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Abstract

This thesis introduces and develops the notion of a relative weak fac-
torization system. Motivated by research directions in type theory, we
combine ideas from algebraic weak factorization systems with the concept
of relative monads and comonads, to define a generalized, more flexible
analogue of weak factorization systems, which is able to incorporate ad-
ditional shapes of diagrams. We prove results regarding the properties of
these systems and their relationships to existing notions of weak factor-
ization systems.
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1 Introduction
The motivation for the work presented here arises from type theory. Type theory
and category theory are closely linked; in particular, we can think of category
theory as providing semantics for type theory (and type theory as providing
syntax for category theory). As new forms of type theory are developed, we are
interested in developing and understanding categorical models for them, and
perhaps also interested in using possible categorical models to inspire or guide
their development.

One intriguing possibility in type theory is the development of a directed
type theory, and in particular directed homotopy type theory (see for example
Licata and Harper [8] and North [7]). As homotopy type theory has provided a
rich and unifying perspective on topological spaces,∞-groupoids, and more, we
imagine that a directed homotopy type theory would provide a rich and unifying
perspective on directed topological spaces, (∞, n)-categories, and more.

There are various obstacles to creating directed analogues of homotopy type
theory and its categorical models. One such obstacle is that it is not clear how
dependent types should be modeled in directed categories. We would like to
employ fibrations of some kind, but the existing definitions do not generalize
straightforwardly to directed settings. In particular, consider identity types
and their interpretations, which are very central concepts in homotopy type
theory. The usual Martin-Löf identity type can be modeled in category theory
using the notion of a weak factorization system. However, when considering a
directed context, where symmetry does not always hold, the Martin-Löf rules
are too strong, and weak factorization systems do not model the behavior we
have in mind.

What we would like instead is an object with many of the properties of a
weak factorization system, but built around factorizations of different shapes,
and incorporating two-sided fibrations. This thesis explores one possible route
toward this goal, via the novel concept of a relative weak factorization system.
Chapters 2 and 3 introduce the background concepts of weak factorization sys-
tems, algebraic weak factorization systems, and relative monads. Chapter 4
begins combining these ideas, in the context of the usual form of factoriza-
tion (that is, factorization of morphisms into composable pairs of morphisms).
Chapters 5 and 6 further explore possible notions of relative weak factorization
systems, and the relationships between relative weak factorization systems and
their predecessors. Chapter 7 gives an abstract definition of a relative weak fac-
torization system and proves some general results. Finally, chapter 8 explores
the application of the general definition to the case of two-sided factorizations,
as desired.

2 Algebraic weak factorization systems
In this preliminary chapter, we will describe the motivation for and development
of algebraic weak factorization systems. This will provide a foundation and an
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analogue for our development of relative weak factorization systems in later
chapters.

A weak factorization system on a category is a pair of classes of arrows,
which have a factorization property and lifting properties with respect to each
other. The lifting properties are formalized as follows:

Definition 1. For arrows ` and r in a category C, we say that ` has the left lifting
property against r, and equivalently r has the right lifting property against `,
if for every commutative square of the form

• u //

`

��

•
r

��
•

v
// •

there is an arrow s
• u //

`

��

•
r

��
•

v
//

s

??

•

such that s◦ ` = u and r ◦s = v. The arrow s is called the solution to the lifting
problem posed by the commutative square.

For a class A of arrows, we denote by At the class of arrows that have the
right lifting property against every arrow in A, and by tA the class of arrows
that have the left lifting property against every arrow in A.

Definition 2. A weak factorization system on a category C is a pair (L,R) of
classes of morphisms such that

1. every morphism of C factors as a map in L followed by a map in R

2. L = tR and R = Lt.

Weak factorization systems arose in the context of homotopy theory. When
working with topological spaces, or other structures with a notion of homotopy,
we often want to use homotopy rather than isomorphism as the most important
form of equality. In category theory, this preference can be implemented via
localization – that is, forcing all homotopies to be isomorphisms by adding formal
inverses. However, the resulting localized categories can be hard to work with,
and even basic results about them tend to require additional properties and/or
structure. Quillen [6] introduced the additional structure of a model category
in order to categorically state and prove the homotopy-theoretic equivalence of
topological spaces and simplicial sets.

Quillen model categories can be thought of as the categorical contexts for do-
ing homotopy theory. A Quillen model structure on a category consists of three
classes of morphisms: weak equivalences (analogous to homotopies), fibrations,
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and cofibrations. These three classes form two interacting weak factorization
systems.

In a weak factorization system, both the factorizations and the lifts are
guaranteed to exist, but they are not necessarily unique, and are not in general
chosen naturally. To address this, we will impose additional structure, first in
the form of functorial factorizations, and then, following Grandis and Tholen [1],
in the form of monad-comonad pairs, leading to the definition of an algebraic
weak factorization system. For more on the development of algebraic weak
factorization systems, see Rosický and Tholen [4] and Bourke and Garner [5],
among others.

We begin by introducing some notation. For a category C, we denote by
C→ the arrow category of C, whose objects are morphisms of C, and whose
morphisms are commutative squares of C. Similarly, C→→ is the category whose
objects are composable pairs of morphisms in C, and whose morphisms are
triples of morphisms in C forming commutative diagrams of the following shape:

• //

��

•

��
• //

��

•

��
• // •

Using these categories, we can consider the composition functor, which we
will call comp : C→→ → C→. This functor takes an object of C→→ to the com-
position of its two composable morphisms, and takes a morphism of C→→ to the
commutative square formed by the first and third of its component morphisms.

Now we can define a more explicit version of the factorization that appears
in a weak factorization system.

Definition 3. A functorial factorization is a functor T : C→ → C→→ that is a
section of the composition functor comp.

We will often refer to a functorial factorization T in terms of its component
functors (L,E,R). The functors L,R : C→ → C→ give the left and right halves
of the factorization, and E : C→ → C gives the object that a morphism factors
through. That is, T = (L,E,R) takes a commutative square to a commutative
rectangle as follows:

A
u //

f

��

X

g

��
T7−→

A
u //

Lf

��

X

Lg

��
B

v
// Y Ef

Rf

��

E(u;v) // Eg

Rg

��
B

v // Y.
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We also want to define a more explicit version of the lifting that appears
in a weak factorization system. It turns out that we can do this by fixing, for
every map f in L, a lift of f against Rf , and for every map g in R, a lift of Lg
against g.

A
Lf //

f

��

Ef

Rf

��

X
1X //

Lg

��

X

g

��
B

1B

//

s

>>

B Eg
Rg
//

t

>>

Y

If we assume that each map in L or R has this additional structure of a dis-
tinguished lift against its own factorization, then we can construct by a general
formula a solution to any lifting problem of a map in L against in R. Suppose
that as above, f is a map in L with a distinguished lift s, and g is a map in R
with a distinguished lift t. Then any lifting problem (u; v) of f against g

A
u //

f

��

X

g

��
B

v
// Y

has the solution t ◦ E(u; v) ◦ s

A
u //

Lf

��

X

Lg

��

1X // X

g

��
A

Lf //

f

��

1A

>>

Ef

Rf

��

E(u;v) // Eg

Rg

��

Rg
//

t

>>

Y

B
1B

//

s
>>

B
v
// Y

1Y

>>

which we call the canonical lift.
We would like to describe these L and R maps and their distinguished lifts

more categorically, and to do this we will consider how they relate to the com-
ponents L and R of a functorial factorization. Both L and R are endofunctors
on C→, and they come with a copointing and a pointing respectively; that is, a
natural transformation ε : L⇒ 1C→ and a natural transformation η : 1C→ ⇒ R.

A

f

��

Lf
//

ηf

Ef

Rf

��

A

Lf

��

1A

//

εf

A

f

��
B

1B

// B Ef
Rf
// B
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Now consider an algebra for the pointed endofunctor (R, η). An algebra for
(R, η) consists of an element f of C→, plus a morphism (m;n) : Rf → f , such
that (m;n) ◦ ηf = 1f . In a diagram,

A

f

��

Lf
//

1A

&&
Ef

Rf

��

m
// A

f

��
B

1B //

1B

88B
n // B.

Clearly this diagram forces n = 1B , so finding an algebra structure for the map
f reduces to finding a map m such that m◦Lf = 1A and f ◦m = Rf . These are
exactly the conditions for m being a solution to the lifting problem (Lf ; 1B) of
f against Rf , so the notion of an algebra for the pointed endofunctor can serve
as a more categorical replacement for our earlier notion of distinguished lifts.

Definition 4. Given a functorial factorization T = (L,E,R), we define the
category R to be the category of algebras for the pointed endofunctor (R, η).
That is, an object ofR is an object f : A→ B of C→, plus an arrowm : Ef → A
of C such that m ◦ Lf = 1A and f ◦m = Rf ; a morphism of R from (f,m) to
(f ′,m′) is a morphism (u; v) : f → f ′ of C→ such that m′ ◦ E(u; v) = u ◦m.

Dually, we define L to be the category of coalgebras for the copointed end-
ofunctor (L, ε).

For both R and L, we may use the notation U for the obvious forgetful
functor R → C→ or L → C→.

Now we have discussed explicit factorizations, and categories L and R whose
objects have explicit lifts against one another. One property that is still missing
an explicit analogue is the requirement that the left and right parts of a factor-
ization should in fact fall into the left and right classes of maps (respectively).
That is, for any arrow f of C, we would like Lf to be an object of L, and Rf
to be an object of R. We will now define an explicit structure that will ensure
that this property always holds.

Definition 5. For an endofunctor R with a pointing η, a multiplication is a
natural transformation µ : RR⇒ R that satisfies

• µ ◦Rµ = µ ◦ µR (associativity) and

• µ ◦Rη = µ ◦ ηR = 1R (unit conditions).

Dually, for an endofunctor L with a copointing ε, a comultiplication is a natural
transformation δ : L⇒ LL that satisfies

• Lδ ◦ δ = δL ◦ δ (coassociativity) and

• Lε ◦ δ = εL ◦ δ = 1L (counit conditions).
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Definition 6. A triple (R, η, µ) such that µ is a multiplication for (R, η) is
called a monad, and a triple (L, ε, δ) such that δ is a comultiplication for (L, ε)
is called a comonad.

With all this in mind, we are ready to define a fully explicit analogue of a weak
factorization system.

Definition 7. An algebraic weak factorization system on a category C consists
of:

• a functorial factorization T = (L,E,R) : C→ → C→→

• a multiplication µ for (R, η)

• a comultiplication δ for (L, ε).

Remark. Definitions of algebraic weak factorization systems sometimes also re-

quire the natural transformation LR⇒ RL composed of the squares

•
δf

//

LRf

��

•
RLf

��
•

µf // •
to be a distributive law of the comonad over the monad. Since we will not use
this requirement in what follows, we omit it for simplicity.

Proposition 1. If (T = (L,E,R), µ, ε) is an algebraic weak factorization sys-
tem on a category C, then (ob(UL), ob(UR)) is a weak factorization system on
C.

Proof. First we want to show that every morphism f of C factors as a map from
the left class followed by a map from the right class. Since T is a functorial
factorization, it is a section of the composition functor, so f = (comp ◦ T )(f) =
comp(Lf ;Rf) = Rf ◦ Lf . It remains to show that Rf carries an object of R
and Lf carries an object of L; as promised, we can use the (co)multiplication
to do this.

The multiplication µ gives a map µf := (m;n) from RRf to Rf . By one of
the unit conditions, we have µf ◦ ηRf = 1Rf :

Ef

Rf

��

Lf
//

1Ef

''
ERf

RRf

��

m
// Ef

Rf

��
B

1B //

1B

77B
n // B.

This diagram shows that we have m ◦ Lf = 1Ef . Furthermore, it shows that
we must have n = 1B , so also Rf ◦m = RRF . These two conditions show that
(Rf,m) is an object of R.

The proof that Lf carries an object of L is dual.
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Now we want to show that ob(UL) =
tob(UR) and ob(UR) = ob(UL)t.

The canonical lift shows that every lifting problem of an object of L against an
object ofR has a solution; that is, ob(UL) ⊆ tob(UR) and ob(UR) ⊆ ob(UL)t.
Now suppose that f ∈ tob(UR); that is, any lifting problem of f against a
carrier for an object of R has a solution. Then in particular, since we showed
above that Rf carries an object of R, the following lifting problem has some
solution s:

A
Lf //

f

��

Ef

Rf

��
B

1B

//

s
>>

B.

Since Rf ◦ s = 1 and s ◦ f = Lf , by definition 4 (f, s) is an element of L.
This shows that tob(UR) ⊆ ob(UL), and the proof that ob(UL)t ⊆ ob(UR)

is dual. We may conclude that ob(UL) =
tob(UR) and ob(UR) = ob(UL)t,

as desired.

3 Relative monads and comonads
In this chapter, we introduce the concept of a relative monad, following Al-
tenkirch, Chapman, and Uustalu [2]. This concept will allow us to handle the
shape mismatch that we encounter when trying to incorporate two-sided factor-
izations into some kind of factorization system.

First we introduce an alternative presentation of a monad, sometimes called
a Kleisli extension system, originally developed by Kleisli [3] in the course of
proving that every monad arises from an adjunction.

Definition 8. A Kleisli extension system on a category C consists of:

• an endofunctor T : C → C

• a natural transformation η : 1C ⇒ T , called the unit

• an operation (−)∗ called the Kleisli extension, giving for every morphism
k : A→ TB a morphism k∗ : TA→ TB

satisfying

1. for every object A, (ηA)∗ = 1TA

2. for every morphism f : A→ B, (ηB ◦ f)∗ = Tf

3. whenever k : A→ TB, k∗ ◦ ηA = k

4. whenever k : A→ TB and ` : B → TC, `∗ ◦ k∗ = (`∗ ◦ k)∗.

Dually, a Kleisli coextension system on C consists of:
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• an endofunctor T : C → C

• a natural transformation ε : T ⇒ 1C , called the counit

• an operation (−)∗ called the Kleisli coextension, giving for every morphism
k : TA→ B a morphism k∗ : TA→ TB

satisfying

1. for every object A, (εA)∗ = 1TA

2. for every morphism f : A→ B, (f ◦ εA)∗ = Tf

3. whenever k : TA→ B, εB ◦ k∗ = k

4. whenever k : TA→ B and ` : TB → C, `∗ ◦ k∗ = (` ◦ k∗)∗.

Notably, unlike the presentation of a monad given in definition 6, the defini-
tion of a Kleisli extension system does not involve iteration of the endofunctor
T . This feature of the Kleisli presentation is sometimes useful, particularly when
studying monads in the context of computer science. The two presentations are
equivalent, as we verify now.

Proposition 2. There is an isomorphism between the monads of a category C
and the Kleisli extension systems on C.

Dually, there is an isomorphism between the comonads of C and the Kleisli
coextension systems on C.

Proof. First, suppose that (T, η, (−)∗) is a Kleisli extension system. Then we
can construct a multiplication for (T, η) by µA := (1TA)∗. Checking that these
maps form a natural transformation, we see that indeed for any f : A→ B we
have

Tf ◦ (1TA)∗ = (ηB ◦ f)∗ ◦ (1TA)∗ (1TB)∗ ◦ TTf = (1TB)∗ ◦ (ηTB ◦ (ηB ◦ f)∗)∗

= ((ηB ◦ f)∗ ◦ 1TA)∗ = ((1TB)∗ ◦ ηTB ◦ (ηB ◦ f)∗)∗

= ((ηB ◦ f)∗)∗ = (1TB ◦ (ηB ◦ f)∗)∗

= ((ηB ◦ f)∗)∗.

Then we want to check the associativity and unit conditions (see definition 5).
We find that for any object A,

µA ◦ T (µA) = (1TA)∗ ◦ T ((1TA)∗) µA ◦ µTA = (1TA)∗ ◦ (1TTA)∗

= (1TA)∗ ◦ (ηTA ◦ (1TA)∗)∗ = ((1TA)∗ ◦ 1TTA)∗

= ((1TA)∗ ◦ ηTA ◦ (1TA)∗)∗ = ((1TA)∗)∗,

= (1TA ◦ (1TA)∗)∗

= ((1TA)∗)∗
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establishing associativity, and

µA ◦ ηTA = (1TA)∗ ◦ ηTA µA ◦ T (ηA) = (1TA)∗ ◦ (ηTA ◦ ηA)∗

= 1TA = ((1TA)∗ ◦ ηTA ◦ ηA)∗

= (1TA ◦ ηA)∗

= (ηA)∗

= 1TA,

establishing the unit conditions.
Now suppose instead that (T, η, µ) is a monad. We can construct a Kleisli

extension (−)∗ by letting k∗ := µB ◦Tk, for every k : A→ TB. Then we simply
check the four conditions of a Kleisli extension system.

1. (ηA)∗ = µA ◦ T (ηA)

= 1TA.

2. (ηB ◦ f)∗ = µB ◦ T (ηB ◦ f)

= µB ◦ T (ηB) ◦ Tf
= 1TB ◦ Tf
= Tf.

3. k∗ ◦ ηA = µB ◦ Tk ◦ ηA
= µB ◦ ηTB ◦ k
= 1TB ◦ k
= k.

4. (`∗ ◦ k)∗ = µC ◦ T (`∗ ◦ k)

= µC ◦ T (µC ◦ T`) ◦ Tk
= µC ◦ TµC ◦ TT` ◦ Tk
= µC ◦ µTC ◦ TT` ◦ Tk
= µC ◦ T` ◦ µB ◦ Tk
= `∗ ◦ k∗.

Lastly, note that these constructions are inverses. Starting from a Kleisli
extension system (T, η, (−)∗), constructing a monad (T, η, µ) and thence a Kleisli
extension system (T, η, (−)∗

′
), we find that for any k : A→ TB, we have

k∗
′

= µB ◦ Tk
= (1TB)∗ ◦ (ηTB ◦ k)∗

= ((1TB)∗ ◦ ηTB ◦ k)∗

= k∗.

Meanwhile, starting from a monad (T, η, µ), constructing a Kleisli extension
system (T, η, (−)∗) and thence a monad (T, η, µ′), we find that for any object
A, µ′A = (1TA)∗ = µA ◦ T (1TA) = µA, completing the proof.
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Now that we have a presentation of a monad which does not require it-
eration of an endofunctor, is it possible that the underlying functor need not
be an endofunctor at all? In their paper “Monads need not be endofunctors”
[2], Altenkirch, Chapman, and Uustalu give the motivating example of finite-
dimensional vector spaces. They note that the finite-dimensional vector spaces
on a semiring R can be given by:

• For every objectm of the category Fin of finite cardinals, an object Vec(m)
of Set, namely the set of functions from Jm to R, where J is the inclusion
Fin ↪→ Set.

• For every m in Fin, a morphism of sets ηm : Jm → Vec(m), namely the
function taking i ∈ Jm to the ith basis vector.

• For every morphism of sets k : Jm → Vec(n), a morphism of sets k∗ :
Vec(m) → Vec(n), namely the function corresponding to multiplication
by the matrix k.

The authors remark that (Vec, η, (−)∗) resembles a Kleisli extension system,
except that in place of an endofunctor, Vec forms a functor Fin → Set, and
the parallel functor J : Fin → Set is used in place of the identity, to repair
the resulting mismatches in the types of η and (−)∗. The authors refer to this
situation as Vec carrying a monad relative to the inclusion J , and from this
starting point they develop a theory of relative monads.

From here on, we will use the following general definitions:

Definition 9. A relative monad on a functor I : I → C consists of

• a functor T : I → C

• a natural transformation η : I ⇒ T , the unit

• a Kleisli extension (−)∗, giving for each morphism k : IA → TB in C, a
morphism k∗ : TA→ TB

satisfying

1. for every object A in I, (ηA)∗ = 1TA

2. for every morphism f : A→ B in I, (ηB ◦ If)∗ = Tf

3. whenever k : IA→ TB, k∗ ◦ ηA = k

4. whenever k : IA→ TB and ` : IB → TC, (`∗ ◦ k)∗ = `∗ ◦ k∗.

Dually, a relative comonad on a functor J : J → C consists of

• a functor T : J → C

• a natural transformation ε : T ⇒ J , the counit
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• a Kleisli coextension (−)∗, giving for each morphism k : TB → JA in C,
a morphism k∗ : TB → TA

satisfying

1. for every object A in J , (εA)∗ = 1TA

2. for every morphism f : A→ B in J , (Jf ◦ εA)∗ = Tf

3. whenever k : TB → JA, εA ◦ k∗ = k

4. whenever k : TB → JA and ` : TC → JB, (k ◦ `∗)∗ = k∗ ◦ `∗.
We can also define algebras and coalgebras for these relative monads and

comonads:

Definition 10. An algebra for (T, η, (−)∗) consists of an object X in C and
an operation χ which gives, for each morphism k : IA → X in C, a morphism
χk : TA → X, such that (1) for every A in I and k : IA → X, χk ◦ ηA = k,
and also (2) whenever k : IA→ X and ` : IB → TA, χ(χk ◦ `) = χk ◦ `∗.

Dually, a coalgebra for (T, ε, (−)∗) consists of an object X in C and an
operation ψ which gives, for each morphism k : X → JA in C, a morphism
ψk : X → TA, such that (1) for every A in J and k : X → JA, εA ◦ ψk = k,
and also (2) whenever k : X → JA and ` : TA→ JB, ψ(` ◦ ψk) = `∗ ◦ ψk.

For the purposes of relative weak factorizations systems, we will often be
interested in a stripped-down version of these relative definitions, corresponding
to the concepts of pointed and copointed endofunctors.

Definition 11. A relative pointing for a functor T : I → C, relative to a functor
I : I → C, is a unit η : I ⇒ T .

Dually, a relative copointing for a functor T : J → C, relative to a functor
J : J → C, is a counit ε : T ⇒ J .

Definition 12. An algebra for the relative pointing (T, η) consists of

• an object X in C, together with

• a section χ of η∗A : homC(TA,X)→ homC(IA,X) which is natural in A.

Dually, a coalgebra for the relative copointing (T, ε) consists of

• an object X in C, together with

• a section ψ of (εA)∗ : homD(X,TA) → homD(X, JA) which is natural in
A.

Note that requiring χ to be a section of η∗A : homC(TA,X) → homC(IA,X)
is equivalent to requiring χ to be an operation which gives, for each morphism
k : IA → X in C, a morphism χk : TA → X, such that for every A in I and
k : IA→ X, χk◦ηA = k. Then we have additionally required that this section be
natural in A. Naturality of the operations χ and ψ is implied by the definitions
of algebras for relative monads and coalgebras for relative comonads (definition
10), but must be explicitly assumed when defining algebras for relative pointings
and coalgebras for relative copointings.
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4 Relative weak factorization systems for com-
posable pairs

In this chapter we will begin to explore the idea of a relative weak factorization
system. A relative weak factorization system will be a structure that generalizes
the idea of a weak factorization system, whose development is guided by trying
to incorporate relative (co)monads into weak factorization systems, analogously
to the way that the theory of algebraic weak factorization systems incorporates
ordinary (co)monads into weak factorization systems.

We begin by considering factorizations of arrows in a category C into com-
posable pairs. Suppose we have a functorial factorization T = (L,E,R) : C→ →
C→→. We will consider T relative to two trivial factorization functors, which
we will call I and J . I maps an arrow f of C to f after an identity map:

A
f // B

I7−→ A
1A // A

f // B

which we denote by I : f 7→ (1; f). Dually, J maps f to f followed by an identity
map, denoted (f ; 1). I and J act on morphisms of C→, i.e. commutative squares
of C, in the obvious way:

A
u //

f

��

X

g

��
I7−→

A
u //

1A

��

X

1X

��
B

v
// Y A

f

��

u // X

g

��
B

v // Y

and J dually. These trivial factorizations I and J prove to be left and right
adjoints of the composition functor comp : C→→ → C→.

C→

J

@@

⊥

I

��
⊥

C→→
compoo

Proposition 3. I is left adjoint to comp, with 11C→ as the unit of the adjunc-
tion.

Dually, J is right inverse to comp, with 11C→ as the counit of the adjunction.

Proof. First, note that I is a factorization, in the sense of being a section of
comp, and therefore 11C→ is indeed a natural transformation from 1C→ to comp◦
I = 1C→ , and can serve as the unit of the adjunction.

13



For the counit of the adjunction, we need a natural transformation ε′ :
I ◦ comp ⇒ 1C→ . Let ε′ be composed of the following maps from I(comp(f ; g)
to (f ; g):

A
1A

//

1A

��

ε′(f;g)

A

f

��
A

g◦f
��

f
// B

g

��
C

1C

// C

To check that these maps form a natural transformation, we verify that for any
map (α, β, γ) : (f, g)→ (m,n) of composable pairs,

A
1A

//

1A

��

A

f

��

α
// X

m

��

A
α
//

1A

��

X

f

��

1X

// X

m

��
A

g◦f
��

f
// B

g

��

β
// Y

n

��

= A

g◦f
��

α
// X

g

��

m
// Y

n

��
C

1C

// C
γ
// Z C

γ
// Z

1Z

// Z

which holds because β ◦ f = m ◦α is a requirement of (α, β, γ) : (f, g)→ (m,n)
being a map of composable pairs.

It remains only to show the triangle identities. Since the unit is an identity
natural transformation, the desired triangle identities simplify to ε′If = 1If and
comp(ε′(f ;g)) = 1comp(f ;g). And indeed, both ε′If and 1If are the map

A
1A

//

1A

��

A

1A

��
A

f

��

1A

// A

f

��
B

1B

// B

while both comp(ε′(f ;g)) and 1comp(f ;g) are simply the map

A

g◦f
��

1A

// A

g◦f
��

C
1C

// C

completing the proof.
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The ordinary definition of an algebraic weak factorization system uses the
fact that a functorial factorization automatically comes equipped with a pointing
1 ⇒ R and a copointing L ⇒ 1. Here, we use the fact that a functorial
factorization also automatically comes equipped with a relative pointing η :
I ⇒ T , for T relative to I, and a relative copointing ε : T ⇒ J , for T relative
to J . Namely, η and ε are given by

A

1

��

1
//

ηf

A

Lf

��

A

Lf

��

1
//

εf

A

f

��
A

f

��

Lf
// Ef

Rf

��

Ef

Rf

��

Rf
// B

1

��
B

1
// B B

1
// B

From this, we can already define left and right classes of maps, as follows:

Definition 13. We define a fibration in this setting to be an algebra for (T, η).
Dually, we define a cofibration to be a coalgebra for (T, ε).

That is, a fibration is a composable pair (m;n) together with an operation χ,
and χ gives, for any morphism of composable pairs k : If → (m;n), a morphism
natural in f of composable pairs χk : Tf → (m;n), satisfying χk ◦ ηf = k.

Remark. Here we are using the terms fibration and cofibration in the general
sense of “right map” and “left map”; they are not the fibrations and cofibrations
of a particular Quillen model structure.

Let’s investigate the consequences of this definition. For (m;n) to be a
fibration, we are demanding that whenever we have a map of the form

A

1

��

k0

// X

m

��
A

f

��

k1

// Y

n

��
B

k2

// Z

we can construct a map of the form

A

Lf

��

χk0

// X

m

��
Ef

Rf

��

χk1

// Y

n

��
B

χk2

// Z

15



Also, this construction must satisfy χk ◦ ηf = k:

A

1

��

1
//

ηf

A

Lf

��

χk0

//
χk

X

m

��

A

1

��

k0

//
k

X

m

��
A

f

��

Lf
// Ef

Rf

��

χk1

// Y

n

��

= A

f

��

k1

// Y

n

��
B

1
// B

χk2

// Z B
k2

// Z

so in particular, χk0 = k0 and χk2 = k2, with only χk1 left to be constructed.
Furthermore, the construction can depend only on k0 and k2, because already
in the diagram of k, k1 is determined by k1 = m ◦ k0. Therefore, constructing
χk from k amounts to finding, naturally in f , a map χk1 that fills the following
diagram:

A

Lf

��

k0

// X

m

��
Ef

Rf

��

// Y

n

��
B

k2

// Z

Note that any map χk1 filling this diagram satisfies χk1 ◦Lf = m ◦ k0 = k1, so
χk := (k0, χk1, k2) always satisfies χk ◦ ηf = k.

Diagrams of the above shape will play a role in our theory analogous to
the role played by square lifting problems in the ordinary theory of algebraic
weak factorization systems. For this reason, we will call a diagram like this a
lifting problem, and call a solution to it a lift (even though we draw the desired
arrow horizontally). Thus, we can think of χ as a system of solutions to lifting
problems of a particular form.

Proposition 4. A composable pair (m;n) has a fibration structure if and only
if the lifting problem (1; 1) of T (n ◦m) on the left against (m;n) on the right
has a solution.

Dually, a composable pair (u; v) has a cofibration structure if and only if the
lifting problem (1; 1) of (u; v) on the left against T (n ◦ m) on the right has a
solution.

Proof. Suppose (m;n) has a fibration structure χ. Then for any morphism of
composable pairs k : If → (m;n), there is a morphism of composable pairs χk :
Tf → (m;n), satisfying χk ◦ ηf = k. As discussed above, χ will always satisfy
χk0 = k0 and χk2 = k2, and so χk1 will be a solution to the lifting problem
(k0; k2) of Tf against (m;n). Therefore, since (1,m, 1) : I(n ◦ m) → (m;n)

16



is a map of composable pairs, χm is a solution to the lifting problem (1; 1) of
T (n ◦m) against (m;n).

X
1 //

1

��

X

m

��

X
1 //

L(n◦m)

��

X

m

��
X

m◦n
��

m // Y

n

��

E(n◦m)

R(n◦m)

��

χm // Y

n

��
Z

1 // Z Z
1 // Z

Conversely, suppose the lifting problem (1; 1) of T (n ◦m) against (m;n) has
a solution χ̄.

X
1 //

L(n◦m)

��

X

m

��
E(n◦m)

R(n◦m)

��

χ̄ // Y

n

��
Z

1 // Z

To show that (m;n) has a fibration structure, we want to find a natural solution
to every lifting problem of the form

A
k0 //

Lf

��

X

m

��
Ef

Rf

��

// Y

n

��
B

k2 // Z.

Applying T ◦ comp to this second diagram and combining it with the first, we
have

A
k0 //

Lf

��

X
1 //

L(n◦m)

��

X

m

��
Ef

E(k0;k2)//

Rf

��

E(n◦m)

R(n◦m)

��

χ̄ // Y

n

��
B

k2

// Z
1

// Z

which shows that χk1 := χ̄ ◦ E(k0; k2) is a solution to the proposed lifting
problem.
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It remains to show that this solution is natural in f . Suppose that (h0;h1) :
g → f is a morphism of C→. Then indeed we have

C

Lg

��

h0 // A

Lf

��

k0 // X

m

��

C

Lg

��

k0◦h0 // X

m

��
E(g)

Rg

��

E(h0;h1)// E(f)

Rf

��

χ̄◦E(k0;k2)// Y

n

��

= E(g)

Rg

��

χ̄◦E(k0◦h0;k2◦h1)// Y

n

��
B

h1

// B
k2

// Z D
k2◦h1

// Z

by the functoriality of E.

Proposition 5. For any arrow f , Tf = (Lf ;Rf) has both a fibration structure
and a cofibration structure.

Proof. This follows directly from proposition 4, because the lifting problem (1; 1)
of T (Rf ◦ Lf) = Tf = (Lf ;Rf) on the left against (Lf ;Rf) on the right can
trivially be filled by an identity map, as can the lifting problem (1; 1) of (Lf ;Rf)
on the left against T (Rf ◦ Lf) = Tf = (Lf ;Rf) on the right.

Proposition 6. Every lifting problem of a fibration against a cofibration has a
solution.

Proof. Suppose that (m;n) has a fibration structure, (u; v) has a cofibration
structure, and we have a lifting problem:

Q
a0 //

u

��

X

m

��
R

v

��

Y

n

��
S

a2 // Z

By proposition 4, there is a lift ψ̄ of (u; v) against T (v◦u) and a lift χ̄ of T (n◦m)
against (m;n):

Q
1 //

u

��

Q

L(v◦u)

��

X
1 //

L(n◦m)

��

X

m

��
R

v

��

ψ̄ // E(v◦u)

R(v◦u)

��

E(n◦m)

R(n◦m)

��

χ̄ // Y

n

��
S

1 // S Z
1 // Z
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These maps, combined with T (a0; a2), form a solution to the proposed lifting
problem.

Q
1 //

u

��

Q

L(v◦u)

��

a0 // X
1 //

L(n◦m)

��

X

m

��
R

v

��

ψ̄ // E(v◦u)

R(v◦u)

��

E(a0;a2)// E(n◦m)

R(n◦m)

��

χ̄ // Y

n

��
S

1 // S
a2 // Z

1 // Z

5 The Kleisli extension and coextension
In the previous chapter, we defined fibrations as algebras for relative pointings,
and defined cofibrations as coalgebras for relative copointings. It is natural to
wonder whether we should instead consider full relative monads and relative
comonads, and their algebras and coalgebras. The answer is that we can, but
the Kleisli extensions and coextensions turn out to be trivial, so typically there
is no reason to include the extra complication.

Consider the following results:

Proposition 7. The only Kleisli extension (-)∗ making (T, η, (-)∗) a monad
relative to I : C→ → C→→ is T ◦ comp.

Dually, the only Kleisli coextension (-)∗ making (T, ε, (-)∗) a comonad rela-
tive to J : C→ → C→→ is T ◦ comp.

Proof. A Kleisli extension (-)∗ gives, for every map of the form

A

1

��

k0

// C

Lg

��
A

f

��

k1

// Eg

Rg

��
B

k2

// D

a map of the form
A

Lf

��

k∗0

// C

Lg

��
Ef

Rf

��

k∗1

// Eg

Rg

��
B

k∗2

// D
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in such a way that the following conditions are satisfied:

1. (ηf )∗ = 1Tf

2. (ηg ◦ Ih)∗ = Th

3. k∗ ◦ ηf = k

4. (`∗ ◦ k)∗ = `∗ ◦ k∗.

Condition (3) requires

A

1

��

1
//

ηf

A

Lf

��

k∗0

//
k∗

C

Lg

��

A

1

��

k0

//
k

C

Lg

��
A

f

��

Lf
// Ef

Rf

��

k∗1

// Eg

Rg

��

= A

f

��

k1

// Eg

Rg

��
B

1
// B

k∗2

// D B
k2

// D

so in particular it forces k∗0 = k0 and k∗2 = k2, with only k∗1 left to be constructed.
Furthermore, the construction depends only on k0 and k2, because already in
the diagram of k, k1 is determined by k1 = Lg ◦ k0. Therefore, constructing k∗
from k is equivalent to finding a map that fills the following diagram:

A

Lf

��

k0

// C

Lg

��
Ef

Rf

��

// Eg

Rg

��
B

k2

// D

This shows that the Kleisli extension (-)∗ is equivalent to a coherent system
of solutions to lifting problems of a particular form: whenever (k0; k2) : f → g
is a map of arrows, (k0; k2)∗ : Ef → Eg is a solution to the lifting problem of
Tf against Tg.

Now consider condition (2). Suppose that (h0;h1) : f → g is a morphism of
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C→. Then condition (2) tells us that

A

1

��

h0

//
Ih

C

1

��

1
//

ηg

C

Lg

��

A

Lf

��

h0

//
Th

C

Lg

��
A

f

��

h0

// C

g

��

Lg
// Eg

Rg

��

(-)∗7−−−→ Ef

Rf

��

E(h0;h1)
// Eg

Rg

��
B

h1

// D
1
// D B

h1

// D.

That is, the solution (h0;h1)∗ to the lifting problem (h0;h1) must in fact be
(h0;h1)∗ = E(h0;h1), for any lifting problem (h0;h1).

This requirement completely determines the Kleisli extension. For any map
of arrows (k0; k2) : f → g, the lifting problem (k0; k2) of Tf against Tg must
be given the solution E(k0; k2); that is, the Kleisli extension must be given by
T ◦ comp.

A
k0 //

Lf

��

C

Lg

��

A
k0 //

Lf

��

C

Lg

��
E(f)

Rf

��

E(g)

Rg

��

T ◦ comp7−−−−−→ E(f)

Rf

��

E(k0;k2)// E(g)

Rg

��
B

k2 // D B
k2 // D

The remaining conditions that the lift must satisfy are simply (1, 1)∗ = 1, from
condition (1) above, and (`0, `2)∗ ◦ (k0, k2)∗ = (`0 ◦ k0, `2 ◦ k2)∗, from condition
(4) above. T ◦ comp satisfies both of these conditions, as the functoriality of E
gives E(1; 1) = 1 and E(`0; `2) ◦ E(k0; k2) = E(`0 ◦ k0; `2 ◦ k2).

Proposition 8. Suppose (-)∗ is any Kleisli extension making (T, η, (-)∗) a
monad relative to I : C→ → C→→. Then a composable pair (m;n) carries
an algebra for (T, η, (-)∗) if and only if it carries an algebra for (T, η).

Proof. Suppose that (m;n) carries an algebra for (T, η, (-)∗); that is, we have
an extension χ which gives, for any morphism k : (1; f) → (m;n), a morphism
χk : Tf → (m;n), satisfying (1) χk◦ηf = k and (2) whenever k : (1; f)→ (m;n)
and ` : (1; g) → Tf , χ(χk ◦ `) = χk ◦ `∗. Then this extension χ also makes
(m;n) an algebra for (T, η), since we defined an algebra for a relative pointing
as a strictly weaker concept than an algebra for a relative monad, requiring
condition (1) but not condition (2).

Conversely, suppose that (m;n) carries an algebra for (T, η). By proposition
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4, there is a map χ̄ such that the following diagram commutes:

X
1 //

L(n◦m)

��

X

m

��
E(n ◦m)

R(n◦m)

��

χ̄ // Y

n

��
Z

1 // Z

We now define an extension χ by χk1 := χ̄◦(k0, k2)∗. That is, given k : (1; f)→
(m;n), we construct χk : Tf → (m;n) as

A
k0 //

Lf

��

X
1 //

L(n◦m)

��

X

m

��
Ef

(k0;k2)∗//

Rf

��

E(n ◦m)

R(n◦m)

��

χ̄ // Y

n

��
B

k2

// Z
1

// Z

It remains only to check that χ satisfies conditions (1) and (2).

χk ◦ ηf = (k0; χ̄ ◦ (k0; k2)∗; k2) ◦ (1;Lf ; 1)

= (k0; χ̄ ◦ (k0; k2)∗ ◦ Lf ; k2)

= (k0;m ◦ k0; k2)

= (k0; k1; k2) diagram of k
= k

χ(χk ◦ `) = χ(k0 ◦ `0; χ̄ ◦ (k0; k2)∗ ◦ `1; k2 ◦ `2)

= (k0 ◦ `0; χ̄ ◦ (k0 ◦ `0; k2 ◦ `2)∗; k2 ◦ `2)

= (k0 ◦ `0; χ̄ ◦ (k0; k2)∗ ◦ (`0; `2)∗; k2 ◦ `2)

= (k0; χ̄ ◦ (k0; k2)∗; k2) ◦ (`0; (`0; `2)∗; `2)

= χk ◦ `∗

This result shows that considering a Kleisli extension (or coextension) does
not change the class of algebras (or coalgebras). Therefore, Kleisli (co)extensions
are not a promising avenue for the purposes of creating an analogue to weak
factorization systems, which were developed around classes of left and right
maps.
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6 Relative weak factorization systems as a gen-
eralization of weak factorization systems

We would like our new notion of relative weak factorization systems to be a
generalization of the existing notions of weak factorization systems. In a sense,
this result comes for free from our definitions in chapter 4 and discussion in
chapter 5: the only structure we needed to assume in order to discuss a system
of fibrations and cofibrations based on relative (co)pointings was a functorial
factorization, which any algebraic notion of a weak factorization system will
demand. However, we also came across a more elaborate result, which may
shed more light on the sense in which relative weak factorizations systems are
a generalization of algebraic weak factorization systems.

Recall that the only Kleisli extension (-)∗ making (T, η, (-)∗) a monad rel-
ative to I : C→ → C→→ is T ◦ comp, and likewise the only Kleisli coextension
(-)∗ making (T, ε, (-)∗) a comonad relative to J : C→ → C→→ is T ◦ comp.
Therefore, in an uninteresting sense, any category with a algebraic weak fac-
torization system (T, µ, δ) also has a relative weak factorization system, namely
(T, T ◦ comp, T ◦ comp). However, when working with a relaxed notion of rel-
ative weak factorization system that did not require (h0, h1)∗ = E(h0, h1) =
(h0, h1)∗, we noticed that the constructions (k0, k2)∗ := µm ◦ E(Lm ◦ k0, k2)
and (k0, k2)∗ := E(k0, k2 ◦ Rf) ◦ δf , invoking more of the machinery of an
algebraic weak factorization system, sufficed to yield most of the properties
of a relative weak factorization system. Indeed, in our examples of interest,
such as those arising from Moore structure, we found that we always had
µm ◦ E(Lm ◦ k0, k2) = E(k0, k2) = E(k0, k2 ◦Rf) ◦ δf .

Suppose (T = (L,E,R), µ, δ) is an algebraic weak factorization system on C,
and consider a map of arrows (k0, k2) : f → m. We wish to find (k0, k2)∗ filling

A

Lf

��

k0

// X

Lm

��
Ef

Rf

��

// Em

Rm

��
B

k2

// Y.
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Take (k0, k2)∗ := µm ◦ E(Lm ◦ k0, k2), which fills

A

1

��

k0

// X

Lm
��

A

Lf

��

Lm◦k0
// Em

LRm

��

1

��
Ef

Rf

��

//
E(Lm◦k0,k2)

ERm

RRm

��

µm

// Em

Rm

��
B

k2

// Y
1

// Y

where µm ◦ LRm = 1 follows from µ ◦ ηR = 1, a unit law of the monad.
We check two conditions. First, we have

(1, 1)∗ = µm ◦ E(Lm ◦ 1, 1)

= µm ◦ E(Lm, 1)

= 1

by the other unit law of the monad. And second, for maps of arrows (k0, k2) :
f → m and (`0, `2) : m→ n, we have

(`0, `2)∗ ◦ (k0, k2)∗ = µn ◦ E(Ln ◦ `0, `2) ◦ µm ◦ E(Lm ◦ k0, k2)

= µn ◦ µRn ◦ E(E(Ln ◦ `0, `2), `2) ◦ E(Lm ◦ k0, k2) naturality of µ
= µn ◦ µRn ◦ E(E(Ln ◦ `0, `2) ◦ Lm ◦ k0, `2 ◦ k2)

= µn ◦ µRn ◦ E(LRn ◦ Ln ◦ `0 ◦ k0, `2 ◦ k2)

= µn ◦ E(µn, 1) ◦ E(LRn ◦ Ln ◦ `0 ◦ k0, `2 ◦ k2) associativity of monad
= µn ◦ E(µn ◦ LRn ◦ Ln ◦ `0 ◦ k0, `2 ◦ k2)

= µn ◦ E(Ln ◦ `0 ◦ k0, `2 ◦ k2) unit law of monad
= (`0 ◦ k0, `2 ◦ k2)∗

This completes the construction of the Kleisli extension. The construction of
the Kleisli coextension, (k0, k2)∗ := E(k0, k2 ◦Rf) ◦ δf , is dual:

A

Lf

��

1
// A

k0

//

LLf

��

X

Lm

��
Ef

δf

//

1 ((

ELf //
E(k0,k2◦Rf)

RLf

��

Em

Rm

��
Ef

Rf

��

k2◦Rf
// Y

1

��
B

k2

// Y
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and the conditions follow similarly, from the properties of the comonad.
We are also interested in the relationship between the (co)fibrations de-

fined in definition 13, which are composable pairs, and the (co)fibrations of an
ordinary weak factorization system, which are maps. The relationship is the
following:

Proposition 9. (1, g) carries an algebra for the relative pointing (T, η) if and
only if g carries an algebra for the pointed endofunctor (R, η).

Proof. From proposition 4 we know that (1, g) is a fibration if and only if there
is a map filling

C

Lg

��

1
// C

1

��
Eg

Rg

��

// C

g

��
D

1
// D

while g carries an algebra for (R, η) if and only if there is a map filling

C

g

��

Lg
//

1

%%
Eg

Rg

��

// C

g

��
D

1
// D

1
// D

Dually, (g, 1) carries a coalgebra for the relative copointing (T, ε) if and only
if g carries a coalgebra for the copointed endofunctor (L, ε).

This result shows another sense in which relative weak factorization systems
are a generalization of weak factorization systems. In a weak factorization sys-
tem, the right maps are exactly those which carry an algebra for the pointed
endofunctor. Each such map g appears among the fibrations of our relative
weak factorization system as (1, g), along with new, additional fibrations that
are not of that form.

7 A general definition of relative weak factoriza-
tion systems

We will now try to distill the key features that made the system in chapter 4
work. We will give a more abstract definition of a relative weak factorization
system, which will then be applied in chapter 8 to the two-sided case, which
was the original motivation for this research direction.
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Suppose we have two categories C and D, a functor K : D → C, and left and
right adjoints I, J : C → D for K.

C

J

BB

⊥

I

��
⊥

DKoo

To disambiguate, let the unit and counit of the adjunction I a K be η′ : 1C ⇒
KI and ε′ : IK ⇒ 1D, and let the unit and counit of the adjunction K a J
be η′′ : 1D ⇒ JK and ε′′ : KJ ⇒ 1C . Now, suppose further that η′ and ε′′

are identity natural transformations, so that I and J are sections of K. Note
that these conditions do hold for the setting described in section 4, where K is
the composition functor comp : C→→ → C→. We will call a situation like this a
factorization setting.

Definition 14. A factorization setting consists of a functor K with and left
and right adjoints I and J such that the unit of I a K and the counit of K a J
are identity natural transformations.

Proposition 10. In a factorization setting I a K a J , we have Kε′ = 1K =
Kη′′, ε′I = 1I , and η′′J = 1J .

Proof. Suppose I a K a J is a factorization setting, where K : D → C. Then
because η′ = 11C = ε′′, the triangle identities simplify as follows:

ε′I ◦ Iη′ = 1I =⇒ ε′I = 1I

Kε′ ◦ η′K = 1K =⇒ Kε′ = 1K

ε′′K ◦Kη′′ = 1K =⇒ Kη′′ = 1K

Jε′′ ◦ η′′J = 1J =⇒ η′′J = 1J .

A factorization setting also allows us to consider lifting problems.

Definition 15. In a factorization setting I a K a J , where K : D → C, a lifting
problem is an arrow h : Kd0 → Kd1 in C between objects in the image of K,
and a solution to that lifting problem is an arrow `h : d0 → d1 in D such that
K`h = h.

Note again that we saw an instance of this definition in chapter 4, where a
lifting problem specifies two elements of C→→ and a map between their composi-
tions, and a solution is a map between the two composable pairs which respects
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the given map between their compositions.

• //

��

•

��

• //

��

•

��
•

��

•

��

•

��

// •

��
• // • • // •

Given a factorization setting, for a relative weak factorization system we
simply need something corresponding to a factorization. That is, any section T
of the functor K, which corresponds to composition.

Definition 16. A relative weak factorization system consists of a factorization
setting I a K a J and a section of K.

Suppose T is a section of K for a factorization setting I a K a J . We would
like T to have a relative pointing with respect to I and a relative copointing
with respect to J , and indeed it always does: a pointing for T relative to I is
simply a natural transformation u : I ⇒ T , and we can always construct such
a natural transformation from the counit ε′ of I a K. We have ε′ : IK ⇒ 1D,
so ε′T : IKT ⇒ T , and since T is a section of K, in fact ε′T : I ⇒ T , so we
simply let u := ε′T . Dually, from the unit η′′ of K a J we have η′′T : T ⇒ J ,
so there is a copointing v := η′′T .

From here, we can define classes of fibrations and cofibrations: fibrations
will be algebras for (T, u), and cofibrations will be coalgebras for (T, v).

Definition 17. For a relative weak factorization system (T, I a K a J), where
K : D → C, a fibration consists of

• an object d in D, together with

• a section χ of u∗c : homD(Tc, d)→ homD(Ic, d) which is natural in c.

Dually, a cofibration consists of

• an object e in D, together with

• a section ψ of (vc)∗ : homD(e, T c)→ homD(e, Jc) which is natural in c.

Here u∗c is precomposition by uc = ε′Tc, and (vc)∗ is postcomposition by vc =
η′′Tc. It follows that for any morphism k : Ic → d, χk will satisfy χk ◦ uc = k,
showing that (d, χ) is an algebra for (T, u) as in definition 12, and likewise (e, ψ)
is a coalgebra for (T, v).

We can collect these objects into categories of fibrations and cofibrations. We
denote by Fib the category of fibrations; that is, an object of Fib is a fibration
as in definition 17, and a morphism (d, χ) → (d′, χ′) of Fib is a morphism
f : d→ d′ in D such that for any k : Ic→ d, we have χ′(f ◦ k) = f ◦ χ(k).
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Dually, we have a category Cof of cofibrations; an object of Cof is a cofibra-
tion as in definition 17, and a morphism (e, ψ)→ (e′, ψ′) of Cof is a morphism
f : e→ e′ in D such that for any k : e′ → Jc, we have ψ(k ◦ f) = ψ′(k) ◦ f .

Now we want to establish the connection between (co)fibrations and lifting
problems. The existence of a fibration structure or cofibration structure for
an object of D will prove to be equivalent to a lifting condition, which can be
thought of either as a solution to one specific lifting problem, or as a coherent
system of solutions to related lifting problems. We will establish the equivalence
of these two forms of the lifting condition first.

Definition 18. Given a category A and a functor A : A → D, a right lifting
structure for an object d of D against A (or “against A” when the functor is
understood) is a section ` of K : homD(Aa, d) → homC(KAa,Kd) which is
natural in a.

Dually, a left lifting structure for an object e of D against A (or “against
A” when the functor is understood) is a section ` of K : homD(e,Aa) →
homC(Ke,KAa) which is natural in a.

That is, we have a right lifting structure for d against A whenever we have
solution `h to each lifting problem of the form h : KAa → Kd, and also these
solutions collectively satisfy `(h ◦ KAf) = `(h) ◦ Af , for any h : KAa → Kd
and f : a′ → a.

We will denote by At the category of objects ofD with right lifting structures
against A. That is, an object of At is some (d, `), where d is an object of D
and ` is a right lifting structure for d against A. A morphism (d, `)→ (d′, `′) of
At is a morphism f : d → d′ of D such that the following diagram commutes
for all a:

homC(KAa,Kd)
` //

Kf◦(−)

��

homD(Aa, d)

f◦(−)

��
homC(KAa,Kd′)

`′ // homD(Aa, d′)

Dually, the category of objects of D with right lifting structures against A is
denoted tA.

We will now show that in the special case of lifting against the functor
T , such a lifting structure is actually determined by a single lift, a solution
to the identity lifting problem 1Kd : KTKd → Kd (or dually, a solution to
1Ke : Ke → KTKe). For this purpose we define a category D`1 of objects d
of D with solutions to the lifting problem 1Kd : KTKd → Kd. An element of
D`1 is some (d, i) such that i : TKd → d is a solution to 1Kd : KTKd → Kd,
and a morphism (d, i)→ (d′, i′) of D`1 is a morphism f : d→ d′ of D such that
f ◦ i = i′ ◦TKf . The category `1D of objects e of D with solutions to the lifting
problem 1Ke : Ke→ KTKe is defined dually.

Proposition 11. There is an isomorphism of categories over D between Tt

and D`1.
Dually, there is an isomorphism of categories over D between tT and `1D.
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Proof. There is a functor F : Tt →D`1, taking (d, `) to (d, `(1Kd)). By defi-
nition, ` : homC(KTc,Kd) → homD(Tc, d) is a section of K, so in particular,
given the identity map 1Kd : KTKd→ Kd we can produce `(1Kd) : TKd→ d,
which has the property that K`(1Kd) = 1Kd. Thus `(1Kd) is a solution to the
lifting problem 1Kd : KTKd→ Kd, so (d, `(1Kd)) is an object of D`1.

On morphisms, F simply takes f : (d, `) → (d′, `′) to f : (d, `(1Kd)) →
(d′, `′(1Kd′)). Since f is a morphism of Tt, we have f ◦ `h = `′(Kf ◦ h) for any
h : KTc→ Kd, so in particular

f ◦ `(1Kd) = `′(Kf ◦ 1Kd)

= `′(1Kd ◦Kf)

= `′(1Kd ◦KTKf)

= `′(1Kd) ◦ TKf,

showing that f is a morphism of D`1.
There is also a functor G :D`1 → Tt, taking (d, i) to (d, `), where ` is given

by `(h) := i ◦ Th. To check that this does define a right lifting structure for
d against T whenever i is a solution to 1Kd : KTKd → Kd, we need to check
that ` is a section of K and that it is natural in c. Indeed we find

K`h = K(i ◦ Th)

= Ki ◦KTh
= 1Kd ◦ h
= h

and
`(h ◦KTg) = `(h ◦ g)

= i ◦ T (h ◦ g)

= i ◦ Th ◦ Tg
= `(h) ◦ Tg

as desired.
On morphisms, G takes f : (d, i) → (d′, i′) to f : (d, `) → (d′, `′), where

`(h) := i ◦ Th and `′(h) := i′ ◦ Th. Since f is a morphism of D`1, we have
f ◦ i = i′ ◦ TKf , so for any h : KTc→ Kd we find

`′(Kf ◦ h) = i′ ◦ T (Kf ◦ h)

= i′ ◦ TKf ◦ Th
= f ◦ i ◦ Th
= f ◦ `(h),

showing that f is a morphism of Tt.
Lastly, we note that FG and GF are both identity functors. FG maps

(d, i) to (d, `(1Kd)), where ` is defined by `(h) := i ◦ Th, so in fact `(1Kd) =
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i ◦ T (1Kd) = i. Meanwhile GF maps (d, `) to (d, `′), where `′ is defined by
`′(h) := `(1Kd) ◦ Th, so in fact for any h,

`′(h) = `(1Kd) ◦ Th
= `(1Kd ◦KTh)

= `(h).

This shows an isomorphism between the categories Tt and D`1.

Now we will prove a generalization of proposition ??, establishing the equiv-
alence of (co)fibration structure and lifting structure.

Proposition 12. There is an isomorphism of categories over D between Tt

and Fib.
Dually, there is an isomorphism of categories over D between tT and Cof.

Proof. By definition, a fibration structure for an object d of D is a section
of u∗c : homD(Tc, d) → homD(Ic, d) which is natural in c, and a right lifting
structure for d against T is a section of K : homD(Tc, d)→ homC(c,Kd) which
is natural in c. So to show that Fib and Tt are equivalent we begin by identifying
a natural isomorphism that completes this diagram

homD(Tc, d)
u∗c

ww

K

''
homD(Ic, d)

' // homC(c,Kd)

in [C, Set].
The adjunction I a K gives exactly an isomorphism homD(Ic, d)→ homC(c,Kd)

that is natural in c. Specifically, the isomorphism is given by

Ic
k // d 7−→ c

η′c // KIc
Kk // Kd

and by definition 14 we have η′c = 1c, so in fact the isomorphism is given by K.
Its inverse is given by

c
g // Kd 7−→ Ic

Ig // IKd
ε′d // d.

We check that the diagram commutes:

homD(Tc, d)
u∗c

ww

K

''
homD(Ic, d)

K // homC(c,Kd)

That is, considering an element f : Tc → d of homD(Tc, d), we want to check
that K(f ◦ uc) = Kf . And indeed, by proposition 10 we have K(f ◦ uc) =
Kf ◦Kε′Tc = Kf .
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Now we can see that there is a functor F : Tt → Fib taking (d, `) to
(d, ` ◦ K). Since ` is a section of K : homD(Tc, d) → homC(c,Kd) natural in
c, and K : homD(Ic, d) → homC(c,Kd) is an isomorphism natural in c which
completes the diagram, ` ◦K is a section of u∗c : homD(Tc, d) → homD(Ic, d),
so (d, ` ◦K) is an object of Fib.

On morphisms, F takes f : (d, `) → (d′, `′) to f : (d, ` ◦K) → (d′, `′ ◦K).
Since f is a morphism of Tt, we have f ◦`h = `′(Kf ◦h) for any h : KTc→ Kd.
In particular, for any k : Ic → d, we have Kk : KIc = c = KTc → Kd, so we
can use this property of f to show

(`′ ◦K)(f ◦ k) = `′(K(f ◦ k))

= `′(Kf ◦Kk)

= f ◦ `(Kk)

= f ◦ (` ◦K)(k),

showing that f is a morphism of Fib.
Similarly, there is a functor G : Fib → Tt taking (d, χ) to (d, χ ◦ (ε′d)∗ ◦

I). Since χ is a section of u∗c : homD(Tc, d) → homD(Ic, d) natural in c,
and (ε′d)∗ ◦ I : homC(c,Kd) → homD(Ic, d) is an isomorphism natural in c
which completes the diagram, χ ◦ (ε′d)∗ ◦ I is a section of K : homD(Tc, d) →
homC(c,Kd), so (d, χ ◦ (ε′d)∗ ◦ I) is an object of Tt.

On morphisms, G takes f : (d, χ) → (d′, χ′) to f : (d, χ ◦ (ε′d)∗ ◦ I) →
(d′, χ′ ◦ (ε′d′)∗ ◦I). Since f is a morphism of Fib, we have χ′(f ◦k) = f ◦χ(k) for
any k : Ic→ d. Using this property we can show that for any h : KTc→ Kd,

(χ′ ◦ (ε′d′)∗ ◦ I)(Kf ◦ h) = χ′(ε′d′ ◦ I(Kf ◦ h))

= χ′(ε′d′ ◦ IKf ◦ Ih)

= χ′(f ◦ ε′d ◦ Ih)

= f ◦ χ(ε′d ◦ Ih)

= f ◦ (χ ◦ (ε′d)∗ ◦ I)(h),

which shows that f is a morphism of Tt.
Lastly, we note that FG and GF are both identity functors. FG maps (d, χ)

to (d, χ ◦ (ε′d)∗ ◦ I ◦K), and for any k : Ic→ d we have

(χ ◦ (ε′d)∗ ◦ I ◦K)(k) = χ(ε′d ◦ IKk)

= χ(k ◦ ε′Ic)
= χ(k)

by proposition 10. Meanwhile GF maps (d, `) to (d, ` ◦K ◦ (ε′d)∗ ◦ I), and for
any h : c→ Kd we have

(χ ◦ ` ◦K ◦ (ε′d)∗ ◦ I)(h) = `(K(ε′d ◦ Ih))

= `(Kε′d ◦KIh)

= `(h)
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by proposition 10.
This shows an isomorphism between Tt and Fib.

Proposition 13. For any object c ∈ C, TK is both a fibration structure and a
cofibration structure for Tc.

Proof. The lifting problem 1KTc : KTKTc → KTc has the solution 1Tc :
TKTc→ Tc. By proposition 11, this solution extends to a right lifting structure
` for Tc against T , where ` is given by `(h) := 1Tc ◦ Th = Th, so in fact T is a
right lifting structure for Tc against T . It then follows from proposition 12 that
TK is a fibration structure for Tc.

Proposition 14. There is a fully faithful functor from Fib to Coft over D.
Dually, there is a fully faithful functor from Cof to tFib over D.

Proof. We construct a functor F : Fib → Coft. Given an object (d, χ) of
Fib, we construct a lifting structure ` for d against Cof as follows: for a lifting
problem h : Ke → Kd, where (e, ψ) is an object of Cof, the lift is given by
`(h) := χ(ε′d) ◦ Th ◦ ψ(η′′e ).

e
ψ(η′′e ) // TKe

Th // TKd
χ(ε′d) // d

First, using proposition 12 we see that when (d, χ) is a fibration, χ◦ (ε′d)∗ ◦ I
is a lifting structure for d against T , and then using proposition 11 we see that
(χ ◦ (ε′d)∗ ◦ I)(1Kd) = χ(ε′d) is a solution to the lifting problem 1Kd : KTKd→
Kd. Dually, ψ(η′′e ) is a solution to the lifting problem 1Ke : Ke → KTKe.
Therefore, as a whole `(h) = χ(ε′d)◦Th◦ψ(η′′e ) is indeed a solution to the lifting
problem h : Ke→ Kd.

Next we want to show that ` is natural in (e, ψ). Suppose that f : (e, ψ)→
(e′, ψ′) is a morphism in Cof; that is, f : e→ e′ is a morphism of D and for any
k : e′ → Jc, ψ(k ◦ f) = ψ′(k) ◦ f . Then for any h : Ke′ → Kd, we have

`(h ◦Kf) = χ(ε′d) ◦ T (h ◦Kf) ◦ ψ(η′′e )

= χ(ε′d) ◦ Th ◦ TKf ◦ ψ(η′′e )

= χ(ε′d) ◦ Th ◦ ψ(JKf ◦ η′′e )

= χ(ε′d) ◦ Th ◦ ψ(η′′e′ ◦ f)

= χ(ε′d) ◦ Th ◦ ψ′(η′′e′) ◦ f
= `(h) ◦ f,

showing that ` is indeed a lifting structure for d against Cof.
On morphisms, F takes f : (d, χ) → (d′, χ′) to f : (d, `) → (d′, `′). Since f

is a morphism of Fib, we have χ′(f ◦ k) = f ◦ χ(k) for any k : Ic → d. Using
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this property we can show that for any (e, ψ) ∈ Cof and h : Ke→ Kd,

`′(Kf ◦ h) = χ′(ε′d′) ◦ T (Kf ◦ h) ◦ ψ(η′′e )

= χ′(ε′d′) ◦ TKf ◦ Th ◦ ψ(η′′e )

= χ′(ε′d′ ◦ IKf) ◦ Th ◦ ψ(η′′e )

= χ′(f ◦ ε′d) ◦ Th ◦ ψ(η′′e )

= f ◦ χ(ε′d) ◦ Th ◦ ψ(η′′e )

= f ◦ `(h)

which shows that f is a morphism of Coft.
F is clearly faithful. To see that F is also full, we want to show that any

morphism f : d → d′ of D that is also a morphism f : (d, `) → (d′, `′) of
Coft was already a morphism f : (d, χ) → (d′, χ′) of Fib. So, consider some
f : d → d′ such that for any (e, ψ) ∈ Cof and h : Ke → Kd, we have χ′(ε′d′) ◦
T (Kf ◦ h) ◦ ψ(η′′e ) = f ◦ χ(ε′d) ◦ Th ◦ ψ(η′′e ). We want to show that for any
k : Ic → d, χ′(f ◦ k) = f ◦ χ(k). Note that for any k : Ic → d, we have
ε′d ◦ IKk = k ◦ ε′Ic = k by proposition 10. Furthermore, by proposition 13, TK
is a cofibration structure for Tc, so we can pick (Tc, TK) ∈ Cof and h := Kk,
which maps from KTc = c = KIc to Kd. Now the fact that f is a morphism
of Coft becomes χ′(ε′d′) ◦T (Kf ◦Kk) ◦TK(η′′Tc) = f ◦χ(ε′d) ◦TKk ◦TK(η′′Tc);
which then, since we know from above that η′′Tc is a solution to an identity lifting
problem, becomes simply χ′(ε′d′)◦T (Kf ◦Kk) = f ◦χ(ε′d)◦TKk. We therefore
have

f ◦ χ(k) = f ◦ χ(ε′d ◦ IKk)

= f ◦ χ(ε′d) ◦ TKk
= χ′(ε′d′) ◦ T (Kf ◦Kk))

= χ′(ε′d′ ◦ IK(f ◦ k))

= χ′(f ◦ k),

as desired.

Proposition 15. There is a functor from Coft to Fib over D.
Dually, there is a functor from tFib to Cof over D.

Proof. By propositions 11 and 12, it suffices to provide a functorG : Coft → D`1
over D.

Consider some object (d, `) of Coft. By proposition 13, TKd is a cofibration,
so ` yields a solution to the lifting problem 1Kd : KTKd → Kd. We let
G(d, `) := (d, `(1Kd)).

On morphisms, G takes f : (d, `)→ (d′, `′) to f : (d, `(1Kd))→ (d′, `′(1Kd′)).
Since f is a morphism of Coft, we have f ◦`h = `′(Kf ◦h) for any h : Ke→ Kd
where e has a cofibration structure. Using this property we see

`′(1Kd′) ◦ TKf = `′(1Kd′ ◦KTKf)

= `′(Kf ◦ 1Kd)

= f ◦ `(1Kd),
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showing that f is also a morphism of D`1.

8 Relative weak factorization systems for two-
sided factorization

Having defined these general structures, we will now apply them to a more spe-
cific situation, in order to investigate one way to build two-sided weak factor-
ization systems around two-sided factorizations, and define notions of two-sided
(co)fibrations.

Let Span and Sprout be the categories generated by the graphs

•

�� ��

•

��
• • and •

�� ��
• •

respectively. Fixing a category C, we will then refer to the objects of CSpan as
the spans of C, and the objects of CSprout as the sprouts of C.

The sprout
W

`
��
X

m
~~

n
  

Y Z,

or (`;m,n) for short, can be composed into the span

W

m◦`

~~

n◦`

  
Y Z,

or (m◦`, n◦`) for short. Therefore, factoring a span (f, g) into a sprout consists
of finding a sprout (`;m,n) such that m ◦ ` = f and n ◦ ` = g.

There are two trivial factorizations of spans into sprouts, which will exist
whenever C is a cartesian category: we can precompose by an identity map,
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A

f

��

g

��

A

1A

��
I7−→ A

f

��
g

��
B,C B,C

or we can map into the product of the two codomains, and postcompose by the
two projection maps.

A

f

��

g

��

A

〈f,g〉
��

J7−→ B × C

p0

��
p1

��
B,C B,C

Proposition 16. Let comp : CSprout → CSpan be the composition functor taking
(`;m,n) to (m ◦ `, n ◦ `), let I : CSpan → CSprout be the factorization taking
(f, g) 7→ (1A; f, g), and let J : CSpan → CSprout be the factorization taking
(f, g) 7→ (〈f, g〉; p0, p1). Then comp, I, and J form a factorization setting.

Proof. We wish to show that I a comp, with the unit of the adjunction being
an identity natural transformation, and that comp a J , with the counit of the
adjunction being an identity natural transformation.

For the adjunction I a comp, we let η′ := 11CSpan
: 1CSpan ⇒ comp ◦ I, and

we let ε′ : I ◦ comp⇒ 1CSprout be the natural transformation consisting of maps
of sprouts of the following form:

W

1

��

1
//

ε′(`;m,n)

W

`
��

W

��
m◦`,n◦`

��

`
// X

m,n

����
Y,Z //

1,1
// Y,Z.

We then check the triangle identities, in the reduced forms found in proposition
10. It is clear from the diagram above that compε′ = 1comp, because the top
and bottom horizontal arrows are all identities. To check that ε′I = 1I , we note
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that for any span (f, g), ε′I(f,g) is simply

A

1

��

1
// A

1

��
A

��
f,g

��

1
// A

f,g

����

= 1I(f,g).

B, C //
1,1
// B,C

For the adjunction comp a J , we let ε′′ := 11CSpan
: comp ◦ J ⇒ 1CSpan , and

we let η′′ : 1CSprout ⇒ J ◦comp be the natural transformation consisting of maps
of sprouts of the following form:

W

`

��

1
//

η′′(`;m,n)

W

〈m◦`,n◦`〉
��

X

��
m,n

��

〈m,n〉
// Y × Z

p0,p1

����
Y,Z //

1,1
// Y, Z.

We then check the triangle identities. As above, it is clear from the diagram
that compη′′ = 1comp. To check that η′′J = 1J , we note that for any span (f, g),
η′′J(f,g) turns out to be

A

〈f,g〉
��

1
// A

〈f,g〉
��

B × C

��
p0,p1

��

〈p0,p1〉=1
// B × C

p0,p1

����

= 1J(f,g).

B, C //
1,1

// B,C

This shows that comp, I, and I form a factorization setting.

CSpan

J

>>

⊥

I

!!
⊥

CSprout
compoo
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Now that we have a factorization setting, we can consider lifting problems
in this setting. By definition 15, a lifting problem in this setting will be a
commutative diagram of the following form:

•

��

// •

��
•

����

// •

����
•, • //// •, •

where the dashed arrow gives a solution to the lifting problem.

Definition 19. A two-sided weak factorization system for a cartesian category
C consists of the factorization setting Ia comp a J plus a section of comp.

By definition, two-sided weak factorization systems are examples of rela-
tive weak factorization systems. We refer to their fibrations and cofibrations,
as defined in definition 17, as two-sided fibrations and two-sided cofibrations.
Therefore, we inherit the properties of relative weak factorization systems, fi-
brations, and cofibrations discussed in section 7.

Suppose (T, Ia comp a J) is a two-sided weak factorization system for C.
For notational convenience, we break T : CSpan → CSprout into three component
functors: λ : CSpan → C→, E : CSpan → C, and ρ : CSpan → CSpan.

A

f

��

g

��

A

λ(f,g)

��
T7−→ E(f, g)

��
ρ(f,g)

��
B,C B,C

Propositions 11 and 12 together tell us that the following categories are
isomorphic:

1. The category of two-sided fibrations.

2. The category of sprouts (`;m,n) with a solution to the following lifting
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problem:
W

λ(m◦`,n◦`)
��

1
// W

`

��
E(m◦`, n◦`)

��
ρ(m◦`,n◦`)

��

// X

m,n

����
Y, Z //

1,1
// Y, Z.

3. The category of sprouts with a coherent system of solutions to lifting
problems against T -images.

Proposition 13 tells us that for any span (f, g), T (f, g) carries both a two-sided
fibration and a two-sided cofibration, with the common structure T ◦ comp.

Proposition 14 yields the canonical lift of any two-sided cofibration against
any two-sided fibration. Suppose ((`;m,n), χ) is a two-sided fibration, and
((q; r, s), ψ) is a two-sided cofibration. That is, for any morphism of sprouts
k : I(f, g) → (`;m,n), χ yields a morphism of sprouts χk = (k0;χk1; k2,k3) :
T (f, g)→ (`;m,n), naturally in (f, g).

A

1

��

k0

// W

`

��

A

λ(f.g)

��

k0

// W

`

��
A

��
f,g

��

k1

// X

m,n

����

χ7−→ E(f, g)

��
ρ(f,g)

��

χk1

// X

m,n

����
B,C //

k2,k3

// Y,Z B,C //
k2,k3

// Y,Z

Here we know that we must have χk0 = k0, χk2 = k2, and χk3 = k3 because χ
is a section of precomposition by u(f,g) = ε′T (f,g),which is simply the following
map of sprouts:

A

1

��

1
// A

λ(f,g)

��
A

��
f,g

��

λ(f,g)
// E(f, g)

ρ(f,g)

����
B,C //

1,1
// B,C.

Likewise, for any morphism of sprouts k : (q; r, s) → J(f ; g), ψ yields a
morphism of sprouts ψk = (k0;ψk1; k2,k3) : (q; r, s) → T (f ; g), naturally in
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(f, g).
P

q

��

k0

// A

〈f,g〉
��

P

q

��

k0

// A

λ(f,g)

��
Q

��
r,s

��

k1

// B × C

p0,p1

����

χ7−→ Q

��
r,s

��

ψk1

// E(f, g)

ρ(f,g)

����
R,S //

k2,k3

// B,C R, S //
k2,k3

// B,C

Then proposition 14 tells us that any lifting problem h : comp(q; r, s) →
comp(`;m,n) has the canonical solution χ(ε′(`;m,n)) ◦ Th ◦ ψ(η′′(q;r,s)).

P

q

��

1
// P

ρ(r◦q,s◦q)
��

h0 // W

ρ(m◦`,n◦`)
��

1
// W

`

��
Q

��
r,s

��

ψ〈r,s〉
// E(r◦q, s◦q)

��

E(h0;h2,h3)

ρ(r◦q,s◦q)
��

// E(m◦`, n◦`)

ρ(m◦`,n◦`)
����

χ`
// X

m,n

����
R,S //

1,1
// R,S //

h2,h3

// Y, Z //
1,1

// Y,Z

Lastly, proposition 15 provides the proof that any sprout which has a coher-
ent system of solutions to lifting problems against two-sided cofibrations carries
a two-sided fibration, and likewise that that any sprout which has a coherent
system of solutions to lifting problems against two-sided fibrations carries a
two-sided cofibration.

9 Conclusion
In this thesis we have traced the development of algebraic weak factorization
systems, presented the concept of relative monads and comonads, and com-
bined these ideas to define relative weak factorization systems, a generalized,
more flexible analogue of weak factorization systems, which is able to incorpo-
rate additional shapes of diagrams. We have proved preliminary results about
these systems, showing ways in which they do indeed function as analogues of
weak factorization systems, as well as some ways in which they do not have
all the properties we might have desired. There is much more to do in fur-
ther examining the behavior of these systems, and their suitability as potential
models of identity types and other dependent types in a directed type theory.
Furthermore, other possible visions of categorical models should be created and
explored, to support and inform the creation of useful, insightful directed type
theories.
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