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Abstract

Liquid democracy is a collective decision-making process in which voters are
allowed to delegate their vote to any peer. We consider a liquid version of judg-
ment aggregation – a setting in which the collective decision concerns multiple
interdependent issues. We translate a number of well-known normative require-
ments on aggregation mechanisms from the literature to our setting, and repro-
duce two famous impossibility theorems. One such mechanism is the ranked
agenda rule, which efficiently computes a collective judgment by prioritizing
issues that receive strong support from the voters. To arrive at satisfactory
and logically consistent collective judgments in liquid democracy, we propose a
refinement of the ranked agenda rule that breaks ties between issues with an
equal number of supporters by the underlying delegation structure.

We motivate the rule formally by axiomatically characterizing the ranked
agenda rule, and numerically by studying its behavior on a computational model
of voter behavior. The computational model probabilistically simulates bound-
edly rational voters translating their uncertain preferences to liquid ballots.
We study the correlation between delegation structure and epistemic perfor-
mance of the profiles generated, and find that deeper delegation structures tend
to approximate voters’ true preferences less accurately. When we numerically
compare our structural ranked agenda rule with Kemeny’s rule, the original
ranked agenda rule and viscous democracy, we conclude that all rules approxi-
mate the optimal collective decision equally accurately, but that our structural
rule returns fewer possible collective judgments per input profile, i.e., is more
resolute.
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Chapter 1

Introduction

“Democracy is both an ideal and a method ... [and] voting is at the heart of
both the method and the ideal,” Riker [1988] wrote in his Liberalism Against
Populism. In the book, he points out that the theory of democracy and the
theory of voting are inherently connected. Whereas most of democratic theory
is developed by political scientists and economists, voting theory, and social
choice theory more broadly, has become a significant and independent field of
research at the intersection of the humanities and the exact sciences. Under
the heading of Digital Democracy, an interdisciplinary community of politi-
cal scientists, computer scientists, mathematicians, logicians and economists is
exploring methods of democratic decision making that take advantage of the
digital tools of the current century. One of the proposals is liquid democracy,
a form of democracy that aims to combine the best of two worlds: the ideal of
direct democracy and the practicality of representative democracy.

In liquid democracy, voters may choose either to cast a direct vote on the
issue at hand, or to delegate their voting power to another voter. In the spirit
of direct democracy, this allows each voter to directly express their opinion on
the matter. Simultaneously, it releases voters of the responsibility to form an
informed opinion on each and every topic: as in a representative democracy, a
voter can always delegate their vote to a trusted peer.

This thesis studies the mechanisms (or aggregation rules) which convert a
collection of votes in a liquid democracy instance to a collective decision. In
particular, we propose an aggregation rule (the structural ranked agenda rule)
which guarantees logically consistent collective decisions, while exploiting the
delegation structure to break ties between different acceptable collective deci-
sions. At the end of this chapter (Section 1.4), we elaborate on the objectives
of our work and provide an outline of the thesis. But first, we present the back-
ground information and technical terms necessary to state our precise objectives
by briefly introducing the history of liquid democracy (Section 1.1), presenting
its most important merits (Section 1.2) and describing its major unresolved
technical challenges (Section 1.3).
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1.1 A Brief History of Liquid Democracy
Dodgson [1884] (alias Lewis Carroll) is generally considered to be the first to
propose an idea similar to liquid democracy [Behrens, 2017]. He was primarily
concerned with votes ‘going to waste’ if a representative in 19th century Britain
received more votes than necessary to secure a seat in parliament. He proposed
to allow the representative to transfer his votes to another parliamentary candi-
date of his own political party that received too few votes to enter parliament.
This process was to be executed after all votes were counted and the result
publicly announced.

It wasn’t until eighty years later, that Dodgson’s idea of delegating votes
received new significant attention, when the invention of the modern computer
opened up new possibilities for large-scale social deliberation [Behrens, 2017].
Tullock [1967] and Miller [1969] both proposed systems in which citizens could
follow political debates via “broadcast” and could choose to delegate their vote
to a representative, or to vote “by wire” or using a “console tied to a computer”.
Their proposals are very close to the concept understood as liquid democracy
today, although they lack an important feature: the explicit authorization of
delegates to re-delegate their received votes further, i.e., transitive delegation.

Ford [2002] was probably the first to explicitly allow for re-delegation of
votes, when he proposed six basic axioms for his form of “delegative democ-
racy” [Behrens, 2017]. Notably, Ford already proposed two extensions to his
system, “backup votes” and “split delegation”, which have later become impor-
tant proposals to resolve the issue of cyclic delegation (i.e., delegations in which
two or more voters delegate to each other in an infinite loop).

While the merits and drawbacks of multiple liquid democracy proposals are
still actively being studied, the idea has already been applied in practice. Digital
tools for ‘interactive democracy’ are currently being used for internal decision
making in some political parties around the world and for online community
engagement platforms [Behrens et al., 2014, Boella et al., 2018, De Cindio and
Stortone, 2013, Mancini, 2015]. A famous example of such political parties
are the Pirate Parties in 43 countries, that use liquid democracy for internal
decision making [Litvinenko, 2012]. The region of Friesland in Germany is
even experimenting with liquid democracy as a form of government, although
Neuland [2014] reports that citizen participation is rather low.

1.2 In Defense of Liquid Democracy
As stated, it is promised that liquid democracy combines the best of direct
democracy and representative democracy. Blum and Zuber [2016] attempt to
justify this promise on the basis of normative democratic theory. They consider
a form of liquid democracy that has at least the following four properties.
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Direct democracy Voters are entitled to vote directly on all policy issues,
without the intervention of a representative.

Flexible delegation Voters are entitled to delegate their vote to any other
voter, both on an issue-by-issue basis, or for one or multiple policy areas
at once.

Transitive delegation Voters are entitled to re-delegate the votes they re-
ceived through delegation, to any other voter.

Instant recall Voters are entitled to terminate their delegation at any time.

Taking representative democracy as a normative benchmark, they argue that
liquid democracy performs better from the perspective of epistemic democracy
(the idea that democracy is a method to arrive at the truth) as well as from
the perspective of procedural democracy (the idea that democracy derives it
legitimacy from its egalitarian procedures).

1.2.1 An Epistemic and an Egalitarian Justification
The epistemic justification of liquid democracy relies on the premise that all vot-
ers have some inaccuracies in their perception of the common good, but some
voters (the ‘experts’) hold more accurate beliefs than others for the relevant
policy area(s). Since liquid democracy allows for policy area specific delega-
tion (and representative democracy does not), liquid democracy has a “greater
capacity for mobilizing policy area expertise” [Blum and Zuber, 2016]. Fur-
thermore, delegations to representatives that prove unable to determine what
policy serves the common good, can be recalled instantaneously. As a result,
liquid democracy is able to “effectively and efficiently filter out the best experts
without the time lags of electoral cycles” [Blum and Zuber, 2016].

In the egalitarian justification of liquid democracy, we assume that mem-
bers of a political community vote on the basis of their subjective interests and
a democratic system is better if it allows all voters to pursue their interests in
a more equal fashion. Liquid democracy is better than representative democ-
racy in this sense, firstly because its direct democracy property ensures that
voters have the ability to directly vote for their subjective interests. Secondly,
while representative democracy forces voters to choose a single representative
for all policy areas, the flexible delegation of liquid democracy allows voters
to express complex or uncommon opinions by combining policy bundles pro-
posed by different policy experts. Consequently, voters are better able to match
their delegations to their subjective interests. In other words, liquid democracy
“remedies the problem of unequal participatory power that is generated in rep-
resentative democracy by differences between how well the different members’
interests match with available policy bundles” [Blum and Zuber, 2016].
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1.2.2 An Information-Economic Formalization
In a similar attempt to justify liquid democracy, Green-Armytage [2015] pro-
vides an axiomatic and an information-economic argument. Axiomatically, he
concludes that a system of “voluntary delegation” is necessary on the basis of
the axioms that (1) in a democracy, voters should have the right to vote di-
rectly on any issue, and (2) voters have the right to delegate their vote to any
peer. The former axiom is assumed to be a “familiar notion”, while the latter
is justified as saving time compared to informing oneself and going out to vote,
and as being equivalent to the free flow of information: if we view a delegation
not as a flow of power to the representative, but as a “transfer of information
(about how to vote)” in the opposite direction, then the rejection of the latter
axiom, is a restriction on the flow of information.

His information-economic justification effectively formalizes the arguments
of Blum and Zuber [2016]. It relies on a spacial imperfect information model:
each possible position on an issue is represented by a real number and all voters
occupy some point in a multi-dimensional Euclidean space, where each dimen-
sion represents some issue. Furthermore, each voter’s uncertainty about their
own position (i.e., their perfect self-interested direct vote) and about the position
of all other voters are modeled as random variables. Based on this imperfect
information, voters are tasked with casting a vote that represents their true
position as accurately as possible. We compare their ability to do so between
direct, liquid and representative democracy.

In direct democracy, voters have no choice but to vote according to their
perceived subjective position. In representative democracy, voters are forced to
select a single representative that minimizes the perceived Euclidean distance
between the voter and the representative in this multi-dimensional space. In
liquid democracy, voters may delegate their vote on any single issue to a repre-
sentative, if the perceived one-dimensional distance on that issue between voter
and representative, is smaller than the expected perception-error in the voter’s
own position on the issue. Green-Armytage [2015] mathematically shows that
this option increases voters’ ability to accurately reflect their true opinion, com-
pared to direct democracy as well as to representative democracy. In other
words, giving voters the option to delegate to different representatives on dif-
ferent issues, allows them to pursue their self-interest more accurately than in
direct or representative democracy. This formalizes the egalitarian argument
of Blum and Zuber [2016]. Furthermore, the median of all votes in the liquid
democracy setting is closer to the median opinion of all voters, than in the direct
and representative democracy settings. This in turn, formalizes the epistemic
argument of Blum and Zuber [2016].

The fact that liquid democracy performs better than direct democracy in the
analysis of Green-Armytage [2015], might surprise the reader with a background
in social choice theory, but follows from the assumption that voters are uncertain
about their own self-interest. Therefore, it might be the case that a delegate
approximates the voter’s self-interest better than the voter does herself. For
example, Alice might know very little about climate policy and thus does not
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know which policy option reflects her values, while she does share many of here
core values with Bob, who is a climate scientist. Delegating her vote on climate
policies to Bob, might therefore serve Alice’s self-interest better than voting
directly.

1.2.3 Overburdening the Citizen
A natural concern is that liquid democracy (like direct democracy) overburdens
the average citizen. Blum and Zuber [2016] point out that the “informational de-
mands placed on the individual in a liquid democracy appear to be much greater
than those placed on a voter in a representative democracy”: voters must decide
for each individual issue or policy area whether to vote directly (and if so, how
to vote) or to delegate (and if so, to whom). The question arises if the average
citizen is capable of performing these tasks effectively. Social epidemiologists
argue that laypersons are well capable of evaluating the performance of experts
without becoming an expert themselves [Blum and Zuber, 2016]. An important
tool for doing so are “reputation systems” that rank or rate experts and are
developed by an epistemic community. And even if expert selection fails, liquid
democracy – more than representative democracy – benefits from the ‘wisdom
of crowds’: the theory that the wisdom of many non-experts can jointly be
more accurate than the judgment of any single expert. Finally, there is empiri-
cal evidence that more possibilities for political participation causes citizens to
become more informed on political issues [Blum and Zuber, 2016]. Therefore,
as citizens get used to a system of liquid democracy, they are likely to become
better at casting the ‘right’ vote or selecting the ‘right’ delegate.

1.2.4 Conclusion
In conclusion, the core idea of liquid democracy, voluntary and flexible delega-
tion, can be justified on the basis of procedural as well as epistemic democratic
theory. Moreover, the political philosophical argument can be supplemented
by an axiomatic argument and an information-economic formalization. Finally,
there is reason to believe that the average citizen is not overburdened by her
responsibilities in liquid democracy. Nonetheless, multiple conceptual, technical
and implementation challenges remain in the theory of liquid democracy.

1.3 Technical Challenges in Liquid Democracy
The literature explores many major and minor problems with liquid democracy,
both of political, conceptual or philosophical nature, and of technical nature.
We focus on the main technical issues in the realm of mathematics, computer
science and logic. We refer to the work of Brill [2018] for a more substantive
overview of the technical challenges faced by liquid democracy, and to Blum
and Zuber [2016] for some politically philosophical challenges.
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1.3.1 Cyclic Delegation and Abstention
Cyclic delegation refers to the case where two or more voters delegate to each
other in a cycle. Clearly, if this happens, we cannot count their votes towards a
social decision without some further information on their preferences. A similar
situation arises when a voter delegates to a peer, who abstains from voting for
whatever reason. Christoff and Grossi [2017] show that (under the assumption
that any delegation profile is equally likely), the probability that all voters
(indirectly) delegate to a cycle, goes to 1

e2 ≈ 14% as the number of voters goes
to infinity. Although this underlying assumption is rather unrealistic, we clearly
need some method of resolving delegation cycles (and abstentions).

A straightforward way of doing so, is asking all voters to submit a ‘backup
vote’, which is used in case their representative abstains or is part of a delegation
cycle. However, this requires all voters to submit ballots on every individual
issue (and thus prohibits automatic delegation on all issues within some policy
area(s)), thereby losing many of the practical advantages of liquid democracy.
Another common proposal is asking all voters to submit ‘backup delegations’.
How these additional delegations are used in the decision procedure differs per
proposal.

Kotsialou and Riley [2020], Brill et al. [2022] and Colley et al. [2022] suggest
multiple approaches where some search algorithm (most intuitively, breadth
first search) decides which delegation option is used for each voter. The final
delegations are fixed one by one, and if a preferred delegation of some voter
leads to a cycle, her next alternative delegation is used instead.

Brill [2018] and Utke and Schmidt-Kraepelin [2023] suggest considering the
delegation graph as a Markov chain, where primary delegations have a weight
proportional to ϵ, secondary delegations to ϵ2, etc. Utke and Schmidt-Kraepelin
[2023] show that this approach allows for aggregation rules that are copy-robust,
the property that voters cannot manipulate the outcome by copying their pre-
ferred delegate’s vote instead of submitting a ranked delegation.

Other approaches of preventing or resolving cyclic delegation include the
suggestion of Kahng et al. [2021] to assign voters a competency level and only
allowing delegations to more competent peers, and the suggestion of Escoffier
et al. [2019] to allow voters to change their vote iteratively in case they delegated
to a cycle.

1.3.2 Policy-Inconsistency
It is well-known in the field of judgment aggregation, that even if all voters
hold consistent beliefs, collective judgments formed using reasonable aggrega-
tion rules, may be inconsistent. The most famous example is probably the
doctrinal paradox introduced by Kornhauser and Sager [1993]. Judgment aggre-
gation theory teaches us that such collective inconsistencies can occur in almost
any reasonable system containing a direct democracy component (see, e.g., the
survey by List [2012]). Representative democracy, on the other hand, “is strong
at bundling together solutions to societal problems from different policy areas—
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and also trading them against each other, if necessary,” due to politicians (and
their parties) being involved in multiple policy areas simultaneously, Blum and
Zuber [2016] argue. If liquid democracy is to be a viable alternative to repre-
sentative democracy, the issue of policy-inconsistency must thus be addressed.
Even if the possibility of collective inconsistency cannot be ruled out for any
combination of votes, limiting inconsistencies as much as possible, is an impor-
tant challenge.

Christoff and Grossi [2017] treat delegation graphs in liquid democracy as
a social network and model the stabilization of opinions, if voters copy the
opinion of their delegate iteratively. They enforce that voters only copy an
opinion if it is consistent with their opinions on other issues. As a result, the
stable opinions are all individually consistent. Applying an aggregation rule
from judgment aggregation theory that preserves consistency, will thus yield
a consistent collective opinion. However (under some technical assumptions
on the issue-agenda, and independence and unanimity), the only such rules
are oligarchies, in which a subset of the voters have full authority over the
collective decision. This is a well-known result in judgment aggregation theory
by Dietrich and List [2008], that Christoff and Grossi [2017] generalized to the
liquid democracy setting.

In the special case of ordinal voting (i.e., the setting in which voters rank a
number of alternatives and one alternative is elected), Brill and Talmon [2018]
show that the detection of individual inconsistencies in a delegation graph is
NP-complete. To recover individual consistency, they suggest using distance
rationalization on delegation structures, in the spirit of Kemeny’s rule that
minimizes pairwise swaps of candidates in individual ballots to obtain unanim-
ity [Kemeny, 1959]. For a given delegation graph, we search for the closest
consensus graph (a delegation graph with a ‘clear winner’) according to some
distance metric between delegation graphs. The winner of this consensus graph
is declared the winner of the vote.

1.3.3 Other Challenges
Many other challenges in liquid democracy are described in the literature. For
example, Green-Armytage [2015] and Blum and Zuber [2016] make a num-
ber of suggestions for practical implication, including the role of the executive
branch in relation to a liquid legislature. Brill [2018] and Harding [2022] address
some aspects of voter manipulation and strategyproofness. And finally, Harding
[2022] considers questions of monotonicity, i.e., whether increased support can
harm an alternative.

1.4 Objectives and Outline of the Thesis
In this thesis, we will focus our attention on the issue of policy-inconsistency.
The objective is to construct an aggregation rule for liquid democracy that guar-
antees an outcome that is consistent, while meeting as many desirable fairness
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constraints as possible. In our setting, voters will simultaneously express their
opinion on multiple issues, which are logically connected through some ‘integrity
constraint’. In order to keep our formal results as general as possible, we do not
assume that voters’ ballots are in any way consistent with the integrity con-
straint or that delegations are always acyclic, but we do assume that voters
cannot abstain from voting.

However, when assessing the effectiveness of aggregation rules, we streng-
then our assumptions. That is, we will assume that voters respect the integrity
constraint in the direct votes they submit, while allowing them to delegate their
votes on remaining issues freely: we will not assume, that the opinion of a voter’s
delegate on one issue is consistent with the voter’s direct vote on another issue.
We believe that these assumptions mimic the reality of liquid democracy as
closely as possible: we may generally assume that voters are rational (and thus
that their direct votes on several issues are logically consistent), but we may not
assume that they can predict the exact vote of their delegates (and thus their
delegates’ votes might be inconsistent with their own direct votes).

The thesis is structured as follows. In Chapter 2, we define our formal
model of judgment aggregation in liquid democracy and its normative axioms,
and generalize some basic results from judgment aggregation theory. In Chap-
ter 3, we define our main aggregation mechanism, the ranked agenda rule, and
characterize it in terms of normative axioms. In Chapter 4, we define a compu-
tational model of voter behavior in liquid democracy, and use it to study the
connection between the delegation structure of a liquid democracy instance and
its epistemic performance. Finally, in Chapter 5, we combine the results from
the previous chapters to obtain a structural ranked agenda rule, and compu-
tationally compare its epistemic performance against three other aggregation
rules.
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Chapter 2

Judgment Aggregation in
Liquid Democracy

We begin this chapter by defining our model of liquid democracy in Section 2.1.
In Section 2.2, we introduce a number of domain restrictions and normative
axioms. Finally, we translate some basic impossibility results from judgment
aggregation theory to our setting in Section 2.3.

2.1 A Model of Liquid Aggregation
Following the assumptions in Section 1.4, we define a model of judgment aggre-
gation in liquid democracy as follows. Any liquid democracy instance consists
of a finite set N = {1, . . . , n} of voters and a finite set Φ+ = {p1, . . . , pm} of
issues, modeled as propositional letters. The set Φ− = {¬p1, . . . ,¬pm} contains
all negations of the propositional letters and we call Φ := Φ+ ∪ Φ− the agenda
of the liquid democracy instance. Elements of the agenda are referred to as
literals. For any literal ℓ ∈ Φ, we write ∼ℓ for ¬p if ℓ = p ∈ Φ+, or for p
if ℓ = ¬p ∈ Φ−. Furthermore, let Lsat be the set of satisfiable propositional
formulas over the propositional letters in Φ+. This set contains every possible
integrity constraint Γ ∈ Lsat, expressing the logical connections between issues.

Definition 2.1.1 (Judgment Set). We call a set J ⊆ Φ a judgment set. We
call a judgment set complete if it contains p or ¬p for all p ∈ Φ+, and we call
it complement-free if it does not contain both p and ¬p for any p ∈ Φ+. For
Γ ∈ Lsat, we say that a judgment set J is consistent with Γ, if J∪{Γ} is logically
consistent. The set of all judgment sets that are complete and consistent with Γ,
is denoted by J (Γ).

A judgment set represents an opinion that a voter (or a collective of voters)
might have on the issues of the liquid democracy instance. If a judgment set is
complete, it expresses a judgment on each issue, and if it is complement-free, it
does not express contradictory judgments. If Γ ∈ Lsat is an integrity constraint,
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a judgment set that is consistent with Γ, expresses an opinion that respects the
logical connections between the issues which are modeled by Γ.

In a liquid democracy instance, all voters submit a ballot stating their direct
votes on some issues and their delegations to other voters on the remaining
issues. Ballots are formally modeled by the following definition.

Definition 2.1.2 (Liquid Aggregation Ballot). A liquid aggregation ballot (or
ballot for short) for voter i ∈ N is a map

Bi : Φ → {+,−} ∪ (N \ {i}),

such that for all ℓ ∈ Φ, we have Bi(ℓ) = + if and only if Bi(∼ℓ) = −, and
if Bi(ℓ) ∈ N \ {i}, then Bi(ℓ) = Bi(∼ℓ). The set of all possible ballots for
voter i ∈ N is denoted by BΦ

i .

If ℓ ∈ Φ is a literal and Bi ∈ BΦ
i is a ballot for voter i ∈ N , then Bi(ℓ) = +

(or Bi(ℓ) = −) represents a direct vote in favor of (or against) literal ℓ (which
automatically implies a direct vote against (or in favor of) ∼ℓ); and Bi(ℓ) = j for
j ∈ N \ {i} represents the delegation of i’s vote on ℓ to another voter j (which
automatically implies the delegation of i’s vote on ∼ℓ to voter j). Thus, the
set B−1

i (+) contains exactly those literals, that the voter accepts by a direct
vote. Note that this is a complement-free judgment set (but not necessarily a
complete one, or one that is consistent with the integrity constraint).

The combination of all voters’ ballots is referred to as a profile, which is
defined as follows.

Definition 2.1.3 (Liquid Aggregation Profile). A liquid aggregation profile (or
profile for short) for voters N is a vector B = (B1, . . . , Bn) containing a bal-
lot Bi ∈ BΦ

i for each voter i ∈ N . The set of all possible profiles for voters N is
denoted by BΦ

N . The set of all possible profiles for any non-empty finite set of
voters is denoted by BΦ.

In some parts of this thesis, we will need profiles consisting of different
numbers of voters. If it is not clear from the context which set of voters we
are considering, we denote by NB the set of voters that constitute the pro-
file B ∈ BΦ. However, in most cases, all profiles can be considered to have some
generic and fixed set of voters N . Furthermore, if we view the delegations con-
cerning literal ℓ ∈ Φ in a profile as a graph, then for each voter i ∈ N there is
a unique path from that voter to a voter who votes directly on ℓ, or to a dele-
gation cycle (i.e., a subset of voters, who delegate to each other in a loop). We
write pathB,ℓ(i) for the set containing the voters in this path, and repB,ℓ(i) for
voter i’s representative for ℓ (if she exists), i.e., the unique voter in pathB,ℓ(i)
that casts a direct vote on ℓ (if she exists). In particular, if i votes directly on ℓ,
then pathB,ℓ(i) = {i} and repB,ℓ(i) = i. If repB,ℓ(i) exists for all i ∈ N and
all ℓ ∈ Φ, then we call profile B acyclic.

The mechanism that aggregates the voters’ ballots into a single collective
decision, is referred to as a liquid aggregation rule and is formally defined as
follows.
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Definition 2.1.4 (Liquid Aggregation Rule). A liquid aggregation rule F (or
rule for short) with domain DF ⊆ BΦ ×Lsat is a map F : DF → P(P(Φ)) \ {∅}.

For rule F , profile B ∈ BΦ and integrity constraint Γ ∈ Lsat such that
(B,Γ) ∈ DF , a judgment set J ∈ F(B,Γ) is said to be a possible collective
decision. If F(B,Γ) = {J}, then we call J the collective decision.

We say that a literal ℓ ∈ Φ is necessarily accepted (or necessarily rejected) if
ℓ ∈ J (or ℓ /∈ J) for all J ∈ F(B,Γ), and possibly accepted (or possibly rejected)
if ℓ ∈ J (or ℓ /∈ J) for some J ∈ F(B,Γ).

A liquid aggregation rule is a mechanism, which takes as input a profile and
an integrity constraint, and returns a non-empty set of ‘acceptable’ collective
decisions.1 Thus, a liquid aggregation rule need not be resolute: it may return
several possible collective decisions for a single input. Furthermore, since we
define the integrity constraint to be an explicit input of the rule, a single liq-
uid aggregation rule represents, in effect, a whole family of rules, one for each
integrity constraint. In practice, one would expect the rule to behave similarly
for similar integrity constraints, which can be formalized by normative axioms
that constrain the outcome of liquid aggregation rules under varying integrity
constraints (see Section 2.2).

Also note that a liquid aggregation rule comes with a specific domain on
which it is defined. This allows us to consider different domain restrictions,
which we define in Section 2.2.1. Finally, liquid aggregation rules are defined
for all possible non-empty finite sets of voters simultaneously (i.e., not only for
a fixed set N ), which is necessary for the characterization result in Section 3.3.

The field of judgment aggregation has developed a wide range of aggrega-
tion rules for the setting of direct democracy. Those rules can be generalized
to liquid democracy rules in a standard way, if we convert the liquid profile
to a profile containing only direct votes. We do so by following the delega-
tion chains. That is, if B = (B1, . . . , Bn) ∈ BΦ is a liquid profile, we call
B′ = (B′

1, . . . , B
′
n) ∈ BΦ

NB
the proxy profile of B if for each voter i ∈ NB and

literal ℓ ∈ Φ, we have B′
i(ℓ) = BrepB,ℓ(i)

(ℓ). In case some repB,ℓ(i) is undefined
(i.e., in case the delegations on some issue are cyclic), then no proxy profile
exists.2 After constructing a proxy profile (if it exists), any classical judgment
aggregation rule can be applied to obtain a social decision, thus generalizing the
classical judgment aggregation rule to a liquid aggregation rule. And the other
way around, liquid aggregation problems can be reduced to classical judgment
aggregation problems by considering the proxy profile.

1Throughout this thesis, we use the terms ‘collective decision’, ‘collective judgment’ and
‘collective opinion’ interchangeably.

2As discussed in Section 1.3.1, several solutions to cyclic delegation have been proposed in
the literature. For simplicity, we choose to leave the proxy profile undefined in case of cyclic
delegation.
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2.2 Domain Restrictions and Normative Axioms
The model defined above is a generalization of the classical binary judgment ag-
gregation setting (see, e.g., the survey by List [2012]): if all voters submit direct
votes only, we are in a situation of direct democracy. And binary judgment ag-
gregation is, in turn, a generalization of ordinal preference aggregation [Dietrich
and List, 2007]. Social choice theorists have developed many normative axioms
for aggregation rules in these (and other) settings. We will translate these ax-
ioms to our setting, and introduce new axioms capturing the behavior of liquid
aggregation rules specifically. But we first consider some domain restrictions.

2.2.1 Domain Restrictions
In some cases, it is interesting to consider a liquid aggregation rule that is
defined on a restricted domain. For example, some rules might always return
consistent collective decisions on some domains, but not on others. Thus, we
define a number of useful domain restrictions in this section. Note that a domain
specifies the pairs of profiles and integrity constraints that a rule should (at least)
be defined on. Thus, a rule might be defined for a profile B in combination with
an integrity constraint Γ, but not for the same profile B in combination with a
different integrity constraint Γ′; and the other way around.

If we allow voters to submit any ballot as defined in Definition 2.1.2, we are
in the universal domain.

Definition 2.2.1 (Universal Domain). A liquid aggregation rule F has the
universal domain, if DF is the whole set BΦ × Lsat.

As we argued in Section 1.4, it is interesting to assume a weak form of
individual rationality, namely that the direct votes of each individual voter are
consistent with the integrity constraint. This assumption restricts the domain
as follows.

Definition 2.2.2 (Rational Domain). A liquid aggregation rule F has the ra-
tional domain, if DF contains all pairs (B,Γ) ∈ BΦ × Lsat such that for each
voter i ∈ NB, the set B−1

i (+) is consistent with Γ.

When we consider all acyclic profiles as valid inputs to a rule, we are in the
acyclic domain, which is defined as follows.

Definition 2.2.3 (Acyclic Domain). A liquid aggregation rule F has the acyclic
domain, if DF contains all pairs (B,Γ) ∈ BΦ × Lsat such that B is acyclic.

Finally, we consider the domain restriction that defines direct democracy.
Note that the direct domain is a subset of the acyclic domain.

Definition 2.2.4 (Direct Domain). A liquid aggregation rule F has the direct
domain, if DF contains all pairs (B,Γ) ∈ BΦ × Lsat such that Bi(ℓ) ∈ {+,−}
for all literals ℓ ∈ Φ and all voters i ∈ NB.
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Throughout this thesis, we will sometimes consider domains which are an
intersection of the domains defined here. We will then concatenate the names
of the domains. For example, we say that a rule F has the acyclic rational
domain, if DF contains all pairs (B,Γ) ∈ BΦ × Lsat such that B is acyclic and
the direct votes of each voter are consistent with Γ.

Note that all domain restrictions allow the domain of a rule to be larger
than strictly necessary to satisfy the definitions given. For example, any rule F
that has the acyclic domain also has the direct domain, since the direct domain
is a subset of the acyclic domain. Therefore, possibility results (i.e., theorems
stating that a rule with certain properties exists) are stronger when shown on
larger domains (optimally the universal domain), and impossibility results (i.e.,
theorems stating that no rules with certain properties exist) are stronger when
shown on smaller domains.

2.2.2 Classical Normative Axioms
We turn our attention to the axioms of liquid democracy. We first consider
some axioms which are primarily normative and can be used to describe the
more common desirable properties of liquid aggregation rules. Most of these
normative axioms are translations of famous axioms from judgment aggregation
theory (see, e.g., the overviews by List [2012] and Endriss [2016]). Thereafter, in
Section 2.2.3, we define the axioms that can be used to characterize the ranked
agenda rule, which we study in Chapter 3. Although the latter axioms still
express normative properties, they are more technical in nature.

Our first axiom distinguishes rules which always return a single collective
decision (i.e., resolute rules), from rules which return several possible collective
decisions in some cases (i.e., irresolute rules).

Axiom 2.2.5 (Resoluteness). We call a liquid aggregation rule F resolute, if for
any pair (B,Γ) ∈ DF , we have |F(B,Γ)| = 1. We call all other rules irresolute.

Unlike in our setting, aggregation rules in classical judgment aggregation
theory are sometimes considered to be defined for a single integrity constraint.
That is, if we change the integrity constraint, we move to a different aggregation
rule. In order to generalize results from that setting, we must be able to restrict
our attention to those liquid aggregation rules that are independent of integrity
constraints. We call such aggregation rules static. Well-known examples of
static rules are quota rules and dictatorships, whereas Kemeny’s rule and the
ranked agenda rule (see Section 3.1) are not static.

Axiom 2.2.6 (Staticity). We call a liquid aggregation rule F static, if for all
pairs (B,Γ1), (B,Γ2) ∈ DF , we have F(B,Γ1) = F(B,Γ2).

Another consequence of the introduction of the integrity constraint as an
argument of aggregation rules is that it technically allows us to use different
aggregation methods, even if two integrity constraints are logically equivalent.
The axiom of language independence prohibits this peculiarity.
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Axiom 2.2.7 (Language Independence). We call a liquid aggregation ru-
le F language-independent, if for all pairs (B,Γ1), (B,Γ2) ∈ DF , we have
F(B,Γ1) = F(B,Γ2), whenever Γ1 and Γ2 are logically equivalent.

The following axioms require collective decisions to be complete, comple-
ment-free or consistent with the integrity constraint.

Axiom 2.2.8 (Collective Completeness). We call a liquid aggregation rule F
(collectively) complete, if for any pair (B,Γ) ∈ DF , all possible collective deci-
sions J ∈ F(B,Γ) are complete.

Axiom 2.2.9 (Collective Complement-Freeness). We call a liquid aggregation
rule F (collectively) complement-free, if for any pair (B,Γ) ∈ DF , all possible
collective decisions J ∈ F(B,Γ) are complement-free.

Axiom 2.2.10 (Collective Consistency). We call a liquid aggregation rule F
(collectively) consistent, if for any pair (B,Γ) ∈ DF , all possible collective deci-
sions J ∈ F(B,Γ) are consistent with Γ.

For the next axiom, we need some additional notation. Let σ : N → N be
a permutation and let id : {+,−} → {+,−} be the identity map. We denote
by σ ∪ id the map N ∪ {+,−} → N ∪ {+,−} that acts as σ on N and as id
on {+,−}. If B = (B1, . . . , Bn) is a profile, we denote by σ(B) the permuted
profile ((σ ∪ id) ◦ Bσ−1(1), . . . , (σ ∪ id) ◦ Bσ−1(n)). In effect, σ(B) is the same
profile as B, but each voter σ(i) plays the role in σ(B) that voter i ∈ N played
in B. That is, we effectively shuffle the name tags of all voters. The axiom of
anonymity states that such permutations should not change the outcome of a
vote.

Axiom 2.2.11 (Anonymity). We call a liquid aggregation rule F anonymous,
if for any pair (B,Γ) ∈ DF and any permutation σ : N → N , we have
F(B,Γ) = F(σ(B),Γ).

A similar axiom exists for shuffling the name tags of propositional letters:
the axiom of neutrality. Formally, the axiom states that if two propositional
letters are treated identically by all voters, then any possible collective decision
should either accept both propositional letters, or neither (and analogously for
the negations of the propositional letters).

Axiom 2.2.12 (Neutrality). We call a liquid aggregation rule F neutral, if for
any pair (B,Γ) ∈ DF , any propositional letters p, q ∈ Φ+ and any possible
collective decision J ∈ F(B,Γ), we have that p ∈ J if and only if q ∈ J , and
¬p ∈ J if and only if ¬q ∈ J , whenever Bi(p) = Bi(q) for all voters i ∈ NB.

This is (an irresolute version of) the most common notion of neutrality: if we
shuffle the names of propositional letters, this should not change the outcome of
an aggregation rule. However, if we shuffle the names of the propositional letters
in an aggregation profile, we must shuffle their names in the integrity constraint
accordingly, if we want to preserve their roles in the aggregation problem as a
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whole. In other words, we should take into account the logical context of an
aggregation instance, when considering neutrality. Therefore, we propose an
axiom of contextual neutrality, which uses the following notation.

If p, q ∈ Φ+ and Γ ∈ Lsat, we denote by Γ[p ↔ q] a variant of formula Γ
where all occurrences of p are replaced by q, and all occurrences of q by p (and
thus all occurrences of ¬p by ¬q, and ¬q by ¬p). Similarly, if J ⊆ Φ is a
judgment set, we denote by J [p ↔ q] a variant of J where all occurrences of p
are replaced by q, and all occurrences of q by p (and thus all occurrences of ¬p
by ¬q, and ¬q by ¬p).

Note that our formulation of the axiom of neutrality is equivalent to requiring
that for any possible collective decision J ∈ F(B,Γ), we have that J = J [p ↔ q],
whenever Bi(p) = Bi(q) for all voters i ∈ NB. This implies that (and for
resolute rules is equivalent to) F(B,Γ) = {J [p ↔ q] | J ∈ F(B,Γ)}, whenever
Bi(p) = Bi(q) for all voters i ∈ NB. Using this formulation, we introduce
contextuality to the axiom of neutrality as follows.

Axiom 2.2.13 (Contextual Neutrality). We call a liquid aggregation rule F
contextually neutral, if for any pair (B,Γ) ∈ DF and any propositional let-
ters p, q ∈ Φ+, we have that F(B,Γ[p ↔ q]) = {J [p ↔ q] | J ∈ F(B,Γ)},
whenever Bi(p) = Bi(q) for all voters i ∈ NB and (B,Γ[p ↔ q]) ∈ DF .

Note that in the resolute case, contextual neutrality reduces to the require-
ment that if two propositional letters p and q are treated identically by all
voters, then F(B,Γ) should accept p if and only if F(B,Γ[p ↔ q]) accepts q,
and F(B,Γ) should accept ¬p if and only if F(B,Γ[p ↔ q]) accepts ¬q.

In the literature, multiple authors have (informally) proposed alterations of
the axiom of neutrality or argued in favor of non-neutral rules (e.g., Costantini
et al. [2016], List and Pettit [2002], Mongin [2012], Slavkovik [2014]), and Ter-
zopoulou and Endriss [2020] were the first to formally develop a weakening of
the axiom of neutrality. Nevertheless, to the best of our knowledge, no explicitly
contextual version of the axiom has been proposed. Possibly, this is due to the
fact that most of judgment aggregation theory was developed using a slightly
different formalism, where complex formulas are considered part of the agenda,
and thus an external integrity constraint is not necessary. Since this formalism
lacks an explicit object (the integrity constraint) modeling the ‘logical context’,
the notion of contextual neutrality does not come as naturally there.

Example 2.2.14. To illustrate the difference between neutrality and contextual
neutrality, we consider some examples of rules that hold none, one, or both of
the properties.

The most illustrative example is due to Costantini et al. [2016]. It regards
Kemeny’s rule (generalized to judgment aggregation), which selects the complete
and consistent judgment set that minimizes the sum of individual disagreements.
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For n = 6 and m = 5, let Γ be an integrity constraint that only allows the
judgment sets

{¬p1,¬p2, p3,¬p4,¬p5},
{ p1, p2, p3,¬p4,¬p5},
{¬p1,¬p2,¬p3, p4,¬p5},
{ p1, p2,¬p3, p4,¬p5},
{¬p1,¬p2,¬p3,¬p4, p5},
{ p1, p2,¬p3,¬p4, p5},
{ p1,¬p2,¬p3,¬p4,¬p5}.

Let B ∈ BΦ
N be the profile where the first six of these judgment sets are sub-

mitted by one voter each. Then Kemeny’s rule selects the seventh judgment set
(and no other judgment set), since each voter only disagrees with it on two lit-
erals, which happens to be the (unique) minimal total number of disagreements
possible.

However, while all voters treat p1 and p2 identically, p1 is collectively ac-
cepted and p2 is collectively rejected. Thus Kemeny’s rule is not neutral.
Costantini et al. [2016] note that they “believe that this indicates a deficiency
with this standard formulation of neutrality rather than with [Kemeny’s rule],
as this standard formulation does not account for the asymmetries in the set of
rational ballots induced by the integrity constraint”. Indeed, Kemeny’s rule does
not fundamentally favor one propositional letter over another, but the integrity
constraint does.

Kemeny’s rule is, on the other hand, contextually neutral. In this particular
example, if we swap the names of p1 and p2 in the ballots as well as in the
integrity constraint, then the rule accepts p2 and rejects p1, satisfying contextual
neutrality. If we combine contextual neutrality with language independence, we
regain some of the power of neutrality without its counter-intuitive effect on
asymmetric integrity constraints, as Corollary 2.3.3 will further illustrate.

Examples of rules that are neutral as well as contextually neutral are quota
rules (including unanimity) and oligarchies (including dictatorships).

An example of a rule that is neither contextually neutral nor neutral, is any
rule that breaks ties between possible collective judgments according to some
fixed tie-breaking order. This tie-breaking order is independent of the integrity
constraint and favors some propositional letters over others. It is therefore not
(contextually) neutral.

Finally, it is difficult to come up with natural rules that are neutral, but
not contextually neutral. However, neutrality does not imply contextual neu-
trality, since a quota-like rule that uses different quotas for different integrity
constraints, might accept two identically treated propositional letters p and q
for integrity constraint Γ, while rejecting both of them under the same profile
for integrity constraint Γ[p ↔ q]. This (rather unnatural) rule is neutral, but
not contextually neutral. △
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A related notion to neutrality is the axiom of unbiasedness, which states that
an aggregation rule should not favor a propositional letter p over its negation ¬p,
or the other way around. Again, the most common notion of unbiasedness does
not take into account the role of a propositional letter in the integrity constraint,
so we introduce a contextual version as well.

For any integrity constraint Γ ∈ Lsat, let Γ[∼p] denote the variant of Γ
where all occurrences of propositional letter p ∈ Φ+ are replaced by ¬p (which
automatically replaces all occurrences of ¬p by ¬¬p, which is equivalent to p).
Similarly, for any profile B ∈ BΦ

N , let B[∼p] = (B1[∼p], . . . , Bn[∼p]) denote the
profile where

Bi[∼p](q) =


+ if q = p and Bi(p) = −;

− if q = p and Bi(p) = +;

Bi(q) else.

Finally, for any judgment set J ⊆ Φ, let J [∼p] denote the variant of J where p
is replaced by ¬p if p ∈ J , and ¬p is replaced by p if ¬p ∈ J .

Note that if the negation operations are performed on a profile and integrity
constraint simultaneously, and the original profile is rational under the integrity
constraint (in the sense of Definition 2.2.2), then it remains rational under the
new integrity constraint. However, the same is not the case if we only apply
the operation to a profile or only to an integrity constraint, since reversing the
truth value of a single propositional letter might render the individual judgments
in the original profile inconsistent with the new integrity constraint, or the
individual judgments in the new profile with the original integrity constraint.
In a contextual version of unbiasedness, we should thus apply the negation
operation to the profile as well as the integrity constraint.

The axiom of (contextual) unbiasedness for resolute rules requires that the
rule accepts a propositional letter p under some profile if and only if the rule
rejects p under the profile where all direct voters change their mind on p (i.e.,
switch from accepting p to rejecting p, or the other way around). However,
this formulation does not directly generalize to irresolute rules. Instead, we
formulate the axiom as follows, which reduces to the intended interpretation
for resolute rules in a similar manner as we described above for the axiom of
neutrality.

Axiom 2.2.15 (Unbiasedness). We call a liquid aggregation rule F unbiased,
if for any pair (B,Γ) ∈ DF and any propositional letter p ∈ Φ+, we have that
F(B[∼p],Γ) = {J [∼p] | J ∈ F(B,Γ)}, whenever (B[∼p],Γ) ∈ DF .

The contextual version of this axiom then reads as follows.

Axiom 2.2.16 (Contextual Unbiasedness). We call a liquid aggregation rule F
contextually unbiased, if for any pair (B,Γ) ∈ DF and any propositional let-
ter p ∈ Φ+, we have that F(B[∼p],Γ[∼p]) = {J [∼p] | J ∈ F(B,Γ)}, whenever
(B[∼p],Γ[∼p]) ∈ DF .
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The final axiom of this section, the axiom of independence, states that the
collective judgment on one issue should only depend on the individual judgments
on that issue, and not on the individual judgments on any other issues. That is, if
some voters change their mind on some propositional letters other than p ∈ Φ+,
then this should not change the collective judgment on p. For resolute rules,
this is a straightforward axiom, but it does not easily generalize to irresolute
rules. We propose the following interpretation for irresolute rules.

The intuition behind independence is that if we want to decide whether we
accept a propositional letter p, we can look at the support for propositional
letter p only, and definitively decide whether or not it should be collectively
accepted. However, for irresolute rules, we need to further distinguish between
possible acceptance and necessary acceptance.

Consider an irresolute rule which possibly (but not necessarily) accepts
propositional letter p ∈ Φ+. In effect, it thereby creates two different initial
segments of possible collective judgments: one in which it accepts p, and one
in which it rejects p. But according to the idea behind independence, whether
the rule adds some other propositional letter q ∈ Φ+ to either of the initial
segments, should not depend on the content of the initial segments. Thus q
is either added to both initial segments (i.e., necessary acceptance of q); or to
neither initial segment (i.e., necessary rejection of q); or each initial segment
again splits into two possible collective judgments, one of which contains q and
one of which does not (i.e., possible acceptance of q), thus creating a total of
four possible collective judgments. And so on for all other propositional letters.

Note that this interpretation of independence only regards propositional let-
ters and not their negations. However, in combination with either unbiasedness,
or collective completeness and complement-freeness, the axiom of independence
also affects negations of propositional letters: they too must be decided on in-
dependently from each other. Further note that we do not require that we only
accept a propositional letter p when we reject its negation ¬p (or the other
way around), since this is the content of another axiom: collective complement-
freeness. Nor do we require that the decisions on a propositional letter p and
its negation ¬p are independent, since those judgments should depend on each
other if we want to satisfy collective complement-freeness.

In conclusion, an independent rule either necessarily accepts a propositional
letter p, or necessarily rejects it, or accepts it in exactly half of the judgment
sets (after intersection with Φ+), where both halves consist of the exact same
judgment sets modulo the presence of p (and modulo negated propositional
letters). Possible acceptance thus creates a sort of symmetric binary tree of
possible collective decisions. This interpretation of independence formalizes to
the following axiom. Note that for resolute rules, the axiom simply requires
that if two different profiles treat a propositional letter p identically, then p
must either be accepted under both profiles or rejected under both profiles.
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Axiom 2.2.17 (Independence). We call a liquid aggregation rule F indepen-
dent, if for all pairs (B,Γ), (B′,Γ) ∈ DF with NB = NB′ and any propositional
letter p ∈ Φ+, we have that

• if p ∈ J for all J ∈ F(B,Γ) then p ∈ J ′ for all J ′ ∈ F(B′,Γ); and

• if p /∈ J for all J ∈ F(B,Γ) then p /∈ J ′ for all J ′ ∈ F(B′,Γ); and

• if p ∈ J for some J ∈ F(B,Γ) and p /∈ J for some J ∈ F(B,Γ), then

– for each J ∈ F(B,Γ) with p ∈ J , there is a J ′ ∈ F(B,Γ) with p /∈ J ′

such that (J \ {p}) ∩ Φ+ = J ′ ∩ Φ+; and
– for each J ′ ∈ F(B,Γ) with p /∈ J ′, there is a J ∈ F(B,Γ) with p ∈ J

such that (J \ {p}) ∩ Φ+ = J ′ ∩ Φ+,

whenever Bi(p) = B′
i(p) for all voters i ∈ NB.

Note that the third bullet point in the axiom of independence does not refer
to the profile B′. However, by symmetry between B and B′ in the axiom, the
first two bullet points ensure that if one profile possibly accepts propositional
letter p without necessarily accepting it, then the other profile must do so as
well. The third bullet point only adds the requirement that possible accep-
tance (of positive agenda items, i.e., propositional letters) must be shaped like
a symmetric binary tree, as we argued for above.

Example 2.2.18. We provide a number of examples and counter-examples
of independence. The following sets of judgment sets are possible outputs of
independent liquid aggregation rules.

{∅} (all literals necessarily rejected)
{{p,¬p}} (p and ¬p necessarily accepted)
{{p, q,¬r}} (p, q and ¬r necessarily accepted)
{{p, q,¬r}, {p,¬r}} (q possibly accepted)
{{p, q,¬r}, {p,¬q,¬r}} (q possibly accepted)
{{p, q,¬q,¬r}, {p,¬q,¬r}} (q possibly accepted)
{{p, q,¬r}, {p,¬r}, {p,¬p,¬r}} (q possibly accepted)
{{p, q,¬q}, {p,¬p,¬r}} (q poss. acc., negations not independent)
{{p, q}, {p,¬q}, {¬p, q}, {¬p,¬q}} (p and q possibly accepted)
{{p, q}, {p}, {q}, ∅} (p and q possibly accepted)

The following sets of judgment sets are not possible outputs of independent
liquid aggregation rules.

{{p, q}, {p}, {q}} (no set without p and q)
{{p, q,¬r}, {¬p, q,¬r}, {¬p,¬q,¬r}} (no set with p and without q)
{{p, q,¬r}, {¬p,¬q, r}} (p, q and r all depend on each other)
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Finally, independent liquid aggregation rules which are also collectively com-
plete and complement-free, can only return sets of judgment sets of the following
shape. Let J+ be the set of necessarily accepted propositional letters, J− the
set of necessarily rejected propositional letters, and ζ the set of propositional
letters which are possibly accepted and possibly rejected. Then the output of a
collectively complete and complement-free, independent rule is

{J+ ∪ ¬J− ∪ Cζ(J
′) | J ′ ∈ P(ζ)},

where ¬P denotes the set of negations of propositional letters in P ⊆ Φ+, and
CP (Q) := Q ∪ ¬(P \Q) denotes the completion of Q ⊆ Φ+ with respect to the
propositional letters in P ⊆ Φ+. Examples of such sets are the following.

{{p, q,¬r}} (J+ = {p, q}, J− = {r}, ζ = ∅)
{{p, q,¬r}, {p,¬q,¬r}} (J+ = {p}, J− = {r}, ζ = {q})
{{p, q, r}, {p, q,¬r}, {p,¬q, r}, {p,¬q,¬r}} (J+ = {p}, J− = ∅, ζ = {q, r})

△

2.2.3 Additional Normative Axioms
The axioms in this section are translations of the axioms by which Lamboray
[2009b] characterizes the ranked pairs rule (see Section 3.1) in ordinal preference
aggregation. We define the axioms and justify their normative content in this
section, and translate the characterization result to our setting in Section 3.3.

Three of the following axioms concern the behavior of aggregation rules
with respect to the set of literals that are supported by a majority of voters.
The strength of support for a literal is measured by the difference between the
number of supporters of a literal, and the number of supporters of the literal’s
negation, i.e., by the majority margin. Formally, the majority margin is defined
as follows.

Definition 2.2.19 (Majority Margin). For any profile B ∈ BΦ, the majority
margin of literal ℓ ∈ Φ is

nB(ℓ) = |{i ∈ N | repB,ℓ(i) is defined and BrepB,ℓ(i)
(ℓ) = +}|

− |{i ∈ N | repB,ℓ(i) is defined and BrepB,ℓ(i)
(ℓ) = −}|.

Note that our notion of majority margins is closely related to the notion
of a proxy profile in the sense that each voter whose representative accepts a
literal, is considered to support the literal. However, whereas the proxy profile is
undefined for cyclic profiles, the majority margin is always defined, but ignores
voters who delegate to a cycle. Further note that for any profile B ∈ BΦ and
literal ℓ ∈ Φ, we have nB(ℓ) = −nB(∼ℓ), since voters cannot delegate ℓ and ∼ℓ
to different peers, and a direct vote in favor of ℓ implies a direct vote against ∼ℓ.

The literals which are accepted by a majority of voters constitute the major-
ity set of the profile. We define such a majority set for each possible threshold of
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what constitutes a ‘large enough’ majority, as follows. Note that since the ma-
jority margin ignores voters who delegate to a cycle, the majority set of a cyclic
profile might contain literals with a very low absolute number of supporters, if
many voters delegate to a cycle.

Definition 2.2.20 (Qualified Majority Set). Consider any profile B ∈ BΦ and
let γ ∈ N0. The set

Mγ = {ℓ ∈ Φ | nB(ℓ) > γ}

of all literals that have a majority margin in B that is strictly greater than γ,
is called the γ-qualified majority set of B. In particular, for γ = 0, we call the
set M = M0 the strict majority set of B.

Our first two axioms state that reinforcing a majority opinion present in a
profile should not create any new possible collective decisions. That is, if a pro-
file has some (qualified or strict) majority set, and we introduce additional voters
who display the same majority set and possibly generate a majority for addi-
tional literals which previously enjoyed neither majority support nor majority
rejection, then the set of possible collective decisions should not increase. Thus,
the new voters can only remove some possible collective decisions by break-
ing the collective ‘indifference’ on some literals. As Lamboray [2009b] puts it,
“[t]he property suggests that ‘confirming the majority’ of a profile should not
lead to creating new solutions, which is in line with the idea that reinforcing
the majority does not fundamentally change the aggregation problem.”

To formalize this idea, we need two auxiliary definitions. Firstly, profile
addition is defined as the concatenation of profiles.

Definition 2.2.21 (Profile Addition). For any two liquid aggregation pro-
files B = (B1, . . . , Bn) ∈ BΦ and B′ = (B′

1, . . . , B
′
n′) ∈ BΦ, we write B + B′

for the concatenated profile (B1, . . . , Bn, B
′
1, . . . , B

′
n′) ∈ BΦ.

Secondly, we introduce profiles which support a specific literal in a minimal
way.

Definition 2.2.22 (Minimal ℓ-Profile). For any literal ℓ ∈ Φ and the set of vot-
ers N = {1, 2}, the minimal ℓ-profile is the profile Bℓ = (B1, B2) ∈ BΦ

N , where
B1(p) = + and B2(p) = − for all p ∈ Φ+ \ {ℓ,∼ℓ}, and B1(ℓ) = B2(ℓ) = +.

In other words, the minimal ℓ-profile Bℓ is a profile of two voters who disagree
on every literal except ℓ (and ∼ℓ), which they both accept (and reject). Thus,
the majority margins of the minimal ℓ-profile are always as follows.

Fact 2.2.23. If Bℓ is the minimal ℓ-profile for ℓ ∈ Φ, then for ℓ′ ∈ Φ, we have

nBℓ
(ℓ′) =


2 if ℓ′ = ℓ;

−2 if ℓ′ = ∼ℓ;

0 else.
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Note that minimal ℓ-profiles are not generally individually consistent. There-
fore, our characterization result in Section 3.3 using minimal ℓ-profiles only ap-
plies to the universal domain. The characterization of aggregation rules on the
rational domain would have to make use of an individually rational notion of
minimal support, which would be a non-trivial adaptation of the definition.

We can now define the majority profile of a profile B ∈ BΦ as follows. If M
is the (strict) majority set of B, a majority profile B(M) of B is a ‘minimal’
profile, expressing majority support for the literals in M as well as for (possibly)
some additional literals which received neither majority support nor majority
rejection in B. That is, B(M) expresses a majority for the same literals as B
(and possibly breaks some ties of B), but expresses this majority by the smallest
possible margin assuming acyclicity (i.e., by a majority margin of 2). Formally,
we call such majority profiles strict majority profiles. Analogously, we can define
γ-qualified majority profiles for γ ∈ N by only duplicating the majorities in B
which have a majority margin strictly above γ, and (possibly) lending majority
support to some of the literals which enjoy a majority margin in B of exactly γ.

In the formal definition below, Mγ is the γ-qualified majority set of profile B,
thus containing all literals which enjoy a majority margin strictly greater than γ.
And ζ contains those literals which enjoy a majority margin of exactly γ and
which we wish to promote to majority-supported literals. Note that since we
may choose different sets ζ, the majority profile B(Mγ) of a profile B is not
unique.

Definition 2.2.24 (Majority Profile). For a profile B ∈ BΦ with γ-qualified
(or strict) majority set Mγ , we say that B(Mγ) ∈ BΦ is a γ-qualified (or
strict) majority profile of B, if B(Mγ) =

∑
ℓ∈Mγ∪ζ Bℓ for some complement-free

set ζ ⊆ {ℓ ∈ Φ | nB(ℓ) = γ}.

Note that we achieve ‘minimality’ of the majority profile B(Mγ) by defining
it as a sum of minimal ℓ-profiles, where ℓ ranges over those literals which should
receive majority support. The majority margins of B and B(Mγ) are related
as follows.

Fact 2.2.25. If B(Mγ) is a γ-qualified (or strict) majority profile of pro-
file B ∈ BΦ over some set ζ ⊆ {ℓ ∈ Φ | nB(ℓ) = γ}, then for ℓ ∈ Φ, we
have

nB(Mγ)(ℓ) =


2 if nB(ℓ) > γ or ℓ ∈ ζ;

−2 if nB(ℓ) < γ or ∼ℓ ∈ ζ;

0 else.

We can finally define our normative axioms formalizing the idea above, where
the first axiom only considers strict majority profiles and the second axiom
considers γ-qualified majority profiles for any γ ∈ N. To reiterate, the ax-
ioms require that if some profile B ∈ BΦ generates collective decision F(B,Γ),
then strengthening the majority opinion Mγ present in B by concatenating
the profile with a majority profile B(Mγ) (which expresses the same majority
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opinion Mγ as B and possibly breaks some ties in B) leads to a new col-
lective decision F(B +B(Mγ),Γ) which is a subset of the original collective
decision F(B,Γ). In other words, a judgment set J ⊆ Φ can only be a possible
collective judgment under the strengthened profile B+B(Mγ) if it already was
a possible collective judgment under the original profile B.3

Axiom 2.2.26 (Weak Majority Profile Consistency4). We call a liquid aggre-
gation rule F weakly majority profile consistent, if the following holds for any
pair (B,Γ) ∈ DF .

If M is the strict majority set of B and B(M) is any strict majority profile
of B, then F(B +B(M),Γ) ⊆ F(B,Γ), whenever (B +B(M),Γ) ∈ DF .

A stronger version of majority profile consistency does not only consider
strict majority profiles, but γ-qualified majority profiles for any γ ∈ N0, and is
defined as follows. Note that weak qualified majority profile consistency implies
weak majority profile consistency.

Axiom 2.2.27 (Weak Qualified Majority Profile Consistency). We call a liquid
aggregation rule F weakly qualified majority profile consistent, if the following
holds for any pair (B,Γ) ∈ DF and any γ ∈ N0.

If Mγ is the γ-qualified majority set of B and B(Mγ) is any γ-qua-
lified majority profile of B, then F(B + B(Mγ),Γ) ⊆ F(B,Γ), whenever
(B +B(Mγ),Γ) ∈ DF .

Our third axiom is related to Condorcet’s famous paradox. In the context of
ordinal voting, Condorcet [1785] showed that there are cases in which there is
no alternative that defeats every other alternative in a head-to-head contest. If
there is such an alternative however, the Condorcet principle states that we must
elect this alternative. If a rule always selects the ‘Condorcet winner’, we say that
the rule is Condorcet consistent. Condorcet consistency translates to judgment
aggregation by requiring that in case the strict majority set is consistent with
the integrity constraint, then this majority opinion should be respected by all
possible collective judgments.

Axiom 2.2.28 (Weak Condorcet Consistency). We call a liquid aggregation
rule F weakly Condorcet consistent, if for any pair (B,Γ) ∈ DF , we have M ⊆ J
for all J ∈ F(B,Γ), whenever the strict majority set M of B is consistent with Γ.

3In line with the definitions of Lamboray [2009b], we call all axioms in this section ‘weak’.
The strong version of each axiom (except Condorcet consistency) can be obtained by replacing
the relevant set-inclusion with an equality.

4Lamboray [2009b] uses an even weaker majority profile consistency axiom, which only
requires F(B + B(M),Γ) ⊆ F(B,Γ) in case the strict majority profile of B + B(M) is
inconsistent with Γ. We omit this extra condition in order to align the formulation of weak
majority profile consistency with weak qualified majority profile consistency. The two versions
of weak majority profile consistency are interchangeable in all theorems and proofs in this
thesis.
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For the forth axiom, we need the following auxiliary definition.

Definition 2.2.29 (E-Profile). Any profile BE ∈ BΦ such that nBE(ℓ) = 0 for
all literals ℓ ∈ Φ, is called an E-profile.

An E-profile (or ‘equilibrated profile’) is a profile which is collectively unde-
cided on every issue. The idea of (the strong version of) the following axiom
is that adding a set of collectively undecided voters to an existing profile does
not fundamentally change the aggregation problem. The axiom is related to
the idea that aggregation rules should only depend on the majority margins of
literals. In fact, Debord [1987] shows that an aggregation rule in ordinal pref-
erence aggregation only depends on pairwise majority margins if and only if it
is (strongly) E-invariant and anonymous. Our version of the axiom reads as
follows.

Axiom 2.2.30 (Weak E-Invariance). We call a liquid aggregation rule F weakly
E-invariant, if for any pair (B,Γ) ∈ DF and any E-profile BE, we have
F(B,Γ) ⊆ F(B +BE,Γ), whenever (B +BE,Γ) ∈ DF .

The fifth axiom is defined to relate the behavior of aggregation rules on
‘symmetric’ profiles (i.e., profiles which are the sum of two identical profiles) to
the behavior of their symmetric components. The normative idea behind (the
strong version strong of) the axiom is that cloning each voter should not change
the outcome of an aggregation rule. The axiom is defined as follows.

Axiom 2.2.31 (Weak Homogeneity5). We call a liquid aggregation rule F weak-
ly homogeneous, if for any pair (B,Γ) ∈ DF , we have F(B,Γ) ⊆ F(B +B,Γ),
whenever (B +B,Γ) ∈ DF .

Our last axiom concerns monotonicity: if the support for some literal in-
creases, this should not harm the literal in the outcome of an aggregation rule.
Formally, it states that if a possible collective decision J under profile B con-
tains some literal ℓ, then J should still be a possible collective decision when we
add a pair of voters to B who only agree on accepting ℓ.

Axiom 2.2.32 (Monotonic Consistency). We call a liquid aggregation rule F
monotonically consistent, if for any pair (B,Γ) ∈ DF , we have

{J ∈ F(B,Γ) | ℓ ∈ J} ⊆ F(B +Bℓ,Γ),

whenever (B +Bℓ,Γ) ∈ DF .

This concludes the collection of axioms necessary to characterize the ranked
agenda rule in liquid judgment aggregation, which we show in Section 3.3.

5Lamboray [2009b] uses an even weaker homogeneity axiom, which only relates B to B+B
for profiles B with an odd number of voters. His axiom is sufficient for the direct democracy
setting, but we need this stronger version in our characterization result in Section 3.3 to deal
with cyclic delegation. Also note that the term ‘(weak) homogeneity’ is sometimes used in
the literature to express that an aggregation rule is invariant to multiplying a profile by any
natural number (i.e., F(B,Γ) ⊆ F(k ·B,Γ) for any k ∈ N) instead of just doubling a profile
(i.e., F(B,Γ) ⊆ F(B +B,Γ)). For our purposes, we only need the latter, weaker notion.
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2.3 Three Impossibility Results
In Section 2.1, we described how the proxy profile can be used to translate liquid
aggregation problems to classical judgment aggregation problems. However, it
is important to note that rational liquid aggregation ballots (in the sense of
Definition 2.2.2) need not give rise to rational classical judgment aggregation
ballots, since the judgments of a voter’s delegates might be inconsistent with
the voter’s own judgments. It is generally assumed in classical judgment aggre-
gation that judgments of rational voters are individually consistent. Therefore,
possibility results in classical judgment aggregation that assume individual ra-
tionality, generally do not extend to the rational domain of liquid judgment
aggregation when we make use of proxy profiles.

In fact, Grandi and Endriss [2013] show that in the setting of direct democ-
racy, the only static rules that guarantee a consistent outcome under every
integrity constraint, are rules that copy the ballot of at least one voter for every
given profile (but this voter does not need to be the same voter for each profile).
Since proxy profiles of rational liquid profiles need not remain rational, we have
the following proposition, forbidding static, complete and consistent rules for
the acyclic rational domain.

Proposition 2.3.1. If n > 1 and m > 1, then no liquid aggregation rule on the
acyclic rational domain is static and collectively complete and consistent.

Proof. Suppose there exists such a rule F . Fix some i, j ∈ N and p, q ∈ Φ+ such
that i ̸= j and p ̸= q. Consider a profile B where

Bi(p) = +, Bi(q) = j,

Bj(p) = i, Bj(q) = +,

Bk(p) = i, Bk(q) = i

for all k ∈ N \ {i, j}. This profile is acyclic and rational for the integrity con-
straint Γ1 = p ∧ q. Therefore, by collective completeness and consistency on the
acyclic rational domain, we have {p, q} ⊆ J for any J ∈ F(B,Γ1). Simultane-
ously, the profile B is rational for the integrity constraint Γ2 = ¬(p ∧ q). There-
fore, by collective consistency on the acyclic rational domain, we have {p, q} ̸⊆ J
for any J ∈ F(B,Γ2). But by staticity, we also have F(B,Γ1) = F(B,Γ2),
which contradicts the above, since F(B,Γ1) and F(B,Γ2) are non-empty by
definition of a liquid aggregation rule.

Proposition 2.3.1 implies that if we want to design a liquid aggregation rule
that is collectively complete and consistent, and can (at least) be used in case
all voters are rational and do not delegate cyclically, then this aggregation
rule should explicitly depend on the integrity constraint. In other words, a
reasonable liquid aggregation mechanism that can be used for all possible (sat-
isfiable) integrity constraints, cannot behave identically for all those integrity
constraints. Examples of collectively complete and consistent rules in classical
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judgment aggregation which are not static, are Kemeny’s rule and the ranked
pairs rule (see Example 2.2.14 and Section 3.1).

Another famous result (due to List and Pettit [2002]) states that even if we
drop staticity, no reasonable rule guarantees a complete and consistent outcome
(where ‘reasonable’ is now understood to mean anonymous, neutral, unbiased
and independent). Since liquid aggregation is a generalization of classical binary
aggregation, this result generalizes to the following proposition. Its proof was
inspired by the presentation of the proof by Endriss [2016].

Proposition 2.3.2. If n > 1 and m > 2, then no liquid aggregation rule on
the direct rational domain is anonymous, neutral, unbiased, independent, and
collectively complete and consistent.

Proof. Assume that there is such a rule F . We will show that this leads to a
contradiction.

Suppose n = |N | is odd. Let p, q, r ∈ Φ+ be three different propositional let-
ters and consider the integrity constraint Γ = ((p ∧ q) → ¬r) ∧ (¬r → (p ∨ q)).
Let B ∈ BΦ

N be a rational profile in which all voters submit direct votes only,
and

• n−1
2 voters accept p, accept q and reject r;

• one voter accepts p, rejects q and accepts r;

• one voter rejects p, accepts q and accepts r;

• n−3
2 voters reject p, reject q and accept r.

Then exactly n+1
2 voters accept p, exactly n+1

2 voters accept q, and exactly n+1
2

voters accept r.
By anonymity and independence, the social decision (i.e., necessary accep-

tance, necessary rejection, or neither) on any individual propositional letter may
only depend on the number of voters accepting it (in case of a profile of direct
votes). Furthermore, by neutrality, if this number is the same for two different
propositional letters, the social decision on both propositional letters must be
the same.

We conclude that p, q and r must either all be necessarily accepted, or
all be necessarily rejected (in which case ¬p, ¬q and ¬r must be necessarily
accepted by collective completeness), or all be neither necessarily accepted nor
necessarily rejected (in which case ¬p, ¬q and ¬r must be neither necessarily
rejected nor necessarily accepted by collective completeness and consistency).
The first two cases contradict collective consistency, since these directly imply
that any possible collective decision is inconsistent with Γ.

But if p, q and r are all neither necessarily accepted nor necessarily rejected,
then independence (together with collective completeness and consistency) re-
quires that any complete and complement-free combination of p, q, r and their
negations are (subsets of) possible collective judgments (see Example 2.2.18). In
particular, {p, q, r} must be (a subset of) a possible collective judgment, which
contradicts collective consistency again.
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Suppose n = |N | is even. Let p, q ∈ Φ+ be two different propositional letters
and consider integrity constraint Γ = p ↔ ¬q. Let B ∈ BΦ

N be an individually
rational profile in which all voters submit direct votes only, and n

2 voters ac-
cept p and reject q, while the other n

2 voters reject p and accept q. By a similar
argument using anonymity, independence and unbiasedness (instead of neutral-
ity), we must collectively accept both p and q (or neither) in at least one possible
collective judgment, contradicting collective consistency (or completeness).

Proposition 2.3.2 is a standard result in the field of judgment aggregation
for resolute aggregation rules. However, there is (to the best of our knowledge)
no standard generalization of the axioms listed in the proposition to irresolute
aggregation rules. In particular, the axiom of independence does not generalize
to irresolute rules in an obvious way, as we discussed in Section 2.2.2. Therefore,
it should be noted that the validity of the result relies strongly on the exact
formulation of its axioms, and especially so for the axiom of independence.

Furthermore, the proof of Proposition 2.3.2 relies on the axiom of neutrality
and unbiasedness in a strong manner: if a profile treats two literals identically,
then the aggregation rule should treat them identically, regardless of their role
in the integrity constraint. If we instead consider contextual neutrality and
contextual unbiasedness, the proof does not directly go through. However, the
following corollary shows that language-independence can recover the impossi-
bility result.
Corollary 2.3.3. If n > 1 and m > 2, then no liquid aggregation rule on the di-
rect rational domain is language-independent, anonymous, contextually neutral,
contextually unbiased, independent, and collectively complete and consistent.
Proof. Consider the same case as in the proof of Proposition 2.3.2 for odd n. For
this particular (very ‘symmetric’) integrity constraint Γ, the conditions in the
axioms of neutrality and contextual neutrality become equivalent if we assume
language independence: since Γ is logically equivalent to Γ[p ↔ q], Γ[p ↔ r]
and Γ[q ↔ r],6 the judgment set F(B,Γ) must be equal to F(B,Γ[p ↔ q]),
F(B,Γ[p ↔ r]) and F(B,Γ[q ↔ r]) for any aggregation rule F by language
independence. Thus for any x, y ∈ {p, q, r}, the requirement of contextual
neutrality that

F(B,Γ[x ↔ y]) = {J [x ↔ y] | J ∈ F(B,Γ)}

is equivalent to the requirement of neutrality (in its alternative formulation, see
below Axiom 2.2.12) that

F(B,Γ) = {J [x ↔ y] | J ∈ F(B,Γ)}.

Therefore, we can use the same argument as in the proof of Proposition 2.3.2
to arrive at a contradiction.

For even n, we can also use the argument in the proof of Proposition 2.3.2,
since for this integrity constraint Γ, we have an equivalence between Γ and
Γ[p ↔ q].

6The equivalences are easier to see, when we rewrite Γ as (¬p ∨ ¬q ∨ ¬r) ∧ (p ∨ q ∨ r).
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We conclude from Corollary 2.3.3 that if we wish to design a liquid aggre-
gation mechanism that guarantees collective completeness and consistency, and
can (at least) be used in case voters are rational and do not delegate, then we
must drop or relax language independence, anonymity, contextual neutrality,
contextual unbiasedness or independence.
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Chapter 3

The Ranked Agenda Rule

In Chapter 2, we concluded that we must let go of some desirable properties
of aggregation rules if we hope to find a collectively complete and consistent
liquid aggregation rule. In this chapter, we study a liquid aggregation rule
which achieves collective completeness and consistency by violating staticity
and independence: the ranked agenda rule. The ranked agenda rule generalizes
the ranked pairs rule of Tideman [1987] to the judgment aggregation setting.

In Section 3.1, we define the ranked agenda rule as an algorithm and study its
main normative properties. In Section 3.2, we discuss an alternative, functional
definition of the rule. And in Section 3.3, we axiomatically characterize the rule.

3.1 The Original Definition
A normatively appealing method of aggregation is finding the collective deci-
sion that minimizes overall disagreement, based on the ballots submitted. Ke-
meny [1959] proposed such a rule for ordinal preference aggregation. Translated
to judgment aggregation, Kemeny’s rule (which we briefly discussed in Exam-
ple 2.2.14) selects the judgment set that maximizes the number of voters that
agree with the collective judgment on an issue, summed over all issues. Though
normatively appealing, Bartholdi et al. [1989] show that finding such optimal
sets in ordinal preference aggregation is NP-hard. Since ordinal preference ag-
gregation can be embedded into judgment aggregation (see, e.g., the work of
Endriss [2016]), the same holds for our context.

However, the ranked pairs rule proposed by Tideman [1987] can, in the case
of ordinal aggregation, serve as an efficient (i.e., polynomial time) approximation
of Kemeny’s rule [Brill and Fischer, 2012, Zavist and Tideman, 1989]. But the
ranked pairs rule also has normatively appealing properties in its own right,
some of which it does not share with Kemeny’s rule [Lamboray, 2009b, Parkes
and Xia, 2012, Tideman, 1987]. Applied to judgment aggregation, the ranked
agenda rule first finds a ranking of all agenda items based on the strength of the
majority supporting it: items which are accepted (or rejected) by most voters
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are prioritized over items on which accepting and rejecting voters are roughly
tied. Consequently, the rule accepts (or rejects; whichever the majority of voters
prefers) the items by that order, unless accepting (or rejecting) renders collective
judgment set inconsistent with the integrity constraint; in the latter case, the
item is rejected (or accepted).

Note that this method always yields a complete and consistent judgment
set. However, in ranking the literals in the agenda, some ties might have to be
broken in case the majorities for multiple different literals are of the same size. In
practice, ties are generally broken by a fixed tie-breaking order. Tideman [1987]
originally proposed considering all possible tie-breaking orders, and returning as
output the set of resulting judgment sets, but Zavist and Tideman [1989] show
that this rule does not satisfy ‘independence of clones’, the initial motivation
for designing the rule. Furthermore, Brill and Fischer [2012] show that this
irresolute version of the ranked pairs rule in ordinal aggregation is NP-complete.

A similar increase in complexity is present in the context of judgment aggre-
gation: the ranked agenda rule with a fixed tie-breaking order is ∆P

2 -complete
(i.e., PNP-complete), while the irresolute version is ΣP

2 -complete (i.e., NPNP-
complete) [Endriss and De Haan, 2015]. That is, when given access to a
constant-time SAT-solving oracle (which in reality runs in NP-time in the size
of the integrity constraint and the number of agenda items), the resolute ver-
sion can be computed in polynomial time, while the irresolute version cannot be
computed in polynomial time (unless P equals NP), but correct solutions can
be verified in polynomial time.

A straightforward generalization of the irresolute ranked pairs rule to liquid
democracy can be defined as follows.

Definition 3.1.1 (Ranked Agenda Rule). For any profile B ∈ BΦ, let ⪰B be
the binary relation on Φ where for ℓ1, ℓ2 ∈ Φ, we have ℓ1 ⪰B ℓ2 if and only
if nB(ℓ1) ≥ nB(ℓ2). Let LO(⪰B) be the set of linear orders on Φ that are com-
patible with ⪰B (i.e., the linear orders ⪰ where ℓ1 ⪰ ℓ2 implies ℓ1 ⪰B ℓ2). The
ranked agenda rule is the liquid aggregation rule ra generated by the following
process.

• Given profile B and integrity constraint Γ, initialize ra(B,Γ) = ∅.

• For each linear order ⪰ ∈ LO(⪰B), do the following.

– Initialize J = ∅.
– Iteratively, in the order ⪰, consider a literal ℓ ∈ Φ. If J ∪ {Γ} |= ∼ℓ,

add ∼ℓ to J . Otherwise, add ℓ to J .
– After considering all ℓ ∈ Φ, add J to ra(B,Γ).

We can view the different linear orders ⪰ ∈ LO(⪰B) as refinements of
⪰B, where we use different ‘tie-breaking orders’ τ to break the ties between
literals with equal support. Note that we define ⪰B and ⪰ ∈ LO(⪰B), and
therefore the tie-breaking orders τ , on all literals in Φ instead of just on the
propositional letters in Φ+. We do this for a number of reasons. Firstly, it
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makes the tie-breaking order more expressive: perhaps we would like to treat
positive and negative literals equally (thus placing them right after each other
in the tie-breaking order), or we would like to accept as many positive literals
as possible before accepting negative literals (thus placing all positive literals
before all negative literals), or we can define any other complex tie-breaking
order. Secondly, the tie-breaking order also resolves ties between a propositional
letter and its negation. Thus, the order in which a propositional letter and its
negation appear matters, even if they appear directly after each other. Finally,
it is a matter of convention: the original ranked pairs rule defines an order on
all ordered pairs of candidates, which generalizes to an order on all literals if we
embed ordinal aggregation in judgment aggregation in the standard way (see,
e.g., the work of Endriss [2016]).

The resolute version of the ranked agenda rule does not consider all possible
linear extensions of ⪰B, but uses a fixed tie-breaking order τ . It is defined as
follows.

Definition 3.1.2 (Ranked Agenda Rule with Tie-Breaking). Let tie-breaking
order τ be some linear order on Φ. For any profile B ∈ BΦ, let ⪰B,τ be the
binary relation on Φ where ℓ1 ⪰B,τ ℓ2 if and only if nB(ℓ1) > nB(ℓ2), or
nB(ℓ1) = nB(ℓ2) and (ℓ1, ℓ2) ∈ τ . The ranked agenda rule with tie-breaker τ is
the liquid aggregation rule raτ generated by the following process.

• Given profile B and integrity constraint Γ, initialize J = ∅.

• Iteratively, in the order ⪰B,τ , consider literal ℓ ∈ Φ. If J ∪ {Γ} |= ∼ℓ,
add ∼ℓ to J . Otherwise, add ℓ to J .

• After considering all ℓ ∈ Φ, return raτ (B,Γ) = {J}.

Note that the ranked agenda rule (with or without tie-breaking) has the
universal domain. Further note that since the irresolute ranked agenda rule ra
considers every possible tie-breaking order, any resolute version raτ is a refine-
ment of ra in the sense that raτ (B,Γ) ⊆ ra(B,Γ) for any profile B ∈ BΦ and
any integrity constraint Γ ∈ Lsat.

Before we characterize the ranked agenda rule by the axioms from Sec-
tion 2.2.3, we briefly discuss which classical normative axioms of Section 2.2.2
it satisfies and which it violates. Note that since both ra and raτ have the
universal domain, and ra will be characterized on the universal domain, we
evaluate its properties as an aggregation rule on the universal domain.

Clearly, ra is irresolute and raτ is resolute, neither are static, and both are
language-independent. Furthermore, since both rules consider all literals in the
agenda, and only reject them if they render the collective decision inconsistent
with the integrity constraint, both rules are collectively complete, complement-
free and consistent. And since the majority margin of a literal does not depend
on the order of the voters in a profile, both rules are anonymous.

Neither ra nor raτ are neutral (for m > 1) by the following counter-
example. Let p, q ∈ Φ+ be different propositional letters and let B ∈ BΦ
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be any profile such that Bi(p) = Bi(q) for all voters i ∈ NB. Then for integrity
constraint Γ = p ∧ ¬q ∈ Lsat, all possible collective decisions under ra and raτ

contain p and none contain q. This violates neutrality.
The rule raτ also violates contextual neutrality, since for the same pro-

file B and integrity constraint Γ = p ↔ ¬q ∈ Lsat, a tie will have to be broken
between accepting p and accepting q. Since Γ is equivalent to Γ[p ↔ q], contex-
tual neutrality (together with resoluteness and language independence) requires
that raτ (B,Γ) accepts p if and only if it accepts q, which violates collective
consistency.

However, ra is contextually neutral, since whenever the ranked agenda rule
under integrity constraint Γ generates possible collective decision J for tie-
breaker τ , it generates possible collective decision J [p ↔ q] under integrity
constraint Γ[p ↔ q] for tie-breaker τ ′, where τ ′ is a version of τ in which p and
q (and ¬p and ¬q) switch positions.

Analogously, ra and raτ are not unbiased, since under the integrity con-
straint Γ = p ∈ Lsat, they will never reject p. Moreover, raτ is not contextually
unbiased, since for a profile B ∈ BΦ where nB(p) = nB(¬p), the rule raτ

will have to break the tie between p and ¬p. And ra is contextually unbiased,
since for each tie-breaker τ , there is a tie-breaker τ ′ in which p and ¬p switched
positions.

Finally, neither ra nor raτ are independent (for m > 1) by the following
counter-example. Let p, q ∈ Φ+ be different propositional letters and assume
without loss of generality that τ lists q before p. Consider the integrity con-
straint Γ = ¬(p ∧ q) ∈ Lsat and the two profiles B,B′ ∈ BΦ

N , where for all
voters i ∈ N ,

Bi(p) = +, Bi(q) = −,

B′
i(p) = +, B′

i(q) = +.

Then we have Bi(p) = B′
i(p) for all voters i ∈ N , but ra as well as raτ

(necessarily) accept p under profile B, while they (possibly) reject p under B′.
This violates independence.

For future reference, we summarize the classical normative properties of the
ranked agenda rule in the following proposition. Note that in light of Proposi-
tion 2.3.1 and Corollary 2.3.3, the ranked agenda rule violates staticity and in-
dependence in order to satisfy collective completeness and consistency, language
independence, anonymity, contextual neutrality and contextual unbiasedness.

Proposition 3.1.3. The ranked agenda rule on the universal domain is lan-
guage-independent, collectively complete, complement-free and consistent, ano-
nymous, contextually neutral, and contextually unbiased. It is not resolute,
static, neutral, unbiased, or independent.

The ranked agenda rule with tie-breaking on the universal domain is reso-
lute, language-independent, collectively complete, complement-free and consis-
tent, and anonymous. It is not static, neutral, contextually neutral, unbiased,
contextually unbiased, or independent.
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3.2 Ranked Agenda as a Prudent Rule
The ranked agenda rule can also be defined in an alternative way: it selects
exactly those judgment sets, which are maximal with respect to some binary
relation (the ‘DiscriMin’ relation ⪰B

disc) that is naturally defined using majority
margins. The approach was developed by Lamboray [2009b] in the context
of ordinal preference aggregation, and is inspired by an axiom of Arrow and
Raynaud [1986], which calls a collective linear order prudent if it maximizes the
minimal majority margin of all pairwise orderings it accepts (which is a negative
number, unless the strict majority set is consistent). In other words, a collective
linear order which ranks candidate a above candidate b, even though a majority
of voters ranks b above a, can only be prudent if every other collective linear
order ranks some candidate a′ above some candidate b′, against which there is
an even larger majority. The ranked pairs rule is an example of a prudent rule.

Although multiple prudent rules have been defined (e.g., by Köhler [1978],
Tideman [1987] and Lamboray [2007]), Lamboray [2009a] was the first to ax-
iomatically characterize the prudent rule which selects all prudent linear orders.
Consequently, Lamboray [2009b] showed that the ranked pairs rule is a refine-
ment of the prudent rule,1 which can be characterized by the same axioms as
the prudent rule, supplemented by a monotonicity constraint. In this section,
we will generalize the prudent rule and the alternative definition of the ranked
pairs rule to liquid judgment aggregation, in preparation of their axiomatic
characterizations in Section 3.3.

Analogously to the prudent rule in ordinal preference aggregation, the pru-
dent rule for liquid judgment aggregation selects those complete and consistent
judgment sets, which maximize the minimal support for any accepted literal.
Formally, it is defined as follows.

Definition 3.2.1 (Prudent Rule). For any profile B ∈ BΦ and integrity con-
straint Γ ∈ Lsat, let ⪰B

min be the binary relation on J (Γ) defined by

J ⪰B
min J ′ if and only if min

ℓ∈J
nB(ℓ) ≥ min

ℓ∈J ′
nB(ℓ)

for J, J ′ ∈ J (Γ). The prudent rule is the liquid aggregation rule pr which maps
any profile B ∈ BΦ and integrity constraint Γ ∈ Lsat to

pr(B,Γ) = {J ∈ J (Γ) | ∀J ′ ∈ J (Γ) : J ⪰B
min J ′}.

Note that for a given profile B ∈ BΦ and integrity constraint Γ ∈ Lsat,
each complete and Γ-consistent judgment set J ∈ J (Γ) is associated with some
fixed value minℓ∈J nB(ℓ) ∈ N. The prudent rule selects exactly those judgment
sets J ∈ J (Γ) for which this value is maximal. Since a finite set of natural

1A well-known further refinement of the ranked pairs rule is the leximax rule, which selects
the linear orders which lexicographically maximize agreement with the majority judgment
[Everaere et al., 2014, Nehring and Pivato, 2019]. Interestingly, [Endriss et al., 2020] show
that the leximax rule belongs to the same complexity class as the ranked agenda rule with
tie-breaking, even though it is not resolute.
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numbers always has a maximal element, the set of ⪰B
min-maximal judgment sets

is always non-empty, and thus a valid output for a liquid aggregation rule.
The definition of the prudent rule is not algorithmic, but functional, in the

sense that it gives us no explicit method to compute its outcome, but selects
exactly those judgment sets which have some mathematical property. By ad-
justing the binary relation on J (Γ) over which we maximize, we can similarly
define the ranked agenda rule functionally. We do so as follows.

Definition 3.2.2 (Functional Ranked Agenda Rule). For any profile B ∈ BΦ

and integrity constraint Γ ∈ Lsat, let ⪰B
disc be the binary relation on J (Γ)

defined by

J ⪰B
disc J ′ if and only if min

ℓ∈J\J ′
nB(ℓ) ≥ min

ℓ∈J ′\J
nB(ℓ)

for J, J ′ ∈ J (Γ), where the minimum over the empty set is defined to equal ∞.
The functional ranked agenda rule is the liquid aggregation rule raf which maps
any profile B ∈ BΦ and integrity constraint Γ ∈ Lsat to

raf(B,Γ) = {J ∈ J (Γ) | ∀J ′ ∈ J (Γ) : J ⪰B
disc J ′}.

To clarify the difference between the prudent rule and the functional ranked
agenda rule, we compare their underlying relations ⪰B

min and ⪰B
disc. The rela-

tion ⪰B
min of the prudent rule ranks a judgment set J ∈ J (Γ) above another

judgment set J ′ ∈ J (Γ) if and only if the minimal support over all literals ℓ ∈ J
is larger than the minimal support over all literals ℓ′ ∈ J ′. On the other hand,
the relation ⪰B

disc of the functional ranked agenda rule ranks J above J ′ if and
only if the minimal support over the literals ℓ ∈ J \J ′ on which J differs with J ′

is larger than the minimal support over the literals ℓ′ ∈ J ′ \J on which J differs
with J ′. This also explains why the functional ranked agenda rule is a refine-
ment of the ranked agenda rule: if J and J ′ are tied according to ⪰B

min because
of some literal ℓ ∈ J ∩ J ′ which they share, then ⪰B

disc might break that tie by
removing ℓ from consideration. But whenever J and J ′ are tied according to
⪰B

disc, they are also tied according to ⪰B
min. Thus, raf(B,Γ) is always a subset

of pr(B,Γ).
It is not directly clear that the set of ⪰B

disc-maximal judgment sets is always
non-empty (and thus a valid output for a liquid aggregation rule), since ⪰B

disc
need not be transitive (as Lamboray [2009b, pp. 133–134] shows). However,
the asymmetric part ≻B

disc of ⪰B
disc is transitive by the following (simple, but

tedious) argument.

Proof (transitivity of ≻B
disc). Let J, J ′, J ′′ ∈ J (Γ). Choose a literal from J \ J ′

which achieves the minimum minℓ∈J\J′ nB(ℓ), and call it ℓJJ ′ . Similarly, choose
literals ℓJ

′

J , ℓJJ ′′ , etc. Suppose that J ≻B
disc J ′ and J ′ ≻B

disc J ′′. In other words,

nB(ℓJJ ′) > nB(ℓJ
′

J ) (1)

and
nB(ℓJ

′

J ′′) > nB(ℓJ
′′

J ′ ). (2)
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Then to prove transitivity, we must show that we have J ≻B
disc J ′′, i.e., that

nB(ℓJJ ′′) > nB(ℓJ
′′

J ). We do so by deriving a contradiction from the opposite
assumption,

nB(ℓJ
′′

J ) ≥ nB(ℓJJ ′′). (3)
Suppose we further have that ℓJJ ′′ ∈ J ′. Since ℓJJ ′′ /∈ J ′′, this implies that

nB(ℓJJ ′′) ≥ min
ℓ∈J ′\J ′′

nB(ℓ) =: nB(ℓJ
′

J ′′). (4)

Therefore, we have

min
ℓ∈J ′′\J

nB(ℓ) =: nB(ℓJ
′′

J ) ≥
(3)

nB(ℓJJ ′′) ≥
(4)

nB(ℓJ
′

J ′′) >
(2)

nB(ℓJ
′′

J ′ ).

But minℓ∈J ′′\J nB(ℓ) > nB(ℓJ
′′

J ′ ) together with ℓJ
′′

J ′ ∈ J ′′ implies that ℓJ
′′

J ′ ∈ J .
Since ℓJ

′′

J ′ /∈ J ′, this implies

nB(ℓJ
′′

J ′ ) ≥ min
ℓ∈J\J ′

nB(ℓ) =: nB(ℓJJ ′). (5)

Therefore, we have

min
ℓ∈J ′\J ′′

nB(ℓ) =: nB(ℓJ
′

J ′′) >
(2)

nB(ℓJ
′′

J ′ ) ≥
(5)

nB(ℓJJ ′) >
(1)

nB(ℓJ
′

J ).

But minℓ∈J ′\J ′′ nB(ℓ) > nB(ℓJ
′

J ) together with ℓJ
′

J ∈ J ′ implies that ℓJ
′

J ∈ J ′′.
Since ℓJ

′

J /∈ J , this implies

nB(ℓJ
′

J ) ≥ min
ℓ∈J ′′\J

nB(ℓ) =: nB(ℓJ
′′

J ). (6)

Therefore, we have

nB(ℓJ
′

J ) ≥
(6)

nB(ℓJ
′′

J ) ≥
(3)

nB(ℓJJ ′′) ≥
(4)

nB(ℓJ
′

J ′′)

>
(2)

nB(ℓJ
′′

J ′ ) ≥
(5)

nB(ℓJJ ′) >
(1)

nB(ℓJ
′

J ).

But nB(ℓJ
′

J ) > nB(ℓJ
′

J ) is a contradiction. We conclude that ℓJJ ′′ /∈ J ′. Since we
also have ℓJJ ′′ ∈ J , this means that

nB(ℓJJ ′′) ≥ min
ℓ∈J\J ′

nB(ℓ) =: nB(ℓJJ ′).

By analogous arguments, we can derive the inequalities nB(ℓJ
′

J ) ≥ nB(ℓJ
′

J ′′)

and nB(ℓJ
′′

J ′ ) ≥ nB(ℓJ
′′

J ). Therefore, we have

nB(ℓJJ ′′) ≥ nB(ℓJJ ′) >
(1)

nB(ℓJ
′

J ) ≥ nB(ℓJ
′

J ′′)

>
(2)

nB(ℓJ
′′

J ′ ) ≥ nB(ℓJ
′′

J ) ≥
(3)

nB(ℓJJ ′′).

Thus, we have arrived at nB(ℓJJ ′′) > nB(ℓJJ ′′), our final contradiction.
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We have shown that ≻B
disc is transitive. Since ⪰B

disc is also complete, the set
of ⪰B

disc-maximal judgment sets is always non-empty, and thus a valid output
of the liquid aggregation rule raf. What remains to be shown, is that the func-
tional definition of the ranked agenda rule is indeed equivalent to its algorithmic
definition.

To do so, let J⪰BK∼ = {E1, . . . , Ek} denote the set of equivalence classes (in
decreasing order) under the majority relation ⪰B of B ∈ BΦ on Φ, as defined
in Definition 3.1.1 of the algorithmic ranked agenda rule. That is, equiva-
lence class E1 ∈ J⪰BK∼ contains the literals which receive the largest support
in B, equivalence class E2 ∈ J⪰BK∼ contains the literals which receive the next
largest support, etc. The algorithmic ranked agenda rule can then be seen
as an algorithm which nondeterministically breaks ties between all elements of
E1 ∈ J⪰BK∼, then breaks ties between all elements of E2 ∈ J⪰BK∼, etc. For
any judgment set J ⊆ Φ and i ∈ {1, . . . , k}, let Ei(J) = (E1 ∪ · · · ∪ Ei) ∩ J
denote the set of literals in J which the ranked agenda rule considers before or
at stage i. Using this notation, the following lemma states that the algorithmic
ranked agenda rule accepts as many elements as possible of any Ei ∈ J⪰BK∼,
before moving on to Ei+1 ∈ J⪰BK∼.

Lemma 3.2.3. Let B ∈ BΦ and Γ ∈ Lsat. For any judgment set J ⊆ Φ, we
have J ∈ ra(B,Γ) if and only if J is consistent with Γ and Ei(J) ∪ {ℓ} is
inconsistent with Γ for all ℓ ∈ Ei \ J and all Ei ∈ J⪰BK∼.

Proof. Suppose J ∈ ra(B,Γ), and assume that there are Ei ∈ J⪰BK∼ and
ℓ ∈ Ei \ J such that Ei(J) ∪ {ℓ} is consistent with Γ. Let ⪰ ∈ LO(⪰B) be the
linear order witnessing that J ∈ ra(B,Γ). When the ranked agenda algorithm
arrives at the ⪰-largest literal of Ei, it has already selected Ei−1(J). It then
continues to select literals of Ei in ⪰-order. When it arrives at ℓ, it has selected
a subset of Ei(J) (which by assumption remains consistent with Γ if we add ℓ)
and thus it accepts ℓ. But then ℓ ∈ J , which contradicts our assumption that
ℓ ∈ Ei\J . We conclude that Ei(J)∪{ℓ} is inconsistent with Γ for all Ei ∈ J⪰BK∼
and all ℓ ∈ Ei \J . Furthermore, since the ranked agenda algorithm only accepts
literals if it does not render the judgment set inconsistent with Γ, judgment
set J is consistent with Γ.

Contrariwise, suppose J ⊆ Φ is consistent with Γ, and Ei(J) ∪ {ℓ} is incon-
sistent with Γ for all Ei ∈ J⪰BK∼ and all ℓ ∈ Ei \ J . Let ⪰ be a linear order
on Φ which ranks all literals in Ei ∈ J⪰BK∼ before all literals in Ej ∈ J⪰BK∼
whenever i < j (in other words, ⪰ ∈ LO(⪰B)), and within each Ei ∈ J⪰BK∼,
it ranks all literals in Ei ∩ J before all literals in Ei \ J . Then ⪰ witnesses that
J ∈ ra(B,Γ), since within every Ei ∈ J⪰BK∼ (in index-increasing order), the
ranked agenda algorithm first accepts all literals in Ei ∩ J (which is allowed
since the literals accepted so far form a subset of Ei(J) ⊆ J , and J is consistent
with Γ) and then rejects all literals in Ei \J (since it has already selected Ei(J)
and Ei(J) ∪ {ℓ} is inconsistent with Γ for all ℓ ∈ Ei \ J).

Finally, the following proposition shows that the algorithmic definition and
the functional definition of the ranked agenda rule are equivalent.
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Proposition 3.2.4. For any profile B ∈ BΦ and integrity constraint Γ ∈ Lsat,
we have

ra(B,Γ) = raf(B,Γ).

Proof. Fix some profile B ∈ BΦ and integrity constraint Γ ∈ Lsat.
Let J ∈ ra(B,Γ) and suppose J /∈ raf(B,Γ). Then there must be some

J ′ ∈ J (Γ) such that J ′ ≻B
disc J , i.e., such that

min
ℓ∈J ′\J

nB(ℓ) > min
ℓ∈J\J ′

nB(ℓ).

Since J and J ′ are maximally Γ-consistent and therefore complete, we have
ℓ ∈ J \ J ′ if and only if ∼ℓ ∈ J ′ \ J for any ℓ ∈ Φ. And since nB(ℓ) = −nB(∼ℓ)
for any ℓ ∈ Φ, we thus have

max
ℓ∈J ′\J

nB(ℓ) = max
∼ℓ∈J\J′

nB(ℓ) = max
ℓ∈J\J′

−nB(ℓ) = − min
ℓ∈J\J ′

nB(ℓ).

With the analogous equality for maxℓ∈J\J ′ nB(ℓ), we obtain

max
ℓ∈J ′\J

nB(ℓ) > max
ℓ∈J\J ′

nB(ℓ).

Let ℓ′ ∈ J ′ \ J be a witness of the last inequality, and let Ei ∈ J⪰BK∼ be
its equivalence class (i.e., Ei is the equivalence class with the smallest index
on which J and J ′ differ). We must then have Ei(J) ⊆ Ei(J

′). And since
ℓ′ ∈ Ei ∩ J ′ ⊆ Ei(J

′), we have Ei(J) ∪ {ℓ′} ⊆ Ei(J
′). But Ei(J

′) ⊆ J ′ is
consistent with Γ and thus Ei(J) ∪ {ℓ′} is consistent with Γ. By Lemma 3.2.3,
we thus have J /∈ ra(B,Γ), which contradicts our assumptions. This proves
that ra(B,Γ) ⊆ raf(B,Γ).

Contrariwise, let J ∈ raf(B,Γ). Then J is consistent with Γ by definition
of the rule raf. Suppose that J /∈ ra(B,Γ). Then by Lemma 3.2.3, there are
Ei ∈ J⪰BK∼ and ℓ′ ∈ Ei \ J such that Ei(J)∪ {ℓ′} is consistent with Γ. Let ⪰′

be a linear order on Φ which ranks all literals in Ei ∈ J⪰BK∼ before all literals
in Ej ∈ J⪰BK∼ whenever i < j, and within each Ei ∈ J⪰BK∼, ranks all literals
in Ei ∩ J before all literals in Ei \ J , placing ℓ′ directly after Ei ∩ J . Then
⪰′ ∈ LO(⪰B) and thus the ranked agenda algorithm applied to it, generates
some Γ-consistent J ′ ⊆ Φ such that Ei(J) ∪ {ℓ′} ⊆ Ei(J

′) (i.e., the algorithm
adds exactly those literals to J ′ which are also in J , until it reaches ℓ′, which
it adds to J ′ even though ℓ′ /∈ J , and then continues considering literals from
equivalence classes Ej for j ≥ i). But then ℓ′ ∈ J ′ \ J , and all literals which
are in J but are not added to J ′ (i.e., the literals in J \ J ′) are in equivalence
classes Ej with j > i. Thus, ℓ′ ∈ J ′ \ J has a strictly larger majority margin
than any literal in J \ J ′. In other words, we have

max
ℓ∈J ′\J

nB(ℓ) = nB(ℓ′) > max
ℓ∈J\J ′

nB(ℓ).

But since J and J ′ are maximally Γ-consistent and therefore complete, we
have ℓ ∈ J \ J ′ if and only if ∼ℓ ∈ J ′ \ J for any ℓ ∈ Φ. Therefore, since
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nB(ℓ) = −nB(∼ℓ) for any ℓ ∈ Φ, we have

min
ℓ∈J ′\J

nB(ℓ) = − max
∼ℓ∈J\J ′

nB(∼ℓ) > − max
∼ℓ∈J ′\J

nB(∼ℓ) = min
ℓ∈J\J ′

nB(ℓ)

and thus J ′ ≻B
disc J . We conclude that J /∈ raf(B,Γ), contradicting to our

assumptions. This proves that raf(B,Γ) ⊆ ra(B,Γ).

3.3 A Prudent Characterization
The functional definition of the ranked agenda rule allows us to axiomatically
characterize it as a refinement of the prudent rule. In this section, we gener-
alize the characterization results of the prudent rule and the ranked pairs rule
by Lamboray [2009a,b] from ordinal preference aggregation in direct democ-
racy to judgment aggregation in liquid democracy. The proofs by Lamboray
[2009a,b] rely mostly on the maximality of possible collective decisions under
relations ⪰B

min and ⪰B
disc, and on the analogues of Lemma 3.2.3 and Proposi-

tion 3.2.4, and rarely use properties of aggregation rules or judgment sets that
are unique to the ordinal preference aggregation setting. Therefore, our proofs
stay very close to the original proofs for the restricted setting.

The following proposition lists the axiomatic properties of the prudent rule,
as defined in Section 2.2.3.

Proposition 3.3.1. The prudent rule on the universal domain is collectively
complete and consistent, weakly majority profile consistent, weakly Condorcet
consistent, weakly E-invariant, and weakly homogeneous.

Proof. Fix some profile B ∈ BΦ and integrity constraint Γ ∈ Lsat.
Collective completeness and consistency are immediate from the definition

of the prudent rule.
For weak majority profile consistency, let M be the strict majority set

of B and let B(M) be a strict majority profile of B. By definition of the
prudent rule, there are fixed values NB ∈ N and NB+B(M) ∈ N such that
for J ∈ J (Γ), we have J ∈ pr(B,Γ) if and only if minℓ∈J nB+B(M)(ℓ) = NB,
and J ∈ pr(B +B(M),Γ) if and only if minℓ∈J nB(ℓ) = NB+B(M). More-
over, for all complete and Γ-consistent judgment sets J ∈ J (Γ), we have that
minℓ∈J nB(ℓ) ≤ NB and minℓ∈J nB+B(M)(ℓ) ≤ NB+B(M).

We make a case distinction.

• Suppose NB > 0. Then pr(B,Γ) only accepts literals ℓ ∈ Φ which enjoy
strict majority support. But this implies that all ∼ℓ for ℓ ∈ M are rejected.
Since any J ∈ pr(B,Γ) is complete, we must thus have pr(B,Γ) = {M}.
But then M must be a complete judgment set and thus there are no
literals with a majority margin of exactly 0. Thus Fact 2.2.25 implies that
the literals which receive majority support in B, receive even stronger
support in B +B(M), and the literals which do not receive majority

41



support in B, receive even weaker support in B +B(M). Therefore, by
the same argument as for pr(B,Γ), we have pr(B +B(M),Γ) = {M}.
We conclude that pr(B +B(M),Γ) ⊆ pr(B,Γ).

• Suppose NB ≤ 0. Let J∗ ∈ pr(B,Γ). Then for all literals ℓ ∈ J∗, we
have nB(ℓ) ≥ NB. By Fact 2.2.25, any literal ℓ ∈ Φ with nB(ℓ) ≥ NB

has nB+B(M)(ℓ) ≥ NB − 2. Therefore, minℓ∈J∗ nB+B(M)(ℓ) ≥ NB − 2.

Let J ∈ pr(B + B(M),Γ). Then J ⪰B+B(M)
min J∗ by definition of the

prudent rule. Thus, we have minℓ∈J nB+B(M)(ℓ) ≥ NB − 2. But by
Fact 2.2.25, any literal ℓ ∈ Φ with (negative) majority margin nB(ℓ) < NB

has nB+B(M)(ℓ) < NB − 2. Therefore, minℓ∈J nB(ℓ) ≥ NB. Thus, we
have minℓ∈J nB(ℓ) = NB and therefore J ∈ pr(B,Γ).
We conclude that pr(B +B(M),Γ) ⊆ pr(B,Γ).

For weak Condorcet consistency, let M be the strict majority set of B and
suppose M is consistent with Γ. Then for any ℓ ∈ M , we have nB(ℓ) > 0 and
thus nB(∼ℓ) < 0. And for any ℓ′ ∈ Φ with ℓ′ /∈ M and ∼ℓ′ /∈ M , we have
nB(ℓ′) ≤ 0 and nB(∼ℓ′) ≤ 0, and therefore nB(ℓ′) = nB(∼ℓ′) = 0. Thus, since
M is consistent with Γ, there exists some complete and Γ-consistent judgment
set J∗ ∈ J (Γ) such that M ⊆ J∗ and minℓ∈J∗ nB(ℓ) ≥ 0.

But then for any J ∈ pr(B,Γ), we have that J ⪰B
min J∗ and therefore

minℓ∈J nB(ℓ) ≥ 0. Since J is complete and all ℓ ∈ M have nB(∼ℓ) < 0, we
conclude that M ⊆ J .

For weak E-invariance, let BE be an E-profile. Then clearly, we have
minℓ∈J nB(ℓ) = minℓ∈J nB+BE(ℓ) for all J ∈ J (Γ). Therefore, if J ∈ pr(B,Γ),
then J ∈ pr(B +BE,Γ).

For weak homogeneity, note that nB+B(ℓ) = 2 · nB(ℓ) for all literals ℓ ∈ Φ.
Therefore, minℓ∈J nB+B(ℓ) = 2 · minℓ∈J nB(ℓ) for all J ∈ J (B). Thus, any
⪰B

min-maximal judgment set J ∈ J (Γ) is also a ⪰B+B
min -maximal judgment set.

Therefore, pr(B,Γ) ⊆ pr(B +B,Γ).

We see that the prudent rule in the liquid aggregation setting satisfies the
same properties as the prudent rule in the direct ordinal aggregation setting
(see Corollary 16 by Lamboray [2009a]). In fact, the following theorem shows
that the prudent rule is the largest liquid aggregation rule that satisfies these
properties, in the sense that any other rule F which satisfies these properties, is
a refinement of the prudent rule, i.e., F(B,Γ) ⊆ pr(B,Γ) for all profiles B ∈ BΦ

and integrity constraints Γ ∈ Lsat.

Theorem 3.3.2. The prudent rule is the ⊆-largest liquid aggregation rule on the
universal domain that is collectively complete and consistent, weakly majority
profile consistent, weakly Condorcet consistent, weakly E-invariant, and weakly
homogeneous.

Proof. By Proposition 3.3.1, the prudent rule satisfies all the properties in
the theorem. What remains to be shown is that for any liquid aggregation
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rule F on the universal domain that satisfies these properties, we have that
F(B,Γ) ⊆ pr(B,Γ) for all B ∈ BΦ and Γ ∈ Lsat. Let F be such a rule and fix
a profile B ∈ BΦ and integrity constraint Γ ∈ Lsat.

Let B′ = B + B. By weak homogeneity, we have F(B,Γ) ⊆ F(B′,Γ).
Furthermore, since nB′(ℓ) = 2 · nB(ℓ) for all literals ℓ ∈ Φ, any complete and
Γ-consistent judgment set that is ⪰B′

min-maximal, is also ⪰B
min-maximal. Thus,

pr(B′,Γ) ⊆ pr(B,Γ). Therefore, if we can show that F(B′,Γ) ⊆ pr(B′,Γ),
we obtain

F(B,Γ) ⊆ F(B′,Γ) ⊆ pr(B′,Γ) ⊆ pr(B,Γ)

and we are done.
Suppose NB′ ≥ 0 (with NB′ as defined in the proof of Proposition 3.3.1).

Then any J ∈ pr(B′,Γ) contains the strict majority set M ′ of B′ (since other-
wise, by completeness, J must contain a literal ℓ with nB′(ℓ) < 0, and NB′ < 0).
Therefore, M ′ is consistent with Γ and thus by weak Condorcet consistency,
M ′ ⊆ J for each J ∈ F(B′,Γ). But for any complete and Γ-consistent judg-
ment set J ∈ J (Γ) which contains M ′, we have J ∈ pr(B′,Γ) (since either
NB′ > 0 and M ′ itself is a complete and Γ-consistent judgment set, which is
therefore the only collective decision accepted by pr(B′,Γ); or NB′ = 0 and
all complete and Γ-consistent extensions J of M ′ have minℓ∈J nB(ℓ) = 0, so
J ∈ pr(B′,Γ)). Therefore, by collective completeness and consistency, we have
F(B′,Γ) ⊆ pr(B′,Γ), which completes the proof in case NB′ ≥ 0.

For the remainder of the proof, suppose NB′ < 0. We will show that
F(B′,Γ) ⊆ pr(B′,Γ) by constructing a chain of profiles B0, . . . ,Bk together
with corresponding strict majority profiles B0(M0), . . . ,Bk−1(Mk−1) (where
M i is the strict majority set of Bi) such that Bi+1 = Bi+Bi(M i) for 0 ≤ i < k,
and F(B′,Γ) ⊆ F(Bk,Γ) and F(B0,Γ) ⊆ pr(B′,Γ). Therefore, by weak ma-
jority profile consistency, we get the desired inclusion

F(B′,Γ) ⊆ F(Bk,Γ) ⊆ · · · ⊆ F(B0,Γ) ⊆ pr(B′,Γ).

Note that since B′ = B +B, the majority margin in B′ of any literal must
be even. Therefore, NB′ is even. Let k = − 1

2 · NB′ and consider the sets of
literals with equal majority support,2

Λ1 = {ℓ ∈ Φ | nB′(ℓ) = 2},
Λ2 = {ℓ ∈ Φ | nB′(ℓ) = 4},
...
Λk = {ℓ ∈ Φ | nB′(ℓ) = −NB′}.

Define the profile B0 as

B0 = B′ + k ·
∑

ℓ∈M ′
2k

B∼ℓ +

k∑
i=1

(
i ·
∑
ℓ∈Λi

B∼ℓ

)
,

2Note that these sets are some of the equivalence classes Ei ∈ J⪰B′K∼ as defined in
Section 3.2, but with different indices.
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where M ′
2k is the 2k-qualified majority set of B′. In other words, B0 is con-

structed from B′ by adding k pairs of voters who only agree on rejecting ℓ for
each literal ℓ ∈ Φ that enjoys a majority margin strictly greater than 2k (and
is thus necessarily accepted by pr(B′,Γ)), and adding i pairs of voters who
only agree on rejecting ℓ for each literal ℓ ∈ Φ that enjoys a majority margin of
exactly 2i for 1 ≤ i ≤ k. Thus, the majority margins of B′ and B0 are related
as

nB0(ℓ) =


nB′(ℓ)− 2k if nB′(ℓ) > 2k;

nB′(ℓ) + 2k if nB′(ℓ) < 2k;

0 else.

And therefore, the strict majority set M0 of B0 equals the 2k-qualified majority
set M ′

2k of B′.
But all literals in M ′

2k are necessarily accepted by pr(B′,Γ) (since by defini-
tion of NB′ = −2k, all literals ℓ ∈ Φ with nB′(ℓ) < −2k are necessarily rejected
by pr(B′,Γ)), and thus the set M0 = M ′

2k is consistent with Γ. Therefore, by
weak Condorcet consistency, we have M0 ⊆ J for all J ∈ F(B0,Γ), and by
collective completeness and consistency, J ∈ J (Γ) for all J ∈ F(B0,Γ). Since
pr(B′,Γ) contains exactly those complete and Γ-consistent judgment sets which
extend M ′

2k (because otherwise NB′ > −2k by some ⪰B′

min-maximal judgment
set J ∈ J (Γ) with minℓ∈J nB′(ℓ) > −2k), we obtain F(B0,Γ) ⊆ pr(B′,Γ).

We now construct the profile Bi+1 for 0 ≤ i < k recursively from Bi by
defining a strict majority profile Bi(M i) of Bi and setting Bi+1 = Bi+Bi(M i).
The profile Bi(M i) is defined as

Bi(M i) =
∑

ℓ∈Mi∪Λk−i

Bℓ.

In other words, Bi(M i) contains a pair of voters which only agree on accepting
ℓ for each ℓ which receives strict majority support in Bi and for each ℓ which
enjoys a majority margin of 2(k− i) in B′. Since we define Bi(M i) recursively,
B0(M0) contains minimal ℓ-profiles for all ℓ ∈ Λk, B1(M1) contains minimal
ℓ-profiles for all ℓ ∈ Λk−1, etc.

Note that we have M i+1 = M i ∪ Λk−i for 0 ≤ i < k. Thus, starting
from profile B0 where M0 contains those literals ℓ ∈ Φ with nB′(ℓ) > 2k and
nB0(ℓ′) = 0 for all ℓ′ ∈

⋃k
i=1 Λi, we generate strict majority support in B1

for the literals ℓ′ ∈ Λk, then generate strict majority support in B2 for the
literals ℓ′ ∈ Λk−1, etc. This implies that all ℓ′ ∈ Λk−i have nBi(ℓ′) = 0, while
all ℓ ∈ Λj for j > k − i have ℓ ∈ M i. Thus, Bi(M i) is indeed a strict majority
profile of Bi.
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It only remains to be shown that F(B′,Γ) ⊆ F(Bk,Γ). Note that Bk has
been recursively constructed as

Bk = B0 +B0(M0) +B1(M1) + · · ·+Bk(Mk)

=

B′ + k ·

 ∑
ℓ∈M ′

2k

B∼ℓ

+ 1 ·

(∑
ℓ∈Λ1

B∼ℓ

)
+ · · ·+ k ·

(∑
ℓ∈Λk

B∼ℓ

)
+

 ∑
ℓ∈M0∪Λk

Bℓ

+

 ∑
ℓ∈M0∪Λk∪Λk−1

Bℓ

+ · · ·+

 ∑
ℓ∈M0∪Λk∪···∪Λ1

Bℓ

 .

Since M ′
2k = M0, we can rearrange the terms in this sum as

Bk = B′ + k ·

 ∑
ℓ∈M ′

2k

Bℓ +B∼ℓ


+ 1 ·

(∑
ℓ∈Λ1

Bℓ +B∼ℓ

)
+ · · ·+ k ·

(∑
ℓ∈Λk

Bℓ +B∼ℓ

)
.

Since all majority margins of each term Bℓ + B∼ℓ are zero, we conclude that
Bk = B′ +BE for an E-profile BE. Thus, by weak E-invariance, we have
F(B′,Γ) ⊆ F(Bk,Γ), which completes the proof.

Theorem 3.3.2 is the analogue of Theorem 17 of Lamboray [2009a]. Note
however, that in the case of direct ordinal aggregation, the prudent rule is
characterized by a slightly weaker version of weak homogeneity, which contains
the extra condition that the original profile has an odd number of voters. In the
case of direct democracy, we do not need to use the double profile B′ = B +B
to obtain even majority margins, if the profile has an even number of voters.
This is because all majority margins in a profile where all voters vote directly,
are of the same parity. Thus, profiles with an even number of voters always have
even majority margins for all literals. But this is not the case if an odd number
of voters delegate cyclically (or if the number of voters is odd to begin with),
which is why the liquid democracy setting requires a slightly stronger axiom.

We now move on to the ranked agenda rule, and show that it satisfies all
axioms of Section 2.2.3. The analogous result of Lamboray [2009b] is his Propo-
sition 2.

Proposition 3.3.3. The ranked agenda rule on the universal domain is collec-
tively complete and consistent, weakly majority profile consistent, weakly quali-
fied majority profile consistent, weakly Condorcet consistent, weakly E-invariant,
weakly homogeneous, and monotonically consistent.

Proof. Fix some profile B ∈ BΦ and integrity constraint Γ ∈ Lsat. Due to
Proposition 3.2.4, we can use the functional and algorithmic definitions of the
ranked agenda rule interchangeably in this proof.
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Collective completeness and consistency are immediate from the functional
definition of the ranked agenda rule.

We will show that the ranked agenda rule is weakly qualified majority pro-
file consistent, which implies that it is also weakly majority profile consistent.
Let γ ∈ N0, let Mγ be the γ-qualified majority set of B, and let B(Mγ) be a
γ-qualified majority set of B over some set ζ ⊆ {ℓ ∈ Φ | nB(ℓ) = γ}.

The ranked agenda algorithm for any profile B′ ∈ BΦ considers all linear
orders on Φ that are compatible with ⪰B′ , and accepts literals in that order
unless the literal renders the possible collective judgment set inconsistent with Γ.
But by Fact 2.2.25, the majority margins of ℓ ∈ Φ under B and B + B(Mγ)
are related as

nB+B(Mγ)(ℓ) =


nB(ℓ) + 2 if nB(ℓ) > γ or ℓ ∈ ζ;

nB(ℓ)− 2 if nB(ℓ) < γ or ∼ℓ ∈ ζ;

nB(ℓ) else.

Therefore, whenever ℓ ⪰B+B(Mγ) ℓ′ for ℓ, ℓ′ ∈ Φ, we also have ℓ ⪰B ℓ′. Thus
any linear order on Φ which is compatible with ⪰B+B(Mγ) is also compatible
with ⪰B. Therefore, if J ∈ ra(B + B(Mγ)), we must have J ∈ ra(B). We
conclude that ra(B +B(Mγ)) ⊆ ra(B).

For weak Condorcet consistency, suppose the strict majority set M of B
is consistent with Γ. Then for each linear order which is consistent with ⪰B,
all literals ℓ ∈ M are ranked before all other literals. And accepting all liter-
als ℓ ∈ M is consistent with Γ, so the algorithm does so for each linear order it
considers. Thus M ⊆ J for all J ∈ ra(B,Γ).

Weak E-invariance and weak homogeneity are immediate from the algorith-
mic definition of the ranked agenda rule, when we note that the orders ⪰B,
⪰B+BE and ⪰B+B are all identical.

For monotonic consistency, let ℓ ∈ Φ and J ∈ ra(B,Γ) such that ℓ ∈ J . By
Fact 2.2.23, the majority margins of ℓ′ ∈ Φ under B and B +Bℓ are related as

nB+Bℓ
(ℓ′) =


nB(ℓ′) + 2 if ℓ′ = ℓ;

nB(ℓ′)− 2 if ℓ′ = ∼ℓ;

nB(ℓ′) else.

Let J ′ ∈ J (Γ). Then by the functional definition of the ranked agenda rule, we
have J ⪰B

disc J ′, i.e.,

min
ℓ′∈J\J ′

nB(ℓ′) ≥ min
ℓ′∈J ′\J

nB(ℓ′).

If ℓ ∈ J ′, then ℓ,∼ℓ /∈ J \ J ′ and ℓ,∼ℓ /∈ J ′ \ J . And if ℓ /∈ J ′, then ℓ ∈ J \ J ′

and ∼ℓ ∈ J ′ \ J . In both cases, the inequality

min
ℓ′∈J\J ′

nB+Bℓ
(ℓ′) ≥ min

ℓ′∈J ′\J
nB+Bℓ

(ℓ′)

remains by the relation between nB(ℓ′) and nB+Bℓ
(ℓ′) above. So J ⪰B+Bℓ

disc J ′.
We conclude that J is ⪰B+Bℓ

-maximal, and J ∈ ra(B + Bℓ,Γ). Therefore,
{J ∈ ra(B,Γ) | ℓ ∈ J} ⊆ ra(B +Bℓ,Γ).
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The following theorem shows that the ranked agenda rule can be character-
ized as the largest rule (in the sense of set-inclusion) which satisfies the same
axioms as the prudent rule, supplemented by monotonic consistency. In other
words, the ranked agenda rule is the largest prudent rule which is monotone un-
der adding minimal ℓ-profiles. It is a generalization of Theorem 2 of Lamboray
[2009b].

Theorem 3.3.4. The ranked agenda rule is the ⊆-largest liquid aggregation
rule on the universal domain that is collectively complete and consistent, weakly
majority profile consistent, weakly Condorcet consistent, weakly E-invariant,
weakly homogeneous, and monotonically consistent.

Proof. By Proposition 3.3.3, the ranked agenda rule satisfies all the properties
in the theorem. What remains to be shown is that for any liquid aggrega-
tion rule F on the universal domain that satisfies these properties, we have
F(B,Γ) ⊆ ra(B,Γ) for all B ∈ BΦ and Γ ∈ Lsat. We will do so by showing
that for any judgment set J ′ ⊆ Φ, if J ′ /∈ ra(B,Γ), then J ′ /∈ F(B,Γ). Thus,
fix some profile B ∈ BΦ and integrity constraint Γ ∈ Lsat, and let J ′ ⊆ Φ such
that J ′ /∈ ra(B,Γ).

If J ′ is not complete and consistent with Γ, then J ′ /∈ F(B,Γ) by collective
completeness and consistency. Therefore, we assume in the rest of the proof
that J ′ ∈ J (Γ).

Since J ′ /∈ ra(B,Γ) while J ′ ∈ J (Γ), the functional definition of the
ranked agenda rule implies that there is some judgment set J ∈ J (Γ) such
that J ≻B

disc J ′, i.e.,
min

ℓ∈J\J ′
nB(ℓ) > min

ℓ∈J ′\J
nB(ℓ). (1)

We are going to construct a profile B′ such that J ′ /∈ pr(B′,Γ), and that
J ′ ∈ F(B,Γ) implies J ′ ∈ F(B′,Γ). Since F satisfies all conditions in Theo-
rem 3.3.2, J ′ /∈ pr(B′,Γ) implies that J ′ /∈ F(B′,Γ), and thus J ′ /∈ F(B,Γ) as
desired.

Consider the set of literals which are accepted in J and J ′, and enjoy a
majority margin in B of at most minℓ′∈J ′\J nB(ℓ′),

L =

{
ℓ ∈ J ∩ J ′

∣∣∣∣nB(ℓ) ≤ min
ℓ′∈J ′\J

nB(ℓ′)

}
.

Suppose L = ∅, and set B′ = B. Then trivially, J ′ ∈ F(B,Γ) implies
J ′ ∈ F(B′,Γ). To show J ′ /∈ pr(B′,Γ), let ℓ ∈ J . If ℓ ∈ J ′, then since L = ∅,
we have

nB(ℓ) > min
ℓ′∈J ′\J

nB(ℓ′) ≥ min
ℓ′∈J ′

nB(ℓ′).

And if ℓ /∈ J ′, then since J ≻B
disc J ′, we have

nB(ℓ) ≥ min
ℓ′∈J\J ′

nB(ℓ′) > min
ℓ′∈J ′\J

nB(ℓ′) ≥ min
ℓ′∈J ′

nB(ℓ′).
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In both cases, we have nB(ℓ) > minℓ′∈J ′ nB(ℓ′), and thus

min
ℓ∈J

nB(ℓ) > min
ℓ′∈J ′

nB(ℓ′).

In other words, J ≻B
min J ′ and therefore J ′ /∈ pr(B,Γ) = pr(B′,Γ).

Suppose L ̸= ∅. We will construct B′ as an extension of B and use mono-
tonic consistency to show that J ′ /∈ pr(B′,Γ), and that J ′ ∈ F(B,Γ) implies
J ′ ∈ F(B′,Γ).

For each ℓ ∈ L, let

kℓ =

⌈
minℓ′∈J ′\J nB(ℓ′)− nB(ℓ) + 1

2

⌉
, (2)

which is a strictly positive integer since nB(ℓ) ≤ minℓ′∈J ′\J nB(ℓ′) for ℓ ∈ L.
We define the profile B′ as

B′ = B +
∑
ℓ∈L

kℓ ·Bℓ.

Since ℓ ∈ J ′ for all ℓ ∈ L, monotonic consistency applied
∑

ℓ∈L kℓ times implies
that if J ′ ∈ F(B,Γ) then J ′ ∈ F(B′,Γ), as desired.

To finally show that J ′ /∈ pr(B′,Γ), we will show J ≻B′

min J ′. In other words,
nB′(ℓ) > minℓ′∈J ′ nB′(ℓ′) for all ℓ ∈ J . Note that the majority margins of ℓ′ ∈ Φ
under B and B′ are related as

nB′(ℓ′) =


nB(ℓ′) + 2kℓ′ if ℓ′ ∈ L;

nB(ℓ′)− 2kℓ′ if ∼ℓ′ ∈ L;

nB(ℓ′) else.
(3)

Since for each ℓ′ ∈ J ′ \ J , we have ℓ′ /∈ J and ∼ℓ′ /∈ J ′, and thus ℓ′,∼ℓ′ /∈ L, we
obtain

min
ℓ′∈J ′\J

nB′(ℓ′) = min
ℓ′∈J′\J

nB(ℓ′). (4)

Similarly,
min

ℓ′∈J\J ′
nB′(ℓ′) = min

ℓ′∈J\J ′
nB(ℓ′). (5)

Let ℓ ∈ J . We make a case distinction.

• Suppose ℓ /∈ J ′. Then since ℓ ∈ J\J ′, we have nB′(ℓ) ≥ minℓ′∈J\J ′ nB′(ℓ′).
Therefore,

nB′(ℓ) ≥ min
ℓ′∈J\J ′

nB′(ℓ′) =
(5)

min
ℓ′∈J\J ′

nB(ℓ′) >
(1)

min
ℓ′∈J ′\J

nB(ℓ′).

• Suppose ℓ ∈ J ′ and ℓ /∈ L. Then ∼ℓ /∈ J ′, so ∼ℓ /∈ L. And by definition
of L, we have nB(ℓ) > minℓ′∈J ′\J nB(ℓ). Therefore,

nB′(ℓ) =
(3)

nB(ℓ) > min
ℓ′∈J ′\J

nB(ℓ′).
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• Suppose ℓ ∈ J ′ and ℓ ∈ L. Then,

nB′(ℓ) =
(3)

nB(ℓ) + 2kℓ ≥
(2)

min
ℓ′∈J′\J

nB(ℓ) + 2 > min
ℓ′∈J ′\J

nB(ℓ)

In all cases, we have nB′(ℓ) > minℓ′∈J ′\J nB(ℓ), from which we conclude that

nB′(ℓ) > min
ℓ′∈J ′\J

nB(ℓ) =
(4)

min
ℓ′∈J ′\J

nB′(ℓ′) ≥ min
ℓ′∈J ′

nB′(ℓ′).

This completes the proof.

Finally, we can fully characterize the ranked agenda rule by strengthening
majority profile consistency to qualified majority profile consistency, generaliz-
ing Theorem 3 of Lamboray [2009b]. That is, out of all liquid aggregation rules
which satisfy the axioms in Theorem 3.3.4, the ranked agenda rule is not only
the largest rule, but also the only rule that satisfies qualified majority profile
consistency.

Corollary 3.3.5. The ranked agenda rule is the only liquid aggregation rule on
the universal domain that is collectively complete and consistent, weakly qualified
majority profile consistent, weakly Condorcet consistent, weakly E-invariant,
weakly homogeneous, and monotonically consistent.

Proof. Let F be a liquid aggregation rule that satisfies the conditions in the
theorem and fix some profile B ∈ BΦ and integrity constraint Γ ∈ Lsat. By
Proposition 3.3.3, the ranked agenda rule satisfies the conditions in the theo-
rem. And since weak qualified majority profile consistency implies weak major-
ity profile consistency, Theorem 3.3.4 states that F(B,Γ) ⊆ ra(B,Γ). What
remains to be shown is that ra(B,Γ) ⊆ F(B,Γ).

Let J ∈ ra(B,Γ). We will construct a chain of profiles B0, . . . ,Bk such
that B0 = B, and F(Bk,Γ) ⊆ · · · ⊆ F(B0,Γ), and ra(Bk,Γ) = {J}. Since
F(Bk,Γ) ⊆ ra(Bk,Γ) by Theorem 3.3.4, and F(Bk,Γ) is non-empty by defi-
nition of a liquid aggregation rule, we obtain J ∈ F(Bk,Γ) ⊆ F(B,Γ). This
proves that ra(B,Γ) ⊆ F(B,Γ).

For any B′ ∈ BΦ, let

Ω(B′) := ra(B′,Γ) \ {J}.

Let B0 = B. If Ω(B0) = ∅, then ra(B0,Γ) = {J}, so setting k = 0 completes
the proof. If Ω(B0) ̸= ∅, let J ′ ∈ Ω(B0). By the functional definition of the
ranked agenda rule and the observation that J, J ′ ∈ ra(B0,Γ), we must have

min
ℓ′∈J\J ′

nB0(ℓ′) = min
ℓ′∈J ′\J

nB0(ℓ′) = −γ

for some γ ∈ Z.
Suppose γ < 0 and let ℓ ∈ J \ J ′ (noting that the set J \ J ′ is non-empty,

since J and J ′ are two different complete and consistent judgment sets). Since

min
ℓ′∈J\J ′

nB0(ℓ′) = −γ > 0,
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we have that nB0(ℓ) > 0, and therefore we have nB0(∼ℓ) = −nB0(ℓ) < 0. But
ℓ /∈ J ′ and J ′ is complete, and ℓ ∈ J and J is consistent, so ∼ℓ ∈ J ′ \ J . Thus,
minℓ′∈J ′\J nB0(ℓ′) < 0 and therefore

γ = − min
ℓ′∈J ′\J

nB0(ℓ′) > 0,

a contradiction. We conclude that γ ≥ 0.
We now construct profile B1 by extending profile B0, and we show that

it satisfies three expressions which allow us to derive the desired chain of set-
inclusions and -equalities at the end of the proof.

Let Mγ be the γ-qualified majority set of B0. Let

ζ = {ℓ ∈ Φ | nB0(ℓ) = γ and ℓ ∈ J}

and define the γ-qualified majority profile B0(Mγ) of B0 as

B0(Mγ) =
∑

ℓ∈Mγ∪ζ

Bℓ.

Let B1 = B0 +B0(Mγ). Then by weak qualified majority profile consistency,
we have our first expression

F(B1,Γ) ⊆ F(B0,Γ). (1)

Secondly, we will show that J ∈ ra(B1,Γ). Let B′ = B0+
∑

ℓ∈Mγ
Bℓ. The

majority margins of literals ℓ ∈ Φ under profiles B0 and B′ are related as

nB′(ℓ) =


nB0(ℓ) + 2 if nB0(ℓ) > γ;

nB0(ℓ)− 2 if nB0(ℓ) < γ;

nB0(ℓ) else.

Thus, the orders ⪰B0 and ⪰B′ from the algorithmic definition of the ranked
agenda rule are identical. Therefore, we have ra(B0,Γ) = ra(B′,Γ) and thus
J ∈ ra(B′,Γ). Since ζ ⊆ J and B1 = B′ +

∑
ℓ∈ζ Bℓ, we have our second

expression
J ∈ ra(B1,Γ) (2)

by |ζ| applications of monotonic consistency.
Thirdly, we show that ra(B1,Γ) ⊊ ra(B0,Γ). By weak qualified majority

profile consistency, we have ra(B1,Γ) ⊆ ra(B0,Γ). Thus, if we show that
J ′ /∈ ra(B1,Γ) (and recall that J ′ ∈ ra(B0,Γ)), then we are done. To do so,
we will use the functional definition of the ranked agenda rule and show that
J ≻B1

disc J ′.
By Fact 2.2.25, the majority margins of ℓ ∈ Φ under profiles B0 and B1 are

related as

nB1(ℓ) =


nB0(ℓ) + 2 if nB0(ℓ) > γ, or nB0(ℓ) = γ and ℓ ∈ J ;

nB0(ℓ)− 2 if nB0(ℓ) < γ, or nB0(ℓ) = −γ and ℓ /∈ J ;

nB0(ℓ) else.
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Since minℓ∈J\J ′ nB0(ℓ) = minℓ∈J ′\J nB0(ℓ) = −γ, this implies that

min
ℓ∈J\J ′

nB1(ℓ) = min
ℓ∈J\J ′

nB0(ℓ) = −γ

and
min

ℓ∈J ′\J
nB1(ℓ) =

(
min

ℓ∈J ′\J
nB0(ℓ)

)
− 2 = −γ − 2.

Therefore, J ≻B1

disc J ′, which proves our third expression

ra(B1,Γ) ⊊ ra(B0,Γ). (3)

Analogously, we construct profiles B2, . . . ,Bk until Ω(Bk) = ∅, and show
the equivalents of expressions (1), (2) and (3). By expressions (2) and (3), each
ra(Bi) for i ∈ {1, . . . , k} will have strictly less elements than ra(Bi−1), while
still containing J . Therefore, there indeed exists a k ∈ N such that Ω(Bk) = ∅.
And since Ω(Bk) = ∅, we have ra(Bk,Γ) = {J}, as desired. By expression (1),
we further have F(Bk,Γ) ⊆ · · · ⊆ F(B0,Γ), as desired. This completes the
proof.

We conclude that if we wish to aggregate propositional judgments under
arbitrary integrity constraints completely and consistently, while respecting the
normative axioms of Section 2.2.3, we must use the ranked agenda rule (Corol-
lary 3.3.5). And if we do not necessarily need to respect qualified majority
profile consistency, we can only use refinements of the ranked agenda rule (The-
orem 3.3.4). By Proposition 3.1.3, we further conclude that if we want to
respect the axioms of Section 2.2.3, we cannot uphold resoluteness, staticity
and independence, and we need a contextual understanding of neutrality and
unbiasedness.

Note that all of these results hold on the universal domain, i.e., when we
do not impose any individual rationality or acyclicity conditions on the pro-
files. Under such domain restrictions, the ranked agenda rule still satisfies the
axioms by which it is characterized on the universal domain, but such domain
restrictions possibly allow for other interesting liquid aggregation rules which
still satisfy the axioms of Section 2.2.3.

The remainder of this thesis builds towards a refinement of the ranked agenda
rule, which explicitly takes into account the delegation structure of liquid ag-
gregation profiles.
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Chapter 4

Delegation Structure and
Epistemic Performance

As stated in Section 2.3, a common method of aggregating judgments in liquid
democracy is constructing a proxy profile and applying a classical judgment
aggregation rule to it. The ranked agenda rule is an example of this method.
However, proxy profiles do not take into account the structure of the delegation
graph, other than the size of its clusters. In this chapter, we examine whether
the structure of a delegation graph can tell us something about the preference
of voters, which is not reflected in the proxy profile. We do so by defining an
information-economic model in which boundedly rational voters choose to vote
directly or delegate to another voter, and numerically evaluating the correlation
between (some simple measures on) the resulting delegation structure and how
accurately the proxy profile reflects the voters’ preferences (i.e., the epistemic
performance of the profile).

In Section 4.1, we motivate our investigation of delegation structures and
its main assumptions. In Section 4.2, we introduce a computational model of
voter behavior in a liquid democracy setting. In Section 4.3, we describe our
experiments and discuss the results. And in Section 4.4, we draw the main
conclusions.

4.1 Motivation
Although judgment aggregation theorists generally take the profile of an aggre-
gation instance as a given, it can be interesting to examine how profiles arise as
a function of voter preference and behavior. Voter preferences can be dynamic,
complex and hard to capture in a simple, consistent format. Therefore, any
type of ballot is unavoidably just an approximation of the voter’s full preference,
and voters must decide how to make that approximation. Information-economic
models (such as the one proposed by Green-Armytage [2015] which we described
in Section 1.2.2) can shed light on part of the profile formation process.
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Clearly, such models must make some simplifying assumptions about voter
preference and behavior. We will use the following story as a running example
to motivate our assumptions.

Example 4.1.1. In the spirit of liquid democracy’s first proponent, Dodgson
[1884] (alias Lewis Carroll), suppose the Queen of Wonderland organizes a liquid
democracy instance, where one of the issues regards animal welfare. Alice is
concerned about the well-being of animals in general, but knows very little
about the policy area. However, her friend Bob has a degree in zoology and he
generally shares many ideological convictions with Alice, including the value of
animals. Alternatively, Alice could delegate her vote to Charlie, a veterinarian
who seems to care very little about his patients, or David, who is a loving
cat-owner, but knows next to nothing about other animals. Alice decides to
delegate her vote to Bob, since he shares her values and has more expertise in
the relevant field than she does. △

Generally, we can expect a voter to delegate to a peer if and only if the
voter believes that the peer shares her values in the relevant policy area, and
is a greater expert in the field. If a peer either has less (or similar) expertise
than the voter, or holds a diametrically opposed opinion to her, the voter will
not delegate to this peer. We will use these two criteria to model voter behavior
when casting a liquid ballot.

Although these criteria seem natural, if many voters delegate to someone
they closely agree with and these voters form a long enough chain, the first
voter in the chain might strongly disagree with her representative at the other
end of the chain. Such ‘informational cascade’-like situations might negatively
affect how closely the proxy profile resulting from these delegations, reflects the
true opinions of the voters. Therefore, we expect that the longer the chains in
a delegation structure are, the less accurate the proxy profile is with respect to
voters’ true opinions. We test this hypothesis by running a number of experi-
ments on our computational model.

The results of such an analysis can be used to evaluate different liquid ag-
gregation rules on how accurately their collective decision reflects the voters’
preferences. Although from a normative, procedural standpoint (especially con-
cerning the principle of ‘one man, one vote’), we might want to base collective
decisions primarily on the vote count according to a classic proxy profile, we
can, at the very least, use structural considerations to break ties between liquid
profiles that generate the same proxy profile.

4.2 A Model of Profile Formation
In this section, we define a model of profile formation and develop a number
of measures to study the profiles generated by the model. We conclude the
section with three visual examples of generated profiles to which we apply our
measures.

53



4.2.1 Profile Formation
In our model, we consider a single issue for which a set N of voters have to create
a delegation structure. The spectrum of possible policies concerning the issue is
modeled as a one-dimensional interval [0, 1] ⊆ R. For example, position 0 ∈ [0, 1]
represents not addressing the issue at all, while position 1 ∈ [0, 1] represents
very drastic measures to address the issue. Position 0.5 ∈ [0, 1] then represents
a moderate approach. Each voter i ∈ N is expected to either cast a direct
vote bi ∈ [0, 1], or delegate their vote to a peer.

Each voter i ∈ N has a uniformly random position πi ∈ [0, 1] in the opin-
ion space. A voter’s position in this opinion space can be interpreted as her
ideological position, or the position that best serves her self-interest. How-
ever, voters can be uncertain about their exact position. In Example 4.1.1,
Alice is concerned with animal well-being (hence she might know that she is
‘above 0.5’), but she knows too little about animal welfare policy to pinpoint
her exact ideological position on the spectrum. Therefore, each voter i ∈ N has
a uniformly random ‘ignorance’ (i.e., the opposite of expertise) ιi ∈ (0, ιmax] for
some fixed ιmax ∈ R>0. The higher ιi, the more uncertain voter i is about her
true position: when casting a direct vote, voter i will submit a ballot bi ∈ [0, 1]
drawn from the uniform distribution on [πi− ιi, πi+ ιi]∩ [0, 1]. Figure 4.1 shows
the position and ignorance of two voters i and j in two different initializations
of the model.

In the phase of profile formation, each voter i has access to a set Ki of
k different voters (for a fixed value k ∈ N), who are drawn from N\{i} uniformly
and independently. Just as a voter has no access to her own exact position, she
has no access to her peers’ positions. However, she does observe the Euclidean
distance δi,j between herself and each peer j ∈ Ki, and the ignorance ιj of each
peer. In Example 4.1.1, this is reflected in Alice’s observation that Bob and
David (who care about animals, like Alice) are ideologically closer to her than
Charlie (who cares very little about his animal patients), and that Bob and

0.0 0.2 0.4 0.6 0.8 1.0

πjπj − ιj πj + ιj

πiπi − ιi πi + ιi

(a) Ignorance of j contains πi.

0.0 0.2 0.4 0.6 0.8 1.0

πjπj − ιj πj + ιj

πiπi − ιi πi + ιi

(b) Ignorance of j does not contain πi.

Figure 4.1: Position and ignorance of two voters.
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Charlie (who are experts on animal-welfare) are less ignorant than David (who
knows next to nothing about animals).

Having observed the above information, each voter i must decide who to
delegate to. As an example, we first consider how fully rational voters would go
about this, and then present a boundedly rational version of this reasoning.

Example 4.2.1. Assuming voters aim to express their preference as accurately
as possible, a fully rational voter would observe all information available to her
and compute the course of action that minimizes the expectation value of the
difference between her (representative’s) vote and her true position, as follows.

Let i ∈ N be a rational voter. If i decides to cast a direct ballot bi, then bi
is drawn uniformly from [πi − ιi, πi + ιi] (assuming this interval is contained
in [0, 1], which is the case with probability 1 in the limit ιmax → 0). Since i
knows the value of ιi, she can compute that the expected error of this vote is

E(|bi − πi|) = E(bi − πi | bi ≥ πi) · P(bi ≥ πi)

+ E(πi − bi | bi < πi) · P(bi < πi)

=
ιi
2
· 1
2
+

ιi
2
· 1
2

=
ιi
2
, (1)

In the second equality, E(bi − πi | bi ≥ πi) =
ιi
2 because under the assumption

that bi ≥ πi, the distribution of bi reduces to the uniform distribution on [πi, πi+
ιi], of which the expectation value is πi+

ιi
2 ; and similarly for E(πi−bi | bi < πi).

Voter i now considers delegating to peer j ∈ Ki. Assume without loss of
generality that πj ≥ πi. We distinguish two cases.

• If ιj ≥ δi,j (i.e., the ignorance range of j contains πi, see Figure 4.1a),
then i can compute that the expected error (with respect to πi) of a direct
vote by j is

E(|bj − πi|) = E(bj − πi | bj ≥ πi) · P(bj ≥ πi)

+ E(πi − bj | bj < πi) · P(bj < πi)

=
ιj + δi,j

2
· ιj + δi,j

2ιj
+

ιj − δi,j
2

· ιj − δi,j
2ιj

=
(ιj + δi,j)

2

4ιj
+

(ιj − δi,j)
2

4ιj

=
ιj

2 + δi,j
2

2ιj
.

In the second equality, E(bj − πi | bj ≥ πi) =
ιi+δi,j

2 because under the
assumptions that bj ≥ πi and ιj ≥ δi,j , the distribution of bj reduces to
the uniform distribution on [πi, πj + ιj ] = [πi, πj ] ∪ [πj , πj + ιj ]. Thus
bj − πi is uniformly distributed on [0, δi,j + ιj ] and its expectation value
is δi,j+ιj

2 . Similarly, P(bj ≥ πi) =
δi,j+ιj

2ιj
, since the interval on which
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bj ≥ πi is [πi, πj + ιj ] = [πi, πj ] ∪ [πj , πj + ιj ], which has length δi,j + ιj .
This is a fraction δi,j+ιj

2ιj
of the total length of the distribution domain

[πj − ιj , πj + ιj ] of bj . The expectation value and probability for the case
bj < πi is analogous with interval [πj − ιj , πi] of length ιj − δi,j .

• If ιj < δi,j (i.e., the ignorance range of j does not contain πi, see Fig-
ure 4.1b), then bj − πi > 0 for all possible ballots bj and thus i computes
the expected error as

E(|bj − πi|) = E(bj − πi) = δi,j .

Voter i can now conclude that the expected error of a direct vote by j (with
respect to her own position) is

E(|bj − πi|) =

{
ιj

2+δi,j
2

2ιj
if ιj ≥ δi,j ;

δi,j if ιj < δi,j .
(2)

A rational voter i would only delegate to a peer j, if this reduces the expected
error, i.e., E(|bj−πi|) ≤ E(|bi−πi|). Assuming all voters follow this rule, further
delegations by j do not (in expectation) affect the error of the final ballot with
respect to πi, since these delegations are symmetric in πj (in expectation). △

Note that the behavior of a rational voter is in line with Example 4.1.1: one
should delegate if the other voter’s ignorance and ideological distance are small.
However, this level of rationality is a rather strong assumption. Therefore,
we model voter behavior as a probabilistic and biased approximation of the
reasoning in Example 4.2.1.

When voter i considers delegating her vote, we compute the expected error
of doing so for each possible delegate j ∈ Ki, with the addition of a bias. This
ignorance bias βι ∈ [0, 2] ⊆ R expresses to what extent voters overestimate the
importance of expertise for deciding on the issue at hand. That is, we intro-
duce βι as a weight in the calculation of the expected error of delegating, which
increases the role of ιj and decreases the role of δi,j . The latter is represented
by the distance bias βδ, which is set to βδ = 2− βι to preserve continuity of the
function at the point ιj = δi,j . All in all, the biased expected error of delegating
to peer j is

errori,j =

{
βι·ιj2+βδ·δi,j2

2ιj
if ιj ≥ δi,j ;

δi,j if ιj < δi,j .

Note that when βι = βδ = 1, this error assumes the rationally correct values
from expression (2). The voter now chooses a favorite delegate probabilisti-
cally, where the probability of delegating to a peer j is inversely proportional
to errori,j .

After choosing a favorite delegate j∗, the voter decides whether to delegate
to this peer or to vote directly. We introduce a bias and probabilistic character
to this decision as well. Let βv ∈ [0, 2] ⊆ R be a voting bias, which expresses
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an overconfidence in a voter’s own direct vote. That is, we introduce βv as a
weight in the calculation of the error of voting directly and approximate this
error as

errori =
ιi
2βv

.

When βv = 1, this error assumes the rationally correct value from expression (1).
The voter finally chooses whether to vote directly or to delegate to j∗ proba-
bilistically, where the probability of voting directly is inversely proportional
to errori, and the probability of delegating is inversely proportional to errori,j∗ .
As noted before, if the voter decides to vote directly, her ballot is drawn uni-
formly at random from [πi − ιi, πi + ιi] ∩ [0, 1].

Note that (in case there is no bias), a voter is unlikely to delegate to peers
who are more ignorant than herself, which helps to prevent delegation cycles.
However, to guarantee acyclic profiles, we only allow delegation to peers who are
strictly less ignorant than the voter, i.e., we set errori,j to infinity if ιj ≥ ιi. This
ensures that each edge in the delegation graph corresponds to a strict decrease
in ignorance, making cycles impossible. Imposing this restriction makes it easier
to compare different delegation profiles to each other without having to resolve
cyclicity.

This concludes the formation of the delegation structure: all voters have
decided whether to delegate (and to whom) or vote directly (and with what
ballot bi ∈ [0, 1]). Furthermore, the delegation structure is guaranteed to be
acyclic. The five model parameters which can be exogenously fixed are the
number of voters n, the maximal ignorance ιmax, the number k of peers each
voter considers, the ignorance bias βι and the voting bias βv. We can view
these parameters as characterizing the context of the liquid democracy instance:
some types of issues or external factors will, e.g., increase the bias to vote
directly, and others will, e.g., decrease the ignorance voters have about the
topic. Depending on this context, different delegation structures might arise,
which represent voters’ true positions with varying accuracy, which we refer to
as the epistemic performance of the liquid profile.

4.2.2 Epistemic Performance
In the remainder of this chapter, we consider profiles that are generated by the
model above. That is, each profile B = (B1, . . . , Bn) concerns only a single
issue, and the ballots Bi either have a real value bi ∈ [0, 1] (in which case we
write Bi = bi) or refer to the delegate j ∈ N of voter i (in which case we
write Bi = j). Aggregation rules are maps F from the set of possible profiles
to the policy spectrum [0, 1]. And repB(i) and pathB(i) respectively denote
the representative of voter i and the set of delegates connecting i to repB(i)
(including i and repB(i)).

When we generate a liquid profile using our model, we do not only have
access to all voters’ ballots, but also to their ‘true preferences’ πi. This allows
us to compare the preference of each voter with their representative’s vote in
the liquid profile, which is a measure of how accurately the proxy profile reflects
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the voters’ preferences. In line with the terminology of Green-Armytage [2015],
we refer to this difference per voter as the expressive loss. Consequently, the
average expressive loss over all voters is defined as

ExpressiveLoss =
1

n
·
∑
i∈N

|πi − brepB(i)|.

Furthermore, we define systematic loss as the difference between the collec-
tive decision a proxy profile generates and the collective decision that would be
achieved under full information, i.e., if ιi = 0 for all i ∈ N . We use the average
ballot value in the generated proxy profile as the collective decision of a liquid
profile, which is defined as

Favg(B) =
1

n
·
∑
i∈N

brepB(i).

Note that this is an explicit choice for a specific aggregation rule, for which
there are clearly many alternatives, including the common approach of taking
the median of the proxy profile.

The systematic loss is then defined as

SystematicLoss =

∣∣∣∣∣Favg(B)− 1

n
·
∑
i∈N

πi

∣∣∣∣∣ .
Finally, we can compute a utility score for each voter, expressing their satis-

faction with the collective decision. We define the utility score of a voter to be
the difference between her true position and the collective decision. The average
utility score is referred to as social welfare, and is defined as

SocialWelfare =
1

n
·
∑
i∈N

|πi −Favg(B)|.

4.2.3 Delegation Structure
In order to relate the epistemic performance of a profile to its underlying del-
egation structure, we define two simple metrics on profiles which express how
‘deep’ its delegation structure is. Intuitively, we expect that deeper delegation
structures give rise to more frequent or severe informational cascades.

Viscous Delegation Depth

The first measure is similar to the proposal of ‘viscous democracy’ by Boldi et al.
[2011]: instead of fully propagating each voter’s voting weight to her delegate, we
multiply a voter’s voting weight with a factor α ∈ [0, 1] ⊆ R before propagating
it to her delegate. We use the negative of the sum of resulting voting weights
of all casting voters to calculate our measure of delegation depth. That is, the

58



more voters delegate in long chains, the lower the total voting weight for the
casting voters and the higher the delegation depth.

Formally, the voting weight wα
i of a voter i ∈ N for viscosity factor α ∈ [0, 1]

is defined recursively as1

wα
i = 1 +

∑
{j∈N|Bj=i}

α · wα
j ,

where the sum over an empty set (i.e., for the base case where nobody delegates
to voter i) is defined to equal zero. Let R = {i ∈ N | Bi = bi ∈ [0, 1]} be the
set of all casting voters. The α-viscous delegation depth is defined as

Dα = 1− 1

n
·
∑
i∈R

wα
i .

Note that if α = 0, the sum is equal to the number of casting voters, and
thus the 0-viscous delegation depth is equal to the fraction of delegating voters
over all voters. And if α = 1, the sum is equal to the total number of voters,
and thus the 1-viscous delegation depth is always equal to zero.

Further note that the sum is maximal when all voters vote directly. The
sum is then equal to n. And the sum is minimal when all voters form a single
chain. The sum is then equal to

n−1∑
k=0

αk =
1− αn

1− α
∈ (1, n)

if α ∈ (0, 1) (and it is equal to 1 if α = 0 and to n if α = 1). Thus, by
dividing the sum of the casting voters’ weights by the total number of voters
and subtracting it from 1, we obtain a delegation depth between 0 and 1, which
is minimal if all voters vote directly and is maximal if all voters form a single
chain.

Additive Delegation Depth

The second measure is referred to as the additive delegation depth and counts
the number of times a vote is delegated when forming the proxy profile. That
is, if a vote is handed down in a chain of k voters, this adds k−1 to the additive
delegation depth for all k − 1 transfers of the vote. In other words, the total
contribution of a chain of k votes to the additive delegation depth is

(k − 1) + (k − 2) + · · ·+ 0 =
k2 − k

2
.

Formally, the additive delegation depth is defined as

Dadd =
1

n
·
∑
i∈N

(| pathB(i)| − 1),

1Note that the voting weight is only well-defined for acyclic profiles.
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where the fraction serves as a scaling factor which keeps the delegation depth
below n. Alternatively, we can interpret the additive delegation depth as the
average length of the delegation paths of all voters.

Note that the additive delegation depth (just like the α-viscous delegation
depth) is minimal if all voters vote directly and maximal if all voters form a
singe chain. Its minimal value is 0 and its maximal value is n−1

2 .

4.2.4 Examples of Generated Profiles
In Figure 4.2, we see three randomly generated profiles using the model defined
in Section 4.2.1.

In the first profile, most voters decided to vote directly as a consequence of
relatively low ignorance values. Thus the α-viscous delegation depth is low at

Dα = 1− 1

6
· (1 + 1 + 1 + 1 + (1 + α)) =

1− α

6
=

1

12

for α = 1
2 , and the additive delegation depth is also low at

Dadd =
1

6
· (0 + 0 + 1 + 0 + 0 + 0) =

1

6
.

Since the final vote of all voters is relatively close to their true position, the
expressive loss and systematic loss are small. However, voters are located rather
far from the center of the interval, leading to a low social welfare.

In the second profile, all voters delegate (directly or indirectly) to the same
voter. This can be explained by observing that this voter has a very low igno-
rance value and is located in the middle of all voters. The delegation depths are
relatively high at

Dα = 1− 1

6
· (1 + α+ α+ α2 + α2 + α) =

1

2

for α = 1
2 , and

Dadd =
1

6
· (1 + 2 + 2 + 1 + 1 + 0) =

7

6
.

The expressive loss of the right most voter is relatively large and thus the average
expressive loss is moderately large, but no long informational cascades are likely
to occur for such small sets of voters.

All voters in the third profile made fully rational decisions, exhibiting no
biases or probabilistic behavior. Indeed, we see that voters only delegate to
peers who are ideologically very close, and voters with large ignorance values
do not vote directly.
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0.0 0.2 0.4 0.6 0.8 1.0

(a) Few delegations.

0.0 0.2 0.4 0.6 0.8 1.0

(b) Many delegations.

0.0 0.2 0.4 0.6 0.8 1.0

(c) Only rational delegations.

Figure 4.2: Three randomly generated liquid profiles. Voters are horizontally
located at their positions on the policy spectrum, and their ignorance ranges are
represented as error bars. Voters are ordered from top to bottom by decreasing
ignorance. Arrows represent delegations and dotted lines represent direct votes.

4.3 Experiments and Results
The elements of Section 4.2 can be combined to conduct a number of exper-
iments. Firstly, we study which model parameters most affect the delegation
depth and epistemic performance of the profiles generated. Such an analysis is
called a sensitivity analysis, and can consist of various components. We will con-
duct a local One-Factor-At-a-Time (OFAT) sensitivity analysis, which studies
the effect of each separate model parameter on the model output while keeping
the other parameters fixed, and a global Sobol’ sensitivity analysis, which takes
into account the interactions between parameters and can be used to discover
redundant parameters.

Secondly, we use the model to study whether the delegation depth of profiles
that are generated in different contexts (i.e., with different model parameters),
correlates with the epistemic performance of the profiles. Moreover, we study
which measure of delegation depth shows the strongest degree of correlation.
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The results of these experiments can be used as an argument (not) to break ties
according to (a particular measure of) delegation depth.

Before we present the experiments and results, we introduce the method of
OFAT and Sobol’ sensitivity analyses. We refer to the work of Ten Broeke et al.
[2016] for a more thorough introduction to sensitivity analysis for agent-based
models.

4.3.1 The Methods of Sensitivity Analysis
The aim of a sensitivity analysis is to map out the effect of model parameters
on the model output. Let M(x) be a model which operates on a vector of
d inputs x = (x1, . . . , xd) ∈ Rd and returns a single output y ∈ R.

One-Factor-At-a-Time (OFAT)

A One-Factor-At-a-Time (OFAT) analysis studies the local sensitivity of the
model. That is, it fixes the values of all but one of the model inputs to some
default value, and studies the effect of varying the other model input on the
model output. The algorithm proceeds as follows.

Let i be the index of the input variable we study, let Ii ⊆ R be the (closed)
interval of possible values of input variable i, let x−i ∈ Rd−1 be the default
values of the other input variables and let n,m ∈ N. Let x1

i , . . . , x
n
i ∈ Ii be

equally spaced real numbers such that x1
i = min(Ii) and xn

i = max(Ii). For
each j ∈ {1, . . . , n}, evaluate M(x−i, x

j
i ) in m independent runs of the model

and let yji be the median output value of these m model runs.
By plotting {yji }nj=1 against {xj

i}nj=1 for all i ∈ {1, . . . , d}, we obtain d plots,
each of which shows the effect of a single input variable on the output value of the
model. Besides the size of the effect, this approach also visualizes the output as
a real-valued function of each single input variable. This makes OFAT a useful
method to better understand the relationship between inputs and outputs of a
model. Moreover, OFAT analyses are computationally cheap compared to other
methods of sensitivity analysis.

Sobol’ Sensitivity Analysis

Although OFAT is perhaps the most common method to analyze complex mod-
els, it cannot detect interactions between input variables, and might depend
strongly on the default values of the input variables. A Sobol’ sensitivity anal-
ysis studies the global sensitivity of the model, which includes all combinations
of possible model inputs. The method is due to Sobol’ [2001].

The method decomposes the variance in the output of the model into vari-
ance components caused by each subset of the input variables. For the singleton
sets, this translates to d different first-order sensitivity indices S1, . . . , Sd, de-
fined as

Si =
Varxi

(Ex−i
(M(x) | xi))

Varx(M(x))
.
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In other words, Si is the fraction of the total variance in the output of M , which
can be attributed to the variance of the model output (averaged over all possible
input values other than i) caused by input variable i.

Similar definitions exist for second-order effects, third-order effects, etc. To-
gether, these orders explain the relevance of each input variable in combination
with the other input variables. However, the total number of Sobol’ indices
grows exponentially with the number of input variables, since each subset of
input variables generates a new Sobol’ index. Thus, an alternative measure of
the total contribution of each input variable, including interaction effects, is
defined as the total-order sensitivity indices ST1

, . . . , STd
, where

STi = 1−
Varx−i(Exi(M(x) | x−i))

Varx(M(x))
.

In other words, STi
is the fraction of the total variance of the model, which

cannot be attributed to the variance of the model output (averaged over all
possible values of xi) caused by all other input variables than input variable i.

To approximate the Sobol’ sensitivity indices in practice, we sample the in-
put space of the model randomly using a Saltelli sequence. This quasi-random
method of sampling is due to Saltelli [2002] and generates low-discrepancy sam-
ples. Intuitively, a low-discrepancy sample is a set of points which are dis-
tributed roughly equally across space, i.e., each portion of the space with equal
volume contains a roughly equal number of points. By taking a low-discrepancy
sample instead of a uniformly random sample, we can reduce the number of
points we sample, while still obtaining a representative set of points in the full
input space.

We take two such independent samples of N ∈ N points in the d-dimensional
input space, and regard them as two N ×d-matrices A and B. We build d more
samples of N points in the d-dimensional space by defining A

(i)
B for i ∈ {1, . . . , d}

to be a copy of matrix A, where column i is replaced by column i of matrix B.
The d + 2 matrices A, B and all A(i)

B now specify N · (d + 2) unique points in
the d-dimensional input space. Using Monte Carlo estimators (i.e., a particular
kind of probabilistic approximations) of variances and expectation values, we
estimate the values of all Si and STi on these N ·(d+2) points. These estimators
converge to the real value of the Sobol’ indices as we increase N , but only if N
is always a power of 2 (which is why a Saltelli sample usually has size N = 2n

for some n ∈ N).
By plotting the approximations and confidence intervals of Si and STi

, we
can draw the following conclusions. If STi is close to zero, then fixing the value
of input parameter i does not influence the variance of the model output by
much, i.e., input variable i is redundant. If Si is close to zero, while STi

is
not, then input variable i does affect the output, but mostly by higher order
interactions, i.e., variable i on its own has a small effect on the output of the
model. Variables with small Si are expected to show only small effects in the
OFAT analysis as well.
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4.3.2 Sensitivity of Epistemic Performance
Figure 4.3 shows the OFAT analysis of the epistemic performance of the profiles
generated by our model. We see that the expressive loss does not significantly
depend on the total number of voters n. The expressive loss depends weakly on
the number k of delegation candidates each voter considers and the ignorance
bias βι, and it depends strongly on the maximal ignorance ιmax and the voting
bias βv.

The dependence on k can be explained by observing that voters who observe
more peers, have more possibilities to wisely delegate their vote and thus reduce
their expressive loss. The dependence on ιmax is not surprising either, as more
ignorant voters are clearly less able to express their opinion precisely.

It is surprising that the expressive loss as a function of βι and βv is not
minimal for βι = 1 and βv = 1, since we would expect that a voter is successful
at reducing her expressive loss if she has no irrational biases. However, in
Figure 4.4 we see the same plot of expressive loss against βι and βv, but in
this model the voters behave fully rationally instead of probabilistically. In
this case, we see that the expressive loss is minimal for voters without bias,
i.e., with βι ≈ βv ≈ 1. We conclude that the probabilistic behavior of voters
benefits those voters who either are biased towards delegating to ideologically
close peers while ignoring their level of expertise, or are biased not to delegate
at all.

The results of the OFAT analysis for systematic loss and social welfare show
large statistical errors compared to the effect of each input variable on the out-
put, and thus we can say less about the role of each separate input variable.
However, we do see that systematic loss is small for large n, small ιmax and
large βv. Clearly, if voters are less ignorant, their votes will correspond more
closely to their true positions, which reduces systematic loss. And as a conse-
quence of the famous jury theorem of Condorcet [1785], if the number of voters
is large and/or many voters vote directly, their individual errors average out
and the systematic error is low.

Figure 4.5 paints a similar picture of the Sobol’ analysis. The first order
effects of ιmax and βv on expressive loss (and to a lesser extent the first order
effects of n and βv on systematic loss) are visible, but all other first order indices
are close to zero. However, we do note that the total order index of all input
variables with respect to all output variables are non-zero. That is, all input
variables contribute to some higher order interactions that affect the output of
the model.
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Figure 4.3: OFAT analysis of the effect of the model parameters n, ιmax, k, βι

and βv on the epistemic performance of the profiles generated by the model,
where epistemic performance is measured as expressive loss, systematic loss and
social welfare. Each data point is the median output over 1 000 runs. Error bars
represent the first and third quartile. Dotted lines indicate the default value of
each parameter.
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Figure 4.4: OFAT analysis of the effect of the model parameters βι and βv on the
expressive loss of the profiles generated by the model, where voters behave non-
probabilistically. Each data point is the median output over 1 000 runs. Error
bars represent the first and third quartile. Dotted lines indicate the default
value of each parameter.
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Figure 4.5: First and total order Sobol’ indices for the effect of the model
parameters n, ιmax, k, βι and βv on the epistemic performance of the profiles
generated by the model, where epistemic performance is measured as expressive
loss, systematic loss and social welfare. The analysis was run on a Saltelli
sample with N = 4096 for d = 5 model parameters, i.e., the model was run
on N · (d + 2) = 28 672 samples from the input space. Error bars represent
95%-confidence intervals.

66



4.3.3 Sensitivity of Delegation Depth
For the sensitivity analysis of delegation depth, we applied four measures of del-
egation depth to the output of the profile formation model: 0-viscous delegation
depth (which is equal to the fraction of delegating voters), 1

2 -viscous delegation
depth, 9

10 -viscous delegation depth and additive delegation depth. We see in
Figure 4.6 that our OFAT analysis showed virtually identical behavior by all
these measures of delegation depth.

None of the measures of delegation depth seem to depend strongly on the
total number of voters. For viscous delegation depth, this is not surprising since
it is normalized by the value of n. However, recall that the additive delegation
depth ranges from 0 to n−1

2 and thus it is somewhat surprising that increasing
the value of n does not increase additive delegation depth. Apparently, the
average length of a delegation path does not grow strongly as the number of
voters grows. For small values of n, there does seem to be a small increase in
delegation depth, but this increase is not statistically significant for our sample
size. A possible explanation why this dependence of the additive delegation
depth on the value of n is so weak, could be that the expected length of a
delegation chain can be approximated by the geometric distribution,2 if the
probability that a voter delegates, is independent from the probability that a
voter receives a delegation. Although this approximation is not exact since
voters who receive a delegation are likely to have a small ignorance and are
therefore likely not to delegate themselves, the geometric distribution predicts
that for large values of n, if voters delegate with probability P ≈ 0.45 (which
is the average fraction of voters who delegate their vote, according to the plot
of 0-viscous delegation depth against n in Figure 4.6), then the average length
of a delegation chain is P

1−P ≈ 0.82. This value is close to (but slightly higher
than) the average additive delegation depth in the model. We conclude that for
large values of n, the geometric approximation possibly captures the dynamics
of average delegation depth as a function of n. Small values of n prohibit long
delegation chains, and thus the geometric approximation does not hold, resulting
in slightly lower additive delegation depths, as we indeed observed in the figure.

We further see that a larger maximal ignorance results in deeper delegation
structures. This is probably due to the fact that as many voters have high
expertise, it is more rational to vote directly than to delegate to another expert,
who is ideologically relatively far away. Similarly, a larger number of delegation
candidates per voter allows voters to find a closer ideological match to delegate
to, resulting in deeper delegation structures. Finally, a bias towards voting
directly intuitively decreases the delegation depth, since fewer voters decide to
delegate. We also see this in the data.

A result which is not as easily understood, is that a bias towards delegating
to experts (instead of to ideologically close peers) results in less deep delegation
structures. Possibly, if voters weigh a possible delegate’s expertise heavily, many

2The geometric distribution describes the number of ‘tails’ in a repeated coin toss (with
a probability P of observing ‘tails’) before observing the first ‘heads’. In our case, ‘tails’
corresponds to delegation and ‘heads’ to casting a direct vote.
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Figure 4.6: OFAT analysis of the effect of the model parameters n, ιmax, k, βι

and βv on the depth of the profiles generated by the model, where depth is
measured as 0-viscous (i.e., the fraction of delegating voters), 1

2 -viscous, 9
10 -

viscous and additive delegation depth. Each data point is the median output
over 1 000 runs. Error bars represent the first and third quartile. Dotted lines
indicate the default value of each parameter.

voters delegate directly to a clear expert instead of delegating to a non-expert
who is ideologically close and who, in turn, re-delegates the vote to the clear
expert.

The Sobol’ analysis in Figure 4.7 paints a similar picture to the OFAT analy-
sis: the influence of the total number of voters on delegation depth is negligible,
and the voting bias and maximal ignorance have the strongest influence on del-
egation depth. A notable difference between the Sobol’ analysis of epistemic
performance and of delegation depth is that the total order Sobol’ index of
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delegation depth is not much larger than its first order Sobol’ index. That is,
higher order interactions between model parameters do not play a large role in
determining the delegation depth of the profiles generated.
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Figure 4.7: First and total order Sobol’ indices for the effect of the model
parameters n, ιmax, k, βι and βv on the depth of the profiles generated by the
model, where depth is measured as 0-viscous (i.e., the fraction of delegating
voters), 1

2 -viscous, 9
10 -viscous and additive delegation depth. The analysis was

run with N = 4096 for d = 5 model parameters, i.e., the model was run
on N · (d + 2) = 28 672 samples from the input space. Error bars represent
95%-confidence intervals.
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4.3.4 Epistemic Performance and Delegation Depth
Having studied the effect of different model parameters on the epistemic perfor-
mance and delegation depth of the profiles generated, we turn to the correlation
between delegation depth and epistemic performance. That is, we test whether
the delegation depth of a profile can be used as a predictor of epistemic per-
formance, in case we only have access to the liquid profile and not to the true
preferences of all voters.

To perform this analysis, we generated a sample of the input space of our
model. In order to guarantee that this sample is as representative as possible
of the whole input space, we used a Saltelli sample (with N = 128 and thus
N · (d + 2) = 896 different combinations of input values). These points in the
input space can be seen as different contexts in which voters generate their
delegation structures. For each point in the input space, we generated a profile
and computed our different measures of epistemic performance and delegation
depth. The correlation between these values was computed using the correlation
coefficient of Pearson [1895] and can be seen in Figure 4.8.

We note again that the plots for different measures of delegation depth look
very similar. The correlation between delegation depth and expressive loss is
quite strong with a correlation coefficient of about 0.6 (out of 1). This matches
our hypothesis from Section 4.1: longer delegation chains in a liquid profile
(or more precisely, deeper delegation structures according to our measures of
delegation depth) tend to lead to less accurate representations of voters’ true
preferences in the proxy profile.

We further see that the correlation between delegation depth and systematic
loss is moderate to weak at a correlation coefficient of 0.3. The weak correlation
can be explained by the intuition that large expressive losses tend to lead to large
systematic losses, but the inaccuracies of voters’ ballots average out against each
other as enough voters express their opinion inaccurately in varying directions.

Finally, the correlation between delegation depth and social welfare is very
weak at a correlation coefficient of 0.1. An explanation could be that the collec-
tive decision of uniformly distributed voters is always close to 1

2 , and uniformly
distributed voters are always at roughly the same average distance from 1

2 . In-
deed, we see that the social welfare is around 1

4 for all values of the delegation
depth, which is exactly the expected distance between 1

2 and a uniformly ran-
dom position on [0, 1].

To verify that the correlation coefficient between epistemic performance and
delegation depth does not strongly depend on the measure of delegation depth
that we choose, we computed the correlation coefficients for the additive delega-
tion depth, and the α-viscous delegation depth for 20 different values of α. For
each measure, we repeated the computation 10 times and calculated the median
correlation coefficient. In Figure 4.9, we see that the median correlation coef-
ficient for each measure of delegation depth is almost equal and the statistical
errors are very small. We conclude that indeed, it does not make an important
difference which measure of delegation depth we choose.
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Figure 4.8: Correlation between the delegation depth of the profiles generated by
our model and their epistemic performance. Each data point represents a single
profile generated in a random context, i.e., a random combination of model
parameters. The input space was sampled using a Saltelli sequence with N =
128 for d = 5 model parameters, i.e., N · (d + 2) = 896 profiles were generated
per plot. The correlation coefficients given are Pearson correlation coefficients
[Pearson, 1895]. Dotted lines are linear fits to the data. To enhance visibility,
up to 10% of outlying data points might fall outside the margins of each plot,
and systematic loss was plotted on a logarithmic scale.

71



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0
C

or
re

la
ti

on

Dα Dadd

ExpressiveLoss

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

C
or

re
la

ti
on

Dα Dadd

SystematicLoss

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

C
or

re
la

ti
on

Dα Dadd

SocialWelfare

Figure 4.9: Analysis of the correlation between epistemic performance and dif-
ferent measures of delegation depth (Dα for α ∈ [0, 1) and Dadd). Each data
point is the median over 10 correlation coefficients, each computed on a Saltelli
sample with N = 128. Error bars represent the first and third quartile.

This is a surprising result, since the 0-viscous delegation depth does not take
into account the length of delegation chains, but simply counts the number of
delegating voters; and the 1-viscous delegation depth is constantly equal to 0,
which implies that the α-viscous delegation depth is arbitrarily close to zero
for almost all delegation structures as α goes to 1. That is, the α-viscous
delegation depth is a poor measure of delegation depth for very small or very
large α, and we would expect these poor measures not to correlate strongly
with epistemic performance. However, the geometric distribution might offer
a possible explanation again. If the formation of delegation structures can be
approximated as a geometric process, then the probability that a voter delegates
(i.e., the 0-viscous delegation depth) contains all information needed to model
the process. Thus, 0-viscous delegation depth might correlate with epistemic
performance as strongly as any other measure of delegation depth, as long as
the latter measure of delegation depth is not constant.

4.4 Discussion
We can draw a number of interesting conclusions from our model. Firstly, all
measures of delegation depth that we defined (with the exception of 1-viscous
delegation depth, which is constantly zero and was thus not analyzed) behave
very similarly on the models we generated. They react almost identically to
varying model parameters and correlate equally strongly with all measures of
epistemic performance we defined. This shows a certain robustness of the model,
but also makes it impossible to select a ‘best’ measure of delegation depth when
using it to break ties in liquid aggregation.

Initially, it might be surprising that 0-viscous delegation depth predicts epis-
temic performance as accurately as the other measures of delegation depth, since
0-viscous delegation depth only takes into account the number of direct voters
and not the actual delegation structure; it seems to contain less information than
the other measures of delegation depth. However, if we approximate the process
of profile formation as a geometrically distributed process, we see that the 0-
viscous delegation depth contains exactly the right information to characterize
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the whole process: the probability that a voter decides to delegate. Therefore, it
correlates equally strongly with epistemic performance as any other reasonable
measure of delegation depth.

Secondly, delegation depth correlates significantly with epistemic loss. This
could be used as an argument to place more trust in delegation structures which
are less deep, and thus break ties between supporters and rejecters of a policy
proposal in favor of the party with the most ‘shallow’ delegation structure.
Importantly, although the correlation between systematic loss and delegation
depth is weak, it is clearly positive and thus shallow structures do not tend to
have a negative effect in terms of systematic loss. However, shallow delegation
structures do exhibit slightly lower social welfare, but this correlation is almost
negligible.

Finally, the number of voters does not influence any of our output measures,
except for systematic loss (which can be understood as a consequence of Con-
dorcet’s jury theorem). This allows us to use our measures to analyze profiles
of any size, at least up to 500 voters (which is the maximal number of voters
we considered).

Of course, it is important to note that we base our conclusions on a strongly
simplified model of voter behavior. Empirical evidence should be gathered to
confirm the results of our work. Furthermore, epistemic loss is only a single
argument to favor shallow delegation structures over deep delegation structures.
Thus, we do not recommend using, e.g., viscous democracy as proposed by Boldi
et al. [2011] (in which not only tie-breaking, but also computing actual voting
weight is done using a dampening factor α per delegation step) on the basis of
this single argument (although other appealing arguments for viscous democracy
could of course be formulated, and have been formulated by its authors).

Apart from studying profile formation, our model can also be used to gener-
ate profiles for other purposes. For example, in Section 5.3 we will use profiles
generated by this model to numerically evaluate the performance of liquid aggre-
gation rules. Furthermore, in combination with empirical data, one can attempt
to discover biases in voter behavior, by matching real-world liquid profiles with
liquid profiles generated by a model with different values for biases βι and βv,
and other biases.
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Chapter 5

A Structural Ranked
Agenda Rule

In Chapters 2 and 3, we defined a judgment aggregation formalism for the liq-
uid democracy setting, axiomatically studied some impossibilities in designing
its aggregation rules, and identified the ranked agenda rule as a reasonable,
though irresolute, method to arrive at complete and consistent collective de-
cisions. In Chapter 4, we computationally studied the relationship between
delegation structure and epistemic performance of a liquid democracy profile,
and concluded that deep delegation structures signify relatively poor epistemic
accuracy. In this chapter, we combine these two perspectives and propose a
refinement of the ranked agenda rule, which takes into account the delegation
structure of a profile beyond the common proxy profile approach.

In Section 5.1, we define our structural ranked agenda rule, along with the
more radical ‘viscous democracy’ approach. In order to compare our aggrega-
tion rules to each other, and to Kemeny’s rule as a benchmark, we extend our
computational model of profile formation to aggregation problems with multiple
issues and an integrity constraint in Section 5.2. In Section 5.3, we present the
results of the numerical evaluation of our aggregation rules.

5.1 Definition and Normative Properties
In Section 4.3, we learned that all of our measures of delegation depth correlate
comparably strongly with the epistemic performance of the underlying pro-
file. Therefore, we focus our attention in this chapter on the simplest measure:
0-viscous delegation depth, i.e., the fraction of delegating voters. This sim-
ple parameter seems to dictate any measure of delegation depth as well as the
epistemic performance of a profile (possibly because the computational model
resembles a geometrically distributed process of delegation) and can simulta-
neously be meaningfully interpreted as the fraction of voters who are (or feel)
capable of determining their own optimal direct vote.
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For normative reasons, our main proposal does not reduce the weight of
voters who delegate to a long chain of peers: this would violate the principle
of ‘one man, one vote’. Instead, we conservatively propose to break ties in the
ranked agenda rule according to delegation depth. Given a liquid aggregation
profile B ∈ BΦ (in the sense of Definition 2.1.3, not the sense of Section 4.2.1)
and a literal ℓ ∈ Φ, we define their (0-viscous) delegation depth as

D0(B, ℓ) =
|{i ∈ NB | Bi(ℓ) ∈ NB}|

|NB|
.

Note that this is equivalent to the definition of α-viscous delegation depth in
Section 4.2.3 for α = 0. We can now define our structural ranked agenda rule
as follows.

Definition 5.1.1 (Structural Ranked Agenda Rule). For any profile B ∈ BΦ,
let ⪰D0

B be the binary relation on Φ where for ℓ1, ℓ2 ∈ Φ, we have ℓ1 ⪰D0

B ℓ2 if
and only if

nB(ℓ1) > nB(ℓ2), or nB(ℓ1) = nB(ℓ2) and D0(B, ℓ1) ≥ D0(B, ℓ2).

Let LO(⪰D0

B ) be the set of linear orders on Φ that are compatible with ⪰D0

B . The
structural ranked agenda rule is the liquid aggregation rule rastruc generated by
the following process.

• Given profile B and integrity constraint Γ, initialize rastruc(B,Γ) = ∅.

• For each linear order ⪰ ∈ LO(⪰D0

B ), do the following.

– Initialize J = ∅.
– Iteratively, in the order ⪰, consider a literal ℓ ∈ Φ. If J ∪ {Γ} |= ∼ℓ,

add ∼ℓ to J . Otherwise, add ℓ to J .
– After considering all ℓ ∈ Φ, add J to rastruc(B,Γ).

Since the relation ⪰D0

B is compatible with the relation ⪰B of the original
ranked agenda rule (see Definition 3.1.1), the structural ranked agenda rule is
indeed a refinement of the ranked agenda rule which breaks ties according to
delegation depth. Since 0-viscous delegation depth takes values in the inter-
val [0, 1) ⊆ R, we can alternatively define the liquid support for a literal ℓ ∈ Φ
in profile B ∈ BΦ as the sum sB(ℓ) = nB(ℓ) + D0(B, ℓ), and view ⪰D0

B as a
(weak) ordering of the agenda Φ by liquid support of the literals.

In light of Section 3.2, we also give a functional definition of the structural
ranked agenda rule.
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Definition 5.1.2 (Functional Structural Ranked Agenda Rule). For any pro-
file B ∈ BΦ and integrity constraint Γ ∈ Lsat, let ⪰B

struc be the binary relation
on J (Γ) defined by

J ⪰B
struc J ′ if and only if min

ℓ∈J\J ′
sB(ℓ) ≥ min

ℓ∈J ′\J
sB(ℓ)

for J, J ′ ∈ J (Γ), where the minimum over the empty set is defined to equal ∞.
The functional structural ranked agenda rule is the liquid aggregation ru-
le raf

struc which maps any profile B ∈ BΦ and integrity constraint Γ ∈ Lsat
to

raf
struc(B,Γ) = {J ∈ J (Γ) | ∀J ′ ∈ J (Γ) : J ⪰B

struc J ′}.

Since liquid support sB(ℓ) gives rise to a weak order on Φ (just like majority
margins nB(ℓ) do), the proof of Proposition 3.2.4 translates directly to an analo-
gous proposition for the structural ranked agenda rule, showing the equivalence
of Definitions 5.1.1 and 5.1.2.

Proposition 5.1.3. For any profile B ∈ BΦ and integrity constraint Γ ∈ Lsat,
we have

rastruc(B,Γ) = raf
struc(B,Γ).

Likewise, the arguments for Proposition 3.1.3 translate directly to the struc-
tural ranked agenda rule, proving that it has the following normative properties.

Proposition 5.1.4. The structural ranked agenda rule on the universal domain
is language-independent, collectively complete, complement-free and consistent,
anonymous, contextually neutral, and contextually unbiased. It is not resolute,
static, neutral, unbiased, or independent.

Since the axioms which were defined in Section 2.2.3 and which characterize
the ranked agenda rule, are formulated in terms of majority margins (and not
liquid support), the structural ranked agenda rule does not satisfy all of these
properties (but it does satisfy weak Condorcet consistency, weak homogeneity
and monotonic consistency by similar arguments as for the ranked agenda rule).
If we defined analogous axioms in terms of liquid support, the structural ranked
agenda rule would satisfy these axioms. But such axioms would strongly depend
on our specific method of breaking ties, and are thus arguably not suited as
general normative principles.

As stated before, the structural ranked agenda rule is a conservative proposal
which only breaks ties in the ranked agenda rule. A more radical approach by
Boldi et al. [2011], which we briefly discussed in Section 4.2.3, reduces the voting
weight of voters by a factor α ∈ [0, 1] for each step in their delegation path. For
α = 0, this approach amounts to ignoring all voters who do not vote directly, and
for α = 1, this approach is equivalent to the original ranked agenda rule. Thus,
by decreasing the value of α, we make the aggregation rule more ‘viscous’ (i.e.,
less ‘liquid’), which is why the approach is referred to as ‘viscous democracy’.
In order to compare our structural ranked agenda rule to viscous democracy,
we define an aggregation rule which computes the viscous voting weights of all
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voters, and runs the ranked agenda algorithm prioritizing the literals by total
viscous voting weight of the supporting voters.

Consider any viscosity factor α ∈ [0, 1], any profile B ∈ BΦ and any integrity
constraint Γ ∈ Lsat. We define the α-viscous voting weight for each voter i ∈ NB

and literal ℓ ∈ Φ as

wα
i (ℓ) = 1 +

∑
{j∈NB |Bj(ℓ)=i}

α · wα
j (ℓ),

where the empty sum is defined to equal 0. Let

vαB(ℓ) =
∑

{i∈NB |BrepB,ℓ(i)
(ℓ)=+}

wα
i

be the viscous support of literal ℓ ∈ Φ under profile B ∈ BΦ. Then the α-viscous
ranked agenda rule is defined as follows.

Definition 5.1.5 (Viscous Ranked Agenda Rule). Let α ∈ [0, 1]. For any
profile B ∈ BΦ, let ⪰α

B be the binary relation on Φ where for ℓ1, ℓ2 ∈ Φ, we
have ℓ1 ⪰α

B ℓ2 if and only if vαB(ℓ1) ≥ vαB(ℓ2). Let LO(⪰α
B) be the set of linear

orders on Φ that are compatible with ⪰α
B. The α-viscous ranked agenda rule is

the liquid aggregation rule raα generated by the following process.

• Given profile B and integrity constraint Γ, initialize raα(B,Γ) = ∅.

• For each linear order ⪰ ∈ LO(⪰α
B), do the following.

– Initialize J = ∅.
– Iteratively, in the order ⪰, consider a literal ℓ ∈ Φ. If J ∪ {Γ} |= ∼ℓ,

add ∼ℓ to J . Otherwise, add ℓ to J .
– After considering all ℓ ∈ Φ, add J to raα(B,Γ).

Clearly, we could define a functional version of the viscous ranked agenda rule
again, and show that it is equivalent to its algorithmic definition. Note that the
viscous ranked agenda rule satisfies the same properties from Proposition 3.1.3
as the ranked agenda rule (by analogous arguments), and from the axioms of
Section 2.2.3, it only satisfies weak homogeneity and monotonic consistency.1

5.2 Profile Formation for Multiple Issues
In Section 4.2, we defined a model of profile formation for liquid democracy.
However, our model only generates profiles for single-issue agendas. In this
section, we extend our model to generate rational liquid aggregation profiles

1Unlike the structural ranked agenda rule, the α-viscous ranked agenda rule for α ̸= 1 does
not satisfy weak Condorcet consistency, since the total viscous weight in favor of a proposition
can be larger than the total viscous weight against it, even if the proposition receives strict
majority support in terms of majority margins.
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on multiple issues, which are logically connected through a satisfiable integrity
constraint.

Consider an agenda Φ = {p1,¬p1, . . . , pm,¬pm} containing m ∈ N proposi-
tional letters and their negations. A liquid aggregation profile B for this agenda
essentially consists of m separate single-issue profiles on some common set of
voters N . However, whereas a liquid aggregation profile in the sense of Def-
inition 2.1.3 either accepts a propositional letter or rejects it, recall that our
model of single-issue profile formation allows direct votes to take any real value
between 0 and 1. Thus, a multi-issue ballot by voter i ∈ N in our computational
model corresponds to a point b′i in the space [0, 1]k ⊆ Rk (where k ∈ {0, . . . ,m}
denotes the number of issues on which voter i votes directly), along with m− k
delegations. To convert a computationally generated multi-issue profile to a
proper liquid aggregation profile (see Example 5.2.1), we place all complete and
complement-free judgment sets J for agenda Φ in the space [0, 1]m, where the
ith coordinate of J is 1 if and only if pi ∈ J , and the ith coordinate of J is 0 if
and only if ¬pi ∈ J . Consequently, for each voter i ∈ N , we find the complete
and complement-free judgment set J∗ ⊆ Φ, which minimizes the k-dimensional
Euclidean distance between b′i and J∗, where the position of J∗ in [0, 1]k is sim-
ply the projection the position of J∗ in [0, 1]m along the issues on which voter i
votes directly. The k direct votes of voter i in liquid aggregation profile B
are then defined to follow the judgments of J∗, and the m − k delegations are
identical to the delegations in the corresponding m− k single-issue profiles.

If we further introduce an integrity constraint Γ ∈ Lsat and require the pro-
file to be rational (as proposed in Section 1.4 and formalized in Section 2.2.1),
we computationally generate the single-issue profiles identically, but when con-
verting to a multi-issue liquid aggregation profile, we only consider the complete
and complement-free judgment sets J which are consistent with the integrity
constraint.

The following example illustrates the conversion of computationally gener-
ated single-issue profiles to a multi-issue liquid aggregation profile, from the
perspective of some voter i ∈ N .

Example 5.2.1. Consider some set of voters N (containing at least two voters)
and the agenda Φ = {p1,¬p1, p2,¬p2, p3,¬p3} with m = 3. In order to generate
a liquid aggregation profile B for agenda Φ, we use the model of Section 4.2
to generate three single-issue profiles for voters N . Suppose voter i ∈ N has
m-dimensional position πi = (0.5, 0.6, 0.1) and ballot B′

i with B′
i(p1) = 0.6,

B′
i(p2) = 0.3 and B′

i(p3) = j for some voter j ∈ N \ {i} (see the gray elements
in Figure 5.1). In other words, voter i votes directly on p1 and p2, and delegates
her vote on p3.

To convert the real-valued ballot of voter i to a proper liquid aggregation
ballot, we consider all complete and complement-free judgment sets J for Φ.
Since voter i delegates her vote on p3 to another voter, we are only interested
in the judgments in J on p1 and p2. In Figure 5.1a, we see that the judgment
sets J∗ with {p1,¬p2} ⊆ J∗ have minimal distance to the direct votes of voter i.
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(a) No integrity constraint.
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b′i = (0.6, 0.3)
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{¬p1,¬p2}

{¬p1, p2} {p1, p2}

(b) Integrity constraint p1 → p2.

Figure 5.1: Generation of a 3-issue liquid aggregation ballot, where voter i
delegates her vote on p3. The horizontal axes represent her judgment on p1 and
the vertical axes represent her judgment on p2.

Thus, we set Bi(p1) = + and Bi(p2) = −. Furthermore, we leave the delegation
of voter i intact and set Bi(p3) = j.

Note that in this conversion, we did not consider any integrity constraint. If
we introduce integrity constraint Γ = p1 → p2 and require that the liquid aggre-
gation profile B is rational (i.e., the direct votes of all voters are consistent with
the integrity constraint), then the judgment sets J with {p1,¬p2} ⊆ J are not
allowed. As a consequence, the judgment sets J∗ ∈ J (Γ) with {¬p1,¬p2} ⊆ J∗

have minimal distance to the direct votes of voter i (see Figure 5.1b). There-
fore, in case we require rationality, we set Bi(p1) = −, Bi(p2) = − and
Bi(p3) = j. △

5.3 Numerical Evaluation of Four Rules
Using our model for liquid aggregation profile formation, we numerically com-
pare the performance of four liquid aggregation rules: Kemeny’s rule, the orig-
inal ranked agenda rule (Definition 3.1.1), the structural ranked agenda rule
(Definition 5.1.1) and the 1

2 -viscous ranked agenda rule (Definition 5.1.5). To
do so, we randomly generated 1 000 propositional formulas in conjunctive normal
form (containing at most 15 different propositional letters, at most 10 clauses
and at most 5 literals per clause, and having at least two different satisfying
truth assignments). Consequently, for each formula, we generated a Saltelli
sequence of size N = 3 of the 5-dimensional parameter space of our single-
issue profile formation model (with parameters n ∈ {2, . . . , 500}, ιmax ∈ [0, 1],
k ∈ {1, . . . , 100}, βι ∈ [0, 2] and βv ∈ [0, 2]; see Sections 4.2 and 4.3.1) and used
it to generate N · (d+2) = 56 rational profiles with the formula as the integrity
constraint.

Given a collective decision J ∈ J (Γ), we define the satisfaction of voter i ∈ N
to be inversely proportional to the Euclidean distance between J and the posi-
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tion πi of voter i. In other words, the satisfaction si of voter i is

si =
1

d(J, πi)
=

1√∑
pj∈J(1− (πi)j)2 +

∑
¬pj∈J((πi)j)2

.

For each of the 56 000 profiles generated, we used a brute force algorithm to find
the collective decision(s) that maximized average voter satisfaction. Further-
more, we computed the collective decisions generated by our four aggregation
rules.

In Figure 5.2, we see for each pair F ,F ′ of aggregation rules how often
F(B) was a subset of F ′(B), where B ranges over all 56 000 profiles generated.
Since the structural ranked agenda rule is a refinement of the ranked agenda
rule, we see that the collective decision under the structural ranked agenda rule
is indeed a subset of the collective decision under the ranked agenda rule in
100% of cases. Furthermore, it seems that Kemeny’s rule, the ranked agenda
rule and the structural ranked agenda rule are more similar to each other than
to the optimal rule or the viscous ranked agenda rule. This is an interesting
observation, since the decision mechanisms behind the structural ranked agenda
rule and the viscous ranked agenda rule are intuitively similar, but apparently
produce rather different outcomes. Finally, we note that no aggregation rule
selects the optimal collective decision in more than 11% of cases. Note that the
latter observation might be an artifact of our model of profile formation and
our definition of voter satisfaction: possibly, voters often submit ballots that
are rather different from their optimal ballot. For example, in Figure 5.1 we
see that the ignorance of the voter is large, causing her to vote for judgment
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Figure 5.2: Frequency with which each aggregation rule returns a subset of
another aggregation rule.
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sets {p1,¬p2} or {¬p1,¬p2}, whereas judgment sets {¬p1, p2} and {p1, p2} are
closest to her actual position. Although the judgment set that is closest to the
position of a voter is most likely to be selected, deviations may occur frequently.
And if the profile approximates the voters’ preferences poorly, an aggregation
rule cannot consistently arrive at the optimal collective decision.

Figure 5.3 plots three normative measures of the aggregation rules. Firstly,
we see the error with which each rule approximates the optimal average voter
satisfaction. The error is defined as the percentage (averaging over all profiles)
by which the voter satisfaction under a given aggregation rule is smaller than the
optimal voter satisfaction. Secondly, we see the frequency with which each rule
was irresolute (i.e., returned more than one possible collective decision). And
thirdly, we see how many possible decisions each rule returned on average, in
case it returned more than one profile. Note that the latter measure is always
greater than (or equal to) 2, since we only take into account the profiles for
which the rule is irresolute.

In the figure, we see that all aggregation rules approximate the optimal voter
satisfaction with an error of around 0.85%. We consider the differences between
the approximation errors negligible, even if they are statistically significant. On
the other hand, we clearly see a difference in irresoluteness between the rules:
Kemeny’s rule returns multiple possible collective decisions in almost 12% of
cases, whereas the different ranked agenda rules rarely return multiple possible
collective decisions. Moreover, the structural ranked agenda rule is slightly more
resolute than the viscous ranked agenda rule, which is in turn more resolute than
the ranked agenda rule. Finally, we see that if one of the ranked agenda rules
is irresolute, it almost always returns two possible collective decisions, whereas
Kemeny’s rule returns an average of 2.5 possible collective decisions, in case it
is irresolute.

Optimal satisfaction
approximation error

Irresoluteness
frequency

Possible decisions
when irresolute
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Figure 5.3: Three normative measures of Kemeny’s rule and three variants of
the ranked agenda rule. Error bars denote the standard error of the mean.
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For a more detailed understanding of how well each aggregation rule ap-
proximates the optimal voter satisfaction, we performed an OFAT analysis (see
Section 4.3.1) of the optimal satisfaction approximation error. However, in Fig-
ure 5.4 we see that none of the model parameters significantly influence the
approximation error (although the number of voters n and the maximal igno-
rance ιmax seem to influence the approximation error weakly, but consistently).
Possibly, this is an adverse effect of the method in which we generate profiles
and evaluate voter satisfaction. Since voters’ positions are uniformly distributed
along the axis of every issue, the average position is very close to the midpoint
of the opinion space. Therefore, all judgment sets (i.e., corners of the opinion
space) are roughly equally satisfactory to the average voter. By reducing the
number of voters, we allow the average position of the voters to have a larger
variance, thus reducing this issue.

In Figure 5.5, we reduced the default value of n from 250 to 10, and the
parameter range from {1, . . . , 500} to {1, . . . , 20}. Firstly, we note that the ap-
proximation error increases as the maximal ignorance ιmax increases, and as the
number of issues m increases. Both are easily explained: if voters are less igno-
rant, their direct votes are closer to their actual positions, thus increasing the
accuracy of the aggregation rule; and if there are fewer issues to vote on, there
are fewer complete and consistent judgment sets, thus increasing the frequency
with which the aggregation rules select the optimal collective decision. Further-
more, if we compare Figure 5.4 to Figure 5.5, we see that the approximation
error is much larger in the latter figure (between 0% and 10%, instead of be-
tween 0% and 2%), and especially so for very small numbers of voters (n < 5).
This confirms our conjecture in the previous paragraph, that for large numbers
of uniformly distributed voters, all judgment sets are roughly equally distant
from the average voter, allowing all four aggregation rules to approximate the
optimal collective judgment very accurately. Thus, in order to compare the
performance of our aggregation rules more thoroughly, we need to generate our
profiles over a less uniformly distributed set of voters, or gather empirical voting
data.

In line with this reasoning, it is important to note that all results in this sec-
tion depend strongly on the integrity constraints generated by our randomized
algorithm. Since real-world applications of liquid democracy might consider
very specific types of integrity constraints, the aggregation rules might perform
very differently in practice, or between different applications.

From our experiments, we conclude that none of the rules we analyzed return
the optimal collective judgment very often. However, all rules approximate
the optimal voter satisfaction rather accurately with an error of around 0.85%.
Moreover, the structural ranked agenda rule and the viscous ranked agenda rule
are considerably more resolute than the ranked agenda rule, and much more
resolute than Kemeny’s rule. A more detailed analysis of the approximation
error of our aggregation rules can be obtained by generating less uniformly
distributed voters, or collecting empirical voting data.
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Figure 5.4: OFAT analysis of the effect of the model parameters n, ιmax, k, βι, βv

and m on the optimal satisfaction approximation error of four liquid aggregation
rules. Each data point is the median output over 1 000 profiles with each a
unique randomly generated integrity constraint over m propositional letters.
Error bars represent the first and third quartile. Dotted lines indicate the default
value of each parameter.
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Figure 5.5: OFAT analysis of the optimal satisfaction approximation error of
four liquid aggregation rules for small numbers of voters n. Each data point is
the median output over 1 000 profiles. Error bars represent the first and third
quartile. Dotted lines indicate the default value of each parameter.
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Chapter 6

Conclusion

The main objective of this thesis was to design a normatively appealing liquid
aggregation rule that guarantees complete and consistent collective judgments.
Our approach to this problem consisted of three distinguishable components:
the generalization of elements from formal preference and judgment aggregation
theory to the liquid democracy setting, the computational study of epistemic
performance of aggregation rules in connection to delegation structure, and the
design and computational evaluation of a structural version of the ranked agenda
rule for liquid democracy.

In the first component (Chapters 2 and 3), we defined a formal model of
liquid judgment aggregation, studied some of its impossibility theorems and
identified the ranked agenda rule as a computationally tractable and norma-
tively appealing liquid aggregation rule. Our main contributions to the existing
body of research in these chapters include the definition of irresolute and/or
contextual versions of the most important normative axioms of judgment ag-
gregation theory, which preserve the normative principle behind the formal
axioms and (therefore) preserve the most important impossibility results. Fur-
thermore, we showed that the axiomatic characterization by Lamboray [2009b]
of the ranked pairs rule as the largest monotone and prudent preference aggre-
gation rule translates directly to the liquid judgment aggregation setting.

In the second component (Chapter 4), we computationally studied the for-
mation of liquid profiles and the resulting correlation between the depth of
a profile’s delegation structure and its epistemic performance. We concluded
that deep delegation structures tend to approximate voters’ preferences less
accurately. Therefore, according to our randomly generated profiles, delega-
tion depth can be used as a proxy for relatively unreliable liquid profiles. We
hope that our computational model of voter behavior (and the general approach
taken) can be used in the future to study the process of profile formation and
to computationally compare different aggregation mechanisms.

In the final component (Chapter 5), we combined the formal study of the
ranked agenda rule and the computational study of delegation structures to
propose a structural version of the ranked agenda rule, which prioritizes issues
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based on the number of supporters, breaking ties by delegation depth. In a
computational comparison between the structural ranked agenda rule and three
other complete and consistent judgment aggregation rules (Kemeny’s rule, the
original ranked agenda rule and viscous democracy), all rules seemed to approx-
imate the optimal average voter satisfaction equally well, while the structural
ranked agenda rule was considerably more resolute than the other rules.

As argued in the introduction of this thesis, the concept of liquid democracy
only has potential if it can avoid policy-inconsistencies. Aggregating judgments
by means of a collectively consistent aggregation rule is one of the possible solu-
tions to this problem. Although computational social choice theory teaches us
that collectively complete and consistent aggregation rules are generally com-
putationally intractable, irresolute, or both, we have seen that in practice, our
structural ranked agenda rule can be computed efficiently (as long as the in-
tegrity constraint does not contain too many issues) and rarely returns more
than one (and very rarely more than two) possible collective judgments. There-
fore, it is an important rule to consider when designing real-world liquid aggre-
gation instances.

We should note that our research leans heavily on a very simple model of
voter behavior, and one in which voters’ ideological positions are uniformly
distributed. Furthermore, our integrity constraints were randomly generated.
Therefore, our findings should be confirmed by a more realistic model of voter
behavior in combination with integrity constraints obtained from real-world ag-
gregation problems, or ideally by empirical voting data. Furthermore, although
the structural ranked agenda rule can be applied to irrational and/or cyclic pro-
files, in the computational analysis we assumed our models to be rational and
acyclic. Allowing for irrational voters, cyclic delegation and abstention possibly
alters the results significantly.

Therefore, future work should focus on the empirical verification of our con-
clusions, ideally in the presence of irrational, cyclic or incomplete profiles. Fur-
thermore, our work was inconclusive in deciding on a ‘best’ measure of delegation
depth. Possibly, one of our measures of delegation depth (or some other measure
on delegation structures) is a better predictor of epistemic performance or of
the accurate approximation of the optimal collective decision than the fraction
of casting voters, which we used in the structural ranked agenda rule. Finally,
it would be interesting to formally study further (or other) refinements of the
ranked agenda rule, such as the leximax rule. Whereas the ranked agenda rule
is the largest monotone and prudent rule, other prudent rules might be charac-
terized by similarly appealing axioms.

We conclude that the issue of policy-inconsistency in liquid democracy has
a fair chance of being resolved by the clever design of aggregation mechanisms.
The structural ranked agenda rule, for instance, is both a normatively appealing
and an experimentally accurate method of arriving at satisfactory, consistent
collective decisions. Having said that, this inquiry to liquid democracy has only
left us “curiouser and curiouser” – in the words of Lewis Carroll [1865] – in
search of the ideal voting method for the democratic ideal.
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