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Abstract

Intensional dependent type theories with an impredicative universe admit an en-
coding of inductive types similar to the one developed for System F. This technique
suffers from one fatal flaw: its recursion principle (non-dependent elimination) does
not satisfy the propositional η-rule. Equivalently, it does not have an induction
principle (dependent elimination). Awodey, Frey, and Speight (2018) make a pro-
posal to construct inductive types using an impredicative universe by taking the
subset of the System F definition satisfying a property named naturality, expanding
the theory with Σ-types, identity types, and function extensionality. There is a
catch: it can only eliminate into 0-types inside the impredicative universe.

In this thesis, we introduce the alternative notion of inductivity. We first prove
that it is as strong as naturality—by constructing coproducts and thenW-types with
their full elimination principles with respect to sets. Later on, we consider Shulman’s
claim (2018) that one can lift the h-level restriction by using an intermediate result
of his own and including natural numbers in the system. We adapt inductivity
(by applying multiple layers thereof) and manage to allow elimination to arbitrary
types in the universe, again for coproducts and W-types. Finally, we start studying
a categorical generalization of this problem, namely finding the initial algebra of
an endofunctor of the impredicative universe, by means of introducing one last
property—initiality.
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Chapter 1

Introduction

1.1 Inductive types

Set theory characterizes entities by what they contain and how they are struc-
tured internally. Category theory uses the morphisms between objects to describe
how they behave. On the other hand, type theory uses the ways elements can be
constructed (introduction rules) and used (elimination rules) and the compat-
ibility between the two (computation and uniqueness rules) to describe the type
they belong to; together with formation rules to construct the type itself. For
example, the coproduct type can be characterized by the following set of rules:

Γ ⊢ A : Ui Γ ⊢ B : Ui +-form
Γ ⊢ A+B : Ui

Γ ⊢ A : Ui Γ ⊢ B : Ui +-intr1
Γ ⊢ inl : A→ A+B

Γ ⊢ A : Ui Γ ⊢ B : Ui +-intr2
Γ ⊢ inr : B → A+B

Γ ⊢ X : Ui Γ ⊢ inlX : A→ X Γ ⊢ inrX : B → X
+-elim

Γ ⊢ rec(X, inlX , inrX) : A+B → X

Γ ⊢ X : Ui Γ ⊢ inlX : A→ X Γ ⊢ inrX : B → X
+-β1

Γ ⊢ rec(X, inlX , inrX) ◦ inl ≡ inlX : A→ X

Γ ⊢ X : Ui Γ ⊢ inlX : A→ X Γ ⊢ inrX : B → X
+-β2

Γ ⊢ rec(X, inlX , inrX) ◦ inr ≡ inrX : B → X

Γ ⊢ inrX : B → X

Γ ⊢ X : Ui

Γ ⊢ inlX : A→ X Γ ⊢ f : A+B → X
+-η

Γ ⊢ rec(X, f ◦ inl, f ◦ inr) = f : A+B → X

The way this system is set up, we do not (immediately) get a statement about
what shape the inhabitants of the type have, but rather one about how to use those
inhabitants: to define a function out of this type, it is sufficient to define it on the
canonical elements.

Inductive types are types that are freely generated by a set of constructors,
i.e., functions, satisfying certain constraints, that return elements of the inductive
type at hand. This covers some very big categories1 of types, ranging widely in
complexity. We can broadly classify inductive types according to two criteria.

1In the nonmathematical sense of the word.
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First, on whether they take other types as arguments. If they do, they are strictly
speaking type constructors (although our type system will allow us to encode the
type constructors as types). If they do not, they are just constants in some universe
of types. For example, the coproduct type A + B requires specifying types A and
B, whereas the natural numbers N stands on its own.

Second, whether they use induction in the traditional sense of the word. This
is to say, when we want to prove statements about the terms of the type, we need
to use some sort of induction hypothesis, which assumes that the statement has
already been proved for some of the terms. That an inductive type require an
induction hypothesis is equivalent to whether any of its constructors has elements
of the type itself as arguments. For example, N has the constructor succ : N → N.
The consequence is that, when proving a property P over N, one assumes that P
holds for an arbitrary element n : N and then proves that P also holds for succn.
This makes N a “proper” inductive type. On the other hand, the unit type has a
single constructor ⋆ : 1, which does not take any arguments from 1 itself, so it is
“degenerate”, in the sense that proving a property does not require assuming it has
been proven for any other term of the type. The most interesting cases are in the
former class, but we will study all kinds.

The following table illustrates this classification, including some types that we
will see throughout this work.

Degenerate Proper
Constants 0, 1, 2 N
Constructors A+B WAB

Table 1.1: A classification of inductive types according to two properties.

Let us see a complete example of the rules governing an inductive type. We will
use the type N of natural numbers.

• First we need a formation rule. In the case of the natural numbers, this rule
just states that N is a type. For the inductive types that are type constructors,
this rule will require other inputs.

• For the introduction principle, we have two constructors:

0 : N
succ : N → N

This means that the canonical terms of N are 0, and the application of succ to
other canonical terms of the type. The intended model of N contains only the
canonical terms, this is to say, those constructed by the repeated application
of 0 and succ.

• The elimination principle: for any type family C : N → Ui (where Ui is some
universe of types) such that we have proofs of C(0) and ∀n C(n) → C(succn),
we have a dependent function f :

∏
n:N C(n) (i.e. one such that f(n) : C(n)

for a given n : N), which implies that C is inhabited for all n : N. As stated,
this is known as the induction principle or dependent eliminator. The
degenerate non-dependent version for constant type families is known as the
recursion principle or non-dependent eliminator. It can be stated as: given
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another type X with associated functions similar to those of N, i.e.:

z : X

s : X → X

There is a function f : N → X. Both versions of this principle are usually
embodied by a function, called the eliminator (or recursor in its non-dependent
case).

• The elimination principle comes hand in hand with a computation principle,
which states that the functions f constructed with the elimination principle
commute with both constructors:

f0 = z (1.1)

f(succn) = s(fn) (1.2)

The definitional versions of these equations are known as β-equalities or
β-rules.

• Besides the introduction and elimination principles, we have a uniqueness
principle: the functions out of N that respect the constructors are unique. Or,
in other words, if f, g :

∏
n:N C(n) both satisfy 1.1, then f = g. This last con-

dition ensures that the type has only one model (up to isomorphism): there is
only one way to obtain elements of N (namely, through the constructors), and
to determine a function out of the inductive type, it is sufficient and necessary
to determine its action on these canonical terms. This is sometimes refered
to as η-rule. As we will see, this rule can be deduced from the dependent
elimination principle.

The names recursion and induction are highly suggestive in the contexts of
computer science and mathematics, respectively. Recursion is often thought of as a
tool used to “build” functions: by just providing the output on 0 and on succ, we get
a function N → X. On the other hand, induction is often used to prove properties
about the naturals, encoded as types C : N → U . Indeed, the induction principle
of the natural numbers as an inductive type corresponds with the induction of the
naturals in mathematics.

Inductive types cover a wide range of mathematical and computational utilities.
It is very desirable to have them available in our type systems. A priori, a simple
way of achieving that is by including their formation, introduction, elimination,
computation, and uniqueness rules as part of the judgmental rules that make up
our type system.

A more minimalistic—but arduous—approach is to build those types inside the
theory out of more basic type constructors, such as sum and product types, and
prove that they satisfy the desired rules. A most famous example of this method is
the one used in System F.

1.2 Inductive types in System F

System F, or polymorphic lambda calculus, was invented by Girard [5] and Reynlods
[7]. It is the extension of simply typed lambda calculus with functions that can also
depend on types, on top of terms. For instance, a function in System F can have a
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type ΠX.X → X, i.e. one that takes a type X as argument, and an element of X,
and returns another element of X. An inhabitant of this type is the polymorphic
identity ΛX.λxX .x.

It is a remarkable property of System F that it allows some inductive types to
be defined within the system using the signature of their intended constructors. For
instance, the coproduct of two types A and B, written as A + B, should have two
constructors: a left injection inl : A→ A+B, and a right injection inr : B → A+B.
Its System F encoding would be:

A+B := ΠX.(A→ X) → (B → X) → X

There are several things to note.
First, observe that we quantify over all types X. One of the characteristic

features of System F is that it is impredicative, i.e., it allows us to define types
that quantify over all types, including themselves. This pattern makes use of such
impredicativity to guarantee that A + B can eliminate into any type (including
itself), provided we supply the necessary arguments (in this case, functions A→ X
and B → X). To make this more clear: suppose we had a term x : A + B.
Then, impredicativity allows us to compute x(A + B), which would have the type
(A→ A+B) → (B → A+B) → A+B. Predicative type systems usually implement
a hierarchy of type universes, so that functions that quantify over a universe lie in
a strictly higher one, so as to disallow this form of self-application.

Second, the type A + B is essentially its own eliminator. The elimination rule
of the coproduct states that, to define a function out of the coproduct of A and B
into a type X, it suffices to provide functions from A into X and from B into X.
This is exactly what each term of the type A + B defined above does. A function
A+B → Y , given l : A→ Y and r : A→ Y , can be obtained as λxA+B .xY lr.

Third, and most critically, inductive types defined in this manner lack a unique-
ness principle [9]. As already mentioned, one important feature of type theory is
the ability to characterize the functions out of a type based only on how they act on
the constructors for said type. System F-style inductive types allow us to construct
functions out of them, but these are not guaranteed to be unique. In this thesis we
will work on a type system with impredicativity to try to improve the System F
encoding of inductive types to satisfy the uniqueness principle.

1.3 Our system

For the work done in this thesis, we will enrich System F in several ways. We will
assume not only Π-types, but also Σ-types and intensional identity types, as well
as a cumulative hierarchy of universes. This system is taken from [12]—wherein its
rules are laid out explicitly and its consistency is proven—, but it closely resembles
the standard homotopy type theory system of [6]. Nonetheless, we will give here a
justification of all the ways that our system deviates from it.

Firstly, and most importantly, we add at the bottom of the tower of universes
U0 : U1 : U2 : . . . a new impredicative universe that we shall denote by simply U ,
such that U : U0 : U1 : U2 : . . . . Hence, we will not partake in the abuse of notation
done within the book: for us, U will always mean the impredicative universe, and Ui

will be used where necessary to refer to an unspecified universe above U . Remember
that this is a cumulative hierarchy: if A : Ui, then A : Ui+1. We call the types in U
small types, and the rest large types.
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We inherit the standard formation rule of Π:

Γ ⊢ A : Ui Γ, x : A ⊢ B[x] : Ui
Π-form1

Γ ⊢
∏

x:AB[x] : Ui

To which we add an analogous rule for U :

Γ ⊢ A : U Γ, x : A ⊢ B[x] : U
Π-form2

Γ ⊢
∏

x:AB[x] : U

But we also add another one that makes U impredicative:

Γ ⊢ A : Ui Γ, x : A ⊢ B[x] : U
Π-form3

Γ ⊢
∏

x:AB[x] : U
(1.3)

This reads: a type of dependent functions that eliminate into small types is also
itself small, no matter the size of the domain type.

Secondly, we do not adopt the univalence axiom. Even though it is not in-
compatible with the system, we do not make use of its full power and hence do
without it. We do, nonetheless, accept the axiom of function extensionality, which
asserts that, whenever two functions are propositionally equal pointwise, they are
propositionally equal to each other. The objective of this axiom is to make the type
f ∼ g :≡

∏
x:X fx = gx of homotopies between f and g equivalent to the type of

propositional identifications f = g. To be more precise, the axiom states that the
function happly : f = g → f ∼ g has a quasi-inverse funext : f ∼ g → f = g. This
axiom will actually be quite vital to our arguments regarding W-types and is also
necessary to invoke a key theorem from [10].

For the first part of this thesis (Chapter 2), reference to types restricted by their
homotopy level (or h-level) will be quite important, hence we also use Contr to refer
to the types with h-level −2 in U , Prop for those with h-level −1, and Set for those
with h-level 0. In other words:

Contr :≡
∑
X:U

isContr(X)

Prop :≡
∑
X:U

isProp(X)

Set :≡
∑
X:U

isSet(X)

where isContr(X) :≡
∑

x:X

∏
y:X x = y, isProp(X) :≡

∏
x,y:X isContr(x = y),

and isSet(X) :≡
∏

x,y:X isProp(x = y). In general, by h-level we mean:

isType−2(X) :≡
∑
x:X

∏
y:X

x = y

isTypen+1(X) :≡
∏

x,y:X

isTypen(x = y)

and then
Typen+1 :≡

∑
X:U

isTypen+1(X)

With the special names Contr, Prop, and Set for n = −2, −1, and 0, correspondingly.
The numeration starting at −2 is due to historical reasons. We will almost always
abuse notation and write X : Set when we mean (X, s) : Set, etc.
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The justification for these choices of nomenclature is widely discussed in [6,
Chapter 7], but briefly, contractible types are those that contain exactly one element
(up to propositional equality), propositions those that contain at most one, and
sets those which may contain any amount of elements, but whose identifications are
unique, i.e. there is at most one proof that two elements are equal.

It is useful, in this context, to remember from [8, Corollary 10.3.8] that:

Lemma 1.1. Let X : U and Y : X → Prop. Then, pr1 :
∑

x:X Y (x) → X is an
embedding.

Where pr1 is the polymorphic first projection taking (x, y) to x. An embedding is
a function f : A→ B such that apf : (x = y) → (fx = fy) is an equivalence for all
x, y : A. That pr1 is an embedding essentially warrants that for all (x, y), (x′, y′) :∑

x:X Y (x), (x, y) = (x′, y′) if and only if x = x′, or, in other words, the side
property Y (x) is irrelevant when comparing terms of

∑
x:X Y (x) for equality.

We will also use:

Lemma 1.2. Let X : U , Y : X → Typen. Then,
∏

x:X Y (x) : Typen.

Proof.
∏

x:X Y (x) is in U by impredicativity, and it has h-level n by [6, Theorem
7.1.9].

Finally, given the heavy use of Σ-types that we will make, we ease the reading
by writing λ(x, y).f(x) instead of λz.f(pr1(z)), and similarly for longer tuples and
other projections. This notation does not alter the validity of proofs, by virtue of
the elimination rule for product types, which states that defining a function out
of a product amounts to defining a function for its canonical elements—the tuples.
This is called pattern matching.

1.4 Characterization of inductive types

The System F technique allows us to encode a wide range of inductive types. The
general pattern is as follows:

ΠX.(A0
0 → · · · → A0

k0
→ X) → · · · → (An

0 → · · · → An
kn

→ X) → X

Each of the intermediate types Ai
0 → · · · → Ai

k0
→ X is the signature of each of

the constructors of the intended type, wherein the Ai
j are other types that may or

may not involve X again. If they do, though, it must always appear in a positive
position (i.e. to the left of an even number of arrows →). In our system, though,
we need to raise this restriction to only strict positive positions (i.e. never to the
left of an arrow →). This is a quirk of dependent type theories, described in [4][6,
Section 5.6], which would allow to reproduce Curry’s paradox, making our type
system inconsistent.

For the time being, we will focus on the example of the coproduct. Later on
we will generalize, first to W-types in Chapters 2 and 3, and then to algebras for
arbitrary endofunctors in Chapter 4.

Take, as seen earlier, the type of the (almost) coproduct A+B in System F:

ΠX.(A→ X) → (B → X) → X

Translated into our system, we can rewrite it as:∏
X:U

(A→ X) → (B → X) → X

7



The choice of domain U , instead of any higher universe, is to warrant the use of
impredicativity.

By uncurrying the chain of products:

A+0 B :≡
∏

(X,inlX ,inrX):
∑

X:U (A→X)×(B→X)

X

We define this to be our base type A+0 B. For it, we can define the left and right
injections:

inl0 : A→ A+0 B

inl0 a :≡ λ(X, inlX , inrX). inlX a

inr0 : B → A+0 B

inr0 a :≡ λ(X, inlX , inrX). inrX a

Which act as the constructors for our inductive type.
Here comes the trick. Because the codomain of A+0 B is a type in U for every

input, the Π-form3 rule (1.3) guarantees that A +0 B stays also inside of U . By
furnishing it with functions inl0 : A → A +0 B and inr0 : B → A +0 B, it becomes
elegible to be an argument to itself: x : A +0 B ⊢ x(A +0 B, inl0, inr0) : A +0 B.
This simple form of self-application will be the focus of most developments we do.

Conceptually, we always consider the constructors together with their codomain:

Definition 1.1. The type of (coproduct of A and B) algebras is UA+B :≡
∑

X:U (A→
X)× (B → X).

This type contains all the possible types that have associated coproduct-like
constructors. Among these, if it exists, will be the actual coproduct of A and B.

Associated to each pair of algebras (X, inlX , inrX) and (Y, inlY , inrY ) comes a
notion of “morphism”:

Definition 1.2. A morphism between algebras (X, inlX , inrX) and (Y, inlY , inrY ) is
a function f : X → Y such that f(inlX a) = inlY a and f(inrX b) = inrY b for every
a : A, b : B. If f is a morphism, we write f : (X, inlX , inrX) → (Y, inlY , inrY ).

The word morphism comes from the categorical underpinning of the theory, that
we will detail in Chapter 4. In fact, the algebras form a category, if we take the
morphisms as defined above under propositional equality. It is useful and easy to
notice now that morphisms are indeed closed under composition and identities. The
equations in the definition of morphism basically state that the underlying function
is compatible with the constructors on both sides.

Let us state the elimination principle:

Definition 1.3. A weak coproduct of A and B is (I, inlI , inrI) : UA+B such that there
is a recursor recI :

∏
(X,inlX ,inrX):UA+B

I → X, such that recI(X, inlX , inrX) ◦ inlI ∼
inlX and recI(X, inlX , inrX) ◦ inrI ∼ inrX for any (X, inlX , inrX) : UA+B.

The two side conditions

recI(X, inlX , inrX) ◦ inlI ∼ inlX

recI(X, inlX , inrX) ◦ inrI ∼ inrX
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are the β-equalities of the coproduct. Usually, for (I, inlI , inrI) with recI to be an
inductive type, they are required to be true definitionally:

recI(X, inlX , inrX) ◦ inlI ≡ inlX

recI(X, inlX , inrX) ◦ inrI ≡ inrX

When we only ask for the propositional (or, equivalently in our case, homotopical)
version, we say that (I, inlI , inrI) and recI form a homotopy-inductive type. For the
theory developed in our thesis, we will focus only on homotopy-inductive types, and
we will drop the prefix “homotopy-” for convenience. Nonetheless, many times it will
be possible to (and we will) prove the definitional version of these equalities. Observe
that, under our definition, the β-equalities mean precisely that recI(X, inlX , inrX)
is a morphism. See [6, Section 5.5] for an extensive discussion on the advantages
and drawbacks of homotopy-inductive types over inductive types with definitional
β.

As highlighted earlier, A +0 B acts as its own recursor. More precisely, each
term of A+0 B determines its own image for every possible type (Y, inlY , inrY ).

Proposition 1.3. (A+0 B, inl0, inr0) is a weak coproduct.

Proof. For the recursor, we define

rec0(X, inlX , inrX) :≡ λα.α(X, inlX , inrX)

We show that rec0(X, inlX , inrX) is a morphism by function extensionality. Let
a : A:

(rec0(X, inlX , inrX) ◦ inl0)a ≡ (defn. of rec0 and inl0)

((λα.α(X, inlX , inrX)) ◦ (λa.λ(X, inlX , inrX). inlX a))a ≡ (function application)

(λα.α(X, inlX , inrX))(λ(X, inlX , inrX). inlX a) ≡ (function application)

(λ(X, inlX , inrX). inlX a)(X, inlX , inrX) ≡ (function application)

inlX a

Similarly for b : B.

Being a weak coproduct is not enough for our purposes. Remember that we
want our inductive types to satisfy the uniqueness principle as well, known as the
propositional η-rule:

Definition 1.4. A (strict) coproduct of A and B is a weak coproduct (I, inlI , inrI) :
UA+B with a recursor recI such that, for every X : U and f : I → X, f ∼ recI(X, f ◦
inlI , f ◦ inrI).

Our end goal is to construct a strict coproduct of A and B.
But one may wonder: what about dependent functions? After all, we are working

within a dependent type theory. The eliminator seen so far (the recursor) is only
capable of generating non-dependent morphisms.

The dependent eliminator (the induction principle) of a coproduct A+B should
generate, given a type family Y : A+B → U together with appropriate constructors,
a dependent function

∏
x:A+B Y (x). How does the type of a constructor for a type

family look like? We need—in the left case—, for every a : A, an element x of
A+ B, with which to choose a fiber Y (x). The only canonical choice is to use the
injections of A+B itself. Let us generalize:

9



Definition 1.5. Given (X, inlX , inrX) : UA+B, a dependent algebra over (X, inlX , inrX)
is a type family Y : X → U together with constructors inlY :

∏
a:A Y (inlX a) and

inrY :
∏

b:B Y (inrX b). We write

U (X,inlX ,inrX)
A+B :≡

∑
Y :X→U

(∏
a:A

Y (inlX a)

)
×

(∏
b:B

Y (inrX b)

)

for the type of all such dependent algebras.

Our choice of typing for the constructors of a dependent algebra is the only one
that allows to define a dependent morphism in the following manner:

Definition 1.6. A dependent morphism between algebras (X, inlX , inrX) : UA+B

and (Y, inlY , inrY ) : U (X,inlX ,inrX)
A+B is a function f :

∏
x:X Y (x) such that f◦inlX ∼ inlY

and f ◦ inrX ∼ inrY .

When appropriate, we will write f :
∏

(X,inlX ,inrX)(Y, inlY , inrY ) whenever f is a

dependent morphism between (X, inlX , inrX) : UA+B and (Y, inlY , inrY ) : U (X,inlX ,inrX)
A+B

(i.e. such that f ◦ inlX ∼ inlY and f ◦ inrX ∼ inrY ).
Observe that a normal algebra (Y, inlY , inrY ) can be defined as a dependent al-

gebra over the final algebra (1, λa.⋆, λb.⋆), and taking the type family to be constant
on Y . Following this point of view, a non-dependent morphism f : (X, inlX , inrX) →
(Y, inlY , inrY ) is just a dependent one from (X, inlX , inrX) to a dependent algebra
defined in this way.

Finally, an induction principle for a type (I, inlI , inrI) can be written as:

indI :
∏

(X,inlX ,inrX):U(I,inlI ,inrI )

A+B

∏
i:I

X(i)

such that indI(X, inlX , inrX) satisfies the propositional β-rules, or, equivalently, it
is a dependent morphism.

Naturally, we desire our inductive type to also have an induction principle.
Luckily for us, this comes for free with every strict coproduct:

Theorem 1.4. Let (I, inlI , inrI) : UA+B. Then, the following are equivalent:

1. (I, inlI , inrI) has a dependent eliminator indI that satisfies the β-equalities.

2. (I, inlI , inrI) has a non-dependent eliminator recI that satisfies the β-equalities,
and for every (X, inlX , inrX) : UA+B there is a unique morphism (I, inlI , inrI) →
(X, inlX , inrX).

3. (I, inlI , inrI) has a non-dependent eliminator recI that satisfies the β-equalities,
as well as the propositional η-equality (i.e. (I, inlI , inrI) is a coproduct).

Proof. For (1) =⇒ (2), first take recI(X, inlX , inrX) :≡ indI(λi.X, inlX , inrX); the
β-rules are the same. Assume f, g : (I, inlI , inrI) → (X, inlX , inrX). We will use the
dependent eliminator indI to prove that f ∼ g. By definition, this means proving∏

i:I fi = gi. If we define a family X : I → U as I(i) :≡ fi = gi, then we just need
to see that C(i) is inhabited for every i : I. Observe again the type of indI :∏

(X,inlX ,inrX):U(I,inlI ,inrI )

A+B

∏
i:I

X(i)

10



If we can provide inlX :
∏

a:AX(inlI a) and
∏

b:B X(inrI b), then we can supply
(X, inlX , inrX) to indI to obtain a term of

∏
i:I X(i), exactly as desired.

For
∏

a:AX(inlI a), observe that this means:∏
a:A

f(inlI a) = g(inlI a)

But, because of f and g are morphisms, f(inlI a) = inlX a = g(inlI a). A similar
reasoning can be applied to b : B.

For (2) =⇒ (3), we just set recI(X, inlX , inrX) to be the function underlying
such unique morphism, and the β-equalities are satisfied as part of the morphism.
Now, we prove the η-equality for such recI . Let f : I → X and consider g :≡
recI(X, f ◦ inlI , f ◦ inrI) : I → X. Because g is a morphism, g ◦ inlI ∼ f ◦ inlI and
g ◦ inrI ∼ f ◦ inrI , and because g is the unique function with these properties, and
f also satisfies them (f ◦ inlI ∼ f ◦ inlI and f ◦ inrI ∼ f ◦ inrI), then f ∼ g.

(3) =⇒ (1) is more complex; a proof is seen on [12, Theorem 2.3.1], and the
general theory around this fact is developed in [3] and [2].

These characterizations will be key to all developments in this thesis: instead of
proving an induction principle, which can be cumbersome (due to the presence of
dependent algebras and morphisms), we just prove the recursion principle and then
the η-rule, or the recursion principle and the uniqueness of the morphisms. With
this in mind, we venture to see how we can obtain either of these conditions.
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Chapter 2

Inductive types in Set

2.1 Naturality

The starting point for this thesis is the paper by Awodey, Frey, and Speight [1] (or
see [12] for a comprehensive explanation), in which they attempt to encode strict
inductive types à la System F in a type system like the one described in Section
1.3.

In their approach, inductive types are defined as a particular refinement of the
System F encoding. By refinement, it is meant a subtype (i.e. a Σ-type of the
System F encoding together with a proposition on it). For instance, in the study
case of coproducts, their base type is one equivalent to

A+0 B :≡
∏

(X,inlX ,inrX):SetA+B

X

where SetA+B :≡
∑

X:Set(A → X) × (B → X), and A and B are also in Set. One
can observe that this is just the System F construction seen in Chapter 1, with the
exception that all involved types are now in Set instead of the whole U . The reasons
for this restriction will be seen later on, but this is the main caveat of Awodey, Frey,
and Speight’s approach that we will try to overcome. For the rest of this chapter,
we assume all the definitions of Section 1.4, replacing U for Set.

As with the full U version, this type comes with canonical constructors:

inl0 : A→ A+0 B

inl0 :≡ λa.λ(X, inlX , inrX). inlX a

inr0 : B → A+0 B

inr0 :≡ λb.λ(X, inlX , inrX). inrX a

And a recursor:

rec0 :
∏

(X,inlX ,inrX):SetA+B

A+0 B → X

rec0 :≡ λ(X, inlX , inrX).λα.α(X, inlX , inrX)

Then, they introduce the notion of naturality of an element α : A+0 B:

Nat(α) :≡
∏

(X,inlX ,inrX):SetA+B

∏
Y :Set

∏
f :X→Y

f(α(X, inlX , inrX)) = α(Y, f ◦ inlX , f ◦ inrX)

12



This can be read as α being compatible with every function f : X → Y . [1] and
[12] offer an extensive justification of this construction.

From here, they build the refinement of A+0 B as its natural subtype, i.e.

A+N B :≡
∑

α:A+0B

Nat(α)

Which also admits injections:

inlN : A→ A+N B

inlN :≡ λa.(inl0 a, λ(X, inlX , inrX).λY.λf.reflf(inlX a))

inrN : B → A+N B

inrN :≡ λb.(inr0 b, λ(X, inlX , inrX).λY.λf.reflf(inrX b))

It is easy to check that the proofs of naturality of each constructor are well typed:

f((inl0 a)(X, inlX , inrX)) ≡ (definition of inl0)

f((λ(X, inlX , inrX). inlX a)(X, inlX , inrX)) ≡ (function application)

f(inlX a)

(inl0 a)(X, f ◦ inlX , f ◦ inrX) ≡ (definition of inl0)

(λ(X, inlX , inrX). inlX a)(X, f ◦ inlX , f ◦ inrX) ≡ (function application)

f(inlX a)

And it also admits a recursor, which just uses the one for the base type:

recN :
∏

(X,inlX ,inrX):SetA+B

A+N B → X

recN :≡ λ(X, inlX , inrX).λ(α, n). rec0(X, inlX , inrX)α

Or, equivalently, recN ≡ λ(X, inlX , inrX).λ(α, n).α(X, inlX , inrX).

Proposition 2.1. (A+NB, inlN , inrN ) together with recN is a weak coproduct (with
respect to Set).

Proof. It is sufficient to prove (A+N B, inlN , inrN ) satisfies the β-equalities
recN (X, inlX , inrX)(inlN a) = inlX a and recN (X, inlX , inrX)(inrN b) = inrX b for
every (X, inlX , inrX) : SetA+B , a : A, and b : B.

recN (X, inlX , inrX)(inlN a) ≡ (definition of recN )

(λ(X, inlX , inrX).λ(α, n). rec0(X, inlX , inrX)α)

(X, inlX , inrX)(inlN a) ≡ (function application)

(λ(α, n). rec0(X, inlX , inrX)α)(inlN a) ≡ (definition of inlN )

(λ(α, n). rec0(X, inlX , inrX)α)(inl0 a, . . . ) ≡ (function application)

rec0(X, inlX , inrX)(inl0 a) ≡ (definition of rec0)

(λ(X, inlX , inrX).α.α(X, inlX , inrX))

(X, inlX , inrX)(inl0 a) ≡ (function application)

(α.α(X, inlX , inrX))(inl0 a) ≡ (function application)

(inl0 a)(X, inlX , inrX) ≡ (defintion of inl0)

(λ(X, inlX , inrX). inlX a)(X, inlX , inrX) ≡ (function application)

inlX a
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And analogously for b : B.

Lemma 2.2. Nat(α) is a Prop for every α : A+0 B.

Proof. By definition:

Nat(α) :≡
∏

(X,inlX ,inrX):SetA+B

∏
Y :Set

∏
f :X→Y

f(α(X, inlX , inrX)) = α(Y, f ◦ inlX , f ◦ inrX)

The codomain of both sides of the equality is Y , a Set. Hence the equality itself is
a Prop. The result is obtained by triple application of Lemma 1.2.

With this lemma, it can be proved:

Theorem 2.3 (Awodey, Frey, and Speight). (A+NB, inlN , inrN ) together with recN
is a strict coproduct (with respect to Set).

Proof. We already know from Proposition 2.1 that it is a weak coproduct. We have
to prove that (A +N B, inlN , inrN ) satisfies the propositional η-rule: recN (X, f ◦
inlN , f ◦ inrN ) ∼ f for every X : Set and f : A +N B → X. To this end, one first
proves that recN (A+N B, inlN , inrN ) ∼ idA+NB .

recN (A+N B, inlN , inrN )(α, n) ≡ (definition of recN )

rec0(A+N B, inlN , inrN )α ≡ (definition of rec0)

α(A+N B, inlN , inrN )

We must then see whether α(A+N B, inlN , inrN ) = (α, n) for every α : A+0 B and
n : Nat(α). Using Lemma 1.1 and Lemma 2.2, it is sufficient to prove equality of the
first coordinate of the pair. For that, remember that both pr1(α(A+NB, inlN , inrN ))
and α belong to A +0 B :≡

∏
(X,inlX ,inrX):SetA+B

X, which is a function type, so by

function extensionality we can just prove pr1(α(A+NB, inlN , inrN ))(X, inlX , inrX) =
α(X, inlX , inrX) for every (X, inlX , inrX) : SetA+B .

pr1(α(A+N B, inlN , inrN ))(X, inlX , inrX) ≡ (definition of recN )

recN (X, inlX , inrX)(α(A+N B, inlN , inrN )) = (pr2(α(A+N B, inlN , inrN )))

α(X, recN (X, inlX , inrX) ◦ inlN ,
recN (X, inlX , inrX) ◦ inrN ) = (β-equalities)

α(X, inlX , inrX)

From the fact that recN (A+NB, inlN , inrN ) ∼ idA+NB and using function extension-
ality again, we derive the desired, more general result recN (X, f ◦ inlN , f ◦ inrN ) ∼ f :

recN (X, f ◦ inlN , f ◦ inrN )(α, n) ≡ (definition of recN )

α(X, f ◦ inlN , f ◦ inrN ) = (n)

f(α(X, inlN , inrN )) ≡ (defintion of recN )

f(recN (X, inlN , inrN )(α, n)) = (recN (A+N B, inlN , inrN ) ∼ idA+NB)

f(α, n)

As seen in the proof, the restriction to Set serves two purposes: on the one hand,
to establish the equality between two elements of A +N B that agree on the first
component; and, on the other, so that the subtype A+N B stays in Set, and hence
we can use impredicativity to evaluate recN with (A+N B, inlN , inrN ).
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2.2 Inductivity

Our first attempt to improve on Awodey et al.’s result is to replace this naturality
principle for another condition that we call inductivity. Our hope is that this new
property allows us to forgo the h-level restriction that Nat has. On the other hand,
inductivity is encoded as a very natural property to define given the signature of
the inductive type that we desire to construct.

Definition 2.1. We define inductivity for a term α : A+0 B as:

Ind(α) :≡
∏

(C,inlC ,inrC):
∑

C:A+0B→Prop(
∏

a:A C(inl0 a))×(
∏

b:B C(inr0 b))

C(α)

The shape of the type under the Π symbol is almost identical to the dependent
algebras defined in the previous chapter, with the subtle difference that we eliminate
into types in Prop instead of U (or the expected Set). This is a technical requirement
for the coming proofs. Nevertheless, this is not a real downgrade, as from it we will
be able to obtain the η-rule which is equivalent to the full induction principle into
Set.

Compare also the a term of this type to one of A+0B: the latter takes an algebra
and returns an element of it, the former takes a dependent algebra and returns an
element of it. More specifically, Ind(α) can be read as: “given a proposition C over
A+0B, if it can be proven for every inl0 a and every inr0 b, then it can be proven for
α”. Indeed, this is what makes this type inductive: to prove a statement about all
its elements, it suffices to prove it for every canonical element. In fact, in the same
way one defines rec(X, inlX , inrX) as λα : A+0B.α(X, inlX , inrX), one could imagine
the induction principle ind(C, inlC , inrC) for a dependent algebra (C, inlC , inrC) as
λi : Ind(α).i(C, inlC , inrC).

Our candidate to a coproduct in Set of A and B is then

A+1 B :≡
∑

α:A+0B

Ind(α)

with the inherited constructors

inl1 : A→ A+1 B

inl1 :≡ λa.(inl0 a, λ(C, inlC , inrC). inlC a)

inr1 : B → A+1 B

inr1 :≡ λb.(inr0 b, λ(C, inlC , inrC). inrC b)

These constructors, similarly to those of A+NB, are just the System F constructors
inl0 and inr0 accompanied by canonical witnesses that they are always inductive.
And, as with the previous examples, we can define a recursor:

rec1 :
∏

(X,inlX ,inrX):SetA+B

A+1 B → X

rec1 :≡ λ(X, inlX , inrX).λ(α, i). rec0(X, inlX , inrX)α

This does the exact same thing as recN : drop the proof of inductivity, and apply
rec0.
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Proposition 2.4. (A+1 B, inl1, inr1) together with rec1 is a weak coproduct.

Proof. We prove the statement for inl1, up to definitional equality. The one for inr1
is totally analogous. Given any a : A:

rec1(X, inlX , inrX)(inl1 a) ≡ (definition of rec1)

(λ(X, inlX , inrX).λ(α, i). rec0(X, inlX , inrX)α)

(X, inlX , inrX)(inl1 a) ≡ (function application)

(λ(α, i). rec0(X, inlX , inrX)α)(inl1 a) ≡ (definition of inl1)

(λ(α, i). rec0(X, inlX , inrX)α)(inl0 a, . . . ) ≡ (function application)

rec0(X, inlX , inrX)(inl0 a) ≡ (definition of rec0)

(λ(X, inlX , inrX).α.α(X, inlX , inrX))

(X, inlX , inrX)(inl0 a) ≡ (function application)

(α.α(X, inlX , inrX))(inl0 a) ≡ (function application)

(inl0 a)(X, inlX , inrX) ≡ (defintion of inl0)

(λ(X, inlX , inrX). inlX a)(X, inlX , inrX) ≡ (function application)

inlX a

Lemma 2.5. Ind(α) is a Prop for every α : A+0 B.

Proof. Remember that:

Ind(α) ≡
∏

(C,inlC ,inrC):
∑

C:A+0B→Prop(
∏

a:A C(inl0 a))×(
∏

b:B C(inr0 b))

C(α)

We imposed that C : A +0 B → Prop, so C(α) : Prop. Again by Lemma 1.2, the
whole type Ind(α) is also a Prop.

Theorem 2.6. (A+1 B, inl1, inr1) together with rec1 is the coproduct of the sets A
and B with respect to other sets in U .

Proof. Let h, k : (A+1B, inl1, inr1) → (X, inlX , inrX), we want to see h ∼ k. By func-
tion extensionality, we just need to see

∏
(α,i):A+1B

h(α, i) = k(α, i). Equivalently,

because A +1 B ≡
∑

α:A+0B
Ind(α), we can rewrite our goal as

∏
α:A+0B

∏
i:Ind(α)

h(α, i) = k(α, i).
Our notion of induction works on families of propositions over A +0 B, but we

want to prove a statement for all α : A +0 B and all i : Ind(α). This is one of the
main cruxes of our approach: we define inductivity over a type, but we want to use
induction over that type plus its proof of inductivity. A priori this problem might
seem insurmountable, but there is a possible fix that makes use of impredicativity
and the fact that Ind(α) is a Prop (Lemma 2.5). Let us start by fixing arbitrary
α : A+0 B and i : Ind(α) for the rest of the proof.

Define then a type family C over A+0 B as C(β) :≡
∏

j:Ind(β) h(β, j) = k(β, j).
As X is a Set, all equality types between elements of X are propositions in U . In
particular, h(β, j) = k(β, j) is always a Prop, hence (by Lemma 1.2) so is C(β) ≡∏

j:Ind(β) h(β, j) = k(β, j). So C has type A +0 B → Prop. Our goal is to obtain

a term c : C(α), from which we can get ci : h(α, i) = k(α, i) which is our ultimate
objective.
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Now we can finally apply induction: we want to prove C for a given α, for
which we have a witness of inductivity i : Ind(α). We are only missing the proofs
of C(inl0 a) and C(inr0 b) for arbitrary a : A, b : B. Let us do the case for A, the
other is analogous.

We want to see
∏

j:Ind(inl0 a) h(inl0 a, j) = k(inl0 a, j). We already have a similar

result, namely that
∑

j:Ind(inl0 a) h(inl0 a, j) = k(inl0 a, j), with j :≡ λ(C, inlC , inrC).

inlC a, because with this choice (inl0 a, j) ≡ inl1 a. But then h(inl0 a, j) = k(inl0 a, j) ≡
h(inl1 a) = k(inl1 a), and each of h and k, when composed with inl1, are equal to
inlX by hypothesis.

The final piece is to observe that, for any family of types C over a proposition
P ,

∑
p:P C(p) implies

∏
p:P C(p): given (p, c) :

∑
p:P C(p) and p′ : P , we can

construct an element of C(p′) as transportC(q, c), where q : p = p′ by virtue of
P being a proposition. Hence, our proof of

∑
j:Ind(inl0 a) h(inl0 a, j) = k(inl0 a, j)

gives us a proof of
∏

j:Ind(inl0 a) h(inl0 a, j) = k(inl0 a, j), as wanted, because Ind is a
proposition.

As with naturality, the proof for inductivity makes heavy use of specific prop-
erties of Set: in our case, on top of using it to apply impredicativity, we also need
it to make certain equalities propositions so that we can then use the final trick of
the proof.

2.3 W-types

The result given for coproducts can be generalized to virtually any inductive type,
by constructing them as W-types.

W-types are a family of inductive types parametrized by two other types, A : U
and B : A→ U . The W-type on A and B is usually denoted by Wa:AB(a), although
we will use the notation WAB for simplicity’s sake. A WAB-like algebra is a type
X : Set together with a single constructor sup : (

∑
a:AB(a) → X) → X.

Definition 2.2. The type of WAB-like algebras is:

SetWAB :≡
∑
X:Set

((∑
a:A

B(a) → X

)
→ X

)

The idea is that, based on our choice of A and B, we can encode any System
F-style inductive type (and more). For instance, we can take A :≡ 2 (the type of
booleans 02 and 12) and B(02) :≡ 0, B(12) :≡ 1, which results in:(∑

a:A

B(a) → X

)
→ X ≃

((0 → X) + (1 → X)) → X ≃
(1 +X) → X ≃
(1 → X)× (X → X)

Which is the conjunction of the two the constructors for the naturals.
Each a : A classifies the different constructors, and the corresponding B(a)

indexes the arguments for each constructor. W-types are also thought of as types
of well-founded trees: each a : A is a node of the tree, and the node labeled by a
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has B(a) subtrees. Given a subtree, we can construct its supremum, which is a new
tree. See also [6, Section 5.3].

The proof for W-types brings in more complexity, as they are, in general, proper
inductive types (in the sense of Table 1.1), which means that we have to take
into account an induction hypothesis in every proof by induction. Throughout the
whole section we fix a type A : U in our impredicative universe U , and a type family
B : A → U of U-types over A. We also inherit, mutatis mutandis, the definitions
of (strict) W-type from those of (strict) coproduct—with the corresponding η- and
β-rules that we will soon see.

We start, as always, by defining the System F-style base type:

W0
AB :≡

∏
(X,supX):SetWAB

X

and its associated constructor:

sup0 :

(∑
a:A

B(a) → W0
AB

)
→ W0

AB

sup0 :≡ λ(a, f).λ(X, supX). supX(a, λb.fb(X, supX))

For convenience, we introduce the “reverse application” helper function rev x :≡
λf.fx for all suitably typed f and x, such that rev xf ≡ fx. This allows us to
rewrite sup0(a, f)(X, supX) as supX(a, rev(X, supX) ◦ f).

We also translate the concept of morphism to W-types:

Definition 2.3. A morphism between algebras (X, supX) and (Y, supY ) is a function
f : X → Y such that f(supX(a, l) = supY (a, f ◦ l) for every a : A, l : B(a) → X. If
f is a morphism, we write f : (X, supX) → (Y, supY ).

First, we need a bit of notational aid. For a family of propositions C : W0
AB →

Prop, let us write CWAB(a, f) :≡
∏

b:B(a) C(fb). This makes it easier to define the
inductivity of w as

Ind(w) :≡
∏

(C,supC):
∑

C:W0
A

B→Prop

(∏
(a,f):

∑
a:A f:B(a)→W0

A
B

CWAB(a,f)→C(sup0(a,f))
)C(w)

As with the coproduct, we could refer to (C, supC) as a dependent algebra over
(W0

AB, sup0) and write

Set
(W0

AB,sup0)
WAB :≡

∑
C:W0

AB→Prop

 ∏
(a,f):

∑
a:A f :B(a)→W0

AB

CWAB(a, f) → C(sup0(a, f))


and then

Ind(w) ≡
∏

(C,supC):Set
(W0

A
B,sup0)

WAB

C(w)

The recursor is identical to the one for A+B:

rec0 :
∏

(X,supX):SetWAB

W0
AB → X

rec0 :≡ λ(X, supX).λw.w(X, supX)
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And once again we take the inductive subtype:

W1
AB :≡

∑
w:W0

AB

Ind(w)

This type can also be given an algebra structure, but this time it will require
substantially more work.

Proposition 2.7. There is a term sup1 of type
(∑

a:AB(a) → W1
AB
)
→ W1

AB.

Proof. Let (a, f) :
∑

a:AB(a) → W1
AB. We want to find a term of type W1

AB ≡∑
w:W0

AB Ind(w), this is, a term w : W0
AB and a term of type Ind(w). For w, we

choose sup0(a, pr1 ◦f). Now we need something of type Ind(sup0(a, pr1 ◦f)).
This is, given a type family C : W0

AB → Prop, and a function

supC :
∏

(a,f):
∑

a:A B(a)→W0
AB

CWAB(a, f) → C(sup0(a, f))

we need to obtain a term of type C(sup0(a, pr1 ◦f)). By choosing a and pr1 ◦f as the
first two arguments to supC , we are left with finding a term of CWAB(a, pr1 ◦f) ≡∏

b:B(a) C(pr1(fb)) as our last requirement.

Let b : B(a) arbitrary, then fb : W1
AB and pr2(fb) : Ind(pr1(fb)). Observe that

we now have the following situation: we are looking for a term of type C(pr1(fb))
and we have a witness pr2(fb) of the property Ind(pr1(fb)). So, we can just apply
(C, supC) to pr2(fb) to obtain the desired result.

sup1 :

(∑
a:A

B(a) → W1
AB

)
→ W1

AB

sup1 :≡ λ(a, f).(

sup0(a, pr1 ◦f),
λ(C, supC). supC(a, (pr1 ◦f))(λb. pr2(fb)(C, supC))

)

Lemma 2.8. Ind(α) is a Prop for every α : A+0 B.

Proof. As in the proof for Lemma 2.5, we just need to observe that C(α) : Prop and
use Lemma 1.2.

Lemma 2.9. Given a : A, f : B(a) → W0
AB, and a proof of inductivity of each

fb, i.e. g :
∏

b:B(a) Ind(fb), there is a proof of the inductivity of sup0(a, f). In

other words, there exists a function supInd :
∏

(a,f):
∑

a:A B(a)→W0
AB IndWAB(a, f) →

Ind(sup0(a, f)).

Proof. Let a, f , and g be the hypotheses as described above. We need to find:

Ind(sup0(a, f)) ≡
∏

(C,supC):Set
(W0

A
B,sup0)

WAB

C(sup0(a, f))
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Take hence C and supC as the bound variables, with types:

C : W0
AB → Prop

supC :
∏

(a′,f ′):
∑

a′:A B(a′)→W0
AB

CWAB(a′, f ′) → C(sup0(a
′, f ′))

and let us find a proof of C(sup0(a, f)). Observe that this is the return type of
supC , given that we set (a′, f ′) :≡ (a, f), and we provide a proof that C(fb) holds
for every b : B(a).

This proof can be constructed by using gb : Ind(fb). A term of type Ind(fb)
takes a type family (such as C), and then a proof that if the property C holds
for every branch of the W-type, then it holds for the supremum as well. But
that is exactly what supC is, so gb(C, supC) : C(fb). Therefore we can construct
supInd :≡ λ(a, f).λg.λ(C, supC). supC(a, f)(λb.gb(C, supC)), so that supInd(a, f)g :
Ind(sup0(a, f)).

We continue with the usual development: for every algebra X, we can construct
a function from W1

AB to it:

rec1 :
∏

(X,supX):SetWAB

W1
AB → X

rec1 :≡ λ(X, supX).λ(w, i). rec0(X, supX)w

We also introduce the WAB-like algebra morphisms:

Definition 2.4. A morphism between algebras (X, supX) and (Y, supY ) is a function
f : X → Y such that f ◦ supX(a, f) = supY (a, f ◦ l). We write (X, supX) →
(Y, supY ) :≡

∑
f :X→Y f ◦ supX ∼ supY ◦(idA ×(f ◦ −)).

The higher-order function idA ×(f ◦ −) takes (a, l) to (a, f ◦ l). It is technically
a slight abuse of notation, as (f ◦ −) : (B(a) → X) → (B(a) → Y ) as a function
depends on a; but it is convenient and cannot be accidentally mistyped.

We can visualize a morphism as a function f together with a proof that the
following diagram commutes (up to homotopy):

∑
a:A(B(a) → X)

∑
a:A(B(a) → Y )

X Y

supX supY

idA ×(f◦−)

f

Finally, we prove that our candidate does the job of the W-type on A and B.
For this, we prove the analogous properties of a strict coproduct:

Proposition 2.10. (W1
AB, sup1) satisfies the definitional β-equality for WAB, namely,

that for every a : A, l : B(a) → W1
AB, and (X, supX) : SetWAB:

rec1(X, supX)(sup1(a, l)) ≡ supX(a, rec1(X, supX) ◦ l)
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Proof. On the one hand:

(rec1(X, supX) ◦ sup1)(a, l) ≡ (definition of sup1)

(rec1(X, supX) ◦ (λ(a, l).(sup0(a, pr1 ◦l), . . . )))(a, l) ≡ (function application)

rec1(X, supX)(sup0(a, pr1 ◦l), . . . ) ≡ (definition of rec1)

(λ(w, i).w(X, supX))(sup0(a, pr1 ◦l), . . . ) ≡ (function application)

sup0(a, pr1 ◦l)(X, supX) ≡ (definition of sup0)

(λ(a′, l′).λ(X, supX). supX(a′, rev(X, supX) ◦ l′))
(a, pr1 ◦l)(X, supX) ≡ (function application)

supX(a, rev(X, supX) ◦ pr1 ◦l)

On the other hand:

supX((idA ×(rec1(X, supX) ◦ −))(a, l)) ≡ (function application)

supX(a, rec1(X, supX) ◦ l) ≡ (definition of rec1)

supX(a, (λ(X, supX).λ(w, i).w(X, supX))(X, supX) ◦ l) ≡ (function application)

supX(a, (λ(w, i).w(X, supX)) ◦ l) ≡ (definition of pr1)

supX(a, rev(X, supX) ◦ pr1 ◦l)

as desired.

Theorem 2.11. For every (X, supX) : SetWAB, there is a unique morphism
(W1

AB, sup1) → (X, supX).

Proof. Assume that, h, k : W1
AB → X are such that for all a : A and l : B(a) →

W1
AB, supX(a, h ◦ l) = h(sup1(a, l)), and let us prove h = k. Using function exten-

sionality, it is enough to show that
∏

(w,i):W1
AB h(w, i) = k(w, i), or, equivalently,∏

w:W0
AB

∏
i:Ind(w) h(w, i) = k(w, i).

Let then w : W0
AB and i : Ind(w) be arbitrary, and let us prove h(w, i) = k(w, i).

As we did with the coproducts, we strengthen the goal to
∏

j:Ind(w) h(w, j) = k(w, j),
which can be then applied to the case j :≡ i to obtain our result. Now, because of
Lemma 2.8, the type

∑
j:Ind(w) h(w, j) = k(w, j) implies

∏
j:Ind(w) h(w, j) = k(w, j).

Define then the type family C(w) :≡
∑

j:Ind(w) h(w, j) = k(w, j). Because the

codomain of h and k is X, which is a Set, C(w) is always a Prop. Hence, we can
use the induction principle i to construct a term of type C(w), as desired. We just
need to find a term of type

∏
(a,f):

∑
a:A B(a)→W0

AB C
WAB(a, f) → C(sup0(a, f)).

So, assume we have a : A, f : B(a) → W0
AB, and a proof g :

∏
b:B(a)

∑
j:Ind(fb)

h(fb, j) = k(fb, j). Given this, we need a term of type C(sup0(a, f)), which
translates to a term s : Ind(sup0(a, f)) together with a path h(sup0(a, f), s) =
k(sup0(a, f), s).

For the former, we take s :≡ supInd(a, f)g1, where g1 :≡ λb. pr1(gb) is the first
component of gb :

∑
j:Ind(fb) h(fb, j) = k(fb, j) for each b.

For the latter, namely h(sup0(a, f), supInd(a, f)g1) = k(sup0(a, f), supInd(a, f)g1),
we need more work. Remember that, by hypothesis, we know that supX(a, h ◦ l) =
h(sup(a, l)) and supX(a, k ◦ l) = k(sup(a, l)) for every l : B(a) → W1

AB. If we can
find some l such that sup1(a, l) = (sup0(a, f), supInd(a, f)g1), then we can apply
those hypotheses and reduce our problem to supX(a, h ◦ l) = supX(a, k ◦ l).
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A candidate for l is λb.(fb, g1b). Let us prove that it does, indeed, satisfy the
equality stated above. First, observe that pr1 ◦(λb.(fb, g1b)) ≡ f . Then:

sup1(a, l) ≡
sup1(a, λb.(fb, g1b)) ≡
(sup0(a, f), λ(C, supC). supC(a, f, (λb.g1b(C, supC))))

So, the first component of sup1(a, l) is identical to to the first component of (sup0(a, f),
supInd(a, f)g1), and the second one is also equal by definition of supInd.

We have reduced our goal to supX(a, h◦(λb.(fb, g1b))) = supX(a, k◦(λb.(fb, g1b))),
i.e. supX(a, λb.h(fb, g1b)) = supX(a, λb.k(fb, g1b)). For that, it is sufficient to prove
λb.h(fb, g1b) = λb.k(fb, g1b), or, by function extensionality,

∏
b:B(a) h(fb, g1b) =

k(fb, g1b).
Because Ind(fb) : Prop, from g :

∏
b:B(a)

∑
j:Ind(fb) h(fb, j) = k(fb, j) we can

obtain a g′ :
∏

b:B(a)

∏
j:Ind(fb) h(fb, j) = k(fb, j). So, given a b : B(a) we have

g′b(g1b) : h(fb, g1b) = k(fb, g1b). Abstracting away the b, we get λb.g′b(g1b) :∏
b:B(a) h(fb, g1b) = k(fb, g1b), as wanted.

By this theorem and Theorem 1.4, we have that (W1
AB, sup1) has a full induction

principle, as we wanted to see. We have shown that our Ind is at least as powerful
as Nat. Can we go a bit further?
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Chapter 3

Inductive types in U

3.1 Splitting of idempotents

The approaches seen so far suffer from the key limitation of only allowing elimination
into Set. Unfortunately, this restriction has been proven vital for the proofs as they
stand, and in order to lift them we will have to take quite a different route.

In their proof that A +N B is a coproduct (Theorem 2.3), Awodey, Frey, and
Speight prove the η-equality recN (X, f ◦ inlN , f ◦ inrN ) ∼ f via the more specific
case with f :≡ idA+NB , i.e. recN (A +N B, inlN , inrN ) ∼ idA+NB . In fact, the
generalization from the latter to the former is quite abstract and does not make use
of any of the specific assumptions that they impose, such as the restriction to Set.

Shulman [11] notices this and tries to avoid having to prove this equality al-
together. In this section we will lay Shulman’s observations and how he pro-
poses to apply them in order to construct inductive types not restricted to Set.
The first realization is that—even without the size restriction—the function φ :≡
recN (A +N B, inlN , inrN ) is an idempotent, i.e. φ ◦ φ ∼ φ. He proposes trying to
split it. A splitting of an idempotent such as φ : A +N B → A +N B is a pair of
functions r : A+N B → J and s : J → A+N B through some intermediate type J ,
such that s ◦ r ∼ φ and r ◦ s ∼ idJ .

If it were possible to split φ, we would have a new type J , with its own injections:

inlJ :≡ r ◦ inlN
inrJ :≡ r ◦ inrN

And its own recursor:

recJ :
∏

(X,inlX ,inrX)

J → X

recJ(X, inlX , inrX) :≡ recN (X, inlX , inrX) ◦ s

It turns out that this type can be proven to be the strict coproduct:

Proposition 3.1 (Shulman). recJ(J, inlJ , inrJ) ∼ idJ .
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Proof. We use two auxiliary computations. First:

s ◦ recN (J, inlJ , inrJ) ∼ (naturality)

recN (A+N B, s ◦ inlJ , s ◦ inrJ) ∼ (definition of inlJ and inrJ)

recN (A+N B, s ◦ r ◦ inlN , s ◦ r ◦ inrN ) ∼ (s ◦ r ∼ φ)

recN (A+N B, recN (A+N B, inlN , inrN )◦
inlN , recN (A+N B, inlN , inrN ) ◦ inrN ) ∼ (the β-equalities)

recN (A+N B, inlN , inrN ) (3.1)

Then:

recN (J, inlJ , inrJ) ∼ (r ◦ s ∼ idJ)

r ◦ s ◦ recN (J, inlJ , inrJ) ∼ (3.1)

r ◦ recN (A+N B, inlN , inrN ) ∼ (s ◦ r ∼ φ)

r ◦ s ◦ r ∼ (r ◦ s ∼ idJ)

r (3.2)

To finally obtain the desired result:

recJ(J, inlJ , inrJ) ∼ (definition of recJ)

recN (J, inlJ , inrJ) ◦ s ∼ (3.2)

r ◦ s ∼ (r ◦ s ∼ idJ)

idJ

Note that the proof is completely abstract over the specific computations; the
only requirements are the β-equalities, the splitting equations, use of naturality,
and the relationship between recJ , inlJ , and inrJ with their analogs for A+N B.

Now it all boils down to splitting recN (A +N B, inlN , inrN ). Very conveniently,
Shulman also proved a very handy collection of results about splitting idempotents
in a setting similar to the present one [10]. In particular, it turns out that finding
a splitting of an idempotent φ only requires us to find two things:

Definition 3.1. A pre-idempotent is a function φ : I → I together with a proof
I : φ ◦ φ ∼ φ.

Definition 3.2. A quasi-idempotent is a pre-idempotent (φ, I) together with a
proof J : apφ ◦I ∼ I ◦ φ.

Theorem 3.2 (Shulman). All quasi-idempotents split.

For a proof, see [10, Section 5]. It is important to know that, in order for these
results to work, it is necessary to assume that our system contains the natural
numbers N with their usual rules.

I tells us that we can compose φ with itself and reduce it down to φ again. Due
to associativity, (φ ◦ φ) ◦ φ ∼ φ ◦ (φ ◦ φ), so if we want to apply I to reduce a
concatenation of three φ down to one, there are two ways to do it: first applying I,
and then concatenating φ, or first applying φ and then I. J makes these two ways
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equivalent, this is, it makes the following diagram commute:

φ ◦ φ ◦ φ φ ◦ φ

φ ◦ φ φ

apφ ◦I

I◦φ

I

I

apI ◦J

In [11], Shulman claims to be able to split the idempotent for the coproduct
under the definition given by Awodey et al., although a complete proof has never
been published. This also requires imposing, on top of naturality, a second layer
of compatibility, which we will not elaborate further upon, but can be seen in [3,
Section 5]. For the rest of this chapter we will try to achieve this result—without
restricting to Set—and then generalize it to all W-types. We will also proceed using
our own construction, inductivity, instead of naturality.

3.2 Multiple layers of inductivity

Before we embark on this task, we will play a bit more with the concept of induct-
ivity.

As pointed out in Chapter 2, a key drawback in our strategy of adding an
inductivity property to the base System F type is that it allows us to use induction
on the base type, but not on the derived subtype, which is what we would like.

Ideally, we want to reach a type (A+B, inl, inr) together with an induction rule∏
(X,inlX ,inrX):U(A+B,inl,inr)

A+B

∏
α:A+B

X(α)

which is equivalent to ∏
α:A+B

∏
(X,inlX ,inrX):U(A+B,inl,inr)

A+B

X(α)

and hence amounts to proving

Ind(α) :≡
∏

(X,inlX ,inrX):U(A+B,inl,inr)
A+B

X(α)

for every α : A+B. In a way, we would want A+B ≃
∑

α:A+B Ind(α), i.e. that the
type A+B be equivalent to the subtype of itself that has the inductivity property.
Of course, we could introduce a second layer of inductivity that applies to the whole
A +1 B ≡

∑
α:A+0B

Ind(α), but then that would suffer from the same problems,
and so on and so forth.

Nonetheless, the idea of incorporating more than one layer could be useful. To
begin with, we extrapolate our idea of inductivity so it can be applied to any algebra,
not only the base (A+0 B, inl0, inr0):

Definition 3.3. The inductivity of an algebra (X, inlX , inrX) : UA+B is a property
Ind(X,inlX ,inrX):

Ind :
∏

(X,inlX ,inrX):UA+B

X → U

Ind(X,inlX ,inrX)(α) :≡
∏

(C,inlC ,inrC):U(X,inlX,inrX )

A+B

C(α)
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Note that, in general, the property of inductivity is not a proposition, i.e. there
might be propositionally distinct proofs of Ind(X,inlX ,inrX)(α). So, a priori, we cannot
continue as we had before.

Our original proposal would be akin to defining a base type

A+0 B :≡
∏

(X,inlX ,inrX):UA+B

X

inl0 :≡ λ(X, inlX , inrX). inlX a

inr0 :≡ λ(X, inlX , inrX). inrX b

And our first attempt at “inductivizing” A+0 B would be

A+1 B :≡
∑

α:A+0B

Ind(A+0B,inl0,inr0)(α)

inl1 :≡ λa.(inl0 a, λ(C, inlC , inrC). inlC a)

inr1 :≡ λb.(inr0 b, λ(C, inlC , inrC). inrC b)

We can extend this indefinitely, by building a hierarchy of reversed cumulative
types, each one embedded in the previous one. For readability, henceforth we will
write Indn to represent Ind(A+nB,inln,inrn).

Definition 3.4. We define the nth approximation to the coproduct of A and B as:

A+0 B :≡
∏

(X,inlX ,inrX):UA+B

X

inl0 :≡ λ(X, inlX , inrX). inlX a

inr0 :≡ λ(X, inlX , inrX). inrX b

A+n+1 B :≡
∑

α:A+nB

Indn(α)

inln+1 :≡ λa.(inln a, λ(C, inlC , inrC). inlC a)

inrn+1 :≡ λb.(inrn b, λ(C, inlC , inrC). inrC b)

We also define the following helper functions:

Definition 3.5. Projection to the immediately underlying type:

πn : A+n+1 B → A+n B

πn :≡ λ(α, i).α

Projection to the bottom of the hierarchy:

ρ :
∏
n:N

A+n B → A+0 B

ρ0 :≡ λα : A+0 B.α

ρn+1 :≡ λ(α, i) : A+n+1 B.ρn(α)

Elimination into arbitrary types of UA+B:

rec :
∏
n:N

∏
(X,inlX ,inrX):UA+B

A+n B → X

rec :≡ λn.λ(X, inlX , inrX).λα.ρn(α)(X, inlX , inrX)
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Or, equivalently, πn ≡ pr1 and ρn+1 ≡ π0 ◦ π1 ◦ · · · ◦ πn.
This way, one has:

α : A+0 B

(α, i0) : A+1 B ≡
∑

α:A+0B

Ind0(α)

((α, i0), i1) : A+2 B ≡
∑

(α,i0):
∑

α:A+0B Ind0(α)

Ind1(α, i0)

. . .

Nonetheless, it turns out that we will not need to venture down too much into
this hierarchy of types; with two layers it is enough.

3.3 Coproducts

Before we start splitting any idempotents, we observe that Shulman’s method uses
naturality in the proof of Proposition 3.1. As we do not have naturality anymore,
we need to fill this gap. In particular, we want to prove s ◦ recN (J, inlJ , inrJ) ∼
recN (A +N B, inlN , inrN ) (Equation 3.1), where s : J → A +N B is one of the
functions that make up the splitting. In our context, we will prove that this equation
holds for any morphism, and then we will see that s is indeed a morphism.

Lemma 3.3. For any n, and any morphism f : (X, inlX , inrX) → (Y, inlY , inrY ),
f ◦ recn+1(X, inlX , inrX) ∼ recn+1(Y, inlY , inrY )

Proof. The goal is, by extensionality, to prove (f ◦ recn+1(X, inlX , inrX))(α, i) =
recn+1(Y, inlY , inrY )(α, i) for all (α, i) : A+n+1B. The left-hand side can be reduced
as:

(f ◦ recn+1(X, inlX , inrX))(α, i) ≡ (definition of recn+1)

(f ◦ (λ(X, inlX , inrX).λ(α, i).ρn+1(α, i)(X, inlX , inrX))

(X, inlX , inrX))(α, i) ≡ (definition of ρn+1)

(f ◦ (λ(X, inlX , inrX).λ(α, i).ρn(α)(X, inlX , inrX))

(X, inlX , inrX))(α, i) ≡ (function application)

(f ◦ (λ(α, i).ρn(α)(X, inlX , inrX)))(α, i) ≡ (function application)

f(ρn(α)(X, inlX , inrX))

And the right-hand side:

recn+1(Y, inlY , inrY )(α, i) ≡ (definition of recn+1)

ρn+1(α, i)(Y, inlY , inrY ) ≡ (definition of ρn+1)

ρn(α)(Y, inlY , inrY )

Our objective became
∏

(α,i):A+n+1B
f(ρn(α)(X, inlX , inrX)) = ρn(α)(Y, inlY , inrY ).

We will do this by induction on A+n+1 B. As stated earlier, induction on this
hierarchy of weak coproducts only allows us to prove things on a strictly lower level.
There is caveat to this restriction: we can prove statements that do not depend on
the proof of inductivity. This lemma is an example.
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Because neither side of the equality contains the term i : Ind(α), we can use i to
prove the statement by inductivity. So, if we define a type family C : A+n B → U
as:

C(α) :≡ f(ρn(α)(X, inlX , inrX)) = ρn(α)(Y, inlY , inrY )

We are left with supplying the proofs of
∏

a:A C(inln a) and
∏

b:B C(inrn b) to i. The
proof for a : A is provided; the other is analogous. The left-hand side reduces to:

f(ρn(inln a)(X, inlX , inrX)) ≡ (definition of ρn and inln)

f((inl0 a)(X, inlX , inrX)) ≡ (definition of inl0)

f((λ(X, inlX , inrX). inlX a)(X, inlX , inrX)) ≡ (function application)

f(inlX a)

And the right-hand side to:

ρn(inln a)(Y, inlY , inrY ) ≡ (definition of ρn and inln)

(inl0 a)(Y, inlY , inrY ) ≡ (definition of inl0)

(λ(X, inlX , inrX). inlX a)(Y, inlY , inrY ) ≡ (function application)

inlY a

Because f is a morphism, f(inlX a) = inlY a.

Lemma 3.4. Suppose we have a coproduct (X, inlX , inrX) with recursor recX , and
Y : U . Let r : X → Y and s : Y → X be such that s ◦ r ∼ recX(X, inlX , inrX).
Then s is a morphism with respect to (Y, inlY , inrY ), where inlY :≡ r ◦ inlX and
inrY :≡ r ◦ inrX .

Proof. The objective is to prove s◦inlY ∼ inlX . By definition of inlY , that is the same
as s◦r◦inlX ∼ inlX , and by hypothesis on s and r, we get recX(X, inlX , inrX)◦inlX ∼
inlX , or, equivalently, that recX(X, inlX , inrX) is a morphism, which it is because
(X, inlX , inrX) is a weak coproduct. The same reasoning applies to inr.

With this, we have replaced all the pieces of Shulman’s argument that hinged
on naturality. Let our candidate idempotent φ : A +2 B → A +2 B be defined as
φ :≡ rec2(A+2B, inl2, inr2). We just need to prove that there are terms I : φ◦φ ∼ φ
and J : apφ ◦I ∼ I ◦ φ. Most of the proofs in this section will only be laid out for
inl2, as the ones for inr2 are completely analogous.

Lemma 3.5. φ is a pre-idempotent.

Proof. Remember that [10] defines a function φ : A +2 B → A +2 B to be a pre-
idempotent if it has a witness of idempotency I : φ◦φ ∼ φ, i.e.

∏
α:A+2B

(φ◦φ)(α) =
φ(α).

As φ first applies ρ2, the statement φ(φ((α, i), j)) = φ(α, i), j) does actually not
involve any of the two proofs of inductivity that the term ((α, i), j) contains, so we
can repeat the strategy from the previous lemma. For the right-hand side of the
equality:

φ((α, i), j) ≡ (definition of φ)

ρ2((α, i), j)(A+2 B, inl2, inr2) ≡ (definition of ρ)

α(A+2 B, inl2, inr2) (3.3)
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And for the left-hand side:

φ(φ((α, i), j)) ≡ (3.3)

φ(α(A+2 B, inl2, inr2)) ≡ (definition of φ)

ρ2(α(A+2 B, inl2, inr2))(A+2 B, inl2, inr2) (3.4)

Let us see how this proof will work. We want to prove the following statement:∏
((α,i),j):A+2B

φ(φ((α, i), j)) = φ((α, i), j)

which, putting together 3.4 and 3.3, is equivalent to:∏
((α,i),j):A+2B

ρ2(α(A+2 B, inl2, inr2))(A+2 B, inl2, inr2) = α(A+2 B, inl2, inr2)

We can write the equality as a type family on A+0 B:

C : A+0 B → U
C(α) :≡ ρ2(α(A+2 B, inl2, inr2))(A+2 B, inl2, inr2) = α(A+2 B, inl2, inr2)

Our goal is to prove C for all ((α, i), j) : A +0 B. As C does not make use of i
or j, we can prove this by A +0 B-induction on α, conveniently using the proof of
inductivity i that is also provided. j will be ignored altogether for this lemma.

For this task, we need witnesses inlC :
∏

a:A C(inl0 a) and inrC :
∏

b:B C(inr0 b).
It is readily seen that C(inl0 a) is equivalent to inl2 a = inl2 a. By definition of inl0:

(inl0 a)(A+2 B, inl2, inr2) ≡ inl2 a (3.5)

And, from here:

ρ2((inl0 a)(A+2 B, inl2, inr2))(A+2 B, inl2, inr2) ≡ (3.5)

ρ2(inl2 a)(A+2 B, inl2, inr2) ≡ (definition of ρn and inln)

(inl0 a)(A+2 B, inl2, inr2) ≡ (3.5 again)

inl2 a

So we have our witnesses:

inlC :
∏
a:A

C(inl1 a)

inlC :≡ λa.reflinl2 a

inrC :
∏
b:B

C(inr1 b)

inrC :≡ λb.reflinr2 b

Finally, we can construct our proof term:

I : φ ◦ φ ∼ φ

I :≡ λ((α, i), j) : A+2 B.i(C, inlC , inrC)

Theorem 3.6. φ is a quasi-idempotent.
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Proof. This means that we now need a proof J of apφ ◦I ∼ I ◦ φ. Again, we will
do this by induction. This time the task is trickier: unlike before, we need to
prove a statement that involves the inductivity term i, as that is how we built our
witness of idempotency I. This is the reason why we are working with two layers
of inductivity. ∏

((α,i),j):A+2B

apφ(I((α, i), j)) = I(φ((α, i), j))

On the left hand side of the identity type:

apφ(I((α, i), j)) ≡ (definition of I)

apφ((λ((α, i), j) : A+2 B.i(C, inlC , inrC))((α, i), j)) ≡ (function application)

apφ(i(C, inlC , inrC)) ≡ (definition of φ)

app2(A+2B,inl2,inr2)(i(C, inlC , inrC))

Whereas the right hand side:

I(φ((α, i), j)) ≡ (definition of I and φ)

(λ((α, i), j) : A+2 B.i(C, inlC , inrC))

(p2(A+2 B, inl2, inr2)((α, i), j)) ≡ (definition of p2)

(λ((α, i), j) : A+2 B.i(C, inlC , inrC))

(α(A+2 B, inl2, inr2)) ≡ (function application)

π1(π0(α(A+2 B, inl2, inr2)))(C, inlC , inrC)

Our goal in this lemma is to prove app2(A+2B,inl2,inr2)(i(C, inlC , inrC)) = π1(π0(α(A+2

B, inl2, inr2)))(C, inlC , inrC) for every ((α, i), j) : A +2 B. This time, the statement
does involve the first proof of inductivity i, so we can set:

D(α, i) :≡ app2(A+2B,inl2,inr2)(i(C, inlC , inrC)) =

π1(π0(α(A+2 B, inl2, inr2)))(C, inlC , inrC)

and rewrite the goal as: ∏
((α,i),j):A+2B

D(α, i)

and then use the previous lemma’s trick and prove D by induction via j. For
(α, i) :≡ inl1 a ≡ (λ(X, inlX , inrX). inlX a, λ(C, inlC , inrC). inlC a), we have that in
the left hand side of D:

app2(A+2B,inl2,inr2)(i(C, inlC , inrC)) ≡ (definition of i)

app2(A+2B,inl2,inr2)((λ(C, inlC , inrC). inlC a)(C, inlC , inrC)) ≡ (function appl.)

app2(A+2B,inl2,inr2)(inlC a) ≡ (definition of inlC)

app2(A+2B,inl2,inr2)(reflinl2 a) ≡ (definition of ap)

reflp2(A+2B,inl2,inr2)(inl2 a) ≡ (definition of p2)

refl(inl0 a)(A+2B,inl2,inr2) ≡ (definition of inl0)

reflinl2 a
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And in the right hand side:

π1(π0(α(A+2 B, inl2, inr2)))(C, inlC , inrC) ≡ (definition of α)

π1(π0((λ(X, inlX , inrX). inlX a)(A+2 B, inl2, inr2)))

(C, inlC , inrC) ≡ (function application)

π1(π0(inl2 a))(C, inlC , inrC) ≡ (definition of inl2)

(λ(C, inlC , inrC). inlC a)(C, inlC , inrC) ≡ (function application)

inlC a ≡ (definition of inlC)

reflinl2 a

So a valid witness of D(inl1 a) is reflreflinl2 a
; and so is reflreflinr2 b

for D(inr1 b). Finally,
we get the term:

J : apφ ◦I ∼ I ◦ φ
J :≡ λ((α, i), j).j(D,λa.reflreflinl2 a

, λb.reflreflinr2 b
)

Now, by application of Shulman’s theorem, we get a splitting of φ, and thus the
coproduct of A and B with (dependent) elimination into the full type U .

3.4 W-types

In this section we generalize the previous result to all W-types. We will mostly use
the same technique of proving the intermediate results by induction, but it will be
trickier as we are now dealing with an induction principle that does actually require
an inductive hypothesis.

Remember definition of the type of WAB-like algebras (generalized from the one
for Set):

UWAB :≡
∑
X:U

((∑
a:A

B(a) → X

)
→ X

)
And WAB-like dependent algebras:

U (X,supX)
WAB :≡

∑
C:X→U

 ∏
(a,f):

∑
a:A f :B(a)→X

 ∏
b:B(a)

C(fb)

→ C(supX(a, f))


Which will be convenient to write our inductivity property more concisely:

Definition 3.6. The inductivity of an algebra (X, supX) : UWAB is a property
Ind(X,supX):

Ind :
∏

(X,supX):UWAB

X → U

Ind(X,supX)(α) :≡
∏

(C,supC):U(X,supX )

WAB

C(α)

And from there, we introduce our tower of proto-inductive types.
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Definition 3.7. We define the nth approximation of WAB as:

W0
AB :≡

∏
(X,supX):UWAB

X

sup0 :≡ λ(a, f).λ(X, supX). supX(a, rev(X, supX) ◦ f)

Wn+1
A B :≡

∑
α:Wn

AB

Ind(Wn
AB,supn)

(α)

supn+1 :≡ λ(a, f).(

supn(a, pr1 ◦f),
λ(C, supC). supC(a, pr1 ◦f)(rev(C, supC) ◦ pr2 ◦f)
)

As with the coproducts, we will write Indn to mean Ind(Wn
AB,supn)

. We also
define a few helper functions.

Definition 3.8. Projection to the immediately underlying type:

π :
∏
n:N

Wn+1
A B →Wn

AB

πn :≡ λ(α, i).α

Projection to the bottom of the hierarchy:

ρ :
∏
n:N

Wn
AB →W 0

AB

ρ0 :≡ λα :Wn
AB.α

ρn+1 :≡ λ(α, i) :Wn+1
A B.ρn(α)

Elimination into arbitrary types of UWAB:

rec :
∏
n:N

∏
(X,supX):UWAB

Wn
AB → X

recn :≡ λ(X, supX). rev(X, supX) ◦ ρn

Finally, let φ :≡ rec2(W
2
AB, sup2) be our candidate of endomorphism to split.

For easier reference, the types and functions that we will be working explicitly
with are:

W0
AB :≡

∏
(X,supX):UWAB

X

sup0 :≡ λ(a, f).λ(X, supX). supX(a, rev(X, supX) ◦ f)

W1
AB :≡

∑
α:W0

AB

Ind0(α)

sup1 :≡ λ(a, f).(sup0(a, π0 ◦ f), λ(C, supC). supC(a, π0 ◦ f)(rev(C, supC) ◦ pr2 ◦f))

W2
AB :≡

∑
α:W1

AB

Ind1(α)

sup2 :≡ λ(a, f).(sup1(a, π1 ◦ f), λ(C, supC). supC(a, π1 ◦ f)(rev(C, supC) ◦ pr2 ◦f))
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We now prove that all of the functions defined so far satisfy the β-rule f ◦supX ≡
supY ◦(idA ×(f ◦ −)):

Lemma 3.7. The following functions satisfy the definitional β-equality:

• πn : Wn+1
A B → Wn

AB for all n : N,

• ρn : Wn
AB → W0

AB for all n : N,

• rev(X, supX) : W0
AB → X for all (X, supX) : UWAB, and

• φ : W2
AB → W2

AB.

Proof. One by one:

• For π, let n : N, a : A, and f : B(a) → Wn+1
A B be arbitrary. We must show

that πn(supn+1(a, f)) ≡ supn(a, πn ◦ f).

πn(supn+1(a, f)) ≡ (definition of πn)

pr1(supn+1(a, f)) ≡ (definition of supn+1)

pr1(supn(a, pr1 ◦f), . . . ) ≡ (application of pr1)

supn(a, pr1 ◦f) ≡ (definition of πn)

supn(a, πn ◦ f)

• For ρ, we just remark that ρ0 is the identity and ρn+1 ≡ π0 ◦ · · · ◦ πn.

• For rev(X, supX):

rev(X, supX)(sup0(a, f)) ≡ (definition of rev)

sup0(a, f)(X, supX) ≡ (definition of sup0)

(λ(X, supX). supX(a, rev(X, supX) ◦ f))(X, supX) ≡ (function application)

supX(a, rev(X, supX) ◦ f)

• Finally, for φ, it is sufficient to see that φ ≡ rec2(W
2
AB, sup2) ≡ rev(W2

AB, sup2)◦
ρ2, which both satisfy the β-rule on their own as just seen.

As before, we need the following technicality so that the splitting argument
works:

Lemma 3.8. For any n, and any morphism f : (X, supX) → (Y, supY ), f ◦
recn+1(X, supX) ∼ recn+1(Y, supY ).

Proof. We prove
∏

(α,i):Wn+1
A B(f ◦ recn+1(X, supX))(α, i) = recn+1(Y, supY )(α, i) by

induction. We reduce both sides:

(f ◦ recn+1(X, supX))(α, i) ≡ (definition of recn+1)

(f ◦ (λ(X, inlX).λ(α, i).ρn+1(α, i)(X, supX))

(X, supX))(α, i) ≡ (definition of ρn+1)

(f ◦ (λ(X, supX).λ(α, i).ρn(α)(X, inlX , inrX))

(X, supX))(α, i) ≡ (function application)

(f ◦ (λ(α, i).ρn(α)(X, supX)))(α, i) ≡ (function application)

f(ρn(α)(X, supX))
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recn+1(Y, supY )(α, i) ≡ (definition of recn+1)

ρn+1(α, i)(Y, supY ) ≡ (definition of ρn+1)

ρn(α)(Y, supY )

We use the inductivity term i to prove the family C : Wn
AB → U

C(α) :≡ f(ρn(α)(X, supX)) = ρn(α)(Y, supY )

In this case, we only need to provide a proof for one constructor, sup0 (instead of
two as with the coproduct). In other words, we want to find:

∏
(a,l):

∑
a:A l:B(a)→WnB

 ∏
b:B(a)

C(lb)

→ C(sup0(a, l))

Let then a and l have the required types, and g :
∏

b:B(a) C(lb). As before, we

use the fact that f is a morphism, i.e. that f(supX(a, l)) = supY (a, f ◦ l) for all
(a, l) :

∑
a:AB(a) → X. The left-hand side reduces to:

f(ρn(supn(a, l))(X, supX)) ≡ (Lemma 3.7)

f((sup0(a, ρn ◦ l))(X, supX)) ≡ (definition of sup0)

f((λ(X, supX). supX(a, rev(X, supX) ◦ ρn ◦ l))(X, supX)) ≡ (function appl.)

f(supX(a, rev(X, supX) ◦ ρn ◦ l)) = (f is a morphism)

supY (a, f ◦ rev(X, supX) ◦ ρn ◦ l)

And the right-hand side to:

ρn(supn(a, l))(Y, supY ) ≡ (Lemma 3.7)

(sup0(a, ρn ◦ l))(Y, supY ) ≡ (definition of sup0)

(λ(X, supX). supX(a, rev(X, supX) ◦ ρn ◦ l))(Y, supY ) ≡ (function application)

supY (a, rev(Y, supY ) ◦ ρn ◦ l)

We can prove supY (a, f ◦ rev(X, supX) ◦ ρn ◦ l) = supY (a, rev(Y, supY ) ◦ ρn ◦ l) by
using apsupY and proving the equality of each component. Obviously, a = a by refla,
so we just see that f ◦ rev(X, supX) ◦ ρn ◦ l = rev(Y, supY ) ◦ ρn ◦ l. By function
extensionality, we want to reach:∏

b:B(a)

(f ◦ rev(X, supX) ◦ ρn ◦ l)b = (rev(Y, supY ) ◦ ρn ◦ l)b

Or, ∏
b:B(a)

(f ◦ rev(X, supX) ◦ ρn)(lb) = (rev(Y, supY ) ◦ ρn)(lb)

We finish by pointing out that (f ◦ rev(X, supX) ◦ ρn)(lb) ≡ f(ρn(lb)(X, supX)) and
(rev(Y, supY ) ◦ ρn)(lb) ≡ ρn(lb)(Y, supY ), so the only missing piece is exactly our
induction hypothesis g :

∏
b:B(a) C(lb).

Lemma 3.9. For any (X, supX) : UWAB, a : A, and ψ : X → X, if ψ satisfies the
β-rule, then ψ ◦ supX(a,−) ≡ supX(a,−) ◦ (ψ ◦ −).
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Proof. It is sufficient to prove the definitional identity pointwise, i.e., for each f :
B(a) → X.

(ψ ◦ supX(a,−))f ≡ (function composition)

ψ(supX(a,−)f) ≡ (function application)

ψ(supX(a, f)) ≡ (hypothesis)

supX(a, ψ ◦ f) ≡ (undoing function application)

supX(a,−)(ψ ◦ f) ≡ (undoing function application)

supX(a,−)((ψ ◦ −)f) ≡ (function composition)

(supX(a,−) ◦ (ψ ◦ −))f

Lemma 3.10. φ is a pre-idempotent.

Proof. As before, we find a witness I : φ ◦ φ ∼ φ. The strategy is completely
analogous to that of the coproduct, so we will skip the explanations about our
usage of the proofs of inductivity and jump straight into the calculations. We
structure our goal type as:∏

((α,i),j):W2
AB

(φ ◦ φ)((α, i), j) = φ((α, i), j)

Which, unfolding φ, is definitionally identical to:∏
((α,i),j):W2

AB

(rev(W2
AB, sup2) ◦ ρ2 ◦ rev(W2

AB, sup2))(α) = rev(W2
AB, sup2)(α)

So we define our type family C : W0
AB → U as:

C(α) :≡ (rev(W2
AB, sup2) ◦ ρ2 ◦ rev(W2

AB, sup2))(α) = rev(W2
AB, sup2)(α)

And restate the goal as: ∏
((α,i),j):W2

AB

C(α)

Let a : A and f : B(a) → W0
AB, and assume the induction hypothesis g :∏

b:B(a) C(fb). Applying Lemma 3.7:

(rev(W2
AB, sup2) ◦ ρ2 ◦ rev(W2

AB, sup2))(sup0(a, f)) ≡
sup2(a, rev(W

2
AB, sup2) ◦ ρ2 ◦ rev(W2

AB, sup2) ◦ f)

We need to see:

sup2(a, rev(W
2
AB, sup2) ◦ ρ2 ◦ rev(W2

AB, sup2) ◦ f) = sup2(a, rev(W
2
AB, sup2) ◦ f)

Equivalently, we just find a witness of rev(W2
AB, sup2) ◦ ρ2 ◦ rev(W2

AB, sup2) ◦
f = rev(W2

AB, sup2) ◦ f and use apsup2(a,−) on it. As we want to prove equal-
ity between two functions that take an argument b : B(a), we can apply function
extensionality to a proof of type

∏
b:B(a)(rev(W

2
AB, sup2) ◦ ρ2 ◦ rev(W2

AB, sup2) ◦
f)(b) = (rev(W2

AB, sup2) ◦ f)(b), or equivalently
∏

b:B(a)(rev(W
2
AB, sup2) ◦ ρ2 ◦
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rev(W2
AB, sup2))(fb) = rev(W2

AB, sup2)(fb). If we observe carefully, this type turns
out to be

∏
b:B(a) C(fb), which is exactly that of our induction hypothesis g. So

the proof by induction is given by λ(a, f).λg. apsup2(a,−)(funext g), and hence this
lemma is proven by:

I : φ ◦ φ ∼ φ

I :≡ λ((α, i), j).i(C, λ(a, f).λg. apsup2(a,−)(funext g))

For the final theorem we will need a way of computationally dealing with the
function extensionality axiom funext that we have introduced in our term I. The
way it is defined in [6, Axiom 2.9.3], the only computational rules that funext obeys
are related to its quasi-inverse happly : f = f ′ →

∏
x:X fx = f ′x:

∀x : X ∀k :
∏
x:X

fx = f ′x happly(funext k, x) = kx (3.6)

∀p : f = f ′ funext(λx. happly(p, x)) = p (3.7)

Which can be regarded as computation and uniqueness principles for identity types
of functions, correspondingly. Unfortunately, our calculations will not contain
happly, but they will contain a propositionally equivalent construction:

Lemma 3.11. happly = λp.λx. aprev x p.

Proof. As given by [6, Equation 2.9.2], happly is defined by path induction for the
case f ≡ f ′ as happly(reflf ) :≡ λx.reflfx. On the other hand, ap is also defined
by induction, in such a way that aprev x reflf ≡ reflfx. Abstracting on x, we have
that λx. aprev x reflf ≡ λx.reflfx. Then, we have by path induction that happly(p) =
λx. aprev x p: we just need to prove it for p :≡ reflf , using for example reflλx.reflfx

.
Finally, by applying funext we obtain a proof of happly = λp.λx. aprev x p.

By applying Lemma 3.11 to 3.6 and 3.7 we obtain the following equalities:

∀x : X ∀k :
∏
x:X

fx = f ′x aprev x(funext k) = kx (3.8)

∀p : f = f ′ funext(λx. aprev x p) = p (3.9)

with which we can arrive to:

Lemma 3.12. Let φ : Y → Y and k :
∏

x:X fx = f ′x for any X,Y types and
f, f ′ : X → Y . Then, apφ◦−(funext k) = funext(apφ ◦k).
Proof.

apφ◦−(funext k) = (3.9)

funext(λx. aprev x(apφ◦−(funext k))) = (functoriality of ap)

funext(λx. aprev x◦(φ◦−)(funext k)) ≡
funext(λx. ap(φ◦−)x(funext k)) ≡
funext(λx. apφ◦rev x(funext k)) = (functoriality of ap)

funext(λx. apφ(aprev x(funext k))) = (3.8)

funext(λx. apφ(kx)) ≡ (η-reduction)

funext(apφ ◦k)
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Theorem 3.13. φ is a quasi-idempotent.

Proof. By the same procedure as with the coproduct, we want J : apφ ◦I ∼ I◦φ. Let
us abbreviate λ(a, f).λg. apsup2(a,−)(funext g) as supC (as it will form a dependent
algebra with our type family C). I can be rewritten as rev(C, supC)◦pr2 ◦π1. First,
we reduce the goal:

(apφ ◦I)((α, i), j) ≡ (definition of I)

(apφ ◦ rev(C, supC) ◦ pr2 ◦π1)((α, i), j) ≡ (definition of π1)

(apφ ◦ rev(C, supC) ◦ pr2)(α, i)

(I ◦ φ)((α, i), j) ≡ (definition of I and φ)

(rev(C, supC) ◦ pr2 ◦π1 ◦ rev(W2
AB, sup2) ◦ ρ2)((α, i), j) ≡ (definition of ρ2)

(rev(C, supC) ◦ pr2 ◦π1 ◦ rev(W2
AB, sup2) ◦ ρ1)(α, i) ≡ (definition of ρ1)

(rev(C, supC) ◦ pr2 ◦π1 ◦ rev(W2
AB, sup2) ◦ π0)(α, i)

We set:

D(α, i) :≡ (apφ ◦ rev(C, supC) ◦ pr2)(α, i) =
(rev(C, supC) ◦ pr2 ◦π1 ◦ rev(W2

AB, sup2) ◦ π0)(α, i)

and prove it for all ((α, i), j) by induction using j.
Let us prove D(sup1(a, f)) for arbitrary a : A, f : B(a) → W1

AB, and given a
proof g :

∏
b:B(a)D(fb), i.e.

∏
b:B(a)(apφ ◦ rev(C, supC)◦pr2 ◦f)(b) = (rev(C, supC)◦

pr2 ◦π1 ◦ rev(W2
AB, sup2) ◦ π0 ◦ f)(b). By the definition of sup1, D(sup1(a, f)) can

be simplified. For the left-hand side of the equality:

(apφ ◦ rev(C, supC) ◦ pr2)(sup1(a, f)) ≡ (definition of sup1)

(apφ ◦ rev(C, supC) ◦ pr2)(. . . ,
λ(C, supC). supC(a, π0 ◦ f)(rev(C, supC) ◦ pr2 ◦f)) ≡ (application of pr2)

(apφ ◦ rev(C, supC))
(λ(C, supC). supC(a, π0 ◦ f)(rev(C, supC) ◦ pr2 ◦f)) ≡ (definition of rev)

apφ(supC(a, π0 ◦ f)(rev(C, supC) ◦ pr2 ◦f)) ≡ (definition of supC)

apφ((λ(a, f).λg. apsup2(a,−)(funext g))

(a, π0 ◦ f)(rev(C, supC) ◦ pr2 ◦f)) ≡ (function application)

apφ(apsup2(a,−)(funext(rev(C, supC) ◦ pr2 ◦f))) = (functoriality of ap)

apφ◦sup2(a,−)(funext(rev(C, supC) ◦ pr2 ◦f)) ≡ (Lemma 3.9)

apsup2(a,−)◦(φ◦−)(funext(rev(C, supC) ◦ pr2 ◦f)) = (functoriality of ap)

apsup2(a,−)(ap(φ◦−)(funext(rev(C, supC) ◦ pr2 ◦f))) (3.10)
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And, for the right-hand side:

(rev(C, supC) ◦ pr2 ◦π1 ◦ rev(W2
AB, sup2) ◦ π0)(sup1(a, f)) ≡ (Lemma 3.7)

(rev(C, supC) ◦ pr2 ◦π1 ◦ rev(W2
AB, sup2))

(sup0(a, ρ0 ◦ π0 ◦ f)) ≡ (definition of ρ0)

(rev(C, supC) ◦ pr2 ◦π1 ◦ rev(W2
AB, sup2))(sup0(a, π0 ◦ f)) ≡ (definition of sup0)

(rev(C, supC) ◦ pr2 ◦π1 ◦ rev(W2
AB, sup2))

(λ(X, supX). supX(a, rev(X, supX) ◦ π0 ◦ f)) ≡ (definition of rev)

(rev(C, supC) ◦ pr2 ◦π1)(sup2(a, rev(W2
AB, sup2) ◦ π0 ◦ f)) ≡ (Lemma 3.7)

(rev(C, supC) ◦ pr2)(sup1(a, π1 ◦ rev(W2
AB, sup2) ◦ π0 ◦ f)) ≡ (definition of sup1)

rev(C, supC)

(λ(C, supC). supC(a, π0 ◦ π1 ◦ rev(W2
AB, sup2) ◦ π0 ◦ f)

(rev(C, supC) ◦ pr2 ◦π1 ◦ rev(W2
AB, sup2) ◦ π0 ◦ f)) ≡ (definition of rev)

supC(a, ρ2 ◦ rev(W2
AB, sup2) ◦ π0 ◦ f)

(rev(C, supC) ◦ pr2 ◦π1 ◦ rev(W2
AB, sup2) ◦ π0 ◦ f) ≡ (definition of supC)

(λ(a, f).λg. apsup2(a,−)(funext g))

(a, ρ2 ◦ rev(W2
AB, sup2) ◦ π0 ◦ f)

(rev(C, supC) ◦ pr2 ◦π1 ◦ rev(W2
AB, sup2) ◦ π0 ◦ f) ≡ (function appl.)

apsup2(a,−)(funext(rev(C, supC) ◦ pr2 ◦
π1 ◦ rev(W2

AB, sup2) ◦ π0 ◦ f)) (3.11)

Putting together 3.10 and 3.11, our goal is:

apsup2(a,−)(ap(φ◦−)(funext(rev(C, supC) ◦ pr2 ◦f))) =
apsup2(a,−)(funext(rev(C, supC) ◦ pr2 ◦π1 ◦ rev(W2

AB, sup2) ◦ π0 ◦ f))

Using apapsup2(a,−)
, we can reduce it to ap(φ◦−)(funext(rev(C, supC) ◦ pr2 ◦f)) =

funext(rev(C, supC) ◦ pr2 ◦π1 ◦ rev(W2
AB, sup2) ◦ π0 ◦ f).

Now comes the time to use our induction hypothesis g; observe that:

apfunext(funext g) : funext(apφ ◦ rev(C, supC) ◦ pr2 ◦f) =
funext(rev(C, supC) ◦ pr2 ◦π1 ◦ rev(W2

AB, sup2) ◦ π0 ◦ f)

so we can change our goal to

ap(φ◦−)(funext(rev(C, supC) ◦ pr2 ◦f)) = funext(apφ ◦ rev(C, supC) ◦ pr2 ◦f)

Finally, we just need to apply Lemma 3.12 with k :≡ rev(C, supC) ◦ pr2 ◦f .

We have seen that we can use Ind to construct inductive types via their System
F encoding, and then generalized via W-types. The next generalization step is to
consider the categorical interpretation of inductive types.
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Chapter 4

Initial algebras of
endofunctors

As with many concepts in mathematics, inductive types can be given a character-
ization in the abstract framework of category theory. The reader will already have
noticed the familiar usage of terms such as “algebras” and “morphisms”. In this
chapter we will abstract away from a specific inductive type to present a language
to talk about any inductive type in general, and we will begin studying different
possibilities on how to generalize the theory seen so far.

4.1 Initial algebras

First, we need to establish the base category over which we develop the rest of this
theory.

Definition 4.1. U has the structure of a category, where the objects are its types
and the morphisms are the (non-dependent) functions between such types, up to
homotopy, i.e. two functions f, g : X → Y are considered equal in such category if
f ∼ g ≡

∏
x:X fx = gx is inhabited. We will abusively write U for this category.

That this is indeed a category follows immediately from the analogous properties
of functions between types.

Under the assumption of function extensionality, f ∼ g is equivalent to f = g,
and hence equality of morphisms as defined above is equivalent to their propositional
equality as terms in the type system. Nonetheless, we maintain this definition for
ease of use.

Between categories, one can define functors, which take objects to objects and
morphisms to morphisms in a compatible manner. In particular, one has endofunc-
tors:

Definition 4.2. An endofunctor T : U ⇒ U consists of:

• An action on objects T0 : U → U .

• An action on morphisms T1 : (X → Y ) → (T0X → T0Y ), such that T1 idX ∼
idT0X and T1(f ◦ g) ∼ T1f ◦ T1g.

Henceforth when we say an endofunctor, we will refer to an endofunctor of U ,
unless otherwise stated.
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Definition 4.3. An algebra of an endofunctor T (or a T -algebra) is a pair (X,αX)
where X : U and αX : T0X → X. We write T -Alg :≡

∑
X:U T0X → X.

Definition 4.4. The category of algebras of an endofunctor T has as objects all the
algebras of T . A morphism f : (X,αX) → (Y, αY ) is a function f : X → Y such
that αY ◦ T1f ∼ f ◦ αX .

We call the initial object of this category an initial algebra.

We will often abuse notation and write f : (X,αX) → (Y, αY ) to mean the
underlying function from X to Y .

The property that a morphism f satisfies is the commutativity of the following
diagram:

T0X T0Y

X Y

αX

T1f

f

αY

That this forms a category is quite straightforward: clearly idX : X → X satisfies
αX ◦ T1 idX ∼ αX ◦ idX ∼ αX ∼ idX ◦αX , and for composition of morphisms we
observe that, in the following diagram:

T0X T0Y T0Z

X Y Z

αX αY αZ

T1f T1g

f g

the composition of the two commuting squares results in a commuting rectangle,
and we use the fact that T1f ◦ T1g ∼ T1(f ◦ g).

Now, the gist is to encode every “candidate” to an inductive type as an algebra
of a certain endofunctor. For instance, the natural numbers have been described as
having two constructors:

0 : N
succ : N → N

This is equivalent to

0 : 1 → N
succ : N → N

Which can be packed into (0, succ) : (1 → N) × (N → N). Finally, this type is
equivalent to (1 + N) → N. Under this new shape, α : (1 + N) → N can act as 0
((α ◦ inl)⋆) and as succ (α ◦ inr).

This way of molding the constructors into a single function is not specific to N.
Remember that all constructors of all inductive types have as codomain the type
itself, and any collection of constructors α0 : A0

0 → · · · → A0
k0

→ X, . . . , αn : An
0 →

· · · → An
kn

→ X can be glued together into one via

(Ai
0 → · · · → Ai

ki
→ X) ≃ (Ai

0 × · · · ×Ai
ki
) → X

and then

((A0
0 × · · · ×A0

k0
) → X)× · · · × ((An

0 × · · · ×An
kn
) → X)

≃ ((A0
0 × · · · ×A0

k0
) + · · ·+ (An

0 × · · · ×An
kn
)) → X
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Ultimately, one can define an endofunctor T0X :≡ ((A0
0×· · ·×A0

k0
)+· · ·+(An

0×· · ·×
An

kn
)) and consider X together with the constructor α : T0X → X as a T -algebra.

In the case of N, we can define T as:

T0X :≡ 1 +X

T1f :≡ [id1, f ]

Where, given f : X → Y , [id1, f ] : (1 + X) → (1 + Y ) returns inl(id1 ⋆) for inl ⋆
and inr(fx) for inr x. An N-morphism from (X,αX) to (Y, αY ) is then a function
f : X → Y such that αY ◦ T1f ∼ f ◦ αX , or, equivalently, αY ◦ [id1, f ] ∼ f ◦ αX :

1 +X 1 + Y

X Y

[id1,f ]

f

αYαX ∼

For each of the two possibilities in 1 +X, inl ⋆ and inr n, this means:

f(αX(inl ⋆)) = αY (inl ⋆)

f(αX(inr n)) = αY (inr fn)

which, can be read as

f(0X) = 0Y

f(succX n) = succY (fn)

by interpreting 0X :≡ αX(inl ⋆), succX :≡ αX ◦ inr, and similarly for Y .
As for our A+0 B: ∏

(X,inlX ,inrX):
∑

X:U (A→X)×(B→X)

X

We can merge the two constructors inlX and inrX into one:∏
(X,αX):

∑
X:U (A+B)→X

X

Where A+B is the coproduct of the type system1 constructed as
∑

b:2 S(b) where
S(02) :≡ A and S(12) :≡ B.

Seeing this result, a good choice for T is the constant endofunctor that takes
any type X to the type A+B, and any function f : X → Y to idA+B .

Now, remember that in an arbitrary category, a weakly initial object is one that
has morphisms into every other object. A (strictly) initial object is one that has
exactly one morphism into every other object. As hinted at previously the System
F encoding yields weakly initial algebras of any endofunctor T .

The naming is not coincidental: the (weak) coproduct corresponds with the
(weakly) initial algebra for the endofunctor TX :≡ A+B, as the definitions match.
The weak version states existence of morphisms out of the type, and the strict
version, on top of that, also guarantees uniqueness.

1Of course, constructing the coproduct on top of a type system that already has it is not a
useful endeavor per se, but it is an easy to conceive example.
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Proposition 4.1. There exists a weakly initial algebra of T .

Proof. For the carrier type I, we take
∏

(X,αX)X. Now we need an associated con-

structor αI : T0I → I. Consider the application function rev :
∏

a:A (
∏

a′:AB(a′))B(a),
such that rev af :≡ fa. In our case, we take rev(X,αX) : I → X, and we apply T1
to obtain T1 rev(X,αX) : T0I → T0X. From here, we can build:

αI : T0

 ∏
(X,αX)

X

→
∏

(X,αX)

X

αI : λt.λ(X,αX).(αX ◦ T1 rev(X,αX))t

Now we need to prove that (I, αI) : T -Alg is weakly initial. Let (Y, αY ) be another
T -algebra, and let us build a morphism of T -algebras from (I, αI) to (Y, αY ). Our
candidate is f :≡ rev(Y, αY ). Clearly the types match, but we need to see that it
commutes with the constructors. In fact, not only does it commute with them, but
it does so definitionally:

(f ◦ αI)t ≡ (definition of f and αI)

(rev(Y, αY ) ◦ (λt.λ(X,αX).(αX ◦ T1 rev(X,αX))t))t ≡ (function application)

rev(Y, αY )(λ(X,αX).(αX ◦ T1 rev(X,αX))t) ≡ (definition of rev)

(λ(X,αX).(αX ◦ T1 rev(X,αX))t)(Y, αY ) ≡ (function application)

(αY ◦ T1 rev(Y, αY ))t ≡ (definition of f)

(αY ◦ T1f)t

We can rewrite the function f : I → Y above to point to any T -algebra as such:
λ(Y, αY ). rev(Y, αY ) (which, by η-reduction, is just rev). This is our candidate to
elimination principle of (I, αI):

rec :
∏

(Y,αY ):T -Alg

I → Y

rec :≡ rev

4.2 Adapting Ind to arbitrary endofunctors

Let us take a look again at the property of inductivity for coproducts:

Ind(X,inlX ,inrX)(α) :≡
∏

(C,inlC ,inrC):
∑

C:X→U(
∏

a:A C(inlX a))×(
∏

b:B C(inrX b))

C(α)

And the one for W-types:

Ind(X,αX)(x) :≡
∏

(C,supC):
∑

C:X→U

(∏
(a,f):

∑
a:A B(a)→X CWAB(a,f)→C(sup0(a,f))

)C(x)

where CWAB(a, f) :≡
∏

b:B(a) C(fb).
There is a clear pattern: we take a type family C over the type for which we

want to define inductivity, together with a proof, and return a member the fiber
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of C over the inductive element. This “proof” that we supply is the core of the
induction. For coproducts it is simple enough: for each a : A provide an inhabitant
of C(inlX a), and for each b : B one of C(inrX b).

For W-types it gets a bit more delicate. For each a : A and f : B(a) → X,
now it is not sufficient to directly provide some term of C. We need to provide a
proof which, assuming that the family is inhabited for every subtree (

∏
b:B(a) C(fb)),

then it is also inhabited at the supremum of (a, f). This new term,
∏

b:B(a) C(fb) ≡
CWAB , is what we usually call the induction hypothesis.

Based on our knowledge of the induction principle for N, we can imagine how
inductivity for its algebras would look like:

Ind(X,0X ,succX)(x) :≡
∏

(C,0C ,succC):
∑

C:X→U C(0x)×(
∏

x′:X C(x′)→C(succX x′))

C(x)

For a general endofunctor T , we can write the inductivity property for its T -
algebras (X,αX) as:

Ind(X,αX)(x) :≡
∏

(C,αC):
∑

C:X→U
∏

t:T0X CT (t)→C(αXt)

C(x)

More closely:

αC :
∏

t:T0X

CT (t) → C(αXt)

Here CT (t) is a type family over T0X that represents the induction hypothesis for
t : T0X. This will depend on the particular T . For degenerate inductive types,
that do not require an induction hypothesis, we can just choose CT (t) :≡ 1, i.e.
they provide no information, and in such case CT (t) → C(αXt) ≃ 1 → C(αXt) ≃
C(αXt). For proper inductive types, it is more complicated. The naturals (given by
T0X :≡ 1+X) can be encoded with CT :≡ [λ⋆.1, C]; in other words, CT (inl ⋆) :≡ 1
and CT (inr x) :≡ C(x), so that:∏

t:T0X

CT (t) → C(αXt) ≃ (4.1)

∏
t:1+X

CT (t) → C(αXt) ≃ (4.2)(∏
⋆:1

CT (inl ⋆) → C(αX(inl ⋆))

)
×

(∏
x:X

CT (inr x) → C(αX(inr x))

)
≃ (4.3)(∏

⋆:1

1 → C(αX(inl ⋆))

)
×

(∏
x:X

C(x) → C(αX(inr x))

)
≃ (4.4)

C(αX(inl ⋆))×

(∏
x:X

C(x) → C(αX(inr x))

)
(4.5)

which, using our reading of αX(inl ⋆) as 0 and αX ◦ inr as succ, matches our expect-
ations. For every polynomial functor (the ones that can be encoded as W-types),
there is a mechanical way of obtaining such an induction hypothesis constructor
(−)T :

∏
(X,αX):T -Alg(X → U) → (T0X → U). But for arbitrary endofunctors, it

can get tricky.
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In fact, if we wanted to read more in this direction, we could visualize
∏

t:T0X
CT (t) →

C(αXt) as the homotopy in the following diagram:

T0X

X U

αX
CT

C

By squinting our eyes, we could think of:

T0X T0U

X U

αX

C

T1C

αU (4.6)

Unfortunately, this is nonsense, as C and U are out of range for T1 and T0,
respectively—neither of them is in U . Nevertheless, if we persist on this thought,
and mechanically apply T0 and T1, we can redefine CT :≡ αU ◦ T1C and one is
left with imposing a T -algebra structure on U . Surprisingly enough, this is relat-
ively easy for all the types seen so far. The reader can check that [λ ⋆ .1, idU ] will
work for N, λ(a, f).

∏
b:B(a) fb for WAB, and λz.1 for A+B. Despite the fact that

this construction is impossible, this homotopy can be read as an adaptation of the
compatibility condition that we impose on algebra morphisms. In a way, then, the
induction principle is comparable to the recursion principle: given a type family
that behaves “like a morphism” (by having a homotopy like the one in 4.6), there
is a dependent morphism from the initial algebra to this one.

In any case, pursuing this avenue does not make things any easier: if we want
to work with a general endofunctor, we cannot allow CT in our definitions, as long
as we cannot characterize it using T0 and T1. To find inspiration, we inspect the
proofs of Chapter 3 to see if we can salvage the situation. Indeed, in all three of the
key results (Lemma 3.3, Lemma 3.5, and Theorem 3.6) we consider an arbitrary
term (α, i) : Wn+1

A B, and we prove a statement about α by induction using i. And,
in all three cases, the statement we prove is that fα = gα for some functions f
and g. We can define a third property—besides naturality and inductivity—that is
tailored to this specific task.

4.3 Initiality

We need to strike a balance. This property has to be:

• Weak enough so that it can be proved for the canonical elements (those in-
troduced by α).

• Strong enough so that it can be used to equalize two functions, as we did for
the theorems in the previous chapter.

Looking at the requirement of equalizing functions, for given (X,αX) : T -Alg and
x : X, we can think of the following:

P(X,αX)(x) :≡
∏
Y :U

∏
f,g:X→Y

fx = gx

44



Which states that any two functions from X to Y have the same image at point x.
Unfortunately that is too strong, as, for example, taking f, g : X → 2 defined as
f :≡ λx.02 and g :≡ λx.12 clearly shows that the subtype

∑
x:X P(X,αX)(x) will be

empty.
We can refine this a bit, equalizing only morphisms and not all functions:

P(X,αX)(x) :≡
∏

(Y,αY ):T -Alg

∏
f,g:(X,αX)→(Y,αY )

fx = gx

where by (X,αX) → (Y, αY ), we now mean the encoding of morphisms inside the
type theory, i.e. the type:

(X,αX) → (Y, αY ) :≡
∑

f :X→Y

αY ◦ T1f ∼ f ◦ αX

And by abuse of notation we write f : (X,αX) → (Y, αY ) instead of (f, p) :
(X,αX) → (Y, αY ). Observe that, still, the product type takes two morphisms but
the statement is that the underlying functions are equal at x. This is by design. It
is a strong enough property to prove that f and g are equal as functions; we need
not prove them equal as morphisms inside the type theory.

With this definition we can go quite far. As always, before proving anything we
set up a battery of auxiliary functions and some lemmas.

Definition 4.5. Given a T -algebra (X,αX), we define the initiality as a property
of (X,αX):

Init :
∏

(X,αX):T -Alg

X → U

Init(X,αX)(x) :≡
∏

(Y,αY ):T -Alg

∏
f,g:(X,αX)→(Y,αY )

fx = gx

We will omit the first argument of Init whenever it can be properly inferred from
the type of the second one.

Defining the hierarchy of types An is a bit trickier this time. We state it like
this:

Proposition 4.2. We can define:

A0 : U
α0 : T0A0 → A0

ρ0 : A0 → A0

rec0 :
∏

(X,αX):T -Alg

A0 → X

45



And for every n : N:

An+1 : U
αn+1 : T0An+1 → An+1

πn : An+1 → An

ρn+1 : An+1 → A0

recn+1 :
∏

(X,αX):T -Alg

An+1 → X

ln :
∏

(Y,αY ):T -Alg

∏
f,g:(An,αn)→(Y,αY )

f ◦ πn ∼ g ◦ πn

Most of these are part of our usual arsenal. The newcomer, l, is a lemma useful
in constructing the αn and later on in proving properties of the idempotent. Instead
of proving everything in one fell swoop, we construct each family of terms at once,
assuming that the previous ones have been defined up to a given n.

Definition 4.6.

A0 :≡
∏

(X,αX):T -Alg

X

An+1 :≡
∑
a:An

Init(An,αn)(a)

Definition 4.7. Projection to the immediately underlying type:

π :
∏
n:N

An+1 → An

πn :≡ pr1

Projection to the bottom of the hierarchy:

ρ :
∏
n:N

An → A0

ρ0 :≡ idA0

ρn+1 :≡ ρn ◦ πn

Elimination into arbitrary T -algebras:

rec :
∏
n:N

∏
(X,αX):T -Alg

An → X

recn(X,αX) :≡ rev(X,αX) ◦ ρn

The following lemma will represent our term l:

Lemma 4.3 (Initiality). For every n : N, every (Y, αY ) : T -Alg, and every f, g :
(An, αn) → (Y, αY ), f ◦ πn ∼ g ◦ πn.

Proof. We want to prove the statement:∏
(Y,αY ):T -Alg

∏
f,g:(An,αn)→(Y,αY )

∏
(a,i):An+1

(f ◦ πn)(a, i) = (g ◦ πn)(a, i)
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Which is equivalent to any of the following:∏
(a,i):An+1

∏
(Y,αY ):T -Alg

∏
f,g:(An,αn)→(Y,αY )

(f ◦ πn)(a, i) = (g ◦ πn)(a, i)

∏
(a,i):An+1

∏
(Y,αY ):T -Alg

∏
f,g:(An,αn)→(Y,αY )

fa = ga

∏
(a,i):An+1

Init(An,αn)(a)

Which is witnessed by λ(a, i).i.

In other words, all morphisms with domain (An, αn) that factor through πn are
homotopic.

Lemma 4.4. For every n : N, there is a function αn : T0An → An such that each
πn : An+1 → An is a morphism.

Proof. For n ≡ 0, we want to define α0 : T0A0 → A0. Observe that, for every
(X,αX), rev(X,αX) : A0 → X, and hence T1 rev(X,αX) : T0A0 → T0X. Compos-
ing appropriately with αX : T0X → X, we obtain the desired type:

α0 : T0

 ∏
(X,αX):T -Alg

X

→

 ∏
(X,αX):T -Alg

X


α0 :≡ λt.λ(X,αX).(αX ◦ T1 rev(X,αX))t

For αn+1, we want the following function:

αn+1 : T0

∑
a:An

∏
(Y,αY ):T -Alg

∏
f,g:(An,αn)→(Y,αY )

fa = ga

→

∑
a:An

∏
(Y,αY ):T -Alg

∏
f,g:(An,αn)→(Y,αY )

fa = ga


Using a similar trick as with α0, we can use T1πn : T0An+1 → T0An, and then apply
αn : T0An → An to obtain the first component for αn+1. Another way to arrive to
this result is by considering the conditions we want. For the following proofs, we
need that πn be a morphism. That means that the following diagram commute:

T0An+1 T0An

An+1 An

αn+1

T1πn

πn

αn

So, this gives us αn ◦ T1πn as a candidate for the first component of αn+1.
This leaves us with the task of proving, for any t : T0An+1:∏

(Y,αY ):T -Alg

∏
f,g:(An,αn)→(Y,αY )

(f ◦ αn ◦ T1πn)t = (g ◦ αn ◦ T1πn)t
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Because f and g are morphisms of T -algebras, this goal is equivalent to∏
(Y,αY ):T -Alg

∏
f,g:(An,αn)→(Y,αY )

(αY ◦ T1f ◦ T1πn)t = (αY ◦ T1g ◦ T1πn)t

By functoriality of T1:∏
(Y,αY ):T -Alg

∏
f,g:(An,αn)→(Y,αY )

(αY ◦ T1(f ◦ πn))t = (αY ◦ T1(g ◦ πn))t

Finally, by Lemma 4.3, f ◦ πn ∼ g ◦ πn.

Now that we have concluded all the definitions in Proposition 4.2, we can con-
tinue so:

Lemma 4.5. recn(X,αX) is a morphism of T -Alg for every n : N and (X,αX) :
T -Alg.

Proof. By its definition, it is sufficient to show that rev(X,αX) and ρn are morph-
isms, which at the same time is equivalent to showing that rev(X,αX) and πn are
morphisms.

For rev(X,αX), we need to see that αX ◦ T1 rev(X,αX) ∼ rev(X,αX) ◦ α0, i.e.
(αX ◦ T1 rev(X,αX))t = (rev(X,αX) ◦ α0)t for every t : T0A0.

(rev(X,αX) ◦ α0)t ≡ (definition of α0)

(rev(X,αX) ◦ (λt.λ(X,αX).(αX ◦ T1 rev(X,αX))t))t ≡ (function application)

(rev(X,αX)(λ(X,αX).(αX ◦ T1 rev(X,αX))t)) ≡ (function application)

(αX ◦ T1 rev(X,αX))t

For πn, we defined αn+1 to satisfy this specific property. We want to see αn ◦
T1πn ∼ πn ◦ αn+1. This is immediate: the first component of αn+1t is defined as
(αn ◦ T1πn)t.

Two out of the three proofs that we need follow immediately:

Lemma 4.6. For every n : N, every (X,αX), (Y, αY ) : T -Alg, and every f :
(X,αX) → (Y, αY ), f ◦ recn+1(X,αX) ∼ recn+1(Y, αY ).

Proof. By definition, recn+1(X,αX) ≡ rev(X,αX)◦ρn+1 ≡ rev(X,αX)◦π0◦· · ·◦πn.
The result follows then from Lemma 4.3.

Let φ :≡ rec2(A2, α2).

Lemma 4.7. φ is a pre-idempotent.

Proof. The objective is I : φ ◦ φ ∼ φ. First let us prove I ′ : φ ◦ rec1(A2, α2) ∼
rec1(A2, α2). Observe that rec1(A2, α2) factors through π0, and apply Lemma 4.3.
Then, I :≡ I ′ ◦ π1.

Regrettably, the final result does not follow. To prove that φ is a quasi-
idempotent (and thus, it splits), we need to see that apφ ◦I ∼ I ◦ φ. Once
again one can observe that both functions factor through π1 as apφ ◦I ′ ◦ π1 ∼
I ◦ rec1(A2, α2) ◦ π1. But the remaining parts, apφ ◦I ′ and I ◦ rec1(A2, α2), are not
necessarily morphisms. We do not have a canonical T -algebra structure in their
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codomains, and in fact they are dependent functions and thus we would need a dif-
ferent definition to accommodate them. This is unfortunate, as, a priori, it seems
like initiality captures well the spirit of the induction principle, but instead of mak-
ing it literally, as inductivity does, it does it through one of the characterizations
of Theorem 1.4, in such a way that we need not define the action CT for each
endofunctor as described in Section 4.2.

We can also strengthen initiality more by writing:

Init(X,αX)(x) :≡
∏

(Y,αY ):T -Alg

∏
f,g:(X,αX)→(Y,αY )

isContr(fx = gx)

In which we do not only ask for a proof p : fx = gx, but also that any other such
proof q : fx = gx satisfies p = q. This is because isContr(A) implies isContr(x = y)
for any x, y : A, and in particular isContr(x = y) implies x = y. Thinking like this,
apφ ◦I ∼ I ◦φ would follow automatically as both functions have type apφ ◦I, I ◦φ :
φ ◦ φ ◦ φ ∼ φ ◦ φ, which can be proven again by initiality almost exactly as in
Lemma 4.7, and hence apφ ◦I = I ◦ φ by contractibility. This time, though, the
property is too strong to construct each αn+1 from the previous one.

Finally, one could also restrict Y to Set, whereby fx = gx is a proposition, and
so as soon as it is inhabited it is contractible. Of course, this leads to a weakening
of the result equivalent to that seen in Chapter 2.
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Chapter 5

Conclusions

5.1 Endofunctors

Although we have presented a few advances, the question remains on whether it can
be proven that every endofunctor has an initial algebra. Efforts in this direction
are the clear next steps after this thesis. Attempts to adapt initiality have seemed
promising but not fruitful so far.

Another path to pursue is that of the generalized inductivity for endofunctors.
This way has the key drawback that, together with the action on objects (T0) and
on morphisms (T1), we need an action on “type families” (−)T :

∏
X:U (X → U) →

(T0X → U), which does not seem to naturally follow from the other two, and one
would have to impose a few constraints on such function to reach the splitting of
an idempotent.

5.2 Larger universes

An observation made along the way is that, when we construct the coproduct, there
seems to be no universe size restriction on the types A and B, due to impredicativity.
By taking the unary version of the coproduct—i.e. that given by a single constructor
A→ X—we obtain some sort of coercion of A : Ui into U . This has a full elimination
principle into U : given a term a : A, there is a corresponding |a| : ∥A∥, where
∥A∥ : U , such that every f : A → B that fits in U factors through |−|. This opens
up a bunch of avenues for future work. For example, this could imply that it is not
possible to expand our elimination principle into higher universes, as it would allow
us to recreate Girard’s paradox.

To see why, assume we have a such unary coproduct ∥−∥ for any large type,
and it comes with a full elimination principle into large types as well. Then, by
taking ∥U∥, we obtain two functions, |−| : U →∥U∥, and rec(U , idU ) :∥U∥→ U . If
we show they are quasi-inverses, then we will have an equivalence U ≃ ∥U∥ : U ,
which would incur type-in-type paradoxes. On the one hand, rec(U , idU )◦ |−| = idU
is just the β-rule. On the other hand, |−| ◦ rec(U , idU ) = id∥U∥ is just observing
that the following diagram commutes—the first two arrows compose to idU , again
by the β-equality:
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U ∥U∥

U

∥U∥

|−|
|−|

|−|

rec(U,idU )

And that there is a unique vertical arrow ∥U∥ → ∥U∥ that makes the diagram
commutative. Because id∥U∥ also satisifies this property, |−| ◦ rec(U , idU ) = id∥U∥.
Hence, our best hope—which we already achieved—is to eliminate into types in U .

5.3 Higher inductive types

Another clear path of work is on higher inductive types. These are similar to
inductive types, but they also admit constructors that generate elements in the
path types over X, instead of just elements of X itself. For example, the circle S1
given by a point x : S1 and a path p : x = x is a higher inductive type. In [1], there
is a realization of S1 using naturality, which can eliminate into 1-types (instead
of just 0-types as the construction seen in Chapter 2). Nonetheless, this requires
adding another property on top of naturality. If one wanted to eliminate into even
higher types in such way, it would be necessary to add higher and higher coherence
conditions. Of course, the technique of Chapter 3 removes the restriction on the h-
level of the types that we can eliminate to, but it is only adapted to inductive types
that can be built as endofunctors of the universe U , which higher inductive types
cannot, because some of the constructors have as codomain path types instead of the
type itself. Nevertheless, further study is required in this direction and Shulman’s
idea might be flexible enough to generalize.

5.4 Constructing the limit without splitting idem-
potents

In Section 3.2, we hinted at the idea of adding an arbitrary number of layers of
inductivity to the original System F type. If one assumes N, there is a way of
constructing the limit to this succession, by way of a sequence of infinite elements
enconded as a function on N plus a coherence condition:

A+∞ B :≡
∑

s:
∏

n:N A+nB

∏
n:N

πn(sn+1) = sn

inl∞ :≡ λa.(λn. inln a, λn.reflinln a)

inr∞ :≡ λb.(λn. inrn b, λn.reflinrn b)

With its recursor:

rec∞ :
∏

(X,inlX ,inrX):UA+B

A+∞ B → X

rec∞ :≡ λ(X, inlX , inrX).λ(s, p).s0(X, inlX , inrX)
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This type can be thought of as a tuple with a countable infinity of compon-
ents, indexed by N, such that the nth term is the (n + 1)th after applying πn:
(α, (α, i0), ((α, i0), i1), . . . ). This idea is inspired by Shulman’s own splitting of the
idempotent in [10, Theorem 5.3]. This gives us a way to extract arbitrarily high
inductivities, but, as before, it does not allow to extract one for the whole term. In
fact, there is a key difference between this and Shulman’s splitting: he reverses the
direction of the succession. Unfortunately, because the types of the succession are
not homogeneous (each term n has its own type A+nB), we cannot write the terms
in such a way that πn(sn) = sn+1, because that would give an infinitely descending
chain within N. Perhaps, if there were a way to glue together all the A+n B into a
single type, we could build then the endomorphism and split it directly there. All
in all, this would not seem to present any advantages over the two-layer inductivity
method already used.

5.5 Encoding the categories of algebras inside the
type theory

When introducing Init at the end of Section 4.2, we propose building the type of all
morphisms within the type theory as such:

(X,αX) → (Y, αY ) :≡
∑

f :X→Y

αY ◦ T1f ∼ f ◦ αX

This works out well in the following proofs because they do not compare the accom-
panying terms, only the underlying functions. Nonetheless, they eventually provide
us a result of equality between morphisms. How can this be? The key is in the
statement of the η-rule: remember that it is postulated as f ∼ recI(I, f ◦αI) for any
f : I → X, whether f is a morphism or not. This is in contrast to the approach of
directly proving that the morphisms are unique, for example used in Theorem 2.6.
We just need to see that the morphisms are equal within the category, not necessar-
ily constructed within the type system. Nonetheless, for all the results in Chapter
2, it is possible to rewrite them so as to prove that the morphisms are unique within
the category implemented inside the theory. This is because the underlying types
are sets, which make the property of being a morphism a proposition and hence
irrelevant when comparing morphisms for equality. This, though, does not expand
to further chapters when we drop the h-level limitations.

If we assume the category encoded in the theory, we could type our eliminators
as to return morphisms instead of bare functions:

recI :
∏

(X,inlX ,inrX):UA+B

(I, inlI , inrI) → (X, inlX , inrX)

indI :
∏

(X,inlX ,inrX):U(I,inlI ,inrI )

A+B

∏
(I,inlI ,inrI)

(X, inlX , inrX)

so as to “pack” the corresponding β-equalities with each eliminator. This gives us
more insight as to the relationship between elimination rules and the computation
and uniqueness principles. Nonetheless, this adds complexity to the calculations
and it is not really necessary for the proofs, so we remain with the simpler versions.
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5.6 Closing words

In this thesis we have filled a missing gap in the literature regarding inductive types
in impredicative type theories. We have shown that there are multiple ways to do
so, and examined interesting and possibly fruitful patterns along the way. There is
undoubtedly further work in this area of type theory, which would potentially have
theoretical applications in mathematics and logic as well as very desirable practical
applications in foundations of programming languages.
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