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Abstract

Homotopy type theory has a model inside the category of simplicial sets
which is based on Kan fibrations, but the proof of this fact can demonstra-
bly not be made constructive. Effective Kan fibrations were introduced as an
alternative to Kan fibrations in hopes of acquiring a constructive model. We
contribute various results to the theory of effective Kan fibrations. Firstly,
three constructions of Kan fibrations based on simplicial groupoids are re-
done for effective Kan fibrations. Secondly, we show that all the information
about degeneracy maps is stored in the lifting structure of an effective Kan
complex, but argue that this has no practical application. Finally, we prove
that the Ex∞ functor does not automatically produce an effective Kan com-
plex, and argue that it is most likely not usable for fibrant replacement in
the context of effective Kan fibrations. The positive results encourage a
continued study of effective Kan fibrations, while the negative results teach
us about its possible obstacles.
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Chapter 1

Introduction

Simplicial sets can be thought of as combinatorial approximations to to-
pological spaces that preserve homotopical information. Together with an
auxiliary notion of fibration, specifically the Kan fibration, they provide a
useful approach to homotopy theory. In addition, it is possible to define
a model of homotopy type theory, an extension of Martin-Löf’s dependent
type theory, in the category of simplicial sets, in which dependent types are
interpreted by Kan fibrations, proving that homotopy type theory is con-
sistent (relative to the axioms of set theory, at least) [KL12]. However, the
proof that this model satisfies the axioms of homotopy type theory cannot
be made constructive [BCP15].

This is unfortunate, because homotopy type theory was proposed as a
foundation of constructive mathematics, with possible applications to com-
puter proof assistants. Admittedly, there already exists a constructive model
based on cubical sets, which are built out of (hyper)cubes instead of sim-
plices. But given the preference of algebraic topologists for simplicial sets,
a simplicial model continues to be desirable. It is also simply puzzling that
simplicial sets should differ from cubical sets in any essential way.

In an attempt at a remedy, Benno van den Berg and Eric Faber have
suggested to replace ordinary Kan fibrations by their effective Kan fibrations
[vdBF22]. These still bring forth the same homotopy theory, but come
with additional structure that facilitates constructive proofs. This thesis is
intended as a small contribution to the theory of effective Kan fibrations.

Chapter 3 contains the main positive results. Many specific examples of
Kan fibrations spring from simplicial group(oid)s, which are to topological
group(oid)s as simplicial sets are to topological spaces. Three such con-
structions, appearing in [vdBM18], are successfully redone for effective Kan
fibrations in Theorems 3.9, 3.11 and 3.22. The third of these theorems is the
most important: it generalizes an existing result, namely that a simplicial
group is an effective Kan complex (a special kind of effective Kan fibration),
to simplicial groupoids.
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CHAPTER 1. INTRODUCTION 4

In Chapter 4, it is investigated whether semisimplicial sets, a general-
ization of simplicial sets, can be of any use in the study of effective Kan
fibrations. A semisimplicial set can sometimes be turned into a Kan com-
plex. Proposition 4.6 tells us when this conversion also yields an effective
Kan complex, and a subsequent counterexample tells us when it does not.
It is argued that these results mean that semisimplicial sets carry little rel-
evance for effective Kan fibrations.

Chapter 5 treats fibrant replacement, through which a generic simplicial
set can be substituted by a fibrant simplicial set, for which the homotopy
groups can be defined. It is found in Section 5.3 that the most useful im-
plementation of fibrant replacement, the Ex∞ functor, problematically does
not give rise to a simplicial set that is by default fibrant in terms of effective
Kan fibrations.

These three chapters are preceded by an introduction to simplicial sets
and the various fibrations based on them. The primary sources I have drawn
from are [Cis19], [GJ09], [Lur23], [vdBF22] and the master’s thesis of Freek
Geerligs [Gee23].

The context of this thesis lies at the intersection of algebraic topology,
(higher) category theory, and type theory. I have chosen a topological narra-
tive whenever possible, using light category theory mainly for its notational
benefits, and eschewing type-theoretic language altogether. Nonetheless,
whenever the reader finds the topological analogies unenlightening, they
can be skipped without consequence.



Chapter 2

Simplicial fibrations

This chapter covers most of the prerequisite knowledge for the later chapters.
We assume decent familiarity with category theory, but we will use it in
a very practical way, so that a thorough understanding of the technical
definitions is not necessary. Other than this, we will introduce everything
from simplices to the various kinds of fibrations we use.

2.1 The category of simplicial sets

A geometric simplex is an element of the continuation of the following se-
quence:

More formally, we can define a geometric n-simplex as the convex closure of
n + 1 affinely independent vertices in n-dimensional Euclidean space. The
boundary of a geometric n-simplex consists of n + 1 geometric (n − 1)-
simplices, called its faces.

We want to introduce an orientation for the geometric simplices, so that
for every way of rotating and reflecting an unoriented geometric simplex onto
itself, there exists a different oriented simplex sharing the same vertices. One
way of recording the orientation of a simplex is by ordering its vertices. We
can represent this order by assigning increasing numbers to the vertices, or
by drawing arrows that depict the less-than relation:

0 1

2
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CHAPTER 2. SIMPLICIAL FIBRATIONS 6

Thus we can abstractly regard an n-simplex as the totally ordered set of
n+ 1 elements (which is unique up to isomorphism), represented by the set
[n] = {0, 1, . . . , n}. Next, we consider morphisms of simplices, sending each
vertex of one simplex to a vertex of another simplex. We postulate that such
a map preserves the order of the vertices, so a morphism of simplices can be
represented by an order-preserving function [m] → [n]. These morphisms
form a category:

Definition 2.1. The simplex category ∆ is the category with finite non-
empty initial segments of N as its objects and order-preserving functions as
its morphisms.

The category ∆ is generated by the minimally non-surjective and non-
injective maps ∂j : [n] → [n+1] and σl : [n+1] → [n], defined for each n ∈ N,
j ≤ n and l ≤ n+ 1 as follows:

∂j(i) =

{
i if i < j

i+ 1 if i ≥ j

σl(i) =

{
i if i ≤ l

i− 1 if i > l

In geometric language, the former includes the abstract simplex [n] into the
abstract simplex [n + 1] as the face opposite vertex j. The latter projects
[n+ 1] onto [n] by identifying vertices l and l + 1.

A simplicial complex is a system of unoriented geometric simplices glued
together along their faces. We want to define a version with oriented sim-
plices, in such a way that if two simplices share a face, then the orderings of
the vertices on the common face match up. This is achieved by defining a
simplicial set as a presheaf on ∆, i.e. a (contravariant) functor ∆op → Set
from the opposite category of ∆ to the category of sets. Taking a morphism
of simplicial sets (also called a simplicial map) to be a natural transforma-
tion between two such functors, we obtain a category:

Definition 2.2. The category of simplicial sets ∆̂ is the functor category
[∆op,Set].

Given a simplicial set X : ∆op → Set and a number n, we denote X([n])
by Xn, which we interpret as the set of all n-simplices in the simplicial
set, also called the simplices of degree n. By the Yoneda embedding, there
is a simplicial set ∆n which represents the abstract n-simplex from the
simplex category ∆. By the Yoneda lemma, we can conceptually identify
elements of Xn with simplicial maps ∆n → X. Thus we can apply our
terminology for the simplex [n] also to the object ∆n, as well as to any
simplex in X. In particular, for any k ∈ [n] we may speak of “the vertex
with index k”, or simply of “vertex k” in all three cases. We write the image
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of ∂j : [n] → [n+1] under the functor X as dj : Xn+1 → Xn, and call it a face
map. It is a function that we interpret as taking a simplex in the simplicial
set and returning the face of the simplex opposite the vertex with index
j. Two simplices are “glued together” if they share a face in this manner.
We write the image of σl : [n + 1] → [n] as sl : Xn → Xn+1, and call it a
degeneracy map. The maps dj and sl satisfy the simplicial identities:

didj = dj−1di if i < j

sksl = slsk−1 if k > l

djsl =


sl−1dj if j < l

the identity map if j ∈ {l, l + 1}
sldj−1 if j > l + 1

where we omitted the composition symbol “◦”, writing e.g. djsl for dj ◦ sl.
We will also omit brackets, so that djslx stands for dj(sl(x)). We call a
simplex degenerate if it is in the image of some degeneracy map. From the
last simplicial identity, we see that a degenerate simplex slx has two identical
faces dlslx = dl+1slx = x, while its other faces are degenerate themselves.
In particular, vertices l and l+1 of slx must be identical. Be mindful that an
arbitrary simplex with two identical faces need not be a degenerate simplex.
This is because two simplices can share all their faces without being equal.
For example, a simplicial set might contain multiple 1-simplices, i.e. “edges”
or (since we have defined simplices with a notion of orientation) “arrows”,
having the same, single vertex as their endpoints, only one of which can be
degenerate.

Under the Yoneda embedding, to each map [m] → [n] in the simplex
category ∆ corresponds a simplicial map ∆m → ∆n. We we will denote the
representatives of the maps ∂j : [n] → [n + 1] and σl : [n + 1] → [n] again
by dj : ∆

n → ∆n+1 and sl : ∆
n+1 → ∆n. The initial confusion has a payoff:

when using the Yoneda lemma to alternatingly represent an n-simplex x of a
simplicial set X as an element x ∈ Xn and as a simplicial map x : ∆n → X,
its faces are accordingly denoted by djx ∈ Xn−1 and x◦dj : ∆n−1 → X, and
its degenerate versions by slx and x ◦ sl.

The category of simplicial sets, being a presheaf category, is a topos.
For us this means that we have claim to limits and co-limits, with products,
pullbacks and pushouts as special cases. These are all constructed “object-
wise/pointwise” in ∆. For example, the product of two simplicial sets X×Y
is given by (X × Y )n = Xn × Yn for every n ∈ N. The simplicial set ∆0,
consisting of only a single vertex, is the terminal object of the category; for
any simplicial set X, there exists exactly one map X → ∆0, sending every
vertex to the unique vertex in ∆0 and every n-simplex to the unique, fully
degenerate n-simplex in ∆0.

In the introduction, we motivated the study of simplicial sets by claim-
ing that they approximate topological spaces. Informally, we can recover a
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topological space from a simplicial set by replacing each abstract simplex by
a topological simplex, and gluing them together appropriately. This opera-
tion takes the form of a functor from the category of simplicial sets to the
category of topological spaces, and comes with a right adjoint, establishing
a strong similarity between both categories — at least regarding homotopy.

However, simplicial sets, having the potential to form a foundation of
mathematics, come in many forms, and they do not always have a relevant
geometric interpretation. The following construction shows how to turn an
arbitrary category into a simplicial set.

Definition 2.3. Given a category C, we define the nerve N(C) of C as
follows. Regarding the ordered set [n] as a category, for every n we let
N(C)n be the set of all functors [n] → C. Each map [m] → [n] from the
simplex category induces a function N(C)n → N(C)m by precomposition.
These data make up a functor ∆op → Set, i.e. a simplicial set which we
denote by N(C).

We can think of the category [n] as a string of n + 1 objects connected by
n arrows. A functor [n] → C highlights a string of the same shape in the
category C. So a vertex of N(C), i.e. an element of N(C)0, is essentially an
object of C, while an arrow in N(C) is a morphism of C. A degeneracy map
sl : N(C)n → N(C)n+1 takes a string in C and inserts an identity morphism
into the string, duplicating the l-th object. For j /∈ {0, n}, the face map
dj : N(C)n → N(C)n−1 takes a string and removes the j-th object in the
string, composing the two morphisms that shared this object. If j = 0 (if
j = n), then dj removes the first (last) object of the string, together with
the single arrow starting (ending) at this object.

2.2 Kan fibrations

The definition of a Kan fibration is quite technical, and we will first try to
motivate it through a comparison with fiber bundles in topology. A useful
property of a fiber bundle π : E → B is that, given a path f : [0, 1] → B
in the base space and a point f ′0 in the fiber π−1(f(0)), we can lift f to a
path f ′ : [0, 1] → E in the total space that starts at f ′0 and gets projected
back to f by π. Trying to find f ′ is called a lifting problem, and it can be
summarized as finding a diagonal for a commutative square

{0} E

[0, 1] B

f ′0

π

f

f ′

that makes the whole diagram commute. If π is a fiber bundle, then a solu-
tion f ′ exists for every choice of f and f ′0 that makes the square commute: we
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say that π has the right lifting property with respect to the map on the left.
We may think of f here as a homotopy between the points f(0) : {∗} → B
and f(1) : {∗} → B. By generalization, we can also try to lift homotopies of
arbitrary maps X → B:

X × {0} E

X × [0, 1] B

f ′0

π

f

f ′

Ignoring certain restrictions, this problem can be solved for any X, f ′0 and
f , as long as π is a fiber bundle. Now we take this as the defining property
of π: a fibration is a map that has the right lifting property with respect to
inclusions X × {0} ↪→ X × [0, 1] for every space X.1 In the background of
this thesis lies an approach to homotopy theory that lends a foundational
role to fibrations, called Quillen model structure, although we will not delve
into this.

If we replace the inclusion {0} ↪→ [0, 1] by the map d1 : ∆
0 ↪→ ∆1 (the

face opposite vertex 1 is vertex 0), then this definition of fibration readily
carries over to simplicial sets. However, it turns out that it is better to
define a fibration of simplicial sets as possessing the right lifting property
with respect to a larger class of morphisms, generated by the horn inclusions.

Definition 2.4. For any n ≥ 1 and k ≤ n, the horn Λnk is the simplicial set
given by

(Λnk)m = {α ∈ Hom([m], [n]) | [n] ̸⊆ α([m]) ∪ {k}}

for every m.

Here Hom([m], [n]) is the set of all morphisms [m] → [n] in the simplex
category ∆. Since ∆n is defined by (∆n)m = Hom([m], [n]), the horn Λnk
can be thought of as a subobject of ∆n, and we write Λnk ↪→ ∆n for its
inclusion. Λnk is the boundary of the simplex ∆n with the face opposite
vertex k removed. As an illustration, the simplicial set ∆2 and each of its
horns Λ2

0, Λ
2
1 and Λ2

2 can be drawn respectively as follows:

0 1

2

0 1

2

0 1

2

0 1

2

1This notion of fibration is the Hurewicz fibration. In practice, it is more useful to only
allow X to be a CW-complex, defining a Serre fibration. We will not distinguish the two
variants in the main text.
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Given a simplicial set X, we will refer to a morphism ϕ : Λnk → X as a horn
in X, similar to how we think of a map ∆n → X as a simplex in X. Since Λnk
is a subobject of ∆n, we can use the notation and terminology for simplices
also for horns, such as “the vertex with index i”. The horn Λnk consists of n
of the faces of the simplex ∆n, so a map ϕ : Λnk → X defines a set of (n−1)-
simplices of X, which we write as {diϕ}i ̸=k. Conversely, for any n ≥ 1 and
k ≤ n, an arbitrary set of (n− 1)-simplices {ϕi}i ̸=k satisfying diϕj = dj−1ϕi
whenever i, j ∈ [n] \ {k} and i < j determines a horn ϕ : Λnk → X in X (the
condition diϕj = dj−1ϕi can be recognized as the first simplicial identity).
Returning to the topic of fibrations, we make the following definition.

Definition 2.5. A morphism of simplicial sets f : X → Y is a Kan fibration
if it has the right lifting property with respect to all horn inclusions.

We shall also more succinctly say that “f has lifts against horn inclusions”.
How does this relate to the fibrations along which homotopies can be lifted?
The answer is that a Kan fibration automatically has the right lifting prop-
erty with respect to a much larger class of “unproblematic inclusions”:

Definition 2.6. Amorphism is anodyne if it is an element of the smallest set
that contains the horn inclusions and is closed under composition, pushouts
and retractions.

The definition of a retraction of a morphism is irrelevant for our purposes.
Although it is nontrivial to prove, the inclusions of the form X × ∆0 ↪→
X×∆1 are anodyne (see Proposition 3.1.2 of [Cis19]), so that a Kan fibration
is an instance of the kind of fibrations we defined earlier. As an exercise,
we will prove one part of the claim that a Kan fibration has lifts against all
anodyne morphisms:

Proposition 2.7. If p : X → Y has the right lifting property with respect to
i : A → B, then it has the right lifting property with respect to any pushout
of i.

Proof. Let i′ be the pushout of i along a map f : A→ A′, i.e. the right map
in the pushout square

A A′

B B′

i

f

⌜
i′

g

We need to show that any lifting problem of the form

A′ X

B′ Y

i′

ϕ1

p

ϕ2

Φ (2.1)
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admits a solution Φ. Since p has the right lifting property with respect to
i, we can find a solution Φ′ for the lifting problem

A X

B Y

i

ϕ1◦f

p

ϕ2◦g

Φ′

Using the universal property of the pushout square, we can find a map Φ
that makes the following diagram commute:

A A′

B B′

X

i

f

⌜
i′

ϕ1

g

Φ′

Φ

We need to check that this choice of Φ solves the lifting problem 2.1. By
definition, Φ ◦ i′ = ϕ1 so that the upper triangle commutes. To prove that
p ◦ Φ = ϕ2, consider the following diagram:

A A′

B B′

Y

i

f

⌜
i′

p◦ϕ1

g

ϕ2◦g

χ

This diagram commutes when we set χ = ϕ2 and also when we set χ = p◦Φ.
But by the universal property of the pushout square, the map χ must be
unique, so p ◦ Φ = ϕ2, making the lower triangle of diagram 2.1 commute.
Therefore we have found a solution to the lifting problem, completing the
proof.

Together with the Kan fibration, the Kan complex is the most important
notion in traditional simplicial homotopy theory.

Definition 2.8. A simplicial set X is a Kan complex if the unique map
from X to the terminal object is a Kan fibration.

In a lifting problem of the form

Λnk X

∆n ∆0
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the map on the bottom is trivial and the square is commutative automati-
cally, so this problem is equivalent to the problem given by the diagram

Λnk X

∆n

which consequently always has a solution, provided thatX is a Kan complex.
We say that every horn in a Kan complex can be filled (extended to a
simplex), and that a solution to such a filling problem is a filler for the
horn. We will often use this alternative characterization of Kan complexes
instead.

2.3 Fibration as structure

Simplicial sets can be made into a model of homotopy type theory, in which
the Kan fibrations play the role of dependent types [KL12]. However, it has
been shown by [BCP15] that a constructive proof of this fact is impossible.
This is disappointing, because homotopy type theory has specifically been
put forward as a possible foundation of constructive mathematics, under the
name Univalent Foundations. To make a model out of simplicial sets that
does facilitate a constructive proof, we can try to replace the interpretation
of dependent types by a different kind of fibration. The issue with ordinary
Kan fibrations is that they only tell us that there exists some solution to a
given lifting problem, but they do not point out one particular solution. A
generic lifting problem has multiple solutions, so in case we want an explicit
solution, we would have to use the axiom of choice to pick one ourselves.
Thus arises the idea to define a fibration as having extra structure that
chooses the solutions for us:

Definition 2.9. An algebraic Kan fibration is a Kan fibration together with
a lifting function that assigns a particular solution to every lifting problem
against a horn inclusion.

This definition does not choose lifts against anodyne morphisms other than
the horn inclusions. We obtain a lift against an arbitrary anodyne mor-
phism by (roughly speaking) decomposing it into horn inclusions. In most
cases, this can be done in various inequivalent ways. We can enforce some
compatibility among these different ways of lifting against an anodyne map
by imposing the uniformity condition on the lifting function of an algebraic
Kan fibration. It turns out that the compatibility gained in this way allows
for at least some progress in constructing a model of homotopy type theory
based on simplicial sets, in which dependent types are algebraic Kan fibra-
tions satisfying the uniformity condition. It is this notion of fibration, which
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we will call effective Kan fibration, that is the object of our study. So let us
find out what the uniformity condition is. It relies entirely on the following
fact:

Proposition 2.10 (Proposition C.1. of [vdBF22]). A horn in a simplicial
set has at most one degenerate filler.

By a degenerate filler we mean a degenerate simplex that solves the filling
problem

Λnk X

∆n

We define a degenerate horn as a horn in a simplicial set that has a degene-
rate filler. Of course, the proposition implies that a lifting problem against
a horn inclusion also has at most one degenerate solution, and we call it a
degenerate lifting problem if the degenerate solution exists. A special case
of the uniformity condition is the following:

Definition 2.11. An algebraic Kan fibration is degenerate-preferring if its
lifting function assigns the unique degenerate solution to every degenerate
lifting problem.

Note that any Kan fibration can be given the structure of a degenerate-
preferring algebraic Kan fibration, by assigning the degenerate solution to
a lifting problem if it is degenerate, and an arbitrary solution if it is not.
The point is that this cannot be done constructively, because we need the
principle of excluded middle to make the case distinction, and the axiom of
choice to pick the arbitrary solutions.

Although the definition is elegant, it is more restrictive than necessary.
We motivated the uniformity condition as a means to harmonize the differ-
ent ways of solving lifting problems. Accordingly, it does not concern the
chosen solutions per se, but only the way in which they relate to each other.
Therefore, consider how an arbitrary lift, as in the following diagram, can
give rise to a degenerate lifting problem:

Λnk X

∆n Y

ϕ1

ϕ2

Φ

Fix any l ≤ n, and choose a number k∗ satisfying σl(k
∗) = k (recall the

non-injective map σl from the simplex category ∆). The meaning of k∗ is
that it is the index of the vertex in ∆n+1 that is sent to vertex k of ∆n under
the degeneracy map sl; when l = k, there are two such vertices. We define a
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degenerate simplex ψ2 = ϕ2 ◦ sl and a degenerate horn ψ1 = Φ◦ sl ◦ c, where
c is the horn inclusion Λn+1

k∗ ↪→ ∆n+1. This horn is missing the face opposite
vertex k∗, and therefore corresponds to the horn ψ1, which misses the face
opposite vertex k. It is degenerate because it is filled by the degenerate
simplex Φ ◦ sl, which is also the (unique) degenerate solution to the lifting
problem posed by ψ1 and ψ2:

Λn+1
k∗ X

∆n Y

ψ1

ψ2

We refer to this as a degenerate lifting problem based on the lifting problem
for Φ. Note that it depends both on the formulation of that lifting problem,
as well as on the fact that Φ was the chosen solution. The uniformity
condition simply states that the degenerate solution is chosen at least cases
like this:

Definition 2.12. An effective Kan fibration is an algebraic Kan fibration
whose lifting function assigns the degenerate solution to every degenerate
lifting problem that is based on some other lifting problem.

This definition, as well as the degenerate-preferring version, was discovered
by [Gee23], who calls it a symmetric effective Kan fibration. It is a simpli-
fied and more restrictive variant of the effective Kan fibration introduced
by [vdBF22]. Since we will not use their original version, and since we
already have more than enough qualifiers to deal with, we have dropped
the adjective “symmetric”. Degenerate-preferring algebraic Kan fibrations
are always effective Kan fibrations, so we will occasionally refer to them as
degenerate-preferring effective Kan fibrations. A (degenerate-preferring) al-
gebraic/effective Kan complex is defined by analogy with the ordinary Kan
complex in an obvious fashion.

This completes the exposition of the most important concepts for this
thesis. Additional definitions will be given in the chapters for which they
are relevant. We end this preliminary chapter by proving the following
basic property of fibrations, in order to have some practice with the new
definitions.

Proposition 2.13. The class of (degenerate-preferring) effective Kan fibra-
tions is closed under pullback.

Proof. In a sense, this proposition is dual to Proposition 2.7, and the proof is
reminiscent of it. We first prove the variant without degenerate-preference.
So given an effective Kan fibration, we need to show that its pullback along
an arbitrary map is a Kan fibration. Moreover, we need to assign it the
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structure of an effective Kan fibration by constructive means. Therefore,
consider a commutative diagram

Λnk X ′ X

∆n Y ′ Y

ϕ1

c

⌟

f

q pΦ

ϕ2 g

in which the right square is a pullback diagram for an effective Kan fibration
p, and the left square is a lifting problem for q. The outer square poses a
lifting problem for p; call the chosen solution Φ′ : ∆n → X. Using the uni-
versal property of the pullback square, find Φ from the unique factorization
ϕ2 = q ◦Φ and Φ′ = f ◦Φ. We must have Φ ◦ c = ϕ1, since f ◦ϕ1 = f ◦Φ ◦ c
and q ◦ ϕ1 = q ◦ Φ ◦ c, while this factorization must be unique. Hence Φ
solves the original lifting problem.

To prove that this choice of lifts satisfies the uniformity condition, con-
sider an arbitrary degenerate lifting problem based on the lifting problem
for Φ, given by ψ1 = Φ ◦ sl ◦ c and ψ2 = ϕ2 ◦ sl, where c : Λn+1

k∗ → ∆n+1

is a horn inclusion. Let Ψ be the solution to this problem obtained in the
same way as Φ. We need to show that this chosen solution Ψ is equal to
the degenerate solution Φ ◦ sl. The lifting problem posed by f ◦ ψ1 and
g ◦ψ2 is a degenerate lifting problem based on the lifting problem for Φ′, so
its chosen solution Ψ′ is the degenerate solution Φ′ ◦ sl, since we assumed
that p satisfies the uniformity condition. The map Ψ was defined from the
factorization ψ2 = q ◦Ψ and Ψ′ = f ◦Ψ. But we also have the factorization
ψ2 = q ◦ Φ ◦ sl and Ψ′ = f ◦ Φ ◦ sl. By the universal property of pullback
squares, this factorization is unique, so it must be that Ψ = Φ ◦ sl, which is
what we wanted to show. Since the lifting problem for Φ was arbitrary, we
conclude that the given lifting procedure satisfies the uniformity condition.
We have therefore shown that any pullback of any effective Kan fibration can
be made into an effective Kan fibration by constructive means, completing
the proof.

To prove the degenerate-preferring variant of the proposition, we only
have to slightly modify the second half of the proof: we assume that Ψ
came from an arbitrary degenerate lifting problem, but now p is degenerate-
preferring, so we get a degenerate solution for Ψ′ regardless. The rest of
the proof that Ψ is degenerate is the same, so that q chooses the degenerate
solution whenever possible.



Chapter 3

Simplicial groupoids

Simplicial groupoids are the simplicial equivalent of topological groupoids.
They turn up in simplicial homotopy theory in various places, and Kan fi-
brations can be constructed from simplicial groupoids in several ways. For
example, a classic result is that a simplicial group is always a Kan complex.
Some of these constructions are given by [vdBM18] and subsequently used
to generate univalent Kan fibrations; univalence is an important concept in
homotopy type theory. We will revisit those constructions and prove that,
under some additional assumptions, they also define effective Kan fibrations.
More specifically, Theorem 3.8 is the original result from [vdBM18], consist-
ing of four parts, and the “effective” versions of the first three parts are
Theorem 3.9, 3.11 and 3.22 respectively, each of which is covered in a sep-
arate section. We first introduce simplicial groupoids and some definitions
associated with them.

3.1 Description

A groupoid is a category in which every morphism has a two-sided inverse.
The prime example is the fundamental groupoid of a topological space. The
objects of the category are the points of the topological space and the mor-
phisms are the homotopy equivalence classes of paths between two points.
The composition of two such equivalence classes is obtained by concate-
nating their paths, and the inverse of an equivalence class by reversing the
direction of all of its paths. A groupoid G consists of the following:

• a set of objects ob(G);

• a set of morphisms ar(G);

• source and target functions s, t : ar(G) → ob(G);

• a function assigning identities id(−) : ob(G) → ar(G);

16
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• a function assigning inverses (−)−1 : ar(G) → ar(G);

• a function for composition (− ◦ −) : ar(G)×ob(G) ar(G) → ar(G);

where ar(G)×ob(G) ar(G) contains all composable pairs of arrows, as in the
following pullback square:

ar(G)×ob(G) ar(G) ar(G)

ar(G) ob(G)

⌟
s

t

The maps need to satisfy familiar relations (expressible by commuting dia-
grams) that enforce the properties of associativity, inverses and the identity.
If, in the list above, we replace each instance of “set” by “object” and each
instance of “function” by “morphism”, we can evaluate the definition in
any category that has the required pullbacks (rather than just the category
Set), giving rise to the notion of an internal groupoid. In the category of
topological spaces, we obtain topological groupoids, with topological groups
and Lie groups as special instances. We will study the simplicial equivalents
of these objects:

Definition 3.1. A simplicial groupoid is an internal groupoid in ∆̂.

In essence, a simplicial groupoid G provides an ordinary groupoid Gn for
every n (similar to how a simplicial set X has a set Xn for every n). The
groupoid morphisms being natural transformations means that they com-
mute with the face and degeneracy maps. For example, slidc = idslc for any
c ∈ Gn. By an object (arrow) of G we mean a simplex of ob(G) (ar(G)),
which can be incarnated either as an element of some ob(G)n or as a simpli-
cial map ∆n → ob(G), according to the Yoneda lemma. For any simplicial
groupoid, we continue using the notation from the list above for the source,
target, identity, inverse and composition maps. As we will now see, some
standard definitions regarding (topological) group(oid)s carry over to sim-
plicial groupoids in a straightforward fashion.

Definition 3.2. Suppose we have a (simplicial) groupoid G and a map
of (simplicial) sets π : X → ob(G). First, write ar(G) ×ob(G) X for the
fiber product of the source map s with π. Then an action of G on π is a
(simplicial) map (− · −) : ar(G) ×ob(G) X → X such that π(g · x) = t(g),
h · (g · x) = (h ◦ g) · x and idπ(x) · x = x for all compatible x ∈ X and
g, h ∈ ar(G).

Remark 3.3. Consider what an groupoid action does in Set. The map
π provides a partition of X, namely by the preimages of the objects in G.
Each arrow of G becomes a function between the preimages of its source
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and target objects, and this representation preserves composition, identities
and inverses. Accordingly, ar(G)×ob(G) X keeps track of which elements of
X can be acted on by which arrows of G — it contains precisely the pairs
⟨g, x⟩ such that x ∈ π−1(s(g)).

Remark 3.4. When working out the simplicial variants of this definition
and the next one, one can interpret an element “x ∈ X” as a simplex
x : ∆n → X, and function evaluations “f(x)” as the composition f ◦ x.
The postulated relations can alternatively (but equivalently) be evaluated
separately for each groupoid Gn in the simplicial groupoid; for example,
π[n](g · x) = t[n](g) for every n ∈ N, x ∈ Xn and g ∈ ar(G)n.

Definition 3.5. Given a (simplicial) groupoid G and an action on a (sim-
plicial) map π : X → ob(G), we define the (simplicial) action-groupoid XG
as follows. Its simplicial set of objects is ob(XG) = X and its simplicial set
of arrows is the pullback ar(XG) = ar(G) ×ob(G) X of the source map of G
along π. The source map of XG is the second projector of this product and
its target map is the action of G on π. The remaining maps are given by
idx = ⟨idπ(x), x⟩, ⟨g, x⟩−1 = ⟨g−1, g · x⟩ and ⟨h, g · x⟩ ◦ ⟨g, x⟩ = ⟨h ◦ g, x⟩. It
can indeed be verified that this constitutes a (simplicial) groupoid.

Remark 3.6. If two arrows ⟨g, x⟩, ⟨h, y⟩ ∈ ar(XG) are to be composable,
we must have y = s(⟨h, y⟩) = t(⟨g, x⟩) = g · x. This is why we wrote g · x
instead of y in the composition law.

Since a groupoid G is a category, we can take its nerve (Definition 2.3) to
get a simplicial set N(G). An n-simplex of N(G) is a string of composable
arrows of G:

c0 c1 . . . cn
h1 h2 hn

We would like to have a similar construction for a simplicial groupoid G.
Since taking the nerve turns a set-like object (a groupoid) into a simplicial
set, we expect it to turn a simplicial object (a simplicial groupoid) into a
bisimplicial set: a functor N(G) : ∆op × ∆op → Set. Its sets are now in-
dexed by two natural numbers, and the set N(G)(n,m) contains all strings
of n composable arrows in the groupoid Gm. We can condense a bisimpli-
cial set X into a simplicial set δ∗X by only looking at the sets along the
diagonal of the double index: (δ∗X)n = X(n,n). In the case of the nerve of
a simplicial groupoid G, a degeneracy map of δ∗N(G) combines the effect
of degeneracy in a nerve (repeating one of the objects) and degeneracy in a
simplicial groupoid (making each object and arrow degenerate individually),
and similarly for the face maps. So a face map dj and a degeneracy map sl
respectively take a string of arrows, represented as above, to the following
strings:

djc0 . . . djcj−1 djcj+1 . . . djcn
djh1 djhj−1 dj(hj+1◦hj) djhj+2 djhn
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slc0 . . . slcl slcl . . . slcn
slh1 slhl idslcl slhl+1 slhn

To get the face dj of a string in case j ∈ {0, n}, we need to remove the first
or last arrow, instead of composing it. We have thus found a way to make
a simplicial groupoid into a simplicial set:

Definition 3.7. The classifying space BG of a simplicial groupoid G is the
simplicial set δ∗N(G).

We will not go into the significance of a classifying space, but just note that
it can also be defined for a topological group G, for which it has purpose
of establishing a bijection between principal G-bundles over a topological
space X (up to isomorphism) and continuous functions X → BG (up to
homotopy equivalence).

It follows immediately from the definition that (BG)n = N(G)(n,n) for
all n. We can also consider the classifying space of an action-groupoid,
BXG. A simplex of BXG is a string of arrows ⟨fm, xm⟩ with all the fm
and xm simplices of ar(G) and X respectively. If we project out each first
component, we get a string of arrows fm, which is just a simplex of BG. We
can thus associate a morphism of classifying spaces BXG → BG to every
action of a simplicial groupoid.

With these definitions in hand, we can finally restate Theorem 3.1 of
[vdBM18].

Theorem 3.8. Let a simplicial groupoid G be given, together with an action
on a map X → ob(G).

(i) If ob(G) is a Kan complex and s : ar(G) → ob(G) is a Kan fibration,
then BG is a Kan complex.

(ii) If π : X → ob(G) is a Kan fibration, then so is BXG → BG.

(iii) If the pair of source and target maps (s, t) : ar(G) → ob(G)× ob(G) is
surjective, then it is a Kan fibration.

(iv) If (s, t) : ar(G) → ob(G)×ob(G) is a Kan fibration, then for any vertex
c of ob(G), there is a natural weak equivalence G(c, c) → Ω(BG, c).

Note that we have not covered some of the definitions required to under-
stand part (iv). The reason is that it is essentially a corollary to part (ii)
of the theorem, so that a constructive proof of part (ii) can immediately be
transformed into a constructive proof for part (iv), and therefore we will not
cover it separately — we simply included it for completeness.

Thus our burden is to state and prove variants of parts (i) through (iii)
that use effective Kan fibrations. Of course, we will use constructive proof
methods only. We will treat each part in a separate section, and try to make
clear in which ways the proofs presented here differ from those in [vdBM18].
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3.2 Part (i)

We will first prove a modified version of the first part of Theorem 3.8, and
only afterwards discuss the choices we have made in its formulation.

Theorem 3.9. Let G be a simplicial groupoid such that ob(G) is an effective
Kan complex and s : ar(G) → ob(G) is a degenerate-preferring algebraic Kan
fibration. Suppose moreover that s chooses an identity arrow as the solution
to lifting problems whenever this is possible. Then BG can be given the
structure of an effective Kan complex by constructive means.

Before we dive into the proof, we need to introduce a trick. If we have a
string of n arrows in Gm, called χ, as follows:

c0 c1 . . . cn
h1 h2 hn

then we can use inverses to alternatively represent it as a tree-like structure:

ck

c0 c1 . . . ck . . . cn

g0

g1 gk

gn

Here k can be chosen arbitrarily and the gi are suitable compositions of the
hi or their inverses. Specifically:

gi =


(hk ◦ hk−1 ◦ . . . ◦ hi)−1 if i < k

idck if i = k

hi ◦ hi−1 ◦ . . . ◦ hk+1 if i > k

The arrow gk has been distinguished in the diagram by a dotted arrow be-
cause even though it is always the identity arrow idck and is in that sense re-
dundant, it does record the position of ck among the other objects and there-
fore tells us how the diagram should be put back together to form the string
it derives from. We shall refer to this diagram as the tree-representation of
χ with the k-th object of χ as its trunk. Instead of drawing such a diagram
every time, we can also write it as (k; g0, . . . , gn), where the number k on
the left designates which arrow in the list is the dotted one. The objects ci
are not written explicitly but are still present as the sources and targets of
the arrows. The advantage of this tree-representation is the simple effect of
the face and degeneracy maps dj and sl of BG:

djχ = (σj(k); djg0, . . . , djgj−1, d̂jgj , djgj+1, . . . , djgn)

slχ = (∂l(k); slg0, . . . , slgl−1, slgl, slgl, slgl+1, . . . , slgn)

Here σj and ∂l are the maps from the simplex category ∆, and the hat on

d̂jgj signifies that this arrow has been removed and does not actually appear
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in the list. Compare these tree-representations to the strings appearing just
before Definition 3.7. In the string-representation of the face djχ, we had to
take a composition hj+1 ◦ hj . But since, for example, gn is the composition
of hk+1 through hn anyway, it does not matter if two of its constituents are
already composed “beforehand”. Similarly, the identity arrow appearing in
the degenerate string is assimilated into one of the slgl appearing in the
tree-representation. Moreover, this representation of djχ is also valid when
j ∈ {0, n}. We just need to be careful with the case j = k, because then the
above representation is invalid (since in general the highlighted arrow, with
index σj(k), is then no longer the identity iddjck).

Proof of Theorem 3.9. We are showing that BG is an effective Kan complex.
This means that we need to solve filling problems

Λnk BG

∆n

ϕ

Φ

in such a way that the uniformity condition is satisfied. We first reproduce
the filling procedure by [vdBM18], using a different notation but extending it
only in one place to make it constructive. We then show that this procedure
satisfies the uniformity condition.

Therefore consider the filling problem above, with ϕ now fixed. By the
Yoneda lemma, a morphism Φ: ∆n → BG corresponds to an element of the
set (BG)n, i.e. a string of n composable arrows in the groupoid Gn, which
we represent as

ck

c0 c1 . . . ck . . . cn

g0

g1 gk

gn (3.1)

The horn ϕ captures all but one of the faces of this string, which we can
represent suggestively as the trees given by

diϕ = (σi(k); dig0, . . . , d̂igi, . . . , dign)

for i ̸= k. Note the abusive notation (which we will employ often): we
write e.g. dig0 even though g0 has not been defined yet — they are instead
provided by the horn ϕ. Our task is to extend these faces to a diagram 3.1,
i.e. to construct all the gj . Since ob(G) is an effective Kan complex, we
obtain ck by solving the filling problem

Λnk ob(G)

∆n

{dick}i ̸=k

ck
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where each dick can be found as the source of any arrow digj . Next, we
define gk as the identity arrow on ck. To construct gj for a fixed j ̸= k, note
that we are only given digj for i /∈ {k, j}. The union of these faces does
not constitute an entire horn, but rather a simplicial set that we denote by
Λnk,j ↪→ ∆n, since two faces are missing instead of just one. In the original
proof, it is simply noted that this inclusion is anodyne, and therefore poses
a lifting problem for the Kan fibration s : ar(G) → ob(G) that can be solved
to obtain gj :

Λnk,j ar(G)

∆n ob(G)

{digj}i̸=k,j

s
gj

ck

For a constructive proof, we need to be more explicit about how we perform
this lift. The interior of face j of Λnk,j is missing, but the remaining boundary
of this face is a horn of one degree lower (this can be easily imagined in the
case n = 3, when Λnk,j looks like two triangles sharing one edge). We can
therefore first fill this horn to extend Λnk,j to a horn Λnk , which we then
extend to a simplex in the usual way. More precisely, we solve the lifting
problem above by solving

Λnk ar(G)

∆n ob(G)

{digj}i̸=k

s
gj

ck

where we define djgj as the lift

Λn−1
σj(k)

ar(G)

∆n−1 ob(G)

{didjgj}i̸=σj(k)

s
djgj

djck

Here the didjgj can be drawn from existing faces by using simplicial identi-
ties:

didjgj =

{
dj−1digj if 0 < i < j

djdi+1gj if i ≥ j

If n = 1, djgj cannot be defined as a lift, and we instead choose it to be the
identity arrow on djck. Having found all the gj , we can put them together
to form the diagram 3.1. This defines a solution Φ to the original filling
problem for ϕ, completing the first part of the proof.

We now turn to the uniformity condition of being an effective Kan com-
plex (this aspect is, of course, absent from the original theorem in [vdBM18]).
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Let ϕ and Φ be as before, fix l and k∗ satisfying σl(k
∗) = k, and construct

the degenerate horn ψ : Λn+1
k∗ → BG as Φ◦sl ◦ c, with c an appropriate horn

inclusion. We represent this horn as {dislΦ}i ̸=k∗ — the degree of the faces
in this set imply that i ranges from 0 to n+1, skipping k∗. Fill ψ using the
construction we just defined, and call this solution Ψ: ∆n+1 → BG. Since
the filling problem posed by ψ is a degenerate problem based on the filling
problem for Φ, the uniformity condition dictates that Ψ should be equal to
the unique degenerate solution slΦ. So let us try to show that this is indeed
the case. We represent Φ as in diagram 3.1 and Ψ as

ak∗

a0 a1 . . . ak∗ . . . an+1

f0

f1 fk∗

fn+1
(3.2)

We also want to represent the string slΦ as a tree. The obvious choice is
the tree given by

(∂l(k); slg0, . . . , slgl−1, slgl, slgl, slgl+1, . . . , slgn).

However, it is possible that ∂l(k) ̸= k∗, namely when l = k = k∗ so that
∂l(k) = k + 1, and in that case it is not meaningful to compare this tree
with the one for Ψ. But this particular case also implies that the trunk
of this tree, slck, is the object in the string slΦ that was duplicated by
the degeneracy; slcl appears twice in this string, connected by an identity
arrow. So we can instead consider the tree with the first appearance of slcl
as its trunk (the k-th object of the string). Since the new definitions of the
branches gi differ from the old ones only by a composition with an identity
arrow, they are identical. We can therefore draw the same tree but highlight
arrow ∂(k) − 1 = k∗ instead of arrow ∂l(k). Since in all other cases we do
have ∂l(k) = k∗, we can in full generality represent slΦ by

(k′; g′0, . . . , g
′
n+1) := (k∗; slg0, . . . , slgl−1, slgl, slgl, slgl+1, . . . , slgn)

To prove Ψ = slΦ, we just need to show that their tree-representations
are equal. First, let us prove that the trunks of the trees are equal: ak∗ =
slck. The relevant definitions are

Λnk ob(G)

∆n

{dick}i̸=k

ck

Λn+1
k∗ ob(G)

∆n+1

{diak∗}i ̸=k∗

ak∗

By construction, the faces of Ψ and slΦ with index i ̸= k∗ are equal to each
other. The horn given by {diak∗}i ̸=k∗ only comes from those faces of Ψ.
Using these facts, we can rewrite {diak∗}i ̸=k∗ = {dislck}i ̸=k∗ . We see that
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the problem on the right is a degenerate problem based on the problem on
the left. Since ob(G) is an effective Kan complex, the chosen solution ak∗

must be equal to the unique degenerate solution slck.
Next, we want to prove the equality of arrows fj = g′j for all j. The two

cases g′j = slgj for j ≤ l and g′j = slgj−1 for j ≥ l+1 are similar, and we will
only treat the former; so fix j ≤ l. We make a further distinction of cases:

• j = k = k∗.

• j = k and k∗ = k + 1. This is only allowed if k ≥ l. But we are
assuming j ≤ l, so j = k = l.

• j ̸= k. It follows for similar reasons that j ̸= k∗ necessarily.

First assume the third case holds. Then the definitions of gj and fj are

Λnk ar(G)

∆n ob(G)

{digj}i̸=k

s
gj

ck

Λn−1
σj(k)

ar(G)

∆n−1 ob(G)

{didjgj}i ̸=σj(k)

s
djgj

djck

Λn+1
k∗ ar(G)

∆n+1 ob(G)

{difj}i ̸=k∗

s
fj

slck

Λnσj(k∗) ar(G)

∆n ob(G)

{didjfj}i̸=σj(k
∗)

s
djfj

djslck

Here we have used the equality ak∗ = slck for the arrows on the bottom.
As before, since the difj come from faces shared by Ψ and slΦ, we have
difj = dislgj for i ̸= k∗, j. If n = 1, we have djgj = iddjck instead of the
lifting problem for djgj . We are proving that fj equals g′j = slgj . By the
degenerate-preference of s, this is automatic if slgj is actually a solution for
fj . They agree on their faces i ̸= k∗, j by definition, so that we only need
to check face j. We first show that the lifting problem for djfj is solved by
djslgj . For i < j, didjfj = dj−1difj = dj−1dislgj = didjslgj , and similarly
for i ≥ j (so that we can use didj = djdi+1). We see that djslgj is indeed a
solution. Distinguish two cases:

• j = l. Then σj(k
∗) = σl(k

∗) = k and djsl is the identity map, so that
the defining lifting problem for djfj is identical to the one for gj .

• j < l. Then djslgj = sl−1djgj is degenerate and must be the chosen
solution for djfj , since s is degenerate-preferring.

In either case, djfj = djslgj and hence fj = slgj , being again the degenerate
solution to a degenerate lifting problem. Thus we have shown that fj = g′j
in case j ̸= k.
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Now assume j = k (we are also still assuming j ≤ l). If k∗ = k, then both
gj and fj are defined as identity arrows and not through lifting problems:
g′j = g′k = slgk = slidck = idslck = idak∗ = fk∗ = fj . The case k

∗ ̸= k is more
complicated: gj is still defined as the identity arrow on ck, but fj is now
defined the same way as when we considered the case j ̸= k. There we found
that djslgj is a solution to the lifting problem for djfj . This time, instead
of appealing to degenerate-preference, we use the assumption that s chooses
identity arrows as solutions whenever possible. Since djslgj is indeed an
identity arrow, it is the chosen solution for djfj (of course, the identity on
each object in a groupoid is unique). From this it follows that g′j = slgj is a
solution for fj , and being an identity arrow, it is again the chosen solution.

We conclude that fj = g′j whenever j ≤ l. Since the case of j ≥ l + 1
is similar, we have thus shown that the tree-representation of Ψ is identical
to the one for slΦ, meaning that Ψ and slΦ are equal as simplices of BG.
This is what we needed to show for the uniformity condition to apply, and
therefore we have proved that BG can be equipped with the structure of an
effective Kan complex in a constructive manner.

Let us discuss the assumptions required by Theorem 3.9 in its present
form. The difficulties in the proof stem from the fact that a degeneracy map
of BG combines two kinds of degeneracy: one in the “simplicial direction”
(putting sl before each object and arrow), and the other in the “nerve direc-
tion” (inserting an identity in the list of arrows, or duplicating an arrow in
the tree-representation). Something similar holds for the face maps of BG.
A priori, we might expect that only demanding s to be an effective Kan
fibration should be sufficient: when solving lifting problems, the effective
structures on ob(G) and s regulate the first kind of degeneracy, and the sec-
ond kind of degeneracy is constrained by properties of the nerve (the nerve
of an ordinary groupoid is a Kan complex, and it can be given a unique
algebraic structure that is necessarily degenerate-preferring). However, the
two types of degeneracy (and the two types of face maps) are inextricably
mixed, and to deal with this we need the additional assumptions on s.

Nonetheless, the current assumptions can be weakened slightly. When
treating the case k ̸= j < l, we wrote “djslgj = sl−1djgj is degenerate
and must be the chosen solution for djfj , since s is degenerate-preferring”.
In the cases where djgj is defined through a lifting problem (namely when
n > 1), we recognize the definition of djfj as a degenerate problem based
on this lifting problem, so that s being an effective Kan fibration would
have sufficed. We only need unconditional degenerate-preference when filling
horns of degree 1.

Conversely, we could wonder whether we can strengthen the theorem.
If we are forced to demand degenerate-preference anyway, why not also let
ob(G) be degenerate-preferring, in hopes of getting BG to be degenerate-
preferring as well? Surprisingly enough, this seems to be impossible. We
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would have to redo the proof without the assumption that Φ came from a
lift. The catch now lies in the case k ̸= j = l, when we write “the defining
lifting problem for djfj is identical to the one for gj”. Since Φ did not come
from a lift, gj might not be the chosen solution to the lifting problem, so that
this step is no longer justified. We have thus discovered a rare example of a
naturally arising effective Kan complex that is not necessarily degenerate-
preferring, motivating us to continue the study of both structures in parallel.

It is also worth remarking that if we assume that ob(G) chooses degene-
rate fillers for horns of degree 1 (this is always possible, since such a horn
is essentially just a vertex), the filling procedure defined for BG does the
same. This is not as trivial as it may sound: if we blindly alter the filling
function of an arbitrary Kan complex to choose degenerate fillers for horns
of degree 1, we might violate the uniformity condition. We therefore claim
without further proof:

Theorem 3.10 (Variant of Theorem 3.9). Let G be a simplicial groupoid
such that ob(G) is an effective Kan complex and s : ar(G) → ob(G) is an
effective Kan fibration, both being degenerate-preferring regarding horns of
degree 1. Suppose moreover that s chooses an identity arrow as the solution
to lifting problems whenever this is possible. Then BG can be given the
structure of an effective Kan complex that is degenerate-preferring regarding
horns of degree 1.

3.3 Part (ii)

Adjusting the second part of Theorem 3.8 is more straightforward. We can
add effective structures to its statement in the simplest way imaginable; the
lifting procedure described by [vdBM18] translates without a problem.

Theorem 3.11. Let a simplicial groupoid G be given, together with an ac-
tion on a map π : X → ob(G). If π is a (degenerate-preferring) effective
Kan fibration, then the morphism of classifying spaces BXG → BG induced
by the action can be given the structure of a (degenerate-preferring) effective
Kan fibration by constructive means.

Proof. We first prove the variant without degenerate-preference, after de-
scribing the lifting procedure by [vdBM18]. Suppose we have a lifting prob-
lem

Λnk BXG

∆n BG

ϕ1

Φ

ϕ2

Retracing definitions, we see that ϕ2 points out a string of n arrows in Gn:

c0 c1 . . . cn
h1 h2 hn = (h1, . . . , hn)
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while Φ, once it is found, is a string of arrows in (XG)n like this:

(⟨h1, x0⟩, . . . , ⟨hn, xn−1⟩)

satisfying π(xm) = s(hm+1) = cm and xm+1 = hm+1 · xm for all m. Recall
that the effect of the morphism BXG → BG is only forgetting all of the xm,
which is why the same arrows hm of ϕ2 appear in Φ. We also see that any
single xj determines all the other xm, so we could just as well represent Φ
by the string of arrows hm together with just one xj . Before we make this
choice, consider the information that ϕ1 carries; namely a face diΦ of (the
yet to be defined) Φ for each i ̸= k. Such a face diΦ also contains faces of
the xm, but because the i-th object ci is removed when we restrict to the
face di, information about xi is also lost. In short, diΦ captures only the
faces {dixm}m̸=j . If we take together all of the faces {diΦ}i ̸=k provided by
ϕ1, we see that for m ̸= k we are missing two faces of xm, and only for
xk do we have all but one of its faces. We can therefore try to obtain xk
through an extension problem for the horn {dixk}i ̸=k, and since xk fixes all
the other xm, this would define Φ uniquely. The compatibility condition
π(xk) = s(hk+1) = ck gives us just the desired lifting problem:

Λnk X

∆n ob(G)

{dixk}i ̸=k

π
xk

ck

(3.3)

Since π is assumed to be an algebraic Kan fibration, we obtain the simplex
xk that defines the solution Φ.

Note that we have been careless with the possible values of k: if k = n
then xk = xn is not defined. This is not an actual problem, since xn resides
in Φ implicitly as xn = hn · xn−1. We construct its faces from ϕ1 by dixn =
dihn · dixn−1 for i /∈ {n, n− 1} and dn−1xn = dn−1(hn ◦ hn−1) · dn−1xn−2.

We will now show that the above lifting procedure satisfies the unifor-
mity condition, provided that π does. With ϕ1, ϕ2 and Φ an arbitrary lifting
problem and chosen solution as before, formulate a degenerate lifting prob-
lem ψ1 = {dislΦ}i ̸=k∗ , ψ2 = slϕ2 with chosen solution Ψ. We need to show
Ψ = slΦ. We can represent Ψ and slΦ by

Ψ = (⟨f1, y0⟩, . . . , ⟨fn+1, yn⟩)
slΦ = (⟨h′1, x′0⟩, . . . , ⟨h′n+1, x

′
n⟩)

= (⟨slh1, slx0⟩, . . . , ⟨slhl, slxl−1⟩, ⟨idslcl , slxl⟩, ⟨slhl+1, slxl⟩, . . .)

We can again use that the arrows of ψ2 = slϕ2 must reappear in Ψ, so that
fm = h′m for all m. This implies in particular that fl+1 = idslcl . But it
must be that fl+1 · yl = yl+1 (see Remark 3.6), so we get yl = yl+1. Defining
zm = y∂l(m), we can therefore rewrite Ψ as

Ψ = (⟨slh1, z0⟩, . . . , ⟨slhl, zl−1⟩, ⟨idslcl , zl⟩, ⟨slhl+1, zl), . . .)
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Each ym determines every other ym′ , and similarly for the x′m. So if we can
prove zm = slxm for an arbitrary m, we have proved it for all m, and may
conclude Ψ = slΦ. We choose to prove zk = slxk. The definition of xk is
diagram 3.3, while the definition of yk∗ is

Λnk∗ X

∆n ob(G)

{diyk∗}i ̸=k∗

π
yk∗

slck

where we used π(yk∗) = s(fk∗+1) = s(h′k∗+1) = slcσl(k∗) = slck. By con-
struction, Ψ and slΦ agree on the horn ψ1, and therefore we may rewrite
{diyk∗}i ̸=k∗ = {dislxk}i ̸=k∗ . This means that the lifting problem for yk∗ is a
degenerate problem based on the lifting problem for xk, so that yk∗ = slxk
by virtue of the uniformity condition for π. Since yl+1 = yl and ∂l(k) ̸= k∗

only when k = k∗ = l, in which case ∂l(k) = k∗ + 1, we can make the
identification yk∗ = y∂l(k) = zk. We conclude that zk = slxk and hence, as
argued before, that Ψ = slΦ, which is what we needed to show.

For the degenerate-preferring variant, we drop the assumption that Φ
came from a lifting problem, we note that slxk is still a solution for yk∗ , and
invoke the degenerate-preference of π.

3.4 Part (iii)

Reworking part three of Theorem 3.8 will be the largest undertaking of this
thesis, mostly because it relies on three lemmas that also require substantial
modification in order to accommodate effective Kan fibrations. We will
not state these lemmas in their original form; they can be retrieved by
eliminating the effective structures that appear in our adapted versions of
them. For the first lemma, we require a new definition.

Definition 3.12. We call a simplicial map f : X ′ → X an algebraic surjec-
tion if it comes with a choice of lifts for all diagrams of the form

X ′

∆n X

f

and we call it an effective surjection if this choice preserves degeneracy: if
ϕ lifts to ϕ′, then slϕ lifts to slϕ

′, for all ϕ : ∆n → X and l ≤ n.

This definition is a thematic way of saying that there is a constructive proof
of f being surjective, in the form of a right-inverse for each component
function fn : X

′
n → Xn. It is an effective surjection if these right-inverses
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commute with the degeneracy maps, and if they also commute with the face
maps, then the choice function is a morphism of simplicial sets constituting
a right-inverse, or section, of f . It can be shown non-constructively that
any surjective simplicial map can be made into an effective surjection (see
[Gee23], where they go under the moniker of “degeneracy sections”).

Lemma 3.13 (Adapted from Lemma 3.3 of [vdBM18]). Consider a pullback
diagram of simplicial sets

Y ′ Y

X ′ X

g

p′
⌟

p

f

in which f is an effective surjection. If p′ is a (degenerate-preferring) ef-
fective Kan fibration, then p can be given the structure of a (degenerate-
preferring) effective Kan fibration by constructive means.

Proof. We continue following the pattern that should be familiar by now: ex-
hibit the lifting procedure, prove the uniformity condition, prove degenerate-
preference. Given a lifting problem

Λnk Y

∆n X

ϕ1

pΦ

ϕ2

we can lift ϕ2, using the effective surjection, to some ϕ′2 : ∆
n → X ′ and

obtain a commuting diagram

Λnk

∆n Y ′ Y

X ′ X

ϕ1
ϕ′1

Φ′

ϕ′2

g

p′ p

f

where ϕ′1 comes from the universal property of the pullback and Φ′ is a lift.
We solve the original lifting problem by setting Φ = g ◦ Φ′. Now consider
a degenerate lifting problem based on it; ψ1 = Φ ◦ sl ◦ c and ψ2 = ϕ2 ◦ sl,
where by c we mean the horn inclusion Λn+1

k∗ ↪→ ∆n+1, and we have opted
to not abuse the Yoneda lemma for once. Solve this problem in the same
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manner, and call the chosen solution Ψ:

Λn+1
k∗ Y

∆n+1 X

ψ1

p
Ψ

ψ2

Λn+1
k∗

∆n+1 Y ′ Y

X ′ X

ψ1

ψ′
1c

Ψ′

ψ′
2

g

p′ p

f

To satisfy the uniformity condition for p, we need to prove Ψ = Φ ◦ sl. We
can get there if we can show that the induced lifting problem for Ψ′ is a
degenerate problem based on the lifting problem for Φ′. Since lifting along
the effective surjection f preserves degeneracy, we have ψ′

2 = ϕ′2 ◦ sl. Next,
we want to show that ψ′

1 = Φ′ ◦ sl ◦ c. The map ψ′
1 is unique, so in order to

prove that ψ′
1 is equal to Φ′ ◦ sl ◦ c, we only need to show that they solve the

same problem, namely g◦χ = ψ1 and p
′◦χ = ψ′

2◦c. Substituting Φ′◦sl◦c for
χ we indeed get g◦Φ′◦sl◦c = Φ◦sl◦c = ψ1 and p

′◦Φ′◦sl◦c = ϕ′2◦sl◦c = ψ′
2◦c,

so that it must be that ψ′
1 = Φ′ ◦ sl ◦ c. This means that the defining lifting

problem for Ψ′ is a degenerate problem based on the one for Φ′, so that
Ψ′ = Φ′ ◦ sl by virtue of the uniformity condition for p′. Composing both
sides with g, we derive Ψ = Φ ◦ sl. This is what we needed to show, and we
conclude that the given construction turns p into an effective Kan fibration.

To prove the degenerate-preferring version, we drop the assumption that
Φ came from a lift, and in the penultimate step we get the degenerate
solution regardless of whether the degenerate lifting problem for Ψ′ is based
on another lifting problem.

Lemma 3.14 (Adapted from Lemma 3.4 of [vdBM18]). Suppose we have a
commuting diagram

Z Y

X

g

p

f

in which p and g are degenerate-preferring algebraic Kan fibrations, and
suppose a right-inverse p−1

0 of p0 : Z0 → Y0 is also given. Then f can
be given the structure of a degenerate-preferring algebraic Kan fibration by
constructive means.

The proof of the original version of this lemma is quite simple, but
relies on lifting against maps ∆0 → Λnk . Since such a map is anodyne,
we know that this is possible, but an explicit construction is not given by
[vdBM18]. We have to come up with one ourselves, and it has to mesh well
with degeneracy.
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Lemma 3.15. Let p : Z → Y be a degenerate-preferring algebraic Kan fi-
bration, and let p−1

0 be a right-inverse of p0 : Z0 → Y0. Consider lifting
problems of the form

Z

Λnk Y

p

ϕ

ϕ′

There exists a constructive lifting procedure solving these problems that pre-
serves the degeneracy of a horn: if ϕ = {dislχ}i ̸=k for some χ : ∆n → Y and
l ≤ n, then its lift ϕ′ can be written as {dislχ′}i ̸=k for some χ′ : ∆n → Z.

Proof. We first describe the lifting procedure, and then prove that it pre-
serves degeneracy. Intuitively, the lifting procedure goes as follows. We first
lift the vertex opposite the missing face of ϕ using p−1

0 . A vertex looks like
the horn of an edge; so we can now lift the edges that do not lie on the miss-
ing face. These edges define lifting problems for the 2-simplices that do not
lie on the missing face; those 2-simplices in turn precisely define lifting prob-
lems for the 3-simplices not on the missing face; and so on. The following
figure illustrates this process for the horn of a 4-simplex (projected stereo-
graphically so that the missing face is the volume on the outside, stretching
to infinity).

More formally, we define the lifting procedure using recursion as follows. A
Λ1
k-horn is just a 0-simplex, and we can lift it using p−1

0 . Now suppose we
have a horn ϕ : Λn+1

k → Y , which we represent as {diϕ}i ̸=k. We lift each
face djϕ separately, so let j be fixed. The vertex of djϕ corresponding to
vertex k of ϕ is the one with index σj(k). Invoking recursion, we first lift
the Λnσj(k)-horn defined as ϕj = {didjϕ}i ̸=σj(k) to a horn ϕ′j : Λ

n
σj(k)

→ Z.

We then fill it using a lift against a horn inclusion:

Λnσj(k) Z

∆n Y

ϕ′j

p

djϕ

djϕ
′

Having thus lifted all the faces of ϕ, we need to verify that they match up
to form a horn. The condition for this is diϕ

′
j = dj−1ϕ

′
i whenever i < j. If

n = 1, then ϕi and ϕj , regarded as vertices, must be identical and are lifted
to the same vertex. If n > 1, we see from the recursive definition that diϕ

′
j
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and dj−1ϕ
′
i both are lifted from the face didjϕ = dj−1diϕ in the same way,

and must therefore be equal. This completes the description of our lifting
procedure for horns.

We now want to prove that it preserves degeneracy; supposing that ϕ was
degenerate, we must show that ϕ′ is similarly degenerate. If ϕ = {dislχ}i ̸=k,
we can also represent it as {disldjϕ}i ̸=k for an arbitrary j ∈ {l, l+ 1} \ {k}.
With this l and j now fixed, we will show that ϕ′ similarly satisfies ϕ′ =
{disldjϕ′}i ̸=k. We use induction on n. First consider n = 0. Then l = 0
by necessity, and since i ∈ {0, 1}, we can use a simplicial identity to get
{disldjϕ′}i ̸=k = {diϕ′}i ̸=k, which always represents ϕ′ correctly.

Now let n > 0 and suppose that the lifting procedure preserves degene-
racy of Λnk -horns for any value of k. We want to prove that disldjϕ

′ = diϕ
′

for all i ̸= k. We distinguish the following cases.

• i ∈ {l, l+1} and i = j. Then disl is the identity map and the equality
follows.

• i ∈ {l, l + 1} and i ̸= j. We use the same simplicial identity, but we
still need to show djϕ

′ = diϕ
′. We do have djϕ = diϕ. Moreover,

the condition for this case (together with the premise j ∈ {l, l + 1})
implies that either i, j < k or i, j > k, so that σj(k) = σi(k). This
means that the faces djϕ and diϕ are lifted in precisely the same way,
and the desired equality follows.

• i < l. The face diϕ is degenerate, and its Λnσi(k)-horn ϕi can be rep-

resented as {dmϕi}m ̸=σi(k) = {dmdiϕ}m ̸=σi(k) = {dmdisldjϕ}m̸=σi(k).
Simplicial identities turn this into {dmsl−1dj−1diϕ}m ̸=σi(k). In order
to apply the induction hypothesis, we need to justify that dj−1diϕ can
be rewritten as dj−1ϕi. So dj−1 cannot be allowed to hit the missing
face of ϕi. We know that j ̸= k (because we chose it that way). If k > i,
then σi(k) = k−1 ̸= j−1. If k < i, then σi(k) = k < i < l ≤ j, so again
σi(k) ̸= j−1. We can therefore write ϕi = {dmsl−1dj−1ϕi}m ̸=σi(k) and
apply the induction hypothesis to get ϕ′i = {dmsl−1dj−1ϕ

′
i}m̸=σi(k).

This, together with diϕ being degenerate, implies that the lifting prob-
lem for diϕ

′ has a degenerate solution sl−1dj−1diϕ
′, which is also the

chosen solution because p is degenerate-preferring. Simplicial identi-
ties finally give us diϕ

′ = disldjϕ
′.

• i > l + 1. This is analogous to the previous case.

We conclude that the horn represented by {disldjϕ′}i ̸=k is identical to ϕ′.
By induction on n, our lifting procedure preserves the degeneracy of any
horn.

Proof of Lemma 3.14. We are showing that the morphism f appearing in
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the diagram

Z Y

X

g

p

f

is a degenerate-preferring algebraic Kan fibration. To solve an arbitrary
lifting problem

Λnk Y

∆n X

ϕ1

f
Φ

ϕ2

first lift the horn ϕ1 to a horn ϕ′1 in Z using Lemma 3.15. Solve the lifting
problem for g posed by ϕ′1 and ϕ2, and call the solution Φ′. Then choose
p ◦ Φ′ as the solution for Φ.

To prove the degenerate-preference of this lifting procedure, suppose that
the lifting problem for Φ admits a degenerate solution, so that ϕ1 and ϕ2 are
degenerate. We want to show that the chosen solution for Φ is the unique
degenerate solution. By Lemma 3.15, ϕ′1 is degenerate in the same way that
ϕ1 and ϕ2 are, so the lifting problem for Φ′ admits a degenerate solution,
which is also the chosen one, by virtue of g being degenerate-preferring.
It follows that Φ = p ◦ Φ′ is also degenerate. We conclude that f is a
degenerate-preferring algebraic Kan fibration.

We will need additional definitions to understand the next lemma, but
it is instructive to first state it.

Lemma 3.16 (Adapted from Lemma 3.5 of [vdBM18]). Suppose we are
given a simplicial group H with a free action α : H × E → E and an effec-
tively surjective co-equalizer

H × E E X
π2

α

q

where π2 is the second projection map. Suppose moreover that the division
map E ×X E → H is also given. Then q can be given the structure of a
degenerate-preferring algebraic Kan fibration by constructive means.

A group is just a groupoid with a single object, and analogously:

Definition 3.17. A simplicial group is a simplicial groupoid G such that
ob(G) ≃ ∆0. We will often identify a simplicial group G with the simplicial
set of its arrows ar(G).

Remark 3.18. A simplicial group is more commonly defined as a functor
from the simplex category ∆ to the category of groups. In both cases we
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are dealing with a group for every natural number such that the group op-
erations commute with the face and degeneracy maps, so the two definitions
are equivalent.

Recall that the action of a simplicial groupoid G on a map π : E → ob(G)
is a certain map ar(G)×ob(G) E → E. If H = G is a simplicial group, then
morphisms to the terminal object ob(H) ≃ ∆0 are unique, so π is trivial and
ar(H) ×ob(H) E = ar(H) × E. We therefore choose to speak of actions on
simplicial sets, rather than actions on simplicial maps, and write H×E → E
for such an action. An action is free when, for any simplices g ∈ Hn and
x ∈ En, g · x = x implies that g is the identity element of the group Hn.

In topology, a principal G-bundle could be defined (with some caveats)
as the quotient map q : P → P/G for the quotient of P by a free topological
group action G× P → P , collapsing G-orbits to a single point. The action
of the group on a fiber Pp = q−1(p) ⊆ P leaves it invariant and is transitive
by construction — every point in Pp can be sent to every other point in Pp
by some element of G. We want to transport this construction to the realm
of simplicial sets. The co-equalizer q in Lemma 3.16 serves just this purpose.
As a refresher:

Definition 3.19. A co-equalizer of a pair of morphisms f, g : A → B is a
morphism q : B → C satisfying q ◦ f = q ◦ g, such that any other morphism
q′ with this property factors uniquely through q.

The meaning of Lemma 3.16 is that this “quotient map” q is, in fact, the
simplicial equivalent of a fiber bundle. In our category ∆̂, co-equalizers
always exist, but we ask for one explicitly, one that is in addition an effective
surjection, in order to make a constructive proof possible. Similarly, the
division map provides, for every two elements x, y of the same H-orbit, the
unique group element g that sends y to x, i.e. g·y = x; it can be thought of as
a witness for the fact that the action is transitive on fibers, and (depending
on our meta-mathematics) we need it to be given explicitly for a constructive
proof. To prove Lemma 3.16, we need the following crucial theorem due to
Freek Geerligs [Gee23].

Theorem 3.20. We can give the structure of a degenerate-preferring alge-
braic Kan complex to any simplicial group by constructive means.

Proof of Lemma 3.16. Our proof is essentially identical to the original. Con-
sider the diagram

H H × E E ×X E E

∆0 E E X

π2

θ

⌞
π2

π1

⌟
q

idE q
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The squares on the left and on the right are pullback squares, viz. the
definitions of the respective products. The map θ is defined by θ(g, x) =
⟨α(g, x), x⟩, so that the central square commutes. Moreover, θ is an iso-
morphism because the division map paired with idE is its inverse. By The-
orem 3.20, the map on the left is a degenerate-preferring algebraic Kan
fibration. By Proposition 2.13, its pullback π2 : H×E → E is a degenerate-
preferring algebraic Kan fibration, and so is the isomorphic π2 : E×XE → E
(in this step, we implicitly use the constructed inverse of θ). Finally, q is a
degenerate preferring algebraic Kan fibration by Lemma 3.13.

Remark 3.21. We have not used the universal property of the co-equalizer
q explicitly. Co-equalizers provide the categorical definition of quotients,
so we need it for the simplicial group action to be transitive on fibers, and
hence for the existence of the division map. We will not prove this claim.
We just want to remark that the lemma can (and will) be applied even
when the universality of q has not been proved, as long as the division map
is provided.

We can finally take on part (iii) of Theorem 3.8, bringing the current
chapter to an end. The change in its statement is minimal, and the proof
differs from the original only in the need to show that the modified lemmas
still apply.

Theorem 3.22. Given a non-empty simplicial groupoid G, if the pair of
maps (s, t) : ar(G) → ob(G) × ob(G) is an effective surjection, then it can
be given the structure of a degenerate-preferring algebraic Kan fibration by
constructive means.

Remark 3.23. If a simplicial groupoid is empty, the statement is vacuously
true. We take G being non-empty to mean that some element can actually
be exhibited.

Remark 3.24. Theorem 3.22 can be considered a generalization of Theo-
rem 3.20. If G is a simplicial group, then (s, t) is the unique map to the
terminal object and can be made into an effective surjection by lifting with
the identity-assigning map ob(G) → ar(G). Since we identify a simplicial
group G with the object of arrows ar(G), to say that (s, t) is a Kan fibration
is to say that the simplicial group is a Kan complex.

Proof. Since G is non-empty, we can fix an object c : ∆0 → ob(G) and write
H for the simplicial group of arrows from c to c. More precisely, for every
n define Hn = {h ∈ ar(G)n | s(h) = t(h) = cn}, where cn := (s0)

n(c) is the
n-fold degenerate simplex based on c. Consider the pullback square

E ar(G)

ob(G) ob(G)× ob(G)

s

⌟
(s,t)

idob(G)×c
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where we used ob(G) ≃ ob(G)×∆0 for the morphism on the bottom. E is the
simplicial set of arrows into c: for every n, En = {f ∈ ar(G)n | t(f) = cn}.
We can compose each arrow in Hn with each arrow in En, defining an action
α : H×E → E that is free by virtue of the ordinary properties of groupoids.
We want to apply Lemma 3.16 with s as the quotient map. We evidently
have s ◦ α = s ◦ π2, and we do not need to prove that s is universal as a
co-equalizer because of what has been said in Remark 3.21. Since (s, t) is
an effective surjection, s can be made into one as well. We still need to find
the division map E ×ob(G) E → H. A simplex of E ×ob(G) E is a pair of
arrows with a common source, so we find the division map as (f, g) 7→ f ◦g−1

since (f ◦ g−1) · g = f . We conclude by Lemma 3.16 that s is a degenerate-
preferring Kan fibration.

We can also get an action β : H × (E ×E) → E ×E sending ⟨h, f, g⟩ to
⟨h ◦ f, h ◦ g⟩, which is again free. Now we want to apply Lemma 3.16 with
the quotient map p : E×E → ar(G) defined by p(f, g) = g−1 ◦f . It satisfies
p ◦ β = p ◦ π2 (here π2 is the projection H × (E × E) → E × E). We first
show that p is an effective surjection. Given an arrow h ∈ ar(G)n, use the
effective surjection (s, t) to find a lift fh ∈ ar(G)n of the pair (s(h), cn). Now
we can choose p−1

n : h 7→ (fh, fh◦h−1). Clearly p−1
n acts like a right-inverse of

pn : (E×E)n → ar(G)n. We still need to show that it preserves degeneracy,
so consider a degenerate arrow slh of degree n + 1. Since lifting along
(s, t) preserves degeneracy, fslh = slfh. Therefore p−1

n+1(slh) = (fslh, fslh ◦
(slh)

−1) = sl(fh, fh ◦ h−1) = slp
−1
n (h) so that lifting using the p−1

m also
preserves degeneracy, making p into an effective surjection.

Next, consider the division map E2 ×ar(G) E
2 of β. The fiber product

means that an element ⟨f1, g1; f2, g2⟩ satisfies p(f1, g1) = p(f2, g2), i.e. g
−1
1 ◦

f1 = g−1
2 ◦ f2 which implies g2 ◦ g−1

1 = f2 ◦ f−1
1 , so that we can define the

division map as ⟨f1, g1; f2, g2⟩ 7→ f2 ◦ f−1
1 . Having satisfied the conditions

of Lemma 3.16, we obtain that p is a degenerate-preferring algebraic Kan
fibration. Since s in a degenerate-preferring algebraic Kan fibration, s×s can
straightforwardly be made into one as well. This means that Lemma 3.14
applies to the diagram

E × E ar(G)

ob(G)× ob(G)

p

s×s (s,t)

and we conclude that (s, t) is a degenerate-preferring algebraic Kan fibration.



Chapter 4

Semisimplicial sets

In this short chapter, we will explore semisimplicial sets. They are like
simplicial sets without a notion of degeneracy. For example, since there no
longer are degeneracy maps, a semisimplicial set X may contain a finite
number of elements in total, having Xn = ∅ when n is larger than some
fixed number. In contrast, each set of a simplicial set contains at least the
degenerate versions of the simplices of lower degree.

Since the definition of an (algebraic) Kan fibration does not make use of
the degeneracy maps, it readily carries over to semisimplicial sets. Rourke
and Sanderson proved by a geometric argument that a semisimplicial Kan
complex can be given a simplicial structure [RS71]. James McClure found
a combinatorial proof of the same fact [McC12]: we can exploit the filling
properties of a semisimplicial Kan complex to define degeneracy maps that
turn it into a simplicial set. This simplicial set still has to be a Kan complex,
because we did not alter its simplices.

Thus noting that in a certain sense, a filling structure stores information
about degeneracy, we wonder how this relates to the effective versions of Kan
complexes. We will find that the filling structure of an effective Kan complex
perfectly records its degeneracy maps. On the other hand, contrary to what
one might hope for, an arbitrary semisimplicial algebraic Kan complex is
not turned into an effective Kan complex. We first review the results of
[McC12] and then discuss our own.

4.1 Defining degeneracy maps

Definition 4.1. We define ∆inj as the subcategory of the simplex category
∆ containing only the injective functions. The category of semisimplicial
sets is the presheaf category ∆̂inj. There is an evident forgetful functor

∆̂ → ∆̂inj discarding all degeneracy maps.

Definition 4.2. A semisimplicial set X is a semisimplicial Kan complex if
every horn xi, . . . , xk−1, xk+1, . . . , xn+1 of n-simplices in X, satisfying dixj =

37
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dj−1xi whenever i < j with i, j ̸= k, has an extension x ∈ Xn+1 such that
dix = xi for all i ̸= k. We call X an algebraic semisimplicial Kan complex
if it comes with a structure choosing a particular solution for every such
extension problem.

As announced earlier, the definition is completely analogous to the simpli-
cial variant. We chose not to define it in terms of horn inclusions Λnk ↪→ ∆n

because we have not defined their semisimplicial versions yet; the forget-
ful functor does not help here because we would need to prune away all
their degenerate simplices, not just the degeneracy maps. As a matter of
fact, we will find it convenient to use set-theoretic notation, rather than
semisimplicial morphisms, throughout this chapter.

The following theorem is Theorem 1.2 of [McC12], itself based on The-
orem 5.7 of [RS71].

Theorem 4.3. Let X be a semisimplicial Kan complex. Then there are
functions sj : Xn → Xn+1, for n ≥ 0 and 0 ≤ j ≤ n, with the following
properties.

disj = sj−1di if i < j

disjx = x if i ∈ {j, j + 1}
disj = sjdi−1 if i > j + 1

sjsi = sisj−1 if i < j

These are precisely the properties that a simplicial set requires of its dege-
neracy maps. Since a semisimplicial set already contains correct face maps,
it follows from the theorem that there exists a simplicial Kan complex that
is sent to X by the forgetful functor. We will now review the definitions of
the sj , omitting the proof that they satisfy the listed properties. Be aware
that we work with an algebraic filling structure, while [McC12] implicitly
uses the axiom of choice to pick solutions to filling problems (that is not to
imply that the version presented here is constructive — we will return to
this matter later).

Definition 4.4. Given a semisimplicial algebraic Kan complex X, define
degeneracy maps sj by double recursion as follows. Let x ∈ Xn and k ≤ n
be given and suppose that sjy has been defined when deg(y) < n and when
deg(y) = n and j < k (“deg” stands for the degree of a simplex). If x is in
the image of sj for some j < k, then for the smallest such j, find a simplex
w ∈ Xn−1 satisfying x = sjw, and define skx = sjsk−1w. Otherwise, define
skx = d0Tkx, where Tkx is the chosen filler of the horn

djTkx =


Tk−1dj−1x if 0 < j < k + 1

y if j is k + 1 or k + 2

Tkdj−2x if j > k + 2
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in which y is the chosen filler of the horn

djy =


x if j = 0

dkTk−1dj−1x if 0 < j < k + 1

dk+1Tkdj−1x if j > k + 1

Note that this definition also works for the base case n = 0 = k, since in
that case the definitions of faces depending on other Tk′ are not invoked.
This completes the definition of sjx. But x was arbitrary, so that we have
defined all the sj , by recursion in k and n.

Tkx can be thought of as s0skx — this identification holds after the
degeneracy maps have been defined. It is shown in [McC12] that the Tk
have the following useful properties:

(A) diTj = Tj−1di−1 if 0 < i < j + 1

(B) diTj = Tjdi−2 if i > j + 2

(C) dj+1Tj = dj+2Tj for all j

(D) d0dj+1Tjx = x for all j and x

4.2 From an effective Kan complex

We will show that redefining the degeneracy maps of an effective Kan com-
plex, viewed as an algebraic semisimplicial Kan complex, retrieves the orig-
inal degeneracy maps. We need the lemma that in this case the fillers Tkx
as defined above are degenerate.

Lemma 4.5. Let X be an effective Kan complex with degeneracy maps sj.
Then Tkx = sk+1dk+1Tkx for all k and x, where Tkx is defined as in Defi-
nition 4.4.

Proof. We use induction on the degree of x. Suppose Tkx = sk+1dk+1Tkx
whenever k ≤ deg(x) < n. Now fix x ∈ Xn and k ≤ n. By definition, Tkx is
the chosen filler of a certain horn Λ, and its face dk+1Tkx = y is also a filler.
If sk+1y fills Λ, then the filling problem for Tkx is a degenerate filling problem
based on the filling problem for y, and sk+1y must be the chosen solution for
Tkx by the uniformity condition of X. We will verify that sk+1y indeed fills
Λ, meaning that they share their faces. So we must prove that djTkx is equal
to djsk+1y = djsk+1dk+1Tkx for j ̸= 0 (here we used y = dk+1Tkx, which fol-
lows from the definition of Tkx). For j ∈ {k+1, k+2}, this is immediate from
the simplicial identities and property (C) above. For 0 < j < k + 1, djTkx
was defined as Tk−1dj−1x. Using the inductive hypothesis, this becomes
skdkTk−1dj−1x, which equals skdkdjTkx by property (A) and simplifies to
djsk+1dk+1Tkx under the simplicial identities, as desired. Analogously, but
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using property (B) instead, for j > k + 2 we get djTkx = Tkdj−2x =
sk+1dk+1Tkdj−2x = sk+1dk+1djTkx = sk+1dj−1dk+1Tkx = djsk+1dk+1Tkx.
In any case we have djTkx = djsk+1dk+1Tkx (note that for the base case
n = 0 = k, the only values allowed for j are k + 1 and k + 2, so we never
actually ask for a face of a 0-simplex). This means that Tkx must be the
chosen unique degenerate filler sk+1dk+1Tkx, since dk+1Tkx = y was also a
filler. By induction, this holds for any n (k and x were already arbitrary),
completing the proof.

Proposition 4.6. Given an effective Kan complex X, the degeneracy maps
found through Definition 4.4 are identical to the existing degeneracy maps
of X.

Proof. Denote the newly defined degeneracy maps by s̃j : Xn → Xn+1, re-
serving the notation sj for the original degeneracy maps of X. We need to
show that s̃k = sk for all n and k ≤ n. We follow the double recursion of Def-
inition 4.4: given k ≤ n, suppose that s̃jx = sjx for all j when deg(x) < n,
and for j < k when deg(x) = n. Fix x ∈ Xn. If x = s̃jw for some w ∈ Xn−1

and minimal j < k, then s̃kx = s̃j s̃k−1w = sjsk−1w = sksjw = sks̃jw = skx.
Otherwise s̃kx = d0Tkx = d0sk+1dk+1Tkx = skd0dk+1Tkx = skx, where the
second equality follows from the foregoing lemma and the last equality from
the property (D) from before. By induction, we have s̃kx = skx for all k
and x.

The proposition says that an algebraic semisimplicial Kan complex, ob-
tained from an effective Kan complex by applying the forgetful functor, will
be turned into that same effective Kan complex if we assign it the system of
degeneracy maps from Definition 4.4. So the filling structure records all the
information about degeneracy. However, a generic algebraic semisimplicial
Kan complex X will not be turned into an effective Kan complex. For exam-
ple, given a horn y : Λ2

2 → X and writing F for the filler function, we would
need s0F (y) = F ({dis0F (y)}i ̸=3). But the definition of s0 only depends on
filling horns that miss face 0 or 1, while {dis0F (y)}i ̸=3 is a Λ3

3 horn, so we
have enough freedom to design F in such a way that the equation is not
satisfied.

A more severe problem for our program is that the procedure of Defini-
tion 4.4 is not constructive. The transgression occurs when we write “if x
is in the image of sj , find a simplex w ∈ Xn−1 satisfying x = sjw”. First
of all, the image of sj : Xn → Xn+1 is not a decidable subset of Xn+1, and
second, selecting such a w requires the axiom of choice. It seems unlikely
that there exists a constructive alternative. The takeaway of this chapter is
that semisimplicial sets, though interesting in their own right, are probably
not a useful tool in the study of effective Kan fibrations.



Chapter 5

Infinite extension

We motivated our study of simplicial sets by arguing that they are approx-
imations to topological spaces, especially regarding homotopy. However,
because we gave simplices an orientation, it might be that (roughly speak-
ing) a homotopy between two simplicial morphisms f, g exists only in one
direction, f ⇒ g, and not as g ⇒ f . The purpose of a Kan complex is to
make sure that simplices come in every possible orientation. For example, if
we have an arrow a, then we can append a degenerate arrow to get a horn
whose filler defines an inverse for a:

•
•

• a−1

a

This means that we can define homotopy groups for Kan complexes, but
not for generic simplicial sets. The reason why we do not restrict ourselves
to just Kan complexes is that the category of simplicial sets is much more
convenient to work with than the category of Kan complexes. But the real
justification of this choice is the fact that for every simplicial set, there
exists a Kan complex of the same (weak) homotopy type. The definitions
are technical, but intuitively this means that we can replace any simplicial
set by a Kan complex that looks the same for the purposes of homotopy,
but is no longer asymmetric in the sense we described above. This process
is called fibrant replacement ; a Kan complex is sometimes referred to more
abstractly as a fibrant object, because its map to the terminal object is a
fibration.

Infinite extension1, the subject of this chapter, is a “brute force” ap-
proach to fibrant replacement. In essence, we extend a simplicial set X once
by defining a new simplex for every horn in X with the purpose of filling it.

1“Infinite extension” is non-standard terminology; in the literature it is usually referred
to as “(Kan’s) ex-infinity functor” or “Ex∞”. In Kan’s original paper [Kan57] we find that
“Ex” stands for “extension”.

41
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In doing so we may create new horns, which is why we have to repeat the
procedure. Infinite extension is the limit of repeating this infinitely many
times, filling all horns in the end. This implementation of fibrant replace-
ment is favored because it extends to a functor Ex∞ : ∆̂ → ∆̂ with useful
properties. However, it has a lot of redundancy: it always adds new solu-
tions to filling problems, even when a solution already exists. In particular,
it does not identify degenerate solutions. We will argue that it is implausible
that this method could be converted into a constructive way of producing
effective Kan complexes. But first we need to get familiar with Ex∞. We
have drawn techniques and notation from [Cis19], [GJ09] and [Lur23].

5.1 Definitions

The extension functor makes use of barycentric subdivision. The barycentric
subdivision of the geometric 2-simplex looks as follows:

We can conveniently use the linear orders of the simplex category ∆ to
define barycentric subdivision. First, for each n-simplex [n] = {0, . . . , n}
we define s([n]) as the set of all non-empty chains (totally ordered subsets)
of [n], and we partially order this set by the subset relation. The chain
{p1, . . . , pk} ⊆ [n] represents the barycenter of the vertices p1, . . . , pk. We
can draw s([2]) as follows:

{0} {1}

{2}

{0, 1}

{1, 2}{0, 2}

{0, 1, 2}

(5.1)

where the arrows represent the ordering by inclusion. We can make s into a
functor (from ∆ to the category of partial orders) by defining s(f) : s([n]) →
s([m]) as s(f)(S) = f(S) for each f : [n] → [m] (the image of the set S ⊆ [n]).
Since we can regard a partial order as a category, we define the barycentric
subdivision of the n-simplex [n] as the nerve N(s([n])) (Definition 2.3. We
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also write Sd(∆n) for this simplicial set. As an illustration, the triangle
on the bottom right of diagram 5.1 above is now the 2-simplex given by
the string of arrows {1} {0, 1} {0, 1, 2}. We can also obtain the
subdivision Sd(X) of an arbitrary simplicial set X by subdividing all of its
simplices, which defines a functor Sd: ∆̂ → ∆̂. An intuitive understanding
is sufficient for our purposes; the formal definition writes X as a co-limit of
representables and takes the co-limit of the corresponding diagram composed
with Sd (which we have already defined on representables) [GJ09].

We can map the subdivided simplex s([2]) back to [2] by retracting it
to the face on the bottom left in diagram 5.1. This generalizes to other
simplices: define the map s([n]) → [n] by S 7→ max(S). Using these maps
we can send each subdivided simplex in Sd(X) to the simplex it came from
in X, defining a simplicial morphism λX : Sd(X) → X. It can be shown
that the following diagram is commutative for all f : X → Y :

Sd(X) X

Sd(Y ) Y

Sd(f)

λX

f

λY

so that λ : Sd → 1
∆̂

is a natural transformation from the subdivision functor
to the identity functor (Definition 3.1.17 of [Cis19]).

Given a simplicial setX, we define the simplicial set Ex(X) by Ex(X)n =
Hom(Sd(∆n), X). Here Hom(Sd(∆n), X) is the set of simplicial morphisms
from Sd(∆n) to X, so Ex(X) represents all the ways in which a subdivided
simplex can be embedded inX. This construction again extends to a functor
Ex: ∆̂ → ∆̂, which moreover is right-adjoint to Sd [GJ09]. This means that
there is a natural bijectionmX,Y , called transposition, from maps of the form
f : X → Ex(Y ) to maps of the form g : Sd(X) → Y . By naturality we mean
that mX,Y sends the composite map

A B Ex(C)a f

to

Sd(A) Sd(B) C
Sd(a) f

where f = mX,Y (f). A similar relation holds for (mX,Y )
−1, for which we

write (mX,Y )
−1(g) = ĝ. This can be summarized by the algebraic relations

f ◦ a = f ◦ Sd(a) (5.2)

b̂ ◦ g = Ex(b) ◦ ĝ (5.3)

For each simplicial set X, we define an embedding ρX : X → Ex(X) by

ρX = λ̂X , resulting in a natural transformation ρ : 1
∆̂

→ Ex. Of course, ρX
satisfies the relation

ρX = λX (5.4)
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The most important things of all of the foregoing are the conceptual
interpretations of Sd (subdivision of all simplices in a simplicial set) and
Ex (the ways to embed subdivided simplices in a simplicial set), and the
abstract relations 5.2 and 5.4. We now finally define infinite extension.

Definition 5.1. Given a simplicial set X, Ex∞(X) is the co-limit of the
diagram

X Ex(X) Ex2(X) Ex3(X) . . .
ρX ρEx(X) ρEx2(X)

The co-limit means that we have a commutative diagram

X Ex(X) Ex2(X) . . .

Ex∞(X)

ρX ρEx(X)

(5.5)

The simplicial set Ex∞(X) can roughly be thought of as the union of all
the Exm(X). Recall the significance of Ex∞(X): it is a functor sending a
simplicial set to a Kan complex of the same weak homotopy type. We have
not defined weak homotopy equivalence, but intuitively it is the simplicial
equivalent of two topological spaces sharing all their homotopy groups, tak-
ing into account that a homotopy of simplicial morphism might come in only
one direction. In the next section we will prove that Ex∞(X) is always a
Kan complex.

5.2 Fibrancy

First, let us consider pictorially how Ex fills horns. Suppose we have a horn
in some simplicial set X, drawn as follows:

• •

•

0 1

2

then the following are two of the ways to embed the subdivided 1-simplex
• • • in this horn:

•

•

•

•
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meaning that the first arrow of • • • gets sent to one of the
legs of the horn, and the second arrow to the degenerate arrow on the red
vertex. These two ways of embedding Sd(∆1) → Λ2

2 → X are elements of
Ex(X)1 = Hom(Sd(∆1), X), i.e. 1-simplices of Ex(X), and this is how the
legs of the horn are carried over to Ex(X). We call them a and b. The horn
is filled by wrapping the subdivided 2-simplex around it:

and this embedding of Sd(∆2) becomes a 2-simplex g of Ex(X) (again, the
red lines are sent to the degenerate arrow). Since the left and right sides of
this subdivided simplex are embedded in the same way as the legs a and b,
we get d1g = a and d0g = b, so that g fills the horn in Ex(X) spanned by a
and b, which is the representative of the original horn in X.

To define this procedure rigorously and for arbitrary horns, we need to
introduce some more notation. Recall the functor s([n]). It can straight-
forwardly be extended from the simplex category to the category of partial
orders: s(E) is the set of finite non-empty chains of the partial order E, or-
dered by inclusion. Since both s and Sd represent barycentric subdivision,
the following property should be unsurprising:

Lemma 5.2 (Lemma 3.1.25 of [Cis19]). For any partially ordered set E
there is a canonical isomorphism

Sd(N(E)) ≃ N(s(E))

Let Φnk be the set of non-empty subsets of [n] that do not contain the
complement of {k}, i.e. Φnk = s([n]) \ {[n], [n] \ {k}}. For example, Φ2

2 is
diagram 5.1 without the points {0, 1} and {0, 1, 2}. It is true in general that
Φnk looks like the subdivision of a horn Λnk :

Lemma 5.3 (Lemma 3.1.26 of [Cis19]). For any n and k ≤ n there is a
canonical isomorphism

Sd(Λnk) ≃ N(Φnk)

We can now prove the fibrancy of Ex∞(X).

Theorem 5.4 (Kan). For any simplicial set X, we have a Kan complex
Ex∞(X).

Proof. We give a sketch of the proof, skimming over some unimportant
details. Let a horn y : Λnk → Ex∞(X) be given. Ex∞(X) is the co-limit of
the diagram

X Ex(X) Ex2(X) Ex3(X) . . .
ρX ρEx(X) ρEx2(X)
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Each face diy of y must be added at a finite step Exmi(X). Since y consists
of finitely many faces, we can fix any m ≥ 1 larger than all the mi so that
y has to factor through Exm(X):

Λnk Exm(X) Ex∞(X)
ϕ

We will find a filler in the next extension:

Λnk Exm(X)

∆n Exm+1(X)

ϕ

c ρExm(X)

Φ

(5.6)

We transpose this diagram twice. Using the relation 5.2, we can write

Φ ◦ c = Φ ◦ Sd2(c)

For the other path, we use ρ = λ and the fact that λ is a natural transfor-
mation:

ρExm(X) ◦ ϕ = λExm(X) ◦ Sd(ϕ) = ϕ ◦ λΛn
k
= ϕ ◦ Sd(λΛn

k
)

From now, we will suppress the subscripts on ρ and λ, which can always
be recovered from context. These composite maps should be equal to each
other:

Sd2(Λnk) Sd(Λnk)

Sd2(∆n) Exk−1(X)

Sd(λ)

Sd2(c) ϕ

Φ

Once this problem has been solved, we can use the inverse transposition to
solve problem 5.6, so the two problems are equivalent to each other. Our
solution factors through ϕ:

Sd2(Λnk) Sd(Λnk)

Sd2(∆n) Exk−1(X)

Sd(λ)

ϕ

Φ

unk (5.7)

So all that remains to do is to find unk . Noticing that ∆n ≃ N([n]),
we use Lemma 5.2 twice to get the isomorphism Sd2(∆n) ≃ N(s(s[n])).
From Lemma 5.3 we have Sd(Λnk) ≃ N(Φnk). So unk is essentially a mor-
phism N(s(s[n])) → N(Φnk), which we take to be the nerve of the map
ψnk : s(s([n])) → Φnk defined by

ψnk (S) = {cnk(S) | S ∈ S}
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where cnk : s([n]) → [n] is given by

cnk =

{
max(S) if S ∈ Φnk
k otherwise

Remember, the ‘otherwise’ case applies when S = [n] or S = [n]\{k}. It can
be checked that this choice of unk makes the upper triangle in diagram 5.7

commute, defining a valid solution Φ which can be inverse transposed twice
to obtain Φ. We use the co-cone for Ex∞(X) to transport this solution to
Ex∞(X), where it has to be a filler for the original horn y, by definition of
the co-cone. Since we have shown that any horn has a filler, Ex∞(X) is a
Kan complex.

5.3 Degenerate fillers

Recall that we filled a Λ2
2-horn by wrapping a subdivided 2-simplex around it

in figure 5.2. This is essentially what u22 does, only using higher subdivision.
Assuming that the legs of the horn are not degenerate, this embedding
is evidently different from the embedding that constitutes a degenerate 2-
simplex in Ex∞(X) based on the left leg of the horn:

⇒

•

•

But if the horn is degenerate, then this embedding constitutes the degenerate
filler. In other words, the filling procedure defined in the proof does not
choose degenerate solutions, and in particular does not define an effective
Kan complex.

Before we derive a more rigorous counterexample, note that there is
another problem with the proof. Each extension by Ex generates new fillers
for every horn all over again. This was necessary because the previous
extension might have introduced as yet unfilled horns, but it also means
that the chosen filler depends on which extension Exm(X) we factor the
horn through. To even get an algebraic Kan complex, we would have to be
consistent in our choice of m; we would probably always choose the smallest
possible value. In a constructive setting, a horn would be given from the
start as a map y : Λnk → Exm

′
(X) (and not as a map to Ex∞(X); this is the

analog of “x ∈
⋃
iAi” meaning “x ∈ Am for some m”). But in general it

is undecidable whether y factors through Exm(X) for any m smaller than
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m′. So using the current approach we cannot even make Ex∞(X) into an
algebraic Kan complex constructively, let alone an effective Kan complex.

We return to the issue of degenerate fillers. Let X be a simplicial set.
Consider a horn ϕ : Λ2

2 → Exm−1(X) for some m ≥ 2, and let Φ: ∆2 →
Exm(X) be the chosen filler of ρ ◦ ϕ. Define a degenerate horn ψ : Λ3

3 →
Exm(X) as Φ ◦ s0 ◦ c (where c : Λ3

3 ↪→ ∆3 is a horn inclusion), and let
Ψ: ∆3 → Exm+1(X) be the chosen filler of ρ ◦ ψ. We compare Ψ to the
degenerate solution ρ ◦ Φ ◦ s0, transposing both maps three times:

Ψ = ψ ◦ u33 = Φ ◦ s0 ◦ c ◦ u33
=Φ ◦ Sd2(s0) ◦ Sd2(c) ◦ Sd(u33)
=ϕ ◦ u22 ◦ Sd2(s0) ◦ Sd2(c) ◦ Sd(u33)
?
=ρ ◦ Φ ◦ s0

=λ ◦ Sd(Φ) ◦ Sd3(s0)

=Φ ◦ λ ◦ Sd3(s0)

=Φ ◦ Sd2(λ) ◦ Sd3(s0)
=ϕ ◦ u22 ◦ Sd2(λ) ◦ Sd3(s0)

Suppose by way of contradiction that the equality holds. Since we are work-
ing towards a counterexample, we are free to assume X and ϕ are such that
ϕ is a monomorphism. This convenient assumption is stronger than neces-
sary, but not unreasonable; we can e.g. take ϕ to be the identity on Sd(Λ2

2).
Because ϕ is a monomorphism, we can take it away from both sides of the
equation:

u22 ◦ Sd2(s0) ◦ Sd2(c) ◦ Sd(u33) = u22 ◦ Sd2(λ) ◦ Sd3(s0) (5.8)

This is a morphism from Sd3(∆3) ≃ N(s(s(s([3])))) to Sd(Λ3
3) ≃ N(Φ3

3).
Now we really have to get our hands dirty. We will show that both sides of
the equation map a particular vertex to different images. Since the nerve of
a category sends objects to vertices bijectively, we can interpret the expres-
sions in equation 5.8, on the level of vertices, as functions from s(s(s([3])))
to Φ3

3 ⊆ s([3]). The latter set contains chains of the simplex [3] = {0, 1, 2, 3},
whereas the former is the set of chains of chains of chains of [3] (all chains
are non-empty). From its original definition, we find that λ acts like “max”
on this level. The degeneracy map s0 becomes the integer map σ0 from the
simplex category, subtracting by 1 from all but 0. The maps unk are defined
by ψnk from the proof of Theorem 5.4. Finally, the inclusion map c of course
still acts trivially. Also recall that the functor s was defined on morphisms
as s(f) : S 7→ f(S), or in words: the subdivision of a map is the element-
wise application of that map. Therefore, the effect of the right hand side of
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equation 5.8 on the element {{{0, 1, 2}}} ∈ s(s(s([3]))) is

{{{0, 1, 2}}} {{{0, 1}}} {{1}} {1}Sd3(s0) Sd2(λ∆2 ) u22

while the left hand side takes

{{{0, 1, 2}}} {{3}} {{3}} {{2}} {2}
Sd(u33) Sd2(c) Sd2(s0) u22

We must conclude that equation 5.8 does not hold. But this is a contra-
diction, and therefore Ψ cannot be the degenerate filler of ρ ◦ ψ. If we
transported everything to Ex∞(X) using the co-cone, we would find that
the filling problem for Ψ is effectively a degenerate problem based on the
filling problem for Φ. Hence we see that the proof of Theorem 5.4 does not
naturally generate an effective Kan complex.

5.4 Outlook

We have not proved rigorously that the infinite extension of a simplicial set
cannot be given the structure of an effective Kan complex constructively in
some other way. Non-constructively, when filling a horn we would simply
check whether it is degenerate or not and act accordingly, but this requires
the principle of excluded middle (more prosaically: we do not always have
an algorithm that can decide whether a given horn is degenerate in a finite
amount of time). Whenever we were successful at constructing an effective
Kan fibration, we first defined a lifting procedure and afterwards found out
that it “accidentally” chooses degenerate solutions when necessary. The
conceptual design of infinite extension seems to rule out such a filling pro-
cedure; the way in which horns are provided with new fillers is inherently
different from the way in which (degenerate) simplices are transported across
extensions, and they do not coincide, except in trivial cases.

Another implementation of fibrant replacement uses the pair of adjoint
functors between the category of simplicial sets and the category of topolo-
gical spaces we referred to in Section 2.1. They are called geometric realiza-
tion |−| : ∆̂ → Top and the singular simplicial set functor Sing: Top → ∆̂.
There exists a weak homotopy equivalence X ≃ Sing(|X|), and the singular
simplicial set of any topological space is a Kan complex. However, it was
found in [Gee23] that the traditional proof of the latter fact does not provide
the structure of an effective Kan complex, similar to the issue with Ex∞.

It seems likely that we will have to give up on these luxurious construc-
tions, and rely on the most basic implementation of fibrant replacement,
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which is obtained from a so-called weak factorization system on simplicial
sets. A weak factorization system allows us to factor any simplicial mor-
phism as a weak homotopy equivalence followed by a fibration. We obtain
a fibrant object Q from a simplicial set X by factorizing the map from X
to the terminal object as X → Q → ∆0 in this way. Developing a weak
factorization system is an essential part of the program of effective Kan fi-
brations anyway, and should therefore provide us with at least this version
of “effectively fibrant” replacement.



Conclusion

We have seen both positive and negative results for effective Kan fibra-
tions. Chapter 3 demonstrates that a proof of some simplicial map being a
Kan fibration often induces the structure of an effective Kan fibration au-
tomatically, even though it takes considerable extra work to prove this. An
exception to this tendency is the Ex∞ construction, which is a true loss,
because as a form of fibrant replacement it is much more useful than any
other implementation. At the same time, we have developed a good un-
derstanding of why Ex∞ fails to produce effective Kan complexes, so that
we know what to look out for in the future. As a small excursion, we have
found that semisimplicial sets are of limited utility in the theory of effective
Kan fibrations.

Degenerate-preferring algebraic Kan fibrations are significantly easier to
work with than generic effective Kan fibrations. Nonetheless, in Theorem 3.9
we had to work with both variants, so that it is advisable to continue study-
ing them together. On top of this, one should keep in mind that we have
used a simplified and more restrictive version of the original effective Kan
fibration, and that the latter might remain the ultimate variant of Kan
fibrations.
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