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Chapter 1

Introduction

Humans are inundated with information from multiple sources that appeal to var-
ious sensory organs operating on distinct modalities. Unless we are distracted,
under heavy cognitive load, or affected by a disorder, we manage to glean the
relevant bits of information from these sources, which we integrate to make sense
of the world. To do so, various perceptual and cognitive functions must be per-
formed flawlessly and meticulously. Our attention is often directed towards novel,
interesting, and informative regions in our visual field. We should keep what we
looked at in memory long enough or redirect our attention. Human commu-
nication is also multimodal, spanning language production and comprehension
involving speech, gaze, gestures, facial expressions, and body movements.

If we are talking about what we are seeing, complex visual and linguistic
processes need to take place. These include understanding what we are looking at,
retrieving words to name them, planning sentences, performing motor movements
for speech, and monitoring if what we said at the end is what we initially set out
to utter. Furthermore, if we are having a conversation with someone, we need
to consult and review what we know about their beliefs and knowledge from our
past interactions. Then, we should keep track of what has already been uttered
in the current conversation, minding the nuances during the course of our whole
interaction, and adapting our own utterances if necessary.

This thesis aims to provide support for the inclusion of information from
diverse modalities in deep neural networks in the field of Natural Language Pro-
cessing (NLP), while paying attention to the rich repertoire of human signals and
strategies unraveled in cognitive science. One of the aspects I investigate is hu-
man gaze and its role in such models. Human gaze reflects visual attention, and
it is considered a proxy for underlying cognitive processes (Rayner, 1977). As
such, human gaze can be an informative signal for deep neural networks perform-
ing multimodal tasks involving vision and language, such as describing images or
reading. Furthermore, having models that predict human gaze could provide cru-
cial insights into human cognition itself, along with an exploration of the potential

1



2 Chapter 1. Introduction

to build well-performing models of visuo-linguistic processes.
In cognitive science, many studies reveal the intricacies of the cross-modal re-

lation between language and vision. Both modalities have complex influences on
each other as concurrent linguistic production and visual processes unfold (Grif-
fin, 2004; Gleitman et al., 2007; Ferreira and Rehrig, 2019). Although the align-
ment between the two modalities is complex, there is a tight connection be-
tween them (Coco and Keller, 2012), e.g., when speakers describe an image, they
tend to look at objects right before mentioning them (Griffin and Bock, 2000;
Vaidyanathan et al., 2015).

The visuo-linguistic processes transpiring while we describe what we see in
images are intricately related to the properties of the image being described (Jas
and Parikh, 2015; Berger et al., 2023). These processes show ample variation,
as manifested in human signals such as eye movements and when humans start
to describe a given image. Having an understanding of the sources and the
extent of such variation is valuable. For instance, the variation regarding when
speakers start their descriptions could be informative about the relative cognitive
complexity of the image (Coco and Keller, 2015a; Gatt et al., 2017). Despite the
value of such signals of visuo-linguistic variation, they are virtually disregarded in
current models, which motivates further investigation, particularly for Referring
Expression Generation, a task where we model how speakers refer to images or
entities in diverse visual contexts (Krahmer and van Deemter, 2012).

Another aspect I investigate in this thesis is how humans converse with each
other, and how a ‘common ground’ is formed between the participants of a con-
versation (interlocutors) by collaboratively building on mutual knowledge and
beliefs (Clark and Wilkes-Gibbs, 1986; Garrod and Anderson, 1987; Clark and
Brennan, 1991; Clark, 1996; Brennan and Clark, 1996).

Various strategies and phenomena have been observed in dialogues. Con-
sider, for instance, referring to an entity multiple times within different contexts
with the same conversation partner. When speakers refer to the same objects
or situations more than once, their later (subsequent) references (McDonald,
1978) depend on the shared knowledge that speakers accumulate during dialogue.
Speakers establish ‘conceptual pacts’, i.e., particular ways of conceptualizing ref-
erents (Garrod and Anderson, 1987; Brennan and Clark, 1996), and continue
to utilize established expressions to maintain cohesion and avoid communica-
tion problems in dialogue (Metzing and Brennan, 2003). Subsequent references
exploit this established common ground accumulated by the interlocutors, and
hence, have several interesting properties. Namely, they tend to be shorter and
show lexical entrainment with previous mentions where effective phrasings are
reutilized (Krauss and Weinheimer, 1967; Brennan and Clark, 1996). This trend
has been confirmed in recent datasets made available in NLP (Shore and Skantze,
2018; Haber et al., 2019; Hawkins et al., 2020), where referring utterances become
more compact, and yet dialogue participants are able to identify the intended ref-
erents.
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When producing referring utterances grounded in visual and conversational
contexts, we also adapt our language use to the perceived knowledge, informa-
tion, and linguistic abilities of our interlocutors (Isaacs and Clark, 1987; Clark,
1996; Pickering and Garrod, 2004). When adults speak with children, for exam-
ple, they use simplified expressions to ensure children can understand (Saxton,
2009); when computational linguists give a talk at a cognitive science conference,
hopefully, they avoid making extensive use of NLP jargon, as that would prevent
their audience from following through the presentation. Successful adaptation to
the conceptual knowledge of conversational partners requires the ability to repre-
sent and reason about others’ mental states (Tomasello, 2005), a socio-cognitive
ability typically referred to as Theory of Mind (ToM; Premack and Woodruff,
1978). Yet, speakers do not always resort to explicitly modeling the knowledge of
their dialogue partner: due to different cognitive costs and pressures, they some-
times plan their utterances egocentrically, i.e., only taking into account their own
knowledge and abilities (Keysar, 2007).

My aim in this thesis is to contribute to the body of work on visually grounded
language use, which requires considering its multimodal nature. I develop compu-
tational models of a range of tasks involving the interplay between vision and lan-
guage, drawing inspiration from theories and findings from cognitive science and
psycholinguistics. I aim to capture the intricate relation between non-linguistic
modalities and language within deep neural networks, contributing to the line of
research on multimodal NLP and cognitively inspired NLP (Mishra and Bhat-
tacharyya, 2018; Beinborn and Hollenstein, 2024). I claim that human signals
and strategies can serve as a beneficial source in two main ways. First, human
data can be fed into deep learning models to help inform the models about how
humans react to various stimuli to improve performance. Second, patterns of
behavior and theories of human cognition can be a source of inspiration for how
the models learn, and how the inputs are represented and processed.

The findings in this thesis advance our understanding of human visuo-linguistic
processes by revealing that intricate strategies are at play in such processes and
point to the importance of accounting for them when developing and utilizing
multimodal models. In this way, advancements in artificial intelligence (AI) can
lead to a better understanding of cross-modal processes, which can inform the
development of better AI models. Next, I give an overview of the contents of the
thesis.

1.1 Thesis Overview

This thesis consists of two parts with the overarching goal of advancing multi-
modal models by better understanding human visuo-linguistic processes. These
two parts are preceded by a chapter introducing the background common to both
parts.
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Background (Chapter 2) In this chapter, I first provide background infor-
mation for human gaze and visuo-linguistic processes in humans, with findings
stemming from cognitive science, perception studies, and psycholinguistics. Then,
I review visuo-linguistic processes in AI models, starting with task-based multi-
modal models followed by pretrained multimodal models. I exemplify the main
datasets and metrics used in this line of research. Then, I review the use of gaze
in NLP and cognitively inspired NLP research. Each chapter in the two parts
of the thesis contains its own background section, providing more relevant and
up-to-date information.

Part One: Modeling Human Gaze in Language Use In this part of the
thesis, I investigate whether incorporating gaze into image description generation
models enhances descriptions, whether pretrained multimodal models can cap-
ture the variation in human visuo-linguistic signals while describing images, and
finally, whether pretrained multilingual models can capture the patterns in eye
movements that accompany reading comprehension across languages. Chapter
3 gives an overview of the research questions explored in this part.

In Chapter 4, I investigate the sequential cross-modal alignment between
vision and language by modeling the image description generation process com-
putationally using a corpus of Dutch image descriptions with concurrently col-
lected eye-tracking data (van Miltenburg et al., 2018b). I take as the starting
point a powerful image captioning system, which was state-of-the-art at the time
of the project (Anderson et al., 2018). I then develop several model variants that
exploit information from human gaze patterns recorded during language produc-
tion. In particular, I propose the first approach to image description generation
where visual processing is modeled sequentially. The experiments and analyses
in this chapter confirm that better descriptions can be obtained by exploiting
gaze-driven attention and shed light on human cognitive processes by comparing
different ways of aligning the gaze modality with language production. The re-
sults reveal that processing gaze data sequentially leads to descriptions that are
better aligned to those produced by speakers, more diverse, and more natural—
particularly when gaze is encoded with a dedicated recurrent component.

In Chapter 5, using the same corpus of Dutch image descriptions as in Chap-
ter 4, I explore the nature of the variation in visuo-linguistic signals and find for
the first time significant correlations between different types of signals. Given
this result, I hypothesize that variation stems partly from the properties of the
images, and explore whether image representations encoded by pretrained vision
encoders can capture such variation. The results indicate that pretrained mod-
els do so to a weak-to-moderate degree, suggesting that the models lack biases
about what makes a stimulus complex for humans and what leads to variations
in human outputs.

Finally, in the last chapter of this part, Chapter 6, I present the details of my
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approaches that attained second place in the shared task of the ACL 2022 Cogni-
tive Modeling and Computational Linguistics Workshop (Hollenstein et al., 2022).
The shared task focuses on multi- and cross-lingual prediction of eye movement
features in human reading behavior, which could provide valuable information
regarding universal aspects of language processing as well as its language-specific
properties (Liversedge et al., 2016; Hollenstein et al., 2021b). This task could help
us gain insight into language-related eye movements and the predictive capabili-
ties of models of human reading behavior. To this end, I train ‘adapters’ (Houlsby
et al., 2019) inserted into the layers of frozen transformer-based pretrained lan-
guage models (Conneau and Lample, 2019). The results reveal that multilingual
models equipped with adapters perform well in predicting eye-tracking features.
The outcomes suggest that utilizing language- and task-specific adapters is ben-
eficial, and translating test sets into similar languages that exist in the training
set could help with zero-shot transferability in the prediction of human reading
behavior.

Part Two: Communication Strategies in Referential Tasks - Vision and
Language in Dialogue In Part One, I show that human gaze is a significant
factor when modeling language comprehension and production. In this part, I
move on to conversational settings where interlocutors play a visually grounded
reference game. In particular, I delve into quantifying and modeling referring ut-
terances in visual and conversational contexts, mainly exploiting the PhotoBook
dataset (Haber et al., 2019) introduced in Chapter 7.

In Chapter 8, I aim to shed light on the mechanisms employed by human
speakers when referring to visual entities through the means of pretrained models.
I quantify the degree of descriptiveness (how well an utterance describes an image
in isolation) and discriminativeness (to what extent an utterance is effective in
picking out a single image among similar images) of human referring utterances
within multimodal dialogues. To this end, I use a transformer-based pretrained
multimodal model, CLIP (Radford et al., 2021), to encode the images and refer-
ring utterances. Overall, the results show that utterances become less descriptive
over time while their discriminativeness remains unchanged. The analyses in this
chapter indicate that this trend could be due to participants relying on the pre-
vious mentions in the dialogue history, as well as being able to distill the most
discriminative information from the visual context. In general, this study opens
up the possibility of using pretrained models to quantify patterns in human data
and to shed light on the underlying cognitive mechanisms and strategies utilized
by interlocutors.

In Chapter 9, I tackle the generation of first and subsequent references in vi-
sually grounded dialogue in the PhotoBook dataset. I propose a generation model
that produces referring utterances grounded in visual and conversational contexts.
I also implement a reference resolution system to assess the effectiveness of the
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referring utterances produced by the generation model. The experiments and
analyses show that the model produces better, more effective referring utterances
than a model not grounded in the dialogue context, and generates subsequent
references that exhibit linguistic patterns akin to humans.

It is an open question how adaptation in dialogue can be modeled in compu-
tational agents. In the final chapter of this part, Chapter 10, I model a visually
grounded referential game, based on the PhotoBook dataset, between a knowl-
edgeable speaker and a listener with more limited visual and linguistic experience.
Inspired by psycholinguistic theories, I endow the speaker with the ability to adapt
its referring expressions via a simulation module that monitors the effectiveness of
planned utterances from the listener’s perspective. I propose an adaptation mech-
anism building on plug-and-play approaches to controlled language generation,
where the simulator steers utterance generation on the fly without fine-tuning
the speaker’s underlying language model. The results and analyses show that
the proposed approach is effective: the speaker’s utterances become closer to the
listener’s domain of expertise, which leads to higher communicative success.

Conclusion (Chapter 11) I summarize the findings and contributions of the
thesis, detail the limitations and potential future work, and touch upon ethical
considerations. Overall, the research explained in this thesis has implications both
for future multimodal models in AI and research into cognitive science, showing
the importance of accounting for human cognitive processes when developing
neural networks.

1.2 List of Publications

The contents of this thesis originate from the following papers, in the order they
are presented in the chapters:

• Ece Takmaz, Sandro Pezzelle, Lisa Beinborn, and Raquel Fernández. 2020.
Generating Image Descriptions via Sequential Cross-Modal Alignment Guided
by Human Gaze. In Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages 4664–4677, Online.
Association for Computational Linguistics.

• Ece Takmaz, Sandro Pezzelle, and Raquel Fernández. 2024. Describing
Images Fast and Slow : Quantifying and Predicting the Variation in Human
Signals during Visuo-Linguistic Processes. To appear in Proceedings of the
2024 Conference of the European Chapter of the Association for Computa-
tional Linguistics (EACL).

• Ece Takmaz. 2022. Team DMG at CMCL 2022 shared task: Transformer
adapters for the multi- and cross-lingual prediction of human reading be-
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havior. In Proceedings of the Workshop on Cognitive Modeling and Compu-
tational Linguistics, pages 136–144, Dublin, Ireland. Association for Com-
putational Linguistics.

• Ece Takmaz, Sandro Pezzelle, and Raquel Fernández. 2022. Less descrip-
tive yet discriminative: Quantifying the properties of multimodal referring
utterances via CLIP. In Proceedings of the Workshop on Cognitive Modeling
and Computational Linguistics, pages 36–42, Dublin, Ireland. Association
for Computational Linguistics.

• Ece Takmaz, Mario Giulianelli, Sandro Pezzelle, Arabella Sinclair, and
Raquel Fernández. 2020. Refer, Reuse, Reduce: Generating Subsequent
References in Visual and Conversational Contexts. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 4350–4368, Online. Association for Computational Lin-
guistics.

• Ece Takmaz*, Nicolo’ Brandizzi*, Mario Giulianelli, Sandro Pezzelle, and
Raquel Fernández. 2023. Speaking the language of your listener: Audience-
aware adaptation via plug-and-play theory of mind. In Findings of the
Association for Computational Linguistics: ACL 2023, pages 4198–4217,
Toronto, Canada. Association for Computational Linguistics. *Shared first
authorship.

I list below the other works that I contributed to during my PhD:

• Ece Takmaz, Sandro Pezzelle, and Raquel Fernández. 2022. Time Align-
ment between Gaze and Speech in Image Descriptions: Exploring Theories
of Linearization. Abstract presented at the 44th Annual Conference of the
Cognitive Science Society.

• Sandro Pezzelle, Ece Takmaz, and Raquel Fernández. 2021. Word rep-
resentation learning in multimodal pre-trained transformers: An intrinsic
evaluation. Transactions of the Association for Computational Linguistics,
9:1563–1579.

• Gökhan Gönül, Ece Takmaz, and Annette Hohenberger. 2021. Preschool
children’s use of perceptual-motor knowledge and hierarchical representa-
tional skills for tool making. Acta Psychologica, 220:103415.





Chapter 2

Background

Human cognitive processes are grounded in multiple modalities, receiving infor-
mation from various types of stimuli. Action, perception, and cognition are all
grounded in information from various modalities we experience as we interact
with the world in an embodied manner (Zwaan and Madden, 2005). Naturally,
human communication is also multimodal. Face-to-face dialogue involves speech,
gestures, and eye movements, conveying important and sometimes complemen-
tary information that we need to keep track of and interpret (Rasenberg, 2023).
Clark and Krych (2004) list various non-verbal communication channels, includ-
ing pointing, placing, eye and head movements that speakers use to monitor the
addressees during conversation. These also modulate repairs to what the inter-
locutors uttered and modifications to what they are planning to say. These com-
municative channels can have critical effects in achieving joint attention and, thus,
in how a conversation unfolds (Clark and Krych, 2004; Clark, 2003; Bangerter,
2004; Clark, 1996; Tomasello, 1999). The way in which these modalities inter-
act with each other and how they are affected by our interlocutor’s behavior
leading to multimodal alignment during a conversation contribute to a complex
system (Kendon, 2004; Rasenberg et al., 2020; Feyaerts et al., 2017; Brône and
Oben, 2018).

In this thesis, when developing and evaluating AI models, I pursue a line of re-
search inspired by the multimodality of the stimuli we are surrounded by. I argue
that AI models should be made aware of the information that can be gathered
through multiple modalities and be able to integrate such information meaning-
fully. Although current AI models can be made increasingly more multimodal,
my exploration in this thesis covers visual and linguistic modalities, with the first
half of the thesis extending the investigation into the inclusion of eye movements.

In this chapter, I provide background for why it is crucial to consider visuo-
linguistic processes and eye movements when developing AI models. In Sec-
tion 2.1, I delve into the importance of what eye movements convey and the
connection between visual and linguistic processes, providing a theoretical frame-
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work behind the motivations for this thesis. Then, in Section 2.2, I detail the
technical background underlying NLP models combining vision and language,
giving an overview of the tasks, models, datasets, and metrics. Finally, in Sec-
tion 2.3, I review assorted approaches to bridging human and machine processing
features related to language and vision.

2.1 Visuo-Linguistic Processes in Humans

2.1.1 Eye Movements

Eye movements have been an intriguing source of information in research on visual
processing in humans. Figuring out what draws humans’ attention in the course
of performing a task is a crucial research topic that has implications both for
cognitive science and AI. In the literature on human visual cognition, methodolo-
gies such as eye-tracking are used to obtain insights into human gaze. The main
focus of interest is the fixations: slow, stable eye movements maintained within a
small spatial region (Holmqvist et al., 2011). Fixations indicate where attention
falls, and they are considered to be representing the contents of cognitive pro-
cesses (Salvucci and Goldberg, 2000; Nyström and Holmqvist, 2010). Therefore,
tracking where people focus on, as well as what they skip, can reveal how certain
aspects of human cognition work.

In the early years of eye gaze studies, crude and intrusive setups were used,
where contact lenses and suction cups were employed to track where the eyes
go (Buswell, 1935; Yarbus, 1967). Nowadays, more advanced and less intrusive
eye-tracking devices capture raw gaze data based on infrared reflections from the
eyes as well as face and eye position determination from video streams. During
data collection, participants are usually shown visual stimuli such as images and
text. The participants can be asked to inspect the stimuli freely, or they can
be asked to perform a task such as describing images or searching for objects in
images.

Before starting to analyze any collected gaze data, a crucial issue is deciding
how to represent gaze meaningfully. The raw data is usually further processed
to classify gaze samples into fixations (longer gazes over a region) and saccades
(faster jumps to distant regions) based on features such as dispersion or the ve-
locity of gaze (Salvucci and Goldberg, 2000; Nyström and Holmqvist, 2010). Two
main representation types are then utilized: heatmaps and scanpaths. Heatmaps
(also called saliency maps or attention maps) display the distribution of attention
over the image, indicating the number or duration of fixations received by each
region (Nyström and Holmqvist, 2010). Scanpaths can indicate the order of atten-
tion on regions, or if annotations are available, object bounding boxes (Nyström
and Holmqvist, 2010). Such regions could also be defined for text, where each
word can be considered an entity. In this way, we can obtain the sequences of
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focus on areas of interest, as compared to static heatmaps.
When inspecting an image or reading a paragraph, humans do not pay atten-

tion to everything simultaneously and may utilize certain strategies. The unfold-
ing of eye movements would depend on the properties of the stimulus as well as
possible tasks and goals (Yarbus, 1967; Buswell, 1935; Henderson and Ferreira,
2013). If humans are instructed to describe an image by speaking or writing
rather than simply looking at an image, they would selectively attend certain
parts of the image, and there would be differences in attention (van Miltenburg
et al., 2018b,c). Saliency is one aspect that attracts attention, which is due to
low-level features of images such as colors and their intensities, the contrast in
colors, brightness, and orientation (Itti and Koch, 2001, 2000; Itti et al., 1998).
In addition to saliency, informative and particularly meaningful parts of an image
also receive substantial attention (Henderson et al., 2018). See Castelhano and
Williams (2021) for a survey on scene perception.

The difference between saliency and task-related attention is delineated in
work proposing the existence of ‘bottom-up’ vs. ‘top-down’ attention in hu-
mans (Castelhano and Williams, 2021; Torralba et al., 2006; Paneri and Gre-
goriou, 2017). ‘Bottom-up’ attention corresponds to attention allocated with
regard to the low-level features of images, as certain regions stand out as opposed
to others. ‘Top-down’ attention, on the other hand, is informed by the goal of
the task and the contextual information to allocate attention over regions that
would be informative and meaningful with respect to the task. Gaze has been
shown to be useful in inferring what task was performed by the participants, as
the viewing task affects gaze (Castelhano et al., 2009; Castelhano and Williams,
2021; Coco and Keller, 2014).

An important claim in visual cognition is that subjects make a first pass
over the whole image to obtain the gist of the scene very quickly (Buswell, 1935;
Oliva, 2005; Oliva and Torralba, 2006). Fixations made in the first pass may serve
the function of filling in a mental-spatial map. This would constitute a proxy for
visual memory, as gaze can provide clues into how memories are formed, retrieved,
and reconstructed (Ryan and Shen, 2020; Theeuwes et al., 2009), whose capacity,
however, could be limited (Cohen et al., 2016). In relation to visual working
memory, this capacity would depend on how the visual objects are represented
and maintained even when they are not being attended (Ozimič and Repovš,
2020). When someone sees an image again, their attention over it would likely
be different from the first time they had seen it. Repetitively seeing an image
would increase its familiarity and how the subject reacts to it. Given a series of
images, novelty and familiarity could condition where people prefer to look at, also
regulated by curiosity and intrinsic motivation (Jaegle et al., 2019; Schmidhuber,
2010; Boden, 2003).

The cognitive state related to top-down cognitive processes can be reflected
in gaze along with responses based on stimuli and oculomotor factors (Henderson
et al., 2013). Such cognitive processes involve recalling from long-term memory,
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reasoning, planning, and production. As a result, gaze could be an informative
source when we aim to model the representational and algorithmic levels (as
proposed by Marr, 1982) of cognitive processes. Interestingly, gaze can also affect
problem-solving, having an overall effect on how the visual information is attended
to and processed (Grant and Spivey, 2003; Pomplun et al., 1996). In addition,
gaze could reflect confusion, inattention, and concentration (cognitive load) on
the participant’s side. Pupil dilation and blink rate can also reveal underlying
processes related to task difficulty and mental effort or learning and goal-directed
behavior spanning a range of cognitive structures and processes responsible for
language (Eckstein et al., 2017).

Next, I review research into the effects of visual processing occurring in parallel
with linguistic processes.

2.1.2 Eye Movements During Language Use

Eye movements are intricately connected to various facets of our environment
and internal processes, as Richardson and Dale (2005) put it (p. 1143):

Eye movements are driven both by properties of the visual world and
processes in a person’s mind. Your gaze might also be influenced by
what your friend is saying, what you say in reply, what is thought but
not said, and where you agree and disagree.

In the first half of this thesis, I focus on the relationship between eye move-
ments and language use as they unfold over time. For instance, when speaking,
we produce words one by one. Therefore, we need to map the contents of our
thoughts into words in such a way that we can utter them sequentially. This
is called the speaker’s ‘linearization’ problem (Levelt, 1981; Ferreira and Rehrig,
2019). Similarly, when describing images, we need to map visual information onto
a sequence of words by scanning the image, retrieving lemmas, encoding them
phonologically, formulating the utterance, and finally, articulating it. In this case,
our eye movements also need to be linearized due to attentional constraints – even
though images are of multidimensional, non-sequential nature (Griffin, 2004; Grif-
fin and Bock, 2000; Ferreira and Rehrig, 2019). In this way, certain properties of
speech production and comprehension can be reflected in gaze as these processes
unfold sequentially in parallel.

The existence and nature of cross-modal correlations between the stages of
word-by-word sentence production and eye movement patterns (i.e., scanpaths)
are actively being explored in the literature (Griffin and Bock, 2000; Gleitman
et al., 2007; Coco and Keller, 2012; Ferreira and Rehrig, 2019; Henderson, 2017).
The proposed theories regarding linearization suggest distinct explanations for
what happens in sentence formulation and speech execution phases in relation
to visual processes (incremental, holistic, or predictive processing; as reported in
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Ferreira and Rehrig, 2019). Previous studies mainly utilize small sets of black-
and-white line drawings or artificially-created sparse scenes containing few ob-
jects (Griffin and Bock, 2000; Gleitman et al., 2007), while later studies exploit
naturalistic images (Ferreira and Rehrig, 2019).

In addition to visually conditioned language production, in the literature,
there has also been substantial focus on language comprehension in visual con-
texts. Such studies are carried out utilizing the ‘visual world paradigm’, where
participants look at an image while listening to verbal input pertaining to the
image. These works investigate how vision and language comprehension work to-
gether, particularly, revealing predictive processes in human cognition by inspect-
ing anticipatory eye movements (Kamide et al., 2003; Coco and Keller, 2015b).

There could also be behavioral differences in visuo-linguistic processes. For
instance, some participants might start talking about an image immediately,
whereas others prefer to observe the image for a longer duration and then start
uttering. Such a phenomenon could even be observed in the trials of a single
participant. There could be various explanations for this behavior, where more
complex or ambiguous images require more deliberate thinking and time to access
lexical items (leading to silent intervals). In contrast, certain images are described
very easily, feeling almost instantaneously, albeit with potential mistakes and
later corrections. These differences in behavior could be likened to the System-1
and System-2 models of thinking (dual process theory; Wason and Evans, 1974),
which have been brought into a wider audience by Kahneman (2012). In the dual
process theory, System-1 is claimed to be the system that reacts quickly and per-
forms automatized actions based on intuitions or familiarity, whereas System-2
is the pathway taken when the task needs deliberation and reasoning – thinking
about something in detail before producing an outcome.

It is also worthwhile to consider the extent to which verbal processes and visual
attention are intertwined. For instance, Vogels et al. (2013) find that subjects
choose referents depending on visual salience. On the other hand, their results
indicate that during language production, referring expressions are not affected
directly by visual salience. Bavelas and Chovil (2000) consider audible and visible
cues as a whole and not as disjunctive signals; consequently, multimodal models
would benefit from operationalizing this theory of ‘visible acts’. Imagine the
referring utterance ‘the blue triangle’, whose referent may be ambiguous in certain
contexts that contain multiple blue triangles. However, this utterance coupled
with gaze can be unambiguous, influenced by pragmatic effects, constraints, and
task-based goals (Hanna and Tanenhaus, 2004; Hanna and Brennan, 2007).

Gaze also has social, collaborative, and referential roles in dialogue, and it can
help determine whether the interlocutors are attending the same components of
the visual context (Argyle et al., 1994; Somashekarappa et al., 2020). Research has
indicated that a closer alignment between the focuses of attention of interlocutors
can be a sign of better comprehension (Richardson and Dale, 2005; Richardson
et al., 2007). Such an alignment can also alter how objects in the environment
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are referred to when the interlocutors are aware of each other’s focus of attention.
In this way, dialogue participants may be able to predict the contents of others’
mental states, maintaining shared mental representations that can be influenced
by meta-linguistic processes (Brennan, 2005). This, in turn, would affect the time
and space course of gaze itself by taking the conversation history (also what is
not said) and visual context into account (Richardson and Dale, 2005). Finally,
from a developmental perspective, attentive behavior in social contexts can help
children ‘perceive referential intent’ from their parents and narrow down the set
of possible mappings between words and meanings (Trueswell et al., 2016), also
driven by infants’ processes of physical reasoning and certain principles of object
perception (Spelke, 1990).

In light of the literature reviewed above, I emphasize the importance of ac-
counting for diverse modalities and processes to make sense of human cognition
and the potential of modeling the inner workings of visuo-linguistic processes
when developing AI systems that can communicate and produce human-like out-
puts.

2.2 Visuo-Linguistic Processes in AI Models

As explained in the previous section, human processing is multimodal, and AI
models are increasingly developed to have multimodal input and output channels.
Looking at the history of AI, we see that multiple modalities, which were initially
modeled separately for a specific task, have come to be combined in contemporary
models with overarching task-independent capabilities. In this thesis, I primarily
focus on AI models that can process data in visual and linguistic modalities, often
called Vision-and-Language (VL) models. Such models work at the intersection
of computer vision (CV) and NLP, two fields that are nowadays converging with
the use of similar architectures and training schemes.

A specific line of research pertinent to this thesis is Natural Language Genera-
tion (NLG), which aims to develop models that generate linguistic output. In the
context of this thesis, I explore NLG models conditioned on visual contexts as well
as conversational histories. In Section 2.2.1, I delve into detail about multimodal
models trained to perform specific tasks such as automatic image description
generation and conversing in visually grounded dialogue scenarios. Then, in Sec-
tion 2.2.2, I review task-agnostic VL models developed to be powerful pretrained
foundation models that transfer with good performance to downstream tasks. In
Section 2.2.3, I describe a selection of cases in which multimodal models have
been shown to come short.
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2.2.1 Task-Specific Multimodal Models

Early multimodal models were trained to perform a specific task, such as image
captioning or visual question answering (VQA). For example, in image captioning,
the aim is to produce text that is relevant to the input image. This task requires a
proper representation of the image, capturing scene semantics, objects, attributes,
and relations, and finally, producing relevant information in a verbal form that is
correct and sufficient. In humans, describing images involves understanding the
image contents, mapping image features and language to each other, selecting the
contents to be described, planning and articulating the final surface form of the
description (Reiter and Dale, 1997; Levelt, 1981), which makes it a complex task
to model and evaluate (Bernardi et al., 2016; Stefanini et al., 2023; Erdem et al.,
2022).

Early methods for image description generation utilized explicit representa-
tions of image contents, exploiting a set of captions using retrieval, employing
template-based generation, and handcrafted rules, which led to relatively inflex-
ible setups (Bernardi et al., 2016; Stefanini et al., 2023). In contrast, this thesis
commenced around a time when deep neural networks were gaining traction both
in NLP and CV. The use of distributed representations in NLP provided fruit-
ful outcomes by representing words with embedding vectors (Rumelhart et al.,
1986; Mikolov et al., 2013a,b,c). In addition, the benefits of utilizing Long-Short
Term Memory Recurrent Neural Networks (LSTM RNN) and their derivatives in
processing sequences were well known to capture the sequential nature of various
phenomena, including language (Sutskever et al., 2014; Hochreiter and Schmidhu-
ber, 1997). In CV, when representing images, handcrafted, rule-based approaches
were surpassed by end-to-end models based on deep neural networks, skipping
intermediate processing stages, such as object detection and image segmenta-
tion (Ren et al., 2015a). As a result, visual features have started to be extracted
from the later layers of models based on Convolutional Neural Networks (CNN)
such as AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan and Zisserman,
2015), and ResNet (He et al., 2016), pretrained to recognize or classify images.

The research in this thesis builds on such deep neural network-based efforts
in multimodal models. In the case of automatic image description generation,
the models show diversity in terms of how they represent and exploit images and
linguistic data, although the underlying end-to-end structure tends to be similar.
The models mainly follow the encoder-decoder architecture (Sutskever et al.,
2014), where the crucial information in the image is captured by the encoder, and
its output, usually a single fixed vector, is provided to the decoder to generate
the description autoregressively, conditioned on the visual input (Vinyals et al.,
2015). In such a model, the encoder could be a CNN-based pretrained image
model, and the decoder could be an LSTM model. Then, the LSTM is trained to
predict the next word conditioned on the encoded image representation and the
previously generated words. At each step of generation, the hidden state of the



16 Chapter 2. Background

LSTM is projected to the dimensions of the vocabulary to sample a word based
on softmax probabilities to form the predicted image description.

In the literature of deep learning, utilizing an attention mechanism, particu-
larly in sequence-to-sequence models, has proven to be advantageous (Sutskever
et al., 2014; Bahdanau et al., 2015). Attention mechanisms, originally proposed
for machine translation (Bahdanau et al., 2015), help keep track of essential words
in the source, prevent repetition, and provide coverage of all crucial information.
This idea has also been transferred to image description generation, in a way rep-
resenting the eye movements of the model over the input image. The influential
work by Xu et al. (2015) applies attention over grid features representing the im-
age extracted from a lower layer of a CNN as compared to the other works using a
single feature vector from the final layer. Then, the model learns to dynamically
apply attention over these features, selectively focusing on specific regions as it
generates the description. Another influential model, inspired by how human at-
tention works, is the Bottom-up Top-down image captioning model by Anderson
et al. (2018). This model combines bottom-up visual saliency to obtain object
regions with top-down task-related processes to apply attention over the regions
in line with the goal of image caption generation. I base the models I develop in
Chapter 4 on this model. For more details about image captioning models, I refer
the reader to surveys reviewing the literature of image description generation over
the years (Bernardi et al., 2016; Hossain et al., 2019; Erdem et al., 2022; Stefanini
et al., 2023).

Going beyond image description generation models operating on a single im-
age input and producing a single description, developing models in increasingly
multimodal and social contexts is also an important research direction in AI (Bisk
et al., 2020). To this end, task-specific models using the encoder-decoder approach
with an attention mechanism have also been developed for visually grounded di-
alogue, where two participants have a conversation related to visual content (Das
et al., 2017; de Vries et al., 2017). The exact architectures of these models diverge
from those of image description generation models to accommodate the nature of
visually grounded dialogue. For instance, the encoder is not only for the visual
modality but also encompasses the linguistic modality, representing the dialogue
history together with the visual context. In the second part of the thesis, I propose
my own models for visually grounded dialogue and utilize task-agnostic models
(reviewed in Section 2.2.2) to quantify and represent the input data in this task.

Task-specific models are trained in a supervised manner, with the input being
images depicting mainly real-life scenes. The text corresponding to the image
is used as the expected output. Therefore, task-specific models require task-
specific datasets, whose creation and availability have been instrumental in the
development of such models. A typical example of commonly used datasets in
this field is MS COCO (Lin et al., 2014), which provides on average 5 captions
for 120K images along with various types of annotations for object categories and
locations. In contrast to MS COCO, which involves captions mentioning only
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the entities that visibly exist in the images, other multimodal datasets including
meta-information and commonsense knowledge in their descriptions have also
been introduced (Alikhani et al., 2020; Kiela et al., 2020; Kruk et al., 2019). The
datasets for visually grounded dialogue, on the other hand, particularly focus on
task-oriented conversations about multimodal contexts eliciting realistic dialogue-
related phenomena (Shore and Skantze, 2018; Haber et al., 2019; Suhr et al., 2019;
Hawkins et al., 2020).

Task-specific models involving language generation are mainly evaluated on
whether the generated text is sufficiently close to the reference sentences pro-
duced by humans. However, it is difficult to determine what contributes to the
‘closeness’ between the sentences. Two sentences could be deemed close to each
other due to multiple factors such as semantics and syntax, as well as surface form
information such as sentence length. Due to these potential dimensions in which
‘closeness’ can be measured and the fact that some dimensions are less straight-
forward to assess, evaluating the goodness of machine-generated text is still an
open problem (Reiter and Dale, 1997; van Miltenburg, 2023). In many cases,
human evaluations would be preferred; however, along with being costly, they are
subjective—usually, there are multiple correct responses—and not perfect.

With the aim of evaluating generated text automatically, various metrics
have been proposed. Following the approaches utilized in evaluating machine
translation and text summarization, image captioning models have also been as-
sessed with respect to the automatic measures based on the matches between
generated text and ground-truth reference texts. Commonly-used metrics in-
clude BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), METEOR (Banerjee
and Lavie, 2005). BLEU utilizes n-gram precision; METEOR performs unigram
matching also using synonyms; ROUGE looks at recall and the longest com-
mon subsequence between the generated output and the ground truth references.
CIDEr (Vedantam et al., 2015) and SPICE (Anderson et al., 2016b) were specif-
ically proposed for image captioning, with CIDEr using tf-idf weighing to assess
the consensus among references, and SPICE using semantic scene graphs to mea-
sure the match between the text and the images.

These metrics have been shown to correlate with human evaluations to vary-
ing extents, mostly weakly, in tasks ranging from machine translation to image
captioning (Callison-Burch et al., 2006; Liu et al., 2016; Novikova et al., 2017;
Saphra et al., 2023; Hessel et al., 2021). Although the correlations are imperfect,
these metrics are still used to compare models to past work and are reported
frequently. Particularly, the metrics based on surface forms of the words have
shortcomings when evaluating image captions, showing the importance of seman-
tic metrics based on embeddings (Kilickaya et al., 2017). Therefore, there is a
shift towards utilizing distributed representations and task-agnostic pretrained
models in evaluating generated text, such as BERTScore (Zhang et al., 2020b)
and CLIPScore (Hessel et al., 2021). In the next subsection, I provide a review
of task-agnostic pretrained models relevant to multimodal NLP.
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2.2.2 Task-Agnostic Pretrained Multimodal Models

The introduction of the transformer architecture has led to unprecedented progress
in NLP and CV (Vaswani et al., 2017). Transformers allow for efficient compu-
tations based on non-recurrent operations, facilitating the management of long-
range dependencies using self-attention over the input sequence, and connecting
the encoder and a potential decoder with the cross-attention mechanism. The
transformer architecture forms the backbone of influential pretrained large lan-
guage models such as BERT (Devlin et al., 2019) and GPT (Radford et al., 2019;
OpenAI, 2023). The BERT model, for instance, was trained using large amounts
of data in English in a self-supervised manner (Devlin et al., 2019). Its represen-
tations have been shown to transfer well to many downstream NLP tasks, whose
objectives differ from the self-supervision objective of the BERT model (Devlin
et al., 2019). Given these positive results, the overarching framework nowadays
is to construct large-scale models that are task-agnostic, general-purpose founda-
tion models trained to have good representations for a large range of potential
applications (Bommasani et al., 2021).

The idea of training transformer-based models via self-supervision on large
datasets has also transferred to the multimodal realm. The aim is to learn task-
agnostic vision-and-language representations in a self-supervised manner, which
would transfer well to potentially many multimodal downstream tasks. The train-
ing objectives are masked language modeling (where a subset of the tokens in the
input is randomly masked and then predicted based on the available context as
proposed by Devlin et al. (2019)), masked vision/image modeling (regressing to
the image region vector or a masked bounding box or predicting its object cat-
egory), image-sentence matching (binary label or an alignment score). In VL
models, masked prediction objectives can be applied to either or both of the
modalities: masking the visual input and predicting it with the help of surround-
ing visual regions as well as the language, or conversely, masking a word and pre-
dicting it from the sentential context along with the image. Once these models
are pretrained, fine-tuning for specific downstream tasks is performed, in general,
on much smaller datasets. Conversely, there have also been proposals to conduct
the pretraining on multiple multimodal tasks, such as VQA, caption-based image
retrieval, and reference resolution, to produce universal multimodal models (Lu
et al., 2020).

A plethora of multimodal models have been built on the transformer archi-
tecture and trained using massive datasets via self-supervision. One type of such
models fuses the vision and language modalities from the beginning, relaying
the information through a single stream, as in models such as VL-BERT, Visu-
alBERT, VideoBERT, UNITER, Unified VLP, OSCAR, and VinVL (Su et al.,
2020; Li et al., 2019; Sun et al., 2019; Chen et al., 2020; Zhou et al., 2020; Li et al.,
2020b; Zhang et al., 2021). On the other hand, dual-stream architectures have
multiple encoders that handle modalities separately at first, as in ViLBERT and
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LXMERT (Lu et al., 2019; Tan and Bansal, 2019). Then, the outputs of modality-
specific streams are combined through fusion mechanisms, which show diverse
structures in the literature: cross-modal attention, dot product, and concate-
nation. Bugliarello et al. (2021) unify both stream types in a single framework,
revealing that they perform similarly under the same setup, while Hendricks et al.
(2021) show the importance of multimodal attention in improving performance
as compared to having deeper models applying modality-specific attention.

The language encoders of these models are initialized using BERT weights,
following the preprocessing steps as in BERT tokenization to prepare the lin-
guistic input. The visual input can be obtained from pretrained vision models
such as object regions detected by Faster R-CNN (Ren et al., 2015b) or grid
representations by ResNet (He et al., 2016). Li et al. (2020b) also incorporate
object labels in the input as an anchor between image regions and descriptions.
Zhang et al. (2021) improve on this model by proposing a more advanced object
detector, enhancing the object labels to be used as cross-modal anchors.

A special case is proposed by Tan and Bansal (2020), where a language model
is supervised by the visual task of predicting images for each token, which are later
discarded during inference. Since visual context provides cues and contributes to
linking meaning to words, object naming and grounding referential expressions
are beneficial for downstream language-only use cases as well.

Contrastive learning of visual and textual representations as a training objec-
tive has also proven advantageous in models such as CLIP (Radford et al., 2021)
and ALIGN (Jia et al., 2021). Via this objective, a model is trained to predict
higher scores for a matching image and text pair. The CLIP model, for instance,
uses separate transformers to encode vision and language and was trained on
millions of image-text pairs collected from the internet (Vaswani et al., 2017;
Dosovitskiy et al., 2021; Radford et al., 2021). Such automatically collected data
crawled from the internet at a large scale could be noisy compared to the curated
datasets used by the task-specific models, yet also advantageous for pretraining
and learning general-purpose multimodal information (Radford et al., 2021).

CLIP’s vision encoder has been shown to be powerful and robust, benefitting
many VL tasks. For instance, when replacing previous image encoders or when
it was used as a conditioning input for image caption generation, it improves or
performs comparably with the state-of-the-art models in VQA and image caption-
ing (Shen et al., 2022; Mokady et al., 2021). It can also help generate contrastive
captions, acting in the role of a listener that picks the referred image given the
caption (Ou et al., 2023). Given its representational power, the score output by
the CLIP model when comparing an image and a text has been proposed as a met-
ric for evaluating models of image caption generation (CLIPScore; Hessel et al.,
2021). In this way, the captions can be assessed in direct comparison with the
image, bypassing the need to have human-written references, resulting in scores
highly correlated with human judgments.

The current state-of-the-art models exploit foundation models of different
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modalities in an efficient manner, as in models such as LENS, Flamingo, MAPL,
Frozen, BLIP-2, ClipCAP, and VisualGPT (Berrios et al., 2023; Alayrac et al.,
2022; Mañas et al., 2023; Tsimpoukelli et al., 2021; Li et al., 2023b; Mokady et al.,
2021; Chen et al., 2022). These recent approaches keep both the encoder and the
decoder frozen, only training a mapping network with a small number of trainable
weights, which projects the visual representation so that the frozen decoder can
generate a correct image description. For instance, CLIP’s visual encoder can be
used to represent the image, and a GPT decoder can generate the description.
Such models have recently achieved impressive results; one such model (PaLM-
e; Driess et al., 2023) has also been integrated into embodied setups to enable
interaction with the world.

Pretrained models have also been developed for visually grounded dialogue.
For instance, Murahari et al. (2020) adapt ViLBERT for multi-turn visually
grounded dialogue. Nowadays, instruction tuning is applied to improve the con-
versational capabilities of multimodal models based on foundation models, which
is a line of work that gained substantial traction recently by fine-tuning models
to follow human instructions, as in models such as LLaVA and KOSMOS-2 (Liu
et al., 2023b,c; Peng et al., 2023). See Li et al. (2023a) for more details about
multimodal foundation models.

Considering the advantages of these models, I employ them for multiple pur-
poses in this thesis. Firstly, I exploit their encoders to represent inputs in differ-
ent modalities. For instance, I use the CLIP model’s vision encoder to represent
images; CLIP’s textual encoder, BERT and BERT-based models to represent
linguistic input. Additionally, I utilize BERTScore to evaluate model-generated
texts, whereas I use CLIPScore to quantify the strategies adopted by humans
during visually grounded dialogue. I also investigate task-agnostic models’ un-
derstanding of the variation in human visuo-linguistic data.

2.2.3 Shortcomings of Multimodal Models

Although large pretrained models have been shown to perform well on various
benchmarks, they are sometimes prone to making mistakes that humans would
usually not make. For instance, captioning models sometimes ‘hallucinate’ en-
tities and mention objects that are not in the image (Rohrbach et al., 2018).
There could be several reasons for this type of error. It could be due to the lack
of visual perception or linguistic capabilities. Additionally, problems in bridg-
ing the two modalities could also cause such issues. To diagnose the root of the
problems, various benchmarks have been proposed to evaluate multimodal mod-
els on phenomena related to bridging the modalities, with the construction of
‘foil’ captions that diverge from more suitable captions for a given image, such as
the FOIL and VALSE datasets (Shekhar et al., 2017; Parcalabescu et al., 2022).
Such benchmarks explore how models fare in tasks that require combining vision
and language, as well as other phenomena such as counting objects in images and
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mapping them to language properly (Parcalabescu et al., 2021).

In contrast, Li et al. (2020a) investigate the inner workings of a model, Visu-
alBERT (Li et al., 2019), finding evidence for entity grounding connecting vision
and language by examining its attention heads. Such zero-shot probing of the
models and inspecting their attention patterns reveal what the models capture
and what visuo-linguistic tasks they cannot perform, e.g., falling short in tasks
including basic language abilities, counting, verb understanding, and generalizing
to novel contexts (Hendricks and Nematzadeh, 2021; Parcalabescu et al., 2021;
Cao et al., 2020; Chen et al., 2023). In addition, evaluating the learned repre-
sentations of the models against human judgments also reveals the extent of the
alignment between human and model representations. For instance, multimodal
representations yield estimations closer to human judgments regarding the simi-
larity between concrete words as compared to language-only representations, but
not for abstract words (Pezzelle et al., 2021).

A potential cause for shortcomings in multimodal models is attributed to
modality dominance. In other words, the models might not lean on each modality
with equal weights. Parcalabescu and Frank (2023) and Hessel and Lee (2020)
have proposed metrics to investigate the extent to which a modality is utilized
and contributes to the outcomes. The contributions of each modality have been
represented by information flowing through the network and also by manipulating
the input to observe the biases in the dataset. Via ablating parts of images and
texts, Frank et al. (2021) show that multimodal models show asymmetric behavior
across modalities.

A crucial ability that the models have been tested on is compositionality. Two
captions composed of the same set of words but in different orders would likely
exhibit differences in terms of how much they match a given image. As shown
with the introduction of the Winoground dataset (Thrush et al., 2022), many
powerful VL models fail to differentiate between such sentences and pick the one
correctly describing the image. Such a task requires a strong understanding and
combination of visual and textual elements, paying attention to grounding even
small objects in the image, as well as commonsense reasoning (Thrush et al.,
2022; Diwan et al., 2022).

These studies indicate that current models tend to be insensitive to—or un-
aware of—information that would be crucial for humans. For instance, in the
framework of VQA, Agrawal et al. (2016) reveal that models pick up undesired
correlations in the data, information that would be ignored or go unnoticed by
humans, leading to biases in the answers generated by the models. One reason
for this is that the training datasets, albeit of large scale, are not comprehensive
enough to represent the complexity of multimodal processes as we observe them
in humans (Erdem et al., 2022). In the following section, I focus on research that
works on incorporating information about human cognitive processes in model
development with the aim of alleviating models’ non-human-like shortcomings.
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2.3 Bridging Human and Machine Processing

Human signals and insights from cognitive science regarding human processing
have been used to inform, improve, and analyze language-only, vision-only, and
multimodal models. In this section, I first review a subset of efforts aiming
to combine cognitive science and language-only research in NLP, then focus on
vision-only work in CV in relation to human signals, and finally delve into mul-
timodal models that are informed by human signals and processing.

Starting with language-only models, various efforts have been made to bridge
human and machine processing, leading to a line of work on cognitively inspired
NLP (Mishra and Bhattacharyya, 2018; Beinborn and Hollenstein, 2024; Hollen-
stein, 2021; Hollenstein et al., 2020). The reasoning behind this research is that
by leveraging human processing data, NLP models can be improved to capture
the intricacies of human cognition. Moreover, this line of research also enables
the comparison between human and machine processing in order to reveal where
they align and where they differ.

Research in this domain is inspired by cognitive processes and takes cognitive
plausibility into consideration at various stages of model development (Beinborn
and Hollenstein, 2024). Similarly, some other works incorporate human signals to
inform models (Mishra and Bhattacharyya, 2018). For instance, aligning models
with brain representations as well as predicting brain signals help with linguistic
tasks (Schwartz et al., 2019; Toneva and Wehbe, 2019). Gaze is also one such
signal reflecting underlying cognitive processes; as a result, it has been increas-
ingly used in diverse facets of AI: CV, NLP, decision-making, and robotics; see
Zhang et al. (2020a) for a survey. In the first part of this thesis, I focus on gaze in
NLP, given the close interaction between eye movements and linguistic processes
in humans, as reviewed in Section 2.1.

Gaze data has been utilized in language-only NLP tasks such as sentiment
analysis, part-of-speech tagging, readability, named entity recognition, sarcasm
detection, and grammatical error detection (Barrett et al., 2016, 2018; Ding et al.,
2022; Ren and Xiong, 2021; Dong et al., 2022; Khurana et al., 2023; Sood et al.,
2020a,b); see Mathias et al. (2020) for a survey. Gaze proves to be a good induc-
tive bias for human-inspired attention mechanisms in NLP (Barrett et al., 2018),
although similarity in attention does not necessarily lead to better performance
in all cases (Sood et al., 2020a),

Predicting eye movements during reading is also a prolific line of work (Deng
et al., 2023; Bolliger et al., 2023; Khurana et al., 2023), with gaze prediction
being utilized as an auxiliary task in linguistic tasks such as sentence compres-
sion (Klerke et al., 2016). Multilingual models have also been fine-tuned to predict
human reading behavior in the form of eye movements, and in this way, they cap-
ture patterns of reading and cognitive complexity across languages (Hollenstein
et al., 2021a, 2022, 2021b; Pouw et al., 2023).

Regarding vision-only uses of gaze, in early CV works, the attention was on
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predicting salient parts of an image based on bottom-up processes (Itti and Koch,
2001, 2000; Itti et al., 1998). Given the progress in deep learning, models have
been used to predict gaze during free-viewing (Cornia et al., 2018b), performing
VQA (Chen et al., 2021), and searching for entities in images (Yang et al., 2020).
In addition to bottom-up and task-related factors, intrinsic human features can
also help predict eye movements, with measures of curiosity and novelty con-
tributing to the prediction of gaze when used as reward signals in reinforcement
learning (Jaegle et al., 2019).

The use cases above provide evidence for the benefits of using human signals
and processing features in single modalities. Moving towards multimodal setups,
early efforts to utilize gaze in VL tasks made use of separately obtained gaze and
descriptions (Yun et al., 2013), leading to the incorporation of static saliency maps
from free-viewing of images in image captioning (Tavakoli et al., 2017; Cornia
et al., 2018a; Chen and Zhao, 2018). More recent datasets involve concurrently
collected gaze and image description data, enabling the analysis and modeling
of how visuo-linguistic processes take place together sequentially over time in
different languages (van Miltenburg et al., 2018b; He et al., 2019; Vaidyanathan
et al., 2018). Given the advantages in language and vision modalities separately,
as expected, VL tasks such as image captioning and VQA have also benefited
from the use of human gaze (Sugano and Bulling, 2016; He et al., 2019; Takmaz
et al., 2020b; Sood et al., 2021, 2023).

The fact that certain deep learning models learn to pay attention by them-
selves raises the question of whether the attention learned by such models is
aligned with human attention and whether potential divergences in attention are
partly responsible for the shortcomings of the models. There exist mixed findings
in the literature regarding this subject: Gella and Keller (2018) find that there is
a significant correlation between both types of attention in disambiguating verbs
coupled with images, whereas Das et al. (2016) do not find such a significant cor-
relation in the task of VQA. In an effort to inform model attention about human
attention, models that use gaze as a more direct regularizer of attention have
been developed (Barrett et al., 2018). It is crucial to note that there have also
been findings that a better correlation with human attention does not consistently
translate into better task performance by a model (Sood et al., 2021), whereas
human-like attention generated from models trained on human attention can im-
prove performance in multimodal tasks such as visual reasoning or VQA (Sharan
et al., 2019; Qiao et al., 2018; Sood et al., 2023).

The work in this thesis moves in the direction of including human processing
features and signals in model development. For instance, in Chapter 4, I show
that including human gaze information helps an image captioning model gener-
ate more human-like captions containing specific words referring to even small
objects in the images. In Chapters 9 and 10, I propose models that make use of
common ground and ToM-based adaptation in visually grounded dialogue, help-
ing make model outputs closer to human expectations, showing the benefits of
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taking human processing into account when developing, training and evaluating
multimodal models.



Part One

Modelling Human Gaze
in Language Use





Chapter 3

Overview

This part investigates the modeling of human gaze in language use, covering both
language production and comprehension under different settings. Chapters 4
and 5 are centered around visually conditioned language production: verbally
describing images. Chapter 6 focuses on the process of reading instead. These
studies contribute to our understanding of human visuo-linguistic processes, and
help improve models in NLP by helping us comprehend their current capability
to represent such processes in the form of deep neural networks. I investigate the
following research questions:

• Can human gaze help improve models generating textual descrip-
tions of images? In what ways can it help such multimodal mod-
els in combining vision and language? In Chapter 4, I explore the
cross-modal interaction between vision and language, and inform a powerful
image description generation model about where humans look while they
utter descriptions for the images. I find that utilizing human gaze in a se-
quential, speaker-specific manner enhances such models and enables them
to generate descriptions more similar to those of humans.

• What is the extent of the variation in human signals while de-
scribing images? Can representations extracted from pretrained
multimodal models capture the variation in human gaze and lin-
guistic output? In Chapter 5, I appraise the variation in human signals
during image description generation to give a wider picture of visuo-lingustic
processes. Furthermore, I check if we can predict human signals and the
variation thereof using pretrained models. I find that there is substan-
tial variation in the outcomes of visuo-linguistic processes even for a single
image, and that pretrained vision encoders can only moderately capture
features that relate to linguistic and visual variation.

• Do pretrained multilingual models have the capability to predict
human reading behavior as reflected in eye movements across lan-

27



28 Chapter 3. Overview

guages? In Chapter 6, I predict human reading behavior in the form
of eye-tracking data in multi- and cross-lingual settings with the help of
lightweight adapter layers inserted into pretrained multilingual models. My
approach achieved second place in the leaderboards of the shared task of
the ACL 2022 Cognitive Modeling and Computational Linguistics Work-
shop (Hollenstein et al., 2022).



Chapter 4

Generating Image Descriptions Guided
by Sequential Human Gaze

The material in this chapter is based on: Ece Takmaz, Sandro Pezzelle, Lisa Bein-
born, and Raquel Fernández. 2020. Generating Image Descriptions via Sequential
Cross-Modal Alignment Guided by Human Gaze. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pages
4664–4677, Online. Association for Computational Linguistics.

Contributions: Ece Takmaz: Implementing and running the experiments, writ-
ing and revising the paper. Sandro Pezzelle and Raquel Fernández: Supervising
the research, writing, and revising the paper. Lisa Beinborn: Contributions to
the conceptualization of the research in the early stages and revising the paper.
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4.1 Introduction

Describing an image requires the coordination of different modalities. There is a
long tradition of cognitive studies showing that the interplay between language
and vision is complex. On the one hand, eye movements are influenced by the
task at hand, such as locating objects or verbally describing an image (Buswell,
1935; Yarbus, 1967). On the other hand, visual information processing plays a
role in guiding linguistic production (e.g., Griffin, 2004; Gleitman et al., 2007).
Such cross-modal coordination unfolds sequentially in the specific task of image
description (Coco and Keller, 2012)—i.e., objects tend to be looked at before
being mentioned. Yet, the temporal alignment between the two modalities is not
straightforward (Griffin and Bock, 2000; Vaidyanathan et al., 2015).

In this chapter, we follow up on these findings and investigate cross-modal
alignment in image description by modeling the description generation process
computationally. We take a model, which was the state-of-the-art system at the
time of the project, for automatic image captioning (Anderson et al., 2018) and
develop several model variants that exploit information derived from eye-tracking
data. To train these models, we use a relatively small dataset of image descrip-
tions in Dutch (DIDEC; van Miltenburg et al., 2018b) that includes information
on gaze patterns collected during language production. We hypothesize that a
system that encodes gaze data as a proxy for human visual attention will lead
to better, more human-like descriptions. In particular, we propose that training
such a system with eye movements sequentially aligned with utterances (see Fig-
ure 4.1) will produce descriptions that reflect the complex coordination across
modalities observed in cognitive studies.1

To measure the level of semantic and sequential alignment between descrip-
tions, we develop a novel metric and use it in two ways. First, we analyze cross-
modal coordination in the DIDEC data, finding that the product of content and
sequentiality better captures cross-modal correlations than content alone. Second,
we test whether our models generate captions that capture sequential alignment
along with semantic alignment. Our experiments show that exploiting gaze-driven
attention helps enhance image caption generation, and that processing gaze pat-
terns sequentially results in descriptions that are better aligned with those pro-
duced by speakers. The descriptions generated by gaze-driven models are also
more diverse—both in terms of variability per image and overall vocabulary—
particularly when gaze is encoded with a dedicated recurrent component that
can better capture the complexity of the temporal alignment across modalities.

Overall, this work presents the first computational model of image description
generation where both visual and linguistic processing are modeled sequentially,
and lends further support to cognitive theories of sequential cross-modal coordi-

1Our preprocessed data and code are publicly available at https://github.com/dmg-illc/
didec-seq-gen.

https://github.com/dmg-illc/didec-seq-gen
https://github.com/dmg-illc/didec-seq-gen
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Figure 4.1: In our approach, an image captioning model is fed with a sequence
of masked images encoding the gaze fixations of a single human speaker during
language production. This diagram is a toy illustration.

nation.

4.2 Related Work

4.2.1 Image Captioning

Various models have been proposed to tackle the challenging task of generating
a caption for a visual scene (Bernardi et al., 2016; Hossain et al., 2019; Stefanini
et al., 2023). Contemporary approaches make use of deep neural networks and
encoder-decoder architectures (Sutskever et al., 2014). In the influential model by
Vinyals et al. (2015), a Convolutional Neural Network (CNN) is used to encode the
input image into a feature representation, which is then decoded by a Long Short-
Term Memory network (LSTM; Hochreiter and Schmidhuber, 1997) that acts as
a generative language model. In recent years, there have been many proposals
to enhance this basic architecture. For instance, via extracting features from a
lower layer of a CNN, Xu et al. (2015) obtain representations for multiple regions
of an image over which attention can be applied by the LSTM decoder. The
‘Bottom-up and Top-down Attention’ model by Anderson et al. (2018) further
refines this idea by extracting multiple image features with the help of Faster
R-CNN (Ren et al., 2015b), which results in the ability to focus on regions of
different sizes better aligned with the objects in the image. Other models based
on unsupervised methods (e.g., Feng et al., 2019) and Generative Adversarial
Networks (Chen et al., 2019) have also been proposed.

We take as our starting point the model by Anderson et al. (2018) for two
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main reasons: first, it was among the best-performing architectures on stan-
dard image captioning benchmarks at the time of the research explained in this
chapter; second, its underlying idea (i.e., bottom-up and top-down attention) is
explicitly inspired by human visual attention mechanisms (Buschman and Miller,
2007), which makes it suitable for investigating the impact of adding human gaze
information.

Please note that at the time of writing the thesis, the models for image cap-
tion generation are mostly transformer-based multimodal models (Li et al., 2020b;
Zhang et al., 2021), predominantly building on frozen pretrained language and
vision models (Berrios et al., 2023; Alayrac et al., 2022; Mañas et al., 2023; Tsim-
poukelli et al., 2021; Li et al., 2023b; Mokady et al., 2021; Chen et al., 2022).
See Section 5.2.2 in the next chapter for a more up-to-date review of multimodal
models and the use of eye-tracking in NLP.

4.2.2 Eye Tracking

In computer vision, human eye movements collected with eye-tracking methods
have been exploited to model what is salient in an image or video for object
detection (Papadopoulos et al., 2014), image classification (Karessli et al., 2017),
image segmentation (Staudte et al., 2014), region labeling (Vaidyanathan et al.,
2015, 2018), and action detection (Vasudevan et al., 2018). More relevant for the
present study, gaze has also been used in automatic description generation tasks,
such as video frame captioning (Yu et al., 2017b) and image captioning (Sugano
and Bulling, 2016; Chen and Zhao, 2018; He et al., 2019). In all these approaches,
gaze data from different participants is aggregated into a static saliency map to
represent an abstract notion of saliency. This aggregated gaze data is used as
supervision to train models that predict generic visual saliency.

In contrast, in our approach, we model the production process of a single
speaker by directly inputting information about where that speaker looks at dur-
ing description production, and compare this to the aggregation approach. In
addition, we exploit the sequential nature of gaze patterns, i.e., the so-called
scanpath, and contrast this with the use of static saliency maps. Gaze scanpaths
have been used in NLP for diverse purposes: For example, to aid part-of-speech
tagging (Barrett et al., 2016) and chunking (Klerke and Plank, 2019); to act as
a regularizer in sequence classification tasks (Barrett et al., 2018); as well as for
automatic word acquisition (Qu and Chai, 2008) and reference resolution (Ken-
nington et al., 2015). To our knowledge, the present study is the first attempt to
investigate sequential gaze information for the specific task of image description
generation.
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4.3 Data

We utilize the Dutch Image Description and Eye-Tracking Corpus (DIDEC; van
Miltenburg et al., 2018b). In particular, we use the data collected as part of
the description-viewing task in DIDEC, where participants produce a spoken
description in Dutch for each image they look at, with no time limits.2 The gaze
of the participants is recorded with an SMI RED 250 eye-tracking device while
they describe images. DIDEC contains spoken descriptions for 307 real-life images
originating from the MS COCO dataset Lin et al. (2014), with high-quality eye-
tracking data. Each of the 45 participants describe ≈ 102 images, resulting in
4604 descriptions in total. On average, each image has 15 descriptions. For each
description, the audio, textual transcription, and the corresponding eye-tracking
data are provided.

4.3.1 Preprocessing

We tokenize and lowercase the raw captions, exclude punctuation marks and in-
formation tokens indicating, e.g., repetitions (<rep>). We then use CMUSphinx3

to obtain the time intervals of each word given an audio file for a description and
its transcription. See Appendix A.1 for more details.

Gaze data in DIDEC is already classified into gaze events such as fixations,
saccades or blinks. We discard saccades and blinks (since there is no visual input
during these events), and use only the fixation gaze samples that fall within the
borders of the actual image. We treat consecutive occurrences of such fixations
as belonging to the same fixation window.

4.3.2 Saliency Maps

Using the extracted fixation windows, we create two types of saliency maps,
aggregated and sequential, which indicate the prominence of certain image regions
as signaled by human gaze.

Aggregated saliency maps (per image) The aggregated saliency map of an
image is computed as the combination of all participants’ gazes and represents
what is generally prominent given the image description task. To create it, we
first compute the saliency map of each participant who looked at a given image.
Following Coco and Keller (2015a), for each fixation window of the participant,
we create a Gaussian mask centered at the window’s centroid with a standard
deviation of 1◦ of visual angle. Given the data collection setup of DIDEC, this
standard deviation corresponds to 44 pixels. We sum up the masks weighted

2The other task is ‘free viewing’, where the participants simply look at the images for 3
seconds.

3https://cmusphinx.github.io/

https://cmusphinx.github.io/
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by relative fixation durations, and normalize the resulting mask to have values
in the range [0, 1]. Finally, we sum up and normalize the maps of all relevant
participants to obtain the aggregated saliency map per image.

Sequential saliency maps (per image-participant pair) This type of map
consists of a sequence of saliency maps aligned with the words in a description, and
represents the scan pattern of a given participant over the course of description
production. Using the temporal intervals extracted from the audio files, we align
each word with the image regions fixated by the participant right before the word
was uttered. For each word wt—using the same method described above for
aggregated maps—we combine all the fixation windows that took place between
wt−1 and the onset of wt, and normalize them to obtain a word-level saliency
map.4 In this way, we obtain a sequence of saliency maps per description.

4.3.3 Masked Images and Image Features

The saliency maps are used to keep visible only the image regions that were
highly attended by participants, and to mask the image areas that were never or
rarely looked at (see Figure 4.1). We create each masked image by calculating
the element-wise multiplication between the corresponding 2D saliency map and
each RGB channel in the original image. We then extract the image features of
the masked images using ResNet-101 (He et al., 2016) pretrained on ImageNet
(Deng et al., 2009). We take the output of the average pooling layer as the image
features with 2048 dimensions to give as input to our models.

4.4 Evaluation Measures

We propose a novel metric to quantify the degree of both semantic and sequen-
tial alignment between two sentences. In our study, this metric will be leveraged
in two ways: (1) to analyze cross-modal coordination in the DIDEC data (Sec-
tion 4.5) and (2) to evaluate our generation models (Section 4.7). For context,
we first briefly review several existing metrics for automatic image captioning.

4.4.1 Image Captioning Metrics

Image caption generation is evaluated by assessing some kind of similarity between
the generated caption and one or more reference captions (i.e., those written by

4For the first word, we combine all the fixation windows that took place before its utterance.
Some participants may scan larger portions of the image to obtain its gist before uttering the
first word (Oliva and Torralba, 2006). However, we do not encode these differences in behavior
explicitly. See Chapter 5 for analyses of the variation in the visuo-lingustic behavior in the
DIDEC dataset.
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human annotators). One of the most commonly used metrics for this purpose
is CIDEr (Vedantam et al., 2015), which (a) computes the overlapping n-grams
between the generated caption and the entire set of reference sentences for a given
image, and (b) downweighs n-grams that are frequent in the entire corpus via tf-
idf scores. Thus—regarding semantics and sequentiality—CIDEr scores can be
affected by word order permutations, but not by the relative position of words
in the entire caption nor by the presence of different but semantically similar
words. Other metrics such as BLEU (which looks at n-gram precision; Papineni
et al., 2002) and ROUGE-L (which considers n-gram recall; Lin, 2004) suffer from
comparable limitations.

METEOR (Banerjee and Lavie, 2005) and SPICE (Anderson et al., 2016b)
also make use of n-grams (or tuples in a scene’s graph, in the case of SPICE) and
take into account semantic similarity by matching synonyms using WordNet (Ped-
ersen et al., 2004). This allows for some flexibility, but can be too restrictive to
grasp overall semantic similarity. To address this, Kilickaya et al. (2017) proposed
using Word Mover’s Distance for image caption evaluation (Kusner et al., 2015),
which builds on word2vec embeddings (Mikolov et al., 2013b). Several metrics
capitalizing on contextual embeddings (Devlin et al., 2019) were proposed, such
as BERTScore (Zhang et al., 2020b) and MoverScore (Zhao et al., 2019). More
recently, a metric called CLIPScore has been proposed to evaluate captions inde-
pendently of the existence of reference captions (Hessel et al., 2021).5 This metric
builds on the image and text representations of the pretrained CLIP model (Rad-
ford et al., 2021). However, these metrics neglect the sequential alignment of
sentences.6

4.4.2 Semantic and Sequential Distance Metric

We propose Semantic and Sequential Distance (SSD), a metric which takes into
account both semantic similarity and the overall relative order of words. Re-
garding the latter, SSD is related to Ordering-based Sequence Similarity (OSS;
Gómez-Alonso and Valls, 2008), a measure used by Coco and Keller (2010) to
compare sequences of categories representing gaze patterns.7 Given two sequences
of words, i.e., a generated sentence G and a reference sentence R, SSD provides
a single positive value representing the overall dissimilarity between G and R:

5At the time of the research described in this chapter, neither this metric nor the capable
pretrained model it is based on were published. It would be informative to consider such
metrics and models within the context of this project in the future. See Chapter 5 for an initial
exploration of the power of the pretrained vision encoders in capturing human visuo-linguistic
signals, and Chapter 8, for a use case where we utilize the CLIPScore metric to quantify the
multimodal properties of referring utterances.

6Moreover, metrics based on contextual embeddings have been shown to suffer with lan-
guages other than English.

7Despite its name, OSS is a distance measure. Note that it accounts for relative position,
but not for semantic similarity.



36Chapter 4. Generating Image Descriptions Guided by Sequential Human Gaze

Figure 4.2: SSD. Computation of gr (Eq. 4.1). Sums below each word in G stand
for cos + pos, darker shades of orange for higher cos distance. Value of gr is the
sum of numbers in red (here 3.76). Best viewed in color.

the closer the value to 0, the higher the similarity between the two sentences
(note that the value is unbounded). This single value is the average of two terms,
gr and rg, which quantify the overall distance between G and R—the sum of
their cosine (cos) and positional (pos) distance—from G to R and from R to G,
respectively. The equation for gr is given below:

gr =
N∑
i=1

cos(Gi, Rs(i)) + pos(Gi, Rs(i)) [4.1]

where Rs(i) is the semantically closest element to Gi in R, and cos in our exper-
iments is computed over word2vec embeddings trained on the 4B-token corpus
in Dutch, COW (Tulkens et al., 2016).

Figure 4.2 illustrates how the metric works in practice. Full details are in
Appendix A.2. For simplicity, the diagram only shows the computation in the
gr direction. For example, consider the second element in G, ‘lovely’. Its closest
embedding in R is ‘nice’ (cos = 0.33). For each of these elements, we retrieve
their position index (i.e., 2 for ‘lovely’ in G and 6 for ‘nice’ in R), compute their
positional distance, and normalize it by the length of the longest sentence in the
pair (here R), obtaining |2 − 6|/9 ≈ 0.44. We then sum up the cosine distance
and the positional distance to obtain a score for ‘lovely’: 0.33 + 0.44 = 0.77. To
obtain the overall gr value, we add up the scores for all words in G. We compute
rg in a similar manner and obtain SSD as follows: SSD = (gr + rg)/2.

4.5 Cross-Modal Coordination Analysis

To empirically motivate our generation models, as a preliminary experiment we
investigate the level of coordination between visual attention and linguistic pro-
duction in the DIDEC dataset. In particular, we test whether scanpath similarity
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and sentence similarity are correlated, and whether taking into account the se-
quential nature of the two modalities results in higher cross-modal alignment.

We transform gaze data into time-ordered sequences of object labels, i.e.,
scanpaths, (e.g., S = ‘cat’, ‘person’, ‘cat’, ‘table’) using the annotations of object
bounding boxes in the MS COCO image dataset. On average, scanpaths have a
length of 23.4 object labels. As for captions, we simply take the full sentences
and treat them as sequences of words (e.g., C = ‘a cute cat cuddled by a boy’).
Descriptions contain an average of 12.8 tokens.

Order-sensitive analysis (sequential) For each image, we take the set of
produced descriptions and compute all pairwise similarities by using SSD (see
Section 4.4). Similarly, we take the corresponding scanpaths and compute all
pairwise similarities by using OSS (Gómez-Alonso and Valls, 2008). We then
calculate Spearman’s rank correlation (one-tailed) between the two similarity
lists. In this way, we obtain a correlation coefficient and p-value for each of the
307 images in the dataset.

Bag of Words analysis (BoW ) We compare the correlation observed in the
order-sensitive analysis with a BoW approach. Here, we represent a sentence as
the average of the word2vec embeddings of the words it contains and a scanpath as
a term-frequency vector. We then perform the same correlation analysis described
above.

Random baseline (random) As a sanity check, using the stricter order-
sensitive measures, for each image, we re-compute the correlation between the
two lists of similarities after randomly shuffling the sentences and corresponding
scanpaths per image. We repeat this analysis 3 times.

4.5.1 Results

As shown in Table 4.1, the highest level of alignment is observed in the sequential
condition, where a significant positive correlation between scanpath and sentence
similarities is found for 81 images out of 307 (26%). In BoW, the level of align-
ment is weaker: a positive correlation is found for 73 images (24%), with lower
maximum correlation coefficients (0.65 vs. 0.49). Substantially weaker results can
be seen in the random condition. These outcomes are in line with those obtained
by Coco and Keller (2012) in a small dataset of 576 English sentences describing
24 images.

Overall, the results of the analysis indicate that the product of content and
sequentiality better captures the coordination across modalities compared to con-
tent alone. Yet, the fact that positive correlations are present for only 26% of
the images suggests that coordination across modalities is (not surprisingly) more
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sequential BoW random

# positively corr. 81 73 52.3 ± 5.774
% positively corr. 0.26 0.24 0.17 ± 0.015
Spearman’s ρ (min) 0.15 0.15 0.15 ± 0.002
Spearman’s ρ (max) 0.65 0.49 0.50 ± 0.042

Table 4.1: Results of the correlation analysis: number and percentage of images
with statistically significant (p < 0.05) positive correlations, and range of coeffi-
cients in the three conditions. For random, average over 3 runs.

complex than what can be captured by the present pairwise similarity computa-
tion, confirming the intricacy of the cross-modal temporal alignment (Griffin and
Bock, 2000; Vaidyanathan et al., 2015). We take this aspect into account in our
proposed generation models.

4.6 Models

The starting point for our models is the one by Anderson et al. (2018).8 The
main aspect that distinguishes this model from other image captioning systems
is the use of Faster R-CNN (Ren et al., 2015b) as image encoder, which identifies
regions of the image that correspond to objects and are therefore more salient—
the authors refer to this type of saliency detection as “bottom-up attention”.
Each object region i is transformed into an image feature vector vi. The set of
region vectors {v1, . . . , vk} is utilized in two ways by two LSTM modules: The
first LSTM takes as input the mean-pooled image feature v (i.e., the mean of all
salient regions) at each time step, concatenated with the two standard elements of
a language model, i.e., the previous hidden state and an embedding of the latest
generated word. The hidden state of this first LSTM is then used by an attention
mechanism to assign weights to the vectors in {v1, . . . , vk}—the authors refer to
this kind of attention as “top-down”. Finally, the resulting weighted average
feature vector v̂t is given as input to the second LSTM module, which generates
the caption, one word at a time. Note that the set of region vectors {v1, . . . , vk}
and the mean-pooled vector v are constant over the generation of a caption, while
the weights over {v1, . . . , vk} and hence the weighted average feature vector v̂t do
change dynamically at each time step since they are influenced by the words
generated so far.

We take the original model as our baseline and modify it to integrate visual
attention defined by gaze behavior. In particular, we replace the mean-pooled

8The original implementation of this model can be found at: https://github.com/

peteanderson80/bottom-up-attention. We developed our models building on the Py-
Torch re-implementation of the model available at: https://github.com/poojahira/

image-captioning-bottom-up-top-down.

https://github.com/peteanderson80/bottom-up-attention
https://github.com/peteanderson80/bottom-up-attention
https://github.com/poojahira/image-captioning-bottom-up-top-down
https://github.com/poojahira/image-captioning-bottom-up-top-down
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Attention over bottom-up regions

een persoon die een pizza aan het eten is en  ...

bier

...

Gaze LSTM

Top-down
attention

LSTM

Attention
Module

Language
generation

LSTM

Figure 4.3: Architecture of the Gaze-seq and Gaze-2seq models. Dashed lines
indicate that the connections to and from the Gaze LSTM are only present in the
Gaze-2seq model.

vector v by a gaze vector g computed from masked images representing fixa-
tion patterns as explained in Section 4.3. We do not directly modify the set of
object regions {v1, . . . , vk} present in the original model (i.e., bottom-up atten-
tion is still present in our proposed models). However, the top-down attention
weights learned by the models are influenced by the gaze patterns given as input.
Concretely, we test the following model conditions:

• no-gaze: The original model as described above, with exactly the same
image feature vectors used by Anderson et al. (2018).

• gaze-agg: The mean-pooled vector v in the original model is replaced
with a gaze image vector g computed on the image masked by the aggre-
gated gaze saliency map. As explained in Section 4.3.2, this corresponds to
the combination of all participants’ fixations per image and hence remains
constant over the course of generation.

• gaze-seq: As depicted in Figure 4.3, we replace v with gt, which are
features computed for the image that was masked by the participant-specific
sequential gaze saliency map at time t. Hence, gt differs at each time step t.
Building on the results of the correlation analysis, this sequential condition
thus offers a model of the production process of a speaker where visual
processing and language production are time-aligned.

• gaze-2seq: Cross-modal coordination processes seem to go beyond simplis-
tic content and temporal alignment (Griffin and Bock, 2000; Vaidyanathan
et al., 2015). To allow for more flexibility, we add an extra gaze-dedicated
LSTM component (labeled ‘Gaze LSTM’ in Figure 4.3), which processes the
sequential gaze vector gt and produces a hidden representation hgt . This dy-
namic hidden representation goes through a linear layer, and then replaces
v at each time step t.
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For the three gaze models, we also considered a version where v is concatenated
with g or gt as appropriate, rather than being replaced by the gaze vectors. Since
they did not bring in better results, we do not discuss them further in this chapter.

4.7 Experiments

We experiment with the proposed models using the DIDEC dataset and report
results per model type.

4.7.1 Setup

We randomly split the DIDEC dataset at the image level, using 80% of the 307
images for training, 10% for validation, and 10% for testing. Further details are
available in Appendix A.3.

Pretraining Since DIDEC is a relatively small dataset, we pretrain all our
models using a translated version of train/val annotations of MS COCO 2017
version. We machine-translated all the captions in the training and validation
sets of MS COCO from English to Dutch using the Google Cloud Translation
API.9 We exclude all images present in our DIDEC validation and test sets from
the training set of the translated MS COCO. We randomly split the original
MS COCO validation set into validation and test. The final translated dataset
in Dutch used for pretraining includes over 118k images for training, and 2.5k
images for validation and testing, respectively, with an average of 5 captions per
image.

Manual examination of a subset of translated captions showed that they are of
good quality overall. Indeed, pretraining the no-gaze model with the translated
corpus results in an improvement of about 21 CIDEr points (from 40.81 to 61.50)
in the DIDEC validation set. Given that the MS COCO dataset is comprised of
written captions compared to DIDEC, which includes spoken descriptions, these
two datasets can have distinct characteristics. We expect the transfer learning
approach to help mitigate this by allowing our models to learn the features of
spontaneous spoken descriptions during the fine-tuning phase.

All results reported below were obtained with pretraining (i.e., by initializing
all models with the weights learned by the no-gaze model on the translated
dataset and then fine-tuning on DIDEC; also when applicable, training additional
weights from scratch such as the Gaze LSTM in gaze-2seq).

Vocabulary and hyperparameters We use a vocabulary of 21,634 tokens
consisting of the union of the entire DIDEC vocabulary and the translated MS

9https://cloud.google.com/translate/

https://cloud.google.com/translate/
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COCO training set vocabulary. For all model types, we perform parameter search
focusing on the learning rate, batch size, word embedding dimensions and the type
of optimizer. The reported results refer to models trained with a learning rate of
0.0001 optimizing the Cross-Entropy Loss with the Adam optimizer. The batch
size is 64. The image features have 2048 dimensions and the hidden representa-
tions have 1024. The generations for the validation set were obtained through
beam search with a beam width of 5. The best models were selected with re-
spect to either SSD or CIDEr scores on the validation set, with an early-stopping
patience of 50 epochs.10

More information regarding reproducibility can be found in Appendix A.4.

4.7.2 Results

The results obtained with different models are shown in Table 4.2. We report
results on the test set, averaging over 5 runs with different random seeds, where
we select the best models on the validation set based on either SSD or CIDEr. For
reference, we also include scores for other metrics not used for model selection.
This allows us to check whether scores for other metrics are reasonably good when
the models are optimized for a certain metric; however, only scores in the shaded
columns allow us to extract conclusions on the relative performance of different
model types.

On average, the best gaze models outperform the no-gaze model: 5.81 vs.
5.86 for SSD (lower is better) and 55.74 vs. 52.45 for CIDEr (higher is better).
This indicates that eye-tracking data encodes patterns of attention that can con-
tribute to the enhancement of image description generation. Zooming into the
different gaze-injected conditions, we find that among the models selected with
SSD, the sequential models perform better than gaze-agg (5.81 and 5.82 vs.
5.93). This shows that the proposed models succeed (to some extent) in cap-
turing the sequential alignment across modalities, and that such alignment can
be exploited for description generation. Interestingly, gaze-2seq is the best-
performing gaze model: it has the best average SSD across runs and the best
absolute single run (5.70 vs. 5.79 and 5.80 by gaze-seq and gaze-agg, respec-
tively). This suggests that the higher flexibility and abstraction provided by the
gaze-dedicated LSTM component offers a more adequate model of the intricate
ways in which the two modalities are aligned.

As for the CIDEr-selected models, on average the gaze-injected models also
perform better than no-gaze. The best results are obtained with gaze-agg
(55.74). This is consistent with what CIDEr captures: it takes into account reg-
ularities across different descriptions of a given image; therefore, using a saliency
map that combines the gaze patterns of several participants leads to higher scores

10We use the library at https://github.com/Maluuba/nlg-eval to obtain corpus-level
BLEU and CIDEr scores.

https://github.com/Maluuba/nlg-eval
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Model selected with SSD selected with CIDEr
SSD CIDEr BLEU-4 CIDEr SSD BLEU-4

no-gaze 5.86 (0.25) 55.04 (4.31) 39.09 (2.16) 52.45 (3.43) 6.09 (0.15) 35.60 (2.56)
gaze-agg 5.93 (0.10) 53.39 (3.56) 38.84 (1.70) 55.74 (3.74) 5.97 (0.12) 37.69 (1.71)
gaze-seq 5.82 (0.03) 56.16 (1.62) 39.80 (1.24) 53.59 (2.03) 6.10 (0.14) 36.09 (3.01)
gaze-2seq 5.81 (0.15) 53.55 (1.69) 38.05 (1.88) 52.94 (2.27) 5.93 (0.14) 36.27 (3.04)

Table 4.2: Test set results (average over 5 runs, with standard deviations in
brackets) for the models selected with SSD and with CIDEr. Scores for BLEU-4
and SSD/CIDEr when not used for model selection are shown for reference only.
For SSD, lower is better; for CIDEr and BLEU-4, higher is better.

than inputting sequential saliency maps, which model the path of fixations of each
speaker independently. This variability seems to have a negative effect on CIDEr
scores of sequential models, which are lower than gaze-agg; yet higher than
no-gaze (53.59 and 52.94 vs. 52.45).

It is worth noting that CIDEr and BLEU-4 scores obtained with the SSD-
selected models are sensible, which indicates that the generated descriptions do
not suffer with respect to distinct aspects evaluated by other metrics when the
models are optimized with SSD. Indeed, the highest CIDEr score obtained among
models selected via SSD (gaze-seq: 56.16) is even higher than that obtained by
the best CIDEr-selected one (gaze-agg: 55.74). However, this is likely due to
CIDEr being sensitive to lexical differences between the test set and the validation
set used for model selection, which could lead to slightly different patterns.

4.8 Analysis

This section presents an analysis of the descriptions generated by the models on
the test set (446 descriptions). We focus on one single run per model.

Cross-modal sequential alignment Given what SSD captures, our results
indicate that the captions generated by gaze-2seq are better aligned—in terms
of semantic content and the order of words—with the human captions than the
ones generated by non-sequential models. Arguably, this enhanced alignment is
driven by the specific information provided by the scanpath of each speaker. If
this information is used effectively by the sequential models, then we should see
more variation in their output. By definition, the non-sequential models generate
only one single caption per image. Are the sequential models able to exploit the
variation stemming from the speaker-specific scanpaths? Indeed, we find that
gaze-2seq generates an average of 4.4 different descriptions per image (i.e., 30%
of the generated captions per image are unique).

Furthermore, we conjecture that tighter coordination between scanpaths and
corresponding descriptions should give rise to more variation, since presumably
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the scanpath has a stronger causal effect on the description in such cases. To test
this, we take the 30 images in the test set and divide them into two groups: (A)
images for which a significant positive correlation was found in the cross-modal
coordination analysis of Section 4.5; (B) all the others. These groups include,
respectively, 10 and 20 images. As hypothesized, we observe a higher percentage
of unique captions per image in A (35%) compared to B (27%).

Quantitative analysis We explore whether there are any quantitative differ-
ences across models regarding two aspects, i.e., the average length in tokens of
the captions, and the size of the vocabulary produced. No striking differences are
observed regarding caption length: no-gaze produces slightly shorter captions
(avg. 7.5) compared to both gaze-2seq (avg. 7.7) and gaze-agg (avg. 8.1). The
difference, however, is negligible. Indeed, it appears that equipping models with
gaze data does not make sentence length substantially closer to the length of the
reference captions (avg. 12.3 tokens).

In contrast, there are more pronounced differences regarding vocabulary. While
gaze-agg has a similar vocabulary size (68 unique tokens produced) to no-gaze
(63), gaze-2seq is found to almost double it, with 109 unique tokens produced.
Though this number is still far from the total size of the reference vocabulary
(813), this trend suggests that a more diverse and perhaps ‘targeted’ language is
encouraged when specific image regions are identified through gaze-based atten-
tion. The following qualitative analysis sheds some light on this hypothesis.

Qualitative analysis Manual inspection of all the captions generated by the
models reveals interesting qualitative differences. First, captions generated by
gaze-injected models are more likely to refer to objects—even when they are
small and/or in the background—which are image-specific and thus very relevant
for the caption. For example, when describing the top left image in Figure 4.4,
no-gaze does not mention the word donuts, which is produced by both gaze-
agg and gaze-2seq. Second, gaze-injected models produce language that seems
to reflect the uncertainty present in the visual input. For the top right image
in Figure 4.4, e.g., both gaze-agg and gaze-2seq generate disfluencies such as
uh (interestingly, several participants’ descriptions include similar disfluencies for
this same image, which suggests some degree of uncertainty at the visual level);
in contrast, in the entire test set no disfluencies are produced by no-gaze.

Finally, we find that gaze-2seq is able to produce captions that somehow
‘compress’ a repetitive sequence (e.g., a red bus and a bus) into a shorter one,
embedding a number (e.g., two buses that are parked ; see the bottom left example
in Figure 4.4). This phenomenon is never observed in the output of other models
(crucially, not even in gaze-seq). We thus conjecture that this ability is due
to the presence of the gaze-dedicated LSTM, which allows for a more abstract
processing of the visual input. However, the presence of gaze data does not fully
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specificity disfluency
no-g een vrouw die in de keuken staat. . . een foto van een straat met een aantal vogels

(a woman who is standing in the kitchen. . . ) (a photo of a street with a number of birds)

2seq een vrouw in een keuken met donuts uh uh uh uh met een aantal vogels
(a woman in the kitchen with donuts) (uh uh uh uh with some birds)

compression repetition
no-g een rode bus en een bus een straat met auto’s en auto’s

(a red bus and a bus) (a street with cars and cars)

2seq twee bussen die geparkeerd staan een straat in de stad met auto’s en auto’s
(two buses that are parked) (a street in the city with cars and cars)

Figure 4.4: Phenomena that are either particular to gaze models (specificity,
disfluency, and compression) or common to all (repetition). Abbreviations no-g
and 2seq refer to no-gaze and gaze-2seq, respectively.

solve the issue of words being repeated within the same caption, as illustrated by
the bottom right example in Figure 4.4. Indeed, this weakness is common to all
models, including the best performing gaze-2seq.

4.9 Conclusion

We tackled the problem of automatically generating an image description from a
novel perspective, by modeling the sequential visual processes of a speaker concur-
rently with language production. Our study shows that better descriptions—i.e.,
more aligned with speakers’ productions in terms of content and order of words—
can be obtained by equipping models with human gaze data. Moreover, this trend
is more pronounced when gaze data is fed sequentially, in line with cognitive the-
ories of sequential cross-modal alignment (e.g., Coco and Keller, 2012).

Our study was conducted using the Dutch language dataset DIDEC (van
Miltenburg et al., 2018b), which posed the additional challenges of dealing with
a small amount of data and a low resource language. We believe, however, that
there is value in conducting research with languages other than English. In the
future, our approach and new evaluation measure could be applied to larger eye-
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tracking datasets, such as the English dataset by He et al. (2019). Since different
eye-tracking datasets tend to make use of different gaze encodings and formats,
the amount of preprocessing and analysis steps required to apply our method to
other resources was beyond the scope of this chapter. We leave testing whether
the reported pattern of results holds across different languages to future work.

Despite the challenges mentioned above, our experiments show that a state-
of-art image captioning model can be effectively extended to encode cognitive
information present in human gaze behavior. Comparing different ways of aligning
the gaze modality with language production, as we have done in the present
work, can shed light on how these processes unfold in human cognition. This
type of computational modeling could help, for example, study the interaction
between gaze and the production of filler words and repetitions, which we have not
investigated in detail. Taken together, our results open the door to further work
in this direction and support the case for computational approaches leveraging
cognitive data.

In the next chapter, we conduct more analyses into the DIDEC data, focusing
on quantifying the variation in language production and eye movements. We
then investigate whether pretrained encoders frequently used in contemporary
multimodal models capture the variation in human visuo-linguistic signals.
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Variation in Human Signals During
Image Description Generation
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5.1 Introduction

Humans can capture the gist of an image usually incredibly fast – 100 msec could
be enough (Oliva, 2005; Oliva and Torralba, 2006); however, they would need
more time to act on an image. For instance, human behavior while describing
images illustrates the intricacies of visuo-linguistic processes. There may be rep-
etitions, silent intervals and disfluencies, with considerable degrees of variation
in what is uttered across speakers. The period prior to the utterance involves
perceiving the image, conceptualizing the message, retrieving the labels of the
entities to mention, formulating and preparing to articulate a grammatical and
relevant utterance (Levelt, 1981; Slobin, 2003).

Min: 1.69 sec Max: 7.07 sec

Figure 5.1: The images with the minimum and maximum mean speech onsets
across speakers in the dataset. The image with the maximum onset also elicits
the highest variation in the first nouns of the descriptions.

As a result, we observe variations in speech onsets, as in Figure 5.1, which
could be indicative of the relative cognitive complexity induced by the images (Coco
and Keller, 2015a; Gatt et al., 2017). In addition, different speakers might start
their utterances with different words (starting points, see MacWhinney, 1977),
continuing to produce a varied set of image descriptions (linguistic variation)
with variation in gaze. These signify the intricate cross-modal relation between
visual and linguistic processes in humans (Griffin and Bock, 2000; Ferreira and
Rehrig, 2019).

Although human data can be rich in behavioral signals, current pretrained
multimodal models virtually never receive information about such signals during
training. The models generate descriptions without necessarily modeling how
human processes unfold. For instance, deep neural networks can output words
at the same rate even for images that would result in diverse speech behavior
by humans due to complexity or ambiguity. Moreover, there is a gap between
the manner in which humans perceive stimuli as compared to how large models
process them. Model-predicted surprisal values for linguistic input can be lower
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than human surprisal, possibly due to the massive size of the training data and
the number of model parameters (van Schijndel and Linzen, 2021; Arehalli et al.,
2022; Oh and Schuler, 2023a,b). Models also display different patterns of visual
attention compared to humans (Das et al., 2016).

We argue that it is essential to consider human signals such as speech onsets
and looking times, as they reflect the complexity and ambiguity of visuo-linguistic
tasks (Coco and Keller, 2015a; Gatt et al., 2017; van der Meulen et al., 2001;
Meyer and van der Meulen, 2000; van Miltenburg et al., 2018b). It is therefore
desirable if models encode what leads to variations in such signals to help generate
image descriptions in a way that is aligned with human processes and with types
of variations observed in human data (van Miltenburg et al., 2018a). To this end,
several applications have exploited human gaze to enhance image captioning, as
in Chapter 4, and visual question answering models (Sugano and Bulling, 2016;
He et al., 2019; Takmaz et al., 2020b; Sood et al., 2021, 2023). Still, the relation
between gaze on images and language is not widely researched in NLP (Alacam
et al., 2022).

We first explore the natural dynamics in visuo-linguistic processes using the
same dataset we utilized in Chapter 4, the DIDEC dataset (van Miltenburg et al.,
2018b). As this corpus provides gaze and speech data concurrently collected
while participants describe images depicting real-life scenes, it is a rich resource
to investigate our research questions in this chapter, as well. We preprocess the
DIDEC dataset extensively, utilizing more recent methods as compared to the
ones used in Chapter 4. We propose metrics to quantify the variation in visual
and linguistic modalities, and reveal for the first time significant correlations
between speech onsets, variation in starting points, descriptions and gaze.

We hypothesize that this variation is partly due to the properties of the im-
ages, and that similar images would elicit similar amounts of variation. Given
the superior performance of pretrained encoders that are widely used in mul-
timodal models, we investigate whether visual encoders such as CLIP Radford
et al. (2021) and ViT Dosovitskiy et al. (2021) capture information regarding the
variation in visuo-linguistic signals.1 This is akin to probing pretrained models for
meaningful syntactic and semantic information; see Conneau et al., 2018a. Using
a similarity-based prediction method (Anderson et al., 2016a), we find that the
pretrained encoders capture variation in signals to a limited extent. Our findings
suggest that underlying factors leading to variation are encoded rather weakly
by pretrained models. With our work, we aim to direct attention towards the
importance of the information contained in such signals and the variation thereof
when crowdsourcing data as well as during model development.

1Our preprocessed data and code are publicly available at https://github.com/ecekt/

visuolinguistic_signal_variation.

https://github.com/ecekt/visuolinguistic_signal_variation
https://github.com/ecekt/visuolinguistic_signal_variation
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5.2 Background

We first give an overview of visuo-linguistic processes in humans in Section 5.2.1,
and then, in models in Section 5.2.2.

5.2.1 Visuo-Linguistic Processes in Humans

Cross-modal processes Describing images requires the linear unfolding of
complex cross-modal processes between vision and language (Henderson and Fer-
reira, 2013; Griffin and Bock, 2000; Gleitman et al., 2007; Coco and Keller, 2012;
Ferreira and Rehrig, 2019; Henderson, 2017). There exist several theories re-
garding how the ‘linearization’ (Levelt, 1981) takes place in sentence formulation
in relation to visual processes (Griffin, 2004; Meyer, 2004; Ferreira and Rehrig,
2019). These theories consider the speaker’s knowledge and expectation regard-
ing the contents of the image, as factors affecting the allocation of gaze and the
formulation of a description (Henderson, 2017; Ferreira and Rehrig, 2019). In
addition, the way people look at an image changes based on the task at hand
(Yarbus, 1967; Buswell, 1935; Castelhano et al., 2009), with similar sequences of
fixations (scanpaths) leading to the production of similar sentences (Coco and
Keller, 2012). Therefore, we hypothesize that the variation in language produc-
tion and eye movements could be correlated.

Starting points A sentence must have a starting point, given that words need
to be uttered in a linear order (Levelt, 1981). We focus on the first uttered
noun as the starting point of image descriptions as they correspond to object
categories, and gaze scanpaths are represented by the sequence of object or entity
categories fixated by a participant, expressed as nouns. Additionally, the order
of mention of these categories is the point of interest in linearization studies that
investigate language production parallel to visual processes (Ferreira and Rehrig,
2019). Starting points can be selected based on a variety of factors (canonical
word order of the language, perspective of the speaker, complexity of the planned
sentence; see MacWhinney, 1977). When describing images, visual properties of
an image influence how a sentence begins and unfolds (Bock et al., 2004). These
findings signify how the selection of starting points can be influenced by a set of
complex visuo-linguistic factors.

Variation in image descriptions People generally describe images with some
variation. Jas and Parikh (2015) report that images with people and large ob-
jects tend to be described more specifically, whereas generic buildings, ambiguous
scenes and images with less-important objects tend to elicit more varied descrip-
tions. The degree to which the descriptions of an image vary is referred to as
‘image specificity’ by Jas and Parikh (2015), who propose an automatic metric
to quantify it using the similarity scores between the WordNet paths of words in
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descriptions (Miller, 1994). van Miltenburg et al. (2018b) explore image speci-
ficity in the corpus that we use in this study, utilizing word2vec vectors (Mikolov
et al., 2013a) to compute the similarity scores. They find that the variation in
descriptions is only to a limited extent due to the image’s contents as there also
seems to be an effect of language (English vs. Dutch). Additionally, their results
indicate that attention maps extracted using gaze data do not help predict image
specificity (van Miltenburg et al., 2018b). In this work, we also quantify and
predict image specificity proposing different approaches.

Speech onsets Slower speech onsets indicate that a deliberate, effortful pro-
cess is taking place, as compared to fast onsets; as claimed in the dual process
theory (Wason and Evans, 1974; Kahneman, 2012). Various intertwined linguis-
tic and visual processes modulate speech onsets and the latency of referring to
an object (Meyer and van der Meulen, 2000; Coco and Keller, 2015a), such
as the contents of an image and the locations of the objects (Gatt et al., 2017;
Esaulova et al., 2019). This indicates that speech onsets are strongly linked to im-
age features. Given the importance of speech onsets in relation to visuo-linguistic
processes and the cognitive requirements of a task, the mean speech onset induced
by an image across speakers is one of the signals we focus on.

5.2.2 Multimodal NLP

Pretrained models Many recent multimodal models employ frozen pretrained
unimodal models and combine them with either no further training or via trained
lightweight mapping networks (Berrios et al., 2023; Alayrac et al., 2022; Mañas
et al., 2023; Tsimpoukelli et al., 2021; Li et al., 2023b; Mokady et al., 2021;
Chen et al., 2022). Particularly, the visual encoder of the CLIP model (Radford
et al., 2021) has been utilized in these models as a foundation model with strong
zero-shot capabilities that improves multimodal models (Shen et al., 2022).

By training classifiers on top of visual encoders, Berger et al. (2023) predict
the existence of linguistic features such as passive voice and the use of numeral
expressions in image descriptions, and indicate that the selection of such linguistic
features is constrained by visual features. These findings point to the underlying
capabilities of pretrained models pertaining to human cognitive processes.

Human signals in NLP Most previous research into the use of human signals
focuses on text-only cases (Klerke et al., 2016; Barrett et al., 2018, 2016; Mishra
and Bhattacharyya, 2018; Hollenstein et al., 2021a, 2022, 2021b; Pouw et al., 2023;
Ding et al., 2022; Ren and Xiong, 2021; Dong et al., 2022; Khurana et al., 2023;
Mathias et al., 2020; Zhang et al., 2020a). However, the relationship between
human gaze on images and language production, and its potential contribution
to computer vision and NLP has been investigated even before the existence of
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pretrained models (Yun et al., 2013). Research into whether the attention distri-
butions in multimodal models correlate with human attention reveals contrasting
findings (Das et al., 2016; Gella and Keller, 2018; He et al., 2019; Sood et al.,
2021). Several works show that the use of human gaze enhances image captioning
and visual question answering (Sugano and Bulling, 2016; He et al., 2019; Takmaz
et al., 2020b; Sood et al., 2021, 2023). Yet, modeling gaze in conjunction with
linguistic processes is still an under-explored area in NLP (Alacam et al., 2022).

In our work, we investigate the variation of a set of human signals in a corpus,
as well as whether pretrained vision encoders can encode information related to
these signals. Although such models are shown to be very effective in multimodal
tasks, they are still under-explored from this point of view.

5.3 Data

We aim to explore the variation in human signals in visuo-linguistic processes
and whether pretrained models can capture such variation in a realistic setup. A
dataset consisting of simultaneous language production and eye movements over
complex images would enable such an exploration. Therefore, we opt for using
the DIDEC corpus (van Miltenburg et al., 2018b) instead of other existing image
description datasets with eye-tracking, as this corpus allows us to delve into the
dynamics of visual and linguistic processes in parallel. There exist few datasets
containing such information, which we did not opt for utilizing, as they differ
in their tasks (narratives (Vaidyanathan et al., 2018)), or the processing steps
the authors have taken (e.g. only a small subset of the captions were checked
manually (Vaidyanathan et al., 2018), the authors sample one gaze point every 4
points (He et al., 2019)). DIDEC dataset comprises manually checked descriptions
of high quality, and the gaze data is provided in a raw format enabling custom
processing.

As in Chapter 4, we use the ‘production viewing’ subset of DIDEC. Next,
we explain how we extract features corresponding to human signals in visuo-
linguistic processes from this dataset, to obtain 4586 descriptions with speech
onsets, starting points, and fixated regions.

5.3.1 Visual Data

Using the raw gaze samples in DIDEC (van Miltenburg et al., 2018b) labeled as
fixations, saccades, and blinks, we create fixation windows by treating saccades
and blinks as boundaries (Salvucci and Goldberg, 2000). The gaze samples in the
fixation window are then put into a list, skipping the ones that fall outside the
boundaries of the images. To visually represent a fixation, we feed its gaze points
as coordinate prompts to the Segment Anything Model (SAM; Kirillov et al.,
2023). Using the prompts, this model predicts the objects the gaze corresponds
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to, and outputs masks corresponding to fixated regions. We use the ViT-L version
of the model building on vision transformers (Dosovitskiy et al., 2021), as it
achieves good performance (Kirillov et al., 2023). We obtain a single mask per
fixation window. The masks sometimes span non-contiguous regions; therefore,
we utilize the bounding box based on the x-y limits of the predicted mask.

5.3.2 Linguistic Data

Speech onsets The dataset supplies audio files for spoken descriptions and
their transcripts. To extract word-level timestamps, we use WhisperX (Bain
et al., 2023) based on Whisper (Radford et al., 2023).2 We relay the transcripts
directly into the alignment function of WhisperX. The output contains the start
and end timestamps of each word. This also allows us to extract information
regarding when the participants start talking, i.e., speech onsets. The mean
speech onset is 3.42 sec, and the median is 2.65 sec. We observe variation across
participants and images, as the onsets can go up to 25.37 sec with a standard
deviation of 2.45.

Starting points We use the spaCy library for tokenization, part-of-speech tag-
ging, and lemmatization of the words in the descriptions.3 For Dutch, the library
provides 3 models (small, medium, and large). Upon manual inspection of 50
random samples from the data processed by each model, we opted for the large
model, which yields the least number of errors. See Appendix B.1 for more details.

5.4 Variation in Human Signals

We first delve into the nature of the variation across humans per image in the
DIDEC dataset. Our focus is on uncovering potential correlations between the
variations in human signals in visuo-linguistic processes. We first explain how we
quantify each signal and its variation, see Figure 5.2 for an example image with
all of its variation scores. Then, we conduct pairwise correlation analyses between
the 4 variables. If there exist correlations between variations across signals, one
can speculate that at least part of the correlation stems from the image, with the
rest being potentially due to factors such as viewing order, priming and cognitive
load.

2The model for obtaining alignments for audio in Dutch:
jonatasgrosman/wav2vec2-large-xlsr-53-dutch

3‘nl core news lg’ pipeline from https://spacy.io/

https://spacy.io/
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een pier waar het heel erg druk is uh rechts is een vis aquarium waar je vissen kan aanraken
(a pier where it is very busy uh on the right is a fish aquarium where you can touch fish)

een drukke straat met een aantal restaurants pier 39
(a busy street with a number of restaurants pier 39)

pier waar veel mensen lopen
(pier where many people walk)

een drukbezette pier
(a busy pier)

een toeristische plaats waar veel verschillende entertainment dingen te doen zijn
(a touristic place where there are many different entertainment things to do)

de ingang van een aquarium met veel mensen op een plein
(the entrance to an aquarium with many people in a square)

Mean onset: 3.46 seconds
Variation in starting points: 11

Most common starting point: pier
Image specificity BLEU-2: 0.39

Variation in gaze: 38.47

Figure 5.2: An image with its variation scores, a subset of its descriptions (along
with the English translations in parentheses), and the eye movements of a single
participant. In the descriptions, the words in boldface indicate the starting points
in Dutch and their equivalents in English.

5.4.1 Variation in Speech Onsets

We inspect the mean and standard deviation of speech onsets per image, see
histograms in Appendix B.2. The mean onsets per image range between 1.69
and 7.07 seconds, constituting a non-normal distribution skewed towards shorter
onsets (p < .001, 65.77% of the onsets shorter than the mean onset). For some
images, some participants start talking immediately; whereas, in other cases,
they wait for a considerable amount of time before speaking. This observation
resonates with the fast and slow systems from the dual process theory (Wason
and Evans, 1974; Kahneman, 2012), suggesting that more complex processes are
recruited while describing certain images. However, even for a single image, the
participants might start speaking at varying times (with SD per image ranging
from 0.44 to 6.33). This suggests that various factors are at play while describing
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images, such as contextual and speaker-specific effects.
To have a better picture of onset variation, we compare the onsets for an

image against each other. Leaving one onset out of the set of onsets for an image,
we calculate the average of the rest (≈ 14 onsets). The difference between the
average and the left-out onset corresponds to error. We perform this calculation
for each sample. Then, we take the mean over all the samples, which yields an
error of 1.625 seconds. This error is a proxy for the average variation over the
participants, which suggests that there is a difference in response times across
humans when prompted with the same image.

The DIDEC corpus comes with 3 mutually-exclusive image subsets called
‘lists’. Each participant views only one list. We find that the mean onsets in
List 2 are significantly shorter than the other two sets (p < .001, independent
samples t-test). Since both the images and the participants are different across
lists, it is not straightforward to separate their effects. See Appendix B.3 for a
participant-based analysis of mean onsets.

5.4.2 Variation in Starting Points

Counting the first nouns of image descriptions reveals that there is an imbalance in
the starting points in the data.4 The participants utter words such as man, people,
woman, bus and street most frequently as the first noun of a description (370,
238, 221, 174, 141, respectively, constituting in total 25% of the samples). This is
potentially due to the salience of such entities and their frequency. We represent
the variation in starting points by the number of unique starting points uttered
per image, yielding mean = 6.45, min = 1, max = 13. These values indicate
that some images elicit the same first nouns, whereas some others prompt the
production of a range of starting points. See Figure 5.3 for the images with the
minimum and maximum number of unique starting points.

5.4.3 Variation in Full Descriptions

Each image can be described in distinct ways, both in terms of the words uttered
and their order. We quantify the linguistic variation in image descriptions, follow-
ing a different approach compared to Jas and Parikh (2015) and van Miltenburg
et al. (2018b). We adopt a widely used NLG metric, BLEU (Papineni et al.,
2002). This metric computes n-gram-based precision scores between a generated
sentence and a set of references. We opt for the bigram version (BLEU-2), since
we are mostly interested in the surface form variation of words, and to a lim-
ited extent, the sequences of words. BLEU-2 allows us to measure the linguistic

4Although it would also be interesting to consider synonyms since they would be referring
to the same object, lexical choices reflect categorization and conceptualization of objects that
can be affected by the visual context in which the object is situated (Gualdoni et al., 2023).
Therefore, this is the type of variation of interest for starting points.
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Min: 1 Max: 13

Figure 5.3: Variation in the number of unique starting points. For the image
with the minimum score, all the speakers start with keuken, meaning kitchen.
The image with the maximum score has descriptions starting with a variety of
words: bureau, fitness, huiskamer, springding, atletiek, balk, hoek, tafel, plek,
turnattribuut, restaurant, bank, turnobject.

variation in descriptions independently of a pretrained model.5 We calculate the
BLEU-2 score between a description and the remaining descriptions for the image
constituting the reference set. Then, we take the average over all descriptions of
an image.6 This method yields an extensive range of normally distributed scores
(µ = 0.53,min = 0.25,max = 0.81). Figure 5.4 depicts the images with the
minimum and maximum variation in the descriptions.

5.4.4 Variation in Gaze

The variation in eye movements has been quantified in various ways in the lit-
erature: scanpath complexity, dispersion of the heatmap of gaze on an image,
entropy of the gaze distribution (Coco and Keller, 2015a). We propose a distance
metric based around the contents of fixated regions and their orders. We repre-
sent a scanpath in the form of a sequence of fixation bounding boxes represented
as (x1, y1, x2, y2). Given two scanpaths S1 and S2, for each fixation box in S1, we
find the most similar box in S2 that yields the highest ratio of intersection over
union (IoU) between the bounding boxes. The IoU dissimilarity (1−IoU) as well

5See Appendices B.4 and B.5 for a semantic variation metric we propose using Dutch
BERT-based representations (BERTje; de Vries et al., 2019), another combining BERTje and
BLEU-2-based variation, as well as a comparison to human annotations provided by Jas and
Parikh (2015).

6This metric is similar to Self-BLEU (Zhu et al., 2018), which was proposed to calculate
the diversity of the sentences generated by a model. In Self-BLEU, each generated sentence is
compared to the rest of the generated sentences, and an average of the whole set is computed
to indicate how varied a model’s generations are.
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Min: 0.248 Max: 0.811

Figure 5.4: BLEU-2-based linguistic variation scores. The image with the maxi-
mum BLEU-2 score elicited the most similar set of descriptions in the dataset.

as the normalized positional distance between these boxes are summed up. This
step is performed for all fixation boxes in S1. The total gives us a comparison
score for two scanpaths. We compare S1 to all the other scanpaths for the same
image and then, take the average. Each scanpath for the image is compared to
the rest of the related scanpaths in the same way. This yields 15 image-scanpath
variation scores, whose mean corresponds to the gaze variation score of a single
image. The higher this score is, the more variation exists in the gaze modality.
We obtain a range of gaze variation scores for the whole set (mean = 24.00,
min = 11.22, max = 38.79). Figure 5.5 illustrates the images with the minimum
and maximum variation in gaze.

Min: 11.22 Max: 38.79

Figure 5.5: Variation in gaze. The image with the minimum score elicited more
similar scanpaths across speakers than the one with the maximum score.
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Figure 5.6: Spearman’s correlation coefficients between the mean onsets per image
(Onset), the variation in starting points (Starting), BLEU-2-based variation in full
descriptions (Description), and the variation in gaze (Gaze) in the full dataset.
Since higher BLEU scores mean less variation unlike the trends in the other
measures, we utilize 1−BLEU for better interpretability. All of the correlations
are significant, p < .001.

5.4.5 Correlation between Variations

In the previous subsections, we have quantified the variation in speech onsets,
starting points, descriptions and gaze per image. We now turn to the correlation
between the variation types. Since the initial common point is the image itself,
we hypothesize that image features contribute to varying levels of variation in
different modalities. We run Spearman’s correlation between each type of vari-
ation.7 When interpreting the magnitudes of the correlation coefficients, we use
the terminology suggested by Prion and Haerling (2014). See Figure 5.6 for all
correlation results.

We find a significant negative correlation, approaching moderate effect, be-
tween BLEU-2-based linguistic variation and the mean onset of an image (Spear-
man’s ρ = −0.391, p < .001, see Appendix B.6 for the regression line). This
means that speakers start describing images that yield more similar descriptions
earlier.8 In addition, as starting points vary, image descriptions become less
similar (moderate, Spearman’s ρ = −0.516, p < .001), indicating that initial

7We conduct Spearman’s rank correlation analysis to uncover monotonic relations in the
data. This type of correlation does not assume a particular distribution of the data (non-
parametric, as opposed to Pearson’s normality assumption). Since some of the signals we have
investigated are non-normally distributed (e.g., speech onsets), and the dataset is relatively
small, we opted for Spearman.

8Unlike this correlation, we find that speech onsets are not correlated with how many words
or nouns are uttered.
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deviations continue until the end of language production.
We find that the variation in gaze significantly correlates with speech onsets

(moderate, Spearman’s ρ = 0.455, p < .001); the variation in starting points
(weak, Spearman’s ρ = 0.350, p < .001); and the variation in full descriptions
(moderate, Spearman’s ρ = −0.485, p < .001). These outcomes indicate that
high variation in gaze tends to co-occur with longer onsets, high variation in
starting points, and less similarity in descriptions.9

The correlations reveal a connection between the variation in visual and lin-
guistic modalities. We hypothesize that the underlying reasons for such variation
partly reside in the features of an image, echoing the claims by Jas and Parikh
(2015) and Berger et al. (2023). In this sense, similar images are expected to
elicit similar amounts of variation. Hence, the results motivate our research into
whether image features as encoded by pretrained models can capture the variation
in gaze and language.

5.5 Similarity-based Prediction

In light of the correlation findings in Section 5.4, we expect image features to be
predictive of the variation in visuo-linguistic signals to some extent. We explore
if the similarity scores between image features encoded by pretrained models
would be meaningful when capturing variation in human signals. In particular,
we hypothesize that the signals that are more internal to the pretrained models’
training objectives would be captured better. For instance, CLIP was trained with
respect to an image-to-text alignment objective (Radford et al., 2021); hence, it
would be reasonable to expect that signals that are more inherent to the visual
and language data could be encoded better compared to speech onsets, which are
never seen by the model.

Approach We employ an approach that was proposed as an alternative to
training regression models and representational similarity analysis, for predicting
fMRI signals given linguistic input (Anderson et al., 2016a). Using the similarities
between model-encoded stimuli (embeddings of concepts) and the corresponding
fMRI responses, the authors predict the fMRI signals for novel stimuli for which
embeddings exist. This approach has been utilized to assess the extent to which
deep neural networks capture brain representations in language-only and visually
grounded setups (Anderson et al., 2017; Bruera et al., 2023; Bruera and Poesio,
2023). We explain how we operationalize this extrapolation method for our pur-
poses in Section 5.5.1. As this approach does not require training, it is suitable
for shedding light on the predictive power of pretrained image representations,

9Investigating the correlation between these types of variation and the number of objects
in an image is not straightforward, as current object detection algorithms annotate images
exhaustively, yielding a high number for many images.
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given the small size of the dataset we use. We determine the splits based on the
images. Hence, to mitigate imbalance issues, we create 50 random split setups
with 90% training (277 images) and 10% test sets (30 images), and report results
on the average of these 50 setups. Across setups, the training sets have similar
representative powers in terms of their CLIP vector similarities to the images in
the corresponding test sets.

Visual encoders To encode the images, we exploit three visual encoders:
CLIP, ViT, and a randomly initialized CLIP model (without training at all). We
use the ViT-B/32 version of CLIP’s visual encoder (Radford et al., 2021), and
extract the final 512-dimensional output for each image. Since this encoder has
been trained in coordination with CLIP’s textual encoder (Radford et al., 2021),
we expect it to capture not only vision-related features, but also properties that
are aligned with language. In addition, we test the representations of a purely
visual encoder trained on object recognition, ViT (Dosovitskiy et al., 2021). We
extract the last hidden states from ViT, and use the vector corresponding to the
[CLS] token as the image representation. Finally, we also experiment with a
randomly-initialized version of CLIP (RndCLIP), along the lines of what Berger
et al. (2023) did to avoid the information learned during pretraining.

5.5.1 Predicting the Variation in Descriptions

From the training set, we retrieve k images that are closest to the target image—
the image for which we predict a signal variation score—based on their represen-
tational similarities, echoing the k-nearest neighbors algorithm. The final score
is the weighted average of the variation found in the neighboring images. The
weights correspond to the similarity scores between the retrieved images and the
target image.

As depicted in Table 5.1, we find significant, yet weak, positive correlations
for almost half of the 50 split configurations both for CLIP and ViT, with no
meaningful correlations for RndCLIP. CLIP slightly outperforms ViT, suggest-
ing that language alignment in the visual modality yields a potential benefit in
estimating the variation in descriptions.

The loss corresponds to the average difference between the predicted and
target scores across the dataset. The losses are similar across encoder types
despite the differences in correlations. Since this method makes predictions based
on the ground truth outputs of the retrieved set, it is likely that the predictions
remain in a similar range.

5.5.2 Predicting Onset

We perform the similarity-based prediction approach outlined in Section 5.5.1 to
predict mean speech onsets per image. Since longer onsets can be associated with
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Model Coefficient Sig. Loss

CLIP 0.3380 27 0.0738
ViT 0.3135 23 0.0723
RndCLIP 0.0472 3 0.0744

Table 5.1: Predicting variation in descriptions with the similarity-based approach,
k = 277. Averages over 50 random splits. ‘Coefficient’ and ‘Sig.’ correspond to
Spearman’s ρ correlation coefficient and how many runs out of 50 yield significant
correlations with p < 0.05.

more cognitively demanding images, we are interested in the average onset elicited
by each image. The results (see Table 5.2) indicate that, by using a larger sample
of CLIP-encoded images, we can obtain predictions weakly correlating with the
target onsets. The differences in the results when using different k values suggest
that the choice of the retrieval set limits the boundaries of the predictions, even
though the median image similarity score for k = 1 is 0.77 in the dataset.

Model Coefficient Sig. Loss Range

CLIP-277 0.2981 18 0.8216 3.37 - 3.50
CLIP-10 0.2500 10 0.7989 2.60 - 4.37
CLIP-5 0.2265 14 0.8149 2.26 - 4.81
CLIP-1 0.0640 4 1.0746 1.69 - 6.39
ViT 0.2428 17 0.8072 3.11 - 3.67
RndCLIP 0.0350 3 0.8249 3.38 - 3.47

Table 5.2: Predicting mean speech onsets with the similarity-based approach.
The numbers in the model names correspond to k when retrieving closest images
from the training set. RndCLIP and ViT with k = 277. ‘Range’ is the range of
the predictions for the test set.

When we use 277 images encoded with ViT to obtain the image similarities,
the correlation is weaker than the same setup with CLIP. When we encode the
images with RndCLIP, although the loss is quite similar to the other setups,
there is no meaningful correlation. The predictions in general center around the
mean onset, as they are based on the outputs from the retrieval set.

5.5.3 Predicting Starting Points

We utilize the similarity-based prediction algorithm to predict the first uttered
nouns of the descriptions. Since this is a subtask of generating descriptions, we
consider this an interesting use case. For each image, we represent the most com-
mon first noun as a one-hot vector (with the dimensions being 739, corresponding
to the size of the first-noun vocabulary of the whole dataset). We report the ac-
curacy of predicting the correct starting point.
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Model k = 277 k = 10

CLIP 13.00% 31.73%
ViT 26.47% 30.53%
RndCLIP 11.27% 10.40%
Baseline - Random 4.00% 4.00%
Baseline - Most common 11.27% 11.27%

Table 5.3: Predicting starting points with the similarity-based approach and the
baselines, percentage of correctly identified starting points for different k values.

As illustrated in Table 5.3, all setups attain scores that outperform the baseline
where we predict random starting points (theoretically, for a uniform distribution
of starting points, 1/739 = 0.14%). We also predict the most common starting
point (‘man’), which performs similarly to RndCLIP. With pretrained encoders,
it is better to utilize lower k to attain better accuracy, since very similar images
likely contain similar objects that are mentioned earlier in the utterances. Both
CLIP and ViT show similar performances when k = 10, hinting at the relation
between their training objectives and starting points, which often correspond to
the most salient entity in the image.

5.5.4 Predicting the Variation in Gaze

We apply the similarity-based approach to predict the variation in gaze. The
results (Table 5.4) reveal that the gaze variation can be approximated to a mod-
erate extent with CLIP. Using a smaller retrieval set is beneficial, suggesting a
strong link between image properties and the variation in gaze. Since CLIP has
a powerful visual encoder (Shen et al., 2022), it is reasonable that the similari-
ties between image features encoded by CLIP seem to be more meaningful when
approximating the variation in gaze.

Model Coefficient Sig. Loss Range

CLIP-277 0.4035 30 4.0200 23.55 - 24.45
CLIP-10 0.4253 35 3.5774 17.05 - 29.63
CLIP-5 0.4435 33 3.5707 15.43 - 32.92
CLIP-1 0.4687 39 3.8889 11.22 - 38.79
ViT 0.3801 28 3.8847 22.62 - 25.67
RndCLIP 0.0109 2 4.0571 23.76 - 24.26

Table 5.4: Predicting gaze variation using the similarity-based approach. Targets
range between 11.22 and 38.79.

The outcomes are in line with our hypothesis that signals that could be con-
sidered more internal to the models’ training objectives would be captured better,
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whereas external signals can be captured weakly. For instance, speech onsets and
surface form variation in descriptions can be deemed external to CLIP’s space.
Therefore, we claim that there could be room for incorporating such external sig-
nals when training or fine-tuning pretrained multimodal models, and the models
would benefit from such signals. It should be noted, though, since human pro-
cesses are complex, there could be extraneous factors beyond image features that
influence variation, which makes it difficult for models to capture these signals
perfectly.

Min: 3.381 Max: 3.488

Figure 5.7: Images with the minimum and maximum predicted mean onsets. The
image with the minimum was also predicted to elicit the lowest variation in gaze.

5.5.5 Examples

We illustrate the images with the minimum and maximum mean onsets as pre-
dicted by the similarity-based approach in Figure 5.7. Figure 5.8 depicts pre-
dicted variation in descriptions, and Figure 5.9 the predicted variation in gaze.
We see a tendency to predict shorter speech onsets, more similar descriptions
and gaze patterns in images containing a couple of people compared to scenes of
streets with no visible or salient humans, a finding resonating with the conclu-
sions drawn by Jas and Parikh (2015). This is potentially due to the salient and
non-ambiguous nature of humans in images, as opposed to general street scenes
with cars, buses and non-salient humans.

5.6 Conclusion

We quantified the variation in speech onsets, starting points, descriptions and
gaze using a Dutch dataset of image descriptions with eye-tracking data. Our
findings revealed the extent of variation in the process of describing images, and
that variations in different signals correlate with each other. Furthermore, using
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Min: 0.529 Max: 0.541

Figure 5.8: BLEU-2-based linguistic variation scores as predicted by the
similarity-based approach. Lower BLEU-2 scores mean more diversity.

Min: 23.666 Max: 24.308

Figure 5.9: Variation in gaze as predicted by the similarity-based approach.
Higher scores indicate more diverse gaze patterns.

a similarity-based prediction approach, we showed that image representations en-
coded by pretrained vision encoders capture variation in visuo-linguistic behavior
to a weak-to-moderate extent. This pattern can be interpreted in light of models’
pretraining objectives, as the predictions correlated more strongly for signals more
internal to the objectives. Our study has implications for how human processes
unfold as well as pretrained models’ capabilities to represent such processes.

Human and machine processing have differences, and we are motivated by
the potential benefits of making the models increasingly knowledgeable of the
multimodal landscape of human data. Although the impact of fine-tuning an
already powerful pretrained model on a small-scale dataset with human signals
could be quite modest, we hope that our work motivates the collection of more
signals during crowdsourcing. For instance, it would be beneficial to take into
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account how long it took participants to complete a task given a certain stimulus,
indicating the relative complexity and the uncertainty induced by the task as well
as the stimulus. By inducing biases based on human signals, models can further
take advantage of the information contained within such signals. Although it
would be difficult to capture the full extent of the intricacies of human processing,
this could help, for instance, a model interacting with human users to generate
responses more aligned with human expectations.

In the next chapter, we investigate the representational power of multilingual
models when predicting eye-tracking features during reading.





Chapter 6

Multi- and Cross-Lingual Prediction of
Human Reading Behavior

The material in this chapter is based on a paper that received the ‘Best Shared
Task Paper Award’ at CMCL 2022: Ece Takmaz. 2022. Team DMG at CMCL
2022 shared task: Transformer adapters for the multi- and cross-lingual prediction
of human reading behavior. In Proceedings of the Workshop on Cognitive Model-
ing and Computational Linguistics, pages 136–144, Dublin, Ireland. Association
for Computational Linguistics.

Contributions: Ece Takmaz: Implementing and running the experiments, writ-
ing the paper.
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6.1 Introduction

In the previous chapters, we delved into the relation between language production
and eye movements over images, and how findings regarding this topic would help
inform multimodal models in NLP. In this chapter, we turn to predicting gaze
during reading, which reflects cognitive processes and attention during language
comprehension (Rayner, 1977). Modeling gaze in relation to reading could provide
insights into language-related eye movements, as well as revealing the potential
of using computational means to model human reading behavior. This was also
the aim of the shared task of CMCL 2022, focusing on the prediction of multi-
and cross-lingual eye movements during reading (Hollenstein et al., 2022). Such
a task would necessitate capturing universal as well as language-specific aspects
of human reading behavior (Liversedge et al., 2016; Hollenstein et al., 2021b). In
this chapter, we describe our approaches that attained second place in the shared
task of CMCL 2022 (Hollenstein et al., 2022).

Various approaches have been proposed for the modeling of human reading
behavior (Rayner, 1998; Reichle et al., 1998; Hahn and Keller, 2016). The CMCL
2021 shared task focused on the prediction of ‘monolingual’ reading behavior
and the participants applied various methodologies to predict eye-tracking fea-
tures, e.g. gradient boosting, ensembling, using handcrafted features, deep learn-
ing (Hollenstein et al., 2021a; Bestgen, 2021; Li and Rudzicz, 2021; Oh, 2021;
Vickers et al., 2021).

With regard to deep learning-based approaches, there exist findings suggest-
ing that, as compared to transformer-based models (Vaswani et al., 2017), recur-
rent neural networks exhibit attention patterns closer to human attention (Sood
et al., 2020a). However, more recently, transformer-based models have been
shown to better account for human reading behavior than recurrent neural net-
works (Merkx and Frank, 2021). Moreover, pretrained language models (PLM)
such as BERT (Devlin et al., 2019) and XLM (Conneau and Lample, 2019) can
predict multilingual human reading behavior well (Hollenstein et al., 2021b), in
addition to having advanced the state-of-the-art in many downstream NLP tasks.

The CMCL 2022 shared task (Hollenstein et al., 2022) consists of predicting
four eye-tracking features for data containing sentences in 6 different languages
as well as transferring to a new language. For this purpose, we train ‘adapters’
inserted into transformer layers of frozen PLMs (Houlsby et al., 2019). We find
that training adapters for each language separately within multilingual trans-
formers leads to good performance, attaining second place in the leaderboard.
In addition, we show that such models can transfer to new languages via sim-
ply translating the new test sets into closely related languages (e.g. lexically or
grammatically) that the model was exposed to during training.1

1The repository: https://github.com/ecekt/cmcl2022_dmg

https://github.com/ecekt/cmcl2022_dmg
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6.2 Background

6.2.1 Data and Subtasks

The CMCL 2022 shared task consists of 2 subtasks. The data for Subtask 1
includes publicly available eye-tracking corpora for 6 languages (English, Chinese,
Russian, Hindi, German, Dutch). These corpora differ in size as well as the
nature of the sentences they contain (i.e. news articles, scientific texts, Wikipedia
entries). The data is already partitioned into train, validation and test splits. For
Subtask 2, we are only supplied with a test set comprised of Danish sentences.
We only use the data provided in the shared task and preprocess the textual input
utilizing the tokenizers of PLMs. For more details, see Appendix C.1.

The eye-tracking features provided in the data correspond to ‘first fixation
duration’ (FFD, duration of the first fixation on the current word) and ‘total
reading time’ (TRT, total duration of all fixations on the current word including
regressions). The values of these features were provided per token entry, averaged
across all the readers: FFDAvg and TRTAvg. In addition, to account for
the individual differences between readers, the data also includes the standard
deviations of these features across readers: FFDStd and TRTStd.

The aim of the subtasks is to predict these 4 features for each token. The sub-
missions to the shared task system are ranked with respect to test-set Mean Ab-
solute Error (MAE): the average of the absolute differences between the ground-
truth values and the values output by the model. We implement MAE as below:∑N

i=1 |oi − ti|
N

[6.1]

where N is the number of tokens in the data, oi is the value output by the model
for a given token, and ti is the ground-truth value for this token. We calculate
MAE for all 4 eye-tracking features and take their average to obtain the final
MAE. The shared task system also reports coefficients of determination (R2),
which we provide in Appendix C.4.

6.2.2 Adapters

The common method for using PLMs in downstream tasks is to fine-tune them
for each task. If there are multiple tasks the model should handle at the same
time, this could lead to some issues (Pfeiffer et al., 2021). For instance, learning
tasks in parallel could cause interference, and the model might learn a certain
task better than the others. In the case of sequential training, we might observe
catastrophic forgetting, where the model forgets the previously learned tasks. In
addition, usually the whole model is fine-tuned; hence, we might need to save a
new model per task, which increases compute and memory requirements.
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To overcome these issues, ‘adapters’ have been proposed (Houlsby et al., 2019;
Bapna and Firat, 2019). Adapters are bottleneck layers consisting of new weights
integrated into each layer of a transformer model. They first project down (WD ∈
Rh×d) the dimensions of the transformer hidden state hl at layer l, apply a non-
linearity, and then project the activations back up (WU ∈ Rd×h) to the original
dimensions. The outcome is then summed up with the residual rl via a skip-
connection to obtain the output of the adapter Al:

Al = WU(ReLU(WDhl)) + rl [6.2]

Keeping the pretrained model frozen and only training adapters have been shown
to yield performances close to those of fully-fine-tuned models while also maintain-
ing efficiency (Houlsby et al., 2019; Bapna and Firat, 2019; Rücklé et al., 2021).
Various types of adapters, insertion and training schemes have been proposed for
machine translation, multi-task settings and cross-lingual transfer (Ansell et al.,
2021; Pfeiffer et al., 2020b, 2021; Philip et al., 2020; Üstün et al., 2020, 2021;
Poth et al., 2021).

Given their relevant advantages, we use Adapters from the AdapterHub frame-
work (Pfeiffer et al., 2020a)2 built on HuggingFace Transformers (Wolf et al.,
2020), to insert trainable adapters into frozen PLMs for the prediction of eye-
tracking features. Then, we train language- and task-specific adapters and store
their trained weights along with a single model. The details of the models and
adapters used in Subtasks 1 and 2 are provided in Sections 6.3 and 6.4, respec-
tively. For reproducibility, the hyperparameters for the best models selected with
respect to their MAE scores on the validation set, and the details of the develop-
ment environment are provided in Appendix C.2.

6.3 Subtask 1: Multi-lingual

In this subtask, the aim is to predict eye-tracking features for data from 6 lan-
guages, for which we have training, validation and test sets. We focus on com-
paring a single setup for all languages vs. separate setups for different languages.

6.3.1 Methodology

Single adapter for all languages We first train a single task-specific adapter
integrated into a frozen PLM on all the languages per eye-tracking feature. We
utilize the XLM-RoBERTa-base (XLM-R) model (Conneau et al., 2020), which
is a multilingual version of RoBERTa (Liu et al., 2019), trained with the masked
language modeling objective on 100 languages covering all of the shared task
languages.3

2https://adapterhub.ml
3https://huggingface.co/xlm-roberta-base

https://adapterhub.ml
https://huggingface.co/xlm-roberta-base
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We place a token-level regression head on top of XLM-R. We then train this
head and the adapters to predict eye-tracking features for each contextualized
token in a given sentence. Since we keep the underlying model frozen, this method
only learns a small set of parameters for the eye-tracking features, which we expect
would capture universal patterns in human reading behavior.

Language-specific adapters When a single model is trained on multiple lan-
guages, its capacity for certain languages might decrease, which is called ‘the curse
of multilinguality’ (Conneau et al., 2020; Pfeiffer et al., 2020b). To avoid this is-
sue, we increase the language-specific capacity by training adapters separately for
each language.

In this approach, we train a single adapter that is specific to a language-task
pair (yielding 6 ∗ 4 = 24 adapters) integrated into frozen XLM-R. In addition, we
also implement another setup where we stack language- and task-specific adapters
on top of each other (Pfeiffer et al., 2020b). In the latter setup, per language, we
utilize a frozen language-specific adapter that was trained on Wikipedia articles
with the masked language modeling objective, as provided on AdapterHub (Pfeif-
fer et al., 2020b, 2021).4 We train the new task-specific adapter and the token
regression head to predict eye-tracking features specific to each language. For
Dutch, AdapterHub did not have a language adapter trained on Wikipedia; there-
fore, we only use a single new adapter.5

PLM tokenizers produce multiple wordpieces for some tokens. For such tokens,
the models output predictions for each wordpiece. During training and valida-
tion, we calculate the MAE loss taking into account every wordpiece, where each
wordpiece of the same token is assigned the same target value. For the test set
predictions, we calculate the average output of the wordpieces, and assign it as
the prediction for the whole token entry. To explore whether the way the word-
pieces are treated has an effect on accuracy, we also train and test the stacked
setup only keeping the first wordpiece to represent the full token entry.

6.3.2 Results

In the top half of Table 6.1, we present the results for Subtask 1. Overall, our
models outperform the mean baseline,6 and seem to predict FFD features better

4https://adapterhub.ml/explore/text_lang/ The names of the language-specific
adapters are ‘{x}/wiki@ukp’, where {x} is to be replaced by the abbreviation corresponding to
the language, e.g. ‘en/wiki@ukp’ for English.

5We also experiment with training two new adapters stacked together for Dutch to make the
setups more comparable. See Appendix C.3 for the outcomes of additional models including
the use of RoBERTa and XLM-RoBERTa-large.

6For every word in the test set, the mean of each eye-tracking feature over the training set is
predicted. Hollenstein et al. (2022) also report a stronger baseline, where the mean is calculated
based on the language subsets of the data. Our models also outperform this baseline.

https://adapterhub.ml/explore/text_lang/
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than TRT features. XLM-R with new adapters trained from scratch on all lan-
guages together performs the worst. XLM-R with new language-specific adapters
further improves the results, in particular decreasing the MAE of features corre-
sponding to averages.

The XLM-R setup that stacks adapters per language yields our best results
for Subtask 1, achieving second place in the leaderboard of the shared task (MAE
= 3.6533, our second submission to the system). The breakdown of results per
language is provided in Table C.2 in Appendix C.3. It can be observed from this
table that the model performs well for languages such as German and Dutch, yet
struggles with languages such as Chinese and Russian, which could be due to the
differences in their typologies, the nature of the corpora, vocabulary size and the
issues that might have been caused by the multilinguality of the underlying PLM.

Finally, utilizing only the first wordpieces seems to degrade the performance
across the features (MAE = 3.7261, our third submission). This finding indicates
that retaining all wordpieces provides a better picture of the value to be predicted,
as each wordpiece might contribute to the processing of the full token, affecting
fixation duration times.

Model setup FFDAvg FFDStd TRTAvg TRTStd MAE

All languages together 3.1449 1.9697 6.4339 4.6253 4.0434
Language-specific 2.8563 1.9741 5.5682 4.6956 3.7736
Language-specific-stack 2.6086 1.9219 5.6542 4.4284 3.6533
First wordpiece-only 2.6876 1.9609 5.7059 4.5501 3.7261

Zero-shot 3.4955 2.7370 7.1336 7.1502 5.1291
Translate train 14.6278 4.4001 19.8624 14.2824 13.2932
Translate test - EN 13.7903 5.1338 20.9214 13.5084 13.3385
Translate test - EN (without Provo) 4.5843 3.9382 9.3022 6.8426 6.1668
Translate test - DE 5.4512 1.7349 6.9036 5.7730 4.9657

Mean baseline 5.6858 2.5395 8.8200 5.8877 5.7332

Table 6.1: Test set results for Subtask 1 and Subtask 2. The best models per
subtask are indicated in bold.

6.4 Subtask 2: Cross-lingual

For this subtask, we conduct various experiments to obtain results for the Danish
test set in the absence of training and validation data in this language.

6.4.1 Methodology

Zero-shot We first feed the Danish test set directly into the XLM-R model
with the trained all-languages adapters for each eye-tracking feature. Since the
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adapters in this case are expected to have learned universal eye movement fea-
tures, and XLM-R includes Danish in its training, we expect this model to transfer
well to Danish without being exposed to eye-tracking data in this language.

Translate train In this approach, we translate the training and validation set
from their source language into the target language to be used in the training
of a new model (Conneau et al., 2018b). We have chosen English as the source
language, as it constitutes almost half of the whole shared task data and XLM-
R performs well in English (Conneau et al., 2020). We translate the English
training and validation data word-by-word7 into Danish using the MarianMT
en-da model.8 Since, at the time of this project, AdapterHub did not host a
language-specific adapter for Danish, we did not implement stacking, and only
trained task-specific adapters for Danish.

Translate test In this setup, we translate the test set into a language for which
we have training and validation data (Conneau et al., 2018b) using MarianMT
models. We first translate the Danish test set into English word-by-word. Using
the best English model we obtained in Subtask 1, we generate predictions for
the translated test set. In addition, we notice that the Provo corpus (Luke and
Christianson, 2018) in the English subset has rather higher values for the features
as compared to the other English corpora existing in the data. As a result, we
retrain the best English setup using the same hyperparameters and skipping the
Provo data.

In our final setup for Subtask 2, we translate Danish into German, and utilize
the best German model from Subtask 1 to obtain predictions. The main rea-
son for opting for German was to better account for the effects of word order,
e.g. inversions in main and subordinate clauses, exploiting mainly the syntactic
similarities between Danish and German.

6.4.2 Results

The bottom half of Table 6.1 provides the results for Subtask 2. First of all, the
translate train approach does not seem to be a viable option, as its accuracy is
much lower than the mean baseline (MAE = 13.2932, our first submission). Using
the translate test approach in English yields very similar results. However, as we
hypothesized, removing the Provo corpus from the training improves the translate
test performance substantially (MAE = 6.1668, our second submission), albeit
still underperforming. The zero-shot setup, on the other hand, yields a MAE

7Sentence-by-sentence translation could yield more reliable outcomes; however, it may cause
issues in word order and count: source and translated text would need to be aligned to keep
the eye-tracking data intact.

8https://huggingface.co/docs/transformers/model_doc/marian

https://huggingface.co/docs/transformers/model_doc/marian
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score better than the mean baseline, suggesting that our adapters learn universal
eye-tracking feature across languages combined with the multilingual pretraining
of XLM-R.

Finally, the translate test setup in German yields our best results for this
subtask achieving second place in the leaderboard (MAE = 4.9657, our third
submission). These results indicate that the selection of source language and data
has an effect on the results. Furthermore, it can be claimed that translate test is
a viable option for adapters integrated into PLMs for achieving good transfer to
a test set in a new language, without being exposed to actual eye-tracking data
in this language.

6.5 Conclusion

We have trained language- and task-specific adapters for the prediction of eye-
tracking features reflecting human reading behavior in multi- and cross-lingual
settings. Our best models performed well, attaining second place in the CMCL
2022 leaderboard. This suggests that pretrained language models enhanced with
small adapter layers possess the capability to predict eye-tracking features.

In addition to our setups, other methods such as dropping adapters or adapter
fusion could be implemented (Rücklé et al., 2021; Pfeiffer et al., 2021). It would
also be informative to consider autoregressive models, and the possibility of mak-
ing use of various lexical and syntactic features and additional cognitive signals.
The prediction of each eye-tracking feature could also be informed by other eye-
tracking features, as each of them represents different aspects of human reading
behavior. Similar approaches could also be of help in the modeling of other human
cognitive signals, opening up novel ways of predicting and inspecting cognitive
processes in humans.
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Chapter 7

Overview

In Part One, I have shown the importance of accounting for human gaze when
modelling language production and comprehension. Part Two explores how to
model communication strategies in referential tasks in visually grounded dialogue.
To this end, I build models quantifying, generating, resolving, and adapting ut-
terances in referential tasks within visual and conversational contexts.

The dataset that I mainly use in this part of the thesis is PhotoBook (Haber
et al., 2019). This dataset is a collection of task-oriented visually grounded En-
glish dialogues between pairs of participants who communicate via written chat.
See Figure 7.1 for a sample dialogue from PhotoBook. The PhotoBook task is
a game comprising 5 rounds where two participants see their own private sets
(‘photobooks’) of 6 real-life images belonging to the same visual domain. The
participants interact freely using a chat interface with the aim of picking the im-
ages they have in common without seeing each other’s visual contexts. In the
later rounds of the game, previously seen images can reappear in different vi-
sual contexts. This allows the players to refer to such images again, facilitating
the production of subsequent references to the same images. This feature of the
PhotoBook dataset makes it a valuable resource for modeling the incremental de-
velopment of conversational common ground between interlocutors. Within this
setup, I investigate the following research questions:

• Can pretrained multimodal models help quantify referring utter-
ances to reveal patterns resonating with human strategies? Chap-
ter 8 quantifies referring utterances with pretrained multimodal models to
reveal human strategies in visually grounded referring utterance generation.
I find that CLIP (Radford et al., 2021), a pretrained multimodal model, can
capture the strategies deployed by speakers when referring to images mul-
tiple times in isolation, and also in the context of similar images, allowing
us to measure the descriptiveness and discriminativeness of the utterances.

• How can we model referring utterance generation and resolution
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Figure 7.1: Sample dialogue from a PhotoBook game. Each player only sees their
own set of 6 images in addition to the dialogue.

with deep neural networks? What would be the impact of in-
corporating previous utterances in such models? In Chapter 9, I
propose models of referring utterance generation and resolution, and ex-
plore the influence of visual and conversational contexts in generation and
resolution. The results show that when models exploit previous references,
the outcomes exhibit human-like patterns and improve task performance.

• How can we adapt pretrained referring utterance generation mod-
els to produce outputs addressing listeners with different knowl-
edge backgrounds? Chapter 10 details how referring utterance genera-
tion models can be modulated to generate utterances better understood by
various types of listeners in visually grounded referential games. I propose
an adaptation mechanism for the generation model so that it can adapt its
outputs on the fly according to its understanding of the listeners to increase
communicative success.



Chapter 8

Quantifying the Properties of
Multimodal Referring Utterances

The material in this chapter is based on: Ece Takmaz, Sandro Pezzelle, and
Raquel Fernández. 2022. Less descriptive yet discriminative: Quantifying the
properties of multimodal referring utterances via CLIP. In Proceedings of the
Workshop on Cognitive Modeling and Computational Linguistics, pages 36–42,
Dublin, Ireland. Association for Computational Linguistics.

Contributions: Ece Takmaz: Implementing and running the experiments, writ-
ing and revising the paper. Sandro Pezzelle: Supervising the research, writing
and revising the paper. Raquel Fernández: Supervising the research, writing and
revising the paper.
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Figure 8.1: Referring utterance chain from PhotoBook (Haber et al., 2019). The
chain has 4 ranks (4 references to the target image, in red outline). For simplicity,
only the 5 distractor images from rank 1 are shown.

8.1 Introduction

Speakers can refer to an entity multiple times during a conversation (e.g., the girl
in Figure 8.1). This leads to further expressions based on previous mentions that
are more compact and less descriptive (Krauss and Weinheimer, 1967; Brennan
and Clark, 1996), yet still remain pragmatically informative so that the partici-
pants are able to identify the intended referent (Shore and Skantze, 2018; Haber
et al., 2019; Hawkins et al., 2020).

Several approaches (Mao et al., 2016; Cohn-Gordon et al., 2018; Schüz et al.,
2021; Luo et al., 2018, i.a.) have tackled the generation of image captions from
the perspective of pragmatic informativity; Coppock et al. (2020) have compared
the informativity of image captions and of referring expressions; and Haber et al.
(2019); Hawkins et al. (2020) have explored how dialogue history contributes to
discriminativeness. However, no work to date has investigated how these two
dimensions, descriptiveness and discriminativeness or pragmatic informativity,
interact in referring expressions uttered in dialogue.

In this chapter, we use a transformer-based pretrained multimodal model to
study the interplay between descriptiveness and discriminativeness in human re-
ferring utterances produced in dialogue. Due to their unprecedented success in
numerous tasks, pretrained V&L models—such as LXMERT (Tan and Bansal,
2019), VisualBERT (Li et al., 2019), UNITER (Chen et al., 2020) and ALIGN (Jia
et al., 2021)—have attracted a lot of interest aimed at understanding the prop-
erties and potential of their learned representations as well as the effect their
architectures and training setups have (Bugliarello et al., 2021; Hendricks et al.,
2021). These include probing such models in a zero-shot manner, i.e., without
any specific fine-tuning (Hendricks and Nematzadeh, 2021; Parcalabescu et al.,
2021); quantifying the roles of each modality (Frank et al., 2021); inspecting
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attention patterns (Cao et al., 2020); and evaluating their learned multimodal
representations against human judgments (Pezzelle et al., 2021).

We focus on CLIP as our model of choice (Radford et al., 2021), which learns
via contrasting images and texts that can be aligned or unaligned with each other.
This contrastive objective makes CLIP particularly suitable for modeling refer-
ential tasks that inherently include such comparisons. Here, we use CLIP to gain
insight into the strategies used by humans in sequential reference settings, finding
that although the descriptiveness of referring utterances decreases significantly,
the utterances remain discriminative over the course of multimodal dialogue.1.

8.2 Data

The data we use in this chapter originates from PhotoBook (Haber et al., 2019),
which consists of 2,500 games, 165K utterances, and 360 unique images from
MS COCO (Lin et al., 2014).2 We conduct the experiments in this chapter on
a subset of 50 PhotoBook games with manually annotated referring utterances,
which contains 364 referential chains about 205 unique target images. We refer to
this subset as PB-GOLD.3 Although a dataset of automatically-extracted chains
using all PhotoBook data is also made available (Takmaz et al., 2020a), these
chains may contain errors (see Chapter 9). We therefore opt for using the smaller
but higher-quality PB-GOLD subset since we are interested in analyzing human
strategies, and this option helps prevent any issues that might be caused by the
automatic annotation of chains. Given that we use a pretrained model without
fine-tuning, experimenting with large amounts of data is not a requisite.

PB-GOLD’s chains contain 1,078 utterances, i.e., 2.96 utterances per chain
on average (min 1, max 4). We henceforth use the term ‘rank’ to refer to the
position of an utterance in a chain. The average length of utterances in terms
of tokens is 13.34, 11.03, 9.23, and 7.82, respectively, for ranks 1, 2, 3, and 4.4

This decreasing trend, which is statistically significant at p < 0.01 with respect to
independent samples t-tests between the ranks, is in line with the trend observed
in the whole dataset (Haber et al., 2019). PB-GOLD’s vocabulary consists of 926
tokens.

8.3 Model

We use CLIP (Radford et al., 2021), a model pretrained on a dataset of 400 million
image-text pairs collected from the internet using a contrastive objective to learn

1The code to reproduce our results is available at https://github.com/ecekt/

clip-desc-disc
2The PhotoBook dataset is available at https://dmg-photobook.github.io.
3We use the gold set of the utterance-based chains version 2.
4To tokenize, we use TweetTokenizer: https://www.nltk.org/api/nltk.tokenize.html

https://github.com/ecekt/clip-desc-disc
https://github.com/ecekt/clip-desc-disc
https://dmg-photobook.github.io
https://www.nltk.org/api/nltk.tokenize.html
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strong transferable vision representations with natural language supervision.5 In
particular, we employ the ViT-B/32 version of CLIP, which utilizes separate
transformers to encode vision and language (Vaswani et al., 2017; Dosovitskiy
et al., 2021; Radford et al., 2019, 2021).

As the model learns to align images and texts, this enables zero-shot transfer
to various V&L tasks such as image-text retrieval and image classification, and
even certain non-traditional tasks in a simple and efficient manner (Radford et al.,
2019; Agarwal et al., 2021; Shen et al., 2022; Cafagna et al., 2021; Hessel et al.,
2021). This makes it an intriguing tool to investigate the properties of visually
grounded referring utterances. CLIP has been used in frozen form to build recent
multimodal models (Berrios et al., 2023; Alayrac et al., 2022; Mañas et al., 2023;
Tsimpoukelli et al., 2021; Li et al., 2023b; Mokady et al., 2021; Chen et al.,
2022). In this work, we also freeze CLIP’s weights and do not fine-tune the model
or perform prompt engineering, since we aim to exploit the model’s pretrained
knowledge for the analysis of human referring strategies.

8.4 Descriptiveness

In our first experiment, we investigate the degree of descriptiveness exhibited
by referring utterances in the PhotoBook game, i.e., the amount of information
they provide about the image out of context. We consider each target image
and corresponding referential utterance at a given rank in isolation, i.e., without
taking into account the other competing images nor the dialogue history. We
quantify descriptiveness as the alignment between an utterance and its image
referent using CLIPScore (Hessel et al., 2021), assuming that a more descriptive
utterance will attain a higher score. For all the target image-utterance pairs in the
chains of PB-GOLD, we use CLIP to obtain a vector t representing the utterance
and a vector v representing the image. CLIPScore is then computed as the scaled
cosine similarity between these two vectors, with range [0, 2.5]:6

CLIPScore(t, v) = 2.5 ∗max(cos(t, v), 0) [8.1]

We compute the average CLIPScore per rank over the whole PB-GOLD dataset.

Results We find that earlier utterances are better aligned with the target image
features and that there is a monotonically decreasing trend over the 4 ranks
(Figure 8.4, blue bars). The differences between all pairs of ranks are statistically
significant (according to independent samples t-tests, p < 0.01), except for the
comparison between the last 2 ranks (p > 0.05). Since earlier referring utterances

5https://github.com/openai/CLIP
6The scaled factor was introduced by Hessel et al. (2021) to account for the relatively low

observed cosine values.

https://github.com/openai/CLIP


8.4. Descriptiveness 83

Figure 8.2: Set of captions from COCO (Lin et al., 2014), where the order of
captions is arbitrary as they are provided separately by different annotators.

tend to be longer (see Section 8.2), we check to what extent length may be a
confounding factor. We find that there is only a weak correlation between length
in tokens and CLIPScore (Spearman’s ρ = 0.29, p < 0.001).

We compare these results on PhotoBook with text-to-image alignment com-
puted with the same method on two other datasets: (1) COCO (Lin et al., 2014),7

which includes 5 captions per image provided independently by different annota-
tors as shown in Figure 8.2; here we do not expect to find significant differences
in the level of descriptiveness across the captions, and (2) Image Description Se-
quences (IDS, Ilinykh et al., 2019)8 where one participant describes an image in-
crementally as shown in Figure 8.3, by progressively adding sentences with further
details; here, we do expect a pattern similar to the pattern found in PhotoBook,
albeit for different reasons (because participants add less salient information in
later sentences; Ilinykh et al., 2019).

Figure 8.4 shows that these expectations are confirmed. Based on CLIPScore
values, COCO captions (green bars) are more descriptive than IDS descriptions
and PhotoBook referring utterances, and are equally aligned with the image across
‘ranks’ (the order is arbitrary in COCO). In contrast, IDS incremental descrip-
tions (yellow bars) are intrinsically ordered and show a significant decreasing
trend similar to PhotoBook.

7We use the set of COCO images in PB-GOLD (N=205).
8The images are from ADE20k corpus (Zhou et al., 2017)
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Figure 8.3: Sequential description from Image Description Sequences (Ilinykh
et al., 2019).

8.5 Discriminativeness

In order for a listener to select the target image among distractor images, a
referring utterance should be discriminative in its visual context. Our results
in the previous section show that descriptiveness decreases over time—what is
the trend regarding discriminativeness? To address this question, in our second
experiment we use CLIP from the perspective of reference resolution.

We focus on local text-to-image alignment, initially ignoring the previous di-
alogue history. To this end, we feed CLIP a single referring utterance together
with the visual context of the speaker who produced that utterance. CLIP yields
softmax probabilities for each image contrasted with the single text. As a metric,
we use accuracy: 1 if the target image gets the highest probability; 0 otherwise.

Results The overall accuracy is 80.15%, which is well above the random base-
line of 16.67%. In Figure 8.5, we break down the results per rank (blue bars). A
4 × 2 chi-square test (4 ranks vs. correct/incorrect) did not yield significant dif-
ferences in accuracy between the ranks, p > 0.05. Thus, although descriptiveness
decreases over time, discriminativeness is not significantly affected. An analy-
sis of the entropy of the softmax distributions over the visual context reveals
that entropy increases monotonically over the ranks (this difference is statisti-
cally significant according to an independent samples t-test between ranks 1 and
4; H1 = 0.62, H4 = 0.79, p < 0.01). That is, the model is more uncertain when
trying to resolve less descriptive utterances. There is indeed a negative correla-
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Figure 8.4: Descriptiveness (CLIPScore) for PB-GOLD, COCO and IDS. We
only plot the first 4 ‘ranks’ (x-axis) for COCO and IDS for comparability with
PB-GOLD. The error bars illustrate the standard error.

tion between entropy and CLIPScore computed between the target image and
the corresponding utterance (Spearman’s ρ = −0.5, p < 0.001).

8.6 Analysis

The findings indicate that the players in PhotoBook manage to maintain dis-
criminativeness while decreasing descriptiveness. We investigate potential factors
contributing to this strategy. Do the players rely on previous mentions in the
dialogue history? Do they refine their referring utterances by distilling the most
discriminative information in a given context?

8.6.1 Dialogue History

The results of our experiments in the previous section show that utterances in
isolation are effective at referring; yet, uncertainty increases when less descriptive
utterances are considered out of context. To reduce such uncertainty, participants
may rely on the dialogue history (Brennan and Clark, 1996; Shore and Skantze,
2018; Takmaz et al., 2020a). We consider a scenario where participants keep in
memory the previous mention when processing the current referring utterance.
We model this scenario by prepending the previous referring utterance in the
chain to the current utterance and feeding this into the reference resolution model
described in Section 8.5. As shown in Figure 8.5, the resulting discriminativeness
is similar to the one obtained earlier (the differences are not significant; chi-square
test, p < 0.05) and, as before, remains stable across ranks (chi-square test, p >
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Figure 8.5: Discriminativeness (reference resolution accuracy, ACC) per rank with
PB-GOLD utterances (Utterance) and utterances with history (w/Prev. Utt),
along with their respective entropies (ENT).

0.05). However, taking into account the previous mentions leads to a significant
reduction of the entropy in general: e.g., at the last rank H4 = 0.79 vs. H ′

4 = 0.62
(t-test, p < 0.05). This suggests that relying on the dialogue history allows
speakers to use less descriptive utterances by reducing discriminative uncertainty.

8.6.2 Most Discriminative Information

Besides exploiting the dialogue history, participants may refine their referring
strategy by distilling the most discriminative information in a given context.
To gain insight into this hypothesis, we explore what is discriminative in the
images: we compute the discriminative features vd of a target image by taking
the average of the visual representations of distractor images to obtain the mean
context vector and then subtracting this vector from the visual representation
of the target image. We encode all 926 words in the vocabulary of PB-GOLD
using CLIP, and retrieve the top-10 words whose representations are the closest
to vd in terms of cosine similarity (amounting to 1% of the vocabulary). We take
these words to convey the most discriminative properties of the target image in
the provided visual context. We analyze whether at least one of these retrieved
words is mentioned exactly in the corresponding referring utterance, finding that
this is indeed the case for a remarkable 60% of utterances.9 As an illustration,
for the example in Figure 8.1, the words walking (mentioned at rank 1) and blue
(used at ranks 1, 2, 3, 4) are among the top-10 most discriminative words, while

9Randomly sampling 10 words from the vocabulary for each utterance yields 11% (average
of 5 random runs).
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the word water (mentioned at ranks 1, 2, 3, 4) is close to the word beach, which
is also retrieved as one of most discriminative words in this case.

The most discriminative words are likely to be reused in later utterances, even
though the visual context changes from rank to rank. For instance, the most
discriminative words mentioned at rank 1 constitute 60% of the discriminative
words at rank 2, indicating that entrainment is likely for words that have high
utility across contexts. We also find a significant increase in the proportion of
discriminative content words to all the content words per utterance (only between
ranks 1 and 4, 14% vs. 19%, p < 0.01).

8.7 Conclusion

We used a pretrained multimodal model claimed to be a reference-free caption
evaluator, CLIP (Radford et al., 2021), to quantify descriptiveness and discrimina-
tiveness of human referring utterances within multimodal dialogues. We showed
that (i) later utterances in a dialogue become less descriptive in isolation while
(ii) remaining similarly discriminative against a visual context.

We found that the addition of dialogue history helps decrease and control the
entropy of resolution accuracy even when the speakers produce less descriptive
referring utterances. In addition, we found that the proportion of discriminative
words increases over the ranks. These findings suggest that participants playing
the PhotoBook game (Haber et al., 2019) show a tendency towards distilling
discriminative words and utilizing the dialogue history to keep task performance
stable over the dialogue. This outcome resonates with the findings by Giulianelli
et al. (2021) who observe that PhotoBook dialogue participants tend to limit
fluctuations in the amount of information transmitted within reference chains,
in line with uniform information density principles (e.g., Genzel and Charniak,
2002; Jaeger and Levy, 2007).

In the next chapter, we develop models of referring utterance generation and
resolution by taking into account the visual context and the recent dialogue his-
tory, following human strategies to obtain human-like outcomes.





Chapter 9

Generating Subsequent References in
Visual and Conversational Contexts

The material in this chapter is based on: Ece Takmaz, Mario Giulianelli, Sandro
Pezzelle, Arabella Sinclair, and Raquel Fernández. 2020. Refer, Reuse, Reduce:
Generating Subsequent References in Visual and Conversational Contexts. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4350–4368, Online. Association for Computational
Linguistics.
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ing and revising the paper. Mario Giulianelli: Creating the dataset of chains,
conducting the analysis, writing and revising the paper. Arabella Sinclair: Con-
ducting the analysis, writing and revising the paper. Sandro Pezzelle: Conduct-
ing the analysis, supervising the research, writing and revising the paper. Raquel
Fernández: Supervising the research, writing and revising the paper.

89



90Chapter 9. Generating Subsequent References in Visual and Conversational Contexts

Referring utterances extracted from dialogue 1

A: a white fuzzy dog with a wine glass up to his face
; B: I see the wine glass dog
; A: no I don’t have the wine glass dog

Referring utterances extracted from dialogue 2

C: white dog sitting on something red
; D: yes I have the dog on the red chair
; C: white dog on the red chair

Figure 9.1: Two chains of referring utterances for the same target image from two
PhotoBook games with different participants, including the first description of the
image in that dialogue and two subsequent references (;). In the game, each
participant sees 5 additional images besides the target shown here. The distractor
images change at every round of the game, i.e., each co-referring utterance within
a dialogue is produced in a different visual context.

9.1 Introduction

In the previous chapter, we have shown that when speakers refer to the same
entities more than once in a conversation, they may distill and reuse discrimina-
tive information, and depend on the dialogue history to maintain communicative
success. The accumulated shared knowledge between the interlocutors affects the
production of such subsequent references (McDonald, 1978). For example, dia-
logue participants may first mention “a white fuzzy dog with a wine glass up to
his face” and later refer to it as “the wine glass dog”, as shown in Figure 9.1,
dialogue 1. While “the wine glass dog” may be odd as a standalone description, it
is an appropriate referring expression in the above conversational context, as the
speakers established a ‘conceptual pact’ regarding that expression (Garrod and
Anderson, 1987; Brennan and Clark, 1996). Yet, uttering it in a different context
(such as dialogue 2 in Figure 9.1, after the participants had successfully referred
to the image as “the dog on the red chair”) may lead to communication problems
as it disrupts the cohesion of the dialogue (Metzing and Brennan, 2003).

In this chapter, we tackle the generation of referring utterances—i.e., utter-
ances that contain referring descriptions, as in Figure 9.1—grounded both in the
visual environment and the dialogue context. These utterances have several inter-
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esting properties that make their automatic generation challenging. First, they
are produced with the communicative goal of helping the addressee identify the in-
tended referent. Second, because humans operate under cognitive and time-bound
constraints, dialogue participants will aim to fulfill this communicative goal while
optimizing the use of their limited cognitive resources. This results in two com-
mon features of subsequent mentions: (1) Reduction: Utterances tend to become
shorter—a well-attested phenomenon since the work of Krauss and Weinheimer
(1967)—as a result of interlocutors’ reliance on their common ground (Stalnaker,
2002): As more shared information is accumulated, some information becomes
predictable and can be left implicit (Grice, 1975; Clark and Wilkes-Gibbs, 1986;
Clark and Brennan, 1991; Clark, 1996). Sentence compression also takes place in
discourse, as predicted by the entropy rate principle (Genzel and Charniak, 2002;
Keller, 2004). (2) Lexical entrainment: Speakers tend to reuse words that were
effective in previous mentions (Garrod and Anderson, 1987; Brennan and Clark,
1996), possibly due to priming effects (Pickering and Garrod, 2004). Thus, be-
sides being a challenging problem intriguing from a linguistic and psycholinguistic
point of view, computationally modeling the generation of subsequent references
can contribute to better user adaptation in dialogue systems and to more natural
human-computer interaction.

Since the PhotoBook dataset was developed to elicit subsequent references to
the same images within task-oriented dialogue, it allows us to address our ques-
tions regarding the generation of referring utterances within conversational and
visual contexts (Haber et al., 2019). To isolate the issues we are interested in,
we base our research on ‘chains’, which was also the case in Chapter 8. In this
chapter, we automatically extract chains referring to a given image from each dia-
logue, resulting in a dataset of dialogue-specific chains of co-referring utterances.
For example, Figure 9.1 shows two chains of co-referring utterances from two
different dialogues, both referring to the same image. Figure 9.2 shows another
example. We then formulate the problem as the generation of the next utterance
in a chain given the current visual context and the common ground established in
previous co-referring utterances (whenever these are available). To computation-
ally model this problem, we propose three variants of a generation system based
on the encoder-decoder architecture (Sutskever et al., 2014). We evaluate their
outputs with metrics commonly used in the domain of NLG and with several
linguistic measures. In addition, to assess the communicative effectiveness of the
generated references, we implement a reference resolution agent playing the role
of the addressee.1

We find that conditioning the generation of referring utterances on previous
mentions leads to better, more effective descriptions than those generated by a
model that does not exploit the conversational history. Furthermore, our quan-
titative and qualitative analyses show that the context-aware model generates

1Our data, code, and models are available at https://dmg-photobook.github.io.

https://dmg-photobook.github.io
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subsequent references that exhibit linguistic patterns akin to those of humans,
regarding markers of new vs. given information, reduction, and lexical entrain-
ment, including novel noun-noun compounds.

9.2 Related Work

Generation of distinguishing expressions Our work is related to Referring
Expression Generation (REG), a task with a long tradition in computational lin-
guistics that consists of generating a description that distinguishes a target from a
set of distractors—Krahmer and van Deemter (2012) provide an overview of early
approaches. Follow-up approaches focused on more data-driven algorithms ex-
ploiting datasets of simple visual scenes annotated with symbolic attributes (e.g.,
Mitchell et al., 2013a,b, among others). More recently, the release of large-scale
datasets with real images (Kazemzadeh et al., 2014) has made it possible to test
deep multimodal models on REG, sometimes in combination with referring ex-
pression comprehension (Mao et al., 2016; Yu et al., 2017a). While REG typically
focuses on describing objects within a scene, a few approaches at the intersection
of REG and image captioning (Bernardi et al., 2016) have aimed to generate dis-
criminative descriptions of full images, i.e., image captions that can distinguish
the target image from a pool of related ones (Andreas and Klein, 2016; Vedan-
tam et al., 2017; Cohn-Gordon et al., 2018). Similarly to these approaches, in
this chapter, we generate utterances that refer to a full image with the aim of
distinguishing it from other distractor images. In addition, our setup has sev-
eral novel aspects: the referring utterances are the result of interactive dialogue
between two participants and include subsequent references.

Generation of subsequent references Follow-up work within the REG tradi-
tion has extended the early algorithms to deal with subsequent references (Gupta
and Stent, 2005; Jordan and Walker, 2005; Stoia et al., 2006; Viethen et al., 2011).
These approaches focus on content selection (i.e., on generating a list of attribute
types such as color or kind using an annotated corpus) or on choosing the type
of reference (definite or indefinite noun phrase, pronoun, etc.) and do not directly
exploit visual representations. In contrast, we generate the surface realization of
first and subsequent referring utterances end-to-end, grounding them in continu-
ous visual features of real images.

Our work is also related to a recent line of research on reference resolution
in visually grounded dialogue, where previous mentions have been shown to be
useful (Shore and Skantze, 2018; Haber et al., 2019; Roy et al., 2019). Here, we
focus on generation. To our knowledge, this is the first attempt at generating
visually grounded referring utterances taking into account earlier mentions in the
dialogue. Some work on generation has exploited dialogue history in order to make
lexical choice decisions that align with what was said before (Brockmann et al.,
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2005; Buschmeier et al., 2009; Stoyanchev and Stent, 2009; Lopes et al., 2015;
Hu et al., 2016; Dušek and Jurč́ıček, 2016). Indeed, incorporating entrainment in
dialogue systems leads to an increase in the perceived naturalness of the system
responses and to higher task success (Lopes et al., 2015; Hu et al., 2016). As we
shall see, our generation model exhibits some lexical entrainment.

Dialogue history in visual dialogue Recent work in the domain of visu-
ally grounded dialogue has exploited dialogue history in encoder-decoder mod-
els trained on large datasets of question-answering dialogues (Das et al., 2017;
de Vries et al., 2017; Chattopadhyay et al., 2017). Recently, Agarwal et al. (2020)
showed that only 10% of the questions in the VisDial dataset (Das et al., 2017)
genuinely require dialogue history in order to be answered correctly, which is in
line with other shortcomings highlighted by Massiceti et al. (2018). More gener-
ally, visually grounded dialogue datasets made up of sequences of questions and
answers lack many of the collaborative aspects that are found in natural dialogue.
In the PhotoBook dataset, however, dialogues are less restricted, and the com-
mon ground accumulated over the dialogue history naturally plays an important
role Haber et al. (2019).

9.3 Data

Dialogue fragment and images visible to
participant A in the first round of a game

A: Hi
B: Hello.
B: do you have a white cake on multi colored striped cloth?
A: I see a guy taking a picture. What about you?
B: is it of a cake with construction trucks on it?
A: Yeah. I don’t see the cake you mentioned.
A: <common img 4>

Resulting referring utterance chain with
subsequent references extracted from the
following game rounds

1. I see a guy taking a picture. What about you?
2. guy with camera
3. I have the guy with camera
4. The last one is the camera guy.

Figure 9.2: Example from our new dataset of referring utterance chains. Given
a target image selected by a participant (here <common img 4>), the utterances
in the dialogue prior to that selection action are scored by their likelihood of
referring to the target. In this example, the utterance in bold is selected as
the first description. To construct the reference chain, subsequent references are
extracted in a similar manner from the dialogue in the following game rounds.
The set of distractor images available to a participant changes across rounds.
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Although the dialogues in PhotoBook include different types of dialogue acts
that may provide useful information, we abstract away from this aspect and con-
centrate on referring utterances, as in the previous chapter.2 To create the data
for our generation task, we extract utterances that contain an image description
and their corresponding image target from the dialogues as follows. Within a
game round, we consider all the utterances up to the point where a given image
i has been identified by the participants3 as candidate referring utterances for
i – see Figure 9.2. We then compare each candidate against a reference set of
descriptions made up of the MS COCO (Lin et al., 2014) captions for i (since all
images in PhotoBook originate from MS COCO), and the attributes and relation-
ship tokens of i in the Visual Genome dataset (Krishna et al., 2017). We score
each candidate utterance with the sum of its BERTScore4 (Zhang et al., 2020b)
for captions and its METEOR score (Banerjee and Lavie, 2005) for attributes
and relationships. The top-scoring utterance in the game round is selected as a
referring utterance for i and used as an additional caption for extracting subse-
quent references in the following game rounds. As a result of this procedure, for a
given dialogue and an image i, we obtain a reference chain made up of the refer-
ring utterances—maximum one per round—that refer to i in the dialogue. Since
images do not always reappear in each round, chains can have different lengths.
Two examples of chains of length 3 are shown in Figure 9.1 and a chain of length
4 in Figure 9.2. Given that each utterance in a chain belongs to a different
game round, each utterance was produced in a slightly different visual context
with different distractor images. Figure 9.2 shows the visual context available
to participant A in the first round of a game, when the participant produced
the first description in the dialogue for target image number 4. The other three
descriptions in the chain were produced while seeing different distractors.

We evaluate the referring utterance extraction procedure and the resulting
chains using 20 dialogues hand-annotated by Haber et al. (2019) with labels
linking utterances to the target image they describe, part of PB-GOLD from
Chapter 8. Using our best setup, we obtain a precision of 0.86 and a recall of
0.61. The extracted chains are very similar to the human-annotated ones in terms
of chain and utterance length.

Our new dataset is made up of 41,340 referring utterances and 16,525 chains
(i.e., there are 16,525 first descriptions and 24,815 subsequent references). The
median number of utterances in a chain is 3. We use the splits defined by Haber
et al. (2019) to divide the dataset into Train, Validation, and Test, and all hand-
annotated dialogues are excluded from these splits. Table 9.1 reports relevant

2In a similar vein, Haber et al. (2019) extracted coreference chains made up of multi-utterance
dialogue excerpts. However, the chains in this thesis contain single utterances, which are more
suitable for generation.

3Image identification actions are part of the metadata.
4BERTScore uses contextualized embeddings (Devlin et al., 2019) to assess similarity be-

tween a target sentence and one or more reference sentences.
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Split Games
First Later

N Length N Length
Train 1725 11540 10.52 (4.80) 17393 7.52 (4.15)
Val 373 2503 10.49 (4.81) 3749 7.70 (4.22)
Test 368 2482 10.52 (4.85) 3673 7.59 (4.17)

Table 9.1: Number of games and referring utterances in the splits of our dataset
with their average length in tokens (standard deviation in brackets), broken down
by first mentions vs. subsequent (‘Later’) references.

descriptive statistics of the dataset. More details about the extraction procedure
and the dataset are available in Appendix D.1. Appendix D.2 describes how the
dataset is further processed to be used in our models.

9.4 Models

With the new dataset of referring utterance chains in place, we operationalize
the problem of generating a referring utterance, taking into account the visual
and conversational context as follows. The model aims to generate a referring
utterance given (a) the visual context in the current game round made up of 6
images from the perspective of the player who produced the utterance, (b) the
target among those images, and (c) the previous co-referring utterances in the
chain (if any). Besides being contextually appropriate, the generated utterance
has to be informative and discriminative enough to allow an addressee to identify
the target image. We thus also develop a reference resolution model that plays
the role of the addressee. The two models are trained independently.

9.4.1 Generation Models

We propose three versions of the generation model, which all follow the encoder-
decoder architecture (Sutskever et al., 2014). These versions differ from each other
with respect to whether and how they exploit earlier referring utterances for the
target image: (1) a baseline model that does not use the dialogue context at all
(henceforth, Ref); (2) a model that conditions the generation on the previous
referring utterance, if available, and operates attention over it (ReRef); (3) a
model that builds on (2) by adding a ‘copy’ mechanism similar to the mechanism
proposed by See et al. (2017) (Copy). We describe them below in detail.

Ref This model is provided only with the information about the visual con-
text in the current game round–and not with the linguistic context in previous
rounds, see Figure 9.3 for a depiction of its architecture. We encode each image
in the context by means of visual features extracted from the penultimate layer of
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Target image

LSTM
Decoder

Visual context guy with camera

LSTM
Decoder

LSTM
Decoder

hd

Figure 9.3: Architecture of the Ref referring utterance generation model.

ResNet-152 (He et al., 2016) pretrained on ImageNet (Deng et al., 2009). First,
the visual features of the 6 candidate images are concatenated. This concate-
nated vector goes through dropout, a linear layer and ReLU (Nair and Hinton,
2010). The same process is applied for the target image. We then concatenate
the final visual context vector with the target image vector, apply a linear trans-
formation, and use the resulting hidden representation hd to initialize an LSTM
decoder (Hochreiter and Schmidhuber, 1997), which generates the referring ut-
terance one word at a time, tt. At each timestep, the input to the decoder is
a multimodal vector, i.e., the concatenation of hd and the word embedding of
token tt. The weights of the embeddings are initialized uniformly in the range
(−0.1, 0.1) and learned from scratch for the task at hand.

ReRef With this model, we aim to simulate a speaker who is able to re-refer to
a target image in accordance with what has been established in the conversational
common ground (Clark, 1996; Brennan and Clark, 1996). This model enriches
Ref by incorporating linguistic information into the encoder (in addition to vi-
sual information), and an attention mechanism applied over the hidden states of
the encoder during decoding, see Figure 9.4. The model thus generates a new
utterance conditioned on both the visual and the linguistic context.

The encoder is a one-layer bidirectional LSTM initialized with the same visual
input fed to Ref (consisting of a representation of the visual context and the targe
image). Instead of initializing the decoder as in the prior model, here, the visual
data initializes the encoder. In addition, the encoder receives as input the previous
referring utterance used in the dialogue to refer to the target image,5 or else is
fed the special <nohs> token, indicating that there is no conversational history
for the target image yet. The embeddings of this input go through dropout.

We concatenate the last hidden states of the forward and backward directions
of the BiLSTM encoder. This concatenated vector is then projected to hidden
dimensions and used to initialize the decoder. The input to the decoder during
training is an embedding of the ground-truth utterance.

During decoding, we utilize the attention mechanism proposed by Bahdanau

5The latest description seems to contain the most relevant information. Including all refer-
ring utterances in the chain up to that point in the dialogue did not lead to improvements.
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Figure 9.4: Architecture of the ReRef referring utterance generation model.

et al. (2018) and used by See et al. (2017). The attention contributes to deter-
mining which aspects of the multimodal context are most critical in generating
the words of the next referring utterance. We expect this attention mechanism
to be able to identify the words in a previous utterance that should be present in
a subsequent reference, resulting in lexical entrainment.

The attention is applied as follows: Each hidden output of the encoder henc
t

(concatenation of forward and backward hidden states for timestep t) goes through
a linear layer that projects it from double the size of hidden dimensions to the
attention dimensions. In addition, the current hidden state of the decoder hdec

c

is projected from the hidden dimensions to the attention dimensions.

enct = Wehenc
t [9.1]

decc = Wdhdec
c [9.2]

et = va(tanh(enct + decc)) [9.3]

Attention weights are calculated based on the sum of enct and decc, on which
we apply tanh non-linearity and a linear layer. Padded tokens are masked, and
softmax is applied over all remaining encoder timesteps i:

ai = softmax(ei) [9.4]

h∗ =
∑
i

aih
i
enc [9.5]
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Figure 9.5: Architecture of the Copy referring utterance generation model.

To predict the word that the decoder will generate, we concatenate the decoder’s
current hidden state hdec

c with the weighted average from the encoder, i.e., en-
coder context vector h∗. This concatenation is projected to the size of the vocab-
ulary minus 1, as we do not want the model to predict the <nohs> token.

Copy This model builds on ReRef and incorporates a means of simulating
lexical entrainment more explicitly, by regulating when a word that was used in
the previous mention should be used again in the current referring utterance (i.e.,
should be produced by the decoder). Given the shortening property of subsequent
references, our task bears some similarity to text summarization. We thus draw
inspiration from the summarization model proposed by See et al. (2017). As
illustrated in Figure 9.5, we equip the model with the ‘copy’ mechanism utilized
by See et al. (2017), which combines the probability of copying a word present in
the encoded input with the probability of generating (pgen) that word from the
vocabulary. We expect this mechanism to contribute to generating rare words
present in preceding referring utterances that are part of a ‘conceptual pact’
(Brennan and Clark, 1996) between the dialogue participants, but may have low
generation probability overall.

The encoder part of this model is the same as that of the ReRef model.
However, this model uses various versions of the input, and the decoder is altered
to accommodate the copy mechanism.

First of all, we keep track of the unknown tokens in the input to provide the
ability to predict them in the decoder phase. For this, we map the previous utter-
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ance from the history to temporary indices in a new extended vocabulary. This
extended vocabulary contains the unknown words existing in the input utterance
in their original forms appended to the end of the original vocabulary. Since
we do not want <nohs> to be predicted, we take additional precautions when
it exists in the encoder input. The decoder input stays the same with unknown
embeddings; nevertheless, the target utterance can include temporary indices as-
signed to unknown words encountered in the given input utterance so that we
can calculate the loss according to them, as well.

The attention mechanism works in the same manner as in the ReRef model.
However, we change what comes afterwards in line with the copy mechanism,
where the attention for each word in the input utterance is added to their genera-
tion probabilities in the vocabulary. Here, we scatter the attention scores for the
temporary indices of unknown words onto the distribution of the extended vo-
cabulary, as well. For this reason, we maintain multiple versions of the input and
output (mapped to the reduced vocabulary and mapped to the full vocabulary),
as well as keeping track of the set of unknown words in the previous utterance
and their temporary indices. Crucial here is the calculation of the generation
probability pgen, which requires the addition of several more linear layers that
process the encoder context vector h∗

t , decoder input xt, and the current decoder
state st. As compared to the calculation of pgen by See et al. (2017), we altered
the formula for this value by adding tanh non-linearities:

pgen = σ(tanh(wT
h∗h∗

t ) + tanh(wT
s st) + tanh(wT

x xt)) [9.6]

9.4.2 Reference Resolution Model

Given an utterance referring to a target image and a 6-image visual context, our
reference resolution model predicts the target image among the candidates, see
Figure 9.6. This model is similar to the resolution model proposed by Haber
et al. (2019) for the PhotoBook dataset, but includes several extensions: (1) We
use BERT embeddings from the uncased base BERT model (Devlin et al., 2019;
Wolf et al., 2020) to represent the linguistic input rather than LSTMs;6 (2) The
input utterance is encoded taking into account the visual context: We compute
a multimodal representation of the utterance by concatenating each BERT to-
ken representation with the visual context representation, obtained in the same
way as for the generation models;7 (3) We apply attention over the multimodal
representations of the utterance in the encoder instead of using the output from
a language-only LSTM encoder. The utterance’s final representation is given

6In the generation models, we did not use BERT due to the difficulties of using contextualized
embeddings in the decoder, and the desirability of using the same word embeddings in both the
encoder and the decoder.

7We also tried using multimodal representations obtained via LXMERT (Tan and Bansal,
2019). No improvements were observed.
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Figure 9.6: Architecture of the reference resolution model.

by the weighted average of these multimodal representations with respect to the
attention weights.

In this model, BERT embeddings go through a dropout layer, and then a linear
layer projecting the size to hidden dimensions. Finally, ReLU is applied (Nair
and Hinton, 2010).

All 6 images in the context are concatenated, and the concatenation goes
through dropout, a linear layer and ReLU to produce the final visual context
vector. We then concatenate each of the BERT representations with the visual
context vector to obtain multimodal token representations. This multimodal
vector goes through a linear layer and ReLU, which finalizes the multimodal
input vectors. The model then determines the attention to be paid to each of the
multimodal vectors as indicated below:

ei = va(tanh(Wehi)) [9.7]

hi is the multimodal output for each token, We is a linear layer projecting from
hidden dimensions to attention dimensions, va is a linear layer that projects the
output from the attention dimensions to a scalar. The model then masks the pad
tokens before applying softmax over ei scores to obtain the attention weights ai:

ai = softmax(ei) [9.8]

The final multimodally-encoded utterance representation is then the weighted
average of all hi, given their attention weights ai:

hL =
∑
i

aihi [9.9]

Each candidate image is represented by its ResNet-152 features (He et al., 2016)
or, if it has been previously referred to in the dialogue, by the sum of the visual
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features and the representation of the previous utterance (obtained via averaging
its BERT embeddings).8 The images first separately go through dropout and a
linear layer before the addition of possible linguistic history.

The history of each candidate image is determined by looking at their respec-
tive chains in the given game. Crucially, we only look at the chain items that
were uttered before the current utterance we are trying to resolve. We take only
the last utterance in the history, if such a history exists for a candidate image. In
this case, we take the average of the BERT representations in the last utterance
for that image. This average then goes through dropout, a linear layer and ReLU.

The final history representation for a candidate image is added to this image’s
final visual representation to obtain its final candidate representation. As the last
step, we apply RELU and normalize the outcomes for each candidate separately
with L2 normalization. Please note that not all images in the context necessarily
have histories associated with them. Therefore, some candidate representations
will be multimodal, whereas the others will remain in the visual domain, with no
linguistic history being added.

To determine the target image, we take the dot product between the candidate
representations and the multimodally encoded input utterance representation.
The candidate with the highest dot-product value is then predicted to be the
referent of the input utterance.9

Ablation As an ablation of the model described above, we train another type
of model where the history is not added to the candidate images. Hence, the
candidates are always represented only in the visual modality.

Baseline This model only uses one-hot vectors based on image IDs. These
vectors go through the same operations as the image features go through in the
models described above (dropout, linear layer, ReLU and normalization). At the
end, instead of the dot product, the outputs for the candidates are projected
to scalar values, and the model tries to predict the target by applying softmax
directly over these scalars.

9.4.3 Model Configurations

For each model, we performed hyperparameter search for batch size, learning rate,
and dropout; also, the search included different dimensions for the embedding,
attention, and hidden layers. All models were trained for up to 100 epochs (with a
patience of 50 epochs in the case of no improvement to the validation performance)

8Thus, some of the candidate images have multimodal representations (if they were already
mentioned in the dialogue), while others do not.

9See Wu et al., 2023 for an implementation of a listener agent that utilizes the full dialogue
history to directly play a game from PhotoBook, i.e., to predict if an image exists in the set of
the interlocutor.
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using the Adam optimizer (Kingma and Ba, 2015) to minimize the Cross-Entropy
Loss with sum reduction. BERTScore F1 (Zhang et al., 2020b) in the validation
set was used to select the best model for the generation task, while we used
accuracy for the resolution task. In the next section, we report average scores
and standard deviations over 5 runs with different random seeds. Further details
on hyperparameter selection, model configurations, and reproducibility can be
found in Appendix D.4.

9.5 Results

9.5.1 Evaluation Measures

We evaluate the performance of the reference resolution model by means of both
accuracy and Mean Reciprocal Rank (MRR). As for the generation models, we
compute several metrics that are commonly used in the domain of NLG. In partic-
ular, we consider three measures based on n-gram matching: BLEU-2 (Papineni
et al., 2002),10 ROUGE (Lin, 2004), and CIDEr (Vedantam et al., 2015). We also
compute BERTScore F1 (Zhang et al., 2020b) (used for model selection), which
in our setup compares the contextual embeddings of the generated sentence to
those of the set of referring utterances in the given chain. Further details of the
metrics are in Appendix D.3.

All these measures capture the degree of similarity between generated referring
utterances and their human counterparts. In addition, to assess the extent to
which the generated utterances fulfill their communicative goal, we pass them
to our reference resolution model to obtain accuracy and MRR. While this is
not a substitute for human evaluation, we take it to be an informative proxy.
In Section 9.6, we analyze the generated utterances with respect to linguistic
properties related to phenomena that are not captured by any of these metrics.

9.5.2 Reference Resolution Results

Our reference resolution model achieves an accuracy of 85.32% and MRR of
91.20% on average over 5 runs. This is a substantial result. A model that pre-
dicts targets at random would yield an accuracy of roughly 16.67% (as the task is
to pick one image out of 6 candidates), while the baseline that simply takes pro-
jected versions of one-hot representations of the image IDs in the context achieves
22.37% accuracy.11

10BLEU-2, which is based on bigrams, appears to be more informative than BLEU with
longer n-grams in dialogue response generation (Liu et al., 2016).

11The fact that this is slightly higher than random accuracy seems due to the different fre-
quencies of images being the target in the dataset.
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Subset ACC MRR Instances
First 80.27 (0.46) 87.78 (0.28) 2482
Later 88.74 (0.18) 93.51 (0.09) 3673
Overall 85.32 (0.19) 91.20 (0.10) 6155

Table 9.2: Test set scores of the reference resolution model: averages of 5 runs
with the best configuration, with the standard deviations in parentheses.

In Table 9.2, the results are presented by breaking down the test set into two
subsets: the first referring utterances in a chain, and later referring utterances,
i.e., subsequent references where the target image has linguistic history associated
with it. The model performs better on subsequent references. Exploiting dialogue
history plays a role in this boost: the ablated version of the model that does not
have access to the linguistic history of subsequent references yields an accuracy
of 84.82% for the Later subset, which is significantly lower than the 88.74%
obtained with our model (p < 0.01 independent samples t-test). This confirms the
importance of accessing information about previous mentions in visually grounded
reference resolution (Haber et al., 2019). We use the best model run to assess the
communicative effectiveness of our generation models.

9.5.3 Generation Model Results

As we did for the reference resolution model, we break down the test set into first
referring utterances in a chain and subsequent references, for which generation
is conditioned on a previous utterance. The outcomes of this breakdown are
provided in Table 9.3, where we report the test set performances of our three
generation models. Overall results on the validation set are available in Appendix
D.5.

ReRef obtains the highest scores across all measures, followed by Copy, while
Ref achieves substantially lower results. Regarding the comparison between first
and subsequent references, the context-aware models ReRef and Copy attain
significantly higher results when generating later mentions vs. first descriptions
(p < 0.001, independent samples t-test). As expected, no significant differences
are observed in this respect for Ref.12

As for the communicative effectiveness of the generated utterances as mea-
sured by our resolution model, both accuracy and MRR are particularly high
(over 90%) for ReRef. Across all model types, generated subsequent references
are easier to resolve by the model, in line with the pattern observed in Table 9.2
for the human data.

All in all, the addition of the copy mechanism does not provide improvements
over ReRef’s performance that can be detected with the current evaluation mea-

12While first descriptions do not require linguistic context, ReRef and Copy perform better
on first description generation than Ref. This is likely due to their higher complexity.
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Model Subset BLEU-2 ROUGE CIDEr BERT-F1 ACC MRR
First 20.80 (1.02) 29.74 (1.59) 41.26 (3.14) 54.48 (1.38) 57.12 (4.85) 72.47 (3.19)

Ref
Later 23.06 (1.20) 31.88 (1.66) 40.79 (2.83) 55.54 (1.40) 60.94 (2.67) 75.34 (1.59)
First 33.09 (0.79) 42.32 (0.42) 94.63 (2.12) 62.55 (0.12) 90.36 (1.73) 94.49 (1.14)

ReRef
Later 52.15 (1.19) 56.74 (0.63) 143.59 (5.84) 71.25 (0.39) 92.21 (0.73) 95.62 (0.45)
baseline 36.66 (0.92) 45.37 (0.57) 96.41 (2.69) 64.13 (0.24) 90.14 (2.28) 94.38 (1.41)
First 25.25 (0.40) 33.31 (0.50) 60.51 (1.21) 57.61 (0.36) 81.36 (0.53) 88.70 (0.49)

Copy
Later 43.08 (0.36) 48.79 (0.41) 128.45 (1.98) 66.07 (0.17) 83.96 (0.53) 90.60 (0.32)

Table 9.3: Test set scores of the generation models (averaged over 5 runs) for first
vs. subsequent references, including word-overlap metrics, BERTScore F1, and ac-
curacy and MRR obtained by our resolution model on the generated utterances.
ReRef baseline uses the first generated description verbatim in all later men-
tions. All differences across model types are statistically significant (p < 0.001,
independent samples t-test).

sures. We do find, however, that the Copy model uses a substantially larger
vocabulary than ReRef: 1,791 word types vs. 760 (the human vocabulary size
on the test set is 2,332, while Ref only uses 366 word types). An inspection of
the vocabularies shows that Copy does generate a good deal of low-frequency
words, in line with what is expected from the dedicated copy mechanism (less
desirably, this also includes words with spelling errors). Further analysis also
shows that Copy generates utterances that include more repetitions: 18% of the
utterances generated by Copy in the test set contain two identical content words
e.g. “do you have the runway runway woman?”, while only 7% of those generated
by ReRef do.13 Adding a means to control for repetitions, such as the ‘coverage’
mechanism by See et al. (2017), could be worth exploring in the future.

We compare our best performing model ReRef to a baseline consisting in
reusing the first generated utterance verbatim in later mentions. In this case,
the model does not learn how to reuse previous referring utterances taking into
account the changing visual context, but simply keeps repeating the first descrip-
tion it has generated. We expect this baseline to be relatively strong given that
experiments in psycholinguistics studies have shown that dialogue participants
may stick to an agreed description even when some properties are not strictly
needed to distinguish the referent in a new visual context (Brennan and Clark,
1996; Brown-Schmidt et al., 2015). The results (reported in Table 9.3 baseline)
show that the model significantly outperforms this baseline when generating later
mentions.

Overall, our results confirm that referring utterances do evolve during a dia-
logue and indicate that the models exploiting the conversational context are able
to learn some of the subtle modifications involved in the re-referring process. In
the next section, we look into the linguistic patterns characterizing this process.

13The Ref model is even more repetitive: 21% of the generated utterances contain repeated
content words.
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(a) Givenness markers (b) Proportion of nouns

(c) Lexical entrainment in later references

Figure 9.7: Linguistic patterns in human referring utterances and in referring
utterances generated by our three models. Givenness markers and proportion of
nouns per utterance are displayed for first and later references.

9.6 Linguistic Analysis

We analyze the linguistic properties of the utterances generated by the best-
performing run of each of our models and compare them with patterns observed
in the human data. Extensive descriptive statistics are available in Appendix D.6.

9.6.1 Main Trends

Givenness markers We first look into the use of markers of new vs. given
information, in particular indefinite and definite articles as well as particles such
as again or before (as in “I have the X one again” or “the X from before”), which
are anaphoric and presuppose that an image has been discussed previously in
the dialogue. Figure 9.7a shows the proportion of givenness markers (the, one,
same, again, also, before) in first vs. subsequent references. Not surprisingly, this
proportion increases in the human subsequent references. ReRef and Copy both
display an amplified version of this trend, while Ref, which cannot capture any
given information, shows no difference.

Reduction Regarding referring utterance length, we observe a significant short-
ening in subsequent mentions in human dialogues (11.3 vs. 8.3 tokens on average
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in first and subsequent mentions, respectively). This shortening is also observed
in the utterances generated by ReRef (11.3 vs. 7.2) and Copy (10.8 vs. 7.8).
Ref tends to generate longer utterances across the board (13.7 vs. 13.6).

Shortening may be linked to compression, i.e., to an increase in information
density (Shannon, 1948). To analyze this aspect, we consider the proportion of
content words in the utterances, since such proportion can capture mechanisms
such as syntactic reduction (e.g., the removal of the complementizer that), which
has been shown to be a good predictor of information density increase (Jaeger
and Levy, 2007). Haber et al. (2019) reported a rise in the proportion of content
words for all utterance types in later rounds of the PhotoBook games. We also
observe such an increase in our referring utterance chains, and a similar trend is
exhibited as well by the output of the ReRef and Copy models: In particular,
generated subsequent references contain a significantly higher proportion of nouns
and adjectives compared to first descriptions. Figure 9.7b shows this pattern for
nouns, which are the most prominent type of content word in our data.

Entrainment In order to analyze the presence of lexical entrainment, we com-
pute the proportion of expressions in subsequent references that are reused from
the previous mention. We compare reuse at the level of unigrams and bigrams.
Figure 9.7c shows this information focusing on content words. Around 60% of
content tokens are reused by humans. The proportion is even higher in the ut-
terances generated by our context-aware models. Digging deeper into the types
of content tokens being reused, we find that nouns are reused significantly more
than other parts of speech by humans. This is also the case in the subsequent
references generated by the ReRef and Copy models.

Humans also reuse a substantial proportion of content word bigrams—as do,
to a smaller degree, the context-aware models. For example, given the gold de-
scription “pink bowls rice and broccoli salad next to it”, ReRef generates the
subsequent reference “pink bowls again”. Noun-noun compounds are a particu-
larly interesting case of such bigrams, which we qualitatively analyze below.

9.6.2 A Case Study: Noun-Noun Compounds

A partial manual inspection of the human utterances in our chains reveals that,
as they proceed in the dialogue, participants tend to produce referring expressions
consisting of a noun-noun compound.14 For example, in Figure 9.2 we observe
the compound “camera guy” being uttered after the previous mention “guy with
camera” (reused nouns are underlined). Another example is “wine glass dog” in
Figure 9.1. This is in line with Downing (1977), who argues that novel (i.e., not

14This is consistent with the fact that the proportion of noun-noun bigrams is significantly
higher in subsequent references (0.05 vs. 0.08 on average in first and subsequent references,
respectively; p < 0.001 independent sample t-test).



9.6. Linguistic Analysis 107

P: lady with basket? P: do you have headband guy?

; ReRef: basket lady? ; ReRef: tattoo guy?

Figure 9.8: Two examples from the test set where ReRef generates a noun-noun
compound based on the previous human mention (P). Left: a genuine reuse case;
right: a non-reuse case. Reused words are underlined.

yet lexicalized) noun-noun compounds can be built by speakers on the fly based on
a temporary, implicit relationship tying the two nouns, e.g., ‘the guy taking a pic-
ture with a camera’. Such noun-noun compounds are thus prototypical examples
of reuse and reduction: On the one hand, the novel interpretation (which needs
to be pragmatically informative, diagnostic, and plausible; Costello and Keane,
2000) can only arise from the established common ground between speakers; on
the other hand, compounds are naturally shorter than the ‘source’ expression
since they leave implicit the relation between the nouns.

We check whether our best performing generation models produce compounds
as humans do, i.e., by reusing nouns that were previously mentioned while com-
pressing the sentence. We perform the analysis with a qualitative focus, by man-
ually inspecting a subset of the generated utterances.15 In Figure 9.8, we show
two noun-noun compounds generated by ReRef (similar cases were observed for
Copy). The example on the left is a noun-noun compound, “basket lady”, that
is consistent with the dialogue context: both nouns are indeed reused from the
previous mention. In contrast, the compound on the right does not build on the
conversational history; the noun “tattoo” is not in the previous mention and never
uttered within the reference chain (not reported), and thus may be perceived as
breaking a conceptual pact (Metzing and Brennan, 2003). The compound is
grounded in the image, but not in the conversational context.

15The subset is obtained by applying simple heuristics to the set of generated utterances,
such as length and POS tags.
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9.7 Conclusion

We have addressed the generation of descriptions that are (1) discriminative with
respect to the visual context, and (2) grounded in the linguistic common ground
established in previous mentions. To our knowledge, this is the first attempt
at tackling this problem at the level of surface realization within a multimodal
dialogue context.

We proposed an encoder-decoder model that is able to generate both first men-
tions and subsequent references by encoding the dialogue context in a multimodal
fashion and dynamically attending over it. We showed that our best-performing
model is able to produce better, more effective referring utterances than a vari-
ant that is solely grounded in the visual context. Our analysis revealed that
the generated utterances exhibit linguistic properties that are similar to those
observed in human utterances regarding the reuse of words and reduction. Gen-
erating subsequent references with such properties has the potential to enhance
user adaptation and successful communication in dialogue systems.

Yet, in our approach, we abstracted away from important interactive aspects
such as the collaborative nature of referring in dialogue (Clark and Wilkes-Gibbs,
1986), which was considered by Shore and Skantze (2018) for the task of reference
resolution. In the present work, we simplified the interactive aspects of reference
by extracting referring utterances from the PhotoBook dialogues and framing the
problem as that of generating the next referring utterance given the previous
mention. We believe that the resulting dataset of referring utterance chains can
be a useful resource to analyze and model other dialogue phenomena, such as
saliency or partner specificity, both on language alone or on the interaction of
language and vision.

In the next chapter, we go beyond the setups described in this chapter, and
explore how to adapt generation models representing speakers against a set of
resolution models representing listeners with diverse knowledge spaces.
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10.1 Introduction

In the previous chapter, we have shown the significance of incorporating visual
and linguistic contexts when generating referring utterances in multimodal dia-
logue. In this chapter, we investigate another phenomenon existing in dialogue:
adaptation. Speakers tend to adapt their language use to the perceived knowl-
edge, information, and linguistic abilities of their interlocutors by representing the
mental states of the interlocutors via Theory of Mind (Isaacs and Clark, 1987;
Clark, 1996; Pickering and Garrod, 2004; Tomasello, 2005).

In this chapter, we model a communicative situation where the interlocutors
have asymmetric language abilities : a proficient speaker interacts with a listener
characterized by limited semantic knowledge to complete a reference game, as
illustrated in Figure 10.1. Our goal is to mimic a scenario in which, for example,
a high school physics professor can make complex atomic models understandable
to young students by using terminology familiar to them, such as culinary termi-
nology to explain Thomson’s ‘plum pudding model’. We focus on the speaker’s
Referring Expression Generation (REG; Reiter and Dale, 1997; Krahmer and van
Deemter, 2012) in a multimodal dialogue setting and use REG models equipped
with visual perception to generate discriminative image descriptions within a set
of related image candidates. Several psycholinguistic theories have proposed that
language production is interwoven with comprehension via ‘forward prediction’—
i.e., producing an utterance involves predicting how a comprehender would un-
derstand it (e.g., Pickering and Garrod, 2013; Roelofs, 2020). Inspired by this
idea, we equip our speaker model with a simulator, i.e., a module that ‘simulates’
whether a listener would be able to identify the target referent. Based on this pre-
dicted behavior (i.e., the expected effect of the planned utterance), the simulator
modifies the generation plan on the fly to increase communicative success.

These are the main contributions of the research explained in this chapter:1

• We model adaptation between agents with asymmetric knowledge, using a
referential task as case study, where agents communicate in natural language
about realistic images (in contrast to related work using synthetic data—see
Section 10.2).

• We propose a novel simulation-based approach and test it in two settings:
(1) a self-aware setting where the speaker predicts how a generic listener
(with the same knowledge as the speaker) would resolve a planned utter-
ance, and (2) an audience-aware setting where the speaker learns—from the
behavior of a listener with restricted semantic knowledge—to form repre-
sentations of the listeners’ knowledge (Clark, 1985; Isaacs and Clark, 1987)
and predict their responses.

1Our code and models are publicly available at https://github.com/nicofirst1/

speaker-adaptation

https://github.com/nicofirst1/speaker-adaptation
https://github.com/nicofirst1/speaker-adaptation
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Simulator

Encoder DecoderH0

"Bookshelves in
background"

Knowledgeable 
about all
domains

Knowledgeable
about Indoor
domain only

Adapted utterance

Visual domain: Food
Non-adapted utterance:

"Green salad"
SPEAKER

LISTENER

Operates on frozen
language model to
control generation

Figure 10.1: An illustration of our knowledge-asymmetric setup where an expert
Speaker interacts with a less knowledgeable Listener. The Speaker tailors its
utterance about an image from the food domain for a Listener who only knows
about the indoor domain. The speaker’s Simulator module inspired by Theory
of Mind guides this adaptation. The adapted utterance exploits indoor terms
(‘bookshelves ’) without referring to food.

• We exploit the simulator’s representations in an innovative way: by lever-
aging a plug-and-play approach originally introduced for controllable text
generation (Dathathri et al., 2020), which steers language production at the
decoding stage without altering the underlying language model.

• We show that our approach leads to increased resolution accuracy; in par-
ticular, our audience-aware speaker is able to adapt its utterances effectively
when referring to a target within a visual domain unknown to the listener.

• We provide an in-depth analysis of the patterns present in the adapted
utterances and the model’s production strategies underpinning our results.
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10.2 Related Work

10.2.1 Pragmatic Reference Generation

Speakers tend to design their referring expressions to be pragmatically infor-
mative, i.e., discriminative from the listener’s perspective. Most approaches
to pragmatic reference expression generation (REG) have considered scenarios
where we can assume a shared set of linguistic conventions between speakers
and addressees (common domain and training data). The Rational Speech Act
framework (RSA; Frank and Goodman, 2012; Goodman and Stuhlmüller, 2013;
Goodman and Frank, 2016) has become a popular option for characterizing such
settings, with REG models that reason probabilistically about their interlocutors’
interpretation via recursively defined speaker and listener models (Andreas and
Klein, 2016; Monroe et al., 2017; Cohn-Gordon et al., 2018; Zarrieß and Schlangen,
2019; Fried et al., 2021), possibly taking into account information accumulated
during interaction (Hawkins et al., 2020). There also exist joint speaker-listener
models that are not recursive in the RSA sense. In these models, speakers can
become listener-aware at inference time thanks to enhanced decoding algorithms
(Vedantam et al., 2017) or they can learn to generate discriminative utterances at
training time, for example via altered supervised training objectives (Mao et al.,
2016) or auxiliary reinforcement learning (RL) modules (Yu et al., 2017a), includ-
ing approaches where the RL rewards are determined by the reference resolution
success of a listener model (Lazaridou et al., 2020).

Our model, too, produces audience-aware discriminative image descriptions
through an auxiliary module that captures the listener’s perspective. However,
in contrast to the above studies, the setting we investigate has two distinct key
features: (1) we model situations with knowledge asymmetry between the dia-
logue participants, and (2) we experiment with plug-and-play controlled genera-
tion methods that result in temporary updates to the speaker’s language model—
rather than steering generation via recursive probabilistic reasoning. We review
work related to these two aspects next.

10.2.2 Knowledge Asymmetry & Referring Tasks

What if the speaker and the listener have access to differing semantic knowledge?
It is well known that speakers are able to adapt to less proficient addressees (Isaacs
and Clark, 1987). Janarthanam and Lemon (2010) were one of the first to address
adaptation in dialogue systems with asymmetric knowledge. They modeled REG
for technical domains where users may not know the jargon, using RL to learn
a REG policy from a user simulation. More recently, Ohashi and Higashinaka
(2022) focus on generating utterances in task-oriented dialogue with users that
have limited vocabulary. They exploit the natural language understanding mod-
ule of the system (representing user understanding) to set up a reward function,
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which is then used to fine-tune the NLG module via RL.
In the context of visually grounded referring tasks, Bao et al. (2022) focus on

a scenario where the listener has comprehension difficulties and model adapta-
tion by reweighing the probability of candidate referring utterances as a function
of their likelihood to be successfully interpreted by the listener. Similarly, Liu
et al. (2023a) apply ToM-based listener modeling, where the speaker generates
multiple candidate utterances and ranks them with the help of the ToM listener.
Generating and ranking multiple utterances, however, is an inefficient production
mechanism. For these reasons, others have tried to condition the speaker model
prior to utterance generation, mainly with external modules. Corona Rodriguez
et al. (2019) model interactions where the listener has an impaired perceptual
system and implement this conditioning through an external policy network that
takes as input listener embeddings. While Zhu et al. (2021) propose a ToM
module that tracks the listener’s understanding via meta-learning for few-shot
coordination in a setup where listeners understand different languages. Singh
et al. (2023) train an attention-based adapter layer in a reward-based manner as
part of a multi-agent referential game where the speaker aims to generate utter-
ances that would be understood by one listener, but not the other. Finally, Greco
et al. (2023) have a setup that is the most similar to ours, where Expert speakers
adapt to Layman listeners. But unlike our plug-and-play approach, the authors
follow the RSA framework in developing audience-aware models that are updated
through interaction.

10.2.3 Adaptive Controlled Generation

Most of the approaches to adaptation we have reviewed apply RL to the speaker
model or fine-tune its language model through interaction. As a result, the
speaker is not able to retain its original knowledge, which might cause catas-
trophic forgetting (McCloskey and Cohen, 1989; French, 1999). With the advent
of large pretrained language models, a plethora of new methods for controlled
text generation have been proposed, including prefix-tuning (Li and Liang, 2021;
Ben-David et al., 2022), prompting (Brown et al., 2020), adapters (Houlsby et al.,
2019; Pfeiffer et al., 2020a,b), and energy-based constraints (Qin et al., 2022). Vi-
sual prefixes and prompts (Alayrac et al., 2022) have also been used to condition
generation, especially without training the full language model.

We argue that this recent line of research offers promising alternative frame-
works for adaptive REG. In particular, we investigate a solution to adaptation
inspired by the plug-and-play approach to controlled text generation (PPLM;
Dathathri et al., 2020; Pascual et al., 2021), which has been used to steer large
pretrained language models towards generating texts with certain features (e.g.,
positive/negative sentiment or a given vocabulary distribution). In Dathathri
et al. (2020), latent representations are updated at inference time with the help
of a classifier while keeping the model parameters unchanged. Building on this
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idea, we propose a modular approach to REG adaptation in asymmetric knowl-
edge settings where a module trained to predict the listener’s behavior —similar
to the ‘prediction net’ in the machine ToM model by Rabinowitz et al. (2018)—is
exploited to control generation on the fly.

10.3 Problem Formulation

We provide an abstract overview of the problem we address and our approach.
Details on the data and the experimental pipeline are given in Section 10.4 and
Section 10.5.

Scenario Our setup is a classic referential game: two artificial agents, a speaker
and a listener, share a visual context involving multiple images. The speaker
produces an utterance to refer to one of the images (the target) and the listener
attempts to identify the referent given that utterance. In particular, we model
a scenario with knowledge asymmetry, where the speaker is more knowledgeable
than the listener. We hypothesize that, in such a setup, for communication
to be successful, the speaker will need to adapt its utterances to the listener’s
representational space and language. To make this possible, we endow the speaker
with a simulation module and an adaptation mechanism.

Simulation We provide the speaker with a module that simulates how a listener
would process a planned utterance. We assume that, by having interacted with
listeners in the past, the speaker has learned a model of certain listener types (e.g.,
a prototypical idea of what a 3-year-old would understand). We operationalize
this by pretraining several instances of the simulator, one per listener type, to
predict how a listener is likely to resolve a referring utterance. We compare three
settings:

• Baseline: No simulation takes place.

• Self-aware: The simulator is trained to predict how a listener with the same
knowledge as the speaker would resolve an utterance. This is equivalent to a
pragmatic speaker who reasons about the effect of its utterances on a generic
listener (see Section 10.2.1), but in our approach at test time the listener’s
interpretations are predicted rather than directly observed. Our proposal
is also inspired by human production models based on ‘self-monitoring’
(Levelt, 1993; Roelofs, 2020).

• Audience-aware: The simulator is trained to predict how a listener with a
subset of the speaker’s knowledge, i.e., a single domain, would resolve an
utterance. Thus, the speaker learns a model—a theory of mind—of a less
knowledgeable listener type that allows the speaker to make predictions
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about the listener’s behavior. When performing the referential task, we
assume that the speaker knows the type of the listener beforehand, i.e.,
which simulator needs to be engaged (similarly to knowing that we are
addressing a 3-year-old, for example).

Adaptation Rather than fine-tuning the speaker’s language model, we exploit
the pretrained simulators to control utterance generation on the fly via a moni-
toring loop. The simulator checks whether planned utterances would be effective;
if that is not the case, a loss is backpropagated to update the initial hidden state
of the speaker’s decoder and a new utterance is generated. Our hypothesis is
that such a mechanism will lead to referring utterances that are adapted to the
listener’s knowledge.

10.4 Data

We use the dataset of referring utterances automatically extracted from the Pho-
toBook dialogues as explained in Chapter 9 (Takmaz et al., 2020a). In contrast
to the previous chapters, we leave aside the dialogue context for simplicity, as our
focus in this chapter is on the generation and adaptation of referring utterances
in visual contexts. As the visual contexts in PhotoBook feature images from the
same visual domain, this facilitates the separation of the dataset into domain-
specific subsets. The images in PhotoBook belong to 30 different visual domains
(e.g., ‘person-umbrella’, ‘car-motorcycle’ ). To model speaker adaptation to dif-
ferent semantic domains, we split the dataset of PhotoBook referring utterances
according to the visual domain of each game. We cluster the image domains
as a function of the similarity between their vocabulary vectors, constructed by
counting word frequencies in the referring utterances belonging to a given do-
main. We obtain a set of 5 macro-domains (appliances, food, indoor, outdoor,
vehicles), selected so that the domain vocabularies have minimal overlap. For
each cluster of visual domains, we extract the corresponding referring utterance
and visual context. We then randomly split these into training (70%), validation
(15%), and test set (15%). We also merge the 5 domain-specific datasets into an
‘all-domains’ dataset to be used to train domain-general models as described in
Section 10.5. See summary in Table 10.1.

10.5 Experimental Pipeline

As described in Section 10.3, our experimental pipeline includes two agents—a
speaker and a listener—implemented as a generative language model instantiating
the speaker, a discriminative model instantiating the listener, and a third model, a
simulator used by the speaker to assess the forward effect of its planned utterance
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Domain Prop N |V | Images Specific Overlap

Appliances 9.4% 4,310 1,271 36 29.5% 23.2% (Ind)
Food 12.4% 5,682 1,646 36 43.3% 22.9% (App)
Indoor 26.4% 12,088 2,477 96 44.3% 26.0% (Out)
Outdoor 35.9% 16,427 2,858 108 47.0% 26.2% (Veh)
Vehicles 15.8% 7,234 1,738 48 36.0% 26.2% (Out)

All 100% 45,741 6,038 324 - -

Table 10.1: Statistics of the domain-specific datasets: # of utterances (N) and %
within the entire dataset (Prop), vocabulary size (|V |), # of unique images (Im-
ages), % of domain-specific vocabulary (Specific), and max. lexical overlap with
another domain (Overlap). The max. overlap is between outdoor and vehicles.
Example shared words are ‘left’, ‘black’, ‘driving’, and ‘glasses’.

on the listener. The language model and the discriminator model are adapted
from those by Takmaz et al. (2020a) described in Chapter 9, and the simulator
model is built on the discriminator’s architecture with additional components.
We train these models from scratch to have full control over the linguistic and
visual knowledge of the agents and their degree of asymmetry. We use ResNet-152
to encode the images (He et al., 2016). See Appendix E.1 for more information
about the training schemes and hyperparameters.

10.5.1 Generative Language Model

The speaker is a visually conditioned language model that generates an utter-
ance describing a target image within a visual context. The model follows an
encoder-decoder architecture consisting of a visual encoder that represents the
visual context along with the target image, and a decoder for language genera-
tion. The decoder generates a referring utterance via nucleus sampling (Holtzman
et al., 2020), also paying attention to the encoder output at every time step. See
Appendix E.1.1 for more details about the model architecture.

We train the visually conditioned language model from scratch using the train-
ing set including all domains in PhotoBook and optimize the model with respect
to Cross-Entropy Loss using Adam (Kingma and Ba, 2015). We select the best
model based on its performance on a set of NLG metrics on the validation set.
The weights of the trained speaker are then frozen and used as the core language
generation model in all our experiments identically.

Performance The speaker’s language model obtains reasonable scores in terms
of classic NLG metrics:2 23.8 BLEU-2, 32.9 ROUGE, 44.1 CIDEr, and 57.7

2Comparable to those obtained by Takmaz et al. (2020a) with their ‘Ref’ model.
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BERTScore F1 (Papineni et al., 2002; Lin, 2004; Vedantam et al., 2015; Zhang
et al., 2020b). All scores are averages across 4 seeds on the test set. For details,
see Appendix E.2.1.

10.5.2 Discriminator

Our listener is a discriminator model that receives six images in the visual con-
text plus an utterance, and is tasked with identifying the target image that the
utterance refers to. To encode the utterance, we use word embeddings trained
from scratch to make sure no knowledge leaks from any pretraining. The model
combines the visual context and the utterance to produce a multimodal context
vector. The listener identifies the target image by comparing this multimodal con-
text vector to the representations of each candidate image via dot-product and
selecting the image with the highest score. See Appendix E.1.2 for the detailed
description of the model architecture.

We train one listener model per domain in Table 10.1.3 The models are
optimized with Cross-Entropy Loss using the Adam optimizer. The best models
are selected based on resolution accuracy on the validation set. We keep these
domain-specific listener models frozen in the rest of the study. See Appendix
E.1.2 for further details.

Performance We distinguish between in-domain (ind) accuracy—i.e., the res-
olution accuracy achieved on the test set of the domain on which the listener
has been trained—and out-of-domain (ood) accuracy—accuracy on domains the
listener has not been exposed to (e.g., the accuracy on images from the vehicles
domain of a listener exclusively trained on the food domain). Our listeners are
truly domain specific: they are able to identify the target image with an average
accuracy of 83.08% in ind, while their ood accuracy is 19.05% on average—barely
above a random baseline (16.67%). See Appendix E.2.2 for the full results broken
down per domain.

10.5.3 Simulator

As explained in Section 10.3, the speaker is endowed with a simulator module.
The simulator receives inputs in two parallel streams. In one stream, it receives
the visual context v coupled with the speaker’s planned utterance ut, and in the
second stream, the visual context along with the language model’s initial hidden
state h0. The motivation behind this architectural choice is related to the plug-
and-play approach at the core of our proposal. The first stream is inspired by
previous work on ToM (e.g., Rabinowitz et al., 2018): its main input is the same

3We also train a general listener model on all domains which is only used to train the
self-aware simulator; see Section 10.5.3.
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as what a listener would receive, an utterance. However, to control generation on
the fly, we need to modify the language model’s internal representations. Thus,
the main reason for the second stream is technical: the gradients from the sim-
ulator’s loss cannot flow back to the language model’s hidden states if the input
to the simulator is text due to the non-differentiability of the argmax operation.4

The second stream uses a combination of linear layers and standardization to
compute the dot product between h0 and v. The outcomes of the two streams
are multiplied to obtain the final representation that is compared to the candidate
images.

We train one audience-aware simulator per domain-specific listener and one
self-aware general simulator with Cross-Entropy Loss using the AdamW opti-
mizer (Loshchilov and Hutter, 2019). The training set sizes of both types of
simulators are the same, with the target behavior being different. In the sim-
ulation of a general listener, the simulator predicts the behavior of a listener
that was exposed to all domains as the speaker, contrary to one domain in the
domain-specific case. We choose the best simulator per listener type based on
the simulators’ prediction accuracies (more details in Appendix E.1.3). The sim-
ulators are then frozen in the rest of the pipeline.

Performance The self-aware simulator achieves an accuracy of 70% when pre-
dicting the behavior of a general listener. The audience-aware simulators predict
the behavior of domain-specific listeners with an average accuracy of 78.20% for
ind samples, and 72.78% for ood samples.5 The drop in accuracy from ind sam-
ples to ood samples could be due to difficulties in ascertaining the reactions of a
listener on ood data. See details of the results in Appendix E.2.3.

10.6 Audience-Aware Adaptation

In our framework, adaptation takes place at inference time building on our pre-
trained, frozen models for the language model, the discriminators and simulators
described in Section 10.5. We first explain our adaptation mechanism (Section
10.6.1) and then report the results obtained (Section 10.6.2).

10.6.1 Adaptation Mechanism

Algorithm 1 describes the adaptation mechanism sketched in Section 10.3, which
exploits the simulator to iteratively monitor the generation outcomes of the
speaker. Given the visual context v, the initial hidden state of the speaker’s

4We observed that using the Gumbel-Softmax trick (Jang et al., 2017) led to unstable be-
haviour.

5Possibly because the general knowledge space is bigger, it could also be more difficult to
model a general listener than a domain-specific listener with a limited knowledge space.
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decoder h0 and the currently planned utterance ut, the simulator makes a predic-
tion for the listener’s selection.6 We calculate the Cross-Entropy Loss between
the simulator’s prediction and the true target. We use the gradients flowing back
from this loss to update h0 with the Adam optimizer. That is, adaptation is per-
formed by backpropagating the loss to modify only the initial hidden state of the
speaker’s decoder. Based on the updated h0, the language model generates a new
utterance to be reviewed by the simulator. The mechanism stops when: either
(1) the simulator predicts that the listener will choose the gold target image; or
(2) when the maximum number of adaptation steps is reached (stadp). At each
step, we reset the random seed to ensure that the changes in the sampling of the
words are only attributable to the updates to h0, showing the effects of adaptation
directly without being confounded by the stochastic nature of sampling.

Algorithm 1: Adaptation Mechanism
Input: stadp : maximum number of adaptation steps

lradp : learning rate for adaptation
seed : random seed

Data: h0 : speaker’s initial hidden state
v : visual context
tg : true target

1 i← 0
2 while i ≤ stadp do
3 set seed(seed)
4 ut = Speaker(v, h0)
5 osim = Simulator(v, ut, h0)
6 tsim = argmax(osim)
7 if tsim == tg then
8 break

9 loss = CrossEntropy(osim, tg)
10 h0 = backprop(loss, h0, lradp)
11 i += 1

12 tl = Listener(v, ut)

10.6.2 Results

We evaluate whether our approach leads to increased communicative success,
quantified in terms of listener resolution accuracy. We report the results for the
three settings described in Section 10.3. For each of the three modules involved

6To avoid excessive language drift and help regularize utterance generation, at inference time
we condition h0 with the previous gold utterance referring to the target image in the current
dialogue (if it exists), as done by Takmaz et al. (2020a). This resonates with precautions taken
in other plug-and-play approaches against text degeneration (Dathathri et al., 2020).
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in these settings, we provide an evaluation card (Hupkes et al., 2023) to clarify
the nature of our generalization tests in the Appendix E.3.

Baseline Table 10.2 provides a breakdown of resolution accuracies per type of
domain-specific listener in the setting without simulation; Table 10.3 shows the
averages. Not surprisingly, the results obtained with generated utterances are
lower than those reported in Section 10.5.2. However the patterns are the same:
when the speaker agent refers to an image within a domain known to the listener
(ind), the average resolution accuracy is 52.30%; communication however breaks
down in out-of-domain instances, where the average ood score is 19.06%, close
to random choice.

app food indoor outdoor vehi

appliances 57.61 20.10 19.92 21.27 15.98
food 19.11 54.29 18.60 18.85 18.85
indoor 22.71 19.65 53.62 20.82 16.77
outdoor 15.08 21.46 19.62 52.93 17.69
vehicles 16.36 16.17 17.41 20.13 43.08

Table 10.2: Resolution accuracy in the Baseline setting. Rows indicate the listener
domain and columns the evaluation domain. Shaded cells show ind accuracy.
Averages across 5 seeds. Full table with SDs in Appendix E.2.2.

Self-aware adaptation As shown in Table 10.3, with the added capability to
simulate and adapt to a generic listener, we observe an increase in ind resolution
accuracy (52.30% vs. 65.09%). Yet, this setting does not help to bridge the
knowledge gap between speaker and listener: when the input is ood for a domain-
specific listener, adaptation with a general simulator does not lead to higher
communicative success (19.06% vs. 19.11%).

Baseline Self-aware Audience-aware

ood 19.06± 0.47 19.11± 1.12 26.74± 1.48
ind 52.30± 1.10 65.09± 1.98 71.77± 2.16

Table 10.3: Average resolution accuracy for our 3 settings in ood and ind. Re-
sults on the test set over 5 runs.

Audience-aware adaptation When the speaker adapts its utterances by pre-
dicting the behavior of a domain-specific listener, we see a significant increase in
both ind and ood (Table 10.3). This indicates that audience-aware adaptation
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helps in knowledge asymmetric scenarios, including in ind situations where the
agents communicate about a domain known to the listener (65.09% vs. 71.77%).
More importantly, while there is certainly room for improvement, the speaker
is able to generate utterances that can more often be resolved in ood (19% vs.
26.74%).

10.7 Analysis

Our experiments show that simulation-based adaptation leads to more successful
communication. In this section, we analyze the speaker model and its gener-
ated utterances to understand which neural processing mechanisms and which
production strategies are behind our main results.

10.7.1 Probing for Domain Information

We begin with an analysis of the neural representations of the speaker model in
the audience-aware setting. We focus on h0, the first hidden state of the LSTM
decoder. This is the output of the visual encoder on which the simulator module
intervenes in order to adapt the speaker’s utterance plan. Because h0 is the result
of encoding a target image (within a visual context), we expect it to carry infor-
mation about the semantic domain of the image. If it was not able to differentiate
visual domains, it would be very unlikely to successfully adapt to domain-specific
listeners. We test this hypothesis using diagnostic probing (Adi et al., 2017; Con-
neau et al., 2018a; Hupkes et al., 2018). We train a logistic regression classifier on
a 70% of hidden states h0 collected from the speaker when at test time, and then
we assess whether it can predict the image domain corresponding to the remaining
30% of the hidden states. As expected, the probing classifier is able to do so with
perfect precision and recall (both equal 1.0) across the 5 visual domains. Using
the same approach, we test whether the domain of the listener – rather than the
image domain – is also encoded in h0.

7 Our hypothesis is that this should not be
the case: before the simulator kicks in, the speaker model has no information on
the listener’s domain-specific knowledge. Probing accuracy scores vary between
0.13 and 0.16 across domains (the random baseline is 0.17), indicating that indeed
the speaker’s hidden state does not carry listener information before adaptation.

As the simulator activates, the original h0 is updated for a maximum of stadp
adaptation steps. We now look at the updated hidden states h1

0, . . . , h
stadp
0 and

test whether their encoding of the image and the listener domain changes with
adaptation. First, we use the probing classifier previously trained to predict image
domains from h0 to test the adapted hidden states. We find that the encoding

7We train a logistic regression classifier on the 70% split of the h0 but this time using as
label the domain of the listener. We then evaluate whether the classifier can predict the listener
domain in the 30% probing test set.
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Figure 10.2: Probing accuracy for image domain and listener domain predictions
over adaptation steps. The 0-th step corresponds to the non-adapted h0.

of the image domain deteriorates with domain-specific adaptation (Figure 10.2).
Then, we probe h1

0, h
2
0, . . . for listener information and we show that the listener’s

domain can be predicted almost perfectly from the adapted h0 after only three
adaptation steps (Figure 10.2).8 Taken together, these observations indicate that
the neural processing mechanism that leads to more successful interaction is one
by which information about the semantic domain of the visual context is replaced
by information on the domain of the listener – and one which only requires a few
gradient updates.

10.7.2 The Speaker’s Adapted Vocabulary

We analyze macro-level properties of the corpus of adapted utterances as com-
pared to the utterances generated in the simulator-less baseline setting. We com-
pute type-utterance ratio and type-token ratio over adaptation steps to monitor
the relative size and the variety of the vocabulary as the speaker uses its simulator
module. As Figure 10.3 shows, after an initial drop for the first 1-3 adaptation
steps, type-utterance ratio and type-token ratio increase substantially with re-
spect to the non-adapted utterances (and to the gold referring utterances). The
speaker vocabulary becomes much more diverse. What remains rather stable
throughout adaptation, instead, is the unigram part-of-speech distribution (Fig-
ure E.2 in Appendix E.5). While, after the first adaptation step, the difference in
POS usage is notable (e.g., less punctuation, more nouns), only proper nouns and
determiners show substantial changes in relative proportions, with proper nouns
increasing and determiners decreasing over time.

8For this analysis, we train and test one probing classifier for each adaptation step. Using
the classifier trained on h0 would not make sense as we showed that it is not possible to extract
listener information from non-adapted representations.
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Figure 10.3: Type-utterance ratio across adaptation steps (type-token ratio in
Figure E.1, Appendix E.5). Human gold utterances (ref ) and non-adapted ut-
terances (0) also shown.

10.7.3 Adaptation Strategies

The trends observed so far characterize the effect of adaptation across steps,
but they do not differentiate between successful and unsuccessful adaptation.
In Figure 10.4, we split adapted utterances (the ones actually generated by the
speaker when it believed its utterance would be successful) according to whether
they lead to a correct listener guess. We observe that more successful utterances
contain words with a lower age of acquisition9 (AoA, t = −28.88, p < 0.001), they
show a lower rate of lexical choice from the target image vocabulary (t = −28.76,
p < 0.001), and a higher rate of words from the listener vocabulary (t = 5.88,
p < 0.001). The average AoA in an utterance increases with adaptation steps
(see Figure E.3 in Appendix E.5), suggesting that the excessive abstractness of
the descriptions may be behind the limited gains we observe with adaptation.

10.7.4 Qualitative Inspection

In Figure 10.5, we provide examples of adapted sentences from the test set
to demonstrate how the audience-aware adaptation strategies affect the lexical
choices made by the language model. In the top example, the image domain is
‘food’; however, the listener was trained on the ‘indoor’ domain. We see that
the speaker moves away from generating detailed mentions of food to including
a word related to the listener’s own domain, bookshelves. In the bottom example
where the listener has only been exposed to the ‘food’ domain and the image do-
main is ‘outdoor’, the model avoids mentioning the truck. Instead, it produces an

9Age of Acquisition is a psycholinguistic measure expressing the age at which a word is
typically learned. We use the ratings by Kuperman et al. (2012); they range from 0 to 25.
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Figure 10.4: Factors affecting the success of an adapted utterance, age of acquisi-
tion (left) and % of words in an utterance belonging to the target image domain
(right).

utterance containing a prominent color in the image, i.e., pink, and some visible
entities that belong to the listener’s domain, namely, donuts. These observations
suggest that the model exploits various adaptation strategies.

In the whole set of adapted utterances, we observe comprehensible sentences;
however, there is also a large number of less fluent, unnatural ones. As we do not
use pretrained large language models, sometimes, the speaker’s initial utterances
themselves are not fluent. The dynamics of adaptation may further exacerbate
this situation and lead the language model towards generating unnatural utter-
ances. Such utterances may not be understood by human listeners; yet, they
could make sense to artificial listeners. In order to ensure that the adapted utter-
ances are comprehensible to humans, further precautions may be needed, such as
incentivizing the generative model to keep the adapted utterances grammatical
and fluent, possibly with the aid of human feedback.

10.8 Conclusion

We focused on a standard reference game—a speaker produces an utterance, and
a listener uses it to pick the referent from a visual context. However, our setup is
asymmetric—the speaker has general semantic knowledge, while the listener has
little knowledge of all domains but one (e.g., food). Such a setting is a perfect sce-
nario for studying adaptation, i.e., the common process in human communication
by which a speaker tunes its language to that of a listener to achieve communica-
tive success. We modeled this mechanism using a plug-and-play approach to
controllable text generation: the speaker’s output is conditioned on the effect of
the planned utterance on the listener, as predicted by an internal simulator. Our
results show that speaking the language of a listener increases communicative suc-
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Target:FOOD. Listener domain:INDOOR
Gold (not adapted): green salad with a 
person holding up a portion with fork?
Generated (not adapted): I have one more 
maybe round you think that has a lime 
green shaped greens, a salad?
Adapted: must bookshelves in the salad?

Target:OUTDOOR. Listener domain:FOOD
Gold (not adapted): I have the pink food 
truck again ... white shirt lady
Generated (not adapted): girl at black 
phone, red truck, brown hair, pink
Adapted: pink donuts

Figure 10.5: Examples showing how audience-aware adaptation changes the gen-
erated utterances. For simplicity, we only show the target images and not the
whole visual contexts. We report the final adapted utterances when the adapta-
tion mechanism stops because the simulator predicts that the listener will select
the correct image.

cess. Through adaptation, the speaker’s language becomes less tied to the input
domain and more tied to the listener’s vocabulary, revealing that audience-aware
adaptation can be realized without irreversible changes to generation models.

Our approach and findings pave the way for pragmatic models that can ac-
count for different communicative scenarios. Future work may study adaptation
to other dimensions such as age group or sociocultural background. Moreover,
adaptation could be explored in multiple ‘directions’—in our setup, only the
speaker adapts. We also simplify the setup by abstracting away the online pro-
cess that leads to the simulation of the listeners. It would be beneficial to allow
the simulators to learn to predict listener behavior during interaction in an online
manner. Finally, our approach could be applied to other and possibly more com-
plex communicative tasks, perhaps in conjunction with a mechanism leveraging
human feedback via reinforcement learning.





Chapter 11

Conclusion

Humans interact with the world and other fellow human beings through multi-
faceted visuo-linguistic processes, producing and receiving a vast array of signals.
In this thesis, I have focused on a select subset of such processes to explore the
modeling of the interplay between vision and language in neural networks. I have
examined these processes in two parts. In Part One, I have investigated how
to model the process of generating verbal descriptions for images, while taking
human eye movements into account. Then, I looked into the variation in human
signals that occurs in visuo-linguistic processes. Additionally, I have explored
how to model the reading process, predicting eye movements over text. In Part
Two, I have moved on to visually grounded dialogue, and explored the modeling,
quantification, and adaptation of referring utterances. I summarize the findings
of these parts in the next section.

11.1 Findings

Part One The central theme of this part was human gaze in linguistic pro-
cesses. I explored whether incorporating gaze improves image description gen-
eration models (Chapter 4), whether pretrained encoders can account for the
variation in visuo-linguistic human signals (Chapter 5), and whether pretrained
multilingual models can predict human reading behavior in the form of eye move-
ments (Chapter 6).

The results in this part have shown that human gaze constitutes an integral
part of vision-language tasks, and that incorporating eye movements into state-
of-the-art models for image description generation is beneficial. In this way, the
models generate descriptions that are sequentially and semantically in line with
what humans uttered. This finding affirms the contribution of the information
relayed by human gaze to models of language production conditioned on visual
stimuli, at the same time, shedding light on the inner workings of visuo-linguistic
processes in humans.

127



128 Chapter 11. Conclusion

I have also shown that the complex relationship between vision and language
leads to intriguing patterns of variation in human signals. Furthermore, I have
found that such variation is encoded by pretrained multimodal models to a lim-
ited extent, with potential room for collecting more human signals and taking
them into consideration while developing such models. As discussed throughout
the thesis, these outcomes bear significance both for AI and cognitive science,
unveiling the variation in human signals and the power of pretrained models in
capturing such variations. Such findings can be informative about human ex-
pectations, the complexity of stimuli, and uncertainty. I have also shown that,
with minor extensions, multilingual models can account for human reading be-
havior, suggesting that similar approaches could be implemented for multimodal
and multilingual models for predicting other cognitive signals.

Part Two In this part, I have focused on referring utterances in visually grounded
dialogue. I have explored the listener-speaker dynamics in such settings, and how
the utterances evolve as common ground is built, with a focus on the strategies
adopted by humans.

In Chapter 8, using a pretrained multimodal model, I have quantified referring
utterances in terms of their descriptiveness and discriminativeness in reference
games. The results have yielded patterns resonating with human strategies as a
conversation unfolds: humans produce shorter utterances that are less descriptive
over time while maintaining discriminativeness. Such strategies involve leverag-
ing the dialogue history and distilling discriminative words for the sake of task
performance and communicative success.

I have modeled the process of generating and resolving referring utterances in
conversational and visual contexts in Chapter 9, and found that dialogue history
serves as a memory of the common ground, and guides processes pertaining to
referring utterances. The model that generates the first and subsequent references
to an image by keeping track of the dialogue history produces effective and human-
like utterances.

Finally, in Chapter 10, I have investigated how to adapt referring utterance
generation models when they encounter listeners with knowledge gaps. To tackle
this issue, I have proposed modules that simulate listeners, following Theory
of Mind. By developing a plug-and-play methodology to adapt the generation
models, I have enabled these models to perform audience-aware adaptation, which
led to increased performance in communication during reference games.

All the results in this thesis substantiate the importance of accounting for
human visuo-linguistic processes when developing, evaluating, and utilizing mod-
els performing artificial visuo-linguistic processes. In this thesis, I have taken
steps in this direction, embedding multimodal processes in human cognition into
computational models.
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11.2 Limitations and Future Work

Part One A limitation of the studies detailed in this part lies in the relatively
small size of the datasets, given the scarcity of datasets involving human signals
in the literature. Therefore, I mainly opted for starting from models pretrained
with larger datasets. In Chapter 4, I trained an initial model on a large machine-
translated dataset, and in Chapter 6, I used pretrained multilingual models and
only trained lightweight adapters. In Chapter 5, I resorted to approaches that
circumvent training.

Another data-related limitation was that, in Chapters 4 and 5, I only con-
ducted experiments for a single language. Since the cross-modal interaction be-
tween vision and language could show some variation based on the properties of
the languages (i.e., word order and morphological constraints), leading to vari-
ation in visual attention and structural choices (Norcliffe and Konopka, 2015;
Myachykov et al., 2011), the findings might differ based on the languages of the
datasets and the pretrained models. For future work, I recommend collecting
larger datasets containing eye-tracking data to model gaze in multilingual setups.
Such data is lacking, in particular, for multimodal settings as opposed to reading
eye-tracking datasets, which are more widespread.

Regarding Chapter 5, which explored the variation in human signals, it would
also be informative to explore other models and tasks, as well as explicit, discrete
features that would contribute to predicting visuo-linguistic variation. Regard-
ing the data, there could be noise in human signals, and the preprocessing steps
I took could also partly affect the findings. Investigating the variation in gaze
before/after speech onset with participant-specific analyses could also reveal in-
teresting dynamics. As the dataset contains descriptions from 45 participants,
with an average of 15 participants describing each image, a different pool of par-
ticipants (in particular, of a different size) may produce disparate results. A
larger corpus may also allow for the training and fine-tuning of models. This is a
line of work I have only partially explored in that chapter. A probing approach
where I trained lightweight layers on top of image representations yielded even
lower correlation coefficients and higher losses than the similarity-based approach
reported in the chapter.

When training and fine-tuning models for visuo-linguistic processes, a weak-
ness of the gaze models described in Chapter 4 was that in the absence of gaze
data for an image, these models could not generate a caption accurately. Hence,
instead of feeding gaze data into the models as input, in future work, it would be
advantageous to equip the models with the ability to predict the next gaze sequen-
tially along with the next word. Similarly, when modeling multilingual reading
behavior in Chapter 6, unidirectional predictive models could also be utilized to
compare against bidirectional models to investigate the cognitive plausibility of
these architectures.
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Part Two A limitation of this part is that, although I use data from dialogues,
I do not model interactive, collaborative reference using the full dialogues within
PhotoBook games. Given the novelty of the approaches I investigated, I made
certain assumptions and simplified the setups. Instead of using full dialogues, I
used automatically extracted referring utterances, which may have induced some
level of noise in chapters 9 and 10. Although a human-annotated portion of
PhotoBook exists, as used in Chapter 8, this subset does not cover the whole
dataset. Future work can collect complete human annotations with referent-
utterance pairs in visually grounded dialogue, ideally including other phenomena
such as dialogue acts. In this way, the interaction between language and vision
can be analyzed more deeply.

As I do not utilize full dialogues, in Chapter 9, I model the generation and
resolution of a single referring utterance. Similarly, in Chapter 10, I do not model
continual mutual adaptation during a dialogue. Instead, I focus on the speaker’s
adaptation to the listener in a single turn. Future work should ideally model the
whole dialogue building on a more interactive adaptation setup than the plug-
and-play approach, which still requires training simulators per listener type.

I train the models from scratch using the PhotoBook data, and do not use
state-of-the-art large pretrained vision-and-language models that are commonly
based on transformers nowadays. I opted for this setup since it is more aligned
with my research questions. This setup enables controlling the domain-specificity
of the linguistic knowledge of the models. I also acknowledge the imbalance in
the set sizes of the domains, as well as the possible lexical and visual overlaps
in the samples across domains. The overlaps may facilitate the adaptation of
certain sentences from one domain to another (asymmetry is not controlled in a
fine-grained manner). This is not uncommon in human communication, so ideal
models should be able to perform well even in such a scenario.

Future work should study a broader set of aspects of human communication
in setups that are more faithful to authentic dialogue, where an interlocutor can
be both a listener and a speaker. Every interlocutor should be able to continu-
ally observe the others, and adapt their language production and understanding
accordingly during the whole conversation incrementally, which is a line of work
I did not delve into due to time and compute constraints.

11.3 Final Remarks

While describing an image and participating in visually grounded dialogue, mul-
tiple stages of actions need to be performed accurately. Current state-of-the-art
models come short in some instances and sometimes behave unexpectedly, expos-
ing the inconsistencies and the chasm between human and machine intelligence
when processing multimodal inputs.

The aim of this thesis has been to explore various facets of visuo-linguistic
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processes in humans and to model them within the framework of deep learning.
The results have revealed the importance of modeling multimodality in deep
neural networks in light of findings from psycholinguistics and cognitive science.
I have found that models of image description generation and visually grounded
dialogue can benefit from a deeper understanding of human cognition.

Although current trends in AI seem to indicate that increasing the scale of
data and models would be the best way forward, I believe that investigating
the complex interaction between vision and language in humans can inform how
best we can integrate them into deep neural networks. To this end, I suggest
collecting more multimodal data from humans across languages. Although such
datasets may not amount to a scale that is enough to train or fine-tune deep
learning models, they can provide insights into the intricacies of human cognition
in multimodal settings, leading to the development of better models.

Regarding conversational settings, incorporating more aspects of the listener-
speaker dynamics in novel ways could prove beneficial. Contemporary conversa-
tional models appear to be generating quite good outputs already; yet, there is
still room for improvement. This is particularly the case for developing generative
models that interact with a diverse array of users.

I hope this thesis motivates further work in the direction of exploring compu-
tational approaches leveraging human signals, which could simultaneously benefit
the development of better AI models and provide insights into human cognition
itself.
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Appendix to Chapter 4

A.1 Data Preprocessing

This appendix provides details on the pipeline used to time-align audio and de-
scriptions. After processing a transcribed caption, we insert it as a grammar rule
into a Java Speech Grammar Format (JSGF) file to be fed into CMUSphinx.
As CMUSphinx supports English by default, we incorporated into the tool the
phonetic and language models and the dictionary for Dutch as provided by the
developers of CMUSphinx.1

Some words in our JSGF files were not in the VoxForge Dutch phonetic dic-
tionary of CMUSphinx, which lists lexical items and their corresponding pronun-
ciations in a format similar to ARPABET, adapted for Dutch.2 To overcome
this problem, we used eSpeak3 to obtain the International Phonetic Alphabet
(IPA) transcriptions of such out-of-vocabulary words. We obtained the set of
IPA symbols existing in the transcriptions of out-of-vocabulary words and the
set of ARPABET symbols in the dictionary. Then, a native speaker of Dutch,
who is also a linguist, manually produced a mapping from these IPA symbols to
ARPABET symbols of Dutch phonemes.4 Given this mapping, we automatically
converted out-of-vocabulary tokens into the required format and appended them
to the dictionary. A similar approach was also followed for numbers in numeric
notation and certain English words.

For some audio-caption pairs, the tool could not find an alignment matching
the grammar. We turned off the noise reduction and silence removal parameters,
and experimented with parameters related to beam decoding in CMUSphinx to

1https://sourceforge.net/projects/cmusphinx/files/Acoustic%20and%20Language%

20Models/Dutch/
2http://www.speech.cs.cmu.edu/cgi-bin/cmudict
3http://espeak.sourceforge.net/
4The mapping from IPA symbols to ARPABET symbols is provided in our GitHub reposi-

tory.
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dit is een treinstation waar ...

Figure A.1: Temporal alignment of words in a transcribed caption and the cor-
responding audio file.

allow for a maximal number of complete alignments. However, we had to exclude
some captions with unintelligible words, particularly at the beginning or in the
middle of the audio, since such an issue disrupts the alignment procedure.

Considering possible inter-participant differences in terms of pronunciation,
the quality of audio files, and possible noise in the background of recordings, we
assume that the time intervals of the words we obtained after these preprocessing
steps are approximate indicators. Although there might be a few cases where the
alignment is not quite accurate, we find this way of obtaining utterance times-
tamps reliable in general. An example audio-caption alignment is shown in Figure
A.1.

A.2 SSD: Further Details

Type Description SSD gr rg

R een dubbeldekker bus
1.41 2.82 0.00

G een dubbeldekker bus in een stad

R een dubbeldekkerbus in uh in engeland
2.64 2.72 2.55

G een dubbeldekker bus in een stad

R een rustige straat met een bus tegemoetkomend naar <unk> nummer 43
5.87 4.31 7.43

G een dubbeldekker bus die op een weg rijdt

R een bus met lijn 43 die aan het rijden is waarvan uh de bus uit twee <unk> bestaat
8.62 0.43 16.81

G een dubbeldekker bus

Table A.1: Examples of SSD scores for several descriptions generated (G) by
gaze-2seq compared to the reference description (R). gr and rg indicate the
direction of the calculation. Lower SSD scores are better.

SSD is the average of two terms, gr and rg, which quantify the overall distance
between a generated sentence (G) and a reference sentence (R). Eq. A.1 (identical
to Eq. 4.1 in Section 4.4) shows the calculation from G to R and Eq. A.2 from R
to G:

gr =
N∑
i=1

cos(Gi, Rs(i)) + pos(Gi, Rs(i)) [A.1]
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rg =
M∑
j=1

cos(Rj, Gs(j)) + pos(Rj, Gs(j)) [A.2]

N and M refer to the number of tokens in G and R, respectively. Cosine and
positional distances are computed between the i th element of G and another
token, which is the most semantically similar word to Gi in R. Rs(i) is the most
semantically similar word to Gi and Gs(j) is the most semantically similar word
to Rj:

Rs(i) = arg min
j

(cos(Gi, Rj)) [A.3]

Gs(j) = arg min
i

(cos(Rj, Gi)) [A.4]

Table A.1 shows some example descriptions generated by the gaze-2seq model
and corresponding references for a single image. We report the overall SSD scores
along with gr and rg values separately.

A.3 Data Split Statistics

Table A.2 lists the number of images belonging to each split after we divide
the DIDEC corpus (description-view partition) with respect to the images. In
addition, the total number of captions in each split is provided.

train val test total

Images 247 30 30 307
Captions 3658 444 446 4548

Table A.2: Number of images and captions.

The number of human descriptions per image varies in DIDEC, and as we also
removed some captions during preprocessing, images do not have an equal number
of captions. Therefore, we report the average number of captions per image for
each split, as well as their range, in Table A.3.

train val test overall

Avg 14.81 14.80 14.87 14.81
Min 11 12 13 11
Max 16 16 16 16

Table A.3: Number of captions per image.
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A.4 Reproducibility

We implemented and trained our models in Python version 3.65 and PyTorch
version 0.4.1.6 All models were run on a computer cluster with Debian Linux OS.
Each model used a single GPU GeForce 1080Ti, 11GB GDDR5X, with NVIDIA
driver version 418.56 and CUDA version 10.1.

Pretraining with the translated MS COCO dataset took approximately 5 days.
No-Gaze and Gaze-Agg took around 1.5 hours, and Gaze-Seq and Gaze-
2Seq models took 2 hours to fine-tune over the pretrained model.

Since the pretrained model and the fine-tuned No-Gaze, Gaze-Agg and
Gaze-Seq models use essentially the same architecture, they have an equal
number of parameters: 85 million. Gaze-2Seq has more parameters due to
the addition of the Gaze LSTM: 100 million.

In all the models, the biases in linear layers were set to 0, and the weights were
uniformly sampled from the range (-0.1, 0.1). Embedding weights were initialized
uniformly in the range (-0.1, 0.1). LSTM hidden states were initialized to 0.

Below, we give details regarding the manually-tuned hyperparameters.

A.4.1 Hyperparameters for Pretraining

We experimented with learning rate (0.001, 0.0001), dimensions for the word
embeddings and hidden representations (512, 1024), and batch size (64, 128). The
best pretrained model is selected based on its CIDEr score on the validation split
of our translated MS COCO dataset, with an early-stopping patience of 20 epochs.
We use a learning rate of 0.0001, optimizing the Cross-Entropy Loss with the
Adam optimizer. The batch size is 128. The image features have 2048 dimensions
and the hidden representations 1024. The generations for the validation set are
obtained through beam search with a beam width of 5.

A.4.2 Hyperparameters for Fine-tuning

We experimented with the same set of hyperparameters as in pretraining. The
details of the hyperparameters for the selected models were given in the main text.
We select the models separately based on CIDEr scores and SSD scores. We train
each model type with their selected configuration with 5 different random seeds
to set the random behavior of PyTorch and NumPy. We also turn off the cuDNN
benchmark and also set cuDNN to deterministic.

5https://www.python.org/downloads/release/python-360/
6https://pytorch.org/

https://www.python.org/downloads/release/python-360/
https://pytorch.org/
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Appendix to Chapter 5

B.1 Data Preprocessing

We use spaCy to extract the first noun of each description. The numbers of errors
in terms of lemmatization and POS-tagging are as follows when using the small,
medium, and large spaCy models for Dutch, respectively: 33, 32, 23 mistakes in
the full descriptions, and 3, 2, 2 for the first nouns. As the utterances sometimes
contain incomplete sentences and disfluencies, POS-tagging may not be reliable
in such cases, especially in the later parts of the utterances. However, the large
model was reliable both for full descriptions and the first nouns. Hence, we
chose to use the data processed by the large model. The model was not able
to tag any nouns in 7 descriptions; for those, we use the <unk> token as a
placeholder starting point. We also skipped nouns such as ‘photo’ (‘a photo of a
car’), ‘number’ (as in ‘a number of cats’), ‘couple’ (as in a couple of kids).

B.2 Distribution of Speech Onsets

The histograms of the mean speech onsets and their standard deviations reveal
non-normal distributions, as illustrated in Figure B.1.

B.3 Participant-Based Correlation Analysis

To have a better understanding of speaker-specific dynamics, in addition to cal-
culating statistics per image, we also look into per-participant statistics. Each
participant describes around 100 images, each with a possibly different speech
onset. We calculate the correlation between a participant’s speech onsets and the
BLEU-2-based linguistic variation score of the corresponding images. In 24 out of
45 participants, we find significant moderate negative correlations. All 45 partic-
ipants have negative correlation coefficients, indicating that all participants tend
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Figure B.1: Distributions of onset means and standard deviations (SD) for the
images in the whole dataset.

to start describing an image earlier if that image elicits less linguistic variation
across speakers. This suggests that although there can be speaker-specific and
contextual factors, the features of an image can also have an overarching effect
on the behavioral responses across speakers, and may allow for the prediction of
such responses.

B.4 BERTje-based Variation in Descriptions

We inspect linguistic variation by comparing the representations of the descrip-
tions extracted using a Dutch BERT model (BERTje; de Vries et al., 2019). To
calculate variation based on BERTje, we utilize the last hidden state correspond-
ing to the [CLS] token for each description as the representation. Then, for each
image, we calculate the pairwise cosine similarities between these representations.
The average of these similarities is assigned as the variation found in the descrip-
tions of an image. This method yields scores in the narrow range of 0.69− 0.86,
which indicates semantically quite similar descriptions. Since most descriptions
have semantics suitable for the corresponding image, the variation in the seman-
tic space is not substantial. Between BERTje-based variation and speech onsets,
we reveal a slight negative correlation (Spearman’s ρ = −0.212, p < 0.01). The
standard deviation of speech onsets is even less correlated with BERTje-based
variation (Spearman’s ρ = −0.151, p < 0.01).

B.5 More Analyses on Linguistic Variation Met-

rics

We also combine BERTje- and BLEU-2-based variation scores by taking their
mean. This metric yields correlations comparable to the ones achieved by the
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BLEU-2 version, with a moderate increase in the correlation to the starting point
variation and mean onset, yet a decrease in the correlation to gaze variation. For
the sake of simplicity, we opt for the BLEU-2 version.

We also compare the BLEU-2-based metric against human evaluations for
a different dataset provided by Jas and Parikh (2015), which achieves a signif-
icant correlation (Spearman’s ρ = −0.40, p < .001), albeit to a moderate ex-
tent. Jas and Parikh (2015) propose a metric that achieves a stronger correlation
(ρ = 0.72). Note that the provided human annotations were obtained through 3
annotators evaluating sentence similarities without looking at the images (com-
paring only 2 sentences at a time). In our dataset, using our metric, we compare
1 description against 14. As a result, the procedure for human annotations may
not be well-aligned with our method (i.e., our metric compares 1 sentence against
4 for their dataset, as each image has 5 descriptions).

B.6 Correlation between Human Signals of Vari-

ation

We illustrate the correlation between the mean onset and the BLEU-2 scores of
full descriptions in Figure B.2.

Figure B.2: Correlation between mean onset and BLEU-2.
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Appendix to Chapter 6

C.1 Data Preprocessing

We use the XLM-RoBERTa tokenizer containing 250002 tokens. When converting
the words into IDs, the tokenizer maintains the cases of the words, which could
provide crucial information regarding human reading behavior. However, the way
the tokens were presented to the readers differs from how the tokenizer would
partition a given sentence. For instance, in the data, we see full stop appended
to the last word or ‘(1917-1919)’ as a single entry. For such cases, the tokenizer
yields multiple wordpieces per token. We assign the eye-tracking feature values
of the full entry to each of its wordpieces, and during training and validation, we
include them in the loss separately. For the test set predictions, we calculate the
average of the predictions for the wordpieces and assign it as a single prediction
for the whole entry.

We combine the token entries with the same sentence ID into a single sentence.
Since the sentences do not include start- and end-of-sentence tokens, we also add
such special tokens where necessary. In addition, we pad or truncate the input
to maintain a total wordpiece length of 200. For all special tokens, we assign ‘-1’
as the dummy eye-tracking feature value.

C.2 Reproducibility

We use AdapterHub version 2.2.0 based on HuggingFace Transformers version
4.11.3.1 We implement and train our models in Python version 3.7.11 and Py-
Torch version 1.10.1.2 All models were run on a computer cluster running Debian
Linux OS, with 4 NVIDIA GeForce GTX 1080 Ti GPUs with driver version
470.103.01 and CUDA version 11.4. Below, we detail the hyperparameters.

1https://huggingface.co/docs/transformers/
2https://pytorch.org/
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C.2.1 Hyperparameters

For each model, we have performed hyperparameter search for learning rate
(0.001, 0.0001, 0.00001, 0.00002) and batch size (4, 8, 16, 32). All the models
were trained up to 50 epochs. 3 We saved the best model based on the validation
MAE per epoch and ran random initializations of the best model with 4 different
seeds. The adapters were optimized using the AdamW optimizer (Loshchilov and
Hutter, 2019) with respect to MSELoss following a linear learning rate schedule.
In Table C.1, we provide the hyperparameters of our best models for Subtask 1
and Subtask 2.

Model LR Batch size Seed

EN stack 0.0001 4 42
ZH stack 0.001 4 8
DE stack 0.001 8 42
HI stack 0.001 4 42
RU stack 0.001 4 8
NL 1 new 0.001 4 42

Table C.1: Hyperparameters for our best submission for Subtask 1 (Language-
specific-stack). The DE stack model is also used to obtain our best results for
Subtask 2. LR: Learning rate.

C.3 Additional Results

RoBERTa + NER Our first submission to Subtask 1 was built on RoBERTa-
base (Liu et al., 2019),4 with a Named Entity Recognition (NER) adapter trained
on the CoNLL2003 dataset5 (Poth et al., 2021; Tjong Kim Sang and De Meulder,
2003). We used the NER adapter as we noticed a lot of named entities in the
data. In this setup, we remove the NER token classification head and create
a token-level regression head. The head is trained from scratch, and the NER
adapter is fine-tuned. The results revealed that this setup already improves over
the mean baseline across all features (MAE = 4.0317, our first submission). Al-
though RoBERTa is monolingual (English) and its vocabulary is much smaller
than XLM-R’s vocabulary (50265, also its tokenizer converts non-Latin scripts
into unintelligible wordpieces), this model seemed to work quite well. However,

3It is possible that a higher epoch cap could produce better results; however, in most cases,
we observed declining performance as the number of epochs approached 50.

4https://huggingface.co/docs/transformers/model_doc/roberta
5https://adapterhub.ml/adapters/AdapterHub/roberta-base-pf-conll2003/

https://huggingface.co/docs/transformers/model_doc/roberta
https://adapterhub.ml/adapters/AdapterHub/roberta-base-pf-conll2003/
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we wanted to make sure that the wordpieces work properly and that the under-
lying frozen PLM was exposed to multilingual data, which is why we switched to
XLM-RoBERTa.

Language breakdown The details of the language-specific-stack models for
Subtask 1 are provided in Table C.2. The majority of these models outperform
the corresponding mean baselines computed with respect to the language-specific
means (except for the Dutch setup, which does not include a pretrained language-
specific adapter).

Model setup FFDAvg FFDStd TRTAvg TRTStd MAE Baseline MAE

EN stack 3.2360 1.9582 6.8383 4.9501 4.2456
EN large stack 3.0390 1.9921 6.1242 4.8968 4.0130

5.2736

ZH stack 3.1586 3.3608 6.8213 6.6955 5.0091
ZH large stack 3.1571 3.4448 7.3876 6.5892 5.1447

5.4616

DE stack 0.4304 0.4346 3.7796 2.8918 1.8841 2.8679

HI stack 2.5493 2.7178 5.7471 5.5693 4.1459 4.5668

RU stack 2.6062 2.6443 8.3637 5.5609 4.7938 4.9007

NL 1 new 1.8772 1.5720 3.3467 2.9443 2.4351
NL 2 new stack 1.8904 1.5911 3.2836 3.0673 2.4581

2.4176

Table C.2: Test set results for Subtask 1 for the XLM-R language-specific models
with stacking, broken down into languages. Baseline MAE is calculated with
respect to the means of the language-specific data. EN: English, ZH: Chinese,
DE: German, HI: Hindi, RU: Russian, NL: Dutch.

Dutch-specific models For Dutch, we only employed a single adapter as we
did not have a Dutch-specific adapter pretrained on Wikipedia articles. As a
result, we also tried stacking 2 new adapters. This setup yielded slightly worse
scores than the former setup. Therefore, we opted to keep the single-adapter
model in our submissions.

Large models We also use the large version of XLM-RoBERTa.6 At the time
of the project, only English and Chinese Wikipedia MLM adapters were available
on AdapterHub (Pfeiffer et al., 2020b, 2021).7 For English, the utility of the
large model was not substantially high, and for Chinese, the large model caused
a decrease in accuracy. These findings suggest that the adapters are able to

6https://huggingface.co/xlm-roberta-large
7EN: https://adapterhub.ml/adapters/ukp/xlm-roberta-large-en-wiki_pfeiffer/,

ZH: https://adapterhub.ml/adapters/ukp/xlm-roberta-large-zh-wiki_pfeiffer/

https://huggingface.co/xlm-roberta-large
https://adapterhub.ml/adapters/ukp/xlm-roberta-large-en-wiki_pfeiffer/
https://adapterhub.ml/adapters/ukp/xlm-roberta-large-zh-wiki_pfeiffer/
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capture the patterns in eye-tracking features, without the need to resort to larger
language models. However, more hyperparameter tuning could be beneficial to
explore the capacity of the large models.

C.4 R2 Scores

In Table C.3, we provide the R2 (coefficient of determination) scores as reported
by the shared task system. The top half lists the results for Subtask 1, and the
bottom half for Subtask 2.

Model FFDAvg FFDStd TRTAvg TRTStd R2

RoBERTa + NER 0.6963 0.3437 0.3293 0.2677 0.4093
Language-specific-stack 0.7581 0.3689 0.4868 0.3517 0.4914
First wordpiece-only 0.7506 0.3564 0.4836 0.3362 0.4817

Translate train -13.5708 -3.1490 -6.1914 -5.4032 -7.0786
Translate test - EN (without Provo) -1.0249 -2.3468 -0.8361 -0.7824 -1.2475
Translate test - DE -1.2176 -0.1296 -0.4203 -0.4929 -0.5651

Table C.3: R2 scores for the submissions to Subtask 1 and 2.
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D.1 Reference Chain Extraction

We extract reference chains of single referring utterances from the PhotoBook
dataset (Haber et al., 2019). Given a dialogue and a target image, a refer-
ence chain is comprised of utterances—maximum one per round—that refer to
the target image in that dialogue. Due to the size of the PhotoBook dataset,
we perform this procedure automatically, with a three-step heuristic method
described in the following sections. The chain extraction code is available at
https://dmg-photobook.github.io.

Extracting dialogue segments The goal of segment extraction is to identify
all utterances that may include a description of a given target image. To identify
relevant segments, we leverage the participants’ recorded actions, i.e., selecting
an image as common or different (more details on the available metadata in
Haber et al., 2019). When an image is selected by a participant as common
in a dialogue round, we extract all utterances up to that point in the round as
candidate referring expressions. We collect referring expressions for a given image
in a dialogue starting from the round when both speakers observe it. The speakers
are then more likely to have established a conceptual pact (see Section 9.1).

Scoring referring utterances In this second step, we assign a score to each
utterance in the extracted segments, indicating how likely it is for that utterance
to be a description of a given image. To produce these scores, we use as reference
the MS COCO image captioning dataset (Lin et al., 2014) and the Visual Genome
dataset of scene graphs (Krishna et al., 2017). All 360 pictures in PhotoBook are
taken from MS COCO, so we have access to at least 5 captions for each target
image. Instead, the Visual Genome dataset provides detailed scene graphs for
37% of the PhotoBook images.
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Chains Utterances Unique utterances Target images Image domains Chain length Utterance length
Train 11540 28933 27288 360 30 2.51(0.85) 8.71(4.66)
Validation 2503 6252 6009 360 30 2.50 (0.85) 8.82 (4.67)
Test 2482 6155 5876 360 30 2.48 (0.86) 8.77(4.68)
Extracted-20 327 824 807 199 24 2.52 (0.85) 9.50 (4.75)
Gold-20 327 756 740 199 24 2.31 (0.94) 9.47 (4.77)

Table D.1: Descriptive statistics of all portions of the extracted dataset of ref-
erence utterance chains. Gold-20 is a set of 20 hand-annotated PhotoBook dia-
logues, with referent labels linking utterances to the target image they describe
(see Section 9.3), whereas Extracted-20 are the reference chains extracted from
the same 20 dialogues, as if they were not annotated. Duplicate utterances are due
to chance: PhotoBook participants have uttered them in different dialogues, po-
tentially to describe the same target image. Image domains refers to the number
of MS COCO image categories covered by a dataset portion; the 360 PhotoBook
images come from a total of 30 domains.

To measure the similarity of a candidate utterance to a reference MS COCO
caption, we use the BERTScore (Zhang et al., 2020b). We experiment with
BERTScore Precision, Recall, F1, and select BERTScore F1. As, in our dialogue
setting, utterances often contain lexical material that is not part of a referring
expression, we filter out stopwords from both the captions and the utterances.
We use spaCy’s stop-word list for English, from which we remove numerals and
prepositions that encode spatial information.1 Furthermore, to capture dyad-
specific variation in referring language, we add the utterance with the highest
BERTScore in a round to the reference set, and use it as an additional caption
for the following rounds.

To take into account visual attributes and relationships, for each image we
collect attribute tokens TA(i) (e.g. leafy, tree from leafy(tree)) and relation-
ship tokens TR(i) (e.g. man, playing, frisbee from playing(man, frisbee)) from
the Visual Genome dataset of scene graphs. We only consider the intersection
TV G(i) = TA(i) ∩ TR(i) between the sets of attribute and relationship tokens to
retain only the most relevant tokens. The set difference TV G(i∗) \

⋃12
i=1,i ̸=i∗ be-

tween the Visual Genome tokens of the target image and the tokens of the 11
distractors is then used as a reference set. To score an utterance, we compute
its METEOR score (Banerjee and Lavie, 2005) with respect to this reference set.
For all images annotated in the Visual Genome dataset, the final utterance score
is the sum of BERTScore and METEOR.2

1The English stop-word list is available at https://github.com/explosion/spaCy/blob/
master/spacy/lang/en/stop_words.py and our edits at https://dmg-photobook.github.

io.
2We implement BERTScore and use NLTK’s code for METEOR (https://www.nltk.org/

api/nltk.translate.html). We set METEOR’s alignment penalty to 0 as our references are
unordered collections of tokens.

https://github.com/explosion/spaCy/blob/master/spacy/lang/en/stop_words.py
https://github.com/explosion/spaCy/blob/master/spacy/lang/en/stop_words.py
https://dmg-photobook.github.io
https://dmg-photobook.github.io
https://www.nltk.org/api/nltk.translate.html
https://www.nltk.org/api/nltk.translate.html
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Selecting referring utterances The last step, utterance selection, produces
reference chains consisting of single utterances—maximum one per round. As
PhotoBook dialogues are made up of five rounds, reference chains will have a
minimum length of 1 and a maximum possible length of 5. First, given an ex-
tracted dialogue segment, we discard all utterances produced by speakers who do
not have that image in their visual context. Then, for each target image in the
corresponding dialogue round, we collect a ranked candidate list of n top-scoring
utterances. As an utterance can be selected as a candidate for multiple images in
the same round, we discard a candidate (utterance, image) pair if its score is lower
than that of any other (utterance’, image) pair in the same round. Finally, we
pick the utterance with the highest score among the remaining candidates. For
some images, all of the n top-scoring utterances are assigned to other images, and
with higher scores. This causes a slight decrease in the number of utterances in
the extracted dataset. We set n = 4 to minimize the number of discarded utter-
ances. Table D.1 reports relevant statistics for the dataset splits of our extracted
reference utterance chains.

D.2 Data Processing for Models

We further process the dataset of automatically extracted utterance chains. Every
utterance is uniquely identified by the game ID, round number, message number,
and the ID of the image that they refer to. From these utterances and their
contexts, we build the data we feed into our models.

While providing the 6 candidate images to the reference resolution models,
we also keep track of the respective histories of candidates (the last utterance up
to that time in the game).

As the distribution of the 6 images and the position of the target are not
uniform for each target-context pair, this may constitute a bias in the reference
resolution model. Therefore, to overcome this, we shuffle the images in the context
for all splits at the beginning of each epoch. In the generation models, this
shuffling is done once at the beginning of training for all splits.

D.2.1 BERT Representations

Since utilizing pretrained BERT models and representations has proven to be
beneficial to many NLP tasks (Devlin et al., 2019), we also decided to use BERT
to encode the linguistic input in the reference resolution models. For this pur-
pose, we use the BERT-base-uncased model and the tokenizer as provided in the
HuggingFace’s Transformers library (Wolf et al., 2020). The utterances are first
encoded into the correct format for BERT models. Afterwards, they go through
the BERT model to produce the hidden states that correspond to the represen-
tations of each of the input wordpieces. Finally, all utterances are fed into the
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reference resolution model in the form of a set of BERT representations.
We also experimented with using BERT-large-uncased model as well as ex-

tracting hidden states from multiple layers and aggregating them. Neither option
provided further improvements on the results we obtained with the final hidden
states from the BERT-base-uncased model. Hence, we opted to use the base
model’s outputs, where each hidden state is of size 768.

D.2.2 Embeddings from Scratch

For the generation models where we do not use BERT representations, we create
a vocabulary of tokens from the training set with the help of TweetTokenizer
from the NLTK library.3 We then map the words that occurred only once in the
training split to ‘<unk>’. This results in a vocabulary of size 2816 (including
<pad>, <unk>, <sos>, and <eos>). In addition to these special tokens, we also
add <nohs> to point out that there was no history (no previous utterance) for
the target image at that point in the game. This token is utilized in the models
that base their generation on the previous utterance. An input of <nohs> means
that what the generation model is expected to produce is the very first utterance
for that image in the game.

The tokens in all 3 splits are converted to indices using this final vocabulary.
For the copy model, we need to keep track of what the actual form of an <unk>
token is. For this purpose, we build a full vocabulary from the whole dataset
to have access to every word in all splits in their actual surface forms. This
vocabulary is of size 5793 (including all 5 special tokens mentioned above).

Since we do not want the generation model to output the <nohs> token,
the search space of the decoder does not include this token. The Copy model
needs to keep track of unknown tokens in the previous utterance and map the
previous utterance using an extended vocabulary so that the decoder would be
able to ‘copy’ from the input itself, rather than only generating words from the
reduced vocabulary. Mapped expected next utterance is used in calculating the
loss. Actual inputs to the encoder and the decoder still contain unknown words,
as we do not maintain special embeddings for the surface forms of each of the
unknown tokens.

D.3 Evaluation Metrics

For the evaluation of the reference resolution models, we use accuracy and mean
reciprocal rank (MRR) implemented by us. Accuracy is a stricter measure as it
is either 0 or 1 for a given instance.

For the generation models, we use the compute metrics function provided in
the library at https://github.com/Maluuba/nlg-eval to obtain corpus-level

3https://www.nltk.org/api/nltk.tokenize.html

https://github.com/Maluuba/nlg-eval
https://www.nltk.org/api/nltk.tokenize.html


D.4. Reproducibility 149

BLEU, ROUGE, and CIDEr.
We also report BERTScore (Zhang et al., 2020b) for the generation mod-

els. To obtain this score, we use the library provided by the authors at https:

//github.com/Tiiiger/bert_score and import the score function in our eval-
uation scripts. We use the BERT-uncased-model, we do not apply rescaling to
baseline or importance weighting. The hash code for BERTScore that we used in
evaluation is ‘bert-base-uncased L9 no-idf version=0.3.2(hug trans=2.6.0)’. We
obtain precision, recall and F1 variants of BERTScore.

In the generation models, we apply teacher forcing during training; therefore,
a token embedding at timestep t is the embedding of the expected token from the
ground-truth utterance. During validation, the models use the embedding of the
word they generated in the previous timestep.

D.4 Reproducibility

The models are implemented in Python 3.7.54 and PyTorch 1.4.15. In training
our models, we use the Adam optimizer (Kingma and Ba, 2015) to minimize the
Cross-Entropy Loss with sum reduction.6

We experimented with learning rate (0.001, 0.0001, 0.00001), dimensions for
the embeddings (512, 1024), hidden and attention dimensions (512, 1024), batch
size (16, 32) and dropout probability (0.0, 0.3, 0.5). We selected the best config-
urations per model type via manual tuning.

We train each model type with their selected configuration with 5 different
random seeds, setting the random behavior of PyTorch and NumPy. We also
turn off the cuDNN benchmark and also set cuDNN to deterministic.

In all the models, the biases in linear layers were set to 0 and the weights
were uniformly sampled from the range (-0.1, 0.1). In the models that learn
embeddings from scratch, embedding weights were initialized uniformly in the
range (-0.1, 0.1). The hidden and cell states of the LSTMs were initialized with
task-related input at the first timestep.

Computing infrastructure The models were trained and evaluated on a com-
puter cluster with Debian Linux OS. No parallelization was implemented; each
model used a single GPU GeForce 1080Ti, 11GB GDDR5X, with NVIDIA driver
version 418.56 and CUDA version 10.1.

Average runtimes Please see Tables D.2 and D.3. These durations indicate
the total approximate runtime of training. The best models are reached in a

4https://www.python.org/downloads/release/python-375/
5https://pytorch.org/
6Copy model, in fact, uses the Negative Log-Likelihood Loss that receives log-softmax prob-

abilities. This is equivalent to Cross-Entropy Loss with logits.

https://github.com/Tiiiger/bert_score
https://github.com/Tiiiger/bert_score
https://www.python.org/downloads/release/python-375/
https://pytorch.org/
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Model Runtime

Baseline 1 hour

Proposed 5.5 hours

Ablation 2.8 hours

Table D.2: Resolution: approximate training runtimes.

Model Runtime

Ref 6.5 hours

ReRef 7.5 hours

Copy 14 hours

Table D.3: Generation: approximate training runtimes.

shorter amount of time.

Number of parameters in each model Please see Tables D.4 and D.5.

Model Parameters

Baseline 182K

Proposed 8.9M

Ablation 8.5M

Table D.4: Resolution models: number of parameters.

Model Parameters

Ref 16.1M

ReRef 24.9M

Copy 24.0M

Table D.5: Generation models: number of parameters.

D.4.1 Configurations of the Reference Resolution Models

We select the reference resolution models based on their performance in accurately
predicting the correct target among 6 images. We also report MRR, as it also
provides further information in terms of the ranking of the correct image among
the distractors.

After hyperparameter search, we decided on a batch size of 32, a learning
rate of 0.0001, attention and hidden dimensions both set to 512, and a dropout
probability of 0.5 for the proposed reference resolution model. We trained the
ablation model with the same settings.



D.5. Results on the Validation Set 151

D.4.2 Configurations of the Generation Models

Best-performing generation models for each model type were selected based on
their performance with respect to the F1 component of BERTScore. We also
performed hyperparameter search for the beam width used in decoding, after
which we decided to use a beam width of 3. The best-performing model for each
model type outperformed the other models in its own category over all metrics.

As revealed by hyperparameter search, all reported generation models use 1024
dimensions for embeddings and 512 dimensions for hidden and attention layers.
They all use a learning rate of 0.0001. Ref and Copy models use a batch size of
32 and the ReRef model, 16. Ref and ReRef models use a dropout probability of
0.3, whereas the Copy model yielded better results without dropout.

D.5 Results on the Validation Set

For each model we report in the main text, we also provide the validation set
performances in Table D.6 for the generation and Table D.7 for the resolution
models.

Model BLEU-2 ROUGE CIDEr BERT-F1 ACC MRR

Ref 22.40 (1.22) 31.29 (1.56) 41.26 (3.18) 55.24 (1.38) 59.69 (3.48) 74.41 (2.21)

ReRef 45.41 (0.89) 51.14 (0.42) 127.08 (4.17) 67.94 (0.23) 91.70 (1.09) 95.32 (0.70)

Copy 36.44 (0.31) 43.00 (0.35) 104.27 (1.16) 62.93 (0.21) 83.28 (0.77) 90.07 (0.49)

Table D.6: Average metric scores of the 3 generation models on the validation set.
We report the average of 5 runs and standard deviations in parentheses. ACC
is the reference resolution accuracy of the sentences generated by the generation
models, and MRR is their mean reciprocal rank as obtained through our best
reference resolution model.

Subset ACC MRR Instances
First 81.85 (0.45) 88.88 (0.29) 2503
Later 88.51 (0.19) 93.33 (0.12) 3749
Overall 85.85 (0.10) 91.55 (0.07) 6252

Table D.7: Validation set scores of the reference resolution model: averages of 5
runs with the best configuration, with the standard deviations in parentheses.

D.6 Linguistic Measures

The linguistic measures used were chosen to quantitatively explore whether arti-
facts of the compression, reuse, and grounding present in the human utterances,
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as well as other human-like linguistic patterns, can be seen in the generated utter-
ances. We compare the performance of the generation models with regards to the
similarity of their generated sentences to human traits, namely a) whether there
is a change in token use between the first and last mention (Table D.8) and b)
whether this relative distance or the values in the first mention differ significantly
between human and model references (Table D.9).

In the case of givenness markers, we measure this as the proportion of tokens
that correspond to definite (the), indefinite (some, a, an), and other markers of
the existence of shared context (again, before, one, same, also) which occur in the
utterance. In the case of compression, we measure the lengths of the utterances in
terms of tokens and content tokens, i.e., tokens that are not in the stopword list
from NLTK version 3.4.5 (Loper and Bird, 2002). We also measure the proportion
of content words in an utterance that correspond to nouns, verbs, and adjectives.
Finally, for entrainment, examining only later utterances (not the first referent
to an image), we measure firstly what proportion of the utterance in question
consists of reused unigrams and bigrams from the previous utterance. We also
measure within the reused tokens, the proportion of which is made up of nouns,
adjectives, and verbs, to discover their relative importance in terms of reuse.
These measures can all be found in Tables D.8 and D.9. For these analyses, we
compared the generated output from the best seed for each model variant. These
were seeds 1, 1, and 24 for the Ref, Copy, and ReRef models, respectively. We
report both effect size (d) as measured by Cohen’s d, and p-value (*p < 0.05,
**p < 0.005, ***p < 0.001) for each comparison. We use the SciPy stats package
(SciPy version 1.3.3) ttest ind to perform the independent t-test, and our own
implementation to calculate Cohen’s d effect size.

Additionally, to check general fluency, we evaluate the coherence and vocabu-
lary use of the models in comparison to humans. We measure Type Token Ratio
(TTR), the proportion of unique tokens in an utterance. This can capture un-
grammatical repetition patterns in the generation, and, if following human trends,
should increase in subsequent mentions. Although both models have significantly
lower TTR than the human data, ReRef, unlike Copy, shows a significant in-
crease in subsequent mentions, with much higher TTR than Copy, even though
both models show similar average utterance length for later utterances (ReRef:
7.22, Copy: 7.79). In terms of vocabulary, for the generated outputs, ReRef has
a much smaller (first: 492, later: 705) vocabulary than Copy (first: 1098, later:
1469), although these are both much lower than Human vocabulary size (first:
1836, later: 1727) and show an increase rather than a decrease in later mentions.

Overall, Tables D.8 and D.9 show that both of our context-aware speaker
models, ReRef and Copy, are able to generate referring utterances, which make
use of the dialogue history in a manner akin to humans with respect to multiple
aspects of language style.

Comparing the context-aware models, ReRef shows a stronger degree of short-
ening than Copy, with very similar levels of bigram reuse to humans while Copy
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Human ReRef Copy Ref
first later d first later d first later d first later d

Givenness
givenness 0.05 0.08 -0.36* 0.02 0.10 -0.89* 0.04 0.09 -0.53* 0.05 0.05 -0.03
definite 0.03 0.05 -0.27* 0.01 0.08 -0.85* 0.03 0.06 -0.48* 0.04 0.05 -0.04
seen 0.01 0.03 -0.26* 0.00 0.02 -0.43* 0.01 0.03 -0.29* 0.00 0.00 0.03
indefinite 0.07 0.02 0.77* 0.15 0.01 1.88* 0.10 0.01 1.14* 0.15 0.15 0.03
Compression
length c 11.29 8.28 0.63* 11.32 7.22 1.15* 10.77 7.79 0.65* 13.66 13.59 0.00
prop content 0.53 0.57 -0.20* 0.41 0.54 -0.70* 0.50 0.58 -0.39* 0.40 0.39 0.01
prop noun 0.37 0.41 -0.29* 0.30 0.44 -0.86* 0.37 0.43 -0.37* 0.28 0.28 -0.01
prop adj 0.09 0.10 -0.02 0.06 0.07 -0.14* 0.08 0.09 -0.10* 0.08 0.08 0.04
prop verb 0.13 0.11 0.12* 0.19 0.11 0.76* 0.13 0.12 0.12* 0.17 0.17 0.01

Table D.8: Trends in Subsequent mentions across humans, ReRef, Copy and Ref.
The presence of * indicates significant differences between first and later means,
with p < 0.001. d shows effect size measured by Cohen’s d.

Human ReRef Copy Ref
mean mean d p mean d p mean d p

Lexical Entrainment:
reuse prop within mention:
–reuse c 0.562 0.660 -0.334 *** 0.612 -0.168 *** 0.320 0.868 ***
–reuse bigrams c 0.325 0.304 0.050 * 0.283 0.103 *** 0.091 0.682 ***
reuse prop within reused:
–noun 0.701 0.746 -0.161 *** 0.716 -0.050 * 0.740 -0.124 ***
–adj 0.158 0.146 0.054 * 0.146 0.057 * 0.180 -0.079 **
–verb 0.095 0.066 0.165 *** 0.097 -0.011 0.653 0.063 0.172 ***
–NN bigrams 0.064 0.051 0.069 ** 0.056 0.043 0.064 0.013 0.328 ***

Table D.9: Human comparison with ReRef, Copy and Ref for givenness markers
and Compression. The presence of * indicates a significant difference between the
human mean and that of the model. (***: p < 0.001, **: p < 0.005, *: p <
0.01)
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shows more similar traits to humans in terms of the proportion of markers and
POS tags (as revealed by smaller effect sizes). In general, both models are success-
ful at generating human-like utterances as we measure them; however, it seems
that while Copy does generate utterances with the most similar proportional sim-
ilarities to humans and exhibits similar proportions of unigram reuse, it does so at
the expense of coherence. In terms of content bigram reuse, Copy seems to be less
selective in what it repeats from previous referring utterances than ReRef, most
likely due to the increased overall level of repetition in the generation. ReRef, on
the other hand, shows amplified versions of the human trends, yet very similar
content bigram and noun-noun bigram reuse proportion to humans, while main-
taining low levels of same content word repetition as well as a high TTR, which
indicates that coherence is also maintained.
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Appendix to Chapter 10

E.1 Training Details

We provide the details of the setups of the generative language model in Section
E.1.1, the discriminators in Section E.1.2, the simulators in Section E.1.3, and the
adaptation mechanism in Section E.1.4. We use Python version 3.9.0 and PyTorch
version 1.11.0 in the development and testing of all our models. In Table E.1, we
report the hyperparameters used in the training of our final models.

LM Disc Simulator
Learning rate 0.0001 0.0001 0.0004
Batch size 3 64 32
Dropout 0.3 0.2 0
Attention dim 512 512 1024
Embed dim 1024 768 1024
Hidden dim 512 512 1024
Patience 30 30 5

Table E.1: Hyperparameters used for training the generative language model
(LM), discriminator (Disc), and simulator models.

E.1.1 Generative Language Model

In addition to the main hyperparameters listed in Table E.1, the language model
requires several additional parameters. In nucleus sampling, we set the p value
for top-p to 0.9 and sample from a vocabulary that consists of the words in the
training splits of all 5 domains. The maximum length of the generated utterances
is set to 30. The model is initialized and trained with 4 different seeds, which
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yield similar performances. We use an early stopping patience of 30 epochs based
on the validation set scores.1

Regarding the architectural details of the visually conditioned language model,
in the visual encoder, we feed both the standardized target image vector and
the concatenation of the six images in the full visual context into a linear layer
followed by the ReLU non-linearity. We then concatenate the ensuing repre-
sentations of the target image with the visual context and once more apply a
linear layer followed by a ReLU non-linearity to obtain the final visual context,
v. This visual context is used to initialize a bidirectional LSTM encoder that
takes as input the previous utterance referring to the target image in the current
dialogue, if exists (see footnote 6 in Section 10.6.1), otherwise a special token
indicating the absence of such an utterance. The final forward and backward hid-
den states of this encoder are concatenated, go through a linear layer and tanh
non-linearity. The output is then set as the initial hidden state h0 of the LSTM
decoder (Hochreiter and Schmidhuber, 1997).

E.1.2 Discriminators

In these models instantiating the listeners, the word embeddings go through a
dropout layer and a linear layer followed by the Leaky-ReLU non-linearity, after
which standardization is applied. The visual context is processed in the same way
as in the generative language model. Each word representation is concatenated
with the representation of the visual context. The resulting vectors go through
a linear layer and ReLU. Finally, we apply attention over these vectors to obtain
the attention-weighted multimodal context vector. It is this context vector that
is compared to the representations of candidate images via dot product.

We use the same set of hyperparameters for each domain as shown in Table
E.1. The domain-specific listener models were selected based on their accuracy
on the in-domain validation set. We report accuracy and MRR on the in- and
out-of-domain test sets in Table E.3.

OOD word masking Our listeners are initialized with the same vocabulary
comprising all the words in the training data. However, the domain-specific lis-
teners only learn the words that exist in their own training sets. Therefore, if
the speaker generates an ood word for a domain-specific listener, in order not
to further confound the effects of adaptation on the listeners, we mask the word
with the <unk> vector. This vector is the same across all domains.

1We use the ‘nlg-eval’ library at https://github.com/Maluuba/nlg-eval to obtain scores
for the common NLG metrics and also use BERTScore version 0.3.11 provided at https:

//github.com/Tiiiger/bert_score.

https://github.com/Maluuba/nlg-eval
https://github.com/Tiiiger/bert_score
https://github.com/Tiiiger/bert_score
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E.1.3 Simulator

We select the simulator models based on their accuracy in predicting the behavior
of the listener models on the validation set. The simulator models are trained
using the AdamW optimizer (Loshchilov and Hutter, 2019) with a weight decay
of 0.0001, and a plateau learning scheduler with a patience of 2, a factor of 0.5,
a threshold of 0.5.

E.1.4 Adaptation Mechanism

We optimize the values of the number of adaptation steps and the learning rate
for the adaptation mechanism. We perform 2 hyperparameter sweeps using the
Weight & Biases (WandB) platform (Biewald, 2020), evaluating a range of values.
We find a positive correlation between both hyperparameters and adaptation
accuracy, with Pearson’s correlation coefficients of 0.71 for the learning rate, and
0.66 for the number of steps.

E.2 Additional Results

Here, we provide additional results yielded by our models for the speaker in
Section E.2.1, the listener in Section E.2.2, the simulator in Section E.2.3 and for
the adaptation mechanism in Section E.2.4.

E.2.1 Speaker Results

We provide the detailed results of the speaker model on the test set in Table E.2
with the averages and standard deviations over 4 runs.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge
40.06± 1.60 23.81± 1.51 14.09± 1.20 8.46± 0.89 32.92± 0.93
CIDEr BertScore - Recall BertScore-Recall - F1 BertScore - Precision

44.07± 1.68 58.91± 0.19 57.7± 0.12 57.9± 0.16

Table E.2: Speaker results on the test set as measured by common NLG evaluation
metrics.

E.2.2 Listener Results

Table E.3 reports the domain-specific listener performances on ind and ood gold
data. We observe that the domain-specific listeners perform well in in-domain
settings and perform close to the random baseline in ood settings.

Table E.4 presents the domain-specific listener accuracies on speaker-generated
input. Especially in ind settings, we see lower scores as compared to the use of
the gold data, presumably because the listener models were trained on gold data.
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Domain Epoch
ind ood

Accuracy MRR Accuracy MRR
Appliances 23 84.12± 0.33 90.27± 0.10 20.28± 0.23 44.07± 0.11
Food 21 85.40± 0.28 91.20± 0.20 17.72± 0.18 42.42± 0.06
Indoor 14 82.94± 0.13 89.32± 0.09 19.14± 0.09 43.46± 0.06
Outdoor 19 83.96± 0.23 90.01± 0.14 19.64± 0.07 43.52± 0.06
Vehicles 17 78.99± 0.35 86.81± 0.14 18.46± 0.28 42.36± 0.20

Table E.3: Listener performance on gold utterances. Accuracy and MRR for the
in-domain (ind) and out-of-domain (ood) samples given to listeners trained on
specific domains (indicated under the ‘Domain’ column).

Listener
domain

Data domain
Appliances Food Indoor Outdoor Vehicles

Appliances 57.61± 1.38 20.10± 0.63 19.92± 0.47 21.27± 0.83 15.98± 0.82
Food 19.11± 1.70 54.29± 1.06 18.60± 0.84 18.85± 0.49 18.85± 0.49
Indoor 22.71± 1.30 19.65± 1.77 53.62± 0.79 20.82± 1.05 16.77± 0.79
Outdoor 15.08± 1.04 21.46± 0.70 19.62± 0.69 52.93± 1.11 17.69± 0.97
Vehicles 16.36± 1.55 16.17± 0.81 17.41± 0.64 20.13± 0.59 43.08± 1.16

Table E.4: Listener accuracies on speaker-generated data. Each row indicates the
domain a listener was trained on, and the columns indicate the domain of the
input samples. Results over 5 seeds.

E.2.3 Simulator Results

The detailed outcomes of the simulator models are reported in Table E.5. Here, we
also report the results for the subset where the listener made a correct prediction
(Pos) vs. it made an incorrect prediction (Neg). The simulators are better able
to capture the correct listener behavior, possibly because during the training
of simulators, in-domain data provides a clear picture of the listener’s correct
behavior.

Simulator Setting Avg Pos Neg
All domains – 69.97± 0.79 85.15± 1.39 54.73± 0.76

Domain-specific
ind 78.20± 1.26 88.09± 1.98 67.36± 2.96
ood 72.78± 0.56 73.67± 1.69 72.58± 0.71

Table E.5: Simulator’s accuracy in predicting the behavior of a listener knowl-
edgeable about all domains (as the speaker) and a listener with domain-specific
knowledge for ind and ood samples. ‘Avg’ is the overall accuracy, ‘Pos’ and
‘Neg’ are the percentages of correct predictions for the samples where the listener
picked the correct (Pos) and the incorrect image (Neg).
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OOD IND
Golden Speaker Adapted Golden Speaker Adapted

Appliances 20.21 19.30 27.74 84.21 57.21 74.28
Indoor 18.50 19.53 28.34 83.22 52.94 69.62
Food 17.06 18.31 26.26 85.61 55.54 78.15
Outdoor 18.89 18.54 26.21 84.38 52.83 73.04
Vehicles 18.25 17.35 25.16 78.67 42.09 63.75

Table E.6: Test results for the audience-aware adaptation pipeline, 5 seeds for
each domain.

E.2.4 Adaptation Results

In Table E.6, we provide the test set results of the adaptation pipeline, broken
down into domains and for ind and ood inputs separately. The outcomes show
that adaptation has effects in both ind and ood settings, increasing resolution
accuracies over speaker-generated utterances.

E.3 Evaluation Cards

For each of the three main modules in our experiments, we provide an evaluation
card to clarify the nature of our generalization tests.2 See Table E.7 for the gener-
ator, Table E.8 for the simulator, and Table E.9 for the listener. We also register
our work in the GenBench evolving survey of generalization in NLP (Hupkes
et al., 2023).3

E.4 Additional Experiments

Here, we provide details on additional experiments we performed in our adapta-
tion pipeline.

In our adaptation mechanism, one of the stopping conditions is that the simu-
lator predicts that the listener will be able to guess the referent. We also explored
continuing adaptation until the listener itself correctly guesses the referent. We
report the results in Table E.10, which reveal that using this stopping condi-
tion would yield higher results since the utterances are adapted until the actual
listener makes a correct guess, mimicking an online interaction setup.

2https://genbench.org/eval_cards
3https://genbench.org/references

https://genbench.org/eval_cards
https://genbench.org/references
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Motivation
Practical Cognitive Intrinsic Fairness

□△⃝ □△⃝
Generalization type

Compo- sitional Structural Cross Task Cross Language Cross Domain Robustness

□△⃝
Shift type

Covariate Label Full No shift

□△⃝
Shift source

Naturally occurring Partitioned natural Generated shift Fully generated

□△⃝

Shift locus
Train–test Fine-tune train–test Pretrain–train Pretrain–test

□△⃝

Table E.7: Generator’s evaluation card for the three main setups: baseline □,
self-aware adaptation △, and audience-aware adaptation ⃝

Motivation
Practical Cognitive Intrinsic Fairness

△⃝ △⃝
Generalization type

Compo- sitional Structural Cross Task Cross Language Cross Domain Robustness

△⃝
Shift type

Covariate Label Full No shift

△ ⃝

Shift source
Naturally occurring Partitioned natural Generated shift Fully generated

△⃝

Shift locus
Train–test Fine-tune train–test Pretrain–train Pretrain–test

△⃝

Table E.8: Simulator’s evaluation card for the two setups in which it is used (i.e.,
baseline setup excluded): self-aware adaptation △, and audience-aware adapta-
tion ⃝.
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Motivation
Practical Cognitive Intrinsic Fairness

□△⃝ □△⃝
Generalization type

Compo- sitional Structural Cross Task Cross Language Cross Domain Robustness

□△⃝
Shift type

Covariate Label Full No shift

□△⃝ □△⃝

Shift source
Naturally occurring Partitioned natural Generated shift Fully generated

□△⃝ □△⃝

Shift locus
Train–test Fine-tune train–test Pretrain–train Pretrain–test

□△⃝

Table E.9: Listener’s evaluation card for the three main setups: baseline □,
self-aware adaptation △, and audience-aware adaptation ⃝. In out-of-domain
settings (ood), the type of shift is covariate. In in-domain settings (ind), there
is no shift between the training and test.

Target domain Golden Speaker Adapted

Appliances 16.85 20.04 38.89

Food 85.57 55.26 91.74

Indoor 18.69 18.47 39.49

Outdoor 19.03 18.33 37.96

Vehicles 13.75 16.63 35.43

Table E.10: Listener accuracy using the listener stopping condition in the adap-
tation mechanism.
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E.5 Additional Analyses

We note that we measure the type-utterance ratio for each step (i.e., the vocab-
ulary size divided by the number of utterances available for that step), rather
than the vocabulary size, because different steps correspond to different numbers
of utterances: adaptation stops when the simulator module predicts the target
image.

Figure E.1: Type-token ratio across adaptation steps. Human gold utterances
(ref ) and non-adapted utterances (0) are also shown.

Figure E.2 shows unigram part-of-speech distribution across adaptation steps
for in- and out-of-domain conditions.

Figure E.2: Unigram POS distribution across adaptation steps.

We also measure the domain-specificity of utterances over steps, both in terms
of the target image domain and the listener domain, as the percentage of domain-
specific words in an utterance. We consider as domain-specific the words that
appear only in interactions about a certain domain. The speaker, throughout
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Figure E.3: Mean utterance Age of Acquisition over adaptation steps. Step 0
corresponds to the non-adapted utterance.

adaptation, produces more words belonging to both the image and the listener
domain (Figure E.4) and thus fewer domain-agnostic words. We saw that, over
adaptation steps, the decoder hidden state forgets image domain information in
favor of the listener domain. This does not translate into no longer producing
words from the image domain, suggesting that the speaker may be focusing more
on the specific image than on its semantic domain.

Figure E.4: Rate of lexical choice from image and listener domain-specific vocab-
ularies.

Figure E.3 shows mean utterance age of acquisition rating (Kuperman et al.,
2012) over steps.
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Özge Alacam, Eugen Ruppert, Sina Zarrieß, Ganeshan Malhotra, Chris Biemann,
and Sina Zarrieß. 2022. Modeling referential gaze in task-oriented settings of
varying referential complexity. In Findings of the Association for Computa-
tional Linguistics: AACL-IJCNLP 2022, pages 197–210, Online only. Associa-
tion for Computational Linguistics.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr,
Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda Han, Zhi-
tao Gong, Sina Samangooei, Marianne Monteiro, Jacob L Menick, Sebas-
tian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Sharifzadeh, Miko laj

165

https://openreview.net/forum?id=BJh6Ztuxl
https://openreview.net/forum?id=BJh6Ztuxl
http://arxiv.org/abs/2108.02818
http://arxiv.org/abs/2108.02818
https://doi.org/10.18653/v1/2020.acl-main.728
https://doi.org/10.18653/v1/D16-1203
https://doi.org/10.18653/v1/D16-1203
https://aclanthology.org/2022.findings-aacl.19
https://aclanthology.org/2022.findings-aacl.19


166 BIBLIOGRAPHY
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Samenvatting

Wanneer mensen een afbeelding beschrijven, zijn er complexe visuele en talige pro-
cessen aan het werk. Sprekers hebben bijvoorbeeld de neiging om naar een object
te kijken net voordat ze het benoemen, maar doen dat niet altijd. Ook kunnen
sprekers tijdens een gesprek meerdere keren naar een entiteit verwijzen, waarbij
ze uitdrukkingen gebruiken die in hun gedeelde kennis ontstaan en doorontwikke-
len. In dit proefschrift ontwerp ik computationele modellen van zulke visuele
en lingüıstische processen, waarbij ik inspiratie haal uit theorieën en bevindin-
gen uit de cognitiewetenschap en de psycholingüıstiek. Dit werk, waarin ik de
ingewikkelde relatie tussen taal en buitentalige modaliteiten binnen diepe kunst-
matige neurale netwerken wil vastleggen, draagt bij aan de onderzoekslijn naar
multimodale natuurlijke taalverwerking. Dit proefschrift bestaat uit twee delen:
(1) het modelleren van de menselijke blik in taalgebruik (productie en begrip),
en (2) het modelleren van communicatiestrategieën in referentiële taken in vi-
sueel gebaseerde dialogen. In het eerste deel verdiep ik me in het verbeteren van
modellen voor het beschrijven van afbeeldingen met behulp van oogbewegings-
gegevens; het evalueren van de variatie in menselijke signalen tijdens het beschri-
jven van afbeeldingen; en het voorspellen van menselijk leesgedrag in de vorm
van oogbewegingen. In het tweede deel bouw ik modellen voor het kwantificeren,
genereren, oplossen en aanpassen van uitingen in referentiële taken die zich bin-
nen visuele en conversationele contexten bevinden. De resultaten bevorderen ons
begrip van menselijke visuo-lingüıstische processen door de ingewikkelde strate-
gieën te onthullen die bij dergelijke processen een rol spelen, en wijzen op het
belang om hiermee rekening te houden bij het ontwikkelen en gebruiken van mul-
timodale modellen. De bevindingen werpen licht op hoe de vooruitgang op het
gebied van kunstmatige intelligentie zou kunnen bijdragen aan het bevorderen
van het onderzoek naar crossmodale processen bij mensen en vice versa.
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Abstract

When people describe an image, there are complex visual and linguistic processes
at work. For instance, speakers tend to look at an object right before mention-
ing it, but not every time. Similarly, during a conversation, speakers can refer
to an entity multiple times, using expressions evolving in the common ground.
In this thesis, I develop computational models of such visual and linguistic pro-
cesses, drawing inspiration from theories and findings from cognitive science and
psycholinguistics. This work, where I aim to capture the intricate relationship
between non-linguistic modalities and language within deep artificial neural net-
works, contributes to the line of research into multimodal Natural Language Pro-
cessing. This thesis consists of two parts: (1) modeling human gaze in language
use (production and comprehension), and (2) modeling communication strategies
in referential tasks in visually grounded dialogue. In the first part, I delve into
enhancing image description generation models using eye-tracking data; evaluat-
ing the variation in human signals while describing images; and predicting human
reading behavior in the form of eye movements. In the second part, I build mod-
els quantifying, generating, resolving, and adapting utterances in referential tasks
situated within visual and conversational contexts. The outcomes advance our
understanding of human visuo-linguistic processes by revealing intricate strate-
gies at play in such processes, and point to the importance of accounting for
them when developing and utilizing multimodal models. The findings shed light
on how the advancements in artificial intelligence could contribute to advancing
the research on crossmodal processes in humans and vice versa.
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