
The neural basis of

structure in language

Bridging the gap between symbolic and

connectionist models of language processing

Gideon Borensztajn

The neural basis of

structure in language

Bridging the gap between symbolic and

connectionist models of language processing

ILLC Dissertation Series DS-2011-11

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 904
1098 XH Amsterdam

phone: +31-20-525 6051
fax: +31-20-525 5206
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/

The neural basis of

structure in language

Bridging the gap between symbolic and

connectionist models of language processing

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof.dr. D.C. van den Boom

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Agnietenkapel
op woensdag 14 december 2011, te 12.00 uur

door

Gideon Borensztajn

geboren te Amsterdam.

Promotor:
Prof.dr. L.W.M. Bod

Co-promotor:
Dr. W.H. Zuidema

Overige leden:
Prof.dr. P.W. Adriaans
dr. F.P. Battaglia
Prof.dr. W. Bechtel
Prof.dr. L. Boves
dr. S. Frank
Prof.dr.ir. R.J.H. Scha
dr. P. Sturt

Faculteit der Geesteswetenschappen
Universiteit van Amsterdam

The research reported in this thesis was supported through a Vici-grant “Integrat-
ing Cognition” (nr. 277.70.006) to Rens Bod by the Netherlands Organization
for Scientific Research (NWO).

Copyright c© 2011 by Gideon Borensztajn

Cover design by the author.
Printed and bound by Ipskamp drukkers.

ISBN: 90–5776–233–1

to my dear father

with love and admiration

v

Contents

Acknowledgments xiii

1 Preface 1
1.1 The computational mind . 1
1.2 Motivating questions and goals 2
1.3 Outline of the thesis . 6

2 From Memory Prediction Framework to a neural theory of syn-
tax 11
2.1 Foundations of the Memory Prediction Framework 11

2.1.1 The hierarchical and topological organization of the cortex 12
2.1.2 Spatio-temporal encoding in the cortex 14
2.1.3 The hierarchical integration of temporal and perceptual in-

formation . 15
2.2 Language processing in the hierarchical brain 16

2.2.1 Grammar induction in the MPF through merging and chunk-
ing . 16

2.2.2 Object recognition is an interaction between bottom-up and
top-down processing . 18

2.2.3 Shortcomings of the MPF as a model of language processing 20
2.3 Neuro-biological solutions for the binding problem 21
2.4 Recursion, substitution and dynamic binding 23
2.5 Connectionist implementation of serial, dynamic binding 24
2.6 Localist networks and topology 26

2.6.1 The role of topology in a neural theory of syntax 26
2.6.2 Countercurrent systems, top-down and bottom-up networks 28

2.7 The role of episodic memory in language processing 29
2.7.1 The neurobiology of memory consolidation 32

2.8 A neural theory of syntax . 35

vii

2.9 A note on semantics . 36

3 Symbolic approaches to language processing 39

3.1 Introduction to formal syntax and parsing techniques 40

3.1.1 Rewriting grammars . 40

3.1.2 Automata and the Chomsky hierarchy 42

3.1.3 Parsing . 44

3.1.4 Probabilistic context free grammars 45

3.1.5 Treebank estimation . 46

3.1.6 Parser evaluation . 46

3.1.7 Probabilistic left corner parsing 47

3.1.8 Variations to the PCFG statistical model 48

3.1.9 Data Oriented Parsing . 49

3.1.10 Children’s grammars grow more abstract with age 51

3.1.11 Chart parsing . 52

3.2 Unsupervised grammar induction with CFGs 55

3.2.1 The Expectation Maximization Algorithm and the Inside
Outside Algorithm . 55

3.2.2 Bayesian Model Merging, Minimum Description Length . . 56

3.3 Limitations of the symbolic approach 58

3.3.1 Syntactic categories are prototypical and graded 59

3.3.2 Limitations of the probabilistic approach to syntax 61

4 Connectionist approaches to language processing 63

4.1 Introduction . 64

4.2 The systematicity debate — critique of connectionism 65

4.2.1 Why connectionism? . 67

4.3 Explicit representation of compositional structure 68

4.3.1 Recursive Auto-Associative Memory 69

4.3.2 Filler-role binding using the tensor product 70

4.3.3 The neural blackboard architecture 71

4.4 Recurrent, distributed networks 72

4.4.1 The Simple Recurrent Network (SRN) 73

4.4.2 Second connectionist reply to Fodor and Pylyshyn: dis-
tributed connectionism . 74

4.5 Defining criteria for the systematicity of language 74

4.5.1 Weak and strong systematicity according to Hadley [1994] 74

4.5.2 A proposal for a concise definition of the systematicity of
language . 76

4.5.3 The importance of inductive bias for generalization 77

4.6 Systematicity and the Chomsky hierarchy 78

4.6.1 Evaluating the systematicity of formal grammars 79

viii

4.6.2 A systematic model of language must have a structure bias
that is at least as expressive as CFG 82

4.7 Systematicity and the Simple Recurrent Network 83
4.7.1 The structure bias of the SRN compares to that of an FSA 83
4.7.2 The SRN does not satisfy the context invariance criterion . 85
4.7.3 Locality of learning algorithms prevents true generalization

of distributed patterns . 86
4.7.4 The systematicity of the SRN in the literature 87

4.8 What the systematicity of language tells us 87
4.8.1 The context invariance criterion 88
4.8.2 Dynamic binding in syntax 90
4.8.3 The recursive systematicity criterion 93

5 The hierarchical prediction network 95
5.1 HPN architecture . 96
5.2 Representational power of HPN 99
5.3 Parsing with the HPN grammar 101

5.3.1 Probabilistic left corner parsing with HPN 103
5.3.2 HPN node states . 103

5.4 Learning . 104
5.4.1 An example of the formation of abstract categories through

self-organization of the topology 106
5.5 Experimental evaluation . 106

5.5.1 Topology formation in an artificial language 107
5.5.2 Recursive systematicity . 108
5.5.3 Topology formation in realistic corpora of children’s speech 108

5.6 Chapter conclusions . 109
5.6.1 HPN and systematicity . 109
5.6.2 HPN versus RAAM . 110
5.6.3 Reaching the limits of HPN 111

5.7 Neural interpretation of core components of the HPN model . . . 113
5.7.1 Connectionist implementation of a switchboard 113
5.7.2 The tagging system . 115

6 Episodic grammar 121
6.1 Episodic memory . 121

6.1.1 Proposal for the representation of episodes as distributed
traces in semantic units 123

6.2 Episodic grammar — model outline 124
6.2.1 The left corner episodic grammar 126
6.2.2 Training the episodic grammar 127
6.2.3 Statistical parsing with the episodic grammar 128
6.2.4 Smoothing and binarization 129

ix

6.2.5 Evaluation and reranking 131
6.3 Experiments and results . 132

6.3.1 Discontiguous episodes . 134
6.3.2 Shortest derivation reranker 134

6.4 Relation to other work . 136
6.5 Chapter conclusion . 137

7 Parsing with episodic memory 139
7.1 An Earley-style probabilistic left-corner chart parser 139

7.1.1 States of the left corner parser 140
7.1.2 Probabilistic left corner shifting grammar 141
7.1.3 Probabilistic left corner chart parsing 142
7.1.4 Prefix probabilities . 145
7.1.5 An example that explains why inner probabilities are nec-

essary . 146
7.1.6 Implementation issues . 147

7.2 Evaluation of the basic probabilistic LCSG chart parser 148
7.3 The episodic left corner chart parser 149

7.3.1 Most probable episodic parse 150
7.3.2 Shortest derivation parse 152
7.3.3 Shortest derivation left corner chart parser 154
7.3.4 Implementation issues of the shortest derivation parser . . 156

7.4 Experiments with the shortest derivation left corner parser 158
7.4.1 Coarse-to-fine parsing and pruning 159
7.4.2 Chapter conclusion and discussion 159

8 Learning grammar through episodic memory consolidation 163
8.1 Introduction . 164
8.2 Treating language acquisition as a memory consolidation problem 164

8.2.1 Example 1: Lieven et al. [2003] 165
8.2.2 Example 2: Marcus et al. [1999] and Marcus [2001] 165
8.2.3 The use of analogy in computational models of grammar

induction . 166
8.2.4 Towards a connectionist model of memory consolidation in

language . 167
8.2.5 Discovering analogies via the principle of the shortest deriva-

tion . 168
8.3 The episodic-HPN model . 169
8.4 Predictions of episodic-HPN for memory consolidation 172

8.4.1 What episodic-HPN says about the transformation
(de-contextualization) from episodic to semantic memory . 172

8.4.2 The role of the hippocampus according to episodic-HPN . 172
8.5 Discussion . 175

x

8.5.1 Relation to other neural network models of memory con-
solidation . 175

9 General discussion and conclusions 179
9.1 Summary . 179
9.2 A possible role for HPN in cognitive linguistic research 181

9.2.1 Modeling language acquisition with HPN 181
9.2.2 HPN and construction grammar 182

9.3 A reply to Jackendoff’s challenges 183
9.4 Relation to other work on unsupervised grammar induction 185

9.4.1 HPN versus Inside-Outside 185
9.4.2 HPN versus Bayesian Model Merging (BMM) 187
9.4.3 HPN versus U-DOP . 188

9.5 Future work . 188

A Two case studies on the systematicity of the SRN 195
A.1 Case study 1: Elman [1990] . 195
A.2 Case study 2: Elman [1991] . 198

A.2.1 Fundamental reason why an SRN cannot generalize context
free languages: analogy . 200

B HPN implementation issues 203
B.1 A deterministic and serial left corner parser for HPN 203
B.2 Conversion procedure from (P)CFG to

(P)HPN . 205

Index 225

Samenvatting 231

Abstract 235

xi

Acknowledgments

First of all I want to express my utmost gratitude for having been so lucky to
work with the two most wonderful supervisors one could possibly wish for, Jelle
Zuidema and Rens Bod. While they each brought in specific qualities, both have
been in their own way indispensible for my passing this tough ordeal called PhD.

As with so many PhD careers, this one has not been spared from its fair share
of crises either. To Jelle and Rens, I want to thank you from the bottom of my
heart for your patience and support, especially during hard times. It must not
have been the easiest task for you to deal with all my peculiarities and stubborn,
nonconformist convictions, and to keep my chaotic way of doing scientific research
on the right track, but you have done a remarkable job, always being careful to
find a delicate balance between pushing too hard and easing on me too much.

Jelle has been throughout the years my beacon in roaring scientific waters.
His extensive and deep knowledge of subjects ranging from evolutionary biology
to cognitive science to Artificial Intelligence and (computational) linguistics never
ceased to astonish me, especially since he is a couple of years my junior. But more
importantly I felt that I could always rely on his judgment, as it is profound and
honest, guided by common sense rather than by ideological preconceptions. Jelle’s
unassailable instinct for what is good and what is bad science is invaluable in our
field, and I learned from him to apply the same healthy criticism that I naturally
have towards other research also to my own scientific practice.

Jelle has such an incredibly sharp mind that I have cut myself several times on
it. In our frequent discussions he would always get right to the core of a problem
that I was wrestling with, and suggest the most practical way to tackle it. This
ability of his is all the more striking if you know that I often have a hard time to
formulate my ideas in intelligible sentences, or even in a ‘bag of words’. In those
cases Jelle would show a rare capacity to read my thoughts, greatly facilitating
our communication.

Rens has been a great inspirator, and he is the modern incarnation of the homo
universalis, with broad interests and amazing encyclopedic knowledge ranging

xiii

from astronomy, the arts, history of the humanities and history in general, to
linguistics and computer science. Rens took me totally by surprise when he hired
me as a PhD on his Vici-project “Integrating Cognition” after I made a fool of
myself during the job interview. Yet from my incoherent fumbling he managed to
figure out that I had some vague ideas about doing something with the Memory
Prediction Framework and language, and he gave it a chance.

Rens’s intellectual openmindedness and (nearly insatiable) sciencific curiosity,
free of conventional prejudices and barriers, provided me with an opportunity
to follow my intuitions about language and the brain into largely unexplored
territory. His enthusiasm and inexhaustable energy are proverbial at the ILLC,
where we sometimes call him the whirlwind, because he gets more things done
in an hour than most of us in a month. Thanks to Rens’s frequent pep talks I
kept believing in myself and in the project despite many setbacks. And thanks
to his outstanding management skills I never had to worry about bureaucratic
matters, and I could finish my PhD only one year overdue. Jelle and Rens, I hope
I haven’t burdened you too much with all my public and private preoccupations
over the years, but now the time has come for me to release you, with a heavy
heart, to a fresh draft of students.

Well, I am not going to tire you, the hypothetical reader of this thesis, much
longer with a long list of acknowledgements, because I want you to be still in good
shape before starting the first chapter. So I apologize beforehand to anyone who
I might have overlooked, and I will just mention the following important persons:

Thank you, Federico Sangati and Markos Mylonakis (and before, Fernando
Velázquez Quesada), for sharing a room with me at the university, for bearing
with me despite my perpetual whining, for having funny and nonsensical as well
as serious and helpful discussions, for many great games of ping pong which
unfortunately came to an end when we moved to a new location, and for being
friends.

Thank you, Stefan Frank, for being a great colleague and sparring partner
in the systematicity debate. Thanks to our countless discussions Chapter 4 has
greatly improved. Also, our short-lived mini-reading-group was much more fun
than the CLS!

Thank you, Francesco Battaglia, for being one of the first people outside the
ILLC to show interest in my crazy ideas. Thanks to Francesco and Alessandro
Treves we established a collaboration with two PhD students from Trieste, Ritwik
Kulkarni and Sahar Pirmoradian, who it was a pleasure to have as our guests,
and with whom I have exchanged many ideas.

Thank you, Remko Scha, for inspiring philosophical discussions and for your
kind willingness to read and comment on some very preliminary texts.

Many thanks to the staff members at the ILLC, Karin Gigengack, Tanja
Kassenaar, Ingrid van Loon and Peter van Ormondt for doing such a good job
taking all administrative issues out of our hands. Special thanks to Ingrid, Peter,
Leen Torenvliet (who was director of the ILLC at the time) for their support, and

xiv

to Rosette van Raalte for her kind advices during a difficult period of my PhD.
Thanks also to Tikitu de Jager for proofreading the first chapters of this thesis.

I would like to thank all the committee members for sacrificing much of their
valuable time to reading my thesis, and for helpful comments. From the com-
mittee members I want to specially thank William Bechtel, whose beautifully
written book “Connectionism and the mind” offers an excellent introduction to
the issues and debates surrounding connectionist modeling of cognition and lan-
guage, which allowed me to make a jump start with my research. Lou Boves also
deserves special mention, because it was him, through some strange quirk of fate,
who brought my attention to the work of Jeff Hawkins, which became central
in my PhD research. I consider it a great honor that you all have agreed to be
members on my PhD committee.

After the UvA moved to a modern building at Science Park, far outside the
center of town, I preferred the intellectually stimulating environment of the Ams-
terdam coffee bars over that of the Science Park to carry out most of my research.
Thank you cafe Krul, de Badcuyp, de Stadskantine, Pain Quotidien and above all
’t Proeflokaal with its beautiful garden terrace for tolerating the silent presence
of me and my laptop, mostly on a budget of a single cup of coffee or mint tea
(and 220 Volts). You have unwittingly sponsored fundamental research.

Dearest of all, to my parents and closest family and friends, thank you for
doing everything for me without ever asking anything in return, and for your
love. Sorry that I was away on such a long journey. I hope all you got and will
get from me is more than this lousy T-sis.

Amsterdam Gideon Borensztajn
November, 2011.

xv

Chapter 1

Preface

1.1 The computational mind

In 2004 a book on neural computation in the cortex was published, intriguingly
titled “On Intelligence” [Hawkins and Blakeslee, 2004], that attracted a lot of at-
tention within the cognitive science community. The book sketches an engineering
perspective on the neocortex, inspired by a thorough analysis of the neural infor-
mation pathways, that basically sees the brain as a massively connected pattern
recognizer. The main claim of the book is that the function of intelligence and of
memory is to predict, hence Hawkins dubbed his theory the “memory prediction
framework” (MPF).

The pillars of the memory prediction framework are that (i) the neocortex
extracts and encodes temporal sequences (of patterns) as categories in neural
assemblies that correspond to cortical columns, (ii) the neocortex stores categories
in a hierarchical fashion, (iii) as one goes up in the hierarchy, categories are formed
that are progressively more invariant and more temporally compressed, and (iv)
the main function of the cortex is prediction of future events, and this is achieved
by ‘unfolding’ the temporally compressed categories to the lower levels. Hawkins’
functional analysis of the cortex is supported by a large body of neuro-biological
research, particularly in the field of vision. (Some of this will be discussed in
chapter 2, when I will dig a bit more deeply into the details of the MPF.)

It struck me that the ideas outlined in the MPF offer good prospects for a the-
ory of language processing: the idea that categories higher in the cortical hierarchy
are temporally compressed corresponds well to linguistic intuitions about phrase
structure. Indeed, what is a high level syntactic category if not a compressed
representation of a sequence of words? Further, the interleaved integration of
the temporal and the sensory dimensions (at all levels of the cortical hierarchy),
which is one of the principle features of the MPF, is analogous to syntagmatic
and paradigmatic processes (processes concerning positioning and substitution
respectively) in syntactic theory (more about this in section 2.2.1). However,

1

2 Chapter 1. Preface

the book and ensuing technical publications [George and Hawkins, 2005, 2009]
are tailored towards visual processing, and no linguistic applications have so far
appeared. The reason is, in my opinion, that the MPF in its current form is not
yet suited for productive language processing, due to certain shortcomings of the
framework. In section 2.2.3 I will suggest several improvements and extensions
of the MPF, and I will propose that the modified version of the MPF may serve
as the basis for a neural theory of language processing.

Curiously, the insights from the MPF are very much at odds with current
trends in connectionist theories of language, although both frameworks aspire to
be neurally motivated. In recurrent distributed networks, probably the most pop-
ular connectionist platform for modeling language processing, syntactic categories
are not recognized, nor is hierarchical structure, and a quite different conceptu-
alization of temporal processing is embraced than by hierarchical compression.
A substantial portion of this thesis will be dedicated to a critical review of the
literature on connectionist language processing and systematicity. I will argue,
against received wisdom, that 1) the criteria of systematicity of language that
are currently popular among connectionists are inadequate, and 2) conventional
distributed connectionist models do not satisfy a more concise set of systematicity
criteria, that incorporates phrase structure, and hence are ill suited for model-
ing natural language acquisition. On the other hand, I will identify within the
Memory Prediction Framework some critical neural mechanisms that could be
incorporated by the brain to solve the problem of constituent structure represen-
tation. These ideas lead to a proposal for a novel type of connectionist network,
that is able to learn a grammar and parse sentences, and that is based on an ar-
chitecture that complies with the hierarchical organization and information flow
in the cortex.

1.2 Motivating questions and goals

Why would anyone care to inquire into the neural basis behind linguistic compu-
tation? Given that so little is known about the neural instantiation of language,
how can one expect neuro-biological considerations to help in understanding how
people produce comprehensible sentences? There are different answers to these
questions, depending on who you ask.

For the linguist with a background in formal grammars it should be interest-
ing to understand how typical linguistic constructs and operations can be imple-
mented in the brain.

In phrase structure grammars , the basis of many linguistic formalisms, the
grammar consists of abstract syntactic categories (e.g., NP, VP), and a set of
‘rewrite rules’, which combine categories into larger structures, and eventually
into a sentence. For example, the sentence The woman read the book might
be represented by the tree in figure 1.1, using the following rewrite rules in a

1.2. Motivating questions and goals 3

S
PPPPP
�����

NP
Q
Q

�
�

the woman

VP
H
HH

�
��

Verb

read

NP
cc##

the book

Figure 1.1: Example of a parse tree

derivation, starting from the top of the tree: S → NP VP , NP → the woman,
VP → Verb NP , Verb → read and NP → the book. Typically, such models
are formulated at an abstract ‘competence level’, and are indifferent about the
processing level. Yet, certain questions about the neural foundations of language
deserve the attention of the linguist, but cannot be phrased using the formal
apparatus of competence grammars. For instance, how are syntactic categories
and rewrite rules (or their equivalents) instantiated in the brain? How is a rewrite
rule selected and accessed in the brain? How are the symbolic syntactic variables
acquired, and where does their global scope derive from? How can a parse be
neurally processed, through local interactions alone? How can the brain represent
parse trees of unbounded depth using only limited brain space?

To advance insight into these questions one must move to the processing
level. The added value of integrating a computational model of language with a
neural architecture (e.g., by inspiration from the MPF) is that it puts physical
constraints on the implementation of the grammar. For instance, complex syn-
tactic operations, such as center embedding (i.e., nesting a phrase in the middle
of another phrase), are necessarily executed by local processes that employ the
wetware of the brain, and parse trees of arbitrary depth must be represented in
a restricted space. Some solutions that are uncontroversial in formal linguistics,
such as the use of variables, become real challenges, and unexpected questions
may pop up if the innateness assumptions from generative grammar are dropped
(e.g., how does substitutability emerge?).

Jackendoff [2002] presents what he sees as the four major challenges for a
neural theory of language:

1. The problem of representing variables concerns the idea that it seems nec-
essary that (systematic) knowledge of language be encoded as abstract re-
lations between typed variables. This is particularly important to explain
the combinatorial productivity and the systematicity of language, that is a
person’s ability to produce and understand an unbounded number of novel
sentences based on a limited number of observed sentences. Fodor and
Pylyshyn [1988] argue that for systematic language processing the cogni-
tive system must be able to perform operations over symbols, or variables.

4 Chapter 1. Preface

Yet, traditional neural networks cannot encode variables for principled rea-
sons [see e.g., Marcus, 2001] (see also section 4.7.3). The debate about the
systematicity of language will be covered extensively in section 4.2.

2. The massiveness of the binding problem refers to the fact that in order to
understand a sentence, phonological, syntactic and semantic levels must be
combined, and within each structural level substructures, such as phrases,
must be bound. Given that people can understand and produce a near infi-
nite number of sentences, if every sentence required a dedicated neuron that
binds the substructures, the amount of binding needed would be massive.

3. The asymmetry between binding in working memory and binding in long
term memory (LTM) refers to the question how the brain deals with the
storage of productive versus fixed linguistic expressions. There exists a
discrepancy between expressions, such as ‘lift the shovel’, that are pro-
duced flexibly on-line in working memory and fixed idioms, such as ‘kick
the bucket’, or reusable multi-word constructions that are apparently en-
coded as a whole in a person’s long term memory, or lexicon.

4. The problem of two arises because, as Jackendoff [2002, p.58] argues, in
order to be able to understand a sentence, all bindings, at all different
structural levels must be functionally present at once. The question arises
how the brain can deal with the multiplication of representations of the
same word, that seems to be required whenever some word occurs more
than once within a sentence.

In the next chapter (section 2.8) a neural theory of syntax will be developed,
based on which an answer to Jackendoff’s four challenges can be formulated (in
section 9.3). Chapter 5 and subsequent chapters are dedicated to a computational
implementation of this theory, which I call the ‘hierarchical prediction network’
(HPN).

For a second group of language researchers, of connectionist persuasion, the
ideas presented by the MPF and further explored in this thesis offer an alter-
native perspective on neural processing, which challenges many of the standard
assumptions of connectionism. Connectionism holds that a uniform, domain gen-
eral cognitive architecture can explain (specifics of) language, as well as behavior
in other modalities, and it aims at designing general purpose neural networks,
which are simplified models of the brain, that can perform linguistic and other
tasks. The fundamental reason why I adopted a connectionist approach to syn-
tax acquisition in this thesis has to do with learnability: crudely stated, neural
networks are capable of acquiring the meaning of their primitive units from the
external environment, whereas symbolic models presuppose innate meanings of
their primitives (e.g., syntactic variables). More about this will be said in section
4.2.1.

1.2. Motivating questions and goals 5

Connectionists have quite a different agenda than the first group of linguists,
since in general (exceptions like Prince and Smolensky [1997] notwithstanding)
they do not accept many of the foundational assumptions of formal linguistics
anyway. One of the main claims of this thesis is that existing connectionist
models have fundamental problems explaining systematic linguistic behavior (see
section 4.5.1), and new ideas are needed to make connectionist models more
congruent with insights from traditional linguistics (specifically the Chomsky hi-
erarchy, section 3.1.2). It will be shown that this goal can be achieved through a
tighter integration of connectionist models with the cortical architecture that is
suggested by the MPF.

A third group of linguists that might find interest in this thesis are those
that identify themselves with construction grammar [see e.g., Goldberg, 2003,
2006, Fillmore and Kay, 1987]. In construction grammar (CG) the primitive
units of language production are constructions , which are stored associations
between a semantic frame and a syntactic pattern, which may consist of one
or more words with optional variable slots. In Radical Construction Grammar
[Croft, 2001, 1991] it is claimed that all syntactic patterns in language are in fact
constructions, and that syntactic categories are defined relative to constructions
with local validity or scope. Learning in CG consists of the gradual acquisition of
a structured inventory of constructions, a constructicon, where the constructions
are of various sizes and varying degrees of complexity and abstractness [see e.g.,
Goldberg, 2006, Tomasello, 2003].

Empirical studies in this tradition [e.g., Peters, 1983, Tomasello, 2001, van
Kampen, 2003] emphasize a dynamically changing grammar that follows a trajec-
tory, during early development, from simple and concrete to complex and abstract
constructions. While early child language is item-based in nature (often organized
around so-called verb-islands), in subsequent stages children start breaking down
the item-based constructions, introducing variables in slots, such as in Where’s
the X?, I wanna X, etc. According to Tomasello’s Usage Based Grammar (UBG)
[Tomasello, 2003] the acquisition of constructions with variable slots forms the
beginning of abstraction and category formation, and it marks the beginning of
grammar [Tomasello, 2000a].

These findings suggest that underlying children’s language production is a
syntactic representation in which the primitive building blocks can be of variable
size, form and level of abstraction. A grammar formalism that can accommodate
such flexibility is the family of of Tree Substitution Grammars (TSG) (section
3.1.9), and particularly Data Oriented Parsing (DOP; [e.g., Bod, 1998, Scha et al.,
1999]). In section 3.1.10 I will briefly present published work that is based on the
DOP framework, and that shows that Children’s grammars grow more abstract
with age [Borensztajn et al., 2009a]. Yet, the major part of this thesis is concerned
with the more fundamental question of what constitutes the neural basis behind
syntactic constructions.

This thesis implements a computational model of a constructicon, and models

6 Chapter 1. Preface

its acquisition as a growing, self-organizing network that gradually evolves from
a loose collection of concrete sentence fragments to an integrated network of ab-
stract adult-like grammar rules. The model illustrates, in a neurally plausible
manner, how constructions with variable slots — open positions where variable
input can be inserted — become progressively more abstract (section 5.4.1), pro-
viding a computational basis for the usage based acquisition process. Finally,
by implementing the constructicon as a neural network it can identify neural
processes that underly language acquisition and processing: in section 2.7 and
Chapter 6 I will discuss how the constructicon, consisting of a mix of concrete,
multi-word expressions and abstract rules, can be understood in terms of the hu-
man memory system, that stores a combination of episodic and semantic memo-
ries in the language domain.

1.3 Outline of the thesis

This thesis is divided into several parts, which is a consequence of the fact that
the research presented resides somewhere between connectionism and statistical
parsing, and between rule-based and exemplar-based approaches to language pro-
cessing. One of the major objectives of this work is to show, both theoretically
and empirically through modeling work, that the perceived absolute dichotomy
between connectionist and symbolic approaches to language processing, as they
are currently formulated, is based on false assumptions on both sides, and that
by clearing existing misconceptions (e.g., concerning systematicity, variable op-
erations, recursion and binding in the brain) the gap can be bridged. In this
respect, Chapter 2 presents a neural perspective on language processing in the
cortex, based on the Memory Prediction Framework, that emphasizes its hierar-
chical and localist nature, and that, if taken seriously, leads one to question the
standard assumptions (i.e., distributed and recurrent processing) of mainstream
connectionism.

Starting from Chapter 5 I will introduce, in two stages, a connectionist model
of syntactic processing, called the “hierarchical prediction network” (HPN), that
integrates elements from neural networks and statistical parsing, and thereby
forges a synthesis between these frameworks. Subsequent chapters investigate
the neural basis of exemplar based models of language, and the thesis reaches
its conclusion in Chapter 8 with a proposal for an exemplar-based connectionist
model of sentence processing, episodic-HPN, which is an extension of HPN with
episodic memory.

The leading motives throughout the thesis are questions concerning the fun-
damental problems of language acquisition. I will try to answer these by looking
at the parallel between language acquisition and memory formation: the first part
of the thesis, and the first version of the HPN model, focuses on learning syntactic
categories and rules and the construction of a semantic memory in which abstract

1.3. Outline of the thesis 7

categorical relations are laid down in the network topology of HPN; the second
part, and the final version of HPN, focuses on sentence processing with exem-
plars, and the transition from concrete exemplars to abstract rules, as a process
of episodic to semantic memory consolidation.

• Chapter 2 introduces the Memory Prediction Framework (MPF), and it
contributes some original ideas intended to accommodate a neural theory
of language processing within the existing framework. The chapter tries to
link insights from the neuroscience literature to natural language process-
ing by exploiting analogies between language and visual processing. For
instance, in section 2.3 I discuss current research on dynamic binding in
visual processing, and I propose that a similar mechanism is responsible
for substitution in syntactic parsing. In section 2.6 I discuss localist con-
nectionist networks, such as the Kohonen network, and the possible role of
topology in representing graded syntactic category membership. In section
2.7 I discuss the possible role of the episodic memory system in exemplar-
based language processing and acquisition, and finally in section 2.8 the
ideas of this chapter are summarized in a neural theory of syntax, inspired
by the MPF.

• Chapter 3 presents an introduction to formal syntax and parsing tech-
niques with an emphasis on left corner parsing. The chapter gives some
basic background on probabilistic context free grammars and statistical nat-
ural language processing; some variations of the PCFG statistical model are
mentioned, as well as an exemplar-based computational model of syntactic
processing, Data Oriented Parsing (DOP) [Bod, 2003]. An application of
DOP for finding multi-word constructions in children’s speech is discussed
[Borensztajn et al., 2009a]. The Earley chart parser is discussed in some
detail, as well as its probabilistic version, because they will play a role in the
HPN model. Then I spend some sections on unsupervised learning (induc-
tion) of grammar, focusing on two approaches: Bayesian Model Merging
(BMM) and the Inside Outside algorithm. In the final section I discuss
shortcomings of the formal (and statistical) approach to syntax, particu-
larly with respect to explaining first language acquisition, motivating the
decision to embark on connectionist language processing. Section 3.1.10
contains a summary of the following publication:

[Borensztajn et al., 2009a] Children’s grammars grow more abstract with
age. Evidence from an automatic procedure for identifying the pro-
ductive units of language. Topics, 1 (1): 175-188, 2009.

• Chapter 4 presents a critical review of (a part of) the literature on con-
nectionist language modeling, in the context of the systematicity debate.
The chapter starts with a discussion of a class of connectionist models with

8 Chapter 1. Preface

a built-in capacity for compositional structure representation [e.g., Pollack,
1988, Prince and Smolensky, 1997]. I argue that the way these models deal
with structure representation and binding is in principle and intrinsically
not connectionist. After a short survey of the connectionist literature on
systematicity, during which I discuss Hadley’s [1994] criteria for weak and
strong systematicity, I will propose in section 4.5.1 that a more precise,
and stricter, set of criteria is necessary to evaluate systematicity in connec-
tionist models: the context invariance and recursive systematicity criterion.
In section 4.8.1 I argue that the Simple Recurrent Network (SRN) [Elman,
1989], which is commonly regarded as the classical example of a connection-
ist model capable of systematic language processing, fails both criteria. To
back up my claims, in appendices A.1 and A.2 I try to expose the fallacies
in the literature about the systematicity of the SRN. Finally, in section 4.8,
I discuss the implications of the reformulated criteria for the systematicity
of language, for contemporary connectionist language research. I propose a
conceptual revision of the standard assumptions about connectivity in the
brain as well as fundamental changes in the design of neural networks for
language.

• Chapter 5 introduces the basic HPN model. The core concepts and com-
ponents of HPN are discussed and motivated from the MPF and the neural
theory of language. I provide formal definitions of HPN, and discuss some
formal properties, such as the fact that HPN subsumes PCFG’s. Subse-
quently, I discuss a cognitively plausible parsing algorithm, implemented in
HPN and based on the Left Corner Parser, and the incremental learning
algorithm of HPN that is complementary to parsing. Section 5.5 presents
preliminary experiments with the first version of HPN, and section 5.6.3
discusses its limitations (e.g., a limited possibility for conditioning parser
decisions on context). The conclusion motivates the work on episodic gram-
mars described in subsequent chapters leading towards a version of HPN
with integrated episodic memory. The content of this chapter is partially
extracted from the following publication:

[Borensztajn et al., 2009b] The hierarchical prediction network: towards
a neural theory of grammar acquisition. Proceedings of the 31st Annual
Conference of the Cognitive Science Society.

• Chapter 6 focuses on the question of how exemplar-based linguistic knowl-
edge, needed for contextual conditioning in parsing and for learning, is rep-
resented in the brain. I propose that an episodic memory for previously
processed sentence analyses is responsible for the brain’s ability to appeal
to sentence context, and I present a novel idea about the nature of the
relation between semantic and episodic memory in the brain. This idea is

1.3. Outline of the thesis 9

implemented in a probabilistic episodic grammar, and evaluated as a syn-
tactic parser on corpora of natural language. I explain how, in the symbolic
and supervised case, the episodic grammar is trained from a treebank, and
how a probability model can be defined based on priming and retrieval of
episodic sentence memories. The content of this chapter is partially ex-
tracted from the following publication:

[Borensztajn and Zuidema, 2011] Episodic grammar: a computational
model of the interaction between episodic and semantic memory in
language processing. Proceedings of the 33rd Annual Conference of the
Cognitive Science Society.

• Chapter 7 introduces the probabilistic left corner shifting grammar (PLCSG),
and a PLCSG chart parser that will be used with HPN. It implements a
dynamic algorithm for the efficient computation of sentence probabilities
and prefix probabilities. I show how the PLCSG chart parser can be ex-
tended for episodic parsing, and I develop a Viterbi algorithm for finding
the shortest left corner derivation. Subsequently, the episodic left corner
parser is evaluated for precision and recall on a realistic natural language
corpus, and a qualitative analysis of the resulting shortest derivation parses
is presented.

• Chapter 8 presents the episodic-HPN model, an extension of HPN with
an episodic memory. Here the parallel between language acquisition and
memory consolidation will be crystallized. The chapter starts with a short
overview of the literature on artificial language learning with infants. It
is argued that learning the structure of a language (a grammar) is greatly
facilitated by the extraction of structural analogies between stored sen-
tence pairs, and that for this to happen an episodic memory of processed
sentences is required. The episodic-HPN model shows how the transition
between episodic (sentence) memory and semantic memory (an abstract
grammar) can be guided by the principle of the shortest derivation. The
model implements an exemplar-based connectionist parser and a full prob-
ability model, that is able to condition on the entire sentence history, hence
is suitable for processing sentences of natural language.

• Chapter 9 contains a general discussion and conclusions, a retrospective
overview of the thesis, a reply to Jackendoff’s challenges and many sugges-
tions for future work.

Chapter 2

From the Memory Prediction
Framework to a neural theory of syntax

In this chapter I will highlight several details from
the Memory Prediction Framework (MPF) [Hawkins
and Blakeslee, 2004], which inspired the current work.
Whereas Hawkins and Blakeslee [2004] focus mostly
on visual processing by the cortex, I will point out
some striking analogies with theories of language pro-
cessing, supporting the idea that there exists a uni-
form cortical mechanism that underlies categorization
and processing within both the visual and the syntac-
tic domain. Subsequently, I will identify and briefly
motivate certain neural components that are lacking
from the MPF, but which would be needed to suc-
cessfully deal with productive language processing.
Together with the MPF these components make up
a neural theory of syntax, outlined in section 2.8,
and they will be the ingredients for the computational
model of syntax that will be developed in the remain-
der of this thesis.

2.1 Foundations of the Memory Prediction Frame-

work

The MPF is founded on a philosophy about the origin of human knowledge that
is nowadays commonplace in cognitive science [e.g., see Crick and Koch, 1998].
According to this philosophy, the evolutionary function of the cortex is to record

11

12Chapter 2. From Memory Prediction Framework to a neural theory of syntax

causal relations, which can help the organism in making predictions based on
observations from experience. To do so it must partition the continuous stream of
information that enters the senses into discrete objects, and construct an internal
world model to interpret relations between objects.

The hierarchical structure of the cortex stores a model of the hierar-
chical structure of the real world. The design of the cortex and the
method by which it learns naturally discover the existing hierarchical
relationships in the world [Hawkins and Blakeslee, 2004, p.125].

Memory is intimately related to planning: given a memory system that can store
causal or temporal relations between events, chances for survival are enhanced,
because it enables the organism to anticipate or predict likely events in the future,
and the likely outcomes of its own actions.

[E]volution discovered that if it tacks on a memory system (the neo-
cortex) to the sensory path of the primitive brain, the animal gains
an ability to predict the future. [Hawkins and Blakeslee, 2004, p.99]

In [Hawkins and Blakeslee, 2004, Chapter 4], Hawkins explains how the neo-
cortex does this. The following four important observations about the neocortex
convey its basic function as a temporal pattern recognizer, and distinguish it from
a conventional computer. To recapitulate,

1. The neocortex stores everything as temporal sequences of patterns.

2. The neocortex stores patterns in invariant form.

3. The neocortex stores patterns in a hierarchy. Categories are progressively
more invariant and temporally compressed as one goes up to higher levels
in the cortical hierarchy.

4. The neocortex recalls patterns auto-associatively.

2.1.1 The hierarchical and topological organization of the
cortex

The architecture of the MPF is modeled after the hierarchical organization of the
visual cortex, and since this plays an important role in this thesis I will provide
the essential neuro-biological background here. As one moves vertically through
the ventral pathway of the visual cortex (which leads from V1, via V2 and V4 to
the inferotemporal cortex (IT)), a hierarchy of increasingly complex and location
invariant representations of visual information is formed, while at the same time
the receptive fields of the columns increase in size [see e.g., Felleman and van
Essen, 1991, Kobatake and Tanaka, 1994]. At the lowest level neurons selectively

2.1. Foundations of the Memory Prediction Framework 13

Figure 2.1: The visual hierarchy. From [Roelfsema, 2006]

respond to simple features, such as line segments at specific orientations, while
adjacent neurons respond to orientations that are slightly tilted in such a way
that orientation preferences gradually vary along the surface of the cortex. At
higher cortical levels complex cells can be found that respond to more complex
features, such as specific angles formed by combinations of line segments [Hubel
and Wiesel, 1968]. Other neurons respond to stimuli of increasingly complex and
irregular shapes [e.g., Maunsell and Newsome, 1987], as well as conjunctions of
features from different modalities, for instance shape and color (see Figure 2.1).

Recordings in humans with electrode implantations (performed in epileptic
patients) have consistently yielded discoveries of so-called grandmother cells that
respond to specific concepts, and do so invariantly across different modes of pre-
sentation of the stimulus. For instance, Kreiman et al. [2002] reported a cell that
responded to any image with Bill Clinton in it, whether it was a line drawing of a
laughing Clinton, a painting, or a photograph of Clinton. Cells that are sensitive
to famous actors (e.g., Jennifer Anniston), to the Eiffel tower and many other
people and objects have also been found [Quian Quiroga et al., 2005].

The neurons within a sheet of cortex are organized in vertical columns , which
are generally viewed as the basic computational units of the cortex [Mountcastle,
1997]. Within a vertical column in the cortex the neurons are typically tuned
to the same signal. For instance, within a single ‘orientation column’ all neu-
rons have the same orientation preference. Many other regions in the neocortex
are organized in topographic maps, where similar feature values are encoded by
adjacent neuronal columns within a brain region. Topologies have been demon-
strated for visual inputs, tactile inputs (where the position on the skin surface
is mapped to a somatotopic map), and in the auditory cortex, where tonotopic
maps represent acoustic signals ordered according to their pitch frequency.

In sum, the sensory cortex is organized horizontally in topographic maps of
feature detecting columns, and vertically in a hierarchy of regions with progres-
sively fewer columns that respond to increasingly complex and abstract features
with larger receptive fields. This results in a pyramidical structure, as schemati-

14Chapter 2. From Memory Prediction Framework to a neural theory of syntax

cally illustrated in Figure 2.2.

Figure 2.2: Schematic diagram of the cortical hierarchy according to MPF. Blocks
represent cortical regions. (Reproduced from [Hawkins and Blakeslee, 2004].)

At the sub-columnar level one can distinguish six layers, L1, L2, . . . , L6, in
each sheet of cortex.Within each column (and at every level in the hierarchy)
two opposing currents of information flow can be distinguished, one ascending
(feed forward) and one descending (feed back) [Felleman and van Essen, 1991].
The upward flow enters at L4, with input converging from many regions below,
and exits to a higher level via L3 and L2, while skipping L1. While the upward
information mostly stays within a single column, the downward flow of feedback
information is divergent, starting at L1, where lateral axonal connections spread
across many columns, exciting cells in L2, L3 and L5, and exiting via L6 to the
cortical level below.

To make sense of cortical computation at the algorithmic level, Hawkins and
Blakeslee [2004] analyzed the information flow through the cortical hierarchy from
an engineering point of view. What makes the MPF particularly interesting is that
it tries to explain the functional connections between regions from different levels
in the hierarchy, how invariant representations come about, and how temporal
relations are encoded in the cortex.

2.1.2 Spatio-temporal encoding in the cortex

Since all visual, auditory and tactile experience involves change or motion, it
makes perfect sense that the cortex memorizes temporal sequences of predictably
correlated events. Even the memory of a face consists of an (unordered) sequence
of fixations (e.g., on nose, eyes, and mouth) related via rapid eye saccades.

Suppose an observer perceives a tilted line moving towards him: then the
orientation detected by the sensory apparatus in successive time steps gradually
changes value, and each snapshot of the line activates a different orientation col-
umn in a cortical region. Sequences of successively activated orientation columns
that reliably predict future observations are stored as prototypes within the re-
gion.1 In a world where motion and shape are usually smooth and continuous,

1Details of how this might occur are described in Hawkins and Blakeslee 2004, p.146. In

2.1. Foundations of the Memory Prediction Framework 15

columns that encode slightly different values of a feature are often activated in
succession within a sequence, and will develop strong connections. Therefore,
temporal or causal relations in the world play a role in structuring the cortical
topologies, and they explain how neatly arranged feature topologies have emerged
in the brain. I will argue in section 2.6.1 that this is also the case for the language
domain: in syntax a topology is constructed that expresses predictable temporal
relations between words and phrases.

The cortex not only encodes temporal sequences, it also binds simultaneously
occurring features (e.g., position, shape, orientation) that converge to a column
from different regions into a single unit, or chunk, in a higher cortical level. The
next section explains in detail how the alternation between temporal compres-
sion into prototypical sequences and conjunctive feature binding into prototypical
patterns leads to the incremental formation of highly invariant cells, such as the
Bill Clinton cell, in the top level of the cortex.

2.1.3 The hierarchical integration of temporal and per-
ceptual information

Hawkins and Blakeslee [2004] propose that hierarchical extraction of temporal
and categorical invariant structure proceeds in two alternating steps, that are
repeated in every level of the cortical hierarchy. In the first step, the most frequent
prototypical conjunctive patterns composed of sequences from lower regions are
extracted, and stored in the columns of the region above (see Figure 2.3).

Figure 2.3: The process of hierarchical temporal feature extraction

In the second step, the most frequent prototypical temporal sequences of suc-
cessively firing columns within a region are extracted, and encoded in the L1

short, through a thalamic feedback loop signals from previously active columns are relayed to
the L1 neurons of a column, which have axonal connections to many other columns in the
region. The synaptic connections from the L1 neurons to other columns are strengthened when
they are simultaneously active, resulting in the encoding of temporal sequences.

16Chapter 2. From Memory Prediction Framework to a neural theory of syntax

neurons that connect to all active columns in a region. The stored sequences
from multiple regions in turn serve as an alphabet from which, in the next iter-
ation, prototypical patterns are constructed in columns of the next higher level,
and so on. In sum, learning of invariant structure consists of an alternation
between storing patterns of sequences and sequences of patterns.

A crucial question is how (temporal and spatial) invariance arises in higher
regions of the cortex, leading for instance to the ‘Clinton cell’. In order for
the features to become progressively more invariant, a constant pattern must be
relayed between the levels in the hierarchy during learned sequences. According
to Hawkins, the answer is that in order to obtain an invariant representation
of the sequence a mechanism is in place that abstracts over the details of the
sequence, and only relays a ‘name’ for the sequence (i.e., a pointer) to the higher
level region.2 Within the higher level the name is regarded as a building block
for a larger pattern, which does not care about the constitution of the name’s
referent. In fact the name (or pointer) is itself stored in the (L6 cells of the)
higher level, where it is embedded within the context of a larger pattern of which
it is a component. This mechanism is very important, because only from the
embedding in a higher context can a category derive its extensional meaning.
Meanings of categories cannot exist in isolation, but are inferential, which means
that they are indirectly connected to the meanings of all other categories in the
brain. I will refer to this operating principle as encapsulation. Encapsulation at
successive levels in the cortical hierarchy ensures that the brain can make higher
order abstractions, or generalizations over generalizations. In section 4.8.1 I will
argue that an ability for encapsulation is a desirable property for connectionist
models of language, which is lacking from distributed networks.

2.2 Language processing in the hierarchical brain

2.2.1 Grammar induction in the MPF through merging
and chunking

What started this research project was the observation that there exists a remark-
able parallel between the operations that were identified in the previous section
as the basic operations employed by the cortex to hierarchically extract invariant
sequences, and certain algorithms for the acquisition of syntactic categories that
are used in the field of computational linguistics. One such algorithm for un-
supervised grammar induction is Bayesian Model Merging (BMM) [Stolcke and
Omohundro, 1994, Borensztajn, 2006b]. I will only briefly discuss BMM here; a

2Hawkins and Blakeslee [2004, p.150-2] suggest a complex mechanism for how the ‘names’
are encoded in L2 cells, which stay active as long as the actual stimulus matches the expectation
of the sequence. Only in case of a mismatch are the L2 cells inhibited such that the details of
the sequence rather than its name are passed to the higher level.

2.2. Language processing in the hierarchical brain 17

more formal exposition of BMM will be given in section 3.2.2 in the context of
unsupervised grammar induction. In BMM two operators, merge and chunk , are
used for the extraction of hierarchical structure from flat sentences:

• The chunk operator concatenates or ‘chunks’ repeating patterns (sequences),
such that the pattern may be stored just once in its entirety, and can then
be accessed via pointers (in a so-called syntagmatic process).

• The merge operator creates generalizations by forming disjunctive groups
(categories) of patterns that occur in the same contexts (a paradigmatic
process).

The BMM algorithm searches through the space of context free grammars, while
at every step in the search it makes a small change to the grammar using one of
these two operators. Merging and chunking alternate, until neither merging nor
chunking improves the chosen objective function.

This procedure bears significant resemblance to the procedure for extracting
invariant categories in the MPF, which was described previously. Transposed
to the language domain, the same mechanism that Hawkins describes for visual
category induction should be capable of syntactic category induction. If one as-
sumes that words are assigned to the input units in the bottom layer of the MPF
hierarchy (e.g., on a two-dimensional topological map), then extraction of pro-
totypical sequences over patterns of words (or phrases) corresponds to chunking,
and extraction of prototypical patterns over sequences corresponds to merging
(of sequences with common contexts). Such considerations reveal that the hier-
archical mode of operation of the cortex proposed by the MPF may provide an
ideal machinery for grammar induction, as it does for discovering other kinds of
hierarchical relations in the world.

Merging and chunking achieve generalizations in perpendicular dimensions.
Merging results in generalization over the lexical dimension, or any other sensory
dimension that is topographically encoded in a cortical region, and chunking is
generalization over the temporal dimension. Merging and chunking are the basic
operations of the brain (and, in my opinion, by no coincidence also correspond
to the basic connectives in logic, ∨ (OR) and ∧ (AND)). Together, merging and
chunking interact in such a way that predictable temporal relations over observed
sentences are distributed over the topology of the cortex, analogous to how the
temporal distribution in the visual input is reflected in the topological distribution
of visual features, such as orientation.

Interpretation of syntactic constituents

The above ideas imply the existence of categorical representations in the cortex
that are neural correlates of syntactic constituents. In analogy to visual cate-
gories, I propose that ‘syntactic’ neural assemblies exist that represent temporally

18Chapter 2. From Memory Prediction Framework to a neural theory of syntax

compressed and invariant sequences of words. Higher order constituents can be
learned by the cortex via repeated application of ‘merging’ and ‘chunking’ opera-
tions. Unfolding a ‘syntactic’ assembly in the temporal dimension corresponds to
the expansion of a constituent to its right hand side within a rewrite rule (com-
pare for instance the expansion VP → V NP). Like syntactic constituents, in-
variant categories can unfold in multiple ways. Yet, unlike conventional symbolic
categories such as NP or VP, the invariant neural representations of syntactic
categories do not behave like global variables, but like prototypical categories,
with local scope and graded category membership.

2.2.2 Object recognition is an interaction between bottom-
up and top-down processing

According to the MPF visual object recognition is not a simple matter of bottom-
up classification, but it involves an interaction between top-down predictions and
bottom-up activation, which are matched at all levels in a so-called ‘hypothesis-
and-test’ cycle. Predictions are executed by unfolding invariant representations
of temporally compressed sequences.3

Since the purpose of maintaining abstract invariant representations is that
they can be executed in many ways, there is a question how an invariant and
unspecific representation selects to which specific prediction it is unfolded. To
select a specific prediction, additional bottom-up information must be combined
with the non-specific top-down information. For instance, when you want to catch
an approaching ball, the first thing the brain does is to activate a highly invariant
motor scheme for ‘ball catching’, but as the catching process unfolds progressively
finer motor actions and perceptional stimuli interact in tight coordination to
produce a specific catch that is fine-tuned to the situation. Thus, there is a
continuous dynamical interaction between bottom-up sensory input and top-down
invariant predictions, during which moment after moment increasingly specific
predictions are compared with the sensory input, and adjusted in case of conflict,
until eventually an equilibrium is reached between top-down expectations and
bottom-up stimuli.

Computational techniques for discovering the hierarchical structure of events
unfolding in time are much studied in linguistics, where it is known as pars-
ing . Algorithms that perform a search through a space of possible structural
analyses (of a sentence) are known as parsers . A similar ‘hypothesis-and-test’
search procedure as described above is implemented in Left Corner Parsing
(LCP) [Rosenkrantz and Lewis II, 1970], a cognitively plausible parsing strategy
that combines top-down and bottom-up processing, and proceeds incrementally
through the sentence, from left to right. Left corner parsing will also be used as

3Similar ideas about the ‘hypothesis and test’ approach to object recognition had been
expressed earlier [e.g., Ullman, 1991], but did not involve the temporal component.

2.2. Language processing in the hierarchical brain 19

the search algorithm of choice in the HPN model developed in this thesis; two
versions of the algorithm will be described in detail in Chapter 7 and in Appendix
B.1.

Nowadays parsing techniques are increasingly successful at solving complex
visual object recognition tasks [Ullman, 2007, Han and Zhu, 2005], supporting
the idea that there exists a uniform cortical algorithm that underlies both visual
and linguistic processing.

The fragment-based hierarchical object recognition model

As an illustration of the parallel between visual and linguistic processing I will
briefly discuss a computational model for visual object recognition proposed by
Ullman [2007]. Ullman’s model is in the spirit of the MPF, as it implements the
principle of top-down versus bottom-up expectation matching, but it is some-
what less complex than the Bayesian algorithm proposed by George and Hawkins
[2005].

Figure 2.4: Fragment based hierarchical object recognition. Reproduced from
[Ullman, 2007]

In the ‘fragment-based hierarchical object recognition’ (FHOR) model [Ull-
man, 2007, Ullman et al., 2002, Lifshitz, 2005] a visual object is decomposed
into informative sub-components, or ‘fragments’, resulting in a hierarchical ob-
ject representation (see Figure 2.4). After informative fragments of various sizes
and complexity have been extracted from a corpus of images, the classification of
a novel image amounts to an interaction between bottom-up grouping of image
regions, based on perceptual similarity, and a top-down segmentation process,
based on class membership prediction. Visual object recognition thus involves
the construction of visual parse trees.

Note that the FHOR model makes use of visual categories, or constituents (the
fragments), that figure in the ‘rules’ of a ‘visual grammar’. For the classification
of novel images invariant visual categories must be formed (e.g., to recognize a
face in a novel image one needs an abstract category of a mouth, and eyes). As
in language, abstraction is critical for productivity and for the interpretation of
unseen objects.

20Chapter 2. From Memory Prediction Framework to a neural theory of syntax

One of the abstraction mechanisms used in FHOR is based on common con-
text. “If two fragments are interchangeable within a common context, they are
likely to be semantically equivalent” [Ullman, 2007, p.61]. Note that this is the
same principle that was described in section 2.2 as a mechanism to induce syntac-
tic categories of words from their sentential context (in grammar induction this
is called ‘merging’). Another mechanism used in the FHOR model is that visual
fragments that often occur together are lumped into larger fragments and stored
as a single unit. This, too, is a familiar principle in language learning, known as
‘chunking’.

Yet one important aspect is ignored in most of the visual object classification
literature, and that is the role of time. Precisely the fact that the temporal
component of cortical processing is emphasized in the MPF makes it an interesting
framework for language processing.

2.2.3 Shortcomings of the MPF as a model of language
processing

Despite its merits, the MPF in its current form is not suited to explain some im-
portant aspects of how the cortex deals with language processing. One question
concerns the representation of recursively embedded sentences inside an architec-
ture that is spatially constrained, and hard-wired. In the MPF all memories are
stored in hardwired, conjunctive bindings that encode certain (invariant) features.
How can such an architecture represent tree structures of arbitrary depth, and
how can it process novel sentences whose specific structures are not recognized
by the existing hard-coded classifiers (i.e., how can it explain the productive use
of language)?

The answer to this question will be gradually developed in the upcoming sec-
tions, but in short it goes as follows: an MPF-like architecture may serve as the
basis of a neural grammar, but there still need to be some special operations that
can combine primitive elements from that grammar into sentences. This is the
familiar binding problem of language [e.g., Jackendoff, 2002]. Specifically, I pro-
pose that the MPF needs to be extended by a mechanism for dynamic binding of
its nodes into more complex representations; moreover, for learning and process-
ing of novel sentences the network must be able to bind remote nodes that have
no pre-existing (hard-wired) relationship. The following sections discuss some
recent developments in the research on dynamic binding in vision, which invite
an analogy with dynamic binding in language processing (section 2.3).

Second, even though the MPF is modeled after the visual system, the frame-
work (as well as its Bayesian instantiation [George and Hawkins, 2009]) ignores
the possible functional role of topology. In section 2.6.1 I propose that, by analogy
to vision, the cortex exploits topology for the purpose of encoding and updating
graded syntactic category membership.

2.3. Neuro-biological solutions for the binding problem 21

A third problem is that the MPF offers no account of how event-like (personal)
memories, such as a recent visit to a museum, are stored in the cortex. Appar-
ently the MPF describes a semantic memory store, but not an episodic memory
(for definitions of episodic and semantic memory see section 2.7). Yet, episodic
memories are an integral part of our memory system, and the episodic memory
of large, reusable parts of sentence analyses presumably plays an important role
in language learning and processing. A realistic account of language processing
and acquisition would therefore benefit from the presence of an episodic memory
system, through which the analyses of sentences that an individual has processed
in the past are made accessible, such that they can be recruited for the analysis
of novel sentences. The role of episodic memory in (exemplar-based) language
processing will be discussed in section 2.7, and a computational model hereof will
be presented in Chapter 6.

2.3 Neuro-biological solutions for the binding

problem

In vision, the binding problem deals with the question how the brain succeeds
at integrating multiple features, such as color, shape and motion, which are pro-
cessed in separate channels, into a single percept of an object [see e.g., Zeki,
1993]. In particular, when multiple objects are present in a scene it is not a
trivial task to attribute each feature to the correct object. For instance, in an
image with a red square and a green triangle, red must be bound to the square,
and not to the triangle. Binding is also necessary to integrate the different parts
of an object that is extended in space, and distinguish it from other objects with
which it may overlap (e.g., crossing curves) — the latter task is known as contour
binding .

Within the visual processing pathway there exist cells that are dedicated to
binding specific configurations of visual features, such as edges, simple shapes, or
even the familiar face of your grandmother (so-called grandmother cells). Fea-
tures that are very common benefit from being hardwired (conjunctively coded)
in dedicated brain cells, and as a consequence they can be processed fast, auto-
matically and in parallel during feed forward processing (that is, propagation of
activation in the bottom-up direction). This is called static, or conjunctive bind-
ing. Yet, even with the aid of a vast number of such specialized cells the brain
cannot in general solve the binding problem for vision, because there can be in-
finitely many possible configurations of visual features, for instance in irregular
shapes. Although the feed forward sweep can successfully group many hardwired
feature constellations, for most complex tasks (e.g., texture segregation, curve
tracing, and visual search) more flexible forms of binding are necessary to group
the features of an object. The situation is comparable to the language domain,
as there are not enough neurons in the brain to bind every unique sentence [e.g.,

22Chapter 2. From Memory Prediction Framework to a neural theory of syntax

van der Velde et al., 2004].
There are at least two competing neural theories that explain dynamic bind-

ing in vision. Perhaps the most popular theory, synchronous neuronal firing , has
been proposed by von der Malsburg [1981] as a way to bind features over long dis-
tances. Although synchronous firing is a ubiquitous and well-studied phenomenon
[see e.g., Singer and Gray, 1995], the theory does not clarify how two cells that
fire in synchrony actually know of each other, and how the bound percept is made
explicit as a single entity. This would require dedicated ‘synchrony detectors’, and
thereby the responsibility for solving the binding problem is shifted to the lat-
ter. There have been several studies that show that no direct relationship exists
between synchrony and perceptual grouping [e.g., Lamme and Spekreijse, 1998,
Roelfsema et al., 2004], and many researchers believe that synchronous firing is
perhaps only an epiphenomenon of binding [Palanca and DeAngelis, 2005]. More-
over, synchronous firing would run into trouble as a theoretical explanation when
bindings have a partial temporal overlap, as is the case for sentence processing
and for most other realistic stimuli.

Figure 2.5: The contour binding algorithm. Serial spread of a label (light color)
through bottom-up enabled neurons (dark gray). Reproduced from [Roelfsema
and Spekreijse, 2005]

An alternative, and in my opinion preferable theory asserts that dynamic
binding is a serial process mediated by the spread of an enhanced neural firing
rate, which is thought to be the neural correlate of attention [Roelfsema, 2006].
This works in two stages, as is illustrated for the case of contour binding in Figure
2.5:

1. During a feed forward sweep neurons are activated that are tuned to specific
conjunctions of features in their receptive fields (i.e., the static bindings).
This ‘enables’ the neurons for subsequent dynamic binding.

2. Dynamic binding occurs when a label (i.e., attention) spreads through recur-
rent connections between enabled neurons, that are topological neighbors
in feature space. (The fact that neighboring neurons respond to similar
features (e.g., orientation) forces the binding process to follow a continuous
contour line.)

2.4. Recursion, substitution and dynamic binding 23

Empirical evidence for a serial, attention-mediated process in contour bind-
ing is described in Roelfsema and Spekreijse [2005], where electro-physiological
recordings were used to measure response times of individual neurons in the mon-
key brain.

I propose that a similar serial binding mechanism as used in contour binding
is also fundamental for productive language use. As a corollary recurrent serial
binding gives rise to recursive phenomena in language, as discussed in the next
section.

2.4 Recursion, substitution and dynamic bind-

ing

A view that has recently gained some popularity among generative linguists is that
the only thing special about human language is recursion [Hauser et al., 2002].
Recursion can be defined with respect to a formal (context free) competence
grammar. It means that a rewrite rule can directly or indirectly rewrite to its
own left hand side, thereby allowing arbitrarily many applications of the same
rewrite rule in a derivation. This definition assumes, of course, globally defined
and discrete syntactic categories.

Not only is the view that recursion is universal across the world’s languages
contested [e.g., Evans and Levinson, 2009, Everett, 2005], careful reflection reveals
that the definition of recursion as an empirical phenomenon is rather troublesome.
According to the formal definition the recursivity of a language depends on the
choice of syntactic categories that describe the grammar of the language. How-
ever, this choice is usually a matter of linguistic convention, as is the granularity
of the categorization. For instance, the verb category can be subcategorized ac-
cording to the type of arguments it selects for, or according to tense and aspect.4

Of course, whether a grammar is recursive depends on the degree of granularity
of its categories. In linguistic theories such as Radical Construction Grammar
[Croft, 2001] category labels are locally defined around specific constructions.
From their point of view recursion is entirely absent. Clearly then, there cannot
be a definition of recursion that is independent of any grammatical representation
or theory; recursion derives from the assumption that syntactic categories have
global meanings, and is a property, or rather an artifact, of the formal model of
grammar, and not of the real world.

Yet, nobody would dispute that there is an empirical phenomenon in language
related to recursion, that allows language users to produce and understand com-
pound, and hierarchically nested propositions in discourse, and this phenomenon

4Some state-of-the-art probabilistic parsers apply a technique — called state-splitting —
that splits categories into more fine-grained categories, and thereby improve their accuracy
significantly [Petrov et al., 2006].

24Chapter 2. From Memory Prediction Framework to a neural theory of syntax

deserves an explanation. Language users who judge Mary likes chocolate to be
a grammatical sentence of English also accept My little brother likes chocolate,
indicating that their grammar allows for substitution of an item for another item
of the same kind (i.e., substitution class) in a sentence or in discourse (see sections
4.5.1 – 4.5.2 for an elaborate discussion of systematicity in language). In formal
linguistics substitution refers to an operation of combining rewrite rules based
on the identity of syntactic category labels. Obviously in a symbolic approach
to language substitution is not an issue, because it is implicitly assumed that
variables are global and that their content can be replaced globally. Within a
biologically realistic connectionist framework however, which lacks the notion of
variables, substitution is not trivial to represent.

One of the central claims of this thesis is that the neural correlate of substi-
tution is attention-mediated serial binding . Hence a uniform cortical mechanism
underlies binding both in vision and in language. Contour binding is only one
example of the general solution of the brain, across all modalities, to dealing with
complex or compound stimuli which involve recurrent processing.

This challenges the position of Hauser et al. [2002], who believe that recursion
is central to human language processing. Evidently, recursion is only an epiphe-
nomenon of a more basic cognitive ability, namely substitution — once the mind
acquires an ability for doing substitution recursion comes for free. As such, re-
cursion is not special in any sense for language, and neither is it a special quality
that sets humans apart from other primates.

2.5 Connectionist implementation of serial, dy-

namic binding

In order to implement serial binding, or substitution, in a connectionist model of
language processing one must assume localist representations, and the existence
of complex network units.In that case substitution can be construed by analogy to
serial contour binding [Roelfsema, 2006] with only a few adaptations. While serial
contour binding is realized by passing a label between neighboring nodes in the
visual topology, substitution is realized by passing a ‘tag’ (containing information
about the sentence position) between units in a ‘syntactic’ topology. When an
identical tag is present in two bound units, of which one is a complex unit,
this implements a ’pointer’ from (a substructure of) the complex unit to the
bound unit (details in section 5.7). This allows the complex unit to delegate
responsibility for processing a part of its input stimulus (e.g., a phrase) to the
unit that is pointed at, hence the replacement of one tag by another inside (a
substructure of) a complex unit amounts to substitution.

In case the brain invokes a serial binding mechanism for language process-
ing, the neural assemblies further need to have a capacity to retain the bindings
in working memory for a short while. The assumption that neural assemblies

2.5. Connectionist implementation of serial, dynamic binding 25

are endowed with small short-term memories is in fact not so far fetched. Re-
cent findings in neuro-biology indicate that working memory is locally sustained
by short-term plasticity, through calcium-mediated synaptic facilitation in the
recurrent connections of neocortical networks [Mongillo et al., 2008, Barak and
Tsodyks, 2007]. Residual calcium is thought to act as a buffer that maintains the
presynaptic connections in working memory for a time on the order of one second
after the synaptic activity has terminated.

Although the idea of dynamic binding has not yet entered the mainstream con-
nectionist modeling literature, its implementation, involving short-term neuronal
memories, is not contrary to the spirit of connectionism. The local short-term
memories can for instance be realized in a neural network by providing for an
additional set of fast changing weights, that transiently store pointers to bound
nodes. Hummel and Biederman [1992] implement a dynamic binding algorithm,
which is very similar in spirit to the algorithm proposed by Roelfsema [2006], in a
connectionist network for complex shape recognition. The challenge for dynamic
binding is that temporarily bound neurons must be ‘tagged’ by a tag that identi-
fies their membership of the bound group. Hummel and Biederman [1992] solve
this by spreading the tag via an extra set of Fast Enabling Links (FELs) between
neurons, that operate on a much faster time scale than, and independently of the
regular feed forward connections.

Another connectionist model that reserves a central role for substitution be-
tween nodes (or dynamic binding) is the STORM model [McQueen, 2005, Mc-
Queen et al., 2005]. The STORM model is a localist connectionist network, built
on top of a Kohonen Self-Organizing Map (see the next section). It implements
a special mode of interaction between network units (the so-called ‘override’ op-
eration), in which connectivity depends only on the topological location of the
active units, and is insensitive to their actual activation. The units in STORM
have an extra set of weights for remembering context, that is the topological po-
sition of units that previously activated them — these ‘context weights’ act as
local short-term memories. In this thesis I will propose yet another solution for
dynamic binding for the HPN model (see sections 5.1 and 5.7), but I will borrow
the idea from STORM that connectivity between units depends on their relative
topological positions.

In sum, I propose that to be able to cope with language processing (and sub-
stitution) neural networks need (apart from feed forward connections) a mode
of connectivity that has the flexibility to bind any pair of units through serial,
dynamic binding, using tags. The capacity for dynamic binding or substitution
renders such networks potentially much more powerful than traditional connec-
tionist networks; in particular it allows them to perform context invariant oper-
ations, which are important to satisfy the systematicity of language (see section
4.8.1). All this comes at a price: one has to adjust what for historical reasons has
become the standard picture of a neural processing unit. Most importantly, one
needs to assume that the units have local memories and an ability to transmit

26Chapter 2. From Memory Prediction Framework to a neural theory of syntax

richer information than just activation levels. It thus makes sense to take as the
basic computational units in a neural network for language processing cortical
columns rather than neurons [Mountcastle, 1997]. The implementation of these
ideas constitutes the major part of this thesis.

2.6 Localist networks and topology

If one assumes that syntactic development involves a process of gradual acquisi-
tion of prototypical syntactic categories and their integration within a network
topology, then localist connectionist networks, such as the Kohonen network [Ko-
honen, 1998], seem a more logical choice to model this process with than dis-
tributed connectionist networks (which will be discussed in Chapter 4). The
Kohonen network, also called a self-organizing map (SOM), exhibits many of the
properties found in the visual system (section 2.1.1), such as localist represen-
tation of feature detecting neurons, topological organization and unsupervised,
Hebbian learning.

In brief, a Kohonen network consists of an input layer and a layer of ‘feature
extracting’ nodes (the feature map), which are placed according to some topolog-
ical arrangement (usually a rectangular grid). Every feature node in the feature
map is fully connected with every node of the input. When an input is presented
to the network, the node that receives most activation becomes the ‘winner’,
and the activation of all other nodes is inhibited. The winner is the node whose
weights have the minimal distance to the input.

Subsequently, the weight of the winning node is updated by decreasing the
difference between the weight and the input, using a Hebbian learning algorithm.
This reinforces the winning node, which makes it more likely to classify similar
inputs in subsequent presentations - the so-called winner-takes-it-all effect. An
important feature of Kohonen networks is that they organize the topology by
updating not only the weights of the winner, but also of nodes surrounding the
winning node on the grid. As a result an area in the neighborhood of the winner
will respond to similar input vectors, and the topology of the map self-organizes.

2.6.1 The role of topology in a neural theory of syntax

Given the success of Kohonen networks in explaining the formation of the visual
topology [e.g., Miikkulainen et al., 1997], can they also be used to study the
formation of a syntactic topology? Several models exist that investigate the
exploitation of topology for syntax, often by extending the SOM with a capacity
for recurrent processing [e.g., Voegtlin, 2002, Mayberry III and Miikkulainen,
1999, McQueen et al., 2005]. Since recurrent networks are a main topic in Chapter
4 I will not discuss these models here.

It is worth mentioning a study by Ritter and Kohonen [1989] that investigated

2.6. Localist networks and topology 27

whether it is possible to induce ‘word categories’ from distributional information.
Ritter and Kohonen [1989] trained a SOM on three-word-sentences generated
by an templates made of word categories. The input to the network consisted
of precomputed vectors representing words together with their average left and
right contexts. Thus, distributional information was explicitly encoded in the
input vectors. Their results show that SOMs can learn to represent ‘syntactic’
word categories as regions in a topological map.

Yet, since this study only involves three-word sentences it does not deal with
the question of how the categories induced in the topological map interact, or bind
to each other. As in most other applications of Kohonen networks, the formation
of a topology is considered a goal by itself, and the topology plays no functional
role. Ideally however, one would want the formation of syntactic categories to
result from an interaction through the topology (i.e., in a parsing process). This
requires a fundamentally different approach to syntax induction with Kohonen
networks, some of the challenges of which will be discussed in the next section.

Why would the brain invest such an effort in developing topologies? It is un-
likely that topographic order is preserved for aesthetic reasons alone; apparently
topology plays a role in determining connectivity patterns. The most plausible
answer, I find, is that the topological position is used as an index by higher brain
regions to make approximate predictions, exploiting the fact that graded category
membership is laid out smoothly along the dimensions of the topology. By virtue
of the topological organization of categories the brain’s predictions do not have to
be exact, which makes them more robust, and a (mis)match between the expected
and observed input can be computed based on their topological distance.

From an engineering point of view, relying on topology is a very effective way
for the brain to encode relations between categories (or variables), because rather
than connecting individual category members (i.e., network nodes) one by one (as
is typically done in connectionist semantic networks, [e.g., Collins and Quillian,
1969]) it is sufficient to express a systematic relation only once by pointing to an
area, where the category members are clustered. The brain can thus infer the
category of a neural assembly from its topological position on the cortical surface,
whether in the domain of visual object recognition, motor behavior, or language.

The ubiquity of topological organization everywhere in the brain, and its
crucial role in determining connectivity patterns, are strong indications that the
brain represent categories locally, and not fully distributed, as is advocated by
proponents of distributed connectionism (e.g., the SRN). Topology also seems to
fly in the face of the more extreme non-representational theories of connectionism
[e.g., van Gelder, 1998], which defend the absence of categories altogether.

28Chapter 2. From Memory Prediction Framework to a neural theory of syntax

2.6.2 Countercurrent systems, top-down and bottom-up
networks

One of the difficulties in adopting the Kohonen framework for syntax is that
syntax is a ‘top-down’ phenomenon: syntactic categories are defined by their oc-
currence in certain sentence contexts, hence their representations should reflect
contextual, distributional information. By contrast, in the standard implemen-
tation of the Kohonen network the input to the network comes from bottom-up
(e.g., through feed forward visual perception). Hence the topology reflects local
features implicit in the input vectors and does not incorporate relational infor-
mation.

Before one can answer the question how a syntactic topology is realized, one
must address the question where ‘conceptual’ (syntactic) categories are located
in the brain. An interesting approach to this question is offered by a tradition of
cognive modeling known as countercurrent systems [e.g., Ullman, 1991, Merker,
2004, Schmidhuber, 1996]. Closely related to the Memory Prediction Framework,
it emphasizes that cortical processing proceeds in two relatively independent net-
works, a bottom-up network and a top-down network , in which neural activation
streams in opposite directions, and which are “seeking to meet at every patch of
cortex” [Ullman, 1991]. While the bottom-up network is driven by sensory input
and encodes perceptual features, the top-down network is task- or goal-driven,
and encodes conceptual categories and relations.

A similar interaction between two modes of processing is essential in the lan-
guage domain. Here, phonological, lexical and syntactic categories reside in a
goal-driven top-down network, while acoustic categories are sensory driven, hence
reside in the bottom-up network. Specifically, syntactic processing takes place in
the top-down network. Recently, several publications have appeared advocating
the need for some sort of ‘countercurrent system’ approach to model the interface
between neurobiology and linguistics in speech perception [e.g., Poeppel et al.,
2008]. According to Poeppel et al. [2008] the fundamental challenge for cognitive
science is to find ‘linking hypotheses’ between acoustic primitives and phonolog-
ical and lexical primitives.

A strong candidate for a ‘linking hypothesis’ that has received some empirical
support is that cortical columns participate simultaneously in both networks, with
one ‘pole’ activated by bottom-up perceptual stimuli, and the other ‘pole’ respon-
sive to top-down influences. This is supported for instance by a study involving
single-cell recordings in monkeys that have to trace a curve [Roelfsema, 2006].
The study shows that some of the same cells that are involved in feed forward
processing enhance their response after some latency (about 200ms), and incor-
porate information from outside their receptive field, indicating the involvement
of recurrent pathways from higher visual areas. Lamme and Roelfsema [2000]
review several more studies, using the backward masking paradigm and visual
search, that similarly show that in visual processing, after an initial feed forward

2.7. The role of episodic memory in language processing 29

sweep (during which perceptual features are detected from bottom-up), additional
interaction with top-down processing is needed to invoke visual awareness.

Thus, for simplicity I will assume in this thesis that cortical columns have
two poles (a ‘conceptual’ and a ‘perceptual’ pole), which locally link the top-
down network and the bottom-up network. (Note that in the MPF the function
of the conceptual pole is assumed by the ‘name’ that is passed to the higher
level region.) In the auditory / linguistic domain it will be assumed that the
same cortical column that encodes the acoustic features of a word also encodes
its lexical category (for instance by linking the word for dog to the sound for
dog). Most neuro-biological research has focused on topology formation in the
bottom-up network, for instance in the visual and auditory cortex, but I argue
that a different topology is also realized simultaneously in the top-down network,
for instance in syntax.

The idea of using topology to express (syntactic) relations between categories
has not, as far as I am aware, been incorporated before in a neural network model
of language processing. It will be implemented in the HPN model in combination
with serial binding, proposed in section 2.5, to take care of the combinatorial
productivity of language. For now, I will leave the question of how this can
possibly be implemented to sections 4.8.2 and 5.7.

2.7 The role of episodic memory in language

processing and acquisition

An important question that a neural theory of language has to deal with con-
cerns the nature of the smallest productive units of language that are stored in
memory. When producing a novel sentence it seems that language users often
reuse entire memorized sentence fragments, whose meanings are not predictable
from the constituent words. Examples of such multi-word constructions are How
do you do? or kick the bucket, but there are also productive constructions with
one or more open ‘slots’, such as the more you think about X, the less you under-
stand, or completely abstract and unlexicalized constructions. Such multi-word
constructions must be memorized by the language learner as a whole, together
with their associated meaning, because they cannot be derived compositionally
from the rules of a grammar. The third major challenge for a neural theory
of language, according to Jackendoff [2002] (see section 1.2), is to explain how
such non-compositional multi-word expressions are represented and stored in the
brain. In Jackendoff’s words: “What aspect of an utterance must be part of long
term memory, and what aspects can be constructed online in working memory?”
[Jackendoff, 2002, p. 152].

Mainstream generative grammar has argued that constructions exist only in
the periphery of language, and that therefore they need not be the focus of a lin-
guistic or learning theory. But, in fact constructions of varying degree of complex-

30Chapter 2. From Memory Prediction Framework to a neural theory of syntax

ity and abstractness are pervasive in language. This is the view of construction
grammar [see e.g., Goldberg, 2006], mentioned in section 1.2, and of certain for-
mal theories of syntactic processing such as Data Oriented Parsing (DOP) [Bod,
1998, Scha et al., 1999]. In these theories the assumption is made that construc-
tions (or tree fragments in DOP) have psychological reality as the primitive units
of language production, hence they must be stored in their entirety in memory
[Scha, 1990]. To account for this fact within a cognitive theory of language it
is useful to consider some of the insights from cognitive psychology about the
human memory system.

Episodic and semantic memory

In cognitive science a distinction is often made between two memory systems,
which are known since Tulving [1972] as semantic and episodic memory.

• Semantic memory is a person’s general world knowledge, including lan-
guage, in the form of concepts (of objects, processes and ideas) that are
systematically related to one another.
• Episodic memory is a person’s memory of personally experienced events or

episodes, embedded in a temporal, spatial and emotional context.

Figure 2.6: A semantic memory of bread (left) and an episodic memory of a visit
to the bakery (right).

For example, the memory of the walk from your home to the bakery on a rainy
Monday morning constitutes an episodic memory, while the concept of bread
with all its associations constitutes a semantic memory.5 Together, episodic and
semantic memory constitute our declarative memory , which is the memory of
events and objects that one can consciously report on.

The distinction between episodic and semantic memory is also important for
a cognitive approach to language research, as a substantial part of both our se-
mantic and episodic memory is dedicated to representing linguistic knowledge in

5Note that the semantic memory of a concept should not be confused with its ‘semantics’,
which refers to the meaning of the concept.

2.7. The role of episodic memory in language processing 31

more or less abstracted form. While abstract rules of grammar are encoded within
the semantic memory system, memories of concrete sentences (and sentence frag-
ments) are presumably part of the episodic memory system, since we can often
remember them integrally.6 For this reason it seems a good idea to incorporate
the notion of a semantic-episodic memory interaction within a cognitive theory
of exemplar-based language processing in order to explain the reuse of sentence
fragments in production and comprehension.

Language acquisition

Apart from in production, episodic memory also plays an important role in lan-
guage acquisition. Much of the knowledge we acquire during our lifetime is gath-
ered through personally experienced events, which are first stored as episodic
memories before they are gradually transformed into abstract, semantic knowl-
edge.

The gradual transition from concrete to abstract language use is notable in
children’s linguistic development, and has been extensively documented [e.g.,
Tomasello, 2001, 2000a]. As discussed in section 1.2, according to Usage Based
Grammar (UBG) children’s language moves from a holophrastic stage, during
which they memorize and imitate complete utterances, via a stage of item-based
speech, during which they start introducing variable content in the slots of con-
structions (e.g., I wanna X), to increasingly abstract and adult-like language.

These studies (and other evidence that I will present in Chapter 8) suggest
that language acquisition can be seen as a special case of the process of memory
consolidation, which describes the storage of concrete episodic memories, and
their gradual transformation and assimilation into an abstract, relational semantic
memory system through a process of de-contextualization. (Conversely, in the
neurosciences recently theories of memory consolidation have started to recognize
the relation to grammar learning, and to adopt learning algorithms (such as
the inside-outside algorithm) from computational linguistics [e.g., Battaglia and
Pennartz, 2011].)

The integration of the idea of an episodic-semantic memory interaction within
a neural model of exemplar-based language processing and acquisition will be
developed in Chapters 6 to 8. It is based on an original theory about the rep-
resentation of episodic memories, which will be presented in Chapter 6. As a

6Whether the division between episodic and semantic memory applies to linguistic knowledge
is not entirely uncontroversial though. An alternative position is that grammars are part of
procedural memory, since the rules of grammar cannot be consciously reported, while only the
mental lexicon is part of declarative memory [Ullman et al., 1997]. In my opinion however,
there is a definitional problem surrounding the term declarative memory in cognitive science. I
would propose that declarative memory, as opposed to procedural memory, is the evolutionary
higher memory system that pertains to the built-in mental model of the world, planning and
conscious thought. For humans, language and grammar are an essential part of that memory
system.

32Chapter 2. From Memory Prediction Framework to a neural theory of syntax

background the next section briefly surveys the state-of-the-art in neuro-biology
on the relation between episodic and semantic memory, and on memory consoli-
dation.

2.7.1 The neurobiology of memory consolidation

The nature of the relation between episodic and semantic memory

Although there is general consensus that episodic memory and semantic memory
are not separate modules, but massively intertwined, the exact nature of the
relation between episodic memory and semantic memory is at present still an open
question. A common view is that episodic memories are constructed as pointers
that bind together items stored in semantic memory, both in temporal relations,
and in relations between roles or participants in an event [e.g., Shastri, 2002,
Eichenbaum, 2004]. Such a conception of episodic memory fits within a popular
theory in cognitive neuroscience, the so-called reinstatement hypothesis of episodic
retrieval , which says that during episodic memory retrieval memory traces (i.e.,
the pointers) are triggered, thereby reactivating the cortical circuits that were
involved in encoding the episodic memory [e.g., Sutherland and McNaughton,
2000, Woodruff et al., 2005]. Further, in order to encode the flow of events
associated with a certain experience it is assumed that episodic memories bind
static semantic elements into temporal sequences, linked through their shared
context [e.g., Eichenbaum, 2004, Levy, 1996] (see Figure 2.7).

The central role of the hippocampus

The hippocampus plays a crucial role as the central brain structure involved in
the encoding and subsequent consolidation of episodic memories. It acts as a
‘gateway’ that automatically registers all attended perceptual stimuli before they
are stored as episodic memories [Morris and Frey, 1997]. Lesion studies in human
amnesia patients have provided evidence that episodic memories are, at least ini-
tially, stored in the hippocampus [e.g. Scoville and Milner, 1957]. After the initial
encoding of an episodic memory a very long period of memory consolidation fol-
lows (up to several months), during which it has been found that the hippocampus
initiates replay , mostly during sleep, of the episodic sequences in the neocortex
[e.g., Sutherland and McNaughton, 2000] (see [Battaglia et al., 2011] for a good
review). It is believed that as a consequence of replay eventually cortical repre-
sentations of episodes develop that no longer depend on the hippocampus [Squire
and Alvarez, 1995].

Storage of episodes in relational networks

Episodic memories are not stored independently of one another, but they are in-
tegrated in a functional network around semantic features that they share with

2.7. The role of episodic memory in language processing 33

other memories. One of the first indications for the structural organization of
episodic memories was the discovery of so-called ‘place cells’ in the rat hippocam-
pus, which fire every time the rat finds itself in a particular location in a maze
[O’Keefe and Dostrovsky, 1971]. O’Keefe and Nadel [1979] have proposed that
place cells encode, at the population level, a ‘cognitive spatial map’ of the envi-
ronment, that enables the rat to find its way in the maze.

However, since this initial finding many other relational and sequential pat-
terns have also been shown to trigger hippocampal place cells, for instance odor
sequences, reward consumption, or any relevant event in a learning task. This has
led Eichenbaum et al. [1999], among others, to conclude that hippocampal place
cells can encode any general kind of causal or temporal sequence, with spatial
relations being only a specific instance of a sequence (of spatial cues).

Figure 2.7: Schematic diagram of a relational memory network (reproduced from
[Eichenbaum et al., 1999]).

The general picture that has started to emerge is that episodes are stored
in the hippocampus in relational networks (also called memory spaces), where
they are linked through shared semantic features [e.g., Eichenbaum et al., 1999,
Eichenbaum, 2004] (see Figure 2.7). Episodes chain together sequences of se-
mantic events, and this provides the causal structure in the relational networks.
The shared semantic nodes allow the brain to make associative jumps between
episodes (i.e., priming), while special context-responsive cells preserve the iden-
tity of a particular episode across shared elements [e.g., Levy, 1996]. Eichenbaum
[2004] proposes that a mechanism of structural integration of episodes, resulting
from the detection of their shared structure, is at the core of the consolidation
process, leading to de-contextualized representations and strengthened semantic
relations between units.

Flexible expression of memories and productivity

A complementary function of the hippocampal relational networks is in mediating
flexible and productive use of memory in various cognitive domains, including

34Chapter 2. From Memory Prediction Framework to a neural theory of syntax

language [e.g., Opitz, 2010]. The hippocampus has been implied in problem
solving and planning [e.g., Eichenbaum et al., 1990, Eichenbaum and Fortin,
2009]. According to Eichenbaum [2004, p. 110] the idea behind this is that “the
elements that encode common features between episodes link memories to one
another, allowing one to compare and contrast memories and to make inferences
among indirectly related events”.

Empirical support for this claim comes from animal studies that show crucial
hippocampal involvement in the ability to make transitive inferences, for instance
between pairwise ordered odors. Bunsey and Eichenbaum [1996] presented rats
with a series of odor pairs with overlapping elements, and trained them to express
a preference for one odor in each pair. Their study showed that rats who had
their hippocampus removed were not able to infer the underlying hierarchical
relations between the pairs (i.e., they could not infer preferences transitively),
whereas rats in the control group were able to do so. Apparently the rats had
constructed an internal ‘relational network’ (a hierarchy of pairwise relations),
from which they were able to productively infer novel odor associations that they
had not encountered before (e.g., A > B ∧B > C ⇒ A > C).

Figure 2.8: The rat’s navigation is facilitated by an ability for transitive inference
between spatial memories (reproduced from [Eichenbaum et al., 1999]).

In the same vein it is argued that the creation of a relational network of spa-
tial memories enables inferential reasoning about space, and it explains the rat’s
ability to navigate and find shortcuts in the maze, through transitive inference
(see Figure 2.8).

The research in this thesis adopts the view that similar principles as involved
in memory consolidation govern grammar acquisition. I propose that in gram-
mar acquisition, like in spatial learning, a relational syntactic map is constructed
from concrete linguistic episodes. Like spatial inference, a relational network in
the language domain allows for grammatical inference through flexible association
of stored linguistic episodes, resulting in productive language use and comprehen-
sion of hitherto unseen utterances. The idea of the construction of a relational
syntactic network out of linguistic episodes will be given a computational basis
in Chapter 8.

2.8. A neural theory of syntax 35

2.8 A neural theory of syntax

This chapter offered a quick tour of all the ingredients that I believe are needed
to make a neural theory of syntax work. The starting point of the research in this
thesis is the assumption that there exists a uniform cortical mechanism that un-
derlies categorization and processing within different modalities, and specifically
that syntactic processing can be understood by analogy to visual processing. I
argued that the Memory Prediction Framework is a good candidate for such a
cortical algorithm, in particular by virtue of hierarchical temporal compression
and its proposed mechanism for extracting invariant representations. Yet the
MPF is missing some critical features that would allow it to explain the human
ability for productive use of language. Such productivity (or combinatoriality)
necessitates a dynamic form of binding to account for the syntactic phenomenon
of substitution. Subsequently, I identified the serial binding process used in the
domain of vision as the neural correlate of a substitution operation, and argued
that dynamic binding in language presupposes the existence of short-term mem-
ories at the neuronal level. Finally I argued for a functional role of topology in
determining connectivity patterns between syntactic categories, or substitutabil-
ity. All this is summarized in a proposal for a neural theory of grammar, which
is founded on the following six hypotheses

• There exist cell assemblies in the language area of the cortex that function
as neural correlates of graded syntactic categories.

• These ‘syntactic’ cell assemblies can represent temporally compressed word
sequences (phrases) which can ‘unfold’ to predict words or assemblies in a
lower level.

• The topological and hierarchical arrangement of ‘syntactic’ assemblies in
the cortical hierarchy constitutes a grammar. Paradigmatic relations are
expressed by the topology, while syntagmatic relations are realized by tem-
poral compression.

• The neural correlate for substitution is dynamic binding between ‘syntactic’
assemblies. This is implemented via a serial process of label passing. The
dynamic binding process assumes the existence of short-term memories at
the level of the syntactic assembly, where labels (‘tags’) are temporarily
stored which serve as pointers to other assemblies. Dynamic binding enables
productive use of language as it allows for a substitution operation between
assemblies; recursion can be seen as an epiphenomenon of dynamic binding,
while the stored tags function as a (distributed) stack.

• A graded measure of substitutability is realized as a distance between neural
assemblies within a meaningful topology. Learning a grammar amounts to
constructing the topology from examples in a process of self-organization.

36Chapter 2. From Memory Prediction Framework to a neural theory of syntax

• The memory for sentences and other linguistic constructions or idioms is
accounted for by an episodic memory system, that stores bound sequences
of syntactic assemblies. Language processing can be construed as episodic
memory retrieval, while grammar acquisition is an instance of a memory
consolidation process from episodic linguistic events to an abstract grammar
in the form of a relational syntactic map.

In Chapter 5 I will develop a computational model, the Hierarchical Prediction
Network (HPN), that can be seen as one possible instantiation of these hypothe-
ses. The HPN model is still far from a perfect implementation of the neural theory
of grammar; for example it does not distinguish more than two cortical levels in
the hierarchy, and it cannot deal with non-configurational languages (languages
that do not have a fixed word order). Nevertheless, HPN can address some of
the most intriguing questions about the neural basis of syntax, which is a ma-
jor incentive to depart from a formal approach to linguistics (Chapter 1): What
kind of brain structures can support the functionality of syntactic categories and
rules, considering the productive and systematic nature of language? Where do
syntactic categories come from if they are not innate, and how do they acquire
their abstract status? How can structural representations of sentences (e.g., parse
trees) be efficiently represented in the brain, and how is a parse executed? With
the background of this chapter it is in principle already possible to answer some
of these questions (they can be found in section 9.3, in reply to Jackendoff’s
challenges).

2.9 A note on semantics

Before I conclude this chapter, let me clarify an issue that may have been nagging
at the reader’s mind. Whereas the scope of this thesis is limited to the treatment
of syntax, I am well aware that many contemporary cognitively oriented theories
of language consider syntax and semantics to be inseparably linked within an
individual’s representation of linguistic knowledge. Such a view is most notably
expressed by Lakoff, who describes the grammar of a language as “a neural system
which, far from being an autonomous module, consists of neural connections
linking the bodily grounded conceptual and the expressive (phonological) systems
of the brain” [Lakoff and Johnson, 1999, p.498].

In construction grammar (CG) [Goldberg, 2003, 2006] the basic units of lan-
guage are constructions: associations between a semantic frame and a syntactic
pattern, for which the meaning or form is not strictly predictable from its con-
stituent parts [see e.g., Kay and Fillmore, 1999]. Despite the focus on syntax
in this thesis, it should be noted that the philosophy behind the HPN model,
which will be presented in Chapter 5, is compatible with the constructionist (or
cognitive linguistic) account of grammar.

2.9. A note on semantics 37

Following a common view on semantics held in cognitive linguistics, I consider
the term semantics to cover the processed information from the combined non-
linguistic modalities (e.g., vision, touch, smell and sound), grounded in perception
[e.g., Steels, 1996, 1999], and I do not envisage any formal (e.g., predicate logic)
interpretation of semantics. The increasingly invariant and abstract multi-modal
categories that are encoded in higher regions of the cortex constitute a semantics,
that is an abstract semantic network in the context of which syntactic categories
that are derived from linguistic input can be placed. Whereas the framework of
the MPF accounts for the extraction of highly abstract visual categories [George
and Hawkins, 2009] and can in principle deal with multi-modal categories as well,
the HPN model developed in this thesis takes the MPF framework to the field of
syntax. Yet, as any other connectionist model, HPN is not designed to be domain
specific. The eventual goal is to formulate a neural model that incorporates both
abstract multi-modal and linguistic categories, as well as invariant categories
that associate (or bind) between form and ‘meaning’, which linguists refer to as
constructions.

In this regard I find the traditional division between syntax and semantics
in linguistics rather misguiding. If syntax refers to ‘structural regularities’ as
opposed to arbitrariness in the language domain, then it should be clear that
there is also a syntax in the visual domain (for instance, part-whole structure, or
structure of spatial relations between objects), as well as in other domains that
constitute a semantics. For this reason I preferred to use the term ‘structure in
language’ rather than ‘syntax’ in the title of this thesis.

A model of syntax acquisition that relies entirely and exclusively on distribu-
tional information selects only a small fraction from the abundance of linguistic
and non-linguistic input that is available to language learning children, and one
should therefore keep in mind that such models do not tell the whole story of
syntax acquisition. Apart from sequences of words, there are many other cues
that aid children to infer the correct grammatical structure and categories; to
name some: joint attention, visual information, prosody (intonation and stress
patterns), and prior knowledge of the semantic categories. In particular, the
presence of a basic semantic ontology prior to language learning may help to
bootstrap syntax, and vice versa exposure to the syntax of adult speakers may
help the child to bootstrap and fine tune its ontology [Steels, 1999, Borensztajn,
2006a]. There exist computational models of construction grammar that assume
or construct a complete ontology prior to grammar acquisition [e.g., Chang, 2001,
Steels, 1997, 2004].

Even though the focus of this thesis will be exclusively on syntax, I do assume
that the principles (of learning and parsing) that are proposed here have universal
applicability, both for syntactic categories and for categories from other domains.
Indeed, HPN was originally conceived as a generic neural network model of cate-
gory learning, while keeping in mind that the problem of categorization is treated
uniformly in the brain, irrespective of the modality of the input stimulus, whether

38Chapter 2. From Memory Prediction Framework to a neural theory of syntax

it is language or vision.

Chapter 3

Symbolic approaches to language
processing

This chapter presents a brief overview of formal gram-
mars, parsing and statistical natural language pro-
cessing (NLP). In the symbolic paradigm, as opposed
to the connectionist paradigm, syntax is viewed as
dealing with symbol manipulation, and therefore it
can be cast which facilitates its formalization within
a rigid mathematical framework. The material cov-
ered in this chapter can be found in many textbooks
on (statistical) natural language processing, hence it
may be skipped by the reader who has a (computa-
tional) linguistic background (except perhaps section
3.1.10 and the final section). I will introduce context
free grammars (CFG), probabilistic grammars, and
different techniques for parsing with CFGs, among
which chart parsing. A special focus is put on left cor-
ner parsing, with its application to the HPN model in
mind. Then I spend a few sections discussing varia-
tions of the PCFG statistical model, particularly Data
Oriented Parsing. Furthermore, two techniques for
unsupervised grammar induction will pass in review:
the Inside Outside algorithm and Bayesian Model
Merging (BMM). I will end the chapter with a dis-
cussion of the problems of the symbolic approach to
syntax, focusing on gradedness and prototypicality of
syntactic categories, and the acquisition process. I
will consider evidence from the language acquisition
and construction grammar literatures that motivates
a connectionist approach to language acquisition.

39

40 Chapter 3. Symbolic approaches to language processing

3.1 Introduction to formal syntax and parsing

techniques

Syntax is the branch of linguistics that studies the rules and constraints governing
the construction of sentences in natural languages. In the formal approach to
linguistics, the syntax of a language is strictly separated from its semantics, and
deals only with surface form. The rules of a language are captured in a formal
grammar, which is a mathematical device that allows for generating all and only
sentences of a certain language.

In most natural languages sentences are internally organized in phrases, which
group together words that syntactically behave as a unit. Such units, also called
constituents, can be identified because they are not broken apart when they
move to a different syntactic position within the sentence. Grammars make use
of abstract syntactic categories, which are classes of words or phrases that show
similar syntactic behavior, that is they can occur at the same syntactic positions,
and have the same expansion possibilities. The main criterion for syntactic cat-
egory membership is substitutability: if a word (or phrase) can be replaced in a
sentence by another word or phrase while preserving the grammaticality of the
sentence then both belong to the same category [Harris, 1951]. Nouns, verbs
and adjectives are examples of syntactic word categories, also known as parts of
speech. Linguists also distinguish phrasal categories such as the Noun Phrase
(NP), which is a phrase headed by a noun (e.g., the fat lady)), the Verb Phrase
(VP), (e.g., watches television) and the Prepositional Phrase (PP) (e.g., on the
sofa).

The syntactic analysis of a sentence into phrases tells us how to determine
the meaning of a sentence from the meaning of the words: for languages with
a fixed word order (e.g., English), the phrasal analysis can be used to identify
the grammatical relations in a sentence, such as the subject, the predicate
and the object (who does what to whom). There are two kinds of structural
relations: horizontal between sisters in a constituent (linear precedence), and
vertical between parent and daughter (immediate dominance). It is common
practice to represent the phrase structure analysis of a sentence as a phrase
structure tree. The leaf nodes of the tree are called terminals, while the
internal nodes are called nonterminals.

3.1.1 Rewriting grammars

A rewriting grammar consists of a set of rewrite rules (also called produc-
tions), which are applied to the syntactic categories. An example of a rewriting
grammar is given in Table 3.1.

Formally, a rewriting grammar is a tuple < VN , VT , S,R > with VN a set
of nonterminals, VT a set of terminals, S the start nonterminal, and R a set of

3.1. Introduction to formal syntax and parsing techniques 41

nonterminals: S, NP, VP, DET, N, V
terminals: the, woman, read, the, book
LHS RHS P(RHS—LHS)
S → NP VP 1.0
NP → DET N 1.0
VP → V NP 1.0
V → read 1.0
DET → the 1.0
N → woman 0.7
N → book 0.3

Table 3.1: Example of a probabilistic context-free grammar

rewrite rules.

In a context free grammar (CFG), a subclass of the family of phrase
structure grammars, the possibilities for expanding a rewrite rule depend solely
on the label of the nonterminal on the left hand side, and not on any surround-
ing context. Context free rewrite rules are of the form A → α, where A is
a nonterminal (A ∈ VN) and α is any sequence of terminals and nonterminals
(α ∈ (VN ∪ VT)+).

Using the rewrite rules of a formal grammar one can generate all possible sen-
tences of the corresponding formal language. Conversely, one can find a derivation
for every grammatical sentence. The left-most derivation of a sentence is a se-
quence of context free rules that derives the sentence, starting with the start
symbol (S), and followed by repeated replacement of the left-most non-terminal
by an appropriate rewrite rule until only terminals remain in the resulting string.
Table 3.2 shows an example of a derivation (but not left-most) of the sentence
The woman read the book, using the context free rewriting grammar of Table 3.1.
In a CFG every derivation maps uniquely to exactly one parse tree. The parse

S
→ NP VP
→ DET N VP
→ DET N V NP
→ DET N V DET N
→ The woman read the book

Table 3.2: Derivation of the sentence The woman read the book

tree corresponding to the derivation above is given in Figure 3.1.

42 Chapter 3. Symbolic approaches to language processing

S
PPPPP
�����

NP
Q
Q

�
�

the woman

VP
H
HH

�
��

Verb

read

NP
cc##

the book

Figure 3.1: Example of a parse tree

3.1.2 Automata and the Chomsky hierarchy

Context free grammars (CFG) are but one of a number of families of rewrit-
ing systems, each of which is characterized by certain restrictions on the forms
of rewrite rules allowed. Regular grammars (RG) are more restrictive than
context free grammars, because their rewrite rules can have at most a single non-
terminal on their right hand side. In a regular grammar each rule is of the form
A→ w, or either A→ w B (generating only right-branching trees), or A→ B w
(generating only left-branching trees). Here A and B are nonterminals, and w
is a terminal. One says that RGs have weaker generative power than CFGs,
because the class of languages that they can generate is a subset of the class of
languages that can be generated with CFGs.

Context sensitive grammars, on the other hand, have stronger generative
power than CFGs. Their rewrite rules are of the form αAβ → αγβ, where α, β
and γ are strings of terminals and/or non-terminals.

A different point of view on a grammar is as an abstract computing device that
can recognize or generate a language, a so-called automaton. This perspective
is illuminating if one is interested in the comparison between symbolic language
devices and connectionist models of language, which will be the subject of the
next chapter. Automata have a virtual tape for reading input strings and writing
output strings, and the more powerful automata have an optional extra ‘scratch
tape’ that can be used for working memory. A finite state automaton has a finite
number of internal states, including special initial and final states. Depending
on the input and the state it is in, the automaton decides what action to perform:
read, write, and/or move the tape, or for certain classes of automata read and
write to memory. An automaton recognizes a string w1, . . . , wn to be in the
specified language if, starting from the initial state, and after reading all words
wi from the tape in order and performing the prescribed actions, it is in the
special end state.

Rewrite systems can be arranged in a hierarchy of increasing generative power,
which is called the Chomsky hierarchy [Chomsky, 1957] (see Table 3.3). For each
rewrite system in the Chomsky hierarchy there exists a corresponding automaton
that recognizes exactly the same family of languages.

3.1. Introduction to formal syntax and parsing techniques 43

Language Automaton Rewrite rules
Regular Finite state automaton A→ w, either

A→ w B, or A→ B w
Context free Pushdown automaton A→ γ
Context sensitive Linearly bounded Turing machine αAβ → αγβ, γ 6= ε
Recursively enumerable Turing machine α→ β, α 6= ε

Table 3.3: The Chomsky hierarchy. Uppercase letters denote non-terminals,
Greek letters denote strings of terminals and/or non-terminals, w denotes a ter-
minal, ε is the empty string.

A question of ultimate import is where natural languages are situated within
the Chomsky hierarchy. In a famous result in formal linguistics Chomsky [1957]
shows that natural language is at least context free. The argument rests on an
understanding that a generative model of language needs to capture at least the
human capacity for producing recursive structure. Language speakers can nest
constructions, such as if . . . then, that correspond to pairwise dependencies inside
each other, in principle arbitrarily many times, to produce recursive sentences
like the following (reproduced from [Chomsky and Miller, 1963]): Anyone1 who
feels that if2 so-many3 more4 students5 whom we6 haven’t6 actually admitted are5

sitting in on the course than4 ones we have that3 the room had to be changed, then2

probably auditors will have to be excluded, is1 likely to agree that the curriculum
needs revision (the subscripts indicate dependencies between words).

This alleged ability for recursion to arbitrary depth can be invoked, together
with the pumping lemma for finite state automata (FSA), to prove that English
is richer than a finite state automaton language.1 Because the FSA generates
infinite strings by means of simple iterations, an FSA can by no means pro-
duce an infinite, center embedded string. However, natural languages can ‘in
competence’ express such center-embedded forms, hence it follows that the hu-
man language system requires at least the computational power of context free
grammars.2 Nowadays it is believed that the grammars of natural languages
are situated somewhere between context free and context sensitive (i.e., they are
mildly context sensitive). In the Swiss German language, as well as in Dutch,

1The proof uses the fact that sentences like the example in the text are of the form
{XXR|X ∈ {a, b}∗} (R indicates reversal), which can be shown to be non-regular by first
intersecting it with the regular language aa∗bbaa∗ to yield {anb2an|n ≥ 1}, and then applying
the pumping lemma [Partee et al., 1990]. Informally, the pumping lemma for FSA expresses
that strings of arbitrary length can only be produced from a finite FSA if the grammar has a
simple loop or iteration and pumps it. If the length of the string exceeds the number of states,
which is finite, this means that a single state has been used more than once, hence there is a
loop.

2Obviously, Chomsky does not assume a human ability to produce unbounded strings; nev-
ertheless for the proof the limit case needs to be invoked as a device to distinguish the behavior
of families of grammars, otherwise any finite output of a context free grammar could be ap-
proximated by a very large FSA.

44 Chapter 3. Symbolic approaches to language processing

there exist certain productive constructions (called cross-bracketing) that require
stronger generative power than that of context free grammars. Evidence that
Swiss German is not context free has been provided by Shieber [1985]. In section
4.6 I will argue that the Chomsky hierarchy also plays a pivotal role in the discus-
sion about whether certain types of connectionist networks are fit to characterize
human language.

3.1.3 Parsing

Parsing is the process of finding the derivation(s) by which a given sentence might
have been generated. The resulting phrase structure tree that is constructed
from parsing a sentence is called a parse. A parser is a computer program that
implements a search for a parse, given a sentence and a grammar.

There are different parser search strategies, each with its advantages and dis-
advantages. A discussion of these can be found in many text books [e.g., Jurafsky
and Martin, 2009, Chapter 13], but I will mention them briefly here.

• A top down parser starts with the start symbol S and searches rules
whose left hand side non-terminal matches the left-most non-terminal in
the derivation.

• A bottom-up parser starts with the words of the sentence and matches
rules to their right hand side until it reaches the root of the tree.

• A left corner parser [Rosenkrantz and Lewis II, 1970, Demers, 1977] com-
bines top-down and bottom-up parsing, and proceeds incrementally from
left to right. This makes left corning parsing a cognitively quite plausible
parsing strategy. The ‘left corner’ is the left-most symbol on the right hand
side of a phrase structure rule. A left corner parser has three operations:
shift, attach and project. One starts by putting the goal category S in the
goal stack, and shifting to the first word of the sentence, which becomes the
left corner category. Given a goal category, which is predicted from top-
down, and a ‘left corner category’, which is derived from bottom-up, one
can either attach the left corner category to the goal category if they are
the same, or project the left corner category if it matches the left corner of
a rule in the grammar. After a projection the remaining categories on the
right hand side of the rule become goal categories, and one recursively does
left corner parsing of each. If there is no left corner category (because it has
been attached), one shifts to the next word of the sentence and makes it
the left corner category. The process is schematically illustrated in Figure
3.2.

3.1. Introduction to formal syntax and parsing techniques 45

Figure 3.2: Left corner derivation of John loves Mary. gc is short for goal category.

Figure 3.3: Attachment ambiguity

3.1.4 Probabilistic context free grammars

In general, a single sentence can have a large number of different parses, giv-
ing rise to structural ambiguity, for instance regarding the attachment of a
preprositional phrase in the parse tree (see Figure 3.3). The number of possi-
ble typically parses grows exponentially with the length of the sentence. It is
possible to disambiguate between the parses by ranking them according to their
probability.

To assign a probability to a parse one assumes that the steps in its derivation,
i.e., the applications of rewrite rules, are independent of each other. In that case
the event of a parse can be broken down into independent simpler events, for
which the probabilities can be estimated from a corpus. A context free grammar
can be upgraded to a probabilistic CFG (PCFG) by enriching the context free
productions with probabilities (see the example in Figure 3.1). In context free
grammars one makes the independence assumption that the choice of the
expansion of a rewrite rule is conditionally independent given its left hand side
(LHS)

∀A ∈ VN :
∑

α: A→α∈R

P (α|A) = 1 (3.1)

where A is a nonterminal, α is the right hand side of a rewrite rule, and R is the

46 Chapter 3. Symbolic approaches to language processing

set of rewrite rules in the grammar. Using the context freeness assumption and
the chain rule, it follows that the probability of a derivation der given sentence
X is the product of the probabilities of the rules ri in the derivation sequence,
given their LHS.

P (der|X) =
∏
i

P (ri|LHS (ri)) (3.2)

Given a sentence X, and a statistical model G, the most probable parse T is
given by

argmaxT∈G(X)P (T |G) (3.3)

where G(X) is the set of parses of X licensed by G.
There also exist probabilistic versions of left corner parsers, which will be

discussed shortly.

3.1.5 Treebank estimation

In the statistical parsing world one often wants to estimate the parameters of
a probabilistic grammar from realistic data. For this purpose there exist tree-
banks, which are large corpora of sentences annotated with phrase structure
trees. One of the most widely used treebanks in statistical NLP is the Penn
Treebank, and particularly the Wall Street Journal section [Marcus et al., 1993].

When a treebank is available, the rules and probabilities of a PCFG can be
estimated using maximum likelihood estimation. A maximum likelihood
(ML) estimator finds the parameters of a model M that maximizes the likelihood
of the data X, generated by M.

MML = argmaxMP (X|M) (3.4)

Under certain conditions [Prescher, 2003] maximum likelihood estimation is equiv-
alent to relative frequency estimation. Let FR denote the frequencies of the
rewrite rules in R, then its relative frequency in the treebank is given by

rf(A→ α) =
FR(A→ α)∑

β: A→β∈RFR(A→ β)
(3.5)

The denominator denotes the total count of rules with LHS equal to A.

3.1.6 Parser evaluation

Natural language parsing systems are usually evaluated on their performance by
comparing the computed parse trees on a test set with a so-called gold stan-
dard, which are the manually annotated parse trees from the same test set. The
constituents of the parse trees are compared one by one by their span and la-
bel, using the standardized PARSEVAL metric [Manning and Schütze, 2000, p.

3.1. Introduction to formal syntax and parsing techniques 47

432]. In this metric constituents with the S label and constituents representing
preterminal nodes are omitted from the evaluation.

Let C(T iC) = {T 1
C . . . T

n
C} be the constituents of the correct parse and

C(T iG) = {T 1
G . . . T

m
G } the constituents generated by the parser. Two measures are

generally used to capture the success of the parse:

• Labeled Recall (LR) is the number of matching constituents in the parse
relative to the total number of constituents in the correct parse (the pro-
portion of correct constituents that are recognized by the parser)

LR =

∑
i |C(T iC) ∩ C(T iG)|∑

i |C(T iC)|

• Labeled Precision (LP) is the proportion of correct constituents relative
to the total number of constituents in the produced parse.

LP =

∑
i |C(T iC) ∩ C(T iG)|∑

i |C(T iG)|

The F-score is defined as the harmonic mean of LP and LR:

F =
2× LP × LR
LP + LR

.

3.1.7 Probabilistic left corner parsing

Manning and Carpenter [1997] propose a probabilistic extension of a serial left
corner parser, which conditions the probabilities of parser moves on the left corner
(lc) and goal category (gc), rather than conditioning on the left hand side of a
production, as does a PCFG. Left corner probabilities are not context free; they
depend on the history of the parser moves and hence they can capture the fact
that expansion probabilities of non-terminals typically depend on their position
in the tree. For instance, in the WSJ treebank a noun phrase (NP) expands
nine times more often to a personal pronoun in subject position than in object
position.

In the model of Manning and Carpenter [1997] parsing is a two-step generative
process: given a left corner (lc) and a goal category (gc), one must first decide
whether to attach (if lc=gc) or project a new rule, hence

P (attach|lc, gc) + P (project|lc, gc) = 1

Then, in case of project, one must decide to which rule to project, hence

P (project|lc, gc) =
∑

rules with lc

Pproject(rule|lc, gc)

48 Chapter 3. Symbolic approaches to language processing

Assuming the sentence S is given, and the parsers moves are conditionally in-
dependent given the left corner and goal category, then the probability of a left
corner derivation derlc is

P (derlc|S,G) =
∏

attachments P (attach|lc, gc)
×

∏
projections(1− P (attach|lc, gc))× Pproject(r|lc, gc)

(3.6)

If one is interested in the string probabilities (e.g., for a language model, or to
compute prefix probabilities) one must also consider the probability of shifting to
a left corner ∑

lc

Pshift(lc|gc) = 1

and include the shift decisions in the calculation of the joint probability of the
derivation and the sentence. The base probabilities can be estimated from a
treebank, as every parse tree in the tree bank corresponds to a unique left corner
derivation. One must first construct the left corner derivation, and then count the
frequencies of attachments and projections, conditioned on a left corner and goal
category.In section 7.1.2 I will describe a left corner language model that includes
shift probabilities, and develop a chart parser that can efficiently compute prefix
probabilities.

3.1.8 Variations to the PCFG statistical model

In practice the standard treebank PCFG model has not been very successful at
parsing natural language, because the independence assumptions it makes are too
strong. While the important role of context has long been accepted for processing
in other cognitive domains, the importance of context in sentence processing has
only recently started to be appreciated (partly due to the predominant role of
generative grammar in linguistic theory). With the context freeness assumption
of the PCFG two relatively independent sources of contextual information for
disambiguating between parses are ignored: lexical context, which captures the
dependency on previous words in the sentence, and structural context, which
captures the dependency on the relative position in a parse tree.

The absence of lexical dependency information in a PCFG makes it a poor
language model, in the sense that it is bad at predicting word transitions, with
even a simple trigram model outperforming the PCFG. In the PCFG the proba-
bility of expanding a verb phrase either as VP → V NP , or as VP → V NP NP
depends only on the VP label. Yet, clearly this assumption is wrong, since transi-
tive verbs are more likely to expand to VP → V NP NP than intransitive verbs.
One way of coping with the problem is by lexicalizing the grammar. Assuming
that lexical dependencies are mostly carried between the head words of phrases
and their dependents, one may enrich the constituent labels in the treebank trees
with their head words, which are percolated up in the tree, and subsequently

3.1. Introduction to formal syntax and parsing techniques 49

estimate the PCFG from the lexicalized trees [see e.g., Collins, 2003, Charniak,
2000].

The other weakness of the standard PCFG is the assumption of independence
of structural context. As was shown in section 3.1.7 for the case of the NP con-
stituent, in treebank PCFGs the possibility of expanding a certain constituent
depends to a large extent on its position in the tree. Again, the structural in-
dependence assumption of PCFGs can be relaxed by incorporating structural
information in the node labels. Johnson [1998] showed that the parsing accuracy
of the treebank PCFG is greatly increased by relabeling the nodes with informa-
tion concerning their ancestors. In the simplest case, using parent annotation,
the labels are enriched by adding @P, where P is the parent label. As a more gen-
eral approach, history based parsing exploits the idea that the parser moves
are conditioned on n previous parser decisions in the derivation history. This,
too, can be implemented by relabeling the tree nodes to include extra ancestral
information. Left corner parsing is an instance of history based parsing because,
as discussed in section 3.1.7, the parser moves are conditioned on two (or more)
points in the derivational history rather than on structure.

A general scheme for optimizing the performance of treebank PCFGs, without
relying on lexical information, was proposed by Klein and Manning [2003], using
vertical and horizontal Markovization. Vertical Markovization (v) refers to the use
of parent annotation that captures the vertical history of a node (i.e., its vertical
ancestors), while horizontal Markovization (h) refers to a binarization process of
local trees (i.e., CFG productions) with more than two children, splitting off sister
nodes from the head child in leftward and rightward direction. The v ≤ 2, h ≤ 2
Markovization serves as the basis for a variety of improved parsing models with
increasingly refined labels, with state-of-the-art results obtained by the state-
splitting model of Petrov and Klein [2007].

3.1.9 Data Oriented Parsing

The idea behind Data Oriented Parsing (DOP) [Bod, 2003, Scha et al., 1999] is
that the primitive productive units of language are tree fragments of arbitrary size
and depth, which can be (partly) lexicalized or abstract. The cognitively moti-
vated assumption of DOP is that a person’s linguistic knowledge consists of parts
of utterances which are stored in memory, and reused when parsing novel sen-
tences. DOP is formalized as a Tree Substitution Grammar (TSG) enriched with
probabilities. Tree Substitution Grammars form a generalization over context-
free grammars and a subclass of the Tree Adjoining Grammars [Joshi, 2004]. In
DOP, the elementary tree fragments of the TSG can in principle be any subtree
occurring in a treebank of syntactically annotated sentences, provided every local
tree is included in the subtree together with all its daughters. Two elementary
tree fragments can be combined by means of the substitution operator ◦ if the
left-most non-terminal leaf node of the first fragment is identical to the root node

50 Chapter 3. Symbolic approaches to language processing

of the second fragment (see Figure 3.4). A derivation of a sentence in DOP is a
sequence of elementary tree fragments t1 ◦ t2 ◦ . . . ◦ tn such that the root of the
first fragment is of the special category S and the leaves of the resulting tree are
the terminals that constitute the sentence .

Figure 3.4: Derivation for Sue takes her hat off. Substitution sites are marked
with ↓.

It is assumed that the probability of any substitution is context independent.
Hence, the probability of a derivation can be written as the product of probabil-
ities of the subtrees used in the derivation, conditioned on their roots:

P (t1 ◦ t2 ◦ . . . ◦ tn) =
∏
i

P (ti|R(ti))

Here P (ti|R(ti)) is the probability of a subtree ti, whose root R(ti) matches the
label at the substitution site. Whereas in a PCFG a parse corresponds to a
unique derivation, in DOP there can be many different derivations (with different
substitution sites) associated with a single parse. As a consequence in DOP the
probability of a parse is not equal to the probability of a derivation, but to the
sum of all derivations that give rise to the same parse tree.

Several alternative estimators for finding the probabilities P (ti|R(ti)) of the
fragments (the parameters of the DOP grammar) have been proposed. The earli-
est estimator is known as DOP1 Bod [1998], and assigns probabilities to elemen-
tary tree fragments based on relative frequencies conditioned on the root R(t) of
the tree.

P (t|R(t)) =
|t|∑

t′:R(t′)=R(t) |t′|
(3.7)

The more recent ‘push-’n-pull’ estimator [Zuidema, 2006, 2007] is based on the
idea that probability mass is pushed or pulled from subtrees in the treebank
based on the discrepancy between their observed frequency and their expected
frequency.

3.1. Introduction to formal syntax and parsing techniques 51

3.1.10 Children’s grammars grow more abstract with age

Borensztajn et al. [2009a] used Data Oriented Parsing as a statistical approach to
automatically discover the most probable multi-word constructions in children’s
utterances. The study was conducted on the Brown corpus [Brown, 1973] from
the CHILDES database [MacWhinney, 2000]. This corpus contains transcribed
longitudinal recordings of three children, Adam, Eve and Sarah, enriched with
syntactic annotation [Sagae et al., 2007]. Each of the children’s subcorpora was
split into three parts of roughly equal size, representing three consecutive time
periods.

Assuming the children’s underlying grammar is a Tree Substitution Grammar,
the parameters of the grammar were estimated using the push-’n-pull estimator
[Zuidema, 2006, 2007], after which standard statistical parsing techniques were
used to find the most probable derivation of any sentence in a corpus. This
yielded a decomposition of the sentence into those elementary tree fragments
that together constitute a hypothesis on how the sentence was generated. This
way, the most probable constructions used by each child were found.

Period 1 # Period 2 # Period 3
33 where N go 9 you V it 10 you V it
11 I V it 8 I do NEG want INF X 5 you X and PRO X
6 what that N doing 7 I V it JCT 5 will you V it
5 take N off 6 you V it 4 can PRO put X
4 who N that 6 where PRO went 4 a ADJ one
4 do NEG V it 6 let me V it 4 do NEG know PRO:WH PRO V
4 have N on 5 I can NEG V it 4 do NEG know PRO:WH PRO:DEM V
4 you V it 5 going INF make DET N 4 and PRO:WH is that
3 what N doing 5 let us play DET game 4 can PRO put OBJ LOC
3 put N on 5 what kind N that 4 what is PRO:DEM for
3 put OBJ on 4 going put OBJ in it 4 I can not V it
3 do not V me 4 a N cake 3 how AUX you V PRO:DEM
3 take OBJ off 4 I V him 3 maybe PRO is X
3 where N N go 4 in DET kitchen 3 you V this ADV
3 I V some 4 you V me COMP 3 I going X off

Table 3.4: Adam’s most frequent discontiguous multi-word constructions (shown
are only the leaf nodes). (X indicates a dummy node in a parse tree, introduced
by the conversion from dependency to binary constituent annotation.)

Table 3.4 shows Adam’s 15 most frequently used discontiguous constructions
(i.e., constructions in which the lexical items are separated by variable slots)
of each period. In the figure, part of speech tags are indicated in capital, and
grammatical relations appear in bold capital. The found constructions cover
many interesting linguistic phenomena from the language acquisition literature,
such as the progressive, use of auxiliaries, clausal constructions with want and
think (which appear among the most frequent contiguous constructions), and
particle verbs (take OBJ off, going put OBJ in it).

52 Chapter 3. Symbolic approaches to language processing

From the Table it may be noted that, whereas in Period 1 most constructions
are very concrete, starting from Period 2 constructions become more abstract
(as can be seen from the increased number of substitution sites). This tendency
is also apparent from the increased use of variable pronomina (e.g., PRO and
PRO:WH).

In a subsequent quantitative analysis, features of the used elementary trees,
such as the number of nodes, non-terminals and terminals and the depth of a
construction, were averaged and compared across the periods for every child sep-
arately. The possibility of an artifact due to increasing average sentence length
with age was ruled out by comparing only constructions from sentences of the
same length across periods. While no effect of age was found for construction
size, depth or number of nodes, a strong age related effect was found in all chil-
dren for the average abstraction of used constructions, showing that abstraction
of children’s constructions increases with age. Abstraction was defined as the
ratio between non-terminals (i.e., variable slots) and terminals (lexical items) in
a construction.

These results constitute evidence against the so-called continuity assumtion of
linguistic development [e.g., Crain and Thornton, 2005], according to which chil-
dren have (in competence) the same syntactic categories and rules as adults. The
observed progressive abstraction supports instead a usage based view of grammar
acquisition [e.g., Tomasello, 2005], which predicts a gradual development from a
concrete, item-based to an abstract grammar.

3.1.11 Chart parsing

Chart parsing is an efficient way of parsing, because it stores intermediate parse
results in a chart, avoiding the redundancy caused by reanalyzing parts of the
sentence every time the parser backtracks. Chart parsers instantiate a technique
known as dynamic programming. One instance of a chart parser, the Earley
parser [Earley, 1970], is particularly interesting because it computes parses from
left to right. I will cover the Earley parser and its probabilistic extension in some
detail, because it serves as a framework for a probabilistic left corner chart parser
that I will develop in section 7.1.2.

The Earley chart parser

The Earley parser keeps track of all derivations that are consistent with the input
string moving from left to right through the input. When it arrives at position i
in the sentence it performs some operations (see below) that generate new states,
and stores the states pertaining to position i in cell i of the chart.

A state describes a particular instantiation of a production in a pending
derivation. Given a rewrite rule X → α, a state is of the form i : kX → λ • µ
(also called a dotted rule), where the dot separates the processed part of the

3.1. Introduction to formal syntax and parsing techniques 53

right hand side of the production (i.e., the part that has been accounted for by
the input string up to position i) from the unprocessed part.3 The number i is
the current position in the input string (i.e., x0 . . . xi−1 has been processed); k
is the position in the input string where X started expanding. A state is called
complete if the dot is on the right of the entire RHS.

The Earley parser starts a derivation with initial state

0 : 0 → • S

and uses three operations that move the derivation forward by adding states,
depending on previous states in the chart and on the current input. For each
input symbol Xi and corresponding chart cell i the Earley parser performs all
three operations exhaustively, until no new states are generated, before moving
to the next input symbol (adapted from [Stolcke, 1995]).

• Prediction
For each state i : kX → λ • Y µ in chart cell i
where Y is a non-terminal anywhere in the RHS,
and for all rules Y → ν expanding Y , add states

i : iY → • ν

Each prediction corresponds to a potential expansion of a non-terminal in
the derivation.

• Scanning
For each state i : kX → λ • a µ in chart cell i
where a is a terminal symbol that matches the current input Xi, add the
state
i+ 1 : kX → λ a • µ
A state produced by scanning is called a scanned state.

• Completion
For each complete state i : jY → ν • in chart cell i
and each state in chart cell j, j ≤ i, that has Y to the right of the dot,

j : kX → λ • Y µ

add the state

i : kX → λ Y • µ

A state produced by completion is called a completed state (which is not
the same as a complete state).

3Notational conventions are adopted from [Stolcke, 1995].

54 Chapter 3. Symbolic approaches to language processing

A derivation of sentence x0 . . . xl−1 is successful if after processing the last symbol
the parser is in the final state

l : 0 → S •

where l is the length of the input string.

An efficient probabilistic Earley parser that computes prefix probabil-
ities

Stolcke [1995] shows how the Earley parser can be upgraded to a probabilistic
chart parser, which apart from keeping track of the most probable derivation,
also computes string probabilities incrementally, using dynamic programming.
These are marginalized probabilities over all derivations that produce a certain
(sub)string. An important reason for computing string probabilities from a PCFG
is that they permit a comparison of the performance of the PCFG with language
models that do not produce a syntactic analysis (e.g., Markov models, or the Sim-
ple Recurrent Network). For several tasks, for instance probabilistic prediction
of the next word in a sentence, it is useful to know word transition probabili-
ties. In a PCFG the word transition probability P (xi+1|x0 . . . xi) can be com-
puted given the string probabilities of two prefixes, x0 . . . xi and x0 . . . xi+1, since
P (xi+1|x0 . . . xi) = P (x0 . . . xixi+1)/P (x0 . . . xi). Formally, the prefix probability
is the sum of all sentence probabilities having x as prefix

P (S
∗⇒L x) =

∑
y∈Σ∗

P (S
∗⇒ x y)

Given a PCFG G, a non-terminal X, and a string x = x0 . . . xi over the
alphabet Σ of G, the following string probabilities are defined (adapted from
[Stolcke, 1995])

String probability The string probability P (X
∗⇒ x) is the sum of the proba-

bilities of all left-most derivations X ⇒ . . .⇒ x producing x from X.

Forward probability The forward probability αi(kX → λ•µ) is the sum of the
probabilities of all constrained paths of length i that end in state
i : kX → λ • µ

Inner probability The inner probability γi(kX → λ • µ) is the sum of the
probabilities of all paths of length i− k that start in state k : kX → • λ µ
and end in i : kX → λ • µ, and generate the input symbols xk . . . xi−1.

3.2. Unsupervised grammar induction with CFGs 55

Stolcke [1995] shows that the prefix probability of prefix x0 . . . xi can be com-
puted by summing their forward probabilities over all scanned states.4

P (S
∗⇒L x) =

∑
l: kX→λxi•µ

αl(kX → λxi • µ)

In [Stolcke, 1995] equations are given for the incremental updates of the inner,
the forward and the Viterbi probability, using dynamic programming.

The algorithm also computes the so-called Viterbi parse, which is the most
probable parse of the string. It can be updated dynamically while building the
chart by keeping track in each state of the maximal path probability leading to
it, as well as the predecessor states associated with that maximum probability
path (i.e., the Viterbi predecessor states). Once the final state is reached, the
maximum probability (Viterbi) parse can be recovered by tracing back the path
of Viterbi predecessor states.

3.2 Unsupervised grammar induction with con-

text free grammars

One of the arguments for doing statistical natural language processing (SNLP) is
that, like connectionist networks, statistical models use frequencies to account for
the gradual change of grammars that happens during language acquisition [Man-
ning, 2003]. Although most SNLP models make no claims of cognitive reality, in
recent years much progress has been made with the task of unsupervised grammar
induction from realistic data [Klein and Manning, 2002, Bod, 2007]. In this sec-
tion I will introduce two different statistical techniques for unsupervised grammar
induction from unlabeled text, based on PCFGs. The first, the Inside-Outside
algorithm, assumes that at least the structure (i.e., the rules) of a grammar is
known, and performs a parameter search to estimate the rule probabilities. The
second, Bayesian Model Merging, assumes that initially every sentence is associ-
ated with a unique rule, and performs a structure search to find a more compact
grammar, meanwhile updating the rule probabilities.

3.2.1 The Expectation Maximization Algorithm and the
Inside Outside Algorithm

As was discussed in section 3.1.5, if a language learner would have access to an
annotated treebank, then the rules and probabilities of a PCFG can be estimated
from it using relative frequency estimation. However, in real life the sentences one

4It is sufficient to sum over the scanned states alone, because they represent the beginnings
of all derivations of complete sentences that start with the prefix. Every such partial derivation
ending in a scanned state can be completed with probability one.

56 Chapter 3. Symbolic approaches to language processing

hears are not accompanied by a syntactic analysis, hence the parameters of the
model that one wants to estimate cannot be observed directly; they are hidden.
Still, even if the derivations are hidden it is often possible to estimate production
probabilities from a corpus of plain text, if one knows at least the rewrite rules
of the grammar that generated the sentences beforehand. In that case one can
resort to a technique called Expectation Maximization (EM).

The idea behind the EM algorithm is that the parameters of the model are
initialized to arbitrary values, then the expected values of the hidden variables are
calculated based on the initial model parameters. Then the maximum likelihood
hypothesis given these values can be computed, by replacing the hidden variables
by their expected values, resulting in adjustment of the model parameters. This
process is then iterated, such that eventually the likelihood converges to a local
maximum.

• In the E-step the expected values of hidden variables are calculated, given
the approximated parameters.

• In the M-step, the model parameters are set to values that maximize the
data likelihood, given the expected values of the hidden variables.

The instantiation of EM for estimating the parameters of a PCFG is called
the Inside-Outside algorithm [Lari and Young, 1990]. Here the parameters are
the rule probabilities, and the hidden variables are the derivations (the corpus is
unlabeled).

In the the E-step of the Inside-Outside algorithm, the expected counts of the
rules are computed from the derivations, given the samples and the current rule
probabilities. In the M-step the relative frequency of the rules is computed by
equation 3.5.

Clearly, the assumption of EM that the structure of the grammar is known in
advance is an oversimplification of the task facing language learning children, who
must somehow also figure out the rules of the grammar from plain text (assuming
these are not given innately). If a grammar must be learned from scratch without
any constraints on the hypothesis space, then the Inside Outside algorithm is not
suited as an optimization algorithm anymore, because a maximum likelihood
model will always evolve towards a trivial CFG, which has a unique rule for every
unique sentence. In that case one needs to define a structure prior over the space
of possible grammars, that guides a structure search through that space.

3.2.2 Bayesian Model Merging, Minimum Description Length

As was argued in section 2.2.1, learning syntax can be conceived as a process
of discovering differences (or partial matches) by means of alignment between
sentences. This idea was formalized by Wolff [1982], who proposed an approach
to grammar induction as a structure search through a grammar space by means

3.2. Unsupervised grammar induction with CFGs 57

of merging and chunking operators. When cast in a Bayesian framework, this
approach is called Bayesian Model Merging (BMM) [Stolcke and Omohundro,
1994, Stolcke, 1994]. In BMM the initial rules are set to incorporate all sen-
tences of a given corpus as follows: for each sentence a1a2 . . . al, new nonterminals
X1, X2, . . . , Xl are created, as are the following productions:

S → X1, X2 . . . Xl (1)
X1 → a1 (1)
X2 → a2 (1)
...
Xl → al (1)

(3.8)

The search for symmetries and repeating patterns in the input is aided by two
operators, merge and chunk, which in combination allow to implement a greedy
hill climbing search through the space of (context free) grammars by changing
existing rules and producing new rules.

• The chunk operator concatenates or chunks repeating sequences, so that
the sequence may be stored just once as a unity. It takes a sequence of two
nonterminals X1 and X2 and creates a new nonterminal Y that expands to
X1X2. Subsequently all occurrences of the sequence X1X2 in the RHS of
all productions are substituted by Y .

• The merge operator creates generalizations by forming disjunctive groups
(categories) of words or non-terminals that occur in the same contexts. If
two nonterminals X1 and X2 occur in the same context it replaces them with
a single new nonterminal Y . As a result of the replacement two existing
productions may become identical and can be stored as a single abstract
rule.

At every step of the search, all candidate merges and chunks are considered,
and a single one is selected that scores best on a given evaluation function. The
evaluation function is chosen to minimize the description length of the model plus
the unexplained data.

When compressing data for efficient storage or transmission, usually there is
a trade-off between minimizing the size of the theory and minimizing the size of
the data that is not explained by the theory. At one extreme, the theory can
be compact but too general, so that it does not compress the data much; at the
other extreme the theory can be overly specific by having a specific rule for every
sentence in the data, but then it grows very large.

Within a Bayesian framework the trade-off can be expressed by constructing
an objective function that incorporates the designer’s preferences for the model
structure, that is a prior probability distribution over a hypothesis space of gram-
mars. One can then search for the hypothesis that maximizes the probability after

58 Chapter 3. Symbolic approaches to language processing

some data X is given, the so-called posterior probability. This so-called Maxi-
mum a Posteriori (MAP) hypothesis, MMAP , can be expressed in terms of the
likelihood and the prior probability by applying Bayes Law:

MMAP ≡ argmaxMP (M |X) = argmaxM
P (X|M)·P (M)

P (X)

= argmaxMP (X|M) · P (M)
(3.9)

The MAP hypothesis takes into account an a priori hypothesis, P (M), called the
‘prior’, which is a best guess for the model before any data has been observed.
This is a probabilistic form of bias. Often the prior is designed such that it biases
the model towards simplicity, as a way to implement Occam’s Razor, the idea
that simpler models are preferred over complex models. If the prior P (M) is
uniform, it can be left out of the equation, and in that case the MAP hypothesis
is equal to the ML hypothesis.

The maximization of P (X|M) · P (M) is equivalent to minimizing

− log2 P (M)− log2 P (X|M) (3.10)

This equation is interpreted in information theory as the principle of Minimum
Description Length (MDL): for an optimal encoding one should take care that the
encoding length of both the theory and the unexplained data is minimized. The
Grammar Description Length GDL = −logP (M) is the length needed to encode
the model (rounded to an integer number of bits) and the Data Description Length
DDL = − log2 P (X|M) is the number of bits that is needed to describe the data
given the model (assuming an optimal, shared code).

3.3 Limitations of the symbolic approach to syn-

tactic processing and acquisition

In this section I will go a bit deeper into some of the fundamental philosophical
and empirical problems with the symbolic approach to processing and acquisition
of syntax, in the hopes of clarifying my motivation to pursue a connectionist
approach to syntax acquisition in this thesis.

The generative grammar school of linguistics, with its formal treatment of
syntax, subscribes to a classical conception of categories as set theoretical en-
tities. Underlying their philosophy is a theory of meaning, that postulates the
primacy of objects with fixed properties in the world. This view originates with
Frege’s interpretation of meaning as sense [Frege, 1892], which is an objective
meaning that is independent of individual minds. In such a view the correspon-
dence between concepts and objects in the real world is fixed a priori. By dealing
only with objective, public concepts, and ignoring individual minds, it is however
difficult for formal theories of syntax to have a convincing account for the acqui-
sition of syntactic categories. The status of categories as set theoretical entities

3.3. Limitations of the symbolic approach 59

is a major obstacle for explaining their incremental acquisition, because it im-
plies that a category must exist before it has any members (the so-called learning
paradox). As a consequence, the classical take on categories has inspired the be-
lief that grammar rules and categories are universally and innately specified by
a Universal Grammar [see e.g., Wexler, 1999], and only parameters need to be
set for specific languages during learning (the principles and parameters account
[Chomsky, 1981]).

In cognitive linguistics, on the other hand, it is commonly accepted that con-
cepts are mental constructs, whose function is to build an internal model repre-
senting the external world, in service of the survival of the individual [see e.g.,
Crick and Koch, 1998]. Categories and concepts are believed to be prototypi-
cal. Prototypical categories are characterized by family resemblance, typicality
and similarity effects [Rosch and Mervis, 1975, Rosch, 1978], and incrementally
constructed by induction from examples, rather than innate.

3.3.1 Syntactic categories are prototypical and graded

There are some strong arguments in favor of prototypical and graded syntactic
categories, and against the idea of universal syntactic categories. A major issue
concerns the circularity in the methodology used by linguists to establish the
major syntactic categories. Syntactic category membership is established using
a method — so-called distributional analysis — that refers to the roles that a
category typically fills in certain constructions. The problem of this method
is that for the task of identifying syntactic categories often the ‘core’ English
constructions are selected, such as the predicate construction, but categories that
appear in other, less common or foreign language constructions are ignored. Croft
[2001] argues that this is a circular definition of syntactic categories, because the
defining constructions can be selected conveniently, such that they fit existing
preconceptions about universal categories.

From inspecting some atypical linguistic constructions it is apparent that there
are many exceptions to the major syntactic categories. For example, a typical
feature of nouns is that they can occur in a pluralization construction, as in
Betty and Sue stubbed their toes. Yet, * Betty and Sue lost their ways is not
a grammatical sentence. Another test for nouniness is pronominalization, as in
Sam held his breath, and then released it. Yet, * Harry took his time, but wasted
it is agrammatical. Furthermore the gapping construction, as in I lost my breath,
and she hers is not a reliable test for nouniness either, because * I took my time
and she hers is not grammatical (the examples are from Lakoff [1987]).

Cognitive linguists such as Lakoff [see e.g., Lakoff, 1987] take the fact that
for all these defining constructions counterexamples can be found as evidence
for the prototype-based nature of syntactic categories. Not only nouns, but just
about every syntactic category in the English language has been shown to exhibit
prototype effects [Ross, 1967], such as typicality (some words are more typical of

60 Chapter 3. Symbolic approaches to language processing

a category than others), similarity (not all words within a category are equally
interchangeable), and vague boundaries.

Certain words defy categorization into one of the standard linguistic categories
altogether. An example from Manning and Schütze [2000, p. 12] is the word
nearer, as it occurs in

(3.11) We live nearer the water than you thought.

In this example nearer simultaneously shows properties of an adjective (the fact
that near is used in the comparative form), and of a preposition (only prepo-
sitions, but not adjectives, can occur in front of a direct object). Thus, nearer
is somewhere in between an adjective and a preposition, suggesting that these
categories are not discrete but graded.

A further argument against the universal nature of categories is the fact that
the granularity of categories is arbitrary, since it depends on linguistic convention
alone according to which criteria words are classified into syntactic categories; for
instance, verbs can be subcategorized according to the type of arguments they
select for (e.g., transitive and intransitive verbs), or according to tense and aspect
(e.g., gerund, past participle). In radical construction grammar (RCG) [Croft,
2001] such considerations are driven to their logical endpoint. RCG holds that
language consists of a large inventory of constructions (a so-called constructicon),
and syntactic categories are defined locally with respect to the constructions
in which they occur. Thus, constructions are the primary objects of linguistic
analysis, while lexical and phrasal category labels are emergent.

Finally, there are also ontogenetic arguments for the graded nature of syntactic
categories. From a wealth of empirical studies in language development we know
that children do not use the same syntactic categories as adults [Tomasello, 2000a,
van Kampen, 2003]. Tomasello’s work on so-called ‘verb islands’ Tomasello [2001,
2000b] shows that in early child language verb constructions are developed in
isolation, like small islands, and every verb seems to have its own inflections.
Apparently, inflectional rules are not initially generalized over all verbs, but used
locally for particular verbs. Studies in this tradition describe how stage after
stage apparent ‘rules’ enter the child’s speech, and how categories and rules are
gradually fine tuned through abstraction over the input, and become more adult-
like. Such a usage based view of grammar learning is consistent with a prototypical
and graded account of categories.

A similar case can be made based on studies of historical language change
and grammaticalization. An all-or-nothing categorical view of language cannot
account for the gradual shifts in use and meaning of words and expressions that
evolve through time. Manning [2003] gives many examples, among which are the
gradual evolution of the expression kind of, as in kind of cute dress, from a noun
into an adverbial expression, the evolution of going to into an auxiliary marker of
future tense, etc. Such gradual phenomena can only be modeled if one assumes
a statistical or prototypical view of language.

3.3. Limitations of the symbolic approach 61

3.3.2 Limitations of the probabilistic approach to syntax

Although one may think that the objections raised against the generative ‘prin-
ciples and parameters’ approach to grammar acquisition do not apply to the
probabilistic paradigm, this is not entirely true. Some of the assumptions about
the nature of categories have been carried over to the field of statistical NLP.
Although the probabilities themselves are continuous, still in most work in sta-
tistical NLP probabilities are put over discrete syntactic categories, such as NPs
and VPs, familiar from traditional linguistics. Recently, the parsing world has
seen some progress with models that split nonterminals into progressively finer
categories [e.g., Petrov et al., 2006]. This suggests that it might be useful “to ex-
plore modeling words [and phrases] as moving in a continuous space of syntactic
category, with dense groupings corresponding to traditional parts of speech [and
phrasal categories]” [Manning, 2003] (words in brackets added by me).

Incorporating topological constraints for learning

Another assumption borrowed from traditional linguistics concerns the global
scope of syntactic variables, as implied by the independence assumptions of the
PCFG. Grammar induction algorithms based on the PCFG, such as Bayesian
Model Merging (BMM) and Inside-Outside (IO) make use of this assumption
when they make global updates to all occurrences of a certain variable in the
annotated corpus, appealing to some kind of central control mechanism. For in-
stance, in BMM, following a merge operation the label of a variable is replaced
globally in the entire corpus, and in IO the parameters of the grammar are up-
dated globally in the maximization step. In light of the empirical studies of
grammatical development in children mentioned above, which point at a Usage
Based Grammar (UBG) [e.g., Tomasello, 2005], these are not very plausible as-
sumptions.

As explained above, in the usage based view children’s learning process follows
an incremental trajectory from simple constructions to complex and abstract
constructions. Thereby, linguistic categories begin with local scope (i.e., item-
based), and the scope gradually expands as categories become more abstract and
system-wide.

Radical Construction Grammar (RCG) similarly assumes that the scope of
syntactic categories is limited to the specific constructions they participate in.
Learning a grammmar in RCG is conceived as the construction of a structured
network of constructions, the ‘constructicon’, by linking constructions through
shared categories. In the process the scope of the categories is locally updated,
hence widens only gradually.

To account for the observed gradual expansion of the scope of syntactic vari-
ables (in children’s linguistic development) seems to require a modeling approach
that makes use of a network topology, on top of which local interactions between

62 Chapter 3. Symbolic approaches to language processing

constructions can be defined. In this view the constructicon is seen as a struc-
tured network, and increasing abstraction of the categories is a by-product of the
self-organization of the network. Note that such an approach to modeling gram-
mar acquisition leads to a much more complex and interactive learning dynamics
than an approach based on the PCFG, because the independence assumptions no
longer hold.

While the above considerations provide linguistic and psychological argu-
ments, there is also an important neuro-biological consideration to opt for a
neural network approach. If one aims to model language acquisition as it is
implemented in the brain then this imposes constraints on the possible learning
algorithms: in a neurally plausible model only operations are allowed that can be
executed through local interactions (see in this respect the discussion in section
4.2.1).

In sum, there are several good reasons for taking a connectionist approach
to syntax acquisition. Besides the prospect of modeling the development of a
constructicon within a network architecture, and exploiting the possibility of a
learning dynamics within a topological space of graded syntactic categories, there
is also a constraint from the locality of learning. The connectionist approach will
be explored in the next chapter.

Chapter 4

Connectionist approaches to language
processing

In this chapter I will discuss connectionist models of
language processing in the context of the systematic-
ity debate. This debate is so called because opponents
of connectionism argue that one of the most essential
features characterizing natural languages is its sys-
tematicity, and that connectionist models of language
processing cannot explain this. I will argue that the
systematicity debate suffers from the lack of a clear
operational definition of systematicity, and I will pro-
pose a set of criteria for the systematicity of language
that is stricter than what is usually accepted [Hadley,
1994]. I will show that despite the fact that it has been
discounted by connectionists, the Chomsky hierarchy
is still relevant for the systematicity debate; specif-
ically, it gives minimum requirements for the struc-
ture bias that a systematic model of language must
possess. I will argue that the Simple Recurrent Net-
work does not satisfy the proposed set of criteria for
systematicity, and I will critically review the claims
of proponents of distributed connectionism that the
SRN does implicitly encode knowledge about word
categories and constituency. Finally, I will sketch an
alternative, localist approach to connectionism, using
dynamic binding and complex units, that does meet
the systematicity requirements.

63

64 Chapter 4. Connectionist approaches to language processing

4.1 Introduction

According to a definition by one of its founding fathers,

connectionism is an approach to modeling cognition based on the idea
that the knowledge underlying cognitive activity is stored in the con-
nections among neurons. In connectionist models, knowledge is ac-
quired by using an experience-driven connection adjustment rule to
alter the strengths of connections among neuron-like processing units.

[McClelland et al., 2010]
The best way to understand the connectionist paradigm is to place it in op-

position to the symbolic paradigm, according to which cognition involves the
manipulation of symbols according to rules, like the rules of arithmetic. The
connectionist view of computation is inspired by our knowledge of the nervous
system, and focuses on the role of activation spreading among local processing
units, or neurons. I will assume the reader has some background in connectionism,
but to refresh I will recapitulate some basic terminology, without any pretense of
completeness.

Figure 4.1: The McCulloch & Pitts neuron (image design: Stefan Frank).

The simplest model of a neuron is the McCulloch-Pitts neuron [McCulloch and
Pitts, 1943] (see Figure 4.1). Neuron i receives input from n other neurons with
activations x1, . . . , xn, to which it is connected in a network. Each connection has
a weight wi,j. The total input si to neuron i is the weighted sum of the inputs
plus a bias term θi

si =
∑
j

wi,jxj + θi (4.1)

The neuron’s output activation yi is a function F (the activation function) of
its total input: yi = F(si). This activation function is usually chosen to be
either the step function, a linear function, or a sigmoid (S-shaped) function, i.e.
F(si) = 1

1+e−si
.

An artificial neural network consists of multiple artificial neurons that are
connected in a certain network architecture, or topology. Usually one designates
special input neurons and output neurons; the other neurons are called hidden

4.2. The systematicity debate — critique of connectionism 65

neurons. In a multi-layer perceptron, also known as a feedforward network , neu-
rons are organized in layers, with full connectivity only between neurons in adja-
cent layers (see Figure 4.2). It has been shown [e.g., Hornik et al., 1989] that a
multi-layer perceptron with only one layer consisting of an unrestricted number
of hidden units suffices to approximate any function to arbitrary precision, pro-
vided the activation functions of the hidden units are non-linear (the universal
approximation theorem).

Figure 4.2: A two-layer feedforward network (image design: Stefan Frank).

Neural networks learn by adjusting their weights after processing an example.
In supervised learning a target tj is provided to which the network’s output is
compared, allowing to calculate an error E. An example of a supervised learning
rule is the Delta-rule

∆wi,j = ∂E/∂wi,j = γ · (tj − yj) xi (4.2)

where γ is the learning rate. There exists a wide variety of connectionist models,
which are applied to various cognitive tasks, including language, semantics, visual
processing, cognitive development, and more. Implementation details depend on
the designer’s assumptions about functional connectivity in the brain, and the
designer’s wishes and goals regarding the function of the model. Due to space
limitations I cannot provide a survey of the field, but see [e.g., Bishop, 1996,
Kröse and van der Smagt, 1996].

4.2 The systematicity debate — critique of con-

nectionism

A computational model of human cognition, including language and reasoning,
must explain the fact that people’s knowledge seems to be organized around
systematic facts. This is evidenced by our productive use of language : our
ability to produce and understand innumerably many sentences that we have
never heard before, on the basis of only a finite number of words, suggests that
there is some combinatorial system in place that allows us to construct a novel
sentence using some kind of linguistic rules. For instance, it has been argued that

66 Chapter 4. Connectionist approaches to language processing

the formation of the regular past tense in English by adding ‘-ed’ to the stem
of the verb is governed by some kind of productive rule, otherwise people would
have to store every past form besides the present form in a memory for lexical
forms, and would not be able to generalize to novel verbs.

The observed systematicity of language has been capitalized upon in a famous
argument by Fodor and Pylyshyn [1988], which says that a minimum requirement
for a device (such as the brain) to deal with language processing is an ability for
symbol manipulation. They claim that the brain must be able to represent uni-
versal rules and variables, as in mathematical equations. They further argue
that since connectionist models cannot represent variables they are unsuited for
symbol manipulation, which they see as a requirement for dealing with the sys-
tematic relations in language. Rather, for language processing one needs symbolic
devices (of which a computer is a typical example), that can perform operations
over symbols, or variables.

The standard connectionist response to the critique of [Fodor and Pylyshyn,
1988] is that even though the emergent linguistic behavior appears on the surface
to be combinatorial and rule-like, from this it cannot be inferred that the under-
lying neural representations are combinatorially structured [e.g., Rumelhart and
McClelland, 1986]. Rather than internalizing explicit representations of linguis-
tic categories and rules, it is sufficient for the cognitive system to have implicit
knowledge of how to interact with the external symbol system that characterizes
the superficial form of language. The battle over the status of explicit mental
rules has been waged for a large part around the English past tense, starting
with the proposal of Rumelhart and McClelland [1986] for a distributed neural
network of past tense acquisition (and subsequent proposals by among others
Plunkett and Marchman [1996]), whose model in turn was criticized by Pinker
and Prince [1988] and Marcus [1995] for its lack of systematicity.

Another area that has taken a prominent place in the systematicity debate is
syntax. Sentences in a natural language like English display an organization into
word groups, so-called constituents or phrases, which behave as functional units
that can engage in structure dependent relationships. To process such syntactic
phenomena it seems that our cognitive system must have at least an ability to
utilize structural representations, if not build explicit internal representations of
compositional structure.

There exists a long list of phenomena in language that seem to rely on hierar-
chical constituent structure. For instance, number agreement between a subject
noun and a verb must be maintained even if they are separated by one or more
intermediate clauses (so-called long distance dependencies). Other examples are
auxiliary fronting and wh-inversion [e.g., Chomsky, 1972, Crain, 1991]. While
few cognitive scientists dispute that constituent structure plays an important
role in language, there is disagreement among researchers of competing schools
about how a model of the cognitive system can account for apparent structural
dependencies. The claim of Fodor and Pylyshyn is that connectionist models

4.2. The systematicity debate — critique of connectionism 67

cannot produce constituent related phenomena in language because they lack a
mechanism for combining simple representations into more complex, structured
representations.

Following Bechtel and Abrahamsen [2002] one may distinguish two major
connectionist responses to the structure encoding challenge. One connectionist
strategy has been to design connectionist networks that are specially designed
to deal with the explicit representation of compositional structure. Examples
of this approach are RAAM [Pollack, 1988] and Smolensky’s Integrated Connec-
tionist/Symbolic Cognitive Architecture (ICS) [Smolensky and Legendre, 2006],
which will be discussed in the next section.

Another connectionist response has been to deny the need for explicit mental
representations of compositional structure. This is the leading view among pro-
ponents of distributed connectionism, advocating the use of recurrent networks
like the SRN ([Elman, 1991]; see section 4.4.1). They believe that the apparent
superficial constituent structure observed in language can be dealt with with-
out relying on internal representations of combinatorial structure, assuming that
recurrent networks somehow implicitly encode the knowledge for working with
external structural representations. I will come back to this response in section
4.4.2.

Although I will not support the claim of Fodor and Pylyshyn [1988] that only
symbolic devices can exhibit the systematicity needed for modeling language, I
will argue in the upcoming sections that both connectionist replies, representing
two extreme positions, are untenable. I will then develop an alternative explana-
tion for connectionist systematicity, which shows how certain notions of ‘graded
categories’ and flexible, learnable ‘rules’ can be assimilated within a connectionist
architecture.

4.2.1 Why connectionism?

Fodor and Pylyshyn’s critique raises the question: what is gained by a connec-
tionist approach to cognition and language? Although connectionist models are
obviously designed to mimic properties of the brain, there exists a fair amount
of skepticism, especially among computational linguists, about whether connec-
tionist models give a better insight than symbolic or statistical models into how
the brain deals with cognitive tasks, such as language processing. Neural net-
works are often described as ‘black boxes’, whose mathematical properties are not
well-understood. In order to motivate the connectionist approach it is necessary
to pursue a more concise characterization of the objectives of the connectionist
agenda than is usually provided in the textbooks.

In text books connectionist systems are typically characterized based on their
possession of certain architectural features, such as spreading activation, locality
of processing, and so on, while in my view the crucial difference between the
connectionist and symbolic approach to cognition concerns the issue of learning

68 Chapter 4. Connectionist approaches to language processing

extensional meaning: Whereas in symbolic systems the meanings of the opera-
tional units, the variables, are fixed and pregiven, and therefore their extension
is global , or system-wide, the extensional meaning of the primitive units in a
connectionist system is locally constructed, and must be learned. A variable
in a symbolic system is a symbol in the sense of Peirce [1903]: a token with
an arbitrary relation between form and meaning. Assuming the brain encodes
meaning in connections between the units of a neural network, then it is hard to
see how it can be assigned globally or innately, because meaning does not come
out of nowhere: what a neuron represents has to be constructed from experience,
through interaction with other neurons and the environment; hence, in the brain
there are no ‘global variables’ or symbols. At the heart of the debate between
connectionism and symbolism thus lies a conflict about the origin of meaning:
whereas symbolism takes globally prespecified meanings of variables for granted,
the objective of connectionism is (or should be) to explain the meanings of the
primitive processing units from direct physical causes.

Accordingly, the term connectionism will be taken here to imply a functional
constraint imposed on cognitive models, restricting what interpretations are per-
mitted of the primitive units of the system. This constraint, which I will refer to
as the connectionist constraint , can be stated as a necessary, but not sufficient
condition for designing connectionist systems. It entails that the interpretation
of any of the system’s primitive units (as far as it is invoked in explaining exper-
imental results) must depend exclusively on processes that are handled internally
and autonomously by the system, and must not appeal to any externally or globally
imposed interpretation of the network units. Hence, interpretations of the prim-
itive units can be defined exclusively with respect to their topological position in
the network (i.e., through inputs of efferent nodes), and eventually derived from
(and grounded in) the external input. In section 4.3.1 I will argue that certain
popular models, that are apparently able to deal with the problem of encoding
the constituent structure of language, and that are presented as connectionist
models, violate this constraint.

4.3 Neural networks with explicit representa-

tion of compositional structure

The ability to ‘parse’ the structure of a sentence in order to discern its phrasal
composition, disambiguate the sentence and afford a semantic interpretation is
an integral part of language processing, and it requires a processing model that is
capable of compositional structure representation. The first connectionist reply
to Fodor and Pylyshyn is to build compositional structure explicitly into the net-
work. Representing compositional (or hierarchical) structure has however proven
to be a hard, if not impossible task for connectionist networks. Often the task is
phrased as a variable binding problem: how does the network solve the task of

4.3. Explicit representation of compositional structure 69

binding fillers to roles, or tokens to types? For instance, one can represent a tree
structure by assigning variables to each of the ‘roles’ in a tree, for example the
root node, the left and right daughter of the root, the left daughter of the right
daughter, etc. The tree is then represented by binding a symbol to each of the
roles. Two variations of this approach to representing compositional structure
are RAAM [Pollack, 1990] and Harmony Theory (HT) [Prince and Smolensky,
1997].

4.3.1 Recursive Auto-Associative Memory

The Recursive Auto-Associative Memory network (RAAM) was proposed by Pol-
lack [1988] as a response to the critique of Fodor and Pylyshyn [1988] that con-
nectionist models cannot operate with and represent compositional, recursive
structures. The RAAM network is able to encode a tree structure of a sentence
in compressed form in a single hidden layer, and later decode it to its original
form, while recovering the constituents.

Figure 4.3: Recursive auto-associative network consisting of a compressor and a
reconstructor component. Reproduced from [Pollack, 1988].

In the encoding phase, a binary tree is fed to the input nodes, level after level
and from inside out, whereby at each step the trained hidden unit representation
of one level of the tree is recursively fed back to the correct input (either the left or
the right child). Training is done by teaching the auto-associator to reproduce the
input activation on its output units, using error back-propagation. For example,
suppose RAAM learns to encode the tree (X John (Y likes Mary)), then first likes
and Mary are fed to the left (L) and right (R) input units respectively. Then,
John is fed to L, while simultaneously the activation of the hidden layer from the
previous step is copied to R.

As the network learns to reproduce the identical constituents on its output
units (through auto-association and error back propagation), it forms a com-
pressed internal representation of the combined left and right child in its k hidden
units. During decoding the reverse process is followed: RAAM reconstructs the
original tree step by step, starting with the complete compressed tree, and feeding

70 Chapter 4. Connectionist approaches to language processing

the output of the network back to its input, until the leaves of the tree have been
reconstructed.

RAAM is not connectionist

Although RAAM is often cited as the textbook example of how connectionist
models can solve the problem of encoding constituent structure, a critical analysis
of the solution offered by RAAM reveals that it in fact violates the connectionist
constraint, as formulated in section 4.2.1. The reason is that RAAM does not
assign tree structure to sentences autonomously, but requires an external control
structure, that maps the output of the compressor module to the left or the
right input node during the encoding phase. The controller appeals to external
knowledge of the syntactic structure in order to interpret the output as either the
‘left child’ or the ‘right child’ in the tree. In parsing terms this means that the
‘stack’, or memory of the system is taken care of externally. Since the system
has no local access to the information needed to decompress the compressed tree,
RAAM does not conform to the constraint of locality of interpretation, implying
that the proposed solution could never be realized by an autonomous neural
system.

4.3.2 Filler-role binding using the tensor product

Smolensky [1990] proposes an alternative solution for bridging the gap between
representations of hierarchical tree structures at the symbolic level and at the
connectionist level, within the Integrated Connectionist/Symbolic Cognitive Ar-
chitecture (ICS) [e.g., Prince and Smolensky, 1997, Smolensky and Legendre,
2006]. He proposes to represent variable bindings between roles and fillers as ten-
sor products, whose numeric entries can be mapped to units in a connectionist
network. A node in a parse tree is encoded as the tensor product of a role vec-
tor, which represents the node’s position in the hierarchy of the tree, and a filler
vector, representing the node label. Let r0 and r1 denote the left child and the
right child role in the tree respectively, then any tree position can be construed
by recursive application of the tensor product. For instance, r0 ⊗ r1 represents
the right daughter of the left daughter of the root. An arbitrary syntactic tree
can thus be encoded using vector addition of the tree nodes. For instance the tree
(X A (Y B C)) would be represented as X +A⊗ r0 + [Y +B ⊗ r0 +C ⊗ r1]⊗ r1.
The tensor product representation of a tree is subsequently mapped to a neural
network by dedicating a unique network unit to every possible conjunction of a
role and a filler (fewer nodes are needed if the role-filler encoding is distributed).
Crucially, the mapping between syntactic trees and network units must be done
manually.

The problem with this approach is of the same order as with RAAM: assigning
network units to the tensor product representation of a tree appeals to knowledge

4.3. Explicit representation of compositional structure 71

about the interpretation of network units, which is only available externally to the
system. The ICS system cannot autonomously, or locally determine the correct
mapping between tree nodes and network units; in practice, the interpretation of
a network unit as a particular position in a parse tree (whether it is distributed or
localist) is pre-given for any given network design. Since the extensional meaning
of a unit is not arbitrary, the units function as symbols. Obviously, this violates
the connectionist constraint , which basically expresses that connectionist systems
should not make use of symbols.

A problem of a different kind for tensor product representations of bindings
is that the number of bindings (hence, network units) that are required to repre-
sent an arbitrary tree node grows exponentially with the depth of the tree [e.g.,
Hummel and Biederman, 1992, Stewart and Eliasmith, 2009]. Moreover, the con-
junctive bindings encoded in the tensor products cannot deal with novel sentences
(with arbitrarily deep levels of recursive embedding) in a productive way, because
every conjunction encodes a specific relation between roles and fillers in a single
undivisable entity. As Hummel et al. [2004] point out, this makes conjunctive
coding in general, and the tensor product in particular, unsuited for relational
inference or generalization to similar events. As a consequence all bindings have
to be specified in advance.

This problem relates back to the ‘massiveness of the binding problem’, men-
tioned in section 1.2: since language is productive, and given that the number
of sentences that can be productively combined from an average person’s vocab-
ulary of several thousands of words is innumerable, there cannot exist enough
specialized neurons in the brain to bind every sentence from its constituents.

In order to deal with novel sentences it is necessary that the language system
can combine words or phrases in flexible ways. To achieve this, it has been
proposed that the brain uses a mechanism for dynamic binding, rather than static,
or conjunctive binding [Hummel and Holyoak, 1997, Hummel and Biederman,
1992, van der Velde and de Kamps, 2006] (see also sections 2.3 – 2.5). A dynamic
binding solution is implemented by [van der Velde and de Kamps, 2006], whose
work I will discuss next.

4.3.3 The neural blackboard architecture

In the neural blackboard architecture (NBB) van der Velde and de Kamps [2006]
try to address Jackendoff’s 4 challenges (see section 1.2), in particular the ‘mas-
siveness of the binding problem’, and the ‘problem of two’. In the NBB words
are represented by word assemblies [Pulvermüller, 1999], which are grounded and
never duplicated. Phrasal categories, such as NP and VP are represented by an
unlimited reservoir of (syntactic) structure assemblies. Word assemblies can be
bound to structure assemblies (through sub-assemblies such as agent and theme)
to form sentences. A sophisticated electronic circuit involving memory gates and
association gates regulates the direction of flow through the assemblies, such that

72 Chapter 4. Connectionist approaches to language processing

for example cat chases mouse can be distinguished from mouse chases cat. The
massiveness of the binding problem is solved by using temporal (or dynamic)
binding, as was also argued in section 2.5. The problem of two is circumvented
because, if a word occurs more than once, it can be temporarily bound to multi-
ple structure assemblies (NPs) from the reservoir, each of which tags the word a
unique label.

The problem with the NBB is that only the word assemblies are grounded; the
syntactic structure assemblies are not. Structure assemblies for NP’s and VP’s
are simply assumed to be innately given together with a label, and the fact that
they can bind with word assemblies of the same label is a direct consequence of
the arbitrary external assignment of a label to the syntactic units. This violates
the connectionist constraint, hence the NBB is not a viable connectionist solution.
Further, although van der Velde and de Kamps [2006] rightly argue that grounded
units cannot be duplicated, the NBB allows structure assemblies to be freely
duplicated. This means that the problem of two is merely shifted to the phrasal
level rather than being solved.

4.4 Recurrent, distributed networks

One class of connectionist models, the Recurrent Neural Networks (RNN, for
short) is particularly suited for language processing because, unlike standard feed
forward networks, these networks can compute functions for inputs of varying
length, such as sentences, when they are presented word by word. As the name
implies, recurrent neural networks have recurrent connections that copy activation
among units from an earlier point in time to the current input. They therefore
satisfy

xj(t+ 1) = F(netj(xi(t), wji)) (4.3)

where xi(t) is the current state and input at time t, F is an activation function,
for instance the logistic function, and netj the excitation function that integrates
the input to xj, for instance netj = sj, the weighted input given in Equation 4.1.

Several theoretical results about the representational power of recurrent net-
works demonstrate that they can in principle exceed the representational limita-
tions of finite state automata, given unbounded precision of their weights and/or
activation. Pollack [1987] showed that heterogeneous, second order RNN’s with
unbounded precision of the weights are Turing equivalent, which entails that
they can represent any arbitrary function;1 Siegelmann and Sontag [1991] showed
that even finite, homogeneous first order RNN’s with rational weights are Turing
equivalent. This implies of course that a natural language such as English, if
viewed as a characteristic function, can in theory be recognized by an RNN.

1An RNN is heterogeneous if not every unit has the same activation function; An RNN is of
second order if the excitation function depends on products of inputs

4.4. Recurrent, distributed networks 73

In general, the strong representational power of recurrent networks with con-
tinuous activation values, which is a result of their ability to represent an unlim-
ited number of states, does not guarantee that they are capable of generalization
to novel sentences. There exists a risk of overfitting the model to the training
data, leading to bad generalizations on test data. Yet, precisely the question
about a model’s capacity for generalization will ultimately be of interest to us
when we discuss whether the family of recurrent networks is able to model the
systematicity and productivity of human language (section 4.7.1).

4.4.1 The Simple Recurrent Network (SRN)

The most widely used recurrent network is Jeffrey Elman’s simple recurrent net-
work (SRN, for short) [Elman, 1989]. The SRN consists of a multi-layer feed

Figure 4.4: Elman’s simple recurrent network (image design: Stefan Frank).

forward network with an extra so-called context layer (see Figure 4.4). In the
standard setup, when doing a sentence processing task, every word from the
training vocabulary has a dedicated input and output node, and sentences are
presented to the input units word after word, separated by end of sentence sym-
bols. The hidden layer units are connected through recurrent connections to the
context layer units, and after every time step the activation of the hidden layer is
copied back to the context layer. At the next time step the new input is combined
with the activation of the context layer and both are forwarded simultaneously
to the hidden layer. Through this feedback, the hidden layer learns about its
previous internal representations, and can form a representation of the history of
the sequence.

Apart from the weights between the hidden and the context layer, which are
fixed at a value of 1, all other network weights are learned in a semi-supervised
way, by presenting the input of time t + 1 as target to the output layer of the
network at time t, and using error back-propagation (gradient descent learning).

74 Chapter 4. Connectionist approaches to language processing

4.4.2 Second connectionist reply to Fodor and Pylyshyn:
distributed connectionism

As mentioned before, the second connectionist response to the structure encoding
problem is that syntactic knowledge can be encoded ‘implicitly’ in the hidden unit
representations of distributed recurrent networks. Note that thereby proponents
of the distributed network approach dismiss the importance of what according to
many linguists is one of the main functions of grammar: the structural analysis
(‘parse’) of the sentence, and its disambiguation, facilitate a semantic interpre-
tation. Parsing is considered a first step in the process of understanding the
meaning of a sentence.

By their nature distributed networks are not well suited for explicit structure
representation, because it is hard to represent structural relations between prim-
itive categories if the latter are encoded in a fully distributed fashion. Yet, many
experiments seem to show that the Simple Recurrent Network performs well on
tasks for which knowledge of constituent structure is required, such as next word
prediction across constituent boundaries, without taking recourse to explicit rep-
resentations of syntactic categories, or constituents [e.g., Elman, 1990, 1991].
A concern is however that in this literature it is never formulated exactly and
clearly what criteria a systematic model of language processing must satisfy. In
the following sections I will make an attempt to formulate precise criteria against
which the performance of connectionist models of language can be evaluated.

4.5 Defining criteria for the systematicity of lan-

guage

4.5.1 Weak and strong systematicity according to Hadley
[1994]

Recall Fodor and Pylyshyn’s [1988] critique of connectionist networks, namely
that they fail to account for the combinatorial productivity and systematicity of
natural language. Systematicity and productivity entail an ability to comprehend
or produce an unbounded number of novel sentences based on a limited number
of observed sentences. For instance, if a speaker of English is able to comprehend
one sentence (e.g., John loves Mary) then she is able to comprehend all other
sentences which are structurally related (e.g., Mary loves John)

However, what exactly is meant by systematicity is never formalized by Fodor
and Pylyshyn [1988] in a sufficiently precise way, such that it can be invoked as an
operational definition to evaluate candidate connectionist models. It has proven
difficult to give an operational definition of human linguistic systematicity that
avoids any reference to global variables and formal operations, and that is devoid
of any theory driven assumptions about the underlying representations.

4.5. Defining criteria for the systematicity of language 75

To date, the most widely accepted operational definitions for evaluating the
systematicity of connectionist models of language are those proposed by Hadley
[1994]. His systematicity tests focus on the degree of generalization of various
systems under learning conditions, in which the novelty of test sentences is var-
ied relative to a training corpus. This captures the insight that the ability for
generalization, rather than representation, is a key aspect of systematic behavior.
Hadley [1994] distinguishes between the notions of weak systematicity and strong
systematicity:

• A system is weakly systematic “if it can process sentences that have novel
combinations of words, but these words are in the syntactic positions they
also occurred in during training” [Hadley, 1994, p.7].

• A system is strongly systematic if, besides weak systematicity, it also “can
correctly process a variety of novel simple and embedded sentences contain-
ing previously learned words in positions where they do not appear in the
training corpus.” [Hadley, 1994, p.7].

Weak systematicity does not account for the empirical fact that people are
apparently able to process words in novel syntactic positions, as in John loves
Mary versus Mary loves John. This means that knowledge of language must
include some notion of sentence structure that is context independent. The latter
aspect of systematicity is accounted for in strong systematicity.

Hadley reviewed the literature on several connectionist models, among which
the SRN, RAAM [Pollack, 1988], and Smolensky’s tensor products [Smolensky,
1990], and concluded that strong systematicity has never been tested on these
models. Much ensuing research has focused on establishing whether SRNs are
weakly or strongly systematic in the sense of Hadley [1994], with some authors
claiming SRNs display strong systematicity [e.g., Christiansen and Chater, 1994,
Brakel and Frank, 2009], and others disputing even weak combinatorial system-
aticity of the SRN [e.g., van der Velde et al., 2004].

Weaknesses of Hadley’s definitions of systematicity

Unfortunately, there are several problems with Hadley’s systematicity tests.

• First, underlying any practical definition of systematicity is a presupposi-
tion about the existence of substitution classes of linguistic expressions over
which the systematicity is observed. Without the notion of a class of ex-
pressions that can be substituted for each other there can trivially not be
generalization, hence no systematicity either.

If strong systematicity evaluates whether a system generalizes across partic-
ular substitution classes (of words or other expressions), then its definition
must explicitly acknowledge the a priori assumption of such substitution

76 Chapter 4. Connectionist approaches to language processing

classes and how they are used in the evaluation, otherwise systematic be-
havior is plainly unobservable. This may be trivial if systematicity is eval-
uated on an artificial language such as used in Hadley’s definition, but if
strong systematicity purports to have anything to do with the systematicity
of natural languages, then explicit reference to substitution classes cannot
be omitted from the definition.

• The second problem is that Hadley’s strong systematicity applies exclu-
sively to lexical categories, and ignores relationships between larger chunks
of words. This is a too restricted interpretation of the human ability for
systematicity, because it does not incorporate the fact that for instance
anyone who understands the brother of John loves Mary also understands
Mary loves the brother of John. A correct interpretation of the claims of
Fodor and Pylyshyn [1988] concerning systematicity would have to focus on
constituents rather than on words, since the empirical facts reflect an ability
to substitute constituents of the same class in different sentence positions.

4.5.2 A proposal for a concise definition of the system-
aticity of language

To accommodate for the weaknesses of Hadley’s systematicity criteria identified
above, I propose a novel, and more concise set of criteria for evaluating the
systematicity of connectionist models

1. For evaluating systematicity one must assume that

(a) the participating units in a systematic relation are constituents2 that
can be larger than single words, and

(b) there exist substitution classes of constituents over which the system-
aticity is observed, otherwise it cannot be evaluated (i.e., it is unfalsi-
fiable).

2. Systematicity is defined as the property that given the constituents of (part
of) a sentence their substitution class membership alone predicts the class
membership of possible subsequent constituents. To the degree that natural
language is systematic, it possesses sets of constituents (words or phrases)
that behave as clean substitution classes.3 I will refer to this as the context
invariance criterion.

2The term constituent is intended here in the naive sense, and refers to any contiguous
sequence of words (‘chunk’) in a sentence

3The extent to which a particular language possesses clean substitution classes is an open
research question. In practice, of course, word categories and constituent classes are never
perfectly ‘clean’, but class membership is graded, and so is substitutability (see section 3.3.1
for a discussion of the gradedness of syntactic categories).

4.5. Defining criteria for the systematicity of language 77

3. Systematicity in natural language also entails that single words can be sub-
stituted for multi-word constituents of the same class. As a consequence
constituents can be ‘pumped up’ (for instance, by recursively nesting rela-
tive clauses), while their class membership is preserved. I will refer to this
as the recursive systematicity criterion.

4.5.3 The importance of inductive bias for generalization

The above analysis brings to the surface an even deeper problem with testing
the ability of a system to generalize: before concluding that an unseen instance
generalizes to a class of sample instances, one needs to have a notion of similarity.
Yet, it is not possible to define similarity in absolute terms, since it depends on an
underlying representation of structure that is inherent in the system. Similarity
is by definition a relative notion.

To make this point more precise it is useful to reiterate an important observa-
tion about generalization from Mitchell [1980]. Consider a learning algorithm L
that is trained on a finite number of training instances. It is a known fact that in
order to be able to classify an unseen instance xi it is necessary that the learning
algorithm has a built-in bias that imposes structure upon the hypothesis space.
There are infinitely many hypotheses that are consistent with a finite sample.
For instance, the series x1 = 1, x2 = 3, x3 = 5 is not only consistent with the
hypothesis xn+1 = xn + 2, but also with the hypothesis that xn+1 = 7 · xn − 4n,
which ‘generalizes’ to x4 = −29.

This means that the kinds of generalizations that are permitted are underde-
termined by the data alone, and are restricted only by the bias of the learning
device. Without such a bias every hypothesis is equally likely. Quoting Mitchell
[1980]: “Only if a system has ... biases for choosing one generalization over the
other, can it non-arbitrarily [read: systematically] classify instances beyond those
in the training set.”

This applies to generalization in language as well. Suppose one has seen John
loves Mary and Mary loves Sue, and identified these as sequences of the form
Noun Verb Noun. Then, without any assumption about structure, there are
many generalizations that are consistent with this example. For instance John
loves Mary loves Sue, assuming that the rule is that nouns and verbs alternate.
This means that there is no way to know from training data alone what is the
‘correct’ generalization. Rather, any judgment of generalization appeals to some
intuition or assumption about how sentence structure is represented internally in
the human language system.

Mitchell [1997] defines the inductive bias of a learning algorithm L as any
minimal set of assertions B such that for any target concept c and corresponding
training examples
Dc = {< x, c(x) >} the classification of an unseen instance xi follows by deductive

78 Chapter 4. Connectionist approaches to language processing

inference
∀xi ∈ X : B ∧Dc ∧ xi ⇒ L(xi, Dc)

where X is the domain of L, and L(xi, Dc) is a classification of xi after seeing the
training data D. This means that knowledge of the inductive bias of a learning
algorithm turns generalization into deductive (rather than inductive) inference
from the training data.

The inductive bias of a system consists of a structure bias , which characterizes
how the hypothesis space is structured. On top of the structure bias one can define
additional background assumptions, for instance a simplicity bias that expresses
a preference for simple models, using fewer rules. In algorithms for grammar
induction often the principle of Minimum Description Length (MDL) is used as
a simplicity bias (see sections 2.2.1 and 3.2.2).

There are two sides to a learning algorithm. The first is finding generaliza-
tions, based on similarity of training instances with respect to the structure bias
of a system. The second is to consolidate the found generalizations in the model
by merging, or clustering the training data into a more compact representation,
driven by the simplicity bias. After a merge the internal representations of similar
train instances become identical, resulting in an increased capacity for general-
ization of the system.

While the above discussion focused on discovering similarities between train-
ing instances, it seems that language (syntax) learning exploits the human ca-
pacity for discovering analogies. Analogy measures the similarity of relations
between pairs (consisting for instance of two sentence analyses), and is therefore
of a higher order than similarity between objects. A pair of relations is analogi-
cal, A:B::C:D, if the same or a similar transformation can be identified between
A to B and between C to D, with respect to the structure bias of the system. By
looking for analogical pairs in the training set a learner can discover an induction
step (corresponding, for instance, to a rewrite rule), that is used more than once
in the training set. In Chapter 8, particularly section 8.2.2, I will have much more
to say about learning from analogy, in the context of episodic memory.

4.6 Systematicity and the Chomsky hierarchy

Mitchell’s work on the relation between inductive bias and generalization is im-
portant for the systematicity debate, because it implies that by understanding
the inductive bias of a language learning system, e.g., an automaton or neural
network, one can infer what kind of generalizations one should expect. Specifi-
cally, applied to the Chomsky hierarchy, each family of grammars in the hierarchy
predicts different generalizations.

A famous result in formal linguistics is that the grammar of a natural language
such as English is richer than a finite state grammar, and within the Chomsky
hierarchy occupies at least the place of context free grammars (see section 3.1.2).

4.6. Systematicity and the Chomsky hierarchy 79

Yet, many connectionists do not accept the presuppositions of Chomsky’s proof
about the unsuitability of the FSA as a model of English, because it is based
on reasoning about unbounded recursion. Christiansen and Chater [1999] argue
that the standard view of unbounded recursion is motivated by the assumption
of a competence (phrase structure) grammar, rather than based on empirical
observations of human performance. Models of language, rather than account for
hypothetical behavior at infinity, need only explain finite, observable behavior.
In their opinion the explanandum for a model of human-like recursion is people’s
limited recursive performance (so-called ‘leaky recursion’), and their differential
performance on different types of recursion.

The disagreement on the issue of unbounded recursion has resulted in the
unfortunate circumstance that the Chomsky hierarchy has been largely ignored
by connectionist researchers in the systematicity debate. In the next sections I
will however make the case that, contrary to received wisdom among connection-
ists, the Chomsky hierarchy is still a very relevant reference point in the debate
about the systematicity of language. I show that the objections of Christiansen
and Chater [1999] can be circumvented by changing the point of view from the
generative power of a family of grammars in the Chomsky hierarchy to the kinds
of generalizations that it permits. If one considers the Chomsky hierarchy from
the perspective of language learning and generalization there is no need to take
recourse to assumptions about unbounded recursion. Mitchell’s [1980] observa-
tion about the central role of the structure bias for systematic generalization links
the systematicity debate to the well-understood field of formal grammars.

The structure bias of formal grammars in the Chomsky hierarchy is character-
ized by the variables and rewrite rules they permit (or equivalently, the inductive
bias of an automaton by its possible states and state transitions). While the
structure bias describes the generative power of the grammar, it also constrains
what generalizations can be deductively inferred from a given training set. I
will show in the next section that, for the same training set, as a result of their
different structure biases, regular grammars and context free grammars capture
different similarities between the train sentences, and therefore they make dif-
ferent generalizations. This justifies an approach which considers the observed
systematicity of language as a means to find out something about the inductive
bias of the human language system.

4.6.1 Evaluating the systematicity of formal grammars

Context free grammars are strongly systematic, but regular grammars
are not

To illustrate the point of the previous section let us see what the effect of the
structure bias of regular grammars and context free grammars is on their system-
aticity. Consider the following examples:

80 Chapter 4. Connectionist approaches to language processing

S
cc##

X Y

walks

S
aaaDD

!!!
Z

Sue

W

likes

X

X

John, Mary

Figure 4.5: CFG grammar after learning from the first three examples.

(4.4) John walks.

(4.5) Mary walks.

(4.6) Sue likes John.

Our intuitions about strong systematicity [Hadley, 1994] tell us that these exam-
ples can be generalized to

(4.7) Sue likes Mary.

In a context free grammar (CFG) the analogy between the examples can be
expressed by merging John and Mary into a single category X. This leads to
the grammar of Figure 4.6.1, which produces the desired generalization (‘Sue likes
Mary’).4 Thus, the structure bias of a CFG conforms to the strong systematicity
criterion.

Figure 4.6: (a) Initial FSA after hearing three sentences. (b) FSA after merging
X1, X2 and X6 into X.

On the other hand, suppose the first three sentences from the example are
represented using an FSA as the underlying automaton, as illustrated in Figure
4.6 (a), then merging the non-terminals that accept John and Mary will not only
produce the desired generalization, but also a sentence as ‘Sue likes John walks’

4Moreover, it can be shown that a learning algorithm such as BMM [Stolcke, 1994] (section
3.2.2), which has a CFG bias, will under reasonable initial conditions converge to the correct
grammar, provided it is supplied with a simplicity bias.

4.6. Systematicity and the Chomsky hierarchy 81

S
cc##

NP V P

lies

NP
PPPP

����
PR *

aaaaCC
!!!!

WHO

who

NP VT

NP

PR

PR

John, Mary, Sue

V T

believes, suspects

Figure 4.7: Recursive CFG generating John who Mary who Sue hates likes walks.

(see Figure 4.6 (b)). In fact there is no way for an FSA to produce exclusively the
desired generalizations (as the FSA cannot distinguish between the John/Mary
category in subject or object position), except for the trivial case where nodes
are duplicated for every sentence. Yet, the latter grammar cannot be inferred
deductively from the training data (i.e., given the structure bias). Hence, the
FSA does not satisfy strong systematicity.

Context free grammars exhibit recursive systematicity, but regular
grammars do not

The second case of interest concerns generalizations that are produced by nesting
clauses:

(4.8) John lies.

(4.9) John who Mary believes lies.

(4.10) Mary lies.

(4.11) Mary who Sue suspects lies.

As was argued in section 4.5.1, a reasonable criterion for the systematicity
of language is recursive systematicity, which predicts that English speakers can
generalize the examples to

(4.12) John who Mary who Sue suspects believes lies.

Assuming the underlying representation is a CFG, then from analogy between
the first and second pair of examples a similar transformation can be discovered
that applies to both pairs, and expressed as a rewrite rule of the form NP →
PR who NP VT . This leads to the grammar of Figure 4.7, which indeed produces
the correct generalizations.

82 Chapter 4. Connectionist approaches to language processing

Figure 4.8: Trivial FSA that generates John who Mary who Sue hates likes walks.

An FSA could ‘generalize’ to the final example by copying nodes, as il-
lustrated in Figure 4.8, repeating non-terminals for who, John|Mary|Sue and
believes|suspects at every recursive level. However, this trivial solution does not
follow deductively from considerations of analogy, and therefore it is not a true,
non-arbitrary generalization in the sense of Mitchell [1980]. Hence, the trivial
solution can only be found by coincidence.

Since duplicating nodes is not a fair strategy, the only alternative solution that
generates all 5 sentences is the FSA given in Figure 4.9, but this FSA obviously
overgeneralizes. In sum, the FSA does not satisfy the recursive systematicity
criterion.

Figure 4.9: Overgeneralizing FSA for John who Mary who Sue hates likes walks.

4.6.2 A systematic model of language must have a struc-
ture bias that is at least as expressive as CFG

The previous sections show that the Chomsky hierarchy is in fact a theory about
systematicity, that orders systems with different structure biases according to
how well they generalize. This perspective allows formulating the properties of
regular and context free grammars without making reference to unbounded recur-
sion, hence it is not susceptible to the critique that has been mounted against the
argument from the generative power of context free grammars [e.g., Christiansen
and Chater, 1999]. The conclusion is that, contrary the accepted opinion, con-
straints from the systematicity of language (strong systematicity and recursive
systematicity) provide strong evidence that the human language system has as
least a CFG bias. A more general conclusion is that, in my opinion, it does not
make much sense to distinguish between the notions of systematicity and syntax.

4.7. Systematicity and the Simple Recurrent Network 83

Both refer to the same phenomenon, namely that part of linguistic behavior is
predictable from structural regularities alone.

There are additional and independent arguments for the need for hierarchical
representations, based on general considerations of learning strategy. Models of
language processing that have the same structure bias as the FSA (for instance
the SRN: see the next section) make an implicit assumption that humans have
only a general associative learning mechanism, in which learning is driven by
the discovery of transitions between words [e.g., Saffran et al., 1996]. However,
a more useful approach from a cognitive perspective conceives of learning as
a process of discovering differences between stimuli, that is, learning is driven
by discrimination [e.g., Steels, 1996]. Quoting Edelman [2008, p. 250] “the
only computationally viable approach [to learning a language from a continuous
sound stream] is to seek a partial match between two entire signals, and to decide
that each of the non-matching parts is a candidate for an independent symbol”.
In other words, since only the distinguishing features in the speech signal give
information about the relevant variation in language, it is most efficient to store
only those.

If the brain uses such a discriminative approach to learning it follows that it
employs hierarchical representations. Discriminative learning requires at least a
context free bias, because in order to discover a non-matching part between two
strings, A M1 B and A M2 B, one must compare the strings and detect common
contexts A and B. To do so, the system must be able to align the strings and
hypothesize rules of the form X → A M B, where M can be any variable length
string. Context free grammars do exactly this, hence they are well-designed for a
learning strategy that is based on the discovery of differences. On the other hand,
regular grammars are badly designed for the task of discriminative learning.

4.7 Systematicity and the Simple Recurrent Net-

work

4.7.1 The structure bias of the SRN compares to that of
an FSA

In order to identify the structure bias of neural networks one must focus on their
states and state transitions. In an automaton a state is a theoretical construct
that captures the internal knowledge of a device about relations between inputs
and outputs. In a recurrent neural networks, such as the SRN, the state of the
network at time t denotes the simultaneous activation values of the hidden layer
units.

A closer look at the state transitions of the SRN reveals that the hypothesis
space of the SRN shares its structure bias with the family of regular grammars.

84 Chapter 4. Connectionist approaches to language processing

The activation functions that determine the state transitions in an SRN are of
the same form as the rewrite rules of an FSA: whereas rewrite rules of an FSA are
of the form A→ w, or A→ w B (where w is a terminal symbol and A is a non-
terminal symbol), the activation functions of the SRN are functions of the input
plus at most one earlier (hidden) state. Hence, given the same training data, one
expects the SRN to be able to make the same induction steps as an FSA (hence
to learn the same thing, despite the fact that its states are continuous).

A further argument for the kinship between the SRN and FSA is given by
Jacobsson [2005], who proves that discretization of the state space of an SRN
converts it to an FSA. Servan-Schreiber et al. [1991] show that the SRN, which
they refer to as a ‘Graded State Machine’, can be trained to closely mimic a
simple FSA (the Reber grammar), such that clusters of the hidden layer states
correspond to states of the FSA.

The fact that the SRN has the same structure bias as the FSA implies that

• The SRN is not strongly systematic

• The SRN cannot capture recursive generalizations over constituents

One obvious difference between learning in the SRN and in an FSA is that whereas
discrete state automata produce generalizations by means of a merge operation,
distributed recurrent networks, having a continuous state space instead, produce
generalizations by clustering states in state space. However the continuity of the
state space should not give the SRN any advantage over the FSA in its learning
strategy, nor is it relevant what particular learning algorithm is chosen (e.g.,
gradient descent), because as was argued in section 4.5.3 eventually the only
factor that influences how a system generalizes — in a non-arbitrary way — is
its inductive bias.

Yet, in several publications it is claimed that results obtained with the SRN
on a word prediction task indicate strong and/or recursive systematicity [e.g.,
Elman, 1990, 1993, Rodriguez et al., 1999, Christiansen and Chater, 1999]. I will
investigate these claims in Appendix A.

There exists a long list of connectionist models of language that either use
the SRN as a component in a hybrid system, or share the inductive bias of the
SRN (i.e., exhibit Markovian behavior). To name some, without being exhaustive:
Long Short Term Memory [Hochreiter and Schmidhuber, 1997], SARDSRN [May-
berry III and Miikkulainen, 1999], SRSOM [Voegtlin, 2002], RECSOM [Koskela
et al., 1998], STORM [McQueen et al., 2005], Fractal Encoding Networks [Tabor,
2000]. I will not discuss any of these models here, but note that with respect to
the recursive systematicity criterion they fall in the same category as the SRN.

4.7. Systematicity and the Simple Recurrent Network 85

4.7.2 The SRN does not satisfy the context invariance
criterion

Recall that the context invariance criterion of systematicity states that a sys-
tematic model of natural language should make predictions based on constituent
class membership alone, and independently of literal preceding context. Because
of its built-in sensitivity to context the SRN cannot make predictions based on
the class membership of an arbitrary substring. Since the SRN cannot cut off
history at some point (i.e., it does not make context independence assumptions
as formal systems do), the contextual input always goes back to the first word of
the sentence (or further). Yet, to make a correct next word prediction, the human
language system often must base its decision on how the sentence is broken up
into constituents. Consider the following examples

(4.13) I [told [her parents] ...

(4.14) I [[told her] [parents ...

Both prefixes produce exactly the same state in an SRN, hence the SRN cannot
differentiate between them. Yet, prediction of the sentence continuation critically
depends on the relations between the hypothesized constituent classes, e.g.

(4.15) ...that she is a very smart girl.

(4.16) ...are annoying people.

Figure 4.10: Ambiguous figures. The Necker cube and the duck-rabbit.

Whereas in the SRN the two interpretations of the prefix share a single represen-
tation or state (the so-called principle of superposition), there is evidence that our
cognitive system is in a different state for each of the interpretations. This is re-
lated to the mind’s ability to perform structural disambiguation, which is lacking
in distributed neural networks. In visual processing structural disambiguation is
known under the ‘Gestalt laws of perception’. These formulate the idea that in
perception, like in the examples above, ‘the whole is not the sum of the parts’.
The ambiguous figures in Figure 4.10 illustrate that people jump between dif-
ferent interpretations when looking at a single stimulus. Several experiments
have found neuro-physiological evidence for discrete jumps between concepts for

86 Chapter 4. Connectionist approaches to language processing

a single percept, for instance in binocular rivalry in monkeys [e.g., Leopold and
Logothesis, 1996].

An alternative formulation of the context invariance criterion of systematic-
ity is that a systematic language device must be able to encode and work with
relationships between abstract categories, what Hadley [1994] calls strong sys-
tematicity. In the absence of strong systematicity a language model is forced to
memorize all lexical relations separately, instead of summarizing them in abstract
relations. van der Velde and de Kamps [2006] note that the SRN, because of its
perceived lack of (even weakly systematic) combinatorial productivity has to deal
with a combinatorial explosion of word sequences, and therefore the SRN can only
work with artificial languages with a very limited vocabulary (about 20 words),
and not with natural languages.

Note that the difficulty with encoding abstract knowledge is not a specific
problem of the SRN, but applies to distributed networks in general. The fact
that distributed networks cannot encapsulate information within invariant units
precludes them from encoding abstractions and storing knowledge systematically.

4.7.3 Locality of learning algorithms prevents true gener-
alization of distributed patterns

The lack of ‘context invariance’ of distributed networks is also the focus of the
critique in Marcus [2001]. Marcus showed that if categories are represented in a
distributed manner, i.e., encoded over multiple feature nodes, then they do not
behave like ‘variables’, in the sense that they do not generalize the input-output
relation to all members in the domain of the category. This assumes that the
category can take on any value that can be encoded on the input nodes (it is
‘universally quantifiable’), and that the similarity between representations over
multiple input nodes is preserved during mapping from input to output.

Although Marcus’ argument is quite elaborate, the bottom line is this: because
of the behavior of the learning algorithms in most networks (in particular error
back-propagation), variables that are encoded over multiple nodes do not show the
behavior that should be expected from variables: the nodes do not operate as a
unity (they do not behave as a single variable), but each node learns independently
from the other nodes. This has to do with the fact that learning is local: the
weight adjustments depend only on the activation of the local neighbor nodes.
For example, if one of the set of input nodes that together encode the variable
is never activated (because of an arbitrary choice of training samples), then the
connections emanating from it are never changed, irrespective of what happens
to the connections from the other nodes that represent the same variable. In
this case, the network has no way to tell that all nodes representing the variable
should be treated uniformly. The conclusion is that a network that employs a
distributed representation of variables cannot generalize the learned input-output

4.8. What the systematicity of language tells us . . . 87

relations across nodes. Marcus’ argument of course does not apply to localist
networks, which can represent variables (prototypical categories) using a single
node. Surprisingly, Marcus [2001] easily dismisses this possibility, yet the model
presented in this thesis will use localist representations as a starting point.

Although I agree with Marcus on the premiss that distributed networks can-
not learn certain rules, I disagree with his conclusion that the language system
must therefore have a dual nature — consisting of a connectionist module and a
symbolic rule-based system [e.g., Marcus et al., 1999]. In this thesis I will advo-
cate an approach to modeling cognition that reconciles structure sensitive (but
not symbolic) rules with a statistical way to learning not only the probabilities,
but even the extensional meanings of the rules. As the HPN model, described
in the next chapter, will show, certain rule-like primitive structures that contain
placeholders for variables (slots) can be learned from distributional information
alone — conform the connectionist constraint (i.e., with no innate assumptions
about meaning, but only an innate architecture).

4.7.4 The systematicity of the SRN in the literature

In the previous sections I have argued on theoretical grounds that the SRN is
not suited as a model for systematic language processing, because it does not
satisfy either the context invariance criterion or the recursive systematicity cri-
terion. Nevertheless, claims to the contrary are abound in the literature. For
instance [e.g., Elman, 1990] alludes at strong systematicity by claiming that the
SRN encodes knowledge of abstract word categories implicitly. Further, in [El-
man, 1991] it is claimed that the SRN can systematically represent grammatical
knowledge about constituent structure implicitly, using the displacement of the
hidden states in state space to encode depth of embedding. This seems to suggest
that the SRN satisfies the criterion of recursive systematicity.

In Appendix A I will critically scrutinize those claims in two case studies. The
gist of my critique is that neither the so-called ‘implicit’ word categories nor the
knowledge of ‘displacement’ are internally encoded in a form that the SRN can
access it. Hence, such representations are not causative of any behavior of the
SRN, but rather attributed as post-hoc explanations for its behavior.

4.8 What the systematicity of language tells us

about the connectivity of the brain

To summarize this chapter so far, from considerations of the systematicity of
language two major criteria were identified that realistic connectionist models of
language processing must satisfy (section 4.5.2): recursive systematicity, implying
that the inductive bias of the system must be at least as expressive as a CFG, and

88 Chapter 4. Connectionist approaches to language processing

context invariance. Subsequently, it was shown that the SRN fails both criteria,
and distributed networks in general fail the second criterion [e.g., Marcus, 2001].

One may wonder where this leaves connectionism as a cognitive theory? I
believe the connectionist philosophy can still play a significant role in the linguistic
debate, if one takes advantage of the lessons learned from the systematicity of
language to design a better type of connectionist model. Language is after all
perhaps our richest source of information about the structural organization of the
brain.

In the remainder of this section I will argue that the systematicity debate
forces us to rethink the nature of connectivity in the brain and consequently
in neural networks. I will show that if one abandons the notion of activation
spreading as the exclusive means of communication between units in a connec-
tionist network, and if one accepts that network units can represent assemblies
larger than single neurons, then there exist connectionist solutions both for the
context invariance criterion and the recursive systematicity criterion.

4.8.1 The context invariance criterion

In section 4.5.2 I formulated the context invariance criterion of systematicity,
which states that a systematic model of natural language should make predic-
tions based on constituent class membership alone, and independently of literal
preceding context. Formal, symbolic grammars satisfy this criterion by virtue of
making independence assumptions. Independence assumptions allow to encode
the knowledge of a grammar at an abstract level, as a set of rules over variables.

From the perspective of the automaton, context invariance is achieved by
functionally separating the output of a state in the automaton from the literal
content of its input — I will refer to this as encapsulation of states.5 Encapsu-
lation does for states what independence assumptions do for variables: it creates
abstraction, or invariance by cutting off literal context at some point in history,
and in doing so it factors out smaller, and more abstract units of production than
entire sentences.

Encapsulation in connectionist networks

The key to bridging the gap between symbolic and connectionist systems, it seems,
is to endow the latter with a capacity for encapsulation of their states.

For an idea of how this can be achieved one may draw inspiration from the
brain’s solution for creating invariant representations. As was explained in section
2.1.3, the mechanism that the cortex employs for this purpose also amounts to
encapsulation of information, as it is relayed from lower levels to higher levels
in the cortical hierarchy: according to the MPF [Hawkins and Blakeslee, 2004]

5In the systematicity debate the term encapsulation is often used to refer to the separation
between the syntactic and lexical-semantic modules. This is not what is meant here.

4.8. What the systematicity of language tells us . . . 89

columns in higher cortical levels create invariant representations of (sequences
of) columns in lower level regions by representing the lower level sequence as
a constant ‘name’. The name then serves as a building block for larger and
even more invariant patterns. Essentially, this means that the brain works with
pointers.

An important claim of [Hawkins and Blakeslee, 2004] and of this thesis is that
encapsulation serves as the neural basis for abstraction. This points at a fun-
damental conceptual difference with the distributed network approach. In dis-
tributed connectionism generalizations are based on the similarity of distributed
representations, and implicit abstract ‘categories’ can be inferred from clusters
in the hidden unit space. The distributed approach however cannot deal with
higher order abstraction (which was argued to be required for systematic hierar-
chical language processing), because it is impossible to use clusters as building
blocks in further generalizations.

Following [Hawkins and Blakeslee, 2004], I propose that encapsulation can be
implemented in a connectionist network by letting the communication between
units depend not (only) on their activation, which is by definition context sen-
sitive, but also on some intrinsic (possibly acquired) representation of the unit,
which is context invariant. In the latter case the predictive behavior of a unit
depends on its identity alone, as required by the context invariance criterion.

To enforce encapsulation in a connectionist network one must thus introduce a
functional separation between the input and the output activation of a unit, or in
other words create a so-called abstraction interface.In the HPN model, discussed
in the next chapter, this is achieved by having activated units produce a constant
output pattern (learned through experience), that represents the unit’s relative
topological position in the network.

By means of encapsulation of their states connectionist networks can emulate
the context invariance property of variables, without actually using variables, but
by creating invariants. For the connectionist-symbolist distinction it is important
to emphasize the difference between invariants and variables: while both function
as ‘placeholders’, the extensional scope of a variable is globally specified in ad-
vance, or innately, whereas the extensional scope of an invariant is incrementally
constructed in the course of learning through interaction with the external world.

Encapsulated units act as placeholders, because the same unit can bind to a
range of different ‘filler units’ at its input. At the same time they are invariants,
because their intrinsic representation (the ‘name’), and hence their extensional
scope, is learnable from (statistical) experience. (The next chapter illustrates
these principles with the HPN model: units in HPN have ‘slots’, where they can
bind to other units (implementing the placeholder function), and at the same
time they have adjustable (hence, not innate) representations, which determine
variable relations with other network units.)

This means that a connectionist, statistical learning mechanism can learn
algebra-like rules that represent relationships between placeholders, arguing against

90 Chapter 4. Connectionist approaches to language processing

the suggestion of [Marcus et al., 1999] that a specialized, symbolic rule learning
device must be assumed in addition to a statistical learning mechanism. It also
means that, contrary to received wisdom [e.g., Fodor and Pylyshyn, 1988], con-
nectionism and a combinatorial, rule-like behavior are not at odds.

4.8.2 Dynamic binding in syntax

For a complete solution for syntactic processing in connectionist networks it is still
needed to provide an explanation of how encapsulated syntactic units connect,
or bind to one another. In language, the binding problem is concerned with the
question of how independent syntactic and lexical elements combine into a single,
coherent structure representing a (parse of a) sentence [e.g., Jackendoff, 2002, p.
59]. The challenge arises from the combinatorial productivity of language, that is
the ability to produce and comprehend an unlimited number of novel sentences.
As was argued in section 4.3.2, fixed, conjunctive bindings, as used in activation
spreading networks, cannot account for productive language use. Moreover, fixed
connections are inherently activation-dependent, thus cannot support context-
invariant operations between encapsuled units.

In order to support flexible, context-invariant syntactic operations it has been
suggested that some form of dynamic binding of the units must be in place [e.g.,
van der Velde and de Kamps, 2006, Hummel and Holyoak, 1997] (see also section
2.4). The general idea behind dynamic binding is that units (e.g., neural assem-
blies) can be flexibly grouped in novel configurations, without a need for pre-
existing, dedicated binding neurons (so-called ‘grandmother cells’). To achieve
this, most proposals for dynamic binding make use of ‘labels’, or ‘tags’, to group
neurons, for instance the ‘oscillation phase’ in synchronous binding, or ‘enhanced
activity’ (attention) in serial binding.

In section 2.3 I proposed that syntactic binding, or substitution, can be con-
strued by analogy to a particular solution for dynamic binding, which has been
proposed by Roelfsema [2006] as the brain’s solution for visual contour bind-
ing. Recall that according to this proposal contours are serially bound in the
visual cortex by the spreading of a label (of enhanced activation) through lateral
connections between topologically neighboring neurons (see Figure 2.5 in section
2.3).

There is however a crucial difference between the visual categories involved
in contour binding and lexical and syntactic categories. Whereas the former
represent local, perceptual features (e.g., orientation or shape), the latter represent
goal-driven conceptual features, which are defined by their occurrence in certain
sentence contexts. In section 2.6.2 I argued that lexical categories reside in the
‘conceptual poles’ of cortical columns, while the corresponding acoustic category
(i.e., the sound of the word) is located in the ‘perceptual pole’ of the same column.
Columns thus simultaneously participate in a ‘bottom-up’ (perceptual) network
and a ‘top-down’ (conceptual) network.

4.8. What the systematicity of language tells us . . . 91

Figure 4.11: Columns representing words exist simultaneously in two topologies;
one pole sits in a perceptual topology, and the other pole in a conceptual, or
lexical topology.

For syntactic binding it would be desirable that the ‘top-down’ syntactic net-
work also realizes a topology, since whether encapsulated units can dynamically
bind should depend on their intrinsic vector representation alone. However, be-
cause the position of the columns is already fixed by their arrangement within
an ‘acoustic’ topology (according to their perceptual poles; see Figure 4.11), this
means that in general columns representing similar syntactic or lexical categories
on their conceptual poles (e.g., dog and cat) are not also physical neighbors in
the cortex. Therefore, the exact same solution for serial binding of visual con-
tours, which makes use of lateral connections between neighbors in a perceptual
topology, would not be practical for dynamically binding syntactic assemblies.

The question is thus whether a comparable solution as for serial contour bind-
ing can be found that operates within the ‘top-down’ syntactic network, and
that dynamically binds syntactic assemblies with similar representations. The
proposed solution must at least show that dynamic binding in syntax is not in-
consistent with the connectionist constraint of locality, hence can in principle be
implemented in neural hardware.

The switchboard construction

As a mechanistic explanation for syntactic binding I speculate that the brain
makes use of a switchboard construction. This means that rather than being
directly connected, syntactic assemblies are interfaced through a central hub that
implements a kind of telephone switchboard. The function of the switchboard is to
redirect a label (for instance, enhanced activation) from one assembly to another,
of which the (topological) address is given by the sending assembly. By virtue
of this central addressor system neural assemblies from diverse and physically
remote areas in the cortex can flexibly connect.

An interesting possibility is that the switchboard interprets the ‘names’ (i.e.,
the intrinsic syntactic representations encoded in the name fields of the columns)
as topological addresses. In that case the switchboard de facto realizes a vir-
tual syntactic topology, based on the conceptual representations (addresses) of
columns that are connected to the hub.

92 Chapter 4. Connectionist approaches to language processing

Although the idea of a switchboard may at first sight seem unlikely, it achieves
many important goals at the same time, that could never have been achieved if
neural assemblies were connected directly via hardwired lateral connections.

• Sparse connectivity. Indirect connectivity of the units via a central hub
requires far less connections than a network design where all units are fully
interconnected (O(n) and O(n2) respectively, where n is the number of
units). The hypothesis that the connectivity of the brain conforms to a so-
called ‘small world network’ (which entails that connectivity is organized
around several central clusters, such that any given cortical area can be
linked to any other area with only a few projections) is supported by several
anatomical studies and graph theoretic analyses [e.g., Young, 1993, Stephan
et al., 2000].

• Productivity. The presence of a switchboard intermediating between assem-
blies provides the brain with an ability to flexibly bind previously unseen or
unconnected neural assemblies. New assemblies can be easily integrated in
the network without a need for full-scope rewiring (a known problem for dis-
tributed networks), and existing assemblies can be combined in productive
ways.

• Abstraction. The switchboard provides an interface that separates the ac-
tivitation of connected assemblies (i.e., it enforces encapsulation). This is
a necessary condition supporting the ability to perform context invariant
operations in the network.

• Topological organization. Because the switchboard connects assemblies based
on their addresses, concepts can be represented with respect to a position
in a ‘virtual’ topology, independently of individual neurons. Moreover, con-
ceptual (and grammatical) knowledge can be expressed as relations between
regions in a topology, making it much more robust against local damage or
noise (see in this respect also the discussion in section 2.6.1).

• Learning consists of topological self-organization. Given a mechanism for
updating the intrinsic representations (addresses) of columns connected
to the switchboard, then learning becomes a matter of topological self-
organization. It is far more efficient to update topological representations
than to rewire the network.

• Explicit encoding of binding history/network activity. The bindings that
are established in the network are made explicit as they pass through the
switchboard. Since all binding operations are handled in one central place
in a serial manner, the brain can record temporal activation paths through
the network. This will be important for encoding episodic memories, which
consist of sequences of successively activated assemblies. (The presumed

4.8. What the systematicity of language tells us . . . 93

role of the switchboard in memory consolidation will be discussed in Chapter
8.)

In section 5.7.1 I propose a simple implementation of a switchboard in a connec-
tionist network, that combines all the above features, while complying with the
constraint of locality of interaction.

4.8.3 The recursive systematicity criterion

Connectionist models of language must also satisfy recursive systematicity, i.e.,
have at least the inductive bias of a CFG (section 4.5.2). In section 4.3 I discussed
connectionist models that do have an explicitly built-in ability for recursive pro-
cessing, namely RAAM [Pollack, 1988] and and the ICS architecture of Prince
and Smolensky [1997]. However, both RAAM and the ICS crucially rely for their
solution of encoding hierarchical structure on the assumption of global, and in-
nate meanings of the network units (i.e., ‘roles’ that define the position in the
tree), and this makes their approach intrinsically symbolic.

From philosophical considerations, I believe that the only way in which struc-
ture representation can be accomplished by an autonomous system such as the
brain (i.e., in a way that complies with the connectionist constraint of section
4.2.1, and avoids reliance on external interpretations) is to use the internal hier-
archical structure of the brain to map the hierarchical representations of sentences
onto. In this case the structural representation of the system does not depend
on any (external) interpretation, but can be read off from the internal configu-
ration. According to this solution there is a stock of (initially blank) complex
primitive units with an internal structure, resembling little ‘treelets’, that can
be dynamically bound together into larger trees. Like the treelets proposed by
Marcus [2001, p. 108], the complex units have registers, or local memories, that
keep track of the internal state of the unit.6

The hypothesis of primitives (cortical columns) in the brain with internal
hierarchical structure (emulating a CFG bias) is backed up by evidence from the
functional architecture of the cortex. Hawkins and Blakeslee [2004] propose that
cortical columns of higher regions represent temporal sequences of patterns from
lower level regions (i.e., through hierarchical temporal compression). When they
unfold such sequences implement a branching structure, similar to treelets.

In sum, on the basis of the review in this chapter it can be concluded that there
is need for a radically new approach to connectionism that is more compatible
with the hierarchical, columnar and topological organization of the cortex, with

6Marcus [2001, p. 108] makes the case for encoding hierarchically structured knowledge
in the brain using a set of prestructured templates called treelets. The mind has a large
repository of empty treelets on hand, that can be filled with new knowledge. Marcus’ treelets
possess register sets (local memories) where information, such as lexical meanings, can be stored.
However, Marcus’ treelets cannot be dynamically bound, and cannot learn, and as far as I know
his ideas have not been implemented.

94 Chapter 4. Connectionist approaches to language processing

its treatment of invariant representations, and with the systematicity demands of
language. I propose a new framework for connectionism called the Hierarchical
Prediction Network (HPN), which will be presented in the next chapter.

Chapter 5

The hierarchical prediction network

The current chapter describes an instantiation of
the neural theory of grammar that was proposed in
Chapter 2, called the hierarchical prediction network
(HPN). The HPN model demonstrates how the prin-
ciples of dynamic binding and encapsulation of states
can be implemented in a connectionist network, allow-
ing for productive, combinatorial operations. Phrase
structure is accounted for in HPN by introducing com-
plex network units that perform temporal compres-
sion of their inputs, incorporating the idea of hierar-
chical temporal compression from the Memory Pre-
diction Framework. The presence of local registers in
the network units enables HPN to function as a full
syntactic (left corner) parser.
HPN offers a connectionist account of the origin of
syntactic categories, that does not depend on an in-
nate specification of category labels. HPN assumes a
continuous category space which dynamically adjusts
itself to the linguistic input. Learning a grammar in
HPN amounts to the formation of a syntactic topology
through self-organization, based on neurally plausible
principles. I show that as a result of learning, re-
gions gradually emerge in the topology that reflect
the traditional discrete syntactic categories. HPN is
empirically evaluated on the task of semi-supervised
grammar induction from bracketed sentences, both on
artificial language and on realistic, spoken child lan-
guage. Finally, I will discuss some limitations of HPN
that motivate an extension of the model with episodic
memory.

95

96 Chapter 5. The hierarchical prediction network

5.1 HPN architecture

To introduce the HPN framework, before presenting the formal model, it is helpful
to approach it from traditional linguistic theory. Figure 5.1 illustrates some of the
core design features of HPN and how they map to classical linguistic concepts.
As shown in Figure 5.1 (a), the role of rewrite rules is played by complex units,
so-called compressor nodes, that perform temporal compression on their inputs.
The root of a compressor node compares to the left hand side of a context free
rewrite rule, while its slots (the ‘legs’ in the Figure) correspond to the right hand
side of a rewrite rule. An important difference is however that the slots of a
compressor node are not associated with any particular non-terminal, and roots
and slots have no meaningful labels.

Figure 5.1: Core design features of HPN. (a) Hierarchical temporal compression
is performed by complex units that temporally integrate a sequence of inputs,
and which take on the role of traditional phrase structure rules. (b) Discrete
syntactic categories are replaced by a large number of units that are situated in a
continuous high-dimensional vector space. (c) Dynamic, serial binding functions
as the neural correlate of substitution.

Figure 5.1 (b) shows that instead of employing discrete syntactic categories,
the HPN network is initialized with a large number of units within in a continuous
high-dimensional vector space. As the space self-organizes, regions in the space
can be identified that correspond to conventional linguistic category labels. In
Figure 5.1 (c) the symbolic operation of label substitution is shown to have a
neural counterpart in dynamic, serial binding. Instead of a discrete notion of
substitution mediated by label identity, in HPN substitutability between units is
based on the proximity of their vector representations within the category space.

5.1. HPN architecture 97

Unlike most other connectionist models, HPN assumes that the basic orga-
nizational and computational units of language processing are cortical columns
rather than neurons [Mountcastle, 1997]. Consequently, one may expect that
units in the HPN network possess some sophisticated properties that are not
present in the simple McCulloch-Pitts neuron. Below the main components and
terminology used in the HPN framework are listed. In section 5.7 I will present
the neural motivation behind each of the components of the model.

Input nodes Input nodes interact with the external environment; in the lan-
guage domain every input node is assumed to correspond to a unique word
from the lexicon, and it fires whenever this word is observed within a sen-
tence. Sentences are presented to the network one word at the time, and
HPN processes them incrementally from left to right.

Compressor nodes Apart from input nodes, HPN also assumes so-called com-
pressor nodes. Compressor nodes have a root and two or more ordered slots,
with whom the root forms a fixed unit (see Figure 5.2 (b)). They owe their
name to the fact that each compressor node dynamically binds a temporally
compressed sequence of two or more nodes to its slots.1 Hence, they encode
sequences of words or phrases. A compressor node fires when all of its slots
are bottom-up activated (bound) in the correct order.

Slots The slots of the compressor nodes function as sites in the network where
the nodes dynamically bind to each other. Binding, or substitution is oper-
ationalized by temporarily storing a set of identical tags in the slot and in
the root of an input or compressor node that is bound to it (see section 5.7
for the neural implementation).

Substitution space The substitution space is a high-dimensional vector space
RN that encodes substitutability relations between units. The roots of (in-
put and compressor) nodes have vector representations with respect to this
basis (see Figure 5.2). These representations are initially random, but after
training the network they will come to reflect the distribution of the training
data (see section 5.4). If learning has been successful, and the substitution
space has self-organized, within its topology regions will emerge that cor-
respond to conventional syntactic categories, such as nouns and verbs (see
Figure 5.2). Thus, regions in substitution space define a continuum of cat-
egories, and a node’s location in substitution space determines its graded
membership to multiple categories. The slots of the compressor nodes rep-
resent independent substitution sites that span an orthogonal basis for the
substitution space, hence its dimension N equals the total number of slots.

1Recall, that hierarchical temporal compression is a key element in the Memory Prediction
Framework. Compressor nodes are an instantiation of this idea.

98 Chapter 5. The hierarchical prediction network

Dynamic binding and substitution Whereas in symbolic parsers rewrite rules
combine through the formal operation of label substitution, in HPN units
bind through serial, dynamic binding. This is realized by passing a tag
between a bound node and the slot it binds to, involving a local, material
operation and a switchboard construction (see section 5.7). Two identical
tags that are stored in the slot and the node on two sides of a binding effec-
tively implement a pointer, the so-called path connector. Thus, the dynamic
binding operator connects activated compressor nodes and input nodes into
a single connected path when a sentence is processed, implementing a neural
correlate of substitution (see also section 5.3).

Local neuronal memories HPN assumes that slots have local memories, where
tags are temporarily stored for as long as the parse process lasts.

Substitutability The probability of substituting a node in a slot, is given as a
topological distance in substitution space. In the current implementation
of HPN the inner product between the slot and the root representations is
used as a measure of distance.

Figure 5.2: Schematic illustration of the substitution space. The overlapping
regions corresponding to classical syntactic categories are imaginary. Input nodes
are on the left, compressor nodes on the right.

The description of the HPN network can now be stated more formally:

Definition 1 (The hierarchical prediction network). The hierarchical prediction
network (HPN) is a 6-tuple 〈VT , L, C,M, ◦, P 〉 where VT is an alphabet of symbols,
or words, called the lexicon; L is a set of input nodes, which are pairs of words
w ∈ VT and input node roots r ∈ RL in VT ×RN ; (Here R = RL∪RC is defined as
the set of roots of input nodes and compressor nodes.) C is a set of compressor
nodes, which consist of a root r ∈ RC in RN and two or more slots s ∈ RN in S
(the set of slots); M is a metric on RN , which is called the substitution space, on
which a distance function is defined (the inner product 〈x,y〉 =

∑
i xi · yi); ◦ is

5.2. Representational power of HPN 99

Figure 5.3: Enlarged image of a compressor node. The vector representation of
the root determines its position in the high-dimensional substitution space (only
4 dimensions are shown).

a substitution operation, which is defined only between roots and slots (i.e., on
RL∪RC×S), and only if 〈r, s〉 6= 0; one may also define substitution probabilities :
P◦(r ∈ RL ∪RC , s ∈ S) = f(〈r, s〉).

5.2 Representational power of HPN

The representational power of HPN is at least equal to that of context free gram-
mars (CFGs). It can be shown that the latter are a special case of an HPN
grammar. This means that any CFG can be represented as a set of input nodes
and compressor nodes in HPN with appropriate choices for their representations,
i.e., by locating slots and roots at the appropriate positions in substitution space.2

For the interested reader Appendix B.2 describes a conversion procedure from a
CFG grammar to an HPN representation, such that those and only those sen-
tences that are successfully parsed by the CFG grammar are successfully parsed
by the HPN grammar.

In this section I only give an example of a conversion from PCFG to proba-
bilistic HPN. Table 5.1 shows a toy PCFG with relative clauses, and Figure 5.4,
together with a specification of the vector representations in Table 5.2, shows
the corresponding HPN grammar. By convention all slots are orthogonal, thus
S1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); S2 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), etc. (the index i
of slot Si in Figure 5.4 indicates its only non-zero component.)

By defining a probability for binding a node to a slot one can assign proba-
bilities to parses in HPN. The binding probability between a node and a slot is a

2The idea that the non-terminals of a CFG can be represented as points in a continuous vector
space has been proposed before in Vector Space Grammars (VSG) [Stolcke, 1991]. With respect
to their representation VSGs are similar to HPN, but otherwise (e.g., learning, combinatorial
operations) the formalisms are quite different.

100 Chapter 5. The hierarchical prediction network

S → NP VP (1.0)
NP → PropN (0.2) ‖ N (0.5) ‖ N RC (0.3)
VP → VI (0.4) ‖ VT NP (0.6)
RC → WHO NP VT (0.1) ‖ WHO VP (0.9)
VI → walks (0.5) ‖ lives (0.5)
VT → chases (0.8) ‖ feeds (0.2)
N → boy (0.6) ‖ girl (0.4)
PropN → John (0.5) ‖ Mary (0.5)
WHO → who (1.0)

Table 5.1: Toy probabilistic context-free grammar with relative clauses (Adapted
from [Elman, 1991]). Probabilities are indicated in brackets.

Figure 5.4: HPN grammar corresponding to the toy grammar of Table 5.1. Com-
pressor nodes are labeled X1, X2, etc., and their vector representations are given
in Table 5.2 (input nodes are not shown). The labels of the corresponding toy
grammar are indicated within brackets.

Compressor nodes
X1 (S) -
X2 (NP) (.3 0 0 0 0 .3 0 .3 0 0 0)
X3 (VP) (0 .6 0 0 0 0 0 0 0 0 .6)
X4 (RC) (0 0 0 .1 0 0 0 0 0 0 0)
X5 (RC) (0 0 0 .9 0 0 0 0 0 0 0)
Input nodes
John = Mary = (.1 0 0 0 0 .1 0 .1 0 0 0)
lives = walks = (0 0 0 0 .5 0 0 0 .5 0 0)
boy = (.3 0 0 .6 0 .3 0 .3 0 0 0); girl = (.2 0 0 .4 0 .2 0 .2 0 0 0)
chases = (0 0 0 0 .8 0 0 0 .8 0 0); feeds = (0 0 0 0 .2 0 0 0 .2 0 0)
who = (0 0 0 0 0 0 1 0 0 1 0)

Table 5.2: Node representations of the HPN grammar depicted in Figure 5.4.

5.3. Parsing with the HPN grammar 101

function of the inner product of their vector representations in substitution space
(assuming vectors are normalized). For example, Pbind(X 2, S1) = 0.3.

The product of the probabilities of all bindings involved in an HPN derivation
gives the HPN parse probability.The reader may verify that for any parse of a
sentence produced by the artificial PCFG grammar of Figure 5.1 there exists a
parse by the corresponding HPN grammar with the same branching structure
and the same probability as assigned by the PCFG.

5.3 Parsing with the HPN grammar

A key feature of HPN, which distinguishes it from most conventional neural net-
works is an ability to assign a constituent structure to sentences. The component
responsible for the network’s ability to parse is a dynamic binding operation,
which functions as a neural correlate of substitution (see section 2.4 for the moti-
vation and section 5.7 for implementation details). Dynamic binding implies that
tags are temporarily stored in the slots of compressor nodes and in the nodes that
bind to them during sentence processing. A pair of identical tags implements a
so-called path connector , functioning as a pointer from a slot to a node that has
bound to the slot. An ordered sequence of path connectors stored in the local
memories of the units constitutes a neural correlate of a stack . Whereas in sym-
bolic parsers the stack is an abstract construct, that operates externally to the
system, the HPN stack is distributed over the nodes that participate in a parse.

Using the path connectors, HPN can keep track of the trajectories of activation
through the network as well as the branching decisions along the path. From the
path connectors a derivational path can be reconstructed that corresponds to a
parse tree. In HPN parsing to arbitrary many recursive levels and with arbitrary
branching structure is possible. Figure 5.5 shows some typical parsing scenario’s
in HPN.

Figure 5.5: Scenario’s of three HPN parses. i) ((a b c) d e), ii) (a b (c d e)), iii)
(a b ((c d e) f g)). Path connectors are indicated by arrows.

Definition 2 (HPN parse and derivation). A parse in HPN is a connected tra-
jectory through the HPN network that binds a set of input and compressor nodes
together through path connectors. An HPN derivation is an ordered sequence of
steps through the HPN network, that fully determines an HPN parse, starting

102 Chapter 5. The hierarchical prediction network

from any compressor node, and every subsequent step obtained by application of
the substitution operator. A parse of a sentence x1, x2 . . . xn is successful if there
exists a derivation such that

1. every successive word xi in the sentence has its associated input node bound
to a slot of a compressor node, while the order of the slots in every com-
pressor node is respected.

2. every slot of every compressor node in the derivation is bound either to an
input node (a word), or to the root of another compressor node (a phrase);
there is only a single compressor node with an unbound root.

3. neighboring slots of a compressor node are bound to nodes that process
adjoining parts of the sentence.

Figure 5.6: Derivation of the sentence Sue eats a tomato. The numbers correspond
to the word position in the sentence. Dotted lines indicate bindings.

A (simplified) example of an HPN derivation is given in Table 5.3, and illus-
trated in Figure 5.6 for the sentence Sue eats a tomato.3 The figure also shows
the mapping between an HPN parse and a conventional parse tree.

X → s1 s2 s1 ⊗ Sue
Y → s3 s4 s5 ⊗ eats
Z → s5 s6 s3 ⊗ a
s2 ⊗ Z s4 ⊗ tomato
s6 ⊗ Y

Table 5.3: A derivation of the sentence Sue eats a sandwich. Capital letters
indicate compressor nodes; s1, s2, etc. indicate slots; italics indicate input nodes;
⊗ indicates a binding.

3As will be explained in section 5.3.2, the word position (indicated in the Figure) is one of
two numbers that characterize the state of a node in the HPN network.

5.3. Parsing with the HPN grammar 103

5.3.1 Probabilistic left corner parsing with HPN

HPN implements a left corner parsing (LCP) strategy to search for a syntactic
analysis of a sentence. Left corner parsing [Rosenkrantz and Lewis II, 1970] is a
cognitively plausible parsing strategy, because it proceeds incrementally from left
to right, and combines top-down and bottom-up processing. This is compatible
with a commonly held view of cortical processing and complex object classification
in different modalities [e.g., Ullman, 2007, Hawkins and Blakeslee, 2004]. In this
view, processing in the brain takes the form of an interaction between top-down
hypothesis formation followed by prediction on the one hand, and bottom-up
expectation matching of the hypothesis to the input signal on the other hand.

As a matter of fact, top-down parsing is not an option in HPN, neither is
strictly bottom-up parsing, because in both strategies the search would never
terminate, as in a typical initial set-up every slot of an HPN compressor node can
bind to the root of any other node. Moreover, since there are no labels in HPN
(or for that matter in the brain) there does not exist a priviliged start category
(i.e., S), from which to start the top-down parsing process; in HPN a derivation
can start from (and a parse can be rooted by) any arbitrary compressor node. In
left corner parsing on the other hand, the search process is initiated by bottom-up
activation of words, and constrained by top-down derivation of goal categories,
while recursive application of a rule is limited to one step.

As was explained in section 3.1.3, in LCP a derivation of a sentence involves
three parse operations: shift, attach and project. The difference between HPN
parsing and symbolic left corner parsing is that in symbolic left corner parsing
one compares a left corner category to a goal category, whereas in HPN one tries
to match the root of a (compressor or input) node to a left slot in case of project,
or to a non-left active slot (called a goal slot) in case of attach. Further, symbolic
left corner parsing starts a parse with the initial state S as a goal category,
whereas in HPN any compressor node can initiate a parse. Appendix B.1 gives
the pseudo-code of an algorithm for deterministic and serial parsing in HPN.

In the experiments of this chapter I have used a probabilistic version of this
algorithm to compute the most probable parse of a sentence. In this case binding
is not all-or-nothing, but it has a certain binding probability that can be computed
from the metric (the topology). The conditional probability of binding the root of
a particular node to a slot, given the root, is given by the inner product of the root
vector and the slot vector, normalized by summing over the inner products of the
root vector with all slot vectors. The probability of a parse can then be calculated
as the product of the binding probabilities involved in an HPN derivation.

5.3.2 HPN node states

In order to keep track of multiple trajectories through the network that run in
parallel (possibly crossing the same node multiple times), and to track back a

104 Chapter 5. The hierarchical prediction network

trajectory, HPN must distinguish the particular state of a node that participates
in the parse. A node state refers to a specific instantiation of a compressor or
input node in a parse, where multiple instantiations involving the same node
within a single parse are possible. In analogy to states in a Earley parser [Earley,
1970] (see section 3.1.11), in HPN the state of a compressor or input node is
characterized by means of its unique root X, its active slot (compare the position
of the dot in an Earley state) and 2 additional numbers, i and j. In HPN j
is called the rootIndex, that is the index number given to the production root
when it was first activated; i is called the slotIndex associated with the active
slot. With the formal definition of a node state it is possible to make some of the
concepts that were introduced earlier more precise

Definition 3 (HPN node state). An HPN node state S, associated with a (input
or compressor) node X, is a 4-tuple {X,n, i, j}, where X uniquely identifies the
root of the node, j is the root index, i is the slot index associated with the active
slot, and n is the ordinal number of the active slot in the production (the leftmost
unbound (free) slot that is expecting bottom-up input).

Definition 4 (Completion). A node state is called complete if all slots associated
with the node have been bound. This is annotated by {X, c, i, j}. A state that
is not complete is called incomplete. The state of input nodes is complete by
default. (Given an input node W representing a word w, and given that word
w occurs at position i in the sentence, then by convention the state of the input
node is {W, c, i, i+ 1}.)

Definition 5 (Path connector). Given node states S, the set of incomplete node
states, I, and the set of complete node states, C, then a path connector P is a
function (or pointer) P : Si ∈ I → Sc ∈ C from an incomplete to a complete
node state.

Definition 6 (Substitution operator). The substitution operator Σ is a function
Σ : (C × I) ∪C → I ×P . In words: the substitution operator is a function from
a complete state (in case of projection) or from a complete plus an incomplete
state (in case of attachment), that creates a new incomplete state plus a path
connector from the new state to the complete state.

5.4 Learning

While thus far it has been shown that a grammar can be represented in HPN (e.g.,
see section 5.2), the added value of the connectionist approach is in its ability
to actually learn syntactic representations. In HPN parsing and learning are
complementary, as node representations are adjusted after every parse. Although
I have not yet discussed the implementation of a parser for HPN, we may assume

5.4. Learning 105

for now that an optimal parse has been found and the bindings between nodes
are slots are available for learning.

In order to induce a meaningful topology, HPN must somehow induce the
vector representations of the nodes from the distribution implicit in the corpus.
Like the BMM algorithm [Stolcke and Omohundro, 1994] (see section 3.1.11) HPN
concludes that two nodes are syntactically (paradigmatically) related when they
appear in similar contexts (i.e., in the same slot). However, unlike the discrete
merging step of BMM, HPN makes the nodes more substitutable in a gradual
way, by decreasing their distance in substitution space upon encountering similar
contexts. Following is a sketch of the algorithm:

1. Initialization. Create input nodes with random representations for every
distinct word in the corpus. Specify the number of productions of each size
(i.e., number of slots), and create a compressor node with random represen-
tation for each production. Initialize all slot representations orthogonally
to each other.

2. Parsing. For every sentence, let HPN compute the most probable parse (as
explained in section 5.2). Recover the productions and bindings involved,
using the path connectors.

3. Learning. For every binding in the most probable derivation, move the
bound node and slot closer to each other in substitution space. Adjust the
representation of the node n that is bound to slot s according to ∆n = λ×s,
with (decreasing) learning rate λ. Also adjust the representation of the
bound slot s according to ∆s = λ× n.4 (Alternatively, one may adjust the
representations of the nodes in the neighborhood h of the ‘winning nodes’,
in proportion to their distance in substitution space.5)

As can be inferred from the learning step, the internal representations of words
and syntactic categories are gradually changed from idiosyncratic (i.e., not corre-
lated with other node representations) to systematic (and abstract), when they
participate in more slots. Two input nodes that often participate in the same
slot(s) will be gradually merged into a single part of speech category (see the
example in the next section). By shrinking the neighborhood, and decreasing
λ with time, as in a Kohonen network, a topology over node representations is
incrementally induced in substitution space, based on the corpus distribution.

4These update rules are compatible with an inner product metric. If instead Euclidean dis-
tances are used to compute binding probabilities, the update rules should be defined accordingly,
thus ∆n = λ× (n− s).

5Note that since units in HPN do not exist on a ‘grid’, one cannot define a ‘physical’ neigh-
borhood as in the Kohonen learning algorithm. Instead of updating the physical neighbors of
the winning node one must update its neighbors in weight space. In this respect the topology
of HPN is more related to a so-called neural gas [Martinetz and Schulten, 1991], which is a
variation of the Kohonen network without a grid.

106 Chapter 5. The hierarchical prediction network

5.4.1 An example of the formation of abstract categories
through self-organization of the topology

Let us assume the HPN network is initialized with lexical nodes corresponding
to the words dog, cat, feed and the, each having a random representation in sub-
stitution space, and a number of compressor nodes with random representations
of their roots (see Figure 5.7). Suppose we then parse a corpus consisting of the
two sentences feed the dog and feed the cat. What will happen is that the parse-
and-learn cycle will cause the nodes for dog and cat to become related through
self-organization of the topology, reflecting the corpus distribution. The reason
is that if two words occur in the same contexts they tend to bind to the same
slots. For instance, after parsing the first sentence, feed the dog, the two left slots
of compressor node X1 are moved towards feed respectively the in substitution
space. As a result, the second sentence, feed the cat, has a higher than random
probability to be parsed using the same compressor node X1 (because the parse
probability is the sum of the binding probabilities, which is a function of the
distance in substitution space). Subsequently, if X1 is selected again as the pre-
ferred compressor node to parse feed the cat, the learning step causes the node
for cat to be moved closer to the third slot of c-node X1, which itself was moved
closer to the node for dog in the previous sentence. Thus, the slots mediate the
formation of abstract category regions in substitution space through a process of
‘contamination’.

Figure 5.7: The formation of a shared category for cat and dog induced by dis-
tribution.

This shows that within the HPN framework a mechanism exists that can
explain in principle the formation of constructions with abstract slots or fillers
(e.g., I want X) (whether HPN is also successful in practice is the topic of the next
section). In Usage Based Grammar [Tomasello, 2001] a similar process is proposed
as an explanation for how syntactic categories are gradually bootstrapped, during
the second stage of children’s linguistic development.

5.5 Experimental evaluation

This section describes a number of experiments that aim to demonstrate the
gradual formation of a topology of syntactic categories by HPN, and to evaluate

5.5. Experimental evaluation 107

whether HPN discovers clusters of word categories from an artificial corpus, as in
[Elman, 1991]. (For a more direct comparison of HPN with the SRN on the word
prediction task it will be needed to develop a full probabilistic version of an HPN
chart parser, that can compute so-called prefix probabilities (see the discussion in
section 5.6.3). This will be the subject of subsequent chapters.)

5.5.1 Topology formation in an artificial language

In the first experiment HPN was trained on 1000 distinct sentences, including up
to 5 levels of center embedding, which were generated at random from the artifi-
cial context free grammar given in Table 5.1 (a simplified version of the grammar
with relative clauses used in [Elman, 1991]). The HPN network had 10 compressor
nodes with 2 slots, and 5 with 3 slots, and all compressor and word node repre-
sentations had random initial values. The learning rate decreased from λ = 0.3
to λ = 0.05 and the neighborhood from h = 10 to h = 0.01. Figure 5.8 shows the
representations of the input nodes after learning has completed (scaled to two di-
mensions using Matlab’s cmdscale, i.e., multi-dimensional scaling). Also shown
are the average compressor node representations that map to the symbolic labels
of the gold standard parses (NP, VP, etc.). From the figure it can be seen that

Figure 5.8: Substitution space with HPN node representations

clusters are discovered that regroup the words into their original categories: tran-
sitive verbs (feeds, chases) well separated from intransitive verbs (walks, lives),
and nouns are distinguished from proper nouns. The clustering is very stable
over many trials of the experiment, with different random initializations of the
word and compressor node vectors. Moreover, some of the higher order categories
are mapped in substitution space between words with which they are intuitively
substituted. This indicates that HPN can in fact learn word categories from
distributional information implicit in the random sentences.

108 Chapter 5. The hierarchical prediction network

5.5.2 Recursive systematicity

The second experiment attempted to evaluate recursive generalization and sys-
tematicity of HPN. Again, 1000 sentences were generated at random from the
same recursive artificial context free grammar, but this time they were split into
800 train sentences and 200 test sentences that did not occur among the train
sentences. To test whether the induced HPN grammar had indeed learned the
intended grammar, and was able to generalize we let the trained HPN grammar
parse the test sentences, and evaluated unlabeled precision (UP) and recall (UR)
of the found constituents (see section 3.1.6).

In one variant of this experiment training was semi-supervised: the Gold
standard brackets (but not the labels) were provided during training, thus con-
straining the possible parses of train sentences. Subsequently unlabeled precision
and recall was evaluated of 200 novel test sentences which were supplied without
brackets. The resulting scores of UP=UR=86,4% (similar scores were obtained
in additional trials) indicate that the induced HPN grammar approximates the
original grammar to a fair degree, and generalizes to the test sentences.

By contrast, in an unsupervised training variant, where no bracket information
was supplied during training, unlabeled recall and precision on the same 200 test
sentences varied between 40% and 80%, and was highly unstable. In this case
it seems that HPN does not always converge to the original grammar, as was
expected. This negative result leads to an interesting insight: apparently very
many HPN grammars other than the original artificial grammar are compatible
with the training sentences, and most of them do not generalize as expected.
The train sentences by themselves thus impose insufficient constraints to induce
a grammar that produces the intuitively correct systematic generalizations. This
is a fundamental problem, to which I will come back in section 5.6, and it will
finally be addressed in Chapter 8.

5.5.3 Topology formation in realistic corpora of children’s
speech

Unlike connectionist models that are trained with error back-propagation, train-
ing with HPN is scalable to realistic size corpora, and can be done in a single
pass through the data. A demonstration of the emergence of a topology of word
categories is given for the Eve corpus [Brown, 1973] from the CHILDES database
MacWhinney [2000]. Figure 5.9 shows the results of one trial on 2000 consecutive
child utterances from the second half of the Eve corpus, which were presented to
the network together with the brackets available from the dependency annota-
tion. The interesting clusters are accentuated. It should be noted though that
subsequent trials did not yield comparable clusters.

5.6. Chapter conclusions 109

Figure 5.9: Representations of Eve’s 100 most frequent words

5.6 Chapter conclusions

5.6.1 HPN and systematicity

By presenting a working implementation of a connectionist model that satisfies
the systematicity requirements of language, this chapter achieved one of the aims
set at the start of this thesis. For completeness let me briefly reiterate how HPN
satisfies, by design, the two criteria of systematicity formulated in section 4.5.2.

• The context invariance criterion
Recall from section 4.8.1 that a solution for creating context invariance in

connectionist networks may take the form of encapsulation of the network
units. As was explained there, this means that connectivity, or binding
between units is determined by some ‘intrinsic’ representation of the units,
which is independent of literal preceding context or incoming activation. In
HPN the output of a compressor node (i.e., the root vector) is encapsulated
(i.e., separated) from the input to the slots. Hence, the predictive behavior
of a HPN unit depends on its identity alone, as required by the context
invariance criterion in section 4.5.2.

The slots of HPN compressor nodes fulfill the role of ‘variables’, i.e., they
function as placeholders where units are bound. More precisely, they are
invariants , because they have no predetermined or innate meaning (see
section 4.8.1): the extensional meaning of a slot (i.e., its topological position

110 Chapter 5. The hierarchical prediction network

in substitution space) is continuously updated from experience. Thus, any
slot in HPN can assume the role of an arbitrary non-terminal.

• The recursive systematicity criterion
Recursive systematicity is satisfied in HPN by virtue of complex primitive

network units, the compressor nodes. These perform hierarchical temporal
compression, and thereby implement a ‘context free’ inductive bias (see also
section 4.8.3). Whereas the compressor nodes take care of the syntagmatic
(precedence) relations of the grammar, the topology, or substitution space
encodes the paradigmatic relations of the grammar.

5.6.2 HPN versus RAAM

In Chapter 4 I mentioned RAAM [Pollack, 1988] as another instance of a con-
nectionist model that explicitly encodes hierarchical structure. RAAM therefore
implements a context free inductive bias as well. It is worth pointing out here the
difference between HPN and RAAM. As was argued in section 4.3.1, for encoding
and decoding a parse tree RAAM crucially relies on an external interpretation
of the output of the hidden layer as either the ‘left child’ or the ‘right child’ of
the current branch in the tree as it selects to which input array (left or right) to
feedback the output of the hidden layer to at any particular level of embedding.
It was argued in the same section that this makes RAAM a symbolic system.

By contrast, in HPN the decision whether to bind the root of a node to
either a left or right slot or a compressor node is made autonomously and wholly
unsupervised by the system, as determined by the topology. In other words,
by contrast to RAAM, in HPN the stack is handled internally. Moreover, the
topology is learned rather than prespecified. Further, in HPN all information
necessary to ‘read out’ the branching structure of a parse is local and internal to
the system (no external interpretations are required).

A second important difference, mentioned also in section 4.3.2, is that parse
trees are represented in RAAM (and likewise in the tensor products of [Smolen-
sky and Legendre, 2006]) on a case by case basis, by memorizing ‘conjunctive’, or
‘static’ bindings’ between the constituents of the parse. Such static bindings have
to be specified in advance for every sentence, hence are not productive and do
not generalize [Hummel et al., 2004]. HPN on the other hand employs flexible,
dynamic bindings between units, which allows HPN to encode (elements of) a
grammar in the network units rather than a fixed set of parse trees. As a result
of dynamic binding parse trees in HPN have an internal structure, unlike conjunc-
tively encoded parse trees, allowing for relational inference and generalization to
novel sentences.

5.6. Chapter conclusions 111

5.6.3 Reaching the limits of HPN

Despite the fact that HPN is suitable for systematic language processing, it is
still not a very good language model. The empirical tests of section 5.5 identified
several limitations of the current version of HPN.

1. HPN is context free. As noted in section 5.2, the metric of HPN encodes
context free rules, whose expansion probabilities (encoded as distances in
the metric) are conditioned on local information alone, and which are insen-
sitive to sentence history or structural context. However, in computational
linguistics it is known that the regularities of natural languages cannot be
captured by the context independence assumptions of the PCFG alone (see
section 3.1.8); parsing accuracy generally increases when additional struc-
tural and lexical context is considered.

Left corner parsers, as an instance of history-based parsers, make use of this
insight by conditioning every parser move on a history of previous parser
moves, thereby relaxing the independence assumptions of the PCFG. For
instance the model of [Manning and Carpenter, 1997], discussed in section
3.1.7, conditions the probability of a parser move on both the left corner
and a goal category that has been derived earlier in the derivation history.

Since HPN also makes use of a left corner parsing strategy, it would be
desirable that HPN could similarly condition its decisions on earlier parser
moves. However, if the decision process of the system depends exclusively
on the metric this precludes the incorporation of non-local structural and
lexical context, since the metric can only express binary relations between
units (i.e., distances), whereas conditioning an event on a left corner and
goal category is a ternary relation. A richer approach will be needed to
encode the conditional events in the network.

2. HPN cannot compute string probabilities. The left corner probability model
of HPN, based on [Manning and Carpenter, 1997], can compute parse prob-
abilities given a sentence, but not sentence or string probabilities. Yet,
there are many interesting tasks other than parsing, such as the next word
prediction task, that require an ability to calculate sentence or string prob-
abilities. For a direct comparison of HPN with the SRN on the word pre-
diction task HPN must be able to compute so-called prefix probabilities.
For this purpose it will be needed to include and store information about
shift transitions (from a compressor node to a word node) in the network
(without violating the connectionist constraints) and thus turn HPN into a
language model.

3. Learning generalizations by analogy. As the test of recursive systematicity
of section 5.5.2 revealed, the fact that the train set consists of sentences

112 Chapter 5. The hierarchical prediction network

from a certain (recursive) grammar is by itself not a sufficient condition
for HPN to learn that grammar. Apparently there are many possible HPN
grammars compatible with the train sentences, and HPN is not guaranteed
to converge to a ‘correct’ grammar, i.e., one that makes the same system-
atic generalizations as the original artificial grammar. What seems to be
missing is some extra constraint that drives learning in the right direction.
As was argued in section 4.5.3, to learn the correct structure of a gram-
mar a learning algorithm must rely on finding structural analogies between
previously processed sentences. This ability requires that the system can
somehow access exemplars (parses) of previously processed sentences from
memory. The question is how this can be implemented in a connectionist
network?

Conditioning in neural networks: towards exemplar-based connection-
ism

The above issues, concerning the limitations of HPN as a model of natural lan-
guage processing, raise one particularly important question: how can conditioning
events be accommodated for in a neural network? In other words, how can a neu-
ral network encode the dependency of natural language on contextual history,
while at the same time preserving some measure of context invariance to enable
generalizations? Whereas in symbolic models of language conditional probabili-
ties can simply be stored in an external look-up table, in a neural network this is
not an option: the conditioning events must be locally accessible, since the parse
decisions must be computed at a local level. On the other extreme, recurrent net-
works such as the SRN do take all previous sentence context into account, but,
as we saw, cannot make systematic, context invariant generalizations. The ideal
connectionist model of natural language must combine the best of both worlds.

Such considerations deem it necessary to store the analyses of previously pro-
cessed sentences somehow in the network, in a way that allows utilizing these
events for the analysis of novel sentences. I propose a neurally plausible solution
for conditioning on sentence context in neural networks: the use of episodic mem-
ory. The assimilation of an episodic memory for sentences in the network allows
moving from a purely rule-based connectionist approach to language processing
(the current version of HPN) to an approach that integrates abstract, rule-based
linguistic knowledge with exemplar-based knowledge.

In the next chapters I will introduce an exemplar-based version of HPN,
episodic-HPN, in which the HPN network is extended with an episodic mem-
ory — a memory for concrete instances of processed sentences. From now on, one
should see the version of HPN presented in this chapter as a model of semantic
memory, which is a memory for abstract, rule-based knowledge, that is but one
component of a larger system that integrates semantic and episodic memory.

5.7. Neural interpretation of core components of the HPN model 113

5.7 Neural interpretation of core components of

the HPN model

Before adding additional complexity to the model in the following chapters, I
conclude this chapter by asking whether the components of the current model
can be implemented in neural hardware. While some of the proposed ideas are
necessarily still rather speculative in nature, they are in part also intended to
show the compatibility of the notions introduced in this chapter (e.g., dynamic
binding, node states) with a neural design, and with the connectionist constraint
of locality.

The substitution space

Unlike topologies in the visual or auditory cortex, the topology of the substitution
space is implemented in a ‘virtual’ space. This means that columns representing
neighboring vectors in substitution space are in general not physical neighbors on
the cortical surface, but may be located in remote regions of the cortex.

For example, in Figure 4.11 columns for dog and fog or cat, can and cap are
physical neighbors in a (hypothetical) topology in auditory cortex, but at the
same time I claim that the lexical representations of dog and cat cluster in a
topology in a ‘conceptual’ space. This is a quite bold claim that deserves some
(neurally plausible) clarification.

For the clarification and neural motivation of the substitution space I refer
back to section 4.8.2. One part of the answer is that ‘conceptual’ representations
are encoded in the ‘name fields’ of cortical columns, as proposed by Hawkins and
Blakeslee [2004, p.150-2] and mentioned in section 2.1.3 of Chapter 2. These are
intrinsic representations, presumably stored in cells in L3 of a column, that link
a column by its name (i.e., ‘by reference’) to columns in higher cortical levels,
independently from bottom-up neural activity.

The second part of the answer is that these intrinsic representations, or ‘names’
are linked in a ‘virtual’ topology through a switchboard construction, as explained
in section 4.8.2. Thus, while columns representing syntactic categories may be
located in diverse and physically remote areas in the cortex, by virtue of the
switchboard their intrinsic representations are unified in a coherent, virtual topol-
ogy. This topology corresponds to the substitution space, and it is learned by
updating the column representations across bindings (as explained in section 5.4).

5.7.1 Connectionist implementation of a switchboard

Figure 5.10 illustrates how the switchboard could be implemented in HPN (but
note that the current implementation of HPN abstracts over most of these details).
Incoming connections to the switchboard originate from the root of a compressor

114 Chapter 5. The hierarchical prediction network

Figure 5.10: Schematic illustration of the substitution space and switchboard
mechanism for dynamic binding. a) The word units are directly bottom-up ac-
tivated from the auditory cortex (not modeled in HPN), while the slot units are
activated via the switchboard. b) An activated unit in substitution space trans-
mits its virtual topological address to the switchboard. c) The address is encoded
as a distributed pattern on the switchboard units, which project back to slot
units in the substitution space (competitive layer). d) The switchboard units
are fully connected to all slot units (illustrated schematically for only 4 slots).
e) The weight vectors of the slots and the concept-side coordinates of columns
correspond to positions in substitution space (dotted lines).

5.7. Neural interpretation of core components of the HPN model 115

node or a word unit, and are transmitted serially as a spike pattern, while outgoing
connections attach (physically) to all slots.

In order to match an incoming signal to a slot, the switchboard transcribes
the spike pattern (b) (which encodes the ‘name’ of a unit, corresponding to its
address) on a set of switchboard units (c). The latter are fully connected to all
slots (d). (Hence, the number of weighted connections to each slot equals the
number of switchboard units, and this in turn determines the dimension of the
substitution space.) The substitution space can be thought of as a competitive,
self-organizing layer [Kohonen, 1998], whose units compete for the best match
with the activation presented on the switchboard units. (Note from Figure 5.10
(a) that it is assumed that word columns are activated from bottom-up through
their perceptual pole, but how this is implemented falls outside the scope of the
HPN model, since HPN only models top-down processing.)

5.7.2 The tagging system

While the switchboard mechanism described above demonstrates the capacity for
flexible binding, it still lacks the ability to keep bound units together for some
time (in working memory). The ability to temporarily store bindings in work-
ing memory is an essential requirement for comprehending complex propositions.
Specifically, in case of syntactic processing the ability to reactivate a binding at a
later point in the derivation is critical (e.g., for back tracking). However, in order
to trace back a previously bound unit it is not sufficient to return to its known
topological position via the switchboard. For instance, in HPN two compressor
node root vectors (of which one has 2 slots and the other 3 slots) may occupy the
exact same position in the topology, yet it is needed to distinguish which of them
is bound to a certain slot in a pending derivation.

For dynamic binding to work it is thus required that some tagging mechanism
is in place, that adds an explicit and unique tag to group units that are bound
(e.g., a slot with the root of a compressor node in HPN). (The same point is also
made in the work of [Hummel and Holyoak, 1997, p.7] on modeling analogical
inference, in the context of an interesting discussion on dynamic binding.6) Thus,
there are two necessary and dissociable components to dynamic binding, which

6In contrast to HPN, in the LISA model for analogical inference [Hummel and Holyoak,
1997, 2003] it is assumed that dynamic binding is implemented by grouping units that fire in
synchrony [Singer and Gray, 1995]. In the binding by synchrony view the neural substrate of
a tag is the oscillation ‘phase’ (e.g., within the Theta frequency range). Binding by synchrony
is however problematic, for reasons discussed in section 2.3. Hence, in this work I have opted
for serial dynamic binding. In that case the tag consist of some neural substance that is shared
among bound units, as explained in the main text. Serial binding solves one of the challenges
that Hummel and Holyoak [1997] have acknowledged the synchronous binding approach cannot
deal with, namely how to save the bindings to long term memory. In Chapter 8 I will argue
that the tagging mechanism proposed here for serial binding is also used by the brain to store
long term episodic memories.

116 Chapter 5. The hierarchical prediction network

have complementary functions: an ‘addressor system’ (the switchboard), respon-
sible for flexible creation of new bindings, and a ‘tagging system’, responsible for
maintaining existing bindings.

Together, the address (encoded as ‘name’ vector in a column) and a stored
tag provide sufficient information to reconstruct the exact original binding, and
eventually the derivation: the address defines a local neighborhood in substitution
space where the bound slot can be found (via the switchboard); subsequently, the
tag allows for identifying the exact slot. Thus, the topological address plus tag
together implement a path connector (i.e., a pointer), as defined in section 5.1.
In Chapter 8 I will argue that the same ‘address plus tag’ mechanism is also used
by the brain to replay episodic memories.

The fact that tags are used for syntactic processing imposes some minimal
conditions on a potential neural correlate of a tag. For instance, it is required
that tags are able to distinguish the bindings of a pending derivation, and that
they somehow encode the (hierarchical) order of the bindings as the derivation
progresses through the sentence.

Local neuronal short-term memories

The dynamic binding and tagging mechanism assumes that while processing an
event (e.g., during parsing) tags are temporarily and locally stored in cortical
columns. As mentioned in section 2.3, there is indeed evidence that the brain
stores a reference to recent bindings in local short-term memories at the level
of neural assemblies. In particular, it has been found that neurons sustain their
presynaptic connections through calcium-mediated synaptic facilitation for peri-
ods of around a second [Mongillo et al., 2008, Barak and Tsodyks, 2007]. This
is about the amount of time needed for the path connectors to keep a tag alive
that identifies a bound node (assuming they are used for sentence processing).

Barak and Tsodyks [2007] claim that transient presynaptic facilitation is a
neural correlate of working memory. In line with this view, in HPN an ordered set
of path connectors (realized by numbered tags) constitutes a distributed stack,
which is essentially the working memory of a parser. Both calcium-mediated
presynaptic facilitation and the interpretation of a stack in HPN are consistent
with contemporary theories in cognitive neuroscience, according to which working
memory is not localized in any particular module, but is a local process [Cowan,
1995].

Node states

A ‘state’ of a parser is a formal construct. Yet, the fact that formal theories
of syntactic processing reason about states is a consequence of some underlying
biological reality. I argue that states are concomitant to dynamic binding: the
possession of a tag induces a state in a node of the network. (As argued before,

5.7. Neural interpretation of core components of the HPN model 117

the tags must satisfy certain conditions that allow them to reconstruct the order
of the derivation.) Thus, all interactions to keep track of the node states in HPN
can be performed locally, and no ‘symbolic operations’ are required.

Neural instantiation of a compressor node

Figure 5.11: Hypothesized neuro-biological detail of a compressor node.

Figure 5.11 shows a neural configuration that can hypothetically implement
the operation of a compressor node, as it forces the slots to be activated in the
correct order. In Figure 5.11, S1, S2, and S3 are neurons that correspond to the
slots of a compressor node, and X1 corresponds to its root. The ‘gate neurons’ G1
and G2 are controlled (gated) by two inhibitory neurons, I1 and I2, that fire by
default (possibly driven by slot S1). When I1 or I2 fire they close the gates, and
block the flow from S1 to X1. When the inhibitory neurons are in turn inhibited
by the slots S2 and S3, the gates G1 respectively G2 are opened. When this
happens in the correct order, activation can flow from S1 via S2 and S3 to X1.

Substitution space versus unification space

The HPN framework bears some similarity with a theory of neural syntactic pro-
cessing that has been proposed by Vosse and Kempen [2000]. In their work, a
‘unification space’ fulfills more or less the same role as the substitution space in
HPN. Vosse and Kempen [2000] propose that in the unification space lexicalized
syntactic frames, which they borrow from Lexicalized Tree-Adjoining Grammars
(LTAG) [Joshi, 2004], are unified into a parse of the sentence. Within the unifi-
cation space syntactic frames compete among each other for alternative analyses
of a sentence, via a complex lateral inhibition mechanism that involves temporal
decay of unification strength. (In their original model though the syntactic frames
are innate and symbolic, whereas an essential aspect of HPN is that it shows how
the substitution space can be learned from scratch.)

Recently, functional neuro-imaging studies have tried to link the syntactic
unification space with the left inferior frontal gyrus (LIFG) [e.g., Hagoort, 2005].
It has been suggested that the LIFG possesses all the crucial anatomical and

118 Chapter 5. The hierarchical prediction network

computational characteristics needed for the task of temporally integrating inde-
pendent syntactic elements. In particular, the prefrontal cortex is well-suited for
the maintenance and integration of information over time, and it is well-connected
to the temporal lobe, where it is believed that lexical frames are stored. In sec-
tion 8.4.2 I will however make the case that the substitution space of HPN can
perhaps be identified with another brain structure, namely the hippocampus.

HPN and connectionism

It is a legitimate question to ask whether HPN is connectionist, as it obviously
does not answer to the standard description of parallel processing and activation
spreading networks. Yet, while traditional parallel distributed processing net-
works are perhaps suitable for modeling certain perceptual classification tasks (as
these are characterized by massively parallel, bottom-up processing, and mediated
by activation spreading through conjunctive bindings), many complex cognitive
behaviors – among which language processing – require that the outcome of one
subprocess is chained to the input of another process, that is such behaviors are
processed serially and seem to involve some sort of binding [e.g., Lashley, 1951,
Zylberberg et al., 2010]. Also in vision, “beyond a certain preprocessing stage,
the analysis of visual information proceeds in a sequence of operations, each one
applied to a selected location” [Koch and Ullman, 1985, p. 219].

To facilitate information exchange between local subprocesses, a more sophis-
ticated means of communication between neurons is needed than can be provided
by mean firing rates. Indeed, there is growing empirical evidence that neurons, or
neuronal assemblies, utilize the potential of encoding rich information in precise
spike-timing dynamics, and this has been followed up by an increasing inter-
est among theoretical neuroscientists in the properties of artificial spiking neural
networks [e.g., Izhikevich, 2006].

One should see the HPN network in the context of the countercurrent systems
framework, mentioned in section 2.6.2. According to this framework cortical
processing proceeds in two relatively independent networks, a bottom-up network,
which is assiociated with parallel, bottom-up processing during a so-called ‘feed
forward sweep’, and a top-down network, which is associated with recurrent, serial
processing. As HPN is intended as a model of syntactic processing, which is a
top-down and goal-driven task, the HPN model, unlike most other connectionist
models of language processing, describes information processing in the top-down
network.7 The substitution space of HPN (together with the switchboard) can
accordingly be considered as one possible formalization of the concept of a top-
down network.

7To be entirely correct, sentence processing, or left corner parsing for that matter, is an
interaction between bottom-up and top-down processes. However, the bottom-up processes,
which correspond to activating the word assemblies for every word in the sentence (i.e., the
input nodes in HPN), fall outside the scope of the HPN model.

5.7. Neural interpretation of core components of the HPN model 119

Given the wide variety of solutions for neural processing in the cortex, and
the many things that are still unknown about it, what then counts as a criterion
for a model to be connectionist? As argued in section 4.2.1, I believe that the
only criterion by which one can judge a model to be connectionist is what I have
called the ‘connectionist constraint’. This basically states that all operations (and
interpretations) of the system should be limited to local network interactions. In
this section I have therefore tried to show that the core components of the HPN
model are all in principle compatible with the connectionist constraint, that is,
they can be implemented using local interactions alone. In particular, I showed
that the dynamic binding operation can be executed through local exchange of
addresses (encoded in spike patterns) and tags between units , via a central
switchboard. Thus, there exists a connectionist solution for referential operations,
or ‘pointers’. This allows HPN to implement a neural correlate of substitution,
which is essential in order to account for the productivity of language.

Also left corner parsing, although not necessarily the algorithm employed
by the brain, is not in principle incompatible with the connectionist constraint:
in HPN it is assumed that network units have local short-term memories that
function as registers. These registers keep a local queue of operations (i.e., shift,
project and/or attach), and locally enforce their execution in the correct order
(i.e., from the left to the right slot of a compressor node). Thus, while every
compressor node and input node in the network functions as an autonomous
processing unit, together they implement a left corner parsing strategy, without
appealing to a central control mechanism.

Chapter 6

Episodic grammar

In this and the following chapters I will introduce
episodic-HPN, an extension of HPN with an episodic
memory. The model is based on an original hypothesis
about the interaction of semantic and episodic mem-
ory in language processing. It shows how language
processing can be understood in terms of memory re-
trieval, or as a priming effect, and language acquisi-
tion in terms of memory consolidation. I will point
out that the perceived dichotomy between rule-based
versus exemplar-based language modeling can be in-
terpreted in a neuro-biological perspective in terms
of the interaction between a semantic memory sys-
tem that encodes linguistic knowledge in the form of
abstract rules, and an episodic memory that stores
concrete linguistic events. Before I present the full
episodic-HPN model in Chapter 8, I will consider in
this chapter the concept of parsing with an episodic
memory for the supervised and symbolic case, using
nonterminal labels learned from a treebank. I will im-
plement a probabilistic, episodic grammar and evalu-
ate its performance as a reranker on a realistic corpus
of natural language, the Wall Street Journal.

6.1 Episodic memory

The previous chapter (section 5.6.3) identified several limitations of the current
version of HPN. For instance, since all information available to the model are the

121

122 Chapter 6. Episodic grammar

metric distances between network units, the model cannot represent (sentence)
context, or do contextual conditioning. As a consequence, although HPN is suited
for emulating (probabilistic) context free grammars (as was shown in section 5.2),
it is ill-equipped for realistic language processing, where decisions depend on
structural and lexical sentence context. The HPN network encodes, through
the substitution space, context free relations between abstract (encapsulated)
syntactic units, and as such qualifies as a semantic memory for the syntactic
domain.

As defined in section 2.7, semantic memory refers to a person’s general world
knowledge, including language, in the form of abstract concepts that are system-
atically related to each other; Episodic memory, on the other hand, is a person’s
memory of personally experienced events or episodes, embedded in a temporal,
spatial and emotional context (see section 2.7 for an extensive discussion of the
human memory system).

The ideas developed in this chapter start from the observation that the scien-
tific debate on the relation between semantic and episodic memory parallels, in
a striking manner, an ongoing controversy about modeling language: one side in
the debate is focusing on evidence for abstract, rule-based grammars [e.g. Marcus,
2001], and the other side emphasizes the item-based nature of grammar with a
role (particularly in acquisition) for concrete sentence fragments larger than rules
[e.g., Tomasello, 2000b]. While a rule-based grammar can be conceived of as an
instance of semantic memory, as it encodes abstract, relational linguistic knowl-
edge, the item-based approach suggests a role for episodic memory in sentence
processing, since it reuses concrete (rather than abstract) linguistic experiences
that have been memorized.

Assuming that the language domain mirrors cognitive processes from other
domains, one expects that it would be illuminating to incorporate the notion of a
semantic-episodic memory interaction within a computational model of language
processing. In this chapter I will formulate a theory of episodic-semantic mem-
ory interaction, and based on this an ‘episodic’ model of syntax, called ‘episodic
grammar’, that links language processing to memory processes, or more precisely
to episodic memory retrieval. While the current chapter as a first step only in-
troduces a symbolic episodic grammar – leaving out the topology – in Chapter 8
I will enrich the ‘semantic’ HPN model of the previous chapter with an episodic
memory for sentences, thus lifting its limitation for dealing with sentence con-
text. The episodic grammar model should take into account the following basic
empirical facts about episodic memory

• Physical traces. All episodic experiences that occur during the lifespan
of an individual, and that can be consciously remembered, leave physical
memory traces in the brain. This includes memories of sentences that have
been processed by the language system.
• Chronological order preservation. Most people are able to recover the ap-

6.1. Episodic memory 123

proximate chronological order of their episodic memories. Thus, the relative
order of the episodes must be somehow encoded in the representations of
their traces.
• Content addressability. Priming effects demonstrate that static memories

(for instance the memory of a smell) trigger episodic memories that are
strongly associated with them. It is commonly believed that retrieval of
episodic memories is contingent on cues from semantic memory. To account
for content addressability an episodic memory must support local access
from semantic memory units to their associated episodes (as implemented
for instance in Hopfield networks [e.g., Hopfield, 1982]).
• Sequentiality. In the Memory Prediction Framework it is emphasized that

the function of memory is to make temporal inferences (i.e., predict). Ac-
cording to [e.g., Eichenbaum, 2004] episodes are construed as temporal se-
quences of (time-less) semantic elements, bound together within a certain
context (see Figure 2.7 in section 2.7.1).
• Separatibility and identifiability. The memory system must be able to iden-

tify and disambiguate an episode, even if it overlaps with another episode
that is partly composed of the same semantic units. It is thought that to
this end special ‘context neurons’ exist, that fire only for the duration of a
specific episode [e.g., Levy, 1996].

There exist several connectionist models of episodic memory in the literature [e.g.,
Hopfield, 1982, Miikkulainen, 1999, McQueen, 2005, McClelland et al., 1995]. In
section 8.5.1 I will discuss an instantiation of the latter, [O’Reilly and Norman,
2002] in the context of memory consolidation. Yet, as far as I know, to date
there exists no theory of episodic-semantic memory interaction that is applicable
to syntactic processing.

6.1.1 Proposal for the representation of episodes as dis-
tributed traces in semantic units

I propose that the episodic memory of a sentence is distributed across semantic
memory units (i.e., the HPN nodes), and consists of physical traces, contained
inside the nodes, that keep a record of the nodes participation in the derivation
of the processed sentence. (In general, I claim that the episodic memory of a
complex event consists of physical traces, distributed across the primitive seman-
tic units that took part in structurally encoding the particular event.) This is
illustrated schematically in Figure 6.1, which shows the episodic memory traces
in the HPN network after hearing the sentences girl who dances likes tango (light
colored traces) and boy likes mango (dark colored traces). Each of the traces of a
processed sentence points to its succeeding and preceding node in the derivation,
which allows HPN to reconstruct the original derivation from the traces. Concep-
tually, all that is required to upgrade from semantic HPN to episodic HPN is to

124 Chapter 6. Episodic grammar

turn the existing local short term memories in the slots, where pointers to bound
nodes are temporarily stored, into long term memories after a sentence has been
successfully processed. (Note that this proposal implies that the semantic units
involved in encoding an episode, like those involved in an HPN derivation, are
dynamically bound: see section 8.4.2 for a neural perspective on episodic memory
encoding in HPN.)

Figure 6.1: Episodic traces of a sentence (drawn as colored dots) are stored in
local memories of visited nodes in the HPN network. In HPN the nodes and slots
are situated in a topology.

6.2 Episodic grammar — model outline

For a more formal introduction to the topic of episodic grammar, let us leave for
the moment the framework of HPN, and first deal with a symbolic implementation
of episodic grammar. I will come back to the HPN formalism in Chapter 8, when
I will work out the details of episodic-HPN. Also in the symbolic approach it is
useful to take the point of view of a grammar as a network of interconnected
treelets, that can combine with each other through substitution. I will assume
that context-free rules from traditional grammars correspond one-to-one to such
treelets, which thus play the role of the compressor nodes in HPN. I will also
assume that the treelets possess a register (an internal memory, corresponding to
a slot in HPN) that keeps track of the correct order of application of the syntactic
operations.

As in HPN, in the episodic grammar a derivation is a sequence of visits to
treelets, whereby treelets are bound through serial binding. The standard ap-
proach assumes a top-down, left-to-right derivation: each next rule is combined
through left-most substitution with the partial tree derived so-far. I will also
consider left-corner derivations in the next section.

In order to remember the correct order of derivation (which can vary depend-
ing on the chosen derivation strategy) the episodic traces encode the sentence

6.2. Episodic grammar — model outline 125

Figure 6.2: Episodic traces of two sentences (drawn as colored ovals) are stored
in local memories of visited treelets (indicated by triangles and rectangles) in
the symbolic episodic network. Note that by virtue of their ordinal number the
traces implement pointers to successor treelets in a derivation (drawn for the first
sentence alone).

number (s) as well as the position (k) of the treelet within the derivation. In Fig-
ure 6.2 the traces (for a top-down derivation) are identified by these two numbers,
indicated as 〈s, k〉 inside the treelets. Note that after hearing many sentences a
single treelet will store traces for all sentences that have visited it, which are dis-
tinguished by their sentence number, and possibly multiple visits from the same
sentence.

The episodic sentence memories stored in the traces can also be recruited for
the purpose of processing novel, unseen sentences. The idea is that when the
derivation of a novel sentence arrives at a treelet, the traces encountered within
the treelet trigger memories of stored exemplars. These receive an activation
value whose strength depends on how close the stored derivation is to the pending
derivation (see section 6.2.3). Every next step in the derivation is determined by
competition between traces of different exemplars, each having its own preference
for a successor treelet, and its own activation strength. In this view sentence
processing (or parsing) can be interpreted as being subject to a priming effect: the
traces prime or reactivate derivations of previously processed sentences (through
content addressability), and restore the memory of previous parser decisions.

The above proposal satisfies the requirements of an episodic memory, as men-
tioned in the previous section, and it conforms to the view that episodes consist of
pointers that bind semantic memory units into temporal sequences [e.g., Shastri,
2002]; content addressability is satisfied because activation of a single trace in a
semantic unit triggers an entire episode. Parts of episodes are thus reconstructed
on-the-fly at test time, rather than searched for. Further, chronological order
preservation, as well as sequentiality and separatibility are trivially satisfied by
the way that traces are encoded. Given a probabilistic interpretation, the episodic

126 Chapter 6. Episodic grammar

grammar offers an explicit computational instantiation of the reinstatement hy-
pothesis of episodic retrieval.

6.2.1 The left corner episodic grammar

Figure 6.3: Episodic memory traces in the left corner episodic grammar after
deriving the sentence girl who dances likes tango.

One of the advantages of the episodic approach is that it allows for compar-
ing different derivation strategies within a single framework, and find out what
the effect is of a different order of application of operations on treelets. An in-
teresting parsing strategy from a cognitive point of view is left corner parsing
[Rosenkrantz and Lewis II, 1970], since it proceeds incrementally from left to
right, and combines top-down and bottom-up processing.

As explained in section 3.1.3, in left corner parsing the grammar rules are
introduced bottom-up by a project operation to the left corner of the rule. The
‘left corner’ is the left-most symbol on the right hand side of a phrase structure
rule; in the episodic framework it refers to the bottom-left nonterminal of a treelet.
As long as there are no completed (i.e., fully processed) treelets, the next word in
the sentence is introduced by a shift operation; otherwise the derivation can either
project to a new treelet, or attach to a not yet completed treelet that has been
previously introduced. Figure 6.3 shows an episodic left corner derivation for the
sentence girl who dances likes tango. The shift, project and attach operations are
indicated in the figure by their abbreviations.

Whereas most standard probabilistic left corner parsers compute the parse
probability of a given sentence [e.g., Moore, 2004, Manning and Carpenter, 1997],
hence assume a deterministic shift move, here we are interested in the joint prob-
ability of the parse and the sentence. It will be assumed that the shift move
requires an additional step in the derivation, connecting an ‘incomplete’ treelet

6.2. Episodic grammar — model outline 127

(after attach or project) with a word, as illustrated in Figure 6.3. Thus, the
derivation is connected, and proceeds according to a fixed linear order, which is
a prerequisite for the episodic approach. To this end special treelets have been
introduced that execute the shift to the next word (e.g., RC∗ → dances).1 These
treelets employ special starred nonterminals (e.g., RC∗): one or more stars indi-
cate the register position in the treelet from where the shift operation originates
(e.g., RC →WHO ∗ VI). The derivation starts with a shift operation from the
special START∗ symbol to the first word of the sentence.

One important difference with the top-down derivation strategy is that upon
every attach operation treelets are reengaged in the derivation. It is therefore
important to distinguish treelets by their register state, which keeps track of
the operations (project, attach) performed on the treelet. Episodic traces are
thus associated with and stored in a treelet in a specific register state, which is
indicated in Figure 6.3 by adding a dot before or after the trace.2

6.2.2 Training the episodic grammar

To evaluate the concept of episodic grammar quantitatively a probabilistic ver-
sion is implemented that is trained on a corpus of realistic language. Probabilistic
grammars assign probabilities to different parses of a sentence and select the most
probable one, hence can be evaluated on their ability to disambiguate between
parses. As explained in section 3.1.5, one estimates the parameters of the proba-
bilistic episodic grammar from a treebank, which is a corpus consisting of natural
language sentences manually annotated with phrase structure trees.

After deciding on a derivation strategy (i.e., top-down or left-corner), the
training proceeds by distributing a trace e = 〈s, k〉 in every visited treelet tk of
derivation x = 〈t0, . . . , tk, . . . , tn〉 of sentence number s in the treebank. Specifi-
cally, given a treebank, then

1. Create an empty treelet for every unique context free production extracted
from the treebank. In case of a left corner derivation one must also create
separate treelets for distinct visits to the same production (i.e., after an
attach), that is one must distinguish register positions of a treelet. Further,
in case of a left corner derivation, create special shift treelets (as described
in section 6.2.1) corresponding to the shift moves (to terminals) of the left
corner parser.

2. For every treebank parse determine the sequential order of (register-indexed)
treelets according to the chosen derivation strategy.

1This strategy is based on the probabilistic Left Corner Shifting Grammar (LCSG), which
will be developed in the next chapter. The LCSG includes shift probabilities, hence defines a
language model, which allows for the calculation of sentence probabilities.

2In general, there can be as many register positions as there are children in the treelet. In
the top-down episodic grammar the register is always in position 0, hence it is not indicated in
Figure 6.2.

128 Chapter 6. Episodic grammar

3. For every step k in the derivation of sentence number s, leave a (register-
indexed) trace in the visited treelet, encoded as 〈s, k〉.

At every derivation step the probability of moving to the next treelet in the
derivation can be computed based on the traces in the current treelet and their
activations, according to Equation 6.2.

6.2.3 Statistical parsing with the episodic grammar

After training the grammar one can use the model to assign probabilities to can-
didate parses of a new sentence. Given an ongoing derivation d of a sentence, that
has arrived at a certain treelet tq, r, in register position r, one defines the proba-
bility of continuing the derivation to any other treelet tq′, s in register position s
based on the activation values of the episodic traces of earlier derivations stored
in treelet tq, r. The activation A(exi

) of the trace exi
(in tq, r) of earlier derivation

x is a function of the common history CH (exi
, d) of derivation x (of which exi

is the ith trace) with the ongoing derivation d. The CH is simply given by the
number of derivation steps (i.e., treelets) that the stored derivation x and the
pending derivation d have shared the same path before arriving at tq, r. Episodic
traces that share a long common history should contribute relatively much to the
parser decision. A convenient choice for the activation of a trace is

A(exi
) = λ

CH (exi ,d)
0 (6.1)

where λ0 is a parameter of the model. Depending on the chosen derivation strat-
egy (e.g., top-down or left corner), the traces have different CH’s, hence receive
different activations.

All information to calculate these activations is stored inside treelet tq, r; com-
putations are thus local, and compatible with the constraints imposed by a neu-
rally plausible, or connectionist design.

Figure 6.4: Probability of continuing a derivation from treelet tq to treelet tq′ is
determined by competition between traces. The width of the arrows indicates
the trace activation A.

The probability of moving to tq′ in the next step of the derivation is simply the
sum of activations of traces that point to tq′ , divided by the sum of all activations

6.2. Episodic grammar — model outline 129

(see Figure 6.4).3 Let E
tq′
tq be the set of traces in treelet tq that point to treelet

tq′ , and Etq the full set of traces in treelet tq. Then, the probability of moving
the derivation to treelet tq′ is

Pepisodic(tq′|tq) =

∑
ei∈E

tq′
tq

A(ei)∑
ej∈Etq

A(ej)
(6.2)

The (episodic) probability of a complete derivation D is given by:

Pepisodic(D = 〈t0, t1, . . . , tn〉) =
n∏
i=1

P (ti|ti−1) (6.3)

This probability can be computed dynamically, while simultaneously updating
the common histories (and activations) of all traces at every step of the derivation.
Let tq and tq′ be two successive treelets in the pending derivation d, and let
e′ = 〈s, j〉 be a trace stored in tq′ . Then its CH is updated according to

CH (e′, dq′) = CH (e, dq) + 1 (6.4)

if there exists a trace e = 〈s, j − 1〉 in tq (i.e., a predecessor of e′). Otherwise,
CH (e′, dq′) = 0.

A similar probability model can be derived for the episodic HPN model. There
is a complementary role for the semantic memory component of HPN (i.e., the
metric), namely to provide prior probabilities for transitions between treelets
where there is no evidence from previous episodes (i.e., smoothing). One then
has

P (tq′, s|tq, r) = (1− λ) · Pepisodic(tq′, s|tq, r) + λ · Psemantic(tq′, s|tq, r) (6.5)

For now we focus on the symbolic episodic grammar (with labels), and a full
treatment of the episodic-HPN model will be given in Chapter 8.

6.2.4 Smoothing and binarization

In order to obtain a non-zero parse probability for all sentences of the test corpus
standard smoothing techniques were performed. Unknown words in the test set
were replaced by word classes, which were created from rare words (occurring
less than 5 times) in the training set. The word class labels were based on the
word’s morphology, capitalization, and whether the word occurred at sentence
initial position. See [Petrov et al., 2006] for details about the algorithm.

In order to deal with missing productions in the test parse trees, as a first step
the rules of the treebank parses were binarized, using horizontal Markovization as

3For clarity of notation I have left out the register positions r and s from this point on.

130 Chapter 6. Episodic grammar

VP

〈VP . . .PP〉
H
HH

�
��

〈VP . . .NP〉
QQ��

〈VP〉

VBZ

NP

PP

Figure 6.5: Markovization of the tree VP → VBZ NP PP (adapted from [Klein
and Manning, 2003])

proposed by [Klein and Manning, 2003]. For any rule with two or more daughters,
the right daughters are split off recursively, while the remaining left daughters are
replaced with an internal node, as shown in Figure 6.5. In the Figure, the angled
brackets (e.g., < VP . . .PP >) indicate internal labels, and the dots summarize
all internal labels that expand to VP as their leftmost daughter and PP as their
rightmost daughter.

Subsequently, three levels of back-off smoothing (i.e., deleted interpolation)
were used, where every level conditioned on less context (see Equation 6.6). The
first level back-off probabilities, P1, backs off to a non-episodic version of the
chosen derivation strategy. In the top-down episodic grammar these are the
PCFG rule probabilities, which condition the application of a treelet on a single,
expanding nonterminal label; In the case of a left corner episodic grammar the first
level backs off to a standard probabilistic left corner model. This conditions the
application of a treelet on the left corner and goal category, following [Manning
and Carpenter, 1997].

The second level, P2, backs off the conditioning context of any compound
nonterminal (originating from the Markovization step) by reducing the condi-
tioning context of a label to its left element alone (e.g. X in < X . . . Y >).
Thus, given a unary or binary PCFG rule with a compound root label, e.g.,
< X . . . Z >→< X . . . Y > Z, the backed off probabilities P (< X . . . Y > Z|X)
generalize over all such rules with arbitrary Z that have X as the left element
of their root nonterminal. Similarly, in the left corner grammar the second level
backs off a compound left corner label to its left-most element.

The third level, P3, assigns uniform probabilities to all possible unary and
binary context free productions (that can be constructed from the nonterminals
of the grammar), irrespective of context. The three levels are parametrized by
back-off parameters λ1, λ2 and λ3, yielding

P (tq′|tq) = (1−λ1) ·Pepisodic+λ1 · ((1−λ2) ·P1 +λ2 · ((1−λ3) ·P2 +λ3 ·P3)) (6.6)

6.2. Episodic grammar — model outline 131

In this equation the λ’s are fixed, and all back-off probabilities are estimated
from the training corpus.

6.2.5 Evaluation and reranking

Figure 6.6: The reranking process.

As has become the standard, the episodic grammar was trained on sections
2-21 from the Penn Wall Street Journal corpus (WSJ) [Marcus et al., 1993] and
evaluated on section 22 of WSJ. For the test section labeled precision and recall
of the most probable parses according to the model were measured using the
PARSEVAL metric (see section 3.1.6).

While in Chapter 7 I will develop a specialized left corner chart parser for the
episodic grammar, at this stage it is interesting to study the properties of the
episodic probability model, and a straight forward way to do this is to use the
model as a reranker. This means that one takes a list of n best parses for every
sentence produced by a third party parser (in this case Charniak’s maximum
entropy parser [Charniak, 2000]), and reranks the list by assigning a probability
to each parse under the model of interest [Sangati et al., 2009]. One can then use
the standardized PARSEVAL metric to evaluate labeled precision (LP), labeled
recall (LR) and their harmonic mean (F-score) of the parses that receive the
highest probability under the reranker [Manning and Schütze, 2000, p. 432].
Figure 6.6 illustrates the reranking process step by step.

Reranking does have some limitations as an assessment of the model’s perfor-
mance, since the n best parses list produced by the third party parser has upper
and lower bound precision and recall scores. For comparison the scores are given
of a random reranker, that selects a parse from the list by chance. Confidence in

132 Chapter 6. Episodic grammar

the results of the reranker increases with the size n of the list of the best third
party parses (NBest list) (e.g., see Figure 6.8).

6.3 Experiments and results

The precision and recall results of the episodic top-down reranker, applied to
the top 5 Charniak parses, are given in the first three columns of Table 6.1 as
a function of the maximum common history that is taken into account by the
episodic grammar (the column max his). CH’s larger than the maximum history
are capped in equation 6.1. The bottom 2 rows give the Charniak scores and the
scores for a random reranker; As is common practice, only sentences of 40 words
or less were included. I have experimented with different parameterizations of
λ0, . . . , λ3 on the development set . Optimal results were obtained for λ0=4, and
λ1, . . . , λ3 in the range between 0.1-0.3, with only little variance. In Table 6.1 and

top down reranker left corner reranker
max his LR LP F LR LP F
0 87, 11 90, 01 88, 54 87, 93 90, 31 89, 10
1 89, 53 90, 27 89, 90 89, 35 90, 22 89, 79
2 89, 64 90, 23 89, 94 89, 49 90, 30 89, 89
3 90, 15 90, 45 90, 30 89, 64 90, 43 90, 04
4 90, 15 90, 39 90, 27 89, 79 90, 53 90, 16
5 90,27 90,45 90,36 89, 91 90, 63 90, 27
6 90, 23 90, 41 90, 32 89, 96 90, 58 90, 27
7 90, 19 90, 37 90, 28 90, 13 90, 76 90, 44
8 90, 09 90, 21 90, 15 90,32 90,90 90,61
9 90, 14 90, 27 90, 20 90, 29 90, 84 90, 56
10 90, 03 90, 16 90, 09 90, 23 90, 79 90, 51
11 89, 98 90, 14 90, 06 90, 10 90, 74 90, 42
12 89, 91 90, 11 90, 01 90, 07 90, 67 90, 37
Ch 90, 23 90, 15 90, 19 90, 23 90, 15 90, 19
Ran 88, 15 87, 89 88, 02 88, 17 87, 84 88, 00

Table 6.1: Precision and recall scores of the episodic top-down reranker (columns
1-3) and left corner reranker (columns 4-6) as a function of the maximum history
considered (nBest=5; λ0=4; λ1=λ2=λ3=0.2).

Figure 6.7 one can see a clear effect of conditioning history, peaking at history
5 for the top-down reranker, and at history 8 for the left corner reranker (best
scores are indicated in boldface). For histories 3-7 the episodic top-down reranker
surpasses the Charniak F-scores by a slight margin, and overall does much better
than the PCFG reranker (corresponding to history 0) and the random reranker.

As can be seen from Table 6.1, the LCE grammar performs better across
the board than the TDE grammar, and this is mainly due to improved labeled
precision scores. It also does better than the probabilistic left corner model of
[Manning and Carpenter, 1997], which corresponds to the top row in the Table.
Note that for the LCE reranker the peak is reached at history 8, and the F-scores

6.3. Experiments and results 133

Figure 6.7: F-scores compared between the top-down and the left corner episodic
reranker as a function of conditioning history.

stay high until history 14; this could be an indication that the order of condition-
ing in a LCE derivation better approximates human sentence processing than in
a TDE derivation. It is remarkable that the LCE grammar robustly improves on
the Charniak parser, because i) unlike the latter it does not implement head anno-
tation or other non-trivial preprocessing steps, ii) it makes several non-standard
assumptions about the derivation process, such as a left-corner sequential order
and the inclusion of special shift treelets in the derivation for transitions from
incomplete productions to words.

Figure 6.8: F-scores of the left corner episodic reranker applied to the top 5, top
10 and top 20 Charniak parses.

To assess the robustness of the reranking method I have also applied the LCE
reranker to the top 10 and the top 20 lists of Charniak parses. In the latter case
the random reranker baseline is significantly lower than for the top 5 reranker
(F-score = 86.2 resp. 88.0). Therefore it is meaningful that the top 20 reranker
still performs almost as good as Charniak (F-score=90.15 for history 8), and the
top 10 reranker does even better (F-score=90.34 for history 9). In Figure 6.8
it can further be seen that although the differences in performance between the
top 5, top 10 and top 20 reranker are large for low histories, they converge for
histories of 6-10, when the episodic approach starts to make a difference. On the
other hand, the TDE reranker breaks down when applied to the top 20 Charniak
parses, peaking at an F-score of 89.66 for history 6.

134 Chapter 6. Episodic grammar

6.3.1 Discontiguous episodes

An interesting way to extend the episodic grammar is by including discontiguous
episodes. Often one can reuse a memorized sentence fragment, even if it does not
exactly match the sentence that is currently being processed, but differs from it by
a single word or clause. I implemented a variation of update rule for the common
history (CH) in order to include episodes with ‘gaps’. In Equation 6.4, whenever
an episode is interrupted (i.e., its CH is set to 0) it is pushed together with its
current activation on an external stack of discontiguous episodes (a separate stack
is used for every exemplar). If at a later stage in the derivation a trace of the same
exemplar is found, which has no predecessor, then one can pop up an interrupted
episode from the top of the stack of that exemplar, and copy (a fixed fraction f
of) its activation to the new trace.

Figure 6.9: F-scores of the LCE reranker with and without counting discontigui-
ties (d=0.95; f=0.6)

.

Best results were obtained when the activation of unused discontiguous episodes
decays by some percentage d at every step of the derivation. With d = 0.95 and
f = 0.6 the addition of discontiguous episodes gives a minor improvement over
the non-discontiguous case, as can be seen from Figure 6.9. The highest F-score is
90.68, which is reached for history 10. The effect of the inclusion of discontiguous
fragments seems to be that longer histories play a more prominent role.

If one looks at the individual sentences from the test set (WSJ section 22) for
which the F-scores increased most by including discontiguous fragments, one finds
that those are indeed sentences that employ frequent discontiguous expressions.
For instance, within the top 5 of these sentences one contains the discontiguous
fragment rose to ... from ..., which occurs more than 100 times in the training
corpus.

6.3.2 Shortest derivation reranker

Assuming that language users understand and produce novel sentences by reusing
fragments of stored episodes, then intuitively they will try to do so by retrieving
not only the most frequent, but also as few as possible fragments from memory,

6.3. Experiments and results 135

since this demands the least cognitive effort. This amounts to a preference for
the shortest derivation of a novel sentence.

Such a preference can be implemented in the episodic grammar framework by
greedily selecting fragments from stored exemplars that share the largest common
history with the derivation of a novel sentence (not including fragments from
exemplars that are identical to the novel sentence). When the shortest derivation
principle is used together with the LCE reranker to select those derivations of
the Nbest list that use the fewest episodes (followed by selection of the derivation
with the highest likelihood in case of a draw) then an F-score of 90.44 is obtained
(for history 9). Thus, the shortest derivation LCE reranker performs worse than
the maximum likelihood LCE reranker, but still better than the Charniak parser.

In Data Oriented Parsing the principle of the shortest derivation has been
successfully explored as an alternative to a probabilistic parsing strategy [Bod,
2000]. The multi-word fragments employed in the shortest derivations (or in the
most probable derivations) are assumed to have some cognitive reality as the
primitive building blocks of speech. In the DOP framework however a top-down
derivation is always assumed, whereas in the episodic framework one can also find
fragments of a left corner derivation. Figure 6.10 shows some examples of fre-
quent fragments that occur in the shortest derivations of the Tuebingen Corpus of
English Spontaneous Speech (www.sfs.uni-tuebingen.de/en/tuebaes.shtml), when
the parse trees are derived with a left corner episodic grammar.

S
XXXXXX
���
������

NP MD VP@att8
PPPP

����
VB@pr2

do@pr1

S**@sh0

NP@att7

PR-DM@pr6

DT@pr5

that@pr4

VP*@sh3

VP
PPPP

����
VBZ@pr2

sounds@pr1

START*@sh0

AP@att6

JJ@pr5

good@pr4

VP*@sh3

Figure 6.10: Examples of frequent fragments used in the shortest derivations
of the Tuebingen corpus. The letters after the @-symbol indicate the applied
operation (sh(ift), att(ach), pr(oject)), and the order of application.

136 Chapter 6. Episodic grammar

6.4 Relation to other work

As was discussed in section 3.1.8, current research in statistical NLP and parsing
increasingly focuses on ways to weaken the context independence assumptions
of probabilistic context free grammars (PCFGs). Context free grammars fail to
take advantage of two relatively independent sources of contextual information
for disambiguating between parses: context!structural and lexical, which captures
the dependency on previous words in the sentence, and structural context, which
captures the dependency on the relative position in a parse tree. In section 3.1.8
I have discussed some of the solutions that have been investigated, such as head
lexicalization and parent annotation; all of these involve transferring contextual
information to the labels of the trees as to preserve the context free backbone of
the grammar.

In the episodic grammar both lexical context and structural context are in-
tegrated in the conditioning history without any need for preprocessing of the
labels. For instance, in the LCE grammar all words to the left of the currently
processed word weigh in the parser move decision. As such, the LCE grammar
should be considered as a good candidate for language processing.

Parsing with episodic grammars is in some respects comparable to the tradi-
tion of history based parsing, which exploits the idea that the parser moves are
conditioned on n previous parser decisions in the derivation history. A weakness
of the latter approach is however that it leads to very large grammars and data
sparsity, since all conditioning events are saved explicitly in equivalence classes
[e.g., Black et al., 1993, Collins, 1999, p.57]. In the episodic grammar parser deci-
sions are conditioned on arbitrary long histories, at no cost to the grammar size,
because conditioning context is implicit in the representation, and is constructed
explicitly only during on-line processing of a novel sentence. Since every exemplar
is stored only once in the network, the space complexity of the episodic grammar
is linear in the number of exemplars.

Another difference with history-based parsers is that in the latter the associ-
ation between the conditioning event and the sentence from which it originates
is lost, whereas in the episodic grammar the identity of an exemplar that has
contributed to a derivation step is preserved. In section 6.3.1 it was shown that
this feature can be used for including discontiguous episodes.

It is also interesting to compare the episodic grammar with Data Oriented
Parsing (DOP) [e.g., Bod, 1998] (see section 3.1.9). In DOP the primitive units of
the grammar are not CF rules, but subtrees of arbitrary size, which are extracted
from the parses of a treebank. In a certain sense DOP and episodic parsing are
complementary: whereas in DOP the substitution of an arbitrary large subtree
is conditioned on a single nonterminal, in the episodic parser the application of
a local tree is conditioned on an arbitrary large episode. However, the shortest
derivation variant of the episodic reranker effectively combines both conditioning
on large histories and substitution of stored units larger than a single treelet.

6.5. Chapter conclusion 137

Further, both approaches allow for non-local dependencies to be captured in
primitive, discontiguous fragments of the grammar, but in the episodic framework
this is less straight forward to implement than in DOP. An advantage of episodic
grammar over DOP is that in the former the stored parse tree can be broken down
into subtrees according to various generative processes (top-down, left corner, or
any other decomposition) whereas in DOP always a top-down generative process is
assumed. This opens the possibility to utilize the episodic grammar as a language
model in speech recognition, for which a left corner strategy is more suitable than
a top-down strategy.

As was mentioned before, in the episodic grammar it is not necessary to
store every possible tree fragment explicitly. This is an advantage over DOP,
which suffers from computational inefficiency due to very large grammars. The
fact that stored episodes are automatically reconstructed from traces during the
derivation of a novel sentence obviates a time-expensive search through an ex-
ternal memory (i.e., a treebank of fragments), and makes the episodic grammar
content-addressable.

Table 6.2 shows how the present results compare to state-of-the-art parsers.
Note that the latter are evaluated on section 23 of WSJ, while all the results of
this work are on section 22. Note also that for the present results a reranker is
used, that is parasitic on the Charniak (1999) parser.

Various parser strategies (on WSJ sec 23)
Parsing model F (≤ 40) F (all)
Charniak (1999) (max. entropy) 90.1 89.6
Petrov and Klein (2007) (refinement-based) 90.6 90.1
Bansal and Klein (2010) (fragment-based) 88.7 88.1
Sangati & Zuidema (2011) (DOP) 89.7 89.1
Cohn et al. (2009) (Bayesian) - 84.0
Charniak and Johnson (2005) (reranker, n = 50) - 90.1

This paper (on WSJ sec 22)
TDE reranker (n = 5) 90.4 -
LCE reranker (n = 5) 90.6 90.1
LCE + disctg (n = 5) 90.7 -

Table 6.2: Comparison of the episodic reranker to state-of-the-art parsers, for
sentences of length up to 40, or all sentences.

6.5 Chapter conclusion

In this chapter I described a cognitively inspired implementation for contextual
conditioning in statistical parsing, using episodic memory. It was shown that for
the task of supervised parsing the episodic grammar is a viable alternative for
standard, not cognitively motivated probabilistic grammars. At the same time
the episodic grammar offers a neural perspective on human syntax, that unifies

138 Chapter 6. Episodic grammar

the contrasting views that syntax is either encoded as a set of abstract rules, or
as stored exemplars of (fragments of) sentences.

It will be even more interesting to see whether the episodic framework can be
successful as an approach to the unsupervised induction of (neurally plausible)
grammars from unannotated sentences. Since in episodic parsing all computations
are done locally, the framework is in principle compatible with the constraints
imposed by a connectionist design. This will be explored in Chapter 8, where I
will evaluate an episodic version of HPN.

The current work should not only be seen as an exercise in computational
linguistics, but also as a theoretical contribution to episodic memory research.
As such, it is an instance of how cognitively inspired linguistic research can open
a window on the study of memory processes in the brain. I proposed an original
hypothesis for the representation of episodic memory, which expresses that an
episodic memory is distributed in the form of traces, supplied with a time stamp,
inside local stores of the semantic memory units that are involved in processing
it. According to a free interpretation of this proposal one could imagine episodic
memory as a life-long thread spun through semantic memory.

In contemporary theoretical neuroscience most models of episodic memory
assume dedicated ‘binding neurons’, whose sole job it is to bind semantic ‘content’
nodes into episodic representations [e.g., MacKay, 2007, Shastri, 2002, O’Reilly
and Rudy, 2001, O’Reilly and Norman, 2002]. Yet, this is not a very feasible
solution for the representation of episodic memories, for every day of a person’s
life many thousands of new episodic memories are formed. If episodic memories
were stored in binding units, this would require the neurogenesis of a massive
number of neurons and the establishment of even more new connections. As
will be explained in section 8.4.2, in the current proposal successive traces of an
episode are assumed to be dynamically bound, hence binding neurons are not
necessary. In this sense the current proposal, although simple, contributes to the
episodic memory debate, because it shows a way out of the curse of connectivity.

In their essence, the ideas developed in this chapter are consistent with con-
temporary research in neuroscience, which emphasizes the construal of episodes
in the hippocampus as contextually bound sequences of semantic memories [e.g.,
Eichenbaum, 2004] (see section 8.4 for a discussion of the episodic-HPN model
in the neuro-biological context). The hippocampal model of Levy [1996] shows
that during episodic sequence learning special ‘context neurons’ are formed that
uniquely identify (part of) an episode. These may function as a neural correlate
of the counter that was implemented in the traces. The episodic grammar model
represents a first attempt to validate this theory of episodic memory within the
language domain.

Chapter 7

Parsing with episodic memory

While the previous chapter described the episodic
probability model and used it as a reranking sys-
tem, in this chapter I will take the episodic frame-
work one step further and develop a full episodic left
corner chart parser. As a first step a non-episodic
probabilistic left corner chart parser that computes
prefix probabilities is introduced in reasonable detail.
Subsequently I describe an episodic ‘spreading acti-
vation’ instantiation of the left corner chart parser
(ELCCP) where episodic probabilities are computed
on-the-fly at parse time through spreading trace acti-
vations from stored derivations to (the traces in) its
states. I discuss an efficient Viterbi algorithm for dy-
namically computing the shortest derivation within
the ELCCP, which is implemented and evaluated on
the Wall Street Journal.

7.1 An Earley-style probabilistic left-corner chart

parser that computes prefix probabilities

In this section and the following I will gradually build an episodic left corner chart
parser for HPN. Recall from section 5.3.1 that top-down parsing is not an option
for HPN, because no priviliged TOP category nor any other labels are assumed,
and there are no restrictions on binding between HPN units, hence the search
could go on indefinitely. As a first step, this section describes an Earley-style
probabilistic left-corner chart parser that computes prefix probabilities. The left
corner chart parser described here follows in broad lines the work of van Uytsel

139

140 Chapter 7. Parsing with episodic memory

et al. [2001] (which unfortunately I learned about only after I had developed a
very similar left corner chart parser myself), and it is based on the Earley chart
parser [Earley, 1970] (see section 3.1.11) and the probabilistic version thereof
[Stolcke, 1995] (see section 7.1.6).

Figure 7.1: Left corner derivation of John loves Mary. gc is short for goal category.

Whereas in Stolcke [1995] a top-down parsing process is assumed (and a PCFG
probabilistic model) the chart parser of van Uytsel et al. [2001] follows a left-
corner parsing (LCP) strategy (see section 3.1.3), and a left corner probabilistic
model, which will in general return different string probabilities than the top-down
model. As discussed in section 3.1.3 the left corner parser has three operations:
shift, attach and project. As a reminder, Figure 7.1 (repeated from section 3.1.3)
illustrates the left corner parsing process.

7.1.1 States of the left corner parser

The LC parsing process is executed as a search through a network of states in a
chart, where state transitions are effectuated by the shift, project and attach op-
erations. States represent an instantiation of a grammar rule within a derivation:
they are distinguished with respect to their position in the input string and their
goal category, and are of the form

q = {G; X ← jλ • iµ} (7.1)

where G is a goal category, X ← λ µ is a grammar rule1, and λ and µ are (possibly
empty) strings of terminals and nonterminals. The position of the dot indicates
which daughters of the rule have already been processed in the state. If the dot
is on the right of all daughters of a rule the state is called complete; otherwise,
if it is not complete, it is called a goal state. The left span index j of state q

1To prevent confusion I have adopted a notation where the arrow points left, instead of
right, as customary in context free rewrite rules. The right arrow would be suggestive of a
top-down prediction, whereas in left corner parsing the rule is accessed first through bottom-up
projection.

7.1. An Earley-style probabilistic left-corner chart parser 141

(lspan(q), for short) corresponds to the word position in the sentence when the
rule was first projected (i.e., words x0, . . . , xj−1 have been processed before the
projection); the right span index i (rspan(q), for short) denotes the word position
of the dot with respect to the input string. In plain language, X ← jλ • iµ means
that the processed part of the rule spans < j, i > in the input string.

Most probabilistic left corner parsers [e.g., Manning and Carpenter, 1997]
compute the parse probabilities given the sentence (see section 3.1.7). If one is
however interested in sentence or string probabilities (e.g., for a language model,
or to compute prefix probabilities) this introduces some additional challenges,
because a left corner derivation may produce many unconnected partial substruc-
tures (section 3.1.3). In order to compute the probability of a certain prefix one
needs to make assumptions about how the substructures relate to each other in
the generation process of the tree.

To deal with this problem one may postulate that in a LC derivation a goal
state is followed by a special word state (a state of the parser after a shift), and
that this transition is mediated by a shift rule from the goal category (the first
unprocessed daughter of the goal state) to the word (for instance loves← VP in
Figure 7.1). With this assumption a LC derivation always stays connected, since
it defines a unique and fixed linear order of processing. It is convenient to write
the shift rule as

word← G

where G is the goal category; the word state is then given as

{G; word← iG • i+1}

The left corner grammar augmented with a shift rule will be called Left Corner
Shifting Grammar (LCSG).

7.1.2 Probabilistic left corner shifting grammar

A left corner shifting grammar can be extended to a probabilistic LCSG (PLCSG)
by assigning a probability to every operation. Whereas in a PCFG there is only
one type of probability, associated with top-down prediction and conditioned
on the parent in the tree, in the PLCSG there are three types of probabilities,
corresponding to different parser moves (project, attach and shift). The left corner
probabilities are conditioned on previous steps in the derivation (history-based
parsing), rather than based on the tree structure.

Often one or two prominent features are selected from the history to condition
upon. For instance, Manning and Carpenter [1997] condition the probability of
a projection and of an attachment on the parent category (Y) of a completed
rule and the goal category (G) in the stack of the parser. Their example will be
followed in the LCSG parser, but in a later section I will show that an episodic
LCSG parser is able to condition on the entire history of the derivation.

142 Chapter 7. Parsing with episodic memory

As discussed in section 3.1.7, given a complete state with parent category Y ,
and given a goal category G, one can either project a rule r : Z ← Y α with left
corner Y , or attach to a goal state if its first unprocessed daughter G equals Y ,
hence

Patt(Y ,G) +
∑
Z, α

Pproj(Z ← Y α|Y,G) = 1 (7.2)

If there are no complete states then one must shift from a goal state to the next
word in the sentence, conditioned on the goal category G (the first unprocessed
daughter of the goal state). The shift probability is therefore given as∑

word

Pshift(word|G) = 1 (7.3)

The above probabilities can be estimated from the treebank using relative
frequency estimation, after converting the treebank parses to their left corner
derivations. Given shift probabilities one can calculate the joint probability of
the derivation and the sentence, which is given by

P (derlc, S) =
∏

shifts Pshift(w|G) ×
∏

attachments Patt(Y,G)

×
∏

projections(1− Patt(Y,G))× Pproj(r|Y,G)

(7.4)

7.1.3 Probabilistic left corner chart parsing

As one can define a dynamic programming chart parser for the probabilistic top-
down Earley-style chart parser of [Stolcke, 1995], one can do so as well for the
LCSG grammar, in a way that allows for computing prefix probabilities and find
the most probable parse efficiently. In section 7.1.6 I gave definitions for the prefix
probability, the forward probability (for short, Pfw) and the inner probability (for
short, Pinn) for the top-down parser. These definitions can be accommodated for
the left corner parser, taking into account the different branching process of the
left corner search. Given a state q as defined in Equation 7.1, then one defines

Forward probability The forward probability Pfw(q) is the sum of the proba-
bilities of all constrained paths of length j that end in state q, start in the
initial state and generate x0 . . . xj−1.

Inner probability The inner probability Pinn(q) is the sum of the probabilities
of all paths of length k− j generating the input symbols xj . . . xk−1, ending
in q and starting with a shift of wj.

(The prefix probabilities can be easily computed from the forward probabili-
ties, as will be discussed in section 7.1.4.) One may also make use of the LCSG
chart structure to efficiently find the most probable parse of the sentence (a.k.a.

7.1. An Earley-style probabilistic left-corner chart parser 143

the Viterbi parse). We define the Viterbi probability of a state, PV it(q), as the
probability of the most probable path (the Viterbi path), constraint by the sen-
tence string, that goes through state q. To find the Viterbi path, the states in the
chart must update their Viterbi probabilities, and keep track of a Viterbi pointer
to the predecessor states associated with the Viterbi path. After completing the
chart one can reconstruct the Viterbi parse from the final state by tracing back
the pointers.

The LCSG chart parser moves through the sentence from left to right, and
it keeps a set of states for each position in the input. Starting from state set 0,
and as long as there are complete states in the current state set, the parser adds
new states to the chart by exhaustively, and recursively performing project and
attach operations on complete states.2 Then it adds states to the next state set
by shifting to the next input symbol from all goal states in the current state set.

A derivation starts with the initial state

qI = {TOP ; TOP ← −1 SB • 0 S}

which is placed in state set 0 (SB is a dummy nonterminal that marks the Sentence
Beginning).3 Since this is a goal state, the first operation will be a shift operation,
invoking a shift rule x0 ← TOP (with x0 the first word of the sentence). The
parse completes when it reaches the final state

qF = {TOP ; TOP ← −1 SB S • N}

where N equals the number of words in the sentence.
Following are the details of the LCSG chart parser operations, specifying the

conditions for adding new states to the chart, and the dynamic update rules for
the forward, inner and Viterbi probabilities.

Figure 7.2: Project operation

• The project operation (Figure 7.2)
Given a complete state C = {G; Y ← jβ • i} with parent category Y

2There are some intricacies involved here, concerning keeping the correct order and gener-
ating states recursively. These will be dealt with in section 7.1.6.

3This assumes that all parses must have a root category S.

144 Chapter 7. Parsing with episodic memory

Figure 7.3: Attach operation

Figure 7.4: Shift operation

and a grammar rule Z ← Y α with left corner Y
If it does not yet exist, then create a new projected state
N = {G; Z ← jY • i α} with the dot in the second position, and add it to
the chart.

The forward, inner and Viterbi probability are updated according to:

Pinn(N) += Pinn(C)× Pproj(r|G) (7.5)

Pfw(N) += Pfw(C)× Pproj(r|G) (7.6)

PV it(N) = max
(
(PV it (C)× Pproj (r|G)) , P old

V it (N)
)

(7.7)

The notation + = means that the probabilities are set to the value on
the right hand side of the equation if N does not yet exist in the chart;
otherwise their values are incremented with the same amount. If N already
exists in the chart, the Viterbi probability is only updated if it is higher than
the state’s previous Viterbi probability P old

V it(N). In that case the Viterbi
pointer is also replaced.

• The attach operation (Figure 7.3):
Given a complete state C = {Y ; Y ← kβ • i} and an incomplete goal state
I = {G; X ← jλ • k Y α}, where rspan(I) = lspan(C) = k.
If it does not yet exist in the chart, create a new state
N = {G; X ← jλ Y • iα}, in which the dot is moved behind Y .

7.1. An Earley-style probabilistic left-corner chart parser 145

Let Patt(Y,G) be the probability of attaching a complete state with parent
category Y to goal category G = Y . Then the inner, forward and Viterbi
probability are updated according to

Pinn(N) += Pinn(C)× Pinn(I)× Patt(Y,G) (7.8)

Pfw(N) += Pinn(C)× Pfw(I)× Patt(Y,G) (7.9)

PV it(N) = max
(
(PV it(C)× PV it(I)× Patt(Y,G)) , P old

V it(N)
)

(7.10)

The new state can be either complete (if α = ∅) or incomplete (if α 6=
∅). The rationale for updating the forward probabilities from the inner
probabilities will be explained with an example in section 7.1.5.

• The shift operation (Figure 7.4):
Given an incomplete goalstate I = {G ; Y ← jλ • iZ α}, and given a

shift rule w ← G
If it does not yet exist in the chart, create the complete state
N = {Z ; w ← iZ • i+1}

Pinn(N) = Pshift(w|G) (7.11)

Pfw(N) += Pfw(I)× Pshift(w|G) (7.12)

PV it(N) = Pshift(w|G) (7.13)

To comply with [Stolcke, 1995] I will call a complete state that results from
a shift a scanned state.

7.1.4 Prefix probabilities

Recall from section 7.1.6 that the prefix probability P (S ←∗L x) is the sum of the
probabilities of all derivational paths starting with the initial state, that have x =
x0, . . . , xk−1 as a prefix. Since all derivations of sentences with prefix x0, . . . , xk−1

(and |x| = k) have to go through a scanned state {G ; xk−1 ← k−1 G • k}, one
may compute the prefix probability as the sum of the forward probabilities of all
such scanned states. Hence,

P (S ←∗L x) =
∑

G: {G; xk−1←k−1 G • k}

Pfw({G ; xk−1 ← k−1 G • k}) (7.14)

146 Chapter 7. Parsing with episodic memory

S
Q
Q

�
�

NP

Peter

VP

runs

(3x) S
Q
Q

�
�

PRN

Peter

VP

runs

(2x)

Figure 7.5: Treebank parses of Peter runs (PRN = pronoun).

7.1.5 An example that explains why inner probabilities
are necessary

Suppose the left corner parser of van Uytsel et al. [2001] is trained on a treebank
containing the two parses of Figure 7.5. Table 7.1 gives the states that the left
corner chart parser goes through when parsing the sentence Peter runs.

nr op. from state p Pfw (µ) Pinn (ν)
qI - - TOP ; TOP ← −1 SB • 0 S - 1.0 1.0
q2 sh qI S ; Peter ← 0 S • 1 Psh(Peter|S) = 1.0 1.0 1.0
q3 pr q2 S ; NP ← 0 Peter • 1 Ppr(NP |Peter, S) = 0.6 0.6 0.6
q4 pr q2 S ; PRN ← 0 Peter • 1 Ppr(PRN |Peter, S) = 0.4 0.4 0.4
q5 pr q3 S ; S ← 0 NP • 1VP Ppr(S ,VP |NP , S) = 1.0 0.6 0.6
q6 pr q4 S ; S ← 0 PRN • 1VP Ppr(S ,VP |PRN , S) = 1.0 0.4 0.4
q7 sh q5, q6 VP ; runs← 1 VP • 2 Psh(runs|VP) = 1.0 1.0 (µ5 + µ6) ·

Psh

1.0

q8 pr q7 VP ; VP ← 1 runs • 2 Ppr(VP |runs,VP) = 1.0 1.0 1.0
q9 att q5 + q8 S ; S ← 0 NP VP • 2 Patt(VP ,VP) = 1.0 0.6 (µ5 · ν8 ·

Patt)
0.6 (ν5 · ν8 ·
Patt)

q10 att q6 + q8 S ; S ← 0 PRN VP • 2 Patt(VP ,VP) = 1.0 0.4 (µ6 · ν8 ·
Patt)

0.4 (ν6 · ν8 ·
Patt)

qF att q9 + qI ,
q10 + qI

TOP ; TOP ← −1 SB S • 2 Patt(S , S) = 1.0 1.0 (µ1 · ν9 ·
Patt+ µ1 · ν10 ·
Patt)

1.0 (ν1 · ν9 ·
Patt+ ν1 · ν10 ·
Patt)

Table 7.1: Left corner chart of the sentence Peter runs. (Note that in the Table
Pfw is abbreviated as µ and Pinn as ν.)

Why can one not compute the forward probabilities efficiently without inner
probabilities? This has to do with the existence of non-local dependencies in the
left corner derivations. One can see from the chart and from Figure 7.6, that after
a shift to runs, both the path through state q5 and the path through q6 converge
on state q7. Therefore, q7 receives a contribution to its forward probability from
both µ5 and µ6. However, when the same paths attach back to q5 and q6 respec-
tively (in q9 and q10 respectively) they are again separated. Therefore, one cannot
use the (summed) forward probability of q7 in the calculation of both µ9 and µ10,
because that would double the forward probability. The inner probability ν7 of
state q7 however is common to both paths, so it can be used in the calculation.

7.1. An Earley-style probabilistic left-corner chart parser 147

Figure 7.6: States and their transitions in the LCG chart (the q’s refer to Table
7.1).

7.1.6 Implementation issues

Retrieving the Viterbi parse

After constructing the chart, the Viterbi parse can be retrieved by following
back the Viterbi pointers stored in the chart cells, starting from the final state.
Stolcke [1995, p.22] describes a recursive procedure to recover the Viterbi parse
for the Earley-style PCFG chart parser (section). The left corner version of
the chart parser differs from the PCFG version in that the chart also stores
states corresponding to shift transitions. These should however be ignored when
retrieving the Viterbi parse, and treated as leaves of the tree. In their place the
shifted word is inserted in the parse tree, but no recursive call is made.

Left recursion

In a top-down chart parser left-recursive predictions pose a problem when updat-
ing string probabilities, because the same state may appear several times within
a given derivation, giving rise to so-called prediction loops. In left corner chart
parsing the problem is less urgent, because in general left-recursive projections do
not stay within the same state set but are followed by a shift to the next state set.
Only unary projections could still directly and indirectly result in left recursion.
Indeed, upon inspection of the Wall Street Journal one finds several such unary
rules, for example NP ← NP and S ← VP and VP ← S . To deal with this
problem we first remove all reflexive unary rules, such as NP ← NP from the
grammar. The remaining indirect left recursion can be dealt with by precom-
puting a matrix of probability sums for the reflexive, transitive unit-production
relation [Stolcke, 1995, p.16]. An alternative, but only approximate solution is to
restrict the number of successive unary projections. In this work the latter option
was chosen, with a maximum of 2 successive unit projections.

148 Chapter 7. Parsing with episodic memory

Prioritized queues

When complete states from a certain state set are attached to a goal state, it is
possible that the resulting state ends up in the same state set as the complete
state. In this case one must take care that new states are added in a specific order
to ensure that all contributions to a state’s forward and inner probabilities are
summed before that state is used as input to further projections or attachments
within the same iteration. To achieve this, the newly derived state is inserted
into a so-called prioritized queue [Stolcke, 1995, p.32]. States are ordered in this
queue according to their left span index, from high to low, such that states that
span a smaller part of the input sentence are completed before they are attached
to states that contain them.

Unless the transitive unit projection matrix option is adopted, a similar prob-
lem may occur with unit projections (that occur within the same iteration as
attachments), because unit projections always result in complete states in the
same state set. To ensure that unit projections are processed in the correct order
a second prioritized queue is created within the first one. In the latter queue unit
projections are ordered according to their ‘depth of projection’, with a maximum
of 2.

Beam search

To prevent the chart from growing too large states can be pruned from the chart.
This restricts the search space, but may lead to a sub-optimal Viterbi parse,
and under estimation of the inner and forward probabilities. One approach to
pruning is to maintain a beam of states of a fixed size throughout the chart.
States of a certain state set are ranked according to their forward probabilities,
and if the maximum beam size is exceeded the states with the lowest forward
probabilities are pruned from the state set. The optimal beam size should be
assessed empirically. Again, one should take care that all contributions to a
state’s forward probability are accumulated before one decides whether to prune
the state or not.

7.2 Evaluation of the basic probabilistic LCSG

chart parser

The development of the PLCSG chart parser in the previous sections was not a
goal in itself, but an intermediate step and base model on top of which an episodic
left corner chart parser will be built in the next section. Still it is useful to have an
idea of its performance before continuing further, because it provides a baseline for
comparison to later versions. The PLCSG parser was evaluated on the standard
task of parsing the Wall Street Journal, while measuring labeled precision and

7.3. The episodic left corner chart parser 149

recall. As usual, sections 2-21 were used for training the parser, and section 22
for development. Table 7.2 compares the performance of the PLCSG chart parser
implemented in this thesis to that implemented by van Uytsel et al. [2001], and
to a standard PCFG implementation with lexical and syntactic smoothing4 (but
note that the other results are on section 23 of WSJ, while my results are on
section 22). All reported results are for sentences up to length 40 (ca. 1700 in
section 22), which took approximately 1.5 hours to parse.

Parsing model LR LP F
This work 70.4 76.7 73.4
van Uytsel (2001) 79 79 79
PCFG − − 78.5

Table 7.2: Comparison of different implementations of the left corner parser with
the PCFG parser.

Table 7.2 shows that the van Uytsel parser performs more than 5 percentage
points better than my implementation of the PLCSG parser, and in the same
range as the PCFG parser. Note however, that van Uytsel et al. [2001] did
not implement smoothing (as a consequence his parser could not parse 4% of
the sentences), while in this work (as well as in the PCFG) the train sentences
were horizontally Markovized, and 2 levels of back-off smoothing were performed
(λ = 0.2 for each level). Thus, the current implementation can parse all sentences,
but the smoothing may have an overall negative impact on performance. Further,
it should be noted that the scores reported by van Uytsel et al. [2001] were
obtained with an advanced submodel of the parser, which included additional
conditioning history to calculate the probabilities, whereas my implementation is
based on the basic PLCSG probability model.

7.3 The episodic left corner chart parser

This section introduces the episodic left corner chart parser, an episodic extension
of the probabilistic LCSG chart parser of the previous sections. I will discuss two
versions of the episodic left corner chart parser, but I have implemented only
the second version: the first version computes the most probable parse from the
episodic traces, and the second version computes the shortest derivation, that
is the derivation containing the least number of episodic fragments. In both
cases training proceeds in the same manner as with the episodic reranker (see
section 6.2.3): first, the treebank parses are converted to left corner derivations,
and treelets are created for unique left corner productions (with specific register
positions) in the treebank derivations (including treelets for shift productions).

4I am grateful to Federico Sangati for providing these results.

150 Chapter 7. Parsing with episodic memory

Then, for every left corner derivation in the treebank, and for every step in
the derivation the treelet associated with the rewrite rule is filled with traces
that encode the sentence number and position in the derivation (see the detailed
algorithm in section 6.2.2).

The treelets filled with traces constitute an episodic grammar; the ‘rules’ of
this grammar are thus no longer symbolic rewrite rules, but objects with a local
memory where traces are contained. The treelet keeps track of the next required
operation in the queue by means of a local register. The states of the LCSG
parser are replaced by treelet states, which are of the form

q = {G ; X ← jλ • i α ,Eq} (7.15)

Here the register position of the treelet is indicated by the dot, and G is again a
goal category included in the state to enforce valid parses. The main difference
with the LCSG states is that treelet states are enriched with a set Eq of (activated)
traces. When a new state is added for the first time to the chart, all the traces are
copied from the ‘treelet type’ to the treelet state, and receive a certain activation.

7.3.1 Most probable episodic parse

The most probable episodic parse is computed in much the same manner as
the Viterbi parse in the LSCG chart parser, except that the base probabilities
(Pshift, Pproject and Pattach) are not estimated beforehand from the treebank, but
computed on the fly, as a function of spreading activation of traces in treelet
states. This works as follows (but note that it has not been implemented):

When a new treelet state q is first added to the chart (as a result of a shift,
project or attach operation) all traces from the ‘treelet type’ are copied to the
treelet state. Then, for every trace separately, its common history (CH) is up-
dated from a predecessor trace according to the update rule 6.2.3 (section 6.4),
which is repeated here for convenience: Let q′ be the predecessor state (either a
complete state in case of project or attach, or a goal state in case of shift), and
let eq′,i = (sq′,i, nq′,i) be the ith trace in the predecessor state (associated with
treelet tq′), and eq,j = (sq,j, nq,j) a trace in the current state q (associated with
treelet tq). (As before, s denotes the sentence number in the treebank, and n the
position in the derivation.) Then

CH (eq,j) =


CH (eq′,i) + 1 if ∃ (sq′,i, nq′,i) such that

(sq,j = sq′,i ∧ nq,j = nq′,i + 1)
0 otherwise

(7.16)

(i.e., the CH of the trace is incremented by 1 if there is a direct predecessor of
the trace in the predecessor state.) When the same state is reached multiple times
a weighted average is computed for the CH of its traces: Let CH (eq←q′,j) denote

7.3. The episodic left corner chart parser 151

the common history of trace eq,j originating from the path through predecessor
state q′. Then

CH average(eq,j) =

∑
q′ CH (eq←q′,j)Pfw(q′)∑

q′ Pfw(q′)
(7.17)

(The rationale for weighing with the (non-episodic) forward probability is that it
is a measure of the number of paths that have converged at q′.) Once the average
CH’s of the traces in a state are known, one can compute their activation A(eq,j)
according to Equation 6.1. Now it is straightforward to dynamically update the
forward, inner and Viterbi probabilities in the chart, using Equations 7.5 to 7.13.
In each of the latter equations the base probability (Pshift, Pproject or Pattach) is
a function of the current state q, which is given by the relative fraction of traces
in q that prefer moving to another treelet tr (corresponding to a shift, project or
attach operation), weighted by their activations. This probability was given in
Equation 6.2, which is repeated here:

Pepisodic(r|q) =

∑
ei∈Er

q
A(ei)∑

ej∈Eq
A(ej)

(7.18)

As before, Er
q denotes the set of traces in state tq associated with the current

state q that points to treelet tr, and Eq is the full set of traces in state q.

One should take care that all incoming contributions to the CH’s of traces
in a state are considered for the averaged before continuing to update the CH’s
of traces in states further down in the derivation. This can be dealt with by a
priority queue, as was explained in section 7.1.6.

There is a complicated issue concerning updating the common histories across
a shift operation. This again has to do with non-local dependencies in left corner
parsing: when you start a shift a new substructure is created for which it is not
known yet which state it will attach to. A possible way around this problem is to
keep track of an ‘inner’ CH, like the inner probability in the non-episodic LCSG
parser, that starts to count from CH=0 (for every trace) at the shift operation.
Upon an attach the ‘inner’ CH of traces in the complete state can be added to
the total CH of traces in the goal state, as is done with forward probabilities.

The difficulty here is that, unlike the inner and forward probability, the ‘inner’
CH is not independent of the CH of the goal state. One cannot simply add the
inner CH’s of traces in the complete state to the CH’s of traces in the goal state,
because whether they should be added or not depends on whether the traces of
the goal state have a successor trace after the shift operation. Can one not make
the decision to add or not the ‘inner’ CH’s at attach time, once the goal state
is known? Unfortunately, it is not as simple as that. One of the complications
is that the CH’s are not additive: they can be set to 0 at any time during the
shift loop. Things get more complicated if one also takes the average CH of
contributing paths. As of writing this section the problem remains unsolved.

152 Chapter 7. Parsing with episodic memory

Remark about episodic parsing

Given that in the episodic grammar one may reconstruct a parse from sequences
of successive traces pointing to treelets, one might wonder why it is actually still
necessary to use a parser, rather than simply let the parse of the test sentence be
decided by a Markov process between treelets? The reason is that there exist non-
local syntactic (tree-)constraints that can not be captured by the Markov process.
Without such constraints it could happen that, as soon as one combines treelets
from different exemplars, in the resulting derivation a treelet state attaches to a
state that has not occurred before in the derivation. The Earley chart structure
guarantees that only those successions of treelets are allowed that constitute valid
parses.

7.3.2 Shortest derivation parse

While in the most probable episodic parse traces receive activation values based
on their common histories, in the shortest derivation parse the activation of a
trace corresponds to the length of the shortest derivation up to the current state
and trace. The Shortest Derivation Length of trace j in state q, abbreviated as
SDL(eq,j), is measured as the number of distinct episodic fragments that are used
in the derivation path up to trace eq,j in state q.

Whereas in the previous chapter (section 6.3.2) I described a straight forward
way to compute the shortest derivation of a parse tree in a greedy fashion, here
I will develop a non-greedy dynamic programming approach that efficiently com-
putes the shortest derivation in the left corner episodic chart parser. It uses a
Viterbi-style algorithm that is very similar to the well-known algorithm for finding
the most likely sequence of states in a Markov Model (MM) for language.5

Whereas in a MM successive time steps on the trellis correspond to successive
words in a sentence, in the episodic grammar successive time steps correspond
to successive treelets < t0, . . . , tn > in the derivation (see Figure 7.7). In the
episodic grammar there is a distinct ‘state’ associated with every trace in a treelet,
and one can define transition probabilities (or rather, transition costs) between
all pairs of traces in treelet tk and treelet tk+1.

Let ek,i ≡ 〈sk,i, nk,i〉 be a trace of a stored exemplar derivation, where si is the
sentence number of the exemplar in the training corpus, and ni is the position in
the exemplar derivation. Define a transition cost C between two traces 〈sk,i, nk,i〉
and 〈sk+1,j, nk+1,j〉 of successive treelets tk and tk+1 in a derivation

5The shortest derivation chart parser was developed independently to the work of Bansal
and Klein [2011] to which it is very much related, although their work is formulated in a very
different framework.

7.3. The episodic left corner chart parser 153

Figure 7.7: Trellis through the traces of the treelets in a derivation

C(< sk+1,j, nk+1,j > | < sk,i, nk,i >) =


0 sk+1,j = sk,i ∧ nk+1,j = nk,i + 1

(direct successor)
1 otherwise

(7.19)

This defines the aggregate ‘cost’ of any possible path through the trellis (i.e.,
through a sequence of treelets in a given derivation) in terms of the number of
different episodic fragments used. In order to dynamically compute the shortest
derivation (the one with the lowest cost), in every trace of treelet tk+1 one keeps a
pointer to a single trace in the predecessor treelet tk which, including the current
transition cost, follows the path through the trellis with the lowest overall cost.
Further, one stores the lowest overall cost (that is, the SDL) thus computed in
the current trace. In the final treelet of the derivation one must then find the
trace among all traces which has the lowest SDL, and follow the pointers back to
the first treelet in the derivation to reconstruct the episodes used in the shortest
derivation.

Computing the shortest derivation with discontiguous episodes

The Viterbi-algorithm for finding the shortest derivation can be generalized to
the case that discontiguous episodes are allowed. I will briefly describe a possible
implementation, but note that it has not been implemented or evaluated thus
far, because it is computationally very expensive; the discontiguities give rise to
a multiplication of the number of ‘trace states’ in the treelets for every ‘gap’
in an episode/fragment that one wants to account for. In the discontiguous
shortest derivation case, one may reuse an exemplar that has been used earlier
in the derivation, but that has been interrupted by fragment(s) from (an)other
exemplar(s), at lower cost than using an entirely new exemplar (provided one

154 Chapter 7. Parsing with episodic memory

continues the earlier exemplar at a later position nk+1 in its derivation than
where it was interrupted).

As an example I will describe a ‘trigram discontiguity model’, which can ac-
count for discontiguities that are a result of interrupting an exemplar by fragments
from 2 other exemplars at most. In this model a ‘trace state’ corresponds to the
final traces of three distinct exemplars that have been used in the final part of
the shortest derivation. (To avoid clutter I left out the trace indices i and j.)

Define (sk,nk) =
{〈
s−2
k , n−2

k

〉
,
〈
s−1
k , n−1

k

〉
, 〈s0

k, n
0
k〉
}

. Here 〈s0
k, n

0
k〉 indicates

the final trace of the last exemplar used in the shortest derivation,
〈
s−1
k , n−1

k

〉
indicates the final trace of the second most recently used exemplar, etc. Then
one can define a transition cost function which charges a (small) prize for reusing
one of the 3 most recently used exemplars in the shortest derivation, and which
takes their relative order into account

C(〈sk+1, nk+1〉| 〈sk,nk〉) =

=


0 sk+1 = s0

k ∧ nk+1 = n0
k + 1 (direct successor)

0.1 sk+1 = s0
k ∧ nk+1 > n0

k + 1 (same exemplar w . gap)
0.2 sk+1 = s−1

k ∧ nk+1 > n−1
k (second most recent)

0.3 sk+1 = s−2
k ∧ nk+1 > n−2

k (third most recent)
1 otherwise

(7.20)
As before, for every trace in treelet tk one selects a single trace state in the pre-

vious treelet, which minimizes the overall derivation length, and stores a pointer
to it. Subsequently, one updates the states of all traces in treelet tk+1, such that
they include the final traces of the 3 most recently used exemplars, and one stores
the aggregate cost in the updated states.

7.3.3 Shortest derivation left corner chart parser

Having explained how the Shortest Derivation Length (SDL) is computed given
a derivation, it is only a small step to implement it in a chart parser. The
basic control structure is again the non-episodic (probabilistic) left corner Earley
parser, that uses shift, project and attach operation to fill a chart. When moving
from trace eq′,i = 〈sq′,i, nq′,i〉 in predecessor state q′ to trace eq,j = 〈sq,j, nq,j〉 in
the new state q, the transition cost C(eq,j|eq′,i) is computed as in Equation 7.19,
replacing the treelets tk+1 and tk by tq and tq′ respectively.

To compute the SDL of trace eq,j one must find the trace êq′,i in the predecessor
state q′ that, including the transition cost to the current trace, yields the shortest
derivation length

SDL(eq,j) = mineq′,i
(SDL(eq′,i) + C(eq,j|eq′,i)) (7.21)

After this is found, the SDL is stored in trace eq,j, together with a pointer to
trace êq′,i in state q′, that will be used to reconstruct the Viterbi path going

7.3. The episodic left corner chart parser 155

through trace eq,j. Once the chart is constructed one can reconstruct the shortest
derivation parse as usual: in the final state one selects the single trace with the
shortest derivation length, and starting from this trace one follows the (trace-
level) Viterbi pointers back through the predecessor states and traces until the
start state.

Updating the shortest derivation in the chart

In case more than one derivation passes through the same state q (i.e., q has
multiple predecessor states q′ in the chart), one compares for every trace eq,j in q
the SDL of path through the most recent predecessor state q′ and trace eq′,i with
the best SDL thus far, as one would do with the Viterbi probability. If the current
SDL is lower one replaces the SDL of trace eq,j as well as its pointer with a pointer
to eq′,i and state q′. Note that unlike the episodic Viterbi probability, which is
associated with the state as a whole, the SDL is associated with a trace, hence
within a single state distinct traces may point to different predecessor states.

The updates of the SDL’s of the traces follow the control structure of the LCSG
chart parser described in the previous section; Below I give the update equations
for the shift, project and attach operators, where the following notation is used
(referring to Equations 7.5 to 7.13): SDL(eN ,j) is the SDL of the jth trace eN ,j in
the new state N ; SDL(eC,i) and SDL(eI,k) are similar definitions for traces in the
complete state C and the goal state I ; update(SDL(eC,i),N) is an abbreviation
of the update Equation 7.21 (involving a transition cost function).

• The shift operation (Figure 7.4):

SDLinn(eN ,j) = 0 (7.22)

• The project operation (Figure 7.2)

SDLinn(eN ,j) = update(SDLinn(eC,i),N) (7.23)

• The attach operation6 (Figure 7.3):
Let SDLmin(I) be the length of the shortest derivation to reach any of the
traces in the goal state I; Upon attach, the SDL of a trace eN ,j in the new
state N is updated according to the equations below

SDLinn(eN ,j) = SDLmin(I) + update(SDLinn(eC,i),N) (7.24)

6Note that this is only an approximation of the actual shortest derivation, because the cost
of the shift transition is ignored. See the end of this section for a discussion of the shift problem.

156 Chapter 7. Parsing with episodic memory

Care should be taken that all incoming paths to a state are considered as
candidates for the SDL’s of the state’s traces before continuing to update SDL’s
in states further down in the derivation. To this end a priority queue is used, as
was explained in section 7.1.6.

Tie breaking

In case of ties with respect to the SDL of trace eq,j in state q (i.e., there is more
than one predecessor trace that gives rise to the same SDL) one can resort to a tie-
breaking heuristic, that selects one predecessor trace eq′,i in state q′ from among
all predecessor traces that result in the same SDL. The tie is broken in favor of
the trace with the highest Viterbi probability of the path through eq′,i and leading
up to eq,j. Note that within a certain state of the chart every trace has its own
Viterbi path and Viterbi probability. (Recall that traces from one state may store
pointers to different predecessor states, depending on their shortest derivation.)
Thus, the Viterbi probability is computed for every trace individually according
to the non-episodic LCSG probability model, irrespective of the overall Viterbi
path and probability associated with the state.

The Shift problem

As was discussed in section 7.3.1, for the shortest derivation parse, too, there is
an issue that the updates of the SDL are complicated by non-local dependencies:
the attach operation must operate on a goal state that has been derived earlier in
the path of the same derivation. If one would naively update the SDL after every
shift, project and attach operation one might end up with a shortest derivation
that is not a possible path (namely, by attaching an episodic fragments to a goal
state that is not in the path). To deal with this problem one must keep track of
an ‘inner’ SDL, which is set to 0 for every trace upon a shift operation. Upon
attach the ‘inner’ SDL is added to the total SDL of the goal state.

However, still the solution is not complete: if one resets the ‘inner’ SDL of
every trace to 0 upon a shift operation, one ignores the fact that a shift some-
times continues an existing episode, and sometimes starts a new episode. Yet,
which case applies is only known at the time of attach, because of the non-local
dependencies. Unfortunately, I have thus far not been able to address this prob-
lem in an efficient manner. Therefore, the current implementation, pertaining to
the results reported in the experimental section, ignores switch costs at the shift
transition, hence it cannot be guaranteed to always find the shortest derivation.

7.3.4 Implementation issues of the shortest derivation parser

• Duplicate sentences are not allowed. When parsing a new sentence
with the shortest derivation, the trivial solution, which uses a parse of

7.3. The episodic left corner chart parser 157

the identical sentence as the sole fragment in the derivation, should be
avoided. To this end, before parsing duplicate sentences are removed from
the exemplar set.

• Time complexity. The time complexity of parsing a sentence with the
shortest derivation LCSG parser is O(n3XN), where n is the sentence
length, and N is the number of sentences in the train corpus. The standard
left corner chart parser has time complexity O(n3), because there are in the
order of n2 cells in the chart, and every chart cell can be derived in the
order of n ways. The episodic left corner chart parser further iterates over
the traces in a state, whose number is in the order of N (if trained on the
full WSJ, certain states may contain up to 100,000 traces).

• Improving the efficiency. To make the updates of the transition costs
in Equation 7.19 more efficient, one may choose to consider as candidate
predecessor traces only those traces in a predecessor state that have mini-
mal SDL, since other traces can never give rise to shorter derivations. The
‘minimal SDL traces set’ (in short minSDLset) of a state can be computed
beforehand, and this needs to be done only once for every state. Although
this substantially improves efficiency, the downside of this option is that it
introduces a certain bias because it may miss a candidate trace outside the
minSDLset if it happens to be the direct predecessor trace of the current
trace (hence has zero transition costs, whereas the traces in the minSDLset
have transition cost 1). The latter trace is excluded from tie-breaking even
though it may have across the board the same SDL as traces in the minS-
DLset of the predecessor state. Thus, the heuristic prefers traces in the
minSDLset that do a ‘late switch’ (i.e., to a different fragment) over a trace
that has switched earlier.

• Goal categories in treelets. Although the treelet states are distinguished
by a goal category, in theory a goal category should not be included with a
treelet type. However, empirical tests indicate that adding a goal category to
treelets hardly impacts performance, while on the other hand it significantly
speeds up the parser (because the same number of traces is distributed over
many more treelets).

• Sampling at the trace level. If one is interested to introduce some
randomness into the system but still preserve the shortest derivation, on
may choose to sample among predecessor traces that participate in a tie-
break. Sampling in the episodic parser is different than standard sampling
because it is done at the trace level, rather than at the state level (recall
that every trace defines its own Viterbi probability and path). Sampling will
become important in the next chapter when the episodic parser is invoked

158 Chapter 7. Parsing with episodic memory

in learning, and a certain amount of noise is needed to break the symmetry
of the parses.

7.4 Experiments with the shortest derivation left

corner parser

The episodic left corner shortest derivation parser (ELCSD) was trained on the
Wall Street Journal, sections 2-21, and tested on section 22. Labeled precision and
recall was computed for the shortest derivation parses, with 2 levels of probabilis-
tic tie-breaking, as described above. As the research is still in its developmental
phase I present only preliminary results; the parser was trained only on the first
50 % of the WSJ train set, and tested only for sentences up to length 20. This
took approximately 60 hours for the 709 sentences of section 22. To have a fair
baseline, the standard (non-episodic) probabilistic LCSG chart parser was also
trained on 50 % of the WSJ. Table 7.3 summarizes the results. (See Table 7.2
for the results of the non-episodic left corner parser trained and tested on the full
WSJ.)

Parsing model LR LP F EM
ELCSD 82.3 81.1 81.7 26.9
SL-DOP [Bod, 2003] 90.7 90.8 90.7 −
AFG [Bansal and Klein, 2011] − − 86.9 31.5
PLCSG (baseline) 76.3 81.2 78.7 16.8
van Uytsel (2001) 79 79 79 −

Table 7.3: Comparison of the episodic left corner shortest derivation parser
(ELCSD) with state-of-the-art shortest derivation parsers, and with the baseline
PLCSG and the van Uytsel left corner parser. AFG= all-fragments grammar;
SL-DOP=Simplicity-Likelihood-DOP. Note that all other parsers were tested on
section 23, and on sentences up to length 40, while the ELCSD and the baseline
were tested on section 22, and sentence length <= 20.

From Table 7.3 it is clear that the ELCSD parser is not (yet) competitive
with the state-of-the-art, but it outperforms the baseline PLCSG, and even the
more sophisticated implementation of a PLCSG by van Uytsel et al. [2001] by
a significant margin. Further, it should be noted that the results of Bansal and
Klein [2011] were obtained after a coarse-to-fine pruning preprocessing step, and
that their simple shortest derivation implementation scored badly, with F = 66.2.
The high variance in the F-scores of our results (σ = 18.7) gives hope that a
similar approach could also work for the ELCSD parser (see section 7.4.1).

7.4. Experiments with the shortest derivation left corner parser 159

7.4.1 Coarse-to-fine parsing and pruning

An example from the WSJ illustrates that too heavy a reliance on the shortest
derivation for parsing a novel sentence can sometimes have a detrimental effect on
the accuracy of the parse. Figure 7.8 (b) shows that the shortest derivation parse
has literally copied a fragment from train sentence 11121 containing an analysis
of the words an average as separate constituents. However, this analysis of an
average in the shortest derivation parse is highly unusual. As a result it scores
much worse (F=0.43) than the standard PLCSG model parse (b), which scores
F=1.0.

Ideally, one would like to avoid the use of fragments in the shortest derivation
that occur only rarely in the train set. From the results of Bansal and Klein [2011]
it can be learned that coarse-to-fine parsing has a surprisingly large positive effect
on the shortest derivations, because it filters out idiosyncratic exemplars with low
frequency. It is expected that pruning the states of the chart by using the forward
probability of the LCSG probability model will have a similar effect, and it can
be done in a single pass through the data. This is left for future work.

7.4.2 Chapter conclusion and discussion

Whereas in the previous chapter the episodic grammar was implemented as a
reranking system, meaning that its performance depended on a third party parser,
the current chapter demonstrated that episodic parsing is a viable approach in
its own right, and computationally tractable. In the preliminary evaluation its
performance is lower than state-of-the-art, but there are reasons to be optimistic
about the future, in particular if the full power of episodic parsing can be un-
leashed, once we succeed to solve the problem of the shift transitions. Otherwise,
it is currently the best performing left corner parser, and hopefully will restore
confidence in left corner parsing as an attractive, cognitively plausible alternative
to top-down parsing.

Relation to other work

The episodic shortest derivation parser bears a strong resemblance to the work of
Bansal and Klein [2011], even though it is formulated in quite a different frame-
work, and it was developed independently from that work. Their All-Fragments
Grammar (AFG) uses a technique known as Goodman Reduction [Goodman,
1996], and takes it to its extreme: every local subtree in a parse tree of the train
corpus defines a unique rule (Xp → Yq Zr), with unique labels. As a result the
AFG grammar has very many specific rules, but only 2 general rule schemes:
CONTINUE (Xp → Yq Zr) and SWITCH (Xp → Xq). CONTINUE follows
unique rules along training trees, whereas SWITCH changes between trees. In
the shortest derivation application, a CONTINUE rule is associated with a tran-
sition costs of 0, whereas the SWITCH rule has associated cost 1.

160 Chapter 7. Parsing with episodic memory

TOP

S

NP

DT

That

VP

VBZ

's

RB

not

NP

NP

DT

an

NN

average

SBAR

S

VP

TO

to

VP

VB

soothe

NP

NNP

Giant

NNS

rooters

PCT

.

(a) Gold Standard parse

TOP

S

PP

IN

Through

NP

NNP

Oct.

CD

19

CMA

,

NP

JJ

high-yield

NNS

funds

VP

VBD

had

NP

NP

DT

an

ADJP

JJ

average

CD

0.85

NN

%

JJ

total

NN

return

(b) Fragment of train parse tree used in the
shortest derivation

TOP

S-15880-98

NP-6239-3

DT-6239-2

That-6239-1

VP-15533-150

VBZ-6239-7

's-6239-6

RB-6239-11

not-6239-10

NP-19562-139

NP-11471-52

NP-12208-79

DT-11121-36

an-11121-35

ADJP-14076-140

JJ-11121-40

average-11121-39

S-14076-138

VP-14076-137

TO-13030-64

to-13030-63

VP-14076-135

VB-7012-116

soothe-7012-115

NP-14076-133

NNP-8773-24

Giant-8773-23

NNS-11471-50

rooters-11471-49

PCT-7923-239

.-7923-238

(c) Shortest derivation parse

Figure 7.8: Illustration of where the shortest derivation parse goes wrong. (a)
Gold Standard parse. (b) Shortest derivation parse. The numbers in the nodes
of the tree represent the traces: 11121-39 indicates that this fragment originates
from position 39 in the derivation of sentence number 11121 in the train set. (c)
Fragment of train parse tree (sentence 11121) used in the shortest derivation

7.4. Experiments with the shortest derivation left corner parser 161

An interesting insight can be obtained if one realizes that the unique local
trees of the Goodman reduction in AFG can in fact be interpreted as traces,
because they point from one rule in a certain exemplar to a unique successor rule
in the same exemplar. For this reason the AFG approach is probably broadly
equivalent to the shortest derivation version of the episodic grammar. Yet, the
episodic grammar also allows for defining alternative probability models over
the traces, such as the probabilistic episodic grammar proposed in section 7.3.1.
Further, it is important to note that, by contrast to AFG, episodic-HPN is a
processing model: the order of traversal through the path in a derivation is a
determining factor in the search for its shortest derivation. Another difference, of
course, is that the current work is implemented as a left corner parser, whereas
Bansal and Klein [2011] assume a top-down parsing strategy.

Simplicity-DOP, or S-DOP, is the DOP implementation of a shortest deriva-
tion parser [e.g., Bod, 2003, 2000]. It works by assigning equal probabilities to all
DOP-fragments, large or small, such that the system will exhibit a preference for
parsing with a minimal number of fragments. Bod [2003] proposes two variations
of the tie-breaking heuristic: Simplicity-Likelihood-DOP, or SL-DOP, selects the
shortest derivation tree among the n likeliest trees, while Likelihood-Simplicity-
DOP, or LS-DOP, selects the likeliest among the n shortest derivation trees. As
Table 7.3 shows, SL-DOP is currently the best performing system among the
shortest derivation parsers. For a further comparison between DOP and the
episodic grammar framework please refer back to section 6.4.

Interpretation of the episodic grammar as a syntactic network

To conclude this chapter let me bring back in the reader’s mind the original
motivation behind the episodic grammar agenda, which was to find a solution for
syntactic parsing within a connectionist framework. To this end I demonstrated
that in the episodic grammar all conditioning events can be accessed locally (i.e.,
the contextual history is content-addressable through the traces), in line with the
constraints of a connectionist design. I mentioned before that the treelets of the
episodic grammar fulfill the role of traditional grammar rules. They should be
regarded as physical network units, that possess a local memory containing the
traces. Further, the treelets possess a local register to keep track of which of their
children has last been processed. The entire set-up is compatible with a view
of episodic grammar as a physical network, consisting of multiple autonomous
treelets that work together to produce the macro-behavior of a syntax, without
central control. In this view a treelet is a kind of micro-processor, that locally
enforces the correct order of execution of a sequence of operations through the
register (i.e., starting with a projection, and followed by zero or more shifts and
attachments).

While in the current chapter the treelets were created by copying rules from
an annotated treebank in a supervised manner, and identified by symbolic labels,

162 Chapter 7. Parsing with episodic memory

in the next chapter the labels will be removed as well, as the episodic grammar
will be integrated with HPN. The treelets will then be replaced by compressor
nodes, and the labels by vectors in a high-dimensional substitution space, which
learn their position in the space from experience. Hence the episodic framework
generalizes to a connectionist syntactic network that implements a left corner
parser, and learns in a fully unsupervised manner.

Chapter 8

Learning grammar through episodic
memory consolidation

This chapter completes the integration of the episodic
grammar with the HPN framework in the episodic-
HPN model. The enrichment of HPN with an episodic
memory allows conditioning on sentence history, and
at the same time learning from analogy among stored
exemplars. The approach is motivated from the
usage-based language acquisition literature, which
shows that a similar process of analogy extraction
drives the discovery of general, productive rules from
specific utterances.
The episodic-HPN model assumes a bi-directional in-
teraction between episodic and semantic memory in
syntactic bootstrapping: on the one hand the topol-
ogy (semantic memory) is used to compute distances
between treelets where no episodic memory traces are
present (hence, it can deal productively with unseen
sentences), while on the other hand the episodic mem-
ory is used to find a ‘shortest derivation’ parse, which
results in a gradual adjustment of the topology to
episodic experiences. As such, learning a grammar in
episodic-HPN parallels the process of memory consoli-
dation and de-contextualization in the brain, whereby
an abstract semantic memory is gradually extracted
from concrete episodic memories. After presenting
the formal model, I discuss how the episodic-HPN
framework differs from existing connectionist models
of memory consolidation, and I point out that it pre-
dicts a role for the hippocampus in dynamic binding.

163

164 Chapter 8. Learning grammar through episodic memory consolidation

8.1 Introduction

This chapter introduces the episodic-HPN framework, which integrates an episodic
memory with the HPN network. It is based on the episodic grammar formalism,
which was presented in the previous chapters. By contrast to the episodic gram-
mar, which is a supervised and symbolic system, episodic-HPN learns fully unsu-
pervised and is connectionist. But unlike the ‘semantic’ HPN model of Chapter
5 it addresses the problem of conditioning on sentence context by using episodic
memory.

In this chapter the two-way interaction between the episodic and semantic
memory systems will be modeled. While the episodic grammar modeled language
processing (parsing) as the retrieval from semantic memory of episodic memories
(reconstructed from traces), episodic-HPN additionally models grammar acquisi-
tion as a process of memory consolidation from episodic to semantic memory. As
discussed in Chapter 2 memory consolidation refers to the gradual construction of
a relational semantic network out of episodic memories. This involves a search for
structural analogies between episodes in order to infer shared semantic features,
resulting in de-contextualization of the episodes.

Grammar acquisition, like memory consolidation, concerns the question of how
abstract knowledge (e.g., the rules of a grammar) is extracted from experience
(e.g., sentences). The central claim of this chapter is that grammar acquisition
parallels the process of memory consolidation, i.e., it must be construed as a pro-
cess of analogical inference from episodic to semantic memory. To motivate this
claim I will review two well-known studies from the language acquisition litera-
ture, and I will formulate conditions for successful grammar induction based on
an analysis of the BMM algorithm (section 3.2.2). Then I will present the formal
model of episodic-HPN, which shows in technical detail how the consolidation
process can be implemented in a connectionist network. Unfortunately, at this
stage I have not yet been able to evaluate it quantitatively. However, I do asses
qualitatively some predictions of the model relating it to the neuro-biology of
memory, and to other models of memory consolidation.

8.2 The case for treating language acquisition

as a memory consolidation problem

In this section I will review two examples from the literature of grammar acqui-
sition that can be seen as instances of the claim that grammar acquisition, like
memory consolidation, involves an analogical inference process based on episodic
memories.

8.2. Treating language acquisition as a memory consolidation problem 165

8.2.1 Example 1: Lieven et al. [2003]

The first example is a dense corpus study in the usage-based tradition by Lieven
et al. [2003], aimed at tracing back the sources of creativity of children’s speech.
In this study Lieven et al. [2003] showed that most utterances produced in one
day by a two year old child could be reduced to utterances produced in the
previous 6 weeks by using only a single combinatorial operation. For each target
utterance they searched the closest matching utterance produced by the child in
the preceding weeks, and analyzed the ways in which the novel utterance differed
from it. In particular, the number of operations needed to arrive from the closest
match to the target utterance was determined. (Operations were ‘substitute’,
‘add’, ‘drop’, ‘insert’ and ‘rearrange’.) It was found that of the target utterances
that had not been said before in their entirety (37 % of the total) 74 % could be
composed from previous utterances with a single combinatorial operation.

This result suggest that children vary their speech based on analogy with pre-
vious utterances. Analogical learning allows bootstrapping general rules, offering
children a gradual path to an abstract grammar.

8.2.2 Example 2: Marcus et al. [1999] and Marcus [2001]

As a second case study consider the problem of generalization of sentences of the
form

(8.1) A rose is a rose.

(8.2) A lily is a lily.

(8.3) A tulip is a tulip.

These examples were used by Marcus [2001] to train a Simple Recurrent Net-
work (SRN). According to Marcus [2001, p. 50] the SRN could not generalize
this to

(8.4) A blicket is a ...

Human infants, on the other hand, are able to make generalizations of this
kind. In a much cited experiment Marcus et al. [1999] showed that 7-month-
old infants can learn an artificial grammar of the form ABB, ABA or AAB,
and generalize these simple patterns to patterns consisting of words they had
not heard during the training session. According to Marcus, the reason why
infants can and the SRN cannot generalize these examples correctly is that infants
apparently possess a learning system that allows them to extract algebra-like
rules that represent relationships between variables, such as identity, whereas
the associative learning mechanism of the SRN is only sensitive to transitional
frequencies.

166 Chapter 8. Learning grammar through episodic memory consolidation

While Marcus is correct that distributed networks cannot learn relations over
variables, the work on HPN shows that there exist cognitively plausible connec-
tionist learning algorithms that can simultaneously exploit rule-based structure
and distributional information (see sections 4.7.3 and 4.8.1). The mere ability to
represent relationships between variables (or invariants, as in HPN) however still
does not explain how a system (or a child) actually discovers the ‘correct’ vari-
ables (as demonstrated in section 5.5.2, this is not a trivial issue for any learning
algorithm).

I propose a different interpretation of the fact that, in contrast to the SRN,
humans find it easy to generalize the above examples. According to this in-
terpretation the SRN can only generalize based on similarity of the examples,
whereas humans generalize based on analogical reasoning.Thus it seems that syn-
tax learning exploits a basic cognitive capacity for discovering analogies between
the internal representations of stored examples. Finding analogy is a higher order
process than finding similarity, because analogy concerns similarity of relations:
the discovery procedure requires performing pairwise comparisons between stored
internal representations. To do so, a system has to keep track of the represen-
tations of all previously processed sentences, which in the SRN, or any other
connectionist system without an episodic memory, are lost.

8.2.3 The use of analogy in computational models of gram-
mar induction

To clarify the relation between grammar learning and discovery of analogies fur-
ther, let us closely examine how a typical grammar induction algorithm, such as
Bayesian Model Merging (BMM) [Stolcke and Omohundro, 1994, Stolcke, 1994],
would succeed at learning the abstract relation underlying the above examples
(for a short discussion of BMM see section 3.2.2). If the BMM algorithm is trained
on the following sentences (from Stolcke [1994, p. 83])

a a (10X)
a a b b (5X)
a a a b b b (2X)
a a a a b b b b (1X)

then it will initially create a unique rule for every sentence, and unique nonter-
minal symbols for every occurrence of a and b, as in

S → A1 B1
→ A2 A3 B2 B3
→ A4 A5 A6 B4 B5 B6
→ A7 A8 A9 A10 B7 B8 B9 B10

Subsequently, it will perform a hill-climbing search for an optimal grammar, using
merge and chunk operations to move in the space of possible grammars, while

8.2. Treating language acquisition as a memory consolidation problem 167

after every operation it checks if it improves a certain objective function. If this
objective function incorporates a preference for smaller grammars, as is the case
for the Minimum Description Length (MDL), then it will reward a combination
of merges and chunks if that uncovers an analogy that is hidden in the data.
For instance, after merging all preterminals that rewrite to the same terminal,
a subsequent chunk of (A A B B) into the single nonterminal X results in a
reduction of the size of the grammar

S → A B
→ X
→ A X B
→ A A X B B

A → a
B → b

The fact that MDL is able to discover recurring rewrite rules is thus due to the
existence of analogical sentence pairs in the data. Finally, X can be merged with
S , such that eventually one obtains the recursive grammar

S → A B
S → A S B
A → a
B → b

(8.5)

It is important to note that thereby at every step BMM evaluates the objective
function globally, on the entire corpus. From this analysis one may conclude that
two things are necessary for a learning algorithm to find rules by analogy

1. Simplicity bias. A learning algorithm will not find the rules of the grammar
if it is not somehow forced to find a more compact description of the data.
This is possible if there are analogies hidden in the structure of the data;
making these explicit as grammar rules reduces the number of rules needed
to describe the data, hence the description length.

2. Episodic memory. A learning algorithm can only find analogies, or merges,
if it tries out comparisons between all pairs of sentences. Therefore, for
learning all previously processed data has to be available to the system.

I propose that both conditions must be fullfilled if one wants to build a successful
connectionist model of grammar acquisition.

8.2.4 Towards a connectionist model of memory consoli-
dation in language

In essence, Marcus’ results, showing that infants can generalize patterns to unseen
words, and his subsequent demonstration that the SRN fails at the same task

168 Chapter 8. Learning grammar through episodic memory consolidation

can be reanalyzed and summarized as follows: language (or rather, grammar)
acquisition should best be construed as a process of memory consolidation from an
episodic to a semantic memory (and not as mere statistical learning of transition
frequencies). The possession of an episodic memory is a necessary condition for
a learning strategy that is based on the discovery of analogies, which seems to be
the underlying strategy in language learning. The study of Lieven et al. [2003],
as well as an analysis of the inner workings of the BMM algorithm point to the
same insight.

From this it can be concluded that connectionist networks that do not have
a built-in episodic memory cannot learn a (phrase structure) grammar, because
they lack an ability for analogical inference. This applies specifically to recurrent
networks such as the SRN, but also to ‘semantic’ HPN. Since these networks do
not keep analyses of processed sentences, the induction of recursive, context free
grammars from examples is theoretically impossible.

8.2.5 Discovering analogies via the principle of the short-
est derivation

The analysis of the BMM algorithm in section 8.2.3 suggested that, given an
episodic memory, a simplicity bias is still needed to drive learning toward an
‘optimal’ grammar. How can a preference for a smaller grammar be implemented
in the brain (or in a connectionist network)?

A cognitively plausible solution, according to many, is to assume that the
brain implements a principle of least cognitive effort, by using the shortest pos-
sible derivation of a sentence. The principle of the shortest derivation has been
introduced in Data Oriented Parsing as a way to parse novel sentences in terms
of fragments of earlier processed sentences, and as an alternative to probabilis-
tic parsing [e.g., Bod, 2000]. It has also been used for unsupervised grammar
induction with U-DOP [Smets, 2010].

By reusing existing fragments as much as possible the grammar is kept at
minimal size; hence, this indirectly implements a simplicity bias. A learner that
uses the shortest derivation will try to discover and reuse shared structure from
examples. For instance, given the sentences from section 8.2.2 (A rose is a rose,
etc.), it will prefer to reuse a rule such as ‘X is X ’ rather than idiosyncratic
rules in the derivation of new sentences. The study of Lieven et al. [2003] seems
to indicate that children use a similar strategy (i.e., a minimal number of edit
operations) to produce new sentences.

Parsing with the shortest derivation provides the brain with a tool for discov-
ering analogies from a structurally organized episodic memory space. In general
terms it involves a cognitive ability to analyze a new experience in terms of a min-
imal number of previously analyzed experiences. Presumably the ground work of
the memory consolidation process, i.e., finding structure in the daily stream of

8.3. The episodic-HPN model 169

episodic experiences, can be traced back to a search for the shortest derivation
also in non-linguistic domains. As shown in section 7.3.2, such a search proce-
dure can be executed locally, conforming to the connectionist constraint, provided
episodes are encoded as distributed traces in the network units (as proposed by
the episodic grammar framework).

In the next section a similar local procedure for finding the shortest deriva-
tion (and with it, analogies) will be implemented in a connectionist version of
the episodic grammar, episodic-HPN. It is expected that by virtue of a parsing
strategy that prefers the shortest derivation an optimal (minimal) grammar can
be bootstrapped from plain text, where the ‘semantic’ version of HPN (without
episodic memory) failed (e.g., see the experiment in section 5.5.2).

8.3 The episodic-HPN model

The episodic-HPN grammar is based on the episodic left corner shifting gram-
mar (e-LCSG; see section 7.3). The primitive units of the grammar are treelets
containing episodic traces. However, instead of reading off treelets from the CFG
rules of a treebank, in episodic-HPN the treelets are based on the compressor
nodes and input nodes of the HPN grammar; hence they have no labels. The
parser is built on top of the episodic shortest derivation left corner chart parser
that was developed in Chapter 7. The shortest derivation parse is selected for the
reasons discussed in the previous section. Learning is integrated with parsing:
fast, instant learning occurs as episodic traces are added to the treelets involved
in a derivation after successfully parsing a sentence. In addition, slow, statistical
learning follows the algorithm for updating the representations of units across
bindings, adopted from HPN (section 5.4). I will first discuss the initialization of
the episodic-HPN grammar, then the parser and then the learning algorithm.

Initialization

When episodic-HPN is initialized, episodic treelets are created for every compres-
sor node in every possible register position.

Definition 7 (HPN compressor node treelet). An HPN compressor node treelet
is a triple T = {X,n,E}, where X denotes a unique compressor node, n denotes
the ordinal number of the active slot in X (i.e., the register position), and E is a
set of traces from sentences that have visited the treelet, initially empty.

A distinct shift treelet is created for every combination of an HPN input node
(corresponding to a word) and shift slot of a compressor node (see the section
‘Language model’ below).

Definition 8 (HPN shift treelet). An HPN shift treelet is a 4-tuple
T = {X,n,W,E}, where X denotes a unique compressor node, n denotes a shift

170 Chapter 8. Learning grammar through episodic memory consolidation

slot of X, W denotes an input node in HPN corresponding to word w, and E is
a set of traces from sentences that have visited the treelet, initially empty.

Parsing

Like in the symbolic case, episodic HPN is implemented as a shortest derivation
episodic left corner chart parser. The construction of the chart (involving shift,
project and attach operators) is described in section 7.1.3; when a new treelet
state is added to the chart all the traces are copied from the ‘treelet type’ to
the treelet state, and receive a certain activation (i.e., a value for the Shortest
Derivation Length (SDL)). HPN treelet states are defined in analogy to symbolic
treelet states (see section 7.3).

Definition 9 (HPN treelet state). An HPN treelet state q, associated with a
treelet T , is a 4-tuple q = {T , i, j, Eq}, where T is either a compressor node
treelet or a shift treelet; j is the left span index, i is the right span index, and Eq
is a set of activated traces. If T is a shift treelet then i = j + 1.

The shortest derivation parser uses two levels of tie-breaking in case of equal
derivation length. The first (optional) level of tie-breaking is the probabilistic
left corner model, as estimated from the relative frequencies of the sentences pro-
cessed up to the current point. Note that while for the symbolic, supervised
parser relative frequencies are estimated only once, from an annotated treebank,
in episodic-HPN the frequency counts are updated after every parse and proba-
bilities have to be re-normalized. This level computes project, attach and shift
probabilities conditioned on a left corner and goal category, which in case of HPN
are identified with a root vector and goal slot. Initially these probabilities will be
zero for most events.

The second level of tie-breaking consists of back-off probabilities computed
from the HPN metric (i.e., distances between root and slot vectors in substitution
space), which are conditioned on the left corner (i.e., the root of a compressor
node or a word unit) alone. The back-off probabilities must again be recalibrated
(renormalized) after every parse, because the root and slot vectors of nodes that
are involved in the parse may have changed as a result of learning.

Although it may seem as though the HPN metric only contributes in a minor
way to the parse decision, as it is is only used for tie-breaking (i.e., for computing
back-off probabilities), in fact in the early stages of learning the role of the metric
will be dominant, because there are still very few traces (exemplars) to derive
the shortest derivation with, and most first level probabilities will be zero. The
metric, however, yields non-zero probabilities for all events right from the start
because node representations are initialized with random values.

8.3. The episodic-HPN model 171

Learning

Learning in unsupervised episodic HPN occurs after every parse, and involves the
following steps:

1. The shortest derivation of the sentence is found, or in case of ties the most
probable shortest derivation.1

2. Fast, one-shot learning: Traces for the current sentence are stored in the
treelets along the derivational path of the winning parse (episodic memory
consolidation).

3. Slow, semantic learning: Vector representations are updated for compressor
nodes and word nodes that participated in the winning parse, as described
in section 5.4; back-off probabilities are renormalized from the updated
metric.

4. (optionally) Frequency counts for project, attach and shift transitions are
updated, and project, shift and attach probabilities are renormalized.

Language model

In order to cope with one of the limitations of HPN identified in section 5.6.3,
namely its inability to compute string probabilities, HPN was modified in a way
that enables it to represent and learn shift transitions to a word. To this end,
compressor nodes are equipped with an extra set of shift slots, apart from the
regular slots, which are invoked at every shift operation. (Thus, there is one shift
slot between every two regular slots.) Input nodes in episodic-HPN also have a
slot, unlike in the previous version of HPN, where the shift slots of the compressor
nodes bind to. Thus, in episodic-HPN the input nodes are not actually terminal
nodes anymore. During learning, the vector representations of shift slots and
input node slots that were involved in the shift bindings of the most probable
parse are updated, just like the regular roots and slots in the earlier version
of HPN. This means that a complementary, independent substitution space is
needed: the shift space. Its dimensionality equals the number of words in the
lexicon.

Implementation

I have fully implemented the episodic-HPN model to confirm that the described
components together constitute a complete model. Quantitative evaluation and
optimizing the parameters of the model for its use in typical computational lin-
guistics tasks is left for future work. However, we can already evaluate qualita-
tively the predictions the model makes for cognitive neuroscience.

1As before, it should be taken care of that previously processed sentences that are identical
to the currently processed sentence are excluded from participating in the shortest derivation.

172 Chapter 8. Learning grammar through episodic memory consolidation

8.4 Predictions of episodic-HPN for memory con-

solidation

8.4.1 What episodic-HPN says about the transformation
(de-contextualization) from episodic to semantic mem-
ory

An important contribution of the episodic-HPN framework is that it focuses at-
tention on the parallels between language acquisition and memory consolidation,
as it implements a model of grammar induction that is casted in terms of a
transfer of linguistic knowledge from specific episodic representations to abstract
semantic representations.

To recapitulate, in episodic-HPN a derivation of a processed sentence is in-
stantly stored in the form of episodic memory traces distributed over semantic
network units (one-shot learning). These traces are then recruited to compute
the shortest derivation in subsequent processing of novel sentences. Thereby they
may force a preference for certain parses that are compatible with previous expe-
riences (exemplar-based processing). As a consequence the bindings of network
units that participate in the preferred parse are strengthened, resulting in adjust-
ment of their representations, which in turn affects the topological organization
of the network. The topology is important for dealing with unseen events in a
productive way.

As this demonstrates, the formation of a topology of syntactic categories (the
so-called substitution space) is strongly influenced by the episodic shortest deriva-
tions, because the latter are a major factor in determining the selected parse for
which the root-slot bindings are updated. In terms of memory consolidation
this interaction represents a de-contextualization process: it shows how a (con-
text free) semantic memory (the topology) is gradually shaped from contextually
bound episodic experiences, until eventually it comes to reflect an individual’s
personal (linguistic) experience in the form of an abstract grammar.

The proposed approach to memory consolidation, and its neural interpretation
depart drastically from previous computational models of memory consolidation
[e.g., McClelland et al., 1995, O’Reilly and Rudy, 2001]. In section 8.5.1 I will
discuss these models, and contrast them with the current proposal.

8.4.2 The role of the hippocampus according to episodic-
HPN

As discussed in section 2.7.1, in the neuroscience literature a special role is re-
served for the hippocampus in memory consolidation. There are two aspects of
hippocampal function that are intimately related [Eichenbaum, 2004]:

8.4. Predictions of episodic-HPN for memory consolidation 173

• First, the hippocampus is involved in episodic memory encoding and con-
solidation. For encoding it binds sequences of discontiguous semantic el-
ements into episodes, which are structurally organized in so-called ‘rela-
tional networks’; consolidation involves replay of episodic sequences, thereby
strengthening semantic relations.

• Secondly, the hippocampus is involved in processing novel configurations by
flexible association of semantic elements, that are shared among episodes
through the relational networks.

Dynamic encoding of episodic memories in episodic-HPN

Let us first consider how episodic memory replay is accounted for in episodic-
HPN. In the episodic grammar framework it was assumed that episodes can be
reconstructed from sequences of traces that are encoded with follow-up numbers.
However, the question of how successive traces within a derivation are localized
in the cortex was for that moment ignored.

A similar problem, concerning how the brain can efficiently recover the ad-
dress of a unit where a ‘tag’ is stored in a pending derivation, was addressed in
HPN. There the solution involved a switchboard construction that implements
an addressor system, as part of the dynamic binding approach (see section 4.8.2).
The same solution can be adopted for episodic memory replay from traces.

Figure 8.1: Replay of an episodic memory by the hippocampus. When a unit
in the substitution space is activated both its address (color coded) and a trace
are retrieved. As in dynamic binding, the address is serially transmitted to the
switchboard, which tries to match it to a slot. The trace information is used to
filter for slots with a matching trace. 〈T1, T1′〉, 〈T2, T2′〉 and 〈T3, T3′〉 are pairs
of identical traces stored inside slots and bound semantic units.

Figure 8.1 repeats a simplified version of Figure 5.10 from section 5.7, to illus-
trate how episodic memories are replayed from their traces. Suppose that trace
T1 is primed (e.g., by the first word of a sentence) then, as explained in section
5.7, its topological address (encoded in the root of the unit) is serially transmitted
to the switchboard, which projects to a neighborhood in the substitution space

174 Chapter 8. Learning grammar through episodic memory consolidation

where the matching slot (with trace T1′) can be found (assuming T1′ and T1
are near).2 The same procedure is repeated for the successor trace T2, which is
linked via the compressor node, etc., until all the original bindings of the episode
have been restored.

The hippocampus implements a switchboard function

If, as predicted by episodic-HPN, episodic memories are encoded as distributed
traces that are dynamically bound, then that explains that a single system, the
hippocampus, is responsible for both replay of stored episodes and flexible asso-
ciation of semantic elements in processing novel events, because both functions
involve dynamic binding. This would imply that the hippocampus implements a
switchboard function, and that is indeed consistent with the fact that it is situ-
ated at the central ‘gateway’ of the brain: the switchboard must be connected to
semantic elements that are distributed throughout the entire cortex in order to
be able to dynamically bind them.

From this perspective, encoding an episodic memory amounts to making the
temporary tags, that are involved in dynamic binding of an event, persistent as
episodic memory traces. (Recall from section 5.7 that a critical component of the
switchboard solution for dynamic binding is a tagging system, whose function
is to attach a unique ‘tag’ to the units that participate in a binding, such that
the bindings are kept ‘alive’ for some time in working memory.) Specifically, in
episodic-HPN the temporary tags that bind the most probable derivation of a
sentence are turned into traces (of a stored derivation) by converting them from
short term into long term memories.

This idea is consistent with recent neuro-biological findings on memory con-
solidation, concerning the ‘illegibility’ of synapses for long-term potentiation [e.g.,
Izhikevich, 2007]. For instance, according to the ‘synaptic tagging and capture
hypothesis’ [Redondo and Morris, 2010] long-term memory potentiation follows a
two-step mechanism, whereby in the first step a so-called ‘tagged state’ is induced
that only creates the potential for a lasting change in synaptic efficacy.

The HPN substitution space is an instance of a ‘relational network’

According to [Eichenbaum, 2004, e.g.,] the hippocampus structurally organizes
episodic memories in ‘relational networks’, by linking them through semantic
elements of episodes that share the same context (see Figure 2.7 in section 2.7.1).
Such an organization allows for transitive inference through flexible combination

of episodes (which explains why the hippocampus is needed for novel problem

2An alternative solution is that within the switchboard an episodic archive is stored, con-
sisting of a list of addresses indexed by episodic trace numbers. In that case the address of a
matching trace T1′ can be found by querying the list with T1, even if the topological locations
of the units where T1 and T1′ are stored are remote.

8.5. Discussion 175

solving). An example of a relational network is the navigational (cognitive) map,
found in the hippocampal place cells of rats, which enables them to navigate their
way in a maze (see [e.g., O’Keefe and Nadel, 1979] and Figure 2.8).

The substitution space of episodic-HPN, in which the units are enriched with
episodic traces, can be regarded as an instance of a relational network, or nav-
igational map, for the language domain. Like relational networks, it organizes
episodes, distributed as traces, in a structured memory space, and links them by
shared semantic units (containing multiple traces). This allows priming and flex-
ible association with other episodes, allowing for productive use of language (as
exemplified in the episodic grammar). Transitive inference (e.g., for finding new
routes in a navigational map) is operationalized through the topology of the sub-
stitution space. Thus, like rats learning to navigate a maze by structuring spatial
episodes (recall Figure 2.8), language learners construct a ‘navigational’ (topo-
logical) map of language by reorganizing episodic linguistic experiences. This
process is modeled by episodic-HPN.

Further, episodic-HPN supports at the implementational level the claim of
Eichenbaum [2004] that structuring of episodes in relational networks is instru-
mental in memory consolidation. In section 8.4.1 I explained that the topology of
the substitution space (i.e., a semantic memory) is shaped from episodic memory
as a result of selecting the shortest derivation parses, and adjusting the topology
accordingly.

8.5 Discussion

8.5.1 Relation to other neural network models of memory
consolidation

Figure 8.2: Standard consolidation model. The top layer shows the cortical mod-
ules containing distributed episodic representations. These are linked to sparse
representations in the hippocampus in the bottom layer. (From Frankland and
Bontempi [2005].)

Since the current work purports to be a domain general model of memory

176 Chapter 8. Learning grammar through episodic memory consolidation

consolidation, it is interesting to place it in the context of other modeling work in
this field. In the computational neuroscience literature most modeling work on
memory consolidation is based on one of two major theories [e.g., see the review
by Frankland and Bontempi, 2005]: one is the so-called standard consolidation
model [e.g., Squire and Alvarez, 1995], and the other is called the multiple trace
model [e.g., Nadel and Moscovitch, 1997]. According to the standard consolida-
tion model (see Figure 8.2), episodic memories are initially stored in connections
between the hippocampus and the cortex. As the hippocampus replays the mem-
ories (presumably during sleep), the cortico-cortical connections are strengthened,
while the dependency on the hippocampus is gradually diminished. This accords
with retrograde amnesia studies that show that after a hippocampal lesion, or
stroke, episodic memories are lost retro-actively, but memories from a long time
before the accident are often preserved, apparently because those have moved out
of the hippocampus.

Computational models of memory consolidation in this tradition typically
hypothesize that the neocortex and hippocampus act as ‘two complementary
learning systems’ [e.g., McClelland et al., 1995, Battaglia and Pennartz, 2011,
O’Reilly and Norman, 2002, Tse et al., 2007]: while the hippocampal system
is a fast learner, which stores episodes in one shot as they are processed, the
neocortex is a slow learner, which gradually assimilates the episodic experiences
within a semantic memory system that represents general, statistical knowledge.
This division of tasks is usually motivated by the argument that the different
requirements that the human memory system has to cope with, namely learning
specifics about the environment (i.e., episodic memory) versus extracting general-
ities (i.e., semantic memory) are apparently mutually incompatible. According to
O’Reilly and Rudy [2001] a single representation cannot simultaneously capture
both generalities and specifics, nor can a single learning system combine slow,
statistical (integrative) learning with fast automatic recording. In the same vein
McClelland et al. [1995] motivate the complementary learning systems approach
from the problem of ‘catastrophic interference’ — this is the phenomenon that,
beyond a certain threshold, old memories are overwritten by new ones, which is
a known problem for parallel distributed neural networks.

To deal with the trade-off between rapid learning of episodic events and slow
learning of statistical structure O’Reilly and Rudy [2001], O’Reilly and Norman
[2002] propose a modular network architecture, consisting of several hippocampal
and cortical networks (schematically illustrated in Figure 8.2). While the hip-
pocampal networks form sparse representations of episodes (allowing for pattern
separation), neurons in the hippocampus are conjunctively bound to distributed
representations of the same episodes in the cortical networks (allowing for pattern
completion).

In the second tradition, the multiple trace theory (MTT) [Nadel and Moscov-
itch, 1997] holds, in contrast to standard consolidation theory, that episodic mem-
ory traces remain in the hippocampus forever. According to MTT each time an

8.5. Discussion 177

episodic memory is reactivated this happens in an different context, and conse-
quently a new memory trace is created, with overlapping features in the neocortex,
but with a distinctive pattern in the hippocampus, where ‘context’ is encoded.
As a result memories that are often reactivated are associated with a larger num-
ber of traces, hence can be retrieved from multiple cues and become more stable.
Neural network models in this tradition also assume a modular approach, in which
episodic memories are encoded in conjunctive connections between a hippocam-
pal module (with sparse encoding), and a distributed pattern in the neocortical
network module [e.g., Nadel et al., 2000]. In this respect also the MTT can be
regarded as an instance of the ‘complementary learning systems’ approach.

Critique of the complementary learning systems approach

A challenge for the complementary learning systems framework is the massive
number of connections between the hippocampus and the cortex that result from
conjunctive coding of episodes, since every new episode (many thousands a day)
recruits at least one dedicated binding neuron in the hippocampus, and must
establish connections to the cortex.

Another, more fundamental problem for conjunctive binding of episodes is
that it lacks the flexibility to process unseen events by associative expression of
stored memories. Yet, as discussed in section 2.7.1, this ability has been suggested
by Eichenbaum and Cohen [2001] to be the driving force behind memory consoli-
dation. Hummel et al. [2004] argue that a major limitation of conjunctive coding
is that it does not afford to make relational inferences (nor to generalize) beyond
specific stored role-filler conjunctions, because conjunctive coding represents all
elements of the binding as a single, indivisible entity.

A related problem is that conjunctive bindings provide no temporal or hier-
archical structure to episodes. Yet, structure is required for instance to encode
causal relations (used for predictions) [e.g., Eichenbaum and Fortin, 2009], syn-
tactic and linear precedence relations in language, or to distinguish the different
relations between roles and participants in an event [e.g., Shastri, 2002].

Comparison to episodic-HPN: efficient and flexible encoding of episodes
using dynamic binding

The view of memory consolidation that is implied by episodic-HPN differs in
important respects from the complementary learning systems approach, because
in episodic-HPN episodic and semantic memory are fully integrated within a single
system. The learning algorithm of episodic-HPN demonstrates that, contrary the
claim of O’Reilly and Rudy [2001], the requirements of fast capture of specific
detail versus slow, statistical learning of generalities are not incompatible, but can
be satisfied simultaneously. Yet, this trade-off was in fact the main motivation
for having two complementary learning systems.

178 Chapter 8. Learning grammar through episodic memory consolidation

The argument of McClelland et al. [1995], that the hippocampus is needed as
a buffer in a complementary learning system to prevent catastrophic interference,
does not hold either. This argument only makes sense if one assumes that the
neocortex is a parallel distributed neural network, yet in this thesis I have de-
fended a localist network view of the neocortex. According to the episodic-HPN
model of memory consolidation the reason that the hippocampus is involved as a
‘gateway’ for episodic memory encoding is not to prevent catastrophic inference,
but for its role in dynamic binding, as explained in section 8.4.2.

One of the advantages of dynamically binding episodes is that it saves dedi-
cated binding neurons and connections, hence it does not suffer from the ‘mas-
siveness of the binding’ problem. Whereas in the conjunctive binding approach
every individual episode requires hardwired connections between the hippocam-
pus and the cortex, in the dynamic binding approach of episodic-HPN the same
hippocampal element (that is, a single unit in ‘substitution space’) can be shared
by all episodes, and a single projection from this element to the cortex suffices for
activating the sensory circuits associated with the element. Internal connections
of episodes are handled by the switchboard and the traces.

Further, dynamic binding of episodes in episodic-HPN is responsible for ‘flexi-
ble expression of memories’, which is a condition for the ability to make analogical
inference in support of memory consolidation.

Chapter 9

General discussion and conclusions

9.1 Summary

Since this work has covered a lot of information, let me try to briefly reconstruct
the structure of the arguments as they were developed in this thesis. The first
chapter opened with the presentation of the Memory Prediction Framework as
an ‘engineering perspective’ on hierarchical information processing in the cor-
tex, and the observation that the framework offers very promising prospects for
language processing. I pointed out the striking parallel between the solution,
proposed by [Hawkins and Blakeslee, 2004], for hierarchical and temporal object
recognition in the cortex on the one hand, and syntagmatic and paradigmatic
processes in syntax induction, as used in computational linguistics, on the other
hand. Yet, I made it clear that the framework does not address several issues that
are fundamental in linguistics, such as the productivity of language, an ability for
(recursive) substitution of the primitives of a grammar into compound structures
or parse trees, and an ability to store and reuse idiomatic expressions or larger
fragments/ constructions. To address the issue of productivity I proposed that the
cortex adopts its solution for dynamic visual contour binding, attention-mediated
and serial spreading of a label, to the language domain in order to dynamically
bind syntactic neural assemblies into compound syntactic structures. Further, I
discussed the role of topology for encoding graded syntactic category membership
in the cortex. Together with the MPF, these ideas formed a neural theory of (the
structure of) language that meets Jackendoff’s [2002] challenges (see section 9.3).

The MPF suggests a departure from the standard assumptions of (distributed)
connectionism, as it proposes that the cortex stores information locally in its
columns through hierarchical temporal compression, and that the cortex creates
invariance, or abstraction by passing a ‘name’ between cortical columns (i.e.,
through encapsulation and the use of pointers). However, proponents of dis-
tributed connectionism maintain that for instance the SRN is capable of learning
constituent structure, and systematically generalizes, despite the fact that it does

179

180 Chapter 9. General discussion and conclusions

not explicitly represent hierarchical structure.
To combat these views, in Chapter 4 I tried to sharpen the criteria for system-

atic generalization that cognitively plausible models of language processing must
satisfy. A precise formulation of these criteria made it clear that the systematicity
requirement is in fact nothing else than the affirmation of the fact that language
has a syntax (that is, a part of linguistic behavior is governed by structure alone),
which is (at least) context free: the systematicity criteria can thus be identified
as context invariance and a minimum context free inductive bias. I concluded
that the SRN fails both criteria, and that objections (i.e., ‘leaky recursion’) made
against the context free requirement [by e.g., Christiansen and Chater, 1999] do
not apply if one approaches the question from the perspective of language learning
and generalization.

In Chapter 5 I translated the concepts of the neural theory of syntax proposed
earlier into a connectionist model, the ‘semantic’ HPN model. HPN satisfies the
context invariance criterion by virtue of encapsulation of its units: input and
output of an HPN unit are functionally separated, and units bind using pointers
stored in local unit memories. Further, HPN implements a context free inductive
bias by virtue of the compressor nodes, which are responsible for hierarchical
temporal integration. Although it has many interesting properties, I noted that
the expressivity of semantic HPN, based on metric distances between units, is too
limited for natural language processing, because it cannot represent contextual
information.

I proposed that neural assemblies in the cortex can retrieve contextual in-
formation because they have access to an episodic memory. Moreover, episodic
sentence memories are content addressable (via semantic memory units), hence
locally available, in the form of distributed traces of processed sentences. Thus,
it is possible to build a connectionist solution for contextual conditioning by ex-
tending the HPN network with an episodic memory.

Chapters 6 and 7 worked out the case of a symbolic grammar (trained on sen-
tences annotated with symbolic category labels) with a built-in episodic memory,
episodic grammar. Exemplar-based parsing with this episodic grammar can be
interpreted as episodic memory retrieval, or a priming effect. I showed how the
episodic grammar is trained, and how episodic probabilities are computed on-the-
fly by reconstructing episodic fragments (‘common histories’) from the memory
traces at parse time. The probabilistic episodic model was evaluated as a reranker
of third party syntactic parses on the Wall Street Journal, and its performance
is competitive with the state-of-the-art. In Chapter 7 I developed a standalone
episodic left corner chart parser, based on an existing left corner chart parser that
can compute string (and prefix) probabilities. The shortest derivation version of
the episodic left corner parser outperformed the non-episodic left corner parser
by a significant margin.

In Chapter 8 the episodic grammar was integrated with HPN, which thus be-
comes a model of semantic-episodic memory interaction, and the first exemplar-

9.2. A possible role for HPN in cognitive linguistic research 181

based connectionist model of language processing and parsing. The content-
addressability of episodic traces in the network units allows episodic-HPN to
make use of sentence history, while the metric/topology of HPN is responsible for
productivity and smoothing, and gradually (under influence of episodic memory-
based parses) self-organizes into an abstract, adult grammar. I pointed out an
interesting parallel between memory consolidation — the transition and decon-
textualization from episodic to semantic memory — and language acquisition,
in particular from the usage-based or item-based learning perspective. This de-
scribes how children’s language evolves from concrete utterances and imitation
(episodic memory) to progressively more abstract and productive language (se-
mantic memory, i.e., the HPN topology).

Finally, by virtue of an episodic memory episodic-HPN can implement the
idea that language is learned by analogy from minimal difference sentence pairs.
I argued that the shortest derivation episodic parser does exactly this — learning
by analogy — and moreover it serves as a cognitive principle for implementing a
simplicity bias: a preference for smaller grammars.

9.2 A possible role for HPN in cognitive linguis-

tic research

9.2.1 Modeling language acquisition with HPN

Episodic-HPN offers a promising framework for modeling language acquisition
from a usage-based perspective. The learning process is modeled as the gradual
development of a grammatical network (a constructicon) consisting of a topol-
ogy and integrated episodic memory, which evolves from a concrete item-based
grammar (episodic memory) to an abstract, adult grammar (semantic memory).

What is important is that, in contrast to the standard distributed connec-
tionist approach, in HPN human language learning (as well as learning in other
domains) is seen as a process of categorization, and it is explicitly modeled how
during the categorization process syntactic categories are incrementally acquired
and become more abstract and adult-like (e.g., see section 5.4.1). Because syn-
tactic categories exist within a continuous topological space, the tricky problem
of how to bootstrap them from scratch, a problem encountered by a discrete and
set-theoretic notion of categories, is avoided.

Thus, episodic-HPN accords very well with the Usage-Based Grammar (UBG)
account of language acquisition [e.g., Tomasello, 2005]. In contrast to the gen-
erative all-or-nothing approach to acquisition, UBG can potentially answer the
question “how children get from here to there”, because it describes the learning
process as an incremental route during which children gradually acquire an inven-
tory of ‘constructions’, from simple and concrete to complex and abstract. In this
process children’s language use develops from imitation of complete utterances

182 Chapter 9. General discussion and conclusions

(the holophrastic phase), through the use of constructions with variable ‘slots’,
to a productive language with abstract, adult-like rules. The same approach is
taken by episodic-HPN, where initially the grammar is dominated by concrete,
non-productive episodes, which are gradually broken down into fragments, and
which guide the formation of an abstract, and productive topology.

The slots of compressor nodes in HPN quite literally function as the variable
slots in usage-based constructions, like Where’s the X? and I wanna X. Also
in HPN a slot becomes progressively more abstract if the input varies much at
the slot position, as was illustrated in the example of section 5.4.1: while before
learning the slot matches perhaps only a single node, after learning an entire
region of nodes (words of phrases) can be substituted at the position of the slot.

9.2.2 HPN and construction grammar

The HPN model shares many of its fundamental assumptions with (Radical) Con-
struction Grammar (RCG) [e.g., Croft, 2001]. As in RCG, in HPN constructions
are primary (i.e., a fixed number of (blank) compressor nodes is innately given
in the HPN architecture), and syntactic categories (i.e., the substitution space)
are derived relative to constructions and have local validity or scope only. HPN
shows that the local scope of a syntactic category (i.e., an HPN unit) is acquired
through usage, namely when the unit binds to slots in a parse of a sentence.

I believe that the episodic-HPN network is a suitable candidate for a com-
putational model of a constructicon, as it encodes paradigmatic and syntagmatic
relations between syntactic categories and constructions within a network, as well
as idiomatic expressions (episodes). Moreover, HPN shows how the constructions
are gradually integrated in the network through experience. The episodic-HPN
model further shows that the constructicon can be interpreted in terms of an
integrated semantic-episodic memory system.

Obviously, in the HPN framework constructions lack a semantic pole, hence
HPN does not model the syntax-semantics interface, which is at the core of the
linguistic theory of Construction Grammar [e.g., Goldberg, 2003, 2006, Bergen
and Chang, 2005]. However, as was argued in section 2.9, this is not a funda-
mental design problem. HPN was modeled in part after the Memory Prediction
Framework, which is primarily tailored to model visual processing [George and
Hawkins, 2005, 2009]. Like other connectionist models, HPN can be adapted
to meet the requirements of other domains than language, as it proposes a gen-
eral, non-domain-specific framework for hierarchical processing (except perhaps
for linear word order preservation which is specific for language). Thus, HPN
can in theory implement a network that integrates inputs from multiple domains
(visual, auditory, sensory, language), offering a more formal definition than usual
of constructions as ‘associations between a syntactic and a semantic pole’ within
a grounded, embodied view of semantics.

9.3. A reply to Jackendoff’s challenges 183

9.3 A reply to Jackendoff’s challenges

In this thesis I have proposed a neural theory of syntax (section 2.8), and a
computational model based on this theory. This section aims to show how the
neural theory meets the four major challenges posed by Jackendoff [2002, pp.58-
67]. (For a summary of the challenges please refer back to section 1.2.)

The problem of variables

The commonly accepted justification of the claim that a neural theory of language
must be able to represent variables is that operations over variables are thought
indispensable as formal constructs to explain the systematicity of language, or
syntax [Fodor and Pylyshyn, 1988] (see section 4.2). Variables with global scope
cannot be represented in the brain or in connectionist models, because they are
symbolic (see the discussion in section 4.2.1). Yet, there is no impediment for
connectionist models to represent invariant and abstract, prototypical categories
with local scope. The brain works with invariant representations for high level
object recognition, and many studies show that neurons respond to certain ab-
stract features invariantly across different modes of presentation of the stimulus
(section 2.1.1). According to Hawkins and Blakeslee [2004] invariant categories
are extracted between columns in successively higher levels of the cortical hier-
archy by a mechanism of passing an activation-independent ‘name’ (representing
the identity of the column) (section 2.1.3). This mechanism, which I called en-
capsulation, is responsible for creating abstraction in the brain.

On the other hand in section 4.5.2 I identified context invariance as one of
two criteria that are responsible for the systematicity of language. While sym-
bolic systems satisfy this criterion because the use of variables allows for making
context indepence assumptions, I argued in section 4.8 that context invariance
can also be achieved in connectionist systems if one allows encapsulation of the
network states. This means that a functional separation must be enforced be-
tween the input and output activation of network units. In that case one can
define a mode of connectivity between the network units that does not depend
on their neuronal activation values, but on their intrinsic representations alone.
Such a mode of connectivity is offered by dynamic binding, via the switchboard
mechanism described in section 5.7. A connectionist system that combines en-
capsulation and dynamic binding emulates exactly that property of variables that
gives systematicity, without using variables.

In the HPN model the slots of the compressor nodes fulfill the role of ‘vari-
ables’; they function as placeholders where active units (the tokens) are bound.
As explained in section 4.8.1, it is more precise to characterize them as invari-
ants, because unlike symbolic variables they have no predetermined meaning and
global scope. The slot representations, and hence their extensional meaning and
scope are learned incrementally through interaction with the environment.

184 Chapter 9. General discussion and conclusions

The massiveness of the binding problem

Jackendoff’s claim that the number of bindings required for language process-
ing is too massive for a connectionist network to deal with relies on an implicit
assumption that the human language system uses conjunctive bindings to rep-
resent every potential construction or sentence of a language (see the discussion
in [van der Velde and de Kamps, 2006]). However, with dynamic binding it is
not necessary to have dedicated neurons with prewired connections for all possi-
ble linguistic constructions; a connectionist system capable of dynamic binding
needs only to represent the primitive elements of a grammar in the network units,
which can then combine dynamically to form sentences, like the primitives of a
symbolic grammar. As explained in section 5.7, in the switchboard solution of
dynamic binding every network unit needs to be physically connected only once
to a central hub in the network.

The asymmetry between binding in working memory and binding in
long term memory

The duality between ‘transient’ bindings (as in ‘lift the shovel’) and the bindings
of idioms (as in ‘kick the bucket’) that seem to be stored in the lexicon can be
explained by the interaction between two different memory systems, semantic and
episodic memory, in language processing. This was the subject of Chapter 6. In
short, ‘transient’ bindings are dealt with by a semantic memory system using dy-
namic binding between network units. Idioms or fixed multi-word constructions
are stored in the form of an episodic sentence memory, which consists of (num-
bered) traces distributed inside the semantic network units that participated in
the derivation of the idiom. By following the traces the original derivation of the
idiom can be reconstructed.

The problem of two

Jackendoff’s assumption that whenever a word occurs twice or more within a
sentence it requires more than a single representation in the brain is incompat-
ible with the view of hierarchical and serial processing in the cortex advocated
throughout this thesis. The ‘problem of two’ seems to hinge on the presupposition
that the brain conjunctively binds a ‘word unit’ for the entire duration of a parse,
or otherwise processes all syntactic elements of a parse in parallel. However it has
been argued (in section 2.5) that language processing in the brain makes use of
dynamic and serial binding, such that ‘word units’ are freed up after they have
been used once in a derivation.

Nevertheless, all bindings of a derivation must be maintained in working mem-
ory for as long as the derivation process lasts. I have argued in sections 2.5 and
5.7 that for this purpose the neural assemblies representing syntactic categories
must be equipped with local memories, where ‘tags’ are temporarily stored. The

9.4. Relation to other work on unsupervised grammar induction 185

possession of a distinctive tag induces a unique ‘state’ in the neural assembly
(see section 5.7). That way multiple occurrences of the same word or syntactic
category within a sentence can be distinguished.

If, while processing a sentence, it is consciously experienced as a single entity,
then this is only an illusion. In Hawkins’ words,

Because of the hierarchy of the cortex you are able to know that
you are at home, in your living room, looking at a window, even
though at that moment your eyes happen to be fixated on a window
latch. Higher regions of cortex are maintaining a representation of
your home, while lower regions are representing rooms, and still lower
regions are looking at a window.

Similarly, the hierarchy allows you to know you are listening to
both a song and an album of music, even though at any point in time
you are hearing only one note, which on its own tells you next to
nothing. Higher regions of your cortex are keeping track of the big
picture, while lower areas are actively dealing with the fast-changing,
small details. [Hawkins and Blakeslee, 2004, p.127]

9.4 Relation to other work on unsupervised gram-

mar induction

Before I start discussing the the qualities of episodic-HPN in comparison to other
grammar induction systems, I should perhaps note that at present HPN is not
(yet) operational as a grammar induction system on a learning task with real-
istic data. Hence, the following discussion should be taken with the necessary
reservations.

On the other hand it should be said that, contrary to the other learning
algorithms I will discuss next, episodic-HPN was designed to meet the demands
of a cognitive system, and comply with the constraints of connectionism: all
interactions and learning procedures in HPN are local, and no innate categories
or labels are assumed.

9.4.1 HPN versus Inside-Outside

A well-known and widely used technique for estimating the hidden parameters of
a PCFG from text is the Inside-Outside (I-O) algorithm [Lari and Young, 1990],
which is an instantiation of the Expectation-Maximization (EM) algorithm (see
section 3.2.1). Computational linguists might wonder whether everything that
HPN can do, EM, or the Inside-Outside algorithm can do as well.

It can be argued that one may implement HPN in an EM-setting by simply
replacing every slot of a HPN compressor node by a unique non-terminal of a

186 Chapter 9. General discussion and conclusions

Figure 9.1: HPN network with 2 compressor nodes

PCFG, and creating unit productions (with initial random probabilities) that
rewrite from every slot-nonterminal to every other non-terminal (that is not a
slot) or terminal.

To counter this objection, let me repeat the artificial language learning ex-
ample of section 4.6.1, and assume that an HPN network with two compressor
nodes, as illustrated in Figure 9.1, is trained on the following 3 sentences

(9.1) Mary walks.

(9.2) John walks.

(9.3) Sue likes John.

I argue that HPN can in principle generalize this to

(9.4) Sue likes Mary.

whereas the inside-outside algorithm cannot.
As was shown in the example of section 5.4.1, HPN produces the generalization

by virtue of the topology: after the first 2 sentences have been analyzed by the
compressor node labeled X1, John is moved closer to Mary in the topology (as a
result of so-called ‘contamination’ via the slot S1). Subsequently, after analyzing
sentence 3 with compressor node X2, slot S5 is moved closer to John, hence also
closer to Mary.1 Thus, in sentence 4 S5 is already expecting Mary. (Note that
order is important.) The crucial feature in this example is transitivity : when
two units/categories occur in similar contexts, part of the extension (i.e., vector
representation in substitution space) of the first unit is transitively transferred to
the second unit.

EM, on the other hand, may have learned that S1 rewrites to either John or
Mary. However, a naive application of the inside-outside algorithm will not infer
from this, plus S5 → John that S5 has a higher probability to rewrite to Mary,
because it sees no relation between John and Mary, or between S1 and S5, as in a

1Alternatively, a Kohonen, or SOM-like learning algorithm can be implemented that together
with the winning node also adjusts its topological neighbors within a predefined neighborhood
to some extent.

9.4. Relation to other work on unsupervised grammar induction 187

PCFG S1 and S5 have independent rewrite probability distributions. Only with
considerable effort one could construct a non-trivial prior that would teach EM
how to generalize, or alternatively one could use cross-validation techniques.2

One may of course still question whether it is desirable that a learning system
has these transitive properties. Although there is little empirical data to back
this up, the generalization of the example corresponds to our intuition that the
human language faculty exhibits strong systematicity [Hadley, 1994], as discussed
in section 4.5.1: the capacity to generalize a category or word to novel syntactic
positions where it has not been encountered before.

The transitive properties of metric learning impart upon HPN a non-linear
dynamics, that would be very difficult to express as a prior within a Bayesian
learning framework. In general, the approach to category learning advocated by
HPN differs from standard machine learning techniques for classification, because
in HPN syntactic categories derive their extensional meaning from their distri-
butional role with respect other categories, rather than in isolation; HPN thus
represents a holistic approach to category learning, and an inferential semantics,
in which only the distances (and similarities) within the network topology are
meaningful.

9.4.2 HPN versus Bayesian Model Merging (BMM)

Bayesian Model Merging (BMM) [Stolcke and Omohundro, 1994, Stolcke, 1994]
was discussed in section 3.2.2 as a non-parametric alternative to the inside-outside
algorithm, since it learns not only the parameters (probabilities), but also the
structure (rules) of the grammar. In contrast to the inside-outside algorithm
BMM can make strongly systematic generalizations. For instance, if in the above
example John and Mary occur in the same (left-hand side) context, they can be
merged into a single category. However, in BMM merging is a discrete, all-or-
nothing operation. From the moment that John and Mary are merged they are
indistinguishable. BMM is not able to express gradedness or similarity between
categories, for instance between adjectives and adverbs, neither can it represent
that similar categories share the same behavior in certain contexts: two categories
are either identical or distinct.

As mentioned before, BMM clearly does not satisfy the connectionist con-
straint of locality; the search for an optimal grammar in BMM follows a global
criterion (MDL), and after a merge the merged categories are substituted system-
wide in the entire corpus.

2Thanks to Markos Mylonakis for this elaboration.

188 Chapter 9. General discussion and conclusions

9.4.3 HPN versus U-DOP

U-DOP, or unsupervised Data Oriented Parsing [e.g., Bod, 2006b, 2007] is an
extension of DOP to the domain of unsupervised parsing. As usual in DOP,
the general approach is to allow all tree fragments to parse the sentence and
let statistics decide. Whereas DOP is computationally quite expensive as a re-
sult of the extremely large number of fragments that can be extracted from a
corpus (Sangati and Zuidema [2011] calculated that approximately 1048 (!) dif-
ferent fragments can be extracted from the Wall Street Journal), in U-DOP the
combinatorial explosion is even worse, because for every sentence first all pos-
sible binary parse trees are generated, and subsequently from these all possible
subtrees are extracted. In practice though, by means of Goodman’s reduction
[Goodman, 1996], the number of rules is kept manageable, and to date U-DOP
is the most successful system for fully unsupervised bracketing, with an F-score
of 78, 5% on the Penn Tree Bank (for sentences up to length 10).

Interestingly, the idea of learning a grammar from minimal difference pairs,
by parsing with the shortest derivation, can in principle also be adopted for U-
DOP, provided it parses the sentences of a corpus in an incremental fashion, as
a way to keep the number of fragments manageable. As a cognitive model of
grammar acquisition U-DOP is less plausible, because, like I-O and BMM, U-
DOP assumes discrete categories, and a global search operation. Further, in the
standard version of U-DOP it is assumed that all syntactic categories have the
same label, hence the system is designed to learning brackets but not labels.

9.5 Future work

This thesis presented innovative ideas in many fields, such as cognitive linguistics,
statistical parsing, neural network research and language acquisition, of which I
have only started to exploit the possibilities. Below I present only a small selection
of possible directions for future research.

Language model for speech recognition

While it is known that PCFG-models perform poorly as language models for
speech recognition, probabilistic left corner models are often used for this task
because they parse and condition the probabilities from left to right. The left
corner parser of van Uytsel et al. [2001] has been evaluated for perplexity on
several bench mark tests, with results that are competitive with NGram models.
The non-episodic LCSG parser that I have implemented for this thesis is except for
minor details equivalent to the van Uytsel et al. [2001] parser, hence is expected
to perform at a similar level. (However, unlike van Uytsel et al. [2001] I have
implemented smoothing.) It will be interesting to know how the episodic LCSG
does as a language model with respect to the non-episodic LCSG.

9.5. Future work 189

What parsing strategy is employed by the human language processing
system?

Do humans syntactically process sentences in a top-down, left-corner or other
manner? To date, variations of the PCFG (top-down) are the state-of-the-art
in syntactic parsing, but some of the best performing parsers employ features
that are borrowed from left corner models [e.g. Charniak, 2000]. The episodic
parsing framework allows for varying only the processing strategy between top-
down, left-corner and bottom-up, while leaving all other parameters intact (in
all cases the model’s decisions are based on the entire derivational history of
the training corpus), hence the framework offers an opportunity to make a fair
comparison as to which processing strategy performs the best (with respect to
F-scores or any other measure). This could answer an important question in
cognitive linguistics research. Although I have performed a comparison between
the episodic left corner and episodic top-down reranker (section 6.2.5), I have
not done it for the episodic parser, because for that I would have to implement a
standalone top-down episodic parser.

Episodic Markov Model

The concept of an episodic memory for sentence analyses, stored in the form of
traces in syntactic nodes is not only applicable to context free grammars or left
corner grammars, but also to regular grammars. It should not be too difficult to
implement an episodic Markov Model, in which case episodic traces are stored
in ‘word nodes’, and point to traces of previously processed sentences in other
word nodes. I expect the properties of such a variable length Markov model to
be comparable to those of the SRN, but much faster to train (in a single pass
through the data). It will be interesting to evaluate the episodic Markov Model
as a language model in a speech recognition task, and compare it to fixed length
Markov Models, for instance a trigram model.

Are parse trees psychologically real?

Does the human mind represent sentences mentally as parse trees? This is the
subject of an ongoing debate, as most connectionists reject the notion of hidden
hierarchical sentence representations for lack of observable evidence. One can only
try to address this fundamental question empirically, by designing behavioral and
observable measures on which the predictions of a hierarchical language model
that employs tree structures differ from those of a flat, non-hierarchical model.
The fact that the chart parser implemented for the left corner shifting grammar
(LCSG) is able to compute sentence and string probabilities (i.e., by summing
over all parse trees that yield the same string) provides an excellent opportunity
to compare it directly to non-hierarchical models, such as the SRN. A standard

190 Chapter 9. General discussion and conclusions

way to assess the goodness of fit of a language model is by measuring the so-
called perplexity of the corpus, that is the log likelihood of the data given the
model. Thus, one might compare the likelihood, or perplexity of sentences (not
parses) between the hierarchical left corner model (LCSG), or its episodic version
on the one hand and the SRN or the flat episodic Markov Model (see the previous
paragraph) on the other hand.

Another option, which has recently received much interest in the literature,
is to relate the predictions of the model to reading times. According to surprisal
theory [e.g., Hale, 2001, Levy, 2008] it may be assumed that reading times are
linked to the ‘surprisal’ of a word, that is, how much the word is expected. The
latter value can be estimated by any probabilistic language model, provided it
can compute string probabilities (and provided lexical semantic confounds can
be factored out). While several studies have investigated the effect of ‘syntactic’
(that is, unlexicalized) surprisal, as well as ‘integration cost’, on reading times
[e.g., Demberg and Keller, 2008, Boston et al., 2008], Frank and Bod [2011] com-
pared the predicted reading times, based on syntactic surprisal, between a PCFG
and the SRN, and conclude that the human sentence processing system is insen-
sitive to hierarchical structure. However, since they compared the SRN only to a
PCFG model their results may have been biased, because in the SRN left-to-right
processing is built into the system, whereas in the PCFG model the computed
left-to-right transition probabilities do not fall out in any cognitively motivated
way from the top-down probabilistic model. It would therefore be interesting to
see whether their results still hold if the SRN is compared to the probabilistic
LCSG, or the episodic LCSG.

Yet another option for assessing the psychological reality of trees is to inves-
tigate the effect of syntactic priming on reading times. For instance, Sturt et al.
[2010] have shown that if two noun phrases in a sentence share the same structure
processing is facilitated in the second one.

Modeling language acquisition

The potential of HPN as a tool for language acquisition research was already
mentioned in section 9.2.1. An obvious choice for an experiment is to try to
replicate the results of [Borensztajn et al., 2009a], in which we found evidence
that ‘children’s grammars grow more abstract with age’, with the episodic-HPN
model. In the cited work, we used tools from computational linguistics, specif-
ically the push-’n-pull estimator for Data Oriented Parsing [Zuidema, 2007] to
do the statistical analysis. However, the analysis was based on sentences from
the CHILDES corpus [MacWhinney, 2000] that were manually labeled with adult
syntactic labels. Using episodic-HPN, we have a fully unsupervised language
model, that can induce clusters of syntactic categories, and episodic construc-
tions based on sentences without any label annotation. Moreover, the episodic
fragments that episodic-HPN finds are fragments from a left corner derivation,

9.5. Future work 191

which may form an interesting comparison with the top-down DOP-fragments
found by push-’n-pull.

It would be extremely interesting if it were possible, using episodic-HPN,
to inspect snapshots of the syntactic topology (‘substitution space’) at different
stages in children’s linguistic development (for example Adam, Eve and Sarah
from the CHILDES database), and particularly to track the changes and self-
organization process of their grammars. A preliminary experiment showing Eve’s
topology was performed in section 5.5.3, but this was done with the ‘semantic’
HPN model.

Unsupervised grammar induction with episodic-HPN

In principle episodic-HPN should be suitable for the task of unsupervised gram-
mar induction from realistic and real-sized corpora, yet in practice there are still
many technical obstacles to overcome before this can be realized. What is inter-
esting about episodic-HPN is that is finds brackets and labels (that is, clusters)
simultaneously, unlike many unsupervised induction systems that focus only on
bracket induction [e.g., Bod, 2006a, Klein and Manning, 2002]. This may be an
advantage if one assumes that the induction of brackets depends on the induced
labels and vice versa, and thus brackets and labels can bootstrap each other [e.g.,
Borensztajn, 2006b, Stolcke and Omohundro, 1994].

On the other hand, it should be computationally much less expensive to invoke
episodic-HPN as a system for unsupervised labeling, with given brackets. It will
be interesting to compare the performance of episodic-HPN on this task with that
of the Bayesian Model Merging approach [e.g., Borensztajn and Zuidema, 2007,
Reichart and Rappoport, 1992].

Syntactic priming and recency effects

With only slight modifications the episodic grammar can be made sensitive to
recency effects in sentence processing. Since the sequential numbers of the exem-
plars are encoded in the traces in chronological order, it will be easy to implement
a forgetting or decay function that depends on the age of the trace. This allows
investigating the effects of forgetting unused episodes, while for example entrench-
ing episodes or episodic fragments that are frequently used. Similarly, the episodic
framework lends itself to an investigation of syntactic priming effects, that is the
influence of the use of specific syntactic patterns across the sentence boundary in
dialog.

Learning with a topology

There is an entire research field awaiting further exploration regarding the study
of the dynamics of topology learning and self-organization in grammar acqui-
sition, and its relation to empirical data. To gain a better understanding of

192 Chapter 9. General discussion and conclusions

the subject one might start by analyzing cases for which the learning dynamics
of topological self-organization in HPN makes different predictions than stan-
dard machine learning techniques, or Bayesian approaches to learning. I have
suggested in section 9.4.1 that topology learning predicts certain generalizations
that are not predicted by the Inside-Outside algorithm from the same data, yet
the question whether such generalizations are a better fit to the empirical data
on child language acquisition has yet been to be answered. To date not much is
known from the language acquisition literature about the way children generalize
their constructions, nor whether this points to some topological organization of
their grammars.

Improvements and extensions of the episodic grammar framework

There remain many engineering problems to be solved for the episodic framework
(as well as for the HPN framework), as well as optional extensions that are worth
trying out. For instance, by leaving out the shift transitions in the shortest deriva-
tion parser it can only approximate the shortest derivations, and performance is
likely not optimal. On the other hand, if the shift counts are included one may
obtain fragments from the shortest left corner derivation containing words, which
are probably more informative than the wordless fragments obtained with the
current method.

Another boost to the performance of the episodic shortest derivation parser is
expected if the model can take discontiguous fragments into account. In section
7.3.2 I hinted at how it can be done, but it has not yet been implemented.

A probabilistic episodic chart parser may be an interesting direction, as it im-
plements the principle of an episodic spreading activation parser, where episodic
probabilities are computed through spreading activations (i,e, Common History)
between the traces in the states of the chart parser.

Neuro-biological predictions

This thesis makes numerous predictions about, among others, the neural corre-
lates of syntactic categories, the organization of semantic and episodic memory
and the functional connectivity of the cortex. For some of these predictions to-
day’s technology may not yet be sufficiently sophisticated to allow their empirical
verification.

To start with, the hypothesis for a neural theory of syntax (section 2.8) pre-
dicts that dedicated cell assemblies in the cortex are able to represent graded
syntactic category membership; it is hypothesized that the ‘syntactic’ cell as-
semblies, presumably encoded in so-called ‘name fields’ of cortical columns, com-
municate with each other through serial dynamic binding: they pass ‘tags’ to
a ‘switchboard’ (assumed to be implemented by the hippocampus), where they
are redirected to other, topologically neighboring cell assemblies. This mode

9.5. Future work 193

of communication by the cortex guarantees context invariant processing. The
paradigmatic relations of a syntax (i.e., substitutibility relations between cell as-
semblies) are encoded in the ‘substitution space’, which topologically organizes
the cell assemblies according to representations that express a neural assembly’s
graded syntactic category membership. Note that the theory does not predict the
syntactic topology to be spatially laid out along the cortical surface, but rather
it predicts that topological addresses are stored in ‘name fields’, and transmitted
through spiking patterns.

The theory further predicts that syntactic assemblies (cortical columns) have
the ability to temporally integrate ordered sequences of inputs, hence function as
compressor node; a possible neural implementation was proposed in section 5.7.
They must possess local memories, where first pointers to the addresses of bound
assemblies are temporarily stored, and after a successfull parse the pointers are
stored as persistent memory traces. A working memory, or stack, is implemented
as a set of active pointers distributed over assemblies that participate in a parse.

Appendix A

Two case studies on the systematicity of
the SRN

The systematicity issue of the SRN is addressed in a series of influential papers
by Jeffrey Elman [Elman, 1990, 1991, 1993], in which he famously formulates
the connectionist claims about the ‘implicit’ nature of grammatical knowledge in
distributed networks. These publications have had an enormous impact, as they
succeeded to convince many connectionists that distributed neural networks can
generalize systematically without any need for explicit representation of syntactic
categories or constituents. Such ideas have contributed for a large part to the
notion that emergent rule-like behavior can be explained without explicit rep-
resentation of rules or categories, which has become the standard connectionist
response to Fodor and Pylyshyn [1988] in the systematicity debate.

Yet, in Chapter 4 I have argued on theoretical grounds that the SRN does
not satisfy either the context invariance criterion or the recursive systematicity
criterion. In the following two case studies I want to critically assess Elman’s
claims about the, in my opinion, problematic idea of ‘implicit representation’ of
categories.

A.1 Case study 1: Elman [1990]

Elman [1990] describes an experiment where an SRN is trained on 10, 000 sen-
tences of 2 or 3 words generated at random from 16 templates. The templates
used 29 different lexical items selected from 6 different noun classes (for instance
NOUN-HUM and NOUN-ANIM) and 6 verb classes, among which intransitive
and transitive verbs. The task of the network was to learn to predict the next
word in the sentence (the ‘word prediction task’), and this was trained using error
back propagation with the correct word as the target. For the test sequences the
network cannot be expected to predict the exact target word, since all words of
a category are equally probable. Therefore, the output was evaluated against a

195

196 Appendix A. Two case studies on the systematicity of the SRN

target vector consisting of the expected frequencies of all 29 words, as derived
from a second order Markov model trained on the same data. After training for
100 epochs the network succeeded to predict the next word class with a very low
root mean squared error.

To investigate how the network accomplished this feat, Elman analyzed the
hidden layer representations developed by the network. The activity of the hidden
layer (150 units) was measured after every word in the training set, and for every
unique word an average activation vector was obtained over all previous contexts
of the word. Subsequently a hierarchical cluster analysis (HCA) was performed on
these averaged vectors. This resulted in word clusters that resembled the original
categories from the artificial grammar to a large degree. Elman concluded from
these results that the SRN had discovered and internalized implicit knowledge
about the major word categories. This would suggest that the SRN exhibits
strong systematicity in the sense of [Hadley, 1994].

Implicit knowledge is an empty concept

What is the ‘implicit knowledge’ of word categories that Elman [1990] is referring
to? It makes sense that the term ‘category’ in the context of a particular model
is reserved to denote a set of entities which share the same behavior under a
certain operation of the model. If one speaks of the ‘categories’ of the SRN one
would expect this notion to refer to a subset of its states for which the future
output of the SRN is identical. Only with this intended interpretation of the term
‘category’ in mind can one have a productive discussion on the generalization or
systematicity of the SRN.

Yet, in the hierarchical cluster analysis of [Elman, 1990], the so-called cate-
gories that are constructed by averaging over contexts are not causative of any
behavior of the SRN, and therefore are not genuine categories in the above sense.
Members of Elman’s categories (different contexts of the same word) do not pro-
duce the same output behavior. For instance, the word boy at the beginning of a
sentence does not predict the same next word as in the context dog chases boy.
Since the ‘implicit categories’ never actually appear in the SRN, but are the result
of a post-hoc analysis, it is not justified to appeal to them as the cause behind
systematic behavior of the SRN, nor is it warranted to ascribe these constructs
to the SRN’s ‘implicit knowledge’. In fact the knowledge implicit in the average
context vectors is not internally encoded in any useful way by the SRN, but it is
merely a redescription of the input data.

To verify the latter claim I have performed a control experiment, in which I
applied HCA directly to the trigram model that produced the target vectors used
to train the SRN (thus, using the same data). Strikingly, this analysis revealed an
almost identical hierarchy of categories as those found in the hidden layer of the
Elman network, in a single pass through the data (compare Figures A.1 and A.2).
This strongly suggests that the clusters found by the HCA analysis do not reflect

A.1. Case study 1: Elman [1990] 197

Figure A.1: Hierarchical cluster analysis of hidden layer of the SRN

Figure A.2: Hierarchical cluster analysis of trigrams, for the same data as used
in Figure A.1

198 Appendix A. Two case studies on the systematicity of the SRN

how the network represents categories, but that they are an intrinsic property of
the input distribution.1

A.2 Case study 2: Elman [1991]

In a second experiment Elman [1991] explored whether and how the SRN repre-
sents complex structural relationships such as constituency. The goal was “to see
if the network could infer the constituency structure from stimuli in which un-
derlying hierarchical relationships were hidden, and represent the compositional
relationships in such a manner as to support structure-sensitive operations” [El-
man, 1991, p.199].

Training sentences were generated from a recursive artificial context free gram-
mar that included categories for singular and plural nouns (e.g., boy(s), girl(s)),
transitive verbs (e.g. feed, chase) and intransitive verbs (e.g. walk, live), both
singular and plural, and relative clauses (who). Number agreement was enforced
between subject and verb, and between subject and relative clause. The SRN
was tested on the word prediction task, as in [Elman, 1990], but since relative
clauses are embedded in the sentence, number agreement and other dependencies
must be maintained over longer distances.

While the SRN succeeded on this task at least in some trials, the question that
Elman asked is how grammatical knowledge about constituent structure, argu-
ment structure, grammatical category and number agreement are systematically
encoded in the network, and whether this knowledge allows for systematic infer-
ences and generalization to novel examples? To this end Elman applied principle
component analysis (PCA) to analyze the activation space of the hidden units,
and plotted the dimensions of highest variance. With regard to encoding the
depth of recursive embedding, Figure A.3 shows the network trajectory in state
space for

(A.1) boy chases boy who chases boy who chases boy .

From Figure A.3 it is apparent that embeddings are distinguished from each other,
and from the main clause, by their displacement. Moreover, from inspection of
the graphs of the other sentences it seems that the solution exhibits a systematic
pattern. This prompted Elman to conclude that “displacement provides a system-
atic way for the network to encode the depth of embedding” [Elman, 1991, p.111].
A more ambitious proposition is also implied [Elman, 1991, p.110], namely that
the grammatical knowledge of the SRN is not encoded in static representations,
but in the temporal dynamics of the network; in particular, Elman claims that

1Elman [1990] remarks in a footnote (6) that comparable results as for a trained SRN can
be obtained by an SRN even without learning (and using uniform weights). Thus, apparently
the author is aware of this problem, but nevertheless draws no conclusions from it.

A.2. Case study 2: Elman [1991] 199

Figure A.3: Trajectory through state space of the sentence boy chases boy who
chases boy who chases boy. Reproduced from [Elman, 1991]

the knowledge of the network is encoded in (constraints on possible) temporal
trajectories through state space.

Knowledge about displacement is attributed post-hoc

Elman’s claims about the ‘implicit knowledge’ of the SRN of constituent struc-
ture are prone to the same critique that applies for his claims about ‘implicit
knowledge’ of word categories (section A.1): the knowledge of ‘displacement’ is
not internally encoded in a form that the SRN can exploit or access, but rather
attributed post-hoc.

In principle the only available information to the SRN to base its decisions
upon at time t is the input activation plus the state of the hidden units at time
t−1. To make use of displacement information the SRN would need to perform a
meta-analysis that compares the state of the hidden units at different time steps.
Perhaps, it would be possible to build into the network a mechanism designed to
extract differential information, for instance by adding units that act as ‘difference
detectors’ between hidden states at different times. However, this will not solve
the problem of long distance dependencies, because crucially one would need to
compare hidden states that correspond to matching recursive levels, which are
not at fixed distances (that is, temporal intervals) in the sentence. Hence, to
decide which earlier hidden state to compare to which, the SRN would need to
have access to prior knowledge about the level of embedding (i.e., it would need
a stack), but this is precisely the task that the SRN was supposed to solve. In
sum, the claim that displacement systematically encodes depth of embedding is
unwarranted, and so is the broader claim that constituency and recursion are
‘implicitly’ encoded in the temporal dynamics of the network.

200 Appendix A. Two case studies on the systematicity of the SRN

While it could still be possible that, despite Elman’s apparently flawed analy-
sis, the SRN does find a systematic solution for the structure encoding problem,
there are fundamental reasons to believe that this is not the case. These are
discussed in the next section.

A.2.1 Fundamental reason why an SRN cannot generalize
context free languages: analogy

In this section I will argue that a solution for encoding recursion of the kind
proposed by Elman [1991], in which constituents of different recursive levels are
separated by their position (and predictive behavior) in state space, cannot in
principle be generalized by the SRN in a systematic (i.e., non-arbitrary) way, but
only through coincidence.

For convenience I will use the example of the context free language anbn.
Rodriguez et al. [1999] claim that the SRN can learn to generalize this language
from a finite set of examples with 1 ≤ n ≤ 11 to n = 16 (hence, the title of the
paper is A recurrent network that learns to count), while using displacement to
distinguish different levels of recursion, like the solution in [Elman, 1991].

To avoid any confusion let me reiterate that the fact that the SRN can rep-
resent a solution for unbounded recursion is beyond doubt (see also section 4.4).
In fact, Rodriguez et al. [1999] give an example of a configuration of weights and
initial hidden unit activations, such that a SRN with two hidden units, two con-
text units and two output units can recognize arbitrarily long strings of the form
anbn, where a is represented as (1, 0) and b as (0, 1).2

However, the question of interest is not about the ability of the SRN to repre-
sent a context free language, but about its ability to learn it by generalizing from
the training data. Suppose the SRN has been trained on ‘a b’, ‘a a b b’ and ‘a a
a b b b’. I argue that the SRN will not find the solution proposed by Rodriguez
et al. [1999] (or a similar solution) by means of systematic generalization.

2The weights of the SRN are chosen such that one hidden unit (X1) counts the a inputs by
increasing its activation monotonically, and the other hidden unit (X2) counts the b units. A
change of input between a and b turns the counting on or off. For example, given input units It,
hidden units Xt with initial value X0 = (0, 0), and given input sequence aaabbb; if one defines
the weights and activation function F as follows

F(net) =

 1 net ≥ 1
net 0 < net < 1
0 net ≤ 1

Xt = F
([

0.5 0
2.0 2.0

]
·Xt−1 +

[
0.5 −5
−5 −1

]
· It
)

then the activations of the hidden units (the state space) follows a monotonically increasing
and then decreasing sequence of values: (0.5, 0), (0.75, 0), (0.875, 0), (0, 0.75), (0, 0.5), (0, 0).
For arbitrarily long strings anbn this series converges to the limit points (1,0) and (0,1).

A.2. Case study 2: Elman [1991] 201

Starting point of the argument is the observation, made in section 4.5.3, that
one should be able to show that the generalization is causally inferred from some
similarities in the training data with respect to the structure bias of the SRN.
The first thing to realize in this respect is that there is nothing in the superficial
similarity between the hidden unit activations induced by ‘a b’, ‘a a b b’ and ‘a
a a b b b’ that will cause the SRN to generalize correctly and predict the final b
given ‘a a a a b b b’. In fact, the train instance that produces the most similar
activations in hidden unit space to ‘a a a a b b b’ is ‘a a a b b b’, yet this string
predicts the end-of-sentence marker instead of b.

We may conclude that generalization on the basis of superficial similarity of
distributed patterns does not produce recursive systematicity, hence does not offer
the desired productivity of language. Yet, superficial similarity (or alternatively,
interpolation within the training space) is the sole basis for generalization for an
SRN that learns with error back propagation (EBP will cause superficially similar
states to produce similar output).

As said, in case of recursive systematicity the causal inference for general-
ization is not based on superficial similarity, but on analogy: the similarity of
relations. To see the analogy between ‘a b’, ‘a a b b’ and ‘a a a b b b’ the sys-
tem must discover that the operations that transform ‘a b’ into ‘a a b b’, and
‘a a b b’ into ‘a a a b b b’ are similar.3 Suppose the SRN was able to discover
such a systematic operation (i.e., a transition in state space that can be reused).
Then, were the systematic solution applied to process a novel, previously unseen
sentence, it would require the SRN to visit one particular hidden state at least
twice. In other words, the solution would have to involve loops between states in
hidden unit space.

Now, the solutions for encoding recursion proposed both by [Rodriguez et al.,
1999] and by [Elman, 1991] crucially make use of the fact that constituents at
every different level of recursion are separated by their position in state space
(i.e., their different predictions are based on displacement). This contradicts our
earlier conclusion that any solution that is reached by generalization from analogy
must have loops, hence the solution of [Rodriguez et al., 1999] is not produced
by generalization from analogy, but can only be reached through coincidence.

Figure A.4: FSA representing anbn for n = 2 (left) and n = 3 (right)

3See section 8.2.3 for a discussion of how a learning algorithm based on a CFG bias, such as
the BMM model, discovers analogies in the training data.

202 Appendix A. Two case studies on the systematicity of the SRN

In fact, the solution for learning recursive structure proposed by Rodriguez
[1999] and Elman [1991] is comparable to the trivial solution of the FSA, given
in section 4.6.1, which is also based on duplication of states for higher recursive
levels (see Figure A.4). Clearly, the right FSA (b) in Figure A.4 cannot be inferred
from the left FSA (a) by means of the discovery of analogies in the training data,
because that would imply that a state is visited more than once, but then Figure
A.4 (b) would need to have less states than Figure A.4 (a). The fact that the SRN
has an infinitely large (continuous) state space does not give it any advantage in
generalizing from a finite number of examples over the FSA, because the available
strategies are the same in both cases and depend only on the structure bias: the
ability to express analogies or transformations.

Appendix B

HPN implementation issues

B.1 A simple implementation of a deterministic

and serial left corner parser for HPN

As explained in section 5.3.1, HPN implements a left corner parsing (LCP) strat-
egy to search for a syntactic analysis of a sentence. The HPN implementation of
a serial LC parser deviates in some minor details from the standard symbolic im-
plementation of a LC parser (see also section 3.1.3). While as usual a derivation
of a sentence involves shift, attach and project operations, in the description of
the parse process I have tried to consistently use the terminology of HPN.

Table B.1 includes pseudo-code for a simple deterministic and serial HPN
left corner parser. The Main method calls the bottomUpProcess method, which
starts a derivation by shifting to an input unit corresponding to the first word
of the sentence, and projects it to a compressor node. Most of the work is done
in two methods: the bottomUpProcess method, in which the shift, attach and
project operations are included, and the topDownProcess method, in which an
HPN production (of a compressor node) iterates through its goal slots (top-down
prediction). In the bottomUpProcess a partial parse structure is projected up-
ward from a word to the left slot of a compressor node, and eventually has to
attach to a free non-left slot of a compressor node. If there is no match between
the projected structure and a free slot the parser has to backtrack: it returns
the call and attempts a projection to a different compressor node. The timestep

(i.e., the word position) and a pointer to nodes that are bound to the slots must
be passed between the methods. The latter is implicitly handled by the Java call
stack (local node memories are assumed). The timestep variable corresponds
to the index number of a node state, as will be explained in section 5.3.2. The
timestep is incremented by 1 upon shift, and propagated through the bind-
ings. In the pseudo-code bottomupTopVector denotes the vector representation
of the root of a compressor node or input node that is derived bottom-up, and
activeSlotVector denotes the vector of the first free slot of a compressor node.

203

204 Appendix B. HPN implementation issues

method Main

bottomUpProcess(timestep, null, null)

method bottomUpProcess(timestep, activeSlotVector, completedCompressorNode)

% left corner is either the root of compressorNode or next word in the sentence

if (completedCompressorNode exists)

bottomupTopVector= completedCompressorNode

else % shift: set bottomupTopVector to the input node representation

% corresponding to the next word

timestep = timestep +1

bottomupTopVector = inputNodes(wordsOfSentence(timestep))

% attach: match input with open slot from active production

if (activeSlotVector exists)

if (innerProduct(bottomupTopVector, activeSlotVector)>0)
return (match, timestep)

% project: loop over all compressor nodes; try to match bottomupTopVector to

% the left slot of any of the compressor nodes

for (each compressorNode in compressorNodes)

if (innerProduct(bottomupTopVector, leftSlotOfCompressorNode)>0)
match = compressorNode.topDownProcess(timestep, activeSlotVector)

if (match) return (match, timestep)

% failure

return (failure, timestep)

method compressorNode.topDownProcess(timestep, goalSlot)

% loop over non-left slots of the current compressor node

for (activeSlotVector = second slot, ..., last slot)

match = bottomUpProcess(timestep, activeSlotVector, null)

% (there can be a match if either the next word in the sentence matches directly

% to the activeSlot, or a projected compressorNode matches the activeSlot)

if (match) return (match, timestep)

end for % production complete

% goalReachedCheck

if (goalSlot exists)

if (innerProduct(this.RootVector, goalslot)>0) return (match, timestep)

else % call from Main: check whether all words of the sentence have been processed

if (timestep==sentence.size()) return (match, timestep)

% no match with goalSlot, and no end of sentence, then

% try projecting up from the current compressor node (left-branching)

match = bottomUpProcess(timestep, goalSlot, this.RootVector)

if (match) return (match, timestep)

else return (failure, timestep)

Table B.1: Pseudocode for a deterministic and serial left corner parser algorithm
in HPN

B.2. Conversion procedure from (P)CFG to (P)HPN 205

B.2 Conversion procedure from (P)CFG to

(P)HPN

In section 5.2 I argued that context free grammars are subsumed in the HPN for-
malism. To prove this, in this section I will sketch a conversion procedure from
a CFG grammar to an HPN representation, such that those and only those sen-
tences that are successfully parsed by the CFG grammar are successfully parsed
by the HPN grammar. For convenience, the nodes and slots are represented
as vectors with respect to an orthogonal basis of slots. One can then compute
the match between a firing node and a slot as the inner product between their
representations (if the inner product equals 0 then there is no match).

S → NP VP (1.0)
NP → PropN (0.2) ‖ N (0.5) ‖ N RC (0.3)
VP → VI (0.4) ‖ VT NP (0.6)
RC → WHO NP VT (0.1) ‖ WHO VP (0.9)
VI → walks (0.5) ‖ lives (0.5)
VT → chases (0.8) ‖ feeds (0.2)
N → boy (0.6) ‖ girl (0.4)
PropN → John (0.5) ‖ Mary (0.5)
WHO → who (1.0)

Table B.2: Toy probabilistic context-free grammar with relative clauses (Adapted
from [Elman, 1991]). Probabilities are indicated in brackets.

1. Create a separate HPN production for every non-unary rule expansion, and
assign unique and orthogonal representations to its slots. (For example,
S → (1000000000) (0100000000)). The representation of the compressor
nodes will be determined later.

2. For every non-unary production in the CFG, change the representations
of all non-terminals occurring on its right hand side by adding the slot
vectors (as assigned in step 1) with which they are associated (using vector
addition);

3. For every unary production in the CFG, copy or add the representation
of the non-terminal on the left hand side to the representation of the non-
terminal or terminal on the right hand side (do this recursively).

4. Assign the appropriate non-terminal representation to the roots of HPN
productions, and create input nodes using the representations computed in
step 3. Discard all unary productions, and unused non-terminals.

The conversion procedure is illustrated in Figure 5.4 (using informal notation, and
with unary productions added for clarity), for the CFG grammar with recursive
relative clauses given in Table B.2.

One can easily check that given these representations there is only one way
for HPN to parse for example the sentence boy who lives chases Mary.

206 Appendix B. HPN implementation issues

Figure B.1: Conversion procedure from CFG to HPN. The slot indices reflect
their only non-zero component.

It is easy to modify the conversion procedure such that it converts a prob-
abilistic context free grammar (PCFG) into a probabilistic version of HPN. To
do so, during the construction of node representations (step 2 and 3) one must
multiply the representation of the left hand side by the probability of their re-
spective expansion in the PCFG. The inner product between a node and a slot
representation now gives the probability of their binding, and the product of the
probabilities of all bindings involved in an HPN derivation gives the HPN parse
probability. Table B.3 gives the ‘probabilistic’ node representations (assuming

Compressor nodes
X2 (NP) (.3 0 0 0 0 .3 0 .3 0 0 0)
X3 (VP) (0 .6 0 0 0 0 0 0 0 0 .6)
X4 (RC) (0 0 0 .1 0 0 0 0 0 0 0)
X5 (RC) (0 0 0 .9 0 0 0 0 0 0 0)
Input nodes
John = Mary = (.1 0 0 0 0 .1 0 .1 0 0 0)
lives = walks = (0 0 0 0 .5 0 0 0 .5 0 0)
boy = (.3 0 0 .6 0 .3 0 .3 0 0 0); girl = (.2 0 0 .4 0 .2 0 .2 0 0 0)
chases = (0 0 0 0 .8 0 0 0 .8 0 0); feeds = (0 0 0 0 .2 0 0 0 .2 0 0)
who = (0 0 0 0 0 0 1 0 0 1 0)

Table B.3: Node representations for probabilistic HPN.

the HPN productions of Figure B.1). It can be shown that, using this conversion
procedure, for any parse of a sentence generated by the artificial PCFG grammar
there exists a parse by the corresponding HPN grammar with the same branching
structure and the same probability as assigned by the PCFG.

Bibliography

M. Bansal and D. Klein. The surprising variance in shortest-derivation parsing.
In Proceedings of the 49nd Annual Meeting of Association for Computational
Linguistics (ACL 2011), pages 720–725, Morristown, NJ, 2011. Association for
Computational Linguistics. [152, 158, 159, 161]

O. Barak and M. Tsodyks. Persistent activity in neural networks with dynamic
synapses. PLOS computational biology, 3(2):e35, 2007. [25, 116]

F. Battaglia and C. M. A. Pennartz. The construction of semantic memory:
grammar based representations learned from relational episodic information.
Frontiers in computational neuroscience, 5(36):1–22, 2011. [31, 176]

F. Battaglia, K. Benchenane, K. Sirota, C. M. A. Pennartz, and S. Wiener. The
hippocampus: hub of brain network communication for memory. Trends in
Cognitive Sciences, 2011. [32]

W. Bechtel and A. Abrahamsen. Connectionism and the mind: Parallel process-
ing, dynamics, and evolution in networks. Second Edition. Basil Blackwell,
Oxford, UK, 2002. [67]

B. K. Bergen and N. C. Chang. Embodied construction grammar in simulation-
based language understanding. In J. Östman and M. Fried, editors, Construc-
tion grammars: cognitive grounding and theoretical extensions, pages 147–190.
2005. Technical Report 02-004. [182]

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
Oxford, UK, 1996. [65]

E. Black, F. Jelinek, J. Lafferty, D. Magerman, and R. Mercer. Towards history-
based grammars: Using richer models for probabilistic parsing. In Proceedings
of the 31st annual meeting on Association for Computational Linguistics, pages
31–37, 1993. [136]

207

208 BIBLIOGRAPHY

R. Bod. Beyond Grammar: An experience-based theory of language. CSLI Pub-
lications, Stanford, CA, 1998. [5, 30, 50, 136]

R. Bod. Parsing with the shortest derivation. In Proceedings of the 18th Interna-
tional Conference on Computational Linguistics (COLING 2000), pages 69–75,
-, 2000. Association for Computational Linguistics. [135, 161, 168]

R. Bod. An efficient implementation of a new DOP model. In Proceedings
EACL’03, pages 19–26. 2003. [7, 49, 158, 161]

R. Bod. An all-subtrees approach to unsupervised parsing. In Proceedings of the
21st International Conference on Computational Linguistics, Sydney, pages
865–872, 2006a. [191]

R. Bod. Unsupervised parsing with U-DOP. In Proceedings of the 10th Interna-
tional Conference on Computational Natural Language Learning (CONLL-X),
pages 85–92, 2006b. [188]

R. Bod. Is the end of supervised parsing in sight? In Proceedings of the 45nd
Annual Meeting of Association for Computational Linguistics (ACL 2007), vol-
ume 45, page 400, Morristown, NJ, 2007. Association for Computational Lin-
guistics. [55, 188]

G. Borensztajn. Luc steels, the Talking Heads experiment and cognitive phi-
losophy - a tutorial accompanying the presentation in current issues - part i.
available at http://staff.science.uva.nl/g̃ideon/, 2006a. [37]

G. Borensztajn. Automatic discovery of constructions in children’s speech, mas-
ters thesis, 2006b. [16, 191]

G. Borensztajn and W. Zuidema. Bayesian model merging for unsupervised con-
stituent labeling and grammar induction. Technical report, 2007. [191]

G. Borensztajn and W. Zuidema. Episodic grammar: a computational model of
the interaction between episodic and semantic memory in language processing.
In Proceedings of the 33th Annual Conference of the Cognitive Science Society,
2011. [9]

G. Borensztajn, W. Zuidema, and R. Bod. Children’s grammars grow more
abstract with age. evidence from an automatic procedure for identifying the
productive units of language. Topics, 1(1):175–188, 2009a. [5, 7, 51, 190]

G. Borensztajn, W. Zuidema, and R. Bod. The hierarchical prediction network:
towards a neural theory of grammar acquisition. In Proceedings of the 31th
annual conference of the cognitive science society, 2009b. [8]

BIBLIOGRAPHY 209

M. Boston, J. Hale, R. Kliegl, J. Patil, and S. Vasisht. Parsing costs as predictors
of reading difficulty: An evaluation using the potsdam sentence corpus. Journal
of Eye Movement Research, 2(1):1–12, 2008. [190]

P. Brakel and S. Frank. Strong systematicity in sentence processing by simple
recurrent networks. In Proceedings of the 31th annual conference of the cognitive
science society, 2009. [75]

R. W. Brown. A first language: The early stages. Harvard University Press,
Cambridge, MA, 1973. [51, 108]

M. Bunsey and H. Eichenbaum. Conservation of hippocampal memory function
in rats and humans. Nature, 379(6562):255–257, 1996. [34]

N. C. Chang. Learning Grammatical Constructions. PhD thesis, University of
California, Berkeley, 2001. Thesis proposal. [37]

E. Charniak. A maximum-entropy-inspired parser. In Proceedings of the 1st North
American chapter of the Association for Computational Linguistics conference,
2000. [49, 131, 189]

N. Chomsky. Syntactic Structures. Mouton & Co, The Hague, 1957. [42, 43]

N. Chomsky. Language and mind. Harcourt, Brace and World, -, 1972. Extended
edition. [66]

N. Chomsky. Lectures on Government and Binding. Foris Publications, Dor-
drecht, the Netherlands, 1981. [59]

N. Chomsky and G. A. Miller. Introduction to the formal analysis of natural
languages. In D. Luce, X. Bush, and X. Galanter, editors, Handbook of Math-
ematical Psychology, Vol. 2, pages 269–321. 1963. [43]

M. H. Christiansen and N. Chater. Generalization and connectionist language
learning. Mind and Language, 9(3):273–287, 1994. [75]

M. H. Christiansen and N. Chater. Toward a connectionist model of recursion in
human linguistic performance. Cognitive Science, 23(2):157–205, 1999. [79, 82,
84, 180]

A. M. Collins and M. Quillian. Retrieval time from semantic memory. Journal
of verbal learning and verbal behavior, 8(2):240–247, 1969. [27]

M. J. Collins. Head-Driven Statistical Models for Natural Language Parsing. PhD
thesis, 1999. [136]

M. J. Collins. Head-driven statistical models for natural language parsing. Com-
putational Linguistics, 29:589 – 637, 2003. [49]

210 BIBLIOGRAPHY

N. Cowan. Attention and memory: An integrated framework. Oxford University
Press, Oxford, UK, 1995. [116]

S. Crain. Language acquisition in the absence of experience. Behavioral and
Brain Sciences, 14(4):597–650, 1991. [66]

S. Crain and R. Thornton. Acquisition of syntax and semantics. In M. Traxler
and M. Gernsbacher, editors, Handbook of Psycholinguistics. Elsevier, Oxford,
2005. [52]

F. Crick and C. Koch. Consciousness and neuroscience. Cerebral Cortex, 8(2):
97–107, 1998. [11, 59]

W. Croft. Syntactic categories and grammatical relations: The cognitive organi-
zation of information. University of Chicago Press, Chicago, IL, 1991. [5]

W. Croft. Radical construction grammar: syntactic theory in typological perspec-
tive. Oxford University Press, Oxford, UK, 2001. [5, 23, 59, 60, 182]

V. Demberg and F. Keller. Data from eye-tracking corpora as evidence for theories
of syntactic processing complexity. Cognition, 109(2):193–210, 2008. [190]

J. Earley. An efficient context-free parsing algorithm. Communications of the
ACM, 13(2):94–102, 1970. [52, 104, 140]

S. Edelman. Computing the mind. How the Mind Really Works. Oxford University
Press, Oxford, UK, 2008. [83]

H. Eichenbaum. Hippocampus: Cognitive processes and neural representations
that underlie declarative memory. Neuron, 44(1):109–120, 2004. [32, 33, 34,
123, 138, 172, 174, 175]

H. Eichenbaum and N. J. Cohen. From Conditioning to Conscious Recollection:
Memory Systems of the Brain. Oxford University Press, Oxford, UK, 2001.
[177]

H. Eichenbaum and N. J. Fortin. The neurobiology of memory based predic-
tions. Philosophical Transactions of the Royal Society B: Biological Sciences,
364(1521):1183–1191, 2009. [34, 177]

H. Eichenbaum, C. Stewart, and R. G. Morris. Hippocampal representation in
spatial learning. Journal of Neuroscience, 10(11):3531–3542, 1990. [34]

H. Eichenbaum, P. Dudchenko, E. Wood, M. Shapiro, and H. Tanila. The hip-
pocampus, memory, review and place cells: Is it spatial memory or a memory
space? Neuron, 23:209–226, 1999. [33, 34]

BIBLIOGRAPHY 211

J. L. Elman. Representation and structure in connectionist models. Technical
report, University of California at San Diego, La Jolla, 1989. CRL 8903. [8,
73]

J. L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.
[xi, 74, 84, 87, 195, 196, 197, 198]

J. L. Elman. Distributed representations, simple recurrent networks, and gram-
matical structure. Machine Learning, 7(2):195–225, 1991. [xi, 67, 74, 87, 100,
107, 195, 198, 199, 200, 201, 205]

J. L. Elman. Learning and development in neural networks: The importance of
starting small. Cognition, 48(1):71–99, 1993. [84, 195]

N. Evans and S. C. Levinson. The myth of language universals: Language diver-
sity and its importance for cognitive science. Behavioral and Brain Sciences,
32(5):429–448, 2009. [23]

D. Everett. Cultural constraints on grammar and cognition in pirahã. Current
Anthropology, 46(4):621–646, 2005. [23]

D. J. Felleman and D. C. van Essen. Distributed hierarchical processing in the
primate cerebral cortex. Cerebral Cortex, 1(1):1–47, 1991. [12, 14]

C. J. Fillmore and P. Kay. The goals of construction grammar. Technical report,
1987. Berkeley Cognitive Science Program TR. [5]

J. D. Fodor and Z. W. Pylyshyn. Connectionism and cognitive architecture: A
critical analysis. Cognition, 28(1-2):3–71, 1988. [3, 66, 67, 69, 74, 76, 90, 183,
195]

S. Frank and R. Bod. Insensitivity of the human sentence-processing system to
hierarchical structure. Psychological Science, 22(6):829, 2011. [190]

P. W. Frankland and B. Bontempi. The organization of recent and remote mem-
ories. Nature Reviews Neuroscience, 6(2):119–130, 2005. [175, 176]

G. Frege. Über sinn und bedeutung [on sense and reference]. Zeitschrift für
Philosophie und philosophische Kritik, 1892. [58]

D. George and J. Hawkins. A hierarchical Bayesian model of invariant pattern
recognition in the visual cortex. In Proceedings of the 2005 IEEE International
Joint Conference on neural networks, volume 3, pages 1812–1817, 2005. [2, 19,
182]

D. George and J. Hawkins. Towards a mathematical theory of cortical micro-
circuits. PLOS computational biology, 5(10):e1000532, 2009. [2, 20, 37, 182]

212 BIBLIOGRAPHY

A. E. Goldberg. Constructions: a new theoretical approach to language. Trends
in Cognitive Sciences, 7(5):219–224, 2003. [5, 36, 182]

A. E. Goldberg. Constructions in Context. Oxford University Press, Oxford, UK,
2006. [5, 30, 36, 182]

J. Goodman. Efficient algorithms for parsing the DOP model. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing, pages
143–152. 1996. [159, 188]

R. F. Hadley. Systematicity in connectionist language learning. Mind & Language,
9(3):247–272, 1994. [viii, 8, 63, 74, 75, 80, 86, 187, 196]

P. Hagoort. On Broca, brain, and binding: a new framework. Trends in Cognitive
Sciences, 9(9):416–423, 2005. [117]

J. Hale. A probabilistic Earley parser as a psycholinguistic model. In Proceedings
of the second meeting of the North American Chapter of the Association for
Computational Linguistics on Language technologies, volume 2, pages 159–166,
2001. [190]

F. Han and S. Zhu. Bottom-up/top-down image parsing by Attribute Graph
grammar. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International
Conference on, volume 2, pages 1778–1785, 2005. [19]

Z. S. Harris. Methods in structural linguistics. University of Chicago Press,
Chicago, IL, 1951. [40]

M. D. Hauser, N. Chomsky, and W. T. Fitch. The faculty of language: what is
it, who has it, and how did it evolve? Science, 298(5598):1569–1579, 2002. [23,
24]

J. Hawkins and S. Blakeslee. On intelligence. Henry Holt and Company, New
York, 2004. [1, 11, 12, 14, 15, 16, 88, 89, 93, 103, 113, 179, 183, 185]

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computa-
tion, 9(8):1735–1780, 1997. [84]

J. J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the national academy of sciences, 79
(8):2554–8, 1982. [123]

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989. [65]

D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture of
monkey striate cortex. Journal of Physiology, 195(1):215–243, 1968. [13]

BIBLIOGRAPHY 213

J. Hummel and I. Biederman. Dynamic binding in a neural network for shape
recognition. Psychological Review, 99(3):480–517, 1992. [25, 71]

J. Hummel and K. J. Holyoak. Distributed representations of structure: a theory
of analogical access and mapping. Psychological Review, 104(3):427–466, 1997.
[71, 90, 115]

J. Hummel and K. J. Holyoak. A symbolic-connectionist theory of relational
inference and generalization. Psychological Review, 110(2):220–264, 2003. [115]

J. Hummel, K. J. Holyoak, K. Green, C. Doumas, and L. Devnich. A solution
to the binding problem for compositional connectionism. In S. D. Levy and
R. Gayler, editors, Compositional connectionism in cognitive science: Papers
from the AAAI Fall Symposium, pages 31–34. 2004. [71, 110, 177]

E. M. Izhikevich. Polychronization: Computation with spikes. Neural Computa-
tion, (18):245–282, 2006. [118]

E. M. Izhikevich. Solving the distal reward problem through linkage of STDP
and dopamine signaling. Cerebral Cortex, 17(10):2443–2452, 2007. [174]

R. Jackendoff. Foundations of Language. Oxford University Press, Oxford, UK,
2002. [3, 4, 20, 29, 90, 179, 183]

H. Jacobsson. Rule extraction from recurrent neural networks: A taxonomy and
review. Neural Computation, 17(6):1223–1263, 2005. [84]

M. H. Johnson. PCFG models of linguistic tree representations. Computational
Linguistics, 24:613–632, 1998. [49]

A. K. Joshi. Starting with complex primitives pays off: complicate locally, sim-
plify globally. Cognitive Science, 28(5):637–668, 2004. [49, 117]

D. Jurafsky and J. H. Martin. Speech And Language Processing. An Introduc-
tion To Natural Language Processing, Computational Linguistics, And Speech
Recognition. 2nd Edition. Prentice-Hall, Englewood Cliffs, NJ, 2009. [44]

P. Kay and C. J. Fillmore. Grammatical constructions and linguistic generaliza-
tions: the What’s X Doing Y? construction. Language, 1999. [36]

D. Klein and C. D. Manning. A generative Constituent-Context Model for im-
proved grammar induction. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, Philadelphia, pages 128–135. 2002.
[55, 191]

D. Klein and C. D. Manning. Accurate unlexicalized parsing. In Proceedings
of the 41st Annual Meeting of the Association for Computational Linguistics,
pages 423–430, 2003. [49, 130]

214 BIBLIOGRAPHY

E. Kobatake and K. Tanaka. Neuronal selectivities to complex object features in
the ventral visual pathway of the macaque cerebral cortex. Journal of Neuro-
physiology, 71(3):856–67, 1994. [12]

C. Koch and S. Ullman. Shifts in selective visual attention: towards the under-
lying neural circuitry. Human Neurobiology, 4(4):219–27, 1985. [118]

T. Kohonen. Self-organization and associative memory: 3rd edition. Springer
Verlag, Berlin, 1998. [26, 115]

T. Koskela, M. Varsta, K. Heikkonen, and K. Kaski. Time series prediction using
recurrent SOM with local linear models. International Journal of Knowledge-
Based Intelligent Engineering Systems, 2(1):60–68, 1998. [84]

G. Kreiman, I. Fried, and C. Koch. Single-neuron correlates of subjective vision
in the human medial temporal lobe. Proceedings of the national academy of
sciences, 99(12):8378–8383, 2002. [13]

B. Kröse and P. van der Smagt. An introduction to neural networks,8th edition.
University of Amsterdam, Amsterdam, the Netherlands, 1996. [65]

G. Lakoff. Women, Fire, and Dangerous Things: What Categories Reveal about
the Mind. University of Chicago Press, Chicago, IL, 1987. [59]

G. Lakoff and M. H. Johnson. Philosophy in the Flesh. Basic Books, New York,
1999. [36]

V. A. F. Lamme and P. R. Roelfsema. The distinct modes of vision offered by
feedforward and recurrent processing. Trends in Neurosciences, 23(11):571–
579, 2000. [28]

V. A. F. Lamme and H. Spekreijse. Neuronal synchrony does not represent texture
segregation. Nature, 78(396):362–66, 1998. [22]

K. Lari and S. J. Young. The estimation of stochastic context-free grammars
using the inside-outside algorithm. Computer speech & language, 4(1):35–56,
1990. [56, 185]

K. Lashley. The problem of serial order in behavior. In L. Jeffress, editor, Cerebral
mechanisms in behavior. 1951. [118]

D. A. Leopold and N. K. Logothesis. Activity changes in early visual cortex
reflect monkeys’ percepts during binocular rivalry. Nature, 1996. [86]

R. Levy. Expectation-based syntactic comprehension. Cognition, 106(3):1126–
1177, 2008. [190]

BIBLIOGRAPHY 215

W. Levy. A sequence predicting CA3 is a flexible associator that learns and uses
context to solve hippocampal-like tasks. Hippocampus, 6:579–590, 1996. [32,
33, 123, 138]

E. Lieven, H. Behrens, J. Speares, and M. Tomasello. Early syntactic creativity:
a usage-based approach. Journal of Child Language, 30(02):333–370, 2003. [x,
165, 168]

I. Lifshitz. Image interpretation using bottom-up top-down cycle on fragment
trees. PhD thesis, 2005. [19]

D. MacKay. Amnesic HM exhibits parallel deficits and sparing in language and
memory: Systems versus binding theory accounts. Language and cognitive
processes, 22(3):377–452, 2007. [138]

B. MacWhinney. The CHILDES project: Tools for analyzing talk. Third Edition.
Lawrence Erlbaum Associates, Mahway, NJ, 2000. [51, 108, 190]

C. D. Manning. Probabilistic syntax. In R. Bod, J. Hay, and S. Jannedy, editors,
Probabilistic linguistics, pages 289–341. MIT Press, Cambridge, MA, 2003. [55,
60, 61]

C. D. Manning and B. Carpenter. Probabilistic parsing using left corner language
models. In Proceedings of the 35th Annual Meeting of the Association for
Computational Linguistics, San Francisco, CA, 1997. Morgan Kaufmann. [47,
111, 126, 130, 132, 141]

C. D. Manning and H. Schütze. Foundations of Statistical Language Processing.
MIT Press, Cambridge, MA, 2000. [46, 60, 131]

G. F. Marcus. The Algebraic Mind: Integrating Connectionism and Cognitive
Science. MIT Press, Cambridge, MA, 2001. [x, 4, 86, 87, 88, 93, 122, 165]

G. F. Marcus, S. Vijayan, S. Bandi Rao, and P. Vishton. Rule learning by seven-
month-old infants. Science, 283(5398):77, 1999. [x, 87, 90, 165]

M. P. Marcus. The acquisition of the English past tense in children and multi-
layered connectionist networks. Cognition, 56(3):271–279, 1995. [66]

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–
330, 1993. [46, 131]

T. M. Martinetz and K. Schulten. A neural-gas network learns topologies. In
T. Kohonen and K. Makisara, editors, Artificial Neural Networks. Elsevier,
Amsterdam, 1991. [105]

216 BIBLIOGRAPHY

J. H. R. Maunsell and W. T. Newsome. Visual processing in monkey extrastriate
cortex. Annual Review of Neuroscience, 10(1):363–401, 1987. [13]

M. R. Mayberry III and R. Miikkulainen. SARDSRN: a neural network shift-
reduce parser. In T. Dean, editor, Proceedings of the 16th International Joint
Conference on Artificial Intelligence (IJCAI’99) (San Francisco, CA), vol-
ume 16, pages 820–827, San Francisco, CA, 1999. Morgan Kaufmann. [26,
84]

J. L. McClelland, B. McNaughton, and R. O’Reilly. Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes
and failures of connectionist models of learning and memory. Psychological
Review, 102(3):419, 1995. [123, 172, 176, 178]

J. L. McClelland, M. M. Botvinick, D. C. Noelle, D. Plaut, and T. T. Rogers.
Letting structure emerge: connectionist and dynamical systems approaches to
cognition. Trends in Cognitive Sciences, 14(8):348–356, 2010. [64]

W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biology, 5(4):115–133, 1943. [64]

T. McQueen. STORM: an Unsupervised Connectionist Model for Language Ac-
quisition. PhD thesis, Nottingham Trent University, 2005. [25, 123]

T. A. McQueen, J. Hopgood, J. F. Allen, and J. Tepper. Extracting finite struc-
ture from infinite language. Knowledge Based Systems, 18:135–141, 2005. [25,
26, 84]

B. Merker. Cortex, countercurrent context, and dimensional integration of life-
time memory. Cortex, 40(3), 2004. [28]

R. Miikkulainen. Text and discourse understanding: The DISCERN system. In
R. Dale, H. Moisl, and H. Somers, editors, A Handbook of Natural Language
Processing: Techniques and Applications for the Processing of Language as
Text. Marcel Dekker, New York, 1999. [123]

R. Miikkulainen, J. A. Bednar, Y. Choe, and J. Sirosh. Self-organization, plastic-
ity, and low-level visual phenomena in a laterally connected map model of the
primary visual cortex. In R. Goldstone, P. Schyns, and D. L. Medin, editors,
Psychology of learning and motivation, volume 36, pages 257–308. 1997. [26]

T. Mitchell. The need for biases in learning generalizations. Technical report,
Rutgers Computer Science Department, 1980. CBM-TR-117. [77, 79, 82]

T. Mitchell. Machine Learning. McGraw-Hill, New York, NY, 1997. [77]

BIBLIOGRAPHY 217

G. Mongillo, O. Barak, and M. Tsodyks. Synaptic theory of working memory.
Science, 319(5869):1543, 2008. [25, 116]

R. C. Moore. Improved left-corner chart parsing for large context-free grammars.
pages 185–201, 2004. [126]

R. G. Morris and U. Frey. Hippocampal synaptic plasticity: role in spatial learn-
ing or the automatic recording of attended experience? Philosophical Transac-
tions of the Royal Society of London. Series B: Biological Sciences, 352(1360):
1489–1503, 1997. [32]

V. B. Mountcastle. The columnar organization of the neocortex. Brain, 120(4):
701–722, 1997. [13, 26, 97]

L. Nadel and M. Moscovitch. Memory consolidation, retrograde amnesia and the
hippocampal complex. Current opinion in neurobiology, 7(2):217–227, 1997.
[176]

L. Nadel, A. Samsonovich, L. Ryan, and M. Moscovitch. Multiple Trace Theory of
human memory: computational, neuroimaging, and neuropsychological results.
Hippocampus, 10(4):352–368, 2000. [177]

J. O’Keefe and J. Dostrovsky. The hippocampus as a spatial map: Preliminary
evidence from unit activity in the freely-moving rat. Brain Research, 34(1):
171–5, 1971. [33]

J. O’Keefe and L. Nadel. The hippocampus as a cognitive map. Behavioral and
Brain Sciences, 2(4):487–494, 1979. [33, 175]

B. Opitz. Neural binding mechanisms in learning and memory. Neuroscience &
Biobehavioral Reviews, 34(7):1036–1046, 2010. [34]

R. O’Reilly and K. Norman. Hippocampal and neocortical contributions to mem-
ory: advances in the complementary learning systems framework. Trends in
Cognitive Sciences, 6(12):505–510, 2002. [123, 138, 176]

R. O’Reilly and J. W. Rudy. Conjunctive representations in learning and memory:
Principles of cortical and hippocampal function. Psychological Review, 108(2):
311–45, 2001. [138, 172, 176, 177]

B. Palanca and G. C. DeAngelis. Does neuronal synchrony underlie visual feature
grouping? Neuron, 46(2):333–346, 2005. [22]

B. H. Partee, A. ter Meulen, and R. E. Wall. Mathematical methods in linguistics.
Kluwer Academic Publishers, Boston, MA, 1990. [43]

218 BIBLIOGRAPHY

C. S. Peirce. Logic as semiotic: The theory of signs. In R. E. Innis, editor,
Semiotics: An introductory anthology, pages 4–23. Bloomington, IN: Indiana
University Press, Indiana, 1903. [68]

A. Peters. The units of language acquisition. Cambridge University Press, Cam-
bridge, UK, 1983. [5]

S. Petrov and D. Klein. Learning and inference for hierarchically split PCFGs.
In Proceedings of the 22nd national conference on Artificial intelligence, vol-
ume 22, page 1663, 2007. [49]

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. Learning accurate, compact,
and interpretable tree annotation. In Proceedings of the 21st International
Conference on Computational Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, pages 443–440, 2006. [23, 61, 129]

S. Pinker and A. Prince. On language and connectionism: Analysis of a parallel
distributed processing model of language acquisition. Cognition, 28:73–193,
1988. [66]

K. Plunkett and V. A. Marchman. Learning from a connectionist model of the
acquisition of the English past tense. Cognition, 61(3):299–308, 1996. [66]

D. Poeppel, W. J. Idsardi, and V. van Wassenhove. Speech perception at the
interface of neurobiology and linguistics. Philosophical Transactions of the
Royal Society London, 363(1493):1071–86, 2008. [28]

J. B. Pollack. Recursive auto-associative memory. Neural Networks, 1:122, 1988.
[8, 67, 69, 75, 93, 110]

J. B. Pollack. Recursive distributed representations. Artificial Intelligence, 46
(1-2):77–105, 1990. [69]

M. Pollack. On connectionist models of natural language processing. PhD thesis,
University of Illinois, Urbana, 1987. [72]

D. Prescher. A tutorial on the Expectation-Maximization algorithm including
maximum-likelihood estimation and EM training of probabilistic context-free
grammars. 2003. [46]

A. Prince and P. Smolensky. Optimality: from neural networks to universal
grammar. Science, 275(5306):1604–10, 1997. [5, 8, 69, 70, 93]

F. Pulvermüller. Words in the brain’s language. Behavioral and Brain Sciences,
22(2):253–279, 1999. [71]

BIBLIOGRAPHY 219

R. Quian Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried. Invariant visual
representation by single neurons in the human brain. Nature, 435:1102–7, 2005.
[13]

R. L. Redondo and R. G. Morris. Making memories last: the synaptic tagging
and capture hypothesis. Nature Reviews Neuroscience, 12(1):17–30, 2010. [174]

R. Reichart and A. Rappoport. Unsupervised induction of labeled parse trees
by clustering with syntactic features. In Proceedings of the 8th International
Conference on Computational Linguistics (COLING 1992) Nantes, France.,
pages 721–728, 1992. [191]

H. Ritter and T. Kohonen. Self-organizing semantic maps. Biological Cybernetics,
61(4):241–254, 1989. [26, 27]

P. Rodriguez, J. Wiles, and J. L. Elman. A recurrent neural network that learns
to count. Connection Science, 11(1):5–40, 1999. [84, 200, 201]

P. R. Roelfsema. Cortical algorithms for perceptual grouping. Annual Review of
Neuroscience, 29:203–227, 2006. [13, 22, 24, 25, 28, 90]

P. R. Roelfsema and H. Spekreijse. Binding contour segments into spatially ex-
tended objects. In Neurobiology of Attention, Amsterdam, 2005. Elsevier. [22,
23]

P. R. Roelfsema, V. A. F. Lamme, and H. Spekreijse. Synchrony and covariation
of firing rates in the primary visual cortex during contour grouping. Nature
Neuroscience, 7(9):982–991, 2004. [22]

E. Rosch. Principles of categorization. In E. Rosch and B. B. Lloyd, editors, Prin-
ciples of categorisation, in cognition and categorisation, pages 27–48. Erlbaum,
Hillsdale, NJ, 1978. [59]

E. Rosch and C. B. Mervis. Family resemblances: studies in the internal structure
of categories. Cognitive Psychology, 7(4):573–605, 1975. [59]

D. Rosenkrantz and P. Lewis II. Deterministic left corner parsing. In 11th Annual
Symposium on Switching and Automata Theory, pages 139–152, New York,
1970. IEEE Press. [18, 103, 126]

J. R. Ross. Constraints on Variables in Syntax. PhD thesis, MIT, 1967. [59]

D. E. Rumelhart and J. L. McClelland. On learning the past tenses of English
verbs. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed
Processing, Vol. 2, pages 318–362. MIT Press, Cambridge, MA, 1986. [66]

220 BIBLIOGRAPHY

J. R. Saffran, R. Aslin, and E. L. Newport. Statistical learning by 8-month-old
infants. Science, 274(5294):1926–8, 1996. [83]

K. Sagae, E. Davis, A. Lavie, B. MacWhinney, and S. Wintner. High-accuracy
annotation and parsing of CHILDES transcripts. In Proceedings of the ACL-
2007 Workshop on Cognitive Aspects of Computational Language Acquisition,
pages 25–32, 2007. [51]

F. Sangati and W. Zuidema. Accurate parsing with compact tree-substitution
grammars: Double-DOP. In Proceedings of the 2011 Joint Conference on Em-
pirical Methods in Natural Language Processing, 2011. [188]

F. Sangati, W. Zuidema, and R. Bod. A generative re-ranking model for depen-
dency parsing. In Proceedings of the 11th International Conference on Parsing
Technologies (IWPT’09), pages 238–241, -, 2009. Association for Computa-
tional Linguistics. [131]

R. Scha. Taaltheorie en taaltechnologie: competence en performance. In Comput-
ertoepassingen in de Neerlandistiek, Almere: Landelijke Vereniging van Neer-
landici (LVVN-jaarboek), volume 11 of 7–22, pages 409–440. 1990. [30]

R. Scha, R. Bod, and K. Sima’an. A memory-based model of syntactic anal-
ysis: data-oriented parsing. Journal of experimenal and theoretical artificial
intelligence, 11(3):409–440, 1999. [5, 30, 49]

J. Schmidhuber. The neural heat exchanger. In Progress in Neural Information
Processing: Proceedings of the Intl. Conference on Neural Information Process-
ing, -, 1996. Springer Verlag. [28]

W. B. Scoville and B. Milner. Loss of recent memory after bilateral hippocampal
lesions. Journal of Neurology, Neurosurgery & Psychiatry, 20(1):11, 1957. [32]

D. Servan-Schreiber, A. Cleeremans, and J. L. McClelland. Graded state ma-
chines: the representation of temporal contingencies in simple recurrent net-
works. Machine Learning, 7(2):161–193, 1991. [84]

L. Shastri. Episodic memory and cortico-hippocampal interactions. Trends in
Cognitive Sciences, 6(4):162–168, 2002. [32, 125, 138, 177]

S. M. Shieber. Evidence against the context-freeness of natural language. Lin-
guistics and Philosophy, 8(3):333–343, 1985. [44]

H. Siegelmann and E. Sontag. Turing computability with neural nets. Applied
Mathematics letters, 4(6):77–80, 1991. [72]

W. Singer and C. M. Gray. Visual feature integration and the temporal correlation
hypothesis. Annual Review of Neuroscience, 18(1):555–586, 1995. [22, 115]

BIBLIOGRAPHY 221

M. Smets. A U-DOP approach to modeling language acquisition, 2010. MSc
Thesis. [168]

P. Smolensky. Tensor product variable binding and the representation of symbolic
structures in connectionist systems. Artificial Intelligence, 46(1-2):159–216,
1990. [70, 75]

P. Smolensky and G. Legendre. The Harmonic Mind: From Neural Computation
to Optimality-Theoretic Grammar. MIT Press, Cambridge, MA, 2006. Volume
1: Cognitive Architecture. [67, 70, 110]

L. R. Squire and X. Alvarez. Retrograde amnesia and memory consolidation: a
neurobiological perspective. Current opinion in neurobiology, 5:169–177, 1995.
[32, 176]

L. Steels. Perceptually grounded meaning creation. In M. Tokoro, editor, Pro-
ceedings of the International Conference on Multiagent Systems (ICMAS-96),
pages 338–344, Menlo Park, CA, 1996. AAAI Press/MIT Press. [37, 83]

L. Steels. The origins of syntax in visually grounded robotic agents. Artificial
Intelligence, 103(1):133–156, 1997. [37]

L. Steels. The Talking Heads Experiment. Words and Meanings. VUB, Brussels,
Belgium, 1999. [37]

L. Steels. Constructivist development of grounded Construction Grammars. In
Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics, Barcelona. Morgan Kaufmann, San Francisco, CA, 2004. [37]

K. E. Stephan, C. C. Hilgetag, G. A. P. C. Burns, M. A. O’Neill, and M. P. Young.
Computational analysis of functional connectivity between areas of primate
cerebral cortex. Philisophical Transactions of the Royal Society, London, Series
B., 355(1393):111–126, 2000. [92]

T. Stewart and C. Eliasmith. Compositionality and biologically plausible mod-
els. In M. Werning, W. Hinzen, and E. Machery, editors, Oxford Handbook of
Compositionality. Oxford University Press, Oxford, UK, 2009. [71]

A. Stolcke. Syntactic category formation with vector space grammars. In Pro-
ceedings of the 13th Annual Conference of the Cognitive Science Society, pages
908–912, Mahway, NJ, 1991. Lawrence Erlbaum Associates. [99]

A. Stolcke. Bayesian Learning of Probabilistic Language Models. PhD thesis, Uni-
versity of California, Berkeley, Dept. of Electrical Engineering and Computer
Sciences, 1994. Dept. of Electrical Engineering and Computer Sciences. [57,
80, 166, 187]

222 BIBLIOGRAPHY

A. Stolcke. An efficient probabilistic context-free parsing algorithm that computes
prefix probabilities. In Proceedings of the 33d Annual Meeting of Association
for Computational Linguistics (ACL 1995), 1995. [53, 54, 55, 140, 142, 145,
147, 148]

A. Stolcke and S. M. Omohundro. Inducing probabilistic grammars by Bayesian
Model Merging. In Proceedings of the Second International Colloquium on
Grammatical Inference and Applications (ICGI’94), volume 862 of Lecture
Notes in Computer Science, pages 106–118, Berlin, 1994. Springer Verlag. [16,
57, 105, 166, 187, 191]

P. Sturt, F. Keller, and A. Dubey. Syntactic priming in comprehension: Paral-
lelism effects with and without coordination. Journal of Memory and Language,
62(4):333–351, 2010. [190]

G. R. Sutherland and B. McNaughton. Memory trace reactivation in hippocampal
and neocortical neuronal ensembles. Current opinion in neurobiology, 10(2):
180–186, 2000. [32]

W. Tabor. Fractal encoding of context-free grammars in connectionist networks.
Expert Systems, 17(1):41–56, 2000. [84]

M. Tomasello. Do young children have adult syntactic competence? Cognition,
74:209–253, 2000a. [5, 31, 60]

M. Tomasello. The item-based nature of children’s early syntactic development.
Trends in Cognitive Sciences, 4(4):156–163, 2000b. [60, 122]

M. Tomasello. First steps toward a usage-based theory of language acquisition.
Cognitive Linguistics, 11(1-2):61–82, 2001. [5, 31, 60, 106]

M. Tomasello. Constructing a Language: A Usage-Based Theory of Language
Acquisition. Harvard University Press, Cambridge, MA, 2003. [5]

M. Tomasello. Constructing a Language : A Usage-Based Theory of Language
Acquisition. Harvard University Press, -, 2005. [52, 61, 181]

D. Tse, R. F. Langston, M. Kakeyama, I. Bethus, and P. A. Spooner. Schemas
and memory consolidation. Science, 316(5821):76, 2007. [176]

E. Tulving. Episodic and semantic memory. In E. Tulving and W. Donaldson,
editors, Organization of memory, pages 381–402. Academic Press, New York,
1972. [30]

M. Ullman. Sequence-seeking and counter streams: A model for information
processing in the cortex. Technical report, MIT, 1991. [18, 28]

BIBLIOGRAPHY 223

M. Ullman, S. Corkin, M. Coppola, Hickok, and J. Growdon. A neural dissociation
within language: Evidence that the mental dictionary is part of declarative
memory, and that grammatical rules are processed by the procedural system.
Journal of Cognitive Neuroscience, 9(2):266–276, 1997. [31]

S. Ullman. Object recognition and segmentation by a fragment-based hierarchy.
Trends in Cognitive Sciences, 11(2):58–64, 2007. [19, 20, 103]

S. Ullman, M. Vidal-Naquet, and E. Sali. Visual features of intermediate com-
plexity and their use in classification. nature neuroscience, 5(7):682–687, 2002.
[19]

F. van der Velde and M. de Kamps. Neural blackboard architectures of combi-
natorial structures in cognition. Behavioral and Brain Sciences, 29(1):37–69,
2006. [71, 72, 86, 90, 184]

F. van der Velde, G. T. van der Voort van der Kleij, and M. de Kamps. Lack of
combinatorial productivity in language processing with simple recurrent net-
works. Connection Science, 16(1):21–46, 2004. [22, 75]

T. van Gelder. The dynamical hypothesis in cognitive science. Behavioral and
Brain Sciences, 1998. [27]

J. van Kampen. The learnability of syntactic categories. In J. van Kampen and
S. Baauw, editors, Proceedings of GALA 2003, pages 245–256. 2003. [5, 60]

D. van Uytsel, F. van Aelten, and D. van Compernolle. A structured language
model based on context-sensitive probabilistic left-corner parsing. In Proceed-
ings of the second meeting of the North American Chapter of the Association
for Computational Linguistics on Language technologies, pages 1–8, 2001. [139,
140, 146, 149, 158, 188]

T. Voegtlin. Recursive self-organizing maps. Neural Networks, 15(8-9):979–991,
2002. [26, 84]

C. von der Malsburg. The correlation theory of brain function. In E. Domany,
J. L. van Hemmen, and K. Schulten, editors, Models of neural networks II,
pages 1–38. 1981. Internal report. [22]

T. Vosse and G. Kempen. Syntactic structure assembly in human parsing: a
computational model based on competitive inhibition and a lexicalist grammar.
Cognition, 75(2):105–143, 2000. [117]

K. Wexler. Innateness of language. In R. A. Wilson and F. C. Keil, editors,
The MIT Encyclopedia of the Cognitive Sciences, pages 408–409. MIT Press,
Cambridge, MA, 1999. [59]

224 BIBLIOGRAPHY

J. G. Wolff. Language acquisition, data compression and generalization. Language
and Communication, 2(1):57–89, 1982. [56]

C. C. Woodruff, J. D. Johnson, and M. R. Uncapher. Content-specificity of the
neural correlates of recollection. Neuropsychologia, 43(7):1022–1032, 2005. [32]

M. P. Young. The organization of neural systems in the primate cerebral cortex.
Proceedings of the Royal Society of London. Series B: Biological Sciences, 252
(1333):13–18, 1993. [92]

S. Zeki. A Vision of the Brain. Blackwell, -, 1993. [21]

W. Zuidema. What are the productive units of natural language grammar? a
DOP approach to the automatic identification of constructions. In Proceed-
ings of the 10th International Conference on Computational Natural Language
Learning (CONLL-X), pages 29–36, 2006. [50, 51]

W. Zuidema. Parsimonious data-oriented parsing. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, 2007. [50, 51, 190]

A. Zylberberg, D. F. Slezak, P. R. Roelfsema, S. Dehaene, and M. Sigman. The
brains router: A cortical network model of serial processing in the primate
brain. PLOS computational biology, 6(4), 2010. [118]

Index

abstraction
in HPN, 106
in language acquisition, 5, 31
neural basis of, 89

activation, see trace activation
activation function, 64
addressor system, see switchboard con-

struction
All-Fragments Grammar, 159
analogical inference

in language learning, 164–169
artificial language learning, 165
attach operation, 44, 144
attention

in serial binding, 23
automaton, 42

back-off smoothing, 130
Bayesian Model Merging, 16, 56

and HPN, 187
beam search, 148
binarization, see Markovization
binding

by synchrony, 22
conjunctive, 21, 71
contour binding, 21
dynamic

in HPN, 98, 113–116
in syntax, 90–91
in vision, 22

of episodic memories, 173
fillers to roles, 69, 70
serial binding, 22, 184
with tensor product, 70

binding neuron, 138
binding probability, see HPN, bind-

ing probability
binding problem

in language, 20, 90
in vision, 21
massiveness of, 4, 71, 184

bottom-up network, see countercur-
rent systems

catastrophic interference, 176
categorization

in HPN, 106–181
in language, 59

category
gradedness of, 59–61
prototypical, 59
syntactic, 40

chart parsing, 52
left corner, see parsing, Left Cor-

ner Chart Parsing
Chomsky hierarchy, 42–44

and systematicity, 78–83
place of natural language in, 43

chunk operator, 17, 57
Clinton cell, see grandmother cells

225

226 Index

cognitive map, see relational network
column, see cortical column
common history, 128

updating, 150
complementary learning systems frame-

work, 176
complete state, 53, 140
complex cells, 13
complex unit, see treelet
compressor node, see HPN, compres-

sor node
conceptual pole, see also cortical col-

umn
connectionism, 4, 64
connectionist constraint, 68

violation of, 70, 71
connectionist networks

distributed, 86, 89
localist, 26
recurrent, 72

constituent, 40
constituent structure, 66

encoding in SRN, 198
constructicon, 5, 61

implementation in HPN, 181
construction, 5, 29
construction grammar, 5, 36, 61

and HPN, 182
content addressability, 123

in Episodic Grammar, 137
context

structural and lexical, 48, 111
context dependence

in syntax, 48
of episodic memory, 30

context free grammar, see grammar,
context free

context invariant
criterion, see systematicity, con-

text invariance criterion for
operations, 25

cortex
computation in the, 12

prediction in the, 12
cortical column, 13
countercurrent systems, 28, 90

Data Oriented Parsing, 49, 135
relation to Episodic Grammar, 136

declarative memory, 30
derivation

in Episodic Grammar, 125
in HPN, 101
left corner, 48
left-most, 41

dynamic binding, see binding, dynamic
dynamic programming, 52

Earley parser, 52–54, 140
elementary tree, 49
EM algorithm, see Expectation Max-

imization Algorithm
encapsulation

in HPN, 109
in neural networks, 88
in the brain, 16

Episodic Grammar, 123–126
episodic left corner chart parser, see

parsing, episodic Left Corner
Parsing

episodic left corner grammar, see Left
Corner Shifting Grammar, episodic

episodic memory, 30
decontextualization of, 33, 172
properties of, 122
retrieval

in Episodic Grammar, 125
episodic shortest derivation parser, 154
episodic-HPN, 169–171
estimation

maximum likelihood, 46
relative frequency, 46

Expectation Maximization Algorithm,
55

F-score, 47

Index 227

feedforward network, see multi-layer
perceptron

finite state automaton, 42
formal grammar, 40
forward probability, 54

in left corner parsing, 142

generalization
in SRN, 200
inductive bias for, 77–78

generative power
of formal grammars, 42

Gestalt laws of perception, 85
goal state, 140
Goodman Reduction, 159
graded categories, 59–60

and topology, 27
in HPN, 97

grammar
context free, 41
context sensitive, 42
generative, 58
phrase structure, 41
probabilistic context free, 45
regular, 42
rewriting, 40
Tree Substitution, see Tree Sub-

stitution Grammar
Usage Based, see Usage Based Gram-

mar
grammar induction, unsupervised, 55–

58
grandmother cells, 13
grounded semantics, 37

hidden unit, 65
Hierarchical Prediction Network (HPN),

95–119
hippocampus, 32

as a switchboard, 174
as fast learning system, 176
replay by the, 32
role in episodic-HPN, 172

HPN
binding probability, 99
compressor node, 97

neural correlate, 117
conversion from CFG, 99, 205–

206
input node, 97
node state, 103, 116
path connector, 101, 104
slot, 97
stack implementation, 101
substitution space, 97, 113

as relational network, 174

implicit knowledge, 66
of constituent structure, 199
of word categories, 196

independence assumptions, 45, 88
inductive bias, see generalization, in-

ductive bias for
inner probability, 54

in left corner parsing, 142
input node, see HPN, input node
Inside Outside algorithm, 56, 185
invariants

in HPN, 109
versus variables, 89, 183

Kohonen network, 26

labeled precision, 47
labeled recall, 47
language model, 48

in episodic-HPN, 171
learning

associative versus discriminative,
83

from analogy, 78, see also ana-
logical inference, in language
learning, 165

in episodic-HPN, 171
in HPN, 104–105
locality of, 86

Left Corner Shifting Grammar, 141

228 Index

episodic, 126
probabilistic, 141

left span index, 141
lexicalization, 48

Markovization
horizontal and vertical, 49
in Episodic Grammar, 130

McCulloch-Pitts neuron, 64
meaning

local versus global scope, 68
memory

episodic, see episodic memory
semantic, see semantic memory
short-term, 25, 116

memory consolidation, 32, 34, 164
connectionist models of, 175–177
in episodic-HPN, 172
in language acquisition, 164–167

Memory Prediction Framework, 11–
16, 89, 113

memory space, see relational network
merge operator, 17, 57
Minimum Description Length

principle of, 58, 167
multi-layer perceptron, 65
multi-word constructions, see construc-

tion
multiple trace model, 176

name cells, 16, 89, 113
navigational map, 33
neural assembly

syntactic, 17
neural blackboard, 71
neural networks, see connectionist net-

works
nonterminal, 40

object recognition
fragment-based, 19
in the brain, 18

orientation column, 13

paradigmatic process, 17
parent annotation, 49
parse tree, 40, 44

in HPN, 101
parser, see parsing, 44
PARSEVAL metric, 46
parsing, 18

bottom-up, 44
episodic Left Corner Parsing, 149
history based, 49, 136
in episodic-HPN, 170
Left Corner Chart Parsing, 142
Left Corner Parsing, 18, 44

in HPN, 103, 203
probabilistic, 47

top-down, 44
visual parsing, 19
with shortest derivation, 154

path connector, see HPN, path con-
nector

PCFG, see grammar, probabilistic con-
text free

Penn Treebank corpus, 46
perceptual pole, see also cortical col-

umn
phrase structure

encoding in SRN, 198
grammars, 2
tree, see parse tree

place cells, 33
pointer

implementation in HPN, 98
implementation in the brain, 89

Pollack, P., 69
prediction, see cortex, prediction in

the
prefix probability, 55

in left corner parsing, 145
priming, 33

in Episodic Grammar, 125
prioritized queue, 148
problem of two, 4, 184

Index 229

productivity of language, 65, see also
systematicity

project operation, 44, 143

RAAM, 69
and HPN, 110

Radical Construction Grammar, 5, see
also construction grammar, 60,
61

recurrent neural networks, see con-
nectionist networks, recurrent

recursion, 23
leaky, 79

Recursive Auto-Associative Memory,
see RAAM

recursive systematicity, 77
of context free grammars, 81
of HPN, 110
of SRN, 84

register, 93, 161
register state, 127
reinstatement hypothesis of episodic

memory retrieval, 32, 126
relational network, 33

and substitution space, 174
representational power, see also gen-

erative power
of HPN, 99, 205
of recurrent neural networks, 72

reranking, 131
rewrite rule, 2, 40
right span index, 141

scanned state, 145
Self-Organizing Map, see Kohonen net-

work
semantic memory, 30

and HPN, 122
semantics, 36–38
shift

operation, 44, 145
probability, 142
rule, 141

space, 171
treelet, 127

short-term memory, see memory, lo-
cal short-term

shortest derivation
as simplicity bias, 168
parse, 152
reranking with, 135

Shortest Derivation Length (SDL), 152
Simple Recurrent Network, 73, 83, 195–

202
simplicity bias, 167
Simplicity-DOP, 161
slot

in construction, 29, 31
in HPN, 97

smoothing
in Episodic Grammar, 129

stack
and working memory, 116
in HPN, see HPN, stack imple-

mentation
standard consolidation model, 176
starred nonterminal, 127
state

in HPN, see HPN, node state
in left corner parsing, 140
of automaton, 42
of Earley parser, 52

string probability, 54
strong systematicity, 75

of context free grammars, 80
of SRN, 84, 196

structure
ambiguity of, 45
dependence of, 66
in language, 37

structure bias, 78
of formal grammars, 79
of the SRN, 83

substitutability (HPN), 98
substitution, 24

neural correlate of, 24

230 Index

substitution space, see HPN, substi-
tution space

surprisal theory, 190
switchboard construction, 91

neural implementation, 113
role of hippocampus, 174

symbol, 68
synaptic tagging and capture hypoth-

esis, 174
syntagmatic process, 17
syntax, 66

and systematicity, 83
neural theory of, 35–36

systematicity
and the Chomsky hierarchy, 78–

83
concise criteria, 76
context invariance criterion for, 76

applied to HPN, 109
applied to SRN, 85

Hadley’s criteria for evaluating,
75

of connectionist networks, 74
of language, 66

tag, 24, see also tagging system
tagging system, 115, see also binding,

dynamic, in syntax
tensor product, see binding, tensor

product
terminal, 40
tie-breaking, 170
top-down network, see countercurrent

systems
top-down prediction, see cortex, pre-

diction in the
topographic map, see topology
topological self-organization, 26

experiment in HPN, 107
in switchboard, 92

topology, 13
in language acquisition, 61
virtual syntactic, 91

trace
in Episodic Grammar, 123
of episodic memory, 122

trace activation, 128
transition cost, 152
Tree Substitution Grammar, 49
treebank, 46
treelet, 93

state, 150
type, 150

U-DOP, 168, 188
Universal Grammar, 59
Usage Based Grammar, 5, 60

and HPN, 181

variable
binding, see binding, fillers to roles
operations, 3, 66
representation in neural networks,

3, 183
ventral pathway, 12
verb islands, 60, see also Usage Based

Grammar
visual hierarchy, 12
Viterbi parse, 55

in Episodic Grammar, 143
Viterbi predecessor state, 55
Viterbi probability, 55, 143

weak systematicity, 75
winner-take-all effect, 26
word prediction task, 74, 195
working memory, 25, 116

Samenvatting

In dit proefschrift onderzoek ik de neurale mechanismen, die ten grondslag liggen
aan het menselijk vermogen tot het leren, onthouden en gebruiken van gramma-
ticale structuur in taal, de syntax. Daarbij gebruik ik inzichten uit de taalkunde,
de cognitieve psychologie en de neurobiologie.

Uit taalkundig onderzoek blijkt dat men de structuur van vrijwel alle talen,
kort samengevat, als volgt kan karakteriseren: taal is produktief – met een beperkt
aantal woorden en taalregels kunnen wij een onbeperkt aantal nieuwe zinnen
maken en begrijpen. Daarnaast is taal hiërarchisch – zinnen zijn opgebouwd
uit zinsdelen, welke laatste weer kunnen zijn opgebouwd uit andere zinsdelen,
etc. Deze twee kenmerken leveren meteen de minimum voorwaarden waaraan
een systeem voor taalverwerking, zoals het menselijk brein, moet voldoen. Een
eerste bijdrage van dit proefschrift is om deze voorwaarden zo precies mogelijk te
formuleren, zodat verschillende theorieën over informatieverwerking in het brein
(zogenaamde neurale netwerken) hieraan kunnen worden getoetst. Hieruit blijkt
dat bestaande klassen van neurale netwerken (in het bijzonder de zogenaamde
gedistribueerde recurrente netwerken) ongeschikt zijn voor het modelleren van
taal, vanwege bepaalde oversimplificerende aannames.

In de rest van het proefschrift ontwikkel ik daarom een nieuwe neurale theorie
van syntax, die wel rekening houdt met de hiërarchische structuur en produc-
tiviteit van taal. Daarbij heb ik mij laten inspireren door Jeff Hawkins’ “Memory
Prediction Framework” (MPF). Dit is een theorie over het brein die stelt dat de
belangrijkste functie van de neocortex (een deel van de hersenschors) het voor-
spellen van nieuwe situaties en het anticiperen op toekomstige acties is. Volgens
Hawkins slaat de neocortex daartoe alle informatie en kennis op als temporele
sequenties, met een hiërarchische structuur. Knopen, die hoger liggen in de
hiërarchie, representeren abstractere begrippen en langere tijdspannes (temporele
compressie).

Terwijl Hawkins zijn theorie vooral heeft uitgewerkt voor visuele waarneming,
benadruk ik de analogieën met taal: ook syntactische categorieën vertegenwoor-

231

232 Samenvatting

digen temporele sequenties (namelijk van woorden); wanneer deze in een vroeg
stadium van een zin herkend worden helpen ze het verdere verloop van de zin te
voorspellen. Ik stel voor dat syntactische categorieën, net als visuele categorieën,
lokaal in het brein zijn geëncodeerd in corticale kolommen, en bovendien dat
de hiërarchische en topologische organisatie van al deze ‘syntactische’ kolommen
samen een grammatica vormt.

Een tweede inspiratiebron voor mijn onderzoek is de rol van het geheugen in
taal. Een belangrijke vraag in de taalkunde is hoe zinsfragmenten (bestaande uit
meerdere woorden) zijn opgeslagen in het geheugen, zodat ze als geheel kunnen
worden hergebruikt in nieuwe zinnen. Voorbeelden hiervan zijn ‘Hoe gaat het
ermee?’, of ‘in aanmerking genomen, dat . . .’. Volgens sommige taalkundigen
is in feite elke zin samengesteld uit kleinere of grotere brokstukken van andere
zinnen.

Om bovenstaande vraag te kunnen beantwoorden stel ik voor dat we in de
taalkunde, net als in de cognitieve psychologie, onderscheid moeten maken tussen
twee soorten geheugens: een geheugen voor abstracte, relationele kennis, het zo-
geheten ‘semantische’ geheugen, en een geheugen voor individuele gebeurtenissen,
geplaatst in een persoonlijke context, het zogeheten ‘episodische geheugen’ (bij-
voorbeeld de herinnering van een verjaardagsfeestje). In dit proefschrift verdedig
ik de stelling dat, terwijl abstracte taalregels en syntactische categorieën on-
derdeel uitmaken van het semantische geheugen, het episodische geheugen ver-
antwoordelijk is voor het onthouden van zinsfragmenten (zoals bovengenoemde),
en zelfs complete zinnen. Het episodische geheugen speelt eveneens een belangrij-
ke rol bij het leren van taal, aangenomen dat onze talenkennis niet is aangeboren,
maar voortkomt uit individuele talige ervaringen. Hoe de dagelijkse episodische
ervaringen in het brein worden omgezet in abstracte, semantische kennis is een
belangrijke onderzoeksvraag in de cognitieve en de neuro-wetenschappen, die niet
alleen specifiek is voor taal.

In mijn onderzoek probeer ik inzicht te verkrijgen in de mechanismen van
het leren en produceren van taal door te kijken naar de parallellen tussen taal-
processen en geheugenprocessen in het brein. Hiertoe formuleer ik een expliciete
theorie over de wisselwerking tussen een episodisch en semantisch geheugen voor
taal, het “Hierarchical Prediction Network” (HPN) genaamd, waarin tevens de
ideeën van Hawkins zijn opgenomen (met enkele belangrijke wijzigingen).

Het semantische geheugen voor taal wordt in HPN voorgesteld als een neu-
raal netwerk, waarvan de knopen (overeenkomend met syntactische en lexicale
corticale kolommen) zijn geordend in een topologische ruimte. Dit wil zeggen dat
knopen die een vergelijkbare functie vervullen in de syntactische analyse van zin-
nen bij elkaar in de buurt liggen. (Dit is gëınspireerd op de visuele cortex, waar
bijvoorbeeld kolommen voor het herkennen van de oriëntatie van een lijn segment
topologisch zijn georganiseerd.) Een syntactische analyse van een zin bestaat in
HPN uit een pad langs een aantal knopen in het netwerk, die ‘dynamisch’ (flexi-
bel) met elkaar zijn gebonden via het centraal uitwisselen van gegevens. (Ook dit

Samenvatting 233

is gëınspireerd op hoe het brein primitieve visuele categorieën bindt tot complexe
vormen.) Doordat de bindingen tussen knopen flexibel zijn (in tegenstelling tot
de vaste links tussen knopen in conventionele neurale netwerken) kan HPN de
productiviteit van taal verklaren.

Het episodische geheugen voor taal is in HPN ingebed in het semantische
geheugen, in de vorm van permanente geheugensporen, die worden achtergelaten
in de knopen van het netwerk als gevolg van het verwerken van een zin. Op die
manier kan de netwerk-analyse van een verwerkte zin via de geheugensporen altijd
later gereconstrueerd worden. Bovendien kunnen nieuwe zinnen worden gevormd
door sporen van (fragmenten van) oude zinnen te combineren.

Dit proefschrift is als volgt georganiseerd: in hoofdstuk 1 bespreek ik de
doeleinden van mijn onderzoek en de motivatie voor de gekozen aanpak. In
hoofdstuk 2 introduceer ik het Memory Prediction Framework, en geef ik de neu-
robiologische achtergrond voor de neurale theorie van syntax. In hoofdstuk 3
behandel ik enkele basisbegrippen uit de formele taalkunde en de computationele
linguistiek, met speciale aandacht voor parseertechnieken, die worden gebruikt in
het HPN model. Hoofdstuk 4 bevat een (kritisch) overzicht van de literatuur over
neurale netwerken van taal, in de context van de discussie over de basiskenmerken
van taal: productiviteit en hiërarchie.

In hoofdstuk 5 tot en met 8 ontwikkel ik, in een aantal stappen, het HPN
model. Om de voorspellingen van de neurale theorie van syntax kwantitatief te
kunnen toetsen, heb ik het HPN model gëımplementeerd op de computer, zo-
dat ik simulaties kon draaien op basis van vele duizenden zinnen. In hoofdstuk
5 beschrijf ik allereerst een computer-implementatie van het basismodel zonder
episodisch geheugen, en hiermee laat ik zien dat een syntactische topologie geleerd
kan worden uit simpele, kunstmatig geproduceerde zinnen. Dan, in hoofdstuk 6
en 7, bespreek ik een computermodel van het episodisch geheugen voor taal,
waaruit ik voor het gemak de topologie weglaat, en ik test dit op een groot aantal
originele zinnen aan de hand van een taak voor zinsontleding. In hoofdstuk 8
voeg ik tenslotte alle componenten van HPN samen in een enkele implementatie,
die precies beschrijft hoe uit episodische taal-ervaringen een abstracte grammati-
ca in de vorm van een netwerk topologie wordt geconstrueerd. In dit hoofdstuk
benadruk ik de gelijkenis tussen het leren van taal en het proces van geheugen-
consolidatie – het omzetten in het brein van informatie bestaande uit concrete
episodes naar een netwerk van abstracte, semantische kennis. In hoofdstuk 9
volgen een algemene discussie en een aantal ideeën voor toekomstig onderzoek.

De belangrijkste conclusie van mijn proefschrift is dat het mogelijk en zinvol is
om inzichten uit de (computationele) taalkunde te koppelen aan neuro-biologische
en cognitieve inzichten, en vice versa. Enerzijds kunnen uit de strenge functionele
eisen die de taal aan de hersenen stelt een aantal niet triviale conclusies worden
afgeleid over de verwerking en opslag van informatie in het brein, en anderzijds
leveren de fysiologische beperkingen van de hersenen onverwachte uitdagingen
voor theorieën van syntax, zoals het gebruik van topologie.

Abstract

In this dissertation I investigate the neural mechanisms underlying the human
ability to learn, store and make use of grammatical structure, so-called syntax, in
language. In doing so I incorporate insights from linguistics, cognitive psychology
and neuro-biology.

From linguistic research it is known that the structure of nearly all languages
exhibits two essential characteristics: language is productive – from a limited
number of words and rules one can produce and understand an unlimited number
of novel sentences. Further, language is hierarchical – sentences are constructed
from phrases, which in turn can be constructed from other phrases, etc. These
two structural properties of language provide minimum requirements that a sys-
tem of language processing, such as the brain, must satisfy. A first contribution
of this dissertation is that it attempts to formulate these requirements as con-
cisely as possible, allowing for a strict evaluation of existing models of neural
processing in the brain (so-called neural networks). From this evaluation it is
concluded that conventional types of neural networks (in particular so-called re-
current, fully distributed networks) are unsuited for modeling language, due to
certain oversimplifying assumptions.

In the remainder of this thesis I therefore develop a novel type of neural
network, based on a neural theory of syntax that does take into account the hier-
archical structure and productivity of language. It is inspired by Jeff Hawkins’s
Memory Prediction Framework (MPF), which is a theory of information pro-
cessing in the brain that states, among other things, that the main function of
the neocortex is to predict, in order to anticipate novel situations. According to
Hawkins, to this end the neocortex stores all processed information as temporal
sequences of patterns, in a hierarchical fashion. Cellular columns that are po-
sitioned higher in the cortical hierarchy represent more abstract concepts, and
span longer times by virtue of temporal compression.

Whereas Hawkins applies his theory primarily to the area of visual perception,
in my dissertation I emphasize the analogies between visual processing and lan-

235

236 Abstract

guage processing: temporal compression is a typical feature of syntactic categories
(as they encode sequences of words); whenever these categories are recognized in
an early stage of the sentence, they can be expanded to predict the subsequent
course of the sentence. I propose therefore that syntactic categories, like visual
categories, are represented locally in the brain within cortical columns, and more-
over that the hierarchical and topological organization of such ‘syntactic’ columns
constitutes a grammar.

A second source of inspiration for my research is the role of memory in lan-
guage processing and acquisition. An important question that a neural theory
of language has to address concerns the nature of the smallest productive units
of language that are stored in memory. When producing a novel sentence it
seems that language users often reuse entire memorized sentence fragments, whose
meanings are not predictable from the constituent words. Examples of such multi-
word constructions are ‘How do you do? ’ or ‘kick the bucket ’, but there are also
productive constructions with one or more open ‘slots’, such as ‘the more you think
about X, the less you understand ’, or completely abstract and unlexicalized con-
structions. According to certain linguistic theories every sentence in a language
can be formed by combining constructions of varying degrees of complexity and
abstractness.

In order to answer the question about the storage of constructions I propose
that in linguistics, as in cognitive psychology, one must distinguish between two
kinds of memory systems: a memory system for abstract, relational knowledge,
so-called ‘semantic’ memory, and a memory system for personally experienced
events or ‘episodes’ (for instance the memory of a birthday party), embedded
in a temporal and spatial context, so-called ‘episodic’ memory. I contend that,
while abstract rules and syntactic categories of a language are part of a semantic
memory for language, an episodic memory is responsible for storing sentence
fragments, and even entire sentences.

Episodic memory also plays an important role in language acquisition, as-
suming that our linguistic knowledge is not innate, but originates from the as-
similation of many individual linguistic experiences. An important claim of this
thesis is that language acquisition, like knowledge acquisition in other cognitive
domains, can be understood as a gradual transformational process of concrete
episodic experiences into a system of abstract, semantic memories.

Starting from the assumption that universal mechanisms of memory process-
ing in the brain also govern language production and acquisition, I formulate an
explicit theory about the interaction between an episodic and a semantic memory
for language, called the “Hierarchical Prediction Network” (HPN), that is applied
to sentence processing and acquisition. HPN further incorporates the ideas of the
MPF, with some important modifications.

The semantic memory for language is conceived of in HPN as a neural network,
in which the nodes (corresponding to syntactic and lexical cortical columns) derive
their function from their topological arrangement in the network. This means

Abstract 237

that two nodes that fulfill a similar function within the syntactic analysis of
a sentence are positioned within each other’s vicinity in some high-dimensional
space. (This is motivated by the topological organization of, for instance, the
orientation columns in area V1 in the visual cortex, where neighboring columns
are tuned to similar orientations of line segments.)

A syntactic analysis (parse) of a sentence in HPN consists of a trajectory
through the network, that (dynamically) binds a set of nodes, as they exchange
their topological addresses via a central hub. (This is inspired by research on
how primitive visual categories are bound into complex contours or shapes.) By
virtue of flexible bindings between the nodes (as opposed to the static bindings in
conventional neural networks) HPN can account for the productivity of language.

In HPN, the episodic memory for language is embedded within the semantic
memory, in the form of permanent memory traces, which are left behind in the
network nodes that were involved in processing a sentence. This way, the network
analysis of a processed sentence can always be reconstructed at a later time by
means of the memory traces. Moreover, novel sentences can be constructed by
combining partial traces of previously processed sentences.

This thesis is organized as follows: Chapter 1 introduces the goals of my
research, and motivates the chosen approach. Chapter 2 introduces the Mem-
ory Prediction Framework, and provides the neuro-biological background for the
neural theory of syntax. Chapter 3 covers some basic concepts from the field of
(computational) linguistics, with a special focus on parsing techniques that will
be used in the HPN model. Chapter 4 contains a critical review of the literature
on neural networks of language processing, within the context of the debate on the
fundamental characteristics of structure in language: productivity and hierarchy.

In Chapters 5 to 8 I develop, in multiple stages, the HPN model. In order
to quantitatively evaluate the predictions of the neural theory of syntax, I de-
scribe a computer implementation of HPN, that allows to run simulations based
on tens of thousands of sentences. Chapter 5 starts by introducing the basic
HPN model without an episodic memory, which shows HPN’s ability to learn a
syntactic topology from simple, artificially generated sentences. Subsequently, in
Chapters 6 and 7 I discuss an extended model (and computer implementation)
that integrates an episodic memory with a semantic memory for language, yet
for simplicity lacks a topology. I evaluate this model on a large number of re-
alistic sentences with respect to its performance on syntactic sentence analysis.
Finally, in Chapter 8 all the components of HPN are integrated within a single
implementation, which demonstrates how an abstract grammar in the form of
a network topology is constructed out of episodic linguistic experiences. In this
chapter I emphasize the parallels between language acquisition and the process of
memory consolidation – the transformation by the brain of information consisting
of concrete episodes into a network of abstract, semantic knowledge. In Chapter
9 I present a general discussion and many ideas for future research.

The main conclusion of my dissertation is that it is both possible and worth-

238 Abstract

wile to couple insights from (computational) linguistics to neuro-biological in-
sights, and vice versa. On the one hand, from the tough functional demands that
language poses on information processing by the brain one can infer a number
of non-trivial conclusions regarding neural connectivity and storage in the brain;
on the other hand, the physiological limitations of the brain’s hardware present
some unexpected challenges for theories of syntax, for instance concerning the
use of topology.

Titles in the ILLC Dissertation Series:

ILLC DS-2006-01: Troy Lee
Kolmogorov complexity and formula size lower bounds

ILLC DS-2006-02: Nick Bezhanishvili
Lattices of intermediate and cylindric modal logics

ILLC DS-2006-03: Clemens Kupke
Finitary coalgebraic logics

ILLC DS-2006-04: Robert Špalek
Quantum Algorithms, Lower Bounds, and Time-Space Tradeoffs

ILLC DS-2006-05: Aline Honingh
The Origin and Well-Formedness of Tonal Pitch Structures

ILLC DS-2006-06: Merlijn Sevenster
Branches of imperfect information: logic, games, and computation

ILLC DS-2006-07: Marie Nilsenova
Rises and Falls. Studies in the Semantics and Pragmatics of Intonation

ILLC DS-2006-08: Darko Sarenac
Products of Topological Modal Logics

ILLC DS-2007-01: Rudi Cilibrasi
Statistical Inference Through Data Compression

ILLC DS-2007-02: Neta Spiro
What contributes to the perception of musical phrases in western classical
music?

ILLC DS-2007-03: Darrin Hindsill
It’s a Process and an Event: Perspectives in Event Semantics

ILLC DS-2007-04: Katrin Schulz
Minimal Models in Semantics and Pragmatics: Free Choice, Exhaustivity, and
Conditionals

ILLC DS-2007-05: Yoav Seginer
Learning Syntactic Structure

ILLC DS-2008-01: Stephanie Wehner
Cryptography in a Quantum World

ILLC DS-2008-02: Fenrong Liu
Changing for the Better: Preference Dynamics and Agent Diversity

ILLC DS-2008-03: Olivier Roy
Thinking before Acting: Intentions, Logic, Rational Choice

ILLC DS-2008-04: Patrick Girard
Modal Logic for Belief and Preference Change

ILLC DS-2008-05: Erik Rietveld
Unreflective Action: A Philosophical Contribution to Integrative Neuroscience

ILLC DS-2008-06: Falk Unger
Noise in Quantum and Classical Computation and Non-locality

ILLC DS-2008-07: Steven de Rooij
Minimum Description Length Model Selection: Problems and Extensions

ILLC DS-2008-08: Fabrice Nauze
Modality in Typological Perspective

ILLC DS-2008-09: Floris Roelofsen
Anaphora Resolved

ILLC DS-2008-10: Marian Counihan
Looking for logic in all the wrong places: an investigation of language, literacy
and logic in reasoning

ILLC DS-2009-01: Jakub Szymanik
Quantifiers in TIME and SPACE. Computational Complexity of Generalized
Quantifiers in Natural Language

ILLC DS-2009-02: Hartmut Fitz
Neural Syntax

ILLC DS-2009-03: Brian Thomas Semmes
A Game for the Borel Functions

ILLC DS-2009-04: Sara L. Uckelman
Modalities in Medieval Logic

ILLC DS-2009-05: Andreas Witzel
Knowledge and Games: Theory and Implementation

ILLC DS-2009-06: Chantal Bax
Subjectivity after Wittgenstein. Wittgenstein’s embodied and embedded subject
and the debate about the death of man.

ILLC DS-2009-07: Kata Balogh
Theme with Variations. A Context-based Analysis of Focus

ILLC DS-2009-08: Tomohiro Hoshi
Epistemic Dynamics and Protocol Information

ILLC DS-2009-09: Olivia Ladinig
Temporal expectations and their violations

ILLC DS-2009-10: Tikitu de Jager
“Now that you mention it, I wonder. . . ”: Awareness, Attention, Assumption

ILLC DS-2009-11: Michael Franke
Signal to Act: Game Theory in Pragmatics

ILLC DS-2009-12: Joel Uckelman
More Than the Sum of Its Parts: Compact Preference Representation Over
Combinatorial Domains

ILLC DS-2009-13: Stefan Bold
Cardinals as Ultrapowers. A Canonical Measure Analysis under the Axiom of
Determinacy.

ILLC DS-2010-01: Reut Tsarfaty
Relational-Realizational Parsing

ILLC DS-2010-02: Jonathan Zvesper
Playing with Information

ILLC DS-2010-03: Cédric Dégremont
The Temporal Mind. Observations on the logic of belief change in interactive
systems

ILLC DS-2010-04: Daisuke Ikegami
Games in Set Theory and Logic

ILLC DS-2010-05: Jarmo Kontinen
Coherence and Complexity in Fragments of Dependence Logic

ILLC DS-2010-06: Yanjing Wang
Epistemic Modelling and Protocol Dynamics

ILLC DS-2010-07: Marc Staudacher
Use theories of meaning between conventions and social norms

ILLC DS-2010-08: Amélie Gheerbrant
Fixed-Point Logics on Trees

ILLC DS-2010-09: Gaëlle Fontaine
Modal Fixpoint Logic: Some Model Theoretic Questions

ILLC DS-2010-10: Jacob Vosmaer
Logic, Algebra and Topology. Investigations into canonical extensions, duality
theory and point-free topology.

ILLC DS-2010-11: Nina Gierasimczuk
Knowing One’s Limits. Logical Analysis of Inductive Inference

ILLC DS-2011-01: Wouter M. Koolen
Combining Strategies Efficiently: High-Quality Decisions from Conflicting
Advice

ILLC DS-2011-02: Fernando Raymundo Velazquez-Quesada
Small steps in dynamics of information

ILLC DS-2011-03: Marijn Koolen
The Meaning of Structure: the Value of Link Evidence for Information Re-
trieval

ILLC DS-2011-04: Junte Zhang
System Evaluation of Archival Description and Access

ILLC DS-2011-05: Lauri Keskinen
Characterizing All Models in Infinite Cardinalities

ILLC DS-2011-06: Rianne Kaptein
Effective Focused Retrieval by Exploiting Query Context and Document Struc-
ture

ILLC DS-2011-07: Jop Briët
Grothendieck Inequalities, Nonlocal Games and Optimization

ILLC DS-2011-08: Stefan Minica
Dynamic Logic of Questions

ILLC DS-2011-09: Raul Andres Leal
Modalities Through the Looking Glass: A study on coalgebraic modal logic and
their applications

ILLC DS-2011-10: Lena Kurzen
Complexity in Interaction

