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Abstract 

 

We consider the notion of everyday language.  We claim that everyday 

language is semantically bounded by the properties expressible in the 

existential fragment of second–order logic. Two arguments for this 

thesis are formulated. Firstly, we show that so–called Barwise's test 

of negation normality works properly only when assuming our main 

thesis. Secondly, we discuss the argument from practical 

computability for finite universes. Everyday language sentences are 

directly or indirectly verifiable. We show that in both cases they are 

bounded by second–order existential properties. Moreover, there are 

known examples of everyday language sentences which are the most 

difficult in this class (NPTIME–complete). 
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1. Introduction 

 

There is a common and – from our point of view – controversial use of 

the term natural language as opposed not only to artificial languages 

but also to scientific language or technical jargons. A good example of 

such a use is the term natural language quantifier1 as opposed to 

logical quantifiers, see e.g. (Keenan 2002). Obviously, infinity and 

there are infinitely many are natural language expressions just as 

majority or many. Nevertheless, we can see a natural intuition 

supporting the narrow use of the term natural language. However, in 

this narrow sense we prefer to use the term everyday language, 

instead. This is a fragment of natural language in which logicians 
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communicate with bakers, students with postmen, quantum physicists 

with philologist, and so on. Everyday language is a pre–theoretical 

part of natural language, creating its basic and most common core2. 

 

We are looking for semantic bounds of everyday language. Firstly, we 

ask about the number of elements creating our universe of discourse. 

This is important because the possible estimations of the semantic 

strength of everyday language heavily depend on the expressive 

power of its quantifier constructions. Most authors considering 

semantics of natural language are interested only in finite universes; 

let us quote Dag Westerståhl: 

 

'In general these cardinals can be infinite. However, we now lay down 

the following constraint: 

 

(FIN) Only finite universes are considered. 

 

This is a drastic restriction, no doubt. It is partly motivated by the fact 

that a great deal of the interest of the present theory of determiners 

comes from applications to natural language, where this restriction is 

reasonable' (Westerståhl 1984). 

 

This restriction seems reasonable because in typical communication 

situations we refer to relatively small finite sets of objects. For 

example, in the interpretations of the following sentences relatively 

small sets are involved. 

(1) Exactly five of my children went to the cinema.  

(2) Everyone from my family has read ‘Alice's Adventures in 

Wonderland’.  

Considering cardinalities of the universe of discourse we have three 

main possibilities: 

• small finite universes; 

• large finite universes; 

• infinite universes. 
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In many cases the restriction to finite interpretations essentially 

simplifies our theoretical considerations. Some ideas can easily be 

formulated when working only with finite universes and their 

generalization for arbitrary models would require subtle and 

technically difficult analysis3. Moreover, this restriction is adequate 

for analyses of many communication situations. Nevertheless, with 

the restriction to finite universes we omit many important cases. 

Therefore, in this work we consider arguments taking into account 

small finite universes as well as the general case covering all the 

mentioned cases.   

 

2. A few examples  

 

In this section we give a few examples of natural language sentences 

together with their semantic interpretations. We consider examples of 

sentences interpreted in the model4 M=(U, VM, TM, HM), where the 

universe U of M is the set of all human beings, VM is the set of all 

villagers, TM is the set of all townsmen, and HM is the relation of 

hating each other. The corresponding predicates V, T, H are 

interpreted in M as: VM, TM, HM, respectively. 

We start with an easy sentence and its logical form:  

(3) There are exactly two villagers.  

(4) ∃x∃y [V(x) ∧ V(y) ∧ x≠y ∧ ∀z (V(z) ⇒ (z=x ∨ z=y))]  

Therefore, the logical form of sentence (3) can be given in terms of 

elementary logic5 by formula (4).  

 

The next sentence we are interested in is a bit more difficult. Consider 

the following pair consisting of sentence and its meaning 

representation. 

(5) Every other person is a townsman.  

(6) ∃P[∀x∀y (P(x, y)⇒(T(x)∧¬T(y)))∧∀x (T(x)⇒∃y P(x, y)) ∧ 

∀y (¬T(y) ⇒∃x P(x, y)) ∧∀x∀y∀y’ ((P(x, y) ∧ P(x, y’)) ⇒ y=y’ 

∧∀x∀x’∀y ((P(x, y) ∧ P(x’, y)) ⇒ x = x’)]  
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Formula (6) is not elementary because it starts with the second–order 

quantifier ∃P. The variable P runs through binary relations over the 

universe, in our case subsets of U2. It is not equivalent to any 

elementary formula. It states that the set of townsmen and 

not–townsmen have the same cardinality because there is a 

one–to–one mapping P from one of these sets to another. In other 

words, every other element from U belongs to TM. Therefore, formula 

(6) has the same truth–conditions as sentence (5). This is why formula 

(6) is a correct logical form for sentence (5).  

Formula (6) has the form ∃Pϕ(P), where P is a second–order 

variable and ϕ is a first order–formula with P as an additional binary 

predicate. The class of such existential second–order formulae is 

denoted by Σ1
1 . Formulae equivalent to Σ1

1 –formulae will also be 

called Σ1
1 –formulae. 

Now, let us consider more complicated example: 

(7) Most people live in a village.  

(8) ∃R [∀x (V(x) ⇒ ∃y (¬V(y) ∧ R(x, y))) ∧ 

∀x∀y∀y’ ((V(x) ∧ ¬V(y) ∧ ¬V(y’) ∧ R(x, y) ∧ R(x, y’)) ⇒y=y’)  

∧∀y (¬V(y) ⇒ ∃x (V(x) ∧ R(x, y))) ∧ 

∃x∃x’∃y (V(x) ∧V(x’) ∧ x ≠x’ ∧ ¬V(y) ∧ R(x, y) ∧ R(x’, y))]  

Formula (8) is Σ1
1. It says that there is a function from V into U – VM 

which is surjective but not injective. Therefore, it says that most x 

from U belong to VM. Then formula (8) is a proper logical 

representation of sentence (7). 

 

Essentially, formula (8) defines the quantifier ’Most’ of type (1). In 

what follows we need the quantifier MOST of type (1, 1)6.  

MOST x (ϕ(x), ψ(x)) is defined by the following second–order 

formula:  

(9) ∃R[∀x∃y (ϕ(x) ∧ ψ(x) ∧ ϕ(y) ∧ ¬ψ(y) ∧ R(x, y)) ∧ 

∀x∀y∀y’ (ϕ(x) ∧ ψ(x) ∧ ϕ(y) ∧ ¬ψ(y) ∧ ϕ(y’) ∧ ¬ψ(y’) ∧  
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R(x, y) ∧ R(x, y’) ⇒ y=y’) ∧ ∀y (ϕ(y) ∧ ¬ψ(y) ⇒ ∃x (ϕ(x) ∧ ψ(x) 

∧ R(x, y))) ∧ ∃x∃x’∃y (ϕ(x) ∧ ψ(x) ∧ ϕ(x’) ∧ ψ(x’) ∧ x ≠x’ ∧ ϕ(y) 

∧ ¬ψ(y) ∧ R(x, y) ∧ R(x’, y))]  

 

Now, let us consider an example of a really hard sentence: 

(10) Most villagers and most townsmen hate each other.  

(11) ∃A∃B [MOST x (V(x), A(x)) ∧ MOST y (T(y), B(y)) ∧ 

∀x∀y (A(x) ∧ B(y) ⇒ H(x, y))]   

Formula (11) is equivalent to a Σ1
1 –sentence. It says that there are sets 

A and B containing, respectively, most villagers and most townsmen 

such that every villager from A and every townsman from B hate each 

other. Formula (11) has the same truth–conditions as statement (10), 

thus it is the intended interpretation of sentence (10) in our model M. 

Finally, we consider a sentence which is not expressible in the 

existential fragment of second–order logic.  

(12) There are at most countably many entities.  

(13) ∃R [∀x ¬R(x, x) ∧ ∀x∀y (R(x, y) ∨ R(y, x) ∨ x=y) ∧ 

∀x∀y∀z (R(x, y) ∧ R(y, z) ⇒ R(x, z)) ∧ 

∀A (∃x A(x) ⇒ ∃x (A(x) ∧ (∀y R(y, x) ⇒ ¬A(y)))) ∧  

∀x (∃y R(y, x) ⇒ ∃z (R(z, x) ∧ ∀w (w ≠z ∧ R(w, x) ⇒ R(w, z))))]  

This sentence says that there exists a well–ordering such that each 

element in this ordering has a predecessor except for the least element. 

This is possible only in the case when the cardinality of the set is 

countable or finite. 

Let us note that all the previously mentioned quantifiers can be 

expressed in the existential fragment of second–order logic. In the 

case of (13) it is impossible because for existential fragment of 

second–order logic the Upward Skolem–Löwenheim Theorem holds. 

 

3. The main thesis 

 

What follows is the main claim of the paper. 
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Main Thesis Everyday language is semantically bounded by the 

Σ1
1 –properties. 

 

In other words, we claim that everyday language contains only 

notions which can be defined in the existential fragment of 

second–order logic. If some property is not definable by any 

Σ1
1–formula, then it falls outside the scope of everyday language. For 

example, quantifiers 'there exists', 'all', 'exactly two', 'at least four', 

'every other' and 'most' belong to everyday language. A 

counterexample is the notion 'there exists at most countably many' 

which is not definable by any Σ1
1 –formula. In the next two sections we 

give arguments for such upper bound for everyday language7.  

 

Before discussing the arguments, we present one of the consequences 

of the main thesis. First order–logic is closed on Boolean operations8 

as opposed to Σ1
1 fragment of second–order logic. Particularly, it is not 

closed on negation. However, this problem is open when we restrict 

interpretations to finite models. In this case Σ1
1 –notions are closed on 

Boolean operations if and only if NP = co–NP9 which is one of the 

most difficult problems of computational complexity theory.  

Thus, it is reasonable to assume that everyday language, i.e., the 

fragment of natural language semantically bounded by Σ1
1–properties, 

is not closed on Boolean operations even on finite universes. 

Therefore, it may be the case that a sentence belongs to everyday 

language but its negation does not.   

 

4. Argument from negation normality 

 

It was observed by Jon Barwise (1979) that negations of some simple 

quantifier sentences, i.e., sentences without propositional connectives 

different than 'not' before a verb, can easily be formulated as simple 

quantifier sentences. For some sentences it is impossible. Namely, the 

only way to negate them is by adding the prefix 'it is not the case that' 

or an equivalent expression of a theoretical character. 
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The sentences of the first kind are called negation normal. For 

example, consider the following sentence: 

(14) Everyone owns a car. 

It can be negated as follows: 

(15) Someone doesn't own a car. 

The sentences of the second kind are not negation normal. For 

instance, consider the following proposition: 

(16) Most relatives of each villager and most relatives of each 

townsman hate each other. 

It can only be negated in the following way: 

(17) It is not the case that most relatives of each villager and most 

relatives of each townsman hate each other. 

 

Barwise has proposed the test of negation normality as a reasonable 

criterion for first–order definability. The results of the negation 

normality test agree with our experience (see (Barwise 1979) and 

(Mostowski 1994)). The test is based on the following theorem which 

is a corollary from Craig's Interpolation Lemma (see e.g. Ebbinghaus 

et al. 1996): 

  

Theorem 1 If φ is a sentence definable in the existential fragment of 

second–order logic, and its negation is logically equivalent to a 

Σ1
1–sentence, then φ is logically equivalent to some first–order 

sentence. 

 

In other words, the test works only with the assumption that simple 

everyday sentences are semantically bounded by Σ1
1–properties. This 

gives an argument in favor of our main thesis in arbitrary universes. 

 

5. Argument from practical computability 

 

The core sentences of everyday language are sentences which can be 

effectively verifiable. In the case of small finite interpretations it 
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means that their logical–value can be practically computed (directly 

or indirectly). 

 

Direct practical computability means that there is an algorithm which 

for a given finite interpretation computes the logical–value in a 

reasonable time. Our computational experience justifies the claim 

formulated by Jack Edmonds (1965). 

 

Edmonds’ Thesis The class of practically computable problems is 

identical with PTIME class that is the class of problems which can be 

computed by a deterministic Turing machine in a number of steps 

bounded by a polynomial function of the length of a query. 

 

We take here Edmonds' thesis for granted. It follows that a sentence’s 

logical–value is directly practically computable in small finite 

interpretations, whenever the problem of logical–value of this 

sentence in finite interpretations is in PTIME10. 

 

In understanding everyday language sentences we not only use their 

referential but also inferential meaning. The latter is determined 

indirectly, by inferential relations with other sentences having 

well–defined referential meanings. To see this, let us consider the 

following three sentences: 

(18) There were more boys than girls at the party.  

(19) At the party every girl was paired with a boy.  

(20) Peter came alone to the party.  

We know that sentence (18) can be inferred from sentences (19) and 

(20). Hence, we can establish the logical–value of sentence (18) 

indirectly knowing that sentences (19) and (20) are true.  

 

Sentence (18) is easy in the sense that its logical–value is PTIME 

computable. However, for some sentences the problem whether their 

logical–values are PTIME computable is open11. Let us consider the 

following examples. 

(21) Most villagers and most townsmen hate each other.  
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(22) At least one third of villagers and at least half of all 

townsmen hate each other. 

(23) Most of the parliament members hate each other. 

(24) Some relative of each villager and some relative of each 

townsman hate each other. 

It is known that the problem of checking the logical–value for each of 

these sentences is NPTIME–complete, see (Sevenster 2006), 

(Mostowski and Wojtyniak 2004), and (Szymanik 2007)12. 

  

NPTIME (for short NP) is the class of problems which can be solved 

by a nondeterministic Turing machine in a number of steps bounded 

by a polynomial function of the length of a query. Nondeterministic 

algorithms were defined for the first time by Alan Turing (1936). The 

term nondeterministic is misleading. Originally, Turing used the term 

with choice. In the case of NPTIME the nondeterministic behavior 

can be described as follows: 

 

‘Firstly, choose a certificate of a size polynomially depending on the 

size of input. Then apply a PTIME algorithm for finding the answer. 

The nondeterministic algorithm answers YES exactly when there is a 

certificate for which we get a positive answer.’ (Garey and Johnson 

1979). 

 

Let us observe that such certificates are a kind of proofs. When we 

have a proof of a statement, then we can easily check whether the 

sentence is true. 

 

The logical relevance of the class NPTIME follows from the Fagin's 

Theorem (see Fagin 1974): 

 

Theorem 2 A class of finite models is NPTIME computable if and 

only if it is definable by a Σ1
1–sentence. 
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Let us notice that all examples of natural language sentences 

considered in this paper – which undoubtedly belong to everyday 

language – have Σ1
1 expressible meanings. 

 

NPTIME–complete problems are computationally the most difficult 

problems in the NPTIME class. Particularly, it is known that P=NP if 

any NPTIME–complete problem is PTIME computable. Therefore, 

on the ground of our current knowledge we can expect that 

NPTIME–complete problems are not practically computable. 

Nevertheless, similarly as all NPTIME problems they can be 

practically justifiable. Let us consider an example. 

 

Suppose that we have two predicate expressions A, B and the 

following true statements: 

(25) Most villagers are A.  

(26) Most townsmen are B.  

(27) All A and all B hate each other.   

From these sentences we can infer the following statement: 

(28) Most villagers and most townsmen hate each other. 

The predicate expressions A and B should be guessed. They are in a 

sense certificates (proofs) for truth of sentence (28). 

 

In this sense sentences with NPTIME logical–value checking problem 

– or by Fagin's theorem, Σ1
1–expressible sentences – are indirectly 

verifiable. Moreover, NPTIME seems to capture exactly indirect 

verifiability. 

 

This concludes second argument for our main thesis. 
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Notes 
                                                           
1 Let us observe that this phrase has essentially different 

presuppositions than the phrase quantifiers in natural language. 
2 We would even claim that it is the most biologically grounded part 

of natural language. However, it raises so many questions falling 

beyond the scope of this paper that we prefer not to go in this 

direction. 
3 E.g., see discussion of so-called measure quantifiers in (Krynicki 

and Mostowski 1999). 
4  Models are precise mathematical notions explicating possible 

worlds or possible interpretations of our language. 
5 Elementary logic — called also first–order logic — allows only 

quantifiers ∃ and ∀ binding individual variables. 
6 For definition of generalized quantifiers and their types see 

(Lindström 1966). For a recent monograph on generalized quantifiers 

consult (Peters and Westerståhl 2006). 
7  Notice that our claim is similar to the methodological 

NP–completeness thesis formulated by Ristad (1993). He claims that 

the complexity of natural language semantics is bounded from below 

and above by non–deterministic polynomial time.  
8 It means that if φ and ψ are elementary formulae, then also ¬φ, φ ⇒ 

ψ, φ ∨ ψ, and φ ∧ ψ are elementary formulae. 
9 This problem seems to be equally difficult to the famous question 

P=NP?, which is worth at least the prize of 1,000,000 $ offered by 

Clay Institute of Mathematics for solving one of the seven greatest  

open mathematical problems of our time, see e.g. (Devlin 2002). P 

(PTIME) is the class of problems which can be computed by 

deterministic Turing machines in polynomial time. NP (NPTIME) is 

the class of problems which can be computed by nondeterministic 

Turing machines in polynomial time. Co–NP is the set of 

complements of the NP and we have a simple dependence: if P=NP, 

then NP=co–NP. 
10  Notice that Edmods’ Thesis has its counterpart in cognitive 

sciences, so-called P–Cognition Thesis, saying that human cognitive 
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(linguistic) capacities are constrained by polynomial–time 

computability. As far as we know, it was explicitly formulated for the 

first time by Frixione (2001). 
11 The answer depends whether P=NP. 
12 Other examples of NPTIME–complete natural language sentences, 

involving anaphora,  might be found in (Ristad 1993) and 

(Pratt-Hartmann 2004).  
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