s, te zien
als spelers in een speltheoretische setting met onvolledige informatie. Als zodanig
zouden zij kunnen communiceren om informatie te verkrijgen en speltheoretische
algoritmen uit te voeren.

In hoofdstuk 1 leggen we de technische grondslagen voor de uitvoering van
synchrone communicatie, en dus het bereiken van gemeenschappelijke kennis,
tussen computer-processen die spelers vertegenwoordigen. Hiervoor bestuderen
we dialecten van de proces-calculus CSP die beschikbaar is in de vorm van
programmeertalen. We betogen dat voor onze doeleinden het proces-systeem een
bepaalde symmetrie dient te hebben, en tonen aan dat om aan deze eis te voldoen
er een bepaalde “guard” constructie in de taal aanwezig moet zijn. Omdat deze
constructie niet vaak aanwezig is, is ons resultaat praktisch voldoende om een
unieke programmeertaal te identificeren geschikt voor onze doeleinden.

In hoofdstuk 2 definiëren we wat wij “interaction structures” noemen, een
concrete klasse van communicatie-netwerken. We geven aan wat voor soort
communicatie-scenario’s we ons op richten, en bestuderen eigenschappen van
de kennis die het resultaat is van dit soort communicatie. Deze eigenschappen
kunnen worden gebruikt voor het vereenvoudigen van redeneren over kennis in
onze setting.

In hoofdstuk 3 bestuderen we spellen met een interaction structure die het
spelers mogelijk maakt hun voorkeuren te communiceren, ervan uitgaande dat elke
speler aanvankelijk alleen zijn eigen voorkeuren kent. We bekijken de resultaten

159

160 Samenvatting

van herhaalde eliminatie van strikt gedomineerde strategieën die kunnen worden
verkregen in elke gegeven communicatie-toestand. De inzichten uit de vorige
hoofdstukken worden gebruikt om een epistemische basis voor onze resultaten te
geven en een gedistribueerd algoritme te laten zien dat de procedures lokaal in
elke speler-proces implementeert.

Na dit hoofddeel van het proefschrift gaan we verder met meer losjes gerela-
teerde satelliet-hoofdstukken.

Hoofdstuk 4 ligt kwa idee dicht bij het hoofddeel van het proefschrift, met dit
verschil dat het zich richt op een gecentraliseerde in plaats van een gedistribueerde
benadering, en dat het computerspellen beschouwd in plaats van spellen in de
strikte speltheoretische zin. We betogen dat redeneren over kennis, ook over elkaars
kennis, een cruciale rol speelt in strategische en sociale interactie in het echte leven.
We bekijken bestaande literatuur en spellen die dergelijke interactie simuleren,
en laten zien dat dit aspect momenteel wordt verwaarloosd. We geven concrete
scenario’s uit bestaande computerspellen die zouden kunnen profiteren van de
integratie van dergelijke redenerings-technieken, en onderbouwen één daarvan
met een beschrijving van een eenvoudige uitvoering bestemd voor experimentele
evaluatie.

In hoofdstuk 5 doen we een voorstel voor een abstracte benadering van coalitie-
vorming die zich richt op eenvoudige regels voor het samenvoegen en splitsen
van groepen. We identificeren omstandigheden waaronder elke reeks van deze
regels een unieke opsplitsing oplevert. Ons belangrijkste conceptuele instrument
is een specifieke definitie van een stabiele opsplitsing. De resultaten worden
geparametriseerd door een voorkeurs-relatie tussen de opsplitsingen van een groep
van spelers, en zijn op natuurlijke wijze toepasbaar op coalitional TU-games,
hedonic games en exchange economy games.

In hoofdstuk 6 breiden we het bestaande kader van mixed multi-unit combinato-
rial auctions uit met tijdsbeperkingen, presenteren we een expressieve biedings-taal,
en laten we zien hoe het probleem is op te lossen van het bepalen van de winnaar
van dergelijke veilingen, middels een integer-programmering implementatie. Mixed
multi-unit combinatorial auctions zijn veilingen waar bieders kunnen bieden op
combinaties van transformaties van goederen in plaats van alleen maar simpelweg
op goederen. Bijvoorbeeld, een transformatie kan deeg en water nemen en brood
opleveren. Dit model heeft veel potentieel voor toepassingen in het gebied van het
formeren van toeleveringsketens.

Ten slotte geven we in hoofdstuk 7 een kijkje op mogelijke toekomstige richtin-
gen voor de implementering van epistemische logica.

Abstract

Does she know what he knows? And if so, what is she going to do?
This dissertation takes a computer science perspective on questions of knowl-
edge and interaction and presents approaches for endowing artificial agents with
corresponding reasoning capabilities.

To this end, we restrict general frameworks of epistemic logic and game theory
in order to obtain practical implementations grounded in theory.

The basic idea of the main part of the dissertation (Chapters 1–3) is to view
computer processes, or otherwise distributed programs, as players in a game-
theoretic setting with incomplete information. As such, they should be able
to communicate in order to obtain information, and to perform game-theoretic
algorithms.

In Chapter 1, we establish the technical foundations to support implementation
of synchronous communication, and thus the attainment of common knowledge,
among computer processes representing players. To this end, we examine dialects
of the process calculus CSP, which is available in the form of programming
languages. We argue that for our purposes the process system needs to exhibit a
certain symmetry, and show that to satisfy this requirement we need a certain
guard construct in the language. Since this construct is not commonly provided,
our result practically identifies a unique programming language suitable for our
purposes.

In Chapter 2, we define what we call interaction structures, a concrete class of
communication networks. We specify what kind of communication scenario we
focus on, and study properties of the knowledge that results from such communi-
cation. These properties can be used to simplify reasoning about knowledge in
our setting.

In Chapter 3, we study games in the presence of an interaction structure,
which allows players to communicate their preferences, assuming that each player
initially only knows his own preferences. We study the outcomes of iterated
elimination of strictly dominated strategies that can be obtained in any given

161

162 Abstract

state of communication. The insights from the previous chapters are used in order
to provide an epistemic basis for our results and to show a distributed algorithm
that implements the procudures locally in each player process.

After this main part of the dissertation, we continue with more loosely related
satellite chapters.

Chapter 4 is close to the main part in spirit, with the difference that it
focuses on a centralized rather than a distributed approach, and that it considers
computer games rather than games in the strict sense of game theory. We argue
that reasoning about knowledge, including about each other’s knowledge, plays
a crucial role in real-life strategic and social interaction. We survey existing
literature and games which simulate such interaction, and show that this issue
is currently neglected. We give concrete scenarios from existing computer games
which could profit from incorporating such reasoning techniques, and substantiate
one of them by describing a simple implementation intended for experimental
evaluation.

In Chapter 5, we propose an abstract approach to coalition formation that
focuses on simple merge and split rules transforming partitions of a group of
players. We identify conditions under which every iteration of these rules yields
a unique partition. The main conceptual tool is a specific notion of a stable
partition. The results are parametrized by a preference relation between partitions
of a group of players and naturally apply to coalitional TU-games, hedonic games
and exchange economy games.

In Chapter 6, we extend the existing framework of mixed multi-unit combina-
torial auctions to include time constraints, present an expressive bidding language,
and show how to solve the winner determination problem for such auctions using
an integer programming implementation. Mixed multi-unit combinatorial auctions
are auctions where bidders can offer combinations of transformations of goods
rather than just simple goods. For example, a transformation might take dough
and water and yield bread. This model has great potential for applications in the
context of supply chain formation, which is further enhanced by the integration of
time constraints.

Finally, in Chapter 7 we give an outlook on possible future directions for
implementing epistemic logic.

Titles in the ILLC Dissertation Series:

ILLC DS-2001-01: Maria Aloni
Quantification under Conceptual Covers

ILLC DS-2001-02: Alexander van den Bosch
Rationality in Discovery - a study of Logic, Cognition, Computation and
Neuropharmacology

ILLC DS-2001-03: Erik de Haas
Logics For OO Information Systems: a Semantic Study of Object Orientation
from a Categorial Substructural Perspective

ILLC DS-2001-04: Rosalie Iemhoff
Provability Logic and Admissible Rules

ILLC DS-2001-05: Eva Hoogland
Definability and Interpolation: Model-theoretic investigations

ILLC DS-2001-06: Ronald de Wolf
Quantum Computing and Communication Complexity

ILLC DS-2001-07: Katsumi Sasaki
Logics and Provability

ILLC DS-2001-08: Allard Tamminga
Belief Dynamics. (Epistemo)logical Investigations

ILLC DS-2001-09: Gwen Kerdiles
Saying It with Pictures: a Logical Landscape of Conceptual Graphs

ILLC DS-2001-10: Marc Pauly
Logic for Social Software

ILLC DS-2002-01: Nikos Massios
Decision-Theoretic Robotic Surveillance

ILLC DS-2002-02: Marco Aiello
Spatial Reasoning: Theory and Practice

ILLC DS-2002-03: Yuri Engelhardt
The Language of Graphics

ILLC DS-2002-04: Willem Klaas van Dam
On Quantum Computation Theory

ILLC DS-2002-05: Rosella Gennari
Mapping Inferences: Constraint Propagation and Diamond Satisfaction

ILLC DS-2002-06: Ivar Vermeulen
A Logical Approach to Competition in Industries

ILLC DS-2003-01: Barteld Kooi
Knowledge, chance, and change

ILLC DS-2003-02: Elisabeth Catherine Brouwer
Imagining Metaphors: Cognitive Representation in Interpretation and Under-
standing

ILLC DS-2003-03: Juan Heguiabehere
Building Logic Toolboxes

ILLC DS-2003-04: Christof Monz
From Document Retrieval to Question Answering

ILLC DS-2004-01: Hein Philipp Röhrig
Quantum Query Complexity and Distributed Computing

ILLC DS-2004-02: Sebastian Brand
Rule-based Constraint Propagation: Theory and Applications

ILLC DS-2004-03: Boudewijn de Bruin
Explaining Games. On the Logic of Game Theoretic Explanations

ILLC DS-2005-01: Balder David ten Cate
Model theory for extended modal languages

ILLC DS-2005-02: Willem-Jan van Hoeve
Operations Research Techniques in Constraint Programming

ILLC DS-2005-03: Rosja Mastop
What can you do? Imperative mood in Semantic Theory

ILLC DS-2005-04: Anna Pilatova
A User’s Guide to Proper names: Their Pragmatics and Semanics

ILLC DS-2005-05: Sieuwert van Otterloo
A Strategic Analysis of Multi-agent Protocols

ILLC DS-2006-01: Troy Lee
Kolmogorov complexity and formula size lower bounds

ILLC DS-2006-02: Nick Bezhanishvili
Lattices of intermediate and cylindric modal logics

ILLC DS-2006-03: Clemens Kupke
Finitary coalgebraic logics

ILLC DS-2006-04: Robert Špalek
Quantum Algorithms, Lower Bounds, and Time-Space Tradeoffs

ILLC DS-2006-05: Aline Honingh
The Origin and Well-Formedness of Tonal Pitch Structures

ILLC DS-2006-06: Merlijn Sevenster
Branches of imperfect information: logic, games, and computation

ILLC DS-2006-07: Marie Nilsenova
Rises and Falls. Studies in the Semantics and Pragmatics of Intonation

ILLC DS-2006-08: Darko Sarenac
Products of Topological Modal Logics

ILLC DS-2007-01: Rudi Cilibrasi
Statistical Inference Through Data Compression

ILLC DS-2007-02: Neta Spiro
What contributes to the perception of musical phrases in western classical
music?

ILLC DS-2007-03: Darrin Hindsill
It’s a Process and an Event: Perspectives in Event Semantics

ILLC DS-2007-04: Katrin Schulz
Minimal Models in Semantics and Pragmatics: Free Choice, Exhaustivity, and
Conditionals

ILLC DS-2007-05: Yoav Seginer
Learning Syntactic Structure

ILLC DS-2008-01: Stephanie Wehner
Cryptography in a Quantum World

ILLC DS-2008-02: Fenrong Liu
Changing for the Better: Preference Dynamics and Agent Diversity

ILLC DS-2008-03: Olivier Roy
Thinking before Acting: Intentions, Logic, Rational Choice

ILLC DS-2008-04: Patrick Girard
Modal Logic for Belief and Preference Change

ILLC DS-2008-05: Erik Rietveld
Unreflective Action: A Philosophical Contribution to Integrative Neuroscience

ILLC DS-2008-06: Falk Unger
Noise in Quantum and Classical Computation and Non-locality

ILLC DS-2008-07: Steven de Rooij
Minimum Description Length Model Selection: Problems and Extensions

ILLC DS-2008-08: Fabrice Nauze
Modality in Typological Perspective

ILLC DS-2008-09: Floris Roelofsen
Anaphora Resolved

ILLC DS-2008-10: Marian Counihan
Looking for logic in all the wrong places: an investigation of language, literacy
and logic in reasoning

ILLC DS-2009-01: Jakub Szymanik
Quantifiers in TIME and SPACE. Computational Complexity of Generalized
Quantifiers in Natural Language

ILLC DS-2009-02: Hartmut Fitz
Neural Syntax

ILLC DS-2009-03: Brian Thomas Semmes
A Game for the Borel Functions

ILLC DS-2009-04: Sara L. Uckelman
Modalities in Medieval Logic

	Acknowledgments
	Introduction
	Guarding common knowledge
	Introduction
	Motivation
	Related work
	Plan of the chapter

	Preliminaries
	CSP
	Graph theory
	Symmetric electoral systems

	Setting the stage
	Pairwise synchronization
	Peer-to-peer networks
	G-symmetry

	Results
	Positive results
	Negative result

	Conclusions

	Knowledge in interaction structures
	Introduction
	Motivation
	Plan of the chapter

	Preliminaries
	Properties of knowledge
	Conclusions
	Related work
	Possible extensions

	Strategies in interaction structures
	Introduction
	Motivation
	Plan of the chapter

	Preliminaries
	Iterated strategy elimination
	Completed communication
	Intermediate states

	Epistemic foundation
	Epistemic language and states
	Correctness result

	Distributed implementation
	T operator approach
	Knowledge module approach

	Conclusions
	Related work
	Possible extensions

	Epistemic reasoning in computer games
	Introduction
	Motivation
	Plan of the chapter

	Programming with knowledge
	Related work
	Existing games
	Research

	Potential applications
	Catching the Thief
	Adding credence to Assassin's Creed

	Implementation study for Thief
	Knowledge module
	Expected impact on gameplay

	Conclusions
	Explicit knowledge programming
	Alternatives and extensions
	Cognitive considerations
	Final words

	Coalition formation: A generic approach
	Introduction
	Approach
	Related work
	Plan of the chapter

	Comparing and transforming collections
	TU-games
	Individual values
	Stable partitions
	Stable partitions and merge/split rules
	Applications
	Coalitional TU-games
	Hedonic games
	Exchange economy games

	Conclusions

	Time constraints in mixed auctions
	Introduction
	Motivation
	Approach
	Plan of the chapter

	Bidding language
	Transformations and time points
	Valuations
	Bids
	Time constraints
	Semantics
	Syntactic sugar
	Expressive power

	Winner determination
	WDP with time constraints
	Original integer program
	Modified integer program
	Valuation for the auctioneer
	Computational complexity

	Intervals
	Conclusions and related work
	Related work
	Possible extensions

	Outlook
	Bibliography
	Index
	Samenvatting
	Abstract

