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Abstract

Wireless nodes in smart buildings have many benefits, but one of their
drawbacks is the added complication of mapping the nodes on a floor plan
after installation. Currently, it is common practice to manually record the
location of each placed node. This is labor intensive and prone to error.
In this project, we attempt to create a system that will reduce this manual
labor by locating the nodes using the Received Signal Strength Indicator
(RSSI) data that each node receives from its neighbors. By comparing the
possible locations of each node with the strength of these signals, we can
craft a constraint solving problem to determine the most likely mappings
of the nodes. RSSI data is notoriously inaccurate and inconsistent, so we
have built a system that combines constraint solving and human input, and
has a high tolerance for error. Our system has been shown to suggest the
correct solution after asking a small number of questions to the user, to clarify
between symmetric placement options or ambiguous node placement due to
inconsistent signal strength. While the system will need improvements to
scale out to scenarios with hundreds or thousands of nodes, it is a successful
proof of concept that demonstrates that a balance can be struck between
automatic and manual strategies, given a constraint problem with unreliable
data.
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Chapter 1

Introduction

This thesis concerns a real world problem, which is relevant for professionals
working with wireless node systems. The project was proposed by a com-
pany1 which specializes in smart building technology. The core technology
of its installations are the lighting systems. The company installs wireless
lights throughout the building, each of which can send and receive messages
to each other and to other systems in place. Lights will henceforth be re-
ferred to as nodes. “Wireless” here means that the nodes are not connected
to each other. (Nodes are still wired for electricity.) We need the nodes to
be mapped on a floor plan so that the correct nodes can send and receive
relevant messages relative to their positions.

Because these nodes are relatively low-cost, and located throughout the
building, they are a useful resource for asset tracking. This is the process by
which people in the building can locate items – for example, an ultrasound
machine in a hospital building – by checking which node(s) it is close to, and
deducing where in the building it must be.

This process depends on a key detail: that we know where in space each
of the nodes is. However, this is not trivial. As the nodes are wireless,
regardless of what complicated or simple installation directions are given to
the installation crew, it is possible (and in practice, probable) that mistakes
arise and nodes are misplaced. When this happens, it can lead to a loss of
trust in the system, as the technology cannot be properly used. Even in
situations where the installation and node mapping is done perfectly, this is
a time- and labor-intensive process.

The goal of this project is to create an semi-automated process (with a

1Company name omitted by request.
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human-in-the-loop) which determines where each node is located, based on
the strength of the signals that each node receives and sends to its neighbors.

Received Signal Strength Indicator (RSSI) is a measurement of how well
one device can hear another. We can think of it as a proxy for distance (fur-
ther apart nodes will hear each other less well), though as we will elaborate
upon later, there are many reasons why this might not always be an accurate
estimator.

Consider the following example in Figure 1.1. We have three sockets ar-
ranged in a line, and three nodes: n1, n2, and n3. RSSI values can range
between -255 dBm (decibel milliwatts) and 0 dBm, with 0 as the strongest
signal and -255 as the weakest. In practice they are always measured as neg-
ative values–even a very strong signal is generally not close to 0. Throughout
this thesis, RSSI values should be assumed to be in dBm, and distance values
in meters, unless otherwise specified.

From the table of RSSI values, we can quickly see that n1 and n3 are
the farthest from one another (because -70 dBm is the weakest signal in the
table), and n2 must be in the middle. If we can trust the RSSI values to
be relatively accurate, there is only one possible solution to where the nodes
may be placed, as n2 should be closer to n1 than to n3, based on the RSSI
values.

s1 s2 s3

n1 n2 n3

n1 x -30 -70
n2 -30 x -60
n3 -70 -60 x

Solution
s1 n1

s2 n2

s3 n3

Figure 1.1: Toy example with unique solution.2

Effectively, this becomes a graph isomorphism problem with a twist. The
first graph represents the physical space – vertices are socket locations with
coordinates, edges are weighted by Euclidean distance. The second graph
represents the RSSI values – vertices are nodes and edges between nodes are

2ChatGPT was used to generate the TikZ code for figures.
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weighted by the RSSI values between those two nodes. Figure 1.2 represents
the graph isomorphism visualization of the same example from Figure 1.1.
We are not looking for a strict isomorphism, as our graphs use different
types and the values of weights are not equal – rather, we are looking for
the mapping which best relates the relationships (spatial and signal-wise)
between the vertices of the graphs.

n1 n2

n3

s1 s2

s3

Figure 1.2: Isomorphism between socket graph and node graph.

The special cases that we have for this problem are as follows. First,
we cannot fully trust the edge weights of the RSSI graph, due to the signal
noise involved and the unreliability of RSSI values (as will be discussed in
Section 1.1). Second, we effectively have access to an oracle which can tell us
node locations on demand. This oracle (representing the human-in-the-loop)
should be used as effectively and sparingly as possible, as the goal of this
project is to reduce the human effort needed for this task.

The thesis is structured as follows: in Chapters 1 and 2, we discuss the
theoretical setup, background, issues, and complexity of the problem. In
Chapters 3 and 4, we discuss possible algorithmic approaches. In Chapter 5,
we evaluate our algorithms on data, both simulated and real-world. Finally,
in Chapter 6 we conclude and discuss further remaining work.
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1.1 Related work

RSSI has historically been used with mixed success for various localization
problems. Generally, RSSI signals are used to track objects as they are
moving through space, not stationary as they will be in our scenarios.

For example, Shams and Haratizadeh [2018] created a system to use RSSI
and graph-based methods for indoor subarea localization – the ability to
detect in which subarea an object or person is using the RSSI signals between
various moving devices (for example, a person’s cell phone) and stationary
devices located throughout the space, such as WiFi routers.

The fact that RSSI signals can be captured from a variety of pre-existing
devices makes them an easy and affordable option for this type of task, but
these methods are not necessarily accurate [Patwari et al., 2003].

Bulten et al. [2016] attempted to locate nodes using a combination of
both node-to-node RSSI data (as we will be using) as well as motion data of
users in the space. Their attempt was partially successful, but still suffered
from inaccuracy due to noise. In our system, we will attempt to use only the
node-to-node data, and not the human motion data.

Benkic et al. [2008] warned that “RSSI is, in fact, a poor distance estima-
tor when using wireless sensor networks in buildings. Reflection, scattering
and other physical properties have an extreme impact on RSSI measurement
and so [they] can conclude: RSSI is a bad distance estimator.”

However, there are findings that gave some level of hope for this type of
task. For example, one paper titled “RSSI is Under-Appreciated” [Srinivasan
and Levis, 2006] argued as such; the authors claim that RSSI is more accurate
and consistent than it has been given credit for. Other findings give mixed
results. Ramirez et al. found that “the positioning accuracy could reach 10
cm when the beacons and scanners were at the same horizontal plane in a
less-noisy environment. Nevertheless, the positioning accuracy dropped to
a meter-scale accuracy when the measurements were executed in a three-
dimensional configuration and complex environment” [Ramirez et al., 2021].

This last result is interesting in the context of our problem. Various
buildings in which this system might be useful might be wildly varying with
regards to noise and layout. A sparsely-filled warehouse with a large 2-D
grid of lights might be subject to less noise than a 3-D hospital, filled with
moving parts and differing levels. It is very possible that our solution might
work well in some of these environments, but not be a feasible solution in
others.
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A previous initial attempt was made by a student based at the same
company that proposed our current project. That attempt was ultimately
unsuccessful except for the simplest, least-complex cases [Said, 2022]. In this
thesis we will attempt to build a system that is usable for a range of scenarios
and can tolerate the amount of messiness that is to be expected in RSSI data.

The common trend across previous RSSI localization research is that it
can be successful and has potential, but is plagued by issues of reliability.
In situations where the correctness of our solution is of high importance, it
is important to create a system where such guarantees can be made. It is
for this reason that we will build a semi-automated system which uses both
automated logical reasoning and manual human input to come to a reliable
conclusion.
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Chapter 2

Problem description

In this chapter, we will formally define the problem and all of the relevant
types and functions. We will then discuss the particular difficulties of this
problem, namely, why it is that for many cases (in fact, all cases when we
don’t have guarantees of the accuracy of our data), there will not only be
one possible solution, but many.

2.1 Key definitions

Definition 1 (Socket). A socket is a tuple si = (i, c) where i ∈ N is the ID
of the socket and c = (xi, yi) ∈ R2 represents the coordinates of that socket in
2-dimensional space1. We assume distinct sockets to have distinct IDs and
distinct coordinate locations.

Definition 2. The distance between two sockets si = (i, (xi, yi)) and sj =
(j, (xj, yj)) is the Euclidean distance between the sockets:

dist(si, sj) =
√

(xj − xi)2 + (yj − yi)2.

Definition 3 (Node). A node ni, i ∈ N, represents a wireless light.

Definition 4 (Problem). A problem is a tuple P = (N ,S,RSSI), where N
is a set of nodes, S is a set of sockets, |N | = |S|, and RSSI is a function with
type N → N → [−255, 0].

1The problem can easily be generalized to n-dimensional space, as discussed in Section
6.1.1. For this thesis, we will limit the problem to 2-dimensional space.
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Example 1. For a problem P = (N ,S,RSSI), RSSI(n1, n2) = −100 indicates
that the RSSI value strength received by n1 and sent from n2 is −100.

A larger RSSI value (closer to 0) indicates a stronger signal. RSSI val-
ues between two nodes are not necessarily symmetric (due to environmental
factors, manufacturing defects, etc.), so the order of node arguments to the
RSSI function matters when we are dealing with the raw data. We can pre-
process this data to create symmetry with regards to argument order, as will
be discussed further in Section 5.2.3.

Single RSSI values are always integers, but as we will be averaging values
over time, as discussed in Section 5.2.1, we will treat them as type R.

Definition 5 (Oracle). An oracle is a function with type N → S, and
indicates in which socket a given node is placed.

Our oracle represents a human operator who can determine the location of
any given node. In practice, this would involve the operator causing the node
to blink, and then reporting which socket that node is in. We will assume
that the oracle is always correct (does not provide faulty information) and
for the purposes of our algorithm complexity, that it responds in time O(1).
Obviously, in real life it might take a fair amount of time for the operator to
make these checks, so we would like to minimize the number of oracle calls.

There are other potential oracle types that we could use. For example,
an oracle of type S → N can indicate which node is in a given socket. In real
life, the naive approach to this would correspond to (potentially getting on
a ladder and) reading an identification sticker on a node in a socket. For our
lighting set-up, this would be more taxing than the N → S oracle. There
is also the possibility of automating this process, as is discussed in Section
6.1.3. However, as this is not yet an option, we will stick with the N → S
oracle, which is easier to operate.

An oracle of type N → S → Boolean could give us a yes/no answer of if
a given node is in a given socket. This would correspond to flashing a node
and asking the operator “is this node in socket X”? Oracles with Boolean
output will be useful for verification steps, as detailed in Section 4.2.6.

Unless stated otherwise, when we speak of an oracle in this paper, it will
be referring to that of the type in Definition 5.

Definition 6 (Mapping). A mapping for some problem P = (N ,S, f) is a
partial injection m : S → N . If m(s) = n for some socket s and some node

12



n, that means that n has been assigned to s.2

Definition 7 (Solution). A solution is a mapping m that is a bijection.

Our goal is to define an algorithm of type problem → solution.

2.2 Additional definitions

The following definitions are less foundational than those above, but are
important elements for the design and implementation of our algorithms.

Definition 8 (Answer key). An answer key k : S → N for problem
(N ,S, f) is a solution which has been created from the real life (or simu-
lated) lighting setup, where all nodes are paired with the socket in which they
are installed. A solution m is correct iff it is equal to the answer key k. That
is, ∀n ∈ N ,∀s ∈ S, m(s) = n⇔ k(s) = n.

Definition 9 (estDist). This function has type: N → N → R (and must be
called with RSSI in the context) and will give an estimated distance between
two nodes, based on the RSSI signal strength between them.

estDist(ni, nj) = 10(cM−RSSI(ni,nj))/(10·cN )

The constant cM is also known as Measured Power, and is the measured
RSSI value at one meter from a node. This might vary between types of
devices, and if we are using the same type of nodes (which in our case we
always do), we will consider this to be the same value for all nodes. (As
discussed in Section 5.4, this is not the case in practice, but we generalize
by node type when calculating these estimates.) The constant cN depends
on the environment, ranges between 2 and 4, and can be measured for any
given building [Shah, 2021].

Definition 10 (estRSSI). This function has type: S → S → R. is effectively
the inverse of estDist, as estDist translates RSSI values to distance, while
this function translates distance to RSSI.

estRSSI(si, sj) = cM − 10 · cN · log10(dist(si, sj))

with cM and cN chosen based on the equipment and environment, as in Def-
inition 9.

2By abuse of notation, we will sometimes treat a mapping as a list of pairs.
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Definition 11 (Perfectly correlated). RSSI is perfectly correlated with
respect to some answer key k when

∀si, sj ∈ S. RSSI(k(si), k(sj)) = estRSSI(si, sj).

Note: When we claim perfect correlation, we assume that the values that
we are using for cM and cN have been measured correctly. The dependency
on these constants is a downside of this definition, which will motivate us to
create a looser, related concept in Definition 13.

2.3 Challenges & pitfalls

2.3.1 Symmetry

Even when our RSSI data is perfectly correlated with the distance between
nodes, there can still be situations in which it is impossible to determine the
socket-to-node solution without querying our oracle. This is due to possible
symmetry in the socket setup. Consider the problem in Figure 2.1.

s1

s2 s3

1m

1m

1m

n1 n2 n3

n1 x -30 -30
n2 -30 x -30
n3 -30 -30 x

Figure 2.1: A symmetric problem.3

Initially, any solution could be correct, as all distances and RSSI values
are equal. Now imagine that we ask the oracle for the location of node n1,

3If units are omitted in a figure, negative values indicate that they are RSSI values (in
dBm), and positive values indicate socket distances (in m). If a label is si for some i, it
represents a socket, and ni labels represent nodes.

14



and it returns the top socket, s1. Now, we still do not have a unique possible
solution, as n2 and n3 could each be in either of the remaining sockets. (We
have two remaining possible solutions, as mappings are injective.) Therefore,
we will have to ask the oracle for the placement of a second node, making
two queries in total before we have a unique remaining solution.

Thus, for this problem, if we initially choose any fitting solution, we have
only a 1

3
chance of being correct, and to be certain of our solution we must

make 2 oracle queries.
So far we have assumed that our RSSI data is perfect: that it is exactly

correlated to the distance between nodes. Unfortunately, we also have a big-
ger issue than symmetry – the unreliability of RSSI signals. With symmetry
problems, we can at least detect such issues and utilize our oracle to remove
uncertainty. With reliability issues we cannot make such guarantees.

2.3.2 RSSI reliability

As discussed in Section 1.1, RSSI signals have been shown to be unreliable
and not a good standalone resource for localization problems [Patwari et al.,
2003]. RSSI signals are not always correlated to distance, as signal strength
can be distorted due to a number of factors: walls, objects, manufacturing
defects, installation errors, and more. They are not always consistent over
time, and two nodes will not be guaranteed to give the same RSSI result
with respect to each other.

In a worst case scenario, we could have two nodes that report RSSI values
as if they are the other, effectively imitating each other, such that without
further investigation, we have no reason to believe that their locations are
not switched.

Example 2. Consider the socket and node data depicted in Figure 2.2.
The left table in Figure 2.2 represents RSSIp, the function for RSSI val-

ues under perfect conditions. The right table represents RSSIw, the RSSI
function for a scenario where, due to some environmental factors, the val-
ues have been warped. In this case, RSSIp(n1, n2) = RSSIw(n1, n3) and
RSSIp(n1, n3) = RSSIw(n1, n2). The RSSI values suggest the solution where
n2 and n3 switched from their actual socket positions.

4When distance and RSSI labels are omitted from diagrams, values can be assumed to
be proportional to the distances portrayed in the diagrams – nodes that are closer to each
other have stronger signals between them.
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s1

s2

s3

Perfect RSSI
n1 n2 n3

n1 x -30 -40
n2 -30 x -35
n3 -40 -35 x

Warped RSSI
n1 n2 n3

n1 x -40 -30
n2 -40 x -35
n3 -30 -35 x

Figure 2.2: An example of inaccurate RSSI data.4

Example 2 can be generalized to any number of nodes, which leads to the
following unfortunate truth in Theorem 1.

Theorem 1. For any problem with |N | > 1, if we do not have any guarantees
on the reliability of the RSSI sensors, under the worst case we will need to
make |N | − 1 oracle queries if we want to guarantee the correctness of our
solution.

Proof. Suppose we have some algorithm A, which outputs solution m for
problem P1 = (N ,S,RSSI1), while making less than n − 1 oracle calls, and
we can guarantee this to be correct (thus, m = k1, the answer key for P1).
Let A also not use any hard-coded information to solve the problem5. Fix
any sx, sy ∈ S, sx ̸= sy. Let nx = k1(sx), ny = k1(sy).

Now, consider a problem P2 = P1: the set of sockets and nodes and the
RSSI data is identical. However, the answer key for P2 is k2, where the

5Of course, if we were to program in a hard-coded way to answer the solution, knowing
information about the contents or structure of the answer key, we could potentially guar-
antee correctness. Algorithm A should only have access to the problem and the oracle,
and not know any information about the answer key that would help guide its decisions.
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location of nodes nx and ny have been switched as follows:

k2(s) =


ny if s = sx
nx if s = sy
k1(s) otherwise

While it might seem strange that two problems which are indistinguish-
able have different answer keys, this can happen in the following way. Sup-
pose RSSI2 is the perfect RSSI data for problem P2 relative to k2. We can
transform RSSI2 back to RSSI1 by having nx and ny impersonate each other
in the data – in this way, P2’s RSSI data is identical to that of P1, despite
the node switch.

RSSI1(ni, nj) =



RSSI2(ny, nx) if i = x, j = y
RSSI2(nx, ny) if i = y, j = x
RSSI2(ny, nj) if i = x
RSSI2(nx, nj) if i = y
RSSI2(ni, ny) if j = x
RSSI2(ni, nx) if j = y
RSSI2(ni, nj) otherwise

This is an example of (highly) unreliable RSSI data. Our algorithm A
cannot distinguish between P1 and P2 as input. The only way to be able to
determine that the solutions should not be identical would be, when solving
P2, to query the oracle for nx or ny.

However, as nx and ny could be any two nodes, as long as there remain
any two nodes which have not been queried, it is possible that both nx and
ny remain unqueried, in which case we have no reason to believe their socket
assignments should be switched, compared to P1.

We claimed that we can guarantee A to be correct for some run with input
P1 and output m. However, neither we nor the algorithm can distinguish this
run from a run with input P2 and output m, so our claimed-to-be-correct run
might have actually have been using P2. If this were the case, our solution
would not be correct, as k2 is the answer key for P2, and m = k1 ̸= k2.
Therefore, as this outcome is a possibility, it is impossible that we are able
to guarantee the run of A with input P1, and we have a contradiction.

Thus, the only way to guarantee the correctness of a solution is to query
at least n − 1 nodes. Once we have queried n − 1 nodes, there is only
one possible solution, as we know the position of n − 1 nodes, and the one
remaining unqueried node must go in the remaining unassigned socket.
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This is much worse than the issues presented by symmetry, as we have
no way of knowing which nodes are reliable and which are not.

2.4 Computational complexity

2.4.1 Oracle calls

As discussed in Section 2.3.2, under the worst case we will need to make
n − 1 oracle calls to be sure of the accuracy of our solution. This is clearly
not a desired outcome; if that situation arises we have saved almost no time
compared to the fully-manual strategy.

Theorem 2. If we have no limit to the number of oracle calls, the time and
space complexity of our problem is O(|N |).

Proof. Ask the oracle where every single node is located. Each call takes
time O(1) and space O(1) to record the answer, so we have a solution in n
steps6.

It therefore makes sense, when reasoning about the complexity of the
problem, to consider that we will not go above some threshold of oracle calls.

2.4.2 Search complexity

Definition 12 (Fitting). A solutionm is fitting for a problem P = (N ,S,RSSI)
when

∀si, sj, sk ∈ S. dist(si, sj) < dist(si, sk)↔ RSSI(m(si),m(sj)) > RSSI(m(si),m(sk)).

Due to the symmetry possibilities discussed in Section 2.3.1, there might
be more than one fitting solution for a problem.

Definition 13 (Effectively accurate). The RSSI data in a problem P is
effectively accurate with regards to an answer key k when k is a fitting
solution for P .

6We can also achieve this with n− 1 steps, but both options will lead to a complexity
of O(n).

18



A problem P having effectively accurate data therefore means that, when
we look at the correct placements (those in the answer key), the socket rela-
tionships and the node relationship are in agreement with regards to distance
and strength, respectively. A benefit of this definition compared to Defini-
tion 11, perfect correlation, is that here we do not depend on estRSSI, and
therefore do not have to worry about measuring cM and cN .

Data can be effectively accurate without being perfectly correlated, but
perfectly correlated data will always be effectively accurate.

Theorem 3. Finding a fitting solution to a problem with effectively accurate
data is in NP.

Proof. To show that our problem is in NP (nondeterministic polynomial
time), we must show that there exists a polynomial time deterministic Turing
machine that takes as input a problem P and a mapping m, where the size
of m is polynomial in the size of P , and can output True iff m is a fitting
solution for P .

Consider that our input is problem P = (N ,S,RSSI). Let o be the size
of this input. If |N | = |S| = n, then o has size O(n2), due to the fact that
we have RSSI values for all pairs of nodes. If we are given a possible solution
m, to verify that it is a fitting solution, we need to check n3 constraints,
as stated in Definition 12. Thus, the verification of m can be done in time
O(o · n), which is polynomial in the input size o (as o is O(n2)). The size of
m is O(n), which is polynomial with respect to o, as it is simply a mapping
from sockets to nodes.

Therefore, our problem is in NP.
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Chapter 3

SAT solver approach

We can view our problem as a set of constraints that must be satisfied,
therefore, we can view it as a satisfiability (SAT) problem. As such, we
can use some of the many existing SAT-solving techniques that are at our
disposal. There are constraint programming languages which are well-suited
for problems such as these – we can use one such language to express the
facts and constraints which define the requirements needed by a solution to
a problem, and then run a constraint solver to find the solution(s).

3.1 First-order logic representation

We will first discuss how to use first-order logic to express the requirements
of a fitting solution to a problem.

Suppose we have a problem P = (N ,S,RSSI).

First, let us define our predicates:

• S: S(si, sj, sk) indicates that the distance from socket si to socket sj is
less than the distance from socket si to socket sk.

si sk

sj
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• N : N(ni, nj, nk) indicates that node ni receives a stronger signal from
node nj than it does from node nk.

• in: in(n, s) indicates that node n is placed in socket s. This is equivalent
to saying that, for a mapping m, m(s) = n.

We use the following constraints:

• ∀n ∈ N . ∃s ∈ S. in(n, s)

• ∀n ∈ N . ∀si, sj ∈ S. in(n, si) ∧ in(n, sj)→ si = sj

• ∀ni, nj ∈ N . ∀s ∈ S. in(ni, s) ∧ in(nj, s)→ ni = nj

• The correlation constraint, as defined below.

Definition 14 (Correlation constraint). The correlation constraint is
the following, and reflects the desired relationship between RSSI signals and
distance.

∀ni, nj, nk. ∀si, sj, sk. S(si, sj, sk) ∧ in(ni, si) ∧ in(nj, sj) ∧ in(nk, sk)→ N(ni, nj, nk)

Given our problem P we include the following sets of facts as true state-
ments about P :

• {N(ni, nj, nk) | ni, nj, nk ∈ N ∧ RSSI(ni, nj) > RSSI(ni, nk)}

• {S(si, sj, sk) | si, sj, sk ∈ S ∧ dist(si, sj) < dist(si, sk)}

Note: it is also helpful (though not strictly necessary) to begin with at
least one seed placement – in(n, s) for some node n and socket s – to aid the
solver and increase its speed of finding the solution. We can find this using
an oracle call.

By enforcing the correlation constraint, we ensure that any solution that
we output will be a fitting solution. Thus, for effectively accurate input
data, if we output all fitting solutions, it is guaranteed that one of them is
the correct solution.

In the correlation constraint, we only look in one direction: socket facts
imply node facts. However, this is equivalent to the bidirectional definition
(as seen in the definition of fitting).
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Claim 1. For a given solution m and problem P , if the correlation constraint
passes for m (considering in(n, s) to be equivalent to m(s) = n), then m is a
fitting solution.

Proof. Consider that we have some problem P and solution m, such that the
correlation constraint passes, but m is not a fitting solution.

Let us consider the cases in which m could be not fitting.

Case 1: We have S(sa, sb, sc), and not N(ni, nj, nk)1 for some nodes
ni, nj, nk placed in sockets sa, sb, sc, respectively. This is not possible, by
definition of the correlation constraint.

Case 2: We have N(ni, nj, nk), and not S(sa, sb, sc) for some nodes
ni, nj, nk placed in sockets sa, sb, sc, respectively.

N(ni, nj, nk) ≡ ¬N(ni, nk, nj), and S(sa, sb, sc) ≡ ¬S(sa, sc, sb), by def-
inition of N and S. Due to the fact that we quantify over all sockets and
nodes when creating our sets of facts, we consider all S and N facts which
are true.

By the contrapositive, the correlation constraint says that ¬N(ni, nk, nj)
2→

¬S(na, nc, nb). As N(ni, nj, nk), and equivalently, ¬N(ni, nk, nj) is true, then
¬S(na, nc, nb), and equivalently, S(sa, sb, sc), must be true. This contradicts
our original assumption.

There are therefore no possible cases in which the correlation constraint
passes and m is not a fitting solution. This proves our claim.

We could use an analagous argument to claim that we could have designed
the correlation constraint in the node-to-socket direction. However, we chose
the current direction so that we will be able to adjust the strictness of socket
constraints, as will be discussed later in Section 3.3.

1We will use the S and N predicates even when talking about fitting, as S and N are
defined to be equivalent to the properties we test for in Definition 12.

2We omit the in statements, for brevity.
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3.2 ASP & Clingo

The previous statements were expressed in first-order logic, but since our
domain is finite, they can also be translated to propositional logic so that we
can utilize the power of SAT solvers. Many constraint languages allow us to
keep the expressibility of predicates such as these, while making the required
translations under the hood.

Answer Set Programming (ASP) [Brewka et al., 2011] is one such method.
Our toy example from Figure 1.1 can be seen translated to ASP in Listing
3.1. (The predicates N and S now have names n stronger and s closer, re-
spectively.)

1 node(n1).
2 node(n2).
3 node(n3).
4 socket(s1).
5 socket(s2).
6 socket(s3).
7

8 n_stronger(n1, n2, n3).
9 n_stronger(n2, n1, n3).

10 n_stronger(n3, n2, n1).
11 s_closer(s1, s2, s3).
12 s_closer(s2, s1, s3).
13 s_closer(s3, s2, s1).
14

15 1 { in(N, X) : node(N) } :- socket(X).
16 :- in(N, S1), in(N, S2), S1 != S2.
17 :- in(N1, S), in(N2, S), N1 != N2.
18

19 s_closer(X, Y, Z) :-
20 n_stronger(N1, N2, N3), in(N1, X), in(N2, Y), in(N3, Z).
21 :- s_closer(X, Y, Z), s_closer(X, Z, Y).

Listing 3.1: Problem formulation in ASP.

To solve for our answer sets (which correspond to all of the solutions
which fit our program), we can use Clingo [Gebser et al., 2014], an ASP
grounder and solver from the Potassco project for ASP. More information
about this solver can be found in Gebser et al. [2011].

The output for Listing 3.1 is as follows3:

3Facts which were already included in Listing 3.1 (e.g. node(n1)) are omitted.
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1 SATISFIABLE
2 Models : 1
3

4 in(n1,s1)
5 in(n3,s3)
6 in(n2,s2)

Listing 3.2: Clingo response output for Listing 3.1.

This answer matches our expected unique solution from Figure 1.1.

3.3 Fuzzy constraint representation

While the most straightforward way to choose our socket facts is simply to
include S(si, sj, sk) for any nodes such that dist(si, sj) < dist(si, sk), this is
quite brittle and not set up for handling any unreliability or fuzziness.

We run into trouble when sockets are equally or similarly spaced, but
node signals are not perfect. For example, Figure 3.1 represents a situation
where introducing a small amount of error can cause the valid constraints to
change.

n1 n2 n3

s1 s2 s3

-29dBm -30dBm

2m 3m

Facts
S(s1, s2, s3) N(n1, n2, n3)
S(s3, s2, s1) N(n3, n2, n1)
S(s2, s1, s3) N(n2, n1, n3)

n1 n2 n3

s1 s2 s3

-30dBm -30dBm

2m 3m

Facts
S(s1, s2, s3) N(n1, n2, n3)
S(s3, s2, s1) N(n3, n2, n1)
S(s2, s1, s3)

Figure 3.1: Difference in node constraints due to small RSSI error.

The RSSI values in the left diagram in Figure 3.1 represent effectively
accurate RSSI data for three nodes which should be placed in an slightly-
unevenly-spaced line of sockets. For every S fact, we have the fitting corre-
sponding N fact, and the correlation constraint passes for all three pairs.

However, in the right diagram, because RSSI(n1, n2) = RSSI(n2, n3), we
are missing the fact N(n2, n1, n3), and the correlation constraint fails due to
the presence of the fact S(s2, s1, s3).
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We can mitigate this by adding a parameter to our socket fact require-
ments.

Definition 15 (ϵ). This parameter represents the minimum difference (in
meters) required between socket distances for S fact to be included in our set
of facts.

For example, if we were to set ϵ = 2 for our sockets in Figure 3.1, we no
longer have the fact S(s2, s1, s3), and the correlation constraint would not be
violated in the rightmost diagram.

The full set of socket facts for a given problem thus becomes:

{S(si, sj, sk) | si, sj, sk ∈ S ∧ dist(si, sk)− dist(si, sj) > ϵ}.

This can be tuned as is appropriate for a given situation, but using the
data discussed in Section 5.2 we have determined ϵ = 2m to be a reasonable
value which eliminates many of these issues, while still leaving facts which
will trigger the correlation constraint in situations of clear socket distance
difference.

3.4 Issues

There are a few issues with the constraint solver approach, which motivate
the design of a more customized system. First, exhaustively finding all pos-
sible mappings is very time-consuming if we are not able to get inside the
constraint solver and optimize in ways that should be reasonable for our
problem. We would be able to include problem-specific heuristics more eas-
ily were Clingo not a black box solver.

Secondly, and more importantly, the strategy of requiring all constraints
to be fulfilled is only going to work for situations in which our data is ef-
fectively accurate. While this is achievable in simulations, or in some very
specific socket layouts, it is highly unrealistic that this would be something
we could count on happening with real life data.

Therefore, it is beneficial for us to take the constraint solving into our
own hands and build a similarly-minded solver, which we are able to tune
and optimize as we need.

25



Chapter 4

Algorithmic approaches

In this chapter, we will introduce several algorithms designed to solve our
problem. We will start with simpler algorithms that motivate our core design
choices, and the move to a more complicated final algorithm which combines
the best features of each.

4.1 Basic greedy algorithms

First, we will examine some variations of basic algorithms to solve the prob-
lem that choose node placements greedily. These algorithms choose place-
ments based on some heuristic and return the first solution that is found,
backtracking when necessary.

4.1.1 Numerical estimation

Our first algorithmic approach is a greedy algorithm that at each step makes
the “best” node-to-socket placement. We can define the best placement to be
that which minimizes the difference in expected distance and real distance for
all currently placed socket-node pairs. To get the estimated distance between
two nodes, we use our estDist function.

Consider a stage in the algorithm when we have placed some nodes and
have a partial mapping m.

Definition 16. Given a mapping problem P = (N ,S,RSSI), the error of a
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potential node placement (n, s) for n ∈ N , s ∈ S is

error(n, s) =
∑

(ni,si)∈m

| estDist(n, ni)− dist(s, si) |

To get a new node placement at any given step of our algorithm, we
choose the placement that minimizes this error. Let u be the set of all
possible placements, considering what is already in m.

u = {(n, s) | ∀(n′, s′) ∈ m. n ̸= n′, s ̸= s′}

nextPlacement = arg min
(n,s)∈u

error(n, s)

Definition 17. A seed mapping is a mapping with (at least) one pairing,
acquired from the oracle, to use as a starting point for our algorithms.

We always make sure to start with a seed mapping instead of an empty
mapping, as this will greatly aid the speed of the algorithm, and it is not an
issue to have a pre-processing step of calling the oracle one time (or more).
This will also avoid a situation where m is empty and error(n, s) = 0 for all
n ∈ N , s ∈ S.

Definition 18 (isSolution). This function takes a mapping and returns True
iff it is also a solution, i.e. is a total function with domain N .

As a first attempt, the following algorithm, Algorithm 1, when called in a
context containing a problem P = (N ,S,RSSI) and passed a seed mapping
m as input, will output a solution.

Algorithm 1 extendMapping: (m: Mapping)→Mapping

1: if isSolution(m) then
2: return m
3: end if
4: candidates ← {(n, s) | n ∈ N , s ∈ S, ∀(n′, s′) ∈ m. n ̸= n′, s ̸= s′}
5: nextPlacement ← arg min(n,s)∈candidates error(n, s)
6: newMapping ← m ∪ {nextPlacement}
7: return extendMapping(newMapping)
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The main idea of this algorithm is that at each iteration of the function,
we place the node chosen by nextPlacement, as defined above.

There are a few main problems with Algorithm 1.

1. This algorithm is very inefficient. Not only is the algorithm already
slow by necessity of the problem complexity, but it is also calculating
the error for many pairings which clearly do not make sense, as in line
4 we take the full product N × S. We can greatly speed up the algo-
rithm by being smarter about which pairings we consider, and which
existing pairings we compare them to when calculating the error. This
optimization will lead to Algorithm 2 below.

2. The algorithm will never backtrack, as we have not set any threshold
for how high the error can go. Just because we take the “best” at any
given point does not mean much if, by the end of the algorithm, the
only options we have left for placements are terrible ones.

3. Relying on estDist (used by error) is risky, as it has been shown to not
be a consistent estimator, as discussed in Section 1.1, and therefore is
not ideal to use for such a scoring metric.

Problem 2 raises an important flaw in using this greedy numerical strat-
egy: without an error threshold, the algorithm is not useful in many sit-
uations. For example, if we have an equally-spaced grid of sockets (which
is very realistic in many building plans), we are often faced with situations
where we might have options with equal score.

In the scenario depicted in Figure 4.1, there is an equal chance that the
second node should be placed in the socket directly to the right or directly
below the corner seed socket. If we make the wrong choice and are not able
to later backtrack, we will never get the right solution.

It is clear therefore that we must have some threshold for what is an
acceptable pairing. We can introduce a parameter for this, but this will need
to be fine-tuned for a given problem. Choosing this value is very difficult, as
the error in a given building might vary widely – for example, nodes on one
side of a building might have walls between them, and have very large error,
while on the other side we might have perfect data.

Example 3. Consider the situation in Figure 4.2, where three nodes are
placed in sockets with walls between them. Imagine that this weakens the
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estDist (n1, n2) = 1m

n1 n2?

n2?

1m

1m

Figure 4.1: Symmetric options often require backtracking.

RSSI values by a factor of 10. It is still the case that n1 has a stronger signal
with n2 than it does with n3, which matches the fact that it is closer to n2 in
physical distance.

However, the weakened RSSI values will mean that in a situation where
we have a threshold for the amount of error that is allowed, it could easily
be the case that no solutions are found, even though the data still paints an
informative picture.

n1 n2 n3

Figure 4.2: Nodes impeded by barriers.

This leads us to another possible similar algorithm, inspired by the con-
straint solving approach in Chapter 3: we can place nodes in a similar fashion,
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but rather than using some numeric score based on estimation, we can simply
place nodes according to which nodes fit the current constraints, based on
what has already been placed at a point in the algorithm.

4.1.2 Comparison algorithm

Consider Algorithm 2, which is an update to Algorithm 1, where instead of
using distance estimation, we generate the same set of facts as in our ASP
approach, and then at each step, we only consider placements that would not
violate the correlation constraint.

Algorithm 2 extendMapping: (m: Mapping)→ Option[Mapping]

1: if isSolution(m) then
2: return m
3: end if
4: candidates ← {(n, s) | n ∈ N , s ∈ S, ∀(ni, si) ∈ A. n ̸= ni, s ̸= si,

∀f ∈ Fs. ¬violates(f, (n, s))}
5: for (n, s) ∈ candidates do
6: newMapping ← m ∪{(n, s)}
7: if extendMapping(newMapping) is not None then
8: return newMapping
9: end if

10: end for
11: return None

In our context, we now also have:

• FS: The set of all S facts about socket relationships, as defined in
Section 3.1. We will also eliminate socket facts according to our choice
of ϵ, as mentioned in Section 3.3.

• FN : The set of all N facts about node relationship, as defined in Section
3.1.

• violates: violates(fS, (n, s)) is True for a socket fact fS ∈ FS iff placing
node n in socket s (adding (n, s) to our current partial mapping m)
would violate the correlation constraint raised by fS. That is, the con-
straint is violated if fS = S(si, sj, sk), m(si) = ni,m(sj) = nj,m(sk) =
nk (for some ni, nj, nk ∈ N ), and N(ni, nj, nk) ̸∈ FN
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This algorithm will only output a solution if it fulfills all constraints,
and will backtrack upon reaching a partial mapping with no further legal
placements. We now have an algorithm which can properly output a legal
solution (though still not necessarily a correct one, due to symmetry) under
the condition that the data is effectively accurate.

4.2 Speed optimizations

One problem in our list of issues with Algorithm 1 in Section 4.1.1 was that it
is highly inefficient. We repeatedly test all possible constraints on all possible
pairs. Instead of doing this, we can pare down our nodes and sockets to only
consider the most likely options at any given iteration. In Algorithm 3, we
present the more-complete pseudocode version of Algorithm 2, which has
been expanded to include optimizations for efficiency.

4.2.1 Witness pairs

Rather than considering all possible node-socket pairs, we can greatly speed
up our process by considering only reasonable pairings, and attempting place-
ment in an order which prioritizes pairings which are closer to already-placed
nodes. Figure 4.3 illustrates a situation where we have one placed node, and
are looking for our next node to place.

We introduce two new parameters:

• FrontierSize: the maximum number of unassigned nodes we will ini-
tially consider for placement at each iteration of our algorithm. These
nodes are called our frontier.

• CloudSize: for any given node or socket we are considering in our
frontier, we also consider CloudSize-1 other possible nodes or sockets,
respectively, if available.

Note: FrontierSize does not consider the number of nodes included
which are accounted for by CloudSize. The total number of nodes to con-
sider at each step is at most (FrontierSize · CloudSize). When we say
“maximum number”, it is referring to the fact that we will sometimes have
less then FrontierSize-many unassigned nodes available.
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For now, assume we set the parameters to: FrontierSize = 1, Cloud-
Size = 2.

At any given step in the algorithm, let UN be the set of all unassigned
nodes, and US be the set of all unassigned sockets.

FrontierSize = 1 means that we start by choosing one node, n ∈ UN ,
to consider for placement. The node that we choose is the single node which
has the strongest RSSI signal to any of the already assigned nodes1, which
we will call the witness node, nw. Formally, we choose n and the witness
node as follows:

(n, nw) = arg max
{(ni,nj) | ni∈UN ,nj ̸∈UN}

RSSI(ni, nj).

The pair (n, (nw, sw)) is called our witness pair, where sw is the socket in
which nw is placed, and is called our witness socket.

We can roughly deduce from the RSSI score that n should be in the
closest socket to sw that is unassigned, which we will call s. However, due
to the unreliability of the RSSI data, this is not guaranteed to be the case.
Therefore, instead of considering only n and s, we will also consider other
unassigned nodes close to nw (with “closeness” for nodes referring to signal
strength) and some unassigned sockets close to sw.

For our example, since we have CloudSize equal to 2, for our nodes we
will consider n and n′, where n′ has the second-strongest RSSI signal with
nw (after n), and for our sockets we will consider s and s′, where s′ is the
second-closest socket to sw (after s).

In our example, at each step we therefore consider 4 possible assignments,
and in general we will consider at most (FrontierSize · CloudSize2)-
many possible node-socket pairings.

We can see this illustrated in Figure 4.3. In our figure, we only have
one assigned node, so our witness pair becomes (n1, (nw, sw)), as n1 has the
strongest RSSI signal with nw.2 The node cloud is therefore {n1, n2}, and
the socket cloud is {s1, s2}.

The possible placements that we consider at this iteration of the algorithm
are: {(n1, s1), (n1, s2), (n2, s1), (n2, s2)}.

1Note that we always start with a seed mapping, so there will always be some pool of
assigned nodes.

2Closer nodes in drawing have stronger RSSI signals between them.
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n1

s3 s2

s1

Figure 4.3: Witness pair selection.

In general, we will keep our parameter values quite small to increase the
speed of the algorithm. However, as will be discussed later, to guarantee
the termination of our algorithm with the correct solution, we will need to
consider all possible solutions, so in the worst case we might have to re-run
the algorithm with FrontierSize equal to N − 1.

Algorithm 3, presented below, builds on Algorithm 2. Some new elements
of the algorithm are explained here.

Elaborations on functions and variables used in Algorithm 3

nodeCloud: takes as input a node n, and returns a set containing
CloudSize-many nodes in UN with the strongest RSSI signals with n.

socketCloud: takes as input a socket s, and returns a set of CloudSize-
many sockets in US closest to s.

percentageConstraintsFulfilled: takes as input a node-socket pair, and
returns the decimal percentage of constraints that are fulfilled if that
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placement were to be made in the current partial mapping. Only con-
siders constraints where all nodes and sockets occurring in the con-
straint have already been placed in the mapping. We will then order
candidates using this as a score.

threshold: represents the minimum allowable candidate score at each
node placement. This score is equal to percentageConstraintsFulfilled.
At each step of the algorithm, the only candidates which will be con-
sidered are those who score higher than this threshold.

Algorithm 3 extendMapping: (m: Mapping) (threshold: float) →
Option[Mapping]

1: if isSolution(partialMap) then
2: return partialMap
3: end if
4: witnessPairs ← {(n, (nw, sw))|¬assigned(n), assigned(nw), m(sw) = nw}
5: sortedPairs ← sort witnessPairs by decreasing RSSI between n and nw

6: topPairs ← sortedPairs[:FrontierSize]
7: candidates ← {(ni, sj) | ∃(n, (nw, sw)) ∈ topPairs.

ni ∈ nodeCloud(nw) ∧ sj ∈ socketCloud(sw)}
8: candidateScore ← λ(n, s) 7→ percentageConstraintsFulfilled(n, s)
9: sortedCandidates ← sort candidates by decreasing candidateScore

10: validCandidates ← {c ∈ sortedCandidates | candidateScore(c) ≥
threshold}

11: for (n, s) ∈ validCandidates do
12: newMap ← copy(m)[n] = s
13: filledMap ← extendMapping(newMap)
14: if (filledMap ̸= None) then
15: return filledMap
16: end if
17: end for
18: return None

4.2.2 Iterative approach

Algorithm 3 works very well in situations where we have no (overall) symme-
try and effectively accurate data, as we will discuss in detail later in Section
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5.7. However, if our data is not effectively accurate, the threshold that we
pass in will have to be lowered to find our solution, and this could lead to
returning a solution which is not the correct one, as we still greedily return
the first solution that we find. We also still have the problem that it is not
obvious how to choose the value for the threshold. We want to choose it in
a way that we maximize the total number of constraints solved.

There are various approaches available to do this. For example, Heras
et al. [2007] have built a weighted Max-SAT solver, MiniMaxSat, which is
designed to find the satisfying assignment which maximizes the weight of all
satisfying clauses. We could then weigh our constraints by how likely they
are to be true. For example, if dist(s1, s2) = 5 and dist(s1, s3) = 100, we can
be very confident that the node placed in s1 should have a stronger signal
with the node in s2 than the node in s3, as the magnitude of the differences
is so large. Therefore, that constraint should have a correspondingly high
weight. After weighing our constraints in this way, we could use a solver
such as MiniMaxSat to give us the most likely solution.

However, it’s dangerous to focus on optimizing for the “best” solution,
as this could be an incorrect one. If we rely too heavily on trusting the
optimization process to give us a single best solution, we cannot be confident
that we are in fact correct.

This brings us to our main update: rather than using a greedy algorithm
that returns one possible mapping, we should instead look for a set of the
top-scoring mappings, and then use the oracle to determine which, if any, is
the correct one, continuing on if no solution is found.

To do this, we will iteratively decrement threshold as we progress. Our
iterative algorithm will begin with a threshold of 1 – this will only return
mappings which score perfectly. At each iteration of our outer algorithm,
we will lower threshold by 0.05. Reducing this score by 0.05 is equivalent to
saying that when placing a node, the total percentage of constraints allowed
to be violated is increased by 5 percentage points, compared to the previous
iteration. When we find a solution that fits our new requirements, rather
than returning it immediately, we search exhaustively for all solutions which
also pass that iteration’s score threshold.

Once we have a set of possible solutions, we are now ready to use our
oracle to determine which (if any) is correct. This process will be discussed
in Section 4.2.5. If the oracle response indicates that none of these solutions
is correct, we continue to lower our threshold. To increase efficiency, at each
successive chooseSolution call, we do not need to include any of the possible
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solutions that were included in past calls, as they have already been ruled
out.

Finally, once the oracle has narrowed down the possible solutions to one
(out of our current set of possibilities), we query the verification oracle (dis-
cussed in Section 4.2.6) to ensure that we do in fact have the real solution.

4.2.3 Final pseudocode

Algorithm 4, solveIterative is composed of three main interwoven steps: solve,
chooseSolution, and solutionCorrect. We will discuss each in greater detail in
the following subsections.

Algorithm 4 solveIterative: (problem: Problem) → Option[Solution]

1: m ← seedMapping(problem)
2: threshold ← 1
3: while threshold ≥ 0 do
4: topSolutions ← solve(problem, threshold)
5: if topSolutions is not None then
6: bestSolution ← chooseSolution(topSolutions)
7: if solutionCorrect(bestSolution) then return bestSolution
8: end if
9: end if

10: threshold ← threshold − 0.05
11: end while
12: return None

4.2.4 solve

This function has type Mapping → R→ Option[List[Solution]]. The inter-
nal logic is identical to Algorithm 3, except for one difference: rather than
greedily returning the first solution that we find, we exhaustively return all
solutions that are returned (for that threshold).

4.2.5 chooseSolution

Once we have a set of possible solutions from our search algorithm, we then
must use our oracle to determine which one is the correct solution.
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As our oracle is type N → S, we can narrow down our solution the fastest
by querying nodes that eliminate the most solutions possible.

Thus, chooseSolution works as follows: at each step, for each node, we
calculated the expected solutions remaining if we were to query the oracle
for that node. We calculate the expected solutions remaining for a node in
the following way. Let PS be the set of all proposed solutions and An be the
set of assigned sockets to node n across all solutions in PS. We define

expectedRemainingSolutions(n) =
∑
s∈An

p(s) · p(s)

|PS|

where p(s) = |{m ∈ PS | m(s) = n}|.

Example 4. Consider the following two nodes, when we have 8 solutions
left, and this is the breakdown of all socket assignments per node:

n1 : (s1, s1, s1, s1, s2, s2, s2, s2)

n2 : (s2, s3, s4, s4, s4, s4, s4, s4)

expectedRemainingSolutions(n1) = (4/8) · 4 + (4/8) · 4 = 4

expectedRemainingSolutions(n2) = (6/8) · 6 + (1/8) · 1 + (1/8) · 1 = 4.75

As the expected value of n1 is lower than n2, we should query the oracle
for n1 first.

At each step of chooseSolution, calculate expectedRemainingSolutions for
all nodes which have not been queried yet and query the oracle for the node
that minimizes that value. Then, remove solutions for which the oracle’s
response is incompatible. (For example, if we start with node n1 and our
oracle returns s1, we then remove all solutions in PS in which n1 is not
assigned to s1.) The full pseudocode can be seen in Algorithm 5.

Theorem 4. chooseSolution will always terminate, calling the oracle a max-
imum of n− 1 times in the worst case, where n = |N |.

Proof. We start with n nodes which have not been queried to the oracle. In
each iteration of the while loop, we query a new node, as the already-queried
nodes have been removed from the pool of available nodes. If we do not
already have less than two solutions remaining, it must be the case that at
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Algorithm 5 chooseSolution: (solutions: List[Solution]) →
Option[Solution]

1: nodes ← |N|
2: while len(solutions) > 1 do
3: node ← arg minn∈nodes expectedRemainingSolutions(n)
4: socket ← oracle(node)
5: nodes ← nodes \{node}
6: solutions ← filter(λm 7→ m[socket] = node)
7: end while
8: if len(solutions) = 0 then return None
9: end if

10: return solutions[0]

least one of the possible nodes to query will have expectedRemainingSolu-
tions < |solutions|, as if we have two solutions mi and mk, they must differ
on at least one node, n, and querying the oracle with input n will eliminate
one of mi or mj.

Therefore, at each iteration of our while loop, the number of solutions
will decrease, and eventually there will be one or fewer solutions remaining
and our algorithm will terminate.

As we remove nodes from the node pool after querying them, and we only
perform one query per loop, we can loop (and query) a maximum of n times.
However, as there is only one possible solution remaining after we know n−1
nodes (the unassigned socket must go in the unassigned node), we know that
we will never enter the loop again after the n− 1th oracle query.

Our best case scenario is if nodes are spread fairly evenly between many
sockets. In this case, querying those nodes will be likely to quickly drop down
the expected number of solutions left. For example, if we have 8 solutions
left, and one node is assigned to a different socket in each solution, querying
the oracle for that node will immediately tell us which solution, if any, is
possible among the proposed solutions.

As seen above, chooseSolution will terminate with either a solution m or
None. However, it is not guaranteed that m is the correct solution. For
us to know that our solution is correct, we would have had to make n − 1
queries, as shown in Theorem 1. solution m has not yet contradicted the
information from the oracle, and we also know that no other solution from
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the list returned from solve is valid. However, it is possible that some non-
queried nodes in m were placed incorrectly, and there was in fact no correct
solution in our candidate solutions.

It is for this reason that we must check our proposed solution m, and
iterate further if necessary. For this, we need another function to be able to
verify solutions.

4.2.6 solutionCorrect

We would of course ideally like to not have to do a full manual check of any
solution. Indeed, the motivating goal of this project was to semi-automate
the process and remove the need for manually checking each socket.

However, as we have seen in Section 2.3.2, there remains a chance that
whatever solution we find, regardless of our confidence level, it might be
the wrong one (until we ask the oracle n − 1 queries). We can try to find
a middle ground, where our search algorithm and oracle process give us a
likely candidate, with a reasonably-small number of queries, and then we can
use a different decision oracle to verify the correctness of that solution.

Definition 19 (Verification Oracle). This oracle has type Solution→ Boolean,
and returns True iff the solution is correct.

The verification oracle should be designed to be an ergonomic process for
the human who is tasked with this decision. While the typical N → S might
require the operator to search around for lights, and report specific socket
numbers, the design for this oracle would be something like the following: the
nodes would turn on in cascading sequence around the current room. (There
would be a slightly modified process if the sockets were split into rooms or
multiple lines of sight). The operator would verify that they all turned on
“in order”, according to the prompts on the in-app map. If so, this means
that our solution is correct.

The exact design of this process and the corresponding algorithm is more
of a question of user experience and user interface design, and has therefore
been left out of the scope of the current project.

4.3 Termination and correctness

Theorem 5. solveIterative will always terminate.
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Proof. The external while loop will loop a finite amount of times, as we begin
with our threshold set to 1, decrement it by 0.05 each loop, and stop the loop
when it reaches 0. Within the while loop, we might call each of our three
functions: solve, chooseSolution, and solutionCorrect.

We consider solutionCorrect to be a single call of an oracle. In reality, this
would have to be implemented properly for real life users to ensure that it
works as designed in the function description above, but for our purposes it
will take time O(1), and be a reliable source of information.

Without loss of generality, we will consider the case when FrontierSize =
|N |, as this is the case that will iterate through the most possibilities, and
other values of this parameter will lead to runs that consider a subset of the
same possibilities. In this case, it will eventually consider each possible com-
bination of node placements. At each recursive call after a node placement,
it will return None once the possibilities of further placements are exhausted.
There are no situations where we would loop forever through possibilities.

As seen in Theorem 4, chooseSolution will always terminate.

Theorem 6. solveIterative will always either output the correct solution or
None.

Proof. As we only return a solution if it has been verified by solutionCorrect,
any non-None output from the algorithm must be correct. As we have seen
in Theorem 5 that the algorithm terminates, we will otherwise receive an
output of None, due to the return statement after the main while loop in
solveIterative has completed.

Theorem 7. With the FrontierSize parameter set to |N |, solveIterative
is guaranteed to output the correct answer.

Proof. By Theorem 6, we know that any output of type solution must be cor-
rect. Consider the case where we have reached a threshold value of 0. In this
iteration of our solve function, every single possible mapping will be returned,
as 0% of the constraints are required to be fulfilled at each node placement,
and all node placements are considered, due to the FrontierSize parameter
setting. Therefore, the correct solution will be in the set of solutions passed
to chooseSolution, and will then be returned (and subsequently verified by
solutionCorrect).

These theorems might appear to not make any impressive claims: yes,
the algorithm will always be correct (by definition of the verification oracle),
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and always eventually reach the correct solution (because we will eventually
consider them all). However, most of the work of this project was to create
strategies and heuristics that in most cases would lead us to the right answer
long before all options were checked. Furthermore, it is our hope (and so far
it has been the case) that the verification step is usually a formality, and the
correct solution is the first one that is sent to the verification oracle.
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Chapter 5

Data & evaluation

In this chapter, we will discuss the format and possible pre-processing strate-
gies that we can use on our data. We will also evaluate our algorithms on
data, both simulated and real-world, and evaluate the results.

5.1 Simulated data

As we had a limited amount of access to real data, it was useful to work with
simulated data. To do this, we designed various layouts of sockets, calculated
perfectly-correlated RSSI data, using estRSSI, and then perturbed the RSSI
data varying amounts to simulate potential data messiness.

We perturbed the perfectly correlated values by distributing them accord-
ing to various probabilistic distributions. As our focus was on solving this
problem for our highly unpredictable real-world data, the simulated data was
used more to test the algorithms on well-behaving data, and to test the capa-
bilities of our earlier algorithms, which were not suited for highly-perturbed
data. Once access to the real-world data was made available, we were able
to focus on the that data for the most insightful look into how these nodes
behave in the wild.

5.2 Real-world data

We received data from a large office building, split into three separate floors
and rooms (which we handle separately). There was one small office with four
nodes, pictured in Figure 5.6, and two identical open-plan floors, pictured in
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Figure 5.1, with twelve nodes each. We will refer to them by name as Office,
Floor 1, and Floor 2.

Figure 5.1: Layout of Floors 1 and 2.

We initially receive the raw RSSI data in the following JSON1 structure,
as seen in Listing 5.1.

1 {
2 "n_1": {
3 "n_2": [{"time": 1, "rssi": -73},
4 {"time": 2, "rssi": -72},
5 ...],
6 "n_3": [{"time": 1, "rssi": -64},
7 {"time": 2, "rssi": -65},
8 ...],
9 ...

10 },
11 "n_2": {...},
12 ...
13 }

Listing 5.1: Raw RSSI input.

5.2.1 Averaging over time

RSSI data can vary widely over time for the same node pair. Therefore, it
is preferable to examine data over a longer period of time and then average

1JavaScript Object Notation, a popular data format.
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it out, so as to lower the effects of bad signals, disturbances, and random
outliers. RSSI values are always integers, between 0 and -255. However,
since we take the average over many values, we will consider the type to be
R instead of Z, to more accurately represent the mean values.

It is then also possible to do more complex pre-processing, to smooth
out the data and try to get the most representative data possible. This is
advisable in situations where the data is very messy, or is being collected in
an environment that is more prone to signal disturbances.

For our experiments, we averaged all values and did not remove any
outliers – our goal was to create a system that was robust to messy data, so
we chose to test it on the full set of data rather than the cleaned data.

5.2.2 Data spread

Figure 5.2 shows a plot of RSSI compared to distance, where each point in
the plot is a pair of nodes from our dataset. We can see that distance is not
well correlated in general with RSSI. However, this plot illustrates a common
feature of RSSI data: RSSI values are much more likely to error by showing
a weaker value (due to interference, etc.), while it is much more difficult and
uncommon to have a value be incorrectly stronger. In Figure 5.2, we can
see that is a lack of outliers such that the RSSI signal is far “too strong” for
the distance between the points. The upper right quadrant, where many of
these points would lie, is empty, and we see a clear line where the distance
decreases as the maximum RSSI values measured for a given distance rises.

5.2.3 RSSI symmetry

Between any two nodes ni and nj, we have two RSSI values: RSSI(ni, nj)
which indicates the strength of nj’s signal as received by ni, and RSSI(nj, ni).
With the design of our algorithms, it is generally helpful to consolidate this
to one composite value. We therefore have multiple choices of how to choose
which final value to use as the RSSI value between the two.

If we have any reason to believe that one of the two is more reliable
than the other, we could simply use the more reliable value. As discussed
in Section 5.2.2, RSSI values are more likely to be incorrectly weak than
incorrectly strong. Therefore, when presented with two RSSI values for the
same distance, it is generally a safer bet to choose the stronger value as more
accurate. Another choice is simply to take the mean between the two values.
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Figure 5.2: dist(si, sj) vs. RSSI(ni, nj) for pairs ((ni, si), (nj, sj)) in each of
the rooms from our dataset.

Before this pre-processing, it is the case that the order of the node argu-
ments to the RSSI function matter; once we have determined our composite
value v between the two (RSSI(ni, nj) and RSSI(nj, ni)), we set RSSI(ni, nj) =
RSSI(nj, ni) = v, so that during the algorithm, the direction that we are ex-
amining the nodes does not matter. The reason for this is that semantically,
it should not matter: there is only one physical distance between the nodes,
so we do not want to consider the strength of signal between nodes to have
a direction.

For all of our experiments, we use the simplest technique (so as to test our
algorithms under the harshest conditions), and choose our composite value
by averaging the two values.

5.3 Self-healing when a node has inaccurate

output or input

In a case where it can be determined that a node ni has faulty RSSI output
or input (the signals it is sending to its neighbors are not correlated to the
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distance to those neighbors), we have an easy fix: we can simply ignore its
input, or output signals respectively. For example, if ni has faulty output
signals, for any other node nj ∈ N \ {ni}, we can ignore the values for
RSSI(nj, ni) and only use the value from RSSI(ni, nj). Since each node pairing
has two possible values, we still have another value to use for the relationship
between those two nodes.

In a concrete example of this technique, in the Floor 1 raw input data, one
node has no outgoing RSSI signals. Even though we are missing all outgoing
data, we are able to continue with our process by simply using the incoming
data exclusively for that node instead of averaging incoming and outgoing.

Obviously, if we have more than two (or more) nodes in the system which
we have determined to have an issue, we then have no value to use between
those two. In that case, we have two choices: we can still attempt to create
a composite value somehow, ignoring the issues (if possible), or we can drop
those values, and simply not have a RSSI value between those nodes. As
we begin with a complete (multi-)graph, it is more likely allowable to drop
many edges and still be able to find our output mapping.

5.4 Determining node issues

We so far have not discussed possible ways to know when a particular node
is unreliable. One method of doing this is by quantifying the unreliability of
a node as follows.

Definition 20 (symmetryError). This is a function of type N → N → R,
and is calculated as follows:

symmetryError(ni, nj) = RSSI(ni, nj)− RSSI(nj, ni).

A positive symmetry error for (ni, nj) therefore indicates that RSSI(ni, nj)
is greater than RSSI(nj, ni), which in turn means that nj is sending stronger
signals than ni, as RSSI(ni, nj) is the strength of the signal that ni receives
from nj.

In our real-world dataset, after RSSI values were averaged over 72 time-
points, 81% of node pairs had absolute symmetry error of less than 1 dBm
(|RSSI(ni, nj)−RSSI(nj, ni)| ≤ 1) and 98.4% of node pairs had absolute sym-
metry error of less than 5 dBm. Figure 5.3 plots each room’s pairs of points,
comparing their outgoing and incoming values. The fact that most points lie
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Figure 5.3: RSSI(ni, nj) vs. RSSI(nj, ni) for all nodes ni, nj ∈ N .
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Figure 5.4: An unreliable node (ni) and a reliable node (nj).
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Figure 5.5: Histogram of unreliability of nodes in our dataset

on or near the line f(x) = x demonstrates that in general, nodes had high
agreement with their neighbors in terms of RSSI signal.

If we examine the node pairs where there was disagreement of more than
1 dBm, we see some trends of repetition: one node on Floor 2 performs
particularly badly, and has absolute symmetry error greater than 1 with 7
out of 11 other nodes in the room. We see this node highlighted as ni in
Figure 5.4 – the figure compares ni’s outgoing and incoming values with
each other node in that room. This is contrasted with another node from
that room, nj, which has very low unreliability: the only node with which
nj’s symmetry error is above 1 dBm is ni.

We can quantify the overall unreliability of a node by taking the mean of
the absolute symmetry error over all other nodes (provided that both nodes
have outcoming and incoming values).

Definition 21 (unreliability). This is a function with type N → R, and is
calculated as follows

unreliability(n) =
∑

ni∈N\{n}

|symmetryError(n, ni)|
|N | − 1

Examining Figure 5.5, we see that the majority of our nodes in our dataset
have low unreliability, however, we do have three nodes with unreliability
above 1. By analyzing the data in this way, we can get a sense of which,
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if any, nodes are not reliable, so that we can attempt to not use their data
when possible, as discussed in Section 5.3.

5.5 In-depth example

n1 n2

n3n4

-54.5

-62.4

-67.1

-62.8

-64.2 -64.4

Figure 5.6: Office layout. Nodes are placed in sockets, and socket distances
are proportional to diagram.

The Office, seen in Figure 5.6, shows a succinct example of RSSI data
which does not always match the physical distance between nodes. We can
see here that RSSI(n1, n2) has a stronger signal than any of the others, even
though the distance between n1 and n2 is larger than n1 and n4, or n2 and
n3.

Out of the 12 total constraints we have to check for this problem, the
following four constraints in Table 5.1 all fail2.

While the correct solution in this case is m1 = {si : ni | i ∈ {1, 2, 3, 4}},
the following solution also passes the same percentage of constraints (75%):

m2 = {s1 : n1, s2 : n4, s3 : n3, s4 : n2}.
2To simplify the figure, let it be the case that each node ni is placed in socket si. We

will therefore also simplify the constraints listed in Table 5.1 by omitting the in(ni, si)
components, for brevity.
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S(s1, s4, s2)→ N(n1, n4, n2)
S(s2, s3, s1)→ N(n2, n3, n1)
S(s3, s4, s1)→ N(n3, n4, n1)
S(s4, s3, s2)→ N(n4, n3, n2)

Table 5.1: Failing constraints from Figure 5.6

By switching the placements of n2 and n4, we score equally well as the cor-
rect solution. This demonstrates a real-world scenario where we need our
additional procedures to determine the correct placement of nodes. We can
also observe that we can get from m1 to m2 by reflecting around a line of
almost-symmetry. This is an example where we have multiple solutions avail-
able due to a combination of both rough symmetry and RSSI unreliability,
the two challenges discussed in Section 2.3.

As in the Office, the RSSI data of Floor 1 and Floor 2 was also not
effectively accurate, and in these two problems, it was also the case that
the best scoring solution was not the correct one. However, in all cases, the
correct solution was in the first batch of possible solutions returned by solve,
and was therefore identified in the first iteration of chooseSolution.

5.6 Implementation

This project was implemented in Python 3, with an additional dependency
on Clingo for the ASP version, as discussed in Section 3.2. The code is
available upon request on GitHub3.

5.7 Performance

Tables 5.2 and 5.3 show the performance of solveIterative on our real-world
data. The Solution Correct and #Verifications columns indicate that the
first proposed solution by chooseSolution was correct, and further iteration
was not needed. This supports our hypothesis that in general, solutionCorrect
is more a safety check than anything else, and we should rarely have to look
past the first set of possible solutions returned by solve.

3Code can be found at https://github.com/ddanco/nodemapper. The repos-
itory is not public by request of the company; please contact ddanco@gmail.com to be
granted access.
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For all of these tests, we set ϵ to 2m.

n Office Time # Oracle calls Solution correct

4 Small office 0.3 2 Yes
12 Floor 1 36.0 4 Yes
12 Floor 2 120.6 3 Yes

Table 5.2: solveIterative overall statistics with Office Data

n Office Threshold # Solutions proposed # Verifications
Constraint score

of solution

4 Small office 1 6 1 1
12 Floor 1 0.8 33 1 0.84
12 Floor 2 0.8 11 1 0.85

Table 5.3: solveIterative run details with Office Data

The reason for the threshold of 1 for the small office (despite the failed
constraints as shown in Table 5.1) is that, due to the fact that we have a
simple small almost-square configuration of nodes, the ϵ parameter led to
the elimination of all constraints. This is not a problem, as this would only
happen in a very small space (which should then have correspondingly few
nodes), so the algorithm still terminates with the correct answer using 2
oracle calls (which was inevitable for an almost-symmetric setup considering
imperfect data, as shown in 2.3.1) and taking only 0.3 seconds.

Table 5.4 gives an overview of the speed and effectiveness of our different
algorithms, given varying types of data.

Algorithm 1 Algorithm 2 ASP solveIterative

Handles perfect data Yes Yes Yes Yes
Handles effectively accurate data4 Sometimes Yes Yes Yes
Handles non-effectively-accurate data No No No Yes
Handles symmetry No No Yes Yes
Speed Fast Fast Slow Slow

Table 5.4: Pros and cons for each algorithm
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As we can see, our greedy algorithms are both quick, but understandably
do not do well when there are multiple solutions (they will be right 50% of
the time, given perfectly-correlated data for a symmetric grid of sockets) or
when the data is not effectively accurate.

Our two exhaustive solutions, the ASP solution and the solveIterative algo-
rithm, are slower (as would be expected), but are able to handle uncertainty
much better, by bringing in the oracle to determine the correct solution out
of multiple. However, as our ASP approach requires all constraints to be
fulfilled, it too cannot handle data that is not effectively accurate.

Out of all of the algorithms, solveIterative is the only one which is able
to successfully find the solutions to any of the three rooms in the real-world
dataset.

4Barring symmetry issues.
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Chapter 6

Conclusion

The goal of this project was to create a semi-automated system to determine
node positions in space using the RSSI signal strength between them. In
that sense, we have succeeded in creating such a system.

Our system, as far as we have seen with the data available, is able to
use logical reasoning mixed with limited human (oracle) input to suggest the
most likely mapping between nodes and sockets.

We have also shown that it is impossible to be certain of all of the nodes’
placements until we have physically checked the location of them all (except
for a final node, whose placement is determined automatically by virtue of all
other socket placements being taken). Therefore, we also propose a system
of verification so that a human operator can easily indicate if a proposed
solution is correct or not.

With our available real-world data, the first proposed solution (after re-
quiring an average of 4 oracle queries for the floors with 12 nodes) has been
correct 100% of the time. Thus, the verification procedure has, to this point,
been able to be the final step of the procedure, with no need to iterate further
afterwards to find additional possible solutions.

We have also provided tunable parameters – FrontierSize and Cloud-
Size to adjust the number of placement options considered per iteration, and
ϵ, to adjust the number of socket facts included. These parameters can be
adjusted to balance speed and exhaustiveness of search. We propose that the
parameters be set such that speed is prioritized – so far, with the data we
had available, we did not need exhaustive search and the correct solution was
always found with the parameters highly favoring speed over thoroughness
of search. However, if a case were to arise when the algorithm is not able
to find the solution, those parameters can be adjusted such that eventually
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every possible mapping is tested and the solution is guaranteed to be found.
The main improvements that will need to be made for this to be a viable

business solution are: scalability in terms of speed, and handling of complex
layouts and barriers.

The algorithm is currently with acceptable speed for the spaces that we
have been provided (rooms with 4 to 12 nodes), but would become pro-
hibitively slow in situations with many more nodes. The focus of this project
was to get a prototype designed and working, and there still remain many
sections of the code where optimization is possible.

Additionally, as mentioned below in Section 6.1.1, there are further chal-
lenges that would have to be addressed before more complex building setups
would be supported. It is likely the case that either clustering of rooms
and floors, scaling of distance values (e.g. adding artificial distance between
sockets to represent walls or ceilings), or both would be required before a
building would be able to be handled in its entirety.

6.1 Future work

6.1.1 3-Dimensional spaces

The existing solution has been made for 2-dimensional space. It would be
very easy to handle 3-dimensional space, by simply considering the 3-D for-
mula for Euclidean distance measurement rather than the 2-D version.

However, there are practical reasons why 3-D space might lead to more
issues. RSSI values will likely be greatly affected by thick ceilings, with
pipes and plumbing in between, and the signal strength between two nodes
placed directly on top of each other on different floors will likely have weak or
non-existent signals between each other. However, as the physical distance
between them will be small, the correlation constraint will be violated. In
situations such as these, it would be better to consider the floors as separate
problem spaces. As we do not initially know which nodes are on which floors,
we will have to be able to properly segment the data to allow the algorithm
to be run separately. This brings us to our next possible feature: clustering.

6.1.2 Clustering

Clustering the nodes into floors, halls, or other delineated spaces can have
many benefits. First, as discussed in the previous subsection, it can help
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remove errors introduced by thick walls or floors. Secondly, while our algo-
rithm can run quickly for smaller numbers of nodes, as we venture into larger
buildings and warehouses, the number of nodes can lead to prohibitively slow
processing.

One of the company’s customers is a logistics company with a single
warehouse that has 6 different halls, each with 225 lights. 225 nodes is
already a large number of nodes to handle, and handling all halls at once
(1350 nodes) would be much more difficult. In cases like these it would be
especially useful to be able to separate nodes by halls as a pre-processing
step.

6.1.3 Oracle implementation

We have so far described an oracle as a function of type N → S, and men-
tioned that this identification would be carried out by a human operator.
There are many ways that this could be done. The most simple would be a
system in which the user turns on a given node (the company already has
an app with the functionality to do this), and then reports back the loca-
tion (perhaps by clicking a location on a map on that same app). There is
a project being done simultaneously with this project, to make a system in
which nodes could be identified by pointing a camera at them and evaluating
a unique blinking pattern. While this function would be of type S → N , all of
our functions can fairly easily be refactored to work in this direction as well,
if this enhanced oracle were to be made available. This node identification
functionality could be used for our oracle(s), both for identifying nodes (for
creating seed mappings as well as narrowing down options in chooseSolution)
and for the verification oracle.

It is our hope that with these future optimizations, our prototype could
be made into a viable solution for mapping wireless nodes to their physical
locations.
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