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Abstract

This thesis studies the effect of homophily on the development of social
networks. Homophily refers to the tendency of individuals to be socially
connected to others that are similar to themselves. We contend that this
phenomenon can be traced back to two tendencies, social influence and
social selection. Using techniques from dynamic epistemic logic, we provide
a formal setting to represent social networks and define model transforming
upgrades that correspond to social influence and social selection.

In the first part of the thesis, we introduce the notion of cluster-split
models and argue that they represent socially fragmented networks. We
show how social selection gives rise to such models and argue that this
suggests a connection between homophily and polarization.

In the second part we introduce epistemic social network models. This
allows us to define different epistemic update versions of social influence
and social selection. We compare these updates, showing that the different
ways agents deal with epistemic uncertainty can lead to different network
developments. Finally, we survey phenomena of learning that arise in our
framework.
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Introduction

The last three decades have seen the introduction of wholly new channels of
communication. In the internet age, influential new social structures have
emerged through the rise of social media and societies across the globe have
undergone unexpected social and political shifts. Explaining and controlling
such changes in social dynamics requires us to understand how groups and
opinions form and how they influence each other. There are many ways
of gaining such an understanding. This thesis attempts to do so using the
formal tools of social network analysis – methods from graph theory, logic and
game theory.

A central aim of social network analysis is to propose and study prin-
ciples that can explain the structural features and development of social
networks1 – i.e. who is socially connected to whom, and who acts or thinks
in certain ways. One such organizational principle often proposed is ho-
mophily – the tendency of people to be socially connected to others that are
similar to themselves.

In this thesis, we will introduce a formal framework to describe social
networks and the way they are affected by homophily-driven changes.
Social influence and similarity-driven group formation have been studied
independently of each other in previous works. This thesis contributes to
the existing research by

1. providing a formal framework that can model both network- and
opinion-changing processes happening to the same social network,

2. giving a number of stabilization results for homophily-driven network
change, some of which suggest a connection between tendencies of
homophily and social polarization and

3. introducing epistemic social network models which explicitly model
the knowledge and uncertainty of agents, allowing us to investigate
the influence of epistemic factors on the development of our social
network models.

1It is worth noting that in the field and within this thesis, “social network” is not referring
to social media sites. Instead, we mean to refer to any social structure made up of individuals,
e.g. school classes, clubs and towns. Social networks found on social media sites are a special
case of this more general concept.
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The thesis is structured as follows. In Section 1, we give a brief intro-
duction to the concept of homophily. We then sketch the way threshold
models are used to represent processes of social influence. In Section 2, we
formally define social network models and introduce two threshold-style
model transforming updates that correspond to social influence and social
selection. We then show how both updates interact, proving a number of
stabilization results for single-issue models. We introduce the notion of a
cluster-split, show how it connects to our updates and argue that our results
have implications for social fragmentation and polarization. Section 2 ends
with a first attempt at characterizing the phenomenon of oscillation. Sec-
tion 3 introduces the reader to the basic ideas and techniques of epistemic
logic. In Section 4, we employ these techniques to extend our models with an
epistemic dimension. We go on to define different updates, corresponding to
different ways of dealing with uncertainty about the network state. We then
compare these updates, proving that they lead to different development
dynamics. Finally, we briefly survey the phenomenon of learning in our
epistemic social network models.
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1 Preliminaries: Homophily and Threshold Models

As mentioned above, homophily refers to the tendency of people to be
socially connected to others that are similar to themselves. Observations of
this principle were contained in the first works on social network analysis,
and suggestions of it can be found in works as early as Plato’s Phaedrus.2

But one does not need to consult academic literature to observe homophily –
examples are easy to spot “in the wild”: In school, children are more likely to
make friends with other children that share their interests; family members
are more similar to each other in habits and behaviors than to people outside
of the family; and conventional wisdom has it that in the age of social media,
people online seek out contact to like-minded others, leading to the creation
of “echo chambers” that lead everyone involved to converge on ever more
extreme views.

Reflecting on such phenomena, it seems that there are two distinct ten-
dencies that contribute to homophily. Given a group of people and some
dimension of similarity, e.g. musical taste or political leaning, we find that

1. people form and maintain social connections to others that are similar
to them, and

2. people are influenced in their views by their social contacts.

The first tendency is sometimes called social selection, the second is social
influence.

There is a lot of work in social network analysis and social network logic
on social influence [4, 19, 14, 22, 32]. The basic framework employed in
many investigations of social influence are so-called threshold models. Such
models work with the following four “ingredients”: A behavior that agents
can adopt or not adopt; a set of agents, some of which show the behavior
as initial adopters; a social relation that holds between some of the agents
and a threshold that expresses what fraction of an agent’s neighbors need to
adopt the behavior for the agent herself to do the same. From these initial
conditions, threshold models describe how the behavior spreads from agent
to agent in steps, assuming that this happens through a mechanism similar
to conformity pressure: In each time-step t, agents that showed the behavior
at t − 1 continue to do so; all other agents adopt the behavior if and only

2See [21] for a brief overview on the history of the concept.
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if the fraction of their social contacts that show the behavior matched or
exceeded the threshold at t− 1.3

Formally, many instances of threshold models make use of techniques
from the field of dynamic epistemic logic (DEL).4 Dynamic epistemic logics
are formal frameworks to represent changes in the knowledge of agents.5 To
this end, the epistemic state of each relevant agent, i.e. what they know or
do not know, is represented through a model. Events that change the agents’
knowledge – a classic example is the announcement of some fact to every
agent – then correspond to a model transforming update: Given a DEL model
M, an application of such an update leads to a new model M ′ that differs
from M in what the agents know and do not know. The inclusion of model
transforming updates gives DEL its dynamic character, enabling it to be a
tool to reason about changes in its models.

Classic threshold models as described above are not concerned with
knowledge, but the dynamic nature of the behavior spread they describe
is a good fit for the use of DEL-style methods. Instead of representing
knowledge, a singular model represents the state of a social network; and
instead of knowledge change, model transforming updates are used to
illustrate how a behavior spreads within the network.

Often the spreading behavior in a threshold model takes the form of a
chain reaction: Starting with the initial adopters, a large number of agents is
eventually made to adopt the behavior step by step. This kind of spreading
dynamic is called a cascade, and is said to be complete when it leads to every
agent adopting the behavior in the long run.6 Threshold models allow for
describing cascades precisely and to characterize, for example, all models
that lead into a complete cascade.

But with respect to homophily, classical threshold models only tell half
the story – they take the social relation between agents to be unchanging,
and so they cannot represent the tendency of social selection. Recent work
in social network logic [30, 29, 28, 2] has taken steps to change this and
proposed mechanisms through which agents in networks begin new social

3See [12, Chapter 19] for a detailed introduction to threshold models.
4See for instance [10, 4, 28, 2].
5A short introduction to dynamic epistemic logic can be found in [6], a more extensive

one is provided by [11].
6Note that cascades in threshold models are different from so-called “informational

cascades” in which sequentially acting Bayesian-rational agents are found to ignore their
private information to act in accordance with group behavior. This phenomenon is described
in e.g. [15] and [3].
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relations and end existing ones.
The aim of this thesis is to further explore this by modelling both ten-

dencies of homophily in one formal framework. This will allow us to better
understand how social influence and social selection interact, and how their
interaction gives rise to certain structural properties of social networks. We
begin by introducing the basic formal model in the next section.
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2 Social Network Models

In this thesis, we represent a social network as a set of agents supplemented
with a binary relation, interpreted as a social neighborhood relation.

Definition 1 (Social Network Model). A social network model (SNM)M is a
tuple (A,N, F,V ,ω, τ), where:

• A is a non-empty finite set of agents;

• N : A → ℘(A) is the neighborhood function, assigning a set of neighbors
N(a) to each agent a such that for all a,b ∈ A:

– a /∈ N(a) (irreflexivity) and

– a ∈ N(b) if and only if b ∈ N(a) (symmetry);

• F is a non-empty finite set of issues;

• V : A→ ℘(F) is a valuation function, assigning to each agent a set of issues
they accept or support;

• ω, τ ∈ Q are two rational numbers s.t. 0 6 ω 6 1 and 0 6 τ 6 1,
interpreted, respectively, as similarity threshold and influencability threshold.

This model is similar to models defined in [2] and [4]. In contrast to the
former paper, we require the neighborhood relation between agents to be
irreflexive and symmetric. We thus focus on social relations that are mutual
between agents, friendship and neighborhood being obvious examples. In
contrast to the latter paper, we do not require the relation to be serial: We
will go on to define update operations that change the relational structure
of a given model, and these changes can lead to isolated agents making new
connections and formerly connected agents being isolated. Requiring the
neighborhood relation to be serial would make it impossible to implement
such updates.

The valuation function V takes an agent a and returns a set of issues
supported by the agent V(a); all other issues, i.e. F \ V(a) are not supported
by a. In this thesis, we will refer to the position an agent takes with respect to
some issue f ∈ F as her opinion. When f ∈ V(a), we will say that a supports f.
Otherwise, we will say that a supports ¬f. This way of speaking is slightly
misleading, as we make no attempt to explicitly model the structure of
agents’ opinions or beliefs. Instead, we take opinions to be primitive in the
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model. Every agent has an opinion on every issue in F; for every issue, the
two possible opinions to have are support or not support; no two issues are
logically interdependent. There is an extensive literature on doxastic logic
and belief revision that dispenses with these simplifying assumptions.7 But
the focus of this thesis is on the interplay between network-driven behavior
changes and behavior-driven network changes. To keep our formalism as
simple and as general as possible, we will not go into the topic of belief
structures – and since opinions are an intuitive example of a behavior that is
influenced through social networks and exerts influence on the development
of social networks, we will stick to the conventions just described.

Following the same ideas as the classic threshold models introduced
in Section 1, we include two different thresholds in our model definition:
The similarity threshold ω is used to formally represent what fraction of
their total opinions two agents have to agree on in order to count as “similar
enough” to become neighbors. The influencability threshold τ represents
what fraction of an agents’ neighbors need to hold an opinion for this agent
to be influenced to adopt the same opinion. For any given model, both
thresholds are universal and fixed: They apply to all agents equally, and
they do not change, even when other aspects of the model do.8

Figure 1 below shows how social network models can be represented
graphically. Here, there are three agents a,b and c. a and b are neighbors,
and so are a and c, while b and c are not neighbors. Further, b is the only
agent supporting the issue f. Whenever we represent single-issue SNMs – i.e.
social network models with |F| = 1 – in this thesis, we will color supporting
nodes black and non-supporting nodes white.

b

a

cM

Figure 1: A single-issue social network model with F = {f}, τ = 1
2 andω = 1.

Black nodes represent agents that support the issue f, white nodes represent
agents that do not support f.

7See [20], [8] and [16] as well as [6] for an overview.
8In [19], the authors consider the case of diffusion through social network models with

agent-specific thresholds.
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2.1 Opinion Updates

Given a social network model, we want to be able to update it to represent
some change in the model’s structure. The first type of update we will
consider represents a change in the agents’ opinions. There are many mecha-
nisms by which such a change in opinions could conceivably take place. We
focus on a simple type of social influence: Given some issue f ∈ F, an agent
begins to support it if there is a sufficiently large portion of f-supporters in
the neighborhood.

Definition 2 (Monotonic Opinion Update). Given a social network model
M = (A,N, F,V ,ω, τ), the updated modelM4+ = (A,N, F,V4+ ,ω, τ) is such that
for any a ∈ A and f ∈ F:

f ∈ V4+ (a) iff

{
f ∈ V(a), if N(a) = ∅
f ∈ V(a)∨ |Nf(a)|

|N(a)| > τ, otherwise

}

Where Nf(a) = {b ∈ N(a) : f ∈ V(b)} is the set of a’s f-neighbors.

For this update, the threshold τ acts as a formal representation of what a
“sufficiently large portion” of neighbors is. Note that the only thing changing
through the update are the agents’ opinions; the set of agents, the set of
issues, the neighborhood function and both thresholds are kept fixed. Under
repeated application of the update4+ , agents can only start supporting issues,
but they can never stop their support. This means that the set of f-supporters
in a model can never decrease in size when4+ is applied, which is why we
call it a monotonic opinion update. This mechanism corresponds to opinion
spread updates in classical threshold models, used e.g. in [10] and [4]. As a
mechanism of how opinions diffuse through a social network, a monotonic
update like this is not entirely plausible: Most people are not so stubborn
that they can never change their opinion once they have started to support
a given issue. Still, we include monotonic opinion updates in this thesis.
They serve as a comparison to other dynamics of opinion change introduced
below, and they provide a link to other work in social network analysis.
Overstretching our terminology of issues and opinions, monotonic opinion
updates can also be understood as modelling e.g. technology adoption:
Suppose there is a new version of a popular messaging app. Updating the
app is a bit of a hassle, but after the update, agents can access useful features
when communicating with other up-to-date app users. In such a scenario,
agents will be inclined to update their app as soon as enough of their social
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contacts have done so.9 But once they do this, they cannot “un-update” and
return to the older version of the app. The adoption of the update within a
social network could be modeled using the monotonic opinion update from
Definition 2.

The next definition describes an opinion update mechanism that does
away with monotonicity and allows agents to also stop supporting an issue:

Definition 3 (Non-Monotonic Opinion Update). Given a social network model
M = (A,N, F,V ,ω, τ), the updated modelM4 = (A,N, F,V4,ω, τ) is such that
for any a ∈ A and f ∈ F:

f ∈ V4(a) iff


f ∈ V(a), if N(a) = ∅
f ∈ F, if τ = 0
|Nf(a)|
|N(a)| > τ, otherwise


On the right side of the definition, the first condition pertains to neigh-

borless agents: Through an update with4, they do not change their position
on any of the issues in F. The second condition deals with the special case of
the threshold τ equaling zero: In this case, all agents support all issues in F
after the update. The third condition covers the remaining cases: In models
with τ > 0, agents that have at least one neighbor will support an issue
after the update with 4 if a sufficient amount of their neighbors already
supported it before the update. Otherwise, such agents will stop supporting
the issue after the update. As such, non-monotonic opinion updates can be
used to model how e.g. political opinions, hobbies or habits diffuse from
agent to agent.

The difference between the two types of opinion update is illustrated in
Figure 2. In the initial modelM, agents a and b support the issue, but both of
their neighbor sets contain less than τ = 2

3 supporters. When updated with
4+ , agent c starts supporting the issue, and since the update is monotonic,
agents a and b keep supporting it, too. In contrast, the update with4 leads
to the modelM4, where c has likewise started supporting the issue, but a
and b have stopped their support.

Using opinion updates on social network models, we can simulate how
agents influence each other and how opinions “travel” through the network.

9Clearly the specific threshold τ – representing what fraction of an agents’ contacts have
to update before the agent is inclined to do the same – depends on how useful the update is,
and how much work it is to update. [12, Chapter 19.2] shows how this idea can be made
formally precise, relating the influencability threshold to payoffs in a coordination game
between agents.
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b

a

cM

b

a

cM4+

b

a

cM4

Figure 2: Three single-issue SNMs with τ = 2
3 . M4+ has been obtained

by applying a monotonic opinion update toM;M4 has been obtained by
updatingMwith a non-monotonic opinion update.

In general, there are two polar states that a model can be in with respect to a
given issue f ∈ F: Everyone supports it – i.e. for all a ∈ A, f ∈ V(a) – or no
one does, i.e. for all a ∈ A, f /∈ V(a). Throughout this thesis, we will refer to
these states as f-consensus and ¬f-consensus, respectively.

Now, given repeated application of an opinion update, which models
will eventually become an f- or ¬f-consensus? Or, put more technically:
Which models will cascade into an f- or ¬f-consensus under application of4+
or4? For4+ , the answer is given by a classic result, first proved for a related,
but somewhat different type of model.10 This result can be adapted for our
present setting – but to do so, we need to first introduce update streams and
the concept of a cluster.

Definition 4 (Update Stream). Let U be the set of all updates on social network
models. An update stream ~† is an infinite sequence of updates (†n)n∈N (with
† ∈ U). A repeated update is an update stream of the form (†1, †2, †3, . . . ), i.e. an
update stream that consists of only one type of update.

An update stream~† induces a function mapping every modelM into an infinite
sequence~†(M) = (Mn)n∈N of models, defined inductively by:

M0 =M and Mn+1 = †n(Mn)

The notion of update streams, adapted from [8], gives us a convenient
way to talk about the “long term” development of a social network model
under sequences of updates. By introducing the idea of a cluster, we gain a
way to describe models that have a certain structural property, which will
likewise help us in precisely describing which SNMs become an f-consensus
under which repeated update.

10Originally found in [22]. For a simpler version of the proof that is closer to our present
setting, see [12, Chapter 19.3].
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Definition 5 (Cluster of density d). Let A be a set of agents and N : A→ ℘(A)

be a neighborhood function, as defined in Definition 1. For any nonempty set of
agents C ⊆ A, C is a cluster of density d, where d ∈ [0, 1] is the greatest value
such that for all c ∈ C:

|N(c) ∩ C|
|N(c)|

> d or N(c) = ∅

It is worth noting that this is an unorthodox definition of a cluster,
different from the ones given in [10, p. 141] and [12, p. 574]. This is motivated
by the fact that, in the context of this thesis, we understand clusters with a
high density as antagonists of opinion spread. Since we do not presuppose
the neighborhood relation N to be serial, we have to adapt the definition of
clusters to account for agents without neighbors.11 Keeping in mind how
the opinion updates above are defined, we see that neighborless agents
are an insurmountable obstacle to the spread of an opinion: They will not
change their mind on an issue f after an update with4+ or4. To reflect this,
we change the definition of clusters so that (singleton sets of) neighborless
agents count as clusters of density 1. Figure 3 below is used to illustrate
how the definition works: There, the sets {a}, {b} and {c} are all clusters of
density 0. {a,b}, {a, c} and {b, c} all have density 1

2 , and {a,b, c} and {d} have
density 1. A “mixed” set like {a,b,d} has density 1

2 .

b

a

c d

Figure 3: A single-issue social network model.

Now we can make explicit how clusters are related to reaching an f-
consensus under the repeated monotonic opinion update ~4+ .

Theorem 2.1 (Cluster-Cascade Theorem). Let M = (A,N, F,V ,ω, τ) be a
social network model with τ > 0 and a set B ⊂ A of f-supporting agents.

11With the more classic definition, a cluster of density d is any subset C ⊆ A such that
for all c ∈ C, |N(c)∩C|

|N(c)|
> d. In a serial social network, this clause applies to all agents and

ensures that 0 6 d 6 1. With neighborless agents, this is not the case, so we modify the
definition by adding a disjunct covering neighborless agents and explicitly restricting the
value of d to the interval [0, 1].
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Then there exists a model Mn ∈ ~4+ (M) such that Mn is an f-consensus if and
only if there are no clusters of ¬f-adopters of density d > (1 − τ) inM.

Proof. (⇒) By contraposition. Suppose there is a C ⊂ A such that for all
c ∈ C, f /∈ V0(c). Further, let N0(c) = ∅ or |N0(c)∩C|

|N0(c)|
> d > (1 − τ) for

each c ∈ C. Then none of the agents in C will ever support f. To see this,
suppose otherwise: Then there must be an update stage Mm ∈ ~4+ (M) at
which the first agents in C first support f. Let c ′ be one of these agents.
By assumption, f /∈ Vm−1(c

′), so we know that Nm−1(c
′) 6= ∅. Then it

must hold that |Nf
m−1(c

′)|

|Nm−1(c ′)| > τ. We know that no agent in C supported f in
Mm−1, so (Nm−1(c

′)∩C)∩Nf
m−1(c

′) = ∅, so |Nm−1(c
′)∩C| 6 (1− τ). But

by Definition 2, we know that Nm−1(c
′) = N0(c

′), so this contradicts our
original assumptions about C.

(⇐) By contraposition. Suppose that an f-consensus is not reachable
fromM via4+ -updates, meaning thatM does not stabilize in an f-consensus.
Let Mn ∈ ~4+ (M) be the first stable state of M. Since it is not an f-consensus,
we know that the set of ¬f-supporters C = {b ∈ A : f /∈ Vn(b)} is nonempty.
Further, we know that for each agent c ∈ C, either (i) N(c) = ∅ or (ii)
|Nf

n(c)|
|N(c)| < τ. The latter of these two conditions is equivalent to |N(c)∩C|

|N(c)| >

(1 − τ). So C is a cluster of density d > (1 − τ).

Under the repeated monotonic opinion update ~4+ , and given that there
are already f-supporters in the network (and that τ > 0), the only obstacle to
a spread of support for f are clusters of ¬f-supporters, i.e. groups of agents
that do not support the issue and are so interconnected that they keep each
other from changing their opinion. For the remainder of this thesis, we
will refer to such clusters of ¬f-supporters of density d > (1 − τ) as very
dense clusters of ¬f-supporters. On a technical level, Theorem 2.1 shows that,
equipped with only the monotonic opinion update4+ , the social network
models from Definition 1 work like the more classical threshold models
described in Section 1.

In contrast, the direct analogue of the theorem for the non-monotonic
opinion update does not hold. To see this, consider Figure 4: M is a social
network model with a non-zero threshold τ, a set {a} of f-supporters and
no very dense clusters of ¬f-supporters – the only such cluster is {b}, which
has a density of 0 6> τ. Yet M does not cascade into an f-consensus under
application of4-updates.
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a bM0 a bM1 a bM2

Figure 4: A succession of models, starting from a single-issueM with τ = 1
2

and ω = 1 and continuing with M1,M2 ∈ ~4(M). Note that M2 = M,
M3 =M1 et cetera.

The counterexample gives us the opportunity for another observation:
Under the repeated update ~4, models are not guaranteed to stabilize at all,
instead they can oscillate back and forth. These concepts will be precisely
defined and explored in Section 2.3.

An important thing to note is that the model in Figure 4 only acts as
a counterexample to the right-to-left direction of Theorem 2.1. The other
direction of the theorem still holds for non-monotonic opinion updates.

Proposition 2.1. Let M = (A,N, F,V ,ω, τ) be a social network model, with
τ > 0 and a set of agents C such that for all c ∈ C, f /∈ V(c) and C has density
d > (1−τ). Then there is no modelMn ∈ ~4(M) such thatMn is an f-consensus.

Proof sketch. This proof works very similar to the one given for the left-to-
right direction of Theorem 2.1: Assume that the initial modelM contains a
cluster of ¬f-adopters C of density greater than (1 − τ). In addition, assume
that there is an f-consensusMm ∈ ~4(M). Then there must be a set of agents
in C that first adopt f. For each of them, it cannot be the case that their set of
neighbors is empty – as otherwise they would not switch to supporting f –
so the ratio of f-supporting neighbors to all neighbors must be sufficiently
large. But then it cannot be true that C is a cluster of the required density,
which is a contradiction.

Thus, we see that dense clusters of ¬f-supporters continue to be an
obstacle to f-cascades under ~4. And since under this type of opinion update,
models can also cascade into a ¬f-consensus, we can prove a mirror image
of Proposition 2.1 for ¬f-cascades.

Proposition 2.2. Let M = (A,N, F,V ,ω, τ) be a social network model with a set
of agents C such that (i) for all c ∈ C, f ∈ V(c) and (ii) C has density d > τ. Then
there is no modelMn ∈ ~4(M) such thatMN is a ¬f-consensus.

Proof. For contradiction, assume that there is a model Mn ∈ ~4(M) such
thatMn is a ¬f-consensus. Then there must be a set C ′ ⊆ C of agents that

14



first drop support for f in a modelMm (withm 6 n). Consider some such
agent c ′ ∈ C ′. We know that f ∈ Vm−1(c

′) and f /∈ Vm(c ′). So it must hold

that Nm−1(c
′) 6= ∅ and |Nf

m−1(c
′)|

|Nm−1(c ′)| < τ. But (C ∩ Nm−1(c
′)) ⊆ Nf

m−1(c
′)

(since c ′ is assumed to be among the first agents of C that drop support for
f inMm). So then |C∩Nm−1(c

′)|
|Nm−1(c ′)| < τ, which contradicts the assumption that

C is a cluster of density d > τ.

For the remainder of this thesis, we will call clusters of f-supporters
of density d > τ very dense clusters of f-supporters. While Proposition 2.2
shows us that the non-existence of these clusters is necessary for a model to
become a ¬f-consensus, the model in Figure 4 once again proves that it is
not sufficient: M has no very dense clusters of f-supporters, and yet it will
never become a ¬f-consensus under ~4.

What do these results mean? The counterexample given in Figure 4
and Proposition 2.1 illustrate that social network models have to fulfill
stricter conditions in order to become an f-consensus under the repeated
non-monotonic opinion update ~4 than they would have to under its mono-
tonic counterpart ~4+ . In addition, Proposition 2.2 shows us that the re-
quirements for becoming a ¬f-consensus are similarly strict. This is not
unexpected: Under the repeated monotonic opinion update ~4+ , agents that
were “convinced” to adopt an issue f ∈ F at some point will stay convinced
indefinitely. But in a process like ~4 which allows agents to change their
mind and start or stop supporting any issue in F any number of times, it is
harder to get everybody to agree on one stance.

2.2 Social Relation Updates

The opinion updates defined in the last section reflect the tendency that in a
social setting, agents tend to become more similar to their peers or neighbors.
For this section, we look at the converse effect: Determined by similarities or
differences in opinions, agents might end existing social relations or begin
new ones. Threshold-based mechanisms of social network creation like the
one proposed here have also been used in [28], [30], [27] and [2].

Definition 6 (Social Relation Update). Given a SNMM = (A,N, F,V ,ω, τ),
the updated modelM2 = (A,N2, F,V ,ω, τ) is such that for any a,b ∈ A,

a ∈ N2(b) iff

(
a 6= b and

|(V(a) ∩ V(b)) ∪ (V(a) ∩ V(b))|
|F|

> ω

)
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where “V(a)” and “V(b)” are used to refer to the set-theoretic complement of V(a)
or V(b).

Through a social relation update, all agents in the model simultaneously
re-evaluate their social ties: They end relations with agents whose opinions
on the issues on F do not overlap to a sufficient degree with their own
opinions, and they connect to agents with whom they do have a sufficient
overlap. The similarity threshold ω acts as a formal reflection of what a
“sufficient degree” is.

In Definition 1, we defined the neighborhood relation N to be irreflexive
and symmetric. For any updated model M2, the relation N2 is also irreflex-
ive and symmetric, so our definition of the relation update does indeed
yield another proper social network model.

Corollary 2.2.1. Given any social network model M, N2 ∈M2 will be such that
for all a,b ∈ A, (i) a /∈ N2(a) and (ii) a ∈ N2(b)⇔ b ∈ N2(a).

Proof. Follows immediately from Def. 6.

We also now see how the social relation update of Definition 6 can pro-
duce a non-serial neighborhood relation: Agents that do not share opinions
to a sufficient degree with anybody else will have no neighbors after the
update.

2.3 Stabilization, Fragmentation and Polarization

Having introduced updates on agents’ opinions and relations, we now turn
to questions of stabilization. Intuitively, a social network model is stable
under a series of updates if the updates do not change anything about the
structure of the model.

We can make this idea more precise by using the concept of update
stream introduced in Definition 4, essentially adapting the idea that a model
that is stable under an update stream~† is a fixed point of the model change
induced by~† from [8].

Definition 7 (Stabilization and Stability). A model M stabilizes under an
update stream~† if there exists some n ∈ N such thatMn =Mm for allm > n

and Mn,Mm ∈ ~†(M). A model M is stable under an update stream ~† if
M0 =Mn for all n > 0, i.e. if the point of stabilization has already been reached.
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It turns out that under repeated updates, there is an easy way to tell
if any given model stabilizes: As soon as an update step returns the same
model, the model is stable. This will turn out to be handy in the following
proofs, and it also shows that our notion of stabilization coincides with the
notion expressed in [2].

Proposition 2.3. For any repeated update~† and any social network modelM,M
stabilizes under~† if and only if there are two modelsMn,Mn+1 ∈ ~†(M) such that
Mn =Mn+1.

Proof. (⇐) For any update † ∈ U = {4+ ,4,2}, we know that the outcome
of any application of † to a given SNM M is uniquely determined by the
model and Definition 2, 3 or 6. So if for Mn,Mn+1 ∈ ~†(M), Mn = Mn+1,
thenMn =Mn+m for anym ∈ N. Specifically:

• For Mn,Mn+1 ∈ ~4+ (M): Assume that Mn = Mn+1. Then, by Def-
inition 2, we know that for any agent a ∈ A and any issue f ∈ F,
f ∈ Vn(a) if and only of one of the two conditions in the definition
holds in Mn. But by assumption, the same then holds for Mn+1, so
thenMn+1 =Mn+2, et cetera.

• For Mn,Mn+1 ∈ ~4(M): Suppose that Mn =Mn+1. By Definition 3,
we know that for any agent a and any issue f, f ∈ Vn(a) if and
only if at least one of the three conditions given in the definition is
satisfied. Again by assumption, the same holds for Mn+1, meaning
thatMn+1 =Mn+2 and so on.

• For Mn,Mn+1 ∈ ~2(M): Suppose Mn =Mn+1, then by Definition 6
we know that for any two agents a,b, a ∈ Nn(b) and b ∈ Nn(a) if

and only if a 6= b and |(V(a)∩V(b))∪(V(a)∩V(b))|
|F| > ω. But then, by

assumption, the same holds in Mn+1, meaning that Mn+1 = Mn+2

and so forth.

So thenMn is stable under the repeated update~†, soM stabilizes.
(⇒) IfM stabilizes under the repeated update~†, thenMn =Mn+1 for

some n ∈ N by definition.

Corollary 2.3.1. For any repeated update~† and any social network modelM,M
is stable under~† iff forM0,M1 ∈ ~†(M),M0 =M1.
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Armed with this knowledge, we can now begin investigating which
social network models stabilize under which update streams. For the re-
mainder of this section, we will mostly focus on single-issue models. It turns
out that under repeated monotonic opinion updates and repeated relation
updates, all such models stabilize:

Proposition 2.4. Any single-issue SNM M stabilizes under a repeated update ~4+
in at most |A − 1| steps, i.e. M|A−1| = Mm for m > |A| and M|A−1|,Mm ∈
~4+ (M).

Proof. First, note that ifM0 is an f-consensus or a ¬f-consensus, it stabilizes
under ~4+ : To see this, consider that either τ > 0 or τ = 0. If M0 is an
f-consensus, then M0 = M1 by Definition 2 in either of those cases, since
no agent will ever stop supporting f. If M0 is a ¬f-consensus, then we
know that for any agent a ∈ A, it holds that f /∈ V0(a) and Nf

0(a) = ∅. By
Definition 2, we then know that if τ > 0, f /∈ V1(a) for any a, meaning that
M0 =M1. In case τ equals zero,M1 will be an f-consensus, which stabilizes
by the argument just given above.

Now, suppose M0 is neither type of consensus. Let Af
0 be the set of

f-supporters in M0, and let A¬f
0 be the set of ¬f-supporters in the same

model. Then Af
0 6= ∅ and A¬f

0 6= ∅. Since we are working with the repeated
monotonic opinion update ~4+ , we know that for each update step from Mn

to Mn+1, either Af
n = Af

n+1 or Af
n ⊂ Af

n+1. In the first case, we know by
Corollary 2.3.1 thatMn is stable. In the second case, we can proceed to the
next update step and see ifAf

n+1 = Af
n+2 orAf

n+1 ⊂ Af
n+2. This process can

only go on for as long as Af
n+m 6= ∅. So it can take at most |Af

0 | steps (or less,
if at some update step more than one agent adopts f). But |Af

0 | 6 (|A|− 1).
This completes the proof.

This means that under the repeated monotonic opinion update ~4+ , any
social network will stop changing after a finite number of steps: Once,
for any issue f ∈ F, all agents that are not in a very dense cluster of ¬f-
supporters have adopted f, the model enters a kind of deadlock and does
not change under any further application of4+ . Returning to our example
of a messaging app update (given on page 9), this means that some agents
might never install the update. If they are part of a close-knit group of
agents that use the old version of the app – or if they are not connected to
anybody else – they will never have incentive enough to go through the
hassle of updating.
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Proposition 2.5. Any SNMM stabilizes under a repeated update ~2 in one step,
i.e. Mn =Mn+1 forMn,Mn+1 ∈ ~2(M) and n > 0.

Proof. After one update with 2 on M0, i.e. in the model M1 ∈ ~2(M),
we know by Definition 6 that for all a,b ∈ A, b ∈ N(a) if and only if
|(V(a)∩V(b))∪(V(a)∩V(b))|

|F| > ω. This condition involves V , F and ω. But
these elements do not change from M0 to M1, so the same condition still
applies w.r.t. M1, so then M1 = M2 ∈ ~2(M). So M1 is stable under the
repeated update ~2, soM stabilizes under it.

Proposition 2.5 shows that the relations that form between agents with
the social relation update 2 stay unchanged as long as the opinion distri-
bution of the social network stays the same. Since we do not include other
social relation update mechanisms in our framework, this means that the
social structures that form in our models are quite rigid. After an update
with 2, the space of agents A is partitioned into groups of relatively like-
minded agents, and the only way for a given agent to leave or enter a group
is to change her opinions. Since the only way for that to happen is via
a monotonic or non-monotonic opinion update – both of which work by
making agents more (or at least not less) similar to their direct neighbors
– the prospects of agents switching from one 2-created group to another
are limited. Figure 5 shows an example model that demonstrates that such
switches are still possible in multi-issue models: After one social relation
update, the model contains two groups: {a,b, c,d} and {e}. Through a subse-
quent opinion update, d changes her opinion, adopting all three issues in F.
When another social relation update is applied, this leads to her leaving her
previous social group and forming a new group with agent e.

Such group switches are not possible in single-issue models. Here, an
application of the social relation update 2 leads to the formation of groups
that are almost completely immutable. We can make this observation precise
using the concept of a cluster split, introduced through Definition 8.

Definition 8 (Cluster-Split Social Network Model). Given a single-issue social
network model M = (A,N, F,V ,ω, τ), let Af = {a ∈ A : f ∈ V(a)} and A¬f =

{a ∈ A : f /∈ V(a)} be the set of f-supporters and ¬f-supporters, respectively. We
say thatM is cluster-split if Af and A¬f are clusters of density 1.

Proposition 2.6. LetM = (A,N, F,V ,ω, τ) be a single-issue SNM withω > 0.
Further, suppose thatM is neither an f- nor a ¬f-consensus. ThenM2 is cluster-
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Figure 5: Four models. The initial model M0 contains three issues {f,g,h}
and the thresholds τ = 1

3 and ω = 2
3 . M1,M2 and M3 are obtained by

applying an update stream ~† = (2,4,2, . . . ) to M0. This means that M1

is the result of applying a social relation update to M0; M2 is the result of
applying a non-monotonic social influence update toM1;M2 is the result
of applying a social relation update to M1. In each model, every node
is labelled with the corresponding agent’s name and the issues the agent
supports (the latter is underlined). Agents without underlined text next to
them do not support any of the issues in F.

split, and Af
2 = {a ∈ A : f ∈ V2(a)} and A¬f

2 = {a ∈ A : f /∈ V2(a)} are
completely connected.

Proof. Since V does not change with when applying the update 2, we know
that Af = Af

2 6= ∅ and A¬f = A¬f
2 6= ∅. Take some a ∈ Af and some

b ∈ A¬f. We know that V(a) = F = {f} and V(b) = ∅, so a /∈ N2(b) and
b /∈ N2(a). As this holds for any such pairs of agents and Af t A¬f = A

(where “t” denotes the disjoint union), we know that Af and A¬f are
clusters of density 1, soM2 is cluster-split.

To see that both sets are completely connected, consider that either
|Af| > 1 or |Af| = 1. In the first case, take any a,a ′ ∈ Af: We know that
V(a) = V(a ′) = F = {f}, so a ∈ N2(a

′) and a ′ ∈ N2(a). In the second case,
complete connectedness holds vacuously. An analogous argument holds for
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A¬f
2 .

A cluster-split model is a model where the set of agents has fragmented
into camps with opposing opinions that are not in contact with each other.
Any single-issue SNM that is not already a consensus will become cluster-
split through a single social relation update.

It is worth taking a few paragraphs to reflect on this result. We have
defined the update 2 to be a simple formal version of the homophilic
tendency of social selection – seeking connections with people that are similar
to oneself. It seems intuitively clear that in isolation, such a tendency can
contribute to social fragmentation. To a degree – arriving at the result
requires many simplifying assumptions – Proposition 2.6 seems to be the
formal confirmation of this intuition. The result also links similarity-based
social relation updates like 2 to the topic of polarization:

In much of the literature on social network analysis and formal episte-
mology, polarization is understood as an effect of group deliberation.12 The
concept was neatly summarized by Isenberg, who states that “polarization
is said to occur when an initial tendency of individual group members
toward a given direction is enhanced following group discussion” [18].
Hansen, Hendricks and Rendsvig identify four factors that are required for
polarization to take place [15]:

1. A set of agents,

2. an issue on which agents’ degree of agreement can vary on a scale
with neutral midpoint and two extreme poles,

3. a division of agents into subgroups, which are homogenous with
respect to their degree of agreement relative to the midpoint, and

4. a group deliberation process in which agents are free to discuss their
opinions and arguments.

Point 2 and 4 are not to be found in our formal framework: We model the
attitude that agents take with respect to issues in F as a binary “agree or
disagree”, not as a scale with a midpoint (recall the brief discussion of this
on page 7); and we do not provide a way to model deliberation between
agents, which is surely a more complex process than the mechanism for
social influence we attempt to capture with opinion updates. What is found

12See for instance [31] and [15].
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in our framework, though, is a potential explanation of how a set of agents
comes to fulfill point 3. If similarity in opinions is used as a principal factor
to manage social relations, it can easily lead to the formation of fragmented,
echo-chamber-like social structures – a prerequisite to polarization.

In what follows, we further spell out the consequences that a cluster-split
has for the development and stabilization of a model under update streams.
It turns out that almost all cluster-split models stabilize under any update
stream – and that models with non-trivial, i.e. nonzero thresholds even
stabilize in a cluster-split. We present these results below, and then return to
another reflection on their significance.

Proposition 2.7. Let M = (A,N, F,V ,ω, τ) be a cluster-split social network
model. ThenM stabilizes under the repeated update ~4.

Proof. If τ > 0, then V0 = V1, so M0 = M1. To see this, take any agent
a ∈ A. Suppose that a ∈ Af

0, then since this is a cluster of density 1 by

assumption, we know that either N(a) = ∅ or |N(a)∩Af|

|N(a)| > 1. So f ∈ V1(a).
Now, suppose that a ∈ A¬f

0 . By the same argument, we know thatN(a) = ∅
or |N(a)∩A¬f

0 |

|N(a)| > 1. So then |Nf
0(a)|

|N(a)| = 0 < τ, so f /∈ V1(a).

If τ = 0, thenM1 is an f-consensus, so it is stable under ~4: Then it holds
for all a ∈ A that f ∈ V1(a), so it is likewise the case that Nf

1(a) = N1(a),
so by Definition 3 we get that f ∈ V2(a) for any agent a, meaning that
M1 =M2.

The fact that cluster-split models stabilize under the repeated update ~4
is notable since this is not the case for all social network models, as shown
in Figure 4. Having covered all repeated updates through Propositions 2.4,
2.5 and 2.7, one might wonder if cluster-split models are also stable under
any update stream. The answer is “yes”, but only for cluster-split models
with certain thresholds. We prove this in Propositions 2.9, 2.10 and 2.11, but
first we present an auxiliary result on stabilization of models under update
streams:

Proposition 2.8. Let M be a single-issue social network model. If M is stable
under the repeated updates ~4+ , ~4 and ~2, thenM is stable under any update stream
~† (with † ∈ {4+ ,4,2}).

Proof. By contradiction. Take some such model M, some update stream
~† and suppose that for some Mn ∈ ~†(M), M 6= Mn. Then there must
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be some first update stage Mm (with 0 6 m 6 n) and some update † ∈
{4+ ,4,2} where the model first changed through application of †. But then
the original model M is not stable under the update †, which contradicts
our assumption.

It is important to emphasize that Proposition 2.8 works with models that
are stable under repeated updates, not models that stabilize under repeated
updates. Using the proposition, we can now characterize which cluster-split
models stabilize under any update stream.

Proposition 2.9. Let M = (A,N, F,V ,ω, τ) be a cluster-split social network
model with τ > 0 and ω > 0. Then M stabilizes in a cluster-split under any
update stream~†.

Proof. Let~† be some update stream. We show that no matter what the first
two operations †1, †2 ∈ ~† are, M2 ∈ ~†(M) is cluster-split and stable under
any repeated update. Then, by Proposition 2.8, we know thatM stabilizes
under any update stream.

Suppose that †1 = 4. By Proposition 2.7 and since τ > 0 by assumption,
we then know thatM0 =M1.

Suppose that †1 = 4+ . Then M0 = M1 by the same argument given
in Proposition 2.7: Agents in Af

0 and A¬f
0 are in clusters of density 1 by

assumption, so neither type of agent will be convinced to change their
opinion about f through the update.

Suppose that †1 = 2. Then by Proposition 2.6, we know that M1 is
cluster-split with completely connected components Af

1 and A¬f
1 . Now by

Proposition 2.5 we know that M1 is stable under further application of 2.
And by the same arguments as given in the previous two paragraphs, we
know that if †2 = 4 or †2 = 4+ , then M1 = M2. So M1 is stable under
the repeated updates ~4+ , ~4 and ~2. Since M0 = M1 if †1 = 4+ or †1 = 4,
this paragraph also shows that in these cases, the model will become stable
under any of the repeated updates.

Proposition 2.10. Let M = (A,N, F,V ,ω, τ) be a cluster-split social network
model with τ = 0 andω = 0. ThenM stabilizes under any update stream~†.

Proof. Let~† be any update stream, and consider in particular †1, †2 ∈ ~†.
Suppose that †1 = 2. Then M1 is a fully connected model. If †2 = 2,

then M1 = M2 by Proposition 2.5. If †2 = 4+ or †2 = 4, then M2 is a fully
connected f-consensus, which is stable under any repeated update.
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Suppose that †1 = 4+ or †1 = 4. Then M1 is an f-consensus. Thus, if
†2 = 4+ or †2 = 4, M1 = M2. So M1 is stable under ~4+ and ~4. Now, if
†2 = 2, we know that M2 is a fully connected f-consensus. So since τ = 0
andω = 0,M2 is stable under any repeated update.

So we know that no matter what †1 and †2 are, M2 ∈ ~†(M) is a stable
under any repeated update. So by Proposition 2.8, we know thatM2 is stable
under any update stream~†, soM stabilizes under any update stream.

Proposition 2.11. Let M = (A,N, F,V ,ω, τ) be a cluster-split social network
model with τ = 0 andω > 0. ThenM stabilizes under any update stream~†.

Proof. Let~† be any update stream, and consider in particular †1, †2 ∈ ~†.
First, suppose that †1 = 4+ or †1 = 4. ThenM1 is an f-consensus. Then

M1 is stable under ~4+ and ~4. Suppose that †2 = 2. Then M2 is a fully
connected f-consensus, stable under ~4+ and ~4 and ~2.

Now, suppose that †1 = 2. Then M1 is a cluster-split model with com-
pletely connected sets Af

1 and A¬f
1 by Proposition 2.6. M1 is stable under

~2, then. Suppose that †2 = 4+ or †2 = 4: ThenM2 is an f-consensus. Then
by the same argument as in the previous paragraph,M2 stabilizes under all
repeated updates. So no matter what the first updates in~† are,M develops
into some model that is stable under all repeated updates. SoM develops
into a model that is stable under any update stream ~†. Thus, M stabilizes
under any update stream~†.

From a purely formal perspective, the three previous propositions show
us that cluster-split models are well-behaved: Most of them will stabilize,
no matter what sequence of updates is applied to them. And we can obtain
such models by simply making agents update their social relations once,
provided that (i) there isn’t already a consensus in the model – in which case
the model would stabilize under any update stream, anyway – and (ii) ω
is not 0 – which incidentally is also a sufficient condition for the resulting
cluster-split model to stabilize. In single-issue models, the social relation
update 2 can thus be seen as a push towards stabilization.

However, assuming the more “social” perspective from above again,
Propositions 2.9 to 2.11 are not a positive result. We find that within our
framework, the possibilities of resolving the social fragmentation repre-
sented by a cluster-split are quite limited. In particular, Proposition 2.9
shows that a cluster-split model with nonzero thresholds will remain cluster-
split indefinitely. We had argued that the emergence of cluster-split mod-
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els through our social relation update hints at the fact that in isolation,
similarity-driven social selection leads to the development of fragmented
social structures. With Propositions 2.9 to 2.11, we now also know that none
of the homophily-based mechanisms we defined is likely to resolve the issue
of fragmentation.

2.4 Oscillation

Attentive readers will have noticed that we did not provide a general stabi-
lization result for cluster-split models withω = 0 and τ > 0, yet. This is due
to the fact that not all such models stabilize under any update stream:

Proposition 2.12. Not all cluster-split SNMs stabilize under any update stream.
Consider as counterexample the model M = (A,N, F,V ,ω, τ), with A = {a,b},
N(a) = N(b) = ∅, F = {f}, V(a) = F and V(b) = ∅, ω = 0 and τ = 1; further,
define the update stream ~†o = (2,4,4, . . . ) with †n = 4 for all †n ∈ ~†o with
n > 2. M never stabilizes under ~†o.

See Figure 6 for a visual representation of the first models in ~†o(M).

a bM0 a bM1 a bM2 a bM3

Figure 6: The first four models in the sequence ~†o(M). Note that M0 is a
cluster-split model. Since ω = 0, the cluster-split can be broken by ap-
plication of the opinion update 2. The resulting model never becomes
stable.

This observation serves to shift our attention away from the special case
of cluster-split models, and towards a more general phenomenon: Some
social network models never stabilize. We had already seen this behavior
earlier (see Figure 4), and in this subsection, we make a first step towards a
characterization of oscillation. To do so, we need a precise formal description:

Definition 9 (Oscillation). Given an update stream ~† and a single-issue SNM
M, we say that M oscillates under ~† if ∃a ∈ A and ∃Mn ∈ ~†(M) such that for
allm > n, f ∈ Vm(a)⇔ f /∈ Vm+1(a).

It is clear that a model that oscillates under~† never stabilizes under~†.13

13This shows that our notion of oscillation is different from the concept of oscillation used
in [2]. There, any stable model is a special type of oscillating model.
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By Propositions 2.4 and 2.5, we thus know that single-issue social network
models cannot oscillate under repeated updates ~4+ or ~2. But Figure 6
clearly shows that oscillation can happen under the repeated update ~4.
Proposition 2.13 outlines conditions sufficient for a social network model to
oscillate under ~4.

Proposition 2.13. Let M be a single-issue SNM with τ > 0. M will oscillate
under ~4 if ∃G,H ⊆ A such that:

1. G and H are nonempty.

2. Either G is a set of f-supporters and H is a set of not-f-supporters, or the other
way around

3. For all g ∈ G: |H∩N(g)|
|N(g)| > τ and |H∩N(g)|

|N(g)| > (1 − τ).

4. For all h ∈ H: |G∩N(h)|
|N(h)| > τ and |G∩N(h)|

|N(h)| > (1 − τ).

Proof. We use induction to prove thatM will behave in a certain way under
the repeated update ~4. It then immediately follows that there is a “witness”
to the model’s oscillation.

Base case: ConsiderM0 ∈ ~4(M). Suppose that ∀g ∈ G : f ∈ V0(g). Then,

∀h ∈ H : f /∈ V0(h). Then, by point 3 above, it follows that |Nf
0(g)|

|N(g)| < τ for

any g ∈ G, and by point 4 it holds |Nf
0(h)|

|N(h)| > τ for any h ∈ H. So in M1, no
agent inGwill support f, and every agent inHwill support f. An analogous
argument applies when we start by assuming that ∀g ∈ G : f /∈ V(g).

Induction hypothesis: ConsiderMn−1 and suppose that the following
three things hold:

• Either (∀g ∈ G : f ∈ Vn−1(g)∧ ∀h ∈ H : f /∈ Vn−1(h)) or
(∀g ∈ G : f /∈ Vn−1(g)∧ ∀h ∈ H : f ∈ Vn−1(h))

• ∀i ∈ (G ∪H) : f ∈ Vn−1(i)⇒
|Nf

n−1(i)|

|N(i)| < τ

• ∀i ∈ (G ∪H) : f /∈ Vn−1(i)⇒
|Nf

n−1(i)|

|N(i)| > τ

Induction step: Now considerMn. By the induction hypothesis, we know
that either G contains only f-supporters and H contains only ¬f-supporters,
or the other way around. Suppose the first case holds: Then, sinceN did not
change fromM0, we can again use point 3 and 4 from above to deduce that

26



|Nf
n(g)|

|N(g)| < τ for any g ∈ G, and |Nf
n(h)|

|N(h)| > τ! And once again, an analogous
argument applies for the other possible case.

Now any agent from H ∪G can be used to prove thatM oscillates under
the repeated update ~4.

A social network model that satisfies the conditions given above contains
two groups of agents with opposing views which are heavily connected to
each other – so much so that either group has enough influence on each
member of the other group to make them switch their opinion. In Figure 6,
for instance, agents a and b have opposing views with respect to the issue f,
and fromM1 on, both are each other’s only neighbor.

There are parallels between these conditions and the conjecture put
forth by Liu, Seligman and Girard in [20] about characterizing communities
“in flux”. There, the authors focus on mechanisms and dynamics of belief
change in social networks, modelling three possible belief states per propo-
sition for each agent and explicitly defining different types of influences
that neighbors have on each other. The formal setting is thus quite different
from the one in this thesis. Still, they suggest that communities that are in
flux, i.e. never become stable with respect to the agents’ belief changes are
characterized by the following condition: For every agent in the community,
either (i) all of her neighbors believe p and all of her neighbors’ neighbors believe ¬p,
or (ii) all of her neighbors believe ¬p and all of her neighbors’ neighbors believe p.14

For any agent, all of that agent’s neighbors agreeing on belief or disbelief of
a proposition is sufficient to induce a belief change in the agent. It is easy to
see that this expresses a similar idea as Proposition 2.13: A social network
model will not stabilize if it contains groups of agents with differing atti-
tudes which are also in a position to influence each other’s attitudes to a
sufficient degree.

However, the conditions we give above are not necessary. In other words,
there are oscillating social network models that do not satisfy them. One
such model is shown in Figure 7: In M0, there is a set of ¬f-supporters,
namely {a}, and there are a number of available sets of f-supporters. But {a}
makes up less than a τ fraction of the neighbors of any available f-supporter.
The model thus violates condition 3 or 4 of Proposition 2.13, and yet it
oscillates. This shows that a precise characterization of oscillating models

14Paraphrased from the formally expressed “(FBp∧ FFB¬p)∨ (FB¬p∧ FFBp)”, see [20, p.
2411].
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must make use of weaker conditions than the ones we gave above. We do
not pursue this line further here, but we will return to it in the conclusion.

b

a

c dM0

b

a

c dM1

b

a

c cM2

Figure 7: A sequence of single-issue SNMs under the repeated non-
monotonic opinion update ~4 with τ = 2

3 . The model oscillates, but it
does not fulfill the conditions given in Proposition 2.13.
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3 Preliminaries: Knowledge and Epistemic Logic

The framework presented in Section 2 revolves around modelling the two
homophilic tendencies of social selection and social influence. While the
opinion updates and social relation updates given in Definition 3 and 6 are
plausible representations of these tendencies, they are also quite simple. In
particular, they sidestep the topic of knowledge: In our model, we tacitly
assumed that for a given group of agents, everyone knows exactly what
opinions anybody else has, and everyone knows the exact structure of the
network, i.e. who is friends with whom. This seems to be an unrealistically
strong assumption.

In the following section, we set ourselves the task to amend this and
explicitly introduce an epistemic dimension to the model; this will allow us
to define more fine-grained versions of the updates introduced so far, and
study their characteristics and interactions. To this end we will make use of
techniques from epistemic logic and dynamic epistemic logic. We will use
this section to introduce these techniques and the ideas behind them.

Representing Knowledge with Modal Logic

Epistemic logics are frameworks to reason about attitudes such as knowl-
edge and belief.15 Further developments of the framework have made it
possible to extend the modelling to different epistemic concepts, including
justification, evidence et cetera. Both in “classical” epistemic logic and dy-
namic epistemic logic, this is usually achieved using formal techniques from
modal logic, specifically Kripke frames.16

A Kripke frame is a pair (W,R), where W is a nonempty set of states
and R is a binary relation on the setW. Given a set of propositional atoms
Prop, we can define a modal language by specifying the set of well-formed
formulas ϕ of the language, using the Backus-Naur form:

ϕ ::= p ∈ Prop | ⊥ | ¬ϕ | ϕ∨ψ | 2ϕ

Kripke frames can then be used to interpret the well-formed formulas of
our modal language. To do so, we can extend any Kripke frame F = (W,R)
to a Kripke model M = (W,R,V) by adding a valuation function V : Prop→

15[17] is considered to be a foundational text for epistemic logic; an overview is given
in [13].

16For an introduction to dynamic epistemic logic, see [6] or [11].
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℘(W) that maps each propositional atom to a set of states. Given a Kripke
model M, we can introduce a notion of satisfaction, formally denoted by “�”:
For any formula ϕ of our language and any state w ∈W,

M,w � p iff w ∈ V(p)
M,w � ⊥ never
M,w � ¬ϕ iff not M,w � ϕ
M,w � ϕ∨ψ iff M,w � ϕ or M,w � ψ
M,w � 2ϕ iff for all v such that Rwv we have M, v � ϕ

The conditions given for the propositional connectives are standard; it
is the satisfaction condition for the modality 2 that makes the semantics
interesting: 2ϕ holds at a state w if and only if ϕ holds at all states that can
be reached from w via the relation R.17

Mathematically, Kripke frames and models are interesting structures by
themselves, and nothing forces us to give a further interpretation of what
formulas like 2ϕ or ¬2(ϕ∨ψ) mean. But from a philosophical perspective,
an epistemic reading is quite natural: We can take the set of states W as a
set of possible worlds, and understand R as some relation of epistemic accessi-
bility. The modality 2 can then be interpreted as a formal characterization
of knowledge; to distinguish this interpretation from the philosophically
neutral one described so far, we will write “Kϕ” instead of “2ϕ”. Recapitu-
lating the satisfaction conditions given just above, we get: A proposition ϕ
is known at a possible world w in a model M – formally, M,w � Kϕ – if and
only if ϕ is true in all worlds that are epistemically accessible from w.

We use an example to illustrate how this works.18 Picture the following
scenario: Anna is sitting in her office in Amsterdam, and she is wondering
about the weather. Specifically, she is wondering if it is windy or raining.
There are four possible situations she could find herself in: It could be both
raining and windy, it could only be raining, it could only be windy, or it
could be neither raining nor windy. Figure 8 shows how we can represent
these situations as possible worlds, using p to represent the proposition “It
is raining”, and q to represent “It is windy”.

Anna’s office has a window, and it is overlooking the canal. So if it
is raining, she can see this by looking at the water surface. But there are

17Using the propositional connectives and modality contained in our language, we can
define other connectives and modalities in the usual way, i.e. ϕ → ψ ::= ¬ϕ ∨ ψ or
3ϕ ::= ¬2 ¬ϕ.

18In our explanation, we follow the overall structure of [25].
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p,q

w1

p,¬q

w2

¬p,q

w3

¬p,¬q

w4

Figure 8: A set of states W = {w1,w2,w3,w4} with a valuation V on them.
The states are represented as boxes with round edges, labeled above with
their name; V is represented in the figure by labelling states inW with the
atomic propositions that hold or do not hold at them.

no trees outside her office, so she can not assess if it is windy by looking
outside. This means that Anna can distinguish situations with rainy weather
from those where it is dry – but situations that only differ in wind level
are indistinguishable for her. This too can be represented in our model,
by adding a relation between possible worlds. As the relation represents
Anna’s situation, we name it Ra. In Figure 9, Ra is depicted through labeled
arrows connecting possible worlds. We can see that, for Anna, w3 and w4

are indistinguishable; w2 and w3 are not indistinguishable; every world is
indistinguishable from itself et cetera.

p,q

w1

p,¬q

w2

¬p,q

w3

¬p,¬q

w4

a aa a a a

Figure 9: A Kripke model M = (W,Ra,V). W and V remain unchanged from
Figure 8; the relation Ra is represented as double-headed arrows between
states, labeled with the letter a.

Figure 9 depicts a Kripke model, and we can now ask what Anna does or
does not know in this model. The answer depends on the state we consider.
For instance, in state w2, we get:

1. M,w2 � Kap. Anna knows that it is raining.19

19Note that we write “Kaϕ” in this example to make explicit that we are quantifying over
Ra-accessible states and that we are thus modelling Anna’s knowledge.
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2. M,w2 � ¬Kaq ∧ ¬Ka¬q. Anna does not know that it is windy, and
she does not know that it is not windy.

3. M,w2 � KaKap. Anna knows that she knows that it is raining.

4. M,w2 � ¬Ka¬q. Anna considers it epistemically possible that it is
windy.

By spelling out the available scenarios from our example as possible
worlds, and adding an epistemic accessibility relation, we receive a precise
characterization of Anna’s knowledge.

In this example, we have interpreted the relation Ra as indistinguishabil-
ity, and we have correspondingly modeled the relation Ra to be reflexive,
symmetric and transitive – an equivalence relation. It is one of the char-
acteristic features of modal logic that any choice of properties for Ra will
commit us to accept a number of principles involving Ka, our notion of
knowledge.20 Specifically, the following principles are valid at any state
of any Kripke model with a relation Ra that is reflexive, symmetric, and
transitive.

K Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ)

T Kaϕ→ ϕ

4 Kaϕ→ KaKaϕ

5 ¬Kaϕ→ Ka¬Kaϕ

These principles spell out properties of knowledge as modelled by the
operator Ka: K commits us to closure of knowledge under modus ponens, T
commits us to knowledge being factual, and 4 and 5 commit us to knowledge
being positively and negatively introspective: If an agent knows something,
she knows that she knows it; and if an agent does not know something, she
knows that she does not know it.

The notion of knowledge that is modelled by frames with equivalence
relations is thus quite strong, and many arguments have been given for
modifying it by requiring the relation Ra to satisfy other properties.21 Nev-
ertheless, we will accept all principles listed above and model epistemic

20Modal correspondence theory is the study of the connection between frame properties,
i.e. properties of a modal relation, and frame validities, i.e. formulas or formula schemes
that hold at any state of any model based on a frame with the relation that satisfies these
properties. An introduction to this can be found in [9].

21[7] contains a formal setting that accommodates both this strong notion of knowledge
and other epistemic and doxastic attitudes.
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accessibility as an equivalence relation in this thesis. This is convenient from
a modelling standpoint, as an equivalence relation partitions the state space
W and is thus easy to work with. Further, the choice will make our results
more compatible with other fields that work with these assumptions. For
instance, foundational work on epistemic game theory done by Aumann22

makes use of this notion of “hard” knowledge.
We now return to our example of Anna and the weather to illustrate a

final feature of epistemic logic. So far we have worked with Kripke frames
that contain one relation. By including multiple relations on the state space
instead, we can model the knowledge of multiple agents in a situation.
For context, picture Anna’s colleague, Bob. Bob has an office in the same
building, but it is not overlooking a canal. Instead, his window is right in
front of a big tree. This means that Bob can not see if it is raining or not (he
can’t quite make out raindrops with all the leaves as the backdrop), but he
can tell if it is windy or not by seeing if the tree’s branches are bending. We
can add this information into our model from Figure 9 by giving a second
relation Rb. The resulting model is shown in Figure 10.

p,q

w1

p,¬q

w2

¬p,q

w3

¬p,¬q

w4

a a

b

b

a,b a,b a,b a,b

Figure 10: Another Kripke model M ′ = (W,Ra,Rb,V). W and V remain
unchanged from Figures 8 and 9. The relations Ra and Rb are both depicted
as labelled double-headed arrows between states.

Once again, we can now list things Anna and Bob know and don’t
know at a state, using two modalities Ka and Kb that correspond to the two
indistinguishability relations of the model:

1. w2 � Kb¬q∧¬Ka¬q. Inw2, Bob knows that it is not windy and Anna
does not know that it is not windy.

22Originally introduced through [1]. For a contemporary introduction, see [24].
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2. w2 � Ka(Kbq∨ Kb¬q). In w2, Anna knows that Bob knows whether
it is windy or not.

In the following section, we will use the ideas presented here to represent
agents information about the social network they are in. This means that
agents can be certain or uncertain, both regarding the opinions other agents
have and the relational structures between them. We focus on a model
theoretic account, defining a state space and assigning opinion distributions
and neighborhood structures to each state. Our method of combining social
network models with epistemic logic draws from the work presented in [4].
In this thesis, we use it to explore

1. what ways there are to define homophily-based updates of social
networks when epistemic uncertainty is present,

2. how these different ways of updating compare to each other and

3. how agents can learn about the network they are in.
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4 Epistemic Social Network Models

We begin by introducing a new type of model, supplementing the non-
epistemic social network models of Definition 1 with a state-structure and
an accessibility relation between states.

Definition 10 (Epistemic Single-Relation SNM). An epistemic single-relation
social network modelM is a tuple (W,A,N, F,V ,ω, τ, {∼a}a∈A) where

• W is a finite, non-empty set of states,

• A is a finite, non-empty set of agents,

• N :W×A→ ℘(A) is the neighborhood function, assigning a set of neighbors
N(w,a) to each pair of w ∈W and a ∈ A such that for any w ∈ A and all
a,b ∈ A:

– a /∈ N(w,a) (irreflexivity) and

– a ∈ N(w,b) if and only if b ∈ N(w,a) (symmetry);

• F is a finite, non-empty set of issues;

• V :W ×A→ ℘(F) is a valuation function, assigning to each pair of a state
w and an agent a a set of issues the agent accepts or supports in w;

• ω, τ ∈ Q are two rational numbers s.t. 0 6 ω 6 1 and 0 6 τ 6 1,
interpreted as similarity threshold and influencability threshold;

• ∼a⊆W ×W is an equivalence relation between states inW for each agent
a ∈ A.

For each agent a, the equivalence relation ∼a represents indistinguisha-
bility: If w ∼a v, then agent a considers the state of affairs represented by
state v as an epistemic possibility in state w. Through this, we introduce the
possibility of agents being uncertain about the state of the social network
they are in. To keep the framework as general as possible, we have not in-
cluded any constraints on the equivalence relation {∼a}a∈A in the definition
above. But for our purposes, it will be plausible to require all agents to have
a minimal level of knowledge about the network. To make this precise, we
introduce the notions of n-reachability and sight, following the way they are
introduced for opinion models in [4].
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Definition 11 (n-reachable). Let M be an epistemic SNM and let n ∈ N. Define
Nn :W → A→ ℘(A) as follows, for any w ∈W and any a,b, c ∈ A:

• N0(w)(a) = {a}

• Nn+1(w)(a) = Nn(w)(a) ∪ {b ∈ A : ∃c ∈ Nn(w)(a) and b ∈ N(w, c)}

If b ∈ Nn(w)(a), we say that b is n-reachable from a in w.

Given a model, a state w inW and an agent a, another agent is consid-
ered to be n-reachable from a in w if one can get to it in n steps, starting at
a and tracing the social relation N.

Definition 12 (Sight (n,m) model). An epistemic SNM of sight (n,m) is a
model such that, for n,m ∈ N and for any a,b ∈ A and any w, v ∈W:

• n 6 m+ 1

• If w ∼a v and b ∈ Nn(w)(a), then V(w,b) = V(v,b).

• If w ∼a v and b ∈ Nm(w)(a), then N(w,b) = N(v,b).

The sight of a model represents how much any agent in the model knows
about the network surrounding them: The higher n is, the further all agents
can “see” with respect to others’ opinions on the issues in F; the higherm
is, the further all agents can see with respect to the network’s structure, i.e.
who has which agents in their set of neighbors.

Four details of the definition are worth commenting on. First, since
n,m > 0, agents are guaranteed to know their own opinions and who
their neighbors are for any sight (n,m). Second, in an epistemic SNM of
sight (n,m), all agents know the distribution of opinions and the network
structure at least up to n orm, respectively – but some agents might know
even more, i.e. see further than that. Third, the requirement that n 6
m+ 1 makes it so that agents will not know other agents’ opinions without
also knowing how they are socially related to them. This reflects the idea
that within our models, the social relation N is the primary channel of
information about other agents.

Fourth, it should be noted that even in models with sight (0,m), social
influence can still take place. Having n = 0 should be understood as agents
not (generally) being certain about their neighbors’ opinions, not as them
having no information about their opinions whatsoever. Depending on the
behavior one wants to model, it can be sensible to require that an agent

36



is absolutely certain about the state of the network before she acts on it,
but it can also be sensible to set the bar for social influence lower than this,
requiring e.g. belief in the possibility that a set of conditions is fulfilled. In
the following sections, we will spell out two different ways of including
knowledge in update mechanisms for relations and opinions. It will turn
out that these mechanisms lead to different adoption behaviors in exactly
those epistemic SNMs that have a sight of (0,m), i.e. those models where
agents are not certain about their neighbors opinions.

4.1 Cautious Epistemic Updates

In this section and the following section, our definitions of epistemic relation
updates will require us to express that the “overlap” in two agents’ opinions
is larger than the threshold ω. We will use a shorthand to express this
similarity condition to make the coming definitions less unwieldy:

Smlty(w)(a,b) := (V(w,a) ∩ V(w,b)) ∪ (V(w,a) ∩ V(w,b))

With this, we now have everything we need to define and evaluate our first
pair of updates, starting with an epistemic version of our non-monotonic
opinion update from Definition 3.

Definition 13 (Cautious Epistemic Opinion Update). Given an epistemic
social network modelM, applying the (n,m) sight epistemic opinion update4C
results in a model M4C = (W,A,N, F,V4C,ω, τ, {∼4C

a }a∈A), where for any
w,w ′ ∈W, any a ∈ A and all f ∈ F:

• f ∈ V4C(w,a) iff ∀v ∼a w :


f ∈ V(v,a), if N(v,a) = ∅,
f ∈ F, if τ = 0,
|Nf(v,a)|
|N(v,a)| > τ, otherwise.

,

• w ∼
4C
a w ′ if and only if

(i) w ∼a w
′ and

(ii) ∀b ∈ Nn(w)(a) : V4C(w,b) = V4C(w
′,b).

Where Nf(w,a) = {b ∈ A : f ∈ V(w,b)}

The definition above consists of two points. The first point spells out the
conditions under which agents will support an issue in F after the update:
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If they know they have no neighbors, they will stick to the opinion they
had before the update – unless τ = 0, in which case all agents are so easily
influenced that they adopt all issues in F after one update step. Otherwise,
they will support an issue only if they are certain that at least a τ-fraction
of their neighbors supports it, too. With this type of update, agents are
modeled as reluctant to support issues in F: They only start doing so if they
are certain (enough of) their neighbors are doing it, and they stop as soon
as they lose this certainty. Figure 11 illustrates this, showing how an agent
that is unsure of the position of her neighbor errs on the side of caution and
stops supporting all issues in F.

f,g

a

f

b

w

f,g

a

g

b

v

a

M
a

f,g

b

w

a

f,g

b

v

a

M4C

Figure 11: A succession of models with τ = 1, F = {f,g} and initial sight
(0, 1). Both models have two states, w and v. These states are represented
as rounded rectangles enclosing the agents a and b. The equivalence re-
lations are shown as two-headed arrows between states, labeled with the
corresponding agent’s name; reflexive equivalence arrows for all agents
are omitted for visual clarity. Each agent is represented as a black node,
labeled with her name and the issues she supports in that state; the latter
are underlined. If an agent is not labelled with some issue in F, she does
not support it. On all occasions that follow, we will represent multi-issue
epistemic SNMs in this manner.

Cautious epistemic opinion updates can be understood to model an
opinion adoption behavior that arises when adopting the issues in F comes
with a cost or a risk. Perhaps the issues in F represent technologies, and
supporting (read: using) some technology f ∈ F incurs costs that only “pay
off” if a significant portion of neighbors does so, too. Or perhaps – taking
inspiration from [14] and [4, p. 524] – we are in a sociopolitical sphere,
and supporting an issue g ∈ F is equivalent to supporting a revolutionary
movement or a riot. In such a case, agents will want to be certain that
a sufficient portion of their neighbors also supports before they “join the
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movement”, lest they find themselves part of a group that was too small to
be successful and get punished.

Returning to the formal details, the second point of Definition 13 ensures
that the update mechanism is sight-preserving: If a (n,m) sight epistemic
opinion update is applied to a model M with sight (n,m), the result is a
modelM4C with the same sight.

Proposition 4.1 (4C is sight-preserving). Let M be a model of sight (n,m).
Then, through applying 4C with sight (n,m), the resulting model M4C has
(n,m), too.

Proof. Suppose not: Then one of two things is true.

1. There are two statesw, v ∈W, two agents b, c and an issue f such that:
w ∼

4C
b v and c ∈ Nn(w)(b) but V4C(w, c) 6= V4C(v, c). This directly

contradicts the second point of Definition 13.

2. There are two states w, v and two agents b, c such that w ∼
4C
b v and

c ∈ Nm(w)(b) and N(w, c) 6= N(v, c). By Definition 13 we then know
that w ∼b v, and since N did not change with the update, we know
that c ∈ Nm(w)(b) and N(w, c) 6= N(v, c). So M was not a model of
sight (n,m), which contradicts our initial assumption.

Note that this result does not mean that models cannot increase in sight
with updates – in fact, we will give examples of update sequences on models
where this does happen in Subsection 4.4. In this thesis, whenever there
is a sequence of epistemic social network models, we take the sight of the
first model to determine the initial sight of the model sequence; each update
within this sequence is then also performed with the initial sight.

Next, we deal with the counterpart of 4C, an epistemic version of a
relation update.

Definition 14 (Cautious Epistemic Relation Update). Given an epistemic
SNM M, applying the (n,m) sight epistemic relation update 2C results in a
model M2C = (W,A,N2C, F,V ,ω, τ, {∼2C

a }a∈A) where, for any a,b ∈ A and
any w,w ′ ∈W:

• b ∈ N2C(w,a) iff a 6= b and ∀v ∼a w :
|Smlty(v)(a,b)|

|F| > ω and ∀u ∼b w :
|Smlty(u)(a,b)|

|F| > ω,
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• w ∼2C
a w ′ if and only if

(i) w ∼a w
′ and

(ii) ∀c ∈ Nn
2C(w)(a) : V(w, c) = V(w ′, c) and

(iii) ∀d ∈ Nm
2C(w)(a) : N2C(w,d) = N2C(w

′,d).

Where Nn
2C(w)(a) is the set of n-reachable agents from agent a in state w known

from Definition 11, but constructed using N2C from the updated modelM2C.

The first point of Definition 14 makes it so that after an update with 2C,
agents will only be connected as neighbors to other agents if they are certain
to agree with each other on at least anω fraction of all issues. Similar to4C-
updates, this renders agents reluctant to engage in or uphold neighborhood:
If they don’t know for sure that the similarities to another agent are big
enough, they will not be neighbors with them.

It is worth noting that the definition requires de dicto knowledge of this
similarity, not de re knowledge.23 This means that it suffices for the agents
to know that there is a sufficiently large number of issues they agree upon,
possibly without knowing which issues they agree upon exactly. Figure 12
illustrates how this distinction works in the present setting: In the depicted
model M, agent a knows de dicto that her and agent b share half of their
opinions – she knows that b agrees with her on one of two issues; but a does
not know de re that her and b share half their opinions – she does not know
that her and b agree on issue f, and she also does not know that her and b
agree on issue g. For the cautious epistemic relation update the former type
of knowledge is sufficient for both agents to connect. In this, the update
mechanism we use is similar to the ones proposed in [30, p. 384] and [4, p.
505].

Like in the latter, it would be formally possible to define a de re version
of our cautious epistemic relation update. This would be an “extra cautious”
relation update, requiring that both agents are certain they agree on a specific
and sufficiently large subset of the set of issues F before connecting. We
choose not to explore this in this thesis, and instead continue with the less
strict version as given by Definition 14.

We now return to that very definition. Taking another look at its first
point, we can see that within our framework both agents are needed to enter

23For an introduction to the distinction, see the supplement “The De Re/De Dicto Distinc-
tion” to [23].
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Figure 12: A social network model with F = {f,g}.

or maintain a neighborhood relation, as they both need to be certain of their
similarity in opinions. On a formal level, the symmetry in the first condition
ensures that after an update with 2C, the relation N2C is again symmetric.

The second point of Definition 14 ensures that, like4C, the update 2C
preserves sight.24

Proposition 4.2 (2C is sight-preserving). Let M be a model of sight (n,m).
Then, by updating with 2C with sight (n,m), we obtain the model M2C which
also has sight (n,m).

Proof. Take any a,b ∈ A and any w, v ∈ W. Assume that w ∼2C
a v and

b ∈ Nn
2C(w)(a). Then, by Definition 14, we know that V(w,b) = V(v,b).

Now, take any a,b ∈ A and any w, v and assume that w ∼2C
a v and

b ∈ Nm
2C(w)(a). Then N2C(w)(b) = N2C(v,b), also by Definition 14.

So following from Definition 12,M2C is a model of sight (n,m).

4.2 Eager Epistemic Updates

The second type of epistemic updates we introduce, so-called eager updates,
differs in the previous pair only in a change of quantifiers. We start by
defining the eager epistemic opinion update4E.

Definition 15 (Eager Epistemic Opinion Update). Given an epistemic social
network modelM, applying the (n,m) sight epistemic opinion update4E results
in a modelM4E = (W,A,N, F,V4E,ω, τ, {∼4E

a }a∈A), where for anyw,w ′ ∈W,
any a ∈ A and all f ∈ F:

24In contrast to Definition 14, Definition 13 contains the additional condition (ii) for states
to be indistinguishable for an agent after the update. This is necessary because through
a cautious epistemic relation update, agents might newly connect to other agents whose
opinions they were not sure about before.
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• f ∈ V4E(w,a) iff ∃v ∼a w :


f ∈ V(v,a), if N(v,a) = ∅,
f ∈ F, if τ = 0,
|Nf(v,a)|
|N(v,a)| > τ, otherwise.

,

• w ∼
4E
a w ′ if and only if

(i) w ∼a w
′ and

(ii) ∀b ∈ Nn(w)(a) : V4E(w,b) = V4E(w
′,b) and

Where Nf(w,a) = {b ∈ A : f ∈ V(w,b)}

As before, the second point of the definition ensures that the update
operation is sight-preserving. The first point spells out the conditions for
an agent to adopt an opinion. At any state in W, agents will keep their
opinions if they have no neighbors. If they have neighbors, they will support
any given issue unless they are certain that less than a τ fraction of their
neighbors supports it, too. In contrast to the cautious epistemic opinion
update4C, with4E, agents are eager to support issues in F, and will only
refrain from doing so if they are certain that few (i.e. less than τ) of their
neighbors do the same.

f,g

a

f

b

w

f,g

a

g

b

v

a

M
f,g

a

f,g

b

w

f,g

a

f,g

b

v

a

M4E

Figure 13: A succession of models, with τ = 1, F = {f,g} and initial sight
(0, 1).

Figure 13 shows how this changes the opinion adoption behavior of
agents: Starting from the same model that was shown in Figure 11, after
an eager epistemic opinion update with sight (1, 0), agent a continues to
support both f and g, even though she is not sure which of these agent b
supports.

By changing the universal quantifier to an existential quantifier in the
definition, we also obtain an eager version of the epistemic relation update,
defined formally below.
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Definition 16 (Eager Epistemic Relation Update). Given an epistemic SNM
M, applying the (n,m) sight epistemic relation update 2E results in a model
M2E = (W,A,N2E, F,V ,ω, τ, {∼2E

b }a∈A) where, for any a,b ∈ A and any
w,w ′ ∈W:

• b ∈ N2E(w,a) iff a 6= b and ∃v ∼a w :
|Smlty(v)(a,b)|

|F| > ω and ∃u ∼b w :
|Smlty(u)(a,b)|

|F| > ω,

• w ∼2E
a w ′ if and only if

(i) w ∼a w
′ and

(ii) ∀c ∈ Nn
2E(w)(a) : V(w, c) = V(w ′, c) and

(iii) ∀d ∈ Nm
2E(w)(a) : N2E(w,d) = N2E(w

′,d).

Where Nn
2E(w)(a) is the set of n-reachable agents from agent a in state w known

from Definition 11, but constructed using N2E from the updated modelM2E.

After an update with 2E, two agents will be neighbors if neither of them
is certain that they are not similar enough in opinions. Figure 14 illustrates
how this influences the network change after an update: After applying the
eager epistemic relation update toM, agents a and b only connect to each
other in states where both of them are certain that they agree on the issue f.

a b

w

a b

v

a

M a b

w

a b

v

M2E

Figure 14: A succession of models, withω = 1, F = {f} and initial sight (0, 1).

Note that after the update, it is not the case anymore that w ∼2E
a v;

agent a has learned to distinguish between both states. We will come back
to the topic of learning in epistemic SNMs – and to the model shown in
Figure 14 – in Subsection 4.4. Before we do so, it will be helpful to compare
our epistemic update types on a more general level.
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4.3 Comparing Updates

How does the epistemic dimension affect the spread of behaviors and the
development of relations in social network models? In the present section,
we will compare epistemic and non-epistemic SNMs in their development
under update streams. To be able to do so, we will give a definition of update
stream that is slightly modified with respect to the definition given earlier in
Section 2. Further, we will introduce the notion of state-generated models.

Definition 17 (Epistemic Update Stream). An epistemic update stream~† is an
infinite sequence of updates (†n)n∈N (with † ∈ {4C,2C,4E,2E}). A repeated
epistemic update is an epistemic update stream that only consists of one type of
update.

An epistemic SNMM stabilizes under an update stream~† if there exists some
n ∈ N such thatMn =Mm for allm > n and withMn,Mm ∈ ~†(M). A model
M is stable under an update stream~† ifM0 =Mn for all n > 0, i.e. if the point of
stabilization has already been reached.

Definition 18 (State-Generated Social Network Model (adapted from [4])).
Let M = (W,A,N, F,V ,ω, τ, {∼a}a∈A) be an epistemic social network model.
For any state w ∈ W, the state-generated, non-epistemic social network model
M(w) = (A,NM(w), F,VM(w),ω, τ) is defined as (for all a ∈ A):

NM(w)(a) =N(w,a)

VM(w)(a) =V(w,a)

4.3.1 Opinion Change

Using state-generated models allows us to compare the development of
non-epistemic SNMs and epistemic SNMs in a formally precise way: Given
an epistemic social network model, we can generate a non-epistemic model
from one of its states and then compare both models’ behavior under update
streams. For instance, this technique allows us to prove that the epistemic
opinion updates 4C and 4E differ from the non-epistemic update 4 re-
garding the amount of agents that adopts an issue f ∈ F after an update is
applied.

Proposition 4.3. LetM be an epistemic SNM, and letM4C be the model obtained
by updating with the cautious epistemic opinion update4C. Then, letM4C(w)

be model state-generated fromM4C for some state w ∈W.
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Considering again the initial modelM, letM(w) be the state-generated model
from w, and letM(w)4 be the result of updating with the non-epistemic opinion
update4.

Now, we define Af
4C = {b ∈ A : f ∈ VM4C(w)} and Af

4 = {a ∈ A : f ∈
V
M(w)
4 }. Then:

Af
4C ⊆ Af

4

Proof. Suppose some agent a is in Af
4C. Then f ∈ VM4C(w)(a), so f ∈

V4C(w,a) by Definition 18, so by Definition 13, one of three things must be
the case in the original modelM:

(i) For all v ∼a w, it holds that f ∈ V(v,a) and N(v,a) = ∅. Then
f ∈ V(w,a) and N(w,a) = ∅, so f ∈ VM(w)(a) and NM(w)(a) = ∅ in the
state-generated modelM(w), so f ∈ VM(w)

4 (a). So then a ∈ Af
4.

(ii) For all v ∼a w, it holds that τ = 0. Since τ does not change with any
update or in the process of state-generation, it follows that f ∈ VM(w)

4 (a),
so a ∈ Af

4.

(iii) For all v ∼a w, it holds that |Nf(v,a)|
|N(v,a)| > τ. This also holds for w

then. So since NM(w) = N(w,a) and VM(w)(a) = V(w,a), we get that
|N

M(w)
f (a)|

|NM(w)(a)|
> τ. It follows that f ∈ VM(w)

4 (a), so a ∈ Af
4.

Comparing state per state for a given issue f ∈ F, an update step with
the cautious epistemic opinion update4C will never lead more agents to
adopt the issue than an update with the non-epistemic opinion update4.
Understanding the number of agents that adopt an issue after one opin-
ion update as adoption speed, Proposition 4.3 tells us that cautious opinion
updates on an epistemic model never lead to a quicker adoption of issues
than “basic” opinion updates on a non-epistemic model. As of now, this
leaves open the possibility that adoption under both update types always
has the same speed, i.e. that the sets Af

4C and Af
4 are identical for all ini-

tial models and states. The counterexample given in Figure 15 shows that
this is not the case: From an initial epistemic SNM M with one issue, a
threshold τ = 1

2 and sight (0, 1), updating the model with 4C and then
obtaining a state-generated model M4C(w) leads to a set of f-adopters
Af

4C = {a ∈ A : f ∈ VM4C(w)(a)} = {b}. If we first state-generate the model
M(w) and then apply the non-epistemic opinion update4, we instead get
a set Af

4 = {a ∈ A : f ∈ VM(w)
4 (a)} = {a,b, c}.
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Figure 15: Three models. M is an epistemic SNM with τ = 1
2 , F = {f} and

initial sight (0, 1); M4C is the model resulting from updating M with a
cautious epistemic opinion update. M(w)4 is obtained by taking the model
generated from state w ofM and applying a non-epistemic opinion update.

Thus, there are models where4C leads to a slower adoption of a given
issue than 4 does. In a sense, Proposition 4.3 and Figure 15 give us the
confirmation that4C really does model a more cautious attitude towards
adopting or supporting issues.

We now turn to eager epistemic opinion updates. It turns out that we
can prove a very similar result with respect to them and the non-epistemic
opinion update4.

Proposition 4.4. Let M be an epistemic SNM. Fix some state w ∈ W, and let
M(w) be the corresponding state-generated non-epistemic SNM. Now consider the
modelM4E, obtained by updatingM with the eager epistemic opinion update4E;
its state-generated modelM4E(w); and the modelM(w)4, obtained by updating
the initial state-generated modelM(w) with the non-epistemic opinion update4.

Let Af
4E(w) = {a ∈ A : f ∈ VM4E(w)(a)} be the set of f-supporting agents

in the model obtained by first updating with 4E and then state-generating. Let
Af

4 = {a ∈ A : f ∈ VM(w)
4 } be the set of f-supporting agents in the model that
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was first state-generated and then updated with4. Then:

Af
4 ⊆ Af

4E

Proof. Take some a ∈ Af
4: We know that f ∈ VM(w)

4 , so one of three things
holds:

(i) f ∈ VM(w) and NM(w) = ∅. Then, by Definition 18, we know that in
the original epistemic model M, N(w,a) = ∅ and f ∈ V(w,a). So then, by
Definition 15, we know that f ∈ V4E(w,a), so f ∈ VM4E(w), so a ∈ Af

4E.
(ii) τ = 0. Since τ does not change with any update or with state-

generation, it follows that f ∈ VM4E(w), so a ∈ Af
4E.

(iii) |N
M(w)
f |

|NM(w)(a)|
> τ. Then, by Definition 18, we know that |Nf|

|N(a)| > τ in
the original epistemic modelM. Thus, again by Definition 15, f ∈ V4E(w,a),
so f ∈ VM4E(w), so a ∈ Af

4E.

Again, the opposite inclusion does not hold, Figure 16 shows a counterex-
ample. Both states of M become an f-consensus after one eager epistemic
opinion update 4E with sight (0, 1). Compare this to the state-generated
modelM(v), which, after one opinion update4, would have only agent b
supporting f.

We now see that eager epistemic opinion updates never lead to a slower
adoption than non-epistemic opinion updates, and that they sometimes
cause a genuinely quicker adoption speed. Once again, this can be taken
as confirmation that the adoption behavior modeled by4E really is more
eager.

The difference between the non-epistemic SNMs of Section 2 and the
epistemic SNMs of this section is that the latter allow agents to be uncertain
about the state of the network. The two types of epistemic opinion updates
we defined above differ in how they handle situations in which an agent is
uncertain about aspects of the model that are relevant to her own opinion.
Propositions 4.3 and 4.4 and Figures 15 and 16 spell out that these differences
lead to differences in the speed with which a given opinion spreads through
a social network.

The models given as examples of slower or quicker adoption speed in
Figure 15 and 16 both have initial sight (0, 1). This is not a coincidence:
Only models with initial sight (n,m) with n < 1 are models in which agents
can be uncertain about the opinions of their neighbors – and their direct
neighbors’ opinions are the only relevant factor for their decision whether to
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Figure 16: Three models. M is an epistemic SNM with τ = 1
2 , F = {f} and

initial sight (0, 1); M4E is the model resulting from updating M with an
eager epistemic opinion update. M(v)4 is obtained by taking the state-
generated modelM(v) and applying a non-epistemic opinion update.

support an issue after an opinion update. In other words, with n > 1 agents
can still be uncertain about other parts of the model, but they are certain
about all factors relevant to opinion updates. This means that in models
with sight (n > 1,m), non-epistemic opinion updates, cautious epistemic
opinion updates and eager epistemic opinion updates produce the exact
same adoption behavior for opinions:

Proposition 4.5. LetM = (W,A,N, F,V ,ω, τ, {∼a}a∈A) be an epistemic SNM
with initial sight (n,m), where n > 1 (and m > 0). For any state w ∈ W, let
M(w) be the state-generated model; letM(w)4 be the model obtained by updating
with the non-epistemic opinion update. Let M4C be the original model, updated
with a cautious epistemic opinion update with sight (n,m); let M4C(w) be the
state-generated model of that. LetM4E be the original model, updated with an eager
epistemic opinion update with sight (n,m); let M4E(w) be the state-generated
model of that. Then:

M(w)4 =M4E(w) =M4C(w)

Proof. Note thatA, F,ω and τ stay the same between all models by definition.
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Also, we know by Definition 18 that NM(w)
4 = NM4C(w) = NM4C(w). So it

suffices to prove that the valuations are the same between the three models
to prove the claim.

Fix some state w ∈W. Let a ∈ A be some agent and f ∈ F be any issue.
SinceM has sight (n > 1,m) we know that:(

∀v ∼a w :
|Nf(v,a)|
|N(v,a)|

> ω

)
⇔
(
∃v ∼a w :

|Nf(v,a)|
|N(v,a)|

> ω

)
And by the fact that ∼a is an equivalence relation, we also know that:(

∃v ∼a w :
|Nf(v,a)|
|N(v,a)|

> ω

)
⇔
(
|Nf(w,a)|
|N(w,a)|

> ω

)
Using Definition 18, and the update Definitions 3, 13 and 15, it then

follows that:

f ∈ VM(w)
4 (a)⇔ f ∈ VM4C(w)(a)⇔ f ∈ VM4C(w)(a)

This holds for any agent and issue, so VM(w)
4 = VM4C(w) = VM4E(w), and

thus we know that all three state-generated models are equal.

4.3.2 Relation Change

We have gained some insight into how epistemic and non-epistemic opinion
updates differ. Since we have defined similar update types on relations, the
natural next step is to also compare those. Towards this, we essentially use
the same techniques used in the previous section. This allows us to come to
a better understanding of the differences in development of the network N
between the updates 2, 2C and 2E.

Proposition 4.6. Let M be an epistemic SNM, and let w ∈ W be some state in
M. Again, consider the epistemic model obtained by updating with the cautious
epistemic relation update,M2C; the model generated fromM2C and statew, named
M2C(w); the state-generated model obtained fromw and the original model, named
M(w); and the non-epistemically opinion-updated version of that,M2. Then, for
each agent a ∈ A:

NM2C(w)(a) ⊆ NM(w)
2 (a)

Proof. Suppose that b ∈ NM2C(w)(a). Then, by Definition 18, we know that
b ∈ N2C(w,a) in the modelM2C. This means that in the original modelM,
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it must be the case that for all v ∈ W such that v ∼a w, |Smlty(v)(a,b)|
|F| > ω.

So then also |Smlty(w)(a,b)|
|F| > ω, which means that in the state-generated

modelM(w), we have:

|(VM(w)(a) ∩ VM(w)(b)) ∪ (VM(w)(a) ∩ VM(w)(b))|

|F|
> ω

Thus, b ∈ NM(w)
2 (a).

The opposite direction does not hold for all agents, states and epistemic
models, as witnessed by the counterexample given in Figure 17. Here, we
see that for agent a and state v, NM2C(v)(a) = ∅ and NM(v)

2 (a) = {b}, so
NM2C(v)(a) ( NM(v)

2 (a).
What does this mean? Given a social network and some agent a, ap-

plying the cautious epistemic relation update to the network will make a
have at most as many neighbors as she would have as a result of applying a
non-epistemic relation update to the network – and for some networks and
agents, the cautious epistemic version of the update will lead to a smaller set
of neighbors than the non-epistemic one. Like in the previous section, this
result can be seen as a kind of sanity check: Cautious epistemic updates on
relations really do model a more cautious approach to engaging in social ties
than the basic, non-epistemic updates. Under 2C, agents take uncertainty
about the similarity of their opinions as a reason to avoid entering a social
relation.

To complete the picture, we prove an analogous result for 2 and 2E:

Proposition 4.7. Let M be an epistemic SNM, and let w ∈ W be some state
in M. Again, consider the epistemic model obtained by updating with the eager
epistemic relation update,M2E; the model generated fromM2E and statew, named
M2E(w); the state-generated model obtained fromw and the original model, named
M(w); and the non-epistemically opinion-updated version of that,M2. Then, for
each agent a ∈ A:

N
M(w)
2 (a) ⊆ NM2E(w)(a)

Proof. Suppose that b ∈ NM(w)
2 (a). Then

|(VM(w)(a) ∩ VM(w)(b)) ∪ (VM(w)(a) ∩ VM(w)(b))|

|F|
> ω

50



a

b

c

u

a

b

c

v

a

b

c

w

a c

M

a

b

c

u

a

b

c

v

a

b

c

w

a c

M2C

a

b

c

u

a

b

c

v

a

b

c

w

M2E

a

b

cM(v)2

Figure 17: Four models, all withω = 1. M has initial sight (1, 0). M2C and
M2E are obtained by applying a cautious or eager epistemic relation update
toM. M(v)2 is obtained by taking the modelM(v), state-generated from v,
and then applying the non-epistemic relation update 2.

So by Definition 18, |Smlty(w)(a,b)|
|F| > ω in M. Then, by Definition 16, we

know that b ∈ N2E(w,a). Again by Definition 18, we then get that b ∈
NM2E(w)(a).
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The opposite inclusion does not hold. To see this, consider again Fig-
ure 17: For agent a, we have NM(v)

2 (a) = {b} and NM(v)2E(a) = {b, c}, so
N

M(v)
2 (a) ( NM(v)2E(a).

With eager epistemic relation updates, agents will connect as neighbors
as long as they are not certain that they do not have enough in common.
In effect, this means that agents take uncertainty about their overlap in
opinions as a cause to enter social relations. In this way, eager epistemic
relation updates on a social network lead, for a given agent, to at least
as many neighbors as that same agent would have after a non-epistemic
update; and for some models and agents, their set of neighbors after an
eager update is larger than after a non-epistemic update.

One question remains to be answered. In the previous section, we had
seen that our various types of opinion updates only differ, regarding the
models they produce, for models with sight (n = 0,m). Is the existence of
differences between the models produced by 2, 2C and 2E also dependent
on the sight of the model?

It is not. For any sight an epistemic SNM can have, it is possible to
find example networks, agents and states for which the three types of
opinion updates differ, and example networks for which all three update
types give the exact same outcome. This independence, formally stated in
Proposition 4.8, reflects the fact that sight is a condition on agents’ knowledge
of their (extended) neighborhood. But for relation updates, the structure
of an agents’ (extended) neighborhood is irrelevant – the distribution of
opinions among agents is the only factor determining the outcome of the
update.

Proposition 4.8. Consider a modelM with initial sight (n,m) (where n,m ∈ N
and n 6 m+ 1).

For each initial sight (n,m) (where n,m ∈ N and n 6 m + 1), there exist
epistemic social network modelsM andM ′ with that sight and statesw ∈W ∈M,
v ∈W ′ ∈M ′ such that:

NM(w)2C ( NM(w)
2 ( NM(w)2E (1)

NM ′(v)2C = N
M ′(v)
2 = NM ′(v)2E (2)

Where the neighborhood sets are defined, based on state-generated and updated
models fromM andM ′, like in Proposition 4.6 and 4.7.

Proof. Again, consider Figure 17, specifically modelM. The caption specifies
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thatM has initial sight (1, 0). But no matter the initial sight ofM, the models
M2C,M(v)2 andM2E always stay the same. Thus,M acts as an example of
claim (1) for any initial sight.

As an example for claim (2), consider the following epistemic SNM:
M ′ = (W,A,N, F,V ,ω, τ, {∼a}a∈A) with W = {w}, A = {a,b}, N(w,a) =

N(w,b) = ∅, F = {f}, V(w,a) = {f} and V(w,b) = ∅, ω = 1 and τ = 1
and ∼a=∼b= {(w,w)}. In words, this is a model with one state and two
neighborless agents that do not have any overlap in opinions. Sinceω = 1,
neither of the agents will gain a new neighbor after 2, 2C or 2E. This is
true regardless of the initial sight we assign to the model. Thus,M ′ can be
used as an example of claim (2) for any initial sight.

Thus, a social network model’s initial sight does not have an effect on
the model’s network structure after updating with 2, 2C or 2E. Initial
sight does, however, influence the equivalence relations between states
after an update – and these equivalence relations are closely connected
to mechanisms of learning which can take place through updates. In the
following sections, we will take a brief look at the topic of learning, and we
will see what influence relation updates and initial sight have on it.

4.4 Learning with Epistemic Updates

By including an epistemic dimension in our social network models, we can
formally represent situations in which – through an update on the model –
agents come to know something they did not know before. This subsection
will survey different learning processes that can occur within our formal
framework.

Before we start, our formal setting should be distinguished from settings
found in two related fields: First, we are only modelling “hard” knowledge
using indistinguishability relations for all agents, so our models are not fit to
represent more nuanced belief changes known from plausibility models.25

Further, we are not considering inductive learning in the long term, as is
done in formal learning theory.26 Instead, our notion of learning is more
simplistic. Whenever an update of an epistemic SNM leads to an agent
being certain of a feature of the network of which she was not certain before,

25For an introduction to plausibility models, see [6].
26[26] gives a philosophical introduction to the topic. A more logic-focused treatment of

formal learning theory can be found in [5].
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we say that she has learned something. Keeping this in mind, one can
distinguish two basic mechanisms for learning.

4.4.1 Learning by Convergence

Consider an initial epistemic SNM in which an agent cannot distinguish
between two states inW that differ with respect toN or V . If an appropriate
stream of updates is applied to the model, it might happen that the states’
differences regarding the network structure N or valuation V subside. In
this case, the aforementioned agent gains knowledge about the network.
Since this mechanism enables learning through states developing “to be the
same”, we will call it learning by convergence.

Learning by convergence can occur with any of the epistemic updates
we define in Section 4. Figures 11 and 13 show examples of this mechanism:
In both figures, we start with a model M in which agent a does not know
whether agent b supports issue f or g. After applying 4C or 4E, respec-
tively, agent a comes to know the state of the model, formally reflected in
the fact that the worlds w and v do not differ w.r.t. V or N anymore. Both
examples also illustrate another characteristic of learning by convergence:
Even though agent a knows the state of the network after the update, she
does not know what state she was initially in, i.e. she does not learn which
issue agent b supported in the initial model.

4.4.2 Learning by Distinction

Along with the network’s current state, the second learning mechanism
allows agents to also learn the initial state of the network after an update
stream.

As before, consider an epistemic SNMM, where an agent cannot distin-
guish between two states w, v ∈W that differ w.r.t. N or V . If some update
† with sight (n,m) leads w and v to differ in (a) the assignment of opinions
to an agent within the n-reachable radius around a or (b) the assignment
of neighbors to an agent within the m-reachable radius of a, then a will
be able to distinguish w from v inM†. This is ensured by our inclusion of
sight-preserving clauses in the update Definitions 13, 14, 15 and 16 – through
these clauses, a’s relation w ∼a v is “cut” if (a) or (b) apply after the update.
This can be interpreted as reasoning from agent a: While inM, she might
not know if w or v represents the actual state of things, but she can reason

54



that ifw is the actual state, it would develop in a way that is different from v under
the update †. When this development then takes place, a learns what was
initially the case. Since, with this interpretation, this learning mechanism
depends on agents’ ability to distinguish between states, we will name is
learning by distinction.
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Figure 18: A sequence of SNMs: M0,M1,M2 ∈ ~4C(M) with F = {f}, τ = 1
2

and initial sight (1, 1).

Figure 18 shows an example of learning by distinction. In M, agent d
does not know if agents a and b are neighbors or if agent b supports f. After
one update with 4C, d learns to distinguish state w, where agent c does
not support f, from states u and v, where c does. Applying4C once more
enables d to also distinguish between u and v: In the former, c still supports
f, in the latter, c has stopped her support. Thus, after two applications of
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4C, agent d knows which of the three states u, v and w she was in initially.
While Figure 18 shows a sequence of models under the repeated update

~4C, the same sequence could be obtained under the repeated update ~4E.
In general, learning by distinction via opinion updates is only possible if the
initial model has a sight of (n > 1,m).27 Since4C and4E only change the
opinion distribution in each state, and agents know their own opinion in
models with any sight, the only way to distinguish different states is by the
opinions in their (extended) neighborhood. But with sight (0,m), agents are
not required to be certain about their neighbors opinions, so they cannot
make any new distinctions between states after4C or4E are applied to the
model.

Epistemic relation updates allow for learning by distinction, too – but
the specifics of the mechanism differ from learning under opinion updates.
Figure 19 shows an example of agent a learning b’s opinion after an update
with 2C. Figure 20 shows a learning b’s opinion through 2E.
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a

g

b
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M
f,g
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Figure 19: A pair of SNMs with F = {f,g},ω = 1
2 and initial sight (1, 1).

a b

w
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v

a

M a b

w

a b

v
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Figure 20: A pair of single-issue SNMs withω = 1 and initial sight (1, 1).

27Together with Proposition 4.5 we thus know that learning by distinction under 4C
happens in an epistemic SNM if and only if it happens under4E.
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Two things should be noted here. First, learning by distinction under
either type of relation update is possible even if the update is done with
sight (0, 0) – Figure 20 shows an example with 2E that would develop the
same if the update were applied with sight (0, 0). This is as expected, since
relation updates change the network structure, and even with sight (0, 0),
agents are still required to know who their neighbors are – meaning they can
use differences regarding their neighborhoods between states to distinguish
those states.

Second, Figure 19 shows how epistemic relation updates can turn de
dicto knowledge of opinion similarities possessed by an agent into de re
knowledge: In M, agent a knows that she and agent b have the same
opinion onω = 1

2 of the issues in F, but a does not know which of the issues
she and b actually agree on. After an update with 2C (updating with 2E
would give the same result), a learns, by distinction, which issue she and
b jointly support. As argued on page 4.1, this is possible because both4C
and 4E only require agents to have de dicto knowledge of their sufficient
similarity to connect after an update.
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Conclusion and Further Work

In this thesis we formally modelled the two tendencies contributing to ho-
mophily, social influence and social selection. We used our model to clarify
the connection between homophily, fragmentation and polarization, and to
investigate the effect of uncertainty on homophily-driven development of
social networks.

In Section 1, we introduced homophily as a plausible organizational
principle for social networks, and we gave a brief introduction to threshold
models. In Section 2, we introduced a formal model of social networks
and defined two model-transforming updates: Opinion updates, which
correspond to social influence, and social relation updates, which corre-
spond to social selection. We showed that social relation updates are closely
connected to cluster-splits and argued that this suggests a connection be-
tween homophily and social polarization. This was followed by a number
of stabilization results – among them the result that cluster-split models
with non-zero thresholds τ andωwill stabilize in a cluster-split under any
update stream. We take this to show that the group fragmentation induced
by social selection cannot easily be resolved through homophily-based net-
work changes. Section 3 served to introduce the basic ideas and methods of
epistemic logic. We put these to work in Section 4, defining epistemic social
networks models which allow agents to be unsure about the opinions and
social relations of other agents. We defined a number of epistemic model
transforming updates and compared them. Our results suggest that the
effect of uncertainty on social network development depends on the agents’
attitude: Eager behavior can lead to quicker opinion adoption and more
strongly socially connected networks; but cautious behavior can make social
relations more sparse and slow down the spread of opinions. We finished
the section by describing two types of learning phenomena that can take
place through changes in the social network.

What could be done next? To conclude this thesis we sketch a number of
directions for further research based on the work presented here.

Fragmentation and polarization in multi-issue models. Our results on the
connections between homophily-based updates, cluster-splits and polar-
ization were obtained for single-issue models. For multi-issue models, the
picture is likely to be more complex, as opinion differences two agents have
with respect to one issue can be “bridged” by agreement on other issues. A
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further investigation of the interaction of opinion updates and social relation
updates on multi-issue models could provide a more nuanced account of
the connection between homophily, fragmentation and polarization.

Characterizing oscillation. Subsection 2.4 saw us give sufficient conditions
for single-issue social network models to oscillate. A proper characterization
by way of sufficient and necessary conditions remains to be given, as does a
characterization result for oscillation in multi-issue models.

Assigning cautious and eager types to agents. In our epistemic setting,
either all agents update cautiously or all agents update eagerly. One could
instead assign a C- or E-type to each agent, marking them as a cautious or
eager character. It would then be possible to define opinion and relation
updates that make each agent update in line with her own type. This would
lead to network behavior different from the one we have observed in this
thesis.

Mixing cautious and eager relation updates. With the epistemic relation
updates defined in Section 4, agents do not differentiate between neighbors
and non-neighbors: They connect to another agent if they are certain that
there is enough “opinion overlap” (or not certain of the opposite), and
they disconnect if they are not certain (or certain that there isn’t enough
overlap). From a social perspective, it might be more plausible to have
stricter epistemic conditions for two agents to become neighbors than to
stay neighbors. With a relation update like this, the network structure of a
“pre-update” model would have a greater effect on the “post-update” model.

Prediction updates. Both in Section 2 and Section 4, agents update their
opinions and social relations based solely on the present state of the net-
work. Following the work done in [4], one could define predictive versions
of opinion and social relation updates, allowing agents to incorporate infor-
mation on the future development of their social network into their update
decisions.

Defining a formal language for our models. Analogously to other work
in social network logic, it would be possible to define a formal language
and an axiom system to reason about the models defined in this thesis. The
formalism could follow the examples provided in [10, 3, 4, 2], adding a
modal operator for social selection in a way that is similar to [28]. This
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would e.g. allow for characterization of network properties in the formal
language.
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[4] Alexandru Baltag, Zoé Christoff, Rasmus K. Rendsvig, and Sonja
Smets. “Dynamic Epistemic Logics of Diffusion and Prediction in
Social Networks”. In: Studia Logica 107.3 (July 2018), pp. 489–531. DOI:
10.1007/s11225-018-9804-x. URL: https://doi.org/10.1007/
s11225-018-9804-x.

[5] Alexandru Baltag, Nina Gierasimczuk, Aybüke Özgün, Ana Lucia
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