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1
Introduction

1.1 Main Goal and Motivation

Machine Learning and Natural Language Processing (NLP) research have often been
inspired by our understanding of human cognition and intelligence. For a long time, the
state-of-the-art NLP models were based on symbolic pipelines inspired by cognitive
linguistics theories of how syntax and semantics interact. Most recently, Neural Net-
works (NNs), machine learning models loosely inspired by the structure of the brain,
are achieving remarkable performance on a variety of tasks including understanding
and generating natural language.

Interestingly, ideas �ow between cognitive science and machine learning in both di-
rections. As our knowledge of human cognition is still very limited, in many cases,
computational simulations of how machine learning models learn and infer different
tasks are used to provide insight into human cognition and unlock mysteries about
our intelligence [Güçlü and van Gerven, 2015, Huth et al., 2012, Mitchell et al., 2008,
Rumelhart and McClelland, 1986, Zhuang et al., 2021]. This is a loop, where we try to
build better machine learning models based on our understanding of how the human
brain works, and ultimately, these models feedback into cognitive models.

One of the most interesting aspects of human intelligence is perhaps their ability to learn
and process natural language. The big question that has been around for decades is: what
is special about the human brain that enables having such a complicated communication
system and transferring it through generations? How can we design and train machine
learning models that can learn language as ef�ciently and effectively as humans?

One of the main topics of debate in the �eld of language acquisition has been if the

1
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training signals children receive are enough, qualitatively and quantitatively, to learn
language if they have no prior (innate) knowledge about it. Tomasello [2009] suggests
that the language input children receive is enough if language is considered as “a set
of symbolic instruments for directing the intentional and mental states of others”, and
general cognitive abilities of humans such as categorization, analogy, statistical learning,
etc, are taken into account.

These cognitive abilities (or constraints) are generally referred to as learning biases and
can be interpreted as our prior knowledge or assumptions about how the world works.
Without any learning biases, we would not be able to generalize to deal with examples
beyond what we have been exposed to.

There are different ways of describing learning biases: (a) The description can be in
terms of a set of constraints and desires, mental or physical, that determine the optimal
way of learning a skill. For instance, the human attention mechanism seems to be a
sequential process, i.e., we can not simultaneously attend to multiple sensory inputs
. Hence it makes sense for the human communication system, language, to evolve to
be based on sequential rules and structures. (b) It can be described in terms of the
resulting behaviour, e.g. humans have learning biases that make it easy for them to learn
compositional rules and patterns. (c) It can be described in terms of a set of assumptions
about how the world works. e.g., assuming that we live in a stable world and words and
their meanings do not change frequently.

There have been many efforts trying to identify and understand the nature of the
learning biases that enable language learning in humans. These biases could be domain-
general or domain-speci�c. For example, an interesting learning bias, described at the
implementation level is the maturing memory bias [Elman, 1993], i.e., the children's
working memory is very limited and its capacity increases as it matures [Baddeley,
1992], this biases children to learn simpler structures earlier. Hence, natural languages
have evolved to be easily learnable by a learning algorithm that starts small and grows
gradually [Deacon, 1997].

Other examples of learning biases for language, described at the behavioural level, are
biases towards certain syntactic universals such as word order universals [Culbertson
et al., 2012, Greenberg, 1963], and word learning biases [Markman, 1990], such as
whole object assumption [Markman, 1991], taxonomic assumption [Markman, 1991],
mutual exclusivity assumption [Markman, 1991, Merriman et al., 1989], noun-category
bias [Waxman and Kosowski, 1990], and shape bias [Landau et al., 1988]. A more gen-
eral form of learning bias that is shown to play a major role in the language acquisition
process and the evolution of natural languages is the regularization bias [Culbertson
et al., 2012, Hudson Kam and Newport, 2005, Marcus et al., 1992, Singleton and
Newport, 2004].

The parallel to the concept of learning biases in humans, in machine learning is the
concept of inductive biases. Inductive biases are data-independent factors that enable and
determine the generalization behaviour of the models beyond the training data [Mitchell,
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1980]. In this thesis, our main goal is to study the inductive biases of different neural
network-based language models and their connection to underlying processes in the
human brain. More speci�cally, we propose different techniques that allow us to
evaluate, investigate and compare solutions learned by different models to reveal the
impact of different choices in designing neural network models for language processing.

Our focus is on two families of models that have been successful in achieving state-of-
the-art results on a wide range of NLP tasks in the past few years: (1) LSTMs: variants
of RNNs with a gating mechanism, (2) Transformers: NNs consisting of layers of
self/cross attention stacked on top of each other.

The motivation for us to focus on inductive biases is two folds; �rst, the literature on
cognitive linguistics which collectively suggests that there is a set of learning biases
that enable humans to learn and process language; second, machine learning literature
about inductive biases, that suggest a reliable out-of-distribution generalization can be
achieved by injecting some prior knowledge about the target distribution into learning
algorithms.

To build machines that learn language ef�ciently and can generalize beyond the distri-
bution of their training data in a similar manner humans do, on the one hand, we need
to identify and con�rm the main learning biases that enable humans to learn the natural
language, and on the other hand, we need to �nd a way to incorporate them as inductive
biases in machine learning algorithms. In this thesis, we take a small step toward this
goal by introducing methods and designing experiments that can illustrate the impact of
inductive biases regarding the performance of the models as well as their similarity to
how the human brain works.

In the rest of this chapter, �rst, we discuss inductive biases in machine learning, §1.2.
We provide an overview of the concept of inductive bias in machine learning and discuss
the challenges in quantifying, identifying and injecting inductive biases in machine
learning algorithms.

Next, we discuss how using different techniques to compare the human brain, and neural
networks, two systems that are hard to probe and explain (often referred to as black
boxes), can lead to interesting insights and deepen our understanding of how these black
boxes operate, §1.3. Finally, we provide an overview of the structure of the thesis and
highlight the main contributions in each part, §1.4.

1.2 Inductive Biases in Machines

Let's step back and revisit the concept of learning in general. A simple and naive
learning strategy is to memorize the environment and the experiences. However, simply
memorizing past experiences, without any generalization, without any loss of details,
often would not be useful as past experiences repeated with the exact details are
rare. For a learner to acquire knowledge beyond memorizing the experience, i.e., the
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environmental interactions, the learner has to be equipped with a mechanism that allows
it to generalize beyond what it has been exposed to.

This mechanism can be in form of prior knowledge about the environment or a system-
atic way to prioritize certain generalizations if supported by the evidence, or it can be
rooted in the underlying mechanism of the learner, the learning algorithm and its capac-
ity and limitations. In machine learning the set of assumptions and prior knowledge
incorporated into the learning algorithm is referred to as inductive biases.

Inductive biases are the characteristics of learning algorithms that in�uence their gener-
alization behaviour, independent of data. They are one of the main driving forces to
push learning algorithms toward particular solutions [Mitchell, 1980]. Having the right
inductive biases is particularly important for obtaining high performance when data or
computing resources are a limiting factor, or when training data is not perfectly repre-
sentative of the conditions at test time, i.e., when we expect the models to generalize to
out-of-distribution data.

In the absence of strong inductive biases, a model can be equally attracted to several
local minima on the loss surface; and the converged solution can be arbitrary and
affected by random variations in, for instance, the initial state or the order of training
examples [Dodge et al., 2020, Sutskever et al., 2013].

There are two types of inductive biases: restricted hypothesis space bias and preference
bias. Restricted hypothesis space bias determines the expressiveness of a model, i.e.,
certain solutions are not learnable by the learning algorithm at all, while preference
bias weighs the solutions within the hypothesis space [Craven, 1996]. In the case of the
latter, all solutions are learnable if supported by evidence.

While injecting strong inductive biases into learning algorithms might seem unappeal-
ing as it might restrict the expressivity of the models, and dif�cult, as it requires prior
knowledge about the desired generalization behaviour, it is impossible for an algorithm
without any inductive biases to generalize beyond its training data. For learning algo-
rithms, to consistently and reliably generalize to both in and out of distribution data,
they need to have proper inductive biases.

Some examples of the classes of inductive biases as introduced by Mitchell [1980] are:
(1) Factual knowledge of the domain, e.g., rules of symmetry or compositionality in
the data. (2) Intended use of the learned generalizations, e.g., bias toward making less
false negative examples. (3) Bias toward simplicity, e.g., regularization techniques. (4)
Analogy with previously learned generalizations. (5) Knowledge about the source of
training data, e.g., if the order of training samples obeys a speci�c curriculum strategy.

When studying the inductive biases of machine learning algorithms we are often faced
with two questions:

• How can we quantify the inductive biases of a learning algorithm?

• What are the sources of inductive biases? Having a certain prior knowledge about
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the scope of the solution how can we inject this knowledge in form of an inductive
bias into a learning algorithm?

Finding the answers to these questions may eventually lead to discovering a set of
minimal essential inductive biases to enable the learning algorithms, ef�ciently and
effectively.

1.2.1 Quantifying Inductive Biases

Identifying and quantifying the inductive biases of a model is a challenging problem.
Based on the de�nition of inductive bias, i.e., what determines the generalization
behaviour of the model independent of training data, to reveal the inductive biases of
a learning algorithm, we need to investigate its generalization behaviour on a variety
of tasks and data distributions. Pro�ling the performance of the model on various
metrics/tasks that are independent of the objective/task that the model is trained on can
reveal much about the inductive biases of the models. For example, if a language model
can consistently generalize to inputs of varying lengths that are unseen during training,
it shows that it has an inductive bias toward learning compositional rules that allow
length generalization.

Furthermore, based on the bias-variance trade-off, to measure the strength of the
inductive biases of a model, independent of the type of inductive bias, we can track the
variance of the performance of the model with respect to their performance on both
in-distribution and out-of-distribution tasks, when the model is trained on different parts
of the training data. The lower variance means a stronger inductive bias. More generally
and intuitively, the variance of a model in terms of its performance, the errors it makes,
and its representational stability as a result of any source of stochasticity (initialization,
order of training data, etc), as well as its sample ef�ciency could potentially be indicators
of the strength of the inductive biases of the model.

1.2.2 Sources of Inductive Biases

Any learning algorithm that can generate outputs for unseen inputs has some sort of
an inductive bias that allows it to generalize to unseen inputs regardless of the fact
that its generalization behaviour is what we expect/desire or not [Micheli et al., 2020].
Inductive biases can be rooted in different components of the learning algorithm, e.g.,
pre-processing steps and input representations, speci�c parametrization of the learning
algorithm, initialization and training strategy, the training objective and the optimization
algorithm. For instance, applying different forms of regularization by adding noise
to the data or adding auxiliary losses to put extra data-independent constraints on the
parameters of the models are one the most common ways of biasing the hypothesis
space of the models toward simpler solutions. For Bayesian models, the assumptions
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about the prior distribution, are an explicit source of the inductive biases. In the case of
neural networks, network architecture, the connectivity pattern between the parameters
of the network, and different forms of parameter sharing are among different sources of
their inductive biases.

We can describe inductive biases in terms of their implementation or their effect.
Knowing the desired generalization behaviour, the description of the inductive bias in
terms of its effect, we might be able to design learning algorithms to restrictively or
preferably re�ect that. Bias toward simplicity is an example of this. Another example is
when we do have a piece of prior knowledge about certain rules of symmetry in the data,
and we select neural networks with speci�c connectivity patterns that are equivariant
or invariant to speci�c changes in the input. For instance, speci�c convolution neural
network architectures could be translation invariant, regardless of how they are trained.

On the other hand, intuitively, every implementation detail of a learning algorithm
can potentially affect its hypothesis space and how it explores it. Different architec-
tural choices in designing neural networks such as the connectivity patterns or size
and shape of the network can impact their sample ef�ciency and their generalization
behaviour. For example, parameter sharing in space/time, e.g., convolutional neural
networks [LeCun and Bengio, 1998], recurrent neural networks [Elman, 1990], and
Transformers [Vaswani et al., 2017], or in depth, e.g., universal transformers [Dehghani
et al., 2019]. While, we assume these kinds of constraints inject some form of inductive
bias into the models, in many cases we do not know the exact nature of these biases
beyond speculations. Hence, often we explain these inductive biases in terms of their
implementation rather than their effect. It is noteworthy that while any detail in the
design and implementation of learning algorithms can be a source of inductive bias,
discussing these impacts in terms of inductive biases rather than the details speci�c to
each model, provides a more unifying view of different learning algorithms.

1.3 BlackBox Meets BlackBox

Today's neural network models of language are impressively good in learning represen-
tations that can be used to successfully solve various linguistic tasks [Brown et al., 2020,
Devlin et al., 2019, Radford et al., 2019]. What do these models learn about language
and how do they learn it? There is an active line of research dedicated to answering
these questions [Brown et al., 2020, Giulianelli et al., 2018, Hupkes et al., 2018, Kim
et al., 2019, Linzen et al., 2016, Marvin and Linzen, 2018, McCoy et al., 2019, Tenney
et al., 2019a, van Schijndel et al., 2019].

These efforts are in parallel to the efforts in cognitive linguistics to try to understand
language processing in the human brain. Studying brain imaging data to con�rm
cognitive linguistic theories and to understand human capabilities and biases for learning
language is the other side of this coin which is extensively explored [Caramazza and
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Zurif, 1976, Damasio et al., 1996, Devlin et al., 2004, Ettinger et al., 2014, Friederici,
2002, Hagoort, 2005, Patel, 2003, Solomyak and Marantz, 2010, Ullman et al., 1997,
Wang et al., 2003].

Inevitably, these two lines of research, understanding how neural networks learn and
process language and how language is processed in the human brain, have crossed.
Besides, exchanging probing techniques and processes across these two worlds, deep
learning and cognitive science, we can use neural network language models to shed light
on how the human brain processes language and use brain signals and our understanding
of how the human brain works to evaluate neural language models.

Research on using computational simulations for providing evidence to validate or
invalidate various language acquisition or evolution theories with symbolic or connec-
tionist approaches is not new [Alhama and Zuidema, 2019, Frank and Tenenbaum, 2011,
Hausser and Hausser, 2001, Plunkett and Marchman, 1991, Wintner, 2010].

Neural networks, i.e., connectionist approaches, provide a nice test bed for evaluating
theories of cognition. In contrast to symbolic models, with neural networks, we have
more degrees of freedom for the type and strength of the inductive biases. With symbolic
models, we need to have some prior knowledge and assumptions about how the task at
hand needs to be solved. This is not necessarily the case for neural networks, and we
can apply weaker notions of inductive biases rather than dictating the solution to the
model. E.g., instead of having a model that can only learn hierarchical solutions, we can
have a model that has a bias toward learning hierarchical solutions. The downside of
using neural networks for the computational modelling of cognitive phenomena is their
interpretability challenge, as the characteristic of the solutions these models converge to
are intractable. On the plus side, understanding the underlying mechanisms of these
models is way easier than probing the human brain.

To close the loop and bridge the efforts in neuro-linguistics and computational linguistics,
we need computational modelling frameworks that not only can account for the abilities
of humans to learn language at the behavioural level but can also explain the neurological
signals from the human brain when learning and processing language. For example,
we can build neural networks that learn to process language and use the internals of
these models to predict the brain signals of human subjects, while they are performing
a similar task. While this has been the focus of many recent research [Alishahi et al.,
2020, Beinborn et al., 2019, Caucheteux and King, 2021, Chehab et al., 2021, Gauthier
and Ivanova, 2018, Heilbron et al., 2021, Jain and Huth, 2018, Mitchell et al., 2008,
Murphy et al., 2012, 2018, Schrimpf et al., 2020, Schwartz and Mitchell, 2019, Sun
et al., 2019a, Toneva and Wehbe, 2019], there are still many questions and unresolved
challenges that require our attention.

One thing that is often missing in these studies is ensuring that improvements in the
performance of the models or their behavioural similarity with human subjects at
different levels are causally correlated with their capacity to explain brain signals.
Another major issue, especially when using neural network models, is our lack of
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understanding of what is captured in the representation of the models as well as in the
neurological signals. Here, the question is how do we probe one black box with another
one? Can we learn any new insights about how language is learned and processed in
neural network language models or the human brain, solely by comparing black boxes?
And how can the efforts for the interpretation of neural networks �ll in the gaps? We
believe exploiting and extending the interpretability toolkit for better understanding the
underlying mechanisms and processes implemented by neural network language models
is an essential part of the efforts for better understanding how language is implemented
in the human brain through the lens of neural networks.

1.4 Overview of the Thesis

In this thesis, we follow prior work on using neural networks to understand inductive
biases that are necessary or helpful for learning a natural language. For this purpose, we
investigate neural network models with different architectures trained under different
settings and with different language modelling related objectives.

We ask: what are the inductive biases that are useful, or necessary for learning to process
language and whether they are connected to human cognitive processes and learning
biases? To address the aforementioned challenges we aim to �rst understand the effect
of different sources of inductive biases. Different architectural choices in designing
neural networks along with the training algorithms and objective functions provide
different kinds of inductive biases that affect different qualitative factors of the solutions
these models converge to.

By investigating the effects of these factors and comparing the solutions under different
conditions to each other and also to signals from human references, we can investigate
the connection between different sources of inductive biases in neural networks and the
learning biases of humans. If we �nd a speci�c set of inductive biases that signi�cantly
push the behaviours of the models and the characteristics of the solutions they learn
toward human language processing behaviour, we can use this as a shred of additional
evidence to support theories about the importance of those biases in the language
learning process.

Our focus, in this thesis, is exploring different techniques that allow us not only to
investigate the solutions neural network language models converge to but also how we
can make a bridge between the human brain and the computational models beyond the
performance of models and humans on different tasks.

1.4.1 Part I: Interpretation Techniques for Language Models

In part I, we employ and propose different techniques to study the characteristics
of different language models and the impact of different factors in the solution they
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converge to.

In chapter 2, we propose to use the representational similarity analysis framework
to study representations obtained from LSTM, non-autoregressive and autoregressive
Transformer based language models. We investigate how factors such as context length,
the architecture of the network, and training objective impact the representational spaces
of these models and how they evolve across layers. We argue that understanding how
the representational spaces evolve and change can shed light on the internal mechanisms
of these models.

In chapter 3, we focus on techniques speci�c to attention-based models, i.e., Transform-
ers. A straightforward approach for analyzing attention-based models is to investigate
the attention patterns in different layers of these models. In some cases, these attention
scores are treated as a proxy of the contribution of input tokens in the output of these
models. The major issue with these types of analysis is that they do not take the evo-
lution of token representations across layers of attention block into account. I.e., the
representations in the last layer of the model do not necessarily carry any information
about their corresponding input token. In our work, we try to understand how attention
scores in Transformer based models can be used to explain the characteristics of their
solutions by taking the propagation and mixing of information across the layers of these
models into account.

1.4.2 Part II: Models and Brain

In parallel to our efforts to understand the effect of different factors on the solutions
different neural language models converge to, in part II, we make an effort to build on
top of existing approaches that use brain activity patterns as a biological reference to
evaluate language models.

We start our journey, in chapter 4 by using regression techniques to predict and de-
code brain activity patterns to evaluate the similarity of representations obtained from
different word embedding models for nouns with brain signals. We �nd that general-
purpose word embedding models such as variants of word2vec are more correlated with
brain signals than hand-crafted word feature vectors that are speci�cally designed for
explaining brain signals collected in a particular study.

In chapter 5, we extend our efforts to more complicated settings where words are
provided in a context of a story to both humans and machines. Our ultimate goal is
to investigate the connection between the inductive biases of neural language models
and cognitive processes involved in language learning and understanding. We �nd
that, among existing neural network architectures, recurrence has a signi�cant role in
facilitating learning structures needed to solve language tasks more similar to the human
brain.
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1.4.3 Part III: Closer Look at The Effects of Inductive Biases

In part III, we look more directly into the effect of inductive biases of models. Taking
into account our experiments in previous chapters, and considering the literature on the
advantages of recurrent neural networks in solving language tasks and their cognitive
relevancy, we try to understand the inductive biases of this family of models. Here, by
cognitive relevancy we mean (1) how these models, perhaps at a very abstract level,
are inspired and can be mapped to some cognitive or neural processes in the human
brain; and (2) how similar/aligned are the representations obtained from these models
to signals obtained from the human brain and if they can inform us about the underlying
mechanism of language processing in the human brain.

In chapter 6 we break down the roots of the recurrent inductive bias into three factors of
(1) incremental processing of input, (2) memory bottleneck, and (3) parameter sharing
in time, and design experiments to qualitatively show the impact of each in processing
language.

Following these experiments, in chapter 7, we aim to use knowledge distillation as a
framework to compare the inductive biases of different neural network architectures,
and as a technique to empirically study the expressivity of neural networks architectures
versus the learnability of a desired generalizable solution for them. In this chapter, we
demonstrate that in the knowledge distillation process, having a teacher with proper
inductive biases and a student model that is ef�cient with respect to the teacher, the
effects of the inductive biases of the teacher model transfer to the student model.



PART

I

Evaluating Neural Language Mod-
els Beyond their Performance
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A major focus of recent research on deep learning has been to improve the expressivity
of machine learning models such that they are less complex in terms of space and time
at training and inference. We have come a long way from multi-layer-perceptrons,
to different variants of RNNs [Cho et al., 2014, Hochreiter and Schmidhuber, 1997,
Jordan, 1997], CNNs [LeCun and Bengio, 1998], and Transformer models [Vaswani
et al., 2017]. However, having an expressive enough model that has the capacity and
power to estimate or execute the target functions or processes of interest is just one side
of the story.

In parallel to this, there has been a lot of efforts to understand how one can ef�ciently
guide these models toward the target solution and bene�t from their expressivity by
carefully designing the optimization algorithms and training strategies, baking in the
proper inductive biases, and preparing quantitatively and qualitatively suf�cient data
for training and evaluating these models [Devlin et al., 2019, Dosovitskiy et al., 2021,
Radford et al., 2021].

The common approach for measuring the progress along these axes is the performance of
the models on a set of benchmark datasets in both in-distribution and out-of-distribution
settings, and there exist many efforts addressing the need to have unbiased and diverse
benchmarks. However, there is always a chance that the models �nd shortcuts to
achieve high performance on given benchmarks without generalizing in an intended
manner [Geirhos et al., 2020], and we need proper probing techniques to compare and
understand the characteristics of the solutions the models converge to.

The many hyper-parameters that can impact the performance of the models, such as their
architecture, regularization techniques, the optimization algorithm and the dataset used
to train them, along with their inherent underlying mechanism that does not directly
map input features to outputs, e.g., having multiple layers and different sources of
non-linearity, have raised many questions and concerns about why, when, and how these
models work?

Not only understanding the underlying mechanisms and the successes and failures of
existing models can lead us toward more powerful and robust models, but also it is
necessary to be able to know when we can rely on these models in practical settings.

Among the approaches for evaluating neural networks beyond their performance on
given benchmarks, the most common practices are:

• Diagnostic Classi�cation [Tenney et al., 2019b, Veldhoen et al., 2016, Voita and
Titov, 2020]: which tries to understand the underlying mechanisms of the models
by revealing the information predictable by different components of the models.

• Comparative analysis of representational spaces of different models [Abnar et al.,
2019, Kornblith et al., 2019, Laakso and Cottrell, 2000]: which focuses on how
representational spaces of the models and their different component evolve during
training, or how different factors impact the representational spaces of the models
at different levels.
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• Feature attribution methods [Lundberg and Lee, 2017]: which are mainly con-
cerned with identifying which parts of the input are used by the models, at
different stages, in order to make certain predictions.

• Instance attribution methods [Koh and Liang, 2017, Pezeshkpour et al., 2021]:
which are concerned with how the prediction of the models is in�uenced by
different instances in the training data.

• Pro�ling the performance of models with respect to a wide range of tasks and
metrics, other than metrics that are necessarily correlated with the training objec-
tive [Srivastava et al., 2022]. Or exploring the performance of models through
different ways of interaction mechanisms with them. E.g., different ways of
priming or prompting [Liu et al., 2022, Sinclair et al., 2022, Wei et al., 2022].

Our main goal here is to explore different interpretation techniques to understand how
different choices of network architecture and training objectives for models of language
impact the solution they converge to. Different network architectures and different
training objectives can impose different inductive biases on models, which could lead
the models toward different solutions. We are interested in the cognitive relevancy of
different design choices in building language models, and here we take the primary step
to recognize factors with non-trivial effects on the �nal solution the models converge to.

In chapter 2, we propose to use representational similarity analysis to obtain a better
understanding of the impact of model architecture and training objective on the �nal
solution by comparing representational spaces of different models and different compo-
nents of the same model. In chapter 3, we propose simple techniques that can improve
the interpretability of attention weights in self-attention-based models, which can then
be used to quantify the information �ow in stacks of self-attention layers and uncover
the internal processes of these models.



2
Analyzing Representational Spaces

Representational similarity analysis allows us to compare heterogeneous representa-
tional spaces [Laakso and Cottrell, 2000]. The key idea is simple: instead of directly
trying to map the dimensions of the representational spaces, we measure the relational
similarity between them, by �rst constructing a similarity/co-variance matrix for each
model. This approach of comparing representational spaces has two advantages: (1)
It treats representational spaces as blackbox; it does not need to know how a model
represents objects, words or sentences, but only how similar those representations are
to each other; (2) It is invariant to trivial general changes in the spaces, e.g., when
everything shifts or scales.

In this chapter, we propose to use representational similarity analysis for understanding
the importance and effect of different factors in the solution the models converge to, by
measuring the sensitivity of the representational spaces to isolated changes. We call

This chapter is an extension of primary experiments presented in the following paper (most of the
content is not published before).

• Samira Abnar, Lisa Beinborn, Rochelle Choenni, and Willem Zuidema. 2019. Blackbox Meets
Blackbox: Representational Similarity & Stability Analysis of Neural Language Models and
Brains. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pages 191–203, Florence, Italy. Association for Computational
Linguistics.

• List of contributions is as follows. Samira Abnar: Designing and running the experiments, Writing
the paper. Lisa Beinborn: Contributed to the discussion about the paper. Helped in revising the
earlier versions of the paper. Rochelle Choenni: Contributed to the discussion about the paper.
Helped with some of the visualizations. Willem Zuidema: Guiding the research, Writing the
paper.
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this approachRepresentational stability analysis(ReStA). While in representational
similarity analysis, we compare representations in models, and model components,
ReStA compares instances of thesamemodel, while systematically varying a single
parameter.

2.1 Representational Similarity

Model comparison beyond the �nal performance of the models on a set of benchmarks
can potentially shed light on understanding the cons and pros of different choices made
in building and training them as well as understanding their underlying mechanisms.

Diagnostic classi�cation and probing [Conneau et al., 2018, Hupkes et al., 2018,
Veldhoen et al., 2016, Voita and Titov, 2020] rely on discrete/symbolic representational
spaces, i.e., different ways of classifying/clustering input examples. Moreover, these
approaches are applied in a more in-direct setup, e.g., if we want to compare model
A with model B, we de�ne a set of rules/properties, and measure independently how
much of these rules and properties are captured by each model. In this chapter, we focus
on methods that allow us to directly compare the representational spaces of different
models, and use these methods to investigate the difference between various language
models as well as to understand what kind of information is captured by different
components of these models.

How can we gain any insights about the characteristics of a solution a model converges
to by looking into its representational space? One approach could be to compare the
representational space of the model we want to study with the representational space of
other models with strong inductive biases toward speci�c solutions. The main challenge
then would be to identify the hypothetical solutions a priori and have a mechanism to
explicitly implement them.

Another approach would be to compare the representational spaces in controlled setups
where the roots of their differences are known to us in advance. Often we work
with models that have different characteristics, e.g., have different architectures, are
trained under different regimes and with different training data, etc. Comparing the
representational spaces of models with such differences in controlled settings can lead
to new insights about the underlying mechanisms of the models. By measuring how
much a certain choice in designing and/or training a model impacts the representational
space of the model, we can infer if information relevant to that particular design
choice is re�ected in the representational space. For example, by studying how the
representations evolve across different modules, or during training, we can speculate
about the underlying reasoning processes of the models.

Representational Space We can de�ne representational space as the mapping from
input examples,xi 2 X = f x0, x1, ...xng, to ad dimensional space:G : X ! G(X).
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When the goal is to compare the representational spaces of different components of
neural networks, the comparison technique should satisfy two main criteria: 1. Appli-
cable across heterogeneous models, and representations with different dimensionality.
2. Invariant to trivial changes in the representations. As discussed in [Kornblith et al.,
2019], given two representational spaces of G and F, we seek metrics that are:

1. Invariant to orthogonal transformations, i.e.,

d(G, F) = d(GU, FV), (2.1)

where U and V are full-rank orthonormal matrices.

2. Invariant to isotropic scaling, i.e.,

d(G, F) = d(aG, bF) (2.2)

In this chapter, to compare representational spaces, we rely on a technique which is
commonly referred to as RSA (Representational Similarity Analysis) which is based
on measuring the similarity/correlation of the relations between examples in the given
representational spaces. In part 2, where we compare computational models of language
with brain activity patterns, we use linear regression besides RSA.

In this section, we provide an overview of different methods for computing similar-
ity/correlation between two given representational spaces. Methods for comparing
representational spaces can be grouped into two main groups of methods based on
regression and methods based on the relational similarity of the representations. Below
we brie�y explain existing approaches in these two categories. Our aim is to provide
a complete picture of existing methods for comparing representational spaces. In this
chapter, we mainly rely on a technique which is commonly referred to as RSA (Repre-
sentational Similarity Analysis). In part 2, where we compare computational models of
language with brain activity patterns, we use linear regression as well.

2.1.1 Regression

An intuitive way to measure the similarity of two representational spaces is to investigate
how well the representations obtained for a set of examples from the two spaces are
predictable given one of them. An advantage of regression methods is that they assign
weights to feature dimensions, hence can provide us with indicators of the relation
between individual feature pairs (each dimension). When using regression-based
approaches it is important that we use separate training and test sets when measuring
the similarity of different representational spaces. Otherwise, especially when dealing
with high-dimensional spaces, it might be trivial to �nd a mapping between any two
feature spaces. To measure linear predictability different metrics are often used:
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• Distance between the target and predicted representations (e.g., cosine or eu-
clidean distance).

• Explained variance (fraction of variance explained by the predicted representa-
tions):

R2 = 1 � å yi � ŷi

å yi � ȳ
(2.3)

• A notion of accuracy based on the nearest neighbor concept (e.g., the accuracy
metrics used by Mitchell et al. [2008] and Wehbe et al. [2014a]). E.g., given two
pairs of examples, if the predicted representation of each example is closer to
its ground truth representations than the ground truth representation of the other
example, they count it as a correct prediction and incorrect otherwise.

Multivariate Linear Regression We can use linear regression or Gaussian process
regression with different kernels to quantify the similarity between two representational
spaces,G andF.

If F is predictable fromG, d(Wg! f G + Bg! f , F) < e, and G is predictable from F,
d(W f ! gF + Bf ! g, F) < e, we can argue that F and G contain similar information.

Canonical Correlation Analysis Canonical Correlation Analysis (CCA) is a multi-
variant statistical analysis method to measure the linear association between two sets
of random variables. Givenn samples from a dataset,X = x1, x2, ...xn, to take into
account the relation and dependence between the variables in each representational
space, CCA quanti�es the similarity betweenF(X) andG(X) by considering canonical
variables, a set of variablesu andv that are linear combinations of variables ofF(X)
andG(X), respectively.

ui = ai F = [ ai1 f1 ai2 f2 ... ai jFj
fjFj ]

vi = biG = [ bi1g1 bi2g2 ... bi jFj
gjFj ]

(2.4)

In the above equation,ui andvi are theith canonical variables andai andbi are each
the set of coef�cient factors for the features of F and G respectively, wherejai j = jFj
and jbi j = jGj. The goal is to �nda and b such that givenX, u1 and v1 have
maximum correlation coef�cient (r i), for j > i, r j < r i and fori 6= j, ui andvi are
uncorrelated. Intuitively, this means linearly projecting each representational space
such that the correlation between them is maximized and keeps doing this as many
times as the projections of each space remain orthogonal, i.e., rows ofU andV are
orthogonal. That would give usmin(rank(F), rank(G)) correlation coef�cients, i.e.,
jU j = jV j = min(rank(F), rank(G)) . Often the mean correlation coef�cient is used
as a measure of the similarity ofF andG. This way of computing similarity between
two representational spaces is invariant to invertible linear transformations.
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To compute this we can take the singular value decomposition ofS� 1/2
f f S f gS� 1/2

gg :

S� 1/2
f f S f gS� 1/2

gg = ŨD B̃T (2.5)

In this equation,S is the covariance matrix andD is a diagonal matrix containing the
square of canonical correlation coef�cients.

Singular Vector Canonical Correlation Analysis In order to reduce the effect of
noise in measuring the similarity between representational spaces in CCA, Raghu
et al. [2017] proposes Singular Vector Canonical Correlation Analysis (SVD), which
applies SVD to select the most important directions in the representational spaces before
applying CCA.

Projection-Weighted Canonical Correlation Analysis Having the canonical corre-
lation coef�cients, assuming all canonical variables are equally important, we can use
their mean as an indicator of the similarity between two representational spaces. Morcos
et al. [2018] argues that this way of measuring similarity could potentially underestimate
the similarity between the high dimensional representations obtained from layers of
neural networks. Morcos et al. [2018] proposed Projection-Weighted CCA that assigns
weights to the canonical correlation coef�cient based on the importance of their corre-
sponding canonical variables to the underlying representational spaces. In [Morcos et al.,
2018] the importance of the canonical variables is estimated based on the proportion of
the original representations that they account for and they measure this in terms of dot
product similarity of the canonical variables and the original representations.

2.1.2 Relational Similarity

To overcome the issue of comparing representations obtained from heterogeneous
models and also to deal with trivial differences between representational spaces, we
can represent the representational spaces in terms of the relations between different
examples as they are embedded in them. I.e., having a set of examples, and their
corresponding representations in the two spaces, instead of directly comparing the
representations of each example, we �rst model the relation between the examples in
each space and then measure their relational similarity, i.e., the similarity of similarities.

Similarity Matrix For ad dimensional representational space and a set ofN exam-
ples, the similarity or co-variance matrix is a squared symmetrical matrix,SN � N , where
Si j , represents the similarity/co-variance between representations of examplesi andj.
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Representational Similarity Analysis Representational similarity analysis (RSA) is
a technique which allows us to compare heterogeneous representational spaces [Laakso
and Cottrell, 2000] and is a common technique in cognitive neuroscience because it
allows researchers to study the relation between patterns of activation in the brain and
representations of stimuli in a computational model [Kriegeskorte et al., 2008].

Given a set of N examples from a dataset, and their corresponding representationF(X)
andG(X), RSA consists of two steps:

• Computing the similarity matricesS f andSg for F and G, whereS f
i,j andSg

i,j are
the similarities between the representation ofxi andxj in each representational
space respectively.

• Computing the correlation or similarity between the similarity matrices.

Often, in the �rst step, cosine distance is used to measure the similarity between the
representations within each space and in the second step a correlation metric such as
Pearson-R is employed. However, generally, at each stage, one can use any similarity
metric that is more appropriate based on the nature of the representations.

Centered Kernel Alignment Kornblith et al. [2019] shows that if in standard RSA,
the inner product is used as the similarity measure as shown in equation 2.6, the
similarity between representational similarity matrices reduces to Hilbert-Schmidt
Independence Criterion (HSIC).

Sim(F, G) = tr (FFTGGT) (2.6)

HSIC is a pairwise similarity metric that measures the dependence of two variables. It
generalizes 2.6 to inner products from reproducing kernel Hilbert spaces.

In practice and with �nite samplesn, and given K and L as kernel functions for F and G
respectively, HSIC can be estimated by:

HSIC(K, L) =
1

(n � 1)2 tr (KHLH ) (2.7)

whereH, K, L 2 Rnxn, Ki j := k( fi , f j ), Li ,j := l (gi , gj ) andHi ,j := si j � 1
n .

For linear kernels, HSIC is equal to:

1
(n � 1)2 tr (FFTGGT) =



 Cov(FT, GT)





2

F
(2.8)

HSIC is not invariant to isotropic scaling, hence, Kornblith et al. [2019] proposes to
use Centered Kernel Alignment (CKA), a normalized version of HSIC, to measure the
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similarity between two representational spaces:

CKA(K, L) =
HSIC(K, L)

p
HSIC(K, K), HSIC(L, L)

(2.9)

One can use different kernels for computing CKA, Kornblith et al. [2019] tries linear
and RBF kernels and they �nd no signi�cant difference between these two kernels in
their experiments. Since, this method is more widely used in machine learning literature,
in our experiments that are conducted later, we report linear CKA.

2.2 Representational Stability Analysis

We introduce the notion ofRepresentational Stability Analysis(ReStA), where we
compare representational instances of thesamemodel, while systematically varying a
single model parameter. ReStA is measured asRSA(Lkjci

, Lk0jcj
), wherek andk0are

layer/component ids andci andcj are different conditions. This gives us a probe to
measure the sensitivity of the representations to different factors.

This chapter presents the results of applying ReStA to different language encoding
models such as GoogleLM, ELMO and variants of Transformer based language models.
We investigate the relations between different components of the language encoding
models and the type of information that is captured in the learned representations
without making any explicit assumptions.

Varying Depth From prior work, we expect a relation between the depth of the
layers and the level of abstraction of their representations. We study this intuition here
empirically by analyzing the different layers of the models. Moreover, we investigate
the impact of increasing the number of layers on the representational space of different
variants of Transformer language models.

Varying Context Length Using language models to learn contextualized represen-
tations has been a signi�cant milestone, enabling the application of representations
obtained from pre-trained language models on a variety of downstream tasks in natural
language processing. However, simply the fact that language models have access to the
contextual information during training and inference, doesn't mean they will actually
exploit this information. Hence, we use ReStA to understand the role of context and
study how and where the models integrate information over time. To do so, we modify
the amount of context provided to the models to obtain the contextualized word repre-
sentations. We do this at the sentence level. Thus, for the context length of0, we only
feed the target words to the models; For context length1, we feed all the previous words
in the current sentence to the models. For context lengthi wherei > 1, in addition to
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the current sentence we feed all the words in the lasti sentences. We operate on the
sentence level to feed the model with independently meaningful pieces of text.

Different Objectives and Different Network Architectures In our studies, we con-
sider language models with different architectures (i.e., LSTMs and different variants of
Transformers), and different language modelling objectives (e.g., next word prediction,
masked language modelling and replaced token detection). By comparing the repre-
sentational spaces of these models, under different conditions, we aim to understand
if the combination of network architecture and objective have a signi�cant role in the
solutions these language models converge to.

Figure 2.1: Representational similarity between layers of different Bert style transformer language
models. The similarity score is measured in terms of CKA, Equation 2.9, over 100 sentences (words)
from the Penn Tree Bank dataset. On the diagonal, we see the similarity score of 1.0 since it indicates the
representational similarity of each layer with itself. We also observe high similarity scores in off-diagonal
elements close to the diagonal. This indicates a smooth transformation of representations across layers.
Additionally, we see that for all these models the last layer is the least similar to all the other layers.

2.2.1 Effect of Depth

In this section, we study the representations obtained from different layers of auto-
regressive and non-auto-regressive language models and investigate how the representa-
tional spaces of various language models evolve across layers.
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Figure 2.2: Representational similarity between subsequent layers of different Bert style transformer
language models. The similarity score is measured in terms of CKA, Equation 2.9, over 100 sentences
(words) from the Penn Tree Bank dataset.

Figure 2.1 illustrates the similarity between different layers for different variants of
Transformer language models trained with the masked language modelling objective
(BERT style) with different model sizes (base with 12 layers and large with 24 layers,
in terms of CKA score. To show, more clearly how much the representations change in
each layer, Figure 2.2, depicts the CKA similarity score between subsequent layers of
Bert-style transformer models.

We observe that neighboring layers have more similar representations and the represen-
tational spaces gradually diverge as we move across the layers. Interestingly, between
some of the layers, we observe a stronger divergence. This is more apparent for the last
layer of all models except Alberta. This can be rooted in the fact that the last layer of
the model carries most of the responsibility of capturing the task (objective) relevant
features. For Alberta, the changes even at the last layer are less signi�cant, which can
be explained by the weight-sharing mechanism across layers. It appears that sharing
weights in depth can enforce effective computations to distribute across the layers in a
more uniform manner.

Additionally in some cases, e.g., Electra, Longformer, and Roberta, we can identify
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Figure 2.3: 2d projection of representational spaces of layers of Bert style transformer language models
based on their pairwise CKA similarity. We observe that models from the same family (same architecture,
same objective, same training data), with different sizes, follow similar trajectories, where shorter models
take larger steps across the layers.

two or more blocks of layers, where layers within a block are more similar. The block
boundaries are clearer in larger models (models with more layers), where generally the
evolution across the layers is smoother. It is not obvious from this analysis what these
blocks correspond to, but it is a curious case for further investigations. For example,
does this mean that we can prune these layers without losing any performance?

Figure 2.3 is a 2d projection of all layers of all the Bert-style language models we are
investigating based on their pairwise CKA similarity score. We can see that (a) layers
of models with the same architecture and training objective but a different number of
layers follow the same path for most of the cases, (b) the representations obtained from
a different layer of different models diverge as we get closer to the penultimate layer
which could be an indicator that the representations become more task-speci�c as they
evolve across the layers, and (c) Representational space of Electra, which has a slightly
different objective are further away and are following a completely different trajectory
compared to the rest of the models. We also, observe that the representational spaces of
Roberta and Longformer models are relatively tied together. This can simply be a side
effect of the fact that Longformer models are initialized with Roberta checkpoints, and
it is interesting to note that the representational spaces are relatively stable throughout
the training process of Long-former models. They remain similar to Roberta, even
though the ability of these models to deal with longer-range sequences is improved
signi�cantly.

Based on these �gures, it seems, the effect of increasing the number of layers is merely
a smoother transition across layers, and when we track how representations change
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Figure 2.4: Representational similarity between all layers of different auto-regressive transformer
language models. The similarity score is measured in terms of CKA, Equation 2.9, over 100 sentences
(words) from the Penn Tree Bank dataset.

across the layers, representations obtained from different layers of the models with the
same architecture, same training objective, and same training data that differ only in
hyper-parameters such as depth and width converge not only through the same path but
also to the same �nal point.

For auto-regressive transformer language models, in Figures 2.4 and 2.5, we see that
for GPT-2 the representational spaces are less sensitive to the depth of the layer for
the most part. I.e., there is a signi�cant change in the �rst and the last layer and the
middle layers are structured into one or a few blocks. On the other hand, OpenAi-
GPT seems to have slightly different behaviour, i.e. the similarity scores between the
intermediate representations are relatively lower. It is intriguing how scaling the size
and diversity of datasets from GPT to GPT-2 results in a solution with completely
different characteristics. One possible explanation here could be that as the diversity
of the data for GPT-2 is much higher, its representational space has to be much denser
which could generally result in the distance between representations being smaller. If
this is the case, then the observation here is mostly revealing a bias of the similarity
metric we have applied, and a potential solution to this issue could be normalizing the
distances to take the density of the representational space into account.

2.2.2 Sensitivity to Context Length

Different language models, depending on their inductive biases and the data that they are
trained on, could potentially implement different strategies to incorporate context. We
can characterise the contextualization process by the general context sensitivity of the
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Figure 2.5: Representational similarity between subsequent layers of different auto-regressive transformer
language models. The similarity score is measured in terms of CKA, Equation 2.9, over 100 sentences
(words) from the Penn Tree Bank dataset.

models as well as the difference between the context-sensitivity of different components
of these models.

Figure 2.6, illustrates a few different possible ways that a language model with multiple
layers can mix contextual information with the information from each speci�c token.
For example, every layer can contribute equally in incorporating the context into
the representations, Figure 2.6a, the contextualization can happen in the �nal layers
of the model after the individual representations are processed for a number of steps,
Figure 2.6b, or initial layers of the model can contribute the most in the contextualization
process, Figure 2.6c. These are just a few different examples and in practice, models
could implement more complex contextualization mechanisms depending on their
architecture, objective function, training data and other factors.

We aim to use the representational stability analysis technique for investigating the
contextualization process in language models. We focus on the length of the prior
context presented to the model as the condition. Varying the amount of context allows
us to quantify the degree of context-dependence of different neural language models,
and the different components of those models. If internal representations are similarly
organized regardless of how much additional context is presented to the model, context-
dependence is low. If, on the other hand, representations change with each additional
amount of context included, context-dependence is high. Using this approach, we �nd
intriguing differences between different neural language models (GoogleLM, ELMO,
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