
Modalities Through the Looking
Glass

A study on coalgebraic modal logics and their applications

Raúl Andrés Leal

Modalities Through the Looking
Glass

A study on coalgebraic modal logics and their applications

ILLC Dissertation Series DS-2011-09

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 904
1098 XH Amsterdam

phone: +31-20-525 6051
fax: +31-20-525 5206
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/

mailto:illc@uva.nl
http://www.illc.uva.nl/

Modalities Through the Looking
Glass

A study on coalgebraic modal logics and their applications

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof.dr. D.C. van den Boom

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Aula der Universiteit
op vrijdag 18 November 2011, te 11.00 uur

door

Raúl Andrés Leal Rodŕıguez

geboren te Bogota, Colombia

Promotiecommissie:

Promotor: Prof. dr. Y. Venema

Overige leden:
Prof. dr. J.F.A.K. van Benthem
Prof. dr. J. Adámek
Prof. dr. B.P. F. Jacobs
Dr. D. Pattinson
Dr. A. Kurz
Dr. A. Baltag

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Universiteit van Amsterdam

The work comprising this dissertation was made possible by VICI grant 639.073.501
of the Netherlands Organization for Scientific Research (NWO).

Copyright c© 2011 by Raúl Andrés Leal

Cover:
Design: Elske Verdoorn.
Image in patron: Pectoral Zoomorfo, Altiplano Nariense - Nario Tardo, 15,1 x
16,2 cm 600 d.C. - 1700 d.C. c©COLECCION MUSEO DEL ORO - BANCO DE
LA REPBLICA, Bogota - Colombia. Photograph: CLARK M. RODRIGUEZ

Printed and bound by Ponsen & Looijen.

ISBN: 978-90-5776-231-4

para Lena

v

Contents

Acknowledgments xi

1 Introduction 1
1.1 Coalgebras and Systems . 1
1.2 Coalgebras and Modal Logics . 3

1.2.1 Basic modal logic & coalgebras 4
1.2.2 Moss logic . 5
1.2.3 Modal logics for coalgebras 6
1.2.4 From modalities to functors 7

1.3 Outline and contributions of this thesis 8

2 Algebras & Coalgebras 13
2.1 Coalgebras and Algebras . 13
2.2 More on Universal Coalgebra... 18
2.3 Algebras, algebraic signatures, and functors 23

2.3.1 Algebraic signatures as functors 23
2.3.2 Varieties . 25
2.3.3 Monads and Algebras . 28

2.4 A first glance at logics for coalgebras 31
2.4.1 Probabilistic modal logic & coalgebras 31
2.4.2 Propositional dynamic logic & coalgebras 32
2.4.3 Non-normal modal logic 33
2.4.4 Translations . 34

I Modalities in the Stone age 35

3 Coalgebraic Modal Logics 37
3.1 Concrete Modalities . 38

vii

3.2 The abstract functorial framework 43
3.2.1 Modal Signatures as functors on BA 46
3.2.2 Coalgebraic modal logics beyond BA 49
3.2.3 Other features of the functorial framework 52

3.3 Two generic coalgebraic modal logics 57
3.3.1 Moss Logic . 57
3.3.2 Logics of Predicate Liftings 61

4 Comparing Coalgebraic Modal Logics 67
4.1 One step translations . 67
4.2 Decomposing predicate liftings . 74

4.2.1 Singleton Liftings . 76
4.2.2 Translators, Singletons and Inductive Presentations 81

4.3 Logical Translators . 86
4.4 The Boolean Paradise . 88

4.4.1 Translating predicate liftings 89
4.4.2 Translating Moss logic . 93

4.5 Conclusions . 93

5 From Abstract to Concrete 95
5.1 Presentations of functors . 95

5.1.1 Moss Liftings . 101
5.2 Concrete logics from abstract logics 105

5.2.1 The first representation Theorem 105
5.2.2 Presentations of functors on categories of algebras 108
5.2.3 The second representation Theorem 114

5.3 Equational coalgebraic logic . 116
5.3.1 An equational proof system for KT 116
5.3.2 Well-based presentations 119
5.3.3 A completeness proof . 124

5.4 Conclusions . 133

II Coalgebraic Modal Logics at Work 135

6 Describing Behavioural Equivalence:
three sides of one coin 137
6.1 An elementary construction of final coalgebras 139
6.2 Behaviour & Congruences . 150
6.3 Logical Congruences & Weak Finality 157
6.4 Different faces of the Hennessy-Milner property 159
6.5 Beyond sets . 161
6.6 Conclusions . 168

viii

7 Dynamic Modalities and Coalgebraic Logics 171
7.1 Labelling predicate liftings . 172
7.2 More on Monads . 173
7.3 Algebraic structures over labels 177

7.3.1 Sequential composition . 180
7.3.2 Pointwise extensions . 184

7.4 Conclusions . 191

8 Fixed Points Coalgebraically 195
8.1 Preliminaries . 196
8.2 Automata via Predicate liftings 199
8.3 Bounded model Property . 201
8.4 Conclusions . 209

9 Beyond the Stone Age 211

A Some definitions from Category Theory 215
A.1 Adjunctions . 216

Bibliography 219

Index 229

Samenvatting 233

Abstract 235

ix

Acknowledgments

On Monday 29 of August 2005 at 7:35am a Delta Airlines plane coming from
Atlanta-USA landed at Schiphol airport. Around 8:05am, I crossed gate number 1
and that was the beginning of my Holland experience. This dissertation represents
the culmination of my basic scientific education at the ILLC. I would have never
gotten to this point without the teachings, encouragement, advice, and criticisms
of many. During my studies I was lucky enough to meet many that made the
journey worth it. In the next pages, I would like to thank them. By construction
the list here is condemned to be incomplete.

On the top of the list is my supervisor Yde Venema. You would not have been
reading these lines if he would not have believed in me. We have a long history
together as long as my footprints in the polders can witness. He first welcomed
me as an MSc student. Right after that, he accepted the challenge of keeping me
on his side as a PhD student. I have learned a lot from him both in the academic
and personal. In particularly, I really appreciate his honesty in the good and the
bad times. I thank him for being a very caring supervisor and a very good friend.

At least half of this manuscript is influenced by Alexander Kurz. He was
almost a second supervisor. Always ready to show me a way out when I would get
myself lost between diagrams, colimits, and deadlines. As shown in the cover, most
of this manuscript is the influence of Alexander and Yde. Yde drew a framework
and Alexander showed me the techniques to organise it and fill it with beauty.

The only person that has been on my side longer than Yde is Lena. We literally
met during my first sunshines in Amsterdam. At some point during our master
studies the stars were right and our paths have been together since. She has been
my unbounded support 24/7. Her patience, love, arepitas, and coffee give me the
daily motivation to be where I am now.

Thanks to my coauthors this manuscript has content. As said before, Alexander
walked with me through the Stone age. Clemens was happy to explore the final
simplicity that took us from basic modal logic to the realm of solution sets. Helle

xi

was adventurous enough to get modalities in movement. Gaelle and Yde were
courageous enough to build bridges between our fields. Thanks to all of you as
the content belongs to you.

I would like to thank to the illustrious members of the committee for having
devoted their time and energy to read my dissertation. So thanks to Alexander
Kurz, Bart Jacobs, Jǐŕı Adámek, Dirk Pattinson, Alexandru Baltag, and Johan
van Benthem.

I would like to thank NWO for having supported my research. I would also
like to thank the Beth foundation and Colfuturo who were the first to believe that
I could complete an MSc and eventually a PhD. Without their financial support I
would have never landed at Schiphol that day.

Being a Colombian learning Dutch with a lot of organisational energy requires
a enormous logistic support. The secretaries and staff members of the ILLC/UvA
were always there to support me. Tanja, Peter, Karin and René were always helpful
no matter whether it was an official letter for some obscure Dutch immigration
procedure, a letter for some embassy, booking of a room, simply and opinion on
my writing, or the need for a drink. I thank them also because they were among
the first that supported me on moving beyond the English speaking culture of the
ILLC. Among those, I should also mention Ingrid, and Leen. I also thank them
for supporting me during my naturalizatie procedure. I thank Niels Molenaar for
always being helpful on explaining the Kafkaian castle of Dutch bureaucracy. In
several occasions, I was saved from sleeping on the street thanks to him and the
housing office of the UvA.

I would like to thank Alexandra en Helle for their good balance of work and
side life so that we could have very enjoyable times at conferences talking about
live, coalgebras, and everything. I also than them and Clemens for reading and
commenting on some parts of the final version of this manuscript.

I thank Frank for his help with mijn wetenschappelijke taal.

I met many wonderful people outside the university who have made my life
very enjoyable. Most of those gravitate around climbing. I first would like to
thank the Boulder Gang of Sloterdijk. In particular I would like to thank Casper
and Remco who showed me how to avoid the elephant climbing style. Casper also
taught me Dutch language beyond what any dictionary could do. There were also
Fleur and Megan who showed me the girl way to climb. Still Fleur would climb
better than me with an 8 months pregnancy belly; I will never beat that. I do not
forget Daan, Koen, and Rudi among others. I learned to climb with them, this
shaped my whole stay in the Netherlands.

Later I met the ASAC (Amsterdam Student Alpine Club) and learned even
more about climbing. Within the ASAC Elout shines for various reasons. I learned
most of my of my rope technique from him. During those many hours that we
spent in his car driving to the rocks he also introduced to many faces of Dutch

xii

culture among which I will never forget Guus Meeuwis with “Brabant” and “Het is
een nacht”. I also have met many friends in the ASAC which have made my stay
in Amsterdam wonderful. Among those, Bas, Willem, Lieke D, Kimberly, Vicky,
Marianne, Adam, Regien, Dorien, Anne, Eva, Jeroen, Lieke T, Carel, Jacobien,
etc...

In my last year I moved from ice skating to rollerblading. I joined the Survivors
and learned the basics from Anders and Martine. Indirectly, thanks to them this
thesis came to an end. The reason is that after I learned to slide on wheels and
stop without crashing I joined the Friday Night Skate Amsterdam (FNS). Many
chapters and sections of this manuscript where finished thanks to the FNS as
every Friday, when there was no rain, I just wanted to finish to join the skate.

Elske is one my oldest friends. Beside contemplating her beautiful eyes, I
have always enjoyed hanging out with her talking about life, the universe and
everything. I specially thank her for the beautiful design of the cover.

I would also like to thank Laura for all the coffees that gave a well deserved
rest during the writing. Thanks to the Carnival gang, Spiros, Roberto, Felix, etc.
for the crazy carnival trips and lunches that allowed me to drive my mind away of
work.

I thank to my paraninfs, Lena and Willem, for their very professional job.
I finally would like to express my gratitude to my parents and family in Colom-

bia for they support.

Raul Andres Leal
Amsterdam, October, 2011

xiii

Chapter 1

Introduction

Life is what happens to you while you’re busy making other plans
John Lennon

This thesis hovers over the interaction of coalgebras and modal logics. Coal-
gebras arise from computer science as a promising mathematical foundation for
computer systems. Modal logic has its origins in philosophy but thanks to the
so-called relational semantics it has found its way to areas such as linguistics,
artificial intelligence, and computer science [19]. In this thesis we study the
offspring of the encounter of coalgebras and modal logics. More concretely, this
manuscript has two parts: Modalities in de Stone age and Coalgebraic modal
logics at work. In the first part of this manuscript we investigate coalgebraic modal
logics which have become one of the main currents of modal logics for coalgebras.
Coalgebraic modal logics bring uniformity to the rising wave of modal logics in
computer science and provide generality to the interactions of coalgebras and
modal logics. In the second part of this manuscript we investigate how these logics
can be used to study coalgebras.

In this introduction we tell the story of how coalgebras meet modal logics. The
structure of the introduction is as follows. In the next section we will elaborate
on the relation of coalgebras and transition systems. In Section 1.2, we will give a
brief overview of the historical framework that lead modal logics to become the
language for coalgebras. We finish with Section, 1.3 where we sketch the outline
and contributions of this thesis.

1.1 Coalgebras and Systems

We begin by discussing coalgebra in more detail. Widely speaking, coalgebras
provide a mathematical theory of states and observations. The definition of

1

2 Chapter 1. Introduction

coalgebra strikes by its simplicity.
A coalgebra consists of a state space, or set of states X; and a function

ξ : X −→ T (X),

where the elements of T (X), depending on the contex, can be read as: the tran-
sitions from, or in, X, or the observations from X, or the computations from
X. Formally speaking, T is given by a functor T : Set −→ Set, where Set is the
category of sets and functions.

Coalgebras provide a perspective to study different state-based systems where
the set of states can be understood as a black box to which one has limited access.
Universal coalgebra is a mathematical theory of systems which we understand via
observations [96].

For a more intuitive illustration of the coalgebraic view, the reader can think
of a coffee vending machine. Most people do not really know what the inner
mechanism of the machine is, or even have ever seen such mechanism. Nevertheless
they can use the machine efficiently. Here we have an interaction with a system
from the black box perspective. We could even say that coalgebras are machines
from the point of view of the user. With this in mind, we can stress that we all
have had coalgebraic experiences and that they are more common than what we
would think. Moreover, it is not rare to be confronted with situations where we
make coalgebraic inferences. Here are two examples: The first example involves
two machines that look identical but one pours coffee for free. In such a situation,
after having observed the behaviour of the two machines, many of us will take
advantage and use the the free machine as far as it keeps the behaviour. Here
we have made the coalgebraic inference that in reality the inner mechanisms of
the two machines are not identical, or at least do not behave the same, and the
free machine is more advantageous for us. Elaborating a bit further, for most
of us the inner mechanism of the machine is irrelevant. Most of us do not care
why one machine gives free beverages and the other does not. We just care that
as far as when we press the button we obtain the chosen beverage. The second
example of coalgebraic inference is when this does not happen. In case we press
the button and no beverage comes out of the machine we then make a coalgebraic
inference and conclude that there is something wrong with the inner mechanism
of the machine.

Next we show two more formal examples of coalgebras as systems to illustrate
this perspective on coalgebras.

The first example is the so-called systems with termination, or one-button
machines [58]. A one button machine is a function ξ : X −→ 1 +X, where 1 is a
singleton set disjoint from X; an evaluation of the function accounts for pressing

1.2. Coalgebras and Modal Logics 3

the button. We say that x ∈ X terminates if ξ(x) ∈ 1; this is written x %−→. If
ξ(x) = y then we write x −→ y and say “there is a transition from x to y”.

The second example is deterministic automata on an alphabet A. These can
be seen as coalgebras for the functor 2× (−)A. A coalgebra ξ : X −→ 2×XA is
described by two functions ξ1 : X −→ 2 and ξ2 : X −→ XA. The former function is
the characteristic function of the set of accepting states of the automaton. The
latter function describes the transition of the the system, i.e. if ξ2(x)(a) = y we
write x

a−→ y and read “there is a transition a from x to y”.

Historically, the formal definition of coalgebras, as the dual of algebras, can be
traced back to the origins of categorical algebra, see e.g [82]. However, coalgebras
did not receive much attention as such. The field did not begin its rise until com-
puter scientists realised that coalgebras could be used as an unifying environment
to model different computer systems. Among the first illustrations of this we have
the modelling of: linear dynamic systems [4, 10], data types of infinite objects
[111, 11], and the behaviour of systems [93].

The crucial breakthrough that made coalgebra a promising field for a mathe-
matical foundation of computer systems was achieved by Aczel ([2], and [3]). In
those papers, Aczel introduced coalgebras for a functor T as a generalisation of
transition systems, showing that Kripke frames, or non-deterministic transition
systems, could be presented as coalgebras. On the top of this he made three
crucial observations: 1) coalgebras come with a canonical notion of observational
or behavioural equivalence (induced by the functor T); 2) this notion of behavioural
equivalence generalizes the notion of bisimilarity from computer science and modal
logic; 3) any ‘domain equation’ X ∼= T (X) has a canonical solution, namely the
final coalgebra.

The idea of a type of dynamic systems being represented by a functor T
and an individual system being a T -coalgebra, led Rutten [96] to the theory of
universal coalgebra which, parametrized by T , applies in a uniform way to a
large class of different types of systems. In particular, final semantics and the
associated proof principle of coinduction (which are dual to, respectively, initial
algebra semantics and induction) find their natural place here. These ideas have
been proved very successful. For example, nowadays, coalgebras encompass such
diverse systems as, for example, labelled transition systems [2], deterministic
automata [95], π-calculus processes [38], HD-automata [36], stochastic systems
[32], neighborhood frames [45], among others.

1.2 Coalgebras and Modal Logics

Modal logics began as a formalisation of modalities. We can trace its origins to
philosophy almost a century ago, though the informal study of modalities can

4 Chapter 1. Introduction

be traced to the work of medieval logicians and back to the ancient Greeks [19].
In the middle of the XX century a perspective of Modal Logics as a fine tuning
of the structure of classical logics was developed [19]. This second perspective
has its roots in the invention of graph based relational semantics (by J. Hintikka,
S. Kanger, and S. Kripke), usually know as Kripke semantics. This perspective
emphasises modal languages as means that bring to light the inner structure
of classical systems. Or as said in [20], modal languages provide an internal,
local perspective on relational structures. This view has helped to place modal
languages as the appropriate choice of languages to describe coalgebras. Moreover,
nowadays, it is also fair to say that modal logics are coalgebraic [28].

The use of modal logic for coalgebras can be seen as an attempt to open
the black boxes of coalgebras. The reason for this is that modal formulas are,
traditionally, evaluated on the states of a coalgebra. Hence, somehow coalgebraic
modal logics require, and give, access to the state space of a coalgebra. The reason
for this is duality; we will elaborate on this in Section 1.2.4.

We will now explain how the encounter of modal logic and coalgebras took
place, and how from this modal logics became the language for coalgebras. We
identify four steps, more details can be found below.

1.2.1 Basic modal logic & coalgebras

The first important step towards modal logics for coalgebras was achieved by
Aczel in [2] where he noticed that Kripke frames are coalgebras for the covariant
power set functor. We now explain this.

A Kripke frame, or non-deterministic transition system, is a pair (X,R), where
X is a set and R is a binary relation on X. To see these as coalgebras for the
covariant power set functor notice that a binary relation R ⊆ X ×X can be seen
as a function

ξR : X −→ Pow(X),

where Pow denotes the covariant power set functor. The function ξR maps a set x
to its set of successors, i.e. ξR(x) = {y ∈ X | xRy}. Conversely, given a function
ξ : X −→ Pow(X) we can define a binary relation Rξ, on X by xRξy iff y ∈ ξ(x). In
the future, if y ∈ ξ(x) we write x −→ y and read “there is a transition from x to y”.

As we mentioned before, Kripke frames or graph based relational semantics was
invented to study basic modal logic. Thus, the work of Aczel gave a first glimpse
to the use of modal logics for coalgebras. Using the coalgebraic perspective on
Kripke frames, the modalities ! (universal modality) and ♦ (existential modality)1

1Through this thesis we call ! the universal modality and call ♦ the existential modality, as

1.2. Coalgebras and Modal Logics 5

have the following interpretations on a coalgebra ξ : X −→ Pow(X).

[[!ϕ]]ξ =
{
x ∈ X | ξ(x) ⊆ [[ϕ]]ξ

}
, and [[♦ϕ]]ξ =

{
x ∈ X | ξ(x) ∩ [[ϕ]]ξ %= ∅

}
.

Since ξ(x) is the set of successors of x, and by definition xRξy iff y ∈ ξ(x). We
can write the previous interpretations in the standard relational notation [20];
more explicitly this is

[[!ϕ]]ξ =
{
x ∈ X | (∀y)(xRξy ⇒ y ∈ [[ϕ]]ξ)

}
, and

[[♦ϕ]]ξ =
{
x ∈ X | (∃y)(xRξy ∧ y ∈ [[ϕ]]ξ)

}
.

1.2.2 Moss logic

A bit before Aczel, Moss & Barwise [16] made a step that would prove to be
crucial for the development of coalgebraic modal logic. They introduced another
perspective on basic modal logic. Their intention here was to account for non
well-founded sets, and various phenomena involving circularity and self-reference.
This logic is called the Nabla logic or the Moss Logic.

The Moss logic has one modality: the nabla ∇. This modality is a bit exotic
in the sense that it takes sets of formulas, instead of just formulas, as parameters.
In particular, this means that the structure of the formulas in Moss logic is out of
the scope of (standard) universal algebra as in [24]. The interpretation of ∇ in a
coalgebra ξ : X −→ Pow(X) is as follows: Given a set of formulas Φ

[[∇Φ]]ξ =
{
x ∈ X | (∀y ∈ ξ(x))(∃ϕ ∈ Φ)(y ∈ [[ϕ]]ξ) and

(∀ϕ ∈ Φ)(∃y ∈ ξ(x))(y ∈ [[ϕ]]ξ)
}
.

The modality ∇, and the usual modalities are interdefinable as follows:

∇Φ = !
∨

ϕ∈Φ

ϕ ∧
∧

♦Φ, !ϕ = ∇∅ ∨∇{ϕ}, ♦ϕ = ∇{1,ϕ};

where ♦Φ = {♦ϕ | ϕ ∈ Φ}, and 1 denotes truth.

The second braketrough towards modal logics as the appropriate language
for coalgebras was achieved by Moss [84]. Moss noticed that his work on the ∇
modality for basic modal logic [16] could be presented parametric in the functor
T and lifted to the coalgebraic level of generality.

above. The reader should be aware that such terminology is sometimes used for the modalities
“for all states...” and “there exists a state...”, respectively. We refer to those modalities as the
global universal modality and the global existential modality, respectively.

6 Chapter 1. Introduction

His idea was to take T itself as a modality; this modality is denoted as ∇T , or
just ∇. More precisely, if M is the set of formulas of the language and t ∈ T (M)
then ∇t ∈ M. We postpone details of the semantics because in the general case
the ∇ modality can be quite involved. We treat this logic in full detail in Section
3.3.1.

The crucial contribution of [84], for the development of modal logics for
coalgebras, was that it demonstrated that each coalgebra type comes equipped
with a generic notion of modality. Hence it was quite natural to ask whether the
uniformity that coalgebra brings to transitions systems could also be achieved
for modal logics. This opened the door to the use of modal logics to describe,
or specify, the behaviour of coalgebras. However, the immediate developments
on modal logics for coalgebras did not follow Moss approach; an exception to
this is [12]. Interest on the Moss logic came back to the research arena when
Venema [108, 106] pointed out that Janin and Walukiewicz [60], had already,
independently, observed that, in basic modal logic, the connectives ∇ and ∨ may
replace the connectives !,♦,∧,∨. This observation, which is closely linked to
fundamental automata-theoretic constructions, lies at the heart of the theory of
the modal µ-calculus, and has many applications, see for instance [30, 97]. In
[71] Kupke & Venema generalized the link between fix-point logics and automata
theory to the coalgebraic level of generality by showing that many fundamental
results in automata theory are really theorems of universal coalgebra. Future
generalizations of Moss idea were investigated in [29]. A complete and sound
system for the Moss logic was introduced in [69]. Recent work on the Moss Logic
can be found in [17, 18].

1.2.3 Modal logics for coalgebras

After Moss [84] it was clear that the connection between modal logic and coalge-
bras was worth to develop. It was by then not totally clear how the general Moss
modality could be seen as a modality in the standard extension of the word [20].
At a more technical level the modality ∇ is not easily studied with the techniques
of modal logic or universal algebra. Subsequently [72] and [52] proposed a more
standard modal logic for a restricted class of coalgebras. Although both of these
works presented generic methods to define standard modalities, they needed some
involved machinery to describe the fundamental example of basic modal logic as
in Section 1.2.1. It was Pattinson [88], taking ideas from Jacobs & Hermida [50],
Jacobs [52] and Rößiger [94], who explicitely proposed a general simple pattern
behind modalities like ! and ♦, and for coalgebras in general. Their idea was
to use the so-called predicate liftings (Definition 3.1.1). Even more important
was that Pattinson’s approach presented modalities in the standard tradition
of universal algebra i.e. without the use of a multi-sorted language as in [52].
The logic of all predicate liftings was first investigated in [99, 64]. We detail this

1.2. Coalgebras and Modal Logics 7

perspective in Chapter 3.

Using predicate liftings, the motto modal logics are coalgebraic really gained
strength. It has been shown that rank-1 modal logics are coalgebraic [100]. Some
PSPACE bounds for coalgebraic logics have been established [102]. There are
results on the finite model property [98], correspondence theory [103], and cut
elimination in coalgebraic logics [90, 89]. But even more important are the
innumerable applications of predicate liftings. In this thesis we will encounter
predicate liftings in the following modal logics: basic modal logic, propositional
dynamic logic, probabilistic modal logic, graded modal logic, non-normal modal
logics, and game logic. To mention a few more, nowadays we can find predicate
liftings for conditional logics [90], hybrid logics [86], description logics [101], and
µ-calculus [27], among others. There is even a coalgebraic logic satisfiability solver
[25]. A more detailed survey of the scope of predicate liftings and coalgebraic
logics in general can be found in [28].

1.2.4 From modalities to functors

The last step in the development of modal logics for coalgebras was to try to
generalize the theory of boolean algebras with operators for modal logics, as in
[20], to the coalgebraic level of generality. In fact, this development was done
almost in parallel with the development of predicate liftings.

Here is an intuitive explanation of the idea. There are two key relations
between concepts and mathematical structures which interest us for the moment.
On the one hand we have coalgebras as a theory of systems [96]. On the other
hand, we have the well known perspective of algebras as presentations of logics.
The question is, how modalities fit into this picture. Modal logic can be seen as
extension of classical logic. We rephrase this by saying that the intuitive concept
of modality provides a link between logics and systems. Hence on the formal side,
coalgebraic modal logics, should provide a link between algebras and coalgebras.
The following picture depicts the situation:

logics algebras!

systems coalgebras!

"
modalities

"
modal logics

#

#

$ $

(1.1)

On the left side we have the intuitions, or concepts; on the right side we have the
formal mathematical structures. The horizontal lines represent the formalisation
of the concept on the left side with the structure on the right side. Because of this
interaction we can say that using modal logics we open the black box of coalgebra.
More precisely, modalities transform coalgebras into algebras and the latter are
well known to have a state space to which we have full access.

8 Chapter 1. Introduction

In the case of basic modal logic, this picture presents the theory of modal
algebras, or algebraic semantics for modal logic. This perspective makes use of
Stone duality, see [20] for details. A similar picture was also seen in domain theory
[1] where a duality is used to connect systems and logics. The idea of semantics
and syntax being connected by an adjunction can be traced back to Lawvere [78].

Modal algebras, or more generally boolean algebras with operators, are, nowa-
days, a well developed area in (classical) modal logic. They allow the use of
powerful algebraic techniques to bear on modal logic problems, see [107] for a
survey and more uses of algebra in modal logic. For example, the algebraic
semantics is better behaved than the frame based semantics; every normal modal
logic is complete with respect to its class of algebras, see [20] for details. Given
the prosperity of Boolean Algebras with Operators in (classical) Modal Logic, it
was quite natural to generalize those to arbitrary coalgebras to give an algebraic
account of the rising mass of logics for coalgebras. First attempts towards a
general framework can be found in [51, 52].

It was first explicitly noticed by A. Kurz and M. Bonsangue, in a talk at
TACL(2003) [21], using ideas from [1], that the right vertical connection in
Diagram (1.1) could be extended to all coalgebras by liftings, in a manner to be
precise later, of the functors

Setop
P

!!
BA

S
"" (1.2)

in Stone duality. Here P is the contra variant power set functor and S is the
ultrafilters functor. This was later used in [68] to present coalgebraic logics as
functors over BA. More specifically, the situation is described by the following
picture

SetT
P

!!
BA

S

$$ L
%%

(1.3)

where the functor T provides the type of transition and the functor L provides
the modal logic. This is called the functorial framework for coalgebraic modal
logics. This is the approach we follow in Part I of this dissertation.

1.3 Outline and contributions of this thesis

This thesis is divided in two parts. Part I, Modalities in the Stone age, is dedi-
cated to show how Diagram (1.3) generalizes the theory of Boolean algebras with
operators to arbitrary coalgebras and how using this we can lay a general map
of coalgebraic logics. Part II, Coalgebraic modal logics at work, is dedicated to
further investigate the uses of coalgebraic modal logics to describe coalgebras.

1.3. Outline and contributions of this thesis 9

In the Historical context, Part I finds its natural place as follows: Both the
Moss logic and the logic of all predicate liftings have their own merits to be called
a generic logic of coalgebras. A natural question/task was to compare them to
explicitly reveal their similarities and differences. A first systematic study for a
restricted class of functors was started in [80, 79]. There the relation between the
Moss logic and logics of predicate liftings was not clarified mainly because the
theory of Boolean algebras with operators was not used in its full power. Thus
to depict the general map of coalgebraic modal logics a more general approach
that could account for the algebraic semantics of modal logic was needed. More
explicitly, Part I has its origins when trying to lay a general picture of modal
logics in the functorial framework.

Part II finds its natural place as follows: One of the insights of Part I is to
show that all coalgebraic logics in the functorial framework are logics of predicate
liftings. Hence a natural task is to investigate some concrete boundaries of the
framework. In Part II we study three cases where we try to see how far can we
push the use of coalgebraic modal logics.

We now outline the chapters of this dissertation and the contributions of the
material.

Chapter 2 is a technical introduction to the material of this dissertation. Here
we fix our basic notation. We begin by introducing algebras and coalgebras.
Quite some space is dedicated to algebras for a functor and their relation to
algebraic signatures. This will be of crucial importance to show how to arrive
to the functorial framework for coalgebras. We also discuss varieties and more
specifically the finitely presentability of varieties of finitary signatures. Those
will be important technical tools in our work. We finish the Chapter by formally
introducing the modal logics that will make the running examples trough this
manuscript, in particular, we also describe the coalgebraic semantics for those
logics.

The following three chapters constitute Part I of the manuscript.

Chapter 3 introduces the functorial framework for modal logics. Most of the
ideas and definitions here are taking from the literature. Novel to the chapter is
the presentation. We first introduce modal similarity types in the tradition of
universal algebra using predicate liftings. We then develop in detail how from here
we can arrive to the functorial framework in Diagram (1.3). We deliberately do
not use Stone duality to introduce modal logics because we want to stress that the
duality is not essential to define modal logics and compare them. In this Chapter
we try to find a balance between categorical abstraction and concrete presentation.
Since coalgebras are more naturally presented in the categorical language, the
Chapter is more inclined to the categorical perspective. In particular, we introduce

10 Chapter 1. Introduction

the notion of coalgebraic modal logic based on a category of power set algebras
(Definition 3.2.12). This notion allows us to handle various modal logics not based
on modal logic.

Chapter 4 introduces the basic translation techniques to compare coalgebraic
modal logics. The contributions of the chapter can be summarised as follows: we
introduce the notion of one-step translation (Definition 4.1.1). We develop the
notions of singleton lifting (Definition 4.2.5) and translator (Definition 4.2.1), from
[79], into the functorial framework for coalgebraic modal logics. In particular we
show that every singleton lifting has a translator. We develop the notion of logical
translator (Definition 4.3.2) for any category of power set algebras (Definition
3.2.12). The most important contribution is the use of the structural properties of
the category of boolean algebras to show that every translator induces a one-step
translation. We give conditions on the type of coalgebras for a translation between
the Moss logic and logics of predicate liftings to exist.

Chapter 5 illustrates various uses of translators and translations introduced in
the previous chapter. The main contributions of this chapter can be summarised
as follows: We introduce a new type of predicate liftings called the Moss liftings
(Definition 5.1.12). Using these we can define a new translation of the Moss
Logic into the language of predicate liftings (Proposition 5.1.21). We prove two
representations theorems that exhibit any coalgebraic modal logic (Definition
3.2.13) as a logic of predicate liftings (Theorems 5.2.2 and 5.2.17). We develop
a novel equational coalgebraic logic (Section 5.3) with a sound and complete
axiomatization for it.

The following three chapters form Part II of this dissertation.

Chapter 6 discusses the relation between final coalgebras and languages for
coalgebras. Our main contribution is a systematic study of the relationship be-
tween following three characterisations of behavioural equivalence for coalgebras:
the structural characterisation using final coalgebras, the logical characterisation
using coalgebraic languages, the structural characterisation using logical congru-
ences. The gain of this study is that we simplify various of the existing proofs
in the literature. In particular we show that the relation above mostly relies on
structural properties of the base category.

In Chapter 7 we concentrate on a coalgebraic framework for modal logics
which encompasses (test free) Propositional Dynamic Logic and Game Logic.
Our key idea is to consider extra structure on the functor T . We exploit this
structure to give the desired outer perspective on programs/games. For example,
for sequential composition we assume T to be a monad (Section 7.3.1). The main
contributions of this chapter can be summarised as follows. We provide a general

1.3. Outline and contributions of this thesis 11

notion of dynamic structure which describes the algebraic structure on programs,
and their interpretation as T -coalgebras. Once this view is in place, labelled
modalities arise in a natural way by a generic process of labelling (Definition
7.1.1). We then proceed to investigate the nature of PDL and GL axioms such as
[a; b]ϕ ⇐⇒ [a][b]ϕ and [a ∪ b]ϕ ⇐⇒ [a]ϕ ∧ [b]ϕ in our general setting. We show
that such axioms hold if the underlying T -modality preserves the extra structure
on T in a manner that we make precise in Theorem 7.3.7 (sequential composition)
and Theorem 7.3.18 (pointwise operations).

In Chapter 8 we introduce automata for an arbitrary type of coalgebras (Def-
inition 8.2.1). More precisely, given a set of monotone predicate liftings Λ, we
introduce Λ-automata as devices that accept or reject pointed T -coalgebras on
the basis of so-called acceptance games. The main technical contribution of this
chapter concerns a small model property for Λ-automata (Theorem 8.3.4). We
show that any Λ-automaton A with a non-empty language recognises a pointed
coalgebra (ξ, x) that can be obtained from A via some uniform construction
involving a satisfiability game (Definition 8.3.2) that we associate with A. The
size of (X, ξ) is exponential in the size of A. We also provide some hints of how
coalgebra automata could be treated within the functorial approach to modal
logics.

Our final chapter is Chapter 9. Here we discuss further paths for research.

The origins of the material

Parts of the material in this thesis have been previously published or are cur-
rently awaiting publication. More specifically the relation between chapters and
publications is as follows:

• Part I is based on [80] and joint work with Alexander Kurz [74, 73].

• Chapter 6 is based on joint work with Clemens Kupke [70].

• Chapter 7 is based on joint work with Helle Hansen [46]

• Chapter 8 is based on joint work with Gaëlle Fontaine and Yde Venema [41].

Chapter 2

Algebras & Coalgebras

This chapter is a technical introduction to the material that will be covered
through this thesis. Here we fix our notation and terminology. With this chapter
we also intend to point the reader to the relevant literature in the background of
our work.

We have tried to make this manuscript understandable for both the modal
logic community and to the category theory community. Of course we expect the
manuscript to be understandable for the coalgebra community. Nevertheless, in
several occasions we will use some advanced categorical techniques.

We do not expect the reader to be an expert in category theory but still some
previous exposure to the subject is required. The reader should at least be familiar
with basic concepts like functor, natural transformation, diagram, limit, colimit,
and adjunction.

We do not require background in modal logic but familiarity with one or two
modal logics will help to give body to the concepts introduced here.

We try to give a survey on coalgebras but it is far from complete and didactic.
Some familiarity with the subject is expected.

This chapter is not intended to be self contained or present a state of the art
of the subjects.

2.1 Coalgebras and Algebras

We begin with the general definition of algebras and coalgebras for a functor.

Definition 2.1.1. Let C be a category and T : C −→ C be an endofunctor.

1. A T -coalgebra is a pair (X, ξ) where X is an object in C and ξ is an arrow

ξ : X −→ T (X) (in C.)

13

14 Chapter 2. Algebras & Coalgebras

We call X the carrier or the state space and ξ is called the structural map.
A pointed coalgebra is a pair (ξ, x) where x is a point1 in the state space of
ξ.

2. A T -algebra is a pair (A,α) where A is an object in C and α is an arrow

α : T (A) −→ A (in C.)

We call A the carrier and α is called the structural map.

The functor T is called the signature functor and the category C is called base
category. Often, we denote T -coalgebras and T -algebras by using only the
structural map, from which the carrier can be deduced. If there is no risk
for confusion T -coalgebras and T -algebras will be simply called coalgebras and
algebras, respectively.

The following will be our convention to denote algebras and coalgebras.

Notation. Structural maps will always be denoted by small Greek letters. Coal-
gebras will always have carriers denoted by X, Y and Z; the structural maps will
be ξ, γ and ζ, respectively. Algebras will always have carriers denoted by A and B;
the structural maps will be denoted by α and β respectively. In some occasions,
we will also use the letters A,B,X, Y and Z to denote objects in a category.

We now introduce morphism of algebras and coalgebras.

Definition 2.1.2. Let T : C −→ C be an endofunctor.

1. A morphism between T -coalgebras (X, ξ) and (Y, γ) is a morphism f : X
−→ Y , in the base category, such that the following diagram

T (X) T (Y)!
T (f)

X Y!f

"
ξ

"
γ

commutes i.e. γf = T (f)ξ.

The category of T -coalgebras, morphisms of T -coalgebras, and usual com-
position is denoted by Coalg(T).

1Concerning points: In the case C = Set, points of the state space are just the elements of X.
However, in a general category points are regarded as morphisms from an initial object into X.

2.1. Coalgebras and Algebras 15

2. A morphism between T -algebras (A,α) and (B, β) is a morphism f : A
−→ B, in the base category, such that the following diagram

A B!
f

T (A) T (B)!T (f)

"
α

"
β

commutes i.e. fα = βT (f). Morphism of T -algebras are also called T -
homomorphisms.

The category of T -algebras, morphisms of T -coalgebras, and usual composi-
tion is denoted by Alg(T).

If there is no risk for confusion we simply refer to morphisms of coalgebras and
algebras.

The following class of functors will be an important source of examples.

Definition 2.1.3. A Kripke polynomial functor [94], or KPF for short, is a functor
T : Set −→ Set built according to the following grammar

T ::= Id | KC | (−)A | Pow | T + T | T × T | T ◦ T

where Id is the identity functor, KC is the constant functor that maps all sets to
the finite set C, (−)A is the exponential functor for a finite set A, i.e. XA is the
set of functions from A to X; and Pow is the covariant powerset functor. Functors,
in KPF, that are built without using Pow are called polynomial functors .

Remark 2.1.4. Notice that we can define a polynomial functor on any category
C provided that C has products and coproducts.

In the following, we fix the notation for some functors that will appear often.

1. We use Pow : Set −→ Set for the covariant powerset functor. This functor
maps a set X to its power set and a function f : X −→ Y to its direct image.

2. The finite distribution functor D maps a set X to the set of probability
distributions on X, i.e. D(X) is the set of functions µ : X −→ [0, 1] such
that

∑
x∈X

µ(x) = 1, with finite support. On functions, D maps a function

f : X −→ Y to the function D(f) : D(X) −→ D(Y) which maps a probability
distribution µ : X −→ [0, 1] the function D(f)(µ) : Y −→ [0, 1] given by

y 5→
∑

x∈f−1({y})

µ(x).

16 Chapter 2. Algebras & Coalgebras

Since µ is a probability distribution with finite support so is D(f)(µ). A
similarly functor is the subdistribution functor, written D≤, which maps
X to the set of sub-probability distributions, i.e. {µ : X −→ [0, 1] |
µ has fin. sup. and Σx∈Xµ(x) ≤ 1}.

3. We write BN : Set −→ Set for the finite multiset functor. The idea follows
the same spirit used in the example of distributions. BN maps a set X to
BN(X) which consists of all maps (‘bags’) B : X −→ N with finite support.
For f : X −→ Y , the function BN(f) maps B : X −→ N to the function
BN(f)(B) : Y −→ N given by y 5→

∑
x∈f−1({y})

B(x).

4. We use P : Setop −→ Set for the contravariant power set functor. This functor
maps a set X to its power set and a function f : X −→ Y to its inverse
image. Recall that P(X) = 2X = Set(−, 2).

5. We use Pop : Set −→ Setop for the dual of contravariant power set functor. If
there is no risk of confusion we also denote this functor by P .

6. The composition of P after Pop, i.e. PPop, is called the neighborhood
functor.

7. We use Mon : Set −→ Set to denote the monotone neighborhood functor.
This functor maps a set X to its set of monotone neighbourhoods. More
explicitly,

Mon(X) = {N ∈ PPop(X) | if U ∈ N ∧ U ⊆ V then V ∈ N}

This functor maps a function f to (f−1)−1.

In several occasions, in order for everything to work properly, we will need
some extra technical assumptions on functors. The next definition makes some of
these assumptions explicit and precise.

Definition 2.1.5. Let T : Set −→ Set be a functor.

1. the functor T is standard if T preserves (non-empty) inclusions and the equal-
izer 0 −→ 1 ⇒ 2. The latter condition ensues T preserves monomorphism
with empty domain.

2. Given a standard functor T and a regular cardinal κ, we can define the
κ-bounded version of T , written Tκ, as follows: The functor Tκ maps a set
X to Tκ(X) =

⋃
{T (Y) | Y ⊆ X, |Y | < κ}; an arrow f : X −→ Y is mapped

to the restriction of T (f) to Tκ(X).

3. A standard functor is κ-accessible iff T = Tκ. A functor is accessible if it is
κ-accessible for some regular cardinal κ.

2.1. Coalgebras and Algebras 17

4. A standard functor is said to be finitary iff T = Tω i.e. if it is ω-accessible.

5. A functor T : Set −→ Set preserves finite sets if it maps finite sets to finite
sets.

Here are some illustrations of the previous definition.

Example 2.1.6. 1. All Kripke polynomial functors, as in Definition 2.1.3,
preserve finite sets whereas the multiset functor and finite distributions
functor do not.

2. The κ bounded version of Pow maps a set X to the set of subsets of X
of cardinality less than κ. In particular Powω maps X to its set of finite
subsets.

3. The finite multiset functor BN is the finitary version of the functor which
maps a set X to the set of functions Set(X, N̄), where N̄ = N ∪ {∞}; the
action on arrows is the same of BN.

4. The finite distribution functor is the finitary version of the functor which
maps a set X to the set of probability distributions on X, i.e. functions
µ : X −→ [0, 1] such that

∑
x∈X µ(x) = 1; the action on arrows is the same

of D.

The next remark shows that in all our investigations we can assume Set-functors
to be standard.

Remark 2.1.7. In all our investigations, without lose of generality, we can
assume functors T : Set −→ Set to be standard. Indeed, given any T we can
define T ′(X) = T (X) for X %= 0 and T (0) as the equaliser T (0) −→ T (1) ⇒ T (2).
Further, given T ′ we can find a naturally isomorphic T ′′ that preserves inclusions.
The details can be found in [9]. The important point for us is that the categories
of T -coalgebras and T ′′-coalgebras are (concretely) isomorphic.

The following examples illustrate the situation.

Example 2.1.8. Consider the functor (−)2 which maps a set X to the set of
functions from 2 to X. This functor is not standard because functions can only
be equal if their codomains are equal hence if X ⊆ Y to say X2 ⊆ Y 2 does not
even make sense unless X = Y . However, (−)2 is isomorphic to Id× Id which is
standard.

A similar remark applies to B and D. For example, D becomes standard if we
replace a function µ : X −→ [0, 1] with the set {(x, µ(x)) | µ(x) %= 0}.

The next remark concerns some of the general categorical definitions of acces-
sibility.

18 Chapter 2. Algebras & Coalgebras

Remark 2.1.9. In the general categorical world a functor is finitary iff it preserves
filtered colimits and accessible iff it preserves κ-filtered colimit; see [7] for details.

In case T is not standard we can define the κ-bounded version of T by mapping
a set X to Tκ(X) =

⋃
{T (iY)[T (Y)] | Y ⊆ X, |Y | < κ}, where iY : Y −→ X is the

inclusion. Compare this with the computation of directed colimits in Proposition
A.0.6.

2.2 More on Universal Coalgebra...

Coalgebras are generalized transition systems. The states of the system are the
elements of the set X, the type of transitions are described by the functor T and
the transitions of the system are given by the function ξ : X −→ T (X).

In this section we introduce some of the basic theory of universal coalgebra.
This includes bisimulations, relation lifting, and colimits. We begin by illustrating
some examples of coalgebras as generalized transition system. The first three
examples were already mentioned in the introduction but we repeat them for the
sake of completeness.

Example 2.2.1. 1. Coalgebras for 1 + Id are transition systems with termi-
nation. In a coalgebra ξ : X −→ 1 + X we say that x ∈ X terminates if
ξ(x) ∈ 1; this is written x %−→. If ξ(x) = y then we write x −→ y and say that
there is a transition from x to y.

2. Coalgebras for 2× (−)A are deterministic automata on the alphabet A. A
coalgebra ξ : X −→ 2 ×XA is described by two functions ξ1 : X −→ 2 and
ξ2 : X −→ XA. The former function provides the accepting states of the
automaton, the latter function describe the transition of the the system, i.e.
if ξ2(x)(a) = y we write x

a−→ y and read “there is a transition a from x to
y”.

3. Coalgebras for the covariant power set functor are Kripke frames, also known
as non-deterministic (unlabelled) transitions systems [2]. For this, recall
that a function ξ : X −→ Pow(X) can be seen as a binary relation Rξ, on X,
defined as xRξy iff y ∈ ξ(x). If y ∈ ξ(x) we write x −→ y and read “there is
a transition from x to y”.

4. Slight variations of the previous examples allow us to add labels to transitions
of states. Coalgebras for PowA are labelled transition systems. Equally
important are non-deterministic automata which can be seen as coalgebras
for 2× PowA.

5. Coalgebras for the finite distribution functor are discrete-time Markov chains
[15], also known as probabilistic transition systems. This can be seen as

2.2. More on Universal Coalgebra... 19

follows. Given a coalgebra ξ : X −→ D(X) and a state x ∈ X, we obtain a
probability distribution ξx = ξ(x) : X −→ [0, 1]. If ξx(y) = p, we write x

p−→ y
and read “the probability of having a transition from x to y is p”.

6. Coalgebras for the finite multiset functor are directed graphs with N-weighted
edges, often referred as multigraphs [110]. The idea follows the same spirit
used in the example of distributions. Given a coalgebra ξ : X −→ BN(X) we
can describe the transitions as follows: if ξ(x)(y) = n we write x

n−→ y and
read “there is a transition from x to y and the multiplicity, or weight, of y
is n”.

7. Coalgebras for the neighborhood functor, i.e. PPop-coalgebras, are known
as neighborhood frames in modal logic and are investigated as coalgebras in
[45]. A coalgebra ξ : X −→ PP(X) can be interpreted as a two player game
where a move in state x1 consists of the first player choosing a set S ∈ ξ(x1)
and the second player then the successor-state x2 ∈ S.

Bisimulations

The traditional notion of bisimilarity can be captured coalgebraically as follows.

Definition 2.2.2. Two states xi, (i = 1, 2), in two coalgebras (Xi, ξi) are T -
behaviourally equivalent , written x1 ∼ x2, if there is a coalgebra (Z, ζ) and two
coalgebra morphisms fi : (Xi, ξi) −→ (Z, ζ) such that f1(x1) = f2(x2).

Going back to Example 2.2.1, one finds that this notion of behavioural equiva-
lence coincides with the standard notions found in computer science. In detail: in
Example 2.2.1 two states are behavioural equivalent in (1), iff they do precisely
the same number of steps before terminating; in (2), iff they accept the same
language [95]; in (3-7), iff they are behavioural equivalent in the sense of process
algebra and modal logic [2, 96, 31, 45].

The next remark describes the relation of behavioural equivalence with the
usual notion of bisimulation.

Remark 2.2.3. A bisimulation between two coalgebras (X1, ξ1) and (X2, ξ2) is a
relation B ⊆ X1 ×X2 such that there is a coalgebra B −→ T (B) making the two
projections B −→ Xi into coalgebra morphisms. In case the functor T preserves
weak pullbacks (see Proposition 2.2.10), to say that there is a bisimulation relating
x1 and x2 is the same [96] as to say that x1 and x2 are behavioural equivalent
according to Definition 2.2.2. In case T does not preserve weak pullbacks , the
notion of bisimulation is problematic, e.g. it is not transitive, but the notion of
behavioural equivalence still works fine.

20 Chapter 2. Algebras & Coalgebras

One of the key contributions of universal coalgebra was to characterisation of
behavioural equivalence (and bisimilarity) as a structural property of categories
of coalgebras. As we mentioned, it was noted [2, 96] that behavioural equivalence
(bisimilarity) could be characterised using final systems, also called final coalgebras.

Definition 2.2.4. A final coalgebra for an endofunctor T is a terminal object in
Coalg(T). Explicitly, a final coalgebra is a coalgebra ζ : Z −→ T (Z) such that for
any coalgebra ξ : X −→ T (X) there exists a unique morphism fξ : ξ −→ ζ. This
morphism is called the final map of ξ.

Final coalgebras are to coalgebra what initial algebras or term algebras are to
algebra, see e.g. [58]. The key result to keep in mind is the following:

Proposition 2.2.5. If a final T -coalgebra exists, two states xi, (i = 1, 2), in
coalgebras ξi are behavioural equivalent if and only if they are mapped to the same
state of the final coalgebra, i.e. fξ1(x1) = fξ2(x2).

The previous result can be also read as follows: In case a final coalgebra exists,
we can define the behaviour of a state as its image in the final coalgebra. In other
words, the states of a final T -coalgebra represent all the possible behaviours of
states in T -coalgebras, i.e. transition system of type T .

Unfortunately, final coalgebras do not always exist. One way to show this is
using Lambek’s lemma.

Lemma 2.2.6 (Lambek’s Lemma). If a final T -coalgebra exists, its structural
map is an isomorphism.

Notice that the previous lemma implies that there is no final Pow-coalgebra
because of cardinality reasons. In Chapter 6 we will discuss how to describe final
coalgebras using logics for coalgebras.

Another reason to pay attention to final coalgebras is that they can also be used
to formalise the notions of coinduction, which is dual to the notion of induction
from algebra. We do not treat this here.

Relation Lifting

Given relations R ⊆ X × Y , R′ ⊆ Y × Z we write their composition as R;R′ and
the converse of a relation is denoted by Ro.

Definition 2.2.7. Given a binary relation R ⊆ X × Y with projections X
p1←−

R
p2−→ Y , the relation lifting T (R) ⊆ T (X)× T (Y) of R is the set

T (R) =
{
(t, t′) ∈ T (X)× T (Y) | (∃r ∈ T (R))(T (p1)(r) = t and T (p2)(r) = t′

}
.

There are at least two other perspectives on relation lifting:

2.2. More on Universal Coalgebra... 21

1. If we identify functions with their graphs, we can show T (R) = (T (p1))o;T (p2).

2. T (R) is the image of T (R)
〈T (p1),T (p2)〉−−−−−−−−→ T (X)× T (Y).

Here are some concrete examples of relation lifting.

Example 2.2.8. Let R be binary relation between X and Y .

1. In the case of T = Id, for every relation R we have T (R) = R.

2. For T = Pow, the lifting of a relation R ⊆ X × Y is the set

T (R) =
{
(ϕ,ψ) ∈ Pow(X)× Pow(Y) |

(∀x ∈ ϕ)(∃y ∈ ψ)(xRy) ∧ (∀x ∈ ψ)(∃y ∈ ϕ)(xRy)
}

Compare this with the description of basic modal logic using ∇ (Section
1.2.1). Relation lifting is closely related to bisimulation. A binary relation
B between Kripke frames (X,R0) and (Y,R1) is a bisimulation iff for all
(x, y) ∈ B we have (R0[x], R1[y]) ∈ Pow(B); here R[x] denoted the set of
R-successors of x.

3. Using the distribution functor the lifting of a relation R ⊆ X × Y can be
described as follows: Recall that a distribution µ : X −→ [0, 1] can be seen
as a finite list {(xi, pi) | i ∈ n} (Example 2.1.8); the idea is that µ(xi) = pi.
Using this perspective, we see that {(xi, pi) | i ∈ n}D(R){(yj, qj) | j ∈ m}
holds iff there exists (rij)1≤i≤n,1≤j≤m, rij ∈ [0, 1] such that if ¬(xiRyj) then
(rij = 0) and

∑
i rij = qj and

∑
j rij = pi. As said in the previous item,

relation lifting is related to bisimulation; in [31] a presentation like the one
above is used to describe bisimulation of probabilistic systems.

In the case of Kripke polynomial functors, relation lifting can be described
inductively as follows:

Proposition 2.2.9 ([53]). Let R ⊆ X × Y be a binary relation. The following
induction presents the relation lifting T (R) ⊆ T (X) × T (Y), for each kripke
polynomial functor.

• Id(R) = R,

• KC(R) = ∆C,

• T1 × T2(R) =
{(

(t1, t2), (t′1, t
′
2)
)
| (t1, t′1) ∈ T1(R) and (t2, t′2) ∈ T2(R)

}
,

• T1 + T2(R) =
{
(κ1(t),κ1(t′) | (t, t′) ∈ T1(R)

}
∪
{
(κ2(t),κ2(t′) | (t, t′) ∈ T2(R)

}
,

• PowT (R) =
{
(Φ,Ψ) | (∀ϕ ∈ Φ)(∃ψ ∈ Ψ)((ϕ,ψ) ∈ T (R))

and (∀ψ ∈ Ψ)(∃ϕ ∈ Φ)((ϕ,ψ) ∈ T (R))
}
.

22 Chapter 2. Algebras & Coalgebras

Relation lifting and functors

The process of relation lifting described in Definition 2.2.7 determines a function
T mapping relations to relations. In case T preserves weak pullbacks, T is a
functor

T : Rel −→ Rel,

where Rel is the category with sets as objects and relations as arrows.
More explicitly, T maps a set X to T (X) and a relation R : X −→ Y to

T (R) : T (X) −→ T (R).
The following result will be used very often

Proposition 2.2.10. For a functor T : Set −→ Set the following are equivalent:

1. T preserves weak pullbacks (Definition A.0.1, page 215)

2. T : Rel −→ Rel is a functor

3. the T relation lifting preserves the composition of relations i.e. T (R ◦ S) =
T (R) ◦ T (S).

A proof of this fact appears in [13] although it is not explicitly stated there.

Some structural properties of coalgebras

Two constructions of coalgebras are important for us. Those are disjoint unions
and quotients. It is well known that to construct the disjoint union of two Kripke
frames we first take the disjunction of the carriers and then “extend” the relational
structure. This procedure works for any type of coalgebras. The same principle
applies to the formation of quotients of coalgebras i.e. we first form the quotient
of the carrier and then extend the “relational structure”, see Chapter 6 for more
on quotients of coalgebras. In fact, every (finite) colimit can be constructed using
disjoint unions and and quotients. The property to remember is that colimits of
coalgebras are build by first performing the respective operation on the carrier
and then extending the coalgebraic structure using the universal property. In the
categorical language this means that the forgetful functor creates colimits.

Proposition 2.2.11. The forgetful functor U : Coalg(T) −→ C, where C is the
base category, creates colimits.

Products, or limits in general, of coalgebras are wild creatures. In general,
the product of two coalgebras might even fail to exists [?]. Another example of
bad behaved limits of coalgebras are final coalgebras. As mentioned, those do
not exist in general. Chapter 6 is devoted to the construction of final coalgebras.
During most of this manuscript limits of coalgebras will not torment us.

2.3. Algebras, algebraic signatures, and functors 23

2.3 Algebras, algebraic signatures, and functors

We recall some familiar definitions from Universal algebra.

Definition 2.3.1. A (finitary) algebraic signature is a set of symbols Σ together
with a function ar : Σ −→ N. A symbol p ∈ Σ is called an operation; we refer to
ar(p) as the arity of the operation. The subset of n-ary operations of Σ is denoted
by Σn.

An algebra of type Σ is a set A together with a function pA : Aar(p) −→ A for
each p ∈ Σ. We denote a Σ- algebra as a tuple (A, pA)p∈Σ.

A homomorphism between Σ-algebras (A, pA)p∈Σ and (B, pB)p∈Σ is a function
f : A −→ B preserving the given operations, i.e. for each n-ary operation p,
fpA(a1, . . . , an) = pB(f(a1), . . . , f(an)).

2.3.1 Algebraic signatures as functors

Algebras for an algebraic signature correspond to algebras for a polynomial functor
and viceversa. This fact will be of vital importance during all this manuscript.

Given an algebraic signature Σ we call the functor

TΣ =
∐

n<ω

Σn × (−)n (2.1)

the associated functor of the signature. Given a polynomial functor as above,
the associated signature is given by the set Σ =

∐
n<ω Σn.

TΣ-algebras and TΣ-morphisms coincide with Σ-algebras and homomorphism
of Σ-algebras.

Indeed, given a TΣ-algebra α : TΣ(A) −→ A for each operation p ∈ Σn induces
a function α(p,−) : An −→ A, we regard this function as pA; in other words each
TΣ-algebra is a Σ-algebra. By the universal property of coproducts, α is univocally
determined by these functions, this means that each Σ-algebra is a TΣ-algebra.

In order to see the correspondence between homomorphisms of Σ-algebras and
TΣ-morphisms, notice that by the universal property of coproducts, a TΣ-morphism
between algebras (A,α) and (B, β) is a function f : A −→ B such that for each n
and each p ∈ Σn the following diagram

A B!
f

An Bn!fn

"
α(p,−)

"
β(p,−)

24 Chapter 2. Algebras & Coalgebras

commutes. Recall that fn(a1, . . . , an) = (f(a1) . . . f(an)). Therefore, the diagram
above literately codes the defining property of Σ-homomorphisms.

Notation. Given the perfect correspondence between algebras for an algebraic
signature and algebras for a polynomial functor, we will denote the associated
functor, Equation (2.1), of an algebraic signature Σ also by Σ.

The next remark provides another description of the associated functor of a
signature.

Remark 2.3.2. The associated functor of a signature Σ can also be described as∐
p∈Σ(−)ar(p).

It is important to notice that algebras for a functor do not cover the whole
landscape of universal algebra. In order to give account for varieties using functors
we need monads and algebras for a monad (see Section 2.3.3). Algebras for a
functor correspond to varieties that can be axiomatized by axioms of rank 1, see
Section 5.1, on page 95, for more details.

Some structural properties of algebras

The situation for algebras is dual to that of coalgebras. It is well known that
the product of two algebras (A,α) and (B, β), for an algebraic signature, is
obtained/defined by taking the cartesian product of the carriers and then extending
the operations componentwise. This procedure also works for algebras for a functor
in general. In full generality, we can show that (finite) limits, i.e. products and
congruences (subalgebras), are obtained by taking the respective operations on
the carrier and then extending them using universal properties. In the categorical
language this means that the forgetful functor creates limits.

Proposition 2.3.3. The forgetful functor U : Alg(T) −→ C, where C is the base
category, creates limits.

Quotients, homomorphic images, and congruences of algebras are very well
understood in universal algebra. We refer the reader to a standard text like [24]
for details or to a text like [8] for a categorical perspective.

Term Algebras

Term algebras will play a crucial role in our development of coalgebraic modal logic.

In Universal Algebra the terms of a signature Σ are defined as the smallest
subset closed under the operations in Σ. The next definition makes this precise.

2.3. Algebras, algebraic signatures, and functors 25

Definition 2.3.4. Let Σ be a (finitary) algebraic signature; let Σn be the set of
operations of arity n in Σ. Let X be a set; call the elements of X propositional
variables. The set TΣ(X) of terms of type Σ, over X, is the smallest set such that:

1. X ∪ Σ0 ⊆ TΣ(X),

2. if t1, . . . tn ∈ TΣ(X) and p ∈ Σn then p(t1, . . . , tn) ∈ TΣ(X).

The term algebra of type Σ, over X, written TΣ(X), has as carrier the set TΣ(X);
an operation p ∈ Σn is interpreted as the function pTΣ(X) : TΣ(X)n −→ TΣ(X)
defined by the clauses above. More explicitly, a tuple t1, . . . tn ∈ TΣ(X) is mapped
to pTΣ(X)(t1, . . . tn) = p(t1, . . . tn). The term algebra over Σ is also referred as the
absolutely free Σ-algebra.

In the language of Category Theory, term algebras define a left adjoint to the
forgetful functor.

Proposition 2.3.5. Let Σ be a polynomial functor. The forgetful functor UΣ :
Alg(Σ) −→ Set has a left adjoint TΣ : Set −→ Alg(Σ). The functor TΣ maps a set
X to the Σ-term algebra over X.

2.3.2 Varieties

In this section we discuss some properties of varieties, of algebras, which will
play an important role trough the dissertation. More concretely, these properties
concern the finite presentability of variates of algebras for a finitary signature.
The standard text in the subject is [7].

Definition 2.3.6. Let Σ be an algebraic signature. A class A ⊆ Alg(Σ) is said to
be a variety if it is closed under products, homomorphic images, and subalgebras.
The signature Σ is called the algebraic signature of A and is often written as ΣA.

Remark 2.3.7. By definition all our varieties are finitary, this means that they
are varieties over a finitary algebraic signature. Often we will add some redundancy
referring to (finitary) varieties. This is to stress that things could go wrong if the
operations of the signature are not of finite arity.

A well known theorem of Birkhoff shows that the varieties of algebras are
precisely the equationally definable classes of algebras, see [24] for details and [8]
for a categorical version. Example of varieties are boolean algebras and distributive
lattices. We denote these categories with the usual morphism by BA and DL,
respectively.

Varieties for an algebraic signature can in fact be described by operations
of finite arity and equations. Every variety A comes equipped with a forgetful

26 Chapter 2. Algebras & Coalgebras

functor U : A −→ Set, which has a left-adjoint F : Set −→ A.

In a finitary variety, every algebra A ∈ A is a colimit of finitely generated free
algebras in a canonical way [8], more explicitly it is the colimit of all valuations n
−→ U(A). The next definition and proposition make this precise.

Definition 2.3.8. Let A be a variety of algebras and letA0 be the full subcategory
of finitely generated free algebras. For each algebra A ∈ A, the canonical diagram
of A, denoted by DA

0 , with respect to A0, is the natural forgetful functor DA
0 :

A0 ↓ A −→ A, where A0 ↓ A denotes the comma category over A.

More explicitly, the objects in the comma category A0 ↓ A are all homomor-
phism i : F (ni) −→ A, i.e valuations ni −→ U(A), where ni is a finite set. The
morphisms are substitution of variables in a valuation; more explicitly, given
valuations i : ni −→ U(A) and j : mj −→ U(A) a morphism from i to j is a function
f : ni −→ mj such that i = j ◦ f . Hence the canonical diagram of A is given by
the family

(
f j
i : F (ni) −→ F (mj)

)
where i : ni −→ U(A) and j : mj −→ U(A) range

over all valuations; and f j
i : ni −→ mj is a function such that i = f j

i ◦ j.
In case A = Set the canonical diagram of a set A correspond to all finite

subsets of A. Morphism are then given by permutations of the elements of those.
With this example in mind, the canonical diagram will generalise the following
fact to algebras in a variety. Every set is the join of its finite subsets. The
next proposition makes this precise and present other properties of the canonical
diagram that will be relevant for us.

Proposition 2.3.9. For any (finitary) variety A the following holds.

1. Every algebra in A is the colimit of its canonical diagram, i.e. for every
A ∈ A we have A ∼= colim(DA

0).

2. The canonical colimit is directed.

3. The forgetful functor U : A −→ Set preserves the canonical colimit, thus it
can be computed as in Set. In general U preserves all directed colimits.

4. Moreover, the canonical colimit commutes with finite products. More pre-
cisely, this means that given a finite number of algebras {Ai | i ∈ m} in A,
we have

colim(D
∏

i∈m Ai

0) ∼=
∏

i∈m

Ai
∼=

∏

i∈m

colim(DAi
0).

The details can be found in [8].

Remark 2.3.10. In case the variety does not correspond to a finitary algebraic
signature it is not enough to consider finitely generated algebras. We refer the
reader to [8] for a detail account of those situations.

2.3. Algebras, algebraic signatures, and functors 27

The next remark addresses some divergence of our terminology with the
terminology used in the literature.

Remark 2.3.11. The property in Item 4 in the previous proposition tells us that
the the canonical colimit is in fact a so-called sifted colimit . In this dissertation
the only relevant sifted colimit is the canonical colimit.

More formally a category D is sifted if finite products in Set commute with
colimits over D. A sifted colimit is the colimit of a diagram whose domain is a
sifted category. More explicitly, a category D is sifted iff, for every diagram

D : D× I −→ Set

where I is a finite discrete category we have

colim

(
∏

i∈I

D(d, i)

)
∼=

∏

i∈I

(colim(D(d, i)))

as we said this property will only matter for the canonical colimit.

One of the important properties of finitary varieties is that to define a functor
L : A −→ A, it is enough to describe L on A0 and then extend it to general A ∈ A
via colimits. As mentioned before, this colimit is preserved by U and thus it is
calculated as in Set. The next definition makes this precise.

Definition 2.3.12. We say that a functor L on a variety A is determined by
finitely generated free algebras if for every algebra A ∈ A we have L(A) ∼=
colim(L ◦DA

0).

In more detail, a functor L is determined on finitely generated algebras if for
every algebra A, the algebra L(A) is the colimit of the application of L to the canon-
ical diagram of A. More explicitly, if A is the colimit of

(
f j
i : F (ni) −→ F (mj)

)

then L(A) is the colimit of

(
LF (ni)

L(fj
i)−−−→ LF (mj)

)
.

The next remark addresses the general definition of functor generated by
finitely generated algebras.

Remark 2.3.13. A functor is determined by finitely generated free algebras iff
it preserves, so-called, sifted colimits [7]. It was proved in [76] that a functor
preserves sifted colimits iff it can be described by operations and equations [22].

We will see examples of such presentations in Chapter 5
In particular the forgetful functor of any finitary variety is determined by

finitely generated algebras [76].

We can also describe natural transformations by describing them on finitely
generated algebras.

28 Chapter 2. Algebras & Coalgebras

Proposition 2.3.14. Let L and L′ be functors determined by finitely generated
algebras. Let {(τω)n : LF (n) −→ L′F (n)}n∈ω be a family natural on n, i.e. a
natural transformation on finitely generated algebras.

There exists a (unique) natural transformation τ : L −→ L′ extending τω, i.e.
τ and τω coincide on finitely generated algebras.

Proof. This is immediate by the universal property of colimits. More explicitly,
the A-component τA : L(A) −→ L′(A) is the unique arrow such that the following
diagram

LF (ni) L′F (ni)!
(τω)n

L(A) L′(A)!τA

$
L(i)

$
L′(i)

commutes for every i : F (ni) −→ A.

2.3.3 Monads and Algebras

As we mentioned, to describe varieties using functors we need monads.

Definition 2.3.15. A monad on a category C is a triple M = (M, η, µ) where M
is a functor on C, η is a natural transformation η : Id −→ M called the unit, and µ
is a natural transformation µ : M2 −→ M called the multiplication; such that the
following diagrams

M

id
%
%
%%&

M M2!M(η)
M#ηM

"
µ id

'
'

''(
M2 M!

µ

M3 M2!M(µ)

"
µM

"
µ

commute.

Example 2.3.16. The following are examples of monads.

1. The functor 1 + Id is a monad. The unit ηX : X −→ 1 + X is given by
inclusion. The multiplication µX : 1 + 1 +X −→ 1 +X maps x ∈ 1 + 1 +X
to ∗, the only element of 1, if x ∈ 1 + 1 and to itself if x ∈ X.

2. The covariant power set functor Pow is a monad with unit ηX(x) = {x} and
multiplication µX({Ui | i ∈ I}) =

⋃
i∈I Ui.

3. The distribution functor D is a monad. The unit ηX : X −→ D(X) maps
x to the probability Dirac distribution dx : X −→ [0, 1], i.e. dx(x) = 1 and
dx(y) = 0 in any other case. The multiplication µ : DD(X) −→ D(X) maps
D ∈ DD(X) to the probability distribution µ(D) : X −→ [0, 1] which maps
x to

∑
d∈D(X)(D(d) · d(x)).

2.3. Algebras, algebraic signatures, and functors 29

4. The neighbourhood functor PPop is a monad with unit ηX(x) = {U ∈
PX | x ∈ U} and multiplication µ defined for all W ∈ (PPop)(PPop)(X) by

µX(W) = {U ∈ P(X) | {H ∈ PPop(X) | U ∈ H} ∈ W}.

5. The functor Mon is also a monad. The unit η and multiplication µ are ob-
tained by restricting the ones for PPop. In particular, forW ∈ Mon(Mon(X)),
the multiplication is defined by µX(W) = {U ∈ P(X) | {H ∈ Mon(X) |
U ∈ H} ∈ W}.

6. Note that there is no natural way to define a monad structure on the functors
Pow(−)A, for an arbitrary set A, neither for the functor (B × Id)A where A
and B are arbitrary sets, unless A = B.

We can also define algebras for a monad.

Definition 2.3.17 (Eilenberg-Moore algebras). Let M = (M, η, µ) be a monad
on a category C. An Eilenberg-Moore algebra for M, or M-algebra for short, is an
arrow α : M(A) −→ A such that the following diagrams

A M(A)!ηA

idA

%
%
%
%%&

A
"

α

M(A) A!
α

M2(A) M(A)!M(α)

"

µA

"

α

commute. Morphisms of M-algebras are defined as morphisms of algebras for the
functor M . The respective category is denoted by Alg(M), or (CM, UM); where
UM is the (natural) forgetful functor. Clearly this category is concrete over C.

An important property of monads is that every monad comes from an adjunc-
tion and every adjunction defines a monad.

Proposition 2.3.18. In any category C we have:

1. Every adjunction (F, U,ϕ, η, ε), where U : A −→ C, induces a monad
(M, η, µ) = (UF, η, UεF).

2. For every monad M = (M, η, µ), on C, there exists a category A, a func-
tor U : A −→ C, and an adjunction (F, U,ϕ, η, ε), such that (M, η, µ) =
(UF, η, UεF).

The first item is a straight forward computation. For the second item we can
take A to be the category of Eilenberg-Moore algebras for M and U the natural
forgetful functor. However this is not the only way. In Section 7.2 we discus

30 Chapter 2. Algebras & Coalgebras

another manner of obtaining the mentioned adjunction.

Putting the previous proposition together with proposition 2.3.5 we can see
that for every polynomial functor Σ : Set −→ Set the term algebras define a monad
TΣ : Set −→ Set, this is called the free monad of Σ. A important property is that
the categories Alg(Σ) and Alg(TΣ) are equivalent. In general, given a functor
T : C −→ C such that the forgetful functor U : Alg(T) −→ C has a left adjoint, F ,

the monad C T=UF−−−−−−−→ C is called the free monad of T . In case the free monad
exists, the categories Alg(T) and Alg(T) are equivalent.

Using monads we can characterise categories of algebras abstractly as follows:

Definition 2.3.19. A category A is said to be monadic, or algebraic, over a
category C, if (1) it is concrete over C, i.e there is a faithful functor U : A −→ Set,
and A is concretely isomorphic to a category (CM, UM) for some monad on C. In
case (A, U) is monadic, we say that the functor U is monadic.

The gain of this is that now we have a categorical presentation of categories of
algebras and varieties.

Example 2.3.20. The following categories are monadic.

1. Let Σ be a (finitary) algebraic signature. Every variety A ⊆ Alg(Σ) is
monadic. It can be shown that the category A is isomorphic to the category
of Eilenberg-Moore algebras for the monad UF , where U : A −→ Set is the
forgetful and F is its lefts adjoint.

2. In fact, any category Alg(T) for an accessible functor is monadic. In such
case the monad UF is called the free monad generated by T .

The previous example shows that monadic categories subsume varieties for
finitary signatures. However, monads can also account for (some) infinitary
algebraic theories.

Example 2.3.21. The following categories are monadic:

1. The category of complete atomic Boolean Algebras complete boolean algebra
homomorphisms is monadic.

2. The category Frm, of frames and frame homomorphism, is monadic. This is
usually proven by factoring the forgetful functor U : Frm −→ Set via some
intermediate category as Pos or DL. A survey of such factorisations can be
found in [62].

In Section 5.1 we show which monads correspond to finitary categories of
algebras.

2.4. A first glance at logics for coalgebras 31

2.4 A first glance at logics for coalgebras

Modal languages have been widely studied as simple yet expressive languages
which provide an internal, local perspective on relational structures, see [20]. As
we discussed in the introduction, modal logics have a coalgebraic nature. In this
section we present the coalgebraic semantics for various well known modal logics.
In Part I, we will show how all these systems can be studied under the single
uniform framework of coalgebraic modal logic.

In the introduction we discussed the case of basic modal logic (Section 1.2.1). As
a remainder we recall that Kripke frames correspond to Pow-coalgebras. Morphism
of Pow-coalgebras correspond to bounded morphisms [2].

2.4.1 Probabilistic modal logic & coalgebras

Probabilistic modal logic [49] has modalities of the following type: For each real
number p ∈ [0, 1] there is a modality ♦p with the following reading “the probability
of ϕ is at least p”. Another common probabilistic modality is ♦p with the reading
“the probability of ϕ is at most p”.

Recall that coalgebras for the finite distribution functor are discrete time
Markov chains [15], also known as probabilistic transition systems. Probabilistic
modal logic can be interpreted over D-coalgebras as follows. The semantics of ♦p

and ♦p on a coalgebra ξ : X −→ D(X) is given by:

[[♦pϕ]]ξ =




x ∈ X | p ≤
∑

y∈[[ϕ]]ξ

ξ(x)(y)




 , and

[[♦pϕ]]ξ =




x ∈ X |
∑

y∈[[ϕ]]ξ

ξ(x)(y) ≤ p




 .

Graded modal logic & coalgebras

Another example of modal logics for coalgebras is graded modal logic [37]. In this
logic, for each natural number n there is a modality ♦n with the following reading:
“there are at least n successors satisfying ϕ”.

Using coalgebras we can interpret graded modal logic can be interpreted over
directed graphs with N-weighted edges, often referred as multigraphs or graded
Kripke frames; these can be see as coalgebras for the finite multiset functor [110].

The idea follows the same spirit used in the example of distributions. The

32 Chapter 2. Algebras & Coalgebras

semantics of ♦n on a coalgebra ξ : X −→ BN(X) is given by

[[♦nϕ]]ξ =




x ∈ X | n ≤
∑

y∈[[ϕ]]ξ

ξ(x)(y)




 .

Since ξ(x) : X −→ N assigns a weight to each element of X. This shows that the
equation above gives the usual interpretation of graded modalities .

2.4.2 Propositional dynamic logic & coalgebras

Slight variations of this example allow us to add labels to transitions of states and
the modalities. As we saw, coalgebras for PowL are labelled transition systems.
We elaborate on this.

Notice that a coalgebra ξ : X −→ Pow(X)L curries into a function

ξ̂ : X × L −→ Pow(X).

hence for each a ∈ L we have a function ξa : X −→ Pow(X) which, by the discus-
sion on Kripke frames, corresponds to a binary relation Ra ⊆ X ×X. In other
words, a PowL coalgebra can be presented as a a relational structure (X, {Ra}a∈L)
where xRay iff y ∈ ξ(x)(a). We can then describe the transitions of the systems
as follows: if y ∈ ξ(x)(a), we write x

a−→ y and read “there is a transition a from x
to y”.

Propositional Dynamic Logic (PDL) [39, 92], see [47] for a more detailed
account, started as a modal logic for reasoning about program correctness. Modal-
ities are indexed by programs; a formula [a]ϕ should be read as “after all halting
executions of a, ϕ holds”. PDL programs are built inductively using the oper-
ations of choice (∪), sequential composition (;) and iteration (∗). Moreover, a
formula ϕ can be turned into a program ϕ? by the test operation ?. Complex
programs are interpreted by operations on relations, i.e Pow-coalgebras as follows:
sequential composition is interpreted as relation composition, choice as union, iter-
ation as reflexive, transitive closure, and a test ϕ? as the relation {(x, x) | x ∈ [[ϕ]]}.

Using the relational presentation above, we can now see that the interpretation
of [a] on a coalgebra ξ : X −→ Pow(X)L is as follows:

[[[a]ϕ]]ξ =
{
x ∈ X | ξ(x)(a) ⊆ [[ϕ]]ξ

}
.

In terms of relational structures this can be written as

[[[a]ϕ]]ξ =
{
x ∈ X | (∀y)(xRay ⇒ y ∈ [[ϕ]]ξ)

}

We will discuss more on PDL and labelled transition systems in Chapter 7.

2.4. A first glance at logics for coalgebras 33

2.4.3 Non-normal modal logic

Non-normal modal logics [26] are modal logics for which the K axiom from basic
modal logic may fail. Their semantics is usually given by the so called neighborhood
frames. Those can be seen as coalgebras for the double contravariant power set
functor, also known as the neighbourhood functor [45].

More explicitly, a neighborhood frame is a function

ξ : X −→ PPop(X)

where P : Setop −→ Set is the contravariant power set functor, and Pop : Set −→ Set
is its dual. In other words, the function ξ assigns to each x ∈ X a family of
subsets of X. This can be interpreted as a two player game where a move in state
x1 consists of the first player choosing a set S ∈ ξ(x1) and then the second player
chooses a successor-state x2 ∈ S.

The non normal modality ! has the following semantics over a coalgebra ξ : X
−→ PPop(X).

[[!ϕ]]ξ =
{
x ∈ X | [[ϕ]]ξ ∈ ξ(x)

}
.

Logics like coalition logic, also called logics for social software, are labelling of
non-normal modal logics, i.e. they are modal logics interpreted over (PPop)L-
coalgebras; in this case, the elements of L are usually interpreted as agents,
coalitions, or games; see [91] for a survey.

It is very common to require a bit more of structure and consider the monotone
neighborhood functor Mon instead of the neighborhood functor PPop. Later, for
various purposes we will assume non-normal modal logic is interpreted over Mon
coalgebras. The semantics of ! on Mon-coalgebras is the same as for PPop.

Game Logic

Among non-normal modal logics, we will pay particular attention to game logic.
Game logic is in some sense the non-normal (monotone) version of PDL, see
Chapter 7. Game Logic (GL) [87, 91] is a non-normal modal logic for reasoning
about strategic ability in determined 2-player games. Informally, a modal formula
[γ]ϕ should be read as “player 1 has a strategy in the game γ to ensure an outcome
in which ϕ holds”.

Game operations extend the program operations of PDL with the operation
dual (d) which corresponds to a role switch of the two players. Formally, let Γ0

be a set of atomic games. The games and formulas of Game Logic are defined as
follows:

games γ ∈ Γ, γ ::= g | γ ∪ γ | γ; γ | γ∗ | γd | ϕ? where g ∈ Γ0,
formulas ϕ ∈ Φ, ϕ ::= ⊥ | ¬ϕ | ϕ ∨ ϕ | [γ]ϕ

34 Chapter 2. Algebras & Coalgebras

Game Logic semantics is given by multi-modal monotone neighbourhood models
[26]. For simplicity we leave out atomic propositional variables from the language,
but these can easily be included and interpreted by valuations as usual. A GL
model M = (X, {Ea| g ∈ Γ0}) consists of a set of states X, and a monotone
neighbourhood function Eg : X −→ Mon(X) for each atomic game g ∈ Γ0. Truth of
formulas and interpretations of complex games are again defined by simultaneous
induction. The clauses for the Boolean operations are as usual, and [[[γ]ϕ]]M =
{x ∈ X | [[ϕ]]M ∈ Eγ(s)}. Complex game semantics is defined in [87, 91] in terms
of the transposed neighbourhood functions.

Recall that the transpose of ν : X −→ PPop(X) is given by ν̂(U) = {x ∈ X |
U ∈ ν(s)} for all U ⊆ X. Note that ν̂ : P(X) −→ P(X) is a monotonic map
whenever ν is a monotonic neighbourhood function. For γ,χ ∈ Γ and U ⊆ X,

Êγ∪χ(U) = Êγ(U) ∪ Êχ(U), Êγ;χ(U) = Êγ(Êχ(U)),

Êγ∗(U) = µY.U ∪ Êγ(Y), Êγd(U) = X \ (Êγ(X\U)).

Êϕ?(U) = [[ϕ]]M ∩ U,

(2.2)

2.4.4 Translations

We finish this chapter by introducing the concept of translation. This will be
important trough Part I of this thesis.

Definition 2.4.1. Let T be set functor and let L1 and L2 be language that can
be interpreted on T -coalgebras. A translation is a function tr : L1 −→ L2 that
preserves the semantics, i.e. for every ϕ ∈ L1 and every coalgebra ξ, we have
[[ϕ]]L1

ξ = [[tr(ϕ)]]L2

ξ .
The domain of tr is called the source language and the codomain of tr is called

the target language.

Part I

Modalities in the Stone age

35

Chapter 3

Coalgebraic Modal Logics

The jungle of modal logics is dense and vast. Nowadays, modalities appear in
innumerable shapes and backgrounds; a general framework covering all incarnations
of modalities does not strike us in the face. In the quest for such general framework,
the first issue rises when we try to formalise the concept of “modality”. One thing
that seems essential to several modalities is a notion of successor state; as we have
mentioned, the notion of successor can be formalised using coalgebras. With this
perspective we can then intuitively say:

A modality transforms properties of states into properties of successors.

In this chapter, and this thesis in general, we present a general mathematical
framework for modalities that fall under the scope of the intuition above. An
important insight from this perspective is that it suggests that the concept of
modality should be independent of any particular coalgebra and only rely on the
functor T , i.e. modalities should only rely on the type of successor. In fact all
modalities in Section 1.2 display this format. In Table 3.1 bellow the most right
column presents some of these the modalities using a component independent of
any coalgebra and only dependent on the functor T .

We will use this observation to define a general framework for modal logics.
This will lead us to the concept of concrete modality which is a formalisation of
the intuition above. One gain of this is that an algebraic semantics for modalities
will rise naturally.

Novel to this chapter is the presentation. In this chapter we try to find a balance
between categorical abstraction and concrete presentation. Since coalgebras are
more naturally presented in the categorical language, the chapter is more inclined
to the categorical perspective.

The structure of the chapter is as follows. Firstly (Section 3.1), we introduce
modal similarity types in the tradition of universal algebra using predicate liftings.
We develop in detail how from this we can arrive to the functorial framework

37

38 Chapter 3. Coalgebraic Modal Logics

Functor Modality Semantics Decomposition

Pow !
{
x ∈ X | ξ(x) ⊆ [[ϕ]]ξ

}
ξ−1

{
U ∈ Pow(X) | U ⊆ [[ϕ]]ξ

}

Pow ♦
{
x ∈ X | ξ(x) ∩ [[ϕ]]ξ %= ∅

}
ξ−1

{
U ∈ Pow(X) | U ∩ [[ϕ]]ξ %= ∅

}

BN ♦n

{
x ∈ X | n ≤

∑
y∈[[ϕ]]ξ

ξ(x)(y)
}

ξ−1
{
δ ∈ BN(X) | n ≤

∑
y∈[[ϕ]]ξ

δ(y)
}

D ♦p
{
x ∈ X |

∑
y∈[[ϕ]]ξ

ξ(x)(y) ≤ p
}

ξ−1
{
δ ∈ D(X) |

∑
y∈[[ϕ]]ξ

δ(y) ≤ p
}

PowL [a]
{
x ∈ X | ξ(x)(a) ⊆ [[ϕ]]ξ

}
ξ−1

{
δ ∈ Pow(X)L | δ(a) ⊆ [[ϕ]]ξ

}

Table 3.1: Some concrete modalities and their semantics

in Diagram (1.3) as a generalisation of boolean algebras with operators. We
deliberately do not use Stone duality to introduce modal logics because we want
to stress that the duality is not essential to define modal logics and compare
them; the latter is the main topic in Part I of this manuscript. In Section 3.2
we introduce the abstract functorial framework formally. In Section 3.2.1 we
show how the usual modal algebras fit into this framework. In Section 3.2.2 we
introduce the notion of coalgebraic modal logic based on a category of power sets
algebras (Definition 3.2.12). This category might not be that of Boolean algebras.
Using this, we present modal logics which are not based in classical logic.

We finish the chapter with Section 3.3 where we introduce two generic modal
logics for coalgebras. The first one is the Moss Logic (Section 3.3.1) and the
second one is a the logic of all predicate liftings (Section 3.3.2).

3.1 Concrete Modalities

As mentioned, for us, a modality transforms properties of states, in a coalgebra,
into properties of their successors. This can be restated as follows: given a
coalgebra ξ : X −→ T (X) a modality transforms subsets of X into subsets of
T (X); the issue is to describe this without using the coalgebra ξ. Pattinson [88]
formalised this intuition with the notion of predicate lifting, a concept that we
now define.

Definition 3.1.1 ([88]). Given a functor T : Set −→ Set, an n-ary predicate
lifting, for T , is a natural transformation λ : Pn −→ PT .

Given a predicate lifting λ, we write !λ for the associated modality . We refer
to modalities given by predicate liftings as concrete modalities .

It is important to notice that the previous definition of concrete modality only
depends on the type of transition, i.e. the functor T . In other words it really

3.1. Concrete Modalities 39

captures the idea that a modality is independent of any particular coalgebra.
The use of natural transformations accounts for the intuition that states are
transformed into successors always in a uniform maner.

The next remark addresses some technicalities in the previous definition.

Remark 3.1.2. For us the contravariant power set functor has domain and
codomain as follows P : Setop −→ Set. This means that technically speaking in the
previous definition a predicate lifting should be defined as a natural transformation
Pn −→ PT op, where T op : Setop −→ Setop is the dual of the functor T . To simplify
our notation we avoid the use of the exponent op here.

Another issue in the previous definition is that we implicitly assume predicate
liftings to have only finite arity. This gives a smooth correspondence with standard
Universal Algebra. However, this condition can be avoided, i.e. we can consider
predicate liftings of possibly infinite arity. When relevant, we will mention this
explicitly.

Before proceeding to discuss modal signatures and the semantics of predicate
liftings we illustrate the concept with examples.

Example 3.1.3. In the following examples the semantics on a coalgebra ξ : X
−→ T (X) will be given by post-composing with ξ−1.

1. Let T = KC be a constant functor with value C. Any subset P of C defines
a predicate lifting λP : P −→ PKC ; it is has constant value P .

2. The previous example can be modified to provide propositional information.
For this we consider the functor P(Q) × T , where Q is a fixed set of
propositional letters. The semantics of the proposition letter q ∈ Q is
given by the predicate liftings λq

X(ϕ) = {(U, t) ∈ P(Q)× T (X) | q ∈ U},
and λ¬q

X (ϕ) = {(U, t) ∈ P(Q)× T (X) | q /∈ U}.

3. Let T be the covariant power set functor. The existential modality ♦ can
be presented using an homonymous predicate lifting ♦ : P −→ PPow which
maps a set ϕ ⊆ X to ♦X(ϕ) = {ψ ⊆ X |ϕ∩ψ %= ∅}. Similarly, the universal
modality ! can be presented as a predicate lifting which transforms a set
ϕ ⊆ X into !X(ϕ) = {ψ ⊆ X | ψ ⊆ ϕ}.

4. Consider the neighborhood functor, i.e. PPop. The standard modalities,
used in Non-Normal Modal logic, can be seen as predicate liftings. For
example, the universal modality transforms a set ϕ ⊆ X into the set
!X(ϕ) = {N ∈ PPop(X) | ϕ ∈ N}.

5. Consider the multiset functor BN and let k be a natural number. The graded
modality ♦k can be seen as a predicate lifting for this functor; a set ϕ ⊆ X
is mapped to (♦k)X(ϕ) = {B : X −→ N |

∑
x∈ϕB(x) ≥ k}. In this case

x $ξ ♦kϕ holds iff x has at least k many successors satisfying ϕ.

40 Chapter 3. Coalgebraic Modal Logics

6. Let T be the finite distribution functor. The modality ♦pϕ specifies a
probability of at least p for the sum of transitions to a successor satisfying ϕ.
This can be described by the predicate lifting : ♦p : PX −→ PD(X) mapping
ϕ ⊆ X to (♦p)X(ϕ) = {d ∈ D(X) | µd(ϕ) ≥ p}, where µd(ϕ) =

∑
x∈ϕ d(x),

i.e. µ is the measure associated with d. Similarly, the predicate lifting !p =
¬♦p¬ maps a set ϕ ⊆ X to the set (!p)X(ϕ) = {d ∈ D(X) | µd(ϕ) > 1− p}.
Another common modality in probability logic is given by ♦p = ♦1−p¬;
this modality corresponds to the predicate lifting which maps a set ϕ ⊆ X
to (♦p)X(ϕ) = {d ∈ D(X) | µd(ϕ) ≤ p}. These modalities give the usual
language from [49].

We can now introduce modal signatures.

Modal Signatures

We identify modal signatures, or modal similarity types [20], with sets of predicate
liftings.

Definition 3.1.4. Given a set of predicate liftings Λ, for a functor T : Set −→ Set,
the modal signature, or modal similarity type, associated with Λ is given by
ΣΛ = {!λ | λ ∈ Λ}, where the arity of !λ is that of λ.

To obtain a usual modal language [20] associated with a set of predicate liftings
we add the boolean connectives.

Definition 3.1.5 ([88]). Let Λ be a set of predicate liftings, for a functor T , let ΣΛ

be the modal signature associated with Λ, and let ΣBA be the the boolean signature
{1,⊥,¬,∧,∨,−→}. The (boolean) modal language, written LΛ, associated with
Λ is defined by the grammar

ϕ := ⊥ | 1 | ¬ϕ | ϕ1♥ϕ2 | !λ(ϕ1, . . .ϕar(λ))

where ♥ is one of the connectives ∧,∨,−→; λ ranges over the elements of Λ, and
ar(λ) denotes the arity of λ.

The semantics of formulas is defined in the usual inductive manner; the modal
clause for an n-ray predicate lifting λ on a coalgebra ξ : X −→ T (X) is given by

[[!λ(ϕ1, . . . ,ϕn)]]ξ = ξ−1λX([[ϕ1]]ξ, . . . [[ϕn]]ξ).

A first important property of these languages is that formulas are invariant
under bisimulation.

Proposition 3.1.6 ([88]). Let LΛ be a (boolean) modal language associated with
a set of predicate liftings Λ. All formulas in LΛ are invariant under behavioural
equivalence (and bisimulation).

3.1. Concrete Modalities 41

The previous proposition also depicts the limits of the framework. Namely
that predicate liftings can only account for modalities which are invariant un-
der behavioural equivalence, this leaves out modalities like the global universal
modality or the global existential modality1.

Complex algebras

Using the functorial perspective to algebraic signatures, Section 2.3, the (boolean)
modal language associated with Λ can also be seen as an initial algebra of the
functor ΣΛ+ΣBA : Set −→ Set, where ΣBA and ΣΛ are the functors associated with
the signatures. From here, we will now elaborate towards an algebraic semantics;
and eventually, to generalize boolean algebras with operators. This path will lead
us to the abstract functorial framework.

By definition, the semantics of a modality on a coalgebra ξ : X −→ T (X) is
given by composing the associated predicate lifting with the inverse image of ξ.
Since P(ξ) = ξ−1 this definition corresponds to define an n-ary operation over
P(X) via the following composite:

P(X)n
λX−−−−−→ PT (X)

P(ξ)−−−−−−→ P(X). (3.1)

This can be generalized to any set of predicate liftings Λ, for T . In order to see
this, first notice that the functor associated associated with Λ, can be presented
by

ΣΛ =
∐

n<ω

Λn × (−)n

where Λn is the set of n-ary predicate liftings in Λ. Second notice that, by the
universal property of coproducts, we can combine all predicate liftings in Λ into a
single natural transformation δΛ : ΣΛP −→ PT . More precisely, δΛ is the only
natural transformation which makes the following diagram

ΣΛP PT!
δΛ

Pn

κλ
'

'
''(

λ
%
%
%%&

(3.2)

commute for each predicate lifting λ ∈ Λ; here κλ denotes the corresponding
coproduct inclusion. More concretely, a pair (λ,ϕ) ∈ Λn × P(X)n is mapped via
δΛ to λ(ϕ1, . . . ,ϕn), i.e. the image of the sequence ϕ under λ.

Thus, using δΛ we can associate a ΣΛ algebra with each coalgebra ξ : X
−→ T (X). Such an algebra is given by the following composite

ΣΛP(X)
(δΛ)X−−−−−−−→ P(X)

P(ξ)−−−−−−→ P(X) (3.3)

1The global universal modality is “for all states...” the global existential modality is “there
is a state...”

42 Chapter 3. Coalgebraic Modal Logics

The gain here is that we have a general method to define the usual (full) complex
algebras from modal logic [20] hence we can use the same idea on arbitrary
coalgebras. The next example illustrates that in the case that λ is the predicate
lifting associated with the existential modality ♦, for Pow, the composition in
Equation (3.3) gives the usual modal algebra.

Example 3.1.7. Consider the language with only the existential modality for
Pow, i.e. Λ = {♦}. Recall from Example 3.1.3 that this predicate lifting maps
a set ϕ ⊆ X to {ψ ∈ Pow(X) | ψ ∩ ϕ %= ∅}. In this case, we can describe the
function on Equation (3.3) on a coalgebra ξ : X −→ Pow(X) as follows: A set
ϕ ⊆ X is mapped to

P(ξ)δX(ϕ) = ξ−1♦X(ϕ)

= ξ−1 {ψ ∈ Pow(X) | ψ ∩ ϕ %= ∅}
= {x ∈ X | ξ(x) ∩ ϕ %= ∅}

=
{
x ∈ X | (∃y)(xRξy ∧ y ∈ ϕ)

}

Which is the usual description of the complex algebra associated with the Kripke
frame (X,Rξ), see [20].

When we are dealing with only one predicate lifting, the composition in
Equation (3.1), i.e. the complex algebra associated with the predicate lifting, is
also referred to as a predicate transformer. We now fix some notation for this.

Notation. Given a predicate lifting λ : Pn −→ PT and a coalgebra ξ : X
−→ T (X), we write [[!λ−]](X,ξ) for the composite ξ−1 ◦ λX : P(X)n −→ P(X), i.e.
the structural map of the complex algebra. We call this function the predicate
transformer associated with λ.

The idea is that for a sequence (ϕ1, . . . ,ϕn) ∈ P(X)n we have

[[!λ−]]ξ(ϕ1, . . .ϕn) = [[!λ(ϕ1, . . . ,ϕn)]]ξ,

In other words, the image of (ϕ1, . . . ,ϕn) under [[!λ−]]ξ is the semantics of the
formula !λ(ϕ1, . . . ,ϕn).

The natural transformation in Equation (3.2) provides us a mean to define
complex algebras, this construction is sometimes denoted by (−)+, e.g. [20].
However, here we denoted the construction by P̂δ, one reason for this change is
that this is in fact a lifting of the functor P : Setop −→ Set. More explicitly, P̂δ :
Coalg(T)op −→ Alg(ΣΛ+ΣBA) maps a coalgebra (X, ξ) to the algebra (P(X),P(ξ)◦
δX); and a morphism f : (X, ξ) −→ (Y, γ) to its inverse image. The lifting part
means that the following diagram

Setop Set!
P

Coalg(T)op Alg(ΣΛ + ΣBA)!P̂δ

" "

3.2. The abstract functorial framework 43

commutes; in the diagram the vertical arrows are the respective forgetful functors.
All this provides an algebraic perspective to modal logic and lead us to our next
topic: the abstract functorial framework.

3.2 The abstract functorial framework

Until here we have shown that modal signatures, and modal languages in general,
can be presented by functors on Set. This is in harmony with the standard
Universal Algebra approach, see Section 2.3. However, this approach is not yet
using its full potential. To make this more clear consider the algebra

ΣΛP(X)
(δΛ)X−−−−−−−→ P(X)

P(ξ)−−−−−−→ P(X)

in Equation (3.3). This algebra has more structure than just a function between
sets. In particular its carrier set is a boolean algebra. Moreover, the structural
map itself might preserve some of this structure. For example, the modalities
might satisfy some extra properties like !a∧ b = !a∧!b. This is to say that the
complex algebra above is a boolean algebra with some extra operations. On top
of this, notice that also the language LΛ is an algebra in the boolean signature
with some extra operations, namely the modalities. Recall that intuitively, modal
logics are (usually) regarded as extensions of classical propositional logic. All
this suggests that in order to take full advantage of this algebraic perspective on
modalities, we should rather consider functors on boolean algebras instead of just
on Set. Indeed this will prove to be a very fruitful idea which we will illustrate
through this manuscript. To account for such extra structure also corresponds to
generalize boolean algebras with operators to the coalgebraic level of generality.

Another force that drives us to consider logics as functors on BA, instead of
on Set, is that BAOs will be a sub-variety of Alg(ΣΛ + ΣBA). The issue resides in
how we present such variety. One option is to add all the axioms at once. The key
insight in [68] is not to do this but to add the modalities, and their axioms, over
an axiomatization of Boolean algebras. This accounts to present modal logics, or
modal signatures, as functors over BA instead of Set.

Among the advantages of this approach we highlight the following ones:

1. We can use structural properties of the category of algebras to define,
compare, and study modal logics.

2. Modularity in the presentation of modal logics.

3. Uniform framework to study different types of logics which allows natural
generalisations.

44 Chapter 3. Coalgebraic Modal Logics

(a) In particular, as we will later see, Section 3.3.1, Moss logic [84] does
not comfortably fit into the paradigm of Universal Algebra but it does
find its natural place in our framework.

4. We follow the intuitive motto that modal logics are extensions of classical
logic.

5. For more advantages concerning translations see page 72.

Without any more ado we now present the definition.

Definition 3.2.1 ([68]). Let T be a Set endofunctor and let P : Setop −→ BA be
the contravariant powerset functor. A (boolean) modal logic for T -coalgebras,
also called a (boolean) coalgebraic modal logic for T coalgebras, is a pair (L, δ)
where L is a functor L : BA −→ BA determined by finitely generated free algebras
(Definition 2.3.12) and δ is a natural transformation

δ : LP −→ PT . (3.4)

The natural transformation δ is called the semantics of the logic. The language of
the logic is given by the initial L-algebra (see Remark 3.2.6).

The next remark concerns the nature of formulas in this functorial framework.

Remark 3.2.2. Notice that given a coalgebraic logic (L, δ), the elements of the
initial L-algebra are not formulas in the standard sense of terms in an algebraic
signature. Instead, they are equivalence classes of formulas. The initial L-algebra
corresponds to the Lindenbaum-Tarski algebra of the modal logic and not the
absolutely free algebra of the signature. Still we call the elements of the initial
L-algebra the formulas of the logic.

In fact, to extract an algebraic signature and a standard language (Definition
3.1.5) from a coalgebraic modal logic is not a trivial issue. This was first addressed
in [22, 76]. We address the issue in Chapter 5 (Section 5.2) where we show
that every coalgebraic modal is a modal logic where the modalities are given by
predicate liftings (Theorem 5.2.17).

We now explain the terminology used for δ. As it was done with modal
signatures, see Equation (3.3), using δ we can assign to each coalgebra ξ : X
−→ T (X) an L-algebra with carrier P (X) and structural map given by the following
composite

LP (X)
δX−−−−−→ PT (X)

P (ξ)−−−−−−→ P(X). (3.5)

As in the case of modal signatures this induces a functor from the category of
T -coalgebras into the category of L-algebras giving the complex algebras. The
next fact and definition makes the terminology precise.

3.2. The abstract functorial framework 45

Fact 3.2.3. Every (boolean) coalgebraic modal logic (L, δ) induces a lifting of
P : Setop −→ BA as shown in the following diagram

Setop BA!
P

Coalg(T)op Alg(L)!P̂δ

" "

where the vertical arrows are the “obvious” forgetful functors.
More explicitly, the functor P̂δ maps a coalgebra (X, ξ) to (P (X), P (ξ) ◦ δX),

and a coalgebra morphism f to its inverse image, i.e. P̂δ(f) = P (f) = f−1.

We now fix some terminology.

Definition 3.2.4. Let (L, δ) be a (boolean) coalgebraic modal logic. The functor
P̂δ is called the δ-lifting of P . The image of a coalgebra (X, ξ) under P̂δ, i.e.
(P (X), P (ξ) ◦ δX), is called the complex (L, δ)-algebra associated with (X, ξ). If
there is no risk for confusion we drop the subindex.

The interpretation of a formula, in the language of (L, δ), on a coalgebra (X, ξ)
is given by the unique arrow from the initial L-algebra (see Remark 3.2.6), written
(I, ι), into the complex algebra P̂ (X, ξ). More explicitly, the interpretation is
given by the unique function

[[−]]δξ : I −→ P (X) (3.6)

which is a homomorphism between (I, ι) and P̂ (X, ξ). In particular, a formula
ϕ ∈ I is mapped to a set [[ϕ]]δξ ⊆ X. This justifies our terminology for δ and
motivates the following convention.

Definition 3.2.5. Let (L, δ) be a (Boolean) logic for T -coalgebras and let (X, ξ)
be a T -coalgebra. The function in Equation (3.6), i.e. the initial morphism from
the initial L-algebra into the complex algebra P̂ (X, ξ), is called the interpretation
into (X, ξ). If x ∈ [[ϕ]]δξ, we say that x satisfies ϕ and write x $ξ ϕ. The relation
$ is called the satisfaction relation. If the logic is clear from the context, we will
just write [[ϕ]]ξ. We will use the same convention for logics defined in Definition
3.2.13 and 3.2.22.

The next remark addresses other issues concerning Definition 3.2.1.

Remark 3.2.6. Recall Definition 3.2.1.

1. Formally speaking, in Equation (3.4) we should write T op instead of T . We
write just T to keep the notation simple.

46 Chapter 3. Coalgebraic Modal Logics

2. The requirement that the functor L is determined by finitely generated free
algebras has two main purposes: one to ensure that free L-algebras exist and
two to allow a description of L by modal operators of finite arity. A proof of
this can be found in [76], but we will see examples in the next subsections.

3. It is important to understand that L only describes how to add one layer
of modalities: If A consists of Boolean formulas, then L(A) consists of
modal formulas in which each formula a ∈ A is under the scope of precisely
one modal operator. The initial L-algebra is obtained by iterating this
construction and contains modal formulas of arbitrary depth. Moreover, L
can take into account not only the syntax, but also the axiomatisation of the
logic; to capture the axiomatization by a functor, it is essential to consider
L on BA and not simply on Set, see Section 3.2.1.

4. In case L comes from an usual modal signature, see examples below, the
interpretation of a formula ϕ in the signature is given by applying the
function in Equation (3.6) to the equivalence class of ϕ.

5. We do not require any type of normality or additivity of modal operations; in
this sense our approach differs from that in [20]. Hence we can also account
for non-normal modal logics.

3.2.1 Modal Signatures as functors on BA

We now illustrate how the usual boolean algebras with operators from modal
logics fit into the picture. The idea is that the algebras in Alg(L) are the boolean
algebras with operators of the logic. We can state this by saying that the functor
L adds the operators and their axiomatizations.

In this section we will consider the case of modal signatures. More explicitely,
given a set of predicate liftings Λ, i.e. a modal signature, we want to obtain a
functor L : BA −→ BA from the functor ΣΛ + ΣBA : Set −→ Set such that Alg(L)
is the category of boolean algebras with operators for ΣΛ. Functors on boolean
algebras take care of the factor ΣBA. The problem then reduces to that of “moving”
the functor ΣΛ : Set −→ Set to the category BA.

First of all notice that algebras for a functor L : BA −→ BA are of the form
α : L(A) −→ A, where A is a boolean algebra and α is a boolean homomorphism.
Here, it is important to notice that the problem of moving ΣΛ to BA is not solved
by simply considering a signature given by a polynomial functor on BA, as it was
done in Section 2.3 in the case of Set and is usually done in categorical algebra.

We now explain why polynomial functors do not work. For example, within
such framework, to add a unary ! to classical propositional logic corresponds to
consider algebras for IdBA : BA −→ BA. In such case an IdBA-algebra is a boolean al-

gebra (A,α) together with a boolean homomorphism IdBA(A,α) = (A,α)
!−→ (A,α).

3.2. The abstract functorial framework 47

This does not subsume the standard approach in Modal Logic [20], because there
is no reason why ! should be a BA-morphism; in general ! does not preserve ∨ or
¬. In other words, BAOs, as in [20], are not Alg(IdBA). In general, the technique
from categorical algebra of adding operators using polynomial functors on BA
does not work.

To overcome these difficulties, here is a little trick we can use: We define
a functor BA −→ BA, call it L̄, such that algebras L̄(A,α) −→ (A,α) are in 1-1
correspondence with maps U(A,α) −→ U(A,α), i.e. functions A −→ A. The next
example illustrates this.

Example 3.2.7. Let (A,α) be a boolean algebra. To add a unary operator !,
we define L̄(A,α) to be the free boolean algebra generated by %a, a ∈ A. Note
that the %a’s are just formal symbols and we have

L̄! ∼= FU, (3.7)

where U : BA −→ Set is the forgetful functor and F its left adjoint. Using properties
of adjoints, it is now clear that an L̄!-algebra

FU(A,α) = L̄!(A,α) −→ (A,α)

corresponds to a function A −→ A.

In fact, the previous idea works for any modal signature.

Example 3.2.8. In general given a modal signature ΣΛ we define L̄Λ = FΣΛU .
Again using properties of adjoints, we can see that an L̄Λ-algebra

FΣΛU(A,α) = L̄Λ(A,α) −→ (A,α)

correspond to a function ΣΛ(A) −→ A. In other words, an L̄Λ-algebra amounts to
have a function function Aar(λ) −→ A for each modality !λ ∈ ΣΛ.

Next, we observe that certain axioms of a special form can be incorporated
into the definition of the functor. In particular, the axioms defining the basic
modal logic K, i.e. BAOs, are of this form.

Example 3.2.9. Continuing Example 3.2.7, define L! : BA −→ BA to map an
algebra (A,α) to the boolean algebra L!(A,α) generated by %a, a ∈ A, and
quotiented by the relation stipulating that ! preserves finite meets, that is,

!1 = 1 !(a ∧ b) = !a ∧!b (3.8)

Compare this with the construction of term algebras for varieties on page 25.
It follows from the definition that BA-morphisms L!(A,α) −→ (A,α) are in 1-1
correspondence with meet-preserving maps A −→ A, see [22], therefore, that Alg(L)
is isomorphic to the category of modal algebras [20]. Also notice that there is a
surjective natural transformation q : L̄! −→ L!.

48 Chapter 3. Coalgebraic Modal Logics

A more formal description of the quotient in the previous example can be
found in Section 5.2.2. We avoid the details by now because we are more interested
on illustrating the framework.

The next step is to describe the semantics of such a logic without referring
to Kripke frames, but directly in terms of the functor T . This allows us to
generalise the relationship between algebras and coalgebras to arbitrary functors.
The following property will play a crucial role: The contravariant power set functor
P : Setop −→ Set factors via BA, i.e. the following diagram

Setop BA!P

Set

P
%
%
%%&

U
'

'
''(

(3.9)

commutes. With this observation in mind we can continue with Example 3.2.9.

Example 3.2.10. Continuing Example 3.2.9, consider T = Pow. In order to
define the semantics δX : L!P (X) −→ PPow(X) we first define the semantics
δ̄! : L̄P (X) −→ PPow(X) by mapping a generator %a, with a ∈ P (X), as follows

%a 5→ {b ∈ Pow(X) | b ⊆ a}. (3.10)

It is now easy to check that δ̄ satisfies the equalities in Equation (3.8). From this
we conclude that δ̄ extends to the quotient L! via q : L̄! −→ L! giving δ as in the
following diagram

L̄!P L!P!qP

PT

δ̄
%
%
%%&

δ
'

'
''(

More explicitly, δ maps an equivalence class ϕ̄ ∈ L!P (X) to {b ∈ Pow(X) | b ⊆ ϕ}.
Since P = UP (Diagram 3.9) the predicate lifting associated with the modality

! can be written ! : UP (X) −→ UPPow(X). Now notice Equation (3.10) is
then just the predicate lifting !. Hence δ̄ is its transpose of !, i.e. we have

FUP (X)
δ̄=!̂−−−−−−→ PPow(X). Clearly this can be done for any predicate lifting

and more generally for any set of predicate liftings Λ. The next example shows
this.

Example 3.2.11. Let ΣΛ be a modal signature associated with a set of predicate
liftings Λ. Recall from Equation (3.2) that we have a natural transformation
δΛ : ΣΛP −→ PT combining all predicate liftings in Λ, since UP = P we can
rewrite this as a natural transformation

δΛ : ΣΛUP −→ UPT

the transpose of which gives the semantics, i.e. FΣΛUP = L̄ΛP
δ̄Λ = δ̂Λ−−−−−−−→ PT .

3.2. The abstract functorial framework 49

Now we detail how to obtain from Equation (3.4), by using Equations (3.5)
and (3.6), the usual semantics of !. First recall that the basic modal language
L! is defined by the grammar

ϕ := ⊥ | 1 | ¬ϕ | ϕ1♥ϕ2 | !ϕ

where ♥ is one of the connectives ∧,∨,−→. Secondly notice that the initial L̄!-
algebra is the smallest set closed under the boolean operations and ! modulo the
axioms for Boolean algebras; in other words, the initial L̄! algebra is the term
algebra over the language L! modulo the usual axioms for Boolean algebras. The
initial L!-algebra is obtained from further quotienting by the modal axioms in
Equation (3.8).

According to Equations (3.5) and (3.6), the interpretation of a formula is
defined by initiality as in the following diagram

L!P (X) P (X)

L!(I) I!!

"
L!([[−]]ξ)

"
[[−]]ξ

PT (X) !
ξ−1

!
δX

(3.11)

where ! : L!(I) −→ I is the initial L!-algebra. This means that given a formula
ϕ̄ ∈ I, which is an equivalence hence the bar, we have [[!ϕ̄]]ξ = ξ−1(δX(L[[ϕ̄]]ξ)).
Now we can compute (eliding the subindex ξ)

x $!ϕ iff x ∈ [[!ϕ̄]] (Definition $)
iff x ∈ ξ−1(δX(L![[ϕ̄]])) (Diagram (3.11))

iff ξ(x) ∈ δX(L![[ϕ̄]]) (Definition ξ−1)

iff ξ(x) ⊆ [[ϕ]] (Example (3.2.10))

iff (∀y)(y ∈ ξ(x) ⇒ y ∈ [[ϕ]]) (Definition $)
iff (∀y)(y ∈ ξ(x) ⇒ y $ ϕ)

which gives the usual semantics of ! in terms of a satisfaction relation $. All
this shows that the basic theory of algebraic modal logic fits into the abstract
functorial framework.

3.2.2 Coalgebraic modal logics beyond BA

Yet another advantage of the functorial approach is that it immediately suggests
important generalisations. For example, in the following chapters, to construct
certain counterexamples, we will need to replace the category BA by other cate-
gories corresponding to other base logics. For example, the category of distributive
lattices which corresponds to the positive fragment of propositional logic; the

50 Chapter 3. Coalgebraic Modal Logics

category of frames which corresponds to geometric logic; even the category of
sets will be used to describe the modalities that need no extra structure to be
translated. The key idea to remember here is that the basic propositional logic
corresponds to a category of algebras. We can also think of the algebras of the
category as propositional, algebraic, theories and of morphisms as truth preserving
translations between theories. In the examples mentioned above there are two
essential ingredients: Free algebras and powerset algebras. From this we conclude
that the category BA can be replaced by any category A with a forgetful functor
U : A −→ Set which has a left adjoint and a functor P : Setop −→ A such that
UP = P .

The new situation is depicted in the following diagram

Set
P

!!T
##

P &&!
!!

!!
!!

A L
''

U((""
""

""
"

Set

(3.12)

and formalised in the next definition.

Definition 3.2.12. A category A is said to be a category with powerset algebras
if it satisfies the following conditions:

1. It is monadic over Set (Definition 2.3.19) i.e. it is a category of algebras;

2. there exists a functor P : Setop −→ A such that UP = P called the predicate
functor.

where U : A −→ Set is the forgetful functor.

The generalisation of (boolean) coalgebraic modal logics, Definition 3.2.1, is
now immediate.

Definition 3.2.13. Let T be a Set endofunctor and let A be a category with
power set algebras. A logic for T -coalgebras, or coalgebraic modal logic, is a pair
(L, δ) where L is a functor L : A −→ A determined by finitely generated free
algebras, and δ is a natural transformation

δ : LP −→ PT . (3.13)

The natural transformation δ is called the semantics of the logic. The category
A is called the base category of the coalgebraic modal logic. The algebraic theory
induced by A is refereed as the basic propositional logic, or the base structure, of
the coalgebraic modal logic.

A coalgebraic modal logic is said to be finitary if A is finitely presentable and
L is determined by finitely generated free algebras (Definition 2.3.12).

3.2. The abstract functorial framework 51

Assumption: Unless explicitly stated we assume all our coalgebraic modal
logics to be finitary.

As in the case of boolean coalgebraic modal logics, the natural transformation
δ is used to associate a dual, or complex, L-algebra with each T -coalgebra,
see Definition 3.2.4. We use the same convention as in Definition 3.2.5 for the
satisfaction relation.

The next remark comments on the extension of the previous definition.

Remark 3.2.14. The definition of category of power set algebra might seem
ad hoc. However, as we will later see (Chapter 6, Example 6.1.3 and Remark
6.1.4) these allow us to fit the language given by a coalgebraic modal logic in
the tradition of abstract model theory where languages are sets and theories are
subsets of those.

The next remark illustrates how in the case of a coalgebraic modal logic given
by predicate liftings, we can define a language in the usual sense.

Remark 3.2.15. In the case that the coalgebraic modal logic (L, δ), over A,
corresponds to a logic of predicate liftings Λ, i.e. L = FΣΛU and δ is the
transpose of the function in Equation (3.2), we can define the language more in
harmony with Definition 3.1.5 as follows:

Let ΣA be the algebraic signature of A (Definition 2.3.6), and let X be a set of
propositional variables. The language of predicate liftings, over A, written LA

Λ (X),
with variables from X, is given by the grammar

ϕ := x | p(ϕ1, . . .ϕar(p)) | !λ(ϕ1, . . .ϕar(λ))

where x ∈ X, p ∈ ΣA, and λ ∈ Λ. Note that LA
Λ (X) is the carrier of the free

algebra over X for the functor LAlg(ΣA)
Λ = TΣAΣΛUΣA , where UΣA : Alg(ΣA) −→ Set

is the forgetful functor and TΣA is its left adjoint, i.e. TΣ(X) is the absolutely
free algebra for the signature ΣA.

A simple illustration is the pure modal language.

Example 3.2.16. The category Set is a category of power set algebras. The
functor P is given by the contravariant power set functor P : Setop −→ Set. The
category Set is monadic over Set via the identity. Given a modal signature ΣΛ we
can use the procedure in Example 3.2.8 to obtain IdΣΛId = ΣΛ; the semantics is
given by Equation (3.2). In this case the language is the smallest set closed under
!λ for all λ ∈ Λ, i.e. the pure modal language.

Clearly Examples 3.2.8 and 3.2.11 generalize to any category of power set
algebras. This means that every modal signature can be interpreted on a category
of power set algebras.

This framework can also be used to present positive modal logic as a coalgebraic
modal logic. In this case we replace BA by DL. The next example shows this.

52 Chapter 3. Coalgebraic Modal Logics

Example 3.2.17. Elaborating on Example 3.2.10 but now letting A = DL and
considering two modalities {!,♦}.

Positive modal logic is given by the functor L : DL −→ DL that maps a
distributive lattice (A,α) to distributive lattice L(A,α) generated by %a and &a
for all a ∈ A, and quotiented by the relations stipulating that 1) ! preserves finite
meets, 2) ♦ preserves finite joins, and

3) !a ∧ ♦b ≤ ♦(a ∧ b) !(a ∨ b) ≤ ♦a ∨!b (3.14)

More explicitly, we quotient the functor FU + FU : DL −→ DL, where U : DL
−→ Set and F is the left adjoint, with the axioms 1), 2), and 3) above.

We assume the first component of L̄ deals with ! and the second one deals
with ♦; with this convention, the semantics δ̄X : L̄P (X) −→ PPow(X) is defined
componentwise as follows: for a ∈ L̄PX, if a belongs to the first component, i.e.
it corresponds to the formal symbol %a, it is mapped as in Example 3.2.10; if a
belongs to the second component, i.e. it corresponds to the formal symbol &a, it
is mapped by

&a 5→ {b ∈ Pow(X) | b ∩ a %= ∅}. (3.15)

This is just what was described in Example 3.2.11. It is now standard to show
that δ̄ extends via the quotient to the semantic δX : LP (X) −→ PT (X). This
gives positive modal logic. Positive modal logic was introduced in [33], but also
appeared in [61, 1]. The above construction is a variation of the Plotkin power
domain, also called the Vietories locale, see e.g. [109].

We fix some conventions, which have been implicit, concerning logics of predi-
cate liftings.

Definition 3.2.18. Let Λ be a set of predicate liftings for a functor T . Let A be
a category of power set algebras, and write U : A −→ Set for the forgetful functor
and F for its left adjoint.

The coalgebraic modal logic, over A, associated with Λ is given by the functor
L̄A

Λ = FΣΛU , and the natural transformation δ̄Λ : L̄A
ΛP −→ PT given by the

F -transpose of the natural transformation ΣΛP −→ PT in Equation 3.2. If there
is no risk for confusion we will avoid the superscript and/or subindex.

3.2.3 Other features of the functorial framework

As we have seen, the functorial framework allows us to present a large variety
of modal logic for coalgebras uniformly. In particular, as we will see in Section
3.3.1, we can study Moss logic at the same level of classical modal logic. Another
advantage, we will illustrate in Section 3.3, is that we can present generic logics
for coalgebras. In this section we discuss some other properties and insights.

3.2. The abstract functorial framework 53

Depth-one formulas & one-step semantics

We should still clarify which axioms can be incorporated into a functor. This will
be addressed in detail in Section 5.2.2. We provide some highlights here.

To account for axioms we introduce depth-one formulas, or depth one modal
formulas; these will also play an important role in Chapter 8.

In the case of a logic of predicate liftings, the depth-one modal formulas, over
X, are the formulas of LA

Λ (X) for which each propositional variable is under the
scope of exactly one modal operator. Notice that the depth one formulas are the
elements of the set

UΣATΣAΣΛUΣATΣA(X)

where TΣA : Set −→ Alg(ΣA) maps a set X to the free ΣA-algebra over X, UΣA is
the right adjoint, or forgetful functor. Indeed, an element in UΣATΣA(X) is just a
term in the signature ΣA with variables in X. Then an element in ΣΛUΣATΣA(X)
is a modality in ΣΛ together with a term in ΣA, e.g. !λt. Then the elements in
UΣATΣAΣΛUΣATΣA(X) are the depth-one modal formulas over X.

In fact LΣA
Λ = TΣAΣΛUΣA and the language LA

Λ (X) is the free LΣA
Λ algebra

over X. Clearly this can be generalized to any coalgebraic modal logic.

Definition 3.2.19. Let (L, δ) be a coalgebraic modal logic over A. The depth-
one modal formulas of (L, δ), over X, written Form1

(L,δ)(X) are the elements of

ULF (X). If the logic is clear from the context we simply write Form1(X).
An equation between depth-one modal formulas is called a rank-1 axiom, or

rank-1 equation.

In other words, a rank-1 formula is a formula where all variables are under the
scope of precisely one modal operator. Without going into the technical details
here, we note that for all equations of rank 1 we can quotient the functor by
the axioms as in Equations (3.8) and (3.14). It was shown in [22, 76] that we
can quotient LA

Λ with any rank 1 axiomatisation and that every quotient of LA
Λ

corresponds to a rank 1 axiomatization. It is important to notice that this is
not a restriction of coalgebraic logic as such: First use a rank-1 logic to describe
properties of all T -coalgebras; then further non-rank-1 axioms can be used to sin-
gle out T -coalgebras with particular properties. We give more details in Chapter 5.

Together with with depth-one formulas is the so-called one-step semantics.
Roughly speaking, one-step semantics is the interpretation of depth-one formulas
over the set T (X). As we discussed, a coalgebraic modal logic (L, δ) for a functor
T allows us to transform T -coalgebras into L-algebras. However, notice that in
several occasions we are interested in just describing the successors of a state i.e.
the elements in some T (X). It was noted in [88, 102] that in the case of languages
of predicate liftings T -coalgebras are not essential for this; this is referred as the
one-step semantics of coalgebraic modal logics. We now explain how this works

54 Chapter 3. Coalgebraic Modal Logics

for any coalgebraic modal logic.

To illustrate the procedure we fix a set of propositional variables Q and a
category of power set algebras A with forgetful functor U : A −→ Set; let F be the
left adjoint of U . We first explain how define the one step semantics for a single
predicate liftings, for a functor T .

Every valuation V : Q −→ UP (X) = P(X) can be extended to a meaning
function [[−]]V : F (Q) −→ P (X). We can compose this function with any predicate
lifting λ : UP −→ UPT and obtain the following function.

UF (Q)
U([[−]]V)−−−−−−−−→ UP (X)

λX−−−−−→ UPT (X)

Taking the transpose of this function and replacing FU by Lλ we obtain the one
step semantics, for λ, as [[−]]1V = δλ ◦ Lλ([[−]]V); more explicitly this is:

LλF (Q)
Lλ([[−]]V)−−−−−−−−−→ LλP (X)

δλ−−−−−→ PT (X)

Applying one more time U we obtain an interpretation of all depth-one modal
formulas (Definition 3.2.19) on the language of !λ. This clearly work for any set
of predicate liftings and more generally for any coalgebraic logic.

Definition 3.2.20. Let (L, δ) be a coalgebraic modal logic over A, let Q be a set
of propositional variables and let V : Q −→ UP (X) be a valuation.

The one-step semantics of depth-one modal formulas over Q (Definition 3.2.19),
relative to V , written [[−]]1V , is given by the following function

Form1
(L,δ)(Q) = ULF (Q)

[[−]]1V =U(δ◦L([[−]]V))−−−−−−−−−−−−−−−−→ PT (X).

Given t ∈ T (X) and a formula ψ ∈ Form1
(L,δ)(Q), we write T (X), t $1

V ψ to

indicate t ∈ [[ψ]]1V .

Depth-one formulas were used in [88, 68] to show that issues of soundness
and completeness of a coalgebraic modal logic (L, δ) rely on properties of δ. We
will discuss this in more detail in Section 5.2.2. As a preview we mention that a
coalgebraic modal logic (L, δ) is always sound and it is complete if δ is injective
(Proposition 5.2.16).

Further generalizations

The functorial framework suggests various generalisations.

Definition 3.2.21. Let A be a monadic category over Set and let T be an
endofunctor on Set. Also assume there is a functor P : Setop −→ A with left
adjoint S.

3.2. The abstract functorial framework 55

A logic for T -coalgebras , also called a coalgebraic modal logic for T , based on A
and relative to P , is a functor L : A −→ A together with a natural transformation

δ : LP −→ PT . (3.16)

We use the same conventions as in Definition 3.2.13.

The highest level of generality that we can achieve with this framework is to
simply consider a general contravariant adjunction.

Definition 3.2.22. Let P : Cop −→ A be a functor with a left adjoint S. Let T be
an endofunctor on C. A coalgebraic modal logic for T -coalgebras, or coalgebraic
modal logic, is a functor L : A −→ A together with a natural transformation
δ : LP −→ PT .

Expressivity

A key property of coalgebraic modal logics is that formulas are invariant under
behavioural equivalence. This will follow from the following proposition.

Proposition 3.2.23. Let (L, δ) be coalgebraic modal logic, over a category of
power set algebras, for a functor T . The interpretation of the (L, δ)-formulas is
invariant under coalgebra morphisms.

More precisely, if f : (X1, ξ2) −→ (X2, ξ2) is a coalgebra morphism and ϕ is a
formula in (L, δ) then for every x ∈ X1 if x ∈ [[ϕ]]ξ1 then f(x) ∈ [[ϕ]]ξ2.

Proof. Let (I, ι) be the initial L-algebra. Notice that since UP (f) = P(f) = f−1

the statement proposition can be rephrased as follows: for every morphism of
coalgebras f : (X1, ξ2) −→ (X2, ξ2) the following diagram

P(X1) P(X2)# P(f)

I

[[−]]ξ1
%

%
%%)

[[−]]ξ2
'
'
''*

commutes. The commutativity of the diagram follows by initiality. Indeed, since
f is a morphism of coalgebras then f−1 = P(f) is a homomorphism between the
complex algebras (P (X2), P (ξ2) ◦ δX1) and (P (X1), P (ξ1) ◦ δX1), see Fact 3.2.3.
Therefore its composition with [[−]]ξ2 is a homomorphism from the initial L-algebra
into (P (X1), P (ξ1)◦δX1) which by initiality must be equal to [[−]]ξ1 . This concludes
the proof.

Another important property is the so-called Hennessy-Milner property which
states that the language can distinguish states that are not behavioural equivalent.
The Hennessy-Milner property has been studied using the so-called mate of the

56 Chapter 3. Coalgebraic Modal Logics

natural transformation transformation δ, see [59].

We first have to notice that the Stone duality adjunction can be generalised to
any category with power set algebras.

Proposition 3.2.24. 2 For every category of power set algebras A, the functor
P : Setop −→ A has a left adjoint S : A −→ Setop given by S(A) = A(A,P1).

Proof. We will describe the counit of the adjunction. The counit is given by a
function εX : X −→ SPX = A(P (X), P (1)); this function maps x to P (ix) where
we write ix : 1 −→ X for the map picking x. From here, to show that P is right
adjoint of S, it suffices to prove that given a function f : X −→ S(A) we can find
an appropriate morphism f̂ : A −→ P (X) in A such that S(f̂) ◦ εX = f .

We now show how to define f̂ . First recall that P(
∐

Ai) =
∏

P(Ai). By
assumption UP = P , hence for every set X we have

UP (X) = P(X) = P(
∐

x∈X

1) (
∐

x∈X

1 = X)

=
∏

x∈X

P(1) (prev. observation)

=
∏

x∈X

UP (1) = U
∏

x∈X

P (1). (U is a right adjoint)

Since U is monadic it reflect limits hence we conclude
∏

x∈X P (1) ∼= P (X). Now no-
tice that we can see f : X −→ S(A) = A(A,P (1)) as a family {fx : A −→ P (1)}x∈X .
Using the previous observation we define f̂ as the product of all those maps. In
other words, f̂ is the only map that makes all the following diagrams

A P (X)!f̂

P (1)

fx
%
%
%%&

πx
'

'
''(

commute, where πx is the projection given by
∏

x∈X P (1) ∼= P (X). More concretely
πx = P (ix).

We now show S(f̂) ◦ εX = f .

S(f̂) ◦ εx(x) = S(f̂) ◦ P (ix) (def. εX)

= P (ix) ◦ f̂ (def. S)

= πx ◦ f̂ (πx = P (ix))

= fx. (above diagram)

2At the moment of writing we do not know whether this result is known

3.3. Two generic coalgebraic modal logics 57

The arrow f̂ is unique because any arrow g such that S(g) ◦ εX = f we must have
πx ◦ g = fx and then by the universal property of products g = f̂ . This concludes
the proof.

Let (L, δ) be a coalgebraic modal logic as in Definition 3.2.21. The key
observation to study the Hennessy-Milner property with in this framework, is that
there is bijective correspondence between natural transformation δ : LP −→ PT
and natural transformations τ : T S −→ SL. We now show this, Let η and ε be
the unit and counit, respectively, of the adjunction given by the functors P and S.
Given δ : LP −→ PT we define τ via the following composite:

T S
εT S−−−−−→ SPT S

S(δS)−−−−−−→ SLPS
SL(η)−−−−−−−→ SL.

On the converse direction, given τ : T S −→ SL we obtain δ via

LP
ηLP−−−−−−→ PSLP

P (τS)−−−−−−−→ PT SP
PT (ε)−−−→ PT .

The the key result is

Proposition 3.2.25 ([59]). A coalgebraic modal logic (L, δ) (Definition 3.2.21)
has the Hennessy-Milner property iff each of the components of the mate of δ, i.e.
τ : T S −→ SL, are injective.

Other approaches, see e.g [88], use the so called final-sequence to prove the
Henessy-milner property; we do not discuss them here because it goes beyond the
functorial framework. In Chapter 6 we present a study on the Hennessy-Milner
property which can be seen as an alternative to those approaches using the final
sequence.

3.3 Two generic coalgebraic modal logics

We have seen that coalgebras come equipped with a generic notion of behavioural
equivalence (Definition 2.2.2). In the same spirit, the quest for the generic modal
language to describe coalgebraic systems has played a key role in the development
of logics for coalgebras. Two major currents have been successfully in claiming
the title for themselves: The Moss logic and the logic of all predicate liftings.
Both proposals can be elegantly presented within the functorial framework of
coalgebraic modal logics introduced in the previous section.

3.3.1 Moss Logic

The Moss logic [84] was the first proposal of a generic coalgebraic modal logic
parametric in the functor T . On the technical side, Moss logic requires the functor

58 Chapter 3. Coalgebraic Modal Logics

T to preserve weak pullbacks (Section 2.2); examples of such functors include all
KPFs and composition of those with BN and D, but not the functor PPop.

The idea of the Moss logic is to use the functor T itself as a modality. From the
perspective of modal signatures, Example 3.2.8, this amounts to define the functor
L using T instead of ΣΛ. It is important to notice that from the perspective of
the functorial framework, Definition 3.2.13, this is more natural than the use of
ΣΛ. The next definition introduces the functor for the Moss logic.

Definition 3.3.1. Let A be a category with power set algebras, let U be the
forgetful functor and let F be its left adjoint; Given a weak pullback preserving
Set-endofunctor T . Moss (finitary) logic for T , on A, is given by the functor

FTωU = MT : A −→ A,

where Tω is the finitary version of T . If there is no risk for confusion, we will
simply write M .

Notice that in the previous definition we used Tω instead of T . The next
remark explains this divergence.

Remark 3.3.2. In the original version [84], Moss showed that his coalgebraic logic
characterizes bisimilarity of T -coalgebras. However, T may permit unbounded
branching, e.g. T = Pow, therefore a general result requires infinitary conjunctions
in the logic (but does not need negation). Here our interests are different: We
want to specify properties of coalgebras using only finitary Boolean connectives.
In [108] it was shown that for modal formulas to have only finite depth we should
work with the finitary version Tω instead of T .

In the case of the Moss logic we can still concretely present a “standard”
language, i.e. formulas are not equivalence classes; however, the language is
multi-sorted.

Definition 3.3.3. The Moss languageMT is the smallest set closed under boolean
operations and under the formation rule

if t ∈ Tω(MT) then ∇t ∈ MT .

Quotienting MT by Boolean axioms yields the carrier of the initial MT -algebra,
compare this with Example 3.2.7. If there is no risk for confusion we will drop
the subscript T .

The Moss language can also be characterised as the carrier of the initial algebra
for the functor Tω + ΣBA : Set −→ Set. Of course we can also present the Moss
language concretely for any category of power set algebras A for which we have a
concrete description of the signature, e.g. DL or Frm.

3.3. Two generic coalgebraic modal logics 59

By definition, the semantics of the Moss logic will be given by a natural
transformation MT P −→ PT , as in Equation (3.13). Unravelling the definitions,
we see that the semantics ought to come from a natural transformation FTωUP
−→ PT . As it was seen in the case of modal signatures, i.e. languages of predicate
liftings, it is then enough to give a natural transformation

TωP −→ PT ;

the next definition makes this explicit.

Definition 3.3.4. Let T be a weak pullback preserving functor. The semantics
MT P −→ PT of Moss’s logic is induced by ∇' : TωP −→ PT mapping Φ ∈ TωP(X)
to

∇'(Φ) = {t ∈ T (X) | t T (∈X) Φ}, (3.17)

where T (∈X) is the relation lifting of ∈X (Section 2.2).
Let A be category of power set algebras. Let U be the forgetful functor and

let F be its left adjoint. The (finitary) Moss coalgebraic modal logic, or Moss logic
for short, is given by (MT ,∇), where MT = FTωU and ∇ : FTωUP −→ PT is
the transpose of ∇', i.e. ∇ = ε ◦ F (∇') where ε : FU −→ IdA is the counit of the
adjunction.

The fact that ∇' : TωP −→ PT is natural uses the fact that T preserves weak
pullbacks; it follows from Proposition 2.2.10.

Remark 3.3.5. The fact that ∇' is natural is essentially the observation that
Moss logic is invariant under bisimilarity. However, should the functor not preserve
weak-pullbacks naturality might fail.

The next examples illustrate the semantics given by ∇'.
Example 3.3.6. 1. In the case of the identity functor Id, we have that ∇' : IdP

−→ P Id is the identity. The Moss logic is just that of deterministic transition
systems (∇ϕ ≡ !ϕ ≡ ♦ϕ), i.e. in this case the Moss modality is the
modality “next time”. Explicitly, a state x in a coalgebra ξ satisfies ∇ϕ iff
ξ(x) ∈ [[ϕ]].

2. In the case of a constant functor KC , we have that ∇' : KCP −→ PKC maps
an element c ∈ C = KCP(X) to the set {c}. A state x in a coalgebra ξ
satisfies ∇c iff ξ(x) = c, i.e. ∇c holds on x iff the colour of x is c.

3. Consider the functor A× (−) for some fixed set A. Given t ∈ A×X and
Φ ∈ A× P(X) we have

t ∈ ∇'(Φ) iff π1(t) = π1(Φ) and π2(t) ∈ π2(Φ).

For example, let a, b ∈ A and consider the system ◦ a−→ •. In this system, the
state ◦ does not satisfy ∇(b,1). In fact, ◦ can only satisfy modal formulas
of the form ∇(a,ϕ), where ϕ is a formula valid on •.

60 Chapter 3. Coalgebraic Modal Logics

4. In the case of the covariant power set functor, we have that for Φ ∈ PowP(X)
the set ∇'(Φ) is given by

t ∈ ∇'(Φ) iff (∀x ∈ t . ∃ϕ ∈ Φ . x ∈ ϕ) and (∀ϕ ∈ Φ . ∃x ∈ t . x ∈ ϕ).

As we said before, page 4, and not difficult to check, in this case the Moss
logic (over BA or DL) is equivalent to classical modal logic, that is, there
are translations in both directions:

∇t = !
∨

t ∧
∧

♦t
!ϕ = ∇{ϕ} ∨∇∅ and ♦ϕ = ∇{ϕ,1}

Hence, the Moss logic for Pow is equivalent to standard modal logic.

5. To describe ∇' in the case of the finite distribution functor recall that
each b ∈ D(X) and B ∈ DP(X) can be presented as finite sequences
b = (xi, pi)1≤i≤n for some xi ∈ X, pi ∈ [0, 1], pi > 0, n ∈ N; and B =
(ϕj, qj)1≤j≤m for ϕj ∈ P(X), qj ∈ [0, 1], qj > 0,m ∈ N, see Example 2.2.8.
The relation bD(∈X)B can be then described as follows: bD(∈X)B iff there
are (rij)1≤i≤n,1≤j≤m, rij ∈ [0, 1] such that xi %∈ ϕj ⇒ rij = 0 and

∑
i rij = qj

and
∑

j rij = pi.

For example, a state x in a coalgebra ξ satisfies ∇{(ϕ, q), (1, 1− q)} iff the
probability of going to a successor satisfying ϕ is larger or equal to q. That
is, ∇ (together with Boolean operators) can express the modal operators ♦p

of probability logic [49], see page 31 here.

6. In the case of the finite multiset functor we have the same description as
in the case of the distribution functor by just replacing [0, 1] by N. For
example, a state x in a coalgebra ξ satisfies

• ∇{(1, n)} iff x has exactly n successors;

• ∇{(ϕ,m), (1, n)} iff x has at leastm successors satisfying ϕ and exactly
m+ n successors in total.

In fact, each ∇-formula specifies the total number of successors; this means
that the usual graded modalities, introduced on page 31, can therefore not
be expressed using ∇.

The following properties will be useful later.

Proposition 3.3.7 ([84]). The formulas in Moss Logic, for a weak pullback
preserving functor T , are invariant under bisimulation and behavioural equivalence.

The natural transformation ∇' : T P −→ PT is very particular in the sense that
we can change P by Pow and it will still be a natural transformation. The next
remark makes this more explicitly.

3.3. Two generic coalgebraic modal logics 61

Remark 3.3.8. In case T preserves weak pullbacks we can also consider ∇' using
Pow instead of P, i.e. as a natural transformation ∇' : T Pow −→ PowT . In fact,
in this case we can say a bit more; namely that ∇' is a distributive law over the
monad (Pow, η, µ), see Example 2.3.16. This means that ∇' : T Pow −→ PowT is
natural and the following diagrams

T Pow PowT!
∇'

T

T (η)
'

'
''(

ηT
%
%
%%&

PowPowT

T PowPow PowT Pow!∇'Pow

"
T (µ)

PowT

PowPowT!Pow(∇')

"
µT

!
∇'

commute. In fact, ∇' : T Pow −→ PowT is a distributive law iff T preserves weak
pullbacks, for more detail see [56]. The axioms of distributive laws will come back
in the axiomatization of Moss Logic [69], see Chapter 5 here.

3.3.2 Logics of Predicate Liftings

Although the Moss logic has a natural description within the functorial framework
for coalgebraic modal logics, It is not totally clear how ∇ is a direct generalisation
of the logics in Section 1.2. Concrete modalities given by predicate liftings are a
direct generalisation of the modal logics of Section 1.2. However, it might seem
that there are too many predicate liftings. In this section we show that this is
not the case and that we can describe all of them concretely. On top of this, we
illustrate how for any functor T : Set −→ Set there is a canonical way of extracting
the modal operators and their semantics from T .

We will assume that the basic propositional logic corresponds to a variety with
powerset algebras (Definition 3.2.12). We will make use of the fact that every
algebra is the colimit of finitely generated free ones, i.e. the colimit of its canonical
diagram.

Predicate liftings via Yoneda

In order to describe concrete modalities, i.e. predicate liftings, concretely we
need to use some categorical machinery. Before going into the details recall that
P(X) = Set(X, 2) and more generally P(X)n = Set(X, 2n) = Set(X,P(n)). The
categorically minded reader will recognise the soil to apply the Yoneda Lemma.
This is the path that we follow. The following version of Yoneda Lemma will be
enough for the purposes of this manuscript.

Proposition 3.3.9. For every functor K : Setop −→ Set and every n there is a
natural isomorphism (natural in n and K)

Y(n,K) : KP(n) −→ Nat(Pn, K). (3.18)

62 Chapter 3. Coalgebraic Modal Logics

Proof. As we mentioned before Pn(X) = Set(X,P(n)).
We only define the bijection between KP(n) and natural transformations Pn

−→ K. This is done as follows: Assign to an element p ∈ KP(n) the natural
transformation Y (p) : Pn(X) −→ K(X) which maps a function v : X −→ P(n) to
the image of p under the function K(v) : KP(n) −→ K(X), i.e. K(v)(p); note
that the arrow v changes the direction because K is contra variant.

Conversely, for a natural transformation λX : Pn(X) −→ K(X), taking X =
P(n), notice P(P(n))n = Set(P(n),P(n)); hence Y (λ) := λP(n)(idP(n)) is an
element of KP(n).

The next remark will be used in the prove of Theorem 4.2.10, it can be skipped
for now.

Remark 3.3.10. The naturality of Y in the previous proposition implies that for
any natural transformation ! : K ′ −→ K and any n, the following diagram

Nat(Pn, K ′) K ′P(n)#
Y(n,K′)

Nat(Pn, K) KP(n)#
Y(n,K)

$
! ◦ −

$!P(n)

commutes.

The case of predicate liftings follows by taking K = PT .

Corollary 3.3.11. The set of n-ary predicate liftings for a functor T : Set −→ Set
is in natural bijection with the set PT P(n). In case n = 1 the set of unary predicate
liftings for T is in natural bijection with the subsets of T (2), i.e. PT P(1).

More explicitly, Proposition 3.3.9 depicts a procedure to convert natural
transformations Pn −→ PT into subsets of T P(n) and viceversa. This is done
as follows: Given a set P ⊆ T P(n) we define a predicate lifting λP : Pn −→ PT
which maps a sequence ϕ : n −→ P(X) to the set

(λP)X(ϕ) = {t ∈ T (X) | T (χϕ)(t) ∈ P} (3.19)

where χϕ : X −→ P(n) is the transpose of ϕ. In the converse direction, a predicate
lifting λ : Pn −→ PT corresponds to the image of idP(n). In case n = 1, the set
corresponding to λ is the image of ϕ = {1} ∈ P(2) under λ2. This presentation
of predicate liftings was first used in [99].

We now illustrate how the predicate liftings in Example 3.1.3 can be described
from this perspective.

Example 3.3.12. Recall Example 3.1.3. In the following P(1) = 2 = {1,⊥}.

3.3. Two generic coalgebraic modal logics 63

1. For a constant functor KC , the predicate lifting λP : P −→ PKC with constant
value P , where P ⊆ C = KC(2), correspond to the image of {1} under λP

which is the set P .

2. For the functor P(Q) × T , where Q is a fixed set propositional letters,
the predicate liftings providing the propositional information of q ∈ Q
correspond to the sets Uq × T (2) and U¬q × T (2) respectively, where we
write Uq for the set of subsets of Q containing q and U¬q for its complement.
Indeed, we have λq

2({1}) = {(U, t) ∈ P(Q)× T (2) | q ∈ U} = Uq × T (2),
and λ¬q

2 ({1}) = {(U, t) ∈ P(Q)× T (2) | q /∈ U}.

3. For the covariant power set functor Pow, the existential modality corresponds
to ♦2({1}) = {ψ ∈ Pow(2) | ψ ∩ {1} %= ∅}, i.e. the set {{1}, {1,⊥}. For
the universal modality we have !2({1}) = {ψ ∈ Pow(2) | ψ ⊆ {1}} which
means that it corresponds to the set {∅, {1}}.

4. For the neighbourhood functor PPop the non monotone modality ! cor-
responds to the set !2({1}) = {N ∈ PPop(2) | {1} ∈ N}, this is the
ultrafilter generated by {1}.

5. For the multiset functor the graded modality ♦k corresponds to the set
{B : 2 −→ N | B(1) ≥ k}; in this case since the value of ⊥ is irrelevant, we
can say that ♦k corresponds to the set [k,∞). In general, a predicate lifting
for BN can be described by two subsets of N; one describing the target of 1
and other describing the target of ⊥.

6. For the distribution functor D, notice that we can describe a probability
distribution d : 2 −→ [0, 1] by its value on 1 (d(⊥) = 1 − d(1)), we can
then say that unary predicate liftings correspond to subsets of [0, 1]. More
precisely, P ⊆ [0, 1] corresponds to the set of distributions d : 2 −→ [0, 1] such
that d(1) ∈ P . In particular, ♦p corresponds to the set [p, 1]. Similarly, the
predicate lifting !p = ¬♦p¬ correspond to the set (1− p, 1]; the modality
♦p = ♦1−p¬ corresponds to [0, p]. In general, the predicate lifting associated
with an interval (q, q′) ⊆ [0, 1] maps a set ϕ ⊆ X to the set of probability
distributions over X that assign a probability between q and q′ to the set ϕ.

A generic description of the logic of all predicate liftings

Using the perspective of predicate liftings given by the Yoneda Lemma we can
present the signature of all (finitary) predicate liftings by

ΣT =
∐

n<ω

PT P(n)× (−)n.

Consequently, we obtain a coalgebraic modal logic (L̄T , δ̄T) on any category of
power set algebras (Definition 3.2.18). More specifically, recall that L̄T = FΣT U ,

64 Chapter 3. Coalgebraic Modal Logics

and the semantics δ̄T : L̄T P −→ PT is given by the coproduct of the transposes
of the predicate liftings. However, this logic is far from complete. It was noted
in [75, 76] that using the finitely presentability of BA, i.e. that every Boolean
Algebra is the colimit of finite Boolean Algebras, we can present a complete logic
of predicate lifting. In fact the construction works for any category of power set
algebras. This section requires some fitness in category theory.

We now introduce the construction in [76] formally.
Let A be a category of power set algebras. Recall that every algebra in A is

the colimit of its canonical diagram (Definition 2.3.8). In particular, for each set
X, the algebra P (X) can be presented as the colimit of its canonical diagram.
More explicitly, P (X) is the colimit of all maps (ci : F (ni) −→ P (X)), where i
ranges over valuations {n −→ UP (X) | n < ω}, ni denotes the domain of i and
ci : F (ni) −→ P (X) is the transpose of i.

Definition 3.3.13. Let A be a category with power set algebras, and let T be
a Set-endofunctor. Let S : A −→ Setop be the left adjoint of P : Setop −→ A
(Proposition 3.2.24), i.e. S(A) = A(A,P (1).

The logic (LT , δT), over A, is defined as follows:
The functor LT : A −→ A is defined on finitely generated free algebras as

LT (F (n)) = PT P(n)

and extended to arbitrary A ∈ A via colimits (Definition 2.3.12).
The semantics (δT)X : LT P (X) −→ PT (X) is the unique arrow making the

following diagram

LT F (ni) PT P(ni)!
id

LT P (X) PT (X)!(δT)X

$
LT (ci)

$
PT (ĉi)

(3.20)

commute for each i : ni −→ UP (X); where ĉi comes from applying the sequence of
isomorphisms A(F (ni), P (X)) ∼= Set(ni, UPX) ∼= Set(ni,P(X)) ∼= Set(X,P(ni))
to ci, i.e. the transpose of i.

We now explain the construction above in more detail. We first describe
ULT (A), i.e. the carrier of LT (A), more concretely. The key point is that ULT (A)
is the colimit of a directed diagram hence we can use the description of directed
colimits in Set (Proposition A.0.6) to compute it. We now elaborate on this.

For any algebra A ∈ A the canonical diagram is a directed diagram (Propo-
sition 2.3.9). Therefore, LT (A) is also the colimit of a directed diagram, more

precisely, it is the colimit of the diagram

(
LT F (ni)

LT (fj
i)−−−−→ LTF (mj)

)
. Since A

3.3. Two generic coalgebraic modal logics 65

is a (finitary) variety the forgetful functor U : A −→ Set preserves this colimit
(Proposition 2.3.9). This means that ULT (A) is the colimit of the directed diagram(
ULT F (ni)

ULT (fj
i)−−−−−→ ULTF (mj)

)
.

Now we can use Proposition A.0.6 to describe ULT (A). Since ULT F (n) =
UPT P(n) = PT P(n) we have that ULT (A) is (isomorphic) to the quotient of∐

n<ω PT P(n) modulo the the following relation:
λi ∈ PT P(ni) and λj ∈ PT P(mj) are equivalent if there exists valuations

ci : F (ni) −→ A and cj : F (mj) −→ A such that

ULT (ci)(λi) = ULT (cj)(λj). (3.21)

This finishes the description of ULT (A).

Now we describe the action of δT . From the above characterization we have
that each element of ULT P (X) is of the form ULT (cϕ)(λ) for some cϕ : F (nϕ)
−→ P (X) and some λ ∈ PT P(nϕ); we use ϕ for the index because it corresponds
to a list of subsets ϕ : n −→ UP (X) = P(X). Let us write λ(ϕ) for ULT (cϕ)(λ).
From Diagram 5.6 we have

(δT)X(λ(ϕ)) = PT (ĉϕ)(λ).

Now recall, from Definition 3.3.13, that ĉϕ was obtained by applying the fol-
lowing chain of isomorphisms A(F (ni), P (X)) ∼= Set(ni, UPX) ∼= Set(ni,QX) ∼=
Set(X,P(ni)) to cϕ : F (nϕ) −→ P (X). In this particular case we have that

X
ĉϕ=χϕ−−−−−−−→ P(nϕ), where χϕ is the exponential transpose of ϕ : nϕ −→ P(X).

Gathering all this we have

(δT)X(λ(ϕ)) = PT (ĉϕ)(λ) (Diagram 5.6)

= PT (χϕ)(λ) (ĉϕ = χϕ)

= {t ∈ T (X) | T (χϕ)(t) ∈ λ} (Definition of P)

Which is precisely the description of the predicate lifting associated with λ (Equa-
tion (3.19)).

An important point to notice in this construction is that the logic is (LT , δT)
is a quotient of the logic of all predicate liftings, i.e. (L̄T , δ̄T). More explicitely,
(LT , δT) is the quotient of (L̄T , δ̄T) via the equivalence relation described in
Equation 3.21. In the case of BA this logic is sound and complete.

Proposition 3.3.14 ([76]). The logic (LT , δT), over BA, is sound and complete.

We refer the reader to [76] for a detailed proof.

Chapter 4

Comparing Coalgebraic Modal Logics

In this chapter we investigate the use of the functorial framework to find a
translations between the Moss logic (M) and the logic of all predicate liftings (L).
Our main result states that the Moss logic and the logic of all predicate liftings
are equivalent, that is, can be translated into each other, in case that the following
conditions are fulfiled: 1) the functor T preserves weak pullbacks, 2) the functor
T preserves finite sets, and 3) the basic propositional logic is Boolean. Recall that
the first condition is needed because otherwise Moss logic is not defined; Examples
4.3.1 and 4.4.6 explain the other conditions.

Let us emphasise that we are not interested in only showing only that every
formula in L has an equivalent formula in M and viceversa. Rather we want an
inductive definition of the translation, which respects the one-step nature (see
Remarks 3.2.6 and 4.1.5). This stronger property of translations is captured by
the existence of natural transformations L̄ −→ M and M −→ L.

4.1 One step translations

We start by introducing translations between coalgebraic modal logics within the
functorial framework. Recall that our notion of coalgebraic modal logic assumes a
category A of power-set algebras, a functor L : A −→ A and a natural transfor-
mation δ : LP −→ PT , as explained in the previous chapter (Definition 3.2.13).
Also remember that a translation maps formulas in one language into formulas
in another languages preserving the semantics. In the functorial framework for
coalgebraic modal logics this intuition is captured by a natural transformation
between the functors on the algebra side. The next definition makes this precise.

Definition 4.1.1. Let (L1, δ1) and (L2, δ2) be coalgebraic modal logics, over the
same base category, for a functor T . A one-step translation, written ν : (L1, δ1)
−→ (L2, δ2), is a natural transformation ν : L1 −→ L2 which commutes with the

67

68 Chapter 4. Comparing Coalgebraic Modal Logics

semantics, i.e. the following diagram

L1P L2P!νP

PT

δ1
%
%
%%&

δ2
'

'
''(

commutes. We say that ν translates the logic (L1, δ1) into the logic (L2, δ2).

The next example illustrates one-step translations with the well known equiva-
lences for the power set functor.

Example 4.1.2. All the coalgebraic logics below are over BA; we write U : BA
−→ Set for the forgetful functor and F for its left adjoint; a boolean algebra is
denoted as a pair (A,α).

Let ! and ♦ be the predicate liftings associated with the universal modality and
the existential modality, for Pow, respectively (Example 3.1.3). Let (L{!,♦},!+
♦), (L!,!), and (L♦,♦) be logics of predicate liftings (Example 3.2.11) for the
signatures as indicated. Let (M,∇) be the Moss logic for Pow (Example 3.3.6)

1. The interdefinability of the modalities ! and ♦ over BA can be illustrated
using one-step translations as follows. We define a one step translation
ν : (L!,!) −→ (L♦,♦) by presenting a natural transformation τ : U −→
UFU = UL♦ and then extend it freely to a natural transformation L! =
FU

ν−−−−→ FU = L♦. The natural transformation τ maps a ∈ U(A,α) = A
to ¬F¬Aa ∈ UFU(A,α), where ¬A is the negation of (A,α) and ¬F is the
negation of FU(A,α). Using % and & as formal symbols, see Examples
3.2.7 and 3.2.17, τ is just the usual translation i.e. τ(%a) = ¬F&¬Aa, the
transpose of τ gives the one-step translation ν : (L!,!) −→ (L♦,♦). It is
standard to show that ν gives a one-step translation, i.e. it commutes with
the semantics. We now compute this explicitly to illustrate the technique.

Recall that the semantics of the logics are given by the transposes of the
predicate liftings (Example 3.2.11), in this particular case they are given by

FUP = L!P
!̂−→ PPow and FUP = L♦P

♦̂−→ PPow. To show that that ν
is a one-step translation we ought to argue that ♦̂ ◦ ν = !̂. By properties of
adjoints (Lemma A.1.3) to show this, it is enough to show U(♦̂) ◦ τ = !.
We can now compute, given ϕ ∈ UP (X) we have:

U(♦̂) ◦ τ(ϕ) = U(♦̂)¬F¬P (X)ϕ (Def. τ)

= ¬PPow(X)♦¬P (X)ϕ (Def. ♦̂)
= ¬PPow(X)

{
ψ ⊆ X | ψ ∩ ¬P (X)ϕ %= ∅

}
(Def. ♦)

=
{
ψ ⊆ X | ψ ∩ ¬P (X)ϕ = ∅

}
(Def. ¬P (X))

= {ψ ⊆ X | ψ ⊆ ϕ} (Proper. ¬P (X))

= !(ϕ). (Def. !)

4.1. One step translations 69

It should now be clear how to define a one-step translation ν ′ : (L♦,♦) −→
(L!,!) corresponding to ♦ = ¬!¬. By properties of BA, more specifically
the fact the ¬¬ = id, it is easy to see that ν ′ is the inverse of the ν defined
above; hence the two logics (L♦,♦) and (L!,♦) are isomorphic.

It is important to notice that to define a translation it is not enough to
find a natural transformation, or isomorphism, between the functors; for
example, over DL or Set the functors L! and L♦ are isomorphic but clearly
there are no translations between these coalgebraic modal logics.

2. The usual translation of ♦ into the Moss logic can be presented as follows: In
this particular case, we can define a one-step translation ν♦ : FU −→ FPowωU
by just presenting a natural transformation τ♦ : U −→ PowωU and then
applying F to it. We define τ♦ as follows: an element a ∈ U(A,α) is mapped
to τ♦(a) = {a,1A}, where 1A is the top element of (A,α). This correspond
to the translation ♦ϕ = ∇{ϕ,1}. The fact that we can just apply F is
particular to ♦; see Section 4.2 for more on this.

3. The usual translation of ! into Moss logic is given by a natural transfor-
mation ν! : FU −→ FPowωU . In this case, we define the translation by
presenting a natural transformation τ! : U −→ UFPowωU . An element
a ∈ U(A,α) is mapped to τ!(a) = {a} ∨F ⊥A, where ∨F is the disjunc-
tion of FPowωU(A,α) and ⊥A is the bottom element of PowωU(A,α); this
corresponds to the usual translation !a = ∇{a} ∨∇∅.

4. The well known translation of ∇ into basic modal logic is done as follows:
we want to define a natural transformation ν∇ : FPowωU −→ F (U! + U♦),
here we write U!+U♦ to indicate that one factor deals with ! and the other
with ♦. One more time, using properties of free algebras it is enough to
define a natural transformation τ : PowωU −→ UF (U! + U♦). Let Φ be an
element in PowωU(A,α). Since Φ is finite there are elements in U!(A,α) and
FU♦(A,α) corresponding to

∨
AΦ and

∧
F Φ respectively. We now define

τ as expected, i.e. τ(Φ) =
∨

AΦ ∧
∧

F Φ. On the one hand, since
∧

F is
a conjunction of elements in FU♦(A,α) it correspond to a conjunction of
elements ♦a, a ∈ Φ. On the other hand,

∨
A is a conjunctions of elements

in U!(A,α) and is itself an element of FU!(A,α) hence it corresponds to
!∨

a∈Φ a. In summary, the translation above corresponds to the usual
translation ∇Φ = ! ∨

a∈Φ
a ∧

∧
a∈Φ

♦a.

We now explain how one-step translations can be understood as inductive
definitions of translations between the associated languages. More explicitly, we
will show that given a one-step translation ν : (L1, δ1) −→ (L2, δ2) we can define a
function tr : I1 −→ I2 such that for every coalgebra ξ : X −→ T (X) the following

70 Chapter 4. Comparing Coalgebraic Modal Logics

diagram

I1 I2!
tr

P (X)

[[−]]δ1ξ
'
'
''*

[[−]]δ2ξ
%

%
%%)

(4.1)

commutes, where Ii is the carrier of the initial Li algebra. In other words, a
function tr such that for each formula ϕ ∈ I1 we have [[ϕ]]δ1ξ = [[tr(ϕ)]]δ2ξ .

Recall (Remark 3.2.2) that the elements of Ii are not “formulas” in the standard
sense i.e. elements of the term algebra for a signature, but equivalence classes of
formulas. The function tr translates those equivalence classes. It is not absolutely
trivial to obtain a translation, in the sense of Definition 2.4.1, between formulas.
Before going into more details we explain how to define the function tr : I1 −→ I2
and explain why the diagram above commutes.

Before defining tr we notice that a one-step translation induces a functor
between the corresponding algebras. The next definition makes this precise.

Definition 4.1.3. Let ν : (L1, δ1) −→ (L2, δ2) be a one step translation. The
translation functor, induced by ν is given by

− ◦ ν =: Trν : Alg(L2) −→ Alg(L1).

More explicitly, an L2-algebra, α : L2(A) −→ A, is mapped to the following
composite L1(A)

νA−→ L2(A)
α−→ A, i.e. Trν(A,α) = (A,α ◦ νA); the functor Trν

is the identity on arrows.

Notice that since ν is a natural transformation the definition above indeed
defines a functor, because any morphism f : A −→ A′, which is a morphism of
L2-algebras is also a morphism between the corresponding L1-algebras.

We now show how to define tr : I1 −→ I2 in Diagram 4.1. Denote by ιi : Li(Ii)
−→ Ii the initial Li-algebra, (i = 1, 2). The function tr : I1 −→ I2 is given by the
initial morphism of L1-algebras (I1, ι1) −→ Trν(I2, ι2). Indeed, from the definition
of Trν , this morphism is given by a function tr : I1 −→ I2.

Now notice that since Trν is the identity on arrows, the function [[−]]δ2ξ : I2

−→ P (X) is a homomorphism between the L1-algebras Trν(I2, δ2) and TrνP̂δ2(X, ξ).
This means that the semantics for δ2 is a morphism of L1-algebras.

Now we show how to obtain Diagram 4.1, i.e. [[−]]δ1ξ = [[−]]δ2ξ ◦ tr. First we

show that TrνP̂δ2(X, ξ) is the complex (L1, δ1)-algebra of (X, ξ). To show this we
will use the fact that ν commutes with the semantics, i.e. δ2 ◦ νP = δ1. With this

4.1. One step translations 71

in mind we obtain

TrνP̂δ2(X, ξ) = Trν(P (X), P (ξ) ◦ δ2) (Def. P̂δ2)

= (P (X), P (ξ) ◦ δ2 ◦ νP (X)) (Def. Trν)

= Trν(P (X), P (ξ) ◦ δ1) (δ2 ◦ νP = δ1)

= P̂δ1(X, ξ). (Def. P̂δ1)

As we wanted to show. In particular, this implies that the carrier set of TrνP̂δ2(X, ξ)
is P (X) and that the initial morphism is given by [[−]]δ1ξ : I1 −→ P (X). From

this, since tr : I1 −→ I2 is a morphism of L1-algebras and so is [[−]]δ2ξ : I2
−→ P (X), by initiality, we conclude that for any coalgebra ξ : X −→ T (X) we
have [[−]]δ1ξ = [[−]]δ2ξ ◦ tr. In other words, tr is a translation.

A gain of the functorial approach is that tr is a morphism in the base category
of the logics, which means that it preserves the basic structure, i.e the basic
propositional logic. In other words, the translation is inductively defined over the
operations of the basic structure. For example, if the basic propositional logic is
that of boolean algebras and we already know how to translate formulas ϕ the
formulas like ¬ϕ are translated by tr(¬ϕ) = ¬tr(ϕ).

We now address the issue that tr is a function between equivalence classes
of formulas and not between formulas. First we make the problem precise. At
this point, a first concern is that it is not clear how to obtain a signature from a
coalgebraic modal logic (Remark 3.2.2). We can go around this because in Chapter
5 we will see that every coalgebraic logic can be seen as a rank 1 axiomatization of
a logic of predicate liftings. More precisely, for every coalgebraic modal logic (L, δ)
there exists a set of predicate liftings Λ and a surjection q : LΛ (L such that
δ̄ = δ ◦ q, where δ̄ is the semantics of LΛ. Under these assumptions the problem
of defining a translation between formulas can be made precise as follows: First
recall (Remark 3.2.15) that LA

Λ denotes the language of predicate liftings over A,

Given coalgebraic modal logics (L1, δ1) and (L2, δ2), over a category A,
which are rank 1 axiomatizations of logic of predicate liftings (LΛ1 , δ̄1)
and (LΛ2 , δ̄2), respectively. Assume there is a one step translation
ν : (L1, δ1) −→ (L2, δ2). Can we always obtain a usual translation
(Definition 2.4.1), i.e. a function tr′ : LA

Λ1
−→ LA

Λ2
which preserves the

interpretation of formulas?

The short answer is NO; in general we can not obtain a usual translation from
a one-step translation. We now explain this. The idea is that tr′ should make the

72 Chapter 4. Comparing Coalgebraic Modal Logics

following diagram commute

I1 I2!
tr

LA
Λ1

LA
Λ2

!tr′

" "
(4.2)

where the lower horizontal edge is the translation described in Diagram 4.1 and
the vertical arrows are the respective quotient maps. By following the lower edge,
we clearly see that there is always a function t̄r : LA

Λ1
−→ I2. However, to define

tr′ : LA
Λ1

−→ LA
Λ2

amounts to make a choice of representants in the equivalence
classes (formulas) in I2; moreover such choice should be somehow inductively
defined on the complexity of the formula. The problem is that there is no general
canonical method to make such choice. The following examples illustrate this.

Consider the case of ! and ♦ for Pow. It is well known that one translation
is ! = ¬♦¬, however we could also translate ! via ¬¬¬♦¬ or ¬♦¬¬¬. The
question is how can we guarantee to always choose the first translation? Here we
could argue that the first translation is preferred because it is shorter. In other
words, we can use length to make a canonical choice. This is not always possible,
consider the signature where we add a new unary operator ♥ to the boolean
signature, call this signature ΣBA♥ . Boolean algebras can be axiomatized with this
signature putting the axiom ♥ = ¬¬¬ on top of the usual axiomatization. The
one step-translation in Example 4.1.2 still works, but now to define a translation
tr′ : LBA♥

! −→ LBA♥

♦ in addition to the choices above we could also translate
! via ♥♦¬ or ¬♦♥ and the length argument does not work anymore. If we
insists on making a choice based on length, we should then try using a minimal
functional complete sets of operators and then present BA by a single connective
like NAND(↑)1. In conclusion there is no general canonical manner to define
tr′ : LA

Λ1
−→ LA

Λ2
. It is important to notice that previous examples also show that

the problem of choosing a particular presentation for a translation is also present
in the classical approach to modal logic. Here the issue is addressed by making
a “smart” choice of the signature before hand. The choice of an appropriate
signature hovers over the realms of sociology of mathematics; we do not go into
such discussion in this manuscript.

Until here we have addressed the issue of obtaining usual translations (Defini-
tion 2.4.1) from one-step translations (Definition 4.1.1). We argued that to define
a translation there is a choice problem that can not be solved within the functorial
framework but neither it is solvable in the standard approach. We now proceed
to mention some advantages of one-step transaltions and the functorial approach.

1. One-step translations are independent of the chosen base signature. One-step
translations use its own “weakness” into its favour, they avoid the need of

1The NAND connective is the negation of AND, i.e. ↑ (p, q) = ¬(p ∧ q). It is well known
that all other Boolean connectives can be expressed using only NAND, see [35] for details.

4.1. One step translations 73

making any choice at all. For example, in the case of translating ! into ♦
there is no need to choose between ¬♦¬, ¬¬¬♦¬, or ¬♦♥ because all of
them are in the same equivalence class, hence they are one formula from the
functorial perspective.

2. One-step translation are canonical in the following sense: If a coalgebraic
modal logic (L, δ) is (one-step) complete, then for any other coalgebraic
modal logic (L′, δ′) there is at most one one-step translation ν : (L′, δ′)
−→ (L, δ).

3. We can use structural properties of the base category to produce transaltions.
This will be illustrated in Section 4.4 where we show how, using Stone duality,
every predicate lifting can be translated into Moss logic.

4. We can use the categorical description of the functor L to define generic
translations. We will illustrate this in Chapter 5 where we use the presenta-
tion of the language of all (finitary) predicate liftings (LT , δT), see Definition
3.3.13, to show that every other coalgebraic modal logic is translatable into
(LT , δT).

5. Assuming a signature has been given, the functorial approach allows us to
reduce the choice for the translation to the simplest depth-one formulas
of (LΛ1 , δ̄1). Recall that the translation tr : I1 −→ I2 in Diagram 4.1 is a
morphism in the base category hence to define a translation tr′ : LA

Λ1
−→ LA

Λ2

as indicated in Diagram 4.2, it is enough to choose a representant for tr(!λx)
and then extend inductively to define tr′.

The following proposition summarises what is needed to define the function
tr : I1 −→ I2 in Diagram 4.1.

Proposition 4.1.4. Let ν : (L1, δ1) −→ (L2, δ2) be a one step translation. The
translation functor, Trν : Alg(L2) −→ Alg(L1) makes the following diagrams

Alg(L2) Alg(L1)!
Trν

Coalg(T)

P̂2

'
'

'
''(

P̂1

%
%
%
%%&

A

U2

%
%
%
%%&

U1

'
'

'
''(

commute, where P̂i is the δi-lifting of P as described in Definition 3.2.4.

74 Chapter 4. Comparing Coalgebraic Modal Logics

Proof. The details can be found in the discussion after Definition 4.1.3. We just
recall that the lower triangle commutes because ν is natural and that the upper
triangle commutes because νP commutes with δ1 and δ2.

In the previous proposition, the lower triangle is used to define the translation,
i.e. the function tr : I1 −→ I2. The upper triangle is used to show that this
translation preserves the interpretation of formulas i.e. Diagram 4.1 commutes.

The next remark discusses why we do not follow a more standard categorical
approach using free monads.

Remark 4.1.5. Another idea that might come to mind is to define translations
between coalgebraic modal logics using the free monads generated by L1 and L2.
More concretely, the idea would be to define translations as natural transformations,
monad morphism, between those. Such a more general notion would allow, for
example, to express an L1-formula !1ϕ1 as a combination of L2-formulas with
nested modal operators such as e.g. !2♦2ϕ2. Moreover, it is well known that
any functor making the lower triangle, in the previous proposition, commute is
induced by such type of natural transformation. However, as we will later see, all
those “advantages” would still not allow us to always find a translation. Examples
4.3.1 and 4.4.6 show that translations simply do not exist. On top of this, our
stronger notion preserves the one step nature of the modalities, hence the name.

4.2 Decomposing predicate liftings

As we illustrated in the previous chapter, the Moss modality can be technically
involved. For this reason, we first show how to translate predicate liftings. Our
long term aim is to find a one-step translation (L̄T , δT) −→ (MT ,∇). This can
be simplified by considering one predicate lifting at the time. In order to tailor
the desired translations, we will first introduce the concept of translators for a
predicate lifting (Definition 4.2.1). Technically speaking, a translator factors a
predicate lifting λ via ∇'. Unfortunately, not all predicate liftings have translators
(Example 4.2.4). We can overcome this by showing that all the so-called singleton
liftings (Definition 4.2.5) do have translators and in fact every predicate lifting is
a union of singleton liftings (Proposition 4.2.8).

Definition 4.2.1. A translator for an n-ary predicate lifting λ is a natural
transformation τ : Pn −→ TωP such that the following diagram

Pn TωP!τ

PT

λ
%
%
%%&

∇'
'

'
''(

(4.3)

commutes, where ∇' is the semantics of the Moss Logic (Definition 3.3.4).

4.2. Decomposing predicate liftings 75

We illustrate the concept with some examples.

Example 4.2.2. The following are examples of translators.

1. Consider the predicate lifting associated with the existential modality ♦
of the covariant power set functor (Example 3.1.3). The following natural
transformation is a translator for ♦; we define τX : P(X) −→ PowωP(X)
mapping an element ϕ ⊆ X to τX(ϕ) = {ϕ, X}. Compare this with the
equivalence ♦ϕ = ∇{ϕ,1} discussed in Examples 3.3.6 and 4.1.2.

2. Consider the usual probability modality ♦p, i.e. “the probability of ϕ is at
least p”. This predicate lifting has a translator τp : P −→ DP defined as
follows: A set ϕ ⊆ X is mapped to to the probability distribution Dϕ

p : P(X)
−→ [0, 1] which assigns p to the set ϕ and 1− p to the set X. Compare this
with the description in Example 3.3.6.

3. We can use the same idea of the previous item to translate the probability
modality ♦p, i.e. “the probability of ϕ is at most p” (Example 3.1.3). The
translator is given by the natural transformation τ p : P −→ DP which maps
a set ϕ ⊆ X to the probability distribution, Dp

ϕ : P(X) −→ [0, 1], assigning
1− p to the set ¬ϕ and p to the set X, is a translator for ♦p.

The next remark presents translators in terms of relation lifting.

Remark 4.2.3. Using relation lifting we can describe translators as follows: a
natural transformation τ : Pn −→ TωP is a translator for a predicate lifting λ : Pn

−→ PT iff for every ϕ : n −→ P(X) and every t ∈ T (X) the following holds

(t, τ(ϕ)) ∈ T (∈X) iff t ∈ λ(ϕ),

where T is as in Definition 2.2.7.

Now we explain the intuition behind translators. The idea of a translator is to
define a translation tr via

tr(!λϕ) = ∇τ
(
tr(ϕ)

)
. (4.4)

The key issue is to somehow show that τ(tr(ϕ) is definable in the base logic.
We come back to this in Section 4.3. A more immediate concern is that not all
predicate liftings have translators. This can be rephrased by saying that not all
predicate liftings can be translated using only ∇ without propositional connectives.
The following example illustrates this.

Example 4.2.4. The following predicate liftings fail to have translators.

76 Chapter 4. Comparing Coalgebraic Modal Logics

1. Let KC be a constant functor where C has at least two distinct elements c1
and c2. Using Proposition 3.3.9 (see also Example 3.1.3), predicate liftings
correspond to subsets of C. The predicate lifting λE corresponding to
E = {c1, c2} does not have a translator. This is because the components of
a natural transformation τ : P −→ KC ought to be constant functions, hence
the cardinality of ∇'τ(X) is always 1, but λE(X) = E. Nevertheless, notice
that the formula ∇c1 ∨∇c2 translates the associated modality, i.e. !E.

2. Consider de graded modality ♦k for the finite multiset functor, i.e. there are
at least k successors satisfying ϕ. Recall from Example 3.3.6 that each ∇
formula for BN specifies the total number of successors. Since ♦k does not
declare a specific number of successors, we conclude that ♦k can not have a
translator.

3. Let ♦>p be a modality for the finite distribution functor corresponding to the
set (p, 1]; in natural language this modality says the probability of ϕ is strictly
larger than p. In terms of natural transformations this modality maps a set
ϕ ⊆ X to ♦>p(ϕ) = {d ∈ D(X) | µd(ϕ) > p}, where µd(ϕ) =

∑
x∈ϕ d(x).

Each of these modalities fail to have a translator. The reason for this is that
each natural transformation τ : P −→ DP specifies a probability for each
set ϕ, as an element of P(X), say q; since we want τ to be a translator we
must have p < q. Consequently, as seen in Example 3.3.6, ∇τ(ϕ), which
is an element of PD(X), can only contain probability distributions d : X
−→ [0, 1] such that

∑
x∈ϕ d(x) = q. Hence no single natural transformation

can factor ♦>p via ∇'; in our terminology, this means that no predicate
liftings corresponding to a modality ♦>p has a translator. Notice that this
argument does not work for ♦p because there we can pick q = p; in fact that
is how we define the translator τp there.

In particular the predicate lifting corresponding to the modality !p, the dual
to ♦p in Example 3.1.3, does not have a translator because it corresponds to
the set (1−p, 1]. Nevertheless, notice!p can be translated into Moss language
using negations because ♦p is translatable, see the previous example.

4.2.1 Singleton Liftings

Translators are one of our primary means to define transaltions from languages
of predicate liftings into the Moss logic. Before explaining how this is done we
address possible concerns risen from the previous example by showing that for
every functor there are enough predicate liftings that do have translators. For this
purpose, we now introduce singleton liftings. Informally speaking, singleton liftings
are the simplest predicate liftings. As the name indicates, they are associated, via
Proposition 3.3.9, with singleton sets. Here is the formal definition.

4.2. Decomposing predicate liftings 77

Definition 4.2.5. ([80]) An n-ary predicate lifting λ is called a singleton predicate
lifting, or a singleton lifting for short, if it is associated (via Proposition 3.3.9)
with a singleton set in PT P(n). More explicitly, a predicate lifting λ : Pn −→ PT
is a singleton lifting if there exists p ∈ T P(n) such that for every ϕ : n −→ P(X)
the following holds

λX(ϕ) = {t ∈ T (X) | T (χϕ)(t) = p}, (4.5)

where χϕ : X −→ P(n) is the transpose of ϕ. If λ is a singleton lifting, we write it
λp or just p, where p is the associated element of T P(n).

Here are some examples of singleton liftings and the corresponding translators.

Example 4.2.6. In the following 2 = {1,⊥}.

1. If T is a constant functor with value C, then the singleton liftings for T are
associated with elements c ∈ C = T (2). The X-component of a singleton
lifting λc is the function λc : PX −→ PKC with constant value {c}. A
translator for λc is given by the natural transformation τ : P −→ KCP whose
components are functions with constant value c.

2. If T is the identity functor we have T (2) = 2 = {1,⊥}, then there are two
singleton liftings of arity 1 for Id. The X-component of λ+ is the identity.
Similarly, the X-component of λ⊥ is the function (λ⊥)X : P(X) −→ P(X)
mapping a set ϕ ⊆ X to to its complement i.e. λ⊥(ϕ) = ¬Xϕ. In this case
∇' : IdP −→ P Id is the identity, using this it is easy to see that id : P −→ IdP
is a translator for λ+ and ¬ : P −→ IdP , complement, is a translator for λ⊥.

3. Let T = 1 + Id, we have T (2) = 1 + 2. Consider the set {∗} ⊆ 1 + 2, where
∗ ∈ 1. The associated singleton lifting λ∗ : P −→ P(1+ Id) maps a set ϕ ⊆ X
to {∗}. This modality indicates termination, i.e. x $ξ λ∗ϕ iff a transition
from x leads the system to halt. The natural transformation τ∗ : P −→ 1+P
with constant value ∗ is a translator for λ∗. The other singleton liftings for
T are similar to those of Id.

4. The covariant power set functor has four singleton liftings of arity 1, explicitly
these are associated with Pow(2) = {∅, {1}, {⊥}, {1,⊥}}. Given a set
ϕ ⊆ X, the action of these predicate liftings is (we drop the subscripts X):

λ∅(ϕ) = {∅};
λ{+}(ϕ) = {U ∈ Pow(X) | ∅ %= U ⊆ ϕ};
λ{⊥}(ϕ) = {U ∈ Pow(X) | ∅ %= U ⊆ ¬Xϕ};

λ{+,⊥}(ϕ) = {U ∈ Pow(X) |U ∩ ¬Xϕ %= ∅ %= U ∩ ϕ};

Note that they all have translators, corresponding to ∇{ϕ}, ∇{¬Xϕ},
∇∅, ∇{ϕ,¬Xϕ}, respectively. We work out the case of λ{+,⊥} in more

78 Chapter 4. Comparing Coalgebraic Modal Logics

detail to illustrate what we mean with “corresponding to”. The natural
transformation τ : P −→ PowP which maps ϕ ∈ P(X) to the set {ϕ,¬Xϕ} ∈
PowP(X) is a translator for λ{+,⊥}.

5. If T is the finite multiset functor we have T (2) = N2. This means that
a singleton lifting is given by a pair of natural numbers (n,m), we write
fn
m : 2 −→ X for the function which maps 1 to n and ⊥ to m. we use (n,m)
to denote the associates predicate lifting. We now compute the predicate
lifting associated with (n,m) explicitly. From Equation (4.5) we know that
the X-component, (n,m)X : P(X) −→ PBN(X), maps a set ϕ ⊆ X to

(n,m)X(ϕ) = {B : X −→ N | BN(χϕ) = fn
m}

=




b : X −→ N |
∑

x∈χ−1
ϕ (+)

b(x) = n and
∑

x∈χ−1
ϕ (⊥)

b(x) = m






=

{
b : X −→ N |

∑

x∈ϕ
b(x) = n and

∑

x∈¬Xϕ

b(x) = m

}

In words, (n,m)X(ϕ) is the set of bags over X with n+m elements, n of
which are in ϕ and m are in the complement of ϕ. Such a predicate lifting
has a translator as it corresponds to ∇{(ϕ, n), (¬ϕ,m)}, see Example 3.3.6.
More explicitly this means that the natural transformation τnm : P −→ BNP
which maps a set ϕ ⊆ X to the bag B : P(X) −→ N assigning n to ϕ, m to
¬Xϕ, and 0 to any other set, is a translator for (n,m).

6. If T is the finite distribution functor, a singleton lifting is given by a
probability distribution d : 2 −→ [0, 1]. Since we require d(1) + d(⊥) = 1, a
singleton lifting for the finite distribution is then determined by a single real
number q ∈ [0, 1]. The X-component of q maps a set ϕ ⊆ X to the set of
probability distributions over X that assign probability q to the set ϕ. As
in the case of the multiset functor, such predicate liftings have translators
corresponding to ∇{(ϕ, q), (¬Xϕ, 1− q)}, see Example 3.3.6; compare this
formula with the one in the mentioned example.

We now fix some terminology for the language of singleton liftings.

Definition 4.2.7. The set of, finitary, singleton liftings is denoted by Λs; we
write (L̄s, δ̄s) for the corresponding coalgebraic modal logic (Definition 3.2.18),
over a category of power set algebras A.

Singleton liftings appeared for the first time in [80]. Some reasons to consider
singleton liftings are:

1. They always have translators, see Theorem 4.2.10.

4.2. Decomposing predicate liftings 79

2. In the case of KPF’s they can be inductively presented over the complexity
of the functor, see Section 4.2.2; hence,

3. their translators, and eventual translations, can also be presented inductively
over the complexity of the functor.

4. They generate all other predicate liftings, see Proposition 4.2.8.

The items 2 and 3 will be developed in Section 4.2.2. The next proposition
presents the last item more formally.

Proposition 4.2.8 ([80]). If λ is an n-ary predicate lifting associated with a set
P ⊆ T P(n), then for every set X and every n-sequence ϕ : n −→ P(X) we have:

λX(ϕ) =
⋃

p∈P

(λp)X(ϕ).

In other words, every n-ary predicate lifting can be obtained as a (possibly infinite)
join of singleton predicate liftings.

Proof. The proof is an application of Proposition 3.3.9. Recall the description of
a predicate lifting given by Equation 3.19, on page 62. Recall the instantiation of
this same equation for a singleton lifting (Definition 4.2.5). Using those we can
show that the action of λ, over a n-sequence ϕ : n −→ PX, can be described as
follows

(λP)X(ϕ) = {t ∈ TX |T (χϕ)(t) ∈ P}

=
⋃

p∈P

{t ∈ TS |T (χϕ)(t) = p} =
⋃

p∈P

(λp)X(ϕ).

The next example illustrates how the previous proposition can be used to
define translations.

Example 4.2.9. Let ! and ♦ be the predicate liftings associated with the
universal modality and the existential modality for Pow, Example 3.1.3.

1. In the case of the universal modality, we saw that the predicate lifting
for ! is λ{∅,{+}}, see Example 3.3.12. This predicate lifting does not have
a translator. From the previous proposition we know it is the union of
singleton liftings; more concretely ! = λ∅ ∪ λ{+}. In Example 4.2.6 we saw
that these singleton liftings have translators. We can then recover the usual
translation via

tr(!ϕ) = tr(!λ∅ϕ) ∨ tr(!λ{'}ϕ) = ∇∅ ∨∇{ϕ}.

80 Chapter 4. Comparing Coalgebraic Modal Logics

2. In the case of the existential modality, the predicate lifting for ♦ corresponds
to λ{{+,⊥},{+}} = λ{+,⊥} ∪ λ{+}. Incidentally, ♦ does have a translator, see
Example 4.2.2, which induces the usual translation tr(♦ϕ) = ∇{1,ϕ}.
However, we could also translate ♦ using the translators for λ{+,⊥} and λ{+};
in such perspective we have

tr(♦ϕ) = tr(λ{+,⊥}ϕ) ∨ tr(λ{+}ϕ) = ∇{ϕ,¬ϕ} ∨∇{ϕ}.

It can be checked, by long direct computations, that this is indeed equivalent
to the usual translation.

The starting point for the enterprise of comparing coalgebraic logic in the func-
torial framework was the discovery that singleton liftings always have translators.
The next theorem is the main result of this section and states this fact precisely.

Theorem 4.2.10. Let T be a weak pullback preserving functor. Every (finitary)
singleton lifting λp for T has a translator.

More explicitly, the translator is associated with T ({−}P(n))(p) ∈ T PP(n),
where {−}X : X −→ P(X) maps an element x ∈ X to its singleton2, and elements
in T PP(n) can be identified with natural transformation Pn −→ T P because of
Proposition 3.3.9.

Proof. Consider the following diagram

PTP(n) TP(n)# {−}TP(n)

TPP(n)

∇'P(n)

%
%

%
%

%%)

T ({−}P(n))

'
'

'
'

''(
Nat(Pn, TP) #

Y(n,TP)

Nat(Pn,PT) #
Y(n,PT)

∇' ◦ (−)

%
%

%
%

%%)

In the diagram, Y denotes the isomorphism given in Proposition 3.3.9. Recall
that since T preserves weak pullbacks ∇' is natural (Remark 3.3.5).

First we discuss the commutativity of the diagram. The parallelogram on the
left commutes by Remark 3.3.10, page 62. Since T preserves weak pullbacks, the
triangle on the right commutes by Remark 3.3.8, page 61.

The commutativity of the diagram implies that the natural transformation
associated with T ({−}P(n))(p) is a translator for λp. We now explain why this
is the case. Call τp : Pn −→ TP the natural transformation corresponding to
Y(n,T P)(T ({−}P(n))(p)). An element p ∈ T P(n) is mapped by the lower edge of
the diagram to τp ◦∇' whereas the upper edge maps it to λp. Since the diagram
commutes we have λp = ∇' ◦ τp this means that τp is a translator fro λp as we
wanted to show.

2The functions {−}X : X −→ P(X) do not form a natural transformation. For this reason we
use the bracket notation instead of η which is usually used to indicate the unit of Pow.

4.2. Decomposing predicate liftings 81

Remark 4.2.11. In the previous theorem we used T instead of Tω; the reader
may worry that we do not obtain a translator as in Definition 4.2.1. This is not
a problem because T and Tω coincide on finite sets and we are only considering
predicate liftings of finite arity, i.e. elements (subsets) of T P(n) for some finite n.
More formally, for a finite n, we use the following chain of isomorphisms/equalities:

Nat(Pn, T P) ∼= T PP(n) = TωPP(n) ∼= Nat(Pn, TωP).

The reason to restrict to singleton liftings of finite arity is that we only consider
the finitary version of the Moss logic (Definition 3.3.1). If we define the Moss logic
using T instead of Tω, the previous theorem holds for all singleton liftings.

4.2.2 Translators, Singletons and Inductive Presentations

This section is a technical intermezzo where we discuss how to present predicate
liftings and their translators inductively on the complexity of the functor. Such
presentations are worth to mention because they show the translation procedure
in a modular fashion enlightening the power of the functorial approach. This is
particularly appealing to develop actual implementations of the mentioned coalge-
braic languages and their transaltions. We do not use the inductive presentations
further on; the reader not interested in a potential implementation may skip this
section.

Recall the definition of Kripke polynomial functor (Definition 2.1.3). We want
to inductively describe predicate liftings and their translators. The cases for the
identity and constant functors can be found in Example 4.2.6. In this section, we
will only consider the inductive cases corresponding to coproducts, products, and
composition with the power set functor.

Coproducts of functors

Let T1 + T2 be the coproduct of two functors. We want to describe the predicate
liftings for the coproducts in terms of the predicate liftings for T1 and T2. For this
purpose, we use Yoneda Lemma (Proposition 3.3.9) and the fact that P : Setop

−→ Set preserves products i.e P(X + Y) ∼= P(X)× P(Y).

Using the fact that P preserves products we have

Nat(Pn,P(T1+T2)) ∼= Nat(Pn,P(T1)×P(T2)) ∼= Nat(Pn,P(T1))×Nat(Pn,P(T2)),

the last isomorphism is just the universal property of products. This last equation
tells us that a predicate lifting for the coproduct T1 + T2 is univocally determined
by a predicate lifting for T1 and one for T2. In other words, a predicate lifting for
the coproduct is presented by describing its action on each of the components, of

82 Chapter 4. Comparing Coalgebraic Modal Logics

the coproduct, independently. More explicitly, given predicate liftings λi for Ti,
(i = 1, 2), we define a predicate lifting λ for T1 + T2 as follows: A sequence ϕ : n
−→ P(X) is mapped to

λ(ϕ) = λ1(ϕ) ∪ λ2(ϕ). (4.6)

The decomposition of a predicate lifting for T1 + T2 is done by post-composing
with P(κi) : P(T1 + T2) −→ PTi, the inverse image of the coproduct inclusion.
More explicitly, λ is decomposed into P(κ1) ◦ λ and P(κ2) ◦ λ.

Using Proposition 3.3.9 we can describe predicate liftings as follows:

Nat(Pn,P(T1 + T2)) ∼= P ◦ (T1 + T2)(P(n))
∼= P(T1P(n) + T2P(n))
∼= P(T1P(n))× P(T2P(n))

This means that the n-ary liftings for T1 + T2 are in natural bijection with the
set T1P(n)× T2P(n). Using this, we can introduce the key property of predicate
liftings for coproducts. Namely that we can extend predicate liftings for each of
the factors; the next definition makes this precise.

Definition 4.2.12. Let λi be a predicate lifting for a functor Ti, (i = 1, 2)
associated with a set Pi ⊆ Ti(2n). The coproduct extension of λi, also denoted by
λi, is the predicate lifting for T1 + T2 which maps a sequence ϕ : n −→ P(X) to
the set

λi(ϕ) =
{
t ∈ (T1 + T2)(X) | t ∈ λi(X)

}
.

This predicate lifting correspond to the set (Pi, ∅).

In the case of singleton liftings we have:

Proposition 4.2.13. The coproduct extension of a singleton lifting is a singleton
lifting and all singleton liftings for the coproduct arise this way.

Using the coproduct inclusions, we can also extend translators.

Proposition 4.2.14. Let λi be a predicate lifting for a functor Ti, (i = 1, 2),
and let τi : Pn −→ TiP be a translator for λi. The composition of τi with the
corresponding coproduct inclusion, i.e.

Pn τi−→ TiP
κi−→ (T1 + T2)P ,

is a translator for the coproduct extension of λi.

The proof of the proposition is a straight forward computation using the
inductive presentation of relation lifting (Proposition 2.2.9).

4.2. Decomposing predicate liftings 83

Products of Functors

The situation for the product of functors is not as nice as that for coproducts; the
reason being that P : Setop −→ Set does not behave well with coproducts in Setop,
i.e. P(X × Y) " P(X) + P(Y) in general. To overcome this difficulty, we first
define the “product” of predicate liftings.

Definition 4.2.15. Let λi be an n-ary predicate lifting for a functor Ti, (i = 1, 2).
The product of λ1 and λ2, denoted λ1 ⊗ λ2, is the predicate lifting for T1 × T2

defined as follows: a sequence ϕ : n −→ P(X) is mapped to

(λ1 ⊗ λ2)(ϕ) = λ1(ϕ)× λ2(ϕ),

i.e. the Cartesian square.

Not all predicate liftings for the product are of this form; the next example
shows this.

Example 4.2.16. Let KR be the functor with constant value the real numbers.
Let S1 be the unitary ball in R×R = KR(2)×KR(2). The predicate lifting, for the
product KR × KR, associated with S1 is not the product of any pair of predicate
liftings for KR.

Although we can not describe all predicate liftings for product as squares, all
singleton liftings for the product can be presented as the product of two predicate
liftings. This will follow from the next proposition.

Proposition 4.2.17. Let λi be a predicate lifting for a functor Ti associated with
a set Pi ⊆ Ti(2n), (i = 1, 2). The product of λi’s corresponds to the Cartesian
product of the sets Pi and viceversa.

Proof. We want to show λP1×P2 = λ1 ⊗ λ2. We will follow the algorithm given by
Yoneda Lemma (Proposition 3.3.9) on the set P1 × P2. Let ϕ : n −→ P(X) be a
sequence of sets and χϕ : X −→ P(n) its exponential transpose. Using Yoneda
lemma we have

λ(P1×P2)(ϕ) = {(t1, t2) ∈ (T1 × T2)(X) | (T1 × T2)(χϕ)(t1, t2) ∈ P1 × P2}
= {(t1, t2) ∈ (T1 × T2)(X) | (T1(χϕ)(t1), T2(χϕ)(t2)) ∈ P1 × P2}
= {(t1, t2) ∈ (T1 × T2)(X) | (T1(χϕ)(t1) ∈ P1 and T2(χϕ)(t2)) ∈ P2}
= {(t1, t2) ∈ (T1 × T2)(X) | t1 ∈ λP1(ϕ) and t2 ∈ λP2(ϕ)}
= (λ1 ⊗ λ2)(ϕ).

The equality λ(P1×P2)(ϕ) = (λ1 ⊗ λ2)(ϕ) is what we wanted to prove.

We can specialise the previous proposition to singleton liftings.

84 Chapter 4. Comparing Coalgebraic Modal Logics

Corollary 4.2.18. Let Ti, (i = 1, 2), be functors. The product of singleton liftings
is a singleton liftings. And all singleton liftings for T1 × T2 arise this way.

Translators can be combined using the universal property of products. More
formally,

Proposition 4.2.19. Let λi be predicate liftings for a functor Ti, (i = 1, 2). If
τi : Pn −→ TiP is a translator for λi, then (τ1, τ2) : Pn −→ (T1 × T2)P is a
translator for λ1 ⊗ λ2.

The proof of the proposition is a straight forward computation using the
inductive presentation of relation lifting (Proposition 2.2.9).

Composition with Pow

Singleton liftings are particularly useful to describe the singleton liftings for com-
position of the type PowT . The key ingredient is that a set P ∈ PowT P(n), i.e. a
singleton lifting for PowT , is a subset of T P(n), i.e a predicate lifting for T . Since
all predicate liftings for T can be described using singleton liftings, we can then
expect to describe the predicate lifting λP : Pn −→ PPowT using the singleton
liftings for T . We now explain this more formally.

To avoid confusion we fix the following convention for this section. Predicate
liftings for PowT will be denoted using λ whereas predicate liftings for T will be
denoted using #. Elements of PowT P(n) are denoted by capital letters, elements of
T P(n) are denoted with lowercase letters. The subindexes follow the conventions
established before.

We first dissemble the action of λP : P −→ PPowT . Let ϕ : n −→ P(X) be a
sequence of sets and let χϕ : X −→ P(n) be its exponential transpose. We have

λP (ϕ) = {U ∈ PowT (X) | PowT (χϕ)(U) = P} (Prop. 3.3.9)

= {U ∈ PowT (X) | T (χϕ)[U] = P} (Def. of Pow)

The connection with predicate liftings for T appears when we want to unravel
T (χϕ)[U] = P . By definition of the direct image this equality means:

(∀t ∈ U)(∃p ∈ P)(T (χϕ)(t) = p) and (∀p ∈ P)(∃t ∈ U)(T (χϕ)(t) = p)

Recall that the equation T (χϕ)(t) = p describes the elements of #p(ϕ). Using this
we can present the action of λP as follows:

λP (ϕ) =

{
U ∈ PowT (X) | U ⊆

⋃

p∈P

#p(ϕ) and (∀p ∈ P)(U ∩ #p(ϕ) %= ∅)
}

=
{
U ∈ PowT (X) | U ∈ ∇'Pow{#p(ϕ) | p ∈ P}

} (4.7)

4.2. Decomposing predicate liftings 85

As said before, the fact that P and Pow “coincide” in objects allows us to
describe singleton liftings for PowT inductively. It is not clear to us how to extend
this induction to composition with other functors.

Since all singleton liftings have translators (Theorem 4.2.10), we can present
the translator of a singleton lifting for PowT inductively as follows:

Proposition 4.2.20. Let P be an element in PowT P(n). For each p ∈ P , let τp :
Pn −→ PT be a translator for #p (Theorem 4.2.10). The natural transformation

Pn

{
τp | p∈P

}
−−−−−−−−−−→ PowT P

is a translator for λP .

Proof. We want to show ∇'PowT
{
τp | p ∈ P

}
= λP . In order to show this, recall

the inductive description of relation lifting (Proposition 2.2.9) and the presentation
of λP in Equation (4.7). It is also important to remember (Remark 4.2.3) that
since τ is a translator, for every ϕ : n −→ P(X) we have

(t, τp(ϕ)) ∈ T (∈X) iff t ∈ #p(ϕ)

Using these observations we can detail ∇'PowT
{
τp | p ∈ P

}
as follows: Let

ϕ : n −→ P(X) be a sequence of sets and let χϕ : X −→ P(n) be its exponential
transpose; write U for an element in PowT (X). We have

∇'PowT
{
τp | p ∈ P

}
(ϕ) = ∇'PowT

{
τp(ϕ) | p ∈ P

}

=
{
U | (U,

{
τp(ϕ) | p ∈ P

}
) ∈ PowT (∈X)

}

=
{
U | (∀t ∈ U)(∃p ∈ P)((t, τp(ϕ)) ∈ T (∈X)

and (∀p ∈ P)(∃t ∈ U)((t, τp(ϕ)) ∈ T (∈X))
}

=
{
U | (∀t ∈ U)(∃p ∈ P)((t ∈ #p(ϕ)) and (∀p ∈ P)(∃t ∈ U)((t ∈ #p(ϕ))

}

=
{
U ∈ PowT (X) | U ⊆

⋃
#p(ϕ) and (∀p ∈ P)(U ∩ #p(ϕ) %= ∅)

}

= λP (ϕ)

This concludes the proof.

Remark 4.2.21. Notice that the Propositions 4.2.14, 4.2.19 and 4.2.20 do not
require any of the Ti to be a Kripke polynomial functor. Should we have a good
description of the translators, then we can then extend them using coproducts,
products and composition with Pow.

86 Chapter 4. Comparing Coalgebraic Modal Logics

4.3 Logical Translators

We have now all the material needed to address the issue of defining generic trans-
lations between logics of predicate liftings and the Moss logic. Up to now we have
presented our translations under the tacit assumption that our basic propositional
logic is given by Boolean algebras. As we will later see (Lemma 4.4.1), in such
situation translators do define translations. However, this is not always the case.
As it could be expected, the possibility of defining a translation is strongly tied
to the expressive power of the base logic of the coalgebraic modal logic. Here we
will show how the base category of the coalgebraic modal logic makes the difference.

We now turn back to the intuition behind translators to explain the problem
more precisely. By definition, a translator τ factors a predicate lifting λ via ∇'.
As we mentioned in Equation (4.4), the idea is to inductively define a translation
via tr(!λϕ) = ∇τ(tr(ϕ)). The problem is to show that τ(tr(ϕ)) is expressible
in the basic propositional logic. The next example shows that this is not always
possible.

Example 4.3.1. Consider A = DL and T = Id and the predicate lifting λ⊥ : P
−→ P given by complementation. In this case ∇'Id : IdP −→ P Id is the identity.
From this we see that complementation ¬ : P −→ P is a translator for λ⊥. Hence
the intended translation would be tr(!λ⊥ϕ) = ∇¬ϕ. Since the base category
for the coalgebraic modal logic is distributive lattices, all the operators in MId

are monotone, therefore all the definable predicate liftings are monotone, which
implies that negation is not definable. In other words, we cannot translate λ⊥
into MId.

The following definition will ensure that τ(tr(ϕ)) is expressible in the base
logic given by the category A.

Definition 4.3.2. Let λ be an n-ary predicate lifting for a functor T ; let A be a
category with power-set algebras; Let U : A −→ Set be the forgetful functor.

An A-logical translator τ for λ is a natural transformation τ : Un −→ TωU such
that τP : UP n −→ TωUP is a translator for λ, i.e. λ = ∇'T ◦ τP .

We often call an A-logical translator a logical translator or an A-translator.
We say that the logical translator τ extends the translator τP . A predicate lifting
λ is said to be A-translatable if there exists an A-translator for λ.

In other words, a logical translator is a translator for which we can replace P
by U (the forgetful functor of A). Here are some illustrations of logical translators.
The first item shows that we can not always replace P by U , in other words, not
all translators can be extended.

Example 4.3.3. 1. Example 4.3.1 can now be presented with this new termi-
nology as follows: τ = ¬ does not extend to a DL-translator; but, of course,

4.3. Logical Translators 87

it does extend to a BA-translator, namely the negation ¬ : U −→ U . We can
also say that λ⊥ is not DL-translatable but it is BA-translatable.

2. Consider the predicate lifting associated with the existential modality ♦
as in Example 4.2.2. We define a BA-translator τ as follows: Given a
Boolean algebra (A,α), the function τ(A,α) : A −→ Pow(A) maps an element
a ∈ A to τ(A,α)(a) = {a,1}; as expected, τ induces the following translation
tr(♦ϕ) = ∇{ϕ,1}. This is also a DL-translator but not a Set-translator
because we can no identify the element 1.

3. Consider the probabilistic modality ♦p. We define a DL-translator τ : U
−→ DU as follows: let (A,α) be a distributive lattice. The (A,α) component
of τ(A,α) : A −→ D(A) maps an element a ∈ A to the probability distribution
Da

p : A −→ [0, 1] which assigns a probability p to a and a probability 1− p
to 1. Compare this with Example 4.2.2.

4. Consider the probabilistic modality ♦p. We define a BA-translator τ : U
−→ DU as follows: let (A,α) be a boolean algebra. The (A,α) component
of τ maps an element a ∈ A to the probability distribution Dp

a : A −→ [0, 1]
assigning probability p to ¬a and 1 − p to 1. Clearly, this can not be
regarded as a DL-translator. Compare this with Example 4.2.2.

5. Consider the natural transformation η : Id −→ Pow which maps an element
x to {x}. If we precompose η with P we obtain a natural transformation
τP : P −→ PowP which maps a set ϕ ⊆ X to {ϕ}. This is a BA-translator
for the predicate lifting λ+ : P −→ PPow (Example 4.2.6). The translator
τP induces the following translation tr(!λ'ϕ) = ∇{ϕ}. Notice that this
translator is an A-translator for any category of power set algebras.

Remark 4.3.4. Generalizing the last item in the previous example, we can
ask which predicate liftings have A-translators for all categories A of power-set
algebras. These are precisely what we call the Moss liftings (Diagram (5.4) on
page 102), see comments after Remark 5.1.16 on page 103.

As said before, the main property of logical translators, as suggested by the
previous examples, is that they define one step translations. In other words,
τ(tr(ϕ) in Equation 4.4 is definable in the base logic.

Lemma 4.3.5. Every logical translator induces a one-step translation.

Proof. Let A be a category with power set algebras with forgetful functor U : A
−→ Set, write F for the left adjoint of U . Let τ : Un −→ TωU be an A-logical
translator for an n-ary predicate lifting λ.

We want to define a one-step translation ν : (L̄λ, δ̄λ) −→ (MT ,∇). Recall
from Definitions 3.2.18 and 3.3.4, that the functors are given by Lλ = F (Un),

88 Chapter 4. Comparing Coalgebraic Modal Logics

and MT = FTωU ; and the semantics are given by the F -transposes of λ and ∇',
respectively; i.e. δλ = λ̂ and ∇ = ∇̂'.

The one-step translation we are looking for is given by L̄λ = F (Un)
F (τ)−−−−−−→

FTωU = MT . Since τ natural so is F (τ). It is only left to show that F (τP) :
F (UP n) −→ FTωUP commutes with the semantics, i.e. ∇ ◦ F (τp) = δλ. By
definition of logical translator, τP is a translator for λ, i.e. the following diagram

(UP)n TωUP!τP

UPT

λ
%
%
%
%%&

∇'
'

'
'

''(

commutes, recall UP = P . By properties of adjoints (Lemma A.1.3, item 3) we
can move U to the left and obtain ∇ ◦ F (τP) = δλ. In other words F (τ) is a one
step translation. This concludes the proof.

The next proposition shows how the previous argument can be extended to
sets of predicate liftings.

Proposition 4.3.6. Let Λ be a set of predicate liftings, each of which has a logical
translator. Then we can find a one-step translation ν : (L̄Λ, δ̄λ) −→ (MT ,∇).

Proof. Recall from Definitions 3.2.18 and 3.3.4 that L̄Λ =
∐

λ∈Λ FUnλ and M =
FTωU , where nλ is the arity of λ; recall that δΛ is given by the coproduct of the
F -transposes of the predicate liftings in Λ and ∇ is the F -transpose of ∇'.

By assumption for each λ ∈ Λ there is a logical translator τλ : Unλ −→
TωU . From the previous lemma each F (τλ) : FUnλ −→ FTωU is a one step
translation from (Lλ, δλ) into (MT ,∇). Since (L̄Λ, δ̄Λ) = (

∐
λ∈Λ Lλ,

∐
λ∈Λ δλ) it is

now straightforward to check, using the universal property of coproducts, that
the arrow

∐
λ∈Λ F (τλ) :

∐
λ∈Λ Lλ −→ FTωU is a one-step translation from (L̄Λ, δ̄λ)

to (MT ,∇). This concludes the proof.

To summarise, all A-logical translators give rise to one-step translations.
Translators alone do not define translations; to obtain a translation from a
translator we need to extend it to a logical translator. Such an extension is not
always possible (Example 4.3.1); the possibility of extending a translator rests on
the structural properties of the category A. To illustrate this, we are now going
to show that all translators do extend to BA-logical translators.

4.4 The Boolean Paradise

Until here, we have presented two perspectives for translating. On the one hand,
we have one-step translations which define translations at a syntactic level, i.e.

4.4. The Boolean Paradise 89

for each formula in the source language we find a semantically equivalent formula
in the target language. On the other hand, we have translators. Translators are
a semantic perspective for translating predicate liftings, they literally transform
the semantics of one modality into the semantics of another modality. The bridge
between these two perspectives is built with logical translators. The “trick” of
replacing the contravariant functor P by the forgetful functor of the base category
is what is needed to make the “semantic translations”, given by translators, explicit
in the syntax. However, as shown in Example 4.3.1, this is not always possible.
At a first glance it might seem that such a definability problem is a pure concern
of the syntax. Nevertheless, using the functorial approach we can show that this
issue concerns the base category of the logic.

In this section, we illustrate how we may use the structural properties of the
category BA to extend every translator to a BA-translator. This was somehow
expected because the algebraic theory of boolean algebras is finitary and the
functor P : Setop −→ Set presents the category Setop as the category of complete
atomic boolean algebras.

4.4.1 Translating predicate liftings

In this section, we will define a one-step translation (Definition 4.1.1) from the
logic of all predicate liftings (L̄T , δ̄T) (see page 63) to the Moss logic MT (Defini-
tion 3.3.2). The main technical result is that that translators (Definition 4.2.1)
can always be extended to BA-translators (Definition 4.3.2).

Lemma 4.4.1. Every translator τ : Pn −→ TωP can be extended to a BA-
translator, i.e. a natural transformation Un −→ TωU , where U : BA −→ Set is the
forgetful functor.

Proof. The following facts will be used in the proof:

1. every boolean algebra is the directed colimit of finite boolean algebras, more
specifically of its canonical diagram (Proposition 2.3.9),

2. every finite Boolean algebra is (isomorphic) to a power set algebra,

3. every boolean algebra morphism A −→ B with A finite and B = PY , for
some possibly infinite Y , arises from the inverse image of a function with
domain Y ,

4. F (m) = PP(m) for finite sets m.

Let τ : Pn −→ TωP be a translator for a predicate lifting λ. We want to show
that we can extend τ to all boolean algebras, i.e. we want to replace P by U .
We first define a natural transformation τ ′ : Un −→ TωU and then show that it
coincides with τ on power set algebras.

90 Chapter 4. Comparing Coalgebraic Modal Logics

First we explain how to define τ ′. Let τω : Pn −→ TωP be the restriction of τ to
finite sets. Because of (2), we can replace P by the restriction of the forgetful U to
finite Boolean algebras, i.e. Uω : BAω −→ Set. This gives us for each finite boolean
algebra A a function (τω)A : Uω(A)n −→ TωUω(A). We want to show that these
functions form a natural transformation. This follows from (3), more explicitly,
if A = P (n) and A′ = P (n′) are finite Boolean algebras, then a homomorphism
h : A −→ A′ is equal to P (f) = f−1 for some function f : n′ −→ n. From (4) we
have that every finitely generated algebra is a power set algebra; hence we can see
τω as a natural transformation τω : (UFω)n −→ TωUFω, where Fω is the restriction
of the functor F to finite sets. Then by (1), see Proposition 2.3.14, we can extend
τω to all boolean algebras, i.e. to a natural transformation τ ′ : Un −→ TωU . This
is the logical translator we are looking for.

It is only left to check that τ and τ ′ coincide in power set algebras, i.e. τ ′P = τ .
By definition, τ ′P (Y) = τY whenever Y = P(m) for some finite m. We now show
that this is also the case for any other set Y . Since BA is a finitary variety, every
algebra A is the colimit of its canonical diagram, i.e. the colimit of all valuations

into A. Write F (ni)
hi−→ P (Y) for the particular case of a power set algebra P (Y).

Consider the following diagram

P (Y) UP (Y)n = P(Y)n ?)) TωP(Y)

F (ni)

hi

**

UF (ni)n = PP(ni)n

U(hi)

**

τ ′P (ni)
=τni

)) TωPP(ni)

T U(hi)

**

the equality in the lower left corner holds because of (4); the equality in the
lower edge follows by definition of τ ′. The equality on the upper left corner holds
because U is a right adjoint.

Notice that Tω preserves the colimit F (ni)
hi−→ P (Y) because it is finitary,

and U preserves the n-product of this colimit, i.e. F (ni)n
hn
i−→ P (Y)n, because of

Proposition 2.3.9. This implies that the upper horizontal arrow in the diagram is
the unique arrow induced by the universal property of colimits. From this, the
equality τ ′P = τ will follow once we show that putting τ ′P (Y) or τY in the upper
row of the diagram makes it commute. Indeed, for τ ′P (Y) this holds by definition

of τ ′, see Proposition 2.3.14. For τY , by (3), we have that each hi is f
−1
i for some

function fi : Y −→ P(ni); since τ is natural in P , this means that τY also makes
the diagram commute. This concludes the proof.

Remark 4.4.2. The previous lemma strongly depends on the properties of the
category BA. More precisely, in the previous proof, it is essential that every finitely
generated algebra is a power set algebra, i.e. it is in the image of P . Otherwise
we have no means to extend τω to the full variety. Extensions of the previous
theorem to other categories (of power set) algebras is a topic for further research.
For example, for the category of distributive lattices we should somehow modify

4.4. The Boolean Paradise 91

the notion of predicate lifting or the argument will not work, the reason being
that there are finite distributive lattices which are not power set algebras.

An immediate corollary is that we can translate singleton liftings.

Corollary 4.4.3. Every singleton lifting, of finite arity, for a weak pullback
preserving functor T , can be translated into Moss logic for T on BA.

Proof. Let λ be singleton lifting. By Theorem 4.2.10 it has a translator τ . By the
previous theorem, τ can be extended to a BA-translator. By Lemma 4.3.5 this
induces a one-step translation, i.e. λ can be translated into the Moss logic for
T .

The following translations illustrate the previous corollary.

Example 4.4.4. 1. The translations in Example 4.3.3 are instantiations of
the previous theorem.

2. Let λ∗ the predicate lifting that indicates termination (Example 4.2.6). The
constant natural transformation τ : A −→ 1 + A into 1 is a translator for
λ∗. This is in fact an A-translator for any category A of power set algebras.
The induced translation is tr(!∗ϕ) = ∇∗, where ∗ ∈ MT . Notice that ∗ is
a formula in MT and does not depend on the underlying propositional logic
(see Remark 3.3.2).

3. Let (n,m) be a singleton lifting for the finite multiset functor (Example
4.2.6). We define a BA-translator for (n,m) as follows: Given a Boolean
algebra (A,α) the function τ(A,α) : A −→ BN(A) maps an element a ∈ A to
the bag B(a,n,m) : A −→ N which maps an elements in A as follows:

B(a,n,m)(a) = n,

B(a,n,m)(¬(A,α)a) = m

B(a,n,m)(x) = 0(for any other element x)

This induces the following translation tr(!(n,m)ϕ) = ∇B(ϕ,n,m).

4. Let q ∈ [0, 1] be a singleton lifting for the distribution functor. We define a
BA-translator as follows: τ : A −→ D(A) maps an element a to the probability
distribution µa : A −→ [0, 1] which assigns q to a, 1 − q to ¬a, and 0 to
any other element. As shown in Example 4.2.6 the induced translation is
tr(!qϕ) = ∇{(ϕ, q), (¬Xϕ, 1− q)}.

We can do even better and show that all predicate liftings can be translated
provided that the functor also preserves finite sets.

Theorem 4.4.5. If T preserves finite sets and weak pullbacks, there is a one-step
translation (L̄T , δ̄T) −→ (MT ,∇).

92 Chapter 4. Comparing Coalgebraic Modal Logics

Proof. Let (L̄s, δ̄s) be the logic of singleton liftings (Definition 4.2.7). Because T
preserves finite sets, every predicate lifting can be expressed as a finite join of
singleton liftings (Proposition 4.2.8), hence we have an isomorphism L̄ ∼= L̄s. Now
let λ be a singleton lifting and let τ be the corresponding translator (Theorem
4.2.10). Obtain a one-step translation Lλ −→ MT as in the previous corollary.
Doing this for each singleton lifting and combining all of these logical translators,
as in Proposition 4.3.6, we obtain a translation L̄s −→ MT .

Note that Examples 4.3.3, 4.3.1, and 4.2.4 show that in order to translate all
predicate liftings, we need classical propositional logic. Weak pullback preservation
is needed because otherwise the Moss logic is not defined. The following example
shows that the condition of T preserving finite sets cannot be dropped.

Example 4.4.6. Let T be the constant functor with value N, let E ⊆ N be the
set of even numbers. If we are working over BA, the predicate lifting λE can not
be translated into the Moss logic over BA. Consider the coalgebra N = (N, 1N)
and the formula !E1. On the one hand, this formula defines the set of even
numbers, i.e. [[!E1]] = E. On the other hand, we can check that using the Moss
logic we can only define finite and cofinite sets; therefore we conclude that the
predicate lifting λE can not be translated.

The following translations illustrate the previous theorem.

Example 4.4.7. 1. The translations in Example 4.2.9 illustrate the previous
theorem. We recall them.

(a) The predicate lifting for ! is the join of λ{∅} and λ{+} hence we can
translate ! using the translators for those, more explicitly we have

tr(!ϕ) = tr(!λ∅ϕ) ∨ tr(!λ{'}ϕ) = ∇∅ ∨∇{ϕ}.

(b) In the case of the existential modality, the predicate lifting for ♦ is the
join of λ{+,⊥} and λ{+}. We can then translate ♦ using the translators
for λ{+,⊥} and λ{+}; in such perspective we have

tr(♦ϕ) = tr(λ{+,⊥}ϕ) ∨ tr(λ{+}ϕ) = ∇{ϕ,¬ϕ} ∨∇{ϕ}.

2. Even though we can translate singleton liftings for BN and D, see above, we
can not use the previous theorem to conclude that the standard logics for
these functors are translatable into the Moss logic because these functors do
not preserve finite sets. In case of D, Example 4.3.3 shows that sometimes
we can. The case of BN shows that this might also fail, see Examples 3.3.6
and 4.2.4.

4.5. Conclusions 93

4.4.2 Translating Moss logic

Our next step is to find a translation (MT ,∇) −→ (LT , δT), see Definition 3.3.13.
Note that we do not expect a natural transformation MT −→ L̄T because each
∇-formula corresponds to many different but equivalent formulas of LT (see also
the next chapter). So we make use of the fact that LT is a quotient of L̄T .

Theorem 4.4.8. For all weak pullback preserving functors T there exists a one-
step translation (MT ,∇) −→ (LT , δT), where (LT , δT) is as in Definition 3.3.13.

Proof. Recall that for finite n we have F (n) = PP(n) and that LT F (n) =
PT P(n), see Definition 3.3.13. From this, we can see that the semantics of
the Moss logic ∇' : TωUP −→ UPT on P(n) can be written ∇'P(n) : TωUF (n)
−→ ULT F (n). Since U is a right adjoint and MT = FTωU this yields MT F (n)
−→ LT F (n). Since both MT and LT are determined by their action on finitely
generated free algebras, this gives a natural transformation ν : MT −→ LT ,
see Proposition 2.3.14, it is now straightforward to check that ν is a one-step
translation.

Again, the theorem is specific to BA. In particular, both translations L̄T −→ MT
and MT −→ LT made use of the fact that in case of BA we have F (n) = PP(n)
for finite n.

On the other hand, Theorem 4.4.8 is a particular instance of a more general
Lindström-like theorem showing that (LT , δT) is the most expressive finitary
Boolean logic for T -coalgebras; see also [77] for more on coalgebraic Lindström
theorems.

Theorem 4.4.9. Assume that T preserves finite sets and that (L, δ) is a Boolean
logic for T -coalgebras. Then (LT , δT) is at least as expressive as (L, δ), that is,
there is a one-step translation ν : (L, δ) −→ (LT , δT).

Proof. The argument is a particular instance of Theorem 5.2.2. We only sketch
the construction.

By definition of (LT , δT) the semantics (δT)X : LT P (X) −→ PT (X) is an
isomorphism on finite sets X. To define the translation consider the following

composite, LP (X)
δ−−→ PT (X)

δ−1
T−−→ LT P (X) on finite X. As in the proof of

Theorem 4.4.8, this determines a natural transformation L′ −→ L on finitely
generated free Boolean algebras and hence on all Boolean algebras, Proposition
2.3.14.

4.5 Conclusions

In this chapter, we presented a general theory for translating coalgebraic modal
logics based on the same category (Section 4.1). We concentrated on translations

94 Chapter 4. Comparing Coalgebraic Modal Logics

between logics of predicate liftings and the Moss logic. We introduced the novel
notion of a translator (Definition 4.2.1). The intuition behind translators is a
simple semantic translation given by tr(!λϕ) = ∇τ(tr(ϕ). In Section 4.2.2 we
developed translators by showing how they can be described inductively over the
complexity of the functor. In Section 4.4 we showed that under the appropriate
circumstances translators induce translations . Along the side of translators
we introduced singleton liftings (Definition 4.2.5). These predicate liftings are
important because they always have translators (Theorem 4.2.10) and can be
inductively presented over the complexity of the functor (Section 4.2.2).

Perhaps the main point to remember from this chapter is that the base category
for the modal logic makes the difference to translate the modalities. This was
evidenced in Section 4.3 where we showed how translations between coalgebraic
modal logic might fail to exist in case the base logic is not expressive enough
(Example 4.3.1).

The key insight introduced in this chapter is the use of the structural properties
of the base category to produce logical translators (Section 4.3). This technique
was illustrated in Section 4.4 where we showed that all translators, for a weak-
pullback preserving functor which preserves finite sets, induce translations if the
base category is BA (Lemma 4.4.1). We also showed that all these conditions are
needed (Example 4.4.6) to develop a general theory. We also showed how using
the structural properties of the base category we can translate the Moss logic
(Theorem 4.4.8). Moreover, we presented a Lindström like theorem for coalgebraic
logics (Theorem 4.4.9).

In our opinion, none of this could have been developed without the functorial
view of modalities.

Chapter 5

From Abstract to Concrete

In this chapter we illustrate various uses of translators and translations. Our main
technical tool will be the so called presentation of functors by operations and
equations. This will have various applications in our study of coalgebraic modal
logics. The main contributions of this chapter can be summarised as follows:

1. We introduce a new type of predicate liftings called the Moss liftings (Defi-
nition 5.1.12). Using these we define a new translation of the Moss Logic
into the language of predicate liftings (Proposition 5.1.21).

2. We prove two representation theorems that present any coalgebraic modal
logic (Definition 3.2.13) as a logic of predicate liftings (Theorems 5.2.2 and
5.2.17).

3. We develop a novel equational coalgebraic logic (Section 5.3) with a sound
and complete axiomatization for it.

5.1 Presentations of functors

As mentioned before (Section 2.3), equational algebraic theories and algebras for
a functor are tightly related. In particular, recall that algebraic signatures and
polynomial functors, over Set, are two faces of the same coin. To make this more
precise we will use the so called presentations of functors. Roughly speaking, a
presentation of a functor makes the algebraic operations and equations of the
functor explicit. We begin with the formal definition.

Definition 5.1.1. Let T : Set −→ Set be a functor. A finitary presentation
of T is a polynomial functor Σ : Set −→ Set together with a surjective natural
transformation E : Σ −→ T . More explicitly, for each set X we have a surjective
function

Σ(X) =
∐

n<ω

Σn ×Xn EX−→ T (X), (5.1)

95

96 Chapter 5. From Abstract to Concrete

natural in X, where Σn is the set of operations of n-ary operations of the asso-
ciated signature. Such a quotient is also called a presentation 〈Σ, E〉 of T by
operations and equations and the equations defining T are the kernel of EX

(for some countably infinite set of ‘variables’ X) (for more on set-functors and
their presentations see Adámek and Trnková [9]).

Here is a first example of presentations.

Example 5.1.2. The finite powerset functor Powω has the canonical presentation

∐

n<ω

Powω(n)×Xn −→ Powω(X)

and the List-presentation

List(X) =
∐

n<ω

Xn −→ Powω(X).

The canonical presentation maps an element (p, a) ∈ Pow(n) × Xn to the set
{ai | i ∈ p}, i.e. restricts the list a to the components in the set p. The List-
presentation maps a list a : n −→ X to {ai | i ∈ n}. In both cases, two elements,
in List(X) or in

∐
Pow(n)×Xn, are identified iff they define the same subset of

X.

In the previous example, the term “canonical” is not arbitrary. Using the
Yoneda lemma we can show that every finitary functor (Definition 2.1.5) has a
finitary presentation.

Proposition 5.1.3. Every finitary functor T has a canonical presentation
(ΣT , E) where

ΣT (X) =
∐

n<ω

T (n)×Xn EX−−−−−→ T (X).

The function EX maps a pair (p, a) ∈ T (n)×Xn to EX(p, a) = T (a)(p).

Proof. The Yoneda lemma ensures the assignation EX(p, a) = T (a)(p) to be
natural. In order to show that (ΣT , E) is a presentation of T , it is only left to
show that each EX is surjective. In order to show this we will use the fact that
T is a finitary functor (Definition 2.1.5). More precisely, recall that the action
of T can be described by T (X) =

⋃
{T (Y) | Y ⊆ X, |Y | < ω}, see Definition

2.1.5 and Remark 2.1.7. Using this we can prove surjectivity of EX as follows:
since T is finitary, each t ∈ T (X) belongs to T (Yt) for some finite subset of X;
more precisely there is t′ ∈ T (Yt) such that T (i)(t′) = t, where i is the inclusion
map from Yt to X. Say that the cardinality of Yt is n; let f : n −→ Yt be the

5.1. Presentations of functors 97

associated bijection, and write p for T (f)−1(t′). It is now straightforward to check
that EX(p, if) = t, indeed

EX(p, if) = T (if)(p) (Def. E)

= T (i)T (f)T (f)−1(t′) (Def. p)

= T (i)(t′) (T (f)T (f)−1 = id because f is a bijection)

= t. (assumption)

In other words, each EX is surjective. This concludes the proof.

We highlight the previous construction.

Definition 5.1.4. Let T be a finitary functor. The canonical presentation of T
is given by (ΣT , E) where ΣT =

∐
n<ω T (n) ×Xn and EX maps a pair (p, a) ∈

T (n)×Xn to EX(p, a) = T (a)(p).

As it was shown in the case of the power set functor (Example 5.1.2), the
canonical presentation of a functor is not always the most “natural” one. However,
the canonical presentation is maximal among presentations in the sense that
it contains the operations of any other presentation. In the case of the power
set functor this can be seen because we can identify the list [x1, . . . xn] of the
List-presentation with ({1, . . . n}, [x1, . . . xn]) of the canonical presentation. This
being said, a more general observation is: Any presentation is a restriction of the
canonical presentation. The next lemma makes this precise.

Lemma 5.1.5. Let 〈Σ, E〉 be a presentation for a functor T . There are canonical
maps sn : Σn −→ T (n) such that for all p ∈ Σn and all a : n −→ X we have

EX(p, a) = T (a)(sn(p)).

In other words, the action of E reduces to that of the canonical presentation.

Proof. This is essentially an application of the Yoneda lemma. Notice that
each p ∈ Σn corresponds to a natural transformation E(p,−) : (−)n −→ T
and then by the Yoneda Lemma these natural transformations are in natural
bijection with the elements of T (n). We now make the computations explicit.
Consider En :

∐
k<ω Σk × nk −→ T (n). For p ∈ Σn, define sn : Σn −→ T (n) by

sn(p) = En(p, idn). Since EX is natural in X, for each a : n −→ X the following
diagram

Xn T (X)!
EX(p,−)

nn T (n)!En(p,−)

"
a ◦ −

"
T (a)

commutes. Hence we have EX(p, a) = T (a)(sn(p)), which proves the claim.

98 Chapter 5. From Abstract to Concrete

The previous lemma can be rephrased as follows: given any presentation 〈Σ, E〉
of T , we can identify each operation in Σn with an operation in T (n), i.e. an
operation of the canonical presentation, in a canonical manner. We highlight this
property in the next definition

Definition 5.1.6. Let 〈Σ, E〉 be a presentation for a functor T . We say that
〈Σ, E〉 is standard if for every n we have Σn ⊆ T (n) and for each (p, a) ∈ Σn×Xn

we have EX(p, a) = T (a)(p).

Assumption: Because of the previous lemma from now on we assume all pre-
sentations to be standard. More explicitly, we always assume the n-ary operation
of a presentation are given by the image of sn : Σn −→ T (n).

We fix some terminology and notation before proceeding.

Definition 5.1.7. Given a presentation 〈Σ, E〉 we say that (p, a) represents
t ∈ T (X), or that (p, a) is a representant of t, if E(p, a) = t.

To emphasise the equational axiomatisation given by a presentation of T we
introduce the following notation.

Notation. Let 〈Σ, E〉 be a presentation for T and let (p, a), (q, b) ∈ Σ(X) =∐
n<ω Σn ×Xn. We write p(a) for (p, a) and q(b) for (q, b), this to emphasise that

p and q can be seen as operators acting on lists.
We write ≈T for the equivalence relation induced by E. More explicitly,

p(a) ≈T q(b) iff EX(p, a) = EX(q, b) (i.e. iff T (a)(p) = T (b)(q)).

Note that ≈T depends on the given presentation of T , so in case of danger of
confusion we write ≈〈Σ,E〉 instead.

Here are some examples to get familiar with the terminology.

Example 5.1.8. 1. For T = 1 + Id, the identity

Σ(X) = 1 +X
EX=idX−−−−−−−−→ 1 +X = T (X)

is itself a presentation of T ; in this case ≈Id is equality.

2. For the functor T = 1 + Id the canonical presentation

ΣT (X) =
∐

n<ω

(1 + n)×Xn EX−−−−−→ 1 +X = T (X)

maps a pair (p, a) ∈ (1 + n) × Xn to ∗ ∈ 1 + X in case p ∈ 1 or to ap,
the evaluation of a in p, in case p ∈ n. The congruence relation is then
p(a) ≈T q(b) iff p = q = ∗ or ap = bq.

5.1. Presentations of functors 99

3. In the case of the canonical presentation for Pow the relation ≈T can be
described as follows: for a pair of elements (p, a) ∈ Pow(n) × Xn and
(p, q) ∈ Pow(m)×Xm we have p(a) ≈T q(b) iff {ai | i ∈ p} = {qj | j ∈ q}.

4. In the case of the List-presentation of Pow, the relation ≈List has the following
characterization: for a ∈ Xn and b ∈ Xm we have a ≈List b iff {ai | i ∈ n} =
{bj | j ∈ m}, i.e. a and b have the same image.

5. For T = BN the canonical presentation can be described as follows: a
pair (p, a) ∈ BN(n) × Xn is mapped to the bag b : X −→ N mapping x
to

∑
{i|ai=x} pi, where pi denotes the image of i under p : N −→ X. The

relation ≈T can be described as follows: p(a) ≈T q(b) for p : n −→ N, q : m
−→ N iff there is a matrix (rij)1≤i≤n,1≤j≤m such that ai %= bj ⇒ rij = 0 and∑

i rij = qj and
∑

j rij = pi. For example, [3, 2](x, y) ≈T [2, 1, 1, 1](x, y, x, y).
Compare this with Example 3.3.6. The case of probability distributions is
similar.

The following application of Lemma 5.1.5 will be useful later.

Proposition 5.1.9. Let 〈Σ, E〉 be a (standard) presentation of T and assume the
following diagram commutes

n X!a

m

f
%
%
%%&

b
'
'
''*

If p ∈ Σn and T f(p) ∈ Σm then p(a) ≈〈Σ,E〉 T f(p)(b).

Proof. The proposition is immediate because presentations are assumed to be
standard. Hence Σn ⊆ T (n) and for each (p, a) ∈ Σn ×Xn we have EX(p, a) =
T (a)(p).

Two uses of presentations

We now illustrate two uses of presentations. The first one concerns relation lifting;
the second one concerns the relation between monads and varieties. First, we will
use presentations to “simplify” the calculation of relation liftings. This will be a
key technical tool in Section 5.3 and it is interesting in its own. Second, we use
presentations to clarify the relation between algebras for a functor, and algebraic
theories. This is very well know in the world of categorical algebra, see e.g. [8] for
a detailed account. We add it here as an illustration, for the sake of completeness,
and because the idea will be reused in our representation theorem in Section 5.2.

As said before, we can use presentations to compute relation liftings (Section
2.2); the idea is to “hide” the functor T . This is formalised in the following

100 Chapter 5. From Abstract to Concrete

technical lemma, which is a key stone for the development of our equational
coalgebraic logic (Section 5.3).

Lemma 5.1.10. Let 〈Σ, E〉 be a presentation for a finitary endofunctor T on Set
and let R be a relation between X and Y. For every tx ∈ T (X) and ty ∈ T (Y) the
following conditions are equivalent:

1. tx T (R) ty.

2. There exists k < ω, r ∈ Σk, a : k −→ X, and b : k −→ Y such that
EX(r, a) = tx, EY (r, b) = ty, and (∀i ∈ k)(ai R bi).

More informally, we read the lemma as

tx T (R) ty iff tx ≈T r(a1, . . . ak) and ty ≈T r(b1, . . . bk) and (∀i)(aiRbi) (5.2)

for some k-ary operation r.

Proof. The proof of the lemma follows from the following commutative diagram

T (X) T (R)#
T (πX)

Σ(X) Σ(R)#Σ(πX)

"

EX

"

ER

T (Y)!
T (πY)

Σ(Y)!Σ(πY)

" "

EY

(5.3)

taking into account that ER is surjective. The diagram commutes because E is a
natural transformation.

More explicitly, from the definition of relation lifting (Definition 2.2.7) we have
that txT (R)ty iff there exists t ∈ T (R) such that T (πX)(t) = tx and T (πY)(t) = ty.
Since ER is surjective, there exists (r, c) ∈ Σ(R) such that ER(r, c) = t. Since
Σ is a polynomial functor, there exists k ≤ ω such that (r, c) ∈ Σk × Rk. These
are the k and r required in the statement of the lemma. The functions a and b
are obtained by composing k

c−→ R ↪→ X × Y with the respective projections;
Notice that (∀i ∈ k)(ai R bi) because c has codomain R. The commutativity of the
diagram says that EX(r, a) = tx and EY (r, b) = ty. This concludes the proof.

As we said before, depending on the functor T , relation liftings can be quite
complicated, see e.g. the case of distributions in Example 3.3.6. But for polynomial
functors relation lifting amounts to take the relation componentwise. The impor-
tance of Equation (5.2) is that it presents the relation lifting for T componentwise,
i.e. in the form of a relation lifting for a polynomial functor, modulo the equational
theory ≈T . In other words, Equation (5.2) “hides” T using the equational theory.
Polynomial functors can in fact be characterised as those functors which have a

5.1. Presentations of functors 101

presentation such that ≈〈Σ,E〉 is equality.

We now move on to the second illustration. Presentations can be used to
extract equational theories from functors. More explicitly, for every finitary functor
T : Set −→ Set the category Alg(T) is a variety for an algebraic signature, hence
by Birkhoff’s theorem, Alg(T) is an equational class. An algebraic signature for
Alg(T) is given by the canonical presentation of T . In general every presentation
〈Σ, E〉 of T provides a signature for Alg(T), namely the one given by Σ, see
Section 2.3. Now the natural transformation E induces a functor

− ◦ E : Alg(T) −→ Alg(Σ).

Since E is surjective, − ◦ E is an embedding; compare this with the translation
functor given by a one-step translation. It follows from the general properties
of algebras for a functor, Section 2.3, that Alg(T) is closed under products,
homomorphic images and subalgebras i.e. it is a variety.

This exhibits algebras for a functor and equational theories that can be
axiomatized by rank 1 axioms as two sides of the same coin. The general picture
is given by monads.

Theorem 5.1.11. Varieties for finitary equational algebraic theories are, up
to concrete isomorphism, the categories of Eilenberg-Moore algebras (Definition
2.3.17) for finitary monads on Set.

Details can be found in [8]; the algebraic signature is obtained as described
above.

5.1.1 Moss Liftings

We have now arrived at one of the key applications of presentations of functors.
We will use presentations to produce predicate liftings which by construction will
be translatable into the Moss logic. In Section 5.3, we will use these predicate
liftings to develop an equational coalgebraic modal logic. In the next section
we will generalize presentations and use the techniques here to show that any
coalgebraic modal logic (Definition 3.2.13) can be translated into the language of
predicate liftings.

The idea is that given a presentation 〈Σ, E〉 we can use the natural transfor-
mation E to define predicate liftings; we call such predicate liftings Moss liftings.
The next definition makes this precise.

Definition 5.1.12. Let T be a weak-pullback preserving functor and let 〈Σ, E〉
be a (standard) presentation of Tω. Each p ∈ Σn gives rise to an n-ary predicate

102 Chapter 5. From Abstract to Concrete

lifting λp as shown by the next diagram:

Pn TωP!EP(p,−)

PT

λp

%
%
%
%%&

∇'
'

'
'

''(
(5.4)

where ∇' is as defined in Definition 3.3.4.
We call a predicate lifting arising in this way a 〈Σ, E〉-Moss lifting, or simply

a Moss lifting. By Lemma 5.1.5 the set of Moss liftings for a presentation 〈Σ, E〉
can be identified with a subset of

∐
n<ω Tω(n). Notice that by construction

EP(p,−) : Pn −→ TωP is a translator for λp.

The intuition behind Moss liftings can be described as follows: Recall, Section
3.3.1, that the rough idea of the Moss Logic is to use the functor T as a modality.
A presentation 〈Σ, E〉 of T decomposes T using an usual algebraic signature.
Hence the operations in Σ can also be interpreted as modalities, via T .

We now illustrate Moss liftings with some examples.

Example 5.1.13. 1. Let T = 1+ Id. In the case of the canonical presentation,
for each arity n there is a Moss lifting λ∗

n, which indicates termination; this
lifting corresponds to the unique element of 1. All other Moss liftings of
arity n correspond to the elements of n. For p ∈ n, the Moss lifting λp maps
a sequence ϕ : n −→ P(X) to the set ϕp. Using the identity presentation for
(1 + Id, id), we see that one constant and one unary predicate lifting suffice
to describe T -coalgebras.

2. Let T = Pow. In the case of the canonical presentation, the Moss liftings of
arity n are associated with subsets of n. Let p be one of those subsets. The
Moss lifting λp maps a sequence ϕ : n −→ PX to the set

λp(ϕ) = {t ∈ PowX | (∀x ∈ t)(∃i ∈ p)(x ∈ ϕi) ∧ (∀i ∈ p)(∃x ∈ t)(x ∈ ϕi)}

= {t ∈ PowX | t ⊆
⋃

i∈p

ϕi ∧ (∀i ∈ p)(t ∩ ϕi %= ∅)}.

Compare this with the usual definition of ∇' (Example 3.3.6).

3. Let T = Pow and let 〈Σ, E〉 be the List-presentation. For each arity n there
is only one Moss lifting which in this case we write [n]. The Moss lifting [n]
maps a sequence ϕ : n −→ PX to the set

[n](ϕ) = {t ∈ PowX | t ⊆
⋃

i∈n

ϕi ∧ (∀i ∈ n)(t ∩ ϕi %= ∅)}

5.1. Presentations of functors 103

4. Let T be the finite multiset functor. A Moss liftings of arity n for the
canonical presentation corresponds to a bag p : n −→ N. The associated pred-
icate lifting maps ϕ : n −→ PX to a multiset over P(X) (Example 5.1.8(5))
followed by an application of ∇' (Example 3.3.6).

The next remark presents another perspective on Moss liftings.

Remark 5.1.14. Using the Yoneda Lemma Moss liftings can also be characterised
as follows: Consider the n component of ∇' and write 2n for P(n), i.e. consider
the function ∇'n : T (2n) −→ 2T (n); this function curries into

s : T (n)× T (2n) −→ 2.

Evaluating at p ∈ T (n) gives us the Moss lifting λp. Using properties of adjoints,
Lemma A.1.2, we can actually show that s = ev ◦ (idT (n),∇'n) where ev : T (n)×
2T (n) −→ 2 is the evaluation function.

We now fix some terminology concerning the logic of Moss liftings.

Definition 5.1.15. Let T be a weak-pullback preserving functor and let 〈Σ, E〉 be
a presentation of Tω. The signature of 〈Σ, E〉-Moss liftings is denoted by ΣE

T . The

associated coalgebraic modal logic (Definition 3.2.18) is denoted by (K〈Σ,E〉
T , δE).

The language of the logic (Remark 3.2.15) is denoted by K〈Σ,E〉
T . We write KT and

(KT , δE) if the presentation is clear from the context.

The next remark recalls different descriptions for the functor KT .

Remark 5.1.16. Let T be a weak-pullback preserving functor and let 〈Σ, E〉 be
a presentation of Tω. Notice that the signature of Moss liftings is literally Σ, hence
the functor KT is isomorphic to FΣU (Definition 3.2.18). This functor can also
be described by KT = F (

∐
n<ω

∐
Σn

Un).

As said before, and made explicit in the definition, all Moss liftings have
translators. Consequently, they can be BA-translated into the Moss logic. However,
we can do better: Moss liftings are always translatable.

Proposition 5.1.17. Moss liftings for a (finitary) functor T , which preserves
weak-pullbacks, are totally translatable into Moss logic, i.e. for any category of
power set algebras A and every Moss lifting λ there exists an A-logical translator
for λ.

Proof. Let 〈Σ, E〉 be a presentation of Tω. For p ∈ Σn let λp be the corresponding
Moss lifting. Given a category of power set algebras A we want to find an A-
logical translator for λp. By definition the natural transformation E(p,−) : Idn

−→ T is a Set-logical translator for λp, extending EP(p,−) (Definition 4.3.2). We
can also restrict E(p,−) with any functor U : A −→ Set and obtain a natural

104 Chapter 5. From Abstract to Concrete

transformation EU(p,−) : U −→ T U ; this exhibit an A-logical translator for λp

for any category A with powerset algebras because UP = P .
The argument also works backwards, i.e. if an n-ary predicate lifting λ has

an A-logical translator for any category of powerset algebras it is a Moss lifting,
because it should then have a Set-logical translator; by definition, such logical
translator is given by a natural transformation (−)n −→ T . By Yoneda lemma
this natural transformation correspond to an element of T (n), say p. Therefore
λ = λp, i.e. it is a Moss lifting for the canonical presentation of T .

In summary, Moss liftings are the only predicate liftings that can be translated
independently of the underlying propositional logic. For this reason they may be
called totally-translatable.

Corollary 5.1.18. Let T be a finitary weak-pullback preserving functor. The
Moss liftings for T are precisely those predicate liftings that have a Set-logical
translator.

Proposition 4.3.6 implies that there is a one step translation from the logic of
Moss Liftings into the Moss logic.

Corollary 5.1.19. Let A be a category of power set algebras. Let 〈Σ, E〉 be a
presentation for T . Let (KT , δE) be the logic of Moss liftings and let (M,∇) be
the Moss logic, both over A.

There is a one step translation ν̄ : (KT , δE) −→ (M,∇). More concretely
ν̄ = F (EU), where U : A −→ Set is the forgetful functor and F is its left adjoint.

An important property of Moss liftings is that they are monotone. The next
proposition makes this precise.

Proposition 5.1.20. Every Moss lifting λp : Pn −→ PT is monotone. This means
that given sequences of sets ϕ,ψ : n −→ PX, if (∀i)(ϕi ⊆ ψi) then λp(ϕ) ⊆ λp(ψ).

Proof. Let E(p,−) be the translator of λp. Using Lemma 5.1.10 we see that
(∀i)(ϕi ⊆ ψi) implies EP(p,ϕ) T (⊆)EP(p,ψ). Using one more time Lemma 5.1.10
we can see this “inclusion” is equivalent to say that for every t ∈ T P(X)

if tT (∈X)EP(p,ϕ) then tT (∈X)EP(p,ψ).

By definition of ∇' we have tT (∈X)EP(p,ϕ) iff t ∈ ∇'EP(p,ϕ). Hence from the line
above we conclude: if t ∈ ∇'EP(p,ϕ) then t ∈ ∇'EP(p,ψ) this means λp(ϕ) ⊆ λp(ψ)
as we wanted to show.

One more property of the logic (KT , δE) is that Moss logic can be translated
into it. Moreover, there is a translation in the sense of Definition 2.4.1.

Proposition 5.1.21 ([80]). For every formula in MT there exists an equivalent
formula in KT . More explicitly, for every ϕ ∈ MT there exists ψ ∈ KT such that
[[ϕ]]MT

ξ = [[ψ]]KT
ξ for every coalgebra ξ.

5.2. Concrete logics from abstract logics 105

The previous proposition is a particular instance of Theorem 5.2.17.
These two propositions have the following important corollary.

Corollary 5.1.22. For every finitary weak pullback preserving functor T there
exists a set Λ of monotone predicate liftings such that the logic (LΛ, δΛ) has the
Hennessy-Milner property. The set Λ is that of Moss liftings for T .

Proof. Since T preserves weak pullbacks we can define Moss logic. Since T
is finitary we can define Moss liftings for a presentation, e.g. the canonical
presentation. Proposition 5.1.21 implies that the language of Moss liftings is as
expressive as Moss’s language. Since the Moss logic has the Hennessy-Milner
property [84] so does KT . From Proposition 5.1.20 we know that all Moss liftings
are monotone.

Remark 5.1.23. Finding a monotone set of predicate liftings is important in
coalgebraic modal logic, as it opens the possibility of adding fixpoint operators. The
previous proposition solves this problem in the case of weak-pullback preserving
functors. As far as we know, the general problem for non-weak pullback preserving
functors is still open.

5.2 Concrete logics from abstract logics

In this section we will show how to obtain a logic of predicate liftings from any
coalgebraic modal logic (Definition 3.2.13). The idea is to generalise the concept
of a presentation (Definition 5.1.1) to functors L : A −→ A, over a category of
algebras. This idea was developed in [22, 76]. Our contribution in this section is
to use these ideas to translate coalgebraic modal logics into the logic of predicate
liftings. More concretely, we prove two representation theorems (Theorem 5.2.2
and Theorem 5.2.17). Theorem 5.2.2 shows that every coalgebraic modal logic can
be translated into the logic of all predicate liftings. Theorem 5.2.17 elaborates on
this by showing that in fact every coalgebraic modal logic is a rank 1 axiomatization
of a logic of predicate liftings. To the best of our knowledge these theorems have
not appeared explicitly anywhere in the literature, with the sole exception of our
work in [74]. The technicalities in this section require fitness in category theory.

5.2.1 The first representation Theorem

In this section we prove our first representation theorem which states that every
coalgebraic modal logic can be translated into a logic of predicate liftings. We
first prove a lemma concerning categories of powerset algebras.

Lemma 5.2.1. Let A be a category of power set algebras; let U : A −→ Set be the
forgetful functor and let F be its left adjoint. Let S : A −→ Setop be the left adjoint
of P : Setop −→ A (Proposition 3.2.24), i.e. S(A) = A(A,P (1).

For every finite set n we have SF (n) = P(n).

106 Chapter 5. From Abstract to Concrete

Proof. The statement can be proved by a direct computation.

SF (n) = A(F (n), P (1)) (Definition S)

= Set(n, UP (1)) (F D U)

= Set(n,P(1)) (P = UP)

= P(n). (P(1) = 2)

Before stating and proving the first representation theorem we recall the
definition of the logic (LT , δT) (Definition 3.3.13) and make some observations
that will be needed in the argument.

The functor LT : A −→ A is defined on finitely generated free algebras by
LT (F (n)) = PT P(n) and extended to arbitrary A ∈ A via colimits (Definition
2.3.12). In the light of the previous lemma we have

LT F (n) = PT SF (n). (5.5)

The semantics (δT)X : LT P (X) −→ PT (X) is the unique arrow making the
following diagram

LT F (ni) PT P(ni)!
id

LT P (X) PT (X)!(δT)X

$
LT (ci)

$
PT (ĉi)

(5.6)

commute for each i : ni −→ UP (X); where ĉi : P(n) −→ X is the P-transpose of i
and ci : F (ni) −→ X is the F -transpose of i. On the light of the previous lemma
we have

ĉi = S(ci) ◦ εX (5.7)

where εX : X −→ SP (X) is the counit of the adjunction. More formally we really
have ĉ = εX •S(c) where • is the composition in Setop. Moreover notice that from
Lemma A.1.2, item 4, we have ci = P (ĉi) ◦ ηF (n).

We can now state and prove the first representation theorem.

Theorem 5.2.2. For any coalgebraic modal logic (L, δ) for a functor T , over a
category of power set algebras A, there is a one-step translation

ν : (L, δ) −→ (LT , δT)

where (LT , δT) is the logic of all predicate liftings for T (Definition 3.3.13).
In other words, every coalgebraic modal logic can be translated into a logic of

predicate liftings.

5.2. Concrete logics from abstract logics 107

Proof. We want to define a one-step translation ν : (L, δ) −→ (LT , δT). Since L
and LT are determined by finitely presented algebras (Definition 2.3.12), we first
define a natural transformation ν ′ : LF (n) −→ LT F (n) and then extend ν ′ to a
natural transformation ν : L −→ LT , see Proposition 2.3.14.

We now explain how to define ν ′. The underlying idea is to use the adjunction
S D P and δ. Consider the following transpose

L
L(η)−−−−−−→ LPS

δS−−−−−→ PT S, (5.8)

where η : IdA −→ PS is the unit of the adjunction. Precomposing this natural
transformation with F and using the observation in Equation (5.5) we obtain ν ′

as follows

LF (n)
ν′=δSF (n)◦L(ηF (n))−−−−−−−−−−−−−−−→ PTSF (n) = LTF (n)

As said before, since both L and LT are determined by their action on finitely
generated free algebras, we can extend ν ′ to a natural transformation ν : L −→ LT

which is in fact a one-step translation.
We now show that ν is a one-step translation, i.e we argue δ = νP ◦ δT . For

this purpose, consider a morphism ci : F (ni) −→ P (X) and the following diagram

LF (ni) LT F (ni)!
ν ′

LP (X) LT P (X)!
νP (X)

$
L(ci)

$
LT (ci)

PT P(ni)!
id

PT (X)!δT

$
PT (ĉi)

where ĉi = S(ci) ◦ εX . By definition, νP (X) is the only arrow that makes the
rectangle on the left commute for every ci : F (ni) −→ P (X); also by definition δT
is the only arrow that makes the rectangle on the right commute. Therefore, by
the universal property of colimits, their composition is the only arrow that makes
the outer rectangle commute for every ci (Proposition 2.3.14). Hence to prove
δ = δT ◦ νP it is enough to prove that δ also makes the outer rectangle commute
for every ci, i.e. δ ◦ L(ci) = PT (ĉi) ◦ ν ′. We now show that this is the case.

PT (ĉi) ◦ ν ′ = PT (ĉi) ◦ δSF (n) ◦ L(ηF (n)) (Def. ν ′)

= δX ◦ LP (ĉi) ◦ L(ηF (n)) (naturality of δ)

= δX ◦ L
(
P (ĉi) ◦ ηF (n)

)
(L is a functor)

= δX ◦ L(ci) (observation after eq. 5.7)

From here, by the universal property of coproducts, we conclude δ = δT ◦ νP . This
means that ν is a one-step translation. This concludes the proof.

Here is an illustration using the Moss logic for Kripke frames.

108 Chapter 5. From Abstract to Concrete

Example 5.2.3. Let T = Pow and let (M,∇) be the Moss logic over BA. By
definition, in the particular case of Moss logic the natural transformation in
Equation (5.8) is given by the following composite

FTωU
FTωU(η)−−−−−−−−→ FTωUPS

∇S−−−−−→ PT S.

To the describe this natural transformation it is enough to describe its transpose
which is given by

TωU
TωU(η)−−−−−−−→ TωUPS

∇'S−−−−−→ UPT S,

where ∇'S is as described in Definition 3.3.4, the transpose of ∇. Computing this
last composite in the case T = Pow, we see that, for a boolean algebra (A,α), an
element Φ ∈ PowU(A,α) is mapped to

{Ψ ⊆ PowS(A,α) | (∀a ∈ Φ)(∃u ∈ Ψ)(a ∈ u) and (∀u ∈ Ψ)(∃a ∈ Φ)(a ∈ u)}.

The natural transformation ν ′ : MTF (n) −→ LT F (n) is obtained by evaluating
this last equation on finitely genrated free algebras. Since the base category is
BA we have F (n) = PP(n). Hence we have ν ′

F (n) = ∇'PP(n). In other words, the
one-step translation

ν : (M,∇) −→ (LPow, δPow)

from the previous theorem, which is obtained by extending ν ′
F (n) = ∇'PP(n) via

colimits (Proposition 2.3.14), induces the usual translation tr(∇ϕ) = !∨
Φ ∧∧♦Φ.

5.2.2 Presentations of functors on categories of algebras

We will now illustrate how to generalize presentations for set functors (Definition
5.1.1) to functors on categories of algebras. We will use this to generalize Moss
Liftings and then prove our second representation Theorem 5.2.17, which roughly
says that every coalgebraic modal logic is a rank one axiomatization of a logic of
predicate liftings.

The canonical signature

We begin by showing how the idea of the canonical presentation (Definition 5.1.3)
can be generalized to a category of algebras. Recall that for a functor T : Set
−→ Set, in the canonical presentation we use the elements in T (n) as operations
to present the functor T . The first step to present a functor L : A −→ A is to find
a suitable set of operations; the idea is not to take the n-ary operations from the
set ULF (n). The next proposition makes this idea precise.

5.2. Concrete logics from abstract logics 109

Proposition 5.2.4. Let L be an endofunctor over an algebraic category A; we
write U for the forgetful functor and F for its left adjoint. For each set n, the
natural transformations Un −→ UL are in natural bijection with the elements of
the set ULF (n).

Proof. The proof is a direct computation.

Nat(Un, UL) ∼= Nat
(
Set(n, U), UL

)
, (Xn = Set(n,X))

∼= Nat
(
A(F (n),−), UL

)
(F D U),

∼= ULF (n). (Yoneda).

More explicitly, given p ∈ ULF (n) we define a natural transformation Y (p) : Un

−→ UL as follows: A function a : n −→ U(A) is mapped to UL(â)(p), where
â : F (n) −→ A is the transpose of a.

Note that because F D U the elements of ULF (n) are also in natural bijection
with the natural transformations FUn −→ L.

The previous proposition can also be stated by saying that there is natural
transformation

E :
∐

n<ω

(ULF (n)× Un) −→ UL. (5.9)

Using E, we can “decompose” a coalgebraic modal logic (L, δ) into predicate
liftings using the same idea of Moss liftings. More explicitly, each p ∈ ULF (n)
defines a n-ary predicate lifting λp = U(δ) ◦ EP (p,−) as shown in the following
diagram

(UP)n ULP!EP (p,−)

UPT

λp

%
%
%
%%&

U(δ)
'

'
'

''(
(5.10)

Compare this with Diagram (5.4) for Moss liftings. These predicate liftings induce
what we call the canonical signature of the coalgebraic modal logic. The next
definition makes this precise.

Definition 5.2.5. Let (L, δ) be a coalgebraic modal logic, over a category of
power set algebras A, for a functor T . The canonical signature over A of (L, δ),
written Σδ, is given by

Σδ =
∐

n<ω

ULF (n)× (−)n.

Each p ∈ ULF (n) corresponds to the predicate lifting λp : Pn −→ PT given by
λp = U(δ) ◦ EP(p,−), where E is as in Equation (5.9).

110 Chapter 5. From Abstract to Concrete

Notice that the canonical signature will, in principle, add several new operations
to a given signature. The following example describes the canonical signature for
the Moss logic and for the logic given by a single predicate lifting.

Example 5.2.6. Let T be a set functor, and let A be a category of power set
algebras.

1. Let (MT ,∇) be Moss logic for T over A. The canonical signature, over
A, for the Moss logic contains all predicate liftings that have an A-logical
translator (Definition 4.3.2). Indeed if τ : Un −→ TωU is an A translator
for λ, by applying F to τ we obtain a natural transformation F (τ) : FUn

−→ MT which by Proposition 5.2.4 corresponds to an element of UMT F (n).
This presents λ as a predicate lifting in the canonical signature of (MT ,∇).

2. Let λ : Pn −→ PT be a predicate lifting for T . An m-ary predicate lifting γ
in the canonical signature over A of (L̄λ, δ̄λ) can be expressed by a formula
of the form !γϕ = !λtr(ϕ), where tr(ϕ) is a formula in the signature of A.
Compare this with the definition of translator and logical translator.

Presentation of functors

This section is devoted to fine-tune the framework for a general result (Theorem
5.2.17) which says that every coalgebraic logic is a rank-1 axiomatization of a
logic of predicate liftings, namely the one given by its canonical signature. The
technical work on presentations is taken from [76]. Our contribution is to use
this to define translations (Theorem, 5.2.17, Corollary 5.2.19). We begin with the
definition of presentation by operations and equations.

Definition 5.2.7 ([22]). Let A be a finitary algebraic category; we write U for
the forgetful functor and F for its left adjoint.

A finitary presentation by operations and equations, over A, or just presentation
for short, is a pair (Σ, E) where Σ : Set −→ Set is a polynomial functor and E is a
family of sets (En)n≤ω, where En ⊆ UFΣUF (n)× UFΣUF (n). The elements of
En are called equations (on n variables).

We now explain in more detail the equations in Definition 5.2.7 to illustrate
the concept of a presentation. Our aim is to explain that the equations above are
rank-1 equations. For simplicity let us assume A is the category of algebras for
an algebraic signature. The equations on n variables are given by a subset

En ⊆ UFΣUF (n)× UFΣUF (n).

Let us see how a generic element of UFΣUF (n) looks like. An element of UF (n)
is a term t(x1, . . . , xn) on n variables in the algebraic signature of A, e.g. x1 ∧ x2

in case n = 2. An element in ΣUF (n) is a pair given by a modal operator !j and

5.2. Concrete logics from abstract logics 111

a term on n variables; we can then think of it as !jt(x1, . . . , xn), e.g. !j(x1 ∧ x2).
Now an element in UFΣUF (n) is a a term, in the signature of A, of those, e.g.
!j(x1) ∧!i(x2) or !j(x1 ∧ x2). Finally an element of En is a pair of those modal
terms, i.e. an equation like !j(x1) ∧!i(x2) = !j(x1 ∧ x2).

Every presentation presents a functor on A.

Definition 5.2.8. Let A be a finitary algebraic category; we write U for the
forgetful functor and F for its left adjoint. Let (Σ, E) be a finitary presentation
by operations and equations, over A.

For an algebra (A,α), consider the following family:

!π̂1
!

π̂2

F (Env) FΣUF (nv) FΣU(A,α)!FΣU(v) (5.11)

where v ranges over valuations of variables v : F (nv) −→ (A,α).
Write qα : FΣU(A,α) −→ L(A,α) for the joint coequalizer of such family. The

assignation which maps (A,α) to L(A,α) is called the functor presented by (Σ, E).

Before showing that L actually defines a functor we explain the construction.
By definition the set En is a subset of UFΣUF (n)× UFΣUF (n), i.e. it is a set
of rank-1 equations on n varibales. By taking the transpose of the projections we
generate a subalgebra of FΣUF (n)× FΣUF (n). This is equivalent to say that
by taking the transpose of the projections we generate a congruence F (En) on
FΣUF (n). From here, given a valuation v : F (n) −→ (A,α) what the composition
in Equation 5.11 does is to evaluate the equations in the congruence F (En) on
(A,α); taking a coequalizer forces those (evaluated) equations to hold. The family
in previous proposition corresponds to all possible valuations on (A,α) of all
equation on E. By taking the joint coequalizer we force all of these equations to
hold.

Proposition 5.2.9. Let A be a finitary algebraic category; we write U for the
forgetful functor and F for its left adjoint. Let (Σ, E) be a finitary presentation
by operations and equations, over A.

The assignation L in the previous Definition is a functor L : A −→ A.
Moreover, the arrows qα : FΣU(A,α) −→ L(A,α) form a natural transforma-

tion.

Proof. The definition of L : A −→ A on objects is clear. We explain its action in
arrows.

The functor L maps an arrow f : (A,α) −→ (B, β) to the unique map, given
by the universal property of colimits, such that L(f) ◦ qα = qβ ◦FΣU(f). In other

112 Chapter 5. From Abstract to Concrete

words, L(f) is the only arrow that makes the following diagram

FΣU(B, β) L(B, β)!
qβ

FΣU(A,α) L(A,α)!qα

"
FΣU(f)

"
L(f)

commute. We now argue that this definition is correct, i.e. that such arrow does
indeed exist. By the universal property of coequalizers this will follow once we
show that qβ ◦FΣU(f) coequalises FΣU(v)◦ π̂1 and FΣU(v)◦ π̂2 for each cardinal
n and each v : F (n) −→ (A,α). In order to see this, notice that for each morphism
f : (A,α) −→ (B, β) the composition f ◦ v : F (n) −→ (B, β) is itself a valuation of
variables into (B, β). Therefore the equation

qβ ◦ FΣU(fv) ◦ π̂1 = qβ ◦ FΣU(fv) ◦ π̂2.

is part of the definition of qβ. Hence qβ ◦ FΣU(f) coequalises FΣU(v) ◦ π̂1 and
FΣU(v) ◦ π̂2 and then by the universal property, of colimits, L(f) : L(A,α)
−→ L(B, β), as in the the diagram above, exists. It is routine to check that this
assignation preserves identities and composition. By construction the arrows
qα : FΣU(A,α) −→ L(A,α) form a natural transformation.

We now fix some terminology with respect to presented functors.

Definition 5.2.10. Let A be a finitary algebraic category. Let (Σ, E) be a
presentation by operations and equations. Let L : A −→ A be the functor in
Proposition 5.2.9.

We say that a functor L′ : A −→ A is presented by (Σ, E) if L′ ∼= L. In such
case we say that (Σ, E) is a presentation of L′.

The next examples illustrate the construction in previous proposition.

Example 5.2.11. Recall examples 3.2.9 and 3.2.17 in Section 3.2.1.

1. In Example 3.2.9 we have E2 = {
(
!(x1) ∧ !(x2),!(x1 ∧ x2)

)
}, E0 =

{(!1,1)}, and En = ∅ for any other n.

2. In Example 3.2.17 E0 = {(!1,1), (♦⊥,⊥)}, E2 = {
(
!(x1)∧!(x2),!(x1 ∧

x2)
)
,
(
♦(x1)∨♦(x2),♦(x1∨x2)

)
,
(
!(x1)∧♦(x2),♦(x1∧x2)∧!(x1)∧♦(x2)

)
,
(
!(x1)∨

♦(x2),!(x1 ∨ x2) ∧ (!(x1) ∨ ♦(x2))
)
}, and En = ∅ for any other n.

3. In the case of BA, if we add E1 = {(!(x1),¬♦(¬x1))} to the previous item,
we obtain the classical presentation of modal logic.

The similarities in the notation of the above definition and that for presentations
of functors is not an accident. The next example illustrates this.

5.2. Concrete logics from abstract logics 113

Example 5.2.12. Every presentation 〈Σ, E〉 for T induces a presentation for
MT , the functor for the Moss logic. Indeed, given a presentation E : Σ −→ T we
already have the functor Σ. The equations on n-variables are then given by the
kernel of F (EUF (n))), i.e. the action of E on the free algebra generated by n.

For our purposes, the key result from [76] sates that Equation (5.9) is a
presentation. The next definition and proposition make this precise.

Definition 5.2.13. Let A be a finitary variety. Let L : A −→ A be a (finitary)
functor. Let

E :
∐

n<ω

(ULF (n)× Un) −→ UL

be the natural transformation in Equation (5.9).
The canonical presentation (Σ, E ′) of L is defined as follows: The functor Σ is

given by
∐

n<ω ULF (n)× (−)n and for each m the equations on m variables are

given by E ′
m = ker

(
U(ÊF (m))

)
.

We detail the equations of the canonical presentation a bit more. Write
Σ = ULF (n)× (−)n. With this notation we have EF (m) : ΣUF (m) −→ ULF (m);

its transpose is then given by ÊF (m) : FΣUF (m) −→ LF (m). Thus the kernel of

U(ÊF (m)) really gives a set of equations as required in Definition 5.2.7.
The key result from [76] can be now states as follows;

Proposition 5.2.14 ([76]). Let A be a finitary variety. Every finitary functor
L : A −→ A is presented by its canonical presentation.

The main characterization theorem in [76] states that a functor on a finitary
variety has a finitary presentation iff it preserves sifted colimits. An important
result in [22] is that we can obtain a presentation of Alg(L), over Set or the base
category, by combining a presentation of L and a presentation of A.

We finish by fixing some terminology.

Definition 5.2.15. Let (L, δ) be a coalgebraic modal logic for a functor T , over
a (finitary) category of power set algebras A. Let 〈Σ, E〉 be a presentation of L.

The modal signature induced by 〈Σ, E〉 is given by the following set of predicate
liftings: For each p ∈ Σn take the predicate lifting given by the following composite

UP n ULP!q̂P (p,−)

UPT

%
%
%%&

U(δ)
'

'
''(

where q̂ is the transpose of the natural transformation q : FΣU −→ L in Proposition
5.2.9.

Notice that the coalgebraic modal logic associated with the signature above is
given by (FΣU, δ ◦ qP).

114 Chapter 5. From Abstract to Concrete

Soundness and completeness

We now have all the material to explain soundness and completeness. One of the
key advantages of the functorial approach is that phenomena as soundness and
completeness correspond to properties of δ. We now elaborate on this.

Let ΣΛ be a modal signature for T , let A be a category of power set algebras.
Every set Ax of rank-1 axioms, on the signature ΣΛ + ΣA induces a presentation
by operations and equations (Definition 5.2.7).

The presented functor L : A −→ A (Proposition 5.2.9) maps an algebra A to
FΣΛU(A) quotiented by the axioms in Ax. Given formulas ϕ,ψ ∈ LΛ we write
Ax E ϕ = ψ to indicate that the pair (ϕ,ψ) belongs to the congruence generated
by Ax.

The existence of a natural transformation δ : LP −→ PT correspond to
soundness of the axioms in Ax. This follows from the definition of L because any
δ must make the following diagram

L̄ΛP LP!qP

PT

δ̄

%
%
%
%%&

δ
'

'
'

''(

commute, where q : L̄Λ −→ L is the quotient map in Definition 5.2.9 and δ̄ is the
natural transformation in Equation (3.2), page 41. Hence if ϕ = ψ is an axiom in
Ax, the formulas ϕ and ψ will be identified in the initial L-algebra hence for any
coalgebra (X, ξ) we have

[[ϕ]]δ̄ξ = [[[ϕ]]]δξ = [[[ψ]]]δξ = [[ψ]]δ̄ξ

where [ϕ] and [ψ] denote the equivalence classes modulo Ax. More general, for
every pair of formulas ϕ,ψ ∈ LΛ if Ax E ϕ = ψ the equation above also holds.

It was shown in [68] that completeness correspond to the injectivity of δ.

Proposition 5.2.16 ([68]). Let Λ, L, and Ax as above. If δ : LP −→ PT is
injective then Ax is sound and complete. More explicitly for every pair of formulas
ϕ,ψ ∈ LΛ then

Ax E ϕ = ψ iff for every coalgebra (X, ξ) we have [[ϕ]]ξ = [[ψ]]ψ

5.2.3 The second representation Theorem

Using presentations of functors on varieties we can now show that every coalgebraic
modal logic is a rank-1 axiomatization of a logic of predicate liftings.

5.2. Concrete logics from abstract logics 115

Theorem 5.2.17. Let (L, δ) be a coalgebraic logic over a category of power set
algebras A. Every presentation (Σ, E) of L presents (L, δ) as a rank-1 axiomati-
zation of the modal signature induced by (Σ, E) (Definition 5.2.15).

Proof. Let (Σ, E) be a presentation of L. Without loss of generality, we can
assume L to be the joint coequalizer described in Proposition 5.2.9. As mentioned
after Definition 5.2.15 the coalgebraic modal logic associated with the presentation
(Σ, E) is given by (FΣU, δ ◦ qP), where q : FΣU −→ L is the quotient (natural
transformation) as in Proposition 5.2.9. We want to show that (L, δ) is a rank-1
axiomatization of this logic.

Clearly q : (FΣU, δ ◦ qP) −→ (L, δ) is a one-step translation. Therefore, as
discussed after Definition 4.1.1, see page 67, q induces a functor

− ◦ q : Alg(L) −→ Alg(FΣU),

and this functor induces a function f : I1 −→ I2, where I1 is the carrier of the
initial FΣL algebra and I2 is the carrier of the initial L-algebra, such that the
following diagram

I1 I2!
f

P (X)

[[−]]δqPξ
'
'
''*

[[−]]δξ
%

%
%%)

(5.12)

commutes for each coalgebra ξ.
The functor − ◦ q is an embedding. This functor is clearly faithful. It is

only left to show that it is injective on objects; this follows because each of the
components of q is a coequaliser then each component is an epimorphism.

This presents Alg(L) as a variety inside Alg(FΣU). Therefore, the initial
L-algebra is a quotient of the initial FΣU -algebra.

This presents (L, δ) as an axiomatization of (FΣU, δqP) where the axioms are
given by the kernel of q. Since the axioms given by the kernel of q are all rank-1,
by definition, this presents (L, δ) as a rank -1 axiomatization of (FΣU, δqP) as we
wanted to show.

Compare the previous argument with the argument before Theorem 5.1.11.

Corollary 5.2.18. Every coalgebraic modal logic (L, δ) is a rank 1 axiomatization
of the logic given by its canonical signature.

The previous theorem together with Example 5.2.12 shows yet another per-
spective on the translation of the logic of Moss liftings. For any category of power
set algebras we can extend a presentation of T to a presentation of MT . Then,
from the previous result, we can obtain a translation of (MT ,∇) into the logic of
Moss liftings.

116 Chapter 5. From Abstract to Concrete

Combining Theorem 5.2.17 with Proposition 5.2.14 we obtain the following
important corollary.

Corollary 5.2.19. Every finitary coalgebraic logic for a Set endofunctor T can
be translated into the logic of all predicate liftings.

Proof. Write I1 for the carrier of the initial FΣL algebra and I2 for the carrier
of the initial L-algebra. Let f : I1 −→ I2 be the function in Diagram (5.12). As
shown in the proof of Theorem 5.2.17 f is onto, hence using the axiom of choice,
we can find a function tr : I2 −→ I1 such that f ◦ tr = idI2 ; this is the desired
translation. Indeed, since Diagram (5.12) commutes, we can check that for each
formula ϕ ∈ I1, we have [[ϕ]]δξ = [[tr(ϕ)]]δqPξ for each coalgebra ξ.

In the particular case of the Moss logic this was already stated as Proposition
5.1.21.

Corollary 5.2.20 (Former Proposition 5.1.21). For every formula in MT there
exists an equivalent formula in KT . More explicitly, for every ϕ ∈ MT there
exists ψ ∈ KT such that [[ϕ]]MT

ξ = [[ψ]]KT
ξ for every coalgebra ξ.

The previous results are worth some annotations. Firstly, notice that they
generalize Theorem 4.4.9 because the argument works for any finitary category
of power set algebras and not just for BA. Secondly, notice that even though we
use the axiom of choice to define a translation, the embedding of L-algebras into
LT -algebras explicitly shows the “modalities” needed for the translation. The
moral of the story is that “nice” translations will come from “nice” presentations
of L. This was already seen in the case of Moss liftings.

5.3 Equational coalgebraic logic

In this section we illustrate the use of presentations of functors further by presenting
an equational axiomatization of the Moss logic. The idea is to use the Moss liftings
to translate the axiomatic system in [69]. In other words, we use the Moss liftings
to give a more standard algebraic face to the complete axiomatizations of the
Moss logic; this leads us to an equational coalgebraic modal logic.

5.3.1 An equational proof system for KT

In this section, we develop a proof systems for KT by translating the system for
the Moss logic in [69]. Since this system is sound and complete, our system will
be as well.

5.3. Equational coalgebraic logic 117

Slim redistributions

Before presenting the system in [69] we should introduce the concept of slim re-
distribution. The reader might want to skip this section and refer to it when needed.

Slim redistributions play an important role in the completeness proof in [69].
Consequently, a good description of them using presentations of functors would
be a key pinion in our completeness result (Theorem 5.3.30). We begin with the
definition of base for an element in T (X).

Definition 5.3.1. Let T be a finitary Set-endofunctor and let t ∈ T (X). The
base of t is the smallest Y , such that Y ⊆ X and t ∈ T (Y). The base of an
element t ∈ T (X) is denoted by Base(t).

The base of an element exists because the functor is finitary [69].
We now introduce the concept of redistributions.

Definition 5.3.2. An element Φ ∈ T P(X) is a redistribution of a set T ∈ PTω(X)
if T ⊆ ∇'Φ. More explicitly, this means that for each t ∈ T we have t T (∈X)Φ.

A redistribution Φ is slim if Φ ∈ TωPowω(
⋃

t∈T Base(t)). The set of slim
redistributions of T is denoted by SRD(T).

Remark 5.3.3. In [69] slim redistributions are only defined for finite subsets of
T P(X). The important property for a completeness proof is that the set of slim
redistributions of a finite set is finite, which follows from our definition.

Here is a first illustrative example.

Example 5.3.4. In the case of Pow, a set Φ ∈ PowP(X) is a slim redistribution
of a set T ⊆ Pow(X) iff

⋃
T =

⋃
Φ and for every ϕ ∈ Φ and t ∈ T we have

t ∩ ϕ %= ∅.

The previous example illustrates that slim redistributions are in some sense
minimal covers. More explicitly, each t ∈ T is covered by Φ, i.e. t ⊆

⋃
Φ.

Moreover, since t∩ϕ %= ∅ for each ϕ ∈ Φ, we can say that in fact Φ is a “minimal”
cover of all the elements of A. The following example, taken from [17], illustrates
this further.

Example 5.3.5. Let MPow be the Moss logic for Pow. A slim redistribution for
a set T ∈ PPow(MPow) arises semantically as follows. Fix a Pow-coalgebra (X, ξ)
and a state x0 ∈ X. Define, for any successor x of x0, the set ϕx := {t ∈

⋃
T |

x ∈ [[t]](X,ξ)}. Then let Φx0 be the set {ϕx | x ∈ ξ(x0)}. It can now be shown that
x0 ∈ [[

∧
{∇t | t ∈ T}]] iff Φx0 ∈ SRD(T).

As a final example we describe redistributions for the distribution functor.

118 Chapter 5. From Abstract to Concrete

Example 5.3.6. Recall Example 3.3.6. Fix Φ ∈ DP(X) and a set T ∈ PD(X).
Recall that Φ can be thought as a sequence (ϕj, qj)1≤j≤m for ϕj ∈ PX, qj ∈
[0, 1], qj > 0,m ∈ N. In similar fashion each t ∈ T can be seen as a sequence
(ti, pi)1≤i≤n for some ti ∈ X, pi ∈ [0, 1], pi > 0, n ∈ N. Now we can see that Φ
is a redistribution of T if for each t ∈ T there exists a matrix (rtij)1≤i≤n,1≤j≤m,
rij ∈ [0, 1] such that ti %∈ ϕj ⇒ rtij = 0 and

∑
i r

t
ij = qj and

∑
j r

t
ij = pi. The

redistribution Φ would be slim if each ϕi is a finite set.

The system M

We now introduce the axiomatic system in [69] for the Moss Logic .

Notation. We recapitulate the notation that we have been/will be using. For an
arbitrary set X, we use ϕ,ψ for subsets of X. The letter t denotes elements in
T (X). We write T for subsets of T (X). Finally, we use Φ and Ψ for the entities
in T Pow(X) or T P(X).

Definition 5.3.7 ([69]). Let (MT ,∇) be Moss logic, over BA, for a weak-pullback
preserving functor T which preserves finite sets. Let ≤M denote the semantic
consequence relation. The system M is given by the following axioms and rule on
top of a complete axiomatization for classical propositional logic

(∇0) From tT (≤M)t′ infer ∇t ≤M ∇t′

(∇1)
∧
{∇t | t ∈ T} ≤M

∨
{∇T (

∧
)Φ | Φ ∈ SRD(T)} .

(∇2) ∇T (
∨
)Φ ≤M

∨
{∇t | t T (∈)Φ}

where t and t′ denote elements in Tω(M), T is a finite subset of Tω(M), and Φ is
an object in TωPowω(M).

The following remark addresses a discrepancy of our notation with that of [69].

Remark 5.3.8. In [69] the axioms and rule above are enumerated starting at
(∇1), i.e. our (∇0) is (∇1) there. We justify this divergence because when we
move to an equational system the rule (∇0) will be disappear because it will
correspond to congruence rule of algebraic logic which is always assumed in any
equational system.

Intuitively, (∇1) pushes conjunctions down, (∇2) distributes disjunctions over
the ∇ and (∇0) is a congruence rule stating monotonicity of ∇. Note that these
intuitions are not expressed in standard logical concepts, e.g. (∇1) involves
applying T to the map

∧
: Powω(M) −→ M and the congruence rule uses relation

lifting instead of simply substituting terms into operation symbols. A more
standard presentation can be obtained by moving from MT to KT , as we show in
the following. The main result from [69] is the soundness and completeness of the
system above. We refer to the original source for details.

5.3. Equational coalgebraic logic 119

Remark 5.3.9. The axioms in Definition 5.3.7, i.e. (∇1) and (∇2), can be
replaced by equalities because the inequality from right to left always hold. With
this in mind, recall Remark 3.3.8, on page 61, about distributive laws. Notice
that Axiom (∇2) expresses the commutativity of the rectangle there.

The following definition describes the coalgebraic modal logic associated with
M, we refer to [69] for more details.

Definition 5.3.10 ([69]). Let (M̄, ∇̄) be the Moss logic as in Definition 3.3.1.
The coalgebraic modal logic (M,∇) associated with the system M is defined

as follows: The functor M : BA −→ BA maps an algebra A to the the algebra
FTωU(A) quotiented by all evaluations of the axioms (∇1) and (∇2) in A, plus the
following version of (∇0): All equations ∇t = ∇t ∧∇t′ for each pair t, t′ ∈ Tω(A)
such that tT (≤A)t′, where ≤A is the consequence relation of A, i.e. all pairs
a, a′ ∈ A such that a ∧ a′ = a′.

The natural transformation ∇ : MP −→ PT is defined by extending ∇̄ : M̄P
−→ PT to the quotient.

Now that we have introduced the system M, we would like to transfer the
axiomatisation to the logical system KT . In particular, we would like this axiom-
atization to be sound and complete. To this end, we will need a more careful
analysis of the representations of an element in T (X). This analysis is done in
the next section.

5.3.2 Well-based presentations

The base of an elment in T (X) plays a crucial role in the completeness proof of
the axiomatisation of MT in [69]. For everything to work we ought to give an
account of the base of an element in T (X) in terms of presentations. Roughly
speaking, for any finitary functor T and any t ∈ T (X) there is a smallest finite
set n ↪→ X such hat t ∈ T (n). This set n is the base of t. The following issue will
appear when we try to prove completeness of a translation of the system M. In
order to replace MT by KT smoothly, we need that if 〈Σ, E〉 is a presentation of T
and t ∈ T (X) has base n, then there is an n-ary operation symbol p ∈ Σn, called
a basic operation, and an injective a ∈ Xn such that (p, a) represents t. Such
presentations will be called well-based and this section studies their properties.

We start with a technical result. The next proposition shows that in fact,
given (p, a) ∈ Σn ×Xn, we can assume a to be injective; this will come in handy
to simplify our proofs.

Proposition 5.3.11. Let 〈Σ, E〉 be the canonical presentation for a set functor
T . For each (p, a) ∈ T (n)×Xn, there exists (q, b) ∈ Σ(X) such that q(b) ≈T p(a)
and b is injective.

120 Chapter 5. From Abstract to Concrete

Proof. Factor a : n −→ X as follows:

n X!a

m

f
%
%
%%&

%
%
%&

b
'
'
''*

*

where f is onto and b is injective. Let q = T (f)(p), then by Proposition 5.1.9 we
conclude q(b) ≈T p(a).

The next example illustrates the construction above.

Example 5.3.12. To illustrate the construction in the previous proof, consider
the canonical presentation of List. The list [x, x] ∈ List(X) has a representative
[0, 1](x, x) ∈ List(2) × X2. We can factor it through 2 −→ 1 to obtain the
representative [0, 0](x) ∈ List(1)×X1.

The previous example illustrates that an element t ∈ T (X) might have several
representations; some of which are redundant. The next definition will allow us to
avoid such redundancies.

Definition 5.3.13. Let 〈Σ, E〉 be a (standard) presentation for a functor T . We
define the category IElem(t) of injective representants of t ∈ T (X) as follows: The
objects of IElem(t) are given by

IElemo(t) =
⋃

n∈N

{(p, a) ∈ Σn ×Xn | (p, a) represents t, a injective}.

A morphism f : (p, a) −→ (q, b), where (p, a) ∈ T (n)×Xn and (q, b) ∈ T (m)×Xm,
is a function f : n −→ m such that a = bf and T (f)(p) = q.

We call (p, a) a basic representant of t if (p, a) is initial in IElem(t), that is,
∀(q, b) ∈ IElem(t) . ∃f : dom(a) −→ dom(b) . T (f)(p) = q & a = bf . Notice that
f is unique since b is injective.

A presentation 〈Σ, E〉 is injective if IElemo(t) is inhabited for every t. It is
well-based if every t ∈ T (X) has a basic representative.

Every well based presentation is injective. The difference resides in that
in a well based presentation there is a minimal representant. Here are some
illustrations.

Example 5.3.14. 1. The standard presentation and the canonical presentation
for Pow are well based.

2. For the functor List, the usual presentation is given by the identity id :∐
n<ω X

n −→ List. This presentation is not well based as, for example, the
list [x, x] has no injective representative; in fact the only representant for
such list is the function 2 −→ X with constant value x.

5.3. Equational coalgebraic logic 121

Thus not all presentations are well-based; however, canonical presentation are
well based.

Proposition 5.3.15. Canonical presentations are well based.

Proof. Consider (p, a : m −→ X), (q, b : n −→ X) in IElem(t). Let (f : k −→ m, g : k
−→ n) be a pullback of a and b. Since T preserves weak pullbacks and it is
standard, the following diagram

T (m) T (X)!!
T (a)

T (k) T (n)!! T (g)

"

"

T (f)

"

"

T (b)

is in fact a pullback. Therefore there exists r ∈ T (k) such that T (f)(r) =
p, T (g)(r) = q.

Now let in the above be m the smallest number such that there is (p, a : m
−→ X) with E(p, a) = t. Since b is injective so is f and then by the choice of m
we have that f must be iso. Hence we obtain g ◦ f−1 : m −→ n with a = b ◦ g ◦ f−1

and T (g ◦ f−1)(p) = q, in fact this is the only function with those two properties.
In other words, every t ∈ T (X) is represented by a basic element in the canonical
presentation.

The next remark highlights a more general result.

Remark 5.3.16. We actually proved a stronger statement: A presentation 〈Σ, E〉
is well-based if 1) it is injective, i.e. every t ∈ T (X) has a representative (p, a)
with a injective and 2) 〈Σ, E〉 is stable under pullbacks. Here we say that 〈Σ, E〉
is stable under pullbacks if whenever

m X!
b

k n!b′

"

a′

"

a

is a pullback and p(a) ≈T q(b), and r ∈ T (k) is such that T (a′)(r) = q and
T (b′)(r) = p then r ∈ Σk.

The next example illustrates basic representants.

Example 5.3.17. We consider canonical presentations.

1. For T = Pow, there is exactly one basic operation in each Pow(n), namely
the full set n.

122 Chapter 5. From Abstract to Concrete

2. For T = List, the basic operations in List(n) are those lists that contain
all elements of n (note that there are infinitely many basic operations of
arity n for each n > 0). For example, [0, 0] is a basic operation of arity 1
and [0, 0](x) is the list we would usually write as [x, x]. Since List preserves
inclusions, we have that [0, 0] is also an operation of arity 2, but it is not a
basic operation of arity 2.

The next proposition shows that whether (p, a) is basic or not does not depend
on a.

Proposition 5.3.18. Let 〈Σ, E〉 be an injective (standard) presentation of T .
For an operation p ∈ Σn, the following are equivalent.

1. There exists X and injective a : n −→ X such that (p, a) is a basic represen-
tant.

2. (p, idn) is a basic representant.

3. (p, a) is a basic representant for all X and all injective a : n −→ X.

Proof. We will prove (3)⇒(1)⇒(2)⇒(3). The first implication is trivial.
For (1)⇒(2), consider some set X and an injective a : n −→ X such that

(p, a) is basic for 〈Σ, E〉 . We want to show that (p, idn) is basic. Suppose that
(q, b) ∈ T (m) × nm with injective b : m −→ n represents the same element as
(p, idn), this element exists because 〈Σ, E〉 is injective. We want to find an arrow
f : n −→ m such that b ◦ f = idn and T (f)(p) = q. For this purpose notice that
(q, a ◦ b) represents the same element as (p, a) because

E(q, a ◦ b) = T (a ◦ b)(q) (〈Σ, E〉 is standard)
= T (a) ◦ T (b)(q) (functoriality)

= T (a) ◦ T (idn)(p) (assumption on (q, b))

= E(p, a). (〈Σ, E〉 is standard)

Therefore since (p, a) is basic there is a function f : n −→ m such that a ◦ b ◦ f = a
and T (f)(p) = q. This is the required arrow from (p, idn) to (q, b); it is unique
because (p, a) is basic, and b ◦ f = idn because a is injective.

For (2)⇒(3), assume (p, idn) is basic. We want to show (p, a) is also basic for
any injective a : n −→ X. Suppose (q, b) ∈ T (m)×Xm with injective b : m −→ X
represents the same element as (p, a). Let b′ : k −→ n be the pullback of b along
a, let a′ be the pullback of a along b. Since T preserves weak-pullbacks and T is
standard, the following diagram

T (m) T (X)!
b

T (k) T (n)!b′

"
a′

"
a

5.3. Equational coalgebraic logic 123

is a pullback. Since (p, a) and (q, b) represent the same element, by definition of
pullback, there is an element of r ∈ T (k) such that T (b′)(r) = p and T (a′)(r) = q.
Notice that (r, b′) represents the same element as (p, idn). Since the latter is basic
for 〈Σ, E〉 we have k = n and b′ iso. It follows that a′ ◦ b′−1 is the arrow from
(p, a) to (q, b) required to show that (p, a) is basic.

Any two basic representations (p, a : n −→ X), (q, b : m −→ X) of an element
t ∈ T (X) are isomorphic in IElem(t). In particular, we have n = m, and the
functions a and b define the same subset Img(a) = Img(b) of X. This gives us a
description of Base (Definition 5.3.1) in terms of presentations.

Proposition 5.3.19. Let T be a finitary endofunctor on Set and let t ∈ T (X).
Consider the canonical presentation 〈Σ, E〉 for T and a basic representant for t.
Denote the representant by (p, a) and write Img(a) for the image of a. Then the
image of a is the base of t, i.e. Img(a) = Base(t).

The next remark summarises what we will need below for our soundness and
completeness results.

Remark 5.3.20. If a presentation 〈Σ, E〉 is well-based then for every X and
every t ∈ T (X) there exists (p, a) ∈ Σn ×Xn such that (i) (p, a) represents t and
(ii) Img(a) = Base(t).

A nice property to have is that when all operations are basic.

Definition 5.3.21. A presentation 〈Σ, E〉 is basic if all p ∈ Σn are basic.

The next proposition shows that basic presentations are not rare.

Proposition 5.3.22. Every well-based presentation 〈Σ, E〉 contains a basic pre-
sentation 〈Σ′, E ′〉 in the sense that for each n we have Σ′

n ⊆ Σn.

Proof. We take
Σ′

n = {p ∈ Σn | p is basic}. (5.13)

The natural transformation

E ′ :
∐

Σ′
n × (−)n −→ T

is defined by restricting E to Σ′
n. To show that this gives a presentation we ought

to argue that E ′ is onto. For this purpose pick t ∈ T (X) and let (q, b : k −→ X) be
a representative of t. Since 〈Σ, E〉 is well-based we can assume that q is basic and
b is injective; but then, by definition, q ∈ Σ′

k. E
′ is well based by construction.

Example 5.3.23. If we apply the procedure described above to the canonical
presentation for Pow we obtain the standard presentation (see Example 5.1.2).

124 Chapter 5. From Abstract to Concrete

5.3.3 A completeness proof

Now we can present the axiomatic system for KT . The idea is to translate the
system M (Definition 5.3.7) into the logic of Moss liftings. Our first step is to
describe redistributions in terms of presentations.

Σlim redistributions

Using Lemma 5.1.10 we can present (slim) redistributions in terms of presentations.

Notation. Let 〈Σ, E〉 be a presentation of a functor T . We denote subsets of
Σ(X) with T but the elements of such set will be denoted by pairs (p, a). This is
to emphasise that (p, a) is a representant of an element in T (X).

Definition 5.3.24. Let 〈Σ, E〉 be a (standard) presentation of a functor T . A
Σ-redistribution of a set T ⊆ Σ(X) is an element (q,ψ) ∈ ΣP(X), say (q,ψ) ∈
Σn ×P(X)n, such that: for each (p, a) ∈ T there exists k < ω, r ∈ Σk, b : k −→ X
and ϕ : k −→ P(X) such that

r(b) ≈T p(a) ∧ r(ϕ) ≈T q(ψ) ∧ (∀i)(bi ∈ ϕi). (5.14)

Let |T | = {ai | (∃p) ((p, a) ∈ T)}, i.e. the set of variables used in T . A Σ-
redistribution (q,ψ) is slim if (1) n ≤ 2|T | and (2)

⋃
i∈n ψi ⊆ |T |. The set of slim

Σ-redistributions of T is denoted ΣRD(T). Slim Σ-redistributions are also called
Σlim redistributions.

We now explain the intuition behind Σlim redistributions. Recall that given a
presentation 〈Σ, E〉 we can think of the elements (p, a) ∈ Σn ×Xn as algebraic
terms, in the algebraic language given by Σ, using variables {ai | i ∈ n}. With
this in mind, EX(p, a) is then an equivalence class of terms. A Σ-redistribution
of a set T ⊆ Σ(X) is a term q(ψ) ∈ ΣP(X), i.e. a term that uses as variables
sets of variables in X, that allows us to rewrite each of the terms in T modulo
≈T . Now such a redistribution will be slim if we do not need to use more than
2|T | sets to do this rewriting, condition (1), and we do not use variables that were
not present in |T |, condition (2). In case T preserves finite sets, “Σlim” makes
sure that ΣRD(T) is finite if T is finite. To see this recall that since we assume al
presentations to be standard, Σn ⊆ T (n), the set of n-ary operation is finite and
since T is finite so is |T |.

The next remark explains the difference between Slim and Σlim redistributions.

Remark 5.3.25. To explain the difference between Slim and Σlim consider the

5.3. Equational coalgebraic logic 125

following diagram,

T (X) T (∈X)#
T (πX)

Σ(X) Σ(∈X)#Σ(πX)

"

EX

"

E∈X

T (P(X))!
T (πP(X))

Σ(P(X))!Σ(πP(X))

" "

EP(X)

(5.15)

This is Diagram (5.3) in Lemma 5.1.10 for the case R = ∈X . A ΣRD lives in the
upper row of this Diagram and has been defined so that it matches the notion of
redistribution in Definition 5.3.2 living in the lower row. More explicitly, if (q,ψ)
is Σ-redistribution of T ⊂ Σ(X) then EP(X)(q,ψ) is a redistribution of EX [T].
Nevertheless, whereas the concept of a Σ-redistribution is a direct rewriting of
the concept of redistribution, the concept of Σlim redistribution is not a direct
translation of the concept of Slim redistribution as in Definition 5.3.2. Σlim
redistributions are more restrictive than Slim redistributions in the sense that they
impose a finite bound in the search space for redistributions; Slim redistributions
require a finite set but they do not provide an specific bound. The equivalence
of the two notions will be the key step to prove completeness. As expected such
equivalence relies on properties of the presentation. We will show that if the
presentation is well-based both notions coincide.

The next examples illustrate Σ-redistributions and Σlim redistributions.

Example 5.3.26. Recall Example 5.1.8.

1. Consider the identity presentation of 1 + Id. The Σ-redistributions of a set
T ⊆ 1 + X can be described in the following cases: i) If T = {∗} then
then only redistribution is ∗ itself, it is in fact slim. ii) If ∗ /∈ T then a
redistribution is any super set of T ; the only slim redistribution is T itself. iii)
In any other case, i.e. {∗, x} ⊆ T for some x ∈ X, the set of redistributions
is empty.

2. For the List presentation of Pow the redistributions of a set T ⊆ List(X)
are all the lists Ψ = [ψ1, . . . ,ψn] of subsets of P(X) such that for each
[a1, . . . , am] ∈ T we have {a1, . . . , am} ⊆

⋃
ψi. The redistribution Ψ is slim

if
⋃
ψi ⊆ {ai | a ∈ T} and n ≤ 2|{ai|a∈T}|.

3. In the case of the canonical presentation of Pow, the redistributions of
a set T ⊆ Σ(X) are the pairs (q,ψ) such that for each (p, a) ∈ T we
have {ai | i ∈ p} ⊆

⋃
{ψj | j ∈ q}. The redistribution Ψ is slim if⋃

ψi ⊆ {ai | a ∈ T} and n ≤ 2|{ai|a∈T}|.

4. In the case of the canonical presentation for BN, the redistributions of a
set T ⊆ Σ(X) are the pairs (p,ψ) ∈ BN(n) × P(X)n such that for each

126 Chapter 5. From Abstract to Concrete

(p, a) ∈ T there exits a matrix (raij)1≤i≤n,1≤j≤m, such that ai %∈ ψj ⇒ raij = 0
and

∑
i r

a
ij = qj and

∑
j r

a
ij = pi.

The system KT

Now we can translate the axioms in Definition 5.3.7.
Using Σlim redistributions we can translate (∇1) as follows

(Σ1)
∧

{λp(a) | (p, a) ∈ T} ≤
∨

{λq(
∧

ψ) | (q,ψ) ∈ ΣRD(T)}.

where
∧
ψ is short for (

∧
ψ1 . . .

∧
ψn).

Axiom (Σ1) simplifies some, but not all aspects of (∇1). In particular, it
does not replace the notion of a redistribution in the sense of [69] by something
fundamentally simpler: Recall that a ΣRD lives in the upper row of Diagram
(5.15), on page 125, and has the notion of SRD lives in the lower row. One way
to understand our axiomatisation in general, and Axiom (Σ1), and Equation
(5.14) in particular, is as an implementation of the axiomatisation in [69] using
lists. Indeed, given a set T as in (∇1) or (Σ1), to apply the axiom we need a
join over a sufficiently large set of redistributions of T . Equation (5.14) tells us
how to compute this set using the equational theory ≈T . For such computational
purposes, one would not work with the canonical representation but rather with a
smaller one as e.g. given by List for the powerset in Example 5.1.2.

To translate (∇2) we introduce the dual concept of redistributions.

Definition 5.3.27. Let 〈Σ, E〉 be a (standard) presentation of a functor T . A
coredistribution of an element (q,ψ) ∈ ΣP(X) is an element (p, a) ∈ Σ(X) such
that there exists k < ω, r ∈ Σk, b : k −→ X and ϕ : k −→ PX such that

r(b) ≈T p(a) ∧ r(ϕ) ≈T q(ψ) ∧ (∀i)(bi ∈ ϕi).

with a injective. In other words, this means p(a)T (∈X)q(ψ). The set of coredis-
tributions of (q,ψ) is denoted CRD(q,ψ).

Now (∇2) can be written as follows:

(Σ2) λq(
∨

ψ) ≤
∨

{λp(a) | (p, a) ∈ CRD(q,ψ)}.

The next proposition gives sufficient conditions for the set of coredistributions
is finite.

Proposition 5.3.28. Let T be a finitary functor that preserves finite sets. Then
the set of coredistributions of an element (q,ψ) ∈ ΣP(X) is finite.

5.3. Equational coalgebraic logic 127

Proof. In [69] it was proven that if T is finitary and preserve finite sets there are
at most finitely many t ∈ T (X) such that tT (∈X)q(ψ). Since T preserves finite
sets and we assume presentation to be standard, there are only finitely many
operations of a given arity because Σn ⊆ T (n). Hence, since T is also finitary,
an element t ∈ T (X) has finitely many injective representants because the base
of t is finite. From all this we conclude that the set of coredistributions of (q,ψ)
should be finite.

One advantage of our equational axiomatisation is that the rule (∇0) reduces
to the standard congruence rule of equational logic.

Definition 5.3.29. Let 〈Σ, E〉 be a presentation of T . The derivation system KT ,
or just K, is given by the equational logic for 〈Σ, E〉 and the axioms Σ1 and Σ2
on top of a complete equational axiomatization for classical propositional logic.
The semantic consequence relation is denoted by ≤K.

In main result of this section is the soundness and completeness of the system:

Theorem 5.3.30. Let 〈Σ, E〉 be a well-based presentation of Tω. The system KT
is sound and complete for the logic of Moss liftings (KT , δE).

In order to prove this we need two lemmas relating SRD and T (∈X) to ΣRD
and CRD, respectively.

Lemma 5.3.31. Let 〈Σ, E〉 be a well-based presentation and let T ⊆ Σ(X) be
finite. For any Φ ∈ T P(X) the following conditions are equivalent:

1. Φ ∈ SRD(EX [T]).

2. There exists (q,ψ) ∈ ΣRD(T) such that EPX(q,ψ) = Φ.

In other words, slim redistributions and Σ-slim redistributions coincide for well-
based presentations.

Before proceeding to the proof recall (Remark 5.3.25) that Σ-redistributions
are just the inverse image of the set of redistributions (Definition 5.3.2) under E.
But Σlim redistributions, are in principle, not a direct translation of the concept of
Slim redistribution. The lemma above shows that if the presentation is well-based
then the two notions coincide.

Proof. Since 〈Σ, E〉 is well based, we can assume that each (p, a) ∈ T is a basic
representative of E(p, a).

From (1) to (2): Let Φ be a Slim redistribution of EX(T). We want to find a
a representant of Φ which is a Σlim redistribution of T . Since 〈Σ, E〉 is well-based
Φ has a basic representant (q,ψ) ∈ ΣP(X); this is the representant we are looking
for.

128 Chapter 5. From Abstract to Concrete

We now show that (q,ψ) is a Σ-redistribution of T . Since Φ is a redistribution
of EX [T] we have EX [T] ⊆ ∇'Φ; this means that for each (p, a) ∈ T we have
E(p, a)T (∈X)E(q,ψ). From this, by Lemma 5.1.10, there exists k < ω, r ∈ Σk,
b : k −→ X and ϕ : k −→ P(X) such that

r(b) ≈T p(a) ∧ r(ϕ) ≈T q(ψ) ∧ (∀i)(bi ∈ ϕi). (5.16)

This just means that (q,ψ) is a Σ-redistribution of T .
We now show that (q,ψ) is in fact a Σlim redistribution. Since Φ is a slim

redistribution of EX [T] we have

Φ ∈ TωPowω




⋃

(p,a)∈T

Base(E(p, a))



 .

Since (q,ψ) is a representant of Φ, by definition, (q,ψ) ∈ ΣPowω

(⋃
(p,a)∈T Base(E(p, a))

)
.

This implies
∀i ∈ dom(ψ) ψi ⊆

⋃

(p,a)∈T

Base(E(p, a)).

Since (p, a) is basic we have Base(E(p, a)) = {ai | i ∈ dom(a)}. From this we
conclude ⋃

i∈dom(ψ)

ψi ⊆ {ai | (p, a) ∈ T}

as required. It is only left to bound the arity of ψ, i.e. dom(ψ) ≤ 2|T |, but this
follows from the previous inclusion and the fact that ψ is injective because (q,ψ)
is basic.

From (2) to (1): Let (q,ψ) be a Σlim redistribution of T . We want to show
that E(q,ψ) is a Slim redistribution of E[T]. Let E(q,ψ) = Φ. Since (q,ψ) is
Σ-redistribution, by definition, Φ is a redistribution of EX [T], see Remark 5.3.25.

Now we show that it is in fact a slim redistribution in the sense of Definition
5.3.2. Since (q,ψ) is a slim Σ-redistribution we have

⋃
i∈dom(ψ) ψi ⊆ {ai | (p, a) ∈

T}; each ψi is finite because T is finite. Since each (p, a) is a basic representant
the right hand side of the inclusion can be replaced by

⋃
(p,a)∈T Base(E(p, a)),

then we can assume ψ to be a function as follows:

ψ : n −→ Powω




⋃

(p,a)∈T

Base(E(p, a))





In other words, Φ is a slim redistribution of EX [T].

In the case of coredistributions, using well based presentations, we have the
following result which is immediate from Lemma 5.1.10.

5.3. Equational coalgebraic logic 129

Lemma 5.3.32. Let 〈Σ, E〉 be a well-based presentation and let (q,ψ) ∈ ΣPX.
For each t ∈ T (X) the following are equivalent:

1. t T (∈X)EP(X)(q,ψ).

2. There exists (p, a) ∈ CRD(q,ψ) such that t = E(p, a).

Proof. Using Lemma 5.1.10 we can choose a representant (p, a) ∈ Σ(X) for t
satisfying the condition in Definition 5.3.27, i.e. an element (p, a) ∈ Σ(X) such
that EX(p, a) = t and there exists k < ω, r ∈ Σk, b : k −→ X and ϕ : k −→ PX
such that

r(b) ≈T p(a) ∧ r(ϕ) ≈T q(ψ) ∧ (∀i)(bi ∈ ϕi).

Since the presentation is well based we can assume this representant to be basic, and
in particular we can assume a to be injective, then we have (p, a) ∈ CRD(q,ψ).

Now we can prove Theorem 5.3.30.

Proof Theorem 5.3.30. We first fix the notation for the logics that will appear in
the argument. (K̄T , δ̄E) is the logic of Moss liftings (Definition 5.1.15); (M̄, ∇̄) is
the Moss logic (Definition 3.3.4); (KT , δE) is the logic of Moss liftings quotiented
by the system K (Definition 5.3.29); (M,∇) is the Moss logics quotiented by the
system M (Definition 5.3.10). More explicitly, KT maps an algebra A to the
algebra K̄T (A) quotiented by the congruence generated by the system K, i.e. it
is the functor described in Proposition 5.2.9 where the equations are all those in
the system K; write ≤K for the consequence relation of this system. Similarly, the
functor M maps and algebra A to the algebra M̄(A) = FTU(A) quotiented by
the congruence generated by the system M relativized to A, see Definition 5.3.10;
write ≤M for the consequence relation this of system.

We want to show that the logic (KT , δE) is complete. We will show this by
showing that each of the components of δE is injective; hence, by Proposition
5.2.16, the logic is complete.

It was shown in [69] that the logic (M,∇) is complete, hence, by Proposition
5.2.16, each of the components of the natural transformation ∇ : MP −→ PT
is injective. With this in mind, to prove that (δE)X : KT P (X) −→ PT (X) is
injective it is enough to define a one-step translation ν : (KT , δE) −→ (M,∇) for
which each of its components is injective. From this, by definition, we will have
δE = ∇ ◦ ν which will imply that (δE)X is injective.

Consider the following diagram of one step translations

(KT , δE) (M,∇)! !
ν

(K̄T , δ̄E) (M̄, ∇̄)!ν̄

""
qE

""
qM

(5.17)

130 Chapter 5. From Abstract to Concrete

The vertical arrows are the respective quotients. The upper horizontal arrow is the
one-step translation from Moss liftings into the Moss logic, see Corollary 5.1.19
and Theorem 5.2.17. The dotted arrow below is the one step translations we need
to prove completeness. Since KT and M are quotients of K̄T and M̄ ; using the
systems K and M, respectively. To define ν we prove that the derivation relations
≤K and ≤M are “equivalent”. The next claim makes this precise

Claim. If for each pair ϕ,ψ ∈ K̄T (A) we have

ϕ ≤K ψ iff ν̄(ϕ) ≤M ν̄(ψ) (5.18)

the there is a one step translation ν : (KT , δE) −→ (M,∇), as in Diagram 5.17.
Moreover each of the components of ν is injective.

Proof. We use the implication from left to right to define ν. We the implication
from right to left to show that each of components is injective.

We now show how to define ν : KT −→ M . The A-component νA : KT (A) −→
M(A) maps an equivalence class qE(ϕ) ∈ KT (A) to equivalence class qM (ν̄(ϕ)) ∈
M(A). We now show that this is well defined. Assume qE(ϕ) = qE(ψ), this
means ϕ ≤K ψ and ψ ≤K ϕ. From this, by the implication from left to right
in Equation (5.18), we conclude ν̄(ϕ) ≤M ν̄(ψ) and ν̄(ψ) ≤M ν̄(ϕ). This means
qM (ν̄(ϕ)) = qM (ν̄(ψ)). In other words, ν is well defined; clearly the assignation is
natural.

By construction ν : (KT , δE) −→ (M,∇) is a one step translation.
We now show for each algebra A the component νA : KT (A) −→ M(A) is

injective. Assume ν(qE(ϕ)) = ν(qE(ψ)). By definition of ν this equation means
qM(ν̄(ϕ)) = qM(ν̄(ψ)). By definition of qM the previous equation says that
ν̄(ϕ) ≤M ν̄(ψ) and ν̄(ψ) ≤M ν̄(ϕ). By the implication from right to left in
Equation (5.18) we conclude ϕ ≤K ψ and ψ ≤K ϕ, this means qE(ϕ) = qE(ψ). In
other words νA is injective.

This concludes the proof of the claim

We now proceed to prove Equation (5.18). We split the proof into two claims.

Claim. For each pair ϕ,ψ ∈ K̄T (A), if ϕ ≤K ψ then ν̄(ϕ) ≤M ν̄(ψ)

Proof. The proof goes by induction on the complexity of the derivation ϕ ≤K ψ.
A derivation on this system is a chain of inequalities ≤K where each of those is
either a boolean inequality valid on A, one of the axioms (Σ1) or (Σ2), or it s
derived from previous inqualities by substitution or transitivity rules.

Since ν̄A : KT (A) −→ M(A) is a homomorphism of boolean algebras it is
straightforward to show that the implication “if ϕ ≤K ψ then ν̄(ϕ) ≤M ν̄(ψ)”
holds for the case of the boolean axioms or the cases of the rules of substitution
and transitivity.

5.3. Equational coalgebraic logic 131

It is only left to show the cases where ϕ ≤K ψ is an instance of the axioms
(Σ1) and (Σ2). The implication will follow if we show that these translate into
instances of the axioms (∇1) and (∇2), respectively.

We now that the axiom (Σ1) translates into an instance of (∇1). The left
hand side of Axiom (Σ1) is translated as follows:

ν̄
(∧

{λp(a) | (p, a) ∈ T}
)
=

∧
{ν̄(λp(a)) | (p, a) ∈ T} (ν̄ is a morphism in BA)

=
∧

{∇EA(p, a) | (p, a) ∈ T} (Definition ν̄)

=
∧

{∇t | t ∈ EA[T]}. (Definition EA[T])

The last line has the shape of the left side of axiom (∇1). Hence, it is now enough
to show that for the right hand side of (Σ1) we obtain

ν̄
(∨

{λq(
∧

ψ) | (q,ψ) ∈ ΣRD(T)}
)
=

∨
{∇T (

∧
)Φ |Φ ∈ SRD(EA[T])}

This is done as follows

ν̄
(∨

{λq(
∧

ψ) | (q,ψ) ∈ ΣRD(T)}
)
=

=
∨

{ν̄(λq(
∧

ψ)) | (q,ψ) ∈ ΣRD(T)} (ν̄ is a morphism in BA)

=
∨

{∇EA(q,
∧

ψ) | (q,ψ) ∈ ΣRD(T)} (Definition of ν̄)

=
∨

{∇EAΣ(
∧

)(q,ψ) | (q,ψ) ∈ ΣRD(T)} (Defininition Σ)

=
∨

{∇T (
∧

)EP(A)(q,ψ) | (q,ψ) ∈ ΣRD(T)} (Naturality ofE)

=
∨

{∇T (
∧

)Φ |Φ ∈ SRD(EA[T])} (Lemma 5.3.31)

This concludes the case for (Σ1) as it shows that it is translated into an instance
of axiom (∇1).

We now show that the axiom (Σ2) translates into an instance of the axiom
(∇2). The left hand side of (Σ2) is translated into

ν̄(λq(
∨

ψ)) = ∇EX(q,
∨

ψ) (Definition ν̄)

= ∇EAΣ(
∨

)(q,ψ) (Definition Σ)

= ∇T (
∨

)EP(A)(q,ψ). (Naturality of E)

The last line is the left hand side of axiom (∇2). Now it is enough to show
that the right hand side of axiom (Σ2) is

ν̄
(∨

{λp(a) | (p, a) ∈ CRD(q,ψ)}
)
=

∨
{∇t | t T (∈X)EP(X)(q,ψ)}

132 Chapter 5. From Abstract to Concrete

This is seen as follows:

ν̄

(∨
{λp(a) | (p, a) ∈ CRD(q,ψ)}

)
=

=
∨

{ν̄(λp(a)) | (p, a) ∈ CRD(q,ψ)} (ν̄ is a Boolean morphism)

=
∨

{∇EA(p, a) | (p, a) ∈ CRD(q,ψ)} (Definition of ν̄)

=
∨

{∇t | t T (∈A)EP(A)(q,ψ)} (Lemma 5.3.32)

This concludes the the proof of the claim.

We now prove the implication from right to left.

Claim. For each pair ϕ,ψ ∈ K̄T (A), if ν̄(ϕ) ≤M ν̄(ψ) then ϕ ≤K ψ.

Proof. The proof goes by induction on the complexity of the derivation ν̄(ϕ) ≤M

ν̄(ψ). A derivation on this system is a chain of inequalities ≤M where each of
those is either an instance of a boolean inequality valid on A, an instance of the
rule (∇0), an instance of the axioms (∇1) and (∇2), or is derived by previous
inqualities by substitution or transitivity rules.

For the axioms (∇1) and (∇2) we show that they are instances of translations
of the axioms (Σ1) and (Σ2), respectively.

For the axiom (∇1), i.e.
∧
{∇t | t ∈ T} ≤M

∨
{∇T (

∧
)Φ | Φ ∈ SRD(T)}, for

each t ∈ T choose a representant (pt, at) of t, let Tr be the set of those representants.
From the work done defining ν it is immediate that the inequality above is obtained
from

∧
{λpt(at) | (pt, at) ∈ Tr} ≤

∨
{λq(

∧
ψ) | (q,ψ) ∈ ΣRD(Tr)}, an instance of

axiom (Σ1), by applying ν̄.
For the axiom (∇2), i.e. ∇T (

∨
)Φ ≤M

∨
{∇t | t T (∈)Φ}, choose a represen-

tant (q,ψ) of Φ. From the work done in the definition of ν it is clear that this
inequality is obtained by translating λq(

∨
ψ) ≤

∨
{λp(a) | (p, a) ∈ CRD(q,ψ)}.

For an instance of rule (∇0) we have the following situation. First recall
that for an n-ary Moss lifting λp we have ν̄(!p(a)) = ∇EA(p, a), where !p is
the modality associated with λp, and E : Σ −→ T is the natural transformation
associated with the presentation.

Since we assume ν̄(ϕ) ≤M ν̄(ψ) is an instance of (∇0), we must have ν̄(ϕ) = ∇t
and ν̄(ψ) = ∇t′ for some t, t′ ∈ T (A). Hence, since the component of E are onto,
there exists (p, a), (q, b) ∈ KT (A) such that ϕ = !p(a) and ψ = !q(b). In
particular we observe that EA(p, a)T (≤A)EA(q, b). From here, by Lemma 5.1.10,
there there exists k < ω, r ∈ Σk, a′ : k −→ A, and b′ : k −→ A such that
EA(r, a′) = EA(p, a), EA(r, b′) = EA(q, b), and (∀i ∈ k)(a′i ≤A b′i). The important

5.4. Conclusions 133

observation here is that the inequalities a′i ≤A b′i are inequalities in A hence by
substitution, in the system K, we obtain !r(a′) ≤K !r(b′). From here we conclude

!p(a) ∼=T !r(a
′) ≤K !r(b

′) ∼=T !q(b).

This finishes the case for (∇0).

We now detail the inductive case where ν̄(ϕ) ≤M ν̄(ψ) has been deduced
by transitivity from ν̄(ϕ) ≤M γ and γ ≤M ν̄(ψ), where γ ∈ M(A). The key
observation here is that ν̄A : KT (A) −→ M(A) is onto, this holds because ν̄A =
F (EU(A)) and since F is left adjoint it preserves coequalizers (surjections). Thus we
can assume γ = ν̄(γ′). We can then apply inductive hypotheses to ν̄(ϕ) ≤M ν̄(γ′)
and ν̄(γ′) ≤M ν̄(ψ) and obtain ϕ ≤K γ′ and γ′ ≤K ψ. From here, by transitivity,
we conclude ϕ ≤K ψ.

This concludes the proof of the claim.

This concludes the proof of the theorem

5.4 Conclusions

In this chapter, we have illustrated various uses of presentations of functors. A key
development is the introduction of Moss liftings, Section 5.1.1. These predicate
liftings are distinguished among all predicate liftings because they are always
translatable into the Moss logic.

Using the structural properties of the base category and the presentation of the
logic of all predicate liftings, we proved a first representation theorem (Theorem
5.2.2) stating that any coalgebraic modal logic can be translated into the logic of
predicate liftings.

Presentations of functors over varieties, lead us to the concept of canonical
signature (Definition 5.2.5). Using these, we transmuted such observation into a
second representation theorem (Theorem 5.2.17) showing that every coalgebraic
modal logic is a rank 1 axiomatization of a a logic of predicate liftings.

We finished by using presentations of the functor of the Moss logic to develop a
sound and complete axiomatization of Moss liftings (Theorem 5.3.30). An impor-
tant technical development here was the introduction of well-based presentation
and basic operation Definition 5.3.13.

Presentations of functors as introduced here are related to the so-called analyt-
ical functors, introduced by A. Joyal [63]. Roughly speaking an analytic functor
is a quotient of a polynomial functor where we also consider permutations of
the operations. Perhaps we could use analytical functors to describe axiomatic
systems beyond rank-1. More research in the subject is needed.

Part II

Coalgebraic Modal Logics at
Work

135

Chapter 6

Describing Behavioural Equivalence:
three sides of one coin

One of the most important contributions of universal coalgebra is the employment,
for different purposes, of final coalgebras. Among those we have: final coalgebras
provide a canonical solution to the domain equationX ∼= T (X) [2], final coalgebras
can be used to formalise the notions of proof and definition by coinduction [96],
and final coalgebras characterise behavioural equivalent states in a canonical
manner (Proposition 2.2.5). Elaborating this last point, we could even say that
the behaviour of a state in a coalgebra is its image into the final coalgebra. Hence,
a very important insight is that we can use final coalgebras to formalise the vague,
yet intuitive, notion of behaviour. But this is not the only way to formalise the
notion of behaviour. As we saw, we can also use logics for coalgebras to describe
the behaviour of a state in a coalgebra. This bipolarity is the moving force of this
chapter.

This chapter is about the relationship between final coalgebras and logics for
coalgebras. The key conceptual contribution here is to realise that this affair is
based on how we represent behavioural equivalence inside a category of coalgebras.
The key insight of this chapter, is that, in harmony with Part I, in such issues
the structural properties of the base category, of the coalgebras in this case, play
crucial role.

The main contribution of this chapter is to further develop a systematic study
of the relationship between the following three characterisations of behavioural
equivalence:

• a structural characterisation using final coalgebras.

• a logical characterisation using coalgebraic languages.

• a structural characterisation using congruences obtained from coalgebraic
languages; we call those logical congruences

137

138 Chapter 6. Describing Behavioural Equivalence: three sides of one coin

The relationship between the first two items was somehow expected but nobody
before Goldblatt [42] had made it explicit in the general case. The relation with
the third item is a bit less known; Schröder [99] implicitly uses this third repre-
sentation for the case of logics of predicate liftings.

We work in a general framework that covers all known logics for set coalgebras
and easily generalizes to base categories different from the category Set. Our main
theorem (Theorem 6.4.1) can be stated as follows:

Given a set functor T , a final T -coalgebra exists iff there exists a
language for T -coalgebras with the Hennessy-Milner property iff there
exists a language for T -coalgebras that has logical congruences.

An important point to note here is that no conditions on the functor, whatsoever,
are required. The equivalences entirely depend on the properties of the base
category.

We provide relatively simple, and transparent, proofs for these equivalences in
order to obtain our main theorem. In particular,

1. we simplify Goldblatt’s proof,

2. generalize Schröder’s argument, and in addition to that,

3. we use our framework to construct canonical models and characterise simple
coalgebras by logical means.

Furthermore we demonstrate that our proofs allow for straightforward generaliza-
tions to base categories different from the category Set.

The standard construction of final coalgebras is via the terminal sequence,
see e.g. [112, 88]; a concept that requires quite a bit of knowledge of category
theory and can become very technical. Our work here can also be seen as an
alternative to this construction. As we will later see, this change of view can be
used to illustrate several well-known constructions from modal logic and universal
coalgebra itself.

The structure of the chapter is as follows: In the next section, Section 6.1,
we introduce abstract coalgebraic languages; present an elementary construction of
final coalgebras. We finish by applying the material to construct canonical models.
In Section 6.2 we discuss the connection between coalgebraic congruences and
the Hennessy-Milner property; we apply these techniques to characterise simple
coalgebras. In Section 6.3 we build up on the previous section and discuss how
by using coalgebraic congruences we can see the Hennessy-Milner property of a
language as a solution set condition; a concept familiar in category theory. We
use this to prove the oldest theorem on the existence of final coalgebras (Theorem

6.1. An elementary construction of final coalgebras 139

6.3.5). Section 6.4 summarises the results in the previous sections. Finally, in
Section 6.5 we explore generalizations of our work to other base categories. For
this last section more knowledge of category theory is assumed.

6.1 An elementary construction of final coalge-
bras

We begin our journey by presenting a construction of final coalgebras using the
formulas of a language for coalgebras. In the tradition of abstract model theory,
languages are regarded just as sets and theories as subsets of those. Using this
perspective, Goldblatt [42] explicitly showed how to construct a final coalgebra
from a language with the Hennessy-Milner property. His construction relied
on several properties of categories of coalgebras over Set e.g. congruences and
the axiom of choice1. In this section we present the same idea in a much more
elementary fashion using just “basic” set theory. We begin by introducing abstract
coalgebraic languages.

Abstract coalgebraic languages

Abstract coalgebraic languages are “languages” where we do not take any algebraic
structure into consideration; in principle they are just sets. This generality will
allow us to present a very elementary construction of final coalgebras. Unless
explicitly stated, we will work with functors on Set.

Definition 6.1.1. An abstract coalgebraic language for T -coalgebras, or simply a
language for T -coalgebras, is a set L together with a function Φξ : X −→ P(L) for
each T -coalgebra ξ : X −→ T (X). The function Φξ will be called the theory map
of ξ, elements of P(L) will be called L-theories. An abstract coalgebraic language
will be denoted as a pair (L,Φ).

Abstract coalgebraic languages were considered by Goldblatt in [42] under the
name of “small logic”. The next example presents basic modal logic as an abstract
coalgebraic language.

Example 6.1.2. Let T = Pow be the covariant power set functor. Recall that
the category of Pow-coalgebras is isomorphic to the category of Kripke frames
and bounded morphisms.

Let L be the set of closed modal formulas of the basic similarity type (see [20]
for details). For an arbitrary Pow-coalgebra ξ : X −→ Pow(X) we define Φξ : X
−→ P(L) to be the “modal theory map”, i.e., the function which maps a state
x ∈ X to the set of formulas ϕ ∈ L such that ξ, x |= ϕ.

1The axiom of choice corresponds to the following property of categories. Every epimorphism
has a right inverse.

140 Chapter 6. Describing Behavioural Equivalence: three sides of one coin

The set L together with the family {Φξ}ξ∈Coalg(Pow) is an abstract coalgebraic
language for Pow.

Notice that this L is also an abstract coalgebraic language for T = Powω-
coalgebras, i.e. finite image Kripke Frames.

More generally, every coalgebraic modal logic, as in Chapter 3, induces an
abstract coalgebraic language.

Example 6.1.3. Every coalgebraic logic (L, δ), over a category of power set
algebras, for a functor T , as in Definition 3.2.13, induces an abstract coalgebraic
language. The language is given by the carrier of the initial L-algebra (I, ι).

In order to see this, first recall that using δ : LP −→ PT we can assign to each
T -coalgebra (X, ξ) its complex, or dual, L-algebra given by (P (X), P (ξ) ◦ δX),
see Fact 3.2.4. Now remember that the semantics of formulas on a coalgebra
(X, ξ) is given by the initial morphism [[−]]ξ : (I, ι) −→ (P (X), P (ξ) ◦ δX). Since in
categories of power set algebras P = UP , this morphism is given by a homonymous
function [[−]]ξ : I −→ P(X); the P-transpose of which gives the theory map Φξ : X
−→ P(I).

Notice that as mentioned in Chapter 3, Remark 3.2.2, the elements of the
abstract coalgebraic language in the previous example are not “formulas” in the
usual sense but equivalence classes of formulas.

The next remark elaborates the previous example to argue why we would like
to seek a more categorical treatment for abstract coalgebraic languages.

Remark 6.1.4. The previous example illustrates that the framework of coalge-
braic modal logics over categories of power set algebras precisely fits the modal
theoretical tradition of considering languages as sets and theories of subsets of
those. However, if we would want to go further, e.g. considering coalgebraic modal
logics as in Definition 3.2.22, the use of the powersets becomes uncomfortable. For
example, from the categorical perspective, once we change the category of algebras
A it is quite natural to also change Set. For example, if we take A = DL we would
like to consider coalgebras over Pos instead of over Set. Then somehow, we ought
to replace the functor P : Setop −→ Set by an appropriate functor Posop −→ Pos.
Hence the language of these logics does not conformably fit in the framework
of Definition 6.1.1. In Section 6.5 we investigate how we could overcome such
difficulties.

As mentioned before, we are interested in describing behavioural equivalence
of states. To do this we have two requirements on the language, which together
lead to what sometimes is called expressivity:

1) Adequacy: the truth of formulas must be invariant under coalgebra mor-
phisms.

2) Hennessy-Milner property: the language must distinguish states that are
not behaviourally equivalent.

More formally we state the following definition.

6.1. An elementary construction of final coalgebras 141

Definition 6.1.5. An abstract coalgebraic language L for T -coalgebras is said
to be adequate if for every pair of pointed T -coalgebras (see Definition 2.1.1)
(ξ1, x1) and (ξ2, x2),

x1 ∼ x2 implies Φξ1(x1) = Φξ2(x2).

The language L is said to have the Hennessy-Milner property if for every pair of
pointed T -coalgebras (ξ1, x1) and (ξ2, x2),

Φξ1(x1) = Φξ2(x2) implies x1 ∼ x2.

The language L is said to be expressive if it is adequate and has the Hennessy-
Milner property.

Example 6.1.6. Let T be a set functor.

1. The Moss language for T (Definition 3.3.1) is expressive [84] for any category
of power set algebras.

2. Every language of predicate liftings (Definition 3.1.5) is adequate but might
not have the Hennessy-Milner property e.g. basic modal logic for all Kripke
frames.

3. The language of all finitary predicate liftings for a finitary functor is expres-
sive. In general, for a κ-accessible functor T (Definition 2.1.5), the language
of of all predicate liftings (Definition 3.1.5), for T , of arity less than κ and
conjunctions bounded by κ is expressive [99].

The reader may worry that the definition of adequacy was not presented as
“the truth of formulas are invariant under morphisms”. The definition above comes
from a tradition in modal logic where bisimilar states should satisfy the same
formulas, in the category Set both presentations are equivalent.

Proposition 6.1.7. Let T be a set endofunctor and (L,Φ) an abstract coalgebraic
language for T -coalgebras. The language L is adequate iff the truth of formulas
is invariant under coalgebra morphisms, i.e. if f : ξ1 −→ ξ2 is a morphism of
coalgebras then the following diagram commutes:

X1 X2
!f

P(L)

Φξ1
%
%
%%&

Φξ2
'

'
''(

Proof. If the language is adequate then the truth of formulas is invariant under
coalgebra morphism because x ∼ f(x) for every coalgebra morphism f .

142 Chapter 6. Describing Behavioural Equivalence: three sides of one coin

Assume now that the truth of formulas is invariant under coalgebra morphisms.
We want to show that if states x1 and x2 in coalgebras ξ1 and ξ2, respectively, are
behaviourally equivalent states then Φξ1(x1) = Φξ1(x1); i.e. they satisfy the same
formulas.

Since the states are behaviourally equivalent, there exists a coalgebra (Y, γ)
and coalgebra morphisms fi : ξi −→ γ, (i = 1,2), such that f1(x1) = f2(x2). Since
formulas are invariant under coalgebra morphisms we have

Φξ1(x1) = Φγ(f1(x1)) = Φγ(f2(x2)) = Φξ2(x2).

as we wanted to show.

Using the previous proposition we can show that the language induced coalge-
braic modal logic (Example 6.1.3) is adequate.

Example 6.1.8. The abstract coalgebraic language induced by a coalgebraic
modal logic (L, δ), see Example 6.1.3, is adequate. In Proposition 3.2.23 we
showed that the interpretation of (L, δ)-formulas is invariant under coalgebra
morphisms. This means that for every morphism of coalgebras f : ξ1 −→ ξ2 the
diagram on the left

P(X1) P(X2)# P(f)

I

[[−]]ξ1
%

%
%%)

[[−]]ξ2
'
'
''*

X1 X2
!f

P(I)

Φξ1
%
%
%%&

Φξ2
'

'
''(

commutes. Let Φξi be the transpose of [[−]]ξi . By properties of adjoints (Lemma
A.1.3, item 3) the diagram on the left commutes iff the diagram on the right
commutes. This implies that the language (I,Φ) is adequate.

If the components of the mate of δ : LP −→ PT are injective then the language
also has the Hennessy-Milner property (Proposition 3.2.25).

The next remark elaborates on the previous proposition.

Remark 6.1.9. The previous proposition deserves some comments particularly
relevant for the reader interested in categorical generalizations. First notice that
the previous proposition provides a pointless definition of adequacy, i.e. this
definition can be used in any base category C. With this in mind, the categorically
minded reader would recognise a natural transformation Φ : U −→ ∆P(L), where
U : Coalg(T) −→ C is the forgetful functor. This is also equivalently to the
existence of a functor Φ : Coalg(T) −→ (U ↓ P(L)), where the codomain of Φ is
the appropriate comma category.

6.1. An elementary construction of final coalgebras 143

An elementary construction of final coalgebras

In this section we present an elementary construction of final coalgebras. This
section is intended for readers not very familiar with category theory and just
basic knowledge of coalgebras. We try to present the construction in detail using
very elementary techniques. The reader more familiar with category theory or coal-
gebra might want to skip to Section 6.2 where we use congruences of coalgebras to
construct final coalgebras. Using congruences is particularly interesting because it
presents the Hennessy-Milner property as a solution set condition and then the con-
struction of final coalgebras as very simple result from the categorical point of view.

Recall that we said that we can use the states of the final coalgebra to describe
the behaviour of a sate in a coalgebra. Since languages are just sets, we can
rephrase this by saying that the states of a final coalgebra give an expressive
language for coalgebras.

Theorem 6.1.10 ([42]). For any functor T : Set −→ Set, if there exists a final
coalgebra then there exists an expressive language for T -coalgebras.

Proof. Let (Z, ζ) be a final coalgebra, and call fξ be the final map for a coalgebra
ξ. Take L = Z and for each coalgebra (X, ξ) define Φξ(x) = {fξ(x)}. Since
(Z, ζ) is final this abstract language together with the maps Φξ, defined above, is
adequate and has the Hennessy-Milner property.

At a first glance the language above might seem unnatural. However, this
language is essentially the language of coequations in [5, 104]. Here is a concrete
example.

Example 6.1.11. Let T = 1 + (−). A final coalgebra for T is given by the
set N = N ∪ {∞} together with a function p : N −→ 1 + N defined as follows
p(0) = ∗; p(n + 1) = n; p(∞) = ∞, where ∗ is the only element of 1. This
presentation of the final coalgebra for T contains all the information about the
observable behaviour of a state in a T -coalgebra as a state can only either lead
the machine to stop after n steps or let the machine run forever.

We now proceed to the main theorem of this section. Informally speaking, the
main result is the explicit construction of a final coalgebra from an expressive
abstract coalgebraic language. The theorem itself was first stated in [42] but we
will give a new simpler proof.

Theorem 6.1.12 ([42]). For any functor T : Set −→ Set, if there exists an
expressive abstract coalgebraic language for T -coalgebras then there exists a final
coalgebra.

We make some observations and describe the construction before presenting
the proof. The following are the main features of our construction:

144 Chapter 6. Describing Behavioural Equivalence: three sides of one coin

• the first key idea is to notice that if we have a language for T -coalgebras,
we can identify a concrete set (object) Z which is a natural candidate for
the carrier of a final coalgebra.

• The second observation is that for each coalgebra (X, ξ) there is a natural
map X −→ T (Z).

• The final observation is: should the language be adequate and have the
Hennessy-Milner property then we can combine these functions into a func-
tion ζ : Z −→ T (Z) which endows Z with the structure of a final T -coalgebra.

Moreover, using this approach we can show that the function ζ exists if and only
if the language has the Hennessy-Milner property.

When we try to characterise behavioural equivalence, there are two sides
to one coin. On the one side, Proposition 2.2.5 tells us that final coalgebras
characterise behavioural equivalence. On the other side, if a language is expressive,
the satisfiable theories characterise behavioural equivalence. Hence, a natural
candidate for the carrier of a final coalgebra is the set of satisfiable theories of the
language.

Definition 6.1.13. Given a functor T : Set −→ Set and an abstract coalgebraic
language (L,Φ) for T -coalgebras, the set ZL of L-satisfiable theories is the set

ZL = {Ψ ⊆ L | (∃ξ)(∃x ∈ ξ)(Φξ(x) = Ψ)},

where x ∈ ξ means that x belongs to the state space of ξ. We often drop the
subindex L to simplify our notation.

Clearly the set of satisfiable theories exists for any language. Moreover, notice
that if the language would be expressive then the theory Φξ(x) would be the
behaviour of the state x in the coalgebra ξ. Laying this aside of the intuition
on final coalgebras are a mean to characterise the behaviour of coalgebras, we
conclude that the set ZL is (up to isomorphisms) the only natural choice for the
carrier of a final coalgebra. As we will later show, the properties of adequacy and
Hennessy-Milner ensure this to work.

Remark 6.1.14. The reader might worry that in the definition of ZL we quantify
over all coalgebras and all states on them. Hence, we might not be defining a set
but a proper class. This is not an issue as we required the language L to be a
set and obviously ZL ⊆ P(L). In other words, using the axiom of replacement we
make ZL into a set.

Now we describe the construction needed to prove Theorem 6.1.12.

6.1. An elementary construction of final coalgebras 145

First notice that for each coalgebra ξ : X −→ T (X) there is a canonical map
fξ : X −→ ZL obtained by restricting the codomain of Φξ : X −→ P(L). This
restriction is possible as the range of Φξ is clearly contained in ZL. In the following,
to simplify our notation, we will drop the subindex L, i.e. we write Z instead of
ZL. Using fξ, we see that for each coalgebra (X, ξ) there is a natural function
from X to T (Z), namely the lower path in the following square

T (X) T (Z)!
T (fξ)

X Z!fξ

"
ξ

(6.1)

i.e T (fξ) ◦ ξ. This suggests the following assignment ζ : Z −→ T (Z):

a theory fξ(x) = Φξ(x) ∈ Z is assigned to

ζ(Φξ(x)) := T (fξ) ◦ ξ(x). (6.2)

Since in general we may have Φξ1(x1) = Φξ2(x2) for different pointed coalgebras
(ξ1, x1) and (ξ2, x2) it is not immediate that Equation (6.2) defines a function. We
now show that this is indeed the case if the language is adequate and has the
Hennessy-Milner property. We prove this in two steps whose illustrate that both
conditions are really needed.

First we show that ζ, as defined in Equation (6.2), is well defined if the states
are related by a coalgebra morphism. The next lemma states this formally.

Lemma 6.1.15. Let (L,Φ) be an adequate language for T -coalgebras. For any
morphism f : ξ −→ γ we have:

T (fξ) ◦ ξ = T (fγ) ◦ γ ◦ f,

where fξ and fγ are obtained from the respective theory maps by restricting the
codomain, as described above.

Proof. To simplify the notation, we write Z for the set of L-satisfiable theories.

146 Chapter 6. Describing Behavioural Equivalence: three sides of one coin

The situation is depicted in the following diagram

X Y!f

Z

fξ
%
%
%
%%&

fγ
'

'
'

''(

T (X) T (Y)!T (f)

T (Z)

T (fξ)
%
%
%
%%&

T (fγ)
'

'
'

''(

"

ξ

"

γ

"

ζ

The equation in the statement of the lemma says that the pentagon in the back
commutes. Since L is adequate, the upper triangle commutes; therefore, since
T is a functor, the lower triangle commutes, i.e. T (fγ) ◦ T (f) = T (fξ). Now
notice that the back rectangle commutes because f is a morphism of T -coalgebras.
Chasing around the diagram we obtain:

T (fγ) ◦ γ ◦ f = T (fγ) ◦ T (f) ◦ ξ (f is a coalgebra morph.)

= T (fξ) ◦ ξ. (lower triangle)

This concludes the proof.

We can now show that if in addition to adequacy L has the Hennessy-Milner
property, Equation (6.2) defines a function ζ : Z −→ T (Z). In fact, these two
conditions are equivalent.

Theorem 6.1.16. Let T be a set functor, let (L,Φ) be an adequate language for
T -coalgebras, let ZL be the set of L-satisfiable theories, and let fξ : X −→ ZL be
the function obtained from a theory map Φξ by restricting the codomain.

The following are equivalent:

1. The language (L,Φ) has the Hennessy-Milner property.

2. The assignment ζ which takes an L-theory Ψ = Φξ(x) ∈ ZL to T (fξ)ξ(x)
does not depend on the choice of (ξ, x), i.e. Equation (6.2) defines a function
ζ : ZL −→ T (ZL).

Proof. From top to bottom: Assume we have Φξ1(x1) = Φξ2(x2). Since L
has the Hennessy-Milner property there exists a coalgebra (Y, γ) and morphisms
f1 : ξ1 −→ γ and f2 : ξ2 −→ γ such that f1(x1) = f2(x2). This combined with the

6.1. An elementary construction of final coalgebras 147

adequacy of L and the previous lemma implies

ζ(Φξ1(x1)) = T (fξ1)ξ1(x1)

= T (fγ)γf1(x1) (previous lemma)

= T (fγ)γf2(x2) (f1(x1) = f2(x2))

= T (fξ2)ξ2(x2) (previous lemma)

= ζ(Φξ2(x2)).

This precisely states that ζ does not depend on the choice of (ξ, x); i.e ζ defines a
function.

From bottom to top: Assume ζ does not depend on the representant (ξ, x);
i.e. we have a function ζ : ZL −→ T (ZL). We have to show that L has the
Hennessy-Milner property. It is immediate by construction of ζ, that for each
coalgebra ξ the function fξ is a coalgebra morphism from ξ to ζ. Moreover, any
two states that are logically equivalent will be identified by the corresponding
theory maps therefore also by the respective fξ maps. Hence, logically equivalent
states are behaviourally equivalent.

As mentioned in the previous proof, for each coalgebra ξ the function fξ : X
−→ ZL is a morphism between the coalgebras ξ and ζ. We make this explicit as it
will be used it in the proof of Theorem 6.1.12.

Corollary 6.1.17. Let T be a set functor, let (L,Φ) be an expressive language
for T -coalgebras, let ZL be the set of L-satisfiable theories, and let fξ : X −→ ZL
be the function obtained from a theory map Φξ by restricting the domain.

For any coalgebra ξ, the function fξ : ξ −→ ζ is a morphism of coalgebras.

This corollary already implies that a final coalgebra exists; it can be obtained
by quotient ζ modulo bisimilarity (see [96]). However, we can directly show that
(Z, ζ) is a final object without having to go into the details of congruences; i.e.
our construction is simpler.

We now prove a technical lemma which we will use in the proof of Theorem
6.1.12 and in our application to canonical models.

Lemma 6.1.18. Let T : Set −→ Set be a functor and let (L,Φ) be an expressive
language for T -coalgebras. Let Z be the set of satisfiable L-theories and let ζ : Z
−→ T (Z) be the coalgebra defined by Equation (6.2).

The theory map Φζ : Z −→ P(L) is the inclusion.

Proof. The idea is to show that there exists a coalgebra (Y, γ) such that the
function fγ : Y −→ Z is onto. From this, since L is adequate we conclude
iZfγ = Φγ = Φζfγ and then, because fγ is onto, iZ = Φζ .

We now show how to construct (Y, γ). For each element Ψ ∈ Z choose a T -
coalgebra (XΨ, ξΨ) and a state x ∈ XΨ such that ΦξΨ(x) = Ψ. The coalgebra (Y, γ)

148 Chapter 6. Describing Behavioural Equivalence: three sides of one coin

is given by the coproduct of all these coalgebras, i.e. (Y, γ) =
∐

Ψ∈Z(XΨ, ξΨ) in
Coalg(T). Since L is adequate and each of the coproduct inclusions is a morphism
of coalgebras, we conclude that the image of Φγ : Y −→ P(L) is Z.

This finishes the description of the construction. Now we have all the material
to prove Theorem 6.1.12.

Proof of Theorem 6.1.12. Let Z be the set of L-satisfiable theories, and let Φξ : X
−→ P(L) be the theory map for a coalgebra (X, ξ). Let fξ : X −→ Z be the
function obtained by restricting the codomain of Φξ. Theorem 6.1.16 implies that
the assignment ζ which takes a theory Φξ(x) ∈ Z to T (fξ)ξ(x) does not depend
on the choice of (ξ, x), i.e., it is a function ζ : Z −→ T (Z). Corollary 6.1.17 implies
that for each coalgebra ξ the function fξ : ξ −→ ζ is a morphism of coalgebras.

It is only left to show that fξ : ξ −→ ζ is the only morphism of coalgebras. Since
the language is adequate, this will follow because any morphism of coalgebras
f : ξ −→ ζ makes the following diagram

X Z!f

P(L)

Φξ
%
%%&

Φζ
'

''(

(

commute; in particular fξ makes the diagram commute. Therefore for every
coalgebra morphism f : ξ −→ ζ we have Φζ ◦ f = Φξ = Φζ ◦ fξ. Hence since Φζ is
injective, Lemma 6.1.18, we conclude f = fξ.

Gathering Theorem 6.1.10 and Theorem 6.1.12 we have:

Corollary 6.1.19. For any functor T : Set −→ Set the following are equivalent:

1. There exists a final T -coalgebra.

2. There exists an expressive language for T -coalgebras.

As an illustration, consider the contrapositive of previous result. If a functor T
fails to have a final coalgebra there is no way to completely describe the behaviour
of T -coalgebras using any language for which the collection of formulas forms a
set. Also notice that the proof of Theorem 6.1.12 tells us a bit more about the
relation of final coalgebras and abstract coalgebraic languages; we can fine tune
Theorem 6.1.16 as follows.

Theorem 6.1.20. Let (L,Φ) be a language for T -coalgebras, let Z be the set of
L-satisfiable theories. Let fξ be the function obtained from the theory map Φξ by
restricting the codomain.

The following are equivalent:

1. The language L is adequate and has the Hennessy-Milner property.

6.1. An elementary construction of final coalgebras 149

2. There exists a function ζ : Z −→ T (Z) which furnishes Z with a coalgebra
structure in such a way that (Z, ζ) is final and for each coalgebra (X, ξ) the
function fξ : X −→ Z is the final map.

Proof. From bottom to top, the Hennessy-Milner property follows because for each
coalgebra ξ the map fξ is a morphism of coalgebras. Adequacy follows because fξ
is the only possible coalgebra map from ξ to ζ.

The implication from top to bottom follows from the proof of Theorem 6.1.12.

An application: Canonical Models

Until now we have illustrated that for set endofunctors, there exists a final T -
coalgebra iff there exists an expressive language for T -coalgebras.

As mentioned before, the language given by a final coalgebra are the states of
the final coalgebra itself. Example 6.1.11 and the work on coequations [5, 104]
illustrate how this language is non trivial and actually worth of study.

In this section we illustrate the assembly of final coalgebras from languages by
showing how this technique is in fact the construction of canonical models from
modal logic, see [20].

In Lemma 6.1.18 we showed that the theory map of (Z, ζ) is the inclusion.
Since the states of (Z, ζ) are the satisfiable theories of L we can rewrite this as
the well known Truth Lemma of modal logic.

Lemma 6.1.21 (Truth Lemma). Let (L,Φ) be an expressive language for T -
coalgebras. Let Z be the set of L-satisfiable theories (Definition 6.1.13) and let
ζ : Z −→ T (Z) be the function defined as in Equation (6.2).

For any Ψ ∈ Z and any ϕ ∈ L we have

Ψ $ζ ϕ iff ϕ ∈ Ψ,

where Ψ $ζ ϕ means ϕ ∈ Φζ(Ψ).

The previous lemma illustrates that our construction is similar to the canonical
model construction from modal logic (see [20]). The difference relies on that we
use the set of satisfiable theories to build the final coalgebra whereas the usual
canonical modal construction uses the set of consistent theories to shape the
canonical model. Assuming that the language L has some notion of consistency
we can ask: are maximally consistent sets satisfiable? In other words, we could
investigate completeness. We do not peruse such issue in this chapter, but notice
the following result:

150 Chapter 6. Describing Behavioural Equivalence: three sides of one coin

Proposition 6.1.22. Let (L,Φ) be an adequate language for T -coalgebras, and
let Z be the set of L-satisfiable theories. The set Z is the largest subset of P(L)
for which we can define a T -coalgebra structure ζ : Z −→ T (Z) such that

1. the Truth Lemma is satisfied, i.e. the theory map is the inclusion, and

2. for each coalgebra the codomain restrictions of the theory maps are morphisms
of T -coalgebras.

Proof. Let Z ′ ⊆ P(L) be a set for which conditions 1) and 2) are satisfied, and
let ζ ′ be the mentioned coalgebraic structure. We want to show Z ′ ⊆ Z. By
Theorem 6.1.16, the second item implies that L has the Hennessy-Milner property.
From this, using Theorem 6.1.20, we conclude that there is a coalgebra ζ : Z
−→ T (Z) which is final. By construction, the final map fζ′ : ζ ′ −→ ζ is obtained
by restricting the codomain of the theory map Φζ′ . This together with condition
1) implies that fζ′ is an inclusion map because for every x ∈ Z ′ we have

x = Φζ′(x) (Condition 1)

= Φζfζ′(x) (Adequacy)

= fζ′(x). (Lemma 6.1.18)

In other words, Z ′ ⊆ Z as we wanted to show.

We finish this section with two illustrations concerning the canonical model
M for the logic K, see [20].

In the first place, notice that M is not a final Kripke frame. If this would
be the case, we would then conclude that modal logic has the Hennessy-Milner
property with respect to all frames; this is well known to be false.

In the second place, notice that M is neither final for finite image Kripke
frames, because the set of consistent K-theories is strictly larger than the set of
theories satisfiable in a finite image Kripke frame, see [20].

As a consequence, we conclude that there should exists a (finite image) Kripke
frame (X, ξ) for which the theory map Φξ : X −→ M is not a bounded morphism.

6.2 Behaviour & Congruences

In this section we introduce congruences of coalgebras and illustrate their relation
with abstract coalgebraic languages.

The Hennessy-Milner property states that if two states are logically equivalent
then they are identified in some coalgebra. However, this coalgebra is not made
explicit. The work in the previous section provides a canonical coalgebra where
logically equivalent states are identified, namely the final coalgebra. In this section
we investigate another construction to identify logically equivalent states; we use

6.2. Behaviour & Congruences 151

so-called logical congruences. We now recall the notion of coalgebraic congruence
and its equivalent characterisations.

Definition 6.2.1. Let (X, ξ) be a T -coalgebra for a functor T : Set −→ Set. An
equivalence relation θ on the set X is a congruence of T -coalgebras iff there exists
a coalgebraic structure ξθ : X/θ −→ T (X/θ) such that the following diagram

T (X) T (X/θ)!
T (e)

X X/θ!e

"
ξ

"
ξθ

commutes. Here e is the canonical quotient map.

In the category Set, it can be shown that the notion of a congruence for coal-
gebra can be characterised as the kernel of coalgebra morphisms. In other words,
it behaves like the notion of a congruence in universal algebra [96]. Congruences
for coalgebras where first introduced by Aczel and Mendler in [3].

Fact 6.2.2 ([44]). Let (X, ξ) be a T -coalgebra for a functor T : Set −→ Set, For
an equivalence relation θ, on X, the following conditions are equivalent:

1. θ is a congruence of coalgebras.

2. θ ⊆ ker(T (e) ◦ ξ).

3. θ is the kernel of some morphism of T -coalgebras with domain ξ.

The next example relates bisimulations and congruences.

Example 6.2.3. If T is the covariant power set functor, two states in a coalgebra
(X, ξ) are related by a congruence iff they are related by some bisimulation.

First recall that, by definition (Remark 2.2.3, page 19), a bisimulation R on
(X, ξ) induces coalgebra ρ : R −→ Pow(R) and a pair of coalgebra morphisms

(R, ρ)
fi−→ (X, ξ), i ∈ {1, 2}. The argument goes as follows.

From right to left. Let q : (X, ξ) −→ (Y, γ) be the coequalizer, in Coalg(T), of
f1 and f2. From the previous fact, we know that the kernel of q is a congruence;
by construction of coequalizer in Set we also have R ⊆ ker(q); more precisely,
ker(q) is the equivalence relation generated by R.

From left to right. Notice that in the case of Pow the kernel of a morphism of
coalgebras, i.e. a congruence, is a bisimulation. In fact, this is the case for any
functor that weakly preserves kernels (see [96] for details)

Remark 6.2.4. Fact 6.2.2 depends on the fact that set functors preserve monomor-
phisms with non-empty domain, as will become clear in Proposition 6.5.5. This is
not true in all categories.

152 Chapter 6. Describing Behavioural Equivalence: three sides of one coin

Simple Coalgebras

Before presenting the relationship between behavioural equivalence and congru-
ences, we discuss the notion of a simple coalgebra. These coalgebras will be of
peculiar interest to us because using the Hennessy-Milner property of a coalgebraic
language we can show that they from a solution set.

As in algebra, the set of all congruences on a coalgebra (X, ξ) is a complete
lattice under the partial ordering of set inclusion. In particular, there is a smallest
congruence ∆X (the identity relation on X) and a largest congruence. However,
unlike in the universal algebra case where every algebra A has at least two trivial
congruences; one is the identity ∆A and the other is the universal relation A× A.
The largest congruence in coalgebra may be smaller than the universal relation,
the next example shows that the universal relation may not be a congruence of
coalgebras.

Example 6.2.5. Consider a constant functor KC , where C has more than two
elements. Consider a KC-coalgebra ξ : X −→ C for which the structural map is not
constant. The universal relation X×X is not a congruence; the largest congruence
is given by ker(ξ). Hence the largest congruence is equal to the universal relation
only if ξ is constant.

An algebra is said to be simple if it has no non-trivial congruences. Follow-
ing the same spirit, simple coalgebras are defined as coalgebras with only one
congruence.

Definition 6.2.6. A coalgebra ξ : X −→ T (X) is simple if its largest (and hence
only) congruence is the identity relation ∆X .

Here is an example of a simple coalgebra.

Example 6.2.7. The following Kripke frame is a simple Pow-coalgebra.

•

++###########

,,$$$$$$$$$$$$$$$$

((""
""

""
"

• •-- •-- . . .--

•

..%%%%%%%%%%%

//&&&&&&&&&&&&&&&&

00''''''' ++

From Example 6.2.3 we know that two states in the coalgebra above will be related
by a congruence iff they are related by a bisimulation. But a straightforward
argument will show that non of the points in the Kripke frame above is bisimilar
to any other point in the frame; hence the coalgebra is simple.

Using coalgebraic languages we can give a more concrete characterisation of
simple coalgebras; a first step is given by the following result.

6.2. Behaviour & Congruences 153

Proposition 6.2.8. Let T be a set functor and let (L,Φ) be an adequate language
for T -coalgebras. A T -coalgebra ξ is simple if the theory map Φξ is injective.

Proof. Assume Φξ to be injective. Since the language is adequate, for any mor-
phism f : ξ −→ γ we have Φξ = Φγf , which implies that f is injective. In other
words, every coalgebra morphism with domain ξ is injective. Since congruences
on ξ are the kernel of coalgebra morphism with domain ξ, Fact 6.2.2, we conclude
that the only congruence on ξ is the identity, hence ξ is simple.

The converse of the previous proposition is not true in general; the Kripke
frame in Example 6.2.7 is a counterexample. As we will later see, if the language L
also has the Hennessy-Milner property then we obtain an equivalence. Moreover,
since we assume languages are sets the Hennessy-Milner property implies that, up
to isomorphisms, there is a set of simple coalgebras. Hence by Freyd’s (Adjoint
Functor) Theorem, see Theorem 6.3.1 here, a final coalgebra exists.

We now detail the fact that using the Hennessy-Milner property we can bound
the class of simple coalgebras. The trick is to characterise simple coalgebras using
a “logical” representation of each coalgebra; we do this using logical congruences,
a concept that we now introduce.

Logical congruences

Logical congruences are congruences obtained using logical equivalence of states.

Definition 6.2.9. Given an abstract coalgebraic language (L,Φ), we say that two
pointed coalgebras (ξi, xi), (i = 1,2), are logically equivalent, written (ξ1, x1))L
(ξ2, x2), iff Φξ1(x1) = Φξ2(x2). We call)L the logical equivalence relation of
states . Given a coalgebra ξ, we write)ξ

L for the relation)L restricted to the
states of ξ.

Our interest in these equivalence relations has two main reasons. The first
one is to make Proposition 6.2.8 into an equivalence and then obtain a concrete
characterisation of simple coalgebras. The second and most important motivation
is to generalise Proposition 6.1.19 and Theorem 6.1.20 to arbitrary categories.
To our surprise logical congruences proved to be remarkably useful to simplify
our constructions. As we will see, logical congruences provide a well-balanced
categorical description of the Hennessy-Milner property. In fact, in the presence
of the Hennessy-Milner property logical equivalence in a coalgebra coincides, by
definition, with behavioural equivalence of states. Hence logical equivalence is a
congruence. We now detail how to make this quotient. One reason for this is that
it will reveal an abstract (pointless) face of the Hennessy-Milner property which
is ideal for generalizations beyond Set.

154 Chapter 6. Describing Behavioural Equivalence: three sides of one coin

Definition 6.2.10. Let (L,Φ) be an abstract coalgebraic language for T -coalgebras.
For each T -coalgebra (X, ξ), we write Zξ for the quotient X/)ξ

L. We identify
Zξ with the set of satisfiable theories in ξ, i.e.

Zξ := {Ψ ⊆ L | (∃x ∈ X)(Φξ(x) = Ψ)}.

We use eξ : X −→ Zξ for the canonical (quotient) map.

If our language happens to be adequate and have the Hennessy-Milner property
we can show that logical equivalence of states is a congruence of coalgebras.

Lemma 6.2.11. Let (L,Φ) be a language for T -coalgebras. If L is expressive,
then for each coalgebra (X, ξ) the relation)ξ

L is a congruence of coalgebras.
Moreover,)ξ

L is the largest congruence on (X, ξ).

Proof. The idea is to follow the construction in Theorem 6.1.12, on page 143,
relativized to the set Zξ. Explicitly this is: we define a function ζξ : Zξ −→ T (Zξ)
such that the canonical map eξ is a morphism of coalgebras.

The function ζξ is defined as follows: an element Ψ ∈ Zξ such that Ψ = Φξ(x) is
mapped to ζξ(Ψ) = T (eξ)(ξ(x)). Following the argument in the proof of Theorem
6.1.12 it is not difficult to see that ζξ is well-defined because L is adequate and
has the Hennessy-Milner property. It is a direct consequence of the definition of
ζξ that eξ is a coalgebra morphism from ξ to ζξ. Hence ker(eξ), which is equal to
)ξ

L, is a congruence on ξ.
In order to see that ker(eξ) is the largest congruence, one has to observe that

for any x, x′ ∈ ξ with eξ(x) %= eξ(x′) we have Φξ(x) %= Φξ(x′) and thus, by adequacy
of L, there can be no coalgebra morphism f with f(x) = f(x′).

Mind how adequacy is crucial to prove that)ξ
L is the largest congruence.

Now we can easily make Proposition 6.2.8 into an equivalence.

Theorem 6.2.12. Let T be a set endofunctor, and let (L,Φ) be an expressive
language for T -coalgebras. A T -coalgebra ξ is simple iff the theory map Φξ is
injective.

Proof. The implication from right to left is Proposition 6.2.8. For the implication
from left to right, notice that the previous Lemma tells us that)ξ

L is a congruence
of coalgebras, hence since ξ is simple we obtain)ξ

L = ∆X , the identity. Therefore,
ker(Φξ) = ker(fξ) =)ξ

L = ∆X , and this concludes the proof.

Before proceeding an useful corollary.

Corollary 6.2.13. If (L,Φ) is an expressive language for T -coalgebras then every
coalgebra morphism f : ξ −→ γ restricts to a coalgebra morphism f̂ : ζξ −→ ζγ such
that eγf = f̂ eξ.

6.2. Behaviour & Congruences 155

Proof. Let π1 and π2 be the projections from)ξ
L. To define f̂ we will use the

universal property of eξ. In order to do this we ought to show eγfπ1 = eγfπ2,
i.e. that eγf coequalizes the projections. In other words, we want to show that if
two states x and y in ξ are logically then so is their image under f . This follows
because the language is expressive. Indeed, since f is a coalgebra morphism then
we have f(x) ∼ x which by adequacy implies f(x))L x; the same holds for
y. Since we assume x)L y and)L is transitive we conclude f(x))L f(y).
Hence by the universal property of coequalizers we obtain a morphism f̂ : ζξ −→ ζγ
such that eγf = f̂ eξ. This concludes the proof.

The Hennessy-Milner property was not mentioned explicit in the argument
but is needed to guarantee that the coalgebras ζξ and ζγ are defined.

Notice that the construction used in the proof of Lemma 6.2.11 generalises
the construction of final coalgebras of the previous section; before we used the
fact that all satisfiable theories can be satisfied in a single coalgebra (cf. proof of
Lemma 6.1.18). These observations leads us to the following definition.

Definition 6.2.14. An abstract coalgebraic language (L,Φ) for T -coalgebras is
said to have logical congruences iff for each coalgebra ξ the equivalence relation
)ξ

L, is a congruence of T -coalgebras. The quotient of ξ using)ξ
L is called the

logical quotient of ξ. We write (Zξ, ζξ) for this coalgebra.

In [99] it was noticed that languages of predicate liftings that have logical
congruences have the Hennessy-Milner property. We turn his observation into a
general theorem for abstract coalgebraic languages.

Theorem 6.2.15. If an abstract language (L,Φ) for T -coalgebras is adequate,
the following are equivalent:

1. L has the Hennessy-Milner property.

2. L has logical congruences.

Proof. The implication from (1) to (2) is Lemma 6.2.11.
Conversely suppose that L has logical congruences and let ξ1 and ξ2 be T -

coalgebras with logically equivalent states x1 and x2 respectively. Let ξ1 + ξ2 be
the coproduct of ξ1 and ξ2 in Coalg(T) and let κ1(x1),κ2(x2) be the image of x1

and x2 under the canonical coproduct embeddings. By adequacy of L the states
κ1(x1) and κ2(x2) are logically equivalent. Since L has logical congruences, by
assumption, we can make the quotient, in Coalg(T), using)ξ1+ξ2

L ; the canonical
quotient map e will identify κ1(x1) and κ2(x2). Therefore, the states x1 and x2 are
identified by the morphisms e◦κ1 and e◦κ2 and are thus behaviourally equivalent.
This shows that L has the Hennessy-Milner property as required.

The condition of adequacy is necessary as the following example shows.

156 Chapter 6. Describing Behavioural Equivalence: three sides of one coin

Example 6.2.16. Let T = Id be the identity functor on Set. We define an
abstract coalgebraic language for T by putting L := {1,⊥} and by defining
the theory map Φξ for a T -coalgebra ξ : X −→ X as follows: Φξ(x) = {1} for
all x ∈ X if ξ is the identity on X; and Φξ(x) = {⊥} for all x ∈ X if ξ is
not the identity on X. This language is clearly not adequate as any two given
T -coalgebra states are behaviourally equivalent. Also notice that this language
has logical congruences because in any case all states in a single coalgebra are
logically equivalent. However, it is easy to see that the coalgebra structure ζ on
the set Z = {{1}, {⊥}} given by Equation (6.2) is well-defined and is equal to
the identity on Z. But this is not the final T -coalgebra hence the language does
not have the Hennessy-Milner property.

An application: A Concrete Characterization of Simple Coalgebras

As mentioned before, in [99] we have a non-trivial use of logical congruences
to establish the Hennessy-Milner property for languages of predicate liftings.
Theorem 6.2.15 tells us that in fact the two properties are equivalent. In this
section, we illustrate the construction of logical congruences (cf. proof of Lemma
6.2.11) giving a concrete characterization of simple coalgebras. We first show how
Lemma 6.1.18 also applies to the theory maps of logical quotients (Definition
6.2.14).

Proposition 6.2.17. Let (L,Φ) be an adequate language for T -coalgebras that
has logical congruences and let ξ : X −→ T (X) be a T -coalgebra. The theory map
Φζξ : Zξ −→ P(L) of the logical quotient of ξ is equal to the inclusion.

Proof. Let e : X −→ Zξ be the quotient map. By adequacy of L, we have
Φξ = Φζξe; and by definition of e we have e(x) = Φξ(x) for all x ∈ X. Therefore
iZξ

e = Φξ = Φζξe. Since e is onto, Φζξ has to be the inclusion map.
Compare this argument with the one given for Lemma 6.1.18.

Now we can use logical congruences in order to characterise simple coalgebras
as logical quotients, i.e. quotients using the relations)ξ

L.

Theorem 6.2.18. Let (L,Φ) be an adequate language for T -coalgebras that has
logical congruences. Any logical quotient (Zξ, ζξ) is simple and any simple T -
coalgebra is isomorphic to the logical quotient of some coalgebra ξ.

Proof. By definition, if L has logical congruences, the logical quotient (Zξ, ζξ)
of any T -coalgebra ξ exists. By Proposition 6.2.17 the theory map is injec-
tive. Therefore Theorem 6.2.12 implies that each of these coalgebras is a simple
coalgebra.

Now we show that every simple coalgebra is isomorphic to a logical quotient.
Let ξ : X −→ T (X) be a simple coalgebra. Since (X, ξ) is simple and)ξ

L is a
congruence, we conclude)ξ

L= ∆X . Therefore (X, ξ) ∼= (Zξ, ζξ).

6.3. Logical Congruences & Weak Finality 157

Using this characterization of simple coalgebras we can easily prove that truth-
preserving functions with simple codomain must be coalgebra morphisms. This
was a key result used by Goldblatt in [42] to construct final coalgebras.

Corollary 6.2.19. Let (L,Φ) be an expressive language for T -coalgebras. Let
f : X −→ Y be a truth invariant function between coalgebras (X, ξ), and (Y, γ) i.e.
Φξ(x) = Φγ(f(x)) for all x ∈ X. If γ is simple, then f : ξ −→ γ is a coalgebra
morphism.

Proof. Let f be a truth invariant morphism whose codomain is simple. The
previous theorem implies that we can assume the codomain of f to be the logical
quotient (Zγ, ζγ); say f : X −→ Zγ. Since f is truth invariant we have that
ker(f) ⊆)ξ

L, this implies Zξ ⊆ Zγ. Now using the fact that L is adequate and
has the Hennessy-Milner property, one can prove either directly or using the
construction of Lemma 6.2.11 that the inclusion map i : Zξ −→ Zγ is a morphism
of coalgebras. This exhibits f as the composition of the quotient map eξ and the
inclusion i; since both maps are coalgebra morphism we conclude that so is f .

6.3 Logical Congruences & Weak Finality

In [42] a final coalgebra is constructed by using the argument in Lemma 6.1.18
and then quotienting by the largest congruence, which coincides with logical
equivalence. This means that with the material that we have until here, we can
already use logical congruences to construct final coalgebras. In despite of this,
we will give a direct proof of this fact. One reason for this is that we can then
provide a categorical argument which can be reused in several other contexts.
For example, we will use this argument to prove Barr-Aczel-Mendler-Adámek
Theorem on the existence of “large” final coalgebras for set functors.

The key insight from the previous section and this section is that the Hennessy-
Milner property provides a solution set condition.

Our main categorical tool to produce final coalgebras is Freyd’s Theorem on
the existence of a final object [81]:

Theorem 6.3.1. A cocomplete category C has a final object iff it has a set of
objects S which is weakly final, i.e. for every object c ∈ C there exists an object
s ∈ S and arrow c −→ s; a final object is obtained as a colimit of the diagram (the
full subcategory) generated by S.

The set S, mentioned in the previous theorem, is called a solution set. More
explicitly, a set of objects S, in a category C, satisfies the solution set condition
iff for every object c in C there exists an object s ∈ S and arrow c −→ s. Freyd’s
Theorem is strongly related to the Adjoint Functor Theorem, see [81, 6] for details.

158 Chapter 6. Describing Behavioural Equivalence: three sides of one coin

Recall that in the category Set every object only has a set of subobjects
(subsets). In Proposition 6.2.8 we proved that if a language L is adequate and has
logical congruences, each coalgebra (X, ξ) can be mapped to its logical quotient
(Zξ, ζξ). Since each Zξ is a subset of P(L), the coalgebras based on subsets of
P(L) form a solution set, which by Freyd’s theorem implies the existence of a
final object. Therefore the following holds true.

Proposition 6.3.2. Let T be a set functor. If a language (L,Φ) for T -coalgebras
is adequate and has logical congruences then there exists a final T -coalgebra. This
coalgebra is obtained as a colimit of the diagram induced by the logical quotients
(Zξ, ζξ), i.e. the simple coalgebras.

This proposition supplies us with another description of the final coalgebra.
Moreover, following the path:

Hennessy-Milner ⇒ logical congruences ⇒ final coalgebras,

we have another proof of Goldblatt’s Theorem. This alternative proof is not
as simple as the construction presented in Theorem 6.1.12 but illustrates the
importance of adequacy and why the language should be a set. This can be
restated by saying that the Hennessy-Milner property is a solution set condition
to obtain final coalgebras; the solution set is given by the logical quotients (Zξ, ζξ).
However, if the language is not adequate we will not be able to combine all of
those coalgebras into a single structure.

An application: “large” final coalgebras

Very early in the development of coalgebra it was noticed that every set endofunctor
has a final coalgebra [3]. However, this final coalgebra might have a proper class as
carrier set. Michael Barr [14] noticed that looking at functors on the category of
(possibly proper) classes could be replaced by considering sets up to some regular
cardinal.

We will illustrate this construction using logical congruences and languages
of predicate liftings. We believe our construction is more accessible to readers
not familiar with category theory. The following definition is needed for the
formulation of the theorem.

Definition 6.3.3. A cardinal number κ is said to be weakly inaccessible if κ is an
uncountable, regular cardinal such that for all cardinals λ we have λ < κ implies
2λ ≤ κ.

The existence of weakly inaccessible cardinals is independent of the system
ZFC. The important fact to know is that the class of sets up to a weakly inacces-
sible cardinal is a model of ZFC, see e.g. [105] for details.

6.4. Different faces of the Hennessy-Milner property 159

The following lemma, due to M. Barr, will be of key importance. It states that
categories of coalgebras for κ-accessible functors (Definition 2.1.5) are presentable
using coalgebras of cardinality less that κ.

Lemma 6.3.4 ([14]). Let T be a κ-accessible functor where κ is weakly inaccessible.
Every T -coalgebra can be obtained as a colimit of coalgebras whose carrier sets
have cardinality less than κ.

Now we can prove the main theorem.

Theorem 6.3.5. Let κ be a weakly inaccessible cardinal and let T : Set −→ Set be
a κ-accessible functor. Suppose, in addition, that for all sets X we have |X| < κ
implies |T (X)| < κ. Then Coalg(T) has a final coalgebra of cardinality no larger
than κ.

Proof. Let Lκ be the language of predicate liftings (Definition 3.1.5), for T , of
arity less than κ and conjunctions bounded by κ. As we have mentioned before,
this language is adequate and has the Hennessy-Milner property (Example 6.1.6).
Theorem 6.1.12 implies that there exists a final T -coalgebra (Z, ζ). Notice that
|Lκ| = κ, therefore |Z| ≤ 2κ. We will use logical congruences to show |Z| ≤ κ.

Proposition 6.3.2 states that we can obtain a final coalgebra as a colimit of the
coalgebras (Zξ, ζξ). Since the functor T is κ-accessible, by the previous lemma, it
is enough to consider coalgebras with a carrier set such that |X| < κ; because,
in Set, the quotient of a colimit is the colimit of the quotients. This implies that
|Zξ| < κ for each coalgebra ξ.

Since by assumption |X| < κ implies |T (X)| < κ and κ is weakly inaccessible,
we can conclude that there are, up to isomorphisms, κ-many coalgebras with
carrier set |X| < κ because |T (X)X | ≤ κκ ≤ κ. Therefore there are, up to
isomorphisms, at most κ-many coalgebras of the form (Zξ, ζξ).

Gathering the previous two paragraphs we conclude that a final T -coalgebra
can be obtained as a colimit of at most κ-many sets of cardinality less that κ.
Since κ is weakly inaccessible we conclude |Z| ≤ κ. This concludes the proof.

6.4 Different faces of the Hennessy-Milner prop-
erty

There is another face of the Hennessy-Milner property that we have not discussed
yet. Namely, a direct translation of the statement in Definition 6.1.5 into the
language of categories. This can be achieved using pullbacks. Recall that in the
category Set, the pullback of two functions f1 : X1 −→ Y and f2 : X2 −→ Y can be
canonically characterised as the set P = {(x1, x2) ∈ X1 ×X2 | f1(x1) = f2(x2)}
together with respective projections.

We can now present the Henessy-Milner property as follows: If for T -coalgebras
(X1, ξ1) and (X2, ξ2) the diagram on the left is a pullback (in Set), then there

160 Chapter 6. Describing Behavioural Equivalence: three sides of one coin

exists a coalgebra (Y, γ) and morphisms f1 : ξ1 −→ γ; f2 : ξ2 −→ γ such that the
diagram on the right

X2 P(L)!
Φξ2

P X1
!p1

"
p2

"
Φξ1

X2 Y!
f2

P X1
!p1

"
p2

"
f1

commutes (in Set).
Notice that the previous version of the Hennessy-Milner property is a bit

different to the one in Definition 6.1.5. The divergence is that in Definition 6.1.5
for each pair of logically equivalence states x1 ∈ X1 and x2 ∈ X2, we find a
coalgebra to identify them, whereas in the version given here there is a single
coalgebra, namely (Y, γ) which identifies all the logically equivalent states in
X1 and X2. At first glance it may seem strange to use one single coalgebra to
identify all behaviourally equivalent states. This is not an issue if the language
is adequate because in such case we can always use the coproduct of ξ1 and ξ2
modulo behavioural equivalence.

Now we present a summary of our findings.

Theorem 6.4.1. Let (L,Φ) be an adequate language for T -coalgebras and ZL the
set of satisfiable theories of L. The following conditions are equivalent:

1. L has the Hennessy-Milner property.

2. The function ζ : ZL −→ T (ZL) from Equation (6.2), page 145, on the set of
satisfiable L-theories is well-defined and endows ZL with the structure of a
final coalgebra.

3. The set ZL admits a coalgebraic structure, for T , such that for each coalgebra
ξ the function fξ : X −→ ZL, i.e. the restriction of the codomain of the
theory map Φξ, is a morphism of coalgebras.

4. For each coalgebra ξ the relation)ξ
L is a congruence of coalgebras.

5. For each coalgebra ξ the set of satisfiable theories in ξ admits a coalgebraic
structure ζξ : Zξ −→ T (Zξ), such that the function eξ : X −→ Zξ mapping a
state x ∈ ξ to its L-theory is a morphism of coalgebras.

6. Let (X1, ξ1) and (X2, ξ2) be T -coalgebras. If the diagram on the left is a
pullback (in Set), there exists a coalgebra (Y, γ) and morphisms f1 : ξ1 −→ γ

6.5. Beyond sets 161

and f2 : ξ2 −→ γ such that

X2 P(L)!
Φξ2

P X1
!p1

"
p2

"
Φξ1

X2 Y!
f2

P X1
!p1

"
p2

"
f1

the diagram on the right commutes (in Set).

Proof. The equivalence between 1) and 2) is the content of Theorem 6.1.16.
The implication from 2) to 3) is obvious and the converse direction is a

consequence of the definition of ζ; any map ζ ′ : ZL −→ T (ZL) that turns the
theory maps fξ into coalgebra morphisms must be equal to ζ.

The equivalence between 1) and 4) follows from Theorem 6.2.15.
Item 4) is equivalent to item 5) by definition of congruence. More explicitly,

since)ξ
L= ker(Φξ) = ker(fξ) then)ξ

L is a congruence iff the statement on item
5) holds.

Finally for the equivalence with 6), from the canonical characterisation of
pullbacks in Set it is clear that 6) implies 1). We now show that 4) implies 6). For
this first take the coproduct ξ1 + ξ2, and let κ1 and κ2 be the respective inclusions.
By 4), we have that)ξ1+ξ2

L is a congruence; hence, since the language is adequate,
the coalgebra (Zξ1+ξ2 , ζξ1+ξ2) together with f1 = eξ1+ξ2κ1 and f1 = eξ1+ξ2κ2 does
the job. More explicitely, we will show eξ1+ξ2κ2p2 = eξ1+ξ2κ1p1. This equality will
follow because the theory map of (Zξ1+ξ2 , ζξ1+ξ2) is injective. Indeed.

Φξ1+ξ2eξ1+ξ2κ2p2 = Φξ2p2 (Adequacy)

= Φξ1p1 (Assumption on item 6))

= Φξ1+ξ2eξ1+ξ2κ1p1 (Adequacy)

Since Φξ1+ξ2 is injective we conclude eξ1+ξ2κ2p2 = eξ1+ξ2κ1p1 as we wanted to
show.

6.5 Beyond sets

In this section we generalize our results for coalgebras on Set to coalgebras over
other base categories. The first part of the section discusses how to generalise the
notion of a language for coalgebras. We aim at a notion that works for functors
T : C −→ C on an arbitrary category C. After that we focus on a special class of
categories, those that are regularly algebraic over Set, and show that the results
from the previous section generalise smoothly to these categories. This section
requires more knowledge of category theory. We refer the reader to a standard
text like [6] for details.

162 Chapter 6. Describing Behavioural Equivalence: three sides of one coin

Abstract coalgebraic languages abstractly

When generalising the notion of an abstract coalgebraic language to categories,
other than Set, we face the problem that we do not know much about the structure
of the given base category C. In particular, unlike in the case C = Set, we do not
know how to move freely from an object L representing the formulas to an object
P(L) that represents the theories of a given language. Based on the work in the
previous section we point out that the set of formulas itself is not very relevant.
In our constructions we only used the set P(L). Even more explicit, the relevant
object for our constructions was the set of satisfiable theories. This leads us to the
following definition of an adequate object for T -coalgebras; intuitively speaking
the points of an adequate object are theories.

Definition 6.5.1. Let T be a functor T : C −→ C. An object £, in C is said to
be an adequate object for T -coalgebras if there exists a natural transformation
Φ : U −→ ∆£, where U : Coalg(T) −→ C is the forgetful functor and ∆£ : Coalg(T)
−→ C is the constant functor with value £. We call the components of Φ theory
morphisms.

Of course, every adequate abstract language for coalgebras induces and ade-
quate object.

Example 6.5.2. In the case C = Set, every adequate abstract coalgebraic language
(Definition 6.1.1) induces an adequate object. If L is an adequate abstract
language for T -coalgebras with theory maps {Φξ}ξ∈Coalg(T), then P(L) together
with {Φξ}ξ∈Coalg(T) is an adequate object for T -coalgebras.

We now argue that our definition of an adequate object for T -coalgebras is a
good generalisation of the notion of abstract coalgebraic language for T -coalgebras.
The whole point of the definition above is that given a coalgebraic logic (L, δ) we
want the initial L-algebra to induce an adequate object (language). In Example
6.1.3 we showed how this is done in the case the we are considering a coalgebraic
modal logic over a category of power set algebras. However, in case we consider a
more general coalgebraic logic like in Definitions 3.2.21 or 3.2.22 it is not natural,
neither desirable, to relate the initial L-algebra to its power set, see Remark 6.1.4.
We would ratter use the set of “ultrafilters” given by the underlying adjunction.

Example 6.5.3. Let P : Cop −→ A be a functor with a left adjoint S. Let T : C
−→ C be a functor.

Every coalgebraic logic (L, δ) for T -coalgebras (Definition 3.2.22) induces an
adequate object for T -coalgebras. More precisely, the adequate object is given by
the image of initial L-algebra under S.

Let (I, ι) be the initial L-algebra and [[−]]ξ : I −→ P (X) be the underlying
morphism of initial map from (I, ι) to the complex algebra (P (X), P (ξ) ◦ δX).
The image of I under S together with the transposes of [[−]]ξ, relative to S; i.e

6.5. Beyond sets 163

Φξ : X −→ S(I), is an adequate object. The fact that this is in fact adequate
object, i.e. “formulas” are invariant under morphisms, uses properties of adjoints
as it was shown in Example 6.1.8. More concretely,

• In the case of (Boolean) coalgebraic modal logics. An adequate object is
given by the set of ultrafilters of the initial L-algebra. In other words, and
adequate object is given by the set of maximally consistent L-theories.

• In the case that P : Stone −→ BA and S are the usual Stone duality
adjunction. An adequate object is given by the set of ultra filters of boolean
algebra.

The Hennessy-Milner property abstractly

We will now investigate how we can construct final coalgebras only using the
properties of the base category of coalgebras. In this section we discuss how to
express the Henessy-Milner property in a general category. Theorem 6.4.1 shows
that there are at least three ways to obtain a generalisation. Informally these are:

1) The set of theories of the language contains the carrier of a final coalgebra.
2) If states are identified by theory morphisms then they are identified by some

coalgebra morphisms.
3) The image of a theory morphism carries a coalgebraic structure, equivalently,

logical equivalence of states is a congruence.
The last item is related to (RegEpi,Mono)-factorisations and more generally

to factorisation structures. The intuition behind (RegEpi,Mono)-structured
categories is that the image of a morphism is an object in the category, examples
of such factorisations are the isomorphism theorems of algebra.

Definition 6.5.4. Let T : C −→ C be a functor, and let £ be an adequate object
for T -coalgebras. We say that

1. £ is almost final if £ has a subobject m : Z −→ £ that can be uniquely
lifted to a final T -coalgebra (Z, ζ) such that m = Φζ .

2. If the base category C has pullbacks, we say £ has the Hennessy-Milner
property if every pullback (P, p1, p2) (in C) of theory morphisms Φξ1 and Φξ2

can be factored (in C) using a pair of coalgebra morphisms; see last item in
Theorem 6.4.1.

3. Finally, if the base category C is (RegEpi,Mono)-structured, we say £ has
logical congruences if for each theory morphism Φξ and each (RegEpi,Mono)-
factorisation (e, Zξ,m) of Φξ, there exists a coalgebraic structure ζξ : Zξ

−→ T (Zξ) such that e is a coalgebra morphism from ξ to ζξ.

164 Chapter 6. Describing Behavioural Equivalence: three sides of one coin

As we proved in Theorem 6.4.1, all of the previous notions are equivalent if
our base category is Set. It is important to recall that no requirements on the
functor T were needed to prove this. A natural question is, how do they relate in
other categories? The following proposition provides a partial answer

Proposition 6.5.5. Let C be a cocomplete and (RegEpi,Mono)-structured cat-
egory with pullbacks. Let T be an endofunctor on C and let £ be an adequate
object for T -coalgebras which is well-powered.

For the the following properties

1. £ has logical congruences.

2. £ is almost final.

3. £ has the Hennessy-Milner property.

we have 1) ⇒ 2) ⇒ 3). Furthermore, if T preserves monomorphisms, the converse
implications are true as well.

Proof. Let C be a category that satisfies the conditions of the proposition. Let
T : C −→ C be a functor and let £ be an adequate object for T -coalgebras.

1) ⇒ 2). Suppose that £ has logical congruences, we want to show that it is
almost final. Let ξ : X −→ T (X) be an arbitrary T -coalgebra and let (eξ, Zξ,mξ)
be a (RegEpi,Mono)-factorisation of Φξ; explicitly, eξ : X −→ Zξ is a regular epi,
mξ : Zξ −→ £ is a monomorphism and Φξ = mξeξ. By our assumption that £
has logical congruences, for each T -coalgebra ξ there exists a morphism ζξ : Zξ

−→ T (Zξ) such that eξ : ξ −→ ζξ is a coalgebra morphism. Since £ is well-powered,
the collection of subobjects Zξ, and hence also the collection S of T -coalgebras
based on those forms a set. In other words, the collection of the coalgebras (Zξ, ζξ),
as described above, is a solution set, in the sense of Theorem 6.3.1, Hence by
Freyd’s theorem, there exist a final T -coalgebra (Z, ζ). Using the properties of of
factorisation structures, we can show that Φζ : Z −→ £ is a monomorphism. The
key point is that when we factor Φζ via Zζ , this object is part of the diagram used
to produce Z. This finishes that proof of the fact that £ is almost final.

2) ⇒ 3). Let us now assume that £ is almost final. We want to show that
£ has the Hennessy-Milner property as described. To this aim consider two
T -coalgebras (X1, ξ1) and (X2, ξ2) and their respective theory maps Φξ1 and Φξ2 .
Furthermore, let (P, p1, p2) be the pullback of Φξ1 and Φξ2 ; in particular we have
Φξ1p1 = Φξ2p2. As £ is almost final, there exists some subobject m : Z −→ £ and
some T -coalgebra structure ζ : Z −→ T (Z) such that (Z, ζ) is a final T -coalgebra
and such that m = Φζ . Let fξ1 : ξ1 −→ ζ and fξ2 : ξ2 −→ ζ be the unique coalgebra

6.5. Beyond sets 165

morphisms from ξ1 and ξ2 into ζ. We have

m ◦ fξ1 ◦ p1 = Φζ ◦ fξ1 ◦ p1 (m = Φζ)

= Φξ1 ◦ p1 (Adequacy)

= Φξ2 ◦ p2 (Def. pullback)

= Φζ ◦ fξ2 ◦ p2 (Adequacy)

= m ◦ fξ2 ◦ p2. (m = Φζ)

Since m is a monomorphism this implies fξ1 ◦ p1 = fξ2 ◦ p2. More explicitly, the
pullback (P, p1, p2) “factors” through fξ1 and fξ2 as required. This demonstrates
that £ has the Hennessy-Milner property.

Consider now some endofunctor T that preserves monomorphisms and assume
£ is an adequate object for T -coalgebras that has the Hennessy-Milner property.
We want to prove that £ has logical congruences.

Let (X, ξ) be a T -coalgebra and let (eξ, Zξ,mξ) be a (RegEpi,Mono)-factorisation
of Φξ. Recall that ker(Φξ) is a pullback of Φξ with itself call the projections p1 and
p2. The key idea is to realise that eξ : X −→ Zξ coequalises the projections p1 and
p2. To define the structural map on Zξ we will use the universal property of eξ by

showing that the composite X
ξ−→ T (X)

T (eξ)−→ T (Zξ) coequalizes the projections
p1 and p2. In other words, we will show

T (eξ) ◦ ξ ◦ p1 = T (eξ) ◦ ξ ◦ p2.

In order to show the equality above we use Hennessy-Milner property of £.
Since £ has the Hennessy-Milner property there is a T -coalgebra (Y, γ) and a
coalgebra morphisms fi : ξ −→ γ, (i = 1, 2), such that f1p1 = f2p2. Since £ is
adequate we have mξeξ = Φξ = Φγf1 = Φγf2.

The computation now goes as follows:

T (mξ)T (eξ)ξp1 = T (Φγ)T (f1)ξp1 (adequacy)

= T (Φγ)γf1p1 (f1 is a coalgebra morphism)

= T (Φγ)γf2p2 (HM-property)
... (use argument backwards)

= T (mξ)T (eξ)ξp2.

Notice that T (mξ) is a monomorphism because mξ was a monomorphism and
T preserves those by assumption. Therefore we obtain T (eξ)ξq1 = T (eξ)ξq2, as
we wanted.

This implies that there exists a unique morphism ζξ : Zξ −→ T (Zξ) such that
ζξ ◦ eξ = T (eξ) ◦ ξ; in other words, such that eξ is a coalgebra morphism from

166 Chapter 6. Describing Behavioural Equivalence: three sides of one coin

ξ to ζξ. Moreover adequacy of £ implies that mξ ◦ eξ = Φξ = Φζξ ◦ eξ. Since eξ
is an epimorphism this implies that mξ = Φζξ . This shows that ζξ is the logical
quotient of ξ as required.

In particular, the previous proposition demonstrates that under mild assump-
tions on our base category we can establish the existence of a final coalgebra for
a functor T by proving that there exists some adequate object for T -coalgebras
that has logical congruences.

We would now like to see whether the construction in Section 6.1 can be carried
out in other base categories. In particular, we would like to proof the existence of a
final coalgebra using only properties of the base category without any assumptions
on the functor. Our main result here is to show that the construction in Section
6.1 still works on so-called regularly algebraic categories.

Roughly speaking, regularly algebraic categories, over Set correspond to
classes of algebras for which we have free constructions, and (RegEpi,mono)-
factorisations. In particular every variety of algebras is a regularly algebraic.
Hence our results hold for coalgebras on the category BA of Boolean algebras and
the category DL of distributive lattices. But also to categories like the category
Stone of Stone spaces which regularly algebraic but not monadic, see [6].

Definition 6.5.6. A concrete category (A, U), over Set is regularly algebraic if
the following conditions are satisfied.

1. A has coequalizers.

2. U is a right adjoint.

3. U is uniquely transportable.

4. U preserves and reflects extremal epimorphisms.

The important property that we will need is that regularly algebraic categories
can be embedded into categories of Eilenberg-Moore algebras.

Proposition 6.5.7. Let (A, U) be a regularly algebraic category. Let F be the left
adjoint of U and write M for the associated monad. Then the comparison functor
K : A −→ SetM is an embedding whose image is a regular epireflective subcategory
of SetM.

We use previous proposition to prove the following theorem where no condition
on the functor T are required.

Theorem 6.5.8. Let A be a category that is regularly algebraic over Set with
forgetful functor V : A −→ Set and let T : A −→ A be a functor. The functor T
has a final coalgebra iff there exists an adequate object £ for T -coalgebras that
has the Hennessy-Milner property.

6.5. Beyond sets 167

Proof. The implication from left to right follows from the previous proposition.

For the implication from right to left, we will show that £ has logical con-
gruences. The core of the proof is to show this without any assumptions on the
functor T . The proof strategy is to lift the construction in Set. To show that
this works we use Proposition 6.5.7. More explicitly, from now on we work with
the representation of A as a subcategory of Eilenberg-Moore algebras; we write
M = (M, η, µ) for the associated monad. A key gain of this representation is that
now we can just talk about functions.

Before moving into the technicalities we clarify some issues concerning the
new framework. First notice that carriers for coalgebras are functions x : X
−→ M(X) that satisfy the axioms of M. To simplify our notation, we write
xT : XT −→ M(XT) for the action of T on an M-algebra (X, x). In particular
notice that a T -coalgebra on X is given by a function ξ : X −→ XT that makes the
usual diagram commute, i.e. M(ξ) ◦ x = xT ◦ ξ. In the same way, the theory map
Φξ : (X, x) −→ (£, l) is given by a function Φξ : X −→ £ such that Φξ◦l = M(Φξ)◦x.

We now show that (£, l) has logical congruences. Let (X, ξ) be a T -coalgebra.
Consider the canonical factorisation (eξ, Zξ,mξ) of the function Φξ : X −→ £ via
the set

Zξ = {Ψ | (∃x ∈ X)(Ψ = Φξ(x))}.

Since A is regularly algebraic over Set, this factorisation can be lifted to A. This
means that there exists an algebraic structure zξ : Zξ −→ M(Zξ) such that eξ and
mξ are morphism of algebras.

Since we are now working on a category of Eilenberg-Moore algebras pullbacks
are computed as in Set. In particular, since (£, l) has the Hennessy-Milner
property, we can follow same argument of Theorem 6.1.12 to define a function
ζξ : Zξ −→ (Zξ)T such that the following diagram

XT (Zξ)T!
T (eξ)

X Zξ!eξ

"
ξ

"
ζξ

(6.3)

commutes in Set. One more time, we stress that here the use of the Eilenberg-
Moore category is essential for this to work.

It is only left to proof that ζξ is a morphism of M-algebras. In order to show
this, notice that since eξ is an onto function it is a coequalizer and in particular an
extremal epimorphism. Since forgetful functors from regular algebraic categories
reflect coequalizers we have that eξ is a coequalizer in A. Say that eξ coequalizes
M-morphism p and q. We will show that ζξ is a morphism of M-algebras by

168 Chapter 6. Describing Behavioural Equivalence: three sides of one coin

showing that T (eξ)ξ coequalizes p and q in A.

We now show T (eξ)ξp = T (eξ)ξq. Since V is faithful this will follow once we
show V (T (eξ)ξp) = V (T (eξ)ξq). We prove this now.

V (T (eξ)ξp) = V (T (eξ))V (ξ)V (p)

= ζξV (eξ)V (p) (Diagram 6.3)

= ζξV (eξ)V (q) (eξp = eξq)

= V (T (eξ))V (ξ)V (q) (Diagram 6.3)

= V (T (eξ)ξq)

Therefore T (eξ)ξp = T (eξ)ξq. From this, by the universal property of coequalizers,
we conclude that there is a homomorphism of algebras (Zξ, zξ) −→ ((Zξ)T , (zξ)T)
which makes the square above commute in A. Using on more time the faithfulness
of V we conclude that this morphism must have ζξ as underlying function.

Therefore (£, l) has logical congruences. Since every object in a regularly
algebraic category is well-powered, we conclude that there exists a final T -
coalgebra which can be obtained as the colimit of the coalgebras ζξ : (Zξ, zξ)
−→ ((Zξ)T , (zξ)T). This concludes the proof.

6.6 Conclusions

In this chapter, we have studied three ways to express behavioural equivalence of
coalgebra states:

1. using final coalgebras,

2. using coalgebraic languages that have the Hennessy-Milner property,

3. using coalgebraic languages that have logical congruences.

We provided a simple proof for the fact that these three different methods are
equivalent when used to express behavioural equivalence between set coalgebras.
An important point here is that no conditions on the signature functor are required.
This shows that these results only depend on the structure of the state spaces i.e.
the base category. As by-products of our study, we obtained a straightforward
construction of canonical models of coalgebraic logics; a concrete characterisation
of simple coalgebras as logical quotients, and a proof of the Aczel-Mendler-Adámek
theorem on final coalgebras.

A very important insight from this chapter is to explicitely show that the well
known Hennessy-Milner property from Modal logic corresponds to a solution set
condition. Such solution set can then be used to obtain a final coalgebra.

A main topic for further research is that of abstract coalgebraic languages
for functors on categories different from Set. Section 6.5 illustrates how abstract

6.6. Conclusions 169

coalgebraic languages can be generalised to arbitrary categories. The main result
of that section states that for any functor on a regularly algebraic category over
Set an adequate object with the Hennessy-Milner property exists iff there exists
a final coalgebra (Theorem 6.5.8). The use of logical congruences is a crucial
ingredient in the proof. We hope to be able to extend the scope of Theorem 6.5.8
to categories that are topological over Set such as Pos or the category Meas of
measurable spaces; the key problem here is that those categories are not uniquely
transportable.

Another gain of using logical congruences is that they reveal how the Hennessy-
Milner property, as we all know it, is related to the description of a particular
factorisation structure (cf. Definition 6.5.4, Proposition 6.5.5). Here we only
considered (RegEpi,Mono)-structured categories, but it is quite natural to gener-
alise the results here to other factorisation structures. We believe that a study
of these factorisations will lead to a coalgebraic understanding of non standard
bisimulations.

Another question that could be interesting to investigate is the following: What
conditions over the functor or category are needed to keep the language countable.
In the case of the category Set, it is easy to see that the functor should at least
be finitary and preserve finite sets.

Note that the theorems presented here can be restricted to covarieties of
coalgebras; in fact to classes closed under coproducts, quotients and isomorphisms.
It is not clear to us if having a axiomatization describing such covarieties will help
to obtain a neater presentation of final coalgebras.

Another interesting issue would be to extract axiomatizations from our presen-
tation of final coalgebras, a bit on the flavour used in coequational logic. More
broadly, the relation between our construction and coequational logic should be
investigate further. In general, the relation between coalgebraic modal logics and
coequations still needs to be clarified.

Chapter 7

Dynamic Modalities and Coalgebraic
Logics

Applications of modal logic are abundant in computer science and related disci-
plines. An important application of modal logics is in reasoning about programs.
In [47] two main approaches to modal logics of programs are described. The first
one is called an exogenous approach and is exemplified by Propositional Dynamic
Logic (Section 1.2). The second approach is called endogenous and is exemplified
by temporal logic. The key characteristic of exogenous logics is that programs are
explicitly mentioned in the language. In an endogenous logic, programs are fixed
and considered part of the structure over which the logic is interpreted. Exoge-
nous logics give an outer, compositional perspective on programs. In contrast,
endogenous logics take an inner perspective where programs are viewed as a single,
monolithic structure.

In this chapter we investigate how to account for exogenous logics coalge-
braically. Our primal example is PDL. A similar logic, but perhaps less known,
is Game Logic (GL) [87], see page 33 here, which is a non-normal modal logic
for reasoning about strategic ability in determined two-player games. In GL,
modalities are indexed by games and their semantics is given in terms of monotone
neighborhood functions. As said before, common to PDL and GL is that programs
and games are explicit in the language. Moreover, programs can be combined to
create more complex program. In general, programs in those logics are terms over
an algebraic signature.

In this chapter, we concentrate on a coalgebraic framework for exogenous
modal logics which encompasses (test free) PDL and GL. Our key idea is to
consider extra structure on the functor T . We exploit this structure to give
the desired outer perspective on programs/games. For example, for sequential
composition we assume T to be a monad (Section 7.3.1); this is in accordance
with [83] where monads are used to describe notions of computation.

171

172 Chapter 7. Dynamic Modalities and Coalgebraic Logics

The main contributions of this chapter can be summarized as follows. We
provide a general notion of dynamic structure which describes the algebraic
structure on programs, and their interpretation as T -coalgebras. Once this view is
in place, labelled modalities arise in a natural way by a generic process of labelling
(Definition 7.1.1). We then proceed to investigate the nature of PDL and GL
axioms such as [a; b]ϕ ⇐⇒ [a][b]ϕ and [a ∪ b]ϕ ⇐⇒ [a]ϕ ∧ [b]ϕ in our general
setting. We show that such axioms hold if the underlying T -modality preserves
the extra structure on T in a manner that we make precise in Theorem 7.3.7
(sequential composition) and Theorem 7.3.18 (pointwise operations).

7.1 Labelling predicate liftings

In this section we study how, given a set of labels L and a ∈ L, we can label
modalities. We begin by discussing the relation between a modal formula !ϕ, “ϕ
is necessary”, and the PDL formula [a]ϕ, “after every execution of a, ϕ holds”.
The first modality is interpreted over Kripke frames, i.e. Pow-coalgebras, and its
labelling is interpreted over labelled transition systems, i.e. PowL-coalgebras. As
we discussed in Section 1.2, the modality ! leads to basic modal logic whereas
the modalities [a] lead to propositional dynamic logic. As we will later see, there
is a similar relation between the non-normal modality ! for Mon-coalgebras and
the Game Logic modalities [a] which are interpreted over MonL coalgebras. The
next table presents the predicate liftings for ! in both situations. For a set X
and a subset ϕ ⊆ X we have

!X(ϕ) [a]X(ϕ)

Pow
{
ψ ⊆ X | ψ ⊆ ϕ

} {
δ ∈ Pow(X)L | δ(a) ⊆ ϕ

}

Mon
{
N ∈ Mon(X) | ϕ ∈ N

} {
δ ∈ Mon(X)L | ϕ ∈ δ(a)

}

As we can see in both cases the labelled modality [a] can be described in terms of
! as follows: For ϕ ⊆ X we have

[a]X(ϕ) =
{
δ | δ(a) ∈ !X(ϕ)

}

What the last equation indicates is that the labelling of modalities can be seen
as a generic process independent of the functor and any structures on the labels.
The next definition makes this precise.

Definition 7.1.1. Let L be a set of labels, a ∈ L, and λ : Pn −→ PT a predicate
lifting. We define the a-labelling of λ as the natural transformation λa : Pn

−→ P(T L) which maps a set ϕ ⊆ X to

λa
X(ϕ) =

{
δ ∈ T L(X) | δ(a) ∈ λX(ϕ)

}
.

7.2. More on Monads 173

Given a coalgebra ξ : X −→ T (X)L, we write
[[
[a]λ−

]]
(X,ξ)

, instead of [[!λa−]](X,ξ),

for the associated predicate transformer i.e. the composite ξ−1λa.

The next technical lemma relates the predicate transformers for λ and λa.

Lemma 7.1.2. Let L be a set of labels. For every coalgebra ξ : X −→ T (X)L,
every T -predicate lifting λ, and every a ∈ L, we have

[[
[a]λ−

]]
(X,ξ)

= [[!λ−]](X,ξ̂(a)),

where ξ̂ : L −→ T (X)X is the exponential transpose of ξ.

Proof. Recall that ξ̂(a) : X −→ T (X) maps an element x ∈ X to ξ(x)(a). Using
this we will show that for every ϕ ⊆ X we have

[[
[a]λ−

]]
(X,ξ)

(ϕ) = [[!λ−]](X,ξ̂(a))(ϕ).

For every x ∈ X we have

x ∈
[[
[a]λ−

]]
(X,ξ)

(ϕ) ⇐⇒ ξ(x) ∈ λa(ϕ) (Def.
[[
[a]λ−

]]
(X,ξ)

)

⇐⇒ ξ(x)(a) ∈ λ(ϕ) (Def. λa)

⇐⇒ ξ̂(a)(x) ∈ λ(ϕ) (Def. ξ̂)

⇐⇒ x ∈ [[!λ−]](X,ξ̂(a))(ϕ). (Def. [[!λ−]](X,ξ̂(a)))

This concludes the proof.

Remark 7.1.3. During this chapter we ought to be more precise with our notation
for the contravariant power set functor. We write P : Setop −→ Set for the right
adjoint and Pop : Set −→ Setop for the left adjoint. In the convention of categories
of power set algebras (Definition 3.2.12), we are considering A = Set. Recall that
from Proposition 3.2.24 we know that the predicate functor P : SetA has a left
adjoint S; hence P is the functor P and Pop is left adjoin S.

7.2 More on Monads

One of the most important operations between programs is sequential composition.
It was shown in [83] that sequential composition of programs could be formalised
using monads. This section is a technical intermezzo where to familiarise with the
relevant preliminaries. More explicit, in this section we introduce the concepts of
Kleisli category and morphism of monads. The reader familiar with these concept
can skip this section and refer back to it when needed.

As we mentioned in Section 2.3, page 28, every monad comes from an adjunction.
One way to obtain the adjunction is to use the category of Eilenberg-Moore algebras
for the monad. This is the largest canonical solution. There is another canonical
solution which is minimal; it is called the Kleisli category of the monad. The next
definition introduces it.

174 Chapter 7. Dynamic Modalities and Coalgebraic Logics

Definition 7.2.1 (Kleisli Categories). Let M = (M, η, µ) be a monad on a
category C. The Kleisli category of M, written Kl(M), has as objects the same
objects of C. A morphism f : X $ Y in Kl(M) is a morphism f : X −→ M(Y)
in C. We use •M for morphism composition in Kl(M). Given two morphisms
f : X $ Y and g : Y $ Z, in Kl(M), we define g •M f : X $ Z to be the
following composite

X M(Z)!
g •M f

M(Y) MM(Z)!M(g)

$
f

"
µZ

in C; the identity morphism of Kl(M) are given by the unit of the monad, i.e.
idX : X $ X is given by ηX : X −→ M(X).

If there is no risk of confusion we write • instead of •M. The composition •M
is also called the Kleisli composition of the monad of the monad M.

Each Kleisli category is equipped with a functor JM : C −→ Kl(M), called the
Kleisli inclusion, defined as follows: An object X is mapped to X; a morphism
f : X −→ Y is mapped to M(f) ◦ ηX : X −→ MY .

The next example illustrates how the composition of partial functions and
relations can be presented using Kleisli categories.

Example 7.2.2. The following examples illustrate arrows and their composition
in Kleisli categories:

1. Let M = 1 + (−). An arrow f : X $ Y in Kl(1 + (−)) is a partial function
from X to Y . Indeed, given a partial function from X to Y we make it
into a total function X −→ 1 + Y by mapping all the elements for which the
function is not defined into ∗ ∈ 1. Conversely given an arrow f : X $ Y we
obtain a partial function by considering all the the elements that are not
mapped to ∗ ∈ 1. It is straightforward to see that the composition of partial
functions corresponds to the Kleisli composition of the monad 1 + (−). In
other words, the category Kl(1 + (−)) is the category of sets and partial
functions.

2. As mentioned in Section 1.2 binary relations from X to Y correspond to
arrows X −→ Pow(Y). More explicitly given ξ : X −→ Pow(Y) we define a
binary relation Rξ by xRξy iff y ∈ ξ(y).

We now show that the Kleisli composition of the monad Pow corresponds
to the usual composition of the associated relations. Given ξ : X $ Y and

7.2. More on Monads 175

γ : Y $ Z, and an element x ∈ X we have

γ • ξ(x) = µZ ◦ Pow(γ) ◦ ξ(x) (Def. •)
= µZ ◦ Pow(γ) [{y | xRξy}] (Def. Rξ)

=
⋃

{γ(y) | xRξy} (Def. Pow(γ), µZ)

= {z | (∃y)(z ∈ γ(y) ∧ xRξy} (Def.
⋃

)

= {z | (∃y)(yRγz ∧ xRξy}. (Def. Rγ)

All this can by summarised by saying that Kl(Pow) is the category of sets
and relations.

3. Recall the distribution monad (D, η, µ) (Example 2.3.16); in particular
recall that the multiplication µ : DD −→ D is given by multiplying the
probabilities along the way i.e. given D ∈ DD(X) and x ∈ X, we have
µX(D)(x) =

∑
d∈D(X)D(d).d(x). Recall (Example 2.2.1) that a coalgebra

ξ : X −→ D(X) is a transition system where transitions are labelled by
probabilities. The Kleisli composition of D literally compose the probabilities
along the way.

The next remark describes the right adjoint to the Kleisli inclusion functor

Remark 7.2.3. The Kleisli inclusion JM : C −→ Kl(M) together with the functor

KM : Kl(M) −→ C which maps f : X $ Y , in Kl(M), to M(X)
µY f−−−−→ M(Y), in

C, form an adjoint pair which recovers the monad M, see e.g [8] for details.

The next lemma shows that the Kleisli composition for the neighbourhood
monad PPop (cf. Example 2.3.16) corresponds to function composition of predicate
transformers.

Lemma 7.2.4. Let • denote Kleisli-composition for the monad (PPop, η, µ). For
all sets X, all U ∈ P(X) and all E,F : X −→ PPop(X), we have

U ∈ (F • E)(x) iff x ∈ Ê(F̂ (U)).

where Ê and F̂ are the P-transposes of E and F .

Proof. Notice that the transpose of a map f : X −→ PPop(X) is given by the
function f̂ : Pop(X) −→ Pop(X) which maps U ∈ Pop(X) to the set

f̂(U) = {y ∈ X | U ∈ f(y)}

With this in mind we can now calculate.

176 Chapter 7. Dynamic Modalities and Coalgebraic Logics

Let X be a set, U ∈ P(X) and E,F : X −→ PPop(X):

U ∈(F • E)(x) ⇐⇒
⇐⇒ U ∈ µX ◦ PPop(F) ◦ E(x) (Def. •)
⇐⇒ {H ∈ PPop(X) | U ∈ H} ∈ PPop(F) ◦ E(x) (Def. µX Ex. 2.3.16)

⇐⇒ F−1({H ∈ PPop(X) | U ∈ H}) ∈ E(x) (Def. PPop(F))

⇐⇒ {y ∈ X | U ∈ F (y)} ∈ E(x) (Def. F−1)

⇐⇒ F̂ (U) ∈ E(x) (Def. F̂)

⇐⇒ x ∈ Ê(F̂ (U)), (Def. Ê)

as we wanted to show.

The next remark describes a more general situation from which the previous
lemma is a particular case.

Remark 7.2.5. The previous lemma is an instance of a more general phenomenon.
For any adjoint situation (F, U,ϕ, η, ε), and any pair of arrows f : F (A) −→ F (B)
and g : F (B) −→ F (C) the following holds

ϕ(g ◦ f) = ϕ(g) • ϕ(f),

where • is the Kleisli composition associated with UF .

We will need the notion of monad morphism to tame sequential composition.

Definition 7.2.6. Let M = (M, η, µ) and M′ = (M ′, η′, µ′) be monads on a
category C. A monad morphism from M to M′ is a natural transformation ρ : M
−→ M ′ such that the diagrams

M M ′!
ρ

idC

η
'

'
''(

η′
%
%
%%&

M

MM MM ′!M(ρ)

"
µ

M ′

M ′M ′!ρM ′

"
µ′

!
ρ

commute. In case ρ is a monad morphism we write ρ : M −→ M′

The following remark provides another choice for the upper arrow in the
rectangle above.

Remark 7.2.7. Since ρ : M −→ M ′ is natural the following diagram

MM ′ M ′M ′!
ρM ′

MM M ′M!ρM

"
M(ρ)

"
M ′(ρ)

commutes. Hence for upper edge of the rectangle in the previous definition we
could have as have taken (M ′ρ)(ρM).

7.3. Algebraic structures over labels 177

The next lemma presents a connection between monads morphisms and functors
between Kleisli categories. Recall that JM denotes the Kleisli inclusion functor
(Definition 7.2.1).

Lemma 7.2.8. Given monads M and M′ on a category C, there is a bijective
correspondence between monads morphisms ρ : M −→ M′ and functors F : Kl(M)
−→ Kl(M′) for which the triangle

Kl(M) Kl(M′)!
F

C

JM
'

'
''(

JM′
%
%
%%&

commutes.

Proof. We just mention how to define the functor from a morphism and viceversa;
for details we refer the reader to the literature, e.g. [8].

Given a monad morphism ρ : M −→ M′ the assignation ρ◦− : Kl(M) −→ Kl(M′)
is the mentioned functor. More explicitly f : X $ Y , in Kl(M), is mapped to

ρY ◦ f : X $ Y in Kl(M′), i.e. the following composite X
f−−−−→ M(Y)

ρY−−−−−→
M ′(Y).

Given a functor F : Kl(M) −→ Kl(M′) as above, notice that since F commutes
with the Kleisli inclusions we have F (X) = X for every object X. Hence, we
define ρX : M(X) −→ M ′(X) to be the image of idM(X) : M(X) $ X under the
functor F .

7.3 Algebraic structures over labels

As we saw in Section 7.1 the process of labelling modalities can be described
independently of any extra structure on the labels. However, one of the key
features of exogenous logics for programming languages is that they can actually
account for combinations between the programs. Examples of this are axioms like

[a; b]ϕ ⇐⇒ [a][b]ϕ or [a ∪ b]ϕ ⇐⇒ [a]ϕ ∨ [b]ϕ.

In this section we discuss how to account for such extra algebraic structure within
labels. More precisely, we give an algebraic-coalgebraic framework for exogenous
coalgebraic modal logic, and we show that (test free) PDL and GL are particular
instances of it.

Formally speaking, the interpretation of labels is a map L −→ T (X)X which
describes how actions change the global system state. The algebraic structure on
L describes how one can construct complex actions from simpler ones. We would

178 Chapter 7. Dynamic Modalities and Coalgebraic Logics

like this map to be an algebra homomorphism; should this be the case, then we
obtain a compositional semantics of actions.

For this to work, it is, of course, necessary that T (X)X carries an algebraic
structure of the same type as L. It is not entirely clear to us how to define an
algebraic structure on T (X)X in general. In this chapter we discuss a general
framework for sequential composition (Section 7.3.1) and operations which are
obtained by pointwise extensions (Section 7.3.2).

The key idea behind the framework here is illustrated by the following dual
situation. By considering the exponential adjoint of and interpretation of labels
we obtain X −→ T (X)L, this is a behavioural description of the system in the
form of a T L-coalgebra. These two (equivalent) views of a dynamic system form
the basis of our modelling. In short,

L −→ T (X)X X −→ T (X)L

(algebraic view: structure, compositionality) (coalgebraic view: behaviour, modalities)

A similar observation was made in [57] in the context of Java semantics. The next
definition summarises and makes the ideas above precise.

Definition 7.3.1 (Dynamic structure). Let Σ be an algebraic signature (Section
2.3), let L0 be a set (of atomic labels), and let L = TΣ(L0) be the term algebra
over L0. Moreover, let T be a Set-functor such that for each set X the set T (X)X

carries a Σ-algebra structure θ : Σ(T (X)X) −→ T (X)X .
A coalgebra ξ : X −→ T (X)L is said to be standard if its transpose ξ̂ : L

−→ T (X)X is a morphism of Σ-algebras; in other words if the following diagram

L T (X)X!
ξ̂

Σ(L) Σ(T (X)X)!Σ(ξ̂)

"
α

"
θ

commutes, where α is the structural map of the free algebra. In this case, we call
the map ξ̂ a T -dynamic Σ-structure (on X).

If Σ is irrelevant or clear from the context, we will sometimes leave it out, and
simply speak of T -dynamic structures; if also T is clear, we will simply talk about
dynamic structures.

The next remark discusses how the previous definition can be generalized to
monads.

Remark 7.3.2. Notice that in the previous definition we only need free algebras.
Hence it can be generalized to monads. More precisely, given a monad M let (L,α)
be the free M-algebra over L0. Assume for each set X the set T (X)X carries an

7.3. Algebraic structures over labels 179

M-algebra structure θ : M(T (X)X) −→ T (X)X . Then we say that a coalgebra
ξ : X −→ T (X)L is standard if the following diagram

L T (X)X!
ξ̂

M(L) M(T (X)X)!M(ξ̂)

"
α

"
θ

commutes. As in the previous definition The map ξ̂ is called a T -dynamic M-
structure on X. An advantage of this approach via monads is that we can also
account for equations between programs.

In summary, a dynamic structure ξ̂ : L −→ T (X)X provides a compositional
T -coalgebra semantics of complex labels. The following examples show that the
semantics of PDL and GL are dynamic structures.

Example 7.3.3. Let ΣPDL = {∪, ; ,∗ } be the signature of test-free PDL and Π the
set of test-free PDL programs over a set Π0 of atomic program labels. Using the
isomorphism between functions X −→ Pow(X) and relations on X, we see that a
PDL model (X, {Ra| a ∈ Π}) is a Pow-dynamic ΣPDL-structure ξ : Π −→ Pow(X)X .
Indeed, for any set X, the set Pow(X)X carries a ΣPDL-algebra defined for all
ξ, ζ ∈ Pow(X)X as follows. For all x ∈ X,

(ξ ∪ ζ)(x) := ξ(x) ∪ ζ(x), (ξ; ζ)(x) := (ζ • ξ)(x), ξ∗(x) :=
⋃

n<ω

ξn(x),

where ξ0 := ηX and ξn+1 = (ξn; ξ); and • denotes the Kleisli composition of
the monad Pow. It can easily be confirmed that these operations on Pow(X)X

correspond to the standard PDL operations (cf. [47])

Example 7.3.4. Let ΣGL = {∪, ; ,∗ ,d } be the signature of test-free Game Logic
and Γ the set of test-free GL games over a set Γ0 of atomic game labels. A GL
model (X, {Eγ| γ ∈ Γ}) is a Mon-dynamic ΣGL-structure. For any set X, the set
Mon(X)X carries a ΣGL-algebra defined for all E,F ∈ Mon(X)X as follows. For
all x ∈ X,

(E ∪ F)(x) := E(x) ∪ F (x), (E;F)(x) := (F • E)(x),

E∗(x) :=
⋃

κ E
κ(x) Ed(x) := {U ⊆ X | X \ U %∈ E(x)},

where • corresponds to the Kleisli composition of the monad Mon, and Eκ is
defined by transfinite induction over all ordinals; more explicitly, E0 := ηX , for
successors ordinals Eκ+1 = Eκ;E, and for limit ordinals Eκ =

⋃
α<κ E

α(x).

180 Chapter 7. Dynamic Modalities and Coalgebraic Logics

The above definition corresponds to the semantics of complex games in Equa-
tion (2.2), page 34. We illustrate the case for the choice operator. Given programs
γ and χ we have:

x ∈ Êγ∪χ(U) ⇐⇒ x ∈ Êγ(U) ∪ Êχ(U)
⇐⇒ U ∈ Eγ(x) ∪ Eχ(x)
⇐⇒ U ∈ (Eγ ∪ Eχ)(x).

The identity Êγ;χ = Êγ;Eχ for the sequential composition follows from Lemma 7.2.4.
The identity for iteration holds by the Knaster-Tarski fixpoint theorem since
Mon(X) is join-complete with top element PPop(X). The case for dual follows by
straight forward calculations.

7.3.1 Sequential composition

The Examples 7.3.3 and 7.3.4 show that the sequential composition of relations and
that of the neighbourhood functions can be described using the Kleisli composition
of the monads. Assuming that T is a monad, the Kleisli composition for T yields
a sequential composition operation on T (X)X , which generalises those of PDL
and GL. We will now investigate the axiom

[a; b]ϕ ⇐⇒ [a][b]ϕ (7.1)

in the general setting of T -dynamic structures where T is an arbitrary monad
on Set (we leave unit and multiplication implicit). Roughly speaking, our main
result in this section (Theorem 7.3.7) states that the axiom above is valid if the
predicate lifting corresponds to a monad morphism.

From now on we assume Σ is a signature containing the binary operation
symbol ;, L = TΣ(L0) the set of Σ-terms over a set L0 of atomic labels, and most
importantly that in any T -dynamic Σ-structure ξ̂ : L −→ T (X)X , the operation ;
is interpreted on T (X)X as Kleisli-composition for T .

We use predicate transformers to describe Axiom 7.1 semantically and formalise
its validity for any predicate lifting.

Definition 7.3.5. A predicate lifting λ for T is said to support sequential com-
position if for every standard T -dynamic Σ-structure ξ̂ : L −→ T (X)X and every
a, b ∈ L, [[

[a; b]λ−
]]
ξ
=

[[
[a]λ−

]]
ξ
◦
[[
[b]λ−

]]
ξ
.

where
[[
[α]λ−

]]
ξ
: P(X) −→ P(X), α ∈ {a; b, a, b}, is the predicate transformer

associated with λα.

We note that this definition is not vacuous, since not all predicate liftings λ
will make the axiom above valid.

7.3. Algebraic structures over labels 181

Example 7.3.6. Consider the predicate lifting λ : P −→ PPow defined for all sets
X and U ⊆ X by λX(U) = {∅}. For a label a ∈ L, the a-labelling of λ is then
given by λa

X(U) = {δ ∈ Pow(X)L | δ(a) = ∅}. In other words, for any L-labelled
transition system ξ : X −→ Pow(X)L, x ∈ [[[a]λ−]]ξ(U) iff there is no a-transition
from x, note that U is irrelevant.

The axiom for sequential composition for λ would then say: for any x ∈ X,
x has no a; b-successor iff x has no a-successor. This property clearly is not valid,
for example, suppose ξ(x)(a) = {x′} and ξ(x′)(b) = ∅.

We now arrive to the main result of this section. We will show that a predicate
lifting λ : P −→ PT supports sequential composition if it respects the monad
structure given in terms of Kleisli categories. The next theorem makes this precise.

Theorem 7.3.7. A predicate lifting λ : P −→ PT supports sequential composition
if its transpose λ̂ : T −→ PPop is a monad morphism.

Proof. We want to show that for every standard coalgebra ξ : X −→ T (X)L and
every a, b ∈ L, we have

[[
[a; b]λ−

]]
ξ
=

[[
[a]λ−

]]
ξ
◦
[[
[b]λ−

]]
ξ
.

Since we assume λ̂ : T −→ PPop to be a monad morphism by Lemma 7.2.8 we
have a functor λ̂ ◦ − : Kl(T) −→ Kl(PPop). In particular, this implies

λ̂ ◦ (f •T g) = (λ̂ ◦ f) •PPop (λ̂ ◦ g). (7.2)

From the definition of λ̂ and the fact that [[!λ−]]ξ = ξ−1 ◦ λ = P(ξ) ◦ λ we
have: for all x ∈ X and U ⊆ X,

x ∈ [[!λ−]]ξ(U) ⇐⇒ ξ(x) ∈ λX(U) ⇐⇒ U ∈ λ̂(ξ(x)). (7.3)

The theorem now follows from the following equivalences:

x ∈
[[
[a; b]λ−

]]
ξ
(U) ⇐⇒ x ∈ [[!λ−]]ξ̂(a;b) (Lemma 7.1.2)

⇐⇒ x ∈ [[!λ−]]ξ̂(a)•T ξ̂(b)(U) (ξ is standard)

⇐⇒ U ∈ (λ̂ ◦ (ξ̂(a) •T ξ̂(b)))(x) (Eq. 7.3)

⇐⇒ U ∈ ((λ̂ ◦ ξ̂(a)) •PPop (λ̂ ◦ ξ̂(b)))(x) (Eq. 7.2)

⇐⇒ x ∈ [[!λ−]]ξ̂(a) ◦ [[!λ−]]ξ̂(b)(U) (Lemma 7.2.4)

⇐⇒ x ∈
[[
[a]λ−

]]
ξ
◦
[[
[b]λ−

]]
ξ
(U) (Lemma 7.1.2)

This concludes the proof.

The next example illustrates the case of PDL and GL.

182 Chapter 7. Dynamic Modalities and Coalgebraic Logics

Example 7.3.8. The following predicate liftings support sequential composition.

1. The universal modality ! for Pow supports sequential composition. The
transpose !̂ : Pow −→ PPop maps a set U ⊆ X by !̂X(U) = {V ⊆ X |
U ⊆ V }. Recall that the unit and multiplication of Pow are the singleton
map and union, respectively (cf. Example 2.3.16). Here we use η and µ
to denote the unit and multiplication associated with PPop, respectively,
(cf. Example 2.3.16). Now we show that !̂ is a monad morphism.

For the units we want to show !̂ ◦ {−} = η. This follows because for all
x ∈ X,

!̂X({x}) = {V ⊆ X | {x} ⊆ V } = {V ⊆ X | x ∈ V } = η(x).

For the multiplication we want to show that !̂X◦
⋃

= µ◦!̂PPop(X)◦Pow(!̂X).
For this, let N ∈ Pow(P(X)) and V ⊆ X. We now have:

V ∈ µX ◦ !̂PPop(X) ◦ Pow(!̂X)(N) ⇐⇒
⇐⇒ {H ∈ PPop(X) | V ∈ H} ∈ !̂PPop(X) ◦ Pow(!̂X)(N) (Def. µX)

⇐⇒ Pow(!̂X)(N) ⊆ {H ⊆ PX | V ∈ H} (Def. !PPop(X))

⇐⇒ {!̂X(U) | U ∈ N} ⊆ {H ⊆ PX | V ∈ H} (Def. Pow(!̂X)

⇐⇒ ∀U ∈ N : V ∈ !̂X(U) (Def. ⊆)

⇐⇒ ∀U ∈ N : U ⊆ V (Def. !̂X)

⇐⇒
⋃

N ⊆ V (Def.
⋃

)

⇐⇒ V ∈ !̂X(
⋃

N) (Def. !̂X)

2. The non-normal modality ! : P −→ P(PPop) supports sequential composi-
tion. Recall (Example 3.1.3) that !(ϕ) = {N ∈ PPop(X) | ϕ ∈ N}. Hence
its transpose !̂ : PPop −→ PopP maps N ∈ PPop(X) to

!̂(N) = {ϕ ∈ P(X) | N ∈ !(ϕ)} (Def. !̂)

= {ϕ ∈ P(X) | ϕ ∈ N} = N. (Def. !)

In other words, !̂ is the identity which is clearly a monad morphism.

3. The monotone non-normal modality ! : P −→ PMon supports sequential
composition. Following the computation for the non-normal modality !
we can see that !̂ : Mon −→ PopP is the natural inclusion which is also a
monad morphism.

7.3. Algebraic structures over labels 183

Using the Yoneda lemma we can show that the transpose of a predicate lifting
λ is a monad morphism iff the corresponding function T (2) −→ 2, via Proposition
3.3.9, is an Eilenberg-Moore algebra on 2; this was indeed how [83] suggested to
define modalities to study notions of computation.

Lemma 7.3.9. Let T be a monad, on Set. The transpose of a predicate lifting
λ : P −→ PT is a monad morphism iff the associated function p : T (2) −→ 2, via
Proposition 3.3.9, is an Eilenberg-Moore T -algebra (Definition 2.3.17).

Proof. The proof is a long straightforward computation hence we omit it here.

This last observation can be used to elegantly show that the modality ♦, for
Kripke frames, supports sequential composition.

Example 7.3.10. In the case of Pow-coalgebras, ♦ supports sequential composi-
tion. Indeed, ♦ corresponds to the free Pow-algebra over 1.

More concretely, recall Example 3.1.3 on page 39. Taking 2 = {⊥,1} we
have that ♦ corresponds to the set {{1}, {⊥,1}}, we call χ♦ : P(2) −→ 2 the
characteristic function of this set.

We want to show that χ♦ is the function
⋃

1 : PowPow(1) −→ Pow(1). For this
Now take Pow(1) = {∅, {∗}} and identify ∅ with ⊥ and {∗} with 1; we then have
PowPow(1) =

{
∅, {∅}, {{∗}}, {∅, {∗}}

}
.

First notice that with his notation ♦ corresponds to the set
{
{{∗}}, {∅, {∗}}

}
.

Second notice that
⋃

1{{∗}} =
⋃
{∅, {∗}} = {∗} and

⋃
1 x = ∅ in any other case.

This means χ♦ =
⋃

1, i.e the free Pow algebra over 1, as we wanted to show.

It is well known that in PDL and GL, the sequential composition axiom holds
not only for the labelled !-modalities, but also for the labelled ♦-modalities. This
is a more general phenomenon, since we can show that a T -predicate lifting λ
supports sequential composition iff its Boolean dual does.

Proposition 7.3.11. Let T be a monad. A predicate lifting λ : P −→ PT supports
sequential composition iff its Boolean dual ¬λ¬ does.

Proof. We will use the previous lemma. Notice that if a predicate lifting corre-
sponds to a function λ : T (2) −→ 2 then its Boolean dual is associated with the

function ¬ ◦ λ ◦ T (¬), i.e. the following composite T (2)
T (¬)−−−→ T (2)

λ−→ 2
¬−→ 2,

where ¬ : 2 −→ 2 is the usual negation.
Since ¬¬ = id2, the Boolean dual of the Boolean dual of λ is λ. Then to

prove the proposition, by Lemma 7.3.9, it is enough to show that if λ is an
Eilenberg-Moore algebra (Definition 2.3.17) so is ¬ ◦ λ ◦ T (¬).

For the unit we want to show ¬ ◦ λ ◦ T (¬) ◦ η2 = id2. This follows because

¬ ◦ λ ◦ T (¬) ◦ η2 = ¬ ◦ λ ◦ η2 ◦ ¬ (η is natural)

= ¬ ◦ id2 ◦ ¬ (λ is an EM-algebra)

= id2

184 Chapter 7. Dynamic Modalities and Coalgebraic Logics

For the multiplication we want to show ¬ ◦ λ ◦ T (¬) ◦ T (¬ ◦ λ ◦ T (¬)) =
¬ ◦ λ ◦ T (¬) ◦ µ. This follows because

¬ ◦ λ ◦ T (¬) ◦ µ2 = ¬ ◦ λ ◦ µ2 ◦ T T (¬) (µ is natural)

= ¬ ◦ λ ◦ T (λ) ◦ T T (¬) (λ is an EM-algebra)

= ¬ ◦ λ ◦ T (id2) ◦ T (λ) ◦ T T (¬) (T (id2) = idT (2))

= ¬ ◦ λ ◦ T (¬¬) ◦ T (λ) ◦ T T (¬) (¬¬ = id2)

= ¬ ◦ λ ◦ T (¬) ◦ T (¬) ◦ T (λ) ◦ T T (¬)
= ¬ ◦ λ ◦ T (¬) ◦ T (¬ ◦ λ ◦ T (¬))

This concludes the proof.

7.3.2 Pointwise extensions

In this section we will investigate the framework underlying axioms of the form

[a ∪ b]ϕ ⇐⇒ [a]ϕ ∨ [b]ϕ.

In terms of predicate transformers the axiom is valid if and only if the following
equation holds [[

[a ∪ b]λ−
]]
ξ
=

[[
[a]λ−

]]
ξ
∪
[[
[b]λ−

]]
ξ
. (7.4)

The aim of this section is twofold. First we want to formalise what it means for a
predicate lifting to support such structure. Second, we want to isolate properties
of the predicate lifting λ so that the equation above is valid.

Our main result in this section (Theorem 7.3.18) roughly states that the axiom
above is valid if the transpose of λ preserves the structure. In particular, Corollary
7.3.21 states that in the case the structure on programs is given by an algebraic
signature Σ then for any term p(α1, . . .α2) in Σ the axiom

[
p(α1, . . . ,αn)

]
ϕ ⇐⇒ p([α1]ϕ, . . . , [αn]ϕ)

is valid if the transpose of λ preserves the structure.

Instead of working just with a signature of programs we use a monad. There
are two reasons for this more abstract approach. A first reason is that the technical
work is not more complicated, although it might be conceptually more involved
for the reader not used to see algebraic theories as monads. A second reason
is that using monads we can also account for equations between programs, e.g
a ∪ b = b ∪ a or a∗ = ε ∪ a; a∗, see Examples 7.3.17 and 7.3.22.

The next remark concerns the two different perspectives of monads used in
this chapter.

7.3. Algebraic structures over labels 185

Remark 7.3.12. We point out that we are using two essentially different per-
spectives on monads. The first perspective is that of a monad as a categorical
representation of an algebraic theory (Section 2.3); this is the perspective that
we will use in this section. The second perspective, described in the previous
section, presents monads as a notion of computation [83] and used them to describe
sequential composition.

In general, the situation will be as follows: let M be a monad and as-
sume that for each X there are M-algebras θ : M

(
T (X)X

)
−→ T (X)X and

χ : M
(
P(X)P(X)

)
−→ P(X)P(X). A predicate lifting λ (for T) supports the al-

gebraic theory of M if [[!λ−]](−) : T (X)X −→ P(X)P(X) is a homomorphism of
M-algebras. Before explaining the general case we will concentrate on Equation
(7.4) where the structures θ and χ are obtained by pointwise extension.

We now explain pointwise extensions. First consider the case of an algebra A
with a binary operation + : A× A −→ A. We can extend this operation pointwise
to AX as the operation +X : AX × AX −→ AX which maps a pair of functions f
and g to the function given by (f +X g)(x) = f(x)+ g(x). This can be generalised
to any algebraic structure given by a monad using a natural transformation

stX : M ◦ (−)X −→ (−)X ◦M

called strength. In the case of Set, (stX)A : M(AX) −→ M(A)X is defined by

(stX)A(t)(x) = M(ev(−, x))(t),

where ev : AX × X −→ A is the obvious evaluation map. If there is no risk of
confusion we simply write st.

Definition 7.3.13. Let X be a set. The X pointwise extension of an M-algebra
α : M(A) −→ A, written αX : M(AX) −→ AX , is given by αX = (α ◦ −) ◦ (stX)A,
i.e the following composite M(AX)

(stX)A−−−−→ M(A)X
α◦−−−→ AX .

In order to show that αX is, in fact, an M-algebra we need that st is a
distributive law, i.e. ηX = st ◦ η(−)X and st ◦ µ(−)X = µX ◦ stM ◦ M(st) (see
Remark 3.3.8) . Since we are working on Set this will always be the case, see e.g.
[54] for details.

As we will see later, Equation (7.4) concerns pointwise operations. By using a
monad M instead of just a signature, the equations incorporated by M will also
hold for the pointwise extensions. For example, if + is a commutative operation
on A, then +X is commutative as well.

We tame equation (7.4) using pointwise extensions that are “natural” on A.
We formalise this with the concept of natural M-algebras.

186 Chapter 7. Dynamic Modalities and Coalgebraic Logics

Definition 7.3.14. Let M be a monad on Set, and let H : C −→ Set be a functor.
A natural M-algebra on H is a natural transformation α : MH −→ H such that
each of its components is an M-algebra.

Example 7.3.15. 1. All Boolean operations, like union, complement, etc., are
natural on P. Since the inverse image map of a function preserves all of
those, we have a natural transformation ΣBAP −→ P, where ΣBA is the
boolean signature; in other words we have a natural ΣBA-algebra on P.
Moreover, since these operations make P(X) into a boolean algebra we have
a natural transformation MBAP −→ P, where MBA is the Boolean algebra
monad, i.e. MBA = UBAFBA. In other words we have a natural MBA-algebra
on P .

2. For similar reasons, all Boolean operations are natural on PPop and Mon.
Moreover, the dual operation of Game Logic is also natural for those functors.

3. On the contrary, the only Boolean operation that is natural on Pow is union,
because the direct image of a function preserves unions, but not intersections
or complements.

4. Let M be the commutative monoid monad. The binary union gives a natural
M-algebra on Pow.

Now we can formally define what it means for a predicate lifting to support
the pointwise structure given by a monad.

Definition 7.3.16. Let M be a monad on Set, let T be an endofunctor on Set and
let λ be a predicate lifting for T . Assume there are natural M-algebras θ : MT
−→ T and χ : MP −→ P. Let (θX)X : M(T (X)X) −→ T (X) and (χX)P(X) :
M(P(X)P(X) −→ P(X)P(X) be the pointwise extensions of θ and χ, respectively.

Let L0 be set (of atomic labels), and L = M(L0) be the free M-algebra over L0,
write α for the structural map. We say that λ supports the M-structure relative
to θ and χ if the following diagram

L !
ξ̂

M(L) !M(ξ̂)

"
α

"
T (X)X P(X)P(X)!

[[!λ−]](−)

M
(
T (X)X

)
M

(
P(X)P(X)

)
!

M
(
[[!λ−]](−)

)

"
(θX)X

"
(χX)P(X)

(7.5)

commutes for every standard coalgebra ξ : X −→ T (X)L (Definition 7.3.1).

In the case of a signature Σ, the previous definition says the following: A
predicate lifting λ supports the Σ structure if for each term p(α1, . . . ,αn) ∈ TΣ(L0)
and each standard coalgebra ξ : X −→ T (X)TΣ(L0) the following holds

[[
[p(α1, . . . ,αn)]λ−

]]
ξ
= pχ(

[[
[α1]λ−

]]
ξ
, . . . ,

[[
[αn]λ−

]]
ξ
)

7.3. Algebraic structures over labels 187

The next example illustrates this equation, and the previous definition, in more
detail for the particular case of a binary operation +.

Example 7.3.17. Consider the functor Σ(X) = X×X instead of the free monad.
Let L = TΣ(L0). Write + : L× L −→ L for the operation between labels. Assume
we have natural transformations ⊕ : ΣT = T × T −→ T and * : ΣP = P × P
−→ P. Let λ be a unary predicate lifting for T and write !λ for the associated
modality.

We will now show
[[
[t+ t′]λ−

]]
ξ
=

[[
[t]λ−

]]
ξ
*X

[[
[t′]λ−

]]
ξ
.

for every standard coalgebra ξ. The operation ⊕ is needed to obtain a dynamic
structure on L by freeness. Using the commutativity of Diagram 7.5 we can show
that for every standard coalgebra ξ : X −→ T (X)TΣ(L0) (Definition 7.3.1), every
pair of terms t, t′ ∈ L = TΣ(L0) and every U ∈ P(X) we have:

[[
[t+ t′]λ−

]]
ξ
(U) = [[!λ−]]ξ̂(t+t′)(U) (Lemma 7.1.2)

= (*X)
P(X)Σ

(
[[!λ−]](−) ◦ ξ̂

)
(t, t′)(U) (Diagram 7.5)

=
(
[[!λ−]]ξ̂(t)(*X)

P(X)[[!λ−]]ξ̂(t′)

)
(U) (Def. Σ)

= [[!λ−]]ξ̂(t)(U)*X [[!λ−]]ξ̂(t′)(U) (Def. (*X)
P(X))

=
[[
[t]λ−

]]
ξ
(U)*X

[[
[t′]λ−

]]
ξ
(U). (Lemma 7.1.2)

In the case that t and t′ are PDL programs and * = ∪, we obtain Equation (7.4).
The use of monads allows to incorporate the axioms. For example if +

is commutative, then to have a dynamic structure ⊕ and * should also be
commutative, and then the following holds:

[[
[t+ t′]λ−

]]
ξ
=

[[
[t′ + t]λ−

]]
ξ
.

We can now state the main theorem of this section analogous to Theorem
7.3.7.

Theorem 7.3.18. Let M be a monad on Set, let T be an endofunctor on Set and
let λ be a predicate lifting for T . Assume there are natural M-algebras θ : MT
−→ T and χ : MP −→ P. A predicate lifting λ : P −→ PT supports the M-structure
relative to θ and χ if the following diagram

T PPop!
λ̂

MT MPPop!M(λ̂)

"
θ

"
χPop

(7.6)

commutes, i.e. λ̂ is a morphism of natural M-algebras.

188 Chapter 7. Dynamic Modalities and Coalgebraic Logics

We will need the following lemma in the proof of the theorem

Lemma 7.3.19. Let M be a monad on Set. For any natural M-algebra χ : MP
−→ P and every pair of sets A,B the following diagram commutes:

M(P(B)A) (MP(B))A!
stAP(B)

M(P(A)B) (MP(A))B!
stBP(A)

"

M(ψ)

P(B)A!
χB ◦ −

P(A)B!χA ◦ −

"

ψ

where ψ : Set[−,P] −→ Setop[Pop,−] is the natural isomorphism associated with
the adjunction Pop D P.

Proof. The idea of the proof is to present M by operations and equations, see
Chapter 5; the intention of this is to decompose χ : MP −→ P into several n-ary
operations where n ranges over the cardinals. We can then use the Yoneda Lemma
and the fact that the connectives

∨
,¬ are a functionally complete set, i.e. every

function 2n −→ 2 can be expressed as a term of these, see [35] for details.
Without loss of generality, we can assume there exist a signature functor Σ

and a surjective natural transformation E : Σ −→ M , where Σ =
∐

Σn × (−)n, for
example Σ could be the canonical signature (Example 5.1.3).

Notice that the horizontal edges in the diagram above are the pointwise
extensions (χA)B and (χB)A, respectively. Since E is surjective, and all the
morphisms involved are natural, it suffices to show that

ψ ◦ χB
A ◦ EP(A)B = χA

B ◦M(ψ) ◦ EP(A)B .

More concretely, we want to show that for each n-ary operation p ∈ Σn and every
sequence (f1, . . . , fn) ∈

(
P(A)B

)
the following holds: for each a ∈ A

χB

(
p, f̂1(a), . . . , f̂n(a)

)
=

{
b | a ∈ χA

(
p, f1(b), . . . fn(b)

)}
. (7.7)

We first show that Equation (7.7) holds for the operations
∨
,¬. Keep in mind

that, in principle,
∨
,¬ need not be in the signature induced by Σ.

Claim. Let n be an arbitrary but fixed cardinal number. Each of the operations∨
: Pn −→ P , ¬ : P −→ P make Equation (7.7) true. Moreover, any term of these

also makes Equation (7.7) true.

Proof of the claim. In the case of negation, Equation (7.7) reduces to prove that
for each f : B −→ P(A) and each a ∈ A, we have ¬f̂(a) = {b | a ∈ ¬f(b)}. This
follows directly from the definition of f̂ .

7.3. Algebraic structures over labels 189

The case of n-ary disjunctions reduces Equation (7.7) to the following: For
each n-tuple (f1, . . . , fn) ∈

(
P(A)B

)
and each a ∈ A we have

∨
i≤n f̂i(a) = {b | a ∈∨

i≤n fi(b)}. This is also immediate from the definition of exponential transposes.
The case of an arbitrary term will now follow from the case of disjunctions and

negations because every boolean term can be expressed using only disjunctions
(
∨
) and negations (¬). This finishes the proof of the claim.

It remains to show that the equation still holds for every possible operation p in
any other signature. Here is where the Yoneda Lemma and functional completeness
come into the picture.

Recall that each operation p ∈ Σn induces a natural transformation χ◦E(−, p) :
Pn −→ P and that χ ◦ E : ΣP −→ P is totally determined by those (Section
5.1). The Yoneda Lemma tells us that for each operation p ∈ Σn, the natural
transformation χ ◦ E(−, p) is totally described by an arrow Y (p) : 2n −→ 2. By
the functional completeness of

∨
,¬ the arrow Y (p) : 2n −→ 2 can be expressed as

a term over
∨
,¬. From this, using the claim above, we conclude that Equation

(7.7) holds. This concludes the proof of the lemma.

We can now prove Theorem 7.3.18.

Proof of Theorem 7.3.18. We want to prove that Diagram (7.5) commutes for
every standard coalgebra ξ : X −→ T (X)L. First notice that the rectangle on the
left of Diagram (7.5) commutes for every standard ξ, by definition of standard
coalgebra. Hence to prove the theorem, it is enough to show that the rectangle
on the right of Diagram (7.5) commutes. In other words, we want to show
that [[!λ−]](−) is a M-morphism between the pointwise extensions of θ and χP
(Definition 7.3.16). More specifically, for each X, we want to show

(χX)
P(X) ◦M

(
[[!λ−]](−)

)
= [[!λ−]](−) ◦ (θX)P(X). (7.8)

The proof of this, and then of the theorem, will follow from the following diagram:

M(T (X)X) M(PP(X)X)!M(λ̂ ◦ −)

"

stXT (X)

"

stXPPX

T (X)X PP(X)X!
λ̂ ◦ −

(
MT (X)

)X (
MPP(X)

)X
!M(λ̂) ◦ −

"

θX ◦ −
"

χP(X) ◦ −

(
MP(X)

)P(X)

M(P(X)P(X))!M(ψ)

"

stP(X)
P(X)

P(X)P(X)!
ψ

"

χX ◦ −

where ψ is as in Lemma 7.3.19.

190 Chapter 7. Dynamic Modalities and Coalgebraic Logics

We now argue that the outer rectangle is the rectangle on the right of Diagram
(7.5), i.e. its commutativity is Equation 7.8. Firstly, observe that by definition
the vertical outer edges are the pointwise extensions (θX)P(X) and (χX)P(X),
respectively. Secondly, by properties of adjoints, see equations after Lemma A.1.2,
notice that the horizontal edges of the outer rectangle are M([[!λ−]](−)) and
[[!λ−]](−) respectively.

Now we argue that the above diagram commutes. The upper left rectangle
commutes because st is natural. The lower left rectangle commutes because we
assume λ̂ to be a morphism of natural M-algebras and (−)X is a functor. Finally,
the rectangle on the right commutes because of Lemma 7.3.19. Since all the inner
rectangles commute so does the outer rectangle. This concludes the proof.

The next examples illustrate Theorem 7.3.18.

Example 7.3.20. Using Theorem 7.3.18 we can see that

1. the PDL axiom [α∪β]ϕ ⇐⇒ [α]ϕ∧[β]ϕ is valid because the adjoint, λ̂ : Pow
−→ PopP , of the predicate lifting associated with ! transforms unions into
intersections. To see this first recall that !̂X(U) = {V ⊆ X | U ⊆ V }. Then
for U1, U2 ∈ Pow(X) we have:

!̂X(U1 ∪ U2) = {V ⊆ X | U1 ∪ U2 ⊆ V }
= {V ⊆ X | U1 ⊆ V and U2 ⊆ V }
= {V ⊆ X | U1 ⊆ V } ∩ {V ⊆ X | U2 ⊆ V }
= !̂X(U1) ∩ !̂X(U2).

2. On the contrary, in Game Logic the axiom [α∪β]ϕ ⇐⇒ [α]∨ϕ[β]ϕ is valid.
Because, as we saw in Example 7.3.8, the transposes of the non-normal
modalities ! : P −→ PMon and ! : P −→ PPPop are the inclusion and the
identity, respectively. Both of them maps joins to joins hence they yield the
axiom above.

We now rephrase Theorem 7.3.18 in term of algebraic signatures.

Corollary 7.3.21. Under the assumptions of Theorem 7.3.18. If λ̂ : (T , θ) −→
(PPop,χP) is a morphism of Σ-algebras, then for each term p(α1, . . . ,αn) ∈ TΣ(L0)
and each T -dynamic Σ-structure σ : TΣ(L0) −→ T (X)X the following holds

[[
[p(α1, . . . ,αn)]λ−

]]
ξ̂
= pχ(

[[
[α1]λ−

]]
ξ̂
, . . . ,

[[
[αn]λ−

]]
ξ̂
)

where pχ is the interpretation of the operation p in (PPop,χP).

Phrasing the previous corollary with axioms we have that if λ̂ is a morphism
of Σ algebras then the axiom

[
p(α1, . . . ,αn)

]
ϕ ⇐⇒ p([α1]ϕ, . . . , [αn]ϕ)

7.4. Conclusions 191

is valid.
The next example uses Theorem 7.3.7 and Theorem 7.3.18 to deduce the usual

axiom for iteration.

Example 7.3.22. It is well known that iteration satisfies a∗ = ε ∪ a; a∗. We will
illustrate how to obtain the usual axiom for iteration for the ! modality of Pow,
i.e. i.e. [a∗]ϕ ⇐⇒ ϕ ∧ [a][a∗]ϕ and PPop (or Mon), i.e. [a∗]ϕ ⇐⇒ ϕ ∨ [a][a∗]ϕ,
in our framework. In both cases we interpret the atomic label ε as the unit of the
monad, i.e. given a standard coalgebra ξ : X −→ T (X)L, ξ̂(ε) = η. This implies
that in both cases for the ! modality we have

[[
[ε]−

]]
ξ
(ϕ) = ϕ. (7.9)

1. The universal modality ! : P −→ PPow supports sequential composition
(Example 7.3.8) and “transforms” ∪ into ∧ (Example 7.3.20) then we have

[[
[a∗]λ−

]]
ξ
(ϕ) =

[[
[ε ∪ a; a∗]λ−

]]
ξ
(ϕ) (ξ is standard)

=
[[
[ε]−

]]
ξ
(ϕ) ∩

[[
[a; a∗]λ−

]]
ξ
(ϕ) (Ex. 7.3.20)

=
[[
[ε]−

]]
ξ
(ϕ) ∩

[[
[a]λ−

]]
ξ
◦
[[
[a∗]λ−

]]
ξ
(ϕ) (Ex. 7.3.8)

= ϕ ∩
[[
[a]−

]]
ξ
◦
[[
[a∗]λ−

]]
ξ
(ϕ). (Eq. 7.9)

2. Following the same computations in the previous item for the case of the
the non-normal modalities we obtain

[[
[a∗]λ−

]]
ξ
(ϕ) = ϕ ∪

[[
[a]λ−

]]
ξ
◦
[[
[a∗]λ−

]]
ξ
(ϕ)

7.4 Conclusions

In this chapter we developed a coalgebraic framework which covers Dynamic logics
like (test-free) PDL and GL. We illustrated how the process of labelling modalities
can be described by a generic process independent of any structure on the labels.
We have shown with Theorems 7.3.7 and 7.3.18 that the usual axioms for PDL
and GL present a property of the associated predicate liftings not of labelled
modalities itself.

A key technical tool in our work was Lemma 7.3.19; this result also shows
a limitation of the functorial approach to develop dynamic logics further. More
concretely, Lemma 7.3.19 shows that we can only account for boolean terms at
the pointwise level. In other words, we can only use boolean operations for axioms
that preserve the rank of the modal formulas.

There are several topics that could be developed further. For example.

192 Chapter 7. Dynamic Modalities and Coalgebraic Logics

Sequential composition of input-output systems: In this chapter we stud-
ied sequential composition for coalgebras ξ : X −→ T (X) where T is a monad
and X is the state space. Although, this view covers PDL and GL, it leaves out
examples where coalgebras are seen as functional programs [83] or components
[48] that transform input to output. For example, Mealy machines with input in A
and output in B are coalgebras of type X −→ (B ×X)A (cf. [96]), but the functor
(B × −)A is not a monad (unless A = B). However, the transpose of a Mealy
machine is a map of type A −→ (B ×X)X and the functor S(B) = (B × X)X

is a monad in B (called the monad of side effects in [83]). We can therefore
define the sequential composition of two Mealy machines ξ1 : X −→ (B ×X)A and
ξ2 : X −→ (C ×X)B as the transpose of the composition in Kl(S) of ξ̂1 : A −→ S(B)
and ξ̂2 : B −→ S(C). This functional perspective on programs is essentially that of
[83], and it was also used in [57] to describe sequential composition in a coalgebraic
semantics of Java programs.

Our notion of dynamic structure (Definition 7.3.1) does not support this
functional view. However, there seems to be a way out of this. To illustrate, we
can still define labelled modalities by labelling predicate liftings for the Mealy
functor (B ×−)A. For example, let ξ1 : X −→ (B ×X)A and ξ2 : X −→ (C ×X)B

be two Mealy machines. For a ∈ A consider the predicate lifting [a]A : P(X)
−→ P

(
(B ×X)A

)
which maps a set U ⊆ X to [a]A(U) = {δ ∈ (B × X)A |

π2(δ(a)) ∈ U}. Using the sequential composition described above we can show
that

[[[a]A−]]ξ2;ξ1 =
⋃

b∈B

Rsξ2(a)(b) ∩ [[[a]A−]]ξ1 ◦ [[[b]B−]]ξ2 ,

where Rsξ2(a)(b) = {x ∈ X | π1(ξ2(x)(a)) = b} (in words: “with input a the
output is b”). The same equation appeared in [57] for describing the sequential
composition of normal termination for Java. This suggests that there is a general
framework for exogenous modal logics for input-output systems yet to be developed.

Other descriptions of sequential composition: In [55], a perspective on
predicate liftings using indexed categories (fibrations) is developed using the
concept ofmonad with a predicate lifting. In this framework, predicate transformers
are functors on a category of predicates; compositionality then follows from
functoriality. Our characterisation in Theorem 7.3.7 is equivalent to the notion
of a monad with a predicate lifting, in [55], when the base logic is given by the
functor P : Setop −→ Set. Our restriction of the base logic functor to P , instead of
any functor with codomain Cat, allows us to define the concept of natural algebras
for a monad (Definition 7.3.14) using a single monad. Also, the restriction of an
algebraic structure on P to a structure on PPop does not seem natural in the
framework of [55], hence our Theorem 7.3.18 does not seem to transfer. Although
the approach in [55] is more general in some ways, it does not seem to include the
non-monotonic predicate transformers arising from neighbourhood modalities [26],

7.4. Conclusions 193

our framework does include those (Example 7.3.8).

Bialgebra: Bialgebras specify interaction between algebraic and coalgebraic
structure by means of a distributive law. Distributive laws of the type δ : MT
−→ T M , where M is a monad specifying syntax and T is a coalgebra functor
specifying behaviour, are specification formats in an abstract form of structural
operational semantics, see e.g. [65]. Given that exogenous modal logics involve
algebraic structure on programs and program behaviour is formalised as coalgebras,
it might seem that dynamic modalities and their axioms should belong to the
realm of bialgebra. However, at this point it is not clear that such a bialgebraic
modelling exists, at least not in the expected manner.

Meta-theory: Finally, the general meta-theoretic properties such as complete-
ness of the exogenous coalgebraic modal logics that fall under the scope of our
framework still need to be clarified. Given that the completeness of Game Logic
is still open, we expect that such results are difficult to obtain.

Chapter 8

Fixed Points Coalgebraically

In the functorial approach to coalgebraic modal logics is that the nesting of modal-
ities in a formulas has finite depth. This is a key feature of the framework because
it implies that the category of Alg(L), for some coalgebraic modal logic (L, δ), is
finitary over the base category. However, this severely restricts the expressive
power of these logics; as we mentioned before (Remark 3.2.6), coalgebraic modal
logics only describe the one-step behavior of a state in a coalgebra. Moreover,
as we proved in Theorem 5.2.17 every coalgebraic modal logic is a rank one
axiomatization of a logic of predicate liftings. These characteristics of the the
coalgebraic logics introduced in Part I make difficult to specifying the ongoing
behavior of a state in a coalgebra by only finitary means. To account for the
ongoing behaviour of states, one can extend the language with fixpoint operators,
generalizing the modal µ-calculus [66]. A coalgebraic fixpoint language on the
basis of the Moss logic was introduced in [108]. Recently, [27] introduced the
coalgebraic µ-calculus µMLΛ parametrized by a set Λ of predicate liftings.

Given the success of automata-theoretic approaches towards fixpoint logics,
one may expect a rich and elegant universal automata theory that generalizes the
theory of specific devices for streams, trees or graphs, by dealing with automata
that operate on coalgebras. A first step in this direction was the introduction of
so-called coalgebra automata in [108, 67] where many results in automata theory,
such as closure properties of recognizable languages, were generalized to this class
of automata. However, coalgebra automata are related to fixpoint languages based
on the Moss modality ∇, and do not correspond directly to coalgebraic modal
languages associated with predicate liftings (such as the graded modal µ-calculus).
In addition, the theory of coalgebra automata needs the type of the coalgebras, i.e.
the functor, to preserves weak pullbacks, and hence cannot be applied as generally
as possible.

This Chapter introduces automata for an arbitrary type of coalgebras (Def-
inition 8.2.1). More precisely, given a set Λ of monotone predicate liftings, we

195

196 Chapter 8. Fixed Points Coalgebraically

introduce Λ-automata as devices that accept or reject pointed T -coalgebras on
the basis of so-called acceptance games. With this, Λ-automata provide the game
theoretical counterpart to the coalgebraic µ-calculus, for Λ, as in [108]. In par-
ticular, there is a construction transforming a µMLΛ-formula into an equivalent
Λ-automaton (of size quadratic in the length of the formula). Hence we may
use the theory of Λ-automata in order to obtain results about coalgebraic modal
fixpoint logic.

The main technical contribution of this chapter concerns a small model property
for Λ-automata (Theorem 8.3.4). We show that any Λ-automaton A with a non-
empty language recognizes a pointed coalgebra (ξ, x) that can be obtained from
A via some uniform construction involving a satisfiability game (Definition 8.3.2)
that we associate with A. The size of (X, ξ) is exponential in the size of A.

We also provide some ideas of how coalgebra automata could be treated within
the functorial approach to modal logics.

In this chapter we do not go into all the technical game theoretical details as
they would distract from our main story of drawing the boundaries of functorial
framework to coalgebraic modal logics. We refer the reader to G. Fontaine PhD
dissertation [40] where all the game theoretical details are addressed in an elegant
and detailed manner.

8.1 Preliminaries

Game theory & Automata

We assume familiarity with the basic notions of the theory of automata and infinite
games [43]. Here we fix some notation and terminology.

Definition 8.1.1. 1. Given a set A, we write A∗ and Aω, respectively, for the
sets of words (finite sequences) and streams (infinite sequences) over A,
respectively. Given π ∈ A∗ + Aω we write Inf (π) for the set of elements in
A that appear infinitely often in π.

2. A stream automata (also called ω-automata) is a tuple A = (X, xI , ξ,Ω)
where X is a finite set, xI ∈ X , ξ is a function ξ : X −→ Pow(X)A, and Ω is
a function Ω : X −→ N. An automata is said to be deterministic if for every
a ∈ A and every x ∈ X, the set ξ(x)(a) is a singleton.

A run of an automata on a word a0a1 . . . ∈ Aω is a sequence x0x1 . . . ∈ Xω

such that x0 = xI and for each i ∈ N, xi+1 ∈ ξ(xi)(ai).

A word a0a1 . . . Aω is accepted by the automata A if there is a run x0x1 . . .
automaton on a0a1 . . . such that the maximum of the set {Ω(x) | x ∈
Inf (x0x1 . . .)} is even.

8.1. Preliminaries 197

3. A subset of Aω is called a language. A language is ω-regular if there is a
stream automata A such that L is the set of words accepted by A.

4. A graph game is a tuple G = (G∃, G∀, E,Win) where G∃ and G∀ are disjoint
sets, and (with G := G∃ +G∀) we have E ⊆ G2, and Win ⊆ Gω. The set
G is called the board of the game. A game G is said to be a parity game if
Win is given by a parity function Ω : G −→ N as follows: for all sequences
π ∈ Gω

π ∈ Win ⇐⇒ max {Ω(z) | z ∈ Inf (π)} is even.

In such case we write G = (G∃, G∀, E,Ω) .

5. A match in a game G = (G∃, G∀, E,Win) is a sequence v0 . . . vk ∈ G∗ ∪Gω

such that for all k (vk, vk+1) ∈ E. A match is full if either k = ω, or k is
finite and there is no v ∈ G such that (vk, v) ∈ E. In the latter case, if vk
belongs to a player J in G, we say that J got stuck.

The winner of a finite full match is the player who does not get stuck. In an
infinite (full) match ∃ wins if v0 . . . vk ∈ Win, otherwise player ∀ wins.

6. A strategy in a game G = (G∃, G∀, E,Win) is a map α : G∗ −→ G. A
G-match π = v0v1 . . . is α-conform, for a player J , if vi+1 = α(v0 . . . vi) for
all i ≥ 0 such that vi ∈ GJ . A strategy α is winning for a player J if all
α-conform matches, for J , are winning for J .

7. A strategy α in a game G = (G∃, G∀, E,Win) is a finite memory strategy
if there is a finite set M , called the memory set, an element mI ∈ M and
a map (α1,α2) : G × M −→ G × M such that for all matches v0 . . . vk,
in G, there exists and m0 . . .mk ∈ M∗ such that m0 = mI , mi+1 =
α2(vi,mi) (for all i < k), and α(v0 . . . vk) = α1(vk,mk).

8. A strategy α is said to be positional if there exists a map αp : G∗ −→ G such
that for all v0 . . . vk ∈ G∗ we have α(v0 . . . vk) = αp(vk). We often identify α
with αp.

9. A game G = (G∃, G∀, E,Win) is called regular if there exists an ω-regular
language L over a finite alphabet C, and a map col : G −→ C, such that
Win = {v0v1 . . . ∈ Gω : col(v0)col(v1) . . . ∈ L}.

Regular games always have finite memory strategies.

Proposition 8.1.2 ([23]). For each regular game G = (G∃, G∀, E,Win) there
exists finite memory strategies α∃ and α∀, for ∃ and ∀ respectively, such that for
all positions z on the board of G, either z is winning with respect to α∃ or with
respect to α∀.

Moreover, the size of the memory set is bounded by the size of the smallest
deterministic parity automaton recognising an ω-regular language associated with
the regular game.

198 Chapter 8. Fixed Points Coalgebraically

Parity games always have positional strategies.

Proposition 8.1.3 ([34, 85]). Let G = (G∃, G∀, E,Win) be a parity game. There
exists positional strategies α∃ and α∀, for ∃ and ∀ respectively, such that for all
positions z on the board of G, either z is winning with respect to α∃ or with respect
to α∀.

Coalgebraic modal fixpoint logic

We can now introduce coalgebraic modal fixpoint logic, also called the coalgebraic
µ-calculus. We first introduce some terminology concerning predicate liftings.

Definition 8.1.4. Let λ : Pn −→ PT be a predicate lifting for a functor T .

1. λ is said to be monotone if for every pair of sequences of sets ϕ,ψ : n −→ PX
we have that (∀i)(ϕi ⊆ ψi) implies λ(ϕ) ⊆ λ(ψ).

2. The boolean dual of λ, denoted by λd : Pn −→ PT , is the predicate lifting
which maps a sequence ϕ : n −→ P to ¬λ(¬ϕ1, . . . ,¬ϕn).

We now define the language of fixpoint modal formulas.

Fix a set Q of variables, a set of monotone predicate liftings Λ which is closed
under boolean duals.

The set µMLΛ of fixpoint formulas by the following gramar:

ϕ ::= q ∈ Q | ⊥ | 1 | ϕ0 ∧ ϕ1 | ϕ0 ∨ ϕ1 | !λ(ϕ0, . . . ,ϕar(λ)) | µq.ϕ | νq.ϕ

where λ ∈ Λ. Syntactic notions pertaining to formulas, such as alternation depth,
are defined as usual. The size of a formula is defined as its length

The semantics of this language is completely standard. Let (X, ξ) be a T -
coalgebra. Given a valuation V : X −→ P(S), we define the meaning [[ϕ]](X,ξ),V of
a formula ϕ by a standard induction which includes the following clauses:

[[q]]ξ,V := V (q), [[µq.ϕ]]ξ,V := LFP.ϕξ,V
q , [[νq.ϕ]]ξ,V := GFP.ϕξ,V

q .

Here LFP.ϕξ,V
q and GFP.ϕξ,V

q are the least and greatest fixpoint, respectively, of
the monotone map ϕξ,V

q : P(X) −→ P(X) given by ϕξ,V
q (A) := [[ϕ]]ξ,V [q 1→A] (with

V [q 5→ A](q) = A and V [q 5→ A](q′) = V (q′) for q′ %= q). For sentences, that is,
formulas without free variables, the valuation does not matter; we write ξ, q $ ϕ
iff q ∈ [[ϕ]]ξ,V for some/any valuation V .

The next remark present another definition of the semantics for the fixpoint
operators.

8.2. Automata via Predicate liftings 199

Remark 8.1.5. In the definition above, since all operations are monotone the
function ϕξ,V

q : P(X) −→ P(X) is monotone. Then by Knaster-Tarski Theorem it
has a a least and greatst fixpoint.

However, notice that we can define the by defining the semantics of the fixpoint
operators via

[[µq.ϕ]](X,ξ),V =
⋂{

U ⊆ X | U ⊆ [[ϕ]]ξ,V [q 1→U]

}
and

[[νq.ϕ]](X,ξ),V =
⋃{

U ⊆ X | [[ϕ]]ξ,V [q 1→U] ⊆ U
}
.

8.2 Automata via Predicate liftings

We are now ready for the definition of the key structures of this chapter, Λ-
automata, and their semantics.

Definition 8.2.1 (Λ-automata). Let Λ be a set of predicate liftings for a functor
T and let A be a category of power set algebras. Let LΛ : Set −→ Set be the
functor UFΣΛ, where U : A −→ Set is the forgetful functor, F is its left adjoint,
and ΣΛ : Set −→ Set is the functor associated with the modal signature of Λ.

A Λ-automaton A is a quadruple A = (A, aI , ρ,Ω), where A is a finite set of
states, aI ∈ A is the initial state, ρ : A −→ LΛ(A) is the transition map, and Ω : A
−→ N is a parity map. The size of A is defined as the cardinality of A, and its
index as the size of the range of Ω.

Example 8.2.2. Let A = {a, b} and let Λ = {!,♦}. The following is an example
of a Λ-automata.

a b

!a ∧ ♦b

'
'*

%
%)

where aI = a, an the parity map is given by Ω(a) = 1 and Ω(b) = 0.
In general the transition map of Λ-automata maps an element a ∈ A to a

rank-1 formula where the formulas inside the modalities are propositional variable
in A.

The next remark mentions how could we generalize the previous definition to
any coalgebraic modal logic.

Remark 8.2.3. An idea, due to Y. Venema, to generalize the previous definition to
an arbitrary coalgebraic modal logic (L, δ), is the following: Require the transition
map to be a function A −→ ULF (A). Since LΛ = UFΣΛ, every Λ-automaton
A = (A, aI , ρ,Ω) induces one of these new automata via the following transition
map LΛ(ηA) ◦ ρ : A −→ ULΛF (A) = UFΣLUF (A); recall that LΛ = FΣΛU . We
do not peruse this path in this manuscript and stick to Λ-automata.

200 Chapter 8. Fixed Points Coalgebraically

Convention 8.2.4. For the rest of this chapter we work within standard automata
theory. This means we assume the base category of our logic to be DL and a fixed
set of monotone predicate liftings for T .

The acceptance game

To introduce the acceptance of Λ-automata we will use the one-step semantics,
Section 3.2.3. We now recall those definitions in the particular case of a logic of
predicate lifitings.

Let Q be a set of propositional variables, Λ be a set of predicate liftings,
and V : Q −→ UP (X) a valuation. The one-step semantics of depth-one modal
formulas over Q (Definition 3.2.19), relative to V , written [[−]]1V , is inductively
defined by

[[1]]1V = T (X),

[[⊥]]1V = ∅,
[[!λ(q1, . . . qar(λ))]]

1
V = λX(V (q1), . . . , V (qar(λ)))

[[ϕ ∧ ψ]]1V = [[ϕ]]1V ∩ [[ψ]]1V ,

[[ϕ ∨ ψ]]1V = [[ϕ]]1V ∪ [[ψ]]1V ,

[[!λ(ϕ1, . . .ϕar(λ))]]
1
V = λX([[ϕ1]]

1
V , . . . , [[ϕar(λ)]]

1
V)

Given t ∈ T (X) and a depth-one formula ϕ, over Q, we write T (X), t $1
V ϕ to

indicate t ∈ [[ϕ]]1V . An important point to remember here is to no coalgebra is
needed to define this semantics.

The acceptance game of Λ-automata is a two players game, noted ∃ (Eloise)
and ∀ (Abelard), which proceeds in rounds moving from one basic position in
A×X to another. In each round, at position (a, x) first ∃ picks a valuation V that
makes the depth-one formula δ(a) true at ξ(x). Looking at this V : A −→ P(X)
as a binary relation {(a′, x′) | x′ ∈ V (a′)} between A and X, ∀ closes the round
by picking an element of this relation.

Definition 8.2.5 (Acceptance game). Let (X, ξ) be a T -coalgebra and let A =
(A, aI , ρ,Ω) be a Λ-automaton. The associated acceptance game Acc(A, ξ) is the
parity game given by the table below.

Position Player Admissible moves Priority

(a, x) ∈ A×X ∃
{
V : A −→ P(X) | T (X), ξ(x) $1

V δ(a)
}

Ω(a)

V ∈ P(X)A ∀
{
(a′, x′) | x′ ∈ V (a′)

}
0

where $1
V is the one-step semantics (Definition 3.2.20). A pointed coalgebra (ξ, x0)

is accepted by the automaton A if the pair (aI , x0) is a winning position for player

8.3. Bounded model Property 201

∃, where the wining condition is given as in Definition 8.1.1 for a parity game.
The class of coalgebras accepted by A is denoted by Acc(A).

As expected, this generalizes the automata-theoretic perspective on the modal
µ-calculus [43]. Λ-automata are the counterpart of the coalgebraic µ-calculus
associated with Λ.

We say that a Λ-automaton A is equivalent to a sentence ϕ ∈ µMLΛ if any
pointed T -coalgebra (ξ, x) is accepted by A iff ξ, x $ ϕ.

Proposition 8.2.6. There is an effective procedure transforming a sentence ϕ in
µMLΛ into an equivalent Λ-automaton Aϕ of size d.n, and index d; where n is the
size and d is the alternation depth of ϕ.

The previous proposition requires our set of predicate liftings to be monotone
and closed under boolean duals, see [43].

8.3 Bounded model Property

In this section we show that µMLΛ has the small model property. The key tool in
our proof is a satisfiability game that characterizes whether the class of pointed
coalgebras accepted by a given Λ-automaton, is empty or not.

Definition 8.3.1. Let A be a finite set and Ω a map from A to N. Given a
sequence R0 . . . Rk in (P(A × A))∗ the set of traces through R0 . . . Rk is defined
as Tr(R0 . . . Rk) := {a0 . . . ak+1 ∈ A∗ | (ai, ai+1) ∈ Ri for all i ≤ k.}. Similarly
Tr(R0R1 . . .) ⊆ Aω denotes the set of (infinite) traces through R0R1 With
NBT (A,Ω) we denote the set of R0R1 · · · ∈ (P(A × A))ω that contain no bad
trace, that is, no trace a0a1 . . . such that max{Ω(a) | a ∈ Inf (a0a1 . . .)} is odd.

We fix some notation before presenting the satisfiabilty game.

Notation. Let A = (A, aI , ρ,Ω) be an automaton. Given an element a ∈ A,
we write ςa for the function ςa : A −→ A × A which maps b ∈ A to (a, b); given
a formula ϕ ∈ LΛ(A) we write ςaϕ for the formula obtained by applying the
substitution ςa to ϕ, more explicitly this is the formula ςaϕ = LΛ(ςa)(ϕ).

The range of a relation is denoted by Ran(R).

We now illustrate the substitution above with an example. By definition
LΛ(A) = UFΣΛ(A) hence a formula in LΛ(A) is a rank one formula where the for-
mulas under the scope of a modality are propositional variables in A. For example
!λa∨!λ′b. Applying the substitution ςa to this formula gives !λ(a, a)∨!λ′(a, b)
which is a formula in LΛ(A× A).

We now introduce the satisfiability game.

202 Chapter 8. Fixed Points Coalgebraically

Definition 8.3.2 (Satisfiability game). Let UR : A × A −→ P(R) denote the
valuation given by UR(a, b) = {R ∈ R | (a, b) ∈ R}.

The satisfiability game Sat(A) associated with a Λ-automaton A = (A, aI , ρ,Ω)
is the graph game given by the rules of the tableau below.

Position Player Admissible moves

R ⊆ A× A ∃
{
R ∈ PP(A× A) | [[

∧
{ςaρ(a) | a ∈ Ran(R)}]]1UR

%= ∅
}

R ∈ PP(A× A) ∀ {R | R ∈ R}

Unless specified otherwise, we assume {(aI , aI)} to be the starting position of
Sat(A). An infinite match R0R0R1 . . . is winning for ∃ if R0R1 . . . ∈ NBT (A,Ω).

We now show that Sat(A) is a regular game. In fact we will show that
its winning condition is an ω-regular language L of which the complement is
recognized by a nondeterministic parity stream automaton of size |A| and index
|Ran(Ω)|. So by Proposition 8.1.2, L is recognized by a deterministic parity stream
automaton of size exponential in |A| and index polynomial in |A|.

Proposition 8.3.3 ([40]). Let A = (A, aI , ρ,Ω) be a Λ-automata. The game
Sat(A) is a regular game.

Proof. By definition the board of the game is given by G = P(A×A)+PP(A×A).
We want to find a finite alphabet C, a colouring col : G −→ C, and a ω-regular
language L, over C; such that for all infinite sequences v0v1 · · · ∈ Gω the sequence
col(v0)col(v1) . . . belongs to L iff for all i < ω we have v2i ∈ P(A × A), v2i+1 ∈
PP(A× A), and v0v2v4 . . . does not contain a bad trace (Definition 8.3.1).

The alphabet C is given by the set P(A×A)+ 1. Let ∗ be the only element of
1. The colouring col : G −→ C is defined as follows: for R ∈ P(A× A) we define
col(R) = R and col(x) = ∗ for any other x ∈ G.

The language L is given by the set {R0 ∗ R1 ∗ . . . | R0R1 . . . ∈ NBT (A,Ω)}.
Clearly for all infinite sequences v0v1 · · · ∈ Gω the sequence col(v0)col(v1) . . .
belongs to L iff for all i < ω we have v2i ∈ P(A × A), v2i+1 ∈ PP(A × A), and
v0v2v4 . . . does not contain a bad trace.

It is only left to prove that L is ω-regular. It is well known [43] that a language
is ω-regular iff its complement is ω-regular. We now show the latter. We define a
stream automata B = (AB, qB, ρB,ΩB) as follows: The set AB is given by A+A+1;
we write the elements of the second factor by a∗, and the only element of 1 by a⊥.
The initial state aB is aI , i.e. the initial state of A. The transition map ρB : AB

−→ Pow(AB)C is given by

ρB(a,R) = {a′∗ | (a, a′) ∈ R}
ρB(a∗, ∗) = {a}

ρB(x) = {a⊥} for any other case.

8.3. Bounded model Property 203

The parity map ΩB : AB −→ N is defined by ΩB(a⊥) = 0 and ΩB(a∗) = ΩB(a) :=
Ω(a) + 1, where Ω is the parity map of A.

For the previous automata, on any word, over C, which is not of the form
R0 ∗ R1 ∗ . . . the automata moves to a⊥ and the word is accepted. If the words
is of form R0 ∗R1 ∗ . . . in mach of the parity game corresponding to B, player ∀
construct a trace R0R1 Since we switched the parity of A by 1, the match is
wining for ∃ if the trace is bad. In other words, the word is accepted if R0R1 . . .
contains a bad trace, i.e it is in the complement of L. This concludes the proof.

The main theorem

Theorem 8.3.4. Given a Λ-automaton A = (A, aI , ρ,Ω), the following are equiv-
alent.

1. There is a coalgebra accepted by A, i.e. Acc(A) is not empty.

2. Player ∃ has a winning strategy in the game Sat(A).

3. Acc(A) contains a finite coalgebra of size exponential in the size of A.

The proof of the main theorem (Theorem 8.3.4)

We prove 3 ⇒ 1 ⇒ 2 ⇒ 3. The implication (3 ⇒ 1) is immediate from the
definitions.

We now prove the implication (1 ⇒ 2). Let (ξ, x0) be a pointed coalgebra
accepted by A. We will show that ∃ has a winning strategy in the non-emptiness
game Sat(A).

Before we go into the details we need some terminology and notation. By
assumption, player ∃ has a winning strategy α in the acceptance game for the
automaton A with starting position (aI , x0). Since the acceptance game is a
parity game, we may assume this strategy to be positional (Proposition 8.1.3).
Given two finite sequences 9x = x0 . . . xk ∈ X∗ and 9a = a0 . . . ak ∈ A∗, we say that
9a α-corresponds to 9x if there is an α-conform match which has basic positions
(a0, x0) . . . (ak, xk). The set of all sequences in A∗ that α-correspond to 9x is denoted
as Corrα(9x). Intuitively, this set represents the collection of all α-conform matches
passing through 9x.

The definition of the winning strategy for ∃ in the non-emptiness game Sat(A)
will be given by induction on the length of partial matches. Simultaneously we
will select, through the coalgebra (X, ξ), a path x1x2 . . ., which is related to the
Sat(A)-match π as follows: At each finite stage R0R0R1 . . . Rk of π, R0 = RI ,

Tr(R1 . . . Rk) ⊆ Corrα(x0 . . . xk)

and each a ∈ Ran(Rk) occurs in some trace through R0 . . . Rk (*)

204 Chapter 8. Fixed Points Coalgebraically

This implies in particular that for each element a ∈ Ran(Rk), the pair (a, xk) is a
winning position for ∃ in the acceptance game.

First, we check that when the satisfiability game starts, condition (*) is satisfied.
In this case, we have R0 = {(aI , aI)} and 9x is the one element sequence x0. It is
routine to verify that (*) holds.

For the induction step, assume that in the satisfiability game, the partial match
9R = R0R0R1 . . . Rk has been played. First we will provide ∃ with an appropriate
response R ⊆ P(A× A).

By inductive hypotheses, we have selected a sequence 9x = x0x1 . . . xk satisfying
condition (*). Since α is by assumption a winning strategy for ∃ in the acceptance
game, the pair (a, xk) is a winning position for ∃ for each a ∈ Ran(Rk). This
means that ∃’s strategy α will provide her with a collection of valuations {Va : A
−→ P(S) | a ∈ ran(Rk)} such that

T (X), ξ(xk) $1
Va

ρ(a). (8.1)

for all a ∈ Ran(Rk). The collection {Va | a ∈ Ran(Rk)} induces a map fV : X
−→ P(A× A) given by

fV (x) := {(a, b) ∈ A× A | a ∈ Ran(Rk) and x ∈ Va(b)}.

Define Rk as the image of X under fV , that is,

Rk := fV [X].

Thus we may and will see fV as a surjective map from X to Rk. We now show
that this is a legitimate position.

Claim. Rk is a legitimate move for ∃ in Sat(A) at position Rk.

Proof. To see this, first observe that we can see fV as a map with codomain Rk

and consequently we have

T (fV) : T (X) −→ T (Rk),

and so the object T (fV)ξ(xk) is indeed a member of the set T (Rk).
Now, in order to prove that ∃ may legitimately play Rk at Rk, it suffices to

prove that, for all a ∈ Ran(Rk):

T (Rk), T (hV)ξ(xk) $1
URk

ςaρ(a). (8.2)

Fix a ∈ Ran(Rk), and abbreviate U := URk
, where URk

is defined as in Defini-
tion 8.3.2. By Equation (8.1), it clearly suffices to prove that

T (Rk), T (fV)ξ(xk) $1
U ςaϕ iff T (X), ξ(xk) $1

Va
ϕ (8.3)

8.3. Bounded model Property 205

for all formulas ϕ in LΛ(A). We will prove Equation (8.3) by induction on the
complexity of ϕ.

In the base case we are dealing with a formula ϕ = !λ(b1, . . . , bn). For
simplicity however we confine ourselves to the (representative) special case where
n = 1, and write b = b1. In this setting, Equation (8.3) follows from the following
chain of equivalences:

T (Rk), T (fV)ξ(xk) $1
U ςaϕ, ⇐⇒ T (Rk), T (fV)ξ(xk) $1

U !λ(a, b)
(definition of ςa and ϕ)

⇐⇒ T (fV)ξ(xk) ∈ λRk
[[(a, b)]]U (definition of $1)

⇐⇒ ξ(xk) ∈ T (fV)
−1(λRk

[[(a, b)]]U)
(definition of (−)−1)

⇐⇒ ξ(xk) ∈ λXf
−1
V ([[(a, b)]]U) (naturality of λ)

⇐⇒ ξ(xk) ∈ λX([[b]]Va) (‡)
⇐⇒ T (X), ξ(xk) $1

Va
!λb (definition of $1)

The step marked (‡) follows from the identity [[b]]Va = f−1
V ([[(a, b)]]U), which follows

from the following chain of equivalences, all applying to an arbitrary x ∈ X:

x ∈ [[b]]Va ⇐⇒ x ∈ Va(b) (definition of [[−]])

⇐⇒ (a, b) ∈ fV (x) (definition of fV)

⇐⇒ b ∈ U(fV (x)) (definition of U = URk
)

⇐⇒ fV (x) ∈ [[(a, b)]]U (definition of [[−]])

⇐⇒ x ∈ f−1
V ([[(a, b)]]U)

The other inductive steps in the proof of Equation (8.3) are routine, and
therefore omitted. This finishes the proof of Equation (8.3), and thus also the
proof of the claim.

Given the legitimacy of Rk as a move for ∃ at position Rk, we may propose it
as her move in the satisfiability game. This yields the definition of the desired
strategy.

Notice that playing this strategy enables ∃ to maintain the inductive condition
(*). Indeed, by definition of Rk, for every R ∈ Rk there is an xR ∈ X such that
R = fV (xR). Hence if ∀ picks such a relation R, that is putting Rk+1 := R, ∃
adds state xR to her sequence 9x, putting xk+1 := xR.

To verify that the sequencesR0 . . . Rk+1 and x0 . . . xk+1 satisfy (*), let a0 . . . ak+1

be a trace through R0 . . . Rk+1. Since R0 . . . Rk and x0 . . . xk satisfy (*), there is an
α-conform match of the form (a0, x0) . . . (ak, xk). In this match, when the position
(ak, xk) is reached, ∃ choose a valuation Vak : A −→ P(X) such that ξ, xk $1

Vak
ρ(ak).

Then, ∀ picks a pair (xk+1, ak+1) such that xk+1 ∈ Vak(ak+1). So in order to show
that there is a partial α-conform match of the form (a0, x0) . . . (ak+1, xk+1), it

206 Chapter 8. Fixed Points Coalgebraically

suffices to prove that xk+1 ∈ Vak(ak+1). Recall that (ak, ak+1) ∈ Rk+1. Since
Rk+1 = fV (xk+1), ak+1 belongs to Ran(Rk) and ak+1 ∈ Va(xk+1), which finishes
the proof that the first part of (*) holds for R0 . . . Rk+1 and x0 . . . xk+1.

It remains to show that for all a ∈ Ran(Rk+1), a occurs in a trace through
R0 . . . Rk+1. Fix a ∈ ran(Rk+1). So there exists ak ∈ A such that (ak, a) belongs
to Rk+1. Since Rk+1 = fV (xk+1), ak belongs to Ran(Rk). Moreover, it follows
from the induction hypothesis that if a ∈ Ran(Rk), there is a sequence a−1 . . . ak−1

such that a−1R0a0 . . . Rkak. Putting this together with (ak, a) ∈ Rk+1, this finishes
to prove that a occurs in a trace through R0 . . . Rk+1.

Finally we show why this strategy is winning for her in the game Sat(A),
initiated at {(aI , aI)}. Consider an arbitrary match of this game, where ∃ plays
the strategy as defined above. First, suppose that this match is finite. From our
definition of ∃’s strategy in Sat(A) she never gets stuck. So if the match is finite,
means that ∀ could not play and ∃ wins.

In case the match is infinite, ∃ has constructed an infinite sequence 9x =
x0x1x2 . . . corresponding to the infinite sequence 9R = R0R1R2 . . . induced by the
Sat(A)-match. Since the relation (*) holds at each finite level, for every infinite
trace a0a1a2 . . . through 9R there is an α-conform infinite match of the acceptance
game on S with basic positions (a0, x0)(a1, x1) . . . Since α was assumed to be a
winning strategy, none of these traces is bad. In other words, the sequence 9R
satisfies the winning condition of Sat(A) for ∃, and thus she is declared to be the
winner of the Sat(A)-match. Since we considered an arbitrary match in which she
is playing the given strategy, this shows that this strategy is winning, and thus
finishes the proof of the implication (1 ⇒ 2).

We now focus on the implication (2 ⇒ 3).
Suppose that ∃ has a winning strategy in the game Sat(A) = (G∃, G∀, E,Win).

Since Sat(A) is a regular game, by Proposition 8.1.2, we may assume this strategy
to only use finite memory. More concretely, this means that there is a finite
set M , mI ∈ M , and maps α1 : G∃ × M −→ G and α2 : G∃ × M −→ M which
satisfy the conditions of Definition 8.1.1(3). Moreover, the size of M is at most
exponential in the size of A. Without loss of generality, we may assume that for
all (R,m) ∈ G∃ ×M , α2(R,m) = m.

We denote by W∃ the set of pairs (R,m) ∈ G∃ ×M satisfying the following:
For all Sat(A)-matches R0R0R1R1 . . . for which there exists a sequence m0m1 . . .
with R0 = R,m0 = m and for all i ∈ N, Ri = α1(Ri,mi), mi+1 = α2(Ri,mi), we
have that R0R0R1R1 . . . is won by ∃.

The finite coalgebra in L(A) that we are looking for will be given by a map

ξ : G∃ ×M −→ T (G∃ ×M).

We base this construction on two observations.

8.3. Bounded model Property 207

First, let (R,m) be an element of W∃, and write R := α1(R,m); then by
the rules of the satisfiability game, there is an element g(R,m) ∈ T (R) such
that for every a ∈ Ran(R), the formula ςaρ(a) is true at g(R,m) under the
valuation UR. Note that R ⊆ G∃, and thus we may think of the above as
defining a function g : W∃ −→ T (G∃). Choosing some dummy values for elements
(R,m) ∈ (G∃ ×M) \W∃, the domain of this function can be extended to the full
set G∃ ×M . To simplify our notation we will also let g denote the resulting map,
with domain G∃ ×M and codomain T (G∃).

Second, consider the map addm : G∃ −→ G∃ ×M , given by addm(R) = (R,m).
Based on this map we define the function h : T (G∃) ×M −→ T (G∃ ×M) such
that h(τ,m) = T (addm)(τ). Notice that this is the exponential transpose of the
strength defined on Chapter 7, page 185.

We let the coalgebra be ξ : G∃ × M −→ T (G∃ × M) where ξ is the map
ξ := h ◦ (g,α2). Observe that the size of (G∃ ×E, ξ) is at most exponential in the
size of A, since G∃ is the set P(A×A) and M is at most exponential in the size of
A. As the designated point of ξ we take the pair (RI ,mI), where RI := {(aI , aI)}.

It is left to prove that the pointed coalgebra (ξ, (RI ,mI)) is accepted by A.
That is, using ∃’s winning strategy α in the satisfiability game we need to find a
winning strategy for ∃ in the acceptance game for the automaton A with starting
position (aI , (RI ,mI)). We will define this strategy by induction on the length of
a partial match, simultaneously setting up a shadow match of the satisfiability
game. Inductively we maintain the following relation between the two matches:

(*) If (a0, (R0,m0)), . . . , (ak, (Rk,mk)) is a partial match of the acceptance game
(during which ∃ plays the inductively defined strategy), then aIa0 . . . ak is a
trace through R0 . . . Rk (and so in particular, ak belongs to Ran(Rk)),

(**) and for all i ∈ {0, . . . , k − 1}, Ri+1 ∈ α1(Ri,mi) and mi+1 = α2(Ri,mi).

Setting up the induction, it is clear that condition (*) is met at the start
(a0, (R0,m0)) = (aI , (RI ,mI)) of the acceptance match; indeed, aIaI is the (unique)
trace through the one element sequence RI . Condition (**) holds vacuously.

Inductively assume that, with ∃ playing as prescribed, the play of the ac-
ceptance game has reached position (ak, (Rk,mk)). By the induction hypothesis,
we have ak ∈ Ran(Rk) and the position (Rk,mk) is a winning position for ∃ in
the acceptance game. Abbreviate R := α1(Rk,mk) and n := α2(Rk,mk). As
the next move for ∃ we propose the valuation V : A −→ P(G∃ × M) such that
V (a) := {(R, n) | (ak, a) ∈ R and R ∈ R}. We now show that this gives a
legitimate move.

Claim. V is a legitimate move at position (ak, (Rk,mk)).

208 Chapter 8. Fixed Points Coalgebraically

Proof. We need to show that T (G∃×M), ξ(Rk,mk) $1
V ρ(ak). Recall that (Rk,mk)

belongs to W∃. Because of this, the element γ := ξ(Rk,mk) of T (R) satisfies
the formula ςakρ(ak) under the valuation U := UR (where UR is defined as in
Definition 8.3.2). That is T (R), γ $1

UR
ςakδ(ak). Gathering all these observations,

in order to prove the claim it suffices to show that

T (G∃ ×M), ξ(Rk,mk) $1
V ϕ iff T (R), γ $1

U ςakϕ (8.4)

for all formulas ϕ in LΛ(A). The proof of Equation (8.4) proceeds by induction
on the complexity of ϕ. We only consider a simplified version of the base step,
where ϕ is of the form !λa. We can now prove Equation (8.4) as follows (recall
that n = α2(Rk,mk)):

T (G∃ ×M), ξ(Rk,mk) $1
V !λb ⇐⇒ ξ(Rk,mk) ∈ λG∃×M([[b]]V).

(definition of $1)

⇐⇒ T (addn)(γ) ∈ λG∃×M([[b]]V).
(definition of ξ)

⇐⇒ γ ∈ T (addn)
−1(λG∃×M [[b]]V)

(definition of (·)−1)

⇐⇒ γ ∈ λG∃(add
−1
n ([[b]]V)) (naturality of λ)

⇐⇒ γ ∈ λR([[(ak, b)]]U) (‡)
⇐⇒ T (R), γ $1

U !λ(ak, b) (definition of $1)

⇐⇒ T (R), γ $1
U ςak!λb (definition of ςak)

For (‡), consider the following valuation U ′ : A× A −→ P(G∃) such that

U ′(a′, b′) := U(a′, b′) ∩R.

It follows from R ⊆ G∃ and standardness that λR[[a]]U = λG∃ [[a]]U ′ . But then (‡)
follows because add−1

n ([[b]]V) = [[(a, b)]]U ′ , which holds by a relatively routine proof.
This finishes the proof of the Claim.

It is now straightforward to show that with this definition of a strategy for
∃, the inductive hypothesis (including the relation (*) between the two matches)
remains true. In particular this shows that ∃ will never get stuck. Hence in order
to verify that the strategy is winning for ∃, we may confine our attention to infinite
matches of Acc(A, ξ). Let π = (a0, (R0,m0))(a1, (R1,m1)) . . . be such a match,
then it follows from (*) that aIa0a1 . . . is a trace through R0R1 . . ., and so we may
infer from the assumption that (α1,α2) is a winning strategy for ∃ in Sat(A), that
aIa0a1 . . . is not bad. This means that the match π is won by ∃. This concludes
the proof of the Theorem.

Putting this theorem together with Proposition 8.2.6 and Proposition 8.3.3,
we obtain a small model property for the coalgebraic µ-calculus, for every set of
predicate liftings.

8.4. Conclusions 209

Corollary 8.3.5. If ϕ ∈ µMLL is satisfiable in a T -coalgebra, it is satisfiable in
a T -coalgebra of size exponential in the size of ϕ.

8.4 Conclusions

In this chapter we introduced Λ-automata which are automata using predicate
liftings (Definition 8.2.1). We generalize [108] in that our presentation works for
any type of coalgebra i.e. no restriction on the functor.

We introduced an acceptance game (Definition 8.2.5) for Λ-automata, and
established a finite model property (Theorem 8.3.4) using a satisfiability game
(Definition 8.3.2) for Λ-automata. The result here and in [27] give evidence that
there should be a general framework to define acceptance and satisfiability games.
Notice that the game here is a direct translation of the game for the Moss logic
in [108] into the language of predicate liftings. More research in this subject is
needed.

Chapter 9

Beyond the Stone Age

In this thesis we have studied modal logic from a coalgebraic perspective.

In Part I we used a functorial framework, also called the Stone duality ap-
proach, to investigate modal logics for coalgebras.

In Chapter 3 we introduced the functorial framework for modal logics as a
natural generalisation of the usual modal similarity types, or predicate liftings.
We illustrated how the functorial framework for modal logics can be developed by
simply considering a “predicate” functor P : Setop −→ A, where A is a category of
power set algebras (Definition 3.2.12). In the usual Stone Duality approach, A is
assumed to be the category of Boolean algebras, or even the category of complete
atomic Boolean algebras. We showed that using BA is not essential to develop
modal logics for coalgebras. It is our claim that replacing the category BA by
another category of algebras is desirable, and needed, to account for different base
logics which lead to interesting variations of basic modal logic, e.g. monotone
modal logic (Example 3.2.17). In summary, in this chapter we have illustrated
that, up to large extent, the functorial modal logics does not depend on a given
“Stone like” adjunction. Some of the points where having and adjunction matters
are sketched in Section 3.2.3. One point where the adjunction is essential is in the
first representation theorem (Theorem 5.2.2), in Chapter 5, which says that every
coalgebraic modal logic can be translated into the language of predicate liftings.

From the categorical perspective, once we change the category BA as a base for
algebras it is quite natural to also change the category Set as abase for coalgebras.
For example, if we take A = DL we would like to consider coalgebras over Pos
instead of over Set. This approach will also require a slight variation of the concept
of predicate lifting. More precisely, we ought then to replace the functor P : Setop

−→ Set by an appropriate functor, e.g. a functor Posop −→ Pos in the previous
case. It is not totally clear to us how to chose such functor in general and up to
what extent such abstraction step is worth for modelling systems; clearly this is

211

212 Chapter 9. Beyond the Stone Age

an interesting theoretical development to investigate.
The approach to coalgebraic modal logics using just a functor P : Setop

−→ A resembles recent insights in [55] where modalities are studies using so-called
fibrations. With this perspective the essential element is a functor Φ : Setop −→ Cat,
where Cat denotes the category of all (locally small) categories. Modalities are
then obtained as liftings of functors to the Grothendieck construction of Φ. We do
not go into the details here but we remark that this approach also, in some sense,
captures the intuition a modality transforms properties of states into properties of
successors. The relationship of this approach with our perspective here should be
developed further. Our conjecture is that the functorial framework corresponds to
fibrations Φ : Setop −→ Cat which can be factored via

Setop Cat!
Φ

A

'
'
''* %

%
%%&

where A is an algebraic category, over Set. More research on the subject is needed.

One of the most important conceptual contributions of this thesis is the use of
the structural properties of the base category, of the logic, to study coalgebraic
modal logics. The most illustrative example can be found in Section 4.4 where we
show that every translator can be extended into a BA-translator. In other words,
over BA, “every” predicate liftings can be translated into the Moss logic. We
showed this using the finite presentability of BA and the fact that every finitely
generated algebra is a power set algebra. Another illustration can be found in
Section 3.3.2 where we use the properties of the base category to present the logic
of all predicate liftings. Yet another evidence of the power of this technique can
be seen in the representation theorems in Chapter 5. A similar technique can be
found in Chapter 6 where we use the structural properties of the base category, of
coalgebras, to study various formalisation of behavioural equivalence.

In Chapter 4 we introduced the basic translation techniques to compare coalge-
braic modal logics. More precisely, we introduced the notion of one-step translation
(Definition 4.1.1). In order to translate predicate liftings into the Moss logic we
developed the notion of translator (Definition 4.2.1). The intuition behind a
translator is a simple semantic translation of the form !λϕ = ∇tr(ϕ). As we
showed not all predicate liftings have such simple transaltions (Example 4.2.4),
in fact some predicate liftings can simply not be translated into the Moss Logic
by finitary means (Example 4.4.6). In order to overcome these difficulties, we
introduced the so-called singleton lifting (Definition 4.2.5). Singleton liftings
are the simplest kind of predicate liftings. Among their properties we highlight
1) they generate all other predicate liftings and 2) every singleton lifting has a
translator. To be able to define translations we developed the notion of logical

213

translator (Definition 4.3.2). Using the structural properties of the category BA
we showed that every translator induces a one-step translation. We also showed
how using the structural properties of the base category we can translate the
Moss logic (Theorem 4.4.8). Moreover, we presented a Lindström like theorem
for coalgebraic logics (Theorem 4.4.9). We gave conditions on the functor for a
translation between Moss logic and logics of predicate liftings to exist.

In Chapter 5 we used presentations of functors to define predicate liftings. Using
presentations of Set functors we introduced the Moss liftings, Section 5.1.1. These
predicate liftings are distinguished among all predicate liftings because they are
always translatable into Moss logic. We Illustrated this use of presentations by 1)
introducing an equational coalgebraic modal logic (Section 5.3) 2) introducing the
canonical signature of a coalgebraic modal logic and 3) showed two representation
theorems (Theorems 5.2.2 and 5.2.17) which show that every coalgebraic modal
logic is a logic of predicate liftings.

The representation theorems in Chapter 5 draw a boundary for the functorial
framework and the use of duality. Namely, they show that such framework can
not do more than rank 1 axiomatizations of logics predicate liftings. This is not
per-se a shortcoming. However, some modal logics will fall out of the scope of
the functorial framework e.g logics with fix points. These limitative results also
suggest that Dynamic Epistemic Logic can not be subsumed within the functorial
framework. One reason for this is that the semantics of public announcement, or
product updates in general, involves more that one model (coalgebra). It is not
clear to us how predicate liftings of functors over Set can account for this.

In Part II we investigated the uses of coalgebraic modal logics further.

In Chapter 6 we studied three ways to express behavioural equivalence of
coalgebra states:

1. using final coalgebras,

2. using coalgebraic languages that have the Hennessy-Milner property,

3. using coalgebraic languages that have logical congruences.

We provided a simple proof for the fact that these three different methods are
equivalent when used to express behavioural equivalence between set coalgebras.
An important point here is that no conditions on the signature functor are required.
Our argument relies only on the structural properties of the base category, this
is in harmony with the work on Part I where we used the structural properties
of the base category of coalgebraic logics to define and compare them. We used
this to present six versions of the Hennessy-Milner property (Theorem 6.4.1). An
important finding from our work is that it show the Hennessy-Milner property as a

214 Chapter 9. Beyond the Stone Age

solution set condition to construct final coalgebras. We used these characterisations
to investigate the situation beyond the category Set. Our main result here is that
the constructions on Set lift to regularly algebraic categories.

An important insight from this chapter is to show that the use of categories
of power set algebras for coalgebraic modal logics is not ad-hoc. We showed
(Example 6.1.3) how categories of power set algebras are precisely the right level
of generality to, 1), accommodate the language given by a coalgebraic modal logic
in the tradition of abstract model theory where languages are sets and theories
belong to the powerset of the language, and 2) still give enough freedom to develop
various modal logics.

In Chapter 7 we developed a coalgebraic framework which covers Dynamic
logics like (test free) PDL and GL. We illustrated how the process of labelling
modalities can be described by a generic process independent of any structure on
the labels. We have shown with Theorems 7.3.7 and 7.3.18 that the usual axioms
for PDL and GL present a property of the associated predicate liftings not of
labelled modalities itself.

Contrary to Chapter 6, Chapter 7 shows the limitations of the framework
using categories of power set algebras. More concretely, Lemma 7.3.19 shows
that using categories of power set algebras we can only use boolean operations
for axioms that preserve the rank of the modal formulas. This shows a limi-
tation of the functorial approach to develop dynamic logics further. As shown
in [55] this could perhaps be overcome by switching to an approach using fibrations.

In Chapter 8 we introduced Λ-automata which are automata using predicate
liftings (Definition 8.2.1). This generalizes the work for the Moss logic in [108]. In
particular, our presentation works for any type of coalgebra i.e. no restriction on
the functor.

We introduced an acceptance game (Definition 8.2.5) for Λ-automata, and
established a bounded model property (Theorem 8.3.4) using a satisfiability game
(Definition 8.3.2) for Λ-automata.

Appendix A

Some definitions from Category Theory

We assume the reader to be familiar with the basics of category theory as are:
category, functor, natural transformation and adjunction. In this chapter we
provide some definitions and results that are used in the manuscript.

Definition A.0.1. Consider a functor T : C −→ D and the following diagrams in
C and D, respectively:

C D!
g

A B!p

"

q

"

f

T (C) T (D)!
T (g)

T (A) T (B)!T (p)

"

T (q)

"

T (f)

The functor T is said to preserve weak-pullbacks if the diagram on the right is a
weak-pullback, in D, whenever the diagram on the left is a weak-pullback, in C.

Definition A.0.2. Let C be a category.

1. A concrete category over C is a pair (A, U), where A is a category and U : A
−→ C is a faithful functor. The functor U is called the forgetful functor of
the concrete category.

2. Let (A, U) and (B, V) be concrete categories over C. A concrete functor
from (A, U) to (B, V) is a functor F : A −→ B such that U = V ◦ F . We
denote such a functor by F : (A, U) −→ (B, V).

3. A concrete isomorphism is a concrete functor which is an isomorphism. A
concrete equivalence is a concrete functor which is an equivalence.

Definition A.0.3. Let A be a full subcategory of a category C and let X be an
object of C. The comma category over X, written A ↓ X, is the category of all

215

216 Appendix A. Some definitions from Category Theory

C-arrows f : A −→ X, where A is an object in A. The A ↓ X morphisms from
f : A −→ X to f ′ : A′ −→ X are the C-morphism h : A −→ A′ such that f ′h = f .
The composition of morphism is that of C.

Definition A.0.4. By a diagram on a category C is meant a functor D : D −→ C
from a (small) category D. The category D is called the schema of the diagram.

Definition A.0.5. A directed diagram, on C, is a functor D : (I,≤) −→ C, where
(I,≤) is a directed poset (considered as a category). A directed colimit is a colimit
of a directed diagram.

In the category Set directed colimits can be concretely computed as follows:

Proposition A.0.6. Let D : (I,≤) −→ Set be a directed diagram. A colimit for
D is given by quotienting the coproduct

(∐
i∈I D(i)

)
with the following equivalence

relation: x ∈ D(i) and y ∈ D(j) are equivalent if there exists k ∈ I and morphisms
fi : i −→ k and fj : j −→ k such that D(fi)(x) = D(fj)(y).

Definition A.0.7. Let C be a category. Let {Xi ⇒ Y | i ∈ I} be a family of
pairs of parallel arrows in C. A join coequalizer of the family is an arrow q : Y
−→ E, in C, which is an coequaliser for each pair in the family.

A.1 Adjunctions

We first introduce the notion of adjoint functor.

Definition A.1.1. A functor F : C −→ D is said to be a left adjoint to a functor
U : D −→ C, written F D U , if for every pair of objects C and D, in C and D
respectively, there is a bijection

ϕ(C,D) : D
(
F (C), D

)
−→ C

(
C,U(D)

)
.

which is natural in C and D. The functor U is called the right adjoint.

This is esquematically presented as follows:

F (C) −→ D

C −→ U(D)
.

This means that there is an arrow, in D, with the functor F on the left iff there is
an arrow, in C, with the functor U on the right. We can also describe adjunctions
using, so called, universal properties and triangular equalities. The next lemma
presents the equivalences formally.

Lemma A.1.2. For a pair of functors F : C −→ D and U : D −→ C the following
conditions are equivalent.

A.1. Adjunctions 217

1. There is a natural bijection ϕ : D(F,−) −→ C(−, U), i.e. F D U .

2. There exists a natural transformation η : IdC −→ UF satisfying the following
universal property: For each arrow f : C −→ U(D), in C, there exists a
unique arrow f̂ : F (C) −→ D, in D, such that U(f̂) ◦ ηC = f .

3. There exists a natural transformation ε : FU −→ IdD satisfying the following
universal property: For each arrow g : F (C) −→ D, in D, there exists a
unique arrow ĝ : C −→ U(D), in C, such that εD ◦ F (ĝ) = g.

4. There exists natural transformations η : IdC −→ UF and ε : FU −→ IdD
satisfying the following triangular equalities εF ◦F (η) = idF and ηU ◦U(ε) =
idU .

We refer the reader to a standard book on Category Theory, e.g. [6], for the
details. The important part to remember is that the isomorphism ϕ, and the
natural transformations η and ε are interdefinable; we now sketch how this is
done:

For every pair of arrows g : F (C) −→ D and f : C −→ U(D) we can describe
the arrows f̂ and ĝ, in the previous lemma, as follows.

ϕ(g) = ĝ = U(g) ◦ ηC and ϕ−1(f) = f̂ = εD ◦ F (f).

The natural transformations η and ε can be obtained from the isomorphism ϕ as
follows

ηC = ϕ−1(idF (C)) and εD = ϕ(idU(D)).

We now introduce some notation an terminology concerning adjunctions.

Notation. Let F : C −→ D and U : D −→ C be functors. Let ϕ : D(F,−)
−→ C(−, U), η : IdC −→ UF , and ε : FU −→ IdD, be natural transformations, inter
defined, as in the previous lemma. We follow the following conventions:

• We call the tuple (F, U,ϕ, η, ε) an adjoint situation. The first component is
always the left adjoint.

• The natural transformation ϕ : D(F,−) −→ C(−, U) is called the isomor-
phism associated with the adjunction.

• The natural transformation η : idC −→ UF is called the unit of the adjunc-
tion.

• The natural transformation ε : FU −→ idD is called the counit of the
adjunction.

• The image of an arrow g : F (C) −→ D under ϕ, i.e. ĝ, is called the transpose,
relative to (F, U,ϕ, η, ε), of g. The same terminology applies for an arrow
f : C −→ U(D), i.e. f̂ is called the transpose, relative to (F, U,ϕ, η, ε), of f .

218 Appendix A. Some definitions from Category Theory

The following properties of adjoints will be used often.

Lemma A.1.3. For any adjoint situation (F, U,ϕ, η, ε) the following holds

1. The right adjoint preserves limits and the left adjoint preserves colimits.

2. The right adjoint U is faithful iff each of the components of the counit ε is
an epimorphism.

3. Assume F has domain and codomain as follows F : C −→ D. For any,
C-arrow, h : C −→ C ′ the diagram on the left commutes iff the diagram on
the right commutes.

C C ′!h

U(D)

f1
%
%
%%&

f2
'

'
''(

F (C) F (C ′)!F (h)

D

f̂1
%
%
%%&

f̂2
'

'
''(

We refer the reader to a standard book on Category Theory, like [6], for
detailed proofs.

Bibliography

[1] Samson Abramsky. Domain theory in logical form. Annals of Pure and
Applied Logic, 51, 1991. Cited on pp. 8, 52.

[2] Peter Aczel. Non-Well-Founded Sets. Center for the Study of Language and
Information, Stanford, 1988. Cited on pp. 3, 4, 18, 19, 20, 31, 137.

[3] Peter Aczel and Nax Paul Mendler. A final coalgebra theorem. In Category
Theory and Computer Science, volume 389 of Lecture Notes In Computer
Science. Springer, 1989. Cited on pp. 3, 151, 158.

[4] Jiŕı Adámek. Observability and nerode equivalence in concrete c5ategories.
In Ferenc Gécseg, editor, Fundamentals of Computation Theory, FCT’81,
Proceedings of the 1981 International FCT-Conference, Szeged, Hungary,
August 24-28, 1981, volume 117 of Lecture Notes in Computer Science.
Springer, 1981. Cited on p. 3.

[5] Jiri Adámek. A logic of coequations. In C.-H. Luke Ong, editor, CSL,
volume 3634 of Lecture Notes in Computer Science. Springer, 2005. Cited
on pp. 143, 149.

[6] Jǐŕı Adámek, Horst Herrlich, and George E. Strecker. Abstract and Concrete
Categories: The Joy of Cats. John Wiley & Sons, 1990. Cited on pp. 157,
161, 166, 217, 218.

[7] Jǐŕı Adámek and Jǐŕı Rosický. Locally Presentable and Accessible Categories,
volume 189 of London Mathematical Society Lecture Notes Series. Cambridge
University Press, 1994. Cited on pp. 18, 25, 27.

[8] Jǐŕı Adámek, Jǐŕı Rosický, and E. M. Vitale. Algebraic Theories: a Cate-
gorical Introduction to General Algebra, volume 184 of Cambridge Tracts in
Mathematics. Cambridge University Press, 2011. Cited on pp. 24, 25, 26,
99, 101, 175, 177.

219

220 Bibliography

[9] Jǐŕı Adámek and Vera Trnková. Automata and Algebras in Categories.
Kluwer Academic Publishers, 1990. Cited on pp. 17, 96.

[10] Michael A. Arbib and Ernest G. Manes. Machines in a category. Journal of
Pure and Applied Algebra, 19, 1980. Cited on p. 3.

[11] Michael A. Arbib and Ernest G. Manes. Parametrized data types do not
need highly constrained parameters. Information and Control, 52(2):139 –
158, 1982. Cited on p. 3.

[12] Alexandru Baltag. A logic for coalgebraic simulation. Electronic Notes
Theoretical Computer Science, 33, 2000. Cited on p. 6.

[13] Michael Barr. Relational algebras. In Reports of the Midwest Category
Theory Seminar IV, volume 137 of Lecture Notes in Mathematics. Springer
Berlin / Heidelberg, 1970. Cited on p. 22.

[14] Michael Barr. Terminal Coalgebras in Well-Founded Set Theory. Theoretical
Computer Science, 114(2), 1993. Cited on pp. 158, 159.

[15] Falk Bartels, Ana Sokolova, and Erik de Vink. A hierarchy of probabilistic
system types. Theoretical Computer Science, 327, 2004. Cited on pp. 18, 31.

[16] Jon Barwise and Lawrence Moss. Vicious Circles: On the Mathematics
of Non-Wellfounded Phenomena. Center for the Study of Language and
Information, Stanford, 1996. Cited on p. 5.

[17] Marta B́ılková, Alessandra Palmigiano, and Yde Venema. Proof systems
for the coalgebraic cover modality. In Carlos Areces and Rob Goldblatt,
editors, Advances in Modal Logic, volume 7 of King’s College Publications,
2008. Cited on pp. 6, 117.

[18] Marta B́ılková, Jiri Velebil, and Yde Venema. On monotone modalities
and adjointness. Mathematical Structures in Computer Science, 21(2), 2011.
Cited on p. 6.

[19] Patrick Blackburn, Johan F. A. K. van Benthem, and Frank Wolter. Hand-
book of Modal Logic, volume 3 of Studies in Logic and Practical Reasoning.
Elsevier Science Inc., 2006. Cited on pp. 1, 4, 227.

[20] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic,
volume 53 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 2002. Cited on pp. 4, 5, 6, 7, 8, 31, 40, 42, 46, 47, 139,
149, 150.

Bibliography 221

[21] Marcello Bonsangue and Alexander Kurz. Modal logics from coalgebras over
topological spaces. talk at The International Conference on Algebraic and
Topological Methods in Non-Classical Logics. Tbilisi, Georgia 7 - 11 July
2003. Cited on p. 8.

[22] Marcello Bonsangue and Alexander Kurz. Presenting functors by operations
and equations. In Luca Aceto and Anna Inglfsdttir, editors, Foundations
of Software Science and Computation Structures, volume 3921 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2006. Cited on
pp. 27, 44, 47, 53, 105, 110, 113.

[23] Julius R. Büchi and L H. Landweber. Solving sequential conditions by finite
state strategies. Transactions of the American Mathematical Society, 138,
1969. Cited on p. 197.

[24] Stanley Burris and H. P. Sankappanavar. A Course in Universal Algebra.
Number 78 in Graduate Texts in Mathematics. Springer-Verlag, 1981. Cited
on pp. 5, 24, 25.

[25] Georgel Calin, Robert Myers, Dirk Pattinson, and Lutz Schröder. ColoSS:
The coalgebraic logic satisfiability solver. Electronic Notes Theoretical
Computer Science, 231:41–54, 2009. Proc. Methods for Modalities 5 (2007).
Cited on p. 7.

[26] Brian Chellas. Modal logic: an introduction. Cambridge University press,
1980. Cited on pp. 33, 34, 192.

[27] Corina Ĉırstea, Clemens Kupke, and Dirk Pattinson. EXPTIME tableaux
for the coalgebraic µ-calculus. In E. Grädel and R. Kahle, editors, Computer
Science Logic 2009, volume 5771 of Lecture Notes in Computer Science.
Springer, 2009. Cited on pp. 7, 195, 209.

[28] Corina Ĉırstea, Alexander Kurz, Dirk Pattinson, Lutz Schröder, and Yde
Venema. Modal logics are coalgebraic. The Computer Journal, 2009. Cited
on pp. 4, 7.

[29] Corina Ĉırstea and Dirk Pattinson. Modular construction of modal logics.
In CONCUR, 2004. Cited on p. 6.

[30] Giovanna D’Agostino and Giacomo Lenzi. On modal µ-calculus with explicit
interpolants. Journal of Applied Logic, 338, 2006. Cited on p. 6.

[31] Erik de Vink and Jan Rutten. Bisimulation for probabilistic transition
systems: a coalgebraic approach. In Proceedings of ICALP’97, volume 1256
of Lecture Notes in Computer Science. Springer, 1997. Cited on pp. 19, 21.

222 Bibliography

[32] Ernst-Erich Doberkat. Stochastic Relations. Chapman & Hall/CRC, 2007.
Cited on p. 3.

[33] J. Michael Dunn. Positive modal logic. Studia Logica, 55(2), 1995. Cited on
p. 52.

[34] Ernest A. Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and
determinacy. In Proceedings of the 32nd annual symposium on Foundations
of computer science, SFCS ’91, 1991. Cited on p. 198.

[35] Herbert B. Enderton. A Mathematical Introduction to Logic. Harcourt,
Academic Press, 2001. Cited on pp. 72, 188.

[36] Gianluigi Ferrari, Ugo Montanari, and Marco Pistore. Minimizing transition
systems for name passing calculi: A co-algebraic formulation. In FoSSaCS’02,
volume 2303 of Lecture Notes in Computer Science, 2002. Cited on p. 3.

[37] Kit Fine. In so many possible worlds. Notre Dame Journal of formal logic,
(13), 1972. Cited on p. 31.

[38] Marcelo P. Fiore and Daniele Turi. Semantics of name and value passing.
In Proceedings 16th Logic in Computer Science (LICS). IEEE Computer
Society Press, 2001. Cited on p. 3.

[39] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic
of regular programs. Journal of Computer and System Sciences, 18, 1979.
Cited on p. 32.

[40] Gaëlle Fointaine. Modal fixpoint logic: some model-theoretic questions. PhD
thesis, Institute for Logic Language and Computation - Universiteit van
Amsterdam, 2010. Cited on pp. 196, 202.

[41] Gaëlle Fontaine, Raul Leal, and Yde Venema. Automata for coalgebras: an
approach using predicate liftings. In Proceedings of the 37th international
colloquium conference on Automata, languages and programming: Part II,
ICALP’10. Springer-Verlag, 2010. Cited on p. 11.

[42] Robert Goldblatt. Final coalgebras and the Hennessy-Milner property.
Annals of Pure and Applied Logic, 138(1-3), 2006. Cited on pp. 138, 139,
143, 157.

[43] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata,
Logic, and Infinite Games, volume 2500 of LNCS. Springer, 2002. Cited on
pp. 196, 201, 202.

[44] H. Peter Gumm. Elements of the general theory of coalgebras. 1999. Cited
on p. 151.

Bibliography 223

[45] Helle Hansen and Clemens Kupke. A coalgebraic perspective on monotone
modal logic. volume 106 of Electronic Notes in Theoretical Computer Science.
Elsevier, 2004. Cited on pp. 3, 19, 33.

[46] Helle Hansen and Raul Leal. Dynamic coalgebraic modalities. Cited on
p. 11.

[47] David. Harel, Kozen Dexter., and Jerzy. Tiuryn. Dynamic Logic. The MIT
Press, 2000. Cited on pp. 32, 171, 179.

[48] Ichiro Hasuo, Chris Heunen, Bart Jacobs, and Ana Sokolova. Coalgebraic
components in a many-sorted microcosm. In Proceedings of CALCO, volume
5728 of Lecture Notes In Computer Science, pages 64–80, 2009. Cited on
p. 192.

[49] Aviad Heifetz and Philippe Mongin. Probabilistic logic for type spaces.
Games and Economic Behavior, 35, 2001. Cited on pp. 31, 40, 60.

[50] Claudio Hermida and Bart Jacobs. Structural induction and coinduction in
a fibrational setting. Information and Computation, 145, 1997. Cited on
p. 6.

[51] Bart Jacobs. Towards a duality result in coalgebraic modal logic. Electr.
Notes Theor. Comput. Sci., 33, 2000. Cited on p. 8.

[52] Bart Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study.
Theoretical Informatics and Applications, 35(1), 2001. Cited on pp. 6, 8.

[53] Bart Jacobs. Exercises in coalgebraic specification. Springer-Verlag New
York, Inc., 2002. Cited on p. 21.

[54] Bart Jacobs. Distributive laws for the coinductive solution of recursive
equations. Information and Computation, 204, April 2006. Cited on p. 185.

[55] Bart Jacobs. Predicate logic for functors and monads. Preprint, 2010. Cited
on pp. 192, 212, 214.

[56] Bart Jacobs. Trace semantics for coalgebras. Electronic Notes Theoretical
Computer Science, 106, 204. Cited on p. 61.

[57] Bart Jacobs and Erik Poll. Coalgebras and monads in the semantics of Java.
Theoretical Computer Science, 291, 2003. Cited on pp. 178, 192.

[58] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction.
EATCS Bulletin, 62, 1997. Cited on pp. 2, 20.

[59] Bart Jacobs and Ana Sokolova. Exemplaric expressivity of modal logics.
Journal of Logic and Computation, 20(5), 2010. Cited on pp. 56, 57.

224 Bibliography

[60] David Janin and Igor Walukiewicz. Automata for the modal mu-calculus
and related results. In MFCS’95 Proceedings. Springer-Verlag, 1995. Cited
on p. 6.

[61] Peter Johnstone. Vietoris locales and localic semilattices. In Continuous
Lattices and their Applications, volume 101 of Lecture Notes in Pure and
Applied Mathematics. Marcel Dekker, 1985. Cited on p. 52.

[62] Peter Johnstone. The art of pointless thinking: a student’s guide to the
category of locales. In H. Herrlich and H.-E. Porst, editors, Category Theory
at Work. Heldermann Verlag, 1991. Cited on p. 30.

[63] Andre Joyal. Foncteurs analytiques et esp‘eces de structures. Lecture Notes
in Mathematics, page 126159, 1986. Cited on p. 133.

[64] Bartek Klin. The least fibred lifting and the expressivity of coalgebraic
modal logic. volume 3629 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2005. Cited on p. 6.

[65] Bartek Klin. Bialgebraic methods and modal logic in structural operational
semantics. Information and Computation, 207(2), 2009. Cited on p. 193.

[66] Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27(3). Cited on p. 195.

[67] C. Kupke and Y. Venema. Coalgebraic automata theory: basic results.
Logical Methods in Computer Science, 4, 2008. Cited on p. 195.

[68] Clemens Kupke, Alexander Kurz, and Dirk Pattinson. Algebraic semantics
for coalgebraic logics. Electronics Notes Theoretical Computer Science, 106,
2004. Cited on pp. 8, 43, 44, 54, 114.

[69] Clemens Kupke, Alexander Kurz, and Yde Venema. Completeness for the
coalgebraic cover modality. Manuscript available on request from the authors.
An earlier version appeared in the proceedings of AiML2008. Cited on pp. 6,
61, 116, 117, 118, 119, 126, 127, 129.

[70] Clemens Kupke and Raul Leal. Characterising behavioural equivalence:
Three sides of one coin. In Alexander Kurz, Marina Lenisa, and Andrzej
Tarlecki, editors, Algebra and Coalgebra in Computer Science, volume 5728
of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2009.
Cited on p. 11.

[71] Clemens Kupke and Yde Venema. Coalgebraic automata theory: basic
results. Logical Methods in Computer Science, 4, 2008. Cited on p. 6.

Bibliography 225

[72] Alexander Kurz. Specifying coalgebras with modal logic. volume 11 of
Electronic Notes in Theoretical Computer Science. Elsevier, 1998. Cited on
p. 6.

[73] Alexander Kurz and Raul Leal. Equational coalgebraic logic. Electronic
Notes Theortical Computer Science, 249, 2009. Cited on p. 11.

[74] Alexander Kurz and Raul Leal. Modalities in the Stone age. submitted to
Theoretical Computer Science, 249, 2010. Cited on pp. 11, 105.

[75] Alexander Kurz and Jǐŕı Rosický. The goldblatt-thomason theorem for
coalgebras. In Till Mossakowski, Ugo Montanari, and Magne Haveraaen,
editors, Algebra and Coalgebra in Computer Science, volume 4624 of Lecture
Notes in Computer Science. Springer, 2007. Cited on p. 64.

[76] Alexander Kurz and Jǐŕı Rosický. Strongly complete logics for coalgebras.
Logical Methods in Computer Science, 2010. Submitted. Cited on pp. 27,
44, 46, 53, 64, 65, 105, 110, 113.

[77] Alexander Kurz and Yde Venema. Coalgebraic Lindström theorems. In
L. Beklemishev et alii, editor, Advances in Modal Logic, volume 8 of King’s
College Publications, 2010. Cited on p. 93.

[78] William Lawvere. Adjointness in foundations. Dialectica, 23, 1969. Cited
on p. 8.

[79] Raul Andres Leal. Expressivity of coalgebraic modal language. Master of
Logic dissertation series. ILLC-Universiteit van Amsterdam, 2007. Cited on
pp. 9, 10.

[80] Raul Andres Leal. Predicate liftings versus nabla modalities. Electronic
Notes in Theoretical Computer Science, 203(5), 2008. Cited on pp. 9, 11,
77, 78, 79, 104.

[81] Saunders MacLane. Categories for the Working Mathematician. Springer-
Verlag, New York, 1971. Graduate Texts in Mathematics, Vol. 5. Cited on
p. 157.

[82] Ernest G. Manes. Algebraic Theories. Springer, Berlin, 1976. Cited on p. 3.

[83] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93(1), 1991. Cited on pp. 171, 173, 183, 185, 192.

[84] Lawrence S. Moss. Coalgebraic logic. Annals of Pure and Applied Logic,
96(1-3), 1999. Erratum published Ann.P.Appl.Log 99:241-259, 1999. Cited
on pp. 5, 6, 44, 57, 58, 60, 105, 141.

226 Bibliography

[85] Andrzej Mostowski. Games with forbidden positions. Technical Report 78,
University of Gdansk, 1991. Cited on p. 198.

[86] Robert Myers, Dirk Pattinson, and Lutz Schröder. Coalgebraic hybrid logic.
In L. de Alfaro, editor, Proc. FOSSACS 2009, volume 5504 of Lecture Notes
in Computer Science. Springer, 2009. Cited on p. 7.

[87] Rohit Parikh. The logic of games and its applications. In Topics in the
Theory of Computation, number 14 in Annals of Discrete Mathematics.
Elsevier, 1985. Cited on pp. 33, 34, 171.

[88] Dirk Pattinson. Coalgebraic modal logic: Soundness, completeness and
decidability of local consequence. Theoretical Computer Science, 309(1–3),
2003. Cited on pp. 6, 38, 40, 53, 54, 57, 138.

[89] Dirk Pattinson and Lutz Schröder. Eliminability of cut in coalgebraic logics.
Electr. Notes in Theoret. Comp. Sci., 203(5), 2008. Cited on p. 7.

[90] Dirk Pattinson and Lutz Schröder. Generic modal cut elimination applied to
conditional logics. Logical Methods in Computer Science, 7(1), 2011. Cited
on p. 7.

[91] M. Pauly. Logic for Social Software. PhD thesis, Institute for Logic Language
and Computation - Universiteit van Amsterdam, 2001. Cited on pp. 33, 34.

[92] Vaughan Pratt. Semantical considerations on floyd-hoare logic. In Proceed-
ings of the 17th IEEE Symposium on Foundations of Computer Science,
1976. Cited on p. 32.

[93] H. Reichel. Behavioural equivalencea unifying concept for initial and final
specification methods. In Proceedings 3rd Hungarian Computer Science
Conference, 1981. Cited on p. 3.

[94] Martin Rößiger. Coalgebras and modal logic. volume 33 of Electronic Notes
in Theoretical Computer Science. Elsevier, 2000. Cited on pp. 6, 15.

[95] Jan Rutten. Automata and coinduction - an exercise in coalgebra. In
D. Sangiorigi and R. de Simone, editors, CONCUR’98, volume 1466 of
Lecture Notes in Computer Science. Springer, 1998. Cited on pp. 3, 19.

[96] Jan Rutten. Universal coalgebra: A theory of systems. Theoretical Computer
Science, 249, 2000. Cited on pp. 2, 3, 7, 19, 20, 137, 147, 151, 192.

[97] Luigi Santocanale and Yde Venema. Completeness for flat modal fixpoint
logics. In Nachum Dershowitz and Andrei Voronkov, editors, LPAR, volume
4790 of Lecture Notes in Artificial Inteligence. Springer, 2007. Cited on p. 6.

Bibliography 227

[98] Lutz Schröder. A finite model construction for coalgebraic modal logic. J.
Log. Algebr. Program., 73(1-2):97–110, 2007. Cited on p. 7.

[99] Lutz Schröder. Expressivity of Coalgebraic Modal Logic: The Limits and
Beyond. Theoretical Computer Science, 390, 2008. Cited on pp. 6, 62, 138,
141, 155, 156.

[100] Lutz Schröder and Dirk Pattinson. Rank-1 logics are coalgebraic. Journal
of Logic and Computation. in press. Cited on p. 7.

[101] Lutz Schröder and Dirk Pattinson. How many toes do I have? parthood and
number restrictions in description logics. In Proc. Knowledge Representation
2008. AAAI Press, 2008. Cited on p. 7.

[102] Lutz Schröder and Dirk Pattinson. Pspace bounds for rank-1 modal logics.
ACM Transaction in Computational Logic, 10, 2009. Cited on pp. 7, 53.

[103] Lutz Schröder and Dirk Pattinson. Coalgebraic correspondence theory. In
FOSSACS, 2010. Cited on p. 7.

[104] Daniel Schwencke. Coequational Logic for Finitary Functors. Electronic
Notes in Theoretical Computer Science, 203(5), 2008. Cited on pp. 143, 149.

[105] Jech Thomas. Set theory. Springer, 2000. Third Millennium edition revised
and expanded. Cited on p. 158.

[106] Yde Venema. Automata and fixed point logics: a coalgebraic perspective.
Electronic Notes in Theoretical Computer Science, 204, 2004. Cited on p. 6.

[107] Yde Venema. Algebras and Coalgebras. Volume 3 of Studies in Logic and
Practical Reasoning [19], 2006. Cited on p. 8.

[108] Yde Venema. Automata and fixed point logic: a coalgebraic perspective.
Information and Computation, 204, 2006. Cited on pp. 6, 58, 195, 196, 209,
214.

[109] Steven J. Vickers. Topology Via Logic, volume 5 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1989. Cited on
p. 52.

[110] Albert Visser and Giovanna D’Agostino. Finality regained: A coalgebraic
study of Scott-sets and multisets. Archive for Mathematical Logic, 41, 2002.
Cited on pp. 19, 31.

[111] Mitchell Wand. Final algebra semantics and data type extensions. Journal
of Computer and System Sciences, 19(1):27 – 44, 1979. Cited on p. 3.

228 Bibliography

[112] James Worrell. Terminal sequences for accessible endofunctors. Electronic
Notes Theoretical Computer Science, 19, 1999. Cited on p. 138.

Index

Symbols

(K〈Σ,E〉
T , δE) 103

(L, δ) 44, 50
(LT , δT) 64
(A, U) 215
(L̄A

Λ , δ̄Λ) 52
(L̄s, δ̄s) 78
(L̄T , δ̄T) 63
A∗ 196
Aω 196
F D U 216
M 58
MT 58
X $ Y 174
Acc(A) 201
Acc(A, ξ) 200
BA 25
Base(t) 117
A ↓ X 215
Form1

(L,δ)(X) 53
Img 123
LΛ 40
LA

Λ (X) 51
Mon 16
Sat(A) 202
Pow 4, 15
ΣA 25
ΣΛ 40, 41
Tω 58
TΣ(X) 25

TΣ(X) 25
$ 45
$1

V 54
≈T 98
BN 16
L̄A

Λ 52
P 16
Alg(T) 15
Coalg(T) 14
D 15
K〈Σ,E〉

T 103

P̂δ 45
)L 153
MT 58
!λ 38
∇ 5
∇' 59
T 20
[[!λ−]]ξ 42
[[−]]1V 54, 200
[[ϕ]]δξ 45
[[ϕ]]ξ 45
∼ 19
ςa 201
ςaϕ 201
fξ 20

A

adjoint
left 216

229

230 INDEX

right 216
adjoint situation 217
adjunction

associated isomorphism 217
counit of 217
transpose 217
unit of 217

algebraic signature 23
associated functor 23, 24

algebras 14
absolutely free algebra 25
algebriac signature
varieties of 25

canonical diagram 26
carrier 14
category of 15
Eilenberg-Moore 29
homorphisms 15
morphism of 15
structural map 14
term algebras 25
terms in a signature 25
varieties 25

associated signature 23
automata

Λ-automaton 199
run of 196
stream 196

B

base 117
behaviourally equivalence 19
bisimulation 19

C

canonical
signature 109

canonical diagram 26
coalgebra

logical congruences 155
coalgebraic modal logic 44, 50

abstract 55

base category of 50
basic propositional logic of 50
boolean 44
canonical signature 109
complex algebra 45
depth-one formulas 53
finitary 50
formulas of 44
interpretation of formulas 45
logical translator 86
Moss logic 58
language 58

one step translation 67
translation functor 70

one-step semantics 54, 200
predicate lifting
language of 51
over A 52

rank-1 axiom 53
semantics 44, 50
singleton liftings 78
translator 74

coalgebras 13
category of 14
congruences 151
logical 153

final 20
final map 20
logic for 50, 55
logic for 44
logical quotient 155
morphism of 14
pointed 14
simple 152
standard 178
state space 14
structural map 14

comma category 215
complex (L, δ)-algebra 45
concrete category 215
concrete functor 215
concrete isomorphism 215
concrete modalities 38

INDEX 231

coredistributions 126

D

diagram 216
directed colimit 216
directed diagram 216

E

Eilenberg-Moore algebra 29
EM algebra 29
existential modality 4
expressive language 141

F

free monad 30
functor

accessible 16, 18, 159
associated signature 23
bounded 16
concrete 215
distribution finite 15
finitary 17, 18
forgetful 215
Kleisli inclusion 174
Kripke polynomial 15
monad 28
multiset finite 16
neighborhood 33
monotone 33

polynomial 15
powerset
contravariant 16
covariant 15

presentation 95
canonical 96
modal signature 113
standard 98

preserves finite sets 17
preserves weak pullbacks 22
signature 14
standard 16

translation 70

G

games
accptance game 200
board of 197
graph 197
parity 197
wining condition of 197

regular 197
global modalities 5

H

Hennessy-Milner property 141

J

joint coequalizer 216

K

KPF 15

L

language
abstract coalgebraic 139
adequate 141
expressive 141
Hennessy-Milner property 141

lifting
relation 20

logical congruences 155
logical quotient 155
logical translator 86

M

modal signature 40
associated functor 41
induced by a presentation 113

monad 28
free 30
Kleisli category of 174

232 INDEX

Kleisli composition of 174
monadic category 30

Moss lifting 102
Moss Logic 5, 58
Moss logic

language 58

O

one step translation 67
transaltion functor 70

P

PDL 32
polynomial functor 15
predicate lifting 6, 38

associated functor 41
associated modality 38
boolean dual 198
coalgerbaic modal logic
over A 52

coproduct extension of 82
labelling of 172
language of 51
logical translator 86
modal language 40
modal signature 40
monotone 198
Moss 102
predicate transformer 42
product of 83
singleton 77
translator 74

predicate transformer 42
presentation of functors 95

basic 123
cannonical 96
injective 120
modal signature 113
representant 98
basic 120
injective 120

standard 98

well based 120
propositional dynamic logic 32

R

redistribution 117, 124
Σlim 124
slim 117

relation lifting 20

S

satisfaction relation 45
sifted colimit 27
singleton liftings 78
solution set 157
solution set condition 157
strategy 197

finite memory 197

T

translation 34
one-step 67

translation functor 70
translator 74

logical 86

U

universal modality 4

V

varieties 25
algebraic signature 25

Y

Yoneda lemma 61, 96

Samenvatting

Dit proefschrift gaat over coalgebra’s en modale logica’s.
Simpel gezegd zijn coalgebra’s machines gezien vanuit het perspectief van de

gebruiker. Iets formeler gesproken kunnen we stellen dat coalgebra’s de basis vor-
men voor een wiskundige theorie van computersystemen. Met coalgebra’s kunnen
we systemen bestuderen waartoe we maar beperkt toegang hebben, of waarvan
de toestanden niet volledig bekend zijn. Dit heet het black-box perspectief. Een
concreet voorbeeld van dit perspectief is onze interactie met een koffiezetapparaat.
De meeste mensen weten niet hoe het binnenste van een koffiezetapparaat eruitziet,
laat staan dat ze weten hoe dat binnenste werkt. Toch weten de meeste mensen
hoe ze koffiezetapparaat moeten bedienen. De gebruiker ervaart het binnenste
van de machine als een black-box. Het koffiezetapparaat is een coalgebra.

Modale logica’s bieden een interne, lokale kijk op relationele structuren. De
oorsprong ervan ligt in de wijsbegeerte. Modale logica’s is begonnen als de
studie van logische eigenschappen van modaliteiten zoals “het moet dat...”, “het
is mogelijk dat...”, “ergens in de toekomost...”. Maar dankzij de relationele
semantiek hebben deze modale logica’s hun weg gevonden in de taalkunde, de
kunstmatige intelligentie, en de theoretische informatica. Deze flexibiliteit is
de belangrijkste reden om de talen waarin deze modale logica’s gesteld zijn, te
kiezen als uitdrukkingsmiddel om de eigenschappen van coalgebra’s te beschrijven.
Tegenwoordig kunnen we ook zeggen dat modale logica’s coalgebräısch zijn.

Het proefschrift heeft twee delen: Modalities in the Stone age en Coalgebraic
modal logics at work.

In het eerste deel ontwikkelen we coalgebräısche modale logica’s. Dit soort
van logica’s vormen heden ten dage een van het belangrijkste studie-object in het
vakgebied van logica’s voor coalgebra’s. Coalgebräısche modale logica’s brengen
de veelheid van modale logica’s die een rol spelen in de Theoretische Informatica
onder één noemer. Vanuit dit perspectief kunnen we al die systemen met dezelfde
wiskundige technieken bestuderen.

Meer specifiek ziet het eerste deel van dit proefschrift er als volgt uit: allereerst

233

234 Samenvatting

introduceren we coalgebräısche modale logica’s als een veralgemenisering van de
‘oer’-modale logica’s. De basis ingredienten hier zijn de zogenoemde predicate
liftings of concrete modalities. We gebruiken deze concrete modaliteiten om
het zogenoemde functorial framework voor coalgebräısche modale logica’s te
ontwikkelen. Zo belanden we bij een algebrasche semantiek voor modale logica.
We gebruiken dit perspectief om verschillende coalgebräısche modale logica’s te
vergelijken via vertalingen. We richten onze aandacht daarbij in het bijzonder op
de de zogenoemde Moss logica. We sluiten dit deel af met een representatie stelling
waarin we bewijzen dat alle modale logica’s binnen het functorial framework
axiomatische systemen zijn van logica’s waarin de modaliteiten predicate liftings
zijn.

In het tweede deel van dit proefschrift onderzoeken we de grenzen van coal-
gebras̈che modale logica’s verder. Het bestaat uit drie case studies. In de eerste
daarvan gebruiken we logica’s voor coalgebra’s om coalgebra’s te bouwen. We
passen dit toe om inzicht te krijgen in het verband tussen eindige coalgebra’s en de
Hennessy-Milner eigenschap. In de tweede case studie kijken we naar dynamische
logica’s als coalgebräısche modale logica’s; dynamische logica’s worden dikwijls
gebruikt om over computerprogramma’s te redeneren. Als derde voorbeeld bestud-
eren we coalgebräısche modale logica’s als een formalisme om het (ongoing)-gedrag
van een toestand in een toestandssysteem te beschrijven. We richten onze aandacht
daarbij op dekpuntlogica’s met predicate liftings als modaliteiten. We ontwikkelen
een speltheoretische semantiek voor deze logica’s en bepalen een bovengrens voor
het vervulbaarheidsprobleem.

Abstract

This thesis hovers over the interaction of coalgebras and modal logics.
Intuitively, coalgebras are machines from the point of view of the user. They

arise from computer science as a promising mathematical foundation for computer
systems. Colagebras study different state-based systems, where the set of states
can be understood as a black box to which one has limited access. For an intuitive
illustration of this, think of a coffee vending machine. Most people do not really
know what the inner mechanism of the machine is, or even haven ever seen such
mechanism. Nevertheless, they can use the machine efficiently. Here we have an
interaction with a system in the black box perspective. The coffee machine is a
coalgebra.

Modal languages provide an internal, local perspective on relational structures.
They origin in philosophy as the informal study of modalities like “it is necessary
that...”, “it is possible that...”, “at some point in the future...”. However, thanks
to the so-called relational semantics, modal logics have found their way to areas
such as linguistics, artificial intelligence, and computer science. This versatility
has helped to place modal languages as the appropriate choice of languages to
describe coalgebras. Moreover, nowadays, it is also fair to say that modal logics
are coalgebraic.

This thesis has two parts: Modalities in de Stone age and Coalgebraic modal
logics at work.

In the first part of this manuscript we investigate coalgebraic modal logics.
These logics have become one of the main currents of modal logics for coalgebras.
Coalgebraic modal logics bring uniformity to the rising wave of modal logics in
computer science and provide generality to the interactions of coalgebras and
modal logics. More concretely, the structure of the first part is as follows: we first
introduce coalgebraic modal logics as a generalisation of basic modal logic using
so-called predicate liftings or concrete modalities. We develop these modalities
to introduce the so-called functorial framework for coalgebraic modal logics.

235

236 Abstract

This accounts to give an algebraic semantics of modal logics. We then use this
perspective to compare different coalgebraic modal logics by means of translations.
We devote special attention to the so-called Moss logic. We finish this part with a
representation theorem which states that each coalgebraic modal logic within the
functorial framework is an axiomatization of a logic of predicate liftings.

In the second part of this manuscript we investigate how coalgebraic modal
logics can be used to study coalgebras. We work three case studies. In the first case
we investigate the use of logics for coalgebras to build coalgebras. More concretely
we study the relation between final coalgebras and the Hennessy-Milener property.
In the second case we investigate how coalgebraic modal logics align with so-called
dynamic logics, dynamic logics are often used to reason about programs. In the
third place we study coalgebraic modal logics to describe the ongoing behaviour
of a state in a coalgebra. We focus on logics of predicate liftings with fixpoint
operators. We give a game semantics and prove a bounded modal property for
these logics.

Titles in the ILLC Dissertation Series:

ILLC DS-2006-01: Troy Lee
Kolmogorov complexity and formula size lower bounds

ILLC DS-2006-02: Nick Bezhanishvili
Lattices of intermediate and cylindric modal logics

ILLC DS-2006-03: Clemens Kupke
Finitary coalgebraic logics

ILLC DS-2006-04: Robert Špalek
Quantum Algorithms, Lower Bounds, and Time-Space Tradeoffs

ILLC DS-2006-05: Aline Honingh
The Origin and Well-Formedness of Tonal Pitch Structures

ILLC DS-2006-06: Merlijn Sevenster
Branches of imperfect information: logic, games, and computation

ILLC DS-2006-07: Marie Nilsenova
Rises and Falls. Studies in the Semantics and Pragmatics of Intonation

ILLC DS-2006-08: Darko Sarenac
Products of Topological Modal Logics

ILLC DS-2007-01: Rudi Cilibrasi
Statistical Inference Through Data Compression

ILLC DS-2007-02: Neta Spiro
What contributes to the perception of musical phrases in western classical
music?

ILLC DS-2007-03: Darrin Hindsill
It’s a Process and an Event: Perspectives in Event Semantics

ILLC DS-2007-04: Katrin Schulz
Minimal Models in Semantics and Pragmatics: Free Choice, Exhaustivity, and
Conditionals

ILLC DS-2007-05: Yoav Seginer
Learning Syntactic Structure

ILLC DS-2008-01: Stephanie Wehner
Cryptography in a Quantum World

ILLC DS-2008-02: Fenrong Liu
Changing for the Better: Preference Dynamics and Agent Diversity

ILLC DS-2008-03: Olivier Roy
Thinking before Acting: Intentions, Logic, Rational Choice

ILLC DS-2008-04: Patrick Girard
Modal Logic for Belief and Preference Change

ILLC DS-2008-05: Erik Rietveld
Unreflective Action: A Philosophical Contribution to Integrative Neuroscience

ILLC DS-2008-06: Falk Unger
Noise in Quantum and Classical Computation and Non-locality

ILLC DS-2008-07: Steven de Rooij
Minimum Description Length Model Selection: Problems and Extensions

ILLC DS-2008-08: Fabrice Nauze
Modality in Typological Perspective

ILLC DS-2008-09: Floris Roelofsen
Anaphora Resolved

ILLC DS-2008-10: Marian Counihan
Looking for logic in all the wrong places: an investigation of language, literacy
and logic in reasoning

ILLC DS-2009-01: Jakub Szymanik
Quantifiers in TIME and SPACE. Computational Complexity of Generalized
Quantifiers in Natural Language

ILLC DS-2009-02: Hartmut Fitz
Neural Syntax

ILLC DS-2009-03: Brian Thomas Semmes
A Game for the Borel Functions

ILLC DS-2009-04: Sara L. Uckelman
Modalities in Medieval Logic

ILLC DS-2009-05: Andreas Witzel
Knowledge and Games: Theory and Implementation

ILLC DS-2009-06: Chantal Bax
Subjectivity after Wittgenstein. Wittgenstein’s embodied and embedded subject
and the debate about the death of man.

ILLC DS-2009-07: Kata Balogh
Theme with Variations. A Context-based Analysis of Focus

ILLC DS-2009-08: Tomohiro Hoshi
Epistemic Dynamics and Protocol Information

ILLC DS-2009-09: Olivia Ladinig
Temporal expectations and their violations

ILLC DS-2009-10: Tikitu de Jager
“Now that you mention it, I wonder. . . ”: Awareness, Attention, Assumption

ILLC DS-2009-11: Michael Franke
Signal to Act: Game Theory in Pragmatics

ILLC DS-2009-12: Joel Uckelman
More Than the Sum of Its Parts: Compact Preference Representation Over
Combinatorial Domains

ILLC DS-2009-13: Stefan Bold
Cardinals as Ultrapowers. A Canonical Measure Analysis under the Axiom of
Determinacy.

ILLC DS-2010-01: Reut Tsarfaty
Relational-Realizational Parsing

ILLC DS-2010-02: Jonathan Zvesper
Playing with Information

ILLC DS-2010-03: Cédric Dégremont
The Temporal Mind. Observations on the logic of belief change in interactive
systems

ILLC DS-2010-04: Daisuke Ikegami
Games in Set Theory and Logic

ILLC DS-2010-05: Jarmo Kontinen
Coherence and Complexity in Fragments of Dependence Logic

ILLC DS-2010-06: Yanjing Wang
Epistemic Modelling and Protocol Dynamics

ILLC DS-2010-07: Marc Staudacher
Use theories of meaning between conventions and social norms

ILLC DS-2010-08: Amélie Gheerbrant
Fixed-Point Logics on Trees

ILLC DS-2010-09: Gaëlle Fontaine
Modal Fixpoint Logic: Some Model Theoretic Questions

ILLC DS-2010-10: Jacob Vosmaer
Logic, Algebra and Topology. Investigations into canonical extensions, duality
theory and point-free topology.

ILLC DS-2010-11: Nina Gierasimczuk
Knowing One’s Limits. Logical Analysis of Inductive Inference

ILLC DS-2011-01: Wouter M. Koolen
Combining Strategies Efficiently: High-Quality Decisions from Conflicting
Advice

ILLC DS-2011-02: Fernando Raymundo Velazquez-Quesada
Small steps in dynamics of information

ILLC DS-2011-03: Marijn Koolen
The Meaning of Structure: the Value of Link Evidence for Information Retrieval

ILLC DS-2011-04: Junte Zhang
System Evaluation of Archival Description and Access

ILLC DS-2011-05: Lauri Keskinen
Characterizing All Models in Infinite Cardinalities

ILLC DS-2011-06: Rianne Kaptein
Effective Focused Retrieval by Exploiting Query Context and Document Struc-
ture

ILLC DS-2011-07: Jop Briët
Grothendieck Inequalities, Nonlocal Games and Optimization

ILLC DS-2011-08: Stefan Minica
Dynamic Logic of Questions

ILLC DS-2011-09: Raul Andres Leal
Modalities Through the Looking Glass: A study on coalgebraic modal logic and
their applications

ILLC DS-2011-10: Lena Kurzen
Complexity in Interaction

