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Samenvatting

Variaties op Burgerbegroting
Door de waarneembare afname van het vertrouwen in regeringen is het idee van

een crisis van de democratie steeds meer aanwezig. In de literatuur over politicolo-

gie wordt nog voortdurend gedebatteerd over het optimale niveau van vertrouwen

voor een goed functionerend democratisch proces, maar er bestaat in ieder geval een

duidelijke consensus dat te weinig vertrouwen het proces in gevaar kan brengen. Het

is dan ook niet verwonderlijk dat er in de laatste tijd veel innovatieve instrumenten

zijn ontwikkeld om het democratisch proces te vernieuwen. Deze proefschrift gaat

over een van die instrumenten, namelijk de burgerbegroting (BB), een reeks mecha-

nismen bedoeld om collectieve en participatieve budgetteringsbeslissingen te nemen.

In dit proefschrift onderzoeken we BB-mechanismen als manieren om een col-

lectieve budgetteringsbeslissing te krijgen. In het bijzonder onderzoeken we BB als

een stemprocedure waarbij burgers worden gevraagd hun voorkeuren in te dienen

om te beslissen welke projecten moeten worden gefinancierd, met inachtneming van

een budgetbeperking. Ons onderzoek vindt zijn oorsprong in de literatuur over com-

putationele socialekeuzetheorie, het onderzoeksgebied dat manieren bestudeert om

vanuit individuele voorkeuren tot collectieve beslissingen te komen. Met de stan-

daard gereedschapskist proberen we te begrijpen hoe individuelen meningen kunnen

worden samengevoegd tot een collectieve beslissing in verschillende BB contexten.

Gezien de talloze implementaties van BB is een holistische benadering een uitdag-

ing. Ons onderzoek is gestructureerd langs twee assen, die elk een deel van het proef-

schrift bepalen en die nieuwe aspecten van BB in de analyse inbrengen.

Het eerste deel van het proefschrift is gewijd aan het zogenaamde standaardmodel

van BB, de meest voorkomende wiskundige formalisering van BB processen in de

literatuur. We hanteren twee nieuwe perspectieven om dit model te onderzoeken.

De studie van het standaardmodel in de literatuur houdt zich bijna uitsluitend

bezig met de vraag hoe een rechtvaardige uitkomst kan worden verkregen. Meestal

zijn beperkende hypothesen vereist, waarbij ofwel onredelijke veronderstellingen
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worden gemaakt over het gedrag van de kiezers, en/of wordt geëist dat de kiezer

onrealistische hoeveelheden informatie geeft. In het eerste hoofdstuk van dit deel

van het proefschrift vechten we deze benaderingen aan en opperen we een nieuwe

kijk op rechtvaardigheid voor BB die niet aan deze nadelen lijdt. We bestuderen een

groot aantal nieuwe rechtvaardigheidsconcepten, bespreken hoe ze kunnen worden

geïmplementeerd, en tonen de levensvatbaarheid van onze nieuwe benadering aan.

Hoewel het standaardmodel een groot aantal reële BB-processen omvat, beperkt

het feit dat rechtvaardigheid het meest bestudeerde onderwerp is de toepasbaarheid

ervan. Rechtvaardigheid is immers niet het hoofddoel van alle BB-processen; som-

mige processen zijn bijvoorbeeld georganiseerd om te ontdekken wat de beste alter-

natieven zijn. Op basis van deze vaststelling presenteert het tweede hoofdstuk van

dit deel de eerste studie van het standaardmodel vanuit een epistemisch perspectief.

Hier is het doel om enkele grondwaarheden over de intrinsieke kwaliteiten van de

projecten bloot te leggen. We onderzoeken de epistemische vermogens van vele BB-

regels, en tonen aan dat de meeste er eigenlijk geen hebben.

In het tweede deel gaan we over op de studie van BB-modellen die de standaard-

model uitbreiden om meer aspecten van BB-processen vast te leggen.

In het eerste hoofdstuk onderzoeken we multi-beperkte BB-modellen waarbij de

budgetlimiet niet de enige beperking is die de haalbaarheid van een uitkomst bepaalt.

We presenteren een algemene aanpak voor een dergelijke uitbreiding van het stan-

daardmodel, waarbij we in detail aangeven hoe budgettoewijzingen moeten worden

bepaald wanneer de structuur van de uitkomst complexer is.

Het tweede hoofdstuk behandelt het tijdsaspect van BB. BB-processen worden

immers uitgevoerd over meerdere jaren, waarbij er elk jaar één verkiezing wordt

gehouden. We nemen dit aspect op in de formele analyse, waarbij de nadruk ligt op

rechtvaardigheid over de tijd. We introduceren noties van temporele rechtvaardigheid

en onderzoeken onder welke voorwaarden deze kunnen worden toegepast.

Een ander belangrijk aspect van BB-processen dat nog niet in de analyse was

opgenomen, is het feit dat de projecten in BB-processen door de burgers zelf worden

voorgesteld. In het laatste hoofdstuk van dit deel breiden we het standaardmodel

uit door een voorfase op te nemen waarin projectvoorstellen worden ingediend en

vervolgens worden geselecteerd om de reeks projecten te vormen die in stemming

worden gebracht. We richten ons eerst op deze eerste fase, waarbij we verschillende

methoden voor het bepalen van de shortlist onderzoeken, en gaan vervolgens over

tot het bestuderen van de interacties tussen de twee fasen.

In het algemeen bestudeert dit proefschrift procedures voor het selecteren van

projecten die in BB-scenario’s worden gefinancierd. We hebben ernaar gestreefd om

een breder scala aan feitelijke implementaties van BB-processen in de formele analyse

op te nemen dan tot nu toe was gedaan. Het eindproduct omvat een grote verschei-

denheid aan toepassingen van BB-processen, bestudeerd vanuit verschillende inval-

shoeken. Ik hoop dat dit werk, op kleine schaal, kan bijdragen tot betere beslissingen

voor BB, en daardoor de democratie op grotere schaal kan helpen verbeteren.
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Summary

Variations on Participatory Budgeting
The third quarter of the 20

th

century has seen the rise of the idea of a crisis of democ-

racy, both inside and outside of the academic literature. This crisis is often linked to

the observation that confidence and trust in governments and governmental bodies

is declining in many countries. There is a—still on-going—debate in the political sci-

ence literature regarding the optimal level of trust for a well-functioning democratic

process, but there is clear consensus that too little trust can endanger it. It is thus

not surprising that the past 40 to 50 years have also seen the rise of a wide range of

innovative tools developed to deepen and renew the democratic process. One such

tool is participatory budgeting (PB), which encompasses a large range of mechanisms

that aim to make budgeting decisions in a participatory and collective manner.

This thesis studies PB mechanisms. We view them as ways of obtaining a collec-

tive budgeting decision. More specifically, we investigate PB as a voting procedure in

which citizens are asked to submit their preferences in order to decide which projects

should be funded, subject to a budget constraint. Our investigation has its roots in

the literature on computational social choice, the field of research that studies ways

of reaching collective decisions from individual preferences. Equipped with the stan-

dard toolbox of the computational social choice scientist, we aim at understanding

how to aggregate individual opinions into a collective decision in a wide variety of

PB contexts.

There exists a myriad of different implementations of PB in real life. This makes

taking a holistic approach to PB particularly challenging. Our investigation is struc-

tured along two axes, each defining a part of the thesis, each bringing new aspects of

real-world PB processes into the analysis.

The first part of the thesis is dedicated to the so-called standard model of PB, i.e.,

the most frequently encountered mathematical formalisation of PB processes in the

literature. We consider two new perspectives on PB to investigate it.

The study of the standard model in the literature is primarily concerned with the
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question of how to obtain a fair outcome. However, restrictive hypotheses are usu-

ally required, either making unreasonable assumptions about the voters’ behaviours,

and/or requiring the voters to provide unrealistic amounts of information. In the first

chapter of this part of the thesis, we challenge these approaches and propose a new

take on fairness for PB that does not suffer from these drawbacks. We study a large

range of new fairness concepts, discuss how they can be enforced, and demonstrate

the viability of our new approach.

The standard model captures a large and diverse set of real-life PB processes.

However, focusing on fairness restricts the applicability of the formal analysis. In-

deed, fairness is not the main objective of all PB processes; some processes are for

instance organised to discover what the best alternatives are. Motivated by this ob-

servation, the second chapter of this part presents the first study of the standardmodel

from an epistemic perspective. Here, the goal is to uncover some ground truths about

the intrinsic qualities of the projects. We investigate the epistemic abilities of many

PB rules, and show that most actually do not enjoy any.

In the second part of the thesis, we move to the study of PB models that extend

the standard one, in order to capture additional aspects of real-life PB processes.

In the first chapter we investigate multi-constrained PBmodels. More specifically,

we study models of PB in which the budget limit is not the only constraint that de-

termines the feasibility of an outcome. Additional constraints can be used to model

statements such as “at leaste 10 000 have to be allocated to cycling infrastructure”. In

this chapter we present a general approach for such extension of the standard model,

detailing how to determine budget allocations when the structure of the outcome is

more complex.

The second chapter of this part tackles the temporal aspect of PB. Indeed, most PB

processes are implemented over the course of several years, one election being ran

each year. We incorporate this aspect into the formal analysis, and focus on providing

fairness over time. We introduce several notions of temporal fairness and present

conditions under which they can be enforced.

Another important aspect of PB processes that had not been incorporated in the

analysis before is the fact that projects are not just voted on but also proposed by the

citizens. In the last chapter of this part, we extend the standard model by including

a preliminary stage in which project proposals are submitted and then shortlisted to

form the set of projects that are brought to the vote. We first focus on the first stage,

investigating different methods of determining the shortlist, and then move on to the

study of the interactions between the two stages.

Overall, this thesis is concernedwith procedures to select the projects to be funded

in PB scenarios. Throughout our analysis, we aim at incorporating a wider range of

actual implementations of PB processes into the formal analysis than had been done

before. The end product covers a large diversity of implementations of PB processes,

studied from various angles. I hope that this work, at its small scale, can help make

better decisions for PB, and by that, improve the democratic process at a larger scale.
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Chapter 1

Introduction

Not very long after I started my PhD, my mother called me to discuss a problem

she was facing at work. At the time, she was involved in the management of a re-

search and development team. They wanted to try out new methods to determine

which research projects should be carried out, that is, which ones should be funded.

The process they envisioned involved two stages. In the first stage, the management

team would collect research project proposals from the team members. In the second

stage, the teammembers would be asked to submit their preferences regarding which

projects they would want to work on. Based on the reported preferences, the man-

agement team would then decide which projects to fund. My mother wanted me to

help her decide what procedure the management team should use for this last step.

She was thus after a mechanism to find a collective allocation of public funds to a

collection of projects. Coincidentally, studying such procedures ended up being the

exact topic I would work on during my PhD, and is, four years later, at the very heart

of this thesis.

This thesis studies scenarios in which a decision regarding how to allocate public

funds is to be reached collectively. This very broad definition accounts for a wide

variety of processes, including the one described above. As the title of the thesis sug-

gests, we will specifically focus on the case of participatory budgeting (PB). Generally

speaking, PB is a democratic tool used to allocate a given amount of money to a col-

lection of projects based on a group of individuals’ preferences over the projects. It is

participatory in the sense that the decision is based on the opinion of the individuals

who will most directly be impacted by it. This is completely opposite to more clas-

sical expert-based budgeting decisions where a committee of experts decides on the

allocation. Another implication of the participatory objective of a PB process is that

a large number of individuals are involved—typically all residents of a city—making

PB a collective budgeting problem.

Reaching a collective decision is not an easy task. No one who ever tried to plan

3
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a holiday with a group of ten friends would disagree on that. The participatory and

the collective aspects of any PB process thus raise a lot of intricate questions. Indeed,

when considering expert-based budgeting decisions, it is usually the case that, be-

cause of the small number of people involved, simple deliberation will be enough to

reach a final consensus. Now, such a deliberative process cannot be run at the scale

of a major city such as Paris where hundreds of thousands of citizens are asked to

provide their opinion. Thankfully, we have known for centuries how to efficiently

determine outcomes based on the opinions of thousands, or millions: by simply run-

ning an election. In this thesis, we will approach PB as a voting process.

To help us make the best budgeting decisions for PB, we can thus exploit the

large academic literature that analyses voting procedures. This literature has mainly

been developed within social choice theory, the research area investigating questions

related to the aggregation of individual opinions into a collective decision (Arrow,

1951; Arrow, Sen and Suzumura, 2002). Although it has received a lot of attention in

the past 70 years, social choice theory cannot be directly applied to PB, yet. Indeed,

PB is a more complex voting setting than the ones typically studied in the literature

(Arrow, Sen and Suzumura, 2002, 2011). This is due to the fact that in a budgeting

scenario the outcomes we are after (i) are composed of several winners who can have

different costs, and, (ii) should not cost more than a given budget limit. Even though

these two requirements may sound straightforward, they do make the setting much

more involved for a formal analysis. For instance, even the simpler setting of multi-

winner voting—where outcomes should satisfy (i) and (ii) but with alternatives that

all have the same cost—required many years of research until it reached a stable state,

which only happened recently (Lackner and Skowron, 2023). The formal analysis of

PB is still at a burgeoning stage and the literature, though growing at a fast pace, is

still fairly sparse.

Overall, the question of how to aggregate preferences in a budgeting scenario

is far from being answered, and I am not ashamed to admit that I had no concrete

suggestion for my mother back in October 2019. The picture has changed since then,

and even though I would still struggle to provide a definitive answer to my mother’s

question, I would probably be more useful. The content of this thesis would actually

be of great help for that, as the underlying motivation for all the pages to come is to

provide an answer to a similar question, namely:

How should we aggregate preferences over costly alternatives into a collective decision

regarding which of the alternatives to fund, given a budget limit?

There is no single answer to this question, and without additional context it is proba-

bly impossible to answer it. Throughout this dissertation, we will discuss and inves-

tigate several possible answers. We will analyse budgeting procedures from various

angles, investigate numerous budgeting settings, draw connections between different

formal frameworks, and much more.

Providing a definite answer to this question will not only help my mother but also

positively impact society in general. The investigation presented in this thesis indeed
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fits within a broader research agenda that aims at developing better ways of organ-

ising grassroots democracy initiatives. As we will explain later, PB processes are by

their very nature grassroots as they were initially developed to reignite the Brazilian

democracy. Years later, PB is still viewed as an important innovative tool to improve

the democratic process. Getting a better understanding of how to make good, fair,

efficient, and/or optimal decisions for such processes is thus of prime importance to

sustain the development of participatory democracy. To the question “What are your

working on?”, one of my dear colleagues once answered “We are fixing democracy

here!”. This is, on a very small scale, what this thesis is about.

We have now outlined the general context of this thesis. Many important details

have been omitted for the sake of simplifying the exposition, and the next point on

our agenda is to clarify them all. This will be done in the rest of this chapter. We will

also introduce the different topics covered in the thesis.

1.1 The Object: Participatory Budgeting
Participatory budgeting is an innovative democratic institution through which citizens

are involved in the decision process of the allocation of public funds (Wampler, Mc-

Nulty and Touchton, 2021). It has originally been developed by politicians in the city

of Porto Alegre, Brazil, where it was first implemented in 1989. After years of dicta-

torship, the hope of the local politicians was to establish Brazil’s new representative

democracy by increasing the number of administrative mechanisms involving citi-

zens (Abers, 2000). After this initial success, PB spread to other Brazilian cities, and

not long after was used worldwide (Porto de Oliveira, 2017; Dias, 2018; Dias, Enríquez

and Júlio, 2019).

1.1.1 Definition

With the rise of PB processes throughout the world, more and more diverse mecha-

nisms have been implemented under the name of PB, making it hard to provide a clear

definition of what actually is a PB process. Instead of providing a direct definition,

political scientists usually prefer to characterise PB processes through the properties

they satisfy. Following this idea, Sintomer, Herzberg and Röcke (2008) present five

criteria making any budgeting process involving non-elected citizens a PB process:

▶ It should be about the allocation of scarce resources;

▶ It should involve a public institution (city, district) with an elected body and

power over administration and allocation of resources;

▶ It has to be repeated over the years;

▶ It has to allow for public deliberation phases;
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▶ It should implement some mechanisms enforcing accountability on the result.

The above list informs us about the organisational aspects of a PB process. Comple-

menting this approach, Wampler (2012) identifies five
1
core principles that need to be

implemented (at least in part) by any PB processes in order to generate social change:

▶ Voice: citizens are offered a chance to voice their opinions and ideas;

▶ Vote: by voting in the PB process, citizens actively take part in state-sanctioned

decision-making processes;

▶ Social justice: areas that are more in need are targeted to achieve a better

redistribution of resources;

▶ Social inclusion: traditionally marginalised groups are offered additional op-

portunities to be represented;

▶ Oversight: citizens are involved at every step of the process to organise it,

monitor the implementation of the projects, and so on.

These two sets of principles and criteria only offer us a general overview of the

key components of any PB process, but do not touch on how PB processes are actually

implemented. This is the topic of the next section.

1.1.2 Implementation
It is once again hard to provide a general description of how a PB process is organised

given the multiplicity of actual implementations. Still, researchers have been able

to single out several key steps that almost all PB processes follow (Wampler, 2000;

Cabannes, 2004; Shah, 2007). We present them below.

▶ Regular meetings are held by the municipality to discuss potential projects that

could be funded using the available budget. Typically, these projects are pro-

posed by the citizens.

▶ A shortlist of potential projects is decided upon, usually, by collecting all pro-

posals that are feasible and fit the requirements of the PB process. Additionally,

the cost of each possible project is determined, either by experts from the mu-

nicipality or by the citizens who submitted the project.

▶ Citizens vote on the shortlisted projects to determine which of them will be

funded, given the budget constraint.

▶ The municipality reports back to the citizens on the advancement of the actual

realisation of the selected projects.

1
Note that Wampler (2012) only discusses four core principles. Social inclusion was only added at

a later stage (see, e.g., Wampler, McNulty and Touchton, 2021).
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This description of a typical PB process is the one we adopt for the thesis. Specif-

ically, when referring to a PB process, we will have in mind a mechanism implement-

ing these steps. Note that wewill mainly focus on the voting stage, i.e., the third bullet

point of the above.

As should be clear by now, this description only fits most PB processes, but not

all. For instance, the above is phrased as if the organising entity was a municipality.

This is the typical case; however, the scale of the process can vary significantly: from

schools,
2
or housing communities,

3
to neighbourhoods of a city,

4
and even to subna-

tional entities.
5
It is also interesting to note that not all the processes include a voting

stage. Indeed, some PB processes are organised as a simple deliberative mechanism

throughout which the set of projects to implement is determined meeting after meet-

ing. This was typically the case for some of the first PB processes implemented in

Brazil (Cabannes, 2004). Any PB process considered in this thesis will be assumed to

include a voting stage however.

1.2 The Question: Aggregating Preferences for Par-
ticipatory Budgeting

The previous section specifically highlights the existence of a plethora ofways PB pro-

cesses are implemented. Such variety in the object of study hinders the development

of a unique formal approach for PB. Instead, it calls for a multi-faceted analysis, one

that can investigate PB processes in their full variety. This is the approach adopted

in this thesis, with a special focus on the voting stage of PB processes.

With this in mind, we can rephrase the central question we posed on page 4 in

a more accurate way. Our goal is to understand ways of aggregating preferences in

PB settings, with an emphasis on incorporating the variety of PB processes in the

analysis. Essentially, this thesis tries to answer the following research question:

How should we aggregate the reported preferences in a PB setting,

taking into account the variety of forms PB processes can take?

In other words, given a set of costly alternatives, we are interested in knowing how

to aggregate the reported preferences over the alternatives into a collective decision

regarding which of them to fund, subject to a budget constraint. In addition, we are

interested in aggregationmethods that make it possible to account for the multiplicity

of actual implementations of PB processes.

2
See participatorybudgeting.org/pb-at-ps139 for an example of PB within a primary school.

3
See the example of social housing in Scotland for instance: sharedfuturecic.org.uk/participatory-

budgeting-within-social-housing-ideas-for-better-engaging-with-tenants-and-residents-groups.

4
E.g., Amsterdam organises individual PB processes for each district (City of Amsterdam, 2022).

5
PB processes were organised at the scale of a regional department in Peru (Shah, 2007).

https://www.participatorybudgeting.org/pb-at-ps139/
https://sharedfuturecic.org.uk/participatory-budgeting-within-social-housing-ideas-for-better-engaging-with-tenants-and-residents-groups/
https://sharedfuturecic.org.uk/participatory-budgeting-within-social-housing-ideas-for-better-engaging-with-tenants-and-residents-groups/
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1.3 The Method: (Computational) Social Choice

As we briefly mentioned earlier, we will provide an answer to our research question

following the (computational) social choice method (Arrow, Sen and Suzumura, 2002,

2011; Brandt, Conitzer, Endriss, Lang and Procaccia, 2016a; Endriss, 2017).

Social choice is a research field that emerged when highly educated individu-

als started to methodologically study ways of determining the winner(s) of an elec-

tion. The actual birth of the research field is usually attributed to two multi-faceted

scholars—Nicolas de Condorcet and Jean-Charles de Borda—who argued in the 18th

century about how to best determine the winner of an election (Borda, 1781; Con-

dorcet, 1785; McLean and Urken, 1995). The concepts they discussed at the time—

today known as the Borda rule and the Condorcet paradox—are now of fundamen-

tal importance to the formal analysis of voting. Social choice theory only blossomed

many years later when Kenneth Arrow published his seminal book featuring his cele-

brated impossibility theorem (Arrow, 1951). Since then, social choice became an active

field of research, mainly within the economics community. The last important turn

for social choice theory happened in the ’90s and early ’00s when computer scientists

started to investigate social choice problems using tools from theoretical computer

science, and to use social choice tools for their own problems (Bartholdi, Tovey and

Trick, 1989; Hudry, 1989; Ephrati and Rosenschein, 1993). This led, some years later,

to the establishment of computational social choice as a research field (Endriss and

Lang, 2006; Brandt, Conitzer, Endriss, Lang and Procaccia, 2016a), which is still very

active now (Endriss, 2017; Laslier, Moulin, Sanver and Zwicker, 2018).

Though it started with the study of (single-winner) voting methods, the focus of

(computational) social choice theory now includes a much broader set of applications

including more complex voting settings, the fair allocation of items to agents, coali-

tion formation between agents, and many more (Brandt, Conitzer, Endriss, Lang and

Procaccia, 2016a; Endriss, 2017). What do all these topics have in common? They

all are concerned with determining collective decisions based on the preferences re-

ported by the agents involved in the process. Overall, social choice theory can be

defined as the field of research that is concerned with the ways of aggregating indi-

vidual opinions into collective decisions.

Social choice theory thus studies aggregation methods, trying to single out a set

of most appealing ones for different settings. To do so, the standard method is to

adopt the axiomatic approach. Following this approach, one would first devise a set

of normative properties that are considered appealing for an aggregation method—

the so-called axioms—and would then analyse different aggregation methods in light

of these axioms (Thomson, 2001). This clearly is the standard method in social choice

and it has led to many of its most famous results, such as impossibility theorems

(Arrow, 1951; Gibbard, 1973; Satterthwaite, 1975), and characterisation results (Black,

1948; May, 1952; Young, 1974; Young and Levenglick, 1978; Moulin, 1980).

The computational take on social choice adds to the axiomatic approach the tool-

box inherited from computational complexity theory (Arora and Barak, 2009). Broadly
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speaking, complexity theory assesses how hard it would be to solve certain problems

using a computer. It does so by classifying problems based on the number of elemen-

tary steps that would be required to solve them. Using this approach, researchers have

been able to analyse the complexity of determining the outcome of aggregation meth-

ods (Hemaspaandra, Hemaspaandra and Rothe, 1997; Lipton, Markakis, Mossel and

Saberi, 2004; Hemaspaandra, Spakowski and Vogel, 2005), of computing successful

manipulations by the agents or the decision makers (Bartholdi, Tovey and Trick, 1989;

Faliszewski, Hemaspaandra and Hemaspaandra, 2009; Conitzer and Walsh, 2016; Fal-

iszewski and Rothe, 2016), and of verifying structural properties (Escoffier, Lang and

Öztürk, 2008; Elkind, Lackner and Peters, 2022), among others. We will see in the

coming chapters specific computational problems designed for the analysis of PB.

Additional new tools came with the computer science perspective (numerical simu-

lations, computer-aided methods), that we will also make use of later on.

Overall, our toolbox for investigating aggregation problems for PB will include

both the standard axiomatic analysis from social choice theory, together with the

computational complexity and numerical simulation analysis from computer science.

1.4 The Contribution: Variations on Participatory
Budgeting

All the elements are now in place. We have presented the object of our study: par-

ticipatory budgeting; the research question: aggregation problems in PB; and the

method: computational social choice. The last step is now to describe the contri-

bution of this thesis, that is, its actual content.

Let us first position this work with respect to the literature. This thesis is not the

only work that uses tools from computational social choice to analyse aggregation

problems for PB. Nonetheless, the literature on this topic is relatively recent, and

only a handful of papers had been published when I started working on it in 2019.

As we will see later (Chapter 3 is dedicated to surveying the literature), the literature

has grown significantly since then, and many aspects of the aggregation problems for

PB have already been studied. However, the focus has almost exclusively been on the

voting stage of PB processes with the only constraint being the budget limit.

Overall, the research question posed on page 4 is already (partially) answered by

the literature, but its refinement stated on page 7 is left mostly unanswered. The use of

“mostly” here is due to the observation that several published papers contribute to the

study of formal models that are extensions of the standard PB model (see Section 3.6).

However, all these works—with the only exception of Hershkowitz, Kahng, Peters

and Procaccia (2021)—do not capture alternative models of PB as implemented at a

large scale in real life, but rather explore variations of the model that could potentially

be implemented.
6
By focusing on actually implemented variations of PB, the present

6
This can be witnessed by the absence of real-life examples in all the papers cited in Section 3.6.
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thesis contributes in closing this gap in the literature.

Let us now turn to the content of the thesis. All the chapters will be introduced

below, providing a general overview of the contribution of the thesis.

The first item on our agenda is to provide general background information on PB.

This will be done in Part One. We will first formalise our approach in Chapter 2.

There, the standard model of PB will be defined, and all other relevant concepts will

be introduced. More background information will be provided in Chapter 3, which

presents a comprehensive survey of the computational social choice literature on PB.

Once the scene will have been set, we will turn to the technical contribution. The

research question clearly highlights our will to account for variations in PB. We will

do so following two general directions, each making up for one part of the thesis. In

Part Twowewill focus on variations on themethod; that is, wewill present alternative

ways of investigating the aggregation problems in PB compared to the standard ones

presented in the survey (Chapter 3). Subsequently, in Part Three, we will discuss

variations on themodel; that is, we will present alternative models for PB that capture

aspects of PB processes that cannot be captured in the standard model introduced in

Chapter 2. Finally, we will draw a conclusion of our journey in Chapter 9.

We will now provide more details regarding the two technical parts. References to

the published material that serves as the basis of each chapter will be provided there

as well. Note that the content of Chapter 3 is largely based on Rey and Maly (2023).

Moreover, the material presented by both Rey (2022) and Motamed, Soeteman, Rey

and Endriss (2022) has been useful in several places of the thesis, even though they

do not contain results directly included here.

1.4.1 Variations on the Method

We first focus on the variations on the method that will be presented in Part Two.

Fairness in PB via equality of resources. Our research question is concerned

with the ways of aggregating the reported preferences into a collective decision in

PB scenarios. One of the fundamental aspects of this question is to investigate how

to reach fair collective decisions. Fairness in PB has been the focus of most of the

research on PB from (computational) social choice researchers (see Chapter 3). The

most prominent concepts studied in this branch of the literature are based on mea-

sures of the satisfaction of a voter. However, in many cases, it is impossible for the

decision maker to access the satisfaction of a voter. There are several explanations

for that, one of the most compelling ones being the limited information reported by

the voters in their ballots. In Chapter 4 (mainly based on the content presented by

Maly, Rey, Endriss and Lackner, 2023) we present a novel approach for fairness in PB

based, not on satisfaction, but on a measure of the amount of resources used to try to

satisfy a voter. As we will see, this approach gives rise to a new fairness theory for PB

based on equality of resources. In this chapter, we demonstrate that our new take on
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fairness is fully viable and bypasses the limitations regarding fairness concepts based

on the satisfaction of the voters. This first variation on the method allows us to talk

about fairness, even in settings where the satisfaction of a voter cannot be accessed,

thus increasing the applicability of the formal analysis.

Epistemic approach to PB. Not all PB scenarios directly correspond to the case of

themunicipality running a process to involve citizens in budgeting decisions. There is

for instance a set of PB applications where the goal is to find the best alternatives, for

some notion of “best”. This was the case in our initial example where some research

projects are better than others (in the sense of having a higher probability of success)

and the process is there to retrieve these best projects. In Chapter 5 (based on the

material presented by Rey and Endriss, 2023) we present an epistemic approach to

PB, the first of its kind. This epistemic view is based on two essential assumptions:

(i) there exists an objectively best, but unknown, outcome called the ground truth,

and (ii) the ballots of the voters are noisy estimates of the ground truth. Aggregation

mechanisms should then aim at retrieving the ground truth from the ballots. In this

chapter, we will look for aggregation mechanisms for PB that have good epistemic

properties, a task that will prove difficult. This second variation on the method allows

us to account for different kinds of PB processes, ones that have different goals than

the canonical municipality-run PB process.

1.4.2 Variations on the Model
Let us now turn to the variations on the model, presented in Part Three. Building on

the standard model presented in Chapter 2, chapters in this part present alternative

formal models of PB that capture new aspects of actually implemented PB processes.

PB with additional constraints. Throughout this introduction we have always

been talking about a unique budget limit without ever mentioning any other con-

straints on the outcome of the PB process. This is a limitation of the model as many

cities actually do include additional constraints. For instance, in the PB process or-

ganised by the city of Lyon, projects are grouped based on the neighbourhood they

belong to. Even though voters are not constrained on the projects they can vote for,

multiple budget constraints are imposed, one for each neighbourhood. This example

is far from being unique and many more can be found in real-life implementations of

PB, potentially with different types of extra constraints. To account for this variety

of constraints on the outcome, we develop in Chapter 6 (based on the results of Rey,

Endriss and de Haan, 2020) a general framework for aggregating reported preferences

for PB when additional constraints are imposed on the outcome (on top of the global

budget constraint). Developing a general approach will lead a number of technical

difficulties and we will provide elaborate ways of circumventing them. Overall the

study of this first variation on the model will allow us to account for a much larger

set of PB processes, bringing us closer to answering our research question.
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Long-term approach to PB. As already mentioned in Section 1.1.1 when we pre-

sented criteria characterising PB processes, it is in the essence of any PB process to

be repeated over the years. Up to Chapter 7, this aspect of PB processes will not have

been covered at all (both in the thesis and in the literature). In this chapter, we will de-

velop an approach to analyse repeated PB processes from a fairness standpoint. This

is, to this date, the first formal analysis of the repetitive aspect of PB processes. Of

course, one could simply analyse long-term PB processes as a repetition of single-shot

instances. However, the temporal aspect opens the door to a much deeper analysis.

Focusing on fairness, we will take advantage of the temporal aspect of our model to

introduce several novel ways of considering fairness for PB, aiming to enforce fairness

over time (in addition to fairness for each single instance). This second variation on

the model makes it possible to capture one of the key criteria defining PB processes.

The technical material of this chapter is taken from Lackner, Maly and Rey (2021).

End-to-end analysis of PB. Getting back to the typical skeleton of a PB process we

presented in Section 1.1.2, it is clear that citizens are involved in several steps of the

process. So far, we only considered the voting stage, the one for which the question

of the aggregation of the ballots is the most prominent. However, other stages of the

process also call for a social choice analysis. In Chapter 8 (based on Rey, Endriss and

deHaan, 2021) we present the first formalmodel incorporating the stage duringwhich

citizens submit project proposals in the analysis. We analyse both the aggregation

problems inherent to this stage (how to determine a shortlist of proposals), and the

impact of this two-stage model on the behaviour of the voters. With the contribution

presented in this chapter, we are able to assess PB processes in their full length, once

again bringing us closer to our goal.

1.4.3 Beyond the Technicalities
The tools we will use to analyse PB are deeply mathematical, making the exposition

of the thesis very formal. However, as we discussed already, the end goal of the thesis

is to support the development of participatory democracy. To reconcile these two

aspects—the formal aspect of our analysis, in contrast with the societal end-goal of

the thesis—one needs to see beyond the formal analysis.

It is true that the analysis in itself can be technical, but the object of the analysis

needs not be. The beauty of the field comes from its very formal analysis of aggrega-

tion procedures, that can be easily used as-is for real-life instances. Focusing on our

concrete problem, what I mean here is that even though the contribution of the thesis

is mainly technical, most of the aggregation procedures and concepts we will study

are relatively simple and can be explained to a general audience. There is thus a way

to see beyond the technicalities and to focus on their actual implications.

With that in mind, let us now delve into the technicalities. While doing so, keep

in mind that we are improving the democratic process here!



Part One

General Background





Chapter 2

The Standard Model of Participatory
Budgeting

In this chapter we introduce what we call the standard model of PB. This corresponds

to the model that is the most widely studied in the literature, and will also be the one

that we will study throughout this thesis (with some variations in Part Three).

The notation we introduce in this chapter will be the one used in the thesis. Ad-

ditional notation, specific to each chapter, will be introduced along the way.

To help the reader, an index of the concepts and a nomenclature of the symbols

appearing in the thesis can be found at the end (pages 267 and 271 respectively).

2.1 Setting up the Voting Stage
The voting stage, sometimes referred to as the allocation stage, is part of a PB process

that we are mainly interested in. What we call the standard model of PB actually only

models the voting stage of real-life PB processes.

An instance of the voting stage, or simply an instance, is a tuple I = ⟨P , c, b⟩
where P = {p1, . . . , pm} is the set of projects; c : P → R>0 is the cost function,

associating every project p ∈ P with its cost c(p) ∈ R>0; and b ∈ R>0 is the budget

limit. For any subset of projects P ⊆ P , we denote by c(P ) its total cost
∑

p∈P c(p).
Note here that we make the common assumption for the costs and the budget limit

to be non-negative.

An instance I = ⟨P , c, b⟩ is said to have unit costs if for every project p ∈ P ,
we have c(p) = 1 and b ∈ N>0. In the unit-cost setting, we restrict our attention to

unit-cost instances. This setting is particularly interesting as it corresponds to the

multi-winner voting setting (Lackner and Skowron, 2023), at least if we also require

budget allocations to use up all the budget.

15
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The outcome of the voting stage I = ⟨P , c, b⟩ is a budget allocation π ⊆ P such

that c(π) ≤ b. We will denote by Feas(I) the set of all the feasible budget allocations
for instance I , defined as:

Feas(I) = {π ⊆ P | c(π) ≤ b}.

A feasible budget allocation π ∈ Feas(I) is said to be exhaustive if there is no project
p ∈ P \ π such that c(π ∪ {p}) ≤ b, that is, if π is cost-maximal. We will denote by

FeasEx(I) the set of all feasible and exhaustive budget allocations for an instance I :

FeasEx(I) = {π ∈ Feas(I) | π is exhaustive}.

2.2 Collecting the Votes
Let N = {1, . . . , n} be the set of voters involved in the PB process. When facing an

instance I = ⟨P , c, b⟩, they are asked to submit their preferences over the projects in

P . Several ballot formats have been considered for PB as we shall see in Chapter 3.

Except for that one chapter, we will only focus on approval ballots throughout this

thesis. When submitting an approval ballot, a voter indicates the projects that they

approve of. For agent
7 i ∈ N , we denote by Ai ⊆ P the approval ballot that agent

i ∈ N is submitting. Whenever we have p ∈ Ai, we will say that agent i is a supporter
of project p ∈ P .

Importantly, in Chapter 3 (and only there), we will use a different mathematical

object to refer to approval ballots. We will still useAi to denote the approval ballot of

agent i ∈ N , however Ai will then be a function Ai : P → {0, 1} mapping projects

into {0, 1} where Ai(p) = 1 indicates that agent i approves of project p, i.e., that
p ∈ Ai in the notation introduce above. This is done to highlight the relationship

between approval and cardinal ballots, as explained in detail there.

Since an approval ballot is a subset of projects, any property of budget allocations

(or subset of projects) is also well-defined for approval ballots. In that respect, we

will sometimes discuss feasible, or exhaustive ballots, for instance. Note that feasible

approval ballots are sometimes called knapsack ballots (Goel, Krishnaswamy, Sakshu-

wong and Aitamurto, 2019).

The vectorA = (A1, . . . , An) of the ballots of the agents is called a profile. Given
two profiles A and A′

, we use A+A′
to denote the profile obtained by concatenat-

ing them. Strictly speaking, this is not well-defined as it requires us to work with

electorates of different sizes (the setN is fixed in our notation). Because the concate-

nation operation is only needed in Chapter 5, we hope that the reader can forgive this

slight informality.

The number of supporters of a given project p ∈ P in a profileA, is the approval

score of p, formally defined as app(p,A) = |{i ∈ N | p ∈ Ai}|.
7
Note that we use the terms “voters” and “agents” interchangeably, purely for stylistic reasons. The

reader may indeed get bored to always read the same terminology all the time.
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We make the important assumption that all projects have at least one supporter.

Said differently, we assume that the approval score of every project is at least 1. This

assumption simplifies a number of definitions as it reduces the need for additional

conditions. We will make it explicit when this assumption is crucially needed.

We will often need to discuss the satisfaction of a voter. However, when using

approval ballots, there is no obvious way to define a measure of the satisfaction of

a voter. Brill, Forster, Lackner, Maly and Peters (2023) introduced the concept of

approval-based satisfaction functions, which are functions translating a budget alloca-

tion into a satisfaction level for the agents, given their approval ballots. This concept

will be used extensively in the different chapters. Let us provide the definition.

Definition 2.2.1 (Approval-Based Satisfaction Functions). For a given instance I =
⟨P , c, b⟩ and a profile A, an (approval-based) satisfaction function is a mapping sat :
2P → R≥0 satisfying the following two conditions:

▶ sat(P ) ≥ sat(P ′) for all subsets of projects P, P ′ ⊆ P such that P ⊇ P ′
: the

satisfaction is inclusion-monotonic;

▶ sat(P ) = 0 if and only if P = ∅: only the empty set yields a satisfaction of 0.

The satisfaction of agent i ∈ N for a budget allocation π ∈ Feas(I) is defined as:

sat i(π) = sat(π ∩ Ai).

Several satisfaction functions have been introduced in the literature and two of

them are now standard. The first one is the cardinality satisfaction function (Talmon

and Faliszewski, 2019), denoted by satcard , which measures the satisfaction of the

voters as the number of selected and approved projects:

satcard(P ) = |P |.

The second one is the cost satisfaction function (Talmon and Faliszewski, 2019), de-

noted by satcost , which measures the satisfaction of the voters as the cost of the se-

lected and approved projects:

satcost(P ) = c(P ).

2.3 Determining Budget Allocations
Budget allocations are determined through the use of PB rules. A PB rule F is a func-

tion that takes as input an instance I and a profileA and that returns a set of feasible

budget allocations F(I,A) ⊆ Feas(I). PB rules that always return a single budget al-

location are called resolute. For simplicity, we will denote the output {π} of a resolute
PB rule by just π. PB rules that are not resolute are called irresolute. They potentially
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return several tied budget allocations. Unless explicitly stated to the contrary, we will

assume rules to be resolute.

Note that most of the properties we will introduce in the coming chapters concern

budget allocations. To avoid unnecessary definitions, we use the same definitions for

PB rules. For a given property X of a budget allocation, we say that a resolute PB

rule F satisfies X if for every instance I and profile A, the outcome F(I,A) satisfies
X . When needed, we will explicitly specify how properties for budget allocations are

lifted to irresolute rules.

We now introduce the rules that will be most commonly encountered throughout

this thesis. Additional rules will be introduced in Section 3.2.

2.3.1 Utilitarian Welfare Maximising Rules
We first discuss rules that aim at maximising the utilitarian social welfare. The latter

is usually defined as the total satisfaction of the agents. Since we are using approval

ballots, we define it via satisfaction functions. Given a satisfaction function sat , the
utilitarian social welfare of a budget allocation π ∈ Feas(I) given an instance I =
⟨P , c, b⟩ and a profile A is defined as:

Util-SW[sat ](I,A, π) =
∑
i∈N

sat i(π).

Remember that sat i is defined as sat i(π) = sat(π ∩ Ai).
Returning the budget allocation that maximises the utilitarian social welfare thus

constitutes the first concrete example of a PB rulewe have seen so far. Let us introduce

two specific such rules, based on satcard and satcost .
The cardinality welfare maximising rule MaxCard is defined for any instance I

and approval profile A as:

MaxCard(I,A) = argmax
π∈Feas(I)

Util-SW

[
satcard

]
(I,A, π)

= argmax
π∈Feas(I)

∑
i∈N

|π ∩ Ai|.

Similarly, the cost welfare maximising rule MaxCost is defined for any instance I
and approval profile A as:

MaxCost(I,A) = argmax
π∈Feas(I)

Util-SW

[
satcost

]
(I,A, π)

= argmax
π∈Feas(I)

∑
i∈N

c(π ∩ Ai).

These definitions give rise to irresolute rules. Remember that our default is to

work with resolute rules in this thesis. They can be obtained by using some fixed

tie-breaking mechanism between all budget allocations maximising Util-SW.
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It should be clear to any reader who is familiar with the concept that the output

of these two cannot be computed in polynomial time (unless P = NP).

Interestingly, we can also reinterpreted MaxCard and MaxCost in terms of ap-

proval score. Indeed, for any instance I and profile A the following holds:

MaxCard(I,A) = argmax
π∈Feas(I)

∑
p∈π

app(p,A),

MaxCost(I,A) = argmax
π∈Feas(I)

∑
p∈π

app(p,A) · c(p).

These two formulation will prove useful to draw parallels with the knapsack problem

(Kellerer, Pferschy and Pisinger, 2004).

Exploiting the connection between the maximisation of Util-SW and various

knapsack problems, we can use the prolific literature on the topic to derive PB rules

approximating the maximum utilitarian social welfare. We will introduce next two

examples of such rules. Let us first define the general scheme of a greedy rule.

Definition 2.3.1 (Greedy Scheme). Consider an instance I = ⟨P , c, b⟩ and a strict

ordering � over P . The greedy scheme Greed(I,�) is a procedure selecting a budget

allocation π iteratively as follows. The budget allocation π is initially empty. Projects

are considered in the order defined by �. When considering project p for current budget
allocation π, p is selected (added to π) if and only c(π ∪ {p}) ≤ b. If there is a next

project according to �, it is considered; otherwise π is the output of Greed(I,�).

With that scheme in mind, we are now ready to define the two greedy variants

of MaxCard and MaxCost, initially introduced by Talmon and Faliszewski (2019).

These two rules will appear regularly in our analysis.

Let us first consider the greedy cardinality welfare rule, GreedCard. Given an

instance I and a profile A, we say that an ordering of the projects � is compatible

with app/c if we have p � p′ if and only if app(p,A)/c(p) ≥ app(p′,A)/c(p′) holds. In other

words, the projects are ordered in� according to their approval score divided by their

cost. For any I andA, GreedCard is then defined as:

GreedCard(I,A) = {Greed(I,�) | � is compatible with app/c}.

Similarly, given I and A, an ordering of the projects � is compatible with app if

we have p� p′ if and only if app(p,A) ≥ app(p′,A) holds, that is, if the projects are
ordered in � according to their approval score. The greedy cost welfare rule Greed-

Cost is then defined for any I and A as:

GreedCost(I,A) = {Greed(I,�) | � is compatible with app}.

As before, the above definitions introduce irresolute rules. To make them resolute

one would need to simply select a single suitable ordering of the projects. Note that

this can also be interpreted in terms of breaking ties between projects.
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As the names suggest, these rules are indeed approximation of MaxCard and

MaxCost respectively. Indeed, as the definitions of the rules in terms of approval

score highlight, they both consider the projects ordered according to their “score per

cost” (for their respective notion of score). Standard results from the knapsack lit-

erature then ensure that such greedy rule would approximate their respective social

welfare objective within a factor 2 (Kellerer, Pferschy, and Pisinger, 2004, Chapter 2).
8

It should also be stated that the outcomes of these two rules can always be deter-

mined in polynomial time.

2.3.2 The Sequential Phragmén Rule
We now leave the world of rules based onmeasures of social welfare and turn to other

kinds of rules. The first one we present is the sequential Phragmén rule, an adaptation

of a rule introduced at the end of the 19th century by the Swedish mathematician

Lars Edvard Phragmén (Janson, 2016). This rule was formally studied in the multi-

winner voting literature by Brill, Freeman, Janson and Lackner (2017), and has then

been adapted to the PB setting by Los, Christoff and Grossi (2022).

Definition 2.3.2 (Sequential Phragmén). Given an instance I and a profileA, the Se-

quential Phragmén rule, SeqPhrag, constructs budget allocations using the following

continuous process.

Voters receive money in a virtual currency. They all start with a budget of 0 and that

budget continuously increases as time passes. At time t, a voter will have received an

amount t of money. For any time t, let P ⋆
t be the set of projects p ∈ P for which the

supporters of p altogether have more than c(p) money available. As soon as, for a given

t, P ⋆
t is non-empty, if there exists a p ∈ P ⋆

such that c(π ∪ {p}) > b, the process stops;
otherwise one project from P ⋆

t is selected, the budget of its supporters is set to 0, and the

process resumes.

Breaking the ties among the projects in any P ⋆
t in the above definition will lead to

a resolute rule. In the irresolute variant, one would consider all possible ways of

breaking such ties.

The termination condition we stated above can be surprising at first sight. It is

needed for the rule to satisfy priceability, which however comes at the cost of exhaus-

tiveness (see Section 3.4.1).
9

An equivalent formulation—the so-called discrete formulation—will be presented

in Definition 3.2.1. This alternative formulation makes it easier to see that the output

of SeqPhrag can always be determined in polynomial time.

8
Note that for the factor 2 approximation to be formally correct, one needs to either take the out-

come of the rules as we defined them, or the most valuable item, whichever has the highest score.

9
Phrasing the termination condition as it is here also implies that none of the results rely on the

way ties are being broken. If one were to use the stopping condition “the rule stops as soon as it would

select a project leading to a violation of the budget constraint”, priceability would only be satisfied

when ties are broken in favour of the most expensive project.
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2.3.3 The Methods of Equal Shares
This section is devoted to themethod of equal shares. It is similar to SeqPhrag except

that agents receive all their money from the outset. For a description aimed at non-

experts, see equalshares.net, a website maintained by Dominik Peters.

This rule has been introduced for PB by Peters, Pierczyński and Skowron (2021)
10

based on the version for multi-winner voting introduced by Peters and Skowron

(2020). We provide below the definition for approval ballots of Brill, Forster, Lack-

ner, Maly and Peters (2023).

The inner mechanism of the rule requires a notion of the satisfaction of the agents.

Since we are using approval ballots, we will parametrise the rule by a satisfaction

function. That way, we actually introduce a family of rules, one for each satisfaction

function.
11

Definition 2.3.3 (Method of Equal Shares). Given an instance I = ⟨P , c, b⟩ and a

profileA the method of equal shares for the satisfaction function sat ,MES[sat], con-
structs a budget allocation π, initially empty, iteratively as follows.

A load ℓi : 2
P → R≥0, is associated with every agent i ∈ N , initialised as ℓi(∅) = 0

for all i ∈ N . The load represents how much virtual money the agents have spent.

Given π and a scalar α ≥ 0, the contribution of agent i ∈ N for project p ∈ P \ π
is defined by:

γi(π, α, p) = 1p∈Ai
·min

(
b/n− ℓi(π), α · sat({p})

)
.

This is the amount i would pay to buy project p for a given α. Importantly, i only
contributes to p if p ∈ Ai, i.e., if i approves of p. Note that the above means that agents

are initially provided b/n units of the virtual currency.
Given a budget allocation π, a project p ∈ P \π is said to be α-affordable, for α ≥ 0,

if the total contribution of the agents given α is at least c(p), i.e., if we have:∑
i∈N

γi(π, α, p) ≥ c(p).

At a given roundwith current budget allocation π, if no project isα-affordable for any
α, MES[sat] terminates. Otherwise, it selects a project p ∈ P \ π that is α⋆

-affordable

where α⋆
is the smallest α such that one project is α-affordable (π is updated to π∪{p}).

The agents’ loads are then updated: ℓi(π∪{p}) = ℓi(π)+γi(π, α, p). A new round then

starts.

Notice that in the above, sat is only ever used on singletons. Notably, this implies

that even if the satisfaction function sat is not additive with respect to the projects,

MES[sat] is still well-defined.

10
Note that for all references to Peters, Pierczyński and Skowron (2021) we advise the reader to

consider the extended version, updated in October 2022 and available at arxiv.org/abs/2008.13276.

11
This is not strictly speaking true, as many satisfaction functions would lead to the same rule.

https://equalshares.net/
https://arxiv.org/abs/2008.13276
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It is important to note that for any sat , the outcome of MES[sat] can be computed

in polynomial time (as long as sat can also be). Specific ways of doing so are explained
by Peters, Pierczyński and Skowron (2021).

2.4 Discussing Computational Complexity
A large part of the coming technical analysis is dedicated to the study of PB from a

computational complexity perspective. We do not wish to provide a full introduction

to the topic here, but will still provide some necessary definitions. We assume the

reader the be familiar with the basic notions of computational complexity such the

idea of NP-completeness and all the notions necessary to understand its definition (de-

cision problems, polynomial-time solvability, the O notation,
12
the complexity class

NP, polynomial-time reductions,...). The proper definitions can be found in the excel-

lent textbook by Arora and Barak (2009).

Our complexity analysis will not involve many sophisticated notions. The three

complexity classes we will use are P, NP and coNP. Remember that a computational

problem is in coNP if its complement is in NP. We will usually distinguish between

weakly and strongly NP-complete problems. In case a problem is solvable in polyno-

mial time when the input is represented in unary, we will say that the problem is

solvable in pseudo-polynomial time, or weakly-polynomial time. A problem is weakly

NP-complete if it is NP-complete but solvable in pseudo-polynomial time. A problem is

strongly NP-complete if it is NP-complete even when the input is represented in unary.

Moreover, a problem is solvable in FPT time on an instance x and for a parameter

k ∈ N if it is solvable in time inO(f(k) · poly(|x|)), where f(·) is a computable func-

tion, poly(·) is a polynomial, and |x| is the size of the instance x (see Downey and

Fellows, 2013, for more details).

12
Throughout the thesis, we will interpret the O notation in a set manner. We will use statement

such as “f(n) is in O(g(n))” interpreting O(g(n)) as the class of functions h(n) such that h(n) ≤
C · g(n) for some constant C and all n ≥ n0 for a given n0. See the discussion in Graham, Knuth and

Patashnik (1994) for more details as why it matters.



Chapter 3

The (Computational) Social Choice Take on
Participatory Budgeting

This chapter presents a review of the computational social choice literature dedicated

to (indivisible) PB. The goal of this chapter is to provide a comprehensive set of defini-

tions and to unify concepts and notation that appeared in different publications. It is

not necessary for the reader to go through all of it to understand the rest of the thesis.

However, we will regularly refer to the concepts introduced here. More specifically:

▶ Many fairness concepts presented in Section 3.3 will be used in Chapter 4;

▶ Social welfare notions from Section 3.5.2 will be considered in Chapter 5;

▶ The monotonicity axioms defined in Section 3.4.2 will be part of the investiga-

tion presented in Chapter 6.

Themodel and notation in this chapter follow that introduced in Chapter 2, except

for the ballots, as will be made explicit. Ballot formats will actually be our first point

of focus (Section 3.1). Once the design of the ballots will be clarified, we will discuss

rules for aggregating said ballots (Section 3.2). We will then present how to assess the

quality of these rules in terms of fairness (Section 3.3) and other axiomatic properties

(Section 3.4). After that, we will look at the algorithmic aspects of PB (Section 3.5).

After discussing the standard model for PB, we will present its variations and exten-

sions that have been introduced in the literature (Section 3.6). We will finally provide

interesting pointers to related frameworks (Section 3.7).

3.1 Ballot Design
Ballot design is an important part of the research on PB. Indeed, the outcome space

being combinatorial in nature, the design of the ballots is critical to achieve a good

23
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balance between the amount of information elicited and the practical usability of said

ballot. To get themaximum amount of information, wewould want to offer the agents

the possibility to submit their preferences over all possible budget allocations. These

could take the forms of orderings over Feas(I), or utility functions associating a score
to every feasible budget allocation π ∈ Feas(I). This approach clearly cannot be

implemented in real life as the size of Feas(I) is exponential in the number of projects,

which in itself might already be quite large (in 2023 there were 138 projects in the

Warsaw PB process
13
).

Several ballot formats have then been designed in the pursuit of the best trade-off

between the amount of information that is elicited and the usability of the ballot. All

of these formats are project-based ballots, i.e., the information collected concerns the

projects and not the feasible budget allocations. This is mainly because the set of all

the feasible budget allocations can be huge. The approval ballots format (introduced

in Section 2.2) is one example. In what follows, we introduce other ballot formats, dis-

tinguishing between cardinal ballots (Section 3.1.2)—which associate a score to each

project—and ordinal ballots (Section 3.1.3)—which require agents to rank the projects.

Note that only approval ballots will be considered in this thesis (outside of the present

chapter); we include the others here for the sake of completeness.

To get an overview of the different ballot formats that have been introduced and

the papers studying them, we present in Table 3.1.1 a classification of the papers we

have reviewed, based on the ballot format they are considering.

3.1.1 Terminology around the Voters

Let us start by clarifying some terminology. By going through the literature on PB,

and more generally on computational social choice, it appears that the terms prefer-

ences, utility, satisfaction, and ballots are used in a somewhat interchangeable fashion.

In the following we suggest exact definitions for each of those, hoping that it will help

to clarify and unify the use of these terms.

One distinction that seems important to us is that of the private and public infor-

mation of the voters. The information submitted by the voters, their ballots, is the

only information that is publicly available, especially to the decision maker. In no

case can the ballots be assumed to represent the internal preference model of the vot-

ers. Hopefully, the ballots reflect some aspects of the preferences of the voters, but

one cannot claim that they capture them entirely. This observation is based on the

following two main arguments. First, we know that almost none of the rules we are

studying prevent voters from rationally behaving strategically, so there is no reason

to assume their ballots to be truthful (Gibbard, 1973; Satterthwaite, 1975; Dietrich and

List, 2007b; Meir, 2018; Peters, 2018). Second, even if voters try to vote truthfully, it

is debatable whether they would be able to produce a ballot that faithfully represents

13
See the data hosted on pabulib.org (Stolicki, Szufa and Talmon, 2020) and the specificWarsaw 2023

file: poland_warszawa_2023_.pb.

http://pabulib.org
http://pabulib.org/media/files/poland_warszawa_2023_.pb
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Cardinal Ballots

Generic

Benadè, Nath, Procaccia and Shah (2021) — Chen, Lackner and

Maly (2022) — Los, Christoff and Grossi (2022) — Fairstein, Be-

nadè and Gal (2023) — Fluschnik, Skowron, Triphaus and Wilker

(2019) —Hershkowitz, Kahng, Peters and Procaccia (2021) — Jiang,

Munagala andWang (2020) — Laruelle (2021) — Los, Christoff and

Grossi (2022) — Munagala, Shen and Wang (2022) — Munagala,

Shen, Wang and Wang (2022) — Patel, Khan and Louis (2021) —

Peters, Pierczyński and Skowron (2021)

Approval

Aziz and Ganguly (2021) — Aziz, Gujar, Padala, Suzuki and Vollen

(2022) — Aziz, Lee and Talmon (2018) — Baumeister, Boes and

Hillebrand (2021) — Baumeister, Boes and Laußmann (2022) —

Baumeister, Boes and Seeger (2020) — Brill, Forster, Lackner, Maly

and Peters (2023) — Jain, Sornat and Talmon (2020) — Jain, Sornat,

Talmon and Zehavi (2021) — Los, Christoff and Grossi (2022) —

Motamed, Soeteman, Rey and Endriss (2022) — Sreedurga, Bhard-

waj and Narahari (2022) — Talmon and Faliszewski (2019)

t-Approval Fairstein, Benadè and Gal (2023)

Knapsack
Benadè, Nath, Procaccia and Shah (2021) — Fairstein, Benadè and

Gal (2023) — Goel, Krishnaswamy, Sakshuwong and Aitamurto

(2019)

t-Threshold Benadè, Nath, Procaccia and Shah (2021) — Fairstein, Benadè and

Gal (2023)

Cumulative Skowron, Slinko, Szufa and Talmon (2020)

Ordinal Ballots

Strict Orders Lu and Boutilier (2011) — Peters, Pierczyński and Skowron (2021)

Weak Orders Aziz and Lee (2021) — Laruelle (2021)

Value-for
Money

Benadè, Nath, Procaccia and Shah (2021) — Goel, Krishnaswamy,

Sakshuwong and Aitamurto (2019) — Fairstein, Benadè and Gal

(2023)

Value Benadè, Nath, Procaccia and Shah (2021) — Fairstein, Benadè and

Gal (2023)

Table 3.1.1: Papers studying PB organised by the type of ballots considered.
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their true internal preferences due to their bounded rationality (Dhillon and Peralta,

2002; Bendor, Diermeier, Siegel and Ting, 2011). It is therefore questionable to assume

that a voter’s ballot represents their true preferences, even if voters behave truthfully.

We thus urge researchers to always clarify the assumption they are making about

the voters, their internal state, and how they cast their ballots. To help with that, we

present below what we believe to be the best way to use this terminology.

▶ Preferences: The preferences are private information accessible only to the

voters themselves, reflecting their views on the possible outcomes of the deci-

sion making scenario. Remember from the above that this information may not

be accessible in full to the voters (notably because of bounded rationality). In

economic theory, it is usually assumed that preferences take the form of weak

or incomplete rankings over the different outcomes (Lewin, 1996), though other

representations of the preferences can be argued for (see, e.g., Hansson, 2001).

Note that the term “preferences” sometimes indicates that the preferences are

ordinal, i.e., that they are based on rankings of the outcomes.

▶ Utility: The utility of a voter is a specific type of preference for which every

outcome can be mapped to a specific numerical value. These preferences are

sometimes referred to as cardinal preferences.

▶ Satisfaction: The satisfaction of a voter and their utility are often used syn-

onymously. In computational social choice, it is also often used when ballots

do not allow agents to report their full utility functions (because of the limited

expressiveness of the ballots). In this case, it represents an approximation of the

utility of a voter that would be compatible with the ballot submitted. We claim

that it is important to always be clear that such satisfaction functions can at

most be proxies to the utilities of the agents, and in no case their actual level of

satisfaction or utility (even if the ballots would allow voters to submit their full

preferences). In the following, we use satisfaction as meaning “the satisfaction

that the decision maker is assuming the voter enjoys”.

▶ Ballots: The ballot of an agent is the information they submitted, formatted

according to the specified type of ballot. Let us emphasise once again that a bal-

lot is the sole information submitted by the (potentially strategically-behaving)

voter and not necessarily a representation of their private information.

This terminology and those definitions are the ones used throughout the thesis.

We are now ready to actually discuss ballot formats. Note that regardless of the

format, we denote by Ai the ballot submitted by agent i ∈ N .

3.1.2 Cardinal Ballots
Let us start with cardinal ballots. Loosely speaking, when these ballots are used,

agents are asked to submit a score for all projects. Additional constraints are some-
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times imposed on the scores. Note that we refer to this ballot format as cardinal ballots

and not utility functions or cardinal preferences as they are usually called, in line with

our discussion in Section 3.1.1.

Formally, a cardinal ballot Ai : P → R≥0 for agent i ∈ N is a mapping from

projects to non-negative scores. Note that in our definition cardinal ballots associate

scores with projects and not budget allocations. Of course the definition can easily be

adapted to allow voters to submit scores over budget allocations, but since almost no

paper (the only potential exception being Jain, Sornat, and Talmon, 2020) is working

with cardinal ballots over budget allocations, we decided to keep the simpler defini-

tion.

A common assumption (see, e.g., Peters, Pierczyński, and Skowron, 2021) is that

the score of a budget allocation for an agent is simply the sum of the scores of the

projects it contains. We call this the additivity assumption.

Even though cardinal ballots can be used as is for PB, several important variations

have been introduced that we discuss below.

Approval Ballots

In this chapter, we represent approval ballots as cardinal ballots by requiring the score

of each project to either be 0 or 1, i.e., for agent i ∈ N , their approval ballotAi : P →
{0, 1} is a mapping from P to {0, 1}, where for any p ∈ P , Ai(p) = 1 indicates that

agent i approves of project p, and Ai(p) = 0 that i does not approve of p. Note that
this differs from the definition presented in Chapter 2.

It is important to state that approval ballots are the most widely used ballot format

in real life PB processes. At the same time, and potentially for that exact reason, it is

also the most studied format in the literature (see Table 3.1.1).

One of the main drawbacks of approval ballots is that they are semantically weak:

not much information is communicated. In particular, it is unclear what an agent

intends to communicate when not approving a project (setting Ai(p) = 0 for project
p). It is notably ambiguous whether this case should be treated as stating a rejection of

the project, or simply stating an indifference status regarding the project. One way of

circumventing this issue is to enforce additional constraints on the ballots that allow

us to interpret them more accurately.

Semantically Enriched Approval Ballots

As explained above, the semantics of approval ballots is not well defined. This leads

to various problems and has prompted researchers to introduce some additional con-

straints on the approval ballots to correct this.

In practice, it is often the case that voters can only approve of a limited number of

projects. When asked for t-approval ballots, agents can only approve up to t ∈ N>0

different projects. This is formalised by imposing the constraint

∑
p∈P Ai(p) ≤ t on

the ballot Ai of each agent i ∈ N . This allows us to get some understanding of the
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projects that are not approved: they are not part of the top-t projects of the voter

(assuming that voters can actually order the projects based on their preferences).

We already mentioned knapsack ballots, those are approval ballots that are fea-

sible. Phrasing it differently, when submitting knapsack ballots, agents are asked to

provide their most preferred feasible budget allocation. In this sense, knapsack ballots

have a clear meaning that can be used to make potentially better decisions.

Another variation of approval ballot are t-threshold approval ballots (Benadè, Nath,
Procaccia and Shah, 2021). Here, agents are assumed to have private additive utility

functions that they are aware of, and they are asked to submit an approval ballot,

approving of a project if and only if it provides them with utility at least t ∈ R.

Cumulative Ballots

When cumulative ballots are used (Skowron, Slinko, Szufa and Talmon, 2020), agents

are asked to distribute a certain amount of money (usually b/n, i.e., their share of the
budget) over all the projects. Formally, a cumulative ballotAi is a cardinal ballot such

that

∑
p∈P Ai(p) ≤ 1. The idea behind cumulative ballots is that agents control some

share of the budget and indicate how they would want to use that share.

Note that one could also assume that Ai(p) represents the fraction of the budget

limit b that voters i believes should be allocated to project p (in total). This interpre-

tation however does not fit with the assumption that projects are indivisible.

3.1.3 Ordinal Ballots

The second main category of ballots that have been studied for PB are ordinal ballots.

In this context, the ballot of an agent is an ordering over the projects. Formally, agent

i’s ballot Ai is a strict linear order over P . We will typically denote it by ≻i where

for two projects p, p′ ∈ P , p ≻i p
′
indicates that agent i prefers p over p′.

Ordinal ballots can be used as is for aggregation purposes. However, because

projects have different costs, the exact semantics of the ordering is not always clear.

Several specific ways of ranking the projects have thus been proposed.

When submitting ranking-by-value ballots (Benadè, Nath, Procaccia and Shah,

2021), agents are assumed to provide a strict total order over the projects such that a

project p is ranked above another project p′ if and only p is preferred to p′.
Similarly, ranking by value-for-money ballots (Goel, Krishnaswamy, Sakshuwong

and Aitamurto, 2019) requires agents to provide rankings of the projects based on

their value for money. Note that this is only well-defined when agents are assumed

to have private utility functions that they are aware of.

We have only mentioned strict rankings above, but weak rankings have also been

considered (Aziz and Lee, 2021). A weak ranking will typically be denoted by ≿ with

≻ being the strict part of the ranking and∼ the indifference relation, defined as p ≻ p′

if p ≿ p′ but not p′ ≿ p; and p ∼ p′ if p ≿ p′ and p′ ≿ p, for any two projects p and p′.
Rankings by value or value for money can also be considered with weak rankings.
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Deterministic Randomised
Distortion Distortion

Bound Lower Upper Lower Upper

Knapsack Ω(2m/√m) O(m · 2m) Ω(m) m
Rankings by Value Ω(m2) O(m2) Ω(

√
m) O(

√
m · log(m))

Rankings by Value-for-Money Unbounded Ω(
√
m) O(

√
m · log(m))

Det. t-Threshold Approval⋆ Unbounded Ω(
√
m) m

Rand. t-Threshold Approval⋆ — Ω(log(m)/log log(m)) O(log2(m))

⋆
For t-threshold approval ballots, Benadè, Nath, Procaccia and Shah (2021) distinguish between two

cases. In the deterministic case (Det.) the threshold t is chosen arbitrarily by the decision maker once

for all the agents. In the randomised (Rand.) case, for each agent, the threshold t is sampled at random

from a given distribution. Note that this distinction makes little sense in the deterministic case.

Table 3.1.2: Summary of the results on the distortion of some of the ballot formats

obtained by Benadè, Nath, Procaccia and Shah (2021). The deterministic distortion

corresponds to the situation where only deterministic PB rules are considered. In the

randomised distortion setting, randomised PB rules are also considered.

Finally, it is worth mentioning that in practice voters are only asked to submit

incomplete ordinal ballots, typically ranking a small number of projects. We are not

aware of any work studying this ballot format, which we could call t-ordinal ballots.

3.1.4 Comparison of Ballot Formats

Comparing the merits of different ballot formats is not an easy task. Two approaches

have been explored in the literature focusing either on theoretical or empirical results.

Comparison via Distortion

Oneway to compare different ballot formats is via the distortion (Procaccia and Rosen-

schein, 2006) they induce. It is a measure of the amount of information communicated

by a ballot format for the purpose of identifying a budget allocation that maximises

utilitarian social welfare. Specifically, under the assumption that agents have cardinal

preferences, the distortion of a ballot format measures the ratio between the maxi-

mum social welfare achievable in the knowledge of the full preferences of the agents,

to the maximal social welfare achievable when agents submit their ballots according

to the specific format.

Benadè, Nath, Procaccia and Shah (2021) provide a complete analysis of the distor-

tion induced by four of the ballot formats we introduced: knapsack and t-threshold
approval ballots, rankings by value and rankings by value for money. Table 3.1.2

presents their findings for both deterministic and randomised
14
rules. Note that they

14
A randomised PB rule returns for any instance I and profile A, not a budget allocation, but a

probability distribution over Feas(I).
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Rank Value-for-Money

Cardinal Ballot

t-Threshold Approval

Rank Value

Knapsack Ballot

t-Approval

780

454

443

431

386

345

Voting Time

in Seconds

3.36

4.07

3.88

3.94

4.00

4.2

Reported

Ease of Use

3.72

4.08

4.05

4.12

4.15

4.21

Reported

Expressiveness

Figure 3.1.1: Some of the experimental findings of Fairstein, Benadè and Gal (2023)

comparing different ballot formats. The voting time column indicates the time in sec-

onds it took participants to submit their opinion for each ballot format. The reported

ease of use and expressiveness columns represents the average value reported by the

participants about the ease of use and the expressiveness of each ballot format, on

a scale from 1 to 5 (the higher the better). The figures have been reproduced with

the authorisation of the authors, using the data available in the GitHub repository

github.com/rfire01/Participatory-Budgeting-Experiment.

also complemented their theoretical approach with an empirical one on real-life data.

Their findings suggest that approval ballots, and more specifically knapsack ballots,

may not be the best ballot format when it comes to PB.
15

Comparison via Real-Life Experiments

Another approach to compare ballot formats for PB is to run experiments with hu-

man participants who will be asked to use different formats. This is the approach that

Fairstein, Benadè and Gal (2023) followed. They recruited 1800 participants on Ama-

zon Mechanical Turk who were then asked to cast their ballot in a format which was

selected from a set of 6 for a specific PB instance (selected from a set of 4 instances).

For each participant, the time they needed to vote was measured. Additionally, they

asked the participants to self-report on the ease of use of the different formats.

Some of the findings from Fairstein, Benadè and Gal (2023) are presented in Fig-

ure 3.1.1. They studied the following ballot formats: generic cardinal ballots, 5-

approval ballots, knapsack ballots, 10-threshold approval ballots, rankings by value

and rankings by value-for-money. Summarising, all the ballot formats they study re-

quire a similar amount of time for the participants to cast, except for ranking by value

for money for which participants take significantly longer. The results are the same

for the self-reported measures. Notably, for all measures t-approval ballots outper-
form all the other ballot formats, though not by a large margin.

15
The intuition as to why knapsack ballots do not behave well with respect to distortion is that in the

worst case, when all projects cost exactly the budget limit b, knapsack ballots only elicit the favourite

project of each agent, and it is well understood that this is not enough to make a high-quality decision.

https://github.com/rfire01/Participatory-Budgeting-Experiment
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3.1.5 Ballot-Based Satisfaction

Before we consider PB rules, let us discuss how to model satisfaction based on the

different ballot formats we have introduced.

Generic Cardinal Ballots

When asked for cardinal ballots, voters are asked to report their satisfaction level

for each project. There is thus no need to consider anything else than the ballot, at

least as long as we are operating under the additivity assumption. This means the

satisfaction of a voter is the sum of the scores they submitted for the projects that

have been selected.

Approval Ballots

When it comes to approval ballots, we use the concept of satisfaction function as we

introduced in Definition 2.2.1. On top of satcard and satcost that we already defined,

we introduce other satisfaction functions than exist in the literature. First, note that

with indivisible projects, satcost is equivalent to the overlap satisfaction function of

Goel, Krishnaswamy, Sakshuwong and Aitamurto (2019).

▶ The Chamberlin-Courant satisfaction function (Talmon and Faliszewski,

2019) measures the satisfaction of the voters as being 1 if at least one approved

project was selected, and 0 otherwise:

satCC(P ) = 1P ̸=∅.

▶ The square root and log satisfaction functions (Brill, Forster, Lackner, Maly

and Peters, 2023) measure the satisfaction of the voters as (marginally) dimin-

ishing when the cost of a project increases:

sat log(P ) = log(1 + c(P )) sat
√
(P ) =

√
c(P ).

In general, all the satisfaction functions we introduced apply seamlessly to all

approval-like ballot formats (t-approval, knapsack, t-threshold...). Some are however

more meaningful with some ballot formats than others.

One might wonder what the difference between an approval profile together with

a satisfaction function sat , and a cardinal profile is. Assuming sat is additive, an ap-

proval profilewith a satisfaction function is a special case of a cardinal profile inwhich

every agent approving a project p has the same satisfaction for p. This is a natural

assumption, given the limited information about the voters’ preferences. However,

some authors have proposed to model the satisfaction of voters in a way that also

takes additional information into account, for example the non-approved projects in
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the winning bundle. This cannot be modelled with a satisfaction function as defined

by Brill, Forster, Lackner, Maly and Peters (2023).

For instance, Goel, Krishnaswamy, Sakshuwong and Aitamurto (2019) introduce

a measure of the dissatisfaction of the voters in terms of the L1 distance between a

given budget allocation and their ballot. This cannot be modelled by approval-based

satisfaction (even though they introduce it in a framework with knapsack ballots) as

the satisfaction of a voters depends on projects that are outside of the selected and

approved ones. It is important to keep in mind however that the authors deem this

measure of satisfaction to be of limited relevance when the projects are indivisible.

Ordinal Ballots

To measure satisfaction with ordinal ballots, one can associate each project in the

orderingwith a given satisfaction level. This is usually done through positional scoring

functions that associate each project with a score that only depends on the position

of the project in the ranking. That is the approach followed by Laruelle (2021) for

instance.

Satisfaction with ordinal ballots can also be defined in more general terms (not

simply mapping projects to scores). For instance, Aziz and Lee (2021) compare sets

of projects according to the cost of the projects ranked above a certain threshold,

where the threshold is context-dependent. Note that this assumption is never explic-

itly stated and that this reflects our understanding of their definitions.

3.2 Participatory Budgeting Rules

We now turn to PB rules. We introduce additional rules (on top of the ones defined

in Section 2.3) that are mainly used together with cardinal ballots.

Our exposition will start with welfare-maximising rules (Section 3.2.1). There-

after, we will discuss three rules based on the idea of finding budget allocations that

spread the cost of the selected projects nicely among the voters: the sequential Phrag-

mén rule (Section 3.2.2), the maximin support rule (Section 3.2.3), and the method of

equal shares (Section 3.2.4). A brief overview of the other rules that have been intro-

duced in PB will conclude this part of the chapter (Section 3.2.5).

3.2.1 Welfare-Maximising Rules

In a purely utilitarian view, agents are assumed to have cardinal preferences over

budget allocations and the aim is to select a budget allocation that maximises the

overall utility of the agents. That is, utilitarian rules aim to achieve high utilitarian

social welfare, where the utilitarian social welfare—which we denote by Util-SW—is

defined for a given instance I = ⟨P , c, b⟩, budget allocation π ∈ Feas(I) and a utility
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function µi : 2
P → R≥0 for every agent i ∈ N as:

Util-SW(I, (µi)i∈N , π) =
∑
i∈N

µi(π).

Here, µi(π) denotes the utility of agent i for allocation π. As already mentioned,

the decision maker does not have access to the utility of the agents, so welfare-

maximising rules have to be defined in terms of the assumed satisfaction for a given

ballot.

When using cardinal ballots we usually assume that the satisfaction of an agent

is equivalent to their cardinal ballot. Therefore the above definition directly induces

a PB rule if, in a slight abuse of notation, we equate the ballot of a voter with their

utility. For a given I andA, the rule selects the budget allocation that maximises:
16

Util-SW(I,A, π) =
∑
i∈N

∑
p∈P

Ai(p).

This measures the total satisfaction of the voters (assuming additivity of the ballots).

Still with cardinal ballots, Fluschnik, Skowron, Triphaus and Wilker (2019) study

the utilitarian Chamberlin-Courant social welfare (that aims at finding diverse knap-

sacks in their terminology) with cardinal ballots. They also study the maximisation

of the Nash social welfare, defined as the product of the satisfaction of the agents

(once again defined formally in Section 3.5.2). Their motivation is more algorithmic,

however, and they don’t necessarily aim to devise PB rules.

When it comes to approval ballots, the main rules considered areMaxCard, Max-

Cost, GreedCard andGreedCost as introduced in Section 2.3.1. On top of these four

rules, Talmon and Faliszewski (2019) introduce five extra rules. They additionally con-

sider welfare defined in terms of satCC
(see Section 3.1.5), and another greedy scheme

to approximate the maximum social welfare (proportional greedy rules). Baumeister,

Boes and Seeger (2020) complemented the work of Talmon and Faliszewski (2019),

showing that two of their rules are actually equivalent, and introducing another

greedy scheme (hybrid greedy rules).

Another measure of social welfare was studied by Sreedurga, Bhardwaj and Nara-

hari (2022) in the context of PB with approval ballots: maximin social welfare—which

we call egalitarian social welfare in Section 3.5.2—that measures the welfare of a soci-

ety as the satisfaction of its least satisfied member. Sreedurga, Bhardwaj and Narahari

(2022) consider the maximisation of the egalitarian social welfare as a PB rule, study-

ing its computation and its axiomatic properties.

Finally, coming to ordinal ballots, Laruelle (2021) studieswelfare-maximising rules

with weak ordinal ballots where positional scoring functions are used to measure

16
Note that even though the signature of the functions may look the same, there is a clear conceptual

difference between the social welfare defined with utility functions, and Util-SW for cardinal ballots:

the former uses private information of the voters, while the latter is only defined with respect to public

information provided in the ballots.
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the satisfaction of a voter (thus obtaining something equivalent to cardinal ballots).

Within this framework, Laruelle (2021) defines greedy approximations of the utili-

tarian social welfare, and one greedy approximation for Chamberlin-Courant social

welfare (there called Rawlsian social welfare) that aims at providing every agent with

at least one satisfactory project (see Section 3.5.2 for a formal definition).

3.2.2 The Sequential Phragmén Rule
We breifly come back to the SeqPhrag rule that we introduced in Definition 2.3.2.

We provided there its continuous formulation. We will now introduce the discrete

formulation where the loads of the voters are to be balanced (see, e.g., Brill, Forster,

Lackner, Maly, and Peters, 2023). The two formulations are equivalent.

Definition 3.2.1 (Sequential Phragmén, Discrete Formulation). Given an instance I
and a profileA of approval ballots, the sequential Phragmén rule, SeqPhrag, constructs

a budget allocation π, initially empty, iteratively as follows. A load ℓi : 2
P → R≥0, is

associated with every agent i ∈ N , initialised as ℓi(∅) = 0 for all i ∈ N . Given π, the
new maximum load for selecting project p ∈ P \ π is defined as:

ℓ⋆(π, p) =
c(p) +

∑
i∈N Ai(p) · ℓi(π)

|{i ∈ N | Ai(p) = 1}|
.

At a given round with current budget allocation π, let P ⋆ ⊆ P be such that:

P ⋆ = argmin
p∈P\π

ℓ⋆(π, p).

If there exists p ∈ P ⋆
such that c(π ∪ {p}) > b, SeqPhrag terminates and outputs π.

Otherwise, a project p ∈ P ⋆
is selected (π is updated to π∪{p}) and the agents’ loads are

updated: If Ai(p) = 0, then ℓi(π ∪ {p}) = ℓi(π), and otherwise ℓi(π ∪ {p}) = ℓ⋆(π, p).

To obtain a resolute rule one needs to break the ties among the projects in any P ⋆
.

The irresolute rule is obtained by considering all possible ways of breaking such ties.

3.2.3 The Maximin Support Rule
The sequential Phragmén rule can be adapted to allow for redistributing the loads in

each round. This leads to the maximin support rule. This rule was first introduced by

Aziz, Lee and Talmon (2018) in the PB setting. Note that, as observed by Brill, Forster,

Lackner, Maly and Peters (2023), they named it sequential Phragmén though they

actually generalised the maximin support rule from multi-winner voting (Sánchez-

Fernández, Fernández-García, Fisteus and Brill, 2022). It is defined as follows.

Definition 3.2.2 (Maximin Support Rule). Given an instance I and a profileA of ap-

proval ballots, the maximin support rule,MaximinSupp, constructs a budget allocation

π, initially empty, iteratively as follows.
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Given I ,A and a subset of projects P ⊆ P , a load distribution ℓ = (ℓi)i∈N for P is

a collection of functions ℓi : 2
P → R≥0 for every agent i ∈ N such that

∑
i∈N ℓi = c(p)

for all projects p ∈ P and ℓi(p) = 0 for all agent i ∈ N and project p ∈ P for which

Ai(p) = 0. Omitting I andA, letL(P ) be the set of all the load distributions for P ⊆ P .
At a given round with current budget allocation π, let P ⋆ ⊆ P be such that:

P ⋆ = argmin
p∈P\π

max
ℓ∈L(π∪{p})

i∈N

∑
p′∈π∪{p}

ℓi(p).

If there exists p ∈ P ⋆
such that c(π ∪ {p}) > b, the maximin support rule terminates

and outputs π. Otherwise, a project p ∈ P ⋆
is selected (π is updated to π ∪ {p}) and a

new round begins.

Once again, to obtain a resolute rule one needs to break the ties among the projects in

anyP ⋆
. The irresolute variant is obtained by considering all possible ways of breaking

such ties.

Note that in their definition, Aziz, Lee and Talmon (2018) provide a linear program

to compute efficiently the optimum load distribution in each round.

Interestingly, we know from the multi-winner voting literature that Maximin-

Supp provides approximation guarantees (to the optimum load distribution ) that Se-

qPhrag does not (Cevallos and Stewart, 2021). This makes it a rule that deserves

further investigation.

3.2.4 The Method of Equal Shares
Let us now discuss MES, a rule we introduced in Section 2.3.3. This rule can also be

used with profiles of cardinal ballots, we provide the definition below.

Definition 3.2.3 (Method of Equal Shares for Cardinal Ballots). Given an instance

I = ⟨P , c, b⟩ and a profile A of cardinal ballots, the method of equal shares, MES,

constructs a budget allocation π, initially empty, iteratively as follows.

A load ℓi : 2
P → R≥0, is associated with every agent i ∈ N , initialised as ℓi(∅) = 0

for all i ∈ N . The load represents how much virtual money the agents have spent.

Given π and a scalar α ≥ 0, the contribution of agent i ∈ N for project p ∈ P \ π
is defined by:

γi(π, α, p) = min (b/n− ℓi(π), α · Ai(p)) .

This is the amount i would pay to buy project p for a given α. Note that the above means

that agents are initially provided b/n units of the virtual currency.
Given a budget allocation π, a project p ∈ P \ π is α-affordable, for α ≥ 0, if∑

i∈N

γi(π, α, p) ≥ c(p).

A project p is thus α-affordable if all the agents can contribute enough to afford p for the
given α.
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At a given round with current budget allocation π, if no project is α-affordable for
any α, MES terminates.

Otherwise, it selects a project p ∈ P \π that is α⋆
-affordable where α⋆

is the smallest

α such that one project is α-affordable (π is updated to π ∪ {p}). The agents’ loads are
then updated: ℓi(π ∪ {p}) = ℓi(π) + γi(π, α, p). A new round then starts.

The above definition gives rise to a resolute rule (when ties among α⋆
-affordable

projects are broken arbitrarily). For the irresolute variant of the rule, one would need

to consider all ways to break the ties between α⋆
-affordable projects at each round.

We observe that MES does not necessarily spend the whole budget, i.e., it is not

exhaustive. Indeed, it is possible that no project is α-affordable for any α, in which

case MES returns the empty set. For this reason, in practice MES nearly always needs

to be combined with a completion method. We discuss this point in more detail in

Section 3.4.1.

3.2.5 Other Rules for Participatory Budgeting
We have introduced what we believe to be the most prominent rules in the literature

for PB. These are obviously not the only ones that have been defined. We briefly

comment on other rules.

In the multi-winner literature, Thiele methods play an important role (Lackner

and Skowron, 2023). It can thus be surprising that this is not the case in the PB

setting. It turns out that these rules do not behave as nicely in PB as they did in

multi-winner voting. In particular, Proportional Approval Voting (PAV) that provides

interesting proportionality guarantees in multi-winner voting (Aziz, Brill, Conitzer,

Elkind, Freeman andWalsh, 2017), no longer enjoys them in the PB setting as observed

by Peters, Pierczyński and Skowron (2021) and Los, Christoff and Grossi (2022).

Among the other rules that have been defined, Skowron, Slinko, Szufa and Talmon

(2020) propose an adaptation of the multi-winner variant of the Single Transferable

Vote rule (STV) in the PB setting with cumulative ballots.

When considering ordinal ballots, Aziz and Lee (2021) introduced the expanding-

approvals rule for PB. Peters, Pierczyński and Skowron (2021) proposed an ordinal

version of MES, showing that it is an expanding-approvals rule.
17

3.3 Fairness in Indivisible Participatory Budgeting
Throughout this section we will study different PB rules in terms of their fairness

guarantees. This represents the largest share of the literature devoted to the analysis

of PB rules and has proved to be a rich and fruitful research direction.

This section is mainly organised around the different types of fairness require-

ments that have been introduced. We will start with the concepts revolving around

17
This part is only available in the extended version, available at arxiv.org/abs/2008.13276.

https://arxiv.org/abs/2008.13276
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justified representation (Section 3.3.1) which will naturally lead us to the idea of the

core (Section 3.3.2). Wewill then discuss the idea of priceability (Section 3.3.3). Broad-

ening our perspective, our next focus will be fairness in ordinal PB (Section 3.3.4), and

more generally all the other notions of fairness that have been introduced (Section

3.3.5). Fairness in extended models of PB will then be discussed (Section 3.3.6). We

will conclude by attempting to unify everything by drawing taxonomies linking the

different requirements to each other (Section 3.3.7).

3.3.1 Extended and Proportional Justified Representation

The main part of the research on fairness in PB focuses on adapting to PB the well

studied concept of justified representation from the multi-winner voting literature

(Aziz, Brill, Conitzer, Elkind, Freeman and Walsh, 2017; Aziz, Elkind, Huang, Lack-

ner, Sanchez-Fernandez and Skowron, 2018; Bredereck, Faliszewski, Kaczmarczyk and

Niedermeier, 2019; Peters and Skowron, 2020; Lackner and Skowron, 2023). The idea

behind justified representation is that groups of agents that are large enough and sim-

ilar enough—the so-called cohesive groups—deserve to be satisfied with a fraction of

the outcome that is proportional to their size.

In the following we will define the most important concepts related to justified

representation and present the main results from the literature. Figures 3.3.1 and 3.3.2

summarise (among others) the results presented in this section.

Justified Representation with Cardinal Ballots

We first consider the general case of cardinal ballots. A special focus on approval

ballots will come later.

Cohesive groups for cardinal ballots. Let us start with the definition of cohesive

groups. We follow the definition of Peters, Pierczyński and Skowron (2021).

Definition 3.3.1 ((α, P )-Cohesive Groups). Given an instance I = ⟨P , c, b⟩ and a

profile A of cardinal ballots, a non-empty group of agents N ⊆ N is said to be (α, P )-
cohesive, for a function α : P → [0, 1] and a set of projects P ⊆ P , if the following two
conditions are satisfied:

▶ α(p) ≤ Ai(p) for all i ∈ N and p ∈ P , that is, α is lower-bounding the score of

the agents in N for the projects in P ;

▶ |N |
n
· b ≥ c(P ), that is, N ’s share of the budget is enough to afford P .

Overall, for any (α, P )-cohesive group of agents N ⊆ N , it should be that N is (i)
large enough to afford the projects in P , and, (ii) cohesive enough to “deserve” the

satisfaction they receive from the projects in P , measured by α.
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We will make use of one specific function α denoted by αmin
and defined for any

profileA and subset of agents N ⊆ N as:

αmin
N,A(p) = min

i∈N
Ai(p), for all p ∈ P .

This function simply takes the minimum score submitted by any agent in N for

project p. Note that for every group of agents N ⊆ N and subset of projects P ⊆ P ,
if |N |/n · b ≥ c(P ) then N is (αmin

N,A, P )-cohesive.

Extended justified representation for cardinal ballots. Wewant to ensure that

cohesive groups receive what they deserve. But what exactly do cohesive groups

deserve? Consider an (α, P )-cohesive group N . Since agents in N control enough

share of the budget to afford P , the most natural idea would be to guarantee all agents

inN at least as much satisfaction as they all agreeP would offer them (captured byα).
This idea is captured by the following axiom: strong extended justified representation.

18

Definition 3.3.2 (Strong Extended Justified Representation). Given an instance I =
⟨P , c, b⟩ a profileA of cardinal ballots, a budget allocation π ∈ Feas(I) is said to satisfy
strong extended justified representation (Strong-EJR) if for all P ⊆ P , allN ⊆ N that

is (αmin
N,A, P )-cohesive groups, and all i ∈ N , we have:∑

p∈π

Ai(p) ≥
∑
p∈P

min
i∈N

Ai(p).

Remember that when using cardinal ballots, we made the assumption that the satis-

faction of an agent behaves additively, so the left-hand side of the inequality above

represents the agent’s satisfaction.

Even though Strong-EJR is quite appealing (or at least somewhat natural), it is

unsatisfiable in general. This was already observed in multi-winner voting (Aziz,

Brill, Conitzer, Elkind, Freeman and Walsh, 2017).

Given this impossibility, the focus is usually put on (simple) extended justified rep-

resentation (Aziz, Brill, Conitzer, Elkind, Freeman andWalsh, 2017; Peters, Pierczyński

and Skowron, 2021). This is a weakening of Strong-EJR requiring only one member of

each cohesive group to reach the satisfaction threshold. We thus switch one quantifier

from a universal one to an existential one in the definition.

Definition 3.3.3 (Extended Justified Representation). Given an instance I = ⟨P , c, b⟩
a profile A of cardinal ballots, a budget allocation π ∈ Feas(I) is said to satisfy ex-

tended justified representation (EJR) if for allP ⊆ P and allN ⊆ N that is (αmin
N,A, P )-

cohesive groups, there exists i ∈ N such that:∑
p∈π

Ai(p) ≥
∑
p∈P

min
i∈N

Ai(p).

18
Note here that we slightly differ from the definition of Peters, Pierczyński and Skowron (2021).

Indeed, in the definition of Strong-EJR (and EJR) they consider any (α, P )-cohesive group while we

only use a specific α, namely αmin
. The two definitions are however equivalent and we believe this

one to be clearer since it requires one less universal quantifier.
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The first thing to note is that EJR does not suffer the same drawback as Strong-EJR:

it can always be satisfied.

Theorem 3.3.4 (Peters, Pierczyński and Skowron 2021). For every instance I , there
exists a budget allocation π ∈ Feas(I) that satisfies EJR.

What Peters, Pierczyński and Skowron (2021) actually prove is that a greedy cohesive

rule
19
always returns a feasible budget allocation that satisfies EJR (it even satisfies

full justified representation, see Section 3.3.5). This rule is interesting at a theoretical

level but is quite artificial and thus not really appealing at a practical level. One of

its main drawbacks is that it runs in exponential time. This however, seems to be

unavoidable to satisfy EJR.

Theorem 3.3.5 (Peters, Pierczyński and Skowron 2021). There is no strongly-poly-

nomial time algorithm that computes, given an instance I and a profile A of cardi-

nal ballots, a budget allocation π ∈ Feas(I) satisfying EJR unless P = NP, even if there

is only one voter.

Interestingly, the hardness proof shows that the running time of an algorithm finding

an EJR budget allocation has to be exponential in log(b), while the greedy cohesive

rule mentioned above runs in time exponential in n, the number of voters. Closing

this gap is an interesting open problem.

Let us quickly mention another computational result: checking whether a given

budget allocation satisfies EJR is a coNP-complete problem. This is because it was

already the case in the unit-cost setting with approval ballots (Aziz, Brill, Conitzer,

Elkind, Freeman and Walsh, 2017).

In the hope of achieving polynomial-time computability, a relaxation of EJR has

been introduced: EJR up to one project (EJR-1). It relaxes EJR in the following way:

for each cohesive group N , it can be the case that no agent in N enjoys enough

satisfaction, but, at least one agent would reach the desired level of satisfaction if we

were to select an additional project. This concept can be interpreted as requiring that

the satisfaction can only be at most one project away from the objective.

Definition 3.3.6 (Extended Justified Representation up to One Project). Given an

instance I = ⟨P , c, b⟩ a profile A of cardinal ballots, a budget allocation π ∈ Feas(I)
is said to satisfy extended justified representation up to one project (EJR-1) if for all

P ⊆ P and all N ⊆ N that is (αmin
N,A, P )-cohesive groups, there exists i ∈ N such that

either

∑
p∈π Ai(p) ≥

∑
p∈P mini∈N Ai(p), or for some p⋆ ∈ P \ π we have:

Ai(p
⋆) +

∑
p∈π

Ai(p) >
∑
p∈P

min
i∈N

Ai(p).

19
The idea behind a greedy cohesive rule is to consider all cohesive groups and to greedily select

sets of projects P for which there is a suitable (α, P )-cohesive group with “maximum” α. This defines
a general scheme to devise procedures as the notion of “suitable cohesive group” differs depending on

the goal. Such procedures have notably been defined and used by Aziz, Lee and Talmon (2018) and

Peters, Pierczyński and Skowron (2021).
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One might be surprised by the strict inequality in the definition above. It is there

for technical reasons: It ensures that EJR and EJR-1 coincide in the unit-cost setting

when used with approval ballots.
20

It also has interesting consequences in terms of

the fairness properties that EJR-1 implies.
21

One of the main results from Peters, Pierczyński and Skowron (2021) is that MES

does satisfy EJR-1. Given that MES runs in strongly-polynomial-time, this shows that

a budget allocation satisfying EJR-1 can always be computed in polynomial time.

Theorem 3.3.7 (Peters, Pierczyński and Skowron 2021). For every instance I and

profile A of cardinal ballots, MES(I,A) satisfies EJR-1.

Proportional justified representation for cardinal ballots. Going down the list

of weakenings of Strong-EJR, we have now reached proportional justified representa-

tion (PJR) (Sánchez-Fernández, Elkind, Lackner, Fernández, Fisteus, Val and Skowron,

2017). While EJR required at least one member of each cohesive group to enjoy the

required satisfaction, PJR requires the group altogether—acting as a single agent—to

achieve the required satisfaction. We provide below the definition from Los, Christoff

and Grossi (2022) who defined it for PB with cardinal ballots.

Definition 3.3.8 (Proportional Justified Representation). Given an instance I =
⟨P , c, b⟩ a profile A of cardinal ballots, a budget allocation π ∈ Feas(I) is said to

satisfy proportional justified representation (PJR) if for all P ⊆ P and all N ⊆ N
that is (αmin

N,A, P )-cohesive groups N we have:∑
p∈π

max
i∈N

Ai(p) ≥
∑
p∈P

min
i∈N

Ai(p).

It should be quite obvious that any budget allocation satisfying EJR also satisfies

PJR. From this, we can derive that theorems 3.3.4 and 3.3.5 also apply to PJR. Specifi-

cally, we know that (i) for every instance, there exists a feasible budget allocation that
satisfies PJR, and (ii) there exists no polynomial-time algorithm computing PJR bud-

get allocations unless P = NP. The second point holds because PJR and EJR coincide

when there is only a single agent and Theorem 3.3.5 holds for one-agent profiles.

Interestingly, the problem of checking whether a budget allocation satisfies PJR or

not is still coNP-complete (remember that this was already the case for EJR), and that,

already on unit-cost instances with approval ballots (Aziz, Elkind, Huang, Lackner,

Sanchez-Fernandez and Skowron, 2018).

20
EJR and EJR-1 do not coincide in the unit-cost setting with generic cardinal ballots as presented

by Peters, Pierczyński and Skowron (2021) in Footnote 8 of the ArXiv version.

21
Notably, having a strict inequality ensures that EJR-1 implies a property that could be called basic

proportionality, which requires that if for a group of agentsN there exists aP ⊆ P such that |N |/n·b ≥
c(P ) and Ai(p) = Aj(p) > 0 if and only if p ∈ P for all i, j ∈ N , then P must be selected. This is not

the case if EJR-1 is defined with a weak inequality.
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Los, Christoff and Grossi (2022) show that a PB adaption of the PAV rule fails

to satisfy PJR. This might come as a surprise since PAV satisfies EJR in the case of

multi-winner voting elections.

This last property concludes our section on cardinal ballots.

Justified Representation with Approval Ballots

All we presented above for cardinal ballots also applies in the case of approval ballots.

However, since approval ballots are a special case of cardinal ballots, the definitions

can be simplified and stronger results can be obtained.

Cohesive groups for approval ballots. With cardinal ballots we had to introduce

the α parameter to the definition of a cohesive group, since agents could assign dif-

ferent scores to the projects. This is not necessary with approval ballots.

Definition 3.3.9 (P -cohesive groups). Given an instance I = ⟨P , c, b⟩ and a profile

A of approval ballots, a non-empty group of agents N ⊆ N is said to be P -cohesive,

for a set of projects P ⊆ P , if the following two conditions are satisfied:

▶ for all p ∈ P and i ∈ N ,Ai(p) = 1, that is, every agent inN approves all projects

in P ;

▶ |N |
n
· b ≥ c(P ), that is, N ’s share of the budget is enough to afford P .

Remember the interpretation we had of cohesive groups: these are groups of

agents that deserve some satisfaction in the final outcome. When using approval bal-

lots, we will use satisfaction functions as introduced in Definition 2.2.1 as measures

of satisfaction.

Extended justified representation for approval ballots. We are now ready to

introduce concepts based on justified representation for approval ballots. Note that

they are all parameterised by a satisfaction function. We start with Strong-EJR.

Definition 3.3.10 (Strong-EJR for Approval Ballots). Given an instance I = ⟨P , c, b⟩
a profile A of approval ballots, and a satisfaction function sat , a budget allocation

π ∈ Feas(I) is said to satisfy strong extended justified representation for sat (Strong-
EJR[sat]) if for all P ⊆ P and all P -cohesive groupsN , we have sat i(π) ≥ sat i(P ) for
all agents i ∈ N .

As for cardinal ballots, Strong-EJR[sat] is appealing, but not satisfiable in general.
22

22
We are not aware of this result existing in the literature. The proof is rather simple. It relies on a

counterexample using three projects p1, p2, and p3, all of cost 1. The budget limit is 2. There are four

agents with the following ballots: Agent 1 approves only of p1, agent 2 approves only of p2, agent 3
approves only of p3, and agent 4 approves of p1, p2 and p3. Recall that we assume for any satisfaction

function sat that sat(P ) = 0 if and only if P = ∅. Therefore, the only way to satisfy Strong-EJR[sat]
is to select p1, p2, and p3, which is not possible with b = 2.
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Proposition 3.3.11. For any satisfaction function sat , there exists an instance I such

that no budget allocation π ∈ Feas(I) satisfies Strong-EJR[sat].

EJR can also be adapted quite naturally to this setting and can be shown to be

always satisfiable in exponential time (using some greedy cohesive rule).

Definition 3.3.12 (Extended Justified Representation for Approval Ballots). Given

an instance I = ⟨P , c, b⟩ a profileA of approval ballots, and a satisfaction function sat ,
a budget allocation π ∈ Feas(I) is said to satisfy extended justified representation for

sat (EJR[sat]) if for all P ⊆ P and all P -cohesive groups N , there exists i ∈ N such

that sat i(π) ≥ sat i(P ).

Theorem 3.3.13 (Brill, Forster, Lackner, Maly and Peters 2023). For every instance I
and every satisfaction function sat , there exists a budget allocation π ∈ Feas(I) that
satisfies EJR[sat].

Unfortunately, for large classes of satisfaction functions, it is not possible to satisfy

EJR in polynomial time.

Theorem 3.3.14 (Brill, Forster, Lackner, Maly and Peters 2023). Let I be an instance

and sat be a satisfaction function such that for all P, P ′ ⊆ P such that c(P ) < c(P ′)we
have sat(P ) < sat(P ′). Then, there is no algorithm running in strongly-polynomial-

time that computes, given an instance I and a profile A of approval ballots, a budget

allocation π ∈ Feas(I) satisfying EJR-[sat] unless P = NP, even if there is only one

voter.

It is important to note that satcard is not captured by the above statement, and indeed,

budget allocations satisfying EJR[satcard ] can always be computed in polynomial time

using MES[satcard ] (Peters, Pierczyński and Skowron, 2021; Los, Christoff and Grossi,

2022). This is because for satcard , EJR[satcard ] and EJR-1[satcard ] coincide (the latter
is defined below).

For the same reasons as when we were considering cardinal ballots, checking

whether a budget allocation satisfies EJR or not is a coNP problem.

EJR-1 can also be adapted quite naturally to the approval setting. Remember that

Peters, Pierczyński and Skowron (2021) proved that MES always returns a budget

allocation satisfying EJR-1. Since additive satisfaction functions can be interpreted

as cardinal ballots, one can always compute an EJR-1[sat] budget allocations, for an
additive satisfaction function sat , by running MES with the cardinal ballots corre-

sponding to sat . In the approval setting, we can go further and get the same result

for EJR up to any project.

Definition 3.3.15 (EJR up to Any Project for Approval Ballots). Given an instance

I = ⟨P , c, b⟩ a profile A of approval ballots, and a satisfaction function sat , a bud-

get allocation π ∈ Feas(I) is said to satisfy extended justified representation up to

any project for sat (EJR-X[sat]) if for all P ⊆ P and all P -cohesive groups N , there

exists i ∈ N such that for all p⋆ ∈ P \ π we have sat i(π ∪ {p⋆}) > sat i(P ).
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EJR-X is a strengthening of EJR-1 that uses a universal quantifier on the project that

bounds the distance between the justified and the actual satisfaction of an agent, in-

stead of an existential one.

One of the main results from Brill, Forster, Lackner, Maly and Peters (2023) is that

for a natural class of satisfaction functions, namely decreasing normalised satisfaction

functions, the outcome of MES[sat] always satisfies EJR-X[sat].

Definition 3.3.16 (DNS Function). We say a satisfaction function sat has weakly de-

creasing normalised satisfaction (DNS) if for all projects p, p′ ∈ P with c(p) ≤ c(p′),
we have:

sat(p) ≤ sat(p′) and

sat(p)

c(p)
≥ sat(p′)

c(p′)
.

In this case, we call sat a DNS function.

DNS functions ensure that more expensive projects are (weakly) better than cheaper

ones; and that more expensive projects do not provide more satisfaction per cost than

cheaper ones. Crucially, satcost and satcard are DNS functions.

Theorem 3.3.17 (Brill, Forster, Lackner, Maly and Peters 2023). Let sat be a DNS

function. Then, for any instance I and profile A of approval ballots, MES[sat ](I,A)
satisfies EJR-X[sat].

Before moving on to PJR for approval ballots, let us touch on an additional topic.

Fairstein, Vilenchik, Meir and Gal (2022) study the consequences of satisfying EJR on

measures of social welfare and representation.
23
Specifically, they provide bounds on

the social welfare and representation guarantees of rules satisfying EJR[satcard ]. In
other words, they compare the maximally achievable social welfare with respect to

satcard and satCC
to the social welfare achieved by rules satisfying EJR.

24

Theorem 3.3.18 (Fairstein, Vilenchik, Meir and Gal 2022). Let F be a PB rule that sat-
isfies EJR[satcard ]. Then for any instance I = ⟨P , c, b⟩ and profileA of approval ballots,

we have:

cmin

n · b

⌊
b

cmax

⌋
≤

∑
i∈N

satcardi (F(I,A))

max
π∈Feas(I)

∑
i∈N

satcardi (π)
≤ 4√

n
− 1

n
,

where cmin = minp∈P c(p) and cmax = maxp∈P c(p).

23
Fairstein, Vilenchik, Meir and Gal (2022) also perform a similar analysis for specific rules. How-

ever, these rules are not part of the standard set of rules we study in this paper.

24
Let us also mention that Lackner and Skowron (2020) studied the same questions in the multi-

winner voting setting.
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Moreover, for any instance I = ⟨P , c, b⟩ and profile A of approval ballots, we have:

1

n
≤

∑
i∈N

satCC(F(I,A))

max
π∈Feas(I)

∑
i∈N

satCC(π)
≤ 1

n− 1
,

where the upper bound holds if n ≥ b/cmin with cmin defined as above.

Proportional justified representation for approval ballots. Let us now move

on to PJR. Three main sets of authors have adapted PJR in the context of PB with

approval ballots: Aziz, Lee and Talmon (2018), Los, Christoff and Grossi (2022) and

Brill, Forster, Lackner, Maly and Peters (2023).

We first provide the definition of PJR as stated by Brill, Forster, Lackner, Maly and

Peters (2023).

Definition 3.3.19 (Proportional Justified Representation for Approval Ballots). For

an instance I = ⟨P , c, b⟩ a profileA of approval ballots, and a satisfaction function sat ,
a budget allocation π ∈ Feas(I) is said to satisfy proportional justified representation

for sat (PJR[sat]) if for all P ⊆ P and all P -cohesive groups N , we have:

sat

(⋃
i∈N

{p ∈ π | Ai(p) = 1}

)
≥ sat(P ).

Similar adaptions of PJR to the PB setting have also been studied. PJR[satcost] is
equivalent to the BPJR-L property introduced by Aziz, Lee and Talmon (2018).

25
Aziz,

Lee and Talmon (2018) also defined variants of (B)PJR based on the relative budget,

which will be discussed in Section 3.3.5. Finally, PJR[satcard ] has been introduced by

Los, Christoff and Grossi (2022).

For now, let us focus on PJR[sat]. It should be clear that for any satisfaction

function sat , EJR[sat] implies PJR[sat]. Thus, for any instance I and profile A of

approval ballots, there exists a budget allocation satisfying PJR[sat], however for a
large class of satisfaction functions, it cannot be computed in polynomial time (see

Theorem 3.3.14 for the exact condition on the satisfaction function). Finally, checking

PJR[sat] is coNP-complete for any sat that is neutral with respects to projects with

the same cost, and that already holds in the unit-cost setting.

As we did for EJR, we can then introduce PJR-X.

Definition 3.3.20 (PJR up to Any Project for Approval Ballots). Given an instance

I = ⟨P , c, b⟩ a profile A of approval ballots, and a satisfaction function sat , a bud-

get allocation π ∈ Feas(I) is said to satisfy proportional justified representation up to

25
Note that the definition of BPJR-L proposed by Aziz, Lee and Talmon (2018) looks more involved

than PJR[satcost ] as they do not use the notion of cohesive groups. Close inspection should convince

the reader that these two definitions are equivalent.
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any project for sat (PJR-X[sat]) if for all P ⊆ P and all P -cohesive groupsN and any

p⋆ ∈ P \ π, we have:

sat

(
{p⋆} ∪

⋃
i∈N

{p ∈ π | Ai(p) = 1}

)
> sat(P ).

Remember that we know for any DNS function sat (Definition 3.3.16), that EJR-

X[sat] can be satisfied (Theorem 3.3.17). Since PJR-X[sat] is implied by EJR-X[sat],
this result also applies to PJR-X[sat]. Brill, Forster, Lackner, Maly and Peters (2023)

actually prove something stronger: PJR-X[sat] can be satisfied simultaneously for

every DNS function sat .

Theorem 3.3.21 (Brill, Forster, Lackner, Maly and Peters 2023). Let I be an instance

andA a profile. Then, SeqPhrag(I,A),MaximinSupp(I,A) andMES[satcard ](I,A)
satisfy PJR-X[sat] for all DNS functions sat simultaneously.

Interestingly, Brill, Forster, Lackner, Maly and Peters (2023) actually proved that this

result holds for all rules satisfying a certain strengthening of priceability, as we will

see later on (in Section 3.3.3).

This result is rather far-reaching given its generality. Note that it generalises the

result of Los, Christoff and Grossi (2022) who prove that SeqPhrag satisfies PJR-

1[satcard ]. It also generalises the result of Aziz, Lee and Talmon (2018) that Maximin-

Supp satisfies a property called Local-BPJR-L[satcost] as explained below.

Finally, note that this result cannot be generalised to EJR-X, as Brill, Forster, Lack-

ner, Maly and Peters (2023) show that there are instances where EJR-1[satcost ] and
EJR-1[satcard ] are incompatible.

Before Brill, Forster, Lackner, Maly and Peters (2023) introduced their definition of

PJR parameterised by a satisfacion function, Aziz, Lee and Talmon (2018) defined PJR

for PB with approval ballots. As we have mentioned before, they introduced an axiom

called BPJR-L—that is equivalent to PJR[satcost]—and proved that budget allocations

satisfying it could not be found in polynomial time (unless P = NP). Due to this ob-

servation, they introduced Local-BPJR-L, a weakening of PJR[satcost]. Let us provide
the definition of this axiom. Note that we use here the definition of Brill, Forster,

Lackner, Maly and Peters (2023) who extended it to work with arbitrary satisfaction

functions. The original definition of Aziz, Lee and Talmon (2018) would correspond

to Local-BPJR-L[satcost].

Definition 3.3.22 (Local Budget PJR for the Budget Limit). Given an instance

I = ⟨P , c, b⟩ a profile A of approval ballots, and a satisfaction function sat , a budget

allocation π ∈ Feas(I) is said to satisfy Local-BPJR-L[sat] if for all P ⊆ P and all

P -cohesive groups N , it is the case that for every P ⋆ ⊆ P such that {p ∈ π | ∃i ∈
N,Ai(p) = 1} ⊊ P ⋆

we have:

P ⋆ /∈ argmax
P ′⊆{p∈P|∀i∈N,Ai(p)=1}

c(P ′)≤c(P )

sat(P ′).
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One of the main results of Aziz, Lee and Talmon (2018) is that MaximinSupp satis-

fies Local-BPJR-L[satcost]. Later on, Brill, Forster, Lackner, Maly and Peters (2023) ex-

plored further the relationship between different properties and proved that any bud-

get allocation satisfying PJR-X[sat] also satisfies Local-BPJR-L[sat] (so SeqPhrag,

MaximinSupp and MES[satcost] all satisfy Local-BPJR-L[satcost]). In addition they

showed that in the unit-cost case, Local-BPJR-L does not coincide with PJR, while

PJR-X does.

It is also worth mentioning that Aziz, Lee and Talmon (2018) also introduced an-

other axiom called Strong-BPJR-L. It is satisfied by a budget allocation π if for ev-

ery ℓ ∈ [1, b], and for every group of voters N that controls ℓ units of budget, i.e.,
|N |/n · b ≥ ℓ, and that unanimously approve projects of total cost more than ℓ, i.e,
c({p ∈ P | ∀i ∈ N,Ai(p) = 1}) ≥ ℓ, we have c

(⋃
i∈N{p ∈ π | Ai(p) = 1}

)
≥ ℓ.

Because of the indivisibility of the projects, this axiom cannot always be satisfied.

Note that this definition implicitly uses the satisfaction function satcost as the groups
of voter claiming ℓ units of budget need to enjoy collectively a cost-satisfaction of at

least ℓ. Because of this limited applicability, we chose not to focus on this notion. Note

that Strong-BPJR-L is a strengthening of PJR[satcost] (which is equivalent to BPJR-L)

as the condition on the group of agents N is weaker.

3.3.2 The Core

Intuitively, EJR guarantees that in every cohesive group there is at least one voter that

receives as much satisfaction as the group could guarantee each member if the group

could spend their part of the budget as they wish. We now introduce a property that

is similar in spirit, called the core, though it does not rely on cohesive groups.

The Core with Cardinal Ballots

We start by providing the definition of the core. Note that it was first introduced by

Fain, Goel and Munagala (2016) for PB with divisible projects. The definition below,

though adapted to the indivisible PB setting, is very similar.

Definition 3.3.23 (The Core with Cardinal Ballots). Given an instance I = ⟨P , c, b⟩
and a profileA of cardinal ballots, a budget allocation π ∈ Feas(I) is in the core of I if
for every group of voters N ⊆ N and subset of projects P ⊆ P such that |N |/n ≥ c(P )/b,
there exists a voter i⋆ ∈ N with:∑

p∈π

Ai⋆(p) ≥
∑
p∈P

Ai⋆(p).

The core can be seen as a kind of stability condition which guarantees that no groups

of agents can “deviate” by taking their part of the budget to fund a set of projects

P that gives each agent in the group a higher satisfaction than π. The core of PB
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is inspired by the concept of the core in cooperative game theory (Scarf, 1967; Fain,

Goel and Munagala, 2016), but there is no direct technical link.

Interestingly, EJR can be viewed as a restriction of the core where only cohesive

groups are allowed to deviate. Therefore, the core can be seen as a generalisation of

EJR to arbitrary groups of agents.

It is known that there are instances where no budget allocation is in the core.

In this case, we say that the core of the instance is empty. Peters, Pierczyński and

Skowron (2021) present an instance with cardinal ballots in the unit-cost setting for

which the core is empty. They strengthen a first counter-example provided by Fain,

Munagala and Shah (2018) without the unit-cost assumption.
26

Proposition 3.3.24 (Peters, Pierczyński and Skowron 2021). There exists an instance
I with unit costs and profile A of cardinal ballots such that no budget allocation π ∈
Feas(I) is in the core, even if for every agent i ∈ N and project p ∈ P we have Ai(p) ∈
{0, 1, 2}.

Approximating the Core with Cardinal Ballots

We now know that the core can be empty. This raises the question whether it is

always possible to find budget allocations that are close to the core. We will present

some recent answers to this question below.

We start with amultiplicative approximation to the core as defined by Peters, Pier-

czyński and Skowron (2021). This approximates the core by bounding the satisfaction

the agents would enjoy when deviating.

Definition 3.3.25 (The α-sat Approximate Core with Cardinal Ballots). Given an

instance I = ⟨P , c, b⟩, a profile A of cardinal ballots, and a scalar α ≥ 1, a budget

allocation π ∈ Feas(I) is in the α-sat approximate core of I if for every group of voters
N ⊆ N and subset of projects P ⊆ P such that |N |/n ≥ c(P )/b, there exists a voter i⋆ ∈ N
and a project p⋆ ∈ P with:

∑
p∈π∪{p⋆}

Ai⋆(p) ≥
∑

p∈P Ai⋆(p)

α
.

Note that the above is actually an additive and multiplicative approximation of the

core as an extra project is also added. This follows from the known impossibility of

a (simply) multiplicative approximation of the core (Fain, Munagala and Shah, 2018;

Cheng, Jiang, Munagala and Wang, 2020; Munagala, Shen, Wang and Wang, 2022).

Using the above definition of an approximation of the core, Peters, Pierczyński

and Skowron (2021) showed that MES is never too far from the core.

26
This counterexample is described in the appendix on endowment-based core of Fain, Munagala

and Shah (2018), available at arxiv.org/abs/1805.03164.

https://arxiv.org/abs/1805.03164
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Theorem 3.3.26 (Peters, Pierczyński and Skowron 2021). Given an instance I =
⟨P , c, b⟩ and a profileA of cardinal ballots, let umax and umin be the highest and lowest

possible satisfaction of a voter, defined as:

umin = min
i∈N

min
π∈Feas

∃p∈π,Ai(p)>0

∑
p∈π

Ai(p) and umax = max
i∈N

max
π∈Feas(I)

∑
p∈π

Ai(p).

Then, MES(I,A) is in the α-sat approximate core of I for α = 4 log(2 · umax/umin).

The previous result shows that the O(log(|Feas(I)|))-sat approximate core is al-

ways non-empty for any instance I , and that a suitable budget allocation can be found
in polynomial-time. Munagala, Shen, Wang and Wang (2022) extend this result by

showing that the O(1)-sat approximate core is always non-empty, but it is unknown

whether the corresponding budget allocation can be found in polynomial-time.

Theorem 3.3.27 (Munagala, Shen, Wang and Wang 2022). For every instance I and

profile A of cardinal ballots, the 9.27-sat approximate core is always non-empty.

This result is obtained by some rather intricate rounding of fractional budget allo-

cations. Note that Munagala, Shen, Wang and Wang (2022) also obtain results for

non-additive cardinal ballots. These results are out of the scope of this survey.

Let us now delve into a second type of approximation of the core that has been

introduced: entitlement approximation. The idea here is that deviations of coalitions

of voters would not be possible if we were to scale down their entitlement (which is

equal to b/n in the definition of the core). We provide the definition of Jiang, Munagala

and Wang (2020) below.

Definition 3.3.28 (The α-Entitlement Approximate Core with Cardinal Ballots).
Given an instance I = ⟨P , c, b⟩, a profile A of cardinal ballots, and a scalar α ≥ 1, a
budget allocation π ∈ Feas(I) is in the α-entitlement approximate core of I if for ev-

ery group of voters N ⊆ N and subset of projects P ⊆ P such that |N |/n ≥ α · c(P )/b,
there exists a voter i⋆ ∈ N with:∑

p∈π

Ai⋆(p) ≥
∑
p∈P

Ai⋆(p).

By suitable rounding of lotteries over budget allocation, Jiang, Munagala and

Wang (2020) show that theO(1)-entitlement approximate core is always non-empty.

Theorem 3.3.29 (Jiang, Munagala and Wang 2020). For every instance I and profile

A of cardinal ballots, the 32-entitlement approximate core is always non-empty.

Using the above definition of approximate core, Munagala, Shen andWang (2022)

studied the problem of core auditing in PB. This is the computational problem that

seeks, given an instance I , a profileA of cardinal ballots and a budget allocation π ∈
Feas(I), what is the largestα such that π is not in theα-entitlement approximate core.

For this problem, Munagala, Shen and Wang (2022) prove different hardness results,

including hardness of approximation, and also provide an approximation algorithm.
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The Core with Approval Ballots

When we turn to approval ballots, the picture is quite different: We do not know if

the core is always non-empty or not, even for unit-cost instances. This is actually

one of the main open problems in the literature on multi-winner voting (Lackner and

Skowron, 2023).

For the sake of completeness, we provide below the definition of the core with

approval ballots.

Definition 3.3.30 (The Core with Approval Ballots). Given an instance I = ⟨P , c, b⟩,
a profile A of approval ballots and a satisfaction function sat , a budget allocation

π ∈ Feas(I) is in the core[sat] of I for sat if for every group of voters N ⊆ N and

subset of projects P ⊆ P such that |N |/n ≥ c(P )/b, there exists a voter i⋆ ∈ N with:

sat i⋆(π) ≥ sat i⋆(P ).

The question of whether we can always find a budget allocation in the core[sat]
is open, even for satcard and satcost .

3.3.3 Priceability
The next property on our agenda is priceability. The idea is that voters have access

to a virtual currency, and, if, by following simple rules, they can use their money

to fund a given budget allocation, then the latter will be called priceable. All voters

receive the same amount of virtual currency initially. In that sense, priceability is a

proportionality requirement as the power to influence the outcome is shared equally

among the voters. It can also be seen as an explainability requirement: a priceable

budget allocation is an outcome that could have been obtained if the process had been

run as a market.

The initial definition of priceability—in the context of multi-winner voting—is due

to Peters and Skowron (2020). We present below the adaptation of this definition to

the context of PB proposed by Peters, Pierczyński and Skowron (2021) for PB with

cardinal ballots.
27

Definition 3.3.31 (Priceability for Cardinal Ballots). Given an instance I = ⟨P , c, b⟩
and a profile A of cardinal ballots, a budget allocation π satisfies priceability, or is

priceable, if there exists an entitlement α ∈ R≥0 and a collection (γi)i∈N of contribution

functions γi : P → [0, α] such that all of the following conditions are satisfied.

C1: If γi(p) > 0 then Ai(p) > 0 for all p ∈ P and i ∈ N : Agents only contribute to

projects they derive satisfaction from.

27
Note that we changed the terminology to avoid using the terms “budget” and “price”, which can

be confused with the basic elements of an instance. This avoids sentences such as “π is priceable for a

budget B ≥ b”.
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C2: If γi(p) > 0 then p ∈ π for all p ∈ P and i ∈ N : Only projects in π receive

contributions.

C3:
∑

p∈P γi(p) ≤ α for all i ∈ N : The total contribution of an agent never exceeds

their entitlement α.

C4:
∑

i∈N γi(p) = c(p) for all p ∈ π: The projects in π are receiving sufficient contri-

butions to be funded.

C5:
∑

i∈N|Ai(p)>0

(
α−

∑
p∈P γi(p)

)
≤ c(p) for all p ∈ P \ π: No group of agents

supporting an unselected project p is left with more than c(p).

The pair ⟨α, (γi)i∈N ⟩ is called a price system.

Note that it would be more natural to have a strict inequality in (C5), i.e., to guarantee

that no group of agents has enough money left over to afford a project for which each

member of the group has positive utility. Unfortunately, this would be impossible to

satisfy as it is sometimes necessary to break ties between equally popular projects.

Moreover, in the definition of priceability we only distinguish between assigning

a zero score to a project, or a strictly positive score. Therefore, the definition does

not change whether cardinal or simply approval ballots are used. Note that this def-

inition of priceability requires the underlying assumption that satisfaction is strictly

monotonic.

Priceable Rules

Given the similarities between the definition of priceability and that of MES, it will

not surprise anyone that its outcome is always priceable. Maybe more surprisingly,

this also is the case for sequential Phragmén and the maximin support rules.

Proposition 3.3.32 (Peters, Pierczyński and Skowron 2021). For every instance I and
profile A of cardinal ballots, MES(I,A) is priceable.

Proposition 3.3.33 (Los, Christoff and Grossi 2022). For every instance I and profile

A of approval ballots, SeqPhrag(I,A) is priceable.

Proposition 3.3.34 (Brill, Forster, Lackner, Maly and Peters 2023). For every instance
I and profileA of approval ballots, MaximinSupp(I,A) is priceable.

Priceability and PJR

In the context of multi-winner voting, links have been drawn between PJR and price-

bility (Peters and Skowron, 2020). Brill, Forster, Lackner, Maly and Peters (2023) ex-

tend this result for PB with approval ballots. They show that priceability implies

PJR-X[satcost ]. More importantly, they show that a stronger notion of priceability

implies PJR-X[sat ] for all DNS functions sat (see Definition 3.3.16).
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Theorem 3.3.35 (Brill, Forster, Lackner, Maly and Peters 2023). For every instance

I = ⟨P , c, b⟩ and profileA of approval ballots, consider a budget allocation π ∈ Feas(I)
that is priceable for a price system ⟨α, (γi)i∈N ⟩ such that α > b and that also satisfies

the following additional condition:

C6:
∑

i∈N|Ai(p)>0 γi(p
′) ≤ c(p) for all p ∈ P \ π and p′ ∈ π: No group of agents can

save money by jointly shifting their contributions to a project that they all support.

Then, π satisfies PJR-X[sat] for every DNS function sat .

In particular, Brill, Forster, Lackner, Maly and Peters (2023) show that MES[satcard ],
SeqPhrag and MaximinSupp provide budget allocations that are priceable for their

extended notion of priceability, and thus satisfy PJR-X[sat] for every DNS sat .

3.3.4 Proportionality in Ordinal PB
Until now, we have focused on cardinal ballots. In the following we consider ordinal

ballots and proportionality requirements for such ballots.

Aziz and Lee (2021) is the main reference here. In their work, they generalise

proportionality concepts for multi-winner voting with strict ordinal ballots, to the

setting of PB with weak ordinal ballots. These concepts are all based on the idea of

solid coalitions, the counterpart of cohesive groups when ballots are ordinal.

Definition 3.3.36 (Solid Coalition). Let I = ⟨P , c, b⟩ be an instance and considerA =
(≿i)i∈N a profile of weak ordinal ballots. Given a subset of projects P ⊆ P , a group of

voters N ⊆ P is a P -solid coalition if for all voters i ∈ N and projects p ∈ P , we have

p ≿i p
′
for all p′ ∈ P \ P .

A group of voters N is thus a P -solid coalition if they all prefer the projects in P to

the ones outside of P .

Equipped with solid coalitions, Aziz and Lee (2021) define two incomparable gen-

eralisations of the proportionality for solid coalitions (Dummett, 1984). Before defin-

ing them, we introduce new notation. Interpret a weak order ≿ over P as a vec-

tor of indifference classes ≿= (P1, P2, . . .) such that all projects in Pj are preferred

to the ones in Pj+1 ∪ Pj+2 ∪ · · · . Then, let top(≿, k), for k ∈ N be defined as

top(≿, k) = P1 ∪ · · · ∪ Pj⋆ ∪ Pj⋆+1 where j⋆ ∈ N≥0 is the largest number such

that |
⋃j⋆

j=1 Pj| < k.

Definition 3.3.37 (Comparative Proportionality for Solid Coalitions). Given an inst-
ance I = ⟨P , c, b⟩ and profileA = (≿i)i∈N of weak ordinal ballots, a budget allocation

π ∈ Feas(I) is said to satisfy comparative proportionality for solid coalitions (CPSC)

if for every P ⊆ P , there is no P -solid coalition N ⊆ N for which there exists P ′ ⊆ P
such that:

c ({p ∈ π | ∃i ∈ N such that p ∈ top(≿i, |P |)}) < c(P ′) ≤ |N |
n
· b.
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Definition 3.3.38 (Inclusion Proportionality for Solid Coalitions). Given an instance
I = ⟨P , c, b⟩ and a profile A = (≿i)i∈N of weak ordinal ballots, a budget allocation

π ∈ Feas(I) is said to satisfy inclusion proportionality for solid coalitions (IPSC) if for

every P ⊆ P , there is no P -solid coalitionN ⊆ N for which there exists p⋆ ∈ P \ {p ∈
π | ∃i ∈ N such that p ∈ top(≿i, |P |)} such that:

c ({p ∈ π | ∃i ∈ N such that p ∈ top(≿i, |P |)}) + c(p⋆) ≤ |N |
n
· b.

Aziz and Lee (2021) show that it is not always possible to find budget allocations

satisfying CPSC, but that we can always find in polynomial time budget allocations

satisfying IPSC.

Theorem 3.3.39 (Aziz and Lee 2021). There exist an instance I and a profile A
of weak ordinal ballots such that no π ∈ Feas(I) satisfies CPSC.

For every instance I and a profileA of weak ordinal ballots there exists π ∈ Feas(I)
that satisfies IPSC. Such a budget allocation can be found in polynomial time.

To conclude, note that Peters, Pierczyński and Skowron (2021) introduce a version

of MESworkingwith strict ordinal ballots, that they link to the framework of Aziz and

Lee (2021). In particular, they show that it satisfies PSC, a weakening of the properties

we defined above.

3.3.5 Other Fairness Requirements
In the following section, we go through other fairness requirements that have been

introduced in the literature. Since these are properties that have received less atten-

tion, we will go a bit faster on them.

Full Justified Representation

The first axiom we discuss is full justified representation. Peters, Pierczyński and

Skowron (2021) proposed this strengthening of EJR, which is the strongest axiom

based on justified representation that we know can always be satisfied. It strength-

ens EJR by relaxing the cohesiveness requirement.

Definition 3.3.40 (Full Justified Representation for Cardinal Ballots). Consider an

instance I = ⟨P , c, b⟩ and a profile of cardinal ballots A. A group of voters N ⊆ N is

weakly (β, P )-cohesive for a scalar β ∈ R and a subset of projects P ⊆ P if |N |/n · b ≥
c(P ) and

∑
p∈P Ai(p) ≥ β for every i ∈ N .

Given I and A, a budget allocation π ∈ Feas(I) satisfies full justified representa-

tion (FJR) if for all P ⊆ P , all β ∈ R and all weakly (β, P )-cohesive groups N , there

exists an agent i ∈ N such that: ∑
p∈π

Ai(p) ≥ β.
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Using a greedy cohesive rule, Peters, Pierczyński and Skowron (2021) have been

able to show that we can always find a budget allocation satisfying FJR. This rule is

however rather artificial. It is an open problem whether there is a polynomial-time

rule that satisfies FJR.

Proposition 3.3.41 (Peters, Pierczyński and Skowron 2021). For any instance I and

profile A of cardinal ballots, there exists a budget allocation π ∈ Feas(I) that satisfies
FJR.

Interestingly, this applies even for cardinal ballots over budget allocations, as long as

they are monotone.

FJR can be adapted to the world of PB with approval ballots. The definition is

provided below.

Definition 3.3.42 (Full Justified Representation for Approval Ballots). Consider an

instance I = ⟨P , c, b⟩, a profile of approval ballotsA and a satisfaction function sat . A
budget allocation π ∈ Feas(I) satisfies full justified representation for sat (FJR[sat]) if
for every group of votersN ⊆ N and subset of projects P ⊆ P such that |N |/n·b ≥ c(P ),
there exists i ∈ N for whom:

sat i(π) ≥ sat i(P ).

Because Peters, Pierczyński and Skowron (2021) prove that FJR can be satisfied

even for monotonic cardinal ballots over budget allocations, FJR[sat] can be satisfied

for all sat .

Variants with Relative Budgets

Most of the proportionality requirements we introduced heavily rely on the budget

limit b. This is particularly true for the axioms based on justified representation. Aziz,

Lee and Talmon (2018) suggest to work on properties that are independent of the

budget limit and only defined in terms of the cost of the budget allocation under

consideration.

They revisit their adaptations of PJR for PB by changing the notion of cohesive

group, making it dependent on the cost c(π) of the budget allocation π under consider-

ation instead of b. All of these new concepts are weaker than the standard ones. They

also are all satisfiable, simply by using π = ∅ (note that because of how we organised

the elements in our definition for cohesive groups—definitions 3.3.1 and 3.3.9—this

does not lead to any division by 0).

Laminar Proportionality

The next property we want to mention is laminar proportionality. It is a proportion-

ality requirement that only applies to specific instances, the laminar ones. These

instances are very well-structured in a way that makes it obvious which outcomes
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are proportional. Laminar proportionality requires the outcome to be proportional

with respect to this structure.

This property was defined for PB by Los, Christoff and Grossi (2022). They show

that rules that satisfy laminar proportionality in the multi-winner setting (namely

MES and SeqPhrag) cease to be so on PB instances.

Proportionality for Solid Coalitions

In Section 3.3.4 we have defined two axioms for proportionality with weak ordinal

ballots. Approval ballots can be seen as a special case of weak ordinal ballots where

all ballots have at most two indifference classes. Following this observation, Aziz and

Lee (2021) provide definitions of IPSC and CPSC for approval ballots. We provide

these definitions below. Observe that they are both closely related to PJR.

Definition 3.3.43 (CPSC with Approval Ballots). Given an instance I = ⟨P , c, b⟩ and
a profileA of approval ballots, a budget allocation π ∈ Feas(I) is said to satisfy CPSC

if the following two conditions hold:

▶ π satisfies PJR[satcost ];

▶ π is of maximal cost: π ∈ argmax
π′∈Feas(I)

(π′).

Definition 3.3.44 (IPSC with Approval Ballots). Given an instance I = ⟨P , c, b⟩ and
a profile A of approval ballots, a budget allocation π ∈ Feas(I) is said to satisfy IPSC

if the following two conditions hold:

▶ for all sets of voters N ⊆ N such that c(
⋃

i∈N{p ∈ π | Ai(p) = 1}) < |N |/n · b
and for all p ∈

⋂
i∈N{p ∈ P \ π | Ai(p) = 1} we have:

c(p) + c

(⋃
i∈N

{p ∈ π | Ai(p) = 1}

)
> |N |/n · b,

▶ π is exhaustive.

The first bullet point of the above definition closely resembles PJR-X[satcost]. One
can actually prove that IPSC implies PJR-X[satcost]. Indeed, if a budget allocation π
fails PJR-X[satcost], then the P -cohesive N witnessing this violation would also be a

witness of the violation of the first bullet point of the definition of IPSC.

It should be quite clear from the definition that CPSC is still not satisfiable with

approval ballots. IPSC is, since it already was with generic weak ordinal ballots.
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Proportionality with Cumulative Ballots

Among the different types of cardinal ballots we defined, there is one for which we

still have not discussed proportionality requirements: cumulative ballots. Now is the

time to do so. The only study on cumulative ballots has been conducted by Skowron,

Slinko, Szufa and Talmon (2020). Among others, they study proportionality axioms

for this setting. We present here what they call proportional representation.

Definition 3.3.45 (Proportional Representation with Cumulative Ballots). Given an

instance I = ⟨P , c, b⟩ and a profile A of cumulative ballots, a budget allocation π ∈
Feas(I) is said to satisfy proportional representation if for every ℓ ∈ {1, . . . , b}, every
group of agents N ⊆ N with |N |/n · b ≥ ℓ and every subset of projects P ⊆ P with

c(P ) ≤ ℓ, it holds that if for all i ∈ N and p ∈ P , we have Ai(p) > 0, and for all

i ∈ N \N and p ∈ P \ P we have Ai(p) = 0, then we must have P ⊆ π.

Skowron, Slinko, Szufa and Talmon (2020) also introduce a weaker and a stronger

variant of the above. They prove that all of them are satisfiable.

3.3.6 Fairness in Extended Settings
The core of this thesis is concerned with variations in the standard model of PB,

we now mention some papers that have studied fairness in PB beyond the standard

model. This section overlaps in some way with Section 3.6 though we only focus on

fairness requirements here.

▶ In their study of PB with multiple resources, Motamed, Soeteman, Rey and

Endriss (2022) introduced several proportionality axioms and studied whether

they could be satisfied by some load-balancing mechanisms.

▶ When studying PB with uncertainty on the cost of the projects, Baumeister,

Boes and Laußmann (2022) investigated the link between properties specific

to their setting and justified representation axioms such as PJR[satcost] (a.k.a.
BPJR-L) and EJR.

▶ In a model in which the budget is endogenous, Aziz and Ganguly (2021) studied

versions of the core and of a simple proportionality axiom, investigating which

welfare-maximising rule satisfy them.

3.3.7 Taxonomies of Proportionality in PB
Throughout this section we have introduced a significant number of properties re-

lated to proportionality in PB. In an attempt to clarify the relationship between these

properties, we draw several taxonomies. The taxonomy for cardinal ballots can be

found in Figure 3.3.1. Figure 3.3.2 presents the taxonomy for approval ballots. All

the details are available in the figures. We also summarise which rules satisfy which

axioms, in Table 3.3.1 for cardinal ballots, and in Table 3.3.2 for approval ballots.
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Core

FJR

Strong-EJR

EJR

EJR-1

PJR

PJR-1

Laminar

Proportionality

Priceability

Laminar Instances

These concepts cannot always be satisfied.

These concepts can always be satisfied, but finding a suitable budget allocation

cannot be done in polynomial time unless P = NP.

These concepts can always be satisfied, and a suitable budget allocation can be

found in polynomial time.

Laminar Proportionality is always satisfiable, and the computational complexity

of finding a budget allocation satisfying it is unknown.

Figure 3.3.1: Taxonomy of the proportionality requirements for PB with cardinal

ballots. An arrow between two concepts means that any budget allocation satisfying

one also satisfies the other. All missing arrows are known to be missing.

Most of this picture is based on Los, Christoff and Grossi (2022) who showed: the absence of arrows

between either the core, EJR or PJR and priceability; the link between laminar proportionality and

priceability (only for laminar instances); the absence of arrows between laminar proportionality and

either PJR, EJR, or the core. The link between FJR and EJR is due to Peters, Pierczyński and Skowron

(2021). For the satisfiability of the concepts, see Table 3.3.1.

Cardinal Ballots

Core None Peters, Pierczyński and Skowron (2021)

FJR Greedy cohesive rule Peters, Pierczyński and Skowron (2021)

Strong-EJR None

EJR Greedy cohesive rule Peters, Pierczyński and Skowron (2021)

EJR-1 MES Peters, Pierczyński and Skowron (2021)

PJR Greedy cohesive rule

PJR-1 MES Los, Christoff and Grossi (2022)

Laminar
Proportionality ? Los, Christoff and Grossi (2022)

Priceability MES Peters, Pierczyński and Skowron (2021)

Table 3.3.1: Rules satisfying the fairness criteria for cardinal ballots
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Core[sat]

FJR[sat]

Strong-EJR[sat]

EJR[sat]

EJR-X[sat]

Incr. sat

EJR-1[sat]

PJR[sat]

PJR-X[sat]

Incr. sat

PJR-1[sat]

PJR-X[satcost]

Local-BPJR-L[sat]

PJR[satcost]
equiv. BPJR-L

Strong-BPJR-L

IPSC

CPSC

Priceability with

C6 and α > b

DNS sat

Priceability

with α > b

Priceability

These concepts cannot always be satisfied.

These concepts can always be satisfied, but finding a suitable budget allocation

cannot be done in polynomial time unless P = NP.

These concepts can always be satisfied, and a suitable budget allocation can be

found in polynomial time when sat is a DNS function.
These concepts can always be satisfied, and a suitable budget allocation can be

found in polynomial time when sat is additive (for the concepts depending on sat ).
It is unknown whether the core can always be satisfied or not.

Incr. sat : the link only applies for satisfaction functions that are strictly increasing, i.e., such that for

all P ⊆ P and P ′ ⊊ P , we have sat(P ′) < sat(P ).
DNS sat : the link only applies for DNS functions, see Definition 3.3.16.

PJR[satcost] equiv. BPJR-L: these two concepts are equivalent.

Priceability with α > b: priceable for a price system ⟨α, (γi)i∈N ⟩ where α > b.
Priceability with C6 and α > b: see Theorem 3.3.35.

Figure 3.3.2: Taxonomy of the proportionality requirements for PB with approval

ballots where sat is an arbitrary satisfaction function. An arrow between two con-

cepts means that any budget allocation satisfying one also satisfies the other. Some

arrows are only valid for some satisfaction functions, the conditions are indicated on

the arrows. All missing arrows are known to be missing.

The links between EJR, PJR, Local-BPJR-L and priceability concepts are due to Brill, Forster, Lackner,

Maly and Peters (2023). The link from Strong-BPJR-L and BPJR-L is due to Aziz, Lee and Talmon (2018).

The link between CPSC and PJR[satcost ] is due to Aziz and Lee (2021). The one between IPSC and

PJR-X[satcost ] has never been published. The absence of arrows between the core, EJR and priceability

is due to Los, Christoff and Grossi (2022). The link between FJR and EJR is due to Peters, Pierczyński

and Skowron (2021). For the satisfiability of the concepts, see Table 3.3.2.
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Approval Ballots

Core[sat] ?

FJR[sat] ▶ for any sat , a greedy cohesive rule [1]

Strong-EJR[sat] ▶ None

EJR[sat] ▶ A greedy cohesive rule for any sat [1]

▶MES[satcard ] for sat = satcard [1]

EJR-X[sat] ▶ for any sat , a greedy cohesive rule [1]

▶ for any DNS function sat , MES[sat] [2]

EJR-1[sat] ▶ for any sat , a greedy cohesive rule [1]

▶ for any additive sat , MES[sat] [1]

PJR[sat] ▶ for any sat , a greedy cohesive rule [1]

PJR-X[sat]

▶ for any sat , a greedy cohesive rule [1]

▶ for any DNS function sat , MES[sat], SeqPhrag,
and

MaximinSupp

[2]

CPSC ▶ None [3]

IPSC ▶ The expanding approval rule [3]

Local-BPJR-L[sat] ▶MES[sat], SeqPhrag, and MaximinSupp [2, 4]

Strong-BPJR-L ▶ None [4]

Priceability ▶MES[sat], SeqPhrag, and MaximinSupp [1, 2]

Priceability
with α > b

▶MES[sat], SeqPhrag, and MaximinSupp [1, 2]

Priceability
with C6 and α > b

▶MES[satcard ], SeqPhrag, and MaximinSupp [2]

[1] Peters, Pierczyński and Skowron (2021)

[2] Brill, Forster, Lackner, Maly and Peters (2023)

[3] Aziz and Lee (2021)

[4] Aziz, Lee and Talmon (2018)

Table 3.3.2: Rules satisfying each of the fairness properties we introduced for ap-

proval ballots. In the above, sat is an arbitrary satisfaction function.
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Exhaustiveness
General Instances Unit-Cost Instances

MaxCard ✓ ✓

GreedCard ✓ ✓

MaxCost ✓ ✓

GreedCost ✓ ✓

SeqPhrag ✗ ✓

MaximinSupp ✗ ✓

MES ✗ ✗

Table 3.4.1: Satisfaction of exhaustiveness for different rules.

3.4 Axiomatic Analysis
Fairness requirements are the most studied properties in the literature on PB but are

not the only ones. In the following, we review other axioms.

Our analysis will start with a discussion of exhaustiveness (Section 3.4.1) and a

presentation of the monotonicity axioms for PB (Section 3.4.2). From there, we will

move on to axioms relating to strategic behaviour of the agents (Section 3.4.3). We

will conclude this section by our usual discussion of the concepts that exist in the

literature but do not fit in earlier sections (Section 3.4.4).

3.4.1 Exhaustiveness
Let us start with exhaustiveness. Its definition has already been provided in Section 2.1.

It is sometimes considered a standard requirement that should be enforced by default.

However, as we will see, it is incompatible with some other axioms, notably price-

ability. Note that Talmon and Faliszewski (2019) introduced budget monotonicity, an

axiom that is equivalent to exhaustiveness for resolute rules and very similar to it for

irresolute rules; the name exhaustiveness is due to Aziz, Lee and Talmon (2018).

Table 3.4.1 summariseswhich of the usual rules satisfy exhaustiveness. The results

for the welfare-maximising and greedy rules are straightforward. Interestingly, the

fact that SeqPhrag, MaximinSupp and MES fail exhaustiveness is due the fact that

they are priceable. Indeed, the two requirements are incompatible.

Proposition 3.4.1 (Peters, Pierczyński and Skowron 2021). There exists an instance

I = ⟨P , c, b⟩ and a profile A, such that there is no budget allocation π ∈ Feas(I)
which is both priceable and exhaustive, even though there are feasible budget allocations

that are priceable, and others that are exhaustive.

Since exhaustiveness is sometimes considered to be a must, Peters, Pierczyński

and Skowron (2021) proposed several ways to obtain exhaustive outcomeswhen using

non-exhaustive rules.
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▶ Completion via Exhaustive Rule: This technique consists of completing the

original outcome of the rule by applying another rule, which is exhaustive, on

the reduced instance where the selected projects have been removed and the

budget reduced accordingly. Typically, one could use a greedy selection proce-

dure or an exhaustive variant of SeqPhrag.

▶ Exhaustion byVariation of the Budget Limit: Using this technique, the rule
is run several times for different values of the budget limit until finding an out-

come that is feasible and exhaustive for the initial budget. Typically, the budget

limit is increased by one unit per voter at each iteration and the final outcome

is the first exhaustive one that is found, or the first one for which increasing

the budget one more time would lead to an outcome that is not feasible for the

original budget limit.

Note that this technique does not guarantee that the outcomewill be exhaustive

(notably because when used with MES, the outcome would still be priceable).

Moreover, this is not necessarily a “completion technique” since many rules are

not limit monotonic (see Section 3.4.2), so the final outcome does not need to

be a superset of the initial outcome.

▶ Exhaustion by Perturbation of the Ballots: This final technique modifies

the profile slightly so that the outcome is guaranteed to be exhaustive. Which

perturbation mechanism should be used depends on the rule. For instance, for

MESwith cardinal ballots, it is know that if every voter reports a strictly positive

score for all the projects, then the outcome of MES is exhaustive. Therefore,

one could apply MES on the modified profile in which all 0 scores have been

replaced by an arbitrary small value.

3.4.2 Monotonicity Requirements
Talmon and Faliszewski (2019) introduced several monotonicity axioms for PB that

represent to this date the largest corpus of axioms that has been proposed (if we dis-

regard proportionality requirements). All of these axioms regard the behaviour of

PB rules in dynamic environments: when the cost function changes, when the set of

projects changes, etc. . . Hence, they can also be interpreted as robustness require-

ments: they enforce that the outcome does not change much with small variations of

the instance. We will define and discuss these axioms in the following.

The first axiom we consider constrains the behaviour of the rule when the cost

function changes.

Definition 3.4.2 (Discount Monotonicity). A PB rule F is said to be discount-mono-

tonic if, for any two PB instances I = ⟨P , c, b⟩ and I ′ = ⟨P , c′, b⟩ such that for some

distinguished project p⋆ ∈ P , we have c(p⋆) > c′(p⋆), and c(p) = c′(p) for all p ∈
P \ {p⋆}, it is the case that p⋆ ∈ F(I,A) implies p⋆ ∈ F(I ′,A) for all profiles A.
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Thus, a rule is discount monotonic if whenever the price of a selected project p de-

creases, the rule would still select project p.

The second axiom, inspired by committee monotonicity in the multi-winner voting

literature (Lackner and Skowron, 2023), investigates the behaviour of the rule when

the budget limit changes.

Definition 3.4.3 (Limit Monotonicity). A PB rule F is said to be limit-monotonic if,

for any two PB instances I = ⟨P , c, b⟩ and I ′ = ⟨P , c, b′⟩ with b < b′ and c(p) ≤ b for
all projects p ∈ P , it is the case that F(I,A) ⊆ F(I ′,A) for all profilesA.

Thus, a rule is limit monotonic if it selects a superset of the original set of selected

projects when the budget limit increases.

The next two axioms concern cases where the set of projects changes, with some

projects being either merged or split. Note that these axioms have only been consid-

ered for approval ballots. Since generalising them to arbitrary cardinal ballots is not

straightforward, we focus on approval profiles here.

Given a PB instance I = ⟨P , c, b⟩ and a profile A of approval ballots, we say

that the instance I ′ = ⟨P ′, c′, b⟩ and the profile A′
of approval ballots are the result

of splitting project p⋆ ∈ P into P ⋆ ⊆ P ′
(with P ⋆ ∩ P = ∅, i.e., P ⋆

is a set of new

projects), if the following conditions are satisfied:

▶ The project p⋆ is replaced by P ⋆
in the set of projects: P ′ = (P \ {p⋆}) ∪ P ⋆

;

▶ The total cost of P ⋆
is that of p⋆, i.e., c′(P ⋆) = c(p⋆); and for all p ∈ P ⋆

, it is the

case that c′(p) > 0;

▶ The cost of every other project is as in c: c′(p) = c(p) for all projects p ∈ P ′\P ⋆
;

▶ The project p⋆ is replaced by P ⋆
in the approval ballots containing it: for every

i ∈ N withAi(p
⋆) = 0, we haveA′

i = Ai, and for every i ∈ N withAi(p
⋆) = 1,

we have A′
i(p) = 1 for all p ∈ P ⋆

, and A′
i(p) = Ai(p) for all p ∈ P ′ \ P ⋆

.

We also say that I andA are the result of merging P ⋆
into p⋆ given I ′ and A′

.

Definition 3.4.4 (Splitting Monotonicity). A PB rule F is said to be splitting-mono-

tonic if, for any two PB instances I = ⟨P , c, b⟩ and I ′ = ⟨P ′, c′, b⟩ with corresponding

profiles of approval ballots A and A′
and any project p ∈ F(I,A) such that I ′ and A′

are the result of splitting project p into a subset of projects P given I andA, it is the case

that F(I ′,A′) ∩ P ̸= ∅.

Definition 3.4.5 (Merging Monotonicity). A PB rule F is said to be merging-mono-

tonic if, for any two PB instances I = ⟨P , c, b⟩ and I ′ = ⟨P ′, c′, b⟩ with corresponding

profiles of approval ballotsA andA′
, and any subset of projects P ⊆ F(I,A) such that

I ′ and A′
are the result of merging project set P into project p given I and A, it is the

case that p ∈ F(I ′,A′).



62 Chapter 3. The (Computational) Social Choice Take on Participatory Budgeting

Monotonicity
Limit Discount Splitting Merging

MaxCard ✗ ✓ ✓ ✗

GreedCard ✗ ✓ ✓ ✗

MaxCost ✗ ✗ ✓ ✓

GreedCost ✗ ✗ ✗ ✓

MES ✗

Table 3.4.2: Summary of the results concerning the monotonicity axioms for rules

used with approval ballots.

The results for MaxCard, GreedCard, MaxCost and GreedCost are due to Talmon and Faliszewski

(2019). Note that their proofs contained several mistakes, corrected in part by Baumeister, Boes and

Seeger (2020). Specifically, the proof that GreedCard fails merging monotonicity is wrong, but the

results still holds (though it is solely based on the use of tie-breaking rules that apply differently be-

fore and after merging projects). MES fails limit montonicity as it already did on unit-cost instances

(Lackner and Skowron, 2023).

These two axioms thus require the rule to also apply the splitting and merging oper-

ations on its outcome. Note that for splitting monotonicity, a stronger version of it

would require all the smaller projects to be selected (instead of only one).

We present in Table 3.4.2 what is known about the standard PB rules regarding

those axioms. The relevant references are provided there. Observe that it is not known

which monotonicity axioms are satisfied by SeqPhrag, MaximinSupp and MES. One

exception is that we know that MES cannot satisfy limit monotonicity, as it does not

satisfy committee monotonicity, the equivalent of limit monotonicity for unit-cost

instances (Lackner and Skowron, 2023).

The definitions we provided above concern resolute PB rules, that is, rules that al-

ways output a single budget allocation. They have been extended to irresolute rules.

Baumeister, Boes and Seeger (2020) (and subsequently Sreedurga, Bhardwaj andNara-

hari, 2022) extend the monotonicity axioms in an existential fashion: for a given in-

stance I and profile A, and for every budget allocation π ∈ F(I,A) that satisfy a

specific pre-condition, it must be the case that for every suitable I ′ andA′
, there exist

a budget allocation π′ ∈ F(I ′,A′) satisfying the specific post-condition. We will see

alternative definitions for irresolute rules in Chapter 6.

3.4.3 Strategy-Proofness

The next class of requirements we consider is that of incentive compatibility axioms.

These axioms are concerned with preventing agents from engaging in strategic be-

haviour.

Let us first discuss the concept of strategy-proofness. Intuitively speaking, it states



3.4. Axiomatic Analysis 63

that no agent should be able to obtain a better outcome by reporting a ballot that is

different from their true preferences. To define it, we thus need a way of comparing

outcomes from the point of view of the agents. When using cardinal ballots, we will

assume that the ballot represents the utility of the agents for the projects. For approval

ballots, we will use the notion of satisfaction function as the measure of utility.
28

Definition 3.4.6 (Strategy-Proofness for Cardinal Ballots). A PB rule F is said to be

strategy-proof if for every instance I and profile A of cardinal ballots, and for every

agent i ∈ N , there exists no cardinal ballot A′
i such that for the profile A′ = (A1, . . .,

Ai−1, A
′
i, Ai+1, . . ., An) we have:∑

p∈F(I,A′)

Ai(p) >
∑

p∈F(I,A)

Ai(p).

Observe that the satisfaction of the manipulating agent i with the output under the

new profile A′
is computed with regards to the initial ballot Ai.

Definition 3.4.7 (Strategy-Proofness for Approval Ballots). Given a satisfaction

function sat , a PB rule F is said to be strategy-proof for sat if for every instance I and

profile A of approval ballots, for every agent i ∈ N , there exists no approval ballot A′
i

such that for the profile A′ = (A1, . . . , Ai−1, A
′
i, Ai+1, . . . , An) we have:

sat(F(I,A′) ∩ Ai) > sat(F(I,A) ∩ Ai).

It is already known frommulti-winner voting, i.e., when instances have unit costs,

that strategy-proofness is incompatible with very weak notions of proportionality

(Peters, 2018, 2019). This result obviously also applies to general PB instances.

Theorem 3.4.8 (Peters 2018). A PB rule F is said to be weakly proportional on unit-

cost instances if for every unit-cost instance I and profileA of cardinal ballots such that

for all voters i, i′ ∈ N either {p ∈ P | Ai(p) > 0} = {p ∈ P | Ai′(p) > 0}, or these
two sets do not intersect (meaning that A is a party-list profile), then for any project

p ∈ P such that |{i ∈ N | Ai(p) > 0}| ≥ n/b we have p ∈ F(I,A).
There is no rule that satisfies simultaneously weak proportionality on unit-cost in-

stances and strategy-proofness.

Note that in the actual statement of Peters (2018, 2019), an additional efficiency re-

quirement is needed. This is because in the multi-winner voting setting, one has to

ensure that a rule selects the required number of candidates (i.e., the rule has to be

exhaustive). Since this constraint is lifted in the PB setting, there is no need for such

an additional axiom.

28
Note here thatwe are indeed discussing utilities and not satisfaction levels sincewe are considering

behaviours that the agents engage into themselves, according to their private information.
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It should also be noted that the proportionality axiom defined in the above state-

ment is particularly weak and is known to be implied by all kinds of other require-

ments (Peters, 2018), including all the ones introduced in Section 3.3.1. In particular,

this implies that rules such as SeqPhrag, MaximinSupp or MES are not strategy-

proof.

This result has been replicated in the multi-resource PB case, for suitable adapta-

tions of the axioms (Motamed, Soeteman, Rey and Endriss, 2022). Moreover, it also

applies to irresolute rules (Kluiving, de Vries, Vrijbergen, Boixel and Endriss, 2020).

It is known thatwith unit-cost instances, welfare-maximising rules such asGreed-

Cost (which is equivalent to GreedCard, MaxCard and MaxCost on unit-cost in-

stances) are strategy-proof. When moving to general PB instances, we can show that

GreedCost is only approximately strategy-proof. We provide below the definition

of Goel, Krishnaswamy, Sakshuwong and Aitamurto (2019) that weakens strategy-

proofness in a “up-to-one” fashion.

Definition 3.4.9 (Approximate Strategy-Proofness for Approval Ballots). Given a

satisfaction function sat , a PB rule F is said to be approximately strategy-proof for sat if
for every instance I and profileA of approval ballots, for every agent i ∈ N , there exists

no approval ballot A′
i such that for the profile A′ = (A1, . . . , Ai−1, A

′
i, Ai+1, . . . , An),

for all p ∈ P we have:

sat(F(I,A′) ∩ Ai) > sat((F(I,A) ∩ Ai) ∪ {p}).

Proposition 3.4.10 (Goel, Krishnaswamy, Sakshuwong and Aitamurto 2019). The

GreedCost is approximately strategy-proof for satcost .

Note that the result by Goel, Krishnaswamy, Sakshuwong and Aitamurto (2019) uses

knapsack ballots. This is not required when projects are indivisible.
29
It is also worth

noting that this result does not hold for satcard .
Interestingly, exact welfare-maximising rules such as MaxCard or MaxCost fail

even approximate strategy-proofness on PB instances, for large sets of satisfaction

functions. This can come as a surprise since they are strategy-proof on unit-cost

instances. Note that this also holds if ballots are knapsack ballots.

29
Let us sketch the proof, originally devised by Ulle Endriss. For any given I = ⟨P, c, b⟩, consider

I ′ = ⟨P ′, c′, b⟩, where projects in P have been split into sets of subprojects, each of cost 1. I ′ is thus
a unit-cost instance. We can transform any given profile A of approval ballots in the same manner

to obtain a profile A′
of approval ballots. Now, it is clear that the approval scores of the projects in

A′
are equal to those of the projects in P they come from in A. Assume that the tie-breaking rule is

extended in a consistent way from projects in P to projects in P ′
. Then we know that there exists at

most one project p ∈ P such that GreedCost(I ′,A′) contains a proper subset of its corresponding

subprojects. Let π′ ⊆ P be the budget allocation that includes any project in P for which at least

one corresponding subproject is in GreedCost(I ′,A′). We thus have GreedCost(I,A) ∪ {p} = π′
.

Since GreedCost is strategy-proof over unit-cost instances (Peters, 2018), no agent can reach a better

budget allocation than π′
by strategising, when considering the satisfaction function satcost .
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Example 3.4.11. Consider the instance I = ⟨P , c, b⟩ with P = {p1, . . . p5}, the cost
are such that c(p1) = 6, c(p2) = 3 and c(p3) = c(p4) = c(p5) = 3, and the budget

limit is b = 6.

Assume that three agents are involved in the process for whom the truthful ballots

are to approve of p1 for agent 1; p2 for agent 2; and p3, p4, and p5 for agent 3. If ties
are broken lexicographically, the outcome of both MaxCard and MaxCost would

then be π = {p1}. Note that agent 3 has satisfaction 0 for π. Now, if agent 3 were

to approve of p2, p3, p4 and p5 instead, the outcome would be π′ = {p2, p3, p4, p5}.
Is it clear that for any satisfaction function that is strictly monotonic

30
and for every

project p ∈ P , agent 3 prefers π′
over π ∪ {p}. △

3.4.4 Other Axioms

Let us conclude by mentioning some other axioms and axiomatic directions that have

been followed in the context of PB.

In their study on maximin PB with approval ballots, Sreedurga, Bhardwaj and

Narahari (2022) adapt several axioms from the multi-winner literature to the context

of PB with irresolute rules. These axioms are the narrow-top criterion (an adaptation

of unanimity) and clone-proofness (the outcome of a rule remains the same if projects

are cloned). They also introduce a new axiom called maximal coverage stating that

no redundant project should ever be selected unless it is not possible to cover more

voters, where a voter is covered if at least one of their approved projects have been

selected, and a project is redundant if removing it does not change the set of covered

voters. Note that this axiom can be seen as a fairness requirement.

Following amore typical social choice route, Ceron, Gonzalez and Navarro-Ramos

(2022) initiated the axiomatic characterisation of PB rules, focusing on GreedCost.

Finally, it is also worth mentioning that Goel, Krishnaswamy, Sakshuwong and

Aitamurto (2019) provided the first analysis of PB rules in terms of epistemic crite-

ria (being a maximum likelihood estimator) to date, another branch of the axiomatic

approach (Elkind and Slinko, 2016; Pivato, 2019), but for the divisible setting.

3.5 Algorithmic Considerations

Another large part of the literature focuses on the algorithmic aspects of PB. This

usually concerns computing outcomes of PB rules and the exact complexity of welfare

maximisation under different models.

We will discuss these different aspects, focusing first on outcome determination

(Section 3.5.1), then on the complexity of welfare maximisation (Section 3.5.2), and

finally on the other algorithmic problems that have been studied (Section 3.5.3).

30
A satisfaction function sat is strictly monotonic if for all P ⊆ P and P ′ ⊊ P , we have sat(P ′) <

sat(P ).
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3.5.1 Outcome Determination of Standard PB Rules
The main focus of the algorithmic perspective on social choice is to assess the compu-

tational complexity of computing “good” outcomes. With all that has been presented

so far, we already know a lot about the quality of the outcome of the standard PB

rules. The last step is thus to assess how hard it is to compute said outcomes.

Formally speaking, this is the problem of computing the outcome of a given rule,

the so-called outcome determination problem. We present below one version of this

problem, for a given resolute PB rule F.

OutcomeDetermination(F)

Input: An instance I = ⟨P , c, b⟩, a profile A, and a project p ∈ P .
Question: Is p ∈ F(I,A)?

Note that this definition only makes sense for resolute PB rules. Other formulations

are also possible, for example as a function problem.

The complexity of the winner determination problem for irresolute PB rules has

not been considered in the literature yet and it is not immediately clear how the out-

come determination problem should be formulated. One natural idea would be to

define the problem as checking whether a project is always selected, or whether it is

sometimes selected.

It should be more or less clear that the outcome determination problem can be

efficiently solved for most of the rules that we have focused on, at least in the reso-

lute case. The definitions of GreedCard, GreedCost and SeqPhrag should make it

somewhat obvious that computing their outcomes can be done efficiently. For Max-

iminSupp, Aziz, Lee and Talmon (2018) presents a linear program allowing to compute

efficiently an optimum load distribution at each round. Finally, Peters, Pierczyński

and Skowron (2021) discuss how to efficiently compute outcomes of MES.

The only rules whose outcomes cannot be computed efficiently are the ones that

relate to exact welfare maximisation. Indeed, maximising the social welfare is usually

hard, as we shall see next.

3.5.2 Maximising Social Welfare
Let us now turn to the computational problem of maximising measures of social wel-

fare.

First, we introduce the different notions of social welfare that have been studied in

the literature. Note that throughout this section, we will work with cardinal ballots.

We also repeat the definition of Util-SW so that the reader does not need to go back

to Section 3.2.1.

▶ Utilitarian Social Welfare: Given an instance I and a profile A of cardinal

ballots, the utilitarian social welfare achieved by a budget allocation π is defined
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as:

Util-SW(I,A, π) =
∑
i∈N

∑
p∈π

Ai(p).

This is themost standard definition of social welfare simply considering the sum

of the satisfactions of the individuals. A budget allocation maximising Util-

SW selects the items that are individually best, i.e., it ignores any interactions

between the projects.

▶ Chamberlin-Courant Social Welfare: Given an instance I and a profile A
of cardinal ballots, the Chamberlin-Courant social welfare achieved by a budget

allocation π is defined as:

CC-SW(I,A, π) =
∑
i∈N

max
p∈π

Ai(p).

The Chamberlin-Courant social welfare assumes that agents only consider one

project from each budget allocation, namely the one that leads to the highest

satisfaction. Maximising CC-SW corresponds thus to aiming for a budget allo-

cation that represents as many voters as possible.

Note that CC-SW has been studied by Laruelle (2021) under the name Rawlsian

social welfare.

▶ Egalitarian Social Welfare: Given an instance I and a profile A of cardinal

ballots, the egalitarian social welfare achieved by a budget allocation π is defined

as:

Egal-SW(I,A, π) = min
i∈N

∑
p∈π

Ai(p).

The egalitarian social welfare assumes that the welfare of a society is the sat-

isfaction of its most dissatisfied member. Maximising Egal-SW hence means

maximising the satisfaction of the worst-off voter.

Egal-SW is studied by Sreedurga, Bhardwaj and Narahari (2022) under the

name maximin PB.

▶ Nash Social Welfare: Given an instance I and a profile A of cardinal ballots,

the Nash social welfare achieved by a budget allocation π is defined as:

Nash-SW(I,A, π) =
∏
i∈N

∑
p∈π

Ai(p).

The Nash social welfare measure can be seen as a compromise between utilitar-

ian and egalitarian social welfare. By maximising Nash-SW, one aims to find a

fair budget allocation (Fluschnik, Skowron, Triphaus and Wilker, 2019).

Note that maximising Nash-SW is equivalent to maximising the sum of the

logarithms of the satisfactions of the agents.
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The typical computational problem is then to determine whether there is a budget

allocation that provides at least a certain amount of satisfaction according to a spe-

cific measures of welfare. Fluschnik, Skowron, Triphaus and Wilker (2019) studied

this problem for Util-SW, Nash-SW and CC-SW. Sreedurga, Bhardwaj and Narahari

(2022) considered the case of Egal-SW, in the context of approval ballots with satcost .
Talmon and Faliszewski (2019) focused on Util-SWwith approval ballots and several

satisfaction functions. We summarise the main findings in Table 3.5.1.

Welfare maximisation problems have also been studied for many of the variations

of the standardmodel that have been introduced. We justmention themhere and refer

the reader to Section 3.6 for more details. Hershkowitz, Kahng, Peters and Procaccia

(2021) studied welfare maximisation in a model in which projects are grouped into

districts. Similarly, Jain, Sornat, Talmon and Zehavi (2021) and Patel, Khan and Louis

(2021) investigated different social welfare maximisation when projects are grouped

in categories. Jain, Sornat and Talmon (2020) looked into social welfare for non-

additive satisfaction functions. Social welfare has been studied in multi-resource PB

(Motamed, Soeteman, Rey and Endriss, 2022), when the cost is dependent on the num-

ber of users of the projects (Lu and Boutilier, 2011), and when the budget is endoge-

nous (Aziz and Ganguly, 2021; Aziz, Gujar, Padala, Suzuki and Vollen, 2022; Chen,

Lackner and Maly, 2022).

3.5.3 Other Algorithmic Problems

Participatory budgeting offers other avenues for studies focusing on the computa-

tional complexity of related problems.

For instance, Baumeister, Boes and Hillebrand (2021) study the computational

complexity of control in PB instances with approval ballots. Control problems are

problems of the form “Can the decision maker achieve certain objectives by changing

certain parameters of the instance?”. More specifically, Baumeister, Boes and Hille-

brand (2021) studied two types of control for GreedCard, GreedCost, MaxCard,

and MaxCost when the decision maker can decide on the price of a project, or on

the budget limit. Under constructive control, the decision maker aims at forcing the

selection of a given project, while under destructive control, they aim at preventing a

given project from being selected.

3.6 Variations andExtensions of the StandardModel

The literature we reviewed so far studied the standard model of PB. Beyond that, a

myriad of variations of the model have been introduced. Part Three of the thesis will

present three such extensions. In the following we delve into the other variations that

have been proposed.



3.6. Variations and Extensions of the Standard Model 69

Util-SW

Weakly NP-complete ▶ Even with one voter

Pseudo-poly. solvable

Poly. solvable ▶With approval ballots and satcard

Nash-SW

Strongly NP-complete

▶ Even with one voter

▶ Even with two voters and unit-cost instances

▶ Even with unit-cost instances and Ai(p) ∈ {0, 1}
for all i ∈ N and p ∈ P

W[1]-hard

▶ Parameterised by the budget limit b, even with

unit-cost instances and Ai(p) ∈ {0, 1} for all i ∈ N
and p ∈ P
▶ Parameterised by the budget limit b and the num-

ber of voters n, even with unit-cost instances and

unary encoding

▶ Evenwith single-peaked or single crossing profiles

XP ▶ Parameterised by the number of voters n

FPT
▶ Parameterised by the number of voters n and

maxi∈N |{
∑

p∈π Ai(p) | π ∈ Feas(I)}|

CC-SW

Pseudo-poly. solvable ▶ For single-peaked and single-crossing profiles

Strongly NP-complete

▶ Even for binary valuations, i.e., ballots with only

two different values, and unit-cost instances

FPT
▶ Parameterised by the number of voters and∑

i∈N
∑

p∈P Ai(p)

W[2]-hard ▶ Parameterised by the budget limit b

Egal-SW

Strongly NP-complete ▶ Even if Ai(p) ∈ {0, c(p)} for all i ∈ N and p ∈ P

Pseudo-poly. solvable

▶ When Ai(p) ∈ {0, c(p)} for all i ∈ N and p ∈ P
and the number of distinct ballots is constant

Poly. solvable

▶ When Ai(p) ∈ {0, c(p)} for all i ∈ N and

p ∈ P , the number of distinct ballots is constant, and

maxp∈P c(p)
GCD{c(p)|p∈P} is constant.

Table 3.5.1: Computational complexity of social welfare maximisation problems. For

a given measure of welfare SW, the exact decision problem that is considered is the

following: given an instance I = ⟨P , c, b⟩, a profileA of cardinal ballots, and a target

x ∈ Q≥0, is there a budget allocation π ∈ Feas(I) such that SW(I,A, π) ≥ x?

Statements for Util-SW follow immediately from the literature on knapsack problems (Kellerer, Pfer-

schy and Pisinger, 2004) as explained by Talmon and Faliszewski (2019). The results for Nash-SW and

CC-SW are due to Fluschnik, Skowron, Triphaus and Wilker (2019). CC-SW with approval ballots was

studied by Talmon and Faliszewski (2019). Sreedurga, Bhardwaj and Narahari (2022) studied Egal-SW.
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3.6.1 Local versus Global Processes

Real-life PB processes tend to be implemented at the scale of a municipality. It is

very common for the municipality to actually implement several local PB processes,

one for each district for instance, instead of one general process. This is the case in

Amsterdam (City of Amsterdam, 2022) for instance. Motivated by this observation

Hershkowitz, Kahng, Peters and Procaccia (2021) investigate the effect of the local

versus global implementation of PB processes.

In their study, Hershkowitz, Kahng, Peters and Procaccia (2021) introduce a model

of district-based PB. Each project belongs to a specific district and contributes a fixed

additive amount to the welfare of its district. In addition, there is a budget limit for

each district. A budget allocation is called district-fair if it provides each district at

least as much social welfare as they could achieve with their share of the budget limit.

The authors then consider the problem of selecting a global budget allocation that is

district-fair.

Hershkowitz, Kahng, Peters and Procaccia (2021) show that it is computationally

hard to maximise social welfare under district-fairness constraints. In addition, they

show that one can, in polynomial time, find probabilistic outcomes that maximise

the global social welfare while being almost district-fair in expectation. Finally, they

show that by slightly overspending (by a factor 1.647 + ϵ, with ϵ > 0), one can find

in polynomial time budget allocations that maximise the global social welfare while

providing “district-fairness up to one project” to each district.

3.6.2 Additional Distributional Constraints

An important part of the literature on extensions of the standard model focuses on

incorporating additional constraints into the standard model. These constraints are

usually distributional ones that affect which projects can be selected. They can model

the fact that some projects are incompatible, or that some projects have positive inter-

actions for instance. Let us present some examples.

The main type of additional constraints that have been studied are categorical.

These constraints model the idea that projects are grouped into categories and that

additional constraints apply regarding which of the projects can be selected within

each category. More specifically:

▶ Jain, Sornat, Talmon and Zehavi (2021) study what they refer to as PB with

project groups (which we call cost quota constraints in Chapter 6). In their set-

ting, projects are grouped into categories and there are constraints on the total

cost of the selected projects from each category. They focus on the compu-

tational aspects of finding a feasible budget allocation maximising the social

welfare, and they provide an in-depth analysis of this extended PB setting: Pa-

rameterized complexity analysis, and approximability and inapproximability

results. In particular, they provide efficient algorithms to maximise or to ap-
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proximate the social welfare when the number of categories is small; while

proving hardness for arbitrary number of categories.

▶ Patel, Khan and Louis (2021) investigate the computational complexity of se-

lecting group-fair knapsacks. This problem is equivalent to selecting budget

allocations maximising the utilitarian social welfare in PB instances with cat-

egories over the projects, and upper and lower quotas on the categories. The

quotas are expressed either in terms of number of selected projects per cate-

gory, or contribution to the social welfare per category. They prove hardness

results, and provide intricate dynamic programming algorithms that compute

approximate solutions.

▶ Quotas on the number of project selected per category have also been consid-

ered by Chen, Lackner and Maly (2022) in a model with endogenous funding.

Note that Chen, Lackner andMaly (2022) do not assume categories to be disjoint while

Jain, Sornat, Talmon and Zehavi (2021) and Patel, Khan and Louis (2021) do.

Let us also mention that when studying PB with multidimensional costs, Mo-

tamed, Soeteman, Rey and Endriss (2022) show how to encode distributional con-

straints simply by using extra resources. They discuss dependency constraints, cate-

gorical constraints (upper quota on the cost of a category), and incompatibility con-

straints (categorical constraints with quotas on the upper number of projects selected

in a category).

Further additional constraints will be detailed in Chapter 6.

3.6.3 Interaction Between Projects
One assumption that is almost always made is that projects are independent. We have

seen above how to incorporate distributional constraint challenging that assumption

at the level of which budget allocations are admissible or not. In a similar spirit, Jain,

Sornat and Talmon (2020) challenge the independence assumption from the perspec-

tive of the voters, assuming that the satisfaction of the voters is not additive, i.e., can

be more, or less, than the sum of its parts.

Specifically, Jain, Sornat and Talmon (2020) assume that there is an interaction

structure partitioning the projects into categories. The utility of the voters is defined

as the sum of their satisfaction for each category, the latter being an increasing, but

potentially non-linear, function of the number of approved and selected projects from

within the category. This model enables the study of substitution or complementarity

effects between the projects from the perspective of the voters.

On top of their conceptual contribution, Jain, Sornat and Talmon (2020) present

a computational analysis of welfare-maximising problems in this setting. They pro-

vide a mixture of tractability and intractability results. They also identify restrictions

of the ballots submitted by the voters—defined with respect to a specific interaction

structure—for which the computational problems become tractable.
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Note that in the work of Jain, Sornat and Talmon (2020), the interaction structure

is given and fixed for all voters. In subsequent work, Jain, Talmon and Bulteau (2021)

analysed how to obtain such an interaction structure based on several partitions of

the projects submitted by the agents. The focus is computational there as well.

3.6.4 Enriched Cost Functions

Another typical assumption that is made is to assume that the cost of the projects is

fixed and expressed in only one dimension. Both of these aspects of the cost function

have been challenged by different authors.

In one of the first papers on a model at the time not yet called participatory bud-

geting, Lu and Boutilier (2011) consider the problem of selecting multiple costly al-

ternatives under a given budget constraint. Their model is slightly different from the

standard one for PB as they aim at modelling recommendation systems. In particular,

selected alternatives are assigned to some agents. What is more interesting for us

here is that they assume that the cost of a project is composed of a fixed part and of

a variable part. Specifically, the cost of a project is an affine function of the number

of agents assigned to that project.

The assumption that costs are unidimensional has also been lifted. Motamed,

Soeteman, Rey and Endriss (2022) focus on analysing the effect of multidimensional

costs. They extend the standard model for PB, assuming that the costs of the projects

are expressed in terms of several resources. In this setting, they define and study

proportionality requirements, incentive compatibility axioms, and their interactions.

They also touch on the computational aspect of maximising social welfare.

3.6.5 Uncertainty in PB

In practice there is a lot of uncertainty around the actual implementation of the

projects. It is for instance rarely possible to assess the cost of the projects exactly,

let alone their completion time. Baumeister, Boes and Laußmann (2022) initiated the

study of PB under uncertainty about the projects.

In their model, Baumeister, Boes and Laußmann (2022) assume that the costs of

the projects are uncertain. For each project, its cost is described as a probability dis-

tribution over a specific interval. Projects are associated with a completion time and

the actual cost of a project is revealed only once the project has been completed. They

consider onlinemechanisms that select the projects to be funded in a dynamic fashion.

Within this framework, they provide a series of impossibility results showing that no

online mechanism can be at the same time punctual (finishes within the given time

bound), not too risky (the probability of exceeding the budget is never too high, or

the excess is never too high), and exhaustive (the budget is not underused). They also

adapt the justified representation axioms to this setting, showing that an adaptation

of MES provides interesting fairness guarantees.
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3.6.6 PB with Endogenous Funding
The standard PB model assumes that the budget is provided by the organising entity.

Several authors have proposed alternative models in which the voters can actually

contribute their own funds to help implement some projects.

In a model in which voters submit cardinal ballots over the projects, Chen, Lack-

ner and Maly (2022) introduce the idea that voters can also submit monetary contri-

butions to specific projects. They investigate suitable aggregation methods for this

framework. The risk with donation is that some voters could have too much influence

on the final outcome. Therefore, they focus on devising rules for which the satisfac-

tion of no voter decreases when taking into account donations, compared to the case

where the donations are ignored. They provide several such rules, and study their

merits regarding some donation-specific monotonicity requirements. They conclude

their analysis by studying the computational complexity of outcome determination

problems, and the problem of finding optimal donation policy for the voters.

Moving further away from PB, Aziz and Ganguly (2021) propose a setting inwhich

there is no exogenous fund, instead, each agent joins the process with a given personal

budget that will be used to fund the projects. Agents submit approval ballots and a rule

in this setting determines, given an approval profile and the personal budget of the

agents, a set of projects to be funded and the monetary contribution of each individ-

ual to the selected projects. This model is slightly different from PB in the sense that

it is not about the allocation of public funds. It is nevertheless a framework studying

aggregation problems when selecting costly alternatives. They introduce and study

several axioms dealing with efficiency (Pareto-optimality), and fairness (core and pro-

portionality). Finally, they investigate several welfare-maximisation rules—based on

utilitarian, egalitarian, or Nash social welfare—in terms of these axioms.

Aziz, Gujar, Padala, Suzuki and Vollen (2022) study a similar model except that

agents submit cardinal ballots instead of approval ones, and that they have quasi-

linear utilities (that depend on the money they spend). They focus on the compu-

tational aspects of maximising the utilitarian social welfare subject to some partic-

ipation requirements (that guarantees the agents not to contribute more than they

receive), showing both computational hardness and inapproximability results.

3.6.7 Weighted PB
In their study about PB with ordinal ballots, Aziz and Lee (2021) make the assumption

that the voters have different weights. Their analysis does not really focus on this

assumption however, and little is known about what its impact is in general.

3.7 Related Frameworks
In this section, we present several frameworks that relate to PB. We do not provide

much detail about them but merely give pointers for the interested reader.
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Multi-winner voting. The most obviously related framework, as we have men-

tioned several times already, is multi-winner voting. It is a special case of PB—where

instances have unit costs and budget allocations are required to be exhaustive—and

has been extensively studied formany years, way before PB became a topic of interest.

A recent book by Lackner and Skowron (2023) presents a large part of that literature

for approval ballots and provides many relevant references. A good starting point for

multi-winner voting beyond approval ballots is the chapter by Faliszewski, Skowron,

Slinko and Talmon (2017). Other relevant pointers have already been included in the

different sections above.

Collective optimisation problems. As we have seen already PB can be seen as

a collective variant of the knapsack problem (see, e.g., Fluschnik, Skowron, Triphaus

andWilker, 2019). The idea of looking at collective variants of optimisation problems

is a growing field into which PB fits nicely (Boes, Colley, Grandi, Lang and Novaro,

2021). Other optimisation problems forwhich their collective variants have been stud-

ied include finding spanning trees or scheduling jobs onmachines (Darmann, Klamler

and Pferschy, 2009, 2011; Brandt, Conitzer, Endriss, Lang and Procaccia, 2016b; Pas-

cual, Rzadca and Skowron, 2018).

Divisible participatory budgeting. Throughout this chapter (and this thesis), we

only focused on the case of indivisible PB where the projects are either fully funded

or not at all. Relaxing this assumption by allowing projects to receive any amount

of funding leads to the world of divisible PB. This framework has sometimes been

called portioning where a given public resource has to be shared among different di-

visible projects. Its study dates back to Bogomolnaia, Moulin and Stong (2005) and has

since then received substantial attention. Perspectives that have been considered in-

clude welfare maximisation (Goel, Krishnaswamy, Sakshuwong and Aitamurto, 2019;

Michorzewski, Peters and Skowron, 2020), fairness guarantees (Fain, Goel and Mu-

nagala, 2016; Caragiannis, Christodoulou and Protopapas, 2022; Airiau, Aziz, Cara-

giannis, Kruger, Lang and Peters, 2023), strategic behaviour (Aziz, Bogomolnaia and

Moulin, 2019; Freeman, Pennock, Peters and Vaughan, 2021; Brandl, Brandt, Peters

and Stricker, 2021). This setting is also closely related to probabilistic social choice

(Brandt, 2018).

Fair allocation. PB also relates to the literature on fair allocation (Rothe, 2015;

Brandt, Conitzer, Endriss, Lang and Procaccia, 2016a) and more specifically on the

fair allocation of public goods (Conitzer, Freeman and Shah, 2017) where the allocated

items can impact several agents (they are not privately owned as is assumed in the

typical fair division literature). This framework can be seen as an unconstrained ver-

sion of PB as there need not be a budget constraint. Note that Fain, Munagala and

Shah (2018) consider the same model but with constraints on the outcome, though

not necessarily budget constraints.
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Chapter 4

Defining Fairness via Equality of Resources

The fact that budget allocations are composed of several elements—more than one

project is typically selected—makes fairness a crucial topic in the investigation of PB.

Indeed, when considering aggregation scenarios where the outcome consists of a sin-

gle alternative, such as presidential elections, there is much less room for fairness as

selecting only one alternative will necessarily make some voters unhappy (of course

we could then turn to temporal fairness, as we will do in Chapter 7). Intuitively, by

selecting more alternatives, we can ensure that more voters are, at least partly, satis-

fied with the outcome. Fairness deserves thus a special focus in the formal study of

PB, and, as we have seen in Chapter 3, a large part of the literature indeed focuses on

fairness. This chapter presents a different take on how to define fairness in PB.

The first fundamental question we have to answer concerns the actual definition

of fairness for PB, and more precisely, what type of fairness we are interested in. PB is

concerned with the allocation of common resources such as public money to projects

benefiting members of the society. Fairness concepts related to such framework have

usually been studies under the term distributive justice. Let us quote the Stanford

encyclopedia of philosophy to understand what the latter encompasses (Lamont and

Favor, 2017):

« The economic, political, and social frameworks that each society has—its

laws, institutions, policies, etc.—result in different distributions of benefits and

burdens across members of the society. [...] The structure of these frameworks

is important because the distributions of benefits and burdens resulting from

them fundamentally affect people’s lives. Arguments about which frameworks

and/or resulting distributions are morally preferable constitute the topic of

distributive justice. »

77
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From this quote, it should be clear that the normative approach dictating how shared

resources should be allocated through a PB process relates to distributive justice.

Overall, justice—or fairness—in PB has to be defined in terms of how the benefits

of the selected budget allocation are distributed across the citizens.

We now know the general framework in which fairness in PB fits. Looking at it in

more depth, we run into our second fundamental question: how can we define, and

measure, the benefits of the PB process experienced by the citizen? Answering this

question is of a primal importance as it will guide us in defining fairness criteria.

Looking into the literature on fairness in PB (see Section 3.3) it immediately ap-

pears that it is entirely focusing on equality of welfare (Dworkin, 1981a). Indeed, all

fairness requirements that have been introduced discuss how to reach a fair distribu-

tion of satisfaction amongst the voters. This provides a first, partial, answer to our

question: the benefits of the PB process experienced by the voters are measured in

terms of their satisfaction. This answer is however only partial. Indeed, even though

we have settled that satisfaction is the measure of interest, we have still not provided

clear ways to measure it.

This brings us to, yet another, fundamental question: how can we measure the

satisfaction of the voters in a PB process? This is highly linked to the ballot format

that is used. Indeed, the only information about the voter that is available to the de-

cision maker is the ballot they submitted. Since we are focusing on approval ballots

here, the amount of information provided by the voter is actually rather limited, mak-

ing it difficult to discuss their satisfaction. In Chapter 2, we introduced the concept of

satisfaction function (Definition 2.2.1), which allowed us to still do so, despite the use

of approval ballots. However, I do believe that this approach, though mathematically

appealing, is not suitable for more applied purposes. This is mainly due to the lack of

consensus regarding what should be the satisfaction function to consider. Thus, any

result applying only to a specific satisfaction function would have somewhat limited

applicability. Note that I also do not believe that a consensus on which satisfaction

function to use can ever be found, as satisfaction functions are such simplistic repre-

sentations of what could be the internal reasoning of a voter.
31

In a nutshell, it seems—at least to me—that there is no satisfactory way to discuss

satisfaction with approval ballots. Of course, one could then argue for the use of other

ballot formats. However, by considering more sophisticated ballots, one runs into

different issues regarding the actual usage of the ballots. Focusing on one question

at a time, the conclusion of this discussion is that the approach based on equality of

welfare is not fully suited to PB with approval ballots.

The fact that we cannot devise fairness criteria based on notions of satisfaction

or welfare that are clearly motivated does not imply that it is not possible to discuss

about fairness at all. First, one could still pursue the satisfaction-based approach,

31
As already discussed in Chapter 3, an approach to mitigate this issue is to obtain results for classes

of satisfaction functions (along the line of Brill, Forster, Lackner, Maly and Peters, 2023). Such results

are however difficult to obtain, and usually only apply to weaker notions of fairness.
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which after all is interesting at a theoretical level (and we will do so in Chapter 7).

Moreover, there are other approaches to distributive justice that can be explored. The

focus of this chapter will be on one of them, namely equality of resources as defined

by Dworkin (1981b). The research question we aim to answer is thus the following:

How can equality of resources be formalised and implemented

in PB with approval ballots?

Let us briefly introduce equality of resources. The idea behind it is not to aim for

a fair distribution of satisfaction, but instead to strive to invest the same effort into

satisfying each voter. Interestingly, this approach does not suffer from the drawbacks

wementioned above since the amount of resources spent is a quantitywe canmeasure

objectively from the ballots.

This chapter presents a fairness theory for PB based on equality of resources. In

the first section of this chapter, we will define the share, a measure of the amount of

resources spent on each voter that we use to operationalise the concept of equality of

resources (Section 4.1). From there, we will derive a first set of fairness criteria based

on the idea that all agents deserve to enjoy a similar amount of share (Section 4.2). A

second set of fairness criteria will then be introduced, all based on the idea that voters

deserve a certain share by virtue of being part of cohesive groups (Section 4.3). At this

point, we will investigate the relationships between the criteria we introduced, and

other standard criteria from the literature (Section 4.4). Wewill conclude our study by

presenting experimental results investigating how close to the share-based fairness

criteria we can get in practice (Section 4.5). Finally, the main take-home messages

from this chapter will be presented (Section 4.6).

4.1 The Share
We will focus on the standard model of PB in this chapter. We will thus use the

notation introduced in Chapter 2.

The goal of this chapter is to explore fairness properties for PB that are defined in

terms of equality of resources. We will propose several such fairness properties, all

of them being based of the fundamental notion of the share of an agent.

Definition 4.1.1 (Share). Given an instance I = ⟨P , c, b⟩ and a profile A, the share

of a subset of projects P ⊆ P is defined as follows:

share(I,A, P ) =
∑
p∈P

c(p)

|{A ∈ A | p ∈ A}|
.

Moreover, the share of an agent i ∈ N is defined as:

share i(I,A, P ) = share(I,A, P ∩ Ai).
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When clear from context, we shall omit the arguments of I and A in the notation of

the share.

The share is thus a measure of the distribution of resources according to which

all the supporters of a project p are allocated their share of p, defined as the cost of p
divided by the number of its supporters. We interpret an agent’s share as the amount

of resources spent by the decision maker on trying to satisfy the needs of that agent.

Note that it can also be interpreted as an influence index, measuring the impact of

each agent on the final decision.

It is important to note that the share cannot be captured via independent cardinal

utility functions as the share of an agent depends on the ballots submitted by the

other agents.

This concept is so fundamental to this chapter that it deserves to also be presented

in an example.

Example 4.1.2. Consider a PB instance I with three projects as described below,

and a budget limit b = 8. The profile A is composed of four ballots presented in the

following table.

p1 p2 p3

Cost 6 2 2

A1 ✓ ✓ ✗

A2 ✓ ✓ ✗

A3 ✓ ✗ ✗

A4 ✗ ✗ ✓

b = 8

If we select projects according GreedCost, we would obtain the budget allocation

π = {p1, p2}. The share of the agents would then be:

share1(π) = share2(π) =
6

3
+

2

2
= 3 share3(π) =

6

3
share4(π) = 0.

The agents thus have rather different shares. Somewhat anticipating the next section,

this distribution of share can be deemed rather unfair. If the budget allocation π′ =
{p1, p3} was to be selected instead, the share of all the agents would be of value 2.
This definitely seem fairer. △

4.2 The Fair Share
In this section we present our first set of fairness properties. They are all based on the

idea a budget allocation can only be considered fair if every agent enjoy more share

than a given threshold. This threshold, that wil be introduced shortly after, is what

we call the fair share of an agent.
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4.2.1 Exact Fair Share
We first define the fair share property. It is based on the idea that each voter deserves

1/n of the budget—a fundamental idea familiar, for instance, from the classical fair di-

vision (“cake cutting”) literature (Robertson and Webb, 1998). So, a perfect allocation

would give each voter a share of b/n. Since it could be that some voters do not approve

enough projects for this to be possible, we correct for this corner case.

Definition 4.2.1 (Fair Share). Given an instance I = ⟨P , c, b⟩ and a profileA, the fair

share of agent i ∈ N is defined as:

fairshare i(I,A) = min{b/n, share i(I,A, Ai)}.

A budget allocation π ∈ Feas(I) is said to satisfy fair share (FS) if for every instance I ,
profile A and agent i ∈ N , we have:

share i(I,A, π) ≥ fairshare i(I,A).

Note that if for a given agent i ∈ N , it is the case that min{b/n, share i(I,A, Ai)} =
share i(I,A, Ai), then π satisfies FS only ifAi ⊆ π. This ensures that FS is not trivially
unsatisfiable because of the ballots not being large enough. As for the share, we omit

the instance I and the profileA from the fair share notation when they are clear from

the context.

The notion of fair share is the fundamental fairness property studied in this chap-

ter. A budget allocation satisfying FS indeed provides perfect equity of resources, i.e.,

perfect fairness according to the perspective we adopt in this chapter.

Unfortunately, it is rather easy to see that for some instances no budget allocation

would provide fair share. This notably implies that no rule can possibly satisfy FS.

Proposition 4.2.2. There exists an instance I = ⟨P , c, b⟩ with unit costs and a profile

A for which no budget allocation π ∈ Feas(I) provides FS.

Proof. Consider the instance I with two projects p1 and p2, both of cost 1, and

a budget limit b = 1. Let A be a profile with agents named 1 and 2. Agent 1

approves only of p1 and agent 2 only of p2. Then, for both agents, their fair share

ismin{1/2, 1} = 1/2. However, at most one project can be selected, and whichever

project is selected, the share of one of the agents would be 0. It is thus impossible

to satisfy FS. 2

Still, as already witnessed in Example 4.1.2, there are some instances in which it is

possible to provide fair share. It would thus be interesting to provide fair share when

possible. However, we can show that there exists no polynomial-time computable rule

that returns an FS allocation whenever one exists (unless P = NP). Indeed, checking

the existence of a budget allocation satisfying FS is an NP-complete problem. The

computational problem is formally defined as follows.
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FS Satisfiability

Input: An instance I = ⟨P , c, b⟩ and a profile A.

Question: Is there a budget allocation π ∈ Feas(I) that satisfies FS?

We show that this problem is NP-complete in the following.

Proposition 4.2.3. The problem FS Satisfiability is strongly NP-complete, even in

the unit-cost setting.

Proof. It is clear that FS Satisfiability is in NP, the certificate simply being the

budget allocation itself. We show NP-hardness by a reduction from the 3-Set-

Cover problem, known to be strongly NP-complete (Fürer and Yu, 2011). It is

defined as follows.

3-Set-Cover

Input: A universe U = {u1, . . . , u|U |}, a set S of 3-element subsets of U ,

and an integer k ∈ N.
Question: Is there a subset S⋆

of S such that

⋃
S⋆ = U and |S| ≤ k?

Let (U, S, k) be an instance of 3-Set-Cover. We assume without loss of gen-

erality that k ≤ |U |. Given (U, S, k), we construct a PB instance I = ⟨P , c, b⟩ and
a profile A as follows:

▶ The set of projects is P = P ∪ {p⋆} with P = {p1, . . . , p|S|}, i.e., for every
3-element subsets of U denoted sj ∈ S, there is a project pj , and there is

one auxiliary project p⋆;

▶ All projects have cost 1 and the budget limit is b = k + 1;

▶ The set of voters is N = {1, . . . , 3|U | + 3}, i.e., there is a voter for every
element of U and 2|U |+ 3 many auxiliary voters;

▶ The ballot of a “element” voter i ∈ {1, . . . , |U |} is given by Ai = {pj ∈ P |
ui ∈ sj}, i.e., i approves the project representing the set sj if and only if

their corresponding element ui is in sj ;

▶ The ballot of an “auxiliary” voter i ∈ {|U |+1, . . . , 3|U |+3} is Ai = {p⋆}.

Given the instance I and the profile A thus constructed, we claim that there is a

budget allocation π ∈ Feas(I) that satisfies FS if and only if (U, S, k) is a positive
instance of 3-Set-Cover.

Assume first that there is no set cover of size k. Thus, for any set S⋆ ⊆ S
of size k there is at least one element ui ∈ U that is not contained in any of
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the sets in S⋆
. Then, by construction, for every budget allocation π ∈ Feas(I)

containing k or fewer projects, theremust be one “element” voter i ∈ {1, . . . , |U |}
with share i(π) = 0. Moreover, for any budget allocation π ∈ Feas(I) such that

p⋆ /∈ π, all “auxiliary” voters i ∈ {|U |+1, . . . , 3|U |+3} have share 0. Hence, no
budget allocation containing at most k + 1 projects can satisfy FS. Finally, since

the set of feasible budget allocations is Feas(I) = {P ⊆ P | |P | ≤ k + 1}, this
concludes the first part of the proof.

Now, assume that there exists S⋆ ⊆ S that is a set cover of U of size k. We

claim that the budget allocation π = {pj ∈ P | sj ∈ S⋆} ∪ {p⋆} satisfies FS.
Given our assumption that k ≤ |U |, we have:

b

|N |
=

k + 1

3|U |+ 3
≤ |U |+ 1

3|U |+ 3
=

1

3
.

Moreover, since |sj| = 3 for all sj ∈ S, exactly three voters approve of each

project pj ∈ P . Now, because S⋆
is a set cover, for each “element” voter

i ∈ {1, . . . , |U |}, there is a project p ∈ π such that p ∈ Ai. It follows that

share i(π) ≥ 1/3 ≥ fairshare i, for all i ∈ {1, . . . , |U |}. In addition, for ev-

ery i ∈ {|U | + 1, . . . , 3|U | + 3} we have Ai = {p⋆}, so we trivially have

share i(π) = share i(Ai) = fairshare i. It follows that π satisfies FS. 2

Because it is not always possible to find a budget allocation satisfying fair share,

and as it is computationally hard to know whether we can, we weaken the fair share

requirement in the hope of obtaining more positive results. Two weakenings will be

presented in the following.

4.2.2 Fair Share up to One Project
The fact that FS cannot always be guaranteed is highly due to the indivisibility of

the projects. It is indeed typical that to achieve strong fairness properties we would

need to only partially select some projects. One standard way of relaxing properties

that cannot be satisfied because of indivisibility issues is to consider their “up to one”

variants, in which we require that selecting one extra project would allow us to satisfy

the property. EJR-1 that we introduced in Definition 3.3.15 is an example of such

property. This is also a standard approach in fair division (see, e.g., Lipton, Markakis,

Mossel and Saberi, 2004; Budish, 2011).

We follow the same approach here and introduce fair share up to one project.
32

32
Note that we diverge a bit from the standard way of defining “up to one” variants of fairness

properties in PB here. Indeed we use a greater-or-equal instead of a strict inequality in the definition

(contrary to EJR-1). One implication is that FS and FS-1 do not coincide on unit-cost instances. Our

rationale is that adding one project guarantees that FS is satisfied, but no more than that.
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Definition 4.2.4 (FS up to One Project). Given an instance I = ⟨P , c, b⟩ and a profile
A, a budget allocation π ∈ Feas(I) is said to satisfy fair share up to one project (FS-1)

if, for every agent i ∈ N , there is a project p ∈ P such that:

share i(I,A, π ∪ {p}) ≥ fairshare i(I,A).

Thus, according to FS-1, a budget allocation can fail FS, but for each agent i ∈ N , we

should be able to select an extra project so that i exceeds their fair share.

Unfortunately, and surprisingly, FS-1, just as FS, cannot always be satisfied.

Proposition 4.2.5. There exists an instance I = ⟨P , c, b⟩ and a profileA for which no

budget allocation π ∈ Feas(I) provides FS-1.

Proof. Consider the following instance with three projects, all of cost 3 and a

budget limit of b = 5. There are three agents, whose ballots are as displayed

below.

p1 p2 p3

Cost 3 3 3

A1 ✓ ✓ ✗

A2 ✓ ✗ ✓

A3 ✗ ✓ ✓

b = 5

Here the fair share of each agent is 5/3 ≈ 1.67. As a single project only yields a

share of 1.5 to an agent who approves of it, for any agent to reach their fair share,

two projects must be selected. However, a feasible budget allocation can select at

most one project, meaning that for one agent none of the projects they approve

of will be selected. So, even if we were to select an extra project for that agent,

they would still not obtain their fair share. This is a violation of FS-1. 2

The difficulties keep on piling up for FS-1 as we can also show that it is computa-

tionally hard to check whether an FS-1 budget allocation exists, meaning that no PB

rule running in polynomial time can satisfy FS-1 when possible (unless P = NP). Let

us first introduce the formal computational problem.

FS-1 Satisfiability

Input: An instance I = ⟨P , c, b⟩ and a profile A.

Question: Is there a budget allocation π ∈ Feas(I) that satisfies FS-1?

Next, we show that FS-1 Satisfiability is NP-complete.
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Proposition 4.2.6. The problem FS-1 Satisfiability is strongly NP-complete, even in

the unit-cost setting.

Proof. It is clear that FS-1 Satisfiability is in NP. We show NP-hardness us-

ing the 3-Set-Cover problem (Fürer and Yu, 2011) once again. For the formal

definition of the latter, see the proof of Proposition 4.2.3.

Let ⟨U, S, k⟩ be an instance of the 3-Set-Cover problem where U =
{u1, . . . , u|U |} is the universe, S = {s1, . . . , s|S|} is a set of 3-element subsets of

U , and k ∈ N is an integer. Without loss of generality, we make two assumptions:

(i) every ui ∈ U appears in at least one sj ∈ S; (ii) |U |/3 ≤ k < |U |. Note that
whenever one of these assumptions is violated, the answer of the 3-Set-Cover

problem can easily be found in polynomial time.

We furthermore make the assumption that k > |U |/3. This assumption cannot

be made without loss of generality. We justify it by the following reduction that

shows that the problem is still NP-hard when k > |U |/3. Consider an instance

⟨U ′, S ′, k′⟩ of the 3-Set-Cover problem for which k′ = |U ′|/3. We construct a new

instance ⟨U ′′, S ′′, k′′⟩ in which k′′ > |U ′′|/3. It is such that:

▶ The universe is extended with four new elements: U ′′ = U ′ ∪
{u′′

1, u
′′
2, u

′′
3, u

′′
4};

▶ Two new triplets are considered: S ′′ = S ′ ∪ {{u′′
1, u

′′
2, u

′′
3}, {u′′

2, u
′′
3, u

′′
4}};

▶ The solution size is increased by two: k′′ = k′ + 2.

Since |U ′′| = |U ′|+4 = 3k′+4 and k′′ = k′+2, we clearly have k′′ > |U ′′|/3. More-

over, a subset S ′
⋆ ⊆ S ′

is a solution of the 3-Set-Cover problem for ⟨U ′, S ′, k′⟩ if
and only if S ′′

⋆ = S ′
⋆ ∪ {{u′′

1, u
′′
2, u

′′
3}, {u′′

2, u
′′
3, u

′′
4}} is a solution for ⟨U ′′, S ′′, k′′⟩.

This shows that 3-Set-Cover remains NP-hard if we require that k > |U |/3.

We now get back to the original reduction and the instance ⟨U, S, k⟩. We dis-

tinguish between two cases based on the relative value of k and |U |, and construct
different instances in each cases.

▷ Assume first that 1/3|U | < k ≤ 2/3|U |. We construct a PB instance I as

follows. The set of voters is N = {1, . . . , 2|U |}, i.e., there are two voters per

element of U . The set of projects is P = {p1j | sj ∈ S} ∪ {p2j | sj ∈ S}, i.e., there
are two projects per element of S. All projects have cost 1 and the budget limit is

b = k. The profileA is constructed with the following approval ballots:

Ai = {p1j | ui ∈ sj} ∪ {p2j | ui ∈ sj} for all i ∈ {1, . . . , |U |},
Ai = {p1j | ui−|U | ∈ sj} ∪ {p2j | ui−|U | ∈ sj} for all i ∈ {|U |+ 1, . . . , 2|U |},

i.e., agent i approves of the two projects representing the set sj if and only if ui

(or ui−|U | if i > |U |) is in sj . We now prove that there exists a suitable S⋆ ⊆ S
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to answer the 3-Set-Cover problem, if and only if, there exists an FS-1 budget

allocation in the instance I and profile A previously described.

Observe that in I andA, two projects need to be selected from each ballot so

that all agents reach their fair share. Indeed, remember that we assumed 1/3|U | <
k ≤ 2/3|U |. Since b/n = k/2|U |, we thus have 1/6 < b/n ≤ 1/3. Moreover, for

every project p ∈ P , there are exactly six agents approving of it, so for any agent
i ∈ N approving of p, we have share i({p}) = 1/6. Given that every agent i ∈ N
approves of at least 2 projects, we thus have share i(Ai) ≥ 1/3. Overall, we know
that for every i ∈ N , we have 1/6 < fairshare i ≤ 1/3, so every agent needs two

projects to reach their fair share.

Now, a budget allocation π ∈ Feas(I) satisfies FS-1 if and only if every agent

has a non-zero share in π: According to the above, if an agent has a non-zero

share then adding an extra project will always grant them their fair share; and

if an agent has a share of zero, one would need to add two extra projects to π,
which is not allowed in FS-1. All agents having a non-zero share is possible if and

only if there exists a set S⋆ ⊆ S of size at most k such that every elements of U
appears in at least one element of S⋆

. This concludes the proof for this case.

▷ Assume now that 2/3|U | < k < |U |. The PB instance I we construct is as

follows. The set of voters isN = {1, . . . , 2|U |}∪{2|U |+1, . . . , 3k}, i.e., there are
two voters per element of U , together with a certain number of additional voters.

Note that since 2/3|U | < k, we do have 2|U |+1 ≤ 3k andN is thus well-defined.

The set of projects is P = {p1j | sj ∈ S}∪{p2j | sj ∈ S}∪{p⋆}, i.e., there are two
projects per element of S, and an additional one p⋆. All projects have cost 1 and
the budget limit is b = k. The profileA consists of the following approval ballot:

Ai = {p1j | ui ∈ sj} ∪ {p2j | ui ∈ sj} for all i ∈ {1, . . . , |U |},
Ai = {p1j | ui−|U | ∈ sj} ∪ {p2j | ui−|U | ∈ sj} for all i ∈ {|U |+ 1, . . . , 2|U |},
Ai = {p⋆} for all i ∈ {2|U |+ 1, . . . , 3k}.

Overall, agent i for i ∈ {1, . . . , 2|U |} approves of the two projects representing

the set sj if and only if ui (or ui−|U | if i > |U |) is in s
j ; while the additional agents

all approve only of project p⋆.
Let us discuss this construction. By definition we have b/n = k/3k = 1/3.

As for the previous case, for every agent i ∈ {1, . . . , 2|U |}, the share of every

project they approve of is 1/6. They thus deserve a share of at least 1/3 to get their
fair share, which can only be done by selecting at least two projects. Observe in

addition that every budget allocation π ∈ Feas(I) satisfies the FS-1 condition for

agents i ∈ {2|U |+1, . . . , 3k} as the project p⋆ (the only project they approve of)
can always be added, if it is not already in π, by virtue of FS-1.

Overall, an allocation π ∈ Feas(I) satisfies FS-1 if and only if every agent

i ∈ {1, . . . , 2|U |} has a non-zero share in π. Such a π exists if and only if there is
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a set S⋆ ⊆ S of size at most k such that every elements of U appears in at least

one element of S⋆
. This concludes the proof. 2

Our investigation of FS-1 is now over. In a nutshell, the picture did not get brighter

when weakening FS into FS-1. In the following section, we will study another weak-

ening of FS that we will prove to be satisfiable, in polynomial time even!

4.2.3 Local Fair Share
Our second weakening of FS is inspired by the local variant of PJR introduced by

Aziz, Lee and Talmon (2018), called Local BPJR. We introduced this concept in Defini-

tion 3.3.22. We now provide the definition of Local-FS; we will discuss it afterwards.

Definition 4.2.7 (Local-FS). Given an instance I = ⟨P , c, b⟩ and a profileA, a budget

allocation π ∈ Feas(I) is said to satisfy local fair share (Local-FS) if there is no project

p ∈ P \π such that, there is an agent i ∈ N with p ∈ Ai, and for all agents i ∈ N with

p ∈ Ai, we have:

share i(π ∪ {p}) < fairshare i.

Intuitively, if there exists a project p that could be added to the budget allocation π
without any of its supporters receiving at least their fair share, then every supporter

of p receives strictly less than their fair share and one of the following holds:

▶ p can be selected without exceeding the budget limit b;

▶ some voter i⋆ not approving of p receives more than their fair share.

In the first case, it is clear that p should be selected and thus π must be deemed unfair.

In the second case, it might be considered fairer to exchange one project supported by

i⋆ with project p. In this sense, the property can be seen as an “upper quota” property,
as we have to add projects such that no voter receives more than their fair share as

long as possible.

In contrast to FS-1 and FS, we can always find an allocation that satisfies Local-FS.

Indeed, we can show that MES used with the share satisfies Local-FS.

Theorem 4.2.8. MES[share] satisfies Local-FS.

Proof. Let us recall some elements of the definition of an MES rule (Defini-

tion 2.3.3) we provided in Chapter 2. For a given subset of projects P ⊆ P and an

agent i ∈ N , ℓi(P ) represents the load of agent i, that is, the amount of virtual

money they have spent. Moreover, for P ⊆ P , p ∈ P and α ∈ R, γi(P, α, p)
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denotes the contribution of agent i ∈ N for project p for the affordability factor

α if projects P have already been selected. Let us introduce one additional con-

cept: given a budget allocation π and a scalar α > 0, we say that agent i ∈ N
contributes in full to project p ∈ Ai if we have γi(P, α, p) = α · share i({p}).

During a run of MES[share], all the supporters of a project p ∈ P contribute

in full to p if and only if p is 1-affordable. In this case, for all supporters i of
p, we have ℓi({p}) = share({p}, i). Moreover, if a project p is α-affordable but
at least one voter cannot contribute in full to p, then α > 1. MES[share] only
terminates when no project is α-affordable, for any α. Therefore, there is a round
where no project p is 1-affordable. Let k be the first such round and let πk be

the budget allocation before round k. It follows that every project in πk was

1-affordable and hence ℓi(πk) = share i(πk) for all i ∈ N . As no project p is 1-
affordable in round k, there is no projects in P \ πk for which all the supporters

contribute in full to. Thus, for every p ∈ P \ πk, there is a voter i ∈ N such

that b/n − ℓi(πk) < share i({p}). Since ℓi(πk) = share i(πk) and the share is

additive, it follows that share(πk ∪ {p}, i) > b/n. So πk already satisfies Local-FS.

As MES[share] returns an allocation π with πk ⊆ π, it satisfies Local-FS. 2

In fact, the proof of Theorem 4.2.8 establishes a slightly stronger statement than Local-

FS: there is no project p ∈ P \ π such that for all agents i ∈ N with p ∈ Ai we have

share i(π ∪{p}) ≤ b/n. In other words, any project added to π gives at least one voter

more than their fair share. This would correspond to having a strict inequality in the

definition of Local-FS.

We have now found a relaxation of FS that can always be satisfied. Given that

MES[share] runs in polynomial time, we can even find a budget allocation satisfying

Local-FS efficiently. In the coming section, we focus on different relaxations of FS.

4.3 The Justified Share
Local-FS and FS-1 require the outcome to be, in some sense, close to satisfying FS.

Another idea forweakening FS is to spend on a voter only the resources they can claim

to deserve. In Chapter 3, we already surveyed a long list of fairness properties based

on this ideas, namely the axioms based on justified representation (see Section 3.3.1).

We follow the same approach here.

Our blue-print for this section is the adaptation of EJR to the context of PB (see

Definition 3.3.10). Cohesive groups will thus play an important role here. Remember

that they have been defined in Definition 3.3.9. Ideally, we would want to satisfy the

following property.

Definition 4.3.1 (Strong Extended Justified Share). Given an instance I = ⟨P , c, b⟩
and a profile A, a budget allocation π ∈ Feas(I) is said to satisfy strong extended
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justified share (Strong-EJS) if for all P ⊆ P , all P -cohesive groups N and all agents

i ∈ N , we have:

share i(π) ≥ share i(P ).

The idea behind Strong-EJS is the following: since every P -cohesive group S controls

enough budget to fund P , every agent in S deserves to enjoy at least as much share

as what they would have gotten if P had been the outcome.

Intuitively, Strong-EJS is very similar to Strong-EJR (Definition 3.3.10), a property

that is known not to be always satisfiable (see Proposition 3.3.11). The same holds for

Strong-EJS: there exist instances for which no budget allocation satisfies this axiom.

Proposition 4.3.2. There exists an instance I = ⟨P , c, b⟩ with unit costs and a profile

A for which no budget allocation π ∈ Feas(I) satisfies Strong-EJS.

Proof. Consider the instance I = ⟨P , c, b⟩ with four projects p1, p2, p3 and p4, all
of cost 1, and a budget limit b = 2. The profile A is composed of the four ballots

presented below.

p1 p2 p3 p4

Cost 1 1 1 1

A1 ✓ ✗ ✗ ✓

A2 ✓ ✓ ✗ ✗

A3 ✓ ✗ ✓ ✗

A4 ✗ ✓ ✓ ✗

b = 2

The group of agents {1, 2, 3} is {p1}-cohesive, the group {2, 4} is {p2}-cohesive,
and the group {3, 4} is {p3}-cohesive. Hence one needs to select all three projects
to satisfy Strong-EJS, which is not possible within the budget limit. 2

Observe that in this scenario it is not even possible to guarantee each P -cohesive

group the same average share as they receive from P . Moreover, it is interesting to

note that in the above example, all ballots are feasible and exhaustive, so these ballot

restrictions would also not help satisfying Strong-EJS.

All of the above motivates us to weaken Strong-EJS, and to introduce (simple) EJS.

Definition 4.3.3 (Extended Justified Share). Given an instance I = ⟨P , c, b⟩ and a

profile A, a budget allocation π ∈ Feas(I) is said to satisfy extended justified share

(EJS), if for all P ⊆ P and all P -cohesive groups N , there is an agent i ∈ N for whom

share i(π) ≥ share i(P ).
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The difference between Strong-EJS and EJS is the switch from a universal to an exis-

tential quantifier: for the former, we impose a lower bound on the share of every agent

in a cohesive group, while for the latter this lower bound only applies to one agent

of each cohesive group. Therefore, in the counterexample presented in the proof of

Proposition 4.3.2 both π = {p1, p3} and π′ = {p2, p3} satisfy EJS, as either agent 3 or

agent 4 satisfies the share requirement for every cohesive group.

Before moving on to the satisfiability of EJS, we present an interesting example

showing that EJS and EJR[satcard ] (Definition 3.3.12), while similar in spirit, do not

coincide, even in the unit-cost setting.

Example 4.3.4. Consider an instance I with six projects, all of cost 1, and a budget

limit b = 4. The profileA is composed of the following four approval ballots:

p1 p2 p3 p4 p5 p6

Cost 1 1 1 1 1 1

A1 ✓ ✓ ✓ ✗ ✗ ✗

A2 ✓ ✓ ✗ ✓ ✗ ✗

A3 ✗ ✗ ✗ ✓ ✓ ✓

A4 ✗ ✗ ✗ ✓ ✓ ✓

b = 4

Then, 1 and 2 together form a {p1, p2}-cohesive group. Similarly, 3 and 4 form a

{p4, p5} cohesive group. We claim that π = {p3, p4, p5, p6} satisfies EJS but not

EJR[satcard ] while π′ = {p1, p4, p5, p6} satisfies EJR[satcard ] but not EJS.
Let us first consider π = {p3, p4, p5, p6}. There, we have |A1 ∩ π| = |A2 ∩ π| = 1,

so EJR[satcard ] is not satisfied. On the other hand, share1(π) = 1 = share1({p1, p2})
and share3(π) > share3({p4, p5}). Therefore, π satisfies EJS.

Now consider π′ = {p1, p4, p5, p6}. We have:

share1(π
′) =

1

2
, share2(π

′) =
5

6
, share1({p1, p2}) = share2({p1, p2}) = 1.

Therefore, the {p1, p2}-cohesive group {1, 2} witnesses that π′
violates EJS. On the

other hand, since |A2 ∩ π′| = 2 and |A3 ∩ π′| = 3, EJR[satcard ] is satisfied by π′
. △

We have now prepare everything for studying EJS. We will start with the question

of the satisfiability of EJS.

4.3.1 Achieving EJS

We now turn to the satisfiability of EJS.We prove using a standard argument (through

the use of a greedy cohesive procedure) that it is always satisfiable.



4.3. The Justified Share 91

Algorithm 1: Greedy Cohesive Procedure for EJS

Input: An instance I = ⟨P , c, b⟩ and a profile A
Output: A budget allocation π ∈ Feas(I) satisfying EJS
Intialise π and N⋆

as the empty set: π ← ∅, N⋆ ← ∅
while there exists an N ⊆ N \N⋆

with N ̸= ∅ and a P ⊆ P \ π with P ̸= ∅,
such that N is P -cohesive do

Select N ⊆ N \N⋆
and P ⊆ P \ π such that:

(N,P ) ∈ argmax
(N ′,P ′) ∈ 2N\N⋆×2P\π

N ′
is P ′

-cohesive

max
i∈N ′

share(P ′, i)

Select the projects in P : π ← π ∪ P
Agents in N have been satisfied: N⋆ ← N⋆ ∪N

return the budget allocation π

Proposition 4.3.5. For every instance I = ⟨P , c, b⟩ and every profileA, there exists a

budget allocation π ∈ Feas(I) that satisfies EJS.

Proof. We show that Algorithm 1 computes a feasible budget allocation that sat-

isfies EJS. Let us consider an arbitrary instance I = ⟨P , c, b⟩ and profile A. In-

formally, Algorithm 1—that we refer to as the greedy cohesive procedure for EJS—

selects projects in a greedy fashion, each time selecting the ones that are involved

in a cohesive group with the highest share requirement. The procedure goes on

until all cohesive groups have been satisfied, never considering agents or projects

more than once.

We first show that the budget allocation returned by the algorithm is feasible.

Claim 4.3.6. Algorithm 1 always returns a feasible budget allocation.

Proof: Consider the run of the algorithm on I andA and denote by π the budget

allocation returned. Assume that thewhile-loop is run k times. Let us call (Nj, Pj)
the sets of agents and projects that are selected during the j-th run of the while-

loop, for all j ∈ {1, . . . , k}. We then have:

c(π) =
k∑

j=1

c(Pj) ≤
k∑

j=1

|Nj| · b
n

=
b

n
·

k∑
j=1

|Nj| ≤ b.

The first equality comes from the fact that P1, . . . , Pk is a partition of π. The

first inequality is derived from the fact that Nj is a Pj-cohesive group, for all

j ∈ {1, . . . , k} (it is an inequality because for any of the projects p ∈ Pj , some

agents outside of Nj may approve of it; c(p) can thus be split among more than
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|Nj| agents). The final inequality is linked to the fact all the N1, . . . , Nk are pair-

wise disjoint. Overall, the outcome of Algorithm 1 always is a feasible budget

allocation. ⋄

Let us now prove that the algorithm does compute an EJS budget allocation.

Claim 4.3.7. The budget allocation π returned by Algorithm 1 on I andA satisfies

EJS.

Proof: Assume towards a contradiction that π violates EJS. Then, there must exist

some N † ⊆ N and P † ⊆ P such that N †
is P †

-cohesive but also such that, for

all agents i ∈ N †
, we have share i(π) < share i(P

†). Note that, if P † ⊈ π, this
means that at the end of the algorithm either one agent i ∈ N †

has been satisfied

(i ∈ N⋆
when the algorithm returns) or that one project p ∈ P †

has been selected

(p ∈ π when the algorithm returns). We distinguish these two cases.

▷ First, consider the case where one agent has been satisfied by the end of the

algorithm. Using the same notation as for the previous claim, there exists then a

smallest j ∈ {1, . . . , k} such that there exist i⋆ ∈ N † ∩Nj . Note that this implies

that Pj ⊆ Ai⋆ since i
⋆
is part of the group of agentsNj , that is Pj-cohesive. Given

that (N †, P ) has not been selecting during that run of the while loop, it means

that:

max
i′∈Nj

share i′(Pj) ≥ max
i∈N†

share i(P
†).

Since the cost of a project is split equality among its supporters, it is easy to

observe that for any P -cohesive group N , and for every two agents i, i′ ∈ N ,

we have share i(P ) = share i′(P ). Moreover, for any P ′ ⊆ P ⊆ P , we also have

that share i(P
′) ≤ share i(P ) for any agent i ∈ N . Overall, for our distinguished

agent i⋆ ∈ N † ∩Nj , we have:

share i⋆(π) ≥ max
i′∈Nj

share i′(Pj)

≥ max
i∈N†

share i(P
†)

≥ share i⋆(P
†),

which contradicts the fact that π fails EJS.

▷ Let us now consider the second case, i.e., when P † ∩ π ̸= ∅ but P † ⊈ π. In
this case, it is important to see that ifN †

is P †
-cohesive, then it is also P -cohesive

for all P ⊆ P †
. Then, we can run the same proof considering the (P † \ π)-

cohesive group N †
. Iterating this argument, would either lead to the conclusion

that P † ⊆ π, a contradiction, or to another contradiction due to the first case we

considered (when some agent of N †
is already satisfied). ⋄
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To conclude the proof, note that Algorithm 1 always terminates. Indeed, after

each run of the while-loop, at least one agent is added to the set N⋆
. Moreover,

if N⋆ = N , the condition of the while-loop would be violated and the algorithm

would terminate. Overall at most n runs through the while-loop can occur. 2

The fact that EJS can always be satisfied is a good thing in general. However, the

reader who has gone through the proof will have noticed that the procedure we devise

may require exponential time to run. This drawback is unfortunately unavoidable,

unless P = NP, as we show next.

Theorem 4.3.8. There is no strongly-polynomial time algorithm that, given an in-

stance I and a profile A as input, always computes a budget allocation satisfying EJS,

unless P = NP.

Proof. Assume, that there is an algorithm A that always computes an allocation

satisfying EJS in strongly-polynomial time. We will prove that we could use A
to solve the Targeted Subset-Sum problem, known to be NP-hard (Karp, 1972;

Garey and Johnson, 1979).

Targeted Subset-Sum

Input: A finite set Z ⊆ N and a target t.
Question: Is there a non-empty Z ′ ⊆ Z such that

∑
z∈Z′ z = t?

Given an instance of the problem Z = {z1, . . . , zm} and t, we construct I =
⟨P , c, b⟩ and A as follows. We have m projects P = {p1, . . . , pm} with the fol-

lowing cost function c(pj) = zj for all j ∈ {1, . . . ,m} and a budget limit b = t.
There is moreover only one agent, who approves of all the projects.

Now, (Z, t) is a positive instance of Targeted Subset-Sum if and only if there

is a budget allocation π ∈ Feas(I) that cost is exactly b. If such an allocation π
exists, then the one voter is π-cohesive. Therefore, any allocation π′

that satis-

fies EJS must give that voter share1(π
′) ≥ share1(π) = c(π). Hence, (Z, t) is a

positive instance of Subset-Sum if and only if c(A(I,A)) = b. We have thus pre-

sented a way to solve the Targeted Subset-Sum problem in strongly-polynomial

time using algorithm A. This is only possible if P = NP. 2

Interestingly, we can compute EJS budget allocations in FPT-time, when parame-

terized by the number of projects. This was already observed in the unit-cost setting

for the EJR[satcard ] (Aziz, Brill, Conitzer, Elkind, Freeman and Walsh, 2017).

Proposition 4.3.9. For every instance I = ⟨P , c, b⟩ and every profile A, we can com-

pute a budget allocation π ∈ Feas(I) that satisfies EJS in time in O(n · 2|P|).
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maximise ϵ (4.1)

subject to:
xi ∈ {0, 1} for all i ∈ N (4.2)

zp ∈ {0, 1} for all p ∈ P (4.3)

zp + xi − 1 ≤ 1p∈Ai
for all i ∈ N and p ∈ P (4.4)

1

n

∑
i∈N

xi ≥
1

b

∑
p∈P

zp · c(p) (4.5)

xi · share i(π) + ϵ ≤
∑
p∈P

zp · share({p}) for all i ∈ N (4.6)

Figure 4.3.1: An integer linear program for verifying whether a budget allocation π
satisfies EJS.

Proof. We prove that Algorithm 1 has the suitable running time when run on

instance I = ⟨P , c, b⟩ and profile A. The first thing to note is that at least one

agent is added to N⋆
during each run of the while-loop. Thus, there are at most

n iterations of the while-loop.

Let us have a closer look at what happens inside the while-loop. The main

computational task here is the maximisation that goes through all subsets of N
and P . The trick resides in the fact that we can actually avoid going through all

subsets of agents. Indeed, consider a subset of projects P ⊆ P and letN ⊆ N be

the largest set of agents such that for all i ∈ N , we have P ⊆ Ai. Note that such

a set N can be efficiently computed (by going through all the approval ballots).

Now, if there exists a group of agents that is P -cohesive, then for sure N also

is P -cohesive. Moreover, note that for any P -cohesive group N ′
, and for every

two agents i ∈ N and i′ ∈ N ∪ N ′
, we have share i(P ) = share i′(P ). Overall,

one can, without loss of generality, only consider the group of agents N when

considering the subset of projects P . This implies that the maximisation step can

be computed by going through all the subsets of projects and, for each of them,

by only considering a single subset of agents (that is efficiently computable). 2

To conclude this section we investigate the problem of verifying whether a given

budget allocation satisfies EJS. It is easy to prove that, as is the case for EJR[satcard ]
(Aziz, Brill, Conitzer, Elkind, Freeman andWalsh, 2017), this problem is in coNP. How-

ever, we can define an ILP solving it. A suitable one is presented in Figure 4.3.1. It

searches for a set of projects P ⊆ P and a set of agents N ⊆ N that certifies a

violation of the EJS property, i.e., N is P -cohesive and all voters receive a strictly

larger share from P than from π. For any agent i ∈ N , we use variable xi to indicate
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whether i ∈ N , and for any project p ∈ P , variable zp to indicate whether p ∈ P .

Conditions (4.4) and (4.5) enforce thatN is indeedP -cohesive. Condition (4.6) implies

that share i(π) < share i(P ) for every agent i ∈ N . The inequality in Condition (4.6)

is only strict for ϵ > 0. Consequently, π fails EJS if and only if this ILP yields a solution

with ϵ > 0.

We have seen that EJS can always be satisfied. However, this is not entirely satis-

factory as no tractable rule can satisfy it. Unfortunately, in many PB applications, the

use of intractable rules is not practical due to the large instance sizes. Therefore, we

try to find fairness notions that can be satisfied in polynomial time by relaxing EJS.

4.3.2 Relaxing EJS
We first consider relaxing EJS in the usual “up-to-one” way. It requires at least one

agent in every cohesive group to be at most one project away from being satisfied.
33

Definition 4.3.10 (EJS-1). Given an instance I = ⟨P , c, b⟩ and a profile A, a budget

allocation π ∈ Feas(I) is said to satisfy extended justified share up to one project

(EJS-1) if for all P ⊆ P and all P -cohesive groups N there is an agent i ∈ N for which

there exists a project p ∈ P such that share i(π ∪ {p}) ≥ share i(P ).

Because the rule MES[share] is a variant of MES used with a satisfaction function

that behaves in an additive manner, the proof of Peters, Pierczyński and Skowron

(2021) that MES satisfies EJR-1 can trivially be adapted to our setting. This shows

that MES[share] satisfies EJS-1.

Proposition 4.3.11. MES[share] satisfies EJS-1.

Interestingly, this implies, together with Example 4.3.4, that already in the unit-cost

case MES[satcard ] and MES[share] are different rules.

In an attempt to go further, we also introduce a local variant of EJS, based on a

similar motivation as Local-FS.

Definition 4.3.12 (Local-EJS). Given an instance I = ⟨P , c, b⟩ and a profileA, a bud-

get allocation π ∈ Feas(I) is said to satisfy local extended justified share (Local-EJS), if
there is no P -cohesive groupN , where P ⊆ P , for which there exists a project p ∈ P \π
such that for all agents i ∈ N we have share i(π ∪ {p}) < share i(P ).

The idea behind Local-EJS is that there is no P -cohesive group N that can claim

that they could “afford” another project p without a single voter inN receiving more

share than they deserve due to their P -cohesiveness. In this sense, any allocation that

satisfies Local-EJS is a local optimum for any P -cohesive group.

33
As was the case for FS-1, the definition of EJS-1 is slightly non-standard as we require that

sharei(π ∪ {p}) ≥ sharei(P ) and not a strict inequality, as used for EJR-1 (see Definition 3.3.15).
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We claimed that studying Local-EJS would allow us to go further than EJS-1, this

is because in our setting Local-EJS is equivalent to a notion that could be called “EJS

up to any project”, mimicking EJR-X (see Definition 3.3.15).

Proposition 4.3.13. Let I = ⟨P , c, b⟩ be an instance and A a profile. An allocation π
satisfies Local-EJS if and only if for every P ⊆ P and P -cohesive group N there exists

an agent i such that for all projects p ∈ P \ π we have share i(π ∪ {p}) ≥ share i(P ).

Proof. It is clear that the statement above implies Local-EJS. Now, let π be an

allocation that satisfies Local-EJS, let P ⊆ P be a set of projects and N a P -

cohesive group. Let i⋆ ∈ N be an agentwithmaximal share from π inN . Consider

any project p ∈ P \ π. By Local-EJS there is an agent ip such that share ip(π ∪
{p}) > share ip(P ). By the choice of i⋆, we also have share i⋆(π) ≥ share ip(π).
By the additivity of the share, it follows that share i⋆(π∪{p}) > share i⋆(P ). This
proves the statement. 2

Local-EJS can thus also be interpreted as being the strengthening of EJS-1 with a

universal quantifier on the project to add, rather than an existential one. From this

equivalence, it is easy to see that EJS implies Local-EJS that, in turn, implies EJS-1.

Since it satisfies EJS-1, MES[share] is the most promising candidate for a rule that

could satisfy Local-EJS. Unfortunately, it fails it, as the next example shows.

Example 4.3.14. Consider an instance I and a profileA with five projects, a budget

limit b = 20, and the costs and approval ballots as described below.

p1 p2 p3 p4 p5

Cost 8 5 2 2 10

A1 ✓ ✓ ✓ ✓ ✗

A2 ✓ ✓ ✓ ✓ ✗

A3 ✗ ✗ ✓ ✓ ✓

A4 ✗ ✗ ✓ ✓ ✓

b = 8

Here, and with a suitable tie-breaking rule, MES[share] will return the budget alloca-

tion π = {p2, p3, p5}. Note that voters 1 and 2 are {p1, p4}-cohesive and would thus

deserve to enjoy a share of 4.5. However, if we add p4 to π, voters 1 and 2 would only
have a share of 3.5, showing that π fails Local-EJS. △

Whether Local-EJS can always be satisfied in polynomial time remains an important

open question.

Getting back to the comparison between MES[satcard ] and MES[share], we ob-

serve a crucial difference in the unit-cost setting: MES[share] does not satisfy EJS,

while MES[satcard ] satisfies EJR[satcard ] (Peters and Skowron, 2020).
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Example 4.3.15. Assume that there are two voters 1 and 2, and three projects p1, p2
and p3, all of cost 1. The budget limit is b = 2. Voter 1 approves of p1 and p3 and

voter 2 of p2 and p3. Then voter 1 is {p1}-cohesive and hence deserves a share of 1,

the same applies to voter 2 and {p2}. Nevertheless, with a suitable tie-breaking rule,

MES[share] would first select p3. In that case, neither {p1, p3}, nor {p2, p3} would
satisfy EJS, as at least one voter will have a share of only 1/2. △

Still focusing on the unit-cost setting, we can show that MES[share] satisfies

Local-EJS there (even though it fails EJS).

Theorem 4.3.16. MES[share] satisfies Local-EJS in the unit-cost setting.

Proof. Consider an instance I = ⟨P , c, b⟩ in which all projects have cost 1, and

a profile A for I . Let π = (p1, . . . , pk) be the budget allocation returned by

MES[share] on I and A. We assume that during the run of MES[share] project
p1 was selected first, project p2 second, etc. For any round j ∈ {1, . . . , k}, we
denote by πj = {p1, . . . , pj} the set of projects selected at the end of round j.
Finally, consider N ⊆ N , an arbitrary P -cohesive group, for some P ⊆ P . We

show that π satisfies the condition of Local-EJS for N and P . If P ⊆ π then

Local-EJS is satisfied forN and P by definition. We will thus assume that P ̸⊆ π.
Let k⋆

be the first round after which there exists a voter i⋆ ∈ N whose load

is larger than b/n − 1/|N |. Such a round must exist as otherwise the voters in N
could afford another project from P . As we assumed P ̸⊆ π, this would mean

that MES[share] would not have stopped. Let π⋆ = πk⋆ and consider an arbitrary

project p⋆ ∈ P \ π⋆
. Our goal is to prove that π⋆

satisfies Local-EJS forN , that is:

share i⋆(π
⋆ ∪ {p⋆}) > share i⋆(P )

⇔ share i⋆(π
⋆) > share i⋆(P \ {p⋆})

⇔ share i⋆(π
⋆ ∩ P ) + share i⋆(π

⋆ \ P ) >

share i⋆(P ∩ π⋆) + share i⋆(P \ (π⋆ ∪ {p⋆}))
⇔ sharei⋆(π

⋆ \ P ) > share i⋆(P \ (π⋆ ∪ {p⋆})). (4.7)

We will work on each side of inequality (4.7) to prove that it indeed holds.

We start by the left-hand side of (4.7). Let us first introduce some notation

that will allow us to reason in terms of share per unit of load. For a project p ∈ π,
we denote by α(p) the smallest α ∈ R>0 such that p was α-affordable when

MES[share] selected it. Moreover, we define q(p)—the share that a voter that

contributes fully to p gets per unit of load—as q(p) = 1/α(p).
Since before round k⋆

, agent i⋆ contributed in full for all projects in π⋆
(as

ℓi⋆ < b/|N | after each round 1, . . . , k⋆
), we know that α(p) · share i⋆({p}) equals
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the contribution of i⋆ for p, and that for any p ∈ π⋆
. We thus have:

share i⋆(π
⋆ \ P ) =

∑
p∈π⋆\P

share i⋆({p})

=
∑

p∈π⋆\P

α(p) · share i
⋆({p})

α(p)

=
∑

p∈π⋆\P

γi⋆(p) · q(p), (4.8)

where γi⋆(p) denotes the contribution of i⋆ to any p ∈ π, defined such that if p
has been selected at round j, i.e., p = pj , then γi⋆(p) = γi⋆(πj, α(pj), pj) (see
Definition 2.3.3 for the definition of γ(·, ·, ·)).

Now, let us denote by qmin the smallest q(p) for any p ∈ π⋆ \ P . From (4.8),

we get:

share i⋆(π
⋆ \ P ) ≥ qmin

∑
p∈π⋆\P

γi⋆(p). (4.9)

We now turn to the right-hand side of (4.7). We introduce some additional

notation for that. For every project p ∈ P , we denote by q⋆(p) the share per

load that a voter in N receives if only voters in N contribute to p, and they all

contribute in full to p, defined as:

q⋆(p) =
share({p})

1/|N |
=

|N |
|{A ∈ A | p ∈ A}|

.

We have then:

share i⋆(P \ (π⋆ ∪ {p⋆})) =
∑

p∈P\(π⋆∪{p⋆})

share i⋆({p})

=
∑

p∈P\(π⋆∪{p⋆})

share i⋆({p})
1/|N |

· 1

|N |

=
∑

p∈P\(π⋆∪{p⋆})

q⋆(p) · 1

|N |
. (4.10)

Defining q⋆max as the largest q
⋆(p) for all p ∈ P \ (π⋆ ∪ {p⋆}), (4.10) yields:

share i⋆(P \ (π⋆ ∪ {p⋆})) ≤ q⋆max ·
|P \ (π⋆ ∪ {p⋆})|

|N |
. (4.11)

With the aim of proving inequality (4.7), we want to show that

qmin ·
∑

p∈π⋆\P

γi⋆(p) > q⋆max ·
|P \ (π⋆ ∪ {p⋆})|

|N |
. (4.12)
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Note that proving that this inequality holds, would in turn prove (4.7) thanks to

(4.9) and (4.11). We divide the proof of (4.12) into two claims.

Claim 4.3.17. qmin ≥ q⋆max.

Proof: Consider any project p′ ∈ P \ (π⋆ ∪ {p⋆}). It must be the case that p′ was
at least 1/q⋆(p)-affordable in round 1, . . . , k⋆

, for all p ∈ π⋆
, as all voters inN could

have fully contributed to it based on how we defined k⋆
.

As no p′ ∈ P \ (π⋆ ∪ {p⋆}) was selected by MES[share], we know that all

projects that have been selected must have been at least as affordable, i.e., for all

p ∈ π⋆
and p′ ∈ P \ (π⋆ ∪ {p⋆}) we have:

α(p) ≤ 1

q⋆(p′)
⇐⇒ q(p) ≥ q⋆(p′) ⇐⇒ qmin ≥ q⋆max.

This concludes the proof of our first claim. ⋄

Claim 4.3.18.
∑

p∈π⋆\P

γi⋆(p) >
|P \ (π⋆ ∪ {p⋆})|

|N |
.

Proof: From the choice of k⋆
, the load of agent i⋆ at round k⋆

must satisfy:

ℓi⋆(π
⋆) +

1

|N |
>

b

n
.

On the other hand, since N is a P -cohesive group, we know that:

|P |
|N |

=
|P \ {p⋆}|
|N |

+
1

|N |
≤ b

n
.

Linking these two facts together, we get:

ℓi⋆(π
⋆) >

|P \ {p⋆}|
|N |

.

By the definition of the load, we thus have:

ℓi⋆(π
⋆) =

∑
pj∈π⋆

γi⋆(pj) >
|P \ {p⋆}|
|N |

.

This is equivalent to:∑
pj∈P∩π⋆

γi⋆(pj) +
∑

pj∈P\π⋆

γi⋆(pj) >
|P ∩ π⋆|
|N |

+
|P \ (π⋆ ∪ {p⋆})|

|N |
(4.13)
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Now, we observe that every voter inN contributed in full for every project in π⋆
.

It follows that the contribution of every voter in N for a project pj ∈ P ∩ π⋆
is

smaller or equal the contribution needed if the voters inN would fund the project

by themselves. In other words for all p ∈ P ∩ π⋆
we have:

γi⋆(p) ≤
1

|N |
.

It follows then that: ∑
pj∈P∩π⋆

γi⋆(pj) ≤
|P ∩ π⋆|
|N |

.

For (4.13) to be satisfied, we must have that:∑
pj∈π⋆\P

γi⋆(pj) >
|P \ (π⋆ ∪ {p⋆})|

|N |
.

This concludes the proof of our second claim. ⋄

Putting together these two claims shows that inequality (4.12) is satisfied, which

in turn shows that (4.7) also is. Since P , N and p⋆ were chosen arbitrarily, this

shows that MES[share] satisfied Local-EJS in the unit-cost setting. 2

4.4 Relationships between Criteria
As the reader may have noticed already, there is a significant inflation of the num-

ber of fairness properties introduced for PB. This chapter makes no exception in that

regard. In order to clarify the criteria we have introduced, we now analyse their rela-

tionships. We start with links within the space of criteria we introduced earlier, then

compare them to the notion of priceability and other representation-based criteria,

and finally discuss efficiency requirements.

4.4.1 Share-Based Fairness Criteria
The following theorem establishes the relations between share-based fairness con-

cepts. These relations are visualised in Figure 4.4.1.

Theorem 4.4.1. Given an instance I and a profile A, for every budget allocation π ∈
Feas(I) the following statements hold:

(i) If π satisfies FS, then it also satisfies FS-1, Local-FS, and Strong-EJS;

(ii) If π satisfies FS-1, then it also satisfies EJS-1;
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FS Strong-EJS EJS

Local-EJS

EJS-1

Local-FS

FS-1

Figure 4.4.1: Taxonomy of criteria introduced in this chapter. An arrow from one

criterion to another indicates that any budget allocation satisfying the former also

satisfies the latter. MES[share] satisfies the criteria boxed in green solid lines. For the

criterion boxed in orange dashed lines, no efficient algorithms computing them exist

(unless P = NP). Criteria boxed in red dotted lines are not always satisfiable. The

status of Local-EJS is unknown.

(iii) If π satisfies Strong-EJS, then it also satisfies EJS;

(iv) If π satisfies EJS, then it also satisfies Local-EJS;

(v) If π satisfies Local-EJS, then it also satisfies EJS-1.

This list of implications is exhaustive when closed under transitivity.

Proof. We prove the different claims consecutively.

(i) It is easy to verify from the definitions that every budget allocation satis-

fying FS also satisfy FS-1 and Local-FS. So let us show that FS also implies Strong-

EJS. Let i ∈ N be an arbitrary agent. We distinguish two cases.

First, assume share i(Ai) < b/n. For FS to be satisfied, we must have

share i(π) ≥ share i(Ai). This entails that Ai ⊆ π. Hence, the conditions for

Strong-EJS are trivially satisfied for agent i.
Second, assume that share(Ai, i) ≥ b/n holds. Since π satisfies FS, we know

that share(π, i) ≥ b/n. Let N ⊆ N be a P -cohesive group, for some P ⊆ P , such
that i ∈ N . By definition of a cohesive group, we know that c(P ) ≤ b/n · |N |.
Hence, share(P, i) ≤ b/n. Overall, we have share i(π) ≥ b/n ≥ share i(P ) and thus
π satisfies Strong-EJS.

(ii) Let π be a budget allocation that satisfies FS-1. First, consider an agent

i ∈ N such that share i(Ai) < b/n. For FS-1 to be satisfied, there must be a project

p ∈ P such that share i(π∪{p}) ≥ share i(Ai). This entails that |Ai\π| ≤ 1 should
be the case. Hence, the conditions for EJS-1 are trivially satisfied for agent i.

Consider now an agent i ∈ N such that share i(Ai) ≥ b/n. Since π satisfies FS-

1, we know that there must be a project p ∈ P such that share i(π∪{p}) ≥ b/n. Let
N ⊆ N be a P -cohesive group, for some P ⊆ P , such that i ∈ N . By definition
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of a cohesive group, we know that c(P ) ≤ b/n · |N |. Hence, share i(P ) ≤ b/n.
Overall, we get share i(π ∪ {p}) ≥ b/n ≥ share i(P ) and π satisfies EJS-1.

(iii) and (iv) These two claims are directly derived from the definitions.

(v) The fact that every budget allocation satisfying Local-EJS also satisfies

EJS-1 is a direct consequence of Proposition 4.3.13 that states that Local-EJS can

be interpreted as a universal strengthening of EJS-1. 2

In the proof of Theorem 4.4.1 we only showed “positive” implications. We now

proceed to prove the absence of further ones through a series of counterexamples.

We start by studying Local-FS, and show that FS-1 does not imply Local-FS.

Example 4.4.2 (FS-1 does not imply Local-FS). Consider the following instance and
profile with three agents, four projects and a budget limit of b = 6.

p1 p2 p3 p4

Cost 3 3 6 1

A1 ✓ ✓ ✗ ✗

A2 ✗ ✗ ✓ ✓

A3 ✗ ✗ ✓ ✓

b = 6

Here, π = {p1, p2} satisfies FS-1 as agent 1 already receives (more than) their fair

share, while 2 and 3 receive their fair share from π ∪ {p3}. However, no supporter of
p4 receives their fair share from π ∪ {p4}. Therefore, Local-FS is violated. △

The other direction—Local-FS does not imply FS-1—follows from the fact that a Local-

FS allocation always exists (as a consequence of Theorem 4.2.8) while FS-1 is not

always satisfiable (Proposition 4.2.5). We can still present a counterexample when

both a Local-FS and an FS-1 budget allocation exist.

Example 4.4.3 (Local-FS does not imply FS-1). Consider the following instance and
profile with three projects, a budget limit of b = 10, and four agents.

p1 p2 p3

Cost 3 4 7

A1 ✗ ✗ ✓

A2 ✗ ✗ ✓

A3 ✓ ✓ ✗

A4 ✓ ✓ ✓

b = 10
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First, note that the fairshare1 = fairshare2 = 7/3 and fairshare3 = fairshare4 = 5/2.
The budget allocation π = {p1, p2} satisfies FS-1, since adding project p3 gives each
agent at least their fair share. The budget allocation π′ = {p3} does not satisfy FS-1,

as voter 3 does not achieve their fair share by adding either only p1 or only p2. It does,
however, satisfy Local-FS, since adding p1 or p2 leads to too large a share for voter 4.

Concretely, we have:

share4(π
′ ∪ {p1}) = 3/2 + 7/3 > 5/2 and share4(π

′ ∪ {p2}) = 2 + 7/3 > 5/2.

Consequently, Local-FS does not imply FS-1, even if an FS-1 allocation exists. △

Note, that in the above example, the budget allocation {p1, p2} satisfies both Local-

FS and FS-1. So we have not ruled out the possibility that the existence of an FS-1

allocation implies the existence of an allocation satisfying both FS-1 and Local-FS.

Next, we show Strong-EJS also does not imply Local-FS.

Example 4.4.4 (Strong-EJS does not imply Local-FS). Consider the instance and the
profile presented below, with four projects, a budget limit of b = 16, and two agents.

p1 p2 p3 p4

Cost 12 12 1 4

A1 ✓ ✓ ✓ ✗

A2 ✓ ✗ ✗ ✓

b = 16

In this instance, the cohesive groups are: {1, 2} which is {p1}-cohesive; {1} which
is {p3}-cohesive, and {2} which is {p4}-cohesive. Overall, to satisfy Strong-EJS, a

budget allocation should provide a share of at least 6 to agents 1 and 2. The budget

allocation π = {p1, p4} thus satisfies Strong-EJS (note that is is exhaustive). However,
one can easily check that π does not satisfy the conditions of Local-FS as adding p3
to π only provides a share of 7 to agent 1 while their fair share is 8. △

Example 4.4.4 also shows that neither EJS, Local-EJS, nor EJS-1 imply Local-FS.

Finally, we show that Local-FS does not imply EJS-1.

Example 4.4.5 (Local-FS does not imply EJS-1). Consider the instance and profile

presented below, with three projects, a budget limit of b = 6, and two agents.

p1 p2 p3

Cost 6 1 1

A1 ✓ ✓ ✓

A2 ✗ ✓ ✓

b = 6
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Here, the budget allocation π = {p1} satisfies Local-FS since agent 1 already receive

more than their fair share and approves of both p2 and p3. However, π does not satisfy

EJS-1: {2} is a {p2, p3}-cohesive group but neither p2 nor p3 are selected. △

Note that due to the implications shown in Theorem 4.4.1, Local-FS also does not

imply any of Local-EJS, EJS, Strong-EJS, and FS.

We have now proved that there are no additional implications involving Local-FS

than the link between FS and Local-FS.

We now consider EJS-1 and show that it does not imply Local-EJS.

Example 4.4.6 (EJS-1 does not imply Local-EJS). Consider the instance and profile

presented below, with two agents, six projects and a budget limit of b = 4.

p1 p2 p3 p4 p5 p6

Cost 1 1 1 1 1 1

A1 ✓ ✓ ✓ ✓ ✓ ✗

A2 ✗ ✗ ✗ ✓ ✓ ✓

b = 4

We claim that π = {p1, p2, p3, p4} satisfies EJS-1 but not Local-EJS. The share of agent
1 in π is 3.5 so every cohesive group containing them will satisfy the conditions for

EJS-1 and Local-EJS. Consider now voter 2. Their share in π is 1/2. Note that they are

{p5, p6}-cohesive and deserve thus a share of 3/2. Since π ∪{p6} would provide them
a share of 3/2, π satisfies EJS-1. However, π∪{p5}would only provide agent 2 a share
of 1, showing that π fails Local-EJS. △

Interestingly, in the example above the budget allocation {p3, p4, p5, p6} provides both
agents with their fair share, showing that EJS-1 does not imply any of FS, FS-1, Strong-

EJS, and EJS, and that even when they can be satisfied.

We continue with FS-1. We know that it implies EJS-1, we now show that it does

not imply Local-EJS, the criteria one step above EJS-1 in our hierarchy. From Theo-

rem 4.4.1, this entails that FS-1 also does not imply EJS.

Example 4.4.7 (FS-1 does not imply Local-EJS). Consider the instance and profile

presented below, with four projects, a budget limit of b = 12, and three agents.

p1 p2 p3 p4

Cost 4 2 5 7

A1 ✗ ✗ ✗ ✓

A2 ✓ ✓ ✓ ✗

A3 ✓ ✓ ✓ ✗

b = 12
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Here, the budget allocation π = {p1, p4} satisfies FS-1 but fails Local-EJS. FS-1 is

satisfied since agent 1 already receive their fair share, and adding p3 would make

agents 2 and 3 receive theirs. Local-EJS is violated since the {p2, p3}-cohesive group
{2, 3} deserves a share of 3.5, but adding p2 to π would not only provide agents 2

and 3 with a share of 3. △

Since the budget allocation {p1, p2, p3} satisfies Strong-EJS in the example above, we

also know that FS-1 does not imply Strong-EJS. FS-1 also trivially does not imply FS.

The only implications we are still missing are the “backward” arrows: Local-EJS

not implying EJS, EJS not implying Strong-EJS, and Strong-EJS not implying FS. Note

that the latter is immediately derived from Example 4.4.4 and Theorem 4.4.1. The

other two implication are immediate given the definitions.

The picture is now complete and we have derived an exhaustive taxonomy of the

share-based criteria. We now turn to the comparison with priceability.

4.4.2 Comparison with Priceability
Priceability is a fairness criterion requiring that the budget allocation could in princi-

ple be obtained through a market-based approach. It is similar in spirit to share-based

criteria as it also measures the amount of money spent on each agent. However, price-

ability does not require the cost of a project to be equally distributed between its sup-

porters. Instead it requires the existence of a price system, i.e., a distribution of the

costs of the selected projects to their supporters that satisfies the following:

C1: Agents only contribute to project they approve of;

C2: Only selected projects receive contributions;

C3: No agent contributes more than the entitlement;

C4: The selected projects are receiving sufficient contributions to be funded;

C5: The supporters of a non-selected project p have c(p) or less money left.

The formal statement for each of these conditions can be found in Definition 3.3.31.

Remember that we denote a price system by ⟨α, (γi)i∈N ⟩ where α ∈ R≥0 is the enti-

tlement and (γi)i∈N a collection of contribution functions, with γi(p) being the con-

tribution of agent i ∈ N to project p ∈ P . We will moreover denote by α⋆
i the leftover

money of agent i, that is, α⋆
i = α−

∑
p∈P γi(p).

Due to the similar motivation of share-based fairness concepts and priceablility,

it is interesting to understand the relationships between them. We start with the fair

share and show that the intuitive connection between FS and pricebility does not hold.

Proposition 4.4.8. There exists an instance I = ⟨P , c, b⟩ and a profile A such that

there is π ∈ Feas(I) that satisfies FS, but such that no FS budget allocation π is priceable.
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Proof. Consider the following instance and profile with four projects, a budget

limit of b = 9, and three agents.

p1 p2 p3 p4

Cost 1 5 3 1

A1 ✓ ✗ ✗ ✗

A2 ✗ ✓ ✗ ✗

A3 ✗ ✗ ✓ ✓

b = 9

Here, the only budget allocation satisfying FS is π = {p1, p2, p3}. Assume towards

a contradiction that π is priceable with entitlement α ∈ R≥0 and contribution

functions γ1, γ2 and γ3. Since only agent 2 approves of p2, from conditions C1
and C4 of priceability, we must have γ2(p2) = 5. Condition C3 then implies that

α ≥ 5. For similar reasons we should have γ3(p3) = 3 and γ3(p1) = γ3(p2) = 0.
ConditionC2 also imposes γ3(p4) = 0. Overall this means thatα⋆

3 = α−γ3(p3) ≥
2. This is a violation of condition C5 for agent 3 and project p4 as α

⋆
3 > c(p4). 2

Interestingly, the expected connection between fair share and priceablility does

hold when agents approve of sufficiently many alternatives.

Proposition 4.4.9. For every instance I = ⟨P , c, b⟩ and profile A such that for every

agent i ∈ N we have fairshare i = b/n, it is the case that every budget allocation π ∈
Feas(I) that satisfies FS is also priceable.

Proof. Consider an instance I = ⟨P , c, b⟩ and a suitable profile A. Assume that

there is a budget allocation that satisfies FS in I , and let π ∈ Feas(I) satisfy FS.

We claim that π is priceable for the entitlement α = b/n and the contribution

functions (γi)i∈N defined for every agent i ∈ N and project p ∈ P as:

γi(p) =

{
share i({p}) if p ∈ Ai ∩ π,

0 otherwise.

First note that conditions C1 and C2 of priceability are trivially satisfied here.

Now, since π satisfies FS, we know that share i(π) ≥ fairshare i = b/n holds

for every agent i ∈ N . Since

∑
i∈N share i(π) = c(π) and π is feasible, we must

have share i(π) = b/n for all i ∈ N . Overall, we have

∑
p∈P γi(p) = share(π, i) =

b/n ≤ α, so condition C3 also is satisfied.

In addition, we have

∑
i∈N γi(p) =

∑
i∈N share i({p}) = c(p). Condition C4

is thus immediately satisfied.
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Finally, as we have for every agent

∑
p∈P γi(p) = share i(π) = b/n = α, no

agent has any unspent allowance and condition C5 is vacuously satisfied. 2

Next, we consider the relation between the weaker share-based notions and price-

ability. We actually show the absence of a relation, and that, even if we assume that

agents approve of enough projects.

Proposition 4.4.10. Local-FS, FS-1, and Strong-EJS do not imply priceability, even for

instances and profiles for which fairshare i = b/n for every agent i ∈ N . Reciprocally,

priceability does not imply Local-FS or EJS-1, even if fairshare i = b/n for every agent

i ∈ N and the agents have an entitlement of at least b/n.

Proof. Consider an instance I and a profile A with two projects with c(p1) = 3
and c(p2) = 2, a budget limit b = 3, and two agents such that A1 = {p1} and
A2 = {p2}. Then the budget allocation {p1} satisfies FS-1 and Local-FS aswe have
share i({p1, p2}) > fairshare i for i ∈ {1, 2}. Moreover, Strong-EJS is trivially

satisfied, as there are no cohesive groups. On the other hand, for {p1} to be

priceable, each agent must receive an entitlement of 3. In this case, the fact that

p2 is not selected is a contradiction to condition C5 as p2 ∈ A2 and agent 2 has

more than c(p2) unspent entitlement.

Now, consider the following instance and profile with four projects, a budget

limit b = 20, and two agents.

p1 p2 p3 p4

Cost 8 8 5 5

A1 ✓ ✓ ✗ ✗

A2 ✗ ✓ ✓ ✓

b = 20

Here, the budget allocation π = {p1, p2} is priceable for the following contribu-

tion functions with and entitlement of α = 10 per agent:

γ1(p1) = 8 γ1(p2) = 0 γ1(p3) = 0 γ1(p4) = 0,

γ2(p2) = 8 γ2(p2) = 0 γ2(p3) = 0 γ2(p4) = 0.

However, π fails Local-FS as share2(π∪{p3}) = 9 < 10 = fairshare2. Moreover,

{2} is {p3, p4}-cohesive but share2(π ∪ {p}) = 9 < 10 = share2({p3, p4}) for
any p ∈ {p3, p4}. Hence, π also does not satisfy EJS-1. 2

However, Local-FS, EJS-1, and priceability are compatible in the sense that for ev-

ery instance I and profileA, there always exists a budget allocation that satisfies all
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three, namely the output of MES[share] on I andA. This follows directly from The-

orem 4.2.8, Proposition 4.3.11, and the fact that MES is priceable for any satisfaction

function (see Proposition 3.3.32). It remains open whether FS-1, EJS, and Local-EJS

are compatible with priceability in this sense.

4.4.3 Representation-Based Fairness Criteria
Priceability is known to have links with representation-based requirements, and in

particular, to imply PJR[satcost] in the unit-cost setting (Lackner and Skowron, 2023).

Under the assumption that fairshare i = b/n for all agents i ∈ N , Proposition 4.4.9

entails that PJR[satcost] and FS are compatible in the unit-cost setting.

It is unclear whether this link can be extended to the PB setting since the link be-

tween priceability and PJR-X[sat] requires stronger notion of priceability (see Theo-

rem 3.3.35), that are not offered by Proposition 4.4.9.

In the following we investigate other such relationships between representation-

based and share-based fairness criteria.

The first question we investigate is whether the aforementioned link between FS

and PJR can be extended to EJR. We answer in the negative, showing that FS and EJR

are incompatible, already in the unit-cost case.

Proposition 4.4.11. Both FS and FS-1 are incompatible with EJR[satcard ], even in the

unit-cost setting.

Proof. Consider the instance I and the profile A as described next. There are

fifteen projects, all of cost 1, a budget limit of b = 8, and 32 agents. To simplify

the exposition, let P = {p1, . . . , p8}∪P where P is defined as P = {p′1, . . . , p′7}.
The approval ballots are as follows:

A1 = · · · = A7 = {p1, p2} ∪ P,

A8 = · · · = A14 = {p3, p4} ∪ P,

A15 = · · · = A21 = {p5, p6} ∪ P,

A22 = · · · = A28 = {p7, p8} ∪ P,

A29 = {p1, p2},
A30 = {p3, p4},
A31 = {p5, p6},
A32 = {p7, p8}.

Consider a budget allocation π ∈ Feas(I) such that π satisfies EJR[satcard ].
Note that such a π always exists since MES[satcard ] satisfies EJR[satcard ] in the

unit-cost setting. Since the group of voters {1, . . . , 28} is P -cohesive group, there
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is an agent i ∈ {1, . . . , 28} for whom |Ai ∩ π| ≥ 7. For this to be true, it must

contain at least 5 projects from P . Hence, at most 3 projects from {p1, . . . , p8}
can be in π. In particular, this entails that at least one voter from 29, . . . , 32 has

no approved project in π. Without loss of generality, assume that it is the case

for voter 29, i.e., that neither p1 nor p2 is in π. We show that this is incompatible

with π satisfying FS-1. For voter 29, we have:

share29(π) = 0 < fairshare29 =
1

4
.

Adding any project to π can increase 29’s share by at most
1
8
. Hence π fails FS-1.

FS, and thus also FS-1, is however satisfiable in this instance: {p1, . . . , p8}
satisfies FS, but not EJR[satcard ] (by our previous argument). 2

We now show that Local-FS is not related to any representation-based axiom.

First, we prove that EJR does not imply Local-FS.

Proposition 4.4.12. EJR[satcard ] does not imply Local-FS, even in the unit-cost setting.

Proof. Consider the following instance and profile with eight projects, all of cost

1, a budget limit b = 6, and three agents.

p1 p2 p3 p4 p5 p6 p7 p8

Cost 1 1 1 1 1 1 1 1

A1 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

A2 ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

A3 ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

b = 6

The budget allocation π = {p1, p2, p3, p4, p5, p6} satisfies EJR[satcard ]. This
holds, in particular, because the group of voter {1} is {p5, p6}-cohesive group,

and the group {2, 3} is {p1, p2, p3, p4}-cohesive.
On the other hand, π does not satisfy Local-FS. First, note that share2(π) =

share3(π) = 4/3. Now, consider project p7, for agent 2 we have:

share2(π ∪ {p7}) = 4/3 + 1/2 = 11/6 < 2 = b/n = fairshare2.

Hence, project p7 is a witness that π fails Local-FS. 2

Then, we show that Local-FS does not even imply justified representation (JR), the

fairness requirements defined exactly as EJR (or PJR), but only for P -cohesive groups

such that |P | = 1. It is particularly weak and it trivially implied by both EJR and PJR.
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Proposition 4.4.13. Local-FS does not imply JR[satcard ], even in the unit-cost setting.

Proof. Consider the following instance and profile with four projects, all of cost

1, a budget limit b = 3, and three agents.

p1 p2 p3 p4

Cost 1 1 1 1

A1 ✓ ✗ ✗ ✗

A2 ✓ ✓ ✓ ✓

A3 ✗ ✓ ✓ ✓

b = 3

The budget allocation π = {p2, p3, p4} trivially satisfies Local-FS since only one

project has not been selected. However, π fails JR[satcard ] since voter 1 forms a

{p1}-cohesive group and thus deserves at least one approved project in π. 2

This concludes our study of the relationship between representation-based and

share-based guarantees. An important open question is whether there exists a rule

that satisfies both Local-FS and EJR[sat], or EJR-1[sat], for some sat .

4.4.4 Share and Efficiency Requirements
It is well-known that enforcing fairness criteria often comes at a cost with respect

to social welfare (Theorem 3.3.18; Lackner and Skowron, 2020; Elkind, Faliszewski,

Igarashi, Manurangsi, Schmidt-Kraepelin and Suksompong, 2022). Exploring the con-

nection between share-based concepts and social welfare is thus particularly interest-

ing. We do not delve into that line of research here but present an interesting connec-

tion between EJS and an efficiency requirement known as project-wise unanimity.

Definition 4.4.14 (Project-Wise Unanimity). Given an instance I = ⟨P , c, b⟩ and a

profileA, a budget allocation π ∈ Feas(I) satisfies project-wise unanimity if for every

p, p′ ∈ P such that app(p,A) < app(p′,A) = n, it holds that p ∈ π implies p′ ∈ π.

Proposition 4.4.15. There exists an instances I and a profileA such that there is π ∈
Feas(I) that satisfies FS, but such that no budget allocation π′ ∈ Feas(I) that satisfies
either FS or EJS also satisfies project-wise unanimity, even in the unit-cost setting.

Proof. Consider an instance I with four projects p1, . . . , p4, all of cost 1, and
a budget limit b = 3. The profile A is composed of nine ballots such that six

agents approve of p1, p2 and p3, while the other three agents approve of p3 and
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p4. Overall, {1, . . . , 6} is {p1, p2}-cohesive for a share requirement of 1/3; and
{7, 8, 9} is {p4} cohesive for a share requirement of 1/3. Note that 1/3 is also the

fair share of any agent.

In this instance the only budget allocation satisfying EJS, and also FS, is π =
{p1, p2, p4}. It is however easy to see that p3 is unanimously approved by the

agents but not in π, showing that π violates project-wise unanimity. 2

This result indicates that enforcing share-based fairness criteria probably comes at a

high cost in terms of efficiency. This connection definitely deserves further attention.

4.5 Approaching Fair Share in Practice
As we saw in Section 4.2, there exist PB instances for which it is impossible to give

every agent their fair share. In this section we conduct an experimental study aimed

at understanding how serious a problem this is. Our study is twofold. We first inves-

tigate how close to fair share we can get, for different notion of closeness. In a second

experiment, we quantify how close to this optimal value certain known PB rules get.

Let us first describe the setting. For these experiments we use data from Pabu-

lib (Stolicki, Szufa and Talmon, 2020), an online collection of real-world PB datasets.

To be more precise, we used all instances from Pabulib with up to 65 projects (avail-

able in October 2022), except for trivial instances, where either no project or the set of

all projects are affordable. Three instances have been additionally omitted for the first

experiment due to very high compute time. A total of 353 PB instances are covered by

our analysis. Our experiments are implemented on a Debian machine with 16 cores

and 16GB RAM, using Gurobi 9.5.1 for solving the mixed integer linear programs.

4.5.1 Optimal Distance to Fair Share
Our first experiment explores how close to FS we can get in practice. We first intro-

duce two ways of measuring how close to FS a given budget allocation is. Theses

measures represent the foundation of our analysis. For each of the considered in-

stances and profiles, we will compute the optimal value of these two measures.

The first measure of distance to fair share we consider is the average capped fair

share ratio: For every agent i with approval ballot Ai we divide their share in the

budget allocation π by their fair share, capped at 1 in case they get more than their

fair share, and take the average of this ratio over all agents:

1

n
·
∑
i∈N

min

(
share i(π)

fairshare i
, 1

)
.

This measure is a maximisation objective: we seek budget allocations that are getting

as close as possible to 1, its maximum. Note that when the average capped fair share
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maximise
n∑

i=1

si

subject to:
si ∈ R for all i ∈ N
xp ∈ {0, 1} for all p ∈ P

si ≤
∑

p∈Ai
xp · share({p})
fairshare i

for all i ∈ N

si ≤ 1 for all i ∈ N∑
p∈P

xp · c(p) ≤ b

Figure 4.5.1: Amixed integer linear program for maximizing the average capped fair

share ratio for a given instance I = ⟨P , c, b⟩ and profile A. For any project p ∈ P ,
variable xp indicates whether p is selected (xp = 1) or not (xp = 0). For any agent

i ∈ N , variable si stores i’s fair share ratio.

ratio is 1, the budget allocation indeed satisfies FS. Figure 4.5.1 presents how to find

the optimum value of this measure through a mixed integer linear program.

Our second measure is the average L1 distance to FS, measuring, for every agent,

the absolute value of the difference between their actual share in π and their fair share:

1

n
·
∑
i∈N

|share i(π)− fairshare i|.

This measure is a minimisation objective: we seek budget allocations that are getting

as close as possible to 0, its minimum. Note that when the average L1 distance to FS is

0, the budget allocation indeed satisfies FS. We present in Figure 4.5.2 a mixed integer

linear program that we use to compute an optimal budget allocation.

When presenting our results with the L1 distance to FS, we will actually plot the

following measure:

1− 1

n

∑
i∈N

|share i(π)− fairshare i|
fairshare i

.

This allows us to obtain a normalised value and for which the higher the better, with 1

being the maximum value.
34
That way, the behaviour is similar to the average capped

fair share ratio and the results are thus more easily comparable.

34
Note that the empty budget allocation provides an L1 distance to FS of fairshare(i) for all i ∈ N .

Normalising the L1 distance with fairshare(i), thus ensures that we display the optimal L1 distance

to FS achieved with respect to the worst case.
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minimise
n∑

i=1

si

subject to:
si ∈ R for all i ∈ N
xp ∈ {0, 1} for all p ∈ P

si ≥
∑
p∈Ai

xp · share({p})− fairshare i for all i ∈ N

si ≥ fairshare i −
∑
p∈Ai

xp · share({p}) for all i ∈ N∑
p∈P

xp · c(p) ≤ b

Figure 4.5.2: Amixed integer linear program for minimising the average L1 distance

to FS for a given instance I = ⟨P , c, b⟩ and profileA. For any project p ∈ P , variable
xp indicates whether p is selected (xp = 1) or not (xp = 0). For any agent i ∈ N ,

variable si stores i’s L1 distance to FS.

Let us say few words of comparison between these two measures. Intuitively, the

average capped fair share ratio penalises budget allocation that do not provide agent

with sufficiently large share to reach their fair share. The average L1 distance to FS

does the same, but also penalises giving agents more share than their fair share.

To better understand what might cause an instance not to admit a good solution,

we also considered different ways of preprocessing the instances by removing “prob-

lematic” projects. These preprocessing methods are described below.

▶ Threshold Preprocessing: any project that is not approved by at least x%
of the voters are removed from the instance. We considered three threshold

values: 1%, 5%, and 10%.

▶ Cohesiveness Preprocessing: any project such that its supporters do not con-
trol enough money to buy the project are removed. Formally, we remove any

project p such that:

|{i ∈ N | p ∈ Ai}|
n

· b < c(p).

This removes any project that is not involved in any cohesive group.

Threshold preprocessing removes under 10% of projects for a threshold of 1%,

around 10–20% for a threshold of 5%, and around 20–30% for a threshold of 10%. Co-

hesiveness preprocessing removes between 30% (for the largest instances) and 70% of

projects (for the smallest instances). The specific values are presented in Figure 4.5.3.
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Figure 4.5.3: Proportion of projects removed during the preprocessing stage.

Note that we do not wish to advocate preprocessing as a method to make budget

decisions in practice. Rather, we use it as a way of checking whether the failure

to guarantee fair share is due to the specific structure of real-life PB instances and

whether similar instances “nearby” might be significantly better behaved.

Let us now turn to the main findings of this experiment. Everything is presented

in Figure 4.5.4. We draw the following conclusions.

▶ Without preprocessing, we can provide agents on average between 45% (for

small instances) and 75% (for larger instances) of their fair share, albeit with a

lot of variation.

▶ We can typically guarantee an L1 distance to FS of 50% of the worst case.

▶ Preprocessing helps when using the cohesiveness condition, but not with the

threshold condition.

Overall, our experimental findings suggest that guaranteeing fair share simply is very

hard across a wide range of instances. This is witnessed by the low value of the

average capped fair share ratio and the average L1 distance to FS that we observed;

together with the fact that preprocessing almost does not help. Note that we were

able to satisfy FS for only one instance (that has 3 projects and 198 voters).

To corroborate this conclusion, we also investigate approximations of the average

capped fair share ratio. Specifically, for a number of different given approximation

ratios α ∈ (0, 1], we replaced the fair share by α · fairshare i in the definition, i.e., for

a given approximation ratio α ∈ (0, 1], the measure of interest is:

1

n
·
∑
i∈N

min

(
share i(π)

fairshare i · α
, 1

)
.
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Figure 4.5.4: Average capped fair share ratio (top) and L1 distance to FS (bottom) for

Pabulib instances. Each range (for a number of projects) shown on the x-axis contains
between 60 and 80 elections (instance and profile).
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Figure 4.5.5: Average capped fair share ratio for different approximation ratios.

Results indicates that moving from α = 1 to α = 0.2, has a very small effect on the

optimum value (around 10% better for α = 0.2). Figure 4.5.5 presents the exact values.
We also interpret this result as stating that FS is structurally hard to satisfy.

4.5.2 Distance to Fair Share of Common PB Rules

We now turn to our second experiment: how close to fair share are the outputs

of known PB rules in practice. We will consider the following rules: MES[share],
MES[satcost], MES[satcard ], SeqPhrag, and GreedCost. We only consider resolute

versions of the rules, breaking ties in favour of the projects with the highest number

of supporters (and then lexicographically if ties persist). All these rules have been

formally introduced in Section 2.3.

For all instances and profiles, we compute the outcome returned by all of the rules,

and assess how close to the optimal value they are in terms of both the average capped

fair share ratio and average L1 distance to FS. Results are presented in Figure 4.5.6.

The first striking observation is that GreedCost is performing extremely well

under the capped fair share ratio measure. This is particularly surprising given how

oblivious to the structure of the profile it is. We postulate that this result is due to

the high difference in the percentage of the budget used by the different rules: MES

rules use around 40% of the budget on average, while GreedCost and SeqPhrag

use around 90% of the budget. See Figure 4.5.7 for more details. Since using more

budget can only improve the average capped fair share ratio, this is the most likely

explanation for the good performance of greedy approval compared to MES. It is thus

hard to compare rules based on the average capped fair share ratio they achieve.

Interestingly, the average L1 distance to FS does not suffer this drawback. Indeed,
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Figure 4.5.6: Average capped fair share ratio (top) and averageL1 distance to FS (bot-

tom) for different rules on Pabulib instances. Results are normalised by the optimum

value achievable in each instance, giving a score between 0 and 1 where 1 is the best.
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Figure 4.5.7: Fraction of the budget spent by the different rules.

since it also penalises rules that provide agents more than their fair share, spending

more is not always better. Interpreting the results of Figure 4.5.6 in this light, we con-

clude that MES rules perform better than SeqPhrag in terms of equality of resources.

It may come as a surprise to the reader, but we also observe that MES[satcost] per-
forms slightly better than MES[share]. MES[satcost] thus provides simultaneously

good experimental results in terms of equality of resources, and strong representa-

tion guarantees (see theorems 3.3.17 and 3.3.21).

4.6 Summary
In this chapter, we have introduced a fairness theory for PB grounded in the concept

of equality of resources. We have presented a large set of related fairness measures, all

stemming from the fair share criterion, the idea that all agents deserve to be allocated

the same amount of resources. It did not come as a surprise that fair share cannot

always be satisfied. However, we managed to find related concepts that can always

be satisfied, namely Local-FS and EJS-1. A full taxonomy can be found in Figure 4.4.1,

in the middle section of this chapter. Interestingly both Local-FS and EJS-1 are satis-

fied by the same rule, MES[share]. Our experimental analysis also highlighted that a

similar rule, namely MES[satcost], performed particularly well in terms of approach-

ing FS on real-life instances (even better than MES[share]). The latter can then be

considered a good candidate for a rule providing strong guarantees both in terms of

share-based and in terms of representation-based fairness (since it also satisfies EJR-

1). The main take-home message of this chapter is that it is possible to study fairness

in terms of equality of resources, and that doing so provides interesting insights on

how to devise mechanisms for PB.



Chapter 5

Viewing Participatory Budgeting Rules
through the Epistemic Lens

The ultimate goal of the research in social choice on PB, and of this thesis, is to devise

appealing PB rules. However, the “appeal” of a given rule is always difficult to assess.

In the typical case an appealing rule is one that produces outcomes that are good

compromises between the preferences of the voters. This is for instance the approach

we adopted in Chapter 4 where the most appealing rules were the ones providing

strong fairness guarantees to the voters. This typical case is not the only one that

deserves attention. In some other cases, the goal is not to reach good compromises

but simply to selected the “best” alternatives. This chapter focuses on this case.

Assessing the merits of a rule based on its ability to retrieve the best outcome for

society is the concern of epistemic social choice theory. This branch of the literature

dates back to the Condorcet Jury Theorem (Condorcet, 1785; Dietrich and Spieker-

mann, 2019) and has received sustained attention since then (Elkind and Slinko, 2016;

Pivato, 2019). It is based on the crucial assumption that there exists an outcome—the

ground truth—that is objectively better than all the other outcomes. In the epistemic

approach, rules are assessed on their ability to output the ground truth. The ground

truth is not known by the agents and the aim of an elections is thus to retrieve it.

How can rules retrieve the ground truth if it is not a piece of information that is

known by anyone? In the epistemic approach, it is assumed that the voters have some

sense of what the ground truthmight be, and thus that their ballots will reflect, at least

partially, the ground truth. More formally, the ballots of the voters are assumed to be

drawn from a noise model, a probability distribution over the set of all the admissible

ballots, parametrised by a ground truth. The noise model can be viewed as the “black

box” through which the voters determine their ballots given the information they

have access to. Depending on the noise model under consideration the ballots will

be more or less representative of the ground truth, but still connected to it. A rule

119
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with high epistemic efficiency will thus be able to approach the ground truth from

the ballots.

The aim of this chapter is to study PB rule via the epistemic approachwe described

above. The first step in this research agenda is to make sure that this approach is

suitable for studying PB. In particular, one needs to motivate the idea that there would

be a ground truth in PB. Let us present some arguments.

First, many PB projects come with a clear measures of efficiency that can only

be measured after it has been realised: Will local residents actually use the compost

bins? Will the number of mosquitoes go down? Will the new speed camera reduce

the number of accidents?
35

In a pure determinist view, an entity—such as Laplace’s

demon
36
—who has perfect knowledge of the state of the world and of its rules would

be able to objectively assess whether a project will be successful or not. In that view,

the ground truth would be the set of the most successful projects.

In a more general view, PB can be seen as a selection process of costly alterna-

tives. For some other such processes—that are, at least mathematically, equivalent

to PB—the existence of a ground truth may be more obvious. Consider, for instance,

the case of the Eterna platform.
37

On this collaborative platform, users can submit

different ways of folding a given protein. A subset of the proposed configurations is

then synthesised in a laboratory to determine which are most stable. One can think

of this as a PB process: the projects are the different protein foldings; their cost is

the cost of synthesising them; the budget limit is the amount of money that is allo-

cated to this process; and finally, the protein foldings submitted by a user constitute

their approval ballot. Mathematically speaking, this is thus a well-defined PB process.

Moreover, there is a clear ground truth here: a set of objectively most stable protein

configurations. Interestingly, this is also the motivating example of the first epistemic

analysis of multi-winner voting rules, though in a setting without costs (Procaccia,

Reddi and Shah, 2012).

A last example, similar to the introductory example of this thesis, is that of a se-

lection committee for research grant proposals. In such a committee, the members

have to decide which of the grants should be funded. The grants typically have dif-

ferent costs, and there is a maximum amount of money that can be allocated. It is

not hard to argue that the proposals have a “ground truth” probability of success that

35
All these examples are taken from projects that were brought to the vote in Toulouse 2019, see

jeparticipe.metropole.toulouse.fr/processes/bp2019 for more details, and in particular the file “Cata-

logue des 30 idées soumises au vote”. The data is also hosted on the website pabulib.org (Stolicki,

Szufa and Talmon, 2020), though the description of the projects is not available there.

36
Laplace’s demon is an entity that Laplace introduces (though does not call it a demon) to explain

his view on determinsm. He describes it as “An intellect which at a certain moment would know all

forces that set nature in motion, and all positions of all items of which nature is composed, if this

intellect were also vast enough to submit these data to analysis, it would embrace in a single formula

the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect

nothing would be uncertain and the future just like the past would be present before its eyes” (see

wikipedia.org/wiki/Laplace%27s_demon).

37
See eternagame.org and wikipedia.org/wiki/EteRNA for more information.

https://eternagame.org
https://jeparticipe.metropole.toulouse.fr/processes/bp2019
http://pabulib.org/?city=Toulouse
https://en.wikipedia.org/wiki/Laplace%27s_demon
https://eternagame.org
https://wikipedia.org/wiki/EteRNA
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can only be observed a posteriori. At selection time, the committee members observe

noisy signals regarding this ground truth through the reports of reviewers, and they

need to make a decision based on this information.

Overall, the epistemic approach can be applied to many PB models where the

existence of a ground truth is clear.

Until now, we have been rather evasive as to what it means exactly for a rule to

retrieve the ground truth. Remember that the underlyingmachinery we consider here

is that ballots are randomly generated given the ground truth through a noise model.

In that sense, they represent noisy estimates of the ground truth. If we have a well-

defined noise model, we, in principle, are able to design a voting rule that maximises

the likelihood of returning the ground truth. The concept of maxmimum likelihood

estimators (MLE) is well-studied in statistics and was designed exactly to answer such

questions. Of course, in practice we do not have access to the exact noise model. Still,

if a PB rule turns out to be the MLE of a natural noise model, then we can interpret

this as an argument for using that rule. Similarly, if we can prove that for a given

rule there does not exist any noise model that would make that rule an MLE, then

we should interpret this as an argument against using that rule. Overall, the research

question we try to answer in this chapter is the following:

Which PB rules can be interpreted in an epistemic fashion, that is,

are maximum likelihood estimators for some noise models?

Answering this question will offer us another way to compare PB rules, based on their

epistemic merits.

To answer this question, we will first introduce formally the epistemic approach

for the standardmodel of PB (Section 5.1). Wewill then apply the approach to different

sets of rules. We will start with the rules designed to provide proportional represen-

tation (Section 5.2). Next, we will consider what we call monotonic argmax rules, a

class of rules that notably include many welfare-maximising rules (Section 5.3). We

will focus on two specific sets of rules, related either to the Nash social welfare (Sec-

tion 5.3.1) or to the utilitarian social welfare (Section 5.3.2). A summary of our findings

will then be presented (Section 5.4).

Additional Related Work. The epistemic approach has been first applied to the

standard ordinal votingmodel (Condorcet, 1785; Young, 1995; Conitzer and Sandholm,

2005; Caragiannis, Procaccia and Shah, 2014). Later on, other social choice scenarios

have been investigated through the epistemic lens, notably multi-winner elections

(Procaccia, Reddi and Shah, 2012; Caragiannis, Procaccia and Shah, 2013), and judg-

ment aggregation (Bovens and Rabinowicz, 2006; Bozbay, Dietrich and Peters, 2014;

Terzopoulou and Endriss, 2019). To the best of our knowledge, the only epistemic

study of PB is the one section dedicated to the topic by Goel, Krishnaswamy, Sak-

shuwong and Aitamurto (2019), though in the context of divisible PB. Interestingly,

they show that knapsack voting (a PB rule that resembles GreedCost in the divisible
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setting) is an MLE, while we will see that GreedCost cannot be interpreted as an

MLE in the context of indivisible PB (see Corollary 5.3.11 on page 134).

5.1 The Truth-Tracking Perspective
In this section, we present the truth-tracking perspective for PB.Wewill consider here

the standard model of PB (Chapter 2) in which, when facing an instance I = ⟨P , c, b⟩,
agents submit approval ballots, that form altogether a profileA. We will consider the

PB rules in their irresolute versions, i.e., when they return non-empty sets of feasible

budget allocations: F(I,A) ⊆ Feas(I).

In the truth-tracking perspective, there exists an objectively best feasible budget

allocation for every instance that is the outcome that every reasonable rule should

select. Such a budget allocation is called the ground truth and is denoted by π⋆
. The

ground truth is not known, neither by the agents, nor by the decision maker. We will

thus assess the quality of PB rules based on their ability to retrieve the ground truth

given noisy votes.

Formally, a noise modelM is a generative model that produces random approval

ballots for a given instance and ground truth. We represent it as a probability dis-

tribution over all approval ballots. For a given instance I = ⟨P , c, b⟩, ground truth

π⋆ ∈ Feas(I), and approval ballot A ⊆ P , we denote by PM(A | π⋆, I) the probabil-
ity for the noise modelM to generate ballot A given I and π⋆

. Profiles are generated

fromM by drawing the ballots identically and independently fromM. Specific ex-

amples of noise models will be presented later on.

Suppose the noise model M indicates how the voters form their preferences.

Then, a good rule should select the outcome that most likely would have generated

the observed profile if it were the ground truth plugged intoM. This is themaximum

likelihood estimator (MLE) ofM.

Definition 5.1.1 (Maximum Likelihood Estimators). For a noise modelM, the likeli-

hood of a profile A for instance I and a budget allocation π ∈ Feas(I) is defined as:

LM(A, π, I) =
∏
A∈A

PM(A | π, I).

A PB rule F is said to be the maximum likelihood estimator (MLE) ofM, if for every

instance I and every profile A we have:

F(I,A) = argmax
π⋆∈Feas(I)

LM(A, π⋆, I).

In the context of the standard model of voting theory, Conitzer and Sandholm

(2005) identified a necessary condition for a voting rule to be interpretable as an MLE:

it should satisfy what we are going to call weak reinforcement. This result straightfor-

wardly carries over to the PB setting.
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Definition 5.1.2 (Weak Reinforcement). A PB rule F is said to satisfy weak reinforce-

ment if and only if, for every instance I and every two profiles A and A′
, we have:

F(I,A) = F(I,A′) =⇒ F(I,A+A′) = F(I,A) = F(I,A′).

Remember that + is the concatenation operation between profiles.

Proposition 5.1.3 (Conitzer and Sandholm, 2005). If a PB rule F does not satisfy weak
reinforcement, then there exists no noise modelM for which F is the MLE.

Note that this result applies for any set of possible ground truths, so also if we assume

the ground truth to be exhaustive.

In this chapter, we will consider a large set of PB rules and investigate whether

they can be interpreted as MLE.

5.2 Proportional PB Rules
We have already discussed at length the idea of fairness and proportionality in PB

(see chapters 3 and 4). As we have seen, most fo the prominent rules in the litera-

ture are ones that relate to the idea of proportionality, i.e., rules that treat groups of

agents fairly. We will thus start our analysis with these rules. We will study the rule

SeqPhrag and MES rules, and show that they cannot be interpreted as MLEs.

We start with the sequential Phragmén rule, SeqPhrag. Its definition was pro-

vided in Definition 2.3.2 of Chapter 2.

Proposition 5.2.1. There exists no noise modelM such that SeqPhrag is the MLE of

M, not even on unit-cost instances with the additional assumption that the ground truth

is exhaustive.

Proof. Consider an instance I with four projects denoted by p1, p2, p3 and p4,
all of cost 1, and budget limit b = 3. We consider two profile, A1

and A2
, as

presented below, where A1
is on the left and A2

is on the right.

p1 p2 p3 p4

Cost 1 1 1 1

A1
1 ✓ ✗ ✗ ✗

A1
2 ✓ ✗ ✓ ✓

A1
3 ✗ ✓ ✓ ✓

A1
4 ✗ ✓ ✓ ✓

A1
5 ✗ ✓ ✓ ✓

b = 3

p1 p2 p3 p4

Cost 1 1 1 1

A2
1 ✗ ✓ ✗ ✗

A2
2 ✓ ✗ ✓ ✗

A2
3 ✓ ✗ ✓ ✗

A2
4 ✓ ✗ ✓ ✓

b = 3
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We claim that on both profile A1
and profile A2

, SeqPhrag outputs a sin-

gle budget allocation π = {p1, p3, p4}. Remember that, in the unit-cost setting,

SeqPhrag is exhaustive. The budget allocation π is thus exhaustive.

For A1
, after 1/2 units of money have been distributed both p3 and p4 are

bought at a price of 1/4. Once an additional 1/4 of money has been injected, project

p1 is bought, making π the unique budget allocation returned by SeqPhrag.

ForA2
, first p1 is bought at a price of 1/4, then p3 at a price of 1/3. Finally, after

1/3 additional units of money are distributed, project p4 is bought (at that time, the

supporters of project p2 have collected 1/4 + 2/3 < 1 money). The final outcome

is thus indeed {π}.
Now, consider the joint profile A3 = A1+A2

, and let us detail the run of

SeqPhrag on I and A3
. The first project to be bought is p3 at price 1/7. Then,

once an extra 5/42 amount of money has been distributed, project p1 is bought. At
that time, the supporters of p4 who do not approve of p2 have no money since

they approve of p1. On the other hand, the only supporter of p2 that does not

approve of p4 has a strictly positive amount of money. Project p2 will then be

the last project selected (after another 2/21 money has been injected). Overall the

outcome would be {{p1, p2, p3}} ̸= {π}.
We have thus proven that Sequential Phragmén fails weak reinforcement.

Proposition 5.1.3 then concludes the proof. Note that all budget allocations we

considered are exhaustive, the result thus also applies if we only focus on ex-

haustive ground truth. 2

Moving on to MES rules, we show that MES[sat] can be never be interpreted as

an MLE, regardless of the satisfaction function sat considered. If needed, see Defini-
tion 2.3.3 for MES[sat].

Proposition 5.2.2. For any given satisfaction function sat , there exists no noise model

M such that MES[sat] is the MLE ofM, not even on unit-cost instances.

Proof. Consider an instance I with two projects denoted by p1 and p2, both of

cost 1, and a budget limit b = 2. Let sat be an arbitrary satisfaction function.

Consider the two profiles A1 = ({p1}, {p2}) and A2 = ({p1, p2}, {p1, p2}).
We claim that on both of these profiles, MES[sat] would output a single budget

allocation, π = {p1, p2}. Indeed, on A1
both agents receive 1 unit of money and

can both afford the single project they approve of. The outcome is thus trivially

{π}. On A2
both agents approve of all the projects and can afford them. The

outcome is thus also {π}.
Now, for the joint profile A3 = A1+A2 = ({p1}, {p2}, {p1, p2}, {p1, p2}),

we claim that the outcome of MES[sat] is such that:

MES[sat ](I,A3) ∈ {{{p1}}, {{p2}}, {{p1}, {p2}}.
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Importantly, the above states that π /∈ MES[sat ](I,A3). Let us go through the

run of MES[sat] on I andA3
. Here, the initial budget is 1/2 for each agent. Thus,

the supporters of either p1 and p2 have collectively 3/2 units of money. Since for

both p1 and p2, their supporters have strictly positive satisfaction for them (by

definition of a satisfaction function), either p1 or p2 will be selected in the first

round of MES[sat]. Denote by p⋆ the selected project, and by p the other project.
To buy p⋆, all its supporters paid 1/3. The supporters of p are thus now left with

1/2+2 · (1/2− 1/3) = 1/2+ 1/3 < 1 units of money, not enough to afford p. There is
thus no way for MES[sat] to return {{p1, p2}} onA3

. Which of the three possible

outcomes will be selected in the end depends on the satisfaction function sat .
MES[sat] thus fails weak reinforcement and Proposition 5.1.3 concludes. 2

Interestingly, for both of the proofs we presented above, the outcomes on the

individual profiles and the ones on the joint profiles never intersect. This implies

that even resolute versions of the rules (obtained by introducing some form of tie-

breaking) would fail weak reinforcement, i.e., would not be interpretable as MLEs.

5.3 Monotonic Argmax Rules
As we have seen, our first obstacle to finding rules that are MLEs, is that none of

the proportional rules we considered satisfy weak reinforcement. Aiming for more

positive results, we will now follow a different approach: instead of checking whether

known PB rules do satisfy weak reinforcement, we will start from rules we know

satisfy it, and investigate their epistemic abilities. For the remainder of this chapter,

wewill thus focus onmonotonic argmax rules, a large class of rules, all of which satisfy

weak reinforcement.

We start by defining argmax rules and then define what a monotonic one is.

Definition 5.3.1 (Monotonic Argmax Rules). A PB rule F is called an argmax rule if

there exists a function f , taking as input an instance I , a profile A, and a budget allo-

cation π, and returning a number f(I,A, π) ∈ R, such that for all instances I and all

profiles A, we have:

F(I,A) = argmax
π∈Feas(I)

f(I,A, π).

An argmax rule defined via the function f is called monotonic if for every two profiles

A andA′
and every two budget allocations π and π′

, the following two conditions hold:

(i)
f(I,A, π) < f(I,A, π′)
f(I,A′, π) < f(I,A′, π′)

}
=⇒ f(I,A+A′, π) < f(I,A+A′, π′),

(ii)
f(I,A, π) = f(I,A, π′)
f(I,A′, π) = f(I,A′, π′)

}
=⇒ f(I,A+A′, π) = f(I,A+A′, π′).
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Note that every rule is an argmax rule—f can simply be the indicator function on the

outcome of the rule for a given instance and profile—but not all are monotonic.

Are the monotonic argmax rules good candidates for being MLEs? Yes, they are,

as we can show that monotonic argmax rules all satisfy weak reinforcement.

Proposition 5.3.2. Every monotonic argmax rule satisfies weak reinforcement.

Proof. Consider the monotonic argmax rule F defined by the function f . Let I be
an instance, and A and A′

two profiles over I such that F(I,A) = F(I,A′). We

show that we also have F(I,A+A′) = F(I,A).
Consider a budget allocation π ∈ F(I,A). Since F is an argmax rule, for all

π′ ∈ Feas(I) \ F(I,A), we know that f(I,A, π) > f(I,A, π′). This also holds

for A′
. By the definition of a monotonic argmax rule, we immediately get that

f(I,A+A′, π) > f(I,A+A′, π′).
Moreover, for any two budget allocations π, π′ ∈ F(I,A), we have

f(I,A, π) = f(I,A, π′). The same also holds for A′
. Since F is monotonic,

we thus immediately get that f(I,A+A′, π) = f(I,A+A′, π′).
Overall, we proved that (i) no budget allocation that was winning under A

or A′
is dominated under A+A′

, and (ii) that all budget allocations that were
winning under A and A′

all have the same score. It is then immediate that

F(I,A+A′) = F(I,A). 2

In the following we will introduce and study several concrete examples of mono-

tonic argmax rules, based either on the Nash or on the utilitarian social welfare.

5.3.1 Nash Social Welfare
We first study rules that are based on the Nash social welfare. Remember from Sec-

tion 3.5.2 that according to the Nash social welfare, the score of a budget allocation π
is measured as the product of the satisfactions of the agents in π. It thus tries to reach
outcomes in which the distribution of the satisfactions of the agents is balanced. For-

mally, given an instance I , a profile A, and a satisfaction function sat , we define the
PB rule that selects budget allocations maximising the Nash social welfare as:

38

Nash-SW[sat ](I,A) = argmax
π∈Feas(I)

∏
i∈N

sat i(π).

It can easily be checked that Nash-SW[sat ] is the monotonic argmax rule defined

by the function fNash

sat where for any I , A and π ∈ Feas(I), we have:

fNash

sat (I,A, π) =

{∑
i∈N log(sat i(π)) if sat i(π) ̸= 0 for all i ∈ N ,

0 otherwise.

38
Note that we slightly abuse the notation here as Nash-SW[sat ] is a PB rule and not a welfare

measure as we introduced it in Section 3.5.2.
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From this, and Proposition 5.3.2, it is clear that Nash-SW[sat ] satisfies weak rein-

forcement for all sat .
We will consider Nash-SW[sat ] for different satisfaction functions, starting with

the cardinality and cost ones.

Cardinality and Cost Satisfaction

We first study Nash-SW[satcard ] and Nash-SW[satcost ]. Observe that under the usual
assumption that all projects are approved by at least one agent, these two rules are

exhaustive (in the sense that at least one of the returned budget allocations will be

exhaustive).

We start by introducingMNcost , a noise model for which Nash-SW[satcost ] could,
at a first glance, be the MLE. It is defined such that for all I , A and π⋆

, we have:

PMNcost
(A | π⋆, I) =

1

ZNcost
π⋆

c(A ∩ π⋆),

where, ZNcost
π⋆ is a suitable normalisation factor ensuring thatMNcost is a well-defined

probability distribution.

Under this noise model, the probability of generating a given ballot A increases

with the cost of the ground-truth projects in A. The intuition here is that voters may

reflect more carefully on expensive projects and thus are more likely to make correct

choices for them. Moreover, the probability of generating A increases linearly in the

“quality” of A. How realistic this is, is open to debate. On the one hand, this avoids

having to assume extremely high probabilities for correctly identifying particularly

expensive projects (in the case where the relationship would not be linear). On the

other hand, the probability of generating a ballot that is completely wrong (a ballot

not including even a single ground-truth project) is zero.

Under MNcost , maximising the likelihood would be similar to maximising the

Nash social welfare of a budget allocation, when using the cost satisfaction function.

However, for this intuitive connection to hold, it should be that the normalisation

factor ZNcost
π⋆ is independent of π⋆

. Let us look at it in more detail.

Lemma 5.3.3. For the noise modelMNcost to be a well-defined probability distribution,

it must be the case that:

ZNcost
π⋆ = 2|P|−1c(π⋆).

Proof. Consider an instance I = ⟨P , c, b⟩, an approval ballot A ⊆ P , and a

ground truth π⋆ ∈ Feas(I). ForMNcost to be a probability distribution, it should

be the case that:∑
A⊆P

PMNcost
(A | π⋆, I) = 1 ⇐⇒ ZNcost

π⋆ =
∑
A⊆P

c(|A ∩ π⋆|).
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Remember that there are 2|P|
subsets of projects and that any project p ∈ P

appears in exactly half of them. Each time a project p ∈ π⋆
appears in a subset

A ⊆ P , its contribution to the value of ZNcost
π⋆ is exactly c(p). We thus have:

ZNcost
π⋆ =

∑
A⊆P

c(|A ∩ π⋆|) =
∑
p∈π⋆

2|P|−1c(p) = 2|P|−1c(π⋆).

This proves the claim. 2

This result tells us that the normalisation factor of the noise modelMapp depends

on the ground truth, thus the value of the likelihood is impacted by the ground truth

one is considering when computing the MLE. In particular, we cannot conclude that

the rule Nash-SW[satcost ] is the MLE of this noise model since not all feasible budget

allocations have the same cost.

Are there specific cases for which the normalisation factor is independent of the

ground truth? Yes, namely for unit-cost instances, as then all exhaustive allocations

have the same cost.

Proposition 5.3.4. Under the assumption that the ground truth is exhaustive, both

Nash-SW[satcard ] and Nash-SW[satcost ] are the MLE of the noise modelMNcost for

unit-cost instances.

Proof. Let I be a unit-cost instance I . Consider any two exhaustive budget allo-

cations π, π′ ∈ FeasEx(I). Since we have |π| = |π′| = c(π) = c(π′), Lemma 5.3.3

entails that ZNcost
π = ZNcost

π′ . For any profileA, we have then:

argmax
π∈FeasEx(I)

LMNcost
(A, π, I) = argmax

π∈FeasEx(I)

∏
A∈A

c(A ∩ π)

ZNcost
π

= argmax
π∈FeasEx(I)

∏
A∈A

c(A ∩ π)

= Nash-SW[satcost ](I,A).

The last line follows form the fact that Nash-SW[satcost ] is exhaustive.
Given that on unit-cost instances satcard and satcost coincide, the result also

applies to Nash-SW[satcard ]. 2

The fact that Nash-SW[satcard ] and Nash-SW[satcost ] are MLEs forMapp only

under some restricted hypothesis is the first hint of a general impossibility result.

Indeed, we can show that there are no noise models of which these rule are MLEs.

Theorem 5.3.5. There is no noise model M such that either Nash-SW[satcard ] or
Nash-SW[satcost ] is the MLE ofM, not even on unit-cost instances.
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Proof. Consider an instance I with two projects p1 and p2 of cost 1, and a budget
limit b = 2. LetM be a generic noise model, and denote by Pπ

A the value of

PM(A | π, I) for any A and π. To simplify notation, we omit braces around sets.

For the noise modelM to be a well-defined probability distribution, the fol-

lowing two equalities should be satisfied:∑
A⊆P

Pp1
A = 1 ⇔ P p1

∅ + P p1
p1

+ P p1
p2

+ P p1
p1,p2

= 1, (5.1)∑
A⊆P

Pp1,p2
A = 1 ⇔ P p1,p2

∅ + P p1,p2
p1

+ P p1,p2
p2

+ P p1,p2
p1,p2

= 1. (5.2)

Now, on the single-agent profile A = (∅), Nash-SW[satcard ] returns Feas(I). So
for Nash-SW[satcard ] to be theMLE ofM, wemust haveP p1

∅ = P p1,p2
∅ . Moreover,

on A = ({p1}), we have Nash-SW[satcard ](I,A) = {{p1}, {p1, p2}}, so P p1
p1

=
P p1,p2
p1

. Using these two equalities and by subtracting (5.2) from (5.1), we get:

(P p1
p2
− P p1,p2

p2
) + (P p1

p1,p2
− P p1,p2

p1,p2
) = 0. (5.3)

Now, since Nash-SW[satcard ](I, ({p2})) = {{p2}, {p1, p2}}, we must have

P p1,p2
p2

> P p1
p2
. For A = ({p1, p2}), we have Nash-SW[satcard ](I,A) =

{{p1, p2}}. We can then derive P p1,p2
p1,p2

> P p1
p1,p2

. These two last inequalities

contradict (5.3). It is then impossible for Nash-SW[satcard ] to be the MLE of

M on I . From the unit-cost assumption, it is clear that this also applies to

Nash-SW[satcost ]. 2

This impossibility result concludes our analysis of Nash-SW[satcard ] and Nash-

SW[satcost]. We will now consider “normalised” satisfaction functions.

Normalised Satisfaction

In the hope of overcoming Theorem 5.3.5, we also consider normalised variants of the

two satisfaction functions satcard and satcost . In these variants, the satisfaction of an

agent is expressed in terms of the proportion of the outcome that satisfies them. We

denote them satcard and satcost respectively. Formally, for agent i ∈ N with ballotAi

and any subset of projects P ⊆ P , we have:

satcard i(P ) =
|Ai ∩ P |
|P |

satcost i(P ) =
c(Ai ∩ P )

c(P )
.

Note that strictly speaking satcard and satcost are not satisfaction function in the sense
of Definition 2.2.1 as they depend on the projects that have been selected, but not
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approved by the agent. Slightly abusing the notation here, we will still use them as if

they were satisfaction functions, and for instance use the notation Nash-SW[satcard ].
It is also important to observe that these normalised satisfaction functions are

similar in spirit to the concept of relative satisfaction that will be introduced and stud-

ied in Chapter 7 (see Definition 7.2.4). However, while the denominator is defined

here with respect to the budget allocation, the denominator in the relative satisfac-

tion will defined with respect to the ballot of the agent (so |Ai| and c(Ai) instead of

|P | and c(P )). They are also similar to the proportionality requirements defined rel-

ative to the budget allocation that Aziz, Lee and Talmon (2018) introduced (discussed

in Section 3.3.5).

It is worth noting that the rules Nash-SW[satcard ] and Nash-SW[satcost ] can lead

to extreme behaviours. For example, consider an instance with budget limit b, that
we assume to be even, and a set of projects P = {p⋆} ∪ {p1, . . . , pb} of arbitrary cost

lower than b. Consider the two-agent profileA such that:

A1 = {p⋆} ∪ {p1, p3, . . . , pb−1} A2 = {p⋆} ∪ {p2, p4, . . . , pb}.

Then, according to both rules, selecting just p⋆ is better than anything else. Even if

this can seem extreme, these rules can still be justified when considering voters who

would rather save public money than use it on projects they do not approve. This

would correspond to associating a strong rejection, rather than indifference, with the

action of not approving a project (we will come back to that in Chapter 6).

Note that this example also implies that the rules are not exhaustive, even on

unit-cost instances.

Let us first investigate the rule Nash-SW[satcost ]. Wewill continue using the noise

modelMNcost introduced earlier.

Recall the expression we found for the normalisation factorZNcost
π⋆ in Lemma 5.3.3.

Plugging it into the definition ofMNcost , we obtain the following expression for any

instance I , approval ballot A, and ground truth π⋆
:

PMNcost
(A | π⋆, I) =

1

2|P|−1

c(A ∩ π⋆)

c(π⋆)
.

From this, it should be clear that Nash-SW[satcost ] is the MLE ofMNcost .

Theorem 5.3.6. The rule Nash-SW[satcost ] is the MLE of the noise modelMNcost .

Proof. Let I = ⟨P , c, b⟩ be an instance. The likelihood of a profileA and a budget

allocation π ∈ Feas(I) under the noise modelMNcost is:

LMNcost
(A, π, I) =

∏
A∈A

1

2|P|−1

c(A ∩ π)

c(π)
=

(
1

2|P|−1

)|A| ∏
A∈A

c(A ∩ π)

c(π)
.
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Since the first multiplicative factor in the above expression is constant over all

budget allocations, we have:

argmax
π∈Feas(I)

LMNcost
(A, π, I) = argmax

π∈Feas(I)

∏
A∈A

c(A ∩ π)

c(π)
= Nash-SW[satcost ](I,A).

Thus, maximising the likelihood underMNcost is the same as maximising the

social welfare in the sense of Nash-SW[satcost ]. 2

We have finally been able to find a PB rule that can be interpreted as an MLE. In

the following we will show a similar result for Nash-SW[satcard ]. For this rule we

introduce a new noise model denoted byMNapp . It is such that for any instance I ,
approval ballot A, and ground truth π⋆

, we have:

PMNapp
(A | π⋆, I) =

1

ZNapp
π⋆

|A ∩ π⋆|,

where ZNapp
π⋆ is a suitable normalisation factor.

Using similar proof technique as used above, we show that Nash-SW[satcard ] is
the MLE ofMNapp .

Theorem 5.3.7. The rule Nash-SW[satcard ] is the MLE of the noise modelMNapp .

Proof. Let us first compute the exact value of the normalisation factor ZNapp
π⋆ . For

the noisemodelMNapp to be awell-defined probability distribution, the following

must hold:∑
A⊆P

PMNapp
(A | π⋆, I) = 1 ⇔ ZNapp

π⋆ =
∑
A⊆P

|A ∩ π⋆| ⇔ ZNapp
π⋆ = 2|P|−1|π⋆|.

Hence, given a profile A, we have:

argmax
π∈Feas(I)

LMNapp
(A, π) = argmax

π∈Feas(I)

∏
A∈A

1

2|P|−1

|A ∩ π|
|π|

= argmax
π∈Feas(I)

∏
A∈A

|A ∩ π|
|π|

= Nash-SW[satcard ](I,A).

This immediately implies that Nash-SW[satcard ] is the MLE ofMNapp . 2

This concludes our study of the Nash social welfare. We now turn to the more

standard measure of the social welfare: the utilitarian social welfare.
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5.3.2 Utilitarian Social Welfare
Let us now turn to the analysis of monotonic argmax rules defined in terms of utilitar-

ian social welfare. As we did before, we will consider different satisfaction functions.

Cardinality and Cost Satisfaction

We start with the usual cardinality and cost satisfaction functions, that correspond

to the rules MaxCard and MaxCost as introduced in Chapter 2. Remember that

these rules return the budget allocations maximising the sum of the satisfaction of

the agents. It is thus clear that they are monotonic argmax rule (since the score they

use is additive) and thus both satisfy weak reinforcement.

Following the idea developed by Conitzer and Sandholm (2005) for scoring rules

(in the standard voting framework), we introduce the noise modelMapp . It is defined

such that for any instance I = ⟨P , c, b⟩, and approval ballotA ⊆ P , and ground truth
π⋆ ∈ Feas(I):

PMapp(A | π⋆, I) =
1

Zapp
π⋆

∏
p∈P

21p∈A∩π⋆ =
1

Zapp
π⋆

2|A∩π⋆|,

where Zapp
π⋆ is a suitable normalisation factor.

Mapp is a particularly simple manifestation of what we would expect to see in a

noisemodel: any possible ballot might be generated in principle, but the probability of

generating ballot A increases exponentially with the size of the intersection between

A and the ground truth.

With this noise model, maximising the likelihood may appear to have the same

effect as maximising the approval score of a budget allocation. It could then be that

the approval maximising rule is the MLE ofMapp . However, for this to hold, one has

to have a closer look at the normalisation factor.

Lemma 5.3.8. For the noise modelMapp to be a well-defined probability distribution,

it must be the case that:

Zapp
π⋆ = 2|P|

(
3

2

)|π⋆|

.

Proof. Consider any instance I = ⟨P , c, b⟩. Let A ⊆ P be an approval ballot and

π⋆ ∈ Feas(I) a ground truth. ForMapp to be a probability distribution, it should

be the case that:∑
A⊆P

PMapp(A | π⋆, I) = 1 ⇐⇒ Zapp
π⋆ =

∑
A⊆P

2|A∩π⋆|.

Let’s do some combinatorics. For k ∈ {0, . . . , |π⋆|}, how many subsets of P
will intersect with π⋆

on exactly k projects? A suitable subset will consists of k
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projects from π⋆
that make up the intersection and any number j ∈ {0, . . . , |P|−

|π⋆|} of projects fromP\π⋆
that do not have any impact on the intersection. Each

such subset of projects contributes 2k to the value of Zapp
π⋆ . We thus have:

Zapp
π⋆ =

|π⋆|∑
k=0

2k
|P|−|π⋆|∑

j=0

(
|π⋆|
k

)(
|P| − |π⋆|

j

)

=

|π⋆|∑
k=0

(
|π⋆|
k

)
2k

|P|−|π⋆|∑
j=0

(
|P| − |π⋆|

j

)

= 2|P|−|π⋆|
|π⋆|∑
k=0

(
|π⋆|
k

)
2k

= 2|P|
(
3

2

)|π⋆|

where the last two lines are derived from the binomial expansion. 2

The normalisation factor ofMapp thus depends on the ground truth, since not all

feasible budget allocations have the same cardinality. We thus cannot conclude that

the approval maximising rule is the MLE of this noise model.

Interestingly, this is not the case on unit-cost instances when considering exhaus-

tive budget allocations.

Proposition 5.3.9. Under the assumption that the ground truth is exhaustive, both

MaxCard andMaxCost are the MLE of the noise modelMapp for unit-cost instances.

Proof. Let I be a unit-cost instance. For any two exhaustive budget allocations π
and π′ ∈ FeasEx(I), by virtue of Lemma 5.3.8, we have Zapp

π = Zapp
π′ . So, for any

profile A, we have:

argmax
π∈FeasEx(I)

LMapp(A, π, I) = argmax
π∈FeasEx(I)

∏
A∈A

1

Zapp
π

2|A∩π|

= argmax
π∈FeasEx(I)

2
∑

A∈A |A∩π|

= argmax
π∈FeasEx(I)

∑
A∈A

|A ∩ π|

= MaxCard(I,A).

The last line follows from the fact that MaxCard is exhaustive.
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MaxCard coincides thus with the MLE on I for the noise modelMapp . More-

over, since MaxCard and MaxCost coincide on unit-cost instances, the result

also applies to MaxCost. 2

This first result is only half satisfactory. Can we find an impossibility result sim-

ilar to the one we had for Nash-SW[satcard ] and Nash-SW[satcost ]? It is actually

easy to see that the proof we gave for Theorem 5.3.5 also works for both MaxCard

and MaxCost.

Theorem 5.3.10. There is no noise modelM such that eitherMaxCard orMaxCost

is the MLE ofM, not even on unit-cost instances.

Proof. Consider the instance I used in the proof of Theorem 5.3.5. We claim that

for all profiles that are relevant for the proof, MaxCard and Nash-SW[satcard ]
coincide. We list them below.

MaxCard(I, ({p1})) = {{p1}, {p1, p2}} = Nash-SW[satcard ](I, ({p1})).
MaxCard(I, ({p2})) = {{p2}, {p1, p2}} = Nash-SW[satcard ](I, ({p2})).
MaxCard(I, ({p1, p2})) = {{p1, p2}} = Nash-SW[satcard ](I, ({p1, p2})).

MaxCard(I, (∅)) = Feas(I) = Nash-SW[satcard ](I, (∅)).

Given that on unit-cost instances MaxCard and MaxCost coincide, the result

also applies to MaxCost. 2

We conclude by discussing the rules that greedily approximate the outcome of

MaxCard and MaxCost. These rules deserve a special place in our analysis since

GreedCost is the most widely used rule in practice.

The first observation to make is that the three rules GreedCard, GreedCost

and MaxCard all coincide on unit-cost instances. Thus, both Proposition 5.3.9 and

Theorem 5.3.10 apply to GreedCard and GreedCost as well. This also applies to

any refinement of the rules, such as the leximax rule (see Chapter 6).

Corollary 5.3.11. Under the assumption that the ground truth is exhaustive, both

GreedCard and GreedCost are the MLE ofMapp for unit-cost instances.

Moreover, for unconstrained ground truths, there is no noise model M such that

either GreedCard or GreedCost is the MLE ofM, not even on unit-cost instances.

We conclude our discussion of satcard and satcost by showing for the sake of com-

pleteness that GreedCard and GreedCost fail weak reinforcement. Remember that

this was not the case for MaxCard and MaxCost as they are monotonic argmax

rules.
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Proposition 5.3.12. Both GreedCard and GreedCost fail weak reinforcement.

Proof. Consider an instance I with three projects denoted by p1, p2 and p3, a
budget limit of b = 4, and costs as shown in the table below. Moreover, consider

two profiles A and A′
in which the approval scores are as presented below.

Cost Approval score
in A

Approval score
in A′

Approval score
in A+A′

p1 2 10 1 11
p2 2 1 10 11
p3 3 9 9 18

One can easily check that both GreedCard and GreedCost would return

{{p1, p2}} on both A and A′
. However, on the joint profile A+A′

, the two

rules would return {{p3}}. They thus violates weak reinforcement. 2

Normalised Satisfaction

Let us conclude our formal analysis by brieflymentioning the utilitarian social welfare

with the normalised satisfaction functions satcard and satcost . Again abusing notation,

we denote these two rules by Util-SW[satcard ] and Util-SW[satcost ].

For the same reasons as for Nash-SW[satcard ] andNash-SW[satcost ], the two rules

Util-SW[satcard ] and Util-SW[satcost ] are not exhaustive. Analysing the epistemic

status of these rules however turns out to be rather intricate, even on unit-cost in-

stances. Indeed, it is less clear what a suitable noise model might look like, especially

due to the complications related to the potential normalisation factor. Exploring these

rules remains an interesting open problem.

5.4 Summary
In this chapter, we have presented an analysis of PB rules from an epistemic perspec-

tive. We reviewed a large set of rules, including the most celebrated in the literature

(MES, SeqPhrag, MaxCard and MaxCost), the most used in practice (GreedCost),

and some others that received little attention so far. It proved rather difficult to find

rules that can be interpreted as MLEs. Indeed, already a large number of rules failed

weak reinforcement, a necessary condition for being an MLE. Then, even when fo-

cusing on a class of rules that all satisfy weak reinforcement, MLEs have been hard to

find. In particular our two positive results concern rules that suffer other significant

drawbacks. All the results presented in this chapter are displayed in Table 5.4.1.
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Unit-costEX Unit-cost General case

SeqPhrag

✗

Proposition 5.2.1

✗

Proposition 5.2.1

✗

Proposition 5.2.1

MES[sat]
for all sat

–

✗

Proposition 5.2.2

✗

Proposition 5.2.2

GreedCard

and

GreedCost

✓

Corollary 5.3.11

✗

Corollary 5.3.11

✗

Corollary 5.3.11

MaxCard

and

MaxCost

✓

Proposition 5.3.9

✗

Theorem 5.3.10

✗

Theorem 5.3.10

Util-SW[satcard ] – ? ?

Util-SW[satcost ] – ? ?

Nash-SW[satcard ]
and

Nash-SW[satcost ]

✓

Proposition 5.3.4

✗

Theorem 5.3.5

✗

Theorem 5.3.5

Nash-SW[satcard ] –

✓

Theorem 5.3.6

✓

Theorem 5.3.6

Nash-SW[satcard ] –

✓

Theorem 5.3.7

✓

Theorem 5.3.7

Table 5.4.1: Summary of the results for all the rules on specific classes of instances.

A check-mark ✓ indicates that there exists a noise model for which the rule is an

MLE and a cross-mark ✗ the fact that it is impossible to find such a noise model. The

EX subscript signifies that we make the additional assumption that the ground truth

is exhaustive. This assumption would not be meaningful for non-exhaustive rules

(remember that SeqPhrag is exhaustive on unit-cost instances).



Part Three

Variations on the Model





Chapter 6

A General Framework for Multi-Constraint
Participatory Budgeting

This is the first chapter of Part Three where we investigate variations on the model.

What this means is that in the coming chapters, we will study variants of the standard

model of PB that we introduced in Chapter 2, each time introducing new aspects of

PB processes into our formal analysis.

On our agenda for now is the study of PB scenarios with multiple constraints on

the outcome. More specifically, we are interested in cases in which the definition of

a feasible budget allocation does not only depends on its cost, but also on some of

its other features. We will thus investigate scenarios for which there are additional

constraints on top of the budget limit.

Let us delve into an example right away. Consider the case of Zoiville, a little

town in the country of Friendtopia. Zoiville is, as its name suggests, run by Zoi, a

powerful but benevolent mayor. Zoi was re-elected on the promise of developing an

ambitious cultural programme for the city. The plan included the construction of a

brand new international centre for the art of movement, whose design is to be decided

in collaboration with the citizens. The architecture of the building has been decided

by a committee of experts, but a PB process will be organised to decide on parts of

the interior design.

After several public meetings, organised to collect proposals from the citizens, it

appears that several of them got quite interested in the process. Two proposals caught

Zoi’s attention. They were submitted by Arianna and Sirin, two citizens known to

have, among other things, very definite opinions when it comes to colour palettes.

Both of them proposed to buy a set of sofas to allow visitors to sit in the main hall.

However, while Arianna wants the sofas to be olive-green, Sirin wants them to be

mustard-yellow. Not knowing, which one to pick, Zoi decides that both proposals

139
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would make it to the next stage, and that voters will decide.
39
Of course, both projects

cannot be selected together, so an additional constraint to rule out outcomes in which

it happens has been added.

Going down the list of submitted proposals, Zoi noticed two other ones that ne-

cessitate special treatment. Indeed, after reading Emma’s proposal of having a bike

pumping station in the building, Camille proposed to have it decorated by local artists.

Once again, these two proposals are not independent as one can only be selected if

the other also is. Zoi thus added yet another constraint to ensure that the decoration

for the pumping station is only implemented if the latter also is implemented.

In the end, two additional constraints on the outcome have to be considered, each

of a different kind. Zoi—who is inclined to follow the latest recommendations of the

social choice literature—had already selected her favourite voting method based on

the properties that it guarantees. However, she does not know how to adapt it to

impose the constraints in a way that also preserves these desirable properties.

The problem highlighted in the above example is a typical one for any formal anal-

ysis: the mathematical models we study are very strictly defined and rarely provide

flexibility in small variations of the model.

Moreover, while the above is completely fictive, it does exemplify scenarios that

can occur in practice. For instance, until 2022, the Parisian PB process had some

projects labelled “low income neighbourhood” and a specific number of them had

to be selected in the final budget allocation. Another category of projects gathered

the ones designed for the whole city (and not a specific neighbourhood), and a lower

bound on the number of such projects to be selected was imposed.
40

Similar con-

straints have also been observed in PB processes in Lisbon (Allegretti and Antunes,

2014), in Amsterdam (City of Amsterdam, 2022), or in Lyon as we described in Sec-

tion 1.4.2.

There is thus a need for a formal analysis that can easily account for such addi-

tional constraints. The good news is that this is exactly the research question for this

chapter. More specifically, this chapter addresses the following question.

How can we design PB rules that are robust against variations of

the feasibility constraints for the outcomes?

The approach we will develop consists in using an aggregation framework way

more expressive than PB to reason about PB. Doing so will allow us to obtain the

flexibility required by our research agenda. More specifically, we will use Judgement

39
Remember the typical structure of a PB process we outlined in Section 1.1.2. Usually projects

brought to the vote are initially proposed by citizens.

40
It is unfortunately hard to find a trace of this now that the Paris municipality has renewed the plat-

form for the PB process. But it is still mentioned at mairiepariscentre.paris.fr/pages/c-est-parti-pour-

le-budget-participatif-2021-16701, for instance. The important part is that “after the vote, between 2

and 5 projects will be chosen per neighbourhood based on their demographics, with a bonus for low

income neighbourhoods. Two projects for the entire city will also be selected”.

https://mairiepariscentre.paris.fr/pages/c-est-parti-pour-le-budget-participatif-2021-16701
https://mairiepariscentre.paris.fr/pages/c-est-parti-pour-le-budget-participatif-2021-16701
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Aggregation (JA), a framework to aggregate opinions for scenarios where logical con-

straints on the outcome apply.

The idea of using a general framework does come with some potential downsides.

The first one is computational in nature: Determining outcomes in JA is generally

computationally demanding. One would then need to ensure that defining PB rules

through JA does not render the rules completely unusable because of their computa-

tional cost. The second potential downside is axiomatic in nature: JA rules need to be

analysed from a PB perspective to ensure that they provide similar guarantees than

the PB ones. These two aspects will be covered in this chapter.

Let us highlight that this approach does provide an answer to Zoi’s problem. In-

deed, it does provide great flexibility since when incorporating extra constraints for

PB, one “only” has to investigate the specific encoding of the constraint on the JA

side, thereby immediately making available all other results previously established

for the basic framework without those constraints. In particular, once a rule has been

proven to satisfy a certain axiom, it will continue to do so, regardless of the extra

constraints.
41

For the rest of this chapter, we will first present some additional related work.

Then, we will formally define the JA framework and our approach for using JA to rea-

son about PB (Section 6.1). We will then turn to proving the viability of the approach,

first from a computational perspective (Section 6.2), and then from an axiomatic per-

spective (Section 6.3 and Section 6.4). A short summary will conclude this chapter

(Section 6.5).

Additional Related Work. On top of the related work on PB presented in Chap-

ter 3, we provide here some general references on Judgment Aggregation (JA). The

setting was initially introduced by List and Pettit (2002). The study of how to em-

bed preference aggregation problems into JA dates back to at least Dietrich and List

(2007a). The systematic study of how to embed voting rules into JA was then initi-

ated by Lang and Slavkovik (2013) and later refined by Endriss (2018). Our work on

the algorithmic aspects of such embeddings is generalising results of De Haan (2018),

whose paper is also the first example for work investigating the embedding of PB into

JA. Lately, a similar approach has been followed by Chingoma, Endriss and De Haan

(2022) to embed multi-winner voting into JA.

6.1 Frameworks
The main aim of this chapter is to present how to reason about PB by using Judg-

ment Aggregation (JA). In this section we present a variation of the standard model

41
To be precise, this is true for axioms that have a “universal flavour", i.e., for axioms that stipulate

that certain conditions must be satisfied for all relevant situations. In the other case, when the axioms

required the existence of a situation exhibiting a specific property of interest, it can be that additional

constraints make it impossible for the property to occur, rendering the axiom vacuous for instance.
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of PB where multiple resources are involved, and the basic definitions of these two

frameworks. We also define the main concept of this paper, namely embeddings of

PB instances into JA.

6.1.1 Participatory Budgeting with Multiple Resources

For the PB side, we mainly adopt the notation introduce in Chapter 2. However, for

this chapter we will consider a model of PB in which the costs and the budget limit

are expressed over several resources. Additional notation is thus needed. We will

not redefine all the concepts as most of the “new” definitions for the multi-resource

setting are simple rewriting of the single-resource case.

An instance of PB with multiple resources is a tuple I = ⟨P ,R, c, b⟩. As before
P denotes the set of projects. The set of resources is R = {r1, . . . , rd}. The budget
limit b = (b1, . . . , bd) is now a vector of length |R| in which bi ∈ R>0 indicates

the budget limit in terms of resource ri. The cost function c : P × R → R>0 now

maps any project p ∈ P and resource r ∈ R to p’s cost in terms of the resource r.
Overloading notation, we use c(p) = (c(p, r1), . . . , c(p, rd)) to denote the cost vector
of project p. Finally, for any subset of projects P ⊆ P , let c(P, r) =

∑
p∈P c(p, r)

and c(P ) =
∑

p∈P c(p). We denote by I the set of all instances of PB with multiple

resources.

A solution for an instance I = ⟨P ,R, c, b⟩ is a budget allocation π ⊆ P that is

feasible, i.e., such that if c(π) ≤ b, where for two same-sized vectors v = (v1, . . . , vk)
and v′ = (v1, . . . , vk), v ≤ v′

indicates that vj ≤ v′j for all j ∈ {1, . . . , k}. We will

consider irresolute rules in this chapter, so a PB rule maps each instance I and each

profileA to a non-empty set F(I,A) ⊆ Feas(I) of feasible budget allocations.42

6.1.2 Judgment Aggregation

The specific JA framework we use in this chapter is known as binary aggregation

with integrity constraints (Grandi and Endriss, 2011). We introduce it in the following.

While this framework is most convenient for our purposes, the original framework of

List and Pettit (2002) could be used as well, given that it is known that the former can

be efficiently embedded into the latter (Endriss, Grandi, De Haan and Lang, 2016).

Let LX be the set of propositional formulas over a given set X of propositional

atoms, using the usual connectives ¬, ∨, ∧,→, and logical constants⊥ and⊤. Propo-
sitional atoms and their negations are called literals. For any subset of atomsX ⊆ X,
we write Lit(X) = X ∪ {¬x | x ∈ X} for the set of literals corresponding to X .

We often use xi to denote atoms and ℓxi
to denote literals corresponding to xi, i.e.,

ℓxi
∈ {xi,¬xi}. We say that the literal ℓxi

is positive if ℓxi
= xi and negative if

ℓxi
= ¬xi. A truth assignment α : X→ {0, 1} is a mapping indicating for each atom

42
Observe that Feas(I) is never empty since the empty set of projects is always feasible. This,

however, is not true for some of the extensions discussed in Section 6.2.
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its truth value (1 being true and 0 false). For ℓxi
∈ Lit(X), let α(ℓxi

) = α(xi) if ℓxi

is positive and let α(ℓxi
) = 1 − α(xi) otherwise. We write α |= φ whenever α is a

model of φ according to the usual semantics of propositional logic (Van Dalen, 2013).

In the context of JA, the atoms in X represent propositions an agent may either

accept or reject. A judgment J is a set J ⊆ X, indicating which propositions are

accepted. Let aug(J) = J ∪ {¬x | x ∈ X \ J} be the judgment J augmented with

the negative literals for the propositions for which no literal occurs in J . Observe
that a judgment J can be equivalently described as the truth assignment α such that

α(x) = 1 if and only if x ∈ J . In our examples, when we do not explicitly specify

the status of some of the propositions, it is assumed that we only consider judgments

(and truth assignments) for which the unspecified propositions are mapped to 0.

An integrity constraint Γ ∈ LX is a formula used to constrain the range of ad-

missible judgments. A judgment J satisfies Γ—written J |= Γ—if J , interpreted as a

truth assignment, is a model of Γ. Such a judgment J is then said to be admissible.

Let J(Γ) = {J ⊆ X | J |= Γ} be the set of all admissible judgments for any Γ ∈ LX.

A JA instance is simply an integrity constraint Γ.

We again use N = {1, . . . , n} to denote the set of agents. Each agent i ∈ N
provides us with a judgment Ji, resulting in a judgment profile J = (J1, . . . , Jn). For
a profile J and a literal ℓ ∈ Lit(X), we write nJ

ℓ =
∑

i∈N 1ℓ∈aug(Ji) for the number of

supporters of ℓ (note the analogy with app). The majoritarian outcome for a profile

J , denoted by m(J), is the set of literals supported by a (strict) majority of agents:

m(J) = {ℓ ∈ Lit(X) | nJ
ℓ > n/2}.

A JA rule is a function F taking as input an integrity constraint Γ and a judgment

profile J and returning a non-empty set F(Γ,J) ⊆ J(Γ) of admissible judgments.

Note how we use F to represent both a JA rule and a PB rule. Finally, observe that no

assumption is made about the profile. In particular, we do not require Ji |= Γ for any

of the agents i ∈ N .

Before reviewing a number of well-known concrete JA rules, let us first introduce

a very general class of JA rules.

Definition 6.1.1 (Additive Rules). A JA rule F is said to be additive rule if there exists

a function f : (2X)n×Lit(X)→ Rmapping judgment profiles and literals to real values,

such that, for every integrity constraint Γ ∈ LX and every profile J ∈ (2X)n, we have:

F(Γ,J) = argmax
J∈J(Γ)

∑
ℓ∈aug(J)

f(J , ℓ).

The class of additive rules generalises both the scoring rules introduced byDietrich

(2014) and the additive majority rules (AMRs) defined by Nehring and Pivato (2019).
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More specifically, a scoring rule is associated with a scoring function s : 2X ×
Lit(X)→ Rmapping judgments and literals to scores, and corresponds to the additive

rule defined with respect to the function f such that:

f(J , ℓ) =
∑
i∈N

s(Ji, ℓ).

An AMR is associated with a non-decreasing gain function g : {0, . . . , n} → R
with g(k) < g(k′) for any k < n

2
≤ k′

that maps the number of supporters of a literal

to a score, and is an additive rule defined with respect to the function f such that:

f(J , ℓ) = g(nJ
ℓ ).

Three additive rules are of particular importance for our purposes:
43

▶ The Slater rule (Miller and Osherson, 2009; Lang, Pigozzi, Slavkovik and Van

der Torre, 2011) selects the admissible outcome closest to the majoritarian out-

come in terms of the number of propositions they agree on. It is the AMR

associated with the following gain function g:

g(x) =

{
0 if 0 ≤ x < n

2
,

1 if
n
2
≤ x ≤ n.

▶ The Kemeny rule (Pigozzi, 2006; Miller and Osherson, 2009) selects the feasible

outcome that is the closest to the profile as awhole. It is both anAMR associated

with the gain function g(x) = x, and a scoring rule associated with the scoring

function s(J, ℓ) = 1ℓ∈aug(J).

▶ The leximax rule (Everaere, Konieczny and Marquis, 2014; Nehring and Pivato,

2019) favours the propositions supported by the largestmajorities. It is the AMR

defined by the gain function g(x) = |X|x.

Note that these three rules are all majority-consistent, meaning that whenever the

majoritarian outcome is admissible, it is the unique judgement returned by the rules.

6.1.3 Embedding PB into Judgement Aggregation
The aim of this chapter is to provide an easy framework to discuss additional con-

straint for PB problems. To this end, we want to embed PB into JA and then use JA

rules to compute budget allocations. A full schematic representation of the process is

presented in Figure 6.1.1.

43
Most JA rules are known under a variety of different names and have been introduced indepen-

dently from each other by several different sets of authors. We only provide a small number of repre-

sentative citations and refer the reader to Endriss (2016) and Lang, Pigozzi, Slavkovik, Van der Torre

and Vesic (2017) for further information.
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PB profileA
PB instance I ∈ I

}
Feasible budget allocation

π ∈ Feas(I)

JA instance Γ ∈ LX

JA profile J

} Admissible

outcome

J ∈ J(Γ)

PB rule

Profile

equivalence
Embedding E

JA rule

Outcome

translation τ

Figure 6.1.1: Full process to use JA rules for PB instances.

For a given PB instance I = ⟨P ,R, c, b⟩, we introduce one proposition for each

project to form the set of propositional atomsX. There is thus a direct correspondence
between budget allocations π ⊆ P and judgments J ⊆ X, and also between PB and

JA profiles. Similarly, any JA outcome can be translated back into the PB setting.

Definition 6.1.2 (Outcome Translation). Let I = ⟨P ,R, c, b⟩ be a PB instance and let

Γ ∈ LX be an integrity constraint expressed over the atoms X = {xp | p ∈ P}. The
outcome translation τ : 2X → 2P maps any judgment J ∈ 2X to a budget allocation

defined as:

τ(J) = {p ∈ P | xp ∈ J}.

We extend the outcome translation to sets J ⊆ 2X of judgments by stipulating that

τ(J ) = {τ(J) | J ∈ J }.

We now define one of the fundamental elements of our approach: embeddings. An

embedding is a function E : I → LX that takes a PB instance as input and returns

an integrity constraint (i.e., a JA instance). Given an embedding, we can translate any

input of a PB rule into an input for a JA rule, apply the JA rule, and finally translate

the result obtained into a set of budget allocations (see Figure 6.1.1). Note that the

whole process defines PB rules, through JA ones.

However, to be meaningful, the integrity constraint should express the budget

constraint of the PB instance. This is captured by the notion of correctness that states

that the outcome translation τ defines a bijection between the set of budget allocations
on the PB side and the set of admissible judgments on the JA side.

Definition 6.1.3 (Correct Embedding). An embedding E : I → LX is said to be cor-

rect if, for every PB instance I ∈ I , we have:

τ (J(E(I))) = Feas(I).

In the following section we will study actual embeddings and show how they can

be used to easily incorporate additional constraints in the study of PB.
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6.2 Efficient Embeddings of ParticipatoryBudgeting
In this section we present specific embeddings of enriched PB instances into JA. Given

that the problem of computing outcomes for the JA rules defined in Section 6.1.2 is

known to be highly intractable in general (Endriss, De Haan, Lang and Slavkovik,

2020), if we nevertheless want to design PB rules that are tractable, we need to ensure

that PB instances are mapped into JA instances that permit efficient outcome determi-

nation. To this end, we first present a class of Boolean functions (to encode integrity

constraints) for which the outcome determination can be solved efficiently. We will

later present embeddings mapping PB instances into this class of Boolean functions.

6.2.1 Tractable Language for Judgment Aggregation
As shown by De Haan (2018), computing outcomes under the Kemeny and Slater

rules can be done efficiently when the integrity constraint is a Boolean circuit in

decomposable negation normal form (DNNF).We extend this result to all additive rules.

First, let us recall the definition of a DNNF circuit (Darwiche and Marquis, 2002).

Definition 6.2.1 (DNNF Circuits). A circuit in negation normal form (NNF) is a rooted

directed acyclic graph whose leaves are labelled with⊤,⊥, x or¬x, for x ∈ X and whose

internal nodes are labelled with ∧ or ∨. A DNNF circuit C is an NNF circuit that is de-

composablemeaning that, for every conjunction inC , no two conjuncts share a common

propositional atom.

To get a better understanding of what a DNNF circuit is, we present an example below.

The conjuncts of each conjunction are represented via colour coding. Note that no

two conjuncts—the coloured bags rooted in a ∧-node—share any propositional atom.

∨

∧

∨

∧

x2x1 ¬x3 ¬x2 ¬x1

We now show that for most of the additive JA rules F we can compute their out-

come efficiently when Γ is given as a DNNF circuit. Formally, for a given JA rule F,

we define the outcome determination problem as the following decision problem:
44

OutcomeDetermination(F)

Input: An integrity constraint Γ, a judgment profile J , and L ⊆ Lit(X).
Question: Is there an admissible judgment J ∈ F(Γ,J) such that L ⊆ aug(J)?

44
We use here the same name as the outcome determination problem for PB rules from Section 3.5.1,

even though they are not analogous. The context should be clear enough to make the distinction.



6.2. Efficient Embeddings of Participatory Budgeting 147

We show that OutcomeDetermination(F) is solvable in polynomial time for any

additive JA rule F for which the associated function f is polynomial-time computable.

We will need some notions of algebra in the proof. Let us provide some definitions

here. A semi-ring ⟨A,⊕,⊗, e⊕, e⊗⟩ is an algebraic structure such that ⊕ and ⊗ are

associative binary operations over A; ⊕ is commutative; e⊕ is the identity element

of ⊕ and e⊗ that of ⊗; ⊗ is left and right distributive over ⊕; and finally e⊕ ⊗ a =
a⊗ e⊕ = e⊕ for any a ∈ A. A semi-ring is commutative if ⊗ is commutative too.

Theorem 6.2.2. Let F be an additive JA rule defined with respect to some polynomial-

time computable function f . Then OutcomeDetermination(F) is polynomial-time

solvable when the integrity constraint Γ in the input is represented as a DNNF circuit.

Proof. We show that when Γ is a DNNF circuit, we can use the algebraic model

counting (AMC) problem to solve OutcomeDetermination(F). Given a proposi-

tional formulaφ ∈ LX, a commutative semi-ring ⟨A,⊕,⊗, e⊕, e⊗⟩ , and a labeling
function λ : Lit(X)→ A, the AMC problem is to compute:

AMC(φ) =
⊕

α: X→{0,1}
α|=φ

⊗
ℓ∈Lit(X)
α(ℓ)=1

λ(ℓ).

The pair ⟨⊕, λ⟩ is called neutral if and only for every propositional atom x ∈ X,
λ(x) ⊕ λ(¬x) = e⊗. Kimmig, Van den Broeck and De Raedt (2017) proved that

when φ is a DNNF circuit,⊕ is idempotent (for every a ∈ A, we have: a⊕a = a),
and ⟨⊕, λ⟩ is neutral, then the AMC problem can be solved in polynomial time.

We now show that OutcomeDetermination(F) can be solved using the

AMC problem when F is an additive rule. Let f be the function associated

with F. We will consider AMC problem with the max-plus algebra—a commu-

tative and idempotent semi-ring (Akian, Bapat and Gaubert, 2006)—defined by

A = R ∪ {−∞,∞}, e⊕ = −∞, and e⊗ = 0, where ⊕ and ⊗ are the usual max
and + operators over R ∪ {−∞,∞}. Moreover, for a profile J we introduce a

labelling function λJ(·) defined for every literal ℓx ∈ Lit(X) as:

λJ(ℓx) = f(J , ℓx)−max (f(J , x), f(J ,¬x)) .

Since we havemax(λJ(x), λJ(¬x)) = 0 for every x ∈ X, it is easy to see that the
pair ⟨λJ ,⊕⟩ = ⟨λJ ,max⟩ is neutral.

For every profile J and labelling function λJ , we then have:

argmax
J∈J(Γ)

∑
ℓx∈aug(J)

λJ(ℓx)

= argmax
J∈J(Γ)

 ∑
ℓx∈aug(J)

(
f(J , ℓx)−max (f(J , x), f(J ,¬x))

) (6.1)
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= argmax
J∈J(Γ)

 ∑
ℓx∈aug(J)

f(J , ℓx)− 2 ·
∑
x∈X

max (f(J , x), f(J ,¬x))

 (6.2)

= argmax
J∈J(Γ)

∑
ℓ∈aug(J)

f(J , ℓ) (6.3)

= F(Γ,J)

Let us briefly explain the above. The transition between lines (6.1) and (6.2) comes

from the fact that aug(J) include exactly one literal for each propositional atom in

X. Observe then that the term 2 ·
∑

x∈X max (f(J , x), f(J ,¬x)) does not depend
on the judgment J considered by the argmax operator, and can thus be dropped,

leading to line (6.3).

We can then solve OutcomeDetermination(F) by using the AMC problem.

For Γ, J and L ⊆ Lit(X) given as inputs of the OutcomeDetermination(F)

problem, we will solve the AMC problem twice: first for φ = Γ and then for

φ = Γ′
, where Γ′

is obtained from Γ by fixing the value of the atoms as in L. If
the solution of the AMC problem is the same in both cases, we answer the Out-

comeDetermination(F) problem by the positive, and by the negative otherwise.

Overall, as the max-plus algebra is idempotent and ⟨max, λ⟩ is neutral, the
AMC problem can be solved in polynomial time when φ is a DNNF circuit (Kim-

mig, Van den Broeck and De Raedt, 2017). Hence, our procedure to solve the

OutcomeDetermination(F) problem also runs in polynomial time when Γ is a

DNNF circuit. 2

Since all the rules we introduce in Section 6.1.2 are additive rules for which the

corresponding function f is polynomial-time computable. Thus, Theorem 6.2.2 im-

mediately implies tractability of the outcome determination problem for these rules.

Corollary 6.2.3. When the integrity constraint is represented as a DNNF circuit, then

the problem OutcomeDetermination(F) can be solved in polynomial time when F is

either the Kemeny, the Slater, or the leximax rule.

6.2.2 DNNF Circuit Embeddings

At this point, we know that we can efficiently compute the outcome of JA rules when

the integrity constraint is represented as a DNNF circuit, but we still need to demon-

strate that it is actually possible to encode PB problems as integrity constraints of

this kind. So we move on to the description of embeddings of PB into JA returning

integrity constraints represented as DNNF circuits. In doing so, we follow De Haan

(2018) but use a slight generalisation of his approach, allowing us to deal with PB

instances with multiple resources.
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N(1, 0)

∧

xp1

N(2, 1) ∧

¬xp1

N(2, 0)

∧

N(3, 2)

xp2

∧

N(3, 0)

¬xp2∧

N(3, 1)

∧

∧

∧ ∧

¬xp3

xp3⊥
⊤

Figure 6.2.1: (Simplified) DNNF circuit produced by TE in Example 6.2.4.

Let us describe the basic construction. The idea is that every ∨-node in the DNNF

circuit will represent the choice of selecting (or not) a given project. To knowwhether

it is possible to select a given project or not, we keep track of the amount of resources

that has been used so far. Selecting a project can thus only be done if it would not

lead to a violation of the budget constraint.

For a project index j and a vector of used quantities per resources v ∈ Rd
≥0, we

introduce the ∨-node N(j,v), corresponding to the situation where we previously

made a choice on projects with indices 1 to j − 1, and where for these choices we

used resources according to v. These nodes N(j,v) are defined as follows:

N(j,v) =


⊤ if j = m+ 1,

∨
(
xpj ∧N(j + 1,v + c(pj))

)(
¬xpj ∧N(j + 1,v)

) if v + c(pj) ≤ b,(
¬xpj ∧N(j + 1,v)

)
∨ (xpj ∧ ⊥) otherwise.

For a PB instance I = ⟨P ,R, c, b⟩, we define the tractable embedding TE(I) as
the embedding that returns the integrity constraint defined by N(1,0d), where 0d

denotes the vector of length d whose components are all equal to 0.
Let us illustrate this embedding on a simple example.

Example 6.2.4. Consider an instance I with a single resource r and projects p1, p2,
and p3. The costs of the projects in terms of r are c(p1) = c(p2) = 1 and c(p3) = 2 and
the budget limit is b = 2. Call xp1 , xp2 , and xp3 the propositional atoms corresponding

to p1, p2, and p3, respectively. TE on I would construct the DNNF circuit presented

in Figure 6.2.1. Note that we simplified it a bit to improve its readability. △
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Providing an embedding is the first step, the next one is to show that the it encodes

PB instances correctly. We do so for TE in the following.

Proposition 6.2.5. The tractable embedding TE is correct, and for any given PB in-

stance I = ⟨P ,R, c, b⟩ returns an integrity constraint TE(I) represented as a DNNF

circuit of size in O(m · |{c(π) | π ⊆ Feas(I)}|).

Proof. Let I = ⟨P ,R, c, b⟩ be a PB instance, and Γ the integrity constraint re-

turned by the tractable embedding, i.e., Γ = TE(I).
We first show that Γ is represented as DNNF circuit. First, observe that Γ

is a Boolean circuit rooted in N(1,0d). Next, it is clear that every ∨-node is of

the form (x ∧ β1) ∨ (¬x ∧ β2), where x ∈ X is a propositional atom and β1, β2

are either ∨-nodes, or one of the logical constant ⊥, or ⊤. This implies that Γ
is represented as an NNF circuit. Because each project is only considered once,

the propositional atom corresponding to the project cannot appear in two distinct

conjuncts. Hence, Γ is a DNNF circuit.

Observe that there are at most m · |{c(π) | π ⊆ Feas(I)}| many ∨-nodes in
Γ—one for eachN(j,v) for which the budget is not exceeded—all of them having

at most two child ∧-nodes. There are moreover 2m+2 leaves, one per literal and
two for ⊥ and ⊤, hence the size of the DNNF circuit.

We now show that the tractable embedding is correct. Observe that a branch

leading to the ⊥-leaf is chosen if and only if one would violate the budget limit

by selecting a project pj . Hence, finding an assignment that does not lead to a ⊥
leaf in Γ can only be done by selecting a feasible set of projects. The set of such

assignments defines the set of outcomes satisfyingΓ, so τ(E(I)) ⊆ Feas(I). Now,
consider π ∈ Feas(I). Since π is feasible, it is clear that there exists a branch in

the DNNF circuit Γ along which the selected projects correspond exactly to those

that are in π. We thus have τ(E(I)) = Feas(I). 2

At this point, it should be noted that the exponential factor in the size of the

produced DNNF circuit, namely |{c(π) | π ⊆ Feas(I)}|, is bounded from above by

the product of the budget limits for each resource i.e., it is in O(m ·
∏

r∈R br). This is
thus pseudo-polynomial in the size of the PB instance when the number of resources

is fixed.

The next natural question then is whether we can do better. For instance, is it

possible to reduce the size to something pseudo-polynomial in the size of the PB

instance regardless of the number of resources, i.e., inO(m ·
∑

r∈R br)? The following
result answers this question in the negative, or at least, shows that such a DNNF

circuit cannot be found in time polynomial in m+
∑

r∈R br (but may exists).

Proposition 6.2.6. There exists no embedding into a DNNF circuit that can be com-

puted in time polynomial in m +
∑

r∈R br for any instance I = ⟨P ,R, c, b⟩, unless
P = NP.
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Proof. We first show that the following problem is strongly NP-complete.

Maximal Exhaustive Allocation

Input: A PB instance I and a natural number k ∈ N.
Question: Is there a budget allocation π ∈ FeasEx(I) such that |π| ≥ k?

First, note that Maximal Exhaustive Allocation obviously is in NP, the certifi-

cate being a budget allocation of size at least k.
We now show thatMaximal ExhaustiveAllocation is strongly NP-hard. To

do so we reduce from the 3-dimensional Matching problem, which was shown

to be NP-complete by Karp (1972). Note that, since its input does not involve

numbers, the 3-dimensional Matching problem is also strongly NP-complete.

3-dimensional Matching

Input: A finite set T and a set X ⊆ T × T × T .

Question: Is there a setM ⊆ X such that |M | = |X|, and for all (x1, x2, x3)
and (y1, y2, y3) in M , we have x1 ̸= y1 and x2 ̸= y2 and x3 ̸= y3?

Consider, without loss of generality, an instance of the 3-dimensional

Matching problem ⟨T,X⟩ such that T = {1, . . . , t} and X = {x1, . . . , x|X|}.
The corresponding PB instance is I = ⟨P ,R, c, b⟩ where the set of resources is
R = {rji | i ∈ T, j ∈ {1, 2, 3}} and for every resource r ∈ R, we have br = 1.
The set of projects is P = {p1, . . . , p|X|}. Consider project pi ∈ P corresponding

to xi = (x1
i , x

2
i , x

3
i ) ∈ X , its cost is 1 for the three resources r1

x1
i
, r2

x2
i
and r3

x3
i
and

0 for any other resource. Moreover we set k = |X|. We claim that the answer for

the 3-dimensional Matching problem on ⟨T,X⟩ is yes if and only if the answer
for the Maximal Exhaustive Allocation problem on ⟨I, k⟩ is yes too.

To a matchingM ⊆ X , corresponds the budget allocation π = {pi | xi ∈M}.
A matching M ⊆ X is a solution of the 3-dimensional Matching problem if

and only if no triplet in M share a coordinate. Because of the budget limit, this

is possible if and only if the corresponding budget allocation π is feasible. More-

over |M | = |X| if and only if |A| = |X| = k. Note that in this case π would

be exhaustive, which proves the claim. The reduction is clearly done in polyno-

mial time which shows that the Maximal Exhaustive Allocation problem is

strongly NP-complete.

To conclude the proof, we now show that if there exists an embedding of

PB into a DNNF circuit that runs in time polynomial in m +
∑

r∈R br, then we

would be able to solve theMaximal ExhaustiveAllocation problem in pseudo-

polynomial time. This would imply that P = NP as Maximal Exhaustive Allo-

cation is strongly NP-complete.
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Let Γ be the integrity constraint returned by a suitable exhaustive embedding

on an arbitrary instance I . Note that the answer of the Maximal Exhaustive

Allocation problem is yes if and only if the outcome of the Algebraic Model

Counting (AMC) problem is at least k − m when run on Γ with the max-plus

algebra (see the proof of Theorem 6.2.2 for the relevant definitions) and the label-

ing function λ such that λ(x) = 0 and λ(¬x) = −1 for all x ∈ X. Since Γ is a

DNNF circuit and the pair ⟨λ,⊕⟩ is neutral, we can compute the outcome of the

AMC problem in time polynomial in the size of Γ. This proves the claim. 2

Even though there is no hope to find pseudo-polynomial embeddings when the

number of resources is unbounded, we still argue that the embedding is efficient for

realistic scenarios. First, in most typical PB processes the number of resources is ex-

pected to be small. Indeed the difficulty of assessing the different costs and of the

deliberation and voting processes increases significantly with the number of dimen-

sions. It thus seems particularly unlikely that the cost will be expressed in more

than, say, five dimensions. Moreover, if the number of resources is fixed, or at least

bounded, the size of the DNNF circuit will not really present a serious limitation with

state-of-the-art solvers.

In the remainder of this section we investigate to what extent this approach allows

us to introduce additional distributional constraints for PB.

6.2.3 Participatory Budgeting with Project Dependencies

We now consider the situation where the completion of some projects is directly de-

pendent on the completion of some others. The idea here is to incorporate in the

formal model statements such as “constructing a bike shed only makes sense if the

project of the bicycle lane also is implemented”, or “one cannot build a fountain in

the middle of the park at the same time as some children amusement facilities”.

Let us formally introducewhat wemean here. Take a PB instance I = ⟨P ,R, c, b⟩.
We introduce a set of implications, Imp ⊆ LX, linking projects together. A set of im-

plications is a set of propositional formulas of the form ℓxp → ℓxp′
where p and p′ are

two projects in P , and ℓxp and ℓxp′
the corresponding literals. Note that this corre-

sponds to 2-CNF formulas.
45

In the case that ℓxp is positive (respectively negative),

such an implication indicates that p can be selected (respectively not selected) only if

p′ is selected, when ℓxp′
is positive, or not selected, when ℓxp′

is negative. A budget

allocation π satisfies the set of implications Imp if and only if the previously described

semantics is satisfied. For an instance I , we denote by Feas(I, Imp) the set of feasible

45
A propositional logic formula φ ∈ LX is in Conjunctive Normal Form (CNF) if it is expressed as a

conjunction of clauses, where a clause is a disjunction of literals. It is moreover a 2-CNF formula if all

clauses are of size 2, i.e., if φ is a conjunction of disjunctions over two literals.
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budget allocations satisfying Imp. Moreover, we will write ℓxp →∗ ℓxp′
if there is a

chain of implication in Imp linking ℓxp to ℓxp′
.

In terms of applications, this approach to model dependencies is quite flexible. It

allows us to model the fact that project p1 can only be implemented if projects p2 and
p3 would also be implemented for instance. This would be encoded as:

Imp = {xp1 → xp2 , xp1 → xp3}.

At the same time, we can also model “negative” dependencies, or “incompatibilities”,

where p1 can only be implemented if p2 is not: Imp = {xp1 → ¬xp2}. Note that

we are not aware of any previous work that would allow for such constraint to be

expressed in the PB framework.

The first step in our study of PB with project dependencies is to show that finding

a feasible budget allocation when there are implications between project is an NP-

complete problem.

Proposition 6.2.7. Let I = ⟨P ,R, c, b⟩ be a PB instance and Imp a set of implications

over I . Deciding whether Feas(I, Imp) is empty or not is an NP-complete problem, even

for the case of a single resource and with unit costs.

Proof. The problem of finding a feasible budget allocation satisfying Imp is

clearly in NP. Indeed, checking that the budget limit is not exceeded can be done

by summing the costs of the selected projects. Moreover, verifying that the set

of implications is satisfied simply amounts at checking the truth value of each

implication in Imp. Both of these problems can be solved in polynomial time.

To show that the problem is NP-hard, we reduce from the NP-complete problem

2-CNF Minimal Model (Ben-Eliyahu and Dechter, 1996).

2-CNF Minimal Model

Input: A formula φ ∈ LX in conjunctive normal form with exactly two

literals per clauses, and k ∈ N.
Question: Is there amodelα such thatα |= φ and |{p ∈ X | α(p) = 1}| ≤ k?

Take an instance ⟨φ, k⟩ of the 2-CNF Minimal Model problem. We construct

the following participatory budgeting instance I . The set of resources isR = {r}
with budget limit br = k. There is one project per propositional atom in φ, i.e.,
P = {px | x ∈ P}. For every project p ∈ P , we have c(p) = 1. Finally, the
set of implications Imp is the set of clauses in φ (remember that an implication

between two variable can be equivalently expressed as a clause with two literals,

and reciprocally).

We claim that there exists a model of φ setting no more than k variables to

true if and only if there exists a feasible budget allocation for I that satisfies the
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set of implications Imp. Indeed, to a given truth assignment α, corresponds the
budget allocation π = {px | α(x) = 1}. Observe first that there exists α |= φ if

and only if π satisfies Imp. Moreover, since every project is of cost 1, the cost of

π is exactly the number of project that are selected. As the set of projects is the

set of variables in φ, the cost of π is also equal to the number of variables set to

true in α. Because the budget limit for r is k, the budget allocation π satisfies the

budget limit if and only no more than k propositional atoms are set to true in α.
Observing that this reduction clearly can be done in polynomial time con-

cludes the proof. 2

Because of this result we cannot hope to find an efficient embedding into a DNNF

circuit, even with a small number of resources. However, we can still define an inter-

esting embedding whose size is parameterized by some parameter on the structure of

the implication set (in the spirit of parameterized complexity, Downey and Fellows,

2013). The parameter in question is the pathwidth (Robertson and Seymour, 1983;

Bodlaender, 1998) of the interconnection graph. Let us define these two terms.

First, we introduce the interconnection graph G of a set of implications Imp. It is

the graph G = ⟨P , E⟩ where there is an edge {p, p′} ∈ E between projects p and

p′ if and only if there exists an implication in Imp linking the two projects, i.e., Imp

includes at least one implication of the form ℓxp → ℓxp′
for some ℓxp ∈ {xp,¬xp},

ℓxp′
∈ {xp′ ,¬xp′}.
Second, let us discuss the pathwidth of a graphG = ⟨V,E⟩. A path-decomposition

of a graph G is a vector of subset of vertices (V1, . . . , Vq), called bags, such that:

(i) for every edge (v1, v2) ∈ E, there is a bag Vi such that v1 and v2 are in Vi;

(ii) for every i ≤ j ≤ k, we have Vi ∩ Vk ⊆ Vj .

The second property should be understood as saying that the set of bags in which a

given vertex appears is contiguous. The width of a tree decomposition is the size of

the largest bagminus one. The pathwidth of a graphG is theminimumwidth of any of

its path-decomposition. Interestingly, given a graph G = ⟨V,E⟩, we can compute an

optimal path-decomposition of G in FPT-time, where the parameter is the pathwidth

itself (Bodlaender and Kloks, 1996).

We are now equipped with all the definitions we need to formulate our embedding

for dependencies, denoted by TEdep .

Theorem 6.2.8. Let I = ⟨P ,R, c, b⟩ be a PB instance and Imp a set of implications

over I . Then, there exists a correct embedding from I and Imp to an integrity constraint

expressed as a DNNF circuit Γ with size in O
(
m · |{c(π) | π ⊆ Feas(I, Imp)}| · 2k

)
,

where k is the pathwidth of the interconnection graph of Imp.
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Proof. The proof will be presented in several steps. We will first present our

embedding TEdep , then investigate the size of the integrity constraint returned

and finally show that the embedding is correct. In the following we assume that

X is exactly the set {xp | p ∈ P}.
LetG = ⟨P , E⟩ be the interconnection graph of Imp. We order the projects in

the same order in which they are introduced in an optimal path-decomposition

of G, with p1 being the first project, p2 the second and so forth. Then, following

the idea developed for TE, we introduce ∨-nodes N(j,v, L) where j is a project
index, v ∈ Rd

≥0 a vector of used quantities per resource and L ⊆ Lit(X) a subset
of literals. Intuitively, the set L specifies the literals that we selected and that

we should remember because they might trigger implications later on. The nodes

N(j,v, L) are then defined according to the following cases (where each▶ should

be understood as an “otherwise”):

▶ If j = m+ 1, then N(j,v, L) = ⊤;

▶ If both the positive literal xpj and the negative literal ¬xpj are implied by

some literal in L according to Imp, then N(j,v, L) = ⊥;

▶ If the positive literal xpj is implied by some literal in L according to Imp,

and v + c(pj) ≤ b, then N(j,v, L) = N(j + 1,v + c(pj), L ∪ {xpj});

▶ If the positive literal xpj is implied by some literal in L according to Imp,

but there exists a resource rq ∈ R such that vq + c(pj, rq) > bq, then
N(j,v, L) = ⊥;

▶ If the negative literal ¬xpj is implied by some literal in L according to Imp,

then N(j,v, L) = N(j + 1,v, L ∪ {¬xpj});

▶ If v + c(pj) ≤ b, then:

N(j,v, L) = ∨ (xpj ∧N(j + 1,v + c(pj), L ∪ {xpj}))
(¬xpj ∧N(j + 1,v, L ∪ {¬xpj}))

;

▶ In all other cases,N(j,v, L) = (xpj∧⊥)∨(¬xpj∧N(j+1,v, L∪{¬xpj})).

The tractable embedding with dependencies, written TEdep , refers to the integrity

constraint defined by N(1,0m, ∅).
It is clear that this construction ensures that the integrity constraint returned

by TEdep is represented as a DNNF circuit. The proof is very similar to the one

for the tractable embedding (Proposition 6.2.5).

We now investigate the maximum size of the DNNF circuit. We need to count

the maximum number of ∨-nodes, that is the number of N(j,v, L). At a first
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glance, the number of possible L ⊆ Lit(X) is upper-bounded by 2|P|
. However,

we can have a more fine-grained analysis of this last term. The set L is used

to keep track of the projects for which a truth value has already been assigned

and that could imply the truth value of some other project appearing later in

the ordering. However, since the projects are considered following an optimal

path-decomposition of the interconnection graph, we know that we never need

to remember the truth value of more than k+1 projects, where k is the pathwidth
of the interconnection graph. Indeed, by definition of a path-decomposition, for

any project pj , whenever we consider another project pj′ such that pj′ never ap-
pears in a bag together with pj , we no longer need to keep track of the truth

value associated with xpj as pj will never be involved in implications with any

subsequent projects.

Overall, we can update the definition of the nodes N(j,v, L) to implement

this “forgetting” operation. We chose not to over-complicate a chapter that is

already rather technical, but it should be clear from these explanations how to do

so. The size of the DNNF circuit would then be inO
(
m · |{c(P ) | P ⊆ P}| · 2k

)
.

Finally we show that TEdep is correct. Remember that this is the case if for

every instance I :

τ
(
J(TEdep(I, Imp))

)
= Feas(I, Imp).

Consider an outcome J ∈ J(TEdep(I, Imp)) on the JA side. It is clear that τ(J)
does not exceed the budget limit as every timewhere selecting a project could lead

to a too high cost, the branch in the DNNF circuit ends up in the ⊥ leaf. We then

need to prove that τ(J) satisfies Imp. Observe that every time a literal is implied

by a literal that has been previously given a truth value, we follow the implication.

Hence it can never be the case that the premise of an implication is set to true but

not the conclusion. Moreover, every time triggering implications would lead to an

inconsistent outcome (a project being both selected and not selected), the branch

in the DNNF circuit also leads to the ⊥ leaf. Overall τ(J) satisfies Imp. We have

thus proved that {τ(J) | J ∈ J(TEdep(I, Imp))} ⊆ Feas(I, Imp). The proof for
the reversed inclusion is exactly as that presented in Proposition 6.2.5. 2

The size of the DNNF circuit produced by the embedding includes a factor 2k where
k is the pathwidth of the interconnection graph of Imp. The value of k is in general

upper bounded by the number of projects, for instance in the case where the intercon-

nection graph is complete (when there are dependencies between any two projects).

Once again it seems rather fair to assume projects not to be very interconnected,

leading to small values of k in practice.

Let us illustrate this embedding on an example.
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Example 6.2.9. Consider the instance described in Example 6.2.4. Assume that, if

project p1 is selected, then also project p2 should be selected. In our model, this means

that Imp = {xp1 → xp2}. An optimal path-decomposition of the interconnection

graph is thus ({p1, p2}, {p3}). So we will consider the projects in the following order:

p1, p2, p3. The embedding TEdep would return the DNNF circuit presented in below.

N(1, 0, ∅)

∧

xp1

N(2, 1, {xp1}) ∧

¬xp1

N(2, 0, {¬xp1})

∧

N(3, 2, ∅)

xp2 ∧

N(3, 0, ∅) ¬xp2N(3, 1, ∅)

∧

∧

∧ ∧

¬xp3

xp3⊥
⊤

It is important to understand how we can “forget” about the truth values of xp1 and

xp2 once we consider project p3. △

We conclude this section with a small detour to the field of Knowledge Compi-

lation (see, e.g., Marquis, 2015). Embedding PB problems with dependencies into a

DNNF circuit is equivalent to asking whether the conjunction of a 2-CNF formula

with a DNNF circuit can be efficiently encoded as a DNNF circuit of polynomial size.

It turns out to be impossible to do so, unless the polynomial hierarchy collapses.

Proposition 6.2.10. It is not possible to compile any 2-CNF formula φ ∈ LX into a

DNNF circuit of size polynomial in the size of φ, unless the polynomial hierarchy col-

lapses to the second level.

Proof.Wewill prove that if 2-CNF formulas can be compiled into polynomial-size

DNNF circuits, then the NP-complete problem Cliqe would be in P/poly, using
similar techniques as Cadoli, Donini, Liberatore and Schaerf (2002). Because of

the Karp-Lipton theorem (Karp and Lipton, 1980), this would immediately entail

the polynomial hierarchy to collapse at the second level.

Let us first introduce the problem Cliqe, shown to be NP-complete by Karp

(1972). Given an undirected graph G = ⟨V,E⟩, we say that a subset of vertices

V ′ ⊆ V forms a clique in G if for every v1, v2 ∈ V ′
, we have {v1, v2} ∈ E. The

decision problem Cliqe is then defined as follows.
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Cliqe

Input: An undirected graph G = ⟨V,E⟩ and an integer k ∈ N.
Question: Is there a clique V ′ ⊆ V in G such that |V ′| = k?

For any two integers n, k ∈ N, we introduce a 2-CNF formula φ(n, k) such
that the answer of Cliqe on a graph G = ⟨V,E⟩ with |V | = n and k can be

deduced by means of queries of the following problem the we call Max SAT Ex-

tension: Given a partial truth assignment α of φ, what is the maximum number

of variables that can be set to true in any extension of α in such a way that α
satisfies φ(n, k). Importantly, the formula φ(n, k) is the same for all graphs with

n vertices and inquired clique size k. In the following we will assume that the

vertices in V are named v1, . . . , vn.
Let us describe how to construct φ(n, k). For every i, i′ ∈ {1, . . . , n} and each

1 ≤ j < j′ ≤ k, we introduce the variable xj,j′,i,i′ . These variables indicate which

vertex was selected at a given position in an arbitrary ordering of the clique. So

having xj,j′,i,i′ set to true means that in the ordering of the clique in which vertex

vi is at position j, then vertex vi′ is at position j′. Now for this to be correct, we

need to enforce that no two vertices can be selected at the same position. For

every j1, j2, j3, j4 ∈ {1, . . . , k} such that j1 < j2, j1 < j3 and j4 < j2, and
for every i1, i2, i3, i4 ∈ {1, . . . , n}, we thus add the following two clauses to the

formula φ(n, k):

(¬xj1,j2,i1,i2 ∨ ¬xj1,j3,i3,i4)

(¬xj1,j2,i1,i2 ∨ ¬xj4,j2,i3,i4)

Now, we want to check whether any given graph G = ⟨V,E⟩ with |V | = n has

a clique of size k. Consider the formula φ(n, k). We first create a partial truth

assignment α that sets xj,j′,i,i′ and xj,j′,i′,i to false for all 1 ≤ j < j′ ≤ k and all

i, i′ ∈ {1, . . . , n} such that {vi, vi′} /∈ E. Now it is easy to see thatG has a clique

of size k if and only if we can extend this α to a (non-partial) truth assignment

that satisfies φ(n, k) and that sets at least k(k − 1)/2 variables to true.

At this point, it is important to observe that the problemMax SAT Extension

can be solved in polynomial time if the formula provided is a DNNF circuit. It is

a simple variant of the Maximum Model problem that we can solve via dynamic

programming on DNNF circuits (Darwiche and Marquis, 2002).

Now, suppose we can compile 2-CNF formulas into DNNF circuits in

polynomial-space, then we compile φ(n, k) into a DNNF for each n and each

k. Call this DNNF circuit D(n, k). From the above, it should be clear now that

with D(n, k) we can solve the Cliqe problem on a graph G with n nodes and

an inquired clique size of k in polynomial time.

To conclude the proof we show that this would then all mean that Cliqe is

in P/poly. We first informally define P/poly, we refer the reader to Chapter 6
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in the book by Arora and Barak (2009) for a formal definition. P/poly is a com-

plexity class that contains problems that can be solved in polynomial time by a

deterministic Turing machine that has access to one advice string per size of the

input. In our case, the advice string for an input of size n will be the sequence

(D(n, 1), . . . , D(n, n)). Note that the size of the advice string is polynomial in n
as each DNNF circuit in it is. For any input of Cliqe, we can then find the cor-

responding DNNF circuit D(n, k) to solve the problem in polynomial time. This

proves that Cliqe would be in P/poly, and so that NP ⊆ P/poly (since Cliqe

is NP-complete). The Karp-Lipton theorem (Karp and Lipton, 1980) then implies

that the polynomial hierarchy would collapse to the second level. 2

We already knew that there was little hope for a DNNF circuit encoding of PB in-

stances with dependencies in polynomial-time (unless P = NP) when the number of

resources is small. Under a stronger computational complexity assumption, we now

have gone further by showing that it is also unlikely that we will not be able to do

this in polynomial space.

6.2.4 Participatory Budgeting with Quotas on Types of Projects
The second extension of PB we consider is when projects are grouped into categories,

or types, that are constrained by quotas.
46

The idea is that the projects belong to

various types (health, education, environment to name a few) and that certain quotas

over these types are to be respected by the final budget allocation (at least two health-

related projects must be funded, for instance).

We start by presenting a model of PB with quotas over types of projects. We first

introduce the notion of a type system. For a given PB instance I = ⟨P ,R, c, b⟩, a
type system is a tuple T = ⟨T ,Q, q, f⟩, where:

▶ T ∈ 22
P
is a set of types, each type being a subset of projects

47
;

▶ Q = ⟨Q,⊕, e⊕,≤Q⟩ is an ordered group48 over which the quotas are expressed;
46
After our initial work on this topic (Rey, Endriss and de Haan, 2020), Jain, Sornat, Talmon and

Zehavi (2021) studied a specific subcase of our model, namely PB instances in which projects are

grouped into categories and quotas regarding the total cost of projects from within each categories

need to be satisfied (see Section 3.6.2). There is a small overlap between this chapter and the work of

Jain, Sornat, Talmon and Zehavi (2021): the result of Proposition 6.2.11 is directly implied by Theorem

10 of Jain, Sornat, Talmon and Zehavi (2021). Other results are incomparable and they complement

each other nicely.

47
Note that in Chapter 7 we will use the term “type” to refer to groups of agents, instead of projects.

48
A group ⟨Q,⊕, e⊕⟩ is an algebraic structure equipped with a binary operation ⊕ over Q that is

associative, that has an identity element e⊕, and such that for every a ∈ Q, there exists a unique

b ∈ Q such that a⊕ b = e⊕ and b⊕ a = e⊕. An ordered group ⟨Q,⊕, e⊕,≤Q⟩ is a group ⟨Q,⊕, e⊕⟩
equipped with a total order ≤Q over Q.
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▶ q : T → Q2
is a quota function such that for any type T ∈ T , we have

q(T ) = (a, b) with a, b ∈ Q satisfying a ≤Q b;

▶ f : T × Feas(I)→ Q is a type aggregator.

For any T ∈ T for which q(T ) = (a, b), we write q(T )− = a and q(T )+ = b.
They indicate the lower and upper quota for type T respectively. A budget allocation

π satisfies the type system T = ⟨T ,Q, q, f⟩ if the quotas are respected, i.e., if for

every type T ∈ T , we have:

q(T )− ≤Q f(T, π) ≤Q q(T )+.

We denote by Feas(I,T) the set of feasible budget allocation that satisfy the type

system T for instance I .
The type aggregator f(·) can be defined in several different ways. We provide two

type aggregators that are very natural.

▶ Cardinality-type aggregator. The quotas express lower and upper bounds on
the number of projects selected for each type. We have Q = N, ⊕ is the usual

addition operator on numbers with identity element 0, and ≤Q is the usual

linear order on numbers. Now for every type T ∈ T and budget allocation π,
the cardinality-type aggregator is defined as follows:

f card(T, π) = |T ∩ π|.

▶ Cost-type aggregator. The quotas define lower and upper bounds on the total

cost of the projects selected for each type. HereQ = Rd
≥0,⊕ is the component-

wise addition over vectors with identity element 0d, and≤Q is the component-

wise order over vectors. Now for every type T ∈ T and budget allocation π,
the cost-type aggregator is defined as follows:

f cost(T, π) =
∑

p∈π∩T

c(p).

Turning to the formal analysis of PB with quotas over types of projects, we first

show that deciding whether there is a feasible budget allocation satisfying given type

system is NP-complete, for both the cardinality- and the cost-type aggregator.

Proposition 6.2.11. Let I = ⟨P ,R, c, b⟩ be a PB instance and T = ⟨T ,Q, q, f⟩ a
type system over I . Deciding whether FeasEx(I,T) is empty or not is an NP-complete

problem when f is either the cardinality or the cost-type aggregator, even for the case of

a single resource and with unit costs.
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Proof. The problem is clearly in NP. Indeed, verifying that the budget allocation

π does not exceed the budget limit can be done easily by summing the costs of

the selected projects. Note that both the cardinality- and the cost-type aggrega-

tors can be computed in polynomial time. Then, verifying that every quota is

respected is just a matter of scanning π for each quota.

Let us show now that the problem is NP-hard. To do so we reduce from the

NP-hard problem Set Splitting (Garey and Johnson, 1979) described below.

Set Splitting

Input: A collection C of subsets of a given set S.

Question: Are there two sets S1 and S2 partitioning S such that for any

c ∈ C , we have c ⊈ S1 and c ⊈ S2?

Let ⟨C, S⟩ be an instance of Set Splitting. We construct a participatory

budgeting instance I = ⟨P ,R, c, b⟩ such that R = {r}, and br = |S|. There is
one project per element in S, i.e., P = {ps | s ∈ S}, and c(ps) = 1 for every

s ∈ S. Thus, the budget limit can never be exceeded. The corresponding set of

types is T = {{ps | s ∈ c} | c ∈ C} so that there is one type for subset in C .

For a given type T ∈ T , the quota is q(T ) = (1, |T | − 1). With one resource

and projects whose costs are in {0, 1}, the cardinality-type aggregator and the

cost-type aggregator coincide.

We claim that ⟨C, S⟩ is a yes-instance of Set Splitting if and only if there

exists a feasible budget allocation in the instance I with the previous type system.

For a given partition of S, (S1, S2), a suitable corresponding budget allocation is

π = S1 (or equivalently π = S2).

A partition (S1, S2) is a solution of the Set Splitting problem if and only if

for every c ∈ C , at least one element of c is in S1 and at least one element of

c is not in S1 (and is then in S2). Based on the type system we defined, this is

equivalent to π satisfying the quota associated to c. Moreover, observe that every

budget allocation respects the budget limit. Hence (S1, S2) is a solution of the

Set Splitting problem if and only if π is a feasible budget allocation.

The reduction is clearly done in polynomial time, hence the problem of finding

whether a feasible budget allocation exists is NP-complete when using both the

cost and the cardinality type aggregator. 2

Once again, this implies that no efficient embedding can be defined for this extension,

even in the case of a small number of resources.

Given this computational impossibility, we present a parameterized embedding

for PB with types and quotas in the following. The embedding works for any additive

type aggregator f : T × Feas(I) → Q, that is, any type aggregator f for which

there exists a score type function s that takes as input a project p ∈ P and returns an
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element in Q such that for every type T ∈ T and every allocation π ∈ Feas(I):

f(T, π) =
⊕
p∈A

s(p).

Note that both the cardinality- and the cost-type aggregators are additive, with the

following score type function: scard(p) = 1 and scost(p) = c(p) respectively.
As for the dependencies case, the size of our embedding will be parameterized by

the pathwidth of a graph. This time, it will be the overlap graph of a type system. Let

I be an instance and ⟨T ,Q, q, f⟩ a type system over I , the overlap graph of the type

system is the graph G = ⟨T , E⟩, where there is an edge {T, T ′} ∈ E between types

T and T ′
if and only if T ∩ T ′ ̸= ∅, i.e., T and T ′

overlap.

Theorem 6.2.12. Let I = ⟨P ,R, c, b⟩ be a PB instance and T = ⟨T ,Q, q, f⟩ a type

system where f is an additive type aggregator defined with respect to the function s.
Then, there exists a correct embedding for I and ⟨T ,Q, q, f⟩ that returns an integrity

constraint represented as a DNNF circuit whose size is in:

O
(
m · |{c(π) | π ⊆ Feas(I,T)}| ·max

T∈T
(|{f(T,A) | π ∈ Feas(I,T)}|)k+1

)
,

where k is the pathwidth of the overlap graph G = ⟨T , E⟩ of T.

Proof. We use a similar strategy as for Theorem 6.2.8. The general idea is that

because the type aggregator is additive, we can keep track of the current value of

the quotas, and then, when deciding whether a project can be selected or not, we

can check the current quota value before making our choice.

LetG = ⟨T , E⟩ be the overlap graph of ⟨T ,Q, q, f⟩. We order the projects in

the same order in which they are introduced in an optimal path-decomposition

ofG, with p1 being the first project, p2 the second and so forth. As before, we will
then define the ∨-nodes N(j,v, q), where j is a project index, v ∈ Rd

≥0 a vector

of used resources and q ∈ Q|T |
is a vector of current quota value.

We first introduce notation. Let Tpj = {T ∈ T | pj ∈ T} be the set of types
containing project pj . For q ∈ Q|T |

, define qpj
as q

pj
T = qT ⊕ s(pj) for every

T ∈ Tpj and q
pj
T = qT for every T /∈ Tpj . So qpj

is the updated values for the

quotas if pj is selected given a vector of current quota value q ∈ Q|T |
.

The ∨-nodes N(j,v, q) are then defined as follows (where each ▶ should be

understood as an “otherwise”):

▶ If j = m+ 1, we have N(j,v, q) = ⊤;

▶ If there are two types T1, T2 ∈ Tpj such that pj is the last project in T2 to be

considered, and selecting project pj would lead to a violation for T1, namely

q
pj
T1

>Q q(T1)
+
, but not selecting project pj would lead to a violation for

T2, namely q
pj
T2

<Q q(T2)
−
, then N(j,v, q) = ⊥;
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▶ If there is a type T ∈ Tpj such that q
pj
T >Q q(T )+, then:

N(j,v, q) = (xpj ∧ ⊥) ∨ (¬xpj ∧N(j + 1,v, q));

▶ If there is a type T ∈ Tpj such that pj is the last project from T to be

considered and the quota over T satisfies qT <Q q(T )− and q
pj
T ≥Q q(T )−,

then:

N(j,v, q) =

{
(xpj ∧N(j + 1,v + c(pj), q

pj)) ∨
(
¬xpj ∧ ⊥

)
if v + c(pj) ≤ b,

⊥ otherwise;

▶ If v + c(pj) ≤ b, then:

N(j,v, q) = (xpj ∧N(j + 1,v + c(pj), q
pj)) ∨

(
¬xpj ∧N(j + 1,v, q)

)
;

▶ In all other cases, N(j,v, q) = (xpj ∧ ⊥) ∨ (¬xpj ∧N(j + 1,v, q)).

The tractable embedding for types and quotas, written TEquo , refers to the in-

tegrity constraint defined by N(1,0m,0|T |).

It is clear that TEquo returns an integrity constraint represented as a DNNF

circuit. We now show that the size of DNNF circuit is in:

O
(
m · |{c(π) | π ⊆ Feas(I,T)}| ·max

T∈T
(|{f(T,A) | π ∈ Feas(I,T)}|)k+1

)
,

where k is the path-width of the overlapping graph.

Let us begin by observing that the first two terms of the product above are

the same as for the other tractable embeddings presented before, we do not ex-

pend on them. Then, observe that a quota can take at most maxT∈T (|{f(T,A) |
π ∈ Feas(I,T)}|) different values. Hence, each component of q can only have

maxT∈T (|{f(T,A) | π ∈ Feas(I,T)}|) distinct values. Now, how do we get it to

the power k and not |T | in the size of the DNNF circuit? The idea is similar to

that of the proof of Theorem 6.2.8. Projects are ordered according to the ordering

of types in an optimal path-decomposition of the overlap graph. By doing so, in

each node N(j,v, q), we can “forget” all types in q for which we already consid-

ered all projects as the value of the corresponding quota will no longer change.

Hence, the maximum number of types we need to keep track of their quota is up-

per bounded by k + 1. That proves the claim about the size of the DNNF circuit.

We now show that the embedding is correct. Let us consider an arbitrary JA

outcome J ∈ J(TEquo(I,T)). It should be clear from the correctness proofs of

both TE and TEdep that τ(J) satisfies the budget constraint. Moreover, in TEquo ,

before considering any project, if the current value of a quota violate the quota
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constraint associated with it, the branch in the DNNF circuit ends up on the ⊥
leaf. Because the type aggregator is additive, we know that the quota values in

v are the quota values of the corresponding budget allocation. Hence we have

τ(j) ∈ Feas(I,T). We have thus showed that {τ(J) | J ∈ J(TEdep(I,T))} ⊆
Feas(I,T) holds. To prove correctness, we need to additionally prove that the

reversed inclusion holds. We omit this part of the proof as the details are exactly

as in the proof of Proposition 6.2.5. 2

It should be noted that the factor maxT∈T (|{f(T,A) | π ∈ Feas(I,T)}|)k+1
in the

size of the DNNF circuit produced can be very high. However, for the cardinality and

the cost-type aggregators, we can derive the following bounds:

max
T∈T
|{f card(T,A) | π ∈ Feas(I,T)}| = max

T∈T
q(T )+ ≤ |P|,

max
T∈T
|{f cost(T,A) | π ∈ Feas(I,T)}| = max

T∈T
q(T )+ ≤

∏
r∈R

br.

This implies that the integrity constraint for these quota aggregators would be of

reasonable size, as long as k—the pathwidth of the overlap graph—is small.

The question is then how small or large can k be? Of course, in principle, it can

be as large as the number of projects (plus one). That is the case if all projects appear

in all types. On the other hand, the pathwidth of the overlapping graph would be 1 in
the case that the types are not overlapping (no project appears in more than one type).

This special case is actually very natural. For instance, if one uses types to represent

areas of a city that are to be developed, then no project concerning one area will also

concern another area. We get the following statement for non-overlapping types.

Corollary 6.2.13. Let I = ⟨P ,R, c, b⟩ be a PB instance and T = ⟨T ,Q, q, f⟩ a type

system where f is an additive type aggregator defined over the score type function s.
If the types are not overlapping, that is, if the overlapping graph of ⟨T ,Q, q, f⟩ is the
empty graph, then the size of the integrity constraint returned by TEquo is in

O
(
m · |{c(P ) | P ⊆ P}| ·max

T∈T
(|{f(T,A) | A ∈ Feas(I,T)}|)

)
.

Let us conclude this section by presenting TEquo on our running example.

Example 6.2.14. Consider the instance described in Example 6.2.4. Assume that,

projects p1 and p2 are health-related projects and that no more than one should be

selected. In terms of our model, this means that we are considering the type system〈
{T}, ⟨N,+, 0,≤⟩ , q, f card

〉
, where T = {p1, p2} and q(T ) = (0, 1). An optimal path-

decomposition of the overlap graph is thus ({p1, p2}, {p3}). So we will consider the

projects in the following order: p1, p2, p3. The embedding TEquo would return the

DNNF circuit presented next.
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N(1, 0, 0)

∧

xp1

N(2, 1, 1) ∧

¬xp1

N(2, 0, 0)

∧ xp2

∧

N(3, 0, (.))

¬xp2∧

N(3, 1, (.))

∧

∧ ∧ ∧

¬xp3

xp3

⊥ ⊤

It is important to see how we can “forget” about the truth values of xp1 and xp2 once

we consider project p3 as the types corresponding to these projects will not play a

role any more. △

6.3 Enforcing Exhaustiveness

As we mentioned already at several points in this thesis (see, e.g., Section 3.4.1), ex-

haustiveness is usually a very basic requirement for PB rules, especially under the

assumption that no project yields negative satisfaction to anyone. Because the sce-

narios typically modelled using JA are rather different from PB, the exhaustiveness

axiom is not satisfied by common JA rules. Indeed, JA rules are usually designed to

be majority-consistent—they would always return the majoritarian outcome if it is

admissible—which is incompatible with exhaustiveness. This has to do with the se-

mantics of rejection (of a proposition) in the context of JA: submitting a judgment

in which an atom is mapped to false is usually considered as a clear rejection of the

proposition, while in PB, not approving a project is usually not considered as a rejec-

tion (or is at least ambiguous, see our discussion in Section 3.1.2). In this section, we

discuss how to enforce exhaustiveness in our setting.

Let us first extend the definition of exhaustiveness to JA rules and embeddings.

An embedding E : I → LX is said to be exhaustive if, for every instance I ∈ I ,
we have τ(J(E(I))) ⊆ FeasEx(I). On the other hand, an exhaustive embedding E
is correct if FeasEx(I) = τ(J(E(I))) for every instance I . Finally, a JA rule F is said

to be exhaustive if for every correct embedding E, every instance I ∈ I and every

profileA, it is the case that τ(F(E(I),A)) ⊆ FeasEx(I).
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We now show the incompatibility between majority-consistency and exhaustive-

ness that we mentioned above.

Proposition 6.3.1. No majority-consistent JA rule is exhaustive.

Proof. Consider a correct but not exhaustive embedding E (for instance TE as

defined above). As E is not exhaustive, there exists a PB instance I such that

there is at least one admissible JA outcome J ∈ J(E(I)) with τ(J) /∈ FeasEx(I).
Now consider a profileA with n agents in which ⌈n/2⌉+ 1 agents only approve

of the projects in τ(J); the other agents being unconstrained. On the JA side, the

majoritarian outcome will be J . Since the majoritarian outcome is admissible,

any majority-consistent rule F must return {J} on E(I) and A, which does not

correspond to an exhaustive budget allocation. 2

This result is far-reaching because exhaustiveness really clashes with basic properties

of JA.
49
To circumvent this problem and to enforce exhaustiveness, we will investi-

gate two approaches: either encoding exhaustiveness in the integrity constraint or

designing new JA rules.

6.3.1 Exhaustive Embeddings for Single-Resource Instances
We introduce the exhaustive tractable embedding, which is an adaptation of TE de-

signed to maintain exhaustiveness when there is exactly one resource.

Consider a PB instance I = ⟨P ,R, c, b⟩ with R = {r}. Similarly to the previ-

ous embeddings, we introduce the ∨-nodes of the integrity constraint as N(j, v, c∗),
where j is a project index, v is the budget used in terms of the unique resource r, and
c∗ is the cost of the cheapest non-selected project. They are defined as follows:

▶ If j = m+ 1, then we have:

N(j, v, c∗) =

{
⊤ if c∗ > b− v

⊥ otherwise.

▶ If v + c(pj) ≤ b, then we have:

N(j, v, c∗) =
(
xpj ∧N(j + 1, v + c(pj), c

∗)
)
∨
(
¬xpj ∧N(j + 1, v,min(c∗, c(pj)))

)
.

▶ Otherwise, N(j, v, c∗) =
(
¬xpj ∧N(j + 1,v, c∗)

)
∨ (xpj ∧ ⊥).

The exhaustive tractable embedding ETE returns the integrity constraint defined by

N(1, 0,maxp∈P c(p)). We prove that the embedding ETE behaves as it is expected to.

49
Were it not for our assumption that every project must have at least one supporter (which rules out

certain profiles), Proposition 6.3.1 could be strengthened to say that no unanimous JA rule is exhaustive

(F is unanimous if F(J, . . . , J) = {J} for all judgments J satisfying the integrity constraint Γ).
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Proposition 6.3.2. The exhaustive tractable embedding is correct and exhaustive, and

returns an integrity constraint Γ represented as a DNNF circuit of size O(m2 · |{c(π) |
π ⊆ Feas(I)}|), for any I = ⟨P ,R, c, b⟩ where |R| = 1.

Proof. The structure of the embedding is very similar to that of the tractable

embedding TE presented above. We only prove that the embedding is exhaustive.

Let I = ⟨P ,R, c, b⟩ be a PB instance. Consider an outcome J ∈ J(ETE(I)) and
the budget allocation π such that π = τ(J). Note that the budget allocation

π is exhaustive if and only if the cheapest not selected project does not fit in

it. Observe that in the exhaustive tractable embedding we are keeping track of

the cheapest project that has not been selected so that whenever all the projects

have been considered two cases are left. If the cheapest project fits in the budget

allocation then the latter is not exhaustive and we link the branch to the ⊥ leaf.

Otherwise the budget allocation is exhaustive and the ⊤ leaf is linked to it. This

proves that the embedding is exhaustive. The fact that the constructed integrity

constraint is a DNNF circuit of the suitable size is almost immediate given all the

proofs we have already seen on that topic. 2

The embedding ETE is only defined for instances with a single resource and, un-

fortunately, the idea does not generalise if computational efficiency is required. The

reason is that, when there are several resources, then there could be exponentially

many “cheapest projects”. In the following we turn to another way of enforcing ex-

haustiveness, based on the use of different rules, the asymmetric ones.

6.3.2 Asymmetric Judgment Aggregation Rules
As we saw above, typical JA rules fail exhaustiveness because rejection is interpreted

differently in JA than in PB. Therefore, to implement PB via JA we need to adapt them

so that not selecting a project (i.e., not accepting a proposition) is not interpreted as

a rejection. To this end we introduce a new family of asymmetric JA rules. They

avoid the symmetric treatment of acceptance and rejection common in most, if not

all, established JA rules.

Definition 6.3.3 (Asymmetric Additive Rules). Let F be an additive JA rule associated

with f : (2X)n×Lit(X)→ R≥0. Then its asymmetric counterpart Fasy is the rule where

for every integrity constraint Γ and every profile J , we have:

Fasy(Γ,J) = argmax
J∈J(Γ)

∑
ℓ∈aug(J)
ℓ is positive

f(J , ℓ) + ϵ,

where ϵ is a small positive constant such that:

0 < ϵ <
1

|X|
·min

{
f(J , ℓ) ̸= 0 | J ∈ (2X)n, ℓ ∈ aug(J), ℓ is positive

}
.
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Importantly, this definition applies only if f is R≥0-valued. The use of ϵ guarantees
that accepting positive literals will always be more appealing than accepting negative

ones, while being small enough so as to not impact the relative values of positive

literals. Note that ϵ = 1
|X|+1

is a suitable choice for the Slater, the Kemeny and the

leximax rules.

The class of asymmetric additive rules is particularly interesting for us, as we can

show that every rule in this class satisfies exhaustiveness.

Proposition 6.3.4. Let F be an additive JA rule associated with anR≥0-valued function

f . Then, the asymmetric counterpart of F satisfies exhaustiveness.

Proof. Executing Fasy involves computing a score for every admissible outcome

J . By definition, no negative literal in J can contribute to its score, while every

positive literal makes a strictly positive contribution of at least ϵ. Thus, flipping a
negative literal always results in an increased score. So Fasy only returns admissi-

ble judgments for which flipping any negative literal would violate the integrity

constraint. This exactly corresponds to exhaustiveness. 2

Observe that the asymmetric counterpart of any additive rule is itself additive.

The asymmetric counterpart of a scoring rule is also a scoring rule. Indeed, Fasy is the

scoring rule defined with respect to sasy : (J, ℓ) 7→ 1ℓ is positive · s(J, ℓ), where s is the
scoring function corresponding to F. Note that this does not work for AMR since the

gain function cannot filter out negative literals (since it is a function from N to R).
Finally, it is interesting to note that the asymmetric variant of the leximax rule is

very similar to the GreedCost PB rule.
50

6.4 Axiomatic Analysis of Judgment Aggregation
Rules

In this section we investigate to what extent important axioms proposed in the liter-

ature on PB are satisfied by JA rules, when used for the purpose of PB.

We focus on the monotonicity axioms introduced in Section 3.4.2, generalising

the definitions to allow for multiple resources and irresolute rules.

Formally, for a given axiom A about PB rules, we say that the JA rule F satisfies A
with respect to embedding E if the PB rule mapping any instance I and profile A to

τ(F(E(I),A)) satisfies A.
Moreover, for a resolute rule F, the monotonicity axioms of Section 3.4.2 are usu-

ally stated as “when one moves from an instance/profile pair (I,A) to another pair

50
GreedCost actually corresponds to the asymmetric variant of a refinement of the leximax rule

known as the ranked-agenda rule (Lang, Pigozzi, Slavkovik and Van der Torre, 2011).
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(I ′,A′), then if F(I,A) satisfies a certain property, F(I ′,A′) should satisfy a corre-

sponding property.” We generalise these axioms to the irresolute case by requiring

that, if every budget allocation returned by our rule for (I,A) satisfies the property in
question, then every budget allocation for (I ′,A′) should satisfy the corresponding

property. This is a universal extension of the axioms, in contrast to the existential

extension we discussed at the end of Section 3.4.2.

The first axiom we study is called limit monotonicity (Definition 3.4.3). Recall that

it states that after any increase in the budget limit that is not so substantial as to make

some previously unaffordable project affordable, any funded project should continue

to get funded.

Definition 6.4.1 (Limit Monotonicity). An irresolute PB rule F is said to satisfy limit-

monotonicity if, for any two PB instances I = ⟨P ,R, c, b⟩ and I ′ = ⟨P ,R, c, b′⟩ with
b ≤ b′ and c(p) ≤ b for all projects p ∈ P , it is the case that

⋂
F(I,A) ⊆

⋂
F(I ′,A)

for all profiles A.

In the following, we show that this axiom is not satisfied by any of the JA rules of

interest, even when there is only one resource.

Proposition 6.4.2. None of the Kemeny, the Slater, or the leximax rules, or their asym-

metric counterparts satisfy limit monotonicity with respect to any correct embedding.

Proof. Assume the embedding is correct. Consider two instances I = ⟨P ,R, c, b⟩
and I ′ = ⟨P ,R, c, b′⟩ such that |R| = 1. There are three projects p1, p2, and p3,
and the budget limits are b = (4) and b′ = (5). The profile of interestA together

with the instances I and I ′ are presented below, I on the left and I ′ on the right.

p1 p2 p3

Cost 3 2 1

A1 ✓ ✓ ✓

A2 ✓ ✓ ✓

A3 ✓ ✓ ✓

A4 ✓ ✓ ✗

A5 ✓ ✗ ✗

b = (4)

p1 p2 p3

Cost 3 2 1

A1 ✓ ✓ ✓

A2 ✓ ✓ ✓

A3 ✓ ✓ ✓

A4 ✓ ✓ ✗

A5 ✓ ✗ ✗

b′ = (5)

We claim that on I , the Kemeny, the leximax rules, and their asymmetric coun-

terpart would all return {{p1, p3}}. However, they would all return {{p1, p2}} on
I ′. Project p3 is thus a witness of the violation of limit monotonicity.

For the Slater rule and its asymmetric counterpart, consider the situation de-

picted below with two instances I = ⟨P ,R, c, b⟩ and I ′ = ⟨P ,R, c, b′⟩ involving
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three projects and a single resource. The budget limits are b = (4) and b′ = (6).
We denote by A (on the left) and A′

(on the right) the corresponding profiles.

p1 p2 p3

Cost 1 2 4

A1 ✓ ✓ ✓

b = (4)

p1 p2 p3

Cost 1 2 4

A1 ✓ ✓ ✓

b′ = (6)

On I and A, both the Slater rule and its asymmetric counterpart would re-

turn {{p1, p2}}. On the other hand, on I ′ and A, both rules would return

{{p1, p2}, {p1, p3}, {p2, p3}}. Since

⋂
{{p1, p2}, {p1, p3}, {p2, p3}} = ∅, both

projects p1 and p2 are witnesses of the violation of limit monotonicity. 2

We move on to discount monotonicity (Definition 3.4.2), an axiom stating that, if

the cost of a selected project p decreases, then p should continue to be selected.

Definition 6.4.3 (Discount Monotonicity). An irresolute PB rule F is said to satisfy

discount-monotonicity if, for any two PB instances I = ⟨P ,R, c, b⟩, I ′ = ⟨P ,R, c′, b⟩
such that for some distinguished project p⋆ ∈ P , we have c(p⋆) ≥ c′(p⋆), and c(p) =
c′(p) for all p ∈ P \{p⋆}, it is the case that p⋆ ∈

⋂
F(I,A) implies p⋆ ∈

⋂
F(I ′,A) for

all profiles A.

To study how JA rules deal with discountmonotonicity, we introduce a new axiom

for JA. Aswewill prove, this axiom is a sufficient condition for discount monotonicity.

Definition 6.4.4 (Constraint monotonicity). A JA rule F is said to satisfy constraint-

monotonicity if, for any two integrity constraints Γ,Γ′ ∈ LX with J(Γ) ⊆ J(Γ′) and
any profile J , it is the case that F(Γ′,J) \ F(Γ,J) ⊆ J(Γ′) \ J(Γ).

This axiom states that if the integrity constraint Γ is weakened into Γ′
in the sense

that more judgements are now admissible, then any new judgments returned by F

must be taken from the set of newly admissible judgments.

We obtain the following formal connection between the two axioms.

Proposition 6.4.5. Every constraint-monotonic JA rule is discount-monotonic with re-

spect to any correct embedding.

Proof. Let F be a JA rule that is constraint-monotonic. Let E be a correct em-

bedding. Consider the instances I = ⟨P ,R, c, b⟩ and I ′ = ⟨P ,R, c′, b⟩, where a
project p⋆ ∈ P became cheaper from I to I ′ as in Definition 6.4.3.
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LetA be an arbitrary profile such that p⋆ is always selected, i.e., we have p⋆ ∈⋂
τ(F(E(I),A)). We need to show that p⋆ ∈

⋂
τ(F(E(I ′),A)) holds. Observe

that Feas(I) ⊆ Feas(I ′). BecauseE is correct, we also have J(E(I)) ⊆ J(E(I ′)).
Moreover, for every new feasible budget allocation π ∈ Feas(I ′) \ Feas(I), it
should be the case that p⋆ ∈ π as only c′(p⋆) changed in I ′. Hence, for every

newly admissible outcome J ∈ J(E(I ′)) \ J(E(I)), we also have p⋆ ∈ τ(J).
Since the JA rule F is constraint-monotonic, for every profile profileA, we have:

F(E(I ′),A) ⊆ F(E(I),A) ∪
(
J(E(I ′)) \ J(E(I))

)
‘.

Thus, for every J ∈ F(E(I ′),A), it should be the case that p⋆ ∈ τ(J). This proves
that F satisfies discount-monotonicity. 2

Interestingly, a large set of JA rules satisfy constraint monotonicity.

Proposition 6.4.6. Every additive rule is constraint-monotonic.

Proof. Consider any additive rule F. Suppose, that F is not constraint-monotonic.

Then there exist two integrity constraints Γ and Γ′
with J(Γ) ⊆ J(Γ′) and a

profile J for which there exists a J ∈ F(Γ′,J) \ F(Γ,J) with J /∈ J(Γ′) \ J(Γ),
that is, such that J ∈ J(Γ′) ∩ J(Γ). Since by assumption on Γ and Γ′

, we have

J(Γ) ⊆ J(Γ′), it is the case that J(Γ′)∩ J(Γ) = J(Γ), and thus that J ∈ J(Γ). As
J /∈ F(Γ,J), there exists some other outcome J ′ ∈ J(Γ)with a higher total score

than that of J . Moreover, since J(Γ) ⊆ J(Γ′), this same J ′
would outperform J

also under Γ′
. This implies that J /∈ F(Γ′,J), which is a contradiction. 2

Recall that several well-known JA rules are additive and thus subject to this result.

Corollary 6.4.7. The Kemeny, Slater, and leximax rules as well as their asymmetric

counterparts are all discount-monotonic with respect to any correct embedding.

We last consider splittingmonotonicity (Definition 3.4.4) andmergingmonotonicity

(Definition 3.4.5), two axioms that deal with situations where projects are either split

into subprojects, or merged into super-projects. Remember the action of splitting a

project p ∈ P into P , and the dual action of merging a subset of projects P into p as
defined in Definition 3.4.4. These actions are naturally extended to the multi-resource

setting. We present below our adaptations of the axioms to irresolute rules.

Definition 6.4.8 (Splitting Monotonicity). An irresolute PB rule F is said to satisfy

splitting-monotonicity if, for any two PB instances I = ⟨P ,R, c, b⟩, I ′ = ⟨P ′,R, c′, b⟩
with corresponding profiles A and A′

such that I ′ and A′
are the result of splitting

project p into P given I andA, it is the case that if p ∈
⋂
F(I ′,A) then π′ ∩ P ̸= ∅ for

all π′ ∈ F(I ′,A).
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Definition 6.4.9 (Merging Monotonicity). An irresolute PB rule F is said to satisfy

merging-monotonicity if, for any two PB instances I = ⟨P ,R, c, b⟩, I ′ = ⟨P ′,R, c′, b⟩
with corresponding profiles A and A′

such that I ′ and A′
are the result of merging

project set P into project p given I and A, it is the case that P ⊆
⋂
F(I,A) implies

p ∈
⋂

F(I ′,A).

We first show that splitting monotonicity is satisfied by AMRs and their asym-

metric counterparts.

Proposition 6.4.10. Every AMR as well as the asymmetric counterpart of every AMR

are splitting-monotonic with respect to any correct embedding.

Proof. Let F be either an AMR or the asymmetric counterpart of an AMR, and let

E be a correct and exhaustive embedding. Consider a PB instance I = ⟨P ,R, c, b⟩
and a profileA. Let J be the JA profile corresponding toA. Let I ′ = ⟨P ′,R, c′, b⟩
and A′

be the instance and profile resulting from splitting a given project p⋆ ∈⋂
τ(F(E(I),J)) into the set of projects P ⋆

. Let J ′
be the JA profiles correspond-

ing to A′
.

Consider an outcome J1 ∈ F(E(I),J). Note that any outcome J that is ad-

missible before and after the splitting, i.e., any J ∈ J(E(I)) ∩ J(E(I ′)), cannot
include either p⋆ or any project from P ⋆

. Since p⋆ ∈
⋂
τ(F(E(I),J)), this implies

that J1 has a higher total score than any J ∈ J(E(I)) ∩ J(E(I ′)).
Consider now an outcome J ′

1 = (J1 \ {p⋆}) ∪ {p} for some newly created

project p ∈ P ⋆
. By definition of the new cost function, and since E is a correct

embedding, we have J ′
1 |= E(I ′). J ′

1 thus determines an admissible outcome for

the constraint corresponding to I ′. Based on the definition of J ′
, it is clear that

nJ
ℓ = nJ ′

ℓ for every ℓ ∈ aug(J1 \ {xp⋆}) and that nJ
x⋆
p
= nJ ′

xp
. Hence, because the

internal score used by F only depends on the number of supporters, we know that

J1 and J ′
1 have the same total score. This implies that J ′

1 has a higher total score

than any J ∈ J(E(I))∩J(E(I ′)). Thus, J(E(I))∩F(E(I ′),J ′) = ∅. As for every
newly admissible judgement J ′ ∈ J(E(I ′)) \ J(E(I)) we have P ⋆ ∩ τ(J ′) ̸= ∅,
every outcome returned by F would have a non-empty intersection with P ⋆

. 2

Interestingly, this result provides a sufficient condition for PB rules to satisfy splitting

monotonicity: any rule behaving as an AMR (with a suitable definition of AMR for

PB) will satisfy it.

For the specific set of rules we study, we obtain the following corollary.

Corollary 6.4.11. The Kemeny, Slater, and leximax rules as well as their asymmetric

counterparts are all splitting-monotonic with respect to any correct embedding.

Interestingly, when enforcing exhaustiveness through the embedding, this last

result is no longer valid for symmetric rules.
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Proposition 6.4.12. None of the Kemeny, the Slater, or the leximax rules satisfy split-

ting monotonicity with respect to any correct and exhaustive embedding.

Proof. Consider the following pairs of instances and three-agent profiles: I and

A on the left and I ′ andA′
on the right. Both involve just one resource.

p1 p2 p3 p4

Cost 2 2 1 1

A1 ✓ ✗ ✗ ✗

A2 ✓ ✗ ✗ ✗

A3 ✗ ✓ ✓ ✓

b = (4)

p1 p12 p22 p32 p42 p3 p4

Cost 2 1/2 1/2 1/2 1/2 1 1

A1 ✓ ✗ ✗ ✗ ✗ ✗ ✗

A2 ✓ ✗ ✗ ✗ ✗ ✗ ✗

A3 ✗ ✓ ✓ ✓ ✓ ✓ ✓

b = (4)

Observe that I ′ and A′
are the result of splitting p2 into {p12, p22, p32, p42}, given I

and A. We leave the relevant computations to the reader, but the Kemeny, the

Slater, and the leximax rules would all return {{p1, p2}} on (I,A)when usedwith
a correct and exhaustive embedding. However, they would return {{p1, p3, p4}}
on (I ′,A′). Hence, p2 is a witness of a violation of splitting monotonicity. 2

We finally investigate merging monotonicity. It turns out that none of the rules

we are considering in this chapter satisfy it.

Proposition 6.4.13. None of the Kemeny, the Slater, or the leximax rules, or their asym-

metric counterparts satisfy merging monotonicity with respect to any correct embedding.

Proof. Consider the following pairs of instances and one-agent profiles: I andA
on the left and I ′ and A′

on the right. Both involve just one resource.

p1 p2 p3 p4 p5 p6

Cost 2 2 1 1 1 1

A1 ✓ ✓ ✓ ✓ ✓ ✓

b = (4)

p1 p2 p′3

Cost 2 2 4

A1 ✓ ✓ ✓

b = (4)

Observe that I ′ and A′
are the result of merging {p3, p4, p5, p6} into project p′3,

given I andA. It is easy to see that the Kemeny, the Slater, and the leximax rules

would all return {{p3, p4, p5, p6}} on (I,A)when used with a correct embedding.

However, they would return {{p1, p2}} on (I ′,A′). Hence, p′3 is a witness of a

violation of merging monotonicity. Moreover, since the only agent approves of

every projects, the same hold for the asymmetric counterpart of the rules. 2
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Kemeny, Slater and Leximax

Symmetric

Symmetric

ex. embedding

Asymmetric

Exhaustiveness

✗

Proposition 6.3.1

✓

Proposition 6.3.2

✓

Proposition 6.3.4

Limit Monotonicity

✗

Proposition 6.4.2

✗

Proposition 6.4.2

✗

Proposition 6.4.2

Discount Monotonicity

✓

Corollary 6.4.7

✓

Corollary 6.4.7

✓

Corollary 6.4.7

Splitting Monotonicity

✓

Proposition 6.4.10

✗

Proposition 6.4.12

✓

Proposition 6.4.10

Merging Monotonicity

✗

Proposition 6.4.13

✗

Proposition 6.4.13

✗

Proposition 6.4.13

Table 6.5.1: Axiomatic results for JA rules when used with a correct embedding.

“Symmetric ex. embedding” indicates that we use the symmetric rule with a correct

and exhaustive embedding.

6.5 Summary
In this chapter, we have presented how to use the expressive power of JA to reason

about PB instances with additional constraints.

Our focus has mainly been computational. We spent some time discussing the

computational complexity of embedding PB instances into well-structured instances

of JA, namely into integrity constraint represented asDNNF circuits. Enforcing the in-

tegrity constraints to be DNNF circuits directly entailed that the outcome of common

JA rules could be computed efficiently, thus proving the viability of our approach. For

two very generic types of constraints—namely dependencies between projects and

quotas over types of projects—we also developed specific embeddings, exemplifying

the flexibility of our approach when it comes to incorporating additional constraints

on the PB side.

The computational analysis only proves that we can use JA rules to determine

budget allocations. It does not inform us about the quality of the budget allocations

that are reached that way. To provide some elements of answer to this second point,

we also presented an axiomatic analysis of JA rules, in terms of PB axioms. We dis-

cussed exhaustiveness and monotonicity axioms. Our findings are summarised in

Table 6.5.1. Interestingly, relative to the range of axioms we have considered here, we

may summarise the situation by saying that JA rules perform similarly to other PB

rules in normative terms (see Table 3.4.2 for standard PB rules).



Chapter 7

A Long-Term Approach to Participatory
Budgeting

We already mentioned how difficult it is to put forward an exact definition of what

a Participatory Budgeting (PB) process is. Because of the wide variety of real-life

implementations, authors tend to define PB processes in terms criteria they satisfy, as

we saw in Section 1.1.1. When discussing some of the requisites we already presented

in the introduction, Sintomer, Herzberg, Röcke and Allegretti (2012) note that:

« It has to be a repeated process over years. Consequently, if a participa-

tory process is already planned as a unique event, we would not consider it as

PB: one meeting, one referendum on financial issues are not examples of par-

ticipatory budgeting. In English, the expression of “participatory budgeting”

has been used from the late 1990s in order to stress this notion of an ongoing

process (“budgeting”) rather than an outcome (“budget”). »

Interestingly, they emphasise that a PB process has to span several years. The stan-

dard model we have studied so far fails to capture this temporal aspect. Fortunately,

it can be extended to discuss long-term perspectives of PB. The goal of this chap-

ter is to present one such extension of the standard model, the so-called Perpetual

Participatory Budgeting (PPB) model.

It is clear that the long-term perspective should be studied when investigating PB

processes. However, it is not necessarily clear what should be studied in an investiga-

tion of long-term PB. The naïve approach would be to consider a long-term PB model

simply as a repetition of the standard model. Following this approach, one could pick

the voting method one prefers and simply repeatedly apply it at each round. This

would be a perfectly valid way of handling the long-term approach, and, it is worth

175



176 Chapter 7. A Long-Term Approach to Participatory Budgeting

noting, is how PB processes are implemented in real-life. Why did I refer to this ap-

proach as a naïve one then? My claim, and that of this chapter, is that by doing so, we

would miss an opportunity to actually use past information to take better decisions,

round after round.

As we like to do for each variation on the model we introduce, let us illustrate

the motivation of this chapter through an example. Consider Dean, the mayor of our

fictional town. He is absolutely convinced that the only way to obtain an efficient

and well-functioning democratic process is by enabling citizens to weight in on the

decisions of the public institutions. This is why he has implemented a PB process

in his town. There is one budgeting decision per year, over an indefinite time hori-

zon. However, after a couple of successful years, the PB process is now less and less

popular, and the turnout has significantly dropped during the last few rounds. In an

attempt to identify the causes of this decline, he hired Julian, a decision-making ex-

pert. After having reviewed the data and conducted some interviews, Julian has an

explanation to offer to Dean: The citizens of smaller neighbourhoods gave up on the

PB process because none of their favourite projects ever got selected. The assessment

is simple: the way the process is organised does not implement any kind of temporal

fairness and the decisions made year after year always favour larger groups of the

population.
51

This example, specifically tailored to our needs, illustrates one impact of using

the naïve approach discussed above: ignoring the temporal aspects of a PB process

can lead to always favouring the same voters, leading to a decision that is unfair, not

necessarily for each individual round, but regarding the process in its entirety. The

motivation for this chapter is thus to investigate how to deal with long-term fairness.

We will try to answer the following question:

How should fairness properties be defined, and how can we enforce them,

in a long-term model for PB?

Having now reached Chapter 7, one can claim that we have acquired quite some

experience with fairness in PB. Still, defining fairness properties in the perpetual PB

(PPB) framework does require some additional pondering. Indeed, the temporal as-

pect of the model immediately brings up two further challenges.

The first challenge of the PPB model is that the identity of the voters cannot be

traced back from one round to the other. This is because ballots are submitted anony-

mously. This fundamental requirement of any democratic process does entail that

it is not possible to know the entire ballot history of a voter. In particular, this im-

plies that we cannot discuss fairness regarding a specific voter that is based on the

past voting behaviours. To circumvent this, we will only consider fairness properties

that apply to groups of agents, instead of individuals. We assume that the groups are

51
Interestingly, a similar situation–where some citizens complained of having never seen any project

they voted for being selected—was described by employees of the municipality in charge of PB when

we discussed the PB processes implemented in Amsterdam.
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defined exogenously from the process, based on some publicly observable variables

such as where the ballot was cast, the gender of the voter, or their age group. These

are details that are often available together with the ballots (see pabulib.org for some

examples coming from real-life PB processes). Defining fairness criteria for groups of

agents—we will call them types of agents—is the first challenge we will be facing.

The second challenge of the PPB model is that we are now discussing an envi-

ronment that is both dynamic and online (meaning that decisions are taken without

knowledge of what is to come). The consequences are twofold. On the one hand,

because the environment is dynamic, we need to take into account the fact that new

projects will be considered, that the ballots of the agents can change over time, etc...
52

On the other hand, because the decisions aremade in an online fashion, nothing about

the future is known when deciding on which projects to select in a given round. We

thus need to ensure that decisions are robust against any instance that can occur in

subsequent rounds. This is our second challenge.

To answer the research question stated above, while facing the aforementioned

challenges, we will follow a similar approach as the one we developed in Chapter 4.

We will first define what we consider to represent a case of perfect fairness. Because

perfect fairness can rarely be achieved, we will introduce several relaxations that will

be shown to be satisfiable. The specifics are to be discovered in the coming sections.

As is customary by now, we will start by mentioning additional related work. The

formal model of perpetual PB will then be introduced (Section 7.1). All the compo-

nents will then be in place for us to present the fairness theory we devised for this

model (Section 7.2). We will then begin the formal study by focusing on perfect fair-

ness (Section 7.3). As it cannot always be guaranteed, we will discuss two relaxations

of perfect fairness. The first one consists in optimising for fairness (Section 7.4) by

selecting projects that lead to an optimal value of some fairness measure. The second

one consists in guaranteeing fairness, but only for an infinite horizon (Section 7.5).

We will finally draw a conclusion (Section 7.6).

Additional Related Work. The present chapter is the only study of the repeti-

tive aspect of a PB process that we are aware of within the social choice literature.

However, several other social choice frameworks have been studied through the long-

term lens. Our inspiration for this chapter stems from the perpetual voting framework

of Lackner (2020), and the study of proportionality in this setting (Lackner and Maly,

2023). A similar long-term perspective has also been studied for score-based aggrega-

tion (Freeman, Zahedi and Conitzer, 2017; Freeman, Zahedi, Conitzer and Lee, 2018).

7.1 Perpetual Participatory Budgeting
In the followingwe describe our long-termmodel for PB, called perpetual participatory

budgeting (PPB). In essence, it consists of a sequence instances of the standard PB

52
To simplify the model, we assume that the set of agents remains the same throughout the process.

http://pabulib.org/


178 Chapter 7. A Long-Term Approach to Participatory Budgeting

model, each representing a round.

Because there are several rounds, we need one extra layer of notation to refer to

projects. We will use P to represent the (potentially infinite) set of all the projects that

can occur throughout the process. We naturally extend the cost function c : P→ R>0

so that it applies to P as well, mapping any project p ∈ P to its cost c(p) ∈ R>0. Note

that we are only considering uni-dimensional costs here. We will still write c(P )
instead of

∑
p∈P c(p) for any P ⊆ P. As before, an instance is a tuple I = ⟨P , c, b⟩

where P ⊆ P is finite.

Moving on to the temporal side of the model. A perpetual participatory budgeting

instance of length k ∈ N>0 ∪ {∞} (or k-PPB instance) is a sequence of k instances

I = (I1, . . . , Ik). Using this notation an ∞-PPB instance is simply an infinite se-

quence of PB instances. The instance occurring at round j ∈ N>0 is denoted by

Ij = ⟨Pj, c, bj⟩, where Pj ⊆ P is finite. Notice how the cost function repeats itself

at each round (since we extended it to P). Given a k-PPB instance I = (I1, . . . , Ik),
a vector π = (π1, π2, . . .) of budget allocations such |π| ≤ k and πj ⊆ Pj for every

round j ∈ {1, . . . , |π|} is called a solution for I . A solution π for a k-PPB instance

I is called partial if |π| < k. For a given solution π = (π1, π2, . . .) and any round

j ∈ {1, . . . , |π|}, we denote by π[j] = (π1, . . . , πj) the solution containing the first j
elements of π. We use the convention that π[0] is the empty solution.

A solutionπ for I is said to be feasible if every budget allocation πj ∈ π is feasible

for Ij . We similarly say thatπ is exhaustive if all budget allocations inπ are exhaustive

for their respective instances. Finally a solution π is non-empty if none of the budget

allocations it contains are empty.

Coming to the agents now, we assume that the set of agents does not change from

one round to the next. We thus do not need additional notation and useN to denote

the set of agents. A novelty of this chapter is that agents belongs to different types. A

type represents any set of characteristics that can be used to group agents together

(district of residence, age group...). We denote by T the set of all the types.
53
The type

function T : N → T associates each agent i ∈ N with the type T (i) they belong

to, with the assumption that every agent belongs to a type. For simplicity, we will

mainly consider a type t ∈ T as the set {i ∈ N | T (i) = t} of the agents belonging
to type t, i.e., t’s preimage under T . In that view, |t| denotes the number of agents

having type t ∈ T . Types are constant over time.

Agents submit their opinions about the projects through approval ballots. For

a given k-PPB instance I = (I1, . . . , Ik), at round j ∈ {1, . . . , k} every agent i ∈
N is asked to submit an approval ballot denoted by Aj

i ⊆ Pj . A profile for round

j ∈ {1, . . . , k} is a vector Aj = (Aj
1, . . . , A

j
n) of ballots. A PPB profile is a vector

A = (A1, . . . ,Ak) of profiles, one per round.54

53
Note that we are using here the same notation for type of agents as the one used in Chapter 6,

Section 6.2.4, for types of projects. This dual usage of the terminology and notation should not be

problematic given that the context is rather clear.

54
Note that we have to superscript the rounds here since the subscript position is used for the agents.
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We conclude this section by an example presenting all the components of the PPB

model. This will also be our running example.

Example 7.1.1. Consider a town that is running a PB process. For simplicity, assume

that only five inhabitants are active citizens and are participating in the PB process.

The latter is planned to run for as long as possible, with one instance being organised

each year. A total budget of 30 000 € is dedicated to the PB process each year (we

will divide all budget limits and costs by 1 000 to simplify). The rules also stipulate

that exactly four projects should advance to the voting stage at the end of shortlisting

stage, when the projects that will be voted on are selected (see either Section 1.1.2

or Chapter 8 for more details). We are now at the voting stage of the third year, the

ballots have been cast, and a budget allocation has to be selected.

The specifics of this instance are presented below. Twelve projects are considered

and the ones selected in years 1 and 2 are boxed in dashed lines. Five voters, including

the mayor himself are voting in the process.

Cost

Alina

Daira

Julian

West

type

Dean

Lwenn

East

type

Year 1 b1 = 30

18 6 6 12

Year 2 b2 = 30

15 15 9 6

Year 3 b3 = 30

21 21 4 29

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓ ✓

✓

The town is organised in two districts, the east and the west one, each clearly

separated from the other. The mayor, Dean, has decided to ensure long-term fairness,

grouping the voters by their location. There are thus two types, the east type and

the west type. Note that the information presented above allows us to track down,

for every voter, the ballot they submitted in each year. This would not be possible in

practice because of the anonymity of the ballots but simplifies the presentation.

Let us describe how to capture this information with our notation. We are facing

a 3-PPB instance I = (I1, I2, I3) where the set of all projects is P = {p1, . . . , p12}.
The cost function c is as described in the above table. The instance corresponding to a
given round j ∈ {1, 2, 3} is Ij = ⟨Pj, c, bj⟩ with Pj = {p4(j−1)+1, . . . , p4(j−1)+4} and

This slight inconsistency of the notation for the rounds in this chapter ensures consistency fo the

notation of the agents throughout the thesis.
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bj = 30. In the first round, the budget allocation π1 = {p1, p4} was selected; while
π2 = {p6, p7, p8} was selected for the second round. There are five agents, grouped

into two types, namely T = {twest , teast}, so that twest = {Alina,Daira, Julian} and
teast = {Dean,Lwenn}. The PPB profile A = (A1,A2,A3) is composed of three

profiles. For the first round, we have A1 = (A1
Alina , A

1
Daira , A

1
Julian , A

1
Dean , A

1
Lwenn),

where, for instance, Dean’s ballot is A1
Dean = {p2, p4}. The rest of the ballots and

profiles should be clear from the table. △

7.2 A Fairness Theory for Perpetual Participatory
Budgeting

As we have seen already on multiple occasions (especially in Chapters 3 and 4), fair-

ness is one of the central theme of the research on PB. The present chapter will make

no exception, and fairness will be our main focus in the analysis of the perpetual PB

model. In the following, we introduce our fairness theory.

7.2.1 Evaluation Functions
We start by introducing evaluation functions. These are functions that assess the

quality of a solution for a given type of agents.

Definition 7.2.1 (Evaluation Function). An evaluation function Φ is a function tak-

ing as inputs a k-PPB instance I , a PPB profile A, a (partial) solution π, and a type

t ∈ T , and returning Φ(I,A,π, t) ∈ R≥0, an evaluation of the quality of the solution

π for type t. Moreover, for a round j ∈ {1, . . . , |π|} the marginal evaluation function

is defined as:

Φmarg(I,A,π, t, j) = Φ(I,A,π[j], t)− Φ(I,A,π[j−1], t).

Given everything we have seen so far, the reader probably expects evaluation func-

tions to mimic satisfaction functions, but for types of agents (satisfaction functions

only apply to individuals). This intuition is correct, but only partially. An evaluation

function is more general and does not need to be about satisfaction. It can also be

about the influence of a type (as in power indices), for instance, or any other measure

that is deemed relevant.

In the following, we will introduce three evaluation functions, based either on the

cost satisfaction function satcost , on its relative version relsat satcost , or on the share

share (that we interpret as an influence measure and not a satisfaction function). The

relative satisfaction relsat satcost will be defined in the following. Both sat
cost

and share
have already been introduced at an earlier point of this thesis, though for individuals

and not for types. They will then be reframed as evaluation functions.

We start with the cost satisfaction function satcost , which we reinterpret as a eval-
uation function for the PPB model.
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Definition 7.2.2 (Cost Evaluation Function). Let I = (I1, . . . , Ik) be a k-PPB inst-

ance, A = (A1, . . . ,Ak) a PPB profile, and π = (π1, π2, . . .) a (partial) solution for I ,
with |π| ≤ k. The cost evaluation function Φcost

of a given type t ∈ T is defined as:

Φcost(I,A,π, t) =

|π|∑
j=1

1

|t|
∑
i∈t

satcost(πj ∩ Aj
i ) =

|π|∑
j=1

1

|t|
∑
i∈t

c(πj ∩ Aj
i ).

For a given round j ∈ {1, . . . , |π|}, the marginal cost evaluation function is:

Φcost
marg(I,A,π, t, j) =

1

|t|
∑
i∈t

satcost(πj ∩ Aj
i ).

So, according to the cost evaluation function, the quality of a solution for a given type

t ∈ T is measured as the average cost satisfaction of the members of t, summed up

over all rounds.

Let us illustrate this evaluation function on our running example.

Example 7.2.3. Consider the PPB instance I and PPB profile A that have been de-

scribed in Example 7.1.1. Remember that we had π1 = {p1, p4} and π2 = {p6, p7, p8}.
At the end of the second round, the cost evaluation function would produce the fol-

lowing assessments for the two types:

Φcost(I,A, (π1, π2), twest) =
2∑

j=1

1

3

(
satcostAlina(πj) + satcostDaira(πj) + satcostJulian(πj)

)
=

30 + 18 + 30

3
+

30 + 21 + 30

3
= 53,

Φcost(I,A, (π1, π2), teast) =
2∑

j=1

1

2

(
satcostDean(πj) + satcostLwenn(πj)

)
=

12 + 12

2
+

15 + 9

2
= 24.

Anticipating onwhat is to come, the solution (π1, π2) can thus be deemed unfair given

the huge discrepancy between the evaluations of the two types. △

One potential drawback of the cost satisfaction function is its strong dependence

on the size of voters’ approval sets. For example, if agent 1 approves a proper subset of

agent 2’s approved projects (if we have Aj
1 ⊂ Aj

2) and all their approved projects are

funded (if Aj
1 ⊂ Aj

2 ⊆ πj), then agent 2 is considered more satisfied than agent 1.

However, it can be argued that the welfare of both agents should be equal as all

projects they wanted to be funded have actually been funded; neither agent 1 or 2

can be made happier (subject to the available information). This motivates us to de-

fine the relative cost satisfaction of a voter.
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The relative satisfaction of any satisfaction function sat normalises the satisfaction

of a voter by the maximum satisfaction achievable. It is defined as:
55

relsat sat(P ) =
sat(P )

max{sat(P ′) | P ′ ∈ Feas(I) and P ′ ⊆ Ai}
.

It is interesting to note that this does not define a satisfaction function as defined in

Definition 2.2.1 since it depends on the full approval ballot of the voter, and not only

the approved and selected projects. From this definition, we derive the relative cost

evaluation function, defined below.

Definition 7.2.4 (Relative Cost Evaluation Function). Let I = (I1, . . . , Ik) be a k-
PPB instance,A = (A1, . . . ,Ak) a PPB profile, andπ = (π1, π2, . . .) a (partial) solution
for I , with |π| ≤ k. The relative cost evaluation function Φrelcost

of a given type t ∈ T
is thus defined as:

Φrelcost(I,A,π, t) =

|π|∑
j=1

1

|t|
∑
i∈t

relsat satcost (πj ∩ Aj
i )

=

|π|∑
j=1

1

|t|
∑
i∈t

c(πj ∩ Aj
i )

max{c(P ) | P ∈ Feas(Ij) and P ⊆ Aj
i}
.

For a given round j ∈ {1, . . . , |π|}, the marginal relative cost evaluation function is:

Φrelcost
marg (I,A,π, t, j) =

1

|t|
∑
i∈t

relsat satcost (πj ∩ Aj
i ).

Thus, when using the relative cost evaluation function, a type assesses a solution as

the average relative cost satisfaction of its members, where the latter is the proportion

of the best case (highest cost satisfaction achievable) that is actually achieved.

Once again, let us exemplify this evaluation function on our running example.

Example 7.2.5. Let us consider I , A, π1, and π2 as defined in Example 7.1.1. At the

end of the second round, we have:

Φrelcost(I,A, (π1, π2), twest) =
1 + 18/24 + 1

3
+

1 + 1 + 1

3
=

23

12
≈ 1.917,

Φrelcost(I,A, (π1, π2), teast) =
12/18 + 12/18

2
+

15/30 + 9/24

2
=

53

48
≈ 1.104.

Interestingly, the evaluation changed quite a lot when usingΦrelcost
compared toΦcost

.

Type twest now evaluates solution (π1, π2) only 74% higher than type teast (it was 120%
higher with Φcost

). The solution is then still somewhat unfair, but not as much as it

may have seemed initially. △

55
Note here that the relative cost evaluation as introduced in this chapter is similar in spirit to the

normalised satisfaction of Chapter 5 (see Section 5.3.1), though radically different in terms of behaviour.
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We finally consider an evaluation function based on the share. A whole chapter

has been dedicated to the study of fairness criteria based on the share (Chapter 4). We

use it here as a measure of the influence of the types on a solution.

Definition 7.2.6 (Share Evaluation Function). Let I = (I1, . . . , Ik) be a k-PPB in-

stance, A = (A1, . . . ,Ak) a PPB profile, and π = (π1, π2, . . .) a (partial) solution for

I , with |π| ≤ k. The share evaluation function Φshare
of a given type t ∈ T is:

Φshare(I,A,π, t) =

|π|∑
j=1

1

|t|
∑
i∈t

share(Ij,A
j, πj, A

j
i )

=

|π|∑
j=1

1

|t|
∑
i∈t

∑
p∈πj∩Aj

i

c(p)

|{i′ ∈ N | p ∈ Aj
i′}|

.

For a given round j ∈ {1, . . . , |π|}, the marginal share evaluation function is:

Φshare
marg (I,A,π, t, j) =

1

|t|
∑
i∈t

share(Ij,A
j, πj, A

j
i ).

Analogously to Φcost
and Φrelcost

, the share evaluation function sums up the average

share of the members of a type, over all rounds.

We now analyse Example 7.1.1 through the lens of the share evaluation function.

Example 7.2.7. We consider once again I ,A, π1, and π2 as defined in Example 7.1.1.

For the solution (π1, π2), we have:

Φshare(I,A, (π1, π2), twest) =
9 + 6 + 9

3
+

35/4 + 13/2 + 35/4

3
= 16,

Φshare(I,A, (π1, π2), teast) =
3 + 3

2
+

15/4 + 9/4

2
= 6.

Interestingly, according to Φshare
, the two types have significantly different evalua-

tions, with type twest having more influence in the solution (π1, π2) than teast . This
is the largest relative difference between the evaluation of the two types across the

three evaluation functions we consider. △

We have briefly mentioned fairness in the examples above. In the following sec-

tion we will define everything more formally.

7.2.2 Fairness Criteria
The foundation of our fairness theory is that the fairest solution is one in which all

types evaluate the solution the same way. This is our first fairness criterion.
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Definition 7.2.8 (Eqal-Φ). Given an evaluation function Φ, a solution π for the k-
PPB instance I such that |π| ≤ k and the PPB profile A satisfies Eqal-Φ at round

j ∈ {1, . . . , |π|} if for every two types t, t′ ∈ T , we have:

Φ(I,A,π[j], t) = Φ(I,A,π[j], t
′).

Wewill also say thatπ satisfies Eqal-Φ if it satisfies Eqal-Φ at round j for all rounds
j ∈ {1, . . . , |π|}.

In the case of Φshare
, it should be noted that enforcing Eqal-Φshare

is very similar to

requiring all agents to reach their fair share, as defined in Chapter 4. It is not—strictly

speaking—equivalent. In the definition of the fair share we corrected for the fact that

agents may not be able to reach a share of b/n, which we do not do in the definition

of Eqal-Φshare
. However, this connection still entails that in any 1-PPB instance in

which all agents belong to their own type (this corresponds to a regular instance of

the standard PB model), a solution satisfying Eqal-Φshare
corresponds to a budget

allocation satisfying fair share. This implies, in particular, that Eqal-Φshare
cannot

always be guaranteed as fair share cannot always be (see Proposition 4.2.2). We also

expect that the computational problems that are hard for the fair share will also be

hard for Eqal-Φshare
, though this cannot be turned into a formal statement.

In the illustrating examples from the previous section, we already hinted at the

definition of Eqal-Φ. Let us get back to them now that it has been properly defined.

Example 7.2.9. We are still considering I ,A, π1 and π2 as defined in Example 7.1.1.

The question we are facing now is: Given the ballots of the third round, can we find

π3 such that (π1, π2, π3) satisfies Eqal-Φ?
Remember from Example 7.2.3 that at the end of the second round, the cost evalua-

tion of (π1, π2)was of 53 for twest and of 24 for teast . Now, one can check that selecting
π3 = {p12} would make (π1, π2, π3) satisfy Eqal-Φcost

. Both types would evaluate

the solution at 53. Similarly, selecting π′
3 = {p10, p11} in the third round would lead

to a solution (π1, π2, π
′
3) that satisfies Eqal-Φshare

. Both types would then have a

share evaluation of 17.

Interestingly, there is no π′′
3 ⊆ {p9, p10, p11, p12} for which the solution (π1, π2, π

′′
3)

would satisfy Eqal-Φrelcost
. △

Eqal-Φ implements a strict equality approach to fairness. It is well known, at

least from the literature on social choice, that perfect equality can rarely be guaran-

teed in practice. Partially disclosing some of the results that will come, this will also

be observed for Eqal-Φ. Because of that, we introduce two relaxations.

When perfect fairness cannot be achieved, one can try to get as close to it as possi-

ble. This optimisation-based approach is the first relaxation of Eqal-Φwe introduce.

This idea is particularly relevant in a long-term perspective as subsequent rounds can

be used to compensate for unfairness in previous rounds. We pursue this approach by
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considering the Gini coefficient (Gini, 1912) of a solution—a well-known measure of

inequality given a multi-set of values—that can be used as a minimisation objective.

In the following, we use the standard formulation (Blackorby and Donaldson, 1978).
56

Definition 7.2.10 (Φ-Gini). Let v = (v1, . . . , vq) ∈ Rq
≥0 be a vector of non-negative

values ordered in non-increasing order, i.e., such that vi ≥ vj for all 1 ≤ i ≤ j ≤ q. The
Gini coefficient of v is given by:

Gini(v) = 1−
∑q

i=1(2i− 1)vi
q
∑q

i=1 vi
.

For an evaluation function Φ, the Φ-Gini coefficient of a solution π for the k-PPB
instance I and of the PPB profile A at round j ∈ {1, . . . , |π|} is then:

GiniΦ(I,A,π[j]) = Gini(Φ↓(I,A,π[j])),

where Φ↓(I,A,π[j]) is a vector containing Φ(I,A,π[j], t) for all types t ∈ T , ordered
in non-increasing order.

A solution π satisfies Φ-Gini at round j with respect to a setS of solutions for I , if
there is no solution π′ ∈ S with GiniΦ(I,A,π′

[j]) < GiniΦ(I,A,π[j]).

Informally, the Gini coefficient measures the distance between a set of values, and an

optimally fair distribution of the values. It has a very visual intuition. For a given

solution π, let Φ =
∑

t∈T Φ(I,A,π[j], t), and define the Lorenz curve as the curve of
the cumulative distribution, i.e., the one that plots for any x ∈ [0, 1], the proportion of
Φ that is achieved by the x% worst off types. Then, the Φ-Gini coefficient measures

the distance between the diagonal (the case of perfect equality), and the Lorenz curve.

The above definition is a discrete version of this idea.

We state couple of interesting facts about the Gini coefficient that will prove useful

in the coming proofs. Proving these simple facts could be a good exercise for a reader

interested in understanding the Gini coefficient in more depth.

Fact 7.2.11. For any vector v = (v1, . . . , vq) ∈ Rq
≥0 ordered non-increasingly, we have:

0 ≤ Gini(v) ≤ 1.

Moreover, we have Gini(v) = 0 if and only if v1 = · · · = vq.

Fact 7.2.12. Let d ∈ R≥0 and x ∈ R≥0. For the two-dimensional vector vx,d = (x +
d, x), we have:

δGini(vx,d)

δx
≤ 0 and

δGini(vx,d)

δd
≥ 0,

that is, Gini((x+ d, x)) is a decreasing function in x, and an increasing function in d.

56
Blackorby and Donaldson (1978) can be difficult to read. For a definition of the Gini coefficient that

closely resembles ours, see the definition given, in French, in Sylvain Bouveret’s PhD thesis (Bouveret,

2007, page 39). Keeping in mind that in the notation used there, u denotes the average value, and u↑
is

ordered non-decreasingly, one can see that the definitions are the same (up to reversing the ordering

of the vector of values so that it is ordered non-increasingly).
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In particular, Fact 7.2.11 implies that Φ-Gini indeed is a relaxation of Eqal-Φ: for
every evaluation function Φ, a solution π satisfies Eqal-Φ if and only if its Φ-Gini
coefficient reaches 0, its minimum.

Let us explore our running example in the light of Φ-Gini.

Example 7.2.13. Le us go back to the instance and profile described in Example 7.1.1.

We already know from Example 7.2.9 that we can select projects in the third round

such that either Eqal-Φcost
is satisfied. The corresponding solution would thus have

a Φcost
-Gini coefficient of 0, the optimum value. The same is true for Φshare

.

Let us thus focus on Φrelcost
. Remember that we could not find a set of projects

for the third round that would lead to a solution satisfying Eqal-Φrelcost
. Still, we

can find a budget allocation π3 such that (π1, π2, π3) satisfies Φ
relcost

-Gini, i.e., has an

optimal Φrelcost
-Gini coefficient. Consider π3 = {p12}. Then, we have:

Φrelcost(I,A, (π1, π2, π3), twest) =
1 + 18/24 + 1

3
+

1 + 1 + 1

3
+ 0 =

23

12
,

Φrelcost(I,A, (π1, π2, π3), teast) =
12/18 + 12/18

2
+

15/30 + 9/24

2
+

1 + 1

2
=

101

48
.

We thus have:

GiniΦrelcost (I,A, (π1, π2, π3)) = 1− 3 · 23/12 + 101/48

2 (23/12 + 101/48)
=

9

386
≈ 0.023.

Now, for π′
3 = {p11}, we get:

GiniΦrelcost (I,A, (π1, π2, π
′
3)) = 1− 3 · 2545/1392 + 23/12

2 (23/12 + 2545/1392)
=

123

10426
≈ 0.011.

The other budget allocations would not lead to a better Φrelcost
-Gini coefficient as the

difference between the evaluation of twest and teast would only grow larger. In this

example, π = (π1, π2, π
′
3) satisfies Φ

relcost
-Gini with respect to the set of solutions in

which π1 and π2 were selected in the first two rounds. △

Another approach to circumvent the problem that perfect fairness cannot always

be achieved is to require perfect fairness, but only in the long run. This approach

is perfectly suitable with a long-term perspective, and captures some of the moti-

vation we detailed in the introduction. We introduce below Eqal-Φ-Conv which

formalizes the idea of asymptotically equalising the evaluations of the solution for

the different types.

Definition 7.2.14 (Eqal-Φ-Conv). Given an evaluation function Φ, an infinite solu-
tion π for the∞-PPB instance I and the infinite PPB profileA satisfies Eqal-Φ-Conv
if for every two types t and t′ ∈ T , the following holds:

Φ(I,A,π[j], t)

Φ(I,A,π[j], t′)
−→

j→+∞
1.
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It is important to note that the above definition only applies to infinite instances,

profiles, and solutions as it relies on the notion of convergence. The impact of this

technical requirement is however limited. Indeed, we can for instance create an infi-

nite PPB-instance from a finite one by simply repeating the original instance infinitely

many times.

Once again, this indeed relaxes Eqal-Φ in the sense that if a solution satisfies

Eqal-Φ in all rounds, it would trivially satisfy Eqal-Φ-Conv as well.

Now that all the elements of our fairness theory for the PPB model are in place,

we turn to its formal investigation.

7.3 Achieving Perfect Fairness: Eqal-Φ

We first explore the criterion that represents a situation of perfect fairness: Eqal-Φ.
We will first focus on existence guarantees, and then shift to computational problems.

In the light of what we observedwhen trying to provide every agent with their fair

share, we already know that Eqal-Φshare
cannot always be guaranteed. It is thus not

surprising that this is also the case for Eqal-Φcost
and Eqal-Φrelcost

, independently

of the number of rounds we consider.

Proposition 7.3.1. For any k ∈ N>0, there exists a k-PPB instance I and a PPB profile

A such that no non-empty solution π for I satisfies Eqal-Φcost
, Eqal-Φrelcost

, or

Eqal-Φshare
. This holds even in the unit-cost setting and if all types are of size 1.

Proof. Let I = (I1, . . . , Ik) be a k-PPB instance, for a given k ∈ N>0. The

instance Ij = ⟨Pj, c, bj⟩ at round j ∈ {1, . . . , k} is such that Pj = {pj1, p
j
2} and

bj = 1 for any round j ∈ {1, . . . , k}. We thus have P = P1 ∪ · · · ∪ Pk =
{p11, p12, . . . , pk1, pk2}. The cost function is such that c(p) = 1 for all projects p ∈ P.

Consider a PPB profile with two agents 1 and 2, of types t1 and t2 respectively.
In the first round, agent 1 approves only of project p11 and agent 2 only of p12. In
any subsequent round j ∈ {2, . . . , k}, both agents only approve of pj1.

Assume without loss of generality that p11 is selected in the first round, i.e.

π1 = {p11}. Then, for any round j ∈ {1, . . . , k} we have:

Φ(I,A,π[j], t1) = 1 + Φ(I,A,π[j], t2),

for any evaluation function Φ ∈ {Φcost ,Φrelcost ,Φshare}. This is a clear violation
of Eqal-Φ. 2

The fact that Eqal-Φ cannot be satisfied in general for our evaluation functions

does not imply that it is never satisfiable. In the following, we investigate the com-

putational complexity of checking whether Eqal-Φ can be satisfied for a given in-
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stance. Uninspired, we call this computational problem Eqal-Φ Satisfiability. It

is define as follows.

Eqal-Φ Satisfiability

Input: A k-PPB instance I = (I1, . . . , Ik), a PPB profile A and a solution

π = (π1, . . . , πk−1) for (I1, . . . , Ik−1).

Question: Is there a non-empty and feasible πk ∈ Feas(Ik) \ {∅} such that the

solution π′ = (π1, . . . , πk−1, πk) satisfies Eqal-Φ?

If k = 1 in the input, we assume π to be the empty solution.

As we will prove shortly, it turns out that for all three welfare measures, checking

the existence of an Eqal-Φ solution is an NP-complete problem. Importantly, this

hardness result implies that for our evaluation functions, there cannot be an efficient

algorithm that always returns a solution satisfying Eqal-Φ when one exists, unless

P = NP. We first prove our claim for Φcost
and Φrelcost

.

Proposition 7.3.2. The Eqal-Φcost
Satisfiability and Eqal-Φrelcost

Satisfiabil-

ity problems are strongly NP-complete, even in the unit-cost setting and if there is only

one round.

Proof.Membership in NP is clear, the certificate being the solution itself. To prove

NP-hardness, we will reduce from the problem One-in-three 3-SAT known to be

strongly NP-hard (Garey and Johnson, 1979; Schaefer, 1978).

One-in-three 3-SAT

Input: A propositional formula φ in conjunctive normal form with ex-

actly three literals per clause (3-CNF).

Question: Is there a truth assignment α for φ so that each clause in φ has

exactly one literal set to true?

Consider a 3-CNF formula φ. Denote by Var(φ) the set of propositional vari-
ables appearing in φ, and by Clause(φ) the set of clauses of φ. We construct a

1-PPB instance I = (I1) where I1 = ⟨P , c, b⟩ as follows. The set of projects is

P =
⋃

x∈Var(φ)

{px, p¬x}.

All projects have cost 1 and the budget limit is b = |Var(φ)|.
Let us turn to the PPB profileA = (A1) now. For each propositional variable

x ∈ Var(φ), there is an agent ix approving of both px and p¬x. Moreover, for

each clause c ∈ Clause(φ), there is an agent ic approving of the three projects
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corresponding to the literals in c. Every agent belongs to a unique type and is the
only one belonging to that type.

We claim that there exists a truth assignment for φ that sets exactly one literal

to true in every clause of φ if and only if there exists an non-empty and feasible

solution π for I that provides Eqal-Φcost
. Indeed, since π has to be non-empty,

at least one “variable” agent ix, for x ∈ Var(φ), will have a cost-satisfaction of

1. Thus, to satisfy Eqal-Φcost
, this implies that every agent should have a cost-

satisfaction of at least 1. We show that it also cannot be more than 1. Note that the

approval ballots of the “variable” agents are all disjoint. Since the budget limit is

b = |Var(φ)| and there are |Var(φ)| “variable” agents, Eqal-Φcost
cannot thus

be satisfied if an agent has a cost satisfaction above 1. Overall, Eqal-Φcost
in

I is equivalent to every agent having cost-satisfaction 1. Satisfying the latter

is equivalent to selecting exactly one project among px and p¬x for every x ∈
Var(φ), and exactly one project among the ones corresponding to the literals in

c for all c ∈ Clause(φ). Call π such a budget allocation. Consider then the truth

assignment α that sets a propositional variable x ∈ Var(φ) to true (respectively

false) if and only if px (respectively p¬x) has been selected in π. Since π has to

be feasible, it is clear that α is a suitable truth assignment for the One-in-three

3-SAT problem if and only if the solution π = (π) for I exists.

Since this reduction can be done in polynomial time, the proof is complete for

Eqal-Φcost
.

We now describe how to adapt the reduction for Eqal-Φrelcost
. The idea

here is to add one project p⋆ that is approved by every “variable” agent ix for

x ∈ Var(φ). That way, every agent i ∈ N submits an approval ballot of length 3.

From there, it should be clear that there exist a suitable truth assignment for φ if

and only if there is a solutionπ inwhich all agents have a relative cost-satisfaction

of 1/3. Indeed, because of the budget limit, to satisfy Eqal-Φrelcost
, a solution π

needs to provide every agent with a relative cost-satisfaction of 1/3. This cannot
be done by selecting p⋆ because doing so would provide every “variable” agent

a relative cost-satisfaction of 1/3, and there are no ways to match this 1/3 for the
“clause” agents without increasing the relative cost-satisfaction of some “variable”

agents (since Var(φ) contains all the variables appearing in a clause). 2

When it comes to Eqal-Φshare
, one could be tempted to simply refer to the hard-

ness result we showed related to fair share in Chapter 4 (Proposition 4.2.3 to be pre-

cise). This is however not formally correct because of the minimum operator used in

the definition of the fair share. Still, the same statement holds. We prove weak NP-

completeness below, strong NP-hardness has been shown by Klein Goldewijk (2022).

Proposition 7.3.3. The Eqal-Φshare
Satisfiability problem is weakly NP-complete,

even if there is only one round and two agents.
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Proof. The problem is in NP since checking that all agents have the same share

simply requires to compute all the shares, which can be done in polynomial time.

We show the NP-hardness via a reduction from the Subset-Sum problem,

known to be weakly NP-hard (Karp, 1972; Garey and Johnson, 1979).

Subset-Sum

Input: A finite set Z ⊆ Z \ {0}.
Question: Is there a non-empty Z ′ ⊆ Z such that

∑
z∈Z′ z = 0?

Given a suitable set Z ⊂ Z, we construct the following 1-PPB instance I = (I1)
where I1 = ⟨P , c, b⟩. The budget limit is b =

∑
z∈Z |z|. For every z ∈ Z , there

is a corresponding project pz ∈ P with cost |z|. There are also b − minz∈Z |z|
additional projects, denoted by p⋆j for j ∈ {1, . . . , b − minz∈Z |z|}, all of cost
1. We also construct a PPB profile A = (A1) with two agents 1 and 2, both

belonging to a different type: 1 ∈ t+ and 2 ∈ t−. In the first, and only, round,

agent 1 approves of project all projects pz such that z > 0, and agent 2 approves

of all pz for which z < 0. Furthermore, both agents approve of all projects p⋆j for
j ∈ {1, . . . , b − minz∈Z |z|}. We denote the ballot of agent 1 by A1, and that of

agent 2 by A2.

We claim that for anyZ ′ ⊆ Z , we have
∑

z∈Z′ z = 0 if and only if the solution
defined by π = (π) with π = {pz | z ∈ Z ′} ∪ {p⋆1, . . . , pb−∑

z∈Z′ |z|} satisfies
Eqal-Φshare

. Note that for π we have:

c(A1 ∩ π) =
∑
z∈Z′
z>0

|z|+ b−
∑
z∈Z′

|z|,

c(A2 ∩ π) =
∑
z∈Z′
z<0

|z|+ b−
∑
z∈Z′

|z|.

So c(A1 ∩ π) = c(A2 ∩ π) if and only if

∑
z∈Z′,z>0 |z| =

∑
z∈Z′,z<0 |z|. Since the

ballots are disjoints, we have c(Ai ∩ π) = share i(π) for i ∈ {1, 2}. Therefore, π
satisfies Eqal-Φshare

if and only if

∑
z∈Z′ z = 0. 2

From a parametrised complexity perspective, it is also interesting to observe that the

above reduction also applies to Eqal-Φcost
, showing hardness when there are only

two agents and one round. This holds because each project is only approved by a

single agent, meaning that Φcost
and Φshare

coincide.

Interestingly, for the proofs of both Proposition 7.3.2 and Proposition 7.3.3 we

made sure to only use exhaustive budget allocations. They thus also show that check-

ing whether there is an exhaustive solution that satisfies Eqal-Φcost
, Eqal-Φrelcost

or Eqal-Φshare
is NP-complete. The computational problem is defined as follows.
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Exhaustive Eqal-Φ Satisfiability

Input: A k-PPB instance I = (I1, . . . , Ik), a PPB profile A and a solution

π = (π1, . . . , πk−1) for (I1, . . . , Ik−1) that is exhaustive.

Question: Is there a feasible and exhaustive budget allocation πk ∈ FeasEx(Ik)
such that the solution π = (π1, . . . , πk−1, πk) satisfies Eqal-Φ?

Corollary 7.3.4. Both the problem Exhaustive Eqal-Φcost
Satisfiability and the

problem Exhaustive Eqal-Φrelcost
Satisfiability are strongly NP-complete. More-

over, the problem Exhaustive Eqal-Φshare
Satisfiability is weakly NP-complete.

Proof. The proof directly follows from the observation that the proofs of propo-

sition 7.3.2 and 7.3.3 only make use of exhaustive budget allocations. 2

Our analysis of Eqal-Φ is now complete. We will turn to Φ-Gini.

7.4 Optimising for Fairness: Φ-Gini
Let us now turn our attention toΦ-Gini, the criterion according to which we optimise

for fairness.

By definition, for every instance, there always is a solution that satisfies Φ-Gini,
for any evaluation function Φ. Indeed, since a solution satisfies Φ-Gini if it achieves
an optimal (i.e., minimal) Φ-Gini coefficient, and there are finitely many solutions,

there will always be one with a lowest Φ-Gini coefficient. Therefore, the main ques-

tions here concern computational problems, and not existence guarantees. We will

distinguish two cases, depending on whether exhaustiveness is required or not.

Since this section is rather long and technical, we already disclose the main con-

clusion of the results proven below: checking whether a solution satisfies Φ-Gini is a
hard problem—coNP-hard to be precise—for all three evaluation functions we defined.

7.4.1 Among all Solutions

At first, we do not impose any specific requirements on the solution (except for non-

emptiness). The computational problem we are interested in is the following.

Φ-Gini Satisfaction

Input: A k-PPB instance I = (I1, . . . , Ik), a PPB profile A, and a solution

π = (π1, . . . , πk) for I .

Question: Does π satisfy Φ-Gini with respect to S, the set of all the solutions

π′
such that every πj ∈ π′

is non-empty and feasible for Ij?
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Note that proving that this problem is hard for a givenΦ implies that there is no hope

for efficiently computing a solution that satisfies Φ-Gini, if the Φ-Gini-coefficient

of a solution can be efficiently computed (which is the case for all three evaluation

functions of interest here).

We first show that Φ-Gini is coNP-complete for both cost-satisfaction and share.

Proposition 7.4.1. The problems Φcost
-Gini Satisfaction and Φshare

-Gini Satis-

faction are weakly coNP-complete, even if there are only two agents and one round.

Proof. Let us start with Φcost
-Gini Satisfaction. We show that it is coNP-

complete by showing that its co-problem—checking whether a solution does not

satisfy Φcost
-Gini, i.e., does not have an optimum Φcost

-Gini coefficient—is NP-

complete. We call this problem Φcost
-Gini Violation.

It is clear thatΦcost
-Gini Violation is in NP, as we can just guess a non-empty

and feasible solution and check if it has a lower Φcost
-Gini coefficient than the

input solution π in polynomial time. Let us now prove that it is NP-hard. We do

so by a reduction from the Subset-Sum problem (see the proof of Proposition 7.3.3

for the definition).

Let Z = {z1, z2, . . .} be a Subset-Sum instance. We construct a Φcost
-Gini

Violation instance as follows. We consider a 1-PPB instance I = (I) where
I = ⟨P , c, b⟩. The set of projects is P = {p1, . . . , p|Z|, p+, p−}. It is such that:

▶ For every element zi ∈ Z , there is a project pi with c(pi) = 4|zi|;

▶ There are two additional projects, project p+ with c(p+) = 8
∑

z∈Z |z|, and
project p− with c(p−) = 8

∑
z∈Z |z|+ 1.

The budget limit is b = c(P) = 1 + 20
∑

z∈Z |z|, which means that in principle

all the projects can be funded. There are two agents 1 and 2, with the type t+
and t− respectively. The PPB profileA = (A1) is formed with the following two

approval ballots:

A1 = {pi | i ∈ {1, . . . , |Z|} and zi ≥ 0} ∪ {p+},
A2 = {pi | i ∈ {1, . . . , |Z|} and zi < 0} ∪ {p−}.

The solution for I we consider is π = (π1) with π1 = {p+, p−}. The question we

want to answer is thus whether π fails Φcost
-Gini or not.

We claim that there is a non-empty and feasible solution that has a lower

Φcost
-Gini coefficient than π if and only if Z is a positive Subset-Sum instance.

First, assume that there exists Z ′ ⊆ Z such that

∑
z∈Z′ z = 0. We show that

the solution π′ = (π′
1) where π′

1 = {pi | i ∈ {1, . . . , |Z|} and zi ∈ Z ′} has a
lower Φcost

-Gini coefficient than π.
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On the one hand, with π agent 1 enjoys a cost satisfaction of c(p+) and agent

2 of c(p−). We thus have Φcost↓(I,A,π) = (c(p−), c(p+)). Overall, we have:

GiniΦcost (I,A,π) = 1− 3 · c(p+) + c(p−)

2(c(p+) + c(p−))

= 1−
24 ·

∑
z∈Z |z|+ 1

24 ·
∑

z∈Z |z|+ 2
,

which is clearly larger than 0.

On the other hand, when considering π′
, agents 1 and 2 enjoy the same cost-

satisfaction of 1/2 ·
∑

z∈Z′ 4|z| each. This is because
∑

z∈Z′ z = 0, so the sum of

the positive numbers in Z ′
is equal to that of the negative numbers in Z ′

. From

Fact 7.2.11, we thus immediately have:

GiniΦcost (I,A,π′) = 0 < GiniΦcost (I,A,π).

This concludes the first direction of the proof.

Now assume there is a non-empty and feasible solution π′ = (π′
1) that has a

lower Eqal-Φcost
coefficient than π. We claim that in this case, we have:

Φcost(I,A,π′, t+) =
∑

p∈A1
1∩π′

1

c(p) =
∑

p∈A1
2∩π′

1

c(p) = Φcost(I,A,π′, t−).

For the sake of contraction, assume that Φcost(I,A,π′, t+) ̸= Φcost(I,A,π′, t−).
Given Fact 7.2.12, we know that GiniΦcost (I,A,π′) is decreasing in the differ-

ence of the cost-satisfaction of agents 1 and 2. By construction, if agents 1 and 2 do

not enjoy the same cost-satisfaction, the difference between the cost-satisfaction

of the two agents must be at least 3. Indeed, their cost-satisfaction is always a

multiple of 4, unless p− is selected, in which case the cost-satisfaction of agent 1

is a multiple of 4, and that of agent 2 is 1 plus a multiple of 4. Fact 7.2.12 also im-

plies that GiniΦcost (I,A,π′) is decreasing in the total cost-satisfaction of agents

1 and 2. Since we know that Φcost(I,A,π, t+) + Φcost(I,A,π, t−) = c(π′), we
can thus lower bound GiniΦcost (I,A,π′) by the value achieved with a solution

that funds all the projects. Indeed, this corresponds to both the highest total cost-

satisfaction of agents 1 and 2, and the smallest different in their cost-satisfaction

(the difference being 3). Since π′
cannot be empty, this constitutes a best case for

GiniΦcost (I,A,π′), i.e., lower bounds the Φcost
-Gini coefficient of any suitable

solution π′
.

Let us then assume the best case, that is, π′ = P . In this case, we have:∑
p∈A1

1∩π′

c(p) = 2
∑
z∈Z

|z|+ 2 + c(p+),∑
pi∈A1

2∩π′

c(p) = 2
∑
z∈Z

|z| − 2 + c(p−).
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Then, the Φcost
-Gini coefficient for π′

is:

GiniΦcost (I,A,π′) = 1−
3(2
∑

z∈Z |z| − 2 + c(p−)) + 2
∑

z∈Z |z|+ 2 + c(p+)

2(2
∑

z∈Z |z| − 2 + c(p−) + 2
∑

z∈Z |z|+ 2 + c(p+))

= 1−
30
∑

z∈Z |z| − 3 + 10
∑

z∈Z |z|+ 2

20
∑

z∈Z |z| − 2 + 20
∑

z∈Z |z|+ 4)

= 1−
40
∑

z∈Z |z| − 1

40
∑

i≤k |zi|+ 2
.

Now, we can compare theΦcost
-Gini coefficient ofπ andπ′

. To do so, we compute

their difference:

24
∑

z∈Z |z|+ 1

24
∑

z∈Z |z|+ 2
−

40
∑

z∈Z |z| − 1

40
∑

z∈Z |z|+ 2
=

32
∑

z∈Z |z|+ 4

(24
∑

z∈Z |z|+ 2)(40
∑

z∈Z |z| − 2)
> 0.

Therefore, GiniΦcost (I,A,π′) > GiniΦcost (I,A,π), a contradiction. This means

that if there is a solution π′
with a lower Φcost

-Gini coefficient than π, then it

must be the case that: ∑
p∈A1

1∩π′
1

c(p) =
∑

p∈A1
2∩π′

1

c(p).

Since c(p) is even for all p ∈ P \{p−} and c(p−) is odd, this implies that p− /∈ π′
.

Because c(p+) >
∑

p∈P\{p−,p+} c(p), the above equality can thus only hold if

p+ /∈ π′
. This yields that Z ′ = {zi | pi ∈ π′} is a solution of the Subset-Sum

instance Z .

So far, the proof has only focused onΦcost
-Gini. However, in our construction

the ballots of both voters are disjoint, meaning that Φcost
and Φshare

coincide in

this case. Hence, the same reduction also shows that Φshare
-Gini Satisfaction

is coNP-complete, even if we have only two voters. 2

We now prove the same result for the relative cost-satisfaction.

Proposition 7.4.2. The problemΦrelcost
-Gini Satisfaction is weakly coNP-complete,

even if there are only one round and two agents.

Proof. The proof forΦrelcost
-Gini Satisfaction is essentially the same as the one

we provided for Φcost
-Gini Satisfaction in Proposition 7.4.1. In the following,

we explain how to modify the reduction so that it works for Φrelcost
as well.

We add two additional projects p⋆1 and p⋆2 to the set of projects. Their cost is

c(p⋆1) = c(p⋆2) = b, with the budget limit still being b =
∑

p∈{p1,...,p|Z|,p+,p−} c(p).
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Project p⋆1 is approved by agent 1, and project p⋆2 by agent 2. With this construc-

tion, for any budget allocation π, we have:

Φrelcost(I,A, (π), t+) =
satcost(π ∩ A1

1)

max{satcost(P ) | P ⊆ A1
1 and c(P ) ≤ b}

=
satcost(π ∩ A1

1)

c(p⋆1)

=
Φcost(I,A, (π), t+)

b
.

The same holds for t− instead of t+.
This implies that any solution formed from a budget allocation that does not

contain p⋆1 and p⋆2 satisfies Φ
relcost

-Gini in the new instance if and only if it satis-

fies Φcost
-Gini in the original instance. We claim that, furthermore, a solution in

which either p⋆1 or p
⋆
2 is selected cannot satisfy Φ

relcost
-Gini. By construction, the

only feasible solution in which p⋆1 is selected (respectively p⋆2) is ({p⋆1}) (respec-
tively ({p⋆2})), which clearly violates Φrelcost

-Gini. Hence, the modified reduction

shows that Φrelcost
-Gini Satisfaction is coNP-complete. 2

7.4.2 Among Exhaustive Solutions
Exhaustiveness is often a requirement in PB processes (see sections 2.1 and 3.4.1). We

thus study the following variation of Φ-Gini Satisfaction in which it is enforced.

Exhaustive Φ-Gini Satisfaction

Input: A k-PPB instance I = (I1, . . . , Ik), a PPB profile A, and a solution

π = (π1, . . . , πk) for I that is exhaustive.

Question: Does π satisfy Φ-Gini with respect toSEx , the set of all the solutions

π′
such that every πj ∈ π′

is feasible and exhaustive for Ij?

In the following, we prove that the computational complexity does not change

when requiring exhaustive solutions.

Proposition 7.4.3. The problems ExhaustiveΦcost
-Gini Satisfaction and Exhaus-

tive Φrelcost
-Gini Satisfaction are weakly coNP-complete, even if there are only one

round and two agents.

Proof. The proof is similar to that of Proposition 7.4.1. We start with Exhaus-

tive Φcost
-Gini Satisfaction and show that Exhaustive Φcost

-Gini Violation

is NP-complete. As before, the problem Exhaustive Φcost
-Gini Violation asks
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whether, given an exhaustive solution π, there exists another exhaustive solution
π′

with a lower Φcost
-Gini coefficient.

It is clear that ExhaustiveΦcost
-Gini Violation is in NP, as we can just guess

a feasible and exhaustive solution, and check, in polynomial time, if it has a lower

Φcost
-Gini coefficient than the input solution π. Let us now prove that it is NP-

hard. Once again, we use the Subset-Sum problem, see the proof of Proposi-

tion 7.3.3 for the definition of the problem.

Consider an instance of the Subset-Sum problemZ ⊆ Z and let ζ =
∑

z∈Z |z|.
We will now construct an instance of Exhaustive Φcost

-Gini Violation. First,

consider the 1-PPB instance I = (I1) where I1 = ⟨P , c, b⟩. The budget limit is

b = 4ζ . The set of projects is P = {pz | z ∈ Z} ∪ {p+} ∪ P ⋆
, with P ⋆ =

{p⋆1, . . . , p⋆b−1}. It is such that:

▶ For every z ∈ Z , there is a project pz with c(pz) = 4|z|;

▶ There is a additional project p+ with c(p+) = 1,

▶ There are b− 1 additional projects {p⋆1, . . . , p⋆b−1}, all of cost 1.

There are two agents 1 and 2 of type t+ and t− respectively. The PPB profile

A = (A1) is composed of the following two approval ballots:

A1
1 = {pz | z ∈ Z and z > 0} ∪ {p+} ∪ P ⋆,

A1
2 = {pz | z ∈ Z and z < 0} ∪ P ⋆.

Finally, the solution under consideration is π = (π1) where π1 = {p+} ∪ P ⋆
. It

is clear that c(π1) = b, meaning that π is exhaustive. We also have:

Φcost(I,A,π, t+) = b,

Φcost(I,A,π, t−) = b− 1.

We claim that there is an exhaustive solution π′
with a lower Φcost

-Gini coef-

ficient than π if and only if Z is a positive instance of the Subset-Sum problem.

First assume that Z is indeed a positive instance of the Subset-Sum problem.

Let then Z ′ ⊆ Z be a set such that

∑
z∈Z′ z = 0, and let P ′ = {pz | z ∈ Z ′} be

the corresponding set of projects. We claim that the solution π′ = (π′), where

π′ = P ′ ∪
{
p⋆1, . . . p

⋆
b−c(P ′)

}
,

is exhaustive and has a lower Φcost
-Gini coefficient than π.

As c(π′) = b, π′
is clearly exhaustive. Let us delve into the Φcost

-Gini coeffi-

cients now. First, for π, we have:

GiniΦcost (I,A,π) = 1− 3(b− 1) + b

2(b− 1 + b)
= 1− 4b− 3

4b− 2
,
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which is clearly larger than 0. On the other hand, for π′
, we have:

Φcost(I,A,π′, t+) =
∑

p∈A1
1∩(π′\P ⋆)

c(p) +
∑

p⋆∈π′∩P ⋆

c(p⋆)

=
∑

p∈A1
2∩(π′\P ⋆)

c(p) +
∑

p⋆i∈π′∩P ⋆

c(p⋆)

= Φcost(I,A,π′, t−),

where the second line is obtained from the first line by the fact that:∑
z∈Z′,z>0

z =
∑

z∈Z′,z≤0

z.

We thus have GiniΦcost (I,A,π′) = 0 < GiniΦcost (I,A,π). This conclude the

first part of the proof.

Now, assume there is an exhaustive solutionπ′ = (π′)with a lowerΦcost
-Gini

than π. We will find a corresponding solution for the Subset-Sum problem.

First of all, observe that since π′
is exhaustive, it must contain at least one

project from P \P ⋆
. Indeed, by construction P ⋆

is not exhaustive. Moreover, still

by construction, we have:

Φcost(I,A, (π′ ∩ P ⋆), t+) =
∑

p⋆∈π′∩P ⋆

c(p⋆) = Φcost(I,A, (π′ ∩ P ⋆), t−). (7.1)

We will distinguish two cases. First, assume that the following holds:

Φcost(I,A,π′, t+) = Φcost(I,A,π′, t−). (7.2)

We claim that π′
cannot contain p+ in this case. Indeed, if it is the case that p+ ∈

π′
, then Φcost(I,A, (π′ \ P ⋆), t+) would be odd, while Φcost(I,A, (π′ \ P ⋆), t−)

is always even. Together with (7.1), this contradicts assumption (7.2). Therefore,

π′
can only contain projects in {pz | z ∈ Z} ∪ P ⋆

. Hence, it follows from (7.1)

and (7.2) that:

Φcost(I,A, (π′ \ P ⋆), t+) =
∑

p∈(π′\P ⋆)∩A1
1

c(p)

=
∑

p∈(π′\P ⋆)∩A1
2

c(p)

= Φcost(I,A, (π′ \ P ⋆), t−).

Thus, for Z ′ = {z ∈ Z | pz ∈ π′}, we have
∑

z∈Z′ z = 0. Since π′
is exhaustive,

we know that Z ′
is non-empty. Z is thus a positive Subset-Sum instance.
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Now, assume that the equality (7.2) does not hold, that is, that we have:

Φcost(I,A,π′, t+) ̸= Φcost(I,A,π′, t−).

We show that in this case, the Φcost
-Gini coefficient of π′

is not lower than that

of π. This would be a contradiction.

As noted above π′
must contain at least one project in P \ P ⋆

. If π′
does not

contain any projects from {pz | z ∈ Z}, then wemust haveπ′ = π. It would then
be impossible for π′

to have a lower Φcost
-Gini coefficient than π. So, assume π′

contains at least one project from {pz | z ∈ Z}.
As before, and because of Fact 7.2.12, we can focus on the best case solution

π′
in terms of the Φcost

-Gini coefficient. In the best case, π′
can have:

Φcost(I,A,π′, t+) = b and Φcost(I,A,π′, t−) = b− 1,

as any other distribution of cost-satisfaction must have a bigger difference in sat-

isfaction, or a lower total satisfaction. In both cases, the Gini coefficient would

increase (because of Fact 7.2.12). Since this is the same distribution of cost-

satisfaction as in π, we have Gini
cost
Φ (I,A,π) = Gini

cost
Φ (I,A,π′). This sets

the contradiction.

Finally, we look into Φrelcost
. Observe that for both agents there is a feasible

solution that gives them a cost-satisfaction of b. Therefore, we have:

relsat satcost (π ∩ A1
1) =

satcost(π ∩ A1
1)

b
,

relsat satcost (π ∩ A1
2) =

satcost(π ∩ A1
2)

b
.

This implies that a solution satisfies Φrelcost
-Gini if and only if it is satisfies Φcost

-

Gini (as the Gini coefficient is independent of multiplicative factors). Hence the

reduction described above also shows that the problem Exhaustive Φrelcost
-Gini

Satisfaction is coNP-complete. 2

A similar proof also works for the share-based evaluation function. Some compu-

tations are different however.

Proposition 7.4.4. The problem Exhaustive Φshare
-Gini Satisfaction is weakly

coNP-complete, even if there are only one round and two agents.

Proof. As before, we consider the co-problem Exhaustive Φshare
-Gini Viola-

tion and show that it is weakly NP-complete. The problem is clearly in NP, we
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show NP-hardness via a reduction from the problem Subset-Sum (defined in the

proof of Proposition 7.3.3).

Consider an instance of the Subset-Sum problemZ ⊆ Z and let ζ =
∑

z∈Z |z|.
We will now construct an instance of Exhaustive Φshare

-Gini Violation. First,

consider the 1-PPB instance I = (I1) where I1 = ⟨P , c, b⟩. The budget limit

is then b = 4ζ . The set of projects is P = {pz | z ∈ Z} ∪ {p+} ∪ P ⋆
with

P ⋆ = {p⋆1, . . . , p⋆b−1}. It is such that:

▶ For every z ∈ Z , there is a project pz with c(pz) = 4|z|;

▶ There is a additional project p+ with c(p+) = 1;

▶ There are b− 1 additional projects P ⋆ = {p⋆1, . . . , p⋆b−1}, all of cost 1.

There are two agents 1 and 2 of type t+ and t− respectively. The PPB profile

A = (A1) is composed of the following two approval ballots:

A1
1 = {pz | z ∈ Z and z > 0} ∪ {p+} ∪ P ⋆,

A1
2 = {pz | z ∈ Z and z < 0} ∪ P ⋆.

Finally, the solution under consideration is π = (π1) where π1 = {p+} ∪ P ⋆
. It

is clear that c(π) = b, hence π is exhaustive. Further, observe that:

Φshare(I,A,π, t+) = 1 +
1

2
(b− 1) =

1

2
b+

1

2
,

Φshare(I,A,π, t−) =
1

2
(b− 1) =

1

2
b− 1

2
= Φshare(I,A,π, t+)− 1.

We claim that there exists an exhaustive solution π′
with a lower Φshare

-Gini

coefficient than π if and only if Z is a positive Subset-Sum instance.

First, assume that Z is indeed a positive instance of the Subset-Sum problem.

Let then Z ′ ⊆ Z be such that

∑
z∈Z′ z = 0, and let P ′ = {pz | z ∈ Z ′} be the

corresponding set of projects. We claim that the solution π′ = (π′) where

π′ = P ′ ∪
{
p⋆1, . . . p

⋆
b−c(P ′)

}
is exhaustive and has a lower Φshare

-Gini coefficient than π.
As c(π′) = b, π′

clearly is exhaustive. Let us now investigate the respective

Φshare
-Gini coefficient. First, for π, we have:

Gini
share
Φ (I,A,π) = 1−

3
(
1
2
b− 1

2

)
+ 1

2
b+ 1

2

2
(
1
2
b− 1

2
+ 1

2
b+ 1

2

) = 1− 2b− 1

2b
,
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which is clearly larger than 0. On the other hand, for π′
, we have:

Φshare(I,A,π′, t+) =
∑

p∈A1
1∩(π′\P ⋆)

c(p) +
1

2

∑
p⋆∈π′∩P ⋆

c(p⋆)

=
∑

p∈A1
2∩(π′\P ⋆)

c(p) +
1

2

∑
p⋆∈π′∩P ⋆

c(p⋆)

= Φshare(I,A,π′, t−).

Since the two types evaluate π′
the same, we immediately have

Gini
share
Φ (I,A,π′) = 0 < Gini

share
Φ (I,A,π). This concludes the first part

of the proof.

Now, assume there is an exhaustive solution π′ = (π′) with a lower Φshare
-

Gini coefficient than π. First of all, observe that any exhaustive allocation must

contain at least one project from P \ P ⋆
, because, by construction, P ⋆

is not

exhaustive. Furthermore, still by construction, we also have:

Φshare(I,A, (π′∩P ⋆), t+) =
1

2

∑
p⋆∈π′∩P ⋆

c(p⋆) = Φshare(I,A, (π′∩P ⋆), t−). (7.3)

We will then distinguish two cases. First, assume that the following holds:

Φshare(I,A,π′, t+) = Φshare(I,A,π′, t−). (7.4)

In this case, π′
does not contain p+. Indeed, if p+ ∈ π′

, then Φshare(I,A, (π′ \
P ⋆), t+) would be odd, while Φshare(I,A, (π′ \ P ⋆), t−) is always even. Given,
(7.3), this would contradict (7.4). Therefore, we know that π′ ⊆ {pz | z ∈ Z}∪P ⋆

.

Given (7.3) and (7.4), we thus know that:

Φshare(I,A, (π′ \ P ⋆), t+) =
∑

p∈(π′\P ⋆)∩A1
1

c(p)

=
∑

p∈(π′\P ⋆)∩A1
2

c(p)

= Φshare(I,A, (π′ \ P ⋆), t−).

Overall, for Z ′ = {z ∈ Z | pz ∈ π′}, it must be the case that

∑
z∈Z′ z = 0. Since

π′
is exhaustive, we know that Z ′

is non-empty. We have thus proven that Z ′
is

a solution of the Subset-Sum problem for the instance Z .
Now, assume that the equality (7.4) does not hold, i.e., that we have:

Φshare(I,A,π′, t+) ̸= Φshare(I,A,π′, t−). (7.5)
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We show that in this case, the Φshare
-Gini coefficient of π′

is not lower than that

of π, a contradiction.
Given (7.5), it must be the case that |Φshare(I,A,π′, t+)−Φshare(I,A,π′, t−)|

is at least one as there is no project with cost less than one. Furthermore, by

definition of the share, we know thatΦshare(I,A,π′, t+)+Φshare(I,A,π′, t−) =
b. Then, the smallestΦshare

-Gini coefficient forπ′
is reached if one type evaluates

π′
at 1/2(b+ 1) and the other at 1/2(b− 1). This is the same distribution as for π,

hence, Gini
share
Φ (I,A,π) = Gini

share
Φ (I,A,π′). This sets the contradiction. 2

This concludes our computational analysis of the fairness criteria based on the

Gini coefficient. In the remainder of this chapter, we focus on Eqal-Φ-Conv.

7.5 Converging Towards Fairness: Eqal-Φ-Conv

The last section of our formal analysis is dedicated to Eqal-Φ-Conv. Because Eqal-

Φ-Conv deals with infinite sequences, a concept that does not fit the standard frame-

work of computational complexity, our analysis will only focus on existence guaran-

tees. The section is organised based on the evaluation functions under consideration.

This section is also rather technical. For a quick summary, keep in mind that for

both Φcost
and Φshare

we can satisfy Eqal-Φ-Conv only in very limited cases (two

or three agents), while for Φrelcost
we can satisfy it if there are two types of agents.

7.5.1 For the Cost Evaluation Function Φcost

We start with the cost evaluation function Φcost
and first show that for two agents,

Eqal-Φcost
-Conv can always be guaranteed (under mild additional assumptions).

As the structure of the proof will be reused abundantly in this section, it can be

worth keeping the general steps in mind. We will show that in every round we can

favour one agent over the other, and thus, by each time favouring the worse-off agent,

we can converge to Eqal-Φcost
.

Proposition 7.5.1. Consider an ∞-PPB instance I such that there exists a constant

B⋆ ∈ N with bj ≤ B⋆
for every round j ∈ N>0, and a PBB profile A with two agents.

Furthermore, assume that for every round j ∈ N>0, each agent approves of at least one

project of cost less than bj . Then, there is a non-empty and feasible infinite solution π
for I that satisfies Eqal-Φcost

-Conv.

Proof. Call the agents 1 and 2 and assume they belong to types t1 and t2 respec-
tively (as Eqal-Φcost

is trivially satisfied if there is only one type). We claim that



202 Chapter 7. A Long-Term Approach to Participatory Budgeting

there exists a solution π such that for every round j, we can guarantee:

Φcost(I,A,π[j], t1)−B⋆ ≤ Φcost(I,A,π[j], t2) ≤ Φcost(I,A,π[j], t1)+B⋆
(7.6)

Let us prove the claim by induction. For the first round, it is clear

that whichever non-empty budget allocation has been chosen, we have 0 ≤
Φcost(I,A,π[1], t) ≤ B⋆

for any type t ∈ {t1, t2}. The claim would thus hold

in the first round.

Now, assume the claim holds for round j − 1. Let π[j−1] = (π1, . . . , πj−1).
Without loss of generality, assume that type t1 has higher cost-satisfaction than

type t2 in round j − 1, i.e., that Φcost(I,A,π[j−1], t2) ≤ Φcost(I,A,π[j−1], t1)
holds. Let p be a project approved by agent 2 in round j such that c(p) ≤ bj . Such
a project exists by assumption. Let π[j] = (π1, . . . , πj−1, πj) for πj = {p}. We

clearly have:

satcost(πj ∩ Aj
1) ≤ satcost(πj ∩ Aj

2) ≤ B⋆.

These inequalities, together with the induction hypothesis and the assumption

that Φcost(I,A,π[j−1], t2) ≤ Φcost(I,A,π[j−1], t1) directly proves that our claim

holds for round j. The induction is thus concluded.

Let π be a solution satisfying (7.6) for all rounds j ∈ N>0. It should be clear

that for any round j, we also have Φcost(I,A,π[j], t1) + Φcost(I,A,π[j], t2) ≥∑j
j′=1 c(πj′). Thus, it follows from (7.6) that:

lim
j→+∞

Φcost(I,A,π[j], t1) = lim
j→+∞

Φcost(I,A,π[j], t2) = +∞.

Therefore, for any round j ∈ N>0, we have:

Φcost(I,A,π[j], t1)−B⋆

Φcost(I,A,π[j], t1)
≤

Φcost(I,A,π[j], t2)

Φcost(I,A,π[j], t1)
≤

Φcost(I,A,π[j], t1) +B⋆

Φcost(I,A,π[j], t1)
.

The proposition directly follows from this statement. 2

Unfortunately, this result cannot be generalized, not even for three agents.

Proposition 7.5.2. There exists an ∞-PPB instance I for which there is a constant

B⋆ ∈ N with bj ≤ B⋆
for every round j, and a PPB profile A with three agents such

that no infinite solution for I satisfies Eqal-Φcost
-Conv, even in the unit-cost setting

and if for every round j ∈ N>0, each agent approve of at least one project of cost less

than bj .

Proof. Let I be a ∞-PPB instance. Assume bj = 1 for every round j ∈ N>0,

and c(p) = 1 for all projects p ∈ P. There are three agents 1, 2 and 3. Agent
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1 has type t1, and agents 2 and 3 have type t2. For every round j ∈ N>0, Pj =
{pj1, p

j
2}. In round j, agent 1 approves of pj1 and pj2, agent 2 of p

j
1, and agent 3 of

pj2. Then, for every non-empty feasible solution π and every round j, we have

Φcost(I,A,π[j], t1) = j and Φcost(I,A,π[j], t2) = j/2 as |t2| = 2. Therefore, we
have:

lim
j→+∞

Φcost(I,A,π[j], t1)

Φcost(I,A,π[j], t2)
=

1

2
.

This is a clear violation of Eqal-Φcost
-Conv. 2

This counterexample can be avoided if we impose some restrictions on the ballots

the agents can submit. For instance, if ballots are feasible and exhaustive, then for

three agents we can always find a solution that converges to Eqal-Φcost
.

Proposition 7.5.3. Consider an ∞-PPB instance I such that there exists a constant

B⋆ ∈ N with bj ≤ B⋆
for every round j ∈ N>0, and a PPB profile A with three agents

in which, for all rounds, the ballots of the agents are feasible and exhaustive. Then, there

is a non-empty and feasible infinite solution π for I that satisfies Eqal-Φcost
-Conv.

Proof. The proof is rather long. To simplify its delivery, we structure it around

two claims, distinguishing between whether there are two or three types.

Claim 7.5.4. The statement of Proposition 7.5.3 holds when there are exactly two

types.

Proof: Assume first that there are only two types, t1 and t2. Without loss of gen-

erality, we can assume that agent 1 has type t1 and agents 2 and 3 have type t2.
We claim that there exists a solution π such that for every round j ∈ N>0, we

can guarantee:

Φcost(I,A,π[j], t1)−B⋆ ≤ Φcost(I,A,π[j], t2) ≤ Φcost(I,A,π[j], t1) +B⋆.
(7.7)

Note that proving that this holds, would imply thatπ satisfies Eqal-Φcost
-Conv,

in an analogous way to how we proved Proposition 7.5.1.

Let us prove the claim by induction. For the first round, it is clear

that whichever non-empty budget allocation has been chosen, we have 0 ≤
Φcost(I,A,π[j], t) ≤ B⋆

, for any type t ∈ {t1, t2}. The claim thus holds for

the first round.

Now, assume the claim holds for round j − 1 and let (π1, . . . , πj−1) be a so-
lution that satisfies (7.7) for round j − 1. We are trying to construct a budget

allocation πj such that the solution π[j] = (π1, . . . , πj−1, πj) satisfies (7.7) for
round j.
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Assume first that Φcost(I,A,π[j−1], t1) ≤ Φcost(I,A,π[j−1], t2). Then, we

can just set πj = Aj
1. Since ballots are assumed to be feasible, this is a feasible

budget allocation for Ij . Doing so would guarantee that:

satcost(Aj
2 ∩ πj) + satcost(Aj

3 ∩ πj)

2
≤ satcost(Aj

1 ∩ π) ≤ B⋆.

Together with the induction hypothesis, this implies inequality (7.7).

Assume now that Φcost(I,A,π[j−1], t2) ≤ Φcost(I,A,π[j−1], t1). Let us make

some further case distinctions based on the ballots of the agents.

▶ Consider the case inwhich the ballots are such thatAj
1 = Aj

2 = Aj
3, then the

difference in cost-satisfactionwould remain the same regardless of which πj

is selected. The induction hypothesis would then directly imply inequality

(7.7) for round j and any πj .

▶ Now, assume that Aj
1 = Aj

2 = Aj
3 does not hold. Since the ballots are as-

sumed to be exhaustive, it cannot be the case that Aj
i ⊊ Aj

i′ for any two

agents i, i′ ∈ {1, 2, 3}. There must therefore be a project p that is not ap-

proved by all three agents. We claim moreover that there is a project p⋆ in
Aj

2 ∪ Aj
3 that is not approved by agent 1. Indeed, if no such p⋆ exists, then

project p must be approved by agent 1, and only them (otherwise it would

contradict the existence of p). Assume without loss of generality that agent

2 does not approve p. This implies that Aj
1 ∩ Aj

2 is not exhaustive, since

p⋆ ∈ Aj
1 \ A

j
2. Therefore A

j
1 ∩ Aj

2 ⊊ Aj
2, In other words, there is a project

p⋆ as desired that is not approved by agent 1 but that is approved by either

agent 2 or agent 3. Now, fix πj = {p⋆}. By definition, we have:

0 = satcost(Aj
1 ∩ π) ≤ satcost(Aj

2 ∩ πj) + satcost(Aj
3 ∩ πj)

2
≤ B⋆.

Together with the induction hypothesis, this implies (7.7) for round j and
the solution (π1, . . . , πj−1, πj).

This concludes the case when there are only two types. ⋄
We now prove that the statement also holds if there are three types.

Claim 7.5.5. The statement of Proposition 7.5.3 holds when there are exactly three

types.

Proof: Assume now that there are three types t1, t2 and t3. We can assumewithout

loss of generality that agent i ∈ {1, 2, 3} belongs to type ti.
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We claim that there exists a solution π such that for every round j, we can
guarantee for any two types t, t′ ∈ {t1, t2, t3} that:

|Φcost(I,A,π[j], t)− Φcost(I,A,π[j], t
′)| ≤ 2B⋆. (7.8)

It is straightforward to check that Eqal-Φcost
-Conv would follow from this

equation, by an analogous argument to the one made in Proposition 7.5.1.

Let us prove the claim by induction. For the first round, it is clear

that whichever non-empty budget allocation is chosen, we would have 0 ≤
Φcost(I,A,π[1], t) ≤ B⋆

for any type t ∈ {t1, t2, t3}. The claim thus holds for the

first round.

Now, assume the claim holds for round j − 1 and let (π1, . . . , πj−1) be a so-
lution that satisfies (7.8) for round j − 1. We will construct a budget allocation

πj such that the solution π[j] = (π1, . . . , πj−1, πj) satisfies (7.8) for round j. As-
sume without loss of generality that cost evaluations of the types are ordered as

follows:

Φcost(I,A,π[j−1], t1) ≤ Φcost(I,A,π[j−1], t2) ≤ Φcost(I,A,π[j−1], t3). (7.9)

We observe that the induction hypothesis implies that:

Φcost(I,A,π[j−1], t3) ≤ Φcost(I,A,π[j−1], t1) + 2B⋆.

Therefore, we must have either:

Φcost(I,A,π[j−1], t3) ≤ Φcost(I,A,π[j−1], t2) +B⋆. (7.10)

or:

Φcost(I,A,π[j−1], t2) ≤ Φcost(I,A,π[j−1], t1) +B⋆, (7.11)

We will distinguish between these two cases.

▶ Assume first that (7.10) holds. Then, let πj = Aj
1. From this, we know that

the following two hold:

satcost(Aj
2 ∩ πj) ≤ satcost(Aj

1 ∩ πj) ≤ B⋆,

satcost(Aj
3 ∩ πj) ≤ satcost(Aj

1 ∩ πj) ≤ B⋆.

Together with (7.9) this implies, that (7.8) holds for t = t1 and t′ ∈ {t2, t3}
at round j. It remains to show that it also holds for t = t2 and t′ = t3 at
round j.

Assume first that satcost(Aj
2 ∩ πj) ≤ satcost(Aj

3 ∩ πj). In this case, we can

derive (7.8) at round j for t = t2 and t′ = t3 from the fact that satcost(Aj
2 ∩

πj) ≤ B⋆
and Φcost(I,A,π[j−1], t2) ≤ Φcost(I,A,π[j−1], t3) hold.
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Assume otherwise that satcost(Aj
3∩πj) ≤ satcost(Aj

2∩πj). Then, inequality
(7.8) at round j for t = t2 and t

′ = t3 follows from inequality (7.10) together

with the fact that satcost(Aj
2 ∩ πj) ≤ B⋆

holds.

This concludes the branch of the proof in which we assumed (7.10) to hold.

▶ Now, assume that (7.11) holds. By the same argument as the one presented

in Claim 7.5.3, we can find a project p⋆ such that p⋆ ∈ Aj
1 ∪A

j
2 but p

⋆ /∈ Aj
3.

From there, we set πj = {p⋆}, and distinguish, again, between two cases.

Assume first that p⋆ ∈ Aj
1. Then, it must be that:

satcost(Aj
3 ∩ πj) ≤ satcost(Aj

2 ∩ πj) ≤ satcost(Aj
1 ∩ πj) ≤ B⋆.

Together with (7.9), this entails (7.8) at round j for all types t, t′ ∈
{t1, t2, t3}.
Then, assume that p⋆ ∈ Aj

2 \ A
j
1. In this case, the following must hold:

satcost(Aj
1∩πj) = satcost(Aj

3∩πj) = 0 and satcost(Aj
2∩πj) ≤ B⋆.

Thanks to the induction hypothesis, this implies (7.8) at round j for t = t1
and t′ = t3, and for t = t2 and t′ = t3. Finally, using (7.11) and again

satcost(Aj
2 ∩ πj) ≤ B⋆

we can show that (7.8) also holds at round j for

types t = t1 and t′ = t2.

This concludes the case when there are three types. ⋄
We have now prove the statement for both two and three types. Since the case

when there is a single type is trivial, the proof is complete. 2

Restricting the ballot format allowed us to obtain a possibility result for three

agents. However, by increasing the number of agents we again encounter an impos-

sibility, even with these restricted ballots.

Proposition 7.5.6. There exists an ∞-PPB instance I such that there exists a con-

stant B⋆ ∈ N with bj ≤ B⋆
for every round j, and a PPB profile A with eight agents

such that no infinite solution for I satisfies Eqal-Φcost
-Conv, even if there are only

two types and for every round j ∈ N>0, each agent’s ballot is exhaustive.

Proof. Let I be a ∞-PPB instance. In every round j ∈ N>0, we have bj = 10
and Pj = {pj1, . . . , p

j
6}. The cost function is such that for any round j ∈ N>0, we

have c(pj1) = c(pj2) = c(pj3) = 5, and c(pj4) = c(pj5) = c(pj6) = 3.
We consider a PPB profile A with eight agents 1, . . . , 8 such that agents 1, 2

and 3 belong to type t1, and agents 4, 5, 6, 7 and 8 to type t2. The ballots are such
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that, for every round j:

Aj
1 = {p

j
1, p

j
4} Aj

2 = {p
j
2, p

j
5} Aj

3 = {p
j
3, p

j
6}

Aj
4 = {p

j
1, p

j
2} Aj

5 = {p
j
1, p

j
3} Aj

6 = {p
j
2, p

j
3}

Aj
7 = {p

j
4, p

j
5, p

j
6} Aj

8 = {p
j
4, p

j
5, p

j
6}

We can check that at any round j ∈ N>0, for each project p ∈ Pj , the cost

evaluation of {p} for type t2 is higher than that of type t1.
For any round j ∈ N>0, given the budget allocation {pj1} and, we have:

Φcost
marg(I,A, ({pj1}), t1, j) =

5 + 0 + 0

3

<
5 + 5 + 0 + 0 + 0

5
= Φcost

marg(I,A, ({pj1}), t2, j).

The same applies for {p2} or {p3} instead of {p1}.
Now, for {p4} we have:

Φcost
marg(I,A, ({pj4}), t1, j) =

3 + 0 + 0

3

<
0 + 0 + 0 + 3 + 3

5
= Φcost

marg(I,A, ({pj4}), t2, j).

Again, the same applies for {p5} and {p6}.
Since Φcost

is additive with respect to the round and to the projects inside a

budget allocation, this directly implies that there are no non-empty solution that

satisfy Eqal-Φcost
-Conv in this PPB instance. 2

Our analysis of Eqal-Φcost
-Conv is now complete. The reader may find it inter-

esting to know that in his Master’s thesis, Klein Goldewijk (2022) generalised Propo-

sition 7.5.3, proving that Eqal-Φcost
-Conv can always be satisfied for four agents

and three types, when ballots are feasible exhaustive. He also reduced the gap left by

Proposition 7.5.6 by proving an analogous result for 7 agents. Note that a gap still

exists.

We will now turn to the case of Eqal-Φ-Conv for the share evaluation function.

7.5.2 For the Share Evaluation Function Φshare

In the following we discuss Eqal-Φshare
-Conv. The result are very similar to the

ones for Eqal-Φcost
-Conv. We will thus not provide many details.

Essentially, by a similar argument as the one used to prove Proposition 7.5.1, we

can show that Eqal-Φshare
-Conv can be achieved for two agents. Unfortunately, we
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cannot go far beyond this, even if we assume ballots to be exhaustive. We present a

counterexample below.

Example 7.5.7. Consider again the same ∞-PPB instance as given in the proof of

Proposition 7.5.6. We claim that for every project, selecting it would lead to a higher

share for type t2 than that of type t1. The computations are as follows.

At any round j ∈ N>0, if project p
j
1 is selected, we have:

Φshare
marg (I,A, ({pj1}), t1, j) =

1

3
· 5
3
=

5

9

<
2

3
=

1

5

(
5

3
+

5

3

)
= Φshare

marg (I,A, ({pj1}), t2, j).

The same applies for projects pj2 and pj3.
Now, still for any round j ∈ N>0, if project p

j
4 is selected, we have:

Φshare
marg (I,A, ({pj4}), t1, j) =

1

3
· 3
3
=

1

3

<
2

5
=

1

5

(
3

3
+

3

3

)
= Φshare

marg (I,A, ({pj4}), t2, j).

The same applies for projects pj5 and pj6.
It follows that, in this example, Eqal-Φshare

-Conv cannot be satisfied. △

This concludes our investigation of Eqal-Φshare
-Conv. Similar open questions

as for Eqal-Φcost
-Conv remain, including the case of 3 agents with feasible and

exhaustive ballots. In the remainder of this section, we will investigate the case of the

relative cost evaluation function.

7.5.3 For the Relative Cost Evaluation Function Φrelcost

Results are more positive when it comes to relative satisfaction. Indeed, we can guar-

antee Eqal-Φrelcost
-Conv for any PPB instance and PPB profile with two types of

agents. Note that this thus applies to a much larger class of instances than what we

obtained for Eqal-Φcost
-Conv and Eqal-Φshare

-Conv for which we had guaran-

tees for two agents only, and impossibility for 2 types and eight agents.

The proof is rather technical. Wewill start by proving an important lemma stating

that with two types, we can always favour one type over the other.

Lemma 7.5.8. Let I be a k-PPB instance, A a PPB profile in which for any round j ∈
{1, . . . , k} and any agent i ∈ N , the ballot Aj

i is non-empty and such that c(Aj
i ) < b.

Consider the solution π = (π1, π2, . . .) for I . If there are only two types t1 and t2, then,
in every round j ∈ {1, . . . , k} there are two feasible budget allocations π1

j and π2
j such

that, if πj = π1
j in π, we have:

Φrelcost
marg (I,A,π, t1, j) > 0 and Φrelcost

marg (I,A,π, t1, j) ≥ Φrelcost
marg (I,A,π, t2, j),
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and, if πj = π2
j in π, we have:

Φrelcost
marg (I,A,π, t2, j) > 0 and Φrelcost

marg (I,A,π, t2, j) ≥ Φrelcost
marg (I,A,π, t1, j).

Proof. Consider a round j ∈ {1, . . . , k} corresponding to the instance Ij =
⟨Pj, c, bj⟩ and the profile Aj

. Consider j − 1 budget allocations π1, . . . , πj−1 for

the first j − 1 rounds of I . We show that there exists πj ∈ Feas(Ij) such that for

the solution π = (π1, . . . , πj−1, πj) we have:

Φrelcost
marg (I,A,π, t1, j) > 0 and Φrelcost

marg (I,A,π, t1, j) ≥ Φrelcost
marg (I,A,π, t2, j),

The second part of the statement—when we favour t2 over t1—then follows from

an analogous argument.

Before delving into the detail, let us introduce one abbreviation that will make

the proof easier to read. For a given type t ∈ T and budget allocation π ∈
Feas(Ij), we will use Φ

relcost
marg (π, t) defined as:

Φrelcost
marg (π, t) = Φrelcost

marg (I,A, (π1, . . . , πj−1, π), t, j).

Recall that all ballots inAj
are feasible, i.e., we have Aj

i ∈ Feas(Ij) for any agent
i ∈ N . For any budget allocation π ∈ Feas(Ij) and type t ∈ T , we introduce the
number of agents of type t who submit π as their ballot, defined as:

nt
π = |{i ∈ t | Aj

i = π}|.

Consider a budget allocation π⋆ ∈ Feas(Ij) such that nt1
π⋆ ̸= 0. It is clear that

if Φrelcost
marg (π⋆, t1) ≥ Φrelcost

marg (π⋆, t2), then the statement of the lemma holds and the

proof would be concluded. Therefore, assume that we have:

Φrelcost
marg (π⋆, t1) < Φrelcost

marg (π⋆, t2). (7.12)

Now, observe that by definition, for any type t ∈ T , we have:

Φrelcost
marg (π⋆, t) =

1

|t|
∑

π∈Feas(Ij)

nt
π · α(π, π⋆), (7.13)

where α(π, π⋆) is the relative overlap of π and π⋆
, defined as:

α(π, π⋆) =
c(π ∩ π⋆)

c(π)
.

It should be clear that by definition, 0 ≤ α(π, π⋆) ≤ 1 holds for any π ∈ Feas(Ij).
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Now, plugging (7.13) into inequality (7.12) leads to:

1

|t1|
∑

π∈Feas(Ij)

nt1
π · α(π, π⋆) <

1

|t2|
∑

π∈Feas(Ij)

nt2
π · α(π, π⋆)

⇔
∑

π∈Feas(Ij) n
t1
π · α(π, π⋆)∑

π∈Feas(Ij) n
t2
π · α(π, π⋆)

<
|t1|
|t2|

. (7.14)

Let A1 = {π ∈ Feas(Ij) | α(π, π⋆) = 1} be the set of budget allocations π for

which α(π, π⋆) = 1. Inequality (7.14) can then be rewritten as:∑
π∈A1 nt1

π +
∑

π∈Feas(Ij)\A1 nt1
π · α(π, π⋆)∑

π∈A1 n
t2
π +

∑
π∈Feas(Ij)\A1 n

t2
π · α(π, π⋆)

<
|t1|
|t2|

.

For this to hold, we must have either:∑
π∈A1 nt1

π∑
π∈A1 n

t2
π

<
|t1|
|t2|

or

∑
π∈Feas(Ij)\A1 nt1

π · α(π, π⋆)∑
π∈Feas(Ij)\A1 n

t2
π · α(π, π⋆)

<
|t1|
|t2|

. (7.15)

The above two inequalities are derived from the general rule that for any positive

scalar a, b, c, d, x, y ∈ R>0, if we have
(a+b)/(c+d) < x/y, then we either a/c < x/y

or b/d < x/y. Indeed, The (a+b)/(c+d) < x/y can be rewritten as ay + by < cx+ dx,
which necessarily only holds if either ay < cx or by < dx.

Since the left-hand side of the second inequality in (7.15) again involves sum-

mations, we can iterate the same general rule there. For this inequality to hold,

there must then be sufficiently many budget allocations π ∈ Feas(Ij) \ A1
with

n
t1
π /nt2

π < |t1|/|t2|. As we know that α(π, π⋆) < 1, dropping α(π, π⋆) only increases

the influence of these budget allocations. Therefore, in the two cases in (7.15), we

can find a set of budget allocationsA withA1 ⊆ A ⊆ Feas(Ij) and such that the

following holds: ∑
π∈A nt1

π∑
π∈A nt2

π

<
|t1|
|t2|

. (7.16)

On the other hand, since for any type t, we have |t| =
∑

π∈Feas(Ij) n
t
π, inequality

(7.16) can be rewritten as:∑
π∈A nt1

π∑
π∈A nt2

π

<

∑
π∈Feas(Ij) n

t1
π∑

π∈Feas(Ij) n
t2
π

.

Given that A ⊆ Feas(Ij), we immediately have

∑
π∈A nt2

π ≤
∑

π∈Feas(Ij) n
t2
π .

Thus, for the above to hold, it must be that

∑
π∈A nt1

π <
∑

π∈Feas(Ij) n
t1
π . There

must then exist a budget allocation π0 ∈ Feas(Ij) \ A such that nt1
π0 ̸= 0. Since

π0 /∈ A, we have α(π0, π⋆) < 1, which implies π0 ̸= π⋆
.
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Consider then the budget allocation π⋆′ = π0 \ π⋆
. Since α(π0, π⋆) < 1, we

must have π⋆′ ̸= ∅. Furthermore, Φrelcost
marg (π⋆′, t1) > 0 also holds as we know there

is an agent in t1 that submitted π0
as their ballot. Therefore, if Φrelcost

marg (π⋆′, t1) ≥
Φrelcost

marg (π⋆′, t2) holds, then the lemma holds as well and the proof is concluded.

Hence, we assume that:

Φrelcost
marg (π⋆′, t1) < Φrelcost

marg (π⋆′, t2).

Then, we have

Φrelcost
marg (π⋆, t1) + Φrelcost

marg (π⋆′, t1) < Φrelcost
marg (π⋆, t2) + Φrelcost

marg (π⋆′, t2). (7.17)

Analogously to what we proved earlier, it follows from (7.13) and (7.17) that:∑
π∈Feas(Ij) n

t1
π (α(π, π

⋆) + α(π, π⋆′))∑
π∈Feas(Ij) n

t2
π (α(π, π⋆) + α(π, π⋆′))

<
|t1|
|t2|

.

Now, because π⋆
and π⋆′

are disjoint, we know all factors α(π, π⋆) + α(π, π⋆′)
are smaller or equal 1. Following the same reasoning we detailed above, we can

conclude that there must be a set of budget allocations A′ ⊆ Feas(Ij) such that

α(π, π⋆) + α(π, π⋆′) = 1 implies π ∈ A′
, and such that the following holds:∑

π∈A′ nt1
π∑

π∈A′ n
t2
π

<
|t1|
|t2|

. (7.18)

It follows again from |t| =
∑

π∈Feas(Ij) n
t
π and (7.18) that there must be another

budget allocation π1
such that nt1

π1 > 0 and α(π1, π⋆) + α(π1, π⋆′) < 1. This

implies that π1 /∈ {π⋆, π⋆′}. Then, as before, we haveΦrelcost
marg (π1\(π⋆∪π⋆′), t1) >

0. Hence, if

Φrelcost
marg

(
π1 \ (π⋆ ∪ π⋆′), t1

)
≥ Φrelcost

marg

(
π1 \ (π⋆ ∪ π⋆′), t2

)
holds, then the lemma holds as well. Otherwise, we can iterate the construction.

As there are only finitely many budget allocations, this construction must

lead, after finitely many steps, to an allocation π such that:

Φrelcost
marg (π, t1) > 0 and Φrelcost

marg (π, t1) ≥ Φrelcost
marg (π, t2).

The proof is thus complete. 2

Thanks to this lemma, and using a similar line of reasoning as in Proposition 7.5.1,

we can show that, for two types, we can always find a solution that converges to equal

relative satisfaction.
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Theorem 7.5.9. Consider an∞-PPB instance I such that there exists a constant B⋆ ∈
Nwith bj ≤ B⋆

for every round j ∈ N>0, and a PPB profileA in which for all rounds, the

ballots of the agents are non-empty and feasible. If there are only two types, then there

is a non-empty and feasible infinite solution π for I that satisfies Eqal-Φrelcost
-Conv.

Proof. Let us call the two types t1 and t2. We claim that there exists a solution

π = (π1, π2, . . .) such that for every round j, we can guarantee:

Φrelcost(I,A,π, t1)− 1 ≤ Φrelcost(I,A,π, t2) ≤ Φrelcost(I,A,π, t1) + 1.

We will prove this by induction. For the first round and for both types t ∈
{t1, t2}, we clearly have 0 ≤ Φrelcost(I,A,π, t) ≤ 1. The claim thus holds then.

Now assume the claim holds for round j − 1. Without loss of generality,

assume that:

Φrelcost(I,A,π[j−1], t2) ≤ Φrelcost(I,A,π[j−1], t1). (7.19)

At round j we can select a budget allocation πj in π that satisfies:

Φrelcost
marg (I,A,π[j], t1, j) ≤ Φrelcost

marg (I,A,π[j], t2, j). (7.20)

The existence of such a πj is guaranteed by Lemma 7.5.8. Then, for both types

t ∈ {t1, t2}, we have:

Φrelcost(I,A,π[j], t) = Φrelcost(I,A,π[j−1], t) + Φrelcost
marg (I,A,π[j], t1, j).

Then, from (7.20) and the induction hypothesis, it follows that:

Φrelcost(I,A,π[j], t1)− 1 ≤ Φrelcost(I,A,π[j], t2).

On the other hand, from (7.19) and the fact thatΦrelcost
marg (I,A,π[j], t2, j) ≤ 1 holds

by definition, we obtain:

Φrelcost(I,A,π[j], t2) ≤ Φrelcost(I,A,π[j], t1) + 1.

Now, in each round, we know from Lemma 7.5.8 that we can always select a bud-

get allocation that improves the relative satisfaction of the type t that enjoys the
lowest relative satisfaction by at least 1/B⋆·|t| (this is the lowest non-zero relative

cost evaluation of a type). Selecting such a budget allocation at each round leads

to the relative cost evaluation of both types to go towards infinity, while their

difference to always be less than 1. The solution π thus constructed satisfies

Eqal-Φrelcost
-Conv. 2

It is important to mention that the proofs of Lemma 7.5.8 and of Theorem 7.5.9 are
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both constructive, in the sense that they show how to compute the relevant solutions.

However, the constructions do not guarantee the solution to be exhaustive. To achieve

this, an additional ballot restriction is necessary.

Proposition 7.5.10. Consider an∞-PPB instance I and a PBB profileA that satisfies

all the conditions of Theorem 7.5.9. If there are exactly two types, then, there exists a

non-empty feasible solution π = (π1, π2, . . . ) for I that:

(i) satisfies Eqal-Φrelcost
-Conv, and,

(ii) ensures that for each round j ∈ N>0, there is an agent i ∈ N such that Aj
i ⊆ πj .

In particular, if all ballots are exhaustive, then every budget allocation inπ is exhaustive.

Proof. The idea of the proof is that for every round j ∈ N>0, we can find two

budget allocations π1
j and π

2
j as described in Lemma 7.5.8 and such that there are

two agents i1, i2 ∈ N withAj
i1
\π1

j = ∅ andAj
i2
\π2

j = ∅ by applying Lemma 7.5.8

several times.

Let Ij = ⟨Pj, c, bj⟩ be the instance in round j and Aj
the profile in round j.

We use the same notation as in Lemma 7.5.8, so that we useΦrelcost
marg (π, t) instead of

Φrelcost
marg (I,A, (π1, . . . , πj−1, π), t, j). We claim that, under the given assumptions,

there exist two feasible budget allocations π1
j , π

2
j ∈ Feas(Ij) such that:

Φrelcost
marg (π1

j , t1) > 0 and Φrelcost
marg (π1

j , t1) ≥ Φrelcost
marg (π1

j , t2),

Φrelcost
marg (π2

j , t2) > 0 and Φrelcost
marg (π2

j , t2) ≥ Φrelcost
marg (π2

j , t1),

and for which there are two agents i1, i2 ∈ N with Aj
i1
\ π1

j = ∅ and Aj
i2
\ π2

j =
∅. We will only prove the existence of π1

j , the existence of π2
j follows from an

analogous argument.

From Lemma 7.5.8, we know that there exists π1
j ∈ Feas(Ij), such that:

Φrelcost
marg (π1

j , t1) > 0 and Φrelcost
marg (π1

j , t1) ≥ Φrelcost
marg (π1

j , t2).

If there is no agent i ∈ N such that Aj
i \ π

j
1 = ∅, we can consider the instance

I1j =
〈
P1

j , c, bj
〉
where P1

j = Pj \ π1
j , and the profile A′j = (A1

′j, . . . , An
′j)

such that for all agents i ∈ N we have Ai
′j = Aj

i \ π1
j . By assumption, Ai

′j ̸= ∅
for all agents i ∈ N . Therefore, in I1j and A′j

, there are two types, all ballots

are non-empty and satisfy the budget constraint. We can thus apply Lemma 7.5.8

once again. We obtain a budget allocation π1
j
′ ∈ Feas(I1j ) such that:

Φrelcost
marg (π1

j
′, t1) > 0 and Φrelcost

marg (π1
j
′, t1) ≥ Φrelcost

marg (π1
j
′, t2).
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By definition, we know that π1
j ∩ π1

j
′ = ∅. Therefore, we have Φrelcost

marg (π1
j ∪

π1
j
′, t1) > 0 and:

Φrelcost
marg (π1

j ∪ π1
j
′, t1) = Φrelcost

marg (π1
j , t1) + Φrelcost

marg (π1
j
′, t1)

≥ Φrelcost
marg (π1

j , t2) + Φrelcost
marg (π1

j
′, t2)

= Φrelcost
marg (π1

j ∪ π1
j
′, t2).

Now, if there is no agent i such that Aj
i \ π1

j ∪ π1
j
′ = ∅, we can apply Lemma 7.5.8

again and again, until we have Aj
i \ (π1

j ∪ π1
j
′ ∪ · · · ) = ∅ for some agent i ∈ N .

This thus proves the claim.

Finally, note that if all ballots are exhaustive, then Aj
i \ π = ∅ can only hold

for an exhaustive budget allocation π. 2

Whether Theorem 7.5.9 and Proposition 7.5.10 can be extended to larger num-

bers of types remains an important open question. Under additional assumptions,

Klein Goldewijk (2022) proved that Eqal-Φrelcost
-Conv is always satisfiable when

there are three types. This is the strongest result we are aware of regarding Eqal-

Φrelcost
-Conv.

7.6 Summary
With this chapter, we presented the first formal study of a long-term model for par-

ticipatory budgeting. In addition to the conceptual contribution of introducing such a

model, we investigated several notions of fairness within this framework. We started

from a notion that represents a situation of perfect fairness: Eqal-Φ. Because it

is impossible to satisfy in general, we turned to two of its relaxations that provide

fairness guarantees on a larger set of instances. First, we explored the idea of op-

timising for fairness through the study of Φ-Gini. Our computational analysis re-

vealed that the latter was hard, computationally speaking, to satisfy. Subsequently,

we looked into the idea of providing fairness, but only in an infinite horizon. Our

study of Eqal-Φ-Conv demonstrated that this was possible, maybe not in general,

but at least for a large set of instances. We summarise all our findings in Table 7.6.1

for Eqal-Φ and Φ-Gini, and in Table 7.6.2 for Eqal-Φ-Conv.
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Existence Guarantees Complexity

Eqal-Φcost

Eqal-Φrelcost

✗ (even for n = 2)

Proposition 7.3.1

Strongly NP-complete

even with exhaustiveness

Proposition 7.3.2 and Corollary 7.3.4

Eqal-Φshare ✗ (even for n = 2)

Proposition 7.3.1

Weakly NP-complete

even with exhaustiveness

Proposition 7.3.3 and Corollary 7.3.4

Φcost
-Gini

Φrelcost
-Gini

Φshare
-Gini

✓

By definition

Weakly coNP-complete

even with exhaustiveness

Propositions 7.4.1, 7.4.2, 7.4.3, and 7.4.4

Table 7.6.1: Summary of the results presented in this chapter about Eqal-Φ and Φ-
Gini. For the complexity results, they refer to the problems Eqal-Φ Satisfiability

andΦ-Gini Satisfiability. The reference to exhaustiveness indicates that the results
hold even if exhaustiveness is required.

Existence Guarantees

Eqal-Φcost
-Conv

✓ for n = 2 Proposition 7.5.1

✗ for n = 3 Proposition 7.5.2

✓ for n = 3 and exhaustive ballots Proposition 7.5.3

✗ for n ≥ 8 and exhaustive ballots Proposition 7.5.6

Eqal-Φrelcost
-Conv ✓ for |T | = 2 and feasible ballots Theorem 7.5.9

Eqal-Φshare
-Conv

✓ for n = 2 Section 7.5.3

✗ for n ≥ 8 and exhaustive ballots Example 7.5.7

Table 7.6.2: Summary of the results presented in this chapter about Eqal-Φ-Conv.
A check mark ✓ indicates that for all instances with the specified number of agents

or types there always exists a solution satisfying the fairness criteria, with some po-

tential additional assumptions on the ballots.





Chapter 8

An End-to-End Model for Participatory
Budgeting

As already described in Section 1.1.2, real-life implementations of PB processes usu-

ally span several months and include many steps. These steps can be roughly grouped

into the following three stages:

▶ Recovering all the projects that can be potentially implemented through the PB

process, and selecting a shortlist of them that will carry over to the next step;

▶ Collecting the opinions of the participants regarding the shortlisted projects in

order to determine the ones that will actually be implemented;

▶ Monitoring the actual implementation of the projects and reporting to the par-

ticipants about it.

From a social choice perspective, the second stage is the most exciting—how to col-

lect and aggregate opinions is actually the research question at the very core of the

discipline. It is thus probably not surprising that it has been the focus of almost all

the social choice literature on PB (see Chapter 3), including all the previous chap-

ters. Does that mean that this is the only stage of PB that is worth studying? I am

claiming that the answer to this question is no, and that they are many interesting

research questions when one considers the PB process in its entirety, from one end

to the other. The present chapter is here to convince you of that.

In what follows we will develop an end-to-end model of PB. Despite the name, this

model will only cover the first two stages that we discussed above. Indeed, the third

stage does not really call for a formal analysis, at least according to the meaning of

formal that we are using in this thesis. Where does the social choice challenge reside

in the first stage? By looking deeper into how potential projects are collected by the

organising body—say a municipality—we can learn that in most cases they come from

217
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the citizens themselves who submit proposals directly to themunicipality (Shah, 2007;

Wampler, McNulty and Touchton, 2021). Citizens are thus also involved during the

first stage of a PB process, submitting their opinions on the projects that should be

considered by the municipality. Later on, the municipality selects a shortlist of the

proposals by taking said opinions into account. What we just described is a perfect

example of a social choice problem. Our end-to-end model will thus formalise the

first stage of PB, where proposals are collected and shortlisted, and the second stage

where the final budget allocation is selected. It is hopefully clear that the second stage

corresponds to the standard model of PB introduced in Chapter 2.

Our first point of focus in this new model will be the shortlisting stage. Interpret-

ing it as multi-winner voting scenario—where the proposals submitted by the agents

represent the ballots they cast, and the set of shortlisted proposals is the outcome—

we will discuss different ways of determining the shortlist, different shortlisting rules.

It is important to keep in mind that there are no formal constraints on the outcome

of the shortlisting stage. Indeed, any subset of proposals is an admissible outcome

(except for the empty set maybe). Because of this, there is a lot of room to develop

shortlisting rules. This raises the question of what makes some shortlists more desir-

able than others. To inform our answer to this question, we will once again look into

what is happening in practice. We identify four distinct objectives.

(i) A first round of review usually removes the proposals that are simply infeasi-

ble, typically because of legal issues.
57

This specific objective cannot really be

incorporated into our analysis and we assume that all projects considered in

our formal model are implementable.

(ii) Another goal of the shortlisting stage is to reduce the number of proposals

entering the second stage. For instance, if we look at the PB exercises in Lisbon,

around 30% of the projects were shortlisted (Allegretti and Antunes, 2014). In

Toronto, this number was as low as 10% (Murray, 2019).

(iii) What we call the shortlisting stage often takes the form of rounds of public

meetings where the proposals are discussed. During these meetings, citizens

will typically develop their proposals, helped by other citizens and employees

of the municipality. It is common for official organisers to avoid that projects

that are too similar get proposed.
58

This constitutes our third objective of the

shortlisting stage: avoiding redundancy in the shortlist.

(iv) As mentioned already before, one of the core objectives of PB is to provide

citizens with a platform to express their opinion, and to witness direct impact of

57
For instance, in the 2017 PB process in Paris, one of the proposals was to demolish the Sacré-Cœur,

a church in the centre of Paris. This proposal was rejected by the municipality of Paris because it

falls outside of its jurisdiction. For more details, see francetvinfo.fr/france/ile-de-france/paris/affreux-

disproportionne-un-parisien-propose-a-la-mairie-de-raser-le-sacre-coeur_2068737.html (in French).

58
This has, for instance, been witnessed at PB meetings in Amsterdam.

https://www.francetvinfo.fr/france/ile-de-france/paris/affreux-disproportionne-un-parisien-propose-a-la-mairie-de-raser-le-sacre-coeur_2068737.html
https://www.francetvinfo.fr/france/ile-de-france/paris/affreux-disproportionne-un-parisien-propose-a-la-mairie-de-raser-le-sacre-coeur_2068737.html
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the democratic process. It is necessarily not possible to guarantee every citizen

to be satisfied with, at least part of, the outcome of the voting stage—essentially

because there is only a limited amount of money available. However, when

shortlisting projects, there is no hard constraint on what can be selected. It is

thus easier to ensure that everyone will have an impact on the shortlist. This is

our fourth objective.

Identifying suitable objectives is a necessary first step, but is not a sufficient one.

What is needed now is to formalise these requirements, and to operationalise them

through well-defined shortlisting rule. The first half of this chapter will aim at an-

swering the following question:

What are good shortlisting rules for the first stage of participatory budgeting?

Later in this chapter, we will introduce several shortlisting rules, presenting different

ways the shortlist can be constructed. The actual answer to the question above will

be given shortly after, when will study their respective merits. This will be achieved

using the standard toolbox of the computational social choice scientist: the axiomatic

method—to assess how shortlisting rules fare with respect to the desirable properties

we described above—and the algorithmic approach—to assess their practical usability.

Our second point of focus concerns the interaction between the two stages of our

model. More specifically, we will investigate the incentives for the agents to submit,

or not, proposals during the shortlisting stage, because of the potential impact on the

final budget allocation. Let us exemplify what we mean here.

Consider the case of Sophie. She is a very active citizen who would gladly see

a fountain in the middle of the main square of the town. After attending some of

the public meetings for the local PB process, she is convinced that this is the perfect

opportunity for her project to come to life. Unfortunately, she is not the only one to

have ideas about potential improvements of the main square. Adrian—another citizen

who shares with Sophie her love for water-based ornamental structures—wants the

middle of the square to be occupied by a small lotus-covered pond. On the other hand,

Jan, a now retired chess master, would love to be able to go to the square on Sunday

afternoons to play chess with the members of his chess club. Overall, the following

three projects may be proposed during the shortlisting stage.

Fountain

Proposer: Sophie

Cost: e 10 000

Lotus Pond

Proposer: Adrian

Cost: e 10 000

Chess Boards

Proposer: Jan

Cost: e 8 000
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Since she attentively attended the public meetings, Sophie is aware of the proposals

that will be submitted by Adrian and Jan. Now comes a dilemma: Given what she

knows about the other proposals, and what she expects will happen when the voting

stage comes, should Sophie submit her fountain proposal or not? Indeed, it is not

hard to imagine that voters who enjoy water-based ornamental structures could split

between the lotus pond and the fountain (provided that they both get shortlisted),

resulting in few votes for each so that the chess boards would be implemented. As-

suming that she likes the lotus pond better than the chess boards, Sophie would thus

have an incentive not to propose her plan for a fountain, so that Adrian’s lotus pond

is selected by a larger set of voters, and would then be implemented.

This very stylised example puts in the spotlight the potential strategic behaviours

agents can engage into when voting. The fact that voters can behave strategically, and

submit opinions that do not reflect their true inner preferences is generally considered

non-desirable. One aspect of the research in social choice has been to look into ways

for preventing such behaviours to emerge (Zwicker, 2016; Meir, 2018). Coming back

to our example, it is interesting to note that the proposals regarding the lotus pond

and the fountain are in some sense very similar. In particular, a shortlisting rule that

enforces the fourth objective of the shortlisting stage—avoiding to shortlist projects

that are too similar—would potentially prevent Sophie’s strategic move as only one

of the two proposals would get shortlisted. This raises the following question:

Are some shortlisting rules better at preventing strategic behaviour than others?

Elements of responses to this question will be provided in the second half of this

chapter, when we will delve into first-stage strategy-proofness. As a start, we will for-

mally define the idea of strategic behaviour as we discussed above. Once the concep-

tual work will have been done, we will study how immune to manipulation different

shortlisting rules are.

It is now time to look more closely into the points we raised above. After quickly

discussing the literature specifically relevant for this chapter, we will introduce the

formal model (Section 8.1), and some shortlisting rules (Section 8.2). A comprehensive

example of our model will then follow (Section 8.3). Next, we will delve into the

more technical parts, first studying the general properties of the shortlisting rules

(Section 8.4), and then looking into first-stage strategy-proofness (Section 8.5). We

will then summarise our findings (Section 8.6).

Additional RelatedWork. In addition to the literature review on PBwe presented

in Chapter 3, we provide here references that are more specific to this chapter.

We study the shortlisting stage by taking inspiration from the literature on multi-

winner voting (Lackner and Skowron, 2023). Note that the term “shortlisting” is used

there in two different senses: either to emphasise that choosing a set of k candidates

is but a first step in making a final decision (Faliszewski, Skowron, Slinko and Talmon,

2017), or to refer to the problem of electing a set of variable size (Kilgour, 2016; Duddy,
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Piggins and Zwicker, 2016; Faliszewski, Slinko and Talmon, 2020; Lackner and Maly,

2021). Only the latter is formally related to our approach to shortlisting for PB. Note

that the idea of basing shortlisting on clustering techniques (Jain and Dubes, 1988), as

we present later in this chapter—the to-be-called median-based shortlisting rule—was

already developed by Lackner and Maly (2021).

8.1 The Formal End-to-End Model
Wewill essentially adopt the notation that we introduced already in Chapter 2. How-

ever, we are not yet equipped with notation for the first stage. It will be introduced

in the following.

8.1.1 Additional Notation and Terminology

For the end-to-end model, we need to go one step further in our terminology relating

to projects. We will denote by P = {p1, . . . , pm} the (finite) set of all conceivable

projects.
59
. Those are projects that can be submitted in the first stage. As we did in

the previous chapter, we extend the cost function so that, c : P→ R>0 nowmaps any

conceivable project p ∈ P to its cost c(p) ∈ R>0. As usual, the total cost of any set

P ⊆ P is written c(P ) =
∑

p∈P c(p). We still use b ∈ R>0 to denote the budget limit

and assume without loss of generality that for every project p ∈ P, we have c(p) ≤ b.

Throughout this chapter, we are going to require means for breaking ties, both

between alternative projects and between alternative sets of projects. We will do so

using tie-breaking rules. Those are functions—typically denoted by Untie—taking as

input a set of tied projects, and returning a single one of them.

The most natural way of breaking ties, when no other information is available,

is to do so through the index of the projects. This is captured by the canonical tie-

breaking rule CanonUntie, defined for any P ⊆ P as:

CanonUntie(P ) = argmin
pj∈P

j.

We also use tie-breaking rules to transform weak orders over projects into strict

orders. Let Untie be an arbitrary tie-breaking rule. Take any weak order ≿ on P.
Then for every indifference class P ⊆ P of≿, we break ties as follows: p = Untie(P )
is the first project, then comes Untie(P \ {p}), and so forth. Overloading notation,

we denote by Untie(≿) the strict order thus obtained.
Finally, we extend the canonical tie-breaking rule CanonUntie to non-empty sets

P ⊆ 2P of sets of projects in a lexicographic manner: CanonUntie(P) is the unique

59
Note here that we use the same notation as we used to denote the set of all the projects appearing

in a perpetual PB instance (in Chapter 7) These two concepts are somehow similar as they define a set

containing “all the projects”.



222 Chapter 8. An End-to-End Model for Participatory Budgeting

set P ∈ P such that CanonUntie(P △P ′) ∈ P for all P ′ ∈ P \ {P}.60 Thus, we

require that, amongst all the projects onwhichP andP ′
differ, the onewith the lowest

index must belong to P . This formalises the way the usual lexicographic tie-breaking

is lifted to sets of words (as in a dictionary for instance).

When no tie-breaking rule is specified, it is assumed that ties are broken with

respect to CanonUntie.

8.1.2 The Shortlisting Stage

In the first stage, agents are asked to propose projects. A shortlisting instance is a

tuple ⟨P, c, b⟩. Because of bounded rationality, an agent may not be able to conceive

of all the projects they would approve of if only she were aware of them. We denote

by Ci ⊆ P the set of projects that agent i can conceive of—their awareness set—and

we call the vector C = (C1, . . . , Cn) the awareness profile. We do assume that agent i
knows the cost of the projects in Ci as well as the budget limit b.

We denote by Pi ⊆ Ci the set of projects agent i ∈ N chooses to actually pro-

pose, and we call the resulting vector P = (P1, . . . , Pn) a shortlisting profile. We

use (P−i, P
′
i ) to denote the profile we obtain when, starting from profile P , agent i

changes their proposal to P ′
i .

A shortlisting rule Short maps any given shortlisting instance I = ⟨P, c, b⟩ and
shortlisting profile P to a shortlist, i.e., a set Short(I,P ) ⊆

⋃
P of shortlisted

projects, where

⋃
P = P1 ∪ · · · ∪ Pn.

8.1.3 The Allocation Stage

In the second stage, agents vote on the shortlisted projects to decide which ones

should get funded. This stage correspond to the standard model that we introduced

in Chapter 2. We will adopt the same notation here. To differentiate between the

shortlisting and the allocation stage, will be refer to what we used to call PB rules as

allocation rules. We will sometimes refer to allocation rules we have already defined

(in Chapter 2). Wewill consider their resolute variants, where we break ties according

to CanonUntie as defined earlier.

8.1.4 Agent Preferences

Later on in this chapter, we will discuss the incentives of the agents in our end-to-end

model. To do so, we need ways of discussing their preferences. In the following we

present what we assume to be the internal preference model that the agents follow.

Consider a shortlisting instance ⟨P, c, b⟩. We make the assumption that agent i ∈
N has preferences over all individual projects in P—including those they are unaware
of—and that those preferences take the form of a strict linear order �i over P. It is

60△ is the symmetric difference between sets, defined for anyS andS′
asS△S′ = (S\S′)∪(S′\S).
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important to keep in mind that we do not assume that i is aware of�i in full. For any

subset of projects P ⊆ P, we denote by �i|P the restriction of �i to P . Our second

assumption is that for any subset of projects P ⊆ P, agent i is able to determine an

ideal set of projects, denoted topi(P ), that is determined through the use of the greedy

selection procedure that we already introduced in Chapter 2. Formally, we define:

topi(P ) = Greed(⟨P, c, b⟩ ,�i|P ).

This approach permits us to model what constitutes a truthful vote by an agent for

varying shortlists P . We call the vector top(P ) = (top1(P ), . . . , topn(P )) the ideal
profile given P .

When investigating the potential strategic behaviour of the agents, wewill need to

compare different budget allocations from the perspective of the agents. We assume

that agents derive preferences over budget allocations from their ideal sets through

the use of completion principles (Lang and Xia, 2016). A completion principle is a

method that, given an ideal point (or top element), generates a weak order over sub-

sets of projects.
61

For any ideal set top ⊆ P, we denote by ≿top the weak order over

subsets of projects induced by a given completion principle (we omit the latter to

simplify the notation; it will always be clear from the context). We will denote by

≻top the strict part of ≿top , and ∼top its indifference part. For instance, if we follow

the cardinality-based completion principle, then, given an ideal set top ⊆ P, we have
P ≿top P ′

for every two subsets of projectsP, P ′ ⊆ P such that |P∩top| ≥ |P ′∩top|.
Under the cost-based completion principle, we have P ≿top P ′

for every two subsets

of projects P, P ′ ⊆ P such that c(P ∩ top) ≥ c(P ′ ∩ top).
Instead of stating our results for specific completion principles, we will phrase

them so that they apply to all completion principles behaving in certain ways. In the

following we introduce the different properties we will need. A completion principle

generating ≿top from top is said to satisfy:

▶ Top-First if the ideal point top strictly dominates any other subset of projects:

for all P ⊆ P , we have top ≻top P ;

▶ Top-Sufficiency if the empty set is strictly dominated by any non-empty subset

of top: for all P ⊆ top, if P ̸= ∅, then we have P ≻top ∅;

▶ Top-Necessity if any subset of projects that does not intersect with top is

treated the same way as the empty set: for all P ⊆ P, if P ∩ top = ∅, then
we have P ∼top ∅;

▶ Cost-NeutralMonotonicity if selecting more projects from top is strictly bet-

ter than fewer, as long as they all have the same cost: for all P, P ′ ⊆ P such

that P △P ′ ⊆ top, if |P ∩ top| > |P ′ ∩ top| and c(p) = c(p′) for any two

projects p, p′ ∈ P △P ′
, then we must have P ≻top P ′

.

61
One could also work with partial orders here. All of our definitions would carry over seamlessly

in this case. Their interpretation would however differ.
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So, a completion principle is top-first if top is indeed the best outcome. It is top-

sufficient if it is sufficient to have some projects from top to be better than the empty

set. It is top-necessary if it is necessary to have some projects from top to be better

than the empty set. Finally, it is cost-neutral monotonic if having more projects from

top is better than having less, even if those are different projects, provided that they

all have the same cost.

As a warm-up, the reader can check that both the cardinality- and the cost-based

completion principles satisfy all of the above properties.

We finally provide our last definition (for this section). For any weak order ≿top

and any family of subsets of projects P ⊆ 2P , we use undom(≿top ,P) to denote the

set of subsets of projects that are undominated in P according to ≿top .

8.2 Shortlisting Rules
As we have already seen, several allocation rules have been defined in the literature.

This is however not the case for shortlisting rules. In this section, we therefore pro-

pose several of them.

Our first shortlisting rule is what arguably is the simplest of them, the nomination

(shortlisting) rule. Following this rule, every agent acts as a nominator, i.e., someone

whose proposals are always all accepted.

Definition 8.2.1 (Nomination Rule). The nomination rule NomShort returns, for ev-

ery shortlisting instance I = ⟨P, c, b⟩ and shortlisting profile P , the shortlist:

NomShort(I,P ) =
⋃

P .

Although very natural, the nomination shortlisting rule is not effective in reducing

the number of projects. So let us go through somemore examples of shortlisting rules.

8.2.1 The Equal Representation Shortlisting Rule
Since the budget limit is not a hard constraint at the shortlisting stage, one of its ob-

jectives could be to ensure that every participant has a say in the decision. Building

on this idea, we introduce the k-equal representation shortlisting rule, a Thiele rule
62

that maximises the minimum number of selected projects per agent. Here the param-

eter k determines the maximum cost of the shortlist selected by the rule, expressed

as a multiplier of b.

62
Thiele rules are multi-winner voting rules that have received substantial attention (Lackner and

Skowron, 2023). We briefly sketch their definition here. Let w = (w1, w2, . . .) be an infinite weight

vector. Assume we are aiming at selecting exactly k ∈ N>0 projects. Given a shortlisting instance

I = ⟨P, c, b⟩ and a shortlisting profile P = (P1, . . . , Pn), the w-Thiele method is a multi-winner

voting rule that selects k-sized subsets of projects P with maximum weight, where the weight of P is

defined as

∑
i∈N

∑|P∩Pi|
j=1 wj .
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Definition 8.2.2 (k-Equal Representation Shortlisting Rule). Let k ∈ N. The k-equal
representation shortlisting rule ReprShortk is defined for every shortlisting instance

I = ⟨P, c, b⟩ and every shortlisting profile P = (P1, . . . , Pn) as:

ReprShortk(I,P ) = CanonUntie

argmax
P⊆

⋃
P

c(P )≤k·b

∑
i∈N

|Pi∩P |∑
ℓ=0

1

nℓ

 .

The choice of the weight 1/nℓ
in the definition of the rule ensures that the rule will

always select a project proposed by the agents with the smallest number of selected

projects, who still have unselected projects.

The k-equal representation shortlisting rule can be seen as a Thiele rule where

the j-th weight is defined as wj =
∑j

ℓ=0
1/nℓ

. Note that in particular this implies that

the weight is dependent on the number of agents.

Let us explore the computational complexity of the rule now.

Proposition 8.2.3. Let k ∈ N>0. There is no algorithm running in polynomial-time

that computes, given a shortlisting instance I and profile P , the outcome of the k-equal
representation shortlisting rule, unless P = NP.

Proof. Note that for k′ ∈ N>0, if all projects have cost
b/k′, computing the out-

come of the k-equal representation shortlisting rule amounts to finding a commit-

tee of size k′
with a Thiele rule with weights (1, 1/n, 1/n2, . . .) for a multi-winner

election (Janson, 2016). Interestingly, the reduction presented by Aziz, Gaspers,

Gudmundsson, Mackenzie, Mattei andWalsh (2015) to show that proportional ap-

proval voting is NP-complete works for all Thiele rules with decreasing weights.

Since this is the case here, their reduction also applies. 2

8.2.2 Median-Based Shortlisting Rules
One criterion frequently used for shortlisting in real PB processes is the similarity

between the proposals. Since only few projects will be shortlisted, it would be par-

ticularly inefficient to shortlist two very similar ones. In the following we rationalise

this decision process by introducing a shortlisting rule that clusters the projects and

selects representative projects for each cluster.

We assume that projects are embedded in ametric space, the distance between two

projects being given. Using this metric space, we will try and cluster the proposals

submitted during the shortlisting stage.

Formally speaking, we call distance anymetric overP. For a distance δ, letmed(P )
be the the geometric median of P ⊆ P defined by:

med(P ) = CanonUntie

({
{p} | p ∈ argmin

p⋆∈P

∑
p′∈P

δ(p⋆, p′)

})
.
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A partition of P , denoted by V = {V1, . . . , Vp}, is a (k, ℓ)-Voronoï partition with

respect to the distance δ, if the representatives of V cost no more than k · b in total:∑
Vj∈V

c(med(Vj)) ≤ k · b,

and for every distinct Vj, Vj′ ∈ V and every project p ∈ Vj , we have:

▶ δ(p,med(Vj)) ≤ δ(p,med(Vj′)), i.e., every project is in the cluster of its closest

geometric median; and

▶ δ(p,med(Vj)) ≤ ℓ, i.e., p is within distance ℓ of med(Vj).

Thus, the parameter k bounds the total cost of the representatives, and the parameter

ℓ bounds the maximum distance within a cluster. We denote by Vδ,k,ℓ(P ) be the set of
all (k, ℓ)-Voronoï partitions of P with respect to distance δ and parameters k and ℓ.

With all these definitions in mind, we are ready to define the class of k-median

shortlisting rules. As before, k parametrised the maximum cost of the shortlist.

Definition 8.2.4 (k-Median Shortlisting Rules). Let k ∈ N. The k-median shortlist-

ing ruleMedianShortk,δ with respect to the distance δ is such that for every shortlisting
instance I and profile P , we have:

MedianShortk,δ(I,P ) = CanonUntie

 ⋃
Vj∈V

med(Vj) | V ∈ Vδ,k,ℓ⋆
(⋃

P
)


where ℓ⋆ is the smallest ℓ such that Vδ,k,ℓ(
⋃

P ) ̸= ∅.

Note that we chose to minimise ℓ in our definition. One can similarly try to minimise

k, or both ℓ and k, instead.
It is finally worth saying a few words about the computation complexity of these

shortlisting rules. It is straightforward to show that, unless P = NP, there cannot

be an algorithm that runs in polynomial time and that computes the outcome of a

k-median shortlisting rule, for any value of k and suitable distance δ. Indeed, when δ
is the Euclidean distance over R2

, our formulation coincide with the k-median prob-

lem, known to be NP-hard (Kariv and Hakimi, 1979). Several other results have been

published, including approximation algorithms (Kanungo, Mount, Netanyahu, Piatko,

Silverman and Wu, 2004) and fixed-parameters analyses (Cohen-Addad, Gupta, Ku-

mar, Lee and Li, 2019), and can be used to cope with intractability.

8.3 End-to-End Example
We have now introduced all the components of our model. Before getting to the more

technical analysis, let us give an example to clarify the whole setting.
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Consider the following shortlisting instance I = ⟨P, c, b⟩ with nine projects, P =
{p1, . . . p9}. Suppose for simplicity that for every project p ∈ P we have c(p) = 1,
i.e., we are in the unit-cost setting. The budget limit is b = 3. Consider five agents as
described below.

Preferences over
the Projects Awareness set Ci

Ideal Set
Based on Ci

Agent 1 p4 � p5 � p1 � p2 � · · · {p1, p2, p4, p5} {p1, p4, p5}
Agent 2 p1 � p2 � p6 � p4 � · · · {p2, p6} {p2, p6}
Agent 3 p1 � p2 � p7 � p4 � · · · {p2, p7} {p2, p7}
Agent 4 p1 � p3 � p8 � p5 � · · · {p3, p8} {p3, p8}
Agent 5 p1 � p3 � p9 � p5 � · · · {p3, p9} {p3, p9}

Assuming agents are truthful they will propose projects according to their ideal sets,

computed given their awareness sets. The truthful shortlisting profile would then be:

P = ({p1, p4, p5}, {p2, p6}, {p2, p7}, {p3, p8}, {p3, p9}).

Thus, if the nomination shortlisting rule NomShort is used, the shortlist would be P.
In case the 1-equal representation rule ReprShort1 is used, it would be {p1, p2, p3}.

Suppose the set of shortlisted projects is P = P. Agents are now aware of all the

shortlisted projects. They recompute their ideal sets given the new information. Still

assuming that agents behave truthfully, the profile for the allocation stage is:

A = ({p1, p4, p5}, {p1, p2, p6}, {p1, p2, p7}, {p1, p3, p8}, {p1, p3, p9}).

This corresponds to the vector of the ideal sets computed by each agent with respect

toP , and their respective preferences over the projects. With such a profile, if the allo-

cation rule GreedCost is used, the final budget allocation would be π = {p1, p2, p3}.

8.4 Axioms for Shortlisting Rules
We now assess the axiomatic merits of the shortlisting rules we have introduced.

The first axiom we define is non-wastefulness. It requires that no amount of the

budget should be wasted because not enough projects were shortlisted.

Definition 8.4.1 (Non-Wastefulness). A shortlisting rule Short is non-wasteful if for

every shortlisting instance I = ⟨P, c, b⟩ and profile P , one of the following two holds:

c(Short(I,P )) ≥ b or Short(I,P ) =
⋃

P .

This axioms can be interpreted as an efficiency requirement ensuring that no money

is wasted because of the shortlisting rule.

We believe that another important property of a shortlisting rule is that every

agent is represented in the outcome. This is particularly relevant in the shortlisting

stage since any subset of P is theoretically admissible.
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Definition 8.4.2 (Representation Efficiency). For a given shortlisting instance I =
⟨P, c, b⟩ and a given shortlisting profile P , a set of projects P ⊆ P is representatively

dominated if there is a set P ′ ⊆ P with c(P ′) ≤ c(P ), and |P ′ ∩ Pi| ≥ |P ∩ Pi| for all
i ∈ N , with a strict inequality for at least one agent.

A shortlisting rule Short is representatively efficient if for every shortlisting in-

stance I = ⟨P, c, b⟩, and every shortlisting profile P , Short(I,P ) is not representa-
tively dominated by any other subset of projects.

A set of projectsP is thus representatively dominated by another oneP ′
ifP ′

does not

cost more than P , and, for every agent, at least as many projects that they submitted

have been selected in P ′
as in P , and strictly more for at least one of them.

This axiom provides guarantees that the shortlisting rule is aiming to achieve

some kind of representation. Note however that the guarantee is not very strong and

can lead to large disparities between the agents: some could have all their proposals

shortlisted, and some others none, in a shortlist that is still representatively efficient.

These are the two axioms with respect to which we will analyse the shortlisting

rules. This analysis is presented below.

We will start with the nomination shortlisting rule, that trivially satisfies both

non-wastefulness and representation efficiency.

Proposition 8.4.3. The nomination shortlisting rule is non-wasteful and representa-

tively efficient.

Proof. With the nomination shortlisting rule NomShort, for every shortlisting

instance I and profile P , we have NomShort(I,P ) =
⋃
P . Thus, the second

condition of non-wastefulness is always trivially satisfied.

Given that every project is shortlisted, the shortlist NomShort(I,P ) cannot
be representatively dominated. NomShort is thus representatively efficient. 2

We now move to the k-equal representation shortlisting rule, showing that it is

both non-wasteful and representatively efficient, as long as k is at least 2.

Proposition 8.4.4. For every k ≥ 2, the k-equal representation shortlisting rule is non-
wasteful, but it is not for k = 1. Moreover, for every k ≥ 1, the k-equal representation
shortlisting rule is representatively efficient.

Proof. Let us first prove that for every k ≥ 2, the k-equal representation short-

listing rule Short is non-wasteful. Suppose it is not, then, there would exist a

shortlisting instance I = ⟨P , c, b⟩ and a shortlisting profile P such that:

c(ReprShortk(I,P )) < b and ReprShortk(I,P ) ̸=
⋃

P .
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From this, we know that there exists a project p ∈
⋃
P that has not been short-

listed, i.e., such that p /∈ ReprShortk(I,P ). Thus, the representation score of

the set ReprShortk(I,P ) ∪ {p} is higher than that of Short(I,P ). Moreover,

for any k ≥ 2, the facts that c(p) ≤ b and c(ReprShortk(I,P )) < b together
imply that:

c(Short(I,P ) ∪ {p}) ≤ 2 · b ≤ k · b.

Overall, if such a project p exists, then ReprShortk(I,P ) ∪ {p} is an admissible

outcome of ReprShortk with a higher total weight than ReprShortk(I,P ). This
contradicts the definition of ReprShortk, and thus proves that it is non-wasteful.

Note that for k = 1, the definition of ReprShortk implies that the cost of the

shortlist will not be more than b (Definition 8.2.2), and non-wastefulness requires

the same cost to be at least b (Definition 8.4.1). Since projects are indivisible, it is

clearly not always possible to shortlist a set of projects of cost exactly b.

We now show that for every k ≥ 1, the k-equal representation shortlisting

rule is representatively efficient. The proof is actually trivial, it is immediately

derived from the choice of the weight 1/n in the definition of the rule. Indeed,

since 1/n > 0, a representatively dominated shortlist would always have a lower

total score and would thus not be selected. 2

Now comes the turn of the median shortlisting rules. We prove that these rules

are non-wasteful, but not representatively efficient.

Proposition 8.4.5. Let δ be an arbitrary distance over P. The following facts hold:

▶ For every k ≥ 2, the shortlisting rule MedianShortk,δ is non-wasteful;

▶ There exists no k ∈ N>0 such that MedianShortk,δ is representatively efficient.

Proof. The proof that for k ≥ 2, the MedianShortk,δ is non-wasteful is similar

to that of Proposition 8.4.4. To see why, note that for every shortlisting instance

I and profileP , there will never be an unselected project p ∈
⋃
P \Short(I,P )

such that c(Short(I,P ) ∪ {p}) ≤ k · b. Indeed, if such a p exists, selecting it

would always lead to a smaller within-cluster distance, simply by including p as

its own cluster (since by the definition of a metric, the distance between p and any
other project p′ ∈ P\{p} is non-zero). We can thus reach the same contradiction

that we reached in the proof of Proposition 8.4.4.

It is also easy to see that MedianShortk,δ is not efficiently representative. We

do not provide a formal proof here as the correctness of the statement should be

intuitively clear. It is derived from the fact that for any shortlisting profiles P
and P ′

, such that

⋃
P =

⋃
P ′

, the outcome of MedianShortk,δ would be the
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same. This means that MedianShortk,δ is completely oblivious of the identity of

the agents, making it fail representation efficiency. 2

The axiomatic analysis of the shortlisting rules is now complete. We will move

on to the next focus point of this chapter: the interactions between the two stages.

8.5 First-Stage Strategy-Proofness
We now turn to the analysis of strategic interactions during the shortlisting stage.

Remember our motivational example in the introduction, we wondered whether So-

phie should propose her project about the fountain or not, because of its impact on

the final decision, taken during the second stage. We have hinted at reasons why it

would actually be better for her not to. Throughout this section, we will study such

strategic behaviour and investigate whether it can be prevented or not.

One of the main challenges to formalise the concept of strategic behaviour during

the first stage, is that agents actually reason about the outcome of the process—the

final budget allocation—that is only decided one stage later. Let us then take the time

to discuss the information available to an agent willing to strategise, themanipulator.

In the classical voting framework (Zwicker, 2016), it is assumed that the potential

manipulator has access to all the other ballots before submitting their own. In our

setting, when considering a manipulator choosing which proposal to submit during

the first stage, the same assumption is reasonable with respect to the proposals sub-

mitted by the other agents during the first stage, but not with respect to the ballots

the other agents are going to submit during the second stage, only after the shortlist

will have been determined. Indeed, the set of actions for the second stage depends on

the proposal of the manipulator in the first stage. We thus need to reason about the

outcome of the second stage given the profile that the manipulator expects to occur.

We explore three possibilities. In the first two cases, a manipulator in the first

stage is unsure what will happen during the second stage, but assumes that either the

worst scenario will be realised (pessimistic manipulation) or the best one (optimistic

manipulation). In the third case, they know the other agents’ true preferences and

trusts they will vote accordingly (anticipatory manipulation).

Because there are no reasons to assume that a potential manipulator would only

behave strategically in the first stage, and not in the second stage, we also need the

concept of a best response in the second stage. For that, we introduce some further

notation. For a given allocation rule F, allocation instance I = ⟨P , c, b⟩, profile A,

and agent i ∈ N , let A⋆
i (I,A, F) be the best response of i to A, defined such that:

A⋆
i (I,A, F) = CanonUntie({A′

i ∈ P | F(I, (A−i, A
′
i)) = CanonUntie(P⋆)}),

where P⋆ = undom(≿topi(P), {F(I, (A−i, P )) | P ⊆ P}) and ≿ is generated given

an arbitrary completion principle.
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Let us unravel a bit this definition. ≿topi(P) is the weak order over subsets of

projects that is induced by the completion principle in use, based on topi(P), the
ideal set of agent i. Then, P⋆

is the set of undominated budget allocations returned

by the allocation rule F, for any approval ballot P , agent i can submit in the second

stage, where domination is defined with respect to≿topi(P). Because we need a single

outcome, we break ties between the, potentially, several such undominated budget

allocation. Then, A⋆
i (I,A, F) is the ballot that achieved this aforementioned budget

allocation and that is selected by the tie-breaking rule (since the relevant may be

reachable via several ballots). The intuition is that A⋆
i (I,A, F) is the best ballot agent

i can submit in the second stage given I , A, and F , and our assumptions on the

preferences of the agents. When clear from the context, we omit I ,A, and/or F from

the notation A⋆
i (I,A, F).

We are now ready to properly formalise all we described above. This is the aim of

the following definition.

Definition 8.5.1 (Successful Manipulation). Let Short be a shortlisting rule, F an al-

location rule, I1 = ⟨P, c, b⟩ a shortlisting instance, P a shortlisting profile, and P ′
i ⊆ P

an alternative proposal for agent i ∈ N . Consider the shortlists P = Short(I1,P ) and
P ′ = Short(I1, (P−i, P

′
i )), determining the allocation instances I2 = ⟨P , c, b⟩ and

I ′2 = ⟨P ′, c, b⟩.
For any two profiles, A for P and A′

for P ′
, we simplify the notation by defining

the two following abbreviations:

F ⋆(I2,A) = F (I2, (A−i, A
⋆
i (I2,A))),

F ⋆(I ′2,A
′) = F (I ′2, (A

′
−i, A

⋆
i (I

′
2,A

′))).

To clarify, F ⋆(I2,A) is thus the final budget allocation for the instance I2 and profileA
in which agent i is playing their best response. The case of F ⋆(I ′2,A

′) is analogous, for
the instance I ′2 and profileA

′
.

Then, for a given completion principle generating ≿topi(P∪P ′), we say that:

▶ P ′
i is a successful pessimistic manipulation if, for all profiles A on P and A′

on

P ′
, it is the case that F ⋆(I ′2,A

′) ≿topi(P∪P ′) F
⋆(I2,A), with a strict preference

for at least one pair (A,A′).

▶ P ′
i is a successful optimistic manipulation if, for at least one profileA on P and

one profile A′
on P ′

, it is the case that F ⋆(I ′2,A
′) ≻topi(P∪P ′) F

⋆(I2,A).

▶ P ′
i is a successful anticipatory manipulation if, for the two profilesA = top(P)

and A′ = top(P ′), it is the case that F ⋆(I ′2,A
′) ≻topi(P∪P ′) F

⋆(I2,A).

Thus, a pessimist is pessimistic with respect to the advantages they can gain from

manipulating: assuming the best if she is truthful and the worst otherwise. For op-

timists it is the other way around. Finally, an anticipatory manipulator knows ev-

eryone’s preferences on both P and P ′
and uses them to predict their votes for the

second stage.
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What information is available

to the manipulator i ∈ N ?

Only their own

awareness set Ci

R-FSSP

Their awareness set Ci and

the proposals of the other agents

U-FSSP

What is the manipulator

anticipating for the allocation stage?

The worst

The best

The others to

behave truthfully

R-FSSP-P

R-FSSP-O

R-FSSP-A

U-FSSP-P

U-FSSP-O

U-FSSP-A

Figure 8.5.1: Explanation of first-stage strategy-proofness concepts.

We are looking for rules that do not allow for successful manipulation, i.e., that are

first-stage strategy-proof (FSSP). We distinguish two cases: either the manipulator is

restricted to their awareness set (R-FSSP) or they can also propose any of the projects

proposed by others (during the shortlisting stage), i.e., they are unrestricted (U-FSSP).

Definition 8.5.2 (First-Stage Strategy-Proofness). For a given completion principle, a

pair ⟨Short, F⟩ consisting of a shortlisting rule Short and an allocation rule F is said

to be restricted-FSSP (R-FSSP) with respect to a given type of manipulation if for every

shortlisting instance ⟨P, c, b⟩, every awareness profile C = (C1, . . . , Cn), every short-

listing profile P = (P1, . . . , Pn) where Pi′ ⊆ Ci′ for all i
′ ∈ N , and every agent

i ∈ N , there is no P ′
i ⊆ Ci such that submitting P ′

i instead of topi(Ci) is a successful

manipulation for i.
In case P ′

i ⊆ Ci ∪
⋃

P and we consider topi(Ci ∪
⋃
P ) instead of topi(Ci) in the

above, we say that ⟨Short, F⟩ is unrestricted-FSSP (U-FSSP).

Thus, in the unrestricted case, agents are assumed to first gain access to everyone’s

proposals and then decide whether or not to vote truthfully.

We introduce some further abbreviations. Let FSSP-P stand for FSSP with respect

to pessimistic manipulation attempts, FSSP-O for FSSP with respect to optimistic ma-

nipulation attempts, and FSSP-A for FSSP with respect to anticipatory manipulation

attempts. We have thus introduced six different FSSP concepts in total. A simplified

overview is given in Figure 8.5.1 to clarify everything.
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It should be clear, at least from the text around the definitions that there are some

links between the different FSSP concepts we have introduced. The following result

summarises how the different notions introduced relate to each other, where X im-

plying X′
means that any pair ⟨Short, F⟩ satisfying X also satisfies X′

.

Proposition 8.5.3. The following implications hold for any given completion principle:

▶ R-FSSP-O implies R-FSSP-A and R-FSSP-P.

▶ U-FSSP-O implies U-FSSP-A and U-FSSP-P.

▶ R-FSSP implies U-FSSP for all types of manipulation.

Proof. The first two claims are immediately derived from the relevant definitions.

To see that the last of these claims is also true, observe that U-FSSP is a special

case of R-FSSP, namely when the manipulator can conceive of all the proposed

projects, i.e., when Ci =
⋃

P . 2

Interestingly, the link between pessimistic and anticipatorymanipulations is not clear.

Although if a successful pessimistic manipulation exists it ensures that an anticipative

manipulation would lead to a weakly better outcome, nothing guarantees that this

outcome would be strictly better for the manipulator.

8.5.1 Awareness-Restricted Manipulation
We start by proving an impossibility theorem stating that no pair of reasonable rules

can be first-stage strategy-proof when manipulators are restricted to their awareness

sets. By “reasonable rule” we mean a non-wasteful shortlisting rule, followed by a

determined allocation rule.

Definition 8.5.4 (Determined). An allocation rule F is determined if, for every alloca-

tion instance I = ⟨P , c, b⟩, and every profile A, we have F(I,A) ̸= ∅.

Theorem 8.5.5. Every pair ⟨Short, F⟩ of a non-wasteful shortlisting rule Short and

a determined allocation rule F is neither R-FSSP-P nor R-FSSP-A (and thus also not R-

FSSP-O), for any completion principle that is top-first.

Proof. We provide a proof for R-FSSP-P, but the same proof also goes through

for R-FSSP-A. The claim for R-FSSP-O then follows from Proposition 8.5.3.

Let I = ⟨P, c, b⟩ be the shortlisting instance with two conceivable projects p1
and p2, both of cost 1, and a budget limit b = 1. Suppose there are two agents.

The preferences of the first agent are such that p2 �1 p1, their awareness set is
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C1 = {p1}. For the second agent, we have p1�2 p2, and C2 = {p2}. Overall, each
agent is aware only of the project they like less. The truthful shortlisting profile

is then P = ({p1}, {p2}).
Assuming that Short is non-wasteful, we know that |Short(I,P )| ≥ 1.

There are thus three possible cases for Short(I,P ): to shortlist either just p1,
just p2, or both p1 and p2. Let us go through each of them independently.

In case Short(I,P ) = {p1}, whichever way the agents vote in the allocation

stage, as F is assumed to be determined, the final budget allocation must be {p1}.
Now, if agent 1 manipulates by not proposing any project during the first stage,

only project {p2} will get shortlisted (and this has to happen since Short is non-

wasteful). In that case, {p2} will also be the final budget allocation, given that

F is determined. Since {p2} is the ideal point of agent 1 for the set of projects

{p1, p2}, they would strictly prefer {p2} over {p1} for any completion principle

that is top-first. So agent 1 has an incentive to pessimistically manipulate.

The case of Short(I,P ) = {p2} is perfectly analogous to the previous one:

the final budget allocation under truthful behaviour would be {p2}, but then
agent 2 has an incentive to pessimisticallymanipulate by not submitting p2 during
the first stage so that the final outcome would be {p1}.

Finally, consider the case Short(I,P ) = {p1, p2}. Suppose the final budget
allocation is {p1} in case both agents vote truthfully. Then, just as in the first

case, agent 1 has an incentive to submit an empty set of proposals instead, as that

guarantees a final budget allocation of {p2}. In the analogous case where the final
budget allocation is {p2}, agent 2 would pessimistically manipulate.

Overall, there always is an agent who has an incentive to pessimistically ma-

nipulate. ⟨Short, F⟩ is thus not R-FSSP-P. 2

Note that the scenario used in the proof shows that unrestricted-FSSP does not imply

restricted-FSSP. Indeed, under U-FSSP, no agent would have an incentive to manipu-

late in this scenario, as they would have all the information they need to submit an

optimal truthful proposal.

Regarding the specific shortlisting rules we have introduced, we can now derive

the following corollary.

Corollary 8.5.6. Let F be an allocation rule that is exhaustive, k ≥ 2, and δ an arbi-

trary distance over P. Then, none of the pairs ⟨ReprShortk, F⟩, ⟨MedianShortk,δ⟩ or
⟨NomShort, F⟩ are R-FSSP-P, R-FSSP-A, or R-FSSP-O, for any completion principle that

is top-first.

Proof. The proof is immediately derived from Theorem 8.5.5 and the fact that the

relevant shortlisting rules are non-wasteful (Propositions 8.4.3, 8.4.4 and 8.4.5). 2
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8.5.2 Unrestricted Manipulation
We now turn to the case where the manipulator gains awareness by looking at the

projects already submitted for the first stage.

Let us start with the nomination rule. We will show that it is immune to pes-

simistic manipulation when used with allocation rules that are unanimous, a new

axiom we introduce below.

Definition 8.5.7 (Unanimity). An allocation rule F is unanimous if, for every alloca-

tion instance I = ⟨P , c, b⟩ and every feasible subset of projects A ∈ Feas(I), it is the
case that for the profile A = (A, . . . , A), we have:

F(I,A) ⊇ A.

This axioms states that if every agent submits the same feasible ballot, then the set of

projects in this ballot should be part of the outcome. This is a rather weak axiom and

every allocation rule we have defined satisfies it.
63

Let us now state our result for the nomination shortlisting rule.

Proposition 8.5.8. The pair ⟨NomShort, F⟩where F is an allocation rule that is unan-
imous is U-FSSP-P for every completion principle that is top-first.

Proof. Let I = ⟨P, c, b⟩ be a shortlisting instance, C an awareness profile, andP a

shortlisting profile. Consider an agent i⋆ ∈ N and let Pi⋆ = topi⋆(Ci⋆ ∪
⋃
P−i⋆).

DenoteP = NomShort(I, (P−i⋆ , Pi⋆)), and observe that Pi⋆ ⊆ P because of the

definition of NomShort. Moreover, from the definition of NomShort, we know

that if agent i⋆ submits P ′
i⋆ instead of Pi⋆ , with P

′
i⋆ ̸= Pi⋆ the shortlist will become

P ′ = P ′
i⋆ ∪

(⋃
i∈N\{i⋆} Pi

)
. This implies that:

P ∩ Pi⋆ ⊇ P ′ ∩ Pi⋆ , (8.1)

keeping in mind that Pi⋆ is the ideal set of i⋆ for Ci⋆ ∪
⋃
P . Thus, under

(P−i⋆ , P
′
i⋆), it cannot be that more projects from topi⋆(Ci⋆ ∪

⋃
P ) are shortlisted

than under P .

We focus on the second stage now. Consider first the profile A in which all

agents submit topi⋆(P). Clearly, submitting topi⋆(P) is a best response for i⋆ in
this case, so A⋆

i⋆(⟨P , c, b⟩ ,A)) = topi⋆(P). Since F is unanimous, we thus have

F(⟨P , c, b⟩ ,A) = topi⋆(P). Now, since P ∪ P ′ ⊆ Ci⋆ ∪
⋃
P and Pi⋆ ⊆ P , we

know that:

topi⋆(P ∪ P ′) = Pi⋆ = topi⋆(P).

63
Note how this definition differs from that of project-wise unanimity we introduced in Defini-

tion 4.4.14. In particular, unanimity is significantly weaker than the latter since it applies only to

unanimous profiles.
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Given that we assumed the completion principle to be top-first, it is clear that no

budget allocation π ∈ Feas(⟨P ′, c, b⟩) will be strictly preferred to F(⟨P , c, b⟩ ,A)
by i⋆. This directly implies that submitting P ′

i⋆ cannot be a successful pessimistic

manipulation for i⋆. 2

Because anticipative manipulation is defined for one very specific profile of the

second stage, it is harder to get general results. Still, we can show that any pair

consisting of the nomination shortlisting rule NomShort and one of the allocation

rules we have introduced satisfy U-FSSP-A.

Proposition 8.5.9. The pair ⟨NomShort, F⟩ is not U-FSSP-A, and thus not U-FSSP-O,
when F is one of GreedCard, GreedCost, MaxCard, MaxCost, SeqPhrag, Max-

iminSupp, MES[satcard ], or MES[satcost], for every completion principle that satisfies

cost-neutral monotonicity.

Proof. Recall our initial example presented in Section 8.3. In case agents submit

their proposal for the first stage truthfully, the shortlist under NomShort is P =
P = {p1, . . . , p9}. In this case, the truthful profile for the allocation stage is:

A = ({p1, p4, p5}, {p1, p2, p6}, {p1, p2, p7}, {p1, p3, p8}, {p1, p3, p9}).

For the allocation instance I = ⟨P , c, b⟩, the different rules we are considering

produce the following outcomes:

GreedCard(I,A) = GreedCost(I,A) = MaxCard(I,A) = MaxCost(I,A)

= SeqPhrag(I,A) = MaximinSupp(I,A) = {p1, p2, p3},

MES[satcard ](I,A) = MES[satcost ](I,A) = {p1}.

Suppose now that agent 1 submits P ′
1 = {p4, p5} instead of P1 = {p1, p4, p5}

in the shortlisting stage. The shortlist computed by NomShort then becomes

P ′ = P \ {p1}. After the agents have recomputed their ideal set, and assuming

that they behave truthfully, the profile in the second stage would then be:

A′ = ({p4, p5}, {p2, p4, p6}, {p2, p4, p7}, {p3, p5, p8}, {p3, p5, p9}).

For the new allocation instance I ′ = ⟨P ′, c, b⟩, the different rules we are consid-
ering produce the following outcomes:

GreedCard(I,A′) = GreedCost(I,A′) = MaxCard(I,A′)

= MaxCost(I,A′) = SeqPhrag(I,A′)

= MaximinSupp(I,A′) = {p2, p4, p5},

MES[satcard ](I,A′) = MES[satcost ](I,A′) = {p4, p5}.
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Let us now check that P ′
1 is a successful anticipative manipulation for agent 1.

Their ideal set across the two scenarios is top1(P ∪ P ′) = {p1, p4, p5}. Thus

in the first case only p1 is in the intersection of the outcomes of the rules with

top1(P ∪ P ′). In the second case—when agent 1 submits P ′
1—this intersection

includes both p4 and p5. Given that we assumed the completion principle be cost-

neutral monotonic, the anticipative manipulation of agent 1 is thus successful.

The statement for U-FSSP-A then follows from Proposition 8.5.3. 2

Moving on to other shortlisting rules, we can show that they are not immune to

manipulation. We will prove that this is the case when paired with either unanimous

or determined allocation rules.

We first, prove this for the k-equal-representation shortlisting rule.

Proposition 8.5.10. For all k ∈ N>0, the pair ⟨ReprShortk, F⟩ where F is a unan-

imous allocation rule, is neither U-FSSP-P nor U-FSSP-O, for any completion principle

that satisfies top-necessity and top-sufficiency.

Moreover, if F is determined, then the pair ⟨ReprShort1, F⟩ is not U-FSSP-A for any

completion principle that satisfies top-sufficiency.

Proof. We first prove the claim for k = 1 and then explain how to generalise to

any k ∈ N>0 (only for U-FSSP-P and U-FSSP-O). Let I = ⟨P, c, b⟩ be a shortlisting
instance with P = {p1, . . . p4}, c(p2) = 2, c(p) = 1 for all p ∈ P\{p2}, and b = 2.
We consider three agents with the following preferences.

Preferences over
the Projects Awareness set Ci

Ideal Set
Based on Ci

Agent 1 p3 � p4 � p2 � p1 {p1, p2, p3, p4} {p3, p4}
Agent 2 p1 � p2 � p3 � p4 {p1, p2} {p1, p3}
Agent 3 p2 � p1 � p3 � p4 {p2} {p2}

Consider the 1-equal-representation shortlisting rule. Under the truthful profile

P = ({p3, p4}, {p1, p2}, {p2}), the shortlist would be P = {p2}.
Assume now that agent 1 submits {p1, p3} instead of {p3, p4}, leading to the

shortlisting profile P ′ = ({p3, p4}). Then, because of the tie-breaking mecha-

nism, the outcome of the first stage becomes P ′ = {p1, p3}.
The ideal set of agent 1 across both scenarios is top1(P ∪P ′) = {p1, p3} = P ′

which implies that top1(P ∪P ′)∩P = ∅. Thus, we have the following two facts:

▶ π ∩ top1(P ∪ P ′) = ∅ for every π ∈ Feas(⟨P , c, b⟩);

▶ π′ ∩ top1(P ∪ P ′) ̸= ∅ for every π′ ∈ Feas(⟨P ′, c, b⟩) such that π′ ̸= ∅.
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So every budget allocation in Feas(⟨P ′, c, b⟩) that is non-empty will be strictly

preferred by agent 1 to all of the ones in Feas(⟨P , c, b⟩) (since the completion

principle is top-sufficient). Moreover, agent 1 is indifferent between the empty

budget allocation and any one from Feas(⟨P ′, c, b⟩) (since the completion prin-

ciple is top-necessary). Given that F is unanimous, any budget allocation from

Feas(⟨P ′, c, b⟩) can be achieved (by the corresponding unanimous profile). This

means that agent 1’s manipulation is pessimistically successful.

In case F is determined, for any profile A for the allocation stage, we have

that F(⟨P , c, b⟩ ,A)∩ top1(P ∪P ′) ̸= ∅. This proves that agent 1’s manipulation

would also a successful anticipative manipulation, given a completion principle

that is top-sufficient.

We can generalise this to all k > 1 for the case of U-FSSP-P. To do so, add

3(k− 1) agents in groups of 3. Each group can conceive and approve of two new

projects. It is easy to check that all the new projects will always be shortlisted, so

we are back to the scenario above.

Note that we only talked about U-FSSP-P and U-FSSP-A. The result for U-

FSSP-O is immediately derived from Proposition 8.5.3. 2

We finally consider the case of the median-based shortlisting rules.

Proposition 8.5.11. Let δ be the Euclidean distance over R2
, for all k ∈ N>0, the pair

⟨MedianShortk,δ, F⟩, where F is a unanimous allocation rule, is neither U-FSSP-P nor

U-FSSP-O, for any completion principle that satisfies top-necessity and top-sufficiency.

Moreover, if F is determined, then the pair ⟨MedianShort1,δ, F⟩ is not U-FSSP-A, for
any completion principle that satisfies top-sufficiency.

Proof. We first prove the claim for k = 1 and then explain how to generalise

it to all k ∈ N>0 (only for U-FSSP-P and U-FSSP-O). Consider the shortlisting

instance I = ⟨P, c, b⟩ with P = {p1, . . . , p6}, all projects having cost 1, and a

budget limit of b = 3. Suppose the distance δ is the usual distance in the plane,

with the projects being positioned as in the figure below.

•p1

•p2

•p3 •p4 • p5

• p6

• p7

2

2

2

2/
√ 3 √

17

4

4

1

1

We assume that two agents are involved in the process. The first agent is such

that p1�1p2�1p3�1p5�1 . . . andC1 = {p1, p2, p3, p5}. The second agent is such
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that p4 �2 p6 �2 p7 �2 . . . and C2 = {p4, p6, p7}. The truthful shortlisting profile
is then P = ({p1, p2, p3}, {p4, p6, p7}). All projects have thus been submitted

to the first stage, except for p5. The shortlisting rule MedianShort1,δ would

thus consider the following three clusters: {p1, p2, p3, p4}, {p6}, and {p7}, and
the shortlist would be P = {p4, p6, p7}.

Now, assume that agent 1 submits {p1, p2, p5} instead of {p1, p2, p3}, leading
to the shortlisting profile P ′ = ({p1, p2, p5}, {p4, p6, p7}). Then, the clusters will
be {p1}, {p2, p4}, and {p5, p6, p7} (for a suitable tie-breaking between Voronoï

partitions). The shortlist would then be P ′ = {p1, p2, p5}.
Interestingly, we have top1(P ∪ P ′) = {p1, p2, p5} = P ′

. We have thus

reached a similar construction as the one in the proof of Proposition 8.5.10. Every

non-empty budget allocation in Feas(⟨P ′, c, b⟩) is strictly preferred by agent 1 to

any budget allocation in Feas(⟨P , c, b⟩). The empty budget allocation is weakly

preferred by agent 1 to any budget allocation in Feas(⟨P , c, b⟩). Given that F is

unanimous, agent 1’smanipulation is pessimistically successful. The same applies

in the case of U-FSSP-A when F is determined.

We can extend this to all k > 1 for the case of U-FSSP-P. To do so, add k − 1
agents, all knowing and approving of three new projects of cost 1. All the new

projects are placed uniformly on a circle with centre p4 and a radius large enough
so that all new projects will be in their own cluster. Then all the new projects will

be shortlisted and we are back to the original case for k = 1.
Note that we only talked about U-FSSP-P and U-FSSP-P. The result for U-

FSSP-O is immediately derived from Proposition 8.5.3. 2

Note that the previous statement can be generalised to many distances.

Interestingly both of the above statements are about unrestricted FSSP, though

the successful manipulations presented in the proofs only make use of the awareness

set of the manipulator. That is because in both proofs, the manipulator is initially

aware of their top projects and manipulates by restraining from submitting some.

This hints at some potentially interesting refinements of the FSSP axioms that can

be worth studying. For instance, by restraining the type of ballots a manipulator can

submit, or said differently, the type of strategic behaviours they can engage into.

8.6 Summary
The aim of this chapter was to capture more accurately the different stages that occur

in real-life PB processes. Starting from the standard model of PB, we introduced a

preliminary stage in which voters can submit proposals that will then be shortlisted

to form an allocation instance, i.e., an instance of the standard model. We explored

two lines of work within this end-to-end model: one that relates to the creation of the

shortlist, and another one that relates to the interactions between the two stages.
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On the shortlisting side, we presented three different shortlisting rules, tailored to

fulfil different objectives for the shortlist. The three main objectives we identified are

the following: reducing the number of shortlisted projects, representing all the agents

in the shortlist, and, avoiding having overly similar projects in the shortlist. The

shortlisting rules ReprShort and MedianShort performs well on the first objective.

They are also good candidates for the second and third objective, respectively. They

also enjoy interesting axiomatic properties, as we have seen.

On the interaction side, we focused on the strategic behaviour that can emerge

during the shortlisting stage, due to the two-stage nature of the process. Taking our

time to reflect on what exactly it would mean for an agent—who has in mind the bud-

get allocation determined in the second stage–to engage in strategic behaviour dur-

ing the first stage, we introduced six notions of first-stage strategy-proofness. For each

of the shortlisting rules we introduced, we then successively studied under which

conditions they are immune to manipulation, or not. Our results are summarised in

Table 8.6.1. The main take-home message here is that, overall, shortlisting rules are

not immune to manipulation, and that there can always be an incentive for an agent

not to propose to build a fountain in the centre of the main square.
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⟨NomShort, F⟩ ⟨ReprShortk, F⟩ ⟨MedianShortk,δ, F⟩

R-FSSP-P, R-FSSP-A,

and R-FSSP-O

✗ ✗ (k ≥ 2) ✗ (k ≥ 2)

Result Statement Theorem 8.5.5 Theorem 8.5.5 Theorem 8.5.5

Condition on F Determined Determined Determined

Condition on the

Completion Principle

Top-First Top-First Top-First

U-FSSP-P ✓ ✗ (k ≥ 1) ✗ (k ≥ 1)

Result Statement Proposition 8.5.8 Proposition 8.5.10 Proposition 8.5.11

Condition on F Unanimous

Unanimous or

Determined

Unanimous or

Determined

Condition on the

Completion Principle

Top-First

Top-Necessity and

Top-Sufficiency

Top-Necessity and

Top-Sufficiency

U-FSSP-O ✗ ✗ (k ≥ 1) ✗ (k ≥ 1)

Result Statement Proposition 8.5.9 Proposition 8.5.10 Proposition 8.5.11

Condition on F

Only for

Specific Rules

Unanimous or

Determined

Unanimous or

Determined

Condition on the

Completion Principle

Cost-Neutral

Monotonicity

Top-Necessity and

Top-Sufficiency

Top-Necessity and

Top-Sufficiency

U-FSSP-A ✗ ✗ (k = 1) ✗ (k = 1)

Result Statement Proposition 8.5.9 Proposition 8.5.10 Proposition 8.5.11

Condition on F

Only for

Specific Rules

Determined Determined

Condition on the

Completion Principle

Cost-Neutral

Monotonicity

Top-Sufficiency Top-Sufficiency

Table 8.6.1: Summary of the results on first-stage strategy-proofness for different

shortlisting rules. For each FSSP axiom (or set of axioms), we indicate whether it is

satisfied or not in general, and under which conditions on the allocation rule F and

the completion principle the results applies. F is an arbitrary PB rule, and δ is the

Euclidean distance over R2
.
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Chapter 9

Conclusion

The goal of this thesis was to address the problem of the aggregation of preferences

in the context of participatory budgeting. We specifically emphasised the need for a

formal approach that accounts for the wide variety of PB processes that are imple-

mented throughout the world. We adopted a multi-faceted approach to achieve this,

and saw a multitude of ways to assess the merits of aggregation rules for PB.

We will now present a recollection of all we discussed throughout the thesis (Sec-

tion 9.1) and will then present a more general concluding discussion (Section 9.2).

9.1 Closing out the Thesis

After introducing the thesis, we directly dived into the formal analysis of PB. The first

step was to set the scene. We did so by introducing the standard formal model of PB

in Chapter 2. We then provided a long and comprehensive survey of the literature

on PB in Chapter 3. This allowed us to precisely position the work presented in this

thesis with regard to the field of research as a whole. Thus prepared, we jumped into

the technical contributions of the thesis.

We started with Part Two where we presented investigations of the standard

model of PB using non-standard methods.

In Chapter 4 we presented an analysis of fairness in PB in terms of equality of re-

sources, a new approach radically different from the usual satisfaction-based fairness

theory that has been developed in the literature. Doing so allowed us to circumvent

the drawbacks of satisfaction-based fairness—notably the difficulty of accessing the

satisfaction of a voter—while still presenting a viable approach to fairness in PB. The

results indeed suggest that several of the measures of fairness we introduced are of

interest and deserve further investigation. On top of that, we were able to find rules—

245



246 Chapter 9. Conclusion

such asMES[satcost]—that seem to performwell both in terms of equality of resources

and in terms of satisfaction.

We continued our analysis of the standard model of PB in Chapter 5 where we

adopted an epistemic view of the aggregation problem of PB. There, we reviewed

the epistemic merits of different PB rules in terms of whether they could be seen

as maximum likelihood estimators or not. Our analysis demonstrated that the most

prominent PB rules are not good epistemic aggregators in that sense. At the same

time, we were able to provide two rules that are maximum likelihood estimators,

thus presenting a more positive picture.

Then came Part Three where we investigated different variations of the standard

model of PB.

We started with Chapter 6 where we looked into a model of multi-constraint PB.

The problem we faced there was to find PB rules that could easily accommodate ad-

ditional constraints, i.e., that would be robust to small variations of the model. To do

so, we proposed to embed PB into judgment aggregation (JA) and to use JA rules to

handle the aggregation. The main obstacle when using this approach is the potential

blow-up in computational complexity. Focusing first on that point, we presented sev-

eral specific ways of translating PB instances into JA instances that enabled us to use

this approach efficiently. Specifically, they ensured that we could efficiently use JA

rules for the aggregation problem of PB in several cases: PB with multiple resources,

PB with dependencies between the projects, and PB with types and quotas. We then

turned to the assessment of the qualities of JA rules when used for PB purposes. We

investigated their merits with respect to the typical monotonicity axioms that have

been introduced in the literature on PB. We showed that JA rules fared similarly to

the standard PB rules with respect to these axioms.

In Chapter 7 we adopted a long-term perspective for our study of PB. We in-

vestigated how to defined and enforce fairness when considering not only one-shot

instances, but sequences of instances. Focusing on types of voters, we looked for

combinations of evaluation functions and fairness criteria that would be satisfiable.

We showed that perfect fairness cannot always be achieved, but that one could ei-

ther optimise for fairness—which comes at a high computational cost—or converge

towards fairness in the long run—which can only be guaranteed for limited numbers

of agents or types.

Our last technical chapter, Chapter 8, concluded Part Three. In this chapter we

studied an end-to-end model for PB, that is, a model accounting for both the stage

during which voters submit proposals—the shortlisting stage—and the stage during

which they vote on the shortlisted proposals—the allocation stage. Studying this

model in a logical order, we started with the shortlisting stage. We introduced three

shortlisting rules, designed to implement different objectives that we identified for

this stage: reducing the number of proposals, giving everyone a chance to voice their

wishes, and avoiding shortlisting similar proposals. We then explored the model and

its two stages as a whole. We zoomed in on the problem of the incentives of the
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agents, with a special point of focus on the interactions between the two stages. Our

main findings indicate that it is hard to prevent agents from behaving strategically

during the shortlisting stage.

Getting back to the main goal of the thesis, we wondered how to solve the aggre-

gation problems in PB scenarios. Throughout the thesis, we have seen many ways

of doing so, though we were not able to single out a specific method that fared well

against all the benchmarks we studied. The main added value of this thesis is that it

lays the ground for a multi-faceted analysis of PB rules through the numerous new

takes on PB rules we developed. Many new perspectives for the formal study of PB

have thus been opened up.

9.2 Opening up New Perspectives

As for much academic work, this thesis opens up many more research questions than

it answers. I am not interested in providing a list of open questions, or future direc-

tions directly derived from the content of the thesis here. I trust the interested reader

to be able to devise these themselves. Overall, each chapter presented an approach

to PB that had never been investigated before; there are thus plentiful interesting di-

rections to deepen this work. Instead, I want to use this last section of the thesis to

discuss broader themes that I believe deserve to be explored in more depth.

Investigating ballot formats. Throughout this thesis we have only focused on

the case of PB with approval ballots. These ballots unfortunately suffer an impor-

tant drawback: their limited expressivity for a framework in which alternatives have

different cost. As we have seen in the part of the survey dedicated to ballot formats

(Section 3.1), other kinds of ballots have been considered in the literature, ballots that

do not suffer this drawback. Still, these other ballot formats are either under-studied,

or suffer other drawbacks in terms of ease of use. There is thus a need for devising

new ballot formats achieving a balance between expressivity and ease of use (as done

by, e.g., Baumeister, Boes, Laußmann and Rey, 2023), that should be complemented

by a more systematic analysis of the impact of the ballot format on the outcome (in

the line of Fairstein, Benadè and Gal, 2023).

Extending the literature on fairness. As we detailed when discussing new ways

of approaching fairness for PB in Chapter 4, the question of fairness in PB is far from

being settled. There are many open problems to be solved there (status of the core

for approval ballots, natural rule satisfying FJR, etc.). A question that is still under-

studied and close to my heart is that of fairness in extended PB settings. For instance,

our analysis on multi-constraint PB models developed in Chapter 6 did not touch on

the question of fairness at all. Developing a fairness theory for such models, and in

general for complex voting domains is a fascinating research agenda.
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Deepening the axiomatic analysis. The corpus of axioms that have been intro-

duced in the literature on PB is still rather slim. There is a crucial need to develop

that side of the literature to have other means to compare rules than fairness guar-

antees. There is still to date no consistent study of standard PB rules in terms of the

monotonicity axioms we introduced in Section 3.4.2 and studied in Chapter 6 for in-

stance. Investigating how to adapt the characterisation results from the multi-winner

voting literature (Skowron, Faliszewski and Slinko, 2019; Lackner and Skowron, 2021)

is another interesting direction.

Looking beyond the voting stage. Chapter 8 is to date the only formal analysis

of a multi-stage PB model. Even though I said I would not discuss future directions

directly linked to the thesis, I believe that this one calls for an exception as real-world

implementations of PB processes all rely on several stages. Many other interesting

questions that arise from a more holistic view of the PB process can be answered with

social choice methods. This includes, for example, which incentives voters have when

planning a project that they want to propose, i.e., whether it is beneficial to make a

project as cheap as possible or to merge two similar projects.

Stepping outside the Western world. The (computational) social choice litera-

ture so far has almost exclusively used PB processes in theWesternworld as examples.

However, these processes do not represent the diversity of actual implementations of

PB processes around the world. For instance, generally only a small percentage of

a municipalities budget is allocated to PB in Western countries, and most projects

funded through PB processes are small “quality of life” improvements that are not es-

sential to the functioning of the city. In contrast, for example in early implementations

of PB in Brazil, significant parts of a city’s budget was spent through PB processes,

andmany projects funded through PB processes addressed crucial parts of life, such as

access to basic health care (Cabannes, 2004; Wampler, McNulty and Touchton, 2021).

The objectives of the PB processes are thus radically different and call for different

ways of determining the winning budget allocation. The weight given to fairness (in

the sense of proportionality requirements) may be lowered for instance, or more de-

liberative processes can be considered. There is definitely a need for a deeper analysis

here.
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