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Abstract

We introduce Arbitrary Public Announcement Logic with Memory (APALM), obtained by adding to
the models a ‘memory’ of the initial states, representing the information before any communication took
place (“the prior”), and adding to the syntax operators that can access this memory. We show that APALM
is recursively axiomatizable (in contrast to the original Arbitrary Public Announcement Logic, for which
the corresponding question is still open). We present a complete recursive axiomatization, that includes
a natural finitary rule, and study this logic’s expressivity and the appropriate notion of bisimulation. We
then examine Group Announcement Logic with Memory (GALM), the extension of APALM obtained by
adding to its syntax group announcement operators, and provide a complete finitary axiomatization (again in
contrast to the original Group Announcement Logic, for which the only known axiomatization is infinitary).
We also show that, in the memory-enhanced context, there is a natural reduction of the so-called coalition
announcement modality to group announcements (in contrast to the memory-free case, where this natural
translation was shown to be invalid).

Keywords. arbitrary public announcement logic, group announcement logic, coalition announcement logic, arbitrary
announcement modality, coalition announcement modality, dynamic epistemic logic, modal logic, recursive axiomatiza-
tion, subset space semantics

1 Introduction
Arbitrary Public Announcement Logic (APAL) and its relatives are natural extensions of Public Announcements Logic
(PAL), involving the addition of operators �ϕ and ^ϕ, quantifying over public announcements [θ]ϕ of some given type.
These logics are of great interest both philosophically and from the point of view of applications. Motivations range from
supporting an analysis of Fitch’s paradox [31] by modeling notions of ‘knowability’ (expressible as^Kϕ), to determining
the existence of communication protocols that achieve certain goals (cf. the famous Russian Card problem, given at a
mathematical Olympiad [32]), and more generally to epistemic planning [16], and to inductive learnability in empirical
science [10]. Many such extensions have been investigated, starting with the original APAL [6], and continuing with
its variants CAL (Coalition Announcement Logic) [27], GAL (Group Announcement Logic) [1], Future Event Logic
[37], FAPAL (Fully Arbitrary Public Announcement Logic) [41], APAL+ (Positive Arbitrary Announcement Logic)
[36], BAPAL (Boolean Arbitrary Public Announcement Logic) [35], and extensions of APAL and GAL with common
knowledge [21] etc. Similar ideas for arbitrary-quantification modalities have been adopted in other contexts, see [23] for
a modality quantifying over action models in Arbitrary Action Model Logic and [17] for a quantifier over the set of all
refinements of a given model (a variation on a bisimulation quantifier) in Refinement Modal Logic (see [34] for a recent
survey on dynamic epistemic logics with modalities that quantify over information change).
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One problem with the above formalisms, with the exception of BAPAL1, is that it is not known whether they have
finitary axiomatizations; only their infinitary axiomatizations have been established so far. It has already been proven that
APAL and GAL are undecidable [20, 4]. It is therefore not guaranteed that the validities of these logics are recursively
enumerable.2 The seminal paper on APAL [6] proved completeness using an infinitary rule, and then went on to claim
that in theorem-proving3 this rule can be replaced by the following finitary rule: from ψ → [θ][p]ϕ, infer ψ → [θ]�ϕ,
as long as the propositional variable p is “fresh”. A similar method is adopted in the completeness proof of GAL in
[1] and it was claimed that the infinitary rule used in the completeness proof could be replaced by the finitary rule
‘from χ → [θ][

∧
i∈G Ki pi]ψ infer χ → [θ][G]ψ’, where pi’s are “fresh” and [G] is the group announcement operator,

quantifying over updates with formulas of the form
∧

i∈G Kiϕi. These are natural � and [G]-introduction rules, similar to
the introduction rule for universal quantifier in First Order Logic (FOL), and they are based on the intuition that variables
that do not occur in a formula are irrelevant for its truth value, and thus can be taken to stand for any “arbitrary” formula
(via some appropriate change of valuation). However, the soundness of the �-introduction rule was later disproved via
a counterexample by Kuijer [24]. Moreover, a slightly modified version of Kuijer’s counterexample also proves that the
aforementioned [G]-introduction rule for GAL is unsound.4

The original intention behind APAL was to quantify over all possible announcements that can be expressed within
its language, but clearly the quantification had to be restricted, in order to avoid circular definitions (with their potential
Liar-like consequences for the semantics).5 This also applies to GAL and its quantification over all possible group
announcements. To the best of our knowledge, no recursive axiomatization of a variant of APAL or GAL whose range
of quantification over announcements is at least as wide as the original APAL and GAL, respectively, is known.6 Thus,
a long-standing open question concerns finding ‘quantificationally strong’ versions of APAL and GAL for which there
exist recursive axiomatizations. Here, an APAL-type language is called ‘quantificationally strong’ if it includes at least
the standard epistemic operators as well as an APAL-type modality � that quantifies over public announcements of all
formulas in the given language that do not contain the operator �. For ‘quantificationally strong’ variants of GAL, this
definition has of course to be appropriately modified by further restricting the scope of the GAL-type modality [G] to
cover all announcements by group G that can be expressed by the formulas of the given language that do not contain the
operator [G]. In this sense, APAL and GAL, as well as the logics APALM and GALM that we will introduce in this paper
are quantificationally strong; however, none of the other recursively-axiomatized variants in the existing literature is.

We feel that only such strong variants of APAL, GAL etc. can be legitimately called logics of “arbitrary” public (or
group) announcements. The qualification “arbitrary” is thus to be read as meaning that the only restriction imposed on the
scope of � is the one that follows naturally from the need to have a non-circular definition. Moreover, one can easily see
that the scopes of � and [G] in any such strong variant will be at least as wide as the scope of the corresponding operator
in the original logics APAL or GAL, respectively.

In this paper, we solve these open questions for both APAL and GAL, starting with a diagnosis of the APAL coun-
terexample, that leads naturally to our proposed solution. The framework for the ‘quantificationally strong’ version of
GAL will be developed analogously, as an extension of the one for APAL. Due to the similar syntactic and semantic
behaviours of the group announcement ([G]) and arbitrary announcement (�) operators, most of our analysis of the latter
also applies to the former.

Our diagnosis of Kuijer’s counterexample is that it makes an essential use of a known undesirable feature of PAL and
APAL, namely their lack of memory: the updated models “forget” the initial states. As a consequence, the expressivity

1BAPAL is a very weak version, allowing �ϕ to quantify over only purely propositional announcements - no epistemic formulas.
2APAL+ is known to be decidable, hence its validities must be recursively enumerable, but no recursive axiomatization is known.

Also, note that APAL+ is still very restricted, in that it quantifies only over positive epistemic announcements, thus not allowing public
announcements of ignorance, which are precisely the ones driving the solution process in puzzles such as the Muddy Children.

3This means that from any proof of a theorem from the axioms that uses the infinitary rule we can obtain a finitary proof of the same
theorem, by using the finitary rule instead.

4The formulations of the aforementioned inference rules here are meant to give the reader a picture of the kind of finitary inference
rules that the original APAL and GAL were proposed to have, which were initially claimed to be sound, but later proven to be unsound.
The modalities that occur in these rules will of course be properly introduced in the relevant sections of the paper.

5In [42], van Ditmarsch et al. develop a self-referential versions of APAL, called Fully Arbitrary Public Announcement Logic (F-
APAL), where � quantifies over all public announcements in the given language. However, the price to pay for this version is that the
language becomes a proper class, beyond any cardinality, thus the computational complexity goes even further, dashing any hopes for a
recursive axiomatization.

6Recall that the only known finitary variant BAPAL allows � to quantify over only purely propositional announcements.
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of the APAL �-modality reduces after any update. This is what invalidates the above rule. We fix this problem by
adding to the models a memory of the initial epistemic situation W0, representing the information before any non-trivial
communication took place (“the prior”). Since communication – gaining more information – deletes possibilities, the
set W of currently possible states is a (possibly proper) subset of the set W0 of initial states. On the syntactic side, we
add an operator ϕ0 saying that “ϕ was initially the case” (before all communication). To mark the initial states, we also
need a constant 0, stating that “no non-trivial communication has taken place yet”. Therefore, 0 will be true only in
the initial epistemic situation. It is convenient, though maybe not absolutely necessary, to add a universal modality Uϕ
that quantifies over all currently possible states.7 In the resulting Arbitrary Public Announcement Logic with Memory
(APALM), the arbitrary announcement operator � quantifies over updates (not only of epistemic formulas but) of arbitrary
formulas that do not contain the operator � itself.8 As a result, the range of � is wider than in standard APAL, covering
announcements that may refer to the initial situation (by the use of the operators 0 and ϕ0) or to all currently possible
states (by the use of Uϕ).

Although APALM is inspired from APAL and designed specifically to avoid the aforementioned flaws that affect the
soundness of the ‘natural’ axiomatization of APAL, the exact relationship between APAL and APALM is not easy to
elucidate. This is because of the extreme sensitivity to context of the “arbitrary public announcement” operator: since
its semantics quantifies over the remaining syntax, any addition to the syntax changes its meaning. One way to look
at APALM is to say that we simply added new operators to the syntax, while essentially keeping “the same” semantics
for the arbitrary announcement operator �, namely in terms of quantifying over the announcement of all sentences in
the language that do not contain � itself. However, this does change the semantics of � by enlarging the scope of the
quantifier. Although the language of APALM is quantificationally stronger than that of APAL (in the sense that the
quantificational scope of our APALM modality � is at least as wide as the scope of the original APAL operator), the
former is not necessarily more expressive than the latter. In fact, we conjecture that the expressive power of the language
of APALM is incomparable to the one of the language of APAL. Proving this claim is a highly non-trivial task, which
remains an open question for now.

We show that the original finitary rule proposed in [6] is sound for APALM and, moreover, it forms the basis of a
complete recursive axiomatization.9 It can therefore be applied to all the puzzles and examples that motivated APAL,
with the difference that one can now also use the complete proof system to reason axiomatically about them.10 Besides its
technical advantages, APALM is valuable in its own respect. Maintaining a record of the initial situation in our models
helps us to formalize updates that refer to the ‘epistemic past’ such as “what you said, I knew already” [30]. This may
be useful in treating certain epistemic puzzles involving reference to past information states, e.g. “What you said did not
surprise me” [25]. The more recent Cheryl’s Birthday problem also contains an announcement of the form “At first I
didn’t know when Cheryl’s birthday is, but now I know” (although in this particular puzzle the past-tense announcement
is redundant and plays no role in the solution).11 See [30] for more examples.

Note though that the ‘memory’ of APALM is very limited: our models do not remember the whole history of com-
munication, but only the initial epistemic situation (before any communication). Correspondingly, in the syntax we do
not have a ‘yesterday’ operator Yϕ, referring to the previous state just before the last announcement as in [28], but only
the operator ϕ0 referring to the initial state. We think of this ‘economy’ of memory as a (positive) “feature, not a bug” of
our logic: a detailed record of all history is simply not necessary for solving the problem at hand. In fact, keeping all the
history and adding a Yϕ operator would greatly complicate our task by invalidating some of the standard nice properties

7From an epistemic point of view, it would be more natural to replace U by an operator Ck that describes current common knowledge
and quantifies only over currently possible states that are accessible by epistemic chains from the actual state. We chose to stick with U
for simplicity. Two versions of the addition of Ck to APAL and to GAL are presented in [21].

8This restriction is necessary to produce a well-defined semantics that avoids Liar-like vicious circles. In standard APAL, the
quantification restriction of ^ is present in its semantics and with respect to formulas of the form 〈θ〉ϕ and ^ϕ. Formulas of the form
〈^p〉ϕ are allowed in the syntax of APAL. APAL and APALM expressivities seem to be incomparable, and that would still be the case
if we dropped the above restriction.

9We use a slightly different version of this rule, which is easily seen to be equivalent to the original version in the presence of the
usual PAL reduction axioms.

10Note again that the recursively axiomatizable but quantificationally restricted variants BAPAL and APAL+ of APAL are too weak to
allow for quantification over announcements of ignorance, which are of particular importance for puzzles such as the Muddy Children.

11Cheryl’s Birthday problem was part of the 2015 Singapore and Asian Schools Math Olympiad, and became viral after it was posted
on Facebook by Singapore TV presenter Kenneth Kong.
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of PAL and APAL.12 We will briefly return to this connection with the yesterday operator in Section 6.
So we opt for simplicity, enriching the models and language with just enough memory to recover the full expressivity

of � after updates, and thus establish the soundness of the �-introduction rule. Such a limited-memory semantics is
sufficient for our purposes, but it also has an intrinsic naturality and simplicity, similar to the one encountered in some
Bayesian models, with their distinction between ‘prior’ and ‘posterior’ (aka current) probabilities.13

Having established the desired results for APALM, we also study a version of GAL with the same memory mechanism
– Group Announcement Logic with Memory (GALM) – obtained by extending APALM with group announcement oper-
ators. In this logic, the group announcement operators [G]ϕ quantify over updates with formulas of the form

∧
i∈G Kiϕi,

thus, represents what a group of agents can bring about via simultaneous public announcements. In order to avoid Liar-
like vicious circles, these updates can have occurrences of every component of the language but � and [G] (see footnote
8). A related modality is the coalition announcement operator 〈[G]〉ϕ, which says that the members of group G can bring
about ϕ by simultaneous public announcements no matter what other public announcements are simultaneously made by
the ‘outsiders’ (i.e. the agents not in G). The resulting logic was called Coalition Announcement Logic (CAL) [2]. In the
memory-free context, it was shown in [19] that the natural and apparently ‘obvious’ translation of 〈[G]〉ϕ into GAL is in
fact invalid.14 Moreover, no recursive axiomatization is known for CAL, or for any of its extensions. In contrast, in this
paper we show that, in our memory-enhanced framework, the obvious translation is valid: the analogue of the coalition
announcement modality is definable in GALM. Further, we provide a complete finitary axiomatization for GALM, thus
proving that validities of both GALM and CALM (the memory-enhanced variant of CAL) are recursively enumerable.
This is done by following the same steps as for APALM, and showing that the finitary [G]-introduction rule that was
originally proposed for GAL in [1] is in fact sound for GALM.15

On the technical side, our completeness proof involves an essential detour into an alternative semantics for APALM
and GALM (‘pseudo-models’), in the style of Subset Space Logics (SSL) [26, 18]. This reveals deep connections between
apparently very different formalisms. Moreover, this alternative semantics is of independent interest, giving us a more
general setting for modeling knowability and learnability (see, e.g., [13, 14, 10]). Various combinations of PAL or APAL
with subset space semantics have been investigated in the literature [9, 45, 44, 38, 39, 13, 11, 10], including a version of
SSL with backward looking public announcement operators that refer to what was true before a public announcement [8].
Following the SSL-style, our pseudo-models come with a given family of admissible sets of worlds, which in our context
represent “publicly announceable” (or communicable) propositions.16 We interpret � in pseudo-models as the so-called
‘effort’ modality of SSL, which quantifies over updates with announceable propositions (regardless of whether they are
syntactically definable or not). The modality [G] on the other hand quantifies over updates with those announceable
propositions that are known by some agents in G. The operator [G] is thus modelled as a restricted version of the effort
modality. The finitary �-introduction rule is obviously sound for the effort modality, because of its more ‘semantic’
character. Similarly, the finitary [G]-introduction rule is also sound for this effort-like group announcement operator.
These observations, together with the important fact that our models for APALM and GALM (unlike original APAL
models) can be seen as a special case of pseudo-models, lie at the core of our soundness and completeness proofs.17

The paper is organized as follows. In Section 2, we introduce the syntax and semantics of APALM (Section 2.1);
then discuss Kuijer’s counterexample for the soundness of the finitary �-introduction rule of the original APAL (Section
2.2); present a complete finitary axiomatization for APALM (Section 2.3); and define a notion of bisimulation appropriate

12E.g. the standard Composition Axiom (stating that any sequence of announcements is equivalent to a single announcement) fails
in the presence of the Y operator. As a consequence, a logic with full memory of all history would lose some of the appealing features
of the APAL operator (e.g. its S 4 character: �ϕ → ��ϕ). Moreover, this would force us to distinguish between “knowability via one
communication step” ^K versus “knowability via a finite communication sequence” ^∗K, leading to an unnecessarily complex logic.

13In such models, only the ‘prior’ and the ‘posterior’ information states are taken to be relevant, while all the intermediary steps
are forgotten. As a consequence, all the evidence gathered in between the initial and the current state can be compressed into one set
E, called “the evidence” (rather than keeping a growing tail-sequence of all past evidence sets). Similarly, in our logic, all the past
communication is compressed in its end-result, namely in the set W of current possibilities, which plays the same role as the evidence
set E in Bayesian models.

14But it is not known if another, valid translation exists.
15We again use a slightly different version of this rule, which can easily be proven to be equivalent to the original version in the

presence of the PAL reduction axioms. This choice is clearly cosmetic and made in order to simplify the soundness and completeness
proofs.

16In SSL, the set of admissible sets is sometimes, but not always, taken to be a topology. Here, it will be a Boolean algebra with
epistemic operators.

17Chapter 4 of Ana Lucı́a Vargas Sandoval’s Ph.D. dissertation [43] was developed based on an earlier version of this paper.
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for the language of APALM and prove expressivity results comparing fragments of this language (Section 2.4). Section
3 presents first the syntax and semantics of GAL and CAL, as well as their problems; then proceeds to introduce our
group announcement logic with memory GALM, providing a complete finitary axiomatization, and showing that the
coalition announcement modality is definable in this memory-enhanced framework. In Section 4 we prove soundness,
and in Section 5 we prove completeness, for both APALM and GALM. Section 6 contains some concluding comments
and ideas for future work.

For readability, most of the rather technical proofs are omitted from the main text and presented in the appendix.

2 Arbitrary Public Announcement Logic with Memory
We start by introducing APALM, obtained by enriching the models of APAL with a record of the initial information
states (representing the informational situation before any communication took place) and the language of APAL18 with
operators that can refer to this memory.

2.1 Syntax and Semantics of APALM
Let Prop be a countable set of propositional variables and AG = {1, . . . , n} be a finite set of agents. The language L of
APALM (Arbitrary Public Announcement Logic with Memory) is defined by the grammar:

ϕ ::= p | > | 0 | ϕ0 | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Uϕ | 〈θ〉ϕ | ^ϕ,

where p ∈ Prop, i ∈ AG, and θ ∈ L−^ is a formula in the sublanguage L−^ obtained from L by removing the ^ operator.
Given a formula ϕ ∈ L, we denote by Pϕ the set of all propositional variables occurring in ϕ. We follow the standard
rules for omission of the parentheses. We define ⊥ as ¬>. The propositional connectives ∨,→, and ↔ are defined as
ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ϕ → ψ := ¬(ϕ ∧ ¬ψ), and ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ). The dual modalities are defined as
K̂iϕ := ¬Ki¬ϕ, Eϕ := ¬U¬ϕ, �ϕ := ¬^¬ϕ, and [θ]ϕ := ¬〈θ〉¬ϕ.19

We read Kiϕ as “ϕ is known by agent i”; 〈θ〉ϕ as “θ can be truthfully announced, and after this ϕ is true”. U and
E are the universal and existential modalities quantifying over all current possibilities: Uϕ says that “ϕ is true in all
current alternatives of the actual state”. ^ϕ and �ϕ are the (existential and universal) arbitrary announcement operators,
quantifying over updates with formulas inL−^. We can read �ϕ as “ϕ is stably true (under public announcements)”, i.e., ϕ
stays true no matter what (true) announcements are made. The constant 0, meaning that “no (non-trivial) announcements
took place yet”, holds only at the initial time. Similarly, the formula ϕ0 means that “initially (prior to all communication),
ϕ was true”.

In some of our inductive proofs pertaining to APALM, we need a complexity measure on formulas that is different
from the standard one based on subformula complexity. The standard notion requires only that formulas are more complex
than their subformulas, while we also need that ^ϕ is more complex than 〈θ〉ϕ for all θ ∈ L−^. A similar complexity
measure is also required for the language of Group Announcement Logic, denoted by LG, that we define in Section 3. In
order to avoid repetitions, we prefer to present the relevant syntactic definition for both L and LG together in Appendix
A.1, where the reader can find the definition of a (proper) subformula in L, ^-depth of a formula, and a well-founded
strict order < on formulas of L (similarly for the language of LG). Here we only state the core lemma pertaining to this
complexity measure that will be useful in our expressivity and completeness proofs.

Lemma 1. There exists a well-founded strict partial order < on L such that:

1. if ϕ is a proper subformula of ψ, then ϕ < ψ,

2. (θ → p) < [θ]p,

3. (θ → ¬[θ]ψ) < [θ]¬ψ,

4. (θ → Ki[θ]ψ) < [θ]Kiψ,

5. [〈θ〉ρ]χ < [θ][ρ]χ,

6. (θ → ϕ0) < [θ]ϕ0,
18The language of APAL is defined recursively as ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | 〈ϕ〉ϕ | ^ϕ, where p ∈ Prop.
19The update operator 〈θ〉ϕ is often denoted by 〈!θ〉ϕ in Public Announcement Logic literature. We skip the exclamation sign, but

we will use the notation 〈!〉 for this modality and [!] for its dual when we do not want to specify the announcement formula θ (so that !
functions as a placeholder for the content of the announcement).
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7. (θ → U[θ]ϕ) < [θ]Uϕ,
8. (θ → (Uθ ∧ 0)) < [θ]0,

9. 〈θ〉ϕ < ^ϕ, for all θ ∈ L−^.

Proof. The proof is via easy arithmetic calculations following the definitions in Appendix A.1, restricted to language L.
Note that, Definition 67 is redundant for the cases restricted to language L−^. �

Definition 2 (Model, Initial Model, and Relativized Model). • A model is a tuple M = (W0, W,∼1, . . . ,∼n, ‖ · ‖),
where W ⊆ W0 are non-empty sets of states, ∼i⊆ W0 ×W0 are equivalence relations labeled by ‘agents’ i ∈ AG,
and ‖ · ‖ : Prop→ P(W0) is a valuation function that maps every propositional variable p ∈ Prop to a set of states
‖p‖ ⊆ W0. W0 is the initial domain, representing the initial informational situation before any communication
took place; its elements are called initial states. In contrast, W is the current domain, and its elements are called
current states.

• For every modelM = (W0, W,∼1, . . . ,∼n, ‖ · ‖), we define its initial modelM0 = (W0, W0,∼1, . . . ,∼n, ‖ · ‖), whose
both current and initial domains are the initial domain of the original modelM.

• Given a model M = (W0, W,∼1, . . . ,∼n, ‖ · ‖) and a non-empty set A ⊆ W, we define the relativized model
M|A = (W0, A,∼1, . . . ,∼n, ‖ · ‖).

For states w ∈ W and agents i, we will use the notation wi := {s ∈ W : w ∼i s} to denote the equivalence class of w
modulo ∼i restricted to W.

Definition 3 (Semantics). Given a modelM = (W0, W,∼1, . . . ,∼n, ‖ · ‖), we recursively define a truth set [[ϕ]]M for every
formula ϕ ∈ L as follows:

[[p]] = ‖p‖ ∩W

[[>]] = W

[[0]] =

W0 if W = W0

∅ otherwise

[[ϕ0]] = [[ϕ]]M0 ∩W

[[¬ϕ]] = W − [[ϕ]]

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]

[[Kiϕ]] = {w ∈ W : wi ⊆ [[ϕ]]}

[[Uϕ]] =

W if [[ϕ]] = W
∅ otherwise

[[〈θ〉ϕ]] =

[[ϕ]]M|[[θ]] if [[θ]] , ∅
∅ otherwise

[[^ϕ]] =
⋃
{[[〈θ〉ϕ]] : θ ∈ L−^}

In this definition and elsewhere, we skip the subscript and simply write [[ϕ]] when the current modelM is understood.
In particular,M|[[θ]] is here an abbreviation forM|[[θ]]M. More generally, we use this notation also in iterated contexts,
with the formula being evaluated in the last model that is being relativized e.g. (M|[[θ]])|[[ρ]] stands for the further
relativizationM′|[[ρ]]M′ of the relativised modelM′ :=M|[[θ]]M.

Observation 1. Note that we have

w ∈ [[[θ]ϕ]] iff w ∈ [[θ]] implies w ∈ [[ϕ]]M|[[θ]], and

w ∈ [[�ϕ]] iff w ∈ [[[θ]ϕ]] for every θ ∈ L−^.

A straightforward consequence of this fact and of the semantics of 〈θ〉ϕ is the following:
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Observation 2. Given a modelM = (W0, W,∼1, . . . ,∼n, ‖ ·‖) and formulas θ, ρ,ϕ ∈ L, if [[θ]]M = [[ρ]]M, then [[〈θ〉ϕ]]M =

[[〈ρ〉ϕ]]M and [[[θ]ϕ]]M = [[[ρ]ϕ]]M.

Proposition 4. We have [[ϕ]] ⊆ W, for all formulas ϕ ∈ L.

Proof. See the proof of Proposition 22 in Appendix A.3. �

Lemma 5. For all modelsM = (W0, W,∼1, . . . ,∼n, ‖ · ‖) and formulas θ, ρ ∈ L−^: (M|[[θ]])|[[ρ]] =M|[[〈θ〉ρ]].

Proof. The model (M|[[θ]])|[[ρ]] is obtained by first relativizingM to the set [[θ]]M, then relativizing the resulting model
again to [[ρ]]M|[[θ]] ⊆ [[θ]]M. But overall this is the same as the model obtained by directly relativizing M to the set
[[ρ]]M|[[θ]] = [[〈θ〉ρ]]M, i.e. M|[[〈θ〉ρ]]. �

What we study in this paper is information update via public announcements. But the models given in Definition 2
are too general for this purpose: their current domain W can be any subset of the initial domain W0. Our intended models
(which we call “announcement models”) will thus be a subclass of these models, in which the current domain comes from
updating the initial domain with some public announcement.

Definition 6 (Announcement Models and Validity). An announcement model (or a-model, for short) is a model M =

(W0, W,∼1, . . . ,∼n, ‖ · ‖) such that W = [[θ]]M0 for some θ ∈ L−^; equivalently,M =M0|[[θ]], i.e. M can be obtained by
updating its initial modelM0 with some formula in L−^. A formula ϕ is APALM valid (or valid, for short) if it is true in
every current state s ∈ W (i.e. [[ϕ]]M = W) of every announcement modelM = (W0, W,∼1, . . . ,∼n, ‖ · ‖) .

Given this definition and the semantics, the following fact is obvious:

Lemma 7. IfM = (W0, W,∼1, . . . ,∼n, ‖ · ‖) is an a-model and θ ∈ L−^ is a formula such thatM =M0|[[θ]], then for all
formulas ϕ ∈ L, we have:

[[ϕ]]M = [[(〈θ〉ϕ)0]]M.

More generally, for all formulas ρ ∈ L−^, we have:

[[ρ ∧ ϕ]]M = [[〈ρ〉(〈θ〉ϕ)0]]M.

Proof. The first identity follows from the sequence of equalities: [[(〈θ〉ϕ)0]]M = [[〈θ〉ϕ]]M0 = [[ϕ]]M0 |[[θ]] = [[ϕ]]M, where
we used first the semantics of ψ0 and then the semantics of 〈θ〉ϕ.

For the second identity, we use the first one to get the equalities: [[〈ρ〉(〈θ〉ϕ)0]]M = [[〈ρ〉(〈θ〉ϕ)0]]M0 |[[θ]] = [[(〈θ〉ϕ)0]](M0 |[[θ]])|[[ρ]] =

[[(〈θ〉ϕ)0]]M0 |[[〈θ〉ρ]] = [[〈θ〉ϕ]]M0 ∩ [[〈θ〉ρ]]M0 = [[ϕ]]M0 |[[θ]] ∩ [[ρ]]M0 |[[θ]] = [[ϕ]]M ∩ [[ρ]]M = [[ρ ∧ ϕ]]M, where at key points
we used the semantics of 〈ρ〉ψ, then Lemma 5, then the semantics of ψ0 in the modelM0|[[〈θ〉ρ]] (whose set of worlds is
given by [[〈θ〉ρ]]M0 ), then the semantics of 〈θ〉ψ. �

Example 8. Consider the a-modelM = (W0, W,∼a,∼b, ‖ · ‖) given in Figure 1, where the initial states include all the
nodes of the graph and the current states are the nodes in the shaded area. It is easy to see that the current domain W is
obtained by updating the initial domain by K̂b p: the shaded area corresponds to [[K̂b p]]M0 . The representation in Figure
1 makes it clear that the a-model does not lose the initial domain and specifies the current domain as a subset of the initial
one. Since W0 , W (the shaded area does not cover the whole initial domain), 0 is false everywhere in the model, that is,
[[0]] = ∅. Moreover, while K̂bK̂aKbr was initially true at w, it currently is not: w ∈ [[(K̂bK̂aKbr)0]] but w < [[K̂bK̂aKbr]] (as
[[r]] = ∅).

2.2 An Analysis of Kuijer’s counterexample
The language of APAL is defined recursively as

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | 〈ϕ〉ϕ | ^ϕ

where p ∈ Prop. In APAL, � quantifies only over updates with epistemic formulas. More precisely, the APAL semantics
of � is given by

w ∈ [[�ϕ]] iff w ∈ [[[θ]ϕ]] for every θ ∈ Lepi,
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w
p

p

r

a

b

b a

a

Figure 1: An a-modelM. All nodes in the graph are initial states, while the current states are the nodes in
shaded areas. Valuation is given by labeling the nodes, and epistemic relations by labeling arrows with agent
names.

whereLepi is the sublanguage generated from propositional variables p ∈ Prop using only the Boolean connectives ¬ and
∧, and the epistemic operators Ki. The finitary �-introduction rule proposed for the original APAL: “from ψ → [θ][p]ϕ,
infer ψ→ [θ]�ϕ (where p < Pψ ∪ Pθ ∪ Pϕ)” [6, p. 323].

Kuijer’s counterexample [24] shows the unsoundness of this rule, by taking the formula γ := p ∧ K̂b¬p ∧ K̂aKb p,
and showing that [K̂b p]�¬γ → [q]¬γ is valid in APAL models, i.e., in multi-agent epistemic models with equivalence
relations. (In fact, it is also valid in our a-models.) By the above �-intro rule, the formula [K̂b p]�¬γ → �¬γ should also
be valid. But this is contradicted by the modelM in Figure 2:

w
p

p

u1

u2

r

a

b

b a

a

Figure 2: An epistemic model M. Worlds are nodes in the graph (e.g. w, u1, u2), valuation is given by
labeling the nodes with the true atoms (e.g. p and r), and epistemic relations are given by labeled arrows.

The premise [K̂b p]�¬γ is true at w inM, since �¬γ holds at w in the updated modelM|[[K̂b p]] in Figure 3a: indeed,
the only way to falsify �¬γ in Figure 3a would be by deleting the node u2 while keeping (at least) node u1. But in
M|[[K̂b p]], u1 and u2 cannot be separated by epistemic sentences: they are bisimilar!

In contrast, the conclusion �¬γ is false at w in the original model M, since there u1 and u2 could be separated.
Indeed, we could perform an alternative update with the formula p ∨ K̂ar, yielding the epistemic modelM|[[p ∨ K̂ar]] in
Figure 3b, where γ is true at w (so that �¬γ was false inM).

To see that the counterexample does not apply to APALM, notice that a-models keep track of the initial states. The
a-model corresponding to our initial modelM is the one drawn in Figure 4 - where the initial states and current states are
the same:

The updated a-modelM|[[K̂b p]] (consisting now of the initial structure together with current set of worlds W from
Figure 3a) is now drawn in Figure 5a, where the nodes in the shaded area are the current states. But in this a-model, �¬γ
is no longer true at w (and so the premise [K̂b p]�¬γ was not true inM when considered as an a-model!). Indeed, we can
perform a new update of the a-modelM|[[K̂b p]] with the formula (p ∨ K̂ar)0, which yields the updated a-model given in
Figure 5b.

Note that, in this new model, γ is the case at w (- thus showing that �¬γ was not true at w in M|[[K̂b p]]). So the
counterexample simply does not work for APALM.
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w
p

p

u1

u2

a

b

b

(a)M|[[K̂b p]]

w
p

p

u1

r

a

b a

(b)M|[[p ∨ K̂ar]]

Figure 3: Two updates ofM.

w
p

p

u1

u2

r

a

b

b a

a

Figure 4: M as an a-model. As before, initial states are all nodes in the graph and current states are repre-
sented by the nodes in the shaded area. So this is an initial model: all initial states are current states.

w
p

p

u1

u2

r

a

b

b a

a

(a)M|[[K̂b p]], whenM is an a-model

w
p

p

u1

u2

r

a

b

b

a

a

a

(b) (M|[[K̂b p]])|[[(p ∨ K̂ar)0)]]M|[[K̂b p]]

Figure 5: Two updates ofM, whenM is an a-model. Initial states are nodes in the graphs and current states
are represented by the nodes in shaded areas.
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Moreover, we can see that the unsoundness of �-introduction rule for APAL has to do with its lack of memory, which
leads to information loss after updates: while initially (inM) there were epistemic sentences (e.g. p ∨ K̂ar) that could
separate u1 and u2 , there are no such sentences after the update.

APALM solves this by keeping track of the initial states, and referring back to them, as in (p ∨ K̂ar)0.

2.3 Axiomatization
Table 1 presents a complete proof system APALM for our logic APALM (where recall that Pϕ is the set of propositional
variables in ϕ).

The notion of derivation, denoted by `, in APALM is defined as usual. Thus, ` ϕ means ϕ is a theorem of APALM.
For any set of formulas Γ ⊆ L and any ϕ ∈ L, we write Γ ` ϕ if there exists a finitely many formulas ϕ1, . . . ,ϕn ∈ Γ such
that ` (ϕ1 ∧ · · · ∧ϕn)→ ϕ. We say that Γ is APALM-consistent if Γ 0 ⊥, and APALM-inconsistent otherwise.20 We drop
mention of the logic APALM when it is clear from the context.

Intuitive Reading of the Axioms Parts (I) and (II) should be obvious. The axiom R[>] says that updating with tautologies
is redundant. The reduction laws that do not contain 0, U or 0 are well-known PAL axioms. RU is the natural reduction
law for the universal modality. The axiom R0 says that the truth value of ϕ0 formulas stays the same in time (because the
superscript 0 serves as a time stamp), so they can be treated similarly to atoms. Ax0 says that 0 was initially the case,
and R0 says that at any later stage (after any update) 0 can only be true if it was already true before the update and the
update was trivial (universally true). Together, these two say that the constant 0 characterizes states where no non-trivial
communication has occurred. Axiom 0-U is a synchronicity constraint: if no non-trivial communication has taken place
yet, then this is the case in all the currently possible states. Axiom 0-eq says that initially, ϕ is equivalent to its initial
correspondent ϕ0. The Equivalences with 0 express that 0 distributes over negation and over conjunction. Imp0

� says that
if initially ϕ was stably true (under any further announcements), then ϕ is the case now. Taken together, the elimination
axiom [!]�-elim and introduction rule [!]�-intro say that ϕ is a stable truth after an announcement θ iff ϕ stays true after
any more informative announcement (of the form θ ∧ ρ). 21

Proposition 9. The following schemas and rules are derivable in APALM, for ϕ,ψ, χ ∈ L and θ ∈ L−^:22

1. from ` ϕ↔ ψ, infer ` [θ]ϕ↔ [θ]ψ

2. ` 〈θ〉0↔ (0 ∧ Uθ)

3. ` 〈θ〉ψ↔ (θ ∧ [θ]ψ)

4. (�-elim): ` �ϕ→ [θ]ϕ

5. (�-intro): from ` χ → [p]ϕ, infer ` χ → �ϕ
(p < Pχ ∪ Pϕ)

6. all S 4 axioms and rules for �

7. ` (ϕ→ ψ)0 ↔ (ϕ0 → ψ0)

8. ` ϕ00 ↔ ϕ0

9. ` �ϕ0 ↔ ϕ0, and ` ^ϕ0 ↔ ϕ0

10. ` (�ϕ)0 → �ϕ0

11. ` (0 ∧ ^ϕ0)→ ϕ

12. ` ϕ→ (0 ∧ ^ϕ)0

13. ` ϕ→ ψ0 if and only if ` (0 ∧ ^ϕ)→ ψ

14. ` [θ](ψ ∧ ϕ)↔ ([θ]ψ ∧ [θ]ϕ)

15. ` [θ][p]ψ↔ [θ ∧ p]ψ

16. ` [θ]⊥ ↔ ¬θ

We arrive now at one of the main results of our paper.

Theorem 10 (Soundness and Completeness of APALM). APALM validities are recursively enumerable. Indeed, the
axiom system APALM in Table 1 is sound and complete wrt a-models.

Soundness is proved in Section 4, and completeness in Section 5.

20Notions of derivation and (in)consistent sets for GALM studied in Section 3 are defined similarly.
21The “freshness” of the variable p ∈ P in the rule [!]�-intro ensures that it represents any generic announcement.
22See Appendix A.2 for proof.
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(I) Basic Axioms of system APALM:
(CPL) all classical propositional tautologies and Modus Ponens
(S5Ki ) all S 5 axioms and rules for knowledge operator Ki

(S5U) all S 5 axioms and rules for U operator
(U-Ki) Uϕ→ Kiϕ

(II) Axioms and rules for dynamic modalities [!]:
(K!) Kripke’s axiom for [!]: [θ](ψ→ ϕ)→ ([θ]ψ→ [θ]ϕ)
(Nec!) Necessitation for [!]: from ϕ, infer [θ]ϕ.
(RE) Replacement of Equivalents [!]: from θ ↔ ρ, infer [θ]ϕ↔ [ρ]ϕ.
Reduction laws:
(R[>]) [>]ϕ↔ ϕ
(Rp) [θ]p↔ (θ → p)
(R¬) [θ]¬ψ↔ (θ → ¬[θ]ψ)
(RKi ) [θ]Kiψ↔ (θ → Ki[θ]ψ)
(R[!]) [θ][ρ]χ↔ [〈θ〉ρ]χ

(R0) [θ]ϕ0 ↔ (θ → ϕ0)
(RU) [θ]Uϕ↔ (θ → U[θ]ϕ)
(R0) [θ]0↔ (θ → (Uθ ∧ 0))

(III) Axioms and rules for >, 0, and initial operator 0:
(Ax0) 00

(0-U) 0→ U0
(0-eq) 0→ (ϕ↔ ϕ0)
(Nec0) Necessitation for 0: from ϕ, infer ϕ0

Equivalences with 0:
(Eq0

p) p0 ↔ p
(Eq0

¬) (¬ϕ)0 ↔ ¬ϕ0

(Eq0
∧) (ϕ ∧ ψ)0 ↔ (ϕ0 ∧ ψ0)

Implications with 0:
(Imp0

U) (Uϕ)0 → Uϕ0

(Imp0
i ) (Kiϕ)0 → Kiϕ

0

(Imp0
�) (�ϕ)0 → ϕ

(III) Elim-axiom and Intro-rule for �:
([!]�-elim) [θ]�ϕ→ [θ ∧ ρ]ϕ
([!]�-intro) from χ→ [θ ∧ p]ϕ, infer χ→ [θ]�ϕ (for p < Pχ ∪ Pθ ∪ Pϕ).

Table 1: The axiomatization APALM. (Here, ϕ,ψ, χ ∈ L, while θ, ρ ∈ L−^.)

2.4 Expressivity: Comparisons and Bisimulation
To compare APALM and its fragments with basic epistemic logic (and its extension with the universal modality), consider
the static fragment L−^,〈!〉, obtained from L by removing both ^ operator and the dynamic modality 〈ϕ〉ψ; as well as the
present-only fragmentL−^,〈!〉,0,ϕ0 , obtained by removing operators 0 and ϕ0 fromL−^,〈!〉; and finally the epistemic fragment
Lepi, obtained by removing U from L−^,〈!〉,0,ϕ0 .

For every a-modelM = (W0, W,∼1, . . . ,∼n, ‖ · ‖), consider its initial epistemic modelMinitial = (W0,∼1, . . . ,∼n, ‖ · ‖)
and its current epistemic modelMcurrent = (W,∼1 ∩ (W ×W), . . . ,∼n ∩ (W ×W), ‖ · ‖ ∩W).

Proposition 11. The fragment L−^ is co-expressive with the static fragment L−^,〈!〉. In fact, every formula ϕ ∈ L−^ is
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provably equivalent to some formula ψ ∈ L−^,〈!〉 (by using APALM reduction laws, given in Table 1 to eliminate dynamic
modalities, as in standard PAL).

Proof. Use step-by-step the reduction axioms (given in Table 1, Section 2.3), as a rewriting process, and prove termination
by <-induction on ϕ by using Lemma 1. �

Proposition 12. The static fragment L−^,〈!〉 (and hence, also L−^) is strictly more expressive than the present-only
fragment L−^,〈!〉,0,ϕ0 , which in turn is more expressive than the epistemic fragment Lepi. In fact, each of the operators 0
and ϕ0 independently increase the expressivity of L−^,〈!〉,0,ϕ0 .

Proof. Consider the a-model in Figure 5a: while u1 and u2 are indistinguishable for L−^,〈!〉,0,ϕ0 , the sentence (p ∨ K̂ar)0

distinguishes the two. This shows that L−^,〈!〉,0 is strictly more expressive than L−^,〈!〉,0,ϕ0 . To see that L−^,〈!〉,ϕ0 is strictly
more expressive than L−^,〈!〉,0,ϕ0 , we just need to consider two a-models M1 = (W0, W,∼1, . . . ,∼n, ‖ · ‖) and M2 =

(W, W,∼1 ∩ (W × W), . . . ,∼n ∩ (W × W), ‖ · ‖) such that W ⊂ W0. As both models have the same underlying current
models, they make the same formulas of L−^,〈!〉,0,ϕ0 true at the same states in W. However, only the latter makes 0 true (at
every state) since it is an initial model. Finally, note that the present-only fragment, L−^,〈!〉,0,ϕ0 , is precisely the extension
of Lepi with the universal modality and it is well-known that Lepi is strictly less expressive than its extension with the
universal modality (see, e.g., [15, Chapter 7.1]). Thus, L−^,〈!〉,0,ϕ0 is more expressive than Lepi. �

Kuijer’s counterexample presented in Section 2.2 shows that the standard epistemic bisimulation is not appropriate
for APALM. In the following, we define an appropriate notion of bisimulation for APALM that leads to modal invariance
and Hennessy-Milner property. We then also compare the expressive power of L^ and the static fragment L−^,〈!〉 in
Proposition 19, whose proof uses the notion of APALM bisimulation.

Definition 13 (Total/APALM Bisimulation). • A total bisimulation between epistemic models (W,∼1, . . . ,∼n, ‖ · ‖)
and (W ′,∼′1, . . . ,∼′n, ‖ · ‖′) is a non-empty binary relation B ⊆ W ×W ′ such that

1. if sBs′, then s ∈ ‖p‖ iff s′ ∈ ‖p‖′ for all p ∈ Prop,

2. if sBs′ and s ∼i t, then there exists t′ ∈ W ′ such that tBt′ and s′ ∼i t′ (the forth condition),

3. if sBs′ and s′ ∼′i t′, then there exists t ∈ W such that tBt′ and s ∼i t (the back condition), and

4. for every s ∈ W there exists some s′ ∈ W ′ with sBs′; and dually, for every s′ ∈ W ′ there exists some s ∈ W
with sBs′.

• An APALM bisimulation between a-modelsM1 = (W0
1 , W1,∼1, . . . ,∼n, ‖ · ‖1) andM2 = (W0

2 , W2,∼′1, . . . ,∼′n, ‖ · ‖2)
is a total bisimulation B (as defined above) between the corresponding initial epistemic modelsMinitial

1 andMinitial
2 ,

with the property that: if s1Bs2, then s1 ∈ W1 iff s2 ∈ W2 . Two current states s1 ∈ W1 and s2 ∈ W2 are APALM-
bisimilar if there exists an APALM bisimulation B between the underlying a-models such that s1Bs2.

Since a-models are always of the form M = M0|[[θ]] for some θ ∈ L−^, we have a characterization of APALM-
bisimulation only in terms of the initial models as stated in Proposition 16. To prove Propositions 16 and 18, we need the
following auxiliary Lemmas 14 and 15.

Lemma 14. Let B be a total epistemic bisimulation between initial epistemic modelsMinitial
1 andMinitial

2 (or equivalently,
an APALM-bisimulation between initial a-modelsM0

1 andM0
2), and let s1 ∈ W0

1 , s2 ∈ W0
2 be two initial states such that

s1Bs2. Then we have
s1 ∈ [[α]]M0

1
iff s2 ∈ [[α]]M0

2

for all formulas α ∈ L−^.

Proof. By Proposition 11, it is enough to prove the claim for all formulas α ∈ L−^,〈!〉. Let B be an APALM bisimula-
tion between initial a-models M0

1 and M0
2. The proof is by subformula induction on α, using the following induction

hypothesis (IH): for all β ∈ S ub(α), we have s1 ∈ [[β]]M0
1

iff s2 ∈ [[β]]M0
2

for all s1 ∈ W0
1 , s2 ∈ W0

2 such that s1Bs2.

Base case α := p: Since s1Bs2, s1 ∈ [[p]]M0
1

iff s2 ∈ [[p]]M0
2

follows by Definition 13, valuation condition.
Base case α := >: Since s1 ∈ W0

1 = [[>]]M0
1

and s2 ∈ W0
2 = [[>]]M0

2
, we trivially obtain that s1 ∈ [[>]]M0

1
iff s2 ∈

[[>]]M0
2
.
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Base case α := 0: Since M0
1 and M0

2 are initial a-models, by the semantics, we have s1 ∈ W0
1 = [[0]]M0

1
and

s2 ∈ W0
2 = [[0]]M0

2
. We therefore trivially obtain that s1 ∈ [[0]]M0

1
iff s2 ∈ [[0]]M0

2
.

Case α := β ∧ γ and α := ¬β follow straightforwardly by the semantics and IH.

In the following sequence of equivalencies, we make repeated use of the semantic clauses in Definition 3.

Case α := β0

s1 ∈ [[β0]]M0
1

iff s1 ∈ [[β]]M0
1
∩W0

1 iff s2 ∈ [[β]]M0
2
∩W0

2 (by IH and s2 ∈ W0
2 ) iff s2 ∈ [[β0]]M0

2
.

Case α := Uβ
s1 ∈ [[Uβ]]M0

1
iff ∀s ∈ W0

1 , s ∈ [[β]]M0
1

iff ∀s′ ∈ W0
2 , s′ ∈ [[β]]M0

2
(since B is total and IH) iff s2 ∈ [[Uβ]]M0

2
.

Case α := Kiβ

s1 ∈ [[Kiβ]]M0
1

iff (∀s ∈ W0
1 )(s ∼i s1 implies s ∈ [[β]]M0

1
) iff (∀s ∈ W0

2 )(s ∼′i s2 implies s ∈ [[β]]M0
2
) (back and forth

condition, IH) iff s2 ∈ [[Kiβ]]M0
2
. �

Lemma 15. Let B be a total epistemic bisimulation between initial epistemic modelsMinitial
1 andMinitial

2 (or equivalently,
an APALM-bisimulation between initial a-modelsM0

1 andM0
2), and let s1 ∈ W0

1 , s2 ∈ W0
2 be two initial states such that

s1Bs2. Then, for all ϕ ∈ L, we have
s1 ∈ [[〈α〉ϕ]]M0

1
iff s2 ∈ [[〈α〉ϕ]]M0

2

for all formulas α ∈ L−^.

Proof. Let B be an APALM bisimulation between initial a-models M0
1 and M0

2. The proof goes by <-induction on ϕ,
using Lemma 1. We assume the following induction hypothesis: for all ψ < ϕ in L and all states s1 ∈ W0

1 , s2 ∈ W0
2 with

s1Bs2, we have: s1 ∈ [[〈α〉ψ]]M0
1

iff s2 ∈ [[〈α〉ψ]]M0
2
, for all α ∈ L−^.

Base cases ϕ := p, ϕ := >, and ϕ := 0 follow directly from Lemma 14 and the fact that the formulas 〈α〉p, 〈α〉>, and
〈α〉0 are in L−^.

In the following sequence of equivalencies, we make repeated use of the semantic clauses in Definition 3.

Case ϕ := ψ0

s1 ∈ [[〈α〉ψ0]]M0
1

iff s1 ∈ [[ψ0]]M0
1 |[[α]]

M0
1

iff s1 ∈ [[ψ]]M0
1
∩ [[α]]M0

1
(sinceM0

1|[[α]]M0
1

= (W0
1 , [[α]]M0

1
,∼1, . . . ,∼n, ‖ ·‖1)) iff s2 ∈

[[ψ]]M0
2
∩ [[α]]M0

2
(by IH, Lemma 14: α ∈ L−^) iff s2 ∈ [[ψ0]]M0

2 |[[α]]
M0

2

(sinceM0
2|[[α]]M0

2
= (W0

2 , [[α]]M0
2
,∼′1, . . . ,∼′n, ‖ · ‖2))

iff s2 ∈ [[〈α〉ψ0]]M0
2
.

Cases ϕ := Kiψ and ϕ := Uψ follow similarly as in Lemma 14. We spell out here only the case ϕ := Uψ. We have
two sub-cases:

Sub-case [[α]]M0
1

= ∅: This implies that s1 < [[α]]M0
1
, thus, by Lemma 14, s2 < [[α]]M0

2
. Therefore, s1 < [[〈α〉Uψ]]M0

1
and s2 < [[〈α〉Uψ]]M0

2
. This implies that, if s1 ∈ [[〈α〉Uψ]]M0

1
then s2 ∈ [[〈α〉Uψ]]M0

2
(as the antecedent is false).

Sub-case [[α]]M0
1
, ∅: Observe that s1 ∈ [[〈α〉Uψ]]M0

1
iff s1 ∈ [[Uψ]]M0

1 |[[α]]
M0

1

iff ∀s ∈ [[α]]M0
1
, s ∈ [[ψ]]M0

1 |[[α]]
M0

1

iff ∀s ∈

[[α]]M0
1
, s ∈ [[〈α〉ψ]]M0

1
. Suppose that s1 ∈ [[〈α〉Uψ]]M0

1
and let s′ ∈ [[α]]M0

2
. Since B is a total bisimulation, there is

s′1 ∈ W0
1 such that s′1Bs′. Since α ∈ L−^, by Lemma 14, we have s′1 ∈ [[α]]M0

1
. Then, by the above observation, we have

s′1 ∈ [[〈α〉ψ]]M0
1
. Thus, by IH, we obtain that s′ ∈ [[〈α〉ψ]]M0

2
. As s2 ∈ W0

2 , we then conclude, via similar steps as in the
above observation, that s2 ∈ [[〈α〉Uψ]]M0

2
. The other direction is similar. For the case ϕ := Kiψ, we also use the back and

forth conditions of B.

Case ϕ := 〈θ〉ψ uses the validity of the formula 〈α〉〈θ〉ψ↔ 〈〈α〉θ〉ψ which can be easily verified.
s1 ∈ [[〈α〉〈θ〉ψ]]M0

1
iff s1 ∈ [[〈〈α〉θ〉ψ]]M0

1
(by |= 〈α〉〈θ〉ψ ↔ 〈〈α〉θ〉ψ) iff s2 ∈ [[〈〈α〉θ〉ψ]]M0

2
(IH, using ψ < 〈θ〉ψ) iff s2 ∈

[[〈α〉〈θ〉ψ]]M0
2
.

Case ϕ := ^ψ
s1 ∈ [[〈α〉^ψ]]M0

1
iff s1 ∈ [[^ψ]]M0

1 |[[α]]
M0

1

iff s1 ∈
⋃

θ∈L−^ [[〈θ〉ψ]]M0
1 |[[α]]

M0
1

iff s1 ∈
⋃

θ∈L−^ [[〈α〉〈θ〉ψ]]M0
1

iff s2 ∈
⋃

θ∈L−^ [[〈α〉〈θ〉ψ]]M0
2

(IH, 〈θ〉ψ < ^ψ) iff s2 ∈
⋃

θ∈L−^ [[〈θ〉ψ]]M0
2 |[[α]]

M0
2

iff s2 ∈ [[^ψ]]M0
2 |[[α]]

M0
2

iff s2 ∈ [[〈α〉^ψ]]M0
2
. �
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Proposition 16. Let M1 = (W0
1 , W1,∼1, . . . ,∼n, ‖ · ‖1) and M2 = (W0

2 , W2,∼′1, . . . ,∼′n, ‖ · ‖2) be a-models, and let B ⊆
W0

1 ×W0
2 . The following are equivalent:

1. B is an APALM bisimulation betweenM1 andM2;

2. B is a total epistemic bisimulation betweenMinitial
1 andMinitial

2 (or equivalently, an APALM bisimulation between
M0

1 andM0
2), andM1 =M0

1|[[θ]]M0
1
,M2 =M0

2|[[θ]]M0
2

for some common formula θ ∈ L−^.

Proof. (1)→ (2): Let B be an APALM bisimulation betweenM1 andM2. Then it is obvious (from the definition) that B
is also a total bisimulation betweenMinitial

1 andMinitial
2 . SinceM1 andM2 are a-models, there must exist θ1, θ2 ∈ L−^ s.t.

M1 =M0
1|[[θ1]]M0

1
,M2 =M0

2|[[θ2]]M0
2
. Hence, W1 = [[θ1]]M0

1
and W2 = [[θ2]]M0

2
. To show that [[θ1]]M0

1
= [[θ2]]M0

1
, let first

s1 ∈ [[θ1]]M0
1

= W1. By the definition of APALM bisimulation, there must exist s2 ∈ W0
2 such that s1Bs2. Again by the

definition, s1 ∈ W1 implies that s2 ∈ W2 = [[θ2]]M0
2
. This, together with s1Bs2, gives us by Lemma 14 that s1 ∈ [[θ2]]M0

1
.

For the converse, let s1 ∈ [[θ2]]M0
1
; by the definition of APALM bisimulation, there must exist s2 ∈ W0

2 such that s1Bs2.
By Lemma 14, we have s2 ∈ [[θ2]]M0

2
= W2, and again by the definition of APALM bisimulation (and the fact that s1Bs2),

this implies that s1 ∈ W1 = [[θ1]]M0
1
. Given thatM1 =M0

1|[[θ1]]M0
1

andM2 =M0
2|[[θ2]]M0

2
such that [[θ1]]M0

1
= [[θ2]]M0

1
, we

can take θ := θ2. ThenM1 =M0
1|[[θ1]]M0

1
=M0

1|[[θ2]]M0
1
.

(2) → (1): Suppose that B is a total bisimulation betweenMinitial
1 andMinitial

2 , andM1 = M0
1|[[θ]]M0

1
,M2 = M0

2|[[θ]]M0
2

for some common formula θ ∈ L−^. Hence, W1 = [[θ]]M0
1

and W2 = [[θ]]M0
2
. We need to verify that M1 and M2 are

APALM-bisimilar. For this we just need to verify the property that if s1Bs2, then s1 ∈ W1 holds iff s2 ∈ W2 holds.
Suppose s1Bs2 and let s1 ∈ W1 = [[θ]]M0

1
⊆ W0

1 . By the totality of the bisimulation B, there must exist some s2 ∈ W0
2 with

s1Bs2. By Lemma 14, s1 ∈ [[θ]]M0
1

implies that s2 ∈ [[θ]]M0
2

= W2. The converse is analogous. �

So, to check for APALM-bisimilarity, it is enough to check for total bisimilarity between the initial models and for
both models being updates with the same formula.

Next, we verify that this is indeed the appropriate notion of bisimulation.

Corollary 17. APALM formulas are invariant under APALM-bisimulation: if s1Bs2 for some APALM-bisimulation
relation B between a-modelsM1 = (W0

1 , W1,∼1, . . . ,∼n, ‖ · ‖1) andM2 = (W0
2 , W2,∼′1, . . . ,∼′n, ‖ · ‖2), then: s1 ∈ [[ϕ]]M1 iff

s2 ∈ [[ϕ]]M2 for all ϕ ∈ L.

Proof. Let B be some APALM-bisimulation relation between a-models M1 = (W0
1 , W1,∼1, . . . ,∼n, ‖ · ‖1) and M2 =

(W0
2 , W2,∼′1, . . . ,∼′n, ‖ · ‖2). By Proposition 16, there exists some formula θ ∈ L−^ such that M1 = M0

1|[[θ]]M0
1
, M2 =

M0
2|[[θ]]M0

2
. By the same proposition, B is a total epistemic bisimulation between the initial epistemic modelsMinitial

1 and
Minitial

2 . Thus, for every formula ϕ, we have the sequence of equivalences: s1 ∈ [[ϕ]]M1 iff s1 ∈ [[〈θ〉ϕ]]M0
1

iff (by Lemma
15) s2 ∈ [[〈θ〉ϕ]]M0

2
iff s2 ∈ [[ϕ]]M2 . �

Proposition 18 (Hennessy-Milner). Let M1 = (W0
1 , W1,∼1, . . . ,∼n, ‖ · ‖1) and M2 = (W0

2 , W2,∼′1, . . . ,∼′n, ‖ · ‖2) be a-
models with W0

1 and W0
2 finite. Then, s1 ∈ W1 and s2 ∈ W2 satisfy the same APALM formulas iff they are APALM-bisimilar.

Proof. We only need to prove the left-to-right direction. Let s1 ∈ W1 and s2 ∈ W2 such that for all ϕ ∈ L, s1 ∈

[[ϕ]]M1 iff s2 ∈ [[ϕ]]M2 . This implies that for all ϕ ∈ L, s1 ∈ [[ϕ]]M0
1

iff s2 ∈ [[ϕ]]M0
2
. To see this, let ϕ ∈ L such that

s1 ∈ [[ϕ]]M0
1
. This means, by the semantics, that s1 ∈ [[ϕ0]]M1 . As s1 in M1 and s2 in M2 satisfy the same APALM

formulas, we obtain that s2 ∈ [[ϕ0]]M2 , thus, s2 ∈ [[ϕ]]M0
2
. The opposite direction is analogous. We then show that the

modal equivalence relation in W0
1 × W0

2 between the models M0
1 and M0

2 is an APALM bisimulation. We thus need to
show the following:

• (Totality) For all s ∈ W0
1 , there exists s′ ∈ W0

2 such that, s ∈ [[ϕ]]M0
1

iff s′ ∈ [[ϕ]]M0
2

for all ϕ ∈ L, and for all
s′ ∈ W0

2 , there exists s ∈ W0
1 such that s ∈ [[ϕ]]M0

1
iff s′ ∈ [[ϕ]]M0

2
for all ϕ ∈ L.

Let s ∈ W0
1 and suppose, toward contradiction, that for no element s′ of W0

2 we have that s ∈ [[ϕ]]M0
1

iff s′ ∈ [[ϕ]]M0
2

for all ϕ ∈ L. Since W0
2 is finite, we can list its elements W0

2 = {w1, w2, . . . , wn}. The first assumption then implies
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that for all wi ∈ W0
2 , there exists ψi ∈ L such that s ∈ [[ψi]]M0

1
but wi < [[ψi]]M0

2
. Thus, s1 ∈ [[E(ψ1 ∧ · · · ∧ ψn)]]M0

1

but s2 < [[E(ψ1 ∧ · · · ∧ ψn)]]M0
2
, contradicting the assumption that s1 inM0

1 and s2 inM0
2 satisfy the same APALM

formulas. The second clause follows similarly.

• (Valuation) This follows immediately from modal equivalence.

• (Forth for ∼i) Let w1, w′1 ∈ W0
1 and w2 ∈ W0

2 such that w1 ∈ [[ϕ]]M0
1

iff w2 ∈ [[ϕ]]M0
2

for all ϕ ∈ L and w1 ∼i

w′1. Suppose, toward contradiction, that for no element w′2 ∈ W0
2 with w2 ∼

′
i w′2, M0

1, w′1 and M0
2, w′2 satisfy the

same APALM formulas. Since W0
2 is finite, the set ∼′i (w2) = {t ∈ W0

2 : w2 ∼
′
i t} is finite, thus, we can write ∼′i (w2) =

{t1, . . . , tk}. As in the proof of (Totality), the assumption implies that for all t j with w2 ∼
′
i t j, there exists ψ j ∈ L

such that w′1 ∈ [[ψ j]]M0
1

but t j < [[ψ j]]M0
2
. Therefore, w1 ∈ [[K̂i(ψ1 ∧ · · · ∧ ψk)]]M0

1
but w2 < [[K̂i(ψ1 ∧ · · · ∧ ψk)]]M0

2
,

contradicting the assumption thatM0
1, w1 andM0

2, w2 satisfy the same APALM formulas. Back condition for ∼i

follows analogously.

We have therefore proven that the modal equivalence relation in W0
1 × W0

2 between the models M0
1 and M0

2 is an
APALM bisimulation betweenM0

1 andM0
2. By Proposition 16, it suffices to further prove thatM1 = M0

1|[[θ]]M0
1
,M2 =

M0
2|[[θ]]M0

2
for some common formula θ ∈ L−^. It then suffices to show that [[θ1]]M0

2
= [[θ2]]M0

2
, where W1 = [[θ1]]M0

1
and

W2 = [[θ2]]M0
2
.

• [[θ2]]M0
2
⊆ [[θ1]]M0

2
: Observe that s1 ∈ [[Uθ0

1]]M1 , since W1 = [[θ1]]M0
1
. Moreover, as M1, s1 and M2, s2 satisfy

the same APALM formulas, we obtain that s2 ∈ [[Uθ0
1]]M2 . Therefore, for all y ∈ [[θ2]]M0

2
, we have y ∈ [[θ0

1]]M2 ,
implying that y ∈ [[θ1]]M0

2
. Hence, [[θ2]]M0

2
⊆ [[θ1]]M0

2
.

• [[θ1]]M0
2
⊆ [[θ2]]M0

2
: Observe that s2 ∈ [[Uθ0

2]]M2 , since W2 = [[θ2]]M0
2
. Moreover, asM1, s1 andM2, s2 satisfy the

same APALM formulas, we obtain that s1 ∈ [[Uθ0
2]]M1 . Now suppose, toward contradiction, that [[θ1]]M0

2
6⊆ [[θ2]]M0

2
,

i.e., there is y ∈ W0
2 such that y ∈ [[θ1]]M0

2
but y < [[θ2]]M0

2
. By the totality of the modal equivalence relation, there

exists x ∈ W0
1 such that x ∈ [[θ1]]M0

1
but x < [[θ2]]M0

1
. The former implies that x ∈ W1. Therefore, by the latter, we

have that x < [[θ0
2]]M1 . This implies, since s1, x ∈ W1, that s1 < [[Uθ0

2]]M1 , contradicting s1 ∈ [[Uθ0
2]]M1 .

Therefore, we obtain that [[θ1]]M0
2

= [[θ2]]M0
2
. Given that M1 = M0

1|[[θ1]]M0
1

and M2 = M0
2|[[θ2]]M0

2
such that [[θ1]]M0

2
=

[[θ2]]M0
2
, we can take θ := θ1. ThenM2 =M0

2|[[θ2]]M0
2

=M0
2|[[θ1]]M0

2
. �

As a last result in this section, we compare the expressive powers of L and L−^.

Proposition 19. L is strictly more expressive than L−^ and, therefore, than the static fragment L−^,〈!〉.

Proof. By Proposition 11, it suffices to show that L is strictly more expressive than L−^,〈!〉. Wlog, we assume that
AG = {a, b}. The proof follows by a similar argument as in [6, Proposition 3.13] via contradiction: suppose that L and
L−^,〈!〉 are equally expressive for a-models, i.e., for all ϕ ∈ L there exists ψ ∈ L−^,〈!〉 such that |= ϕ ↔ ψ. Consider the
formula ^(Ka p ∧ ¬KbKa p) in L. By the assumption, there must be ψ ∈ L−^,〈!〉 such that |= ^(Ka p ∧ ¬KbKa p) ↔ ψ. To
reach the desired contradiction, we now construct two a-modelsM andM′ (similar to the ones in the proof in [6]) which
agree on ψ at the actual world but disagree on ^(Ka p ∧ ¬KbKa p). For this argument it is crucial to observe that any such
ψ contains only finitely many propositional variables. As we have countably infinitely many propositional variables, there
is a propositional variable q that does not occur in ψ (that is also different from p). Without loss of generality, suppose ψ is
built using only one variable p. Consider the a-modelsM = (W, W,∼a,∼b, ‖ · ‖) andM′ = (W ′, W ′,∼′a,∼′b, ‖ · ‖′) given in
Figure 6. It is easy to see that bothM andM′ are initial a-models. Moreover, they are also APALM-bisimilar with respect
to the language of APALM constructed from using only the propositional variable p and agents a and b. In particular, the
corresponding bisimulation relation is B = {(v0, w0), (v0, w2), (v1, w1), (v1, w3)}. Then, by Lemma 14, we have, e.g., that
v1 ∈ [[ψ]]M iff w1 ∈ [[ψ]]M′ . However, while v1 < [[^(Ka p ∧ ¬KbKa p)]]M, we have w1 ∈ [[^(Ka p ∧ ¬KbKa p)]]M′ , since
w1 ∈ [[〈p ∨ q〉(Ka p ∧ ¬KbKa p)]]M′ . �

All the expressivity results of this section are summarized by the diagram in Figure 7.
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v0 v1

p
a

(a)M

w0

w2
q

w1
p

w3
p, q

b

a

a

b

(b)M′

Figure 6: M = (W, W,∼a,∼b, ‖ · ‖) andM′ = (W ′, W ′,∼′a,∼′b, ‖ · ‖′) in Proposition 19.

L−^,〈!〉,0,ϕ0

L−^,〈!〉,ϕ0

L−^,〈!〉,0

L−^,〈!〉

L−^

LLepi

Figure 7: Expressivity diagram. Arrows point to the more expressive languages.

3 Group Announcement Logic with Memory
In this section we turn our focus on the Group Announcement Logic (GAL), and we propose a memory-enhanced version
GALM. As in the case of APALM, the addition (to both models and logic) of a memory of the initial states helps to
provide a recursive axiomatization, by re-establishing the soundness of the natural GAL inference rule (already proposed
in [1], but later shown to be unsound). Moreover, the same move makes possible the reduction of the related Coalition
Announcement Logic CAL (or more precisely, its memory-enhanced version CALM) to a fragment of GALM, via an
intuitively ‘obvious’ equivalence (-which was proved to be invalid on memory-free models, but becomes valid in the
memory-enhanced version).

3.1 GAL, CAL and their problems
Like APAL, Group Announcement Logic GAL (first introduced in [1]) is also an extension of PAL, involving group
announcement operators [G]ϕ and 〈G〉ϕ (instead of the arbitrary announcement operators �ϕ and ^ψ). More precisely,
the language of GAL is defined recursively as

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | 〈ψ〉ϕ | 〈G〉ϕ

where p ∈ Prop, i ∈ AG, and G ⊆ AG.
The group announcement operator can be seen as a restricted version of the arbitrary public announcement operator

in the sense that it quantifies only over updates with formulas of the form
∧

i∈G Kiθi, where θi ∈ Lepi and i ∈ G ⊆ AG.
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Ågotnes et al. [1] interpret the operator [G]ϕ on epistemic modelsM = (W,∼1, . . . ,∼n, ‖ · ‖) as

w ∈ [[[G]ϕ]] iff for every set {ψi : i ∈ G} ⊆ Lepi, w ∈ [[[
∧
i∈G

Kiψi]ϕ]]. (1)

This operator intends to capture communication among a group of agents and what a coalition can bring about via
public announcements. While GAL seems to provide more adequate tools than APAL to treat puzzles involving epistemic
dialogues, the axiomatization of GAL presented in [1] has a similar shape as the one for APAL in [6]. To recall, [1] proves
completeness of GAL also by using an infinitary rule and claims that it is replaceable in theorem-proving by the finitary
rule

from ϕ→ [θ][
∧
i∈G

Ki pi]ψ infer ϕ→ [θ][G]ψ, (R[G])

where pi < Pϕ ∪ Pψ ∪ Pθ. However, Kuijer’s counterexample presented in Section 2.2 constitutes a counterexample also
for the soundness of this rule. Consider again the formula γ := p ∧ K̂b¬p ∧ K̂aKb p and let G = {a}. We first show that

[K̂b p][G]¬γ → [Kaq]¬γ

is valid on epistemic models. For this, suppose that [K̂b p][G]¬γ → [Kaq]¬γ is not valid on epistemic models, i.e., that
there is an epistemic model N = (W,∼1, . . . ,∼n, ‖ · ‖) and w ∈ W such that w ∈ [[[K̂b p][G]¬γ]] but w < [[[Kaq]¬γ]]. The
latter means that w ∈ [[〈Kaq〉γ]]. Therefore, w ∈ [[Kaq]] and w ∈ [[γ]]N|[[Kaq]]. The latter implies that w ∈ ‖p‖ and there are
two states w1, w2 in N|[[Kaq]] such that (1) w1 is ∼b-connected to w and w1 < ‖p‖, and (2) w2 is ∼a-connected to w and
w2 ∈ [[Kb p]]N|[[Kaq]]. In other words, the model in Figure 8 is guaranteed to be a submodel of N|[[Kaq]].

w
p, q

p, q
w2

q
w1

a

b

Figure 8: Submodel of N|[[Kaq]]

Moreover, since w ∈ [[[K̂b p][G]¬γ]] and w ∈ [[K̂b p]], we also have that w ∈ [[[G]¬γ]]N|[[K̂b p]]. Recall that w ∈ [[Kaq]].
Therefore, neither w nor w2 have ∼a-access to a states in N that makes q false. Furthermore, since Kaq is a positive
knowledge formula, we have w ∈ [[Kaq]]N|θ for any θ such that w ∈ [[θ]]N . Then, w ∈ [[[G]¬γ]]N|[[K̂b p]] implies that
w ∈ [[¬γ]](N|[[K̂b p]])|[[Kaq]]

N|[[K̂b p]]
= [[¬γ]](N|[[〈K̂b p〉Kaq]]). It is not difficult to see that the model in Figure 8 is also a submodel

of N|[[〈K̂b p〉Kaq]] (recall that w1 is in N|[[Kaq]]), thus, w ∈ [[γ]](N|[[〈K̂b p〉Kaq]]). This contradicts the assumption that w ∈
[[[K̂b p][G]¬γ]]. Therefore, [K̂b p][G]¬γ → [Kaq]¬γ is indeed valid on epistemic models.

If the R[G]-rule were sound, then by applying it we obtain that

[K̂b p][G]¬γ → [G]¬γ

should be valid. But this is not the case: the modelM in Figure 2 constitutes a counterexample, since w ∈ [[[K̂b p][G]¬γ]]M,
but w ∈ [[〈KaK̂a(p ∨ r)〉γ]]M, and thus w < [[[G]¬γ]].

Coalition modality. A related operator is the coalition announcement modality 〈[G]〉ϕ that lies at the core of Coalition
Announcement Logic (CAL), introduced in [2]: this is a coalition logic in the style of [27], but where the actions that
agents can perform are restricted to public announcements. CAL is simply the extension of multi-agent epistemic logic
with such coalition announcement modalities. Ågotnes et al. [2] interpret 〈[G]〉ϕ on epistemic models M = (W,∼1

, . . . ,∼n, ‖ · ‖) as

w ∈ [[〈[G]〉ϕ]] iff ∃{ψi : i ∈ G} ⊆ Lepi ∀{ψ j : j ∈ AG −G} ⊆ Lepi, w ∈ [[
∧
i∈G

Kiψ ∧ [
∧

m∈AG

Kmψm]ϕ]]. (2)
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The semantics of group and coalition announcement operators suggests at the first sight that the latter might be defined
in terms of the former as 〈[G]〉ϕ↔ 〈G〉[AG −G]ϕ. However, this ‘obvious’ equivalence is proved to be invalid in [19].

Our diagnosis for the failure of this rather intuitive equivalence is the same as our explanation for the unsoundness
of the finitary �-introduction rule for APAL or GAL: the models’ lack of memory is the reason for the non-equivalence
between the coalition announcement operator 〈[G]〉ϕ (which expresses coalition G’s ability to bring about ϕ by a joint
announcement against any simultaneous joint announcement by the anti-coalitionAG−G) and the expression 〈G〉[AG−
G]ϕ (which captures a similar ability of group G against any subsequent joint announcement by the anti-coalition).

As in the case of APAL, the same lack of memory leads also to difficulties in obtaining a recursive axiomatization for
GAL, CAL and related logics. To the best of our knowledge, there are no known recursive axiomatizations for GAL, CAL
etc.23 In fact, the same state of affair applies to any logic that contains coalition announcement operators [2, 33, 3, 4].

3.2 A principled solution: GALM
In this section, we develop a Group Announcement Logic with Memory (GALM), obtained by extending the syntax of
APALM with group announcement operators interpreted on a-models.24 Moreover, we show that the memory-enhanced
version (CALM) of CAL is indeed embeddeded in GALM, via the natural analogue of the above-mentioned equivalence.
Finally, we give a complete recursive axiomatization of GALM.

The language LG of GALM is defined recursively as

ϕ ::= p | > | 0 | ϕ0 | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Uϕ | 〈θ〉ϕ | ^ϕ | 〈G〉ϕ,

where p ∈ Prop, i ∈ AG, θ ∈ L−^, and G ⊆ AG. Note that L−^ is the same as before, namely, it is the set of
sentences in LG that do not include ^ or 〈G〉. In the context of GALM, the elements of L−^ are called ^, 〈G〉-free
formulas. The dual modality for this new operator is defined as [G]ϕ := ¬〈G〉¬ϕ. 〈G〉ϕ and [G]ϕ are the (existential and
universal, respectively) group announcement operators, quantifying over updates with formulas of the form

∧
i∈G Kiθi,

where θi ∈ L−^ and i ∈ G. This restricted quantification over L−^ captures the assumption that each agent can announce
only the (^ and 〈G〉-free) propositions she knows and nothing else. Analogous to the reading of �, we read [G]ϕ as “ϕ is
stably true under group G’s public announcements”, i.e., “ϕ stays true no matter what group G truthfully announces”.

We introduce the following abbreviation of relativized knowledge for notational convenience:

Kϕ
i ψ := Ki(ϕ→ ψ),

where ϕ,ψ ∈ LG and i ∈ AG.
The following lemma will be useful in the completeness proof.

Lemma 20. There exists a well-founded strict partial order < on LG, such that:

1. if ϕ is a subformula of ψ, then ϕ < ψ,

2. 〈θ〉ϕ < ^ϕ, for all θ ∈ L−^,

3. 〈θ〉ϕ < 〈G〉ϕ, for all θ ∈ L−^.

Proof. Similar to Lemma 1. �

The language LG is interpreted on the same models introduced in Definition 2.

Definition 21. Given a modelM = (W0, W,∼1, . . . ,∼n, ‖ · ‖), the semantics for LG is defined recursively as in Definition
3 with the following additional clause for 〈G〉:

[[〈G〉ϕ]] =
⋃
{[[〈

∧
i∈G

Kiθi〉ϕ]] : {θi : i ∈ G} ⊆ L−^}.
23But in [22], the authors introduce a combination of an extension of GAL and CAL and present an infinitary axiomatization with two

rules that resemble the infinitary rule in GAL.
24We note that the language of the original GAL in [1] does not include the arbitrary announcement operator �. The fragment of

GALM without the arbitrary announcement operators can be studied in a similar way. We prefer to work with a larger language here,
subsuming both APAL and GAL-type modalities, in order be able to present the soundness and completeness proofs for both APALM
and GALM in a unified way.
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Observation 3. Note that we have

w ∈ [[[G]ϕ]] iff w ∈ [[[
∧
i∈G

Kiθi]ϕ]] for every {θi : i ∈ G} ⊆ L−^.

The GALM analogue of Observation 2 is again a straightforward consequence of the semantics:

Observation 4. Given a model M = (W0, W,∼1, . . . ,∼n, ‖ · ‖) and formulas θ, ρ,ϕ ∈ LG, if [[θ]]M = [[ρ]]M, then
[[〈θ〉ϕ]]M = [[〈ρ〉ϕ]]M and [[[θ]ϕ]]M = [[[ρ]ϕ]]M.

Proposition 22. We have [[ϕ]] ⊆ W, for all formulas ϕ ∈ LG.

Proof. See Appendix A.3. �

As for APALM, the intended models for GALM are the announcement models (a-models, introduced in Definition
6). So GALM validities are defined with respect to a-models, as in Definition 6. It should also be obvious that the
analogue of Lemma 7 still holds for GALM:

Lemma 23. IfM = (W0, W,∼1, . . . ,∼n, ‖ · ‖) is an a-model and θ ∈ L−^ is a formula such that W = [[θ]]M0 , then for all
formulas ϕ ∈ LG and all formulas ρ ∈ L−^, we have:

[[ϕ]]M = [[〈θ〉ϕ]]M0 = [[(〈θ〉ϕ)0]]M,

[[ρ ∧ ϕ]]M = [[〈ρ〉(〈θ〉ϕ)0]]M.

The proof is exactly the same as the proof of Lemma 7. This result can be used to prove that in the memory-enhanced
environment of GALM, the (memory-enhanced) coalition announcement modalities 〈[G]〉ϕ are in fact definable using
group announcement modalities (in contrast to the situation in memory-free GAL):

Proposition 24. LetM = (W0, W,∼1, . . . ,∼n, ‖ · ‖) be an a-model, and θ ∈ L−^ be a formula such that W = [[θ]]M0 . For
every group G ⊆ AG and every formula ϕ ∈ LG, we have:

w ∈ [[〈G〉[AG −G]ϕ]]M iff ∃{ψi : i ∈ G} ⊆ L−^ ∀{ψ j : j ∈ AG −G} ⊆ L−^, w ∈ [[
∧
i∈G

Kiψi ∧ [
∧

m∈AG

Kmψm]ϕ]]M.

Proof. For the right-to-left implication: suppose there exists a set of formula {ψi : i ∈ G} ⊆ L−^ satisfying the property
in the right-hand side of the above Proposition, i.e.:

∀{ψ j : j ∈ AG −G} ⊆ L−^, w ∈ [[
∧
i∈G

Kiψi ∧ [
∧

m∈AG

Kmψm]ϕ]]M.

Let {ψ j : j ∈ AG −G} ⊆ L−^ be some arbitrary set of formulas in L−^, indexed by agents in AG −G. By applying the
above claim (from the right-hand side of the Proposition) to the set {[

∧
i∈G Kiψi]ψ j : j ∈ AG −G}, we obtain that

w ∈ [[
∧
i∈G

Kiψi ∧ [
∧
i∈G

Kiψi ∧
∧

j∈AG−G

K j[
∧
i∈G

Kiψi]ψ j]ϕ]]M.

Applying to this Proposition 9.3, then Axiom (RKi ), then Axiom (R!) and finally Proposition 9.3 again, we obtain that

w ∈ [[
∧
i∈G

Kiψi ∧ [〈
∧
i∈G

Kiψi〉
∧

j∈AG−G

K jψ j]ϕ]]M = [[
∧
i∈G

Kiψi ∧ [
∧
i∈G

Kiψi][
∧

j∈AG−G

K jψ j]ϕ]]M = [[〈
∧
i∈G

Kiψi〉[
∧

j∈AG−G

K jψ j]ϕ]]M.

So we established that

∃{ψi : i ∈ G} ⊆ L−^ ∀{ψ j : j ∈ AG −G} ⊆ L−^, w ∈ [[〈
∧
i∈G

Kiψi〉[
∧

j∈AG−G

K jψ j]ϕ]]M,

which by the semantics of GALM is equivalent to w ∈ [[〈G〉[AG −G]ϕ]]M, as desired.
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For the left-to-right implication: suppose that we have w ∈ [[〈G〉[AG − G]ϕ]]M, By the semantics, there exists a set
of formula {ψi : i ∈ G} ⊆ L−^ s.t.

w ∈ [[〈
∧
i∈G

Kiψi〉[AG −G]ϕ]]M = [[[AG −G]ϕ]]M|[[∧i∈G Kiψi]].

Let {ψ j : j ∈ AG − G} ⊆ L−^ be any arbitrary set of formulas in L−^, indexed by agents in AG − G. Applying the
semantics of [AG −G]ϕ inM|[[

∧
i∈G Kiψi]] to the set {(〈θ〉K jψ j)0 : j ∈ AG −G}, the last displayed formula implies that:

w ∈ [[[
∧

j∈AG−G

(
〈θ〉K jψ j

)0
]ϕ]]M|[[∧i∈G Kiψi]] = [[〈

∧
i∈G

Kiψi〉[

〈θ〉 ∧
j∈AG−G

K jψ j


0

]ϕ]]M

= [[
∧
i∈G

Kiψi ∧ [〈
∧
i∈G

Kiψi〉

〈θ〉 ∧
j∈AG−G

K jψ j


0

]ϕ]]M.

But by Lemma 23, we have

[[〈
∧
i∈G

Kiψi〉

〈θ〉 ∧
j∈AG−G

K jψ j


0

]]M = [[
∧
i∈G

Kiψi ∧
∧

j∈AG−G

K jψ j]]M = [[
∧

m∈AG

Kmψm]]M.

By Observation 4, the above facts imply that w ∈ [[
∧

i∈G Kiψi ∧ [
∧

m∈AG Kmψm]ϕ]]M, as desired. �

So, in contrast to the situation in the memory-free case of Coalition Announcement Logic, the memory-enhanced
version is essentially a fragment of GALM.

We move now to the main result of this section.

Theorem 25 (Soundness and Completeness of GALM). GALM validities are recursively enumerable. In fact, the sound
and complete axiomatization GALM wrt a-models is obtained by extending APALM with the axiom and rule given in
Table 2.

Elim-axiom and Intro-rule for [G]:
([!][G]-elim) [θ][G]ϕ→ [θ ∧

∧
i∈G Kθ

i ρi]ϕ
([!][G]-intro) from χ→ [θ ∧

∧
i∈G Kθ

i pi]ϕ, infer χ→ [θ][G]ϕ (for pi < Pχ ∪ Pθ ∪ Pϕ).

Table 2: The additional axioms of GALM

The axiom and rule in Table 2 are very similar in spirit (and in what they express) to the [!]�-elim axiom and [!]�-
intro rule, respectively. Together, the elimination axiom [!][G]-elim and rule [!][G]-intro say that ϕ is a stable truth under
group G’s announcements after an announcement θ iff ϕ stays true after any more informative announcement from the
group G (of the form θ ∧

∧
i∈G Kθ

i ρi).

4 Soundness via Pseudo-model Semantics
As GALM is an extension of APALM, we present the soundness and completeness proofs directly for the former. The
same results for APALM are obtained following similar steps.

To start with, note that even the soundness of our axiomatic systems is not a trivial matter. As we saw from Kuijer’s
counterexample, the analogues of our finitary � and [G]-introduction rules were not sound for APAL and GAL, respec-
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tively. To prove their soundness on a-models, we need a detour into an equivalent semantics, in the style of Subset Space
Logics (SSL) [26, 18]: pseudo-models.25

We first introduce an auxiliary notion: ‘pre-models’ are just SSL models, coming with a given family A of “admis-
sible sets” of worlds (which can be thought of as the communicable propositions). We interpret � in these structures as
the so-called “effort modality” of SSL, which quantifies over updates with admissible propositions in A. Analogously,
〈G〉 quantifies over updates with conjunctions of those admissible propositions in the scope of an epistemic operator
labeled by an agent in G. Our ‘pseudo-models’ are pre-models with additional closure conditions (saying that the family
of admissible sets includes the valuations and is closed under complement, intersection, and epistemic operators). These
conditions imply that every set definable by a ^, 〈G〉-free formula26 is admissible, and this ensures the soundness of our
�-elimination and [G]-elimination axioms on pseudo-models. As for the soundness of the long-problematic � and [G]-
introduction rules on (both pre- and) pseudo-models, this is due to the fact that both the effort modality and [G] operator
interpreted on pseudo-models have a more ‘robust’ range than the arbitrary announcement versions of them: they quantify
over admissible sets, regardless of whether these sets are syntactically definable or not. Soundness with respect to our
a-models then follows from the observation that they (in contrast to the original APAL models) are in fact equivalent to
a special case of pseudo-models: the “standard” ones (in which the admissible sets inA are exactly the sets definable by
^, 〈G〉-free formulas).

Definition 26 (Pre-model). A pre-model is a tupleM = (W0,A,∼1, . . . ,∼n, ‖ · ‖), where W0 is the initial domain, ∼i are
equivalence relations on W0, ‖ · ‖ : Prop → P(W0) is a valuation map, and A ⊆ P(W0) is a family of subsets of the
initial domain, called admissible sets (representing the propositions that can be publicly announced).

Given a set A ⊆ W0 and a state w ∈ A, we use the notation wA
i := {s ∈ A : w ∼i s} to denote the restriction to A of

w’s equivalence class modulo ∼i. We also introduce the following abbreviation for the semantic counterpart of relativized
knowledge: KA

i B = {w ∈ W0 : wi ∩ A ⊆ B}.

Definition 27 (Pre-model Semantics for LG). Given a pre-modelM = (W0,A,∼1, . . . ,∼n, ‖ · ‖), we recursively define a
truth set [[ϕ]]A for every formula ϕ and A ∈ A:

[[p]]A = ‖p‖ ∩ A

[[>]]A = A

[[0]]A =

A if A = W0

∅ otherwise

[[ϕ0]]A = [[ϕ]]W0 ∩ A

[[¬ϕ]]A = A − [[ϕ]]A

[[ϕ ∧ ψ]]A = [[ϕ]]A ∩ [[ψ]]A

[[Kiϕ]]A = {w ∈ A : wA
i ⊆ [[ϕ]]A}

[[Uϕ]]A =

A if [[ϕ]]A = A
∅ otherwise

[[〈θ〉ϕ]]A =

[[ϕ]][[θ]]A if [[θ]]A , ∅

∅ otherwise

[[^ϕ]]A =
⋃
{[[ϕ]]B : B ∈ A, B ⊆ A}

[[〈G〉ψ]]A =
⋃
{[[ψ]]A∩

⋂
i∈G KA

i Bi
: {Bi : i ∈ G} ⊆ A}

25A more direct soundness proof on a-models is in principle possible, but would require at least as much work as our detour. Unlike in
standard EL, PAL or DEL, the meaning of an APALM formula (and therefore of a GALM formula) depends, not only on the valuation of
the atoms occurring in it, but also on the familyA of all sets definable byL−^-formulas. The move from models to pseudo-models makes
explicit this dependence on the familyA, while also relaxing the demands onA (which is no longer required to be exactly the family of
L−^-definable sets), and thus makes the soundness proof both simpler and more transparent. Since we will need pseudo-models for our
completeness proof anyway, we see no added value in trying to give a more direct soundness proof.

26^, 〈G〉-free formulas are the sentences in L−^.
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Observation 5. Note that, for all w ∈ A, we have

1. w ∈ [[�ϕ]]A iff ∀B ∈ A (w ∈ B ⊆ A⇒ w ∈ [[ϕ]]B);

2. w ∈ [[[G]ϕ]]A iff for every {Bi : i ∈ G} ⊆ A (w ∈ A ∩
⋂

i∈G KA
i Bi ⇒ w ∈ [[ϕ]]A∩

⋂
i∈G KA

i Bi
);

3. [[ϕ]]A ⊆ A for all A ∈ A and ϕ ∈ LG.

Observation 5.1 shows that our proposed semantics of � on pre-models fits with the semantics of the effort modality
in SSL [26, 18]. The proof of Observation 5.3 is similar to that of Proposition 22.

Definition 28 (Pseudo-models and Validity). A pseudo-model is a pre-modelM = (W0,A,∼1, . . . ,∼n, ‖ · ‖), satisfying
the following closure conditions:

1. ‖p‖ ∈ A, for all p ∈ Prop,
2. W0 ∈ A,
3. if A ∈ A then (W0 − A) ∈ A,

4. if A, B ∈ A then (A ∩ B) ∈ A,

5. if A ∈ A then KiA ∈ A, where KiA := {w ∈ W0 :
∀s ∈ W0(w ∼i s⇒ s ∈ A)}.

A formula ϕ ∈ LG is valid in pseudo-models if it is true in all admissible sets A ∈ A of every pseudo-modelM, i.e,
[[ϕ]]A = A for all A ∈ A and allM.

Lemma 29. Given a pseudo-modelM = (W0,A,∼1, . . . ,∼n, ‖ · ‖) and A, B ∈ A, we have KA
i B ∈ A.

Proof. First note that by Definition 28.5 and Boolean operations of sets we have:

KA
i B = {w ∈ W0 : wi ∩ A ⊆ B)} = {w ∈ W0 : ∀s ∈ W0((s ∈ A and w ∼i s)⇒ s ∈ B)}

= {w ∈ W0 : ∀s ∈ W0(w ∼i s⇒ (s ∈ A⇒ s ∈ B))}

= {w ∈ W0 : ∀s ∈ W0(w ∼i s⇒ (s ∈ (W0 − A) or s ∈ B))}

= {w ∈ W0 : ∀s ∈ W0(w ∼i s⇒ s ∈ (W0 − A) ∪ B)}

= Ki((W0 − A) ∪ B)

Then, by Definition 28.(3-5) and A, B ∈ A, we obtain KA
i B = Ki((W0 − A) ∪ B) ∈ A. �

Proposition 30. Given a pseudo-model (W0,A,∼1, . . . ,∼n, ‖ · ‖), A ∈ A, and θ ∈ L−^, we have [[θ]]A ∈ A.

Proof. The proof is by subformula induction on θ. The base cases and the inductive cases for the Booleans are immediate
(using the conditions in Definition 28).

Case θ := ψ0: By the semantics, [[ψ0]]A = [[ψ]]W0 ∩ A ∈ A, since [[ψ]]W0 ∈ A (by the fact that W0 ∈ A and IH), A ∈ A
(by assumption), andA is closed under intersection.

Case θ := Kiψ: Note that [[Kiψ]]A = {w ∈ A : wA
i ⊆ [[ψ]]A} = A ∩ {w ∈ W0 : wA

i ⊆ [[ψ]]A} (by Definition 28)
= A ∩ {w ∈ W0 : ∀s ∈ W0((s ∈ A and w ∼i s)⇒ s ∈ [[ψ]]A)}. We then obtain, by CPL and Boolean operations of sets that
[[Kiψ]]A = A ∩ {w ∈ W0 : ∀s ∈ W0(w ∼i s ⇒ s ∈ ((W0 − A) ∪ [[ψ]]A)}. Moreover, A ∩ {w ∈ W0 : ∀s ∈ W0(w ∼i s ⇒ s ∈
((W0 − A) ∪ [[ψ]]A)} = A ∩ Ki((W0 − A) ∪ [[ψ]]A) by Definition 28.(3-5) (since A ∈ A and [[ψ]]A ∈ A by IH). Therefore,
[[Kiψ]]A = A ∩ Ki((W0 − A) ∪ [[ψ]]A) is inA.

Case θ := Uψ: By Definition 28, [[Uψ]]A ∈ {∅, A} ⊆ A.

Case θ := 〈ϕ〉ψ: Since A ∈ A, we have [[ϕ]]A ∈ A (by IH on ϕ), and hence [[〈ϕ〉ψ]]A = [[ψ]][[ϕ]]A ∈ A (by the semantics
and IH on ψ). �

To prove the soundness of our axioms, we need the following lemmas:

Lemma 31. Given a pseudo-model M = (W0,A,∼1, . . . ,∼n, ‖ · ‖), A ∈ A and θ ∈ L−^ such that w ∈ [[θ]]A, w ∈
[[Kθ

i ρ]]A iff w ∈ K[[θ]]A
i [[ρ]]A for all ρ ∈ L−^.
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Proof. Observe that K[[θ]]A
i [[ρ]]A = Ki((W0 − [[θ]]A) ∪ [[ρ]]A) (as in Lemma 29). Moreover, it is easy to see that, [[Kθ

i ρ]]A =

[[Ki(θ → ρ)]]A = {w ∈ A : wA
i ⊆ [[θ → ρ]]A} = A ∩ {w ∈ W0 : ∀s ∈ W0(w ∼i s ⇒ s ∈ (W0 \ [[θ]]A ∪ [[ρ]]A))} (since

[[θ]]A ⊆ A). We therefore obtain that [[Kθ
i ρ]]A = A ∩ Ki((W0 − [[θ]]A) ∪ [[ρ]]A) (by Boolean operations of sets and the defn.

of Ki). Thus, [[Kθ
i ρ]]A = A ∩ Ki((W0 − [[θ]]A) ∪ [[ρ]]A) = A ∩ K[[θ]]A

i [[ρ]]A. Therefore if w ∈ [[θ]]A ⊆ A, w ∈ [[Kθ
i ρ]]A iff

w ∈ K[[θ]]A
i [[ρ]]A. �

Lemma 32. LetM = (W0,A,∼1, . . . ,∼n, ‖ · ‖) andM′ = (W0,A,∼1, . . . ,∼n, ‖ · ‖′) be two pseudo-models and ϕ ∈ LG

such thatM andM′ differ only in the valuation of some finite number of propositional variables p1, . . . , pn < Pϕ. Then,
for all A ∈ A, we have [[ϕ]]MA = [[ϕ]]M

′

A .

Proof. The proof follows by subformula induction on ϕ. LetM = (W0,A,∼1, . . . ,∼n, ‖ · ‖) andM′ = (W0,A,∼1, . . . ,∼n

, ‖ · ‖′) be two pseudo-models such thatM andM′ differ only in the valuation of some p1, . . . , pn < Pϕ and let A ∈ A.
We want to show that [[ϕ]]MA = [[ϕ]]M

′

A . The base cases ϕ := q (< Pϕ), ϕ := >, ϕ := 0, and the inductive cases for Booleans
are standard.

Case ϕ := ψ0. Note that Pψ0 = Pψ. Then, by IH, we have that [[ψ]]M
′

A = [[ψ]]MA for every A ∈ A, in particular for
W0 ∈ A. Thus [[ψ]]M

′

W0 = [[ψ]]M
W0 . Then, [[ψ]]M

′

W0 ∩ A = [[ψ]]M
W0 ∩ A for all A ∈ A. By the semantics of the initial operator on

pseudo-models, we obtain [[ψ0]]M
′

A = [[ψ0]]MA .

Case ϕ := Kiψ. Note that PKiψ = Pψ. Then, by IH, we have that [[ψ]]MA = [[ψ]]M
′

A . Observe that [[Kiψ]]MA =

{w ∈ A : wA
i ⊆ [[ψ]]MA } and, similarly, [[Kiψ]]M

′

A = {w ∈ A : wA
i ⊆ [[ψ]]M

′

A }. Then, since [[ψ]]MA = [[ψ]]M
′

A , we obtain
[[Kiψ]]MA = [[Kiψ]]M

′

A .

Case ϕ := Uψ. Note that PUψ = Pψ. Then, by IH, we have that [[ψ]]M
′

A = [[ψ]]MA for every A ∈ A. We have two case:
(1) If [[ψ]]M

′

A = [[ψ]]MA = A, then [[Uψ]]M
′

A = A = [[Uψ]]MA . (2) If [[ψ]]M
′

A = [[ψ]]MA , A, then [[Uψ]]M
′

A = [[Uψ]]MA = ∅.

Case ϕ := 〈θ〉ψ. Note that P〈θ〉ψ = Pθ ∪ Pψ. By IH, we have [[θ]]M
′

A = [[θ]]MA and [[ψ]]M
′

A = [[ψ]]MA for every A ∈ A. By
Proposition 30, we know that [[θ]]MA = [[θ]]M

′

A ∈ A. Therefore, in particular, we have [[ψ]]M
′

[[θ]]M
′

A

= [[ψ]]M
[[θ]]MA

. Therefore, by

the semantics of 〈!〉 on pseudo-models, we obtain [[〈θ〉ψ]]M
′

A = [[〈θ〉ψ]]MA .

Case ϕ := ^ψ. Note that P^ψ = Pψ. Since the same family of setsA is carried by both modelsM andM′ and since
(by IH) [[ψ]]M

′

A = [[ψ]]MA for all A ∈ A, we get:

[[^ψ]]M
′

A =
⋃
{[[ψ]]M

′

B : B ∈ A, B ⊆ A} =
⋃
{[[ψ]]MB : B ∈ A, B ⊆ A} = [[^ψ]]MA .

Case ϕ := [G]ψ. Note that P[G]ψ = Pψ. Then, by (IH), we have that [[ψ]]M
′

B = [[ψ]]MB for every B ∈ A. In particular,
[[ψ]]M

′

B = [[ψ]]MB for the B’s of the form A∩ KA
i C with A, C ∈ A (recall that pseudo-models are closed under KA

i operation
and conjunction, see Definition 28 and Lemma 29). Since the same family of sets A is carried by both modelsM and
M′, we obtain:

[[[G]ψ]]M
′

A =
⋃
{[[ψ]]M

′

A∩
⋂

i∈G KA
i Bi

: {Bi : i ∈ G} ⊆ A} =
⋃
{[[ψ]]M

A∩
⋂

i∈G KA
i Bi

: {Bi : i ∈ G} ⊆ A} = [[[G]ψ]]MA .

�

Proposition 33. The system GALM is sound wrt pseudo-models. Therefore, the system APALM is also sound wrt
pseudo-models.

Proof. The soundness of most of the axioms follows simply by spelling out the semantics. We present here only the
validity of the axioms [!]�-elim, [!][G]-elim, and that the rules [!]�-intro and [!][G]-intro preserve validity:

For the elimination axioms, let M = (W0,A,∼1, . . . ,∼n, ‖ · ‖) be a pseudo-model, A ∈ A, and w ∈ A arbitrarily
chosen:

([!]�-elim): Let ρ ∈ L−^ and suppose (1) w ∈ [[[θ]�ϕ]]A and (2) w ∈ [[θ ∧ ρ]]A. We need to show that w ∈ [[ϕ]][[θ∧ρ]]A .
Assumption (1) means that if w ∈ [[θ]]A then w ∈ [[�ϕ]][[θ]]A . Then, by assumption (2) and since w ∈ [[θ ∧ ρ]]A ⊆ [[θ]]A, we
have w ∈ [[�ϕ]][[θ]]A . Thus, by the semantic clause for �, we have w ∈ {u ∈ [[θ]]A : for all B ∈ A(u ∈ B ⊆ [[θ]]A ⇒ u ∈
[[ϕ]]B}. Therefore, for B := [[θ ∧ ρ]]A ⊆ [[θ]]A (since by Proposition 30, [[θ ∧ ρ]]A ∈ A) we have w ∈ [[ϕ]][[θ∧ρ]]A .
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([!][G]-elim): Let {ρi : i ∈ G} ⊆ L−^ and suppose (1) w ∈ [[[θ][G]ϕ]]A and (2) w ∈ [[θ ∧
∧

i∈G Kθ
i ρi]]A. By assumption

(1) and the semantic clause for [G], we have that if w ∈ [[θ]]A then for all {Bi : i ∈ G} ⊆ A, w ∈ [[ϕ]]
[[θ]]A∩

⋂
i∈G K

[[θ]]A
i Bi

. By (2)

we have that w ∈ [[θ]]A and w ∈ [[
∧

i∈G Kθ
i ρi]]A. Thus, by (1), we obtain w ∈ [[ϕ]]

[[θ]]A∩
⋂

i∈G K
[[θ]]A
i [[ρi]]A

= [[ϕ]][[θ]]A∩
⋂

i∈G [[Kθ
i ρi]]A

=

[[ϕ]][[θ∧
∧

i∈G Kθ
i ρi]]A

(by Proposition 30 and Lemma 31). Thus, by assumption (2), we obtain that w ∈ [[[θ ∧
∧

i∈G Kθ
i ρi]ϕ]]A.

([!]�-intro): Suppose |= χ → [θ ∧ p]ϕ and 6|= χ → [θ]�ϕ, where p < Pχ ∪ Pθ ∪ Pϕ. The latter means that there
exists a pseudo modelM = (W0,A,∼1, . . . ,∼n, ‖ · ‖) such that for some A ∈ A and some w ∈ A, w < [[χ → [θ]�ϕ]]MA .
Therefore w ∈ [[χ ∧ ¬[θ]�ϕ]]MA . Thus we have (1) w ∈ [[χ]]MA and (2) w ∈ [[¬[θ]�ϕ]]MA . Because of (2), w ∈ [[〈θ〉^¬ϕ]]MA ,
and, by the semantics, w ∈ [[^¬ϕ]]M

[[θ]]MA
. Therefore, applying the semantics of �, we obtain (3) there exists B ∈ A s.t.

w ∈ B ⊆ [[θ]]MA ⊆ A and w ∈ [[¬ϕ]]MB .
Now consider the pre-modelM′ = (W0,A,∼1, . . . ,∼n, ‖ ·‖′) such that ‖p‖′ := B and ‖q‖′ = ‖q‖ for any q , p ∈ Prop.

In order to use Lemma 32 we must show that M′ is a pseudo-model. For this we only need to verify that M′ satisfies
the closure conditions given in Definition 28. First note that ‖p‖′ := B ∈ A by the construction of M′, so ‖p‖′ ∈ A.
For every q , p, since ‖q‖′ = ‖q‖ and ‖q‖ ∈ A we have ‖q‖′ ∈ A. Since A is the same for bothM andM′, andM is
a pseudo-model, the rest of the closure conditions are already satisfied forM′. ThereforeM′ is a pseudo-model. Now
continuing with our soundness proof, since p < Pχ ∪ Pθ ∪ Pϕ, by Lemma 32, we obtain [[χ]]M

′

A = [[χ]]MA , [[θ]]M
′

A = [[θ]]MA
and [[¬ϕ]]M

′

A = [[¬ϕ]]MA . Since ‖p‖′ = B ⊆ [[θ]]M
′

A ⊆ A we have ‖p‖′ = [[p]]M
′

A . Because of (3) we have that w ∈ [[θ]]M
′

A
and w ∈ [[¬ϕ]]M

′

B = [[¬ϕ]]M
′

[[p]]M
′

A

= [[〈p〉¬ϕ]]M
′

A . Thus, w ∈ [[p]]M
′

A , so w ∈ [[θ ∧ p]]M
′

A = [[θ]]M
′

A ∩ [[p]]M
′

A = [[p]]M
′

A simply

because [[p]]M
′

A ⊆ [[θ]]M
′

A . Since w ∈ [[¬ϕ]]M
′

[[p]]M
′

A

we obtain w ∈ [[¬ϕ]]M
′

[[θ∧p]]M
′

A

. Putting everything together, w ∈ [[θ ∧ p]]M
′

A

and w ∈ [[¬ϕ]]M
′

[[θ∧p]]M
′

A

, we obtain that w ∈ [[〈θ ∧ p〉¬ϕ]]M
′

A and w ∈ [[χ]]M
′

A . Therefore w ∈ [[χ ∧ 〈θ ∧ p〉¬ϕ]]M
′

A , which

contradicts the validity of χ→ [θ ∧ p]ϕ.

([!][G]-intro): Suppose |= χ → [θ ∧
∧

i∈G Kθ
i pi]ϕ and 6|= χ → [θ][G]ϕ where pi < Pχ ∪ Pθ ∪ Pϕ. The latter

means that there exists a pseudo model M = (W0,A,∼1, . . . ,∼n, ‖ · ‖) such that for some A ∈ A and some w ∈ A,
w < [[χ → [θ][G]ϕ]]MA . Therefore w ∈ [[χ ∧ ¬[θ][G]ϕ]]MA . Thus we have (1) w ∈ [[χ]]MA , and (2) w ∈ [[¬[θ][G]ϕ]]MA . Item
(2) means w ∈ [[〈θ〉〈G〉¬ϕ]]MA . Then, by the semantics of 〈!〉, we have w ∈ [[〈G〉¬ϕ]]M

[[θ]]MA
. Therefore by the semantics of

〈G〉 we obtain: (3) there exists {Bi : i ∈ G} ⊆ A s.t. w ∈ [[¬ϕ]]M
[[θ]]MA ∩

⋂
i∈G K

[[θ]]MA
i Bi

.

Now consider the pre-modelM′ = (W0,A,∼1, . . . ,∼n, ‖·‖′) such that ‖pi‖
′ = Bi and ‖q‖′ = ‖q‖ for any q , pi ∈ Prop

for all i ∈ G. Observe that since [[θ]]A ⊆ A, by Boolean operations of sets we obtain that K[[θ]]A
i (A ∩ Bi) = K[[θ]]A

i Bi. In
order to use Lemma 32 we must show thatM′ is a pseudo-model as in the soundness proof of [!]�-intro. First note that
for every q , pi, since ‖q‖′ = ‖q‖ and ‖q‖ ∈ A, we have ‖q‖′ ∈ A. Moreover, since for every i ∈ G, ‖pi‖

′ = Bi ∈ A, we
conclude thatM′ satisfies Definition 28.1. SinceA is the same for bothM andM′, andM is a pseudo model, the rest of
the closure conditions are satisfied already. ThereforeM′ is a pseudo model. Now continuing with our soundness proof,
given that pi < Pχ ∪ Pθ ∪ Pϕ for all i ∈ G, by Lemma 32, we obtain [[χ]]M

′

A = [[χ]]MA and [[θ]]M
′

A = [[θ]]MA . We moreover
have that

[[¬ϕ]]M
[[θ]]MA ∩

⋂
i∈G K

[[θ]]MA
i Bi

= [[¬ϕ]]M
′

[[θ]]M
′

A ∩
⋂

i∈G K
[[θ]]M

′

A
i Bi

= [[¬ϕ]]M
′

[[θ]]M
′

A ∩
⋂

i∈G K
[[θ]]M

′

A
i ‖pi‖′

= [[¬ϕ]]M
′

[[θ]]M
′

A ∩
⋂

i∈G K
[[θ]]M

′

A
i (A∩‖pi‖′)

by the above observation. And by Lemma 31, we obtain

[[¬ϕ]]M
′

[[θ]]M
′

A ∩
⋂

i∈G K
[[θ]]M

′

A
i (A∩‖pi‖′)

= [[¬ϕ]]M
′

[[θ]]M
′

A ∩
⋂

i∈G K
[[θ]]M

′

A
i ([[pi]]M

′

A )

= [[¬ϕ]]M
′

[[θ∧
∧

i∈G Kθ
i pi]]M

′

A
.

Therefore, w ∈ [[¬ϕ]]M
′

[[θ∧
∧

i∈G Kθ
i pi]]M

′

A

. I.e., w ∈ [[〈θ ∧
∧

i∈G Kθ
i pi〉¬ϕ]]M

′

A . Since we also have that w ∈ [[χ]]M
′

A , we conclude

that w ∈ [[χ∧ 〈θ ∧
∧

i∈G Kθ
i pi〉¬ϕ]]M

′

A , contradicting the validity of χ→ [θ ∧
∧

i∈G Kθ
i pi]ϕ. Therefore, |= χ→ [θ][G]ϕ. �

Definition 34 (Standard Pre-model). A pre-modelM = (W0,A,∼1, . . . ,∼n, ‖ · ‖) is standard if and only if A = {[[θ]]W0 :
θ ∈ L−^}.
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Proposition 35. Every standard pre-model is a pseudo-model.

Proof. LetM = (W0,A,∼1, . . . ,∼n, ‖ · ‖) be a standard pre-model. This implies thatA = {[[θ]]W0 : θ ∈ L−^}. We need to
show thatM satisfies the closure conditions given in Definition 28. Conditions (1) and (2) are immediate.

For (3): let A ∈ A. SinceM is a standard pre-model, we know that A = [[θ]]W0 for some θ ∈ L−^. Since θ ∈ L−^, we
have ¬θ ∈ L−^, thus, [[¬θ]]W0 ∈ A. Observe that [[¬θ]]W0 = W0 − [[θ]]W0 , thus, we obtain W0 − A ∈ A.

For (4): let A, B ∈ A. SinceM is a standard pre-model, A = [[θ1]]W0 and B = [[θ2]]W0 for some θ1, θ2 ∈ L−^. Since
θ1, θ2 ∈ L−^, we have θ1 ∧ θ2 ∈ L−^, thus, [[θ1 ∧ θ2]]W0 ∈ A. Observe that [[θ1 ∧ θ2]]W0 = [[θ1]]W0 ∩ [[θ2]]W0 = A ∩ B, thus,
we obtain A ∩ B ∈ A.

For (5): let A ∈ A. Since M is a standard pre-model, A = [[θ]]W0 for some θ ∈ L−^. Since θ ∈ L−^, we have
Kiθ ∈ L−^, thus, [[Kiθ]]W0 ∈ A. Observe that [[Kiθ]]W0 = {w ∈ W0 : ∀s ∈ W0(w ∼i s ⇒ s ∈ [[θ]]W0 )} = Ki[[θ]]W0 , thus, we
obtain KiA ∈ A. �

Equivalence between the standard pseudo-models and announcement models. For Proposition 38 only, we use the
notation [[ϕ]]PS

A to refer to pseudo-model semantics (as in Definition 27) and use [[ϕ]]M to refer to the semantics on
a-models (as in Definition 21).

The proof of Proposition 38 needs the following lemmas.

Lemma 36. The sentence (Ki(ϕ→ ψ))0 ↔ Ki(Ki(ϕ→ ψ))0 is valid on pseudo-models.

Proof. We only prove the direction from left-to-right since the direction from right-to-left is an instance of the T-axiom
for Ki. LetM = (W0,A,∼1, . . . ,∼n, ‖ · ‖) be a pseudo-model, A ∈ A, and w ∈ A such that w ∈ [[(Ki(ϕ → ψ))0]]A. This
means, by the semantics of 0, that w ∈ [[Ki(ϕ → ψ)]]W0 ∩ A. Let v ∈ A such that w ∼i v, that is, v ∈ wA

i . Since ∼i is
transitive and w ∈ [[Ki(ϕ → ψ)]]W0 , we obtain that v ∈ [[Ki(ϕ → ψ)]]W0 . Moreover, by the assumption, we have v ∈ A.
Therefore, v ∈ [[Ki(ϕ → ψ)]]W0 ∩ A, that is, v ∈ [[(Ki(ϕ → ψ))0]]A. As v has been chosen arbitrarily from wA

i , we obtain
that wA

i ⊆ [[(Ki(ϕ→ ψ))0]]A, i.e., that w ∈ [[K(Ki(ϕ→ ψ))0]]A. �

Lemma 37. Let M = (W0,A,∼1, . . . ,∼n, ‖ · ‖) be a standard pseudo-model, A ∈ A and ϕ ∈ LG. Then we have the
following:

1. [[^ϕ]]A =
⋃
{[[〈θ〉ϕ]]A : θ ∈ L−^},

2. [[〈G〉ϕ]]A =
⋃
{[[〈

∧
i∈G Kiθi〉ϕ]]A : {θi : i ∈ G} ⊆ L−^}.

Proof.

1. For (⊆): Let w ∈ [[^ϕ]]A. Then, by the semantics of ^ in pseudo-models, there exists some B ∈ A such that
w ∈ B ⊆ A and w ∈ [[ϕ]]B. SinceM is standard, we know that A = [[ψ]]W0 and B = [[χ]]W0 for some ψ, χ ∈ L−^.
Moreover, since B = [[χ]]W0 ⊆ A = [[ψ]]W0 , we have B = [[χ]]W0 ∩ [[ψ]]W0 = [[χ0]][[ψ]]W0 = [[χ0]]A, and so w ∈ [[ϕ]]B =

[[ϕ]][[χ0]]A
= [[〈χ0〉ϕ]]A ⊆

⋃
{[[〈θ〉ϕ]]A : θ ∈ L−^}.

For (⊇): Let w ∈
⋃
{[[〈θ〉ϕ]]A : θ ∈ L−^}. Then we have w ∈ [[〈θ〉ϕ]]A = [[ϕ]][[θ]]A , for some θ ∈ L−^. Moreover,

since [[θ]]A ∈ A (by Proposition 30) and [[θ]]A ⊆ A (by Observation 5), it follows that w ∈ [[^ϕ]]A (by the semantics
of ^ in pseudo-models).

2. For (⊆): Let w ∈ [[〈G〉ϕ]]A. Then, by Definition 27, we have w ∈ [[ϕ]]A∩
⋂

i∈G KA
i Bi

for some {Bi : i ∈ G} ⊆ A. Since
M is a standard pseudo-model, we know that each Bi = [[ρi]]W0 and A = [[ψ]]W0 for some ρi,ψ ∈ L−^. Thus,

w ∈ [[ϕ]]
[[ψ]]W0∩

⋂
i∈G K

[[ψ]]
W0

i [[ρi]]W0
= [[ϕ]][[ψ]]W0∩

⋂
i∈G [[Ki(ψ→ρi)]]W0 = [[ϕ]][[ψ]]W0∩[[

∧
i∈G Ki(ψ→ρi)]]W0

by Lemma 31 and the semantics. By the semantics of 0 and Lemma 36, we obtain

[[ϕ]][[ψ]]W0∩[[
∧

i∈G Ki(ψ→ρi)]]W0 = [[ϕ]][[
∧

i∈G (Ki(ψ→ρi))0]]A
= [[ϕ]][[

∧
i∈G Ki(Ki(ψ→ρi))0]]A

.

Thus, for θi := (Ki(ψ→ ρi))0, w ∈ [[ϕ]][[
∧

i∈G Kiθi]]A = [[〈
∧

i∈G Kiθi〉ϕ]]A.
For (⊇): Let {θi : i ∈ G} ⊆ L−^ such that w ∈ [[ϕ]][[

∧
i∈G Kiθi]]A . Note that [[

∧
i∈G Kiθi]]A =

⋂
i∈G[[Kiθi]]A = A ∩⋂

i∈G KA
i [[θi]]A. SinceM is a standard pseudo-model, we know that Bi := [[θi]]A ∈ A for every i ∈ G and by our

initial assumption w ∈ [[ϕ]]A∩
⋂

i∈G KA
i [[θi]]A

, so we obtain w ∈ [[〈G〉ϕ]]A.
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Proposition 38.

1. For every standard pseudo-model M = (W0,A,∼1, . . . ,∼n, ‖ · ‖) and every non-empty set A ∈ A, we denote by
MA the modelMA = (W0, A,∼1, . . . ,∼n, ‖ · ‖). Then:

(a) For every ϕ ∈ LG, we have [[ϕ]]MA = [[ϕ]]PS
A .

(b) MA is an a-model.

2. For every a-modelM = (W0, W,∼1, . . . ,∼n, ‖ · ‖), we denote byM′ the pre-modelM′ = (W0,A,∼1, . . . ,∼n, ‖ · ‖),
whereA = {[[θ]]M0 : θ ∈ L−^}. Then

(a) M′ is a standard pseudo-model.

(b) For every ϕ ∈ LG, we have [[ϕ]]M = [[ϕ]]PS
W .

Proof. See Appendix A.4. �

Corollary 39. Validity on standard pseudo-models coincides with validity on the a-models.

Proof. This is a straightforward consequence of Proposition 38. �

Corollary 40. The system GALM is sound wrt a-models. Moreover, the system APALM is sound wrt a-models.

Proof. Follows immediately from Proposition 33 and Corollary 39. �

It is important to note that the equivalence between standard pseudo-models and a-models (given by Proposition
38 above, and underlying our soundness result) is not trivial (the proof is in Appendix A.4). It relies in particular on
the equivalence between the effort modality and the arbitrary announcement operator � (see Lemma 37.1), and on the
equivalence between the purely syntactic and purely semantic descriptions of the group announcement operator [G] on
standard pseudo models (see Lemma 37.2). In turn, the equivalences between these operators hold only because our
models and language retain the memory of the initial situation, i.e., having W0 in a-models and in pseudo-models, and
having the operators 0 and 0 in the language LG. Note that the most important steps in the proof of Lemma 37 make
necessary use of the operator 0. Hence, a similar equivalence of models fails for the original, memory lacking, APAL and
GAL.

5 Completeness
In this section we prove the completeness of GALM and APALM. First, we show completeness with respect to pseudo-
models, via an innovative modification of the standard canonical model construction. This is based on a method previously
used in [11], that makes an essential use of the finitary � and [G]-introduction rules, by requiring our canonical theories
T to be (not only maximally consistent, but also) “witnessed”. Roughly speaking, a theory T is witnessed if: every ^ϕ
occurring in every “existential context” in T is witnessed by some atomic formula p, meaning that 〈p〉ϕ occurs in the same
existential context in T , and for every 〈G〉ϕ occurring in every “existential context” in T is witnessed by some formula
∧i∈GKi pi, meaning that 〈∧i∈GKi pi〉ϕ occurs in the same existential context in T . Our canonical pre-model will consist
of all initial, maximally consistent, witnessed theories (where a theory is ‘initial’ if it contains the formula 0). A Truth
Lemma is proved, as usual. Completeness for (both pseudo-models and) a-models follows from the observation that our
canonical pre-model is standard, hence it is (a standard pseudo-model, and thus) equivalent to a genuine a-model.

We now proceed with the details. The appropriate notion of “existential context” is represented by possibility forms,
in the following sense.
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Definition 41 (Necessity forms and possibility forms). For any finite string s ∈ ({•0} ∪ {ϕ→ | ϕ ∈ LG} ∪ {Ki : i ∈
A} ∪ {U} ∪ {ρ | ρ ∈ L−^})∗ = NF, we define pseudo-modalities [s] and 〈s〉. These pseudo-modalities are functions
mapping any formula ϕ ∈ LG to another formula [s]ϕ ∈ LG (necessity form), respectively 〈s〉ϕ ∈ LG (possibility form).
The necessity forms are defined recursively as [ε]ϕ = ϕ, [s, •0]ϕ = [s]ϕ0, [s,ψ→]ϕ = [s](ψ → ϕ), [s, Ki]ϕ = [s]Kiϕ,
[s, U]ϕ = [s]Uϕ, [s, ρ]ϕ = [s][ρ]ϕ, where ε is the empty string. For possibility forms, we set 〈s〉ϕ := ¬[s]¬ϕ.

Example: [Ki, •0,^p→, 0, U] is a pseudo-modality such that [Ki, •0,^p→, 0, U]ϕ = Ki(^p→ [0]Uϕ)0.

Definition 42 (Theories: witnessed, initial, maximal). A theory Γ is a consistent set of formulas in LG wrt the axiomati-
zation of GALM, that is, Γ ⊆ LG such that Γ 0 ⊥. A formula ϕ is consistent with Γ if Γ∪{ϕ} is consistent (or, equivalently,
if Γ 0 ¬ϕ). A maximal theory is a theory Γ that is maximal with respect to ⊆ among all theories; in other words, Γ cannot
be extended to another theory. A witnessed theory is a theory Γ such that, for every s ∈ NF and ϕ ∈ LG, (1) if 〈s〉^ϕ is
consistent with Γ then there is p ∈ Prop such that 〈s〉〈p〉ϕ is consistent with Γ (or equivalently: if Γ ` [s][p]¬ϕ for all
p ∈ Prop, then Γ ` [s]�¬ϕ) and (2) for every G ⊆ AG, if 〈s〉〈G〉ϕ is consistent with Γ then there is {pi : i ∈ G} ⊆ Prop
such that 〈s〉〈∧i∈GKi pi〉ϕ is consistent with Γ. A theory Γ is called initial if 0 ∈ Γ. A maximal witnessed theory Γ is a
witnessed theory that is not a proper subset of any witnessed theory. A maximal witnessed initial theory Γ is a maximal
witnessed theory such that 0 ∈ Γ.

Lemma 43. For every s ∈ NF, there exist formulas θ ∈ L−^ and ψ ∈ LG, with Pψ ∪ Pθ ⊆ Ps, such that for all ϕ ∈ LG,
we have

` [s]ϕ iff ` ψ→ [θ]ϕ.

Proof. See Appendix A.5. �

Lemma 44. The following rules are derivable in GALM:

1. if ` [s][p]ϕ then ` [s]�ϕ, where p < Ps ∪ Pϕ,

2. if ` [s][
∧

i∈G Ki pi]ϕ then ` [s][G]ϕ, where pi < Ps ∪ Pϕ.

Proof. For (1), suppose ` [s][p]ϕ. Then, by Lemma 43, there exist θ ∈ L−^ and ψ ∈ LG such that ` ψ→ [θ][p]ϕ. By the
auxiliary reduction in Proposition 9.15, we get ` ψ → [θ ∧ p]ϕ. By the construction of the formulas ψ and θ, we know
that Pψ∪Pθ ⊆ Ps, and so p < Pψ∪Pθ∪Pϕ. Therefore, by ([!]�-intro), we have ` ψ→ [θ]�ϕ. Applying again Lemma 43,
we obtain ` [s]�ϕ. The proof of (2) is similar, given that (?) [θ][

∧
i∈G Ki pi]ϕ↔ [θ ∧

∧
i∈G Kθ

i pi]ϕ is derivable in GALM
(by using the appropriate reduction axioms and RE). Let s ∈ NFP such that ` [s][

∧
i∈G Ki pi]ϕ where pi < Ps ∪ Pϕ. Then,

by Lemma 43, we obtain that ` χ → [θ][
∧

i∈G Ki pi]ϕ. Therefore, by (?), we have that ` χ → [θ ∧
∧

i∈G Kθ
i pi]ϕ. By the

[!][G]-intro rule we then obtain ` χ→ [θ][G]ϕ. Again by Lemma 43, we get ` [s][G]ϕ. �

Lemma 45. For every maximal witnessed theory Γ, and every formula ϕ,ψ ∈ LG,

1. Γ ` ϕ iff ϕ ∈ Γ

2. ϕ < Γ iff ¬ϕ ∈ Γ,

3. ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ,

4. ϕ ∈ Γ and ϕ→ ψ ∈ Γ implies ψ ∈ Γ.

5. GALM ⊆ Γ.

Proof. The proof is standard. We prove only item (5): suppose GALM 6⊆ Γ. This means that there is a sentence ψ ∈ LG

such that ψ ∈ GALM but ψ < Γ. The former means that ` ψ, thus, Γ ` ψ. Items (2) and (1) implies that if ψ < Γ then
Γ ` ¬ψ, contradicting consistency of Γ. �

Lemma 46. For every Γ ⊆ LG, if Γ is a theory and Γ 0 ¬ϕ for some ϕ ∈ LG, then Γ ∪ {ϕ} is a theory. Moreover, if Γ is
witnessed, then Γ ∪ {ϕ} is also witnessed.
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Proof. The proof of the first claim is standard. We only prove the second claim. Suppose that Γ is witnessed but Γ ∪ {ϕ}

is not witnessed. By the previous statement, we know that Γ∪ {ϕ} is consistent. Since Γ∪ {ϕ} is not witnessed, it violates
either (1) or (2) in Definition 42. First suppose Γ ∪ {ϕ} does not satisfy (1), that is, there is s ∈ NF and ψ ∈ LG such that
Γ ∪ {ϕ} is consistent with 〈s〉^ψ but Γ ∪ {ϕ} ` ¬〈s〉〈p〉ψ for all p ∈ Prop. This implies that Γ ∪ {ϕ} ` [s][p]¬ψ for all
p ∈ Prop. Therefore, Γ ` ϕ→ [s][p]¬ψ for all p ∈ Prop. Note that ϕ→ [s][p]¬ψ = [ϕ→, s][p]¬ψ, and [ϕ→, s] ∈ NF.
We thus have Γ ` [ϕ →, s][p]¬ψ for all p ∈ Prop. Since Γ is witnessed, we obtain Γ ` [ϕ →, s]�¬ψ. By unraveling
the necessity form [ϕ→, s], we get Γ ` ϕ → [s]�¬ψ, thus, Γ ∪ {ϕ} ` [s]�¬ψ, i.e., Γ ∪ {ϕ} ` ¬〈s〉^ψ, contradicting the
assumption that Γ∪{ϕ} is consistent with 〈s〉^ψ. Now suppose Γ∪{ϕ} does not satisfy (2). This means that there is s ∈ NF
and ψ ∈ LG such that for some group G ⊆ A, the set Γ ∪ {ϕ} is consistent with 〈s〉〈G〉ψ but Γ ∪ {ϕ} ` ¬〈s〉〈

∧
i∈G Ki pi〉ψ

for all {pi : i ∈ G} ⊆ Prop. This implies that Γ ∪ {ϕ} ` [s][
∧

i∈G Ki pi]¬ψ for all {pi : i ∈ G} ⊆ Prop. Therefore,
Γ ` ϕ → [s][

∧
i∈G Ki pi]¬ψ for all {pi : i ∈ G} ⊆ Prop. Note that ϕ → [s][

∧
i∈G Ki pi]¬ψ = [ϕ →, s][

∧
i∈G Ki pi]¬ψ, and

[ϕ→, s] ∈ NF. We thus have Γ ` [ϕ →, s][
∧

i∈G Ki pi]¬ψ for all {pi : i ∈ G} ⊆ Prop. Since Γ is witnessed, we obtain
Γ ` [ϕ →, s][G]¬ψ. By unraveling the necessity form [ϕ→, s], we get Γ ` ϕ → [s][G]¬ψ, thus, Γ ∪ {ϕ} ` [s][G]¬ψ,
i.e., Γ ∪ {ϕ} ` ¬〈s〉〈G〉ψ, contradicting the assumption that Γ ∪ {ϕ} is consistent with 〈s〉〈G〉ψ. Altogether we obtain that
Γ ∪ {ϕ} is a witnessed theory. �

Lemma 47. If {Γi}i∈N is an increasing chain of theories such that Γi ⊆ Γi+1, then
⋃

n∈N Γn is a theory.

Proof. Let {Γi}i∈N be an increasing chain of theories with Γi ⊆ Γi+1 and suppose, toward contradiction, that
⋃

n∈N Γn is
not a theory, i.e., suppose that

⋃
n∈N Γn ` ⊥. This means that there exists a finite ∆ ⊆

⋃
n∈N Γn such that ∆ ` ⊥. Then,

since
⋃

n∈N Γn is a union of an increasing chain of theories, there is some m ∈ N such that ∆ ⊆ Γm. Therefore, Γm ` ⊥

contradicting the fact that Γm is a theory. Hence,
⋃

n∈N Γn is a theory. �

Lemma 48. For every maximal witnessed theory T , both {θ ∈ LG : Kiθ ∈ T } and {θ ∈ LG : Uθ ∈ T } are witnessed
theories.

Proof. Observe that, by axiom (TKi ), {θ ∈ LG : Kiθ ∈ T } ⊆ T . Therefore, as T is consistent, the set {θ ∈ LG : Kiθ ∈

T } is consistent. Let s ∈ NF, ψ ∈ L, and G ⊆ AG such that {θ ∈ LG : Kiθ ∈ T } ` [s][p]¬ϕ for all p ∈ Prop
and {θ ∈ LG : Kiθ ∈ T } ` [s][

∧
i∈G Ki pi]¬ψ for all {pi : i ∈ G} ⊆ Prop. By normality of Ki, T ` Ki[s][p]¬ϕ

for all p ∈ Prop and T ` Ki[s][
∧

i∈G Ki pi]¬ψ for all {pi : i ∈ G} ⊆ Prop . Since Ki[s][p]¬ϕ := [Ki, s][p]¬ϕ and
Ki[s][

∧
i∈G Ki pi]¬ψ := [Ki, s][[

∧
i∈G Ki pi]¬ψ are necessity forms and T is witnessed, we obtain T ` [Ki, s]�¬ϕ and

T ` [Ki, s][G]¬ϕ , i.e., T ` Ki[s]�¬ϕ and T ` Ki[s][G]¬ϕ. As T is maximal, we have Ki[s]�¬ϕ ∈ T and Ki[s][G]¬ϕ ∈ T ,
thus [s]�¬ϕ ∈ {θ ∈ LG | Kiθ ∈ T } and [s][G]¬ϕ ∈ {θ ∈ LG | Kiθ ∈ T }. The proof for {θ ∈ LG : Uθ ∈ T } follows
similarly. �

Lemma 49 (Lindenbaum’s Lemma). Every witnessed theory Γ can be extended to a maximal witnessed theory TΓ.

Proof. See Appendix A.5. �

Lemma 50 (Extension Lemma). For any θ ∈ LG, if {0, θ} is a theory then there is a maximal witnessed initial theory Γ

such that {0, θ} ⊆ Γ.

Proof. See Appendix A.5. �

To define our canonical pseudo-model, we first put, for all maximal witnessed theories T , S and for every i ∈ AG:

T ∼U S iff ∀ϕ ∈ LG
(
Uϕ ∈ T implies ϕ ∈ S

)
, and

T ∼i S iff ∀ϕ ∈ LG
(
Kiϕ ∈ T implies ϕ ∈ S

)
.

Lemma 51. For every i ∈ AG, ∼i ⊆ ∼U .

Proof. Let i ∈ AG, let T and S be maximal witnessed theories such that T ∼i S . Towards contradiction, suppose that
T ∼U S is not the case. From the former we have that ∀ϕ ∈ LG

(
Kiϕ ∈ T implies ϕ ∈ S

)
. From the latter, we have that

there is ψ ∈ LG such that Uψ ∈ T and ψ < S . Since ` Uψ → Kiψ and T is a maximal witnessed theory, Uψ → Kiψ ∈ T .
Therefore Kiψ ∈ T and ψ < S , contradicting that T ∼i S . �
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Definition 52 (Canonical Pre-Model). Given a maximal witnessed initial theory T0, the canonical pre-model for T0 is a
tupleMc = (Wc,Ac,∼c

1, . . . ,∼c
n, ‖ · ‖c) such that:

• Wc = {T : T is a maximal witnessed theory such that T0 ∼U T },

• Ac = {̂θ : θ ∈ L−^} where ϕ̂ = {T ∈ Wc : ϕ ∈ T } for any ϕ ∈ LG,

• for every i ∈ AG we define: ∼c
i = ∼i ∩ (Wc ×Wc).

• ‖p‖c = {T ∈ Wc : p ∈ T } = p̂.

As usual, it is easy to see (given the S 5 axioms for Ki and for U) that ∼U and ∼c
i are equivalence relations.

To prove that the canonical pre-model is indeed a pseudo-model, we first need to prove the Truth Lemma. For that
we need the following lemmas.

Lemma 53 (Existence Lemma for ∼U ). Let T be a maximal witnessed theory, α ∈ L−^, and ϕ ∈ LG such that α ∈ T and
U[α]ϕ < T. Then, there is a maximal witnessed theory S such that T ∼U S , α ∈ S and [α]ϕ < S .

Proof. Let α ∈ L−^ and ϕ ∈ LG such that α ∈ T and U[α]ϕ < T . The latter implies that {ψ ∈ LG : Uψ ∈ T } 0 [α]ϕ, hence,
{ψ ∈ LG : Uψ ∈ T } 0 ¬¬[α]ϕ. Then, by Lemmas 46 and 48, we obtain that {ψ ∈ LG : Uψ ∈ T } ∪ {¬[α]ϕ} is a witnessed
theory. Note that ` ¬[α]ϕ↔ (α∧[α]¬ϕ) (see Proposition 9.3). We therefore obtain that {ψ ∈ LG : Uψ ∈ T }∪{¬[α]ϕ} ` α,
thus, {ψ ∈ LG : Uψ ∈ T } ∪ {¬[α]ϕ} 0 ¬α (since {ψ ∈ LG : Uψ ∈ T } ∪ {¬[α]ϕ} is consistent). Therefore, by Lemma 46,
{ψ ∈ LG : Uψ ∈ T } ∪ {¬[α]ϕ} ∪ {α} is also a witnessed theory. We can then apply Lindenbaum’s Lemma (Lemma 49)
and extend it to a maximal witnessed theory S such that S ∼U T , α ∈ S , and [α]ϕ < S . �

Corollary 54. For ϕ ∈ LG, we have Ûϕ = Wc if ϕ̂ = Wc, and Ûϕ = ∅ otherwise.

Proof. If ϕ̂ = Wc, suppose Ûϕ , Wc. The latter means that there is a T ∈ Wc such that Uϕ < T . Then, by Lemma 53
(when α := >), there is a maximal witnessed theory S such that T ∼U S and ϕ < S . Since T0 ∼U T ∼U S and ∼U is
transitive, we have T0 ∼U S , thus, S ∈ Wc. Therefore, ϕ̂ , Wc, contradicting the initial assumption. If ϕ̂ , Wc, then
there is a T ∈ Wc such that ϕ < T . Since T ∼U S for all S ∈ Wc, we obtain by the definition of ∼U that Uϕ < S for all
S ∈ Wc. Therefore, Ûϕ = ∅. �

Lemma 55 (Existence Lemma for ∼i). Let T be a maximal witnessed theory, α ∈ L−^, and ϕ ∈ LG such that α ∈ T and
Ki[α]ϕ < T. Then, there is a maximal witnessed theory S such that T ∼i S , α ∈ S , and [α]ϕ < S .

Proof. Let α ∈ L−^ and ϕ ∈ LG such that α ∈ T and Ki[α]ϕ < T . The latter implies that {ψ ∈ LG : Kiψ ∈ T } 0 [α]ϕ,
hence, {ψ ∈ LG : Kiψ ∈ T } 0 ¬¬[α]ϕ. Then, by Lemmas 46 and 48, we obtain that {ψ ∈ LG : Kiψ ∈ T } ∪ {¬[α]ϕ} is
a witnessed theory. Note that ` ¬[α]ϕ ↔ (α ∧ [α]¬ϕ) (see Proposition 9.3). We therefore obtain that {ψ ∈ LG : Kiψ ∈

T }∪ {¬[α]ϕ} ` α, thus, {ψ ∈ LG : Kiψ ∈ T }∪ {¬[α]ϕ} 0 ¬α (since {ψ ∈ LG : Kiψ ∈ T }∪ {¬[α]ϕ} is consistent). Therefore,
by Lemma 46, {ψ ∈ LG : Kiψ ∈ T } ∪ {¬[α]ϕ} ∪ {α} is also a witnessed theory. We can then apply Lindenbaum’s Lemma
(Lemma 49) and extend it to a maximal witnessed theory S such that S ∼i T , α ∈ S , and [α]ϕ < S . �

Corollary 56. Let T0 be a maximal witnessed initial theory and Mc = (Wc,Ac,∼c
1, . . . ,∼c

n, ‖ · ‖c) be the canonical
pre-model for T0. For all T ∈ Mc, α ∈ L−^ and ϕ ∈ LG, if α ∈ T and Ki[α]ϕ < T then there is a maximal witnessed
theory S ∈ Wc such that T ∼c

i S , α ∈ S and [α]ϕ < S .

Proof. Let T ∈ Mc, let α ∈ L−^ and ϕ ∈ LG be such that α ∈ T and Ki[α]ϕ < T . By Lemma 55, there is a maximal
witnessed theory S such that T ∼i S , α ∈ S and [α]ϕ < S . By Lemma 51, T ∼U S . Since T0 ∼U T , by transitivity of ∼U

we have T0 ∼U S . Therefore S ∈ Wc and so T ∼c
i S . �

Lemma 57. Every element T ∈ Wc is an initial theory (i.e. 0 ∈ T).

Proof. Let T ∈ Wc. By the construction of Wc, we have T0 ∼U T . Since 0 → U0 is an axiom and T0 is maximal,
(0 → U0) ∈ T0. Thus, since 0 ∈ T0, we obtain U0 ∈ T0 (by Lemma 45.4). Therefore, by the definition of ∼U and since
T0 ∼U T , we have that 0 ∈ T . �

Corollary 58. For all ϕ ∈ LP
G, we have ϕ̂ = ϕ̂0.
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Proof. Since 0 ∈ T for all T ∈ Wc, we obtain by axiom (0-eq) that ϕ↔ ϕ0 ∈ T for all T ∈ Wc. Therefore, ϕ̂ = ϕ̂0. �

Lemma 59 (Truth Lemma). LetMc = (Wc,Ac,∼c
1, . . . ,∼c

n, Vc) be the canonical pre-model for some T0 and ϕ ∈ LG.
Then, for all α ∈ L−^ we have [[ϕ]]α̂ = 〈̂α〉ϕ.

Proof. The proof is by <-induction on ϕ, using the following induction hypothesis (IH): for all ψ < ϕ, we have [[ψ]]α̂ =

〈α〉ψ
∧

for all α ∈ L−^.

Base case ϕ := p. Then [[p]]α̂ = ‖p‖c ∩ α̂ = p̂∩ α̂ = p ∧ α
∧

= 〈α〉p
∧

, by Defn.27, the defn. of ‖ · ‖c, Rp, and Proposition
9.3.

Base case ϕ := >. Then [[>]]α̂ = α̂ = 〈α〉>
∧

, by Defn.27 and the fact that ` α↔ 〈α〉>.

Base case ϕ := 0. Then [[0]]α̂ = Wc if α̂ = Wc, and [[0]]α̂ = ∅ otherwise. Also, 〈α〉0
∧

= 0 ∧ Uα
∧

= 0̂ ∩ Uα
∧

= Uα
∧

(by
Propositions 9.2 and Lemma 57). By Corollary 54, Uα

∧
= Wc if α̂ = Wc, and Uα

∧
= ∅ otherwise. So [[0]]α̂ = 〈α〉0

∧
.

Case ϕ := ¬ψ. Then we have: T ∈ [[¬ψ]]α̂ iff T ∈ α̂ and T < [[ψ]]α̂ iff T ∈ α̂ and T < 〈α〉ψ
∧

(by IH) iff T ∈ α̂ and
T ∈ ¬〈α〉ψ
∧

iff T ∈ α ∧ ¬〈α〉ψ
∧

iff T ∈ 〈α〉¬ψ
∧

(by the definition of [α]ψ and Prop. 9.3).
Case ϕ := ψ∧ χ. First observe that ` 〈α〉(ψ∧ χ)↔ (〈α〉ψ∧ 〈α〉χ), which can easily be derived from Propositions 9.3

and 9 .14. We then have:
T ∈ [[ψ ∧ χ]]α̂ iff T ∈ [[ψ]]α̂ and T ∈ [[χ]]α̂ iff T ∈ 〈α〉ψ

∧
and T ∈ 〈α〉χ

∧
(by IH) iff T ∈ 〈α〉ψ ∧ 〈α〉χ

∧
iff T ∈ 〈α〉(ψ ∧ χ)
∧

(by the above theorem).

Case ϕ := ψ0. First note that [[ψ0]]α̂ = α̂ ∩ [[ψ]]Wc (by Definition 27) = α̂ ∩ [[ψ]]>̂ (since >̂ = Wc) = α̂ ∩ ψ̂ (by IH
on [[ψ]]>̂ and by R[>]) = α̂ ∩ ψ̂0 (by Corollary 58). By (3.) in Proposition 9 and R0 is easy to see that 〈α〉ψ0

∧
= α̂ ∩ ψ̂0.

Therefore, [[ψ0]]α̂ = 〈α〉ψ0
∧

.

Case ϕ := Kiψ.
(⇒) Suppose T ∈ [[Kiψ]]α̂. This means, by Definition 27, that T ∈ α̂ and T α̂

i ⊆ [[ψ]]α̂. We need to show that
T ∈ 〈α〉Kiψ
∧

. Since ` 〈α〉Kiψ ↔ α ∧ Ki[α]ψ, we therefore only need to show that T ∈ α̂ and T ∈ Ki[α]ψ
∧

. We already
know the former, so we just need to prove the latter. Towards contradiction, suppose T < Ki[α]ψ

∧
. By Corollary 56, there

is S ∈ Wc such that T ∼c
i S , α ∈ S , and [α]ψ < S . Since ` 〈α〉ψ→ [α]ψ, we have that 〈α〉ψ < S . Thus, S < 〈α〉ψ

∧
. By IH,

S < [[ψ]]α̂ which is a contradiction since T α̂
i ⊆ [[ψ]]α̂. Therefore, T ∈ Ki[α]ψ

∧
.

(⇐) Suppose T ∈ 〈α〉Kiψ
∧

, i.e., 〈α〉Kiψ ∈ T . Since ` 〈α〉Kiψ ↔ α ∧ Ki[α]ψ, we therefore know that α ∈ T and
Ki[α]ψ ∈ T . We need to show that T ∈ [[Kiψ]]α̂. Let S ∈ α̂ such that T ∼c

i S . Since T ∈ Ki[α]ψ
∧

, [α]ψ ∈ S . Since α ∈ S ,
〈α〉ψ ∈ S . This implies, by IH, that S ∈ [[ψ]]α̂. Since this holds for all S ∈ α̂ such that T ∼c

i S , we have that T α̂
i ⊆ [[ψ]]α̂

and, thus, T ∈ [[Kiψ]]α̂.

Case ϕ := Uψ. Follows similarly to the case for Ki using ` 〈α〉Uψ↔ α ∧ U[α]ψ and Lemma 53 for U.

Case ϕ := 〈χ〉ψ. We will use the fact that ` 〈α〉〈χ〉ψ↔ 〈〈α〉χ〉ψ (by R[!]).
T ∈ [[〈χ〉ψ]]α̂ iff T ∈ [[χ]]α̂ and T ∈ [[ψ]][[χ]]α̂ (by Definition 27) iff T ∈ 〈α〉χ

∧
and T ∈ [[ψ]]

〈α〉χ
∧ (by IH on [[χ]]α̂) iff

T ∈ 〈〈α〉χ〉ψ
∧

(by IH on [[ψ]]
〈α〉χ
∧).

Case ϕ := ^ψ.
(⇒) Suppose T ∈ [[^ψ]]α̂. This means, by Definition 27, that α ∈ T and there exists B ∈ Ac such that T ∈ B ⊆ α̂ and

T ∈ [[ψ]]B (see Observation 5.1). By the construction ofAc, we know that B = θ̂ for some θ ∈ L−^. Therefore, T ∈ [[ψ]]B

means that T ∈ [[ψ]]̂θ. Moreover, since θ̂ ⊆ α̂ and, thus, θ̂ = α̂ ∩ θ̂ = α ∧ θ
∧

, we obtain T ∈ [[ψ]]
α ∧ θ
∧. By Lemma 20.1, we

have ψ < ^ψ. Therefore, by IH, we obtain T ∈ 〈α ∧ θ〉ψ
∧

. Then, by axiom ([!]�-elim) and the fact that T is maximal, we
conclude that T ∈ 〈α〉^ψ

∧
.

(⇐) Suppose T ∈ 〈α〉^ψ
∧

, i.e., 〈α〉^ψ ∈ T . Then, since T is a maximal witnessed theory, there is p ∈ Prop such
that 〈α〉〈p〉ψ ∈ T . By Lemma 20.2, we know that 〈p〉ψ < ^ψ. Thus, by IH on 〈p〉ψ, we obtain that T ∈ [[〈p〉ψ]]α̂. This
means, by Definition 27 and Observation 5.3, that T ∈ [[ψ]][[p]]α̂ ⊆ [[p]]α̂. Since p < ^ψ, by IH on p, we obtain that
[[p]]α̂ = 〈α〉p

∧
⊆ α̂. By the construction of Ac, we moreover have 〈α〉p

∧
∈ Ac. Therefore, as T ∈ [[ψ]]

〈α〉p
∧ and 〈α〉p

∧
⊆ α̂,

by Definition 27, we conclude that T ∈ [[^ψ]]α̂.
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Case ϕ := 〈G〉ψ.
(⇒) Suppose T ∈ [[〈G〉ψ]]α̂. This means by Definition 27 that T ∈ α̂ and there exists {Bi : i ∈ G} ⊆ Ac such

that T ∈ [[ψ]]α̂∩⋂i∈G Kα̂
i Bi

. By the construction of Ac we know that for all i ∈ G, Bi = θ̂i for some θi ∈ L−^. Therefore

T ∈ [[ψ]]α̂∩⋂i∈G Kα̂
i θ̂i

. It suffices to show that: α̂∩
⋂

i∈G Kα̂
i θ̂i = α ∧

∧
i∈G Kα

i θi

∧
. First we need to show that Kα̂

i θ̂i = Kα
i θi

∧
. Note

that Kα̂
i θ̂i = Ki(α̂ → θ̂i) = Ki(α→ θi

∧
) and Kα

i θi

∧
= Ki(α→ θi)
∧

. For (⊆): Let T ∈ Kα̂
i θ̂i, then for all S ∼i T , S ∈ α→ θi

∧
.

Therefore T ∈ Ki(α→ θi)
∧

and so T ∈ Kα
i θi

∧
. For (⊇): Let T ∈ Kα

i θi

∧
, this means that Ki(α → θi) ∈ T . Thus for all S ∼i T ,

α → θi ∈ S . Therefore T ∈ Kα̂
i θ̂i. Using this, it is easy to see that α̂ ∩

⋂
i∈G Kα̂

i θ̂i = α ∧
∧

i∈G Kα
i θi

∧
. We then obtain that

T ∈ [[ψ]]
α ∧

∧
i∈G Kα

i θi

∧. Since ψ < 〈G〉ψ, by I.H. we have that T ∈ 〈α ∧
∧

i∈G Kα
i θi〉ψ

∧
. Thus 〈α ∧

∧
i∈G Kα

i θi〉ψ ∈ T . By

([!][G]-elim) we have 〈α〉〈G〉ψ ∈ T .
(⇐) Suppose T ∈ 〈α〉〈G〉ψ

∧
, i.e., 〈α〉〈G〉ψ ∈ T . Since T is a maximal witnessed theory, there is {pi : i ∈ G} ⊆ Prop

such that 〈α〉〈
∧

i∈G Ki pi〉ψ ∈ T . By Lemma 20.3, we know that 〈
∧

i∈G Ki pi〉ψ < 〈G〉ψ. Thus, by IH on 〈
∧

i∈G Ki pi〉ψ, we
obtain that T ∈ [[〈

∧
i∈G Ki pi〉ψ]]α̂. This means, by Definition 27, that T ∈ [[ψ]][[

∧
i∈G Ki pi]]α̂ . By IH on

∧
i∈G Ki pi, we obtain

that T ∈ [[ψ]]
〈α〉

∧
i∈G Ki pi

∧. By Proposition 3.2 and the reduction axioms (RKi ) and (Rp), it is easy to see that the formula

〈α〉
∧

i∈G Ki pi ↔ α ∧
∧

i∈G Kα
i pi is derivable in GALM. Therefore,

[[ψ]]
〈α〉

∧
i∈G Ki pi

∧= [[ψ]]
α ∧

∧
i∈G Kα

i pi

∧= [[ψ]]α̂∩⋂i∈G Kα̂
i p̂i

.

Thus T ∈ [[ψ]]α̂∩⋂i∈G Kα̂
i p̂i

. Since Bi := p̂i ∈ A
c for every i ∈ G, we obtain that T ∈ [[〈G〉ψ]]α̂. �

Corollary 60. The canonical pre-modelMc is standard (and hence a pseudo-model).

Proof. Ac = {̂θ : θ ∈ L−^} = {〈̂>〉θ : θ ∈ L−^} = {[[θ]]>̂ : θ ∈ L−^} = {[[θ]]Wc : θ ∈ L−^}. �

Lemma 61. For every ϕ ∈ LG, if ϕ is consistent then {0,^ϕ} is an initial theory.

Proof. Let ϕ ∈ LG s.t. ϕ 0 ⊥. By the Equivalences with 0 in Table 1, we have ` ⊥0 ↔ (p ∧ ¬p)0 ↔ (p0 ∧ ¬p0) ↔
(p ∧ ¬p) ↔ ⊥. Therefore, ` ψ → ⊥0 iff ` ψ → ⊥ for all ψ ∈ LG. Then, by Proposition 9.13, we obtain ` ϕ → ⊥ iff
` (0 ∧ ^ϕ)→ ⊥. Since ϕ 0 ⊥, we have 0 ∧ ^ϕ 0 ⊥, i.e., {0,^ϕ} is a theory. Since 0 ∈ {0,^ϕ}, it is an initial one. �

Corollary 62. GALM is complete with respect to standard pseudo models.

Proof. Let ϕ be a consistent formula. By Lemma 61, {0,^ϕ} is an initial theory. Then, by Extension Lemma (Lemma 50),
there is a maximal witnessed initial theory T0 such that {0,^ϕ} ⊆ T0. We can then construct the canonical pseudo-model
Mc for T0. Since ^ϕ ∈ T0 and T0 is witnessed, there exists p ∈ Prop such that 〈p〉ϕ ∈ T0. By Truth Lemma (applied to
α := p), we get T0 ∈ [[ϕ]] p̂. Hence, ϕ is satisfied at T0 in the set p̂ ∈ Ac. �

Theorem 63. APALM is complete with respect to standard pseudo models.

The completeness proof for APALM with respect to standard pseudo models is obtained by following the same steps
in the completeness proof of GALM without the parts required for the operator 〈G〉. This involves, for example, defining
the witnessed theories only with respect to ^ and modifying the auxiliary lemmas accordingly. This proof is presented in
the earlier, shorter version [12] of this paper.

Corollary 64. GALM is complete with respect to a-models. Moreover, APALM is complete with respect to a-models.

Proof. GALM completeness follows immediately from Corollaries 62 and 39. APALM completeness follows from
Theorem 63 and Corollary 39 �
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6 Conclusions and Future Work
This paper solves the open question of finding a ‘quantificationally strong’ variant of APAL and GAL that is recursively
axiomatizable. Here, by ‘quantificationally strong’ version we mean a language that allows quantification over all the
public announcements (or group knowledge announcements in the case of GAL) that are expressible by �-free formulas
(and [G]-free formulas in the case of GAL) in the given language. Our system APALM is inspired by our analysis of
Kuijer’s counterexample [24], which lead us to add to APAL a ‘memory’ of the initial situation. We then used similar
methods to obtain a recursive axiomatization for the memory-enhanced variant GALM of GAL. The soundness and
completeness proofs crucially rely on a Subset Space-like semantics and on the equivalence between the effort modality
and the arbitrary announcement modality (and on the equivalence between their [G] counterparts), thus revealing the
strong link between these two formalisms.

We note again that the problems with finding a recursive axiomatization apply to many other variants of APAL and
GAL. To the best of our knowledge, there is no complete axiomatization for Coalition Announcement Logic (CAL) in-
troduced in [2], though an extension of it (subsuming both GAL and CAL) was completely axiomatized in [22] using
infinitary rules. But no recursive axiomatization is known for GAL, CAL, or any of their extensions [2, 33, 3, 4]. In
contrast, in this paper we showed that the memory-enhanced version of CAL is embeddable in the (recursively axiom-
atized) GALM. We believe that our methods could also be used to provide a direct recursive axiomatization of CALM
(the memory-enhanced variant of CAL), but we leave this for future work. Another open question is to elucidate whether
GALM and CALM are equally expressive. In the memory-free case, [19] provided a counterexample: there exists a
property expressible in GAL that is not expressible in CAL. Is that still the case for the memory-enhanced versions? We
leave this problem for future research as well.

A further comment is on the connection of our logic with the yesterday operator. The limited form of memory
provided by APALM is in fact enough to ‘simulate’ the yesterday operator Yϕ on any given model, by using context-
dependent formulas. For instance, the dialogue in Cheryl’s birthday puzzle (Albert: “I don’t know when Cheryl’s birthday
is, but I know that Bernard doesn’t know it either”; Bernard: “At first I didn’t know when Cheryl’s birthday is, but I know
now”; Albert: “Now I also know”), can be simulated by the following sequence of announcements27: first, the formula
0 ∧ ¬Kac ∧ Ka¬Kbc is announced (where 0 marks the fact that this is the first announcement), then (¬Kbc)0 ∧ Kbc is
announced, and finally Kac is announced.

For another example: if instead we change the story so that the third announcement (by Albert) is “I knew you
knew it (just before you said so)”, then the last step of this alternative scenario corresponds to announcing the formula
([0 ∧ ¬Kac ∧ Ka¬Kbc]KaKbc)0 (saying that, just after the first announcement but before the second, Albert knew that
Bernard knew the birthday). This shows how the logic can simulate the use of any (iterated) Y’s in concrete examples,
although at the cost of repeating the relevant part of history inside the announcement in order to mark the exact time when
the announced formula was meant to be true.

Therefore, APALM combines in a way the expressivity and advantages of APAL with some of the expressivity of
TPAL (the extension of PAL with the yesterday operator, introduced in [29, 28]), without any of “defects” of either of
them: unlike APAL, it has a natural, straightforward recursive axiomatization, with intuitive axioms and rules; unlike
TPAL, its semantics is not computationally much more demanding than the one of basic epistemic logic: instead of
keeping track of a growing and unbounded number of past Kripke models, APALM keeps only the initial model and the
current one. Nevertheless, a more systematic treatment of the yesterday operator on (a version of) our announcement
models and its connection to arbitrary and group announcements deserves a closer look. Yet another line of further work
concerns other meta-logical properties, such as decidability and complexity, of APALM and GALM.
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A Appendix
A.1 Definition of the complexity measure for the Proofs of Lemmas 1 and 20
In some of our inductive proofs, we need a complexity measure on formulas that is different from the standard one based
on subformula complexity. The standard notion requires only that formulas are more complex than their subformulas,
while we also need that ^ϕ and 〈G〉ϕ are more complex than 〈θ〉ϕ for all θ ∈ L−^. To the best of our knowledge, such a
complexity measure was first introduced in [5] for the original APAL language from [6]. A similar measure is also used
in [7] and has later been introduced for topological versions of APAL in [39, 40, 11]. Definitions below are given for our
largest language LG. Their counterparts for L are obtained simply by eliminating the clauses for 〈G〉ϕ.

Definition 65 (Subformula). Given a formula ϕ ∈ LG, the set S ub(ϕ) of subformulas of ϕ is recursively defined as

S ub(ϕ) = {ϕ} if ϕ is p,> or 0 ,

S ub(¬ϕ) = S ub(ϕ) ∪ {¬ϕ}

S ub(ϕ0) = S ub(ϕ) ∪ {ϕ0}

S ub(Kiϕ) = S ub(ϕ) ∪ {Kiϕ}

S ub(Uϕ) = S ub(ϕ) ∪ {Uϕ}

S ub(ϕ ∧ ψ) = S ub(ϕ) ∪ S ub(ψ) ∪ {ϕ ∧ ψ}

S ub(〈ϕ〉ψ) = S ub(ϕ) ∪ S ub(ψ) ∪ {〈ϕ〉ψ}

S ub(^ϕ) = S ub(ϕ) ∪ {^ϕ}

S ub(〈G〉ϕ) = S ub(ϕ) ∪ {〈G〉ϕ}.

Any formula in S ub(ϕ) − {ϕ} is called a proper subformula of ϕ.

Definition 66 (Size of formulas in LG). The size s(ϕ) of formula ϕ ∈ LG is a natural number recursively defined as:

s(p) = s(>) = s(0) = 1,

s(¬ϕ) = s(ϕ0) = s(Kiϕ) = s(Uϕ) = s(^ϕ) = s(〈G〉ψ) = s(ϕ) + 1,

s(ϕ ∧ ψ) = s(ϕ) + s(ψ) + 1,

s(〈ϕ〉ψ) = (5 + s(ϕ)) · s(ψ).

Definition 67 (^, G-Depth of formulas in LG). The ^, G-depth d(ϕ) of formula ϕ ∈ LG is a natural number recursively
defined as:

d(p) = d(>) = d(0) = 0,

d(¬ϕ) = d(ϕ0) = d(Kiϕ) = d(Uϕ) = d(ϕ)

d(ϕ ∧ ψ) = d(〈ϕ〉ψ) = max{d(ϕ), d(ψ)},

d(^ϕ) = d(〈G〉ϕ) = d(ϕ) + 1.

Finally, we define our intended complexity relation < as lexicographic merge of ^, G-depth and size, exactly as in
[5]:

Definition 68. For any ϕ,ψ ∈ LG, we put

ϕ < ψ iff either d(ϕ) < d(ψ), or d(ϕ) = d(ψ) and s(ϕ) < s(ψ).
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A.2 Proofs of results in Section 2
Proof of Proposition 9

1. from ` ϕ↔ ψ, infer ` [θ]ϕ↔ [θ]ψ: Follows directly by (K!) and (Nec!).

2. 〈θ〉0↔ (0 ∧ Uθ): Follows from the definition of 〈θ〉0 := ¬[θ]¬0 and the axiom (R¬.)

3. 〈θ〉ψ↔ (θ ∧ [θ]ψ): Follows from the definition 〈θ〉ψ := ¬[θ]¬ψ and the axiom (R¬.)

4. �ϕ→ [ρ]ϕ (ρ ∈ L−^ arbitrary):

1. `�ϕ↔ [>]�ϕ (R[>])

2. `[>]�ϕ→ [> ∧ ρ]ϕ, (for arbitrary ρ ∈ L−^) ([!]�-elim)

3. `[> ∧ ρ]ϕ→ [ρ]ϕ, (for arbitrary ρ ∈ L−^) (` (> ∧ ρ)↔ ρ and (RE))

4. `�ϕ→ [ρ]ϕ, (for arbitrary ρ ∈ L−^) (1-3, CPL)

5. from ` χ→ [p]ϕ, infer ` χ→ �ϕ (p < Pχ ∪ Pϕ):

1. `χ→ [p]ϕ (assumption)

2. `χ→ [>][p]ϕ (R[>])

3. `χ→ [〈>〉p]ϕ (R[!])

4. `χ→ [> ∧ p]ϕ (Prop.9.3, Rp, RE)

5. `χ→ [>]�ϕ (p < Pχ ∪ Pϕ and [!]�-intro)

6. `χ→ �ϕ (R[>])

6. all S 4 axioms and rules for �: The derivation of the necessitation rule for �, (Nec�), easily follows from (Nec!)
and Prop. 9.5. The T-axiom for � follows from Prop. 9.4 and R[>].
For the K-axiom:

1. `(�(ϕ→ ψ) ∧ �ϕ)→ ([p](ϕ→ ψ) ∧ [p]ϕ) (p < Pϕ ∪ Pψ, Prop. 9.4)

2. `([p](ϕ→ ψ) ∧ [p]ϕ)→ [p]ψ (K!)

3. `(�(ϕ→ ψ) ∧ �ϕ)→ [p]ψ (1, 2, CPL)

4. `(�(ϕ→ ψ) ∧ �ϕ)→ �ψ (p < Pϕ ∪ Pψ, Prop. 9.5)

For the 4-axiom:

1. `�ϕ→ [p ∧ q]ϕ (for some p, q < Pϕ, Prop. 9.4)

2. `�ϕ→ [p]�ϕ ([!]�-intro)

3. `�ϕ→ ��ϕ (p < Pϕ, Prop. 9.5)

7. (ϕ→ ψ)0 ↔ (ϕ0 → ψ0): This is straightforward by the set of axioms called Equivalences with 0.

8. ` ϕ00 ↔ ϕ0:

1. `0→ (ϕ↔ ϕ0) (0-eq)

2. `(0→ (ϕ↔ ϕ0))0 ( Nec0)

3. `00 → (ϕ↔ ϕ0)0 ( Prop.9.7)

4. `00 → (ϕ0 ↔ ϕ00) ( Prop.9.7)

5. `00 (Ax0)

6. `ϕ0 ↔ ϕ00 (4, 5, MP)
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9. �ϕ0 ↔ ϕ0 and ϕ0 ↔ ^ϕ0: From left-to-right direction of both cases follow from the T-axiom for �. From
right-to-left direction we will first prove that ` ϕ0 → �ϕ0:

1. `ϕ0 → (p→ ϕ0) (for p < Pϕ0 , CPL)

2. `ϕ0 → [p]ϕ0 (R0)

3. `ϕ0 → �ϕ0 (Prop. 9.5)

For ` ^ϕ0 → ϕ0, we have:

1. `(¬ϕ)0 → �(¬ϕ)0 (by the above result)

2. `¬ϕ0 → �¬ϕ0 (Eq0
¬)

3. `^ϕ0 → ϕ0 (contraposition of 2)

10. ` (�ϕ)0 → �ϕ0

1. `�ϕ→ ϕ (S4 for �)

2. `(�ϕ→ ϕ)0 (Nec0)

3. `(�ϕ)0 → ϕ0 (Prop.9.7, 2, MP)

4. `(�ϕ)0 → �ϕ0 (Prop.9.9)

11. ` (0 ∧ ^ϕ0)→ ϕ

1. `0→ (ϕ0 ↔ ϕ) (0-eq)

2. `0→ (ϕ0 → ϕ) (CPL)

3. `0→ (^ϕ0 → ϕ) (Prop.9.9)

4. `(0 ∧ ^ϕ0)→ ϕ (CPL)

12. ` ϕ→ (0 ∧ ^ϕ)0

1. `(�¬ϕ)0 → ¬ϕ (Imp0
�)

2. `¬¬ϕ→ ¬(�¬ϕ)0 (contraposition of 1)

3. `¬¬ϕ→ (¬�¬ϕ)0 (Eq0
¬)

4. `ϕ→ (^ϕ)0 (the defn. of �, CPL)

5. `ϕ→ (00 ∧ (^ϕ)0) (Ax0)

6. `ϕ→ (0 ∧ ^ϕ)0 (Eq0
∧)

13. ` ϕ→ ψ0 if and only if ` (0 ∧ ^ϕ)→ ψ

From left-to-right: Suppose ` ϕ→ ψ0 and show: ` (0 ∧ ^ϕ)→ ψ.

1. `(0 ∧ ^ψ0)→ ψ (Prop.9.11)

2. `^ϕ→ ^ψ0 (by assumption and Nec�)

3. `(0 ∧ ^ϕ)→ (0 ∧ ^ψ0) (2 and CPL)
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4. `(0 ∧ ^ϕ)→ ψ (1-3, CPL)

From right-to-left: Suppose ` (0 ∧ ^ϕ)→ ψ and show ` ϕ→ ψ0.

1. `ϕ→ (0 ∧ ^ϕ)0 (Prop.9.12)

2. `(0 ∧ ^ϕ)→ ψ (assumption)

3. `((0 ∧ ^ϕ)→ ψ)0 (Nec0)

4. `(0 ∧ ^ϕ)0 → ψ0 (Prop.9.7)

5. `ϕ→ ψ0 (1-4, CPL)

14. [θ](ϕ ∧ ψ)↔ ([θ]ϕ ∧ [θ]ψ): Follows from (K!) and (Nec!).

15. [θ][p]ϕ↔ [θ ∧ p]ϕ

1. `[θ][p]ϕ↔ [〈θ〉p]ϕ (R[!])

2. `[〈θ〉p]ϕ↔ [θ ∧ [θ]p]ϕ (Prop.9.3, RE)

3. `[θ ∧ [θ]p]ϕ↔ [θ ∧ (θ → p)]ϕ (Rp, RE)

4. `[θ ∧ (θ → p)]ϕ↔ [θ ∧ p]ϕ (CPL, RE)

5. `[θ][p]ϕ↔ [θ ∧ p]ϕ (1-4, CPL)

16. [θ]⊥ ↔ ¬θ

1. `[θ]⊥ ↔ [θ](p ∧ ¬p) (the defn. of ⊥)

2. `[θ](p ∧ ¬p)↔ [θ]p ∧ [θ]¬p (Prop.9.14)

3. `[θ]p ∧ [θ]¬p↔ ((θ → p) ∧ (θ → ¬(θ → p))) (Rp, R¬)

4. `((θ → p) ∧ (θ → ¬(θ → p)))↔ ¬θ (CPL)

5. `[θ]⊥ ↔ ¬θ (1-4, CPL)

A.3 Proofs of results in Section 3
Proof of Proposition 22 The proof is by <-induction on ϕ, using Lemma 20 and the following induction hypothesis (IH):
for all ψ < ϕ and all models M = (W0, W,∼1, . . . ,∼n, ‖ · ‖), we have [[ψ]] ⊆ W. The base cases ϕ := p, ϕ := >, and
ϕ := 0 are straightforward by the semantics given in Defn.3. The inductive cases for Booleans are immediate. Similarly,
the following cases make use of the corresponding semantic clause in Defn.3.

Case ϕ := ψ0: [[ψ0]] = [[ψ]]M0 ∩W ⊆ W.

Case ϕ := Kiψ: [[Kiψ]] = {w ∈ W : wi ⊆ [[ϕ]]} ⊆ W.

Case ϕ := Uψ: [[Uψ]] ∈ {∅, W}, thus [[Uψ]] ⊆ W.

Case ϕ := 〈θ〉ψ: Since θ < 〈θ〉ψ (Lemma 20.1), by the IH on θ, we have that [[θ]] ⊆ W. Moreover, since ψ < 〈θ〉ψ
(Lemma 20.1), by the IH on ψ, we also have that [[ψ]]M|[[θ]] ⊆ [[θ]] (recall thatM|[[θ]] = (W0, [[θ]],∼1, . . . ,∼n, ‖ · ‖)).
Therefore, by Defn.3, we obtain that [[〈θ〉ψ]] = [[ψ]]M|[[θ]] ⊆ [[θ]] ⊆ W.

Case ϕ := ^ψ: By Lemma 20.2, it follows that for each θ ∈ L−^, 〈θ〉ψ < ^ψ. Then, by the IH, we have that for all
θ ∈ L−^, [[〈θ〉ψ]] ⊆ W. Thus

⋃
{[[〈θ〉ψ]] : θ ∈ L−^} ⊆ W, i.e., [[^ψ]] ⊆ W.

Case ϕ := 〈G〉ψ: By Lemma 20.3, it follows that for each θ ∈ L−^, 〈θ〉ψ < 〈G〉ψ. Then, by the IH, we have that
for all θi ∈ L−^, [[〈

∧
i∈G Kiθi〉ψ]] ⊆ W. Thus

⋃
{[[〈

∧
i∈G Kiθi〉ψ]] : θi ∈ L−^} ⊆ W, i.e., [[〈G〉ψ]] ⊆ W.
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A.4 Proofs of results in Section 4
Proof of Proposition 38

1. LetM = (W0,A,∼1, . . . ,∼n, ‖ · ‖) be a standard pseudo-model. Then, A ∈ A implies A = [[θ]]PS
W0 ⊆ W0 for some

θ, henceMA = (W0, A,∼1, . . . ,∼n, ‖ · ‖) is a model whenever A in non-empty.

(a) The proof is by <-induction from Lemma 20. The base cases and the inductive cases for Booleans are
straightforward.

Case ϕ := ψ0. We have [[ψ0]]PS
A = [[ψ]]PS

W0 ∩ A = [[ψ]]M0
A
∩ A = [[ψ0]]MA (by Defn.27, IH, and Defn. 3).

Case ϕ := Kiψ. We have [[Kiψ]]PS
A = {w ∈ A : wA

i ⊆ [[ψ]]PS
A } = {w ∈ A : wi ⊆ [[ψ]]MA } = [[Kiψ]]MA (by

Defn.27, IH, and Defn. 3).

Case ϕ := Uψ. By Definitions 3 and 27, we have:

[[Uψ]]MA =

A if [[ψ]]MA = A
∅ otherwise

[[Uψ]]PS
A =

A if [[ψ]]PS
A = A

∅ otherwise

By IH, [[ψ]]PS
A = [[ψ]]MA , therefore, [[Uψ]]PS

A = [[Uψ]]MA .

Case ϕ := 〈ψ〉χ. By Defn. 3, we know that [[〈ψ〉χ]]MA = [[χ]]MA |[[ψ]]MA
. Now consider the relativized model

MA|[[ψ]]MA = (W0, [[ψ]]MA ,∼1, . . . ,∼n, ‖ · ‖). By Lemma 20.1 and IH, we have [[ψ]]MA = [[ψ]]PS
A . Moreover,

by the definition of standard pseudo-models, we know that A = [[θ]]PS
W0 for some θ ∈ L−^. Therefore,

[[ψ]]MA = [[ψ]]PS
A = [[ψ]]PS

[[θ]]PS
W0

= [[〈θ〉ψ]]PS
W0 . Therefore, [[ψ]]MA ∈ A. We then have

[[〈ψ〉χ]]MA = [[χ]]M[[ψ]]MA
= [[χ]]M[[ψ]]PS

A
= [[χ]]PS

[[ψ]]PS
A

= [[〈ψ〉χ]]PS
A ,

by the semantics and IH on ψ and on χ (since [[ψ]]PS
A ∈ A).

Case ϕ := ^ψ. By Defn.3, Lemma 20.2, IH, the fact thatM is a standard pseudo model, and Lemma 37.1 -
applied in this order - we obtain the following equivalences:

[[^ψ]]MA =
⋃
{[[〈χ〉ψ]]MA : χ ∈ L−^} =

⋃
{[[〈χ〉ψ]]PS

A : χ ∈ L−^} = [[^ψ]]PS
A .

Case ϕ := 〈G〉ψ. By Defn.21, Lemma 20.3, IH, the fact that M is a standard pseudo model, and Lemma
37.2 - applied in this order - we obtain the following equivalences:

[[〈G〉ψ]]MA =
⋃
{[[〈

∧
i∈G

Kiθi〉ϕ]]MA : {θi : i ∈ G} ⊆ L−^} =
⋃
{[[〈

∧
i∈G

Kiθi〉ϕ]]PS
A : {θi : i ∈ G} ⊆ L−^}.

Therefore [[〈G〉ψ]]MA = [[〈G〉ψ]]PS
A .

(b) By part (a), [[ϕ]]M0
A

= [[ϕ]]MW0 = [[ϕ]]PS
W0 for all ϕ. SinceM is standard, we have A = [[θ]]PS

W0 = [[θ]]M0
A

for
some θ ∈ L−^, soMA is an a-model.

2. Let M = (W0, W,∼1, . . . ,∼n, ‖ · ‖) be an a-model. Since A = {[[θ]]M0 : θ ∈ L−^} ⊆ P(W0), the model M′ =

(W0,A,∼1, . . . ,∼n, ‖ · ‖) is a pre-model. Therefore, the semantics given in Defn. 27 is defined onM′ = (W0,A,∼1

, . . . ,∼n, ‖ · ‖).

(a) By Proposition 35, it suffices to prove that the pre-modelM′ = (W0,A,∼1, . . . ,∼n, ‖ · ‖) is standard, i.e. that
{[[θ]]M0 : θ ∈ L−^} = {[[θ]]PS

W0 : θ ∈ L−^}. For this, we need to show that for every a-modelM = (W0, W,∼1

, . . . ,∼n, ‖ · ‖), we have [[θ]]M = [[θ]]PS
W for all θ ∈ L−^.

We prove this by subformula induction on θ. The base cases and the inductive cases for Booleans are
straightforward.

Case θ := ψ0. Then [[ψ0]]M = [[ψ]]M0 ∩W = [[ψ]]PS
W0 ∩W = [[ψ0]]PS

W (by Defn.3, IH, and Defn.27).

Case θ := Kiψ. We have [[Kiψ]]M = {w ∈ W : wi ⊆ [[ψ]]M} = {w ∈ W : wW
i ⊆ [[ψ]]PS

W } = [[Kiψ]]PS
W (by Defn.3,

IH, and Defn.27).

Case θ := Uψ. By Definitions 3 and 27, we have:39



[[Uψ]]M =

W if [[ψ]]M = W
∅ otherwise

[[Uψ]]PS
W =

W if [[ψ]]PS
W = W

∅ otherwise

By IH, [[ψ]]PS
W = [[ψ]]M, therefore, [[Uψ]]PS

W = [[Uψ]]M.

Case θ := 〈ψ〉χ. By Definition 3, we know that [[〈ψ〉χ]]M = [[χ]]M|[[ψ]]M . Now consider the relativized
model M|[[ψ]]M = (W0, [[ψ]]M,∼1, . . . ,∼n, ‖ · ‖). By Lemma 20.1 and IH on ψ, we have [[ψ]]M = [[ψ]]PS

W .
Moreover, by the definition of a-models, we know that W = [[θ]]M0 for some θ ∈ L−^. Therefore, [[ψ]]M =

[[ψ]]M0 |[[θ]]
M0

= [[〈θ〉ψ]]M0 . Hence, since 〈θ〉ψ ∈ L−^, the model M|[[ψ]]M is also an a-model obtained by
updating the initial modelM0 by 〈θ〉ψ. We then have [[〈ψ〉χ]]M = [[χ]]M|[[ψ]]M (by Defn.3) = [[χ]]M|[[ψ]]PS

W
(by

IH on ψ) = [[χ]]PS
[[ψ]]PS

W
(by IH on χ,M|[[ψ]]M is an a-model) = [[〈ψ〉χ]]PS

W (by Defn.27).

(b) The proof of this part follows by <-induction on ϕ (where < is as in Lemma 20). All the inductive cases are
similar to ones in the above proof, except for the cases ϕ := ^ψ and ϕ := 〈G〉ψ, shown below.
Case ϕ := ^ψ. By Defn.3, Lemma 20.2, IH, the fact thatM′ is a standard pseudo model, and Lemma 37.2

- applied in that order - we obtain the following equivalences:

[[^ψ]]M =
⋃
{[[〈χ〉ψ]]M : χ ∈ L−^} =

⋃
{[[〈χ〉ψ]]PS

W : χ ∈ L−^} = [[^ψ]]PS
W .

Case ϕ := 〈G〉ψ. By Defn.21, Lemma 20.3, IH, the fact that M′ is a standard pseudo model and Lemma
37.2 - applied in that order - we obtain the following: equivalences,

[[〈G〉ψ]]M =
⋃
{[[〈

∧
i∈G

Kiθi〉ϕ]]M : {θi : i ∈ G} ⊆ L−^} =
⋃
{[[〈

∧
i∈G

Kiθi〉ϕ]]PS
W : {θi : i ∈ G} ⊆ L−^}.

Therefore, [[〈G〉ψ]]M = [[〈G〉ψ]]PS
W .

A.5 Proofs of results in Section 5
Proof of Lemma 43 We proceed by induction on the structure of s ∈ NF. For s := ε, take ψ := > and θ := >, then
it follows from the axiom R[>]. For the inductive cases we will verify only s := s′, •0; s := s′, η →; s := s′, U; and
s := s′, ρ. The case s := s′, Ki is analogous to the case s := s′, U.

Case s := s′, •0

` [s′, •0]ϕ iff ` [s′]ϕ0 (by Defn. 41) iff ` ψ′ → [θ′]ϕ0 (for some ψ′ ∈ LG and θ′ ∈ L−^, by IH) iff ` ψ′ →
(θ′ → ϕ0) (by R0) iff ` (ψ′ ∧ θ′) → ϕ0 iff ` (0 ∧ ^(ψ′ ∧ θ′)) → ϕ (by Prop. 9.13) iff ` ψ → [θ]ϕ (where
ψ := 0 ∧ ^(ψ′ ∧ θ′) ∈ LG and θ := > ∈ L−^).

Case s := s′, η→

` [s′, η →]ϕ iff ` [s′](η → ϕ) (by Defn. 41) iff ` ψ′ → [θ′](η → ϕ) (for some ψ′ ∈ LG and θ′ ∈ L−^, by IH)
iff ` ψ′ → ([θ′]η → [θ′]ϕ) (by K!) iff ` (ψ′ ∧ [θ′]η) → [θ′]ϕ iff ` ψ → [θ]ϕ (where ψ := ψ′ ∧ [θ′]η ∈ LG and
θ := θ′ ∈ L−^).

Case s := s′, U

` [s′, U]ϕ iff ` [s′]Uϕ (by Defn. 41) iff ` ψ′ → [θ′]Uϕ (for some ψ′ ∈ LG and θ′ ∈ L−^, by IH) iff ` ψ′ →
(θ′ → U[θ′]ϕ) (by RU ) iff ` (ψ′ ∧ θ′)→ U[θ′]ϕ iff ` E(ψ′ ∧ θ′)→ [θ′]ϕ (pushing U back with its dual E, since
U is an S5 modality) iff ` ψ→ [θ]ϕ (ψ := E(ψ′ ∧ θ′) ∈ LG and θ := θ′ ∈ L−^).

Case s := s′, ρ

` [s′, ρ]ϕ iff ` [s′][ρ]ϕ (by Defn. 41) iff ` ψ′ → [θ′][ρ]ϕ (by IH) iff ` ψ′ → [〈θ′〉ρ]ϕ (by R[!]) iff ` ψ → [θ]ϕ
(where ψ := ψ′ ∈ LG and θ := 〈θ′〉ρ ∈ L−^)
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In each case, it is easy to see that Pψ ∪ Pθ ⊆ Ps.

Proof of Lemma 49 (Lindenbaum’s Lemma) The proof proceeds by constructing an increasing chain Γ0 ⊆ Γ1 ⊆ . . . ⊆

Γn ⊆ . . . of witnessed theories, where Γ0 := Γ, and each Γi is recursively defined. Since we have to guarantee that each
Γi is witnessed, we follow a two-fold construction, where Γ0 = Γ+

0 := Γ. Let γ0, γ1, . . . , γn, . . . be an enumeration of all
pairs of the form γi = (si,ϕi) consisting of any si ∈ NF and any formula ϕi ∈ LG. Let (sn,ϕn) be the nth pair in the
enumeration. We then set

Γ+
n =

{
Γn ∪ {〈sn〉ϕn} if Γn 0 ¬ 〈sn〉ϕn

Γn otherwise

Note that the empty string ε is in NF and for every ψ ∈ LG we have 〈ε〉ψ := ψ by the definition of possibility forms. There-
fore, the above enumeration of pairs includes every formula ψ of LG in the form of its corresponding pair (ε,ψ). By
Lemma 46, each Γ+

n is witnessed. Then, if ϕn is of the form ϕn := ^θ for some θ ∈ LG, there exists a p ∈ Prop such that
Γ+

n is consistent with 〈sn〉〈p〉θ (since Γ+
n is witnessed). Similarly, if ϕn is of the form ϕn := 〈G〉θ for some θ ∈ LG, there

exists {pi : i ∈ G} ⊆ Prop such that Γ+
n is consistent with 〈sn〉〈

∧
i∈G Ki pi〉θ. We then define

Γn+1 =


Γ+

n if Γn 0 ¬〈sn〉ϕn and ϕn is not of the form ^θ or 〈G〉θ
Γ+

n ∪ {〈sn〉〈p〉θ} if Γn 0 ¬〈sn〉ϕn and ϕn := ^θ for some θ ∈ LG

Γ+
n ∪ {〈sn〉〈

∧
i∈G Ki pi〉θ} if Γn 0 ¬〈sn〉ϕn and ϕn := 〈G〉θ for some θ ∈ LG

Γn otherwise

where p ∈ Prop and {pi : i ∈ G} ⊆ Prop such that Γ+
n is consistent with 〈sn〉〈p〉θ or consistent with 〈sn〉〈

∧
i∈G Ki pi〉θ,

respectively. Again by Lemma 46, it is guaranteed that each Γn is witnessed. Now consider the union TΓ =
⋃

n∈N Γn.
By Lemma 47, we know that TΓ is a theory. To show that TΓ is witnessed, first let s ∈ NF and ψ ∈ LG and suppose
〈s〉^ψ is consistent with TΓ. The pair (s,^ψ) appears in the above enumeration of all pairs, thus (s,^ψ) := (sm,ϕm) for
some m ∈ N. Hence, 〈s〉^ψ := 〈sm〉ϕm. Then, since 〈s〉^ψ is consistent with TΓ and Γm ⊆ TΓ, we know that 〈s〉^ψ
is in particular consistent with Γm. Therefore, by the above construction, 〈s〉〈p〉ψ ∈ Γm+1 for some p ∈ Prop such that
Γ+

m is consistent with 〈s〉〈p〉ψ. Thus, as TΓ is consistent and Γm+1 ⊆ TΓ, we have that 〈s〉〈p〉ψ is also consistent with TΓ.
Thus 〈s〉〈p〉ψ is also consistent with TΓ for some p ∈ Prop. Now, let us check the witnessing condition for 〈G〉. Let
G ⊆ AG, s ∈ NF, and ψ ∈ LG and suppose that 〈s〉〈G〉ψ is consistent with TΓ. The pair (s, 〈G〉ψ) appears in the above
enumeration of all pairs, thus (s, 〈G〉ψ) := (sm,ϕm) for some m ∈ N. Hence, 〈s〉〈G〉ψ := 〈sm〉ϕm. Then, since 〈s〉〈G〉ψ
is consistent with TΓ and Γm ⊆ TΓ, we know that 〈s〉〈G〉ψ is in particular consistent with Γm. Therefore, by the above
construction, 〈s〉〈

∧
i∈G Ki pi〉ψ ∈ Γm+1 for some {pi : i ∈ G} ⊆ Prop such that Γ+

m is consistent with 〈s〉〈
∧

i∈G Ki pi〉ψ. Thus,
as TΓ is consistent and Γm+1 ⊆ TΓ, we have that 〈s〉〈

∧
i∈G Ki pi〉ψ is also consistent with TΓ. Hence, we conclude that

TΓ is witnessed. Finally, TΓ is also maximal by construction: otherwise there would be a witness theory T such that
TΓ ( T . This implies that there exists ϕ ∈ LG with ϕ ∈ T but ϕ < TΓ. Then, by the construction of TΓ, we obtain Γi ` ¬ϕ

for all i ∈ N. Therefore, since TΓ ⊆ T , we have T ` ¬ϕ. Hence, since ϕ ∈ T , we conclude T ` ⊥ (contradicting T being
consistent).

Proof of Lemma 50 (Extension Lemma) Let θ ∈ LG and assume that {0, θ} is a theory. Moreover, let γ0, γ1, . . . , γn, . . .
an enumeration of all pairs of the form (sn,ϕn) consisting of any sn ∈ NF, and every formula ϕn ∈ LG of the form
ϕn := ^ψ or ϕn := 〈G〉ψ with ψ ∈ LG . We will recursively construct a chain of initial theories Γ0 ⊆ . . . ⊆ Γn ⊆ . . . such
that

1. Γ0 = {0, θ},

2. Pn := {p ∈ P : p occurs in Γn} is finite for every n ∈ N, and

3. for every γn := (sn,ϕn) with sn ∈ NF and ϕn ∈ LG, if Γn 0 ¬〈sn〉ϕn where ϕn := ^ψ then there is pm “fresh” such
that 〈sn〉〈pm〉ψ ∈ Γn+1, and, if Γn 0 ¬〈sn〉ϕn where ϕn := 〈G〉ψ for some G ⊆ A then there is {pmi : i ∈ G} where
pmi is “fresh” for every i ∈ G such that 〈sn〉〈

∧
i∈G Ki pmi 〉ψ ∈ Γn+1. Otherwise we will define Γn+1 = Γn.

For every γn, let P′(n) := {p ∈ P′ | p occurs either in sn or ϕn}. Clearly every P′(n) is always finite. We now construct
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an increasing chain of initial theories recursively. We set Γ0 := {0, θ}, and let

Γn+1 =


Γn ∪ {〈sn〉〈pm〉ψ} if Γn 0 ¬〈sn〉ϕn and ϕn := ^ψ
Γn ∪ {〈sn〉〈

∧
i∈G Ki pmi 〉ψ} if Γn 0 ¬〈sn〉ϕn and ϕn := 〈G〉ψ

Γn otherwise,

where m, mi are, in each case, the least natural number greater than the indices in Pn ∪ P(n), i.e., pm, pmi for all i ∈ G are
fresh in each case (since Pn ∪ P(n) is finite and Prop is countably infinite, we always have enough fresh propositional
variables). We now show that Γ :=

⋃
n∈N Γn is an initial witnessed theory. First show that Γ is a theory. By Lemma

47, it suffices to show by induction that every Γn is a theory. We are given that Γ0 is a theory. For the inductive step
suppose Γn is consistent but Γn+1 is not. Hence, Γn , Γn+1 and moreover Γn+1 ` ⊥. Then, Γn+1 = Γn ∪ {〈sn〉〈pm〉ψ}

(when ϕn := ^ψ) or Γn+1 = Γn ∪ {〈sn〉〈
∧

i∈G Ki pmi 〉ψ} (when ϕn := 〈G〉ψ). Here we will only check the latter case since
the former case is analogous. Since Γn+1 = Γn ∪ {〈sn〉〈

∧
i∈G Ki pmi 〉ψ} we have Γn ` [sn][

∧
i∈G Ki pmi ]¬ψ. Therefore there

exists {θ1, . . . , θk} ⊆ Γn such that {θ1, . . . , θk} ` [sn][
∧

i∈G Ki pmi ]¬ψ. Let θ =
∧

1≤i≤k θi. Then ` θ → [sn][
∧

i∈G Ki pmi ]¬ψ,
so ` [θ→, sn][

∧
i∈G Ki pmi ]¬ψ with pmi < Pθ ∪ Psn ∪ Pϕn for every i ∈ G. Thus, by the admissible rule in Lemma 44.2,

we obtain ` [θ→, sn][G]¬ψ, i.e., ` θ → [sn][G]¬ψ. Therefore, θ ` ¬〈sn〉〈G〉ψ. Since {θ1, . . . , θk} ⊆ Γn, we therefore
have Γn ` ¬〈sn〉〈G〉ψ. But, this would mean Γn = Γn+1, contradicting our assumption (that Γn+1 , Γn). Therefore Γn+1 is
consistent and thus a theory. Hence, by Lemma 47, Γ is a theory. Condition (3) above implies that Γ is also witnessed.
Then, by Lindenbaum’s Lemma (Lemma 49), there is a maximal witnessed theory TΓ such that Γ ⊆ TΓ. Moreover, since
0 ∈ Γ ⊆ TΓ, the set TΓ is in fact a maximal witnessed initial theory.
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