
Explorations in Coalgebraic Predicate Logic
With a Focus on Interpolation

MSc Thesis (Afstudeerscriptie)

written by

Rover Junior Samwel
(born September 2, 1999 in Amsterdam)

under the supervision of prof. dr. Yde Venema, and submitted to the
Examinations Board in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
October 31, 2022 dr. Nick Bezhanishvili

dr. Malvin Gattinger (chair)
prof. dr. Helle Hvid Hansen
prof. dr. Yde Venema (supervisor)

Abstract

This thesis explores the area of coalgebraic predicate logic (CPL) in various
ways. We describe the morphisms of CPL in great detail, motivating our
choices and giving a characterisation in the form of a ‘Coalgebraic Diagram’.
Furthermore, we establish an Ehrenfeucht Fräıssé (EF) game for CPL, along
with an adequacy result. The focus of the thesis is on interpolation results
for CPL, with both a semantic and a syntactic approach. Semantically, we
generalise the set up of the colimit construction in first-order logic, working
towards interpolation via Robinson’s consistency. This results in an analysis
that explains how colimits can only work in CPL under a tight restriction.

Syntactically, we provide an interpolation result for monotone neighbour-
hood frames that arise from CPL, using Maehara’s method. The proof theo-
retic portion of the thesis also gives a road map for further interpolation results
in CPL. The latter stresses that there is yet a lot to be done in the area of
CPL, both in its model theory and its proof theory. The EF-game can for
example be further studied, generalised and broken down in variations. And
the aforementioned restriction on colimits in CPL as well as the road map for
general interpolation results can be further explored.

Keywords— Coalgebraic Predicate Logic, Predicate Liftings, Interpolation, Maehara’s
method, Ehrenfeucht-Fräıssé games, Monotone Neighbourhood Functor

1

Contents

1 Acknowledgements 3

2 Introduction 4

3 Coalgebraic Predicate Logic 6
3.1 Basics of CPL . 6
3.2 Chang: Modal Model Theory . 11

4 Morphisms of CPL 14
4.1 CPL-Morphisms . 14
4.2 A Coalgebraic Condition . 16
4.3 The Coalgebraic Diagram . 19

5 An Ehrenfeucht-Fräıssé-game for CPL 23
5.1 The Game . 23
5.2 Adequacy of the Game . 26
5.3 Examples . 30
5.4 About Non-unary Modalities . 33

6 Directed Systems & Semantic Interpolation in CPL 34
6.1 Directed Systems . 34
6.2 Build-up Lemmas . 46
6.3 Robinson’s Consistency & Interpolation . 48

7 Proof Theoretic Interpolation 51
7.1 Set-up and Maehara’s Method . 51
7.2 The Monotone Neighbourhood Functor . 56
7.3 General Interpolation Results: A Blueprint 59

8 Conclusion 62

References 63

A Appendix 65
A.1 First-order Logic Model Theory . 65
A.2 Category Theory . 66
A.3 Coalgebra . 68
A.4 One-step Logic . 70

2

1 Acknowledgements

Although this thesis has been a solo-project there are some people I could not have done it
without. First of all, I want to thank my supervisor Yde Venema for all his help, patience,
insights and motivations. I also want to thank the committee members for their time and
effort as well as a defence that felt more like a fun conversation about coalgebraic predicate
logic among peers than the strict interrogation that I was anxious for.

I also want to thank Katsuhiko Sano for taking the time to meet with me and talk about
CPL. It was very refreshing to talk in-depth about the material with one of the authors of
the article that was my main inspiration. Chapter 7 on Maehara’s method would not have
been there without you.

Much thanks also goes to Evan and Francesco, my MoL study buddies who kept me
sharp and motivated. Thank you to my parents and sisters who, despite my warnings that
they wouldn’t understand anything, all attended my defence. And thank you to all the
friends who held the patience to listen to me rambling about CPL and its intricacies, you
know who you are. ♡

3

2 Introduction

Coalgebra is a mathematical framework used to describe state-based systems. Given a set
functor T , a T -coalgebra is a set A together with a coalgebra map α to the set TA.

A

TA

α

In the case that T is the powerset functor, the coalgebra map α for example assigns each
element a set of states in A, in which case we are effectively describing Kripke models.
Other examples of coalgebras are automata, computer programs or a vending machine.
One might see a coalgebra as the user-perspective of a machine. We view the inside of the
machine as a black box and concern us with what happens when we push a button in a
certain state of the machine. Given a set functor one can create an unlimited number of
different kinds of structures using coalgebras.

Logical approaches of coalgebra have mainly focused on generalising modal logic to
coalgebraic modal logic (CML), using relation liftings1 or predicate liftings. Being one
of the key players in this thesis, predicate liftings are modal operators in the form of
natural transformations; the semantics of these modalities is defined in terms of the natural
transformation and the coalgebraic structure of respective models. The interaction between
modal logics and coalgebra is for example studied by Leal [2] and Kupke and Pattinson [3].

This thesis concerns itself with the combination of CML and first-order logic (FOL):
coalgebraic predicate logic (CPL). The idea to also add first-order quantifiers and predicates
to the environment of modal logic - the logic of neighbourhood systems to be precise -
originally comes from Chang [4]. However, Litak, Pattinson, Sano and Schröder [5] really
established CPL as a discipline, generalising Chang’s work to the framework of coalgebras
and predicate liftings.

Because it is quite important for the development of the thesis, we will take the time
to discuss the syntax, semantics and key results of CPL given by Litak et al. [5], who have
set out both the model theory and proof theory of CPL. While doing so, we also take a
look at the connection between Chang’s logic and its CPL counterpart. Discussing this

1Relation liftings will not be discussed in this thesis. For an overview see for example [1].

4

groundwork will most importantly enable to set up a detailed description of morphisms
for CPL, by realising that the semantics is more important than the coalgebraic structure.
Moreover, it will give us the chance to generalise some of the ideas from Chang [4] to
CPL. In addition, we define a ‘Coalgebraic Diagram’ that captures all the information of
a CPL-model.

The focus of the thesis is on interpolation, which has for CML for example been studied
by Seifan, Schröder and Pattinson [6]. We cover two approaches, one model theoretic and
one proof theoretic. Our model theoretic approach generalises the colimit construction of
FOL, which we will describe in detail to work for specific cases. And our proof theoretic
approach uses sequent system of CPL given in [5] by employing Maehara’s method. We
show interpolation for the logic obtained by the monotone neighbourhood logic and provide
a road map for more interpolation results in CPL using the same method.

Another result, somewhat unrelated to other parts of the thesis, is an Ehrenfeucht-
Fräıssé (EF) game for CPL. We take inspiration from EF-games for generalised quantifiers
and set up a game between CPL-models. The game is proven to be adequate and we stress
some of the differences between our game on the one hand and classical EF-games as well
as bisimulation games for modal logic on the other hand.

Structure of the Thesis. We start by giving an overview of CPL by going through the
main beats of both [5] and [4] in chapter 3. From that basis, we will go through the different
degrees of morphisms between models for CPL in chapter 4. We provide the Ehrenfeuch-
Fräıssé game for CPL in chapter 5. Chapter 6 then gives our semantic approach towards
Craig interpolation, while the 7th and final chapter of the body of the thesis gives the proof
theoretic approach for interpolation.

We close of this introduction by stating that we expect the reader to be on the level of
a graduate logic student who is familiar with coalgebraic modal logic. For basic definitions
of and notational clarifications, one can consult the appendix at the end of the document.

5

3 Coalgebraic Predicate Logic

In this chapter we establish the basics of CPL, mainly by drawing from the two main
inspirations of this thesis: Litak, Pattinson, Sano and Schröder [5] and Chang [4]. We
give definitions that form the groundwork for later chapters in this thesis and we cover key
results of CPL. The inclusion of Chang’s paper gives us a look at the origins of CPL and
will allow us to generalise some of Chang’s ideas later in the thesis.

As this chapter also goes into the syntax, we now fix an infinite set of individual
variables iV ar for the rest of the thesis.

3.1 Basics of CPL

Litak et al. [5] give the most extensive account on the model theory and proof theory of
CPL so this section mostly follows their article. We most importantly cover the syntax and
semantics of CPL. Along the way, we will add some original definitions such as constants
for the CPL-syntax. After this, we also provide examples and some key results of [5].

3.1.1 Syntax & Semantics

The syntax of CPL combines those of first-order logic and coalgebraic modal logic. Litak
et al. [5] characterise CPL-languages with a pair (Λ,Σ), where Λ is a modal similarity type
- a set of modal operators - and Σ is a set of first-order predicates. Both the modalities
♡ ∈ Λ and the predicates P ∈ Σ come with finite arities ar♡, arP ∈ ω. For reasons that
will be made clear in chapter 4 we here add a set of constants Γ, which gives rise to the
following definition2.

Definition 3.1. Given a CPL-language (Λ,Σ,Γ), t is a term iff t = x for some x ∈ iV ar
or t = c for some c ∈ Γ.

We thus move from a pair to a triple (Λ,Σ,Γ) to characterise a CPL-language. Given
such a triple, we define the set of CPL(Λ,Σ,Γ)-formulas inductively:

φ ::= s = t | P (⃗t) | ⊥ | ¬φ | φ→ φ | ∀x.φ | x♡⌈y1 : φ1⌉...⌈yn : φ2⌉ (1)

where s, t, t⃗ (= t1, .., tk) are terms, x, y1, .., yn are variables, P ∈ Σ is k-ary, and ♡ ∈ Λ
is n-ary. We may additionally use the abbreviations ∨, ∧ and ∃. In the modality clause,
y in ⌈y : φ⌉ is a comprehension variable so that ‘⌈y : φ⌉ denotes a subset of the carrier
of the model’ [5, p. 4]. Just as in FOL, we say that a formula is a sentence if it has no
free variables3 and we call a collection of CPL(Λ,Σ,Γ)-sentences a CPL(Λ,Σ,Γ)-theory.
Furthermore, the following abbreviation will be helpful in chapter 6.

2As also noted in [5], one could furthermore add function symbols, which would of course slightly
change definition 3.1.

3See [5, p. 5] for a detailed account of free variables and substitution in CPL.

6

Definition 3.2. We say that (Λ0,Σ0,Γ0) ⊆ (Λ1,Σ1,Γ1) when Σ0 ⊆ Σ1, Λ0 ⊆ Λ1 and
Γ0 ⊆ Γ1.

As the set-up of the syntax suggests, a CPL-model is in essence a FOL-model with
coalgebra structure. Given a set functor T and a CPL-language (Λ,Σ,Γ), consider a
T -coalgebra (A,α). We endow the carrier set A with interpretations for the first-order
predicates and the constants4:

IΣ : Σ →
⋃
n∈ω

P(An)

IΓ : Γ → A

respecting the arities of all P ∈ Σ and sending each c ∈ Γ to an element IΓ(c) in A. We
usually treat IΣ and IΓ as one, writing I to mean either or both. Furthermore, the triple
A = (A,α, I) is called a CPL(Λ,Σ,Γ)-model or, if the language is understood, a CPL-
model, a coalgebraic model or a T -model. Given an interpretation I we also use PA and
cA for I(P) and I(c) respectively.

For the coalgebra part, we interpret all ♡ ∈ Λ with associated predicate liftings [|♡|],
respecting the arities. So for any CPL(Λ,Σ,Γ)-model A = (A,α, I), given an assignment
v : iV ar → A, we have

A, v |= x♡⌈y1 : φ1⌉...⌈yn : φn⌉ ⇔ α
(
v(x)

)
∈ [|♡|]A

(
[|φ1(y1)|]y1A , .., [|φn(yn)|]

yn
A
)

(2)

where
[|φ(y)|]yA = {a ∈ A | A, v[a/y] |= φ}. (3)

Given a similarity type Λ, we call a set functor together with a predicate lifting [|♡|] for
each modal operator ♡ ∈ Λ a Λ-structure5. Using Λ-structure makes it easier to talk about
instances of CPL without specifying Σ and Γ, which do not depend on the set functor. Fur-
thermore, since the distinction between modal operators and their interpretations is clear,
we will from now on use the two terms modal operator and predicate lifting interchangeably.

For the rest of the syntax: the logical connectives and the first-order quantifiers are
interpreted in the usual way. Given a CPL-model A, we denote the theory of all CPL-
sentences true in A as Th(A).

Because our treatment of variables is exactly the same as in FOL, we can also adopt
the following proposition6.

Proposition 3.3. Given a (Λ,Σ,Γ)-theory T and a formula φ(x) ∈ CPL(Λ,Σ,Γ) in which
the constant c does not occur, we have

T |= φ(c) ⇔ T |= ∀xφ(x). (4)

4We added IΓ to accommodate the constants. So our definition of the interpretation slightly
differs from the one given in [5].

5See also definition 3.1 in [3].
6See e.g. [7, p. 14].

7

This will prove helpful later on. We move on to instances of CPL, giving some examples
of Λ-structures.

3.1.2 Examples

The following three examples are also given in [5]. Here we give the semantics of the modal
operators and some relevant context. All three will return as running examples.

Relational first-order logic Let T = P ×∆PAt, where At is a set of atomic propo-
sitions. Then we get relational FOL7. Models of this logic basically are Kripke models in
coalgebraic notation. Let A = (A,α, I) be a P ×∆PAt-model. Each a ∈ A gets assigned a
set α(a)(1) of successors and a set α(a)(2) of atomic propositions that are true at a. The
predicate lifting ♢, given a subset C of A, is defined as follows:

[|♢|]A(C) := {(X,U) ∈ PX × PAt | C ∩X ̸= ∅} (5)

Furthermore, the elements of At are also predicate liftings. For any a ∈ At we have

[|a|]A(C) := {(X,U) ∈ PX × PAt | a ∈ U}. (6)

So we have Λ = {♢} ∪At. As noted above, Σ and Γ can be anything.
To state that a has b as one of its successor, we may write

a♢⌈z : z = b⌉.

Litak et al. [5] give the translation from relational FOL, stating that relational FOL is
expressively equivalent to its correspondence language.

Neighbourhood Frames If T = N = QQ, we get neighbourhood frames. Let (A,α)
be a QQ-coalgebra. Then each a ∈ A is associated with a set of neighbourhoods, subsets
of the carrier set A. The sole predicate lifting is [|□|], which is, given some C ⊆ A, defined
as follows.

[|□|]A(C) := {α ∈ QQA | C ∈ α} (7)

We often impose monotonicity on the collection of neighbourhoods of an element a:

C0 ∈ α(a), C0 ⊆ C1 ⇒ C1 ∈ α(a)

We then have for C0 ⊆ C1 that [|□|]A(C0) ⊆ [|□|]A(C1); the predicate lifting becomes
monotone as well. We refer to the monotone neighbourhood functor as M, on which
chapter 7 will zoom in. The logic for N can be axiomatised by8:

7We here mean the usual correspondence language, a notational variant of FOL [5, p. 7].
8This congruence rule actually holds for all predicate liftings.

8

p↔ q

□p→ □q

Notice that if we work with monotone neighbourhoods, we can drop the right-to-left im-
plication in the premise to get the following rule:

p→ q

□p→ □q

We return to the latter rule in chapter 7.

Graded Modal Logics For graded modal logics, we consider the functor B, defined
on objects by

BA := {µ : A→ N ∪ {∞} | µ is a map }. (8)

Let (A,α) be a B-coalgebra. A map µ : A→ N∪ {∞} may be seen as a measure on A, i.e.
giving for each possible ‘path’ between elements in A a value. For C ⊆ A we write µ(C)
for Σc∈Cµ(c). On morphisms f : A→ B, the functor B takes image measures:

Bf(D) := µ(f−1[D]) for D ⊆ B (9)

Graded modal logic has infinitely many predicate liftings: [|⟨k⟩|] for k ≥ 0, defined by

[|⟨k⟩|]A(C) := {µ ∈ BA | µ(C) > k}, (10)

expressing that more than k successors have the property described by C. We may use a
picture like below to represent a B-coalgebra intuitively.

a b

c

0 3

0

3

∞

3

1

7 ∞

To understand the picture, we for example have α(a)(b) = 3. Of course, one can change
the functor by changing the range of the functions µ, for example to [0, 1] so that we assign
probabilities instead.

9

3.1.3 Key Results

In this section we mention some of the key results found by Litak et al. [5]. We want to
give a general overview without worrying too much about technical details.

The most important result is completeness, the proof of which in heavily relies on
one-step logic and the notion of boundedness9.

Definition 3.4. A modal operator ♡ is k-bounded in the i-th argument for k ∈ ω and with
respect to a Λ-structure T if for every set A and every C1, .., Cn ⊆ A,

[|♡|]A(C1, .., Cn) =
⋃

B⊆Ci,|B|≤k

[|♡|]A(C1, .., Ci−1, B, Ci+1, .., Cn).

Note that boundedness in the i-th component implies monotonicity in the i-th com-
ponent. Boundedness can be captured syntactically with so-called colourings to include a
bounded-ness axiom in the Hilbert-style calculusHR developed for CPL10. Using a Henkin-
style construction with witnesses, [5] provides a completeness result for CPL that depends
on the one-step rules necessary for the system HR.

Now is a good time to mention that if a Λ-structure makes a modal operator ♡ ∈ Λ
ω-bounded (by finite sets) but not k-bounded for finite k, strong completeness fails [5,
p. 26]. Furthermore,‘the bounded structures are the only ones that satisfy compactness’[5,
p. 25]. This is compactness (in the ‘normal’ sense) of CPL-formulas (although the paper
does not explicitly state this).

Other than completeness, the model theory of [5] also a CPL-version of the Omitting
Types Theorem, which is proved in a similar manner as completeness. Furthermore, [5]
explores CPL-ultraproducts (with a version of Lös’s theorem) and achieves a Downward
Löwenheim-Skolem theorem. The paper extends its reach by also covering the correspon-
dence between CPL and CML, giving translations as well as preservation theorems. They
also dive into hybrid languages and other correspondences which are all very interesting
but not relevant for the current thesis.

In the proof-theory part of [5] a cut-free complete sequent calculus for CPL is given,
which we will study a bit more in chapter 7. For now, it suffices to know that a sound and
(under restrictions) complete sequent system for CPL is developed.

As a last - but certainly not least - key result we want to mention the companion paper
[8] to [5], in which a version of the Van Benthem/Rosen theorem is proven for CPL. The
proof and the machinery used to get there is quite interesting and worth to take a look at.

9Definition 3.4 is definition 3.12 in [5, p. 15].
10See [5, p. 17] for the details.

10

3.2 Chang: Modal Model Theory

The ideas put forth in [5] are largely based on earlier11 work by Chang [4]; the logic
described there can be seen as an instance of CPL. As we will use some ideas from Chang’s
paper later on, especially in chapter 6, it is worthwhile to cover what he established. It
is notable that Chang is also concerned with the philosophical and social analysis behind
the motivation of the semantics of his logic. In this section, we first give the syntax and
semantics and then the motivation behind the semantics.

3.2.1 Syntax and Semantics

Let us first have a look at Chang’s syntax and semantics. The logic that Chang defines is
a notational variant of Neighbourhood CPL (as described above).

Syntax We have a language L consisting of predicates, functions, individual constants,
the identity symbol, individual variables andmodal operators N,M, .. with arities ar(N), ar(M), .. ∈
ω. Chang’s treatment of terms, first-order predicates and logical connectives and quanti-
fiers is as usual; the most important construction clause is:

(iv) if N is an n-place modal operator, x is a variable, and φ1, .., φn are formulas then
Nx(φ1 . . . φn) is a formula [4, p. 2]

This clause ‘replaces’ the last clause in (1). Notice that there is no binding variable
in the modal formulas. However, φi, for 1 ≤ i ≤ n, is meant to denote a subset of the
domain.

Semantics Chang uses Gothic letters (e.g. A,B) for his models. We will refer to
Chang’s models as neighbourhood models (not coalgebraic models). A neighbourhood
model A = (A, ...)12 for a language L consists of a domain A together with interpreta-
tions (...) for all symbols in the language L [4, p. 7]. Let N be an n-ary modal operator.
The interpretation of N in a model A, denoted as NA, is a function that maps every a ∈ A
to a subset of P(A) × · · · × P(A) (n times). Now let a1, .., an ∈ A and, for 1 ≤ i ≤ n, let
φi(x1, .., xn) be a formula. The semantics of N is defined by

A |= Nx1(φ1, .., φm)[a1, a2, .., an] ⇔
({c1 ∈ A | A |= φ1[c1, a2, .., an]}, .., {cm ∈ A | A |= φm[cm, a2, .., an]}) ∈ N(a1). (11)

Notice how Chang’s treatment of variables slightly differs from the notation used in the rest
of this thesis; e.g. a1 is the assignment of x1 and the first free variable in φ1 is equivalent
to the binding variable in the modality clause for CPL.

11The paper was published in the 70s.
12The dots are Chang’s own notation.

11

Let us now see how we can via transformations go back and forth between coalgebraic
models (for T = QQ) and neighbourhood models. While doing this, we will drop the
interpretation of the ‘ordinary’ predicates Σ and constants Γ; the transformation is really
between Chang’s modal operators and CPL’s predicate liftings. Observe that CPL is quite
efficient in the sense that we can define as many predicate liftings as we would like given
a set-functor. However, with Chang’s neighbourhood models each modal operator has its
own successor structure.

Chang to CPL We only treat the case that L has finitely many modal operators,
all unary. Let A = (A,NA

1 , .., N
A
n) be a neighbourhood model. Each NA

i is a function
A → PPA. So we take the functor T = QQ × .. × QQ (n times) so that a T -coalgebra
has a map that for each a ∈ A gives an n-tuple of neighbourhood-systems. We define
A = (A,α) as the coalgebraic version of A, where α combines all information of NA

i , for
1 ≤ i ≤ n: i.e.

α(a)(i) = NA
i (a) for all a ∈ A

Then we have predicate liftings [|□i|], for 1 ≤ i ≤ n, defined in the usual way, just amended
to having multiple sets of neighbourhoods:

[|□i|]A(C) = {α ∈ QQA× · · · × QQA | C ∈ α(i)}

for all A, C ⊆ A. Slightly abusing notation, we thus have, again for 1 ≤ i ≤ n:

A |= aNi(C) ⇔ C ∈ NA(a)

⇔ C ∈ α(a)(i)

⇔ α(a) ∈ [|□i|]A(C)
⇔ A |= a□i(C)

A syntactic translation from Chang to CPL would thus translate aNi(φ) to a□i⌈y : φ⌉.

CPL to Chang Let A = (A,α) be a QQ-model. Given the predicate lifting [|□|],
define

NA : a 7→ α(a) ∈ QQA for all a ∈ A.

Let us call A = (A,NA) the Chang-version of A. We have

A |= a□(C) ⇔ α(a) ∈ [|□i|]A(C)
⇔ C ∈ α(a)(i)

⇔ C ∈ NA
i (a)

⇔ aN(C).

It is quite straightforward to see that in the case that we only have one modal operator
(which is always for CPL neighbourhood frames) these two transformations are each other’s
inverses.

12

3.2.2 Motivation

As we may conclude from the above, Chang’s semantics is more or less the same as the
semantics for the neighbourhood instance of CPL. However, Chang has an inner motivation
for this semantics and as we will see, it is a simplification of multiple factors. Here follows
an overview.

Given an n-place modal operator N and formulas φ1, .., φn, Chang suggests to read
xNφ1 . . . φn as ‘x finds it N that φ1, .., φn’ [4, p. 3], where N might be replaced by words
such as possible, likely or strange. Chang leaves open what φ1, .., φn should represent.
He suggests a conjunction but does make the distinction between something of the form
xNφ1..φn and something of the form xMφ1 ∧ .. ∧ φn, where M is unary. To be able to
analyse the meaning of xNφ1 . . . φn more efficiently, Chang gives an example: the binary
predicate P , which means ‘talking to’. The meaning of aNP (ab) should, following [4],
depend on at least four factors:

a, b, P (xy) and C := {c ∈ A | Pcb}.

However, this is for simplicity’s sake narrowed down to only a and the set C, stating that

.. individuals are making some sort of judgement in their world, namely A,
based upon information supplied by the interpretation of N in A. [4, p. 4]

From here comes the definition of N as a function and the semantics of NA as described
above. Chang admits the simplification and

.. [leaves] open and untouched the possibility of more complicated interpreta-
tions of N . [4, p. 5]

This possibility is not one that the current thesis sets out to dive into but it is at least
interesting that coalgebraic models also support his motivation.

The narrowing down of the factors to just a and C leads to the following validity,
capturing the congruence of the modal operators.

∀x(φ(x) ↔ ψ(x)) → ∀x(Nxφ(x) ↔ Nxψ(x))

In CPL we have the same:

∀y(φ(y) ↔ ψ(y)) → ∀x(x♡⌈y : φ(y)⌉ ↔ x♡⌈y : ψ(y)⌉)

Notice the different variables due to the binding variable in modalities in CPL.
It is worth mentioning that Chang’s paper covers some important model theoretic re-

sults and constructions for neighbourhood models. Results include the Tarski-Vaught test,
compactness and the Löwenheim-Skolem theorem; constructions include co-chains, which
we will reference in Chapter 6. One of the questions that the paper ends with will be (par-
tially) answered in chapter 7, where we prove interpolation for monotone neighbourhood
CPL. A bit more on this paper will follow in the next chapter where we discus the mor-
phisms between coalgebraic models and start adding to and building on the work discussed
in this chapter.

13

4 Morphisms of CPL

This chapter introduces the basic notions of morphisms between CPL-models while also
discussing why certain conditions are left out. Section 4.1 brings us all the way to elemen-
tary CPL-embeddings, section 4.2 discusses a coalgebraic condition introduced by Chang
that will give some insight into the nature of coalgebraic models and section 4.3 generalises
the Diagram-method of model theory for first-order logic to CPL. Most of this chapter is
a generalisation of first-order logic but it is good to record these definitions and results as
we will use them later on.

4.1 CPL-Morphisms

For the rest of the chapter, fix a set-functor T and a CPL-language (Λ,Σ,Γ).
In [5] the only remark about morphisms between coalgebraic models comes after the

statement of the Löwenheim-Skolem theorem:

.. we use the term elementary substructure in the usual way to designate first-
order substructures whose elements satisfy the same formulas as they do in
the original model: we explicitly do not require that the coalgebra structure
on the substructure forms a subcoalgebra. [5, p. 33]

From this, we take the cue that all kinds of CPL-morphisms should be defined in a way
that is similar to the corresponding definitions in model theory for first-order logic. That
is, focusing on satisfaction and interpretation rather than coalgebraic structure.

Definition 4.1. Given two CPL(Λ,Σ,Γ)-models A = (A,α, I) and B = (B, β, J), a map
f : A→ B is a strong CPL(Λ,Σ,Γ)-morphism when the following hold:

1. For all constants c ∈ Γ; f(cA) = cB.

2. For all a1, .., an ∈ A and all n-ary P ∈ Σ;

(a1, .., an) ∈ I(P) ⇔ (f(a1), .., f(an)) ∈ J(P)

If f is also injective then f is a CPL(Λ,Σ,Γ)-embedding.

It is not hard to show that, given coalgebraic models A and B, having a CPL(Λ,Σ,Γ)-
embedding from A to B is equivalent to A and B making true the same quantifier- and
modality-free CPL(Λ,Σ,Γ)-formulas.

Definition 4.2. A CPL(Λ,Σ,Γ)-embedding f : A → B between T -models A and B is
elementary if we have

A |= φ(a1, .., an) ⇔ B |= φ(f(a1), .., f(an))

for all a1, .., an ∈ A and all CPL(Λ,Σ,Γ)-formulas φ(x1, .., xn).

14

If in a certain context a CPL-language (Λ,Σ,Γ) is understood, we may state e.g. CPL-
embedding instead of CPL(Λ,Σ,Γ)-embedding. Note that nothing in definitions 4.1 or 4.2
says anything about the coalgebra structure of CPL-models. However, the next proposition
captures the strength of a coalgebra morphism in terms of preservation of truth.

Proposition 4.3. Let A = (A,α, I) and B = (B, β, J) be two CPL(Σ,Λ,Γ)-models. If a
CPL(Σ,Λ,Γ)-embedding f : A→ B is a coalgebra morphism then

A |= φ(a1, .., an) ⇔ B |= φ(f(a1), .., f(an))

for all a1, .., an ∈ A and all quantifier-free CPL(Σ,Λ,Γ)-formulas φ(x1, .., xn).

Proof. Given the triviality of the atomic and Boolean cases, we only cover the modality
case. Recall that the assumption that f is a coalgebra morphism means that

β ◦ f = Tf ◦ α. (12)

Now let
φ(x1, .., xn) = x1♡ . . . ⌈yi : ψi(x2, .., xn, yi)⌉ . . . (13)

for some k-ary ♡ ∈ Λ and arbitrary CPL(Λ,Σ,Γ)-formulas ψi(x2, .., xn, yi) for 1 ≤ i ≤ k,
for which the induction hypothesis yields

a ∈ [|ψi(a2, .., an, yi)|]yiA ⇔ f(a) ∈ [|ψi(f(a2), .., f(an), yi)|]yiB (14)

for all a, a2, .., an ∈ A. If we for a moment fix arbitrary a2, .., an ∈ A, the naturality
condition for [|♡|] with respect to f , starting with [|ψ(f(a2), .., f(an), y)|]yB ∈ QB gives

[|♡|]A(.., [|ψi(a2, .., an, yn)|]yiA , ..) =
{α ∈ TA | Tf(α) ∈ [|♡|]B(.., [|ψi(f(a2), .., f(an), yi)|]yiB , ..). (15)

We now show that A |= φ(a1, .., an) ⇔ B |= φ(f(a1), .., f(an)) for all a1, .., an ∈ A. Take
arbitary a1, .., an ∈ A. We have

A |= a1♡..⌈yi : ψ(a2, .., an, yi)⌉..
⇒ α(a1) ∈ [|♡|]A(.., [|ψi(a2, .., an, yi)|]yiA , ..) (definition)

⇒ Tf
(
α(a1)

)
∈ [|♡|]B(.., [|ψi(f(a2), .., f(an), yi)|]yiB , ..) (by (15))

⇒ β(f(a1)) ∈ [|♡|]B(.., [|ψi(f(a2), .., f(an), yi)|]yiB , ..) (by (12))

⇒ B |= f(a1)♡..⌈yi : ψ(f(a2), .., f(an), yi)⌉... (definition).

We thus conclude that B |= f(a1)♡ . . . ⌈yi : ψ(f(a2), .., f(an), yi)⌉ The implications
actually go both ways so the proof is done.

15

Definition 4.4. Two CPL(Λ,Σ,Γ)-models A and B, are (Λ,Σ,Γ)-equivalent, write
A ≡(Λ,Σ,Γ) B, when both models make true exactly the same CPL(Λ,Σ,Γ)-sentences.

It is not hard to show that ≡(Λ,Σ,Γ) is an equivalence relation.

Proposition 4.5. Let A = (A,α, I) and B = (B, β, J) be two CPL(Λ,Σ,Γ)-models. If
there is an elementary CPL(Λ,Σ,Γ)-embedding f : A→ B then A ≡(Λ,Σ,Γ) B.

Proof. Trivial by the definition (4.2) of an elementary CPL-embedding.

4.2 A Coalgebraic Condition

Although we will in this thesis stick to the definition of a CPL-morphism given in the
previous section, without any coalgebraic conditions or assumptions, it is worthwhile to
look at the possibilities in that area. In fact, Chang [4] adds a condition to the successor-
structure of his neighbourhood models. This section examines this condition and formulates
a general version of it, in the coalgebraic setting.

Chang [4] introduces the notion of a submodel : A neighbourhood-model A = (A, ...)13

is a submodel of B = (B, ...) if A is a submodel of B in the first-order sense14 and for each
n-place operator N , each a ∈ A we have that if ⟨C1, . . . , Cn⟩ ∈ NA(a), where Ci ⊆ A for
1 ≤ i ≤ n, then there are Di ⊆ B, for 1 ≤ i ≤ n, such that the following are true:

(i) Ci = A ∩Di for 1 ≤ i ≤ n.

(ii) ⟨D1, . . . , Dn⟩ ∈ NB(a)

For (i), we say that ‘Di extends Ci into B’. Let us now translate this condition to the
coalgebraic setting, as described in Chapter 3. Let A = (A, σA, I) and B = (B, σB, J) be
the coalgebraic versions of A and B respectively and let □ be the coalgebraic version of
N . In the case that N is unary,

C ∈ NA(a) translates to σA(a) ∈ [|□|]A(C).

Furthermore, if there is a D ⊆ B that extends C into B while also satisfying (ii), then
we have σB(a) ∈ [|□|]B(D). Note that we can generalise the condition to the case that
we do not have A ⊆ B. We then want, given a map f : A → B, that A′ = (f [A], ...) is
a submodel of B. Keeping this in mind, we get the following coalgebraic condition for a
general Λ-structure.

Definition 4.6. Given a Λ-structure (T,Λ) and two T -coalgebras (A,α) and (B, β), we
say that f : A → B is a Chang-Λ-morphism if for all n-ary ♡ ∈ Λ, for all a ∈ A and for
all Ci ⊆ A, for i ≤ n, such that α(a) ∈ ♡A(C1, .., Cn), there are Di ⊆ B such that:

13Recall that the dots are Chang’s notation, as introduced in chapter 3.
14Conform the two conditions given in definition 4.1 but Chang [4] does not specify.

16

(I) f [Ci] = f [A] ∩Di for i ≤ n

(II) β
(
f(a)

)
∈ [|♡|]B(D1, .., Dn)

If the Λ-structure is understood we just write Chang-morphism. And if f is a Chang-
morphism, we alternatively say that f satisfies the Chang-condition.

Chang [4] adds the Chang-condition to his definition of an elementary substructure
and also describes the notion of a conservative submodel, where the implication goes both
ways. Let us now check some basic properties of Chang-morphism.

Proposition 4.7. Let (T,Λ) be a Λ-structure and assume that Λ consists of monotone
predicate liftings only. Then any T -coalgebra morphism is a Chang-Λ-morphism.

Proof. Let (A,α) and (B, β) be two T -coalgebras and assume that f : A → B is a coal-
gebra morphism. For simplicity we look at unary predicate liftings but this can easily be
generalised. Take arbitrary a ∈ A, some ♡ ∈ Λ and any C ⊆ A.

Now assume that (⋆) α(a) ∈ [|♡|]A(C). Consider f [C] ⊆ B. Notice that C ⊆ (f−1 ◦
f)[C] so by monotonicity of ♡ and (⋆) we have (∗) α(a) ∈ ♡A((f

−1 ◦ f)[C]). Now by
naturality of ♡ with respect to f we have that

[|♡|]A
(
(f−1 ◦ f)[C]

)
= {α ∈ TA | Tfα ∈ ♡B(f [C])}. (16)

so by (∗) and (16) we have Tf
(
α(a)

)
∈ [|♡|]B(f [C]). Furthermore, f is a coalgebra

morphism so β
(
f(a)

)
∈ ♡B(f [C]). Obviously, f [C] = f [A] ∩ f [C] so the condition is

satisfied.

Proposition 4.8. Let A = (A,α), B = (B, β) and E = (E, ϵ) be T -coalgebras for some
set-functor T and assume f : A → B and g : B → E are Chang-morphisms. Then
g ◦ f : A→ E is a Chang-morphism as well.

Proof. Take some a ∈ A, some modal operator ♡ (interpreted by the predicate lifting [|♡|])
and some C ⊆ A and assume α(a) ∈ [|♡|]A(C). Then there is some D ⊆ B such that

f [C] = f [A] ∩D and β
(
f(a)

)
∈ [|♡|]B(D). (17)

By the fact that β
(
f(a)

)
∈ [|♡|]B(D), there is some F ⊆ E such that

g[D] = g[B] ∩ F and ϵ
(
g(f(a))

)
∈ [|♡|]E(F). (18)

Then we have
(g ◦ f)[C] = (g ◦ f)[A] ∩ g[D] = (g ◦ f)[A] ∩ g[B] ∩ F (19)

and since (g ◦ f)[A] ⊆ g[B] we have

(g ◦ f)[C] = (g ◦ f)[A] ∩ F. (20)

So g ◦ f satisfies the Chang-condition.

17

As natural as the condition for being a Chang-morphism might seem, it does not
guarantee preservation of the truth of quantifier-free CPL(Λ,Σ,Γ)-formulas. Chang [4]
also does not claim as much but also does not say the opposite. Let us here explain why
this preservation does not work.

LetA = (A,α, I) and B = (B, β, J) be two (Λ,Σ,Γ)-models. Furthermore, let the CPL-
embedding f : A → B be a Chang-morphism. Now assume A |= a♡⌈y : ψ(y)⌉ for a ∈ A,
♡ ∈ Λ and quantifier-free ψ(y) ∈ CPL(Λ,Σ,Γ). By definition α(a) ∈ [|♡|]A([|ψ(y)|]yA).
Since f is a Chang-morphism, there is some D ⊆ B such that

f
[
[|ψ(y)|]yA

]
= f [A] ∩D

and β
(
f(a)

)
∈ [|♡|]B(D).

The ‘problem’ is that it is not guaranteed that D is the same as [|ψ(y)|]yB (or in the
case that ♡ is monotone, a subset of [|ψ(y)|]yB). So it is not necessarily the case that
B |= f(a)♡⌈y : ψ(y)⌉. Actually, here is an example with T = QQ to showcase this.

Example 4.9. Let T = N with Λ = {□} and take Σ = {P} with P unary (and Γ = ∅).
Define A = (A,α, I) and B = (B, β, J) as follows:

A = {a1, a2}
α(a1) =

{
{a2}

}
, α(a2) = ∅

I(P) = {a2}
B = {b1, b2, b3}

β(b1) =
{
{b2, b3}

}
, β(b2) = β(b3) = ∅

J(P) = {b2}

Furthermore, define a map f : A→ B:

f : a1 7→ b1, a2 7→ b2

The Chang-condition is satisfied by f ; only α(a1) is of importance and we have

f [{a2}] = f [A] ∩ {b2, b3}.

However, we have A |= a1♡⌈y : P (y)⌉ and B ̸|= b1♡⌈y : P (y)⌉.

This failed capture of truth-preservation should not be a concern; the most important
morphisms are elementary CPL-embeddings and those preserve truth by definition.

To close this section on the Chang-condition, we offer a slightly different version of it.
The syntax of CPL is not powerful enough to talk about any subset of a a certain domain
so it makes sense to introduce a weaker version of the Chang-morphism as follows.

18

Definition 4.10. A map f : A→ B is a weak Chang-morphism if for all predicate liftings
♡, all a1, .., an and all φ(x2, .., xn, y) ∈ CPL(Λ,Σ,Γ) such that α(a1) ∈ ♡([φ(a2, .., an, y)]

y
A),

there is a D ⊆ B such that:

• f
[
[φ(a2, .., an, y)]

y
A)

]
= f [A] ∩D

• β(f(a)) ∈ ♡B(D)

It should be clear when a map is a conservative weak Chang-morphism.

Proposition 4.11. Let A = (A,α, I) and B = (B, β, J) be two CPL(Λ,Σ,Γ)-models.
If f : A → B is an elementary CPL-embedding, then it satisfies the weak conservative
Chang-condition.

Proof. Take arbitrary a1, .., an ∈ A, ♡ ∈ Λ and φ(x2, .., xn, y) ∈ CPL(Λ,Σ,Γ) such that

α(a1) ∈ [|♡|]([|φ(a2, .., an, y)|]yA).

Then A |= a1♡⌈y : φ(a2, .., an, y)⌉, so B |= f(a1)♡⌈y : φ(f(a2), .., f(an), y)⌉ so

β(f(a1)) ∈ [|♡|]([|φ(f(a2), .., f(an), y)|]yB)

and furthermore

f
[
[|φ(a2, .., an, y)|]yA

]
= f [A] ∩ [|φ(f(a2), .., f(an), y)|]yB.

So we know that f satisfies the conservative weak Chang-condition.

In essence, weak Chang-morphisms only look at CPL-definable subsets of a domain.

4.3 The Coalgebraic Diagram

The (elementary) Coalgebraic Diagram (ElCoDiag), similar to the first-order (elementary)
Diagram15, is a set of sentences designed to capture all the information in a coalgebraic
model, relative to a language. We will show that if some coalgebraic model B makes true
the ElCoDiag of another coalgebraic model A, then there is an elementary CPL-embedding
from A to B. Since we will add names for all elements in the carrier-set of a coalgebraic
model when defining its ElCoDiag, this is the chapter where it pays off to allow constants
in our language.

Definition 4.12. Given a CPL-model A = (A,α, I), we denote the set of individual con-
stants naming all elements in A, the naming constants of A, as

Γ(A) := {ca | a ∈ A}.
15See for example [9, p. 45].

19

Note that the naming constants of a model do not depend on the CPL-language. Given
Γ(A) for a model A, we add the natural interpretation cAa = a. We may denote the
expansion of A that interprets all naming constants in the natural way as A+.

Definition 4.13. Let A = (A,α, I) be a CPL(Λ,Σ,Γ)-model. The CoDiag of A relative
to (Λ,Σ,Γ) is the set of all quantifier-free CPL(Λ,Σ,Γ ∪ Γ(A))-sentences that are true in
A:

CoDiag(Λ,Σ,Γ)(A) := {quantifier-free sentences φ ∈ CPL(Λ,Σ,Γ ∪ Γ(A)) | A |= φ}.

Furthermore:

ElCoDiag(Λ,Σ,Γ)(A) := {sentences φ ∈ CPL(Λ,Σ,Γ ∪ Γ(A)) | A |= φ}.

Notice that for any CPL(Λ,Σ,Γ)-modelA we always have CoDiag(Λ,Σ,Γ) ⊂ ElCoDiag(Λ,Σ,Γ).
In the rest of the chapter we will for notational clarity assume that all ♡ ∈ Λ are unary.
Before we go on to the main theorem, we prove a helpful lemma about the (non-elementary)
CoDiag.

Lemma 4.14. Let A = (A,α, I) and B = (B, β, J) be CPL(Λ,Σ,Γ)-models. If B has a
CPL(Λ,Σ,Γ ∪ Γ(A))-expansion B+ = (B, β, J+) such that

B+ |= CoDiag(Λ,Σ,Γ)(A)

then there is a CPL(Λ,Σ,Γ)-embedding h : A→ B.

Proof. Assume that B has a CPL(Λ,Σ,Γ ∪ Γ(A))-expansion B+ = (B, β, J+) such that
B+ |= CoDiag(Λ,Σ,Γ)(A). It is to show that there is a CPL(Λ,Σ,Γ)-embedding h : A→ B.
Noticing that B+ has interpretations of all constants ca ∈ Γ(A), we define h by

h : a 7→ J+(ca) for all a ∈ A. (21)

First, we check that h is a strong CPL(Λ,Σ,Γ)-morphism by checking the two clauses in
definition 4.1.

1. The constants ca for some a ∈ A are added to the language for the CoDiag; they are
not in the language that h will be shown to be an embedding for.

For c ∈ Γ with cA = a for some a ∈ A, we have c = ca ∈ CoDiag(Λ,Σ,Γ)(A). So

B+ |= c = ca. Then cB = cB
+

a = J+(ca) = h(a). So then h(cA) = h(a) = cB, as
desired.

20

2. For any a1, .., an and any n-ary P ∈ Σ we have

(a1, .., an) ∈ I(P) ⇔ A |= P (ca1 , .., can) (definition)

⇔ P (ca1 , .., can) ∈ CoDiag(Λ,Σ,Γ)(A) (definition 4.13)

⇔ B+ |= P (ca1 , .., can) (assumption)

⇔ (J+(ca1), .., J
+(can)) ∈ J+(P) (definition)

⇔ (h(a1), .., h(an)) ∈ J(P) (by (21))

The step from J+ to J in the last equivalence is justified by the fact that for P ∈ Σ we
have J+(P) = J(P), since B+ is an expansion. So B+ interprets already interpreted
predicates in the same way as B.

Second, we show injectivity. Take a1, a2 ∈ A and assume a1 ̸= a2. Then
¬(ca1 = ca2) ∈ CoDiag(Σ,Λ)(A) so B+ |= ¬(ca1 = ca2). So J

+(ca1) ̸= J+(ca2). By Definition
22 we have h(a1) ̸= h(a2).

We conclude that h is a CPL-embedding.

Notice that the main theorem below, as opposed to the lemma above, does state an
equivalence, instead of just one implication.

Theorem 4.15. Let Λ be a set of monotone predicate liftings. The following are equivalent
for two CPL(Λ,Σ,Γ)-models A = (A,α, I) and B = (B, β, J).

1. B has a CPL(Λ,Σ,Γ ∪ Γ(A))-expansion B+ = (B, β, J+) such that

B+ |= ElCoDiag(Λ,Σ,Γ)(A).

2. There is an elementary CPL(Λ,Σ,Γ)-embedding h : A→ B.

Proof. We prove both directions.

(1. ⇒ 2.) Assume that B has a CPL(Λ,Σ,Γ ∪ Γ(A))-expansion B+ = (B, β, J+) such
that B+ |= ElCoDiag(Λ,Σ,Γ)(A). It is to show that there is an elementary CPL(Λ,Σ,Γ)-
embedding h : A→ B. Define h as in Lemma 4.14;

h : a 7→ J+(ca) for all a ∈ A. (22)

By Lemma 4.14 we know that h is a CPL-embedding so it is left to show that h is elemen-
tary. Take any a1, .., an from A and any CPL(Λ,Σ,Γ)-formula φ(x1, .., xn). We have

A |= φ(a1, .., an) ⇔ φ(ca1 , .., can) ∈ ElCoDiag(A) (definition 4.13)

⇔ B+ |= φ(ca1 , .., can) (assumption)

⇔ B |= φ
(
h(a1), .., h(an)

)
(by (22)).

It is important to note that we are talking about CPL(Λ,Σ,Γ)-formulas without the con-
stants ca. So the last bi-implication is trivial, just as in the case for the predicate P ∈ Σ
in the proof for Lemma 4.14.

21

(2. ⇒ 1.) Now assume that there is an elementary CPL-embedding h : A → B. It is
to show that B has a CPL(Λ,Σ,Γ ∪ Γ(A))-expansion B+ = (B, β, J+) such that B+ |=
ElCoDiag(Λ,Σ,Γ)(A). We will prove the stronger statement that for any sentence φ ∈
CPL(Λ,Σ,Γ) we have

φ ∈ ElCoDiag(Λ,Σ,Γ)(A) ⇔ B |= φ.

So take any sentence φ(ca1 , .., can) ∈ CPL(Λ,Σ,Γ). We have

φ(ca1 , .., can) ∈ ElCoDiag(Λ,Σ)(A) ⇔ A |= φ(ca1 , .., can)

⇔ A |= φ(a1, .., an)

⇔ B |= φ(h(a1), .., h(an))

⇔ B |= φ(ca1 , .., can).

We conclude that B+ |= ElCoDiag(Λ,Σ,Γ)(A).

It is very important to stress that the coalgebraic diagram actually has nothing coal-
gebraic to its definition. It is the diagram of coalgebraic models but - as you can see in
the proof - we never use anything else from the definitions of coalgebras. The name thus
refers to CPL as a language with models that are coalgebras and not to anything else
coalgebraically. In Chapter 6 we will put the Coalgebraic Diagram to use extensively.

Remark In the beginning of this chapter, we motivated our choice of not including any
requirements on the coalgebra structure of elementary substructures in CPL by quoting
Litak et al. [5]. Leaving coalgebra structure out of definition 4.1 is something once can
also learn by trying different definitions and trying if the CoDiagram still characterises
elementary CPL-embeddings as desired. If one for example adds to definition 4.1 that a
strong CPL-homomorphism should be a coalgebra morphism, only the first direction of
theorem 4.15 can be shown, as proposition 4.3 showcases.

On a related note: in the process of finding the final statement of theorem 4.15, which
depends on the definition of the CoDiagram as well as the definition of a CPL-embedding,
we have tried to enrich the CPL-language with predicates corresponding to all subsets
of the carrier set of the model for which the CoDiagram is defined. We attempted to
capture these extra predicates by including the Chang-condition in definition 4.1. However,
in this approach, only the second direction of the theorem would work since it was not
possible to argue about the validity of formulas in the enriched language. Through attempts
of assuming e.g separation of the set of predicate liftings to say something about the
CoDiagram, we realised that CPL-morphisms should be defined as we have done in section
4.1.

22

5 An Ehrenfeucht-Fräıssé-game for CPL

This chapter introduces a version of Ehrenfeucht-Fräıssé games (EF-games) for CPL, re-
stricted to the case where Λ consists of unary and monotone predicate liftings only. We
expect the reader to be familiar with classical EF-games for FOL16 and it is good to think
of the game described in this chapter of an alteration of the classical game to accommodate
for coalgebra structure and predicate liftings. The main idea is that, just like existential
formulas, modal formulas need to be unpacked by a particular move in the game. In section
5.1 we define the game and its winning conditions, in section 5.2 we prove the adequacy
of the game and in section 5.3 we go through some concrete examples. Finally, we make
some comments about the inclusion of non-unary predicate liftings in section 5.4.

5.1 The Game

An EF-game is played by two players between two models to examine the equivalence
between the two models. The players are usually referred to as Spoiler and Duplicator,
who we also refer to as she and he respectively, due to the binary nature of the game.
Spoiler intends to show that the models are different while Duplicator intends to show that
they are similar. Before the start of the game the number of rounds that will be played is
determined and throughout the game Spoiler starts each round by performing a move in a
model of choice. Duplicator then reacts by playing the same kind of move but in the other
model. Doing so, the players construct two sequences in the two models and depending
on the properties of those sequences, one of the players wins. It must be noted here that
any finite game of the kind that we describe below always has a player with a winning
strategy17. We call a specific instance of a game, with specific moves made by the players,
a match.

For sections 5.1 and 5.2, fix a finite CPL-language (Λ,Σ,Γ).

Assumption 5.1. All predicate liftings ♡ ∈ Λ are unary and monotone.

Notationally convenient due to the binary nature of EF-games, we will usually play
games between CPL-models A0 and A1. As the syntax of CPL includes the first-order
quantifiers, we include the classical ∃-move.

16See for example [9, p. 52] or [7, p. 27].
17This is based on Zermelo’s theorem.

23

Step 1a Spoiler picks a model Ai for i ∈ {0, 1}
Step 1b Spoiler picks an element a ∈ Ai

Step 2 Duplicator picks an element b ∈ A1−i

Table 1: The ∃-move

The ∃-move - so to speak - unpacks existential formulas. We define another kind of move
to unpack the predicate liftings, inspired by EF-games for generalised quantifiers18. Given
a coalgebra and an element in its domain, we associate each ♡ ∈ Λ with a set of subsets
of the domain.

Definition 5.2. Fix a T -coalgebra A = (A,α), an element a ∈ A and a predicate lifting
♡ ∈ Λ. We set

A♡(a) := {X ⊆ A | α(a) ∈ [|♡|]A(X)}.

Note that A♡(a) is independent of an interpretation I. A CPL-move is defined as
follows (see figure 1 and table 2). Assume that the players have established a configuration
of two sequences a⃗0 = (a10, .., a

k
0) ; a⃗1 = (a11, .., a

k
1) in the two structures, for k ∈ ω. Spoiler

chooses some ♡ ∈ Λ and a model Ai, for i ∈ {0, 1}. She proceeds by choosing an element
aji ∈ a⃗i in one of the previously chosen sequences and she then chooses an element C from

A♡
i (a

j
i): a subset of Ai. After this, Duplicator chooses an element D of A♡

1−i(a
j
1−i), where

aj1−i is the element in A1−i that forms a pair with aji in the foregoing configuration. Spoiler
continues by choosing some d ∈ D, after which Duplicator chooses some c ∈ C. If, without
loss of generality, we assume that Spoiler picked from A0 first, we now have the extended
sequences (a10, .., a

k
0, c) and (a11, .., a

k
1, d), noticing that the subsets C and D were merely

auxiliary. If Spoiler’s choice of ♡ is known we may also refer to a CPL-move as a ♡-move.
Furthermore, we refer to e.g. the choosing of C ∈ A♡

i (a
j
i) by Spoiler as a ♡-move on aji .

18See for example [10]; each quantifier is associated with a collection of subsets of a model.

24

C c

•

D d

•

aj0 aj1

A0 A1

TA0 TA1

α0 α1

♡A0 ♡A1

α0 α1

Figure 1: A ♡-move between models A0 and A1.

Old Configuration: (⃗a0; a⃗1)

Step 1 Spoiler picks some♡ ∈ Λ

Step 2 Spoiler picks Ai for i ∈ {0, 1}
Step 3 Spoiler picks aji ∈ a⃗i

Step 4a Spoiler picks C ∈ A♡
i (a

j
i)

Step 4b Duplicator picks D ∈ A♡
1−i(a

j
1−i)

Step 5a Spoiler picks d ∈ D

Step 5b Duplicator picks c ∈ C

New configuration: (⃗a0, c ; a⃗1, d)

Table 2: Overview of the ♡-round

The EF-game for CPL consists of a fixed number of rounds and Spoiler decides the
moves that are played each round. We denote a game of n ∈ ω rounds with predicate
liftings Λ by EFnΛ(A0,A1)@(⃗a0, a⃗1), where a⃗0, a⃗1 are k-tuples, for k ∈ ω, in the respective
models, forming the starting configuration. We do allow the players to select an element
more than once, as in one of the examples in section 5.3. The instance where k = 0 amounts

25

to a game with an empty starting configuration, forcing the first move to be an ∃-move. For
the definition of the winning conditions, we need the notion of a local CPL-isomorphism.

Definition 5.3. Fix k ∈ ω and a set of variables {x1, .., xk} ⊆ iVar. A local
CPL(Λ,Σ,Γ)−isomorphism between two CPL(Λ,Σ,Γ)-models A0 = (A0, α0, I0) and A1 =
(A1, α1, I1) is a function f : C ⊆ω A0 → A1, where C = {c1, .., ck}, such that

A0 |= φ(c1, .., ck) ⇔ A1 |= φ
(
f(c1), .., f(ck)

)
for all atomic CPL(Λ,Σ,Γ)-formulas φ(x1, .., xk).

Duplicator wins the match EFnΛ(A0,A1)@(⃗a0, a⃗1) with plays ak+1
0 , .., ak+n0 and ak+1

1 , .., ak+n1

if and only if the partial function f : A0 → A1 defined by

f(aj0) = aj1 for 0 ≤ j ≤ (k + n)

is a local CPL-isomorphism. Furthermore, Duplicator can only win if he always has a
possible move, as is made explicit in one of the examples below. Clearly, Spoiler wins if
and only if Duplicator does not.

5.2 Adequacy of the Game

To be able to use the game to actually assess how similar models are, we show that
Duplicator winning the game is equivalent to the models making true the same formulas
of a certain depth. Before we can formulate the theorem that describes this adequacy of
the game, we need to specify with some more auxiliary definitions.

Definition 5.4. (a) The combined depth dp(φ(x⃗)) of a formula φ(x⃗) ∈ CPL(Λ,Σ,Γ) is
defined inductively on the complexity of a formula, where s, t and s⃗ are terms and
P ∈ Σ:

dp(s = t) = dp(P (s⃗)) = dp(⊥) = 0

dp(φ→ ψ) = max(dp(φ), dp(ψ))

dp(∃xφ) = dp(∀xφ) = dp(φ) + 1

dp(x♡⌈y : φ⌉) = dp(φ) + 1

(b) For any n ∈ ω, let CPLn(Λ,Σ,Γ) be all formulas of combined depth at most n:

φ ∈ CPLn(Λ,Σ,Γ) ⇔ dp(φ) ≤ n

(c) Let A0 and A1 be two CPL(Λ,Σ,Γ)-models. Let a⃗0 and a⃗1 be two sequences of length
k in A0 and A1 respectively. Then we write A0, a⃗0 ≡n A1, a⃗1 iff

A0 |= φ(⃗a0) ⇔ A1 |= φ(a⃗1)

for all φ(x1, .., xk) in CPLn(Λ,Σ,Γ).

26

Alternatively, one could count quantifier-depth and modal depth separately. We will
say a little more about that in the last section of this chapter.

For the proof of the adequacy theorem it is of key importance that the number of
CPL-formulas of a certain combined depth is finite up to logical equivalence. Recall that
we are working under the assumption that our CPL-language is finite.

Proposition 5.5. Let n, k ∈ ω. Then the number of formulas in CPLn(Λ,Σ,Γ) with free
variables among {x1, .., xk} is finite up to logical equivalence.

Proof. This can be proven by induction on n. For the base case n = 0 notice that there are
only finitely many predicates and one logical constant ⊥ and k-many variables. So there
are finitely many atomic formulas. The Boolean closure of the set of all atomic formulas,
which all have combined depth 0, is then finite up to logical equivalence.

Assume for the inductive step that, up to logical equivalence, there are finitely many
formulas with free variables among {x1, .., xk} of depth n − 1. Then, for each φ ∈
CPLn−1(Λ,Σ,Γ), there are only finitely many ways to create a formula of depth n by
using one of ♡ ∈ Λ or ∃. Picking only one formula for each class of logically equivalent
formulas and noticing again that the Boolean closure of the resulting set of CPLn-formulas
is then also finite up to logical equivalence, we conclude that effectively there are finitely
many formulas of combined depth n with free variables among {x1, .., xk}.

We are now ready to describe and prove the adequacy of the EF-game for CPL.

Theorem 5.6 (Adequacy). Let A0 = (A0, α0, I0) and A1 = (A1, α1, I1) be two CPL(Λ,Σ,Γ)-
models, let k, n ∈ ω and let a⃗0, a⃗1 be two k-sequences in A0 and A1 respectively. Then the
following are equivalent:

(i) A0, a⃗0 ≡n A1, a⃗1

(ii) Duplicator has a winning strategy in EFnΛ(A0,A1)@(⃗a0, a⃗1)

Proof. We prove the equivalence of (i) and (ii) by induction on n.

Base Case If n = 0 then (i) just says that A0, a⃗0 and A1, a⃗1 make true the same atomic
formulas in k free variables. This coincides with a winning position for Duplicator after 0
rounds. So the equivalence follows trivially from the definitions.

Inductive step For the inductive case, we treat both directions separately.

27

From (i) to (ii) Assume A0, a⃗0 ≡n A1, a⃗1. We play the game EFnΛ(A0,A1)@(⃗a0, a⃗1)
and describe how Duplicator can react to any move by Spoiler in such a way that we can
use the induction hypothesis for the game with n− 1 rounds. There are two cases: Spoiler
can either (1) do a ∃-move or (2) do a ♡-move.

Case (1) Spoiler does a ∃-move. Consider all formulas in CPLn−1(Λ,Σ,Γ) in k + 1 free vari-
ables. The first k variables x⃗ will be assigned accordingly to the current configuration
and the last variable y is for the pair that will be chosen in the current move; we will
bind y with an existential quantifier. Let Spoiler pick some c ∈ A0. We define the
formula:

φ∃(x⃗, y) :=
∧

{ψ(x⃗, y) ∈ CPLn−1(Λ,Σ,Γ) | A0 |= ψ(⃗a0, c)} (23)

Here ¬{ψ1, ..ψn} should be understood as {¬ψ1, ..,¬ψn}. Notice that φ∃ might
in general be an infinite conjunction. However, by Proposition 5.5 we may pick
representatives for each equivalence class under logical equivalence, yielding finitely
many conjuncts and thus a well-defined (finite) formula φ∃. By construction we
have A0 |= φ∃(⃗a0, c). So A0 |= ∃yφ∃(⃗a0, y). We have A0, a⃗0 ≡n A1, a⃗1 which
means that A1 |= ∃yφ∃(⃗a1, y). This gives us an element d ∈ A1 such that A1 |=
φ∃(⃗a1, d). It should be obvious that Duplicator picks d. By construction of φ∃, we
have A0, a⃗0, c ≡n−1 A1, a⃗1, d.

Case (2) Spoiler does a CPL-move; without loss of generality she picks A0, some ♡ ∈ Λ and
some C ∈ A♡

0 (a
j
0) for some aj0 among a⃗0. We again consider all ψ ∈ CPLn−1(Λ,Σ,Γ)

with k+1 free variables. Again k variables for the already chosen sequences and now
a last variable y that is bound in the formula that ♡ is applied to. We now define:

φ♡(x⃗, y) :=
∧

{ψ(x⃗, y) ∈ CPLn−1(Λ,Σ,Γ) | C ⊆ [|ψ(x⃗, y)|]a⃗0,yA0
} (24)

For the same reasons as above, φ♡ may be assumed to be finite. By construction we
have that if a ∈ C then a ∈ [|φ♡(x⃗, y)|]⃗a0,y. By definition of A♡

0 (a
j
0), we know that

α0(a
j
0) ∈ [|♡|]A0(C) and so we have

α0(a
j
0) ∈ [|♡|]A0(C) ⊆ [|♡|]A0([|φ♡|]a⃗0,yA0

)

by monotonicity. So A0 |= aj0♡⌈y : φ♡(⃗a0, y)⌉. Now notice that

dp(φ♡) = max
(
dp(ψ)ψ∈CPLn−1(Λ,Σ,Γ)

)
= n− 1 (25)

and dp(x♡⌈y : φ♡⌉) = n − 1 + 1 = n. Together with A0, a⃗0 ≡n A1, a⃗1 we have

A1 |= aj1♡⌈y : φ♡(⃗a1, y)⌉. So we let Duplicator pick D := [|φ♡(x⃗, y)|]a⃗1,yA1
. Then we

have α1(a
j
1) ∈ [|♡|]A1(D) so D ∈ A♡

1 (a
j
1), justifying the reaction made by Duplicator

as a valid move.

28

Next, Spoiler picks some d ∈ D ⊆ A1 to which Duplicator may react with any
c ∈ C ⊆ A0. Notice that d ∈ [|φ♡(x⃗, y)|]a⃗0,yA0

and c ∈ [|φ♡(x⃗, y)|]a⃗1,yA1
. By the

construction of φ♡, c and d make true exactly the same formulas of depth n − 1 in
k + 1 variables. In other words, for all formulas ψ in (k + 1)-many variables and
of depth n − 1, we have A0 |= ψ(⃗a0, c) ⇔ A1 |= ψ(⃗a1, d) so by definition we have
A0, a⃗0, c ≡n−1 A1, a⃗1, d.

In both cases, the winning strategy is formed by playing the described reaction to any play
by Spoiler and then appending the play with the winning strategy for EFn−1

Λ (A0,A1)@(⃗a0, c; a⃗1, d)
given by the induction hypothesis.

From (ii) to (i) In the other direction, we go by contraposition. We assume (⋆)
A0, a⃗0 ̸≡n A1, a⃗0 and show a winning strategy for Spoiler. By (⋆), there is a formula
φ(x1, .., xk) of depth n such that A0 |= φ(⃗a0) but A1 ̸|= φ(⃗a1). There are two possibilities
for the main operator of φ(x1, .., xk).

Poss. (1) If φ(x1, .., xk) is of the form ∃xψ(x, x1, .., xk), we know two things. First, there
is some assignment of v0 : iV ar → A0 such that x 7→ c for some c ∈ A0 and
A0, v0 |= ψ(a0, a⃗0). Second, there is no assignment v1 : iV ar → A1 such that
A1, v1 |= ψ(v1(x), a⃗1,). This means Spoiler can pick c ∈ A0 by doing an ∃-move
and that no matter what element d ∈ A1 Duplicator replies with, we always have
A1 ̸|= ψ(c, a⃗1). So then A0, a⃗0, c ̸≡n−1 A1, a⃗1, d.

Poss. (2) If φ(x1, .., xk) is, without loss of generality, of the form x1♡⌈y : ψ(x2, .., xk, y)⌉ we
have

A0 |= a10♡⌈y : ψ(a20, .., a
k
0, y)⌉ and A1 ̸|= a11♡⌈y : ψ(a21, .., a

k
1, y)⌉,

which means that

α1(a
1
0) ∈ [|♡|]A0([|ψ(a20, .., ak0, y)|]

y
A0

) but α1(a
1
1) ̸∈ [|♡|]A1([|ψ(a21, .., ak1, y)|]

y
A1

).

Let Spoiler pick [|ψ(a20, .., ak0, y)|]
,y
A0

∈ A♡
0 (a

1
0). Duplicator now has to reply with

some D ∈ A♡
1 (a

1
1). If he picks a D such that D ⊆ [|ψ(a21, .., ak1, y)|]

y
A1

then we would
have

α1(a
1
1) ∈ [|♡|]A1(D) ⊆ [|♡|]A1([|ψ(a21, .., ak1, y)|]

y
A1

),

by monotonicity. But we just saw that α1(a
1
1) ̸∈ [|♡|]A1([|ψ(a21, .., ak1, y)|]

,y
A1

) so we

must haveD ̸⊆ [|ψ(a21, .., ak1)|]
y
A1

. Then there is a d ∈ D such that d ̸∈ [|ψ(a21, .., ak1)|]A1 .
This means that Spoiler should now pick this element d ∈ D. On the other model,
Duplicator has no choice but to pick some c ∈ [|ψ(a20, .., ak0)|]

y
A0

. So we getA0, a⃗0, a ̸≡n−1

A1, a⃗1, d.

29

In both cases we have A0, a⃗0, c ̸≡n−1 A1, a⃗1, d so we can use the inductive hypothesis to
extend Spoiler’s winning strategy.

Since we covered both directions of the inductive step, the induction is complete and
we conclude that the EF-game for CPL is adequate.

Note that the cases in the proof where Spoiler uses the ∃-move are the same as in the
classical EF-game for FOL.

5.3 Examples

Now that we have established the game and its adequacy, we turn to our three running
examples. The two exemplary games below both have empty starting configurations.

Relational FOL Recall that T = P19 and Λ = {♢}. For simplicity, take Σ = Γ = ∅ so
that we don’t have to specify interpretations. For a ♢-move we follow definition 5.2. Let
A = (A,α) be a P-model and let a ∈ A. Then

A♢(a) := {X ⊆ A | α(a) ∈ [|♢|]A(X)} = {X ⊆ A |X ∩ α(a) ̸= ∅}.

So A♢(a) is the collection of all X ⊆ A that contain at least one successor of a. If a player
picks such anX, it makes sense to always pick a singleton, effectively forcing their opponent
to pick a certain successor. So the ♢-move looks a lot like the move in a bisimulation game
for ordinary modal logic20.

To illustrate how the game works and how it is different from the classical EF-game,
let us look at a concrete example, where we depict the models as Kripke frames.

A0 : •

•

•

A1 :

• •

• •

To show that only A0 has an element that ‘sees’ two distinct elements, Spoiler may notice
that the models do not agree on the following formula:

∃x∃y∃w(x♢⌈z : z = y⌉ ∧ y ̸= w ∧ x♢⌈z : z = w⌉)

The formula has a combined depth of 4 so Spoiler should be able to win in as many rounds.
The players may play the following match, where one should notice that Duplicator has
not much choice. Recall that we assumed there are no first-order predicates or constants,
so the only atomic formulae are of the form x = y.

19For simplicity, we assume there are no nullary predicates.
20See for example [11, p. 257].

30

Moves 1-3 First three ∃-rounds where Spoiler and Duplicator select the colour-pairs as indicated
in the figure (e.g.: in round 1, Spoiler picks the green element in A0 and Duplicator
the green element in A1).

Picking the elements can be seen as giving names to the elements. In the order
green-blue-red, we have: a1, a2, a3 in A0 and b1, b2, b3 in A1 (e.g.: blue in A1 is called
b2).

Move 4 See the thicker arrows in the figure. Spoiler does a ♢-move on a1 in A0 (green) and
picks the element that is not paired up with a successor of b1 in A1, namely a3. With
this move, we give red in A0 another name: c.

Duplicator has to reply by picking a set D that includes the only successor of b1: b2.
Spoiler then picks b2 ∈ D, this time calling it d.

It should now be clear that Duplicator has lost the game since the elements that the
players picked with the ♢-move to do not form a pair in the configuration after the first
three moves. Formally, the names given to the elements in the two models do not match.
We have

A0 |= a3 = c and

A1 ̸|= b3 = d.

Keep in mind that the map defined by the game sends f(a3) = b3 and f(c) = d so f is not
a local isomorphism.

The most important take-away of the example of the EF-game for Relational FOL
described by CPL is that the the relation defined by the coalgebra map is incorporated
into the game. The point is that local isomorphisms only look at atomic formulas. In
CPL, modality formulas are not atomic so we need an extra move to unpack them. In
other words, the fact that formulas like x♢⌈y : y = z⌉ are not atomic, forces us to do two
things, on both sides of the adequacy theorem: (1) we need to view it as a formula with
depth 1 and (2) we need to make sure there is a way to unpack the depth to the subformula
y = z by adding the ♢-move.

In a classical version, the atomic formula which would make the partial isomorphism
fail is some relation R that describes the relation defined by the arrows in the figure above.
So the game would only last 3 rounds. This is because the translation of a formula of the
form x♢⌈y : y = z⌉ only involves some relation R (and no modal operators or quantifiers),
which makes it an atomic formula.

Neighbourhood Logic Recall that we have T = QQ and Λ = {□}. For a □-move on
a model A, we look at the following set:

A□(a) = {X ⊆ A | α(a) ∈ [|□|]A(X)} = {X | X ∈ α(a) } = α(a)

31

So in the game the players pick a neighbourhood of a. The second step of the □-move
is picking an element in the neighbourhood that your opponent picked.

Note that the neighbourhood modality for QQ is not usually assumed to be monotone.
However, we need monotonicity for the game to be worked.

Graded Modal Logics Recall that T = B and the set of predicate liftings {⟨k⟩ | k ≥
0}. So there is a ⟨k⟩-move for every k ≥ 0. Given a B-model A, we have

A⟨k⟩(a) = {X ⊆ A | α(s) ∈ [|⟨k⟩|]A(X)} = {X ⊆ A | α(a)[X] > k}

So players choose from the collection of sub-domains on which α(a) has an outcome bigger
than k.

Now consider the model A0 with A = {a, b} and the model A1 with A1 = {c, d} with
coalgebraic structures defined in the following intuitive picture (which does not depict it
coalgebraically). To read the picture, we e.g. have α(a)(b) = 3.

A0 a b A1 c d

3
3

3

3 3
3

4

4

If we were to play a game with these models, Spoiler may notice that A1 has an element
with total ‘successor-weight’ more than 6 (element d), while A0 does not. Consider the
formula

∃xx⟨6⟩⌈y : y = y⌉. (26)

We use the tautology y = y just to get the whole domain of the model, so to get the total
‘successor-weight’ of x, which should then be higher than 6. Now the 2-round game goes
as follows:

Move 1 An ∃-move. Spoiler picks d ∈ A1, Duplicator reacts, without loss of generality, with
a ∈ S0

Move 2 A ⟨6⟩-move. Spoiler picks {c, d} ∈ A⟨6⟩
1 (d). Duplicator has to pick some X ∈ A⟨6⟩

0 (a)
but there is no possibility since α(a)[A0] = 6.

Duplicator automatically loses the game since there is no possible move. We can see that
in general, if Spoiler wants to show that x⟨k⟩⌈y : φ⌉ is true in Ai and not in A1−i, she may
pick [|φ|] ⊆ Ai.

Remark 5.7. For an arbitary set-functor T it is a bit more difficult to determine how the
game will be played but it makes sense for e.g. Spoiler to pick [|φ|] in one of the models if
they suspect that a formula of the form x♡⌈y : φ⌉ is only true in that model, as it made
explicit in the adequacy proof above.

32

5.4 About Non-unary Modalities

In the above, we assumed all the predicate liftings in our similarity type to be unary. Of
course, one could also generalise CPL-moves to liftings with arbitrary finite arity. The
game itself as well as the proof would then become a bit more complex. We take a brief
look at how to generalise definition 5.2 and how that would change the game.

Let us first consider nullary predicate liftings. The set A♡(a) is based on the fact that
♡A takes subsets of A as arguments but in the case that ♡ is nullary, each subset of A
would give the same subset. So a CPL-move for nullary predicate liftings would just give
the players a chance to first each select a subset of the respective domains and then an
element out of the sets that the other picked. Players would probably not use this, since
they can also just employ the ∃-move.

Now for the general case, with arity n ≥ 2, the first change is that in definition 5.2 we
would get a collection of n-tuples of subsets, for an n-ary modality.

Definition 5.8. Fix a T -coalgebra A = (A,α), an element a ∈ A and an n-ary predicate
lifting ♡ ∈ Λ, for n ∈ ω. We set

A♡(a) := {(X1, .., Xn) |Xi ⊆ A, for i ≤ n and α(a) ∈ [|♡|]A(X1, .., Xn)}.

Extending this generalisation, a ♡-move would consists of Spoiler and Duplicator first
both picking tuples of subsets and consequently tuples of elements in each other’s subsets.
To account for this in the adequacy proof, one would have to generalise the statement
of the adequacy theorem in way that respects the fact that each move might extend the
configuration with more than 1 element. This change would also influence the number of
free variables in the formulas in the statement, which would be dependent on what kind of
moves are used throughout. This could of course get quite technical but is a good challenge
for further research.

Something else that might be done differently is our approach towards the depth of
CPL-formulas. We treated the quantifiers and modal operators the same way but it is of
course possible to separate the two. This would likely give an adequacy statement that is
also able to say something about the number of ∃-moves and CPL-moves used throughout
a match, instead of just the total number of moves. This is also something we leave open
for further research.

In the next chapter, we start really implementing the definitions and results of chapter
4.

33

6 Directed Systems & Semantic Interpolation in

CPL

In this chapter we look at an approach towards proving the Craig Interpolation Property
(CIP) for certain versions of CPL via model theoretic methods. We do not state that
we prove it because the construction includes a rather big assumption which might make
one see this chapter as a description of why the approach does not work. In section 6.1
we introduce directed systems of CPL-models and the construction of their colimit. In
section 6.1.1 we describe a major problem with this construction by giving a necessary
assumption, which we work with in the rest of the chapter: in section 6.2 we prove some
build-up lemmas and in section 6.3 we use the construction of a directed system to prove
Robinson’s consistency theorem for CPL, with which we show the interpolation theorem.
The proofs of both Robinson’s consistency and the CIP rely in multiple occasions on
compactness, so we are only looking at specific instances of CPL.

6.1 Directed Systems

For the rest of this section, fix a set-functor T and a CPL-language (Λ,Σ,Γ).
Let (Ak)k∈K be a set of CPL(Λ,Σ,Γ)-models, indexed by a directed partial order

K21, where each Ak = (Ak, αk, Ik). Additionally, for any k ≤ l, let there be a strong
CPL(Λ,Σ,Γ)-morphism (recall definition 4.1) fkl : Ak → Al where:

• the fkk are identities

• flm ◦ fkl = fkm for all m ≥ l ≥ k

We call (Ak)k∈K , together with the strong CPL-morphisms fkl, a directed system.
Given a directed system we want to define a colimit, together with strong CPL-

morphisms from each model in the system to said colimit. The rest of this section describes
how to do this and proves that it works. We first focus on the first-order part, defining the
domain and first-order interpretation of the colimit and proving some basic propositions.
After that, we will shift focus to the coalgebra structure of the colimit. The objective is
then to show that there is a coalgebra map α : A→ TA that has certain properties. With
the existence of such a coalgebra map we will then be able to prove the main theorem of
this section, Theorem 6.15.

For the rest of the section, fix a directed system (Ak)k∈K of CPL(Λ,Σ,Γ)-models, so
that we can show that a colimit A = (A,α, I) exists. Put A =

⊔
k∈K Ak/∼, where

(k, a) ∼ (l, b) ⇔ there is some m ≥ k, l such that fkm(a) = flm(b). (27)

21That is, for all k, l ∈ K, there is some m ∈ K such that m ≥ k, l.

34

The carrier set A thus consists of equivalence classes [k, a]. Define maps fk : Ak → A by
putting

fk : a 7→ [k, a]. (28)

Proposition 6.1. For all k, l ∈ K, we have fl ◦ fkl = fk.

Proof. Take any k, l ∈ K and some a ∈ Ak. Then

fl
(
fkl(a)

)
= [l, fkl(a)] and fk(a) = [k, a].

Furthermore, we have l ≥ l, k and fll
(
fkl(a)

)
= fkl(a). So [l, fkl(a)] ∼ [k, a], which implies

fl ◦ fkl = fk.

For the definition of I, take some P ∈ Σ, where P is n−ary, and let

([k1, a1], .., [kn, an]) ∈ I(P) ⇔ there is some l ≥ k1, .., kn

such that
(
fk1l(a1), .., fknl(an)

)
∈ Il(P). (29)

For each c ∈ Γ, we let
cA = [k0, c

Ak0] for some k0 ∈ K. (30)

By directedness of K it should be clear that I is well-defined.

Proposition 6.2. All fk are strong CPL(Λ,Σ,Γ)-morphisms.

Proof. Take some k ∈ K. First, we have

(a1, .., an) ∈ Ik(P) ⇔
(
fk(a1), .., fk(an)

)
∈ I(P)

for all a1, .., an ∈ Ak and all P ∈ Σ. To see this, take arbitary a1, .., an ∈ Ak and some
n-ary P ∈ Σ. For the first direction, we have

(a1, .., an) ∈ Ik(P) ⇒
(
fkk(a1), .., fkk(an)

)
∈ Ik(P) (fkk is the identity)

⇒
(
[k, a1], .., [k, an]

)
∈ I(P) (k ≥ k and definition (29))

⇒
(
fk(a1), .., fk(an)

)
∈ I(P) (definition of fk)

For the other direction, we have(
fk(a1), .., fk(an)

)
⇒

(
[k, a1], .., [k, an]

)
∈ I(P) (definition of fk)

⇒
(
fkl(a1), .., fkl(an)

)
∈ Il(P) for some l ≥ k (definition (29))

⇒ (a1, .., an) ∈ Ik(P) (fkl is a str. CPL-morph.)

Second, we have fk(c
Ak) = cA for all c ∈ Γ. Take arbitrary c ∈ Γ. Recall that cA =

[k0, c
Ak0] for some k0 ∈ K. By directedness there is some k′ ≥ k0, k. We have

fk(c
Ak) = fk′(fkk′(c

Ak) = fk′(c
Ak′) = [k′, cAk′]

35

and
cA = [k0, c

Ak0] = [k′, fk0k′(c
Ak0)] = [k′, cAk′]

so fk(c
Ak) = cA.

Proposition 6.3. If all fkl are injective, then so are all fk.

Proof. Take an arbitrary k ∈ K and arbitary a, b ∈ Ak. Assume a ̸= b. It is to show that
fk(a) ̸= fk(b), i.e. [k, a] ̸∼ [k, b]. Assume towards a contradiction that [k, a] ∼ [k, b]. Then
there is some l ≥ k such that fkl(a) = fkl(b). By the assumed injectivity of fkl, we get
a = b. Contradiction so [k, a] ̸∼ [k, b]; fk is injective.

Note that the above two Propositions in no way depend on the coalgebra map α : A→
TA. So A need not be fully known to know that all fk are CPL-embeddings.

Corollary 6.4. If all fkl are CPL(Λ,Σ,Γ)-embeddings, then so are all fk.

This concludes the first-order part of the colimit. Before we turn to showing the
existence of a suitable coalgebra map α : A → TA, we want to take a short detour to
appreciate how natural taking the colimit of a directed system of coalgebras is if all fkl are
coalgebra morphisms. Consider A as a category theoretical colimit in Set of the category
(Ak)k∈K ; we can show the universality of the colimit.

Proposition 6.5. For any set B with functions gk : Ak → B such that gl ◦ fkl = gk for
every k, l ∈ K with k ≤ l, there is a unique map g : A→ B such that g ◦ fk = gk for every
k ∈ K.

Proof. We explicitly define g : A→ B. Take some [k, a] ∈ A. Set

g : [k, a] 7→ gk(a). (31)

Let us briefly check that g is well defined. Take [k, a] ∈ A and assume (l, b) ∼ (k, a). Then
there is some m ≥ k, l such that fkm(a) = flm(b). By the assumption on the commutation
of gk with the fkl we thus have

gk(a) = gm(fkl(a)) = gm(flm(b)) = gl(b).

To see that (31) works a definition, take any a ∈ Ak. We have g
(
fk(a)

)
= g([k, a]) = gk(a),

as desired. For uniqueness of g, assume there is a g′ : A→ B such that g′ ◦ fk = gk for all
k ∈ K. If g′ ̸= g then there is some [k, a] ∈ A such that g′([k, a]) ̸= g([k, a]). Now take
a ∈ Ak itself. We assumed g′

(
fk(a)

)
= gk(a). But g

′(fk(a)) = g′([k, a]) = gk(a) = g([k, a]).
Contradiction so we must have g′ = g.

36

It is not hard to show that if all the gk : Ak → B in Proposition 6.5 are CPL(Λ,Σ,Γ)-
embeddings, then so is the map g : A→ B.

If we assume all fkl to be coalgebra morphisms, we get the coalgebra map α : A→ TA for
free by universality. Continuing in categorical terms, we know that TA is the colimit of
(TAk)k∈K , with maps Tfk : TAk → TA. This is because the category Sets is co-complete
and any set-functor preserves colimits.

Proposition 6.6. If all fkl are coalgebra morphisms, then so are all fk.

Proof. We start by using Proposition 6.5. In the case of B = TA, we have maps

Tfk ◦ αk : Ak → TSk (32)

Furthermore, we also have
(Tfl ◦ αl) ◦ fkl = Tfk ◦ αk. (33)

To see this, we employ the assumption that all fkl are coalgebra morphisms. We have

Tfl ◦ αl ◦ fkl = Tfl ◦ Tfkl ◦ αk
= T (fl ◦ fkl) ◦ αk
= Tfk ◦ αk

By Proposition 6.5 there is a unique map α : A→ TA such that α◦fk = Tfk ◦αk for every
k ∈ K. This is precisely the condition for fk to be a coalgebra morphism.

Ak

Al

TAk

TAl

A TA
α

fkl Tfkl

αk

αl

fk

fl

Tfk

Tfl

37

However trivial the above construction of α, we cannot assume that all fkl are in fact
coalgebra morphisms. Without that assumption, showing that there is a coalgebra map
α : A → TA that makes all fk elementary CPL-embeddings is based on the intuitive idea
to set α([k, a]) = Tfk(αk(a)) for each [k, a] ∈ A. The problem is that this does not give a
well-defined unique function. It is thus important to show that the successor α(e) of some
e ∈ A is independent of the choice of representative of e.

Working towards this solution we once again turn to Chang [4] for inspiration, which will
show us that the intuitive idea described above can be achieved in a somewhat roundabout
way. Chang [4] describes defining the successor-structure of the colimit of a co-chain of
neighbourhood structures by continuously imposing the (conservative) Chang-condition.
We will here use the same idea but in a more general setting, although restricted to the
conservative weak Chang-condition. Throughout the proof we will work with formulas
instead of explicitly using the definition of a weak Chang-morphism. This approach more
or less means that we impose the truth of modal formulas on the colimit. To be able to do
this, we will from here on assume that our directed system is elementary and we restrict
Λ somewhat.

Assumption 6.7. All fkl are elementary CPL(Λ,Σ,Γ)-embeddings.

Assumption 6.8. All ♡ ∈ Λ are both unary22 and monotone.

Recall that the goal is to show that there is a coalgebra map α : A→ TA on the carrier
set of the colimit so that the maps fk : Ak → A are elementary CPL-embeddings. As the
proof thereof goes by induction, we basically want the following: if a modal formula is true
of some tuple of elements in a certain model in the directed system then the same modal
formula is true of the image of that tuple in the colimit A. To do this, we work with a
set of conditions that a suitable α : A → TA should meet. To formulate these conditions,
consider the following example of a single condition, where we for a moment zoom in on
neighbourhood models.

Example 6.9. Let (Ak)k∈K be a directed system of monotone neighbourhood models (T =
M) and let (Λ,Σ,Γ) = ({□}, {P}, ∅), where P is unary. Assume there is some model Ak,
for k ∈ K, with some element a ∈ Ak such that

Ak |= a□
⌈
y : y□⌈z : P (z)⌉

⌉
. (34)

Naturally we want that
A |= [k, a]□

⌈
y : y□⌈z : P (z)⌉

⌉
.

However, [|y□⌈z : P (z)⌉|]yA depends on α : A→ TA, which is by this point not yet defined.
Now since we know that all fkk′ are elementary CPL-embeddings we do know that

Ak′ |= fkk′(a)□
⌈
y : y□⌈z : P (z)⌉

⌉
for all k′ ≥ k. (35)

22This is just for convenience.

38

Using the semantics for □, statement (35) translates to

αk′(fkk′(a)) ∈ [|□|]Ak′

(
[|y□⌈z : P (z)⌉|]yAk′

)
for all k′ ≥ k.

The induction in the main theorem will prove that all fk′ are elementary CPL-embeddings
so we define the following subset of the domain A of the colimit.

D :=
⋃
k′≥k

fk′ [|y□⌈z : P (z)⌉|]yAk′

We then want that α meets the condition that

α([k, a]) ∈ [|□|]A(D). (36)

This is because in the induction we will be able to show that
(∗) D ⊆ [|y□⌈z : P (z)⌉|]yA. If we have (36) then by monotonicity of □ applied to (∗) we
get

α([k, a]) ∈ [|□|]A([|y□⌈z : P (z)⌉|]yA) so that A |= [k, a]□y :
⌈
□⌈z : P (z)⌉

⌉
,

as desired.

Before we give the formal definitions, let us also illustrate how formulating a condition
works in general, going through the steps in the example a bit quicker. We thus turn back
to our arbitray directed system (Ak)k∈K of CPL(Λ,Σ,Γ)-models. Fix k ∈ K, a ∈ Ak,
♡ ∈ Λ, φ(x⃗, y) ∈ CPL(Λ,Σ,Γ) and a tuple a⃗ = a1, .., an from Ak such that

Ak |= a♡⌈y : φ(⃗a, y)⌉, i.e. αk(a) ∈ [|♡|]Ak
([|φ(⃗a, y)|]yAk

).

Then we ultimately want that

α([k, a]) ∈ [|♡|]A([|φ(fk (⃗a), y)|]yA) so that A |= [k, a]♡⌈y : φ(fk (⃗a), y)⌉. (37)

Note that we explicitly differentiate y from the other variables to stress that it is the
comprehension variable for ♡. However, (37) cannot be achieved directly since the meaning
of φ(fk (⃗a), y) in A may depend on α. To overcome this circularity, we consider the set

D :=
⋃
k′≥k

fk′
[
[|φ(fkk′ (⃗a), y)|]yAk′

]
, (38)

Note that D is dependent on k, a,♡, φ(x⃗, y) and a⃗. The condition is then that

α([k, a]) ∈ [|♡|]A(D) (39)

Through the induction we will later show that D ⊆ [|φ(fk (⃗a), y)|]yA. Then, similar to the
example above, with (39) and monotonicity of ♡ we will get (37). Central in the condition
is the set in (38); this inspires the following definition.

39

Definition 6.10. Given k ∈ K, a ∈ Ak, n-ary ♡ ∈ Λ, a formula φ = φ(x1, .., xn, y) ∈
CPL(Λ,Σ,Γ)-formula and a tuple a⃗ = a1, .., an from Ak, such that

αk(a) ∈ ♡Ak
([|φ(a1, .., an, y)|]yAk

),

we define the set

Dk,a,♡,φ,⃗a :=
⋃
k′≥k

fk′
[
[|φ(fkk′(a1), .., fkk′(an), y)|]yAk′

]
.

Letting k, a,♡, φ and a⃗ vary, we also define the following sets:

Dk,a := {Dk,a,♡,φ,⃗a | ♡ ∈ Λ, φ ∈ CPL(Λ,Σ,Γ), a⃗ ∈ Ak}

Dk :=
⋃
a∈Ak

Dk,a

D :=
⋃
k∈K

Dk

Note that the definitions above build on the fact that we are working with a fixed
directed system throughout the section. For arbitrary directed systems, one might add an
extra index, e.g. DK , which we will only use once below (in Lemma 6.20). Also note that
the index a in Dk,a,♡,φ,⃗a refers to the condition connected to it: we say that the condition
based on the set Dk,a,φ,⃗a is the following statement:

α([k, a]) ∈ [|♡|]A(Dk,a,φ,⃗a)

Of course, one could also formulate more general conditions such as α([k, a]) ∈ [|♡|](D) for
arbitrary D ⊆ A but we are only interested in the satisfaction of formulas.

Now that we know what kind of properties we want α : A→ TA to have, we can start
looking for solutions.

Proposition 6.11. Fix k ∈ K and a ∈ Ak. If α ∈ TA is of the form Tfk′(αl(fkk′(a)))
where k′ ≥ k then

α ∈ [|♡|]A(Dk,a,♡,φ,⃗a)

for all Dk,a,♡,φ,⃗a ∈ Dk,a.

Proof. Take any Dk,a,♡,φ,⃗a ∈ Dk,a; recall that we have

Dk,a,♡,φ,⃗a =
⋃
k′≥k

fk′
[
[|φ(fkk′(a1), .., fkk′(an), y)|]yAk′

]
.

40

for some ♡, some φ(x⃗, y) and some a⃗ ∈ Ak. Now by the definition of Dk,a,♡,φ,⃗a we have

αk(a) ∈ [|♡|]Ak
([|φ(⃗a, y)|]yAk

⇒ Ak |= a♡⌈y : φ(⃗a, y)⌉ (definition)

⇒ Ak′ |= fkk′(a)♡⌈y : φ(fkk′ (⃗a), y)⌉ (fkk′ is an el. CPL-emb.)

⇒ αk′(fkk′(a)) ∈ [|♡|]Ak′ ([|φ(fkk′ (⃗a), y)|]
y
Ak′

) (definition)

We thus have (∗) αk′(fkk′(a)) ∈ [|♡|]Ak′ ([|φ(fkk′ a⃗), y)|]
y
Ak′

). Now consider the following
two sets:

[|♡|]Ak′

(
Qfk′(Dk,a,♡,φ,⃗a)

)
= [|♡|]Ak′

(
{b′ ∈ Ak′ | fk′(b′) ∈ Dk,a,♡,φ,⃗a}

)
and

QTfk′
(
♡A(Dk,a,♡,φ,⃗a)

)
= {αk′ ∈ TAk′ | Tfk′(αk′) ∈ ♡[|A|](Dk,a,♡,φ,⃗a)}

By monotonicity and (∗) we have αk′(fkk′(a)) ∈ [|♡|]Ak′

(
Qfk′(Dk,a,♡,φ,⃗a)

)
. Then we can

use the naturality of ♡ with respect to fl:

[|♡|]Ak′

(
Qfk′(Dk,a,♡,φ,⃗a)

)
= {αk′ ∈ TAk′ | Tfk′(αk′) ∈ [|♡|]A(Dk,a,♡,φ,⃗a)} (40)

We thus have that Tfk′(αk′(fkk′(a))) ∈ [|♡|]A(Dk,a,♡,φ,⃗a). This was to show.

Now we know the form of ‘solutions’ α ∈ TA that meet specific conditions based on the
elements of Dk,a for a fixed element [k, a] ∈ A. Next, we need to show that these solutions
are independent of the representative of [k, a], i.e. that they are also solutions of Dl,b with
(l, b) ∼ (k, a). Then, we can assemble a full map α : A → TA. It is very important to
stress that the map α : A → TA ‘generated’ by the collection D does in general not have
to be unique. We just need there to be at least one map that ‘solves all our problems’ so
that the induction in the main theorem can work.

However, there is a problem. The above proposition suggests that the problems in a
given model in the system can be solved by successor-states in any following model. But
what about the problems in those ‘later’ models in the system? Those might make use
of parameters that have not occurred before, making it impossible to translate them as
problems in any foregoing model. Since this is quite important, let us be a bit more specific.
Say that we have a directed system indexed by K, where K is just a chain, and that A
is the carrier set of its supposed colimit. We want to show that there is a coalgebra map
α : A → TA and we consider the successor of some [k, a] ∈ A. Suppose that we set, just
like the proposition above suggests α([k, a]) = Tfk′(αk′(fkk′(a))) for some k′ ≥ k. Now we
know by the proposition that this choice of α([k, a]) ‘fixes’ all the problems of all models
that come before Ak′ , including A′

k. But what about the problems of models after Ak′?
For the theorem that we want to proof, we want to include all elements in models after Ak′

as well. The problem is - we stress it again - that these may not have representatives in
Ak′ . So, without any further assumptions, it is not even possible to show that a suitable
coalgebra map exists for the colimit of a chain.

41

To make up for this shortcoming, we look at a kind of directed compactness where we
want to jump from having a ‘solution’ in TA for finitely many representatives of an element
of the carrier set of the colimit to having a solution for all representatives of an equivalence
class. We will describe this in the next section.

6.1.1 Directed Compactness

To fix the problem of the parameters described above, we need an assumption of the
following form.

Assumption 6.12 (Directed Compactness). Let e ∈ A. Assume that for any finite number
(n ∈ ω) of representatives (k1, a1), .., (kn, an) of e there is an element αfin(e) ∈ TA such
that

αfin(e) ∈ ♡A(Dki,ai,♡,φ,⃗a)

for 1 ≤ i ≤ n and for all ♡ ∈ Λ, φ = φ(x⃗, y) ∈ CPL(Λ,Σ,Γ) and a⃗ ∈ Aki. Then there is
an element α(e) ∈ TA such that

α(e) ∈ ♡A(Dk,a,♡,φ,⃗a)

for all (k, a) ∼ e and all ♡ ∈ Λ, φ = φ(x⃗, y) ∈ CPL(Λ,Σ,Γ) and a⃗ ∈ Ak.

It should be clear that the antecedent of the implication that forms this assumption
can be quite straightforwardly shown to hold using directedness. The question remains if
we can account for/ work with the assumption in some form or other by for example one
of the following:

1. Characterise assumption 6.12 in terms of T , or even Λ.

2. Prove that assumption 6.12 holds anyway.

3. Each time some form of directed system is needed, prove that assumption 6.12 holds
for that specific directed system (for example systems of finite width or directed
systems of the form needed to show Robinson’s consistency theorem for CPL).

The last option seems the most feasible candidate out of these three but even for chains
we cannot seem to find a proof (yet), due to the problem described in the previous section.
Maybe, given some [k, a], there is some kind of limit of the set

{Tfk′(αk′(fk′(b)))) | k′ ≥ l}.

There may also be some ways to lighten the assumption a little bit. If we just have it for
chains (directed system of width 1) then we might show it for directed systems of arbitary
finite width.

42

For a given directed set, you would have to identify the different (interconnected)
chains that form the set and then for each equivalence class collect representatives from
each chain so that by directedness we can find a model ‘above’ them all and base the
coalgebra successor on this element.

If it is not possible to prove the assumption or show that it holds for systems of finite
width, we need to somehow incorporate it in the statement of the Robinson’s Consistency
theorem as well as the interpolation theorem. So the version of CPL as a whole (not the
functor or the set Λ) needs to have the ’Directed Compactness’ property. In a negative
perspective, the assumption then boils down to the statement ’colimits work for this CPL-
instance’. In the rest of the chapter, we will work with the assumption 6.12, which implies
that there is a suitable coalgebra map for the colimit of a directed system of CPL-models.
Since the assumption itself is quite detailed we will therefore just say that we assume that
‘colimits work’ for CPL, assuming the following:

Assumption 6.13. For each [k, a] ∈ A there is an element α ∈ TA of the form Tfk′(αl(fkk′(a)))
such that

α ∈ ♡A(Dl,b,♡,φ,⃗b)

for all (l, b) ∼ (k, a) and all ♡ ∈ Λ, φ = φ(x⃗, y) ∈ CPL(Λ,Σ,Γ) and b⃗ ∈ Al.

This will make the rest of the chapter easier to read.

6.1.2 Main Theorem

Now that we know that our colimit has a coalgebra map with the properties we want, we
can prove that the fk are elementary CPL(Λ,Σ,Γ)-embeddings.

For the quantifier case, we need a short lemma.

Lemma 6.14. For any k, l ∈ K with k ≤ l and any a ∈ Ak there is some b ∈ Al such that
(k, a) ∼ (l, b).

Consider b = fkl(a). We have l ≥ k, l and fll(fkl(a)) = fkl(a) so by definiton (k, a) ∼
(l, fkl(a)).

Theorem 6.15. Assume that 6.13 holds. If all fkl are elementary CPL(Λ,Σ,Γ)-embeddings,
then so are all fk.

Proof. It is to show that for all k ∈ K we have

Ak |= φ(a1, .., an) ⇔ A |= φ(fk(a1), .., fk(an)) (41)

for all a⃗ = a1, .., an ∈ Ak and all CPL(Λ,Σ,Γ)-formulas φ = φ(x1, .., xn). The proof goes
by induction on the structure of φ. In Corollary 6.4 we established that, no matter the
nature of α : A → TA, all fk are CPL-embeddings. By triviality of the Boolean cases, we
here only cover the modality and the quantifier case.

43

Modality Case Consider ψ = x♡⌈y : φ(x1, .., xn, y)⌉ for some ♡ ∈ Λ and some φ =
φ(x1, .., xn, y). We prove both directions of (41) for ψ and arbitrary Ak and arbitrary
a, a1, .., an ∈ Ak.

Left to right AssumeAk |= a♡⌈y : φ(a1, .., an, y)⌉. Then αk(a) ∈ ♡Ak
([|φ(⃗a, y)|]yAk

).
Now consider

Dk,a,♡,φ,⃗a =
⋃
k′≥k

fk′
[
[|φ(fkk′(a1), .., fkk′(an), y)|]yAk′

]
.

By assumption 6.13 we have a coalgebra map α such that (∗) α([k, a]) ∈ ♡A(Dk,a,♡,φ,⃗a).
Now the inductive hypothesis for Ak′ , with k

′ ≥ k, φ(x⃗, y) and fkn(⃗a) yields

d ∈ [|φ(fkk′(a1), .., fkk′(an), y)|]yAk′
⇔ fk′(d) ∈ [|φ([k, a1], .., [k, an], y)|]yA. (42)

Notice here that we used the fact that fk′ ◦ fkk′ = fk. We thus have

Dk,a,♡,φ,⃗a ⊆ [|φ([k, a1], .., [k, an], y)|]yA (43)

To see this, let d ∈ Dk,a,♡,φ,⃗a. Then d ∼ (k′, a′) for some k′ ≥ k and some a′ ∈ Ak′

such that a′ ∈ [|φ(fkk′(a1), .., fkk′(an), y)|]yAk′
. Then by (42) we have fk′(a

′) = d ∈
[|φ([k, a1, .., [k, an], y])|]yA. This finishes the proof of (43). Now by (∗), monotonicity of
♡ and (43) we have

α([k, a]) ∈ ♡A([|φ([k, a1], .., [k, an], y)|]yA), which gives A |= [k, a]♡⌈y : φ([k, a1], ..[k, an], y)⌉.

This concludes the first direction.

Right to left Assume A |= [k, a]♡⌈y : φ(y, [k, a1], .., [k, an])⌉. By assumption 6.13
we know that α([k, a]) = Tfl(αl(b)) for some (l, b) ∼ (k, a). So we have

Tfl(αl(b)) ∈ ♡A([|φ([k, a1], .., [k, an], y)|]yA).

Now notice that for φ(x⃗, y), Al and a1, .., an the inductive hypothesis gives

b ∈ [|φ(fkl(a1), .., fkl(an), y)|]yAl
⇔ fl(b) ∈ [|φ([k, a1], .., [k, an], y)|]yA. (44)

Then by the right-to-left part of (44) we have

Q(fl
[
[|φ([k, a1], .., [k, an], y)|]yA

]
) ⊆ [|φ(fkl(a1), .., fkl(an), y)|]yAl

. (45)

Furthermore, we have

QTfl
(
♡A([|φ([k, a1], .., [k, an], y)|]yA))

)
=

{αl ∈ TAl | Tfl(αl) ∈ ♡A([|φ([k, a1], .., [k, an], y)|]yA)}. (46)

44

It is clear that αl(b) is part of the set in (46). Now by naturality of ♡ with respect to fl
we know that

♡Al

(
Q(fl

[
[|φ([k, a1], .., [k, an], y)|]yA

]
)
)
=

QTfl
(
♡A([|φ([k, a1], .., [k, an], y)|]yA))

)
. (47)

By the observation that αl(b) is an element of the set on the right-hand side, it must also
be an element of the left-hand-side. This fact, together with monotonicity of ♡ and (45)
gives

αl(b) ∈ ♡Al
([|φ(fkl(a1), .., fkl(an), y)|]yAl

)

So then Al |= b♡⌈y : φ(fkl(a1), .., fkl(an), y)⌉. Recall that (l, b) ∼ (k, a). So there is
some m ≥ k, l such that fkm(a) = flm(b). And by assumption, flm and fkm are elemen-
tary CPL(Λ,Σ,Γ)-embeddings. So we have Am |= flm(b)♡⌈y : φ(fkm(a1), .., fkm(an), y)⌉,
remembering that fkm ◦ fkl = flm. We then get Ak |= a♡⌈y : φ(a1, .., an, y)⌉, as desired.

Quantifier Case This case is the same as for colimits in FOL model theory. Take
φ := ∃xψ(x, x⃗) and for the first direction assume Ak |= ∃xψ(x, a⃗) for any Mk, some
a⃗ ∈ Ak. Then there is some a ∈ Ak such that Ak |= ψ(a, a⃗). By the inductive hypothesis
we have A |= ψ

(
fk(a), fk [⃗a]

)
which gives A |= ∃xψ(x, fk [⃗a]).

For the other direction, assume (⋆)A |= ∃xψ(x, [k, a1], .., [k, an]) for some a1, .., an ∈ Ak.
It is to show that Ak |= ∃ψ(x, a1, .., an). By (⋆), there is some [k′, a′] ∈ A such that
A |= ψ([k′, a′], [k, a1], .., [k, an]). By directedness we have k′′ such that k, k′ ≤ k′′.

Then by lemma 6.14 there are b, b1, .., bn ∈ Ak′′ such that (k′, a′) ∼ (k′′, b) and (k, ai) ∼
(k′′, bi) for i ≤ n. So we have A |= ψ([k′′, b], [k′′, b1], .., [k

′′, bn]). By the inductive hypothesis
for Ak′′ we then have Ak′′ |= ψ(b, b1, .., bn) so Ak′′ |= ∃xψ(x, b1, .., bn). Now recall that
Lemma 6.14 gave us bi = fkk′′(ai) and that fkk′′ is an elementary CPL-embedding. We thus
have Ak |= ∃xψ(x, a1, .., an), which was to show.

Lemma 6.16. Let (Ak)k∈K be a directed system of CPL(Λ,Σ,Γ)-models and let A =
(A,α, I) be its colimit. If there is a ‘competing’ colimit B = (B, β, J) then there is an
elementary CPL(Λ,Σ,Γ)-embedding g : A→ B.

Proof. Let g be the map as defined in Proposition 6.5. So g([k, a]) = gk(a). We know by
assumption that each gk is an elementary CPL(Λ,Σ,Γ)-embedding. First, we have

A |= φ([k1, a1], .., [kn, an]) ⇔
there is some k ≥ k1, .., kn and A |= φ([k, fk1k(a1)], .., [k, fknk(an)])

45

We thus get

A |= φ([k1, a1], .., [kn, an]) ⇔ A |= φ([k, fk1k(a1)], .., [k, fknk(an)])

⇔ Ak |= φ(fk1k(a1), .., fknk(an))

⇔ B |= φ(gk(fk1k(a1)), .., gk(fknk(an)))

⇔ B |= φ(gk1(a1), .., gkn(a=n))

⇔ B |= φ(g([k1, a1]), .., g([kn, an]))

We conclude that g is an elementary CPL(Λ,Σ,Γ)-embedding.

6.2 Build-up Lemmas

We are now at a point where we can and will use the Coalgebraic Diagram ElCoDiag
defined in chapter 4. This section gives the three lemmas that we will use in the proof for
Robinson’s consistency. This is also the place to stress again that from here on we rely
heavily on compactness.

Assumption 6.17. The Λ-structure (T,Λ) has compactness.

This means that any logic CPL(Λ,Σ,Γ) arising from the Λ-structure (T,Λ) is compact.
Recall from chapter 3 that only the bounded structures satisfy compactness.

Lemma 6.18. Let (Λ0,Σ0,Γ0) ⊆ (Λ1,Σ1,Γ1) and let S0 = (S0, σ0, I0) and S1 = (S1, σ1, I1)
be a CPL(Λ0,Σ0,Γ0)-model and a CPL(Λ1,Σ1,Γ1)-model respectively. If S0 ≡(Σ0,Λ0,Γ0)

S1, then there is some CPL(Λ1,Σ1,Γ1)-model S with f0 : S0 → S and f1 : S1 → S a
CPL(Λ0,Σ0,Γ0)-embedding and a CPL(Λ1,Σ1,Γ1)-embedding respectively23.

S0 S S1

f0 f1

Proof. We use the method of CoDiagrams to show this. Assume that S0 ≡(Σ0,Λ0,Γ0) S1. If
we can show that

T := ElCoDiag(Λ0,Σ0,Γ0)(S0) ∪ ElCoDiag(Λ1,Σ1,Γ1)(S1)

is consistent, then we know that there is a CPL(Λ1,Σ1,Γ1)-model S as described above.
For a reductio, assume that T is inconsistent. By compactness and taking conjunctions,
we then get formulas

φ(c⃗a) ∈ ElCoDiag(Λ0,Σ0,Γ0)(S0) and ψ(c⃗b) ∈ ElCoDiag(Λ1,Σ1,Γ1)(S1)

23Note that we leave out the coalgebra structures in the diagram here.

46

that contradict. We have S1 |= ¬φ(⃗a). Now the constants c⃗a do not occur in φ(x⃗),
so by Proposition 3.3 we have S1 |= ∀x⃗¬φ(x⃗), which implies that S1 |= ¬∃x⃗φ(x⃗). By
S0 ≡(Σ0,Λ0,Γ0) S1 then S0 |= ¬∃x⃗φ(x⃗), which is a contradiction since S0 |= φ(⃗a). We
conclude that T is consistent so there is some model S, as desired.

Lemma 6.19. Let (Λ0,Σ0,Γ0) ⊆ (Λ1,Σ1,Γ1). Let A = (A,α, IA) and B = (B, β, IB) be
two CPL(Λ0,Σ0,Γ0)-models and let C = (C, γ, IC) be a CPL(Λ1,Σ1,Γ1)-model. If there
are elementary CPL(Λ0,Σ0,Γ0) embeddings f : A → B and g : A → C, then there is
a CPL(Λ1,Σ1,Γ1)-model D = (D, δ, ID) with an elementary CPL(Λ0,Σ0,Γ0)-embedding
h : B → D and an elementary CPL(Λ1,Σ1,Γ1)-embedding k : C → D such that the
diagram below commutes.

A

B C

D

f g

h k

Proof. Both f and g are elementary so A ≡(Λ0,Σ0,Γ0) B and A ≡(Λ1,Σ1,Γ1) C. The latter also
means A ≡(Λ0,Σ0,Γ0) C and since ≡(Λ0,Σ0,Γ0) is an equivalence class, we have B ≡(Λ0,Σ0,Γ0) C.
By Lemma 6.18 we then get the desired D. To make sure that h ◦ f = k ◦ g, we may add
constants ca for each a ∈ A. Take some a ∈ A. Then

h(f(a)) = h(f(cAa)) = h(cBa) = cDa = k(cCa) = k(g(cAa)) = k(g(a))

since all maps are in particular strong CPL-morphisms.

For the construction in the proof for Robinson’s consistency Theorem, we will need the
following lemma24. Here we will briefly add an extra index to the set D.

Lemma 6.20. Let (Ak)k∈K be a directed system of CPL(Λ,Σ,Γ)-models. If J ⊆ K is
cofinal in K then (Aj)j∈j and (Ak)k∈K have isomorphic colimits.

Proof. We focus on the coalgebra structure here. The important observation here is that
DJ ⊆ DK . Partially due to assumption 6.12 we know that there is a coalgebra map
α : A→ TA that meets all the conditions based on the elements of DK so that same map
α also meets all the conditions based on the elements of DJ . In short, we know that (Aj)j∈j
and (Ak)k∈K share a colimit.

24Will need a reference for part of this lemma.

47

6.3 Robinson’s Consistency & Interpolation

For any two languages (Λ,Σ,Γ) and (Λ′,Σ′,Γ′), let

(Λ,Σ,Γ) ∩ (Λ′,Σ′,Γ′) := (Λ ∩ Λ′,Σ ∩ Σ′,Γ ∩ Γ′). (48)

The respective proofs of the following two theorems are more or less the same as the proofs
for the same theorems for first-order logic. We want to stress yet again that we work under
the assumption that colimits work as described by assumption 6.13.

Theorem 6.21 (Robinson’s Consistency Theorem). Assume that we have 6.13. Let
(Λ0,Σ0,Γ0) and (Λ1,Σ1,Γ1) be two CPL-languages and set (Λ,Σ,Γ) := (Λ1,Σ1,Γ1) ∩
(Λ0,Σ0,Γ0). Let Ti be a CPL(Λi,Σi,Γi)-theory for i = 0, 1. Let T be a complete CPL(Λ,Σ,Γ)-
theory T0 and T1 both extend. If T0 and T1 are consistent, then so is T0 ∪ T1.

Proof. Assume T0, T1 are consistent. Then let A0 be a model for T0 and B0 a model
for T1. It is to show that T0 ∪ T1 has a model. We will do this by building a directed
system of CPL-models which as a colimit will have a model that models both T1 and T2.
We start by noticing that A0,B0 |= T and since T is complete A0 ≡(Λ,Σ,Γ) B0. Then
by Lemma 6.18 there is a CPL(Λ1,Σ1,Γ1)-model B1 with f0 : A0 → B1 an elementary
CPL(Λ,Σ,Γ)-embedding and h0 : B0 → B1 an elementary CPL(Λ1,Σ1,Γ1)-embedding.

A0

B0 B1

f0

h0

Now by applying Lemma 6.19 to f0 and the identity on A0, we get a CPL(Λ0,Σ0,Γ0)-
model A1 with k0 : A0 → A1 an elementary CPL(Λ0,Σ0,Γ0)-embedding and g0 : B1 → A1

a CPL(Λ,Σ,Γ)-embedding.

A0

B0 B1

A1

f0

h0

k0

g0

Notice that with the elementary CPL-embeddings f0 and k0 and the fact that ≡(Λ,Σ,Γ) is
an equivalence relation we have A1 ≡(Λ,Σ,Γ) B1. So we can, just as with A0 and B0 in the
beginning, apply Lemma 6.18. We continue by again applying Lemma 6.19 and after that
iterating the foregoing construction to get a full directed system.

48

A0

B0 B1

A1

B2

A2

. . .
f0

h0

k0

g0

k1

h1

f1
g1

An overview of the models and elementary CPL-embeddings (in what language they are):

• All Ai are CPL(Σ0,Λ0,Γ0)-models.

• All Bi are CPL(Σ1,Λ1,Γ1)-models.

• All fi and gi are elementary CPL(Σ,Λ,Γ)-embeddings.

• All ki are elementary CPL(Σ0,Λ0,Γ0)-embeddings.

• All hi are elementary CPL(Σ1,Λ1,Γ1)-embeddings.

Now notice that the index sets for the two separate chains consisting of all Ai and all Bi
are both cofinal in the index set of the whole system. So the colimit S of the system as a
whole is also a colimit of these two chains. We thus have S |= T1 ∪ T2.

For a formula φ ∈ CPL(Σ,Λ,Γ) let CPLφ be the language consisting of exactly the
symbols that occur in φ.

Theorem 6.22 (Craig Interpolation). Assume that we have 6.13. Let (Λ,Σ,Γ) be a
language and let φ,ψ ∈ CPL(Λ,Σ,Γ) be two sentences. Then there is a sentence θ ∈
CPLφ ∩ CPLψ - the interpolant - such that

φ |= θ and θ |= ψ.

The proof of this theorem relies heavily on compactness.

Proof. Set Tφ := {χ | χ ∈ CPLφ ∩ CPLψ and φ |= χ}. We claim that Tφ |= ψ:

• Suppose not. Then Tφ ∪ {¬ψ} is consistent and we have a model S |= Tφ ∪ {¬ψ}.
Take TS := Th(Λ,Σ,Γ)(S) (so Tφ ⊆ TS). Claim within claim: TS ∪ {φ} is consistent.

– If not, there is some χ ∈ TS such that φ |= ¬χ. Then ¬χ ∈ Tφ ⊆ TS .
Contradiction.

Still within the first claim, still assuming that Tφ ̸|= ψ, we have that TS is the theory
of a model so TS is complete. Furthermore, TS ∪ {¬ψ} and T ∪ {φ} are consistent.
Then by Theorem 6.21 above, we have that TS ∪{φ,¬ψ} is consistent, contradicting
the initial assumption that φ |= ψ. So we must have Tφ |= ψ.

49

By compactness, there are θ1, .., θn ∈ Tφ such that θ1, .., θn |= ψ. Set θ :=
∧
i≤n θi. Then θ

is the interpolant since we have θ |= ψ and we obviously have φ |= θ.

We conclude this chapter by stating that the assumption of directed compactness and
what it might depend on has to be explored further if one wishes to prove interpolation
using the approach that we have offered in this chapter. In the next chapter, we will take
a syntactic approach towards interpolation.

50

7 Proof Theoretic Interpolation

Switching to the proof theory side of things, this chapter does two things. First, it proves
interpolation for a specific instance of CPL: neighbourhood frames. Second, and maybe
more importantly, it sketches a road map for proving interpolation for arbitary instances
of CPL. Along the way, we employ Maehara’s method and set up some helpful definitions.

7.1 Set-up and Maehara’s Method

The approach towards interpolation is different from the one in the previous chapter so it
is good to remind us what interpolation is.

Definition 7.1. A logic L has interpolation if for any two L-sentences φ and ψ such that
φ |=L ψ there is a sentence θ such that φ |=L θ and θ |=L ψ and L(θ) ⊆ L(φ) ∩ L(ψ).

Here L(φ) denotes the set of symbols occurring in φ. Note that this definition is already
different from the notion of interpolation used in theorem 6.22 in the foregoing chapter.
The reason is that we want to be a bit more precise with the definition of L(φ) in our
syntactic description. And if we have a sound and complete proof system for a logic and
we can prove interpolation for that proof system, then we have interpolation for the logic
as defined above. In the next section, we will define interpolation with some more detail.

For the more detailed syntactic definition of interpolation, we need the following aux-
iliary definition.

Definition 7.2. The set Σ(φ) of first-order predicates occurring in a CPL(Λ,Σ,Γ)-formula
φ is defined inductively:

Σ(⊥) = ∅
Σ(s = t) = ∅

Σ(P (t1, .., tn)) = {P}
Σ(φ ∗ ψ) = Σ(φ) ∪ Σ(ψ) for ∗ ∈ {∨,→}
Σ(∃xφ) = Σ(φ)

Σ(x♡⌈y : φ⌉) = Σ(φ)

Given a set Φ of CPL(Λ,Σ,Γ), we set

Σ(Φ) =
⋃
φ∈Φ

Σ(φ).

The set iV ar(t) of variables occurring in a CPL(Λ,Σ,Γ)-term is defined by:

iV ar(t) = {x} if t = x for some x ∈ iV ar

iV ar(t) = ∅ if t = c for some c ∈ L

51

We then define the set FV (φ) of free variables occurring in a CPL(Λ,Σ,Γ)-formula φ:

FV (⊥) = ∅
FV (s = t) = iV ar(s) ∪ iV ar(t)

FV (P (t1, .., tn)) = iV ar(t1) ∪ · · · ∪ iV ar(tn)
FV (φ ∗ ψ) = FV (φ) ∪ FV (ψ) for ∗ ∈ {∨,→}
FV (∃xφ) = FV (φ)− {x}

FV (x♡⌈y : φ⌉) = (FV (φ− {y}) ∪ {x}

Similarly, we define Γ(φ) to be the set of constants occurring in φ.

Notice that the occurrence of predicate liftings is not included. This is because those
have construction rules, as we define below. Furthermore notice that we always have
Σ(φ) ⊆ Σ and Γ(φ) ⊆ Γ if φ is a CPL(Λ,Γ,Σ)-formula. CPL-derivation systems SR are
defined in the next section.

7.1.1 The Sequent System

Since we use Γ and Σ for the language of CPL, we use ∆,Φ,Ψ etc. for multisets of formulas
in sequents. A multiset is a set with multiplicity and a sequent Φ ⇒ ∆ is an expression with
finite multisets Φ and ∆. Since the CPL-syntax includes the FOL-syntax, we first recap
the rules of G1c25, as given in [12, p. 61], for the logical connectives and the first-order
quantifiers. Let Φ and ∆ be arbitary multisets of formulas and let φ and ψ be arbitary
formulas26.

Axφ⇒ φ
L⊥⊥ ⇒

Φ ⇒ ∆, φ
L¬

Φ,¬φ⇒ ∆

φ,Φ ⇒ ∆
R¬

Φ ⇒ ∆,¬φ

Φ ⇒ ∆, φ ψ,Φ ⇒ ∆
L →

φ→ ψ,Φ ⇒ ∆

φ,Φ ⇒ ∆, ψ
R →

Φ ⇒ ∆, φ→ ψ

φ[z/x],Φ ⇒ ∆
L∀∀xφ,Φ ⇒ ∆

Φ ⇒ ∆, φ[y/x]
R∀†y

Φ ⇒ ∆,∀xφ

Figure 2: Rules for the Logical Operators and Constants

25The two-sided Gentzen system for classical logic.
26All in a language that includes the connectives and quantifiers, of course.

52

Note that †y means that y is fresh for the conclusion. We refer to e.g. φ in L¬ as the
principal formula. To this, we also add rules for equality.

R =x = x

x = y,Φ[x/z] ⇒ ∆[x/z]
L =1

x = y,Φ[y/z] ⇒ ∆[y/z]

x = y,Φ[y/z] ⇒ ∆[y/z]
L =2

x = y,Φ[x/z] ⇒ ∆[x/z]

Figure 3: Equality Rules

And we also include the structural rules, both weakening (W) and contraction (C), are

Φ ⇒ ∆, φ, φ
RC

Φ ⇒ ∆, φ

Φ, φ, φ⇒ ∆
LC

Φ, φ⇒ ∆

Φ ⇒ ∆
RW

Φ ⇒ ∆, φ
Φ ⇒ ∆

LW
Φ, φ⇒ ∆

Figure 4: Structural Rules

And finally the cut-rule:

Φ1 ⇒ ∆1, φ φ,Φ2 ⇒ ∆2
Cut

Φ1,Φ2 ⇒ ∆1,∆2

The cut-rule is optional and it is important to state that it does not preserve the subformula
property. This means that if a derivation uses an application of the cut-rule, it might be
the case that not all formulas occurring in said derivation are subformulas of the formulas
in the conclusion. This will be important once we introduce Maehara’s method.

The rules discussed above include all the non-modal sequent rules also presented in [5,
p. 37]. We say ‘include’ because we added the rules for negation, which will make the proof
in section 7.2 a little more convenient.

The modal rules are given in the following way. We take a one-step rule and present it
in sequent style27, after which we translate it to a full-fledged rule.

Definition 7.3. A sequent rule

27Definition 7.3 is based on definition 6.1 in [5, p. 36].

53

Φ1 ⇒ ∆1 . . .Φk ⇒ ∆k

♡1p⃗1, . . . ,♡np⃗n ⇒ ♡n+1p⃗n+1, . . . ,♡n+mp⃗n+m

represents a one-step rule R = A/P in sequent format if A is propositionally equivalent to∧k
i=1(

∧
Φi →

∨
∆i) and P is propositionally equivalent to (

∧n
j=1♡j p⃗j) → (

∨m
j=n+1♡j p⃗j).

Given the sequent representation of a one-step rule R, we define S(R), the rule for the
sequent system for CPL:

Ψ,Φ1σ
y
x ⇒ ∆1σ

y
x,Θ . . . Ψ,Φkσ

y
x ⇒ ∆kσ

y
x,Θ S(R)†y

Ψ, z♡1⌈x1 : φ1⌉, .., z♡n⌈xn : φn⌉ ⇒ z♡n+1⌈xn+1 : φn+1⌉, .., z♡n+m⌈xn+m : φn+m⌉,Θ

Here ⌈xi : φi⌉ = ⌈x1i : φ1
i ⌉ . . . ⌈x

ar♡
i : φar♡

i ⌉, for 1 ≤ i ≤ n, is an abbreviation. So the
predicate liftings in S(R)†y above are not all unary, as a quick glimpse might suggest, but

all have their own arbitary arity. Furthermore, the substitution σyx sends pji to φ
j
i [y/x

j
i] ∈

CPL(Λ,Σ,Γ). Recall that †y means that the variable y is fresh for the conclusion. Given
a sound one-step rule R, S(R) preserves validity on any CPL-model [5, p. 37].

The full system, given a set of one-step rules R, is called SR. Here is the definition of
interpolation that we use.

Definition 7.4. A CPL-derivation system SR has interpolation if for any SR-provable
sequent Φ ⇒ Ψ there is a formula (an interpolant) θ such that:

• Φ ⇒ θ is derivable

• θ ⇒ Ψ is derivable

• Σ(θ) ⊆ Σ(Φ) ∩ Σ(Ψ)

• Γ(θ) ⊆ Γ(Φ) ∩ Γ(Ψ)

• FV(θ) ⊆ FV(Φ) ∩ FV(Ψ)

As mentioned above, the syntactic proof of interpolation relies on the fact that the
proof system - in this case the sequent system SR - is complete. Luckily, Litak et al. [5]
have found a completeness result by translating back and forth to the Hilbert-style calculus
HR. This result importantly encapsulates the fact that SR works without adding a cut-
rule. This implies that SR satisfies the subformula property, which is key for applying
Maehara’s method.

54

7.1.2 Maehara’s Method

Maehara’s method is a way of inductively proving interpolation, constructing the inter-
polant of a sequent by going through the sequent rules applied in its derivation. Based on
an overview by Ono [13], we quickly recap the basics needed for the method. As mentioned
above, it is of key importance that a proof system that we apply the method to is cut-free
or has cut elimination. We will make clear why after giving the necessary definitions. The
method relies on splitting sequents, which will make it easier to prove the main theorem.

Definition 7.5. Given a multiset Φ of formulas, the pair ⟨Φ1; Φ2⟩ is a partition of Φ when
the multiset union of Φ1 and Φ2 is Φ.

Furthermore, ⟨(Φ1 : ∆1); (Φ2 : ∆2)⟩ is a partition of the sequent Φ ⇒ ∆ if ⟨Φ1; Φ2⟩ is
a partition of Φ and ⟨∆1; ∆2⟩ is a partition of ∆.

We also refer to partitions as splits. Within the context of Maehara’s method we
generalise the property described by definition 7.4 in terms of sequent-partitions.

Definition 7.6. Let the sequent Φ ⇒ Ψ be provable and let ⟨(Φ1 : Ψ1); (Φ2 : Ψ2)⟩ be an
arbitrary partition for Φ ⇒ Ψ. Then there is a formula - the interpolant - θ such that:

1. Φ1 ⇒ θ,Ψ1 is derivable

2. θ,Φ2 ⇒ Ψ2 is derivable

3. Σ(θ) ⊆ Σ(Φ1,Ψ1) ∩ Σ(Φ2,Ψ2)

4. Γ(θ) ⊆ Γ(Φ1,Ψ1) ∩ Γ(Φ2,Ψ2)

5. FV(θ) ⊆ FV(Φ1,Ψ1) ∩ FV(Φ2,Ψ2)

Definition 7.4 is of course the instance of definition 7.6 where in the split of the sequent
we have Φ2,Ψ1 = ∅. As noted in [13, p. 242], ‘the reason why we need to consider
arbitrary partitions [...] comes from forms of rules for implication and negation’. More
intuitively: the reason that we want to prove this stronger, more general version comes
down to induction loading. What we prove in the induction is stronger then what you
actually need so that the induction hypothesis that we can use in each step is also strong.

As already mentioned above, Maehara’s method goes by induction. On the depth of
a derivation in the sequent system, to be precise. You start with a partition of the final
sequent of a derivation and work your way up the derivation tree. A full proof therefore
boils down to looking at all the rules of the system, where for each rule you move the
partition in the lower sequent to the upper sequent(s) so that you can use the induction
hypothesis. Furthermore, each rule (or case) breaks down into sub-cases, given by all the
possibilities of taking a split of the concluding sequent. How these sub-cases work is made
clear in the main proof of the next section (7.2). Now moving the partition of a sequent up

55

in the derivation tree does not work when we allow for the cut-rule. This is because there
is no way of deciding where to put the principal formula of the cut-rule in the partition
of the upper sequent. For a cut-free system we know that all formulas occurring in the
upper sequent are sub-formulas of formulas in the lower sequent so there is a systematic
way of putting for example the two conjuncts of a conjunction in the partition of the upper
sequent(s) so that one can apply the induction hypothesis. In the main proof in the next
section we will each time make clear how a partition of a lower sequent translates to a
partition in the upper sequent.

Due to the inductive nature of the method, applying Maehara’s method to a sequent
system SR, boils down to separate cases for each R ∈ R. This is because we already know
that Maehara’s method can be applied to the rest of the rules, proofs for which can be
found in [13, sect. 6.1] and [12, p. 118]. Therefore we can in the next section focus on
a single proof-rule. We will go a bit more in-depth on the general approach in the last
section of this chapter. However, let us first look at our specific interpolation result for the
monotone neighbourhood functor.

7.2 The Monotone Neighbourhood Functor

In this section we use Maehara’s method to prove interpolation for monotone neighbour-
hood frames, yielded by the Λ-structure M (with predicate lifting □). To complete the
CPL-language, take arbitary Σ and Γ. As noted in chapter 3 we have the following one-
step rule for □, capturing monotonicity and axiomatising the logic. Here p and q are some
schematic variables.

p⇒ q
(Mon.)

□p⇒ □q

With definition 7.3, while we also add contexts Ψ and ∆, we get the CPL-version:

Ψ, φ[y/z] ⇒ ψ[y/z′],∆
S(Mon.)†y

Ψ, x□⌈z : φ⌉ ⇒ x□⌈z′ : ψ⌉,∆
We denote the proof-system for this logic given by the Λ-structure (M, {□}) as SRM. As
we noted above, we know that all the rules of SRM except S(Mon.) are already proven
in the literature to admit Maehara’s method. Furthermore, thanks to results in [5] we
know that SRM is a sound and complete sequent system. By these facts, the proof of the
theorem below, focuses on the monotonicity rule only. We furthermore use the fact that
we prove the auxiliary definition 7.6 instead of definition 7.4.

Theorem 7.7. SRM has interpolation.

Proof. As mentioned above, we focus on the one sequent-style rule S(Mon.). So assume
that

Ψ, x□⌈z : φ⌉ ⇒ x□⌈z′ : ψ⌉,∆
is the final sequent of a cut-free proof, derived by applying the rule S(Mon.) as above:

56

Ψ, φ[y/z] ⇒ ψ[y/z′],∆
S(Mon.)†y

Ψ, x□⌈z : φ⌉ ⇒ x□⌈z′ : ψ⌉,∆
This gives some partition of the lower sequent, which also give rise to a partition of Ψ ⇒ ∆.
So let ⟨(Ψ1 : ∆1); (Ψ2 : ∆2)⟩ be an arbitary but fixed split of the sequent Ψ ⇒ ∆. We can
then go through the four possibilities for taking a partition of Ψ, x□⌈z : φ⌉ ⇒ x□⌈z′ : ψ⌉,∆
as a whole.

1. Take ⟨(Ψ1, x□⌈z : φ⌉ : ∆1, x□⌈z′ : ψ⌉); (Ψ2 : ∆2)⟩. If we bring the partition without
x□⌈z : φ⌉ and x□⌈z′ : ψ⌉ to the upper sequent, we get
⟨(Ψ1, φ[y/z] : ∆1, ψ[y/z

′]); (Ψ2 : ∆2)⟩. Then by the induction hypothesis there is a
formula θ such that

(1a) Ψ1, φ[y/z] ⇒ θ, ψ[y/z′],∆1 and

(1b) θ,Ψ2 ⇒ ∆2

are provable. We can apply the Monotonicity rule to sequent (1a):

Ψ1, φ[y/z] ⇒ θ, ψ[y/z′],∆1 S(Mon.)†y
Ψ1, x□⌈z : φ⌉ ⇒ θ, x□⌈z′ : ψ⌉,∆1

Now together with sequent (1b) we see that θ is also the interpolant for the lower
sequent. First, we do have to check that y is fresh in the conclusion in the above
application of the rule. Already including the occurrences of constants, the induction
hypothesis also gives:

(1c) Γ(θ) ⊆ Γ(Φ1 ∪ {φ[y/z]},∆1 ∪ {ψ[y/z′]}) ∩ Γ(Φ2,∆2)

(1d) FV (θ) ⊆ FV (Φ1 ∪ {φ[y/z]},∆1 ∪ {ψ[y/z′]}) ∩ FV (Φ2,∆2)

Now because y is fresh in the conclusion in the original application of S(Mon.), it
does not occur in ∆ so it does not occur in ∆2. Therefore by (1d) we know that y
cannot occur freely in θ. So having θ in the conclusion in the application of S(Mon.)
to (1a) does not interfere with the fact that y is fresh for the conclusion.

We now explicitly cover case 3 of definition 7.6, for which we want that

Σ(θ) ⊆ Σ(Ψ1, x□⌈z : φ⌉, x□⌈z′ : ψ⌉,∆1) ∩ Σ(Ψ2,∆2). (49)

By the induction hypothesis we already know that

Σ(θ) ⊆ V (Ψ1, φ[y/z], ψ[y/z
′],∆1) ∩ Σ(Ψ2,∆2) (50)

and we see that there are no new predicates in the conclusion so we have (49). Lastly,
it is easy to notice that we added no constants or variables to θ so the clauses 4 and
5 of defintion 7.6 are covered.

57

2. Take ⟨(Ψ1, x□⌈z : φ⌉ : ∆1); (Ψ2 : ∆2, x□⌈z′ : ψ⌉)⟩. By moving the split without
x□⌈z : φ⌉ and x□⌈z′ : ψ⌉ up to the upper sequent, we get the partition ⟨(Ψ1, φ[y/z]⌉ :
∆1); (Ψ2 : ∆2, ψ[y/z

′]⌉)⟩. By the induction hypothesis with this partition we get an
interpolant θ and the derivable sequents (2a) and (2b):

(2a) Ψ1, φ[y/z] ⇒ ∆1, θ

(2b) Ψ2, θ ⇒ ∆2, ψ[y/z
′]

We also know by the induction hypothesis that

(2c) FV (θ) ⊆ FV (Ψ1 ∪ {φ[y/z]},∆1) ∩ FV (Ψ2,∆2 ∪ {ψ[y/z′]})

Unlike in the previous case, we now know that y can occur freely in θ. We thus
write θ(y). We then derive the following two sequents by applying the monotonicity
rule to both sequents (2a) and (2b). The variable y in θ will then be bound in the
conclusion so that it still does not occur freely in the lower sequent: it is still fresh.
From (2a), we get

Ψ1, φ[y/z] ⇒ ∆1, θ(y) S(Mon.)†y
Ψ1, x□⌈z : φ⌉ ⇒ ∆1, x□⌈y : θ⌉

and from (2b) we get

Ψ2, θ(y) ⇒ ∆2, ψ[y/z
′]

S(Mon.)†y
Ψ2, x□⌈y : θ⌉ ⇒ ∆2, x□⌈z′ : ψ⌉

We thus get the interpolant x□⌈y : θ⌉. In the case that y does not occur freely in θ
the binding of y in the conclusion is vacuous. Furthermore, we have

Σ(x□⌈w : θ⌉) = Σ(θ) ⊆ Σ(Ψ1, φ,∆1) ∩ Σ(Ψ2, ψ,∆2).

by the inductive hypothesis. So

Σ(x□⌈w : θ⌉) ⊆ Σ(Ψ1, x□⌈z : φ⌉,∆1) ∩ Σ(Ψ2, x□⌈z′ : ψ⌉,∆2),

as desired. Similar reasoning can be used for the free variables and the constants
occurring in the interpolant.

3. Take ⟨(Ψ1 : ∆1, x□⌈z′ : ψ⌉); (Ψ2, x□⌈z : φ⌉ : ∆2)⟩. Once again, we move up the
split to the upper sequent to the partition ⟨(Ψ1 : ∆1, ψ[y/z

′]); (Ψ2, φ[y/z] : ∆2). By
the induction hypothesis we then get an interpolant θ for this partition, yielding the
provable sequents (3a) and (3b), where we again notice that y may occur freely in θ.

(3a) Ψ1 ⇒ ∆1, ψ[y/z
′], θ(y)

(3b) Ψ2, θ(y), φ[y/z] ⇒ ∆2

From (3a) we may derive

58

Ψ1 ⇒ ∆1, ψ[y/z
′], θ(y)

(L¬)
Ψ1,¬θ(y) ⇒ ∆1, ψ[y/z

′]
S(Mon.)†y

Ψ1, x□⌈y : ¬θ⌉ ⇒ ∆1, x□⌈z′ : ψ⌉
(R¬)

Ψ1 ⇒ ∆1, x□⌈z′ : ψ⌉,¬x□⌈y : ¬θ⌉

and from (3b) we may derive

Ψ2, θ(y), φ[y/z] ⇒ ∆2
(R¬)

Ψ2, φ[y/z] ⇒ ∆2,¬θ(y) S(Mon.)†y
Ψ2, x□⌈z : φ⌉ ⇒ ∆2, x□⌈y : ¬θ⌉

(L¬)
Ψ2, x□⌈z : φ⌉,¬x□⌈y : ¬θ⌉ ⇒ ∆2

By the two last sequents in the two derivations, we get the interpolant ¬x□⌈y : ¬θ⌉,
which one might see as the dual form of the interpolant in case 2. Checking the
symbol-occurrences of the interpolant is similar to case 2.

4. Take ⟨(Ψ1 : ∆1); (Ψ2, x□⌈z : φ⌉ : ∆2, x□⌈z′ : ψ⌉)⟩. This case is very similar to the
first one, only the (Mon.)-rule can now be applied to the second sequent given by
moving the sequent up and the corresponding induction hypothesis, instead of the
first.

The case for the monotonicity rule concludes the induction.

With this, we have proven interpolation for Chang’s neighbourhood logic. Of course,
it was very important that the monotonicity rule axiomatises modal neighbourhood logic,
making the single rule strongly one-step complete for this logic.

7.3 General Interpolation Results: A Blueprint

Now that we have proven interpolation for a specific CPL-sequent system, the question
rises whether this result can be generalised. This section briefly sketches - part of the
section is intentionally not too specific on details - a road map for general interpolation
results via the same method as in the previous section.

The first step towards understanding how Maehara’s method can be applied to a general
sequent system SR can be broken down into three points. (1) We will be looking for
interpolation results for sequent systems that are sound and complete. (2) A proof for
interpolation for a sequent system SR via Maehara’s method has as many cases as there
are proof-rules in R. (3) It is more convenient to work with the sequent representation
of one-step rules than within the full CPL-environment. Summarising the three points: if
one can show that Maehara’s method is applicable to a set of (sequent representations of)
one-step-rules R, then the instance of CPL that SR is complete for has interpolation. Let
us formulate this a bit clearer.

59

Definition 7.8. Let S(R)

Φ1 ⇒ ∆1 . . .Φk ⇒ ∆k S(R)
♡1p⃗1, . . . ,♡np⃗n ⇒ ♡n+1p⃗n+1, . . . ,♡n+mp⃗n+m

be the sequent representation of the one-step rule R = A/P and let I ⊆ {1, .., n} and
J ⊆ {n+ 1, .., n+m} so that

⟨({♡ip⃗i}i∈I : {♡j p⃗j}j∈J); ({♡ip⃗i}i ̸∈I : {♡j p⃗j}j ̸∈J)⟩

is an arbitary partition of the lower sequent in S(R).
We say that S(R) is Maehara-friendly if there is a way to move the partition to the

upper sequent so that we can derive an interpolant θ for the partition of the lower sequent
that depends on the formulas in the upper sequent.

The definition of a Maehara-friendly (MF) proof rule can of course be generalised to
any kind of proof rule Of course the idea of Maehara’s method is application to full proof
systems but this definition hopefully shines a light on what is necessary for the method to
work for one-step rules in general.

For the third point above, one could, for even more simplicity in the induction steps of
the Maehara-proof, attempt to prove a lemma like the following.

Lemma 7.9. Let R be any sound one-step rule. If R is Maehara-friendly then so is S(R).

This would be technically challenging with a lot of notational detail so we leave it as
an open research question for now. We do want to note that one might want to switch to
a one-sided sequent system for the CPL proof system, due to the technical complexity of
a general one-step rule.

As the three steps given above are basically a formal breakdown of what is necessary
in an application of Maehara’s method to a complete and cut-free proof system, we now
turn to a broader perspective of what might be possible in interpolation results for CPL.
We sketch an ideal plan towards showing interpolation for general CPL instances which,
in conjunction with section 7.2, this might be helpful for future research.

Figure 7.3 below shows the blueprint or road map of steps that one might take in order
to show interpolation of an arbitary instance of CPL. Note that one could try to show
interpolation for CPL in general but it might very well be possible that some instances of
CPL just don’t have interpolation as a logic. Given a set of predicate liftings Λ, we denote
the coalgebraic modal logic with the elements of Λ in its syntax as MLΛ and the CPL
instance with Λ as CPLΛ. We then start our road map towards interpolation for CPLΛ

with the already quite strong assumption that MLΛ has the Craig interpolation property
(CIP). The first objective is to find a MF proof system for MLΛ. With the three steps
given in the beginning of this section, we can then get interpolation for CPLΛ.

60

1. MLΛ has the CIP

2. MLΛ has a ‘Maehara-friendly’ (MF) proof system

3. CPLΛ has a MF proof system

4. CPLΛ has the CIP

Figure 5: Tentative Road Map

So we want to show 1 ⇒ 2 ⇒ 3 ⇒ 4. The most challenging step would probably be
1 ⇒ 2. However, as we already noticed, 1 is still a pretty strong assumption and it is only
natural to also look for restrictions there. In other words: if these 4 steps are provable
we might start playing with the first assumption and see what is possible. Again, this is
not something the current thesis sets out to do and we conclude the body of the thesis
here. We have in this last section merely described a possible direction that a general proof
might go. We thus end the thesis with an outlook for further research.

61

8 Conclusion

This thesis has contributed to the field of coalgebraic predicate logic (CPL) by expanding
on what has been done in the literature as well as looking back at the origins of CPL. The
most straightforward result is perhaps the development of an Ehrenfeucht-Fräıssé game
for CPL and its adequacy theorem. More promising and interesting for further research
however, are the explorations in the approaches towards interpolation results for CPL. The
thesis focused on interpolation by looking at both sides of CPL.

On the semantic side we analysed whether the construction of colimits of FOL can
be adapted to CPL, showing that this is only possible under a certain assumption. This
assumption is one of the things that could be further researched, as we briefly described
in chapter 6. Of course, there might very well be other approaches towards semantic
interpolation that have not yet been found.

On the syntactic side, we have obtained interpolation for the CPL instance given by the
monotone neighbourhood functorM. The next step is possibly interpolation for the general
neighbourhood functor N , as well as other set functors. For this, we have provided a road
map for the syntactic method via Maehara’s method, breaking down what is needed for
the proof to work as well as offering a list of steps building on interpolation for coalgebraic
modal logic.

The results in this thesis thus suggest that there is quite a lot yet to be done in the
field of CPL. Almost all chapters offer ideas for more generalisation - think of EF-games
that include non-unary predicate liftings, for example, as well as the road map for proof
theoretic interpolation, which can be both fleshed out and tried on different instances of
CPL. Future research might also look at questions like the importance of monotonicity
in for example the EF-game for CPL as we have given it. Anyway, we want to end on
a positive note on CPL as a promising field, for which this thesis has given some helpful
steps in the right direction.

62

References

[1] A. Kurz and J. Velebil, “Relation lifting, a survey,” Journal of Logical and
Algebraic Methods in Programming, vol. 85, no. 4, pp. 475–499, 2016, Relational
and algebraic methods in computer science, issn: 2352-2208. doi: https://
doi . org / 10 . 1016 / j . jlamp . 2015 . 08 . 002. [Online]. Available: https :
//www.sciencedirect.com/science/article/pii/S2352220815000802.

[2] R. A. Leal, “Modalities through the looking glass: A study on coalgebraic modal
logics and their applications,” Institute for Logic, Language and Computation.,
2011.

[3] C. Kupke and D. Pattinson, “Coalgebraic semantics of modal logics: An overview,”
Theoretical Computer Science, vol. 412, no. 38, pp. 5070–5094, 2011, CMCS
Tenth Anniversary Meeting, issn: 0304-3975. doi: https://doi.org/10.
1016/j.tcs.2011.04.023. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0304397511003215.

[4] C. C. Chang, “Modal model theory,” Cambridge Summer School in Mathemat-
ical Logic, vol. Volume 337 of LNM, pages 599-617. Springer, 1973.

[5] T. Litak, D. Pattinson, K. Sano, and L. Schröder, “Model Theory and Proof
Theory of Coalgebraic Predicate Logic,” Logical Methods in Computer Science,
vol. Volume 14, Issue 1, Mar. 2018. doi: 10.23638/LMCS- 14(1:22)2018.
[Online]. Available: https://lmcs.episciences.org/4390.

[6] F. Seifan, L. Schröder, and D. Pattinson, “Uniform Interpolation in Coalge-
braic Modal Logic,” in 7th Conference on Algebra and Coalgebra in Computer
Science (CALCO 2017), F. Bonchi and B. König, Eds., ser. Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 72, Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, 21:1–21:16, isbn:
978-3-95977-033-0. doi: 10.4230/LIPIcs.CALCO.2017.21. [Online]. Avail-
able: http://drops.dagstuhl.de/opus/volltexte/2017/8041.

[7] B. van den Berg, “Syllabus model theory 2021/2022,” Institute for Logic, Lan-
guage and Computation, University of Amsterdam, 2022.

[8] L. Schröder, D. Pattinson, and T. Litak, “A Van Benthem/Rosen theorem for
coalgebraic predicate logic,” Journal of Logic and Computation, vol. 27, no. 3,
pp. 749–773, Jul. 2015, issn: 0955-792X. doi: 10.1093/logcom/exv043. eprint:
https://academic.oup.com/logcom/article-pdf/27/3/749/13694161/

exv043.pdf. [Online]. Available: https://doi.org/10.1093/logcom/exv043.

63

[9] D. Marker, Model Theory : An Introduction, ser. Graduate Texts in Mathe-
matics. Springer New York, 2002, isbn: 9780387987606. [Online]. Available:
https://books.google.nl/books?id=QieAHk--GCcC.

[10] J. Väänänen, “Generalized quantifiers,” in Models and Games, ser. Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 2011, pp. 283–
352. doi: 10.1017/CBO9780511974885.011.

[11] P. Blackburn, J. van Benthem, and F. Wolter, Handbook of Modal Logic,
ser. ISSN. Elsevier Science, 2006, isbn: 9780080466668.

[12] A. Troelstra and H. Schwichtenberg, Basic Proof Theory, ser. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 2000, isbn:
9780521779111. [Online]. Available: https://books.google.nl/books?id=
x9x6F%5C_4mUPgC.

[13] H. Ono, “Proof-theoretic methods in nonclassical logic–an introduction,” The-
ories of types and proofs, vol. 2, pp. 207–254, 1998. doi: 10.2969/msjmemoirs/
00201C060.

[14] E. Riehl, Category Theory in Context, ser. Aurora: Dover Modern Math Origi-
nals. Dover Publications, 2017, isbn: 9780486820804. [Online]. Available: https:
//books.google.nl/books?id=6B9MDgAAQBAJ.

[15] Y. Venema, “Coalgebra and modal logic: An introduction,” Institute for Logic,
Language and Computation, University of Amsterdam, 2019.

64

A Appendix

This appendix covers some general basics that we expect the reader to be familiar with,
focusing on introducing coalgebras and predicate liftings.

Let us first establish some notational choices. We use |A| for the cardinality of a set
and ⊆ω for finite subsets. Tuples of elements or variables are written as e.g. a⃗ and, with
a slight abuse of notation, we write e.g. a⃗ ∈ A when we mean a1, .., an ∈ A.

A.1 First-order Logic Model Theory

As the biggest part of the CPL-syntax comes from FOL, we record some definitions here28.
This is especially to stress our treatment of variables and assignments. We thus skip
syntax and go straight to the semantics. Without going into detail, a model A = (A, I)
for a language L - where L consists of predicates P and constants29 c - has interpretations
for all symbols in L. First the semantics of terms:

Definition A.1. Let A = (A, I) be a first-order model for a language L and let v : iV ar →
A be a variable assignment. We interpret terms as follows:

tA,v = v(x) if t = x for some x ∈ iV ar

tA,v = I(c) if t = c for some c ∈ L

For the semantics of formulas, we give, to be complete, all the logical connectives.
Although we do not include all connectives in the syntax of CPL, we sometimes use the
other ones as abbreviations.

Definition A.2. Let A = (A, I) be a model for a language L and let v : iV ar → A be an
assignment. We have:

A, v |= ⊥ ⇔ never

A, v |= s = t ⇔ sA,v = tA,v

A, v |= P (⃗t) ⇔ t⃗ ∈ I(P)

A, v |= φ ∧ ψ ⇔ A, v |= φ and A, v |= ψ

A, v |= φ ∨ ψ ⇔ A, v |= φ or A |= ψ

A, v |= φ→ ψ ⇔ if A, v |= φ then A, v |= ψ

A, v |= ∃xφ(x) ⇔ there is some a ∈ A such that A, v[a/x] |= φ(x)

A, v |= ∀xφ(x) ⇔ for all a ∈ A we have A, v[a/x] |= φ(a)

28We draw from [9] as well as [7].
29For simplicity, we work without functions throughout the thesis so there is no reason to include

them here.

65

We write e.g. v[a/x] to mean that v is modified by mapping x to a. And we often
leave out the explicit mention of a variable assignment: so we write e.g tA to mean tA,v or
A |= φ(a) when we mean A, v[a/x] |= φ(x).

Very important for a logic are the properties of (soundness and) completeness and
compactness. For a logic L, we use |=L for the semantic relation.

Definition A.3. Let L be a logic with a proof system ⊢L. Let φ be an arbitrary L-formula.

Soundness: ⊢L φ ⇒ |=L φ

Completeness: |=L φ⇒ ⊢L φ

We usually just say that proof system is complete for a logic if we mean that it is sound
and complete. Here L(φ) denotes the symbols occurring in φ. Interpolation can of course
be seen both semantically or syntactically.

Definition A.4. A logic L is compact if every finitely satisfiable set of L-formulas is
satisfiable.

Compactness can often be shown through completeness with respect to a finitary proof-
system.

A.2 Category Theory

See e.g. Riehl [14] for an extensive account. Here we just list the definitions needed in the
thesis.

Definition A.5. A category C consists of two classes:

• C0: A collection of objects; X,Y, Z, ...

• C1: A collection of morphisms: f, g, h, ...

such that:

• Each morphism has a domain and a codomain; e.g. f : X → Y means that f has
domain X and codomain Y

• For each object X there is an identity morphism 1X : X → X

• If f : X → Y and g : Y → Z then there is a composite morphism g ◦ f : X → Z

• For any f : X → Y , 1Y ◦ f = f ◦ 1X = f

• Composition is associative: i.e. f ◦ (g ◦ h) = (f ◦ g) ◦ h for any f, g, h

66

Examples of categories are topological spaces with continuous maps as morphisms and
groups with group homomorphisms. However, besides one or two exceptions we mostly
work within the category Set, where objects are sets and morphisms are functions between
sets.

An important notion is, given a category C, that of the dual or opposite category Cop,
where all domains and co-domains of all morphisms are flipped.

Definition A.6. A functor F : C → D between two categories C and D consists of:

• F0: mapping each object C ∈ C0 to some D ∈ D0

• F1: mapping each morphism f ∈ C1 to some F1(g) ∈ D1, respecting
(co-)domains, identities and compositions, i.e. F1(1X) = 1F0(X) and F1(f ◦ g) =
F1f ◦ F1g. This is called functoriality.

When the context is clear, we will usually leave out indices for functors and categories,
writing e.g. FC for some object C ∈ C. It is important to distinguish between covariant
and contravariant functors. On morphisms, a contravariant functor F : C → D does the
following differently from definition A.6:

• mapping each morphism f : X → Y in C to F (f) : FY → FX such that F (g ◦ f) =
F (f) ◦ F (g) for all f, g ∈ C1

Contravariant functors reverse the direction of composition; they can also be seen as co-
variant on the opposite category.

Another special class of functors are endo-functors: functors whose domain coincides
with its codomain. Since we work with Setmostly, here are some examples of endo-functors
an the category Set, which we also refer to as set-functors.

• The constant functor ∆C for some set C

On objects: For all sets A, ∆C(A) = C
On morphisms: For all functions f , ∆C(f) = 1C

• The covariant power-set functor P

On objects: For all sets A, PA := {X | X ⊆ A} is the power-set of A
On morphisms: For all f : A→ A′ and for all C ⊆ A, Pf(C) = {f(c) | c ∈ C}

• The contravariant power-set functor Q

On objects: For all sets A, QA = PA
On morphisms: For all f : A→ A′ and for all C ′ ⊆ A′, Qf(C ′) = {a ∈ A | f(a) ∈ C}

67

• The bag-functor B

On objects: BA = {µ : A→ ω + 1 | µ is a function }, the set of weight functions on A
On morphisms: Given f : A→ B and µ ∈ BC: (Bf)(µ)(b) := Σ{µ(a) | a ∈ A, f(b) = a}

For Pf(C) and Qf(C ′) we also write f [C] and f−1[C ′], respectively. We have one last
example, building more functors with already defined ones:

• Multiplication of functors T = F1 × · · · × Fn

On objects: For all sets A, TA = F1A× · · · × FnA
On morphisms: Given f : A→ B and c ∈ FiA for 1 ≤ i ≤ n, we have Tf(c) = Fif(c)

Definition A.7. Let F,G : C → D be two functors between the categories C and D. A
natural transformation µ : F ⇒ G is a collection of maps, (µC)C∈C0 with µC : FC → GC,
such that the diagram

FC GC

GC ′FC ′

µC

µD

Ff Gf

commutes for every f : C → C ′ in C.

The commutation of a diagram as in definition A.7 is also referred to as naturality.

A.3 Coalgebra

Coalgebras are the dual of algebras, having a composite successor for each element.

Definition A.8. Let T be a set-functor. Given a set A, a coalgebra is a pair (A,α : A→
TA).

The coalgebra map α : A → TA of a coalgebra (A,α) may be seen as a transition
function, associating each a ∈ A with a composite state, or simply a successor, α(a) ∈ TA.
If T is understood, we usually just write (A,α). Furthermore, we refer to the set A as the
carrier set or the domain. And we often use corresponding Greek letters for the coalgebra
map on a set, i.e. (A,α), (B, β), (C, γ).. are used to denote coalgebras.

If T = F1 × · · · × Fn where Fi is a set functor ,for 1 ≤ i ≤ n, we use indices to indicate
which part of the coalgebra map α : A → TA we mean, e.g. α(a)(i) denotes the i-th
component, given by Fi, of the successor of a.

68

Definition A.9. A coalgebra morphism between coalgebras (A,α) and (B, β) is a map
f : A→ B such that the following square commutes.

A B

TBTA

f

α

Tf

β

Or in an equation, we have β ◦ f = Tf ◦ α.

Given the definitions A.8 and A.9, we have the category Coalg of coalgebras and
coalgebra morphisms30.

Next, we have the interpretations of modal operators in CPL: predicate liftings.

Definition A.10. Let T be a set-functor and let n ∈ ω. An n-ary predicate lifting is a
natural transformation λ : Qn ⇒ Q ◦ T op.

Let T be a set-functor and let λ be an n-ary predicate lifting. For any coalgebra31

(A,α) we thus have a map
λA : QnA→ QTA

Modal operators ♡ in CPL are interpreted by predicate liftings, denoted by [|♡|]. We look
at whether

α(a) ∈ [|♡|]A(C) (51)

for any a ∈ A, C ⊆ A.

Definition A.11. An n-ary predicate lifting λ is monotone in its ith component if for all
sets A we have

λA(C1, .., Ci, .., Cn) ⊆ [|♡|]A(C1, .., C
′
i, .., Cn)

for all C1, .., Ci, C
′
i, .., Cn ⊆ A such that Ci ⊆ C ′

i.

For unary predicate liftings, we say monotone (instead of monotone in the first com-
ponent). Now since we use the naturality of predicate liftings quite a bit in the thesis, let
us break it down a little. Let λ : Q ⇒ Q ◦ T op be a unary predicate lifting, let (A,α)
and (B, β) be two T -coalgebras and let f : A → B be a coalgebra morphism. Then the
following diagram commutes.

30It is quite straightforward to check that this satisfies definition A.5.
31Of course for any set but we are interested in coalgebra here.

69

QA QTA

QTBQB

∗

♡A

♡B

Qf QTf

Now take some D ∈ QB and set C = f−1[D]. When we chase the diagram in the two
directions, we get

Red Path : D 7→ {a ∈ A | f(a) ∈ D} = C 7→ λA(C)

Green Path : D 7→ λB(D) 7→ {α ∈ TA | Tf(α) ∈ λB(D)}

We then have
λA(C) = {α ∈ TA | Tf(α) ∈ λB(D)}. (52)

A.4 One-step Logic

One-step logic is very important for the proof systems of CPL. As put aptly in [15, sect. 7-
2], it boils down to ‘doing coalgebraic logic without coalgebras’. For one-step logic, one
only needs a single element in TA (not a full coalgebra map) and modal operators are
interpreted as predicate liftings (as in 51 above)32.

First, fix a set Λ of modal operators. Given a set of propositional variables V , we define
Prop(V), the set of rank-0-formulas over V :

π ::= a | ⊥ | ⊤ | ¬π | π0 ∨ π1

where a ∈ V . Next, given a set C, define

Λ(C) := {♡(φ1, .., φn) | ♡ ∈ Λ is n-ary, C1, .., Cn ∈ C}.

It is often assumed that C is a set of rank-0-formulas over a set of propositional variables
V . So then

Rank1(V) = Prop(Λ(Prop(V)))

is the set of set of rank-1-formulas over V , where each variable falls under the scope of
exactly one modal operator ♡ ∈ Λ.

Now fix a set of schematic variables sV ar. A one-step rule is of the form R = A/P,
where A ∈ Prop(sV ar) and P ∈ Rank1(sV ar) is a disjunctive clause. Following [5] it is
furthermore very important that every p ∈ sV ar may only occur in P once and that if p

32We very closely follow two overviews of one-step logic: the one given in [5] and the one in [15].

70

occurs in A, it must also occur in P. A one-step rule R is sound when, if the premise A
is true in a model33 then so is the conclusion P. Now we can also define the last definition
of this appendix.

Definition A.12. A set of predicate liftings Λ is separating if for all coalgebras (A,α)
every α ∈ TA is uniquely determined by the set

{♡C1, .., Cn ∈ Λ(PS) | α ∈ [|♡|]S(C1, .., Cn)}.

Note that we can equivalently say that given two distinct α0, α1 ∈ TA, one can always
find some ♡ ∈ Λ and some subsets C1, .., Cn of A such that α0 ∈ [|♡|]A(C1, .., Cn) and
α1 ̸∈ [|♡|]A(C1, .., Cn).

33One-step frames are sets with a single coalgebra successor. A one-step model additionally has
an assignment of the propositional variables V .

71

