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Abstract

This thesis is dedicated to the axiomatic study of multiwinner voting
where certain kinds of candidates are to receive preferential treatment.
We introduce a priority model for multiwinner voting, which extends
the standard model by distinguishing between priority and non-priority
candidates and incorporates a quota specifying the minimum number of
priority candidates to be elected. Suitable rules are obtained by adapting
rules from the standard setting by reserving seats for priority candidates,
where reserved seats may be filled first, last, or at the latest possible mo-
ment this must be done in order to guarantee that the quota is met.
These rules are studied axiomatically. We consider the standard axioms
of anonymity and neutrality, as well as axioms designed to guarantee
that priority candidates are not adversely affected. Furthermore, we fo-
cus on two kinds of elections, excellence-based elections, in which the
highest-quality candidates are to be elected, and those elections in which
proportional representation is important. In the excellence-based setting
we show that there is a trade-off between the level of preferential treat-
ment given and the quality of the elected committee. In the context
of proportional representation we identify one particularly suitable rule,
the adaptation of Phragmén’s Sequential Rule that restricts attention to
priority candidates at the latest possible moment.
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Chapter 1

Introduction

1.1 Introduction and motivation

Multiwinner voting concerns the problem of how a group can decide,
given a set of alternatives, which ones to select based on the preferences
of its members. The real-life scenarios that fit this problem are many
and varied. Representative governmental bodies such as parliaments are
elected by citizens, shareholders vote for boards of publicly traded compa-
nies, and residential communities choose neighbourhood councils. Where
the foregoing examples concern the election of representative bodies, mul-
tiwinner voting is also found in cases where the most qualified candidates
are to be selected based on the votes of experts; for example, where an
admissions committee selects students, judges determine the shortlist for
a prize, or a limited number of job applicants are selected for an inter-
view. Besides these more conventional contexts, applications are found in
a wide range of technical domains, for example in blockchain technology
(Cevallos & Stewart, 2021) and genetic programming (Faliszewski et al.,
2017a).

The above examples are instances of multiwinner elections. A mul-
tiwinner election consists of a set of candidates, a set of voters, each of
which has preferences regarding the candidates, and a desired committee
size k. The objective is to choose a committee of size k based on the
voters’ preferences. In order to do so, a multiwinner voting rule is used.
Choosing an appropriate rule for a multiwinner election is no simple task.
Accordingly, the central line of research in this field has been the analysis
of rules with respect to the desirable properties they exhibit, so-called
axiomatic analysis.

In this thesis we are concerned with multiwinner elections in which
certain kinds of candidates are to be afforded preferential treatment.
Numerous examples highlight the prevalence of such scenarios. Various
countries implement mandatory gender quotas in public boards and rep-
resentative bodies, diversity requirements are applied to shortlists for
prizes, and admissions processes for selective educational programs may
prioritise applicants who are systemically disadvantaged. Many of these
instances will be complex, concerning, e.g., several different types of can-
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didates, each with different requirements regarding preferential treat-
ment.

Little research has been done on preferential treatment in multiwinner
voting, so we present a simple model as a first step. We consider an
approval-based model, in which voters specify a subset of the candidates
of which they approve.1 The model, which we call multiwinner voting
with priority candidates, augments the standard framework in two ways.
Firstly, the set of candidates is divided into priority and non-priority
candidates. Secondly, an election specifies a quota detailing the minimum
number of priority candidates to be elected, which we denote q. The
main aim of this thesis is twofold: we are looking to identify axioms that
encode desirable properties in the priority model, and to find rules that
satisfy these axioms.

There are roughly two sources of axioms. On the one hand we have
axioms that are unique to the priority setting, for example, those that
guarantee that a candidate is never worse off as a priority candidate than
as a non-priority candidate. On the other hand we have axioms that
are derived from those studied in the standard setting. Regarding the
latter, forcing the election of q priority candidates will often mean that
standard axioms are not satisfiable. Consequently, we define weakenings
that allow us to reason about important properties in the context of the
priority model.

We consider two different kinds of elections for which different axioms
and rules are appropriate. The first kind are excellence-based elections,
where the goal is to elect the k candidates of the highest quality. The
second kind are elections concerning proportional representation, where a
committee is to be elected that represents the distribution of preferences
of the voters.

The rules that we consider for the priority model are adaptations of
those for the standard model. The central idea behind these adaptations
is that the q seats that are reserved for priority candidates can either
be filled first or last. We will see that this distinction has a significant
impact on the properties that rules possess.

1.2 Outline

In Chapter 2 we formally introduce the priority model and the rules that
will be the focus of the rest of this thesis. To accomplish this, we first
present the standard model and the corresponding rules that are there-
after adapted to the priority setting. The discussion of related work relies
on an understanding of the priority model and is thus presented at the
end of the second chapter. Chapter 3 first considers the fundamental

1 The alternative is to use ordinal ballots, which require voters to rank candidates.
For the comparative merits and demerits of approval voting see Laslier and Sanver
(2010). Other, secondary variations concern restrictions on the size of the ballots.
We do not consider those here.
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axioms of anonymity and neutrality. Next we present a number of ax-
ioms capturing the basic requirement that candidates ought never to be
worse off as priority candidates than as non-priority candidates under a
priority rule. In Chapter 4 we first consider excellence-based elections in
the priority context, introducing axioms that capture the fundamental
nature of excellence-based elections as well as different degrees of prefer-
ential treatment for priority candidates. The second part of this chapter
concerns weakenings of efficiency that are suited to the priority model.
Chapter 5 investigates proportionality. We first introduce well-known
axioms for the standard model that concern the representation required
for cohesive groups of voters. We then consider how the notion of cohe-
siveness can be interpreted in the priority model, thus yielding several
axioms in light of which the priority rules are analysed. For Chapters
3, 4 and 5, respectively, Tables 3.1, 4.1 and 5.1—each presented at the
beginning of the corresponding chapter—provide an overview of the most
important results with references to the corresponding proofs. Finally,
in Chapter 6, the conclusion, we summarise and evaluate the work of the
foregoing chapters and point towards future research.

1.3 Notation and prerequisites

For any set S, we will use S[j] to denote all the subsets of S of size j,
i.e., S[j] = {S ′ ⊆ S : |S ′| = j}. We will sometimes use [k] to denote the
set [k] = {1, . . . , k} for k ∈ Z+. For any set S, we denote the powerset
of S by P(S).

In several of the chapters we present tables summarising the results,
i.e., which rules (do not) satisfy which axioms. In such tables, a number
in square brackets refers to the corresponding proposition or corollary. If
the corresponding result is a counterexample, this is indicated by prefix-
ing the number with ‘ex.’. If no reference is provided, then the result is
proven in the text, rather than in a separate proof.
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Chapter 2

Multiwinner voting with priority
candidates

In this chapter, we introduce the fundamental components of approval-
based multiwinner voting with priority candidates. The first section sets
out the standard model and presents a number of corresponding rules.
In the second section, to which the initiated reader may want to skip,
we first introduce the priority model, which enriches the standard model
with priority candidates and a quota detailing the number of priority can-
didates to be elected. Thereafter, we introduce the priority multiwinner
voting rules with which we will be concerned in the following chapters.
The assumptions made regarding the number of priority candidates are
discussed in the third section. Finally, the fourth section presents a brief
discussion of related work.

2.1 Approval-based multiwinner voting
without priority candidates

In this section, we briefly cover the standard approval-based multiwin-
ner voting model and a number of corresponding rules that will later
be adapted to the priority setting. For a more extensive overview of
approval-based multiwinner voting, including computational perspectives
that are not considered here, see the recently published book by Lackner
and Skowron (2023).

2.1.1 The standard model

Let C be a finite set of candidates, sometimes referred to as alternatives.
For concrete examples it aids readability to have candidates named with
letters of the alphabet, e.g., C = {a, b, c, d}; however, we will often want
candidates to be indexed, in which case we will use C = {c1, . . . , cm}. The
number of candidates is always denoted |C| = m. Let N = {1, 2, . . . , n}
be a finite set of |N | = n voters. Each voter i ∈ N submits an approval
ballot (or ballot) Ai ⊆ C, also called i’s approval set, specifying the
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candidates of which they approve.1 An approval profile (or profile) is
then a list A = (A1, . . . , An) that specifies a ballot for each voter. If a
voter i ∈ N approves of a candidate c, i.e., c ∈ Ai, we say that i supports
or is a supporter of c. We denote the set of all supporters of candidate
c by Nc, i.e., Nc = {i ∈ N : c ∈ Ai}.

Any set S ⊆ C of candidates is referred to as a committee. In multi-
winner voting we are generally concerned with selecting a committee of a
particular size, which we denote by k.2 It is assumed that k is a positive
integer no greater than m.

An election is a tuple E = (C,A, k) specifying a set of candidates, a
profile, and a committee size. The set of voters can be deduced from the
ballot profile A, hence we often do not specify it explicitly.

Example 2.1. The owners of eight apartments in a block need to
elect a homeowners’ association to represent their interests and man-
age communal areas. Six of the owners declare their candidacy,
C = {a, b, c, d, e, f}, and all owners submit an approval ballot:

A1 = {a, b, c} A2 = {b, c} A3 = {b, c} A4 = {b, c}
A5 = {d, e} A6 = {d, e} A7 = {f} A8 = {f}.

For clarity we will often choose to represent the same profile as:

1× {a, b, c} 3× {b, c} 2× {d, e} 2× {f}.

This is particularly apt if we do not care about voters’ identities, i.e., if
we only care how often each approval set occurs.3 Sometimes we may,
for simplicity, present a profile in such a way, while still wanting to refer
to individual voters. In such cases, we use the following convention to
assign approval sets to the voters moving from left to right. In this
case, the first voter, 1, has approval set {a, b, c}, the next three voters,
2, 3, and 4, agree on approval set {b, c}, etc. Finally, if we do not
explicitly specify a set of candidates when presenting an election, one
may assume that the candidates are exactly those that occur on some
ballot, i.e., C =

⋃
i∈N Ai.

An approval-based multiwinner voting rule—or simply rule, since we
consider only approval ballots—is a function R that assigns to every
election E = (C,A, k) a set R(E) of one or more winning committees,

1 We are implicitly assuming that voters’ preferences are dichotomous: for any
candidate, a voter either approves or disapproves of that candidate.

2 Though most of the work on multiwinner voting concerns fixed-size committees,
in some situations it makes more sense to allow winning committees of at most size
k. For an overview of such rules and their applications see, e.g., the works by Kilgour
(2016) or Faliszewski et al. (2020).

3 This is essentially the requirement encoded in the axiom of anonymity, which is
covered in the next chapter (Chapter 3).
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which are all size-k subsets of C. That is, ∅ ⊂ R(E) ⊆ C[k]. Sometimes
it will be convenient to write R(C,A, k) instead of R(E), omitting a
pair of parentheses for clarity, and when C and k are clear from the
context, we may simply write R(A). If a rule returns multiple winning
committees, we say that these committees are tied. Given a winning
committee W , we call the winning candidates of which voter i approves,
i.e., the candidates in Ai ∩W , the representatives of i.

If a rule always returns a single winning committee, then it is said
to be resolute, and otherwise it is irresolute. In most applications only
a single winning committee is desired. In such cases, if an irresolute
rule is used, ties are usually broken using a predetermined strict linear
order on the size-k committees, also called a tiebreaking order. However,
some of the resolute rules we consider, e.g., Phragmén’s Sequential Rule
and the Method of Equal Shares, make use of a predetermined strict
linear order over candidates rather than committees. These rules add
candidates to the winning committee in rounds and must have a way of
choosing between tied candidates in any round. It should be noted that
such rules yield irresolute versions if we simply consider all the possible
ways of breaking ties between candidates.

Having defined the standard model, we now move on to rules for this
setting.

2.1.2 Non-priority rules

The rules that we consider for the priority setting are all adaptations of
existing rules. Accordingly, we present the relevant rules for the stan-
dard setting before moving on to the priority setting. Given the large
and varied range of multiwinner voting scenarios, it is no wonder that a
great many rules have been suggested.4 Here we simply define the rele-
vant rules, for the most part without discussing their properties. We dis-
tinguish between scoring rules, considered first, which return committees
maximising a score, and sequential rules, which add candidates in rounds.
For the following definitions, we assume that an election E = (C,A, k)
and a corresponding set of voters N are given.

Scoring rules

Many of the rules considered work by assigning real-valued scores to
committees and returning the size-k committees with maximal scores.
Accordingly, in keeping with Kilgour and Marshall (2012), we formally
define a score or scoring function as a function sc that takes a profile-
committee pair (A, S) and returns a real number sc(A, S).5 When it is

4 For an explicit categorisation of different kinds of multiwinner settings and a
brief discussion of corresponding rules, see the works by Faliszewski et al. (2017c) and
Elkind et al. (2017).

5 This definition of scoring functions is not to be confused with the committee
scoring functions presented by Elkind et al. (2017), which concern ordinal ballots and
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clear from the context which profile is being considered, we will leave
it out of the notation, writing sc(S) instead of sc(A, S). Furthermore,
when we are concerned with the score of a singleton committee {c}, we
will write sc(c) instead of sc({c}). A scoring rule is a rule that returns all
and only the committees with maximal score for some scoring function.

A candidate’s approval score is simply the number of voters that ap-
prove of them. When only one winner is to be elected, it would seem that
the only viable voting rule is that which elects the candidate with maxi-
mal approval score. A natural extension of this idea to the multiwinner
setting yields Multiwinner Approval Voting.

Rule 1: Multiwinner Approval Voting, AV

The approval score, or AV-score, of a committee S ⊆ C given the
profile A is

scAV(S) =
∑
i∈N

|Ai ∩ S|.

AV then returns the committees that maximise the AV-score. That
is,

AV(E) = argmax
S∈C[k]

scAV(S).

Intuitively, we can view AV as maximising the total voter satisfaction,
if a voter’s satisfaction depends only on and is directly proportional to
the number of representatives they have. If we instead take a voter’s
satisfaction to depend proportionally on the percentage of their ballot
that is elected, we end up with a different rule (introduced by Kilgour,
2010, and discussed in detail by Brams and Kilgour, 2015):

Rule 2: Satisfaction Approval Voting, SAV

The satisfaction approval score, or SAV-score, of a committee S ⊆ C
given the profile A is defined as

scSAV(S) =
∑
i∈N

|Ai ∩ S|
|Ai|

,

where we take |Ai∩S|/|Ai| = 0 whenever Ai = ∅. SAV returns the
committees that maximise the SAV-score.

Both AV and SAV are instances of candidate-wise scoring rules (Kil-
gour & Marshall, 2012). A score, sc, is called candidate-wise if for any
committee S ⊆ C, we have sc(S) =

∑
c∈S sc(c). That is, the score of a

committee can be computed by simply adding the scores of its constituent

generalise the notion of a positional scoring rule from single-winner elections to the
multiwinner scenario.
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candidates.6 A candidate-wise scoring rule is then simply a scoring rule
based on a candidate-wise score. Thus, candidate-wise scoring rules sim-
ply return size-k committees that consist of k of the highest-scoring can-
didates. To see that AV and SAV are indeed candidate-wise, note the
following.

scAV(S) =
∑
i∈N

|Ai ∩ S| scSAV(S) =
∑
i∈N

|Ai ∩ S|
|Ai|

=
∑
i∈N

∑
c∈S

|Ai ∩ {c}| =
∑
i∈N

∑
c∈S

|Ai ∩ {c}|
|Ai|

=
∑
c∈S

∑
i∈N

|Ai ∩ {c}| =
∑
c∈S

∑
i∈N

|Ai ∩ {c}|
|Ai|

=
∑
c∈S

scAV(c) =
∑
c∈S

scSAV(c)

We now consider two scoring rules that are not candidate-wise. The
first, Proportional Approval Voting, intuitively captures the idea that
there is a diminishing return on the increase in satisfaction that a voter
experiences for each added representative.

Rule 3: Proportional Approval Voting, PAV

Let h(x) be the xth harmonic number, i.e., h(x) =
∑x

i=1
1/i for

x ∈ Z+, and let h(0) = 0. The PAV-score of a committee S given
profile A is

scPAV(S) =
∑
i∈N

h(|Ai ∩ S|),

and PAV elects those size-k committees that maximise this score.

The following rule, Approval Chamberlin-Courant, can be seen as en-
coding an extreme interpretation of diminishing returns, where a voter
is taken as fully satisfied if they have at least one representative and
not satisfied if they do not. That is, the satisfaction of a voter with at
least one representative does not increase if they receive more represen-
tatives. This is a somewhat unnatural interpretation of the rule. More
intuitively, Approval Chamberlin-Courant returns committees that give
as many voters as possible a representative.

Rule 4: Approval Chamberlin-Courant, CC

The CC-score of a committee S is defined as

scCC(S) = |{i ∈ N : Ai ∩ S ̸= ∅}|.

6 Such scoring functions are also called additive, since for any two disjoint commit-
tees S1 and S2 it holds that sc(S1 ∪ S2) = sc(S1) + sc(S2).
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CC then returns all committees that maximise this score.

PAV and CC are both explicitly discussed by Thorvald N. Thiele
(1895) in the context of a class of rules now known as Thiele methods.7

Rule 5: w-Thiele Method, w-Thiele

We call a non-decreasing function w : N → R with w(0) = 0 a Thiele
function. Given a Thiele function w, the corresponding w-score of a
committee S given a profile A is

scw(S) =
∑
i∈N

w(|Ai ∩ S|).

w-Thiele then returns all committees that maximise the w-score.

Of the rules thus far considered, only SAV is not a Thiele method.
This is because a voter’s contribution to the SAV-score of a committee is
a function not just of the number of representatives that voter gets, but
also of the size of their ballot. To see that AV, CC and PAV are Thiele
methods, note that they correspond to the following Thiele functions:

wAV(x) = x wCC(x) = min(x, 1) wPAV(x) = h(x).

We have now considered all the scoring rules and move on to the
sequential rules.

Sequential rules

Informally, we call a rule sequential if it works in rounds, adding a candi-
date in each round until a committee of the desired size has been reached.8

Sequential rules are generally computationally tractable. As such, a num-
ber of sequential approximations of computationally hard rules have been
considered, e.g., for CC and PAV, which are both NP-hard (Procaccia
et al., 2008; Skowron et al., 2016). However, recent years have seen a
number of sequential rules (re-)emerge that are interesting in their own
right, satisfying strong axiomatic properties while retaining computa-
tional tractability.

We first consider the sequential analogues of scoring rules, which we
call sequential scoring rules. Given some scoring function, we can define
a corresponding sequential rule that in each of k rounds greedily selects
the candidate that increases the score of the (provisional) committee by
the most. Thus, for any scoring rule R, we have the following sequential
analogue.

7 In the context of ordinal ballots, Chamberlin and Courant (1983) introduce a rule
now known as the Chamberlin-Courant rule. Approval Chamberlin-Courant can be
seen as an adaptation of this rule to the approval setting, hence its name.

8 There exist other rules commonly called sequential that start with the set of all
candidates and remove candidates in rounds to yield a size-k committee. We do not
consider such rules here.
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Rule 6: Sequential R, seq-R

Given the scoring function sc on which R is based, seq-R works as
follows. Start with an empty committee W0 = ∅. For each round
r ∈ [k] we set Wr = Wr−1 ∪ {c} for the thus far unelected candidate
c /∈ Wr−1 that maximises sc(Wr−1 ∪ {c}). If there are multiple
such candidates, a predetermined tiebreaking order over candidates
is used. The rule returns W = Wk.

The sequential analogues of the Thiele methods—e.g., seq-AV, seq-
CC and seq-PAV—are commonly referred to as sequential Thiele methods.
Given the above definition, seq-CC elects, in any round, the candidate
that increases the CC-score of the provisional committee by the most; i.e.,
it elects the candidate that represents the greatest number of voters that
do not yet have a representative. This process is suboptimal with regards
to maximising the CC-score, hence seq-CC may return a committee that
is not a winning committee according to CC (see Example 2.6).

In contrast, seq-AV can be viewed as fundamentally the same as AV.
In each round, seq-AV adds a remaining candidate with the highest ap-
proval score to the committee. Consequently, the resulting committee
maximises the approval score and is a winning committee according to
AV. In order to make AV resolute, ties must be broken between commit-
tees, while seq-AV makes use of a tiebreaking order between individual
candidates. There is no unambiguously optimal method for extending
(ordinal) preferences over candidates to preferences over sets of candi-
dates or vice versa (Barberà et al., 2004), hence we cannot strictly say
that AV and seq-AV are equivalent. Nevertheless, all the ways of break-
ing ties between candidates will yield, using seq-AV, all the committees
returned by AV. In keeping with the literature, we have treated AV as a
scoring rule, but it will sometimes be helpful to consider it as a sequential
rule, i.e., as seq-AV.

The above reasoning concerning the relationship between AV and seq-
AV also applies to SAV and seq-SAV (which is not a sequential Thiele
method). In fact, the sequential version of any candidate-wise scoring
rule will always select k of the highest-scoring candidates, and thus yield
a committee that maximises the score. And all the winning committees
according to the scoring rule can be obtained by executing the sequential
rule with all possible ways of breaking ties between candidates.9

We now consider two sequential rules that have received a lot of at-
tention in recent years, neither of which is naturally interpreted as a
sequential scoring rule: Phragmén’s Sequential Rule (seq-Phragmén) and
the Method of Equal Shares (MES). We start with the former.

9 Given some committee W that maximises the (candidate-wise) score, any
tiebreaking order in which all the members of W are ranked higher than all other
candidates will yield W in combination with the sequential version of the rule.
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Phragmén gave, towards the end of the 19th century, a number of dif-
ferent formulations of his sequential rule—Janson (2018) provides a de-
tailed overview. Here, we take the formulation used by Brill et al. (2023)
as fundamental. In this formulation, elected candidates are thought of as
incurring a load among their supporters and the goal is to elect a commit-
tee for which the corresponding distribution of the loads over the voters
is as balanced as possible. We thus first define what a load distribution
is.

Definition 2.1 (Load distribution). Given an election E = (C,A, k),
a load distribution is a two-dimensional array x = (xi,c)i∈N,c∈C , where
xi,c is the load voter i receives from candidate c. The total load of voter
i is then x̄i =

∑
c∈C xi,c. A load distribution must meet the following

requirements.

(i) xi,c ≥ 0 for all i ∈ N and c ∈ C

(ii) xi,c = 0 for any i ∈ N and c /∈ Ai

(iii)
∑

i∈N x̄i = k

(iv)
∑

i∈N xi,c ∈ {0, 1} for every c ∈ C

Condition (ii) guarantees that the load due to candidate c is distributed
only among supporters of c. Conditions (iii) and (iv) guarantee that
there is a size-k committee corresponding to the load distribution x,
namely, {c ∈ C :

∑
i∈N xi,c = 1}.

Phragmén’s Sequential Rule starts with an empty committee and
greedily adds candidates that minimise the resulting maximal voter load.

Rule 7: Phragmén’s Sequential Rule, seq-Phragmén

The rule starts with an empty committee W0 = ∅. In each of k
rounds a new candidate c is added and one unit of load is distributed
among the voters in Nc, to yield a size-k winning committee. Let
x̄r
i denote the total load incurred by voter i at the end of round

r. Every voter i ∈ N starts with a load of 0, i.e., x̄0
i = 0. In

each round, a voter maintains their previously accrued load, which
may be added to only if the elected candidate is approved by the
voter. We thus have x̄r

i ≥ x̄r−1
i for each i ∈ N and x̄r

i = x̄r−1
i

when the candidate c elected in round r is not approved of by i, i.e.,
c /∈ Ai. In any round r ∈ [k], the candidate c and loads x̄r

i are chosen
that respect the above conditions and that minimise the resulting
maximum voter load maxi∈N x̄r

i . The committee after round r is
then Wr = Wr−1 ∪ {c}. If there are multiple such candidates, ties
are broken according to a predetermined order. After the kth round
W = Wk is returned.
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It is easy to see that the resulting load distribution meets the require-
ments set out in Definition 2.1. Note that the above description of the
rule assumes that there are at least k candidates with positive approval.
In fact, often the assumption is made that all candidates have positive
approval. When working with seq-Phragmén we also make this assump-
tion, even though it will often be implausible in the priority setting. We
come back to this later on. It should also be noted that sometimes, e.g.,
in the work of Peters and Skowron (2020), the load incurred due to the
election of a candidate is set at n/k, rather than 1. This makes no differ-
ence to the working of the rule, but may, as we shall see, make it easier
to work with in certain contexts.

We introduce two further (equivalent) formulations of seq-Phragmén:
a continuous formulation which is intuitively the clearest, and a discrete
formulation, which will be helpful in our proofs. To make clear that we
have one fundamental formulation—that given in the statement of the
rule (Rule 7)—we present these as lemmas.

Lemma 2.1 (The continuous formulation of seq-Phragmén). The rule
corresponding to the following description is equivalent to seq-Phragmén.

Voters start with a budget of 0, which increases continuously with
time, such that at time t a voter’s budget is t (if they have not spent
any of it). As soon as a group of voters that unanimously approve of
some candidate c (i.e., Nc) have a combined budget of 1, this candidate
is elected and the budgets of the voters in Nc are set to 0. The voters who
do not approve of the elected candidate keep their budget. This process is
repeated, breaking ties between candidates according to a fixed tiebreaking
order, until k candidates have been elected.

For an example of work that utilises the continuous formulation, see
the article by Peters and Skowron (2020). Where the continuous formu-
lation is intuitively simplest, the following discrete formulation, already
presented by Phragmén (1899), clearly demonstrates how the rule is com-
puted.

Lemma 2.2 (The discrete formulation of seq-Phragmén). The rule cor-
responding to the following description is equivalent to seq-Phragmén.

In round r ∈ [k], for any thus far unelected candidate c /∈ Wr−1, let

ℓr(c) =
1 +

∑
i∈Nc

x̄r−1
i

|Nc|
.

Then the maximum load ℓr = maxi∈N x̄r
i is

ℓr = min
c∈C\Wr−1

ℓr(c),

and a candidate c for which ℓr(c) is minimal, using tiebreaking if neces-
sary, is elected. If c is elected in round r, then the new loads are given
by

x̄r
i =

{
ℓr(c) if i ∈ Nc

x̄r−1
i otherwise.
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Brill et al. (2023) also present the discrete formulation as a lemma
(Lemma 4.5) and provide a corresponding proof. There is an optimisation-
based rule corresponding to seq-Phragmén, called Phragmén’s Leximax
Rule.10 In contrast to seq-Phragmén, Phragmén’s Leximax Rule fails
to satisfy a desirable property called committee monotonicity and it is
NP-hard, hence we do not consider it here.11

The Method of Equal Shares, first introduced by Peters and Skowron
(2020), endows every voter with the same starting budget, which can be
used to elect candidates. Accordingly, it intuitively captures the idea that
every voter ought to be able to determine an equal share of the winning
committee. Roughly, the idea is that in any round, the candidate is
elected that requires the smallest payment per supporting voter.

Rule 8: Method of Equal Shares, MES

MES has two phases. During the first phase, we start with an empty
committee W0 = ∅ and add a candidate in each of at most k rounds.
If less than k candidates are elected during the first phase, the second
phase is used to complete the committee.

Phase 1: Initially, each voter i ∈ N receives an initial budget of
bi(1) = 1, where bi(r) denotes i’s budget immediately before the start
of round r. The price, to be paid by voters, of electing a candidate
is p = n/k. In round r, a candidate c /∈ Wr−1 is x-affordable if∑

i∈Nc

min(x, bi(r)) ≥ p,

where x ∈ R≥0. That is, the supporters of c can raise the funds re-
quired to elect this candidate among themselves without any of them
paying more than x. If no candidate is x-affordable for any x—i.e.,
if no candidate is affordable—then phase 1 terminates. Otherwise,
a candidate c /∈ Wr−1 is elected that is x-affordable for minimal x.
We then update the voters’ budgets as follows:

bi(r + 1) =


bi(r)− x if i ∈ Nc and bi(r) ≥ x

0 if i ∈ Nc and bi(r) < x

bi(r) if i /∈ Nc

10 This rule does not only return committees that minimise the maximum voter load.
It also employs a specific kind of tiebreaking which is essential for the satisfaction
of certain properties such as the proportionality requirement proportional justified
representation (Brill et al., 2023).

11 See the work by Brill et al. (2023) for more on Phragmén’s Leximax Rule. The
original work is by Phragmén (1896) and a modern overview is given by Janson
(2018). We do not consider other variants, such as one that minimises the variance of
the loads, since these do not fare well with regards to the proportionality axioms with
which we will be concerned. For more on these rules also see the mentioned works.
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Note that since bi(1) = 1 for each i ∈ N and p = n/k, there is exactly
enough budget in total to elect k candidates. If there are no more
affordable candidates and less than k candidates have been elected,
we move to phase 2.

Phase 2: MES satisfies most interesting properties, for exam-
ple the proportionality axiom extended justified representation (see
Chapter 5), regardless of how the remaining candidates are elected
(Peters & Skowron, 2020). Nevertheless, to guarantee that certain
axioms (though not any that we consider) such as priceability are
satisfied, it is recommended to complete the committee using seq-
Phragmén, where voters have starting budgets equal to the budget
they have left at the end of Phase 1. It is essential that in this case
the load incurred by electing a candidate is the same as the price to
be paid for a candidate in Phase 1.

We note that, as presented by Lackner and Skowron (2023), MES
may also be formulated such that the price of a candidate is set at p = 1
and the initial budget of each voter i ∈ N is bi(1) = k/n. In that case, the
load incurred for each candidate selected in Phase 2 using seq-Phragmén
will be 1, as specified in our definition (Rule 7).

Having covered the standard model and the relevant rules for this
setting, we are ready to move on to the priority setting.

2.2 Approval-based multiwinner voting with
priority candidates

Analogously to the previous section, we first introduce the priority model,
a novel enrichment of the standard model, and thereafter we define a
number of new priority rules with which we will be concerned in the
following chapters.

2.2.1 The priority model

The priority model enriches the standard model in two ways. Firstly,
we specify a subset of the set of candidates C+ ⊆ C that consists of
the priority candidates. This also yields a set C− = C \ C+ of non-
priority candidates. When introducing a set of candidates or profile, we
will often distinguish the priority candidates by representing them with
an overline. For example, in the set of candidates C = {a, b, c, d}, a and b
are priority candidates, while c and d are non-priority candidates. When
we refer to a candidate’s status, we mean their classification as a priority
or non-priority candidate. Thus, e.g., two candidates have the same
status if they are either both priority candidates or both non-priority
candidates.12

12 This vocabulary is particularly useful in situations where we consider the conse-
quences of changing a candidate’s status. In such cases we will leave out the overlines
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Extending the new notation to arbitrary committees, we denote the
set of priority candidates that belong to a committee S ⊆ C by
S+ = S ∩ C+. Similarly, the set of non-priority candidates that belong
to S is denoted S− = S ∩ C− = S \ S+.

The second addition to the standard model is the priority quota (or
quota) q. The quota represents the number of ‘reserved seats’ on a com-
mittee; i.e., q specifies the number of seats that are to be filled with
priority candidates. Consequently, we require that q be a non-negative
integer of at most k.13 We will be concerned with committees that always
elect at least q priority candidates—such committees are said to respect
the quota—hence, we also require that q be no greater than |C+|, the
number of priority candidates. This restriction, which might equally be
formulated as an assumption concerning the number of priority candi-
dates (i.e., that there are at least q of them) is necessary if the priority
rules are to be well-defined. However, as we shall see, some of the consid-
ered rules require the stronger assumption that there are enough priority
candidates to fill the committee, i.e., |C+| ≥ k. We discuss these as-
sumptions in detail in Section 2.3, after the relevant rules have been
introduced.

The two additions to the standard model are clearly reflected in
the definition of a priority election, or simply election, which is a tu-
ple E = (C,C+,A, k, q). A priority approval-based multiwinner voting
rule, or simply rule, is then a function R that takes as input a prior-
ity election E and returns one or more size-k winning committees, i.e.,
∅ ⊂ R(E) ⊆ C[k]. A rule is said to respect the quota, if it returns
only committees that respect the quota, i.e., that have at least q priority
candidates. Resoluteness for priority rules is defined exactly as in the
standard setting.

We use ‘election’ and ‘rule’ for both the standard model and the
priority model. Usually, the context will make clear which setting is
being considered. When this is not the case we will explicitly use ‘non-
priority’ and ‘priority’ to distinguish between the two settings.

Armed with this vocabulary, we now note that each priority elec-
tion E = (C,C+,A, k, q) has an underlying non-priority election E ′ =
(C,A, k). Consequently, each non-priority rule R can be seen as a pri-
ority rule that takes a priority election E = (C,C+,A, k, q) and re-
turns R(C,A, k), i.e., all the winning committees for the underlying
non-priority election.

Example 2.2. A company must elect a standing committee of size
k = 3 that organises social events for employees. In order to guarantee
that junior employees are also represented, it is required that at least

when presenting a profile to avoid confusion.
13 It is interesting to consider whether priority rules reduce to the non-priority rules

on which they are based in the extreme cases where q = 0 or q = k, i.e., where none
or all of the seats are required to be filled by priority candidates.
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one member of the committee is junior, i.e., q = 1. The set of candi-
dates is C = {a, b, c, d} and the set of priority candidates—in this case
the set of junior candidates—is C+ = {a, b}. The following ballots are
cast.

5× {a} 5× {a, b, d} 10× {a, c} 5× {c, d}

If we consider the underlying election, it would seem that the most
reasonable outcome is {a, c, d}.14 Though this committee meets the
requirement of having q = 1 priority candidates, we will see that some
priority rules will give different results (Example 2.3).

Having set out the priority model, we can now introduce the priority
rules with which we will be concerned in the following chapters.

2.2.2 Priority rules

We first introduce dual election rules and after that consider adaptations
of the sequential rules to the priority setting.

Dual election rules

Given a non-priority rule R and priority election E = (C,C+,A, k, q),
we might think to run two different elections using R, one for priority
candidates and one for non-priority candidates. This would result in
a committee of exactly q priority candidates (and k − q non-priority
candidates). However, since we are here concerned with giving some kind
of preferential treatment to priority candidates, it makes more sense to
allow all committees that have at least q priority candidates.15 In this
case we might have a quota election, in which q reserved seats are to
be filled with priority candidates, and an open election, in which k − q
candidates are to be elected and all (remaining) candidates, including
any (remaining) priority candidates, are eligible. This gives rise to the
concept of dual election rules. We have two kinds of dual election rules,
corresponding to whether we fill the reserved seats first or last.

Rule 9: Reserved-first dual election rule based on R

Given a priority election E = (C,C+,A, k, q), the reserved-first dual
election rule based on non-priority rule R, denoted Df

R, works as

14 With the exception of CC and seq-CC, all non-priority rules considered return
{a, c, d} as the sole winning committee. CC also returns {a, c, d}, but as one of
three winning committees. Whether or not seq-CC returns {a, c, d} depends only on
tiebreaking (alphabetic tiebreaking means {a, b, c} is elected).

15 The setting in which there is a strict desired distribution of different types of
candidates, considered by, e.g., Bredereck et al. (2018) and Celis et al. (2018), is
discussed in the section on related work at the end of this chapter.
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follows. W ∈ Df
R(E) if and only if there exist Q ∈ R(C+,A, q)

and O ∈ R(C \ Q,A, k − q) with W = Q ∪ O. We refer to the
elections (C+,A, q) and (C \Q,A, k − q) as the quota election and
open election, respectively.

Note that we used the original profile A to specify both the quota
election and the open election. Strictly speaking, we ought to consider
a restriction of this profile, since it contains candidates that are not
members of the considered candidate set. Formally, this is achieved by
taking the intersection of each ballot with the relevant candidate set;
however, we will often leave this implicit to avoid clutter.

Note that the above definition relies on the requirement that |C+| ≥ q,
since otherwise there is no guarantee that there will be enough eligible
candidates for the quota election.16

Reversing the order of the quota election and the open election yields
another rule.

Rule 10: Reserved-last dual election rule based on R

Given a priority election E = (C,C+,A, k, q), the reserved-last dual
election rule based on non-priority rule R, denoted Dℓ

R, works as
follows. W ∈ Dℓ

R(E) if and only if there exist O ∈ R(C,A, k − q)
and Q ∈ R(C+ \O,A, q) with W = O∪Q. We refer to the elections
(C,A, k − q) and (C+ \ O,A, q) as the open election and quota
election, respectively.

Where the definition of Df
R relied on the assumption that |C+| ≥ q,

the definition of Dℓ
R requires the stronger assumption that there are at

least k priority candidates, i.e., |C+| ≥ k. This is because we must
guarantee that there will be q unelected priority candidates after the
open election in which k − q priority candidates could be elected. As we
shall see, there are other rules that require this additional assumption,
which is discussed in Section 2.3.

Dual election rules are particularly interesting if the used non-priority
rule is a candidate-wise scoring rule. In this light, we consider the dual
election rules based on AV and SAV, i.e., Df

AV, D
ℓ
AV, D

f
SAV, and Dℓ

SAV.
To see that the reserved-first and reserved-last rules are distinct, consider
the following example.

Example 2.3. Consider again the election E from Example 2.2 with
the set of candidates C = {a, b, c, d}, committee size k = 3 and quota
q = 1. For both AV and SAV the reserved-first dual election rule yields
{a} and {c, d} as the unique winning committees for the quota and
open elections, respectively. That is, Df

AV(E) = Df
SAV(E) = {a, c, d}.

16 Remember that non-priority rules are defined only for cases in which the com-
mittee size is no greater than the number of available candidates.
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In contrast, for both AV and SAV, the reserved-last dual election
rule yields {a, c} and {b} as the unique winning committees for the
quota and open elections, respectively. That is, Dℓ

AV(E) = Dℓ
SAV(E) =

{a, b, c}.
Intuitively, if the quota election is first, then a takes the reserved

seat and b is outcompeted in the open election. However, if the open
election is first, then a takes an unreserved seat, which allows b to take
the reserved seat in the following quota election.

Note that, contrary to the claim that we must generally assume
|C+| ≥ k, in the above example the candidate set contains fewer than
k priority candidates, i.e., |C+| < k. This is not a problem, since the
reason for the assumption is that it might be the case that there are
insufficiently many priority candidates for the quota election and this is
not the case here.

The following lemma captures the fact thatDf
sc, the reserved-first dual

election rule based on the non-priority rule maximising the candidate-
wise score sc, returns exactly those committees with maximal scores
among those that respect the quota. Intuitively, the reason is the follow-
ing. If q priority candidates must be elected and we want to achieve the
highest-possible score, we must always elect the highest-scoring q priority
candidates. This is what happens in the quota election. After that, the
k − q highest-scoring remaining candidates are elected.

Lemma 2.3. Let sc be a candidate-wise score. Df
sc returns all and only

the committees that maximise the score among those that respect the
quota. That is,

Df
sc(E) = argmax

W∈C[k], |W+|≥q

sc(W ).

Proof. Denote the non-priority scoring rule corresponding to candidate-
wise score sc byRsc. We first show that any winning committee according
toRsc has a maximal score among the committees with q or more priority
candidates. Assuming |C+| ≥ q, the quota election clearly guarantees
that q priority candidates are elected. Now let W1 ∈ Df

sc(E) be a winning
committee and let W2 ∈ C[k] with |W+

2 | ≥ q be arbitrary. We show
that sc(W1) ≥ sc(W2). There must be sets Q1 ∈ Rsc(C

+,A, q) and
O1 ∈ Rsc(C \ Q1,A, k − q) with W1 = Q1 ∪ O1. Now let Q2 ⊆ W+

2

consist of q of the highest-scoring priority candidates from W2 such that
Q1 ∩ W2 ⊆ Q2. This is guaranteed to be possible since Q1 consists
of q of the highest-scoring priority candidates simpliciter (i.e., not only
from W1, but from C). We then have sc(Q1) ≥ sc(Q2). Furthermore,
since Q1 ∩ W2 ⊆ Q2, we have O2 = W2 \ Q2 ⊆ C \ Q1. But then,
since O1 ∈ Rsc(C \ Q1,A, k − q), we must have sc(O1) ≥ sc(O2). Since
sc(Q1) ≥ sc(Q2), it follows that sc(W1) ≥ sc(W2).

We now show that any committee W ∈ C[k] that maximises the score
among the committees with q or more priority candidates is aDf

sc winning
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committee. Let Q ⊆ W+ consist of q of the highest-scoring priority
candidates from W . It follows that these must be q of the highest-scoring
priority candidates from C simpliciter. That is, Q ∈ Rsc(C

+,A, k). Now
suppose W \ Q /∈ Rsc(C \ Q,A, k − q). It follows that there exist some
c ∈ W \Q and c′ ∈ C\Q such that sc(c′) > sc(c). But then (W \{c})∪{c′}
respects the quota and has a higher score than W , which contradicts our
assumption to the contrary.

Example 2.3 shows that for AV and SAV the reserved-first and
reserved-last rules are distinct, hence Lemma 2.3 does not hold for the
reserved-first rules. It should not come as a surprise that the other scoring
rules considered fail to yield such a lemma for either their reserved-first
or reserved-last adaptation. For candidate-wise scoring rules, the con-
tribution of an elected candidate to the score of the final committee is
simply their contribution to the score of the subcommittee in which they
were elected. Similarly, the contribution of a voter to the score is simply
the sum of their contributions to the scores of the subcommittees. This
is not the case for CC or PAV.

In fact, Example 2.3 suffices to show that a lemma that is analogous
to Lemma 2.3 does not hold for Df

CC or Dℓ
CC, since {a, b, d} receives

the maximal CC-score of 25 but is not a winning committee according
to either rule. Though the example considered does not show this, the
same is true for Df

PAV or Dℓ
PAV.

17

We now move on to consider priority adaptations of the sequential
rules.

Sequential priority rules

Assuming we want to elect only committees that respect the quota, the
natural way to adapt a sequential rule would be to restrict the candidate
pool to priority candidates for q of the k rounds. Analogous to the
dual election rules, we first consider two ways in which q seats might be
reserved for priority candidates: the first q seats may be reserved, or the
last q seats may be reserved.

Given a sequential rule R, we refer to the priority rule that results
from restricting the pool of eligible candidates to priority candidates in
the first q rounds as reserved-first R.

Rule 11: Reserved-first R, rf-R

Given a sequential non-priority rule R, rf-R works as follows. Run

17 In Example 2.3, both dual rules based on PAV return the committee that max-
imises the PAV-score, {a, c, d}. However, it is not difficult to come up with an example
where these rules return a committee that does not maximise the PAV-score. For ex-
ample, if we have a profile where three voters approve {a, b} and two voters approve
{c}, with k = 2 and q = 1. Then {a, b} is the winning committee according to both
dual rules, while both {a, c} and {b, c} have a higher PAV-score.
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the algorithm for R as usual, but in the first q rounds restrict the
candidate pool to the remaining priority candidates. That is, for
any round 1 ≤ r ≤ q the candidate pool is Cr = C+ \Wr−1, while
for any round q + 1 ≤ r ≤ k we have Cr = C \Wr−1 as before.

Note that, generally, the above definition, analogously to the reserved-
first dual election rules, requires that |C+| ≥ q in order to be well-defined.
Taking the last q seats as reserved yields reserved-last R.

Rule 12: Reserved-last R, rl-R

Given a sequential non-priority rule R, rl-R works as follows. Run
the algorithm for R as usual, but in the last q rounds, restrict the
candidate pool to the remaining priority candidates. That is, for
any round 1 ≤ r ≤ k− q we have the candidate pool Cr = C \Wr−1

as before, while for any round k− q+ 1 ≤ r ≤ k the candidate pool
is C+ \Wr−1.

Similarly to the reserved-last dual election rules, the reserved-last
sequential rules require the assumption that |C+| ≥ k, since, in order to
elect k candidates, there must be at least q remaining priority candidates
that can be elected in the last q rounds.

The sequential versions of the scoring rules considered—seq-AV, seq-
SAV, seq-CC and seq-PAV—are well-defined and intuitively clear. How-
ever, for (all formulations of) seq-Phragmén and MES, the reserved-first
adaptation is either ill-defined or yields a clearly undesirable rule. The
following example illustrates this. In each case the problems stem fun-
damentally from the fact that ‘worse’ candidates may be elected before
‘better’ ones.

Example 2.4. Let C = {a, b, c}, k = 2, and q = 1, and consider the
following profile:

1× {a, b} 9× {b} 1× {c}.

We first consider the reserved-first rule based on the discrete formu-
lation of seq-Phragmén. In the first round a priority candidate must
be elected, hence a is elected, resulting in a load of 1 for voter 1, i.e.,
x1
1 = 1. Since

1 +
∑

i∈Nb
x̄1
i

|Nb|
=

1 + 1

10
= 0.2

is minimal, we elect b in round 2 and set x2
i = 0.2 for i ∈ [10]. But

then we have a situation in which an initially distributed load (for a)
is redistributed, strictly decreasing the maximum load. This is made
worse by the fact that the load distributed due to a is shouldered by
voters that do not approve of this candidate.
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Now consider the continuous formulation of seq-Phragmén. The
first candidate elected must be a priority candidate, i.e., a. This hap-
pens at time t, when voter 1 has a budget of 1. At this point all
other voters also have a budget of 1. But that means that b and c are
tied in that they are both affordable, while b, who became affordable
at an earlier moment, is clearly a better choice (also in the spirit of
seq-Phragmén).18

We now consider seq-Phragmén in terms of its fundamental defini-
tion (Rule 7). Electing a in the first round results in a load of 1 for
voter 1. In the second round, the maximum voter load will remain 1
regardless of whether we elect b or c, while, as stated above, b is clearly
the right choice in the spirit of seq-Phragmén.

The problem with MES arises from the fact that the first phase
might end in a restricted round because there are not enough priority
candidates that enjoy sufficient support, while there are non-priority
candidates that are affordable. In this case the price will be p = n/k =
11/2 = 5.5. Since the only eligible candidate in the first round is a and
they only have one supporter (with an initial budget of 1), there is no
affordable eligible candidate, hence phase 1 ends while b is affordable.

Inspired by Phragmén’s Leximax Rule, we might refine the reserved-
first adaptation of seq-Phragmén (as defined) as follows. Rather than
looking only at the resulting maximal load when deciding which candi-
date to elect, we can break ties between candidates by looking at the
next highest loads that result from their election. In the above example,
b would be preferred over c in the second round. In both cases the maxi-
mal voter load after round 2 will be 1; however, electing b would result in
a next-highest voter load of 1/9 (for voters 2 through 10) compared to 1
if c were elected (for voter 11).19 Though this gives a well-defined rule in
the spirit of seq-Phragmén, we defer its investigation to future research.

It is important to realise that any assumptions concerning a non-
priority rule will carry over to its priority adaptations. For example, if,
as we have done, it is assumed in the context of seq-Phragmén that there
are no unapproved candidates, then rl-seq-Phragmén also requires this
assumption. We briefly discuss the assumption that all candidates have
positive approval in the context of the priority model in Section 2.3.

We saw in Lemma 2.3 that in the case of dual election rules with
candidate-wise scoring functions, the reserved-first approach comes clos-

18 It may be tempting to think that we could break ties by considering which can-
didate became affordable first. This will not do because, generally, the time a can-
didate became affordable cannot be taken as a measure of how suitable they are in
later rounds. For example, the group of voters responsible for a candidate’s becom-
ing affordable early on may be given relatively many representatives in the following
rounds, hence a candidate that became affordable later on, supported by a different
group of voters, might be preferable.

19 For a formal treatment of how this tiebreaking would work, see the definitions of
the leximax ordering and Phragmén’s Leximax Rule by Brill et al. (2023).
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est to preserving the original rule (in this case maximising the score) while
meeting the requirement that q priority candidates be elected. Though
the reserved-first approach for seq-Phragmén and MES is complicated,
there is another, intuitively promising option if we are concerned with
filling the quota while, as best as possible, maintaining the desirable
properties of the original rules. When executing a sequential rule R, we
can keep track of how many priority candidates have been elected and
restrict the candidate pool to the remaining priority candidates at the
latest possible moment that this must be done in order to guarantee that
q priority candidates will be elected. We refer to this as reserved-latest R.

Rule 13: Reserved-latest R, late-R

Let R be any of the described non-priority sequential rules, and let
p(r) denote the number of priority candidates that have been elected
in the rounds preceding r, i.e., p(r) = |W+

r−1|. Execute R as normal,
checking at the start of each round r whether q − p(r) > k − r,
i.e., whether the number of rounds remaining is smaller than the
number of priority candidates that must still be elected in order to
make sure the quota is respected. From the first round for which this
is the case onward, the candidate-pool is restricted to the remaining
priority candidates. I.e., if ℓ is the first round r for which q−p(r) >
k − r, then for any round ℓ ≤ r′ ≤ k we have the candidate pool
Cr′ = C+ \Wr′−1.

Note that neither seq-Phragmén nor MES give rise to any problems
here. Intuitively, this is because a ‘better’ candidate is never elected after
a ‘worse’ candidate. Also note that the above definition does not require
the strong assumption that |C+| ≥ k.

We now briefly discuss a number of general observations concerning
reserved-latest rules that are independent of the (non-priority) rules on
which they are based.

First off, at most the last q rounds will be restricted. In any of the
first k− q rounds, there will be at least q rounds remaining. But then for
each of these rounds there are at least as many rounds left (q or more) as
priority candidates that need to be elected to respect the quota (at most
q), hence these rounds cannot be restricted. When the last q rounds are
restricted, the algorithm runs exactly as the corresponding reserved-last
rule.

Similarly, it is clear that if the restriction to priority candidates does
not come into play at any point, then the algorithm works exactly as
the original non-priority rule. In any case, for both the reserved-last and
reserved-latest rules, the first k − q rounds are identical to those of the
original rule (since these are guaranteed to be unrestricted).

If the restriction to priority candidates becomes active at any point,
then exactly q priority candidates are elected. The restriction first comes
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into force in the first round r for which q − p(r) > k − r, from which it
follows that p(r) = q− k+ r− 1. Since a priority candidate is elected in
each of the last k− r+1 rounds, the total number of priority candidates
elected is p(r)+(k−r+1) = q−k+r−1+k−r+1 = q. Intuitively, it is clear
that this must be the case, since we are restricting the candidate pool to
priority candidates at the latest possible moment that this can be done
in order to guarantee the quota is respected. Taking the contrapositive,
we also know that if more than q priority candidates have been elected,
it cannot be the case that the restriction came into force.

Finally, we can say something about when the restriction comes into
force. First off, it cannot be the case that the restriction comes into force
and that q or more priority candidates have been elected before that.20

Secondly, if exactly (at least) x < q priority candidates are elected before
the first restricted round, then exactly (at least) the first k−q+x rounds
are unrestricted.

Interestingly, the reserved-first and reserved-latest adaptations of se-
quential versions of candidate-wise rules, e.g., seq-AV and seq-SAV, are
equivalent. The underlying intuition is that for candidate-wise scoring
rules, the reserved-first rule also aims to deviate from the original rule
only as much as necessary to respect the quota. First, the highest-scoring
q priority candidates are elected, guaranteeing that the quota is met with
the strongest possible candidates. After that, the highest-scoring remain-
ing candidates are elected.21

Proposition 2.4. If R is a candidate-wise scoring rule, then rf-seq-R
and late-seq-R are equivalent.

Proof. Let R be a candidate-wise scoring rule, let E be an arbitrary pri-
ority election, and let Wrf = rf-seq-R(E) and Wlate = late-seq-R(E). We
make a case distinction in whether the restriction to priority candidates
came into force in the execution of late-seq-R or not. When we say that
the candidates from some set are the highest-scoring, we mean this to
take tiebreaking into consideration.

Suppose the restriction did not come into effect. Then Wlate sim-
ply consists of the k highest-scoring candidates. Now let W q

late be the
q highest-scoring priority candidates in Wlate. These are the highest-
scoring priority candidates simpliciter and will thus be elected in the
first q rounds of rf-seq-R. But then Wlate \W q

late consists of the highest-
scoring candidates that are not elected in the first q rounds of rf-seq-R.
Thus, Wrf = Wlate.

20 The previous paragraph already tells us that the restriction did not come into
force if more than q priority candidates were elected. A fortiori, this holds if more
than q priority candidates are elected in unrestricted rounds. Here, however, we
additionally claim that it cannot be the case that the restriction came into force after
(exactly) q priority candidates were elected in unrestricted rounds.

21 This is in contrast with the reserved-last rule, in which the reserved-seats are not
necessarily filled with the strongest priority candidates.
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Suppose the restriction did come into effect. Then we must have
|W+

late| = q. The priority candidates in Wlate are the q highest-scoring
and are thus elected in the first q rounds of rf-seq-R. Analogously to the
previous case, we can then conclude that Wrf = Wlate.

We have already seen that Df
sc, where sc is a candidate-wise scoring

function, returns committees that respect the quota with maximal score
(Lemma 2.3). Thus, Df

sc is as close as we can get to the original rule if we
want to make sure q priority candidates are elected. Recall that the same
intuition motivates reserved-latest sequential rules, hence it should not
come as a surprise that these two approaches coincide for candidate-wise
rules. This is not the case for seq-CC, as the following example shows.

Example 2.5. Consider the election with the candidate set C =
{a, b, c, d, e}, committee size k = 3, quota q = 1, and the profile

4× {a, d} 3× {b} 1× {d} 2× {e}.

It is easy to check that rf-seq-CC, rl-seq-CC and late-seq-CC all give
different outcomes, namely, {a, b, e}, {b, c, d} and {b, d, e}, respectively.

We have argued that, intuitively, the reserved-latest adaptation at-
tempts to come as close as possible to the original rule, and in the above
example, the committee returned by late-seq-CC has a maximal CC-
score. In this light, it might be tempting to think that late-seq-CC will
always yield a better CC-score than rf-seq-CC or rl-seq-CC. The following
example shows that this is not the case.

Example 2.6. Consider the election with k = 3, q = 2 and the profile

7× {a} 2× {b, c} 3× {b, e} 1× {c} 2× {d} 3× {d, e}.

Both rf-seq-CC and rl-seq-CC return the committee {a, b, d}, which
has the maximal CC-score of 17, while late-seq-CC returns the seq-CC
winning committee {a, c, e}, which has a CC-score of 15.

Note that the above example also shows that seq-CC differs from CC
(as was claimed before), and that priority adaptations of seq-CC may ac-
tually perform better than seq-CC.22 Example 2.6 also shows that rl-seq-
Phragmén and late-seq-Phragmén differ. The former gives the outcome
{a, b, d}, while the latter returns the seq-Phragmén winning committee,
which is {a, b, e} or {a, d, e} depending on tiebreaking.

22 These two facts are fundamentally related. Greedily selecting candidates may
ultimately harm the CC-score. However, in the priority setting it is possible that
a (priority) candidate that does not maximally increase the score must be elected,
making it possible to elect an ultimately more representative committee.
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The following lemma gives some insight into how the priority adapta-
tions of seq-Phragmén relate to the original rule, and allows us to apply
the discrete and continuous formulation of seq-Phragmén to these adap-
tations.

Lemma 2.5. Let E = (C,C+,A, k, q) be a priority election and let W =
late-seq-Phragmén(E) be the late-seq-Phragmén winning committee. Now
consider the non-priority election E ′ = (C ′,A, k), where C ′ = C+ ∪ W
consists of the winning candidates from W and any remaining priority
candidates. That is, C ′ is obtained by removing from C the non-priority
candidates that are not selected by late-seq-Phragmén. Then it is the case
that W = seq-Phragmén(E ′). The same holds for rl-seq-Phragmén.

Proof. Suppose that the first ℓ rounds of late-seq-Phragmén on E are un-
restricted. Then these are identical to the first ℓ rounds of seq-Phragmén
on (C,A, k), which in turn are identical to the first rounds of seq-
Phragmén on (C ′,A, k). This relies on the fact that we can remove any
unelected candidates from the candidate set (and formally also from the
ballots) without making a difference to the execution of seq-Phragmén.
To see that this is the case, simply note that we choose the candidates
who at each step minimise the resulting maximum load. Removing can-
didates that do not do this does not change that, since the loads resulting
from a candidate depend solely on the voters that approve of them and
their current loads. From round ℓ + 1 on, in late-seq-Phragmén, we
simply run seq-Phragmén considering only the priority candidates. But
then, by the same reasoning as above, these rounds will be identical to
rounds ℓ + 1 to k of seq-Phragmén on (C ′,A, k). The same reasoning
applies to rl-seq-Phragmén.

It follows directly that we can use the continuous and discrete formu-
lations (Lemma 2.1 and Lemma 2.2) to describe both rl-seq-Phragmén
and late-seq-Phragmén; the only difference lying in the restriction to pri-
ority candidates from the specified round onward. Thus, from here on,
we regard these lemmas as applying to rl-seq-Phragmén and late-seq-
Phragmén as well.

We have now introduced all of the rules with which we will be con-
cerned in the following chapters. The next section discusses in more
detail the assumptions made.

2.3 Assumptions

We have seen that priority rules require assumptions regarding the num-
ber of priority candidates. In particular, all of the priority rules require
the assumption that |C+| ≥ q in order to be well-defined. Assuming
there is cause to give preferential treatment to priority candidates in the
first place, this assumption will often not be satisfied in practice. This,
however, need not be a problem. When less than the desired number of
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priority candidates are available, we can simply set q = |C+|. For all the
rules considered—i.e., rules that respect the quota—this will result in all
priority candidates being elected, which seems desirable when less than
the desired number of priority candidates are available.

More problematic is the assumption, necessary for the well-definedness
of the reserved-last rules, that there are sufficient priority candidates to
fill the entire committee, i.e., |C+| ≥ k. Again, the underlying reasons
for giving preferential treatment to certain candidates in the first place
will often make it make it very unlikely that a large number of such can-
didates is available. In certain cases there are easy adaptations that deal
with this problem. E.g., for candidate-wise scoring rules the committee
can simply be completed with the highest-scoring remaining candidates.
For other rules, however, this is less trivial. In any case, it should be
clear that, though it is likely that the assumption is not met, this will
often not be a problem.23 The ill-definedness of the reserved-last rules
in the absence of the assumption that |C+| ≥ k comes, as we have seen,
from the possibility that there may not be enough priority candidates left
for the reserved seats, which are filled last. Since candidates are elected,
roughly, from ‘best’ to ‘worst’, it is in practice unlikely, given that pri-
ority candidates require some sort of preferential treatment, that many
will be elected in unrestricted rounds. Nevertheless, in the future, these
rules ought to be refined so that they do not require this assumption. In
favour of simplicity, we do not do so in this thesis.

Finally, we mention again briefly the assumption concerning seq-
Phragmén that all candidates are approved of by some voter. Again,
it is likely that in practice this assumption will be violated, given the
fact that priority treatment is necessary in the first place. There are
ways to refine seq-Phragmén such that these assumptions need not be
made, but this makes the presentation and handling of the rule in proofs
more difficult. For this reason we stick with the assumption here.

Having introduced the priority model and the rules with which we will
be concerned in this thesis, we can now briefly consider related work.

2.4 Related work

Besides excellence-based elections and elections concerning proportional
representation, both of which were discussed in the introduction, elec-
tions have also been considered where the emphasis is on representing
smaller groups of voters.24 In the extreme case this requires what is
called diversity. The goal here is to elect a committee that represents
as many voters as possible. Examples include selecting locations for a

23 This is also illustrated by the examples that do not satisfy this assumption, e.g.,
Examples 2.3, 2.5, and 2.6.

24 In excellence-based elections candidates with the most support are elected, thus
favouring bigger groups of voters. Proportional representation prescribes a linear
relation between the size of a group of voters and the representation they require.
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given number of facilities such as fire stations, choosing the products to
be advertised by an online store, and deciding which movies will be of-
fered for in-flight entertainment (Elkind et al., 2017; Faliszewski et al.,
2017c). This is very different from the setting we consider, in which an
exogenously given quota is to be respected whatever the voters’ prefer-
ences may be. Such a quota will often be motivated by considerations of
diversity with regards to the types of candidates elected; however, this
is entirely separate to the notion of diversity with regards to the voters
that are represented. In fact, though we do not do so here, it would be
possible to consider the above described notion of diversity with regards
to voter representation in the context of the priority model (much like we
have done for excellence-based elections and proportionality). For more
work on the notion of diversity described above, see the accompanying
footnote.25

Lang and Skowron (2018) present a framework in which candidates
have external attributes, such as gender, political affiliation, or academic
faculty. For each value that an external attribute can take, e.g., the value
woman for the attribute gender, the ideal proportion of the committee
that instantiates this value is specified. The goal is then to select a fixed-
size committee that comes as close as possible to the desired distribution
of attributes. This generalises settings such as bi-apportionment, where
each candidate has a political affiliation and a region they represent (see
Pukelsheim, 2017). The desired distribution may be based on votes or
given exogenously. In any case, this model takes into account only ex-
ternal constraints on the attributes of candidates, wherever these may
come from. Work has been done on combining this model with multi-
winner voting rules (Bredereck et al., 2018; Celis et al., 2018), though
attention has been restricted to rules that provide a ranking over com-
mittees. Essentially, we can interpret our priority model as one in which
there is a single attribute: priority status. However, in the priority model
we are not concerned with approximating as best as possible some fixed
ideal distribution; i.e., we are not considering committees with exactly
q candidates. Rather, we have a requirement concerning the minimal
representation of priority candidates, which we assume can always be
satisfied. This also allows us to consider adaptations of rules, such as
seq-Phragmén, which are more problematic in the above setting as they
do not naturally yield a ranking of committees.

The problem of school choice is a matching problem in which stu-
dents are to be assigned to schools based on their preferences and those
of the schools. Controlled school choice, in which schools reserve seats
for certain kinds of students, for example for students of certain ethnic
backgrounds or from within a walk zone, has been widely studied since
the first mechanism-design approach to school choice, credited to Ab-
dulkadiroğlu and Sönmez (2003). This has been done both from the per-

25 See, e.g., Faliszewski et al., 2017b; Faliszewski and Talmon, 2018; Jaworski and
Skowron, 2022; Lackner and Skowron, 2018.
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spective of matching mechanisms as a whole (Abdulkadiroğlu & Sönmez,
2003; Doğan, 2016; Hafalir et al., 2013; Kojima, 2012), as well as from
the perspective of individual schools (Doğan et al., 2021; Dur et al.,
2018; Dur et al., 2020; Echenique & Yenmez, 2015). In the mechanisms
studied, based on deferred acceptance (Gale & Shapley, 1962), the main
distinction is between whether schools fill reserved seats first or last, a
distinction that is central to the definition of our priority rules as well.26

It is shown that this choice has significant consequences. Given that
schools’ preferences are modelled as rankings over students, we can draw
a parallel with candidate-wise multiwinner scoring rules, which yield a
ranking over candidates. In this light, the first half of Chapter 4 is anal-
ogous to this line of research in school choice. A significant difference
is that in school choice, schools’ rankings over students are given exoge-
nously, while in the priority model rankings over the candidates must be
deduced from voters’ preferences. Consequently, whereas in school choice
rankings over students are strict, the analogous rankings over candidates
in the priority model may be weak. Furthermore, we consider properties
such as efficiency, which concern voters’ satisfaction and have no direct
counterpart in matching.

In this chapter we introduced the priority model and the correspond-
ing rules with which we will be concerned. We briefly discussed the
significant assumptions that we make and gave an overview of related
work. The following chapters explore desirable properties in the priority
setting and use these to analyse the rules here defined.

26 Other reservation sequences are considered in the matching literature, but these
have yet to be clearly characterised.
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Chapter 3

Anonymity, neutrality and
priority treatment for priority
candidates

In the foregoing chapter we introduced the priority model along with a
number of priority rules. In this chapter we consider some basic proper-
ties of such rules. The first section considers (adaptations of) the stan-
dard axioms anonymity and neutrality. The following section introduces
a number of axioms that capture the basic requirement that priority
rules may not (inadvertently) disadvantage priority candidates. Table
3.1 gives an overview of which rules (fail to) satisfy the properties con-
sidered in this chapter. The abbreviations PW, GW, CPW, and CGW,
refer to the axioms possible win, guaranteed win, committee possible win,
and committee guaranteed win, respectively.

axiom
rule PW GW CPW CGW

Df
sc ✓[3.1] ✓[3.2] ✗[ex.3.2] ✗[ex.3.2]

Dℓ
sc ✓[3.3.1] ✓[3.4] ✓[3.3] ✓[3.5]

rf-seq-CC - ✓ - ✗[ex.3.3]
rl-seq-CC - ✓[3.6.1] - ✓[3.6]
late-seq-CC - ✓[3.7] - ✗[ex.3.3]
rl-seq-Phragmén - ✓[3.6.1] - ✓[3.6]
late-seq-Phragmén - ✓[3.7] - ✗[ex.3.3]
rl-MES - ✓[3.6.1] - ✓[3.6]
late-MES - ✓[3.7] - ✗[ex.3.3]

Table 3.1: We have used sc as a placeholder for any candidate-wise scor-
ing function. Since all considered rules satisfy respect of quota, we do
not include it. Furthermore, we do not include anonymity or priority
neutrality since the results mirror the non-priority setting. Lastly, as for
resolute rules PW and GW (respectively, CPW and CGW) are equiva-
lent, we only show the results for GW (respectively, CGW).
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3.1 Anonymity and neutrality

Anonymity is generally considered one of the basic requirements of a
mechanism in the social choice literature (Arrow et al., 2002).1 Infor-
mally, anonymity requires that voters be treated equally; i.e., that it
only matters which ballots are submitted and that it does not matter
which voters submit them. We will need the following notation for the
formal definition. Given a profile A and a permutation π : N → N on
the voters, let A ◦ π = (Aπ(1), . . . , Aπ(n)). That is, A ◦ π is the profile in
which each voter i ∈ N submits the ballot that voter π(i) submits in A.2

Axiom 1: Anonymity

A rule R satisfies anonymity if for any election (C,A, k) and permu-
tation π : N → N on the voters, it is the case that R(C,A ◦π, k) =
R(C,A, k).

The above is the standard definition of anonymity for (multiwinner)
voting and applies directly to the priority setting as well. We note that all
of the (non-priority and priority) rules considered here satisfy anonymity.

Neutrality, another basic requirement in the social choice literature,
requires that candidates be treated equally (Arrow et al., 2002). Nor-
mally, this is captured by the demand that changing candidates’ names
results in a corresponding change in the winning committees. In or-
der to capture this formally we need the following notation. Given a
profile A and a permutation π : C → C on the candidates, we define
π∗ ◦ A = (π∗(A1), . . . , π

∗(An)), where π∗(X) = {π(c) : c ∈ X}.3 A
rule R is then said to be neutral if for any election (C,A, k) and per-
mutation π : C → C we have R(C, π ◦ A, k) = π∗(R(C,A, k)), where
π∗(F) = {π∗(S) : S ∈ F} for any family of committees F ⊆ P(C).

When giving some kind of preferential treatment to priority candi-
dates, we may expect to violate neutrality. After all, priority candidates
are purposefully treated differently to non-priority candidates. The fol-
lowing example illustrates this.

Example 3.1. Consider the election E with set of candidates C =
{a, b, c}, committee size k = 2, quota q = 1 and the profile A:

A1 = {a, b} A2 = {a}.
1 For anonymity in the context of more recent developments, such as judgement

aggregation, sequential voting and voting rule verification, see, for example, Brandt
et al. (2016) or Endriss (2017).

2 I use the notation of Lackner and Skowron (2023) who treat A as a function from
N to P(C). The composition A ◦ π is then also a function from N to P(C).

3 See footnote 2. If π∗ is a bijection on P(C) and A a function from N to P(C),
then π∗ ◦A is also a function from N to P(C).
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We then have Df
AV(E) = {a, b}. Now consider the permutation π :

C → C with π(a) = b, π(b) = c and π(c) = a. We then have

Df
AV(π

∗ ◦A) = Df
AV({b, c}, {b})

= {a, b}
̸= {b, c}
= π∗(Df

AV(E)).

Nevertheless, it seems that Df
AV is as neutral as can be given its

priority treatment. A natural first attempt at a notion of neutrality
for the priority setting might require that any two candidates of the
same status are treated equally. That is, we might keep the definition
of neutrality as is, except that we restrict attention to permutations
π : C → C for which π(c) = c′ implies that c and c′ have the same status.
We refer to this as restricted neutrality. Though intuitive, restricted
neutrality is too weak. Priority neutrality ought to entail that when we
switch the names of candidates c and c′ and switch their status as well,
c′ is elected if and only if c was originally elected. We thus arrive at the
following notion of neutrality.

Axiom 2: Priority neutrality

A rule R satisfies priority neutrality if for any election E =
(C,C+,A, k, q) and permutation π : C → C we have

R(C, π∗(C+), π∗ ◦A, k, q) = π∗(R(E)).

To illustrate that our definition of neutrality prohibits non-neutral
treatment of candidates that is not motivated by priority treatment we
consider an example. Let R be the rule that is as AV except that
when candidate a is a priority candidate, only non-priority candidates
are elected. Thus, when a is a non-priority candidate, k of the most-
approved candidates are elected, and when a is a priority candidate, k of
the most-approved non-priority candidates are elected. This is clearly a
violation of priority neutrality; however, it is not a violation of the ear-
lier form of neutrality discussed: since no priority candidates are elected
whenever a is a priority candidate, all priority candidates are treated
equally in that case.

To make this a little clearer, we can formalise it. We know that when
a is not a priority candidate, R is equivalent to AV. AV is neutral and,
a fortiori, also satisfies restricted neutrality, hence when a is a priority
candidate, restricted neutrality is respected. Now let E be any election
for which a ∈ C+. Then any W ∈ R(E) consists of k of the most-
approved non-priority candidates. Now let π : C → C be a permutation
that never assigns to a candidate another candidate with a differing status
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and let Eπ = (C,C+, π∗ ◦ A, k, q). We know that R(Eπ) consists of
committees of the most-approved non-priority candidates of C. But these
are exactly {π∗(W ) : W ∈ R(E)}. Thus R satisfies restricted neutrality.

To see thatR does not satisfy priority neutrality, consider the election
E with C = {a, b}, C+ = {a}, k = 1, q = 0, and two voters: A1 =
{a} and A2 = ∅. Since a ∈ C+, we have R(E) = {b}. Now let π
be the non-identity permutation on C and consider the election Eπ =
(C, π∗(C+), π∗ ◦A, k, q). We have R(Eπ) = {b}, since now b is the most-
approved candidate and a /∈ π∗(C+). Since π∗(R(E)) = {a}, this violates
priority neutrality.

It is easy to see that the dual election rules, which are not resolute,
satisfy priority neutrality. In contrast, the sequential rules, which are
resolute, violate priority neutrality since they employ a tiebreaking order
over candidates. Note that when q = 0, the priority rules that we con-
sider reduce to the underlying non-priority rules. In such cases, priority
neutrality also reduces to neutrality. It follows, since the non-priority se-
quential rules considered are not neutral, that their priority adaptations
fail priority neutrality.4 Thus, analogously to the non-priority setting,
there is a trade-off between neutrality and resoluteness.

Having looked at the fundamental properties of anonymity and neu-
trality, we now move on to consider properties that explicitly concern the
preferential treatment given to priority candidates.

3.2 Priority treatment for priority candidates

We are concerned with rules that will guarantee that at least q prior-
ity candidates are elected. We already defined respect of quota in the
previous chapter, but state it formally here.

Axiom 3: Respect of quota, RoQ

A committee W ∈ C[k], given an election E = (C,C+,A, k, q), is
said to respect the quota if the existence of an unelected priority
candidate c ∈ C+ \W implies |W+| ≥ q. A rule R satisfies respect
of quota if it returns only committees that respect the quota.

The above axiom requires that whenever there are at least q prior-
ity candidates, at least q such candidates are elected, and otherwise, if
there are fewer than q priority candidates, all priority candidates will
be elected. Given our assumption that |C+| ≥ q, this is equivalent to
the requirement that q priority candidates be elected. Nevertheless, we
have chosen to formulate the axiom so that it does not depend on this
assumption.

4 The same reasoning applies when q = k, for then a sequential priority rule can
be seen as simply executing the underlying non-priority rule on the profile obtained
by removing all the non-priority candidates.
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The following axioms that we consider are concerned with the minimal
requirement that candidates are not worse off as priority candidates than
as non-priority candidates. Such a requirement can also be seen as a
kind of incentive-compatibility. For example, in some situations priority
candidates may have to register in order to be officially recognised as
priority candidates. If in such cases it cannot be guaranteed that being
considered a priority candidate will not harm one’s chances of being
selected, priority candidates may be hesitant to communicate their actual
priority status.

This idea gives rise to a number of different axioms, which vary ac-
cording to how we interpret “harm one’s chances”. Perhaps the two most
obvious requirements are that if a non-priority candidate wins in some
(all) outcomes, then they should also win in some (all) outcomes when
their status is changed to priority. We formalise these requirements as
follows.

Axiom 4: Possible win, PW

A ruleR satisfies possible win if for any election E = (C,C+,A, k, q)
and non-priority candidate c ∈ C−, it holds that if there is some
winning committee W ∈ R(E) such that c ∈ W , then for the elec-
tion E ′ = (C,C+∪{c},A, k, q), there must be a winning committee
W ′ ∈ R(E ′) such that c ∈ W ′.

Axiom 5: Guaranteed win, GW

A rule R satisfies guaranteed win if for any election E =
(C,C+,A, k, q) and non-priority candidate c ∈ C−, it holds that
if c ∈ W for every W ∈ R(E), then c ∈ W ′ for every W ′ ∈ R(E ′),
where E ′ = (C,C+ ∪ {c},A, k, q).

Note that PW and GW are equivalent for resolute rules, for then there
is only a single winning committee. We first consider the dual election
rules based on candidate-wise scoring rules in relation to these axioms.
In what follows sc is any candidate-wise scoring function and Rsc is the
(non-priority) rule that returns committees maximising this score.

Proposition 3.1. Df
sc, i.e., the reserved-first dual election rule based on

the candidate-wise scoring function sc, satisfies PW.

Proof. Let E = (C,C+,A, k, q) and W ∈ Df
sc(E) be an arbitrary elec-

tion and winning committee, respectively. It follows that there exist sets
W1 ∈ Rsc(C

+,A, q) and W2 ∈ Rsc(C \ W1,A, k − q) with W1 ∪ W2 =
W . If there are no elected non-priority candidates, the claim holds
vacuously, so let c ∈ W− be an arbitrary winning non-priority can-
didate (from which it follows that c ∈ W2). Now consider the elec-
tion E ′ = (C,C+ ∪ {c},A, k, q) in which c is a priority candidate. If
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W1 ∈ Rsc(C
+ ∪ {c},A, q), then, since W2 ∈ Rsc(C \ W1,A, k − q), we

have W ∈ Df
sc(E

′). Otherwise, if W1 /∈ Rsc(C
+ ∪ {c},A, q), then it

must be the case that c has a strictly higher score than some member
of W1 and, consequently, c is a member of each winning committee in
Rsc(C

+ ∪ {c},A, q). Thus, in either case c is a member of some winning
committee.

Proposition 3.2. Df
sc satisfies GW.

Proof. Let E = (C,C+,A, k, q) and c ∈ C− be an arbitrary election and
non-priority candidate, respectively, and define E ′ = (C,C+∪{c},A, k, q).
Now suppose c is a member of every winning committeeW ∈ Df

sc(E) and,
towards a contradiction, suppose that there is a committee W ′ ∈ Df

sc(E
′)

with c /∈ W ′. It follows that there exist W ′
1 ∈ Rsc(C

+ ∪ {c},A, q) and
W ′

2 ∈ Rsc(C \ W ′
1,A, k − q) such that W ′

1 ∪ W ′
2 = W ′. Thus, W ′

1 con-
sists of q of the most-approved priority candidates in E ′, which, since
c /∈ W ′

1, are also q of the most-approved priority candidates in E, i.e.,
W ′

1 ∈ Rsc(C
+,A, q). But then, since W ′

2 ∈ Rsc(C \ W ′
1,A, k − q), we

must have W ′ = W ′
1 ∪ W ′

2 ∈ Df
sc(E). This contradicts the assumption

that c is a member of every winning committee for E.

As might be expected, the reserved-last dual election rule based on
candidate-wise scoring function sc satisfies both PW and GW as well. In
fact, Dℓ

sc satisfies a property stronger than PW, which we call committee
possible win (CPW). CPW requires that a winning committee remain a
winning committee when the status of one of its non-priority candidates
is changed to priority. A fortiori, a non-priority candidate that is a
member of some winning committee will be a member of some, namely,
the same, winning committee when their status is changed to priority.

Axiom 6: Committee possible win, CPW

A rule R satisfies committee possible win if for any election E =
(C,C+,A, k, q), winning committee W ∈ R(E) and non-priority
candidate c ∈ W− it holds that W ∈ R(E ′), where E ′ = (C,C+ ∪
{c},A, k).

Proposition 3.3. Dℓ
sc satisfies CPW.

Proof. Let E = (C,C+,A, k, q) and W ∈ Dℓ
sc(E) be an election and win-

ning committee, respectively, and let c ∈ W− be any elected non-priority
candidate (for the claim holds vacuously when W− = ∅). It follows that
there exist W1 ∈ Rsc(C,A, k − q) and W2 ∈ Rsc(C

+ \ W1,A, q) with
W1 ∪ W2 = W . Furthermore, it must be the case that c ∈ W1. Now
consider the election E = (C,C+ ∪ {c},A, k, q). Since c ∈ W1 we have
C+ \W1 = (C+∪{c})\W1. But then we have W1 ∈ Rsc(C,A, k−q) and
W2 ∈ Rsc((C

+ ∪ {c}) \W1,A, q). That is, W = W1 ∪W2 ∈ Dℓ
sc(E

′).
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Corollary 3.3.1. Dℓ
sc satisfies PW.

Proposition 3.4. Dℓ
sc satisfies GW.

Proof. Let E = (C,C+,A, k, q) be an election and suppose c ∈ W−

for every W ∈ Dℓ
sc(E). That is, c is a non-priority candidate that is

guaranteed to be selected. It follows that for any W1 ∈ Rsc(C,A, k − q)
and W2 ∈ Rsc(C

+ \ W1,A, q), we have c ∈ W1. It follows directly
that c ∈ W ′ for every winning committee W ′ ∈ Dℓ

sc(E
′) where E ′ =

(C,C+ ∪ {c},A, k, q). Informally, the open election for E and E ′ are
identical, so if c is always elected in the former it must always be elected
in the latter.

Where PW requires that a possibly winning candidate remain possi-
bly winning when their status is changed to priority, CPW requires that
a winning committee remain a winning committee when the status of one
of its candidates is changed to priority. Analogously, we can define an
axiom committee guaranteed win, which requires that if there is a unique
winning committee, this committee remain the sole winning committee
when the status of one of its candidates is changed to priority.

Axiom 7: Committee guaranteed win, CGW

A rule R satisfies committee guaranteed win if for any election E =
(C,C+,A, k, q) with a unique winning committee W that contains
a non-priority candidate c ∈ W−, it holds that W is the unique
winning committee for E ′ = (C,C+∪{c},A, k), i.e., R(E ′) = {W}.

Note that, while CPW implies PW, CGW does not imply GW. This
is because a candidate is guaranteed to be selected if they occur in all,
possibly multiple, winning committees, whereas a particular committee
is guaranteed to be the winning committee only if there are no other
winning committees.

Proposition 3.5. Dℓ
sc satisfies CGW.

Proof. Let E = (C,C+,A, k, q) and W ∈ Dℓ
sc(E) be an election and

unique winning committee, respectively, and let c ∈ W− be an elected
non-priority candidate (for the claim holds vacuously when W− = ∅).
Suppose, towards a contradiction, that there exists some W ′ ̸= W such
that W ′ ∈ Dℓ

sc(E
′), where E ′ = (C,C+ ∪ {c},A, k, q). It follows that

there exist W ′
1 ∈ Rsc(C,A, k − q) and W ′

2 ∈ Rsc((C
+ ∪ {c}) \W ′

1,A, q)
with W ′

1 ∪W ′
2 = W ′. It must be the case that c ∈ W ′

1, otherwise there
would be some winning committee for E that does not contain c, which
contradicts the assumption that W is the unique winning committee for
E. But then we have C+ \W ′

1 = (C+ ∪ {c}) \W ′
1, from which it follows

that W ′
2 ∈ Rsc(C

+ \ W ′
1,A, k − q). That is, W ′

1 ∪ W ′
2 = W ′ ∈ Dℓ

sc(E).
Since W ′ ̸= W , this contradicts our assumption that W is the unique
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winning committee for E, and we can conclude that there is no such
W ′.

PW and GW capture the fact that an individual candidate ought not
to be worse off as a priority candidate than as a non-priority candidate.
It is clear why these properties are desirable whenever priority treatment
is in order. This is not as clear for CPW and CGW, as the following
example, which shows that Df

sc may violate both axioms, illustrates.

Example 3.2. This example works both if we take the approval score
scAV or the satisfaction approval score scSAV. Consider the election
with the set of candidates C = {a, b, c} of which a is the only prior-
ity candidate (C+ = {a}), committee size k = 2, and quota q = 1.
Furthermore, we have a two-voter profile:

A1 = {b, c} A2 = {b}.

Since a is the only priority candidate, they are elected in the quota elec-
tion. Next, as b is the highest-scoring remaining candidate, b is elected
in the open election. Thus, {a, b} is the unique winning committee.
Now consider what happens when b becomes a priority candidate: b
wins the quota election and c is preferred to a in the following open
election. Thus {b, c} is the unique winning committee, which violates
both CPW and CGW.

The above example illustrates why CPW and CGW ought not to be
considered minimal requirements that any priority rule must meet. In
order to respect the quota, q priority candidates must be elected. When
a stronger priority candidate becomes available, it will often make sense
that some weaker, previously elected priority candidate should lose their
place if there is a stronger, previously unelected non-priority candidate
available.

We now consider the sequential rules. Since PW and GW are equiv-
alent for these (resolute) rules, and the same holds for CPW and CGW,
we consider only GW and CGW. It should also be noted that in the
context of resolute rules, CGW does imply GW.

Proposition 3.6. rl-seq-CC, rl-seq-Phragmén and rl-MES satisfy CGW.

Proof. Let R be any of the three rules. Now let E = (C,C+,A, k, q) and
W ∈ R(E) be an election and the corresponding winning committee,
respectively. The desired result follows directly if W− = ∅, so let c ∈
W− be an elected non-priority candidate. It follows that c must have
been elected in one of the first k − q unrestricted rounds. Now consider
the election E ′ = (C,C+ ∪ {c},A, k, q). As the restricted rounds are
fixed—i.e., exactly the last q rounds are restricted—the same candidates
are eligible and selected at each round of R on E ′. Note that this relies
on the fact that a candidate’s status is only relevant to whether they are
eligible for the restricted rounds.
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Corollary 3.6.1. rl-seq-CC, rl-seq-Phragmén and rl-MES satisfy GW.

The corollary follows immediately, since CGW implies GW when the
considered rule is resolute. We now consider the reserved-latest rules.

Proposition 3.7. late-seq-CC, late-seq-Phragmén and late-MES satisfy
GW.

Proof. This proof is almost entirely analogous to that of Proposition 3.6.
The only difference is that in this case changing c’s status to priority
means that the restriction to priority candidates comes into force one
round later in E ′ than in E, which means we cannot guarantee that the
same committee is elected. Nevertheless, the unrestricted rounds of E,
say there are ℓ, will be identical to the first ℓ rounds of E ′, hence c is
elected.

The fact that rf-seq-CC satisfies GW follows from similar reasoning.

Proposition 3.8. rf-seq-CC satisfies GW.

Proof. Let E = (C,C+,A, k, q), W ∈ R(E) and c ∈ W− be an election,
winning committee, and winning non-priority candidate, respectively. It
follows that cmust have been elected in one of the last k−q (unrestricted)
rounds. Now consider the election E ′ = (C,C+ ∪ {c},A, k, q). Now,
either c is elected in one of the restricted rounds, or, otherwise, they are
elected in exactly the same round as before.

As the above proofs suggest, late-seq-CC, late-seq-Phragmén, late-
MES and rf-seq-CC do not satisfy CGW. This is shown by the following
example.

Example 3.3. Like in Example 3.2, let C = {a, b, c} be the set of
candidates, with a the only priority candidate, and let k = 2 and
q = 1. This time we consider a different profile with three voters:

1× {a} 3× {b} 2× {c}.

We first consider late-seq-CC, late-seq-Phragmén and late-MES. These
rules will elect b in the first round and a, being the only priority can-
didate, in the second (restricted) round.5 That is, {a, b} is the unique
winning committee. If, however, b’s status is changed to priority, then
b is still elected in the first round and, since the quota has already been
met, the restriction does not come into force in round 2 and c is elected
instead of a. This violates CGW.

For rf-seq-CC, a is originally elected in the first (restricted) round
and b in the second round. However, when b is a priority candidate,
they will be elected in the first round instead of a, in which case c will
be elected in the second round, thus violating CGW.

5 Note that for MES, since p = n/k = 3, b is the only affordable candidate. Conse-
quently, a is chosen in Phase 2 using seq-Phragmén.
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The above example supports the earlier claim that CPW and CGW
are too strong to be considered minimal requirements for all priority rules.
The same thing is going on here as in Example 3.2: the availability of
a new, strong priority candidate means that we can replace a weaker
priority candidate with a non-priority candidate without violating the
quota.

Nevertheless, the above results show an interesting trend: the priority
rules that are (intuitively) minimal adaptations designed to respect the
quota, i.e., reserved-first and reserved-latest rules, do not satisfy CPW
and CGW, while the reserved-last rules do. This suggests that CPW and
CGWmay be read as guaranteeing some kind of priority treatment. Both
axioms guarantee that a priority candidate will not be disadvantaged
even if some other winning non-priority candidate gets priority status.6

This agrees with the general finding concerning dual rules discussed in the
coming chapter, that the reserved-last rules implement a greater degree
of priority treatment.

Having looked at some of the basic requirements that priority rules
ought to meet, we now move on to consider axioms in the context of
excellence-based elections.

6 Actually, this also holds for non-priority candidates: a winning non-priority can-
didate’s status being changed cannot mean a different non-priority candidate is not
elected because of that. However, this also holds for some of the rules that violate
CPW and CGW, e.g., the dual election rules based on candidate-wise scores. Thus,
CPW and CGW can be thought of as effectively capturing a kind of priority treat-
ment.
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Chapter 4

Excellence-oriented axioms and
efficiency

The first section of this chapter is concerned with excellence-based elec-
tions in the context of the priority model. In a non-priority context,
excellence-based elections can be thought of a situations where voters
are experts and the goal is to elect the best k candidates. In the priority
setting, the challenge is how to go about doing this if we want to respect
the quota and afford preferential treatment to priority candidates. In
Subsection 4.1.1 we introduce the notion of excellence-based elections in
a bit more detail, motivate the consideration of such elections in the pri-
ority model, and explain why we consider only the candidate-wise dual
rules in this context. After that, in Subsection 4.1.2, we consider a num-
ber of relevant axioms and show how these may be used to characterise
the candidate-wise dual election rules.

The second section of the chapter concerns efficiency in the context of
the priority model. This is considered in this chapter because the rules
(excluding PAV) that are concerned with proportional representation,
considered in Chapter 5, are not efficient.

Table 4.1 specifies which of the rules (do not) satisfy the axioms
considered in this chapter. The abbreviations AQ, LtQ, LtAQ, qPE and
PE, stand for active quota, limit to quota, limit to active quota, quota
priority efficiency and priority efficiency, respectively. When something
holds for both AV and SAV, we will use (S)AV to avoid clutter. For
example, we will use Df

(S)AV when what we are claiming holds for both

Df
AV and Df

SAV.

4.1 Excellence-based elections with priority
candidates

This section, which concerns excellence-based elections in the priority
model, is split into two parts. We first consider excellence-based elec-
tions and corresponding rules in the non-priority context, arguing that
the priority context is also relevant. In this subsection we also highlight
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axiom
rule AQ LtQ LtAQ qPE PE
Df

sc - ✓[4.3] ✓[4.3.1] - -
Dℓ

sc ✓[4.4] - ✓[4.4] - -

Df
(S)AV ✗ ✓[4.3] ✓[4.3.1] ✓[4.6] ✓

Dℓ
(S)AV ✓[4.4] ✗ ✓[4.4] ✗[ex.4.2] ✓[4.7]

Table 4.1: The satisfaction table for the excellence-based axioms and
efficiency axioms, where sc is any candidate-wise scoring function. We do
not include priority merit and non-priority merit, since these are satisfied
by all the rules considered. The dashes show that the satisfaction of the
axiom depends on the particular scoring function used.

similarities between this setting and that of controlled school choice (Ab-
dulkadiroğlu & Sönmez, 2003). In the second subsection, we introduce
axioms for the priority setting inspired by those considered in controlled
school choice and use these to characterise the candidate-wise dual elec-
tion rules.

4.1.1 Excellence-based elections

In excellence-based elections, voters can be viewed as experts and the
goal is to elect the k best candidates, where it is assumed that there are
no interdependencies between candidates. Thus, two similar candidates
ought, generally, to either both be elected or both be left unelected. This
is in contrast with, for example, the goal of proportional representation
(see Chapter 5), where we may want to avoid electing two similar candi-
dates in favour of representing more voters.

An example of a kind of excellence-based election is shortlisting for a
prize. For instance, in the case of the Oscars, experts, i.e., members of
the Academy of Motion Picture Arts and Sciences, vote for candidates,
i.e., movies, in order to create a shortlist of finalists. The eventual win-
ner—the recipient of the Oscar—is then chosen from this shortlist.1 An-
other example would be admissions to a programme with limited places
on the basis of votes of some admissions committee.

To see that there might be reason to give preferential treatment to
certain candidates in excellence-based elections, consider again the two
examples given. When shortlisting books for an international prize, pref-
erential treatment might be warranted to guarantee that the resulting
shortlist does not neglect typically underrepresented languages or coun-
tries. Nevertheless, we are still concerned with shortlisting the best
books, given the relevant restrictions. Similarly, a programme to which
students are to be admitted might suffer from, for example, a gender im-

1 This last step, in which a single winner is chosen, is not an instance of multiwinner
voting. In fact, often (though not in the case of the Oscars), the winner will be chosen
by a jury through deliberation, rather than voting.
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balance. Consequently, applicants from underrepresented genders might
be given some kind of preferential treatment. Here too, the goal is still
to elect the best candidates given the restrictions.

We will refer to rules that are suitable to excellence-based elections
as excellence-oriented rules. In the context of ordinal ballots, committee
monotonicity has been suggested as a requirement for excellence-oriented
rules (Barberà & Coelho, 2008; Elkind et al., 2017).2 For resolute rules,
committee monotonicity requires that any candidate that wins for com-
mittee size k, also wins for committee size k + 1.3

Since there are no interdependencies between candidates, excellence-
oriented rules ought, for committee size k, to elect the k best candi-
dates. Increasing the committee size to k + 1 should then simply result
in the next best, i.e., the (k + 1)st best, candidate being added to the
committee. Committee monotonocity thus seems like a reasonable re-
quirement. However, it also seems too weak to capture the idea that
there can be no interdependencies between candidates. Consider, for ex-
ample, seq-Phragmén, which satisfies committee monotonicity. Clearly,
and by design, in any round, which candidate is chosen depends on
the candidates chosen in the previous rounds. Since the other (non-
priority) sequential rules considered violate committee monotonicity and
seq-Phragmén clearly encodes dependencies between candidates, these
rules are ill-suited to the excellence-based setting.

It goes beyond the scope of this thesis to discuss more suitable or addi-
tional axioms that capture excellence-oriented rules (in the non-priority
setting).4 However, we argue that (sequential) candidate-wise scoring
rules are particularly well-suited to this setting. Not only are such rules
committee monotone, but—restricting our attention to sequential rules
for simplicity—in any round, whether or not a candidate is elected de-
pends only on the scores of the other remaining candidates. That is,
selecting the next candidate in no way depends on which candidates
have already chosen.5 Consequently, for the excellence-based setting, we
consider the priority rules based on candidate-wise non-priority rules,
i.e., the candidate-wise dual election rules.

2 Barberà and Coelho (2008) refer to committee monotonicity as enlargement con-
sistency.

3 For irresolute rules the definition is slightly more involved. It requires that every
winning committee for k has a superset that is winning for k + 1, and every winning
committee for k+1 has a subset that is winning for k. For a formal definition see the
work of Elkind et al. (2017).

4 One option that has been discussed with regards to choice problems more gen-
erally, though not explicitly in the context of excellence, is gross substitutes (Doğan
et al., 2021; Echenique & Yenmez, 2015; Kojima, 2012). Interpreting this axiom in
the context of multiwinner voting naturally yields the requirement that if a candidate
is selected, they must still be selected if only a subset of the candidates is considered.
Note that seq-Phragmén would not satisfy this property, while candidate-wise scoring
rules would.

5 This property has also been formalised in the context of choice rules by Doğan
et al. (2021), who call it irrelevance of accepted alternatives.
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Controlled school choice and excellence-based priority elections

The matching problem of controlled school choice is similar to that of
excellence-based elections with priority candidates. Controlled school
choice concerns the matching of students to schools, based on students’
and schools’ preferences, where schools (are required to) give preferential
treatment to certain kinds of candidates, e.g., those from the catchment
area or those of underrepresented ethnic backgrounds (Abdulkadiroğlu
& Sönmez, 2003).6 Schools’ preferences are strict linear orders over the
students and vice versa.

Most of the mechanisms studied in this setting are based on deferred
acceptance (DA), first introduced by Gale and Shapley (1962), and work
in rounds. In the first round, students apply to their top-ranked schools.
Schools then use some choice rule to determine which students are ten-
tatively accepted. The students that are rejected apply to their next
highest-ranked school in the next round. Schools then use their choice
rule to select which of the currently matched and newly applying stu-
dents to tentatively accept (or reject). This continues until all students
are matched to a school. We are here concerned with the choice rules
that schools use to determine which students from the applicant pool to
(tentatively) accept.

When there are no requirements regarding preferential treatment, it
is assumed that schools simply accept the highest-ranked candidates.
However, when a school needs to guarantee that a certain number of seats
are reserved for priority candidates, there are several choices for doing so.7

Two options, which are analogous to the priority rules considered in this
thesis, have been extensively studied in the literature: filling reserved
seats first, and filling them last.8 The parallel with excellence-based
elections comes from the assumption that schools will want to fill any
seat with the highest-ranked, eligible candidate. That is, the goal is to
accept the best students, while meeting the quota for priority students.

To draw out the parallel a little further, we can view candidate-wise
scoring rules as generating a linear order over candidates (that allows
for ties). The corresponding dual election rules can then be viewed as
choice rules that select candidates according to this non-strict ranking,
reserving either the first q seats or the last q seats for priority candidates.

The central axiom considered in matching is stability, which, roughly,
requires that there do not exist a student and school where the stu-
dent prefers the school to their current match and the school prefers

6 This same framework is studied in different contexts as well, e.g., by Sayedahmed
(2021), who considers the problem of matching refugees to host countries, where
certain groups of refugees, such as those in war zones, are given priority.

7 In the literature it is common to refer to ‘minority’ and ‘majority’ students. We
stick with the more neutral terminology of ‘priority’ and ‘non-priority’ used in the
rest of this thesis.

8 Other options, such as alternating reserved and unreserved seats, are also studied,
for example by Doğan et al. (2021); however, as of yet there are no results that give
a thorough understanding of the effects of such reservation sequences.
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the student to one of their current matches. Weakenings that take the
preferential treatment of priority students into consideration and encode
different degrees of preferential treatment have been studied by, e.g., Ab-
dulkadiroğlu and Sönmez (2003), Hafalir et al. (2013), and Sayedahmed
(2021). Though these properties concern the stability of matching mech-
anisms as a whole, rather than the choice rules used by schools, elements
are easily translated into our current setting. In the following subsection
we introduce a number of axioms inspired by those from the controlled
school choice setting and characterise the dual election rules using them.

4.1.2 Excellence-based axioms

The election E = (C,C+,A, k, q) and candidate-wise scoring function sc
are taken as given for the definitions and proofs below. As before, the
non-priority rule that simply maximises the score is denoted Rsc.

In excellence-based elections we want to guarantee that the best can-
didates are chosen. In the priority setting, however, we will generally not
be able to simply maximise the score of the winning committees due to
restrictions regarding priority treatment—e.g., that q priority candidates
must be elected. Priority treatment can be used to justify electing a
priority candidate in favour of a higher-scoring non-priority candidate.
However, it ought not to be the case that a priority candidate is left
unelected in favour of a lower-scoring candidate (of any status). This is
captured by the axiom priority merit.

Axiom 8: Priority merit, PM

A committee W ∈ C[k] satisfies PM if sc(c) ≥ sc(c+) for all c ∈ W
and c+ ∈ C+\W . A ruleR satisfies PM if it only returns committees
that satisfy PM.

As explained, an analogous axiom for non-priority candidates would
not make sense in light of priority treatment.9 However, it does make
sense to require that a non-priority candidate cannot be elected in favour
of a higher-scoring non-priority candidate. We call this requirement non-
priority merit.

Axiom 9: Non-priority merit, NPM

A committee W ∈ C[k] satisfies NPM if sc(c−1 ) ≥ sc(c−2 ) for all
c−1 ∈ W− and c−2 ∈ C− \ W . A rule R satisfies NPM if it only
returns committees that satisfy NPM.

9 Note that such an axiom combined with PM would simply enforce maximisation
of the score, i.e., it would require Rsc to be used.
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PM and NPM aim to enforce the selection of higher-scoring candi-
dates when this does not contradict the desired priority treatment. In
that light, they can also be viewed as fairness requirements in the con-
text of excellence-based elections. They guarantee that, unless priority
treatment is involved, candidates will be selected (or not) based only on
their score.

We consider only rules that respect the quota, i.e., that satisfy RoQ.
RoQ encodes a kind of priority treatment, since it guarantees that q pri-
ority candidates will be chosen, even if this means electing lower-scoring
candidates. However, as Sayedahmed (2021) points out in her distinction
between representation and effective preferential treatment, often prefer-
ential treatment for priority candidates aims to provide opportunities to
priority candidates that they would not have otherwise. That is, we may
want to use reserved seats to accommodate those priority candidates that
may otherwise not be elected.

Consider, for example, the situation in which candidates from under-
represented genders are to be given some kind of preferential treatment
in a selection procedure for an educational programme. Suppose there is
a priority candidate who would be elected even if there were no priority
treatment, i.e., if the highest-scoring candidates simpliciter are chosen.
This candidate will help to fill the quota. However, in essence, it might
be argued, they did not receive any priority treatment, since they would
have been elected anyway. Instead, a priority candidate that would oth-
erwise not have been elected could make use of the reserved seat.

To capture this idea, we, following Sayedahmed (2021), first introduce
the concept of protected priority candidates. Given a (winning) commit-
tee W , a priority candidate c+ ∈ W+ is said to be protected if their score
is weakly less than that of any elected non-priority candidate c− ∈ W−.
The set of protected priority candidates in W is thus

{c+ ∈ W+ : sc(c−) ≥ sc(c+) for each c− ∈ W−}.

We can then require that, whenever possible, q such priority candi-
dates are to be elected:

Axiom 10: Active quota, AQ

A committee W satisfies AQ if the existence of an unelected priority
candidate c ∈ C+ \W , implies that W counts at least q protected
priority candidates, i.e.,

|{c+ ∈ W+ : sc(c−) ≥ sc(c+) for each c− ∈ W−}| ≥ q.

A rule R satisfies AQ if its winning committees all satisfy AQ.

At a first glance this axiom seems too strong, for it requires that
whenever fewer than q protected priority candidates have been elected, all
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priority candidates must be elected. To see that this is not as problematic
as may seem, suppose, in violation of AQ, that there is an unelected
priority candidate c+ and that fewer than q protected priority candidates
have been elected. Either c+ is weakly lower-scoring than all elected
non-priority candidates or not. In the former case, c+ should have been
assigned a reserved seat, since these are reserved for protected priority
candidates. In the latter case, c+ is better than some elected non-priority
candidate, and should thus have been elected in their stead.10

It is essential that we do not require protected priority candidates to
have a strictly lower score than elected non-priority candidates. To see
this, consider a situation in which all candidates have the same approval
score. Then AQ would require that no priority candidate is left unelected
(even if there are more than k), which does not make sense. Use of the
weak rather than strict inequality conceptually means, roughly, that a
protected candidate is one that would or might (due to unfavourable
tiebreaking) not have been elected in absence of priority treatment.

We now have two axioms, RoQ and AQ, that capture two different
kinds of priority treatment. It is easy to see AQ implies RoQ, since
the former requires that either all priority candidates are elected, or q
protected priority candidates have been elected. In either case RoQ is
satisfied. We can thus think of AQ as capturing a stronger form of
priority treatment than RoQ.

Besides guaranteeing priority treatment for priority candidates, we
may want to guarantee that a rule does not go any further in giving pref-
erential treatment to priority candidates than is required by the agreed
upon priority treatment. Again, this is required if we are concerned with
excellence, but can also be seen as a fairness requirement. Non-priority
candidates receive the guarantee that, other than having a low score,
they may only be left unelected if this is necessary to meet the require-
ments of the specific kind of priority treatment considered. Accordingly,
we have the following two axioms corresponding to RoQ and AQ, in that
order.

Axiom 11: Limit to quota, LtQ

A committee W satisfies LtQ if |W+| > q implies sc(c) ≥ sc(c−) for
any c ∈ W and c− ∈ C− \W . A rule R satisfies LtQ if its winning
committees all satisfy LtQ.

RoQ expresses the requirement that q priority candidates be elected.
LtQ essentially says that if this minimal requirement can be met without
affording any preferential treatment to priority candidates, then no such
treatment should be given. To see that this is indeed the case, consider
a violation of LtQ. In that case more than q priority candidates will be
elected, yet at least one of these, say c+, has a strictly lower score than

10 Note that this latter case is also a violation of PM.
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some unelected non-priority candidate c−. But then c−, being a higher-
scoring candidate, might replace c+, without this violating respect of
quota.

Similarly, when we want to ensure that at least q protected priority
candidates are elected, we may want to give every non-priority candidate
the guarantee that at most q priority candidates with a worse score will
be elected.

Axiom 12: Limit to active quota, LtAQ

A committee W satisfies LtAQ if for every non-priority candidate
c− ∈ C− \W we have

|{c+ ∈ W+ : sc(c−) > sc(c+)}| ≤ q.

A rule R satisfies LtAQ if its winning committees all satisfy LtAQ.

Note that the strict inequality is used in the above definition because
more than q priority candidates with an equal score may be elected if
the tiebreaking happens to be favourable to priority candidates. Since
RoQ is a weaker requirement than AQ, limiting preferential treatment
to RoQ is a stronger requirement than limiting it to AQ; that is, LtQ
implies LtAQ. Formally, if a committee satisfies LtQ, then either q or
fewer priority candidates are elected, or all elected priority candidates
are weakly higher-scoring than all unelected non-priority candidates. In
either case, for any unelected non-priority candidate, there are at most
q elected priority candidates that are strictly lower-scoring.

Recall the reserved-first dual election rule based on candidate-wise
scoring function sc, denoted Df

sc. Each of its winning committees consists
of a size-q Rsc winning committee from among the priority candidates
and a corresponding size-(k − q) Rsc winning committee from among
the remaining candidates. Also recall the analogous reserved-last rule,
denoted Dℓ

sc, which starts with the open election. We are now in a
position to characterise these rules. We first prove a number of useful
lemmas. The first captures the fact that Df

sc and Dℓ
sc will always elect a

candidate over a worse candidate of the same status.

Lemma 4.1. (i) Given a winning committee W ∈ Df
sc(E), the set W+

consists of |W+| of the highest-scoring priority candidates and W− con-
sists of |W−| of the highest-scoring non-priority candidates. (ii) The
same holds for Dℓ

sc.

Proof. For Df
sc, this follows from Lemma 2.3. Suppose there is a winning

committee W ∈ Df
sc(E) and candidates c ∈ W and c′ ∈ C \ W with

sc(c′) > sc(c) that are of the same status. Then (W \ {c}) ∪ {c′} would
still respect the quota and have a strictly greater score than W , which
contradicts the fact that W , by Lemma 2.3, maximises the score amongst
committees that respect the quota.
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We now consider Dℓ
sc. Let W ∈ Dℓ

sc(E) be a winning committee. It
follows that there are O ∈ Rsc(C,A, k − q) and Q ∈ Rsc(C

+ \ O,A, q)
such that O∪Q = W . We first consider the priority candidates and then
consider the non-priority candidates.

Suppose, towards a contradiction, that there are priority candidates
c+1 ∈ W+ and c+2 ∈ C+ \W such that sc(c+2 ) > sc(c+1 ). If c+1 ∈ O, then
(O\{c+1 })∪{c+2 } has a strictly higher score than O, which contradicts O ∈
Rsc(C,A, k−q). Similarly, if c ∈ Q, replacing c with c′ yields a committee
with a higher score, which contradicts Q ∈ Rsc(C \O,A, q). Thus, each
elected priority candidate scores at least as high as any unelected priority
candidate.

Now suppose there are non-priority candidates c−1 ∈ W− and c−2 ∈
C− \W with sc(c−2 ) > sc(c−1 ). As c

−
1 is not eligible for the quota election,

we must have c−1 ∈ O. It follows that (O \ {c−1 }) ∪ {c−2 } has a strictly
higher score than O, which contradicts O ∈ Rsc(C,A, k − q).

It follows directly from Lemma 4.1 that both Df
sc and Dℓ

sc satisfy
NPM.

Lemma 4.2. Both Df
sc and Dℓ

sc satisfy NPM.

We can now characterise the candidate-wise reserved-first dual rules.

Proposition 4.3. A rule R satisfies RoQ, LtQ, PM and NPM iff it is
the reserved-first dual election rule based on the candidate-wise scoring
function sc, i.e., Df

sc.

Proof. We first show that Df
sc satisfies the axioms. We have already seen

that Df
sc satisfies RoQ and NPM (Lemma 4.2). To see that PM holds as

well, let W ∈ Df
sc(E) be a winning committee. If there are candidates

c ∈ W and c+ ∈ C+ \ W with sc(c+) > sc(c), then we could increase
the score of W by replacing c with c+, without decreasing the number of
priority candidates. But, by Lemma 2.3, this is not possible.

Similarly, to see that LtQ is respected, suppose |W+| > q and suppose
there are candidates c ∈ W and c− ∈ C− \W with sc(c−) > sc(c). We
could then increase the score of W by replacing c with c−, while still
having at least q priority candidates (exactly one less than before). By
Lemma 2.3 this is not possible.

We now show the other direction. That is, we show that any commit-
tee satisfying the axioms is a Df

sc winning committee. To that end, let
W be such a committee. We show that it maximises the score among the
committees that respect the quota, from which the desired result follows
immediately through Lemma 2.3.

Let c ∈ W and c′ ∈ C \W be arbitrary such that sc(c′) > sc(c). In
light of PM and NPM we can conclude that c ∈ C+ and c′ ∈ C−. It
follows, by LtQ, that |W+| = q. But then we cannot improve on W ’s
score without violating RoQ.

Corollary 4.3.1. Df
sc satisfies LtAQ.
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Proof. This follows directly since LtQ implies LtAQ.

The above characterisation is similar to the result presented by Hafalir
et al. (2013) that the deferred acceptance algorithm for controlled school
choice in which schools fill reserved seats first satisfies what they call sta-
bility for minority reserves or affirmative action with minority reserves.
This axiom is essentially a weakening of stability that incorporates RoQ
and LtQ.11

We now turn our attention to Dℓ
sc.

Lemma 4.4. Dℓ
sc satisfies AQ, LtAQ, PM and NPM.

Proof. Let W ∈ Dℓ
sc(E) be a winning committee. It follows that there

exist O ∈ Rsc(C,A, k − q) and Q ∈ Rsc(C
+ \O,A, q) with O ∪Q = W .

We know that W satisfies RoQ and NPM (Lemma 4.2). To see that
it also satisfies PM, suppose, towards a contradiction, that there exist
candidates c ∈ W and c+ ∈ C+ \W with sc(c+) > sc(c). We then have
that c ∈ O contradicts O ∈ Rsc(C,A, k − q), while c ∈ Q contradicts
Q ∈ Rsc(C

+ \O,A, q).
To see that W satisfies AQ, it is sufficient to note that no candidate

in Q has a strictly higher score than any candidate in O. Thus Q consists
of q protected priority candidates.

Finally, for LtAQ, suppose there exists an unelected non-priority can-
didate c− ∈ C− \ W such that there are more than q priority candi-
dates with a strictly worse score. Given |Q| = q, there must then be
a candidate c+ ∈ O+ such that sc(c−) > sc(c+). But this contradicts
O ∈ Rsc(C,A, k − q).

Proposition 4.5. A rule R satisfies AQ, LtAQ, PM and NPM iff it is
the reserved-first dual election rule based on sc, i.e., Dℓ

sc.

Proof. Given Lemma 4.4, we need only show that any committee that
satisfies the axioms is a Dℓ

sc winning committee. To that end, let W ∈
C[k] be a committee satisfying AQ, LtAQ, PM and NPM. Let Q ⊆ W+

consist of q of the lowest-scoring priority candidates from W and let
O = W \Q. It follows from AQ that for every priority candidate c+ ∈ Q
we have sc(c−) ≥ sc(c+) for any c− ∈ W−.12 It follows that any candidate
from Q has a weakly worse score than any candidate from O. Now
suppose, towards a contradiction, that there exist candidates c ∈ O and
c′ ∈ C \ O such that sc(c′) > sc(c). We know that c′ /∈ Q, hence
c′ ∈ C \W . It follows, by PM and NPM that c ∈ C+ and c′ ∈ C−. But
then, since every candidate in Q has a score of at most sc(c), there are
at least q+1 priority candidates with a strictly worse score than c′ in W .
This contradicts LtAQ. We can thus conclude that O ∈ Rsc(C,A, k− q).

11 Sayedahmed (2021) calls this axiom representation-stability.
12 This relies on the assumption that |C+| ≥ k. Also, note that this is vacuously

true if all elected candidates are priority candidates.

49



By PM we know that there do not exist priority candidates c+1 ∈ Q
and c+2 ∈ C+\W with sc(c+2 ) > sc(c+1). But then Q ∈ Rsc(C

+\O,A, q),
from which it follows that W = O ∪Q ∈ Dℓ

sc(E).

The characterisation of Dℓ
sc is analogous to the result of Sayedahmed

(2021, Theorem 5) that the deferred acceptance algorithm for controlled
school choice in which schools fill reserved seats last satisfies protection-
stability, which is essentially a weakening of stability that incorporates
AQ and LtAQ.

We know that Df
(S)AV must violate AQ, since if it did not it would

satisfy AQ, LtAQ, PM and NPM, and thus, by Proposition 4.5, be equiv-
alent to Dℓ

(S)AV, which we know is not the case (see Example 2.3). Similar

reasoning in light of Proposition 4.3 shows that Dℓ
(S)AV violates LtQ.13

It might be tempting to conclude that any reserved-first dual election
rule violates AQ . This is, however, not the case. The reasoning in
the previous paragraph shows that if Df

sc satisfies AQ, then it must be
equivalent to Dℓ

sc. The reserved-first and reserved-last dual election rules
based on any trivial scoring function that assigns to each candidate the
same score (regardless of the profile) will be equivalent and satisfy AQ,
LtQ, LtAQ, PM and NPM. Analogous reasoning shows that we cannot
conclude that Dℓ

sc violates LtQ for every candidate-wise score sc.
A significant difference between the matching results and the re-

sults presented here is that in the former (exogenously given) schools’
preferences regarding students are strict rankings and, accordingly, the
rules considered for choosing which students from the pool to admit are
resolute. In contrast, the candidate-wise scores considered here can be
thought of as generating a weak ranking over candidates, and the cor-
responding dual election rules considered are irresolute. Though we are
concerned with a setting in which there are voters, the above results can
also be generalised to settings where a weak ranking over candidates is
exogenously given (as opposed to being based on votes). The follow-
ing section, however, concerns efficiency, a property that is inherently
related to voters’ satisfaction.

4.2 Efficiency

Pareto efficiency is a general and much-studied concept that concerns
the comparison of outcomes given individuals’ preferences. Informally,
outcome α Pareto dominates outcome β if every individual weakly prefers
α over β and for at least one individual this preference is strict. Pareto
efficiency then requires that outcomes are not Pareto dominated. That is,
Pareto efficiency requires that there is no way of making some individual
better off without making a different individual worse off (Arrow et al.,
2002).

13 In fact, Example 2.3 shows directly that Df
(S)AV violates AQ and Dℓ

(S)AV violates
LtQ.
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In order to apply this concept to multiwinner voting, we must de-
fine what it means for a voter to prefer one committee over another.
That is, we need to extend voters’ approval preferences on candidates
to preferences on sets of candidates. The most common way to do this
assumes that voters prefer committees in which they approve of more
candidates.14

Axiom 13: Pareto efficiency

A committee W1 Pareto dominates a committee W2 if

(i) every voter approves of at least as many candidates in W1 as
in W2; i.e., |Ai ∩W1| ≥ |Ai ∩W2| holds for every i ∈ N , and

(ii) at least one voter approves of strictly more candidates in W1

than W2; i.e., there is some j ∈ N such that |Aj ∩ W1| >
|Aj ∩W2|.

We also say that W1 is a Pareto improvement on W2. A committee
is Pareto optimal if it is not Pareto dominated by any committee of
the same size, i.e., if it does not allow for a Pareto improvement.

A rule R satisfies Pareto efficiency if all its winning committees
are Pareto optimal.

This definition of Pareto efficiency is sometimes referred to as strong
Pareto efficiency. This is in contrast with weak Pareto efficiency, which
requires that when some winning committee is Pareto dominated, then
all committees that dominate it are also winning committees (Lackner
& Skowron, 2023). None of the rules considered that violate (priority
adaptations of) Pareto efficiency as we have defined it satisfy the (priority
adaptations of) weak Pareto efficiency, hence we do not consider it.15

Of the rules that we have seen, AV, SAV and PAV satisfy Pareto
efficiency (while CC satisfies weak Pareto efficiency). For these rules it
is easy to see that a Pareto improvement results in an increase in the
corresponding scores.16 We use this fact repeatedly in what follows.

Pareto efficiency will often be too strong a requirement in the priority
setting. In fact, as the following example shows, Pareto efficiency and

14 See, for example, the work of Aziz and Monnot (2020) and Lackner and Skowron
(2020, 2023). To the best of our knowledge, the only other set extension commonly
used with dichotomous preferences takes a voter i ∈ N to (weakly) prefer committee
W1 to committee W2 if Ai ∩ W2 ⊆ Ai ∩ W1. This is used primarily in the context
of strategyproofness (Peters, 2018). It should be noted that Pareto optimality as we
define it implies this ‘inclusion-type’ Pareto optimality.

15 An alternative definition of weak Pareto efficiency used by Lackner and Skowron
(2020) requires that it is never the case that all winning committees are dominated
by the same committee.

16 Voters who approve of the same number of candidates contribute the same to the
score, while voters who approve of strictly more candidates contribute strictly more
to the score.
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RoQ are not compatible.

Example 4.1. Consider the profile

2× {a, b, c} 1× {b, c},

and suppose k = 2 and q = 1. The sole Pareto optimal committee,
{b, c}, violates RoQ.

In order to account for priority treatment we consider a number of
weakenings of Pareto efficiency. If we wish the quota to be respected,
a natural way to weaken Pareto efficiency is to require that no Pareto
improvements can be made without violating the quota.

Axiom 14: Quota priority efficiency, qPE

A committee W1 quota priority dominates, or q-p-dominates, W2 if

(i) W1 Pareto dominates W2, and

(ii) W1 contains at least q priority candidates, i.e., |W+
1 | ≥ q.

Quota priority optimality and quota priority efficiency are then de-
fined analogously to Pareto optimality and efficiency (Axiom 13).

Note that qPE as stated here only makes sense if we assume that there
are at least q priority candidates available. Otherwise, it is vacuously true
for any committee W ∈ C[k] that no Pareto improvement can be made
that respects the quota (for there are no committees that respect the
quota). Since we assume |C+| ≥ q, we do not adapt the definition of
qPE to deal with cases in which |C+| < q.

In a way, qPE captures the idea that priority treatment ought not to
go further than guaranteeing respect of quota. That is, it requires of a
rule that respects the quota that it come as close as possible to Pareto
efficiency given this restriction. Accordingly, we find that qPE is satisfied
by the reserved-first dual election rules based on AV and SAV.

Proposition 4.6. Df
(S)AV satisfies qPE.

Proof. Lemma 2.3 tells us that Df
sc maximises the score of the winning

committees among those that respect the quota. Since a Pareto improve-
ment implies an increase in the (S)AV-score, we conclude that we can-
not Pareto improve on any of the winning committees without violating
RoQ.

This result does not generalise to all candidate-wise scoring rules.
Consider, for example, a kind of ‘dictator AV’: the dictator is one of the
voters and the score of a committee is simply the size of its intersection
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with the dictator’s ballot. This rule is candidate-wise, but scores need
not increase with a Pareto improvement, since the dictator, though no
worse off, need not be better off.

The reserved-last dual election rules based on AV and SAV do not
satisfy qPE, as the following example shows.

Example 4.2. Consider the election with the set of candidates C =
{a, b, c}, committee size k = 2, quota q = 1, and the following profile:

A1 = {a, c} A2 = {a}.

The unique winning committee according to Dℓ
(S)AV is {a, b}, which is

q-p-dominated by {a, c}.

The intuition here will familiar by now: a strong priority candidate
takes an unreserved seat, allowing a weaker priority candidate to make
use of a reserved seat. But as a result, worse candidates have been elected
than required in order to respect the quota.

When we set q = 0, qPE reduces to Pareto efficiency. Since the
priority sequential rules reduce to the underlying non-priority sequential
rules when q = 0, and none of these satisfy Pareto efficiency, none of the
priority rules will satisfy qPE.

As we have seen, priority merit and non-priority merit combine to
guarantee that the only way we can increase the score of a winning com-
mittee is by replacing priority candidates with non-priority candidates.
This suggests a weaker form of priority efficiency that prohibits Pareto
domination by committees with at least as many priority candidates.

Axiom 15: Priority efficiency, PE

A committee W1 priority dominates, or p-dominates, W2 if

(i) W1 Pareto dominates W2, and

(ii) W1 contains at least as many priority candidates as W2, i.e.,
|W+

1 | ≥ |W+
2 |.

Priority optimality and priority efficiency are then defined as usual.

We first consider the relation between qPE and PE. Assuming that
a committee W has at least q priority candidates, i.e., |W+| ≥ q, qPE
implies PE, while the reverse does not hold. This is easy to see: if no
Pareto improvement can be made with at least q priority candidates,
then a fortiori, since |W+| ≥ q, no Pareto improvement can be made
with more than |W+| priority candidates. Thus, since Df

(S)AV satisfies
qPE and RoQ, it must also satisfy PE.
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PE is more general than the above motivation suggests. The axiom
captures a weakening of Pareto efficiency in light of strong priority treat-
ment. That is, it can be understood as implicitly assuming that the
number of elected priority candidates cannot be lower in light of priority
treatment.

Proposition 4.7. Dℓ
(S)AV satisfies PE.

Proof. Since Dℓ
(S)AV satisfies PM and NPM, the only way we can increase

the score of a winning committee W , is by replacing a priority candidate
with a non-priority candidate. But then, as a Pareto improvement implies
an increase in (S)AV-score, such an improvement requires a decrease in
the number of priority candidates elected.

When we set q = k, the priority sequential rules effectively reduce to
the non-priority rules where only the priority candidates are considered.
Assuming that respect of quota is met, any Pareto improvement will
constitute a priority improvement. Consequently, as none of the non-
priority sequential rules are efficient, none of the sequential priority rules
will satisfy PE.

We have seen that the dual election rules based on candidate-wise
scores are suited to excellence-based elections, and that the reserved-last
rules encode a greater degree of priority treatment at the cost of satisfying
a stronger efficiency requirement. We also saw that the sequential rules
are ill-suited to this setting and perform badly with regards to efficiency.
The next chapter concerns proportionality, a goal to which the sequential
rules are well-suited.
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Chapter 5

Proportionality

Proportionality concerns the fair representation of groups of voters. The
underlying idea is that groups of voters that are cohesive enough in their
preferences deserve a number of representatives that is proportional to
the size of the group. This chapter concerns proportionality in the con-
text of priority treatment. The first section introduces the notion of
proportionality in more detail along with a number of axioms for the
non-priority setting. In the second section we briefly motivate the con-
sideration of proportionality in the priority setting. Thereafter, we in-
troduce adaptations of the non-priority axioms, showing which priority
rules (do not) satisfy them. The results are summarised in Table 5.1
below. The abbreviations JR, PJR and EJR stand for justified rep-
resentation, proportional justified representation and extended justified
reprsentation, respectively. The prefix ‘rp’ abbreviates ‘restricted prior-
ity’ and the prefix ‘p’ abbreviates ‘priority’. Thus, e.g., rp-EJR denotes
restricted priority extended justified representation.

axiom
rule rp-JR rp-PJR rp-EJR p-JR p-PJR p-EJR

rf-seq-CC ✓[5.1.1] ✗ ✗ ✓[5.1] ✗ ✗

rl-seq-CC ✓[5.1.1] ✗ ✗ ✓[5.1] ✗ ✗

late-seq-CC ✓[5.1.1] ✗ ✗ ✓[5.1] ✗ ✗

rl-seq-Phragmén ✓ ✓ ✗ ✓[5.4] ✗[ex.5.1] ✗

late-seq-Phragmén ✓[5.3.1] ✓[5.3.1] ✗ ✓[5.3.1] ✓[5.3] ✗

Table 5.1: An overview of the relevant rules and the proportionality
axioms that they satisfy.

5.1 Proportionality in the non-priority model

Proportionality, as a general concept, requires that an elected committee
reflects the distribution of voters’ preferences. That is, proportional rules
guarantee that (even small) groups of voters receive a level of represen-
tation that is proportional to their size. The topic of proportionality has
been extensively studied in the context of apportionment, which concerns
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the distribution of seats, e.g., in a parliament, over political parties based
on voters’ preferences. Many countries have chosen to determine their
parliaments in a proportional manner, decisions of such governing bodies
being deemed legitimate only when the opinions of all citizens are taken
into account, weighted according to their prevalence among the voting
population.1 Apportionment can be seen as a subdomain of multiwin-
ner voting (Brill et al., 2018),2 but, since proportional committees will
correspond to fair committees in numerous other scenarios, recent years
have seen the emergence of a great deal of research on proportionality in
multiwinner voting simpliciter.

Peters and Skowron (2020) make a distinction between two funda-
mentally distinct forms of proportional representation, one concerning
the fair distribution of welfare, i.e., the satisfaction of voters, and the
other concerning the fair distribution of voting power. Essentially, the
former is concerned with groups receiving a number of representatives
proportional to their size, while the latter requires that groups can de-
termine a fraction of the committee that is proportional to their size.3

We are here concerned with proportionality with regards to the fair dis-
tribution of welfare, hence this is what we mean by ‘proportionality’ from
here on.

The central concept in the study of proportionality in multiwinner
voting is that of ℓ-cohesiveness.

Definition 5.1 (ℓ-cohesiveness). For ℓ ≥ 1 and a profile A, a group
V ⊆ N is ℓ-cohesive if

(i) |V | ≥ ℓ · n/k, and

(ii)
∣∣⋂

i∈V Ai

∣∣ ≥ ℓ

Intuitively, an ℓ-cohesive group, since it contains an ℓ/kth fraction of
the voters and agrees on ℓ candidates, ought to be given ℓ representatives
in the winning committee. It seems natural to require that for any ℓ-
cohesive group V , every voter i ∈ V must have ℓ representatives in the
winning committee. However, as shown by Aziz et al. (2018, Example
1), no rule meets this requirement.

1 Many countries, e.g., the United States, do not have a system of proportional rep-
resentation. It is important to note that while proportional representation is widely
favoured as a form of democracy, its suitability remains a subject of debate. Critics
contend, for example, that proportional representation stimulates the formation of
splinter factions from larger parties, potentially compromising the stability of gov-
ernments. It is also argued that proportional rules are difficult to understand. Any
good introduction to electoral systems, such as Norris (1997), will cover these topics.
For overviews including more formal material see the works by Balinksi and Young
(2001) and Pukelsheim (2017).

2 The underlying idea is that apportionment can be represented as multiwinner
voting restricted to party-list profiles, which are profiles in which any two voters’
ballots are either identical or disjoint.

3 To see that these two concepts differ and can conflict, see the first example pre-
sented by Peters and Skowron (2020).

56



Different axioms result from different representation requirements for
ℓ-cohesive groups, i.e., from different interpretations of what a ‘represen-
tative’ of a cohesive group is. The weakest axiom we consider, due to
Aziz et al. (2017), called justified representation, requires that for every
1-cohesive group there is a voter from that group that has a representa-
tive.

Axiom 16: Justified representation, JR

A rule R satisfies justified representation if for any winning com-
mittee W ∈ R(E) and 1-cohesive group of voters V , there exists a
voter i ∈ V who is represented by at least one candidate in W , i.e.,
Ai ∩W ̸= ∅.

This is a very weak requirement and, arguably, cannot be seen as
a proportionality requirement at all, since even large cohesive groups
(e.g., the set of all voters in a unanimous profile) only require a single
representative in the elected committees (Lackner & Skowron, 2023). We
nevertheless consider it because it is clearly a minimal requirement for
a proportional rule and also naturally relates to the following stronger
axioms.

Sánchez-Fernández et al. (2017) introduce a stronger axiom which
requires that for any ℓ-cohesive group, there are at least ℓ elected candi-
dates each of which represents at least one member of V .

Axiom 17: Proportional justified representation, PJR

A rule R satisfies proportional justified representation if for any win-
ning committee W ∈ R(E) and ℓ-cohesive group of voters V , it is
the case that

∣∣(⋃
i∈V Ai

)
∩W

∣∣ ≥ ℓ.

Finally, extended justified representation, introduced by Aziz et al.
(2017), requires that for every ℓ-cohesive group, some member of the
group has at least ℓ representatives.

Axiom 18: Extended justified representation, EJR

A rule R satisfies extended justified representation if for any winning
committee W ∈ R(E) and ℓ-cohesive group of voters V , there is a
voter i ∈ N with ℓ or more representatives in W , i.e., |Ai ∩W | ≥ ℓ.

First, note that if we restrict PJR or EJR to 1-cohesive groups, we
get JR. Furthermore, EJR implies PJR. We thus have a hierarchy of
proportionality axioms, where JR is the weakest and EJR the strongest.
Of the non-priority rules we have seen, only PAV and MES satisfy EJR
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(Aziz et al., 2017; Peters & Skowron, 2020). Further, seq-Phragmén
satisfies PJR (Brill et al., 2023) and both CC and seq-CC satisfy (only)
JR (Aziz et al., 2017).

Having considered proportionality in the non-priority model, we are
now ready to consider the priority model.

5.2 Proportionality in the priority model

Before presenting proportionality axioms for the priority setting and cor-
responding results, we briefly consider the relevance of proportionality in
the priority setting.

We have already seen that proportionality is important in the context
of apportionment, which can be seen as a restricted form of multiwin-
ner voting. In practice, there are many apportionment settings in which
priority treatment is to be afforded to certain candidates. For exam-
ple, there are countries that reserve parliamentary seats for women.4

Outside the apportionment setting, priority treatment is also relevant.
Corporate boards, community organisations and academic institutions,
to name a few, may desire preferential treatment for certain kinds of can-
didates, to promote, for example, the representation of junior employees,
marginalised members of the community, and candidates from particular
disciplines, respectively.

Given that proportionality is relevant in the context of the priority
model, we now consider how to adapt the previously introduced axioms.
We consider only priority rules that respect the quota. In essence, these
rules guarantee that q priority candidates will be elected no matter the
support that priority candidates enjoy among the voters. Though all
sensible rules will take voters’ preferences into account when filling the
quota, in a worst-case scenario there are only k−q seats that can be used
to meet representation requirements for cohesive groups. Accordingly, we
might adapt the notion of ℓ-cohesiveness so that it is relative not to the
committee-size k, but to k − q.

Definition 5.2 (Restricted priority ℓ-cohesiveness, rp-ℓ-cohesiveness).
For ℓ ≥ 1 and a profile A, a group V ⊆ N is rp-ℓ-cohesive if

(i) |V | ≥ ℓ · n/k−q, and

(ii)
∣∣⋂

i∈V Ai

∣∣ ≥ ℓ

Replacing the notion of ℓ-cohesiveness with that of rp-ℓ-cohesiveness
in the definitions of JR, PJR and EJR yields axioms for the priority

4 A particularly striking example can be observed in the case of Rwanda, where
24 of the 80 seats in the lower house are reserved for women. At present, women
hold 49 of the seats. For more information, see the gender quotas database of the
International Institute for Democracy and Electoral Assistance, accessible at https:
//www.idea.int/data-tools/data/gender-quotas.
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setting. We have restricted priority justified representation (rp-JR), re-
stricted priority proportional justified representation (rp-PJR), and re-
stricted priority extended justified representation (rp-EJR), respectively,
which respect the hierarchy of the original axioms. When q = 0, an
rp-ℓ-cohesive group is simply ℓ-cohesive. Coupled with the fact that
the priority sequential rules reduce to their underlying non-priority rules
when q = 0, we can conclude that if a non-priority rule does not sat-
isfy JR, PJR, or EJR, none of its priority adaptations will satisfy the
corresponding restricted priority adaptation.

The notion of rp-ℓ-cohesiveness is based on a worst-case scenario; that
is, it assumes that only k−q seats can be used to meet the representation
requirements for cohesive groups. Consequently, any reserved-first dual
election rule based on a rule satisfying JR, PJR or EJR, respectively,
will satisfy the corresponding restricted priority adaptation. In fact, this
will be the case regardless of how the quota is filled. The axioms based
on rp-ℓ-cohesiveness thus seem too weak. After all, the quota may be
filled in more or in less proportional ways. Nevertheless, the worst-case
scenario is one which has to be taken into account.

Intuitively, a cohesive group can be afforded more representatives if
the quota seats can be used to do so, i.e., if they approve of sufficiently
many priority candidates. The more priority candidates a cohesive group
approves of, the more seats can be used to offer them representatives.
This intuition is captured in the following definition of z-ℓ-cohesiveness.

Definition 5.3 (z-ℓ-cohesiveness). For q ≥ z ≥ 0 and ℓ ≥ 1, a group
V ⊆ N is z-ℓ-cohesive if

(i) |V | ≥ ℓ · n/k−q+z, or
∣∣⋂

i∈V A+
i

∣∣ ≥ ℓ and |V | ≥ ℓ · n/k, and

(ii)
∣∣⋂

i∈V Ai

∣∣ ≥ ℓ, and

(iii)
∣∣⋂

i∈V A+
i

∣∣ ≥ z.

When a group of voters does not unanimously approve of any priority
candidates, i.e., z = 0, this reduces to rp-ℓ-cohesiveness, thus account-
ing for the worst-case scenario in which a cohesive group must have size
n/k−q to claim a representative. By taking into consideration the number
of priority candidates that a group unanimously approves of, we intu-
itively achieve two things. Firstly, cohesive groups that jointly approve
of priority candidates can ‘demand’ more than k− q seats, and secondly,
they will require fewer voters per demanded seat. The fact that when∣∣⋂

i∈V A+
i

∣∣ ≥ ℓ we only require |V | ≥ ℓ · n/k, reflects the intuition that
when a cohesive group’s proportionality requirements can be met with
only priority candidates, all seats can be used to assign representatives
and consequently there should be no further restrictions on the size of
the group beyond those required in the non-priority setting. Note that
similar reasoning applies when z = q. In that case we also only require
|V | ≥ ℓ · n/k (even if ℓ > z).
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The new definition of cohesiveness induces three proportionality ax-
ioms that are analogous to JR, PJR and EJR, which we call priority jus-
tified representation (p-JR), priority proportional justified representation
(p-PJR) and priority extended justified representation (p-EJR), respec-
tively. Like for the restricted priority axioms, these are also analogously
ordered in terms of strength: p-EJR implies p-PJR, which implies p-
JR. Furthermore, since any rp-ℓ-cohesive group is a z-ℓ-cohesive group,
the priority axioms imply their restricted priority counterparts. (Re-
member that a stronger requirement for cohesiveness results in weaker
axioms.) When q = 0, and consequently z = 0, z-ℓ-cohesiveness re-
duces to ℓ-cohesiveness. Consequently, and analogously to the case for
the restricted priority axioms, the priority adaptation of a rule that does
not satisfy JR, PJR, or EJR, respectively, will violate p-JR, p-PJR, or
p-EJR, respectively.

It is known that seq-CC satisfies JR (Aziz et al., 2017), and it turns
out that all three of the priority adaptations of seq-CC satisfy p-JR.5

Proposition 5.1. rf-seq-CC, rl-seq-CC and late-seq-CC all satisfy p-JR.

Proof. We provide the proof for rl-seq-CC. The proofs for rf-seq-CC and
late-seq-CC are entirely analogous.

Suppose, towards a contradiction, that rl-seq-CC does not satisfy
p-JR. It follows that there are an election E = (C,C+,A, k, q) and z-1-
cohesive group V ⊆ N such that no voter i ∈ V has a representative in
the winning committee W = rl-seq-CC(E), i.e.,

(⋃
i∈V Ai

)
∩W = ∅.

Now suppose z = 0, from which it follows that |V | ≥ n/k−q, and
let c ∈

⋂
i∈V Ai be a jointly approved candidate. We know that c was

eligible in each of the first k − q rounds. Hence, since c was not elected,
we know that in each of these rounds a candidate must have been selected
representing at least ⌈n/k−q⌉ voters who were not yet represented in that
round. But then in the first k − q rounds, at least n voters have a
representative elected, which contradicts the fact that no voter in V has
a representative.

If z > 0, i.e., z ≥ 1, then |V | ≥ n/k. Note that we cannot assume
|V | ≥ n/k−q+z in this case due to condition (i) in the definition of z-ℓ-

cohesiveness. Furthermore, we have
(⋂

i∈V Ai

)+ ̸= ∅, hence, let c+ ∈(⋂
i∈V Ai

)+
. Then, since c+ was eligible in each of the k rounds, at least

⌈n/k⌉ previously unrepresented voters must have received a representative
in each round. This contradicts the fact that the voters in V do not have
a representative, concluding the proof.

Corollary 5.1.1. rf-seq-CC, rl-seq-CC and late-seq-CC all satisfy rp-JR.

An alternative proof, which is more general, would make use of the
fact that seq-CC is committee monotone and satisfies JR. Such a proof
would then also work, e.g., for seq-Phragmén.

5 Note that Aziz et al. (2017) refer to seq-CC as Greedy Approval Voting.
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As we have seen above, p-JR is not able to distinguish between the
different priority adaptations of seq-CC. This also holds, as we shall
see, for the reserved-first and reserved-latest versions of seq-Phragmén.
However, the two priority adaptations of seq-Phragmén come apart when
we consider p-PJR: late-seq-Phragmén satisfies it, while rl-seq-Phragmén
does not. For the proof of the former, the following lemma will be helpful.

Lemma 5.2. Given some election E = (C,A, k), we say that a group of
voters V is ℓ-cohesive for k′ ≤ k (rounds) if V is ℓ-cohesive for (C,A, k′).
Now consider the execution of seq-Phragmén on E, where the provisional
committee at the end of round r is denoted Wr. If a group V is ℓ-cohesive
for k′ ≤ k rounds, then

∣∣(⋃
i∈V Ai

)
∩Wk′

∣∣ ≥ ℓ, i.e., the group receives ℓ
representatives in the first k′ rounds.

Proof. It is clearly the case that for any election (C,A, k), the k rounds
of seq-Phragmén are going to be identical to the first k rounds for the
election (C,A, k + 1).6 But then we have that for any election (C,A, k)
and k′ ≤ k, the first k′ rounds of seq-Phragmén on (C,A, k) will be
identical to the k′ rounds on (C,A, k′). Now let V be a group of voters
that is ℓ-cohesive for k′ ≤ k and thus ℓ-cohesive for (C,A, k′). We then
have, since seq-Phragmén satisfies PJR, that ℓ candidates from

⋃
i∈V Ai

must be elected in the k′ rounds of (C,A, k′) and thus also in the first k′

rounds of (C,A, k).

Proposition 5.3. late-seq-Phragmén satisfies p-PJR.

Proof. Towards a contradiction, suppose the contrary. It follows that
there are some election E = (C,C+,A, k, q), winning committee W =
late-seq-Phragmén(E) and z-ℓ-cohesive group V such that W contains
fewer than ℓ candidates that represent some member of V . For con-
venience, let CV =

⋂
i∈V Ai denote the set of candidates unanimously

approved by voters in V and let Crep
V =

(⋃
i∈V Ai

)
∩W denote the set of

elected candidates approved by some member of V . We refer to any can-
didate c ∈ Crep

V as a representative of V . We thus have |Crep
V | ≤ ℓ−1 < ℓ.

We first show that all priority candidates unanimously approved by
voters in V must be elected, i.e., C+

V ⊆ W . Thereafter we show that,
consequently, V must have at least ℓ representatives, which contradicts
our assumption.

Suppose there is some unelected priority candidate c unanimously
approved by the voters from V , i.e., c ∈ C+

V \ W . Since c is a priority
candidate, they were eligible in the last round. Analogously to the proof
that seq-Phragmén satisfies PJR (Brill et al., 2023), we can then show
that the total load of the voters is less than k, which contradicts the fact
that late-seq-Phragmén yields a valid load distribution. We provide the

6 It follows, as is well-known, that seq-Phragmén is committee-monotone. However,
we here need this stronger claim.
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proof here for completeness.7

If
∣∣C+

V

∣∣ < ℓ then |V | ≥ ℓ · n/k−q+z and otherwise |V | ≥ ℓ · n/k. Thus,
in either case we have |V | ≥ ℓ · n/k (since q ≥ z) and consequently
|V | > ℓ · n/k+1. Now consider the last round k. Adding candidate c to the
committee in this round would have resulted in the following maximum
voter load:

skc =
1 +

∑
i∈Nc

x̄k−1
i

|Nc|
by Lemma 2.2

≤
1 +

∑
i∈V x̄k−1

i

|V |
since V ⊆ Nc

≤ 1 + (ℓ− 1)

|V |
since |Crep

V | ≤ ℓ− 1

<
k + 1

n
since |V | > ℓ · n

k + 1

Now let ck be the candidate elected in round k. It follows that the
maximum load that resulted from electing ck in the last round cannot be
greater than what it would have been for c, i.e., skck ≤ skc . But then, since
skc < k+1/n, we have that the maximum load after round k is skck < k+1/n.
That is, no voter has a load of k+1/n or higher, i.e., x̄i = x̄k

i < k+1/n for
each i ∈ N . But then the following holds for the sum of all voter loads.∑
i∈N

x̄k
i =

∑
i∈V

x̄k
i +

∑
i∈N\V

x̄k
i

≤ ℓ− 1 +
∑

i∈N\V

x̄k
i since |Crep

V | ≤ ℓ− 1

≤ ℓ− 1 + |N \ V |skck since the maximum possible

load after round k is skck

< ℓ− 1 + |N \ V |k + 1

n
since skck < k+1/n

< ℓ− 1 +
n

k + 1
(k + 1− ℓ)

k + 1

n

= k

To see that the last strict inequality holds, note that, since |V | > ℓ ·n/k+1,
we have

|N \ V | < n− ℓ · n/k+1 = n/k+1(k + 1− ℓ).

Thus the sum of all the voter loads is strictly less than k, which contra-
dicts the fact that (exactly) one unit of load is distributed over the voters

7 Note that this part of the proof will also apply to rl-seq-Phragmén. That is,
|Crep

V | < ℓ implies C+
V ⊆ W . Accordingly, all of the cohesive group’s unanimously

approved priority candidates are elected in Example 5.1, which shows that late-seq-
Phragmén violates p-PJR. This also agrees with the intuition discussed later on
that rl-seq-Phragmén violates p-PJR since non-priority representatives that must be
elected to meet the representation requirements for cohesive groups may not be elected
due to the restriction to priority candidates.
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for every elected candidate. We can thus conclude that all unanimously
approved priority candidates are elected, i.e., C+

V ⊆ W .
We now show that, given C+

V ⊆ W , V must have at least ℓ repre-
sentatives in W , which contradicts the assumption to the contrary. If∣∣C+

V

∣∣ ≥ ℓ then we are done, so suppose
∣∣C+

V

∣∣ < ℓ, from which it follows
that z < ℓ. Now, let x =

∣∣C+
V

∣∣ be the number of priority candidates unan-
imously approved by voters in V (note that it is possible that x > z).
Since C+

V ⊆ W , this is also the number of unanimously approved priority
candidates elected, i.e., x = |C+

V ∩ W |. We then have ℓ − 1 ≥ x ≥ z.
Furthermore, let y be the number of these priority candidates that are
elected before the restriction to priority candidates comes into force. It
follows that x−y priority candidates from C+

V are elected in the restricted
rounds.

If the restriction never came into force, then the outcome would be
that of seq-Phragmén; hence as seq-Phragmén satisfies PJR and V is
ℓ-cohesive, we would be done. So suppose the restriction does come into
force, from which it follows that y < q. Then at least the first k − q + y
rounds were unrestricted. If y ≥ z then V is ℓ-cohesive for the first
k− q+ y rounds, since then |V | ≥ ℓ · n/k−q+z ≥ ℓ · n/k−q+y. Consequently,
by Lemma 5.2, there must be at least ℓ representatives for V elected in
the first k − q + y rounds. If, on the other hand, y < z, then, we claim,
V is [ℓ− (z − y)]-cohesive for the first k − q + y rounds.8 This is indeed
the case, since

|V | ≥ ℓ · n

k − q + z
since V is z-ℓ-cohesive and

∣∣C+
V

∣∣ < ℓ

≥ [ℓ− (z − y)] · n

k − q + z − (z − y)
since ℓ > z − y > 0

= [ℓ− (z − y)] · n

k − q + y

But then, by Lemma 5.2, V must receive at least ℓ−(z−y) representatives
in the first k−q+y rounds. Hence, as we know that another x−y ≥ z−y
representatives are elected in the restricted rounds, V receives at least
ℓ− (z − y) + (z − y) = ℓ representatives in total.

Thus, in both cases V receives at least ℓ representatives, which contra-
dicts our assumption to the contrary. We can thus conclude, by reductio,
that late-seq-Phragmén satisfies p-PJR.

Corollary 5.3.1. late-seq-Phragmén satisfies rp-PJR, p-JR and rp-JR.

In contrast with late-seq-Phragmén, rl-seq-Phragmén does not satisfy
p-PJR, as the following example shows.

8 Note that since ℓ > z > y, we have ℓ− (z − y) ≥ 1.
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Example 5.1. Let C = {a, b, c, d, e} k = 4, q = 2 and consider the
profile

1× {a, b, c, d} 3× {a, b, e}.

In the first two rounds a and b will be elected (the order will depend
on tiebreaking between them). In the last two rounds the candidate
pool is restricted to priority candidates, which means c and d will be
elected (again, the order depends on tiebreaking). Now note that the
three voters approving of {a, b, e} are a 2-3-cohesive group since they
jointly approve of 3 candidates, among which 2 priority candidates and
since 3 ≥ 3·4/4−2+2. Thus, p-PJR requires that a, b and e all be elected,
which is not the case.

Though rl-seq-Phragmén does not satisfy p-PJR, it does satisfy rp-
PJR, and consequently rp-JR. To see this, note that an rp-ℓ-cohesive
group V is ℓ cohesive for the first k − q rounds, from which the result
follows directly in light of Lemma 5.2. In the above counterexample,
since 3 ≥ 1 · 4/4−2 and 3 < 2 · 4/4−2, rp-PJR requires only that one of the
candidates from {a, b, e} is elected, which is the case. This also illustrates
the difference in strength of the two axioms. In this case, with committee
size k = 4, p-PJR, in keeping with PJR, requires three candidates for
the 3-cohesive group, while rp-PJR requires only one.

Intuitively, rl-seq-Phragmén fails p-PJR because a cohesive group’s
(potential) non-priority representatives can only be assigned unrestricted
seats. Hence, if too many of a cohesive group’s priority representatives
are elected in unrestricted rounds, the non-priority candidates that must
be elected in order to meet the representation requirements prescribed
by p-PJR may not be able to be elected. This intuition also makes clear
why late-seq-Phragmén does satisfy p-PJR: if a priority representative of
a group is elected in an unrestricted seat, the restriction comes into force
later, meaning the necessary non-priority candidates can still be elected.

We have seen that rl-seq-Phragmén does satisfy rp-PJR and rp-JR.
It also satisfies p-JR.

Proposition 5.4. rl-seq-Phragmén satisfies p-JR.

Proof. Let E = (C,C+,A, k, q) be an election and V a z-1-cohesive
group and let CV =

⋂
i∈V Ai. It follows that |CV | ≥ 1. Furthermore, if∣∣C+

V

∣∣ ≥ 1 we have |V | ≥ n/k, and otherwise, if C+
V = ∅, we have z = 0

and |V | ≥ n/k−q. Let W = rl-seq-Phragmén(E). We show that there is
some voter i ∈ V with Ai ∩W ̸= ∅, considering the two cases separately.

Suppose C+
V = ∅, from which it follows that z = 0. We then have

that V is 1-cohesive for the first k− q rounds, since then |V | ≥ n/k−q. As
the first k − q rounds are unrestricted, it follows by Lemma 5.2, that at
least one representative c ∈

⋃
i∈V Ai is elected in the first k − q rounds.

Now suppose
∣∣C+

V

∣∣ ≥ 1. It follows that there is some unelected pri-
ority candidate c+ ∈ C+

V \W . Now let C ′ = C+ ∪W , i.e., C ′ is the set
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of priority candidates minus those non-priority candidates that were not
elected, and consider the election E ′ = (C ′,A, k). In light of Lemma
2.5, we know that W = seq-Phragmén(E ′). Now, since |V | ≥ n/k and
c+ ∈ C ′, we have that V is 1-cohesive for E ′. But then, as seq-Phragmen
satisfies JR, it must be the case that there is some voter i ∈ V with a
representative in W , i.e., Ai ∩W ̸= ∅.

We can thus conclude that
(⋃

i∈V Ai

)
∩ W ̸= ∅. That is, rl-seq-

Phragmén satisfies p-JR.

This brings us to the end of the chapter, which presents a first step
in the adaptation of well-studied proportionality axioms to the priority
setting. We saw that late-seq-Phragmén fares particularly well. It may
be expected that the priority adaptations of MES would do so as well,
though this is yet to be confirmed.
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Chapter 6

Conclusion

In this chapter we first summarise the key findings and contributions
made in this thesis. Following the summary, we will briefly discuss the
results, paying particular attention to potential directions for future re-
search.

Motivated by a wide variety of multiwinner voting instances in which
certain kinds of candidates are to be afforded preferential treatment,
this thesis presents a first attempt at a formal study of such settings.
We introduced a priority model for multiwinner voting that enriches the
standard model by distinguishing between priority and non-priority can-
didates and by introducing a quota q that specifies the minimum number
of priority candidates that are to be elected. Several priority rules were
defined that respect the quota, i.e., that guarantee the election of at least
q priority candidates. These rules were all based on the idea that q of
the k available seats are to be reserved for priority candidates, while the
other k− q seats are open to all candidates. We considered three ways of
reserving seats: reserving the first seats, the last seats, or, for sequential
rules, reserving the remaining seats at the latest possible moment this
has to be done to guarantee the quota is respected. For candidate-wise
scoring rules, it turned out, there is no difference between the reserved-
first and the reserved-latest approach, while for seq-Phragmén and MES
the reserved-first approach is either ill-defined or obviously flawed.

We first considered the defined rules with regards to anonymity and
priority neutrality, a weakening of neutrality that takes into account the
differential treatment of priority and non-priority candidates. Whereas
all rules considered are anonymous, we saw that rules satisfy priority
neutrality only when the underlying non-priority rule satisfies neutrality.

Subsequently, we introduced two axioms, possible win and guaranteed
win, to capture the requirement that candidates ought never to be worse
off under a priority rule as priority candidates than as non-priority candi-
dates. We showed that all considered priority rules meet these minimal
requirements. We also considered analogous axioms concerning entire
committees, namely committee possible win and committee guaranteed
win, which proved too strong to be considered minimal requirements for
priority rules. Instead, we argued, these can be interpreted as encoding

66



a form of priority treatment. Accordingly, we found that the reserved-
last priority rules satisfy these requirements, while the reserved-first and
reserved-latest adaptations do not.

In the rest of the thesis we restricted our attention to two different
kinds of elections: excellence-based elections and elections concerning
proportional representation. For excellence-based elections, we saw that
the dual election rules based on candidate-wise scoring functions were
most suitable. All such rules satisfy priority merit and non-priority
merit, implying that a candidate c can only ever be preferred over a
higher-scoring candidate c′ if the former is a priority candidate and the
latter is not. The candidate-wise reserved-first dual rules are then char-
acterised by respect of quota and limit to quota. Together with priority
merit and non-priority merit, these axioms enforce the minimal devia-
tion from score maximisation required to elect q priority candidates. We
also introduced active quota, which demands a stronger form of prefer-
ential treatment, requiring, roughly, that q protected priority candidates
are elected that would otherwise not have been elected. The candidate-
wise reserved-first dual rules are characterised by this stronger form of
preferential treatment and limit to active quota.

Consistent with the finding that the candidate-wise reserved-last dual
rules considered provide a greater degree of preferential treatment, we
showed that these rules fail quota priority efficiency, though they do
satisfy the weaker requirement of priority efficiency. That is, though
the outcomes of these rules cannot be Pareto improved upon without
decreasing the number of priority candidates elected, such improvements
may be possible without violating respect of quota. In contrast, we found
that the candidate-wise reserved-first dual rules considered do satisfy
quota priority efficiency, which accords with the finding that these rules
minimally deviate from the goal of maximising the score.

In the context of excellence-based elections, opting for a stronger form
of priority treatment, as exemplified by the candidate-wise reserved-last
rules, comes at the expense of having a committee with lower-scoring
candidates. If committee quality and voter satisfaction, particularly re-
garding outcome efficiency, are the primary concern, then the candidate-
wise reserved-first rules are most suitable. In contrast, the candidate-wise
reserved-last rules are more suitable if the aim is to use reserved seats to
aid priority candidates who would otherwise not have been elected.

Finally, we considered proportional representation in the context of
the priority model. We adapted the notion of ℓ-cohesiveness from the
standard setting to take into account, firstly, the worst-case scenario in
which no reserved seats can be used to provide representatives for a co-
hesive group, and secondly, the fact that the more priority candidates
a cohesive group jointly approves of, the easier it is to grant them rep-
resentatives. This yielded a hierarchy of three axioms (from weakest to
strongest): priority justified representation (p-JR), priority proportional
justified representation (p-PJR), and priority extended justified represen-
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tation (p-EJR). We saw that all priority adaptations of seq-CC and seq-
Phragmén satisfy p-JR, while only late-seq-Phragmén satisfies p-PJR.
Accordingly, the latter rule is a suitable choice when the main concern is
proportional representation.

Having summarised the key developments and findings, the subse-
quent and final section of this thesis reflects on the accomplished work
and presents potential directions for future research.

Evaluation and future research

We set out to develop a simple multiwinner voting framework in which
the preferential treatment of certain kinds of candidates can be modelled.
This priority model proved applicable to various kinds of elections and
valuable in the analysis of essential properties of voting rules. It allowed
us to investigate the preferential treatment of priority candidates, as
well as previously studied properties that remain relevant in the priority
setting. Moreover, we successfully identified rules that exhibit the desired
properties for the different settings studied.

A notable omission from our results concerns the priority adaptations
of MES. Given that MES satisfies strong proportionality axioms such
as EJR, we may expect its priority adaptations to perform well in this
context too. Thus far, however, it is unclear whether, e.g., late-MES
satisfies p-EJR.

Necessarily, there are many other relevant aspects that could not be
covered in this thesis. In that light we give some suggestions for pos-
sible future research, which fall, roughly, into the following categories:
expanding the set of axioms considered in the priority setting, develop-
ing new rules, generalising the studied model, complexity analysis, and
empirical analysis.

A great many axioms have been studied in multiwinner voting, and
many more of these are applicable to the priority setting than we had
room to cover here. Most obvious, since we consider proportionality, are
axioms concerning the fair distribution of voting power. However, other
axioms such as committee monotonicity, consistency and strategyproof-
ness are also relevant in the priority setting.

In this thesis we have been concerned exclusively with rules that meet
the quota, which can, in this context, be seen as the minimal require-
ment regarding the preferential treatment of priority candidates. Regard-
ing excellence-based elections, we were able to explore different forms of
priority treatment, since candidate-wise scores allow for the direct com-
parison of candidates. However, in the context of proportionality, where
a candidate’s suitability depends fundamentally on the other candidates
chosen, this is more challenging. The axioms committee possible win
and committee guaranteed win offer more universal measures of preferen-
tial treatment, but their underlying motivation is somewhat unclear. It
would be valuable to develop a better understanding of different forms
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of preferential treatment in general, or at least for other settings, such as
in the context of proportionality.

The method of reserving q out of k seats for priority candidates
yielded a number of interesting rules. However, we encountered chal-
lenges when applying the reserved-first approach to seq-Phragmén and
MES. Addressing these issues, though beyond the scope of this thesis,
would yield rules comparable to the reserved-last and reserved-latest
adaptations. Additionally, besides the non-priority rules that we have
considered, there are others, such as Greedy Monroe or Minimax Ap-
proval Voting, that may be adapted using the same method of reserving
seats.

Besides reserving q seats for priority candidates, there is another nat-
ural approach to adapting rules so that they respect the quota. For
any scoring function we may define a rule that returns the committees
respecting the quota that maximise this score. (Note that for candidate-
wise scores this is equivalent to the reserved-first adaptation.) It may be
expected that, e.g., such an adaptation of PAV would fare well with re-
gards to proportionality. Although we chose to focus on computationally
tractable rules, an analysis of these alternative rules would be valuable,
offering fruitful comparisons with the rules that we did consider.

While our focus has been on rules that respect the quota, there are
situations in which preferential treatment is to be given to certain can-
didates without having an explicit requirement regarding the number of
such candidates to be elected. In such cases a different class of rules seems
natural. For example, rules that require voters to pay a price or shoulder
a load for the election of a candidate may be adapted by making priority
candidates relatively cheaper. Similarly, for scoring rules, greater weight
could be assigned to the contribution of (voters who approve of) prior-
ity candidates to the overall score. Given that the axioms that we have
considered all assume respect of quota, these types of settings without a
quota would necessitate significantly different axioms.

The most obvious shortcoming of the model studied is its simplicity,
assuming a bipartite set of candidates. There are often more types of
candidates with differing requirements for preferential treatment. For
instance, the Rwandan parliament reserves a different numbers of seats
for women, youth members and disabled members. A naive extension of
the priority model we consider would treat types as mutually exclusive,
i.e., as partitioning the set of candidates. Though this will be applicable
in certain situations, a more comprehensive model that allows candidates
to have multiple types, such as being both a woman and disabled, is
necessary for many scenarios.

We did not consider computational complexity in this thesis. Since
the priority rules here considered do not fundamentally alter the non-
priority rules on which they are based, but simply restrict the set of
eligible candidates in certain steps, these priority rules will generally in-
herit the computational tractability of their underlying non-priority rules.
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Nevertheless, there are other interesting questions concerning computa-
tional complexity in the priority model. For example, we may consider
what the complexity is of determining whether a certain committee sat-
isfies p-JR, p-PJR or p-EJR.

Finally, it would be interesting to study the distinctions and implica-
tions of the studied rules from a more empirical perspective. By analysing
actual voting data, we can get insight into the practical ramifications of
these rules and may identify any deviations from the theoretical expec-
tations yielded by the axiomatic analysis.
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