Some Extensional Term Models For Combinatory Logics and λ - Calculus Henk Barendregt

October 16, 2023

1 Errata(Corrections are in Red)

- p.4, 1.1.4.I :

$$
\begin{array}{lr}
\text { 1. } x M=y[x / y] M & \text { If } y \notin F V(M) \cup B V(M) \\
\text { 2. }(x M) N=[x / N] M & \text { If } B V(M) \cap F V(N)=\phi
\end{array}
$$

- p.17, line 5,
not have the original theorem as a corollary.
- p.27,
line 3:
to concepts like such as equality, quantification, etcetera.
line 21:
terms of the λ-calculus are then called λ terms.
- p.29, line 13 :

In order to obtain a reverse interpretation, we first need a

- p.55, line 21:
of the M_{i} and then $\left({ }^{* *}\right)$ would also hold.
- p. 62 , line 8 of subcase 1.2 :

Hence since $C L_{\omega^{\prime}} \vdash M \approx_{\alpha} N, \alpha \neq 0$ and M_{2} is closed,it follows from 2.2.8.2) and 2.2.6 that

- p.64, line 19:

We give here a modification of our original construction, due to Scott.

- p.68, line 5:
we again make use of the underlining technique.
- p.71, 2.5.10, Lemma:

1. $\underline{\lambda} \vdash L \simeq \underline{M} \Leftrightarrow[L \equiv M$ or $L \equiv \underline{\underline{M}]} L \simeq M$
$2 \cdot \underline{\lambda} \vdash L \simeq \lambda x M \Leftrightarrow\left[\exists M^{\prime} L \equiv \lambda x M^{\prime}\right.$ and $\left.\underline{\lambda} \vdash M \simeq M^{\prime}\right]$ or $L \equiv \underline{\lambda x M}$
2. $\underline{\lambda} \vdash L \simeq M N \equiv\left[\exists M^{\prime} N^{\prime} L \equiv M^{\prime} N^{\prime}\right.$ and $\left.\underline{\lambda} \vdash M \simeq M^{\prime}, \underline{\lambda} \vdash N \simeq N^{\prime}\right]$ or $L \equiv \underline{M N}$
3. $\underline{\lambda} \vdash M \simeq M^{\prime}$ and $\underline{\lambda} \vdash N \simeq N^{\prime} \Rightarrow \underline{\lambda} \vdash[x \backslash N] M \simeq\left[x \backslash N^{\prime}\right] M^{\prime}$

Use $\underline{\lambda} \vdash M \simeq M^{\prime} \equiv|M| \equiv\left|M^{\prime}\right|$ like in A_{11}

- p.74, line 11:

If $\underline{\lambda}+\operatorname{ext} \vdash M \geq N$ and if x is a variable not occurring in

- p.79, 2.5.26, Lemma, 3) :

If Z is a subterm occurrence of L such that there is no the corresponding subterm occurrence Z^{\prime} of L^{\prime} is not simple then Z has some line in L^{\prime}.

- p.129, Definition 2, I, 1. :

$$
\text { 1. } \frac{M \geq_{1} M^{\prime}}{(\lambda x M) \geq_{1} \lambda y[x \backslash y] M^{\prime}} \quad \text { If } y \notin F V\left(M^{\prime}\right) \cup B V\left(M^{\prime}\right)
$$

- p. 130 Lemma 5: If $\lambda^{\prime} \vdash M \geq_{1} M^{\prime}$ and $\lambda^{\prime} \vdash N \geq_{1} N^{\prime}$, then $\lambda^{\prime} \vdash$ $[x / N] M \geq_{1}\left[x / N^{\prime}\right] M^{\prime}$. Given that $B V\left(N^{\prime}\right) \cap F V\left(N^{\prime}\right)=\phi, B V\left(M M^{\prime}\right) \cap$ $F V\left(N^{\prime}\right)=\phi$ and $x \notin B V\left(M^{\prime}\right)$
Proof:
Induction on the length of proof of $M \geq_{1} M^{\prime}$ using the sublemma:
If $x \neq y, y \notin F V\left(N_{1}\right), x \notin B V(M)$, then $\left[x / N_{1}\right]\left(\left[y / N_{2}\right] M\right) \equiv\left[y /\left[x / N_{1}\right] N_{2}\right]\left(\left[x / N_{1}\right] M\right)$. The proof of the sublemma proceeds by induction on the structure of M.
- p. 131 case 2 . line 4

$$
M_{3} \equiv \lambda y^{\prime}\left[x / y^{\prime}\right] M " \text { where } \lambda \vdash M \geq_{1} M " \text { and } y^{\prime} \notin F V(M ") \cup B V(M ")
$$

