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1
Introduction

1.1 Main Goal and Motivation

Machine Learning and Natural Language Processing (NLP) research have often been
inspired by our understanding of human cognition and intelligence. For a long time, the
state-of-the-art NLP models were based on symbolic pipelines inspired by cognitive
linguistics theories of how syntax and semantics interact. Most recently, Neural Net-
works (NNs), machine learning models loosely inspired by the structure of the brain,
are achieving remarkable performance on a variety of tasks including understanding
and generating natural language.

Interestingly, ideas flow between cognitive science and machine learning in both di-
rections. As our knowledge of human cognition is still very limited, in many cases,
computational simulations of how machine learning models learn and infer different
tasks are used to provide insight into human cognition and unlock mysteries about
our intelligence [Güçlü and van Gerven, 2015, Huth et al., 2012, Mitchell et al., 2008,
Rumelhart and McClelland, 1986, Zhuang et al., 2021]. This is a loop, where we try to
build better machine learning models based on our understanding of how the human
brain works, and ultimately, these models feedback into cognitive models.

One of the most interesting aspects of human intelligence is perhaps their ability to learn
and process natural language. The big question that has been around for decades is: what
is special about the human brain that enables having such a complicated communication
system and transferring it through generations? How can we design and train machine
learning models that can learn language as efficiently and effectively as humans?

One of the main topics of debate in the field of language acquisition has been if the

1
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training signals children receive are enough, qualitatively and quantitatively, to learn
language if they have no prior (innate) knowledge about it. Tomasello [2009] suggests
that the language input children receive is enough if language is considered as “a set
of symbolic instruments for directing the intentional and mental states of others”, and
general cognitive abilities of humans such as categorization, analogy, statistical learning,
etc, are taken into account.

These cognitive abilities (or constraints) are generally referred to as learning biases and
can be interpreted as our prior knowledge or assumptions about how the world works.
Without any learning biases, we would not be able to generalize to deal with examples
beyond what we have been exposed to.

There are different ways of describing learning biases: (a) The description can be in
terms of a set of constraints and desires, mental or physical, that determine the optimal
way of learning a skill. For instance, the human attention mechanism seems to be a
sequential process, i.e., we can not simultaneously attend to multiple sensory inputs
. Hence it makes sense for the human communication system, language, to evolve to
be based on sequential rules and structures. (b) It can be described in terms of the
resulting behaviour, e.g. humans have learning biases that make it easy for them to learn
compositional rules and patterns. (c) It can be described in terms of a set of assumptions
about how the world works. e.g., assuming that we live in a stable world and words and
their meanings do not change frequently.

There have been many efforts trying to identify and understand the nature of the
learning biases that enable language learning in humans. These biases could be domain-
general or domain-specific. For example, an interesting learning bias, described at the
implementation level is the maturing memory bias [Elman, 1993], i.e., the children’s
working memory is very limited and its capacity increases as it matures [Baddeley,
1992], this biases children to learn simpler structures earlier. Hence, natural languages
have evolved to be easily learnable by a learning algorithm that starts small and grows
gradually [Deacon, 1997].

Other examples of learning biases for language, described at the behavioural level, are
biases towards certain syntactic universals such as word order universals [Culbertson
et al., 2012, Greenberg, 1963], and word learning biases [Markman, 1990], such as
whole object assumption [Markman, 1991], taxonomic assumption [Markman, 1991],
mutual exclusivity assumption [Markman, 1991, Merriman et al., 1989], noun-category
bias [Waxman and Kosowski, 1990], and shape bias [Landau et al., 1988]. A more gen-
eral form of learning bias that is shown to play a major role in the language acquisition
process and the evolution of natural languages is the regularization bias [Culbertson
et al., 2012, Hudson Kam and Newport, 2005, Marcus et al., 1992, Singleton and
Newport, 2004].

The parallel to the concept of learning biases in humans, in machine learning is the
concept of inductive biases. Inductive biases are data-independent factors that enable and
determine the generalization behaviour of the models beyond the training data [Mitchell,
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1980]. In this thesis, our main goal is to study the inductive biases of different neural
network-based language models and their connection to underlying processes in the
human brain. More specifically, we propose different techniques that allow us to
evaluate, investigate and compare solutions learned by different models to reveal the
impact of different choices in designing neural network models for language processing.

Our focus is on two families of models that have been successful in achieving state-of-
the-art results on a wide range of NLP tasks in the past few years: (1) LSTMs: variants
of RNNs with a gating mechanism, (2) Transformers: NNs consisting of layers of
self/cross attention stacked on top of each other.

The motivation for us to focus on inductive biases is two folds; first, the literature on
cognitive linguistics which collectively suggests that there is a set of learning biases
that enable humans to learn and process language; second, machine learning literature
about inductive biases, that suggest a reliable out-of-distribution generalization can be
achieved by injecting some prior knowledge about the target distribution into learning
algorithms.

To build machines that learn language efficiently and can generalize beyond the distri-
bution of their training data in a similar manner humans do, on the one hand, we need
to identify and confirm the main learning biases that enable humans to learn the natural
language, and on the other hand, we need to find a way to incorporate them as inductive
biases in machine learning algorithms. In this thesis, we take a small step toward this
goal by introducing methods and designing experiments that can illustrate the impact of
inductive biases regarding the performance of the models as well as their similarity to
how the human brain works.

In the rest of this chapter, first, we discuss inductive biases in machine learning, §1.2.
We provide an overview of the concept of inductive bias in machine learning and discuss
the challenges in quantifying, identifying and injecting inductive biases in machine
learning algorithms.

Next, we discuss how using different techniques to compare the human brain, and neural
networks, two systems that are hard to probe and explain (often referred to as black
boxes), can lead to interesting insights and deepen our understanding of how these black
boxes operate, §1.3. Finally, we provide an overview of the structure of the thesis and
highlight the main contributions in each part, §1.4.

1.2 Inductive Biases in Machines

Let’s step back and revisit the concept of learning in general. A simple and naive
learning strategy is to memorize the environment and the experiences. However, simply
memorizing past experiences, without any generalization, without any loss of details,
often would not be useful as past experiences repeated with the exact details are
rare. For a learner to acquire knowledge beyond memorizing the experience, i.e., the
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environmental interactions, the learner has to be equipped with a mechanism that allows
it to generalize beyond what it has been exposed to.

This mechanism can be in form of prior knowledge about the environment or a system-
atic way to prioritize certain generalizations if supported by the evidence, or it can be
rooted in the underlying mechanism of the learner, the learning algorithm and its capac-
ity and limitations. In machine learning the set of assumptions and prior knowledge
incorporated into the learning algorithm is referred to as inductive biases.

Inductive biases are the characteristics of learning algorithms that influence their gener-
alization behaviour, independent of data. They are one of the main driving forces to
push learning algorithms toward particular solutions [Mitchell, 1980]. Having the right
inductive biases is particularly important for obtaining high performance when data or
computing resources are a limiting factor, or when training data is not perfectly repre-
sentative of the conditions at test time, i.e., when we expect the models to generalize to
out-of-distribution data.

In the absence of strong inductive biases, a model can be equally attracted to several
local minima on the loss surface; and the converged solution can be arbitrary and
affected by random variations in, for instance, the initial state or the order of training
examples [Dodge et al., 2020, Sutskever et al., 2013].

There are two types of inductive biases: restricted hypothesis space bias and preference
bias. Restricted hypothesis space bias determines the expressiveness of a model, i.e.,
certain solutions are not learnable by the learning algorithm at all, while preference
bias weighs the solutions within the hypothesis space [Craven, 1996]. In the case of the
latter, all solutions are learnable if supported by evidence.

While injecting strong inductive biases into learning algorithms might seem unappeal-
ing as it might restrict the expressivity of the models, and difficult, as it requires prior
knowledge about the desired generalization behaviour, it is impossible for an algorithm
without any inductive biases to generalize beyond its training data. For learning algo-
rithms, to consistently and reliably generalize to both in and out of distribution data,
they need to have proper inductive biases.

Some examples of the classes of inductive biases as introduced by Mitchell [1980] are:
(1) Factual knowledge of the domain, e.g., rules of symmetry or compositionality in
the data. (2) Intended use of the learned generalizations, e.g., bias toward making less
false negative examples. (3) Bias toward simplicity, e.g., regularization techniques. (4)
Analogy with previously learned generalizations. (5) Knowledge about the source of
training data, e.g., if the order of training samples obeys a specific curriculum strategy.

When studying the inductive biases of machine learning algorithms we are often faced
with two questions:

• How can we quantify the inductive biases of a learning algorithm?

• What are the sources of inductive biases? Having a certain prior knowledge about
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the scope of the solution how can we inject this knowledge in form of an inductive
bias into a learning algorithm?

Finding the answers to these questions may eventually lead to discovering a set of
minimal essential inductive biases to enable the learning algorithms, efficiently and
effectively.

1.2.1 Quantifying Inductive Biases

Identifying and quantifying the inductive biases of a model is a challenging problem.
Based on the definition of inductive bias, i.e., what determines the generalization
behaviour of the model independent of training data, to reveal the inductive biases of
a learning algorithm, we need to investigate its generalization behaviour on a variety
of tasks and data distributions. Profiling the performance of the model on various
metrics/tasks that are independent of the objective/task that the model is trained on can
reveal much about the inductive biases of the models. For example, if a language model
can consistently generalize to inputs of varying lengths that are unseen during training,
it shows that it has an inductive bias toward learning compositional rules that allow
length generalization.

Furthermore, based on the bias-variance trade-off, to measure the strength of the
inductive biases of a model, independent of the type of inductive bias, we can track the
variance of the performance of the model with respect to their performance on both
in-distribution and out-of-distribution tasks, when the model is trained on different parts
of the training data. The lower variance means a stronger inductive bias. More generally
and intuitively, the variance of a model in terms of its performance, the errors it makes,
and its representational stability as a result of any source of stochasticity (initialization,
order of training data, etc), as well as its sample efficiency could potentially be indicators
of the strength of the inductive biases of the model.

1.2.2 Sources of Inductive Biases

Any learning algorithm that can generate outputs for unseen inputs has some sort of
an inductive bias that allows it to generalize to unseen inputs regardless of the fact
that its generalization behaviour is what we expect/desire or not [Micheli et al., 2020].
Inductive biases can be rooted in different components of the learning algorithm, e.g.,
pre-processing steps and input representations, specific parametrization of the learning
algorithm, initialization and training strategy, the training objective and the optimization
algorithm. For instance, applying different forms of regularization by adding noise
to the data or adding auxiliary losses to put extra data-independent constraints on the
parameters of the models are one the most common ways of biasing the hypothesis
space of the models toward simpler solutions. For Bayesian models, the assumptions
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about the prior distribution, are an explicit source of the inductive biases. In the case of
neural networks, network architecture, the connectivity pattern between the parameters
of the network, and different forms of parameter sharing are among different sources of
their inductive biases.

We can describe inductive biases in terms of their implementation or their effect.
Knowing the desired generalization behaviour, the description of the inductive bias in
terms of its effect, we might be able to design learning algorithms to restrictively or
preferably reflect that. Bias toward simplicity is an example of this. Another example is
when we do have a piece of prior knowledge about certain rules of symmetry in the data,
and we select neural networks with specific connectivity patterns that are equivariant
or invariant to specific changes in the input. For instance, specific convolution neural
network architectures could be translation invariant, regardless of how they are trained.

On the other hand, intuitively, every implementation detail of a learning algorithm
can potentially affect its hypothesis space and how it explores it. Different architec-
tural choices in designing neural networks such as the connectivity patterns or size
and shape of the network can impact their sample efficiency and their generalization
behaviour. For example, parameter sharing in space/time, e.g., convolutional neural
networks [LeCun and Bengio, 1998], recurrent neural networks [Elman, 1990], and
Transformers [Vaswani et al., 2017], or in depth, e.g., universal transformers [Dehghani
et al., 2019]. While, we assume these kinds of constraints inject some form of inductive
bias into the models, in many cases we do not know the exact nature of these biases
beyond speculations. Hence, often we explain these inductive biases in terms of their
implementation rather than their effect. It is noteworthy that while any detail in the
design and implementation of learning algorithms can be a source of inductive bias,
discussing these impacts in terms of inductive biases rather than the details specific to
each model, provides a more unifying view of different learning algorithms.

1.3 BlackBox Meets BlackBox

Today’s neural network models of language are impressively good in learning represen-
tations that can be used to successfully solve various linguistic tasks [Brown et al., 2020,
Devlin et al., 2019, Radford et al., 2019]. What do these models learn about language
and how do they learn it? There is an active line of research dedicated to answering
these questions [Brown et al., 2020, Giulianelli et al., 2018, Hupkes et al., 2018, Kim
et al., 2019, Linzen et al., 2016, Marvin and Linzen, 2018, McCoy et al., 2019, Tenney
et al., 2019a, van Schijndel et al., 2019].

These efforts are in parallel to the efforts in cognitive linguistics to try to understand
language processing in the human brain. Studying brain imaging data to confirm
cognitive linguistic theories and to understand human capabilities and biases for learning
language is the other side of this coin which is extensively explored [Caramazza and
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Zurif, 1976, Damasio et al., 1996, Devlin et al., 2004, Ettinger et al., 2014, Friederici,
2002, Hagoort, 2005, Patel, 2003, Solomyak and Marantz, 2010, Ullman et al., 1997,
Wang et al., 2003].

Inevitably, these two lines of research, understanding how neural networks learn and
process language and how language is processed in the human brain, have crossed.
Besides, exchanging probing techniques and processes across these two worlds, deep
learning and cognitive science, we can use neural network language models to shed light
on how the human brain processes language and use brain signals and our understanding
of how the human brain works to evaluate neural language models.

Research on using computational simulations for providing evidence to validate or
invalidate various language acquisition or evolution theories with symbolic or connec-
tionist approaches is not new [Alhama and Zuidema, 2019, Frank and Tenenbaum, 2011,
Hausser and Hausser, 2001, Plunkett and Marchman, 1991, Wintner, 2010].

Neural networks, i.e., connectionist approaches, provide a nice test bed for evaluating
theories of cognition. In contrast to symbolic models, with neural networks, we have
more degrees of freedom for the type and strength of the inductive biases. With symbolic
models, we need to have some prior knowledge and assumptions about how the task at
hand needs to be solved. This is not necessarily the case for neural networks, and we
can apply weaker notions of inductive biases rather than dictating the solution to the
model. E.g., instead of having a model that can only learn hierarchical solutions, we can
have a model that has a bias toward learning hierarchical solutions. The downside of
using neural networks for the computational modelling of cognitive phenomena is their
interpretability challenge, as the characteristic of the solutions these models converge to
are intractable. On the plus side, understanding the underlying mechanisms of these
models is way easier than probing the human brain.

To close the loop and bridge the efforts in neuro-linguistics and computational linguistics,
we need computational modelling frameworks that not only can account for the abilities
of humans to learn language at the behavioural level but can also explain the neurological
signals from the human brain when learning and processing language. For example,
we can build neural networks that learn to process language and use the internals of
these models to predict the brain signals of human subjects, while they are performing
a similar task. While this has been the focus of many recent research [Alishahi et al.,
2020, Beinborn et al., 2019, Caucheteux and King, 2021, Chehab et al., 2021, Gauthier
and Ivanova, 2018, Heilbron et al., 2021, Jain and Huth, 2018, Mitchell et al., 2008,
Murphy et al., 2012, 2018, Schrimpf et al., 2020, Schwartz and Mitchell, 2019, Sun
et al., 2019a, Toneva and Wehbe, 2019], there are still many questions and unresolved
challenges that require our attention.

One thing that is often missing in these studies is ensuring that improvements in the
performance of the models or their behavioural similarity with human subjects at
different levels are causally correlated with their capacity to explain brain signals.
Another major issue, especially when using neural network models, is our lack of
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understanding of what is captured in the representation of the models as well as in the
neurological signals. Here, the question is how do we probe one black box with another
one? Can we learn any new insights about how language is learned and processed in
neural network language models or the human brain, solely by comparing black boxes?
And how can the efforts for the interpretation of neural networks fill in the gaps? We
believe exploiting and extending the interpretability toolkit for better understanding the
underlying mechanisms and processes implemented by neural network language models
is an essential part of the efforts for better understanding how language is implemented
in the human brain through the lens of neural networks.

1.4 Overview of the Thesis

In this thesis, we follow prior work on using neural networks to understand inductive
biases that are necessary or helpful for learning a natural language. For this purpose, we
investigate neural network models with different architectures trained under different
settings and with different language modelling related objectives.

We ask: what are the inductive biases that are useful, or necessary for learning to process
language and whether they are connected to human cognitive processes and learning
biases? To address the aforementioned challenges we aim to first understand the effect
of different sources of inductive biases. Different architectural choices in designing
neural networks along with the training algorithms and objective functions provide
different kinds of inductive biases that affect different qualitative factors of the solutions
these models converge to.

By investigating the effects of these factors and comparing the solutions under different
conditions to each other and also to signals from human references, we can investigate
the connection between different sources of inductive biases in neural networks and the
learning biases of humans. If we find a specific set of inductive biases that significantly
push the behaviours of the models and the characteristics of the solutions they learn
toward human language processing behaviour, we can use this as a shred of additional
evidence to support theories about the importance of those biases in the language
learning process.

Our focus, in this thesis, is exploring different techniques that allow us not only to
investigate the solutions neural network language models converge to but also how we
can make a bridge between the human brain and the computational models beyond the
performance of models and humans on different tasks.

1.4.1 Part I: Interpretation Techniques for Language Models

In part I, we employ and propose different techniques to study the characteristics
of different language models and the impact of different factors in the solution they
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converge to.

In chapter 2, we propose to use the representational similarity analysis framework
to study representations obtained from LSTM, non-autoregressive and autoregressive
Transformer based language models. We investigate how factors such as context length,
the architecture of the network, and training objective impact the representational spaces
of these models and how they evolve across layers. We argue that understanding how
the representational spaces evolve and change can shed light on the internal mechanisms
of these models.

In chapter 3, we focus on techniques specific to attention-based models, i.e., Transform-
ers. A straightforward approach for analyzing attention-based models is to investigate
the attention patterns in different layers of these models. In some cases, these attention
scores are treated as a proxy of the contribution of input tokens in the output of these
models. The major issue with these types of analysis is that they do not take the evo-
lution of token representations across layers of attention block into account. I.e., the
representations in the last layer of the model do not necessarily carry any information
about their corresponding input token. In our work, we try to understand how attention
scores in Transformer based models can be used to explain the characteristics of their
solutions by taking the propagation and mixing of information across the layers of these
models into account.

1.4.2 Part II: Models and Brain

In parallel to our efforts to understand the effect of different factors on the solutions
different neural language models converge to, in part II, we make an effort to build on
top of existing approaches that use brain activity patterns as a biological reference to
evaluate language models.

We start our journey, in chapter 4 by using regression techniques to predict and de-
code brain activity patterns to evaluate the similarity of representations obtained from
different word embedding models for nouns with brain signals. We find that general-
purpose word embedding models such as variants of word2vec are more correlated with
brain signals than hand-crafted word feature vectors that are specifically designed for
explaining brain signals collected in a particular study.

In chapter 5, we extend our efforts to more complicated settings where words are
provided in a context of a story to both humans and machines. Our ultimate goal is
to investigate the connection between the inductive biases of neural language models
and cognitive processes involved in language learning and understanding. We find
that, among existing neural network architectures, recurrence has a significant role in
facilitating learning structures needed to solve language tasks more similar to the human
brain.
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1.4.3 Part III: Closer Look at The Effects of Inductive Biases

In part III, we look more directly into the effect of inductive biases of models. Taking
into account our experiments in previous chapters, and considering the literature on the
advantages of recurrent neural networks in solving language tasks and their cognitive
relevancy, we try to understand the inductive biases of this family of models. Here, by
cognitive relevancy we mean (1) how these models, perhaps at a very abstract level,
are inspired and can be mapped to some cognitive or neural processes in the human
brain; and (2) how similar/aligned are the representations obtained from these models
to signals obtained from the human brain and if they can inform us about the underlying
mechanism of language processing in the human brain.

In chapter 6 we break down the roots of the recurrent inductive bias into three factors of
(1) incremental processing of input, (2) memory bottleneck, and (3) parameter sharing
in time, and design experiments to qualitatively show the impact of each in processing
language.

Following these experiments, in chapter 7, we aim to use knowledge distillation as a
framework to compare the inductive biases of different neural network architectures,
and as a technique to empirically study the expressivity of neural networks architectures
versus the learnability of a desired generalizable solution for them. In this chapter, we
demonstrate that in the knowledge distillation process, having a teacher with proper
inductive biases and a student model that is efficient with respect to the teacher, the
effects of the inductive biases of the teacher model transfer to the student model.



PART

I

Evaluating Neural Language Mod-
els Beyond their Performance
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A major focus of recent research on deep learning has been to improve the expressivity
of machine learning models such that they are less complex in terms of space and time
at training and inference. We have come a long way from multi-layer-perceptrons,
to different variants of RNNs [Cho et al., 2014, Hochreiter and Schmidhuber, 1997,
Jordan, 1997], CNNs [LeCun and Bengio, 1998], and Transformer models [Vaswani
et al., 2017]. However, having an expressive enough model that has the capacity and
power to estimate or execute the target functions or processes of interest is just one side
of the story.

In parallel to this, there has been a lot of efforts to understand how one can efficiently
guide these models toward the target solution and benefit from their expressivity by
carefully designing the optimization algorithms and training strategies, baking in the
proper inductive biases, and preparing quantitatively and qualitatively sufficient data
for training and evaluating these models [Devlin et al., 2019, Dosovitskiy et al., 2021,
Radford et al., 2021].

The common approach for measuring the progress along these axes is the performance of
the models on a set of benchmark datasets in both in-distribution and out-of-distribution
settings, and there exist many efforts addressing the need to have unbiased and diverse
benchmarks. However, there is always a chance that the models find shortcuts to
achieve high performance on given benchmarks without generalizing in an intended
manner [Geirhos et al., 2020], and we need proper probing techniques to compare and
understand the characteristics of the solutions the models converge to.

The many hyper-parameters that can impact the performance of the models, such as their
architecture, regularization techniques, the optimization algorithm and the dataset used
to train them, along with their inherent underlying mechanism that does not directly
map input features to outputs, e.g., having multiple layers and different sources of
non-linearity, have raised many questions and concerns about why, when, and how these
models work?

Not only understanding the underlying mechanisms and the successes and failures of
existing models can lead us toward more powerful and robust models, but also it is
necessary to be able to know when we can rely on these models in practical settings.

Among the approaches for evaluating neural networks beyond their performance on
given benchmarks, the most common practices are:

• Diagnostic Classification [Tenney et al., 2019b, Veldhoen et al., 2016, Voita and
Titov, 2020]: which tries to understand the underlying mechanisms of the models
by revealing the information predictable by different components of the models.

• Comparative analysis of representational spaces of different models [Abnar et al.,
2019, Kornblith et al., 2019, Laakso and Cottrell, 2000]: which focuses on how
representational spaces of the models and their different component evolve during
training, or how different factors impact the representational spaces of the models
at different levels.
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• Feature attribution methods [Lundberg and Lee, 2017]: which are mainly con-
cerned with identifying which parts of the input are used by the models, at
different stages, in order to make certain predictions.

• Instance attribution methods [Koh and Liang, 2017, Pezeshkpour et al., 2021]:
which are concerned with how the prediction of the models is influenced by
different instances in the training data.

• Profiling the performance of models with respect to a wide range of tasks and
metrics, other than metrics that are necessarily correlated with the training objec-
tive [Srivastava et al., 2022]. Or exploring the performance of models through
different ways of interaction mechanisms with them. E.g., different ways of
priming or prompting [Liu et al., 2022, Sinclair et al., 2022, Wei et al., 2022].

Our main goal here is to explore different interpretation techniques to understand how
different choices of network architecture and training objectives for models of language
impact the solution they converge to. Different network architectures and different
training objectives can impose different inductive biases on models, which could lead
the models toward different solutions. We are interested in the cognitive relevancy of
different design choices in building language models, and here we take the primary step
to recognize factors with non-trivial effects on the final solution the models converge to.

In chapter 2, we propose to use representational similarity analysis to obtain a better
understanding of the impact of model architecture and training objective on the final
solution by comparing representational spaces of different models and different compo-
nents of the same model. In chapter 3, we propose simple techniques that can improve
the interpretability of attention weights in self-attention-based models, which can then
be used to quantify the information flow in stacks of self-attention layers and uncover
the internal processes of these models.



2
Analyzing Representational Spaces

Representational similarity analysis allows us to compare heterogeneous representa-
tional spaces [Laakso and Cottrell, 2000]. The key idea is simple: instead of directly
trying to map the dimensions of the representational spaces, we measure the relational
similarity between them, by first constructing a similarity/co-variance matrix for each
model. This approach of comparing representational spaces has two advantages: (1)
It treats representational spaces as blackbox; it does not need to know how a model
represents objects, words or sentences, but only how similar those representations are
to each other; (2) It is invariant to trivial general changes in the spaces, e.g., when
everything shifts or scales.

In this chapter, we propose to use representational similarity analysis for understanding
the importance and effect of different factors in the solution the models converge to, by
measuring the sensitivity of the representational spaces to isolated changes. We call

This chapter is an extension of primary experiments presented in the following paper (most of the
content is not published before).

• Samira Abnar, Lisa Beinborn, Rochelle Choenni, and Willem Zuidema. 2019. Blackbox Meets
Blackbox: Representational Similarity & Stability Analysis of Neural Language Models and
Brains. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pages 191–203, Florence, Italy. Association for Computational
Linguistics.

• List of contributions is as follows. Samira Abnar: Designing and running the experiments, Writing
the paper. Lisa Beinborn: Contributed to the discussion about the paper. Helped in revising the
earlier versions of the paper. Rochelle Choenni: Contributed to the discussion about the paper.
Helped with some of the visualizations. Willem Zuidema: Guiding the research, Writing the
paper.
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this approach Representational stability analysis (ReStA). While in representational
similarity analysis, we compare representations in models, and model components,
ReStA compares instances of the same model, while systematically varying a single
parameter.

2.1 Representational Similarity

Model comparison beyond the final performance of the models on a set of benchmarks
can potentially shed light on understanding the cons and pros of different choices made
in building and training them as well as understanding their underlying mechanisms.

Diagnostic classification and probing [Conneau et al., 2018, Hupkes et al., 2018,
Veldhoen et al., 2016, Voita and Titov, 2020] rely on discrete/symbolic representational
spaces, i.e., different ways of classifying/clustering input examples. Moreover, these
approaches are applied in a more in-direct setup, e.g., if we want to compare model
A with model B, we define a set of rules/properties, and measure independently how
much of these rules and properties are captured by each model. In this chapter, we focus
on methods that allow us to directly compare the representational spaces of different
models, and use these methods to investigate the difference between various language
models as well as to understand what kind of information is captured by different
components of these models.

How can we gain any insights about the characteristics of a solution a model converges
to by looking into its representational space? One approach could be to compare the
representational space of the model we want to study with the representational space of
other models with strong inductive biases toward specific solutions. The main challenge
then would be to identify the hypothetical solutions a priori and have a mechanism to
explicitly implement them.

Another approach would be to compare the representational spaces in controlled setups
where the roots of their differences are known to us in advance. Often we work
with models that have different characteristics, e.g., have different architectures, are
trained under different regimes and with different training data, etc. Comparing the
representational spaces of models with such differences in controlled settings can lead
to new insights about the underlying mechanisms of the models. By measuring how
much a certain choice in designing and/or training a model impacts the representational
space of the model, we can infer if information relevant to that particular design
choice is reflected in the representational space. For example, by studying how the
representations evolve across different modules, or during training, we can speculate
about the underlying reasoning processes of the models.

Representational Space We can define representational space as the mapping from
input examples, xi ∈ X = {x0, x1, ...xn}, to a d dimensional space: G : X → G(X).
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When the goal is to compare the representational spaces of different components of
neural networks, the comparison technique should satisfy two main criteria: 1. Appli-
cable across heterogeneous models, and representations with different dimensionality.
2. Invariant to trivial changes in the representations. As discussed in [Kornblith et al.,
2019], given two representational spaces of G and F, we seek metrics that are:

1. Invariant to orthogonal transformations, i.e.,

d(G, F) = d(GU, FV), (2.1)

where U and V are full-rank orthonormal matrices.

2. Invariant to isotropic scaling, i.e.,

d(G, F) = d(αG, βF) (2.2)

In this chapter, to compare representational spaces, we rely on a technique which is
commonly referred to as RSA (Representational Similarity Analysis) which is based
on measuring the similarity/correlation of the relations between examples in the given
representational spaces. In part 2, where we compare computational models of language
with brain activity patterns, we use linear regression besides RSA.

In this section, we provide an overview of different methods for computing similar-
ity/correlation between two given representational spaces. Methods for comparing
representational spaces can be grouped into two main groups of methods based on
regression and methods based on the relational similarity of the representations. Below
we briefly explain existing approaches in these two categories. Our aim is to provide
a complete picture of existing methods for comparing representational spaces. In this
chapter, we mainly rely on a technique which is commonly referred to as RSA (Repre-
sentational Similarity Analysis). In part 2, where we compare computational models of
language with brain activity patterns, we use linear regression as well.

2.1.1 Regression

An intuitive way to measure the similarity of two representational spaces is to investigate
how well the representations obtained for a set of examples from the two spaces are
predictable given one of them. An advantage of regression methods is that they assign
weights to feature dimensions, hence can provide us with indicators of the relation
between individual feature pairs (each dimension). When using regression-based
approaches it is important that we use separate training and test sets when measuring
the similarity of different representational spaces. Otherwise, especially when dealing
with high-dimensional spaces, it might be trivial to find a mapping between any two
feature spaces. To measure linear predictability different metrics are often used:
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• Distance between the target and predicted representations (e.g., cosine or eu-
clidean distance).

• Explained variance (fraction of variance explained by the predicted representa-
tions):

R2 = 1− ∑ yi − ŷi

∑ yi − ȳ
(2.3)

• A notion of accuracy based on the nearest neighbor concept (e.g., the accuracy
metrics used by Mitchell et al. [2008] and Wehbe et al. [2014a]). E.g., given two
pairs of examples, if the predicted representation of each example is closer to
its ground truth representations than the ground truth representation of the other
example, they count it as a correct prediction and incorrect otherwise.

Multivariate Linear Regression We can use linear regression or Gaussian process
regression with different kernels to quantify the similarity between two representational
spaces, G and F.

If F is predictable from G, d(Wg→ f G + Bg→ f , F) < ε, and G is predictable from F,
d(W f→gF + B f→g, F) < ε, we can argue that F and G contain similar information.

Canonical Correlation Analysis Canonical Correlation Analysis (CCA) is a multi-
variant statistical analysis method to measure the linear association between two sets
of random variables. Given n samples from a dataset, X = x1, x2, ...xn, to take into
account the relation and dependence between the variables in each representational
space, CCA quantifies the similarity between F(X) and G(X) by considering canonical
variables, a set of variables u and v that are linear combinations of variables of F(X)
and G(X), respectively.

ui = aiF = [ai1 f1 ai2 f2 ... ai|F| f|F|]

vi = biG = [bi1 g1 bi2 g2 ... bi|F|g|F|]
(2.4)

In the above equation, ui and vi are the ith canonical variables and ai and bi are each
the set of coefficient factors for the features of F and G respectively, where |ai| = |F|
and |bi| = |G|. The goal is to find a and b such that given X, u1 and v1 have
maximum correlation coefficient (ρi), for j > i, ρj < ρi and for i 6= j, ui and vi are
uncorrelated. Intuitively, this means linearly projecting each representational space
such that the correlation between them is maximized and keeps doing this as many
times as the projections of each space remain orthogonal, i.e., rows of U and V are
orthogonal. That would give us min(rank(F), rank(G)) correlation coefficients, i.e.,
|U| = |V| = min(rank(F), rank(G)). Often the mean correlation coefficient is used
as a measure of the similarity of F and G. This way of computing similarity between
two representational spaces is invariant to invertible linear transformations.
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To compute this we can take the singular value decomposition of Σ−1/2
f f Σ f gΣ−1/2

gg :

Σ−1/2
f f Σ f gΣ−1/2

gg = ŨDB̃T (2.5)

In this equation, Σ is the covariance matrix and D is a diagonal matrix containing the
square of canonical correlation coefficients.

Singular Vector Canonical Correlation Analysis In order to reduce the effect of
noise in measuring the similarity between representational spaces in CCA, Raghu
et al. [2017] proposes Singular Vector Canonical Correlation Analysis (SVD), which
applies SVD to select the most important directions in the representational spaces before
applying CCA.

Projection-Weighted Canonical Correlation Analysis Having the canonical corre-
lation coefficients, assuming all canonical variables are equally important, we can use
their mean as an indicator of the similarity between two representational spaces. Morcos
et al. [2018] argues that this way of measuring similarity could potentially underestimate
the similarity between the high dimensional representations obtained from layers of
neural networks. Morcos et al. [2018] proposed Projection-Weighted CCA that assigns
weights to the canonical correlation coefficient based on the importance of their corre-
sponding canonical variables to the underlying representational spaces. In [Morcos et al.,
2018] the importance of the canonical variables is estimated based on the proportion of
the original representations that they account for and they measure this in terms of dot
product similarity of the canonical variables and the original representations.

2.1.2 Relational Similarity

To overcome the issue of comparing representations obtained from heterogeneous
models and also to deal with trivial differences between representational spaces, we
can represent the representational spaces in terms of the relations between different
examples as they are embedded in them. I.e., having a set of examples, and their
corresponding representations in the two spaces, instead of directly comparing the
representations of each example, we first model the relation between the examples in
each space and then measure their relational similarity, i.e., the similarity of similarities.

Similarity Matrix For a d dimensional representational space and a set of N exam-
ples, the similarity or co-variance matrix is a squared symmetrical matrix, ΣN×N , where
Σij, represents the similarity/co-variance between representations of examples i and j.
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Representational Similarity Analysis Representational similarity analysis (RSA) is
a technique which allows us to compare heterogeneous representational spaces [Laakso
and Cottrell, 2000] and is a common technique in cognitive neuroscience because it
allows researchers to study the relation between patterns of activation in the brain and
representations of stimuli in a computational model [Kriegeskorte et al., 2008].

Given a set of N examples from a dataset, and their corresponding representation F(X)
and G(X), RSA consists of two steps:

• Computing the similarity matrices Σ f and Σg for F and G, where Σ f
i,j and Σg

i,j are
the similarities between the representation of xi and xj in each representational
space respectively.

• Computing the correlation or similarity between the similarity matrices.

Often, in the first step, cosine distance is used to measure the similarity between the
representations within each space and in the second step a correlation metric such as
Pearson-R is employed. However, generally, at each stage, one can use any similarity
metric that is more appropriate based on the nature of the representations.

Centered Kernel Alignment Kornblith et al. [2019] shows that if in standard RSA,
the inner product is used as the similarity measure as shown in equation 2.6, the
similarity between representational similarity matrices reduces to Hilbert-Schmidt
Independence Criterion (HSIC).

Sim(F, G) = tr(FFTGGT) (2.6)

HSIC is a pairwise similarity metric that measures the dependence of two variables. It
generalizes 2.6 to inner products from reproducing kernel Hilbert spaces.

In practice and with finite samples n, and given K and L as kernel functions for F and G
respectively, HSIC can be estimated by:

HSIC(K, L) =
1

(n− 1)2 tr(KHLH) (2.7)

where H, K, L ∈ Rnxn, Kij := k( fi, f j), Li,j := l(gi, gj) and Hi,j := σij − 1
n .

For linear kernels, HSIC is equal to:

1
(n− 1)2 tr(FFTGGT) =

∥∥∥Cov(FT, GT)
∥∥∥2

F
(2.8)

HSIC is not invariant to isotropic scaling, hence, Kornblith et al. [2019] proposes to
use Centered Kernel Alignment (CKA), a normalized version of HSIC, to measure the
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similarity between two representational spaces:

CKA(K, L) =
HSIC(K, L)√

HSIC(K, K), HSIC(L, L)
(2.9)

One can use different kernels for computing CKA, Kornblith et al. [2019] tries linear
and RBF kernels and they find no significant difference between these two kernels in
their experiments. Since, this method is more widely used in machine learning literature,
in our experiments that are conducted later, we report linear CKA.

2.2 Representational Stability Analysis

We introduce the notion of Representational Stability Analysis (ReStA), where we
compare representational instances of the same model, while systematically varying a
single model parameter. ReStA is measured as RSA(Lk|ci

, Lk′|cj
), where k and k′ are

layer/component ids and ci and cj are different conditions. This gives us a probe to
measure the sensitivity of the representations to different factors.

This chapter presents the results of applying ReStA to different language encoding
models such as GoogleLM, ELMO and variants of Transformer based language models.
We investigate the relations between different components of the language encoding
models and the type of information that is captured in the learned representations
without making any explicit assumptions.

Varying Depth From prior work, we expect a relation between the depth of the
layers and the level of abstraction of their representations. We study this intuition here
empirically by analyzing the different layers of the models. Moreover, we investigate
the impact of increasing the number of layers on the representational space of different
variants of Transformer language models.

Varying Context Length Using language models to learn contextualized represen-
tations has been a significant milestone, enabling the application of representations
obtained from pre-trained language models on a variety of downstream tasks in natural
language processing. However, simply the fact that language models have access to the
contextual information during training and inference, doesn’t mean they will actually
exploit this information. Hence, we use ReStA to understand the role of context and
study how and where the models integrate information over time. To do so, we modify
the amount of context provided to the models to obtain the contextualized word repre-
sentations. We do this at the sentence level. Thus, for the context length of 0, we only
feed the target words to the models; For context length 1, we feed all the previous words
in the current sentence to the models. For context length i where i > 1, in addition to
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the current sentence we feed all the words in the last i sentences. We operate on the
sentence level to feed the model with independently meaningful pieces of text.

Different Objectives and Different Network Architectures In our studies, we con-
sider language models with different architectures (i.e., LSTMs and different variants of
Transformers), and different language modelling objectives (e.g., next word prediction,
masked language modelling and replaced token detection). By comparing the repre-
sentational spaces of these models, under different conditions, we aim to understand
if the combination of network architecture and objective have a significant role in the
solutions these language models converge to.

Figure 2.1: Representational similarity between layers of different Bert style transformer language
models. The similarity score is measured in terms of CKA, Equation 2.9, over 100 sentences (words)
from the Penn Tree Bank dataset. On the diagonal, we see the similarity score of 1.0 since it indicates the
representational similarity of each layer with itself. We also observe high similarity scores in off-diagonal
elements close to the diagonal. This indicates a smooth transformation of representations across layers.
Additionally, we see that for all these models the last layer is the least similar to all the other layers.

2.2.1 Effect of Depth

In this section, we study the representations obtained from different layers of auto-
regressive and non-auto-regressive language models and investigate how the representa-
tional spaces of various language models evolve across layers.
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Figure 2.2: Representational similarity between subsequent layers of different Bert style transformer
language models. The similarity score is measured in terms of CKA, Equation 2.9, over 100 sentences
(words) from the Penn Tree Bank dataset.

Figure 2.1 illustrates the similarity between different layers for different variants of
Transformer language models trained with the masked language modelling objective
(BERT style) with different model sizes (base with 12 layers and large with 24 layers,
in terms of CKA score. To show, more clearly how much the representations change in
each layer, Figure 2.2, depicts the CKA similarity score between subsequent layers of
Bert-style transformer models.

We observe that neighboring layers have more similar representations and the represen-
tational spaces gradually diverge as we move across the layers. Interestingly, between
some of the layers, we observe a stronger divergence. This is more apparent for the last
layer of all models except Alberta. This can be rooted in the fact that the last layer of
the model carries most of the responsibility of capturing the task (objective) relevant
features. For Alberta, the changes even at the last layer are less significant, which can
be explained by the weight-sharing mechanism across layers. It appears that sharing
weights in depth can enforce effective computations to distribute across the layers in a
more uniform manner.

Additionally in some cases, e.g., Electra, Longformer, and Roberta, we can identify
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Figure 2.3: 2d projection of representational spaces of layers of Bert style transformer language models
based on their pairwise CKA similarity. We observe that models from the same family (same architecture,
same objective, same training data), with different sizes, follow similar trajectories, where shorter models
take larger steps across the layers.

two or more blocks of layers, where layers within a block are more similar. The block
boundaries are clearer in larger models (models with more layers), where generally the
evolution across the layers is smoother. It is not obvious from this analysis what these
blocks correspond to, but it is a curious case for further investigations. For example,
does this mean that we can prune these layers without losing any performance?

Figure 2.3 is a 2d projection of all layers of all the Bert-style language models we are
investigating based on their pairwise CKA similarity score. We can see that (a) layers
of models with the same architecture and training objective but a different number of
layers follow the same path for most of the cases, (b) the representations obtained from
a different layer of different models diverge as we get closer to the penultimate layer
which could be an indicator that the representations become more task-specific as they
evolve across the layers, and (c) Representational space of Electra, which has a slightly
different objective are further away and are following a completely different trajectory
compared to the rest of the models. We also, observe that the representational spaces of
Roberta and Longformer models are relatively tied together. This can simply be a side
effect of the fact that Longformer models are initialized with Roberta checkpoints, and
it is interesting to note that the representational spaces are relatively stable throughout
the training process of Long-former models. They remain similar to Roberta, even
though the ability of these models to deal with longer-range sequences is improved
significantly.

Based on these figures, it seems, the effect of increasing the number of layers is merely
a smoother transition across layers, and when we track how representations change
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Figure 2.4: Representational similarity between all layers of different auto-regressive transformer
language models. The similarity score is measured in terms of CKA, Equation 2.9, over 100 sentences
(words) from the Penn Tree Bank dataset.

across the layers, representations obtained from different layers of the models with the
same architecture, same training objective, and same training data that differ only in
hyper-parameters such as depth and width converge not only through the same path but
also to the same final point.

For auto-regressive transformer language models, in Figures 2.4 and 2.5, we see that
for GPT-2 the representational spaces are less sensitive to the depth of the layer for
the most part. I.e., there is a significant change in the first and the last layer and the
middle layers are structured into one or a few blocks. On the other hand, OpenAi-
GPT seems to have slightly different behaviour, i.e. the similarity scores between the
intermediate representations are relatively lower. It is intriguing how scaling the size
and diversity of datasets from GPT to GPT-2 results in a solution with completely
different characteristics. One possible explanation here could be that as the diversity
of the data for GPT-2 is much higher, its representational space has to be much denser
which could generally result in the distance between representations being smaller. If
this is the case, then the observation here is mostly revealing a bias of the similarity
metric we have applied, and a potential solution to this issue could be normalizing the
distances to take the density of the representational space into account.

2.2.2 Sensitivity to Context Length

Different language models, depending on their inductive biases and the data that they are
trained on, could potentially implement different strategies to incorporate context. We
can characterise the contextualization process by the general context sensitivity of the
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Figure 2.5: Representational similarity between subsequent layers of different auto-regressive transformer
language models. The similarity score is measured in terms of CKA, Equation 2.9, over 100 sentences
(words) from the Penn Tree Bank dataset.

models as well as the difference between the context-sensitivity of different components
of these models.

Figure 2.6, illustrates a few different possible ways that a language model with multiple
layers can mix contextual information with the information from each specific token.
For example, every layer can contribute equally in incorporating the context into
the representations, Figure 2.6a, the contextualization can happen in the final layers
of the model after the individual representations are processed for a number of steps,
Figure 2.6b, or initial layers of the model can contribute the most in the contextualization
process, Figure 2.6c. These are just a few different examples and in practice, models
could implement more complex contextualization mechanisms depending on their
architecture, objective function, training data and other factors.

We aim to use the representational stability analysis technique for investigating the
contextualization process in language models. We focus on the length of the prior
context presented to the model as the condition. Varying the amount of context allows
us to quantify the degree of context-dependence of different neural language models,
and the different components of those models. If internal representations are similarly
organized regardless of how much additional context is presented to the model, context-
dependence is low. If, on the other hand, representations change with each additional
amount of context included, context-dependence is high. Using this approach, we find
intriguing differences between different neural language models (GoogleLM, ELMO,
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(a) (b) (c) (d) (e)
Figure 2.6: Symbolic diagram of different strategies for incorporating context in language models.

BERT and the Universal Sentence Encoder; Table 2.1), and between the first and deeper
layers of those models.

In Figures 2.7 and 2.9a, we see that for both LSTM-based models, GoogleLM and
ELMO, the first layer, L0, is less sensitive to the changes in the context length compared
to the last layer, L1, i.e. the representations are not affected anymore by increasing the
context length to more than 3 sentences. A hierarchical encoding mechanism, where
the first layer is responsible for encoding the local context and the second(last) layer is
encoding more global information, can justify these results.

As we can see in Figure 2.7 and more clearly in Figure 2.8, for the LSTM-based models,
we observe a higher degree of similarity between the two layers (∼ 0.75 and ∼ 0.80)
compared to BERT (∼ 0.35). This can be partly explained by the higher number of
layers in BERT, i.e the first and the last layer are further apart. Moreover, the relation
between the first and last layers is almost the same for all context lengths and for all
these three models the two layers are most similar when provided with the same amount
of context.

We can see in Figure 2.9a, that the sensitivity to the context length is more significant in
the Transformer based models compared to LSTM-based models. In these models, the
difference in the representations at different context lengths does not fade away as the
context length increases but the rate of the changes becomes constant. As illustrated
in Figures 2.9a and 2.7c we observe that in BERT, regardless of the current context
length, adding more context leads to different representations. Since in self-attention
layers, there is a direct connection between the representations at different positions,
the higher degree of sensitivity to context length is not surprising. This is evidence that,
for computing the representations of each position in the input, the representations from
all positions, no matter how far they are, are in fact taken into account.

We also observe that, in BERT, the representations from the first layer, L0 are more
context-dependent than those from the last layer, L11, for long context lengths (context
lengths longer than 1 sentence). To further investigate this, we look into the context
sensitivity of different layers of Transformer based language models, Figures 2.10
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(a) GoogleLM (b) ELMO

(c) BERT
Figure 2.7: Representational similarity score between different layers of each model given different
context lengths in terms of the number of previous sentences over the story words. In these plots, for
example, L1_c3 means representation from layer 1 when the context length is 3 sentences including the
current sentence. When c = 0, the model only sees the current words and when c = 1 the model sees the
current sentence up to the target word. Here darker means more similar. The values are averaged over the
four story blocks and the standard deviation of all the values across the four blocks is below 0.002.
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GoogleLM(L0→L1) Elmo(L0→L1) BERT(L0→L02) BERT(L0→L1)

Figure 2.8: Layer similarities (RSA(Lk_ci, Lk+1_ci). Here we show how increasing context length
affects the similarity between different layers of the models.)
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(a) Context Sensitivity
(RSA(Lk_ci, Lk_ci+1))

0 1 2 3 4 5

0

0.2

Context Length

(b) Changes in Context Sensitivity
(δRSA(Lk_ci, Lk_ci+1))

Figure 2.9: Changes in RSA by increasing context length. (a) Shows how the amount of difference in
the representational spaces changes by increasing the context length. (b) Shows for all models that we
study, regardless of whether and how much their representations change by increasing context length, the
amount of difference becomes almost constant after context length of 3 sentences. Note that in (b), we
have scaled the plot and removed some of the models to increase the readability.

to 2.15. Observing the patterns in these plots we can hypothesize about the potential
contextualization process implemented by these models.

We can see, in Figures 2.10 and 2.11, for both OpenAI-GPT and GPT-2 (small), all
layers are more or less sensitive to changes in context length when the context is short
(when we increase context length from 0 to 1 sentence). The main difference between
GPT-2 (small) and OpenAI-GPT is the scale and diversity of the dataset they are trained
with. GPT-2 is trained on a much larger and diverse dataset. Evidently, this has led to
higher degrees of context-sensitivty for shorter context lengths in GPT-2 in all layers,
and more strongly in the first and last layers. Additionally, OpenAI-GPT, the model
that is trained with smaller scale data, shows higher degrees of context sensitivity in the
intermediate layers when the context is longer. Without further investigations, it is not
possible to explain these observations beyond what they are: scaling dataset, impacts
the solutions these models converge to as characterized by how they incorporate context.
Since, empirically, it is shown that GPT-2 performs better and has a better generalization
power than OpenAI-GPT, one can argue that sensitivity to longer context in OpenAI-
GPT could be a sign of memorization or as mentioned earlier this observation could be
biased since the method is not sensitive to the density of points in the representational
space.

In Figure 2.12, we see the context sensitivity pattern of different layers of BERT. Note
that we see a similar pattern to Figure 2.7c. While the first layer is more sensitive
to changes in context length, when context length is already longer than a sentence,
the representations in the last layer change more dramatically when the context length
increases from 0 to 1 sentence. Different context sensitivity patterns in the initial and
final layers of BERT could be an indicator of the different roles that context plays in
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Figure 2.10: Context sensitivity of different layers of OpenAI GPT evaluated on 100 sentences from 100
different paragraphs from Book Corpus. We observe that lower intermediate layers are most sensitive to
changes in context length.
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Figure 2.11: Context sensitivity of different layers of GPT2 evaluated on 100 sentences from 100 different
paragraphs from Book Corpus. We observe that the first layer is most sensitive to the changes in context
length when context length is longer (more than 1 sentence), and all the intermediate layers are equally
sensitive to changes in context length for short context (change from none to 1 sentence.)
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Figure 2.12: Context sensitivity of different layers of BERT evaluated on 100 sentences from 100 different
paragraphs from Book Corpus.
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these layers, e.g., in the initial layer the role of context is to help to disambiguate the
meaning of each token, whereas in the final layers, and more specifically last layer the
role of context depends on the objective which here is predicting the masked tokens.

Comparing BERT and Albert, Figures 2.12 and 2.13, investigating the role of architec-
tural inductive biases, we see a significant difference. In Albert, the contextualization
process is almost equally distributed across the layers (except for the last layer). This
can be explained by the weight-sharing mechanism in Albert which biases this model
to have similar computations across the layers. Additionally, in Albert, the context
sensitivity increases through the first few layers and decreases again toward the last
layer, Figure 2.13. This is interesting as we don’t observe a similar trend in BERT or
Long-former. We speculate, that the initial increase in context sensitivity, indicates a
hierarchical encoding mechanism, similar to LSTM. This can be rooted in the partial
recurrent inductive bias that this model has as a result of its parameter sharing in depth.

Comparing BERT and Electra, Figures 2.12 and 2.14, investigating the role of the
objective function, we observe contrasting patterns. While in BERT the last layer is
most sensitive to variation in context length for shorter context lengths, in Electra the
last layer is the least context-sensitive layer (similar to Albert), and the initial and
intermediate layers are the most context-sensitive.

Finally, in Long-former, Figure 2.15, the model that is designed and trained to be able to
deal with long sequences, by incorporating specific attention patterns, and being trained
on longer sequences, all layers are sensitive to both short and long context while the
degree of context sensitivity gradually decreases as we move to toward the final layer.

We show here that using ReStA to characterize the way different models incorporate
context into their representations we can reveal interesting differences in the solutions
models with different inductive biases and training data converge to.

2.3 Representational Similarity Across Models

Finally, we study whether different language models have learned inherently different
solutions by directly comparing their representational spaces. According to repre-
sentational similarity scores, among the models that we study, shown in Figure 2.16,
UniSentEnc seems to learn very different representations from ELMO, GoogleLM and
BERT. While BERT and UniSentEnc are both Transformer based models, the representa-
tional space of BERT is more similar to the representations from ELMO and GoogleLM
which are LSTM-based models. This can be due to the fact that ELMO, GoogleLM and
BERT are trained with language modelling objectives, while UniSentEnc is trained on
skip-thought and classification tasks and this could indicate the effect of the training
objective on the representational spaces.
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Figure 2.13: Context sensitivity of different layers of Albert evaluated on 100 sentences from 100
different paragraphs from Book Corpus. We observe that all layers except the last layer show significant
context sensitivity, and the intermediate layers have the highest context sensitivity.
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Figure 2.14: Context sensitivity of different layers of Electra evaluated on 100 sentences from 100
different paragraphs from Book Corpus. We observe that intermediate layers are most sensitive to
changes in the context length.
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Figure 2.15: Context sensitivity of different layers of Long-former evaluated on 100 sentences from 100
different paragraphs from Book Corpus. We observe that all layers show relatively significant context
sensitivity. The initial layer is the most context-sensitive layer and the context sensitivity gradually and
slightly decreases as we move up across the layers.
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Figure 2.16: Representational similarity across models

2.4 Conclusion

In this chapter, we overview different techniques for comparing representational spaces
of different models and introduce ReStA as a means to understand the impact of different
inductive biases of different language models on the solution they converge to.

ReStA uses a representational similarity metric to measure the stability of the represen-
tations obtained from the models when a condition such as context length is changed.
We argue that it is important to use a representational similarity metric that is easy to
compute and that is invariant to trivial changes in the representational spaces. Hence,
we use the standard representational similarity metric which compares the relational
similarity of two spaces and is commonly used in neuroscience.

We explore this technique to characterise the solutions learned by different neural
network-based language models. We find that both architectural differences, different
training objectives and training data have a noticeable impact on the representations
learned by the models and the way they change under different conditions. Not only,
the representations obtained from the final layers of models with different architecture,
language modelling objectives and training setup is different, but also they show different
behaviours in terms of how their representations evolve across layers.

Generally, we observe that for most models, representations obtained from different
layers of the models from the same family (same architecture, same objective, same
training data) but different sizes (different depth and width) follow a similar trajectory
and converge to very similar solutions in the last layers. The only difference is that
shorter models take larger steps (the gap between representations of two consequent
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layers is larger). On the other hand, factors such as training objective, scale and diversity
of training data, and some architectural differences lead to significant differences in
the characteristics of the solutions these models converge to. This is also evident
in our analysis of applying ReStA to analyze different contextualization strategies
implemented by different models, as well as our investigations of the evolution of
representations across layers in different models.

One of our major observations, besides the general difference across different models,
is that different forms of recurrence (in time or in depth), can lead the language models
to incorporate a hierarchical approach of integrating contextual information. We dive
deeper into the phenomena in chapter 6.

Our goal in this chapter is to show representational stability and similarity analysis can
help us understand the characteristics of the solutions neural networks converge to. We
believe this is a complementary technique to diagnostic classification and other probing
techniques, to reveal the effect of different inductive biases of neural networks.





3
Investigating Attention Patterns

In the Transformer model, “self-attention” combines information from attended em-
beddings into the representation of the focal embedding in the next layer. Thus, across
layers of the Transformer, information originating from different tokens gets increas-
ingly mixed. This makes attention weights unreliable as explanations of the importance
of input tokens across the layers. In this chapter, we consider the problem of quan-
tifying this flow of information through self-attention. We propose two methods for
approximating the attention to input tokens given attention weights, attention rollout
and attention flow, as post hoc methods when we use attention weights as the relative
relevance of the input tokens. We show that these methods give complementary views
on the flow of information, and compared to raw attention, both yield higher correlations
with importance scores of input tokens obtained using an ablation method and input
gradients.

This chapter is based on the following paper.

• Samira Abnar and Willem Zuidema. 2020. Quantifying Attention Flow in Transformers. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
4190–4197, Online. Association for Computational Linguistics.

• List of contributions is as follows. Samira Abnar: Designing and running the experiments, Writing
the paper. Mostafa Dehghani: Designing the experiments, Reviewing and revising the paper.
Willem Zuidema: Supervision and guiding the research, Reviewing and revising the paper.
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(a) Embedding attentions (b) Attention rollout (c) Attention flow
Figure 3.1: Visualisation of attention weights.

Figure 3.2: Raw Attention maps for the CLS token at different layers.

3.1 Quantifying Attention Flow in Transformers

Attention [Bahdanau et al., 2015, Vaswani et al., 2017] has become the key building
block of neural sequence processing models, and visualizing attention weights is the
easiest and most popular approach to interpret a model’s decisions and to gain insights
about its internals [Chen and Ji, 2019, Clark et al., 2019, Coenen et al., 2019, Dehghani
et al., 2019, Lee et al., 2017, Rocktäschel et al., 2016, Vaswani et al., 2017, Wang
et al., 2016, Xu et al., 2015]. Although it is wrong to equate attention with explanation
[Jain and Wallace, 2019, Pruthi et al., 2019], it can offer plausible and meaningful
interpretations [Vashishth et al., 2019, Vig, 2019, Wiegreffe and Pinter, 2019]. In this
chapter, we focus on problems in interpreting attention weights arising when we move
to the higher layers of a model, due to the lack of token identifiability of the embeddings
in higher layers [Brunner et al., 2020].

We propose two simple but effective methods to compute attention scores to input
tokens (i.e., token attention) at each layer, by taking raw attentions (i.e., embedding
attention) of that layer as well as those from the precedent layers. These methods are
based on modelling the information flow in the network with a DAG (Directed Acyclic
Graph), in which the nodes are input tokens and hidden embeddings, edges are the
attentions from the nodes in each layer to those in the previous layer, and the weights of
the edges are the attention weights.

The first method, attention rollout, assumes that the identities of input tokens are linearly
combined through the layers based on the attention weights. To adjust attention weights,
it rolls out the weights to capture the propagation of information from input tokens to
intermediate hidden embeddings.
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The second method, attention flow, considers the attention graph as a flow network.
Using a maximum flow algorithm, it computes maximum flow values, from hidden
embeddings (sources) to input tokens (sinks).

In both methods, we take the residual connection in the network into account to better
model the connections between input tokens and hidden embedding. We show that
compared to raw attention, the token attentions from attention rollout and attention flow
have higher correlations with the importance scores obtained from input gradients as
well as blank-out, an input ablation based attribution method. Furthermore, we visualize
the token attention weights and demonstrate that they are better approximations of how
input tokens contribute to a predicted output, compared to raw attention.

It is noteworthy that the techniques we propose in this chapter, are not intended to
make hidden embeddings more interpretable, or to provide better attention weights for
better performance. Rather we aim at computing effective attention weights that take
token identity problem into consideration and can serve as a better diagnostic tool for
visualization and debugging.

3.1.1 Experimental Setup and Problem Statement

In our analysis, we focus on the verb number prediction task, i.e., predicting the
singularity or plurality of a verb of a sentence, when the input is the sentence up to the
verb position. We use the subject-verb agreement dataset [Linzen et al., 2016]. This task
and dataset are convenient choices, as they offer a clear hypothesis about what part of
the input is essential to get the right solution. For instance, given “the key to the cabinets”
as the input, we know that attending to “key” helps the model predict singular as output
while attending to “cabinets” (an agreement attractor, with the opposite number) is
unhelpful.

We train a Transformer encoder, with GPT-2 Transformer blocks as described in [Rad-
ford et al., 2019, Wolf et al., 2019] (without masking). The model has 6 layers,
and 8 heads, with a hidden/embedding size of 128. Similar to Bert [Devlin et al.,
2019] we add a CLS token and use its embedding in the final layer as the input
to the classifier. The accuracy of the model on the subject-verb agreement task
is 0.96. To facilitate replication of our experiments we will make the implementa-
tions of the models we use and algorithms we introduce publicly available at https:
//github.com/samiraabnar/attention_flow.

We start by visualizing raw attention in Figure 3.1a (like Vig 2019). The example given
here is correctly classified. Crucially, only in the first couple of layers, there are some
distinctions in the attention patterns for different positions, while in higher layers the
attention weights are rather uniform. Figure 3.2 (left) gives raw attention scores of the
CLS token over input tokens (x-axis) at different layers (y-axis), which similarly lack an
interpretable pattern. These observations reflect the fact that as we go deeper into the
model, the embeddings are more contextualized and may all carry similar information.

https://github.com/samiraabnar/attention_flow
https://github.com/samiraabnar/attention_flow
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This underscores the need to track down attention weights all the way back to the input
layer and is in line with findings of Serrano and Smith [2019], who show that attention
weights do not necessarily correspond to the relative importance of input tokens.

To quantify the usefulness or comprehensiveness of raw attention weights, and the two
alternatives that we consider in the next section,

besides input gradients, we employ an input ablation method, blank-out, to estimate
an importance score for each input token. Blank-out replaces each token in the input,
one by one, with UNK and measures how much it affects the predicted probability of
the correct class. We compute the Spearman’s rank correlation coefficient between the
attention weights of the CLS embedding in the final layer and the importance scores
from blank-out. As shown in the first row of Table 3.1, the correlation between raw
attention weights of the CLS token and blank-out scores is rather low, except for the first
layer. As we can see in Table 3.2 this is also the case when we compute the correlations
with input gradients.

Table 3.1: SpearmanR correlation of attention based importance with blank-out scores for 2000 samples
from the test set for the verb number prediction model.

L1 L2 L3 L4 L5 L6

Raw 0.69±0.27 0.10±0.43 -0.11±0.49 -0.09±0.52 0.20±0.45 0.29±0.39
Rollout 0.32±0.26 0.38±0.27 0.51±0.26 0.62±0.26 0.70±0.25 0.71±0.24
Flow 0.32±0.26 0.44±0.29 0.70±0.25 0.70±0.22 0.71±0.22 0.70±0.22

Table 3.2: SpearmanR correlation of attention based importance with input gradients for 2000 samples
from the test set for the verb number prediction model.

L1 L2 L3 L4 L5 L6

Raw 0.53±0.33 0.16±0.38 -0.06±0.42 0.00±0.47 0.24±0.40 0.46±0.35
Rollout 0.22±0.31 0.27±0.32 0.39±0.32 0.47±0.32 0.53±0.32 0.54±0.31
Flow 0.22±0.31 0.31±0.34 0.54±0.32 0.61±0.28 0.60±0.28 0.61±0.28

3.2 Attention Rollout and Attention Flow

Attention rollout and attention flow recursively compute the token attentions in each
layer of a given model given the embedding attentions as input. They differ in the
assumptions they make about how attention weights in lower layers affect the flow of
information to the higher layers and whether to compute the token attentions relative to
each other or independently.

To compute how information propagates from the input layer to the embeddings in
higher layers, it is crucial to take the residual connections in the model into account
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as well as the attention weights. In a Transformer block, both self-attention and feed-
forward networks are wrapped by residual connections, i.e., the input to these modules
is added to their output. When we only use attention weights to approximate the flow of
information in Transformers, we ignore the residual connections. But these connections
play a significant role in tying corresponding positions in different layers. Hence, to
compute attention rollout and attention flow, we augment the attention graph with extra
weights to represent residual connections. Given the attention module with residual
connection, we compute values in layer l + 1 as Vl+1 = Vl + WattVl, where Watt is
the attention matrix. Thus, we have Vl+1 = (Watt + I)Vl. So, to account for residual
connections, we add an identity matrix to the attention matrix and re-normalize the
weights. This results in A = 0.5Watt + 0.5I, where A is the raw attention updated by
residual connections.

Furthermore, analyzing individual heads requires accounting for the mixing of informa-
tion between heads through a position-wise feed-forward network in the Transformer
block. Using attention rollout and attention flow, it is also possible to analyze each head
separately. We explain in more detail in Appendix 3.2.1. However, in our analysis in
this chapter, for simplicity, we average the attention at each layer over all heads.

Attention rollout Attention rollout is an intuitive way of tracking down the informa-
tion propagated from the input layer to the embeddings in the higher layers. Given a
Transformer with L layers, we want to compute the attention from all positions in layer
li to all positions in layer lj, where j < i. In the attention graph, a path from node v at
position k in li, to node u at position m in lj, is a series of edges that connect these two
nodes. If we look at the weight of each edge as the proportion of information transferred
between two nodes, we can compute how much of the information at v is propagated to
u through a particular path by multiplying the weights of all edges in that path. Since
there may be more than one path between two nodes in the attention graph, to compute
the total amount of information propagated from v to u, we sum over all possible paths
between these two nodes. At the implementation level, to compute the attentions from
li to lj, we recursively multiply the attention weights matrices in all the layers below.

Ã(li) =

{
A(li)Ã(li−1) if i > j
A(li) if i = j (3.1)

In this equation, Ã is attention rollout, A is raw attention and the multiplication opera-
tion is matrix multiplication. With this formulation, to compute input attention we set
j = 0.

Attention flow In graph theory, a flow network is a directed graph with a “capacity”
associated with each edge. Formally, given G = (V, E) is a graph, where V is the set of
nodes, and E is the set of edges in G; C = {cuv ∈ R | ∀u, v where eu,v ∈ E∧ u 6= v}
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denotes the capacities of the edges and s, t ∈ V are the source and target (sink) nodes
respectively; flow is a mapping of edges to real numbers, f : E→ R, that satisfies two
conditions: (a) capacity constraint: for each edge, the flow value should not exceed its
capacity, | fuv ≤ cuv|; (b) flow conservation: for all nodes except s and t the input flow
should be equal to the output flow –the sum of the flow of outgoing edges should be
equal to the sum of the flow of incoming edges. Given a flow network, a maximum flow
algorithm finds a flow which has the maximum possible value between s and t [Cormen
et al., 2009].

Treating the attention graph as a flow network, where the capacities of the edges are
attention weights, using any maximum flow algorithm, we can compute the maximum
attention flow from any node in any of the layers to any of the input nodes. We can use
this maximum-flow-value as an approximation of the attention to input nodes.

In attention flow, the weight of a single path is the minimum value of the weights of the
edges in the path, instead of the product of the weights. Besides, we can not compute
the attention for node s to node t by adding up the weights of all paths between these
two nodes, since there might be an overlap between the paths and this might result in
overflow in the overlapping edges.

It is noteworthy that both of the proposed methods can be computed in polynomial time.
O(d ∗ n2) for attention rollout and O(d2 ∗ n4) for attention flow, where d is the depth
of the model, and n is the number of tokens.

3.2.1 Single Head Analysis

For analysing the attention weights, with a multi-head setup, we could either analyze
attention heads separately, or we could average all heads and have a single attention
graph. However, we should be careful that treating attention heads separately could
potentially mean that we are assuming there is no mixing of information between heads,
which is not true as we combine information of heads in the position-wise feed-forward
network on top of self-attention in a transformer block.

It is possible to analyse the role of each head in isolation from all other heads using
attention rollout and attention flow. To not make the assumption that there is no mixing
of information between heads, for computing the “input attention”, we will treat all the
layers below the layer of interest as single-head layers, i.e., we sum the attentions of all
heads in the layers below. For example, we can compute attention rollout for head k at
layer i as Ã(i, k) = A(i, k)Ā(i), where, Ā(i) is attention rollout computed for layer i
with the single head assumption.
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Figure 3.3: Attention maps for the CLS token
.

3.3 Analysis and Discussion

Now, we take a closer look at these three views of attention. Figure 3.1 depicts raw
attention, attention rollout and attention flow for a correctly classified example across
different layers. It is noteworthy that the first layer of attention rollout and attention
flow are the same, and their only difference with raw attention is the addition of residual
connections. As we move to the higher layers, we see that the residual connections
fade away. Moreover, in contrast to raw attention, the patterns of attention rollout and
attention flow become more distinctive in the higher layers.

Figures 3.2 and 3.3 show the weights from raw attention, attention rollout and attention
flow for the CLS embedding over input tokens (x-axis) in all 6 layers (y-axis) for three
examples. The first example is the same as the one in Figure 3.1. The second example is
“the article on NNP large systems <?>”. The model correctly classifies this example and
changing the subject of the missing verb from “article” to “articles” flips the decision of
the model.

The third example is “here the NNS differ in that the female <?>”, which is a miss-
classified example and again changing “NNS” (plural noun) to “NNP” (singular proper
noun) flips the decision of the model.

For all cases, the raw attention weights are almost uniform above layer three (discussed
before). In the case of the correctly classified example, we observe that both attention
rollout and attention flow assign relatively high weights to both the subject of the verb,
“article’ and the attractor, “systems”. For the miss-classified example, both attention
rollout and attention flow assign relatively high scores to the “NNS” token which is not
the subject of the verb. This can explain the wrong prediction of the model.
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(a) “The author talked to Sara about mask book.”
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(b) “Mary convinced John of mask love.”

Figure 3.4: Bert attention maps. We look at the attention weights from the mask embedding to the two
potential references for it, e.g. “author” and “Sara” in (a) and “Mary” and “John” in (b). The bars, at the
left, show the relative predicted probability for the two possible pronouns, “his” and “her”.

The main difference between attention rollout and attention flow is that attention flow
weights are amortized among the set of most attended tokens, as expected. Attention
flow can indicate a set of input tokens that are important for the final decision. Thus we
do not get sharp distinctions among them. On the other hand, attention rollout weights
are more focused compared to attention flow weights, which is sensible for the third
example but not as much for the second one.

Table 3.3: SpearmanR correlation of attention based importance with input gradients for 100 samples
from the test set for the DistillBERT model fine tuned on SST-2.

Layer 1 Layer 3 Layer 5 Layer 6

Raw Attentions 0.12 ± 0.21 0.09 ± 0.21 0.08 ± 0.20 0.09 ± 0.21
Attention Rollout 0.11 ± 0.19 0.12 ± 0.21 0.13 ± 0.21 0.13 ± 0.20
Attention Flow 0.11 ± 0.19 0.11 ± 0.21 0.12 ± 0.22 0.14 ± 0.21

Furthermore, as shown in Table 3.1 and 3.2 both attention rollout and attention flow, are
better correlated with blank-out scores and input gradients compared to raw attention, but
attention flow weights are more reliable than attention rollout. The difference between
these two methods is rooted in their different views of attention weights. Attention
flow views them as capacities, and at every step of the algorithm, it uses as much of the
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capacity as possible. Hence, attention flow computes the maximum possibility of token
identities to propagate to the higher layers. Whereas attention rollout views them as
proportion factors and at every step, it allows token identities to be propagated to higher
layers exactly based on these proportion factors. This makes attention rollout stricter
than attention flow, and so we see that attention rollout provides us with more focused
attention patterns. However, since we are making many simplifying assumptions, the
strictness of attention rollout does not lead to more accurate results, and the relaxation
of attention flow seems to be a useful property.

At last, to illustrate the application of attention flow and attention rollout on different
tasks and different models, we examine them on two pretrained BERT models. We use
the models available at https://github.com/huggingface/ transformers.

Table 3.3 shows the correlation of the importance score obtained from raw attention,
attention rollout and attention flow from a DistillBERT [Sanh et al., 2019] model fine-
tuned to solve “SST-2” [Socher et al., 2013], the sentiment analysis task from the glue
benchmark [Wang et al., 2018]. Even though for this model, all three methods have
a very low correlation with the input gradients, we can still see that attention rollout
and attention flow are slightly better than raw attention. Note that, low correlation with
blank-out (or any other empirical method to compute input attribution) is not necessarily
a negative outcome, as blank-out itself is not a perfect method for input attribution.

Furthermore, in Figure 3.4, we show an example of applying these methods to a pre-
trained Bert to see how it resolves the pronouns in a sentence. What we do here is to
feed the model with a sentence, masking a pronoun. Next, we look at the prediction
of the model for the masked word and compare the probabilities assigned to “her” and
“his”. Then we look at raw attention, attention rollout and attention flow weights of the
embeddings for the masked pronoun at all the layers.

In the first example, in Figure 3.4a, attention rollout and attention flow are consistent
with each other and the prediction of the model. Whereas, the final layer of raw attention
does not seem to be consistent with the prediction of the models, and it varies a lot
across different layers. In the second example, in Figure 3.4b, only attention flow
weights are consistent with the prediction of the model.

3.4 Attention Span of Transformer Language Models

We can study attention patterns as a proxy to estimate the context sensitivity of trans-
former models, as a complementary technique to the representational stability analysis
technique applied in chapter 2. We compute a metric we refer to as the “attention span
score” of the models. The attention span score for each query token is computed as
the weighted average of the relational positions of the key tokens (distance of the key
tokens to the query token) where the weights are the attention scores obtained from the
model. As showin in equation 3.2. In this equation, Q and K are the set of queries and

https://github.com/huggingface/transformers
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Figure 3.5: Attention span score based on raw attention and attention rollout for different layers of various
Transformer language models trained on masked language modelling. In this picture, the attention span
score is averaged for all heads in each layer. The attention span of a head is the average attention span
of a given set of sentences. The attention span score for each sentence is the maximum of the attention
span of its tokens, and the attention span score of each token is the weighted sum of its relative distances
from the other tokens in the sentence where the weights are the attention scores. We observe that the
attention span is increasing as we move toward the higher layers. That means layers closer to the output,
potentially, take a wider context into account.

keys in the attention module, dqk is the distance between the query node q and key node
k, and Aqk is the attention score from q to k.

attention_span = max
q∈Q

∑
k∈K

dqk ∗ Aqk (3.2)

For a given example, we can take the maximum attention span score of all its tokens,
and for a model, or a layer of a model, we can report the averaged attention span score
over a set of examples. In this section, we compare the average attention span scores of
several transformer language models, using raw attention weights, and attention weights
post-processed by attention-rollout.

First of all, we observe that the attention-span scores obtained from attention-rollout
change more smoothly across layers, compared to what we get from raw attention
weights. Based on the results from attention-rollout, the models’ attention span con-
verges as we move up across the layers, while the attentions-span scores computed
based on raw attention weights seem random and are less reliable as they don’t take the
mixing of information across the layers of the self-attention layers into account.

In line with our findings from chapter 2, we find that Albert, Roberta and Electra-
large are more sensitive to context length, as their attention span scores are higher
compared to BERT. Moreover, an interesting observation here that calls for further
future investigation is that the attention span of different models changes differently
when they are scaled up. In the case of BERT, we observe both BERT-base and BERT-
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large converging to the same attention span score in their last layer, while BERT-base
converges faster. In Electra increasing model size leads to a higher attention span while
for Albert and Roberta, it has a reverse effect. Speculating about the reasons behind
these behaviours is beyond the scope of our experiments. It is noteworthy, that none of
these differences is observable based on raw attention scores.

3.5 Conclusion

In this chapter, we introduce and explore two techniques, attention rollout and attention
flow to approximate attention from any node in any layer of a Transformer model to
any other node, given raw attention scores. Our ideas are simple and task/architecture
agnostic. We insisted on sticking with simple ideas that only require attention weights
and can be easily employed in any task or architecture that uses self-attention.

Translating embedding attentions to token attentions can provide us with better expla-
nations about models’ internals. Yet, we should be cautious about our interpretation
of these weights, because, we are making many simplifying assumptions when we
approximate information flow in a model with the attention weights.

We should note that all our analysis in this chapter is for a Transformer encoder, with no
casual masking. Since in the Transformer decoder, future tokens are masked, naturally
there is more attention toward initial tokens in the input sequence, and both attention
rollout and attention flow will be biased toward these tokens. Hence, to apply these
methods to a Transformer decoder, we should first normalize based on the receptive
field of attention.

Comparing the attention maps obtained with attention flow and attention rollout with raw
attention maps, in a few different scenarios, we show that in all these cases, the attention
flow and attention rollout can provide us with more comprehensible explanations of
how the information flows through the self-attention layers.

In particular, one thing that we show in this chapter, is that applying methods such
as attention rollout and attention flow on raw attention scores, to compute effective
attention of input tokens, leads to scores that are more aligned with other input attribution
methods such as blank-out compared to raw attention weights. More recently, it has
been shown that indeed attention flow can approximate shapely values [Ethayarajh and
Jurafsky, 2021, Metzger et al., 2022]. Shapely value is a concept in cooperative game
theory that assigns a unique credit to each player proportional to its contribution toward
the total gain [Kuhn and Tucker, 1953]. This concept is applied in interpretable machine
learning as an input attribution method [Lundberg and Lee, 2017].

Furthermore, following this work, we could build the attention graph with effective
attention weights [Brunner et al., 2020] instead of raw attentions. It is also possible to
adjust the attention weights using gradient-based attribution methods [Ancona et al.,
2019], as is explored by Chefer et al. [2021].





PART

II

From Vectors to Voxels





55

How do we establish a relationship between computational models of language and
data on the human brain activation while they process language? Pioneering work of
Mitchell et al. [2008] showed that techniques from distributional semantics could be
used to predict and decode brain activations. In the decade since that paper, many
efforts have been reported using brain data to evaluate computational models, using
NLP models to build predictive models of the human brain, or both [Abnar et al.,
2018, Bingel et al., 2016, Bulat et al., 2017, Fyshe et al., 2014, Huth et al., 2016,
Murphy et al., 2012, Pereira et al., 2018, Ruan et al., 2016, Søgaard, 2016, Wehbe et al.,
2014a, Xu et al., 2016]. In the early stages, most of the work in this area was focused
on lexical representations, reporting promising results for concrete nouns, presented
in isolation [Pereira et al., 2018]. More recently researchers have tried to adapt the
methodology to address words in context, in sentence and story processing tasks. Pereira
et al. [2018], for instance, used a bag of words model of sentence meaning to decode
sentences from brain activation. Qian et al. [2016], Wehbe et al. [2014b] use the internal
states of LSTMs trained for language modelling for predicting brain signals. Jain and
Huth [2018] report that the higher layers of the LSTM are better at predicting the
activation of brain regions that are known for higher-level language functions (a finding
seemingly at odds with results in chapter 5).

The main building blocks of these approaches are (1) a computational model to provide
representations of language at the level of interest (words, phrases, sentences or stories);
(2) neurological signals to provide representations of language at the level of interest; (3)
a method to quantify the correlation between the brain signals and the representations
obtained from the computational models. These frameworks, on the one hand, enable
measuring the cognitive plausibility of different language models, i.e., the similarity
of the solution learned by a model to the solution represented in a human subject’s
brain. On the other hand, they allow using computational models as a bridge to connect
linguistic theories to empirical evidence based on biological signals. The latter is
complementary to direct probing of brain data and seems to be vital since in many
cases it is not even possible to directly probe the brain activity patterns for a certain
phenomenon since they are not easy to formalize as features that can be decoded from
brain signals. For instance, when we want to probe the processes that are involved in
forming the final representations. E.g., if we want to validate the architectural inductive
biases of neural network language models such as recurrence.

In this part, in chapter 4, we use the dataset introduced by Mitchell et al. [2008] to
evaluate context-independent word representation models regarding their similarity with
brain activity patterns. By comparing word embedding models trained with different
supervision signals, we aim to understand what type of information is encoded in brain
activity patterns of human subjects processing isolated nouns. In chapter 5, we try to
extend this framework a step further, and use neural network-based language models,
with different architectures and trained with different language modelling objectives, as
explanatory models for brain activity patterns of human subjects reading a story.

In our efforts, we run into several major conceptual, methodological and technical
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challenges. Most importantly: how do we determine what we are really observing in
the brain data? Are we really seeing signatures of linguistic processes, or just neural
correlates of general cognitive processes evoked by a correct understanding of the
linguistic input? How do we adequately control for alternative explanations of the
observed correlations? And how do we deal with the intricate temporal dynamics and
the overwhelmingly high dimensionality of the brain, and the very indirect, delayed
and/or coarse measurements that neuroimaging gives us of the processes in the brain?
Merely demonstrating a correlation between two black boxes is clearly not sufficient.
We argue that experiments to find the model best correlated with brain activations should
be accompanied by efforts for interpreting the internal representations and operations of
the models.

Additionally, it appears that, when comparing a set of computational models in terms
of their explanatory power of the neurological data, choices for the type of brain
signals and the method for computing the correlation can significantly impact the
conclusions [Beinborn et al., 2019]. This adds to the challenges of research on this topic
and calls for efforts toward building more robust and standardized approaches for this
purpose.



4
Word Representations: Machines and Brains

How may different computational word representation models help in understanding
how words are represented in the human brain? Can these models help us capture
different properties and features reflected in human brain neural activation patterns
when processing words? Mitchell et al. [2008] pioneered the use of corpus-derived
word representations to predict patterns of neural activations when subjects are exposed
to a stimulus word. Using the same approach, in this chapter, we present a systematic
evaluation of different word embedding models, against the neuroimaging data from
[Mitchell et al., 2008]. We compare neural word embedding models with traditional
approaches that are based on manually assigned linguistic word attributes, and neuro-

This chapter is based on the following paper.

• Samira Abnar, Rasyan Ahmed, Max Mijnheer, and Willem Zuidema. 2018. Experiential, Dis-
tributional and Dependency-based Word Embeddings have Complementary Roles in Decoding
Brain Activity. In Proceedings of the 8th Workshop on Cognitive Modeling and Computational
Linguistics (CMCL 2018), pages 57–66, Salt Lake City, Utah. Association for Computational
Linguistics.

• List of contributions is as follows. Samira Abnar: Preparing the framework for running the
experiments, Designing and Running experiments, and Writing the paper. Rasyan Ahmed:
Running preliminary experiments for investigating the correlation between brain activity patterns
and general purpose word embedding models [Ahmed, 2017]. Max Mijnheer: Came up with the
idea of using experiential word embeddings, Ran the preliminary experiments for investigating the
correlation between brain activity patterns and experiential word embeddings [Mijnheer, 2017].
Willem Zuidema: Planning and guiding the research, Reviewing and revising the paper.
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inspired techniques based on sensory-motor features. Besides a large-scale evaluation
of various word embedding models, we conduct a detailed error analysis to understand
the differences between them. Our results suggest that for studying properties of brain
signals, we can avoid using word representation models specifically designed for every
study. Instead, we can move towards using general-purpose word embedding models
that excel at a variety of NLP tasks.

4.1 Evaluating Word Representation Models with Brain
Imaging Data

How are word meanings represented in the human brain? Is there a single amodal
semantic system or are there multiple responsible for representing meanings of different
classes of words? A series of studies have shown that a combination of methods from
machine learning, computational linguistics and cognitive neuroscience are useful for
addressing such questions.

Mitchell et al. [2008] pioneered the use of corpus-derived word representations to predict
patterns of neural activations when subjects are exposed to a stimulus word. Using their
framework, a series of papers have evaluated various techniques of computing word
representation models based on different assumptions. Later, Huth et al. [2012] extends
these findings by studying fMRI responses collected from human subjects watching a
movie. Still using hand-crafted feature vectors based on WordNet [Miller, 1995], they
study whether a continuous semantic space underlies category representation in the
human brain.

Since these early successes, a range of new word embedding methods have been
proposed and successfully used in a variety of NLP tasks, including methods based on
neural networks. Baroni et al. [2014] and Pereira et al. [2016] present systematic studies,
showing that also behavioural data from psycho-linguistics can be modelled effectively
using a general-purpose neural word embedding models such as GloVe[Pennington
et al., 2014] and word2vec[Mikolov et al., 2013]. At the same time, studies in the
area of vision have shown that deep learning models fit very well to the neocortical
data [Cadieu et al., 2014, Khaligh-Razavi and Kriegeskorte, 2014] and they can help to
better understand the sensory cortical system [Yamins and DiCarlo, 2016].

To investigate how well the new word embedding models, and in particular the deep
learning models, fare in helping to understand neural activation patterns in the domain
of language, we present a systematic evaluation of different word embedding models,
against the neuroimaging data from [Mitchell et al., 2008], following the experiments
and preliminary results in [Ahmed, 2017, Mijnheer, 2017].

Our main goal is to evaluate the usefulness of these different word embedding models
for understanding different properties and features reflected in human brain neural
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activation patterns. To address this goal, we take word embedding models based on
different assumptions of how meanings of words can be represented, and evaluate their
performance on either the task of predicting brain data from word embeddings or the
reverse, predicting word embeddings from brain data. The basic assumption here is
that the better the performance of a model is the more probable it is that the way the
word embedding model is built reflects what happens in the human brain to understand
a meaning of a word. In our experiments, we compare neural word embedding mod-
els with traditional approaches that are based on manually assigned linguistic word
attributes, and neuro-inspired techniques based on sensory-motor features. Besides a
large-scale evaluation of various word embedding models, we conduct a detailed error
analysis to understand the differences between them.

The first research question we investigate is: How well does each word representation
model correlate with neural activation patterns in the human brain? To answer this we
measure how well different word embedding models can predict the brain imaging data.
Taking this one step further, we also train our models in the reverse direction: to directly
predict word embeddings from brain data.

The second research question that we investigate is: What is the best word embedding
model for predicting brain activation for different classes of nouns? Maybe the human
brain uses different processes to understand the meanings of different kinds of words
[Caramazza et al., 1990, Caramazza and Shelton, 1998, Riddoch et al., 1988, Warrington
and Shallice, 1984]. We do a qualitative analysis of our results to see whether different
word embedding models are good at predicting brain activation for different categories
of nouns. The third question we address is Which are the most predictable voxels in
the brain for each word embedding model? By answering this question we want to test
the hypothesis that different areas of the brain are responsible for processing different
aspects of the meaning of nouns. If different models have different performances either
for different noun pairs or for different brain areas, the next step would be to find a way
to integrate different models to build a model that better fits the brain data.

Two main approaches are proposed for evaluating word representations with brain
imaging data. In the first approach, the computational representations of words are
employed to predict the neural word representations, i.e., the neural activation patterns
[Mitchell et al., 2008]. The second approach is based on the correlation between the
pairwise similarity of word representations in the brain and the computational model
under evaluation. [Anderson et al., 2016]. An extensive overview of these techniques is
provided in chapter 2.

Here, we focus on the Brain Activation Prediction Task. Given a word, we want to
predict how the brain activation for a particular person would look like if he/she is
exposed to the noun and is trying to understand its meaning. We train a linear regression
model to map the embedding of each word to its corresponding fMRI scan. Then we
test how well the model can discriminate between two unseen examples. The brain
activation is represented as an n-dimensional vector which each element of it is a
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projection of a tiny space in the brain, called a voxel. Each word is also represented
as an n-dimensional vector which its interpretation would depend on the kind of word
embedding model that is being used. The subgoal here is to find a function that computes
brain activation from word vectors or vice versa.

If we can train a linear regression model that successfully predicts brain activation
patterns from word representations for the words that are not in its training set, it means
that there is a mapping between the computational word embedding in use and the
word representation in the brain. This indicates that the information encoded in the
computational word representation model is enough to reconstruct brain activation
patterns. On the other hand, if for a word embedding model, we can train a regression
model to predict word representations from brain activation patterns, this would mean
that the information needed to compute the word representation is to some extent
encoded in the neural activation patterns.

Experimental Setup As the regression model, we employ a single-layer MLP with
tanh activation. To avoid over-fitting we use drop-connect [Wan et al., 2013] with a
keeping rate of 0.7 beside L2 regularization with λ = 0.001. In all the experiments
we train the models for each subject separately. The training and evaluation are done
with the leave-2-out method as suggested in [Mitchell et al., 2008]. Where we train
the model on all except 2 pairs and then evaluate the performance of the model on the
left-out pairs. We do this for all possible combinations of pairs.

Neuroimaging Data Our experiments are conducted on the data from Mitchell et al.
[2008] which is publicly available1. This is a collection of fMRI data that is gathered
from 9 participants while exposed to distinctive stimuli. The stimuli consisted of 60
nouns and corresponding line drawings. Each stimulus was displayed six times for 3
seconds in random order, adding to a total of 360 fMRI images per participant.

Word Embedding Models In order to get insights about how the human mental
lexicon is built, we use a wide variety of word representation models. The word
embedding models that we are exploring in our experiments are in two (non-exclusive)
categories: experiential and distributional. In the experiential model, the meanings of
the words are coded to reflect how the corresponding concept is experienced by humans
through their senses. In the distributional models, the meaning of words is represented
based on their co-occurrence with other words. These models can be either count-based
or predictive [Baroni et al., 2014]. The word representation models we will use are:

• Experiential word representations: Experiential word representations are suggested
based on the fact that humans remember the meaning of things as they experience

1http://www.cs.cmu.edu/afs/cs/project/ theo-73/www/science2008/data.html

http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html
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them. In [Binder et al., 2016] a set of 65 features are defined and crowdsourcing is
used to rate the relatedness of each feature for each word. Thus, instead of computing
the value of features using statistical data from textual corpora, they use actual human
ratings. We use the dataset introduced in [Binder et al., 2016]. Since it contains only
about 50% of the nouns in the Tom Mitchell et al dataset, some of the experiments
we report are with this limited noun set.

• Distributional word embedding models:

– Word2Vec: Word2vec basically is a shallow, two-layer, neural network that re-
constructs the context of a given word. In our experiments, we use the skip-gram
word2vec model trained on Wikipedia [Mikolov et al., 2013].

– Fasttext: Fasttext is a modification of word2vec that takes morphological informa-
tion into account [Bojanowski et al., 2016].

– Dependency-based word2vec: The dependency-based word2vec introduced in
[Levy and Goldberg, 2014] is a word2vec model in which the context of the words
is computed based on the dependency relations.

– GloVe: GloVe is a count-based method. It does a dimensionality reduction on the
co-occurrence matrix[Pennington et al., 2014].

– LexVec: LexVec is also a count-based method. It is a matrix factorization method
that combines ideas from different models. It minimizes the reconstruction loss
function that weights frequent co-occurrences heavily while taking into account
negative co-occurrence [Salle et al., 2016a,b].

• 25 verb features: Similar to experiential word representations, this model is based on
the idea that the neural representation of nouns is grounded in sensory-motor features.
They have manually picked 25 verbs and suggested using the co-occurrence counts of
nouns with these 25 verbs to form the word representations [Mitchell et al., 2008].

• Non-distributional word vector representation: [Faruqui and Dyer, 2015] have
constructed a non-distributional word representation model employing linguistic
resources such as WordNet[Miller, 1995], FrameNet[Baker et al., 1998] etc. In
this model, words are presented as binary vectors where each element of the vector
indicates whether the represented word has or does not have a specific feature. As
a result, the vectors are highly sparse. The advantage of this model to distributional
word representations is the interpretability of its dimensions.

4.2 Correlation Between Word Embeddings and Brain
Activation Patterns

To understand how relevant are the information captured in brain signals and word
embedding models, we investigate the predictability of brain signals from word repre-
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sentations and vice versa.
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Figure 4.1: Results for the word-to-brain activation prediction task (Chance is .5).

4.2.1 Predicting Brain Activation for Noun Stimuli

First, we train a separate regression model for each word representation model to
compute the average brain activation corresponding to each word for a particular subject.
Figure 4.1 illustrates the results of evaluating these models on the brain activation
prediction task, using the leave-2-out methodology, as discussed above. For the sake
of including the experiential word representations from [Binder et al., 2016] in our
evaluations, we also conducted a set of experiments with only the nouns that were
included in the experiential word representation collection. The good news is that all the
models we are evaluating perform significantly above chance. The fact that the ranking
of the models differs per subject makes it difficult to make general conclusions about
the best model. Overall, dependency-based word2vec, GloVe and 25 features model are
the top-ranked models for at least one of the subjects.

Among neural word embedding models, dependency-based word2vec is achieving the
best accuracy (81%). This is in line with the results from [Murphy et al., 2012], where
they showed that the corpus-based model considering the dependency relationships has

1 2 3 4 5 6 7 8 9 avg
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Figure 4.2: Results of different word representation models for the word-to-brain activation prediction
task for the limited set of words, split per subject.
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the highest performance among corpus-based models. These authors report an accuracy
of 83% (with 1000-dimensional word vectors). Somewhat higher still than the best
dependency-based word2vec, and the highest performance reported in the literature until
now for a corpus-based model. Fasttext and dependency-based word2vec are performing
better than word2vec; this might reflect the importance of morphological and depen-
dency information. Comparing predictive models with count-based models, although
count-based methods like GloVe and LexVec are beating simple word2vec, looking at
the performances of fasttext and dependency-based word2vec, we can conclude that the
context prediction models can potentially perform better.

Moreover, comparing the performance of the Experiential Model with the 25-feature
model, we see that the Experiential Model is doing slightly better on average while
their ranking is different per subject. Either the higher number of features or the way
feature values are computed could have led to a slight improvement in accuracy for the
experiential model.

In both sets of experiments in Figure 4.1 the non-distributional word representation
model has the lowest performance. The very high dimensionality of the brain imaging
data versus the sparseness of non-distributional word vectors makes training the regres-
sion model with these vectors much harder and this might be the primary reason for its
low performance.

60 words
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Non Distributional

Figure 4.3: Results of different word representation models for the brain activation to word representation
prediction task.

4.2.2 Decoding Words from Brain Activations

Next, instead of predicting brain activation patterns, we train the regression model
to predict the word representation given a brain activation. Thus, we want to predict
the stimulus word from the neural activation pattern in the brain. Evaluation is still
based on the leave-2-out setup (so we still evaluate with two brain images and two
word embeddings at each instance, making quantitative results comparable across
experiments). The results are shown in Figure 4.3. We expected the performance of
the models on the reversed task, predicting word features from brain activation, to be
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somewhat similar to their performance on the main task, predicting brain activation
patterns from word vectors.
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(a) 25 features model (red) vs experiential model (blue)
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(b) dependency based word2vec (red) vs word2vec (blue)
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(c) dependency based word2vec (red) vs experiential model
(blue)

Figure 4.4: Comparing different models mismatched pairs for subject 1 (purple indicates word pairs
confused by both models).

However, the results are surprising. For the 25 features model, the accuracy on the
reversed task is much lower. This may be because of the way the feature vector for
nouns is distributed in the space in this model. Or it could be that neural activation
patterns do not encode all the necessary information to approximate these feature values.
This could indicate that while the 25 features model is pretty useful in interpreting brain
activation patterns it is not a plausible model to simulate how nouns are represented in
the human brain. On the other hand, it seems that it is very easy to construct GloVe
word vectors from brain activation patterns; this model achieves an accuracy of 90%.
In [Sudre et al., 2012] accuracy of 91.19% is reported on a similar task on MEG data.
GloVe is based on the distributional semantics hypothesis, and it is achieved by learning
to predict the global co-occurrence statistics of words in a corpus. Hence, obtaining
high accuracy in the word prediction task using GloVe, supports the fact that the context
of the words has a major role in the way we learn their meanings. The important thing
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(a) Mismatched pairs for the 25 features model (b) Mismatched pairs for the experiential model

(c) Difference between mismatched pairs
Figure 4.5: Comparing mismatched pairs for the 25 features model and the experiential model averaged
over all subjects.

to notice is that of course the more information we encode in the word representation
the more powerful it becomes in predicting neural activation patterns as far as that
information is relevant to some extent. However, this alone doesn’t imply that the exact
information is encoded in the neural activation patterns. As we can see in our results,
compared to GloVe, it’s not that easy to reconstruct the Fasttext and dependency-based
word vectors from the brain activation patterns. We conjecture that while morphological
and dependency information is helpful in learning word representations that are to some
extent more similar to the neural representation of nouns in our brain, this information
is not explicitly encoded in the brain activation patterns.

In the end, only comparing the accuracy of these models does not reveal much about the
differences between them and does not mean that the model with the highest accuracy
can replace all the others.
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4.3 Best Word Embedding for Predicting Brain Activa-
tions of Different Nouns

In order to get more insights about the differences between the models, we look into
the errors they make. It is informative to see whether each of these models is good at
predicting neural activation patterns for a different group of noun pairs. We want to test
the hypothesis of whether the human brain uses different mechanisms for understanding
meanings of different categories of words [Caramazza et al., 1990, Caramazza and
Shelton, 1998, Riddoch et al., 1988, Warrington and Shallice, 1984]. To investigate this
we look into the miss-matched noun pairs for each of the word representation models.
We want to see which are the most confusing noun pairs for each model and measure
the overlap between the errors the models make. This will reveal if these models are
actually encoding different kinds of information.

Figures 4.4a, 4.4c and 4.4b show the overlap between mismatched pairs for different
models for subject 1. In these plots, the red color corresponds to the first model
mentioned in the caption, the blue colour corresponds to the second model and the purple
colour indicates the overlaps. While there is some overlap between the mistakes of the
25 features model and the experiential model, a considerable number of mismatched
pairs are not in common between them.

One interesting fact about the 25 features model is that for some specific nouns ie. “bear”,
“foot”, “chair”, and “dresser”, no matter what is its pair, discrimination performance
is poor. eg. “bear” is not only confused with other animals, but also with some body
parts, places, etc. We do not notice similar phenomena for the experiential model.
This could be a side effect of using co-occurrence statistics from corpora to learn word
representations and could show that for some reason the representations learned for
these nouns are not distinguishable from other nouns.

Looking into the noun pair mismatches of the experiential model and the dependency-
based word2vec in Figure 4.4c, again we see a considerable amount of overlap. They
both perform equally for discriminating among animals. But the experiential model
makes more mistakes about “body parts” and “insects”. Comparing the dependency-
based word2vec with simple word2vec, in Figure 4.4b we observe similar patterns
to Figure 4.4a. As illustrated in the plot, discriminating some words, eg., “chair” is
difficult for word2vec while it’s not the case for dependency-based word2vec. It seems
like both experiential attributes of nouns and the dependency information is helping in
learning more distinguishable representations for nouns.

4.3.1 25 Features vs Experiential

As shown in Figure4.1, the experiential model performs better than the 25 features
model on average. Considering the fact that these two models are reflecting the same



4.3. Best Word Embedding for Predicting Brain Activations of Different Nouns 67

(a) Mismatched pairs for dependency-based word2vec (b) Mismatched pairs for GloVe

(c) Difference between mismatched pairs
Figure 4.6: Comparing mismatched pairs for dependency based word2vec and GloVe averaged over all
subjects

underlying theory, we might expect that if one of them is more accurate, it can replace
the other. However, by looking into the difference between their mismatched pair,
Figure 4.5, we observe that the mistakes these two models make are not completely
overlapping: the nouns ‘arm’ and ‘hand’ are difficult to discriminate for both models,
while ‘chair’ and ‘house’ are among the nouns with most mistakes for the 25 features
model, and ‘horse’ and ‘door’ for the experiential model. For both models, most
mismatches are in the category of body parts.

4.3.2 GloVe vs Dependency-based Word2vec

We also compare the mismatch pairs for GloVe and dependency-based word2vec as
the two neural models that achieve the highest accuracies in Figure 4.6. These two
models are different both in the richness of the information they use to learn word
representations, and also in the way they use this information. In GloVe, the model
is trained based on the global co-occurrence of words whereas in word2vec word
representations are learned based on the context of the words for each example locally.
For GloVe, similar to the 25 features model and the experiential model, ‘arm’ is one
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Figure 4.7: Difference of mismatched pairs for dependency based word2vec and experiential model

of the hardest-to-discriminate nouns. But the ‘body parts’ category is not as confusing
as for the experience-based models. For the dependency-based word2vec, the patterns
of errors are somehow different and the most difficult word seems to be ‘fly’. This is
because ‘fly’ can be either a verb or a noun, and since it is more frequent as a verb, the
dependency-based model is learning the representation of its verb form. For GloVe,
this is not very problematic because it is only based on co-occurrence counts, thus, an
average representation is learned. In general, despite the fact that these two models are
based on different assumptions their mismatches have more overlap than for the two
experiential models. This may be a side effect of the fact that they both make fewer
mistakes.

4.3.3 Experiential vs Dependency-based Word2vec

The mismatched pairs of the experiential model and the dependency-based word2vec
and their differences are illustrated in Figure 4.7. The experiential model seems to have
less prediction accuracy for noun pairs in the same category.

4.4 Most Predictable Voxels in the Brain Given Differ-
ent Word Embeddings

Each of the computational models of word representation we have employed to predict
brain data is based on modelling different aspects of words’ meanings. Now we want to
investigate if our brain is doing a combination of all these mechanisms and if different
groups of voxels in the brain are responsible for processing each aspect. One way to test
this is to look into the predictability of different voxels with each of these models. For
this purpose, we have identified the top 50 most predictable voxels for each model. In
Figure 4.8 you can see the 50 most predictable voxels for dependency-based word2vec
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Figure 4.8: Most predictable voxels for dependency based word2vec(red) and the experiential model(blue)

Figure 4.9: Most predictable voxels for dependecy based word2vec(red) and word2vec(blue). Green dots
are among the top 50 voxels of both models.

and the experiential model. In Figure 4.9 you can see the 50 most predictable voxels
for dependency-based word2vec and simple word2vec. The green colour indicates the
common top voxels between the two models. From these figures, we can see that there
is a lot more overlap between the dependency-based word2vec and word2vec, compared
to the experiential model.

A Mixed Model If each model is good at predicting the neural activation pattern for
a different group of nouns/different groups of voxels, theoretically, it is possible to
build a better model using an integrated model. In other words, we should be able to
improve the accuracy of predicting neural activation patterns by employing a combined
model. We conduct a new experiment by integrating the dependency-based word2vec
as a neural corpus-based word representation with the experience-based models, i.e.,
the 25 verbs model and the experiential model. We expect the performance of the
model to be a little bit higher than the dependency-based word2vec. Our results indicate
that combining the dependency-based word2vec with the experiential model linearly
doesn’t lead to an improvement in the accuracy over the limited set of words available
in the experiential model. However, linearly combining the 25-feature model with the
dependency-based word2vec leads to an accuracy of 82% over the 60 nouns, which is
2% higher than the accuracy of the dependency-based model.
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4.5 Conclusion

Based on our systematic comparison, we can conclude that the deep learning models for
learning word representations fit well with brain imaging data for nouns. Models like
dependency-based word2vec are already beating the experiential word representation
models that were particularly designed for brain activation decoding tasks. These
findings suggest that in future studies for understanding what is captured in the neural
responses of human subjects when they are processing language, we can rely on
general-purpose word representation models. Thus, avoiding the need to design word
representation models specific to each study. Not only these general-purpose models
are shown to be successful at solving a variety of NLP tasks, but they also have a better
predictive power against brain signals compared to hand-crafted features.

Moreover, focusing on the methodology, comparing the results of learning the mappings
from words to brain activations and vice versa, convinces us that it is important to study
the performance of the models in both directions to really understand what kind of
information is encoded in the neural activation patterns for words.

Looking into the details of the performance of the models we study, it turns out that
each of them makes different kinds of mistakes. We speculate that this difference in
performance explains that these models capture different aspects of words’ meanings.
To further investigate this, we build a model that combines the experience-based word
representation model with the dependency-based word2vec. By linearly combining the
25 features model with the dependency-based model we are able to achieve a higher
accuracy on the brain activation prediction task.

Our results suggest that, even for the simple case of computing representations of nouns,
there is still room for improvement. We need more advanced models that can capture
different aspects of the meaning of the words. For example, one of the main problems of
the corpus-based distributional models that we have applied is that they do not account
for different senses of the words. Hence, the representations they learn for words with
more than one sense can be noisy and biased toward the most frequent sense.

Additionally, words in isolation as we studied in this chapter are not representative
of language processing in more natural setups. A more promising approach would
be to study the brain signals of humans when processing linguistic inputs in context.
For example, we can study the representations of words or phrases in the context of
a story or dialogue. On the computational side, we need models that can account for
the dynamic context of the stimuli. For example, the representation of a word with
multiple senses out of context should be different than its representation when there is
some context to disambiguate its meaning. In the next chapter, we will make an effort
to do this, where we employ language models that can potentially capture the effect
of context on the word representations [Jozefowicz et al., 2016, Peters et al., 2018b]
to investigate neural responses collected from human subjects during a story reading
task [Wehbe et al., 2014a].
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In Search of Footprints of the Story in Language

Models and Brain Activations

Recently, pretrained language models are shown to be very effective in learning useful
contextualized representations [Devlin et al., 2019, Peters et al., 2018b]. Employing the
representations obtained from these models we can achieve impressive performance, in
some cases at or beyond the human level, on a variety of NLP tasks. Are these models
learning language similar to how the human brain processes language? Or are they
converging to completely different types of solutions? Are the factors in designing
and training these models that lead to improvements in their performance, cognitively
relevant? Do these models learn and process information in a similar manner to humans?
To answer these questions, we investigate whether different neural networks trained on

This chapter is partially based on the following paper (some of the contents are not published
before).

• Samira Abnar, Lisa Beinborn, Rochelle Choenni, and Willem Zuidema. 2019. Blackbox Meets
Blackbox: Representational Similarity & Stability Analysis of Neural Language Models and
Brains. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pages 191–203, Florence, Italy. Association for Computational
Linguistics.
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language modeling can explain human brain activations during a story reading task.

5.1 Language Models and Brain Activity Patterns in
the Context of a Story

When we read a story, we perceive and comprehend information in a sequence. Our
mental state gets updated step by step as we read words one by one. We use the previous
words to understand the meaning of the current word and update our understanding
of the previous content as we move forward in the story. Additionally, we predict the
upcoming content, and this too affects how we understand the current content.

Recently, pretrained language models are shown to be very effective in learning useful
contextualized representations [Devlin et al., 2019, Peters et al., 2018b]. Employing
these representations we can achieve state-of-the-art performance on a variety of NLP
tasks. While the ability of these models to capture context is constrained (e.g., with
respect to context length), their performance relies on the quality of the context and
their ability to capture that [Khandelwal et al., 2018]. On the other hand, brain decoding
studies have shown that even using simple RNN-based language models to compute
context-aware representations for words are better in explaining brain activations pat-
terns than isolated word representations [Jain and Huth, 2018, Qian et al., 2016]. As
hard as it is to believe a model can learn only by reading pure text, i.e. no grounding,
and only with a language modelling objective, these studies show that, in fact, language
models are learning some useful insight about language, and there is a growing effort
to look into these models and understand what kind of knowledge they capture from
reading text.

In this chapter, we propose putting these efforts together to answer the question of
what can these models teach us about language processing in the human brain. We
investigate whether a neural network trained on language modeling can explain human
brain activations during a story reading task Our goal is similar to [Qian et al., 2016].
In addition, compared to [Jain and Huth, 2018], our aim is not only to show that using
these contextualized word representations we can better explain brain activations, but to
reveal why this is the case.

To do so, we use a dataset of brain scans of human subjects during a story reading
process. We feed the trained language model the same stimuli that were presented to
the human subjects. Then, we study the connection between the internal state of the
model and the brain activation patterns. We ask: (1) Can we find a mapping between
the information encoded in different parts of the internal state of the language model
and the brain imaging data? (2) Do the brain activity data and the internal states of the
language model capture similar linguistic features of the story? If different layers of the
language model explain brain activation patterns differently, is this because different
types of features are captured on different layers? And: (3) do the representations that
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are aware of the dynamic context and static word embeddings differ in the regions of
the brain for which they make the most accurate predictions?

Figure 5.1: Alignment of the words in the story and the brain vectors. Each fMRI scan lasts for 2 seconds
during which the subject is reading four words sequentially. Delay is the amount of time in seconds
between the time the first of the four words is shown to the subject and when the fMRI scan is started to
be taken.

Experimental Setup We compare the representations obtained from different layers
of language models to human brain activations captured while reading a story. We use
the dataset by [Wehbe et al., 2014a] which consists of the fMRI scans of 8 participants
reading chapter 9 of Harry Potter and the Sorcerer’s stone [Rowling, 1998].1 For
creating this dataset, the story is presented to the participants word by word on a screen
in four continuous blocks.2 Each word is displayed for 0.5 seconds and an fMRI scan
was taken every 2 seconds. Figure 5.1 visualizes an example for the beginning of
the chapter. More detailed statistical information about the stimuli can be found in
Table 5.1.

In our comparisons, we study language models with different architectures trained with
different objective functions (see Table 2.1). As a word-level embedding model, we

Table 5.1: Statistics of the Harry Potter dataset.

Block Words Unique words Sentences Sent Length Scans

1 1583 553 115 11 326
2 1711 560 163 8 338
3 1411 461 134 8 265
4 1853 583 177 8 366

1The data is available at http://www.cs.cmu.edu/~fmri/plosone/ . Further information on the pre-
processing steps is described in the supplementary material.

2The story chapter is split into four almost equal-length blocks, each reflecting approximately
12 minutes of measurements. Each block is presented to the participant in one continuous trial, and
experimental blocks are separated by pauses for the subjects.

http://www.cs.cmu.edu/~fmri/plosone/
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use GloVe [Pennington et al., 2014]. We consider a sentence as a bag of words and
take the average of the GloVe embeddings. We employ two LSTM-based language
models: ELMO [Peters et al., 2018b] and GoogleLM [Jozefowicz et al., 2016]. Both of
these models have two LSTM layers; however, ELMO uses bidirectional LSTM layers,
whereas in the GoogleLM the LSTM layers are uni-directional. From these models,
we take the internal states of each of the LSTM layers as two different representation
spaces. Furthermore, we use BERT and the Universal Sentence Encoder (UniSentEnc),
as Transformer based models. BERT is trained on masked language modelling and next
sentence prediction tasks [Devlin et al., 2019] while the Universal Sentence Encoder is
trained on a different objective than language modelling. The parameters of this model
are optimized with respect to different language tasks such that it can better encode the
meaning of complete sentences. These two models do not have the recurrent inductive
bias of LSTMs, and hence the representations they learn can be completely different.

5.2 Brain Data

The fMRI data contains activation values for approximately 40,000 voxels per scan,
each reflecting the oxygen usage (the “BOLD response”) in approximately 3mm3 of
brain tissue. To obtain the brain representations, we flatten the 3D fMRI images into
vectors thereby ignoring the spatial relationships between the voxels. We do this either
for the whole brain, or for specific regions separately. Not all of the scanned voxels
are related to language processing, but the changes in activity might be associated with
other cognitive processes like, for example, the noise perception in the scanner. A
common reduction method is to restrict the brain response to voxels that fall within a
pre-selected set of regions.

In our analysis, we only include the voxels from the top k regions that are most similar
across different subjects given the same stimuli. We heuristically set the value of k to
16 based on the distribution of the similarity scores.3

Delay An important point to consider when dealing with fMRI data is the hemody-
namic response delay: from the time neurons start firing, it takes 4 to 6 seconds until
the Bold response reaches its peak [Buckner, 1998]. This means that from the time
a stimulus is presented to a subject, it takes approximately 5 seconds before we can
observe its response in the fMRI scan of the brain. We account for this delay by varying
the alignment between stimuli and scans. If we apply a delay of 0 seconds, scan 3 in
the example would be applied to the sequence boy he hated more, Figure 5.1. With a
delay of 2 seconds, it is aligned to the previous stimulus he would meet a and a delay of
4 would result in alignment with Harry had never believed.

3We sort the brain regions based on their cross-subject similarities for different stimuli and pick a
threshold value based on where is a relatively big jump in the similarity scores.
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Figure 5.2: Representational similarity of the models and brains averaged over all subjects and the four
blocks at different time delays after the human subjects have read the target words, when the context
provided to the models is three sentences. Here the delay is increasing from left to right and the error
bars indicate the standard deviation across different blocks.
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Figure 5.3: Similarity of the representations from different layers of different language models with
brain representations given different amount of context, averaged over all subjects. Note that the average
representational similarity scores of brains of different human subjects within this data is about 0.55.

5.3 Representational Similarity of Brains and Language
Models

In this section, we use standard RSA, as commonly used in neuro-cognitive science. In
this approach, in order to compare the representational similarity of two models, given a
set of N examples, we first, create the similarity matrices of both models, i.e., a squared
symmetrical matrix, S(M), where Sij(M) indicates the similarity of data examples i
and j in the representational space of model M. Next, we measure the rank correlation
between the similarity matrices of the two models as an indicator of their relational
similarity.

Figure 5.2, shows the representational similarity of the models and brains averaged over
all subjects and the four blocks at different time delays after the human subjects have
read the target words, when the context provided to the models is 3 sentences. Due to
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Figure 5.4: Similarity of the computational representations with brain representations at different segments
of the story. Note that the average representational similarity scores of brains of different human subjects
is around 0.55.

the hemodynamic response delay, we expect to see the peak in similarities after about
4s delay. As we can see, the highest RSA for all models is at Delay = 4s, the ranking
of the models based on their similarities with brain representations is the same for all
amounts of delay. Interestingly, the performances of these models on the NLP tasks are
not correlated with their similarity with the brain representations (but note the overall
low correlations).

Different Context Lengths Figure 5.3 shows the similarity of different layers of
several neural language models with brain signals, with respect to different amounts of
context provided to the models, averaged over all human subjects. The representations
learned by LSTM-based models are most similar to the brain data, and for both ELMO
and GoogleLM the representations from lower layers, L0, have higher similarity scores
compared to the higher layers, L1. Interestingly, for UniSentEnc, BERT(L11) and also
GoogleLM(L1), increasing the context length, which usually boosts the performance
of language encoding models in language understanding tasks [Wang and Cho, 2016],
leads to lower similarity with brain representations. It seems that the way these models
integrate the context information pushes the representation further away from the brain
representations. This could mean: (1) These models are doing fairly well at encoding
the local context, but not at a more global level. Alternatively, (2) The information about
the more global aspects of the meaning is not encoded in the brain representations.
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(a) GoogleLM (L0) (b) GoogleLM (L1)
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Figure 5.5: Representational similarity of representations learned at different layers of different mod-
els with representations at different regions of Subject4’s brain which is chosen randomly (the code
accompanying this paper can be used to generate the plots for the other subjects). In order to empha-
size the difference of the similarity of each model with different brain regions, the color bar is scaled
independently for each model. The darkest region for all models is the Left Anterior Temporal Lobe.

Different Segments of the Story If during training, the models are only trained
on full sentences, it might be the case that the quality of their representations, when
given complete sentences, is significantly better than when provided with incomplete
sentences. On the other hand, the representation of sentences in the brain might also
be more reliable when the full sentence is read. To take this into account, we look at
the similarities of each of the models with brain representations, only at the steps in the
story where an end of a sentence token is reached. Figure 5.4a presents the results. We
see that in this case, the similarity of all the models with brain representations increases
slightly (this could be because of the reduced dimensionality of the similarity matrix),
and we see that the general patterns stay similar.

In Figure 5.4b we observe that at the story segments where a name of a character is
mentioned, the patterns of similarities change a bit, e.g. the last layer of BERT is
less similar to the brain representations compared the first layer of BERT, when an
intermediate amount of context is provided to the model. This finding is difficult to
interpret, but warrants further research.

Different Regions of the Brain We looked at the similarity scores of the computa-
tional representations with the representations at different regions of the brain. This is
illustrated in Figure 5.5 for subject 4 as an example. We observe that the patterns of
representational similarity of different models are very similar across different brain
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Figure 5.6: Difference in the predictive power
of GoogleLM and GloVe-cumulative(weighted) for
brain activity patterns at each step of the story for
one of the test blocks (Blue: GoogleLM is better,
Red: GloVe is better).

regions, i.e. the scores scale for all re-
gions almost similarly across different
models. Despite the low correlations be-
tween the models and the brain activa-
tion, we find that all the models are con-
sistently best aligned with the regions in
the Left Anterior Temporal Lobe (LATL).
This region is known for semantic and
sometimes syntactic processing of lan-
guage [Bemis and Pylkkänen, 2011, Lef-
fel et al., 2014, Westerlund and Pylkkä-
nen, 2014]. We also find some correlation
with the Left Parietal Lobe, which is not
known to be responsible for language pro-
cessing.

It is noteworthy that when considering the
average representational similarity score
between different brain regions for the
eight subjects, both within and across
subjects, we find that the different re-
gions of a single brain are more similar
(RSS = 0.4) than the same regions of
different brains (RSS = 0.12).

If brain functions involved in story com-
prehension are spatially localized and
brains are organized similarly across in-
dividuals, we would expect the same re-
gions from different subjects to be more
similar than different regions from the
same subject. These are counter-intuitive
findings that warrant further investigation.

5.4 Probing for Linguis-
tic Information

Have we really made progress, if all we
have done is show a correlation between
activity in two distinct systems, both of
which remain black boxes? Ultimately,
we would like to show that the representa-
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tions from language models best predict
brain activations because they encode specific linguistic information. However, proving
such a causal link is difficult, and in this section, we settle for demonstrating that these
representations encode relevant linguistic information (and that this information is more
easily extracted from the language model representations than from the brain vectors
directly).

A hint that there is a causal link between the linguistic information and the predictive
success, can be found in Figure 5.6, which shows the differences in predictive accuracy
between the GoogleLM representations and GloVe. A striking observation here is that
the GoogleLM representations are relatively most successful in the passages from Harry
Potter that contain much dialogue, and hence much quoted speech. This observation
motivates the choice for the first linguistic feature, denoted by InQuote: (1) whether
or not the current word is part of a quotation or not. The other linguistic features that
we study (motivated by computational convenience) are: (2) whether the current word
is the start of a new sentence (denoted by < S >); (3) whether the current word is
the end of a sentence (denoted by < /S >); (4) The part of speech tag of the current
word (denoted by PoS); (5) For pronouns: which character in the story the pronoun is
referring to (denoted by Refs). Note that the first three sets of features, start/end of a
sentence and InQuote, are binary features. For these features, we report the accuracy of
the classifier only for the cases when the feature is present (Recall).

To explore the extent to which we can more directly relate brain vectors to specific lin-
guistic information, we tried different approaches such as training diagnostic classifiers
[Hupkes et al., 2018] to predict different linguistic features of the story using, or other
methods for measuring the correlation or mutual information between different feature
vectors and the brain vectors.

For training diagnostic classifiers using the brain vectors, due to the possible delays, we
consider brain vectors from previous blocks of words. Thus, we train separate classifiers
using not only the labels for the current words, but also labels for the words presented
during brain scans at time t− 2, t− 4, t− 6, t− 8, and t− 10 (Figure 5.7 and 5.8).

The accuracy of predicting whether a word occurs within a dialogue, i.e., if the word is
inside quotes, using the brain vectors is below chance (50%). See all the cases in Figure
5.7. In this figure, we see how the accuracy for predicting the InQuote feature changes
for different steps and per each word in the 4-word sequence associated with the brain
vector. We see that for the 3rd and 4th word, the accuracy rises to its peak at 6s delay,
whereas for the first and 2nd word the peak of the accuracy is at 2s delay.

Looking at Figure 5.8, we see that the 4th word, from the 4-word ordered sequence
associated with the brain vector, gets the highest Mean Reciprocal Rank (MRR, the
harmonic mean of the rank of the correct label) score for predicting which character
from the story a pronoun refers to. We also notice the jump in its MRR score when we
go from delay=0 to delay=2. From then, the MRR score stays the same.
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Figure 5.7: Accuracy of predicting different story features from brain vectors. InQoute(i) indicates
whether if the ith word from the 4 word sequence stimuli is part of a quotation or not. Results obtained
for all cases is below chance (50%).
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Figure 5.8: MRR (Mean Reciporal Rank) of predicting different story features from brain vectors. Ref(i)
indicates which character the ith word in the 4 word sequence stimuli refers to and PoS(i) refers to the
PoS tag of the ith word.

For the PoS feature, the 3rd word in the sequence gets the highest score, but for all the
words the MRR score is almost the same for all amounts of delay.

For the features of the start/end of the sentence, we get very low (almost zero) accuracy
with classifiers that use brain vectors as input (so we filtered out them from the plots).

Generally, with direct probing, we found no indication that brain signals contain sig-
nificant information about the story features we looked into (Figures 5.7 and 5.8). Of
course, this does not show that this information is not captured by the human brain; it
only suggests this information is not accessible for a linear classifier, using fMRI data
with the given temporal and spatial resolution.

For training diagnostic classifiers using the LSTM internal states, we have tried four
cases: using memory/hidden state of the first/second layer of the LSTM for the given
time step (Figure 5.9).

As Figure 5.9 shows, the diagnostic classifiers for detecting the start/end of sentences
achieve acceptable performance when using GoogleLM internal states (especially the
hidden states). These results are much higher compared to the classifiers using the
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Figure 5.9: Accuracy of predicting different features of the text from the latent variables of the GoogleLM
language model. LSTMH(i) indicates the hidden state of the ith layer of the LSTM language model.
LSTMM(i) indicates the memory state of the ith layer of the LSTM language model.

Brain vectors for the start/end of the sentence. We also see that the PoS as a syntactic
feature is well captured by the GoogleLM internal state and the accuracy for predicting
this feature is significantly above chance. Note that here we have 28 PoS categories,
thus, the chance level is about 0.036. The other two features are the Refs and InQuote
features. Both of these features are predictable only slightly above chance from the
internal states of the GoogleLM.

The main message from these probing experiments could be to show the deficiency of
probing techniques when dealing with high-dimensional brain data, and to highlight
the importance of using more complex language models to explain neurological signals
and gain a better understanding of how language is implemented and processed in the
human brain. But more importantly, these experiments could indicate that neither the
representations obtained from these language models nor the brain signals contain the
relevant linguistic signals we are searching for.

5.5 Conclusion

In this chapter, we employed a representational similarity metric to compare the rep-
resentations from the language encoding models and the brain activity patterns, i.e.
measure the alignment between the brain activation patterns and activations of the
internal state of the models. The main advantage of representational similarity analysis
is that it treats both the brain and the model as a blackbox; it does not need to know
how brains or models represent objects, words or sentences, but only how similar
representations are to each other. For N stimuli considered, the analysis only compares
1
2 N(N − 1) pairs of pairwise similarities (assuming similarities are symmetric), re-
gardless of the dimensionality of two representational spaces. This bottleneck brings
many advantages including computational efficiency, reuse of the similarity matrices in
multiple comparisons, and not having to worry about how to map representations of
very different natures to each other. It also brings important limitations and inevitable
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information loss, e.g. standard RSA, assumes all features of the representational spaces
to have equal contributions.

It is noteworthy that, in our experiments, we observe more similarities between repre-
sentations learned by some architectures and brain representations. However, caution
is required when interpreting these results, as the representational similarity between
all models and the brain images remains very low. Further analysis of various (bigger)
datasets is needed to get a better interpretation of what is happening in both the brain
and these computational models.

Using brain data to evaluate the representations learned at different layers of each of
the language encoding models, we find that layers of the LSTM-based models achieve
higher similarity scores with brain data compared to single-word representation models
like GloVe and the Transformer based models. This observation could show that the
learning biases of the LSTM-based language models are closer to what happens in the
human brain. Zooming into the results, we see that while changing the conditions of the
inputs to the models has a significant impact on the representations they compute and
their performance on NLP tasks (empirical results provided in chapter 2), these changes
do not get reflected in their alignment with the brain representations.

Surprisingly, we find that the correlation between the brain signals and different layers
of the neural language models we study is higher at the first layer. In chapter 2, we have
shown that the context-dependence in these layers is higher in the upper layers (i.e., the
second layer in LSTM language models). These two observations alongside each other,
make us wonder if what is captured in the fMRI signals about language processing that
is reflected in the correlation with representations obtained from language models is
merely about low-level linguistic signals and can not tell us much about higher-level
processes involved in sentence processing and story comprehension.

Finally, evaluating computational models of language processing with brain imaging
data for a task such as “story reading” is hard, because of the inherent issues in the brain
data and also the complexity of the task [Beinborn et al., 2019]. Various techniques for
representational similarity analysis and the regression approach make it possible to make
a bridge between these black boxes, neural network models for language processing
on the one hand and the human brain on the other. While each of these approaches has
its benefits and limitations, they might provide us with complementary information.
Hence, it is important to look at both.
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Inductive biases are the characteristics of learning algorithms that influence their gen-
eralization behavior, independent of training data. They are one of the main driving
forces to push learning algorithms toward particular solutions [Mitchell, 1980]. Without
proper inductive biases, robust out-of-distribution generalization is not achievable. In
the absence of strong inductive biases, a model can be equally attracted to several local
minima on the loss surface; and the converged solution can be arbitrarily affected by
random variations like the initial state or the order of training examples [D’Amour et al.,
2020, Dodge et al., 2020, McCoy et al., 2020, Sutskever et al., 2013].

Inductive biases of neural network models can be rooted in a variety of sources, including
architectural constraints, training regimes, optimization algorithms, objective functions,
regularization techniques, etc. In this chapter, we use a wide set of analysis tool-kits
and metrics, to study the effects of inductive biases. We look into different metrics
indicating generalization and out-of-distribution generalization behaviour of the models,
as well as illustrating the variation in the solutions they converge to.

In chapter 6, we study one of the most interesting architectures for language models,
recurrent neural networks, and investigate the inductive bias of this architecture and
empirically, identify the main factors that contribute to the recurrent inductive bias. We
show that recurrence, in its different forms, indeed facilitates capturing hierarchical
structures in sequential data.

Next, in chapter 7, we aim to study the expressivity of the models to learn a generalizable
solution versus the learnability of the generalizable solution for them. The main question
here is how can we distinguish between the case where a model is not expressive enough
to be able to execute the desired solution versus when the challenge is the learning
process and in the lack of proper inductive biases it is difficult for the model to converge
to a particular desired solution. We investigate this through the lens of knowledge
distillation. The idea is that the teacher model can help in improving the learnability of
the desired solution for the student model.

Through an extensive set of experiments we, empirically, study how inductive biases
of models are reflected in their output and how in student-teacher setups the inductive
biases of the teacher model can impact the solution the student model converges to.

We show that in certain knowledge distillation settings, where we have a teacher with
a strong inductive bias providing the supervision signal, the effects of the inductive
bias of the teacher transfer to the student model. To put it more clearly, we can see the
effects of the inductive biases of the teacher model in the solution the student model
converges to. I.e., the student model shows a generalization behaviour similar to its
teacher even when the training data used to transfer the knowledge is under-specified.





6
Recurrence

While Transformers do extremely well on many tasks given enough training data and
computation [Brown et al., 2020, Devlin et al., 2019, Radford et al., 2019, Vaswani et al.,
2017], several studies have shown that LSTMs, the most popular variants of RNNs,
can perform better than Transformers on tasks requiring sensitivity to hierarchical
(linguistic) structure, especially when the data is limited [Dehghani et al., 2019, Hahn,
2020, Tran et al., 2018]. Theoretically, both RNNs and Transformers can deal with
finite hierarchical structures. But, they have different preference inductive biases and
the superior performance of LSTMs over Transformers in these cases is attributed to
their recurrent inductive bias. The recurrent inductive bias of LSTMs seems to have
an important role in enabling them to model the hierarchical structure of the inputs.
However, it is not clear exactly what we mean by“recurrent inductive bias”. In this
chapter, we try to identify the sources of recurrent inductive bias and investigate its
impact on the final solution of the models.

This chapter is based on the following paper.

• Samira Abnar, Mostafa Dehghani, and Willem Zuidema. 2020. Transferring inductive biases
through knowledge distillation. arXiv preprint arXiv:2006.00555 (2020).

• List of contributions is as follows. Samira Abnar: Preparing the framework for running the
experiments, Designing and Running experiments, and Writing the paper. Mostafa Dehghani:
Designing the experiments, Helping with some of the visualizations, Reviewing and revising the
paper. Willem Zuidema: Guiding the research, Reviewing and revising the paper.
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6.1 On the Importance of Recurrent Inductive Bias

Among sequence modeling architectures, models with recursion are in particular power-
ful for natural language processing due to their adequacy to model hierarchical structures
[Linzen et al., 2016]. The recursion in a model can be implemented in various ways,
like in Recurrent Neural Networks [Elman, 1990], Recursive Neural Networks [Le
and Zuidema, 2014, Socher et al., 2010] and Universal Transformers [Dehghani et al.,
2019, Hao et al., 2019]. While theoretically, both recurrent neural networks (RNNs)
and Transformers can deal with finite hierarchical structures, empirical results indicate
the superiority of RNNs over Transformers [Dehghani et al., 2019, Hahn, 2020, Tran
et al., 2018].

In the literature [Dehghani et al., 2019, Sutskever et al., 2013], the inductive bias of
RNNs is referred to as the recurrent inductive bias. Here, we distinguish between three
main sources of this bias:

1. Sequentiality: There is an inherent notion of order in the architecture that forces
the model to access the next tokens in the input one by one and process them
sequentially.

2. Memory bottleneck: The model has no direct access to the past tokens and has
to compress all the information from the past in a hidden state, which is accessible
when processing a new token.

3. Recursion: The model recursively applies the same function on the varying input
at every step.

Transformers [Vaswani et al., 2017], in contrast, process the input in parallel. Although
a weak notion of order is encoded by positional embeddings, no explicit assumption
is made in the connectivity structure of the architecture. Moreover, they have a global
receptive field and can access all tokens through self-attention. Finally, standard
Transformers are not recursive. However, the standard Transformer can be modified to
have an architecture with specifications that are similar to RNNs.

The research question we address in this chapter is: What is the contribution of each of
the above-mentioned factors in the recurrent inductive bias of RNNs and can we improve
the capability of Transformers in capturing hierarchical structures in input sequences by
incorporating each of these factors into the standard Transformer architecture?

Our goal is to empirically demonstrate the benefits of the different components of the
recurrent inductive bias. For this purpose, we develop experiments with variants of
Transformers in which we attempt to approximate some of the RNNs’ assumptions. We
find that by adding increasingly more components of recurrence to Transformers, their
behavior becomes more similar to LSTMs.
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Table 6.1: Performance (mean±std over 4 trials) of different LSTM and Transformer models trained
independently with the LM objective.

Model Perplexity ↓ D−Accuracy ↑ A−Accuracy ↑
Transformer 57.5 ± 0.12 0.942 ± 0.0017 0.919 ± 0.0018
Small Transformer 55.3 ± 0.08 0.947 ± 0.0012 0.926 ± 0.0020
LSTM 56.7 ± 0.09 0.951 ± 0.0012 0.940 ± 0.0024
Small LSTM 58.0 ± 0.11 0.949 ± 0.0006 0.937 ± 0.0015

6.2 Experimental Setup

To examine the effects of different sources of the recurrent inductive bias, we study the
performance of LSTMs and variants of Transformers on the task of predicting number
agreement between subjects and verbs in English sentences.

6.2.1 Dataset and Tasks

We use the subject-verb agreement dataset of [Linzen et al., 2016], for which the size of
the training set is ∼121k examples and the size of the test set is ∼1m. Succeeding at
this task is a strong indicator that a model can learn syntactic structures and is therefore
proposed by [Linzen et al., 2016] as a proxy for assessing the ability of models to
capture hierarchical structure in natural language. It is shown that RNNs have better
inductive biases to learn this compared to standard Transformers [Dehghani et al., 2019,
Tran et al., 2018]. In this task, examples are grouped into different levels of difficulty
based on the number of “agreement attractors”1, and distance (number of all words)
between the verb and its subject.
Task setup Similar to [Tran et al., 2018], we follow two setups: 1) when the learning
objective is next word prediction, i.e., language modeling (LM); 2) when we directly
optimize for predicting the verb number, singular or plural, i.e., classification. In the
LM setup, we look at the probabilities predicted when the target of the prediction is
the verb of interest, and see whether the probability of the correct form of the verb is
higher than the other form (singular vs plural). In the classification setup, the input to
the model is a sentence up to the position of the verb of interest and the model predicts
whether the verb at that position is singular or plural.

6.2.2 Model Architectures

In the LM setup, we employ two unidirectional LSTMs with different sizes, LSTM
and Small LSTM, and two Transformers, Transformer and Small Transformer. In this
setup, corresponding LSTMs and Transformers have roughly the same number of

1Agreement attractors are intervening nouns with a different number than the number of the subject. E.g., given the input
“The keys to the cabinet (is?/are?).”, the word “cabinet” is an agreement attractor.
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Table 6.2: Performance (mean±std over 4 trials) of different LSTM and Transformer models trained
independently with the classification objective.

Model µ−Accuracy ↑ D−Accuracy ↑ A−Accuracy ↑
Transformer 0.954 ± 0.0016 0.901 ± 0.0037 0.717 ± 0.0244
Transformer-seq 0.964 ± 0.0010 0.909 ± 0.0037 0.742 ± 0.0121
UniversalTransformer-seq 0.969 ± 0.0004 0.932 ± 0.0055 0.806 ± 0.0153
LSTM 0.977 ± 0.0001 0.970 ± 0.0003 0.928 ± 0.0007

parameters. In the classification setup, we compare the following models: (1) a standard
unidirectional LSTM (sequentiality + memory bottleneck + recursion) (2) Transformer:
Transformer encoder with a class token (CLS) for classification, BERT [Devlin et al.,
2019] style, (3) Transformer-seq: Transformer encoder with future masking where
the classification is done using the representation of the last token2 (sequentiality), (4)
UniversalTransformer-seq: Universal Transformer [Dehghani et al., 2019] encoder,
in which the parameters are shared in depth, with future masking (sequentiality +
recursion).

6.2.3 Evaluation Metrics

To compare the performance of the models on the subject-verb agreement task, we
report macro accuracy over different groups of examples in the test set in terms of
distance (D−Accuracy) and numbers of attractors (A−Accuracy). Since the number
of examples that fall into different categories based on these two factors is not balanced,
evaluating the accuracy of each category independently and reporting the macro average
helps us capture the difference between the ability of the models to solve examples with
different levels of difficulty.

As an indicator of the general performance of the models, in the classification setup,
we report micro accuracy (µ−Accuracy) and in the language modelling setup, we
report perplexity. Additionally, in the classification setup, besides the accuracy, we
evaluate how calibrated the models are in terms of the Expected Calibration Error (ECE).
This metric reflects how the confidence of the model is correlated with its correctness.
Theoretically, a model can have high accuracy but have high calibration error, hence
we treat this as another indicator of performance that is not necessarily correlated with
accuracy. We believe for models with similar accuracy, having a lower calibration error
can be an indicator of better generalization.

2Note that future tokens are masked out by default when using a transformer in the decoder mode, e.g., in LM setup.
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Figure 6.1: A−Accuracy vs perplexity (high to low from left to right) for language models of different
architectures and sizes.

6.3 Examining the Impact of Recurrent Inductive Bias

In this section, we report results that illustrate the merits of the recurrent inductive
bias. Table 6.1 shows the performance of the models when trained with the LM
objective. A first important observation, in line with the results of [Tran et al., 2018], is
that LSTMs achieve better accuracy on the subject-verb agreement task compared to
Transformers. Even for instances of Transformer language models that achieve better
(lower) perplexity, the accuracy on this task is worse compared to LSTM instances.

Since both models achieve good scores on the training set, this suggests that LSTMs
better capture relevant patterns, such as the hierarchical structure of the input, which
leads to better generalization on this task.

Figure 6.1 illustrates the accuracy versus perplexity of several instances of each model,
in the LM setup. Note that although perplexity is an indicator of how well the model is
optimized given the objective function, the accuracy is the metric that matters and shows
models’ generalization in the subject-verb agreement task (In chapter 7, we show how
using KD the behavior of Transformers changes in terms of accuracy versus perplexity
and become more similar to LSTM teachers).

There is another interesting observation in Figure 6.1. In this plot, for each model, we
have two different settings: large and small variants, as measured by the number of
trainable parameters. More parameters for a model, given a fixed architecture, means
richer hypothesis spaces. We can see that while for the LSTMs, increasing the size of
the model results in better performance, for the Transformers increasing the number of
parameters results in a worse performance. This aligns with the bias-variance trade-off
argument that when using a model with weaker biases for the task at hand, in this
case, Transformers, if we fix the amount of data, richer hypothesis spaces may hurt the
generalization because they increase variance. In contrast, adding more capacity leads
to better accuracy in LSTMs as their stronger inductive biases control the generalization
error.
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Figure 6.2: Calibration plots for an LSTM and a Transformer model trained on subject-verb-agreement
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Figure 6.3: 2D projection of representational similarity of the activations from the penultimate layers for
1000 examples from the validation set (check Appendix 7.3.2 for more details). We use the notation of
a→ b to refer to the student model b distilled from teacher model a.

6.4 Examining the Sources of Recurrent Inductive Bias

In Table 6.2 we show the results of models trained on the classification objective. We
compare LSTM with variants of Transformers with different inductive biases. The table
shows that similar to the LM results, LSTM achieves the best performance. Interestingly,
comparing all four models, we find that the performance steadily increases as more
aspects of the recurrent inductive bias are included. This is illustrated in Figure 6.4a,
with the filled circles on the black, dashed line.

As another indicator of the quality of the solutions that different models converged to in
the classification setup, we look into their confidence calibration. Confidence calibration
captures how well the likelihood (confidence) of the prediction of the model predicts
its accuracy [Guo et al., 2017]. For a well-calibrated model, if we bin the confidence
scores and compute the accuracy for each bin, the accuracies are perfectly correlated
with the confidence values. The Expected Calibration Error (ECE) is computed as the
distance between the calibration curve of the model and the perfect calibration curve
[DeGroot and Fienberg, 1983]. In Figure 6.4b, we plot the ECE [Guo et al., 2017] of
the models in the classification setup, with the filled circles on the black dashed line. In
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1000 examples from the validation set.

line with the trends in the performances of these models, the expected calibration error
decreases as we move from Transformer toward LSTM.

Additionally, as shown in Figures 6.4a and 6.4b, we find a decreasing trend in the
variance of the models, i.e., adding more inductive biases to the models decreases their
variance. This is empirical evidence that supports the relation between the variance of
the solutions a model converges to and its inductive biases.

6.5 Conclusion

Several studies have shown that the recurrent inductive bias of LSTMs, the most popular
variants of RNNs, helps these models deal with tasks requiring sensitivity to hierarchical
(linguistic) structures. In particular, when data and compute are limited, LSTMs perform
better than models such as Transformers variants that lack the recurrent inductive bias
(Tran et al., 2018; Dehghani et al., 2019).

In this chapter, We provide empirical evidence to support the importance of recurrence
for solving the subject-verb-agreement task [Dehghani et al., 2019, Tran et al., 2018], as
an example of tasks that require capturing hierarchical structure in the input sequence.

We show that LSTMs not only achieve a higher accuracy, but also better confidence
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calibration. We also show that LSTMs and Transformers converge to solutions with very
different representational spaces. Additionally, we show that when these models are
not directly trained for this task, but just on a language modelling objective (a transfer
learning setup), even with higher (worse) perplexity, LSTMs achieve higher accuracy
on the subject-verb agreement task. These experiments and results confirm that LSTMs
have inductive biases that standard Transformers lack and this inductive bias helps them
to better capture hierarchical structures in the data.

Furthermore, we identify and examine different sources of the recurrent inductive
bias. We distinguish between the three main sources of the recurrent inductive bias:
Sequentially, Memory bottleneck and Recursion and by applying these constraints on
the basic Transformer architecture we illustrate that each of these can significantly
impact the solution of a model.



7
Transferring the Effects of Inductive Biases

Different inductive biases of learning algorithms can drive them towards solutions with
inherently different characteristics even when they achieve similar performance with
respect to the training objective. Our focus in this chapter is to understand whether the
effects of inductive biases rooted in the architecture of a neural network can transfer
through knowledge distillation to another model depending on its inductive biases
and expressivity. The answer to these questions helps us to understand the limits of
knowledge distillation, and its potential as a comparison framework to study inductive
biases and the expressive power of different models. Our experiments indicate that
training models through KD from a teacher with a strongly different inductive bias
significantly affects the characteristics of the solutions the student models converge to.
This effect is not necessarily persistent and in the absence of evidence for the desirability
of a solution in the training data. The student model could eventually forget those effects
if we stop distillation and continue the training with ground-truth labels. Nevertheless,
initializing a model through KD from a teacher model with different inductive biases

This chapter is partially based on the following paper (some of the contents are not published
before).

• Samira Abnar, Mostafa Dehghani, and Willem Zuidema. 2020. Transferring inductive biases
through knowledge distillation. arXiv preprint arXiv:2006.00555 (2020).

• List of contributions is as follows. Samira Abnar: Preparing the framework for running the
experiments, Designing and Running experiments, and Writing the paper. Mostafa Dehghani:
Designing the experiments, Helping with some of the visualizations, Reviewing and revising the
paper. Willem Zuidema: Guiding the research, Reviewing and revising the paper.
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Figure 7.1: Training path of models in terms of relational changes in the representational space of the
models. In these plots, each point represent the state of the model at a specific epoch, from the initial
state to the convergence. The visualization is based on a 2D projection of the representational similarity
of the activations from the penultimate and logits layer for 1000 examples from the validation set, i.e.
Translated MNIST (more details on Appendix 7.3.2).

could be beneficial in some cases.

7.1 Knowledge Distillation and Biases

KD refers to the process of transferring knowledge from a teacher model to a student
model, where the logits from the teacher are used to train the student. KD is best known
as an effective method for model compression [Buciluǎ et al., 2006, Hinton et al., 2015,
Sanh et al., 2019] which allows taking advantage of a huge number of parameters during
training while having an efficient smaller model during inference.

The advantage of KD goes beyond model compression. For example, self-distillation,
distilling a model into itself iteratively, can sometimes lead to improvements in perfor-
mance [Furlanello et al., 2018, Mobahi et al., 2020]. KD can also be used to combine
strengths of different learning algorithms [Geras et al., 2016, Kuncoro et al., 2019, 2020,
Touvron et al., 2020]. Different algorithms vary in terms of computational/memory
efficiency at training/inference or inductive biases for learning particular patterns. This
makes them better at solving certain problems and worse at others, i.e., there is no “one
size fits all” learning algorithm, and KD can be exploited to find better trade-offs.

Considering the popularity and the different use cases of KD, it is important to explore
the potentials and limits of KD to understand how and to what extent a model is affected
when trained through KD in contrast to when it is trained with ground-truth labels
beyond the boost in its performance and speed up in training time. Understanding
this is extremely important when we are interested in the downstream performance or
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out-of-distribution behaviour of the models. E.g., consider a scenario where we apply
KD to transfer the knowledge of one model to another using the upstream objective
and training data. Can we expect the student model to have the same behaviour on the
downstream tasks as the large model, merely based on the fact that they achieve the
same level of performance on the upstream task? While, even for models with similar
architecture and size, different trained instances can have very different behaviours on
downstream tasks, which can be explained by under specification of the objective in the
training data [D’Amour et al., 2020], KD can pose a strong bias on the student model
and derive it toward the solution of the teacher model.

In this chapter, we ask: “In KD, can the effects of the inductive biases of the teacher
on its final solution, which are also reflected in the information encoded in its output
logits [Hinton et al., 2015]., be transferred to the student model?”. We are specifically
interested in cases where the student model can realize functions that are realizable
by the teacher, i.e., the student model is efficient with respect to the teacher model
[Cohen et al., 2016], while the teacher has a preference inductive bias so that the desired
solutions are easily learnable for the teacher [Seung et al., 1991].

We consider two scenarios where the teacher and the student are neural networks with
heterogeneous architectures, hence have different inductive biases. We train the models,
both independently and using KD. We chose tasks in which one of the models is able to
achieve a generalization performance more similar to humans than the other models.
We refer to the better model as the model with the “right” inductive biases for learning
the task. One potential criticism about this idea could be why the outputs of the teacher
model could provide a better signal for the student model than the ground-truth signals
(which are outputs of humans). Is it not the case that the ground truth signals should
reflect the effects of the inductive biases of the human brain? One potential response
to this point could be that the role of the teacher model in the KD process is to learn
an approximation of the ideal solution which is more learnable for the student model
compared to the perfect solution.

In the first test case, we study RNNs vs. Transformers [Vaswani et al., 2017], on
the subject-verb agreement prediction task [Linzen et al., 2016]. In this task, we use
LSTMs [Hochreiter and Schmidhuber, 1997] as the most widely used RNN variant.
LSTMs are shown to perform better than vanilla Transformers in this task and their
superior performance is attributed to their so-called “recurrent” inductive bias [Tran
et al., 2018]. In chapter 6, we identify the sources of the recurrent inductive bias of
LSTMs: sequentiality, memory bottleneck, and recursion, and demonstrate the benefits
of each. Here, we show that through distilling knowledge of LSTMs to Transformers,
the solutions that the Transformer models learn become more similar to the solution
learned by LSTMs.

In the second test case, we study CNNs vs. MLPs, in the context of the MNIST-C
(Corrupted MNIST) benchmark [Mu and Gilmer, 2019], which is designed to measure
the out-of-distribution robustness of models. We train our models on MNIST and
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evaluate them on the Translated/Scaled MNIST. The particular form of parameter
sharing in CNNs combined with the pooling mechanism makes them equivariant to these
kinds of transformations [Goodfellow et al., 2016], which leads to better generalization
in these scenarios compared to MLPs.

In our experiments and analysis on these two test cases1, we compare the behavior of
different models, from a wide range of perspectives, when trained in different setups
including (1) when trained without KD, but directly from the data, (2) when trained
with KD using a teacher with a similar architecture to the student, i.e. self-distillation,
and (3) when trained with KD using a teacher with a different architecture that has
stronger inductive biases that suit the task, compared to the student.

As the first step, in setup (1), i.e., no KD, we demonstrate how inductive biases arising
from different architectural choices affect the generalization behavior of the models we
study. We show that the models with more suitable inductive biases not only have better
accuracy but also that the solutions they converge to are better in terms of other metrics.
We also show that different instances of the model with stronger inductive biases have
less variance in terms of all the metrics.

Then, we apply KD to train the models and contrast the behavior of models trained with
the setups (2) and (3) with the models trained with setup (1), i.e. with KD vs. without
KD. We show that regardless of the properties of the teacher, KD is a powerful technique
in which the teacher model drives the student toward a particular set of solutions that is
more restricted compared to the set of possible solutions that a student can converge to
when it learns directly from data.

Next, as the main contribution of our experiments in this chapter over previous works
that study KD, we contrast the behavior of models trained with setup (3) with the models
trained with setups (1) and (2):

• We show the performance of the student models in setup (3) increases, not only
on in-distribution test sets, but also on out-of-distribution data. We demonstrate
that this happens when the teacher has the right inductive bias and not necessarily
otherwise, i.e., setup (2).

• In setup (3), besides performance, we show that, the solution that a student model
converges to shares similar characteristics with the solution of its teacher. For
instance in terms of confidence calibration, and per sample behaviour of the
model (§7.3.3).

• We demonstrate that although the student model is merely exposed to the final
logits of the teacher, the structure of the latent space of the student model becomes
similar to the teacher, i.e. relational similarity of the internal representations from
the student and its teacher increases.

1The codes for the input pipelines, models, analysis, and the details of the hyper-parameters used in our experiments are
available at https://github.com/samiraabnar/Reflect.

https://github.com/samiraabnar/Reflect
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As an example, in our second test case (MNIST-C), when training an MLP model with
KD using a CNN teacher, the student model explores the solution space in ways more
similar to its teacher. Figure 7.1 visualizes and compares the path that an MLP takes
during training (Figure 7.1e), compared to a CNN (Figure 7.1f). The CNN model
explores the surface in a completely different manner than the MLP, while the path of a
student MLP distilled from the CNN model as the teacher (Figure7.1g) is more similar
to the CNN.

7.2 Knowledge Distillation in Neural Networks

Knowledge Distillation is a technique that transfers knowledge from one model to
another [Hinton et al., 2015]. Hinton et al. [2015] suggest that the power of KD is
mostly in being able to transfer the useful information that is embedded in the soft
targets of the teacher model, e.g., the relation between the output classes as captured by
the teacher model. Hinton et al. [2015] refers to this as the dark knowledge. Phuong
and Lampert [2019] studies KD from a theoretical point of view in a simplified setting
where the task is a binary classification, and teacher and student are linear models.
They attribute the success of distillation to three main factors: (1) data geometry, (2)
optimization bias, and (3) strong monotonicity. And more recently Tang et al. [2020],
conduct extensive analysis and identify three sources for why KD helps: (1) label
smoothing, (2) example re-weighting based on teacher’s confidence, and (3) prior
knowledge of optimal output layer geometry.

The most well-known use of KD is to compress a large, unwieldy model or an ensemble
model into a smaller model. Empirically, many people have found that bigger models
are easier to train (often explained with the ‘lottery ticket hypothesis’ [Frankle and
Carbin, 2019]); KD makes it possible to distill the knowledge in the large model into
a much smaller model, and thus in some sense offer the best of both worlds [Buciluǎ
et al., 2006, Hinton et al., 2015, Srinivas and Babu, 2015]. Distilling knowledge from a
very big model or an ensemble of models with similar or heterogeneous architectures
that are trained on the same or different tasks into a single model with much fewer
parameters can lead to similar or sometimes even better performance compared to the
teachers [Hinton et al., 2015, Kim and Rush, 2016, Liu et al., 2019a, Luo et al., 2019,
Tan et al., 2019].

Previous work has examined the effectiveness of KD in different settings: where the
teacher is bigger than the student, but both have similar building blocks [Hinton et al.,
2015, Kim and Rush, 2016, Sanh et al., 2019]; where teacher and student are of similar
size and architecture [Freitag et al., 2017, Furlanello et al., 2018]; or where the student
and teacher have fundamentally different architectures [Ahn et al., 2019, Frosst and
Hinton, 2017, Geras et al., 2016, Kuncoro et al., 2019, 2020, Luo et al., 2019, Tang
et al., 2019, Touvron et al., 2020].
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Table 7.1: Overview of the applications of knowledge distillation in neural networks
Main Purpose Architectue Size Train Data Test Data Related Work

Model Compression Same |Mstd| < |Mtchr| Sstd = Stchr i.i.d

[Buciluǎ et al., 2006]
[Hinton et al., 2015]

[Kim and Rush, 2016]
[Sanh et al., 2019]

Regularization Same |Mstd| >= |Mtchr| Sstd = Stchr i.i.d
[Furlanello et al., 2018]

[Freitag et al., 2017]
[Mobahi et al., 2020]

Explanation Different |Mstd| < |Mtchr| Sstd = Stchr i.i.d
[Craven and Shavlik, 1995]

[Craven, 1996]
[Frosst and Hinton, 2017]

Combining Pros Different |Mstd| >=< |Mtchr| Stchr ⊆ Sstd
i.i.d

various downstream tasks

[Chan et al., 2015]
[Geras et al., 2016]
[Luo et al., 2019]

[Kuncoro et al., 2019]
[Kuncoro et al., 2020]
[Touvron et al., 2020]

KD has also been proposed as an interpretation technique, where the knowledge of a big
complex model is distilled into a more interpretable model [Craven, 1996, Craven and
Shavlik, 1995, Frosst and Hinton, 2017]; Or as a method to compare the capacity and
expressiveness of different models [Maheswaranathan et al., 2019, Saxe et al., 2018].

Table 7.1 categorizes and summarizes the many different papers that study the effective-
ness of different forms of KD.

Offline Distillation In most cases, KD is applied in an offline setting, i.e., we first
train the teacher network and use the trained teacher to train the student, while the
parameters of the teacher are fixed. This is the standard distillation process introduced
by [Buciluǎ et al., 2006, Hinton et al., 2015]. We apply this setup in our experiments
since it is the most common approach. There are other possible settings for KD, e.g.
online distillation, where teacher and student models are trained simultaneously.

Online Distillation In online distillation, the teacher and student networks are trained
at the same time. The parameters of the student model can get updated with the same
mini-batch as the teacher or a different mini-batch. In either case, similar to offline KD,
the targets for the student model are the output activations of the teacher. E.g., Anil
et al. [2018] uses an online distillation setup, where models are trained on different
parts of the dataset and share their knowledge during training. One main advantage of
online distillation could be benefiting from the implicit information in the trajectory the
teacher model follows before converging to a solution.

Distillation Loss There are several different ways of computing the distillation loss:
using only the output of the teacher or taking intermediate layers into account as well
[Ahn et al., 2019, Anil et al., 2018, Buciluǎ et al., 2006, Hinton et al., 2015, Park et al.,
2019, Sun et al., 2019b, Tung and Mori, 2019]. Potentially, using these alternative
losses could lead to transferring different kinds of knowledge depending on the tasks
and the configurations of the models. While it is worth doing a thorough comparison of
all these techniques, in this chapter we have focused on the most commonly used loss
introduced by [Hinton et al., 2015], which is based on the Kullback-Leibler divergence
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between output distributions of the teacher, i.e., soft targets, and the output distributions
of the student. The output distributions of the teacher and student model, Pt and Ps, are
computed similarly, with Equation 7.1.

exp(zi/τ)

∑j exp(zj/τ)
, (7.1)

where τ > 1 is the softmax temperature and z is the logits from the model.

The distillation loss is: H(Pt, Ps), whereH is the cross entropy loss and is computed
as:

H(Pt, Ps) = −∑
x

Pt(x) log Ps(x) (7.2)

When KD is applied as a means for model compression, it is common to compute the
total loss as a mixture of distillation loss and actual loss. Since, our focus in this paper
is on how much the student model can learn from the teacher model, in our experiments
we use pure distillation.

7.3 Distilling LSTMs into Transformers

LSTMs and Transformers are the basic building blocks of many state-of-the-art models
for sequence modeling and natural language processing. Transformers are an expressive
class of models that do extremely well on many tasks where the training data is adequate
in quantity [Brown et al., 2020, Devlin et al., 2019, Keskar et al., 2019, Radford et al.,
2019]. Several studies, however, have shown that LSTMs can perform better than
Transformers on tasks requiring sensitivity to (linguistic) structure, especially when the
data is limited [Dehghani et al., 2019, Tran et al., 2018].

We chose the subject-verb agreement prediction task, introduced by [Linzen et al., 2016],
as the test case, as it yields a meaningful difference between LSTMs and Transformers
[Tran et al., 2018]. We compare these two families of models and conduct experiments
to emphasize the differences between them when trained independently and through
KD.

7.3.1 Models Architectures and Training setup

For the subject-verb agreement task, we study Transformers and LSTMs. In the LM
setup, we use two sizes for each architecture: LSTM: two-layer uni-direction LSTM,
with a hidden size of 1024. Small LSTM: two-layer uni-direction LSTM, with a hidden
size of 512. Transformer: six-layer Transformer decoder with a hidden size of 512 and
8 heads. Small Transformer: Transformer: six-layer Transformer decoder with a hidden
size of 256 and 8 heads.
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Table 7.2: Performance (mean±std over 4 trials) of different LSTM and Transformer models with LM
objective when we apply pure distillation with τ = 1.

Student Model
Teacher Model

LSTM Small LSTM Transformer Small Transformer

LSTM A−Accuracy ↑ 0.928 ± 0.002 0.931 ± 0.001 0.908 ± 0.004 0.926 ± 0.003
perplexity ↓ 59.45 ± 0.019 60.92 ± 0.019 60.01 ± 0.033 58.65 ± 0.004

Small LSTM A−Accuracy ↑ 0.922 ± 0.002 0.927 ± 0.003 0.899 ± 0.006 0.916 ± 0.002
perplexity ↓ 62.52 ± 0.107 63.44 ± 0.027 63.45 ± 0.0644 61.62 ± 0.062

Transformer A−Accuracy ↑ 0.930 ± 0.003 0.932 ± 0.001 0.896 ± 0.002 0.920 ± 0.002
perplexity ↓ 57.03 ± 0.009 59.09 ± 0.013 57.67 ± 0.009 56.64 ± 0.035

Small Transformer A−Accuracy ↑ 0.920 ± 0.002 0.923 ± 0.001 0.883 ± 0.003 0.91 ± 0.001
perplexity ↓ 57.84± 0.027 59.73 ± 0.017 58.44 ± 0.035 57.16 ± 0.009

Table 7.3: µ−Accuracy ↑ (mean±std over 4 trials) of different LSTM and Transformer models with
classification objective when we apply pure distillation with τ = 1.

Student Model
Teacher Model

Transformer Transformer-seq UTransformer-seq LSTM

Transformer 0.956 ± 0.0013 0.956 ± 0.0006 0.957 ± 0.0027 0.960 ± 0.0008
Transformer-seq 0.960 ± 0.0006 0.963 ± 0.0008 0.968 ± 0.0005 0.972 ± 0.0017
UTransformer-seq 0.961 ± 0.0006 0.964 ± 0.0004 0.969 ± 0.0008 0.975 ± 0.0003
LSTM 0.968 ± 0.0002 0.969 ± 0.0011 0.974 ± 0.0004 0.976 ± 0.0001

In the classification setup, we employ an LSTM and three variants of Transformer,
where the LSTM has a two-layer with a hidden size of 256, and the Transformers
have 6 layers, 8 heads, and a hidden size of 128. We use a hidden size of 256 for the
UniversalTransformer-seq since its parameters are shared in depth and with the same
hidden size as other Transformers, it will have fewer parameters.

For training the independent models we use the Adam optimizer [Kingma and Ba,
2014] with exponential decay learning rate scheduler and for the student models in the
distillation process, we use Adam optimizer with cosine decay restart [Loshchilov and
Hutter, 2017] learning rate scheduler. The hyperparameters related to the regularization
and learning rate schedulers are tuned separately for each model/experiment. For each
model, we report the set of hyper-parameters that gives the best average performance
across multiple trials with different random seeds for initialization.

7.3.2 Transferring the Effect of Recurrent Inductive Bias

In this section, we show that distilling knowledge from LSTM to Transformer can close
the gap between their performance by pushing the Transformer to converge to solutions
more similar to LSTM’s.

Table 7.2 and Table 7.3 summarize the distillation results, when the training objective
is language modeling and classification respectively. A first general observation is
that, for these tasks and setups, distilling a model into an identical model could result
in a decrease in performance. Note that whether self-distillation results in improved
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Figure 7.2: A−Accuracy ↑ vs perplexity ↓ (high to low from left to right) for student Transformer with
LM objective. In this figure the triangle marks indicate Transformer models, and circles indicate the
LSTM teachers used to train the student Transformers.

performance could potentially depend on many different factors such as the architecture
of the model, optimization algorithm, and details of the distillation process [Furlanello
et al., 2018, Mobahi et al., 2020].

Despite no significant changes in the performance with self-distillation, we can improve
the performance of the Transformers through distillation from LSTM teachers.

To check whether this improvement is due to the transfer of the effect of inductive biases
through distillation and whether distillation helps students to converge to solutions
similar to their teachers, we run a series of analyses. In Figure 7.2 we see how teacher
LSTMs pull student Transformers toward solutions with higher accuracy on the subject-
verb agreement task in the LM setup. This happens even when the perplexity of the
student Transformer is higher (worse) than the independent Transformer.

Figure 6.4, also shows the effects of distillation on each of the four models we study
in the classification setup. In Transformer-based models, we get the most significant
improvement both in accuracy and ECE when the teacher is an LSTM. As the recurrent
inductive biases of the teacher get weaker, the amount of improvement in the perfor-
mance of student models decreases. Figure 7.3 shows the effect of KD on the calibration,
given a student Transformer and an LSTM teacher.

Is the improvement in calibration merely the product of using soft targets? Mueller
et al. [2019] shows training neural networks with soft targets (e.g. through label smooth-
ing) results in models that are better calibrated. On the other hand, KD has a regular-
ization effect similar to label smoothing [Tang et al., 2020, Yuan et al., 2019]. Given
the lack of significant improvement in ECE in the self-distillation experiments (Figure
6.4b), it is more likely that the cause of the improvement in ECE when distilling LSTMs
into Transformers is beyond the label smoothing effect of KD.

To further explore and better understand the effects of KD, we compare the internal
representations of these models besides their final output.

Visualisation of representational similarity of the activations from the penultimate
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Figure 7.3: Calibration plots for independent and distilled Transformer for the classification setup. Note
that since the task is binary classification, accuracy for confidences lower than 0.5 is not defined.

layer To compare and visualize the state of m different models to each other (at
convergence or any stage of training), we propose using representational similarity
[Abnar et al., 2019, Laakso and Cottrell, 2000] of the activations from their penultimate
layer. Note that representational similarity measures how similar two models learn
to represent the data in terms of the global “relations” between all the data points,
not local example-by-example similarity. In fact, the “direct” similarity between the
activations of the penultimate layers of two models can be quite low, while having high
representational similarity. This is because models can keep the relations between data
points similar while embedding data into completely different representational spaces.
This is particularly useful when these models do not have the same architecture and
their parameter space is not directly comparable. To do so, given a sample set of size n
from the validation/test set (e.g. 1000 examples), we feed them to the forward pass of
each model to obtain the representation from the penultimate layer of the models. Then,
for each model, we calculate the similarity of the representations of all pairs from the
sample set using dot product which leads to a matrix of size n× n. We use the samples
similarity matrix associated with each model to compute the similarity between all pairs
of models. To do this, we compute the dot product of the corresponding rows of these
two matrices after normalization and average all the similarities of all rows, which leads
to a single scalar. Given all possible pairs of models, we then have a model similarity
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Figure 7.4: 2D projection of representational similarity of the activations from the penultimate layers for
1000 examples from the validation set (check Appendix 7.3.2 for more details). We use the notation of
a→ b to refer to the student model b distilled from teacher model a.

matrix of size m×m. We then apply a multidimensional scaling algorithm2 to embed
all the models in a 2D space based on their similarities.

Figure 7.4 shows the 2D projection of the relational similarity of representations3

[Laakso and Cottrell, 2000] from the penultimate layer of the models. We see that, in
the LM setup, the internal representations of student Transformers that are distilled
from LSTMs are structured differently compared to independent Transformers and are
more similar to the LSTM models. For the classification objective, we also see that the
distilled models are further away from their independent versions. This supports the
idea that the effect of distillation goes beyond the output of the models and their final
performances.

7.3.3 Per-sample Behaviour

To compare the models with each other and better understand how distillation affects the
student models, we take a closer look at their per sample behavior and investigate if the
errors a student model makes are more similar to its teacher’s errors. Here, we look into
the error overlap of the students and teachers, which reflects their similarity in terms of
their behavior per data example. This similarity can be another proxy to measure the
similarity of the solutions learned by the models, with and without distillation. Figures
7.5, 7.6, and 7.7 illustrates the error overlap between different models as Venn diagrams
when they are trained independently and when we use distillation.

In Figure 7.5, we observe that when the Transformer and LSTM models are trained
independently, two independent LSTMs behave more similarly compared to two Trans-
formers (Figures 7.5b and 7.5a). Given a similar number of trainable parameters, i.e.,
similar capacity for LSTMs and Transformers, this again supports the claim that models
with stronger inductive biases converge to more similar solutions (Also shown in Figure
6.4a).

2https:// scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
3Note that the relational similarity captures the similarity of the structures, not the absolute values.

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
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Figure 7.5: Error overlap for LSTM and Transformer models trained with the classification objective
on SVA task. These Venn diagrams show the intersections of the sets of examples miss-classified by
the models. In (a) we compare two independent LSTMs (LSTM#1 and LSTM#2) and an independent
Transformer; in (b) we compare two independent Transformers (Transformer#1 and Transformer#2) and
an independent LSTM; in (c) we compare a student Transformer and a teacher LSTM with an independent
Transformer; and in (d) we compare a student Transformer and a teacher LSTM with an independent
LSTM.
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Figure 7.6: Error overlap for CNN and MLP models trained on MNIST and tested on Scaled-MNIST
set from MNIST-C dataset. These Venn diagrams show the intersections of the sets of examples miss-
classified by the models. In (a) we compare two independent CNN (CNN#1 and CNN#2) and an
independent MLP; in (b) we compare two independent MLP (MLP#1 and MLP#2) and an independent
CNN; in (c) we compare a student MLP and a teacher CNN with an independent MLP; and in (d) we
compare a student MLP and a teacher CNN with an independent CNN.
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Figure 7.7: Error overlap for CNN and MLP models trained on MNIST and tested on Translated-MNIST
set from MNIST-C dataset. These Venn diagrams show the intersections of the sets of examples miss-
classified by the models. In (a) we compare two independent CNN (CNN#1 and CNN#2) and an
independent MLP; in (b) we compare two independent MLP (MLP#1 and MLP#2) and an independent
CNN; in (c) we compare a student MLP and a teacher CNN with an independent MLP; and in (d) we
compare a student MLP and a teacher CNN with an independent CNN.

When we apply KD in a cross-architecture setting, with an LSTM teacher and a student
Transformer, Figures 7.5d and Figure 7.5c, the student Transformer behaves more
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Table 7.4: Performance (mean±std over 4 trials) of different LSTM and Transformer models trained
independently with the LM objective on the training set.

Model Perplexity ↓ D−Accuracy ↑ A−Accuracy ↑
Transformer 29.62 ± 0.10 0.956 ± 0.001 0.936 ± 0.004
Small Transformer 33.02 ± 0.05 0.959 ± 0.001 0.948 ± 0.005
LSTM 28.92 ± 0.08 0.964 ± 0.003 0.955 ± 0.003
Small LSTM 31.03 ± 0.11 0.964 ± 0.001 0.952 ± 0.006

similarly to the LSTM teacher and an independent LSTM, compared to the independent
version of itself. This confirms that through distillation the way the student model solves
the task becomes more similar to the way the teacher model solves the task.

We have similar observations in Figures 7.6, and 7.7; where errors of a student MLP
are less and more similar to the errors the teacher CNN compared to an independently
trained MLP.

7.3.4 Performance Scores on the Training Data

In the paper, for our first test case, we report the performance of LSTM and different
Transformer models on the test set, when trained independently and with knowledge
distillation. We observe that LSTMs achieve better accuracy on the test set compared to
Transformers due to their inductive biases. Here, we also report the performance of all
the models, for both classification and LM setup, on the training set, which confirms
that Transformer models have enough capacity to achieve good scores on the training
data.

This solidifies the narrative that the inductive bias of LSTMs is helping with generaliza-
tion and rules out, for example, the possibility that LSTMs have a higher capacity or are
trained better.

Table 7.5: Performance (mean±std over 4 trials) of different LSTM and Transformer models trained
independently with the classification objective on the training set.

Model Train µ−Accuracy ↑
Transformer 99.57
Transformer-seq 99.57
UniversalTransformer-seq 99.66
LSTM 98.62

7.4 Distilling CNNs into MLPs

To evaluate the robustness of our findings on the transfer of inductive biases through KD,
we performed a second case study, using different neural architectures and a different
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task. We use convolutional neural networks (CNN) vs. multilayer perceptrons (MLP)
as two families of models with different inductive biases. CNNs are the de facto choice
for processing data with grid-like topology. Sparse connectivity and parameter sharing
in CNNs make them an effective and statistically efficient architecture. The particular
form of parameter sharing in the convolution operation makes CNNs equivariant to
translation [Goodfellow et al., 2016]. Note that, we can view CNNs as MLPs with an
infinitely strong prior over their weights, which says that first of all the weights for each
hidden unit are identical to the weights of its neighbor with a shift in space, second, the
weights out of the spatially continues receptive field assigned to each hidden unit are
zero.

7.4.1 Models Architectures and Training Setup

We study CNNs and MLPs in the context of the Corrupted-MNIST dataset (MNIST-C)
[Mu and Gilmer, 2019], which aims at benchmarking out-of-distribution robustness. We
train the models on the original MNIST training set and evaluate them on the Translated
and Scaled MNIST test sets from MNIST-C. In this scenario, the inductive biases of
CNNs help them generalize better than MLPs.

Our CNN architecture is a stack of convolutions and pooling layers. Combining
convolution and pooling over spatial regions results in invariance to translation. To
have CNNs that can learn to be invariant to other transformations like changes in the
scale, we can use cross-channel pooling [Goodfellow et al., 2013], where we pool over
separately parametrized convolutions that have learned to detect different transformed
versions of the same underlying features. Our MLP is simply a stack of fully-connected
layers.

For training the independent models we use the Adam optimizer [Kingma and Ba,
2014] with exponential decay learning rate scheduler and for the student models in the
distillation process, we use Adam optimizer with cosine decay restart [Loshchilov and
Hutter, 2017] learning rate scheduler. The hyperparameters related to the regularization
and learning rate schedulers are tuned separately for each model/experiment. For each
model, we report the set of hyper-parameters that gives the best average performance
across multiple trials with different random seeds for initialization.

7.4.2 On the Importance of Translation Equivariance.

Table 7.6 presents the accuracy and ECE of CNNs and MLPs when trained indepen-
dently. All models are trained on the original MNIST training set and tested on the
Scaled and Translated sets from MNIST-C. Even though CNNs’ accuracy and ECE
on the original MNIST test set are only slightly better than MLPs (.992 vs .985), there
is a rather large gap between their performances on the Scaled (.962 vs. .794) and
Translated (.981 vs. .373) test sets. This is expected since the inductive biases of CNNs
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Table 7.6: Accuracy and Expected Calibration Error (mean±std over 4 trials) of CNN and MLP trained
independently on MNIST and evaluated on MNIST, MNIST-Scaled and MNIST-Translated.

(a) Accuracy

Model MNIST Scaled Translated

CNN 0.992 ± 0.0009 0.962 ± 0.0021 0.981 ± 0.0003
MLP 0.985 ± 0.0011 0.794 ± 0.0154 0.373 ± 0.0151

(b) Expected Calibration Error

Model MNIST Scaled Translated

CNN 0.011 ± 0.0006 0.060 ± 0.0044 0.028 ± 0.0016
MLP 0.015 ± 0.0006 0.175 ± 0.0081 0.564 ± 0.0091

Table 7.7: Accuracy and Expected Calibration Error (mean±std over 4 trials) of CNN and MLP trained
with pure distillation with τ = 5, on MNIST and evaluated on MNIST, MNIST-Scaled and MNIST-
Translated.

(a) Accuracy

Student Model
MNIST Scaled Translated

CNN MLP CNN MLP CNN MLP

CNN 0.991 ± 0.0004 0.990 ± 0.0007 0.951 ± 0.0046 0.955 ± 0.0065 0.978 ± 0.0003 0.976 ± 0.0012
MLP 0.988 ± 0.0005 0.985 ± 0.0015 0.904 ± 0.0073 0.839 ± 0.0096 0.510 ± 0.0148 0.395 ± 0.0069

(b) Expected Calibration Error

Student Model
MNIST Scaled Translated

CNN MLP CNN MLP CNN MLP

CNN 0.014 ± 0.0004 0.013 ± 0.0005 0.068 ± 0.0043 0.054 ± 0.0063 0.033 ± 0.0006 0.030 ± 0.0016
MLP 0.013 ± 0.0004 0.015 ± 0.0012 0.109 ± 0.0053 0.155 ± 0.0079 0.432 ± 0.0136 0.555 ± 0.0038

make them suitable for these types of generalizations. Moreover, the variance of the
results from the CNNs is much less compared to MLPs. This is due to the fact that
different instances of a model with stronger inductive biases are more likely to converge
to solutions that belong to the same basin in the loss landscape [Neyshabur et al., 2020]
(See §7.6 for more analysis on the relation of solutions different models converge to in
the loss landscape).

7.4.3 Better Out of Distribution Generalization with KD.

Table 7.7 shows that distillation from a CNN into an MLP improves both accuracy and
ECE for all three test sets, decreasing the gap for the Scaled test set (.904 vs. .794
without KD), and much more improvement on the performance on the Translated test
set (.510 vs. .373 without KD). We also see a lower variance in the performance of
MLP models that are trained through KD with CNN teachers.

We further compare the results of all possible pairs of models as teachers and students,
to take into account different effects of KD that can potentially improve the performance
of the student model. Although self-distillation results in a slightly better performance
in MLPs, perhaps due to the regularization effect of distillation [Mobahi et al., 2020,
Tang et al., 2020], the improvement in the performance of MLPs with an MLP teacher
is much less compared to when the teacher is a CNN. Regardless of the teacher (MLP or
CNN), KD results in slightly lower performances in student CNNs compared to CNNs
trained independently (similar to results of an LSTM student in test case 1).

Furthermore, in Figure 7.8, we compare the relational similarity of the representations
from penultimate layers of independently trained CNNs and MLPs as well as their
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Figure 7.8: 2D projection of representational similarity of the activations from the penultimate layers for
all examples from the test set (check Appendix 7.3.2 for more details). We use the notation of a→ b to
refer to the student model b distilled from teacher model a.

distilled ones. First of all, as expected based on our assumptions about the inductive
biases of these models, MLPs have more variance than CNNs. Second, distilling from a
CNN to an MLP results in representations that are more similar to the representations
learned by CNNs, while this is not the case with MLPs as teachers and CNNs as students.
Moreover, for both CNNs and MLPs, self-distillation does not significantly change the
representations they learn.

Finally, we compare the paths the models follow during training until they converge to a
solution. To plot the training path of a model, we compute the pairwise representational
similarity between different stages of training of the model. Figure 7.1, illustrates the
training path for an independent MLP, an independent CNN, and an MLP that is distilled
from a CNN. While MLP and CNN seem to have very different behavior during training,
the student MLP with a CNN as its teacher behaves differently than an independent
MLP and more similar to its teacher CNN. This is interesting, in particular, since the
student model is only exposed to the final solution the teacher has converged to and no
information about the intermediate stages of training is provided in the offline KD.
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7.4.4 Impact of the Quality of the Teacher

Here, in an ablation experiment for our second case study, we investigate the impact of
the quality of the teacher in the in-distribution set on the generalization of the student
in the out-of-distribution set. To do so, given a CNN as the teacher and an MLP as
the student, we take snapshots of a CNN model during different stages of training as
teachers with different qualities (we use 9 different teachers). Using each teacher, we
train an MLP student.

Figure 7.9a presents the quality of the different teachers based on different test sets:
Vanilla MNIST (in-distribution), Translated MNIST (out-of-distribution), and Scaled
MNISt (out-of-distribution). For the CNN models that are trained with ground truth
labels on vanilla MNIST, as expected, as the number of training iterations grows, the
performance of the model on all three test sets increases. In Figure 7.9b, we see that
in general, the accuracy of the MLP students follows the same trend, i.e., a better
CNN teacher results in a better MLP student. Given the results of an independently
trained MLP from Table 7.6a, the benefit of training an MLP via distillation for better
generalization on in and out of distribution sets only kicks in when we have a CNN
teacher with a quality more than a certain threshold.
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Figure 7.9: Effect of the quality of the teacher CNNs on the accuracy of the student MLPs. In the left
plot, points that share the value on the x-axis represent the quality of a CNN, with respect to different
test sets: Vanilla MNIST (in-distribution), Translated MNIST (out-of-distribution), and Scaled MNISt
(out-of-distribution). In the right plot, similar to the left plot, points with the same x-value represent the
quality of a same MLP model, trained via KD using the teacher on the corresponding place in the left
plot, evaluated on the Vanilla, Translated, and Scaled MNIST test sets.

7.4.5 Impact of the Dataset Used in the Distillation Step

In our experiments in this paper, our focus is on the setups where we use the same
dataset that was used to train the teacher model, to transfer its knowledge to the student
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model.

We use this setup mainly because we want to see how effective is the distillation process
to transfer the generalization behavior of the teacher in isolation, as using a different
dataset in the distillation step would add another factor. In other words, during the
training of the teachers and as well as the students (i.e., distillation step), we only use
samples from the in-distribution set to make sure the desired generalization behavior
is not apparent from the dataset used for training neither the teacher nor the student
models.

In this section, we extend the CNN-MLP experiments on Corrupted-MNIST and look
into the performance of the student model, when we use samples from the out-of-
distribution set in the distillation step for training the student.

Table 7.8: Accuracy of MLPs trained through KD with CNN teachers, where the CNN teachers are
trained on in-distribution (vanilla MNIST) training set, while the training set in the distillation step
is either in-distortion (first row) or out-of-distribution (second and third rows). Note that during the
distillation step, the student do not have access to the ground truth labels from the training set.).

Distillation Dataset
Test Dataset

MNIST Translated MNIST Scaled MNIST

MNIST 0.99 ± 0.001 0.51 ± 0.015 0.90 ± 0.007
Translated MNIST 0.79 ± 0.015 0.98 ± 0.001 0.53 ± 0.015
Scaled MNIST 0.79 ± 0.016 0.30 ± 0.009 0.98 ± 0.001

Table 7.9: Accuracy of MLPs trained with ground truth labels on different splits of the Corrupted-MNIST
dataset.

Training Dataset
Test Dataset

MNIST Translated MNIST Scaled MNIST

MNIST 0.99 ± 0.001 0.37 ± 0.015 0.79 ± 0.015
Translated MNIST 0.62 ± 0.011 0.98 ± 0.001 0.42 ± 0.039
Scaled MNIST 0.76 ± 0.014 0.26 ± 0.006 0.99 ± 0.001

Table 7.10: Accuracy of CNNs trained with ground truth labels on different splits of the Corrupted-MNIST
dataset.

Training Dataset
Test Dataset

MNIST Translated MNIST Scaled MNIST

MNIST 0.99 ± 0.001 0.98 ± 0.000 0.96 ± 0.002
Translated MNIST 0.99 ± 0.001 0.99 ± 0.001 0.97 ± 0.002
Scaled MNIST 0.88 ± 0.010 0.88 ± 0.014 0.99 ± 0.001

Table 7.8 presents the result of an MLP student when we use different training sets in
the distillation step. We can see that when distilling knowledge from a CNN teacher that
is trained on vanilla MNIST, if we use translated or scaled MNIST in the distillation
step, the student MLPs achieve relatively high performance on the corresponding test
sets, while the performance on the other out-of-distribution set drops compared to when
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we use vanilla MNIST in the distillation step. To have complementary information for
better comparisons, Table 7.9 shows the accuracies of MLPs when they are directly
trained on each of these datasets. Interestingly, we observe that when trained through
KD the performances of the student MLPs are higher or match the performance of MLPs
when trained with ground truth labels, and additionally, they achieve better performance
on the other datasets. For example, in the case when we use translated MNIST to train
the MLPs, the accuracies of the student MLPs match the accuracy of MLPs trained with
the ground labels, while the accuracies on the other two datasets (vanilla and scaled)
are higher for the student MLPs trained with CNN teachers.

7.5 Persistency of the Transferred Effects of Inductive
Biases

We run an ablation study to show whether the qualitative aspects of the solutions the
student models converge to that are rooted in the inductive biases of their teacher,
persist even if we stop distilling from the teacher model and expose the student to the
ground-truth labels. If the student model has converged to a solution, which is optimum
with respect to the ground-truth loss as well as the distillation loss, we would expect
the solution to be more or less stable. On the other hand, the loss landscape could be
inherently different for the distillation loss compared to the ground-truth loss.

To understand to what extent the effects of KD persist after the student model is exposed
to ground-truth labels, we compare the performance of student models trained with two
strategies: pure distillation and scheduled distillation. In pure distillation, the student
is only trained with the distillation loss, whereas in scheduled distillation the student
model is trained with a mixture of distillation loss and ground-truth loss, where the
ratios of these two terms changes during training with respect to some scheduling.
Here we employ the simple zero-one schedule. We train the student model with pure
distillation for a specific number of steps, and then switch the optimization objective
to pure ground-truth loss. Additionally, we investigate whether the persistency of the
effects is different for offline distillation and online distillation. In offline distillation,
which is the standard setup for KD, the teacher model is fully trained beforehand and
its parameters are frizzed during the distillation process, whereas in online distillation
the student and the teacher are trained simultaneously. Our hypothesis is that exposing
the student model to the training path of the teacher model in online distillation could
lead to more stable effects.

We look into the persistence of the effects for the two settings of a Transformer model
trained on language modelling with an LSTM teacher, Figure 7.10 and 7.11, MLP
model trained on MNIST digit classification with a CNN teacher, Figures 7.12 and
7.13.

In the language modelling setup, we obtain lower perplexity, which is the ground



114 Chapter 7. Transferring the Effects of Inductive Biases

8 16 32 50
0.91

0.92

0.93

0.94

0.95

Number of epochs

D
−

A
cc

ur
ac

y

Pure Distillation Scheduled Distillation Baseline Transformer

8 16 32 50
55

60

65

Number of epochs

Pe
rp

le
xi

ty

Figure 7.10: Persistence of the effects of offline knowledge distillation from LSTM to Transformer in the
language modelling task. We get slightly better perplexity with scheduled distillation, while the accuracy
of the model on subject-verb agreement drops compared to pure distillation. With respect to both metrics,
perplexity and accuracy on subjecy-verb agreement task, the performance of the model trained through
scheduled distillation is better than its stand alone performance.
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Figure 7.11: Persistence of the effects of online knowledge distillation from LSTM to Transformer in the
language modelling task. We get slightly better perplexity with scheduled distillation, while the accuracy
of the model on subject-verb agreement drops compared to pure distillation. With respect to both metrics,
perplexity and accuracy on subjecy-verb agreement task, the performance of the model trained through
scheduled distillation is better than its stand alone performance.
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Figure 7.12: Persistence of the effects of offline knowledge distillation from CNN to MLP in MNIST
classification task.

truth training objective, with scheduled distillation compared to both pure distillation
and independently trained Transformer, while the accuracy on the SV-agreement task
remains the same. This could mean that even though the student model converges to a
different solution upon training with ground-truth labels, the benefits of initial KD do
not completely fade away in this case.

In the MNIST experiments, we observe an overfitting issue as the loss of the model on
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Figure 7.13: Persistence of the effects of online knowledge distillation from CNN to MLP in MNIST
classification task.

the in-distribution test set increases slightly, however, the performance of the model on
the out-of-distribution test set remains higher than an MLP model trained independently.
Interestingly, in this case, we observe that for online KD the divergence between the
performance of the models trained with pure distillation and scheduled distillation is
less compared to offline KD.
Initializing a model through KD can be beneficial, but not necessarily. While the
persistence of the effects of inductive biases of the teacher model on the solution
that the student model converges to can not be guaranteed once we start to train the
student model with other supervision signals, e.g., ground-truth labels, in some cases,
the benefits could be preserved to some extent. Additionally, it seems the distillation
process itself determines to what extent the effects are persistent. In our experiments,
we find the gains in performance through online distillation to be more stable than the
gains in performance through offline distillation.

7.6 Do the distilled models converge to the same basin
in the loss landscape?

To gain a better understanding of the effect of KD and inductive biases of the models
from an optimization point of view, we looked into how different models relate in terms
of the solutions they converged to in the loss landscape.

To do so, inspired by the discussion in [Neyshabur et al., 2020], we look into different
pairs of models and check if their final solution belongs to the same flat basin4 of
the loss landscape or they converged to completely different optima. To do so, given
two models,m1 and m2, we take their parameters, θ1 and θ2, and evaluate a series of
models obtained by linearly interpolating θ1 and θ2, with different coefficient, i.e., the
parameters of model mi is computed as θi = λiθ1 + (1− λi)θ2.

It has been shown [Neyshabur et al., 2020] that if the converged solutions of m1 and

4Basin refers to areas in the parameter space where the loss function has relatively low values.
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Figure 7.14: Performance barriers between different instances of MLPs and CNNs (with the same
initialization), in terms of loss on the test.

m2 belong to the same flat basin of the loss landscape, the models obtained by linearly
interpolating their parameters are well-behaved because they also remain in that basin.
However, for two models that converge to different optima and don’t share the flat basin
of the loss landscape, the liner interpolations do not lead to well behave models. Here
well behaved means performing well on the training task.

Here, we first, compare different instances of MLPs and CNNs. We train two instances
of the same architecture with the same initial state but different random seeds (which
would lead to different ordering of training examples, and different dropouts). Figure
7.14 shows the loss on the test set (y axis) for the two trained instances, as well as
models obtained by linear interpolation of the two models with different λs (x axis).
In the case of MLPs, there is a large barrier between the two instances, showing that
these models, even with the same initialization, will converge to solutions in different
basins of the loss landscape. In contrast, for CNNs, their strong inductive biases drive
them to converge to the solutions in the same basin, regardless of the stochasticity of
the training process. This also supports the higher variance in the results we report for
models with weaker inductive biases in §7.3.2 and §7.4.3.

Next, we look into the effect of distillation on the diversity of the basins different
instances of models converge to. Figure 7.15 shows the performance barriers of different
pairs of MLPs (MLP#1 and MLP#2), when they are trained independently (i.e. when
the teacher is data), as well as trained through KD, with an MLP and a CNN model as
teachers.

First of all, we observe that two models, initialized similarly but with different random
seeds, trained through distillation with the same teacher are likely to converge to the
same area in the loss surface (plots (c) and (f)). This happens regardless of the inductive
bias of the teacher and student models. Comparing the plots in the diagonal of Figure
7.15, we can see that for both CNN → MLP (plot f) and MLP → MLP (plot c)
the performance barrier is rather small in contrast to the large barrier between two
independently trained MLPs (plot a). This indicates the power of KD to narrow down
the search space of the student model and drive it to a particular set of solutions.
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Figure 7.15: Performance barriers between different instances of MLPs with the same initialization
trained independently or through knowledge distillation. Here y-axis on each subplot is the value of the
loss on the test set and the x-axis is the value of the interpolation coefficient, λ. The rows in the figure
correspond to the teacher of the instance on the left side (MLP#1) and the columns correspond to the
teacher of the instance on the right side of the plots (MLP#2).

Moreover, comparing the distilled instance of a model with an independently trained
instance with the same initialization and different random seeds, the first column of
Figure 7.15 (plots (a), (b), and (d)), we see that the distilled instances and independent
instances are not in the same basin, regardless of the teacher but the barrier is larger
(larger bump in the plots) when the teacher has a stronger inductive bias (CNN →
MLP). Similarly, as depicted in the second and third columns of Figure 7.15, while
models distilled from the same teacher seem to be close in the loss surface (plots (c) and
(f)), models distilled from different teachers (plot (e)) seem to be further away (have a
larger barrier in between).

7.7 Conclusion

In this chapter, we investigate the inductive biases and expressive power of neural
networks through the lens of knowledge distillation. In addition to illustrating how
KD can be used to shed light on differences among different models, we investigate
to what extent the effects of inductive biases of the teacher models on its solution,
during training and at the converged point, transfers to the student model through
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knowledge distillation. Findings from our experiments provide insights about some
aspects of why and when knowledge distillation can be beneficial as a way to increase
the generalization performance of models, or more generally to take advantage of
inductive biases of different models at the same time.

First, we demonstrate how inductive biases arising from different architectural choices
affect the generalization behavior of the models we study. We further show that when
a model has the right inductive bias to learn a task in a generalizable manner, we can
transfer its knowledge to a model that lacks the needed inductive bias. We show that
solutions that the student model learns are not only quantitatively but also qualitatively
reflecting the effects of the inductive biases of the teacher model.

In chapter 6, we demonstrated how different sources of the recurrent inductive bias
impact the performance of the models by progressively incorporating them into Trans-
former architectures. Following this, in this chapter using the same task and similar
experimental setup, we show the effects of the recurrent inductive bias of LSTM on
its solution transfer to a standard transformer when we train the Transformer through
knowledge distillation, shrinking the gap between the performance of these models.

Additionally, we show that the persistence of these effects upon exposing the student
model to the ground-truth labels in the training data is not guaranteed and depends
on multiple factors, such as the task and the distillation process. While in some cases
initializing a model through KD from a model with different inductive biases and
continuing the training with ground-truth labels can be beneficial, in another case the
student model could potentially diverge to a different solution and might eventually
forget the effects of the inductive biases of the teacher.

In most of our experiments, our focus is on offline distillation using the commonly used
cross-entropy loss. We also consider a case of inline distillation when studying the
persistency of the effects of the distillation process. Generally, we recognize that the
details of the distillation process itself might have a major impact on its effects. Hence,
a next step is to look into different distillation strategies, such as online distillation
[Anil et al., 2018], relational KD [Park et al., 2019], or similarity preserving KD
[Tung and Mori, 2019], to better understand their effectiveness for transferring the
effect of inductive biases. Another aspect of the distillation process that can be further
investigated is when we have multiple teachers, each with different inductive biases
that are useful for different tasks. How would the effects of the inductive biases from
teachers interact in the solution space of the student model? In these settings would we
be able to guide the student toward a more generalized solution than the teachers which
hopefully combines all their benefits in one model?
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7.8 In Search of Inductive Biases

At the time we started to work on this thesis, in different domains, specifically NLP,
we were observing a new line of general-purpose models succeeding in solving a
variety of tasks. It all started with word embedding models based on shallow neural
network architectures [Mikolov et al., 2013, Pennington et al., 2014]. These models
were designed to compute representations of tokens/words, which were then plugged
into other machine learning models to solve different NLP tasks. These efforts were
then followed by using more sophisticated neural network architectures such as variants
of RNNs that could process longer pieces of linguistic input and solve tasks in an
end-to-end manner or learn contextual representations of words/tokens.

At the time, the main focus of research on neural networks was to build task-specific
architectures with the right inductive biases that can learn to solve the given tasks with
reasonable amounts of data. For example, neural networks with convolutional and
pooling layers that make them translation and scale equivariant for processing images,
recurrent and recursive neural networks for language processing, and various ways of
combining different neural architectures to deal with more complicated tasks such as
multi-modal question-answering systems.

Given the above-mentioned context, our main motivation in this thesis was to build tech-
niques that would allow us to compare existing models beyond their final performance
on the task they are trained on. We aimed to study the effect of different inductive
biases and design choices beyond intuitions and speculations. We sought to understand
if there is a real difference between different neural network language models and what
explains their success and failures.

Most recently, a major factor in the success of deep learning models seems to be scale.
Scaling up the dataset, model size and compute proportionally, we are now able to
achieve much higher levels of performance and generalization on a large set of tasks
than we ever could by hand-crafting models specifically for each task. While this
progress might deem the research on inductive biases unnecessary at first glance, we
argue otherwise.

In light of the increasing success of deep learning models in large-scale scenarios,
general-purpose architectures have emerged and the main focus has shifted toward
large-scale pretrained models that can transfer to any downstream tasks in few-shot or
even zero-shot settings [Brown et al., 2020, Raffel et al., 2020, Ramesh et al., 2021,
Saharia et al., 2022, Smith et al., 2022, Thoppilan et al., 2022]. Being able to learn from
diverse and large amounts of data is the key to the impressive performance of these
models. Hence, nowadays, rather than task-specific inductive biases, the main emphasis
is on scalability [Rae et al., 2021]. I.e., finding neural network architectures that have
enough capacity to learn from large amounts of data, while efficient and affordable in
terms of memory and compute [Du et al., 2021, Shazeer et al., 2017].

The hope behind these efforts to scale is that by having sufficient data in quantity,
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quality and diversity, these models can learn all the underlying rules that govern the
data and generalize, without the need to have prior assumptions about the desired
generalization behaviours. As appealing as this idea sounds, taking the big picture of
recent works into account, even large-scale models would not automatically, consistently,
generalize to out-of-distribution data [Abnar et al., 2022, D’Amour et al., 2020]. Here
by automatically, we mean without any built-in assumptions or prior about how they
should generalize. Intuitively, one of the roots of this challenge is the difficulty of
encoding all the desired generalization behaviours in the data (the under-specification
problem) [D’Amour et al., 2020].

There is no doubt that we need a minimal set of inductive biases to ensure the models
learn in a generalizable manner that is consistent with our expectations, rather than
memorizing all the data points independently or generalizing in arbitrary and non-
meaning-full manners. Even in the infinite data regime, there will always be gaps in
the data distribution where the model needs to interpolate or extrapolate, and these
inductive biases determine the interpolation and extrapolation mechanisms. We need to
identify what are these biases and how are/can they be incorporated into neural network
models. One challenge that we need to be aware of is that it might not be possible to
identify the crucial inductive biases independent of the scale of data available to the
model.

Furthermore, to be able to predict the performance of the models on new tasks and
to be able to rely on them in out-of-distribution settings, we need to understand their
inductive biases. In other words, developing techniques to study inductive biases of the
models helps us to predict different aspects of their performance in different settings
and on different data distributions.

Ultimately, we hope to discover inductive biases that would make the models more
efficient in terms of data and compute and at the same time more reliable in OOD
settings. This would not only be beneficial for practical uses of ML models but also a
step toward a better understanding of human intelligence, which is the most scalable
and efficient learning algorithm that we know of.

7.9 Summary of Contributions

In this thesis, we investigated different techniques to shed light on how neural networks
with presumably different inductive biases process language. We argued that it is crucial
to evaluate these models from a variety of perspectives, rather than just their final
performance on a given task.

Given two learning algorithms, comparing their performances on a given set of tasks is
the most straightforward solution to study their differences. But often, when considering
a single task, there is more than one solution that achieves a certain level of performance
or even completely solves it. An example of this, which has been studied in the context
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of neural networks, is short-cut learning [Geirhos et al., 2020]. For example, when
a model learns to classify objects relying on spurious features that are consistently
correlated with the causal features across the training data. In other words, if a learning
algorithm achieves a human-level performance on a task we can not necessarily conclude
that it is solving it in the same manner humans do.

Hence, to deeply understand how different are different models, we need to widen our
comparison framework by: (1) including the wide range of tasks and domains in our
evaluation set that can reveal different aspects of the learned solution. (2) Doing a
thorough analysis to understand the characteristics of the learned solution.

In this thesis, we mainly sought evaluation and analysis techniques that can help us
shed light on the underlying processes in various learning algorithms, and demonstrate
the impact of different inductive biases on the solutions these models converged to.
In chapter 2 and 3, we introduced and applied new techniques for understanding how
neural network models, specifically trained to model language, work.

In chapter 2, we introduced ReStA (Representational Stability Analysis) to study the
sensitivity of the representational spaces of the models to different factors (condi-
tions) [Abnar et al., 2019]. We used ReStA to study the effect of context, context length,
or depth on the representations obtained from neural language models.

Our analysis of the context sensitivity of different layers of different neural network-
based language models sheds light on different strategies they have for integrating
contextual information. In particular, we observed that in recurrent neural network
language models, the top layer is more sensitive to context length compared to the first
layer. This could be an indication that this model has formed a hierarchical underlying
mechanism for processing the sentences in these models.

In our analysis of how the representations evolve across layers of different neural
language models, we observed that corresponding layers of different models, i.e., the ith

layers of two different models, are more similar compared to random layer pairs. We
showed that indeed, different architectural choices, e.g., recurrence, parameter sharing
in time or over spatial dimensions of the inputs, self-attention, size of the modes, and
training objective can lead to very different representational spaces. Surprisingly, we
find that in Transformer based language models some hyper-parameters such as depth
and width do not have a significant impact on the general trajectory of representations
as they evolve across layers.

Furthermore, in chapter 3, we introduced Attention Flow and Attention Rollout, to
study information flow in neural network models with attention mechanisms (e.g.,
Transformers) [Abnar and Zuidema, 2020]. In a model with a self-attention mechanism,
an intuitive approach to studying how information propagates across the layers is to
investigate and visualize the attention patterns.

In the original Transformer models, representations at every layer are tied to input
tokens and computed by mixing up the representations in the previous layer based
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on the attention patterns. Prior to this work [Abnar and Zuidema, 2020], in many
studies, raw attention patterns were used as indicators of the importance of different
tokens of the input at each layer, ignoring the fact that the representations at higher
layers do not necessarily represent their corresponding input token. Hence, there were
a lot of criticisms about using attention patterns to explain the behaviour of these
models [Grimsley et al., 2020, Jain and Wallace, 2019, Serrano and Smith, 2019].

By modelling/approximating the flow of signals across attention layers as a graph, we
proposed simple techniques that translate attention to representations at each layer
to attention to input tokens or attention to representation at any arbitrary layer in the
network. The main idea behind these techniques is to take the mixing of information
across layers into account. We showed, quantitatively, that interpreting attention weights
in this manner has a stronger correlation with other input attribution methods than raw
attention weights. Moreover, on a co-reference resolution task, we showed, qualitatively,
that attention rollout and attention flow provide better explanations of the behaviour of
the model.

Additionally, as a case study, we used attention rollout to understand the effective
context length at different layers of different Transformer based language models. We
showed that in all these models the effective context length grows as we move from the
input layer towards the output layer. Based on our observations, among the models that
we studied, the effective context length is impacted by the depth of the model, as well
as other architectural details and the training objective.

Attention rollout and techniques built on top of that have been widely used as a post-
hoc interpretation technique of attention-based models across vision and language
domains. Furthermore, it has been shown that attention flow approximates Shapley
values [Ethayarajh and Jurafsky, 2021, Metzger et al., 2022]. Shapely value is a concept
in game theory to solve the credit assignment problem and in interpretable machine
learning it is used as an input attribution method [Lundberg and Lee, 2017].

Besides our efforts to study and compare the effect of inductive biases of different
neural language models, we tried to evaluate them based on their similarity to brain
signals. In chapters 4 and 5, we built on top of prior work toward designing evaluation
setups in which we can compare models with brain signals. The ultimate goal of such
evaluation frameworks is to allow us to study the connection between the underlying
mechanisms of language processing in humans and machines.

In our studies [Abnar et al., 2018, 2019], we found that, among existing neural network
architectures, recurrence has a significant role in facilitating learning structures needed to
solve language tasks more similar to the human brain. Our experiments indicated serious
limitations in existing frameworks for using brain signals to evaluate computational
learning algorithms which could question the scope and reliability of the outcomes
of these experiments. One big challenge in this direction is the amount of available
brain data in both controlled and uncontrolled settings, as well as ensuring that these
signals contain information about the processes going on in the brain at different levels
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of abstraction.

Considering our findings in part II and III, as well as the historical literature on neural
network architectures, we decided that it would be fascinating to further investigate
the inductive biases of recurrent neural networks. In a large-scale training regime,
attention-based models achieve impressive performance. However, in small-scale
training regimes, and on tasks that require learning hierarchical rules of language,
the performance of RNNs is superior compared to Transformers. In addition, when
comparing the internal states of these models to brain signals, LSTM(s) internal seemed
to be more similar to human brain activations compared to Transformers.

To look further into the impact of recurrence, in chapter 6, we identified different
sources of inductive biases in recurrent neural networks: (1) sequentiality, (2) memory
bottleneck, and (3) parameter sharing in time. We injected each of these constraints
gradually into a Transformer architecture to see how they each impact the final solution.
Evaluating the resulting architectures on a task, designed to capture the ability of models
to deal with long-range dependencies, we showed that indeed, each of these sources
contributes to the success of recurrent neural networks in this task.

Finally, in the last chapter of this thesis, we touched upon the concepts of learnability
and expressivity in neural networks. Consider a task and two models with different
architectures, where one of them learns a more generalizable solution than the other. Is
the reason behind the better performance, better inductive biases? Or does the lack of
expressivity explain the poor performance? In other words, if we know a better solution
exists but a model is not able to converge to that solution, how can we study if the
limitation is in the expressivity of the model or the learnability of the solution for the
model? Our initial motivation to work on this chapter was to empirically investigate this.
We used knowledge distillation as a framework to investigate the benefits of inductive
biases of different neural network architectures, and as a technique to empirically study
their expressivity versus the learnability of different solutions for them.

More concretely, in chapter 7, we studied how the effect of inductive biases of different
neural network architecture transfer through processes such as knowledge distilla-
tion [Abnar et al., 2020]. We observe that in certain settings, it is possible to transfer the
effects of inductive biases of one model on different aspects of its performance, as well
its representational space, to another through knowledge distillation. We demonstrate
this in the case of Transformer and LSTM on a language modelling task, as well as for
CNNs and simple MLPs on an image recognition task. Touvron et al. [2020] shows this
for CNN-based models and Transformers on a larger scale. While vision Transformer
models do not work well in small data regimes, Touvron et al. [2020] shows that we can
achieve performance competitive to CNN-based models when we train them through
distillation with CNN-based teachers. Additionally, we study the consistency of the
transferred effects in models that are further trained directly on the data. We find that in
some cases the effects of KD can persist even after continuing the training process with
ground truth labels (instead of outputs of the teacher model).
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These findings are important from different viewpoints: First of all, our experiments
demonstrate how knowledge distillation can be viewed as a technique to test the strength
of the inductive biases of the models and to study whether two models have similar or
different inductive biases and generalize in the same manner.

Second, different models have different inductive biases and different advantages, while
architecturally it might not be possible to have all the advantages in one model. Our
findings show that it is possible to use KD to benefit from the inductive biases and
advantages of different model architectures at the same time.

Finally, Knowledge distillation is a commonly used approach in practice to improve the
performance of the models, and often as a compression technique. Given the fact that
the teacher models can transfer their biases to the student models, we should be aware
to avoid echoing unintended biases. For example, biases in the data that the teacher
model is trained on.

7.10 Future Directions

Moving forward, it is crucial to extend the evaluation and interpretability toolkit in
machine learning to allow us to compare the reasoning processes in neural networks
and predict their generalization behaviour. While potentially the existing tools such
as diagnostics classification and representational similarity analysis can reveal some
aspects of the internal processes of these models, we are far away from having a
systematic framework for comparing the decision processes of the models. Most of the
recent work on trying to analyze and understand these models is focused on the final
information captured in the representations learned by them.

Can we study neural networks with an algorithmic lens? Can we quantify the complexity
of the algorithms a neural network model can execute? or the type of processes are
executable by these models? How can we build upon the existing approaches to be able
to answer questions like: “What are the sub-processes involved in processing the inputs
in a given neural network?”, “What is the interaction between these processes?”, “How
do they evolve during training?”, “How do the sub-processes that emerge during the
training of a neural network and their interaction determine the generalization power
of the neural network?”, “How do different inductive biases impact the emergence of
different sub-processes?”.

As a concrete example of this, we can consider the mechanisms which allow models to
deal with some forms of ambiguity. We can ask if existing neural network architectures
can implement processes with feedback mechanisms. I.e., they follow a path toward
a decision but can later adjust their representations and the path toward a different
decision. Otherwise, an alternative mechanism would be to build up the graph for
all possible decisions in a bottom-up manner and gradually prune this graph. Can
we theoretically, or empirically show if a given model can implement either of these
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mechanisms? Since we can not simply rely on the initial choices that we make in
designing the neural networks and the training strategy to have a definite impact on their
reasoning process or the final representations obtained from them, we need to further
confirm these effects. How can we prob trained neural networks to investigate which
type of process it relies on?

Another example of questions of this kind which is maybe more popular among NLP
researchers is how neural network language models integrate different types of context.
How can we identify the notions of long-term (what has been stored in the parameters
of the model) and short-term (what is given to the model as part of the current input)
memory as different types of context? And how can we prob the models to characterize
and compare the context integration processes? Studies such as Chan et al. [2022] and
Maheswaranathan and Sussillo [2020] investigate this to some extent but there are still
many remaining open questions in this area.

Inspired by the studies on human cognition and human learning biases, we can form
assumptions about the desired characteristics of the processes neural networks learn
to execute. For example, modularity and how it related to the concept of cognitive
flexibility in humans [Kim et al., 2012, Rikhye et al., 2018, Scott, 1962], or how differ-
ent types of information are processed in a sequential or parallel manner in the human
brain [Sigman and Dehaene, 2008]. Having these types of assumptions, we can directly
probe neural networks searching for underlying processes with similar characteristics.
Additionally, we can employ the frameworks for evaluating the connection between
signals obtained from the human brain and representations obtained from neural net-
works to study alignments between the sub-processes or modules in the human brain
and neural networks.

Having frameworks for systematic evaluation and comparison of neural networks to be
able to answer questions such as the ones we raised above is just one of the primary
steps. In light of the recent progress of large-scale pre-training approaches, we need
these frameworks to be scalable. More precisely, we need evaluation frameworks and
interpretation techniques that can deal with such large-scale models and datasets.

In the end, understanding how existing neural network models work and being able to
predict their ability to generalize is not the ultimate goal. On the one hand, we want to
be able to use these models to be able to indirectly probe the human brain and study
language processing in humans. On the other hand, we seek to improve the performance
and efficiency of these models in terms of both compute and data, perhaps guided by
what we learn about language processing in the human brain.
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Summary
Inductive Biases for Learning Natural Language
A classic question in the study of human cognition is: what are the learning biases that
make it possible for them to learn and process language? A similar question can now
be asked in the study of machine intelligence: to build machine learning models for
language, what are the necessary inductive biases that enable learning in an efficient and
generalisable manner? We need to identify the learning biases that enable the learning
of natural language, and find ways to incorporate them into machine learning models.
Taking a step toward this goal, this thesis explores different techniques to illustrate the
impact of inductive biases on different aspects of the solutions these models converge to.
We study the sensitivity of the representational spaces of the models to different factors.
Furthermore, we propose new techniques to study the attention patterns in models with
attention mechanisms.
Using these techniques we study the effect of context, context length, architectural
factors, and training objective on the solutions learned by different types of neural
language models. We find that different choices in designing neural networks lead
towards solutions with different characteristics. While some factors such as training
objective and connectivity patterns lead to more divergent solutions, the final solutions
are sometimes less sensitive to other factors such as scaling model size.
We build on top of prior work to study the connection between the inductive biases
of language models and the underlying mechanisms in the human brain. We find
that, among existing neural network architectures, recurrence has a significant role in
facilitating learning structures needed to learn language more similar to the human brain.
Looking further into the impact of recurrence, we identify and empirically evaluate
different sources of inductive biases in recurrent neural networks: (1) sequentiality, (2)
memory bottleneck, and (3) parameter sharing in time.
We demonstrate that the process of distilling knowledge from one model to another
can shed light on the difference in the inductive biases and expressivity of the teacher
and student model. Moreover, we find that some of the effects of inductive biases can
potentially transfer through knowledge distillation.
In the end, considering the recent impressive progress in deep learning, and the contri-
bution of the scaling factor in this progress, we believe it is important to have evaluation
frameworks that allow us to understand the different ways in which models generalize
in different settings and under different conditions. In this thesis, we take a small step
toward building such frameworks.
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Samenvatting
Inductieve Biases voor het Leren van Natuurlijke Taal
Een klassieke vraag in het onderzoek naar menselijke cognitie is: welke voorkeuren
en eigenaardigheden van het menselijk brein maken het mogelijk om taal te leren en
te gebruiken? Een vergelijkbare vraag kunnen we tegenwoordig stellen over machine-
intelligentie: hoe ontwerpen we leeralgoritmes voor natuurlijke taal die efficiënt zijn en
die computers in staat stellen de juiste generalisaties te maken? Wat zijn de noodzakeli-
jke ‘learning biases’ en hoe bouwen we ze in in computermodellen?
In dit proefschrift onderzoeken we technieken om de impact van verschillende biases
in kaart te brengen. We bestuderen de representaties van taal die de modellen leren,
en hoe afhankelijk ze zijn van verschillende factoren. In het bijzonder kijken we naar
modellen die gebaseerd zijn op het mechanisme van ‘multi-head attention’, en werken
we technieken uit om de patronen in dit mechanisme inzichtelijk te maken.
Met behulp van die technieken onderzoeken we verschillende neurale taalmodellen
en de effecten die verschillen in context en context-lengte, architectuur en ‘training
objective’ hebben op de oplossingen die die modellen leren. Sommige van deze
factoren, zoals training objective en connectiviteit in de architectuur maken veel verschil.
Andere factoren, zoals het aantal lagen in de architectuur, hebben minder effect op de
uiteindelijke oplosisngen.
We bouwen voort op eerdere onderzoeken om de relatie tussen de biases van taalmod-
ellen en de onderliggende neurale mechanismen in de menselijke hersenen te bestuderen.
In de bestaande neurale netwerkarchitecturen blijkt vooral ‘recurrentie’ een significante
rol te spelen bij het leren van structuren die nodig zijn om taaltaken op te lossen die
meer lijken op die van de menselijke hersenen. Verder identificeren en evalueren we
empirische bronnen van biases in recurrente neurale netwerken: (1) sequentialiteit, (2)
geheugenbottleneck en (3) het delen van parameters over tijd.
We laten zien dat het proces van het destilleren van kennis van het ene model naar het
andere inzicht kan geven in de verschillen in de inductieve biases en de expressiviteit
van het docent- en studentenmodel. Bovendien ontdekken we dat sommige effecten van
de ‘learning biases’ mogelijk worden overgedragen via kennisdestillatie.
Dit proefschrift vormt dus een bijdrage aan de analyse van deep learning modellen
van taal. Gezien de enorme, recente vooruitgang op dit gebied, en de cruciale rol
die schaalvergroting daarbij heeft gespeeld, is een goede evaluatie van taalmodellen
enorm belangrijk. Evaluatie-technieken moeten ons in staat stellen om de verschillende
manieren te begrijpen waarop modellen generaliseren, met verschillende parameters en
onder verschillende omstandigheden. In dit proefschrift zetten we een kleine stap naar
het bouwen van een raamwerk voor dergelijke evaluaties.
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