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a backbone for formidable AI technologies. This 
thesis takes a different perspective. Through a 
series of studies on language comprehension and 
production, it investigates whether artificial neural 
networks—beyond being useful in countless AI 
applications—can serve as accurate computational 
simulations of human language use, and thus as a 
new core methodology for the language sciences.



Neural Models of Language Use

Studies of Language Comprehension and
Production in Context

Mario Giulianelli





Neural Models of Language Use

Studies of Language Comprehension and
Production in Context



ILLC Dissertation Series DS-2023-10

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 107
1098 XG Amsterdam

phone: +31-20-525 6051
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl

The research for this doctoral thesis has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 819455).

Copyright © 2023 by Mario Giulianelli

Cover design by Mario Giulianelli.
Printed and bound by Ipskamp Printing.

ISBN: 978-94-6473-254-2

illc@uva.nl
http://www.illc.uva.nl


Neural Models of Language Use
Studies of Language Comprehension and Production in Context

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. ir. P.P.C.C. Verbeek

ten overstaan van een door het College voor Promoties ingestelde commissie, 

in het openbaar te verdedigen in de Aula der Universiteit

op vrijdag 15 december 2023, te 11.00 uur

door Mario Giulianelli

geboren te Rome



Promotiecommissie

Promotor: prof. dr. R. Fernández Rovira Universiteit van Amsterdam
 

Copromotor: dr. W.H. Zuidema Universiteit van Amsterdam
 

Overige leden: prof. dr. G. Boleda Universitat Pompeu Fabra
prof. dr. V. Demberg Universität des Saarlandes
dr. I.A. Titov Universiteit van Amsterdam
prof. dr. F. Roelofsen Universiteit van Amsterdam
dr. S. Pezzelle Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica



Contents

Acknowledgments ix

1 Introduction 1
1.1 A story of language use . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Towards a computational theory of language use . . . . . . . . . . 5
1.3 Main contributions and overview . . . . . . . . . . . . . . . . . . 6

2 General background 13
2.1 Artificial neural networks as models of language use . . . . . . . . 13
2.2 Language modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Part One: Word Usage

3 Background 27
3.1 Word representations in NLP . . . . . . . . . . . . . . . . . . . . 27
3.2 Diachronic word usage change . . . . . . . . . . . . . . . . . . . . 30
3.3 Definition modelling . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Contextualised neural word representations 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 A usage-based approach to lexical semantic change modelling . . . 37
4.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Correlation with human judgements . . . . . . . . . . . . . . . . . 41
4.5 Qualitative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Evaluation across languages: The SemEval-2020 shared task . . . 51
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

v



5 Contextualised definitions as interpretable word representations 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Definition generation . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 Definitions are interpretable word representations . . . . . . . . . 68
5.5 Labelling word senses with definitions . . . . . . . . . . . . . . . . 71
5.6 Explaining semantic change with sense labels . . . . . . . . . . . . 74
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Part Two: Utterance Comprehension

6 Estimating surprisal with neural language models 83
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5 Analysis of language model estimates . . . . . . . . . . . . . . . . 90
6.6 Replication study: Surprisal constancy in newspaper articles . . . 92

7 Utterance surprisal as a function of discourse context 95
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2 Surprisal throughout texts and dialogues: Constancy vs. uniformity 97
7.3 Surprisal within contextual units . . . . . . . . . . . . . . . . . . 101
7.4 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . 109

8 The facilitating effect of construction repetition 113
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.2 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.3 Data: Extracting repeated constructions . . . . . . . . . . . . . . 117
8.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.5 Preliminary experiments . . . . . . . . . . . . . . . . . . . . . . . 120
8.6 The facilitating effect of construction repetition . . . . . . . . . . 123
8.7 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . 129

Part Three: Utterance Production

9 Background 137
9.1 Natural language generation . . . . . . . . . . . . . . . . . . . . . 137
9.2 Expectations, predictability, and surprisal . . . . . . . . . . . . . 139

vi



10 Evaluating uncertainty in neural text generators 141
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
10.2 Probing language processes for production variability . . . . . . . 143
10.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.4 Human production variability across NLG tasks . . . . . . . . . . 147
10.5 Neural text generators’ compliance to human production variability 148
10.6 Qualitative instance-level analysis . . . . . . . . . . . . . . . . . . 153
10.7 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . 155

11 Measuring utterance predictability with neural text generators 159
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
11.2 Alternatives in semantics and pragmatics . . . . . . . . . . . . . . 161
11.3 Alternative-based information value . . . . . . . . . . . . . . . . . 161
11.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 163
11.5 The psychometric predictive power of information value . . . . . . 164
11.6 In-depth analysis of psychometric data . . . . . . . . . . . . . . . 168
11.7 Relation to utterance surprisal . . . . . . . . . . . . . . . . . . . . 171
11.8 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . 174

12 Towards human-like production strategies in NLG systems 177
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
12.2 Doing things with words . . . . . . . . . . . . . . . . . . . . . . . 178
12.3 Case study 1: Reference games . . . . . . . . . . . . . . . . . . . 181
12.4 Case study 2: Text summarisation . . . . . . . . . . . . . . . . . . 182
12.5 Pragmatic production strategies . . . . . . . . . . . . . . . . . . . 183
12.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

13 Conclusion 187

A Word usage 191
A.1 Preliminary analysis of usage examples . . . . . . . . . . . . . . . 191
A.2 Prompt selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
A.3 Additional results: Other models and model variants . . . . . . . 194
A.4 Additional examples of generated definitions and sense labels . . . 194
A.5 Human evaluation guidelines . . . . . . . . . . . . . . . . . . . . . 196
A.6 Clustering embedding spaces . . . . . . . . . . . . . . . . . . . . . 197

B Utterance comprehension 201
B.1 Corpus excerpts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
B.2 Language models . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
B.3 Replication study: Surprisal constancy in newspaper articles . . . 205
B.4 Results: Utterance surprisal as a function of discourse context . . 208
B.5 Extraction of repeated constructions . . . . . . . . . . . . . . . . 208

vii



B.6 Adaptive language model . . . . . . . . . . . . . . . . . . . . . . . 210
B.7 Results: The facilitating effect of construction repetition . . . . . 213

C Utterance production 217
C.1 Further figures on production variability . . . . . . . . . . . . . . 217
C.2 Alternative set generators . . . . . . . . . . . . . . . . . . . . . . 220
C.3 Psychometric predictive power and sensitivity of information value 221
C.4 Utterance-level surprisal . . . . . . . . . . . . . . . . . . . . . . . 221
C.5 Intrinsic robustness analysis . . . . . . . . . . . . . . . . . . . . . 224
C.6 More derived measures of information value . . . . . . . . . . . . 224
C.7 Results: The psychometric predictive power of information value . 225

Samenvatting 265

Abstract 267

viii



Acknowledgments

My greatest thanks go to Raquel. Raquel, thank you for your patience, for always
listening to me, for your support in difficult times. Thank you for introducing me
to Janie, for creating a safe and exciting environment to work in, for teaching me
how to write and think science. From your example, I learned what it means to
be a scientist. I am so lucky to work with you.

I am also very grateful to all the amazing people and researchers in the ILLC
Dialogue Modelling Group. I would like to thank, in particular, Sandro, Marco,
Ece, and Joris. Our time together and our discussions have been invaluable to
me. I don’t know if I will ever find another group like ours.

I would also thank Andrey, Wilker, and Dieuwke. I have learned so much
from you all. Andrey, working with you is always an incredible pleasure.

Janie, thank you for being a great collaborator and a wonderful person. We
are the best team.

Giorgio and Fabrizia, thank you for making Amsterdam so fun. Angelo, our
calls, especially during the pandemic, have kept me (almost) sane—thank you.
Thanks to all of my ‘Roman friends’ for always making me feel like I have never
left and for your support, whenever I needed it. I love my job, but surviving a
PhD wouldn’t have been possible without you all. I promise I love you even more.

Alessandro, Elisabetta, Simone, thank you for always believing in me. You
make me feel like I owe you nothing, but I owe you everything. Grazie.

ix





Chapter 1

Introduction

Humans use bits of behaviour such as speech, hand and body movements to
transmit information among themselves. They use linguistic behaviour to com-
municate knowledge, plans, emotions, values, and more in general to achieve goals
in the world, i.e., to change the state of the environment in which they are situ-
ated. For example, humans use language to update the beliefs of other humans,
to coordinate their activity, and to complete tasks jointly. Being able to describe
how humans learn and exercise this ability is to me the single most exhilarating
goal of scientific inquiry.

The ultimate motivation that guides my research—a good portion of which,
as of today, is described in this thesis—is reverse engineering the human ability
to exchange information through linguistic behaviour. I believe achieving this
goal coincides with the creation of a model that can use language like and with
humans and serve as a computational theory of language use. Insights from this
line of research and progress towards this ideal model, a controllable but fully au-
tonomous contextually-grounded language agent, will inform and stimulate the
development of language technologies that more faithfully reproduce human lin-
guistic behaviour.

The road towards this goal is long and the life of a PhD student too short to
walk it. But it is with a feeling of total bliss that I can say that I now have a
map and an approximate route. Looking back—and looking forward—this is to
me the most exciting and valuable outcome of my doctoral studies. Be that as
it may, becoming and being a scientist is a form of service, and the community
I am serving, whether widely or more narrowly delineated, is fully indifferent to
my internal struggles, tensions and learning outcomes—and rightly so. The map
may be imperfect, the route is certainly provisional, and the steps I took were
sometimes wobbly, but they are my contribution to the ‘community’ and I will
proudly outline them in this thesis. I hope to be able to look back to these pages
with a refined route, more steps to count, and the same feeling of fulfilment.

1
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1.1 A story of language use

Language use is a type of behaviour, and just like any type of behaviour, it is
embedded in an environment, the context of language use. The context, with
its affordances, determines which actions can be taken; it shapes and constrains
what things can be said and how they can be said. A crucial component of the
environment in which humans take actions are other humans. Humans certainly
talk to themselves, or use language to reason about possible states of the world
and to form ideas (those, too, after all, are part of the state of the world; they are
physical connections and activations in the human brain) but the primary form
of language use is in interaction with other humans.

The reason why humans take actions is to change the state of the environment.
In particular, we try to change the state of the environment towards new states
that either coincide with or get us closer to our goals. Imagine a room containing
a desk, a chair, a sofa, a window, and two humans, Peter and Sally. Peter is at
the desk and Sally is sitting on the sofa, closer to the window. The window is
open and Peter is cold and tired. He thinks that if the window was closed, he
would be warmer and happier. Now, with the goal to change the state of the
environment—in particular, the state of the room—into one in which the window
is closed, Peter may ask Sally ‘Could you please close the window?’.

Goals are transformations of the state of the environment into states with
favourable properties: for example, states in which we are happier, experience
more pleasure, or make less effort. More generally, goals are states which produce
positive social, cognitive, and physical effects. The positive effects that states of
the environment generate are their utility. Peter is really cold, and asking Sally
to close the window may have an immediate positive physical effect: Sally might
close the window and, soon after, Peter would experience an increase in body
temperature. A body temperature increase is the utility of this possible future
state of the room. Actions, by extension, also have or generate utility, namely
the utility corresponding to the environment states that result from taking those
actions. If asking ‘Could you please close the window?’ transforms the room into
a state in which the window is closed, this will in turn generate a temperature
increase and positive effects on Peter’s body.

Utility can be both positive and negative. Certain states of the world may
have positive social effects but negative cognitive effects. For example, being kind
and polite in interactions tends to have positive social effects—e.g., it makes us
nicer people to talk or it can make us more convincing—but at the same time,
more often than not, it requires more physical and cognitive effort. Peter is tired,
and utters ‘Close the window’, which is a much less effortful piece of behaviour
to produce. In other words, the negative utility of ‘Close the window’—in this
case, its physical and cognitive cost—is lower in comparison to that of ‘Could you
please close the window?’.

The interlocutor, or audience—here, Sally—perceives the state of the environ-
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ment and the bit of linguistic behaviour produced by the speaker—Peter. Relying
on her model of the environment and her ability to recognise other humans’ goals
and plans (via models of the speaker and their utility), the audience uses the
speaker’s behaviour as a set of instructions to reconstruct, or predict, the new
state of the environment that the speaker intended to communicate. Linguistic
interaction is successful when the audience’s reconstruction of the speaker’s goal
is faithful to the originally intended new state of the environment. The act of
comprehending an utterance also comes with efforts and positive utility. For ex-
ample, the audience must pay attention to the speaker’s behaviour, it must take
some time to process it, and it must interpret it within the environment. For
all of these actions, the audience pays some cognitive cost, which may be recom-
pensed, for exampl, by positive social utility. If Sally takes the time and effort to
comprehend Peter’s request, and decides to indeed open the window, she might
make everyone happier.

The audience may be physically co-present with the speaker as in the case
of Peter and Sally, they might only perceive the linguistic act after one hundred
years as it is the case with books, they might be purely hypothetical, or they
might be the speaker themselves. In any case, a linguistic act is inseparable
from its audience, just like it is inseparable from its context(s) of production and
comprehension. This is as true for language production in face-to-face spoken
dialogue as it is for a theatre monologue, a podcast, or a written text. Because
the connection between linguistic behaviour and underlying communicative intent
is purely arbitrary, and because intents are non-observable (at least until new
groundbreaking scientific discoveries), a linguistic act is only complete when it
is perceived and interpreted by an audience. In fact, if it is perceived multiple
times, potentially by different audiences—song lyrics are an example of this—the
same linguistic act can induce multiple changes of the state of the world. These
changes can be different each time, they might vary for different audiences, and
there is no guarantee that the new state of the world will be the one the speaker
intended.

The reason why linguistic acts change the state of the world—that is, beyond
their mere occurrence, which itself is an obvious world change—is that while
linguistic behaviour is an arbitrary encoding of communicative intents, groups of
humans converge on similar models of the world and develop shared systems of
interpretation. They interpret the same behaviours in similar ways.

Humans continuously make and accept proposals about how language should
be used, and the most successful of these proposals become conventionalised.
Peter and Sally’s is a story about a single interaction, in a single environment,
between two individuals. These are in a sense units on the temporal, spacial, and
social dimensions of context that constitute the space of language interaction. The
temporal, spacial, and social dimension jointly shape and constrain what things
can be said and how they can be said. When we combine these three dimensions
and observe them at once, we appreciate language as a complex adaptive system
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of interactions. The relationships between the system’s parts, i.e., among humans
and between humans and the environment, give rise to ever-changing collective
forms of linguistic behaviour.

What makes the emergence of such system of interactions possible are a few
fundamental characteristics of linguistic behaviour—so to say, a few precondi-
tions. The first condition is agency, i.e., the ability to behave non-randomly but
rather as a function of one’s utility and model of the environment. Utility gen-
erates intents; the model of the environment prescribes what actions are more
likely to lead to intended outcomes and what outcomes are plausible given the
current environment state. The ability to speak a certain natural language can
be subsumed under this model of the environment. Moreover, because other hu-
mans are part of the environment, the model of the environment is also a model
of interlocutors. Without the socio-cognitive skill to entertain a model of the
interlocutor, language interaction is hardly ever successful, and language cannot
be learned in the first place.

The model of the interlocutor—whether a speaker or a comprehender—must
prescribe (i) that the interlocutor’s actions can be assumed to have an intended
utility, and (ii) that the interlocutor makes the same assumptions. If Sally did
not ascribe any intent to Peter, she would not open the window—nor would she
even try to interpret Peter’s utterance as a request. She would rather take it as
an arbitrary piece of behaviour to observe, but with which she has nothing to do,
like a thunder or a falling leaf. If Peter did not assume that Sally believes he has
intents, there would be no point in requesting anything from her. This mutual
and recursive recognition of agency (i.e., entertaining intents and performing be-
haviour as a function of those intents) is a prerequisite for joint action, and thus
a second necessary condition for language interaction to occur.

To predict their joint utility, humans use mental models, but choosing which
utterance to produce and how to interpret it towards joint utility maximisation
are decision-making problems. Beyond models of the environment and interlocu-
tors, speakers must thus possess a higher-level model of utility, either implicit or
explicit, as a way to determine the relative importance of different lower-level
utilities and to modulate producer and comprehender’s utilities; as well as the
ability to deal with uncertainty : as humans do not possess a perfect model of
the world, they cannot be certain about the transformations of the state of the
world their actions will cause. If Peter had been wise, when choosing between the
two alternative utterances above, he would have considered that not only does
‘Close the window’ have lower or negative social utility but also (and probably as
a consequence) it creates more uncertainty about the future state of the environ-
ment. If he had been wise, he would have thought of the last times he and Sally
worked in that room with the window open. A few times he used the utterance
‘Close the window’ and this resulted in a state of the room in which Sally told
him to ask more politely, and a few more linguistic actions were needed to bring
back their joint social utility to positive levels. Peter, however, is tired, and these
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considerations require an amount of cognitive effort that he is not in a position
to expend. So he says ‘Close the window’ and, more or less knowingly, he takes
a higher risk.

Luckily, Sally has an easier time making social utility calculations, she has a
good model of Peter, and she knows he is tired. She opens the window anyways.

1.2 Towards a computational theory of language
use

This story of language use is a synthesis of multiple philosophical perspectives,
scientific theories, and experimental traditions. It is rooted in semiotics (Peirce,
1932; Wittgenstein, 1953; de Saussure, 1972), formal pragmatics (Searle, 1969;
Grice, 1975; Sperber and Wilson, 1986; Levinson et al., 2000; Horn and Ward,
2004), usage-based accounts of natural language (Clark, 1996; Tomasello, 2003;
Goldberg, 2006; Bybee, 2006, 2010), conversation analysis (Sacks, 1992; Schegloff,
1992; Seedhouse, 2013), rational speech act theory (Frank and Goodman, 2012b;
Goodman and Frank, 2016), the concept of situation models (Johnson-Laird,
1986; Sanford and Garrod, 1981; Van Dijk et al., 1983; Zwaan and Radvansky,
1998) and theories of their interactive alignment (Pickering and Garrod, 2004;
Garrod and Anderson, 1987).

In addition to synthesising these traditions, my thesis is an attempt to inte-
grate them with a computational modelling approach, that of connectionism and
parallel distributed processing (PDP; McClelland et al., 1986; Rumelhart and
McClelland, 1986; Lake et al., 2017; McClelland et al., 2019). This is a compu-
tational modelling approach which explores how cognitive processes emerge from
the interactions among simple, neuron-like units through their weighted connec-
tions. The peculiarity of PDP models, which we will refer to as artificial neural
network models—or, in short, neural models—is that they employ distributed
representations. That is, their representation of an item is distributed across
multiple neural units (which also participate in representing other items) and
their information processing requires the collective and simultaneous involvement
of multiple units (McClelland and Rogers, 2003).

While their processing and reasoning mechanisms are different from humans’,
artificial neural networks can predict human behaviour exceptionally well. Neu-
ral models of language, in particular, are powerful models of human language
comprehension and production—they can infer word and utterance meaning in
context, form human-like expectations about upcoming linguistic material, and
generate language which is hardly distinguishable from human language produc-
tions. What is crucial is that to do so, they require only a few assumptions: that
the knowledge which governs processing is stored in the strengths of a model’s
connections and that it is acquired gradually through experience. Moreover,
neural models are executable, and thus produce verifiable accounts of how neural
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processes give rise to behaviour via the emergence of representations and decision-
making strategies. In other words, neural models can serve as a computational
theory of language use (Baroni, 2022). They can produce data-driven algorithmic
explanations of the principles that guide linguistic interaction.

Evidence that neural language models can be used as effective tools for the
language sciences is increasingly strong, yet the space of possible applications is
still vastly uncharted. This thesis explores novel ways of using neural language
models as models of human language use, with the goal of establishing new meth-
ods and enabling new research directions for a wide variety of language scientists,
from historical linguists, sociolinguists, and lexicographers to neuroscientists and
psycholinguists. Insights from this line of research further inform and stimulate
the development of language processing technologies that more faithfully repro-
duce human linguistic behaviour.

1.3 Main contributions and overview

This first chapter has so far presented the perspective and motivation that have
informed this thesis. Chapter 2 develops this introduction by tying it to the
general background, which includes a review of arguments in favour of using
artificial neural networks as models of language use as well as an introduction to
language modelling and a brief history of language model architectures.

The rest of the thesis is then structured into three parts: word usage (Part 1),
utterance comprehension (Part 2), and utterance production (Part 3). These are
the three main aspects of language use that the studies in this thesis address. Part
1 and 2 are connected by a focus on language comprehension; Part 2 and 3 are
about entire utterances rather than individual words. What ties all three parts
together are (i) a computational approach to the study of language use based
on neural language models, (ii) a pragmatic perspective on the role of context in
shaping linguistic communication, and (iii) the scientific goal of learning about
quantitative aspects of linguistic behaviour, while generating insights about the
state of the art of computational modelling.

Part 1: Word Usage

Part 1 explores ways of using neural language models to study word usage and
interpretation as modulated by sentential context. I present two novel ways of
using neural language models to obtain lexical representations as a function of a
word’s context of occurrence. The two proposed types of lexical representation are
evaluated in terms of their suitability for semantic change analysis, an established
computational linguistic task which requires capturing word meaning with its
nuanced context-determined modulations. Overall, this part of the thesis delivers
useful tools to linguists and social scientists, while shedding light on language
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models’ ability to interpret words—an ability which underpins general machine
reading comprehension.

Chapter 3 introduces the relevant background, which includes word mean-
ing representations in NLP, computational approaches to the modelling of word
meaning change over time, and a review of the word ‘definition modelling’ task.

Chapter 4 presents a new methodological approach which consists of extract-
ing, grouping, and analysing contextualised word representations from neural lan-
guage models. This is the first unsupervised approach to lexical semantic change
that makes use of contextualised neural word representations. I propose several
metrics to quantify a word’s degree of semantic change with this type of lexical
representation, create a new evaluation dataset of human similarity judgements,
and use them to show that contextualised representations and their detected se-
mantic shifts correlate with human intuitions. The proposed approach captures
synchronic phenomena such as word senses and syntactic functions, literal and
metaphorical word usage, as well as diachronic linguistic processes related to the
narrowing and broadening of word meaning over time. This chapter also con-
tains an extensive evaluation of the proposed approach on four indo-european
languages. I test contextualised representations obtained using different neu-
ral architectures (LSTM and Transformer language models), training corpora,
and change detection algorithms. Based on empirical findings, I make practical
recommendations for the deployment of contextualised word representations as
detectors of word meaning change.

Chapter 5 presents a second novel approach to semantic change analysis that
relies on human-readable word definitions generated by neural language models.
I show that word definitions automatically generated with a specialised language
model can serve as interpretable representations for polysemous words. The gen-
erated definitions are evaluated via human judgements of definition quality and
by comparison against human word usage similarity judgements. Generated def-
initions are in most cases accurate, understandable, and approximate human
judgements of word usage similarity better than the previously introduced con-
textualised word representations. I also demonstrate how word sense definitions
obtained through a simple modification of this main approach can be used to pro-
duce interpretable descriptions of diachronic relations between word senses, thus
providing explanations for meaning changes observed in diachronic text corpora.

Part 2: Utterance Comprehension

In Part 2, I use neural language models to study aspects of utterance compre-
hension as a function of the relevant discourse context. In particular, I obtain
estimates of contextualised surprisal (or information content) from neural lan-
guage models and use these to test psycholinguistic theories of utterance pro-
duction which postulate speakers’ monitoring of information rate due to its ef-
fect on comprehension effort. Findings from these analyses challenge established
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hypotheses of rational use of the communication channel, especially in dialogic
settings. Overall, however, they confirm that strategies of utterance production
can be described as efficiently containing surprisal and thus the comprehension
effort of interlocutors. Faithful modelling of information transmission strategies
in humans, to which this part of the thesis contributes, informs the development
of improved technologies for natural language understanding and generation.

Chapter 6 begins with an introduction of the relevant background: linguis-
tic theories of audience-awareness and collaborative (joint production and com-
prehension) effort, the role of surprisal in psycholinguistic accounts of language
processing, and the information-theoretic notions that underlie surprisal theory.
Then, it presents a method to obtain estimates of utterance surprisal using autore-
gressive neural language models. While previous work estimates surprisal without
taking discourse context into account, the proposed approach allows measuring
utterance surprisal both in and out of context, thereby making it possible to
quantitatively inspect the role of context in reducing predictive uncertainty over
next utterances. This chapter defines the main information theoretic measures
of surprisal, describes the computational models that produce the surprisal esti-
mates, and evaluates these estimates intrinsically, in terms of their ability to fulfil
expectations about context-sensitive language processing.

Chapter 7 applies the proposed surprisal estimation method to study pat-
terns of information transmission in English texts as well as spoken and written
dialogues. Central tenets of the classic information-theoretic model of commu-
nication, which predict rational strategies of information transmission within a
noisy channel, are put to test. In particular, I revisit the entropy rate constancy
and the uniform information density hypotheses. While the results of this analysis
complement and support prior evidence of rational production strategies in texts,
they also suggest that the noisy-channel model of communication, coupled with
rationality assumptions, may paint too simplistic a picture for dialogue, where
two (or more) speakers have to monitor and coordinate information transmission
strategies on the fly. The chapter continues by focusing on entropy rate constancy
and uniform information density in task-oriented dialogue, with a focus on how
task-determined contextual units affect patterns of information transmission. I
identify theoretically motivated contextual units over which participants may de-
ploy strategies of information management and compression, and observe that
dialogue participants’ production strategies are more accurately described as ra-
tional when analysed within topically coherent and reference-specific contextual
units rather than within entire dialogues.

Chapter 8 moves the focus to open-ended dialogue, for which the weakest
empirical evidence of rational communication strategies was observed in the pre-
vious chapter: in purely conversational settings, speakers seem to progressively
reduce their collaborative effort over time. I test the hypothesis that speakers
use construction repetition (i.e., the repeated use of particular configurations of
structures and lexemes) as a strategy for surprisal mitigation—in particular, by
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padding the more information dense parts of their utterances with progressively
less information dense lexical bundles. I define a new information-theoretic mea-
sure that captures the facilitating effect of constructions on utterance process-
ing in dialogue. The findings of this analysis confirm that constructions exhibit
lower surprisal than other expressions and that their surprisal decreases with
repetition—leading to an overall decrease in information rate over the course of
a dialogue.

Part 3: Utterance Production

The goal of Part 3 is to lay the foundations for using neural language generators
as models of utterance production. While natural language generation systems
are widely deployed in real-world applications, evidence that they faithfully re-
produce aspects of human linguistic behaviour is very scarce. I start by analysing
variability in human production, a characterising aspect of language production
that is often overlooked in natural language generation research. I propose a
statistical framework to quantify variability and to assess language generators’
alignment to the production variability observed in humans. Just like, in Part
2, neural models of comprehension allowed studying audience-aware production
strategies, here I use language generators as models of production to study hu-
man comprehension behaviour. I define novel measures of utterance predictabil-
ity that are complementary with the probabilistic surprisal measures used in
Part 2 and test their psychometric predictive power, showing that they can pre-
dict and explain human acceptability judgements and reading times. I conclude
Part 3 by collecting insights from the rest of the thesis into a formal framework
for artificial simulations of human-like—efficient and communicatively effective—
language production behaviour. Overall, beyond its importance to linguistic and
psycholinguistic research, this part of the thesis complements Part 2 in informing
and stimulating the development of language processing technologies that more
faithfully reproduce human linguistic behaviour.

Chapter 9 introduces the relevant background beyond what is already pre-
sented in the general background and the background of Part 2. This includes
natural language generation—with a focus on automatic evaluation—and covers
the relation between surprisal and predictability in expectation-based theories of
language processing.

Chapter 10 presents a statistical framework to quantify variability in lan-
guage production. Using datasets that collect multiple human utterances given
the same production context, I measure human variability across four produc-
tion tasks, providing empirical evidence for qualitative expectations about the
open-endedness of different communicative scenarios. I then assess neural text
generators’ compliance to the levels of variability observed in human data and
find that, overall, generators are well calibrated—which suggests that they can
begin to be used to study aspects of language production in humans. The chap-
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ter also draws strong connections between variability and uncertainty, resulting
in tools to measure sequence-level uncertainty in language models and to evaluate
the statistical fit of natural language generation systems.

Chapter 11 builds on the finding that neural language generators repro-
duce human production variability. I use the technical tools and the framework
introduced in the previous chapter to design novel measures of utterance pre-
dictability. The proposed measures are based on the idea that comprehenders
form expectations and reason over alternative utterances that speakers may have
but did not produce in a given communicative context. I use neural text genera-
tors to obtain sets of plausible alternatives and measure utterance predictability
in terms of an utterance’s distance from the alternative set. I assess the robust-
ness of the proposed measure of predictability, ‘information value’, to different
configurations of the underlying estimators, and then I demonstrate its ability
to predict human comprehension behaviour in the form of acceptability judge-
ments and reading times. Not only does information value possess the favourable
property of being inherently sequence-level and interpretable—unlike aggregates
of token-level surprisal; it also has stronger psychometric predictive power for
acceptability judgements in spoken and written dialogue and is complementary
to surprisal as a predictor of reading times.

Chapter 12 collects insights from the rest of the thesis into a conceptual
framework for efficient and communicatively effective—i.e., pragmatic—natural
language generation in variably complex communicative scenarios. The frame-
work relies on four main notions: context, communicative goals, production and
comprehension costs, and communicative utility. I define these notions formally
and, in two case studies, I provide suggestions for their operationalisation in
classic generation tasks. I argue that human-like, pragmatic linguistic behaviour
emerges as a result of reasoning about context, goals, costs, and utility, and I dis-
cuss possible promising directions towards pragmatic natural language generation
systems that learn to reason about these concepts.

The thesis ends with an overall summary and a brief discussion of the implications
of my main contributions (Chapter 13).

1.3.1 List of publications

This thesis is largely based on ideas, methods, and findings presented in the fol-
lowing nine papers.
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Lexical Semantic Change with Contextualised Word Representations. In
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Chapter 2

General background

In this chapter, I provide an overview of the main concepts that underlie all the
studies presented in the thesis. The chapter is split into two sections. The first
section introduces artificial neural networks and highlights why they are suitable
as models of language use. The second section describes language models, the key
technology that powers the methods and analyses in this thesis.

2.1 Artificial neural networks as models of
language use

This thesis consists of a series of studies conducted with the aim of contributing
new supporting evidence to the claim that artificial neural networks are a class
of models that is suitable to predict and explain human linguistic behaviour, and
that they can therefore be used as a linguistic formalism.

Artificial neural networks belong to the tradition of Parallel Distributed Pro-
cessing (PDP; McClelland et al., 1986). PDP approaches can provide a mecha-
nistic explanation of the principles underlying human language use as they model
cognitive processes as arising from simple interactions of neurons through synap-
tic connections. Indeed, since their inception, they have been used to model a
wide range of cognitive tasks, such as past-tense learning (Rumelhart and Mc-
Clelland, 1986), the Stroop effect (Cohen et al., 1990), and serial recall (Botvinick
and Plaut, 2006). Furthermore, the PDP paradigm sits well with the language-
as-action tradition introduced in the previous chapter: knowledge that governs
processing is stored in the strengths of the network connections and is acquired
gradually through experience.

Now, the toolkit of the language and cognitive sciences already includes good
explanatory models. Cognitive process models, for example, which typically con-
sist of simple and interpretable components, can explicitly encode human cogni-
tive priors resulting from (biological) neural architecture, as well as environmental

13
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statistics, development, and evolutionary pressure (Ma and Peters, 2020). So why
should we use artificial neural networks instead? Cognitive process models require
hand-crafted features and decision rules, which (i) introduce potentially unverifi-
able assumptions and (ii) may prevent scaling to complex and high-dimensional
tasks. In contrast, deep neural networks—the modern connectionist models—can
solve highly complex tasks with very few assumptions and little-to-no feature en-
gineering (recurrent neural networks and Transformers, e.g., perform almost as
well as humans in a variety of language understanding tasks), they can serve as
models of task learning (Rogers and McClelland, 2004; Rumelhart et al., 1986;
Lake et al., 2017; Kruschke, 1992), and they have the potential to explain how
neural processes give rise to behaviour, via the emergence of representations and
decision strategies.

Deep learning models have indeed been shown to be compatible with modern
linguistic frameworks such as the Rational Speech Act, a social cognition approach
to language use (Frank and Goodman, 2012b; Goodman and Frank, 2016) which
is compatible with the story of goal-directed action and perception presented in
the previous chapter, and which has found notable empirical support as a com-
putational level description of language use—for instance, in experiments on the
interpretation of referring expression, figurative language, vagueness and embed-
ded implicatures. Combinations of neural models and RSA have been employed
to study the role of both listeners and speakers (Monroe et al., 2017; Newman
et al., 2020; Andreas and Klein, 2016) in linguistic interaction—allowing the RSA
framework to generalise to more complex communicative scenarios. Neural net-
works can provide an utterance space for cognitive agents to reason over; they
can construct contextual representations and, with respect to these, verify utter-
ances; and, especially when trained with reinforcement learning curricula, they
can reason about goals, learn utility and cost functions, and use them to perform
action planning.

2.2 Language modelling

In this section, I will introduce language models, the key technology used through-
out this series of studies. First, I will present language modelling as a ‘task’, or
general problem formulation, and then I will survey the main types of language
models as of today, focusing on their varying ability to make use of contextual
information—an aspect that is crucial to their deployment in this thesis. There
exist countless resources that describe language models at virtually any level of
detail; this is intended to be a targeted, non-exhaustive, and—with a few neces-
sary exceptions—informal introduction.
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It is not uncommon for a person to find themselves in a conversation and
suddenly realise that they can accurately predict what their interlocutor is going
to say next, even without them completing their utterance.

(1) We should really visit...

If they know their interlocutor well and have a shared history of relevant inter-
actions, they may be able to guess that the utterance continues as follows:

(2) We should really visit Inverness and see the Loch Ness monster!

The two speakers have previously talked about this topic and it is shared knowl-
edge that Inverness may be a fun place to visit over the weekend, so hearing the
word ‘visit’ restricts the space of possible sentence continuations to ‘Inverness’,
‘Loch Ness’, and perhaps a few other plausible alternatives such as ‘your parents’
or ‘the art gallery’. It is not necessary to know the interlocutor to predict that
the sentence will not continue with a verb—for example, ‘study’—as that would
make the sentence ungrammatical, nor with a noun phrase such as ‘the desk’
because that would make the sentence semantically implausible. There can be
exceptions: unlikely or apparently implausible continuations may also occur. For
example, the speaker may decide to say:

(3) We should really visit the monster this weekend!

Because ‘the monster’ is a surprising yet meaningful continuation, this utterance
has a certain probability to carry a comedic effect—at least between the two
interactants.

Predicting which word is likely to come next given a situational and inter-
actional context is one of the central problems in natural language processing
and computational linguistics, and it is referred to as language modelling. Being
able to form expectations (e.g., by assigning a probability) to next words has
many practical applications. In their Introduction to Natural Language Process-
ing, Computational Linguistics, and Speech Processing, Dan Jurafsky and James
Martin mention a few (2009). For example, having a model of likely sequences of
words can help speech recognition systems identify words in noisy and ambigu-
ous input, it can help grammatical error correction systems detect and correct
mispellings, and it is essential for good translation systems.

Models that assign probabilities to sequences of words are called language
models or, in short, LMs. Typically, these consist of an autoregressive factori-
sation of the probability of sequences, with conditional nextword probabilities
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predicted by a statistical model θ:

pθ(We should really visit the monster) = (2.1)
pθ(monster|We should really visit the) ×
pθ(the|We should really visit) ×
. . . ×
pθ(We|<s>)

where ‘<s>’ is a special symbol indicating the beginning of a sentence. We
will refer to the input of a language model as the context. The context is a
random variable X that can take a specific value X = x. A context x can be a
sequence of words such as that in Equation 2.1, it can be a source sentence in
machine translation, a sequence of dialogue turns, or any natural language string
input to the language model. Given a context, the language model predicts a
distribution over the next sequence, a random variable Y . This, in turn, can
take a specific value Y = y such as a translated sentence, a dialogue turn, or any
word sequence that plausibly follows the context x. Using this terminology and
notation, language modelling can be defined as the task of predicting a probability
distribution over the countably infinite set of natural language strings given, as
a context, another natural language string:

p(Y |X = x) . (2.2)

Given the string ‘We should really visit’, a good language model will assign a
higher probability to more likely grammatical continuation ‘the’ than to ‘study’.
Moreover, a language model that has been exposed to the history of interactions
between the interlocutors will not find the word ‘Inverness’ surprising as a con-
tinuation. Perhaps it will assign higher probability to it than to ‘Belfast’ even
though ‘Belfast’ is a more frequent word. Generally speaking, the most common
way of obtaining language models that make accurate next word predictions is by
optimising the underlying statistical model via maximum likelihood estimation.
Given a text corpus, the model is presented with one sentence at a time and
its parameters are adapted in such a way that the probability of the observed
word sequences is maximised. There are some drawbacks to this approach—the
fact that Belfast is not observed in the data does not mean it is not a plausible
continuation—and they will be discussed in Part 3 of this thesis. Nevertheless,
most language models these days are optimised through this simple learning ob-
jective. The exact way the parameters θ are updated depends on the type of
statistical model. In the next section, I will review five types of model: n-gram,
(feed-forward) neural network, RNN, LSTM, and Transformer language models.
The focus will be on how contextualisation is achieved in each of them, highlight-
ing how improvements in a model’s ability to capture contextual cues are strongly
related to the overall quality of the model.
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2.2.1 A brief history of language models

We have defined language modelling as the task of predicting the conditional
probability distribution P (Y |X = x) over word sequences. I have also mentioned
that this complex task is typically re-expressed as the easier, more tractable prob-
lem of predicting the probability of a sequence y = (w1, . . . wm) one word at a time
(Equation 2.1). More precisely, the joint probability P (Y = w1 . . . wm|X = x)—
which can be spelled out as P (Y1 = w1 ∩ Y2 = w2 ∩ · · · ∩ Ym = wm|X = x)—is
re-expressed, through the chain rule, as the multiplication of conditional next
word probabilities, for each word in the sequence:

p(Y = w1 . . . wm|X = x) = (2.3)
p(Y1 = w1|X = x) ×
p(Y2 = w2|X = x w1) ×
. . . ×
p(Ym = wm|X = x w1 . . . wm−1)

One naive approach to determining this probability involves using relative fre-
quency counts. Given a corpus of texts, we can define the probability of wi

given X = (x w1 . . . wi−1) as the number of occurrences of the word sequence
(x w1 . . . wi−1) followed by the word wi divided by total number of occurrences
of (x w1 . . . wi−1):

p(Yi = wi|X = x w1 . . . wi−1) =
count(x w1 . . . wi−1 wi)

count(x w1 . . . wi−1)
(2.4)

The problem with this naive approach is that the contextual sequence instantiat-
ing the random variable X can be a long word sequence, and long word sequences
are rare by nature. Language is recursive and creative, so there exist infinite se-
quences one can form with words from a natural language vocabulary. Moreover,
language is in constant change and new sequences are created all the time. Con-
sequently, any particular context may have never existed before, especially if it
consist of a long sequence.

A simple alternative approach is to assume that the probability of the next
word only depends of the last n words in the contextual sequence. This is
commonly referred to as an n-th order Markov assumption. The probability
p(Yi = wi|X = x w1 . . . wi−1) can be then approximated as p(Yi = wi|X =
wi−n . . . wi−1). The subsequence (wi−n . . . wi−1) is typically referred to as an n-
gram. The advantage of this approach is that, when n is a low number such as
2, 3, or 4, many n-grams are no longer rare and their counts can be estimated
from a corpus. Language models that approximate the conditional probability of
the next word as its probability given the previous n words are called n-gram
language models. Since some n-grams will still inevitably be rare (e.g., the fre-
quency of the bigram ‘AI alignment’ in a text corpus collected in 2010 is probably
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close to zero), so-called smoothing techniques have been developed throughout the
years to redistribute the probability of seen n-grams to unseen ones (e.g., Jelinek
and Mercer, 1980; Katz, 1987; Kneser and Ney, 1995; Gale and Sampson, 1995),
thus preventing that a probability of zero is assigned to sequences containing
unseen n-grams.

With our without smoothing, n-gram language models have important flaws.
First, while the Markov assumption makes it possible to compute relative counts
and approximate sequence probabilities, estimating likelihoods by only looking
at the previous few words inevitably leads to inaccurate next word predictions.
Topical and logical coherence, for example, cannot be guaranteed as they require
looking further backwards in the context; even more local phenomena related to
grammaticality and selectional preferences cannot be properly modelled as they
might often require tracking long-distance dependencies between words (e.g., it is
impossible to assign the right probability to the base form of an English verb vs.
its third person form if the subject of that verb occurs more than n words away).
A second important drawback has to do with storing n-gram counts for large
text corpora. The amount of memory required simply scales with the number of
texts observed, making n-gram language models particularly memory-inefficient.
A third weakness is that the modelling of word and n-gram usage is performed
independently for each word in the vocabulary and for every possible n-gram.
There is no re-sharing of information between word and n-gram features. For
example, because they have no notion of semantic similarity between words and
phrases, n-gram language models have no way of re-using the relative counts
of the phrase ‘lexical semantic change’ when the phrase ‘lexical semantic shift’,
which has been never observed in the training corpus, appears at test time.

Neural network language models tackle the last two issues, resulting
in more efficient and generalisable architectures. The key idea is to use high-
dimensional vectors to represent words, rather than their simple identity (i.e.,
a symbol). Given an n-gram context, the feature vector of the corresponding n
words can be concatenated and used as an abstract representation for the context.
In this way, neural LMs can exploit the semantic similarity between ‘change’ and
shift to bootstrap a similar context representation for ‘lexical semantic change’
and ‘lexical semantic shift’. Relative counts are no longer needed. They are im-
plicitly captured by a series of (layers of) affine transformations, which re-express
context representations in alternative high-dimensional spaces, from which next
probabilities can be calculated. The following is a simple neural network language
model with a context window of size 4:

ci = concat(ewi−3
, ewi−2

, ewi−1
, ewi

) (2.5)

hi = tanh(W (h)ci + b(h)) (2.6)

pi+1 = softmax(W (p)hi + b(p)) (2.7)

where ewi
(a numerical vector representing word wi), W (h), W (p), b(h), and b(p)
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are trainable model parameters. Maximum likelihood estimation with neural
networks is achieved through error back-propagation. After the network has
processed the context vector and predicted from it next word probabilities, its
parameters (both the word representations and the transformation matrices) are
updated with a simple learning rule: the parameters are changed in such a way
that the next word w∗

i observed in the training corpus becomes more likely:

L = − log pi+1(Yi+1 = w∗
i+1|X = x) (2.8)

We will encounter this quantity again in Part 2, where we will refer to it as
information content or surprisal (Shannon, 1948) and interpret it as quantify-
ing the degree of unexpectedness of a linguistic signal in context. Surprisal is a
mathematical operationalisation of signal predictability which has been empiri-
cally successful for the study of human language processing—and this is not a
coincidence: artificial neural networks were originally developed as model of the
cognitive mechanisms underlying human behaviour.

It is not a coincidence either that the next type of language model we will
discuss relies on an artificial neural architecture developed by a cognitive scientist,
John Elman, with the goal of giving representation to time (and thus to sequences
of observations) in neural networks (Elman, 1990). Elman networks are neural
networks equipped with context units, artificial memory units designed to store
information from prior stages of processing. These units enable the network to
access and reuse previously stored information, enhancing its ability to process
sequential data effectively. The resulting neural networks are commonly referred
to as Recurrent Neural Networks, or RNNs. RNN language models introduce
one crucial modification with respect to the neural network LMs in Equations
2.5 to 2.7. The hidden unit hi (Equation 2.6) is computed as a function of the
current word representation as well as the representation of the computations
involved in the processing of the sequence up until the current word, as stored in
the context-memory unit hi−1:

hi = tanh(W (x)ewi
+W (h)hi−1 + b(x)) (2.9)

pi+1 = softmax(W (p)hi + b(p)) (2.10)

Crucially, the previous context unit hi−1 does not only represent the previous
word wi−1, nor the previous n words, but rather all the words in the contextual
sequence up to the current word wi. This is the fundamental difference between
RNN language models and simple feedforward neural network language models
(and, of course, n-gram language models), which, at least in principle, allows
RNNs to condition next word predictions on contexts of unlimited length.

In practice, however, RNNs are only able to model short contexts. To learn
dependencies between distant words, back-propagation must travel back in time,
through W (h), until the beginning of the word sequence. At each time step, the
magnitude of the gradient decreases and it eventually vanishes before it reaches
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the furthest portions of the context. To obviate this vanishing gradient problem,
two other cognitive scientists, Sepp Hochreiter and Jürgen Schmidhuber, devel-
opped the Long Short-Term Memory, or LSTM (Hochreiter and Schmidhuber,
1997). LSTM language models include an explicit memory cell which controls
the gradient by design and prevents it from vanishing after a few time steps.

ui = tanh(W (xu)ei +W (hu)hi−1 + b(u) (2.11)

ii = σ(W (xi)ei +W (hi)hi−1 + b(i)) (2.12)

fi = σ(W (xf)ei +W (hf)hi−1 + b(f)) (2.13)

oi = σ(W (xo)ei +W (ho)hi−1 + b(o)) (2.14)
ci = ii ⊙ ui + fi ⊙ ci−1 (2.15)
hi = oi ⊙ tanh(ci) (2.16)

pi+1 = softmax(W (p)hi + b(p)) (2.17)

The input, output, and forget gates (ii, io, and if ) have an intuitive interpre-
tation: they regulate the amount of contextual information that is remembered
and forgotten by the network, by modulating the output of hidden and recurrent
computations. Addressing the vanishing gradient problem allows LSTM language
models to learn long-distance dependencies between words in the context. As a
result, the next word predictions of LSTM models can track topical and logical
coherence, as well as syntactic structures and selectional preferences with a wide
scope over surface forms.

While LSTM language models are able to take into account large contexts,
they still compress the representation of the entire context into a single recurrent
unit, thus limiting the amount of information that can be propagated through
distant portions of the context. Instead of making use of a single recurrent unit,
so-called neural attention mechanisms keep track of the representations of each
word in the context and combine them when predicting the current word.1 One of
the most popular forms of attention is the scaled dot-product attention (Vaswani
et al., 2017). Given an observation (w1 w2 . . . wm) and the word wi at a given
position i within the sequence, the amount of attention on any other word wj in
the sequence is determined by the query vector qi and the key vector kj. The
output representation for word wi is then computed by weighting the value vector
vj of each word wj (including wi itself) by the attention weight aij:

aij = softmax(qik
⊤
j ) (2.18)

hi =
∑

j=1...m

aijvj (2.19)

1These are more precisely referred to as self-attention mechanisms as they condition com-
putations on other parts of the same observation. Attention is a more general mechanism in a
neural network that allows the model to learn to make predictions by attending to a given set
of data.
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Query, key, and value vectors are learned parameters. This makes attention-based
neural models able to jointly optimise the selective attention weights (through
q and k) and the representation of each input input (through value vectors v).
Transformer neural models (Vaswani et al., 2017) build on this fundamental mech-
anism by adding two main modifications. First, rather than only computing the
attention once, Transformers use a multi-head attention mechanism which com-
putes the scaled dot-product attention multiple times in parallel and combines
them through concatenation and linear transformation. Second, Transformers
consist of multiple layers of multi-head attention, interleaved with normalisation
and feed-forward neural layers. The resulting neural models are the backbone of
Transformer language models.

Similarly to LSTM models, Transformer LMs typically include static word
embeddings as input, or first-layer representations. Furthermore, because Trans-
formers have no in-built notion of time (attention is a function over a set of
context positions), the input layer typically also includes positional embeddings
to allow the model to learn different attention patterns according to the position
of a word in the context. Transformer LMs are currently the most commonly
used neural architecture for language models, and they take two main forms. En-
coders have as a goal to learn a representation of the input sequence (mainly by
learning to predict the probability of the current word given its left and right con-
text: pi = softmax(Whi + b); this is called masked language modelling because
the model tries to predict words for a set of masked positions in the sequence).
Decoders, on the other hand, learn to predict the next word, in a more classic
language modelling setup: pi+1 = softmax(Whi+ b); this is called autoregressive
or causal language modelling. Encoders and decoders can be combined, such as in
the original Transformer model (Vaswani et al., 2017), or used separately: BERT
is perhaps the most prominent example of an encoder (Devlin et al., 2019b), while
GPT-2 is certainly the most important example of a decoder-only language model
(Brown et al., 2020b).

A last property of the Transformer language models which will be used through-
out this thesis is that they are pre-trained on massive amounts of texts, rather
than trained on specific corpora of interest, and that they possess a very large
number of parameters. While these may seem only quantitative differences be-
tween these and previous models (with a few exceptions in the recurrent family
(e.g., Peters et al., 2017, 2018; McCann et al., 2017), the scale-up effects of model
size and data quantity on the LM behaviour can be easily appreciated at a quali-
tative level. Large pre-trained Transformer are by far the most accurate language
models of language use ever developed.





Part One

Word Usage
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There are many ways of conceptualising and describing the meaning of words.
A common way to describe the meaning of a word is using a natural language
definition such as those that can be found in dictionaries. If one looks up the word
‘alignment’ in the Cambridge Dictionary, for example, the first entry will read
‘an arrangement in which two or more things are positioned in a straight line or
parallel to each other’. This is a helpful and human-friendly way of describing the
meaning of ‘alignment’: one can read it and immediately get a sense of how the
word can be used. For most entries, dictionaries also include usage examples to
demonstrate in which linguistic contexts a word might appear—for example, ‘the
problem is happening because the wheels are out of alignment with each other’.
This is not the only meaning of ‘alignment’. The Cambridge Dictionary also
includes a second sense of the word: ‘an agreement between a group of countries,
political parties, or people who want to work together because of shared interests
or aims’—along with the following usage example: ‘New alignments are being
formed within the business community’. The lexicographers who redacted the
current version of the Cambridge Dictionary have decided that these are the
two main senses of the word, the two main ways in which the word is used
by English speakers. The first is a literal interpretation of ‘alignment’, which
describes the relative position of objects in physical space; the second can be
considered a metaphorical extension of the first word sense, which describes the
relative position of entities in any type of abstract space.

A useful alternative way to think of the word ‘alignment’—and, in fact, of any
word in natural language—is as a form of behaviour speakers use to transmit spe-
cific bits of information encoded in their brain. Said differently, a word is a set of
instructions speakers use to allow their audience to reconstruct the information
they wanted to transmit, thus re-creating the intended meaning in their brain
(Traugott, 2017). If a speaker has information regarding the symmetry in the
relative position of some objects in physical space, or of some entities in abstract
space, they can use the word ‘alignment’ to ensure their audience can reconstruct,
and thus becomes aware of this information. Provided that they share the same
basic conventions, the audience will make use of the current situation, the envi-
ronment of the linguistic interaction, and the nature of the ‘aligned’ entities to
follow the instructions and reconstruct the intended bits of information. Under
this lens, the static sets of word senses and word sense definitions that we are used
to finding in dictionaries offer limited descriptions of word meaning. If a word
is a set of instructions to create meaning and the execution of the instructions
varies depending on their context of occurrence, the same word can take a myriad
of—wildly or subtly—different meanings. This indeed happens when the word
is produced by different communities of speakers, whose communicative environ-
ments and language use differ from each other; but it also occurs for different
individual speakers within the same community as well as for the same speaker
across communicative contexts.

Communicative needs are always contextual and always renewing, and as
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context changes, speakers tend to parsimoniously make use of the repertoire
of instructions they have mastered. Among linguists, for example, the term
‘alignment’ can be used to refer to the system of morphosyntactic rules that
distinguishes between the arguments of transitive verbs and those of intransitive
verbs, as well as to describe the mechanisms by which speakers adapt to each
other’s posture, speech rate, or word usage (a phenomenon also often termed
entrainment). In recent years, computational linguists and artificial intelligence
researchers have had to learn yet another meaning of the word, emerged within a
certain American community of AI enthusiasts. They use ‘alignment’ to describe
the (still imperfect) correspondence between the goals and interests of humans
and those of AI systems. This last case really does exemplify the arbitrary na-
ture of the relation between signifier and signified de Saussure and others have
explored (de Saussure, 1972). What it also demonstrates is that communicative
needs change across linguistic communities: over space—both geographical and
socio-cultural—and over time. How, then, can we describe word meaning in a way
that accounts for polysemy (the property of having multiple senses at the same
time), for nuanced context modulation within the same overarching word sense,
and without relying on ad-hoc decisions made by restricted groups of experts?
Each usage of the word ‘alignment’ should be described differently depending on
its context of occurrence. Some usages can be more similar to each other, and
other totally different. Good word representations allow comparing word usages,
judging their similarity, and—when necessary—grouping usages that are similar
enough to form a coherent group.

The first part of this thesis explores ways of using neural language models to
represent word meaning. In Chapter 4, I present an approach to extract contextu-
alised word representations from neural language models. The proposed method
produces sub-symbolic representations: these are essentially vectors of continuous
values that encode word meaning in an abstract high-dimensional space. Con-
textualised neural model representations fulfil the desiderata described above but
have one main disadvantage: they are not directly interpretable by humans. In
Chapter 5, I address this limitation by using neural language models to generate
word definitions from usage examples. These are context-dependent representa-
tions that can be compared and grouped on the basis of their similarity, while
being directly understandable by humans. Unlike static dictionary definitions,
these are determined by unique contexts of word occurrence, and the resulting
groups (word senses) are obtained in a data-driven way. I will use diachronic word
meaning change as a case study for these two types of lexical representations as
tracking word meaning over time requires capturing nuanced context-determined
modulations and is thus a suitable test-bed for the proposed approaches.





Chapter 3

Background

3.1 Word representations in NLP

Understanding of the meaning of individual words underpins general machine
reading comprehension. For this reason, developing algorithms to capture lexi-
cal meaning has been a long-standing goal of artificial intelligence and natural
language processing research. As discussed in the introduction to Part 1, to be
ecologically plausible and useful in the face of semantic variation and change (see
also Section 3.2), lexical representations should be context-sensitive and data-
driven.

Early approaches to representing word meaning include large-scale databases
like WordNet (Miller, 1995), which represent words and their underlying concepts
in terms of their relations to other concepts. This taxonomical approach has
many advantages—for example, it allows to easily retrieve synonyms, antonyms,
hyponyms, and hypernyms of a word of interest—but it offers a static, encyclo-
pedic view over the meaning of words that does not allow capturing their con-
stantly evolving nature. A new, more flexible paradigm for lexical representations
emerged when NLP researchers started to design statistical operationalisations
of the distributional hypothesis (Harris, 1954; Firth, 1957). The distribu-
tional hypothesis states that semantically similar words possess similar linguistic
distributions—i.e., they occur in similar contexts. Distributional approaches ex-
ploit statistical regularities in the contexts of word occurrences to induce semantic
representations, and they are the most common nowadays. In the following sec-
tions, I will present the three main types of distributional word representations:
form-based, sense-based, and usage-based representations.

3.1.1 Form-based word representations

Among the first successful methods for the statistical modelling of the distribution
of words are count-based methods (Baroni and Lenci, 2010; Turney and Pantel,
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2010). Given the vocabulary V of a language, these methods count the number
of times that each word in V occurs in the vicinity of every other word in a
corpus of texts (for example, within a surrounding window of ten tokens). These
counts can be stored in ordered lists, or word vectors, such that every word in
the vocabulary is assigned its own vector and that every element in the vector
corresponds to another word in the vocabulary. Why does this result in good
word representations? As an example, the vectors constructed by looking at
the occurrences of the words ‘alignment’ and ‘arrangement’, or ‘alignment’ and
‘calibration’, will be more similar to each other than the vectors for ‘alignment’
and ‘cat’ or ‘alignment’ and ‘theatre’.

Concurrent and slightly later approaches exploit the same intuition but in-
stead of counting co-occurrences, they rely on predictive models—most often,
neural networks—to learn which words are likely to appear in the same sentential
context (Collobert and Weston, 2008; Turian et al., 2010; Collobert et al., 2011;
Mikolov et al., 2013; Pennington et al., 2014). The weights of the neural networks
corresponding to each word in the vocabulary can be then extracted and used di-
rectly as word representations. The resulting word vectors exhibit the same core
properties of count-based vectors, in that representations of semantically similar
words are closer in high-dimensional space than those of semantically dissimilar
ones. Predictive models have been for years the most popular method for the
modelling of word meaning since they yield word representations that possess
three essential characteristics (Boleda, 2020): (i) they are learned without su-
pervision from unprocessed natural language data, (ii) their multidimensionality
encompasses various subtle aspects of meaning, although not necessarily easy to
interpret (Boleda and Erk, 2015), and (iii) their continuous nature allows captur-
ing graded semantic phenomena like word similarity, synonymy, lexical priming,
and selectional preferences.

3.1.2 Sense-based word representations

An obvious issue with form-based approaches is that they conflate all meanings
of a word into a single static representation (Camacho-Collados and Pilehvar,
2018). For example, while occurrences of the word ‘bank’ may have different syn-
tactic and semantic properties depending on the word interpretation intended in
a given context (e.g., ‘bank’ as a building, ‘bank’ as an institution, or ‘to bank’),
the different types of context corresponding to varying word interpretations are
not distinguished for the creation of form-based representations. Therefore, all
occurrences of the word ‘bank’, regardless of their meaning in context, will be
assigned the same word representation. While, in practice, this issue is particu-
larly problematic for highly polysemous words such as ‘bank’ or ‘play’ and less
so for monosemous ones (there are very few examples of these, ‘monosemous’
being a good one), it affects the overall validity of form-based representations:
as discussed in the introduction to Part 1, the meaning of virtually all words
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(including, e.g., monosemous words and even many function words) is modulated
by context.

Luckily, that word forms (or lemmas, such as ‘bank’) should be taken as the
unit of meaning in distributional appraoches does not follow from the distribu-
tional hypothesis. Sense-based representations aim to capture the different
usages of a word (for example, the different meanings of polysemous words) by
separately modelling the contexts in which each usage type, or word sense, is
likely to occur. Usages of the word ‘bank’ as a financial institution and as a
building will be more similar to one another than to uses of ‘bank’ that refer
to the land alongside a river or a lake. But how can different word senses, i.e.,
the most frequent or most prototypical usages of a word, be distinguished from
one another? One common way is through word sense disambiguation (WSD)
algorithms (McCarthy, 2009; Navigli, 2009). Supervised approaches to WSD use
labelled training data to train statistical models that predict the correct sense
of a word in new contexts. Unsupervised solutions typically measure similarities
between contexts without the need of training data. Pioneering work by Schütze
(1998), for example, exploits the concept of second-order co-occurrence: two con-
texts of a target word are assigned to the same sense if the words the two context
co-occur with, in turn, are similar. Once the contexts of a word are grouped into
different senses, a separate distributional representation can be learned for each
sense.

The inherent issue with sense-based representations is that determining when
two usages of the same word are similar enough to belong to the same sense is an
arbitrary decision (Cruse, 1995; Kilgarriff, 1997; Kintsch, 2007), especially in lack
of a consensus on how word meaning is represented in the human brain (Klein and
Murphy, 2001; Falkum and Benito, 2015). Two sense-specific representations can
be similar in some dimensions (e.g., for ‘bank’, those related to money or finance)
and different in others (e.g., the abstract vs. physical axis of ‘bank’)—and the
notion of similarity should be taken as graded. (Boleda, 2020). Moreover, judging
whether two usages of a word are similar is largely and ultimately a subjective
matter (Brown, 2008; Erk et al., 2013).

Overall, while they still build on problematic assumptions about the nature
of word meaning unsupervised word sense disambiguation approaches provide
technical solutions which are more aligned to the desiderata for lexical represen-
tations presented in the introduction to Part 1, as compared with form-based
representations.

3.1.3 Usage-based word representations

We have so far discussed approaches that take word forms and word senses as
meaning units, and we have seen that both these units of meaning are at odds
with what we know about how humans use and interpret words. If a word is a set
of instructions to create meaning, within a specific communicative and situational
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context, each individual act of word production and interpretation should be rep-
resented with its own unique signature. To some extent, unsupervised word sense
disambiguation approaches do give importance to individual usages and contexts
of occurrence. The previous section describes an example method where individ-
ual contexts of word usage are compared and grouped based on their pairwise
similarity (Schütze, 1998).

Usage-based word representations completely bypass word senses and
consider individual word occurrences as a meaning unit. Early approaches are
grounded in compositional distributional semantics, in that they compute usage-
specific word representations by composing vectors for word forms with vectors
representing the context of occurrence (Erk and Padó, 2008, 2010). These rep-
resentations are explicitly modulated by the context in which a word appears,
allowing for more nuanced and flexible representations. In recent years, a new
strand of usage-based word representations emerged together with advances in
neural language models. These representations, often also referred to as contex-
tualised representations or contextualised embeddings, are essentially the neural
activations of a language model that result from processing a target word within
its context of occurrence.

Contextualised word representations have been shown to encode lexical mean-
ing accurately and dynamically: they are good predictors of usage similarity
judgements (Pilehvar and Camacho-Collados, 2019) and, without explicit super-
vision, they perform on a par with state-of-the-art word sense disambiguation
models in disambiguation tasks (Wiedemann et al., 2019). In Chapters 4 and 5,
I will present two types of usage-based word representations designed to capture
a context-sensitive and evolving notion of word meaning. I will evaluate them
against human judgements similarity of usage similarity and demonstrate their
applicability to the analysis of diachronic word usage and meaning change.

3.2 Diachronic word usage change

Naming a concrete or abstract entity with a given word is a convention established
among a linguistic community, a behaviour which is recognised by most members
as an encoding of the same entity. Over time, speakers change the way they refer
to concepts and objects in the world. Communities are complex dynamic systems
in constant evolution—speakers interact, move to new places, they grow older,
die, and are born. Moreover, individual speakers are non-deterministic decision-
makers who may use, more or less deliberately, different types of behaviour to
achieve the same goals, and who continuously learn new ways of fulfilling old
intents. Concepts and objects change, too, over time—for example, as a result
of advancements in technology, science, and culture—and to be successfully com-
municated, they demand new forms of behaviours. In sum, language is a living
and dynamic system which is constantly evolving, and word usage change is an
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inherent part of this evolution. Words and phrases that were commonly used
in the past may have different meanings today, and new words and phrases are
continually being created to communicate new concepts and ideas.

This section will focus on diachronic lexical semantic change—i.e., the
change of word meaning over time.

3.2.1 Computational modelling of word usage change

Computational modelling of word usage change can be approached with diverse
scientific motivations. This section discusses the most important axes along which
computational approaches to lexical semantic change vary.

New conventions may arise around an existing word, and as a result, the word
can start to refer to completely unrelated concepts (e.g., the meaning of ‘coach’
as an instructor emerged in the 18th century and is a homonym of the much older
meaning of ‘coach’ as a horse-drawn carriage). Often, the new word meaning is
related to an existing one (as it is the case for ‘coach’ as a railway carriage vs. a
single-decker bus). Since the late 19th century, lexical semantic change has been
a subject of research in diachronic linguistics. Blank (1997) provides an extensive
historical overview; here, I briefly describe two popular taxonomies of semantic
change types to provide an intuition of the possible diachronic trajectories the
meaning of a word can take. Hermann Paul’s taxonomy is the first example.
It classifies semantic change into three primary types: meaning specialisation (or
narrowing), generalisation (or broadening), and transfer–—the latter encompass-
ing what would later be referred to as metaphorisation and metonymisation (Paul,
1886). Leonard Bloomfield enumerates nine change types, including metaphor,
metonymy, synecdoche, hyperbole, and meiosis, as well as pejoration and ame-
lioration (Bloomfield, 1933). Sense-based and usage-based approaches have the
potential to discern between change types, yet the development of novel methods
that detect changes of varying nature relies heavily on the availability of anno-
tated datasets that accurately record instances of change and their corresponding
change types (Sander, 2023).

Moreover, meaning change trajectories unravel at different timescales. Changes
can manifest within a few weeks or months, and they can be transient. For in-
stance, in January 2020, journalists typically employed the word ‘virus’ to refer
to the general concept of a replicating infectious agent. Soon after, the usage of
‘virus’ underwent a rapid and profound process of specialisation, eventually de-
noting a new more specific referent, SARS-CoV-2 (Montariol et al., 2021). Such
instances of lexical semantic change are often referred to as cases of short-term
meaning change. In contrast, there exist more enduring and less abrupt instances
of semantic change. For example, the usage of the word ‘mouse’ as a pointing
device for personal computers gradually gained prominence throughout the latter
half of the twentieth century (Wijaya and Yeniterzi, 2011). Computational mod-
els can adopt positions along a continuum of temporal granularity, ranging
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from days and weeks to decades and centuries.

Computational approaches can, furthermore, seek to provide varying levels of
description and explanation, relating lexical semantic change to different types
of determining factors. Sociolinguists may focus on analysing the sociocultural
factors influencing word usage, such as whether speakers employ ‘coach’ to refer
to a bus or a carriage. Psycholinguists may be more interested in cognitive
factors that lead speakers to assign the same word form to unrelated or distantly
related meanings, such as using ‘coach’ to denote a sports instructor or trainer.
Others may be interested in social pressures and study the relationship between
community structure and semantic change (Noble et al., 2021), or in explaining
change as a result of cognitive pressures (Grewal and Xu, 2021). These approaches
offer complementary yet independent accounts of semantic change. Integrated
accounts combining social and cognitive explanations are still relatively scarce in
the literature.

Another classically important distinction is between semasiological and ono-
masiological approaches to lexical semantic change (Geeraerts, 1997). Semasi-
ological modelling explores the changes in meaning associated with a particular
word over time (e.g., Gulordava and Baroni, 2011; Hamilton et al., 2016). For
example, researchers may study how the meaning of the term ‘alignment’ has
transformed from its earliest occurrence in the field of NLP to the present day.
Onomasiological approaches, on the other hand, centre around changes in the col-
lection of words associated with a particular concept across different time periods
(e.g., Betti and Van den Berg, 2014; Sommerauer and Fokkens, 2019). This type
of modelling can detect cases of lexical replacements and named entity change
(Szymanski, 2017) as well as, for example, that ‘the problem of engineering AI
systems with goals and values similar to humans’ goals and values’ has only re-
cently started to be referred to as ‘alignment’.

Lastly, there tend to be methodological differences between studies focusing on
semantic change discovery and studies focusing on semantic change detec-
tion (or tracking). The aim of semantic change discovery is to identify across the
entire vocabulary (or a restricted subset, such as all nouns) words that have under-
gone meaning change over a specific period (Kurtyigit et al., 2021). In contrast,
semantic change detection examines the meaning trajectories of curated lists of
target words with the goal of determining whether and to what extent the mean-
ing of those words has changed over time (Kutuzov et al., 2018; Tahmasebi et al.,
2018). While this axis should be rather thought of as a continuum, the technical
distinction between the two types of studies is more pronounced. Modern ap-
proaches often rely on computationally intensive language models which may not
be suitable for large-scale semantic change discovery. Therefore, there is growing
interest in methods that combine the accuracy of modern LM-based approaches
with the efficiency necessary for tracking the entire vocabulary (Zamora-Reina
et al., 2022; Tahmasebi et al., 2022).
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3.3 Definition modelling

The task of generating human-readable word definitions, as found in dictionaries,
is commonly referred to as definition modelling or definition generation (for a
review, see Gardner et al., 2022). This task will become relevant in Chapter 5,
where I will present a method to generate contextualised word definitions and to
use them as human-readable word representations.

The original motivation for the definition modelling task has been the in-
terpretation, analysis, and evaluation of otherwise obtained abstract word rep-
resentation spaces. Definition generation systems, however, also have practical
applications in lexicography, language acquisition, and sociolinguistics, as well
as within NLP (Bevilacqua et al., 2020). The task was initially formulated as
the generation of a natural language definition given an embedding—a single dis-
tributional representation—of the target word, or definiendum (Noraset et al.,
2017). The first formulation of definition modelling was soon replaced by the
task of generating a contextually appropriate word definition given a target word
embedding and an example usage (Gadetsky et al., 2018; Mickus et al., 2022)—a
task description which takes into account that word meaning is always contextu-
ally determined.

Generating definitions from vector representations is not the most natural
formulation of definition modelling. Ni and Wang (2017) and Mickus et al. (2019)
treat the task as a sequence-to-sequence problem: given an input sequence with
a highlighted word, generate a contextually appropriate definition. In Chapter 5,
we will follow this approach.

3.3.1 Methods

Methods that address this last formulation of the task are typically based on
a pre-trained language model deployed on the definienda of interest in a natural
language generation (NLG) setup (Bevilacqua et al., 2020). Generated definitions
can be further improved by regulating their degree of specificity via specialised
LM modules (Huang et al., 2021), by adjusting their level of complexity using
contrastive learning training objectives (August et al., 2022), or by supplement-
ing them with definitional sentences extracted directly from a domain-specific
corpus (Huang et al., 2022). In Chapter 5, we will compare the results obtained
with our proposed approach to the state-of-the-art specificity-tuned definition
generator proposed by Huang et al. (2021).

3.3.2 Evaluation

Generated definitions are typically evaluated with standard NLG metrics such
as BLEU, NIST, ROUGE-L, METEOR, or MoverScore (e.g., Huang et al., 2021;
Mickus et al., 2022), using precision@k on a definition retrieval task (Bevilacqua
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et al., 2020), or measuring semantic similarity between sentence embeddings ob-
tained for the reference and the generated definition (Kong et al., 2022). Because
reference-based methods are inherently flawed (for a discussion, see Mickus et al.,
2022), qualitative evaluation is almost always presented in combination with these
quantitative metrics. In Chapter 5, we will evaluate generated definitions with
automatic metrics and by collecting human judgements.
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4.1 Introduction

In the fourteenth century, the words ‘boy’ and ‘girl’ referred, respectively, to a
male servant and a young person of either sex (Oxford English Dictionary). By the
fifteenth century, a narrower usage had emerged for ‘girl’, designating exclusively
female individuals, whereas by the sixteenth century ‘boy’ had lost its servile
connotation and was more broadly used to refer to any male child, becoming the
masculine counterpart of ‘girl’ (Bybee, 2015). Word meaning is indeed in constant
mutation and, since correct understanding of the meaning of individual words
underpins general machine reading comprehension, it has become increasingly
relevant for computational linguists to detect and characterise lexical semantic
change with the aid of quantitative and reproducible procedures—e.g., in the
form of laws of semantic change (Dubossarsky et al., 2015; Xu and Kemp, 2015;
Hamilton et al., 2016).

Most recent studies have focused on lexical semantic change detection (or
shift detection), the task of deciding whether and to what extent the concept
evoked by a word has changed between time periods (e.g., Gulordava and Baroni,
2011; Kim et al., 2014; Kulkarni et al., 2015; Del Tredici et al., 2019; Hamilton
et al., 2016; Bamler and Mandt, 2017; Rosenfeld and Erk, 2018). This line of
work relies mainly on distributional semantic models which produce one abstract
representation for every word form (see Section 3.1 in the previous background
chapter). However, aggregating all senses of a word into a single representation is
particularly problematic for semantic change modelling as word meaning hardly
ever shifts directly from one sense to another, but rather typically goes through
polysemous stages (Hopper et al., 1991). This limitation has motivated recent
work on word sense induction across time periods (Lau et al., 2012; Cook et al.,
2014; Mitra et al., 2014; Frermann and Lapata, 2016; Rudolph and Blei, 2018; Hu
et al., 2019). Word senses, however, have shortcomings themselves as they are
a discretisation of word meaning, which is continuous in nature and modulated
by context to convey ad-hoc interpretations (Brugman, 1988; Kilgarriff, 1997;
Paradis, 2011).

In this study, we propose a usage-based approach to lexical semantic change
modelling, where sentential context modulates lexical meaning “on the fly” (Lud-
low, 2014). We present a novel method that (i) exploits a pre-trained neural
language model to obtain contextualised representations for every occurrence of
a word of interest, (ii) clusters these representations into usage types, and (iii)
measures change along time. More concretely, we make the following contribu-
tions:

• We present the first unsupervised approach to lexical semantic change that
makes use of state-of-the-art contextualised word representations.

• We propose several metrics to measure semantic change with this type of repre-
sentation. Our code is available at https://github.com/glnmario/cwr4lsc.

https://github.com/glnmario/cwr4lsc
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• We create a new evaluation dataset of human similarity judgements on more
than 3K word usage pairs across different time periods, available at https:
//doi.org/10.5281/zenodo.3773250.

• We show that both the model representations and the detected semantic shifts
are positively correlated with human intuitions.

• Through in-depth qualitative analysis, we show that the proposed approach
captures synchronic phenomena such as word senses and syntactic functions,
literal and metaphorical word usage, as well as diachronic linguistic processes
related to the narrowing and broadening of word meaning over time.

Overall, our study demonstrates the potential of using contextualised word rep-
resentations for modelling and analysing lexical semantic change and opens the
door to further work in this direction.

In an extension of this study, presented in Section 4.6, we evaluate this ap-
proach more extensively, across four languages, by participating in the SemEval-
2020 Shared Task 1 on lexical semantic change detection.

4.2 A usage-based approach to lexical semantic
change modelling

We introduce a usage-based approach to lexical semantic change modelling which
relies on contextualised representations of unique word occurrences (usage repre-
sentations). First, given a diachronic corpus and a list of words of interest, we
use a pre-trained language model (BERT; Devlin et al., 2019a) to compute usage
representations for each occurrence of these words. Then, we cluster all the us-
age representations collected for a given word into an automatically determined
number of partitions (usage types) and organise them along the temporal axis.
Finally, we propose three metrics to quantify the degree of change undergone by
a word.

4.2.1 Language model

We produce usage representations using the BERT language model (Devlin et al.,
2019a), a multi-layer bidirectional Transformer encoder trained on masked token
prediction and next sentence prediction on the BooksCorpus (800M words) (Zhu
et al., 2015) and on English text passages extracted from Wikipedia (2,500M
words). We use the smaller base-uncased version of BERT, with 12 layers, 768
hidden dimensions, and 110M parameters.1

1We rely on Hugging Face’s implementation of BERT (available at https://huggingface.
co/bert-base-uncased).

https://doi.org/10.5281/zenodo.3773250
https://doi.org/10.5281/zenodo.3773250
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
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(a) PCA visualisation of the usage rep-
resentations.
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(b) Probability-based usage type distri-
butions over time.

Figure 4.1: Usage representations and usage type distributions generated based
on occurrences of the word atom in COHA (Davies, 2012). Colours indicate
inferred usage types.

4.2.2 Usage representations

Given a word of interest w and a context of occurrence s = (v1, ..., vi, ..., vn) with
w = vi, we extract the activations of all of BERT’s hidden layers for sentence
position i and sum them dimension-wise. Alternative layer aggregation strategies
are presented and evaluated in Section 4.6.

The set of N usage representations extracted for the occurrences of w in a
given corpus can be expressed as the usage matrix Uw = (w1, . . . ,wN). For each
usage representation in the usage matrix Uw, we store the context of occurrence
(a 128-token window around the target word) as well as a temporal label tw
indicating the time interval of the usage.

4.2.3 Usage types

Once we have obtained a word-specific matrix of usage vectors Uw, we standard-
ise it and cluster its entries using k-Means.2 This step partitions usage repre-
sentations into clusters of similar usages of the same word, or usage types (see
Figure 4.1a). It is thus directly related to automatic word sense disambigua-
tion (Schütze, 1998; Pantel and Lin, 2002; Manandhar et al., 2010; Navigli and
Vannella, 2013, among others).

For each word independently, we automatically select the number of clusters
Kw that maximises the silhouette score (Rousseeuw, 1987), a metric of cluster
quality which favours intra-cluster coherence and penalises inter-cluster similarity,
without the need for gold labels. For each value of K, we execute 10 iterations
of Expectation Maximization to alleviate the influence of different initialisation

2Other clustering methods are also possible. For this first study, we choose the widely used
k-Means (and rely on the implementation available through the scikit-learn library).
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values (Arthur and Vassilvitskii, 2007). The final clustering for a given K is
the one that yields the minimal distortion value across the 10 runs, i.e., the
minimal sum of squared distances of each data point from its closest centroid. We
experiment with K ∈ [2, 10] and choose this range heuristically: we forgo K = 1,
as k-Means and the silhouette score are ill-defined for this case, while keeping
the number of possible clusters manageable computationally. This excludes the
possibility that a word has a single usage type. Alternatively, we could use a
measure of intra-cluster dispersion for K = 1, and consider a word monosemous
if its dispersion value is below a threshold d (if the dispersion is higher than d, we
would discard K = 1 and use the silhouette score to find the best K ≥ 2). There
also exist clustering methods that select the optimal K automatically, such as
DBSCAN or Affinity Propagation (as tested, e.g., by Martinc et al., 2020). They
nevertheless require method-specific parameter choices which indirectly determine
the number of clusters.

By counting the number of occurrences of each usage type k in a given time
interval t (we refer to this count as freq(k, t)), we obtain frequency distributions
ftw for each interval under scrutiny:

ftw ∈ NKw : ftw[k] = freq(k, t) k ∈ [1, Kw] (4.1)

When normalised, frequency distributions can be interpreted as probability dis-
tributions over usage types ut

w : ut
w[k] =

1
Nt

ftw[k]. Figure 4.1b illustrates the result
of this process.

4.2.4 Quantifying semantic change

We propose three metrics for the automatic quantification of lexical semantic
change using contextualised word representations. The first two (entropy differ-
ence and Jensen-Shannon divergence) are known metrics for comparing proba-
bility distributions. In our approach, we apply them to measure variations in the
relative prominence of coexisting usage types. We conjecture that these kinds
of metric can help detect semantic change processes that lead to broadening or
narrowing (i.e., to increase or decrease, respectively, in the number or relative
distribution of usage types). The third metric (average pairwise distance) only
requires a usage matrix Uw and the temporal labels tw (Section 4.2.2). Since
it does not rely on usage type distributions, it is not sensitive to possible errors
stemming from the clustering process.

Entropy difference (ED). We propose measuring the uncertainty (e.g., due
to polysemy) in the interpretation of a word w in interval t using the normalised
entropy of its usage distribution ut

w:

η(ut
w) = logKw

(
Kw∏
k=1

ut
w[k]

−ut
w[k]

)
(4.2)
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To quantify how uncertainty over possible interpretations varies across time in-
tervals, we compute the difference in entropy between the two usage type distri-
butions in these intervals:

ED(ut
w,u

t′

w) = η(ut′

w)− η(ut
w) . (4.3)

We expect high ED values to signal the broadening of a word’s interpretation and
negative values to indicate narrowing.

Jensen-Shannon divergence (JSD). The second metric takes into account
not only variations in the size of usage type clusters but also which clusters have
grown or shrunk. It is the Jensen-Shannon divergence (Lin, 1991) between usage
type distributions:

JSD(ut
w,u

t′

w) = H

(
1

2

(
ut
w + ut′

w

))
− 1

2

(
H
(
ut
w

)
− H

(
ut′

w

))
(4.4)

where H is the Boltzmann-Gibbs-Shannon entropy. Very dissimilar usage distri-
butions yield high JSD whereas low JSD values indicate that the proportions of
usage types barely change across periods.

Average pairwise distance (APD). While the previous two metrics rely on
usage type distributions, it is also possible to quantify change by bypassing the
clustering step into usage types. We do so by calculating the average pairwise
distance between usage representations in different periods t and t′:

APD(Ut
w,U

t′

w) =
1

N t ·N t′

∑
xi∈Ut

w, xj∈Ut′
w

d(xi,xj) (4.5)

where Ut
w is a usage matrix constructed with occurrences of w only in interval t.

We experiment with cosine, Euclidean, and Canberra distance.

Generalisation to multiple time intervals. The presented metrics quan-
tify semantic change across pairs of time intervals (t, t′). When more than
two intervals are available, we measure change across all contiguous intervals
(m(Ut

w,U
t+1
w ), where m is one of the metrics), and calculate the mean and maxi-

mum metric values.3 The mean is indicative of semantic change across the entire
period under consideration, while the max pinpoints the pair of successive inter-
vals where the strongest shift has occurred.

3The Jensen-Shannon divergence can also be measured with respect to T > 2 probability
distributions (Ré and Azad, 2014): JSD

(
u1
w, . . . ,uT

w

)
= H

(
1
T

∑T
i=1 ui

w

)
− 1

T

∑T
i=1 H

(
ui
w

)
.

However, this definition of the JSD is insensitive to the order of the temporal intervals and
yields lower correlation with human semantic change ratings (cf. Section 4.4.2) than the pairwise
metrics.
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4.3 Data

We examine word usages in a large diachronic corpus of English, the Corpus of
Historical American English (COHA, Davies, 2012). COHA covers two centuries
(1810–2009) of language use and includes a variety of genres, from fiction to
newspapers and popular magazines, among others. In this study, we focus on
texts written between 1910 and 2009, for which a minimum of 21M words per
decade are available, and discard previous decades, where texts are less balanced
per decade.

As target words, we use the 100 lemmas annotated with semantic shift scores
by Gulordava and Baroni (2011). These shift scores are human judgements col-
lected by asking five annotators to quantify the degree of semantic change under-
taken by each word—shown out of context—from the 1960’s to the 1990’s. We
exclude extracellular as it only appears in three decades of COHA; all other words
appear in at least 8 decades, with a minimum and maximum frequency of 191 and
108,796 respectively. We refer to the resulting set of 99 words and corresponding
shift scores as the ‘GEMS dataset’ or the ‘GEMS words’, as appropriate.

We collect a contextualised representation for each occurrence of these words
in the second century of COHA using BERT as described in Section 4.2.2. This
results in a large set of usage representations, ∼1.3M in total, which we cluster
into usage types using k-Means and silhouette coefficients (Section 4.2.3). We use
these usage representations and usage types in the evaluation and the analyses
presented in Sections 4.4 and 4.5.

4.4 Correlation with human judgements

Before using our proposed method to analyse lexical semantic change, we assess
how its key components compare with human intuition. We test whether the
clustering into usage types reflects human similarity judgements (Section 4.4.1)
and to what extent the degree of change computed with our metrics correlates
with shift scores provided by humans (Section 4.4.2).

4.4.1 Evaluation of usage types

The clustering of contextualised representations into usage types is one of the
main steps in our method (see Section 4.2.3). It relies on the similarity values
between pairs of usage representations created by the language model. To quan-
titatively evaluate the quality of these similarity values (and thus, by extension,
the quality of usage representations and usage types), we compare them to human
raters’ similarity judgements.
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New dataset of similarity judgements. We create a new evaluation dataset,
following the annotation approach of Erk et al. (2009, 2013) for rating pairs of
usages of the same word. Since we need to collect human judgements for pairs of
usages, annotating the entire GEMS dataset would be extremely costly and time
consuming. Therefore, we limit the scope of the annotation to a subset of words.
For each shift score value s in the GEMS dataset, we sample a word uniformly
at random from the words annotated with s. This results in 16 words. To ensure
that our selection of usages is sufficiently varied, for each of these words, we
sample five usages from each of their usage types (the number of usage types is
word-specific) along different time intervals—one usage per 20-year period over
the century.4 All possible pairwise combinations are generated for each target
word, resulting in a total of 3,285 usage pairs.

We use the crowdsourcing platform Figure Eight5 to collect five similarity
judgements for each of these usage pairs. To control the quality of the similarity
judgements, we select Figure Eight workers from the pool of most experienced
contributors, we require them to be native English speakers and to have completed
a test quiz consisting of 10 similarity judgements.6 The compensation scheme for
the raters is based on an average wage of 10 USD per hour. Annotators are
shown pairs of usages of the same word: each usage shows the target word in
its sentence, together with the previous and the following sentences (67 tokens
on average). Annotators are asked to assign a similarity score on a 4-point scale,
ranging from unrelated to identical, as defined by Brown (2008) and used, e.g., by
Schlechtweg et al. (2018). Figures 4.2 and 4.3 show the full instructions given to
the annotators and Figure 4.4 illustrates a single annotation item. A total of 380
annotators participated in the task. The inter-rater agreement, measured as the
average pairwise Spearman’s correlation between common annotation subsets, is
0.59. This is in line with previous annotation efforts such as those by Schlechtweg
et al. (2018), who report agreement scores between 0.57 and 0.68.

Results. To obtain a single human similarity judgement per usage pair, we
average the scores given by five annotators. We encode all averaged human simi-
larity judgements for a given word in a square matrix. We then compute similarity
scores over pairs of usage vectors output by BERT7 to obtain analogous matrices
per word and measure Spearman’s rank correlation between the human- and the
machine-generated matrices using the Mantel test (Mantel, 1967).

We observe a significant (p < 0.05) positive correlation for 10 out of 16 words,

4When a usage type does not occur in a time interval, we uniformly sample an interval from
those that do contain occurrences of that usage type.

5https://www.figure-eight.com, recently acquired by Appen (https://appen.com).
6For this purpose, I manually annotated 170 usage pairs.
7For this evaluation, BERT is given the same variable-size context as the human annotators.

Vector similarity values are computed as the inverse of Euclidean distance, because k-Means
relies on this metric for cluster assignments.

https://www.figure-eight.com
https://appen.com
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with correlation coefficients ranging from 0.13 to 0.45. Table 4.1 presents the
correlation coefficients and p-values obtained for each word. Overall, this is an
encouraging result, which indicates that BERT’s word representations and sim-
ilarity scores (as well as our clustering methods which build on them) correlate
to a substantial extent with human similarity judgements, and thus provides a
promising empirical basis for our approach.

ρ p
federal 0.131 0.001

spine 0.195 0.032
optical 0.227 0.003

compact 0.229 0.002
signal 0.233 0.008

leaf 0.252 0.001
net 0.361 0.001

coach 0.433 0.007
sphere 0.446 0.002
mirror 0.454 0.027

card 0.358 0.055
virus 0.271 0.159
disk 0.183 0.211

brick 0.203 0.263
virtual -0.085 0.561
energy 0.002 0.990

Table 4.1: Spearman’s correlation results per target word: BERT vs. human
similarity judgements.

4.4.2 Evaluation of semantic change scores

We now quantitatively assess the semantic change scores yielded by the metrics
described in Section 4.2.4 when applied to BERT usage representations and to
the usage types created with our approach. We do so by comparing our scores to
the human shift scores in the GEMS dataset. For consistency with this dataset,
which quantifies change from the 1960’s to the 1990’s as explained in Section 4.3,
we only consider these four decades when calculating our scores. Using each of the
metrics on representations from these time intervals, we assign a semantic change
score to all the GEMS words. We then compute Spearman’s rank correlation
between the automatically generated change scores and the gold standard shift
values.
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Figure 4.2: Annotation instructions for usage similarity judgements (part 1).
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Figure 4.3: Annotation instructions for usage similarity judgements (part 2).
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Figure 4.4: An annotation item, as it appears on the Figure Eight crowdsourcing
platform.

Results. Table 4.2 shows the Spearman’s correlation coefficients obtained using
our metrics, together with a frequency baseline (the difference between the nor-
malised frequency of a word in the 1960’s and in the 1990’s). The three proposed
metrics yield significant positive correlations. This is again a very encouraging re-
sult regarding the potential of contextualised word representations for capturing
lexical semantic change.

As a reference, we report the correlation coefficients with respect to GEMS
shift scores documented by the authors of two alternative approaches: the count-
based model by Gulordava and Baroni (2011) themselves (trained on two time
slices from the Google Books corpus with texts from the 1960’s and the 1990’s)
and the sense-based SCAN model by Frermann and Lapata (2016) (trained on
the DATE corpus with texts from the 1960’s through the 1990’s).8

For all our metrics, the max across the four time intervals—i.e., identifying
the pair of successive intervals where the strongest shift has occurred (cf. end of
Section 4.2.4)—is the best performing aggregation strategy. Table 4.2 only shows
values obtained with max and Euclidean distance for APD, as these are the best
performing options.

It is interesting to observe that APD can prove as informative as JSD and
ED although it does not depend on the clustering of word occurrences into usage
types. Yet, computing usage types offers a powerful tool for analysing lexical
change, as we will see in the next section.

8Gulordava and Baroni (2011) report Pearson correlation. However, to allow for direct
comparison, Frermann and Lapata (2016) computed Spearman correlation for that work (see
their footnote 7), which is the value we report.
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Frequency difference 0.068
Entropy difference (max ) 0.278
Jensen-Shannon divergence (max ) 0.276
Average pairwise distance (Euclidean, max ) 0.285

Gulordava and Baroni (2011) 0.386
Frermann and Lapata (2016) 0.377

Table 4.2: Spearman’s correlation coefficients between the gold standard scores
in the GEMS dataset and the change scores assigned by our three metrics and
a relative frequency baseline. For reference, correlation coefficients reported by
previous works using different approaches are also given. All correlations are
significant (p < 0.05) except for the frequency difference baseline.

4.5 Qualitative analysis
In this section, we provide an in-depth qualitative analysis of the linguistic prop-
erties that define usage types and the kinds of lexical semantic change we observe.
More quantitative methods (such as taking the top n words with highest JSD,
APD and ED and checking, e.g., how many cases of broadening each metric cap-
tures) are difficult to operationalise because there exist no well-established formal
notions of semantic change types in the linguistic literature (for a discussion of
this issue, see Section 3.2.1 or, e.g., Tang et al., 2016). To conduct this analysis,
for each GEMS word, we identify the most representative usages in a given usage
type cluster by selecting the five closest vectors to the cluster centroid, and take
the five corresponding sentences as usage examples.

4.5.1 What do usage types capture?

We first leave the time axis aside and present a synchronic analysis of usage types.
The goal is to assess the interpretability and internal coherence of the obtained
usage clusters.

We observe that usage types can discriminate between underlying senses of
polysemous (and homonymous) words, between literal and figurative usages, and
between usages that fulfil different syntactic roles; furthermore, they can single
out phrasal collocations as well as named entities.

Polysemy and homonymy. Usage types often encode distinctions between
underlying senses of polysemous and homonymous words. For example, the vec-
tors collected for the polysemous word ‘curious’ are grouped together into two
usage types, depending on whether ‘curious’ is used to describe something that
excites attention as odd, novel, or unexpected (‘a wonderful and curious and
unbelievable story’) or rather to describe someone who is marked by a desire to
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investigate and learn (‘curious and amazed and innocent’). The same happens,
for instance, for the homonymous usages of the word ‘coach’, which can denote
vehicles as well as instructors (see Figure 4.5a for a diachronic view of the usage
types).

Metaphor and metonymy. In several cases, literal and metaphorical usages
are also separated. For example, occurrences of ‘curtain’ are clustered into four
usage types (Figure 4.5c): two of these correspond to a literal interpretation of
the word as a hanging piece of cloth (‘curtainless windows’, ‘pulled the curtain
closed’) whereas the other two indicate metaphorical interpretations of ‘curtain’
as any barrier that excludes the free exchange of information or communication
(‘the curtain on the legal war is being raised’). Similarly, we obtain two usage
types for ‘sphere’: one for literal usages that denote a round solid figure (‘the
sphere of the moon’), and the other for metaphorical interpretations of the word
as an area of knowledge or activity (‘a certain sphere of autonomy’) as well as
metonymical usages that refer to the planet Earth (‘land and peoples on the top
half of the sphere’).

Syntactic roles and argument structure. Further distinctions are observed
between word usages that fulfil a different syntactic functionality: not only is part-
of-speech ambiguity detected (e.g., ‘the cost-tapered average tariff’ vs. ‘cost less
to make’) but contextualised representations also capture regularities in syntactic
argument structures. For example, usages of ‘refuse’ are clustered into nominal
usages (‘society’s emotional refuse’, ‘the amount of refuse’), verbal transitive
and intransitive usages (‘fall, give up, refuse, kick’), as well as verbal usages with
infinitive complementation (‘refuse to go’, ‘refuse for the present to sign a treaty’).

Collocations and named entities. Specific clusters are also assigned to lex-
ical items that are parts of phrasal collocations (e.g., ‘iron curtain’) or of named
entities (‘alexander graham bell ’ vs. ‘bell -like whistle’).

Other distinctions. Some distinctions are interpretable but unexpected. As
an example, the word ‘doubt’ does not show the default noun-verb separation but
rather a distinction between usages in affirmative contexts (‘there is still doubt ’,
‘the benefit of the doubt ’) and in negative contexts (‘there is not a bit of doubt ’,
‘beyond a reasonable doubt ’).

Observed errors. For some words, we find that usages which appear to be
identical are separated into different usage types. In a handful of cases, this
seems due to our experimental setup, which sets the minimum number of clusters
to 2 (see Section 4.2.3). This leads to distinct usage types for words such as
‘maybe’, for which a single type is expected.
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(a) coach
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employment and tenure // minority faculty in tenure
tenure of office
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reasons for short term leases and insecurity of tenure

(b) tenure

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
0

0.2

0.4

0.6

0.8

1

I hung colored lights around my curtainless windows
inflatable curtaintype headprotection bags
raising the curtain on its [...] taxreform program
bureaucracies [...] on both sides of the curtain

(c) curtain
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the polished disk // a disk on a rigid backing
floppy and harddisk drives // portable diskradio

(d) disk

Figure 4.5: Evolution of usage type distributions in the period 1910–2009, gener-
ated with occurrences of coach, tenure, curtain and disk in COHA (Davies, 2012).
The legends show sample usages per identified usage type.

In other cases, a given interpretation is not identified as an independent type,
and its usages appear in more than one cluster. This holds, for example, for the
word ‘tenure’, whose usages in phrases such as ‘tenure-track faculty position’ are
present in two distinct usage types (see Figure 4.5b).

Finally, we see that in some cases a usage type ends up including two interpre-
tations which arguably should have been distinguished. For example, two of the
usage types identified for ‘address’ are interpretable and coherent: one includes
usages in the sense of formal speech and the other one includes verbal usages. The
third usage type, however, includes a mix of nominal usages of the word which
correspond to different underlying word senses, such as ‘disrespectful manners or
address ’ and ‘network address ’.

4.5.2 What kinds of change are observed?

We now consider usage types diachronically. Different kinds of change, driven
by cultural and technological innovation as well as by historical events, emerge
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from a qualitative inspection of usage distributions along the temporal dimension.
We describe the most prominent kinds—narrowing and broadening, including
metaphorisation—and discuss the extent to which our metrics are able to detect
them.

Narrowing. Examination of the dynamics of usage distributions allows us to
see that, for a few words, certain usage types disappear or become less common
over time (i.e., the interpretation of the word becomes ‘narrower’, less varied).
This is the case, for example, for coach, where the frequency decrease of one of the
usage types is gradual and caused by technological advances (see Figure 4.5a).

Negative mean ED (see Section 4.2.4) reliably indicates this kind of narrow-
ing. Indeed coach is assigned one of the lowest ED score among the GEMS words.
In contrast, ED fails to detect the obsolescence of a usage type when new usage
types emerge simultaneously (since this may lead to no entropy reduction). This
is the case, e.g., for tenure. The usage type capturing tenure of a landed prop-
erty becomes obsolete; however, we obtain a positive mean ED caused by the
appearance of a new usage type (the third type in Figure 4.5b).

Broadening. For a substantial amount of words, we observe the emergence of
new usage types (i.e., a ‘broadening’ of their use). This may be due to technolog-
ical advances as well as to specific historical events. As an example, Figure 4.5d
shows how, starting from the 1950’s and as a result of technological innovation,
the word disk starts to be used to denote also optical disks while beforehand it
referred only to generic flat circular objects.

A special kind of broadening is metaphorisation. As mentioned in Section 4.5.1,
the usage types for the word curtain include metaphorical interpretations. Figure
4.5c allows us to see when the metaphorical meaning related to the historically
charged expression iron curtain is acquired. This novel usage type is related to a
specific historical period: it emerges between the 1930’s and the 1940’s, reaches
its peak in the 1950’s, and remains stably low in frequency starting from the
1970’s.

The metrics that best capture broadening are JSD and APD—e.g., disk is
assigned a high semantic change score by both metrics. Yet, sometimes these
metrics generate diverging score rankings. For example, curtain yields a rather
low APD score due to the low relative frequency of the novel usage (Figure 4.5c).
In contrast, even though the novel usage type is not very prominent in some
decades, JSD can still discriminate it and measure its development. On the other
hand, the word address, for which we also observe broadening, is assigned a low
score by JSD due to the errors in its usage type assignments pointed out in
Section 4.5.1. As APD does not rely on usage types, it is not affected by this
issue and does indeed assign a high change score to the word.

Finally, although our metrics help us identify the broadening of a word’s
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meaning, they cannot capture the type of broadening (i.e., the nature of the
emerging interpretations). Detecting metaphorisation, for example, may require
inter-cluster comparisons to identify a metaphor’s source and target usage types,
which we leave to future work.

4.6 Evaluation across languages: The SemEval-
2020 shared task

In this second study, we extensively evaluate combinations of architectures, train-
ing corpora, and change detection algorithms, using 5 test sets in 4 languages.
To this end, we participated in a SemEval-2020 shared task. The SemEval-2020
Shared Task 1 challenged its participants to classify a list of target words into
stable or changed (Subtask 1) and/or to rank these words by the degree of their
semantic change (Subtask 2) (Schlechtweg et al., 2020). The task is multilingual:
it includes four lists of target words, respectively for English, German, Latin,
and Swedish (several dozen words each). Each word list is accompanied with two
historical corpora of varying size, consisting of texts created in two different time
periods. The shared task organisers additionally provided frequency-based and
distributional baseline methods.

We participated in Subtask 2 as the UiO-UvA team.9 Our systems are
based on two language models, ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019b), and employ three different algorithms to compare contextualised
embeddings diachronically (two from the previous study and a novel one). Our
evaluation phase submission to the shared task ranked 9th out of 34 participating
teams, while our post-evaluation phase submission remains as of today the best
from those published on the shared task website10 (but some knowledge of the
test sets statistics was needed, see below).

Our main findings are twofold: (i) in 3 out of 5 test sets, ELMo consistently
outperforms BERT, while being much faster in training and inference; (ii) cosine
similarity of averaged contextualised embeddings and average pairwise distance
between contextualised embeddings are the two best performing change detection
algorithms, but different test sets show strong preference to either the former or
the latter. This preference shows strong correlation with the distribution of gold
scores in a test set. While it may indicate that there is a bias in the available
test sets, this finding remains yet unexplained.

Our implementations of all the evaluated algorithms are available at https:
//github.com/akutuzov/semeval2020, and the ELMo models we trained can
be downloaded from the NLPL vector repository.11

9We did not specifically focus on the binary Subtask 1; our submission achieved the average
accuracy of 0.587 in this track.

10https://competitions.codalab.org/competitions/20948
11http://vectors.nlpl.eu/repository/

https://github.com/akutuzov/semeval2020
https://github.com/akutuzov/semeval2020
https://competitions.codalab.org/competitions/20948
http://vectors.nlpl.eu/repository/
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4.6.1 System overview

As in the previous study, given two time periods t1, t2, two corpora C1, C2, and
a set of target words, we use a neural language model to obtain contextualised
embeddings of each occurrence of the target words in C1 and C2 and use them to
compute a continuous change score. This score indicates the degree of semantic
change undergone by a word between t1 and t2, and the target words are ranked
by its value. We use three change detection algorithms:

1. Inverted cosine similarity over word prototypes (PRT). Given two
usage matrices Ut1

w ,U
t2
w , the degree of change of w is calculated as the inverted

similarity12 between the average token embeddings (‘prototypes’) of all occur-
rences of w in the two time periods:

PRT
(
Ut1

w ,U
t2
w

)
=

1

d

(∑
xi∈Ut1

w
xi

N
t1
w

,

∑
xj∈Ut2

w
xj

N
t2
w

) (4.6)

where N t1
w and N t2

w are the number of occurrences of w in time periods t1 and
t2, and d is a similarity metric, for which we use cosine similarity. This method
is similar to the standard LSCD workflow with static embeddings produced by
Procrustes-aligned time-specific distributional models (Hamilton et al., 2016),
with the only additional step of averaging token embeddings to create a single
vector. Since we want the algorithm to produce higher scores for the words which
changed more, the inverted value of cosine similarity is used as the prediction.

2. Average pairwise cosine distance between token embeddings (APD).
Here, the degree of change of w is measured as the average distance between any
two embeddings from different time periods. High APD values indicate stronger
semantic change. This is the change metric defined in our previous study; see
Equation 4.5 in Section 4.2.4.

3. Jensen-Shannon divergence (JSD). This measure relies on the partition-
ing of embeddings into clusters of similar word usages and measures the amount
of change in the proportions of word usage clusters across time periods (Equa-
tion 4.4). A high JSD score indicates a high degree of lexical semantic change.
See Section 4.2.4 for more details.

4.6.2 Experimental setup

For each of the 4 languages of the shared task, we train 4 ELMo model variants:
12We also tried to use cosine distance (1 − d) instead of inverted cosine similarity, but the

results were marginally worse.
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i. Pre-trained, an ELMo model trained on the respective Wikipedia corpus
(English, German, Latin or Swedish);13

ii. Fine-tuned, the same as Pre-trained but further fine-tuned on the union
of the two test corpora;

iii. Trained on test, trained only on the union of the two test corpora;

iv. Incremental, two models—the first is trained on the first test corpus, and
the second is the same model further trained on the second test corpus.

The ELMo models are trained for 3 epochs (except English and Latin Trained
on test and Incremental models, for which we use 5 epochs, due to small test
corpora sizes), with an LSTM dimensionality of 2048, a batch size of 192 and 4096
negative samples per batch. All other hyperparameters are left at their default
values.14

For BERT, we again use the base version, with 12 layers and 768 hidden
dimensions.15 For English, German and Swedish, we employ language-specific
models; for Latin, we resort to a multilingual one since there is no specific Latin
BERT available yet.16 Given the limited size of the test corpora (in the order
of 108 word tokens at max), we do not train BERT from scratch and only test
the Pre-trained and Fine-tuned BERT variants. The fine-tuning is done with
BERT’s standard objective for 2 epochs (English was trained for 5 epochs). We
configure BERT’s WordPiece tokeniser to never split any occurrences of the target
words (some target words are split by default into character sequences) and we
add unknown target words to BERT’s vocabulary. We perform this step both
before fine-tuning and before the extraction of contextualised representations.

At inference time, we use all ELMo and BERT variants to produce contex-
tualised representations of all the occurrences of each target word in the test
corpora. For the Incremental variant, the representations for the occurrences
in each of the two test corpora are produced using the respective model trained
on this corpus. The resulting embeddings are of size 12 × 768 and 3 × 512 for
BERT and ELMo, respectively. We employ three strategies to reduce their di-
mensionality to that of a single layer: (i) using only the top layer, (ii) averaging
all layers, (iii) averaging the last four layers (only for BERT embeddings, as this

13The Wikipedia corpora were lemmatised using UDPipe (Straka and Straková, 2017) prior
to training.

14To train and fine-tune ELMo models, we use the code from https://github.com/ltgoslo/
simple_elmo_training, which is essentially the reference ELMo implementation updated to
the recent TensorFlow versions.

15We rely on Hugging Face’s implementation of BERT (available at https://github.
com/huggingface/transformers, version 2.5.0), and follow their model naming conventions:
https://huggingface.co/models.

16bert-base-uncased, bert-base-german-cased, af-ai-center/bert-base-swedish-uncased, bert-
base-multilingual-cased.

https://github.com/ltgoslo/simple_elmo_training
https://github.com/ltgoslo/simple_elmo_training
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://huggingface.co/models
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aggregation method was shown to work on par with the all-layers alternative by
Devlin et al. (2019b)). Finally, to predict the strength of semantic change of
each target word between the two test corpora, we feed the word’s contextualised
embeddings into the three algorithms of semantic change estimation described
in Section 4.6.1. We then compute the Spearman correlation of the estimated
change scores with the gold answers. This is the evaluation metric of Subtask 2,
and we use it throughout our experiments.

4.6.3 Results

Our submission. In our official shared task submission in the evaluation phase,
we used top-layer ELMo embeddings with the cosine similarity change detection
algorithm for all languages. English and German ELMo models were trained
on the respective Wikipedia corpora. For Swedish and Latin, pre-trained ELMo
models were not available, so we trained our own models on the union of the test
corpora. This combination of architectures and algorithms was chosen based on
our preliminary experiments with the available human-annotated semantic change
datasets for English (Gulordava and Baroni, 2011), German (Schlechtweg et al.,
2018) and Russian (Fomin et al., 2019). The resulting Spearman correlations
were 0.136 for English, 0.695 for German, 0.370 for Latin, and 0.278 for Swedish.
With an average score of 0.37, this submission ranked 9th out of 34 teams in the
evaluation phase.

We were aware that the submitted setup was likely sub-optimal as it did not
include the Fine-tuned model variant. After the official submission deadline
(in the post-evaluation phase), we finished training and fine-tuning all of our
language models. Their systematic evaluation is the main contribution of this
study.

Current results. The average scores of all the tested configurations across 4
languages are given in Table 4.3. This table includes both the results of the config-
urations we used in the evaluation phase and the results of the configurations we
tested after the submission deadline (fine-tuned models). We compare our scores
to the organisers’ baselines (FD and CNT+CI+CD, as provided by Schlechtweg
et al. (2020)) and the classical approach of calculating cosine distance between
static CBOW word embeddings (Mikolov et al., 2013). The CBOW models were
used in two different flavors: (i) ‘incremental’, where the C2 model was initialised
with the C1 weights (Kim et al., 2014), and (ii) ‘Procrustes’, where the two
models were trained independently on C1 and C2, and then aligned using the
Orthogonal Procrustes transformation (Hamilton et al., 2016). All the training
hyperparameters for both ELMo and BERT were fixed to their default values
(see Section 4.6.2), we only varied the training corpora and the layers from which
embeddings were extracted.
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Baselines Frequency (FD) -0.083
Count (CNT+CI+CD) 0.144*

CBOW Incremental 0.140
Procrustes 0.392***

Contextualised embeddings Top layer Average all layers Average top 4 layers

Cosine similarity (PRT)

BERT Pre-trained 0.278** 0.233 0.229
Fine-tuned 0.373** 0.320** 0.338**

ELMo

Pre-trained 0.375** 0.344** –
Fine-tuned 0.402** 0.389** –
Trained on test 0.370** 0.342** –
Incremental 0.114* 0.127 –

Pairwise distance (APD)

BERT Pre-trained 0.237** 0.163* 0.203*
Fine-tuned 0.363*** 0.241** 0.297*

ELMo

Pre-trained 0.296** 0.172* –
Fine-tuned 0.405*** 0.406*** –
Trained on test 0.338** 0.295*** –
Incremental 0.126** -0.001* –

Jensen-Shannon divergence (JSD)

BERT Pre-trained 0.181* 0.125 0.203*
Fine-tuned 0.176* 0.223** 0.186**

ELMo

Pre-trained 0.251* 0.196* –
Fine-tuned 0.197* 0.156* –
Trained on test 0.225* 0.163* –
Incremental -0.037 -0.009 –

Table 4.3: Spearman correlation coefficients for Subtask 2 averaged over four
languages. The number of asterisks denotes the number of languages for which
the correlation was statistically significant (p < 0.05).

Table 4.3 shows that no method achieves statistically significant correlation
on all four languages, which attests both to the difficulty of the task and the
diversity of the test sets. CBOW Procrustes is a surprisingly strong approach,
consistently outperforming the organisers’ baselines. Only PRT and APD obtain
higher average scores, with fine-tuned ELMo models performing better than the
fine-tuned BERT.

Judging only from the average correlation scores, contextualised embeddings
do not seem to outshine their static counterparts, especially considering that both
ELMo and BERT are more computationally demanding than CBOW. However,
closer analysis of per-language results shows that in fact the contextualised ap-
proaches outperform the CBOW Procrustes baseline by a large margin for each
of the shared task test sets. Table 4.4 features the scores obtained by our best-
performing methods (PRT and APD with top layer embeddings from fine-tuned
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Algorithm English German Latin Swedish GEMS

CBOW Incremental 0.210 0.145 0.217 -0.012 0.424†

Procrustes 0.285 0.439† 0.387† 0.458† 0.235†

Fine-tuned contextualised embeddings (top layer)

ELMo Cosine similarity (PRT) 0.254 0.740† 0.360† 0.252 0.323†
Average pairwise distance (APD) 0.605† 0.560† -0.113 0.569† 0.323†

BERT Cosine similarity (PRT) 0.225 0.590† 0.561† 0.185 0.394†
Average pairwise distance (APD) 0.546† 0.427† 0.372† 0.254 0.243†

Table 4.4: Spearman correlation per test set for our best methods (post-evaluation
phase). † marks statistical significance (p < 0.05).

ELMo and BERT) on the individual languages of the shared task. We also report
performance on the GEMS (‘GEometrical Models of Natural Language Semantics
workshop’) test set (Gulordava and Baroni, 2011) to enable a comparison with
our previous study. The discrepancy between the averaged and the per-language
results can be explained by properties of the test sets: APD works best on the
English and Swedish sets, while PRT yields the best scores for German and Latin.

Although consistency across languages (3 out of 4) is an important benefit
of the CBOW Procrustes approach, with the right choice of APD or PRT, con-
textualised embeddings can improve Spearman’s correlation coefficients by up to
50%. This is not a language-specific property: the English GEMS test set does
not behave like the English test set from the shared task. In fact, one can observe
3 groups of test sets with regards to their statistical properties and to the method
they favour: group 1 (Latin and German) exhibits rather uniform gold score dis-
tributions and prefers PRT; group 2 (English and Swedish) is characterised by
more skewed gold score distributions and prefers APD; group 3 (GEMS) is in
between, with no clear preference.

Interestingly, the method which produces a more uniform predicted score dis-
tribution (APD) works better for the test sets with skewed gold distributions, and
the method which produces a more skewed predicted score distribution (PRT)
works better for the uniformly distributed test sets (see Figures 4.6 and 4.7).
Furthermore, there is perfect negative correlation (ρ = −1) between the median
gold score of a test set and the performance of the APD algorithm with fine-tuned
ELMo models on this test set. The same correlation for the APD performance
is not significant but strictly negative. We currently do not have a plausible
explanation for this behaviour.

In the bottom part of Figure 4.6, we show how different the 5 test sets are
in terms of how the gold scores are distributed in them. In some test sets, the
gold scores are skewed to the left, while some have a more uniform distribution.
The top part of Figure 4.6 shows the distributions of the predicted scores pro-
duced by the APD and PRT algorithms (with fine-tuned ELMo embeddings).
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PRT tends to squeeze the majority of predictions near the lower boundary (no
semantic change), with a low median score. In contrast, APD distributes its
predictions in a much more uniform way, with a higher median score. Counter-
intuitively, skewed gold distributions favour uniform predictions and vice versa.
The grouping differences can be quantified with respect to the median gold score
(after unit-normalisation). Figure 4.7 shows the dependency of the PRT and
APD performance on the median score of the gold test set. The dots here are
the performance values of PRT or APD algorithms on different test sets. English
and Swedish test sets are in the left part of the plot with the median gold scores
of 0.200 and 0.203 correspondingly. German, GEMS and Latin are on the right
with 0.266, 0.267 and 0.364 correspondingly. There is a perfect negative Spear-
man’s correlation between the median gold scores of these 5 test sets and the
performance of APD semantic change detection algorithm on each of them (with
fine-tuned ELMo embeddings).

Figure 4.6: Bottom: distribution of semantic change degree in the gold data; top
left: distribution of scores predicted by the APD algorithm; top right: distribu-
tion of scores predicted by the PRT algorithm.

Furthermore, Table 4.4 supports the previous observation that ELMo models
perform better than BERT in the LSCD task. The only test set for which this
is not the case is Latin, while on GEMS, ELMo and BERT are on par.17 One
possible explanation is that our ELMo models were pre-trained on lemmatised
Wikipedia corpora and thus better fit the test corpora, provided in lemmatised
form by the organisers. The BERT models were pre-trained on raw corpora, and

17The Latin test corpora are very peculiar: (i) homonyms in them are followed by ‘#’ and
the sense identifier, which is not the case for Latin Wikipedia, (ii) the sizes of C1 and C2 are
very imbalanced, with the latter being 4 times larger than the former.
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Figure 4.7: Performance of the PRT and APD algorithms depending on the
median gold score.

fine-tuning them on lemmatised data proves less successful. This is of course not
an advantage of the ELMo architecture per se; however, easy and fast training
from scratch on the respective Wikipedia corpora for each shared task language
was possible only because of much lower computational requirements of ELMo
compared to BERT.18

In the post-evaluation phase of the shared task, we submitted predictions
obtained with the optimal system configurations: fine-tuned ELMo + APD for
English and Swedish, fine-tuned ELMo + PRT for German, and fine-tuned BERT
+ PRT for Latin. This submission reached the average Spearman correlation of
0.618 and, at the time of writing, it is still the best Subtask 2 submission for
SemEval-2020 Task 1 (among those publicly available on the shared task website).
Of course, the optimal choice of configurations was possible only because we
already knew the test data. Still, it is useful for understanding of the real abilities
of contextualised embedding-based approaches and the peculiarities of different
models and test sets.

4.7 Conclusion

We have introduced a novel approach for the analysis and detection of lexical
semantic change in text corpora. To our knowledge, ours is the first work to
tackle this problem using neural contextualised word representations and no lex-
icographic supervision. We have shown that the representations and the de-
tected semantic shifts are aligned to human interpretation, and presented a new

18Note that Martinc et al. (2020) report a Spearman correlation of 0.510 on the GEMS
dataset using fine-tuned BERT embeddings with Affinity Propagation and JSD. However, we
were unable to reproduce these results, even when using the published code.
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dataset of human similarity judgements for English word usages which can be
used to measure said alignment. Through in-depth qualitative analysis, we have
demonstrated that our method allows us to capture a variety of synchronic and
diachronic linguistic phenomena.

Participating in the SemEval-2020 shared task, we have experimented with al-
ternative ways of obtaining contextualised representations (using a different lan-
guage model, fine-tuning, and various layer selection strategies) and our extensive
analyses, across four languages, have further confirmed that using contextualised
representations to rank words by the degree of their semantic change yields strong
correlation with human judgements, outperforming approaches based on static
embeddings.

Our approach offers several advantages over previous methods: (i) it does not
rely on a fixed number of word senses, (ii) it captures morphosyntactic properties
of word usage, and (iii) it allows for a more interpretable quantification of lexical
meaning, by enabling the inspection of particular example sentences. Future work
could investigate whether usage representations can provide an even finer grained
account of lexical meaning and its dynamics, e.g., to automatically discriminate
between different types of meaning change.

As of today, the work presented in this chapter has already enabled analyses of
variation and change which exploit the expressiveness of contextualised word rep-
resentations (Kapron-King and Xu, 2021; Lucy and Bamman, 2021; Lucy et al.,
2022; Fugikawa et al., 2023, i.a.).
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5.1 Introduction

In the previous chapter, we have seen that lexical semantic change analysis, a
task which requires capturing word meaning with its nuanced context-determined
modulations, is a good test-bed for lexical representations, and that contextu-
alised word embeddings extracted from pre-trained language models (LMs) are
an accurate type of lexical representation. While they can be clustered and manu-
ally analysed, however, contextualised embeddings inherently lack in explainabil-
ity and interpretability due to their subsymbolic nature. This makes the main
potential end users of these technologies—historical linguists, lexicographers, and
social scientists—still somewhat reluctant to adopt them. Lexicographers, for
instance, are not satisfied with detecting that a word has or has not changed its
meaning over the last ten years; they want descriptions of old and new senses in
human-readable form, possibly accompanied by additional layers of explanation,
e.g., specifying the type of semantic change (such as broadening, narrowing, and
metaphorisation) the word has undergone.

This study is an attempt to bridge the gap between modern lexical represen-
tations and their users. We propose to replace black-box contextualised embed-
dings produced by large LMs with a new type of interpretable lexical semantic
representation: automatically generated contextualised word definitions (Gard-
ner et al., 2022). In this paradigm, the usage of the word ‘apple’ in the sentence
‘She tasted a fresh green apple’ is represented not with a dense high-dimensional
vector but with the context-dependent natural language definition ‘edible fruit’.
With an extended case study on lexical semantic change analysis, we show that
moving to the more abstract meaning space of definitions allows practitioners to
obtain explainable predictions from computational systems, while leading to su-
perior performance on semantic change benchmarks compared to state-of-the-art
token-based approaches.

The work presented in this chapter makes the following contributions.

• We show that word definitions automatically generated with a specialised
language model, fine-tuned for this purpose, can serve as interpretable rep-
resentations for polysemous words (Section 5.4). Pairwise usage similarities
between contextualised definitions approximate human semantic similarity
judgements better than similarities between usage-based word and sentence
embeddings.

• We present a method to obtain word sense representations by labelling
data-driven clusters of word usages with sense definitions, and collect hu-
man judgements of definition quality to evaluate these representations (Sec-
tion 5.5). We find that sense labels produced by retrieving the most proto-
typical contextualised word definition within a group of usages consistently
outperform labels produced by selecting the most prototypical token em-
bedding.
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• Using sense labels obtained via definition generation, we create maps that
describe diachronic relations between the senses of a target word. We then
demonstrate how these diachronic maps can be used to explain meaning
changes observed in text corpora and to find inconsistencies in data-driven
groupings of word usages within existing lexical semantic resources (Sec-
tion 5.6).

Our code, which can be used to reproduce and build on our experiments, can be
found at https://github.com/ltgoslo/definition_modeling.

Usage example Target word Generated definition

‘about half of the soldiers in our rifle pla-
toons were draftees whom we had trained
for about six weeks’

draftee ‘a person who is being enlisted in
the armed forces’

Table 5.1: An example of a definition generated by our fine-tuned Flan-T5 XL
for the word ‘draftee’ The model is prompted with the usage example, post-fixed
with the phrase ‘What is the definition of draftee?’

5.2 Data

5.2.1 Datasets of word definitions

To train an NLG system that produces definitions (Section 5.3), we use three
datasets containing a human-written definition for each lexicographic sense of a
target word, paired with a usage example. The WordNet dataset is a collection
of word definitions and word usages extracted by Ishiwatari et al. (2019) from
the WordNet lexical database (Miller, 1995). The Oxford dataset (also known
as CHA in prior work) consists of definitions and usage examples collected by
Gadetsky et al. (2018) from the Oxford Dictionary. Definitions are written by ex-
perts and usage examples are in British English. The CoDWoE dataset (Mickus
et al., 2022) is based on definitions and examples extracted from Wiktionary.1 It
is a multilingual corpus, of which we use the English portion. Table 5.2 reports
the main statistics of these datasets. Further statistics, e.g., on the size of the
different splits, are provided by Huang et al. (2021) as well as in Appendix A.1.2

1https://www.wiktionary.org
2A definition dataset could be also be extracted from the SemCor corpus (Miller et al., 1993).

However, we do not anticipate it will contribute much to training or evaluation since SemCor
does not contain any new definitions with respect to WordNet: only more examples for the
same word-definition pairs. This can be investigated in future work.

https://github.com/ltgoslo/definition_modeling
https://www.wiktionary.org
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Dataset Entries Lemmas Ratio Usage length Definition length

WordNet 15,657 8,938 1.75 4.80 ± 3.43 6.64 ± 3.77
Oxford 122,318 36,767 3.33 16.73 ± 9.53 11.01 ± 6.96
CoDWoE 63,596 36,068 2.44 24.04 ± 21.05 11.78 ± 8.03

Table 5.2: Main statistics of the datasets of definitions. Ratio is the sense-lemma
ratio: the number of entries over the number of lemmas.

5.2.2 Diachronic word usage graphs

We showcase interpretable word usage (Section 5.4) and sense representations
(Section 5.5 and 5.6) using a dataset where target lemmas are represented with
diachronic word usage graphs (DWUGs, Schlechtweg et al., 2021). A DWUG
is a weighted, undirected graph, where nodes represent target usages (word oc-
currences within a sentence or discourse context) and edge weights represent the
semantic proximity of a pair of usages. DWUGs are the result of a multi-round
incremental human annotation process, with annotators asked to judge the se-
mantic relatedness of pairs of word usages on a 4-point scale (similar to our an-
notation process in the previous chapter). Based on these pairwise judgements,
word usages are then grouped into usage clusters (a data-driven approximation
of word senses) using a variation of correlation clustering (Bansal et al., 2004;
Schlechtweg et al., 2020).

DWUGs are currently available in seven languages.3 Here, we use the English
graphs, which consist of usage sentences sampled from the Clean Corpus of His-
torical American English (Davies, 2012; Alatrash et al., 2020) and belonging to
two time periods: 1810-1860 and 1960-2010. There are 46 usage graphs for En-
glish, corresponding to 40 nouns and 6 verbs annotated by a total of 9 annotators.
Each target lemma has received on average 189 judgements, 2 for each usage pair.
Figure 5.1 shows an example of a DWUG, with colours denoting usage clusters
(i.e., data-driven senses). The ‘blue’ and ‘orange’ clusters belong almost entirely
to different time periods: a new sense of the word has emerged. We show how
our approach helps explain such cases of semantic change in Section 5.6.

5.3 Definition generation

Our formulation of the definition generation task is as follows: given a target
word w and an example usage s (i.e., a sentence containing an occurrence of
w), generate a natural language definition d that is grammatical, fluent, and
faithful to the meaning of the target word w as used in the example usage s. This
corresponds to the sequence-to-sequence task formulation discussed in Section 3.3.

3https://www.ims.uni-stuttgart.de/en/research/resources/experiment-data/
wugs/

https://www.ims.uni-stuttgart.de/en/research/resources/experiment-data/wugs/
https://www.ims.uni-stuttgart.de/en/research/resources/experiment-data/wugs/
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Figure 5.1: Diachronic word usage graph for the English word ‘lass’ (Schlechtweg
et al., 2021).

A definition generator is a language process G :V ×L →L that maps words
and example usages to natural language definitions. G : (w, s) 7→d. In this study,
L is the English language and V is the English vocabulary, which we further
restrict to lists of selected target words as available in definition datasets (see
Section 5.2). As a generator, we use Flan-T5 (Chung et al., 2022), a version of
the T5 encoder-decoder Transformer (Raffel et al., 2020) fine-tuned on 1.8K tasks
phrased as instructions and collected from almost 500 NLP datasets. Flan-T5 is
not trained specifically on definition generation but thanks to its massive multi-
task instruction fine-tuning, the model exhibits strong generalisation to unseen
tasks. Therefore, we expect it to produce high-quality definitions. We extensively
test three variants of Flan-T5 of different size (and compare them to vanilla T5
models in Appendix A.3); based on our results, we recommend using the largest
fine-tuned Flan-T5 model whenever possible.

To obtain definitions from Flan-T5, we use natural language prompts consist-
ing of an example usage preceded or followed by a question or instruction. For
example: ‘s What is the definition of w?’. The concatenated usage exam-
ple and prompt are provided as input to Flan-T5, which conditionally generates
definitions (Table 5.1 shows an example instance). This is a simpler workflow in
comparison to prior work (Bevilacqua et al., 2020; Almeman and Espinosa Anke,
2022) where inputs are encoded as ‘target word - context’ pairs. We choose greedy
search with target word filtering as a simple, parameter-free decoding strategy.
Stochastic decoding algorithms can be investigated in future work.
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Prompt selection. In preliminary experiments, we used the pre-trained Flan-
T5 Base model (250M parameters) to select a definition generation prompt among
8 alternative verbalisations. Appending the question ‘What is the definition of
w?’ to the usage example consistently yielded the best scores (further details in
Appendix A.2). We use this prompt for all further experiments.

5.3.1 Evaluating generated definitions

Before using its definitions to construct an interpretable semantic space—the
main goal of this study—we perform a series of experiments to validate Flan-T5
as a definition generator. We use the target lemmas and usage examples from the
corpora of definitions presented in Section 5.2, conditionally generate definitions
with Flan-T5, and then compare them to the gold definitions in the corpora using
reference-based NLG evaluation metrics. We report SacreBLEU and ROUGE-L,
which measure surface form overlap, as well as BERT-F1, which is sensitive to
the reference and candidate’s semantics. As mentioned in the background chapter
(Section 3.3), reference-based metrics are not flawless, yet designing and validat-
ing a reference-free metric for the definition generation task is beyond the scope
of this study. We will later resort to correlations with human judgements and
expert human evaluation to assess the quality of generated definitions.

We evaluate Flan-T5 XL as a definition generator (3B parameters) by con-
ducting four generalisation tests: 1) zero shot (task shift), 2) in distribution,
3) hard domain shift, and 4) soft domain shift. The tests are defined following
the GenBench generalisation taxonomy (Hupkes et al., 2023). An evaluation card
which clarifies the nature of the tests is shown in Table 5.3.4Results obtained using
another language model, T5 (Raffel et al., 2020), are presented in Appendix A.3.

We use the generalisation tests to choose a model to be deployed in further
experiments. For reference, we report the BLEU score of the definition generator
by Huang et al. (2021); ROUGE-L and BERT-F1 are not reported in their paper.

Zero-shot. We directly evaluate Flan-T5 XL on the WordNet and Oxford test
sets, without any fine-tuning nor in-context learning.5 Table 5.4 shows low BLEU
and ROUGE-L scores but rather high BERT-F1. Overall, the model does not ex-
hibit consistent task understanding (e.g., it generates ‘skepticism’ as a definition
for ‘healthy’ as in the phrase ‘healthy skepticism’). A qualitative inspection, how-
ever, reveals that the generated definitions can still be often informative (e.g., ‘a
workweek that is longer than the regular workweek’ is informative with respect
to the meaning of ‘overtime’ although the ground truth definition is ‘beyond the

4See https://genbench.org/eval_cards. In-distribution tests are not included as they do
not present any shift between the training and test data distributions Hupkes et al. (2023).

5We only condition generation on the usage examples and the task prompt. We do not
provide full instances (i.e., usage examples, task prompts, and definitions) in the context, as
one would do in a few-shot setup.

https://genbench.org/eval_cards
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Motivation
Practical Cognitive Intrinsic Fairness
□△⃝

Generalisation type
Compo- sitional Structural Cross Task Cross Language Cross Domain Robust- ness

□ △⃝
Shift type

Covariate Label Full Assumed
△⃝ □

Shift source
Naturally occurring Partitioned natural Generated shift Fully generated

□△⃝
Shift locus

Train–test Finetune train–test Pretrain–train Pretrain–test
△⃝ □

Table 5.3: Evaluation card for the generalisation tests performed on definition
generators. The setups are: zero-shot (□), hard domain shift (△), and soft
domain shift (⃝). In-distribution tests are not included as they do not include
any shift between the training and test data distributions.

regular time’ ). The two surface overlap metrics cannot capture this, but the rela-
tively high BERT-F1 confirms that the semantic content of generations is largely
appropriate. There are indeed also many good zero-shot definitions—for example,
‘intense’ for ‘fervent’ as in ‘the fervent heat’, or ‘a conversation’ for ‘discussion’
in ‘we had a good discussion’.

In distribution. We fine-tune Flan-T5 XL on one corpus of definitions at a
time, and test it on a held-out set from that same corpus (except CoDWoE which
does not provide train-test split). The quality of the definitions increases sub-
stantially with fine-tuning, in terms of both their lexical and semantic overlap
with gold definitions (Table 5.4). We find significantly higher scores on Oxford,
which may be due to the larger size of its training split and to the quality of the
WordNet examples, which sometimes are not sufficiently informative (Almeman
and Espinosa Anke, 2022).

Hard domain shift. We fine-tune Flan-T5 XL on WordNet and test it on Ox-
ford, and vice versa. These tests allow us to assess the model’s sensitivity to the
peculiarities of the training dataset. A model that has properly learned to gener-
ate definitions should be robust to this kind of domain shift. The quality of the
definitions of Oxford lemmas generated with the model fine-tuned on WordNet
(see the Oxford column in Table 5.4) is lower than for the model fine-tuned on
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WordNet Oxford

Model Test BLEUROUGE-LBERT-F1BLEUROUGE-LBERT-F1

Huang et al. (2021)Unknown 32.72 - - 26.52 - -
Flan-T5 XL Zero-shot (task shift) 2.70 12.72 86.72 2.88 16.20 86.52
Flan-T5 XL In distribution 11.49 28.96 88.90 16.61 36.27 89.40
Flan-T5 XL Hard domain shift 29.55 48.17 91.39 8.37 25.06 87.56
Flan-T5 XL Soft domain shift 32.81 52.21 92.16 18.69 38.72 89.75

Table 5.4: Results of the definition generation experiments.

Oxford itself (same column, see row ‘In distribution’). Instead, for out-of-domain
WordNet definitions, all metrics surprisingly indicate higher quality than for in-
distribution tests (WordNet column). Taken together, our results so far suggest
that the quality of a fine-tuned model depends more on the amount of the training
data, and on the quality of the usage examples in the dataset, than on whether
the test data is drawn from the same dataset.

Soft domain shift. We finally fine-tune Flan-T5 XL on a collection of all three
definition datasets: WordNet, Oxford, and CoDWoE. Our previous results hint
towards the model’s preference for more training examples, so we expect this
setup to achieve the highest scores regardless of the soft shift between training
and test data. Indeed, on WordNet, our fine-tuned model marginally surpasses
the state-of-the-art upper bound in terms of BLEU score (Table 5.4), and it
achieves the highest scores on the other metrics. Oxford definitions generated
with this model are instead still below Huang et al.’s upper bound; this may be
due to Oxford being generally more difficult to model than WordNet, perhaps
because of longer definitions and usages (see Figures A.1-A.2 in Appendix A.1).
We consider the observed model performance sufficient for the purposes of our
experiments, in particular in view of the higher efficiency of fine-tuned Flan-T5
with respect to the three-module system of Huang et al. (2021). We therefore use
this model throughout the rest of our study.

The Flan-T5 models fine-tuned for definition generation are publicly available
through the Hugging Face model hub.6

5.4 Definitions are interpretable word representa-
tions

We propose considering the abstract meaning space of definitions as a represen-
tational space for lexical meaning. Definitions fulfil important general desiderata

6Model names: ltg/flan-t5-definition-en-base, ltg/flan-t5-definition-en-large, ltg/flan-t5-
definition-en-xl.

https://huggingface.co/ltg/flan-t5-definition-en-base
https://huggingface.co/ltg/flan-t5-definition-en-large
https://huggingface.co/ltg/flan-t5-definition-en-xl
https://huggingface.co/ltg/flan-t5-definition-en-xl
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Method Cosine SacreBLEU METEOR

Token embeddings 0.141 - -
Sentence embeddings 0.114 - -

FLAN-T5 XL Zero-shot 0.188 0.041 0.083
FLAN-T5 XXL Zero-shot 0.206 0.045 0.092
FLAN-T5 base (fine-tuned) 0.221 0.078 0.077
FLAN-T5 XL (fine-tuned) 0.264 0.108 0.117

Table 5.5: Correlations with pairwise similarity judgements by humans.

for word representations: they are human-interpretable and they can be used for
quantitative comparisons between word usages (i.e., by judging the distance be-
tween pairs of definition strings). We put the definition space to test by applying
it to the task of semantic change analysis, which requires capturing word meaning
at a fine-grained level, distinguishing word senses based on usage contexts. We
use our fine-tuned Flan-T5 models (XL and other sizes) to generate definitions
for all usages of the 46 target words annotated in the English DWUGs (ca. 200
usages per word; see Section 5.2.2).7 These definitions (an example is provided
in Table 5.1) specify a diachronic semantic space.

5.4.1 Correlation with human judgements

We construct word usage graphs for each lemma in the English DWUGs: we take
usages as nodes and assign weights to edges by measuring pairwise similarity be-
tween usage-dependent definitions. We compute the similarity between pairs of
definitions using two overlap-based metrics, SacreBLEU and METEOR, as well
as the cosine similarity between sentence-embedded definitions. We then com-
pare our graphs against the gold DWUGs, where edges between usage pairs are
weighted with human judgements of semantic similarity, by computing the Spear-
man’s correlation between human similarity judgements and similarity scores ob-
tained for pairs of generated definitions. We compare our results to DWUGs
constructed based on two additional types of usage-based representations: sen-
tence embeddings obtained directly for usage examples, and contextualised to-
ken embeddings. Sentence embeddings (for both definitions and usage exam-
ples) are SBERT representations (Reimers and Gurevych, 2019) extracted with
mean-pooling from the last layer of a DistilRoBERTa LM fine-tuned for seman-
tic similarity comparisons.8 For tokens, we extract the last-layer representations

7The training datasets used in Section 5.3 contain nouns, verbs, adjectives and adverbs. The
English DWUGs contain only nouns and verbs.

8DistilRoBERTa (sentence-transformers/all- distilRoBERTa-v1) is the second best
model as reported in the official S-BERT documentation at the time of publication (https:

https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html


70 Chapter 5. Contextualised definitions as interpretable word representations

Figure 5.2: T-SNE projection of each embedding space, DistilRoBERTa model.

of a RoBERTa-large model (Liu et al., 2019) which correspond to subtokens of
the target word following the procedure presented in the previous chapter, and
then use mean-pooling to obtain a single vector. While we report string-overlap
similarities for definitions, these are not defined for numerical vectors, and thus
similarities for example sentences and tokens are obtained with cosine only.

Pairwise similarities between definitions approximate human similarity judge-
ments far better than similarities between example sentence and word embed-
dings (Table 5.5) indicating that definitions are a more accurate approximation
of contextualised lexical meaning. The results also show that similarity between
definitions is best captured by their embeddings, rather than by overlap-based
metrics such as SacreBLEU and METEOR.

5.4.2 Definition embedding space

We now examine the definition embedding space (the high-dimensional semantic
space defined by sentence-embedded definitions), to identify properties that make
it more expressive than usage-based spaces. Figure 5.2 shows the T-SNE projec-
tions of the DistilRoBERTa embeddings of all lemmas in the English DWUGs, for
the three types of representation presented earlier: generated definitions, tokens,
and example sentences.9 The definition spaces exhibit characteristics that are
more similar to a token embedding space than an example sentence embedding
space, with usages of the same lemma represented by relatively close-knit clusters
of definition embeddings. This suggests that definition embeddings, as expected,
represent the meaning of a word in context (similar to token embeddings), rather
than the meaning of the whole usage example sentence in which the target word
occurs.

//www.sbert.net/docs/pretrained_models.html). For a negligible accuracy reduction, it
captures longer context sizes and is ca. 50% smaller and faster than the model that ranks first.

9T-SNE projections for RoBERTa-large are in Appendix A.6.

https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
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Model Representation Variance Std k Silhouette ↑ Sep. ↑ Coh. ↓ Ratio ↑

Sentence 0.014 0.117 2.0 0.111 0.285 0.012 23.2
RoBERTa-large Token 0.034 0.183 3.8 0.173 0.868 0.027 32.4

Definitions 0.006 0.080 20.6 0.335 0.057 0.003 22.3

Sentence 0.597 0.772 2.1 0.046 4.907 0.578 8.5
DistilRoBERTa Token 0.477 0.687 2.5 0.121 8.599 0.427 20.1

Definitions 0.509 0.756 19.7 0.355 5.559 0.228 24.4

Table 5.6: Variance, standard deviation, optimal k, silhouette score, separation
score, cohesion score, and the separation-cohesion ratio for each embedding space;
average over all target words.

For each target word, we also measure (i) the variability in each embed-
ding space and (ii) the inter-cluster and intra-cluster dispersion (Caliński and
Harabasz, 1974) obtained when clustering each space using k-means. This allows
us to quantitatively appreciate properties exhibited by data-driven usage clusters
that are obtained from different representation types. To cluster the embedding
spaces, we experiment with values of k ∈ [2, 25], and select the k which maximises
the silhouette score (Rousseeuw, 1987). Our results are summarised in Table 5.6.
While, on average, token spaces exhibit higher inter-cluster dispersion (indicating
better cluster separation), the clusters in the definition spaces have on average
the lowest intra-cluster dispersion, indicating that they are more cohesive than
the clusters in the token and example sentence spaces. These findings persist for
the gold clusters determined by the English DWUGs (Table A.4, Appendix A.6).

In sum, this analysis shows that definition embedding spaces are generally
suitable to distinguish different types of word usage. In the next section, we will
show how they can indeed be used to characterise word senses.

5.5 Labelling word senses with definitions

For generated definitions to be useful in practice, they need to be able to dis-
tinguish word senses. For example (ignoring diachronic differences and singleton
clusters), there are three main senses of the word ‘word’ in its DWUG, which
we manually label as: (1) ‘words of language’, (2) ‘a rumour’, and (3) ‘an oath’.
Manual inspection of the generated definitions indicates that they are indeed
sense-aware:

1. ‘A communication, a message’, ‘The text of a book, play, movie’, etc.

2. ‘Information passed on, usually by one person to another’, ‘communication
by spoken or written communication’, etc.

3. ‘An oath’, ‘a pronouncement’, etc.
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But let’s again put ourselves in the shoes of a historical linguist. Sense clusters
are now impractically represented with multitudes of contextualised definitions.
Cluster (1) for ‘word’, e.g., features 190 usages, and one must read through all of
them and extrapolate—all to formulate a definition that covers the whole sense
cluster (a sense label). We now show how DWUGs can be automatically aug-
mented with generated sense labels, vastly improving their usability.

5.5.1 Selecting sense labels

From n definitions, generated for n word usages belonging to the same DWUG
cluster, we use the most prototypical one as the sense label—with the aim of
reflecting the meaning of the majority of usages in the cluster. We represent
all definitions with their sentence embeddings (cf. Section 5.4.1) and select as
prototypical the definition whose embedding is most similar to the average of all
embeddings in the cluster. Clusters with less than 3 usages are ignored as, for
these, prototypicality is ill-defined. As a sanity check, these are the sense labels
obtained by this method for the DWUG clusters of ‘word’; they correspond well
to the sense descriptions provided earlier.

1. ‘A single spoken or written utterance’

2. ‘Information; news; reports’

3. ‘A promise, vow or statement’

We compare these sense labels to labels obtained by generating a definition for
the most prototypical usage (as judged by its token embedding), rather than tak-
ing the most prototypical definition, and we evaluate both types of senses labels
using human judgements. Examples of labels can be found in Appendix A.4.

5.5.2 Human evaluation

Five human annotators (fluent English speakers) were asked to evaluate the qual-
ity of sense labels for each cluster in the English DWUGs, 136 in total. Each
cluster was accompanied by the target word, two labels (from definitions and
from usages) and five example usages randomly sampled from the DWUG. The
annotators could select one of six judgements to indicate overall quality of the
labels and their relative ranking. After a reconciliation round, the categorical
judgements were aggregated via majority voting. Krippendorff’s α inter-rater
agreement is 0.35 on the original data and 0.45 when the categories are reduced
to four. Full guidelines are reported in Appendix A.5.

There exist no established procedures for the collection of human quality
judgements of automatically generated word sense labels. The closest efforts
we are aware of are those in Noraset et al. (2017), who ask annotators to rank
definitions generated by two systems, providing as reference the gold dictionary
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definitions. In our case, (i) generations are for word senses rather than lemmas,
(ii) we are interested not only in rankings but also in judgements of ‘sufficient
quality’, (iii) dictionary definitions are not available for the DWUG senses; instead
(iv) we provide annotators with usage examples, which are crucial for informed
judgements of sense definitions.

(a) (b)

Figure 5.3: Human evaluation results: general quality of generated sense labels
(a) and comparison between sense labels produced from definitions vs. usages.

Results. Figure 5.3 shows the results of the human evaluation. We find that
our prototypicality-based sense labelling strategy is overall reliable. Only for 15%
of the clusters, annotators indicate that neither of the labels is satisfactory (Fig-
ure 5.3a). When comparing definition-based and usage-based labels (Figure 5.3b),
the former were found to be better in 31% of the cases, while the latter in only
7%. In the rest of the cases, the two methods are judged as equal. We also anal-
ysed how often the labels produced by each method were found to be acceptable.
Definition-based labels were of sufficient quality in 80% of the instances, while
for usage-based labels this is only true for 68% of the cases.

In sum, prototypical definitions reflect sense meanings better than definitions
of prototypical usage examples. We believe this is because definitions are more
abstract and robust to contextual noise: if the underlying sense is similar, the
same definition can be assigned to very different usages. This approach takes the
best of both worlds. The produced representations are data-driven, but at the
same time they are human-readable and naturally explanatory. In the next sec-
tion, we demonstrate how automatically generated definition-based sense labels
can be used to explain semantic change observed in diachronic text corpora.
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5.6 Explaining semantic change with sense labels
Word senses in DWUGs are collections of example usages and they are only la-
belled with numerical identifiers. This does not allow users to easily grasp the
meaning trajectories of the words they are interested in studying. Using sense la-
bels extracted from generated definitions, we can produce a fully human-readable
sense dynamics map—i.e., an automatically annotated version of a DWUG which
displays synchronic and diachronic relations between senses (e.g, senses transi-
tioning one into another, splitting from another sense, or two senses merging into
one).

Given a target word, its original DWUG, and its semi-automatic sense clusters,
we start by assigning a definition label to each cluster, as described in Section 5.5.
Then, we divide each cluster into two sub-clusters, corresponding to time periods
1 and 2 (for example, sub-cluster c21 contains all usages from cluster 1 occurring in
time period 2).10 We compute pairwise cosine similarities between the sentence
embeddings of the labels (their ‘definition embeddings’), thereby producing a fully
connected graph where nodes are sub-clusters and edges are weighted with sense
label similarities. Most edges have very low weight, but some sub-cluster pairs
are unusually similar, hinting at a possible relation between the corresponding
senses. We detect these outlier pairs by inspecting the distribution of pairwise
similarities for values with z-score higher than 1 (similarities more than 1 stan-
dard deviation away from the mean similarity). Sub-cluster pairs connected with
such edges form a sense dynamics map.

As an example, the noun ‘record’ has only one sense in time period 1 but it
acquires two new senses in time period 2 (Figure 5.4; as before, we ignore clusters
with less than 3 usages). The sense clusters defined by DWUGs are anonymous
collection of usages, but with the assigned sense labels (also shown in Figure 5.4)
they can be turned into an explanation of the observed semantic shift:

• A novel sense 2 of ‘record’ in time period 2 (‘A phonograph or gramophone
cylinder containing an audio recording.’ ) is probably an offshoot of a sta-
ble sense 0 present in both time periods (‘A document or other means of
providing information about past events.’ ).

It becomes now clear that sense 2 stems from the older general sense 0 of ‘record’—
arguably representing a case of narrowing (Bloomfield, 1933)—while the second
new sense (1: ‘the highest score or other achievement in the game’ ) is not related
to the others (or at least much further related) and can thus be considered as
independent.

10Note that the labels are still time-agnostic: that is, sub-clusters c11 and c21 have the same
label. This is done for simplicity and because of data scarcity, but in the future we plan to
experiment with time-dependent labels as well. We use two time periods as only two periods
are available in Schlechtweg et al.’s English DWUGs (Schlechtweg et al., 2021), but the same
procedure can be executed on multi-period datasets.



5.6. Explaining semantic change with sense labels 75

Figure 5.4: Diachronic word usage graphs for ‘record’ (Schlechtweg et al., 2021)
with sense definitions generated using our proposed procedure (Section 5.5). Left:
time period 1 (1810-1860); right: time period 2 (1960-2010). Colours correspond
to data-driven senses, as annotated in the original DWUGs.
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Sense dynamics maps can also help in tracing potentially incorrect or incon-
sistent clustering in DWUGs. For instance, if different sense clusters are assigned
identical definition labels, then it is likely that both clusters correspond to the
same sense and that the clustering is thus erroneous. Using our automatically
produced sense dynamics maps, DWUGs can be improved and enriched semi-
automatically.

An interesting case in which different sense clusters are assigned identical
definition labels is the word ‘chef’. Usage examples from sense clusters c2 and c3
for the word ‘chef’ are as follows:

• c2: ‘He boasted of having been a chef de brigade in the republican armies of
France’, ‘Morrel has received a regiment, and Joliette is Chef d’Escadron
of Spahis ’, ‘as major-general and chef d’escadron, during the pleasure of
our glorious monarch Louis le Grand ’

• c3: ‘That brave general added to his rank of chef de brigade that of adjutant
general ’, ‘I frequently saw Mehevi and several other chefs and warriors of
note take part ’

A user can safely accept the suggestion of our system to consider these two clusters
as one sense.11 Another insightful case is ‘ball’. Although none of its sense labels
are identical, its sense cluster c0 is very close to cluster c2 (similarity of 0.70),
while c2 is close to c3 (similarity of 0.53); all three senses persist throughout both
time periods, with sense 3 declining in frequency. The generated definitions for
the ‘ball’ clusters are: 0: ‘A sphere or other object used as the object of a hit’ (the
largest cluster), 2: ‘A round solid projectile, such as is used in shooting’, and 3:
‘A bullet’. This case demonstrates that similarity relations are not transitive: the
similarity between c0 and c3 is only 0.50, below our outlier threshold value. This
is in part caused by inconsistent DWUG clustering: while the majority of usages
in c12 are about firearm projectiles, c22 contains mentions of golf balls and ball point
pens. This shifts sense 2 from ‘bullet’ to ‘round solid projectile’, making it closer
to sense 0 (general spheres) than it should be. Ideally, all the ‘bullet’ usages from
c2 should have ended up in c3, with the rest joining the general sense 0.

Besides suggesting fixes to the DWUG clustering, the observed non-transitivity
also describes a potential (not necessarily diachronic) meaning trajectory of ‘ball’:
from any spherical object, to spherical objects used as projectiles, and then to
any projectiles (like bullets), independent of their form. Our generated sense la-
bels and their similarities help users analyse this phenomenon in an easier and
considerably faster way than by manually inspecting all examples for these senses.

11Note that ‘A commander’ practically disappeared as a word sense in the 20th century,
replaced by ‘a professional cook, usually in a restaurant’.
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5.7 Conclusion
We propose to consider automatically generated contextualised word definitions
as a type of lexical representation, similar to traditional word embeddings. While
generated definitions have been already shown to be effective for word sense dis-
ambiguation (Bevilacqua et al., 2020), our study puts this into a broader per-
spective and demonstrates that modern language models like Flan-T5 (Chung
et al., 2022) are sufficiently mature to produce robust and accurate definitions
in a simple prompting setup. The generated definitions outperform traditional
token embeddings in word-in-context similarity judgements while being naturally
interpretable.

We apply definition-based lexical representations to semantic change analysis
and show that our approach can be used to trace word sense dynamics over
time. Operating in the space of human-readable definitions makes such analyses
much more interesting and actionable for linguists and lexicographers—who look
for explanations, not numbers. At the same time, we believe the ‘definitions as
representations’ paradigm can also be used for other NLP tasks in the area of
lexical semantics, such as word sense induction, idiom detection, and metaphor
interpretation.

Our experiments with diachronic sense modelling are still preliminary and
mostly qualitative. The cases shown in Section 5.6 are hand-picked examples,
demonstrating the potential of using generated definitions for explainable seman-
tic change detection and improving LSCD datasets. It is important to evaluate
systematically how well our predictions correspond to the judgements of (expert)
humans. Once further evidence is gathered, other promising applications include
tracing cases of semantic narrowing or widening over time (Bloomfield, 1933) by
analysing the variability of contextualised definitions in different time periods and
by making cluster labels time-dependent. Both directions will require extensive
human annotation, and we leave them for future work.
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Utterance Comprehension
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The main focus of Part 1 was on the usage and interpretation of individual
words. Chapters 4 and 5 presented two ways of using neural language models to
obtain abstract word representations. The resulting representations can be used
for linguistic analysis and, at the same time, inspecting them reveals the ability of
language models to accurately capture word meaning. While the ability to model
word meaning is fundamental to any account of language use, it is not sufficient for
a model to offer a complete picture of the much more complex forms of linguistic
behaviour humans are capable to produce. Most of the times, human linguistic
signals consist of sequences of words, embedded in a wider linguistic context than
the current sentence. These sequences, which we will refer to as utterances, make
up conversations, books, theatre plays, and movie scripts. They are arguably the
main unit of language use because, unlike words (which, incidentally, are not a
linguistically universal concept), they can describe situations and states of the
world (i.e., entities and the relations between them) and thus they can be used
to express non-trivial communicative intents.

Utterances will be the focus of Part 2 and Part 3 of this thesis. We will
study them in relation to the linguistic context that precedes their occurrence,
their discourse context, as this is essential to understanding their communicative
function and, with that, most aspects of their production and comprehension in
humans. This will not simply be an extension of the analyses presented in Part 1
to the more complex meaning space of utterances. While extending contextualised
meaning representations to this more complex space is interesting and valuable, it
is perhaps more exciting, and arguably more informative about human language
use, to study the mechanisms by which humans produce and comprehend such
complex signals—rather than, so to say, the ‘result’ of their processing.

Part 2, in particular, will explore ways of using neural language models to
mimic the processes involved in the comprehension of utterances and to study
how these determine speakers’ audience-aware strategies of language production.
Combining information theory and psycholinguistics, we will model utterance
comprehension as a process in which humans form expectations about the next
complex linguistic unit, and where the amount of processing necessary to make
sense of the unit is related to its unpredictability. This, in turn, affects speak-
ers’ selection and formulation of utterances, since sequences of words that require
excessive processing effort in order to be comprehended are unlikely to be com-
municatively felicitous.

Due to production and perception errors, differences between individuals, and
other sources of uncertainty, language use can be understood as information ex-
change through a noisy channel. Speakers are sensitive to the properties of the
channel in two ways (Clark and Wilkes-Gibbs, 1986; Clark and Schaefer, 1989).
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On the one hand, they try to reduce the processing effort of the addressee. For
example, in the absence of established discourse context, speakers can produce
utterances that are easier to process in order to minimise the chance of trans-
mission error. On the other hand, speakers try to reduce their own production
effort. For example, given a fixed amount of information that they intend to
transmit, speakers can take the risk of producing more concise utterances that
are less costly from the production point of view, and expect the addressee to ex-
ploit the utterance context for interpretation. Effective and efficient information
exchange under these two competing pressures can be modelled using the tools
of Information Theory (Shannon, 1948). Indeed, information-theoretic models
have offered successful accounts of speech perception (Jelinek et al., 1975; Cla-
yards et al., 2008), reading (Keller, 2004; Demberg and Keller, 2008; Levy et al.,
2009), sentence interpretation (Levy, 2008b; Gibson et al., 2013), and turn taking
(Dethlefs et al., 2016), providing psycholinguistic evidence that the information
content (or surprisal) of linguistic signals is related to comprehension effort.

The most efficient way of dealing with the efficiency and effectiveness pres-
sures, according to Information Theory, is to transmit information at a constant
surprisal rate (Genzel and Charniak, 2002), making linguistic choices that reduce
fluctuations in the density of the information transmitted. Evidence for the prin-
ciple of uniform information density (UID; Jaeger and Levy, 2007; Jaeger, 2010)
has been found at many levels of language production: speakers tend to reduce
the duration of more predictable sounds (Aylett and Turk, 2004, 2006; Bell et al.,
2003; Demberg et al., 2012); they tend to drop sentential material within more
predictable scenarios (Jaeger and Levy, 2007; Jaeger, 2010; Frank and Jaeger,
2008); in spoken dialogue they are more likely to overlap at turn transitions when
surprisal is low (Dethlefs et al., 2016); and the rate at which they transmit infor-
mation in texts is uniform (Genzel and Charniak, 2002, 2003; Qian and Jaeger,
2011).

In Chapter 6, I will present the central notion of surprisal and its relation to
processing effort, as well as a method to obtain surprisal estimates from neural
language models. In Chapter 7, I will use surprisal estimates to test the entropy
rate constancy (Genzel and Charniak, 2002) and uniform information density
(Jaeger and Levy, 2007) hypotheses in text and dialogue. Chapter 8 will zoom
in on the information structure of utterances in dialogue, trying to reconcile
findings in the preceding chapter with theories of rational and efficient use of the
communication channel.
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6.1 Background

To ensure communicative success, humans monitor the effect of their utterances
on their audience’s comprehension. Taking into consideration the audience’s pro-
cessing effort, in particular, is one of the main forms of audience-awareness speak-
ers are known to possess (Clark and Wilkes-Gibbs, 1986; Clark and Schaefer, 1989;
Frank and Goodman, 2012a; Levy, 2018). In many cases, language production
choices can be explained in terms of efficient strategies to manage fluctuations of
expected effort throughout communication episodes, such as texts and dialogues.

But what is processing effort? Processing effort is a phycholinguistic construct
developed as a measure of the expenditure of information processing resources
required for the perception and cognition of linguistic signals. It is typically mea-
sured in terms of neural responses or other forms of comprehension behaviour
such as reading times and eye fixation duration. According to expectation-based
psycholinguistic theories of language processing (Hale, 2001; Levy, 2008a), pro-
cessing effort is strongly related to the predictability of upcoming linguistic signals
given their context of occurrence. Computational estimates of predictability offer
a convenient solution to the quantification of processing effort because they allow
measuring predictability without access to the human brain or behaviour.

A classic and empirically successful operationalisation of predictability relies
on the information-theoretic notion of surprisal, or information content (Shan-
non, 1948). Surprisal is an alternative way of expressing the probability of a
particular event occurring from a random variable, and it can be interpreted as
quantifying the degree of unexpectedness of (or surprise for) a particular outcome.
It is often also referred to as information density. Quantifications of predictability
in terms of surprisal have not only been shown to be a strong predictor of neural
and behavioural measures of processing effort in perception (Jelinek et al., 1975;
Clayards et al., 2008), reading (Keller, 2004; Demberg and Keller, 2008; Levy
et al., 2009; Monsalve et al., 2012; Goodkind and Bicknell, 2018a; van Schijn-
del and Linzen, 2018), and sentence comprehension (Levy, 2008b; Gibson et al.,
2013; Shain et al., 2020)—they have also been used to explain a wide variety
of phenomena in language production, from phonology (Aylett and Turk, 2004,
2006; Bell et al., 2003; Demberg et al., 2012) and syntax (Jaeger and Levy, 2007;
Frank and Jaeger, 2008; Jaeger, 2010) to discourse (Genzel and Charniak, 2002,
2003; Qian and Jaeger, 2011) and dialogue (Dethlefs et al., 2016; Xu and Reitter,
2018).

In lack of computational models that could capture predictability of complex
linguistic signals within long contextual sequences, surprisal used to be estimated
independently of its discourse context. This chapter presents a method for the
estimation of utterance surprisal as a function of discourse context, which relies
on autoregressive Transformer language models.
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6.2 Method
In this section, I define the main information theoretic measures that will be used
throughout Part 2 and describe the computational models that produce empir-
ical estimates thereof. We will take utterances as the basic unit of information
transmission in line with prior work on text and dialogue (Genzel and Charniak,
2002, 2003; Doyle and Frank, 2015a,b; Qian and Jaeger, 2011; Xu and Reitter,
2018) and obtain estimates of their surprisal both when considered out of and
in their discourse context. To further investigate information structure within
utterances, in Chapter 8, I will generalise our definition of surprisal such that it
can be applied to any sequence of tokens.

6.2.1 Measuring surprisal

The surprisal of a linguistic signal, in our case an utterance S, is the negative
logarithm of the probability of S. It quantifies the degree of unexpectedness of—
or surprise for—S. This quantity is also called the Shannon information content:

H(S)=− log2P (S) (6.1)

In this formulation, the surprisal of an utterance measures how unexpected the
utterance is if processed out of context. However, because utterances always
appear within some discourse, their true surprisal is necessarily modulated by
the informativeness of their context. The availability of contextual cues (e.g., the
topic of the text, references to the main entities in the discourse, the writing style)
alters the expectations of the audience over upcoming linguistic signals and, in
most cases, makes utterances less surprising and less effortful to process.

The contextualised surprisal of an utterance, too, can be estimated as the
Shannon information content, but this time using the negative logarithm of the
conditional probability of the utterance given its context C:

H(S|C)=− log2P (S|C) (6.2)

According to the classic information-theoretic model of communication (Shan-
non, 1948) and under a rationality assumption for speakers’ linguistic choices,
this quantity is hypothesised to remain constant (Genzel and Charniak, 2002)
or uniform (Jaeger and Levy, 2007; Jaeger, 2010) throughout discourse. In the
introduction to Part 2, I have referred to the respective hypotheses as Entropy
Rate Constancy (ERC) and Uniform Information Density (UID).

Although both hypotheses generate predictions about contextualised surprisal,
previous studies have tried to confirm or disprove them by relying only on esti-
mates of decontextualised surprisal, due to the lack of suitable computational
models. To motivate this simplification, they have relied on the assumption that
an increase in the amount of available discourse context always corresponds to an
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increase in context informativeness (Genzel and Charniak, 2002, 2003): i.e., for
example, that three sentences are more informative to predict the fourth sentence
in a text than two sentences are to predict the third sentence. The operational-
isation of this assumption requires rewriting the contextualised surprisal of an
utterance as the difference between the decontextualised surprisal and the mu-
tual information between the next utterance and the context:

H(S|C) ≡ H(S)− I(S;C) (6.3)

As the relevant context is built up, I(S;C) is assumed to increase. So for the ERC
and UID hypotheses to hold—i.e., for H(S|C) to remain constant or uniform in
Equation 6.3—the decontextualised surprisal H(S) must increase. In prior work,
an increase in H(S) was therefore considered sufficient evidence in favour of the
principles (Genzel and Charniak, 2002, 2003).

In our studies in Part 2, we do not assume an increase in I(S;C) and estimate
both the decontextualised and the contextualised surprisal of an utterance. This
allows us to directly test the ERC and UID hypotheses and to measure the true
informativeness of context.

6.2.2 Definitions

The surprisal of a word choice wi is the negative logarithm of the corresponding
word probability, conditioned on the utterance context S:wi

(i.e., the words that
precede wi in utterance S) and on the discourse context C:

H(wi|S:wi
, l) = − log2 P (wi|S:wi

, C) (6.4)

While we take the utterance as the basic unit of information transmission, there
are multiple reasons to measure surprisal at the word level. It makes it possible
to estimate the surprisal of subsequences of tokens within utterances (as we will
see in Chapter 8, it is compatible with current neural language model architec-
tures (which output probabilities of tokens, rather than utterances), and it is
an approach taken in most previous work (e.g., Genzel and Charniak, 2002; Xu
and Reitter, 2018; Meister et al., 2021), thus enhancing the comparability of our
results to existing findings.

The decontextualised surprisal of an utterance is computed by averaging over
the negative logarithms of all word probabilities, conditioned only on the preced-
ing words in the utterance context:

H(S)=− 1

|S|
∑
wi∈S

log2P (wi|w1, ..., wi−1) (6.5)

The contextualised surprisal of an utterance is computed as the average per-word
negative probability, conditioned on the preceding words in the utterance as well
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Pos. Utterance H(S) H(S|C)

1 Stanislav Ovcharenko, who represents the Soviet air-
line Aeroflot here, has some visions that are wild even
by the current standards of perestroika.

5.44 5.44

2 In his office overlooking the runway of Shannon Air-
port, Mr. Ovcharenko enthusiastically throws out
what he calls "just ideas":

6.53 5.61

3 First, he suggests, GPA Group Ltd., the interna-
tional aircraft leasing company based in Ireland,
could lease some of its Boeing jetliners to the So-
viet airline.

6.10 5.82

Table 6.1: The first three paragraphs of a Penn Treebank article (document
id: 36), annotated with their positions within the article (Pos.) and surprisal
estimates.

as on the entire relevant discourse context:

H(S|C)=− 1

|S|
∑
wi∈S

log2P (wi|w1, ..., wi−1, C) (6.6)

Context informativeness is computed as the difference between the previous two
quantities:

I(S;C) ≡ H(S)−H(S|C) (6.7)

Section 6.4 explains how empirical estimates of the quantities above are ob-
tained from neural language models, and Section 6.5 contains an analysis and
validation of our surprisal estimates. First, though, I will present the corpora
analysed throughout Part 2 of this thesis, on which language models are fine-
tuned and of which surprisal estimates are computed.

6.3 Data
We analyse the surprisal of written and spoken English in text and in dialogue.
Excerpts from our corpora of written texts and from our written dialogue corpora
are shown in Tables 6.1 and 6.2; further excerpts from the corpora can be found
in Appendix B.1.

Penn Treebank. The Penn Treebank corpus1 (Mitchell et al., 1999) contains
2,499 English newspaper articles from the Wall Street Journal. We follow the

1https://catalog.ldc.upenn.edu/LDC99T42

https://catalog.ldc.upenn.edu/LDC99T42
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Pos. Id. Utterance H(S) H(S|C)

1 B Hi. Two women with bagels? 5.61 5.61
2 A nope 4.18 4.22
3 A guy with a beard and big pizza 4.95 4.77
4 B No. A woman and child in dimly lit room 5.24 5.02
5 A yep she has a green jacket on 5.46 5.21
6 A a wood table with empty beer bottles on it 4.42 4.55
7 B Yes. 4.86 4.91
8 A ok ready 7.13 7.64
9 B Done 11.85 11.30
10 A k go 10.32 10.57

Table 6.2: The first three utterances of a PhotoBook dialogue (dialogue id: 2037),
annotated with utterance positions (Pos.), speaker identifier (Id.), and surprisal
estimates.

data splits used by Genzel and Charniak (2002, 2003) and divide the corpus into
a training set (sections 0–20) and a test set (sections 21–24). We will use this
corpus to replicate the findings of Genzel and Charniak (2002) using surprisal
estimates from a neural (rather than n-gram) language model.

PhotoBook. The PhotoBook corpus2 (Haber et al., 2019) contains 2,500 En-
glish task-oriented dialogues between two participants who interact via written
chat. The task is set up as game with 5 rounds. In every round, each dialogue
participant is shown a set of six images which partially overlap with the set shown
to their partner. The images change in each round, but a subset reappears, which
elicits re-descriptions of images that have already been referred to in the dialogue.
The goal of the game is to discover which images are common to both partici-
pants. We split these dialogues into a 70% training set (games 0-1751) and a 30%
test set (games 1752-2501).

Map Task. The MapTask corpus3 (Anderson et al., 1991) contains 128 tran-
scribed spoken dialogues consisting of an instruction giver directing an instruction
follower to navigate to a point on a map. The participants cannot see each other’s
map and their respective maps may contain slightly different landmarks. We ran-
domly split the dialogues into a 70% training set and a 30% test set.

2https://dmg-photobook.github.io
3http://groups.inf.ed.ac.uk/maptask

https://dmg-photobook.github.io
http://groups.inf.ed.ac.uk/maptask
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Spoken BNC. The Spoken British National Corpus4 (Love et al., 2017) is a
dataset of transcribed open-domain spoken dialogues containing 1,251 contempo-
rary British English conversations, collected in a range of real-life contexts. To be
consistent with PhotoBook, Map Task, and previous work (Vega and Ward, 2009;
Xu and Reitter, 2018), we select the dialogues that feature only two speakers. We
then randomly split these 622 dialogues into a 70% training and a 30% test set.

6.4 Experimental setup

We compute surprisal using GPT-2 (Radford et al., 2019), a pre-trained autore-
gressive Transformer language model, which allows us to obtain more accurate
probability estimates than the n-gram models used in previous work (Genzel and
Charniak, 2002, 2003; Doyle and Frank, 2015a,b; Qian and Jaeger, 2011; Xu and
Reitter, 2018) as well as to include discourse context in the computation. We rely
on HuggingFace’s implementation of GPT-2 with default tokenizers and parame-
ters (Wolf et al., 2020) and to adapt the language model to the idiosyncrasies of
different types of language use, we finetune it separately on the 70% training split
of a given target corpus under analysis. As shown in Table 6.3, finetuning yields
a substantial reduction in the model’s perplexity. More information on model
parameters and the finetuning procedure can be found in Appendix B.2. We use
the finetuned language models to estimate decontextualised and contextualised
surprisal (Equation 6.5 and 6.6) of the 30% held-out portion of a given corpus.

6.4.1 Fixed context window

We use the language model’s context window up to its maximum size (1024 tokens
for GPT-2). This means that once the position of an utterance in a document
is relatively high (starting to count from the first utterance in the document),
the entire window is filled and earlier portions of the context are systematically
tossed out. Therefore, the language model cannot exploit long-distance relations
involving information present in earlier portions of the discourse that fall outside
this window. To ensure that the H(S|C) estimates are unbiased for high utterance
positions, we determine, for each corpus c, the first utterance position posc1024
where the sum of context length average and standard deviation across documents
is 1024. Our experiments are then executed on all utterances with position smaller
or equal to posc1024.5.

4http://www.natcorp.ox.ac.uk
5We have tried to substitute GPT-2 with the Transformer-XL language model (Dai et al.,

2019) because of its unlimited context window size. In spite of its larger window, however,
Transformer-XL yields higher perplexity than GPT-2 on all corpora, hence we decided to use
GPT-2. Further reasons to discard Transformer-XL are discussed in Appendix B.2.1

http://www.natcorp.ox.ac.uk
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Pre-trained Finetuned

Penn Treebank 28.03 21.89
PhotoBook 43.42 14.93
Map Task 880.63 48.36
Spoken BNC 66.47 8.69

Table 6.3: Word-level perplexity of the GPT-2 models on 30% held-out portions
of the corpora.

6.4.2 Control runs

Deep learning models are known to exploit peculiarities of the data distribution
that humans would not find relevant. In this case, in particular, we are concerned
that our language model may be able to make use of irrelevant contextual features
to produce more accurate (but less generalisable) P (S|C) predictions. This would
lead to an artificial decrease in H(S|C). To control for this eventuality, we obtain
H(S|C) estimates for a given utterance using 3 control contexts, following the
same procedure described previously for the true context. We randomly sample
one control context from the target corpus and two from a corpus with the same
modality (i.e., never mixing monologue and dialogue). This ensures that the
control contexts are truly independent with respect to the target utterance (e.g.,
with respect to topic, referents, and style). The length of the control contexts is
always equal to the number of tokens in the true context.

6.5 Analysis of language model estimates

In this section, we report the estimates and patterns of utterance surprisal directly
computed with the finetuned GPT-2 language models for three corpora, one for
each modality: Penn Treebank, PhotoBook, and Spoken BNC. Recall that we
are directly estimating both H(S) and H(S|C) from data, in contrast to previous
work, where H(S|C) is never computed empirically.

Before using the H(S|C) estimates to test the ERC and UID hypotheses, we
validate them by comparison with those obtained using random control contexts
(see Section 6.4.2). If the language model relies on irrelevant contextual features,
we would expect the estimates obtained with the true context to be virtually
indistinguishable from those obtained with random contexts. This would mean
that our H(S|C) estimates are not reliable. In contrast, if the model does effec-
tively exploit the actual context to estimate utterance surprisal, we should see
a clear difference between the true H(S|C) estimates and those obtained in the
control runs.

As can be seen in Figure 6.1, true and control trends start diverging from
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Figure 6.1: Contextualised surprisal estimates with true and random control
contexts. Bootstrapped 95% confidence bands. We also show the mean H(S)
values for reference (confidence bands will be visible in Figure 7.1).
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utterance position 2, as desirable. Control contexts produce a positive shift in
the magnitude of H(S|C) in all corpora: processing an utterance S in a random
context is always harder than processing it in its true context. Moreover, because
the control contexts are incoherent with respect to S, they cause H(S|C) to be
higher than H(S): processing an utterance S in an incoherent context is harder
than processing it with no context.6 We also notice that while the magnitude
of H(S|C) depends on the veracity of the contexts, its fluctuations are largely
determined by H(S). This is particularly true for the control trends of H(S|C),
whose slope, too, is determined by H(S). This behaviour is worth further explo-
ration in future work, as it can reveal inherent misalignment in human vs. model
language processing.

In sum, the H(S|C) trends computed with the true data differ from the trends
obtained with control runs according to reasonable expectations: the true H(S|C)
estimates are lower, and the control estimates higher, than the H(S) estimates.
This attests to the validity of our empirical estimates of utterance surprisal. Be-
fore using these estimates to test the ERC and UID hypotheses (Chapter 7), we
also replicate prior results obtained by Genzel and Charniak (2002).

6.6 Replication study: Surprisal constancy in
newspaper articles

To validate our estimates of utterance surprisal, we replicate Genzel and Char-
niak’s (2002; 2003) and Keller’s (2004) studies on the Wall Street Journal articles
(sections 0–24) of the Penn Treebank. We use GPT-2 finetuned on sections 0-20
(see Table 6.3 for its perplexity on sections 21-24). In the original studies, the
authors measure the correlation between the position of sentences within newspa-
per articles—as well as within paragraphs—and sentence surprisal, as measured
using n-gram language models. As mentioned above, in Section 6.2.1, these stud-
ies assume that I(Xi;Ci|Li) increases as discourse context is built up, and they
test whether the locally conditioned surprisal H(Xi|Li), too, increases throughout
articles and paragraphs.

In our replication study, we take both entire articles and paragraphs as struc-
tural units and count sentence positions from the beginning of the relevant unit.
Linear mixed effect models show a significant positive effect of sentence posi-
tion on surprisal both within articles (β = 1.65 × 10−2, p < 0.001) and within
paragraphs (β = 1.53 × 10−2, p < 0.01). To reproduce the original experimental
setting, we further train an n-gram language model with interpolated Kneser-Ney
smoothing (with n ∈ (2, 3, 4, 5) and with discount values d ∈ (0.1, 0.2, . . . , 0.9))

6In Figure 6.1a and, partially, in 6.1c, we can see that one of the control runs is closer to
H(S); for this run the contexts are sampled from the target corpus (see Section 6.4.2) and
appear to be less harmful for the language model estimates.
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and select the configuration with the lowest perplexity on the test set: a 3-gram
model with a discount value of 0.8. In line with previous work, we find a positive
Kendall’s rank correlation7 between utterance position and information, as mea-
sured with the n-gram model as well as with the Transformers (additional results
can be found in Appendix B.3). The original results are therefore replicated.

Together with our analysis of language model estimates using control runs,
this positive replication study builds confidence in the validity of our surprisal
estimates. In the next two chapters, we will use the estimates to study human
language production strategies.

7Our data consist of multiple measurements for each utterance position (one for each doc-
ument), thus causing a large number of ties (i.e., multiple entries with the same utterance
position but different entropy estimates). We choose Kendall’s test because it deals with ties
better than other correlation tests such as Spearman’s or Pearson’s.
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7.1 Introduction

The previous chapter presented surprisal as measure of predictability, its rela-
tion to processing effort in psycholinguistic theories and, in turn, to language
comprehension and production behaviour, as well as methods to obtain empirical
estimates of surprisal from neural language models. We have also discussed how
surprisal is expected to vary as a function of discourse context according to a
classic information-theoretic model of communication (6.2.1): i.e., it should re-
main constant, or at least uniform, as discourse develops. In the current chapter,
we test this hypothesis extensively in texts and dialogues.

The surprisal of an utterance H(S)—i.e., a measure of the effort it takes
to process it out of context—and the informativeness of its discourse context
I(S;C) are hypothesised to be related. According to the principle of Entropy
Rate Constancy (ERC; Genzel and Charniak, 2002), as discourse develops, these
two quantities increase at a similar rate; thus, the difference between them—i.e.,
the effort that it takes to process an utterance in context—remains constant over
the course of a discourse: H(S|C) ≡ H(S)− I(S;C). A slight relaxation of this
prediction is that the surprisal of an utterance in context remains uniform, rather
than constant. This second prediction follows from the principle of Uniform
Information Density (UID; Jaeger and Levy, 2007; Jaeger, 2010), according to
which speakers make rational linguistic choices that avoid peaks in the rate of the
information transmitted. Evidence in favour of these principles has been found
in texts (Genzel and Charniak, 2002, 2003; Qian and Jaeger, 2011) and, under
certain conditions, in conversations (Vega and Ward, 2009; Doyle and Frank,
2015a,b; Xu and Reitter, 2018). However, these studies base their conclusions
only on estimates of the decontextualised surprisal H(S): under the assumption
that a larger context is always more informative, an increase in H(S) suffices as
an indication that the ERC and UID principles hold.

In this study, we dispose of the assumption that context informativeness in-
creases constantly within a discourse, and we test whether the ERC and UID
principles hold using, for the first time, direct estimates of the contextualised
surprisal H(S|C) of an utterance and thus of the informativity of its linguistic
context I(S;C). We use a pre-trained Transformer-based language model, which
allows us to obtain more accurate probability estimates than the n-gram models
used in previous studies as well to explicitly condition the estimates on discourse
context. We loosely follow Genzel and Charniak’s procedure (2002; 2003), of
which we have already shown an example in the previous chapter, when we repli-
cated their seminal experiments on newspaper articles. In addition, we apply the
analysis to open-domain spoken dialogues and to written task-oriented dialogues
to test the ERC and UID principles in interactive settings.

Our proposed operationalisation, described in detail in Section 6.2 of the pre-
vious chapter, allows us to test whether the increase in decontextualised surprisal
observed in earlier work corresponds to an increase in context informativeness,
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or whether speakers simply change their information transmission rate over time.
Furthermore, this approach allows us to differentiate, for the first time, between
the ERC and the UID predictions at the level of discourse.

7.2 Surprisal throughout texts and dialogues:
Constancy vs. uniformity

The ERC and UID principles hypothesise that both H(S) and I(S;C) will in-
crease with the position of S within a discourse, and that as a result, H(S|C) will
remain stable. This is expressed in Equation 6.3, repeated here for convenience:

H(S|C) ≡ H(S)− I(S;C) (7.1)

In the following experiments, we investigate whether this is indeed the case in
a corpus of written texts (Penn Treebank; Mitchell et al., 1999), a corpus of
written task-oriented dialogue (PhotoBook; Haber et al., 2019), and a corpus of
open-domain dialogue (Spoken BNC; Love et al., 2017). The three corpora are
introduced in the previous chapter, in Section 6.3.

We estimate decontextualised surprisal H(S) (Equation 6.5) and contextu-
alised surprisal H(S|C) (Equation 6.6) with a neural language model, GPT-2,
as described in Section 6.2, and using Equation 6.7, we compute context infor-
mativeness I(S;C). In the first experiment, we test the constancy hypothesis.
In the second, we compare constancy to uniformity as descriptors of utterance
surprisal trends over discourse.

7.2.1 Experiment 1: Is surprisal constant?

In Experiment 1, we test whether the positive effect of utterance position on
decontextualised surprisal observed in earlier work (e.g., Genzel and Charniak,
2002, 2003; Xu and Reitter, 2018) corresponds to a comparable increase in context
informativeness. Following Qian and Jaeger (2011) and Xu and Reitter (2018),
we fit linear mixed effect models using the logarithm of the decontextualised sur-
prisal H(S) as our response variable and the logarithm of utterance position as
predictor, with a random intercept grouped by distinct documents or dialogues.
Because utterance length is known to have an effect on surprisal estimates (Keller,
2004), we include the logarithm of length as an additional predictor. Our models
also have a document-specific random slope for utterance position and utterance
length to capture cross-document variation (Barr et al., 2013). We repeat the
same procedure to also fit models using the logarithm of the contextualised sur-
prisal H(S|C), and the context informativeness I(S;C) as response variables.

The results of the linear mixed effect models are summarised in Table 7.1; a
full report of the results is shown in Table B.7 (Appendix B.4). What follows is
a discussion of each of the information-theoretic measures in turn.
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H(S) H(S|C) I(S;C)

Penn Treebank β = 2.94× 10−2, p < 0.001 β = 0.23× 10−2, p > 0.05 β = 12.08× 10−2, p < 0.001

PhotoBook β = 4.07× 10−2, p < 0.001 β = −1.63× 10−2, p < 0.001 β = 27.94× 10−2, p < 0.001

Spoken BNC β = −0.05× 10−2, p > 0.05 β = −2.89× 10−2, p < 0.001 β = 6.31× 10−2, p < 0.001

Table 7.1: Coefficients of linear mixed effect models using the logarithm of H(S),
H(S|C), and I(S;C) as response variables. The logarithms of utterance position
and length are the predictors and they are both assigned a per-document random
slope. The models also include a per-document random intercept.

Decontextualised surprisal H(S). Decontextualised surprisal significantly
increases with utterance position in Penn Treebank and in PhotoBook. Its rate
of increase is relatively low, as indicated by the coefficients of our linear mixed
effect model. In Spoken BNC, there is no effect of utterance position on H(S).

Context informativeness I(S;C). Context informativeness increases with ut-
terance position in all corpora. Its rate of increase is higher than that of H(S)
(recall that these two quantities must increase at a similar rate for H(S|C) to
remain constant). In Penn Treebank and Spoken BNC, I(S;C) increases very
rapidly in the initial positions; in PhotoBook, the rate of increase is more regular
and yields the strongest effect in our statistical models.

Contextualised surprisal H(S|C). We find no significant effect of utterance
position on contextualised surprisal in Penn Treebank: H(S|C) remains constant
as predicted by the ERC principle. However, we observe a significant negative
effect in both dialogue corpora.

Summary. The results of Experiment 1 empirically confirm Genzel and Char-
niak’s assumption (2002) that context informativeness increases throughout dis-
course. H(S) and I(S;C), however, do not always increase together, and when
they do, they grow at a different rate. In Penn Treebank, the difference in rate is
sufficiently low to keep H(S|C) constant but this is not the case in the dialogue
corpora: in PhotoBook I(S;C) increases much faster than H(S), and in Spoken
BNC, H(S) does not increase at all. The regression coefficients are rather small
but comparable to those found in prior work (Qian and Jaeger, 2011; Xu and
Reitter, 2018). In sum, we find that the ERC principle holds in our corpus of
written monologue, but it incorrectly predicts the rate of information in our two
dialogue corpora.
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Figure 7.1: Decontextualised surprisal H(S), contextualised surprisal H(S|C),
and context informativeness I(S;C) against sentence position. Bootstrapped
95% confidence intervals.
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7.2.2 Experiment 2: Is surprisal uniform?

Experiment 1 suggests that constancy may not be the best descriptor for pat-
terns of contextualised surprisal, particularly in dialogue. In Experiment 2, we
test whether these patterns can be described as uniform. Collins (2014) proposes
two criteria to assess uniformity: local predictability and global centrality. Lo-
cal predictability measures whether surprisal changes in a slow and predictable
way from one linguistic unit to the next, as this is expected to reduced the ad-
dressee’s processing effort and the chances of miscommunication. Global centrality
measures to what extent surprisal estimates cluster around a fixed value; this cri-
terion is directly derived from the noisy channel model, predicting that language
is transmitted at a stable rate, close to the channel capacity (Shannon, 1948).
These measures were originally defined by Collins (2014) to test for uniformity of
word-level surprisal within a sentence; here, we apply them at the sentence level
within a discourse. Since they assess uniformity according to different criteria, it
is sufficient for one of them to hold to consider information profiles uniform.

We measure global centrality and local predictability of H(S|C) within each
document of a corpus. In particular, we calculate local predictability as the mean
squared difference in H(S|C) between two consecutive utterances:

LP = − 1

N

N∑
i=2

(H (Si|Ci)−H (Si−1|Ci−1))
2 (7.2)

where N is the number of utterances in a document or dialogue. We also compute
local predictability on 100 randomly shuffled versions of a document, and compare
the true and control scores. If local uniformity of information has an influence
on speakers’ choices, we should find a significant difference between true and
control local predictability scores. Global centrality is the negative variance of
contextualised surprisal of all utterances in a document:

GC = − 1

N

N∑
i=1

(H (Si|Ci)− µ)2 (7.3)

where µ is the mean surprisal over the utterances in a document.
Our key results are visualised in Figure 7.2. We now discuss the two measures

of uniformity in turn.

Local predictability. We find the highest degree of local predictability in the
Penn Treebank articles; H(S|C) estimates for PhotoBook and Spoken BNC show
much lower levels of uniformity according to this criterion (see Fig. 7.2a). For all
three corpora, the local predictability of the true documents is not significantly
different from that of shuffled documents: this suggests that, within discourse, the
pressure for maintaining the levels of surprisal locally similar is not as pronounced
as it is within a sentence (e.g., Jaeger and Levy, 2007; Collins, 2014; Meister et al.,
2021).
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Figure 7.2: Per-document uniformity of contextualised surprisal H(S|C). Boot-
strapped 95% confidence intervals.

Global centrality. The written texts of the Penn Treebank exhibit a higher
degree of global centrality than both written and spoken dialogues (see Fig. 7.2b).
This is in line with our findings for Experiment 1: in Section 7.2.1, we reported no
effect of utterance position on H(S|C) in the Penn Treebank, and now we observe
that all information estimates in the Penn Treebank documents tend to cluster
around a fixed value. Overall, these results indicate that in the Penn Treebank
newspaper articles, information is transmitted at a constant and globally uniform
rate. In the dialogue corpora, where we found the rate of increase of H(S) and
I(S;C) to be significantly different, H(S|C) values are less uniformly distributed
according to the global centrality criterion.

Summary. Experiment 2 shows that utterance surprisal is significantly more
uniform in written monologue than in written and spoken dialogue, both at a local
and at a global level. A possible explanation for this may be the fact that while in
newspaper articles uniformity depends on the linguistic choices of a single writer,
dialogue utterances are produced online by two speakers, which makes it harder to
keep levels of surprisal locally and globally uniform. Furthermore, comparing the
local predictability scores of original and shuffled documents, we find that local
predictability is not an accurate descriptor of information transmission patterns
in discourse.

7.3 Surprisal within contextual units

We have seen that in dialogue, where efficient strategies of information exchange
need to be coordinated between two speakers, it is more difficult to observe con-
stant or uniform information profiles. However, our first two experiments exam-
ined surprisal throughout entire conversations. Trends of constancy or uniformity



102 Chapter 7. Utterance surprisal as a function of discourse context

may only become visible if we zoom in on structural units that determine the type
and size of the overall relevant context. Genzel and Charniak (2002, 2003), for
example, show that relevant contextual cues in texts are lexical (writers tend
to reuse words that have already appeared in the discourse) and topically de-
termined, as given by the paragraph structure of texts. In dialogue, defining a
topically relevant contextual unit is not straightforward. Xu and Reitter (2018),
for example, use a topic segmentation algorithm to identify relevant units in
open-domain dialogues and show that surprisal is influenced by topic shift.

In this second study, we exploit the inherent (task-related) structure of task-
oriented dialogues to test the constancy hypothesis within contextual units of
different type and size. We focus on constancy, rather than uniformity, as our
previous experiments suggested this is a better descriptor of information trans-
mission patterns.

7.3.1 Contextual units and hypotheses

We analyse two corpora of task-oriented English dialogues: Map Task (Anderson
et al., 1991)1 and PhotoBook (Haber et al., 2019)2. See Section 6.3 for more
details; dialogue excerpts can be found in Appendix B.1.

Map Task. We consider two types of contextual unit: a) the overall dialogue:
a series of landmarks are described in succession to help the instruction follower
draw a path towards a goal location; b) a dialogue transaction: a dialogue excerpt
related to reaching a certain landmark, manually annotated as part of the corpus.
For both types of contextual unit, we also construct versions where we use the
Map Task dialogue act annotation to filter out utterances exclusively consisting
of backchannels and other grounding acts (‘okay’, ‘mmhmm’ ) common in spoken
language.3 This results in contextual units that focus on information-transmission
dialogue acts and are more referentially coherent. We hypothesise that, in Map
Task, the constancy of contextualised surprisal (and the corresponding increase
in decontextualised surprisal and context informativeness) will be more visible at
the transaction level, where the context is more topically coherent, than at the
dialogue level, where a dozen different landmarks are brought up in succession—
in particular when only information-transmission dialogue acts are taken into
account.

PhotoBook. We investigate the following types of contextual unit: a) the over-
all dialogue: throughout a game, all the photographs are about a certain domain

1http://groups.inf.ed.ac.uk/maptask
2https://dmg-photobook.github.io
3We exclude acknowledgements, attention and agreement checks, and pre-initiating moves.

http://groups.inf.ed.ac.uk/maptask
https://dmg-photobook.github.io
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Contextual unit
All dialogue acts Information-transmission acts

H(S) H(S|C) I(S;C) H(S) H(S|C) I(S;C)

Dialogue -0.011* -0.067 0.310 0.005* -0.016* 0.085
Dialogue (givers) -0.001* -0.053 0.297 0.013* -0.013* 0.101
Dialogue (followers) -0.028* -0.090 0.334 -0.006* -0.014* 0.047*
Transaction 0.002* -0.050 0.263 0.040 -0.005* 0.207
Transaction (givers) 0.015* -0.038 0.245 0.068 0.028 0.193
Transaction (followers) -0.012* -0.070 0.307 -0.022* -0.072 0.226

Table 7.2: Map Task. mixed effects linear regression coefficients for utterance
position within the relevant contextual unit. Predicted variables: decontextu-
alised surprisal H(S), contextualised surprisal H(S|C), and context informative-
ness I(S;C). Continuous predictors are mean-centred and scaled by 2 s.d. Aster-
isk indicates not statistically significant predictors. Surprisal estimates in transac-
tions are computed as a function of the transaction context (i.e., C=transaction).

(e.g., food or dogs); b) a dialogue round : different images are described in suc-
cession as participants try to figure out which ones they share in a given round;
c) an image reference chain: the (non-adjacent) utterances that refer to a cer-
tain image across rounds (we use the automatic annotation of referring utterance
chains by Takmaz et al., 2020). In PhotoBook, we expect the strongest effects at
the level of reference chains. Chains are determined both topically, by the target
image, and lexically, by the conceptual pacts established in previous mentions
of a target (Brennan and Clark, 1996). In rounds and dialogues, where several
different images are described, topic and lexical choices are constrained by the
image domain but the vocabulary used in previous utterances is more varied. We
thus expect the effect to be less pronounced at these two levels.

7.3.2 Experiment 3: Constancy within contextual units

We use the language models, GPT-2 fine-tuned on the 70% training set of Map
Task and PhotoBook, to estimate the surprisal of the 30% held-out portion of
each respective corpus, and count utterance positions from the beginning of the
relevant structural unit. To test whether utterance surprisal remains uniform,
we fit a linear mixed effect model using the logarithm of surprisal as response
variable and the logarithm of utterance position and utterance length as pre-
dictors. We include a random slope for the utterance position and a random
intercept term grouped by distinct dialogues, which allows us to model variation
among individual speakers as a function of their addressee. We examine patterns
of decontextualised and contextualised surprisal (H(S) and H(S|C)) as well as
context informativeness (I(S;C)). Tables 7.2 and 7.3 summarise the results.
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Contextual unit H(S) H(S|C) I(S;C)

Dialogue 0.076 -0.026 0.509
Round (C=round) -0.002* -0.039 0.180
Round (C=dialogue) 0.027 -0.148
Chain (C=chain) 0.062 -0.137 0.812
Chain (C=dialogue) -0.048 0.465

Table 7.3: PhotoBook. mixed effects linear regression coefficients for utterance
position within the relevant contextual unit. Predicted variables: decontextu-
alised surprisal H(S), contextualised surprisal H(S|C), and context informative-
ness I(S;C). Continuous predictors are mean-centred and scaled by 2 s.d. As-
terisk indicates not statistically significant predictors. C=dialogue indicates that
the surprisal estimate is computed as a function of the dialogue context; C=chain
indicates that surprisal is computed conditioned on the previous utterances in the
reference chain.

Map Task. In line with results from Experiment 1, when we take entire Map
Task dialogues as the contextual unit, we do not find a positive effect of utterance
position on decontextualised surprisal and we observe a slight decrease in con-
textualised surprisal (see Table 7.2 and Figure 7.3). Again, this is driven by an
increase in context informativeness. The same trends hold for both speaker roles:
instruction givers and followers. However, focusing on information-transmission
dialogue acts, we observe that utterance position has no significant effect on con-
textualised surprisal—i.e., that surprisal does remain constant if we filter out
backchannels and other grounding acts.

The types of dialogue act considered also affect our results on transactions.
We fail to find an effect in transactions with backchannels but the linear mixed
effect models show a positive effect of utterance position within transactions with-
out backchannels for decontextualised surprisal and no effect for contextualised
surprisal (see also Figure 7.4). We attribute these findings to the nature of the
task. Over the course of a dialogue, speakers traverse a map naming differ-
ent landscape features and are thus unable to establish more than a minimal
level of linguistic routine at the dialogue level. Transactions, on the other hand,
correspond to more referentially constrained subtasks; this becomes more evi-
dent when information-transmission dialogue acts are isolated from transmission-
coordination acts. Analysing the instruction giver and follower information-
transmission utterances independently reveals that there is no significant effect of
position on decontextualised surprisal for instruction followers; the overall posi-
tive effect is driven by the instruction givers (see also Figure 7.5). This reflects
the asymmetric nature of information transmission in Map Task dialogues.
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Figure 7.3: Map Task, surprisal vs. utterance position in dialogues.
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Figure 7.6: PhotoBook, surprisal vs. utterance position. All contextual units.

PhotoBook. For both rounds and reference chains, we examine contextualised
surprisal estimates obtained by conditioning the language model either on the
whole dialogue (up to the current utterance) or on the smaller contextual unit
(round and chain respectively). The results are summarised in Table 7.3.

The effect of position on decontextualised surprisal is positive within the Pho-
toBook dialogues, yet contextualised surprisal (with utterance length factored
out) decreases as a result of a strong increase in context informativeness over
dialogue turns. Figure 7.6 shows a consistently increasing pattern for decontextu-
alised surprisal, providing evidence that participants optimise their information-
transmission strategy throughout PhotoBook games.

Within PhotoBook rounds, decontextualised surprisal does not increase, nor
does contextualised surprisal remain constant. Because multiple images are dis-
cussed in a round, this contextual unit seems not to capture the relevant context
of individual dialogue utterances nor be large enough to display the participants’
overall information transmission strategy that we observe at the dialogue level.

Finally, as hypothesised, the effect of position is positive on decontextualised
surprisal at the reference chain level. Constancy does not hold, however, regard-
less of whether surprisal estimates are conditioned on the whole dialogue or only
on the reference chain. Increases in context informativeness are particularly large
in magnitude, especially when conditioning on reference chains. As participants
re-refer to an image over the game, they increase the information density of their
messages (as shown in Figure 7.6) and also decrease message length (Kendall’s
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correlation between position in chain and length is τ = −0.268, p < 0.001). Thus,
as reference chains unfold, the reduction process observed by Takmaz et al. (2020)
is complemented by information compression.

The relatively low magnitude of the fixed effect as well as that of the cor-
relation between utterance length and chain position, however, suggest that the
process we see at play is not only one of compression and reduction. We often ob-
serve that the fourth position in a chain comes with a decrease in decontextualised
surprisal, perhaps indicating that once a conceptual pact has been established be-
tween interlocutors, referential expressions can be significantly simplified without
losing referential power—as in the following reference chain (decontextualised
surprisal estimates in parenthesis):

1. ‘Man eating slice of pizza’ (0.69)
2. ‘last one for me is guy with pizza’ (0.78)
3. ‘pizza eater’ (0.91)
4. ‘pizza’ (0.67)

7.4 Discussion and conclusions

In this chapter, we have examined some central tenets of the classic information-
theoretic model of communication. In contrast to previous work, we have used
language models to obtain surprisal estimates for utterances within their discourse
context (H(S|C)), and we have measured context informativeness (I(S;C)) as the
reduction in utterance surprisal contributed by discourse with respect to out-of-
context estimates (H(S)). This has allowed us to directly model the information
transmission profiles of written texts as well as written and spoken dialogues
and, thereby, to test whether they follow the rational communicative strategies
predicted by prominent hypotheses of rational use of the communication channel.

Experiments 1 and 2. In our first two experiments, we have found that in
American English newspaper articles, H(S|C) remains stable as predicted by the
theory. This is not the case, however, for spoken British English open-domain di-
alogues, nor for written English task-oriented dialogues: here, H(S|C) decreases,
albeit moderately, as the utterance position grows. We suggest that this is the
result of the uneven rates of increase measured for H(S) and I(S;C)—the latter
increases faster than the former in all corpora under examination. We find the
strongest I(S;C) increase in the PhotoBook dialogues, where topic is determined
by a game’s image domain and, by task design, participants produce multiple
subsequent utterances to describe the same images over game rounds. Correct
interpretation of subsequent references (McDonald, 1978) requires indeed access
to the shared knowledge accumulated by speakers during dialogue. We observe
the second strongest I(S;C) increase in the Penn Treebank articles, where topic
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is consistent throughout the text but new information keeps being conveyed from
the beginning to the end of the discourse. The weakest increase takes place in the
Spoken BNC: topic is more likely to change during the course of an open-domain
dialogue and, with topic shifts, the previously established common ground be-
comes less relevant for the prediction of new linguistic material.

The lower rates of increase of H(S), on the other hand, can be due to the
limits imposed on lexical choice by grammar and style. In PhotoBook, where
participants write freely in a chat interface, the increase is stronger than in the
more formal newspaper articles of the Penn Treebank. However, the stable H(S)
trends in the Spoken BNC suggest that this is only one side of the coin. The
theory predicts that when context is more informative, speakers will increase
the density of their sentences to be more efficient. But speakers do not need
to be always efficient in open-domain conversations, where the pure information
transmission goal is perhaps overweighted by other goals, such as social goals,
which are not taken into account by the theory.

Another empirical finding that is not in line with expectations derived from
the theoretical framework is that uniformity of surprisal across consecutive utter-
ances (local predictability) is not a good predictor of the information transmission
profiles of the texts and dialogues we analysed. Local uniformity may be more
relevant for lower-level linguistic signals as they come in a much faster succession:
speakers want to avoid sudden changes in surprisal to reduce comprehension ef-
fort; yet, at the discourse level, changes in surprisal are less abrupt as they are
spread throughout an entire utterance, thus giving the addressee time to adapt
gradually to the higher surprisal of the larger transmission unit. Global centrality
seems to be a more faithful criterion of uniformity, in particular for the articles
of the Penn Treebank. In other words, utterances are not so much produced to
limit the difference in surprisal with respect to the previous sentence, but rather
to maintain the overall transmission rate stable in the articles. PhotoBook and
Spoken BNC show a significantly lower degree of uniformity than the Penn Tree-
bank, measured both as local predictability and global centrality: in dialogue, an
efficient strategy of information exchange needs to be coordinated between two
speakers, which can make it more difficult to obtain uniform information profiles.

Experiment 3. We concluded from our first two experiments that the classical
model of communication may be too simplistic for discourse, where the units
of information are more complex. A first issue has to do with identifying the
relevant contextual components, which are determined, at least, by the internal
structure of the discourse (Genzel and Charniak, 2003) and by topic shifts (Qian
and Jaeger, 2011; Xu and Reitter, 2018). In our third experiment, we have related
the properties of task-determined contextual units to patterns of information
transmission and have hypothesised that the UID principle holds to a stronger
degree in more topically coherent and reference-specific contextual units.
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Our hypotheses are confirmed in PhotoBook, where we find evidence that
dialogue participants use rational strategies of information transmission over an
entire dialogue. We do not observe uniformity of information in the Map Task
dialogues and transactions as a whole, similarly to other negative results in in-
teractive settings (e.g., Vega and Ward, 2009; Doyle and Frank, 2015b). Yet the
effect is present within Map Task transactions when we restrict our analysis to
information-transmission dialogue acts: these make for a more topically and ref-
erentially coherent contextual unit. Indeed, the organisation of context can be
complex in dialogues. We have shown that theoretically motivated contextual
units such as reference chains in PhotoBook and information-transmission acts in
Map Task transactions are good candidates to characterise the relevant context
over which participants deploy strategies of information compression.

Limitations. While the classic information-theoretic framework of communica-
tion adopted in this study assumes a single addressee across documents, commu-
nication is shaped by the identity and the characteristics of multiple addressees
(Brennan and Clark, 1996; Brown-Schmidt et al., 2015).

Moreover, our estimates of surprisal assume a static addressee (the language
model is only fine-tuned once on the corpus, but never updated within a single
dialogue) whereas true addressees adapt on-the-fly: e.g., van Schijndel and Linzen
(2018) show that endowing a language model with a simple adaptation mechanism
improves predictions of human reading times compared to a non-adaptive model.
We will use this kind of model in the next chapter.

Finally, the framework condenses production and comprehension effort in a
single estimate. Future work should study strategies of information transmission
in discourse using a model of communication, such as the Rational Speech Act
model (Frank and Goodman, 2012a), that includes production costs more explic-
itly and that allows accompanying cognitive costs with social costs—e.g., those
related to the goal of the linguistic interaction. Zaslavsky et al. (2021) recently
showed that the RSA model optimises the trade-off between expected utility and
communicative effort, and that it is directly related to Rate-Distortion theory
(Shannon, 1948)—the branch of information theory that formalises the effect of
limited transmission resources on communicative success.

Outlook. Overall, the studies presented in this chapter provide new empirical
evidence on language production in dialogue, which we believe can inform the
development of natural language generation models. Our findings suggest that
models that take relevant contextual units into account (Takmaz et al., 2020;
Hawkins et al., 2020a) are better suited for reproducing human patterns of infor-
mation transmission, and confirm that training objectives and sampling strategies
that enforce a uniform organisation of information density (Meister et al., 2020;
Wei et al., 2021) are a promising avenue for language models.
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8.1 Introduction

The repeated use of particular configurations of structures and lexemes, con-
structions, is pervasive in conversational language use (Tomasello, 2003; Gold-
berg, 2006). Such repetition can be understood as surface level evidence of pro-
cesses of coordination (Sinclair and Fernández, 2021) or ‘interpersonal synergy’
between conversational partners (Fusaroli et al., 2014). Speakers may use repeti-
tions to successfully maintain common ground with their interlocutors (Brennan
and Clark, 1996; Pickering and Garrod, 2004), because they are primed by their
recent linguistic experience (Bock, 1986), or to avoid a costly on-the-fly search
for alternative phrasings (Kuiper, 1995). At the same time, repetitions are also
advantageous for comprehenders. Repeating a sequence of words positively re-
shapes expectations for those words, allowing comprehenders to process them
more rapidly (for a review, see Bigand et al., 2005).

As speakers are known to take into consideration both their own produc-
tion cost and their addressee’s processing effort (Clark and Wilkes-Gibbs, 1986;
Clark and Schaefer, 1989; Frank and Goodman, 2012a), its two-sided process-
ing advantage, as described above, makes construction repetition an efficient,
cost-reducing communication strategy. In this study, we investigate whether and
how information processing properties of repetitions shape patterns of surprisal
in open-domain spoken dialogue, trying to reconcile principles of efficiency and
rationality with our findings on dialogue from the previous chapter.

As we have seen in Chapter 7, the constancy hypothesis has found empiri-
cal support for written language production (Genzel and Charniak, 2002, 2003;
Qian and Jaeger, 2011, as well as our experiments) but results on dialogue are
mixed (Vega and Ward, 2009; Doyle and Frank, 2015b,a; Xu and Reitter, 2018,
and our experiments), with some studies suggesting a decreasing information rate
over the course of dialogues (Vega and Ward, 2009, and again, our experiments
in the pervious chapter). We hypothesise that the decreasing surprisal trends
observed in dialogue may be associated with construction repetition. We conjec-
ture that speakers use construction repetition as a strategy for information rate
mitigation, by padding the more surprising, or information dense, parts of their
utterances with progressively less information dense constructions—leading to an
overall decrease in information rate over the course of a dialogue.

We extract occurrences of fully lexicalised constructions (see Table 8.1 for ex-
amples) from a corpus of open-domain spoken dialogues and use a Transformer-
based neural language model to estimate their contribution to utterance surprisal.
First, we confirm that constructions indeed exhibit lower surprisal than other ex-
pressions and that surprisal further decreases when constructions are repeated.
Then, we show that the decreasing trend of surprisal observed over utterances—
which contradicts the Entropy Rate Constancy principle—is driven by the in-
creasing mitigating effect of construction repetition, measured as a construction’s
(increasingly) negative contribution to the surprisal of its containing utterance,
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SPXV SAXQ S9YG

want to be with him it on the television I bet you can
shit like that for a family yeah I used to
I can be think that’s a go to bed
to see her the orient express and I love
and she just one thing that the window and
I quite like one of my favourites and I think it’s
you don’t like on the television yeah I think so
and you’re like yes yeah I the same people
going to go erm I think is she in
you’re going to a really good lock the door

Table 8.1: Top 10 constructions from three dialogues of the Spoken BNC, sorted
according to the PMI between a construction and its dialogue (Section 8.6.1).
Referential constructions in italics (Section 8.3). Headers correspond to the dia-
logues’ IDs in the corpus.

what we call its facilitating effect.
In sum, our study provides new empirical evidence that dialogue partners use

construction repetition as a strategy for information rate mitigation, which can
explain why the rate of information transmission in dialogue, in contrast to the
constancy predicted by the theory (Genzel and Charniak, 2002), is often found
to decrease.

8.2 Constructions

This work focuses on constructions, seen as particular configurations of struc-
tures and lexemes in usage-based accounts of natural language (Tomasello, 2003;
Bybee, 2006, 2010; Goldberg, 2006). According to these accounts, models of lan-
guage processing must consider not only individual lexical elements according to
their syntactic roles but also more complex form-function units, which can break
regular phrasal structures—e.g., ‘I know I’, ‘something out of ’. We further fo-
cus on fully lexicalised constructions (sometimes called formulaic expressions, or
multi-word expressions). Commonly studied types of constructions are idioms
(‘break the ice’ ), collocations (‘pay attention to’ ), phrasal verbs (‘make up’ ), and
lexical bundles (‘a lot of the’ ). In Section 8.3, we explain how the notion of
lexicalised construction is operationalised in the current study; Table 8.1 shows
examples from three dialogues in the Spoken BNC corpus (Love et al., 2017).

A common property of constructions is their frequent occurrence in natural
language. As such, they possess what, in usage-based accounts, is sometimes
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referred to as ‘processing advantage’ (Conklin and Schmitt, 2012; Carrol and
Conklin, 2020). Evidence for the processing advantage of construction usage has
been found in reading (Arnon and Snider, 2010; Tremblay et al., 2011), naming
latency (Bannard and Matthews, 2008; Janssen and Barber, 2012), eye-tracking
(Underwood et al., 2004; Siyanova-Chanturia et al., 2011), and electrophysiology
(Tremblay and Baayen, 2010; Siyanova-Chanturia et al., 2017). In this study,
we model this processing advantage as reduced surprisal and show that it can
mitigate information rate throughout entire dialogues.

8.2.1 What makes a construction?

Constructions can be classified according to multiple criteria (Titone and Con-
nine, 1994; Wray, 2002; Columbus, 2013). This section presents common criteria
and discusses why our study is agnostic with respect to most of them.

Compositionality. This criterion is typically used to separate idioms from
other formulaic expressions, although it is sometimes referred to as transparency
to underline its graded, rather than binary, nature. There is no evidence, however,
that the processing advantage of idioms differs from that of compositional phrases
(Tabossi et al., 2009; Jolsvai et al., 2013; Carrol and Conklin, 2020). Therefore,
we ignore this criterion in the current study.

Literal plausibility. This is used as a criterion to discriminate among differ-
ent types of idioms (Titone and Connine, 1994; Titone and Libben, 2014)—as
compositional phrases are literally plausible by definition. Because we ignore
distinctions made on the basis of compositionality, we do not use this criterion.

Meaningfulness. Meaningful expressions are idioms and compositional phrases
(e.g., ‘on my mind’, ‘had a dream’ ) whereas sentence fragments that break con-
stituency boundaries (e.g., ‘of a heavy’, ’by the postal’ ) are considered less mean-
ingful (as measured in norming studies, e.g., by Jolsvai et al., 2013). There is
some evidence that the meaningfulness of multi-word expressions correlates with
their processing advantage (Jolsvai et al., 2013); yet if expressions are particu-
larly frequent, they present processing advantages in spite of breaking regular
phrasal structures (Bybee and Scheibman, 1999; Tremblay et al., 2011). More-
over, utterances that break regular constituency rules are particularly frequent in
spoken dialogue data (e.g., ‘if you could search for job and that’s not’, ‘you don’t
wanna damage your relationship with’ ). For these reasons, we do not exclude
constructions that span multiple constituents from our analysis.

Schematicity. This criterion distinguishes expressions where all the lexical el-
ements are fixed from expressions with ‘slots’ that can be filled by varying lexical
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elements. In this study, we focus on fully lexicalised constructions.

Familiarity. This is a subjective criterion that strongly correlates with objec-
tive frequency (Carrol and Conklin, 2020). Human experiments would be required
to obtain familiarity norms for our target data, and the resulting norms would
only be an approximation of the familiarity judgements of the actual speakers we
analyse the language of. Therefore, we ignore this criterion in the current study.

Communicative function. Formulaic expressions can fulfil a variety of dis-
course and communicative functions. Biber et al. (2004), e.g., distinguish between
stance expressions (attitude, certainty with respect to a proposition), discourse or-
ganisers (connecting prior and forthcoming discourse), and referential expressions;
and for each of these three primary discourse functions, more specific subcate-
gories are defined. This type of classification is typically done a posteriori—i.e.,
after a manual analysis of the expressions retrieved from a corpus according to
other criteria (Biber and Barbieri, 2007). In the BNC, for example, we find epis-
temic lexical bundles (‘I don’t know’, ‘I don’t think’ ), desire bundles (‘do you
want to’, ’I don’t want to’ ), obligation/directive bundles (‘you don’t have to’ ),
and intention/prediction bundles (‘I’m going to’, ‘it’s gonna be’ ). In this study,
we distinguish between referential and non-referential constructions.

8.3 Data: Extracting repeated constructions

We conduct our study on the Spoken BNC corpus, presented in Section 6.3.
We focus on the 622 dialogues that feature only two speakers, and randomly split
them into a 70% fine-tuning set (to be used as described in Section 8.4) and a 30%
analysis set (used in our experiments, as described in Section 8.5 and Section 8.6).
Table 8.2 shows some basic statistics of the dialogues used in this study.

We define constructions as multi-word sequences repeated within a dialogue.
To extract constructions from each dialogue, we use the sequential pattern mining
method proposed by Duplessis et al. (2017a,b, 2021), which treats the extraction
task as an instance of the longest common subsequence problem (Hirschberg,
1977; Bergroth et al., 2000).1 We modify it to not discard multiple repetitions
of a construction that occur in the same utterance. We focus on constructions
of at least three tokens, uttered at least three times in a dialogue by any of the
dialogue participants. Repeated sequences that appear less than twice outside of
a larger repeated construction in a given dialogue (e.g., ‘think of it’ vs. ‘think of
it like’ ) are discarded. We also exclude sequences containing punctuation marks
or which consist of more than 50% filled pauses (e.g., ‘mm’, ‘erm’ ).2

1Their code is freely available at https://github.com/GuillaumeDD/dialign.
2The full list of filled pauses can be found in Appendix B.5.

https://github.com/GuillaumeDD/dialign
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Mean ± Sd Median Min Max

Dialogue length (# utterances) 736 ± 599 541.5 67 4,859
Dialogue length (# words) 7,753 ± 5,596 6,102 819 39,575
Utterance length (# words) 11 ± 15 6 1 982

Table 8.2: Two-speaker dialogue statistics, Spoken BNC.

Applying the described extraction procedure to the 187 dialogues in the anal-
ysis split of the Spoken BNC yields a total of 5,893 unique constructions and
60,494 occurrences. Further statistics of the extracted constructions are shown
in Table 8.3.

For analysis purposes, we distinguish between referential and non-referential
constructions. We label a construction as referential if it includes nouns, un-
less the nouns are highly generic.3 Referential constructions are mostly topic-
determined; examples are ‘playing table tennis’, ‘a woolly jumper’, ‘a room with a
view’. The remaining constructions are labelled as non-referential. These mainly
include topic-independent expressions and conversational markers, such ‘a lot of ’,
‘I don’t know’, and ‘yes of course’. Our dataset consists of 5,291 referential and
55,203 non-referential construction occurrences, corresponding to 1,143 and 4,750
construction forms. Table 8.1 includes examples of both construction types.

Mean ± Sd Median Max

Construction Length 3.27 ± 0.58 3 7
Construction Frequency 4.29 ± 3.04 3 70
Constructions per Dialogue 325.34 ± 458.64 149 2,817

Referential 30.96 ± 39.75 19 346

Non-Referential 296.88 ± 424.17 134.5 2,530

Utterance Length 31.19 ± 36.19 21 959

Table 8.3: Construction statistics for our analysis split of the Spoken BNC. Con-
struction Length: number of words in a construction. Construction Frequency :
occurrences of a given construction in a dialogue. Constructions per Dialogue:
occurrences of all constructions in a dialogue. Utterance Length: number of words
in utterances containing a construction. The minimum is always 3 by design (Sec-
tion 8.3). The difference between referential and non-referential is only significant
for Constructions per Dialogue, so we report separate statistics for this variable.

3We define a limited specific vocabulary of generic nouns (e.g., ‘thing’, ‘fact’, ’time’ ); full
vocabulary in Appendix B.5.
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8.4 Experimental setup
In this section, we define our proposed measure of facilitating effect and present
the adaptive language model used to produce surprisal estimates.4

8.4.1 Measures of surprisal

In Section 6.2.1, we defined the surprisal of a word choice wi as the negative
logarithm of the corresponding word probability, conditioned on the utterance
context S:wi

(i.e., the words that precede wi in utterance S) and on the relevant
discourse context C (Equation 6.4). We define the discourse context C as the
local dialogue context, i.e., as the 50 tokens that precede the first word in the
utterance.5 We use tokens as a unit of context size, rather than utterances, since
they more closely correspond to the temporal units used in previous work (e.g.,
Reitter et al., 2006), and since the length of utterances can vary significantly
(see Table 8.2). To measure the surprisal of a construction c, we average over
word-level surprisal values:

H(c;S:c, C) =
1

|c|
∑
wi∈c

H(wi|S:c, C) (8.1)

The above surprisal formulation can be applied constructions and entire utter-
ances, but it does not qualify the relationship between the two. We also measure
the surprisal change (increase or reduction in information rate) contributed by a
construction c to its containing utterance, which we call the facilitating effect of
a construction. Facilitating effect is defined as the logarithm of the ratio between
the surprisal of a construction and that of its utterance context:

FE(c;S,C) = log2

1
|S|−|c|

∑
c̸∋wj∈S H(wj|S:wi

, C)
1
|c|
∑

wi∈c H(wi|S:c, C)
(8.2)

By definition, this quantity is positive when the construction has lower surprisal
than its context, and negative when it has higher surprisal. When the utterance
consists of a single construction, facilitating effect is set to 0.

We can expect the values produced by our surprisal and facilitating effect
measurements (Equations 8.1 and 8.2, respectively) to correlate: it is more likely
for a construction to have a (positive) facilitating effect if its surprisal is low.
When a construction’s surprisal is high, the surprisal of its utterance context must

4Code and statistical analysis are available at https://github.com/dmg-illc/
uid-dialogue.

5Building on prior work (Reitter et al., 2006) that uses a window of 15 seconds of spoken
dialogue as the locus of local repetition effects, we compute the average speech rate in the
Spoken BNC (3.16 tokens/second) and multiply it by 15; we then round up the result (47.4) to
50 tokens.

https://github.com/dmg-illc/uid-dialogue
https://github.com/dmg-illc/uid-dialogue
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be even greater for facilitating effect to occur. Nevertheless, perfect correlation
does not follow a priori from the definition of the two measures; we will show this
empirically in Section 8.5.4.

8.4.2 Adaptive language model

To estimate the per-word conditional probabilities that are necessary to com-
pute surprisal, we use an adaptive language model. The model is conditioned
on local contextual cues via an attention mechanism (Vaswani et al., 2017) and
it learns continually (see, e.g., Krause et al., 2018) from exposure to the global
dialogue context. We use GPT-2 (Radford et al., 2019), a pre-trained autoregres-
sive Transformer language model. We rely on HuggingFace’s implementation of
GPT-2 with default tokenizers and parameters (Wolf et al., 2020) and fine-tune
the pre-trained model on a 70% training split of the Spoken BNC to adapt it to
the idiosyncrasies of spoken dialogue data.6 We refer to this fine-tuned version as
the frozen model. We use an attention window of length |S:wi

|+50, i.e., the sum
of the utterance length up to word wi and the size of the local dialogue context.

As a continual learning mechanism, we use back-propagation on the cross-
entropy next word prediction error, a simple yet effective adaptation approach.
Following van Schijndel and Linzen (2018), when estimating surprisal for a dia-
logue, we begin by processing the first utterance using the frozen language model
and then gradually update the model parameters after each turn. For these up-
dates to have the desired effect, the learning rate should be appropriately tuned.
It should be sufficiently high for the language model to adapt during a single dia-
logue, yet an excessively high learning rate can cause the language model to lose
its ability to generalise across dialogues. To find the appropriate rate, we ran-
domly select 18 dialogues from the analysis split of the Spoken BNC7 and run an
18-fold cross-validation for a set of six candidate learning rates: 1×10−5, 1×10−4,
. . ., 1. We fine-tune the model on each dialogue using one of these learning rates
and compute perplexity reduction (i) on the dialogue itself (adaptation) as well
as (ii) on the remaining 17 dialogues (generalisation). We select the learning rate
yielding the best adaptation over cross-validation folds (1× 10−3), while still im-
proving the model’s generalisation ability. See Appendix B.6.2 for further details.

8.5 Preliminary experiments

In this section, we present preliminary experiments on the surprisal of utterances
and constructions, which set the stage for our analysis of the facilitating effect of
construction repetition.

6More details on fine-tuning can be found in Appendix B.6.1.
7This amounts to ca. 10% of the analysis split. We use the analysis split because there is no

risk of “overfitting” with respect to our main analyses.
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8.5.1 Utterance surprisal

Our experiments are motivated by the mixed results on the dynamics of infor-
mation rate in dialogue discussed in Chapter 7. We thus begin by testing if the
Entropy Rate Constancy (ERC) principle holds in the Spoken BNC, i.e., whether
utterance surprisal remains stable over the course of a dialogue. Similarly to the
previous chapter, and following a procedure established in prior work (Xu and
Reitter, 2018), we fit a linear mixed effect model with the logarithm of utterance
position and construction length as fixed effects (we will refer to their coefficients
as β), and include multi-level random effects grouped by dialogue. For the ERC
principle to hold, the position of an utterance within a dialogue should have no
effect on its surprisal.

Instead, we find that utterance surprisal decreases significantly over time (β=
−0.119, p<0.005, 95% c.i. −0.130:−0.108), in line with previous negative results
on open-domain and task-oriented dialogue, as described in the previous chapter.
The strongest drop occurs in the first ten dialogue utterances (β =−0.886, p <
0.005, 95% c.i. −0.954 : −0.818) but the decrease is still significant for later
utterances (β=−0.043, p<0.005, 95% c.i. −0.054:−0.032).

8.5.2 Construction surprisal

Our hypothesis that construction repetition progressively reduces the information
rate of utterances is motivated by the fact that constructions are known to have
a processing advantage (see Section 8.2). This property makes them an efficient
production strategy, i.e., one that reduces the speaker’s and addressee’s collabo-
rative effort. Before investigating if the hypothesised information rate mitigation
strategy is at play, we test whether our information-theoretic measures and the
language model used to generate estimates thereof are able to capture processing
advantage. We expect our framework to yield lower surprisal estimates (Equation
8.1) for constructions than for other word sequences.

Indeed, the surprisal of constructions is significantly lower than that of non-
construction sequences (t=−168.82, p< 0.005, 95% c.i. −2.033 :−1.987).8 Con-
structions’ surprisal is on average 2 bits lower than that of non-constructions. We
conclude that our estimates of surprisal are a sensible model of the processing
advantage of constructions.

8We extract all 3- to 7-grams from our analysis split of the Spoken BNC, excluding all
n-grams that are equal to extracted constructions. We then sample, for each length n from
3 to 7, sn non-construction sequence occurrences—where sn is the number of occurrences of
n-tokens-long extracted constructions.. The length distributions should match because length
has an effect on S and FE (see Section 8.6.3).
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Figure 8.1: Proportion of tokens in an utterance that belong to referential con-
structions, non-referential constructions, and to non-construction sequences. The
x axis shows percentages indicating utterance positions in the dialogue relative
to the dialogue length.

8.5.3 Stable rate of construction usage

In Section 8.5.2, we confirmed that constructions have lower surprisal than other
utterance material. A simple strategy to decrease utterance surprisal over di-
alogues (we do observe this decrease in the Spoken BNC, as described in Sec-
tion 8.5.1) could then simply be to increase the rate of construction usage. To
test if this strategy is at play, we fit a linear mixed effect model with utterance
position as the predictor and the proportion of construction tokens in an utter-
ance as the response variable. Over the course of a dialogue, the increase in the
proportion of an utterance’s tokens which belong to a construction is negligible
(β = 0.004, p < 0.05, 95% c.i. 0.001 : 0.008). Speakers produce constructions at
a stable rate (see also Figure 8.1), indicating that an alternative strategy for
information rate reduction is at work.

8.5.4 Surprisal vs. facilitating effect

The facilitating effect FE of a construction is a function of its surprisal and the
surprisal of its containing utterance (Equation 8.2). To ensure that our estimates
of FE are not entirely determined by construction surprisal (cf. Section 8.4.1),
we inspect the relation between the two measures empirically, by looking at the
values they take in our dataset of constructions. We find that the Kendall’s rank
correlation between FE and surprisal is −0.623 (p < 0.005): although this is a
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rather strong negative correlation, the fact that the score is not closer to −1
indicates that there is a substantial amount of cases where the two values are
both either high or low. We indeed find examples of constructions with high
surprisal H and high facilitating effect FE :

A: we’ll level that right press p purchase and
B: right
A: go back to recommended (H=5.30 FE=1.65)

as well cases where surprisal is low and facilitating effect is low or negative:

A: right let’s go and have a drink
B yeah
A: let’s go and have a drink (H=2.10 FE=−2.21)

These examples have been selected among occurrences with H /FE higher or lower
than the mean H /FE ± sd, respectively 3.62 ± 1.48 and 0.62 ± 0.73. Further
analysis shows that this is not only true for individual instances but for entire
groups of constructions. In particular, although their surprisal is overall higher
(t= 13.511, p < 0.005, 95% c.i. 0.371 : 0.497), referential constructions also have
higher facilitating effect than non-referential ones (t= 3.115, p < 0.005, 95% c.i.
0.016 : 0.072). We conclude that the two measures capture different aspects of a
construction’s information profile, with facilitating effect being sensitive to both
construction and utterance surprisal.

8.6 The facilitating effect of construction
repetition

We now test whether constructions have a positive facilitating effect, i.e., whether
they reduce the surprisal of their containing utterances. We present our main sta-
tistical model in Section 8.6.1, describe the effects of FE predictors specific to
unique construction mentions in Section 8.6.2, and analyse differences between
types of constructions in Section 8.6.3.

8.6.1 Method

To understand what shapes a construction’s facilitating effect, we collect several
motivated features that can be expected to be informative FE predictors. We fit
a linear mixed effect (LME) model using (i) these features as fixed effects, (ii) FE
as the response variable, (ii) and multi-level random effects grouped by dialogue
and individual speaker ID. The first predictor is utterance position, i.e., the index
of the utterance within the dialogue, which allows us to test if FE increases over
the course of a dialogue. We then include predictors that distinguish different
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types of repetition. Since we expect a construction mention to increase expecta-
tion for subsequent occurrences—thus reshaping their surprisal—we consider its
repetition index, i.e., how often the construction has been repeated so far in the
dialogue. Expectation is also shaped by intervening material, so we additionally
track distance, the number of tokens separating a construction mention from the
preceding one. As FE is the interplay between a construction and its utterance
context, it is important to know whether the utterance context contains other
mentions of the construction. We use a binary indicator (previous same utter-
ance) to single out occurrences whose previous mention is in the same utterance;
for these cases, we also count the number of same-utterance previous mentions
(repetition index in utterance). To explore whether FE varies across types of
expressions, we also include a binary feature indicating whether the construction
is referential or non-referential (Section 8.3). Finally, we keep track of construc-
tion length, the number of tokens that constitutes a construction, and PMI, the
pointwise mutual information between a construction and its dialogue, which is
essentially a measure of the construction’s frequency in the current dialogue as
a function of its overall frequency in the corpus, indicating the construction’s
degree of interaction-specificity.9

To determine the fixed effects of the final model, we start with all the predic-
tors listed above (the non-binary ones are log-transformed) and perform backward
stepwise selection, iteratively removing the predictor with the lowest significance
and keeping only those with p<0.05. All predictors make it into our final model,
the one which best fits the data according to both the Akaike and the Bayesian
Information Criterion. The full specification of the best model, with model fit
statistics as well as fixed and random effect coefficients, can be found in Ap-
pendix B.7. The next two sections present our main findings; we report fixed
effect coefficients (β), p-values (p), and 95% confidence intervals (c.i.).

8.6.2 Construction mentions

Our first observation is that construction usage reduces utterance surprisal. More
precisely, we find that facilitating effect is higher for constructions than
for non-construction sequences (t=118.79, p<0.005, 95% c.i. 0.536 : 0.554).
Constructions have on average 62% lower surprisal than their utterance context;
the average percentage drops to 7% for non-construction sequences.10 Figure 8.2a
shows the two distributions. We also observe a positive effect of utterance posi-
tion on FE (β=0.046, p< 0.005, 95% c.i. 0.026 : 0.06); that is, the facilitating
effect of constructions increases over the course of dialogues. While the
proportion of construction tokens remains stable (Section 8.5.3), their mitigat-

9The probabilities for the PMI calculation are obtained using maximum likelihood estimation
over our analysis split of the Spoken BNC.

10These are the same sampled non-construction sequences as in Section 8.5.2. Their average
FE is 0.07± 0.80.
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(a) (b)

(c) (d)

Figure 8.2: The facilitating effect (FE ) of constructions vs. non-construction
sequences (a) and of first construction mentions vs. repetitions (b); as well as FE
vs. repetition index (c) and FE vs. distance from previous mention (number of
words). The first distance bin (0-30) corresponds to the mean length of a turn
containing a construction (Table 8.3).
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Sp RI RI Utt Dist Utterance H(S) H(c) FE(c;S)

A 0 0 - Drink? that was what he did yeah just just to just to know that 5.99 4.73 0.40
I he might not be a complete twat but just a fyi

B 1 0 1586 Especially for my birthday mind you I might not be here for 5.04 4.01 0.53
2 1 14 mine and I went what do you mean you might not be here? 2.70 0.90

Table 8.4: Repetition chain for the construction ‘might not be’ in dialogue SXWH
of the Spoken BNC, annotated with speaker identifier (Sp), repetition index (RI),
RI in utterance (RI Utt), and distance from previous mention (Dist; in tokens).
H(u) is the utterance surprisal, H(c) and FE(c;u) are the construction’s surprisal
and facilitating effect.

ing contribution to utterance surprisal increases throughout dialogues—perhaps
since speakers are more likely to repeat established constructions as the dialogue
develops. We indeed find that repeated constructions have stronger facili-
tating effect: there is a significant difference between the FE of first mentions
and repetitions (t = −38.904, p < 0.005, 95% c.i. −0.265 : −0.239), as shown in
Figure 8.2b. The surprisal of repetitions is on average 68% lower than that of
their utterance context; for first mentions, it is on average 42% lower.

Cumulativity and recency effects. Having observed that the mitigating con-
tribution of constructions to utterance surprisal indeed increases with construc-
tion repetition, we now look at how the FE of repetitions varies as a function
of their distribution over time. On the one hand, we find that facilitating ef-
fect is cumulative: repeating a construction reduces utterance surprisal more
strongly as more mentions of the construction accumulate in the dialogue (Fig-
ure 8.2c). The effect of repetition index (i.e., how often the construction has
been repeated so far in the dialogue) is positive on FE (β = 0.079, p < 0.005,
95% c.i. 0.063 : 0.094). On the other hand, the distance of a repetition from the
previous mention has a negative effect on FE (β = −0.311, p < 0.005, 95% c.i.
−0.328 : −0.293). That is, facilitating effect decays as a function of the
distance between subsequent mentions. As shown in Figure 8.2d, this is a
fast decay effect: the most substantial drop occurs for low distance values. The
large magnitude of this coefficient indicates that recency is an important factor
for constructions to have a strong facilitating effect. Indeed, almost one third
(31.8%) of all repetitions produced by speakers are not more than 200 tokens
apart from their previous mention.

Locality effects: Same-utterance self-repetitions. We investigate the in-
teraction between cumulativity and recency by focusing on densely clustered rep-
etitions, produced by a speaker within a single utterance (the median distance
between repetitions in the same utterance is 8 words; across turns it is 370.5
words). Table 8.4 shows an example of same-utterance repetition. Repeating a
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Sp RI RI Utt Dist Utterance H(S) H(c) FE(c;S)

A 0 0 - [...] I think that everyone should have the same opportunities
and I don’t think you should be proud or ashamed of what 4.24 1.90 1.21
your you know what your situation is whether you what your
what your race is whether you’re a woman or a man whether
you live from this pl whether you’re in this place [...]

A 1 0 80 I well I th I don’t think it should I don’t think you should be 3.40 1.73 1.40

A 2 0 19 Well yes perhaps but I don’t think you should be like um 3.95 1.06 2.25
embarrassed about it or I think I think you should just sort of

Table 8.5: Repetition chain for the construction ‘I don’t think you should be’ in
dialogue S2AX of the Spoken BNC, annotated with speaker identifier (Sp), repe-
tition index (RI), RI in utterance (RI Utt), and distance from previous mention
(Dist; in tokens). H(u) is the utterance surprisal, H(c) and FE(c;u) are the
construction’s surprisal and facilitating effect.

construction when it has already been mentioned in the current utterance limits
its facilitating effect (β=−0.099, p<0.05, 95% c.i. −0.184 :−0.013): if a portion
of the utterance already consists of a construction, utterance surprisal will already
be reduced, which in turn reduces the potential for the facilitating effect of repeti-
tions. Nevertheless, we find strong cumulativity effects for self-repetitions
within the same utterance: the repetition index within the current utterance
of a construction mention (i.e., how often the construction has been repeated so
far in the utterance) has a positive effect on FE (β = 0.178, p < 0.005, 95% c.i.
0.130 :0.226); see Figure 8.3a. In sum, same-utterance self-repetitions, especially
those involving three or more mentions in a single utterance, can have a strong
reduction effect on utterance surprisal. Although this may seem a simple yet very
effective strategy for information rate mitigation, it is unlikely to be very effec-
tive in terms of the amount of information exchanged. Indeed, speakers do not
use this strategy often in the Spoken BNC: only 6.82% of the total construction
occurrences have at least one previous mention in the same utterance.

Interaction-specificity. To distinguish interaction-specific constructions—i.e.,
those repeated particularly often in certain dialogues—from interaction-agnostic
ones, we measure the association strength between a construction c and a dialogue
d as the pointwise mutual information (PMI) between the two:

PMI(c, d) = log2
P (c|d)
P (c)

(8.3)

This quantifies how unusually frequent a construction is in a given dialogue, com-
pared to the rest of the corpus. For example, for a construction to obtain a
PMI score of 1, its probability given the dialogue P (c|d) must be twice as high
as its prior probability P (c). Low PMI scores (especially below 1) characterise
interaction-agnostic constructions, whereas higher PMI scores indicate that con-
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(a) (b)

Figure 8.3: Facilitating effect against repetition index within the current utterance
(a) and facilitating effect of interaction-agnostic constructions (PMI(c, d) < 1) vs.
interaction-specific constructions (PMI(c, d) = maxc′,d′ PMI(c′, d′)) (b).

structions are specific to a given dialogue. The probabilities in Equation 8.3 are
obtained via maximum likelihood estimation over the analysis split of the Spoken
BNC. PMI scores have a negative effect on FE (β =−0.139, p < 0.005, 95% c.i.
−0.154:−0.124), indicating interaction-agnostic constructions have a stronger fa-
cilitating effect than interaction-specific ones. Figure 8.3b shows FE distributions
for the most extreme cases: constructions with a PMI lower than 1 (‘agnostic’)
and constructions that have been repeated in only one dialogue (‘specific’).

8.6.3 Types of construction

In this section, we analyse factors shaping the facilitating effect of construction
forms, rather than individual mentions. We focus on the length of a construction
and on whether it is referential.

Construction length has a positive effect on FE (β = 0.098, p < 0.005, 95%
c.i. 0.087 : 0.119): longer constructions have stronger facilitating effect.
Tables 8.4 and 8.5 show repetition chains for constructions of length 3 and 6.
Non-construction sequences display an opposite, weaker trend (β =−0.019, p <
0.05, 95% c.i. −0.032 : −0.005), as measured with a linear model. A possible
explanation for the positive effect of construction length is related to production
cost. Longer constructions are more costly for the speaker, so for them to still be
an efficient production choice, their facilitating effect must be higher.

Finally, we observe that referential constructions have a stronger facili-
tating effect than non-referential ones. Our LME model yields a positive ef-
fect for referentiality on FE (β=0.124, p<0.005, 95% c.i 0.099 : 0.149) and we find
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a significant difference between the FE of the two types (t=3.115, p<0.005, 95%
c.i. 0.072 : 0.016). Looking in more detail, first mentions of referential construc-
tions have higher surprisal and lower FE than first mentions of non-referential
ones (H : t= 15.435, p < 0.005, 95% c.i. 1.115 : 0.864; FE : t=−9.315, p < 0.005,
95% c.i. −0.246:−0.161), perhaps since words in referential sequences tend to be
less frequent and more context-dependent. However, when repeated, their sur-
prisal drops more substantially, reproducing inverse frequency effects attested in
humans for syntactic repetitions (Bock, 1986; Scheepers, 2003). As a result, their
FE exceeds that of non-referential constructions (FE : t= 8.818, p < 0.005, 95%
c.i. 0.117:0.183), with the surprisal of a repeated reference being 81% lower than
that of its utterance context. Overall, these findings indicate that although refer-
ential constructions are less frequent than non-referential ones (23.3% vs. 76.7%),
their repetition is a particularly effective strategy of information rate mitigation.

8.7 Discussion and conclusions

Construction repetition is a pervasive phenomenon in dialogue; their frequent oc-
currence gives constructions a processing advantage (Conklin and Schmitt, 2012).
In this study, we showed that the processing advantage of constructions can be
modelled as reduced surprisal and proposed that speakers’ production of construc-
tions can be seen as a strategy for information rate mitigation. This strategy can
explain why utterance surprisal is often found to decrease over the course of dia-
logues, as described in Chapter 7, in contrast with the predictions of theories of
optimal use of the communication channel (Genzel and Charniak, 2002).

We observed that, as predicted, construction usage in English open-domain
spoken dialogues mitigates the information rate of utterances. Furthermore, while
constructions are produced at a stable rate throughout dialogues, their facilitat-
ing effect—our proposed measure of reduction in utterance surprisal—increases
over time. We found that this increment is led by construction repetition, with
facilitating effect being positively affected by repetition frequency, density, and
by the contents of a construction. Repetitions of referential constructions re-
duce utterance surprisal more aggressively, arguably making them a more cost-
reducing alternative to the shortening strategy observed in chains of referring
expressions (Krauss and Weinheimer, 1964, 1967), which instead tends to pre-
serve rate constancy (as seen in Chapter 7).11

Relation to cognitive effort. We consider repetitions as a way for speakers to
make dialogic interaction less cognitively demanding both on the production and
on the comprehension side. This is not at odds with the idea that repetitions are
driven by interpersonal synergies (Fusaroli et al., 2014) and coordination (Sinclair

11Expression shortening ca be more efficient, however, in terms of articulatory cost.
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and Fernández, 2021). The operationalisation of these higher level processes can
be described by means of lower level, efficiency-oriented mechanisms, with synergy
and coordination both corresponding to reduced collaborative effort. Although
surprisal estimates from neural language models have been shown to be good
predictors of processing effort, measured as reading time, gaze duration, and
N400 response (van Schijndel and Linzen, 2018; Wilcox et al., 2020; Meister et al.,
2021; Merkx and Frank, 2021), we cannot claim that our work directly models
human cognitive processes as we lack the relevant human data to measure such
correlation for the corpus at hand.

Adaptive language model. Our decision to use an adaptive neural language
model affects surprisal estimates in two main ways. On the one hand, due to
their high frequency, constructions are likely to be assigned higher probabilities
by this model, and therefore lower surprisal. For this reason, we did not present
constructions’ lower surprisal as a novel result. As explained in Section 8.5.2,
this is a precondition for our experiments on the facilitating effect of construc-
tions, which is not determined exclusively by their surprisal (as empirically shown
in Section 8.5.4) but rather measures the effect of construction usage on the sur-
prisal of entire utterances. On the other hand, because our model is adaptive, the
probability of constructions is likely to increase as a result of their appearance
in the dialogue history. Adaptation, however, also contributes to lower utter-
ance surprisal overall through the exploitation of topical and stylistic cues, as
demonstrated by the lower perplexity of the adaptive model on the entire target
dialogue as well as on other dialogues from the same dataset (see Section 8.4.2
and Appendix B.6.2). In sum, while our adaptive language model assigns higher
probabilities to frequently repeated tokens—as expected from a psychologically
plausible model of utterance processing—it is not responsible for the discovered
patterns of construction facilitating effect. In future work, the model can be im-
proved, e.g., by conditioning on the linguistic experience of individual speakers.

Types of dialogue. To consolidate our findings, construction repetition pat-
terns should also be studied in dialogues of different genres and in datasets where
utterance surprisal was not found to decrease. We haven chose the Spoken BNC
as it contains dialogues from a large variety of real-life contexts, which makes
it a representative dataset of open-domain dialogue. In task-oriented dialogue,
we expect constructions to consist of a more limited, task-specific vocabulary,
resulting in longer chains of repetition and potentially more frequent referential
construction usage. These peculiarities of task-oriented dialogue may influence
the strength of the facilitating effect (as we have seen, facilitating effect is affected
by both frequency and referentiality) but we expect our main results to still hold,
as they are generally related to the processing advantage of constructions.
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Relevance for dialogue generation models. Besides contributing new em-
pirical evidence on construction usage in dialogue, our findings inform the de-
velopment of more naturalistic utterance generation models. They suggest that
models should be continually updated for their probabilities to better reflect hu-
man expectations; that attention mechanisms targeting contexts of different sizes
(local vs. global) may have a significant impact on the naturalness of generated
utterances; and that while anomalous repetitions (e.g., generation loops) should
be prevented (Li et al., 2016; Holtzman et al., 2019), it is important to ensure
that natural sounding repetitions are not suppressed. We expect dialogue sys-
tems that are able to produce human-like patterns of repetitions to be perceived
as more natural overall—with users having the feeling that common ground is
successfully maintained (Pickering and Garrod, 2004)—and to lead to more ef-
fective communication (Reitter and Moore, 2014). In our view, such human-like
patterns can be reproduced by steering generation models towards the trends of
information rate observed in humans.





Part Three

Utterance Production
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The studies presented so far in this thesis build on the idea that having a com-
putational model of language comprehension allows to study how a hypothetical
comprehender’s interpretation and processing affect speakers’ usage of words and
utterances. To mimic the comprehension process, neural language models are
employed in these studies as ‘recognisers’, i.e., to compute representations of
and assign probabilities to natural language strings. We now move from neural
models as recognisers to neural language ‘generators’, i.e., systems from which
natural language strings can be sampled. This will allow us to obtain artificial
simulations of speakers’ utterance production process, and in turn, as we will see
especially in Chapter 11, to study aspects of human comprehension behaviour.
Hopefully, the rationale behind the titles chosen for the second and third part of
the thesis, which can be summarised as ‘production through comprehension’ and
‘comprehension through production’, is now more perspicuous.

While using neural language models to study language comprehension is a
rather established approach, whose successes I have discussed at length in Part
2, the approach I take in this part of the thesis—using neural text generators as
models of language production—is less conventional and requires validation. Part
3 will therefore begin with an evaluation of neural text generators as statistical
processes of utterance production. We will assess generators’ compliance to the
statistical properties of the human language process, empirically estimated via
samples from human populations. After obtaining this validation, neural text
generators will be used as models of utterance production, in order to test aspects
of comprehension behaviour known to be affected by comprehenders’ expectations
over speaker utterances. Part 3 will then end with a position piece on how to
design computational models of language production which more accurately and
reliable mimic human language use.

Producing language is making decisions about which bits of behaviour—or
signals—to use in order to reduce the uncertainty of a comprehender over the
space of possible future states of the environment (Rosenberg and Cohen, 1964;
Levy, 2008b; Goodman and Frank, 2016). Production is successful when the
chosen linguistic behaviour restricts the space of possibilities to the environment
states that correspond to the speaker’s communicative intent. Uttering a word, for
example, may cut the space of possibilities in half, while uttering a whole sentence
may restrict the comprehender’s uncertainty to, say, 1/64 of the state space—thus
proving more informative. This intuitive representation of the amount of infor-
mation conveyed by a signal has an elegant probabilistic characterisation, which
has been at the core of the studies in Part 2. The probability of a signal that cuts
the space of possibilities into I parts is p = (1/2)I , which is equivalent to saying
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that the amount of information carried by that signal is I = − log2(p).12 This is
the signal’s information content or surprisal. As we have seen previously, its unit
of measure is the bit : a signal that restricts uncertainty to 1/64 of the state space
has a probability of (1/2)6 = 1/64 and its surprisal is − log2(1/64) = 6 bits.

When the signal is a complex form of behaviour such as a natural language
utterance, and the state space is the space of natural language strings, this prob-
abilistic characterisation of uncertainty becomes problematic. The state space
is high-dimensional, structured, and unbounded, so utterance surprisal must be
computed by aggregating token-level estimates, typically obtained from autore-
gressive language models (e.g., Meister et al., 2021; Wallbridge et al., 2022, and
our work in Part 2). As a result, different realisations of the same communicative
intent (for example, ‘I have to go’ and ‘I gotta go’ ) compete for probability mass
(Holtzman et al., 2021), and different dimensions of uncertainty are conflated into
a single quantity, the signal’s probability (and thus surprisal). This makes it dif-
ficult to appreciate whether the information carried by an utterance results from
the unexpectedness, for example, of its lexical material, syntactic arrangements,
semantic content, or speech act type (Arehalli et al., 2022).

To tackle this open problem, in Chapter 10, we design probes that provide a
low-dimensional view of uncertainty over sequence-level language model outputs.
Our probes allow for an interpretable and actionable quantification of uncer-
tainty: they measure uncertainty at an instance-level, in terms of the lexical,
syntactic, and semantic similarity between utterances produced (by humans or
models) given an individual linguistic context. This chapter also defines a statis-
tical framework to assess the alignment between the language model’s representa-
tion of sequence-level uncertainty against plausible response variability in humans
and includes an empirical study on four natural language generation tasks.

In Chapter 11, we build on this approach to uncertainty quantification and
take inspiration from the concept of alternatives in semantics and pragmatics
(Horn, 1972; Stalnaker, 1978; Gazdar, 1979; Grice, 1975; Levinson et al., 2000;
Falaus, 2013, i.a.) to obtain estimates of what we will call the ‘information
value’ of an utterance. Information value is a new intuitive representation of the
predictability of utterances which is unaffected by the issues described above for
surprisal. It is simply the distance of an utterance from the set of alternative
productions that are expected by a comprehender. Our study will show that
empirical estimates of information value obtained using neural text generators
can predict and explain human reading times and acceptability judgements in
dialogue and text.

Part 3 is concluded by Chapter 12, which is a reflection on what current
neural text generators lack, and how they can be improved, when it comes to
reproducing human-like strategies of language use. In particular, this chapter
collects insights from the studies presented so far in the thesis into a formal

12( 12 )
I =p ⇔ 2I = 1

p ⇔ I=log2(
1
p ) ⇔ I=− log2(p).
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framework to characterise efficient and communicatively effective strategies of
utterance production, and to implement them in Natural Language Generation
systems. The main argument that it will bring across is that human-like linguistic
behaviour emerges as a result of reasoning about context, goals, costs, and utility,
and it discusses promising directions for natural language generation research that
takes these concepts seriously.



Chapter 9

Background

9.1 Natural language generation

The goal of natural language generation (NLG) research is to give computers the
ability to mimic human linguistic communication. NLG systems can be trained to
perform a wide variety of language tasks, ranging from translation to storytelling,
and they can interact with humans in a conversational way to help them solve
real-world problems. As NLG models become more accurate and versatile, it
is of paramount importance to design evaluation procedures that guarantee the
models are safe and trustworthy.

Evaluation is often performed with automatic metrics, including measures of
overlap between candidate generations and human references, and via models
trained directly on human judgements to predict the perceived quality of new
generation candidates. Chapter 10 will focus on another important dimension:
the models’ uncertainty over possible generations. The proposed approach, com-
plementary to other types of automatic evaluation, makes model assessments
particularly reliable because it does not judge a model only by a single output,
but also by what it could have generated.

This section contains a discussion of automatic approaches to the evaluation
of NLG systems, which will serve as a background for Chapter 10.

9.1.1 Automatic approaches to NLG evaluation

Evaluation of NLG systems is an important research area in NLP with at least
two main strands. On the one hand, automatic evaluation approaches are of
high practical importance for model selection and quality-aware decoding algo-
rithms (Borgeaud and Emerson, 2020; Eikema and Aziz, 2020; Fernandes et al.,
2022; Suzgun et al., 2022). On the other hand, human evaluation plays a
crucial role in assessing systems (Belz and Gatt, 2008) as well as automatic
evaluation metrics (Reiter, 2018). Efforts in this area are the result of a long-
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standing yet increasing awareness of the limitations of existing evaluation ap-
proaches (Callison-Burch et al., 2006; Dušek et al., 2020), of drastic improvements
in NLG systems—whose output can often no longer be distinguished from human
productions (Gehrmann et al., 2022; Dou et al., 2022)—and of the increase in the
number, variety, and open-endedness of the tasks that modern NLG systems are
intended to model (e.g., See et al., 2019; FAIR Diplomacy Team et al., 2022;
Schick et al., 2022).

Reference-based. The most common way of automatically evaluating text
generators is via metrics that estimate the overlap between candidate genera-
tions and references (e.g., BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
COMET (Rei et al., 2020), BLEURT (Sellam et al., 2020), BertScore (Zhang
et al., 2020a), i.a.). Reference-based metrics are less suited for open-ended tasks
such as story generation and dialogue (Liu et al., 2016), where a single refer-
ence (or even a handful) cannot be representative of the large space of plausible
communicative goals and realisations.

Reference-free. A popular, reference-free alternative is to train evaluation
models that discriminate human productions from model outputs (e.g., Bruni
and Fernández, 2017; Gehrmann et al., 2019; Hashimoto et al., 2019), score the
appropriateness of input-output pairs (e.g., Sinha et al., 2020; Fomicheva et al.,
2020), or model human judgements directly (Lowe et al., 2017; De Mattei et al.,
2021; Rei et al., 2021). Neural language models themselves have been recently
proposed as evaluators (Yuan et al., 2021), and have sometimes been used to
assess generations along interpretable evaluation dimensions (Deng et al., 2021;
Zhong et al., 2022). Reference-free metrics of this kind have been criticised for
being inherently biased toward models which are more similar to the evaluator
and thus limited in their ability to evaluate generated text (Deutsch et al., 2022).

Statistical evaluation. Statistical evaluation compares model generations to
human productions in distribution through real-valued statistics (e.g., Zipf’s coef-
ficient, type token ratio, length) as opposed to strings themselves. These statistics
are typically compared marginally at the corpus level (Eikema and Aziz, 2020;
Meister and Cotterell, 2021; Pillutla et al., 2021; Pimentel et al., 2022), sup-
porting general claims about model performance in relation to humans. More
recently, Barkhof and Aziz (2022) and Deng et al. (2022) compared statistics at
the instance level, supporting claims about models’ performance in relation to
humans for individual inputs. In Chapter 10, we craft statistics that evaluate
models’ uncertainty at the instance level against the variability over sequences
observed in multi-reference NLG datasets. Although evaluating uncertainty is
gaining traction in NLP (e.g., Desai and Durrett, 2020; Glushkova et al., 2021;
Baan et al., 2022), there is relatively little work on sequence-level uncertainty
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estimation and evaluation (Ott et al., 2018; Malinin and Gales, 2020; Aina and
Linzen, 2021; Kuhn et al., 2023).

9.2 Expectations, predictability, and surprisal
In Chapter 11, neural text generators will be used to model expectations over
plausible upcoming linguistic units. To better understand the contributions of
that chapter, a second important background topic to discuss is the relation
between expectations, predictability, and surprisal within linguistic theories of
language processing.

Expectation-based theories of language processing define the effort required
to process a linguistic unit as a function of its predictability. Surprisal theory,
perhaps the most prominent example, posits a direct relationship between effort
and predictability, quantified—well—as surprisal (Hale, 2001). The theory is sup-
ported by broad empirical evidence across domains and languages (de Varda and
Marelli, 2022; Pimentel et al., 2021; Wilcox et al., 2023), and serves as a founda-
tion for quantitative principles of language production and comprehension such as
the Entropy Rate Constancy (ERC; Genzel and Charniak, 2002) and the Uniform
Information Density (UID; Levy and Jaeger, 2007) principles studied in Part 2.

Without direct access to the conditional probabilities of linguistic units, psy-
cholinguists have relied on statistical models of language such as Markov chains
to estimate surprisal (Hale, 2001; McDonald and Shillcock, 2003). More recently,
large-scale language models have emerged as powerful estimators of token-level
surprisal, thanks to their ability to predict different aspects of human language
comprehension behaviour (what is often referred to as their psychometric predic-
tive power). Psychometric variables include self-paced and eye-tracked reading
times (Keller, 2004; Goodkind and Bicknell, 2018b; Wilcox et al., 2020; Meister
et al., 2021; Shain et al., 2022; Oh and Schuler, 2022), acceptability judgements
(Lawrence et al., 2000; Heilman et al., 2014; Lau et al., 2015, 2017; Warstadt
et al., 2019; Wallbridge et al., 2022), and brain response data (Frank et al., 2015;
Schrimpf et al., 2021).

To obtain estimates of utterance surprisal, different aggregates of token-level
surprisal have been proposed, motivated by psycholinguistic theories like ERC
and UID. However, their behaviour is far less understood. For example, diver-
gences between how model characteristics affect predictive power for different
comprehension tasks (Meister et al., 2021) and across languages (Wilcox et al.,
2023) raise questions about whether token-level aggregates appropriately capture
human utterance processing. In Chapter 11, I will present an sequence-level al-
ternative to utterance surprisal with complementary, and in some cases superior,
psychometric predictive power.
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then reviewed and revised the manuscript. The text in this chapter overlaps with
that of the online preprint.
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10.1 Introduction

Humans display great variability in language production, in particular when the
context or the task are open-ended—such as in storytelling or in dialogue. Given
a story prompt, for example, there are many plausible ways in which different
humans (or a single writer, if asked multiple times) may tell the story (Fan et al.,
2018). We refer to this phenomenon as production variability. Production vari-
ability in humans has two main sources. First, when situated in a context, speak-
ers may have variable communicative goals (Austin, 1975; Searle, 1969; Sacks
et al., 1974), and the number and variety of plausible communicative goals de-
pends on the production task (Jokinen, 1996). Translation, for instance, defines
the communicative goal almost unequivocally while a dialogue context might al-
low for a wide variety of communicative goals (expressed, e.g., as a request, an
assertion, or a yes-no question). The second source of variability is the fact that
even when context and communicative goal are fixed, speakers’ linguistic real-
isations of the communicative goal may vary (Levelt, 1993). Both sources of
variability apply to individuals as well as to populations: if an expert is asked
to simplify a complicated sentence multiple times, they may perform different
rewriting transformations (e.g., paraphrasing, reordering, or sentence splitting)
and produce different texts (Alva-Manchego et al., 2021); the same is true if
multiple experts are asked to perform the task (Xu et al., 2015).

If we are to regard a natural language generation (NLG) system (or text gen-
erator) as a good model of human language production, it should capture the
variability observed in humans. A text generator combines two mechanisms:
(i) an underlying statistical model—typically, an autoregressive factorisation of
the probability of sequences, with conditional token probabilities predicted by
a neural network; and (ii) an iterative decoding algorithm that chains samples
from next token distributions into a complete production. Together these two
mechanisms specify a probability distribution over sequences of tokens, which
can be regarded as a representation of the model’s uncertainty (Halpern, 2017)
about productions for a given generation context. In this work, we assess whether
this representation of uncertainty is in compliance with production variability ex-
hibited by a population of humans—which in turn, we argue, can be regarded
as an expression of aleatoric uncertainty, i.e., irreducible uncertainty due to the
stochastic nature of the data generating process (Der Kiureghian and Ditlevsen,
2009; Hüllermeier and Waegeman, 2021).

Quantifying the closeness in distribution between a text generator and a hu-
man population is difficult for multiple reasons: we only have an iterative view
into the generator’s distribution; the ‘human distribution’ is an implicit or even
hypothetical object; and in both cases, the sample space is large or even un-
bounded. We can, however, compare these two objects via aspects of the samples
they produce and assess their statistical similarity—which is what we propose in
this study. For each individual generation context, we compare scalar properties
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of generations (through repeated model sampling) and human productions (us-
ing multi-reference NLG datasets). In particular, we probe for lexical, syntactic,
and semantic similarity between productions, thus allowing for a quantitative and
interpretable assessment of uncertainty.

We find that the uncertainty of neural text generators is higher than justi-
fied by human production variability in open-ended tasks, like story generation
and open-domain dialogue; and that it is lower on more constrained tasks, like
machine translation and text simplification. Popular decoding algorithms, that
bias away from the distribution of the generator’s underlying statistical model
(e.g., top-k or top-p, rather than ancestral sampling), have a limited impact on
the generator’s ability to faithfully represent human variability. We complement
our quantitative assessments with a detailed analysis of individual generation con-
texts, which sheds light on whether a generator has robustly learned to reproduce
degrees and aspects of human variability plausible for the communicative task.

Our work has important implications for NLG evaluation and data collection.
Multiple samples and, when possible, multiple references, should be used to assess
the statistical fitness of text generators. This approach, complementary to other
types of automatic evaluation, makes model assessments particularly insightful
and trustworthy because it does not judge a model only by a single output, but
also—intuitively—by what it could have generated, and it provides tools for error
analysis at the instance-level along a dimension of the data generation process
that is often neglected.

10.2 Probing language processes for production
variability

We interpret language production—by humans or text generators—as captured
by a probability distribution over productions, a random variable Y , given a
linguistic context X = x. The context x can be a source sentence in machine
translation, a story prompt in story generation, or more generally the input to
a language process. In turn, a production is a piece of text y such as a single
translation, a story, or more generally the output of a language process.1

10.2.1 Production variability

For any language process, production variability is fully characterised by a condi-
tional probability distribution pY |X=x representing uncertainty about the output
Y given input X = x. However, analysing this distribution is difficult. Notably,

1Notation. Random variables are denoted by uppercase letters (e.g., Y ) and outcomes by
lowercase letters (e.g., y); pY |X=x denotes the probability distribution of Y given X = x and
pY |X=x(y) its probability mass function.
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Figure 10.1: Production variability observed in 5 human responses vs. 10
responses generated by DialoGPT. Each graph presents the distribution over a
similarity metric. The generated responses exhibit higher lexical, syntactic, and
semantic variability than humans’. The generator’s uncertainty is too high in
this dialogue context.

for human language processes, we do not have an explicit representation of this
object, but through data collection we can draw conditional samples from it (i.e.,
gather references given a context). For NLG models, we do have an algorithmic
representation, which is usually sufficient to enable sampling.

Analysing language processes through their samples introduces other diffi-
culties as text is a high-dimensional, structured, non-numerical data type. For
tractable analysis, we exploit a set of real-valued and interpretable statistics, or
production probes, to re-express a language process’ distribution in terms of how,
given an input, its outputs relate to outputs of another language process. When
both processes are independent humans performing a task, we obtain a sense of
how plausible human productions relate (or vary with respect) to other plau-
sible human productions, along a linguistically interpretable dimension. When
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we swap one or both processes for an NLG system, we obtain tools to analyse
how model generations relate to plausible human productions, thus assessing a
model’s representation of uncertainty against the variability observed in humans.

Specifically, given a context x, two language processes with distributions
pŶ |X=x and pY |X=x and a choice of similarity metric k(·, ·) ∈ R, our probe for
production variability is a real random variable k(Ŷ , Y ) which captures the joint
distribution of pairwise similarity between any two outputs drawn conditionally
from the language processes. The exact distribution of k(Ŷ , Y ) is intractable to
characterise, but we can estimate it via simulation by drawing from the two pro-
cesses and assessing the similarity metric on sampled pairs (Figure 10.1). Consider
the case where we analyse the human language process (Section 10.4) through
k(Y, Y ): when multiple realisations of the output are dissimilar—e.g., ‘Fantastic,
thank you!’ and ‘I asked you first’ given the input ‘How is your day?’—production
variability is high along the dimension captured by k.

10.2.2 Production probes

To assess the closeness of random draws from two language processes given the
same input context, we instantiate our production probes with three similarity
functions: lexical, syntactic, and semantic. There are many other dimensions one
may be interested in and we encourage future work to find the production probes
that best capture them.

Lexical. The fraction of common n-grams in two texts, with n ∈ [1, 2, 3] (i.e.,
number of matching n-gram occurrences divided by the total number of n-grams
in both strings).

Syntactic. The fraction synn(y
′, y) of common part-of-speech (POS) n-grams in

two texts (i.e., number of matching POS n-gram occurrences divided by the total
number of POS n-grams in both strings).2

Semantic. Cosine similarity sem(y′, y) between the sentence embeddings of two
texts (Reimers and Gurevych, 2019).3

10.3 Experimental setup

We experiment with four NLG datasets that contain 5 or more human references
per input instance and for which we expect humans to display different degrees
of production variability. Table 10.1 shows relevant statistics. All datasets are in
English; for translation, the target language is German. The reference collection

2We use the en_core_web_md model from spaCy (Honnibal et al., 2020).
3sentence-transformers/all-distilroberta-v1
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procedure varies across datasets. We discuss how this may impact our analysis
in Section 10.7.

Machine translation. We use 500 sentences from the WMT-14 En-De test
set (newstest2014 ; Bojar et al., 2014), which have been annotated by Ott et al.
(2018) with 10 additional reference translations produced by as many human
translators, and As a generator, we use Helsinki-NLP’s Transformer-Align model
trained on Opus-MT (Tiedemann and Thottingal, 2020).

Text simplification. We use the 2,000 instances of the ASSET validation
set (Alva-Manchego et al., 2020). For each source sentence, originally from the
TurkCorpus (Xu et al., 2016), ASSET includes 10 additional simplifications by as
many crowdsource annotators. On this dataset, we test Flan-T5 Large (Chung
et al., 2022), an instruction fine-tuned version of the T5 language model (Raffel
et al., 2020), further fine-tuned on the ASSET training set.

Storytelling (Story generation). We use the 759 instances from the Writ-
ingPrompts test set (Fan et al., 2018) for which at least 5 human references are
available. Prompts and stories are originally scraped from r/WritingPrompts,
a Reddit forum of stories written by online users in response to story prompts
designed by other users.4 The number of stories available per prompt (9.56 ±
7.67) varies from 5 to 92. As a generator, we use GPT-2 Large (Radford et al.,
2018) fine-tuned on the WritingPrompts training set.

Open-domain dialogue. We use the development set of DailyDialog++ (Sai
et al., 2020), which contains 5 additional references for 1028 conversations from
the DailyDialog corpus (Li et al., 2017). The dialogues are short (less than 8
turns) and cover a broad list of topics; for each dialogue, 2-3 annotators were
asked to generate 1-3 alternative responses.5 For this task, we use the pretrained
and DialoGPT Medium (Zhang et al., 2020c).

10.3.1 Decoding algorithms

Candidate generations can be sampled directly from a text generator one word at
a time, via (i) unbiased sampling (also ‘ancestral’ or ‘forward’ sampling; Bishop,
2006; Koller and Friedman, 2009). Most often, though, other slightly more com-
plex decoding algorithms are used to obtain candidates from a generator. We

4https://www.reddit.com/r/WritingPrompts/
5The DailyDialog++ annotators are also instructed to avoid short generic responses such as

‘Sure’ and to write, instead, meaningful responses with at least 8-10 words.

https://www.reddit.com/r/WritingPrompts/
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Machine Translation Text Simplification Story Generation Open-Domain Dialogue

MEAN ± STD RANGE MEAN ± STD RANGE MEAN ± STD RANGE MEAN ± STD RANGE

In
p
u
t

Words 23.34 ± 11.35 3-67 22.26 ± 8.92 7-57 25.40 ± 14.18 1-68 47.62 ± 30.37 5-311
Tokens 25.79 ± 12.91 4-81 28.00 ± 11.68 7-78 26.49 ± 14.68 1-70 48.94 ± 31.52 5-326

Sentences 1.01 ± 0.09 1-2 1.02 ± 0.14 1-2 1.75 ± 0.93 1-6 5.49 ± 2.82 1-22
Words in sent. 23.15 ± 11.37 2-67 21.80 ± 9.11 1-57 14.48 ± 7.89 1-50 8.67 ± 5.20 1-50
Tokens in sent. 25.58 ± 12.90 2-81 27.42 ± 11.88 1-78 15.12 ± 8.13 1-51 8.93 ± 5.39 1-50

O
u
tp

u
t

Words 21.96 ± 10.99 2-66 19.57 ± 8.29 4-62 659.72 ± 450.46 101-2,681 10.61 ± 4.85 2-46
Tokens 27.28 ± 14.09 5-86 24.22 ± 10.65 5-91 696.66 ± 476.93 104-2,961 10.84 ± 5.01 2-53

Sentences 1.06 ± 0.25 1-4 1.33 ± 0.56 1-5 47.76 ± 35.44 1-308 1.32 ± 0.52 1-5
Words in sent. 20.67 ± 10.86 1-66 14.70 ± 6.71 1-59 13.81 ± 9.59 1-722 8.06 ± 4.32 1-36
Tokens in sent. 25.69 ± 13.92 1-86 18.19 ± 8.78 1-91 14.63 ± 10.22 1-722 8.24 ± 4.45 2-37

Table 10.1: Length statistics in number of tokens, as obtained with the tokenisers
of the language models used for generation (Section 10.3).

experiment with (ii) temperature sampling, i.e. unbiased sampling after a renor-
malisation of the output space (lower temperatures α make the model increas-
ingly confident); (iii) top-k sampling (Fan et al., 2018), which limits the sampling
distribution to the k most likely words at each time step; (iv) nucleus sam-
pling (Holtzman et al., 2019), which dynamically limits the sampling distribution
to the smallest vocabulary subset whose cumulative probability exceeds a thresh-
old p; (v) locally typical sampling (Meister et al., 2023), which sorts words based
on the deviation of their negative log probability from the expected conditional
entropy of the distribution, and redefines the sample space by taking words from
the top of this sorted list until their cumulative probability exceeds a threshold
τ . For all decoding algorithms, we set the maximum generated sequence length
to 100 (cf. Table 10.1).

10.4 Human production variability across NLG
tasks

Consider pY |X=x the distribution that describes the human language process, and
define the following special case:

Hk(x) := k(Y, Y ) . (10.1)

Estimating this probe by drawing pairs of human productions provides an inter-
pretable view on plausible variability along the dimension captured by k. Fig-
ure 10.2 shows Hk(x) marginalised over inputs for the four NLG tasks. High
similarity indicates low variability, and vice versa. We use unigram overlap for
the lexical probe, POS bigram overlap for the syntactic probe, and cosine simi-
larity for the semantic probe.
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Translation and text simplification. Humans show low production variabil-
ity in these two tasks. While translations of a given source sentence are more lex-
ically and semantically varied, simplifications exhibit a higher degree of syntactic
variability, probably as a result of the instructions used during data collection
(writers were asked to use varying rewriting transformations). Overall, low levels
of variability are to be expected as, in both tasks, content preservation is part of
the communicative goal.

Story generation. Variability in story generation is strongly dependent on the
production probe type. It is low at the syntactic level—close to translation and
simplification—while lexical and semantic similarity probes place this task closer
to open-domain dialogue. Stories generated from a given prompt may vary a lot
in content, but basic syntactic structures and some lexical material are shared.
While this task can be a priori perceived at least as ‘open-ended’ as dialogue,
the lower levels of variability may be a result of contextual factors specific to
the WritingPrompts dataset that we are not explicitly modelling, such as writers
being able to read stories contributed by other users.

Open-domain dialogue. We observe the highest production variability in this
task across all similarity probes. Many output pairs are lexically and syntactically
completely dissimilar, as indicated by the zero-bin in Figures 10.2a and 10.2b.
Lexical variability is even more extreme when looking at bigrams and trigrams
(Figures C.1-C.2 in Appendix C.1) suggesting that while responses rarely share
words or phrases, they still sometimes convey similar meaning (Figure 10.2c).
Overall, the fact that dialogue appears to be the most open-ended task can be
explained by the wide variety of communicative goals that can plausibly follow
from a dialogue context and, in part, by the fact that individual annotators
produced multiple responses for the DailyDialog++ dataset and thus were able
to monitor the diversity of their outputs.

10.5 Neural text generators’ compliance to
human production variability

Consider, now, a second language process: a text generator with distribution
pŶ |X=x. We study this generator’s uncertainty about outputs given an input x
under two lenses. In Section 10.5.1, we study how outputs vary with respect to
one another, similar to how we defined human production variability Hk(x). We
refer to this as the generator’s self-variability :

Mk(x) := k(Ŷ , Ŷ ) . (10.2)

In Section 10.5.2, instead, we study how model generations vary with respect to
a language process known to be plausible: a human language process pY |X=x. We
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(a) Lexical variability (b) Syntactic variability (c) Semantic variability

Figure 10.2: Human production variability across four NLG tasks. The values on
the horizontal axis are single samples of lexical, syntactic, or semantic similarity
between two productions for each input (see Section 10.2). Probability mass on
the right side signals high similarity and low variability, and vice versa. A large
spread indicates that production variability varies widely across inputs.

refer to this as cross-variability :

Ck(x) := k(Ŷ , Y ) . (10.3)

Our expectation is that generators with a good representation of aleatoric un-
certainty reproduce human production variability along these two axes. As we
employ a similarity metric, it may look like we should regard a model as a good
approximation to the human process whenever Ck(x) concentrates about large
positive values. To some extent, this is the interpretation exploited by most auto-
matic evaluation metrics (single- or multi-reference). In this work, we refrain from
taking any one human production as a ‘reference’ to be closely ‘matched’; rather,
we take statistical properties of human productions as illustrative of plausible
variability and thus targets to be reproduced. We quantify deviation from plausi-
ble human variability by estimating a notion of statistical divergence D(·, Hk(x)).
Concretely, we employ DW1 , the Wasserstein 1-distance, and Dµ, the difference
between mean pairwise similarities µHk(x) − µMk(x).

6

10.5.1 The underlying statistical model

In this section, we evaluate the underlying statistical model (as a result of param-
eter estimation via MLE) using unbiased sampling. As models observe variability
only marginally (multiple references are rarely used during training), it is in-
teresting to study the compliance of their self-variability to human variability:

6W1(·, ·) quantifies a notion of distance between two probability measures and is particularly
convenient for it can be estimated using Dirac deltas (samples from those measures) (Peyré et al.,
2019) more easily than alternatives such as Kolmogorov–Smirnov and total variation distance
(which require binning the measurements into empirical cdfs/pdfs). W1(Mk(x), Hk(x)) has an
interpretation in terms of ‘mass’ (in units of k) that has to be moved, on average, to transform
one set of samples into another.
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Figure 10.3: Distribution of µMk(x) − µHk(x) over instances. Values greater than
zero indicate that the model underestimates the variability of the task (higher
mean pairwise similarity); values below zero indicate variability overestimation.

given individual input instances, do similarities between unbiased model samples
distribute similarly to similarities between human productions? To distinguish
over-estimation from under-estimation, we report a signed notion of divergence,
µMk(x) − µHk(x). When Mk(x) and Hk(x) distribute similarly, their mean differ-
ence is low for a given x. Negative differences imply that models overestimate
variability, i.e., model samples vary more with respect to one another than human
samples do; positive differences indicate that models underestimate variability.

Figure 10.3 shows how mean differences distribute across each task-specific
test set for the models in Section 10.3 (for other decoding algorithms see Sec-
tion 10.5.2). We use up to 10 human productions (5 for dialogue) and 10 genera-
tions. The first two rows show that Dµ(Mk(x), Hk(x)) distributes far below 0 for
translation (OpusMT) and slightly below 0 for simplification (Flan-T5), indicat-
ing that the two models substantially underestimate variability. The opposite is
true for dialogue and story generation: both GPT-2 and DialoGPT slightly over-
estimate the open-endedness of these tasks. Overall, models on more constrained
tasks tend to more strongly underestimate variability as captured by Mk(x) while
models on open-ended tasks overestimate it slightly.

We also inspect Dµ(Ck(x), Hk(x)), finding better overall calibration of cross-
variability, especially for translation and simplification (see Figure 10.4). That
is, when generations are evaluated against productions from a language process
known to be plausible, the human language process, models’ representation of
uncertainty is well aligned to human production variability.
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Figure 10.4: Distribution of µCk(x) − µHk(x) over instances. Values greater than
zero indicate that the model underestimates the variability of the task (higher
mean pairwise similarity); values below zero indicate variability overestimation.

10.5.2 The effect of decoding algorithms

We now study text generators obtained by varying the sampling procedure.7 We
analyse their representation of uncertainty by assessing the divergence between
the distribution of generator-human cross-variability C(x) and human variability
H(x). While µCk(x) − µHk(x) can inform us about the direction of miscalibra-
tion, we observe only a handful of cases where different decoding strategies yield
both under- and over-estimation for the same model (Figures C.4 and C.5 in Ap-
pendix C.1). Here, we thus report a measure of divergence that is more robust
to distributions with multiple modes: the Wasserstein 1-Distance DW1(·, Hk(x)).
Results for self-variability M(x) and mean distance can be found in Appendix C.1.

Human control group. The blue curve in Figure 10.5 shows how the di-
vergence DW1(Ck(x), Hk(x)) distributes over inputs for unbiased samples from
GPT-2 on story generation. To contextualise this observation we report a hu-
man control group (the orange curve): this is DW1 measured between two human
populations (i.e., we make two disjoint samples from the available human pro-
ductions for each prompt, use those to estimate Hk(x) and an analogous Ĥk(x),
and compute DW1(Ĥk(x), Hk(x))). We can now appreciate what is a plausible
distance curve between two human-based processes, and with that, we can bet-
ter discern that a particular system gives good but not perfect representation
to human levels of production variability (for example, note the overlap between
the two distributions in Figure 10.5). Upon visual inspection of analogous diver-
gence distributions for different sampling strategies, we find similar shapes. In
Figure 10.6, to present results for many decoding settings, tasks and probes, we

7This leads to a probability distribution whose pmf is hard if at all possible to characterise,
meaning we cannot easily assess the probability of an outcome under the new distribution. But
we have an explicit sampler for this new distribution, which is all our analysis tools require.
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Figure 10.5: Distribution over Wasserstein distances DW1(Csem(x), Hsem(x)), in
blue. Distances for a human control group, DW1(Ĥsem(x), Hsem(x)), in orange.

exploit this finding and summarise each divergence distribution using its mean.
The leftmost red dots indicate the human control group.8 We observe that two
human groups agree more on the meaning of translations and simplifications than
on their form, while for story generation the two groups agree more on surface
form and basic structures and less on the semantic content of the stories.

Results. Figure 10.6 shows that most decoding settings are close to unbiased
sampling, which in turn is in the same ballpark as the human control. This in-
dicates that text generators capture the space of plausible human productions
well when coupled with most decoding algorithms, though not as well as another
human language process does. Decoding settings form many clusters, and for all
tasks except open-domain dialogue, unbiased samples best match human vari-
ability. This suggests that, within the limits of decoding configurations typically
considered as appropriate, different token-level decoding strategies often have a
similar effect on a generator’s ability to reproduce human production variabil-
ity along our three probes. Altogether, these findings inform us about an often
neglected aspect of decoding algorithms, namely their effect on the model’s repre-
sentation of uncertainty (rather than their ability to select individual high-quality
generations).

8Except for dialogue as five references are too little to create a control group.
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Figure 10.6: Mean Wasserstein distances DW1(C(x), H(x)) for (tasks, probe, de-
coder) tuples. Base models for each task are described in Section 10.3. Colour
refers to decoding algorithm with various parameter settings. Clusters suggest
that decoders often have similar effect. No ‘Human’ data point for dialogue,
where five references are too little to create a control group.

10.6 Qualitative instance-level analysis

We now qualitatively analyse individual inputs for which a generator’s uncer-
tainty is miscalibrated to human variability—as detected by DW1 . For each task,
we use up to 10 human productions (5 for dialogue) and 10 generations. As
similarity metrics k, we use again unigram overlap (lexical), POS bigram over-
lap (syntactic), and cosine similarity (semantic). While it is not a replacement
for more standard NLG evaluation procedures, we argue that this level of anal-
ysis is complementary and crucial to gain deeper understanding of a generator’s
representation of uncertainty.

Variability underestimation in translation and simplification. We have
seen that in translation and simplification, generators’ self-variability is lower than
human variability (Section 10.5.1). We now zoom in on examples from these two
tasks, inspecting instances that show inadequate fitness to human variability on
all linguistic levels (i.e., DW1(Mk(x), Hk(x)) is high for all k). The most severe
cases of miscalibration for OpusMT are all instances of variability underestima-
tion.9 For most of these inputs, generations are virtually or completely identical,
while a few present slightly higher but still substantially lower variability than
human productions. For example, ten humans translated the phrase ‘reacted cau-
tiously ’ in the English source sentence ‘Several companies have thus far reacted

9We select instances with DW1
>0.3 for unigram overlap and DW1

>0.2 for POS bigram and
semantic overlap; we find 7 such instances. These thresholds are chosen based on distribution
plots of instance-level distances (see, e.g., Figure 10.2b).
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Figure 10.7: An example of variability underestimation in translation. Self-
variability, DW1(Mk(x), Hk(x)), OpusMT with temperature sampling.

cautiously when it comes to hiring ’ in six different ways (‘zurückhaltend reagiert ’,
‘mit Vorsichtsmaßnahmen reagiert ’, ‘reagierten mit Zurückhaltung ’, ‘mit Vorsicht
reagiert ’, ‘reagierten verhalten’) while all ten generated samples contain the Ger-
man phrase vorsichtig reagiert ’, signalling that the generator’s lexical rephrasing
abilities do not generalise to this input instance (see Figure 10.7). For text sim-
plification, we focus on instances where Flan-T5’s uncertainty is not calibrated
to human syntactic variability.10 We observe that simplifications sampled from
the generator are always syntactically more similar to each other than humans’,
indicating that the generator struggles to capture an important aspect of the text
simplification task: that many (semantically equivalent) rewritings are possible
for a text if the text’s syntactic structure is altered.

Variability overestimation in dialogue. According to our estimates of hu-
man variability (Section 10.4), dialogue is the most open-ended task on all lin-
guistic levels. We have hypothesised that this is due to the large variety of
communicative act types plausible given any dialogue context. We have also seen
that DialoGPT generally overestimates production variability (Section 10.5.1)—
Figure 10.1 is one such example. Now we further inspect instances where cross-
variability is miscalibrated with respect to human outputs.11 We find that the
generator’s bad fit can be due to very short and generic responses (e.g., ‘Well...’,
“haha”, “Ahem”, “Well done!”), but is more often due to the presence of fluent yet
very diverse and often inadequate samples. For such instances, not only is the
generator’s cross-variability miscalibrated—self-variability, too, is overestimated
on all linguistic levels. In particular, the generator’s poor calibration to lexical
and syntactic variability is related to its inability to choose the correct dialogue

10DW1
(Msyn(x), Hsyn(x))>0.2; 49 instances.

11DW1(Ck(x), Hk(x)) > 0.2 for all k; 15 instances.
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Figure 10.8: An example of variability overestimation in open-domain dialogue.
Cross-variability, DW1(Ck(x), Hk(x)), DialoGPT Medium with nucleus sampling.

acts (or favouring an excessive variety of dialogue acts). In an example instance
where the last dialogue turn goes ‘I’ve got a business call that I really need to
take’ (see Figure 10.8), humans all reply with short affirmative responses (‘Okay!
Please.’, ‘Well! Go on.’, ‘Sure, why not!’, ‘Sure! Go ahead.’, ‘Yes! Sure.’) while
the model’s responses are mostly lengthy statements, sometimes not particularly
coherent ones (e.g., ‘You don’t need a business call. You need a friend’).

Variability in lack of situational grounding. We have observed that human-
written stories in the WritingPrompts dataset show lower variability than human
dialogue responses, and hypothesised that this may be in part due to contex-
tual pressures that constrain variability (Section 10.4). We now analyse instances
flagged by our probe as cases of badly calibrated semantic cross-variability for
GPT-2.12 For one of these, the prompt refers to a context the model does not have
access to (‘all top level comments in this prompt take place in the same world,
so make them all fit together’). Because they are conditioned on and reuse that
context, human stories are quite similar to each other; generations, instead, show
much lower pairwise similarity both when sampled jointly with the human pro-
ductions and with themselves (see Figure 10.9). The lack of relevant situational
grounding the model more uncertain than it should be for this instance.

10.7 Discussion and conclusions

Variability is an intrinsic property of human language production. If they are
to be considered as good statistical models of human language production, text
generators should exhibit plausible levels of variability. However, in NLG, the

12DW1(Csem(x), Hsem(x)) > 0.3; 7 instances.
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Figure 10.9: An example of variability overestimation in story generation. Cross-
variability, DW1(Ck(x), Hk(x)), GPT-2 Large with typical sampling.

widespread practice is (i) collecting only one ‘reference’ production for each input
and (ii) evaluating only a single generation. To appreciate the impact of this in-
congruity empirically, we analyse multiple-reference datasets for four NLG tasks,
and show that each task has its own plausible levels of lexical, syntactic, and
semantic variability. We connect production variability to aleatoric uncertainty,
and evaluate neural text generators in terms of whether their representation of
uncertainty is calibrated to the levels of variability observed in humans. We find,
overall, that NLG systems are well calibrated to human levels of variability. Yet
they slightly overestimate production variability in open-ended tasks and under-
estimate it in more constrained tasks. Moreover, we observe that most popular
decoding algorithms all have a similar, limited effect on the generators’ ability to
reproduce human variability.

Statistical evaluation. We advocate for more widespread usage of instance-
level probing of NLG systems as a way to evaluate their statistical fitness, not
just along the dimensions we cover in this study but with respect to any other
quality of interest. This approach contrasts with corpus-level analyses of NLG
systems (e.g., Pillutla et al., 2021; Meister and Cotterell, 2021; Pimentel et al.,
2022) and thanks to its greater interpretability, it builds trust in the ability of
generators to reproduce human-like statistics when situated in specific linguistic
contexts rather than ‘globally’, over a possibly heterogeneous corpus.

Impact of data collection. Our analysis relies on multiple-reference datasets,
which are scarce for NLG tasks. Even though, for single-reference datasets, we
cannot perform a similar instance-level analysis, this does not entail that our
observations do not extend to such datasets—we might simply not have the data
to expose them. The way in which multiple references are gathered may impact
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Figure 10.10: An example of well calibrated cross-variability in open-domain
dialogue. DW1(Ck(x), Hk(x)), DialoGPT Medium with nucleus sampling.

the variability in productions. For example, asking a single annotator to produce
several distinct references might artificially increase the diversity of responses.
Conversely, asking several independent annotators might decrease diversity for
they might resort to similar responses that come to mind quickly (or, in fact,
the opposite might be true if they interpret the linguistic context differently). In
this work, we do not distinguish between individual-level and population level
variability, yet the analysis tools that we propose allow for such distinction.

Other quality dimensions. It is possible that a model fits various statistical
properties of the human process (under Mk(x), under Ck(x), and for various
choices of k) meanwhile none of its probable responses are deemed satisfactory as
a whole by humans. This is why we shall think of our tools as (statistical) probes.
We indeed find interesting instances that show good fit in terms of our similarity
probes but whose outputs may be perceived as inadequate. Manual inspection
reveals that a marriage proposal in one of the dialogues (Figure 10.10) is followed
by a few incoherent model responses (e.g.., ‘Thank you. It’s not a question of the
strength or weakness of the plot. I think it all falls within my capacity.’), some
dispreferred ones (‘If you want to have a hug?’; see Levinson, 1983), and some
with negative affect (‘I don’t need your love. I know where you are coming from
and I trust you will do the same.’). Exhaustively defining all aspects of perceived
quality (or human-likeness) is a strenuous endeavour which is highly dependent
on the use case of the generation system. Our similarity probes can be replaced
with quality metrics which capture aspects (e.g., affective content, toxicity, or
readability) that are considered relevant for any given application.

Outlook. In the future, we plan to devise new ways of improving the calibra-
tion of models’ uncertainty (Zhao et al., 2022; Zhang et al., 2022b; Lee et al.,
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2022), e.g., steering generators with sequence-level decoding algorithms (Eikema
and Aziz, 2022a), and to investigate the relation between uncertainty and per-
ceived generation quality (e.g., Kuhn et al., 2023): while we use human levels
of variability as a target, desirable levels of variability may deviate from human
statistics for specific applications. Future work should also study uncertainty as
a function of a more complex notion of discourse context (as we did in Chapter 7)
as well as attempt to disentangle uncertainty over communicative goals and reali-
sations (Stasaski and Hearst, 2023). This is an important avenue not only toward
more practically useful generators but also toward using NLG systems as reliable
computational models of language production.
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Measuring utterance predictability with
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The content of this chapter is based on the following paper, which is under sub-
mission at the time of writing:

Mario Giulianelli, Sarenne Wallbridge, and Raquel Fernández. Information
Value: Measuring Utterance Predictability as Distance from Plausible Al-
ternatives. To appear in Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, Singapore, Republic of Singapore.
Association for Computational Linguistics.

Mario produced the research idea. Mario performed the majority of the exper-
iments, to which Sarenne also contributed. Mario and Sarenne performed the
analysis and wrote the article. Raquel provided advice throughout the project,
she reviewed and revised the manuscript. The text in this chapter overlaps with
that of the original publication.
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11.1 Introduction

Measuring the amount of information carried by a linguistic signal is fundamental
to the understanding and computational modelling of human language process-
ing. Measures of information are used in psycholinguistic and neurobiological
models of language processing (Levy, 2008a; Willems et al., 2016; Futrell and
Levy, 2017; Armeni et al., 2017), to study the processing mechanisms of neural
language models (Futrell et al., 2019; Davis and van Schijndel, 2020; Sinclair et al.,
2022), and as a learning and evaluation criterion for language modelling (under
the guise of ‘perplexity’). As discussed in Section 9.2 of the background chapter,
the amount of information carried by a linguistic signal is intrinsically related to
its predictability (Hale, 2001; Genzel and Charniak, 2002), and this connection
is summarised by surprisal (Shannon, 1948), perhaps the most widely used mea-
sure of information. Predictable signals carry low amounts of information—i.e.,
surprisal—as they are already expected to occur given the context in which they
are produced. Conversely, unexpected signals carry higher surprisal.

Proper estimation of the surprisal of an utterance would require comput-
ing probabilities over a high-dimensional, structured, and ultimately unbounded
event space. It is thus common to resort to chaining token-level surprisal es-
timates, nowadays typically obtained from neural language models. However,
token-level autoregressive approximations of utterance probability have a few
problematic properties, which we have already discussed in the introduction to
Part 3. First, different realisations of the same concept or communicative in-
tent compete for probability mass (Holtzman et al., 2021). Moreover, token-level
surprisal estimates conflate different dimensions of predictability, which makes
it difficult to appreciate whether the information carried by an utterance is a
function, for example, of the unexpectedness of its lexical material, syntactic ar-
rangements, semantic content, or speech act type (Arehalli et al., 2022; Kuhn
et al., 2023).

We propose an intuitive characterisation of the information carried by ut-
terances, information value, which is unaffected by these issues. It measures
predictability over the space of full utterances and it explicitly accounts for mul-
tiple dimensions of predictability (e.g., lexical, syntactic, and semantic). Given
a linguistic context, the information value of an utterance is a function of its
distance from the set of contextually expected alternatives. The intuition is that
if an utterance differs largely from alternative productions, it is an unexpected
contribution to discourse with high information value. We obtain empirical esti-
mates of information value by sampling alternatives from neural text generators
and measuring their distance from a target utterance using interpretable distance
metrics. Estimates are evaluated in terms of their ability to predict and explain
human reading times and acceptability judgements in dialogue and text.

We find information value to have stronger psychometric predictive power
than aggregates of token-level surprisal for acceptability judgements in spoken and
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written dialogue, and to be complementary to surprisal as a predictor of reading
times. Furthermore, our suite of interpretable information measures provides
insights into the processing mechanisms underlying comprehension behaviour. It
reveals, for example, that utterance acceptability in dialogue is largely determined
by semantic predictability while reading times are more affected by lexical and
syntactic expectations.

Beyond being a powerful tool for the analysis of comprehension behaviour
(Meister et al., 2021; Shain et al., 2022; Wallbridge et al., 2023), information
value can be used to model audience-aware language production strategies (Gen-
zel and Charniak, 2002; Doyle and Frank, 2015a; Xu and Reitter, 2018; Verma
et al., 2023) and to design mechanisms that reproduce them in natural language
generation systems (Wei et al., 2021; Meister et al., 2023).

11.2 Alternatives in semantics and pragmatics
The measure of predictability presented in this chapter takes inspiration from the
concept of alternatives in semantics and pragmatics (Stalnaker, 1978; Gazdar,
1979; Horn, 1972; Grice, 1975; Rooth, 1996; Levinson et al., 2000). In language
production and comprehension, humans constantly process information about
other things they could say or that could have been said. Reasoning about al-
ternatives has been argued to be at the basis of the use of questions (Hamblin,
1976; Groenendijk and Stokhof, 1984; Ciardelli et al., 2018), focus (Rooth, 1992;
Wagner et al., 2005; Beaver and Clark, 2009), and implicatures (Carston, 1998;
Degen and Tanenhaus, 2015, 2016; Zhang et al., 2023).

Recently, alternative sets generated with the aid of language models have been
used to provide empirical evidence that pragmatic inferences of scalar implicature
depend on listeners’ context-driven uncertainty over alternatives (Hu et al., 2022,
2023). Hu et al. (2022) generate sets of plausible words in context, within scalar
constructions, then embed and cluster the resulting sentences to simulate concep-
tual alternatives (Buccola et al., 2022). Reasoning over word- and concept-level
alternatives is operationalised through surprisal and entropy. To our knowledge,
ours is the first study to use language models for the generation of full utterance-
level alternatives.

11.3 Alternative-based information value
Given a context x, a speaker may produce a number of plausible utterances. We
refer to these as Ax, the alternative set. We define the information value of an ut-
terance y in a context x as the distribution of distances of y from the set of alterna-
tive productions Ax that are expected given x, measured with a distance metric d:

I(Y =y|X=x) := d(y, Ax) (11.1)
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This distribution characterises the predictability of y in its context. Large dis-
tances indicate that y differs substantially from expected utterances, and thus
that y is a surprising next utterance.

11.3.1 Computing information value

In Equation 11.1, we define information value as an abstract notion of the un-
predictability, or unexpectedness of an utterance. In practice, computing the
information value of an utterance requires a method to generate alternative sets
|Ax|, a metric with which to measure the distance of an utterance from its alter-
natives, and a means with which to summarise distributions of pairwise distances.

Generating alternative sets. Since the ‘true’ alternative sets entertained by
a human comprehender are not attainable, we propose generating alternative sets
algorithmically, via neural text generators. Furthermore, we compare utterances
and alternatives with a selection of distance metrics and summary statistics which
enable an exploration into the representational form of alternatives in human lan-
guage processing (Gotzner and Romoli, 2022). The plausibility, or human-likeness
of the generations is clearly another important factor. Our approach builds on
findings from the previous chapter, where we observed that the predictive distri-
bution of neural text generators is well aligned to human variability (as measured
with the same distance metrics we use here): while not all generations are guar-
anteed to be of high quality, their low-dimensional statistical properties match
those of human productions. This should allow us to obtain faithful distance
distributions d(y, Ax) and thus accurate estimates of information value.

Measuring distance from alternatives. We quantify the distance of a target
utterance from an alternative production using the three interpretable distance
metrics introduced in Chapter 10. They are reported again here for convenience.
Lexical: Fraction of common n-grams in two utterances, with n∈ [1, 2, 3] (i.e.,
number of matching n-gram occurrences divided by the total number of n-grams
in both strings). Syntactic: Fraction synn(y

′, y) of common part-of-speech
(POS) n-grams in two utterances. Semantic: Cosine and euclidean similar-
ity sem(y′, y) between the sentence embeddings of two utterances (Reimers and
Gurevych, 2019). These distance metrics characterise alternative sets at lexical,
structural, and conceptual levels (Katzir, 2007; Fox and Katzir, 2011; Buccola
et al., 2022).

Summarising distance distributions. Information value is a distribution
over distances (Equation 11.1). To summarise this distribution, we explore mean
as the expected distance (under a uniform distribution over alternatives) or as the
distance from a prototypical alternative, and min as the distance of y from the
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closest production, implicating that proximity to a single alternative is sufficient
to determine predictability.

11.4 Experimental setup

11.4.1 Language models

We generate alternative sets using neural autoregressive language models (LMs).
For the dialogue corpora, we use GPT-2 (Radford et al., 2019), DialoGPT (Zhang
et al., 2020c), and GPT-Neo (Black et al., 2021). For the text corpora, we use
GPT-2, GPT-Neo, and OPT (Zhang et al., 2022a). The text models are pre-
trained, while dialogue models are fine-tuned on the respective datasets. Further
details on fine-tuning and perplexity scores are in Appendix C.2.

Generating alternatives. To generate an alternative set Ax, we sample from
pLM(Y |X=x). We experiment with four popular sampling strategies to en-
sure that the quality of our surprise estimates is not dependent on a particular
strategy—or, if it is, that we are not overlooking it. We select (i) unbiased (an-
cestral or forward) sampling (Bishop, 2006; Koller and Friedman, 2009), (ii) tem-
perature sampling (α∈ [0.75, 1.25]), (iii) nucleus sampling (Holtzman et al., 2019)
(p ∈ [0.8, 0.85, 0.9, 0.95]), and (iv) locally typical sampling (Meister et al., 2023)
(τ ∈ [0.2, 0.3, 0.85, 0.95]). We post-process alternatives to ensure that each con-
tains only a single utterance.

11.4.2 Psychometric data

Using five corpora, we study two main types of psychometric variables that rely on
different underlying processing mechanisms (Gibson and Thomas, 1999; Hofmeis-
ter et al., 2014): acceptability judgements and reading times.

Stimuli for acceptability judgements typically consist of isolated sentences
that are manipulated automatically or by hand to assess a grammatical notion
of acceptability (Lau et al., 2017; Warstadt et al., 2019). The effect of context
on acceptability is still relatively underexplored, yet contextualised judgements
arguably capture a more natural, intuitive notion of acceptability. In this study,
we use some of the few datasets of in-context acceptability judgements which
examine grammaticality as well as semantic and pragmatic plausibility.

Previous literature regarding the predictive power of language models for
reading behaviour has focused on the relationship between per-word surprisal
and reading times (Keller, 2004; Wilcox et al., 2020; Shain et al., 2022; Oh
and Schuler, 2022). We define utterance-level reading time as the total time
spent reading the constituent words of the utterance, following previous studies
of utterance-level surprisal (Meister et al., 2021; Amenta et al., 2022).
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Switchboard and DailyDialog. Participants were presented with a short
contextual sequence of dialogue turns followed by a potential upcoming turn, and
asked to rate its plausibility on a scale from 1 to 5. Judgements were collected
by Wallbridge et al. (2022) for (transcribed) spoken dialogue, from the Switch-
board Telephone Corpus (Godfrey et al., 1992), and for written dialogue, from
DailyDialog (Li et al., 2017). For each corpus, 100 items were annotated by 3-6
participants. Annotation items consist of 10 dialogue contexts, each followed by
the true next turn and by 9 turns randomly sampled from the respective corpus.1

Clasp. Participants were presented with sentences from the English Wikipedia
in and out of their document context and asked to judge acceptability using a
4-point scale (Bernardy et al., 2018). The original sentences are round-trip trans-
lated into 4 languages (Czech, Spanish, German and French) to obtain varying
degrees of acceptability; the context is not modified. This dataset contains 500
stimuli, annotated by 20 participants.2

Provo. This corpus consists of 136 sentences (55 paragraphs) of English text
from a variety of genres, including online news articles, popular science, and fic-
tion. Eye movement data was collected from 84 native American English speakers
(Luke and Christianson, 2018). We use the sum of word-level reading times (ia-
dwell-time, the total duration of all fixations on the target word) of constituent
words to obtain utterance-level measures (Meister et al., 2021).

Brown. This corpus consists of self-paced moving-window reading times for
450 sentences (12 passages) from the Brown corpus of American English. Reading
times were collected from 35 native English speakers (Smith and Levy, 2013).

11.5 The psychometric predictive power of
information value

We evaluate our empirical estimates of information value in terms of their psy-
chometric predictive power: can they predict comprehension behaviour recorded
as human acceptability judgements and reading times? We test the robustness of
this predictive power and compare it to previously proposed utterance-level sur-
prisal aggregates including mean, variance, and a range of summation strategies;
see Appendix C.4 for full definitions.

1Negative turns were sampled to span the range of conditional surprisals expected from true
dialogue continuations (see Section 3.4 in Wallbridge et al., 2022). Acceptability judgements
are available at https://data.cstr.ed.ac.uk/sarenne/INTERSPEECH2022/.

2We only use judgements collected in context: https://github.com/GU-CLASP/BLL2018.

https://data.cstr.ed.ac.uk/sarenne/INTERSPEECH2022/
https://github.com/GU-CLASP/BLL2018
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Figure 11.1: Spearman correlation between semantic information value and mean
acceptability judgements in Switchboard. Confidence intervals display vari-
ability over 11 sampling strategies.

For each corpus in Section 11.4.2, we measure the correlation between infor-
mation value and the respective psychometric variable, which is the average in-
context acceptability judgement for DailyDialog, Switchboard, and Clasp,
and the total utterance reading time normalised by utterance length for Provo
and Brown.3 Alternative sets are generated using the language models and sam-
pling strategies described in Section 11.4.1. Lexical, syntactic, and semantic dis-
tances are computed in terms of the distance metrics presented in Section 11.3.1,
for alternative sets of varying size ([10, 20, ..., 100]). The distributions of similar-
ities in Equation 11.1 are summarised using mean and min, thus yielding scalar
estimates of information value.

11.5.1 Predictive power

We obtain moderate to strong Spearman correlations between information value
and psychometric data across all corpora with the models and sampling strate-
gies from Section 11.4.1. Notably, estimates of semantic information value cor-

3We normalise by utterance length as it is an obvious correlate of total reading time and
would have confounding effects on this analysis. In Section 11.6, we confirm our findings
using mixed effect models that include utterance length as a predictor and total unnormalised
reading time as a response variable.
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Information value Surprisal

Acceptability (x ∝ y−1)
Switchboard -0.702 (semantic) -0.506 (superlinear, k=4)
DailyDialog -0.584 (semantic) -0.457 (superlinear, k=2.5)
Clasp -0.234 (syntactic) -0.559 (mean)

Reading times (x ∝ y)
Provo 0.421 (syntactic) 0.495 (variance)
Brown 0.223 (lexical) 0.220 (mean)

Table 11.1: Correlations of the best variants of information value and surprisal (in
parenthesis) with psychometric data: mean acceptability judgements and length-
normalised reading times.

relate with acceptability judgements at strengths approximately between −0.4
and −0.7 for Switchboard and between −0.3 and −0.6 for DailyDialog (see
Figure 11.1 for Switchboardand Appendix C.3 for all datasets). Estimates
obtained with the best information value estimators, shown in Table 11.1, yield
substantially higher correlations with acceptability than the best token-level ag-
gregates of utterance surprisal, both as computed in our experiments and as
reported in prior work (Wallbridge et al., 2022, 2023). Reading times, on the
other hand, are aggregates of word-level psychometric data points and should
thus naturally be easier to capture with word-level measures of predictability.
Nevertheless, our best information value estimates correlate with reading times
only slightly less strongly or comparably to surprisal; and additionally, they give
us indications about the dimensions of unexpectedness that mostly affect reading
behaviour (indeed these are mostly based on lexical and syntactic distances).

Overall, beyond building trust in our information value estimators, this eval-
uation demonstrates the benefit of their interpretability. The predictive power
for lexical, syntactic, and semantic distances varies widely between corpora. Se-
mantic distances are much more predictive for dialogue datasets than lexical or
syntactic distances, while the inverse is true for the reading times datasets. We ex-
plore differences between the underlying perceptual processes employed for these
two comprehension tasks further in Section 11.6.

11.5.2 Robustness to estimator parameters

We now study the extent to which our estimates are affected by variation in
three main factors that determine information value: the alternative set size
([10, 20, ..., 100]), the language model, and the sampling strategy. We find a slight
positive, asymptotic relationship between correlations and alternative set size for
semantic information value in the dialogue corpora—information value estimates
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Corpus Level Metric Summary N Language Model Sampling ρ

Switchboard
Lexical Bigram Min 70 DialoGPT Medium Temperature 1.25 -0.436*
Syntactic POS bigram Min 100 DialoGPT Small Ancestral -0.440*
Semantic Cosine Min 100 DialoGPT Large Temperature 1.25 -0.702*

DailyDialog
Lexical Unigram Min 80 DialoGPT Small Ancestral -0.383*
Syntactic POS trigram Min 90 DialoGPT Large Temperature 1.25 -0.359*
Semantic Cosine Min 100 GPT-2 Large Nucleus 0.9 -0.584*

Clasp
Lexical Trigram Min 90 GPT-2 Large Temperature 1.25 -0.210*
Syntactic POS Bigram Min 100 GPT-2 Large Nucleus 0.95 -0.234*
Semantic Cosine Min 90 OPT 1.3B Temperature 0.75 -0.221*

Provo
Lexical Unigram Min 10 OPT 125M Typical 0.3 0.379*
Syntactic POS Trigram Min 10 GPT-2 Small Nucleus 0.95 0.421*
Semantic Euclidean Min 100 OPT 125M Nucleus 0.95 0.181

Brown
Lexical Bigram Min 90 GPT-2 Small Typical 0.3 0.223*
Syntactic POS Trigram Mean 10 GPT-2 Medium Typical 0.3 0.185*
Semantic Cosine Min 100 GPT-Neo 125M Nucleus 0.95 0.048

Table 11.2: Best information value estimator per corpus and metric. Spearman
rank-correlation coefficients ρ, statistical significance (p < 0.001) is marked with
a star. The highest correlations per dataset are in bold; the estimators (a combi-
nation of set size N , model, and sampling strategy) that generate them are taken
as the ‘best estimators’ for that corpus and are used in Sections 11.6 and 11.7.

become more predictive as alternative set size increases (see, e.g., Figure 11.1).
Set size does not significantly affect correlations for the reading times corpora.
Moreover, while we do observe differences between models, and larger models
tend to obtain higher correlations with psychometric variables, these results are
not consistent across corpora and distance metrics (see Figures C.6 and C.7 in
Appendix C.3). In light of recent findings regarding the inverse relationship be-
tween language model size and the predictive power of surprisal (Shain et al.,
2022; Oh and Schuler, 2022), we consider it an encouraging result that the pre-
dictive power of information value does not decrease with the number of model
parameters.4 We do not observe a significant impact of decoding strategy on
predictive power, regardless of alternative set size, as indicated by the confidence
intervals in Figure 11.1.

In sum, estimates of information value do not display much sensitivity to
alternative set generation parameters.5 Therefore, for each corpus, we select
the estimator (a combination of model, sampling algorithm, and alternative set
size) that yields the best Spearman correlation with the psychometric data (Ta-
ble 11.2). We use these estimators throughout the rest of this study.

4It remains to be seen whether this trend extends to larger language models, for which we
lack computational resources.

5We obtain similar evidence of robustness to parameter settings using an intrinsic evaluation,
reported in Appendix C.5.
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11.6 In-depth analysis of psychometric data

Using information value, we now study which dimensions of predictability ef-
fectively explain psychometric data. This allows us to qualitatively analyse the
processes humans employ while reading and to assess acceptability. We also de-
fine two additional measures derived from information value (Section 11.6.1) and
use them as explanatory variables in linear mixed effect models to predict per-
subject psychometric data.6 For the dialogue corpora and Clasp, our mixed
effect models predict in-context acceptability judgements. For the reading times
corpora, our models predict the total time spent by a subject reading a sentence,
as recorded in self-paced reading and eye-tracking studies. This is the sum, over a
sentence, of word-level reading times (more details in Appendix C.7). We include
random intercepts for (context, target) pairs in all models.

Analysis procedure. For each corpus, we first test models that include a single
predictor beyond the baseline: i.e., information value measured with all distance
metrics and both mean and min as summary statistics (see Section 11.3.1). Based
on the fit of these single-predictor models, we select the best lexical, syntactic,
and semantic distance metrics (with the corresponding summary statistics) and
use them to instantiate three-predictor models for each of the derived measures
of information value. Following Wilcox et al. (2020), we evaluate each model rel-
ative to a baseline model which includes only control variables. Control variables
are selected building on previous work (Meister et al., 2021): solely an intercept
term as a baseline for acceptability judgements and the number of fixated words
for reading times (more details in Appendix C.7). As an indicator of explanatory
power, we report ∆LogLik, the difference in log-likelihood between a model and
the baseline: a positive ∆LogLik value indicates that the psychometric variable
is more probable under the comparison model. We also report fixed effect coeffi-
cients and their statistical significance. The full results are shown in Table 11.3.

11.6.1 Derived measures of information value

Inspired by information-theoretic concepts used in previous work to study the
predictability of utterances (e.g., Genzel and Charniak, 2002; Keller, 2004; Xu
and Reitter, 2018), as well as in the previous chapters (Part 2), we define two
derived measures of information value and assess their explanatory power.

Out-of-context information value is the distance of an utterance y with respect
to the set of alternative productions Ax expected given the empty context ϵ:

I(Y =y) := I(Y =y|X = ϵ) (11.2)

6Three more derived measures are defined in Appendix C.6. We found them to be less
predictive than those presented here.
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Summ. Level Metric
Switchboard DailyDialog Clasp Provo Brown

β ∆LogLik β ∆LogLik β ∆LogLik β ∆LogLik β ∆LogLik

Mean

Lexical
Unigram -0.273 1.874 -0.683 2.152 0.594 0.206 2.309 9.967 2.409 9.679
Bigram -1.35 4.687 -2.761* 7.179 -1.573 2.717 1.976 10.971 1.622 9.076
Trigram -2.401 8.315 -1.843 7.089 -2.514 5.857 1.982 12.169 1.891 11.974

Syntactic
POS Unigram 0.204 0.605 3.399** 6.707 0.914 0.106 1.902 8.413 0.958 6.627
POS Bigram 0.398 1.366 1.835 3.147 -0.648 -0.073 3.813** 13.861 1.331 7.291
POS Trigram -0.159 2.488 0.767 2.505 -2.011 2.274 5.527** 21.798 1.475 8.194

Semantic
Cosine -8.664** 29.034 -6.988** 21.207 -1.235 0.030 0.237 6.661 0.714 6.633

Euclidean -8.665** 29.263 -7.11** 21.994 -1.535 0.617 0.221 6.864 0.766 6.833

Min

Lexical
Unigram -3.927** 7.701 -4.454** 10.244 -0.866 0.005 2.219 9.649 2.39 9.059
Bigram -1.017 1.629 -4.614** 10.876 -1.937 1.639 1.882 9.490 2.121 8.426
Trigram -1.774 3.396 -1.969 3.311 -2.757* 3.714 1.997 10.337 3.689** 13.913

Syntactic
POS Unigram -0.52 0.927 0.356 1.985 -2.931* 4.915 5.45** 21.187 1.947 8.633
POS Bigram 1.052 0.901 -2.933* 5.067 -5.356** 13.539 4.494** 16.292 1.404 6.854
POS Trigram 0.758 0.993 -3.26* 5.732 -3.104* 4.124 4.956** 18.394 1.362 6.706

Semantic
Cosine -9.888** 34.204 -9.01** 30.408 -1.982 0.979 0.548 6.476 0.661 6.164

Euclidean -7.696** 23.375 -8.901** 29.868 -2.501 2.094 0.507 6.567 0.699 6.020

Table 11.3: Results of single-predictor linear mixed effect models: fixed effect
coefficients β and ∆LogLik. Statistical significance of fixed effects is marked with
one (p < 0.01) or two stars (p < 0.001). Information value estimates are obtained
according to Equation 11.1. For each corpus and each level (lexical, syntactic,
and semantic), the best ∆LogLik is marked in bold. These are the estimators
we use whenever we talk about ‘best predictors’ in this chapter.

Figure 11.2: Explanatory power of information value and its derived measures,
as defined in Section 11.6.1.
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It captures the plausibility of y regardless of its context of occurrence.
Context informativeness is the reduction in information value for y contributed

by context x:

C(Y =y;X=x) := I(Y =y)− I(Y =y|X=x) (11.3)

This quantifies the extent to which a context restricts the space of plausible
productions in such a way that y becomes more predictable.

11.6.2 Acceptability judgements

We generally expect an inverse relationship between information value and in-
context acceptability judgements: information value is lower when a target ut-
terance is closer to the set of alternatives a comprehender may expect in a given
context. Furthermore, we expect grammaticality and semantic plausibility—two
factors known to affect acceptability (Sorace and Keller, 2005; Lau et al., 2017)—
to play different roles in dialogue and text. For the dialogue corpora, we expect
semantic-level variables to have high explanatory power, as they can identify ut-
terances with incoherent content and implausible underlying dialogue acts. Lex-
ical and syntactic information value may be more explanatory of acceptability
in Clasp, where stimuli are generated via round-trip translation and thus may
contain disfluent or ungrammatical sentences (Somers, 2005).

Switchboard and DailyDialog. For both dialogue corpora, semantic in-
formation content is by far the most predictive variable (Table 11.3), especially
when min is used as a summary statistic. Responses to the same dialogue context
can exhibit great variability and being close to a single expected alternative—in
terms of semantic content and dialogue act type—appears to be sufficient for an
utterance to be considered acceptable. Our analysis of derived measures (Fig-
ure 11.2) further indicates that acceptability is mostly determined by the in-
context predictability of an utterance. The high explanatory power of context
informativeness (almost twice that of out-of-context information value) suggests
that contextual cues override inherent isolated plausibility.

Clasp. Syntactic information value is the best explanatory variable for ac-
ceptability judgements in Clasp (Table 11.3). This suggests that comprehenders
entertain expectations over non-lexicalised constructions (here, in the form of
POS sequences)—a result which could complement findings on the processing of
lexicalised constructions in reading (e.g., Tremblay et al., 2011) and eye-tracking
studies (e.g., Underwood et al., 2004). In contrast to the dialogue corpora, esti-
mates of in-context information value are less predictive than their out-of-context
counterparts (Figure 11.2), which may be due to the previously discussed artifi-
cial nature of the Clasp negative samples. In sum, our results indicate that the
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acceptability judgements in the Clasp corpus, even if collected in context, are
mostly determined by the presence of startling surface forms than by semantic
expectations.

11.6.3 Reading times

When reading, humans continually update their expectations about how the dis-
course might evolve (Hale, 2001; Levy, 2008a; Yan and Jaeger, 2020). This is re-
flected, for example, in the faster processing of more expected words and syntactic
structures (Demberg and Keller, 2008; Smith and Levy, 2013). High predictive
power for lexical and syntactic information value would support these findings.
However, comprehenders also reason about semantic alternatives, e.g., to com-
pute scalar inferences (Van Tiel et al., 2014; Hu et al., 2023). Our interpretable
measures of information value help clarify the contribution of different types of
expectations.

Provo and Brown. Syntactic information value is a strong predictor of eye-
tracked reading times in Provo, while lexical information value (in particular,
based on trigram distances) is the only significant explanatory variable for the
self-paced reading times in Brown (Table 11.3), and only weakly so. Expecta-
tions over full semantic alternatives have a limited effect on reading times in both
corpora, suggesting anticipatory processing mechanisms operate at lower linguis-
tic levels. For both corpora, out-of-context estimates are at least as predictive as
in-context estimates and higher than context informativeness (Figure 11.2), indi-
cating that context modulation has a moderate impact on the negative effects of
unusual syntactic arrangements and lexicalised constructions on reading speed.

11.7 Relation to utterance surprisal

We have shown alternative-based information value to be a powerful predictor for
contextualised acceptability judgements and reading times. In fact, information
value is substantially more predictive of acceptability than utterance surprisal
(Section 11.5). We conclude with a focused comparison between these measures,
considering whether they are complementary and why they might diverge.

11.7.1 Complementarity

Differences in predictive power between information value and surprisal (see Ta-
ble 11.1) may reflect variations between the dimensions of predictability captured
by the two measures. To investigate this possibility, we use both measures jointly
for psychometric predictions. We focus on the dialogue corpora and Provo,
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Switchboard DailyDialog Provo

Surprisal 6.63 5.08 59.04

Information value
Lexical 8.32 10.88 12.17
Syntactic 2.49 6.71 21.80
Semantic 34.20 30.41 6.86
All 43.11 35.42 45.19

Joint
+ Lexical 14.08 10.23 72.60
+ Syntactic 9.77 8.05 75.70
+ Semantic 34.37 26.98 68.61
+ All 44.11 30.55 93.08

Table 11.4: ∆LogLik for surprisal, information-value, and joint models.

where we observed the highest explanatory power for information value (Sec-
tion 11.6). For each corpus, we fit linear mixed effect models with control vari-
ables, using the best surprisal and information value predictors (one per linguistic
level) in isolation and jointly as fixed effects. The results of this analysis are dis-
played in Table 11.4.

In isolation, information value is a better predictor for the dialogue corpora.
Including lexical, syntactic, and semantic information value on top of the best sur-
prisal predictor (Joint) improves model log-likelihood substantially. Separately
including each linguistic level reveals that semantic distance is largely responsi-
ble for improved fit, suggesting that surprisal fails to capture expectations over
high-level linguistic properties of utterances such as speech act type, which are
crucial for modelling contextualised acceptability in dialogue.7

For Provo, surprisal is the best explanatory variable. However, including
the best information value predictors further improves model fit by 58%, demon-
strating the complementarity of the two measures in predicting reading times
(Table 11.4). Separately adding information value predictors shows the strongest
boost comes from syntactic factors, which are known to have higher weight in
human anticipatory processing than in language models’ (Arehalli et al., 2022).

Overall, combining predictive information value with surprisal yields better
models for all tested corpora, indicating that these measures capture distinct and
complementary dimensions of predictability.

7This is true in spite of the aggregation function used; here, we report maximum
(Switchboard) and superlinear surprisal (DailyDialog), the aggregates with the highest
∆LogLik for the two corpora.
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Dataset Summary Level Metric
Context Condition

Congruent Empty Incongruent

Switchboard

Mean Lexical Trigram 8.32 5.55 7.18
Mean Syntactic POS Trigram 2.49 3.00 2.65
Min Semantic cosine 34.20 7.64 10.94

Surprisal (in context, max) 6.63 2.56 3.12

DailyDialog

Min Lexical Bigram 10.88 3.16 1.42
Mean Syntactic POS Unigram 6.71 6.89 6.16
Min Semantic Cosine 30.41 1.43 2.90

Surprisal (in context, superlinear k=1.5) 5.08 0.99 2.35

Provo

Mean Lexical Trigram 12.97 12.94 11.86
Mean Syntactic POS Trigram 25.86 15.20 12.94
Mean Semantic Euclidean 8.53 10.88 8.33

Surprisal (in context, superlinear k=0.5) 35.75 37.88 39.00

Table 11.5: ∆LogLik of single-predictor models for information value and sur-
prisal across context conditions.

11.7.2 Effects of discourse context

While context greatly influences language comprehension (e.g., Chen et al., 2023),
little attention has been given to its impact on surprisal estimates. We examine
whether the dissimilar predictability estimates of information value and surprisal
stem from differences in their sensitivity to context, comparing how they behave
under congruent, incongruent, and empty context conditions. In each condition,
alternative sets and token-level surprisal are computed in the true context (con-
gruent), a context randomly sampled from the respective corpus (incongruent), or
with no conditioning (empty). We quantify effects on the best information value
and surprisal predictors as ∆LogLik, using single-predictor models described in
Section 11.6.

Table 11.5 displays results for Switchboard, DailyDialog, and Provo.
Congruent context produces a substantial effect on the predictive power of se-
mantic information value for both dialogue datasets; for DailyDialog, we see
a 20-fold increase over the empty context condition. Surprisal shows a simi-
lar trend, though far less pronounced. Syntactic information value is the least
affected by context modulations. Though surprisal is a powerful predictor for
reading times in Provo, the incongruent and empty context conditions are more
predictive than the true context. Perhaps most concerning is the fact that es-
timates in incongruent contexts are the most predictive. In contrast, the most
predictive information value (syntactic) is significantly more predictive for con-
gruent contexts. Interestingly, information value in the control conditions is not
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uninformative, likely reflecting the inherent plausibility of utterances.
Both information value and utterance surprisal display sensitivity to context,

however, the effects on surprisal are less predictable and perhaps even undesirable
for certain psychometric variables.

11.8 Discussion and conclusions
Humans constantly monitor and anticipate the trajectory of communication.
Their expectations over the upcoming communicative signal are influenced by
factors spanning from the immediate linguistic context to their interpretation of
the speaker’s goals. These expectations, in turn, determine aspects of language
comprehension, such as processing cost, and strategies of language production.
We present information value, a measure which quantifies the predictability of an
utterance relative to a set of plausible alternatives; and we introduce a method
to obtain information value estimates via neural text generators. In contrast to
utterance predictability obtained by aggregating token-level surprisal estimates,
information value captures variability above the word level and considers the im-
pact of more abstract communicative units like dialogue acts. We validate our
measure by assessing its psychometric predictive power, its robustness to param-
eters involved in the generation of alternative sets, and its sensitivity to discourse
context.

Explaining psychometric behaviour. Using interpretable information mea-
sures centred around information value, we investigate the underlying dimensions
of uncertainty in human acceptability judgements and reading behaviour. We
find that acceptability judgements factor in base rates of utterance acceptability
(likely associated with grammaticality) but are predominantly driven by seman-
tic expectations. In contrast, reading time is more influenced by the inherent
plausibility of lexical items and part-of-speech sequences.

Relation to surprisal. We compare information value to aggregates of token-
level surprisal, finding differences in the dimensions of predictability captured by
each measure and their sensitivity to context. Information value is a stronger
predictor of acceptability in written and spoken dialogue and is complementary
to surprisal for predicting eye-tracked reading times.

Interpretability through custom distance metrics. Our framework for the
estimation of utterance information value allows great flexibility. Modellers can
experiment with a variety of alternative set generation procedures, distance met-
rics, and summary statistics. While our selection of distance metrics characterises
the relation of an utterance to its alternative sets at multiple interpretable lin-
guistic levels, there is a large space of metrics that we have not tested in this
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study. Syntactic distances, for example, can be computed using metrics that
capture structural differences between utterances in a more fine-grained manner
(e.g., difference in syntactic tree depth); semantic distances can be computed
with a more taxonomical approach (e.g., Fellbaum, 2010) or using NLI models
to capture semantic equivalence (Kuhn et al., 2023); and distances between dia-
logue act types can be detected using dialogue act classifiers (Stasaski and Hearst,
2023). We chose metrics based on our prior work validating them as probes for
the extraction of uncertainty estimates from neural text generators (Chapter 10),
but we hope future work will explore this space more exhaustively.

Computational complexity. An aspect of our method for the estimation of
information value that we have not highlighted in this chapter is its computational
cost. Because it involves drawing multiple full utterance samples from language
models, our method is clearly less efficient than traditional surprisal estimation,
which requires only a single forward pass. While we have observed that the psy-
chometric predictive power of information value reaches satisfactory levels even
with relatively low numbers of alternatives and small language model architec-
tures (see, e.g., Figure 11.1), designing more efficient methods for the estimation
of information value is an important direction for future research.

Outlook. Our information value framework allows considerable flexibility in
defining alternative set generation procedures, distance metrics, or summary
statistics. We hope it will enable further investigation into the mechanisms in-
volved in human language processing, and that it will serve as a basis for cog-
nitively inspired and audience-aware strategies of utterance selection for natural
language generation (Wei et al., 2021), or for the interpretation of existing decod-
ing algorithm, which in some cases (Eikema and Aziz, 2020, 2022b) are already
implicitly optimising neural estimates of information value.
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12.1 Introduction
Novelists choose the right words to keep readers engaged and enthused, good
journalists can convey facts clearly and convincingly, while poets may want to
surprise the reader. Teachers adapt their explanations to the level of their stu-
dents, and the language of parents changes with the proficiency of their children,
with the same objects described first using simplified funny expressions (‘moo
moo’) and then more informative and discriminative names (‘cow’, ‘calf’). Using
language to communicate successfully requires effort. On the side of the language
producer, it is first of all effortful to come up with words that truthfully corre-
spond to one’s communicative intent. Then, words must be actually produced,
e.g., said out loud or typed on a keyboard. At the same time, the producer has
to take into consideration whether the comprehender—for whom, too, linguistic
communication is costly—will be able to infer the original intent. Comprehenders
make efforts to pay attention to the utterance they are being addressed with, to
interpret it, and to infer their interlocutor’s communicative intent. Fortunately,
these efforts are often not in vain. They allow people to exchange knowledge,
ideas, plans, and to achieve goals.

This chapter presents a conceptual framework for the computational modelling
of utterance production in variably complex communicative scenarios, which relies
on three main notions: communicative goals, production and comprehension
costs, and utility. I define these notions formally and then, in two case stud-
ies, I provide suggestions for their operationalisation in classic NLG tasks. In
sum, I advocate modelling humans as decision makers striving for efficient and
effective communication, and argue that human-like linguistic behaviour emerges
as a result of reasoning about goals, costs, and utility. Learning to navigate the
complex decision space defined by these notions is still an open problem: this
chapter discusses possible promising directions.

12.2 Doing things with words
Communication always comes with a goal: speakers use words to change the
state of the world. This section gives a characterisation of communicative goals,
discusses the types of effort (or costs) necessary to achieve goals, and describes
the rewards associated with successful communication.

12.2.1 Communicative goal

What do speakers do with words? The communicative goal (or communicative
intent) of a speaker can be formulated as a function of the current state of the
world w ∈ W :

Gs : W → W, w 7→ w∗ (12.1)
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where w∗ is the intended future state of the world. Speaker s and audience
a are included in w as they can be both conceptualised, and there is evidence
that they are processed (Brown-Schmidt et al., 2015), as parts of the state of
the world. For communication to be successful, the audience must be able to
reconstruct the original communicative goal: their decoded transformation of the
world, Da :W→W , must be such that Da(w)≈Gs(w).1

Communicative goals shape and constrain a speaker’s production choices: dif-
ferent utterance types typically correspond to different goals. The communicative
goal of a referring utterance (‘The black and white cat’), for example, is a state
of the world where the audience is able to identify an entity in context. The
transformation Da required to achieve w∗ is a change of attention by the au-
dience. Statements (‘The Sun is a star’) are typically used when the purpose
of an interaction is pure information transmission—e.g., when giving a scientific
talk. In this case, the communicative goal is a state of the world in which the
audience holds new beliefs, the ones intended by the speaker. Da is a transforma-
tion of the belief state of the audience, and the communicative goal is achieved
when Da(w)≈Gs(w) =w∗. All utterance types—e.g., questions, directives, and
performatives—can be seen as strategies to achieve communicative goals. The
same utterance type, and even the same utterance, can fulfil different goals: a
blatantly false statement (‘It never rains in Amsterdam’) can be used for comedic
effect rather than for conveying facts. For simplicity, in the rest of this chapter,
we describe utterances as having a single communicative goal. Often, however,
different goals are associated with the same utterance at the same time: a teacher
can use a question (‘Are you sure this is the right answer?’) to inform their stu-
dent that their answer is incorrect, while showing a positive attitude towards
them—thereby striving for both epistemic and social utility. Our framework
naturally generalises over such cases; when multiple communicative goals are in-
volved, states of the world can be designed accordingly. To account for epistemic
and social utility, for example, states of the world can be defined to include the
audience belief state as well as their emotional state.

12.2.2 Production costs

Given the current and the intended future state of the world, w and w∗=Gs(w),
a speaker encodes the communicative goal Gs(w) into a mental representation
of the intended state of the world: Es(Gs(w)) = e. To use a slightly different
vocabulary, this is the speaker’s conception of the intended environment state.
The speaker then realises e as an utterance r which is presented to the audience:
Rs(e)=r. Two types of cost are associated with the encoding and realisation pro-
cesses. Because the encoding process is inevitably lossy—mental representations

1I sometimes refer to Da(w) and Gs(w) as Da and Gs, as in our formulation these functions
are always applied to the current state of the world w.
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are compressed representations of the real state of the world—the speaker makes
an effort to reduce information loss; I refer to this as the encoding cost CE. The
cost associated with executing a bit of behaviour r meant to be perceived by the
audience (e.g., speaking, writing, or typing) is the realisation cost CR. Both
costs affect the decision making process of speakers. In addition, the speaker is
influenced by the expected comprehension costs of the audience.

12.2.3 Comprehension costs

The speaker’s communicative goal Gs(w) is not observable by comprehenders.
Given a state of the world w and the speaker’s behaviour r, comprehenders process
r into a reconstruction of the original mental representation, Pa(r)=e′≈e, from
which they decode the speaker’s communicative goal: Da(e

′)=w′≈Gs(w). Two
types of cost are associated with the comprehension of an utterance. Speaker
and comprehender are different individuals and therefore have different ways of
encoding communicative goals into messages (Connell and Lynott, 2014). In the
absence of a perfect model of the speaker’s encoding mechanism, reconstructing
e is a lossy and effortful process; I denote the corresponding cost as processing
cost, CP . The second cost results from interpreting e′ in context—i.e., decoding
from e the state of the world intended by the speaker. In other words, this is
the effort required to ground the message in the environment. I refer to it as
the decoding cost CD. It is important to note that although processing and
decoding costs are on the side of comprehenders, speakers estimate them and take
them into account when making production decisions.

12.2.4 Utility

In what ways is the decision making process of speakers affected by these costs?
Speakers are thought to be driven by efficiency concerns (Zipf, 1949; Jaeger and
Tily, 2011): they strive to minimise the collaborative effort required to achieve
their communicative goals (Clark and Wilkes-Gibbs, 1986; Clark and Schaefer,
1989). The speaker’s utility Us can thus be defined as being inversely propor-
tional to the joint production and comprehension costs required for goal achieve-
ment (Da ≈ Gs). Production costs can be reduced directly by the speaker, by
putting less cognitive and physical effort in encoding and realisation. Compre-
hension costs, instead, need to be first estimated via a mental model of the audi-
ence’s comprehension system (including their conceptual knowledge, perceptual
capacity, language proficiency, etc.). The ability to form such mental models
is often referred to as Theory of Mind (Premack and Woodruff, 1978) and it is
deemed a fundamental social-cognitive skill for language acquisition and language
use (Tomasello, 2003).

Speaker’s utility is not only defined in terms of costs; speakers profit from
getting things done with their words. Thus Us is also directly proportional to
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the positive cognitive, physical, and social effects that derive from achieving the
intended state of the world w∗. Because, in practice, interlocutors often approach
but do not reach w∗ exactly, Us can be defined as a function of Da(w) and Gs(w)
that quantifies the difference in positive effects between true and intended states
of the world.

12.3 Case study 1: Reference games
This section demonstrates how to use our framework to conceptualise a commu-
nication scenario that corresponds to a classic NLG task, referring expression
generation (Reiter and Dale, 1997; Krahmer and van Deemter, 2012). I will also
provide concrete examples of how to model the costs and utility described in
Section 12.2.

In a reference game, the goal is for participants to produce descriptions that
allow comprehenders to identify the correct referent out of a set of candidates.
These games have been extensively used in psycholinguistics to study human
strategies for effective reference (Krauss and Weinheimer, 1964; Brennan and
Clark, 1996; Hawkins et al., 2020b). This case study is based on a visually
grounded reference game with two participants, a speaker s and a listener a. The
speaker produces referring utterances r such as ‘a boy cutting a cake’ and the
listener needs to identify the target image i∗ among a set of similar images V , the
visual context (see, e.g., Shore et al., 2018; Haber et al., 2019). The initial state
of the world is one where the speaker is aware of the target referent while the
listener has no information about it. Such a state of the world can be expressed as
w = (V, ps, pa), i.e., in terms of the speaker and listener’s probability distributions
ps and pa over candidate images V before anything is uttered (r= ϵ, the empty
string):2

ps(I|V ) : ps(I = i∗|V ) = 1 (12.2)

pa(I|V, ϵ) : pa(I = i|V, ϵ) = 1

|V |
∀i ∈ V (12.3)

Note that ps is never observable by a, and for this scenario to be realistic, pa should
also not be observable by s. The communicative goal Gs is a transformation of
w into w∗, a state of the world in which a identifies i∗ as the target referent:

Gs(w) = (V, ps, p
′
a) with (12.4)

p′a(I = i∗|V, r) = 1 (12.5)

How can the costs associated with reaching this state of the world using ut-
terance r be estimated? A computer vision model may be used to encode the

2This setup corresponds to one-shot reference games. In multi-turn dialogues, w should
also include the game history.
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communicative goal w∗ = (V, ps, p
′
a) into a mental representation. This model re-

ceives as input the visual context V and information about the target image ps and
yields a mental (abstract) representation e=Es(w

∗). If this is, e.g., a model that
produces image segmentations, the encoding effort CE can be quantified as the
uncertainty of the model over its segmentation decisions, as the number of output
image segments, or, if the segments form a scene graph, as a measure of the graph
complexity. The encoding e may then be fed to an NLG model Rs which realises it
into an utterance r=Rs(e). The realisation cost CR can be computed as the utter-
ance length, the depth of the syntactic tree corresponding to the utterance, or as a
function of the distribution of vocabulary ranks for the sampled utterance tokens.

Next, r is received by the listener, who processes it into a reconstruction of
the original mental representation: e′ = Pa(r). This can be achieved using a
neural language model, the processing cost CP being calculated as the model’s
cumulative surprisal (the sum of the per-word information content). From e′

the listener decodes a state of the world w′. The decoding system may be one
that measures the similarity of e′ to candidate image embeddings and outputs a
probability distribution over V . The decoding cost CD can be estimated as the
entropy reduction with respect to the prior probability pa(I|V ) (the information
gain), or as the increase in the target image’s probability. Communication is
successful if p′a(I = i∗|V, r) = 1 (see Equation 12.5); in practice the condition is
often relaxed to:

i∗ = argmax
i∈V

p′a(I = i|V, r) (12.6)

In a simplified reference game where pa is observable by s, the speaker’s posi-
tive utility Us can be simply modelled as log p′a(i

∗|V, r)− log pa(i
∗|V ). In a more

realistic scenario, either the speaker entertains a mental model of pa and uses
it to compute utility, or the listener must in turn execute a bit of behaviour to
communicate the state of p′a, for example by selecting an image through a simple
decision rule (e.g., argmax p′a). Us can then be modelled as a binary reward based
on the listener’s behaviour: 1 for a correct guess, 0 for an incorrect one. Recall
that Us is not only a function of positive cognitive effects. It is also inversely
proportional to the costs CE, CR, CP , and CD.

12.4 Case study 2: Text summarisation
This second case study demonstrates the generality of our framework by apply-
ing it to text summarisation, a widely studied NLG (and NLU) task with a large
range of practical applications. When people summarise a text, they produce a
concise and meaning-preserving version of that text with the goal of conveying to
the audience the text’s most important ideas. In NLP, texts have been typically
summarised either via extraction of their most significant sentences (Luhn, 1958;
Edmundson, 1969) or by the generation of fewer, new sentences (DeJong, 1982;
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Banko et al., 2000). Here, we look at the second case, often referred to as ab-
stractive summarisation, where a summariser s produces an utterance r made up
of one or multiple sentences to succinctly report the main content of a text t to
an audience a. The initial state of the world is one where the summariser knows
the content of t while the audience has no information about it.

Summaries can have multiple communicative goals (sometimes simultane-
ously) roughly corresponding to practical goals of NLP summarisation systems.
For example, the communicative goal Gs of a summary can be a transformation
of the state of the world into one in which a knows the general topic of t and is
interested in reading t. This setup roughly corresponds to headline generation,
a classic abstractive summarisation task. If the practical goal of the summary,
instead, is to make the audience aware of the main facts reported in a text, the
communicative goal Gs is a transformation of the state of the world into one in
which those facts are part of a’s knowledge. This is the goal, for example, of
summaries of financial, legal, or medical reports.

Let us focus on this second case, for which I will provide examples of how
to model communicative goals, costs, and utility. A hierarchical language model
with explicit attention over multiple sentences can be used to encode the docu-
ment into a mental representation e. The encoding cost CE can be quantified as
the entropy of the attention distribution—the rationale being that it is harder to
condense the information in a document in which each sentence contains salient
details. The encoding e may then be fed to a generation model Rs which realises
it into an utterance r=Rs(e) (one or multiple sentences). The realisation cost CR

can be computed as the utterance length or as a function of the predicted tokens’
probabilities. The summary r is received by the audience, for example via a neural
language model pretrained on summaries, which processes it into a reconstruction
of the original mental representation: e′=Pa(r). The processing cost CP can be
calculated as the model’s cumulative surprisal. From e′, the audience decodes a
new state of the world, one where it can hopefully answer factual questions about
the target document correctly. The decoding system can be a question answering
model (which can be as simple as a table-lookup and as complex as a response gen-
eration model) and the decoding cost CD can be estimated as the system’s reduc-
tion in uncertainty in answering a set of questions designed to probe understand-
ing of the main content of the document—formulated, e.g., as key-value queries or
using natural language. The speaker’s utility Us can be modelled as the accuracy
of the audience in answering questions about the content of the document.

12.5 Pragmatic production strategies

Language producers are thought to balance their own production costs and their
audience’s comprehension costs in a way that minimises joint collaborative ef-
fort (Clark and Wilkes-Gibbs, 1986; Clark and Schaefer, 1989) while attempting
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to gain utility from successful communication. Nevertheless, most modern NLG
systems, whose aim is arguably to reproduce the communicative behaviour of
human language users, do not take into consideration the costs and utility for
which humans are constantly optimising. As a major example, GPT-3 (Brown
et al., 2020a), one among the best foundation models available for NLG, conflates
all costs into a single next-word probability value. To generate words from this
model, typically, next-word probabilities are passed to a decoding algorithm such
as beam search or nucleus sampling (Reddy, 1977; Holtzman et al., 2019). This
algorithm can be seen as a way to search through the space of possible utterances
by following a simple utility-maximising decision rule, with higher probability
utterances having higher utility. Future work should investigate decision making
rules that take into account production and comprehension costs more explicitly,
connecting them to the goal of the linguistic interaction. The Rational Speech Act
model (RSA; Frank and Goodman, 2012a) is a compelling solution: it was shown
to optimise the trade-off between expected utility and communicative effort and it
is related to Rate-Distortion theory (Shannon, 1948), the branch of information
theory that studies the effect of limited transmission resources on communica-
tive success (Zaslavsky et al., 2021). Its application to simple reference games
has indeed demonstrated that richer decision making routines, grounded in lis-
teners’ actions and beliefs, result in human-like pragmatic behaviour (Sumers
et al., 2021). Bounded rationality (Simon, 1990), which models optimal decision
making under constrained cognitive resources, is a strong alternative to RSA the-
ory but there is so far only limited evidence that it can be used to characterise
language production choices (Franke et al., 2010). A third solution can be utility-
based decoding algorithms—such as minimum Bayes risk (Goel and Byrne, 2000)
decoding—which have been successfully used to weigh in utilities and costs during
utterance selection for NLG tasks (Kumar and Byrne, 2002, 2004).

Modelling and artificially reproducing human communicative behaviour re-
quires advanced decision making algorithms that are able to learn from experi-
ence efficient and effective strategies for weighing costs and utility. The learned
strategies should apply both to individual utterances and to sequences of utter-
ances: this will allow successful multi-turn planning of communicative subgoals
and strategies. Reinforcement learning (RL) can naturally interact with notions
of cost and utility (these can be used as learning signal for RL models, or they
can be inferred by RL models from observations of human behaviour) and it has
been used in combination with RSA and bounded rationality; it thus appears to
be a promising avenue for the strategy learning problem.

Independent of the choice of computational model—which is an important
open question—our conceptual framework can account for a variety of human
behavioural patterns of communication as described in pragmatics, the field of
linguistics which studies the aspects of language use that involve reasoning about
context, goals, and beliefs. Let us take as an emblematic example Grice’s four
maxims of conversation (Grice, 1975). The maxim of quantity, which states that
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speakers should make their contribution as informative as required for the current
purposes of the exchange, can be understood as the optimisation of realisation
and processing costs, CR and CP , while ensuring that the distance from the
communicative goal is reduced. The maxim of quality, which is about making
truthful contributions, can be thought of as the result of minimising decoding
cost CD and maximising the probability of achieving the communicative goal.
The maxim of relation, stating that speakers should provide information that is
relevant to the exchange, can be seen as a way to ensure that production and
comprehension costs are always balanced by gains in positive utility. Finally,
the maxim of manner states that speakers should avoid obscurity of expression,
ambiguity, and strive for brief and orderly contributions. This can be easily
understood as the optimisation of realisation and processing cost, CR and CP ,
given fixed encoding and decoding costs CE and CD. Grice never intended these
maxims as a set of rules speakers constantly follow. When the maxims are flouted
or violated, listeners can still infer communicative intents (Grice, 1975). For
example, although it seems to disobey the maxim of relevance, answering ‘Would
you like to go to the cinema?’ with ‘Sorry, I am busy tonight’ allows the listener
to infer a negative answer to the original question. At the same time other
communicative goals are achieved—e.g., the speaker is then perceived as polite.

12.6 Conclusion
This chapter presented a conceptual framework for the computational modelling
of language production which relies on three central notions: communicative
goals, production and comprehension costs, and joint utility. I have defined these
notions formally and demonstrated their application to two realistic communica-
tion scenarios, providing examples for the modelling of goals, costs, and utility
with neural models. I have further argued for the framework’s ability to account
for a variety of pragmatic patterns of communicative behaviour, highlighting the
importance of the development of new complex decision making algorithms that
learn to reproduce human-like production strategies from experience.
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Conclusion

The ability to use written and spoken language to transmit information is a hall-
mark of human intelligence. We use it to communicate facts and emotions, to
coordinate joint activities, and thus to change the state of the environment in
which we live and interact. A central tenet of this thesis is that human linguistic
behaviour can be studied and replicated using a certain class of computational
models, artificial neural networks (McClelland et al., 1986). In the last decade,
deep neural networks (LeCun et al., 2015), in particular, have been used to re-
produce increasingly complex aspects of human perception and behaviour, con-
tributing to advancements in computer vision and natural language processing.
Neural models that can process and produce human language are one remarkable
success story: in this day and age, neural language models can automatically
produce texts hardly distinguishable from those written by humans (e.g., Brown
et al., 2020b), and they can engage with humans in fluent text-based language
interactions (e.g., Thoppilan et al., 2022).

While neural network models of language were originally designed with the
goal of studying human linguistic cognition, artificial neural architectures are
mostly known and appreciated nowadays for providing a backbone for formidable
AI technologies and for being commercialised as tools for a wide, general audience.
This thesis has taken a different perspective. Through a series of studies on
language comprehension and language production, we have investigated whether
artificial neural networks—beyond being useful for search engines, chat interfaces,
and content creation—can serve as accurate computational simulations of human
language use, and thus as a new core methodology for the language sciences.

In each of the preceding chapters (except those dedicated to providing back-
ground), we have drawn conclusions pertaining to the respective studies and en-
gaged in focused discussions involving promising avenues for future work. We will
not delve into those here. This final chapter serves the purpose of summarising
the main contributions within the three main parts of the thesis. Furthermore,
it briefly addresses the scientific implications of these contributions.

187
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Word usage. We investigated speakers’ interpretation of words and the evolu-
tion of word usage over time. Our findings indicate that contemporary language
models can infer contextually appropriate interpretations for diverse usages of the
same word, akin to how human readers comprehend these usages. Through the
integration of an artificial attention mechanism that operates across extended con-
textual sequences and an extensive phase of cross-situational learning using vast
amounts of texts, current neural language models serve as highly generalisable
engines for lexical interpretation; and they offer distinct access to the first-order
and second-order co-occurrence statistics of word usage (Schütze, 1998). Within
this framework, we presented two novel methods to engage with these models for
obtaining word representations: the collection and analysis of the neural represen-
tations generated during the model’s processing of usage examples, and the direct
input of natural language instructions to induce human-readable word definitions.
Both approaches hold significant relevance for examining shifts and variations in
word usage across the temporal and spatial dimensions.

Utterance comprehension. Employing neural language models, we simulated
the process of comprehending utterances and examined how speakers’ expecta-
tions over comprehension behaviour shape the way in which information is com-
municated throughout texts and dialogues. This exploration served to scrutinise
psycholinguistic theories concerning the rational use of the communication chan-
nel (Genzel and Charniak, 2002; Jaeger and Levy, 2007). Leveraging the capacity
of contemporary neural language models to condition their probability estimates
on extensive contextual sequences, we revisited the hypothesis that the pace of hu-
man information transmission remains constant, or at least uniform, throughout
communication episodes, encompassing both texts and dialogues. These studies
yielded fresh empirical evidence in support of information rate constancy theo-
ries in textual contexts. However, they also introduced reservations regarding the
applicability of the classic information-theoretic model to naturalistic dialogue.
In this domain, considerations of cost-efficiency appear to bear significant influ-
ence alongside rationality, as supported by our new findings pertaining to the
facilitating effect of repeated constructions in dialogue utterances.

Utterance production. Finally, we assessed the efficacy of combining neural
language models with next-word sampling algorithms, collectively referred to as
‘neural generators’, to emulate speakers’ language production behaviour. Sub-
sequently, these generators were used to predict elements of comprehension be-
haviour, such as utterance acceptability and reading times, which are known to be
driven by expectations over upcoming productions. In particular, we introduced
a statistical framework for the quantification of sequence-level uncertainty within
these generators. Our observations demonstrated that the statistical properties of
the generator output space—a window into their representation of uncertainty—
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closely align with human language productions. Leveraging these novel, inter-
pretable estimates of sequence-level uncertainty, we designed a measure of ut-
terance predictability with substantial psychometric predictive power. Despite
these encouraging results, neural language generators still lack the capacity to
replicate certain human-like strategies in utterance production that we categorise
as ‘pragmatic’, i.e., communicatively effective while also being cost-efficient. The
core segment of this thesis concluded with a reflection on potential pathways for
inducing the emergence of pragmatic production strategies within neural models.
This reflection was complemented by a formal framework that succinctly captures
the underlying perspective of this thesis, thus serving as a foundational reference
for the development of more human-like artificial simulations of language usage.

An integral aspect that has been woven through the preceding chapters, and
merits renewed emphasis in this concluding section, pertains to the compelling
nature of neural simulations of human language use. Beyond their role in empiri-
cally scrutinising linguistic theories, neural language models can be considered as
computational theories themselves. While the distinction between these stances
is subtle (Baroni, 2022), the key difference lies in the fact that neural models as a
theoretical construct (i) require minimal assumptions beyond the notion that the
language faculty is embedded within neural connection strengths and acquired
through experiential interactions, and (ii) possess the attributes of executability
and quantitative verifiability. These combined attributes hold substantial promise
for the language sciences, which often contend with formal, verifiable, yet under-
generalising, or conversely, informal, unprovable, and overgeneralising theories of
language use.





Appendix A

Word usage

This is the appendix for Part 1. In particular, it provides supplementary infor-
mation for the study presented in Chapter 5.

A.1 Preliminary analysis of usage examples

In Section 5.2.1, we present three corpora of human-written definitions and report
their main statistics in Table 5.2, including mean and standard deviation of usage
example length. Because the length of usage examples has been shown to affect
the quality of generated definitions (Almeman and Espinosa Anke, 2022), in a
preliminary analysis, we compare the length distributions of usage examples in
the corpora of definitions as well as in the English DWUGs (Schlechtweg et al.,
2021). Figures A.1-A.4 show the length distributions of the four datasets. We
also measure the correlation between definition quality (as measured with NLG
metrics: BERTScore, BLEU, NIST) and (i) the length of usage examples, (ii)
the absolute position of the target word in the examples, and (iii) the target
word’s relative position in the examples. Tables A.1 and A.2 show the correlation
coefficients.

A.2 Prompt selection

As briefly discussed in Section 5.3, in preliminary experiments, we use the pre-
trained Flan-T5 Base model (250M parameters; Chung et al., 2022) to select a
definition generation prompt among 8 alternative verbalisations. These are a
combination of four different instruction strings (‘Define w’, ‘Define the word w’,
‘Give the definition of w’, ‘What is the definition of w?) and two ways of concate-
nating instructions to usage examples—i.e., either prepending them or appending
them. Tables A.5-A.6 (placed at the end of this Appendix for convenience) show
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Length Rel. Position Abs. Position BERT-F1 BLEU NIST

Length 1.000 -0.123 0.575 0.067 0.076 0.045
Rel. Position -0.122 1.000 0.626 0.053 0.075 0.062
Abs. Position 0.576 0.626 1.000 0.129 0.159 0.111
BERT-F1 0.067 0.053 0.129 1.000 0.121 0.095
BLEU 0.076 0.075 0.159 0.121 1.000 0.822
NIST 0.045 0.062 0.111 0.095 0.822 1.000

Table A.1: Correlations between properties of the usage examples and the qual-
ity (BERTScore, BLEU, NIST) of the definitions generated by Flan-T5 Base for
WordNet. The prompt used is ‘What is the definition of w?’ (post). The maxi-
mum context size is set to 512.

Length Rel. Position Abs. Position BERT-F1 BLEU NIST

Length 1.000 -0.041 0.616 0.020 0.040 0.017
Rel. Position -0.041 1.000 0.675 0.046 0.020 0.024
Abs. Position 0.616 0.675 1.000 0.029 0.017 0.007
BERT-F1 0.020 0.046 0.029 1.000 0.283 0.277
BLEU 0.040 0.020 0.017 0.283 1.000 0.687
NIST 0.017 0.024 0.007 0.277 0.687 1.000

Table A.2: Correlations between properties of the usage examples and the quality
(BERTScore, BLEU, NIST) of the definitions generated by Flan-T5 Base for
Oxford. The prompt used is ‘What is the definition of w?’ (post). The maximum
context size is set to 512.

Figure A.1: Length distribution of usage examples in WordNet.
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Figure A.2: Length distribution of usage examples in Oxford.

Figure A.3: Length distribution of usage examples in CoDWoE.
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Figure A.4: Length distribution of usage examples in the English DWUGs.

the results of our experiments. In the tables, the strings ‘pre’ and ‘post’ re-
fer to the concatenation method (prepending or appending the instruction), the
numbers 128, 256, and 512 refer to the maximum length of the usage examples
provided to Flan-T5 (in sub-words), and ‘filter’ refers to the decoding strategy of
always avoiding the target word (definiendum).

A.3 Additional results: Other models and model
variants

We evaluate T5 (base and XL) and Flan-T5 (base, large, and XL) under the same
generalisation conditions presented for Flan T5 XL in Chapter 5 (Section 5.3.1).
Results for FlanT5-XL are reported in that chapter, in Table 5.4. Here, in Ta-
ble A.3, we report results for all models and model variants.

A.4 Additional examples of generated definitions
and sense labels

Some definitions generated by Flan-T5 XL manage to capture very subtle as-
pects of the contextual lexical meaning. These, for example, are usage of ‘word’,
accompanied by contextualised definitions:

i. ‘There are people out there who have never heard of the Father, Son and
Holy Spirit, let alone the Word of God.’: ‘The Bible’
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WordNet Oxford

Model Test BLEU ROUGE-L BERT-F1 BLEU ROUGE-L BERT-F1

Huang et al. (2021) Unknown 32.72 - - 26.52 - -
T5 base Zero-shot (task shift) 2.01 8.24 82.98 1.72 7.48 78.79
T5 base Soft domain shift 9.21 25.71 86.44 7.28 24.13 86.03
Flan-T5 base Zero-shot (task shift) 4.08 15.32 87.00 3.71 17.25 86.44
Flan-T5 base In-distribution 8.80 23.19 87.49 6.15 20.84 86.48
Flan-T5 base Hard domain shift 6.89 20.53 87.16 4.32 17.00 85.88
Flan-T5 base Soft domain shift 10.38 27.17 88.22 7.18 23.04 86.90
Flan-T5 large Soft domain shift 14.37 33.74 88.21 10.90 30.05 87.44
T5 XL Zero-shot (task shift) 2.05 8.28 81.90 2.28 9.73 80.37
T5 XL Soft domain shift 34.14 53.55 91.40 18.82 38.26 88.81
Flan-T5 XL Zero-shot (task shift) 2.70 12.72 86.72 2.88 16.20 86.52
Flan-T5 XL In-distribution 11.49 28.96 88.90 16.61 36.27 89.40
Flan-T5 XL Hard domain shift 29.55 48.17 91.39 8.37 25.06 87.56
Flan-T5 XL Soft domain shift 32.81 52.21 92.16 18.69 38.72 89.75

Table A.3: Results of the definition generation experiments.

ii. ‘Good News Bible Before the world was created, the Word already existed;
he was with God, and he was the same as God.’: ‘( christianity ) the second
person of the trinity’

iii. ‘It was in that basement that I learned the skills necessary to succeed in
the difficult thespian world-specifically, get up on stage, say my words, get
off the stage-skills...’: ‘The dialogue of a play.’

Interesting insights can be drawn from how the embeddings of the generated
definitions are located in the vector space. Figure A.5 shows PCA projections of
definition embeddings for usages of the words ‘chef’ and ‘lass’ from the English
DWUG. Colours represent sense clusters provided in the DWUG, and the legend
shows most prototypical definitions for each sense generated by our best system
(singleton clusters are ignored). The large star for each sense corresponds to its
sense label (as opposed to smaller stars corresponding to other definitions not
chosen as the label).

For the word ‘chef’, there are two sense clusters, for which an identical defini-
tion is chosen (‘A commander’ ). This most probably means that these clusters
should in fact be merged together, or that they are in the process of splitting
(see also Section 5.6 in Chapter 5). These two senses are (not surprisingly) much
closer to each other than to the definitions from the ‘professional cook’ sense. For
the word ‘lass’, it is interesting how separate is a small bluish group of definitions
in the bottom right corner of the plot, where the target form is actually ‘lassi’.
The fine-tuned Flan-T5-XL model defined this group as ‘A cold drink made from
milk curdled by yogurt’, which is indeed what ‘lassi’ is (ignoring minor details).
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Figure A.5: PCA projections of definition embeddings for two target words from
English DWUG.

A.5 Human evaluation guidelines
‘You are given a spreadsheet with four columns: Targets, Examples, System
1 and System 2. In every row, we have one target English word in the Targets
column and five (or less) example usages of this word in the Examples column.
Usages are simply sentences with at least one occurrence of the target word: one
usage per line.

Every row is supposed to contain usages where the target word is used in the
same sense: this means that for ambiguous words, there will be multiple rows,
each corresponding to a particular sense. This division into senses is not always
100% correct, but for the purposes of this annotation effort, we take it for granted.
Note that the five example usages in each row are sampled randomly from a larger
set of usages belonging to this sense.

System 1 and System 2 are computational models which produce human-
readable labels or definitions for each sense of a target word. They employ differ-
ent approaches, and your task is to compare and evaluate the labels generated by
these two systems. Note that in each row, the names ‘System 1’ and ‘System 2’
are randomly assigned to the actual generation systems.

The generated sense labels are supposed to be useful for historical linguists
and lexicographers. Thus, they must be:

i. Truthful: i.e., should reflect exactly the sense in which the target word is
occurring in the example usages. Ideally, the label should be general enough
to encompass all the usages from the current row, but also specific enough
so as not to mix with other senses (for poly-semantic target words).

ii. Fluent: i.e., feeling like natural English sentence or sentences, without
grammar errors, utterances broken mid-word, etc

You have to fill in the Judgements column with one of six integer values:
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• 0: both systems are equally bad for this sense

• 1: System 1 is better, but System 2 is also OK

• 11: System 1 is better, and System 2 is bad

• 2: System 2 is better, but System 1 is also OK

• 22: System 2 is better, and System 1 is bad

• 3: both systems are equally good for this sense

Some rows are already pre-populated with the 3 judgement, because the sense
labels generated by both systems are identical. We hypothesise that this most
probably means that both labels are equally good. Please still have a look at
these identical labels and change 3 to 0 in case you feel that in fact they are
equally bad.’

A.6 Clustering embedding spaces

Figure A.6: T-SNE projection of each embedding space, RoBERTa-Large model.

We constructed three types of embedding spaces; (i) contextualised token em-
beddings, (ii) sentence embeddings, and (ii) definition embeddings. We did so for
two language models: RoBERTa-large and DistilRoBERTa. Since we cluster the
embedding spaces for each target word individually, we obtain different optimal
number of clusters for each target word. Table 5.6 (in Chapter 5) displays the
average results over all target words.

We observe that the optimal number of clusters k is substantially higher for
the definition embedding spaces for both RoBERTa-large and DistilRoBERTa.
However, this is an artefact of the data: since some distinct usages yield iden-
tical definitions for a target word, the definition space oftentimes consist of less
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Model Representation Sep. ↑ Coh. ↓ Ratio ↑

Sentence 0.017 0.013 1.248
RoBERTa-large Token 0.042 0.034 1.272

Definitions 0.008 0.006 1.349

Sentence 0.665 0.592 1.126
DistilRoBERTa Token 0.591 0.477 1.258

Definitions 0.705 0.509 1.397

Table A.4: Separation score, cohesion score, and separation-cohesion ratio for
each embedding space; average over all target words from the English DWUGs.

distinct data points, which greatly impacts the average silhouette scores. Future
work should point out what clustering methods are most applicable to definition
embedding spaces. Still, this decrease in data points confirms how the definition
embedding space could represent usages at a higher level of abstraction, collapsing
distinct usages into identical representations.

Figure A.6 displays the T-SNE projections of each of the three embedding
spaces of RoBERTA-large. As for Distil-RoBERTa, the definition embedding
space appears to have spacial properties that are more similar to contextualised
token embedding spaces than to sentence embedding spaces: the definition em-
beddings are more separated than the sentence embeddings, and are cluttered in
a similar manner as the token embeddings.

Table A.4 shows the average inter- and intra-cluster dispersion values of the
clusters as labelled by the English DWUGs (Schlechtweg et al., 2021). These are
calculated for the token, sentence and definition embeddings of both RoBERTa-
large and Distil-RoBERTa.
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Configuration BLEU NIST BERT-F1

what is the definition of <trg>? post 256 0.0985 0.1281 0.8700
what is the definition of <trg>? post 512 0.0985 0.1281 0.8700
give the definition of <trg> post filter 0.0719 0.1520 0.8560
give the definition of <trg> post 256 0.0629 0.1563 0.8522
give the definition of <trg> post 512 0.0629 0.1563 0.8522
define the word <trg> post 512 0.0462 0.0972 0.8512
define the word <trg> post 256 0.0462 0.0972 0.8512
give the definition of <trg>: pre 256 0.0446 0.1123 0.8495
what is the definition of <trg>? pre 512 0.0403 0.0705 0.8495
give the definition of <trg>: pre 512 0.0446 0.1123 0.8495
what is the definition of <trg>? pre 256 0.0403 0.0703 0.8494
define the word <trg>: pre 512 0.0313 0.0615 0.8481
define the word <trg>: pre 256 0.0313 0.0618 0.8480
define <trg> post 512 0.0275 0.0583 0.8475
define <trg> post 256 0.0275 0.0583 0.8475
define <trg>: pre 512 0.0195 0.0411 0.8453
define <trg>: pre 256 0.0195 0.0409 0.8453

Table A.5: Prompt selection results on WordNet.

Configuration BLEU NIST BERT-F1

give the definition of <trg>: pre 64 0.0680 0.1513 0.8461
what is the definition of <trg>? post 64 0.1068 0.1464 0.8458
give the definition of <trg> post 64 0.0654 0.1602 0.8374

Table A.6: Prompt selection results on CoDWoE Trial.
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Configuration BLEU NIST BERT-F1

what is the definition of <trg>? post 512 0.1232 0.1488 0.8648
what is the definition of <trg>? post 128 0.1232 0.1488 0.8648
what is the definition of <trg>? post 256 0.1232 0.1488 0.8648
what is the definition of <trg>? post oxford filter 128 0.1219 0.1398 0.8644
give the definition of <trg> post 128 0.0823 0.1793 0.8531
give the definition of <trg> post 256 0.0823 0.1793 0.8531
give the definition of <trg> post 512 0.0823 0.1793 0.8531
give the definition of <trg> post oxford filter 128 0.0763 0.1415 0.8526
what is the definition of <trg>? pre 256 0.0801 0.0966 0.8501
what is the definition of <trg>? pre 512 0.0801 0.0966 0.8501
what is the definition of <trg>? pre 128 0.0801 0.0966 0.8501
give the definition of <trg>: pre 128 0.0695 0.1313 0.8493
give the definition of <trg>: pre 256 0.0695 0.1313 0.8493
give the definition of <trg>: pre 512 0.0695 0.1313 0.8492
define the word <trg> post 128 0.0614 0.1112 0.8442
define the word <trg> post 512 0.0614 0.1112 0.8442
define the word <trg> post 256 0.0614 0.1112 0.8442
define the word <trg>: pre 256 0.0408 0.0602 0.8352
define the word <trg>: pre 512 0.0408 0.0602 0.8352
define the word <trg>: pre 128 0.0408 0.0602 0.8352
define <trg> post 256 0.0279 0.0581 0.8319
define <trg> post 128 0.0279 0.0581 0.8319
define <trg> post 512 0.0279 0.0581 0.8319
define <trg>: pre 512 0.0161 0.0237 0.8305
define <trg>: pre 256 0.0160 0.0237 0.8305
define <trg>: pre 128 0.0160 0.0237 0.8305

Table A.7: Prompt selection results on Oxford.

Configuration BLEU NIST BERT-F1

what is the definition of <trg>? post 128 0.1138 0.2137 0.8702
give the definition of <trg> post 128 0.0826 0.2389 0.8615
what is the definition of <trg>? post 64 0.1033 0.1990 0.8595
give the definition of <trg> post 64 0.0785 0.2194 0.8520

Table A.8: Prompt selection results on CoDWoE Complete.



Appendix B

Utterance comprehension

This is the appendix for Part 2. It provides supplementary information for the
methods and experiments presented in Chapters 6, 7, and 8.

B.1 Corpus excerpts

Tables B.1, B.2, and B.3 show excerpts of a Penn Treebank article, a PhotoBook
dialogue, and a Spoken BNC dialogue. The article (Table B.1) is annotated with
sentence positions and surprisal estimates. The dialogues (Tables B.2 and B.3) are
annotated with utterance positions, speaker identifiers, and surprisal estimates.

B.2 Language models

We experiment with GPT-2 (Radford et al., 2019), an autoregressive Transformer-
based (Vaswani et al., 2017) language model, and we rely on HuggingFace’s im-
plementation with default tokenizers and default parameters (Wolf et al., 2020).1
We use the model’s maximum sequence length, 1024. As the pre-trained model
yields relatively high perplexity on the target corpora, we fine-tune it on 70%
of each target corpus and leave out 30% of the dataset to compute the model’s
evaluation perplexity and to conduct our statistical analysis.2 The training and
held-out portions of the corpora are specified in the main chapters of Part 2.
GPT-2 is fine-tuned for 20 epochs with a learning rate of 1e − 04 and batches
of size 8. Because 20 epochs do not yield a substantial perplexity reduction for
the Spoken BNC dialogues, we fine-tuned the model for 20 additional epochs.
The perplexity of the pre-trained and fine-tuned models on the target corpora is
reported in Table 6.3 (Chapter 6).

1The pre-trained model is available at https://huggingface.co/gpt2.
2We use HuggingFace’s fine-tuning script https://github.com/huggingface/

transformers/blob/master/examples/pytorch/language-modeling/run_clm.py.
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Pos. Sentence H(S) H(S|C)

1 Storage Technology Corp. said it signed a letter of
intent to acquire M4 Data Inc. of Britain.

3.89 3.89

2 Terms weren’t disclosed. 2.26 2.11
3 Storage Technology said M4’s magnetic tape storage

equipment will complement its tape cartridge prod-
ucts.

7.64 6.55

4 M4 sells to the original equipment manufacturer mar-
ket world-wide and has about $20 million in annual
sales.

5.75 5.50

5 A Storage Technology spokesman said the transac-
tion should be completed in one to two months.

4.45 3.81

Table B.1: A Penn Treebank article (document id: 15) annotated with utterance
positions (Pos.) and surprisal estimates.

For our surprisal estimates, we include a special sentence beginning symbol
as a basic contextual cue, but its surprisal is not computed. Furthermore, for
the dialogue corpora, we try prepending input utterances with dialogue turn cues
(‘A: ’, ‘B: ’) as a hint to the language models that the data is conversational. This
modification of the input text does not consistently reduce the models’ perplexity
scores.

B.2.1 Transformer-XL

Although excluding high sentence positions is in line with prior work measuring
decontextualised surprisal (e.g., Genzel and Charniak, 2002, 2003; Xu and Reitter,
2018), we have tried to substitute GPT-2 with the Transformer-XL language
model (Dai et al., 2019) because of the latter’s unlimited context window size. In
spite of its larger window, however, Transformer-XL yields higher perplexity than
GPT-2 on all corpora. Moreover, to make fine-tuning computationally feasible,
we had to limit the context window size to values close to 1024; this is likely to
make the model unable to use very long-distance dependencies at inference time,
making it more similar but less performant than GPT-2. Indeed, Transformer-XL
models fine-tuned with a fixed context size of 1024 yield higher perplexity than
the corresponding fine-tuned GPT-2 models.
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Pos. Id. Utterance H(S) H(S|C)

1 A Do you have a boy in an orange shirt jumping
near a boat ?

3.64 3.64

2 B Yes. 4.86 5.12
3 A do you have a miltary boat that shows a man

climbing a ladder?
4.25 4.03

4 B I don’t have that one. 1.28 1.47
5 B I have a woman in a white hat, red boat and

blue life vest.
3.62 3.29

6 A I dont have that 2.69 2.87
7 A do you have a man in a vest and tie at night

against the railing
4.64 4.30

8 B Yes. 4.86 5.20
9 A any other questions? 4.05 3.84

10 A do you see two ladies with a panda bear doll
on a boat ?

4.87 4.82

11 B Yes. 4.86 3.85
12 A do you see the military man climbing the lad-

der from the raft in a helmet
4.85 4.42

13 B Yep. I have that one, too. 2.77 2.32
14 A do you see a lady in kayak and whit hat red

kayak?
4.31 3.97

15 B I don’t have that one this time. 1.51 1.33
16 A do you have questions? 4.14 4.52
17 B I have an Asian sitting near several stacks of

wood.
6.08 5.63

18 A no i dont have that 2.78 2.70

Table B.2: The first two rounds of a PhotoBook dialogue (dialogue id: 1861),
annotated with utterance positions (Pos.), speaker identifier (Id.), and surprisal
estimates.
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Pos. Id. Utterance H(S) H(S|C)

1 S0018 so how come you’re back so early? I thought
you had a tennis lesson

3.50 3.50

2 S0019 oh well so did I 5.75 5.74
3 S0019 and having made the arrangement with last

Tuesday carefully explaining to him that I
couldn’t do tomorrow because of the funeral
he said well okay I can do twelve o’clock
on Monday fine so I toddles along at twelve
o’clock today to be told that ’s on a course
at

3.64 3.79

4 S0018 oh no 5.28 5.22
5 S0019 but had obviously not bothered to write it

down
6.08 5.83

6 S0018 so he’d just completely forgotten you? 5.72 5.13
7 S0019 yes in a word 7.36 6.48
8 S0018 Did you phone him? 6.05 6.36
9 S0019 no I didn’t I allowed myself a little bit of time

to not be quite so cross and I had er half an
hour with well more than half an hour three-
quarters of an hour with one of the other
coaches there

3.95 3.71

10 S0018 what he just happened to be free? 5.71 6.06

Table B.3: The first ten turns of a Spoken BNC dialogue (dialogue id: SVNL),
annotated with utterance positions (Pos.), speaker identifier (Id.), and surprisal
estimates.
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B.2.2 Effects of fine-tuning on the dialogue corpora

Here, we give an intuition of the main effects of fine-tuning GPT-2 on dialogue
corpora, focusing on PhotoBook and Map Task.

The following are the main effects of fine-tuning GPT-2 on PhotoBook dia-
logues:

• The fine-tuned model is less surprised by utterance types that are frequent
in the corpus; the least surprising expressions are I have, I don’t have that
one, I don’t have that, No, I don’t have that one. For the pre-trained model,
on the other hand, the least surprising expressions are more generic: No, I
don’t think so, I’m not sure, I don’t, What do you think?.

• Among the most surprising utterances for the pre-trained model are some
that are specific to PhotoBook games: submit bye, loading may be frozen.
For these two utterances, e.g., surprisal decreases by 1/4 and 1/3 respec-
tively after fine-tuning.

• Written chat language becomes less surprising: e.g., the surprisal for kk
done decreases by one third.

• Utterances at first dialogue positions become in general less surprising. The
decrease in surprisal for greetings is not always consistent: e.g., the surprisal
for hi and hey there decrease by one third and one seventh respectively.

These are the main effects of fine-tuning GPT-2 on MapTask dialogues:

• While the pre-trained model assigns high surprisal to utterances that con-
tain disfluencies, this is not the case for the fine-tuned model.

• Backchannels also become less surprising with fine-tuning: the surprisal of,
e.g., okay, mmhmm, well, right, erm, yeah, no, aye decreases by 25% to
75%.

• With fine-tuning, GPT-2 doesn’t only get used to features of transcribed
speech: expressions that refer to MapTask landmarks also become more
likely (e.g., the rapids, a rope bridge, the gold mine).

• Simple spatial indications (towards the bottom left-hand corner, on the left-
hand side) are among the utterances with the lowest surprisal.

B.3 Replication study: Surprisal constancy in news-
paper articles

We use the Wall Street Journal part of the Penn Treebank, divided into a train-
ing set (section 0–20) and a test set (sections 21–24). The training set contains
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Figure B.1: Perplexity on Penn Treebank test set obtained by n-gram language
models with Kneser-Ney smoothing and interpolation.

41,128 sentences (Keller (2004) reports 42,075 sentences), the test set 8,594 (Keller
(2004) reports 7,133). Each article is treated as a separate text, and sentence po-
sitions are computed by counting from the beginning of the article. The sentence
positions in the test set vary between 1 and 118 (Keller (2004) reports 1-149).
The n-gram probabilities are computed by Keller (2004) using a language model
with smoothing by absolute discounting, whereas Genzel and Charniak (2002) do
not report the specifics of their language model. We rely on NLTK’s implementa-
tion of an n-gram language model with interpolated Kneser-Ney smoothing (Bird
et al., 2009). We train n-gram language models with n ∈ (2, 3, 4, 5) and with
discount values n ∈ (0.1, 0.2, . . . , 0.9) on the training set and select the language
model with the lowest perplexity on the test set. The best language model is
the 3-gram model with a discount value of 0.8, which achieves a perplexity of
335.80 on the test set. The perplexity obtained using NLTK’s evaluation script is
221.57 (Figure B.1) as it is calculated by taking into account beginning and end
of sentence symbols.

We use the n-gram language model as well as GPT-2 to estimate the surprisal
of all sentences in the test set and measure the correlation with sentence position.
In Genzel and Charniak’s original work (2002), the correlation between sentence
position and sentence surprisal is computed by binning the sentence surprisal
data points based on their sentence position. Correlation is measured between
sentence position indices 1-25 and the average sentence surprisal estimated for
the respective sentence position. Keller (2004) also measures the raw correlation
between all sentence position-surprisal pairs, without binning. Neither work re-
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Cut-off = 25 Cut-off = 76 Cut-off = ∞
Raw data τ τ τ

3-gram (Keller, 2004) 0.060∗∗ 0.081∗∗ 0.071∗∗

3-gram (ours) 0.076∗∗ 0.081∗∗ 0.079∗∗

GPT-2 pre-trained 0.032∗∗ 0.055∗∗ 0.054∗∗

GPT-2 fine-tuned 0.070∗∗ 0.080∗∗ 0.080∗∗

Binned data τ τ τ

3-gram (Keller, 2004) 0.639∗∗ 0.243∗∗ 0.135
3-gram (ours) 0.733∗∗ 0.109 0.118
GPT-2 pre-trained 0.533∗∗ 0.512∗∗ 0.077
GPT-2 fine-tuned 0.693∗∗ 0.387∗∗ 0.119

Table B.4: Kendall’s rank correlation between sentence surprisal and sentence
position for the Penn Treebank test set. Significance: ‘**’ p < 0.001, ‘*’ p < 0.01,
‘ ’ p ≥ 0.05.

Cut-off = 25 Cut-off = 76 Cut-off = ∞
Raw data τ τ τ

3-gram (Keller, 2004) 0.078∗∗ 0.093∗∗ 0.081∗∗

3-gram (ours) 0.082∗∗ 0.087∗∗ 0.087∗∗

GPT-2 pre-trained 0.034∗∗ 0.054∗∗ 0.054∗∗

GPT-2 fine-tuned 0.077∗∗ 0.084∗∗ 0.084∗∗

Binned data τ τ τ

3-gram (Keller, 2004) 0.671∗∗ 0.147 0.170∗∗

3-gram (ours) 0.740∗∗ 0.099 0.097
GPT-2 pre-trained 0.453∗ 0.448∗∗ 0.101
GPT-2 fine-tuned 0.680∗∗ 0.347∗∗ 0.104

Table B.5: Kendall’s rank correlation between sentence surprisal and sentence
position, with sentence length partialled out, for the Penn Treebank test set.
Significance: ‘**’ p < 0.001, ‘*’ p < 0.01, ‘ ’ p ≥ 0.05.
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ports the correlation measure used. We use Kendall’s rank correlation as it is less
sensitive than Spearman’s rank correlation to the large amount of ties (position-
surprisal pairs with the same position index) in our data. Moreover, whereas
Genzel and Charniak (2002) select a single sentence position cut-off (c = 25), in
Keller’s (2004) study three variants of the cut-off are used (c = 25, c = 76, and
no cut-off). We also compute correlation at these three levels. Finally, follow-
ing Keller (2004), we compute the partial correlation between sentence position
and sentence surprisal, excluding the effect of sentence length. The results are
reported in Tables B.4 and B.5.

B.4 Experimental results: Utterance surprisal as
a function of discourse context

Tables B.7, B.8 and B.9 summarise the results of our statistical analysis, as intro-
duced in Chapter 7. For convenience, they are shown at the end of Appendix B.
Figure B.2 (on the next page) shows the patterns of surprisal against turn position
for the contextual units whose patterns are not displayed in Section 7.3.2.

Our linear mixed effect models include the logarithm of the information the-
oretic estimate of interest (decontextualised surprisal H(S), contextualised sur-
prisal H(S|C), or context informativeness I(S;C)) as the response variable; the
logarithm of utterance position and the logarithm of utterance length as pre-
dictors; a random intercept grouped by distinct documents/dialogues; and a
document-specific random slope for utterance position and utterance length. The
Random effects columns show the standard deviation of the random effects (Co-
eff.) and the residual standard deviation.

B.5 Extraction of repeated constructions

We define a limited specific vocabulary of generic nouns that should not be con-
sidered referential. The vocabulary includes: bit, bunch, day, days, fact, god, idea,
ideas, kind, kinds, loads, lot, lots, middle, ones, part, problem, problems, reason,
reasons, rest, side, sort, sorts, stuff, thanks, thing, things, time, times, way, ways,
week, weeks, year, years. We also find all the filled pauses and exclude word
sequences that consist for more than 50% of filled pauses. Filled pauses in the
Spoken BNC are transcribed as: huh, uh, erm, hm, mm, er.
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Figure B.2: surprisal (y axis) against turn position (x axis) in MapTask (MT)
dialogues and transactions—with or without backchannels (w/ bc and w/o bc,
respectively)—and PhotoBook (PB) dialogue rounds. Position is cut off at mean
+ 1 sd. Bootstrapped 95% confidence bands.
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B.6 Adaptive language model

B.6.1 Fine-tuning

We fine-tune the ‘small’ variants of GPT-2 (Radford et al., 2019) and DialoGPT
(Zhang et al., 2020b) on our fine-tuning split of the Spoken BNC (see Section 8.3)
using HuggingFace’s implementation of the models with default tokenizers and
parameters (Wolf et al., 2020). Dialogue turns are simply concatenated; we ex-
perimented with labelling the dialogue turns (i.e., ‘A: utterance 1, B: utterance
2’ and found that this leads to higher perplexity. The fine-tuning results for both
models are presented in Table B.6. We fine-tune the models and measure their
perplexity using Huggingface’s fine-tuning script. We use early stopping over 5
epochs.3 Sequence length and batch size vary together because they together de-
termine the amount of memory required; more expensive combinations (e.g., 256
tokens with batch size 16) require an exceedingly high amount of GPU memory.
Reducing the maximum sequence length has limited impact: 99.90% of dialogue
turns have at most 128 words.

DialoGPT starts from extremely high perplexity values but catches up quickly
with fine-tuning. GPT-2 starts from much lower perplexity values and reaches
virtually the same perplexity as DialoGPT after fine-tuning. For the pre-trained
DialoGPT, perplexity is extremely high, and the perplexity trend against maxi-
mum sequence length is surprisingly upward. These two behaviours indicate that
the pre-trained DialoGPT is less accustomed than GPT-2 to the characteristics
of our dialogue data. DialoGPT is trained on written online group conversations,
while we use a corpus of transcribed spoken conversations between two speak-
ers. In contrast, GPT-2 has been exposed to the genre of fiction, which contains
scripted dialogues, and thus to a sufficiently similar language use. We select
GPT-2 fine-tuned with a maximum sequence length of 128 and 512 as our best
two models; these two models (which we now refer to as frozen) are used for the
adaptive learning rate selection procedure (Section B.6.2).

B.6.2 Learning rate selection

To find the appropriate learning rate for on-the-fly adaptation (see Section 8.4.2),
we randomly select 18 dialogues D from the analysis split of the Spoken BNC and
run an 18-fold cross-validation for a set of six candidate learning rates: 1× 10−5,
1 × 10−4, . . ., 1. We fine-tune the model on each dialogue using one of these

3The number of epochs (5) has been selected in preliminary experiments together with the
learning rate (1 × 10−4). In these experiments—which we ran for 40 epochs—we noticed that
the 1 × 10−4 learning rate offers the best tradeoff of training time and perplexity out of four
possible values: 1 × 10−2, 1 × 10−3, 1 × 10−4, 1 × 10−5. We obtained insignificantly lower
perplexity values with a learning rate of 1 × 10−5, with significantly longer training time: 20
epochs for GPT-2 and 28 epochs for DialoGPT.
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Model Learning rate Max seq. length Batch size Best epoch Ppl fine-tuned Ppl pre-trained

DialoGPT 0.0001 128 16 3 23.21 7,091.38
DialoGPT 0.0001 256 8 4 22.26 12,886.92
DialoGPT 0.0001 512 4 4 21.73 21,408.32
GPT-2 0.0001 128 16 4 23.32 173.76
GPT-2 0.0001 256 8 3 22.21 159.23
GPT-2 0.0001 512 4 3 21.55 149.82

Table B.6: Fine-tuning results for GPT-2 and DialoGPT on our fine-tuning split
of the Spoken BNC.

learning rate values, and compute perplexity change 1) on the dialogue itself (to
measure adaptation) as well as 2) on the remaining 17 dialogues (to measure
generalisation). We set the Transformer’s context window to 50 to reproduce the
experimental conditions presented in Section 8.4.1.

More precisely, for each dialogue d ∈ D, we calculate the perplexity of our two
frozen models (Section B.6.1) on d and D \ {d} (which we refer to as pplbefore(d)
and pplbefore(D), respectively). Then, we fine-tune the models on d using the six
candidate learning rates, and measure again the perplexity over d and D \ {d}
(respectively, pplafter(d) and pplafter(D)). The change in performance is evaluated
according to two metrics: pplafter(d)−pplbefore(d)

pplbefore(d)
measures the degree to which the

model successfully adapts to the target dialogue; pplafter(D)−pplbefore(D)

pplbefore(D)
measures

whether fine-tuning on the target dialogue causes any loss of generalisation.

The learning rate selection results are presented in Figure B.3. We select
1 × 10−3 as the best learning rate and pick the model fine-tuned with a max-
imum sequence length of 512 as our best model. The difference in perplexity
reduction (both adaptation and generalisation) is minimal with respect to the
model fine-tuned with a maximum sequence length of 128, but since the analysis
split of the Spoken BNC contains turns longer than 128 tokens, we select the 512
version. Similarly to van Schijndel and Linzen (2018), we find that fine-tuning
on a dialogue does not cause a loss in generalisation but instead helps the model
generalise to other dialogues. Unlike van Schijndel and Linzen (2018), who used
LSTM language models, we find that learning rates larger than 1 × 10−1 cause
back-propagation to overshoot, even within a single dialogue. In Figure B.3, the
bars for 1× 10−1 and 1 are not plotted because the corresponding data contains
infinite perplexity values (due to numerical overflow). The selected learning rate,
1 × 10−3, is a relatively low learning rate for on-the-fly adaptation but it is still
higher than the best learning rate for the entire dataset by a factor of 10.
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Figure B.3: The adaptation and generalisation performance (defined in Sec-
tion B.6.2) with varying learning rate.
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Listing B.1: Linear mixed effect model for Facilitating Effect

MODEL INFO:
Observat ions : 46399
Dependent Var iab le : F a c i l i t a t i n g E f f e c t
Type : Mixed e f f e c t s l i n e a r r e g r e s s i o n

MODEL FIT :
AIC = 99197.283 , BIC = 99302.224
Pseudo−R^2 ( f i x ed e f f e c t s ) = 0.084
Pseudo−R^2 ( t o t a l ) = 0.111

FIXED EFFECTS:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Est . 2.5% 97.5% t va l . d . f . p
−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−− −−−−−−−− −−−−−−−− −−−−−−−−− −−−−−−−−−−− −−−−−−−
( I n t e r c ep t ) 0 .704 0 .683 0 .725 65.527 185.698 0 .000
log Utterance Pos i t i on 0 .046 0 .026 0 .066 4 .556 9274.269 0 .000
log Construct ion Length 0 .098 0 .084 0 .111 14.396 46372.022 0 .000
log Repet i t i on Index 0 .079 0 .063 0 .094 10.096 45082.205 0 .000
log Distance −0.311 −0.328 −0.293 −34.571 46269.156 0 .000
Previous Same Utterance −0.099 −0.184 −0.013 −2.262 46063.723 0 .024
log Rep . Index in Utterance 0 .178 0 .130 0 .226 7 .243 45765.367 0 .000
PMI −0.139 −0.154 −0.124 −18.225 45172.205 0 .000
Re f e r e n t i a l 0 .124 0 .099 0 .149 9 .887 46214.616 0 .000
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

p va lues c a l cu l a t ed us ing Sat t e r thwa i t e d . f .

RANDOM EFFECTS:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Group Parameter Std . Dev .
−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−
Speaker : ‘ Dialogue ID ( In t e r c ep t ) 0 .082

Dialogue ID ( In t e r c ep t ) 0 .090
Res idual 0 .701

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Grouping va r i a b l e s :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Group # groups ICC
−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−− −−−−−−−
Speaker : ‘ Dialogue ID 368 0.013

Dialogue ID 185 0.016
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Continuous p r ed i c t o r s are mean−centered and s ca l ed by 2 s . d .

B.7 Experimental results: The facilitating effect
of construction repetition

This section of the appendix presents the main statistical model used in Chapter 8.
As explained in Section 8.6.1, we fit a linear mixed effect model using facilitating
effect as the response variable and including multilevel random effects grouped
by dialogues and individual speakers.4. The fixed effects of the model, resulting
from a backward stepwise selection procedure, are presented in Section 8.6.1.
Non-binary predictors are log-transformed, mean-centered, and scaled by 2 sd.
The final model is summarised in Listing B.1 and its coefficients are visualised in
Figure B.4. We use the lme4 and lmerTest R packages for this analysis.

4We also try grouping observations only by dialogue and only by individual speakers. The
amount of variance explained (but unaccounted for by the fixed effects) decreases, so we keep
the two-level random effects.
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Figure B.4: Significant predictors of facilitating effect. Mixed effects linear regres-
sion, continuous predictors are mean-centred and scaled by 2 standard deviations.
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Fixed effects Random effects

Estimate Std. Error Pr(> |t|) Coeff. Residual

PTB: H(S)

Intercept 1.966 0.025 <0.001 0.332
0.186Position 0.029 0.004 <0.001 0.043

Length -0.125 0.006 <0.001 0.076

PTB: H(S|C)

Intercept 1.878 0.026 <0.001 0.320
0.204Position 0.002 0.004 0.545 0.037

Length -0.107 0.007 <0.001 0.076

PTB: I(S;C)

Intercept 0.711 0.048 <0.001 0.587
0.397Position 0.121 0.007 <0.001 0.058

Length -0.173 0.013 <0.001 0.164

PB: H(S)

Intercept 1.786 0.010 <0.001 0.183
0.337Position 0.041 0.002 <0.001 0.042

Length -0.181 0.003 <0.001 0.056

PB: H(S|C)

Intercept 1.986 0.010 <0.001 0.190
0.397Position -0.016 0.003 <0.001 0.039

Length -0.250 0.003 <0.001 0.065

PB: I(S;C)

Intercept -1.089 0.027 <0.001 0.559
0.846Position 0.279 0.007 <0.001 0.134

Length 0.355 0.009 <0.001 0.199

BNC: H(S)

Intercept 1.813 0.015 <0.001 0.144
0.287Position -0.001 0.003 0.875 0.027

Length -0.080 0.004 <0.001 0.038

BNC: H(S|C)

Intercept 1.729 0.025 <0.001 0.241
0.492Position -0.029 0.006 <0.001 0.060

Length -0.051 0.006 <0.001 0.065

BNC: I(S;C)

Intercept 0.446 0.049 <0.001 0.351
1.154Position 0.063 0.012 <0.001 0.075

Length -0.104 0.011 <0.001 0.087

Table B.7: Results of linear mixed effect models on the Penn Treebank newspaper
articles (PTB), the PhotoBook written task-oriented dialogues (PB), and the
Spoken BNC open-domain dialogues (BNC).
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Fixed effects Random effects

Estimate Std. Error Pr(> |t|) Coeff. Residual

Estimate Std. Error Pr(>|t|) Coeff. Residual

MT dial. w/ bc Intercept 0.07× 10−2 2.40× 10−2 0.98 11.44× 10−2

30.05× 10−2

Position −0.70× 10−2 0.37× 10−2 0.06 0.80× 10−2

MT dial. w/o bc Intercept 3.37× 10−2 3.20× 10−2 0.30 15.05× 10−2

26.83× 10−2

Position 0.03× 10−2 0.57× 10−2 0.96 1.98× 10−2

MT trans. w/ bc

Intercept −2.95× 10−2 1.50× 10−2 0.06 7.90× 10−2

30.07× 10−2

Position 0.03× 10−2 0.37× 10−2 0.93 0.34× 10−2

Intercept (givers) −2.20× 10−2 1.49× 10−2 0.15 7.38× 10−2

28.40× 10−2

Position (givers) 0.92× 10−2 0.46× 10−2 0.06 0.90× 10−2

Intercept (followers) −5.01× 10−2 2.30× 10−2 0.04 10.88× 10−2

31.40× 10−2

Position (followers) 0.60× 10−2 0.71× 10−2 0.41 1.50× 10−2

MT trans. w/o bc

Intercept −0.93× 10−2 1.61× 10−2 0.57 7.98× 10−2

26.80× 10−2

Position 2.38× 10−2 0.49× 10−2 < 0.01 0.96× 10−2

Intercept (givers) −3.78× 10−2 1.70× 10−2 0.03 8.20× 10−2

25.47× 10−2

Position (givers) 3.46× 10−2 0.53× 10−2 < 0.01 0.19× 10−2

Intercept (followers) 9.04× 10−2 3.10× 10−2 < 0.01 13.10× 10−2

28.27× 10−2

Position (followers) −1.30× 10−2 1.38× 10−2 0.36 5.50× 10−2

Table B.8: Results of linear mixed effect models on the MapTask data, with
surprisal estimates obtained within dialogues (dial.) and transactions (trans.),
with and without backchannels (bc).

Fixed effects Random effects

Estimate Std. Error Pr(> |t|) Coeff. Residual

PB dialogues Intercept −12.21× 10−2 0.90× 10−2 < 0.01 17.52× 10−2

37.66× 10−2

Position 3.13× 10−2 0.24× 10−2 <0.01 3.77× 10−2

PB rounds Intercept −0.99× 10−2 0.70× 10−2 0.16 15.14× 10−2

37.82× 10−2

Position −0.73× 10−2 0.26× 10−2 <0.01 3.46× 10−2

PB chains Intercept −5.92× 10−2 0.36× 10−2 <0.01 14.86× 10−2

28.95× 10−2

Position 1.27× 10−2 0.27× 10−2 <0.01 4.70× 10−2

Table B.9: Results of linear mixed effect models on the PhotoBook data.



Appendix C
Utterance production

This is the appendix for Part 3. It provides supplementary information for the
methods and experiments presented in Chapters 10 and 11.

C.1 Further figures on production variability
Figures C.1 and C.2 show human production variability over lexical and syntactic
unigrams, bigrams, and trigrams (complementing Figure 10.2 in Chapter 10).
Figures C.3 to C.5 show mean divergences across tasks, probes, and decoding
algorithms (complementing Figure 10.6 in Chapter 10).

(a) Lexical variability (b) Lexical variability

Figure C.1: Human production variability across four NLG tasks. The values on
the x-axis are single samples of lexical, syntactic, or semantic similarity between
two productions for each input (see Section 10.2). Probability mass on the right
side signals high similarity and low variability, and vice versa. A large spread
indicates that production variability varies widely across inputs.

217
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(a) Syntactic variability (b) Syntactic variability

Figure C.2: Human production variability across four NLG tasks. The values on
the x-axis are single samples of lexical, syntactic, or semantic similarity between
two productions for each input (see Section 10.2). Probability mass on the right
side signals high similarity and low variability, and vice versa. A large spread
indicates that production variability varies widely across inputs.

Figure C.3: Mean Wasserstein distances DW1(M(x), H(x)) for (tasks, probe, de-
coding algorithm) tuples. Base models for each task are described in Section 10.3.
Tuples that share colour have different decoding parameters.
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Figure C.4: Mean of distances µM(x)−µH(x) for (tasks, probe, decoding algorithm)
tuples across test sets. Base models for each task are described in Section 10.3.
Tuples that share colour have different decoding parameters.

Figure C.5: Mean of distances µC(x)−µH(x) for (tasks, probe, decoding algorithm)
tuples across test sets. Base models for each task are described in Section 10.3.
Tuples that share colour have different decoding parameters.
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DailyDialog Switchboard WikiText

GPT-2 Small (124M) 7.34 11.86 25.62
GPT-2 Medium (355M) 6.03 10.50 19.69
GPT-2 Large (774M) 5.26 10.09 17.39
GPT-Neo 125M 7.39 12.54 25.37
GPT-Neo 1.3B 4.94 10.11 14.01
DialoGPT Small 7.94 12.50 -
DialoGPT Medium 6.53 10.96 -
DialoGPT Large 6.23 11.00 -
OPT 125M 17.80 22.68 46.85
OPT 350M 14.88 21.46 40.39
OPT 1.3B 12.58 20.30 27.45

Table C.1: Language model perplexity results. The models tested on the dialogue
datasets are fine-tuned for 5 epochs with early stopping; the models tested on
WikiText are pre-trained.

C.2 Alternative set generators

For the dialogue corpora, we use GPT-2 (Radford et al., 2019), DialoGPT (Zhang
et al., 2020c), and GPT-Neo (Black et al., 2021). For the text corpora, we use
GPT-2 (Radford et al., 2019), GPT-Neo (Black et al., 2021), and OPT (Zhang
et al., 2022a). The text models are pre-trained while the dialogue models are
fine-tuned for 5 epochs with early stopping on the respective datasets, using
‘</s> <s>’ as a turn separator. Preliminary experiments on the pre-trained mod-
els show that ‘</s> <s>’ is the turn separator that yields lowest perplexity on the
dialogue datasets. For text models, using no separator is the option that yields
the lowest perplexity. When generating out of context, we set x to be either the
dialogue turn separator ‘</s> <s>’ or a white space for the text models.

LM validation: Perplexity. Table C.1 reports the perplexity of these models
on the Switchboard and DailyDialog test sets, as well as on the WikiText
test set (the Clasp dataset and the reading time datasets are too small to allow
for fine-tuning, but their style is similar enough to WikiText). Perplexity scores
are the lowest for the dialogue datasets. This is to be expected as the dialogue
models are fine-tuned. The perplexity of the pre-trained models on WikiText is
in line with state-of-the-art results; OPT obtains higher perplexity than GPT-2
and GPT-Neo, but still in an appropriate range.
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C.3 Psychometric predictive power and sensitiv-
ity of information value estimates

We study the extent to which our estimates of information value are affected
by variation in three main factors: the alternative set size ([10, 20, ..., 100]), the
language model, and the sampling strategy. Figures C.6 and C.7 show Spear-
man correlation between information value and psychometric data, averaged over
subjects. These results complement Sections 11.5.1 and 11.5.2 in Chapter 11.

C.4 Utterance-level surprisal
Given an utterance y as a sequence of tokens in a context x, token-level surprisal
can be defined as s(yt) = − log p(yt|y<t,x). Multiple works have proposed quan-
tifying utterance-level surprisal as functions of token-level surprisal (Genzel and
Charniak, 2002; Keller, 2004; Xu and Reitter, 2018; Meister et al., 2021; Wall-
bridge et al., 2022). We compare the predictive power of information value to a
number of these utterance-level surprisal aggregates.

Mean surprisal and total surprisal account for all token-level surprisal esti-
mates with and without normalising by utterance length:

Smean(y|x) =
1

N

N∑
n=1

[s(yn)] (C.1)

Stotal(y|x) =
N∑

n=1

[s(yn)] (C.2)

Superlinear surprisal posits a superlinear effect of token-level estimates:

Ssuperlineark(y|x) =
N∑

n=1

[s(yn)]
k (C.3)

We experiment with k ∈ [0.5, 0.75, . . . , 5]. Maximum surprisal captures the idea
that a highly surprising element drives the overall surprisal of an utterance:

Smax(y|x) = max[s(yn)] (C.4)

Surprisal variance across an utterance has been defined in a number of ways;
we consider surprisal variance as the regression to the utterance-level mean and
surprisal difference as the variability between contiguous token-level estimates:

Svariance(y|x) =
1

N − 1

N∑
n=2

[s(yn)− Smean(y)]
2 (C.5)
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Figure C.6: Spearman correlation between information value and average accept-
ability judgements.
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Figure C.7: Spearman correlation between information value and average reading
times (length-normalised).
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Sdifference(y|x) =
N∑

n=2

|s(yn)− s(yn−1)| (C.6)

C.5 Intrinsic robustness analysis

In Section 11.5.1, we evaluate the robustness of information value to parameters
involved in the alternative set generation in terms of its psychometric predictive
power. We additionally assess their intrinsic robustness by measuring the cor-
relation between information values assigned to target utterances by estimators
with different parameter settings.

The parameters which we consider are alternative set size ([10, 20, ..., 100]), the
generative model, and the decoding strategy. Models and decoding strategies are
detailed in Section 11.4.1. For each of the corpora described in Section 11.4.2, we
compute the information value for the target utterances based on alternative sets
generated under different parameter settings. Robustness is quantified through
the distribution of the pairwise Spearman correlation ρ obtained between the in-
formation values for each parameter setting; strong pairwise correlation indicates
that information value is robust to the varying parameter. Results are displayed
in Figures C.8 and C.9 (placed, for convenience, at the end of Appendix C.

Information value defined as lexical, syntactic, and semantic distance becomes
highly robust as alternative set size increases; mean correlations between decoding
strategies for each model converge towards perfect correlation as alternative set
size increases. This pattern holds for all datasets. Decoding strategies do not
produce much variation across correlations, regardless of alternative set size (see
confidence intervals in Figures C.8 and C.9).

As expected, correlations between parameter settings for min-based distances
are more variable. Although they converge to weaker correlations as alternative
set size increases when compared to mean-based distances, we still find strong
to very strong correlations between decoding strategies for large alternative sets
across all models.

C.6 More derived measures of information value

We also tested the following measures derived from information value but found
them to be less predictive than those in Chapter 11.

Expected information value. The expected distance of plausible productions
given a context x from the alternative set:

E(I(Y |X=x)) := Ea∈A′
x
[I(Y =a,X=x)] (C.7)
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We assume a uniform probability distribution over alternatives. This quantifies
the uncertainty over next utterances determined by the context alone. Because
the alternative set Ax is the set of plausible productions given x, in practice, we
compute expected information value using only one alternative set—both in the
expectation Ea∈Ax and in the distance calculation d(y, Ax).

Deviation from the expected information value. The absolute difference
between the information value for the next utterance y and the expected infor-
mation value for any next utterance:

D(Y =y|X=x) := |I(Y =y|X=x)− E(I(Y |X=x))| (C.8)

This quantifies the information value of an utterance relative to the information
value expected for plausible productions given x. An analogous notion is the
deviation of surprisal from entropy. The token-level version of this forms the
basis of the local typicality hypothesis (Meister et al., 2023).

Expected context informativeness. The expected informativeness of context
x is the reduction in information value contributed by x with respect to any
plausible continuation:

E(C(Y =y;X=x)) := E(I(Y =y))− E(I(Y =y|X=x)) (C.9)

This quantifies the extent to which a context restricts the space of plausible
productions. An analogous notion is the expected pointwise mutual information
between X = x and Y , where the value of X is fixed. Similarly to out-of-
context information value, out-of-context expected information value E(I(Y =y))
is computed with respect to the alternative set Ax=ϵ.

C.7 Experimental results: The psychometric pre-
dictive power of information value

These are further details about the linear mixed effect models used in Sections 11.6
and 11.7.

Response variables. For Provo, we use the total dwell time, i.e., the cumula-
tive duration across all fixations on a given word. We filter away any observation
that contains ‘outlier’ words, i.e., words with a z-score > 3 when the distribution
of reading times is modelled as log-linear (following Meister et al., 2021).
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Control predictors. Following Wilcox et al. (2020), we evaluate each model
relative to a baseline model which includes only control variables. Control vari-
ables are selected building on previous work (Meister et al., 2021): we include
solely an intercept term as a baseline for acceptability judgements and the num-
ber of fixated words for reading times. Meister et al. (2021) report similar trends
when including summed unigram log probability or sentence length as baseline
predictors of acceptability judgements, and word character lengths or word uni-
gram log probabilities for reading times. For reading times, we also test sentence
length as a predictor but baseline models that include, instead, the number of
fixated words (readers sometimes skip words while reading) achieve higher log-
likelihood.
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Figure C.8: Intrinsic robustness evaluation on acceptability judgements corpora.
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Figure C.9: Intrinsic evaluation on reading times corpora.
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Samenvatting

Dit proefschrift onderzoekt nieuwe manieren om kunstmatige neurale netwerken
te gebruiken als modellen van menselijk taalgebruik, met als doel nieuwe meth-
oden te ontwikkelen en nieuwe onderzoeksrichtingen mogelijk te maken voor een
grote verscheidenheid aan taalwetenschappers: van historische taalkundigen, so-
ciolinguïsten en lexicografen tot cognitieve wetenschappers en neurowetenschap-
pers. Het bestaat uit een reeks studies over taalbegrip en taalproductie, met de
nadruk op hoe hun modellering wordt beïnvloed wanneer taalkundige contexten
op passende wijze in overweging worden genomen.

Deel 1 presenteert twee nieuwe methoden om woordgebruik te bestuderen
als functie van de zinscontext waarin een woord voorkomt: de eerste bestaat
uit het extraheren, groeperen en analyseren van gecontextualiseerde neurale rep-
resentaties uit taalmodellen; de tweede maakt gebruik van door taalmodellen
gegenereerde menselijk leesbare woorddefinities op basis van voorbeelden van wo-
ordgebruik. Lexicale semantische veranderingsanalyse wordt hier als voorbeeld
genomen, aangezien dit het dynamisch vastleggen van woordbetekenis vereist van-
wege zijn genuanceerde contextbepaalde modulaties.

Deel 2 richt zich op neurale modellen als contextbewuste simulaties van taal
ontvangers. Ik verkrijg ‘surprisal’ schattingen van de voorspelbaarheid van uitin-
gen vanuit neurale taalmodellen en gebruik deze om psycholinguïstische theo-
rieën over de productie van uitingen te testen, die het monitoren van de voor-
spelbaarheid van sprekers postuleren. Bevindingen dagen gevestigde hypothe-
sen van rationeel gebruik van het communicatiekanaal uit, vooral in dialogische
omgevingen—maar over het algemeen bevestigen ze dat de strategieën voor het
produceren van uitingen kunnen worden beschreven als het efficiënt beperken van
de inspanning die het gesprekspartners vergt om de boodschap te begrijpen.

Deel 3 onderzoekt het potentieel van neurale tekstgeneratoren als modellen
van taalproductie. Ik test of generatoren taal produceren dat statistische eigen-
schappen bevat die overeenkomen met die van menselijke producties, en gebruik
ze vervolgens om interpreteerbare metingen van voorspelbaarheid van uitingen te
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verkrijgen die complementair zijn aan de maten die in deel 2 zijn gebruikt. Ik sluit
af door inzichten uit de rest van dit proefschrift te verzamelen in een formeel kader
voor kunstmatige simulaties van mensachtig—efficiënt, communicatief effectief en
publiek bewust—taalproductie gedrag.



Abstract

This thesis explores novel ways of using artificial neural networks as models of
human language use, with the goal of establishing new methods and enabling
new research directions for a wide variety of language scientists: from historical
linguists, sociolinguists, and lexicographers to cognitive scientists and neurosci-
entists. It consists of a series of studies on language comprehension and language
production. with an emphasis on how their modelling is affected when linguistic
contexts are properly taken into account. It is divided into three parts.

Part 1 presents two novel methods to study word usage as a function of a
word’s sentential context of occurrence: the first consists of extracting, group-
ing, and analysing contextualised neural representations from language models;
the second uses human-readable word definitions generated by language models
prompted with word usage examples. Lexical semantic change analysis is taken
as an example application, as it requires dynamically capturing word meaning
with its nuanced context-determined modulations.

Part 2 focuses on neural models as contextually-aware simulations of language
comprehenders. I obtain surprisal estimates of information rate from neural lan-
guage models and use these to test psycholinguistic theories of utterance pro-
duction, which postulate speaker monitoring of information rate and, in turn, of
comprehension costs. Findings challenge established hypotheses of rational use
of the communication channel, especially in dialogic settings—but, overall, they
confirm that strategies of utterance production can be described as efficiently
containing the comprehension effort of interlocutors.

Part 3 investigates the potential of neural text generators as models of lan-
guage production. I test whether generators produce language with statistical
properties aligned to those of human productions, and then use them to obtain
interpretable measures of information rate which are complementary to those
used in Part 2. I conclude by collecting insights from the rest of the thesis into a
formal framework for artificial simulations of human-like—efficient, communica-
tively effective, and audience-aware—language production behaviour.
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