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Abstract. We prove that for every antichain A in the poset 〈[ω]<ω ,⊆〉 the

set of maximal antichains which extend A has finite size or the size of the

continuum. As a consequence we prove a conjecture of de Jongh and Vargas-
Sandoval about nepfi families of finite languages [2, 10].

1. Introduction

The notation and terminology in this note is mostly standard and follows [4, 5].
If X is a set and κ is a (possibly finite) cardinal, then the symbols [X]κ, [X]<κ

will denote the set of all subsets of X of cardinality κ and less than κ respectively.
Recall that A ⊆ [ω]<ω is an ⊆-antichain (or just antichain) if for all a, b ∈ A,
neither a ⊆ b nor b ⊆ a. Given A,B ⊆ [ω]<ω antichains, A extends B if B ⊆ A.
We say that A is compatible with B if A ∪B is an antichain.

In the context of Formal Learning Theory, a family of mathematical and compu-
tational frameworks for inductive inference, and with the goal to investigate nepfi1

families with finite languages within the framework of Finite Identification, the
authors in [2, 10] conjectured the following:

Conjecture 1.1 (de Jongh & Vargas-Sandoval [2, 10]). Every nepfi family of finite
languages has only finitely many or uncountably many maximal nepfi extensions.

In the context of Finite Identification, antichains of finite languages (nepfi fami-
lies of finite languages) have a maximal nepfi extension (see Theorem 5.4.4 in [10]),
namely a maximal antichain which extends the original antichain. The aforemen-
tioned conjecture comes down to a purely combinatorial statement: The number of
maximal antichains extending a fixed antichain with only finite languages is either
finite or uncountable. In the same work, the conjecture is proved for some special
cases, for instance, for equinumerous families, i.e., families containing only n-tuples
for a fixed n ∈ ω.

In this note we show the following result:

Theorem 1.2. Let A ⊆ [ω]<ω be an antichain. The set of maximal antichains
which extend A has finite size or the size of the continuum.
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As a consequence of this theorem we answer the Conjecture 1.1 positively. In
fact, we prove a generalization of the conjecture to convex subclasses of [ω]<ω, a
concept that we will define later on.

In Section 2 we prove Theorem 1.2 stated above using a case by case strategy. In
Section 3 we introduce the concept of convexity and show that the main theorem
generalizes to classes of antichains within convex subclasses of [ω]<ω, and we discuss
how the theorem can be further extended. In Section 4 we present some concrete
examples of antichains that illustrate the cases treated in the proof of the conjecture.
In Section 5, we discuss the connection of the conjecture with Formal Learning
Theory, in particular with the framework of finite identification, and its possible
applications within.

2. Proof of the theorem

Fix A an antichain in the poset 〈[ω]<ω,⊆〉 and put A = {x ∈ [ω]<ω : ∃a ∈ A (a ⊆
x∨ x ⊆ a)}. Since [ω]<ω \A is the collection of all elements compatible with every
element of A, to extend A to a maximal antichain is equivalent to find B ⊆ [ω]<ω\A
a maximal antichain in the poset 〈[ω]<ω \A,⊆〉 and consider A ∪B.

If [ω]<ω \ A is a finite set, then we can just get a finite number of antichains
extending A. Thus, we assume |[ω]<ω \ A| = ℵ0. In order to get antichains which
extend A, we shall provide a digraph structure to the set ([ω]<ω \ A) ∪ {∅}, say
D = 〈V,E〉, where V = ([ω]<ω \A) ∪ {∅} and E = {〈x, y〉 ∈ V 2 : x ( y}.

Fact 2.1. If x, y ∈ V and x ⊆ z ⊆ y, then z ∈ V . Furthermore, if x, y ∈ V and
x ( y, there exists n ∈ ω such that x ∪ {n} ⊆ y and x ∪ {n} ∈ V .

Proof of the fact. Suppose that z /∈ V . Then, for some a ∈ A, a ⊆ z or z ⊆ a. In
the first case a ⊆ y, in the second x ⊆ a, which both fail. The second part follows
immediately.

Case 1. D has an infinite directed path (i.e., there is an infinite subset of V , call
it {xn : n < ω}, such that 〈xn, xn+1〉 ∈ E for all n < ω). (See Example 4.1 from
Section 4 to illustrate this case.)

Let P ⊂ E be an infinite directed path, with corresponding vertex set VP . Since
any two elements of VP are of different size, we can enumerate VP as {xn : n < ω}
so that xn ( xn+1 for n < ω, and hence P = {〈xn, xn+1〉 : n < ω}. Without los of
generality we assume each x0 6= ∅.

For any F ∈ [ω \ 2]<ω we put

xF := x0 ∪
⋃
n∈F

(xn \ xn−1).

It is clear by Fact 2.1 that xF /∈ A for all F ∈ [ω\2]<ω, since x0 ⊆ xF ⊆ xmax(F )

and x0 ∈ V and xmax(F ) ∈ V .

We now consider the set Af = {x[f(i),f(i+1)) : i < ω} for each f ∈ F := {f ∈
ωω : f is an increasing function with f(0) = 2}. Since {[f(i), f(i + 1)) : i < ω}
forms an interval partition of ω \ 2 and xn \ xn−1 6= ∅ for n > 1, it follows that Af
is an antichain in the poset 〈[ω]<ω \A,⊆〉. However, if f, g ∈ F and f 6= g, then Af
and Ag are incompatible (i.e., Af∪Ag is not an antichain) because there exists i ∈ ω
such that either [f(i), f(i+ 1)) ⊆ [g(i), g(i+ 1)), or [g(i), g(i+ 1)) ⊆ [f(i), f(i+ 1)).
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For every f ∈ F choose a maximal antichain Bf ⊆ [ω]<ω such that A ∪ Af ⊆ Bf .
It follows that if f 6= g, then Bf 6= Bg. Therefore, since |F| = c,2 we conclude that
in this case A can be extended to a maximal antichain in the poset 〈[ω]<ω,⊆〉 in
continuum many ways.

Case 2. D has no infinite directed paths.

Define a rank function on V by letting

(2.1) rank(x) = length of the longest directed path from ∅ to x.

Clearly rank−1(k) is a (possibly empty) antichain in the poset 〈V,⊆〉 for all k ∈ ω.
In particular, rank−1(0) = {∅}.

In order to make our next arguments more comprehensible, given x ∈ V , we
introduce the following notation:

succD(x) = {y ∈ V : 〈x, y〉 ∈ E& rank(y) = rank(x) + 1},
predD(x) = {y ∈ V : 〈y, x〉 ∈ E& rank(x) = rank(y) + 1} and

predD(k) =
⋃

x∈rank−1(k)

predD(x), for k ∈ ω.

It is good to realize that the above clause rank(y) = rank(x) + 1 for succD is not
superfluous. The following fact lists some basic observations about succD(x) and
predD(x).

Fact 2.2. Assume that x ∈ rank−1(k + 1) and {y, y′} ⊆ rank−1(k) for some k ∈ ω.
Then:

(1) |predD(x)| < ℵ0;
(2) If x ∈ succD(y), then x = y ∪ {n} for some n;
(3) if x ∈ succD(y) ∩ succD(y′), then x = y ∪ y′;
(4) |succD(y) ∩ succD(y′)| ≤ 1.

Proof of the fact. (1) is clear because x is finite and predecessors are subsets
of x.
(2) Follows immediately from Fact 2.1 and the notion of rank.

To prove (3), note that y, y′ ∈ predD(x). Thus y ⊆ y ∪ y′ ⊆ x. By Fact 2.1 then
y ∪ y′ ∈ V . Also note that, since x and y 6= y′ differ one in rank, by (2) they also
differ one in size. Thus, it is obvious that x has to be identical to y ∪ y′.

Finally, (4) is an easy consequence of (3).

Claim 2.3. There exists k > 1 such that rank−1(k) is infinite.

Proof of the claim. Assume, for the sake of contradiction, that rank−1(k)
is a finite set for all k ∈ ω. For each node v ∈ V define Uv = {u ∈ V : v ⊆
u}. We construct an infinite directed path {xn : n < ω} in D contradicting the
assumption of Case 2. We construct this path by recursion in such a way that for
all n both Uxn

is infinite and rank(xn) = n. Let x0 = ∅, satisfying the induction
hypothesis. Suppose xn ∈ V is defined, we choose xn+1 ∈ succD(xn) such that

2We write c = 2ℵ0 for the cardinality of the continuum.
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Uxn+1
is infinite. We always can make that choice because Uxn

is infinite but

succD(xn) ⊆ rank−1(n+ 1) is finite by assumption.

Subcase 2.1. There exists k ∈ ω \ 2 such that both rank−1(k) and predD(k)
are infinite. (See Examples 4.2 and 4.3 from Section 4 to illustrate this subcase.)

In this subcase, we will build recursively two sequences 〈yn〉n∈ω ⊆ predD(k) and
〈xn〉n∈ω ⊆ rank−1(k) such that for each n 6= m we have that 〈yn, xn〉 ∈ E and
〈yn, xm〉 /∈ E.

Once 〈yn〉n∈ω and 〈xn〉n∈ω are defined, we can show that there are c many max-
imal antichains which extend A. Indeed, since 〈xn〉n∈ω ⊆ rank−1(k) and rank−1(k)
forms an antichain, there are no i, j < ω with i 6= j such that 〈xi, xj〉 ∈ E. Simi-
larly, 〈yi, yj〉 /∈ E, for i, j < ω with i 6= j. Thus, every f ∈ 2ω provides an antichain
Af , defined by

Af = {yi : f(i) = 0} ∪ {xi : f(i) = 1}.
By construction, if f 6= g, then Af ∪Ag is not an antichain, so maximal extensions
of Af and Ag will be distinct.

In order to get the required sequences, we divided this subcase into two (sub)
subcases.

Subcase 2.1.1. The set Y := {y ∈ predD(k) : |succD(y)| = ℵ0} is infinite. (See
Example 4.2 from Section 4 to illustrate this case.)

By Fact 2.2(4), note that there is at most one element y ∈ predD(k) such that
succD(y) is cofinite in rank−1(k). We ignore such a y, i.e. we will not use this y in
the construction of the sequence. Thus, without loss of generality, we will assume
that the set rank−1(k) \ succD(y) is infinite for all y ∈ predD(k).

Keeping this in mind, take any y ∈ Y as y0 and take x0 ∈ rank(k)−1 with
y0 ∈ predD(x0). Assume that 〈yi〉i<n and 〈xi〉i<n have been constructed satisfying
〈yi, xi〉 ∈ E and 〈yi, xj〉, 〈yj , xi〉 /∈ E for every i < j < n. Choose yn ∈ Y \⋃
i<n predD(xi), and take xn an element of succD(yn) \ (

⋃
i<n succD(yi)), noting

that the first set is infinite by Fact 2.2 (1). Then, 〈yn, xi〉, 〈yi, xn〉 /∈ E for all i < n.

Subcase 2.1.2. The set Y is finite. (See Example 4.3 from Section 4 to illustrate
this case.)

Take any y0 from predD(k) − Y , an infinite set. Then take any x0 such that
y0 ∈ predD(x0). Assume that 〈yi〉i<n and 〈xi〉i<n have been constructed satisfying
〈yi, xi〉 ∈ E and 〈yi, xj〉, 〈yj , xi〉 /∈ E for every i < j < n, and succD(yi) is finite for
each i < n. Choose yn from predD(k)− (Y ∪

⋃
{predD(x) : x ∈ succD(yi) & i < n}).

This is an infinite set by the assumptions made, and because predD(x) is always
finite by Fact 2.2(1). Now take xn to be an element of succD(yn). By construction,
yn /∈ predD(xi) and xn /∈ succD(yi) for all i < n, i.e. 〈yn, xi〉, 〈yi, xn〉 /∈ E for all
i < n.

Subcase 2.2. For every k ∈ ω it follows that if rank−1(k) is infinite, then
predD(k) is finite. (See Example 4.4 from Section 4 to illustrate this case.)

Under the hypothesis of this case, we will show that there are finitely many
antichains which extend A. We start by proving a number of claims.

Claim 2.4. For every k ∈ ω, the set pred(k) is finite.
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Proof of the claim. By contradiction, suppose predD(k) is infinite for some
k. Then the set of successors of predD(k) must be finite (otherwise it contradicts
condition of the Subcase 2.2). But that means that some successors share some
predecessors but not more than two of them, because of Fact 2.2(4). From that
it follows that predD(k) is finite, contradicting our assumption. Note that the an-
tichain of rank k could still be infinite, but all but finitely many of the elements
have no successors.

Then it follows almost immediately that rank is bounded and that pred is finite.
We prove this in the following claim.

Claim 2.5. The function rank is bounded.

Proof of the claim. Suppose not. We construct an infinite directed chain
starting with ∅. This contradicts the assumption of Case 2.
∅ is a starting point of directed chains reaching to arbitrary n (let us call this

infinity property). Assume we have a chain 〈x0, . . . , xk〉 in V with rank(xk) = k
and xk having the infinity property. First assume rank(k + 1)−1 is finite. Then we
can find y of rank k+ 1 such that 〈xk, y〉 ∈ E with the infinity property. Take y as
xk+1. Next assume rank(k+1)−1 is infinite, and rank(k+2)−1 is also infinite. Then
predD(k+2) is finite, which means that only finitely many members of rank(k+1)−1

can be starting points of chains, and we are in the same situation as in the first case.
The final case which is now left is that rank(k+1)−1 is infinite, and rank(k+2)−1 is
finite. In that case there have to be y, z of ranks k+ 1, k+ 2 such that 〈xk, y〉 ∈ E,
〈y, z〉 ∈ E and z has the infinity property. We can extend the chain 〈x0, . . . , xk〉
with 〈y, z〉. An infinite directed chain will be produced.

Claim 2.6. The set pred := {x ∈ V : succD(x) 6= ∅} is finite.

Proof of the claim. Suppose, by contradiction, that there are infinitely many
points with direct successors. This should happen at some rank, say k. But that
means by Claim 2.1 that there are infinitely many successors in rank k+ 1. By the
condition of Subcase 2.2, we know that then the number of predecessors of elements
in rank k + 1 is finite, thus contradicting our initial assumption about the set of
elements of rank k.

Claim 2.7. Let B and C be two maximal antichains in the poset 〈[ω]<ω \ A,⊆〉.
Then pred ∩B 6= pred ∩ C.

Proof of the claim.
Assume, to obtain a contradiction, without loss of generality that pred ∩ B =

pred ∩ C and x ∈ B, x 6∈ C. Then x 6∈ pred. So, there is no y in the poset such
that x ⊂ y. Assume there is y such that y ⊂ x and y ∈ C. Then y ∈ pred, so, by
assumption, y ∈ B, impossible, since B is an antichain. So, there is no y ∈ C such
that y ⊂ x or x ⊂ y. Since C is a maximal antichain, this, finally, implies x ∈ C.

Therefore, there exists an one-to-one function from the set of maximal antichains
in the poset 〈[ω]<ω \ A,⊆〉 into the power set of pred which is finite. This finishes
the proof.
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3. Convexity

In this section we discuss generalizations of Theorem 1.2. As we can see in the
previous section, Fact 2.1 is the key to several arguments in the proof. We can
isolate this property as follows:

Definition 3.1. If B ⊆ [ω]<ω. we say that B is convex if for every x, y ∈ B and
every z such that x ⊆ z ⊆ y, it holds that z ∈ B.

Obviously, [ω]<ω is a convex set. Naturally, For each B ⊆ [ω]<ω, B is a convex
set. Fact 2.1 shows that V is convex. Furthermore, we can generalize Theorem 1.2
to convex sets.

Theorem 3.2. If B is a convex set and A ⊆ B an antichain, the set of max-
imal antichains contained in B which extend A has finite size or the size of the
continuum.

To be more specific, we can define a closure operator. If A ⊆ B, let A
B

= {b ∈
B : ∃a ∈ A(b ⊆ a ∨ a ⊆ b)}. We will write B to mean B

[ω]<ω

.

The proof of Theorem 3.2 is analogous to the proof of Theorem 1.2 because we
can replace Fact 2.1 with next obvious lemma.

Lemma 3.3. If B is a convex set and A ⊆ B, then B \AB is convex.

For this lemma we do not need A to be an antichain.

Even Theorem 3.2 implies Theorem 1.2, we preferred to present the proof of
Theorem 1.2 of the simpler conjecture first. However, convexity is an “almost”
essential hypothesis in Theorem 3.2 as the next example shows.

Example 3.4. Let B = {{2k : k ≤ m} : m ∈ ω} ∪ {{1}}. It is easy to see that
B is not convex, {{1}} is an antichain and {{1} ∪ {2k : k ≤ m} : m ∈ ω} is the
set of all maximal antichains which extend {1} and are contained in B. This set is
countable.

Nevertheless we can refine Theorem 3.2 as next proposition does.

Definition 3.5. If B ⊆ [ω]<ω, we define the convex closure by Conv(B) =
⋂
{C :

B ⊆ C convex}

Of course Conv(B) is always well defined and a convex set. Let us call B almost
convex if Conv(B) \B is finite.

Proposition 3.6. Let B ⊆ [ω]<ω. If B is almost convex and A ⊆ B is an an-
tichain, then the set of maximal antichains which extend A within B has finite size
or the size of the continuum.

Proof. Let F = Conv(B) \ B. We set T = {C ⊆ B : A ⊆ C & C is a maximal
antichain in B} and S = {C ⊆ Conv(B) : A ⊆ C & C is a maximal antichain in
Conv(B)}. To start we note that |T | ≤ |S| because f : T → S defined as follows is
an injection:
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f(C) =

{
C if ∀a ∈ F ∃c ∈ C(a ⊆ c ∨ c ⊆ a)
C ∪H else,

where H ∈ {G ⊆ F : G is a maximal antichain in F & ∀c ∈ C ∀g ∈ G (c 6⊆
g or g 6⊆ c)}.

By Lemma 3.3 and Theorem 3.2 we know that |S| ∈ ω∪{c}. By the last paragrah
we are already done if S is finite.

Assume not, i.e., |S| = c. Note that, for each C ∈ S, the set C ∩B is a maximal
antichain in B containing A. Thus, C∩B ∈ T . Since F is finite, there is G ⊆ F such
that S′ = {C ∈ S : C ∩ F = G} has c many elements. Thus, {C ∩B : C ∈ S′} ⊆ T
and |{C ∩B : C ∈ S′}| = c. �

One might wonder whether B being almost convex is not only sufficient but also
necessary for the theorem to go through. The following example shows that it is
not. A nice necessary as well as sufficient condition seems hard to find.

Example 3.7. Let B = {{3m}, {3m, 3m+ 1, 3m+ 2}} : m ∈ ω}. Clearly B is not
almost convex, there are infinitely many gaps. Antichains contained in B need to
have exactly one of {3m} and {3m, 3m+1, 3m+2} of some segments of B, maximal
antichains in B exactly one of {3m} and {3m, 3m + 1, 3m + 2} of all segments of
B. It is easy to see that any antichain in B has either finitely many or uncountably
many maximal extensions.

4. Examples

In what follows, we illustrate the cases and subcases treated in the proof with
some concrete examples. First, some useful notation as in [10].

Let A2 and A3 be the family of all pairs and triples respectively. For any Y ⊆ A3,
we denote NUM(Y ) as the set of all the numbers that appear in any triple of Y ,
and the set TRIPLES(Y ) as the set of all triples that can be formed with the
numbers in NUM(Y ).

We call G ⊆ A3 a cluster in A3 if TRIPLES(G) = G and |G| > 1.

These conventions will be used in the following example.

Example 4.1 (Case 1). Let A := Ap ∪At s.t.

Ap := {{e1, e2} : ei ∈ EV EN} ∪ {{e, o} : e ∈ EV EN and o ∈ ODD}

and

At := {{o1, o2, o3} : oi ∈ ODD}
First note that A is a maximal antichain and that At is an infinite cluster.

Let A′ := A \ At. By Proposition 5.5.50 in [10](page 190), we have that A′ has
uncountably many maximal extensions.

Let’s look at the set of possible extensions of A′ as a directed graph D. Note
that any n-tuple with n > 1 of odd numbers can be added to A′ , so we can
construct a directed infinite path of the form {o1} ⊂ {o1, o2} ⊂ {o1, o2, o3, o4} . . . ⊂
{o1, o2, ..., on}, . . . where any element in the path can properly extend A′ and the
infinite path is part of the directed graph of languages that can extend A′.
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Example 4.2 (Case 2 - Subcase 2.1.1). Let A := Ap ∪ At as in the prevvious
example. Let K2 := {{2, x} : x ∈ ω \ {2}}. Clearly, K2 ⊆ Ap ⊆ A.

Let A′ := A \K2. By Proposition 5.5.52 (1) in [10](page 190), we know that A′

has uncountably many maximal extensions (following the same construction as in
the proof of 5.5.52 (1) in [10]).

Let’s look at the set of possible extensions of A′ as a directed graph D. First note
that the only element of rank 1 is the set {2}, and every pair {2, n} with n ∈ ω\{2}
has rank 2. Note also that every triple of the form {2, o1, o2} with oi ∈ ODD can
be considered an extension of A′, has rank 3, and is a direct successor of {2, o1} and
{2, o2}. Note also that any other n-tuple larger than a triple cannot be added to

A′ without impairing the antichain condition. Thus, the directed graph D ends at
rank 3, since for any other k > 3, rank−1(k) = ∅. Thus, D has no infinite directed
path. Observe that at rank 3, the conditions of subcase 2.1 are fulfilled, because
rank−1(3) and predD(3) are both infinite. Also, since we have infinitely many pairs
of the form {2, oi} with oi ∈ ODD at rank 2 and since for each of those pairs it
follows that the set |succD({2, oi})| = ℵ0, we have met the conditions of Subcase
2.1.1, namely that Y := {y ∈ predD(k) : |succD(y)| = ℵ0} is infinite.

Example 4.3 (Case 2 - Subcase 2.1.2). Let A′ := {{i, n} : i, n ∈ ω \ {0, 1}}. As
noted in Example 5.5.4 in [10] (pages 165-166), this family has uncountably many
maximal extensions.

Let’s look at the set of possible extensions of A′ as a directed graph D. First
note that the only elements that have rank 1 are {0} and {1}. So the family of all
nodes of rank 1 is finite.

The node {0} has infinitely many successors of rank 2, namely all pairs of the
form {0, n} with n 6= 0 ∈ ω. From all those pairs, only {0, 1} has infinitely many
direct successors of rank 3, namely triples of the form {0, 1, n} with n 6= 0, 1. Any
other pair of the form {0, n} with n 6= 1 has only one successor of rank 3, namely
{0, n, 1}. This is because any other triple (and therefore any larger tuple) extending
{0, n} with n 6= 1 will impair the antichain condition of A′. Formally, for any n ∈ ω
s.t. n 6= 1 it follows |succD({0, n})| = 1.

By a similar reasoning, we also have that {1} has infinitely many successors of
rank 2, namely all pairs of the form {1, n} with n 6= 1 ∈ ω. From all those pairs,
only {0, 1} has infinitely many direct successors of rank 3, namely triples of the
form {0, 1, n} with n 6= 0, 1. As observed before, for any n ∈ ω s.t. n 6= 0 it follows
|succD({1, n})| = 1 since any other triple (and therefore any larger tuple) extending
{1, n} with n 6= 0 will impair the antichain condition of A′.

Altogether, we have that for k = 3, the sets rank−1(3) and predD(3) are infinite
(fulfilling the initial conditions of the Subcase 2.1). To see that this case fulfills the
conditions of Subcase 2.1.2 note that since only one pair, {0, 1} ∈ predD(3), has
infinitely many successors, the set Y := {y ∈ predD(3) : |succD(y)| = ℵ0} has only
one element and therefore is finite.

Example 4.4 (Case 2 - Subcase 2.2). The following corresponds to the second
family mentioned in Example 5.5.4 in [10] (page 166). This example fulfills the
condition of Subcase 2.2: “For every k ∈ ω, if rank−1(k) is infinite then predD(k)
is finite.”
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Let A′ := {{i, n} : i, n ∈ ω−{0}}. As noted in Vargas-Sandoval [10], this family
has only two many maximal extensions.

Let’s look at the set of possible extensions of A′ as a directed graph D. First
note that the only element that has rank 1 is {0}. So the family of all nodes of
rank 1 is finite.

The node {0} has infinitely many successors of rank 2, namely all pairs of the
form {0, n} with n 6= 0 ∈ ω. Note that any triple (and therefore any larger tuple)
extending {0, n} with n 6= 0 will impair the antichain condition of A′. Thus, the
largest directed path in the directed graph D has rank 2, i.e., for any k > 2,
rank−1(k) = ∅. Now, note that rank−1(2) is an infinite antichain, so |rank−1(2)| =
ℵ0, and that predD(2) is finite, namely |predD(2)| = 1. Altogether, it follows that
the condition of Subcase 2.2 is fulfilled.

5. Discussion on Finite Identification

Formal Learning Theory is an umbrella term for a family of mathematical and
computational frameworks that study inductive inference (or inductive learning) by
means of a learning function. Such a term refers to the process of hypothesis change
using incoming information that may result in stabilizing on an accurate hypothesis.
Motivations of studying inductive learning range from modelling children language
acquisition (inferring a grammar from inductively given examples of a language)
and scientific inquiry (inferring a general hypothesis from an inductively given a
stream of empirical data).3

With the emergence of artificial intelligence and machine learning in the 1950’s,
the study of inductive inference gained attention in the computer science community
(for a general overview see e.g., [11, 1]). More recent work on this stems from the
pioneering formal studies of [9], [12, 13], and [3]. With the aim of modelling children
language acquisition, Gold’s framework identification in the limit (or learning in
the limit) marked the beginning of a mathematical and computational treatment
for inductive learning.

The learning task in Gold’s model consists of identifying a language (repre-
sented by a set of symbols) amidst a collection of languages on the basis of an
infinite stream of examples from the language. The stream of examples consists
either of positive data (an enumeration of all members of the language) or of com-
plete data (positive and negative data, labelling all sentences as belonging to the
language or not). Learning in the limit considers a learner to be successful if it
stabilizes on a correct hypothesis after only finitely many mind changes. The fact
that such a learner keeps conjecturing forever (even when she already stabilized on
a correct hypothesis) suggests that she does not necessarily know when her conjec-
ture is correct. On a slightly simpler approach, finite identification (or learning with
certainty) considers a more restricted notion of a successful learner (first mentioned
by [3], performed by [14], and formalized by [8] and, simultaneously, by [6, 7]). In
this framework, a learner can produce just one conjecture that must be correct
immediately.

3Formal learning theory often uses recursion-theoretic tools to reason about inductive inference
with a computational learner, represented by a recursive function, an algorithm (or effective

procedure) or an inference machine.
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In [10] (and previously in [2]) the author focuses purely on finite identifica-
tion. She develops a fine-grained theoretical analysis of the distinction between
finite identification with positive information (pfi) and with complete information
(cfi).

In Chapter 6, she focuses on the structural differences of families of languages
that are pfi and families that are cfi without taking into account the computational
aspects (non-effective families). She investigates whether any finitely identifiable
family is contained in a maximal finitely identifiable one, first in the positive data
case, and focuses on the conjecture, addressed in this note, that she partially re-
solves in [10]: any non-effective positively identifiable family of finite languages
either has only finitely many maximal positively identifiable extensions or continu-
ously many.

The answer to the aforementioned conjecture, now a fact, sheds light on a more
refined characterization for nepfi (and pfi) families of finite languages, namely to
distinguish the finitely extendable families from the ones that are continuously ex-
tendable.

In a way, maximal antichains give us a sense of being “complete” since we cannot
add any other set to the family without losing its identifiability, it is the best we can
do. On the one hand, families which have only finitely many maximal extensions
give us a sense of being “almost complete” and the ways to “complete them” can
be enumerated and tracked. On the other hand, families with continuously many
maximal extensions seem to be very far from complete, moreover, their maximal
extensions cannot be enumerated or tracked.

We illustrate this with a very simple example from [10].

Consider the set X = {2, 4, 6, 8, 10} and the antichain of singletons A = {{n} :
n ∈ ω \ X}. Clearly, A is not maximal since A ∪ {X} is an antichain. In fact,
A ∪ {Y } is an antichain for every Y ⊆ X. Let set(A) = {n ∈ ω : {n} ∈ A}. First
note that if A ∪ Y is an antichain then Y ⊆ ω \ set(A) ⊆ X. Since X is finite, the
number of antichains that we can construct with languages in the power set of X,
P(X), is finite. Moreover, there are only finitely many distinct maximal antichains
M with elements in P(X).

Consider the set X = {n ∈ ω : n is even} and the antichain of singletons A =
{{n} : n ∈ ω \ X}. Clearly, A is not maximal since A ∪ {2, 4} is an antichain.
In fact, A ∪ {Y } is an antichain for every finite set of even numbers Y ⊆ X. Let
set(A) = {n ∈ ω : {n} ∈ A}, note that set(A) is the set of odd numbers. Note that
if A ∪ {Y } is an antichain of finite sets then Y is finite and Y ⊆ ω \ set(A) ⊆ X,
i.e., Y must be a finite set of even numbers. Since ω \set(A) = X is countable (i.e.,
set(A) is not cofinite), by a combinatorial argument, we will construct continuously
many maximal antichain extensions for A. For every Z ⊆ ω \ set(A) = X, consider
the family A′ = A ∪ {{z} : z ∈ Z} ∪ {{w1, w2} : w1, w2 ∈ X \ Z}. Clearly A′

is an antichain of finite languages that extends A. Adding any other language to
A′ will impair the antichain condition of the family and therefore A′ is a maximal
antichain.
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México 58089

Email address: fsnieto@matmor.unam.mx, francisco.s.nieto@ciencias.unam.mx
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