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Abstract. In this thesis, we define a team semantics for modal
mu-calculus, show it enjoys the flatness property and aligns well
with existing team temporal logics. The approach taken utilises
team semantics for modal logic and involves an algebraic study of
powerset structures in order to assign a reasonable team semantics
to fixed-points.
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CHAPTER 1

Introduction

The modal µ-calculus, hencefort denoted µML, is an extension of
propositional modal logic with two fixed-point operators µ and ν de-
noting , respectively, the least and the greatest fixed-point of functions
induced by formulas with free variables. It was introduced in its cur-
rent form by Kozen [15] but it can be traces back to work by Scott
and De Bakker in [18]. µML is a very powerful and expressive logic
which can capture many temporal operators not expressible in modal
logic. One such example is the until operator which can be captured
by µ. Indeed, µML subsumes Propositional Dynamic Logic (PDL), full
Computational Tree Logic (CTL∗) and it is thought as the mother of all
temporal logics.

From the logical point of view, µML is an important extension of
modal logic which maintains some desirable properties. Among other
properties, µ-calculus enjoys uniform interpolation, finite model prop-
erty decidability and moreover, its validities have a finitary axiomati-
zation. While modal logic is the bisimilar fragment of first order logic,
µML can be shown to be the bisimilar fragment of monadic second order
logic [3,6,9].

Modal µ-calculus is also intimately connected with lattice theory,
universal algebra, universal coalgebra as well as theoretical computer
science through atomata theory and game semantics. It becomes a
suitable formalization to study properties about processes and process
theory. To date, however, team semantics for µML has not been pro-
posed.

Team semantics can be seen as a generalisation of Tarskian model
theoretic semantics. Briefly, while Tarkasian semantics operate on ob-
jects alone, team semantics do it on sets of objects. Therefore, if clas-
sical semantics for first order logic are defined in terms of interpreta-
tions, we can consider team semantics for first order logic defined with
respect to sets of interpretations. Likewise, we can consider semantics
for modal logic with respect to sets of states in a Kripke model and
so on with other logics. In this context, such sets of objects are called
teams.

Historically, team semantics was first introduced by Hodges for in-
dependence friendly logic (IF logic) under the name of compositional
semantics [11]. Later Väänänen developed team semantics for depen-
dence logic [19]. This both logics are extensions of first order logic
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10 1. INTRODUCTION

which formalize the dependence/independence quantifier patterns of
first order logic. Such patterns arise because of the possibility of nest-
ing quantifiers in first order logic which is one of the key points of
expressibility. The most common example of this pattern can be seen
in the definitions of continuity and uniform continuity of a function f
expressed, respectively, by the sentences

∀x∀ε∃δ∀y(|x− y| < δ → |f(x)− f(y)| < ε)

∀ε∃δ∀x∀y(|x− y| < δ → |f(x)− f(y)| < ε),

where the dependency patterns are as follows. For continuity δ de-
pends on x and ε while for uniform continuity δ only depends on ε.
These notions can be syntactically seen because of the order of the
quantifiers in the sentences, in the first one the existential is under
the scope of both universal quantifiers binding x and ε and in the sec-
ond one it is only under the scope of ε. However, these notions of
dependency/independency arise as metanotions which are not formally
expressible in FO language. The aforementioned logics (IF logic and
dependence logic) introduce syntactical constructs to deal with such
patterns. For instance, in IF logic the definition of uniform continuity
is equivalent to

∀x∀ε∃(δ/x)∀y(|x− y| < δ → |f(x)− f(y)| < ε).

where ∃(δ/x) expresses that the value of δ is not dependent on the value
of x while in dependence logic the definition of continuity is equivalent
to

∀x∀ε∃δ∀y[dep(x, ε, δ) ∧ (|x− y| < δ → |f(x)− f(y)| < ε)]

where the atom dep(x0, . . . , xn, y) means that the value of y is function-
ally dependant on the values of x0, . . . , xn. One can quickly see that
standard Tarkasian semantics cannot define the semantics for this two
syntactic notions: when only one interpretation is considered there is
no possibility of studying the interdependency of variables.

This serves as a very good example of the possibilities that team
semantics open. Since the semantical relation is now defined over sets
of objects (interpretations in this case), it implicitly carries more in-
formation than the classical Tarkasian one. This information allows
for the definition of new logical atoms or connectives which expand
the expressible power of the logic, e.g., dep(x0, . . . , xn, y), φ6ψ,

·∼ φ,
∃1φ, ∀1φ, NE (non-emptyness atom) among others in the literature. In
particular, it was shown by Väänänen in [19] that dependence logic
is sentence-wise equivalent to existential second order logic and later
by Kontinen and Ville in [14] that extending dependence logic with a
strong notion of negation makes it equivalent to full second order logic.

Team semantics have also been defined and studied for modal logic,
linear temporal logic (LTL), full computational tree logic (CTL∗). Ques-
tions of interest include the expressible power of the logics, the relation
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with classical semantics and the complexity of satisfiability problems,
and generally the lifting of well-known theorems for the Tarkasian se-
mantics to the team semantical framework. For instance, the complex-
ity of modal team logic has been studied in [17], uniform interpolation
was established for the same logic in [5] and a van Benthem theorem
was shown in [13].

In the temporal context, team semantics have been developed to
study so called hyperproperties. Hyperproperties are properties of sets
of traces which in computer science can be thought as processes. Some
of these properties arise naturally, for example whether a set of runs of
a program reaches every possible final state. In [16], Krebs et. al. study
how team semantics and a hyper variant of LTL relate for the description
of hyperproperties.

Temporal team semantics allows the expression of synchroncity
which cannot be readily expressed in the classical framework. This
notion is one of the reasons which make temporal team semantics an
interesting area of study. In particular, team semantics have been de-
fined for LTL, CTL and even CTL∗ which is a highly expressible fragment
of µML. The most recent work in this area investigates their complexity
and expressibility [21] and studies, from a mathematical point of view,
the notion of asynchronicity [10].

This thesis contributes by defining team semantics for modal µ-
calculus and showing that the classical embedding of CTL can be adapted
to the team semantical framework. In summy, we:

(1) Introduce the liftings of some basic algebraic constructions and
study their basic properties.

(2) Develop internal and external team semantics for modal logic
giving an algebraic perspective on them.1

(3) Introduce a generalization of team semantics for modal logic
that we call general team semantics.

(4) Build, using the defined general team semantics, fixed-point
operators in a team semantical setting and define team µ-
calculus and study some basic properties.

(5) Embed CTL with team semantics to team µ-calculus.

We next proceed to summarize the content of the subsequent chap-
ters of this thesis. The reader will find a more detailed explanation at
the beginning of each chapter.

In chapter 2, we describe those basic concepts mostly from the
fields of order theory, modal µ-calculus, team semantics and powerset
structures that will be necessary throughout the thesis.

In chapter 3, we begin by giving a double perspective on team
semantics for propositional logic recently developed by Engström and

1The term internal and external logic has recently been introduced in [8] to
reflect the two semantical layers of propositional team semantics.
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Lorimer Olsson [8] that we will then extend to modal logic. Once we
have developed the notions algebraically, we demostrate how they can
be extended to a general team semantics for modal logic. Using the just
defined semantics we will provide team semantics for µML and show,
among other properties, flatness. Finally, we define the logic of team
µ-calculus (tµML) and a extension of it.

In chapter 4, we briefly introduce the team semantics for LTL and
CTL and the important notions of synchronicity and asynchronicity,
finally showing that the classical embedding of CTL into µML can be
extended to the team semantical framework.

In chapter 5, we summarize the contents of this thesis highlighting
the results obtained and discuss the future open research lines.



CHAPTER 2

Preliminaries

In this chapter we collect those basic facts, mostly without proofs,
that we will need in the following chapters to carry out our investiga-
tion. Here we fix notation and to give a gentle introduction to team
semantics and some of its algebraic considerations. Specifically, in Sec-
tion 1, we begin by recalling the algebraic basis of fixed-point theory,
monotone functions on complete lattices, and state the Knaster-Tarski
theorem which guarantees the existence of fixed-points for such a func-
tion. Afterwards, we show the equivalent construction by ordinal ap-
proximations which we will use throughout the thesis. In Section 2,
definition of modal µ-calculus and its standard semantics with respect
to Kripke models follows. Some constructions that we will generalize
in the subsequent chapters will also be laid out.

In Section 3, we take a closer look at the most known basic team
semantics for modal logic and use them as a gentle introduction to
team semantics in a more wider sense. We also study some of their
properties. Finally, in Section 4, motivated by the constructions of
team semantics, we study the structure of double powersets algebras
and isolate two different interpretations which we return to in the next
chapter. For a full treatment of the topics of this chapter we refer the
reader to [4,5,13,20].

Our underlying set theory is ZFC, Zermelo-Fraenkel set theory
with the axiom of choice (also known as ZFSk, i.e., Zermelo-Fraenkel-
Skolem set theory).

In what follows we use standard concepts and constructions from set
theory, see, e.g., [2,7] and lattice theory, see, e.g., [1,12]. Nevertheless,
regarding set theory, we have adopted the following conventions. An
ordinal α is a transitive set that is well-ordered by ∈; thus, α = {β |
β ∈ α}. The first transfinite ordinal will be denoted by N, which is
the set of all natural numbers, and, from what we have just said about
the ordinals, for every n ∈ N, n = {0, . . . , n − 1}. A function from A
to B is a subset F of A × B satisfying the functional condition and a
mapping from A to B is an ordered triple f = (A,F,B), denoted by
f : A→ B, in which F is a function from A to B.

1. Fixed-point theory

In this section we state some basic results about fixed-point theory.
We show both perspectives on fixed-points. First showing the purelly

13



14 2. PRELIMINARIES

algebraic one by stating the Knaster-Tarski theorem and later showing
the perspective of ordinal approximations of fixed-points, finally show-
ing that both of them are equivalent. This section is mostly based in
the lecture notes of Yde Venema [20].

We begin by giving a precise definition of partially-ordered set,
complete lattice and monotone function.

Definition 2.1. A partially-ordered set is a pair P = (P,≤) where
P is a set and ≤ is a binary relation over P satisfying:

(1) reflexivity: for every p ∈ P , p ≤ p;
(2) antisymmetry: for every p, q ∈ P , if p ≤ q and q ≤ p, then

p = q;
(3) transitivity: for every p, q, r ∈ P , if p ≤ q and q ≤ r, then

p ≤ r.

We call ≤ a partial order over P . If ≤ only satisfies reflexivity and
transitivity we say that it is a preorder and (P,≤) is a preordered set

Definition 2.2. Let P = (P,≤) be a partially-ordered set. For a
set A ⊆ P , an element p ∈ P is the supremum of A, written

∨
A, if

(1) for every a ∈ A, a ≤ p;
(2) for every q ∈ P , if for every a ∈ A, a ≤ q, then p ≤ q.

We define the notion of infimum dually and denote it with
∧
A.

Definition 2.3. A partially-ordered set P = (P,≤) is a complete
lattice if every subset A ⊆ P has supremum and infimum.

Remark 2.4. Notice that every complete lattice has a maximum
and minimum with respect to the order. They are denoted, respec-
tively, ⊤ :=

∨
P and ⊥ :=

∧
P . In particular, every complete lattice

is non-empty.

Example 2.5. For every set A, the structure (P(A),⊆) is a com-
plete lattice where, for S ⊆ P(A),

∨
S =

⋃
S and

∧
S =

⋂
S. More-

over, its maximum is A and its minimum ∅.

Definition 2.6. Let P = (P,≤P ) and Q = (Q,≤Q) be partially-
ordered sets. A function f : P → Q is said to be monotone if, for every
p, q ∈ P , p ≤P q implies f(p) ≤Q f(q).

Definition 2.7. Let P = (P,≤) be a partially-ordered set and
f : P → P a function. We say that p ∈ P is a fixed-point (of f) if
f(x) = x. The set of fixed-points of f is denoted FP(f).

The central theorem of this section is the theorem of Knaster-
Tarski. It states that the fixed-points of a monotone function on a
complete lattice form a complete lattice with the same order, hence
being the set of fixed-points non-empty. Particularly, it implies the
existence of a least and a greatest fixed-point for which the theorem
gives a specific and algebraic description.
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Theorem 2.8 (Knaster-Tarski). Let L = (L,≤) be a complete lat-
tice and f : L → L a monotone function. Then, FP(f) is non-empty
and (FP(f),≤) is a complete lattice.

Corollary 2.9. The following relations follow from Knaster-Tarski
theorem:

(1) The least fixed-point of f , denoted lfp(f), exists and

lfp(f) =
∧
{x ∈ L | f(x) ≤ x}.

(2) The greatest fixed-point of f , denoted gfp(f), exists and

gfp(f) =
∨
{x ∈ L | x ≤ f(x)}.

In what follows we will use ORD to denote the class of all ordinals.
As it is well-known, it does not describe a set in ZFC that is why it is
important to note that we will only use it as notation.

Definition 2.10. Let (L,≤) be a complete lattice and let f :
L → L be a function. We define by ordinal induction the sequences
(f ξ

µ)ξ∈ORD and (f ξ
ν )ξ∈ORD as follows:

f 0
µ = ⊥
fα+1
µ = f(fα

µ )

fβ
µ =

∨
α∈β f

α
µ for β limit

and


f 0
ν = ⊤
fα+1
ν = f(fα

ν )

fβ
ν =

∧
α∈β f

α
ν for β limit

Proposition 2.11. Let (L,≤) be a complete lattice and f : L→ L
be monotone. If α ≤ β, then fα

µ ≤ fβ
µ and fβ

ν ≤ fα
ν .

Proof. By ordinal induction on β. □

Corollary 2.12. The sequences (f ξ
µ)ξ∈ORD and (f ξ

ν )ξ∈ORD are

both eventually constant. We will denote by limξ∈ORD f
ξ
µ and limξ∈ORD f

ξ
ν

the respective constant value.

Proposition 2.13. The following relations hold

lfp(f) = limξ∈ORD f
ξ
µ and gfp(f) = limξ∈ORD f

ξ
ν

Proof. By a cardinality argument one shows that limξ∈ORD f
ξ
µ and

limξ∈ORD f
ξ
ν are fixed-points and, by ordinal induction on ξ, one shows

that they are respectively the least and the greatest ones. □

2. Modal mu-calculus

We now give the classical semantics of modal µ-calculus for Krikpe
models. It deserves a special attention how it makes use of the deno-
tation function for its algebraic properties. Further properties of this
logic will be studied in Section 1 of Chapter 4. For further details see
[6] and [9].

Fix a countably infinite set Prop of atomic formulas from now and
for the rest of thesis.
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Before formally stating the grammar which defines the formulas of
modal logic we remark that throughout this thesis we will be working
in negation normal form. There are two main reasons for this choice,
but since one involves team semantics, for now we will only say that it
is to simplify the constructions in modal µ-calculus. Hence, from now
on, for P ∈ Prop, we will write P to stand for the negation of P (i.e.,
¬P ) and say that it is a negative occurrence of P (in constrast to P
being a positive occurrence of P ).

Definition 2.14. The formulas of (propositional) modal logic are
given by the following grammar:

φ ::= ⊤ | ⊥ | P | P | φ ∧ φ | φ ∨ φ | ♢φ | □φ

where P ranges over Prop. The set of all modal formulas will be denoted
by ML.

Formulas are denoted by lowercase Greek letter φ, ψ, χ . . .. More-
over, we will say that a formula φ is positive in X ∈ Prop if every
occurrence of X in φ is not negated.

Definition 2.15. A (Kripke) model is a truple S = (S,R, V ) where
S is a set of states, R ⊆ S×S is an accessibility relation and V : Prop →
P(S) is a valuation. We also say that a pair F = (S,R) is a (Kripke)
frame. For a state s ∈ S we write R[s] := {t ∈ S | sRt}.

Definition 2.16. (Classical) semantics (for modal logic) for a model
S = (S,R, V ) and a state s ∈ S are defined by recursion as follows:

(1) S, s |=c ⊤ always.
(2) S, s |=c ⊥ never.
(3) S, s |=c P if and only if s ∈ V (P ).
(4) S, s |=c P if and only if s ̸∈ V (P ).
(5) S, s |=c φ ∧ ψ if and only if S, s |=c φ and S, s |=c ψ.
(6) S, s |=c φ ∨ ψ if and only if S, s |=c φ or S, s |=c ψ.
(7) S, s |=c ♢φ if and only if there is t ∈ S such that sRt and

S, t |=c φ.
(8) S, s |=c □φ if and only if for every t ∈ S such that sRt,

S, t |=c φ.

The subscript c (not written in the literature) stands for classical since
later we will define team semantics for the same grammar. The deno-
tation of a formula φ is the set ∥φ∥Sc := {s ∈ S | S, s |=c φ} and the
denotation function ∥·∥Sc is a function from ML to P(S) which assigns,
for every φ ∈ ML, its denotation ∥φ∥Sc . Notice that the denotation and
the denotation function also depend on the model S.
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Proposition 2.17. The recursive definition of the denotation func-
tion is as follows:

∥⊤∥Sc = S

∥⊥∥Sc = ∅
∥P∥Sc = V (P )

∥P∥Sc = S − V (P )

∥φ ∧ ψ∥Sc = ∥φ∥Sc ∩ ∥ψ∥Sc
∥φ ∨ ψ∥Sc = ∥φ∥Sc ∪ ∥ψ∥Sc

∥♢φ∥Sc = ⟨R⟩∥φ∥Sc = {s ∈ S | R[s] ∩ ∥φ∥Sc ̸= ∅}
∥□φ∥Sc = [R]∥φ∥Sc = {s ∈ S | R[s] ⊆ ∥φ∥Sc}

Remark 2.18. The just stated proposition entails that a different
approach would be to algebraically define the denotation function ∥·∥Sc
(as above) and write S, s |=c φ if s ∈ ∥φ∥Sc .

Remark 2.19. Notice how each logical connective and modality
defines (or is related to) an operation on the set P(S). That is not
surprising since, although ∥·∥Sc and S, · |=c · are simply two different
notations for the semantics of modal logic, each of them has different
implicit considerations. On the one hand, ∥·∥Sc can be algebraically
seen as the unique homomorphism extending the valuation of S to the
free algebra of formulas. That is, ∥·∥Sc is the unique homomorphism
making the diagram

Prop ML

P(S)

ι

V
∥·∥Sc

commute where P(S) is considered with structure (P(S),∪,∩, ⟨R⟩, [R]).
On the other hand, the semantic entailment relation S, · |=c · carries
this algebraic structure in a more obscure way since it is defined as
the semantics of a formal grammar. We will be using both notations
indistinguisably since modal µ-calculus needs the algebraic counterpart
of the semantics.

Definition 2.20. Given a model S = (S,R, V ) and a set A ⊆ S, we
define the model S[X 7→ A] for X ∈ Prop as the truple (S,R, V [X 7→
A]) where V [X 7→ A] is the valuation:

V [X 7→ A](P ) :=

{
V (P ), if P ̸= X,

A, if P = X.

The construction of the following function is the meeting point of
modal logic and algebraic fixed-point theory for, as we have seen, every
powerset can be given a structure of a complete lattice considering the
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inclusion order. This construction will be one of the main concepts
that we will have to generalize in the next chapter.

Theorem 2.21. Let φ ∈ ML and S be a model. If φ is positive in
X, then the function:

φS
X : P(S)→P(S)

A 7→ ∥φ∥S[X 7→A]
c

is monotone over ⊆.

Proof. By induction on φ. □

Corollary 2.22. For every φ ∈ ML positive in X and every model
S the function φS

X has a least and a greatest fixed-point.

Now, the definition of the µ-calculus is given by syntactically adding
two operators µ and ν which will be semantically understand, respec-
tively, as the least and greatest fixed-point of the respective function.
The result is a very powerful and expressible temporal logic.

Definition 2.23. The formulas of modal µ-calculus are the exten-
sion of the modal formulas given by the following grammar:

φ ::= ⊤ | ⊥ | P | P | φ ∧ φ | φ ∨ φ | ♢φ | □φ | µX.φ | νX.φ
where P and X range over Prop and φ is positive in X. The set of
all modal µ-calculus formulas will be denoted by µML. Notice that
ML ⊆ µML.

Definition 2.24. For a model S = (S,R, V ) we extend the (clas-
sical) denotation map ∥·∥Sc : µML → P(S) as follows:

(9) ∥µX.φ∥Sc := lfp(φS
X) =

⋂
{A ⊆ S | ∥φ∥S[X 7→A]

c ⊆ A};
(10) ∥νX.φ∥Sc := gfp(φS

X) =
⋃
{A ⊆ S | A ⊆ ∥φ∥S[X 7→A]

c }.

3. Team semantics for modal logic

This section is devoted to provide an introduction to team seman-
tics for modal logic as it is generally defined in the literature and will
serve as the basis for defining team semantics for modal µ-calculus
in the next chapter. After defining the team semantical relation, we
restrict attention to more general constructions common in team se-
mantics. Moreover, we show that the defined semantics enjoy flatness,
downwards and union closure and singleton equivalence. The main
references for the definition and results presented are [5,13].

Definition 2.25. Team semantics for modal logic for a model S =
(S,R, V ) and a team T ⊆ S is defined by recursion as follows:

(1) S, T |=ML
t ⊤ always.

(2) S, T |=ML
t ⊥ if and only if T = ∅.

(3) S, T |=ML
t P if and only if T ⊆ V (P ).
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(4) S, T |=ML
t P if and only if T ∩ V (P ) = ∅.

(5) S, T |=ML
t ψ ∨ χ if and only if T = A ∪ B, S, A |=ML

t ψ and
S, B |=ML

t χ.
(6) S, T |=ML

t ψ ∧ χ if and only if S, T |=ML
t ψ and S, T |=ML

t χ.
(7) S, T |=ML

t ♢ψ if and only if there is T ′ ⊆ S such that S, T ′ |=ML
t ψ

and
(a) for every t ∈ T , there is some t′ ∈ T ′ such that tRt′;
(b) for every t′ ∈ T ′, there is some t ∈ T such that tRt′.

(8) S, T |=ML
t □ψ if and only if S,

⋃
t∈T R[t] |=ML

t ψ.

In this definition the subscript t stands for team. Notice that we have
also added the superscript ML to denote the logic we are referring to.
This is just for clarity since we will define team semantics other logics.
Team semantics leads to the (team) denotation by writing ∥φ∥St :=
{T ∈ P(S) | S, T |=ML

t φ} and the (team) denotation function of the
form ∥·∥St : ML → PP(S) which maps a formula φ ∈ ML to ∥φ∥St .

To introduce team semantics let us work out an example and com-
pute some team denotations.

Example 2.26. Consider the frame
c2

a1 a2 b1 c1

a0 b0 c0

with the valuation defined as

V (P ) := {a1, b1, c1, c2} V (Q) := {a2, b1, c2}
and let us denote it by S. Let us compute the (team) denotations of
□P,♢Q and □(P ∨ Q). Note that, by definition, ∥P∥St = P(V (P )) =
P({a1, b1, c1, c2}) and ∥Q∥St = P({a2, b1, c2}).

(1) To compute the denotation of □P (and later □(P ∨ Q)), note
that the states a1, a2, b1 and c2 do not play any role since they are
endpoints (same as with classical semantics). Formally, if T is any set
and s is an endpoint, that is, s is such that R[s] = ∅, then

S, T |=ML
t □φ if and only if S, T ∪ {s} |=ML

t □φ

for
⋃

t∈T R[t] = (
⋃

t∈T R[t]) ∪R[s].
Hence, we concentrate ourselves on which subsets T ⊆ {a0, b0, c0, c1}

satisfy □P and, therefore, the denotation would be all the sets of
the form T ∪ A for A ⊆ {a1, a2, b1, c2}. By definition, we have to
compute sets T such that

⋃
t∈T R[t] ∈ ∥P∥St = P({a1, b1, c1, c2}), i.e.,⋃

t∈T R[t] ⊆ {a1, b1, c1, c2}. Note that, for that it suffices to see that,
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for every t ∈ T , R[t] ⊆ {a1, b1, c1, c2} = V (P ), i.e., it suffices to see
that, for every t ∈ T , S, t |=c □P . As one can see, such states are c0
and c1. Thus,

∥□φ∥St = {T ∪ A | T ⊆ {c0, c1}, A ⊆ {a1, a2, b1, c2}}
= P({a1, a2, b1, c0, c1, c2}).

where the last equality is easy to check.
(2) For the denotation of ♢Q we have to consider sets which satisfy

the forth and back conditions with some set of ∥Q∥St = P({a2, b1, c2}).
In this particular case, it is quite simple for any state of a2, b1 and
c2 only has one predecessor, namely, a0 → a2, b0 → b1 and c1 → c2.
Hence, the only possible such sets are the subsets of {a0, b0, c1}, that
is,

∥♢Q∥St = P({a0, b0, c1}).
Interestingly enough, note that {a0, b0, c1} = ∥♢Q∥Sc .

(3) For the denotation of □(P ∨ Q) we follow the same reasoning
as before and conclude that it is the collection of sets T ∪A such that
T ⊆ {a0, b0, c0, c1} satisfy □(P ∨Q) and A ⊆ {a1, a2, b1, c2}.

We begin by computing the denotation of P ∨Q. By definition, it
is the collection of sets A ∪ B such that S, A |=ML

t P and S, B |=ML
t Q,

i.e., such that A ⊆ {a1, b1, c1, c2} and B ⊆ {a2, b1, c2}. As before, it is
easy to see that,

{A ∪B | A ⊆ {a1, b1, c1, c2}, B ⊆ {a2, b1, c2}} = P({a1, a2, b1, c1, c2})

Let us now finish with the example. It is obvious that b0 is the
only state such that R[t] ⊈ {a1, a2, b1, c1, c2}. Hence, the sets T ⊆
{a0, b0, c0, c1} which satisfy □(P ∨ Q) are the sets T ⊆ {a0, c0, c1}.
That is,

∥□(P ∨Q)∥St = {T ∪ A | T ⊆ {a0, c0, c1}, A ⊆ {a1, a2, b1, c2}}
= P({a0, a1, a2, b1, c0, c1, c2})

Where the last equality is easy to show. Surprisingly,

∥□(P ∨Q)∥Sc = {a0, a1, a2, b1, c0, c1, c2}.

The definition of team semantics for modal logic gives an obvious
motivation for the study of double powerset structures that we wil
carry out in the next chapter. However, our interest now is to see
how the classical semantics and team semantics for modal logic, relate.
Nonetheless, the restriction to modal logic is not necessary. That is
why we will continue with a more general framework and start the
study of such relations in general.

For a non-determined set of formulas Fm, we consider the following
diagram
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Fm P(X) PP(X)
∥·∥c

∥·∥t

Pow

which does not necessarily commute and where ∥·∥c (or |=c) will be
just refered as classical semantics, ∥·∥t (or |=t) as team semantics and
Pow is the powerset lifting which maps a set A to its powerset P(A).
Let us say that the set X depends on the chosen logic. For instance:

(1) When considering propositional logic, X would be the set of
all truth-assignments for the respective set of propositions.

(2) When considering first order logic, X would be the domain of
the chosen model.

(3) When considering modal logic, X would be the set of all states
in the chosen Kripke model.

(4) When considering some temporal logic such as linear tempo-
ral logic, X would be the set of all traces over the respective
propositions.

From now on and for the rest of the thesis we will be usually work-
ing with double powersets. Hence, the following remark fixing some
notation is necessary.

Remark 2.27. For the sake of redability we adopt the following
notational conventions throughout the document. For some set X,

(1) Lowercase Latin letters a, b, c, . . . denote elements of X.
(2) Uppercase Latin letters A,B, T, U, V . . . (and similar) denote

subsets of X, that is, elements of P(X). In the context of
team semantics we will call them teams.

(3) Uppercase callygraphic Latin letters, A,B, . . . denote subsets
of teams, that is, elements of PP(X). In the context of team
semantics we will call them leagues.

(4) If neededd, uppercase Gothic Latin letters, A,B, . . . denote
subsets of leagues.

Definition 2.28. For a formula φ ∈ Fm and teams T and Ti for
i ∈ I we will say that

(1) φ has the empty team property, if ∅ |=t φ.
(2) φ has the singleton property, if for every t ∈ X, {t} |=t φ if

and only if t |=c φ.
(3) φ is downwards closed, if whenver T |=t φ and U ⊆ T , then

U |=t φ.
(4) φ is union closed, if whenever Ti |=t φ for all i ∈ I, then⋃

i∈I Ti |=t φ.
(5) φ is flat, if T |=t φ if and only if for every t ∈ T , {t} |=t φ.

We say that ∥·∥t has the empty team property (resp. the singleton
property, is downwards closed, union closed or flat) if every φ ∈ Fm has
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the empty team property (resp. the singleton property, is downwards
closed, union closed or flat).

More in general, one can define this notions (except the sigleton
property) for any set A ∈ PP(X).

Definition 2.29. For a set A ∈ PP(X) and teams T and Ti for
i ∈ I we will say that

(1) A has the empty team property, if ∅ ∈ A.
(2) A is downwards closed, if whenver T ∈ A and U ⊆ T , then

U ∈ A.
(3) A is union closed, if whenever Ti ∈ A for all i ∈ I, then⋃

i∈I Ti ∈ A.
(4) φ is flat, if T ∈ A if and only if for every t ∈ T , {t} ∈ A.

The following are easy to show.

Proposition 2.30. The following relations hold.

(1) If φ is union closed, then φ enjoys the empty team property.
(2) φ is flat if and only if φ is downwards and union closed.

Proof. (1) It suffices to consider the case where I = ∅.
(2) Let φ be a flat formula. We want to show that φ is downwards

and union closed, i.e., that if T |=t φ and U ⊆ T , then U |=t φ and
that if, for every i ∈ I, Ti |=t φ, then

⋃
i∈I Ti |=t φ.

Let T be a set such that T |=t φ and U ⊆ T . By flatness, for
every t ∈ T , {t} |=t φ. Hence, for every u ∈ U ⊆ T , {u} |=t φ and,
by flatness, U |=t φ. Moreover, let Ti be such that, for every i ∈ I,
Ti |=t φ. Thefore, for every i ∈ I and every t ∈ Ti, {t} |=t φ. Hence, for
every t ∈

⋃
i∈I Ti, since t ∈ Tj for some j, {t} |=t φ and

⋃
i∈I Ti |=t φ

by flatness.
Let φ be downwards and union closed. We want to show that φ is

flat, i.e., that for every set T , T |=t φ if and only if for every t ∈ T ,
{t} |=t φ.

Let T be such that T |=t φ. Since, for every t ∈ T , {t} ⊆ T , by
downwads closure, {t} |=t φ. Conversely, let T be such that, for every
t ∈ T , {t} |=t φ. By union closure,

⋃
t∈T{t} = T |=t φ. □

Proposition 2.31. The following are equivalent.

(1) φ is flat and has the singleton property.
(2) φ is downwads and union closed and has the singleton property.
(3) ∥φ∥t = P(∥φ∥c).
Proof. By Proposition 2.30, (1) and (2) are equivalent. We now

show that (1) implies (3) and that (3) implies (2).
Let φ be a formula which satisfies condition (1). We want to show

that ∥φ∥t = P(∥φ∥c). But for that it suffices to notice that condition
(1) is equivalent to the condition, T |=t φ if and only for every t ∈ T ,
t |=c φ, i.e., T ∈ ∥φ∥t if and only if T ⊆ ∥φ∥c.
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Let φ be a formula such that ∥φ∥t = P(∥φ∥c). We want to show
that φ enjoys downwards and union closure and singleton property.
Singleton property follows inmediately since {t} ∈ ∥φ∥t if and only if
{t} ⊆ ∥φ∥c, that is, t ∈ ∥φ∥c. Finally, note that every powerset is
downwards and union closed. □

Remark 2.32. Note that, if condition (3) of Propostion 2.31 is
satisfied for every formula φ ∈ Fm, then the diagram

Fm P(X) PP(X)
∥·∥c

∥·∥t

Pow

commutes. This can be seen as a motivation for saying that flatness
and singleton property are desirable and natural conditions for a team
semantics to have and note that it has consequences which can be seen
as natural. For instance, it is sensible to think that, if T |=t φ, then for
any subset U ⊆ T , U |=t φ or at least for every non-empty U . Or, as a
corollary of union closure, that the emtpy team satisfies every possible
formula.

Now, the last point of this section is to show that the defined seman-
tics for modal logic, indeed enjoy flatness and singleton equivalence,
thus, all its consequences.

Proposition 2.33 (Flatness and singleton equivalence). For every
model S, every team T ⊆ S and every formula φ ∈ ML, the following
are equivalent.

(1) S, T |=ML
t φ;

(2) for every t ∈ T , S, {t} |=ML
t φ;

(3) for every t ∈ T , S, t |=c φ.

Proof. Let S be a model. By Proposition 2.31, it suffices to show
that, for every formula φ, T ∈ ∥φ∥St if and only if T ⊆ ∥φ∥Sc . We prove
this equivalence by induction on φ.

Base case. By definition, ∥⊤∥St = P(S), ∥⊤∥Sc = S, ∥⊥∥St = ∅ and
∥⊥∥Sc = ∅. Hence, the statement for ⊤ and ⊥ follows.

For literals, note that T ∈ ∥P∥St if and only if T ⊆ V (P ) = ∥φ∥Sc and
T ∈ ∥P∥St if and only if T ∩ V (P ) = ∅, that is, T ⊆ S − V (P ) = ∥P∥Sc .

Boolean cases. Assume that the statement holds for φ, ψ. We re-
strict ourselves to show the statement for disjuction. The statement
for conjunction follows by a similar argument.

Let T ∈ ∥φ ∨ ψ∥St , i.e., T = A ∪ B for A ∈ ∥φ∥St and B ∈ ∥ψ∥St .
By induction hypothesis it follows that A ⊆ ∥φ∥Sc and B ⊆ ∥ψ∥Sc
and A ∪ B ⊆ ∥φ∥Sc ∪ ∥ψ∥Sc = ∥φ ∨ ψ∥Sc . Conversely, let T ⊆ ∥φ ∨
ψ∥Sc = ∥ψ∥Sc ∪ ∥ψ∥Sc . It suffices to consider A := T ∩ ∥φ∥Sc ⊆ ∥φ∥Sc and
B := T ∩ ∥ψ∥Sc ⊆ ∥ψ∥Sc and conclude by induction hypothesis since
A ∪B = T .
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Modal cases. Assume that the statement holds for φ. We show the
statement for ♢φ and □φ.

Case ♢. Let T ∈ ∥♢φ∥St , that is, S, T |=ML
t ♢φ, i.e., there is a set

U ⊆ S such that (1) for every t ∈ T , there is u ∈ U such that tRu, (2)
for every u ∈ U , there is t ∈ T such that tRu and (3) S, U |=ML

t φ. We
want to show that T ⊆ ∥♢φ∥Sc . Let t ∈ T . By induction hypothesis,
U ⊆ ∥φ∥Sc . Since TREMU , there is a u ∈ U ⊆ ∥φ∥Sc such that tRu and
so S, t |=c ♢φ. Conversely, let T be such that T ⊆ ∥♢φ∥Sc . We want to
show that T ∈ ∥♢φ∥St . By assumption, for every t ∈ T there is st ∈ S
such that tRst and S, st |=c φ. Consider the set Z := {st ∈ S | t ∈
T} ⊆ ∥φ∥Sc . By construction, Z satisfies the necessary conditions and,
by induction hypothesis, S, Z |=ML

t φ.
Case □. Let T ∈ ∥□φ∥St , that is, S,

⋃
t∈T R[t] |=ML

t φ. We want to
show that T ⊆ ∥□φ∥Sc . Let s ∈ T . By induction hypothesis, R[s] ⊆⋃

t∈T ⊆ ∥φ∥Sc and so S, s |=c □φ. Conversely, let T be such that
T ⊆ ∥□φ∥Sc , that is, for every t ∈ T , S, t |=c □φ. We want to show that
S, T |=ML

t □φ, i.e., S,
⋃

t∈T |=ML
t φ. By induction hypothesis, it suffices

to show that
⋃

t∈T R[t] ⊆ ∥φ∥Sc but that follows since, by assumption,
for every t ∈ T , R[t] ⊆ ∥φ∥Sc . □

Remark 2.34. Notice that, to show that T ∈ ∥♢φ∥St if and only if
T ⊆ ∥♢φ∥Sc the condition that, for every u ∈ U , there is a t ∈ T such
that tRu was never used. That means that the definition of the team
semantics for ♢ can be simplified. We will say more on this later.

Corollary 2.35 (Empty team property). For every model S and
every formula φ ∈ ML, S, ∅ |=ML

t φ.

Corollary 2.36 (Downards and union closure). For every model
S, every A,B ⊆ S and every formula φ ∈ ML,

(1) If S, Ti |=ML
t φ for i ∈ I, then S,

⋃
i∈I Ti |=ML

t φ.
(2) If S, T |=ML

t φ and U ⊆ T , then S, U |=ML
t φ.

4. Powerset structures

In this section we define, following the study of power structures
done in [4], power liftings of relations and algebraic operations. In
particular, we study the properties of the lifting of the inclusion relation
⊆ and the operations of union ∪ and intersection ∩. Moreover, we work
out the maximum, minimum, supremum and infimums of the order
liftings over double powersets.

The work done in this section provides an algebraic glimpse of the
ideas fully developed in Chapter 3 about internal and external oper-
ations. It also serves as a motivation for the choice of the ordered
structure over which we will interpret fixed-point operators. Although
the results stated in this section are not strictly necessary for the thesis,
we will be using the definitions often.
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During this section fix X to be an arbitrary set.

Definition 2.37. Let R ⊆ X ×X be a binary relation. The lower
and upper liftings of R are the relations over P(X) defined as follows:

ARLB if and only if ∀a ∈ A ∃b ∈ B (aRb)

ARUB if and only if ∀b ∈ B ∃a ∈ A (aRb)

Moreover, the Egli-Milner lifting of R is the relation given by

AREMB if and only if ARLB and ARUB

We will write R∗ to mean any of the three liftings defined above.

Definition 2.38. Let f : Xn → X be an operation for n ≥
1. Its power operation, fP : P(X)n → P(X) is defined, for every
A0, . . . An−1 ⊆ X, as

fP(A0, . . . , An−1) := {f(a0, . . . an−1) | ai ∈ Ai for i ∈ n}.
Moreover, if f : X0 → X is a nullary operation (i.e., a constant), its
power operation fP : P(X)0 → P(X) is defined by fP(∅) := {f(∅)}.

There is an special case of relation and operation liftings, namely,
when the original operations can also be considered over the power-
set. In this situations the study of the liftings becomes more inter-
esting because we can also study the relation between the original
relation/operation and its liftings. In particular in the case of dou-
ble powerset structures for which we can consider the inclusion order,
binary union and binary intersection and their respectives liftings.

Let us consider the liftings of the inclusion relation ⊆ over PP(X)
as ⊑L,⊑U and ⊑EM and we will write the power operations of binary
union and intersection as ⊔ and ⊓. For completeness, let us recall that
they are defined as:

A ⊔ B = {A ∪B | A ∈ A and B ∈ B} (Internal union)

A ⊓ B = {A ∩B | A ∈ A and B ∈ B} (Internal intersection)

Hence, we will consider PP(X) with two different structures:

(PP(X),⊆,∪,∩) (PP(X),⊑∗,⊔,⊓)
where ∗ is any of the lower, upper and Egli-Milner liftings. We will
refer to the first one as the external structure and to the second one
as the internal strcuture. While in the external structure PP(X) is
regarded as a powerset, hence working with A ⊆ B,A ∪ B and A ∩ B,
in the internal structure PP(X) is regarded as a lifting of P(X), hence
working with A ⊑∗ B,A ⊔ B and A ⊓ B.

We next proceed to investigate the properties of ⊑∗,⊔ and ⊓. Spe-
cially we study the lower, upper and Egli-Milner liftings showing they
dif and only ifer with respect to the properties of interest and motivate
the choice of ⊑L as the order to consider in the construction of team
semantics for modal µ-calculus.
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We begin by investigating the properties of ⊑∗ with respect to ⊆
and the empty set ∅.

Proposition 2.39. For A,B ⊆ X, the following are equivalent.

(1) A ⊆ B.
(2) {A} ⊑EM {B}.
(3) {A} ⊑U {B}.
(4) {A} ⊑L {B}.

Proof. Clear. □

Proposition 2.40. For A,B ∈ PP(X), A ⊆ B implies A ⊑L B
and B ⊑U A.

Proof. Follows from reflexivity of ⊆. □

Remark 2.41. ⊑EM does not preserve ⊆ in any form, that is, there
are A and B such that A ⊆ B but AHHH⊑EM B and BHHH⊑EM A, see [4].

Proposition 2.42. For A ∈ PP(X). The following relations hold.

(1) ∅ ⊑L ∅, ∅ ⊑L A and AZZ⊑L ∅.
(2) ∅ ⊑U ∅, ∅ZZ⊑U A and A ⊑U ∅.
(3) ∅ ⊑EM ∅, ∅HHH⊑EM A and AHHH⊑EM ∅.

Proof. (3) is a consequence of (1) and (2) which follows either
from the existential quantification or vacuously from the universal
quantification in the definition of the relations ⊑∗. □

Proposition 2.43. The following holds.

(1) ⊑∗ are reflexive;
(2) ⊑∗ are transitive;
(3) None of ⊑∗ are antisymmetric.

Proof. (1) follows from reflexivity of⊆ and (2) follows from transi-
tivity of ⊆. For (3) we show that ⊑EM is not antisymmetric from which
the antisymmetry of ⊑L and ⊑U follow. Consider the set X = {0, 1}
and we depict the ordered set (P(X),⊆) below.

{0, 1}

{0} {1}

∅

We ommit the description of (PP(X),⊑EM) for simplicity and refer the
reader to [4] for a complete description.

On the one hand, {{0, 1}, ∅} ⊑EM {{0, 1}, {0}, {1}, ∅}. First,
{{0, 1}, ∅} ⊑L {{0, 1}, {0}, {1}, ∅}
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because {{0, 1}, ∅} ⊆ {{0, 1}, {0}, {1}, ∅}. Moreover,

{{0, 1}, ∅} ⊑U {{0, 1}, {0}, {1}, ∅}
because, for {0, 1} and ⊥ the condition is obvious and for {0} and {1}
one can simply take ∅ to witness the existential quantification since
∅ ⊆ {0} and ∅ ⊆ {1}.

On the other hand, {{0, 1}, {0}, {1}, ∅} ⊑EM {{0, 1}, ∅}. First,
{{0, 1}, {0}, {1}, ∅} ⊑U {{0, 1}, ∅}

because {{0, 1}, ∅} ⊆ {{0, 1}, {0}, {1}, ∅}. Moreover,

{{0, 1}, {0}, {1}, ∅} ⊑L {{0, 1}, ∅}
because, for {0, 1} and ⊥ the condition is obvious and for {0} and
{1} one can simply take {0, 1} to witness the existential quantification
since {0} ⊆ {0, 1} and {1} ⊆ {0, 1}. □

Corollary 2.44. (PP(X),⊑L), (PP(X),⊑U) and (PP(X),⊑EM)
are preordered sets.

Remark 2.45. Proposition 2.42 shows the weird behavour of ∅ with
respect to ⊑∗ (especially ⊑EM). Moreover, if we agree that the emtpy
team property is desirable, then any possible denotation is never empty.
That is, since for every formula φ, ∅ ∈ ∥φ∥t, then ∥φ∥t ̸= ∅. Hence,
for algebraic and logical reasons, instead of considering PP(X) we will
consider PP(X)− {∅} and we will denote by P∗P(X) where we write
in general P∗(X) for P(X) − {∅}. Moreover, when talking about the
internal structure we will refer to the structure (P∗P(X),⊑∗,⊔,⊓).

Remark 2.46. It is necessary to note that antisymetry is necessary
in order theory for the uniqueness of many constructions, e.g., maxi-
mum, minimum, supremum and infimum. Despite (P∗P(X),⊑∗) not
enjoying antisymmetry, we still think that it is a structure rich enough
to carry out our research. That is why many of the constructions will
be considered up to ≡∗ equivalence where A ≡∗ B holds if and only if
A ⊑∗ B and B ⊑∗ A. It is easy to see that ≡∗ defines an equivalence
relation over P∗P(X) and that ⊑∗ defines an order over P∗P(X)/ ≡∗.
As it is standard, when needed, we will write [A]≡∗ for the equivalence
class of A. However, there are two reasons to not consider the quotient
set. (1) To the best of our knowledge, there is not an easy description
(in general) of the equivalence clases of ≡∗. Therefore, working in the
quotient set is messy and unclear. (2) Being ≡∗ equivalent does not
preserve semantical equivalence. That is, two sets A and B might be
≡∗ equivalent, but it is not equivalent for a formula φ, ∥φ∥t = A or
∥φ∥t = B. Thus, working with ≡∗ equivalence classes seems not to be
desirable in team semantics.

Before proceeding any further with the order theoretical study of
⊑∗, let us define the generalizations of internal union and intersection.
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Definition 2.47. For a non-empty set A ⊆ P∗P(X) we define:⊔
A := {

⋃
Z∈A f(Z) | f ∈

∏
A}d

A := {
⋂

Z∈A f(Z) | f ∈
∏

A}

where
∏

A is the usual set-theoretic generalised cartesian product de-
fined as ∏

A := {f : A →
⋃
A | for every A ∈ A, f(A) ∈ A}.

Remark 2.48. The definition of
⊔

and
d

are defined only for non-
empty sets for, by definition,

⊔
∅ = ∅ ̸∈ P∗P(X) and

d
∅ would not be

even defined. As we will see we will only use such sets for a non-emtpy
A. Although we do not need its definition, in light of the following
propositions, we can define

⊔
∅ := {∅} and

d
∅ := {X}.

It is clear that the general definition generalizes the binary one,
that is: ⊔

{A,B} = A ⊔ Bd
{A,B} = A ⊓ B

Proposition 2.49. The following hold.

(1) [{X}]≡L
= {A ∈ P∗P(X) | X ∈ A}. In particular, P(X) is

≡L equivalent to {X}.
(2) {X} is the maximum of ⊑L up to ≡L equivalence.
(3) [{∅}]≡L

= {{∅}}.
(4) {∅} is the minimum of ⊑L up to ≡L equivalence.
(5) If A is non-empty,

⋃
A is the supremum of A with respect to

⊑L up to ≡L equivalence.
(6) If A is non-empty,

d
A is the infimum of A with respect to ⊑L

up to ≡L equivalence.

Proof. (1) We show both inclusions. Let A ∈ PP(X) be such
that X ∈ A. We show that A ≡L {X} and so

[{X}]≡L
⊇ {A ∈ PP(X) | X ∈ A}.

That A ⊑L is obvious since, for every A ∈ A, A ⊆ X. Also, for
X ∈ {X}, since by assumption X ∈ A and X ⊆ X, {X} ⊑L A.

Conversely, suppose that A ≡L {X}. In particular, {X} ⊑L A and
there should exists A ∈ A such that X ⊆ A thus, A = X ∈ A and

[{X}]≡L
⊆ {A ∈ PP(X) | X ∈ A}.

(2) Take A ∈ PP(X). Since for every A ∈ A, A ⊆ X, it follows
that A ⊑L {X}.

(3) It is obvious that

[{∅}]≡L
⊇ {{∅}}

by reflexivity of ⊑L. Let us show the converse inclusion. Let A ∈
PP(X) be such that A ≡L {∅}. Hence, for every A ∈ A, A ⊆ ∅, that
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is, A = ∅ and

[{∅}]≡L
⊆ {{∅}}.

(4) Take A ∈ PP(X). Since, for every A ∈ A, ∅ ⊆ A, it follows
that {∅} ⊑L A.

(5) We show that
⋃

A is an upper bound of A and that it is the least
such, i.e., that for every A ∈ A, A ⊑L

⋃
A and that if X ∈ PP(X) is

such that, for every A ∈ A, A ⊑L X , then
⋃
A ⊑L X .

That,
⋃

A is an upper bound of A is clear because, for every A ∈ A,
A ⊆

⋃
A.

Let X ∈ PP(S) be such that, for every A ∈ A, A ⊑L X . Consider
A ∈

⋃
A. Hence, A ∈ A for some A ∈ A. Since A ⊑ X , there is some

X ∈ X such that A ⊆ X.
(6) We show that

d
A is a lower bound of A and that it is the

greatest such, i.e., that for every A ∈ A,
d
A ⊑L A and that if X ∈

PP(X) is such that, for every A ∈ A, X ⊑L A, then X ⊑L

d
A.

Consider A ∈ A, we want to show that
d
A ⊑ A. Let

⋂
Z∈A f(Z) ∈d

A for some f ∈
∏

A. Note that f(A) ∈ A and that
⋂

Z∈A f(Z) ⊆
f(A). Hence,

d
A ⊑L A.

Moreover, let X ∈ PP(X) be such that, for every A ∈ A, X ⊑L A.
We want to show that X ⊑L

d
A. Let X ∈ X . We know that, for every

A ∈ A, there is a set f(A) ∈ A such that X ⊆ f(A). Hence, consider⋂
Z∈A f(Z). Note that

⋂
Z∈A f(Z) ∈

d
A and X ⊆

⋂
Z∈A f(Z). □

The following Proposition states the respective result for ⊑U and a
consequence we can also write the statement for ⊑EM.

Proposition 2.50. The following holds

(1) [{X}]≡U
= {{X}}.

(2) {X} is the maximum of ⊑U up to ≡U equivalence.
(3) [{∅}]≡L

= {A ∈ P∗P(X) | ∅ ∈ A}. In particular, any pair of
powersets P(A) and P(B) are ≡U equivalent.

(4) {∅} is the minimum of ⊑U up to ≡U equivalence.
(5) For a non-empty A,

⊔
A is the supremum of A with respect to

⊑U up to ≡U equivalence.
(6) For a non-empty A,

⋃
A is the infimum of A with respect to

⊑U up to ≡U equivalence.

Proof. Similar to Proposition 2.49. □

Proposition 2.51. The following holds

(1) [{X}]≡EM
= {{X}}.

(2) {X} is the maximum of ⊑EM up to ≡EM equivalence.
(3) [{∅}]≡EM

= {{∅}}.
(4) {∅} is the minimum of ⊑EM up to ≡EM equivalence.

Proof. Corollary of Propositions 2.49 and 2.50. □
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Hence, the study of the internal structures leaves some conclusions
to close this Section.

(1) The study of the supremums and infimums with respect to
the relation ⊑EM does not lead to any conclusion. Even more
in general, the Egli-Milner lifting interesting in modal logic
because of the notion of bisimulation, seems to not be very
well-behaved with respect to orders. As we have said in an
earlier remark there are sets A and B such that A ⊆ B but
neither A ⊑EM B nor B ⊑EM A.

(2) The study of supremums and infimums with respect to the
relations⊑L and⊑U leads to the conclusion that, in both cases,
while one is internal the other is external. This is interesting
because leads to the idea that the differentiation that we did
in the beginning between external and internal structure

(PP(X),⊆,
⋃
,
⋂
) (P∗P(X),⊑∗,

⊔
,
d
)

does not seem to be completely correct when the preorders ⊑∗
play a role. We will say more on this later whe we start our
study of the modal µ-calculus.

(3) For the study of maximums and minimums, the relation ⊑EM

has a strong connection with singletons which in the extreme
case of the empty set implies a relation with the powerset for
{∅} = P(∅). But that relation is not such for the maximum.
This relation with the singletions comes from the definition
of power operation when considering constants as operations,
recall that it is defined as {f(∅)}. Taking into account that
the maximum and minimum of an order can be undertand as
constants for they are definable, this relation is not suprising.

(4) Because of their definition, the last relation about the maxi-
mum and minimum is preserved also for ⊑L and ⊑U.

(5) However, the study of ⊑L gives more information for {X} is
not the unique maximum. This fact can give some insight
about how the lower lifting works. For more details, see [4].
In any case, for the lower lifting we can see that P(X) is
the maximum element up to ≡L equivalence, which pointing
towards flatness seems desirable.

All the reasons explained above and the relation of ⊑L with the ⊆ order
should serve motivation for us to say that, when considering fixed-
points team semantically, which we will build by ordinal induction, we
will consider the structure (P∗P(X),⊑L,

⋃
,
d
).



CHAPTER 3

Team semantics for modal mu-calculus

In this chapter we define the proposed team semantics for modal
µ-calculus and study some of its basic properties. For this, we first take
a look at the algebraic side of team semantics and find different, but
equivalent, definitions for later extending team semantics for modal
logic to modal µ-calculus. In particular, in Section 1, we apply the
internal and external structures of double powersets to propositional
logic and study their relation. We show that external semantics enjoy
downwards closure while internal semantics enjoy flatness. Later, in
Section 2, we extend this ideas to modal logic defining semantics for ♢
and □ both in an external way and in an internal one also showing that
internal team semantics for modal logic enjoy flatness. This viewpoint
allows us to understand that the internal definition of propositional
logic really depends on its context.

Furthermore, in Section 3, we extend the basic semantics for modal
logic to what we will call general team semantics for modal logic. This
will lead to a construction similar to the classical one and to a pro-
posal of team semantics for modal µ-calculus. As we will show, among
other properties, they enjoy flatness. Finally, in Section 4, we give
some alternative notions considering the singleton lifting from P(X)
to PP(X) which algebraically completes this chapter.

1. Internal and external definitions of Boolean connectives

In this section, following the ideas of [8], we define team semantics
for propositional logic in two different ways as was introduced in Section
4 of Chapter 2. In particular, after recalling the classical semantics for
propositional logic, we define external and internal semantics for this
logic. Later, we relate this semantics with its algebraic conterpart for
later studying the relation between them showing that external seman-
tics are downwards closed and internal semantics are flat. Moreover,
we prove that with the hypothesis of downwards closure, internal and
external conjunction coincide which does not happen with disjunction.

To motivate the work done in this section we should pay attention
to the standard team semantics for modal logic defined in 3 in Chapter
2. In particular, it is of great interest the definition of Boolean oper-
ators. While the conjunction is defined in a standard (Boolean) way,
the disjunction is defined by splitting the team into two subteams. Al-
though, the proof of flatness for that semantics gives an insight about

31
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the reason for such definition, it is still surprising because in standard
semantics conjunction and disjunction work in a very strong dual pair.
With this idea of the non duality in the definition of team semantics,
we start the algebraic study of them which will be a great part of the
thesis.

For completeness, let us first define the syntax of and its classical
semantics with respect to truth assignments.

Definition 3.1. The formulas of propositional logic are given by
the following grammar:

φ ::= ⊤ | ⊥ | P | P | φ ∨ φ | φ ∧ φ

where P ranges over Prop. The set of all propositional formulas will be
denoted by PL.

Definition 3.2. A truth assignment is a function v : Prop →
{0, 1}. The set of all truth assignments is denoted by TA.

Definition 3.3. Classical semantics for propositional logic for a
truth assignment v : Prop → {0, 1} are defined by recursion as follows:

(1) v |=c ⊤ always.
(2) v |=c ⊥ never.
(3) v |=c P if and only if v(P ) = 1.
(4) v |=c P if and only if v(P ) = 0.
(5) v |=c φ ∨ ψ if and only if v |=c φ or v |=c ψ.
(6) v |=c φ ∧ ψ if and only if v |=c φ and v |=c ψ.

It should be said that the approach taken in this section differs
from the one taken in [8]. In the cited paper, Engström and Lorimer
extend the syntax of PL, which is interpreted naturally (i.e., externally),
with new operators that are interpreted internally. However, we define
for the standard syntax of PL two different semantics in line with the
two interpretations we gave for double powerset structures. The main
reasons to take this approach are (1) to reinforce the semantical point
of view of this thesis; and (2) because its algebraic fonaments come
from two different interpretations of double powerset structures.

We will define the semantics in a logical way for later giving the
algebraic equivalent form.

Definition 3.4. External team semantics for propositional logic
for a set T ⊆ TA are defined by recursion as follows:

(1) T |=ext
t ⊤ always.

(2) T |=ext
t ⊥ never.

(3) T |=ext
t P if and only if for every v ∈ T , v(P ) = 1.

(4) T |=ext
t P if and only if for every v ∈ T , v(P ) = 0.

(5) T |=ext
t φ ∨ ψ if and only if T |=ext

t φ or T |=ext
t ψ.

(6) T |=ext
t φ ∧ ψ if and only if T |=ext

t φ and T |=ext
t ψ.



1. INTERNAL AND EXTERNAL DEFINITIONS OF BOOLEAN CONNECTIVES33

Moreover, internal team semantics for propositional logic for a set T ⊆
TA are defined by recursion as follows:

(1) T |=int
t ⊤ always.

(2) T |=int
t ⊥ if and only if T = ∅.

(3) T |=int
t P if and only if for every v ∈ T , v(P ) = 1.

(4) T |=int
t P if and only if for every v ∈ T , v(P ) = 0.

(5) T |=int
t φ ∨ ψ if and only if T = A ∪B such that A |=int

t φ and
B |=int

t ψ.
(6) T |=int

t φ ∧ ψ if and only if T = A ∩ B such that A |=int
t φ or

B |=int
t ψ.

Remark 3.5. The names of external and internal semantics are
given because of the algebraic counterpart of the semantics. While for
classical semantics we have:

∥⊤∥c = TA

∥⊥∥c = ∅
∥P∥c = {v ∈ TA | v(P ) = 1}
∥P∥c = TA− ∥P∥c

∥φ ∨ ψ∥c = ∥φ∥c ∪ ∥ψ∥c
∥φ ∧ ψ∥c = ∥φ∥c ∩ ∥ψ∥c

where ∥·∥c : PL → P(TA), for team semantics we have:

∥⊤∥extt = P(TA) ∥⊤∥intt = P(TA)

∥⊥∥extt = ∅ ∥⊥∥intt = {∅}
∥P∥extt = P(∥P∥c) ∥P∥intt = P(∥P∥c)
∥P∥extt = P(TA− ∥P∥c) ∥P∥intt = P(TA− ∥P∥c)

∥φ ∨ ψ∥extt = ∥φ∥extt ∪ ∥ψ∥extt ∥φ ∨ ψ∥intt = ∥φ∥intt ⊔ ∥ψ∥intt

∥φ ∧ ψ∥extt = ∥φ∥extt ∩ ∥ψ∥extt ∥φ ∧ ψ∥intt = ∥φ∥intt ⊓ ∥ψ∥intt

where ∥·∥extt , ∥·∥intt : PL → PP(TA). Hence, this two interpretations are
consequences of the rich structure of PP(X) which allows us to define
a new set of operations over it.

Remark 3.6. It is worthy noticing that there is not a special de-
scription of the literals P other than the powerset of the classical de-
notation. In general, there is not a clear description of the negation
of a formula so that it preserves flatness. That is why, we are always
working with formulas in negation normal form.

Once all the semantics have been defined we turn our sight on the
study of them. We show how internal semantics are flat while ex-
ternal semantics are only downwards closed. Finally, we show that
external and internal conjunction, i.e., ∩ and ⊓, coincide if the sets
are downwards closed which algebraicly explains why team semantics
(in general) mix the external and internal perspective when defining
conjunction and disjunction.
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Proposition 3.7. The following hold for every sets A and B.

(1) P(A) ⊔ P(B) = P(A ∪B).
(2) P(A) ⊓ P(B) = P(A ∩B).

Proof. (1) We show both inclusions. Let T ∈ P(A) ⊔ P(B), that
is, T = U ∪ V where U ⊆ A and V ⊆ B. So T = U ∪ V ⊆ A ∪ B as
wanted.

Conversely, suppose that T ⊆ A∪B. Note that T = (T∩A)∪(T∩B)
and T ∩ A ⊆ A and T ∩B ⊆ B. Hence, T ∈ P(A) ⊔ P(B).

(2) We show both inclusion. Let T ∈ P(A) ⊓ P(B), that is, T =
U ∩ V where U ⊆ A and V ⊆ B. So T = U ∩ V ⊆ U ⊆ A and
T = U∩ ⊆ V ⊆ V ⊆ B. Hence, T ⊆ A ∩B.

Conversely, suppose that T ⊆ A ∩ B. Hence T = T ∩ T , T ⊆ A
and T ⊆ B, so T ∈ P(A) ⊓ P(B). □

Corollary 3.8. Internal team semantics enjoy flatness and sin-
gleton property, that is, they satisfy the following equivalent conditions
for every formula φ ∈ PL.

(1) ∥φ∥intt = P(∥φ∥c).
(2) ∥φ∥intt is union and downwards closed.
(3) T |=int

t φ if and only if, for every v ∈ T , v |=c φ.

Proposition 3.9. ∪ and ∩ preserve downwards closure, that is, if
A and B are downwards closed, A∪B and A∩B are downwards closed.

Proof. Let A and B be downwards closed sets. We restrict our-
selves to show that ∪ preserves downwards closure since ∩ follows sim-
ilarly.

Let X ∈ A ∪ B and Z ⊆ X. We want to show that Z ∈ A ∪ B.
By assumption, X ∈ A or X ∈ B. By downwards closure, Z ∈ A or
Z ∈ B. In either case Z ∈ A ∪ B. □

Corollary 3.10. External team semantics are downwards closed,
that is, for every formula φ ∈ PL, ∥φ∥extt is downwards closed.

Proposition 3.11. The following hold.

(1) For every A and B, A ∩ B ⊆ A ⊓ B.
(2) If A and B are downwards closed, then A ∩ B = A ⊓ B.
(3) If ∥φ∥intt = ∥φ∥extt and ∥ψ∥intt = ∥ψ∥extt , then ∥φ ∧ ψ∥extt =

∥φ ∧ ψ∥intt .

Proof. We restrict ourselves to show (1) and (2) since (3) inmedi-
ately follows.

For (1), let X ∈ A∩B. Note that X = X ∩X and, by assumption,
X ∈ A and X ∈ B. Hence, X ∈ A ⊓ B.

In order to show (2) we show that if both sets are downwards closed,
A ⊓ B ⊆ A ∩ B. Let X ∈ A ⊓ B. We want to show that X ∈ A ∩ B,
that is, X ∈ A and X ∈ B. By assumption, X = A∩B for A ∈ A and
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B ∈ B. Note that X = A ∩B ⊆ A ∈ A and X = A ∩B ⊆ B ⊆ B and
we conclude by downwards closure. □

Proposition 3.12. The following hold.

(1) If A and B has the empty team property, A ∪ B ⊆ A ⊔ B.
(2) If ∥φ∥intt = ∥φ∥extt and ∥ψ∥intt = ∥ψ∥extt , then ∥φ ∨ ψ∥extt ⊆

∥φ ∨ ψ∥intt .

Proof. (2) follows from (1) since downwards closure implies the
empty team property and (1) follows from the fact that both have the
emtpy team property and X = X ∪ ∅ = ∅ ∪X. □

Remark 3.13. Condition (1) from the just stated proposition is,
in general strict even for powersets (which are downwards and union
closed). For example, if we consider two incomparable sets, that is,
neither A ⊆ B nor B ⊆ A, we have that A ∪ B ∈ P(A) ⊔ P(B) but
A ∪B ̸∈ P(A) ∪ P(B).

From a team semantical viewpoint it should be interesting to syn-
tactically add an operator to represent external disjunction, for in-
stance 6. Hence, we would be expanding the expressible power of the
logic. Notice that, if P is some propositional constant,

∥P ∨ P∥extt = P(∥P∥c) ∪ P(TA− ∥P∥c)
which as we know cannot be written as a powerset because it would
be union closed and it is not the case. It suffices to consider a truth-
assignment v : Prop → {0, 1} mapping v(P ) = 0 and a different v′ :
Prop → {0, 1} mapping v′(P ) = 1 and we see that

{v, v′} ̸∈ ∥P ∨ P∥extt

while both
{v}, {v′} ∈ ∥P ∨ P∥extt .

We leave this extensions (standard in team semantics) for later since
we will study now how this notions of internal and external definitions
can be extended to modal logic.

2. Internal and external definitions of modal operators

In this section we expand the ideas of internal and external seman-
tics to the framework of modal logic. In particular, following Section 1
from this chapter, we define the corresponding notion of external team
semantics for modal logic and show that they are downwards closed.
However, we show that the internal notion used before does not work
for the case of modal logic. After defining the correct internal notion
for the modalities, we show that such semantics enjoy flatness and sin-
gleton property and that both semantics coincide for the modalities.

During this Section, fix a model S = (S,R, V ). Notice that, for
every frame F = (S,R), we can consider its powerset frame with the
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Egli-Milner lifting of R, that is, FP = (P(S), REM). Hence, we can
define external semantics in the same way that we defined them for
propositional logic.

Definition 3.14. External team semantics for modal logic for S
and for a team T ⊆ S are defined by recursion as follows:

(1) S, T |=ext
t ⊤ always;

(2) S, T |=ext
t ⊥ never;

(3) S, T |=ext
t P if and only if T ⊆ V (P );

(4) S, T |=ext
t P if and only if T ∩ V (P ) = ∅;

(5) S, T |=ext
t φ ∨ ψ if and only if S, T |=ext

t φ or S, T |=ext
t ψ;

(6) S, T |=ext
t φ ∧ ψ if and only if S, T |=ext

t φ and S, T |=ext
t ψ;

(7) S, T |=ext
t ♢φ if and only if S, T ′ |=ext

t φ for some TREMT
′;

(8) S, T |=ext
t □φ if and only if for every TREMT

′, S, T ′ |=ext
t φ.

Remark 3.15. Unfolding the definition of external team semantics
it is easy to see the following characterization:

∥⊤∥S,extt = PP(S)

∥⊥∥S,extt = ∅
∥P∥S,extt = P(V (P ))

∥P∥S,extt = P(P(S)− V (P ))

∥φ ∨ ψ∥S,extt = ∥φ∥S,extt ∪ ∥ψ∥S,extt

∥φ ∧ ψ∥S,extt = ∥φ∥S,extt ∩ ∥ψ∥S,extt

∥♢φ∥S,extt = ⟨REM⟩∥φ∥S,extt

∥□φ∥S,extt = [REM]∥φ∥S,extt

where ⟨REM⟩ and [REM] are the unary operations on PP(S) defined as
for the classical case as,

⟨REM⟩X = {T ∈ P(S) | REM[T ] ∩ X ̸= ∅}
[REM]X = {T ∈ P(S) | REM[T ] ⊆ X}

for X ∈ PP(S).

Proposition 3.16. ⟨REM⟩ preserves downwards closure. That is,
if X ∈ PP(S) is downwards closed, then ⟨REM⟩X is downwards closed.

Proof. Suppose that T ∈ ⟨REM⟩X and that U ⊆ T . We want to
show that U ∈ ⟨REM⟩X .

By assumption, there is X ∈ X such that TREMX. Hence, we
know that, for every t ∈ T , there is xt ∈ X such that tRxt. Consider
Y := {xu | u ∈ U}. By construction, UREMY and, by downwards
closure of X , Y ∈ X for Y ⊆ X ∈ X , that is, U ∈ ⟨REM⟩X . □

Corollary 3.17. The ♢ fragment of ML is downwards closed.

Remark 3.18. [REM] is not downwards closed for there can be
elements without successors. Consider the model
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a0 a1 a2 . . .

b0

Notice that REM[{a0, b0}] = ∅ since b0 does not have any successor and
so there is no set T such that {a0, b0}REMT . Hence, {a0, b0} ∈ [REM]∅
but it is easy to see that {a0} ̸∈ [REM]∅ despite being ∅ downwards
closed.

However, if R is serial, that is, every state has a successor, we can
see that [REM] preserves downwards closure because for every set T ,
TREM

⋃
t∈T R[t].

Proposition 3.19. If R is serial, [REM] preserves downwards clo-
sure. That is, if X ∈ PP(S) is downwards closed, then [REM]X is
downwards closed.

Proof. Similar to the argument for ⟨REM⟩. □

Remark 3.20. We can already see that external semantics for
modal logic are not as easy to define or study as the ones for porposi-
tional logic. This comes from the fact that they are not automatically
definable for a model S = (S,R, V ). Note that in team semantics we
cannot work (externally) with the relation R as we did with ∪ and ∩
but we have to lift the relation to REM ⊆ P(S)×P(S). This subtleties
will also appear in the definition of internal team semantics.

Mimicking the study of internal team semantics for propositional
logic, we have four operations on PP(S) which can serve as denotations
for ♢ and □

⟨REM⟩X = {T ∈ P(S) | REM[T ] ∩ X ̸= ∅}
[REM]X = {T ∈ P(S) | REM[T ] ⊆ X}
⟨R⟩PX := {⟨R⟩X | X ∈ X}
[R]PX := {[R]X | X ∈ X}

for X ∈ PP(S). Ideally, if ⟨R⟩P and [R]P preserved powersets, that is,
if

⟨R⟩PP(A) = P(⟨R⟩A) [R]PP(A) = P([R]A)

for A ⊆ S, we would be providing an internal definition of team se-
mantics for ♢ and □. Unfortunately (but interestingly) the following
example shows that this is not the case.

Example 3.21. Consider the frame

a // b coo

and take A = {b}. On the one hand

⟨R⟩{b} = {a, c} [R]{b} = {a, b, c}
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and

P(⟨R⟩{b}) = {∅, {a}, {c}, {a, c}} P([R]{b}) = P({a, b, c}).

While,

⟨R⟩P{∅, {b}} = {⟨R⟩∅, ⟨R⟩{b}} = {∅, {a, c}} ≠ P({a, c})

and

[R]P{∅, {b}} = {[R]∅, [R]{b}} = {{b}, {a, b, c}} ≠ P({a, b, c}).

Remark 3.22. The just stated example gives insight about the
internal and external perspectives and it is important to note the fol-
lowing two facts. (1) That the preservation of powersets by internal
union and intersection is really dependant on the relation of external
union and intersection with respect to powersets. For, as we can see,
⟨R⟩{b} = {a, c}, but because of the nature of the operation ⟨R⟩, there
is no way of getting singletons {a} and {c} since, as long as R is in-
volved, the states a and c are “equivalent” (i.e., bisimilar). (2) That
the choice of the powerset lifting as the natural one is, from the al-
gebraic viewpoint, completely arbitrary while it is forcing us in other
aspects. A similar comment was made in [8]. We will say more on this
in Section 3.

Based on this example, we finally consider what we will call the
internal team semantics for modal logic. Before defining them, let us
say that we will consider the following two operations as semantics for
the modalities

⟨⟨R⟩⟩X := {T ⊆ ⟨R⟩X | X ∈ X}
[[R]]X := {T ⊆ [R]X | X ∈ X}

based on the idea derived from Example 3.21 that we need to close
downwards ⟨R⟩P and [R]P to get powersets.

Definition 3.23. Internal team semantics for modal logic for S
and for a team T ⊆ S are defined by recursion as follows:

(1) S, T |=int
t ⊤ always;

(2) S, T |=int
t ⊥ if and only if T = ∅;

(3) S, T |=int
t P if and only if T ∈ Ω(P );

(4) S, T |=int
t P if and only if for every X ∈ Ω(P ), X ∩ T = ∅;

(5) S, T |=int
t φ ∨ ψ if and only if T = A ∩B such that S, A |=int

t φ
or M, B |=t ψ;

(6) S, T |=int
t φ ∧ ψ if and only if T = A ∪B such that S, A |=int

t φ
and M, B |=t ψ;

(7) S, T |=int
t ♢φ if and only if T ⊆ ⟨R⟩X for some S, X |=int

t φ;
(8) S, T |=int

t □φ if and only if T ⊆ [R]X for some S, X |=int
t φ.
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Remark 3.24. Unfolding this definition it is easy to shows the
algebraic characterization:

∥⊤∥S,intt = P(S)

∥⊥∥S,intt = {∅}
∥P∥S,intt = P(V (P ))

∥P∥S,intt = P(P(S)− V (P ))

∥φ ∨ ψ∥S,intt = ∥φ∥S,intt ⊔ ∥ψ∥S,intt

∥φ ∧ ψ∥S,intt = ∥φ∥S,intt ⊓ ∥ψ∥S,intt

∥♢φ∥S,intt = ⟨⟨REM⟩⟩∥φ∥S,intt

∥□φ∥S,intt = [[REM]]∥φ∥S,intt

Proposition 3.25. The following hold for every set A.

(1) ⟨⟨R⟩⟩P(A) = P(⟨R⟩A).
(2) [[R]]P(A) = P([R]A).

Proof. We restrict ourselves to show (1) since (2) follows similarly.
(1) We show both inclusions. Let T ∈ ⟨⟨R⟩⟩P(A). We want to show

that T ⊆ ⟨R⟩A. Note that, by assumption, there is X ⊆ A such that
T ⊆ ⟨R⟩X ⊆ ⟨R⟩A by monotonicity of ⟨R⟩. Conversely, let us assume
that T ⊆ ⟨R⟩A. We want to show that T ∈ ⟨⟨R⟩⟩P(A), i.e., there is
X ⊆ A such that T ⊆ ⟨R⟩X which is clear by assumption. □

Corollary 3.26. Internal team semantics for modal logic enjoy
flatness and singleton property, that is, they satisfy the following equiv-
alent conditions for every formula φ ∈ ML:

(1) ∥φ∥S,intt = P(∥φ∥Sc) = ∥φ∥St .
(2) ∥φ∥S,intt is union and downwards closed.

(3) T |=S,int
t φ if and only if for every t ∈ T , t |=c φ.

Remark 3.27. Let us remark that, for a model S and a team T ⊆ S,
S, T |=int

t ♢φ by definition if T ⊆ ⟨R⟩X for some X ⊆ S such that
S, X |=int

t φ which is equivalent to the condition saying that there is a
team U ⊆ S such that, for every t ∈ T , there is u ∈ U such that tRu
and S, U |=int

t φ. And we have show that, considering such definition,
which is internally definable, we can shown flatness. This was first
stated and considered in the standard proof of flatness for modal logic
in Remark 2.34.

The following proposition generalizes the latter one for only the
condition of downwards closure of the powersets were needed.

Proposition 3.28. The following hold.

(1) If A is downwards closed, then ⟨⟨REM⟩⟩A = ⟨REM⟩A.

(2) If ∥φ∥S,intt = ∥φ∥S,extt , then ∥♢φ∥S,intt = ∥♢φ∥S,extt .
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Proof. We restrict ourselves to show (1) since (2) automatically
follows from it.

For (1) we show both inclusions. Let T ⊆ ⟨R⟩A for A ∈ A. We
want to show that T ∈ ⟨REM⟩A, i.e., there is a team X such that
TREMX and X ∈ A.

By assumption, for every t ∈ T , R[t] ∩ A ̸= ∅. Choose, for every
t ∈ T , xt ∈ R[t] ∩A and consider X := {xt ∈ A | t ∈ T} ⊆ A ∈ A. We
conclude by noticing that TREMX and, by downwards closure, X ∈ A.

Conversely, let T ∈ ⟨REM⟩A. We want to show that T ⊆ ⟨R⟩A for
some A ∈ A.

By assumption, for some A ∈ A, TREMA. Hence, we conclude by
noticing that T ⊆ ⟨R⟩A. □

The following proposition can simply be a corollary of the study
done so far to clearly state that for serial models the internal and the
external definition of modal operators coincide.

Proposition 3.29. The following hold if R is serial.

(1) If A is downwards closed, [[REM]]A = [REM]A.

(2) If ∥φ∥S,intt = ∥φ∥S,extt , then ∥□φ∥S,intt = ∥□φ∥S,extt .

Proof. We restrict ourselves to show (1) since (2) inmediately
follows from it.

For (1) let us assume that R is serial, that is, for every s ∈ S,
R[s] ̸= ∅. Hence, for every team T , TREM

⋃
t∈T R[t]. We show both

inclusions.
Let T ∈ [REM]A. We want to show that T ⊆ [R]A for some A ∈ A.
Since TREM

⋃
t∈T R[t],

⋃
t∈T R[t] ∈ A. Noting that T ⊆ [R]

⋃
t∈T R[t]

we conclude.
Conversely, let T ⊆ [R]A for A ∈ A. We want to show that T ∈

[REM]A, i.e., for every X such that TREMX, X ∈ A.
It suffices to note that, by definition of REM, X ⊆

⋃
t∈T R[t] and

that, by assumption,
⋃

t∈T R[t] ⊆ A ∈ A. Hence, we conclude that
X ∈ A. □

Remark 3.30. The condition of seriality is not constraining our
work for later we will be working with CTL in which is usual to consider
all models as serial.

We can already see why the study of the internal and external per-
spective is interesting. While the external definition gives a natural
interpretation of team semantics, for instance, T |=ext

t □φ if and only if
for every TREMU , U |=ext

t φ is a very sensible team semanitcal defini-
tion. On the other hand, the internal definition of the operators, carry
the structure and preserves powersets, i.e., flatness. The interesting
point is when both semantics coincide and we can provide a natural
definition which preserves flatness. This was the case of ∧, it is the
case of ♢ and, for a restricted class of models, also of □.
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3. Team mu-calculus

This section is devoted to the definition of team semantics for modal
µ-calculus. After redefining team semantics for modal logic in an in-
ternal way, we give one more step and define the more abstract general
team semantics for modal logic. This final notion will allow us to lift
the work done in the classical case to the team semantical framework
considering two different notions of fixed-points. Finally, we show flat-
ness for a particular fragment of team µ-calculus.

Before proceeding any further, let us motivate the work done in this
Section. Recall that, in the classical construction of µML, one considers
the function

φS
X : P(S)→P(S)

A 7→ ∥φ∥S[X 7→A]
c

for a model S and a formula φ ∈ ML positive in X. One of the key
points of the definition is that any propostion can be interpreted as
any set A ⊆ S.

However, that is not a property in the team semantics defined so far.
That is because the willing of having flatness as a desirable property,
restricts the possibilities for interpretations of propositional constants.
This is a point done in the paper [8] which we try to explain here
giving our algebraic perspective. If we consider the classical denota-
tion function as the unique homomorphism extending the valuation of
the model, one gets, for a lifting L : P(S) → PP(S) the following
commuting diagram:

Prop ML

P(S)

PP(S)

ι

V

L◦V

∥·∥c
∥·∥L

L

where ∥·∥L, the team semantics for the lifting L, is defined as the
composition L ◦ ∥·∥c. With this diagram, the condition

∥φ∥L = L(∥φ∥c)
for every formula φ ∈ ML holds by definition. With this construction
in mind, most of the work done in team semantics is to find ∥·∥Pow
semantics and characterize them in a natural way for afterwards extend
the resultant logic with team semantical atoms.

However, as it is said in the so cited paper, there is a strong draw-
back in this conception of team semantics, namely, that propositional
constants can only represent L-properties, in this case, powersets. Pre-
cisely, the restriction that we were stating earlier. Seeing the situa-
tion from this side points out that the choice of Pow is not done by
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any particular algebraic reason, but because it leads to natural logical
properties. That is why, the algebraic treatment of team semantics
that we are doing in this thesis is sometimes messy as with the internal
definition of the modalities.

The solution proposed by Engström and Lorimer is to consider the
semantic entailment relation Γ |= φ for a set of formulas Γ and a
formula φ if and only if, the relation holds for every possible lifting
L. Our treatment in this thesis is to consider general valuations as
functions Ω : Prop → PP(S), i.e., propositional constants represent, in
general, properties of legaues, that is, sets of teams.

Once done this instroduction, we begin by defining general models
and general team semantics.

Definition 3.31. Given a frame F = (S,R), a general (Kripke)
model based on F is a truple M = (S,R,Ω) where Ω : Prop → PP(S)
is a general valuation. General models are noted by callygraphic Latin
letters M,S, . . ..

Remark 3.32. Notice that every model S = (S,R, V ) canonically
defines a general model by considering (S,R, V P) where V P is the
general valuation defined for P ∈ Prop as V P(P ) := P(V (P )). As a
notational convention we will denote by S the general model associated
with S in this way.

Definition 3.33. General team semantics for modal logic for a
general model M = (S,R,Ω) and for a team T ⊆ S are defined by
recursion as follows:

(1) M, T |=ML
t ⊤ always.

(2) M, T |=ML
t ⊥ if and only if T = ∅.

(3) M, T |=ML
t P if and only if T ∈ Ω(P ).

(4) M, T |=ML
t P if and only if for every X ∈ Ω(P ), X ∩ T = ∅.

(5) M, T |=ML
t φ∨ψ if and only if T = A∪B such thatM, A |=ML

t φ
and M, B |=ML

t ψ.
(6) M, T |=ML

t φ∧ψ if and only if T = A∩B such thatM, A |=ML
t φ

and M, B |=t ψ.
(7) M, T |=ML

t ♢φ if and only if T ⊆ ⟨R⟩X for some M, X |=ML
t φ.

(8) M, T |=ML
t □φ if and only if T ⊆ [R]X for some M, X |=ML

t φ.

Remark 3.34. Unfolding this definition it is easy to shows the
following characterization:

∥⊤∥Mt = P(S)

∥⊥∥Mt = {∅}
∥P∥Mt = Ω(P )

∥P∥Mt = {T ∈ P(S) | for every X ∈ Ω(P ), T ∩X = ∅}
∥φ ∨ ψ∥Mt = ∥φ∥Mt ⊔ ∥ψ∥Mt
∥φ ∧ ψ∥Mt = ∥φ∥Mt ⊓ ∥ψ∥Mt
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∥♢φ∥Mt = ⟨⟨REM⟩⟩∥φ∥Mt = {T ⊆ ⟨R⟩X | X ∈ ∥φ∥Mt }
∥□φ∥Mt = [[REM]]∥φ∥Mt = {T ⊆ [R]X | X ∈ ∥φ∥Mt }

Remark 3.35. Relating this semantics with our work in Section 2
of this same Chapter, we see that

∥·∥St = ∥·∥S,intt = P(∥·∥Sc) = ∥·∥St
where the last semantics are the basic ones defined in Section 3 of
Chapter 2.

The notion of general team semantics allows us to state the follow-
ing definition.

Definition 3.36. Let M = (S,R,Ω) be a general model and a set
A ∈ PP(S), we define the general model M[X 7→ A] for X ∈ Prop as
the truple (S,R,Ω[X 7→ A]) where Ω[X 7→ A] is the general valuation:

Ω[X 7→ A](P ) :=

{
Ω(P ) if P ̸= X

A if P = X

Now, one of the desired theorems is stated as folows.

Theorem 3.37. Let φ ∈ ML and M = (S,R,Ω) a general model.
If φ is positive in X, then the function:

φM
X : P∗P(S)→P∗P(S)

A 7→ ∥φ∥M[X 7→A]
t

is monotone over ⊑L.

Proof. By induction on φ.
Base case. We consider several different subcases, namely, ⊤,⊥, P, P ,X

and X for P ∈ Prop− {X}.
Cases ⊤ and ⊥. Notice that the function (⊤)MX is constantly equal

to P(S) and that (⊥)MX is constantly equal to {∅}. Hence, trivially
monotone (over ⊑L).

Cases P and P . Since P and P do not depend on X, the functions
(P )MX and (P )MX are constanly equal to, respectively, ∥P∥Mt and ∥P∥Mt .
Hence, trivially monotone. Hence, trivially monotone (over ⊑L).

Cases X and X. The case for X is trivial since (X)MX = idP∗P(S)

(the identity function on P∗P(S)) again, trivially monotone (over ⊑L).
In the case X there is nothing to prove since it is not positive in X.

Boolean cases. Assume that the statement holds for φ, ψ. We re-
strict ourselves to show the disjunctive case since the conjunctive case
is similar.

Suppose that A ⊑L B. We want to show that

∥φ ∨ ψ∥M[X 7→A]
t ⊑L ∥φ ∨ ψ∥M[X 7→B]

t .
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Let T ∈ ∥φ∨ψ∥M[X 7→A]
t = ∥φ∥M[X 7→A]

t ⊔∥ψ∥M[X 7→A]
t , that is, T = A∪B

where A ∈ ∥φ∥M[X 7→A]
t and B ∈ ∥ψ∥M[X 7→A]

t . We want to show that

there is T ′ ∈ ∥φ ∨ ψ∥M[X 7→B]
t such that T ⊆ T ′.

Note that, if φ ∨ ψ is positive in X, then both φ, ψ are positive in
X. Hence, by induction hypothesis,

∥φ∥M[X 7→A]
t ⊑L ∥φ∥M[X 7→B]

t ∥ψ∥M[X 7→A]
t ⊑L ∥ψ∥M[X 7→B]

t .

Thus, there are A′ ∈ ∥φ∥M[X 7→B]
t and B′ ∈ ∥ψ∥M[X 7→B]

t such that A ⊆ A′

and B ⊆ B′. Therefore, we can conclude that

T = A∪B ⊆ A′∪B′ =: T ′ ∈ ∥φ∥M[X 7→B]
t ⊔∥ψ∥M[X 7→B]

t = ∥φ∨ψ∥M[X 7→B]
t

by monotonicity of ∪ showing the statement for φ ∨ ψ.
Modal cases. Assume that the statement holds for φ. We restrict

ourselves to show the ♢ case since the □ case is similar.
Suppose that A ⊑L B. We want to show that

∥♢φ∥M[X 7→A]
t ⊑L ∥♢φ∥M[X 7→B]

t .

Let T ∈ ∥♢φ∥M[X 7→A]
t = ⟨⟨R⟩⟩∥φ∥M[X 7→A]

t , that is, T ⊆ ⟨R⟩X where

X ∈ ∥φ∥M[X 7→A]
t . We want to show that there is T ′ ∈ ∥♢φ∥M[X 7→B]

t

such that T ⊆ T ′.
Note that, if ♢φ is positive in X, then φ is positive in X. Hence,

by induction hypothesis,

∥φ∥M[X 7→A]
t ⊑L ∥φ∥M[X 7→B]

t

Thus, there is X ′ ∈ ∥φ∥M[X 7→B]
t such that X ⊆ X ′. Therefore, we can

conclude that

T ⊆ ⟨R⟩X ⊆ ⟨R⟩X ′ =: T ′ ∈ ⟨⟨R⟩⟩∥φ∥M[X 7→B]
t = ∥♢φ∥M[X 7→B]

t

by monotonicity of ⟨R⟩ showing the statement for ♢φ. □

Once one of the central theorems of modal µ-calculus is shown,
we next study how the respective ordinal sequences which define the
fixed-points arise in the team semantical framework.

As it was reasoned in Section 4 of Chapter 2, we will work with
the structure (P∗P(S),⊑L,

⋃
,
d
) to get the semantics of µ and ν for-

mulas. Let us quickly recall the properties of this structure. The next
proposition was stated and proved as Proposition 2.49

Proposition 3.38. The following hold.

(1) [{X}]≡L
= {A ∈ P∗P(X) | X ∈ A}. In particular, P(X) is

≡L equivalent to {X}.
(2) {X} is the maximum of ⊑L up to ≡L equivalence.
(3) [{∅}]≡L

= {{∅}}.
(4) {∅} is the minimum of ⊑L up to ≡L equivalence.
(5) If A is non-empty,

⋃
A is the supremum of A with respect to

⊑L up to ≡L equivalence.
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(6) If A is non-empty,
d
A is the infimum of A with respect to ⊑L

up to ≡L equivalence.

One of the last remarks done in Section 4 of Chapter 2 now can be
better understand. Until this very point we have been talking about
internal and external semantics for modal logic because of the two
different interpretations of double powerset structures. Namely, the
structures

(PP(S),
⋃
,
⋂
, ⟨REM⟩, [REM]) (P∗P(S),

⊔
,
d
, ⟨⟨R⟩⟩, [[R]]).

Our work shows that the external structure is more natural while the
internal one preserve flatness. However, in light of the just stated
proposition, when considering the preorder ⊑L, the definition of the
supremum is external while the definition of the infimum is internal.
Hence, we will study team semantics for modal µ-calculus doing the
difference between external and internal definitions, but without con-
sidering two different defined semantics for the same logic as it was
done so far. Instead, we consider the logic of team µ-calculus, tµML.
Theorems 3.50 and 3.58 will later explain this choice.

Now, pointing towards flatness, let us follow the same steps we did
for propositional logic in Section 1 of this same chapter.

Proposition 3.39. If (Ai)i∈I is a family of sets,

(1)
⊔

i∈I P(Ai) = P(
⋃

i∈I Ai);
(2)

d
i∈I P(Ai) = P(

⋂
i∈I Ai).

Proof. Generalization of the binary case. □

Also, the following proposition can also be shown in the infinite
case.

Proposition 3.40. If (Ai)i∈I is a family of sets,

(1)
⋃

i∈I P(Ai) ⊆
⊔

i∈I P(Ai);
(2)

⋂
i∈I P(Ai) =

d
i∈I P(Ai).

Proof. Generalization of the binary case. □

Remark 3.41. Notice that condition (1) of the just stated proposi-
tion is strict even for families of powersets. For instance,

⋃
n∈NP(n) ⊂

P(N).

Proposition 3.42. If (Ai)i∈I is a family of downwards closed sets,
then ⋂

i∈I Ai =
d

i∈I Ai.

Proof. Generalization of the binary case. □

Thus, note the following facts:

(1)
d

acts as an infimum and preserves powersets.
(2)

d
and

⋂
coincide on downwards closed sets.
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(3)
⊔

preserves powersets.
(4)

⋃
acts as a supremum.

(5)
⊔

and
⋃

do no coincide in general.

This properties and obvious dfferences between union and intersec-
tion will become crucial for our next definitions and study of tµML.
We begin by defining the respective team semantical ordinal sequences
from an internal and an external viewpoint.

Definition 3.43. For a set S and a map f : P∗P(S) → P∗P(S) we

define the external sequences (f ξ
µ,∪)ξ∈ORD and (f ξ

ν,∩)ξ∈ORD as follows:
f 0
µ,∪ = {∅}
fα+1
µ,∪ = f(fα

µ,∪)

fβ
µ,∪ =

⋃
α∈β f

α
µ,∪ for β limit


f 0
ν,∩ = P(S)

fα+1
ν,∩ = f(fα

ν,∩)

fβ
ν,∩ =

⋂
α∈β f

α
ν,∩ for β limit

Definition 3.44. For a set S and a map f : P∗P(S) → P∗P(S) we

define the internal sequences (f ξ
µ,⊔)ξ∈ORD and (f ξ

ν,⊓)ξ∈ORD as follows:
f 0
µ,⊔ = {∅}
fα+1
µ,⊔ = f(fα

µ,⊔)

fβ
µ,⊔ =

⊔
α∈β f

α
µ,⊔ for β limit


f 0
ν,⊓ = P(S)

fα+1
ν,⊓ = f(fα

ν,⊓)

fβ
ν,⊓ =

d
α∈β f

α
ν,⊓ for β limit

Proposition 3.45. Let f : P∗P(S) → P∗P(S) be monotone over
⊑L. If α ≤ β, then

(1) fα
µ,∪ ⊑L f

β
µ,∪.

(2) fα
µ,⊔ ⊑L f

β
µ,⊔.

Proof. We show both statements by ordinal induction on β. We
write f ξ

µ,∗ to mean, wither f ξ
µ,∪ or f ξ

µ,⊔ since, for the base case and for
the successor case, both definitions coincide.

Base case. If β = 0, then α = 0 and the statement is trivial.
Successor step. Suppose that the statement holds for an ordinal β.

And let us show the statement for β + 1.
Notice that, by monotonicity of f , fβ

µ,∗ ⊑L f(f
β
µ,∗) = fβ+1

µ,∪ .

Let α ≤ β + 1. We show that fα
µ,∗ ⊑L f

β+1
µ,∗ . By assumption, either

α ≤ β or α = β. In the second case we conclude by the just stated
reasoning. In the first case, by induction hypothesis, fα

µ,∗ ⊑L f
β
µ,∗ ⊑L

fβ+1
µ,∗ .

Limit step. We now show the statement for the limit case in general.
Let α ≤ β for β limit. On the one hand, fα

µ,∪ ⊆ fβ
µ,∪ =

⋃
α∈β f

α
µ,∪ and

so fα
µ,∪ ⊑L f

β
µ,∪. On the other hand, noticing that for every α ∈ β, fα

µ,⊔

is non-empty, it follows that fα
µ,⊔ ⊑L f

β
µ,⊑L

. □

The similar statement for ν holds following a similar proof.

Proposition 3.46. Let f : P∗P(S) → P∗P(S) be monotone over
⊑L. If α ≤ β, then
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(1) fβ
ν,∩ ⊑L f

α
ν,∩.

(2) fβ
ν,⊓ ⊑L f

α
ν,⊓.

Remark 3.47. Recall that the relation ⊑L is not antisymmetric.
Hence, this sequences are eventually constant up to ≡L equivalence.
That is, if (xξ)ξ∈ORD is a sequence of elements of P∗P(S) monotone
over ⊑L there is an ordinal λ such that

{xξ | ξ ∈ λ} = {xξ | ξ ∈ ORD}.
This allows us to define the following notions.

Definition 3.48. Let f : P∗P(S) → P∗P(S) be a monotone func-
tion over ⊑L, then we define

limξ∈ORD f
ξ
µ,∪ :=

⋃
ξ∈ORD f

ξ
µ,∪ limξ∈ORD f

ξ
ν,∩ :=

⋂
ξ∈ORD f

ξ
ν,∩

and

limξ∈ORD f
ξ
µ,⊔ :=

⊔
ξ∈ORD f

ξ
µ,⊔ limξ∈ORD f

ξ
ν,⊓ :=

d
ξ∈ORD f

ξ
ν,⊓

We know show how this limits relate with the corresponding notion
of fixed-point in our framework.

Proposition 3.49. Let (Ai)i∈I be a non-empty family. Then, if
for every i, j ∈ I, Ai ≡L Aj, then for every i ∈ I,

⋃
i∈I Ai ≡L Ai andd

i∈I Ai ≡L Ai.

Proof. Let us show first the case of the union. By assumption, it
suffices to show that, for some Aj,

⋃
i∈I Ai ≡L Aj. Since Aj ⊆

⋃
i∈I Ai,

Aj ⊑L

⋃
i∈I Ai. Conversely, let A ∈

⋃
i∈I Ai. Hence, for some k ∈ I,

A ∈ Ak ≡L Aj. Therefore, there is B ∈ Aj, such that A ⊆ B, that is,⋃
i∈I Ai ⊑L Aj.
To show the case of the internal intersection. As before, it suf-

fices to show that, for some Aj,
d

i∈I Ai ≡L Aj. Since
d

i∈I Ai ⊆ Aj,d
i∈I Ai ⊑L Aj. Conversely, let A ∈ Aj. By assumption, for every

k ∈ I, A ∈ Aj ≡L Ak. Therefore, for every k ∈ I, there is f(Ak) ∈ Ak

such that A ⊆ f(Ak). Hence, A ⊆
⋂

i∈I f(Ai) ∈
d

i∈I Ai, that is,
Aj ⊑L

d
i∈I Ai. □

This allows us to show that the internal definition of the ν prdinal
sequence preserves the intuitive notion of fixed-point while it is the
external one which preserves it for the µ case.

Corollary 3.50. For a function f : P∗P(S) → P∗P(S) monotone
over ⊑L,

(1) limξ∈ORD f
ξ
µ,∪ ≡L f(limξ∈ORD f

ξ
µ,∪).

(2) limξ∈ORD f
ξ
ν,⊓ ≡L f(limξ∈ORD f

ξ
ν,⊓).

Finally, and before formally stating the formulas of team µ-calculus.
Let us see, that under the conditions of downwards closure, there is no
need to differentiate the internal and the external ν sequences.
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Proposition 3.51. Let f : P∗P(S) → P∗P(S) be monotone over
⊑L. If, for every X ∈ P∗P(S), f(X ) is downwards closed, then

limξ∈ORD f
ξ
ν,⊓ = limξ∈ORD f

ξ
ν,∩

Proof. By Proposition 3.42. □

Remark 3.52. Thanks to the just stated proposition and for the
purposes of this thesis, we will consider the grammar of team µ-calculus
with two least fixed-point operators (internal and external) and only
one greatest fixed-point operator. As well as only talking about the
sequence f ξ

ν,⊓ for both of them coincide. This is because we will always
be working under the conditions of downwards closure. However, as we
will see later in Section 5, we have to take into account the importance
of downwards closure.

Definition 3.53. The formulas of team modal µ-calculus are given
by the following grammar:

φ ::= ⊤ | ⊥ | P | P | φ ∨ φ | φ ∧ φ | ♢φ | □φ | µ∪X.φ | µ⊔X.φ | νX.φ

where P and X range over Prop and φ is positive in X. The set of
all modal µ-calculus formulas will be denoted by tµML. Notice that
ML ⊆ tµML.

Definition 3.54. For a general model M = (S,R,Ω) we extend
general team semantics to team modal µ-calculus formulas as follows:

(9) ∥µ∪X.φ∥Mt := limξ∈ORD(φ
M
X )ξµ,∪.

(10) ∥µ⊔X.φ∥Mt := limξ∈ORD(φ
M
X )ξµ,⊔.

(11) ∥νX.φ∥Mt := limξ∈ORD(φ
M
X )ξν,⊓.

We will also write, mostly in chapter 4, M, T |=µML
t φ. And, abusing

notation S, T |=µML
t φ for S, T |=µML

t φ.

Remark 3.55. Let us note that the monotonicity of φM
X was shown

for an arbitrary general model M. In the particular case where we are
working with the general model S associated with S, we can even say
more about such function.

It is easy to note that if B is downwards closed and A ⊑L B, then
A ⊆ B. For, for every A ∈ A there is B ∈ B such that A ⊆ B and so
A ∈ B by downwards closure. Hence, using this fact and the fact that⋃

also preserves downwards closure as it was the case for the binary
union in propositional logic, we can state the following proposition.

Proposition 3.56. Let S be a model. The sequences ((φS
X)

ξ
µ,∪)ξ∈ORD,

((φS
X)

ξ
µ,⊔)ξ∈ORD and ((φS

X)
ξ
ν,⊓)ξ∈ORD are monotone over ⊆.

Corollary 3.57. Let S be a model. The sequences ((φS
X)

ξ
µ,∪)ξ∈ORD,

((φS
X)

ξ
µ,⊔)ξ∈ORD and ((φS

X)
ξ
ν,⊓)ξ∈ORD are eventually constant.
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The following and last result of this Section, shows us that, although
it is the external definition of µ which carries the intuitive notion of
fixed-point, it is the internal one the construction which preserves flat-
ness. This comment is the same done for modal logic although the
framework in µ-calculus do not allow us to consider two different se-
mantics.

Just for completeness, let us recall that in the case of modal logic,
we said that it was the internal notion the one which preserved flatness
and it was the external definition the one which was more intuitive.
However, both definitions coincide for ♢ and, for a more restricted
class of models, for □. It is important to note, since it will become
an important remark later, the external notions which are not equiv-
alent to the internal ones are precisley the notions which expand the
expressive power of team semantics.

Now, let us prove flatness for tµML.

Theorem 3.58. Let S be a model and consider the general model
S = (S,R, V P) where, for every P ∈ Prop, V P(P ) := P(V (P )). If φ
is flat, then

(1) ∥µ⊔X.φ∥St = P(∥µX.φ∥Sc).
(2) ∥νX.φ∥St = P(∥νX.φ∥Sc).

That is, µ⊔ and ν preserve flatness.

Proof. We restrict ourselves to show (1) since (2) is similar.
We show by ordinal induction that, for every ordinal ξ,

(φS
X)

ξ
µ,⊔ = P((φS

X)
ξ
µ).

Base case. The following equalities hold (φS
X)

0
µ,⊔ = {∅} = P(∅) =

P((φS
X)

0
µ).

Successor step. Suppose that (φS
X)

α
µ,⊔ = P((φS

X)
α
µ)

(φS
X)

α+1
µ,⊔ = φS

X((φ
S
X)

α
µ,⊔) (Def.)

= φS
X(P((φS

X)
α
µ)) (I.H.)

= ∥φ∥S[X 7→P((φS
X)αµ)]

t (Def.)

= P(∥φ∥S[X 7→(φS
X)αµ ]

c ) (Flatness)

= P(φS
X((φ

S
X)

α
µ)) (Def.)

= P((φS
X)

α+1
µ ) (Def.)
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Limit step. Suppose that, for every α ∈ β, (φS
X)

α
µ,⊔ = P((φS

X)
α
µ).

Hence, the following chain of equalities hold:

(φS
X)

β
µ,⊔ =

⊔
α∈β(φ

S
X)

α
µ,⊔ (Def.)

=
⊔

α∈β P(φS
X)

α
µ (I.H.)

= P(
⋃

α∈β(φ
S
X)

α
µ) (Prop. 3.39)

= P((φS
X)

β
µ) (Def.)

□

Corollary 3.59. The ⊔ fragment of tµML is flat.

4. Singleton lifting

In this last section of the chapter we give a glimpse about the study
of another possible lifting. As we said, there is no algebraic preference
between the powerset lifting and any other possible lifting from P(S)
to PP(S). That is why, making use of some of the constructions that
we have developed, we give an alternative semantics which are flat with
respect to the singleton lifting.

For this section we will consider the singleton lifting {·} from P(S)
to PP(S) which maps a set A to {A}. We will only give a sketch of
how to work with a different kind of lifting mostly without giving the
proofs of the theorems. The work is similar to the one we have done
because we have chosen a lifting which is preserved under many of the
constructions that we have developed.

Let us define the singleton semantics for a general model for modal
logic.

Definition 3.60. Singleton semantics for a general model M for
modal logic are defined by recursion as follows:

(1) ∥⊤∥M{t} = {S}.
(2) ∥⊥∥M{t} = {∅}.
(3) ∥P∥M{t} = Ω(P ).

(4) ∥P∥M{t} = {S −X | X ∈ Ω(P )}.
(5) ∥φ ∨ ψ∥M{t} = ∥φ∥M{t} ⊔ ∥ψ∥M{t}.
(6) ∥φ ∧ ψ∥M{t} = ∥φ∥M{t} ⊓ ∥ψ∥M{t}.
(7) ∥♢φ∥M{t} = ⟨R⟩P∥φ∥M{t} = {⟨R⟩X | X ∈ ∥φ∥M{t}}.
(8) ∥□φ∥M{t} = [R]P∥φ∥M{t} = {[R]X | X ∈ ∥φ∥M{t}}.

Following the same strategy, we can show the following theorem.

Theorem 3.61. Let φ ∈ ML and M a general model. If φ is positive
in X, then the function φM

X is monotone over ⊑L.

Definition 3.62. Let us say that a formula φ ∈ Fm is singleton-flat
whenever ∥φ∥t = {∥φ∥c}, that is, when the diagram
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Fm P(X) PP(X)
∥·∥c

∥·∥t

{·}

commutes.

Remark 3.63. For a model S = (S,R, V ) we adapt for this section
the notation S. Right now and only for this section, S = (S,R, V {·})
will denote the general model defined, for every P ∈ Prop, as V {·}(P ) =
{V (P )}.

Theorem 3.64. For every φ ∈ ML and every model S,

∥φ∥S{t} = {∥φ∥Sc}

Proof. By induction on φ. □

Let us now, consider the respective notion for the ν ordinal se-
quence. As we will see, we will consdeir the internal definition of the
µ ordinal sequence. Note that this is just a particularity of the empty
set for P(∅) = {∅}.

Definition 3.65. For a function f : P∗P(S) → P∗P(S) we define

the sequence (f ξ
ν,{·})ı∈ORD as follows:

f 0
ν,{·} = {S}
fα+1
ν,{·} = f(fα

ν,{·})

fβ
ν,{·} =

d
α∈β f

α
ν,{·} for β limit

The fact that this sequence is monotone over ⊑L whenever f is
so follows since {S} ≡L P(S). As it is seen in the definition, for the
singleton lifting everything is computed internally. Hence, we will write

limξ∈ORD f
ξ
ν,{·} :=

d
ξ∈ORD f

ξ
ν,{·}.

Thus, let us extend singleton semantics with respective notions.

Definition 3.66. For a general model M we extend singleton se-
mantics as follows:

(9) ∥µX.φ∥M{t} := limξ∈ORD(φ
M
X )ξµ,⊔.

(10) ∥νX.φ∥M{t} := limξ∈ORD(φ
M
X )ξν,{·}.

Finally showing that this semantics are preserved by fixed-point
operators.

Theorem 3.67. If φ is singleton-flat and S = (S,R, V {·}) is the
general model defined, for every P ∈ Prop, as V {·}(P ) = {V (P )}, then

(1) ∥µX.φ∥S{·}

{t} = {∥µX.φ∥Sc};
(2) ∥νX.φ∥S{·}

{t} = {∥νX.φ∥Sc}.
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5. Extending tµML

One of the possibilities that team semantics open is the extension of
logics with atoms or connectives which are not definable in the classical
framework. Although the purpose of this thesis is to relate the defined
logic tµML with the defined team semantics for CTL, in this section we
explore the starting point of this extensions.

As we saw in the propositional case, union, that is, external seman-
tics for ∨, already extended the power of the logic since

⋃
does not

preserve flatness. Once having proved flatness, we can consider exter-
nal disjunction or, as we will refer to from now on, Boolean disjunction
as one more connective in our language to have a richer and a more
expressive logic. That is, we will consider the following extension of
tµML.

Definition 3.68. The formulas of extended team modal µ-calculus
are given by the following grammar:

φ ::= ⊤ | ⊥ | P | P | φ∨φ | φ∧φ | ♢φ | □φ | µ∪X.φ | µ⊔X.φ | νX.φ | φ6φ

where P and X range over Prop and φ is positive in X. The set of all
extended modal µ-calculus formulas will be denoted by tµML∗.

And we extend the semantics in the intuitive way

Definition 3.69. For a general model M = (S,R,Ω) we extend
general team semantics to extended team modal µ-calculus formulas
by writing

∥φ6ψ∥Mt := ∥φ∥Mt ∪ ∥ψ∥Mt .

Remark 3.70. It is of great importance to note that this extension
is well-defined because union is monotone over ⊆ and so monotone
over ⊑L. Hence, all the work done to define the semantics for fixed-
points do also hold for this extension. Note also that we have preserved
downwards closure.

The fact that we are, indeed, extending the expressible power was
already remarked on our work of propositional logic.

Lastly, let us say that we could have extended the logic with many
other atoms or connectives usual in team semantics, as for example, de-
pendence atoms dep(x0, . . . , xn, y), independence atoms x0, . . . , xn⊥z0,...,zky0, . . . , ym,
inclusion atoms x⃗ ⊆ y⃗, strong negation ∼ φ or the non-emptyness atom
NE (first checking whether or not they are monotone over ⊑L). How-
ever, some of those, such as NE or ∼, break downwards closure of the
semantics which, as we have seen, was crucial for most of the work.
That is not in a strict sense a problem but then one should start differ-
entiating Boolean conjunction 7 and internal conjunction ∧ or internal
and external definitions of ν since they will not coincide in general.



CHAPTER 4

Temporal team semantics

In this chapter we extend the classical embedding of computational
tree logic (CTL) into modal µ-calculus to the framework of team se-
mantics. Temporal team semantics, that is, team semantics for linear
temporal logic (LTL) and CTL become really interesting since the notion
of synchronicity plays an important role. In this chapter is where both
definitions of µ fixed-points and the difference between union and in-
ternal union comes into play. In particular, in Section 1, we recall the
proof of the embedding of CTL into (classical) modal µ-calculus. We do
it from an ordinal perspective since we will later generalize it. Later,
in Section 2, we give team semantics for LTL and CTL. Specially study-
ing synchronicity which is only definable in a team semantical setting.
Finally, in section 3, we prove the translation between CTL with team
semantics and extended team µ-calculus.

As it is customary when working with CTL, we will assume that all
the models in this chapter are serial, that is, every state has a successor.
Recall that, thanks to Proposition 3.29 the internal and external team
definitions of □ coincide.

1. Embedding of CTL into µML

In this section after defining classical semantics for CTL, we study
the proof of its embedding into modal µ-calculus specially studuying
the case of until formulas.

Definition 4.1. The formulas of linear temporal logic are given
by the following grammar:

φ ::= ⊤ | ⊥ | P | P | φ ∨ φ | φ ∧ φ | Xφ | φUφ | φRφ

where P ranges over Prop. The set of all formulas will be denoted by
LTL.

Definition 4.2. A trace π is a function (π(i))i∈N from N to P(Prop).

Definition 4.3. Let π be a trace. For k ∈ N, its j-shifted trace is
π[j] = (πi+j)i∈N.

Definition 4.4. (Classical) semantics (for linear temporal logic)
for a trace π and i ∈ N are defined by recursion as follows:

(1) π |=c ⊤ always.
(2) π |=c ⊥ never.

53



54 4. TEMPORAL TEAM SEMANTICS

(3) π |=c P if and only if P ∈ π(0).
(4) π |=c P if and only if P ̸∈ π(0).
(5) π |=c φ ∨ ψ if and only if π |=c φ or π |=c ψ.
(6) π |=c φ ∧ ψ if and only if π |=c φ and π |=c ψ.
(7) π |=c Xφ if and only if π(1) |=c φ.
(8) π |=c φUψ if and only if there is some j ∈ N such that

(a) π(j) |=c ψ;
(b) for every 0 ≤ k < j, π(k) |=c φ.

(9) π |=c φRψ if and only if for every k ∈ N, π(k) |=c ψ or there
is some j ∈ N such that
(a) π(j) |=c φ, ψ;
(b) for every 0 ≤ k < j, π(k) |=c ψ.

Definition 4.5. The formulas of computational tree logic are given
by the following grammar:

φ ::= ⊤ | ⊥ | P | P | φ ∨ φ | φ ∧ φ | ∃Xφ | ∃(φUφ) | ∃(φRφ) |
∀Xφ | ∀(φUφ) | ∀(φRφ)

where P ranges over Prop. The set of all formulas will be denoted by
CTL.

Definition 4.6. Let S be a model and s ∈ S. We define its set of
tracesas follows:

TrS(s) := {(V (si))i∈ω | s0 = s and, for every i ∈ ω, siRsi+1}

and for T ⊆ S we write TrS(T ) =
⋃

t∈T TrS(t).

Definition 4.7. (Classical) semantics (for computational tree logic)
for a model S = (S,R, V ) are defined by recursion as follows:

(1) S, s |=c ⊤ always.
(2) S, s |=c ⊥ never.
(3) S, s |=c P if and only if s ∈ V (P ).
(4) S, s |=c P if and only if s ̸∈ V (P ).
(5) S, s |=c φ ∨ ψ if and only if S, s |=c φ or S, s |=c ψ.
(6) S, s |=c φ ∧ ψ if and only if S, s |=c φ and S, s |=c ψ.
(7) S, c |=c ∃ψ if and only if there is a trace π ∈ TrS(s) such that

π |=c ψ.
(8) S, c |=c ∀ψ if and only if for every trace π ∈ TrS(s), π |=c ψ.

Remark 4.8. Note that we have stated all the cases of ∃Xφ, ∀Xφ,
∃(φUψ), ∀(φUψ), ∃(φRψ) and ∀(φRψ) at once but only this formulas
are allowed under the scope of a quantifier. That is, we are not working
with full CTL but we express the condition as shown for simplicity.
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Before proceeding with the proof of the translation, let us state it
completely.

φ ∈ CTL tr(φ) ∈ µML
⊤ ⊤
⊥ ⊥
P P
P P

φ ∨ ψ tr(φ) ∨ tr(ψ)
φ ∧ ψ tr(φ) ∧ tr(ψ)
∃Xφ ♢tr(φ)
∀Xφ □tr(φ)

∃(φUψ) µX.tr(ψ) ∨ (tr(φ) ∧ ♢X)
∀(φUψ) µX.tr(ψ) ∨ (tr(φ) ∧□X)
∃(φRψ) νX.tr(ψ) ∧ (tr(φ) ∨ ♢X)
∀(φRψ) νX.tr(ψ) ∧ (tr(φ) ∨□X)

where the variable X in the last four cases is a fresh new variable.

Theorem 4.9. For every formula φ ∈ CTL and every model S,
S, s |=CTL

c φ if and only if S, s |=µML
c tr(phi).

That is, ∥φ∥Sc = ∥tr(φ)∥Sc .

The proof of the theorem goes by induction on φ. The Boolean
and modal cases are trivial. Among the temporal cases, we restrict
attention to the case of an until formula ∃(φUψ). From now and for the
rest of the proof fix a model S. We first show the following equivalence
in CTL:

∃(φUψ) ≡CTL ψ ∨ (φ ∧ ∃X∃(φUψ))

Proposition 4.10. ∥∃(φUψ)∥Sc ⊆ ∥ψ ∨ (φ ∧ ∃X∃(φUψ))∥Sc .

Proof. Suppose that S, s |=CTL
c ∃(φUψ). Then, there is a path π

starting from s (i.e., π(0) = s), such that π |=CTL
c φUψ, that is, for some

j ∈ ω,
π(j) |=LTL

c ψ and π(0), . . . , π(j − 1) |=LTL
c φ.

If j = 0, then S, s |=CTL
c ψ and so S, s |=CTL

c ψ ∨ (φ ∧ ∃X∃(φUψ)) as
wanted.

If j > 0, then S, π(0) |=CTL
c φ, π(0)Rπ(1) and S, π(1) |=CTL

c ∃(φUψ).
Hence, S, s |=CTL

c φ∧∃X(φUψ) and S, s |=CTL
c ψ∨ (φ∧∃X∃(φUψ)). □

Proposition 4.11. ∥ψ ∨ (φ ∧ ∃X∃(φUψ))∥Sc ⊆ ∥∃(φUψ)∥Sc .

Proof. Suppose that S, s |=CTL
c ψ ∨ (φ ∧ ∃ (φUψ)).

If S, s |=CTL
c ψ, then S, s |=CTL

c ∃(φUψ) trivially.
Otherwise, if S, s |=CTL

c φ∧ ∃X∃(φUψ) let sRs′ such that S, s′ |=CTL
c

∃(φUψ). Considering the path π starting from s′ which withnesses
S, s′ |=CTL

c ∃(φUψ), it is easy to see that s⋏π (the concatenation) is a
witness for S, s |=CTL

c ∃(φUψ). □
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We now show that ∃(φUψ) is equivalent to µX.tr(ψ)∨(tr(φ)∧♢X)
assuming that φ is equivalent to tr(φ) and that ψ is equivalent to tr(ψ)
(induction hypothesis). Let us denote

χ := tr(ψ) ∨ (tr(φ) ∧ ♢X).

We show that ∥∃(φUψ)∥Sc = limξ∈ORD(χ
S
X)

ξ
µ by showing both inclu-

sions.

Proposition 4.12. limξ∈ORD(χ
S
X)

ξ
µ ⊆ ∥∃(φUψ)∥Sc .

Proof. By ordinal induction.
Base case. Obvious since (χS

X)
0
µ = ∅ ⊆ ∥∃(φUψ)∥Sc

Successor step. Suppose that (χS
X)

α
µ ⊆ ∥∃(φUψ)∥Sc . We want to

show that (χS
X)

α+1
µ ⊆ ∥∃(φUψ)∥Sc . Let s ∈ (χS

X)
α+1
µ = ∥χ∥S[X 7→(χS

X)αµ ]
c .

Hence,

S[X 7→ (χS
X)

α
µ], s |=µML

c tr(ψ) ∨ (tr(φ) ∧ ♢X)

Suppose S[X 7→ (χS
X)

α
µ], s |=µML

c tr(ψ). Hence S, s |=µML
c tr(ψ)

since tr(ψ) does not contain X. Therefore, S, s |=CTL
c φ by induction

hypothesis, and

S, s |=CTL
c ψ ∨ (φ ∧ ∃X ∃(φUψ)).

Hence, by the just proven equivalence, S, s |=CTL
c ∃(φUψ).

Suppose S[X 7→ (χS
X)

α
µ], s |=µML

c tr(φ)∧♢X, i.e., S[X 7→ (χS
X)

α
µ], s |=µML

c

tr(φ) and, for some sRt, t ∈ (χS
X)

α
µ. On the one hand, as before,

S, s |=µML
c tr(φ) since tr(φ) does not contain X and so, by induction

hypothesis, S, s |=CTL
c φ. On the other hand, by induction hypothesis,

S, t |=CTL
c ∃(φUψ). That is, S, s |=CTL

c φ ∧ ∃X∃(φUψ). Therefore,
S, s |=CTL

c ψ ∨ (φ ∧ ∃X∃(φUψ))
and, by the just proven equivalence, S, s |=CTL

c ∃(φUψ).
Limit step. If, for every α ∈ β, (χS

X)
α
µ ⊆ ∥∃(φUψ)∥Sc , then

(χS
X)

β
µ =

⋃
α∈β(χ

S
X)

α
µ ⊆ ∥∃(φUψ)∥Sc .

□

Proposition 4.13. ∥∃(φUψ)∥Sc ⊆ limξ∈ORD(χ
S
X)

ξ
µ.

Proof. Let S, s |=CTL
c ∃(φUψ). Then, there is a path π (starting

from s) such that, π |=LTL
c φUψ, that is, for some π(j) |=LTL

c ψ and,
for every 0 ≤ i < j, π(i) |=LTL

c φ. Note that it suffices to show that
s ∈ (χS

X)
j+1
µ . We show that

π(j − i) ∈ (χS
X)

i+1
µ

by induction on i and the proof ends by setting i = j.
Base case. Notice that:

π(j−0) ∈ ∥ψ∥CTLc ⊆ ∥ψ∥CTLc ∪(∥φ∥CTLc ∩⟨R⟩∅) = ∥ψ∥CTLc = ∥tr(ψ)∥µMLc = (χS
X)

1
µ.
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Inductive step. Suppose that π(j − i) ∈ (χS
X)

i+1
µ . We want to show

that

π(j − i− 1) ∈ (χS
X)

i+2
µ = ∥tr(ψ)∥µMLc ∪ (∥tr(φ)∥µMLc ∩ ⟨R⟩(χS

X)
i+1
µ )

Note that j − i − 1 < j, hence π(j − i − 1) ∈ ∥φ∥CTLc = ∥tr(φ)∥µMLc .
Moreover note that π(j − i− 1)Rπ(j − i) ∈ (χS

X)
i+1
µ and so

π(j − i− 1) ∈ ∥φ∥CTLc ∩ ⟨R⟩(χS
X)

i+1
µ = ∥tr(φ)∥µMLc ∩ ⟨R⟩(χS

X)
i+1
µ .

□

2. Team semantics for LTL and CTL

In this section we give the definition of team semantics for temporal
logics, namely, LTL and CTL. For the first one, we follow Lück in [17].
Afterwards, we bring his ideas to computational tree logic mimicking
the classical construction.

Before defining the formulas of team LTL let us clarify that we are
not considering the R operator because ot deserves a special treatment.
We will say more on this on the next section.

Definition 4.14. The formulas of team linear temporal logic are
defined by the following grammar

φ ::= ⊤ | ⊥ | P | P | φ ∨ φ | φ ∧ φ | Xφ | φUsφ | φUaφ

The set of all formulas will be denoted by tCTL.

As convention, sets of traces will be denoted by uppercase Greek
letters Π,∆,Γ...

Definition 4.15. Let Π be a set of traces and f : Π → N a
function. We write Π[f ] := {π[f(π)] | π ∈ Π}. If f, f ′ : Π → N, we
write f < f ′ if, for every π ∈ Π, f(π) < f ′(π). We will also write
Π[j] := {π[j] | π ∈ Π} for j ∈ N.

Definition 4.16. Team semantics for tLTL for a set of traces Π
are defined by recursion as follows:

(1) Π |=LTL
t ⊤ if and only if always.

(2) Π |=LTL
t ⊥ if and only if Π = ∅.

(3) Π |=LTL
t P if and only if for every π ∈ Π, P ∈ π(0).

(4) Π |=LTL
t P if and only if for every π ∈ Π, P ̸∈ π(0).

(5) Π |=LTL
t φ∨ψ if and only if Π = ∆∪Γ, ∆ |=LTL

t φ and Γ |=LTL
t ψ.

(6) Π |=LTL
t φ ∧ ψ if and only if Π |=LTL

t φ and Π |=LTL
t ψ.

(7) Π |=LTL
t Xφ if and only if Π[1] |=LTL

t φ.
(8) Π |=LTL

t φUsψ if and only if there is j ≥ 0 such that
(a) Π[j] |=LTL

t ψ;
(b) for every 0 ≤ k < j, Π[k] |=LTL

t φ.
(9) Π |=LTL

t φUaψ if and only if there is f : Π → N such that
(a) Π[f ] |=LTL

t ψ;
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(b) for every f ′ : Π → N, if f ′ < f , then Π[f ′] |=LTL
t φ.

Theorem 4.17. The asynchronized fragment of tLTL is flat. In
particular,

(1) Π |=LTL
t φUaψ if and only if for every π ∈ Π, π |=LTL

c φUψ.

Proof. The proof follows a similar argument to the one used to
show flatness of CTL which we will prove later. □

Definition 4.18. The formulas of team computational tree logic
are defined by the following grammar

φ ::= ⊤ | ⊥ | P | P | φ ∨ φ | φ ∧ φ | ∃Xφ | ∃(φUsφ) | ∃(φUaφ) |
∀Xφ | ∀(φUsφ) | ∀(φUaφ)

The set of all formulas will be denoted by tCTL.

Definition 4.19. Team semantics for tCTL are defined for a model
S and T ⊆ S by recursion as follows:

(1) S, T |=CTL
t ⊤ if and only if always;

(2) S, T |=CTL
t ⊥ if and only if T = ∅;

(3) S, T |=CTL
t P if and only if T ⊆ V (P );

(4) S, T |=CTL
t P if and only if T ∩ V (P ) = ∅;

(5) S, T |=CTL
t φ ∨ ψ if and only if T = U ∪ V , S, U |=CTL

t φ and
S, V |=CTL

t ψ;
(6) S, T |=CTL

t φ ∧ ψ if and only if S, T |=CTL
t ψ and S, T |=CTL

t θ;
(7) S, T |=CTL

t ∃ψ if and only if for every t ∈ T there is ∅ ̸= Πt ⊆
TrS(t) such that

⋃
t∈T Πt |=LTL

t ψ;
(8) S, T |=CTL

t ∀ψ if and only if TrS(T ) |=LTL
t ψ.

Theorem 4.20. The asynchronized fragment of tCTL is flat. In
particular,

(1) S, T |=CTL
t ∃(φUaψ) if and only if for every t ∈ T , S, t |=CTL

c

∃(φUψ);
(2) S, T |=CTL

t ∀(φUaψ) if and only if for every t ∈ T , S, t |=CTL
c

∀(φUψ);

Proof. By induction on φ. We restrict ourselves to show the case
∃(φUaψ) for φ, ψ flat.

Suppose that S, T |=CTL
t ∃(φUaψ) for T ⊆ S. We want to show that,

for every t ∈ T , S, t |=CTL
c ∃(φUψ).

By assumption, there is some Π =
⋃

t∈T Πt where ∅ ≠ Πt ⊆ TrS(t)
such that Π |=LTL

t φUaψ. That is, for some f : Π → ω, Π[f ] |=LTL
t ψ and,

for every f ′ : Π → ω such that f ′ < f , Π[f ′] |=LTL
t φ. Let t ∈ T , we want

to show that there is a path π starting from t such that π |=LTL
c φUψ.

Take any π ∈ Πt since it is non-empty. Note that, by flatness of φ
and ψ, it follows that π(f(π)) |=LTL

c ψ and, for every 0 ≤ i < f(π),
π(i) |=LTL

c φ.
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Conversely, suppose that, for every t ∈ T , S, t |=CTL
c ∃(φUψ). We

want to show that S, T |=CTL
t ∃(φUaψ).

Consider the sets Πt = {π ∈ TrS(t) | π |=LTL
c φUψ} which, by

assumption are non-empty. We claim that Π =
⋃

t∈T Πt |=LTL
t φUaψ.

Consider the set

{jπ ∈ ω | π ∈ S}
where, for π ∈ S, jπ is the witness of φUψ. That is, for π ∈ S,

(1) π(jπ) |=LTL
c ψ

(2) π(0), . . . π(jπ − 1) |=LTL
c φ,¬ψ

Consider the function
f : Π→ ω

π 7→ jπ

Hence, by flatness of ψ, Π[f ] |=LTL
t ψ and by flatness of φ, for every

f ′ : S → ω such that f ′ < f , Π[f ′] |=LTL
t φ.

The rest of the cases are similar. □

3. Embeddding of tCTL into tµML∗

In this section we bring together all the research we have done to
lift the classical embedding of CTL to team semantics. Basically, we
will follow the same proof scketch making the necessary changes. We
next state the full translation of tCTL.

φ ∈ tCTL tr(φ) ∈ tµML∗

⊤ ⊤
⊥ ⊥
P P
P P

φ ∨ ψ tr(φ) ∨ tr(ψ
φ ∧ ψ tr(φ) ∧ tr(ψ)
∃Xφ ♢tr(φ)
∀Xφ □tr(φ)

∃(φUsψ) µ∪X.tr(ψ)6(tr(φ) ∧ ♢X)
∀(φUsψ) µ∪X.tr(ψ)6(tr(φ) ∧□X
∃(φUaψ) µ⊔X.tr(ψ) ∨ (tr(φ) ∧ ♢X)
∀(φUaψ) µ⊔X.tr(ψ) ∨ (tr(φ) ∧□X)

The translation of the asyncronized fragment is trivial thanks to
flatness of the constructions.

Proposition 4.21. Let φ ∈ tCTL be a formula from the asynchro-
nized fragment and let S be a model, then

S, T |=CTL
t φ if and only if S, T |=µML

t tr(φ)

Proof. It follows from flatness of the asynchronized fragment of
tCTL and µML. S, T |=CTL

t φ if and only if, for every t ∈ T , S, t |=CTL
c φ
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if and only if, for every t ∈ T , S, t |=µML
c tr(φ) if and only if S, T |=µML

t

tr(φ). □

However, the synchronized translation is more difficult to show. As
we will see, we will follow the same scketch as in the classical semantics
since in serial models, the description of team ♢ and □ are the natural
ones given by the external definition. From now and for the rest of the
proof fix a model S. We first show the following equivalence in tCTL:

∃(φUsψ) ≡tCTL ψ6(φ ∧ ∃X∃(φUsψ))

Proposition 4.22. ∥∃(φUsψ)∥St ⊆ ∥ψ6(φ ∧ ∃X∃(φUsψ))∥St .

Proof. Suppose that S, T |=CTL
t ∃(φUsψ). Then, there is is some

Π =
⋃

t∈T Πt where ∅ ̸= Πt ⊆ TrS(t), such that Π |=LTL
t φUsψ. That is,

for some j ∈ ω,

Π[j] |=LTL
t ψ and Π[0], . . . ,Π[j − 1] |=LTL

t φ,¬ψ.
If j = 0, then Π[0] |=CTL

t ψ. Noticing that Π[0] = T , by definition of
6, T |=CTL

t ψ6(φ ∧ ∃X ∃(φUψ)) as wanted.
If j > 0, then Π[0] = T |=CTL

t φ, Π[0]REMΠ[1] and Π[1] |=CTL
t

∃(φUsψ). Hence, T |=CTL
t φ∧∃X ∃(φUsψ) and T |=CTL

t ψ6(φ∧∃X∃(φUsψ)).
□

Proposition 4.23. ∥ψ6(φ ∧ ∃X∃(φUsψ))∥t ⊆ ∥∃(φUsψ)∥t.

Proof. Suppose that T |=CTL
t ψ6(φ ∧ ∃X∃(φUsψ)).

If T |=CTL
t ψ, then T |=CTL

t ∃(φUsψ) trivially choosing j = 0.
Otherwise, if T |=CTL

t φ ∧ ∃X∃(φUsψ), then T |=CTL
t φ and for some

Π =
⋃

t∈T Πt where ∅ ̸= Πt ⊆ TrS(t), Π[1] |=CTL
t ∃(φUsψ). Hence,

consider now ∆ =
⋃

w∈Π[1] ∆w where ∅ ≠ ∆w ⊆ TrS(w) such that

∆ |=LTL
t φUsψ. Notice that T = Π[0]REMΠ[1]. Consider

∆′ :=
⋃
t∈T

{t⋏π | t→ w,w ∈ Π[1], π ∈ ∆w}.

Notice, that since all the ∆w are non-empty, all the ∆′
t are non-

empty. Moreover, it is easy to see that, by construction, ∆′
t ⊆ TrS(t).

Now, since ∆ |=LTL
t φUsψ, [by unfolding definitions] ∆′ |=LTL

t φUsψ
□

We now show that ∃(φUsψ) ≡ µ∪X.tr(ψ)6(tr(φ) ∧ ♢X) assum-
ing that φ is equivalent to tr(φ) and that ψ is equivalent to tr(ψ)
(induction hypothesis). Let us denote

χ := tr(ψ)6(tr(φ) ∧ ♢X).

We show that ∥∃(φUsψ)∥t = limξ∈ORD((χ
S
X)

ξ
µ,∪) by showing both in-

clusions.

Proposition 4.24. limξ∈ORD(χ
S
X)

ξ
µ,∪ ⊆ ∥∃(φUsψ)∥Sc .
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Proof. By ordinal induction.
Base case. Obvious since (χS

X)
0
µ,∪ = {∅} ⊆ ∥∃(φUsψ)∥St

Successor step. Suppose that (χS
X)

α
µ,∪ ⊆ ∥∃(φUsψ)∥St . We want to

show that (χS
X)

α+1
µ,∪ ⊆ ∥∃(φUsψ)∥St . Let T ∈ (χS

X)
α+1
µ,∪ = ∥χ∥S[X 7→(χS

X)αµ,∪]
t .

Hence,
S[X 7→ (χS

X)
α
µ,∪], T |=µML

t tr(ψ) ∨ (tr(φ) ∧ ♢X)

Suppose S[X 7→ (χS
X)

α
µ,∪], T |=µML

t tr(ψ). Hence S, T |=µML
t tr(ψ)

since tr(ψ) does not contain X. Therefore, S, T |=CTL
t φ by induction

hypothesis, and

S, T |=CTL
t ψ6(φ ∧ ∃X ∃(φUsψ)).

Hence, by the just proven equivalence, S, T |=CTL
t ∃(φUsψ).

Suppose S[X 7→ (χS
X)

α
µ,∪], T |=µML

t tr(φ) ∧ ♢X, i.e.,

S[X 7→ (χS
X)

α
µ,∪], T |=µML

t tr(φ) and, for some TREMU , U ∈ (χS
X)

α
µ,∪.

On the one hand, as before, S, T |=µML
t tr(φ) since tr(φ) does not

contain X and so, by induction hypothesis, S, T |=CTL
t φ. On the other

hand, by induction hypothesis, S, U |=CTL
t ∃(φUsψ). That is, S, T |=CTL

t

φ ∧ ∃X ∃(φUsψ). Therefore,

S, T |=CTL
t ψ6(φ ∧ ∃X ∃(φUsψ))

and, by the just proven equivalence, S, T |=CTL
t ∃(φUsψ).

Limit step. If, for every α ∈ β, (χS
X)

α
µ,∪ ⊆ ∥∃(φUsψ)∥St , then

(χS
X)

β
µ,∪ =

⋃
α∈β(χ

S
X)

α
µ,∪ ⊆ ∥∃(φUψ)∥St .

□

Proposition 4.25. ∥∃(φUsψ)∥St ⊆ limξ∈ORD(χ
S
X)

ξ
µ,∪.

Proof. Let S, T |=CTL
t ∃(φUsψ). Then, there is a path Π (starting

from T ) such that, Π |=LTL
t φUsψ, that is, for some Π(j) |=LTL

t ψ and,
for every 0 ≤ i < j, Π(i) |=LTL

t φ. Note that it suffices to show that
T ∈ (χS

X)
j+1
µ,∪ . We show that

Π(j − i) ∈ (χS
X)

i+1
µ,∪

by induction on i and the proof ends by setting i = j.
Base case. Notice that:

Π(j−0) ∈ ∥ψ∥CTLt ⊆ ∥ψ∥CTLt ∪(∥φ∥CTLc ∩⟨REM⟩∅) = ∥ψ∥CTLt = ∥tr(ψ)∥St = (χS
X)

1
µ,∪.

Inductive step. Suppose that Π(j − i) ∈ (χS
X)

i+1
µ,∪ . We want to show

that

Π(j − i− 1) ∈ (χS
X)

i+2
µ,∪ = ∥tr(ψ)∥St ∪ (∥tr(φ)∥St ∩ ⟨REM⟩(χS

X)
i+1
µ,∪)

Note that j − i − 1 < j, hence Π(j − i − 1) ∈ ∥φ∥CTLt = ∥tr(φ)∥St .
Moreover note that Π(j − i− 1)REMΠ(j − i) ∈ (χS

X)
i+1
µ,∪ and so

Π(j − i− 1) ∈ ∥φ∥CTLt ∩ ⟨REM⟩(χS
X)

i+1
µ,∪ = ∥tr(φ)∥St ∩ ⟨REM⟩(χS

X)
i+1
µ,∪ .
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□

Remark 4.26. In this last proof we have ommited minor details
such as if S[X 7→ (χS

X)
α
µ,∪], T |=µML

t tr(ψ), then S, T |=µML
t tr(ψ) since

tr(ψ) does not contain X in order to reduce verbosity. Note how, the
key steps in the proof are given because of the natural description of
the team semantical ♢ and □ in serial models. And the limit steps,
because of considering the union, i.e., the internal definition.

Remark 4.27. Notice that we have only showed the translation
for ∃(φUsψ). The team semantical translation of ∀(φUsψ) follows in
a similar way, because, thanks to seriality of S, we can work with the
external definition of □.

Conjecture. We have only proved the team semantical translation of
synchronized until operators since, to our understanding, they repre-
sent in an understandable way the notion of synchronicity and asyn-
chronicity. The respective, synchronized or asynchronized notions of
the release operator R are more obscure and, in the literarure, often
ommited. However, as we have remarked before, the core of the proof
relies on the external definitions of ♢ and □ and the respective notion
of fixed-point. Hence, it should be possible to lift the translation of
R operator. Nonetheless, some problems may appear because of the
relation

φRψ ≡LTL ¬(¬φU¬ψ)
since negation does not behave well with team semantics and down-
wards closure. In conclusion, the R case deserves a special study, but,
to our understanding, it should be possible to translate.
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Conclusion and further work

In this thesis, we defined a team semantics for modal µ-calculus
and we showed how team CTL embeds into team µ-calculus. Following
the ideas from [8] and [4], we introduced an algebraic approach to
team semantics for modal logic, first by means of relational powerset
liftings and later giving an internal definition of the modalities. Using
these approach, we developed the classical construction of modal µ-
calculus in a team semantical framework using the notions of general
model and general team semantics for modal logic, finding the need of
defining two least fixed-point operators. Later, we studied the defined
semantics showing, among other properties, flatness for a fragment of
it and extended the logic thanks to the rich team semantical relation.
Finally, extending a classical result, we showed how the two least fixed-
point operators algebraically encode the notions of synchronizity and
asynchronocity known in temporal team semantics.

The work presented in this thesis goes in the recent line of bringing
an algebraic perspective to team semantics done in [17] in 2020 and
in [8] in 2023. In particular, Lück presents a universal algebraic view
of team semantics and Engström et. al. study powerset structures
of Boolean algebras to develop team semantics for propositional logic.
By our side, we study the relations of powerset structures with ordered
structures and Kripke models to define team semantics for modal µ-
calculus. The work leaves many natural continuations for this research.
We highlight some of these below.

We did not fully elaborate the algebraic study of fixed-points in
double powerset structures. The study of how orders can be lifted to
powerset structures and the study of fixed-point theory in such struc-
tures would be a natural continuation of the work presented here. We
expect that some of the properties and results can be lifted, at least, up
to the respective equivalence relation. However, there are still questions
about how this notions relate with the internal/external perspective
studied in this thesis.

Related to the generalization of classical constructions, it is worth
to say that game-theoretic semantics have been defined for depen-
dence logic. Thus, can we adapt those semantics to extend the game-
theoretic semantics for classical µ-calculus. Again, some questions arise
when thinking about how this semantics would relate with the inter-
nal/external interpretations.
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Although this lines go by extending classical constructions of the
modal µ-calculus, the definition of the external box modality leaves
many open questions as for example what is its relation with team
semantics for modal logic or what is its expressible power. In this line
we expect that the methods from [8] can be generalised to define, for
instance, a proof system for the external-internal team semantics of
modal logic.

One of the reasons for working with team semantics is to increase
the expressive power of a logic from the semantical side. As it was
shown by Kontinen and Ville in [14], dependence logic with a (Boolean)
negation operator is equivalent to full second order logic. As it is
known, modal µ-calculus is equivalent to the bisimilar invariant frag-
ment of monadic second order logic. Hence, some questions arise as
for example, to find the expressive power of some extensions of team
µ-calculus or if it is possible to find a translation between dependence
logic with negation operator and team µ-calculus.

Finally, team semantics in temporal logics can be used to the study
of hyperproperties, that is, properties of sets of traces. Hyperproperties
have been identified as a key concept in the verification of information
flow properties and some logics have been defined to formalize this
concepts as HyperLTL. Moreover, in [16] the authors study the rela-
tion between HyperLTL and team semantics for LTL. However, the
complexity of modal µ-calculus makes the relation of Hyper modal µ-
calculus (defined in the literature) and team semantics defined here a
long term question.
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