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Abstract

We investigate a recent semantics for intermediate (and modal) logics in
terms of polyhedra. The main result is a finite axiomatisation of the intermediate
logic of the class of all polytopes — i.e., compact convex polyhedra — denoted PL.
This logic is defined in terms of the Jankov-Fine formulas of two simple frames.
Soundness of this axiomatisation requires extracting the geometric constraints
imposed on polyhedra by the two formulas, and then using substantial classical
results from polyhedral geometry to show that convex polyhedra satisfy those
constraints. To establish completeness of the axiomatisation, we first define
the notion of the geometric realisation of a frame into a polyhedron. We then
show that any PL frame is a p-morphic image of one which has a special form:
it is a ‘sawed tree’. Any sawed tree has a geometric realisation into a convex
polyhedron, which completes the proof.

1 Introduction
Polyhedral semantics was introduced in [Bez+18]. The starting point is that the
collection of open subpolyhedra1 of a compact polyhedron (of any dimension)
forms a Heyting algebra. This then allows for the interpretation of intuitionistic
and modal formulas in polyhedra. This semantics is closely related to the well-
known topological semantics, as pioneered in [Sto38; Tsa38; Tar39; McK41;
MT44; RS63]. In topological semantics, one takes the Heyting algebra of open
sets of a topological space as the basis for the interpretation of formulas. A
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celebrated result due to Tarski [Tar39] shows that this provides a complete se-
mantics for intuitionistic propositional logic (IPC). The paper [Bez+18] proved
an analogous result for polyhedral semantics: the logic of the class of all polyhe-
dra is IPC. Moreover, this semantics can access the dimension of a polyhedron
via the bounded-depth schema, something beyond the capabilities of topological
semantics.

Precursors to the work in [Bez+18] are [ABB03; BBG03; BB07; KPZ10]. In
[Gab+18] and [Gab+19] the authors developed the modal logic of the plane
R2 considered as a non-compact polyhedron. The present authors extended the
results of [Bez+18] in [Ada+22], where we introduced the notion of polyhedral
completeness: a logic L is polyhedrally complete if it is the logic of some class
of polyhedra. We developed the ‘Nerve Criterion’, which provides a necessary
and sufficient condition for the polyhedral completeness of a logic based on the
combinatorial properties of its frames. This criterion was used to provide a wide
class of polyhedrally complete logics axiomatised by the Jankov-Fine formulas
of ‘starlike trees’. The first-named author’s M.Sc thesis [Ada19] investigated the
polyhedral semantics defined in [Bez+18] and is the basis for both [Ada+22]
and the present paper. Recently, this semantics has been applied to the field of
model checking. The authors of [Bez+21] developed a geometric spatial model
checker using polyhedral semantics, introducing the notion of bisimularity for
polyhedra along the way.

In the present paper, we investigate convex (compact) polyhedra, also known
as polytopes, from a logical perspective. Our main result (Theorem 5.1) is that
the logic of the class of all convex polyhedra is PL, a logic which is axiomatised
by the Jankov-Fine formulas of two simple frames: and . Moreover, we
obtain a more fine-grained result by restricting dimension. Letting PLn be PL
plus the logic of bounded depth n, we see that this is the logic of the class of all
convex polyhedra of dimension at most n (Theorem 5.2).

To prove these results, the first step is a development of the logic-polyhedra
connection on the level of morphisms. We introduce the notion of a ‘polyhedral
map’ from a polyhedron to a Kripke frame, and show that the open polyhedral
maps are exactly those which give rise to contravariant homomorphisms of the
Heyting algebras associated with the polyhedron and the frame, respectively.
With this, we can define the notion of the geometric realisation of a frame F
to be a polyhedron P together with an open surjective polyhedral map P → F .
Moreover, we consider PL (for “piecewise-linear”) homeomorphisms, which is
the standard notion of isomorphism in polyhedral geometry. We show that PL
homeomorphisms preserve the logics of polyhedra.

Now, the proof that PL is the logic of convex polyhedra consists of two parts:
soundness and completeness. For the soundness part, we first make use of
the standard geometric fact that every n-dimensional convex polyhedron is
PL homeomorphic to the n-simplex: the ‘simplest’ polyhedron of dimension n.
Given that PL homeomorphisms preserve logic, it suffices to show that PLn is
valid on the n-simplex, for which we give a geometric proof utilising classical
results from polyhedral geometry.

The completeness direction splits into three stages. First, using a combinato-
rial argument, we show that every PLn frame is the p-morphic image of a ‘sawed
tree of height n’. This is a frame which has the form of a planar tree with a ‘saw
structure’ added on top. Once we have a sawed tree, we show how to realise it
geometrically as an n-dimensional convex polyhedron. This realisation is built
recursively on the frame structure, and makes key use of the fact that sawed
trees are planar. Finally, we utilise a result due to Zakharyaschev [Zak93] which
entails that PL is the intersection of each PLn, and this completes the proof.

Section 2 introduces the background on intermediate logics and polyhedral
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geometry, and Section 3 introduces polyhedral semantics, following [Bez+18].
While polyhedra can be used to provide a semantics for both intermediate and
modal logics, we focus on the former side here.

2 Preliminaries
The present paper deals with intermediate logics. In this section we remind
the reader of two standard semantics for such logics, and survey the definitions
and results which will play their part in what follows. We also present the basic
notions of polyhedral geometry that we need in the paper.

2.1 Posets as Kripke frames
A Kripke frame for intuitionistic logic is simply a poset (F,¶). The validity
relation � between frames and formulas is defined in the usual way. Given a
class of frames C, its logic is:

Logic(C) := {φ a formula | ∀F ∈ C: F � φ}

Conversely, given a logic L , define:

Frames(L ) := {F a Kripke frame | F �L}

A logicL has the finite model property (f.m.p.) if it is the logic of a class of finite
frames.

Fix a poset F . For any x ∈ F , its upset and downset are defined, respectively,
as follows.

↑(x) := {y ∈ F | y ¾ x}
↓(x) := {y ∈ F | y ¶ x}

For any set S ⊆ F , its upset and downset are defined, respectively, as follows.

↑U :=
⋃

x∈U

↑(x)

↓U :=
⋃

x∈U

↓(x)

A subframe U ⊆ F is upwards-closed if U = ↑U . It is downwards-closed if ↓U = U .
The Alexandrov topology on F is the set Up F of its upwards-closed subsets. This
constitutes a topology on F . In the sequel, we will freely switch between thinking
of F as a poset and as a topological space. Note that the closed sets in this
topology correspond to downwards-closed sets.

A chain in F is X ⊆ F which as a subposet is linearly-ordered. The length of
the chain X is |X |. A chain X ⊆ F is maximal if there is no chain Y ⊆ F such that
X ⊂ Y (i.e. such that X is a proper subset of Y ). The height of F is the element
of N∪ {∞} defined by:

height(F) := sup{|X | − 1 | X ⊆ F is a chain}

For any x ∈ F , define its height as follows.

height(x) := height(↓(x))

The poset F is rooted if it has a minimum element, which is called the root,
and is usually denoted by ⊥. Define:

Frames⊥(L ) := {F ∈ Frames(L ) | F is rooted}
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A function f : F → G is a p-morphism if for every x ∈ F we have:

f (↑(x)) = ↑( f (x))

An up-reduction from F to G is a surjective p-morphism f from an upwards-closed
set U ⊆ F to G. Write f : F ◦→ G.

Lemma 2.1. If there is an up-reduction F ◦→ G then Logic(F) ⊆ Logic(G). In
other words, if G 2 φ then F 2 φ.

Proof. See [CZ97, Corollary 2.8, p. 30 and Corollary 2.17, p. 32].

Corollary 2.2. If C is any collection of frames and L = Logic(C), then:

L = Logic(Frames⊥(L ))

Proof. First, L ⊆ Logic(Frames⊥(L )). Conversely, suppose L 0 φ. Then there
exists F ∈ C such that F 2 φ, hence there is x ∈ F such that x 2 φ (for some
valuation on F), meaning that ↑(x) 2 φ. Now, ↑(x) is upwards-closed in F ,
hence id↑(x) is an up-reduction F ◦→ ↑(x). Then by Lemma 2.1, we get that
↑(x) �L , so that ↑(x) ∈ Frames⊥(L ).

Let IPC be the logic of all finite frames, and let BDn be the logic of all finite
frames of height at most n.

Lemma 2.3. Let F be a finite frame. Then F � BDn if and only if F has height at
most n.

Proof. See [CZ97, Proposition 2.38]

2.2 Heyting and co-Heyting algebras
A Heyting algebra is a tuple (A,∧,∨,→, 0, 1) such that (A,∧,∨, 0, 1) is a bounded
lattice and→, called the Heyting implication, satisfies:

c ¶ a→ b ⇔ c ∧ a ¶ b

The validity relation � between Heyting algebras and formulas is defined in
the usual way; the Logic notation is extended appropriately. Topological spaces
provide important examples of Heyting algebras: for every topological space
X , its collection of open sets O (X ) forms a Heyting algebra. We recall that for
U , V ∈ O (X ) we have

U → V =
⋃

{Z ∈ O (X ) | Z ∩ U ⊆ V}= Int(UC ∪ V ),

where Int(−) denotes the interior operator and (−)C denotes set-theoretic com-
plement.

Co-Heyting algebras are the duals of Heyting algebras. Specifically, a co-
Heyting algebra is a tuple (C ,∧,∨,←, 0, 1) such that (C ,∧,∨, 0, 1) is a bounded
lattice, and←, called the co-Heyting implication, satisfies:

a← b ¶ c ⇔ a ¶ b ∨ c

For more information on co-Heyting algebras, the reader is referred to [MT46,
§1] and [Rau74], where they are called ‘Brouwerian algebras’.

Any Heyting algebra A may be regarded as a category. Then its dual category
Aop is a co-Heyting algebra. In the case of the Heyting algebra O (X ) of open sets
in a topological space, such a duality has a concrete realisation: the co-Heyting
algebra O (X )op is the algebra C (X ) of closed subsets of X .
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2.3 Finite Esakia duality
The Alexandrov topology allows us to associate to each poset F the Heyting
algebra Up F consisting of its upwards-closed sets. The process forms part of a
contravariant equivalence of categories, known as the Esakia Duality. The finite
fragment of this duality relates finite posets with finite Heyting algebras.

The spectrum of a Heyting algebra A is defined as follows.

Spec(A) := {X ⊆ A | X is a prime filter of A as a distributive lattice}

This constitutes a poset under subset inclusion.

Theorem 2.4. The maps Up and Spec are the object-level components of a duality
between the category of finite Kripke frames with p-morphisms and the category of
finite Heyting algebras with homomorphisms.

Proof. For a proof of the full Esakia Duality see [Esa19, Corollary 3.4.8], which
is a translation of the original [Esa85]. The correspondence was first established
in [Esa74]. Further proofs in English can also be found in [CJ14] and [Mor05,
§5].

For the finite part, see [DT66]. Here, we have isomorphisms A∼= Up Spec A
and F ∼= Spec Up F for any finite Heyting algebra A and finite poset F . The
former is part of Brikhoff’s Representation Theorem [Bir37]. Both isomorphisms
may be found in [DP90, pp. 171-172].

Importantly, this duality is logic-preserving.

Lemma 2.5. Let F be a frame and A be a finite Heyting algebra. Then:

Logic(F) = Logic(Up F)

Logic(A) = Logic(Spec A)

Proof. For the first equality, see [CZ97, Corollary 8.5, p. 238], noting that our
Kripke frames are special cases of what are there called ‘intuitionistic general
frames’. The second equality follows from the first and the finite Esakia duality.

2.4 Jankov-Fine formulas as forbidden configurations
To every finite rooted frame Q, we associate a formula χ(Q), the Jankov-Fine
formula of Q (also called its Jankov-De Jongh formula). The precise definition
of χ(Q) is somewhat involved, but the exact details of this syntactical form are
not relevant for our considerations. What matters to us is its notable semantic
property.

Theorem 2.6. For any frame F, we have that F � χ(Q) if and only if F does not
up-reduce to Q.

Proof. See [CZ97, §9.4, p. 310], for a treatment in which Jankov-Fine formulas
are considered as specific instances of more general ‘canonical formulas’. A more
direct proof is found in [Bez06, §3.3, p. 56], which gives a complete definition
of χ(Q). See also [BB09] for an algebraic version of this result.

Jankov-Fine formulas formalise the intuition of ‘forbidden configurations’.
The formula χ(Q) ‘forbids’ the configuration Q from its frames.
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2.5 Polyhedra and simplices
Every polyhedron considered here lives in some Euclidean space Rn. Take
finitely many points x0, . . . , xd ∈ Rn. An affine combination of x0, . . . , xd is a
point r0 x0+ · · ·+ rd xd , specified by some r0, . . . , rd ∈ R such that r0+ · · ·+ rd = 1.
Given a set S ⊆ Rn, its affine hull Aff S is the collection of affine combinations of
its elements. A convex combination is an affine combination in which additionally
each ri ¾ 0. Given a set S ⊆ Rn, its convex hull Conv S is the collection of convex
combinations of its elements. A subset S ⊆ Rn is convex if Conv S = S. A polytope
is the convex hull of a finite subset of Rn. A polyhedron in Rn is a set which can
be expressed as the finite union of polytopes.

Remark 2.7. A remark on terminology is in order. In our usage of the term
‘polyhedron’ does not imply convexity, and is the standard one in piecewise-linear
topology — c.f. classic textbooks [Sta67; RS72]) — with the following additional
conventions. A ‘polyhedron’ tout court, as defined in PL topology, need not be
compact as a subspace of Euclidean space. Now, it is a standard fact that ‘compact
polyhedra’ (in this more general sense) coincide with what we are referring to
in this paper as ‘polyhedra’ (see [RS72, Theorem 2.2, p. 12]). Hence we are
effectively using the term ‘polyhedron’ as a shorthand for ‘compact polyhedron’.
Such abbreviated usage is frequent in the literature (see e.g. [Mau80]). Finally,
in our terminology, a ‘convex polyhedron’ is the same thing as a ‘polytope’ — we
will use the former expression from now on.

A set of points x0, . . . , xd is affinely independent if whenever:

r0 x0 + · · ·+ rd xd = 0 and r0 + · · ·+ rd = 0

we must have that r0 = · · · = rd = 0. This is equivalent to saying that the vectors

x1 − x0, . . . , xd − x0

are linearly independent. A d-simplex is the convex hull σ of d + 1 affinely
independent points x0, . . . , xd , which we call its vertices. Write σ = x0 · · · xd ; its
dimension is Dimσ := d.

Lemma 2.8. Every simplex determines its vertex set: two simplices coincide if and
only if they share the same vertex set.

Proof. See [Mau80, Proposition 2.3.3, p. 32].

A face of σ is the convex hull τ of some non-empty subset of {x0, . . . , xd} (note
that τ is then a simplex too). Write τ´ σ, and τ≺ σ if τ 6= σ.

Since x0, . . . , xd are affinely independent, every point x ∈ σ can be expressed
uniquely as a convex combination x = r0 x0 + · · ·+ rd xd with r0, . . . , rd ¾ 0 and
r0 + · · ·+ rd = 1. Call the tuple (r0, . . . , rd) the barycentric coordinates of x in
σ. The barycentre bσ of σ is the special point whose barycentric coordinates are
( 1

d+1 , . . . , 1
d+1 ). The relative interior of σ is defined as follows.

Relintσ := {r0 x0 + · · ·+ rd xd ∈ σ | r0, . . . , rd > 0}

Then the relative interior of σ coincides with the topological interior of σ inside
its affine hull. Note that ClRelintσ = σ, the closure being taken in the ambient
space Rn.

2.6 Triangulations
A simplicial complex in Rn is a finite set Σ of simplices satisfying the following
conditions.

6



(a) Σ is ≺-downwards-closed: whenever σ ∈ Σ and τ≺ σ we have τ ∈ Σ.

(b) If σ,τ ∈ Σ, then σ∩τ is either empty or a common face of σ and τ.

The support of Σ is the set |Σ| :=
⋃

Σ. Note that by definition this set is
automatically a polyhedron. We say that Σ is a triangulation of the polyhedron
|Σ|. See Figure 1 for some examples of triangulations.

Figure 1: Triangulations of a collection of polyhedra

Notice that Σ is a poset under ≺, called the face poset. A subcomplex of Σ is
a subset which is itself a simplicial complex. Note that a subcomplex, as a poset,
is precisely a downwards-closed set. Given σ ∈ Σ, its open star is defined:

o(σ) :=
⋃

{Relintτ | τ ∈ Σ and σ ⊆ τ}

Lemma 2.9. The open star o(σ) of any simplex σ is open in |Σ|.

Proof. See [Mau80, Proposition 2.4.3, p. 43].

Lemma 2.10. The relative interiors of the simplices in a simplicial complex Σ
partition |Σ|. That is, for every x ∈ |Σ|, there is exactly one σ ∈ Σ such that
x ∈ Relintσ.

Proof. See [Mau80, Proposition 2.3.6, p. 33].

In light of Lemma 2.10, for any x ∈ |Σ| let us write σx for the unique σ ∈ Σ
such that x ∈ Relintσ.

Lemma 2.11. Let Σ be a simplicial complex, take τ ∈ Σ and x ∈ Relintτ. Then
no proper face σ ≺ τ contains x. This means that τx = Relintτ is the inclusion-
smallest simplex containing x.

Proof. See [Bez+18, Lemma 3.1].

The next result is a basic fact of polyhedral geometry, and is of fundamental
importance in its connection with logic. For Σ a triangulation and S a subspace
of the ambient Euclidean space Rn, define:

ΣS := {σ ∈ Σ | σ ⊆ S}

This, being a downwards-closed subset of Σ, is a subcomplex of Σ.

7



Lemma 2.12 (Triangulation Lemma). Any polyhedron admits a triangulation
which simultaneously triangulates each of any fixed finite set of subpolyhedra. That
is, for a collection of polyhedra P,Q1, . . . ,Qm such that each Q i ⊆ P, there is a
triangulation Σ of P such that ΣQi

triangulates Q i for each i.

Proof. See [RS72, Theorem 2.11 and Addendum 2.12, p. 16].

2.7 Dimension theory
The dimension of simplicial complex Σ is:

DimΣ :=max{Dimσ | σ ∈ Σ}

Remark 2.13. Note that DimΣ= height(Σ) as a poset.

Lemma 2.14. Let Σ,∆ be simplicial complexes. If |Σ| = |∆| then DimΣ = Dim∆.

Proof. See [Sta67, Proposition 1.6.12, p. 30].

With this in mind, we define the dimension Dim P of a polyhedron P to be the
dimension of its triangulations. When P =∅, let Dim P := −1.

Lemma 2.15. Dim(P ∪Q) =max{Dim P,DimQ}.

Proof. By the Triangulation Lemma 2.12 we can find a triangulation Σ of P ∪Q
such that ΣP and ΣQ triangulate P and Q respectively. Since Σ= ΣP ∪ΣQ and
both ΣP and ΣQ are downwards-closed the result follows.

In the following, it will be necessary to consider the dimensions of sets which
are not polyhedra but whose topological closures are. Note that it is possible
to define a theory of dimension which applies even more generally [HW48],
however here we only need to apply it to sets of this form, and the resulting
definition is simpler.

Let X ⊆ Rn be such that Cl X is a polyhedron, where Cl X denotes the topo-
logical closure taken in the ambient space. The dimension of X is the dimension
of its closure:

Dim X := DimCl X

Remark 2.16. From now on, when we refer to a set X which has dimension, we
tacitly assume that its closure is a polyhedron.

Let us consider the relationship between the dimension operator and the
boundary operator. The boundary of a set X is ∂ X := ClAff X \ IntAff X , where the
closure and interior operations are taken with respect to the affine hull Aff X
(note that ClAff X = Cl X in the ambient space, because any affine subspace of
Rn is closed). Then:

Lemma 2.17. For any set X whose closure is a non-empty polyhedron we have
that:

Dim(∂ X ) = Dim(X )− 1

Proof. See [HW48, Corollary IV.II, p. 46].

3 Polyhedral semantics
With the preliminaries in place, we are in a position to illustrate the link between
intuitionistic logic and polyhedra that is the main focus of this paper. Given a
polyhedron P, let SubP denote the collection of its subpolyhedra.

Theorem 3.1. SubP is a co-Heyting algebra, and a subalgebra of C (P).
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Proof. See [Bez+18, Corollary 3.8].

Any subpolyhedron of P is by definition compact, and hence closed. There-
fore it is not surprising, once the algebraic nature of SubP is established, that it
turns out to be a co-Heyting algebra. In topology and logic, on the other hand, it
is more conventional to work with open sets and Heyting algebras. Thus, it is
natural at this point to switch to the Heyting algebra dual to SubP, which has
the following concrete realisation.

Given a polyhedron P, we will define an open subpolyhedron of P as the com-
plement (in P) of a subpolyhedron of P; that is, O ⊆ P is an open subpolyhedron
of P precisely when the set-theoretic difference P \O is a member of SubP.
Remark 3.2. Let P ⊆ Rn be any polyhedron. It is worth pointing out explicitly
that while a subpolyhedron of P is a closed (and compact) set both in P and in
the ambient space Rn, an open subpolyhedron of P is by definition open in P
but may fail to be open in Rn.

Let us denote by SuboP the collection of open subpolyhedra in P. It is
evidently the dual of SubP, and Theorem 3.1 yields the following.

Theorem 3.3. SuboP is a Heyting algebra, and a subalgebra of O (P).

The above provides a sound semantics for intuitionistic logic in terms of
polyhedra: for a polyhedron P, say that P � φ if and only if SuboP � φ as a
Heyting algebra. One of the features of this polyhedral semantics is that it is
complete for IPC — à la Tarski. Moreover, in contrast with topological semantics,
polyhedral semantics can detect dimension, via the bounded depth schema. Let
Polyhedra denote the class of all polyhedra, and let Polyhedran denote the
subclass consisting of polyhedra of dimension at most n, for each n ∈ N.

Theorem 3.4. (1) IPC = Logic(Polyhedra). That is, intuitionistic logic is
complete with respect to the class of all polyhedra.

(2) BDn = Logic(Polyhedran), for each n ∈ N.

Proof. See [Bez+18, Theorem 1.1]. The proof works by showing that every finite
poset of height n can be ‘realised geometrically’ in an n-dimensional polyhedron.
The main idea behind this construction is recalled in Section 4.4 below.

The Triangulation Lemma provides a key piece of information about the
polyhedral semantics of Theorem 3.4 — namely, SuboP is a locally finite Heyting
algebra2 for any polyhedron P. Given any triangulation Σ of P, denote by Pc(Σ)
the sublattice of C (P) generated by Σ, and let:

Po(Σ) := {P \ C | C ∈ Pc(Σ)}

Lemma 3.5. Po(Σ) is isomorphic as a Heyting algebra to UpΣ.

Proof. See [Bez+18, Lemma 4.3].

Theorem 3.6. Whenever P 2 φ there is a triangulationΣ of P such that Po(Σ) 2 φ.
In particular, SuboP is locally finite.

Proof. See [Bez+18, Corollary 3.7].

4 Logic, polyhedra and morphisms
In this section we develop assorted functorial aspects of polyhedral semantics
for intermediate logics which are essential ingredients in the main findings of
the present paper.

2An algebraic structure is locally finite if every finitely generated substructure is finite.
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4.1 Homomorphisms induced by maps of spaces
We begin with a result that requires some preliminary technical definitions.

For X a topological space, by a lattice basis for X we mean a sublattice L
of the topology O (X ) of X that is a basis for that topology. If L is moreover a
Heyting subalgebra of the Heyting algebra O (X ), we call L a Heyting basis.

If X is a space with a specified Heyting basis L then we define

Logic(X ) := Logic(L),

where in the left-hand side we assume the basis L is understood from context.
For any set A, write P (A) for the complete Boolean algebra of all subsets of

A. For any function f : A→ B between sets, write f −1 : P (B)→P (A) for the
inverse-image function — given S ⊆ B, f −1[S] := {a ∈ A | f (a) ∈ S}. Then f −1

is a homomorphism of Boolean algebras that moreover preserves arbitrary joins
and meets.

Now consider spaces X and Y with prescribed lattice bases L and M , respec-
tively. A function f : X → Y is bases-continuous if f −1[S] ∈ L for each S ∈ M .
Such functions are, of course, continuous. In general, a function f : X → Y is
open if f [U] ∈ O (Y ) for each U ∈ O (X ). When X and Y come with prescribed
lattice bases L and M , let us say that a function f is bases-open if f [U] ∈ M
for each U ∈ L. It is clear that such a bases-open function is open, because the
direct-image function f [−] preserves arbitrary unions.

Lemma 4.1. Let f : X → Y be a function between spaces X and Y with prescribed
lattice bases L and M, respectively. Write f −1[−]: P (Y )→P (X ) for the inverse-
image function.

(1) The function f is bases-continuous if and only if f −1 descends to a lattice
homomorphism f ∗ := f −1 : M → L. When one of these two equivalent
conditions is satisfied, f being surjective implies that f ∗ is injective.

(2) Assume further L and M are Heyting bases. Assume the function f is bases-
continuous and bases-open. Then f −1 descends to a homomorphism of
Heyting algebras f ∗ : M → L. Moreover, if f is injective then f ∗ is surjective,
and if f is a bijection then f ∗ is an isomorphism.

Proof. Since f ∗ is a homomorphism of Boolean algebras, the first assertion in
(1) follows from the definitions. For the second assertion in (1), suppose f
is surjective. Pick U , V ∈ M distinct, and suppose without loss of generality
there is p ∈ U \ V . Since f is surjective, there is x ∈ X with f (x) = p. Then
x ∈ f −1[U] but x 6∈ f −1[V ], so f −1 = f ∗ is injective.

As for (2), let us first assume that f is bases-continuous and bases-open, and
take U , V ∈ M with the aim of showing that f ∗(U → V ) = f ∗(U)→ f ∗(V ). For
the left-to-right inclusion, using the fact that M is a basis and that f ∗ = f −1[−]
commutes with Boolean operations, write (letting SC denote the complement of
S):

U → V = Int(UC ∪ V ) =
⋃

{O ∈ M | O ⊆ UC ∪ V}

and:

f −1[U]→ f −1[V ] = Int
�

f −1[U]C ∪ f −1[V ]
�

= Int
�

f −1[UC ∪ V ]
�

.

Since f −1[−] preserves arbitrary unions too, we obtain f −1[U → V ] =
⋃

f −1[O] for O ∈ M ranging over subsets of UC ∪ V . Now O ⊆ UC ∪ V entails
f −1[O] ⊆ f −1[UC ∪ V ]. Since f −1[O] is open because f is continuous, by the
definition of interior f −1[O] ⊆ Int( f −1[UC ∪ V ]), which shows f −1[U → V ] ⊆
f −1[U]→ f −1[V ].
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For the right-to-left inclusion we have the following chain of inclusions.

f [ f −1[U]→ f −1[V ]] = f
�

Int
�

f −1[U]C ∪ f −1[V ]
��

⊆ Int
�

f
�

f −1[U]C ∪ f −1[V ]
��

( f is open)

= Int
�

f
�

f −1[UC ∪ V ]
��

⊆ Int(UC ∪ V )

= U → V

Applying f −1 to both sides, we get that f −1[U] → f −1[V ] ⊆ f −1[U → V ].
Summing up, f ∗(U → V ) = f ∗(U)→ f ∗(V ).

Next, assume f is injective. Let A ∈ L, and let us show A has a pre-image
along f ∗ = f −1. Certainly A⊆ f −1[ f [A]]. Let us prove the converse inclusion.
If f −1[ f [A]] is empty then the converse inclusion holds; otherwise, pick x ∈
f −1[ f [A]]. Then f (x) ∈ f [A], so there is a ∈ A with f (x) = f (a). Since f is
injective, x = a ∈ A, and thus f −1[ f [A]] ⊆ A. Hence A has the pre-image f [A]
along f −1. Since, moreover, f is bases-open, we have f [A] ∈ M , so f ∗ is indeed
surjective.

Finally, if f is a bijection then by (1) and what we just proved f ∗ is a bijective
isomorphism of Heyting algebras, and hence an isomorphism.

Lemma 4.2. Let X be a space, let L ⊆ O (X ), let Y ⊆ X , and set M := {O ∩ Y |
O ∈ L}.

1. If L is a (lattice) basis for the topology of X then M is a (lattice) basis for
the subspace topology of Y .

2. If Y is open and L is a Heyting basis for the topology of X then M is a Heyting
basis for the subspace topology of Y .

Proof. This is a straightforward verification and shall be omitted.

To deploy Lemmas 4.1 and 4.2 in our geometric setting we will require the
next fact.

Lemma 4.3. The (convex) open subpolyhedra of a (convex) polyhedron P form a
basis for the topology on P. Moreover, for any polyhedron P, SuboP is a Heyting
basis of P.

Proof. Assume P ⊆ Rn is any polyhedron. Take any x ∈ P and let U be an open
neighbourhood of x in P. Then there is some open ball B in Rn about x such that
x ∈ B ∩ P ⊆ U . An elementary argument in affine geometry produces a simplex
σ in Rn such that x ∈ Relintσ ⊆ B. Then (by the Triangulation Lemma 2.12)
the set Cl(P \σ) is a compact subpolyhedron of P. Its complement P ∩Relintσ
is therefore an open subpolyhedron of P. Furthermore,

x ∈ P ∩Relintσ ⊆ U ,

which shows SuboP is a basis. If P is additionally convex, then P ∩ Relintσ
is also convex because P and Relintσ are, which shows that the convex open
subpolyhedra of a convex polyhedron form a basis.

The ‘moreover’ statement follows from the fact that the basis SuboP is a
Heyting subalgebra of O (P) by Theorem 3.3.

Remark 4.4. From now on, in light of Lemma 4.3, we always tacitly assume a
polyhedron P is equipped with its Heyting basis SuboP. Also, in light of Lemma
4.2, if Q is an open polyhedron in P — that is, a member of SuboP for some
polyhedron P — we always tacitly assume that Q is equipped with the Heyting
basis SuboQ := {O ∩Q | O ∈ SuboP}.
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Finally, in the next definition we isolate the specific instance of basis-conti-
nuous map that is crucial to our context.

Definition 4.5. Let P be a polyhedron and Y a space with a lattice basis M . (i) A
function f : P → Y is a polyhedral map if it is bases-continuous with respect to the
bases SuboP and M , respectively. (ii) Further, let Q be an open subpolyhedron
of P. A function f : Q→ Y is again called a polyhedral map if the pre-image of
any open set in M is in SuboQ (see Remark 4.4). (iii) In the special case that
the co-domain Y of f is a poset F , we always tacitly assume M is the Heyting
basis Up F of all open sets in the Alexandrov topology on F . (iv) When we say a
polyhedral map as in the foregoing items is open we always mean it is bases-open
with respect to the indicated bases.

4.2 Jankov-Fine, for polyhedra
Theorem 2.6 shows that Jankov-Fine formulas encode forbidden configurations
for frames. The same is true for polyhedra with respect to polyhedral maps, as
we now show.

Let Σ be a simplicial complex and F a poset. Given any function f : Σ→ F ,
define the map bf : |Σ| → F by:

bf (x) := f (σx )

Lemma 4.6. When f : Σ→ F is a p-morphism, bf : |Σ| → F is an open polyhedral
map.

Proof. For any U ∈ Up F , we have that:

bf −1[U] =
⋃

{Relintσ | σ ∈ Σ and σ ∈ f −1[U]}

Since f is monotonic, f −1[U] is upwards-closed in Σ and therefore bf −1[U] is
an open sub-polyhedron of |Σ|. Now take an open set W ⊆ |Σ|, with the aim of
showing that bf [W ] is open. Define:

Σ#W := {σ ∈ Σ | Relint(σ)∩W 6=∅}

Then:
bf [W ] = { f (σx ) | x ∈W}= f [Σ#W ]

If σ ∈ Σ#W and σ ´ τ, then as σ ⊆ τ = Cl Relintτ and W is open, we have
τ ∈ Σ#W ; i.e. Σ#W is upwards-closed. But now, f is open and so bf [W ] is also
upwards-closed.

Lemma 4.7. Let P be a polyhedron and F a finite rooted frame. Then P 2 χ(F)
if and only if there exists an open subpolyhedron Q of P and a surjective open
polyhedral map f : Q→ F. Moreover, if P is convex, then we can assume without
loss of generality that Q is also convex.

Proof. Let P 2 χ(F). By Theorem 3.6 there is a triangulation Σ of P such that
Po(Σ) 2 χ(F), which by Lemma 3.5 means thatΣ 2 χ(F). Hence by Theorem 2.6
there is an up-reduction h: Σ ◦→ F . Note that h is open (with respect to the
Alexandrov topologies) by the definition of p-morphism. Let H be the (upwards-
closed) domain of h. As F is rooted, H can be assumed without loss of generality
to be rooted — it suffices to take a pre-image y of the root of F and let H = ↑(y).
Applying Lemma 4.6 to the identity map id: Σ→ Σ we find an open polyhedral
map Òid: P → Σ. Let Q be the pre-image of H via Òid. Then h ◦ Òid: Q → F is a
surjective open polyhedral map.

Now assume that P is convex. Let x be any element in the pre-image of the
root of H, and note that Q is an open neighbourhood of x . Hence by Lemma 4.3
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there is an open convex subpolyhedron W ⊆ P such that x ∈W ⊆Q. Since Òid is
open, Òid[W ] is an upwards-closed subset of H containing its root, and therefore
H = Òid[W ]. We have thus found a convex open subpolyhedron W such that
h ◦Òid[W ] = F , as desired.

For the converse direction, as F 2 χ(F) we obtain from Lemma 4.1 that
Q 2 χ(F). Then Lemma 4.2 implies that SuboQ is a quotient of SuboP (via the
map O ∈ P 7→ O ∩Q ∈ SuboQ), and therefore P 2 χ(F).
4.3 PL maps
For any X ⊆ Rm, Y ⊆ Rn, a function X → Y is an affine map if it lifts to a map
Rm → Rn of the form x 7→ M x + b, where M is a linear transformation and
b ∈ Rn. Now let P and Q be polyhedra in Rm and Rn, respectively. A function
f : P →Q is piecewise linear, or a PL map for short, if there are triangulations Σ
and ∆ of P and Q respectively such that

(1) the function f agrees on each σ ∈ Σ with an affine map, and

(2) for each σ ∈ Σ, f [σ] ∈∆.

PL maps as just defined are automatically continuous.

Remark 4.8. There are several characterisations, or equivalent definitions, of
PL map; we mention one that we shall use, referring to [RS72] for proofs: a
function f : P →Q is PL if and only if it is continuous, and its graph {(x , f (x)) ∈
Rm+n | x ∈ P} is a polyhedron.

Remark 4.9. A PL map is a polyhedral map because of the standard fact that
the inverse image of a polyhedron under a PL-map is a polyhedron, cf. [RS72,
Corollary 2.5, p. 13]. The converse is not true — the map [0, 1]→ [0, 1] given
by x 7→ x2 is a polyhedral map that is not PL.

A PL homeomorphism is a PL map that is a homeomorphism.

Lemma 4.10. The inverse of a PL homeomorphism is a PL homeomorphism.

Proof. See [RS72, p. 6].

Corollary 4.11. A PL homeomorphism f : P → Q between polyhedra and its
inverse g : Q → P induce mutually inverse isomorphisms of Heyting algebras
f ∗ := f −1 : SuboQ→ SuboP and g∗ := g−1 : SuboP → SuboQ.

Proof. This is an immediate consequence of Lemma 4.1 together with Lemma
4.10 and Remark 4.9.

Corollary 4.12. If P and Q are PL homeomorphic then Logic(P) = Logic(Q).

4.4 Geometric realisation
The notion of ‘geometric realisation’ can now be made more precise. Given
a polyhedron and a space Y with a Heyting basis M , a realisation of Y in a
polyhedron P is an open surjective polyhedral map f : P → Y . By Lemma 4.1
the dual map f ∗ : M → SuboP is an injective homomorphism of Heyting algebras,
and this entails Logic(P) ⊆ Logic(Y ) := Logic(M), which is the key ingredient
in the completeness proofs.

Let us emphasise that our usage of the term ‘geometric realisation’ is specific
to our setting. The map f : P → Y ‘realises’ the Heyting algebra M as a subal-
gebra of SuboP by pulling back inverse images along f ∗ := f −1. This applies
in particular to the special case in which Y is a finite poset F , and M is Up F .
We shall next show how this notion of realisation for finite posets relates to the
standard one of geometric realisation of a simplicial complex.
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Let us see how to produce a geometric realisation for an arbitrary finite
poset F of height n, following [Bez+18]. For this, we make use of the following
construction coming from combinatorial geometry. The nerve of F , denoted
N (F) is the poset of all non-empty chains in F ordered by inclusion. The nerve
comes equipped with a p-morphism max: N (F)→ F which sends a chain to its
maximum element. Note also that height(N (F)) = height(F).

Using the nerve, we then define the geometric realisation of F via a simplicial
complex. Enumerate F = {x1, . . . , xm}, and let e1, . . . , em be the standard basis
vectors of Rm. The simplicial complex induced by F is defined:

∇F := {Conv{ei1 , . . . , eik} | {x i1 , . . . , x ik} ∈ N (F)}

Noting that ∇F ∼= N (F) as posets, the p-morphism max: N (F)→ F then in-
duces an open surjective polyhedral map |∇F | → F . Furthermore, by definition:

Dim|∇F |= height(N (F)) = n

In other words, we have an n-dimensional geometric realisation of the height-n
poset F , which is the main component in the proof of Theorem 3.4.

5 The logic of convex polyhedra
Recall from Section 2 that a polyhedron P is convex if Conv P = P, in other
words, if the segment joining any two points in P lies entirely in P. Let Convex
be the class of all convex polyhedra. We can now tackle the question: what is
the logic of all convex polyhedra, Logic(Convex)? The remainder of the paper
will be devoted to a proof that Logic(Convex) = PL, where PL is axiomatised by
the Jankov-Fine formulas of two simple trees as follows.

PL= IPC+χ( ) +χ( )

Theorem 5.1. PL is the logic of all convex polyhedra: PL= Logic(Convex).

We show this result by first restricting to the bounded dimension and bounded
frame-depth situation, and then use the fact that PL has the finite model property
to obtain the full result. Specifically, let Convexn denote the class of convex
polyhedra of dimension at most n, and define:

PLn := BDn + PL

The main job will be to prove the following.

Theorem 5.2. PLn = Logic(Convexn), for each n.

This in turn splits into the following two directions, which will be proved in
Section 6 and Section 7, respectively.

Theorem 5.3 (Soundness). PLn is valid on every P ∈ Convexn.

Theorem 5.4 (Completeness). If PLn 0 φ then there is P ∈ Convexn such that
P 2 φ.

The final ingredient is the following result due to Zakharyaschev.

Lemma 5.5. PL has the finite model property.

Proof. This follows from the more general result [Zak93, Corollary 0.11, p. 20].
This result is stated in terms of ‘canonical formulas’, which are a generalisation
of Jankov-Fine formulas. Given a frame Q and a set D of antichains in Q (sets
of pairwise incompatible elements of Q), we can define the canonical formula
β(Q,D,⊥), which satisfies a similar condition to that satisfied by Jankov-Fine
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formulas. The result states that if an intermediate logic L is axiomatised by a
set of canonical formulas β(Q,D,⊥) such that in every A∈D there is at least
one point not lying below all maximal points in ↑A, then L has the finite model
property.

Now, given any frame Q, the Jankov-Fine formula χ(Q) is equivalent to
β(Q,D#,⊥), where D# is the set of non-singleton antichains in Q [CZ97, Propo-
sition 9.41 (i), p. 312]. It is then clear to see that χ( ) and χ( ) satisfy the
requisite conditions, so the result yields that PL has the finite model property.

These lemmas then combine to give the ultimate result.

Proof of Theorem 5.1. Lemma 5.5 entails that:

PL=
⋂

n∈N
PLn

On the other hand, since all our polyhedra have finite dimension:

Convex=
⋃

n∈N
Convexn

Therefore:
Logic(Convex) =

⋂

n∈N
Logic(Convexn)

Theorem 5.2 then completes the proof.

5.1 The Logic of a single convex polyhedron

Any two n-simplicesσ ⊆ Rd andτ ⊆ Rd′ are PL-homeomorphic — in fact, affinely
homeomorphic. Indeed, since affine maps commute with affine combinations,
any bijection of the vertex set of σ onto the vertex set of τ lifts to exactly one
bijective affine map Affσ→ Affτ. Let e0, . . . , en be the standard basis vectors
of Rn+1. The standard n-simplex is ∆n := Conv{e0, . . . , en}. The following is a
classical result.

Lemma 5.6. Every n-dimensional convex polyhedron is PL-homeomorphic to ∆n.

Proof. See [RS72, Corollary 2.20, p. 21]. There it is shown that n-cells — which
correspond to our n-dimensional convex polyhedra — are n-balls — meaning
that they are PL-homeomorphic to the n-dimensional cube [0, 1]n. Since ∆n is a
convex polyhedron, the result follows.

Thus, the logic of all convex polyhedra of dimension at most n is just the
logic of any given n-dimensional such polyhedron, for instance the n-simplex.

Corollary 5.7. For any n-dimensional convex polyhedron P, Logic(Convexn) =
Logic(∆n) = Logic(P).

Proof. This is immediate from Lemma 5.6 using Corollary 4.12.

Next, given a convex polyhedron P, we are interested in determining the
logic of its topological interior in Aff P — that is, the logic of a convex open
polyhedron of dimension n. In the special case that P is an n-simplex σ, its
topological interior in Affσ coincides with its relative interior Relintσ.

Lemma 5.8. There exists a surjective open polyhedral map (0,1)n→ [0, 1]n.

Proof. Let us first assume n = 1. Consider real numbers a′ < x < a < b <
y < b′. We define a function f : [a′, b′]→ [x , y] by prescribing its action on
vertices:

f (a′) = a, f (b′) = b, f (x) = x , f (a) = a, f (b) = b, f (y) = y ,
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and by completing the definition of f through affine extension. Then f is
a surjective PL map. Its restriction g to (a′, b′) is a polyhedral map that is
evidently still surjective onto [x , y], and is moreover open. (To verify f is open
let (α,β) ⊆ (a′, b′). If x ¶ α and β ¶ y then f [(α,β)] = (α,β). If α ¶ x and
y ¶ β then f [(α,β)] = [x , y]. If α ¶ x and β ¶ y then f [(α,β)] = [x ,β).
Hence f is open.) This shows the existence of a surjective open polyhedral map
g : (0,1)→ [0, 1] that is the restriction to (0, 1) of a PL map [0, 1]→ [0,1].

For n > 1, consider the product of maps F := f × · · · × f : [0,1]n→ [0,1]n

and its restriction to (0,1)n, G := g × · · · × g : (0,1)n → [0,1]n. Then F is
PL. Indeed, its graph is the n-fold product of copies of the graph of f , and
the latter graph is a polyhedron because f is PL; hence the graph of F is a
polyhedron, too, using the standard fact that a finite product of polyhedra is
a polyhedron. Since F is continuous [Eng89, Proposition 2.3.6 and p. 78],
and its graph is a polyhedron, then F is PL (Remark 4.8). This entails that G
is polyhedral: if O ∈ Subo[0,1]n, F−1[O] ∈ Subo[0,1]n because F is PL; then
G−1[O] = F−1[O]∩ (0, 1)n ∈ Subo(0, 1)n. Finally, since a finite product of open
maps is open [Eng89, Proposition 2.3.29], G is open.

Lemma 5.9. Let P be any convex polyhedron, and let O be its topological interior
in Aff P. Then Logic(P) = Logic(O).

Proof. Assume P is of dimension n. By Lemma 5.6 there is a PL-homeomorphism
f : P →∆n with inverse f −1 : ∆n → P which also is PL (Lemma 4.10). Hence
by Corollary 4.12 we have Logic(P) = Logic(∆n). By an elementary topological
argument, f and f −1 descend to mutually inverse homeomorphisms g : O→
Relint∆n and g−1 : Relint∆n → O. These homeomorphisms are polyhedral
because f and f −1 are PL. Hence, Lemma 4.1 entails Logic O = Logic(Relint∆n).
Thus it suffices to prove the lemma for P =∆n and O = Relint∆n.

The inclusion map ι : Relint∆n → ∆ is an injective open polyhedral map,
so that its dual ι∗ : Subo∆n → Subo Relint∆n is a surjective homomorphism of
Heyting algebras by Lemma 4.1, which entails Logic(∆n) ⊆ Logic(Relint∆n).
For the converse inclusion, Lemma 5.8 and Lemma 4.1 entail Logic((0,1)n) ⊆
Logic([0,1]n). The argument in the previous paragraph yields Logic(∆n) =
Logic([0, 1]n) and Logic(Relint∆n) = Logic((0, 1)n), which completes the proof.

5.2 The largest logic
The importance of convex polyhedra is mirrored on the logical side.

Theorem 5.10. (1) PL is the largest polyhedrally complete logic of height∞.

(2) PLn is the largest polyhedrally complete logic of height n, for each n ∈ N.

The starting point to prove the above theorem is the observations that every
n-dimensional polyhedron contains a convex polyhedron of that dimension.

Lemma 5.11. If P is n-dimensional polyhedron and m ¶ n then there is Q an
m-dimensional convex polyhedron with Q ⊆ P.

Proof. Let Σ be a triangulation of P. Since P has dimension n, there is a simplex
σ ∈ Σ which has height m (when viewing Σ as a poset). Then σ ⊆ P is an
m-simplex, which is by definition convex.

The remaining part of the proof rests on the results of Section 5.1.

Proof of Theorem 5.10. To prove (2), let L be a polyhedrally complete logic
of height n. Then L = Logic(C) for some class C of polyhedra. We claim
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that C contains a polyhedron of dimension at least n. Indeed, otherwise C ⊆
Polyhedran−1 so that by Theorem 3.4 we have:

BDn−1 = Logic(Polyhedran−1) ⊆ Logic(C) =L

By Lemma 2.3 this means thatL cannot have frames of height n, a contradiction.

So take P ∈ C of dimension at least n. Then by Lemma 5.11 there is Q a
convex n-dimensional polyhedron with Q ⊆ P. Let O be the topological interior
of Q in AffQ. The inclusion O ⊆ P is an open injective polyhedral map, so by
Lemma 4.1 we have Logic(P) ⊆ Logic(O). But by Lemma 5.9 we also have
Logic(O) = Logic(Q), and by Corollary 5.7 we know Logic(Q) = PLn; hence:

L = Logic(C) ⊆ Logic(P) ⊆ Logic(O) = Logic(Q) = Logic(∆n) = PLn

To prove (1), let L = Logic(C) be a polyhedrally complete logic of height
∞. We can write C=

⋃

n∈N Cn, where Cn = C∩Polyhedran. Then:

L = Logic(C) = Logic

�

⋃

n∈N
Cn

�

=
⋂

n∈N
Logic(Cn) ⊆

⋂

n∈N
PLn = PL

where in the penultimate containment we have used (2), and for the last equality
we have used that PL has the finite model property.

6 Soundness
The first half of the proof of Theorem 5.2 involves showing that:

PLn = BDn +χ( ) +χ( )

is valid on all of Convexn. The validity of the first summand follows from
Theorem 3.4, while for the other two we provide geometric arguments utilising
classical results about polyhedra and dimension theory.

We first need the following lemma which relates open polyhedral maps to
the boundary operation.

Lemma 6.1. Let f be a surjective open polyhedral map from P onto a poset F.
Whenever x < y in F we have f −1[x] ⊆ ∂ f −1[y].

Proof. Since f is open and continuous we have:

f −1[x] ⊆ f −1[↓(y)] = f −1[Cl{y}] = Cl f −1[y] = ClAff f −1[y]

On the other hand IntAff f −1[y] ⊆ f −1[y] and f −1[x] is disjoint from f −1[y].
Hence:

f −1[x] ⊆ ClAff f −1[y] \ IntAff f −1[y] = ∂ f −1[y]

Now, the following is a pure dimension-theoretic result, which is essentially
the geometric content of the statement that Convex � χ( ).

Lemma 6.2. Let X be a convex set of dimension3 n. There is no Y ⊆ X of dimension
n− 2 or less such that X \ Y is disconnected as a subspace of X .

Proof. See [HW48, Corollary IV.1, p. 48].

Similarly, the following is essentially the geometric content of Convex �
χ( ).

3Recall that whenever we state that a set has a dimension, we implicitly assume that its closure is a
polyhedron.

17



Lemma 6.3. Let X be a convex set of dimension n. There is no Y ⊆ X of dimension
n− 1 or less such that X \ Y can be partitioned into open sets U, V and W with
Y ⊆ Cl U ∩Cl V ∩Cl W.

To prove this we need the following classical result concerning triangulations
of convex polyhedra.

Lemma 6.4. Let Σ be a triangulation of a convex n-dimensional polyhedron. Then
every (n− 1)-simplex in Σ is the face of either one or two simplices of Σ.

Proof. See [Gla70, Exercise II.4, p. 27].

Proof of Lemma 6.3. Assume for a contradiction that Y disconnects X in such
a way that X \ Y can be partitioned into open sets U , V and W with Y ⊆
Cl U ∩Cl V ∩Cl W . By the Triangulation Lemma 2.12 take a triangulation Σ of
Cl X which simultaneously triangulates Cl Y , Cl U , Cl V and Cl W .

By Lemma 6.2 the set Y must have dimension exactly n− 1. Hence there
is an (n− 1)-simplex σ ∈ Σ such that σ ⊆ Cl Y . By Lemma 6.4 we have that σ
is the face of either one or two simplices in Σ. Let σ be the face of τ1 and τ2,
where we allow that τ1 = τ2. By our choice of Σ, each Relintτi is contained in
exactly one of U , V and W . Assume without loss of generality that Relintτ1 ⊆ U .
Similarly, assume that either Relintτ2 ⊆ U or Relintτ2 ⊆ V .

Now consider the open star of σ:

o(σ) = Relintσ∪Relintτ1 ∪Relintτ2

By Lemma 2.9 this is open in X . Since o(σ)∩ Y 6=∅ and Y ⊆ Cl W we have that
o(σ)∩W 6= ∅. But this is impossible since {Y, U , V, W} forms a partition of X
and we have Relintσ ⊆ Y and Relintτ1, Relintτ2 ⊆ Cl U ∪Cl V .

With all the pieces in place, we are now in a position to prove the desired
soundness result.

Proof of Theorem 5.3. That Convexn � BDn follows by Theorem 3.4 (2).
To show the validity of χ( ), suppose for a contradiction that there is

a convex polyhedron P such that P 2 χ( ). Then by Lemma 4.7 there is
a convex open subpolyhedron Q of P and a surjective open polyhedral map
f : Q→ . By Lemma 6.1 this partitions Q into subsets X , U , V, W such that
U , V and W are open subpolyhedra of P and:

X ⊆ ∂ U , X ⊆ ∂ V, X ⊆ ∂W

By Lemma 2.17 we have that Dim X ¶ DimQ − 1 but Q \ X = U ∪ V ∪W
is disconnected with at least three connected components. This contradicts
Lemma 6.3.

As for the validity of χ( ), suppose again for a contradiction that there is

a convex polyhedron P such that P 2 χ( ). By Lemma 4.7 there is a convex

open subpolyhedron Q of P and a surjective open polyhedral map f : Q→ .
Then by Lemma 6.1 this partitions Q into subsets X , U1, U2, V1 such that U1 and
V1 are open subpolyhedra of P and:

X ⊆ ∂ U1, U1 ⊆ ∂ U2, X ⊆ ∂ V1

By Lemma 2.17 we have that Dim X ¶ DimQ− 2 but Q \ X = (U1 ∪ U2)∪ V1 is
disconnected. This contradicts Lemma 6.2.
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7 Completeness
The proof that PLn is complete with respect to the class of convex polyhedra of
dimension at most n consists of two main parts. In the first part, we show that
PLn can be expressed as the logic of a set of reasonably regular finite frames —
called sawed trees. For the second part, we show that any such sawed tree of
height n can be realised geometrically as an n-dimensional convex polyhedron —
in other words, given a sawed tree F , we construct an open polyhedral map from
a convex polyhedron onto F . This map is constructed using a more elaborate
version of the method used to provide a geometric realisation for an arbitrary
finite poset in Section 4.4.

7.1 The meaning of PLn on frames
First of all, it will be convenient to spell out what it means, structurally, for a
frame to satisfy PLn. For this we introduce some additional terminology and
notation.

For any poset F and x ∈ F , the strict upset and strict downset are defined,
respectively, as follows.

⇑(x) := {y ∈ F | y > x}
⇓(x) := {y ∈ F | y < x}

The depth of x is defined:

depth(x) := height(↑(x))

A top element of F is t ∈ F such that depth(t) = 0. The set of top elements in F
is denoted by Top(F).

A path in F is a sequence p = x0 · · · xk of elements of F such that for each i
we have x i < x i+1 or x i > x i+1. Write p : x0  xk. The poset F is path-connected
if between any two points there is a path.

Lemma 7.1. When F is finite, it is path-connected if and only if it is connected as
a topological space.

Proof. See [BG11, Lemma 3.4].

A connected component of F is a subframe U ⊆ F which is connected as a
topological subspace and is such that there is no connected V with U ⊂ V .

Lemma 7.2. (1) The connected components partition F.

(2) Connected components are upwards- and downwards-closed.

Proof. The first is a standard fact in topology, while the second follows straight-
forwardly from the fact that by Lemma 7.1 the connected components are exactly
the equivalence classes under the relation ‘there is a path from x to y ’.

Finally, for any x , y ∈ F , say that x is an immediate predecessor of y and
that y is an immediate successor of x if x < y and there is no z ∈ F such that
x < z < y .

We can now describe the structural meaning of PLn on frames.

Lemma 7.3. Let F be a poset. Then F � PLn if and only if the following are
satisfied.

(i) F has height at most n.

(ii) Whenever depth(x) = 1, we have |⇑(x)|¶ 2.

(iii) Whenever depth(x)> 1, the set ⇑(x) is connected.
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Proof. This follows from the definition of PLn, using the following facts for finite
frames F .

(i) F � BDn if and only if F has height at most n.

(ii) There is an up-reduction F ◦→ if and only if there is x ∈ F such that
⇑(x) has at least three components.

(iii) There is an up-reduction F ◦→ if and only if there is x ∈ F such that
⇑(x) has at least two components, with at least one of which having height
greater than 0.

PLn-frames also satisfy the following specific connectedness property, which
will come in handy in the arguments below.

Lemma 7.4. Let F be a finite rooted frame with height(F)> 1, such that F � PLn.
Take s, t ∈ Top(F). There is a path p = a0 · · · am from s to t in ⇑(⊥) with the
property that for each i:

(I) ⇑(ai) =∅ when i is even, and

(II) ⇑(ai) = {ai−1, ai+1} when i is odd.

Proof. Since height(F)> 1 we have that depth(⊥)> 1. Hence by Lemma 7.3,
there is a path p = a0 · · · am from s to t in ⇑(⊥). We may assume that:

(A) ai+1 is either an immediate successor or an immediate predecessor of ai ,
for each i,

(B) p is ‘height-maximal’: if i < j < k and a j < ai , ak, then there is no path
ai   ak in ⇑(a j), and

(C) p has no repeats.

Indeed, (B) can be secured by iteratively replacing each offending a j with the
path ai   ak in ⇑(a j). Then (C) can be secured by removing all cycles, a process
which preserves (B).

We claim that such a p also satisfies (I) and (II), which we prove by induction.
The base i = 0 is immediate since a0 = s is a top node. So assume that i > 0.
The first case is when i is odd. By induction hypothesis ⇑(ai−1) = ∅; in other
words ai−1 is a top node. Hence by (A), ai is an immediate predecessor of
ai−1. This means that {ai−1} is a connected component in ⇑(ai), and hence by
Lemma 7.3 (ii) and (iii), we must have |⇑(ai)| ¶ 2. Note further that by (B),
ai+1 6= ai−1. Therefore, the task is to show that ai+1 ∈ ⇑(ai). Let us suppose for
a contradiction that this is not the case; i.e. ai+1 < ai . Since t is a top node,
there must be j ¾ i + 1 with a j ¶ ai+1 such that a j+1 > a j (in other words, the
path can not keep going downwards after ai+1). Clearly depth(a j)> 1, hence
by Lemma 7.3 (iii) there must be a path ai   a j+1 in ⇑(a j), which contradicts
property (B). Thus ai+1 ∈ ⇑(ai) as required. The second case when i is even
follows immediately from property (A) and the induction hypothesis.

7.2 Sawed trees
Let T be a finite tree in which every top element has the same height. A linear
ordering ≺ on Top(T ) (or equivalently an enumeration t1, . . . , tk of Top(T )) is
a plane ordering if for every x ∈ T we have that ↑(x) ∩Top(T) is an interval
with respect to ≺. When height(T )> 0, the sawed tree based on (T,≺) consists
of T plus new elements s1, . . . , sk−1 with relations, for each i:

t i , t i+1 < si

See Figure 2 for an example of a sawed tree.
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Saw

Tree

Figure 2: An example sawed tree

The planarity condition on ≺ ensures that the Hasse diagram of the resulting
sawed tree can be drawn in the plane with no overlapping lines. Formally, let G
be a poset and d : G→ R2 be an injection, such that d = (d1, d2). Draw an edge
xy between d(x) and d(y) whenever y is an immediate successor of x . Then d
is a plane drawing of G if the following conditions hold.

(a) Whenever x < y we have d2(x)< d2(y).

(b) Two distinct edges x1 y1 and x2 y2 only ever intersect at their end-points.

The notion of a planar poset has been studied somewhat in the literature (see
[BLS99, §6.8, p. 101] for a short survey), but we will not use any external results
here.

Lemma 7.5. Let ≺ be a plane ordering on T. Then T has plane drawing d with
the following properties.

(i) The top nodes in the drawing are ordered left-to-right as per ≺.

(ii) d2(x) = height(x) for every x ∈ T.

Proof. C.f. [Sta97, p. 294]. We proceed by induction on n = height(T). The
base case n= 0 is immediate, so assume that n> 0. Enumerate the immediate
successors of ⊥ in T as {x1, . . . , xk}, according to ≺. That is, for each i, j ¶ k
with i < j ensure that:

∀t i ∈ ↑(x i)∩Top(T ): ∀t j ∈ ↑(x j)∩Top(T ): t i ≺ t j

This is possible since ↑(x) ∩ Top(T) is an interval for each x . By induction
hypothesis, for each i ¶ k there is a plane drawing d i of ↑(x i) satisfying the
conditions. We can then form a plane drawing d of T by shifting the drawings
d1, . . . , dk up by one, lining them up side by side, then letting d(⊥) := (0,0). It
is clear that d then also satisfies the required conditions.

Corollary 7.6. Every sawed tree F admits a plane drawing d with the property
that d2(x) = height(x) for every x ∈ F.

Proof. Let F be based on (T,≺), and let s1, . . . , sk−1 be the top elements. By
Lemma 7.5, there is a plane drawing d ′ of T satisfying the property. Extend d ′

to a drawing d of F by letting d(si) := (i,height(F)).

The reason for considering sawed trees is that they provide a complete class
of frames for PL which is relatively easy to work with.

Lemma 7.7. Let F be a sawed tree of height n. Then F � PLn.
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Proof. Let F be based on (T,≺). Let us verify the conditions of Lemma 7.3.
Conditions (i) and (ii) are immediate. As for (iii), take x ∈ F with depth(x)> 1.
By construction, x ∈ T . Since ≺ is a plane ordering, we have that ↑(x)∩Top(T )
is an interval with respect to ≺. Therefore, the top two layers of ⇑(x) are
connected by the saw structure.

Lemma 7.8. Every rooted frame F of PL of height n is the p-morphic image of a
sawed tree of height n, for every n¾ 2.

Proof. We prove this by induction on n. For the base case n = 2, note that F
consists of the root ⊥ together with a number of nodes of depths 0 and 1. By
gluing together paths obtained from Lemma 7.4, we can find a path p = a0 · · · am

satisfying (I) and (II) of that lemma which visits every top node. We would
like to extend p so that it visits every non-root node. To do this, take x ∈ F of
depth 1. By Lemma 7.3 (ii), ⇑(x) = {s, t} with s, t top nodes and possibly s = t.
By inserting the sequence x t xs in p after an occurrence of s, we obtain a path
satisfying (I) and (II), which also visits x .

Therefore, we may assume that our path p visits every non-root node. Now,
construct the sawed tree F ′ by taking ⊥ together with new elements:

w−1, w0, . . . , wm, wm−1

with relations as in Figure 3.

⊥

w−1

w0

w1

w2

w3 wm−3

wm−2

wm−1

wm

wm+1· · ·

· · ·

Figure 3: The relations in F ′ when n= 2

Then define the surjective map f : F ′→ F by:

⊥ 7→ ⊥,

w−1 7→ a0,

wm+1 7→ am,

wi 7→ ai ∀i ∈ {0, . . . , m}

That f is a p-morphism amounts to the fact that p satisfies properties (I) and
(II) of Lemma 7.4.

For the induction step, assume that n > 2. Let z1, . . . , zk be the immediate
successors of ⊥ in F . By induction hypothesis, for each i there is a sawed tree
Gi and a p-morphism gi : Gi → ↑(zi). Let the sawed tree Gi be based on (Si ,≺i),
and let ui , vi ∈ Top(Si) be the least and greatest elements according to ≺i ,
respectively. Since |↑(ui)|, |↑(vi)|= 2, we must have:

|↑(gi(ui))|, |↑(gi(vi))|¶ 2

22



Let si ∈ ↑(gi(ui)) and t i ∈ ↑(gi(vi)) be the greatest elements. Now, by Lemma 7.4,
for each i ¶ k− 1 there is a path pi : t i   si+1 satisfying properties (I) and (II);
write pi = ai,0 · · · ai,mi

.
We will form our new sawed tree by laying the sawed trees G1, . . . , Gk in a

line and ‘gluing’ them usings the paths p1, . . . , pk−1 together with some ‘rope
ladders’ beneath. In detail, form F ′ by taking the following ingredients and
combining them as in Figure 4.

• Each sawed tree Gi .

• For each i ¶ k, new elements wi,0 · · ·wi,ki
corresponding to ai,0 · · · ai,ki

.

• A chain of length n− 2 (a rope ladder) to hang below each wi, j , with j
odd.

· · ·

G1

z1

· · ·

G2

z2

· · ·

Gk

zk

· · ·

...
...

...

· · ·

· · · ...

· · ·

· · · ...

· · ·

· · ·

⊥

u1 v1 w1,0 w1,1 w1,2 w1,m1
u2 v2 uk vk

Figure 4: Construction of F ′ from G1, . . . , Gk and the paths p1, . . . pk−1.

The result is evidently a sawed tree. Finally, construct the p-morphism
f : F ′→ F as follows.

(a) Inside each sawed tree Gi , let f act as gi .

(b) For each wi, j , let f (wi, j) := ai, j .

(c) For each wi, j with j odd, send the rope ladder hanging below wi, j to
ai, j .

Corollary 7.9. PLn is the logic of sawed trees of height at most n, for every n¾ 2.

Proof. This follows from Lemma 7.7 and Lemma 7.4, and the fact that PLn, like
any intermediate logic, is the logic of its rooted frames.

7.3 Convex geometric realisation
In the second stage of the completeness proof, we provide a method of con-
structing a convex realisation of any sawed tree. To provide intuition for the
construction, we first examine an instructive example of height 3. Consider
Figure 5.

The sawed tree F , depicted on the left, is realised in the pyramid P = OABEC,
depicted on the right. The point D lies midway between C and E. An open
surjective polyhedral map f : P → F is then defined as follows.
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⊥

a

c

s

d

t

b

e

F

O

A

B
C

D
E

Figure 5: A height-3 example of convex geometric realisation

• The point O is mapped to ⊥.

• The remainder of the line OA is mapped to a while the remainder of OB is
mapped to b.

• The remainder of the triangle OAC is mapped to c, the remainder of OAD
is mapped to d, and the remainder of OBE is mapped to e.

• Finally, the remainder of the region OACD is mapped to s and the remainder
of the region OABED is mapped to t.

It is clear that such a map is polyhedral. Further the construction ensures that
any open neighbourhood in P is mapped to an upwards-closed subset of F . For
instance, note that any open set intersecting OAD must also intersect OACD and
OABED. Hence, f : P → F is an open polyhedral map as required.

Notice that the two middle layers (a, b) and (c, d, e) of F correspond to the
edges AB and CDE of the base of the pyramid. Note further that the preimage of
the tree part of F — i.e. the union of the triangles OAC, OAD and OBE — has a
natural triangulation. The definition of f on this region then follows just as in
the definition of the geometric realisation from Section 4.4, with respect to this
triangulation.

With this intuition in mind we proceed with the proof in full generality. We
make use of the following technical lemma on nerves and simplicial complexes.

Lemma 7.10. Let F be a poset and take any function α: F → Rn. The collection:

{Convα[X ] | X ∈ N (F)}

forms a simplicial complex if and only if Convα[X ] and Convα[Y ] are disjoint
for any disjoint X , Y ∈ N (F).

Proof. This follows from [Men99, Theorem 2], noting that the nerve N (F) is
in particular an abstract simplicial complex, as defined there, with vertex set
{{x} | x ∈ F}.

Proof of Theorem 5.4. The case n = 0 is immediate. For n = 1 note that by
Lemma 7.3:

PL1 = Logic( , , ) = Logic( )

Consider the convex polyhedron given by the interval [0,1]. We can define
an open polyhedral map f : [0,1]→ by mapping 1/2 to the root, and the
intervals [0, 1/2) and (1/2, 1] to each top node, respectively. Therefore:

Logic(Convex1) ⊆ Logic([0, 1]) ⊆ PL1
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Hence we may assume that n¾ 2. By Corollary 7.9 and Lemma 4.1, it suffices to
show that every sawed tree of height n can be realised geometrically in a convex
polyhedron of dimension n. So, let F be a height-n sawed tree based on (T,≺).
Using Corollary 7.6, let d be a plane drawing of F such that d2(x) = height(x)
for each x ∈ F .

We first construct a simplicial complex corresponding to the tree part T
of F . Let e0, . . . , en be the standard basis vectors of Rn+1. Define a function
α: T → Rn+1 by letting, for x ∈ T :

α(x) := eheight(x) + d1(x)en

It is helpful to consider the nth dimension (spanned by en) as running from left
to right. Then nodes which are further to the right in the plane drawing d map
to points which are further to the right in Rn+1. For each X ∈ N (T ), let:

σ(X ) := Convα[X ]

Note that each element in X is of a different height, so that α[X ] is an affinely
independent set of points; hence σ(X ) is a simplex. Then set:

Σ := {σ(X ) | X ∈ N (X )}

Let us use Lemma 7.10 to verify that Σ is a simplicial complex. Take disjoint
X , Y ∈ N (F), and suppose for a contradiction that σ(X ) ∩ σ(Y ) 6= ∅. Let
X = {x1, . . . , xk} and Y = {y1, . . . , yl}, enumerated according to the order < on
T . Then, using barycentric coordinates inside σ(X ) and σ(Y ), there must be
r1, . . . , rk ¾ 0 and q1, . . . , ql ¾ 0 with

∑k
i=1 ri = 1 and

∑l
j=1 q j = 1 such that:

k
∑

i=1

riα(x i) =
l
∑

j=1

q jα(y j)

Using the definition of α and the fact that e0, . . . , en are linearly independent,
we see that:

• ri = 0 if there is no y j with height(x i) = height(y j),

• q j = 0 if there is no x i with height(x i) = height(y j),

• ri = q j whenever height(x i) = height(y j), and

•
∑k

i=1 ri d1(x i) =
∑l

j=1 q j d1(y j).

Hence, we may assume that k = l and that height(x i) = height(yi) for each
i. Now, for each i, since X and Y are disjoint, we must have d(x i) 6= d(yi).
But, since d2(x i) = height(x i) = d2(yi), we must have either d1(x i)< d1(yi) or
d1(x i)> d1(yi). Without loss of generality, assume that d1(x1)< d1(y1). Then,
since T is a tree and no edges overlap in the plane drawing d, we must have
d1(x i)< d1(yi) for each i. Thus:

k
∑

i=1

ri d1(x i) =
l
∑

i=1

qi d1(x i)<
l
∑

j=1

q j d1(y j)

which is a contradiction. Therefore, Σ is a simplicial complex. As in Section 4.4,
the p-morphism max: N (T )→ T gives rise to an open polyhedral map fT : |Σ| →
T .

Let us turn our attention now towards the top part of F . Enumerate Top(T )
according to ≺ as {t1, . . . , tk}, and let s1, . . . , sk−1 be the top elements of F , as
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in the definition of a sawed tree. For each i ¶ k, we have the (n− 1)-simplex
τi := σ(↓(t i)). For i ¶ k− 1, let:

ξi := Conv(α[⇓(si)]) = Conv(τi−1 ∪τi)

By considering the definition of α, and noting that ⇓(si) contains two elements
which have the same height, we can see that Dim(ξi) = n. Note also that:

ξi ∩ ξi+1 = τi

Define P :=
⋃k

i=1 ξi , which will be our convex geometric realisation. By
Lemma 2.15, P is an n-dimensional polyhedron. Furthermore, note that:

P = Conv(τ1 ∪τk) = Conv(τ1 ∪ · · · ∪τk) = Conv(P)

so that P is a convex polyhedron and thus P ∈ Convexn. Extend the map fT to
f : P → F by letting x ∈ ξi \ (τi−1∪τi) map to si . This map is clearly polyhedral.
To see that it is open, take x ∈ P and U ⊆ P a small open neighbourhood of x .
There are two cases. If x ∈ ξi \ (τi−1∪τi) for some i, then (as long as U is small
enough), f [U] = {si} which is open. Otherwise, x ∈ τi for some i. Since fT is
open, V := f [U ∩ |Σ|] is an open subset of T . To see that f [U] is open then, it
suffices to show that whenever si ∈ ↑

F V ∩Top(F), we have U ∩ξi 6=∅. So take
such an si . Since V is open in T , we must have t i−1 ∈ V or t i ∈ V . Without loss
of generality, assume the former. Hence we must have U ∩τi−1 6=∅. But then
since U is open, it follows that also U ∩ ξi 6=∅.

Thus f : P → F is an open surjective polyhedral map from a convex n-
dimensional polyhedron, as required.

8 Conclusion
In this article, we have provided an axiomatisation of the logic of the class of
convex polyhedra. This result fits into a natural programme of investigation,
initiated in [Bez+18] and continued in [Ada+22], which seeks to map out the
landscape of polyhedrally complete logics.

In [Ada+22] it is shown that there are infinitely many polyhedrally complete
logics of each height, axiomatised by the Jankov-Fine formulas of ‘starlike trees’.
This in particular includes Scott’s logic SL. Beyond these results, [Gab+19]
investigates the lower-level structure of this landscape in more detail. First, it is
shown that every height-1 logic is polyhedrally complete: these are BD1 plus
the logic LFk of the ‘k-fork’ — the frame consisting of a root with k immediate
successors — for each k ¾ 2. Second, turning to the height-2 case, the focus is on
logics of ‘flat polygons’: 2-dimensional polyhedra which can be embedded in the
plane R2. Any such logic turns out to be axiomatised by a subframe formula (see
[CZ97, p. 313]) plus the Jankov-Fine formulas of certain trees. Moreover, there
is a smallest such logic: Flat2. Figure 6 charts out what is currently known about
the landscape of polyhedrally complete logics, to the best of our knowledge.

One long-term goal is the complete classification of all polyhedrally complete
logics. This article presented one schema for attacking this problem: starting
with a natural class of polyhedra and asking what its logic is. For this it is
important to be able to find a geometric realisation of any frame of a candidate
logic in the class of polyhedra under consideration. By contrast, in [Ada+22]
another schema is followed. There we start from the logic side and define a
class of logics with the aim that they are polyhedrally complete, making use of
the Nerve Criterion for polyhedral completeness.
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Figure 6: The currently-mapped landscape of polyhedrally complete logics. CPC is
classical logic: IPC plus the principle of excluded middle.
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Państwowe Wydawnictwo Naukowe, 1963.

[RS72] Colin P. Rourke and Brian J. Sanderson. Introduction to
Piecewise-Linear Topology. Springer-Verlag, 1972. ISBN: 978-
3-540-11102-3.

[Sta67] John R. Stallings. Lectures on Polyhedral Topology. Tata In-
stitute of Fundamental Research Lectures on Mathematics
43. Notes by G. Ananda Swarup. Bombay: Tata Institute of
Fundamental Research, 1967.

[Sta97] Richard P. Stanley. Enumerative Combinatorics. Vol. 1. Cam-
bridge Studies in Advanced Mathematics 49. Cambridge
University Press, 1997.

[Sto38] Marshall Harvey Stone. “Topological representations of dis-
tributive lattices and Brouwerian logics”. In: Časopis pro
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