
Quantifying quantum walk speed-ups

MSc Thesis (Afstudeerscriptie)

written by

Martijn Brehm

under the supervision of Jordi Weggemans and Harry Buhrman, and submitted to the
Examinations Board in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
July 5th, 2023 dr. Benno van den Berg (chair)

prof. dr. Harry Buhrman
prof. dr. Michael Walter
dr. Nicolas Resch
Jordi Weggemans, MSc

Contents

1 Introduction 2
1.1 Previous work . 3
1.2 Our contributions . 4
1.3 Outline of the thesis . 5

2 Preliminaries 6
2.1 Quantum computing . 6
2.2 Random and quantum walks . 15
2.3 Classical and quantum backtracking . 22

3 Detection 25
3.1 How to quantum walk from arbitrary starting distributions 25
3.2 Belovs’ proof . 27
3.3 Exact complexity and amplifying the success probability 30
3.4 Optimising the algorithm . 33

4 Search 38
4.1 Detection and binary search . 38
4.2 The electrical flow state: efficient search on trees with a unique marked element . 40
4.3 How to search efficiently on arbitrary graphs . 41
4.4 Algorithm to estimate the effective resistance . 42
4.5 Finding marked elements using the effective resistance estimate 47
4.6 Algorithm for efficient search on arbitrary graphs 53

5 Experiments 57
5.1 The algorithms . 57
5.2 The data . 60
5.3 The results . 61
5.4 Discussion . 66

6 Conclusion 68
6.1 Future research . 69

A 75
A.1 Amplifying success probability . 75
A.2 Upper-bound on the inaccuracy of Piddock’s algorithms 77
A.3 Flow . 81

1

Abstract

Given specific instances of a computational problem like 3SAT, can a quantum computer solve
these instances more efficiently than a classical computer? By expressing the complexity of our
algorithms asymptotically we have inhibited ourselves from rigorously answering this question
analytically. Since (large fault-tolerant) quantum computers don’t exist (yet), we also can’t
answer this question empirically.

In this work, we bridge this gap. We derive exact expressions for the query complexity of sev-
eral quantum walk search algorithms by parametrising in several non-trivial, yet still efficiently
classically computable, input features. Specifically, we do so for Belovs’ detection algorithm
[Bel13], a search algorithm for trees using Belovs’ detection algorithm, and a general search
algorithm due to Piddock [Pid19]. We also optimally configure Belovs’ detection algorithm
and experimentally show a speed-up of a factor 10 compared to both Belovs’ and Montanaro’s
proposed configurations in certain settings, slightly optimise Piddock’s algorithms, and derive
upper-bounds on the inaccuracy of two subroutines of Piddock’s algorithm.

We then apply the search algorithms in a quantum backtracking algorithm for constraint sat-
isfaction problems, promising a quadratic speed-up over the corresponding classical backtracking
algorithm [Mon16]. Specifically we study uniformly randomly generated 3SAT instances in the
critical regime, and compare to the classical DPLL algorithm, using our expressions to compute
the exact quantum query complexity.

For the detection-based binary search algorithm, we observe a polynomial quantum speed-up
of order between 1.36 to 1.56 in the query complexity (depending on the algorithm’s configura-
tion), which manifests in 3SAT instances in roughly 330 to 545 variables and on. For Piddock’s
search algorithm, we find a polynomial speed-up of order at most 1.58, which starts to occur in
3SAT instances in least 430 variables, where we note that Piddock’s algorithm assumes access
to (an upper-bound on) the size of DPLL’s backtracking tree, the computation of which hasn’t
been accounted for in these numbers. Surprisingly, then, Piddock’s algorithm doesn’t seem to
perform better than the binary search algorithm, despite a clear asymptotic advantage.

Since these observed speed-ups are in the query complexity model, they ignore the signif-
icant constant overhead suffered by actually implementing quantum operations and memory
[BMT+22]. The above results should therefore be interpreted as as showing the possibility of
a quantum speed-up for solving uniformly random 3SAT instances in the critical regime: if a
speed-up wasn’t found here, it certainly won’t exist after taking further overhead into account.

Chapter 1

Introduction

The study of computational problems, algorithms and their complexity is of great philosophical
interest: by delineating the extent of efficient computation, we also delineate the possible extent
of human knowledge. However, at the end of the day, such study mostly informs the application
of algorithms to real-life problems. It is somewhat paradoxical, then, that prevailing methods
to express the complexity of algorithms inhibit our ability to make meaningful guarantees about
an algorithm’s complexity on real-life problems.

To see this, say we have an algorithm for a problem and wish to understand its time-
complexity. Clearly, for every problem instance, there is a specific amount of time that the
algorithm needs to solve it1, so that the only ‘complete’ description of an algorithms’ complexity
is a list which contains, for each problem instance, the amount of time the algorithm requires
to solve it. However, an infinite list is impossible to create, let alone comprehend.

To overcome this, it has become standard procedure to aggregate all of this information into
a single expression. This relies on the fact that (time) complexity is a function of the structure
of the problem instance and the algorithm. A main parameter in this function is the size of the
problem instance. For instance, if an algorithm performs some quadratic search over an input
of size n, roughly n2 time steps are needed 2.

However, parametrising only in the input size n generally doesn’t give an exact expression of
the complexity: this can happen only if all the instances of a given size n have equal complexity,
which virtually never happens. One might therefore try to parametrise in other features of
the input to get to an exact expression. But this is generally too difficult, or would give an
expression so complicated that it lacks explanatory power (or both).

Lacking an exact expression, the question becomes what kind of inexact expression we want.
How should we aggregate the complexity of each of the instances for some assignment to the
parameters — say, all the instances that have size 16 — into a single expression? Perhaps the
most obvious idea is to take an average. However, taking an average requires a distribution

1Assuming some model of computation, that is, a formal definition of what an algorithm is. We don’t give
such a definition in this thesis, as our notion of complexity will not be time, but rather the number of queries an
algorithm makes to a function, and this is not dependent on the specifics of the underlying model of computation.

2Parametrising complexity in terms of the input size pre-supposes that the algorithm is invariant under input
size, i.e. we don’t have a completely different algorithm for instances of differing sizes. Though formally this is
always the case (non-uniform models of computation like boolean circuits aside), in practice algorithm can behave
quite differently on different input sizes. For example, primality testing for odd numbers can be done in constant
time, while for even numbers it is much more difficult. The complexity for some input sizes may then be n, while
for others it might be n2. To re-obtain a single-expression, it is usually assumed we aggregate by choosing the
worst-case.

2

over the input instances, making this approach highly context specific, and therefore unpopu-
lar. Two universal approaches are to upper-bound or lower-bound the instances for an arbitrary
assignment to the parameters. When using randomised algorithms, there is an additional di-
mension over which to aggregate: each problem instance might now have multiple complexities
for each sequence of “coin tosses”. The probability distribution over these sequences is known
— it is part of the algorithm — allowing one to compute the average (usually called expected)
complexity.

Even for simple algorithms, these bounding expression can become relatively complicated. It
has therefore become common to express these bounds asymptotically, meaning the expression is
equated with its value as the input size tends to infinity, modulo constants. In short: the bound
is identified with its fastest growing term: 5/3n3 + 16(log log n)2 + n+ 4

√
n simply becomes of

the order n3. Such asymptotic upper and lower-bounds on the (expected) complexity are the
prevailing method to express complexity.

In this process we have lost much information regarding the exact complexity of each problem
instance. It might be that each instances’ complexity is relatively close the derived asymptotic
bounds, but in practice we know this often isn’t so. For some algorithms, we know that many in-
stances perform far better than our asymptotic upper-bounds suggest, a fact underlying efficient
modern heuristics for problems with, say, an exponential asymptotic upper-bound. Conversely,
for some algorithms, upper-bounds may harbour large constants and/or significant additive
terms, so that instances can perform worse than expected.

One area where this uncertainty is of pressing concern is quantum computing, where quan-
tum algorithms promise impressive speed-ups of classical counterparts. These speed-ups are
generally based on asymptotic upper-bounds, so that the real speed-up for a specific problem
instance is subject to much uncertainty. While for classical algorithms, the ‘gap’ between real
and asymptotic complexity is easily investigated empirically, this is not feasible for quantum
algorithms, as we don’t have large fault-tolerant quantum computers (yet).

This motivates the main question we consider in this work: to what extent can we rigor-
ously estimate the quantum speed-up on specific problem instances, without access to a quantum
computer? To tackle the question, we will “reverse” the above story, and instead of giving
asymptotic upper-bounds, try to derive tightened upper-bounds (and ideally exact expressions)
of the complexity of quantum algorithms by parametrising in classically computable input fea-
tures. For problem instances of interest, we can then compute these features of the input,
yielding a very good estimate — or even exact statement — of the quantum complexity. This
will often involve a type of ‘mock simulation’ of the quantum algorithm, where some subroutines
are replaced by classical version, possibly making the approach infeasible for quantum algorithm
that promise an exponential speed-up.

1.1 Previous work

The idea of deriving tightened upper-bounds by parametrising in non-trivial features of the input
was first proposed and applies in in [CFNW22a, CFNW22b], after an idea of Harry Buhrman.
These authors proposed to use the expected query count as their measure of complexity, a
measure originally proposed in [BBC+01]. This makes the complexity measure relatively imple-
mentation independent. This is important because the precise implementation details of future
quantum devices are unknown. In addition, depending on the algorithm, queries can serve as a
good proxy for time-complexity.

3

This choice does mean that the significant complexity overhead suffered by actually imple-
menting quantum operations and memory (mostly due to error-correction) is not taken into
account, and this could be multiple orders of magnitude of constant overhead per quantum op-
eration [BMT+22]. Nonetheless, the query model is a useful baseline: if no quantum speed-up
occurs here, then it certainly wont occur after this overhead is taken into account. Conversely,
if a speed-up does occur here and one believes that the constant overhead will come down
significantly, this implies that a quantum speed-up may be possible.

The authors [CFNW22a, CFNW22b] derive tightened upper-bounds on the expected query
complexity of Grover’s search algorithm, a quantum algorithm which can search an unstructured
space of size n in O (

√
n) (see Section 2.1.4). They then study two quantum algorithms that

use Grover’s algorithm as a subroutine, including a Hill climber heuristic for 3SAT [CFNW22a].
The complexity measure is then the number of queries to the 3SAT formula. Comparing this
quantum algorithm with a classical version where Grover search was replaced with classical
unstructured search, a polynomial quantum speed-up of the order 1.45-1.72 in the number of
queries was found, as opposed to the quadratic speed-up in the idealised asymptotic setting.
The author note that this was only after extensive optimisation, raising the question of whether
achieving quantum speed-ups is perhaps harder than expected.

1.2 Our contributions

We continue this line of work by studying quantum walk search algorithms: a generalisation of
Grover search from unstructured space to graphs. We derive exact expressions for the query com-
plexity of several quantum walk search algorithms. Specifically, we do so for Belovs’ detection
algorithm (the first quantum walk detection algorithm able to start from arbitrary starting dis-
tributions), a search algorithm for trees using Belovs’ detection algorithm [Bel13], and a general
search algorithm due to Piddock [Pid19] (the first general quantum walk search algorithm — a
title shared with the independent and concurrent work [AGJ21]). These expressions allow us to
compute the exact query complexity of these quantum algorithms on specific problem instances.
We also optimally configure Belovs’ detection algorithm and experimentally show a speed-up
of a factor 10 compared to both Belovs’ and Montanaro’s proposed configurations in certain
settings, slightly optimise Piddock’s algorithms, and derive upper-bounds on the inaccuracy of
two subroutines of Piddock’s algorithm.

We then apply the search algorithms in a quantum backtracking algorithm for constraint sat-
isfaction problems, promising a quadratic speed-up over the corresponding classical backtracking
algorithm [Mon16]. Specifically we study uniformly randomly generated 3SAT instances in the
critical regime and compare to the classical DPLL algorithm, using our expressions to compute
the exact quantum query complexity.

For the detection-based binary search algorithm, we observe a polynomial quantum speed-up
of order between 1.36 to 1.56 in the query complexity (depending on the algorithm’s configura-
tion), which manifests in 3SAT instances in roughly 330 to 545 variables and on. For Piddock’s
search algorithm, we find a polynomial speed-up of order at most 1.58, which starts to occur in
3SAT instances in least 430 variables, where we note that Piddock’s algorithm assumes access
to (an upper-bound on) the size of DPLL’s backtracking tree, the computation of which hasn’t
been accounted for in these numbers. Surprisingly, then, Piddock’s algorithm doesn’t seem to
perform better than the binary search algorithm, despite a clear asymptotic advantage.

As noted above, since these observed speed-ups are in the query complexity model, they

4

ignore the significant constant overhead suffered by actually implementing quantum operations
and memory [BMT+22]. The above results should therefore be interpreted as as showing the
possibility of a quantum speed-up for solving uniformly random 3SAT instances in the critical
regime: if a speed-up wasn’t found here, it certainly won’t exist after taking further overhead
into account.

1.3 Outline of the thesis

We start in Chapter 2 by reviewing preliminary knowledge on quantum computing (Section 2.1),
classical random walks, quantum walks and search algorithms (Section 2.2), and (quantum)
backtracking (Section 2.3). We note that Section 2.1.4 on Grover’s search algorithm and Sec-
tion 2.2 on walks are not necessary to understand the rest of the thesis, and serve to sketch
the intellectual background of the quantum walk search algorithms we study. The uninterested
reader can safely skip these roughly 10 pages.

In Chapter 3 we study Belovs’ detection algorithm [Bel13]: the first quantum walk search
algorithm able to start from an arbitrary distribution over the graph. We motivate Belovs’
definitions, break down the proof of correctness of his algorithm while filling in some details,
show how to configure Belovs’ algorithm optimally, and then give a classically computable and
exact expression for its query complexity.

In Chapter 4 we study two search algorithms. The first algorithm applies only to trees,
performing binary search while using Belovs’ detection algorithm. We give a classically com-
putable and exact expression for its query complexity. The second algorithm is a general search
algorithm due to Piddock. This was the first quantum walk search algorithm for general graphs.
We motivate the definitions of Piddock’s algorithm, filling in several details left by Piddock,
give a classically computable exact expression for its expected query complexity, and provide
two upper-bounds on inaccuracy of subroutines of the algorithm.

In Chapter 5, we compute the complexity of various configurations of these algorithms on a
set of uniformly random 3SAT instances in the critical regime. In Chapter 6 we conclude and
sketch future research directions.

5

Chapter 2

Preliminaries

In Section 2.1 we review preliminary knowledge on quantum computing. In Section 2.2 we review
classical random walks, quantum walks and search algorithms based on these walks. Finally,
in Section 2.3 we review (quantum) backtracking, including the DPLL algorithm that we will
study in Chapter 5.

2.1 Quantum computing

Quantum computing attempts to harness quantum mechanical effects to define novel models of
computation which solve certain problems faster than ‘classical’ models. We give the necessary
background to this field in this section. In section

2.1.1 we introduce the quantum mechanical basis for quantum computing, formalised in terms
of linear algebra;

2.1.2 we introduce the basic operations of quantum computing;

2.1.3 we introduce our model of quantum computing, and introduce our notion of complexity:
query complexity;

2.1.4 we outline Grover’s influential search algorithm;

2.1.5 we introduce quantum phase estimation, a quantum algorithm that forms the backbone
of the quantum walk search algorithms that we study in this thesis;

2.1.6 we introduce quantum amplitude estimation, which forms an important part of Piddock’s
quantum walk search algorithm.

2.1.1 Quantum states

Consider some physical system that can be in m states. For example a transistor that can
be in two states: 0 or 1. Classically, our description of this system is limited to a probability
distribution over the states, the limiting case being a single definite state. A quantum state,
by contrast, assigns each state a complex amplitude (a ‘superposition’) such that the squared
norms of these amplitudes induce a probability distribution.

You can do two things with a quantum state. You can observe it, ‘collapsing’ the superposi-
tion to one definitive state according to the induced probability distribution, and you can apply

6

linear transformations to it, manipulating the complex amplitudes (not the induced probability
distribution). Since the amplitudes can be negative and/or imaginary, their manipulation can
lead to interference effects. This is the novelty that quantum computing provides over classi-
cal computing (as probabilities cannot be negative), and the key to its speed-ups over classical
computing.

To denote such quantum states formally, we follow the Hilbert space formulation of quantum
physics. That is, given some quantum state over m states, we can view the m states as an
orthonormal basis for a Hilbert space, so that quantum state are vectors in this space with a
Euclidean norm of 1, or equivalently, an inner product of 1.

Definition 2.1.1. Let H be a complex Hilbert space.

• A pure quantum state |φ⟩ is a vector in H with inner product 1.

• The complex conjugate of |φ⟩ is denoted by ⟨φ|.

• The inner product of ⟨φ| and |ψ⟩ is denoted by ⟨φ|ψ⟩.

• If |φ⟩ is a quantum state with components ψi, then observing (or measuring) |φ⟩ collapses
the quantum states to basis vector i with probability |ψi|2.

• We write |φψ⟩ as a shorthand for |φ⟩ ⊗ |ψ⟩. We also write |φ⟩⊗m as a shorthand for the
m-fold tensor product |φ⟩ ⊗ ...⊗ |φ⟩.

The notation in the final item is of use as we will generally deal with many quantum states at
the same time, and taking their tensor product allows us to write the state of this whole system
in a single vector. We will concern ourselves with particular instances of quantum states, namely
qubits.

Definition 2.1.2. A qubit is a pure quantum state over a two state physical system, that is,
a Euclidean norm 1 vector in the Hilbert space spanned by orthonormal basis {|0⟩ , |1⟩}. An
n-qubit register is an n-partite quantum state constructed as the tensor product of n qubits.

Without loss of generality we take |0⟩ =
[
1 0

]T
and |1⟩ =

[
0 1

]T
. Since we will often work

with registers of some variable size n, we won’t be able to denote the basis states directly (as we
would need to write a variable number of 0s and 1s for this). As a solution, we allow ourselves
to denote that 2n basis states with |0⟩ , |1⟩ , ..., |2n − 1⟩. Let us consider an example to tie all
this together.

Since quantum states are individual entities, one might expect their behaviour to be inde-
pendent. This turns our not to be the case. Consider the so-called EPR-pair 1√

2
|00⟩+ 1√

2
|11⟩.

It is not hard to see that measuring either of the states automatically settles the fate of the
other: the quantum states have becomes entangled. This is a strikingly counter-intuitive feature
of quantum mechanics, and a surprisingly useful tool in the hands of the quantum programmer.

2.1.2 Quantum operations

As mentioned above, only linear operations can be applied to transform quantum states into
quantum states. However, not all matrices suffice as some might change the Euclidean norm of
our quantum state to something unequal to 1. Valid quantum operations are thus matrices A
which preserve the Euclidean norm. Recall that a matrix A is called unitary if A−1 = A∗. It
is not hard to show that a matrix A preserves norm iff A−1 = A∗. Quantum operations thus

7

correspond precisely to unitary matrices. Interestingly, since unitary matrices always have an
inverse, operations on quantum states are always reversible: we can undo every operation, and
so no information is lost (or created). This contrasts strongly with measurements, which are
completely non-reversible. We will call unitary matrices that act on a small number of qubits
gates, these will be the building blocks of our quantum algorithms. Some often used 1, 2 and
3-qubit gates are:

The bitflit gate X.

Swap |0⟩ and |1⟩.
X |0⟩ = |1⟩ .
X |1⟩ = |0⟩ .

X =

[
0 1
1 0

]
.

Phaseflip gate Z.

Put a − in front of |1⟩.
Z |0⟩ = |0⟩ .
Z |1⟩ = − |1⟩ .

Z =

[
1 0
0 −1

]
.

Phase gate Rφ.

Rotate phase of |1⟩ by φ.
Rφ |0⟩ = |0⟩ .
Rφ |1⟩ = eiφ |1⟩ .

Rφ =

[
1 0
0 eiφ

]
.

Hadamard gate H.

Set up uniform superposition.

H |0⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ .

H |1⟩ = 1√
2
|0⟩ − 1√

2
|1⟩ .

H =
1√
2

[
1 1
1 −1

]
.

Controlled-not gate CNOT .

Negate bit 2 if bit 1 is set.

CNOT |0⟩ |b⟩ = |0⟩ |b⟩ .
CNOT |1⟩ |b⟩ = |1⟩ |1− b⟩ .

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.

Tofolli gate T (or CCNOT).

Negate bit 3 if bits 1 and 2 are
set.

T |1⟩ |1⟩ |b⟩ = |1⟩ |1⟩ |1− b⟩ .
All bits stay the same otherwise.

T =

I 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

 ,
I is the 4× 4 identity matrix.

Note that we can use the Hadamard gate to set up a uniform superposition. As we will
often do this for registers of more than 1 qubit, we define the shorthand H⊗n for the tensor
product of n simple 2×2 H gates. This is thus a 2n×2n unitary which maps |0⟩⊗n to a uniform
superposition

1√
2n

∑
j∈{0,1}n

|j⟩ .

It is not hard to see that this matrix also maps |i⟩ to
1√
2n

∑
j∈{0,1}n

(−1)i·j |j⟩ ,

which will turn out to be very useful.

2.1.3 Quantum circuits

The above naturally lead to a model of quantum computation: given some input n qubit register
in state |φ⟩, apply any number of quantum gates to (part of) the qubits, with any number of
intermediate measurement of (part of) the qubits, and return a measurement of the final state
|ψ⟩ of the n qubit register. Such a configuration of gates and measurement is called a quantum
circuit, and so this model is called the quantum circuit model 1. This model is then relative

1Though many other (equivalent) models of quantum computation exist, such as the the quantum Turing
machine [Deu85], the cluster-state model [BBD+09] or the adiabatic model [AL18].

8

to the set of quantum gates provided, begging the question which quantum gates we should
implement.

It is not hard to see that no small number of gates suffices to implement every unitary.
This may seem surprising, since classically we can implement any boolean function using just
two small boolean gates: negation and disjunction (or various other combinations of two).
But quantum gates contain complex numbers, and these require in general infinite precision to
implement. As such, we require at least infinitely many quantum gates to express every unitary.
For example, the set of all infinitely many 1-qubit gates and the CNOT gate can express any
unitary. However, this is clearly unreasonable as engineers can’t implement infinitely many gates.
Our best bet, then, becomes finding a small set of gates which can approximate all unitaries well
enough. There are two well-known options. First, the CNOT, Hadamard, and phase gate Rπ/4

can approximate any 1 or 2-qubit gate arbitrarily well. In fact, the Solovay-Kitaev theorem tells
us that exponentially small errors in this approximation require only a polynomial overhead
in gates. Second, the Hadamard and Tofolli gate can approximate any unitary with only real
entries arbitrarily well [dW22].

As noted in the introduction, our complexity measure will be queries, allowing us to largely
disregard the specific model of computation as irrelevant: this serves the specific time or space
complexity far more than the query complexity. As such, we don’t bother defining quantum
circuits more formally than we have already done, in particular ignoring the choice of basic
quantum gates. We recall the asymptotic notation used to express complexity.

Definition 2.1.3 (Bachmann–Landau notation). Let f, g : N → N be functions. Then:

• f ∈ O(g) : ⇐⇒ ∃c∃n0∀n(n > n0 → f(n) ≤ cg(n))

• f ∈ Θ(g) : ⇐⇒ f ∈ O(g) ∧ f ∈ Ω

• f ∈ Ω(g) : ⇐⇒ ∃c∃n0∀n(n > n0 → c · g(n) ≤ f(n)) ⇐⇒ g ∈ O(f)

where c ∈ R and n, n0 ∈ N.

We should however briefly dwell on how to implement quantum queries. It is perhaps not
obvious how this can be implemented using unitaries. A ‘classical’ implementation of a query
to function f might simply map |i⟩ → |f(i)⟩. This is clearly not a unitary, as it is not in general
reversible (i.e. when f is not bijective). Quantum queries are usually implemented by leaving
the index i untouched, and writing the outcomes of the query to a separate qubit (register).

Definition 2.1.4. Let f : {0, 1}n → {0, 1} be a function. A quantum oracle to f is a unitary
Of such that Of : |i, b⟩ 7→ |i, b⊕ xi⟩ for each x ∈ {0, 1}n.

Note that quantum queries can be done in superposition. Often, the target bit b is set to
H |1⟩ = 1√

2
(|0⟩ − |1⟩). The effect of this is that our register is unchanged if the outcome of the

9

query is 0, while our register is negated otherwise:

Ox(|i⟩
1√
2
(|0⟩ − |1⟩)) = |i⟩ 1√

2
((|0⟩ ⊕ xi)− (|1⟩ ⊕ xi)

= |i⟩ 1√
2
(|xi⟩ − |1− xi⟩)

= |i⟩ 1√
2
(−1)xi(|0⟩ − |1⟩)

= |i⟩ (−1)xi
1√
2
(|0⟩ − |1⟩)

= (−1)xi |i⟩ 1√
2
(|0⟩ − |1⟩).

2.1.4 Grover’s quantum search algorithm

We now consider our first example of a quantum algorithm: Grover’s search algorithm. In line
with the topic of this thesis, it is a search algorithm. But unlike the quantum walks search
algorithm that are the object of our study, this search algorithm doesn’t search on a structure
(like a graph), but rather on an unstructed space. Specifically, Grover’s algorithm solves the
following problem.

The search problem.
Let N = 2n. We are given an arbitrary x ∈ {0, 1}N . The goal is to find an index i such that
xi = 1. We denote the number of solutions in x by t (i.e. the number of ones in x).

Classically, the time and query complexity is O(N), as we would need to query all N bits
in the worst-case. We can improve this probabilistically to O(N/t). Grover’s quantum search
algorithm [Gro96] instead requires only O(

√
N/t) queries, and O(

√
N/t logN) other gates. We

present it below, loosely based on chapter 6 of [NC10] and chapter 7 of [dW22].
Grover’s algorithm starts with an n-qubit register |0⟩⊗n, and query access to x, i.e. a unitary

Ox : i, b 7→ i, b ⊕ xi. Call an index i ∈ {0, 1}n good if it corresponds to a marked element, and
bad otherwise. Consider the uniform superposition of indices |U⟩ = 1√

N

∑
i |i⟩. It contains

bad and good indices. Our algorithm should increase the amplitude of good indices, and reduce
amplitude of bad indices. If this is achieved to a sufficient degree, we will have a high probability
to observe a good index upon measurement, and solve the problem.

This is easier said than done. One way to simplify things is to limit ourselves to quantum
states consisting of a uniform superposition of good states |G⟩ = 1√

t

∑
i:xi=1 |i⟩ and a uniform

superposition of bad states |B⟩ = 1√
N−t

∑
i:xi ̸=1 |i⟩. The uniform superposition over all indices

can then be written as: |U⟩ = sin θ |G⟩+ cos θ |B⟩ for θ = arcsin(
√
t/N). By limiting ourselves

to these two quantum states |G⟩ and |B⟩, all quantum states left are on the unit circle in the
2D plane spanned by |G⟩ and |B⟩.

Say |B⟩ is the horizontal axis and |G⟩ the vertical axis. Our state |U⟩ is somewhere in the
first quadrant, its angle being sharper, the less elements are marked. For instance, if 10% of the
elements are marked, |U⟩ will form an angle of 9 degrees with the horizontal axis. Our problem
now reduces to rotating our state towards the vertical axis: the closer we are to there, the higher
the probability to find a marked element when measuring.

We can achieve a rotation towards this axis by applying two reflections: a reflection through
|B⟩, and a reflection through |U⟩. Note that a rotation by an angle 2α is equivalent to reflecting

10

through lines a and b such that the angle between a and b is α. The angle between |B⟩ and |U⟩
is θ so that our proposal constitutes a rotation of 2θ towards the vertical axis.

Reflecting through |B⟩ can be done with the oracle Ox by setting b = H |1⟩: we simply need
to negate the phase of all the bad states. We can reflect through |U⟩ with 2 |U⟩ ⟨U | − I. Let the
Grover iterate G be the unitary performing these two reflections. Each application of G rotates
us 2θ. This brings us iteratively closer to |G⟩, only to overshoot |G⟩ after too many applications.
This raises the question of how many applications of G we should perform.

After k iterations, we are at state sin((2k + 1)θ) |G⟩ + cos((2k + 1)θ) |B⟩, so that when we
measure, the probability of seeing a solution is sin2((2k + 1)θ). We want this to be (as close as
possible to) 1, meaning we wish to converge to an angle of π/2. What is the optimal value k′

for which this occurs?

((2k′ + 1)θ =
π

2
⇐⇒

2k′ + 1 =
π

2θ
⇐⇒

2k′ =
π

2θ
− 1 ⇐⇒

k′ =
π

4θ
− 1/2

Unfortunately, k′ = π
4θ − 1/2 is not always a positive integer. It sometimes is, for example when

t = N/4, so that θ = arcsin(
√
t/N) = arcsin(

√
1/4) = arcsin(1/2) = 30 degrees. This gives

us k′ = 1, as rotating 60 degrees from a starting angle of 30 degrees brings us exactly to |G⟩.
In case k′ isn’t an integer, we can choose the closest integer k, and apply that many Grover
iterations. This yields an error probability, but if we assume t ≪ N , then θ will be small, so
that the error probability also becomes small:

1− sin2((2k + 1)θ) = cos2((2k + 1)θ)

= cos2((2k′ + 1)θ + (2(k − k′)θ)

= cos2(π/2 + 2(k − k′)θ) since (2k′ + 1)θ = π/2

= sin2(2(k − k′)θ)

≤ sin2(θ) =
t

N

How did we derive the final inequality? Since we rounded k′ to the nearest integer k, we have
|k − k′| ≤ 1/2. But then 2|k − k′| ≤ 1 so that 2|k − k′|θ ≤ θ. Since θ ≤ π/2, it follows that
sin(2|k − k′|θ) ≤ sin(θ). Since we square these results, and since | sin(α)| = | sin(−α)| for all α,
we can conclude sin2(2(k − k′)θ) ≤ sin2(θ).

So, we take the rounded value k as the number of iterations. Note that when we express k
non-asymptotically, this is not an upper or lower-bound on the number of iterations, as k can
be larger or smaller than k′ depending on the input. To overcome this, recall that k′ = π

4θ − 1/2
and that the difference |k− k′| ≤ 1/2: we can thus fix the following tight-upper-bound: k ≤ π

4θ .
Rewriting in terms of the input size gives:

k ≤ π

4θ
=

π

4 arcsin(
√
t/N)

≤ π

4
√
t/N

.

11

Algorithm 1 (Grover search). Input: Oracle access to bitstring x ∈ {0, 1}N , i.e. a unitary
Ox : i, b 7→ i, b⊕ xi. Output: An index i, such that the i’th bit in x is set to 1.

1. Set up the starting state |U⟩ = H⊗n |0⟩.

2. Repeat the following k = O(1/
√
t/N) times.

(a) Reflect through |B⟩ by applying Ox with b = H |1⟩.
(b) Reflect through |U⟩ by applying H⊗nR0H

⊗n.

3. Measure and return the contents of the first register.

Note that we only query the oracle once per iteration, so that this algorithm indeed has a
query complexity of O(1/

√
t/N) as claimed above: a quadratic improvement over the classical

optimum. Note that this is quite surprising: if we search for one element among a million
elements, this requires only a thousand checks! We leave the claim that the algorithm requires
O(
√
N/t logN) other gates to the sources cited above.

2.1.5 Phase estimation

We now consider a second example of a quantum algorithm, which will turn our to form the
this backbone of the quantum walk search algorithms that we study in this thesis.

Suppose we have a unitary U with eigenvector ψ, and we wish to determine the corresponding
eigenvalue e2πiφ for φ ∈ [0, 1)2. Classically, this simply comes down to computing Uψ. Of course,
in the quantum setting, this merely results in a quantum state where ψ has amplitude e2πiφ,
which we cannot access. To be able to access the eigenvalue, we would have to express the phase
φ in binary in a register of qubits.

Let us briefly reflect on how to express numbers φ ∈ [0, 1) as bitstrings. Normally, the n bits
in a bitstring denote, from most to least significant, 2n−1, 2n−2..., 21, 20, so that the bitstring
can represent any natural number below 2n. We can naturally extend this to the interval [0, 1)
by letting the bits denote 2−1, 2−2, ..., 2−n+1, 2−n, so that a bitstring can represent any of 2n

uniformly distributed point in [0, 1), i.e. the values k · 2−n for k = 0, 1, ..., 2n − 1. Given φ
expressed as such and using n bits, we can multiply by 2n to shift the bits n places to the left
to obtained the regular bitstring: |2nφ⟩ = |φ1, ..., φn⟩. We want an algorithm to compute this
state for us. To see how we might do this, consider applying a Fourier transform to this state:

FN |2nφ⟩ = 1√
2
(|0⟩+ (−1)φ1 |1⟩)⊗ ...⊗ 1√

2
(|0⟩+ (−1)φn |1⟩) = 1√

N

N−1∑
j=0

e2πiφj |j⟩ .

This state is relatively easy to obtain: apply a Fourier transform to a register |0⟩⊗n, and then
apply U to a second register containing ψ for j times, where j is the number in the first register.
If we then apply an inverse Fourier transform to this state, we obtain |2nφ⟩ as desired. Consider
the following algorithm:

2Note that all eigenvalues of unitary matrices lie on the unit circle, so that we can express it as we did, and
we are really only interested in the phase φ.

12

Algorithm 2 (Phase estimation). Input: Controlled-access to unitary U , eigenvector ψ of U ,
and precision n ∈ N. Output: (Estimate of) the phase of eigenvector ψ.

1. Set up the initial state |0n⟩ |ψ⟩.

2. Apply the Fourier transform FN withN = 2n to the first register, resulting in 1√
N

∑N−1
j=0 |j⟩ |ψ⟩.

3. Apply U to the second register controlled by the first register. That is, if j is the number in
the first register, apply |j⟩ |ψ⟩ 7→ |j⟩U j |ψ⟩ = e2πiφj |j⟩ |ψ⟩, resulting in 1√

N

∑N−1
j=0 e2πiφj |j⟩ |ψ⟩.

4. Apply the inverse Fourier transform F−1
N to the first register, and measure and return the

first register.

In our example above, the phase can be written exactly in n bits, meaning there is some
k ∈ {0, 1, ..., 2n − 1} such that φ = k · 2−n. If this is not possible, the inverse Fourier transform
results in a superposition over bitstrings, whose amplitude peaks around the best approximation
φ̃ (i.e. k · 2−n for k ∈ {0, 1, ..., 2n − 1} which minimises 2nδ := |φ − k · 2−n|). Specifically, the
inverse Fourier transform results in the state:

|α(ψ)⟩ = 1√
N

N−1∑
x=0

N−1∑
j=0

e−
2πij
N

(x−Nφ) |x⟩ |ψ⟩ ,

which is exactly equal to |2nφ⟩ in case it can be expressed in n bits, and otherwise gives a
probability of at least

1

22n

∣∣∣∣1− e2πiNδ

1− e2πiδ

∣∣∣∣2 ≥ 4

π2
≈ 0.405

to observe the closest approximation φ̃.

Theorem 2.1.5 (Phase estimation, [CEMM98]). Let U be a unitary given as a black box, ψ an
eigenvector of U with eigenvalue e2πiφ, and n a natural number. Then Algorithm 2:

1. outputs φ with probability 1 if φ can be expressed in n bits;

2. outputs the best n-bit representation φ̃ of φ with probability at least 4/π2 ≈ 0.405 other-
wise;

3. uses n controlled-U2k operations (i.e. O(2n) U operations) and O(m2) other elementary
operations.

What if the input vector |ψ⟩ is not eigenvector? Then we can simply consider the eigen-
decomposition |ψ⟩ =

∑
i ci |ψi⟩ in the eigenbasis of U , and note that we already know the

behaviour of the algorithm on each of these eigenvectors. Thus, we obtain a superposition over
the outcomes of each eigenvector weighed by the coefficients ci in the eigendecomposition of ψ:∑

i

ci |α(ψi)⟩ |ψi⟩ .

13

Phase estimation, then, ‘resolves’ arbitrary states ψ across the eigenbasis of a given unitary U ,
with probability (quadratically) proportional to the relative weight of each of the eigenvectors
in the eigendecomposition of ψ. In other words, phase estimation still ‘works’ when ψ is not
exactly an eigenvector ψi of U , at the cost of adding some more uncertainty to the algorithm
[NC10, p. 225].

2.1.6 Amplitude estimation

Amplitude estimation is a quantum algorithm that estimate the probability a that a given
quantum circuit with given starting state gives a particular (set of) state(s) as outcome.

Theorem 2.1.6 (Amplitude Estimation, [BHMT02], Theorem 12). Let U be a unitary on m
qubits and let U |0m⟩ = |ψ⟩ = sin θ |ψgood⟩+cos θ |ψbad⟩. For every positive integer s there exists
a uniformly generated quantum circuit C acting on s+m qubits such that

1. measuring the first register of C |0s⟩ |φ⟩ results in an integer y ∈ {0, 1, ..., 2s − 1} = [2s− 1],
corresponding to an estimation θ̃ = πy/2s of θ, and therefore an estimate ã = sin2(θ̃) of
the success probability a = sin2(θ);

2. the probability that this estimate is optimal is high: Pr(|a− ã| ≤ ϵa) ≥ 8/π2, where

ϵa =
2π
√
a(1− a)

2s
+ (

π

2s
)2 ≤ π

2s
+ (

π

2s
)2.

3. C uses s controlled-U2k operations (i.e. 2s − 1 ∈ O(2s) U operations) and O(s2) other
elementary operations.

‘Under the hood’, amplitude estimation is estimating the angle θ, which is then translated
to an estimate ã = sin2(θ̃) of a. Using s bits, we estimate θ with a precision of π/2s, so that
the best estimate of θ (which we output with probability at least 8/π2) is the nearest πk/2s for
an integer k ∈ [2s − 1]. It follows that the difference between θ and our estimate is at most
ϵθ ≤ π/2s. Translating this error range to a then gives us (see e.g. [BHMT02, Lemma 7])

sin2(θ + ϵθ)− sin2(θ) =
√
a(1− a) sin(2ϵθ) + (1− 2a) sin2(ϵθ),

sin2(θ)− sin2(θ + ϵθ) =
√
a(1− a) sin(2ϵθ) + (2a− 1) sin2(ϵθ).

To derive the upper-bound in the lemma, note that sin(x) < x for small x, so we are safe to
remove the sin functions. Note that both 1−2a and 2a−1 are at most 1, so we can remove this
factor from the second term. This then yields the upper-bound

√
a(1− a)2ϵθ + ϵ2θ. By finally

noting that
√

(a(1− a)) is at most 1/2 (when a = 1/2), we get the upper-bound ϵa ≤ ϵθ + ϵ2θ.
When we need to use ϵa within our algorithms, we will make use of this final upper-bound, as
we have no access to a (this is what we are estimating!) within the algorithm.

Sometimes amplitude estimation is phrased using an additional variable k such that:

Pr(|θ − θ̃| ≤ kπ/2s) ≥ 1− 1

2(k − 1)
= 1− 1

2(k2s/π − 1)
,

14

phrased in terms of θ for convenience. The utility of this lies in being able to set the error range
yourself, and having the error probability increase exponentially with s. However, one can easily
see that for k < 6 the success probability is lower than 8/π2. At the same time, the error range
widens significantly. It begs the question whether this method does pay off for larger k.

That is, say we wish to bound the error range in our amplitude estimates to at most δ, and
say that we have found s so that π/2s ≤ δ. If we move to k ≥ 2 we then need to find s′ such
that kπ/2s

′ ≤ δ. Solving kπ/2s
′
= π/2s gives k = 2s

′−s so that incrementing k adds one bits of
precision, and therefore doubles the number of queries. This shows that increasing k to increase
the success probability is not optimal: a linear decrease of the success probability requires an
exponential increase in queries, whereas Chernoff’s bound tells us that simply repeating the
k = 1 algorithm nets an exponential decrease of the success probability with a linear increase in
queries (repetitions).

In our applications of amplitude estimation, then, we move forward with the k = 1 algo-
rithm.

2.2 Random and quantum walks

In this section we sketch the intellectual background of the quantum walk algorithms that we
study. In section

2.2.1 we introduce classical random walks or Markov chains;

2.2.2 we introduce their quantum counterparts;

2.2.3 we consider how these walks can be used in search algorithms.

2.2.1 Random walks

Informally, a random walk is a stochastic process which describes a path on some mathematical
space as a succession of random steps. For example, the following describes a random walk on
the integers: start at 0, and successively move +1 or −1 with equal probability. Random walks
on graphs are an instance of a more general type of stochastic process: Markov chains.

Definition 2.2.1. A discrete-time stochastic process x = (X0, X1, ...) = (Xt)t∈T on a state
space V with |V | = n and time space T is a discrete-time Markov chain if for all t: Pr(Xt =
vt|Xt−1 = vt−1, ..., X0 = v0) = Pr(Xt = vt|Xt−1 = vt−1).

We will only consider Markov chains on finite state-spaces, and so allow ourselves to drop the
prefix “finite state”. The equation in the definition is called the Markov property. It says that
proceeding from state vt−1 to state vt depends only on vt−1, and not on further proceeding states.
As such, the behaviour of a Markov chain is fully captured by an |V | × |V | matrix P such that
P (i, j) = Pr(Xt = vi|Xt−1 = vj) for all t ∈ T . We can (and will) thus equate a Markov chain
with its transition matrix P . To be complete, we should also specify some initial distribution
for X0. This in turn fixes the distribution for each subsequent random variable. Note that we
can describe a distribution over state space V with a vector σ ∈ Rn. Let Prσ0(Xt = vt) denote
the probability that Xt = vt, given that X0 is distributed according to σ0. It is easy to see

15

that given σ0, we can compute σ1 = σ0P , and more generally, σt = σ0P
t3. We can now define

random walks.

Definition 2.2.2. Let G = (V,E) be a simple undirected graph with edge weights w : E → R≥0.
A random walk on G is a Markov chain with state space V and transition matrix P (i, j) =
w((vi, vj))/w(vi), where w(vi) is the sum of weights of edges incident to vi.

It is not hard to see that generalising the above definition to directed graphs makes random
walks and Markov chains equivalent: there is a one-to-one correspondence between such random
walks and (finite state discrete-time) Markov chains [Lov93]. The class of random walks as
defined here are thus a subclass of all Markov chains4. We call a distribution π stationary for
P if π = πP . One of the most fundamental theorems in the study of Markov chains is that
most Markov chains have a unique stationary distribution that they converge to. Specifically, all
irreducible and positive-recurrent Markov chains have a unique stationary distribution π(i) =
1/ti, where ti is the expected time for P starting in state vi to walk back to vi [LPW+17,
Proposition 1.19]. A Markov chain is irreducible if any two states can reach each other, and
positive-recurrent if ti is finite for every state vi

5. Markov chains that are also aperiodic converge
to the unique stationary distribution from every starting distribution [LPW+17, Theorem 4.9]6

A Markov chain is aperiodic if the period of each state is 1, where the period of a state x is the
greatest common divider of all the times t when x can return to itself.

It is well known that irreducible Markov chains are equivalent to random walks on fully-
connected graphs, and aperiodic Markov chain are equivalent to random walks on non-bipartite
graphs. Note also that symmetric Markov chains (i.e. having a symmetric transition matrix)
are equivalent to random walks on regular graphs [LPW+17, AGJ21]. Thus, a random walk on a
fully-connected graph has a unique stationary distribution, and if the graph is non-bipartite, the
random walk converges to this unique stationary distribution from every starting distribution.
It is easily seen that the distribution π with π(i) =

∑
(vi,vj)∈E w((vi, vj))/2W , where W =∑

e∈E w(e) is the sum of edge weights, is stationary for all random walks.
This stationary distribution has great algorithmic importance. For example, note that the

distribution is similar to the uniform distribution (indeed, for regular graphs it is the uniform
distribution). By deriving the expected time to converge, we can effectively sample from the
uniform distribution simply by taking a number of random walk steps; something which can be
done even in situations with only local access to a graph. For another example, if you wish to
detect whether a graph has a certain property, you might be able to show that the stationary
distribution will differ depending on whether the graph has this property, so that repeated
applications of the random walk will allow you to detect this. This fact turns out to be the basis
for quantum walk search algorithms, which we will study a bit later.

A final definition we will need is the hitting time. The hitting time is a random variable
τv,M representing the first time t that a random walk starting at vertex v reaches or ‘hits’ a

3To see this, note that a row i of P is a probability distribution denoting the probability to traverse from state
vi to each of the other states vj . Multiplying u with P then computes a linear combination of these probability
distributions, weighed by the current probability distribution u.

4Specifically, the class of time-reversible Markov chains. A Markov chain is time-reversibile if Pr(Xt =
vt, Xt+1 = vt+1) = Pr(Xt = vt+1, Xt+1 = vt) for all t ∈ T . This should make some intuitive sense: undi-
rectedness of the graph means that we can always walk back along an edge.

5Note that finite state Markov chains are always positive-recurrent, so we can ignore this.
6The term ergodic is often used to describe irreducible and aperiodic matrices, so that this theorem is often

stated for ergodic matrices, which can be slightly confusing if the finiteness of the Markov chain is implicit.

16

vertex in M . Formally, τv,M : Ω → N is defined by τv,M (ω) = min {n ∈ N | Xn(ω) ∈ A|X0 = v}.
Somewhat confusingly, in the literature, ‘hitting time’ often refers to the expected value of this
random variable. Since this is the quantity that will be of most interest to us as well, we will
follow this convention. So let us define the notation HT (v,M) := E(τv,M), and HT (σ,M) =∑

vi∈V σ(i)HT (vi,M).

2.2.2 Quantum (random) walks

In classical random walks, though the walker is always in a definite state, randomness arises
due to the stochastic transitions between states. This is not possible for quantum algorithms
as unitary operations are invertible, and therefore not stochastic; the only randomness that can
arise in a quantum algorithm is the collapse of a superposition. We therefore usually speak of a
quantum walk, omitting the word ‘random’.

A necessary requirement for any quantum walk is then to extend our state to make steps
between (superpositions of) vertices reversible. Clearly, being able to reverse a step from,
say, vertex v to neighbour u requires remembering what v was. One way to achieve this
would be to extend our state to encompass two vertices, so that we include all possible transi-
tions v → u as basis states, giving us the Hilbert space C|V | ⊗ C|V | with computational basis
{|a, b⟩ | a ∈ V, b ∈ B}. Of course, this is overkill, as some pairs of vertices might not have edges
between them. We could therefore also restrict to the actual ‘walk space’ of the walk, i.e. the
edges in the graph, which would yield the Hilbert space C

∑
v∈V deg(v) = C2|E| with computational

basis {|a, b⟩ | a ∈ V, b ∈ B, a ∼ b}. To simplify presentation, we will consider the full C|V |⊗C|V |

space, restricting implicitly to the walk space.
Given a basis-state |v, u⟩, we can now interpret v as the current vertex, and u as the vertex we

will step to in the next time step (or vice-versa). How can we now implement a walk? Suppose
C is a unitary which, for each vertex, sets up a superposition over the neighbours. Let S be a
unitary which ‘steps’ from the current vertices to the neighbours specified in the superposition.
Then W = SC can be interpreted as taking one walk step. If we measure after applying C, we
collapse the superposition over neighbours to just one neighbour, and S then moves us to this
one neighbour, resulting in a classical random walk. But if we don’t measure and choose the
right C, we could attain interference effects, leading to truly ‘quantum’ walks.

To see this clearly, consider an example of the unitaries S and C. Let S be the flip-flop shift
defined by S |v, u⟩ = |u, v⟩ for all v, u ∈ V . Let C be the Grover diffusion operator:

C = 2
∑
v∈V

|φv⟩ ⟨φv| − I,

where

|φv⟩ =
1√

deg(v)

∑
u∼v

|v, u⟩ .

That is, for each vertex v, C reflects the basis states |v, ui⟩ (where ui’s are the neighbours of v)
through the uniform superposition |φv⟩. In effect, this inverses the amplitude of a basis state
|v, ui⟩ around the mean amplitude of basis states having v as current vector. Note that this is
not the same as a uniformly spreading the sum of amplitude of basis states having v as current
vector over all v’s neighbours (i.e. a classical random walk), and in particular this method can
lead to negative amplitudes, despite the total amplitude being preserved.

Example 2.2.3. Suppose our graph includes the vertices v, u1, u2 and u3, where v is connected
to all vertices ui. Suppose that the amplitude at |v, u1⟩ and |v, u2⟩ is 1/20 and the amplitude

17

at |v, u3⟩ is 1/2. The sum of amplitude at vertex v is then 12/20, while the mean over the basis
states having a as current vector is 4/12.

Applying C, we invert the basis states’ amplitude around this mean, so that the amplitude
at |v, u1⟩ and |v, u2⟩ becomes 7/20 while the amplitude at |v, u3⟩ becomes −2/20. Now applying
S, the amplitude at |u1, v⟩ and |u2, v⟩ is 7/20 and the amplitude at |u3, v⟩ is −4/20.

This is called a coined quantum walk, a name derived from the unitary C often being called
the “coin”, and the additional vertex register begin called the “coin register”. This is the first
type of quantum walk proposed. It was introduced in [ADZ93], extended to arbitrary graphs
in [AAKV01], and used as basis for the first quantum walk search algorithm in [SKW03]. Note
that both S and C can be different from the flip flop shift and Grover coin. For example, the
Hadamard gate is often used as a coin, while in d-regular graphs, there is often a “coin” register
of fixed size d, so that the shift from |i, v⟩ simply selects the i’th neighbour of v : |i, ui⟩.

Shortly after, Szegedy proposed what came to be called the Szegedy quantum walk [Sze04].
He defines a walk unitary W (P) on a classical Markov chain P , the idea being that this is a
direct quantisation of P . His walk turns out to be equivalent to two applications of the coined
quantum walk as defined above, i.e. with Grover “coin” and flip-flop shift. The walk takes
place on the edges of a bipartite graph, but if the given Markov chain is a random walk on
a non-bipartite graph G, we can simply use its bipartite double cover G × K2

7. Thus, if we
consider an arbitrary graph G = (V,E), the walk takes place on G ×K2 with bipartite sets A
and B such that A = B = V , so that we have the same Hilbert space C|V | ⊗ C|V | as with the
coined quantum walk, with the same computational basis {|a, b⟩ | a ∈ V, b ∈ B}.

Szegedy defines his walk as W (P) = R2R1 where R1 and R2 are Grover diffusion operators,
with R1 reflecting from X to Y , and R2 from Y to X:

R1 = 2
∑
v∈X

|φv⟩ ⟨φv| − I,

R2 = 2
∑
u∈Y

|ψu⟩ ⟨ψu| − I,

where

|φv⟩ =
1√

deg(v)

∑
v∼u

|v, u⟩ ,

|ψu⟩ =
1√

deg(u)

∑
u∼v

|v, u⟩ .

Note that R2 = SR1S (where S is the flip-flop shift): R1 and R2 differ only in the direction
in which they consider edges, so that swapping the edges before and after applying R1 results
exactly in R2. As already noted above, the computational bases of the coined and Szegedy walk
coincide: they each have one basis state for each directed edge |vu⟩. We can thus easily bring
these into a one-to-one correspondence, and it is not hard to see that the result is that R1 and
C (the Grover coin) coincide, so that one step of Szegedy’s walk WS = R2R1 = SR1SR1 is
then equivalent to two steps of the coined walk W with Grover “coin” C and flip-flop shift S
[Won17].

7Note that K2 is the complete graph on 2 vertices, and that × is the Cartesian product on graphs, so that the
result is two copies - X and Y - of G’s vertex set V , with x ∼ y for x ∈ X and y ∈ Y if and only if x ∼ y in the
original graph G.

18

One main advantages of Szegedy’s walk, and also one of the main motivations of Szegedy,
is its direct quantisation of Markov chains. Note that in our definition of φv and ψu we ‘baked
in’ a classical random walk, by adding uniform amplitudes 1/

√
deg(v) over edge neighbours.

Szegedy defined φv and ψu relative to a Markov chain P as follows:

|φv⟩ =
∑
u∈Y

√
Pv,u |vu⟩ =

∑
v∼u

√
Pv,u |vu⟩

and likewise for ψu. Not only does this allow direct quantisation of classical algorithms involving
Markov chains, Szegedy showed it also allowed analysis of properties ofWS (for instance, hitting
time) in terms of (the spectrum of) the underlying Markov chain P .

2.2.3 Searching with walks

Recall that Grover’s algorithm (see section 2.1.4) solved a search problem on an unstructured
search space. We now consider a structured search problem (on a graph), and see how we can use
a classical random walk to solve it. Then we consider Szegedy’s quantum walk search algorithm,
which solves the detection problem quadratically faster than this classical algorithm.

As noted in the introduction, Szegedy’s algorithm suffers two main limitations: it has to
start from a specific distribution over the entire graph, and only detects whether a marked
vertex exists. In Chapter 3 we study Belovs’ generalisation of Szegedy’s algorithm which allows
arbitrary starting distribution (this allows backtracking, which must start from the root of a
tree), and in Chapter 4 we study Piddock’s generalisation of Belovs’ algorithm which also finds
a marked vertex.

The graph search problem.
Let G = (V,E) be an undirected graph. Let M ⊆ V be a set of marked vertices. The goal is to
determine whether M ̸= ∅ (decision version), or to find some v ∈M (search version).

Classical random walk search A classical random walk makes easy work of this problem:
starting from some distribution σ, simply walk, check if the vertices you encounter are marked,
and return the first marked element you find. The name “hitting time search” is fitting, as the
runtime of this algorithm comes down to the hitting time: after that many steps, we expect to
have hit a marked element, so that if we haven’t, it is safe to conclude no marked elements exist.

Theorem 2.2.4 ([MNRS07]). The classical ‘hitting time’ search algorithm detects the presence
of a marked vertex with high probability, and if so finds it, with complexity

S +HT (σ,M)(U + C),

where S is the cost to set up the initial state v, U the cost to perform a random walk step, and
C the cost to check whether a vertex is marked.

‘Cost’ is left intentionally undefined, so as to cover whatever measure of complexity currently
of interest. In our case, it will be expected query complexity. This algorithm is optimal in the
number of walk steps: the algorithm finds the very first marked element it comes across. It is not
optimal in the number of checks, however. An alternative would be to walk until you converge

19

to the stationary distribution, and only then check whether the current vertex is marked. The
algorithm then effectively samples from the stationary distribution, and it can be shown that
this algorithm is optimal in the number of checks, though clearly not in the number of walk
steps [San08]8.

Szegedy’s quantum walk search A quantisation of the above ‘hitting-time’ algorithm was
introduced by Szegedy [Sze04], and uses his quantum walk as defined in section 2.2.2. Although
his quantisation of Markov chains admitted arbitrary Markov chains, his search algorithm is
only defined for irreducible, aperiodic (i.e. ergodic) and symmetric Markov chains, where we
recall that this is equivalent to a random walk on a fully-connected, non-bipartite and regular
graph. He also only considers unweighed graphs. His algorithm solves the decision problem for
all such graphs quadratically faster than the classical algorithm outlined above.

Classically, the ‘hitting time’ search algorithm works because the random walker is always
in a definite vertex: if the hitting time is HT (σ,M) and we check each vertex we come across,
we expect to find some marked vertex after this many steps. But the quantum walk W (P) is in
a superposition over vertices (rather, over edges), and only after collapsing this superposition
can we check if the problem is solved. This means hitting time is not a quantum notion, as
we don’t truly hit the set M with the current vertex, but at most assign a significant portion
of amplitude to vertices in M . We could try to define a ‘quantum hitting time’ along these
lines (“expected number of steps before we assign at least x amplitude to marked vertices”), but
this wouldn’t help us, as this doesn’t mean at all that collapsing the superposition after t steps
gives high probability of hitting M . It would only mean that after t steps, one of the previous
superpositions is expected to yield a marked vertex if we had measured it. In short, the quantum
walk is unable to detect whether a current superposition is adequate without collapsing it, and
so the walk will walk past decent superpositions.

Szegedy’s solution is the alter the underlying classical walk P into P ′ where outgoing edges
from marked vertices are replaced with a self-loop. The walk is then unable to leave marked
vertices, so that as time goes on, the probability to observe a marked vertex increases monoton-
ically. This is called the absorbing walk of P . We can now define a quantum analogue of hitting
time corresponding to the first time when a significant amount of amplitude has been shifted to
marked vertices.

To define this, consider first how we might express the hitting time HT (π,M) of P in terms
of P ′. Note that, whenever there are marked vertices M ̸= ∅, the absorbing walk P ′ will have a
different stationary distribution from P (as it behaves differently on marked vertices). In other
words, πP ′t will at some point start diverging significantly from π, specifically when we first hit
a marked vertex, i.e. for t = HT (π,M), as this is the time when we expect to first hit a marked
vertex. Thus, the smallest t for which |πP ′t−π| grows significantly large roughly coincides with
HT (π,M) of P .

Quantising this, we can take the smallest t for which |φ0W (P ′)t − φ0| grows significantly
large as a measure for quantum hitting time, where

φ0 :=
1√
n

∑
x,y∈V

√
P (x, y) |x, y⟩ ,

is a natural choice for a starting state, as it’s invariant under W (P) (though W (P) does not

8Though we limit ourselves in this thesis to hitting time search algorithms, there are also quantum versions of
this alternative algorithm which samples from the stationary distribution. See [MNRS07].

20

converge to it), but not under W ′(P). Let us now consider Szegedy’s quantum hitting time
definition and its relation to classical hitting time. Let PM denote the transition matrix of
Markov chain P with rows and columns indexed by vertices in M removed.

Definition 2.2.5. For quantised walk WP and marked set M we define the hitting time of WP

with respect to target set M as the smallest number of steps HT (WP ,M) = T for which

1

T + 1

T∑
t=0

∣∣W (P ′)tφ0 − φ0

∣∣2 ≥ 1− |M |
|V | .

Lemma 2.2.6 ([Sze04], Lemma 6). Let v1, ...,vn−|M | be the normalised eigenvectors of PM

with associated eigenvalues λ1, ..., λn−|M |. For û = 1√
n
1n−|M |, define coefficients v1, ..., vn−|M |

such that û =
∑n−|M |

k=1 vkvk. Then:

HT (WP ,M) ≤ 100

1− |M |/|V |

n−|M |∑
k=1

v2k

√
1

1− λk
.

Let PM be the matrix obtained by removing columns and rows of P indexed by some x ∈M ,
and similarly ΣM for a probability distribution vector σ. Then we can write:

HT (σ,M) = σM (I −D(P)M)−11,

where 1 is the all-ones vector [Sze04, Equation (1)]. This expression allows an elegant decom-
position using the spectrum of PM , which is exactly the content of the square root in the above
upper-bound: TODO

Corollary 2.2.7 ([Sze04], Corollary 1). For every irreducible, aperiodic (i.e. ergodic) and sym-
metric Markov chain P with state space X, and for every set M ⊆ X with |M | ≤ |X|/2,
the quantum hitting time is of the order of the square root of the classical hitting time:
HT (WP ,M) ∈ O(

√
HT (π,M)).

How do we use this result to create an algorithm for the detection of marked vertices? Note
that in this detection problem, we are effectively given a walk unitary W and wish to determine
whetherW =W (P) (there are no marked elements) orW =W (P ′) (there are marked elements).
We know from above that φ0 is invariant under W (P), while φ0 diverges significantly within
HT (WP ,M) under W (P ′). By applying the walk W HT (WP ,M) many times, we can thus
detect which setting we are in. We might also find a marked vertex, but note that we don’t
need to, and so we might detect a marked vertex without finding it.

21

Theorem 2.2.8 ([Sze04], Lemma 7). Let T be an upper-bound for

200

n−|M |∑
k=1

v2k

√
1

1− λk
.

Szegedy’s quantum hitting time search algorithm determines whether a marked element exists
with complexity

O(S + T (U + C)) = O(S +
√
HT (π,M)(U + C)),

where S is the cost to set up the initial state φ0, U the cost to apply the quantum walk unitary,
and C the cost to check whether a vertex is marked.

Szegedy also showed that in case the graph is state-transitive we can find marked elements
through binary search, however, since subsequent algorithms have already solved the search
problem for general cases, we won’t bother discussing Szegedy’s proposal here.

2.3 Classical and quantum backtracking

In section

2.3.1 we define classical backtracking algorithms;

2.3.2 we introduce Montanaro’s quantum backtracking algorithm;

2.3.3 we introduce DPLL, a classical backtracking algorithm for SAT.

2.3.1 Classical backtracking

Backtracking is a common technique for solving constraint satisfaction problems (CSP) like
SAT. Such problems can be described as follows: given a predicate P : [d]m → {⊥,⊤} where
[d] = {0, .., , d− 1}, find an assignment x to the m variables such that P (x) is true, or output
“not found” when no such x exists. For some such problems, we have the ability to recognise
whether a partial assignment can be extended to a complete solutions, SAT being a prime
example. This often allows one to ‘prune’ the search tree at a high level, cutting off potentially
many lower branches of the tree. Let D := ([d]∪{∗})m where ∗ is interpreted as a blank, so that
x ∈ D are assignments, where x is complete if it contains no ∗’s. A general classical backtracking
algorithm is then as follows.

22

Algorithm 3 (General classical backtracking). Input: Access to predicate P : D → {⊤,⊥, indeterminate},
heuristic h : D → {1, ..., n} which returns the next index to branch on from a given partial as-
signment, and some assignment x ∈ D. In the initial run, x = (∗)m. Output: An assignment
x ∈ D such that P (x) = ⊤ if it exists, ⊥ otherwise.

1. If P (x) is true, output x and return.

2. If P (x) is false, or x is complete, return.

3. Set j := h(x).

4. For each w ∈ [d] :

(a) Set y to x with the j’th entry replaced with w.

(b) Call this algorithm with assignment y.

2.3.2 Montanaro’s quantum backtracking

Since the backtracking algorithm generates the search tree on the fly, neither Grover search
nor Szegedy’s quantum walk search will be of much help. Both require generating the entire
backtracking tree before starting the search, defeating the purpose of backtracking in the first
place.

If we would be able to start a quantum walk from the root vertex of the backtracking tree - as
we do classically - we would be able to obtain a quadratic speed-up. This is what Montanaro did
[Mon16], making use of Belovs’ quantum walk search algorithm that could start from arbitrary
starting distributions. We will define Belovs’ algorithm in Chapter 3, for now taking for granted
that it is able to start from any starting distribution.

Montanaro then showed how the quantum walk unitary RBRA can be implemented from the
black box operations h and P , so that we can use Belovs’ algorithm on a classical backtracking
tree. In particular, this implementation comes at no extra query cost, so that we can simply
study the query complexity of Belovs’ and Piddock’s quantum walk algorithms, in the knowledge
that we can apply them to speed-up classical backtracking algorithms at no extra cost. We
assume, as Montanaro does, that we can apply RBRA with one query to h and one query to P .

Montanaro restates the complexity O(
√
RW) of Belovs’ algorithm in terms of the total nodes

in the tree T (equal to W) and the maximum depth of the tree m (upper-bound on Rσ,M). The
speed-up over classical backtracking algorithm that he then shows is as follows.

Theorem 2.3.1 ([Mon18], Theorem 1). Let T be an upper-bound on the number of vertices in
the tree defined by a classical backtracking algorithm. For any δ ∈ (0, 1) there exists a quantum
algorithm which, given T , determines with probability at least 1 − δ whether there exists an x
such that P (x) = 1, and evaluates P and h O(

√
Tn log(1/ϵ)) times each.

Importantly, the algorithm requires and an upper-bound T , and this T upper-bounds the
size of the entire backtracking tree, not just the size of the tree after a classical backtracking

23

algorithm finds its first solution (which may be much smaller than the full size).

2.3.3 DPLL algorithm for SAT

Recall that in SAT, we are given a propositional formula, and are asked whether it has a
satisfying assignment. Since every propositional formula can be written in conjunctive normal
form (CNF) (i.e. a conjunction of disjunctions of (negated) propositions), and in particular in
3-CNF (a conjunction of disjunctions of exactly 3 (negated) propositions), the problem is usually
studied for such formulas. In this case, it is referred to as k − SAT. Usually k = 3 is taken, as
for k ≥ 3 the problem is NP−complete; for k = 1 or k = 2 the problem is solvable in polynomial
time.

This problem is of course a clear instance of the general CSP outlined above. If we set d = 2,
so that each variable has two options, the predicate P : 0, 1n → ⊥,⊤ which defines the given
CSP simply is our propositional formula. We can also easily instantiate the general backtracking
algorithm outlined above: we can implement P : D → {⊤,⊥, indeterminate} by noting that we
can evaluate formulas with partial assignments, which can sometimes tell us whether the formula
is satisfiable or not. We can of course implement a heuristic h : D → {1, ..., n} however we wish,
but the key to efficient solving is to exploit the structure of the formula as much as possible to
pre-emptively cut off branches of the search space.

The best known algorithm that does this is the DPLL algorithm [DP60, DLL62]. Its heuristic
has two main parts: it seeks unit clauses (i.e. clauses containing a single literal) as these must
be set to satisfy whatever is in them; and it seeks pure literals (i.e. variables occurring with one
polarity) as these can safely be satisfied. Its heuristic first seeks unit clauses and pure literals,
and satisfies these. Only after this does it select a variable to recurse on.

24

Chapter 3

Detection

In this chapter, we study Belovs’ quantum walk search algorithm [Bel13]. Belovs’ algorithm
was the first algorithm able to detect the presence of a marked element in a graph in most the
square root of the classical hitting time, while starting from an arbitrary starting distribution.
In section

3.2 we motivate and introduce Belovs’ definitions;

3.2 we break down and fill in various detail in Belovs’ proof of the correctness of his algorithm;

3.3 we give an exact expression for the query complexity of the algorithm, and consider two
method to amplify the success probability of the algorithm;

3.4 we specify the optimal combination of these two amplification methods, in turn yielding
an optimal configuration of the algorithm in general, improving over the configurations
used by Belovs’ and Montanaro [Mon16].

3.1 How to quantum walk from arbitrary starting distributions

A major drawback of Szegedy’s quantum walk search algorithm (as seen in Section 2.2.3) is its
requirement to start from the particular initial state φ0: it relies on the this state being invariant
(i.e. an eigenvalue-1 eigenvector) under the walk operator in case there are no marked elements,
while not being invariant in case there are marked elements. Repeated applications of the walk
operator then reveals which is the case

How could this be generalised to arbitrary starting distributions σ? Clearly, not every
starting distribution has the property of being invariant if and only if there are (no) marked
elements. When some σ is not invariant the best we could do is to find some σ′ which does
have this property, and which significantly overlaps with σ. Repeated applications of the walk
to σ can then reveal which is the case. However, as the distance between σ and σ′ grows,
the change to σ due to this distance could overshadow the change caused by marked vertices
existing. A more error-prone method then becomes quantum phase estimation (see 2.1.5),
repeated applications of which can resolve σ to an eigenvalue-1 eigenvector (no marked vertices)
or some other eigenvector, with high probability.

Does a suitable σ′ always exist? The best candidate would be the projection of σ onto the
invariant space of the walk operator. But this is clearly too limited to allow arbitrary starting
distributions: just consider a starting state that is orthogonal to this invariant space. Belovs’

25

overcomes this hurdle by expanding the walk space, and defining the walk operator in terms of
the starting distribution. This ends up guaranteeing an eigenvalue-1 eigenvector which overlaps
significantly with the chosen starting distribution σ if and only if there are marked elements.

Specifically, let G = (V,E) be an undirected, fully-connected and bipartite graph with
bipartitions A and B and weights w. Belovs adds an additional register to the Hilbert space for
each vertex occurring with non-zero amplitude in the starting state, so that the computational
basis becomes {|u⟩ | u ∈ S} ∪ {|e⟩ | e ∈ E}, where S is the support of σ. Let Hu denote the
local space of u, the space spanned by all |(u, v)⟩ for (u, v) ∈ E, and also |u⟩ in case u ∈ S
[Bel13].

Belovs defines his walk operator by making connections to electrical network theory. Let
W =

∑
e∈E w(e) be the sum of edge weights. Let M ⊆ V be the set of marked elements. A

flow from σ to M is a function f : E → R such that for all edges f(uv) = −f(vu) and for all
non-marked vertices u, the flow has σu =

∑
vu∈E f(uv). In short: σu flow is injected into vertex

u, flows through the graph, and is removed at a marked vertex. The energy of a flow is given by∑
e∈E

p(e)2

w(e)
.

The effective resistance Rσ,M is the minimal energy of a flow from σ toM . The flow attaining this
minimal energy is called the electrical flow. Note that the flow at a wire can exceed the weight of
the edge (unlike in flow networks), akin to the electrical potential difference (‘voltage’) exceeding
the resistance of a wire. Indeed, the above statement of energy is really just a paraphrasing of
Ohm’s law, where the flow is the potential difference across an edge.

Belovs defines the walk operator as W = RBRA =
⊕

u∈ADu
⊕

u∈B Du where Du is a
reflection in the local space of vertex u, i.e. the space spanned by |uv⟩ ∈ E and |u⟩ if u ∈ S.
Specifically:

• If u is marked then Du is the identity.

• If u is not marked, then Du reflects around the orthogonal complement of ψu in U where

ψu =

√
σ(u)

C1R
|u⟩+

∑
uv∈E

√
w(uv) |uv⟩ ,

C1 > 0 is a constant, and R is a given upper-bound on the effective resistance from σ
to M . Note that this also applies to u /∈ S, asn then the first term in the above simply
disappears.

Effectively, what this does is add a new starting vertex s′ and additional edges s′u for every

vertex u with weight w(s′u) =
√

σ(u)
C1R

. Phrased like this, the definition of Belovs quantum walk

is equivalent to Szegedy’s. It turns out that the invariant vector |φ⟩ is the electrical flow state:
an encoding of the electrical flow. By increasing C1, we can alter this state to have more weight
on the starting vertices. This then increases the overlap between the starting distribution and
|φ⟩, and therefore the probability to determine the phase of |φ⟩ when doing phase estimation
on the starting distribution.

26

Algorithm 4 (Belovs’ quantum walk search). Input: An undirected, strongly connected and
non-bipartite graph G = (V,E) with weights w and marked subset M ⊆ V , upper-bound R on
the effective resistance Rσ,M , constant C, and starting distribution σ. Output: True if M ̸= ∅,
false if M = ∅.

1. Start in state |σ⟩ =∑u∈V
√
σu |u⟩.

2. Apply phase estimation on unitary RBRA and vector |σ⟩ with precision 1/(C
√
RW).

3. Output true if the resulting eigenvalue is 1, and false otherwise.

Theorem 3.1.1 ([Bel13], Theorem 4). Given an undirected graph G = (V,E) with weights w
and marked subset M ⊆ V , starting distribution σ, upper-bound W on the weight of the graph
and upper-bound R on the effective resistance Rσ,M .

For any δ ∈ (0, 1), Algorithm 4 determines whetherM is empty with success probability 1−δ
and uses RBRA O(RW) times.

Note that the classical hitting time can be written as Hσ,M = 2WRσ,M [Bel13, Theorem 1],
so that this is exactly a quadratic improvement over classical random walks, and therefore a
true generalisation of Szegedy’s detection algorithm to arbitrary starting distributions.

3.2 Belovs’ proof

We now give a breakdown of Belovs’ proof of the above Theorem 3.1.1, filling in several details
left out by Belovs. We will use following standard result.

Lemma 3.2.1 (Effective spectral gap lemma, [LMR+11]). Let ΠA and ΠB be two orthogonal
projectors in the same vector space, and RA = 2ΠA−I and RB = 2ΠB−I be reflections around
their image. Assume PΘ with Θ ≥ 0 is the orthogonal projectors on the span of the eigenvectors
of RBRA with eigenvalues eiθ such that |θ| ≤ Θ. Then, for any vector w such that ΠAw = 0,
we have

||PΘΠBw|| ≤
Θ

2
||w||.

Proof of Theorem 3.1.1. We start with the correctness. Let |σ⟩ =∑v∈V
√
σu |u⟩ be the starting

distribution of the algorithm and suppose that the graph containing a marked vertex. We wish
to find an eigenvalue-1 eigenvector |φ⟩ of U which has a large overlap with |σ⟩. We propose

|φ⟩ =
√
C1R

∑
u∈S

√
σu |u⟩ −

∑
e∈E

pe√
w(e)

|e⟩ .

Since U reflects about the orthogonal complement of each |ψu⟩ in Hu, showing that |φ⟩ is

27

invariant under U means showing |φ⟩ is orthogonal to each |ψu⟩. Let u be arbitrary and consider

⟨φ|ψu⟩ =
〈√

C1R
∑
u∈S

√
σu |u⟩ −

∑
e∈E

pe√
w(e)

|e⟩

∣∣∣∣∣∣
√
σ(u)

C1R
|u⟩+

∑
uv∈E

√
w(uv) |uv⟩

〉

=

√√√√√
√C1R

√
σu

√
σ(u)

C1R

2

−
∑
uv∈E

(√
w(uv)

puv√
w(uv)

)2

=

√
σ2u −

∑
uv∈E

p2uv = 0.

Note that the last step follows because flows, by definition, satisfy |σu⟩ =
∑

uv∈E puv for non-
marked vertices u. We have thus shown that our vector |φ⟩ is indeed invariant under U . What
remains to be shown is that it significantly overlaps with |σ⟩:

⟨φ|σ⟩ =
√
C1R

∑
u∈S

√
σu

√
σu − 0 =

√
C1R

∑
u∈S

σu =
√
C1R.

Note that φ is not in general normalised. Correcting for this, we can express the φ-component
of |σ⟩ as〈

φ

||φ||

∣∣∣∣σ〉 =

√
C1R

||φ|| =

√
C1R√

C1R+
∑

e∈E
p2e

w(e)

=

√
C1R√

C1R+Rσ,M

=

√
C1R

C1R+Rσ,M
.

Since R is an upper-bound for Rσ,M , we have〈
φ

||φ||

∣∣∣∣σ〉 =

√
C1R

C1R+Rσ,M
≥
√

C1R

C1R+R
=

√
C1

1 + C1
.

So, we can lower-bound the overlap of |σ⟩ and |φ⟩ by tuning the constant C1. Recall from section
2.1.5 that phase estimation returns a superposition of phases corresponding to each eigenvector
in the eigendecomposition, with the amplitude of the phase being the overlap of the input vector
with the corresponding eigenvalue. The above lower-bound on the overlap is thus precisely the
amplitude of the phase 0 in the result of phase estimation, so that we observe phase 0 with
probability at least ∣∣∣∣∣

√
C1

1 + C1

∣∣∣∣∣
2

=
C1

1 + C1
.

We now move to the negative case. Suppose that no marked elements exists. As explained, we
would like to show that |σ⟩ has little overlap with any eigenvalue-1 eigenvector of U . We will
make use of the Lemma 3.2.1 to show this. To use this Lemma, we need to find a state |w⟩ such
that ΠA |w⟩ = 0 and ΠB |w⟩ = |σ⟩, where ΠA and ΠB are projectors onto the invariant space of
RA and RB. We propose

w =
√
C1R

∑
u∈S

√
σ(u)

C1R
|u⟩+

∑
e∈E

√
w(e) |e⟩

 .

28

To show that ΠAw = 0, we need to show that w has no overlap with the invariant space of
A, i.e. no overlap with the orthogonal complements of vectors ψu. In other words, we need to
show that w can be written as a linear combination of vectors ψu. To show that ΠBw = |σ⟩ we
need to show that |σ⟩ can be written as a linear combination of the orthogonal complements of
vectors ψu, while the rest of w can be written as a linear combination of vectors ψu. Both are
quite clearly the case.

Applying Lemma 3.2.1, we obtain

||PΘΠBw|| = ||PΘ |σ⟩ || ≤ Θ

2
||w||;

we have upper-bounded the overlap of |σ⟩ with eigenvectors of U with phases ≤ Θ - in particular
phase 0 - which is what we wanted. Since we care only about phase 0, we decrease Θ to exclude
non-relevant phases. To do so elegantly, let us define

Θ =
1

C2

√
1 + C1RW

.

where C2 > 0 is a constant, so that

||PΘ |σ⟩ || ≤ Θ

2
||w|| = 1

2C2

√
1 + C1RW

√
1 + C1RW =

1

2C2
,

where we make use of

||w|| =

√√√√(√C1R

(∑
u∈S

√
σu
C1R

+
∑
e∈E

√
w(e)

))2

=

√∑
u∈S

σu + C1R
∑
e∈E

w(e) =
√

1 + C1RW.

We can now set an upper-bound on the overlap of |σ⟩ and any eigenvectors of U with phase ≤ Θ
by tuning the constant C2, so that we don’t have to worry about complex expressions involving
W and R. This upper-bound on the overlap is thus precisely the amplitude of the phases ≤ Θ
in the result of phase estimation, and thus induces the probability of observing such a phase.
Taking the inverse, we obtain a lower-bound on the probability of observing a phase > Θ, and
in particular on observing a phase unequal to 0, which is again what we wanted:

1−
∣∣∣∣ 1

2C2

∣∣∣∣2 = 1− 1

4C2
2

.

This concludes the correctness proof. Let us turn towards the complexity. Note that the negative
case requires running phase estimation to distinguish phases as small as Θ: we guarantee a small
overlap between |σ⟩ and phases smaller than Θ, but we don’t know anything about phases larger
than Θ, and so a phase Θ + ϵ might already have significant overlap with |σ⟩. There is no such
requirement for the positive case, as the phase 0 can be expressed exactly even with a single
bit. To distinguish between phases as small as Θ, then, requires a number of bits b such that
2−b ≤ Θ, in other wordsO(1/Θ) = O(

√
RW) bits. Queries are only made in the phase estimation

subroutine, so the complexity now follows immediately from the complexity of phase estimation

(Theorem 2.1.5), which is O(2log(
√
RW)) = O(

√
RW).

As noted above, by increasing the constants C1 and C2, the success probability can become
arbitrarily large. Since this does not alter the asymptotic complexity, we are done.

29

3.3 Exact complexity and amplifying the success probability

As already noted, queries are made only in the phase estimation subroutine. When phase
estimation uses t bits of precision, it makes exactly 20 + 21 + ... + 2t−2 + 2t−1 = 2t − 1 queries
to the given unitary. This then already gives us an exact number of queries made. All that is
left is filling in the precision t. As argued above, the precision should be the smallest number of
bits t such that 2−t ≤ Θ, so that t ≥ log(1/Θ), meaning the smallest possible precision is:

t = ⌈log 1/Θ⌉ =
⌈
logC2

√
1 + C1RW

⌉
.

Recall that W and R are fixed by the problem instance, while C1 > 0 and C2 > 0 are chosen by
us. For instance, if we choose C1 = C2 = 1, we get an algorithm that succeeds with probability
1/2 in case marked elements exist, 3/4 otherwise, and uses RBRA exactly

2t − 1 = 2⌈1/Θ⌉ − 1 = 2⌈C2
√
1+C1RW⌉ = 2⌈

√
1+RW⌉,

times.
We would like to have the algorithm succeed with some precision 1 − δ. We already noted

above that we can achieve this simply by increasing C1 and C2 accordingly. This is also Belovs’
proposed method to amplify the success probability. However, it is not clear what the complexity
of this is: it increases the precision of phase estimation, but how much?

Alternatively, as explained in Section 4.5.1, we can simply repeat the algorithm O(log(1/δ))
times. We then accept if the number of accepted runs exceeds the mean of the expected number
of accepted outcomes in the positive and negative case. That is, if X is a random variable
describing n runs of the algorithm, it has E(X) ≥ 1/2n in the positive case and E(X) ≤ 1/4n
in the negative case, so that we want to accept whenever X > 3/8n. We then want to limit
the probability to diverge from E(X) by more than 1/n8, because if we stay within 1/8n of the
real outcome, we output correctly. Chernoff’s bound gives us a n ∈ O(log(1/δ)) which suffices
for this. This is the method Montanaro proposes to amplify the success probability of Belovs’
algorithm [Mon16].

In the following two subsections, we consider the slowdown caused by either method. In
the section after this, we compare the two, and determine which (combination) of the two is
optimal.

3.3.1 Increasing the constants

To achieve success probability 1− δ we need to set the constants C1 and C2 to:

C1

1 + C1
≥ 1− δ ⇐⇒

C1 ≥ (1− δ)(1 + C1) ⇐⇒
C1 ≥ 1 + C1 − δ − δC1 ⇐⇒
δC1 ≥ 1− δ ⇐⇒

C1 ≥
1

δ
− 1.

1− 1

4C2
2

≥ 1− δ ⇐⇒

1

4C2
2

≤ δ ⇐⇒

1 ≤ 4C2
2δ ⇐⇒

1

δ
≤ 4C2

2 ⇐⇒

C2 ≥
√

1

4δ
=

1

2

√
1

δ
.

30

We then have

C2

√
1 + C1Rσ,MW =

1

2

√
1

δ

√
1 +

(
1

δ
− 1

)
Rσ,MW

=
1

2

√
1

δ

√(
1

δ
− 1

)(
Rσ,MW +

1

1/δ − 1

)

=
1

2

√
1

δ

√
1

δ
(1− δ)

(
Rσ,MW +

1

1/δ − 1

)

=
1

2δ

√
(1− δ)

(
Rσ,MW +

1

1/δ − 1

)
≤ 1

2δ

√
Rσ,MW + 2δ,

where the final inequality holds only for δ ∈ (0, 12), as for these values we have 1
1/δ−1 ≤ 2δ. The

precision with which we need to do phase estimation becomes

Θ =
1

C2

√
1 + C1RW

=
1

1
2δ

√
(1− δ)

(
Rσ,MW + 1

1/δ−1

) =
2δ√

(1− δ)
(
Rσ,MW + 1

1/δ−1

)
so that the number of queries is

2

⌈
log

(
1
2δ

√
(1−δ)

(
Rσ,MW+ 1

1/δ−1

))⌉
− 1 ≤ 1

2δ

√
(Rσ,MW + 2δ) ∈ O(

1

δ

√
RW).

We therefore suffer a multiplicative slowdown of at most 1/(2δ) ∈ O(1/δ).

Theorem 3.3.1. Given an undirected graph G = (V,E) with weights w and marked subset
M ⊆ V , starting distribution σ, upper-bound W on the weight of the graph and upper-bound R
on the effective resistance Rσ,M .

Running Algorithm 4 with C1 =
1
δ − 1, C2 =

1
2

√
1
δ and therefore precision

Θ =
2δ√

(1− δ)
(
Rσ,MW + 1

1/δ−1

)
determines whether M is empty with success probability at least 1− δ and uses RBRA exactly

2

⌈
log

(
1
2δ

√
(1−δ)

(
Rσ,MW+ 1

1/δ−1

))⌉
− 1 ∈ O(

1

δ
Rσ,MW)

times.

31

3.3.2 Repeating the algorithm

Suppose, as Montanaro does, that C1 = C2 = 1, implying success probability 1/2 and E(X) ≥
1/2n in the positive case, and 3/4 and E(X) ≤ 1/4n in the negative case. We then wish to
determine the smallest n that limits the probability to diverge from E(X) by more than 1/8n
to at most δ. Recall the statement of Chernoff’s bound from Section A.1:

P (|X − µ| > αµ) ≤ 2e−
α2µ
2+α .

Our answer lies on the right-side of this inequality. We of course have to treat each case
separately, as µ differs. Let us start with the positive case, recalling that µ = 1/2n and p = 1/2.
We wish to have αµ = 1/8n and thus α = (1/8n)/(1/2n) = 1/4. Filling in the expression from
Chernoff’s bound:

2e−
α2µ
2+α ≤ δ ⇐⇒

2e
− (1/4)2n1/2

2+1/4 ≤ δ ⇐⇒
e−n/72 ≤ δ/2 ⇐⇒

−n/72 ≤ ln(δ/2) ⇐⇒
n ≥ −72 ln(δ/2) ⇐⇒
n ≥ 72 ln(2/δ).

Now the negative case. Recall that µ = 1/4n and p = 1/4. We wish to have αµ = 1/8n and
thus α = (1/8n)/(1/4n) = 1/2. We write

2e−
α2µ
2+α ≤ δ ⇐⇒

2e
− (1/2)2n1/4

2+1/2 ≤ δ ⇐⇒
e−n/40 ≤ δ/2 ⇐⇒

n ≥ 40 ln(2/δ).

The positive case is thus the worst-case, which is to be expected, as its success probability is
much lower than that of the negative case. Since we don’t know in advance which case holds
(as we lack a distribution on the input), we have to assume the worst-case. We then have the
following algorithm.

Theorem 3.3.2. Given an undirected graph G = (V,E) with weights w and marked subset
M ⊆ V , starting distribution σ, upper-bound W on the weight of the graph and upper-bound R
on the effective resistance Rσ,M .

Running Algorithm 4 with C1 = C2 and therefore precision Θ =
1√

1 +RW
for ⌈72 ln(2/δ)⌉

times and outputting positively if and only if more than 3/8 of runs do so, determines whether
M is empty with success probability at least 1− δ and uses RBRA exactly

⌈72 ln(2/δ)⌉ (2⌈log
√
1+RW⌉ − 1)

times.

32

3.4 Optimising the algorithm

Let us now compare these two ways to amplify the success probability. Asymptotically, in-
creasing the constants implied a slowdown O(1/δ), while repeating the algorithm implied an
exponentially better O(log(1/δ)). However, the actual slowdown was roughly 1/(2δ) for the
former, and ⌈72 ln(2/δ)⌉ for the latter. This large difference in constant overhead means it is
not clear that repeating the algorithm is always better. Indeed, these two expressions are equal
for δ ≈ 0.0020124, so that repeating the algorithm is the most efficient method only once δ falls
below 0.0020124.

A simple optimisation to Belovs’ algorithm is therefore the following: given the desired error
probability δ, if it is below 0.0020124, repeat the algorithm to amplify the success probability,
otherwise, increase the constants C1, C2.

However, note that the slowdown suffered by the ‘repetition method’ was derived by assuming
C1 = C2 = 1. Therefore, it is not clear that the above optimisation is really optimal: perhaps
for much smaller δ it would be cheaper to reduce the constants and add some more repetitions,
while perhaps for much larger δ the reverse would be better.

Let us therefore ask: given a maximum error probability δ, to what value should we increase
the constants C1 and C2, and how many times n should we repeat the phase estimation algorithm
to minimise the number of queries?

Domain of C1, C2 Before we tackle this question, let us make a note about the domain from
which we draw C1 and C2, and on their relation. Although Belovs’ defined these constants
as C1 > 0 and C2 > 0, not all such values make sense. Recall that these constants imply a
success probability of p+ = C1

1+C1
in the positive case, and of p− = 1− 1

4C2
2
in the negative case.

Repeating the algorithm to boost the success probability relies on there being a gap between
p+ and 1− p−, so that the sum of repetitions of the algorithm tends to one side of this gap. In
our example above, we set C1 = C2 = 1 and had p+ = 1/2 and p− = 3/4 so that there was a
gap between 1/2 and 1/4, and we accepted after n runs if and only if the sum of outcomes was
greater than 3/8n.

In principle, this allows very disproportionate success probabilities between the two cases.
This is not desirable, as the number of repetitions required depends on these success probabil-
ities. Lacking a distribution over the income, we will have to assume the worst-case, so that
disproportionate success probabilities will increase the complexity needlessly. We saw this in
the last section, where the number of repetitions between the two cases different by a factor of
almost 2.

Let us then relate the constants C1 and C2 so that the success probabilities in the two cases

33

are equal:

p+ = p− ⇐⇒
C1

1 + C1
= 1− 1

4C2
2

⇐⇒

C14C
2
2

1 + C1
= 4C2

2 − 1 ⇐⇒

C14C
2
2 = (4C2

2 − 1)(1 + C1) ⇐⇒
C14C

2
2 = 4C2

2 + C14C2
2 − 1− C1 ⇐⇒

4C2
2 = 1 + C1 ⇐⇒

C2 =
1

2

√
1 + C1.

Since from now on we will choose only C1 (and not C2), let us use C to refer to C1. Given
p+ = p−, it is obvious that we should have p+ ∈ (1/2, 1] to guarantee a ‘gap’ between p+ and
1− p−. What values of C does this correspond to?

p+ > 1/2 ⇐⇒ C

1 + C
> 1/2 ⇐⇒ 2C > 1 + C ⇐⇒ C > 1.

Note that this corresponds to C2 >
1√
2
. The following function gives the number of queries that

the algorithm configured with C and n makes.

f(C, n,R,W) = n(2⌈log(C2
√
1+CRW)⌉−1) = n(2⌈log(12

√
1+C

√
1+CRW)⌉−1) = n(2

⌈
log

√
(1+C)(1+CRW)

⌉
−1−1).

Optimising C and n Let us now consider our question. Since we have a one-sided error, we
can use the exact expression for the error probability of the algorithm after n repetitions from
Proposition A.1.1, where we can fill in p = (1 + C)/C.

δ ≤ (1− p)n
n/2∑
i=0

(
n

i

)(
p

1− p

)i

= (
1

1 + C
)n

n/2∑
i=0

(
n

i

)(1+C
C
1

1+C

)i

= (
1

1 + C
)n

n/2∑
i=0

(
n

i

)(
(1 + C)2

C

)i

.

Thus, filling in some choice for C and n, the above gives you the exact error probability. Al-
ternatively, given a desired maximum δ and either n or C, the above given a much simplified
expression, which can be solved for the missing variable n or C. In particular, choosing n = 1
gives us the results of Section 3.3.1, and choosing C just above 1 gives us something akin to the
results of Section 3.3.2 (but note quite, as there, p+ and p− differed, but we now fix them to be
equal).

An optimal setting of n and C would minimise the number of queries f(C, n,R,W). Since
the number of queries is a function of both C and n and on the input-dependent R and W , it is
not clear that there is a global optimum (i.e. across all input instances, all R and W). It might
be that C or n induce a greater slowdown for larger instances than for smaller instances, or vice
versa.

However, it is easily seen that this is not the case: n doesn’t discriminate and simply slows
the whole expression down by a factor n. Similarly,

√
(1 + C)(1 + CRW) shows us that C scales

the term
√
RW by

√
C + C2, and adds a constant factor

√
C to the complexity. All of these

slowdowns are then independent of R and W .

34

It follows that for any δ, there is a globally optimal setting for C and n. To find it, consider
the following method. For each n = 1, 2, 3, ..., fill in the above expression for δ in terms of C and
n. This leaves C as the only unknown, simplifying the expression, allowing us to easily solve
it for C. We can then compute the number of queries f(C, n,R,W). If this is larger than the
number of queries for the previous n, stop and output the n corresponding to the lowest number
of queries seen thus far.

To see why this works, we claim that once we find f increases from n to n+1, f will continue
to rise monotonically. This is because as n rises, C drops, as we don’t need a large C anymore
to amplify the success probability. However, we must have C > 1, so at some point C will not
be able to drop further, and incrementing n makes the query count strictly and monotonically
increase. Thus, once f starts increasing, we know the optimal n is among the n we have already
checked. Since the success probability increases exponentially with n, the number of required
iterations is small, making this approach feasible (even if finding C might be costly).

Unfortunately, there is a slight caveat here. The actual number of queries doesn’t start rising
monotonically from any point on due to the ceiling function. Instead, it continuously rises and
falls, in a staircase-like pattern, which eventually starts tending upwards. If we could determine
the point from which this upwards momentum starts, we could find the minimum by searching
all smaller n. We can do this by upper-bounding the expression by removing the ceiling function.

f(C, n,R,W) = n(2

⌈
log

√
(1+C)(1+CRW)

⌉
−1 − 1) ≤ n(

√
(1 + C)(1 + CRW)− 1).

This yields a well-behaved function which does start rising monotonically from the minimum on.
Using this we can locate the n before which the optimum lies, allowing us to check each smaller
n and find the optimum. In Table 3.1 we present optimal values for various δ. Of course, these

δ n C

1/10 1 9
1/100 5 9.8176
1/1000 9 10.394
1/10000 13 10.756
1/100000 17 11.007
·10−6 21 11.192
·10−7 25 11.335
·10−8 29 11.450

Table 3.1: Optimal values for n and C for various δ. These hold for all instances, i.e. for any
W and R.

values hold relative to the upper-bound on the number of queries f(C, n,R,W). As explained,
the ceiling function in f prevents it from ever rising monotonically, meaning there is no global
optimum for f itself. Thus, computing the optimal C and n relative to f for various sizes of R
and W will result in slightly differing C and n. We see this in Figure 3.1.

Both C and n seem to stay neatly within a range of roughly [7, 13.5] and their behaviour
within the range seems periodic. The global optima C = 10.394 and n = 9 seem to play a
special role, with the orange lines being at these optima for an extended period. Studying the
behaviour of the real optima as plotted here, (i.e. relative to the exact f) might allow one to
set C and n to be even closer to the real optimum, on average. We leave this optimisation for
future work, settling for our optima relative to the upper-bounded f .

35

25 50 75 100 125 150 175 200

Upper bound R on effective resistance

7

8

9

10

11

12

13

C
a
n

d
n

Optimal values for constants C and n over instance size, for δ = 1/1000.

C for W = 1.2R

n for W = 1.2R

C for W = 1.3R

n for W = 1.3R

Figure 3.1: Optimal values for n and C for δ = 1/1000 over increasing R and W = 21.2 or
W = 21.3.

Theorem 3.4.1. Given an undirected graph G = (V,E) with weights w and marked subset
M ⊆ V , starting distribution σ, upper-bound W on the weight of the graph and upper-bound R
on the effective resistance Rσ,M .

For any success probability 1− δ, there is an optimal choice of constants C, n so that running

Algorithm 4 with precision Θ =
1√

(1 + C)(1 + CRW)
for n times and outputting positively if

and only if more than 3/8 of runs do so, determines whetherM is empty with success probability
at least 1− δ and uses RBRA a minimal number of times

f(C, n,R,W) = n(2

⌈
log

√
(1+C)(1+CRW)

⌉
−1 − 1) ∈ O(

√
RW)

times. Table 3.1 contains optimal C, n for various δ, and the discussion preceding it gives a
general method to determine C, n for any δ.

We finally note that the f is classically computable. All the parameters of f have to be
provided to the quantum algorithm. We can assume, then, that if we have an input instance
of interest, we should already be able to determine these parameters. Computing f using these
parameters is trivial.

In our experiments, we will, among other things, be interested in the optimal performance
of Belovs’ algorithm, i.e. when R and W are tight upper-bounds. To that end, we note that

36

we can classically compute the effective resistance Rσ,M and the sum of weights of any input
graph in polynomial time. In particular, for our application to backtracking, this will require
constructing the entire backtracking tree.

37

Chapter 4

Search

In this chapter, we study two quantum walk search algorithms. The first is a simple binary search
algorithm making use of Belovs’ detection algorithm from Chapter 3, the second is Piddock’s
search algorithm, which was the first quantum walks earch algorithm to work on general graphs
— a title shared with the independent and concurrent work [AGJ21]. We derive an exact
expression for the query complexity of both algorithm.

In section

4.1 we consider how to construct a search algorithm from a detection algorithm using binary
search.

4.2 we consider a far more efficient search algorithm due to Montanaro, that only works when
there is a unique marked vertex.

4.3 inspired by this, we give the motivation for Piddock’s general search algorithm and outline
the two main components, which we tackle in the next two sections;

4.4 we consider the first major component of Piddock’s algorithm: an algorithm to estimate
the effective resistance of a graph. We derive an exact expression for its query complexity
and show how the parameters of this expression can be computed classically.

4.5 we consider the second major component of Piddock’s algorithm, derive an exact expression
for its query complexity and show how the parameters of this expression can be computed
classically.

4.6 we combine the previous two section into Piddock’s final algorithm, derive an exact ex-
pression for its expected query complexity and show how the parameters of this expression
can be computed classically.

Across the last three section, we derive some new upper-bounds on the workings of Piddock’s
algorithm and propose some small optimisations.

4.1 Detection and binary search

There is an obvious way to turn a detection algorithm into a search algorithm at only a log-
arithmic multiplicative slowdown: binary search on the search tree. First apply the detection
algorithm to the root of the tree, and if it outputs no, you are done. If it outputs that marked

38

elements exist, check whether the root is marked, and if it is, you are done. If it isn’t, the
marked element must be in one of the subtrees at the children of the root. Apply the detection
algorithm at each such subtree, and when one returns positively, check whether that child ver-
tex is marked. If so, you are done. If none of these children were marked, the marked element
must be in one of the subtrees at children who returned positively when applying the detection
algorithm. Pick one of these children, and continue down their subtree. Repeat until a marked
element is found.

If each vertex has a constant number of children, and the depth of the tree is m ∈ O(log T),
where T is an upper-bound on the tree size, the number of repetitions of the detection algorithm
is O(1) ·m ∈ O(log T). Of course, this finds a marked vertex conditioned on the detection algo-
rithm being correct all m times. By Lemma A.1.2, this requires reducing the error probability of
each run of the detection algorithm to O(1/m), which by Lemma A.1.1 requires doing a majority
vote of at least O(logm) repetitions, for a total of O(n logm) repetitions, and a final complexity
of O(

√
RWm logm). For backtracking, T =W and R ≤ m, so that we can write the complexity

as O(
√
Tm3/2 logm). This method and complexity was noted already by Montanaro [Mon18,

p.11-12].
Note that we need to count each repetition as contributing to the final complexity fully, i.e.

contributing a factor
√
RW . It may seem that later in the algorithm, as we are deeper into the

tree, these bounds can be decreased, as we are considering a sub-tree that can be exponentially
smaller than the full tree. Unfortunately, in general, the tree could extremely skewed, so that
the size and depth of the subtree drops by only 1 at each level.

Let us work out the exact query complexity of doing binary search. From Theorem 3.4.1,
we know that f(C, n,R,W) gives the number of queries made by one run of the optimised
detection algorithm, where we assume some desired success probability 1 − δ, which implies
optimal constants C and n by Table 3.1. How many repetitions of the detection algorithm do
we need to do to guarantee binary search succeeds with probability 1− δ as well?

If the input instance is satisfiable, we need to repeat the detection algorithm to walk to
a solution, say at a depth r. Of course, this requires not just r repetitions to walk to the
solution, but also additional repetitions to make sure the probability of all runs being successful
is still 1− δ. To compute the required number of repetitions, recall from Proposition A.1.2 that
guaranteeing with probability 1− δ that all r runs are correct, requires the base probability to
be at least p ≥ r

√
1− δ, and by Proposition A.1.1, this requires n2 repetitions, where n2 is the

solution to

1− r
√
1− δ ≤ (1− p)n2

n2/2∑
i=0

(
n2
i

)(
p

1− p

)i

∈ O(log
1

δ
).

39

Theorem 4.1.1. Given an undirected graph G = (V,E) with weights w and marked subset
M ⊆ V , starting distribution σ, upper-bound W on the weight of the graph, upper-bound R on
the effective resistance Rσ,M and upper-bound rmax on the depth of G.

For any success probability 1− δ, binary search using the optimised detection algorithm from
Theorem 3.4.1 can determine whetherM is empty, and if not, return an m ∈M , with probability
1− δ while using RBRA exactly

fbinary search,unsat(C, n,R,W, r, n2) = ⌈n2⌉ · f(C, n,R,W) ∈ O
(√

RW log logW
)

times in case M is empty, and

fbinary search,sat(C, n,R,W, r, n2) = ⌈n2⌉ · r · f(C, n,R,W) ∈ O
(√

RW logW log logW
)

otherwise. Here, r is the depth of the marked element m returned, and n2 is the solution of

1− rmax
√
1− δ ≤ (1− p)n2

n2/2∑
i=0

(
n2
i

)(
p

1− p

)i

∈ O(log
1

δ
).

We recall from the discussion of Theorem 3.4.1 that f is classically computable, and that
we can even classically compute tight upper-bounds R and W given a graph (in our case, the
classical backtracking tree). In addition, if we run a backtracking algorithm, like DPLL in our
case, its heuristic leads the classical backtracking algorithm to a particular first solution at
depth r. Since our binary search algorithm follows the same heuristic, it also walks towards
this marked element at depth r. Running the classical backtracking algorithm then allows us to
compute r classically. Given the upper-bound r ≤ rmax, we can easily compute n2 by solving the
given equation. All parameters we need to determine the query complexity are then classically
computable, as desired.

4.2 The electrical flow state: efficient search on trees with a
unique marked element

The binary search algorithm repeatedly computes the state |φ⟩, but only uses it to check if the
phase is equal to 0, as we found that |φ⟩ is an eigenvector with phase 0 if and only a marked
vertex exists. Given this intimate connections between |φ⟩ and the existence of marked vertices,
it seems fair to ask whether the content of this state might help us to find marked vertices more
efficiently. Recall what this vector looked looks like

|φ⟩ = 1√
2
|r⟩+ 1√

2n

∑
x ̸=r,x⇝x0

(−1)l(x) |x⟩ .

Half the amplitude is at the root |r⟩, the other half is spread uniformly over the path from root
to the marked vertex x0. Collapsing this state then gives us, with probability 1/2, some vertex
on the path from root to x0, and we expect to get a vertex in the middle of the path. But this
then advances us much further down the path than the simple binary search, which advanced

40

us exactly once for each O(1) repetitions of the detection algorithm. In essence, we are doing
binary search over the tree depth, rather than the tree size, so that we expect to need O(log n)
repetitions.

Now, phase estimation only approximates |φ⟩. To create a useable algorithm we would
need to determine the precision required of this approximation to ensure the correct success
probability. Working out these details nets a final complexity of O(

√
RW log3m) [Mon18, p.12-

14]. Crucially, however, this approach relies on there existing exactly one marked element.
When more than one marked element exists, the eigenvalue-1 eigenspace of RBRA is populated
by multiple vectors of the form of |φ⟩, each encoding the path to ‘their’ marked element. We
expect these paths to overlap significantly near the top of the tree, as the tree is narrow at
the top. The result is that we don’t expect to traverse halfway along the depth of the tree
anymore, but we instead expect to stay much closer to the top (akin to the classical binary
search, which traverses one level at each step), reducing the efficiency of this approach as more
marked elements are introduced. Note that this is quite counter-intuitive: we would expect that
having more marked elements would make it easier to find one.

We should make a final note about the state |φ⟩. The definition of |φ⟩ given just above
assumes that we configured the quantum walk unitary with C = 1. Recall from Section 3.3 that
increasing the constant C also increased the amount of amplitude that |φ⟩ assigns to the starting
vertices in. This made |φ⟩ overlap more with our starting state, increasing the probability to
obtain |φ⟩ (and its phase) through phase estimation, and therefore the success probability. We
found the optimal value for C (given a desired success probability) which allowed us to optimally
configure Belovs’ algorithm. We didn’t really care about the mutilation this caused to |φ⟩ since
we never used to actual content of this state: we only cared about the corresponding phase.
Now we do care about the content of |φ⟩, in particular, we don’t want too much amplitude to be
at the starting vertices, as we want to move away from these. Increasing C then increases the
success probability of detection, but decreases the probability to walk towards a marked vertex.
It follows that our optimisation won’t work here, although a small increase in C may still be
warranted: this is a question we don’t consider here.

4.3 How to search efficiently on arbitrary graphs

The requirement of a unique marked element makes the above method unsuitable for most prob-
lems. Fortunately, the above method inspired more general solutions using |φ⟩ to efficiently find a
marked element in case multiple marked elements exist. This was done first by Jarret and Wann,
whose algorithm works only for trees, and has a complexity of O(

√
RmaxW log4(|M |Rσ,M)),

where |M | is the number of marked elements, Rmax the maximum effective resistance of all
subtrees, and Rσ,M the effective resistance between the root and the set of marked elements
[JW18]. This was then generalised to arbitrary graphs by Piddock with a complexity of
O(
√
Rσ,MW log3(|M |)) [Pid19]. The latter is then not only more general, but also more ef-

ficient (as far as the asymptotic complexity is concerned). Let us therefore study Piddock’s
algorithm, and attempt to give a tightened upper-bound (or even exact expression) for its query
complexity.

Recall that in a tree we could use the electrical flow, which encodes the flow from root to
marked elements, to walk towards to a marked element. In general graphs this method is not
feasible, as marked vertices could go in differing directions, so that collapsing |φ⟩ to iteratively
walk towards a marked element has no guarantee to converge to a marked element. For example,

41

if we have a line with the starting vertex in the middle and a marked element at an equal distance
on either side, we expect to stay at the starting vertex.

Piddock’s algorithm therefore uses a different strategy: simply repeatedly measure |φ⟩ in the
hopes of directly observing a marked vertex. To make this approach feasible, he proposes two
alterations to the graph to shift amplitude away from the starting states in |φ⟩, and towards
the marked vertices. This increases the probability to observe a marked vertex when measuring
|φ⟩ to Ω(1/ log |M |), requiring an expected logM repetitions to find a marked element. He
shows that we can prepare the required electrical flow state with O(log2 |M |) repetitions of the
detection algorithm, resulting in the final complexity of O(

√
Rσ,MW log3 |M |).

The two alterations are, first, adding an additional starting vertex s′ and additional edges

s′u for every vertex u with weight w(s′u) =
√
σu

η , and second, adding an additional vertex k′ and

edge kk′ with w(kk′) = 1/x for each marked vertex k ∈M . The new set of marked elements M ′

will be the set of these new vertices k′. The variables η and x are parameters of the algorithm.
Recall that in Belovs’ algorithm we would increase C to decrease the weight at starting edges
(akin to increasing η here), which in turn increases the amplitude at the edges in |φ⟩. We use
the same principle here: by decreasing η we decrease the amplitude at starting edges in |φ⟩,
and by increasing x we increase the amplitude at marked edges in |φ⟩. By finding appropriate
settings for η and x, Piddock shows that we truly get a probability of Ω(1/ log |M |) to find a
marked vertex when collapsing |φ⟩, while still retaining a complexity of O(

√
Rσ,M) to run the

detection algorithm (this last point is not obvious, as setting η and x changes the graph, so that
its effective resistance may no longer be of the same order as the unaltered graph).

Piddock’s algorithm then has three main components. We introduce these in the subsequent
three section, ending each sections with a classically computable exact expressions for this
component’s query complexity. In the third section, this culminates in an exact expression for
the complexity of the full search algorithm.

1. Determine an adequate η. We do this in Section 4.4, resulting in η equal to two times the
effective resistance of the altered graph with η and x = 0. We define Algorithm 5 to find
this η.

2. Determine an adequate x. We do this in Section 4.5, resulting in a range [η, b] from which
to sample x, where b is chosen such that the effective resistance of the altered graph
where x = b is twice the effective resistance of the altered graph where x = η. We define
Algorithm 6 to find this b.

3. Repeatedly sample x, construct RBRA for the choice of η and x, run phase estimation to
construct |φ⟩, and measure this state. This is expected to give a marked vertex within
O(log |M |) repetitions. We give the final algorithm performing this step in Section 4.6,
resulting in Algorithm 7.

Let us use Rs′,M ′ to refer to the effective resistance of the graph where the two alterations have
been made, and likewise, Rσ,M ′ and Rs′,M for the effective of the graph where only one of the
alterations have been made.

4.4 Algorithm to estimate the effective resistance

As explained, by lowering η, we lower the amount of amplitude at starting edges |s′u⟩ in |φ⟩,
which is desirable as we want |φ⟩’s amplitude to be as concentrated at the marked edges as

42

possible. But recall from Chapter 3 that decreasing η (akin do decreasing C) lowers the suc-
cess probability of phase estimation, as the overlap between the starting distribution and |φ⟩
decreases. How should we strike a balance between these two? We follow Piddock and aim to
have phase estimation be successful with probability roughly 1/2. This is somewhat arbitrary,
but we omit finding the optimal balance in this work.

How can we find an η giving a success probability of 1/2? Recall from Section 2.1.6 that
we can use amplitude estimation to estimate the probability a of obtaining a particular (set of)
state(s) as outcome of a quantum algorithm. With probability at lest 8/pi2, the estimate ã is in
[a− ϵa, a+ ϵa] for ϵa ≤ π

2s +(π
2s)

2, where s is the number of bits we use for amplitude estimation.
We can use this on phase estimation circuit of interest to estimate the success probability for

a given η. Note also that increasing η can only increase the amplitude at the starting edges, so
that the success probability of phase estimation grows monotonically with η. In principle, then,
if we start small η, and keep increasing it, we should eventually reach a success probability of
1/2, and using amplitude estimation, we can detect for which η this is the case.

The only question is how long this may take: perhaps η can be anywhere in a very large
range, so that searching for it like this is not feasible. That is, we need to understand more
precisely how η relates to the success probability. Consider the following lemma.

Lemma 4.4.1 (Lemma 6, [Pid19]). Let UA and UB be the quantum walk operators for G′

with {s′} ∪M ′ the set of vertices where Dx acts trivially. Then running phase estimation on
UAUB starting in the state |ψs⟩ =

∑
u σu |s′u⟩ for with t =

⌈
log(

√
ηW + 2/ϵ)

⌉
1 bits of precision,

outputs 0t with probability a such that

η

Rs′,M ′
≤ a ≤ η

Rs′,M ′
+ ϵ

leaving the other register in a state |φ̃⟩ such that

1

2
|| |φ̃⟩ ⟨φ̃| − |φ⟩ ⟨φ| ||1 ≤

√
ϵ

a
.

This lemma tells us that the success probability is roughly equal to η/Rs′,M ′ . Now, as
Piddock notes, for any η we can upper-bound Rs′,M ′ by η+Rσ,M ′ . This is because η+Rσ,M ′ is
the energy of the unit flow from s′ to M ′ of the form: send σu flow from s′ to u, and then send
the electrical flow from σ to M ′. If follows once η ≥ Rσ,M ′ the success probability is at least
1/2. This is a reasonable upper-bound. For example, in a tree, Rσ,M ′ is upper-bounded by the
tree-depth.

What remains to be filled in is the starting value for η, the amount with which we increase
η, and the stopping condition. We copy Piddock’s starting value of η = 1/W , and his proposal
to double η at each iteration. He doesn’t motivate these choices, and we also omit an analysis
of their optimality, just like with the choice to seek a success probability of 1/2.

For the stopping condition, Piddock proposes to stop once we find an estimate ã that exceeds
1/2. In a way, this is quite terrible. Since the estimate is in [a − ϵa, a + ϵa] = [η/Rs′,M ′ −
ϵa, η/Rs′,M ′ + ϵ + ϵa], this stopping condition guarantees that η/Rs′,M ′ − ϵa > 1/2, meaning
η/Rs′,M ′ > 1/2. We therefore always end up beyond 1/2, while our goal is to reach 1/2.

A small optimisation would be to stop slightly earlier: once ã > 1/2 − ϵa. It is easy to see
that ã ∈ [1/2− ϵa, 1/2 + ϵ+ ϵa] is the range of all ã that can correspond to η/Rs′,M ′ = 1/2. By

1Although Piddock’s statement of the lemma expresses the precision asymptotically, this exact statement
follows directly from the last line of his proof.

43

stopping once we enter the lower-end of this range, we actually have a shot at finding exactly
η/Rs′,M ′ = 1/2 2.

With this, the contour of the algorithm is defined. What is left is to guarantee that it is
successful with desired probability 1− δ. The algorithm makes numerous amplitude estimation
calls, each successful with probability at least 8/π2. We might be inclined to argue that we
should amplify the probability to make sure that, with probability 1−δ all successive amplitude
estimation calls are correct. This would be quite problematic because - we will see this in moment
- the number of required repetitions is a function of the effective resistance of the graph: which
is essentially what we are estimating in this algorithm. It follows that we wouldn’t be able to
determine r during run-time, preventing us from configuring the algorithm adequate for our
desired success probability.

Fortunately, this isn’t the case. The algorithm will start by doing, say, r − 1, amplitude
estimation runs whose correct outcome is below the success threshold. If any of these early
amplitude estimation calls fail, it’s not necessarily a problem, as it doesn’t change the trajectory
of η: we always just double it. What is important is that the crucial r’th run - the first run
where the η/R that we estimate goes over the success threshold - is correct with probability
1− δ. Of course, we don’t know a priori which run this is, so to achieve this we need to amplify
the success probability of each amplitude estimation run to 1 − δ, requiring n ∈ O(log(1/δ))
repetitions, which can be determined exactly using Proposition A.1.1.

The one possible problem here would be if one of the earlier r − 1 runs fails, and the
inaccurate amplitude estimate is so far off, that it goes over the success threshold, making
the algorithm terminate too early. However, since the error range of amplitude estimation is
normally distributed, this is extremely unlikely: the probability to obtain an estimate a distance
d from the correct output drops exponentially with d. Really, then, this could only happen when
the earlier run was already very close to the success threshold, but not quite there. In that case,
this outcome wouldn’t be a problem, as we don’t require the real estimate η/R to be within a
fixed distance of 1/2.

Due to lack of time, we omit the analysis of this situation, and simply assume that by setting
the success probability of each amplitude estimation run to 1 − δ, we assume that the crucial
r’th outputs successfully with probability 1 − δ as well, i.e. we assume the above problematic
situation doesn’t occur.

4.4.1 Final algorithm and complexity

We can now define the algorithm. We make use here of the upper-bound on the inaccuracy of
the final estimate, which we derive in Appendix A.2.1: the inaccuracy between the final η/Rs′,M ′

2This is not at all the only sensible option. One problem with this success range is that it doesn’t terminate
for η that are very close to the success range, causing η to double, possibly yielding a much too large η. A
simple optimisation (which we discuss a bit later) is to just remember the previous estimate, and return the
corresponding η if the final terminating estimate was much worse. Nonetheless, even then there will still be many
cases where it would have been better to accept η that are just a bit below the success range. Widening the range
downwards might then in some contexts be desirable.

Another problem is that, though the range encompasses all and only ã that could be approximations of the
η that we are after (i.e. with η/Rs′,M′ = 1/2), the range of underlying η is quite a bit wider than just this η.
Specifically, note that given a ã, the possible range of η/Rs′,M′ underlying it is η/Rs′,M′ ∈ [ã − ϵ − ϵa, ã + ϵa].
It follows that the proposed success range can result in an η with η/Rs′,M′ ∈ [1/2 − 2ϵa − ϵ, 1/2 + 2ϵa + ϵ].
Depending on the error ranges this could get somewhat far from 1/2. Of course, error ranges always exist, and
can be reduced arbitrarily, but nonetheless, tightening the success range could be desirable.

44

and 1/2 is at most 3/2 −
√
2, and decreases as the number of starting vertices grows. There,

we also propose the final addition to the algorithm: we return not the η with which we hit the
accepting condition, but we return η or η/2, depending on whose estimate ã was closer to 1/2.
This roughly halves the worst-cast inaccuracy, at no extra query cost.

Algorithm 5 (Find η such that η/Rs′,M ′ ≈ 1/2). Input: An undirected G = (V,E) with weights
w and marked subset M ⊆ V , starting distribution σ, upper-bound W on the weight of the
graph. Constants s, ϵ and n ∈ O(log(1/δ)). Output: With probability at least 1− δ: η such that

| η
Rs′,M′

− 1
2 | ≤ 3/2−

√
2.

1. Set x = 0 for the rest of the algorithm. Initialise η = 1/W .

2. Construct G′ and UAUB for η and x.

3. Run amplitude estimation n times, with the all zero string as good string and s bits of
precision on the second register of the phase estimation circuit with unitary UAUB, input
vector |ψs⟩ and precision

√
ηW + 2/ϵ. Let the median outcome be ã.

4. If ã > 1/2− ϵa output η or η/2 depending on whose estimate ã is closer to 1/2.

5. Double η and go back to step 2.

Each iteration, we run amplitude estimation n times, each run of which runs the phase esti-
mation circuit 2s − 1 times. Phase estimation makes 2t − 1 queries when using t precision bits.
What is t in our case? Well, the precision of phase estimation depends on the current η. Specifi-
cally, we use precision

√
ηW + 2/ϵ, so that we use t =

⌈
log(

√
ηW + 2/ϵ)

⌉
≤ log(

√
ηW + 2/ϵ)+1

bits. Let r1 be the number of iterations we do. The total number of queries is then

f1(s, ϵ, n, r1,W) = n(2s − 1)

r1−1∑
i=0

(2

⌈
log

(√
1
W

·2i·W+2/ϵ
)⌉

− 1) = n(2s − 1)

r1−1∑
i=0

(2⌈log(
√
2i+2/ϵ)⌉ − 1).

To upper-bound f1, recall that η is upper-bounded byO(Rσ,M ′). It follows that the maximum
number of iterations is in O(Rσ,M ′W). Each iteration runs amplitude estimation a constant n
number of times. The complexity is then dominated by the final run of phase estimation with
O
(√

Rσ,M ′W
)
, so that f1 ∈ O

(√
Rσ,M ′W

)
.

Note that s, ϵ and n are constants chosen beforehand. The only real unknown, then, are the
sum of weights W and the number of iterations r. The first is easily computed classically. The
second is seems trickier: it depends non-trivially on the relation between η and Rs′,M ′ (as this
determines how fast we grow towards the success threshold). Deriving an expression for r1 in
terms of more easily found features of the graph, even the effective resistance, then seems quite
hard.

Instead, there is a much simpler computational approach to find r1: simply simulate the
iterations of Algorithm 5. Since we can classically compute the effective resistance of a graph,
we can run the algorithm classically by swapping the amplitude estimation call with a classical
algorithm to compute the effective resistance, or rather, we first compute the effective resistance,
and then divide η by it to compute η/Rs′,M ′ , and we then have to round this to the estimate that
amplitude estimation would have found had it used s bits of precision. Recall that amplitude

45

estimation returns (when it succeeds) the best estimate of the effective resistance that it can
write using s bits. We can easily determine this best estimate, for instance by checking all the
2s possible estimates of the effective resistance, and choosing the best one. Specifically, these
are sin2(θ̃) where θ̃ are all the 2s equidistance points in [0, π] (or just the first half, as sin2 is
symmetric between the two halves of this range).

However, in our application (backtracking algorithm for SAT) we only consider trees. For
these3, the relation between η and Rs′,M ′ is simple. Recall that Rs′,M ′ ∈ [Rσ,M ′ +η/

√
d,Rσ,M ′ +

η]. Since a tree has a single starting vertex, this range collapses to just Rσ,M ′ + η: we perfectly
increase the effective resistance by η. Determining r1 and the inaccuracy is then much simpler.
We want the first η such

η

Rσ,M ′ + η
> 1/2− ϵ which implies η >

2Rσ,M ′ϵa +Rσ,M ′

1− 2ϵa
,

where we note this η tends to Rσ,M ′ as ϵa tends to 04. For our use-case of trees, the classical
algorithm to determine the number of queries that Algorithm 5 makes then becomes:

1. Count the total number of vertices in the graph, call this W . Note that this corresponds
to the sum of weights, as each weight is 1, and there is one-to-one correspondence between
nodes and edges.

2. Compute the effective resistance of the original graph with new marked edges of weight
1/x added Rσ,M ′ . Note that in our case x = 0, but in principle this algorithm also works
for different x.

3. Compute the number of repetitions r1 =

⌈
log

(
W

2Rσ,M ′ϵa +Rσ,M ′

1− 2ϵa

)⌉
.

4. Compute the value of f1 using r1 and W .

5. Optionally: compute the value of η after r1 iterations: η = 2r1/W , and compute the
estimate of η/(Rs′,M ′ + η) that amplitude estimation would have output. These might be
of use depending on the use-case of the algorithm. Indeed, for our subsequent use, we will
need η.

Note that we haven’t considered the impact of x (i.e. the weights 1/x of the marked edges)
on Rσ,M ′ : it might be that for too large x, Rσ,M ′ /∈ O(Rσ,M), so that the algorithms’ complexity
is no longer in terms of the effective resistance of the original graph. To guarantee the complexity
in terms of the original graph, we therefore require x which give Rσ,M ′ ∈ O(Rσ,M). Indeed, the
final search algorithm only uses such x, netting a final complexity in terms of the weight and
effective resistance of the original graph.

The choice of the precision of phase estimation and amplitude estimation (i.e. the choice of
ϵ and s) is not hugely relevant, and mostly up to choice depending on the what the context de-
mands. Recall that the range from which we draw our estimates is ã ∈ [η/Rs′,M ′ −ϵa, η/Rs′,M ′ +

3Or rather, whenever there is a single starting vertex.
4Of course, the algorithm doesn’t check this exact value for η/Rs′,M′ , but finds a rounded estimate, and it

might be that, although this is the first iteration where η/Rs′,M′ exceeds the stopping threshold, the estimate
lies below the threshold. To be complexity correct, then, we should check whether this is the case, and if not,
iteratively double η and stop once we do go over the stopping threshold. However, this would make the approach
much more complicated, and since we will use a decently large s, this will virtually never happen.

46

ϵ + ϵa], and this is tightened as the precisions increase. How tight this is, is not that relevant
for accuracy of the final estimate, however. What is more important is the stepping size and
stopping condition, as there determine how close to 1/2 the actual value of η/Rs′,M ′ gets to be;
if this is terrible, then tightening the error ranges around this value won’t help much. Lowering
the error ranges is thus no guarantee for success.

Recall that we derived an upper-bound on this inaccuracy of 3/2 −
√
2. We then at least

want to choose s and ϵ to prevent the error range from worsening this upper-bound. We show
in Appendix A.2.2 that under only this one condition, the optimal choice becomes s = 7 and
ϵ = 3/2−

√
2− 2π(128+π)

16384 ≈ 0.03549. We will move into our experiments with these two values.
With these two fixed, we have established the following.

Theorem 4.4.2. Given an undirected graph G = (V,E) with weights w and marked subset
M ⊆ V , starting distribution σ, upper-bound W on the weight of the graph, and constants s, ϵ
and n ∈ O(log(1/δ)). If s and ϵ are chosen so that 2ϵa(s) + ϵ ≤ ϵη(d), where d is the size of the
support of σ, Algorithm 5 returns an η such that |η/Rs′,M − 1/2| ≤ ϵη(d) ≤ 3/2 −

√
2 ≈ 0.0858

with probability at least 1− δ, and uses

f1(s, ϵ, n, r1,W) = n(2s − 1)

r1−1∑
i=0

(2⌈log(
√
2i+2/ϵ)⌉ − 1) ∈ O

(√
Rσ,M ′W

)
queries, where r1 is the number of iterations the algorithm has to make. The cheapest configu-
ration is s = 7 and ϵ = 3/2−

√
2− 2π(256+π)

65536 ≈ 0.060942 giving complexity

127

r1−1∑
i=0

(2⌈log(16.4092
√
2i+2)⌉ − 1).

4.5 Finding marked elements using the effective resistance esti-
mate

As explained, by increasing x, we increase the amount of energy at the marked edges in the
electrical flow (i.e. amplitude at marked edges in |φ⟩), thereby increasing the probability that
we find a marked element when collapsing |φ⟩. But conversely, by increasing the energy at
the edges, we increase the effective resistance Rs′,M ′ , which increases the complexity of phase
estimation. Thus, while a very large x may give a very high probability to find a marked vertex
when measuring |φ⟩, constructing |φ⟩ may become so expensive (this requires phase estimation),
that it would have been cheaper to have x be smaller.

How should we strike a balance between these two? Piddock’s proposal is to make sure

1. not to lower x so much that the energy increase causes Rs′,M ′ /∈ O(Rσ,M), as then the final
asymptotic complexity would no longer be in terms of the effective resistance Rσ,M of the
original graph would longer make the asymptotic complexity;

2. to still increase x far enough to guarantee a constant lower-bound on the probability to

47

find a marked vertex:
x
∑

k∈M f2kk′

Rs′,M ′
∈ Ω(1).

An initial attempt at meeting these conditions might be to set x ∈ O(Rs′,M ′). We can find
such an x by using Algorithm 5, which gives us an estimate x ≈ Rs′,M ′/2 ∈ O(Rs′,M ′). This gives
(i), as the extra flow at the marked edges is x

∑
k∈M f2kk′ ≤ x, so that Rs′,M ′ ≤ Rs′,M + x = 2x,

which implies that x ∈ O(x) = O(Rs′,M ′). To see whether this gives (ii), note that the probability
to hit a marked element becomes

x
∑

k∈M f2kk′

Rs′,M ′
= Ω(1)

∑
k∈M

f2kk′ .

This is almost a constant lower-bound on the probability to find a marked element: only q(x) =∑
k∈M f2kk′ stands in our way. Unfortunately, the best lower-bound we can give for

∑
k∈M f2kk′

is Ω(1/|M |), which is in case when the flow is spread uniformly over all the marked edges, see
Proposition A.3.1. The probability to observe a marked vertex when collapsing |φ⟩ then becomes
Ω(1/|M |), which would imply a search algorithm O(

√
Rσ,W |M |3), which isn’t very good. To

progress, we need to understand more deeply the relationship between f, x and R. For this,
consider the following Lemma.

Lemma 4.5.1 (Lemma 7, [Pid19]). Let Rs′,M ′(x) be the effective resistance when additional
edges of resistance 1/x are added to each marked vertex. Then

d

dx
Rs′,M ′ =

∑
k∈M

f2kk′ = q(x).

How is this lemma useful? Consider again the fraction denoting the probability to observe a
marked vertex. The lemma tells us that the antiderivative of q(x) =

∑
k∈M f2kk′ is Rs′,M ′ , so that

if we draw x from some interval [a, b], and use an integral to express the expected probability to
hit a marked vertex, we divide out the Rs′,M ′ factor in the denominator. All that’s left now is
to get rid of the factor x in the numerator. We can do this by choosing the probability density
function 1/(x log(b/a)). The expected probability to observe a marked element then becomes∫ b

a

xq(x)

Rs′,M ′(x)

1

x log(b/a)
=

∫ b

a

q(x)

log(b/a)Rs′,M ′(x)
≥ 1

log(b/a)Rs′,M ′(b)

∫ b

a
q(x) =

Rs′,M ′(b)−Rs′,M ′(a)

log(b/a)Rs′,M ′(b)
,

where we note that the inequality holds because Rs′,M ′ grows monotonically with x. If we now
fix [a, b] so that Rs′,M ′(x) grows by a constant multiplicative factor across the interval, say a
factor of 2, we have

Rs′,M ′(b)−Rs′,M ′(a)

log(b/a)Rs′,M ′(b)
=

2Rs′,M ′(a)−Rs′,M ′(a)

log(b/a)2Rs′,M ′(a)
=

Rs′,M ′(a)

log(b/a)2Rs′,M ′(a)
=

1

2 log(b/a)
.

that is, the probability to hit a marked vertex is Ω(1/ log(b/a)). Whether a different constant
factor would be more optimal is a question for future research.

It remains to be shown that we can meet (i). To do so, we need to select a and b so that
Rs′,M ′(a) ∈ O(Rσ,M) and Rs′,M ′(b) ∈ O(Rσ,M), as this guarantees that for any x ∈ [a, b] we
meet condition (i). We will set a = η ≈ Rs′,M/2 - i.e. the output of Algorithm 5 when using

48

x = 0 - and find b by setting x = η, iteratively doubling x, estimating η/Rs′,M ′(x) using step 3
of Algorithm 5, and stopping once this estimate has halved compared to η/Rs′,M ′(a) (implying
the numerator has doubled).

The extra flow at the marked edges with weight 1/a is a
∑

k∈M f2kk′ ≤ a, so that Rs′,M ′(a) ≤
Rs′,M +a = 3/2Rs′,M ∈ O(Rs′,M) = O(Rσ,M). Since the effective resistance doubled when going
from a to b, we have Rs′,M (b) ∈ O(2Rs′,M (a)) = O(Rσ,M). With that, both conditions are met.
In fact, for this choice of a and b, we can show that b/a ∈ O(|M |), so that the probability that
we find a marked vertex is Ω(1/ log(|M |)).

Lemma 4.5.2. Let a = η = Rs′,M ′/2 and Rs′,M ′(b) = 2Rs′,M ′(a). Then b/a ∈ O(|M |).

Proof. Recall from Lemma 4.5.1 that q(x) = x
∑

k f
2
kk′ is the derivative of Rs′,M ′(x). Recall

from Proposition A.3.1 that q(x) ≥ 1/|M |. We can then write

b− a

|M | ≤ Rs′,M ′(b)−Rs′,M ′(a) ⇐⇒ b

a
≤ 1 + |M |Rs′,M ′(b)−Rs′,M ′(a)

a
.

Applying Rs′,M ′(b) = 2Rs′,M ′(a) gives

b

a
≤ 1 + |M |2Rs′,M ′(a)−Rs′,M ′(a)

a
= 1 + |M |Rs′,M ′(a)

a

and finally noting that a = η = Rs′,M/2 so that Rs′,M ′(a) ≤ Rs′,M + a = 3/2Rs′,M ′ results in

b

a
≤ 1 + |M |Rs′,M ′(a)

a
≤ 1 + |M |3/2Rs′,M

Rs′,M/2
= 1 + 3|M |.

Say we wish the algorithm succeeds with a probability 1 − δ. Just like with the previous
algorithm, we assume that it suffices to amplify the success probability of each iteration to 1−δ,
so that the crucial first run whose correct outcome goes over the success threshold is correct
with probability 1 − δ. This algorithm also perform amplitude estimation once per iteration.
Just like with Algorithm 5, then, it suffices to repeat amplitude estimation n ∈ O(log(1/δ))
repetitions, which can be determined exactly using Proposition A.1.1.

4.5.1 Influence of inaccuracy of a and b on probability to hit a marked vertex

Above, we derive the lower-bound of 1/(2 log(b/a)) assuming, first, that a is exactly equal to
η = 1/2Rs′,M ′ and, second, that we find b such that 2Rs′,M ′(a) = Rs′,M ′(b). What happens the
this lower-bound if either of these conditions is relaxed?

For the first condition, recall that we always find η/Rs′,M ′ within ϵη of 1/2. It follows that
our estimate of η = 1/2Rs′,M ′ then diverges at most ϵηRs′,M ′ from 1/2Rs′,M ′ in either direction.
Say that we still hit the second condition with this inaccurate a. It follows that the lower-bound
still comes down to 1

2 log(b/a) . What does the b look like that we find when running our algorithm
with this different a? Well, this in unclear, and depends on how the effective resistance changes
with a, i.e. with decreasing the edge weight at the marked edges. Analytically determining the
change in success probability for a different a is then something we don’t attempt. But note
that the quantum algorithm has a and b, and is thus able to determine this success probability.

49

Not only this, but as we will see below, we will be able to efficiently compute these classically,
allowing us to determine the expected query count of the final search algorithm, as required.

For the second condition, it is not hard to see that finding a too large b, i.e. such that
2Rs′,M ′(a) > Rs′,M ′(b), increases the probability to find a marked vertex. Recall from above the
the lower-bound on the probability to find a marked vertex is

Rs′,M ′(b)−Rs′,M ′(a)

log(b/a)Rs′,M ′(b)
=

1

2 log(b/a)
.

Let us consider what happens when we loosen the above condition to include our error. Say
Rs′,M ′(b) = 2Rs′,M ′(a) + d, so that a positive d means b is ‘too large’, and vice versa.

Rs′,M ′(b)−Rs′,M ′(a)

log(b/a)Rs′,M ′(b)
=

2Rs′,M ′(a) + d−Rs′,M ′(a)

log(b/a)(2Rs′,M ′(a) + d)
=

Rs′,M ′(a) + d

log(b/a)(2Rs′,M ′(a) + d)
.

Note that log(b/a) > 1 (as we double a at least once), so that when d is positive, we can double
the the d in the denominator to lower-bound the success probability:

Rs′,M ′(a) + d

log(b/a)(2Rs′,M ′(a) + d
≥ Rs′,M ′(a) + d

log(b/a)2(Rs′,M ′(a) + d)
=

1

2 log(b/a)
.

In other words, when we increase b beyond the stopping condition, the probability to observe a
marked vertex rises.

In the previous algorithm, we decided to move the stopping threshold in slightly to ac-
count for the error range. We might consider doing the same here, i.e. changing η/Rs′,M ′(b) <
η/2Rs′,M ′(η) to ã < η/(2Rs′,M ′(η))−ϵη(d) since any estimate ã ∈ [η/(2Rs′,M ′(η))−ϵη(d), η/(2Rs′,M ′(η))+
ϵη(d)] can imply η/Rs′,M ′(b) = η/2Rs′,M ′(η) (which is what we want to find).

In the previous algorithm, this made sense, as we wanted to estimate the effective resistance
as best as possible. But now, exceeding the stopping threshold too far actually increases the
probability to find a marked vertex. This then isn’t necessarily bad. It might be: it could be
that the reduction in expected query complexity due to the increased success probability is less
than the extra cost to increase b further. But this is an optimisation question we don’t consider
in this work.

4.5.2 Final algorithm and complexity

We can now define the algorithm. We make use here of the upper-bound on the inaccuracy,
which we derive in Appendix A.2.3: the inaccuracy between η/Rs′,M ′(b) and η/2Rs′,M ′(a) is at
most 1/5, and increases as the number of marked element grows. In particular, for |M | = 1, the
inaccuracy is at most 3/40.

50

Algorithm 6 (Find a, b such that Rs′,M ′(b) ≈ 2Rs′,M ′(a)). Input: An undirected G = (V,E)
with weights w and marked subsetM ⊆ V , starting distribution σ, upper-boundW on the weight
of the graph. Constants s, ϵ and n ∈ O(log(1/δ)). Output: With probability at least 1 − δ: a

and b with |η/Rs′,M ′(b)− η/2Rs′,M ′(a)| ≤ ϵb(|M |) = 1
5 − 1

6|M |+2 ≤ 1/5.

1. Set x = 0 and run Algorithm 5 with constants s, ϵ and n to find η such that η/Rs′,M ≈ 1/2.

2. Set x = η.

3. Run step 3 of Algorithm 5 with constants s, ϵ and n to estimate η/Rs′,M ′(x).

4. Double x, return to step 3, until the output has havled, i.e. η/Rs′,M ′(x) < 2η/Rs′,M ′(η).

5. Output a = η and b = x.

We make one call to Algorithm 5 with x = 0, which costs f1(s, ϵ, n, r1,W) queries, where r1
is the number of iterations the algorithm makes. We then do a number of repetitions of step 3 of

Algorithm 5, each of which costs (2s − 1)(2⌈log(
√
ηW/ϵ)⌉ − 1). Note that this is thus independent

of the value of x which changes at each iteration. Let r2 be the number of repetitions of this
step. Then the total number of queries that Algorithm 6 makes is

f2(s, ϵ, n, r2, r1,W) = f1(s, ϵ, n, r1,W) + r2(2
s − 1)(2⌈log(

√
ηW/ϵ)⌉ − 1)

= n(2s − 1)

(
r1−1∑
i=0

(2⌈log(
√
2i+2/ϵ)⌉ − 1

)
+ r2(2

s − 1)
(
2⌈log(

√
ηW/ϵ)⌉ − 1

)
.

To upper-bound f2, recall from Lemma 4.5.2 that b/a ∈ O(|M |). Since the number of
iterations of doubling a to get to b is log(b/a), it follows that r2 ∈ O(log(|M |)). Since the last
entry of the summation dominates the asymptotic complexity of f2, we can upper-bound as
follows:

f2 ≤
O(log(|M |)∑

j=0

O

(√
Rσ,M ′(2j · η)W

)
∈ O(log(|M |)

√
Rσ,MW),

where we used the fact that for any x that the algorithm can come across, Rσ,M ′(x) ∈ O(Rσ,M).
Note that s, ϵ and n are constants chosen beforehand. The only real unknown, then, are

the sum of weights W , the number of iterations r1 that Algorithm 5 does, and the number of
repetitions r2 of step 3 of Algorithm 5. As argued in the previous section, the first two can
be computed classically. In fact, by simulating Algorithm 5, we can even determine the η and
estimate of η/Rs′,M ′ that Algorithm 5 produces. It is not hard to see that we can extend this
approach to Algorithm 6 to determine r2: we take the η that the simulation of Algorithm 5
outputs, and then replace step 3, which estimates η/Rs′,M ′(x), by the previously explained
classical algorithm that produces this same estimation. Once we hit the stopping condition,
we know r2 (as well a = η, b = x, etc). For our use-case of trees, the classical algorithm to
determine the number of queries that Algorithm 6 makes then becomes:

1. Compute W , the total number of nodes in the original graph. This corresponds to the
sum of weights, as each weight is 1, and there is one-to-one correspondence between nodes
and edges.

51

2. Simulate Algorithm 5 with x = 0 to determine r1 and η. That is:

(a) Compute the effective resistance of the original graph, Rσ,M .

(b) Compute the number of iterations r1 =

⌈
log

(
W

2Rσ,M ϵa +Rσ,M

1− 2ϵa

)⌉
.

(c) Compute the output after r1 iterations: η = 2r1/W .

3. Set x = η. Now simulate the loop of Algorithm 6:

(a) Compute the effective resistance Rs′,M ′(x) of the original graph with new starting
edge of weight 1/η and new marked edges of weight 1/x.

(b) Compute η/Rs′,M ′(x): this is the value we are estimating by running amplitude
estimation. Compute the rounded estimate of η/Rs′,M ′(x) that amplitude estimation
would have returned.

(c) If this estimate has halved compared to the estimate of η/Rs′,M ′(η) (computed in the
first iteration of this loop), then stop. Else, double x and repeat.

4. Let r2 be the number of iterations done in the previous loop. Compute the value of f2
using r1, r2 and W .

5. Optionally: output any of the following. For our subsequent use, we will need the first
and third items.

(a) a = η and b = x;

(b) Rs′,M ′(a) and Rs′,M ′(b).

(c) the estimates of η/Rs′,M ′(x) and η/Rs′,M ′(x).

Although this method will work for general graphs, might we again be able to simplify
because we will limit ourselves in this work to trees? The relation between x and Rs′,M ′(x) is
certainly much simpler for trees. However, we can’t apply the same trick as earlier, as it is now
the number of marked elements that impact this relation, and this number of marked elements is
variable. Specifically, recall from Proposition A.3.1 that Rs′,M ′(x) ∈ [Rs′,M +x/|M |, Rs′,M +x].
If we count the number of marked elements, then, we can limit the uncertainty, but still not
determine exactly how the effective resistance changes with x.

52

Theorem 4.5.3. Given an undirected graph G = (V,E) with weights w and marked subset
M ⊆ V , starting distribution σ, upper-bound W on the weight of the graph, and constants s, ϵ
and n ∈ O(log(1/δ)). If s and ϵ are chosen so that 2ϵa(s) + ϵ ≤ ϵη(d), where d is the size of the
support of σ, Algorithm 6 returns a and b with Rs′,M ′(b)−2Rs′,M ′(a) = d ≤ 1

5 − 1
6|M |+2 ≤ 1

5 such
that

(i) for all x ∈ [a, b], Rs′,M ′(x) ∈ O(Rσ,M), so that for all x, phase estimation runs inO(
√
Rσ,MW),

and Algorithm 5 runs in O(log(Rσ,MW));

(ii) drawing x ∈ [a, b] and constructing and measuring |φ⟩ for this choice of x returns a marked
vertex with probability at least

Rs′,M ′(a) + d

log(b/a)(2Rs′,M ′(a) + d
∈ Ω

(
1

log(b/a)

)
= Ω

(
1

log(|M |)

)
.

It does this with probability at least 1− δ, and uses

f2(s, ϵ, n, r2, r1,W) = f1(s, ϵ, n, r1,W) + r2(2
s − 1)(2⌈log(

√
ηW/ϵ)⌉ − 1) ∈ O(log(|M |)

√
Rσ,MW,

where we recall that

f1(s, ϵ, n, r1,W) = n(2s − 1)

r1−1∑
i=0

(2⌈log(
√
2i+2/ϵ)⌉ − 1)

where r2 is the number of iterations that Algorithm 6 does, and r1 is the number of iterations
that Algorithm 5 does.

4.6 Algorithm for efficient search on arbitrary graphs

Having established Theorems 4.4.2 and 4.5.3, we almost have our search algorithm. By running
Algorithm 6, we find a, b such that drawing x ∈ [a, b] using pdf 1/(x log(b/a)) allows us to find
a marked vertex with probability at least

p ≥ Rs′,M ′(a) + d

log(b/a)(2Rs′,M ′(a) + d)
=

where d = Rs′,M ′(b)− 2Rs′,M ′(a). We can then simplify to

p ≥ Rs′,M ′(b)−Rs′,M ′(a)

log(b/a)Rs′,M ′(b)
.

The expected number of repetitions before the algorithm finds a marked vertex is 1/p. If we
want to bound the run-time of the algorithm and terminate it after 1/p tries, we need to know
1/p. Although we know a and b, we of course only have estimates of Rs′,M ′(a) and Rs′,M ′(b),
and can therefore also only estimate the error d. Of course, we will ‘simulate’ Algorithm 6
to determine the expected output a and b, which also involved classically computing Rs′,M ′(a)

53

and Rs′,M ′(b), so that we exactly determine d. In turn, we can exactly determine the expected
number of repetitions 1/p. However, the quantum algorithm itself will have to make due with
an upper-bound on 1−p which it uses to bound the number of iterations it makes. Let us derive
this upper-bound.

Let ã and b̃ be our estimates of η/Rs′,M ′(a) and η/Rs′,M ′(b), respectively. Recall that these
estimates are drawn from the range [η/Rs′,M ′ − ϵa, η/Rs′,M ′ + ϵ+ ϵa]. Note that we can compute
η/ã and η/b̃ (since we know η; we set a = η), giving estimates of the Rs′,M ′ ’s with error range[

Rs′,M ′ − η

ϵa
, Rs′,M ′ +

η

ϵ+ ϵa

]
.

The error estimate d̃ = η/b̃− 2η/ã that the algorithm can compute is then in the range

d̃ ∈
[
d− η

ϵa
− 2η

ϵ+ ϵa
, d+

2η

ϵa
+

η

ϵ+ ϵa

]
.

The lower d, the worse. Since we don’t know where we are in this range, then, we might be at
the largest possible d̃, but have to assume that the actual underlying d is the lower possible. We
should then subtract 2η

ϵa
+ η

ϵ+ϵa
from our estimate, to guarantee that we lower-bound the success

probability. The lower-bound we work with then becomes

η

b̃
− 2η

ã
−
(
2η

ϵa
+

η

ϵ+ ϵa

)
≥ d.

Finally, we need to choose the precision with which we construct |φ⟩. The more bits we use for
phase estimation, the better our estimate of |φ⟩ will be. Specifically, recall from Lemma 4.4.1
that phase estimation gives us an estimate ˜|φ⟩ such that

1

2
|| |φ̃⟩ ⟨φ̃| − |φ⟩ ⟨φ| ||1 ≤

√
ϵ

a
.

That is, the normalised trace distance between |φ⟩ and its estimate is less than
√

ϵ
a . One char-

acterisation of the normalised trace distance between two states is that it is largest probability
difference that the two states could give to the same measurement outcome [Wil16, Lemma
9.1.1]. Recall that |φ⟩ gives us the measurement outcome that we want wish probability at least
p. It then suffices to reduce the trace distance to p, so that√

ϵ

a
≤ p ⇐⇒ ϵ

a
≤ p2 ⇐⇒ ϵ ≤ ap2 ≤ p2 ∈ O(log2(1/|M |)).

54

Algorithm 7 (Find a marked vertex). Input: An undirected G = (V,E) with weights w and
marked subset M ⊆ V , starting distribution σ, upper-bound W on the weight of the graph.
Constants s, ϵ and n ∈ O(log(1/δ)). Output: With probability at least 1− δ: an element m ∈M .

1. Run Algorithm 6 with s, ϵ and n to find a, b and estimates ã, b̃ of η/Rs′,M ′(a), η/Rs′,M ′(b),
respectively.

2. Let d = η/b̃− 2η/ã−
(
2η
ϵa

+ η
ϵ+ϵa

)
.

3. Let p =
Rs′,M ′(a) + d

log(b/a)(2Rs′,M ′(a) + d)
.

4. Repeat (at most 1/p times):

(a) Sample x ∈ [a, b] using pdf 1/(x log(b/a)).

(b) Construct UAUB using η = a and x and run phase estimation with precision
√
ηW + 2)/p2

to construct |φ⟩.
(c) Measure |φ⟩ and check if this yields a marked element. If so, output it.

Recall that for appropriate n, Algorithm 6 is correct with probability 1 − δ. Conditioning
on this correct outcome, we know that p really is a lower-bound on the probability to find a
marked vertex when measuring |φ⟩, so that we really expect to find a marked vertex after 1/p
repetitions.

Now for the complexity. We of course run Algorithm 6, taking over its complexity f2(s, ϵ, n, r2, r1,W)
as derived earlier. Constructing |φ⟩ means calling phase estimation with

√
ηW + 2)/p2 bits. The

expected number of times we need to measure |φ⟩ before finding a marked vertex is 1/p, so that
we express the expected query complexity as

f3(s, ϵ, n, p, r2, r1,W) = f2(s, ϵ, n, r2, r1,W) +

⌈
1

p

⌉
(2⌈log(

√
ηW+2)/p2)⌉ − 1),

where

p =
Rs′,M ′(b)−Rs′,M ′(a)

log(b/a)Rs′,M ′(b)
.

Now, if we bound the run-time of Algorithm 7 using the lower-bound d̃ on d (i.e. we measure
|φ⟩ at most 1/p times) then the above underestimates the total complexity after 1/p runs: using
d̃ means underestimating p and therefore overestimating 1/p. However, this doesn’t change
expected number of iterations, which is 1/p regardless of how the algorithm estimates 1/p. We
omit an analysis of the exact number of queries in the worst-case, i.e. using the largest possible
1/p.

We can easily upper-bound f3:

f3 ∈ O

(
1

p

√
Rσ,MW

p2

)
= O

(
1

p3
√
Rσ,M

)
= O(

√
Rσ,MW log3(b/a)) = O(

√
Rσ,MW log3(|M |)).

Note that s, ϵ and n are constants chosen beforehand. The only real unknown, then, are the sum
of weights W , the function r1(x) giving the number of iterations of Algorithm 5 when using x,

55

the number of iterations r2 of this algorithm and p. As argued in the previous section, the first
three can be computed classically by simulating Algorithm 6. We also saw that this simulation
can output us, among other things, the a and b that Algorithm 7 would have found, as well as
Rs′,M ′(a) and Rs′,M ′(b). With these, then, we can compute p, which is the last unknown. For
our use-case of trees, the classical algorithm to determine the expected number of queries that
Algorithm 7 makes then becomes:

1. Simulate Algorithm 6 to determine W, r1, r2, a, b, Rs′,M ′(a) and Rs′,M ′(b).

2. Compute d = Rs′,M ′(b)− 2Rs′,M ′(a) and

p =
Rs′,M ′(a) + d

log(b/a)(2Rs′,M ′(a) + d)
.

3. Compute the value of f3.

Theorem 4.6.1. Given an undirected graph G = (V,E) with weights w and marked subset
M ⊆ V , starting distribution σ, upper-bound W on the weight of the graph and constants s, ϵ
and n ∈ O(log(1/δ)). If s and ϵ are chosen so that 2ϵa(s) + ϵ ≤ ϵη(d), where d is the size of the
support of σ, Algorithm 7 returns a marked vertex m ∈ M with probability at least 1 − δ and
uses an expected number of queries

f3(s, ϵ, n, p, r2, r1,W) = f2(s, ϵ, n, r2, r1,W)+

⌈
1

p

⌉
(2⌈log(

√
ηW+2)/p2)⌉−1) ∈ O(

√
Rσ,MW log3(|M |)).

We recall that

p(a, b, Rs′,M ′(a), Rs′,m′(b)) =
Rs′,M ′(a) + d

log(b/a)(2Rs′,M ′(a) + d)
,

that d = Rs′,m′(b)− 2Rs′,m′(a), and finally that

f2(s, ϵ, n, r2, r1,W) = f1(s, ϵ, n, r1,W) + r2(2
s − 1)(2⌈log(

√
ηW/ϵ)⌉ − 1)

= n(2s − 1)(

r1−1∑
i=0

(2⌈log(
√
2i+2/ϵ)⌉ − 1) + r2(2

s − 1)(2⌈log(
√
ηW/ϵ)⌉ − 1),

where r2 is the number of iterations that Algorithm 6 does, and r1 is the number of iterations
that Algorithm 5.

56

Chapter 5

Experiments

In this chapter we put the expressions for the complexities of Belovs’ and Piddock’s quantum
walk search algorithms to the test, by comparing a classical DPLL backtracking algorithm for
SAT to a quantum backtracking algorithm based on Belovs’ and Piddock’s quantum walk search
algorithms. In section

5.1 we outline specifically what algorithms we will study, and recall how we can determine
their query complexity classically;

5.2 we outline the 3SAT instances that we test on’

5.3 we outline the query complexities of all these algorithms on these problem instances;

5.4 we discuss the results and draw some conclusions.

5.1 The algorithms

Below we present the algorithms for 3SAT we will test. Recall that queries in the context
of a backtracking algorithm like 3SAT means queries to the heuristic h and predicate P , c.f.
Section 3. We consider some configurations of Belovs’ detection algorithm, but our real interest
is in search algorithms (specifically, to find a single marked element, not all marked elements).
The inclusion of Belovs’ detection algorithm only serves its inclusion in binary search algorithms.
For each quantum algorithm, we use a success probability 1− δ = 1− 1/1000.

1. The DPLL algorithm, see Section 2.3.3. This is the classical backtracking algorithm that
we will try to obtain a quantum speed-up over. The query complexity is the size of the
backtracking tree upon termination.

We used the C++ implementation of [AC22] whose source code can be found at https://
github.com/andricicezar/truesat/tree/master/cpp solver. We modified it to out-
put its size upon termination, but also the size of the fully expanded backtracking tree,
the depth of the tree, the depth of the first found solution, as well as the graph itself. We
will need all of these to compute the complexities of the later quantum algorithms.

2. Belovs’ detection algorithm. Recall from Theorem 3.4.1 and Table 3.1 that the optimal
configuration for δ = 1/1000 is by setting C = 10.394 and n = 9, which gives a query
complexity of

f(C, n,R,W) = 9(2⌈log
√
11.394+118.43RW⌉−1 − 1).

57

https://github.com/andricicezar/truesat/tree/master/cpp_solver
https://github.com/andricicezar/truesat/tree/master/cpp_solver

To determine the number of queries, we then have to provide upper-bounds W and R on
the sum of weights and effective resistance of the backtracking tree. Since the weights of
each edge in the backtracking tree is 1, this comes down to, respectively, upper-bounds on
the size and depth of the full backtracking tree of DPLL. We consider two choices of these
bounds.

(a) The naive configuration R = nvars andW = 2R. We are then effectively doing Grover
search (see Section 2.1.4) over the entire backtracking tree.

(b) The optimal, but unrealistic configuration, where we setW equal to the size of the full
backtracking tree, and R equal to the effective resistance Rσ,M of the full backtracking
tree. In fact, when the instance is unsatisfiable, we even set R = 1, as the effective
resistance to marked elements is undefined, and when the instance is satisfiable, we
setW = 1, as the success probability in the positive case is independent of the upper-
boundW (see item (iv) in this enumeration). This algorithm is completely unrealistic,
but serves as a useful benchmark: this is the result we are tending towards by trying
to set the upper-bounds. Note that we can’t use only the size of the backtracking
tree upon finding the first solution for W , as the quantum algorithm walks on the
full backtracking tree, unable to discriminate it from the subtree of the first solution.

3. Belovs’ detection algorithm, as configured by Belovs, i.e. increasing C1 and C2 to amplify
success probability, see Section 3.3.1, and as configured by Montanaro, i.e. repeating the
algorithm to amplify success probability, see Section 3.3.2. We include these to see the
performance increase due to our optimisation (see Section 3.4).

4. Binary search using the detection algorithm with optimal upper-bounds. Theorem 4.1.1
tells us that the query complexity of this is given by

fbinary search,unsat(C, n,R,W, r, n2) = ⌈n2⌉ · f(C, n,R,W) ∈ O
(√

RW log logW
)

and

fbinary search,sat(C, n,R,W, r, n2) = ⌈n2⌉ · r · f(C, n,R,W) ∈ O
(√

RW logW log logW
)
.

We already know C, n,R,W . As explained above, we let the DPLL algorithm output the
depth of the first solution r. This just leaves n2. As explained in Theorem 4.1.1, we find
n2 by setting rmax to the number of variables in the problem instance and solving

1− rmax
√
1− δ ≤ (1− p)n2

n2/2∑
i=0

(
n2
i

)(
p

1− p

)i

.

5. Binary search, where we estimate W . This would be an actually realistic algorithm, as we
can’t simply assume that we know W . Montanaro gives us a way to estimate W [Mon18,
p. 9]). First, set W = 1. Run the search algorithm. If you find a marked element, check
if it is marked. If not, double W , and repeat. If you don’t find a marked element, output
that no marked elements exist. Keep going, until eventually W reaches the actual size of
the tree, and we expect to output correctly with our desired probability. This requires
only logarithmically many repetitions in W .

58

To see why this method works, we recall the proof of Section 3.2 and note that W only
occurs in the correctness proof of the negative case. Indeed, when the algorithm is given
a satisfiable instance, it will solve it with the given success probability 1− δ, regardless of
the provided W . Thus, it follows that when we try a too small upper-bound W , the worst
that can happen is that the negative case fails, i.e. that we have an unsatisfiable instance
and the algorithm claims it is satisfiable. However, since we now have a search algorithm,
we can just check whether the vertex that is returned really is marked.

In short, when we have a satisfiable instance, the algorithm will be correct on the first
try (i.e. when using initial upper-bound W = 1), so that not knowing W doesn’t incur
any extra cost. By contrast, the algorithm will not output correctly and will instead
fail repeatedely until we reach a large enough W , specifically after ⌈log(W)⌉ repetitions
(though it is not quite as bad a doing this many repetitions of the binary search algorithm,
as we start with small W at each iteration). At each such repetition, the algorithm will
walk from root down to a leaf. Since we don’t know the behaviour of this walk, we for
now assume that the number of steps is the worst-case, i.e. the depth of the tree. The
complexity overhead then becomes at most ⌈log(W)⌉ times the depth of the tree. If we
study the way an unsatisfiable instance will traverse the tree when it binary searches
(which might be far less than the full depth), we may be able to lower this second factor
and make the expression exact, but we ignore this for now.

Note, finally, that we also need to provide the upper-bound R. For now, we simply set
this to the depth of the tree.

6. Piddock’s search algorithm, see Section 4.6. Recall from Theorem 4.6.1 that its query com-
plexity is given by the function f3(s, ϵ, n, p, r2, r1,W). We proposed the classical algorithm
Algorithm 4.6 which takes the graph in question (in our case, the classical backtracking
tree that let DPLL output) and computes p, r2 and r1

1. We noted in Theorem 4.4.2 that
the cheapest configuration of the first two constants is s = 7 and ϵ ≈ 0.03549. Since we
already computed W above, this just leaves n.

As noted in Theorem 4.6.1, we need to choose n ∈ O(log(1/δ)) to guarantee a success
probability of 1 − δ. More precisely, Proposition A.1.1 tells us that the smallest n that
suffices for this is the solution to

δ ≤ (1− p)n
n/2∑
i=0

(
n

i

)(
p

1− p

)i

= (1− 8

π2
)n

n/2∑
i=0

(
n

i

)
(

8/π2

1− 8/π2
)i,

where we use the success probability 8/π2 of amplitude estimation. In Table 5.1, we note
the values of the right-side of this inequality for some n. It shows, in particular, that to
achieve our desired δ ≤ 1/1000, we need to set n = 9.

1Some small notes on our implementation of this: we don’t let DPLL output the entire classical backtracking
tree, as any branch to a non-solution is not relevant for computing the effective resistance. We therefore only save
the paths to marked vertices. We save the found solutions p, r2 and r1, so that we can later recompute f3 easily
for different choices of ϵ and s. A slight caveat here is that changing s changes how we round effective resistance
estimates in the algorithm, which can influence p, r2 and r1. To allow for this, we also save the underlying values
that we round using s, so that we can really recompute f3 for a different s. Specifically, we should save η and
each and each Rs′,M′(x), allowing us to compute each η/Rs′,M′(x), which we can then round using the new s. It
might sometimes be that for a different s we require additional iterations of doubling x, so we should also save
the graph itself. Finally, we should save the final x, i.e. b, so that we can recompute p if needed.

59

n Upper bound on δ

1 0.1895
3 0.02909 < 1/10
5 0.006263 < 1/100
7 0.001087
9 0.0001748 < 1/1000
11 0.00002711 < 1/10000
13 0.000004119 < 1/100000

Table 5.1: The error probability of amplitude estimation after performing a certain number of
repetitions and outputting the median outcome.

nvars 50 75 100 125 150 175 200 225

nclauses 218 325 430 538 645 753 860 960
Satisfiable instances 1000 100 100 100 100 100 100 100
Unsatisfiable instances 1000 100 100 100 100 100 100 100

Table 5.2: Overview of the 3SAT instances, sourced from the SATLIB project, see https://

www.cs.ubc.ca/~hoos/SATLIB/benchm.html. The instance were generated uniformly at random:
each literal was selected uniformly at random from the set of all variables and their negations,
while clauses containing duplicate literals and or tautological clauses (i.e. containing a literals
and its negation) are rejected.

One addition we propose here is the run Belovs’ detection algorithm once prior to running
Piddock’s algorithm. This detections whether an instances is satisfiable at all, so that for
unsatisfiable instances, we don’t have to run Piddock’s more expensive algorithm. This is
cheaper than using Piddock’s algorithm to decide unsatisfiable instances: you would then
have to finish performing Algorithm 5: in case the instance is unsatisfiable, this algorithm
won’t terminate in the expected time, after which you could conclude that the instance
really is unsatisfiable.

5.2 The data

The 3SAT instances that we test on are sourced from the the SATLIB project, see https:

//www.cs.ubc.ca/~hoos/SATLIB/benchm.html. They contain varying nvars and nclauses and were
generated uniformly at random. Specifically, each literal was selected uniformly at random
from the set of all variables and their negations, while clauses containing duplicate literals
and or tautological clauses (i.e. containing a literals and its negation) are rejected. For each
nvars, the corresponding nclauses is in the so-called phase transition region: being far below this
region implies a very high probability of satisfaction, being above this region implies a very low
probability of satisfaction2. Table 5.2 for an overview of the set of our 3SAT instances.

2See the paragraph labelled “Phase transitions” of https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html.

60

https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

5.3 The results

We now look at the query complexity of all the algorithms listed in the previous section, on
all the instances in the data set described above. Unfortunately, classically computing all the
parameters necessary estimate to compute the query complexity f3 of Piddock’s algorithm was
feasible only for instances in up to 125 variables. For 150 and 175 variables, even after almost a
day of computing, just under half of the 100 instances had finished, and these were the instances
with the smallest backtracking tree. Some other algorithms (for example, the detection algorithm
using optimal upper-bounds) require the effective resistance of the original graph. We were not
able to compute this for instances larger than 175 variables.

Let us first compare the classical DPLL algorithm with the two base detection algorithm
(i.e. Grover, and optimally tight bounds). We plot their query complexities over the number of
variables in the sat instances in Figure 5.1.

50 75 100 125 150 175 200 225

Number of variables in 3SAT instance

105

1010

1015

1020

1025

1030

1035

N
u

m
b

er
of

q
u

er
ie

s

Number of classical and quantum queries for δ = 1/1000

Classical:
6.252 · 100 · 20.095x

Detect (opt.W,R):
4.065 · 102 · 20.048x

Detect (naive):
5.666 · 102 · 20.504x

Figure 5.1: Average query complexity over the number of variables in input 3SAT instances for
the classical DPLL algorithm, the base quantum detection algorithm with naive upper-bounds
on W and R, and with tight upper-bounds on W and R. The lines are exponential fits to the
data points and the shaded area is the standard deviation.

We can see that the naive detection algorithm really is terrible, scaling far worse than either
the DPLL algorithm or the optimal detection algorithm. This was to be expected: the full search
space is 2x, where x is the number of variables in the SAT instance. The naive algorithm square
roots this size, and then adds the additional overhead that the quantum algorithm suffers. By
contrast, both the DPLL algorithm and the detection algorithm using optimal bounds use the
much smaller actual tree size that DPLL induces.

Indeed, we see that the detection algorithm using optimal bounds does relatively well. It

61

scales significantly better than the classical algorithm, so that despite having a somewhat larger
base complexity, it obtains a quantum speed-up starting at instances in 125 variables. Instances
of this size are still easily solved by the classical DPLL algorithm on an average computer,
despite the exponential complexity.

Of course, this algorithm is very unrealistic, as we can’t perfectly determine the two upper-
bounds at no extra cost. Nonetheless, the algorithm provides a useful baseline: quantum speed-
ups are possible here, even for relatively small instances. It is now a matter of trying to find these
upper-bounds at a low-enough cost to retain the speed-up. Next, in Figure 5.2, we compare
the complexity of the detection algorithm to the suboptimal configurations that Belovs and
Montanaro use, to see the extent of our optimisation.

50 75 100 125 150 175 200 225

Number of variables in 3SAT instance

102

103

104

105

106

107

N
u

m
b

er
of

q
u

er
ie

s

Number of classical and quantum queries for δ = 1/1000

Classical:
6.252 · 100 · 20.095x

Detect (opt. W,R):
4.065 · 102 · 20.048x

Detect (Belovs):
4.328 · 103 · 20.047x

Detect (Montanaro):
4.618 · 103 · 20.047x

Figure 5.2: Average query complexity over the number of variables in input 3SAT instances
for the classical DPLL algorithm, the base quantum detection algorithm with naive upper-
bounds on W and R, and the same base detection algorithm but using Belovs’ and Montanaro’s
suboptimal configurations (see Sections) with tight upper-bounds on W and R. The lines are
exponential fits to the data points and the shaded area is the standard deviation.

Interestingly, Belovs and Montanaro’s approaches yield an almost equal complexity. As
expected, the scaling of their approaches is equal to that of our algorithm, as the overhead
depends only on the success probability which is constant. Nonetheless, the base complexity
is reduced by an order of magnitude, making our algorithm roughly 10 times as fast across all
input sizes.

We also see that the standard deviation for all algorithms is quite significant. This is due
to the difference in complexity between satisfiable and unsatisfiable instances. From now on,
then, let us split up the complexity into these two groups of instances. Next, in Figure 5.3,
we compare the classical, optimal detection, and binary search algorithm, where we split the

62

complexity of the latter two into satisfiable and unsatisfiable.

50 75 100 125 150 175 200 225

Number of variables in 3SAT instance

102

103

104

105

106

107

N
u

m
b

er
of

q
u

er
ie

s

Number of classical and quantum queries for δ = 1/1000

Classical:
6.252 · 100 · 20.095x

Detect (opt. W,R, sat):
4.945 · 102 · 20.052x

Detect (opt. W,R, unsat):
2.030 · 102 · 20.048x

B. search (sat):
1.955 · 104 · 20.06x

B. search (unsat):
6.091 · 102 · 20.048x

Figure 5.3: Average query complexity over the number of variables in input 3SAT instances for
the classical DPLL algorithm, the base quantum detection algorithm with naive upper-bounds
on W and R, and the binary search algorithm using this detection algorithm. For the latter
two, we plot satisfiable and unsatisfiable instances separately. The lines are exponential fits to
the data points and the shaded area is the standard deviation.

Recall that for unsatisfiable instances, going from detection to binary search just means
suffering a small number of repetitions to amplify the success probability, explaining the constant
increase for those instances. Across all instances we tested, this came down to a constant
overhead 3. By contrast, for satisfiable instances, there is more non-trivial dependence on the
depth of the first found solution. We see this reflected in a significantly increased scaling, as
well as a more complex pattern of the data points, that are more distant from the fitted line. In
addition, the base complexity has increased, so that for the satisfiable binary search algorithm,
a quantum speed-up has disappeared from our plot. Nonetheless, extrapolating our lines implies
that the quantum speed-up should be recovered for instances in roughly 330 variables.

Next, in Figure 5.4, we consider the binary search algorithm that estimates the upper-bound
on W .

Note that for satisfiable instances, estimatingW comes at no extra cost, so that binary search
and binary search while estimating W perfectly coincide for satisfiable instances. By contrast,
unsatisfiable instances suffer a significant slowdown when estimating W , and, coincidentally,
it makes their complexity roughly equal to that of satisfiable instances. This is really quite
surprising: the satisfiable instances’ slowdown comes from having to repeat while walking to the

3Indeed, as already hinted at in Section 4.1, for none of the instances we tested there was a difference in the
required number of repetitions when we assumed we required nvar correct repetitions with probability 1 − δ, or
just r correct repetitions with probability 1− δ, where r is the actual depth of the first found solution.

63

50 75 100 125 150 175 200 225

Number of variables in 3SAT instance

102

103

104

105

106

107

108

N
u

m
b

er
o
f

q
u

er
ie

s

Number of classical and quantum queries for δ = 1/1000

Classical:
6.252 · 100 · 20.095x

Detect (opt. W,R, sat):
4.945 · 102 · 20.052x

Detect (opt. W,R, unsat):
2.030 · 102 · 20.048x

B. search (sat):
1.955 · 104 · 20.06x

B. search (unsat):
6.091 · 102 · 20.048x

B. search, est. W (opt. R, sat):
1.955 · 104 · 20.06x

B. search, est. W (opt. R, unsat):
1.495 · 104 · 20.06x

Figure 5.4: Average query complexity over the number of variables in input 3SAT instances for
the classical DPLL algorithm, the base quantum detection algorithm with naive upper-bounds
on W and R, and the binary search algorithm using this detection algorithm, and the same
binary search algorithm but which estimates the upper-bound W . For the latter three, we plot
satisfiable and unsatisfiable instances separately. The lines are exponential fits to the data points
and the shaded area is the standard deviation.

depth of the first solution. The unsatisfiable instances’ slowdown comes from having to repeat
roughly logW times, and each time also walking down the tree, but now to the full depth of
the tree (this is an assumption we had to make, making this complexity the first upper-bound
we see: all the previous complexities were exact). The unsatisfiable instances then has to do
roughly logW more repetitions, but because all but the last repetitions use a much smaller W ,
their complexity is smaller, so that apparently, their sum is roughly equal to that of satisfiable
instances.

The scaling of the binary search algorithm that estimates W , then, is unchanged from the
binary search algorithm for satisfiable instances, and we reiterate that by extrapolating we
expect to see a quantum speed-up at instances in some 330 variables. Now, this algorithm is
still not yet realistic, as we still assume an optimal upper-bound on R. Let us loosen this, and
set R equal to the number of variables in the instance: a trivial upper-bound on the effective
resistance. The range between these two algorithm is then where a real quantum algorithm
would lie, depending on how well you upper-bound R. For comparisons sake, we also consider
the binary search algorithm with the trivial upper-bound R = nvars for Belovs’ and Montanaro’s
configuration, to see how much our optimisation mattered in the final usable quantum algorithm.
This is shown in Figure 5.5.

We see that the algorithm with the trivial upper-bound on R scales slightly worse and has
a slightly larger base complexity than the algorithm using optimal R. Extrapolating the lines
implies that now, a quantum speed-up will appear starting at instances in roughly 545 variables.

64

50 75 100 125 150 175 200 225

Number of variables in 3SAT instance

103

105

107

109

N
u

m
b

er
of

q
u

er
ie

s

Number of classical and quantum queries for δ = 1/1000

Classical:
6.252 · 100 · 20.095x

Detect (opt. W,R, sat):
4.945 · 102 · 20.052x

Detect (opt. W,R, unsat):
2.030 · 102 · 20.048x

B. search, est. W (opt. R):
1.604 · 104 · 20.061x

B. search, est. W :
6.469 · 104 · 20.07x

B. search, est. W (Belovs):
6.565 · 105 · 20.07x

B. search, est. W (Montanaro):
6.986 · 105 · 20.07x

Figure 5.5: Average query complexity over the number of variables in input 3SAT instances
for the classical DPLL algorithm, the same binary search algorithm that estimates W using an
optimal upper-bound R, the same algorithm but with a the worst-case upper-bound R, and the
same algorithm but with the detection algorithm configured as Belovs and Montanaro would
configure it. The lines are exponential fits to the data points and the shaded area is the standard
deviation.

We stress here that we have used quite a loose upper-bound, and that the effective resistance
is almost always far, far lower than the number of variables in the formulas, if only because
backtracking trees almost never have full depth.

Further, we see that the our optimisation still saves roughly a factor 10 compared to Belovs’
and Montanaro’s configurations of the base detection algorithm. Extrapolating their complexity
implies a quantum speed-up will appear starting at instances in roughly 640 variables. To finish
off, in Figure 5.6 we compare the complexity of Piddock’s algorithm with the optimal binary
search algorithm.

We see that for satisfiable instances Piddock’s algorithm scales slightly better than the
binary search algorithm with trivial upper-bound on R. Piddock’s algorithm scales roughly
the same as the binary search algorithm using optimal upper-bound on R, but with a larger
base complexity. Extrapolating the line implies that Piddock’s algorithm will obtain a quantum
speed-up at instances in roughly 425 variables: almost in the middle between the 330 variables
given by the optimal upper-bound R and the 545 variables given by the worst-case upper-bound
R. Depending on how well one picks R, then, using binary search may be (significantly) faster
than using Piddock’s algorithm.

Now, we should note here that Piddock’s algorithm still requires an upper-bound on W .
Determining this is trickier than for the detection algorithm, however. Though Piddock’s al-
gorithm only uses W to fix the precision of phase estimation, it is not clear that the positive
case is independent on this upper-bound (like with the detection algorithm). If this is not the

65

50 75 100 125 150 175 200 225

Number of variables in 3SAT instance

102

103

104

105

106

107

108

109

N
u

m
b

er
o
f

q
u

er
ie

s

Number of classical and quantum queries for δ = 1/1000

Classical:
6.252 · 100 · 20.095x

B. search, est. W (opt. R):
1.604 · 104 · 20.061x

B. search, est. W :
6.469 · 104 · 20.07x

Search (sat):
2.206 · 105 · 20.06x

Search (unsat):
2.030 · 102 · 20.048x

Figure 5.6: Average query complexity over the number of variables in input 3SAT instances
for the classical DPLL algorithm, the same binary search algorithm that estimates W using
an optimal upper-bound R, the same algorithm but with a the worst-case upper-bound R,
and Piddock’s search algorithm, split into satisfiable and unsatisfiable instances. The lines are
exponential fits to the data points and the shaded area is the standard deviation.

case, it is not clear how we can estimate W . Furthermore, even if it is, the overhead caused
to the unsatisfiable is less clear, as a failing phase estimation subroutine means Algorithms 5
and 6 may show quite different behaviour, for example using far more iterations. We omit this
analysis, and simply note that Piddock’s algorithm most likely will worsen after factoring in
the cost to estimate W . In particular, we expect the complexity for unsatisfiable instances to
worsen significantly, so that Piddock’s complexity on satisfiable instances is more representative
of the actual complexity, keeping the overhead for estimating W at the back of our head.

5.4 Discussion

To summarise, we see that for uniformly randomly generated 3SAT instances both a binary
search algorithm based on Belovs’ detection algorithm and Piddock’s search algorithm achieve
a quantum speed-up over the classical DPLL algorithm. This is not directly observed experi-
mentally, but only based on extrapolating the scaling of the query complexities we observe.

Specifically, the quantum query complexity of the detection-based binary search algorithm
is between 1.604 · 104 · 20.061x and 6.469 · 104 · 20.07x, depending on how tight the upper-bound
R is. It then obtains a quantum speed-up between

6.252 · 20.095x
1.604 · 104 · 20.061x = 3.898 · 10−4 · 20.034x and

6.252 · 20.095x
6.469 · 104 · 20.07x = 9.665 · 10−5 · 20.025x,

66

which, modulo constants, means a polynomial speed-up of an order between 0.095/0.061 ≈ 1.56
and 0.095/0.07 ≈ 1.36, which starts from instances in roughly 330 variables and roughly 545
variables.

Piddock’s algorithm, where we don’t yet account for the cost for estimating W , has a com-
plexity of roughly 1.042x6.469 ·104. This is then the optimal complexity of this algorithm which
we, in all likelihood, won’t quite achieve. The quantum speed-up is then at most

6.252 · 20.095x
1.05x6.469 · 104 = 2.205 · 105 · 20.06x,

which, modulo constants, means a polynomial speed-up of order at most 0.095/0.06 ≈ 1.58,
which starts form instances in (at least) roughly 430 variables.

Interestingly, Piddock’s algorithm doesn’t perform much better than the binary search al-
gorithm. Indeed, perhaps it won’t even perform better, after the cost of estimating W is taken
into account. This is despite its superiority in asymptotic complexity. We can explain this
from the significant additive overhead that Piddock’s algorithm suffers. In essence, after the
algorithm determines the range [a, b], Piddock’s algorithm simply runs phase estimation (i.e.
the detection algorithm) repeatedly, just like the binary search algorithm. However, Piddock’s
algorithm only needs O(log |M |) repetitions, instead of binary search’s O(logW). This is the
source of the asymptotic superiority of Piddock. However, before Piddock can start doing this,
it needs significant work to determine the range [a, b], which the binary search algorithm doesn’t
have to.

What this estimation comes down to - in part - is estimating the effective resistance. This is
somewhat that we don’t do for binary search, as we have to provide the binary search algorithm
with an upper-bound on the effective resistance ourselves. In a way, we require Piddock’s
algorithm to perform work that we don’t require the binary search algorithm to do. It would be
interesting to see how well the binary search algorithm would do if we don’t give an upper-bound
R, but let it estimate the effective resistance. This is a question for future work.

Now, we should note that even for 330 variables, which is the smallest where we observe
a quantum speed-up, we reach a somewhat large complexity: at least 1.734 · 1010 queries. If
we translate this one-to-one to the number of operations, this is the point where a classical
computer will start to struggle. Indeed, our computer didn’t manage to solve any SAT instances
in 330 variables after multiple hours of trying. Whether the observed quantum speed-ups are
of significance, then, depends on how large a quantum computer one has: it has to be of a
significant size to be able to handle a time complexity corresponding one-to-one to the query
complexity.

But of course, the time complexity will exceed the query complexity. We haven’t accounted
for the large overhead that quantum operation carry, mostly due to error correcting. This could
require many orders of magnitude of constant overhead per quantum operation, c.f. [BMT+22].
Whether a quantum speed-up for SAT will manifest in practice, is then not clear. But recall
that we wanted to see whether a speed-up would even occur in the query complexity model: if
we didn’t find a speed-up here, then certainly we won’t find a speed-up in practice. Thus, if
one believes that the constant overhead for error correcting will come down significantly, then
our results show that a speed-up over the DPLL algorithm for 3SAT using either Belovs’ or
Piddock’s algorithms is possible.

67

Chapter 6

Conclusion

In this work we have provided efficiently classically computable exact expressions for the query
complexity of Belovs’ quantum walks detection algorithm, the query complexity of a binary
search procedure for trees using Belovs’ detection algorithm, and the expected query complexity
of Piddock’s quantum walk search algorithm. These expression allow the computation of the
query complexity of these algorithms on problem instances of interest.

We provided an optimal configuration of Belovs’ detection algorithm and experimentally
show that this saves roughly a factor of 10 in query complexity compared to to either Belovs’
or Montanaro’s proposed configurations. We also provide a small optimisation and additions
Piddock’s algorithm, and upper-bounds on the inaccuracy of two subroutines of Piddock’s algo-
rithm.

We used our complexity expressions to compute the (expected) query complexity of the
search algorithm on 3SAT, comparing to the classical DPLL algorithm. For the detection-
based binary search algorithm, we observe a quantum speed-up of order between 1.36 to 1.56
(depending on the algorithm’s configuration), which manifests in SAT instances in roughly 330
to 545 variables and on. For Piddock’s search algorithm, we find a polynomial speed-up of
order at most 1.58, which starts to occur in SAT instances in least 430 variables, where we
note that Piddock’s algorithm requires an upper-bound on the size of DPLL’s backtracking
tree, and computing this should worsen its complexity. Surprisingly, then, Piddock’s algorithm
doesn’t perform obviously better than the binary search algorithm, despite a clear asymptotic
advantage. Nonetheless, Piddock’s algorithm works on arbitrary graphs, and the binary search
algorithm only on trees.

But of course, the time complexity will exceed the query complexity. We haven’t accounted
for the large overhead that quantum operation carry, mostly due to error correcting. This could
require many orders of magnitude of constant overhead per quantum operation, c.f. [BMT+22].
Whether a quantum speed-up for SAT will manifest in practice, is then not clear. But recall
that we wanted to see whether a speed-up would even occur in the query complexity model: if
we didn’t find a speed-up here, then certainly we won’t find a speed-up in practice. Thus, if
one believes that the constant overhead for error correcting will come down significantly, then
our results show that a speed-up over the DPLL algorithm for 3SAT using either Belovs’ or
Piddock’s algorithms is possible.

We left many stones unturned, and list a few directions for future research below.

68

6.1 Future research

6.1.1 More experiments using the existing theory

We have provided a method to compute the query complexity of Belovs’ detection algorithm,
Piddock’s search algorithm, and the binary search algorithm using Belovs’ detection algorithm
on any given problem instance of any search problem on graphs. We have only considered
uniformly at random generated instances of 3SAT.

This is clearly very limited, and applying our method to other 3SAT instances and other
search problems has the potential to tell us much more about possible quantum speed-ups.
Remember that all we have established in this work is that a quantum speed-up does materialise
for uniformly at random generated 3SAT instances: whether this speed-up is retained for different
instances of this problem, for similar problems, let alone for very different problems, is something
that can be investigated using the theory we have given.

In addition, it would be interesting to test Piddock’s algorithm with a different s on the same
data. Recall that this sets the precision of amplitude estimation, in turn determining how the
estimates of η/R are rounded, which could in turn change the execution of Piddock’s algorithm.
Note that a larger s doesn’t mean a better or more precise outcome: the outcome will be a
marked vertex regardless. What it changes is the interim values the algorithm finds (η and b),
and how long it takes to determine these, which are both large factors in the complexity. It
may be possible to find some kind of optimum for s, perhaps depending on the structure of the
input graph. Experiments might help to find such an optimum.

6.1.2 Optimise Piddock’s algorithm

Throughout Chapter 4 we noted some possible optimisations for Piddock’s quantum walks search
algorithm. These are of large interest to us: we saw that our optimisation of Belovs’ algorithm
saved roughly a factor of 10 in the query complexity. If something similar can be achieved for
Belovs’ algorithm, it may suddenly perform quite a bit better than the binary search algorithm
we considered.

First, we aim to find η such that η/Rs′,M ′ = 1/2. Neither we nor Piddock argue that this
choice is optimal. Recall that the larger we make η, the more amplitude is at the starting edges,
and therefore the larger the success probability of phase estimation. Recall that we run phase
estimation to construct |φ⟩, and measuring this state giving us a shot at finding a marked vertex.
If phase estimation fails half the time, that means half the time we won’t even have a short at
finding a marked vertex. Increase η then directly drops the expected number of repetitions
to find a marked vertex. But conversely, increasing η also means the probability of observe
a marked vertex drops, as move amplitude is at the starting edges, and therefore not at the
marked edges. It seems there must be some optimal balance here.

Next, we currently seek b such that Rs′,M ′(b) = 2Rs′,M ′(a). We showed in Section 4.5.1 that
the larger the b we end up finding (i.e. the larger the ratio between Rs′,M ′(b) and Rs′,M ′(a)), the
higher the probability to find a marked vertex when measuring |φ⟩. However, at the same time,
the larger b, the larger the cost of preparing |φ⟩. Neither we nor Piddock investigate whether
the ratio of 2 is the optimal trade-off between these two.

Finally, for Algorithm 5, we could investigate whether the starting value of η = 1/W and the
doubling of η at each iteration are optimal. It might be better to start with a larger η or increase
η faster, so that we get to the final η quicker. Conversely, it might be better to increase η slower,

69

to obtain a more accurate final result. Deriving an expression for the expected inaccuracy of
η given a certain starting value and amount of increase would help to answer this. This would
require more in depth study of how η changes the effective resistance.

6.1.3 Other quantum walk frameworks

Concurrently with Piddock’s work on a general quantum walk search algorithm, a group of
authors proposed a different quantum walk search algorithm for general graphs [AGJ21]. It’s
query complexity is O(

√
log(RW)RW log log(RW)). This algorithm works quite differently

from Piddocks, relying on quantum fast-forwarding instead of quantum phase estimation. It
would be interesting to analyse this algorithm and see whether it gives a speed-up compared to
Piddock in practice.

Similarly, as we noted in Chapter 3, Jarret and Wann have also given an algorithm that
uses the electrical flow state |φ⟩ to find marked elements, but this algorithm works only in
trees [JW18]. Despite its asymptotic complexity seeming somewhat worse than Piddock’s, it
would be worth giving exact expressions for their complexity, and seeing how Jarret and Wann’s
algorithm compares to Piddock’s in practice.

6.1.4 Actual tree size

The quantum algorithms all used an upper-bound T on the full size of classical backtracking tree.
For some satisfiable instances, this can be much larger than the size of the classical tree upon
finding the first solution. It was shown in [AK17] that this initial subtree can be determined, after
which a quantum walk can be done on just this initial tree, making the complexity dependend
on this potentially far smaller subtree. It would be interesting to give an exact expression for
the query cost of this altered algorithm, to see whether it gives a speed-up in practice.

6.1.5 Estimate effective resistance for binary search algorithms

The polynomial speed-up of between 1.36 to 1.56 that we found for the binary search algorithm
depending on how tightly the effective resistance upper-bound was. Now, recall that Piddock’s
included Algorithm 5 that can estimate the effective resistance of a graph. If we use this, we
can set the upper-bound tightly, yielding (close to) the speed-up of 1.56. It would be interesting
determine the final speed-up of the binary search algorithm after incorporating the cost of
running Algorithm 5.

6.1.6 Further optimise Belovs’ algorithm

In Chapter 3 we noted a few possible ways to further optimise Belovs’ algorithm.
The first has to do with the application of the spectral gap lemma. This lemma upper-

bounds the overlap between the vector |φ⟩ and the eigenvectors with phase less than Θ of the
quantum walk unitary. The goal here was to upper-bound the overlap between |φ⟩ and the
eigenvector(s) with phase 0. By giving this slightly more general statement, which includes
other small phases that are not 0, we most likely paint a pessimistic picture of the success
probability. Exactly expressing the overlap between |φ⟩ and 0 might therefore reveal a slightly
larger success probability using the same number of precision bits (i.e. the same complexity).

Another problematic component of the use of the effective spectral gap lemma is that if we
set our precision larger than Θ, we have no idea what happens to the success probability, and

70

have to assume that the algorithm simply fails. That is, if we supply the algorithm with upper-
bounds R and W that are too low, we have to assume the algorithm fails, even if in practice it
may not. We ran in to this in our procedure to estimate W . We assumed that the algorithm
would fail continuously up until we increased W enough to really become an upper-bound on
the sum of weights of our graph. This implied a logarithmic number of repetitions in W . If we
can express the success probability in terms of the distance between the given bound W and
the actual sum of weights, we might be able to turn this into a constant overhead. Something
similar was shown for estimating a parameter of Grover search in [CFNW22a].

Finally, our optimised values for the constants C and n were relative to an upper-bound on
the query complexity of Belovs’ algorithm. We had to do this, as there was no global optimum
relative to the actual expression for the complexity. This was because the ceiling function in
the expression for the complexity. Understanding the behaviour of this real expression for the
complexity may allow us to give even better values for C and n, though these would then depend
on R and W , so it is unclear whether this would be feasible.

6.1.7 More efficient estimation of the complexity of Piddock’s algorithm

Recall that we managed to improve the efficiency of the classical algorithm to estimate the
query complexity of Piddock’s algorithm by recalling that for trees, the number of iterations of
Algorithm 5 was very easy too determine. We attempted something similar for Algorithm 6,
which forms by far the most costly part of the algorithm to compute the query complexity of
Piddock’s algorithm. Indeed, due to this, we were not able to consider SAT instances beyond
125 variables.

Unfortunately, we were not able to solve this, as it requires a deeper understanding of the
effective resistance from root to marked leaves in trees. We managed to show the following
result.

Proposition 6.1.1. Let G be a weighed tree with root r and edge weights equal to 1. Let
M ⊆ G be marked subset of vertices. If the unique paths from r to each m ∈M don’t overlap,
then the electric flow from s to M is the flow that assigns each path an equal sum of flow.

In a real backtracking tree, the paths will overlap however, making the situation more com-
plex. Investigating how this changes the electrical flow may thus allow us to hugely speed-up
the computation of the query complexity of Piddock’s algorithm.

71

Bibliography

[AAKV01] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, Quantum walks on
graphs, in Proceedings of the Thirty-Third Annual ACM Symposium on Theory
of Computing - STOC ’01, ACM Press, Hersonissos, Greece, 2001, pp. 50–59.
https://doi.org/10.1145/380752.380758.

[ADZ93] Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random walks,
Physical Review A 48 no. 2 (1993), 1687–1690. https://doi.org/10.1103/
PhysRevA.48.1687.

[AL18] T. Albash and D. A. Lidar, Adiabatic quantum computation, Reviews
of Modern Physics 90 no. 1 (2018), 015002. https://doi.org/10.1103/
RevModPhys.90.015002.

[AK17] A. Ambainis and M. Kokainis, Quantum algorithm for tree size estimation, with
applications to backtracking and 2-Player games, in Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Association
for Computing Machinery, New York, NY, USA, 2017, pp. 989–1002. https://
doi.org/10.1145/3055399.3055444.

[AC22] C.-C. Andrici and S. Ciobaca, A Verified Implementation of the DPLL Algo-
rithm in Dafny, Mathematics 10 no. 13 (2022), 2264. https://doi.org/10.3390/
math10132264.

[AGJ21] S. Apers, A. Gilyén, and S. Jeffery, A unified framework of quantum walk
search, in 38th International Symposium on Theoretical Aspects of Computer Sci-
ence (STACS 2021) (M. Bläser and B. Monmege, eds.), Leibniz International
Proceedings in Informatics (LIPIcs) 187, Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 2021, pp. 6:1–6:13. https://doi.org/10.4230/
LIPIcs.STACS.2021.6.

[BBC+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. De Wolf, Quantum
lower bounds by polynomials, Journal of the ACM 48 no. 4 (2001), 778–797.
https://doi.org/10.1145/502090.502097.

[Bel13] A. Belovs, Quantum Walks and Electric Networks, (2013). https://doi.org/
10.48550/ARXIV.1302.3143.

[BMT+22] M. E. Beverland, P. Murali, M. Troyer, K. M. Svore, T. Hoefler,
V. Kliuchnikov, G. H. Low, M. Soeken, A. Sundaram, and A. Vaschillo,
Assessing requirements to scale to practical quantum advantage, November 2022.

72

https://doi.org/10.1145/380752.380758
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1145/3055399.3055444
https://doi.org/10.1145/3055399.3055444
https://doi.org/10.3390/math10132264
https://doi.org/10.3390/math10132264
https://doi.org/10.4230/LIPIcs.STACS.2021.6
https://doi.org/10.4230/LIPIcs.STACS.2021.6
https://doi.org/10.1145/502090.502097
https://doi.org/10.48550/ARXIV.1302.3143
https://doi.org/10.48550/ARXIV.1302.3143

[BHMT02] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Quantum Amplitude Ampli-
fication and Estimation, 305, 2002, pp. 53–74. https://doi.org/10.1090/conm/
305/05215.

[BBD+09] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. Van den
Nest, Measurement-based quantum computation, Nature Physics 5 no. 1 (2009),
19–26. https://doi.org/10.1038/nphys1157.

[CFNW22a] C. Cade, M. Folkertsma, I. Niesen, and J. Weggemans, Quantifying Grover
speed-ups beyond asymptotic analysis, March 2022. https://doi.org/10.48550/
arXiv.2203.04975.

[CFNW22b] C. Cade, M. Folkertsma, I. Niesen, and J. Weggemans, Quantum Algo-
rithms for Community Detection and their Empirical Run-times, March 2022.
https://doi.org/10.48550/arXiv.2203.06208.

[CEMM98] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Quantum algo-
rithms revisited, Proceedings of the Royal Society of London. Series A: Mathe-
matical, Physical and Engineering Sciences 454 no. 1969 (1998), 339–354. https:
//doi.org/10.1098/rspa.1998.0164.

[DLL62] M. Davis, G. Logemann, and D. Loveland, A machine program for theorem-
proving, Communications of the ACM 5 no. 7 (1962), 394–397. https://doi.org/
10.1145/368273.368557.

[DP60] M. Davis and H. Putnam, A Computing Procedure for Quantification The-
ory, Journal of the ACM 7 no. 3 (1960), 201–215. https://doi.org/10.1145/
321033.321034.

[Deu85] D. Deutsch, Quantum theory, the Church–Turing principle and the universal
quantum computer, Proceedings of the Royal Society of London. A. Mathematical
and Physical Sciences 400 no. 1818 (1985), 97–117. https://doi.org/10.1098/
rspa.1985.0070.

[Gro96] L. K. Grover, A fast quantum mechanical algorithm for database search, in
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Com-
puting - STOC ’96, ACM Press, Philadelphia, Pennsylvania, United States, 1996,
pp. 212–219. https://doi.org/10.1145/237814.237866.

[JW18] M. Jarret and K. Wan, Improved quantum backtracking algorithms using ef-
fective resistance estimates, Physical Review A 97 no. 2 (2018), 022337. https:
//doi.org/10.1103/PhysRevA.97.022337.

[KSV02] A. Kitaev, A. Shen, and M. Vyalyi, Classical and Quantum Computation,
Graduate Studies in Mathematics 47, American Mathematical Society, Providence,
Rhode Island, May 2002. https://doi.org/10.1090/gsm/047.

[LMR+11] T. Lee, R. Mittal, B. W. Reichardt, R. Spalek, and M. Szegedy, Quantum
Query Complexity of State Conversion, in 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, IEEE, Palm Springs, CA, USA, October 2011,
pp. 344–353. https://doi.org/10.1109/FOCS.2011.75.

73

https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1038/nphys1157
https://doi.org/10.48550/arXiv.2203.04975
https://doi.org/10.48550/arXiv.2203.04975
https://doi.org/10.48550/arXiv.2203.06208
https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1145/237814.237866
https://doi.org/10.1103/PhysRevA.97.022337
https://doi.org/10.1103/PhysRevA.97.022337
https://doi.org/10.1090/gsm/047
https://doi.org/10.1109/FOCS.2011.75

[LPW+17] D. A. Levin, Y. Peres, E. L. Wilmer, J. Propp, and D. B. Wilson, Markov
Chains and Mixing Times, second edition ed., American Mathematical Society,
Providence, Rhode Island, 2017.

[Lov93] L. Lovász, Random Walks on Graphs: A Survey, Combinatorics, Paul Erdos is
Eighty 2 (1993), 46.

[MNRS07] F. Magniez, A. Nayak, J. Roland, and M. Santha, Search via quantum
walk, in Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of
Computing, ACM, San Diego California USA, June 2007, pp. 575–584. https:
//doi.org/10.1145/1250790.1250874.

[Mon16] A. Montanaro, Quantum walk speedup of backtracking algorithms, January
2016.

[Mon18] A. Montanaro, Quantum walk speedup of backtracking algorithms, Theory of
Computing 14 no. 1 (2018), 1–24. https://doi.org/10.4086/toc.2018.v014a015.

[NC10] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Infor-
mation, 10th anniversary ed ed., Cambridge University Press, Cambridge ; New
York, 2010.

[Pid19] S. Piddock, Quantum walk search algorithms and effective resistance, December
2019.

[San08] M. Santha, Quantum walk based search algorithms, August 2008.

[SKW03] N. Shenvi, J. Kempe, and K. B. Whaley, Quantum random-walk search al-
gorithm, Physical Review A 67 no. 5 (2003), 052307. https://doi.org/10.1103/
PhysRevA.67.052307.

[Sze04] M. Szegedy, Quantum Speed-Up of Markov Chain Based Algorithms, in 45th An-
nual IEEE Symposium on Foundations of Computer Science, IEEE, Rome, Italy,
2004, pp. 32–41. https://doi.org/10.1109/FOCS.2004.53.

[Wil16] M. M. Wilde, From Classical to Quantum Shannon Theory, November 2016.
https://doi.org/10.1017/9781316809976.001.

[dW22] R. de Wolf, Quantum Computing: Lecture Notes, August 2022.

[Won17] T. G. Wong, Equivalence of Szegedy’s and coined quantum walks, Quantum
Information Processing 16 no. 9 (2017), 215. https://doi.org/10.1007/s11128-
017-1667-y.

74

https://doi.org/10.1145/1250790.1250874
https://doi.org/10.1145/1250790.1250874
https://doi.org/10.4086/toc.2018.v014a015
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.1109/FOCS.2004.53
https://doi.org/10.1017/9781316809976.001
https://doi.org/10.1007/s11128-017-1667-y
https://doi.org/10.1007/s11128-017-1667-y

Appendix A

A.1 Amplifying success probability

Suppose we have a probabilistic algorithm X that outputs 1 with probability p > 1/2 and 0
with probability 1 − p and wish to amplify the success probability to some c > (0.5, 1). We
can do this by performing multiple, say n, independent runs of the algorithm and outputting
a majority vote. Intuitively, since 1 is more likely, this should decrease the probability that we
output 0. It turns out that this drop is exponential in the number of repetitions.

Let a run of the algorithm be described by a random variable Xi. When doing n runs, we
consider the random variable X = X1 +X2 + ...+Xn, whose expected outcome is E(X) ≥ pn,
and we are interested in studying the probability to diverge from this expected outcome, which
we claimed above drops exponentially with n.

Note that after n repetitions, there are 2n possible outcomes, which we might express as the
2n subsets S ⊆ [n] = {1, ..., n}, where i ∈ S means run i of the algorithm returned 1. In the
positive case, we want to end up with a majority of runs returning 1, and therefore a set S such
that |S| > n/2. The majority vote procedure fails when we obtain a set S with |S| ≤ n/2. For
each such S, the probability of obtaining it is equal to the probability of obtaining |S| successful
runs (each occurring with probability p) and n − |S| unsuccessful runs (each occurring with
probability 1− p), i.e. p|S|(1− p)n−|S|.

We can thus express the probability to observe any such outcome. If we now sum the
probabilities to observe any set that corresponds to an incorrect output, we can express the
probability that our majority vote fails. We get:

δ ≤
∑

S⊆[n]∧|S|≤k/2

p|S|(1−p)k−|S| = ((1−p)p)n/2
∑

S⊆[n]∧|S|≤k/2

(
1− p

p
)n/2−|S| < ((1−p)p)n/22n·1 = (2

√
(1− p)p))n

where we note that the first equality follows from [KSV02, Equation (4.1)]. We have p(1− p) <
1/4, as this expression is maximised to 1/4 when p = 1/2. It follows that

√
p(1− p) < 0.5 and

finally 2
√

(1− p)p) < 1, so that raising n makes the error probability δ arbitrarily small.
How large should n become to achieve some desired error rate δ′? Using the upper-bound,

we want to find n such that (2
√

(1− p)p))n = δ′, so that

n ≤ log
2
√

(1−p)p)
δ =

log δ′

log(2
√

(1− p)p)
=

− log 1
δ′

log(2
√

(1− p)p)
=

1

− log(2
√
(1− p)p)

log
1

δ′
∈ O(log

1

δ′
).

Recall from above that 2
√
(1− p)p < 1 so that the log of this expression is negative, hence − log

of this expression is positive. In other words, to achieve some error probability δ′, it suffices to
increase n logarithmically in 1/δ′, that is, by increasing n, δ′ drops exponentially.

75

What if we want to determine n exactly? For a given n, we can work out the error probability
δ exactly to

δ ≤
∑

S⊆[n]∧|S|≤k/2

p|S|(1− p)k−|S|

=

n/2∑
i=0

(
n

i

)
pi(1− p)n−i Since there are

(
n

i

)
subsets of size i.

= (1− p)n
n/2∑
i=0

(
n

i

)
pi(1− p)−i

= (1− p)n
n/2∑
i=0

(
n

i

)(
p

1− p

)i

,

so that in our application, assuming we have p and the desired error probability δ′, we might
be able to solve the above equation for n. When this fails analytically, it can be done easily
computationally: simply try increasing n, until the expression for δ drops below the desired δ′.
By the above, we know this should happen in linear time, even if δ′ is exponentially small.

Proposition A.1.1. Doing n repetitions of a probabilistic decision algorithm that outputs
correctly with probability p > 1/2 and outputting a majority vote results in an error probability
of at most

δ ≤ (1− p)n
n/2∑
i=0

(
n

i

)(
p

1− p

)i

≤ 1

− log(2
√
(1− p)p)

log(
1

p
) ∈ O(log(

1

p
)).

It follows that to achieve some error probability δ′ it suffices to do n ∈ O(log(1/delta′)) repeti-
tions, specifically, n that is a solution to the inequality

δ′ ≤ (1− p)n
n/2∑
i=0

(
n

i

)(
p

1− p

)i

.

Reducing the error probability exponentially thus requires linearly many repetitions. The
above works only for a one-sided error. For a two-sided error (even where one error rate may
be ≥ 1/2), we wouldn’t quite do a majority vote. Instead, when, say, p+ ≥ a and p− ≥ b, we
expect E(X) ≥ an in the positive case, and E(X) ≤ (1 − b)n in the negative case (where we
interpret Xi = 1 as a positive output). To distinguish these two cases, then, we can set the
threshold at their average: we accept the input whenever X > n(a+ (1− b))/2. Of course, this
only works when there is a gap between p+ = a and 1 − p− = 1 − b, i.e. when 1 − b < a. For
example, if p+ ≥ 1/2 and p− ≥ 3/4, we get E(X) ≥ 1/2n in the positive case and E(X) ≤ 1/4n
in the negative case, so that the threshold becomes X > 3/8n.

It is a little trickier to express the error probability exactly in this scenario, i.e. to list all
outcomes of the experiment where we don’t hit the success threshold. In particular, to do so, we
would have to do it separately for the positive and negative case. We can however upper-bound
this easily by appealing to Chernoff’s bound. This bound says that the probability to diverging
from the expected value of the sum of n independent samples from a random variable decreases
exponentially with n [dW22]:

P (|X − µ| > αµ) ≤ 2e−
α2µ
2+α .

76

A.1.1 Making sure r consecutive runs of an algorithm are correct

Lemma A.1.2. Given an algorithm that succeeds with probability at least > 1/2. Guaranteeing
that r consecutive runs of the algorithm are successful with probability 1− δ with δ ≤ 1−1/e ≈
0.6321 requires reducing the error probability of the base algorithm to p ∈ O(1/r).

Proof. Say we amplify the success probability to p. The probability that all r runs are correct
is then pr so that we want to solve pr ≥ 1 − δ for p, giving p ≥ r

√
1− δ. To understand this

slightly better, note that we can write out the lowered error probability of our base algorithm as
1− p ≤ 1− r

√
1− δ. It is not hard to see that 1− r

√
1− δ ≤ 1/r for r ≥ 2 and 0 ≤ δ ≤ 1− ((r−

1)/r)r ≤ 1− 1/e ≈ 0.6321, where the last inequality follows because limr→∞((r − 1)/r)r = 1/e.
It follows that the new error probability of the base algorithm is 1 − p ≤ 1/r ∈ O(1/r),

assuming that the required error probability satisfies δ ≤ 1− 1/e ≈ 0.6321.

A.2 Upper-bound on the inaccuracy of Piddock’s algorithms

A.2.1 Algorithm 5

Let us use Rs′,M ′(c) to refer to the effective resistance of the graph where we set η = c. Recall

from Proposition A.3.1 that Rs′,M ′(c) ∈ [Rσ,M ′ + c/
√
d,Rσ,M ′ + c]. What instance would lead to

the worst-case outcome for out algorithm, i.e. an η that is as large as possible? We would want
the largest possible η that yields an estimate η/Rs′,M ′(η) ≈ ã that just fails to hit the stopping
condition, i.e. ã = 1/2 − ϵa, so that after doubling η, we hit the stopping condition with the
largest possible 2η. Looking at the range from which we draw ã = 1/2 − ϵa, we see that the
largest η that can yield ã = 1/2− ϵa is η such that η/Rs′,M ′(η) = 1/2.

So, consider doubling this η. We then hit the stopping condition with 2η/Rs′,M ′(2η). This
expression is maximised when the numerator, i.e. the effective resistance, is minimised, which
gives

2η

Rs′,M ′(2η)
=

2η

Rσ,M + 2η/
√
d
,

so that the distance of this maximal outcome to the goal of 1/2 becomes

ϵη(d) =
2η

Rσ,M + 2η/
√
d
− 1

2
=

4
√
dη −

√
dRσ,M − η

2(
√
dRσ,M + η)

.

Since we are most interested in the case d = 1, let us consider

ϵη(1) =
4η −Rσ,M − η

2(Rσ,M + η)
=

3

2
− 2Rσ,M

η +Rσ,M
.

To relate these values, we note that we can write

η

Rs′,M ′(η)
=

1

2
=

η

Rσ,M + η/a
⇐⇒ Rσ,M = 2η − η/a,

where a ∈ [1,
√
d], depending on how uniformly the flow is spread over the d starting edges. Of

course, we only have one starting edge, so that a = 1. This tells us that Rσ,M = η which implies
ϵη(1) = 3/2− 2η

2η = 1/2. This is quite terrible: since we try to estimate 1/2 with values in [0, 1],
an error range of 1/2 means we can’t assume anything: we might as well return a random value.

77

One way around this is to note that this worst-case is quite unrealistic. In this scenario, we
first check a very good η that was just outside our success range, jump to the very bad 2η that
is in the success range, and terminate. If we would just remember the previous estimate ã, we
would see that it is much closer to 1/2, so that returning η would be much better than returning
2η. This would turn our worst-case into a very good case, at no extra query cost. Consider
now this altered algorithm: we remember the previous ã, and upon reaching the accepting
condition, check if the current estimate or the previous estimate is closer to 1/2, and return the
corresponding η. What would be the worst-case of this altered algorithm be?

We would want an η so that the distance from η/Rs′,M ′ and x to 1/2 is equal, as then relying
on the previous η is of no benefit. This would cut the worst-case error by at least half: before,
the entire error range consisted in moving from 1/2 to a larger value, now we move equally much
between η/Rs′,M ′ and 1/2 and between 1/2 and x. Formally

2η

Rs′,M ′(2η)
− 1

2
=

1

2
− η

Rs′,M ′(η)
⇐⇒ 2η

Rs′,M ′(2η)
+

η

Rs′,M ′(η)
= 1.

To maximise the difference, we want to minimise η
Rs′,M′ (η)

and maximise 2η
Rs′,M′ (2η)

, meaning we

want to maximise Rs′,M ′(η) = Rσ,M + η and minimise Rs′,M ′(2η) = Rσ,M +2η/
√
d, yielding the

new condition
2η

Rσ,M + 2η/
√
d
+

η

Rσ,M + η
= 1.

Solving for η with d = 1 gives us η = R/
√
2. The difference with 1/2 becomes

ϵη(1) =
1

2
− η

Rs′,M ′(η)
=

1

2
− R/

√
2

Rσ,M +R/
√
2
=

1

2
− 1√

2 + 1
≤ 0.0858 ≈ 1/12.

This is quite a bit better than what we had before.

A.2.2 Choosing s and ϵ within this upper-bound

Note that this upper-bound ϵη(d) is independent of ϵa and ϵ (i.e of the precision with which we
do phase and amplitude estimation), as we’ve attempted to directly identify the worst-case in
terms of η/Rs′,M ′ (and not its estimation ã). We should reflect briefly on whether these two
error ranges might be able to result in an even worse case. This would have to occur either on
the left-side (< 1/2) or on the right-side (> 1/2).

On the left-side, we would need to find η with η/Rs′,M ′ that is more than ϵη(d) to the
left of 1/2, but still terminating, i.e. still yielding ã > 1/2 − ϵa. Recall from the previous
section that if ã ∈ [1/2− ϵa, 1/2 + ϵa + ϵ], we know that the underlying η/Rs′,M ′ can be any of
[1/2 − 2ϵa − ϵ, 1/2 + 2ϵa + ϵ]. In other words, an ã that terminates the algorithm can have an
underlying η with η/Rs′,M ′ as small as 1/2 − 2ϵa − ϵ. Thus, if 2ϵa + ϵ > ϵη(d), this smallest η
becomes the new worst-case: it is strictly further from 1/2 than ϵη(d).

On the right-side, any η will of course hit the stopping condition, as 1/2 < η/Rs′,M ′ and
ã can at most be ϵa below η/Rs′,M ′ , so that even the smallest ã still satisfies ã > η/Rs′,M ′ −
ϵa > 1/2 − ϵa. Having η/Rs′,M ′ overshoot 1/2 by more than ϵη(d) is then only possible by
doubling some η that hasn’t hit the stopping condition, and jumping all the way to some η with
1/2 + ϵη(d) < η/Rs′,M ′ . But of course, we showed above that this is impossible: we will only
ever go ϵη(d) beyond 1/2 (or more precisely, we might go further beyond 1/2, but only when

78

the previous η/Rs′,M ′ was closer to 1/2 than ϵη(d), so that the algorithm will already terminate
with smaller, previous value).

Thus, as long as 2ϵa + ϵ ≤ ϵη(d), we can say that for the η we output, η/Rs′,M ′ is at most
ϵη(d) from 1/2. Note that ϵη(d) decreases with d, and thus peaks at 3/2 −

√
2 ≈ 0.0858 for

d = 1. To prove our upper-bound, is therefore suffices to have 2ϵa + ϵ ≤ 3/2−
√
2. What is the

optimal combination of s and ϵ that attains this?
Recall that ϵa is determined by the number of precision bits s used in amplitude estimation:

ϵa =
2π
√
a(1− a)

2s
+ (

π

2s
)2 ≤ π

2s
+ (

π

2s
)2

where we use
√
a(1− a) ≤ 1/2 for a ∈ (0, 1). Below, we list the size of this error range for

increasing s. Recall that adding a bit to s means doubling the number of queries that amplitude
estimation does.

Recall that ϵ is chosen directly by us, and that increasing it by a certain factor increases
the number of queries by the inverse factor. Thus, if we set ϵ = 1/a, the number of queries
increases by a factor 10 (ignoring here for a moment the effect of the ceiling function, as we ceil
the precision for phase estimation to determine the number of bits).

s Upper bound on ϵa
5 π(32 + π)/1024 ≤ 0.1079
6 π(64 + π)/4096 ≤ 0.05150 < 1/10
7 π(128 + π)/16384 ≤ 0.02515
8 π(256 + π)/65536 ≤ 0.01243
9 π(512 + π)/262144 ≤ 0.006174 < 1/100
10 π(1024 + π)/1048576 ≤ 0.003078
11 π(2048 + π)/4194304 ≤ 0.001537
12 π(4096 + π)/16777216 ≤ 0.0007676 < 1/1000
13 π(8196 + π)/67108864 ≤ 0.0003837
14 π(16384 + π)/268435456 ≤ 0.000191784
15 π(32768 + π)/1073741824 ≤ 0.000095883 < 1/10000

Table A.1: The maximum inaccurcay ϵa of amplitude estimation for increasing number s of
precision bits s.

What is the cheapest configuration of s and ϵ that yields 2ϵa + ϵ ≤ ϵη(1) = 3/2 −
√
2? We

note that from s = 7 on, ϵa < 2ϵη(1), allowing the error to be small enough. How large can we

pick ϵ to still satisfy our constraint? We have ϵa = π(128+π)
16384 ≈ 0.02515 so that

2ϵa + ϵ = 2
π(128 + π)

16384
+ ϵ ≤ ϵη(1) = 3/2−

√
2

which implies we can choose ϵ = 3/2 −
√
2 − 2π(128+π)

16384 ≈ 0.03549 implying a slowdown of

1/ϵ ≈ 28.17. If we instead choose s = 8 we have ϵa = π(256+π)
65536 ≈ 0.01243 so that

2ϵa + ϵ = 2
π(256 + π)

65536
+ ϵ ≤ ϵη(1) = 3/2−

√
2

which implies we can choose ϵ = 3/2 −
√
2 − 2π(256+π)

65536 ≈ 0.06093 implying a slowdown of
1/ϵ ≈ 16.41.

79

The slowdown due to incrementing s is doubling from 27 − 1 = 127 to 28 − 1 = 255. Thus
moving to s = 8 increases the number of repetitions due to s by 128 and decreases the number
of repetitions due to ϵ by ≈ 11.76. It is clear that increasing s further will make this even worse,
so that staying at s = 7 and ϵ = 3/2−

√
2− 2π(128+π)

16384 ≈ 0.03549 is optimal.

A.2.3 Upper-bound on the inaccuracy of Algorithm 6

Recall that Rs′,M ′(c) refers to the effective resistance of the graph where we set x = c. Recall
from Proposition A.3.1 that Rs′,M ′(c) ∈ [Rs′,M + c/|M |, Rσ,M ′ + c]. The worst-case would
be the largest possible x that gives rise to a ã that just fails to hit the stopping condition,
i.e. ã = η/(2Rs′,M ′(η)) + ϵη(d), so that after doubling x, we hit the stopping condition with
the largest possible x. Since we draw ã from [η/Rs′,M ′(x) − ϵη(d), η/Rs′,M ′(x) + ϵη(d)], the
largest x satisfying our condition would be when we draw from the right of this interval, so that
η/Rs′,M ′(x) = η/2Rs′,M ′(η). The error becomes

ϵb =
η

2Rs′,M ′(η)
− η

Rs′,M ′(2x)
.

To maximise this, we see that we should maximise the left term and minimise the right term,
so that we should minimise the left term’s denominator, and maximise the right term’s denom-
inator:

ϵb =
η

2Rs′,M ′(η)
− η

Rs′,M ′(2x)
=

η

Rs′,M + x/|M | −
η

Rs′,M + 2x
.

We now need to solve x, and the larger x is, the larger the difference. We know Rs′,M ′(x) =
2Rs′,M ′(η) so that Rs′,M +x/|M | = 2Rs′,M ′(η) = 2Rs′,M +2η/c, for some c ∈ [1, |M |]. Rewriting
gives x = |M |(2(Rs′,M+η/c)−Rs′,M) = |M |(Rs′,M+η/c). We see that choosing c = 1 maximises
x. We also verify here our previous choice to minimise Rs′,M ′(x) to Rs′,M + x/|M |, as this
now increases the value of x even further. Plugging in the solution for x, and recalling that
Rs′,M ≈ 2η, gives

ϵb =
η

Rs′,M + x/|M | −
η

Rs′,M + 2x
=

1

5
− 1

6|M |+ 2
.

The error then increases with M , tending to a maximum of 1/5. For M = 10 the error becomes
1/5− 1/(62) = 57/310 ≈ 0.1839. For M = 1 the error becomes 1/5− 1/8 = 3/40 = 0.075.

Let us now express the error between Rs′,M ′(2x) and 2Rs′,M ′(η) directly. We have

η

2Rs′,M ′(η)
− η

Rs′,M ′(2x)
≤ 1

5
⇐⇒ Rs′,M ′(2x)− 2Rs′,M ′(η) ≤ 2Rs′,M ′(η)Rs′,M ′(2x)

5η
.

We can expand these again

2Rs′,M ′(η)Rs′,M ′(2x)

5η
=

2(Rs′,M + η)(Rs′,M + 2x)

5η
=

12

5
η(3|M |+ 1),

where in the last step we used our solution for x and Rs′,M ≈ 2η. This is quite large. Say we
have 10 marked elements, we then have ϵb ≈ 74.4η. This is very large: recall that Rs′,M ≈ 2η
and Rs′,M ′(2x) ≤ Rs′,M + 2x

80

A.3 Flow

Proposition A.3.1. Let M and M ′ be sets of vertices such that each k ∈ M is connected to
exactly one k′ ∈M ′ via a single edge kk′, and not in any other way. Let the weight of each kk′ be
equal to 1/x for some x. The energy of f is maximised to x in case the flow is fully concentrated
at one edge, and the energy of f is minimised to x/|M | the flow is uniformly spread over all
edges.

Proof. Recall that the energy of a flow is given by∑
e∈E

f(e)2

w(e)
.

When the flow is concentrated at a single edge e the total energy is f(e)2/w(e) = 12/w(e) =
1/w(e). If we would shift flow to some other edge, the energy would become f(e)2/w(e) +
f(e′)2/w(e′) = (f(e)2 + f(e′)2)/w(e). But since 0 < f(e) < 1 and 0 < f(f(e′) < 1, we
know that f(e)2 < f(e) and f(e′)2 < f(e). This then implies that (f(e)2 + f(e′)2)/w(e) <
(f(e) + f(e′)/w(e) = 1/w(e), where in the last step we used the fact that the flow sums to 1,
and the flow is fully concentrated at these two edges. It thus follows that spreading flow over
two edges gives a strictly smaller energy that keeping the flow concentrated at a single edge.

For the second claim, note that when the flow is uniformly spread over all edges, the energy
contributed by each edge is

(1/|M |)2
1/x

=

(
x

|M |

)2

.

Say we move c flow from one edge to another. The new energy at the edge losing c flow becomes(
1

|M | − c

)2

= x

((
1

|M |

)2

− 2

|M | + c2

)
,

so that is loses a total of

x

(
c2 − 2

|M |

)
energy. Conversely, the new energy at the edge gaining c flow becomes(

1

|M | + c

)2

= x

((
1

|M |

)2

+
2

|M | + c2

)
,

so that is gains a total of

x

(
2

|M | + c2
)
.

The net gain in energy is then

x

(
c2 − 2

|M |

)
+ x

(
2

|M | + c2
)

= 2x · c2.

Thus, any an adjustment in flow strictly increases the total energy.

81

	Introduction
	Previous work
	Our contributions
	Outline of the thesis

	Preliminaries
	Quantum computing
	Random and quantum walks
	Classical and quantum backtracking

	Detection
	How to quantum walk from arbitrary starting distributions
	Belovs' proof
	Exact complexity and amplifying the success probability
	Optimising the algorithm

	Search
	Detection and binary search
	The electrical flow state: efficient search on trees with a unique marked element
	How to search efficiently on arbitrary graphs
	Algorithm to estimate the effective resistance
	Finding marked elements using the effective resistance estimate
	Algorithm for efficient search on arbitrary graphs

	Experiments
	The algorithms
	The data
	The results
	Discussion

	Conclusion
	Future research

	
	Amplifying success probability
	Upper-bound on the inaccuracy of Piddock's algorithms
	Flow

