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Abstract

Recent work by Afshari et al. introduce a notion of Herbrand schemes
for first-order logic by associating a higher-order recursion scheme to a
sequent calculus proof. Calculating the language of associated Herbrand
schemes directly yields Herbrand disjunctions. As such, these schemes
can be seen as programs extracted from proofs. In this article, this com-
putational interpretation is explored further by removing the restriction
of acyclicity from Herbrand schemes which amounts to admitting recurs-
ively defined programs. It is shown that the notion of proof corresponding
to these generalised Herbrand schemes is cyclic proofs, considered here in
the context of classical theories of inductively defined predicates. In par-
ticular, for proofs with end sequents of a form generalising the notion of
Σ1-sequents in the first-order setting, Herbrand schemes extract Herbrand
expansions from cyclic proofs via a simulation of non-wellfounded cut elim-
ination.

1 Introduction

The aim of this work is to connect two strands of research in proof theory, both
of which concern computational interpretations of proofs in sequent calculus.
One is the pursuit of computational/constructive content for classical logic; the
other is representations of induction and recursion in systems of non-wellfounded
proofs.

The first avenue has a long history (see e.g. [9, 13, 10, 18, 17]). Our focus is
the classical logic counterpart to witness extraction: Herbrand’s theorem. For
a valid Σ1-formula A, Herbrand’s theorem states the existence of a finite set
of ‘witnesses’ for the existential quantifiers in A that, instantiated, induce a
propositional tautology. This is in contrast to the single witness that can be
provided for an intuitionistically valid existential formula. The theorem can be
lifted to arbitrary formulas by Skolemizing universal quantifiers.

The set of terms witnessing Herbrand’s theorem (henceforth ‘Herbrand sets’)
are readily extracted from cut-free sequent calculus proofs. If we view cut elim-
ination as program execution via a form of Curry-Howard correspondence, we
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see that classical sequent calculus proofs represent non-deterministic computa-
tions, with elements of the extracted Herbrand set representing possible return
values of different threads. This computational perspective on classical sequent
calculus proofs was explored in depth in Urban’s thesis [22]. The background for
our work is a series of papers taking a grammar-theoretic approach to Herbrand
extraction, culminating in [2] where sequent calculus proofs are associated with
higher-order recursion schemes [16] that can be used to directly compute the
Herbrand content of a proof. These are called Herbrand schemes, and can be
seen as programs extracted from sequent calculus proofs. We have recently
refined this approach in a companion paper to the present work [1].

The second line of research underlying the basis of the work presented here
is the study of non-wellfounded proofs and in particular cyclic proofs, the non-
wellfounded proofs with a finite graphical representation. Such proofs have been
extensively studied for a wide range of logical systems that deal with induction
in one form or another. Examples of particular relevance to this paper are cyclic
proof systems for theories of inductively defined predicates [6, 7, 8, 5] and for
arithmetic [5, 12, 21]. From a Curry-Howard-style computational perspective
cyclic proofs are natural with recursion built into the proof system itself rather
than explicitly added in the form of induction rules/axioms. This perspective on
cyclic proofs can be said to have started with the work of Santocanale [19] and
later Fortier [14], and has been explored by a number of authors, most notably, in
the context of linear logic with explicit fixed-point operators [4, 3]. Of particular
interest for us is the work of Das on cyclic proofs for Gödel’s System T [11],
especially given previously known connections between Herbrand extraction and
functional interpretations [15].

We extend Herbrand schemes beyond first-order logic to the setting of cyc-
lic proofs for classical theories of inductively defined predicates, in order to
obtain a richer computational interpretation of classical logic. The choice of
cyclic proofs for this extension is rather natural as it is already present in the
Herbrand schemes. To obtain recursion schemes that match the (limited) level
of expressivity in first-order logic, a restriction called acyclicity is imposed in
[2], which amounts to removing the ‘recursion’ from recursion schemes. We
show lifting the restriction of acyclicity corresponds precisely to taking the step
from well-founded to cyclic proofs. Stated as a slogan, unrestricted Herbrand
schemes are to cyclic proofs what acyclic Herbrand schemes are to well-founded
proofs. The companion paper [1] provides the groundwork for taking this step
by streamlining the formulation of Herbrand schemes so that the introduction of
inductive predicates and treatment of quantifiers and connectives can be carried
out smoothly.

The main technical contribution is to show that Herbrand schemes can ‘simu-
late’ the process of ‘multi-cuts’ elimination. In particular, when the end sequent
of a cyclic proof is of a special form generalising the notion of Σ1 sequent from
first-order logic, cut elimination leads to a finite well-founded proof from which
we can read off a Herbrand expansion (in a sense that will be made precise).
As a consequence of our simulation theorem, Herbrand schemes associated with
proofs of such ‘constructive’ sequents can be used to compute Herbrand expan-
sions.

The restriction of the main result to proofs with constructive end sequents
and, hence well-founded normal forms, may seem restrictive given our aim to
view Herbrand schemes as a computational interpretation of cyclic proofs. It
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is worthwhile noting that (1) every proof has an associated Herbrand scheme,
regardless of the form of the end sequent, and (2) Herbrand schemes are com-
positional with respect to the cut rule, in the sense that cuts are interpreted
as function application. This means that every proof is associated with a well-
defined ‘program’ whose type is determined by the end sequent, and that can be
applied via cuts. Constructive sequents can be seen as a form of ground type,
from which the computation yields a concrete value in the form of a Herbrand
expansion.

To illustrate the inner-workings of Herbrand schemes, we look a cyclic proof
π of the pigeonhole principle for an arbitrary number of pigeonholes: for any
function f : N → N bounded by some natural number n, there are k < m
such that f(k) = f(m). In order to obtain concrete sets of possible values
for k,m, we can apply this proof to a concrete natural number n via a cut
on some proof that ‘n is a natural number’. In the case n = 1, for which
we will compute a Herbrand set, this yields the pigeonhole principle for two
pigeonholes previously studied in [22] and later in [2, 1]. The point of interest
here is that the Herbrand scheme associated with the proof π can be seen as an
independent and re-usable program, that has as its extensional interpretation a
relation Rπ ⊆ N×P<ω(N×N) associating concrete values for n with finite sets
of values for k,m,i.e., Herbrand sets. From our simulation theorem it follows
that this relation Rπ offers at least one Herbrand set for each given value for n.

One crucial step in the making is to interpret the cut rule composition-
ally as function application; this was not quite the case for the original version
of Herbrand schemes presented in [2]. Indeed, another motivation of our re-
formulation of Herbrand schemes in [1] was to make Herbrand schemes fully
compositional with respect to cut, which is achieved by introducing a form of
‘call-by-current-continuation’-like operator. We follow the same approach here.

Outline of the paper We start by introducing classical theories of induct-
ively defined predicates and their non-wellfounded/cyclic proof systems in Sec-
tion 2. In Section 3 we introduce the type theory that will form the basis of
our Herbrand schemes, which are then introduced in Section 4. Section 5 intro-
duces the precise notion of a Herbrand expansion in this context, as well as the
language of a Herbrand scheme, and proves some basic observations. Herbrand
expansions are defined for sequents in a specific form, called constructive se-
quents. In Section 6 we apply the framework in an analysis of a cyclic proof of
the pigeonhole principle. Section 7 introduces cut reduction and permutation
rules, using so called ‘multicuts’ that are common in the literature on non-
wellfounded proofs, and show how multicut reductions and permutations can
be simulated by rewrites for Herbrand schemes. Finally in Section 8, we prove
our main result, showing that Herbrand expansions obtained by eliminating
cuts can also be computed directly from the Herbrand scheme associated with a
proof. Together with a cut elimination theorem derived from [20], we obtain as a
corollary that the Herbrand scheme associated with any proof of a constructive
sequent always derives some Herbrand expansion of the end-sequent. We finish
with some concluding remarks in Section 9.
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2 Inductive predicates and non-wellfounded proofs

We introduce classical theories of inductive predicates and cyclic proofs for such
theories, essentially following the approach of [6, 7, 8].

2.1 Inductive predicates and languages

We begin with the definition of a vocabulary:

Definition 1. A vocabulary L is a tuple (C,F,O, I, ar, |·|) consisting of a non-
empty set C of individual constants, a set F of function symbols, a set O of
ordinary predicates, a set I of inductive predicates, a function ar : F ∪O∪I → N
assigning an arity to each symbol, and a map |·| : I → Ord assigning an ordinal
rank to each inductive predicate. We write P ≺L Q if |P | < |Q|, and P ⪯L Q
if |P | ≤ |Q|.

Let a vocabulary L as above be fixed. We assume that individual variables
are partitioned into two disjoint infinite sets, one set of ordinary variables and
one set of eigenvariables. As the set C of constants is non-empty we fix a
distinguished element c ∈ C. The L-terms are defined as usual. The set of
L-clauses is defined by the grammar:

A := P t⃗ | Qs⃗ | ¬A

where P and Q range over ordinary and inductive predicates respectively and
t⃗, s⃗ are tuples of L-terms of the appropriate lengths. An ordinary L-clause is one
that does not contain any inductive predicates. Note that an ordinary clause is
either of the form Qs⃗ or ¬Qs⃗ where Q is an ordinary predicate. Hence we will
also refer to ordinary L-clauses as literals.

The terminology of clauses rather than formulas is meant to put emphasis
on the frugality of the syntax, with negation as the only explicit connective.
We shall see later that formulas using the standard connectives and first-order
quantifiers can be introduced as abbreviations, and we to expressions in the
extended syntax using such abbreviations as formulas.

Definition 2. A language is a pair (L,R) consisting of a vocabulary together
with an assignment R of a finite non-empty set of production rules to each in-
ductive predicate. We assume that the set R(r) is listed in a fixed enumeration.

Given an inductive predicate P , every production rule r ∈ R(P ) is associated
with a tuple of variables x⃗ of length n ≤ ar(P ) called its parameters, and a tuple
of variables y⃗ called its input variables, and the rule has the form:

A1 · · · Ak

P (x⃗, t⃗(x⃗, y⃗))

subject to the following constraints:

1. If an inductive predicate Q occurs in Ai, then Q ⪯L P .

2. If an inductive predicate Q occurs negatively in Ai, then Q ≺L P .

We assume for notational convenience that the arguments of P are ordered so
that the parameters of a production rule are always the first n arguments of P
in the conclusion.
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For example, the usual natural number predicate N has the following two
production rules:

N0

Ny

N(sy)

Here, y is an input variable and s a certain function symbol of arity 1. We can
define a predicate L for lists of natural numbers by isolating a constant ϵ, binary
function symbol ⌢ and the production rules:

Lϵ

Nx Ly

L(x⌢y)

For the rank of the two inductive predicates we could choose |N | = |N |. Both x
and y are input variables in the second production rule above. Note that x⌢y
expresses the ‘prepend’ operation that attaching a natural number x to the left
side of a list y.

Definition 3. A model is a first-order structure for the vocabulary consisting of
inductive and ordinary predicates along with individual constants and function
symbols, subject to the constraint that each inductive predicate is interpreted
as the smallest subset of the domain closed under all its production rules. An
assignment is a function mapping individual variables to elements of the domain
as usual. The satisfaction relationM,V ⊨ A and the value [[t]]VM of a term, given
a model M and valuation V , are defined as expected.

2.2 Extended language

Given a language L, the extended language is defined by the following grammar:

A := Rt⃗ | ¬A | A ∨A | A ∧A | ∃xA

where R is either an inductive predicate or an ordinary predicate. Free and
bound variables are defined as usual. We can view every formula in this extended
language as an abbreviation of a formula expressed in the basic language. More
precisely, we first introduce the following uniform constructions of inductive
predicates:

Abstraction Given a formula A with all free variables belonging to x⃗, we
define the inductive predicate λx⃗.A with the following production rule:

A[y⃗/x⃗]

(λx⃗.A)y⃗

Parameters of the rule are y⃗. There are no input variables.

Sum Given n-ary and m-ary predicates P and Q respectively, we introduce
the n+m-ary predicate P +Q:

Px⃗
(P +Q)x⃗y⃗

Qy⃗

(P +Q)x⃗y⃗

Parameters are x⃗, y⃗; there are no input variables.
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Product Given n-ary respectively m-ary predicates P and Q respectively,
define n+m-ary P ×Q with productions:

Px⃗ Qy⃗

(P ×Q)x⃗y⃗

Parameters are x⃗, y⃗; there are no input variables.

Projection Given an n + 1-ary predicate P , define the n-ary predicate ΣP
with the following production:

Pαx⃗
(ΣP )x⃗

Parameters are x⃗; the input variable is α.
Combining the above construction with abstraction we can project other

arguments than the first. With P as above and i < n + 1, define the n-ary
predicate ΣiP to be Σλxy⃗z⃗. P y⃗xz⃗ where |y⃗| = i and |z⃗| = n− i. This inductive
predicate has the derived rule:

P y⃗αz⃗

(ΣiP )y⃗z⃗

Parameters of the rule are y⃗, z⃗ where |y⃗| = i; input variable is α.

Translation Finally, we can define a translation t from the extended language
to the basic language as follows. We define t to be the identity on atomic
sentences, and put t(¬A) = ¬t(A) (note that the basic language is closed under
negation). For disjunction, given formulas A,B we put

FA∨B := λx⃗.(FA + FB)x⃗x⃗

where x⃗ is a list of all free variables occurring in A,B. Similarly we put:

FA∧B := λx⃗.(FA × FB)x⃗x⃗

For the existential quantifier, given a formula A we put:

F∃zA = ΣiFA

where x⃗zy⃗ is a list of all the free variables of A, |x⃗| = i.
Given a formula A(x⃗) with free variables among x⃗, we take A(u⃗) as an

abbreviation of FAu⃗.

2.3 Non-wellfounded sequent calculus

We now introduce the sequent calculus associated with a language L. Suppose
P is an inductive predicate with a production rule r of the form:

A1 · · · An

P (x⃗, t⃗(x⃗, y⃗))

Then P has the following right sequent calculus rule associated with the i-th
production rule r:

Γ1 ⇒ Θ1, A1[s⃗/x⃗, u⃗/y⃗] · · · Γk ⇒ Θk, Ak[s⃗/x⃗, u⃗/y⃗]
R(P, i)

Γ1, . . . ,Γn ⇒ Θ1, . . . ,Θn, P (s⃗, t⃗(s⃗, u⃗))
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Γ ⇒ ∆ wL
A,Γ ⇒ ∆

A,A,Γ ⇒ ∆
cL

A,Γ ⇒ ∆

Γ, A,Σ ⇒ ∆
pL

A,Γ,Σ ⇒ ∆

Γ ⇒ ∆ wR
Γ ⇒ ∆, A

Γ ⇒ ∆, A,A
cR

Γ ⇒ ∆, A

Γ ⇒ ∆, A,Π
pR

Γ ⇒ ∆,Π, A

Γ ⇒ ∆, A A,Σ ⇒ Π
cut

Γ,Σ ⇒ ∆,Π

Figure 1: Structural rules of the sequent calculus

id
P t⃗⇒ P t⃗

Γ ⇒ ∆, A
¬L

¬A,Γ ⇒ ∆

Γ ⇒ ∆ Sub(σ)
Γ[σ] ⇒ ∆[σ]

A,Γ ⇒ ∆
¬R

Γ ⇒ ∆,¬A

Figure 2: Logical rules of the sequent calculus

The left rule associated with P is:

∆1,Γ[w⃗1/z⃗] ⇒ Θ[w⃗1/z⃗] · · · ∆k,Γ[w⃗k/z⃗] ⇒ Θ[w⃗k/z⃗]
L(P, α⃗)

P (s⃗, u⃗),Γ[u⃗/z⃗] ⇒ Θ[u⃗/z⃗]

where α⃗ is a tuple of eigenvariables and, for each i, if the i-th production rule
for P has premisses A1, . . . , Ak and conclusion P (x⃗, t⃗i(x⃗, α⃗)) then: w⃗i = t⃗i(u⃗, α⃗)
and ∆i = A1[u⃗/x⃗][α⃗/y⃗], ..., Ak[u⃗/x⃗][α⃗/y⃗].

For example, the natural number predicate N has the following right rules:

R(N, 0)
Γ ⇒ Θ, N0

Γ ⇒ Θ, Nt
R(N, 1)

Γ ⇒ Θ, Nst

The left rule for N is:

Γ[0/x] ⇒ Θ[0/X] Nα,Γ[sα/x] ⇒ Θ[sα/x]
L(N,α)

Nt,Γ ⇒ Θ[t/x]

The predicate L for lists of natural numbers has the following right sequent
calculus rules:

R(L, 0)
Γ ⇒ ∆, Lϵ

Γ0 ⇒ ∆0, Ns Γ1 ⇒ ∆1, Lt
R(L, 1)

Γ0,Γ1 ⇒ ∆0,∆1, L(s
⌢t)

Left rule:

Γ[ϵ/x] ⇒ ∆[ϵ/x] Nα,Lβ,Γ[α⌢β/x] ⇒ ∆[α⌢β/x]
L(L,αβ)

Lt,Γ[t/x] ⇒ ∆[t/x]

Besides these rules, the sequent calculus associated with the language L has
the rules displayed in figures 1 and 1. In the axioms id, P is required to be
an ordinary predicate. In the rule Sub(σ), σ is a substitution of L-terms for
variables.

7



We also introduce the following abbreviation for a derived rule:

Γ[τ ] ⇒ Θ[τ ], A[τ ] A,Σ ⇒ Π
app

Γ[τ ],Σ[τ ] ⇒ Θ[τ ],Π[τ ]
:= Γ[τ ] ⇒ Θ[τ ], A[τ ]

A,Σ ⇒ Π
Sub(τ)

A[τ ],Σ[τ ] ⇒ Π[τ ]
cut

Γ[τ ],Σ[τ ] ⇒ Θ[τ ],Π[τ ]

For example:

N0
Nx⇒ Nx ⇒ Lϵ
Nx⇒ L(x⌢ϵ)

app
⇒ L(0⌢ϵ)

Viewed as a program, the right subproof takes an arbitrary natural number
and wraps it as a list (i.e. it is the unit of the list monad applied to N), and
the application of the rule (app) applies this program to the concrete natural
number 0.

By a derivation we mean any tree constructed according to the sequent rules.
We allow derivations to be infinite, which is equivalent to being non-wellfounded
since derivations are finitely branching trees.

Definition 4. A branch of a derivation π is a maximal (finite or infinite) se-
quence (Bi)i<κ of sequents, where κ ≤ ω, such that B0 is the root sequent of π
and Bi+1 is a premiss of Bi whenever i+ 1 < κ.

A trace or thread on a branch (Bi)i<κ of a derivation π is a (finite or infinite)
sequence (Ai)i<κ of formulas such that Ai occurs in Bi, and if i + 1 < k then
either Ai is a side formula occurrence with Ai+1 = Ai, or Ai is the principal
formula of the conclusion and Ai+1 a minor formula of the premiss Bi+1. An
infinite thread (Ai)i<ω is said to be progressive if, for infinitely many i, Ai is
the principal formula of a left rule for some inductive predicate.

Finally, a valid derivation, or just a proof, is a derivation in which every
infinite branch contains at least one progressive thread. A proof is called regular
if it has only finitely many subproofs up to isomorphism. We also refer to regular
proofs as cyclic proofs.

Definition 5. A derivation π is called clean if, whenever an eigenvariable α
appears in a term introduced by a right rule application, then α must appear
in the conclusion of the rule application.

2.4 Proofs as programs

Our aim in this paper is to generalize the grammar-theoretic approach to Herbrand
extraction introduced in [2] to provide a computational interpretation of non-
wellfounded proofs. We will assign higher-order recursion schemes, calledHerbrand
schemes, to sequent calculus proofs. The recursion scheme associated with a
proof can be viewed as a program, and program execution corresponds to term
rewriting.

As a warm-up example consider an inductive predicate S for ‘sum’ with the
following production rules:

Sx0x
Sxyz

Sx(sy)(sz)

8



The following cyclic proof πS can be viewed as a program to compute the sum
of two natural numbers:

⇒ Sx0x
⇒ ∃zSx0z

Ny ⇒ ∃zSxyz †
Nα⇒ ∃zSxαz

Sxαβ ⇒ Sxαβ

Sxαβ ⇒ Sx(sα)(sβ)

Sxαβ ⇒ ∃zSx(sα)z
∃zSxαz ⇒ ∃zSx(sα)z

cut
Nα⇒ ∃zSx(sα)z

Ny ⇒ ∃zSxyz †

This is a finite representation of the non-wellfounded proof obtained by unfold-
ing the graph in which the two sequents labelled (†) are identified. Note that
this is an intuitionistically valid proof, i.e. there are no right applications of
contraction. So we can expect its computational interpretation to be a determ-
inistic program, the extension of which is a function f : N → N (taking the left
argument as a fixed parameter). For classical proofs in general, we get In order
to get a concrete output from the program described by this proof, we have to
apply it to concrete input values via a cut. For example:

N0
Ns0
Nss0

⇒ Sx0x
⇒ ∃zSx0z

Ny ⇒ ∃zSxyz †
Nα⇒ ∃zSxαz

Sxαβ ⇒ Sxαβ

Sxαβ ⇒ Sx(sα)(sβ)

Sxαβ ⇒ ∃zSx(sα)z
∃zSxαz ⇒ ∃zSx(sα)z

cut
Nα⇒ ∃zSx(sα)z

Ny ⇒ ∃zSxyz †
app

⇒ ∃zS(ss0)(ss0)z

Eliminating the cuts yields the finite cut-free proof:

⇒ S(ss0)(0)(ss0)

⇒ S(ss0)(s0)(sss0)

⇒ S(ss0)(ss0)(ssss0)

⇒ ∃zS(ss0)(ss0)z

Here we have applied the program to compute the sum of 2 and 2, and we get
the value 4 as the witness extracted for the existential quantifier. Our perspect-
ive here is that the computational content of the proof πS - its denotational
semantics - is represented by this input-output relationship, i.e. how concrete
witnesses can be extracted from proofs in which it features via applications/cuts.
To make this perspective clear, it is necessary to identify those end sequents for
which it makes sense to expect a proof to provide concrete witnesses.

Definition 6. Given a language L, we define the notion of constructive in-
ductive predicates and constructive formulas by well-founded induction on ≺ as
follows. An inductive predicate P is said to be every constructive if, for every
production rule r associated with P , every premiss Ai of r is P -constructive.
An L-formula A is P -constructive if it is either an ordinary L-formula, or of the
form P t⃗, or of the form Qt⃗ where Q is a constructive inductive predicate. A
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⊥ : Σ

σ : Σ s : ι α ∈ FV
[s/α]σ : Σ

t an L-term σ : Σ
t · σ : ι

Figure 3: Typing rules for substitution stacks and individuals.

formula is said to be constructive if it is either an ordinary L-formula or of the
form P t⃗ where P is a constructive inductive predicate.

Finally, a constructive sequent is a sequent of the form:

A1, . . . , An ⇒ B

where each Ai is either a literal or the negation of a constructive formulas, and
B is constructive.

Note that the natural numbers predicate N and the list predicate L are
both constructive. Furthermore, inductive predicates are closed under projec-
tion (Σi), product (×) and co-product (+), so in the extended language asso-
ciated with L constructive formulas are closed under disjunction, conjunction
and existential quantifier. So constructive formulas contain all Σ1-formulas of
first-order logic. The sequent ⇒ ∃zSx(ss0)z is constructive, but the sequent
Ny ⇒ ∃zSxyz is not.

We also remark that a cut-free proof of a constructive sequent is necessar-
ily well-founded, since it would be impossible for an infinite branch to have a
progressive thread. In that sense, if a computation (cut elimination procedure)
produces a result (i.e. a cut-free proof) then it terminates in a finite number of
steps and produces a finite result.

3 Types and terms

We now introduce the basic type theory on which our computational interpret-
ation by Herbrand schemes will be built.

3.1 Extended terms and substitutions

The first category of types comprises just two ground types:

• ι, the type of individuals.

• Σ, the type of substitution stacks.

Formation rules for terms of the above ground types are displayed in Figure 3.
We will shortly introduce further term constructors of which one, function ap-
plication, provides additional terms of either type above. However, the specific
terms derivable from the the three rules of fig. 3 represent canonical terms of
type ι and Σ.

Definition 7. A substitution stack is any term σ for which the judgement σ : Σ
is derivable using only the typing judgements in fig. 3. Likewise, an extended
L-term is any term t for which the judgement t : ι is derivable using only the
typing judgements in fig. 3.
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⊥ : Σ

σ : Σ s : ι α ∈ EV
[s/α]σ : Σ

t an L -term σ : Σ
t · σ : ι

Figure 4: Typing rules for substitution stacks and individuals.

Thus, substitution stacks are finite lists of the form [sn/αn] · · · [s1/α1]⊥
where αi is an eigenvariable and si : ι for each 1 ≤ i ≤ n, and extended L-
terms are L-terms composed with a substitution stack. The L-terms are thus
identified with extended L-terms t · ⊥. Given substitution stacks σ and τ , we
write στ as shorthand for the substitution stack

στ := [sn/αn] · · · [s1/α1]τ where σ = [sn/αn] · · · [s1/α1]⊥.

Substitution stacks and extended L-terms denote, respectively, substitutions
and L-terms. We now define this interpretation, starting with generalising the
notion of substitution.

Definition 8. A substitution is a partial function θ : Var → Terms(L) from
individual variables to L-terms. The unique substitution with empty domain is
denoted ∅. Application of a substitution θ to an L-term t is denoted t[θ] and
defined in the expected way:

x[θ] =

{
θ(x), if x ∈ dom θ,

x, otherwise,
f(t1, . . . , tn)[θ] = f(t1[θ], . . . , tn[θ]).

Two substitutions θ and θ′ can be combined to form a substitution θ + θ′ with
domain dom θ ∪ dom θ′ which applies the substitution θ if on variables in its
domain and θ′ otherwise:

(θ + θ′)(α) =

{
θ(α), if α ∈ dom θ,

θ′(α), otherwise.

The operation θ, θ′ 7→ θ+ θ′ need not be commutative if dom θ∩ dom θ′ ̸= ∅.
However, if θ and θ′ have disjoint domains, then θ+ θ′ = θ′ + θ. When there is
no cause for confusion, we write [t/α] for the unique substitution with singleton
domain {α} and codomain {t}. Thus, [t/α]+θ denotes the substitution mapping
α to t and β(̸= α) to θ(β).

We can now define the value of an extended individual term and of a sub-
stitution stack, which is to be an L-term and a substitution respectively.

Definition 9. The value of an extended individual term v and stack σ is the
L-term Val(v) and substitution Val(σ) respectively defined by mutual recursion:

Val(⊥) = ∅
Val([u/α]σ) = [Val(u)/α] + Val(σ)

Val(t · σ) = t[Val(σ)]

Proposition 1. For all L-terms t and substitution stacks σ, τ we have Val(στ) =
Val(σ) + Val(τ).

Proof. By induction on the length of the stack σ.

11



3.2 Basic type constructors

Our underlying type theory is given by the typing/ formation rules presented
here. We have a null type □ with the following typing rule:

ε : □

Types are closed under formation of products and function types. The basic
typing rules are:

t : U → V s : U
ts : V

t : U s : V
⟨t, s⟩ : U × V

We also allow products
∏

i∈I Vi and co-products
∐

i∈I Vi indexed by finite
sets. Typing rules for I = {i0, . . . , in−1} are as follows:

t0 : V0 · · · tn−1 : Vn−1

⟨t0, . . . , tn−1⟩ :
∏

i∈I Vi

i ∈ I t : Vi
⟨i, t⟩ :

∐
i∈I Vi

Furthermore, we have function composition:

t : U → V s : V →W
s ◦ t : U →W

Input and output types We have a primitive type associated with each
inductive predicate P , denoted [P ] (output type) and ⟨P ⟩ (input type). We lift
this to an association of types with formulas by: [A] = ⟨A⟩ = □ for a literal
A, [P t⃗] = [P ] and ⟨P t⃗⟩ = ⟨P ⟩ where P is an inductive predicate, and dually
[¬P t⃗] = ⟨P ⟩ and ⟨¬P t⃗⟩ = [P ]. We also have a primitive type S which is the
substitution stack type. Finally, we have a ground type ι, the type of individuals.

Note that we haven’t explicitly defined the input and output types, but
rather take them as primitive. Instead, we will have function terms used to
explicitly link these types to each other.

Constructors and destructors Given an inductive predicate P we let R(P )
denote the set of production rules for P . For each production r of the form:

A0 · · · Ak−1

P (x⃗, t⃗(x⃗, α⃗))

where |α⃗| = m, we associate a constructor κrP of type:

κrP : ιm × [A0]× . . .× [Ak−1] → [P ]

For each index i < k, let D(r, i) denote the type:

(ιm × [A0]× . . .× [Ai−1]× [Ai+1]× . . .× [Ak−1]) → ⟨Ai⟩

We define the type of the destructor δP associated with P , by setting:

δP :

 ∏
r∈R(P ) & i<ar(r)

D(r, i)

 → ⟨P ⟩

12



For example, the ‘list of natural numbers’ predicate has two constructors and a
destructor with the following types:

κ0L : [L]

κ1L : (ι× ι× [N ]× [L]) → [L]

δL :

((
(ι× ι× [L]) → ⟨N⟩

)
×

(
(ι× ι× [N ]) → ⟨L⟩

))
→ ⟨L⟩

The destructor essentially tells us that to provide counter-evidence to some item
being a list, we need two functions. Intuitively, one function takes as argument
a pair of individuals from which the item can be constructed, together with
evidence that the first individual is a natural number, and returns counter-
evidence to the second individual being a list. The second function similarly
takes as arguments two individuals and evidence that the second one is a list,
and returns counter-evidence to the first individual being a natural number.

We also include the ‘null’ constructor ⊥[A] and destructor ⊥⟨A⟩ for each
formula, with the typing axioms:

⊥[A] : [A] ⊥⟨A⟩ : ⟨A⟩

Peirce operator and choice For each formulaA we also associate two special
constructors pA and ∥A which are typed by the rules:

pA : (⟨A⟩ → [A]) → [A]
s : [A] t : [A]

s ∥A t : [A]

The symbol p denotes ‘Peirce’, as the type of these operators is essentially
Peirce’s Law:

((A→ B) → A) → A,

or rather its particular instance (¬A → A) → A. Note that by definition we
have:

p¬A : ([A] → ⟨A⟩) → ⟨A⟩.

The term t∥A s can be read as ‘t or s’, and corresponds to non-deterministic
choice between potential witnesses for A. We will usually drop the subscripts
from ∥A and pA when clear from context.

Together, the Peirce and choice operators are what allow us to provide com-
putational content to the contraction rule.

4 Herbrand schemes

In this section we describe the recursion schemes associated with sequent calcu-
lus proofs. Our aim is to define the recursion scheme H (π) associated with a
given sequent calculus proof π. We assume some familiarity with higher-order
recursion schemes. For background on recursion schemes see [16]. We will use
a variant of recursion schemes involving pattern matching, as in [2].

In the present setting, we define a higher-order recursion scheme very gen-
erally to be a structure S = (N ,T ,V ,R,S) consisting of the following data:

• A set N of typed non-terminal symbols,

13



• A set T of typed terminal symbols,

• A set V of typed variables,

• A set R of rewrite, or production, rules,

• A distinguished start symbol S ∈ N .

Let T be the set of well-typed terms in N ∪T ∪V . Formally, a rewrite rule in
R is a pair (t, s) ∈ T × T were s and t are of the same type. An instance of the
rule (t0, t1) is a pair (t0[σ], t1[σ]) where σ is a type-preserving substitution from
variables to T . We say that t0 one-step rewrites to t1 if (t0, t1) is an instance of
a rewrite rule in R. We write this as t0 −→1 t1. We write t0 −→ t1 and say that
t0 rewrites to t1 if the pair (t0, t1) is in the reflexive, transitive closure of the
one-step rewrite relation. The language L (S ) of a recursion scheme S with
start symbol S is the set of terms t containing no variables or non-terminals
such that S −→ t.

Of course, not every recursion scheme in the sense above corresponds to a
reasonable model of computation. At the very least one should require the set
of rewrite rules to be recursive as well as certain constraints on the form of the
first term in the pair (t, s) ∈ R. Indeed, frequently the rewrites of a higher-order
recursion scheme are required to be of the shape:

Fx0 · · ·xn−1 −→ t

where F is a non-terminal, x0, . . . , xn−1 are pairwise distinct variables of ap-
propriate type and t is a term containing no variables other than the xi.

The more general definition allows for context sensitive rewrites. While the
recursion schemes that we associate with proofs require more general rewrites
than immediately above, these will be still be heavily constrain in compar-
ison to the definition above. In particular, the only context sensitivity utilised
in Herbrand schemes rewrites is pattern matching. Rewrites in the recursion
schemes that follow will have the general form

Ft0 · · · tn−1 −→ t

where ti = fixi,0 · · ·xi,ki
is a term constructor with ki the associated arity, and

all the xi,j are pairwise distinct. Thus, some rewrite rules will depend not only
on the outermost non-terminal but also the shape of its arguments.

Note that we also permit the sets of non-terminals and terminals to be
infinite. This is just a technical convenience; rather than assigning separate sets
of non-terminals and terminals to each proof, it will be simpler to have fixed
sets of non-terminals and terminals with fixed rewrite rules. Essentially, there is
a single infinite ‘universal’ recursion scheme H with no start symbol, and each
individual scheme H (π) is specified by a start symbol and its rewrite rule. In
practice, the recursion scheme associated with a proof will always be equivalent
to one using only finitely many non-terminals, terminals and variables.

The remainder of this section defines the Herbrand scheme H (π̂) associated
to a proof π̂. The terminals of H (π̂) comprise all symbols in the type system
introduced in Section 3.

The non-terminals of H (π̂) comprise the following symbols:

• A start symbol Sπ̂ : [A].
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• A proof non-terminal Fπ
i : Σ → [Λ ⇒i Π] for each subproof π ⊢ Λ ⇒ Π

of π̂ and i < |Λ ⇒ Π|. These non-terminals compute evidence for the i-th
formula occurrence in Λ ⇒ Π from counter-evidence for the remaining
formula occurrences in the sequent.

• Extractor non-terminals EB : [B] → [B] for each formula B that occurs in
π̂.

• Certain helper non-terminals used to express function composition and
combinators and to simulate specific cases of λ-abstraction.

Note that the inclusion of a proof non-terminal for every subproof does
not contradict our recursion schemes being finite in practice, provided that the
proof of which we associate the recursion scheme is regular and that we do
not distinguish between isomorphic subproofs. The remainder of this section
presents the rewrite rules for the above non-terminals, starting with the helper
functions.

4.1 Helper functions

Each of these non-terminals is assigned a single (deterministic) production rule
that simulates a particular aspect of λ-abstraction over the underlying type
system: composition, exchange, redundancy and substitution formation. By
omitting abstraction as a formal constructor, we avoid the need to accommod-
ate β-reduction alongside production rules and to reason about arbitrary λ-
abstractions that cannot be simulated by the recursion scheme. Indeed, the
particular λ-abstractions expressed by these non-terminals are all sub-linear in
the sense that they express abstractions λx t with at most one occurrence of x
in t.

For all types U, V,W and V⃗ = V1, . . . , Vn, the following non-terminals are
included in H (π) with associated production rule:

◦ : (V →W ) → (U → V ) → U →W Sbsα : Σ → ι→ Σ for each α ∈ FV

(x ◦ y)z := ◦xyz −→ x(yz) Sbsα xy −→ [y/α]x

An : (U → V⃗ →W ) → V⃗ → U →W K : U → V → U

An wx⃗z −→ wzx⃗ where |x⃗| = n Kxy −→ x

Despite foregoing λ-abstraction at the formal level, it nonetheless provides a con-
venient notation for expressing terms constructed from the helper non-terminals.
Thus, in the sequel we will more often use the language of λ-calculus than the
above non-terminals. Except where stated otherwise, such notation will be
strictly confined to constructions that are expressible via the above symbols
and other terms/non-terminals.

Here are some examples of this notation:

λv.Fσvx⃗ expands to A|x⃗|(Fσ)x⃗

λv.F([v/α]σ])x⃗ expands to (A|x⃗|Fx⃗) ◦ (Sbsασ)
λv.Fσw⃗x⃗(z(Gσw⃗vx⃗y⃗))y⃗ expands to (A|y⃗|(Fσw⃗x⃗)y⃗) ◦ (z ◦ (A|x⃗y⃗|(Gσw⃗)x⃗y⃗))
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The K-combinator is helpful to express empty λ-abstractions, for example if
t : U → V and x :W then we can express λx.t :W → U → V as t ◦ A0K, since:

(t ◦ A0K)wu −→ t(A0Kwu)

−→ t(Kuw)

−→ tu

For each L-formula A we associate the non-terminal CA, representing ‘generic
evidence’ for A. If A is a literal, we add the rewrite rule:

CA −→ ε

If A is of the form P t⃗ for an inductive predicate P , we add the rewrite rule:

CA −→ κ0P (c⃗0,CA0
0
, . . . ,CA0

k0−1
) ∥ · · · ∥ κm−1

P (c⃗m−1,CAm−1
0

, . . . ,CAm−1
km−1−1

)

where P has m production rules and the i-th production rule has ki premisses
Ai

0, . . . , A
i
ki−1 and |⃗ci| input variables. For example:

CNt −→ κ0N ∥ κ1N (c,CNα)

CLt −→ κ0L ∥ κ1L(c, c,CNα,CLβ)

C(P×Q)u⃗v⃗ −→ κ0P×Q(CPu⃗,CQv⃗)

C(P+Q)u⃗v⃗ −→ κ0P+Q(CPu⃗) ∥ κ1P+Q(CQv⃗)

If A is of the form ¬P t⃗ for an inductive predicate P then we add the rewrite
rule below:

C¬P t⃗ −→ δP ((dr,i)r∈R(P ) & i<ar(r))

where, for each production rule r of the form:

A0 · · · Ak−1
r

P (x⃗, t⃗(x⃗, α⃗))

where ar(r) = k, and for each index i < ar(r), the term dr,i is defined to be:

λz⃗λy0 . . . yi−1yi+1 . . . yk−1.C¬Ai

4.2 Extractors

Each formula B has associated an extractor non-terminal EB : [B] → [B]. These
non-terminals follow a simple behaviour, recursively eliminating instances of
the Peirce operator from their argument and commuting with all other term
builders. When encountering a Peirce term the extractor simply evaluates the
guarded function on generic evidence for the appropriate type. Their only role is
with the start symbol of the Herbrand scheme for which they extract terms suit-
able for a Herbrand disjunction from arbitrary evidence (or counter-evidence)
for a formula. These extractors have the following rewrite rules.

EBε −→ ε EB⊥[B] −→ ⊥[B]

EP t⃗ (κ
i
P u⃗v0 . . . vk−1) −→ κiP u⃗(EA0

v0) . . . (EAk−1
vk−1) EB(x ∥ y) −→ EBx ∥ EBy

E¬P t⃗ (δP (w)) −→ δP (w
′) EB(pz) −→ EB(zC¬B)

E∃xB(exy) −→ ex(EBy) E¬¬Bx −→ EBx
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The above rewrites rely on pattern-matching to determine which rewrite rule
is applicable. The rewrites for EP t⃗ and E¬P t⃗ require further comment: in the
former rewrite rule, we assume that the i-th production rule for P has the k
premisses A0, . . . , Ak−1. In the latter rewrite, w : ⟨P ⟩ is a term of the form:

δP (λz⃗0w0, . . . , λz⃗m−1wm−1)

and w′ is then:

δP (λz⃗0E¬B0w0, . . . , λz⃗m−1E¬Bm−1wm−1)

where wi : ⟨Bi⟩ for each i ∈ {0, . . . ,m− 1}.

4.3 Start symbol

The start symbol Sπ of H (π̂) is associated a single rewrite rule:

Sπ −→ EA

(
Fπ̂
n⊥CA1

· · ·CAn

)
where we assume that the endsequent of π̂ is constructive, i.e. of the form Γ ⇒ A
where A is constructive and Γ = ¬A1, . . . ,¬An where each Ai is constructive.

4.4 Proof non-terminals

Finally, and most importantly, for each proof π with end sequent Λ ⇒ Π and
each index i < |Λ ⇒ Π| there is a non-terminal Fπ

i : Σ → [Λ ⇒i Π]. Each such
non-terminal has the following distinguished rewrite rules, in order to handle
‘undefined’ outputs.

Fπ
i x⃗⊥C y⃗ −→ ⊥⟨A⟩

Fπ
j x⃗⊥C y⃗ −→ ⊥[B]

Here, we suppose that i is an index corresponding to a left formula occurrence
A, j is an index corresponding to a right formula occurrence B, and that the
formula corresponding to the position of the argument ⊥C is either a left or
right occurrence of C. The notation ⊥C is supposed to be understood as ⊥[C]

if C is a left formula occurrence and as ⊥⟨C⟩ for a right formula occurrence.
Since the distinction between ⊥[A] and ⊥⟨A⟩ will not affect the evaluation of
terms, we will sometimes abuse notation writing the more informal ⊥A. This
term should always be read as a term of type [A] or ⟨A⟩, which should be clear
from context.

The remaining production rules associated to Fπ
i are of two kinds:

Inference productions A single production rule for Fπ
i determined com-

pletely by the final inference in π and the immediate subproofs. Production
rules associated with structural inference rules are listed in Figure 1. Only one
such inference production is associated to each proof non-terminal whose gen-
eral shape is determined by whether the i-th formula of Λ ⇒ Π is principal.
The inference production for Fπ

i maps this non-terminal to a term built from
terminals and non-terminals Fπ

j where π0 is an immediate subproof of π. In
some cases, this term will include constant and helper non-terminals. The pro-
duction rule for Fπ

i depends on pattern-matching only if the final inference is a
logical inference and the i is not the index of the principal formula.
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Inference Principal rewrite Non-principal rewrite

π0

Γ ⇒ ∆, A,A
cR

Γ ⇒ ∆, A
Fπ
∗σx⃗ −→ p

(
Fπ0
∗ σx⃗

) ∥∥ p
(
Fπ0
∗′ σx⃗

)
Fπ
i σx⃗z −→ Fπ0

i σx⃗zz

π0

A,A,Γ ⇒ ∆
cL

A,Γ ⇒ ∆
Fπ
∗σx⃗ −→ p

(
F̂π0
∗ σx⃗

) ∥∥ p
(
F̂π0
∗′ σx⃗

)
Fπ
i σzx⃗ −→ Fπ0

i+1σzzx⃗

π0

Γ ⇒ ∆, A,Π
pR

Γ ⇒ ∆,Π, A
Fπ
∗σx⃗y⃗ −→ Fπ0

∗ σx⃗y⃗ Fπ
i σx⃗z −→

{
Fπ0
i σx⃗y⃗, if i < |Γ∆|,

Fπ0
i+1σx⃗y⃗, if i ≥ |Γ∆|.

π0

Π, A,Γ ⇒ ∆
pL

A,Π,Γ ⇒ ∆
Fπ
∗σy⃗x⃗ −→ Fπ0

∗ σy⃗x⃗ Fπ
i σzy⃗x⃗ −→

{
Fπ0
i−1σy⃗zz⃗, if 0 < i ≤ |Π|,

Fπ0
i σy⃗zx⃗, if i > |Π|.

π0

Γ ⇒ ∆ wR
Γ ⇒ ∆, A

Fπ
∗σx⃗ −→ ⊥[A] Fπ

i σx⃗y −→ Fπ0
i σx⃗

π0

Γ ⇒ ∆ wL
A,Γ ⇒ ∆

Fπ
∗σx⃗ −→ ⊥⟨A⟩ Fπ

i σyx⃗ −→ Fπ0
i−1σx⃗

π0

Γ ⇒ ∆, C
π1

C,Λ ⇒ Π
cut

Γ,Λ ⇒ ∆,Π
Fπ
i σx⃗0y⃗x⃗1 −→


Fπ0
i σx⃗(Fπ1

∗ σy⃗), if i < |Γ|,
Fπ0
j σx⃗(Fπ1

∗ σy⃗), if i = |ΓΛ|+ j < |ΓΛ∆|,
Fπ1
j+1σ(F

π0
∗ σx⃗)y⃗, if i = |Γ|+ j < |ΓΛ|,

Fπ1
j+1σ(F

π0
∗ σx⃗)y⃗, if i = |ΓΛ∆|+ j.

Table 1: Production rules for Fπ
i derived from structural inferences. Subscript

∗ denotes the index of the principal formula of π and the corresponding minor
formula/cut formula in the premise(s). In the case of the contraction rules,
indices of the two minor formulas are denoted ∗ and ∗′ respectively. In the
principal rewrite for cL, F̂π0

i σx⃗ abbreviates λv.Fπ0
i σvx⃗ := A|x⃗|(Fπ0

i σ)x⃗.

Internal productions These are production rules associated every proof non-
terminal Fπ

i and applicable whenever at least one argument is guarded by either
the Peirce or choice constant px or x∥y. These productions are listed in Figure 2.
Each ‘consumes’ the matched term constructor and ‘reduce’ the term Fπ

i to one
involving the same non-terminal Fπ

i and, in the case of the Peirce reduction, a
non-terminal Fπ

j for j ̸= i.

Concerning the production rules we observe:

Proposition 2. All non-terminals of H (π) with the exception of proof non-
terminals are deterministic. If two or more productions are applicable to a
term Fπ0

i σu⃗ : [A] (where u⃗ is terminal), i.e. there are terms s ̸= t such that
Fπ0
i σu⃗ : [A] −→1 s and Fπ0

i σu⃗ : [A] −→1 t, then some argument ui has the form
pv or v0 ∥ v1.

In the remainder of the section we give the production rules for proof non-
terminals associated with various logical inference rules.
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Fπ
i σw⃗x⃗(pz)y⃗ −→ p

(
λv.Fπ

i σw⃗x⃗(z(F
π
i+kσw⃗vx⃗y⃗))y⃗

)
for i = |w⃗| and k = |x⃗|

Fπ
i+kσw⃗(pz)x⃗y⃗ −→ p

(
λv.Fπ

i+kσw⃗(z(F
π
i σw⃗x⃗vy⃗))x⃗y⃗

)
for i = |w⃗| and k = |x⃗| > 0

Fπ
i σw⃗(x ∥ y)z⃗ −→ Fπ

i σw⃗xz⃗
∥∥ Fπ

i σw⃗yz⃗

Fπ
i σx⃗⊥y⃗ −→ ⊥

Table 2: Production rules associated to Peirce and choice constructors and
‘undefined’ inputs.

Axiom

Consider an proof consisting of a single axiom:

id
P s⃗⇒ P s⃗

Let π denote the proof above and π0 the trivial subproof comprising the axiom
only. For i ∈ {0, 1} there is a proof non-terminal Fπ0

i of type Σ → □ → □ (since
⟨P s⃗⟩ = [P s⃗] = □). The rewrite in each case is simply Fπ0

i σx −→ ε.

Negation

The first non-trivial logical inference we consider is the right ¬-rule. (The rules
for the left rule are entirely analogous.) Consider a proof π:

π0
A,Γ ⇒ ∆

¬R
Γ ⇒ ∆,¬A

Let the length of Γ and ∆ be m and n respectively. The principal rewrite for
this inference is:

Fπ
m+nσx⃗y⃗ −→ Fπ0

0 σx⃗y⃗

where the i-th variable in x⃗ has the type of evidence for the i-th formula in the
sequence Γ∆¬.

The non-principal rewrites associated to this inference are the following
where z : ⟨¬A⟩ and x⃗ is typed appropriately for the formulas in Γ∆¬ minus
the i-th formula:

Fπ0
i σx⃗z −→ Fπ1

i σzx⃗.

Left rule for inductive predicate

Suppose we are given a proof:

π0 : ∆0,Γ[v⃗0/z⃗] ⇒ Θ[v⃗0/z⃗] · · · πm−1 : ∆m−1,Γ[v⃗m−1/z⃗] ⇒ Θ[v⃗m−1/z⃗]

π : Pu⃗w⃗,Γ[w⃗/z⃗] ⇒ Θ[w⃗/z⃗]

where m is the number of production rules for P . The principal rewrite rule is
given by:

Fπ
∗σx⃗y⃗ −→ δP ((dr,i)r∈R(P ) & i<ar(r))

where, for each production rule r of the form:

A0 · · · Ak−1
r

P (x⃗, t⃗(x⃗, α⃗))
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where ar(r) = k, and for each index i < ar(r), the term dr,i is defined to be:

λz⃗λy0 . . . yi−1yi+1 . . . yk−1.F
πj

i [z⃗/α⃗]σy0 . . . yi−1yi+1 . . . yk−1x⃗.

The (pattern-matching) non-principal rewrite rule is given by:

Fπ
i σ(κ

r
P (v⃗, z0, . . . , zk−1))x⃗y⃗ −→ F

πj

i′ [v⃗ · σ/α⃗]σz0 . . . zk−1x⃗y⃗

where r is the j-th production rule for r and its input variables are α⃗.
As an example, consider a proof using the left rule for the list predicate L:

π1 : Γ[ϵ/x] ⇒ ∆[ϵ/x] π2 : Nα,Lβ,Γ[α⌢β/x] ⇒ ∆[α⌢β/x]

π0 : Lt,Γ[t/x] ⇒ ∆[t/x]

The principal rewrite rule becomes:

Fπ
∗σx⃗y⃗

−→ δL(λuvw.F
π1
∗ [u/α][v/β]σwx⃗y⃗, λuvw.Fπ1

∗+1[u/α][v/β]σwx⃗y⃗)

The non-principal rewrite rule has the following two cases:

Fπ
i σ(κ

0
L)x⃗y⃗ −→ Fπ0

i σx⃗y⃗

FF
π iσ(κ

1
L(u0, v0, u1, v1))x⃗y⃗ −→ Fπ1

i′ [u0/α][u1/β]σv0v1x⃗y⃗

Right rule for inductive predicate

Suppose we are given a proof:

π0 : Γ0 ⇒ Θ0, A0[u⃗/x⃗, v⃗/α⃗] · · · πk−1 : Γk−1 ⇒ Θk−1, Ak−1[u⃗/x⃗, v⃗/α⃗]

π : Γ0, . . . ,Γk−1 ⇒ Θ0, . . . ,Θk−1, P (u⃗, t⃗(u⃗, v⃗))

where the right rule for P is associated with the production rule r of the
form:

A0 · · · Ak−1
r

P (x⃗, t⃗(x⃗, α⃗))

The principal rewrite rule is:

Fπ
∗σx⃗0 . . . x⃗k−1y⃗0 . . . y⃗k−1 −→ κrP (v⃗ · σ,Fπ0

∗ σx⃗0y⃗0, ...,F
πk−1
∗ σx⃗k−1y⃗k−1)

Assuming P has m production rules, and the formula occurrence with index i
in the conclusion corresponds to a minor formula occurrence with index i′ in
the j-th premiss, the non-principal rewrite rule is the pattern-matching rule:

Fπ
i σx⃗0 . . . x⃗k−1y⃗0 . . . y⃗k−1(δP ((zr′,j′)r′∈R(P ) & j′<ar(r′)))

−→ F
πj

i′ σx⃗j y⃗j(zr,j(v⃗ · σ,F
π0
∗ σx⃗0y⃗0, . . . ,F

πj−1
∗ σx⃗j−1y⃗j−1,

F
πj+1
∗ σx⃗j−1y⃗j+1, . . . ,F

πk−1
∗ σx⃗k−1y⃗k−1))

As an example consider the following two proofs using right rules for the list
predicate:

π : Lϵ

π0 : Γ0 ⇒ ∆0, Nt π1 : Γ1 ⇒ ∆1, Ls

π : Γ0,Γ1 ⇒ ∆0,∆1, L(t
⌢s)
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Note that the end sequent of the left proof cannot have any side formulas, since
these would have to be split among the premisses, of which there are none. This
means we have no non-principal rewrite rules corresponding to this proof. We
have the following principal rewrite rule:

Fπ
∗σ −→ κ0L

For the right proof we have the principal rewrite rule:

Fπ
∗σx⃗0x⃗1y⃗0y⃗1 −→ κ1L(t · σ, s · σ,Fπ0

∗ σx⃗0y⃗0,F
π1
∗ σx⃗1y⃗1)

The non-principal rewrite rule is:

Fπ
i σx⃗0x⃗1y⃗0y⃗1(δL(z0, z1)) −→

{
Fπ0

i′ σx⃗0y⃗0(z1(t · σ, s · σ,Fπ1
∗ x⃗1y⃗1)), i left,

Fπ1

i′ σx⃗1y⃗1(z0(t · σ, s · σ,Fπ0
∗ x⃗0y⃗0)), i right.

4.5 Substitution rule

Proof:
π1 : Γ ⇒ ∆

π0 : Γ[τ ] ⇒ ∆[τ ]

The rewrite rule is:

Fπ0
i σu⃗ −→ Fπ1

i σ[τ(x0) · σ/x0] . . . [τ(xk−1) · σ/xk−1]u⃗

where dom(τ) = {x0, . . . , xk−1}.

4.6 Derived sequent rules and rewrite rules

The connectives defined as constructors for inductive predicates in Section 2.2
come with derived sequent rules, for which we have corresponding derived re-
duction rules for proof non-terminals. These are presented below.

Right rule ∨

This rule is an abbreviation:

π1 : Γ ⇒ Aj(u⃗),Θ

π0 : Γ ⇒ (A0 ∨A1)(u⃗),Θ
:=

π1 : Γ ⇒ FAj u⃗,Θ

π′
0 : Γ ⇒ (FA0 + FA1)u⃗u⃗,Θ

π0 : Γ ⇒ (Λx⃗.(FA0
+ FA1

)x⃗x⃗)u⃗,Θ

The derived principal rewrite rule becomes:

Fπ0
∗ σy⃗z⃗ −→ κj∨(F

π1
∗ σy⃗z⃗)

where κj∨(z) abbreviates κΛx⃗.(FA0
+FA1

)x⃗x⃗(κ
j
FA0

+FA1
(z))

The derived non-principal rewrite rule is:

Fπ0
i σy⃗(δ∨(z0, z1))z⃗ −→ Fπ1

i σy⃗zj z⃗

where δ∨(z0, z1) abbreviates δΛx⃗.(FA0
+FA1

)x⃗x⃗(δFA0
+FA1

(z0, z1)).
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Left rule ∨

Abbreviation:

π1 : Γ, A0(u⃗) ⇒ Θ π2 : Γ, A1(u⃗) ⇒ Θ

π0 : Γ, (A0 ∨A1)(u⃗) ⇒ Θ
:=

π1 : Γ, FA0
u⃗⇒ Θ π2 : Γ, FA1

u⃗⇒ Θ

π′
0 : Γ, (FA0

+ FA1
)u⃗u⃗⇒ Θ

π0 : Γ, (Λx⃗.(FA0
+ FA1

)x⃗x⃗)u⃗⇒ Θ

Principal rewrite rule:

Fπ0
∗ σy⃗ −→ δ∨(F

π1
∗ σy⃗,Fπ2

∗ σy⃗)

Non-principal rewrites:

Fπ0
i σx⃗(κ0∨(z))y⃗ −→ Fπ1

i σx⃗zy⃗

Fπ0
i σx⃗(κ1∨(z))y⃗ −→ Fπ2

i σx⃗zy⃗

Right rule for ∃

Abbreviation:

π1 : Γ ⇒ A(u⃗, t, v⃗),Θ

π0 : Γ ⇒ (∃xA)(u⃗, v⃗),Θ
:=

π1 : Γ ⇒ FAu⃗tv⃗,Θ

π0 : Γ ⇒ (ΣiFA)u⃗v⃗,Θ

The principal rewrite rule is:

Fπ0
∗ σx⃗y⃗ −→ κ∃(t · σ,Fπ1

∗ σx⃗y⃗)

where κ∃(z0, z1) abbreviates κΣiFA
(z0, z1) The non-principal rewrite rule is:

Fπ0
j σv⃗(δ∃f)w⃗ −→ Fπ1

j σv⃗fw⃗

where δ∃f abbreviates δΣiFA
(f).

Left rule ∃

Abbreviation:

π1 : Γ, A(u⃗, α, v⃗) ⇒ Θ

π0 : Γ, (∃xA)(u⃗, v⃗) ⇒ Θ
:=

π1 : Γ, FAu⃗αv⃗ ⇒ Θ

π0 : Γ, (ΣiFA)u⃗v⃗ ⇒ Θ

Derived principal rewrite rule:

Fπ0
∗ σv⃗w⃗ −→ δ∃(λx0.F

π1
∗ [x0/α]σv⃗w⃗)

Derived non-principal rule:

Fπ0
j σv⃗(κ∃(s, t))w⃗ −→ Fπ1

j [s/α]σv⃗tw⃗
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Right rule ∧

Abbreviation:

π1 : Γ0 ⇒ A(u⃗),Θ0 π2 : Γ1 ⇒ B(u⃗),Θ1

π0 : Γ0,Γ1 ⇒ (A ∧B)(u⃗),Θ0,Θ1

:=

π1 : Γ0 ⇒ FAu⃗,Θ0 π2 : Γ1 ⇒ FBu⃗,Θ1

π′
0 : Γ0,Γ1 ⇒ (FA × FB)u⃗u⃗,Θ0,Θ1

π0 : Γ0,Γ1 ⇒ (Λx⃗.(FA × FB)x⃗x⃗)u⃗,Θ0,Θ1

Principal rewrite rule:

Fπ0
∗ σx⃗0x⃗1y⃗0y⃗1 −→ κ∧(F

π1
∗ σx⃗0y⃗0,F

π2
∗ σx⃗1y⃗1)

where κ∧(z0, z1) abbreviates κΛx⃗.(FA×FB)x⃗x⃗(κFA×FB
(z0, z1)). Non-principal re-

write rule:

Fπ0
i σx⃗0x⃗1(δ∧(f, g))y⃗0y⃗1 −→

{
Fπ1

i′ σx⃗0(f(F
π2
0 σx⃗1y⃗1))y⃗0 i left index

Fπ2

i′ σx⃗1(g(F
π1
0 σx⃗0y⃗0))y⃗1 i right index

where δ∧(f, g) abbreviates δΛx⃗.(FA×FB)x⃗x⃗(δFA×FB
(f, g)).

Left rule ∧

Abbreviation:

π1 : Γ, A(u⃗), B(u⃗) ⇒ Θ

π0 : Γ, (A ∧B)(u⃗) ⇒ Θ
:=

π1 : Γ, FAu⃗, FBu⃗⇒ Θ

π′
0 : Γ, (FA × FB)u⃗u⃗⇒ Θ

π0 : Γ, (Λx⃗.(FA × FB)x⃗x⃗)u⃗⇒ Θ

Derived principal rewrite rule:

Fπ0
∗ σx⃗y⃗ −→ δ∧(λz0.F

π1
∗ σx⃗zy⃗, λz1.F

π1
∗+1σx⃗z1y⃗)

Derived non-principal rule:

Fπ0
i σu⃗κ∧(s, t)v⃗ −→ Fπ1

i′ σu⃗stv⃗

Here i′ = i if i < ∗ and i′ = i+ 1 if i > ∗.

5 Languages

While Herbrand schemes provide a computational interpretation to any proof,
we will pay special attention to proofs with a constructive end-sequent. For
these proofs, we can derive a final value of the computation, represented by
terms involving non-deterministic choices, analogous to how Herbrand sets can
be extracted from proofs of Σ1 end sequents in first-order logic. Thus the
‘denotational semantics’ of Herbrand schemes associated with arbitrary proofs
will be examined indirectly, in terms of how they contribute to the values of
proofs of constructive end sequents in which they feature via applications of the
cut-rule.
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5.1 Constructive terms and Herbrand expansions

We begin by setting up a grammar for the terms we expect to derive as values
of computations.

Definition 10. The constructive terms are generated by the following grammar:

t, t0, . . . , tn−1 := ε | ⊥A | (t ∥ t) | κiP (u⃗, t0, . . . , tn−1)

here, u⃗ ranges over tuples of extended individual terms, A ranges over construct-
ive formulas and P is an inductive predicate for which we assume that the i-th
production rule has n premisses and |u⃗| input variables.

The simple constructive terms are generated by the following grammar:

t, t0, . . . , tn−1 := ε | ⊥A | κiP (u⃗, t0, . . . , tn−1)

where u⃗ ranges over individual terms.

Definition 11. We extend the definition of the value Val(u) of an extended
individual term u to define the value Val(t) of an arbitrary constructive term
as follows. First, we define Val(u) = {Val(u)} for an extended individual term
u. The recursive definition is then:

• Val(⊥A) := ∅

• Val(ε) := ε

• Val(s ∥ t) := Val(s) ∪Val(t)

• Val(κiP (s⃗, t0, . . . tn−1)) := {κiP (Val(s⃗), t′0, . . . , t′n−1) | t′j ∈ Val(tj)}

Proposition 3. For every constructive term t, the set Val(t) is a finite set of
simple constructive terms.

We can now define the notions of subsumption and equivalence of terms.

Definition 12. An n-ary context C[z0, . . . , zn−1] is a term in which z0, . . . , zn−1

are n distinguished free (typed) variables. Given terms t, s of the same type, we
say that t subsumes s, written s ⊑ t, if for every unary context C[z], whenever
C[s] −→ s′ for some constructive term s′ we have that C[t] −→ t′ for some
constructive term t′ such that Val(s′) = Val(t′). We write t ≡ s and say that t
and s are equivalent if t ⊑ s and s ⊑ t.

The following proposition is immediate:

Proposition 4. If t −→ s then s ⊑ t.

Next we define a notion of Herbrand expansion from constructive terms.

Proposition 5. Every constructive term t is of type [A] for some constructive
formula A.

Proof. Straightforward induction.

Definition 13. We define the relation W (M,V, t, A) (read: ‘t witnesses A in
the model M relative to the assignment V ’) to be the smallest relation between
models, assignments, simple constructive terms and formulas satisfying the fol-
lowing clauses:
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• If M,V ⊨ A and A is a literal, then W (M,V, ε,A).

• Suppose that the i-th production rule for the inductive predicate P is:

B1 · · · Bk

P (x⃗, t⃗(x⃗, y⃗))

with parameters x⃗ and input variables y⃗. If w1, . . . , wk are simple con-
structive terms such that:

– W (M,V,wi, Ai[u⃗/x⃗, v⃗/y⃗]) for each i ∈ {1, . . . , k}, and
– [[s⃗]]VM = [[⃗t(u⃗, v⃗)]]VM ,

then W (M,V, κiP (v⃗, w1, . . . , wk), P s⃗).

Definition 14 (Herbrand expansion). Given a constructive sequent S of the
form Γ ⇒ A and a constructive term t : [A], we say that t is a Herbrand
expansion of the sequent S if for every model M and assignment V such that
M,V ⊨ Γ, there is some term u ∈ Val(t) such that W (M,V, u,A).

5.2 Clean terms and stacks

This section contains some technical definitions and observations concerning
substitution stacks, which will facilitate our investigation of languages associated
with proofs via Herband schemes later on.

Definition 15. The bound variables of a substitution stack σ and extended
individual term t · σ is the set BV(σ) and BV(t · σ) respectively, given by

BV(⊥) = ∅ BV(σ[u/α]) = BV(σ) ∪ {α} BV(t · σ) = BV(σ)

The free variables of an individual term t is the set FV(t) of eigenvariables
occurring in t. For a substitution stack σ and extended individual term t · σ,
the free variables are defined by mutual recursion:

FV(⊥) = ∅
FV(σ[u/α]) = (FV(u) \ BV(σ)) ∪ FV(σ)

FV(t · σ) = (FV(t) \ BV(σ)) ∪ FV(σ)

Definition 16. An extended term t is clean if every extended individual sub-
term s · σ of t is such that FV(s) ⊆ BV(σ). A substitution stack σ is clean if
every extended individual subterm of σ is clean.

A few basic observations about clean substitution stacks follow below.

Proposition 6. If σ is a clean substitution stack then FV (σ) = ∅.

Proposition 7. Let π be a clean proof, let S be the start symbol of H(π) and
let α be an eigenvariable that appears in the end sequent of a subproof π0. If
S −→ t and t has a subterm of the form Fπ0

i σu⃗, then α ∈ BV(σ).

Proof. Just check that all rewrites for rule applications in π preserve this prop-
erty.
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Proposition 8. Let π be a clean proof and S the start symbol of H(π), and
suppose S −→ t. Then every extended individual term and every stack appearing
in t is clean.

Proof. See Appendix A.

Our main task in this subsection is to establish a connection between regular
substitution stacks and actual substitutions performed on regular derivations:

Proposition 9. Let π be any clean proof and τ any substitution stack. Then:

Fπ
i στu⃗ ≡ F

π[Val(σ)]
i τ u⃗

provided στ is a clean substitution stack.

Proof. See Appendix B.

6 Example: pigeonhole principle

In this section we study an example, extracting witnesses for the pigeonhole
principle. Herbrand schemes for first-order logic were used in [2] to study a proof
of the pigeonhole principle in the form: ‘for infinitely many pigeons and at most
two pigeonholes, there must be two pigeons inhabiting the same pigeonhole’.
The proof studied there used a cut on the infinite pigeonhole principle: under the
same assumptions, infinitely many pigeons must inhabit the same pigeonhole.

Here, we approach the formula from a different perspective, instead proving
by induction: ‘for every natural number n, for infinitely many pigeons and at
most n pigeonholes, there must be two pigeons inhabiting the same pigeonhole’.
We then derive the statement for n = 2 via a cut on a canonical proof that 2
is a natural number. The non-wellfounded proof of the general statement also
uses a cut, corresponding to what would be the induction step in a wellfounded
proof of the same statment.

We work in a vocabulary with a constant 0, unary function symbols f, s and
ordinary binary predicates <,≤,=. The inductive predicates considered are the
natural number predicate N , together with those inductive predicates needed
to express quantifiers and connectives. We use the following abbreviations:

• Bxy := ¬∃z(x ≤ z ∧ y < fz)

• F := ∃x∃y(x < y ∧ fx = fy)

The formula Bxy intuitively says that the function f is bounded by y above
x. The formula F is the existential formula we want to extract witnesses for;
if we think of fx as ‘the pigeonhole that pigeon x inhabits’ then it expresses
that two pigeons inhabit the same pigeonhole. We let Γ be a set of Π1-formulas
(i.e. negations of constructive formulas built up from existential quantifiers,
conjunction and disjunction) containing sufficiently many assumptions to prove
some the expected basic laws for the non-logical predicates. For example, the
sequent Γ ⇒ x < y, y < x, x = y should be derivable.
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Below we present the proof that we will analyze, where we have omitted
some subproofs involving only propositional reasoning.

2. N0
1. Ns0

π′

a. Bu0,Γ ⇒ F
π′′

4. Nα,Bu(sα),Γ ⇒ F

3. Nv,Buv,Γ ⇒ F †
app

0. Bus0,Γ ⇒ F

π′:
...

h. Γ ⇒ u ≤ u ∧ 0 < fu, u ≤ su ∧ 0 < fsu, u < su ∧ fu = fsu)

g. Γ ⇒ u ≤ u ∧ 0 < fu, ∃zu ≤ z ∧ 0 < z, fzu < su ∧ fu = fsu)

f. Γ ⇒ ∃zu ≤ z ∧ 0 < fz, ∃zu ≤ z ∧ 0 < fz, u < su ∧ fu = fsu)

e. Bu0,Γ ⇒ ∃zu ≤ z ∧ 0 < fz, u < su ∧ fu = fsu)

d. Bu0, Bu0,Γ ⇒ u < su ∧ fu = fsu)

c. Bu0,Γ ⇒ u < su ∧ fu = fsu)

b. Bu0,Γ ⇒ ∃y(u < y ∧ fu = fy)

a. Bu0,Γ ⇒ F

π′′:

7. Nα,Bβα,Γ ⇒ F †
6. Nα, ∃yByα,Γ ⇒ F

...
17. sγ0 ≤ γ1 ∧ α < fγ1, u ≤ γ0 ∧ α < fγ0, Bu(sα),Γ ⇒ γ0 < γ1 ∧ fγ0 = fγ1

16. sγ0 ≤ γ1 ∧ α < fγ1, u ≤ γ0 ∧ α < fγ0, Bu(sα),Γ ⇒ ∃y(γ0 < y ∧ fγ0 = fy)

15. sγ0 ≤ γ1 ∧ α < fγ1, u ≤ γ0 ∧ α < fγ0, Bu(sα),Γ ⇒ F

14. ∃z(sγ0 ≤ z ∧ α < fz), u ≤ γ0 ∧ α < fγ0, Bu(sα),Γ ⇒ B(sγ0)α, F

13. u ≤ γ0 ∧ α < fγ0, Bu(sα),Γ ⇒ B(sγ0)α, F

12. u ≤ γ0 ∧ α < fγ0, Bu(sα),Γ ⇒ ∃yByα, F
11. ∃z(u ≤ z ∧ α < fz), Bu(sα),Γ ⇒ ∃yByα, F

10. Bu(sα),Γ ⇒ Buα,∃yByα, F
9. Bu(sα),Γ ⇒ ∃yByα,∃yByα, F

8. Bu(sα),Γ ⇒ ∃yByα, F
cut

5. Nα,Bu(sα),Γ,Γ ⇒ F, F

4. Nα,Bu(sα),Γ ⇒ F

We now show how to derive a Herbrand set for F from the Herbrand scheme
associated with this proof. For readability we will suppress subscripts indicating
the types of extractor non-terminals, constant non-terminals and the Peirce
operator. We assume that |Γ| = l, and we use the symbol ? to hide any terms
that will not be relevant to the witness extraction. We start with the main
calculation from the start symbol S:

S −→ E(F0
l+1⊥CC⃗)

−→ E(F3
l+2[s0/v](F

1
0⊥)CC⃗)

−→ E(F3
l+2[s0/v](κ

1
N (0, κ0N ))CC⃗)

−→ E(F4
l+2[0/α][s0/v](κ

0
N )CC⃗)

−→ E(F5
2l+2[0/α][s0/v](κ

0
N )CC⃗C⃗C) ∥ E(F5

2l+3[0/α][s0/v](κ
0
N )CC⃗C⃗C)
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Put σ := [0/α][s0/v]. We continue with the left terms as Continuation 1:

E(F5
2l+2σ(κ

0
N )CC⃗C⃗C)

−→ E(F6
l+2σ(κ

0
N )(F8

l+1σCC⃗C)C⃗)

−→ E(F6
l+2σ(κ

0
N )(p(λz.F9

l+1σCC⃗zC) ∥ p(λz.F9
l+2σCC⃗zC))C⃗)

−→ E(F6
l+2σ(κ

0
N )(p(λz.F9

l+1σCC⃗zC))C⃗) ∥ E(F6
l+2σ(κ

0
N )(p(λz.F9

l+2σCC⃗zC))C⃗)

Continuation 1.a:

E(F6
l+2σ(κ

0
N )(p(λz.F9

l+1σCC⃗zC))C⃗)

−→ E(F6
l+2σ(κ

0
N )(F9

l+1σCC⃗(F
6
1σ(κ

0
N )C⃗C)C)C⃗)

−→ E(F6
l+2σ(κ

0
N )(κ∃(u · σ, ?))C⃗)

−→ E(F7
l+2[u · σ/β]σ(κ0

N )(?)C⃗)

−→ E(F3
l+2[β/u][α/v][u · σ/β]σ(κ0

N )(?)C⃗)

−→ E(Fa
l+1[β/u][α/v][u · σ/β]σ(?)C⃗)

−→ κ∃(u · [β/u][α/v][u · σ/β]σ, κ∃(su · [β/u][α/v][u · σ/β]σ, ?))
≡ κ∃(u, κ∃(su, ?))

Continuation 1.b:

E(F6
l+2σ(κ

0
N )(p(λz.F9

l+2σCCC⃗zC))C⃗)

−→ E(F6
l+2σ(κ

0
N )(F9

l+2σCC⃗(F
6
1σ(κ

0
N )C⃗C)C)C⃗)

−→ E(F6
l+2σ(κ

0
N )(F9

l+2σCC⃗(δ∃(λz.F
7
1[z/β]σ(κ

0
N )y⃗C))C)C⃗)

−→ E(F6
l+2σ(κ

0
N )(F10

l+2σCC⃗(F
7
1[u · σ/β]σ(κ0

N )C⃗C)C)C⃗)

−→ E(F6
l+2σ(κ

0
N )(F10

l+2σCC⃗(F
3
1[β/u][α/v][u · σ/β]σ(κ0

N )C⃗C)C)C⃗)

−→ E(F6
l+2σ(κ

0
N )(F10

l+2σCC⃗(F
a
0 [β/u][α/v][u · σ/β]σC⃗C)C)C⃗)

−→ E(F6
l+2σ(κ

0
N )(F10

l+2σCC⃗(κ∃(u · [β/u][α/v][u · σ/β]σ, ?) ∥ κ∃(su · [β/u][α/v][u · σ/β]σ, ?)C)C⃗)

≡ E(F6
l+2σ(κ

0
N )(F10

l+2σCC⃗(κ∃(u, ?) ∥ κ∃(su, ?)C)C⃗)

−→ E(F6
l+2σ(κ

0
N )(F11

l+2σ(κ∃(u, ?) ∥ κ∃(su, ?)σCC⃗C)C⃗)

−→ E(F6
l+2σ(κ

0
N )(F12

l+2[u/γ0]σ?σCC⃗C ∥ F12
l+2[su/γ0]σ?σCC⃗C)C⃗)

−→ E(F6
l+2σ(κ

0
N )(κ∃(sγ0 · [u/γ0]σ, F

13
l+2[u/γ0]σ?σCC⃗C) ∥ κ∃(sγ0 · [su/γ0]σ, F

13
l+2[su/γ0]σ?σCC⃗C)C⃗)

−→ E(F6
l+2σ(κ

0
N )(κ∃(sγ0 · [u/γ0]σ, F

13
l+2[u/γ0]σ?σCC⃗C))C⃗) ∥ E(F6

l+2σ(κ
0
N )(κ∃(sγ0 · [su/γ0]σ, F

13
l+2[su/γ0]σ?σCC⃗C))C⃗)

≡ E(F6
l+2σ(κ

0
N )(κ∃(su, F

13
l+2[u/γ0]σ?σCC⃗C))C⃗) ∥ E(F6

l+2σ(κ
0
N )(κ∃(ssu, F

13
l+2[su/γ0]σ?σCC⃗C))C⃗)

−→ E(F7
l+2[su/β]σ(κ

0
N )(F13

l+2[u/γ0]σ?σCC⃗C)C⃗) ∥ E(F7
l+2[ssu/β]σ(κ

0
N )(F13

l+2[su/γ0]σ?σC⃗C)C⃗)

−→ E(F3
l+2[α/v][β/u][su/β]σ(κ

0
N )(F13

l+2[u/γ0]σ?σCC⃗C)C⃗) ∥ E(F3
l+2[α/v][β/u][ssu/β]σ(κ

0
N )(F13

l+2[su/γ0]σ?σCC⃗C)C⃗)

−→ E(Fa
l+1[α/v][β/u][su/β]σ(F

13
l+2[u/γ0]σ?σCC⃗C)C⃗) ∥ E(Fa

l+1[α/v][β/u][ssu/β]σ(F
13
l+2[su/γ0]σ?σCC⃗C)C⃗)

−→ κ∃(u · [α/v][β/u][su/β]σ, κ∃(su · [α/v][β/u][su/β]σ, ?)) ∥ κ∃(u · [α/v][β/u][ssu/β]σ, κ∃(su · [α/v][β/u][ssu/β]σ, ?))
≡ κ∃(su, κ∃(ssu, ?)) ∥ κ∃(ssu, κ∃(sssu, ?))
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Returning to the main calculation, we rewrite the right term as Continuation 2:

E(F5
2l+3σ(κ

0
N )CC⃗C⃗C)

−→ E(F8
l+2σCC⃗(F

6
1σ(κ

0
N )C⃗C))

−→ E(F8
l+2σxy⃗(δ∃(λw.F7

1[w/β]σ(κ
0
N )C⃗C)))

−→ E(F9
l+3σCC⃗(δ∃(λw.F7

1[w/β]σ(κ
0
N )C⃗C)(δ∃(λw.F7

1[w/β]σ(κ
0
N )C⃗C)))

−→ E(F10
l+3σCC⃗(F

7
1[u · σ/β]σ(κ0

N )C⃗C)(δ∃(λw.F7
1[w/β]σ(κ

0
N )C⃗C)))

−→ E(F11
l+3σ(F

7
1[u · σ/β]σ(κ0

N )C⃗C)CC⃗(δ∃(λw.F7
1[w/β]σ(κ

0
N )C⃗C)))

−→ E(F11
l+3σ(F

3
1[α/v][β/u][u · σ/β]σ(κ0

N )y⃗C)CC⃗(δ∃(λw.F7
1[w/β]σ(κ

0
N )C⃗C)))

−→ E(F11
l+3σ(F

a
0 [α/v][β/u][u · σ/β]σC⃗C)CC⃗(δ∃(λw.F7

1[w/β]σ(κ
0
N )C⃗C)))

−→ E(F11
l+3σ(κ∃(u · [α/v][β/u][u · σ/β]σ, ?) ∥ κ∃(su · [α/v][β/u][u · σ/β]σ, ?)CC⃗(δ∃(λw.F7

1[w/α]σ(κ
0
N )C⃗C)))

≡ E(F11
l+3σ(κ∃(u, ?) ∥ κ∃(su, ?))CC⃗(δ∃(λw.F7

1[w/β]σ(κ
0
N )C⃗C)))

−→ E(F12
l+3[u/γ0]σ?CC⃗(δ∃(λw.F7

1[w/α]σ(κ
0
N )C⃗C))) ∥ E(F12

l+3[su/γ0]σ?CC⃗(δ∃(λw.F7
1[w/β]σ(κ

0
N )C⃗C)))

−→ E(F13
l+3[u/γ0]σ?Cy⃗(F

7
1[sγ0 · [u/γ0]σ/β]σ(κ

0
N )C⃗C))) ∥ E(F13

l+3[su/γ0]σ?CC⃗(F
7
1[sγ0 · [su/γ0]σ/β]σ(κ

0
N )C⃗C)))

≡ E(F13
l+3[u/γ0]σ?CC⃗(F

7
1[su/β]σ(κ

0
N )C⃗C))) ∥ E(F13

l+3[su/γ0]σ?CC⃗(F
7
1[ssu/β]σ(κ

0
N )C⃗C)))

−→ E(F13
l+3[u/γ0]σ?CC⃗(κ∃(u · [α/v][β/u][su/β]σ, ?) ∥ κ∃(su · [α/v][β/u][su/β]σ, ?))

∥ E(F13
l+3[su/γ0]σ?CC⃗(κ∃(u · [α/v][β/u][ssu/β]σ, ?) ∥ κ∃(su · [α/v][β/u][ssu/β]σ, ?))))

≡ E(F13
l+3[u/γ0]σ?CC⃗(κ∃(su, ?) ∥ κ∃(ssu, ?)) ∥ E(F13

l+3[su/γ0]σ?CC⃗(κ∃(ssu, ?) ∥ κ∃(sssu, ?)))

−→ E(F14
l+3[u/γ0]σ(κ∃(su, ?) ∥ κ∃(ssu, ?))?CC⃗ ∥ E(F14

l+3[su/γ0]σ(κ∃(ssu, ?) ∥ κ∃(sssu, ?))?CC⃗)

−→ E(F15
l+3[su/γ1][u/γ0]σ??CC⃗ ∥ E(F15

l+3[ssu/γ1][u/γ0]σ??CC⃗

∥ E(F15
l+3[ssu/γ1][su/γ0]σ??CC⃗ ∥ E(F15

l+3[sssu/γ1][su/γ0]σ??CC⃗

−→ κ∃(γ0 · [su/γ1][u/γ0]σ, κ∃(γ1 · [su/γ1][u/γ0]σ, ?))

∥ κ∃(γ0 · [ssu/γ1][u/γ0]σ, κ∃(γ1 · [ssu/γ1][u/γ0]σ, ?))

∥ κ∃(γ0 · [ssu/γ1][su/γ0]σ, κ∃(γ1 · [ssu/γ1][su/γ0]σ, ?))

∥ κ∃(γ0 · [sssu/γ1][su/γ0]σ, κ∃(γ1 · [sssu/γ1][su/γ0]σ, ?))

≡ κ∃(u, κ∃(su, ?)) ∥ κ∃(u, κ∃(ssu, ?)) ∥ κ∃(su, κ∃(ssu, ?)) ∥ κ∃(su, κ∃(sssu, ?))

Gathering these results up we can now conclude that the computation has ex-
tracted the following five pairs of witnesses for the variables x, y:

x y
1 u su
2 su ssu
3 ssu sssu
4 u ssu
5 su sssu

7 Multicut analysis

In this section we introduce the multicut rule, which will form the basis of the
approach to cut-elimination we will follow.

7.1 Multicut instances

It will be convenient to regard a formula occurrence in a sequent formally as
a pair (S, i) where S is a sequent and i is an index indicating the i-th formula
occurrence in the sequent. We write p(S, i) = 0 if (S, i) is a left formula occur-
rence and p(S, i) = 1 if (S, i) is a right formula occurrence. Given a formula
occurrence (S, i) we write S[i] for the i-th formula in the sequent S. So we can
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think of formula occurrences as ‘addresses’ of formulas appearing in sequents,
and the operation S[−] retrieves the actual formula from its address. The length
|S| of a sequent S = Γ ⇒ ∆ is |Γ|+ |∆|.

Definition 17. A quasi-instance of multicut is a pair (S,▽) where S is a non-
empty finite multi-set of sequents and ▽ is a symmetric binary relation over
the set of formula occurrences from sequents in S. Given sequents S,U we write
S ▽ U if there are i, j such that (S, i) ▽ (U, j). The (undirected) graph with
vertices S and edges {S, S′} such that S ▽ S′ is called the cut graph of the
multicut quasi-instance, and denoted G(S,▽).

A multicut quasi-instance (S,▽) is called an instance of multicut if the
following constraints are satisfied:

• The cut graph G(S,▽) is a tree, i.e. connected and acyclic.

• For each formula occurrence (S, i) there is at most one formula occurrence
(U, j) such that (S, i)▽ (U, j).

• For each pair of sequents S,U , there is at most one formula occurrence
(S, i) and at most one formula occurrence (U, j) such that (S, i)▽ (U, j).

• If (S, i)▽ (U, j) then:

– S[i] = U [j], and

– p(S, i) = 1− p(U, j).

If there is some (U, j) with (S, i)▽(U, j) then we call (U, j) the cut companion
of (S, i). A formula occurrence (S, i) is said to be a cut formula occurrence of a
multicut if it has a cut companion and a side formula occurrence otherwise.

If (S,▽) is a multicut instance, we say that the inference with sequents S as
premises and the associated cut relation ▽, written in short-hand as:

(S,▽)

U

where U is some sequent, is valid, if there is a one-to-one map f from for-
mula occurrences (U, i) for i < l(U) to side formula occurrences in the multicut
instance. We often speak rather informally of the formula occurrence corres-
ponding to (U, i) in the multicut, by which we mean f(U, i) for some map f
which we usually leave implicit.

Definition 18. We say that a formula occurrence (S, i) directly depends on a
formula occurrence (U, j), written (U, j) ≺ (S, i), if there is some k < l(S) with
k ̸= i and (U, j)▽ (S, k). We say that (S, i) depends on (U, j) if (U, j) ≺+ (S, i),
where ≺+ denotes the transitive closure of ≺.

Intuitively, (S, i) directly depends on (U, j) if an output for the latter is
needed as input for the calculation of an output for the former. As a direct
consequence of the definition of a multicut instance, the dependency relation is
well-founded.

An alternative formulation of dependency may help to clarify it. Given a
multicut instance (S,▽) and two distinct sequents S,U ∈ S, there must be a
unique sequence of formula occurrences:

(S, i0)▽ (V1, jn) ̸= (V1, in)▽ . . .▽ (Vn−1, in−1) ̸= (Vn−1, jn−1)▽ (U, in)
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We write link(S,U) for the index i0 and, conversely, link(U, S) for the index in.
The following proposition is proved in the companion paper [1].

Proposition 10. Given two formula occurrences (S, i) and (U, j) with S ̸= U ,
we have (S, i) ≺+ (U, j) if and only if i = link(S,U) and j ̸= link(U, S).

An extended multicut instance (S,▽, π) is an instance of multicut together
with an assignment π of a multicut-free (but not necessarily cut-free) proof πS
to each sequent S ∈ S. Given an extended multicut instance we define the
canonical input term I(S, i) and the canonical output term O(S, i) associated
with a formula occurrence (S, i) by well-founded induction on ≺:

• If (S, i) is a left side formula occurrence of the multicut, then I(S, i) =
CS[i].

• If (S, i) is a right side formula occurrence of the multicut, then I(S, i) =
C¬S[i].

• If (S, i) has cut companion (U, j) then I(S, i) = O(U, j).

• O(S, i) = FπS
i ⊥I(S, 0) . . . I(S, i− 1)I(S, i+ 1) . . . I(S, l(S)− 1)

Note that this definition is indeed by well-founded induction, as each term I(S, j)
for j ̸= i is either a constant non-terminal or given recursively as O(U, k) for
(U, k)▽ (S, j) and hence (U, k) ≺ (S, i). We extend the notation πS for S ∈ S
by writing also πS0 for the subtree of πS generated by S0, if S0 is a premise of
S in πS .

7.2 Multicut guarded proofs

Definition 19. Let π be any regular proof. The end piece of π is the smallest
sub-tree πep of π containing the end sequent and closed under premises of all
rules except cut and multicut. Given a sequent S in πep, define πep|S to be the
part of πep containing all sequents from the end sequent of π up to and including
S. We say that π is multicut guarded if each leaf of πep is either an instance
of the axiom id, or the conclusion of a nullary inference rule for an inductive
predicate, or the conclusion of a multicut rule.

Definition 20. Let π be a multicut guarded regular proof of a constructive
end sequent. For each sequent S belonging to πep, and each index i < l(S), we
define the target term T (S, i, π) by well-founded induction on the descendant
relation in the tree πep. For the base case, where S is a leaf in πep, there are
two possible cases: either S is an axiom, or the conclusion of a nullary right
inference rule, or S is the conclusion of a multicut. If S is an axiom then it
consists of two occurrences of the same formula, which is a literal. We set
T (S, i, π) = ε for i ∈ {0, 1}. If S is the conclusion of a nullary inference rule
for an inductive predicate P , then since the end sequent is constructive this
inference rule must be the right rule associated with some nullary production
rule r for the predicate and the sequent contains only the principal formula of
the rule. So we set T (S, 0, π) = κrP .

The remaining case is where S is the conclusion of a multicut. We can define
an extended multicut instance (S,▽, π′) by letting S consist of the premises of
the multicut, with the relation ▽ given as specified by the multicut, and letting

31



π′ assign to each premise U the corresponding generated sub-proof of π. We
define T (S, i, π) = O(S′, i′), where (S′, i′) is the side formula occurrence of the
multicut corresponding to (S, i).

Now suppose S has at least one premiss belonging to πep. Then S is the
conclusion of a rule for an inductive predicate, or a structural rule other than
cut. Given that S has n premisses, let S0, . . . , Sn−1 be the premisses of S, with
S0 thus denoting the unique premise if the rule used was unary and S0, S1 being
the left and right premisses of a binary rule. We define T (S, i, π) by a case
distinction on the rule used:

Weakening: Put T (S, ∗, π) = ⊥A for the principal index, where the principal
formula is A. For other indices we put T (S, i, π) = T (S′, i′, π) where
(S′, i′) is the formula occurrence associated with (S, i) via the weakening
inference.

Contraction: Put T (S, ∗, π) = T (S0, ∗, π) ∥ T (S0, ∗ + 1, π) for the principal
index. For a non-principal index put T (S, i, π) = T (S0, i

′, π) where i′ is
the corresponding index in the premise.

Exchange: Assume the exchanged formulas have indices i, j, put T (S, i, π) =
T(S0, j, π), T (S, j, π) = T (S0, i, π) and T (S, k, π) = T (S0, k, π) for k /∈
{i, j}.

Substitution rule: If S is the conclusion of the substitution rule with substi-
tution σ we put T (S, i, π) = T (S0, i, π[σ]).

Left or right ¬-rule: In each case we set T (S, i, π) = T (S0, i
′, π) where (S0, i

′)
is either the side formula occurrence associated with (S, i), or (S, i) is the
principal formula and (S0, i

′) the minor formula of the rule application.

Right IP-rule: Assuming the right rule is associated with production rule r
for predicate P , for the principal index put:

T (S, ∗, π) = κP (⃗t, T (S0, ∗0, π), . . . , T (Sn−1, ∗n−1, π))

where t⃗ are the witnesses for the input variables used in the rule application
and ∗i is the index of the minor formula of the i-th premiss. For a non-
principal index i put T (S, i, π) = T (Sj , i

′, π) where (Sj , i
′) is the formula

occurrence associated with (S, i).

The case of a left rule for an inductive predicate cannot occur since the end
sequent was assumed to be constructive.

For a proof π of a constructive sequent S, which we recall is of the form
Γ ⇒ A with a single constructive formula on the right (and negated constructive
formulas on the left), we abbreviate T (S, i, π) by T (π), where i the index of the
right-most formula. Note that target terms are always constructive terms.

Definition 21. The guarded version of a regular proof π is the proof π′ obtained
by replacing every bottom-most cut in π by a multicut with the same premises.
We say that the proof π reduces to the proof π∗ via multicut reductions if its
guarded version does.
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Proposition 11. Let π be a proof with constructive end-sequent S of the form
Γ ⇒ A, and let π′ be its guarded version. Then:

Sπ ⊒ T (π′)

Definition 22. A proof is said to be essential-cut-free if every cut formula in
a cut or multicut appearing in the proof is a literal.

Note that any essential-cut-free proof is multicut guarded.

Proposition 12. Let π be an essential-cut-free proof of a constructive end-
sequent S. Then T (π) is a Herbrand expansion of S.

Proof. The crucial thing to note is that an essential-cut-free proof of a construct-
ive end-sequent must be a finite (wellfounded) proof, since an infinite branch
could satisfy the trace condition required for validity. With this observation in
place, the argument proceeds by a straightforward induction on the size of the
proof π.

7.3 Cut reductions and permutations

In this section we introduce reduction and permutation rules for multicuts, and
show how these can be simulated by Herbrand schemes. For the structural
rules, in particular the non-trivial cases of reduction rules for contraction and
weakening on cut formulas, we refer the reader to the companion paper [1]
where these cases have already been dealt with. The treatment in the case of
non-wellfounded proofs is precisely the same. (Binary cuts are handled by a
reduction that simply merges these with a multicut.)

The rules for negation are rather trivial and are omitted. The remaining
cases that we need to cover are: a reduction rule for cuts in which some premiss
is a conclusion of the substitution rule, a reduction rule for cuts on principal
formulas of rules for inductive predicates, and finally, left and right permutation
rules for inductive predicate rules with principal formulas occurring as side
formulas to the cut.

7.3.1 Reduction of substitution rule

We first consider a reduction rule for mulicuts in which one of the premisses is
the conclusion of the substitution rule. Here is a visualization of the reduction:

...
Σ ⇒ Π

τ
Σ[τ ] ⇒ Π[τ ] · · ·

▽
Γ ⇒ ∆

⇒

...[τ ]

Σ[τ ] ⇒ Π[τ ] · · ·
▽

Γ ⇒ ∆

For the precise definition, suppose (S,▽, π) is an extended multicut instance
in which the sequent S is the conclusion of an instance of Sub(τ) for some substi-
tution τ and premiss S0. We define the reduced multicut instance (S∗,▽∗, π∗)
as follows: we set S∗ = S, ▽∗ = ▽ and define: π∗

S = π0[σ] where π0 is the
subproof of πS generated by S0. For U ∈ S \ {S} we set π∗

U = πU .
Given a formula occurrence (U, i) with U ∈ S and a formula occurrence

(V, j) with V ∈ S∗, let us denote the canonical output term of (U, i) regarded
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as a formula occurrence of the multicut instance (S,▽, π) by O(U, i) and the
canonical outout term of (V, j) regarded as a formula occurrence of the reduced
multicut instance (S∗,▽∗, π∗) by O∗(V, j). We shall continue to follow this
notational convention for the other cases below.

Proposition 13. For each formula occurrence (U, i) with U ∈ S, we have
O(U, i) ⊒ O∗(U, i).

Proof. This is a fairly straightforward argument, in which we handle the case
where U = S by combining the rewrite rule associated with the substitution
rule with Proposition 9.

7.3.2 Reduction on IP-rules

We first define the reduction. Suppose the extended multi-cut instance to be
reduced is (S,▽, π), and suppose the principal formula occurrences are (L0, l)
and (R0, r), where (L0, l) is a left formula occurrence, (R0, r) is a right formula
occurrence, and L[l] = R[r] = P (u⃗, t⃗(u⃗, v⃗)). For simplicity we assume that
r = |R0| and l = 0. Suppose R0 is the conclusion of the right rule associated
with the p-th production rule for P and the premisses of R0 are R′

0, . . . , R
′
m−1

with Rj [r] = Aj [u⃗/x⃗, v⃗/α⃗] for j < m. Suppose the premiss of L0 associated
with the same production rule is L1 with L1[j] = Aj [u⃗/x⃗] for j < m and
L1[j + m] = L0[j + 1] for j < r. We define the reduced extended multi-cut
instance (S∗,▽∗, π∗) as follows:

• Replace R0 by R′
0, . . . , R

′
m−1 and L0 by L1. For j < m we set π∗

R′
j
to be

the subproof of πR0
generated by R′

j , and π∗
L1

is obtained by uniformly
substituting v⃗ for α⃗ in the subproof of L0 generated by L1.

• All other sequents in S are carried over as they are to S∗.

• The relation ▽∗ is defined as the smallest symmetric relation satisfying
the following conditions:

– (L1, j)▽∗ (R′
j , r) for j < m.

– (S, i)▽∗ (U, j) for all formula occurrences (S, i)▽ (U, j) with S,U /∈
{L0, R0}.

– If (S, i)▽ (L0, j) and S ̸= R0 then (S, i)▽∗ (L1,m+ j).

– If (S, i)▽ (R0, j) and S ̸= L0 then (S, i)▽∗ (Ri′ , j
′), where (Ri′ , j

′) is
the formula occurrence associated with the side formula occurrence
(R0, j) in the right rule application.

This definition corresponds to a reduction rule for a proof ending with a
multi-cut:

(S,▽, π)
Γ ⇒ ∆

⇒ (S∗,▽∗, π∗)

Γ ⇒ ∆

Visualization:

· · ·

...
Σ0 ⇒ Π0, A0[u⃗/x⃗, v⃗/α⃗] · · ·

...
Σk−1 ⇒ Πm−1, Am−1[u⃗/x⃗, v⃗/α⃗]

Σ0, . . . ,Σm−1 ⇒ Π0, . . . ,Πm−1, P (u⃗, t⃗(u⃗, v⃗))

· · ·

...
A0[u⃗/x⃗], . . . , Am−1[u⃗/x⃗],Σ′ ⇒ Π′

P (u⃗, t⃗(u⃗, v⃗)),Σ′ ⇒ Π′
▽

Γ ⇒ ∆
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⇓

· · ·

...
Σ0 ⇒ Π0, A0[u⃗/x⃗, v⃗/α⃗] · · ·

...
Σm−1 ⇒ Πm−1, Am−1

.....
[v⃗/α⃗]

A0[u⃗/x⃗, v⃗/α⃗], . . . , Am−1[u⃗/x⃗, v⃗/α⃗],Σ′ ⇒ Π′
▽∗

Γ ⇒ ∆

Proposition 14. Let (S, i) be any side formula occurrence with S ∈ S.

1. If S = L0 then O(L0, i) ⊐ O∗(L1,m+ i).

2. If S = R0 then O(R0, i) ⊐ O∗(R′
j , i

′) where (R′
j , i

′) is the formula occur-
rence associated with (R0, i) in the right rule application.

3. If S /∈ {L0, R0} then O(S, i) ⊐ O∗(S, i).

Proof. See Appendix C.

7.3.3 Right rule permutation

Suppose we are given the extended multi-cut instance (S,▽, π), and suppose the
principal formula occurrence of a right rule for predicate P , corresponding to
the k-premiss production rule r, is the side formula occurrence (S, p), where the
premisses of S are S0, . . . , Sk−1. Suppose S contains m cut formula occurrences
(S, i0), . . . , (S, im−1). For each i ∈ {i0, . . . , im−1}, let Si denote:

{V ∈ S | link(V, S) = i}

Note that Si is disjoint with Sj whenever i ̸= j.
For each j ∈ {0, . . . , k−1} we define an extended multi-cut instance (S∗j ,▽∗

j , π
∗
j )

• S∗j the union of {Sj} and all sets Si where i ∈ {i0, . . . , im−1} and the
formula occurrence (S, i) is associated with some formula occurrence in Sj .
Note that in the case where Sj contains no formula occurrences associated
with any cut formula occurrences, S∗j = {Sj}.

• Set ▽∗
j to be the smallest symmetric relation such that:

– If (S, i)▽ (U, i′) and (S, i) is associated with the formula occurrence
(Sj , i

′′) then (Sj , i
′′)▽∗

j (U, i
′).

– If U, V ∈ Si for some i and (U, i′)▽ (V, i′′) then (U, i′)▽∗
j (V, i

′′).

• π∗
j is defined by taking generated subproofs as expected.

This construction corresponds to a cut permutation rule of the following
shape: we make the conclusion of the multi-cut instead the conclusion of the
right rule of which S was the conclusion, and we make the j-th premiss of
this rule the conclusion of the extended multi-cut instance (S∗j ,▽∗

j , π
∗
j ). Here

is an illustration of the cut permutation rule for a concrete case involving the
predicate for lists of natural numbers:

...
Γ ⇒ A,Nu

...
Π ⇒ B,Lv

Γ,Π ⇒ A,B,L(u⌢v)

...
A ⇒ ∆

...
B ⇒ Θ

▽
Γ,Π ⇒ ∆,Θ, L(u⌢v)

⇓
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...
Γ ⇒ A,Nu

...
A ⇒ ∆

▽
Γ ⇒ ∆, Nu

...
Π ⇒ B,Lv

...
B ⇒ Θ

▽
Π ⇒ Θ, Lv

Γ,Π ⇒ ∆,Θ, L(u⌢v)

A second illustration in which the cut formulas are distributed differently among
the premisses of the right rule:

...
Γ ⇒ Nu

...
Π ⇒ A,B,Lv

Γ,Π ⇒ A,B,L(u⌢v)

...
A ⇒ ∆

...
B ⇒ Θ

▽
Γ,Π ⇒ ∆,Θ, L(u⌢v)

⇓
...

Γ ⇒ Nu ▽
Γ ⇒ Nu

...
Π ⇒ A,B,Lv

...
A ⇒ ∆

...
B ⇒ Θ

▽
Π ⇒ ∆,Θ, Lv

Γ,Π ⇒ ∆,Θ, L(u⌢v)

Note how in this case, the sequent Γ ⇒ Nu becomes the conclusion of a trivial
instance of the multi-cut rule with no cut formulas.

Proposition 15. Given the extended multi-cut instance (S,▽, π) as described
above, in which the principal formula occurrence of a right rule for predicate P
corresponding to the k-premiss production rule r is the side formula occurrence
(S, p), the following holds for any side formula occurrence (U, i):

• For (U, i) = (S, p) we have:

O(S, p) ⊒ κrP (⃗t · ⊥, O∗(S0, p0), . . . , O
∗(Sk−1, pk−1))

where pj is the minor formula of premiss Sj and t⃗ are the witnesses used
in the right rule application.

• For U = S and i ̸= p we have O(S, i) ⊒ O∗(Sj , i
′) where (Sj , i

′) is the
formula occurrence associated with (S, i) via the right rule application.

• In all other cases, O(U, i) ⊒ O∗(U, i).

Proof. See Appendix D.

8 Main results

In this section we gather our main technical results. In particular, we show that
the Herbrand scheme associated with any proof of a constructive end sequent
derives a Herbrand expansion for that sequent.

First, we shall use our analysis of cut reductions and permutations to prove
the following key result:

Theorem 1 (Simulation). Let π be any clean, regular and multi-cut guarded
proof of a constructive end sequent, and suppose π reduces to π∗ via the multi-cut
reduction and permutation rules. Then T (π∗) ⊑ T (π).
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Proof. Suppose π∗ is obtained from π by applying any of the multicut reduction
or permutation rules. Then π∗ is also a multicut guarded regular proof. Fur-
thermore, for any sequent S appearing in πep, S is in π∗

ep also. We show that
for any sequent S in π∗

ep and for all i < |S| we have T (S, i, π) ⊒ T (S, i, π∗). The
result follows as the special case where S is the end-sequent and i is the index
of its unique right-hand formula.

The statement is proved by a leaf-to-root induction in the finite tree πep
(this has to be finite since the end-sequent is constructive). The only non-
trivial part of the induction is for the base case, where S is a leaf in πep and
is therefore either an axiom or the conclusion of a multicut. In the former
case, T (S, i, π) = T (S, i, π∗) for each i < l(S). In the latter case, we have an
extended multicut instance (S,▽, π) where S consists of the premisses of S, and
we overload the notation to let π denote the assignment to each premise of the
multicut the corresponding generated subproof of the proof π. We make a case
distinction on what sort of cut reduction was applied to the multicut to obtain
π∗, ignoring the trivial case in which some other multicut was reduced.

Many of the reduction and permutation rules have been handled in the
companion paper [1], and are treated exactly the same way here. The remaining
cases are the reduction rule for an inductive predicate, and the permutation rule
for a right sequent rule associated with an inductive predicate. Propositions 14
and 15 are tailor-made to handle these cases, so we leave out the details.

To obtain Herbrand expansions from this result, we need a cut elimination
theorem. Luckily, here we can build on the pre-existing literature on non-
wellfounded proof theory.

Theorem 2. Let π be a proof of a constructive end-sequent. Then π reduces to
an essential cut-free proof.

To prove the cut elimination theorem we show that there is a terminating
multicut reduction strategy by reducing to cut elimination of the system µLK of
(propositional) classical logic with explicit fixed points linear logic, for which a
cut elimination theorem is already known. The formulas in µLK are generated
by the grammar

ϕ, ψ := P | P⊥ | X | ϕ ∨ ψ | ϕ ∧ ψ | µX ϕ | νX ϕ

Given a formula ϕ we denote by ϕ⊥ the simulated negation. Central to theorem
2 is the following corollary of Saurin [20, Theorem 44]:

Theorem. The multicut reductions for non-wellfounded proofs in µLK are weakly
normalising.

The non-wellfounded proof system for µLK referred to here is a one-sided
sequent system with validity of proof trees defined via a trace condition, as we
do here. We refer to [20] for the details.

Saurin’s cut-elimination argument interprets a propositional proof as a non-
wellfounded proof in linear logic and shows that such proofs are closed under
fair multicut elimination. The resultant proof will be well-founded (i.e., finite)
by the assumption on the end-sequent: Theorem 2 is stated for proofs with
constructive end-sequents, which via our translation to µLK corresponds to se-
quents consisting of formulas in which all fixed-point operators are µ-operators.
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A cut-free proof of such a sequent must be wellfounded, since an infinite branch
couldn’t possibly contain an infinite thread in which a ν-operator is unfolded
infinitely many times.

Proof of Theorem 2. Let π ⊢ Γ ⇒ ∆ be a proof of a Σ1 sequent. Stripping π of
all first-order content we envisage π as a proof πP in µLK of a one-sided sequent
Γ⊥
P ,∆P via a translation that removes all terms for formulas and interprets

IPs as fixed points. More precisely, for each formula B and set of inductive
variables V is associated a µLK formula BV defined recursively as follows. For
X ∈ V , (Xs⃗)V = X. Otherwise, (Xs⃗)V = µX

∨
r∈Rules(X) θr,V ∪{X} where for

each r ∈ Rules(X) we define:

θr,V := (B0)V ∧ · · · ∧ (Bk−1)V assuming r =
B0 · · · Bk−1

Xw⃗

The translation is completed by adding the clauses:

(P t⃗)V = P for P an ordinary predicate

(¬A)V = (AV )
⊥

That is, πP is the proof in classical propositional logic with fixed-points in which
every formula occurrence A in π has been replaced by AP and instances of left
and right rules for inductive predicates are changed appropriately.

It is clear that every multicut reduction π ⇒ π∗ corresponds to a multicut
reduction πP ⇒∗ π∗

P where π∗
P = (π∗)P is the result of applying the above

translation to π∗.
All that remains is to observe that if π ⇒ π0 ⇒ · · · is a fair multicut

reduction sequence, then the simulating reduction πP ⇒∗ (π0)P ⇒∗ · · · can
be chosen to be fair. Saurin’s theorem implies that the reduction sequence
necessarily terminates in a cut-free proof.

We can now state our main corollary, which shows that we can always de-
rive Herbrand expansions from Herbrand schemes associated with proofs of con-
structive end sequents.

Corollary. Let π be a proof of a constructive end sequent Γ ⇒ A and let
H (π) be its Herbrand scheme with start symbol Sπ. Then Sπ −→ t for some
constructive term t which is a Herbrand expansion of the end sequent.

Proof. Let π′ be the multi-cut guarded version of π. By Proposition 11, Sπ −→
T (π′). By Theorem 2, π′ reduces to an essential-cut-free proof π∗, and by
Theorem 1 T (π∗) ⊑ T (π′). By Proposition 12, T (π∗) is a Herbrand expansion of
the end sequent Γ ⇒ A. Since T (π∗) ⊑ T (π′), T (π′) −→ u for some constructive
term u with Val(u) = Val(T (π∗)), hence u is also a Herbrand expansion of
Γ ⇒ A. Since Sπ −→ T (π′) −→ u, we are done.

9 Conclusion

We have presented Herbrand schemes as a computational interpretation of cyclic
proofs for classical theories of inductively defined predicates. This interpreta-
tion is compositional, in the sense that when proofs are composed via cuts, the
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corresponding Herbrand schemes are composed by function application. In the
special case where the end-sequent of a proof is constructive, Herbrand schemes
can be used to directly compute Herbrand expansions. We illustrated this ap-
proach with an analysis of a cyclic proof of the pigeonhole principle.

For future work, the connection with cyclic proofs for Gödel’s T as presen-
ted by Das in [11] is of particular interest as a potential generalisation to the
cyclic setting of Gerhardy and Kohlenbach’s ([15]) computational interpretation
of classical predicate logic via a functional interpretation. Another avenue is to
exploit more fully the framework of higher-order recursion schemes. In this pa-
per, we consider languages of recursion schemes to consist of well-founded terms
only. In the literature on higher-order recursion schemes, however, the value of
a recursion scheme is an infinite non-wellfounded tree, i.e., an infinite term or
‘co-term’. Since every inductive predicate P corresponds to a co-inductive pre-
dicate ¬P , it raises the question of whether one can define a notion of language
for Herbrand schemes that allows us to compute languages including infinitary
co-terms as witnesses for co-inductive formulas, representing co-inductive data-
types like streams or infinite trees. In the companion paper [1] we sketched an
interpretation of Herbrand schemes as strategies in two-player games which we
conjecture extends to the infinitary/cyclic setting.
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A Proof of Proposition 8

One needs to check that this invariant is preserved by all rewrites, i.e. we
prove the statement by induction on the length of a rewrite sequence from the
start symbol. We focus on the key observations here. First, we note that the
principal rewrite of a subterm Fπ0

i σu⃗ where π0 ends with a right rule introduces
an extended individual term of the form t · σ. If an eigenvariable α occurs in
t then, by Proposition 7, we then have α ∈ BV(σ). This shows that FV(t) ⊆
BV(σ), so the newly introduced term is clean. Non-principal rewrites for right
inductive predicate rules are unproblematic since they neither introduce new
terms nor modify any stacks.

Non-principal rewrites for left rules of inductive predicates modify the stack,
but the only extended terms added to the stack in this way come from the ar-
gument of the proof non-terminal corresponding to the principal formula occur-
rence. So the terms added to the stack are, by the induction hypothesis, clean.
Hence such rewrites also preserve the invariant. The principal rewrite for a
left inductive predicate rule introduces a subterm of the form λz⃗Fi

j [z⃗/α⃗]σs⃗, and
since the terms z⃗ do not contain any eigenvariables the stack [z⃗/α⃗]σ is clean.

Finally, we consider a rewrite corresponding to an instance of the substitu-
tion rule:

π1 : Γ ⇒ ∆

π0 : Γ[τ ] ⇒ ∆[τ ]

Here we have Fπ0
i σu⃗ −→ Fπ1

i σ[τ(x0) · σ/x0] . . . [τ(xk−1) · σ/xk−1]u⃗. By Proposi-
tion 7 we get FV(τ(xj)) ⊆ BV(σ) so the new stack is still clean.

B Proof of Proposition 9

We restate proposition 9:

Proposition. Let π be any regular proof and σρ a regular substitution stack.
Then

Fπ
i σρ ≡ F

π[Val(σ)]
i ρ.

In the companion paper [1] the analogous statement was proved by induction
on the height of a proofs. In the present setting of non-wellfounded proofs that
approach is not available to us. Instead, we have to work directly with induction
on the length of rewrite sequences.

We shall prove the following statements inductively, for all k: given a context
C[z0, . . . , zn] where each zj has the same type as F

πj

ij
σj :

Left-to-right If a term of the form C[Fπ0
i0
σ0ρ0, . . . ,F

πn
in
σnρn] rewrites to a con-

structive term t in k steps then there is a constructive term t′ such that

C[F
π0[Val(σ0)]
i0

ρ0, . . . ,F
πn[Val(σn)]
in

ρn] −→ t′ and Val(t) = Val(t′).

Right-to-left If a term of the form C[F
π0[Val(σ0)]
i0

ρ0, . . . ,F
πn[Val(σn)]
in

ρn] rewrites
to a constructive term t in k steps then there is a constructive term t′ such
that C[Fπ0

i0
σ0ρ0, . . . ,F

πn
in
σnρn] −→ t′ and Val(t) = Val(t′).

Here, the stacks σjρj are assumed to be clean. The strategy to handle the induc-
tion step of the induction runs as follows: for the left-to-right direction, suppose
a term of the form C[Fπ0

i0
σ0ρ0, . . . ,F

πn
in
σnρn] rewrites to a constructive term t in
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k+1 steps, where the first rewrite of this sequence is C[Fπ0
i0
σ0, . . . ,F

πn
in
σn] −→ t0.

We need to show by a case-by-case inspection that t0 is on the form:

D[F
π′
0,0

i′0,0
τ0σ0ρ0, . . . ,F

π′
0,m0

i′0,m0

τ0σ0ρ0, . . . ,F
π′
n,0

i′n,0
τnσnρn, . . . ,F

π′
n,mn

i′n,mn
τnσnρn]

for some context D, such that the term C[F
π0[Val(σ0)]
i0

ρ0, . . . ,F
πn[Val(σn)]
in

ρn] can
be rewritten to:

D[F
π′
0,0[Val(σ0)]

i′0,0
τ0ρ0, . . . ,F

π′
0,m0

[Val(σ0)]

i′0,m0

τ0ρ0, . . . ,F
π′
n,0[Val(σn)]

i′n,0
τnρn, . . . ,F

π′
n,mn

[Val(σn)]

i′n,mn
τnρn]

It follows directly by the induction hypothesis on k that the latter term rewrites

to some t′ withVal(t) = Val(t′), hence this holds for C[F
π0[Val(σ0)]
i0

ρ0, . . . ,F
πn[Val(σn)]
in

ρn]
as well. The reasoning to prove the right-to-left direction is similar. The proof
of the analogous proposition in the companion paper [1] can be rephrased as an
induction along these lines, thus avoiding any induction on the height of proof
trees, without any substantial change in the reasoning. Furthermore, the proof
of Proposition 9 is then essentially the same (although far more tedious). We
omit the details.

C Proof of Proposition 14

Let (S, i) be any formula occurrence, either a side formula or a cut formula.
We prove the following items by a simultaneous well-founded induction on the
dependency relation ≺:

1. If S = L0 and i ̸= l then O(L0, i) ⊒ O∗(L1,m+ i).

2. If S = R0 and i ̸= r then O(R0, i) ⊒ O∗(R′
j , i

′) where (R′
j , i

′) is the
formula occurrence associated with (R0, i) in the right rule application.

3. If S /∈ {L0, R0} then O(S, i) ⊒ O∗(S, i).

The proposition follows immediately from these statements.
For item (1), we write O(L0, i) = F

πL0
i ⊥(F

πR0
r ⊥a⃗0 . . . a⃗m−1⃗b0 . . . b⃗m−1)c⃗. The

input for each index j ̸= l is either of the form C[L0[j]] for a left index j, or of the
form C⟨L0[j]⟩ for a right index j, or of the form O(U, k) where (L0, j)▽ (U, k).
In the latter case, U /∈ {L0, R0} and item (3) of the induction hypothesis gives

O(U, k) ⊒ O∗(U, k). Similarly, in the term F
πR0
r ⊥a⃗0 . . . a⃗m−1⃗b0 . . . b⃗m−1, each

input for an index j ̸= r is either of the form C[R0[j]] for a left index j, or of the
form C⟨R0[j]⟩ for a right index j, or of the form O(U, k) for some (U, k)▽ (R0, j).
In the latter case we have U /∈ {L0, R0} and item (3) of the induction hypothesis

gives O(U, k) ⊒ O∗(U, k). Let a⃗∗0, . . . , a⃗
∗
m−1, b⃗

∗
0, . . . , b⃗

∗
m−1, c⃗

∗ be the result of
replacing each of these terms of the form O(U, k) by O∗(U, k). We then have:
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O(L0, i) = F
πL0
i ⊥(F

πR0
r ⊥a⃗0 . . . a⃗m−1⃗b0 . . . b⃗m−1)c⃗

⊒ F
πL0
i ⊥(κpP (v⃗ · ⊥,F

πR′
0

r ⊥a⃗0⃗b0, . . . ,F
πR′

m−1
r ⊥a⃗m−1⃗bm−1))c⃗

⊒ F
πL1
i [v⃗ · ⊥/α⃗](F

πR′
0

r ⊥a⃗0⃗b0) . . . (F
πR′

m−1
r ⊥a⃗m−1⃗bm−1)c⃗

≡ F
πL1

[v⃗/α⃗]
i ⊥(F

πR′
0

r ⊥a⃗0⃗b0) . . . (F
πR′

m−1
r ⊥a⃗m−1⃗bm−1)c⃗ Prop. 9

⊒ F
πL1

[v⃗/α⃗]
i ⊥(F

πR′
0

r ⊥a⃗∗0b⃗∗0) . . . (F
πR′

m−1
r ⊥a⃗∗m−1b⃗

∗
m−1)c⃗

∗

= O∗(L1, i)

as required.
For item (2), we write O(R0, i) = F

πR0
i ⊥a⃗0⃗b0 . . . a⃗m−1⃗bm−1(F

πL0

l ⊥c⃗) and let
(R′

j , i
′) be the formula occurrence corresponding to (R0, i) in the right rule

application. The input for each index j′ ̸= r is either of the form C⟨R0[j′]⟩
for a right index, or C[R0[j′]] for a left index, or of the form O(U, k) where
(R0, j

′)▽ (U, k). In the latter case, U /∈ {L0, R0} and item (3) of the induction
hypothesis gives O(U, k) ⊒ O∗(U, k). Similarly, in the term F

πL0

l ⊥c⃗, each input
for an index j′ ̸= l is either of the form C⟨L0[j′]⟩ for a right index, or C[L0[j′]]

for a left index, or of the form O(U, k) where (L0, j
′) ▽ (U, k). In the latter

case we have U /∈ {L0, R0} and item (3) of the induction hypothesis gives

O(U, k) ⊒ O∗(U, k). Let a⃗∗0, . . . , a⃗
∗
m−1, b⃗

∗
0, . . . , b⃗

∗
m−1, c⃗

∗ be the result of replacing
each of these terms of the form O(U, k) by O∗(U, k). We then have:

O(R0, i) = F
πR0
i ⊥a⃗0⃗b0 . . . a⃗m−1⃗bm−1(F

πL0

l ⊥c⃗)

⊒ F
πR0
i ⊥a⃗0⃗b0 . . . a⃗m−1⃗bm−1(δP ((dp′,j′)p′∈R(P ) & j′<ar(p′)))

⊒ F
πR′

j

i′ ⊥a⃗j b⃗j(dp,j(v⃗ · ⊥,F
πR′

0
r ⊥a⃗0⃗b0, . . . ,F

πR′
j−1

r ⊥a⃗j−1⃗bj−1,

F
πR′

j+1
r ⊥a⃗j+1⃗bj+1, . . . ,F

πR′
m−1

r ⊥a⃗m−1⃗bm−1))

where dp,j = λz⃗λy0 . . . yj−1yj+1 . . . ym−1F
πL1
j [z⃗/α⃗]y0 . . . yj−1yj+1 . . . ym−1c⃗, so

we can continue:

F
πR′

j

i′ ⊥a⃗j b⃗j(dp,j(v⃗ · ⊥,F
πR′

0
r ⊥a⃗0⃗b0, . . . ,F

πR′
j−1

r ⊥a⃗j−1⃗bj−1,

F
πR′

j+1
r ⊥a⃗j+1⃗bj+1, . . . ,F

πR′
m−1

r ⊥a⃗m−1⃗bm−1))

⊒ F
πR′

j

i′ ⊥a⃗j b⃗j
(
F
πL1
j [v⃗ · ⊥/α⃗](F

πR′
0

r ⊥a⃗0⃗b0) . . . (F
πR′

j−1
r ⊥a⃗j−1⃗bj−1)

(F
πR′

j+1
r ⊥a⃗j+1⃗bj+1) . . . (F

πR′
m−1

r ⊥a⃗m−1⃗bm−1)c⃗
)

≡ F
πR′

j

i′ ⊥a⃗j b⃗j(F
πL1

[v⃗/α⃗]
j ⊥(F

πR′
0

r ⊥a⃗0⃗b0) . . . (F
πR′

j−1
r ⊥a⃗j−1⃗bj−1)

(F
πR′

j+1
r ⊥a⃗j+1⃗bj+1) . . . (F

πR′
m−1

r ⊥a⃗m−1⃗bm−1)c⃗)

⊒ F
πR′

j

i′ ⊥a⃗∗j b⃗∗j (F
πL1

[v⃗/α⃗]
j ⊥(F

πR′
0

r ⊥a⃗∗0b⃗∗0) . . . (F
πR′

j−1
r ⊥a⃗∗j−1b⃗

∗
j−1)

(F
πR′

j+1
r ⊥a⃗∗j+1b⃗

∗
j+1) . . . (F

πR′
m−1

r ⊥a⃗∗m−1b⃗
∗
m−1)c⃗

∗)

= F
πR′

j

i′ ⊥a⃗∗j b⃗∗j (O∗(L1, j))

= O∗(R′
j , i

′)
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The equivalence on the third row is by Proposition 9.
For item (3), suppose S /∈ {L0, R0} and write O(S, i) = FπS

i ⊥a⃗. Each input
for index i′ ̸= i is either of the form C⟨S[i′]⟩ for a right index, or C[S[i′]] for
a left index, or of the form O(U, k) where (S, i′) ▽ (U, k). In the latter case,
there are three possibilities. If U /∈ {L0, R0} then item (3) of the induction
hypothesis gives O(U, k) ⊒ O∗(U, k). If U = L0 then we must have k ̸= l since
otherwise we would have (U, k) ▽ (S, i′), hence (S, i′) = (R0, r), contradicting
our assumption that S /∈ {L0, R0}. Item (1) of the induction hypothesis gives
O(L0, k) ⊒ O∗(L1, k

′) where k′ is the index associated with k via the left rule
application. Similarly, if U = R0 then we must have k ̸= r and item (2) of the
induction hypothesis gives O(R0, k) ⊒ O∗(R′

j , k
′) where (R′

j , k
′) is the formula

occurrence associated with (R0, k) via the right rule application. Let a⃗∗ be the
result of replacing each input term (U, k) for U /∈ {L0, R0} by O∗(U, k), each
input term of the form (L0, k) by O∗(L1, k

′) and each input term of the form
(R0, k) by O

∗(R′
j , k

′). Then we have:

O(S, i) = FπS
i ⊥a⃗

⊒ FπS
i ⊥a⃗∗

= O∗(S, i)

as required.

D Proof of Proposition 15

In order to keep notation readable, we carry out the proof for the special case in
which the inference rule to be permuted is the right rule corresponding to one
of the production rules of the list predicate. The general case is not different
in any interesting respect. We recall that the list predicate has the following
two production rules which we, for the moment, refer to by their index in the
enumeration:

0
Lϵ

Nx Ly
1

L(x⌢y)

Now let (S,▽, π) be an extended multi-cut instance, and suppose the side for-
mula occurrence (S, p) is the principal formula occurrence of the right rule as-
sociated with production rule (1). This rule has two premisses, Sl, Sr, and we
denote the minor formula occurrences of these premisses by (Sl, pl) and (Sr, pr)
respectively. So S[p] is of the form L(s⌢t) where Sl[pl] = Ns and Sr[pr] = Lt.
Let (S∗l ,▽∗

l , π
∗
l ) and (S∗r ,▽∗

r , π
∗
r ) be the associated reduced extended multi-cut

instances. We need to prove the following:

1. O(S, p) ⊒ κ1L(s · ⊥, O∗(Sl, pl), O
∗(Sr, pr)).

2. For U = S and i ̸= p we have O(S, i) ⊒ O∗(Sj , i
′) where (Sj , i

′) is the
formula occurrence associated with (S, i) via the right rule application (so
j ∈ {l, r}).

3. In all other cases, O(U, i) ⊒ O∗(U, i).

As before we prove this by wellfounded induction on ≺. Item (1) is almost
immediate from the principal rewrite rule for right IP rules. To ease notation
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suppose that O(S, p) is of the form FπS
p ⊥u⃗v⃗ where the arguments u⃗ correspond

to formula occurrences associated with the left premiss Sl and arguments v⃗
are similarly associated with the right premiss Sr. Letting πl, πr denote the
subproofs of πS generated by Sl, Sr respectively, we then have:

O(s, p) −→ κ1L(s · ⊥,Fπl
pl
⊥u⃗,Fπr

pr
⊥v⃗)

and it suffices to prove that Fπl
pl
⊥u⃗ ⊒ O∗(Sl, pl) and Fπr

pr
⊥v⃗ ⊒ O∗(Sr, pr). For

this it suffices in turn to note that O(Sl, pl) and O
∗(Sr, pr) are respectively of the

form Fπl
pl
⊥u⃗∗ and Fπr

pr
⊥v⃗∗ where the arguments u⃗∗, v⃗∗ are point-wise subsumed

by u⃗, v⃗. This is proved by an easy application of the induction hypothesis.
For item (2), i is the index of a non-principal formula and O(S, i) is of

the form FπS
i ⊥u⃗v⃗(I(S, p)) where we assume the arguments u⃗ are associated

with the left premiss and arguments v⃗ are associated with the right premiss.
Since we assumed that (S, p) was a side formula occurrence of the multi-cut,
I(S, p) = C¬L(s⌢t). We now apply the rewrite rule:

C¬L(s⌢t) −→ δL(λxy.λzr.C¬Ns, λxy.λzl.C¬Lt)

Here, the variables have types: x, y : ι, zr : [Lt], zl : [Ns]. We can now apply the
pattern-matching non-principal rewrite rules; if i is associated with a formula
occurrence (Sl, i

′) in the left premiss we get:

O(S, i) = FπS
i ⊥u⃗v⃗C¬L(s⌢t)

⊒ FπS
i ⊥u⃗v⃗(δL(λxy.λzr.C¬Ns, λxy.λzl.C¬Lt))

⊒ Fπl

i′ u⃗C¬Ns

Using a similar argument as before, appealing to the induction hypothesis,
we can show that Fπl

i′ u⃗C¬Ns ⊒ O∗(Sl, i
′). (In particular, note that C¬Ns =

I(Sl, pl).) The argument for the case where i is associated with a formula oc-
currence in the right premiss is analogous.

Item (3) is straightforward and therefore left to the reader.
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