
Addenda to part I. 

In §3.1 we referred to a result of Jacopini [1971] which has not 

yet been published. Since we have not seen his argument, we give 

here an outline of a possibly different proof based on the 

results of Ch.3. 

Theorem (Jacopini) 

There is an extensional combinatory model which is not an 

W-model. 

Proof (outline) 

Let 2 = SII(SII). 

Define & = {QKZ = 2SZ | Z is WM a closed CL-term}. 

Then by 3.2.16 CL + & + ext is consistent since & C Hore 

Further 

CL + & + w-rule + QK = QS, but 

CL + & + ext k QK = QS. 

Hence the term model of CL + & + ext is an extensional model 

which is not an w-model, that is, its interior is not 

extensional. Xi 

Corollary. 

There is no set of equations (in the language of CL), in fact no 

set of universal formulas, that is propositional combinations of 

equations, whose models are exactly the extensional models of CL. 

For, any submodel, in particular the interior, of a model satis- 

fying a set & of universal sentences also satisfies &. 

This corollary justifies the remark on page x of the Introduction 

to Part I where it was stated that the concept of extensionality 

of models of CL cannot be expressed by equations. (Only the set 

of equations which are valid in all extensional models is 

characterized by the equational rule ext; or more interestingly 

by the finite number of combinatory axioms, given in Curry and 

Feys [1958] ,Ch.6 C, which axiomatize the rule ext. 

The proof above of Jacopini's theorem is also of interest for our 

work in the w-rule in Chapter 2. If it should turn out that CL it- 

self is w-complete, that is that the w-rule is simply valid for 

CL + ext, the result stated in 52.2 would be completely



superseded. However, the method of §2.2 can be adapted to 

prove the consistency of the w-rule, for CL + & , a system which 

is certainly not w-complete. Thus, whether or not CL itself is 

w-complete, at least for some extensions of CL + ext we 

certainly cannot establish the consistency of the w-rule simply 

by proving w-completeness. 

We give here a short account of CL, introduced by Rosser [1935], 

which is the combinatory counterpart of the AI-calculus. 

Definition 

We define a theory CL, formulated in the following language: 

Alphabet: a,b,c,... variables 

Lod constants 

(,) improper symbols 

>, = reduction, equality 

Terms: The terms are defined inductively by 

1) Any variable or constant is a term 

2) If M,N are terms, then (MN) is a term. 

Formulas: If M,N are terms, then M = N and M > N are formulas. 

Definition 

CL, is defined by the following axioms and rules: 

I 1. IM2M 

JMNLP > MN(MPL) 

Il Same axioms and rules as for CL (cf. appendix I, A2 of 
III part I) 

In the above M,N,L and P are arbitrary terms. 

In CL, it is possible to define an abstraction operator A* 

simulating the A-operator of the AI-calculus. 

Lemma 

In CL, we can define closed terms B,C and S such that 

CL, H Babx = a(bx) 

CL, + Cabx = axb 

CL, t+ Sabx ax(bx)



Proof. 

Define 

T = JII 

C = JTC(JT) (CIT) 

B = C(JIC) (JI) 

W = C(CCBC(CCBJT)T))T) 

S = B(B(BW)C) (BB) 

Then B,C and S have the required properties. X 

Definition 

For every term M such that x € FV(M) we define a term X*xM. 

A*xx = I 

A*x (MM, ) = BM, (Ax*M,) if x € FV(M,) and x € PV(M,) 

CCA*XM, 0M, if x € PV(M, ) and x € FV(M, ) 

SOA*XM, ) CA*XM, ) if x € FV(M, ) and x € FV(M, ) 

Theorem 

For every term M with x € FV(M) we have 

1) FV(A*xM) = FV(M) - {x} 

2) (A*xM)x > M 

Hence similar to 1.4 in part 

Corrections to Part 1. 

Introduction. On p. xxi it was stated that for a CL-term M 

M has no normal form = 4,,(M) = * 

This should be (see 2.30) 

1) M has no normal form > Hor OM) = * 

2) M is in normal form > Ho, (M) Ju 

Appendix II. Some statements have to be corrected by explicit 

reference to free and bound variables: 

Lemma 5. If FV(N) N BV(MM') = B and FV(N') N BV(N') = B and 

if A' EM &M', A! FEN AN', then 

At FE Lx/NIM Zil x/N']M'.



To prove lemma 5 one notes: 

1) If A' BM >,M', then FV(M) = FV(M') 

2) If y & FV(N,) and x#y,then Ux/Nj} CL y/NoIM)=0 y/[ x/N,]M,] CE x/N,1M) 

3) [x/N,] CL Xx/N,1M) = [x/[ x/N, FNM 

Lemma 7 follows from the new version of lemma 5 and the 

observations: 

1) If A' hk MN and N Zn N', then A' Fk M 2,N! 

2) For every M there exists an M' such that 

M Se M' and FVCM) N BV(M!') = d.
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