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Abstract

We present a cyclic sequent calculus for intuitionistic modal logic with the master
modality. Formulas of the logic are evaluated over bi-relational Kripke models with
three different frame conditions: functional frames, ‘triangle’ confluent frames, and
arbitrary frames. It is shown that the calculus is sound and complete for all three
classes of models. This, in particular, proves that intuitionistic modal logic with the
master modality cannot distinguish between arbitrary models and functional models.
Soundness is established by a standard argument while completeness is proven via
a detour to non-wellfounded proofs, using a proof-search argument that draws on
analyticity of the calculus. The framework is robust in the sense that it can be
naturally adapted to account for various frame conditions, such as serial models,
reflexive models or S4-models, as well as for a polymodal extension that can be
interpreted as intuitionistic common knowledge.

Keywords: Modal logic, Intuitionistic logic, Sequent calculus, Cyclic proofs.

1 Introduction

Intuitionistic modal logic has a long history with contributions from various
fields, ranging from proof theory and philosophical logic to type theory and pro-
gramming language theory. The logics studied can be roughly divided into two
camps: intuitionistic modal logics, aimed at capturing an intuitionistic meta-
reading of possible world semantics [20], and constructive modal logics, built
for modelling particular computational properties such as staged or contextual
computation [11]. More recently, extensions of these logics with fixed point
operators, referred to as Intuitionistic Fixed Point Modal Logics (IFPML),
have gained increasing attention. Examples include intuitionistic linear-time
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temporal logic [7,2,3,4,1], intuitionistic common knowledge logic [10], and in-
tuitionistic modal µ-calculus [17].

The mathematical theory underpinning IFPML is little explored compared
to its classical counterpart. In the classical realm, games, automata and, more
recently, cyclic proofs have shown to be particularly suitable for the study
of fixed point modal logics [9,6,19]. In contrast to the more traditional fini-
tary proof systems with induction rules, cyclic proof systems are often ana-
lytic, and therefore better suited for proof search. In the realm of IFPML,
non-wellfounded and cyclic proof systems have so far only been developed for
intuitionistic linear-time temporal logic [1,14].

This work is part of a larger programme to establish frameworks and tech-
niques for studying IFPML ranging from intuitionistic versions of basic modal
logics to intuitionistic modal µ-calculus. Here, we study the language LIM

which extends the language of IPC with the basic modality □ and the master
modality □∗. A formula □∗φ is characterised as the greatest fixed point of the
propositional function p 7→ φ ∧ □p. Formulas are evaluated over bi-relational
Kripke models (W,≤, R, V ), where ≤ is the intuitionistic partial order and R
the modal accessibility relation. The monotonicity property, that w ≤ v and
w |= φ implies v |= φ, can be built directly into the semantics, as we will
initially do. An alternative approach is to impose frame conditions on ≤ and
R, such as triangle confluence: if w ≤ v and vRu, then wRu.

For triangle confluent models, the truth conditions for the modalities reduce
to the classical ones. We consider the class of all bi-relational models, the class
of models with a functional modal relation, and the class of triangle confluent
models, inducing the logics IMK, IMf , IMt, respectively. The logic IMf can be
viewed as a weak version of intuitionistic linear-time temporal logic.

We introduce a cyclic proof system cIM, and establish soundness with re-
spect to IMK and completeness with respect to both IMf and IMt. This implies
that the three logics are equivalent, thereby showing that our language cannot
distinguish between arbitrary bi-relational models, functional models, and tri-
angle models. While the result for arbitrary bi-relational models and triangle
models was already known for LIM without the master modality (see e.g., [12]),
the fact that LIM cannot distinguish functional models from arbitrary ones, is,
to the best of our knowledge, a new result.

The calculus cIM is a natural modal extension of the standard multi-
conclusion calculus for intuitionistic propositional logic (see e.g., [15]). To
ensure soundness, the calculus uses a focus annotation that keeps track of good
traces. As cIM is cut-free, it is analytic and hence suitable for effective proof
search. A similar calculus for classical modal logic with the master modality
over S5-frames is presented in [18]; that calculus differs from cIM in that it
requires analytic cuts due to the S5 frame conditions.

Completeness of cIM proceeds via a detour into a non-wellfounded proof
calculus specifically designed for proof-search. Inspired by the game-theoretic
arguments in [16], we present a modular framework for proof-search as a two-
player infinite game between Prover and Refuter, such that every unprovable
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sequent induces a countermodel of a particular form. The form of Prover’s
turn can be adapted as to obtain a particular frame condition. In this way, we
obtain completeness of the non-wellfounded calculus for triangle and functional
models. Completeness of cIM is obtained by showing that a non-wellfounded
proof induces a cyclic proof. In addition, we also show completeness of a single-
conclusion version of cIM.

Due to the modular approach, the calculus cIM and the proof methods are
robust in the sense that they can easily be adapted to account for various frame
conditions, such as serial frames, reflexive frames, and S4-frames. Furthermore,
cIM can be adapted to a polymodal version of LIM to obtain an analytic calculus
for the intuitionistic common knowledge logic considered in [10].

2 Syntax and semantics

The language of LIM consists of a countable set of atomic propositions Prop,
logical connectives ∧,∨,→ and modal operators □ and □∗. The operator □∗ is
called the master modality. Formulas of LIM are given by the grammar:

φ ::= ⊥ | p | φ ∧ φ | φ ∨ φ | φ→ φ | □φ | □∗φ

where p ∈ Prop. Define ⊤ := ⊥ → ⊥ and □kφ by □0φ := φ and □k+1φ := □□kφ.
The set of formulas of LIM is denoted Fm. Greek letters φ,ψ, . . . etc., possibly
with subscript, are meta-variables for formulas.

Definition 2.1 The closure of a formula φ is the smallest set Cl(φ) which
contains φ, is closed under the subformula relation, and contains □□∗ψ whenever
□∗ψ ∈ Cl(φ).

The following lemma is proven by a simple induction on the structure of
the formula φ.

Lemma 2.2 For any formula φ, the closure Cl(φ) is finite.

Formulas are evaluated in bi-relational (Kripke) models.

Definition 2.3 A (bi-relational) model is a tuple M = (W,≤, R, V ) where

(i) W ̸= ∅ is a set;

(ii) (W,≤) is a partial order;

(iii) V : W → P(Prop) is monotone in ≤: if w ≤ v then V (w) ⊆ V (v);

(iv) R ⊆W ×W is a binary relation.

Elements of W are called worlds, and given some world w ∈ W , we call
the tuple (M,w) a pointed model. The function V is called a valuation, the
relation≤ is called the intuitionistic order andR is called themodal accessibility
relation. If w ≤ v then v is called an intuitionistic successor of w, and if wRv
then we call v a modal successor of w. A model is called functional if the modal
accessibility relation R is functional, i.e., if wRv and wRu, then v = u.

For any binary relation S, we let S∗ denote the reflexive and transitive
closure of S. Given a modelM = (W,≤, R, V ), we let R̃ denote the composition



4 Intuitionistic Master Modality

v u

w ·

R

≤

R

≤

v u

w

R

≤
R

Fig. 1. Forth-down confluence (left) and triangle confluence (right). Dashed lines
represent the relations each confluence condition stipulates the existence of.

≤;R. Note that, since ≤ is reflexive, wR̃∗v holds if and only if there exists a
natural number n and worlds u0, . . . , un such that u0 = w, un = v and for
all 0 ≤ i < n we have uiRui+1 or ui ≤ ui+1. The truth relation |= is defined
inductively by the following clauses, where p ∈ Prop and w ∈W .

M,w ̸|= ⊥,
M,w |= p iff p ∈ V (w)
M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ,
M,w |= φ ∨ ψ iff M,w |= φ or M,w |= ψ,
M,w |= φ→ ψ iff for all v ≥ w if M,v |= φ, then M,v |= ψ,

M,w |= □φ iff for all v ∈W , if wR̃v then M,v |= φ,

M,w |= □∗φ iff for all v ∈W , if wR̃∗v then M,v |= φ.

Validity and satisfiability over a class of models are defined as expected.
As remarked, monotonicity is built-in to the semantics:

Lemma 2.4 (Monotonicity of |=) Let φ ∈ Fm and let M = (W,≤, R, V ) be
a model with w, v ∈W . If w ≤ v and M,w |= φ, then M,v |= φ.

2.1 Triangle models

We introduce a subclass of models in which the intuitionistic order and the
modal accessibility relation satisfy a particular confluence property. For this
subclass of models, the classical truth conditions for the modalities suffice to
obtain the monotonicity lemma (cf. Lemma 2.4).

Definition 2.5 A triangle model is a model M = (W,≤, R, V ) where ≤ and
R are triangle confluent : if w ≤ v and vRu, then wRu (see Figure 1).

Given a triangle model M = (W,≤, R, V ), a second truth relation |=t ⊆
W × Fm can be given which differs from |= only in the modal clauses:

M,w |=t □φ iff for all v ∈W , if wRv thn M,v |=t φ,
M,w |=t □∗φ iff for all v ∈W , if wR∗v then M,v |=t φ.

Triangle confluence implies R = R̃, whence the next two lemmas obtain.

Lemma 2.6 (Monotonicity of |=t) Let φ ∈ Fm and let M = (W,≤, R, V )
be a triangle model with w, v ∈W . If w ≤ v and M,w |=t φ, then M, v |=t φ.

Lemma 2.7 Let φ ∈ Fm and let (M,w) be a pointed triangle model. Then
M,w |=t φ if and only if M,w |= φ.

Triangle confluence is a special case of forth-down confluence: if w ≤ v and
vRu, then there exists s ∈ W with wRs and s ≤ u (illustrated in Figure 1).
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Forth-down confluence is sufficient for monotonicity. However, every model
M = (W,≤, R, V ), and so, in particular, every forth-down confluent model,
induces a triangle model M ′ = (W,≤, (≤;R), V ) in a truth-preserving way. So
the logic over forth-down models is identical to the logic over triangle models.

Denote by IMK, IMf and IMt the set of valid formulas over the class of
bi-relational models, the class of functional models and the class of triangle
models, respectively. By definition, IMK ⊆ IMf ∩ IMt. In the next section
we present a non-wellfounded and a cyclic calculus which are each sound and
analytically complete for these logics. As a corollary, the three notions of
validity coincide: IMK = IMf = IMt.

3 Proof systems

An annotated formula is a pair (φ, a) where φ is a formula and a ∈ {f, u}, where
f designates that the formula is in focus and u that the formula is unfocused.
Annotated formulas are usually written as φa. Finite sets of annotated formulas
are denoted by Γ,∆,Σ,Π and Ω with or without subscripts. For a set of
annotated formulas Γ define

Γ− = {φ | φa ∈ Γ} and Γu = {φu | φa ∈ Γ}

A sequent is an ordered pair Γ ⇒ ∆ where Γ and ∆ are finite sets of annotated
formulas, such that the following conditions hold.

(i) Every formula in Γ is unfocused.

(ii) At most one formula in ∆ is in focus.

(iii) If a formula φ is in focus, then φ = □∗ψ or φ = □□∗ψ for some formula ψ.

We use σ to denote sequents and write Γσ and ∆σ for the left and right side
of σ respectively. The interpretation of σ is the formula σI :=

∧
Γ−
σ →

∨
∆−

σ

where
∧
∅ = ⊤ and

∨
∅ = ⊥. Note, annotations convey no semantic meaning.

Given a pointed model (M,w) we write M,w |= σ iff M,w |= σI . The closure
of σ is the set Cl(σ) := Cl(Γσ) ∪ Cl(∆σ).

Our calculi employ multi-conclusion sequents, i.e., sequents Γ ⇒ ∆ where
∆ may contain more than one formula. This streamlines the proof-search argu-
ment for completeness as it allows writing the disjunction and left-implication
rules in invertible form. But it is not an essential restriction; Section 5.4 demon-
strates how a single-conclusion proof can be obtained from any multi-conclusion
one.

Definition 3.1 The sequent calculus IM consists of the rules depicted in Ta-
ble 1 for all values of a ∈ {u, f}.

The rules id and ⊥ are called axioms. The rules u and f govern the focus
annotations: the rule u takes a sequent with no formula in focus and puts
one formula in focus. The rule f does the opposite: it takes a sequent with a
formula in focus and changes its annotation to unfocused. The names of these
rules are motivated by the fact that later we will usually read rules bottom-up.
The rules □∗L and □∗R reflect the equivalence □∗φ↔ φ ∧ □□∗φ.
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Γ, φu ⇒ φa,∆
id

Γ,⊥u ⇒ ∆
⊥

Γ, φu, ψu ⇒ ∆

Γ, φ ∧ ψu ⇒ ∆
∧L

Γ ⇒ φu,∆ Γ ⇒ ψu,∆

Γ ⇒ φ ∧ ψu,∆
∧R

Γ, φu ⇒ ∆ Γ, ψu ⇒ ∆

Γ, φ ∨ ψu ⇒ ∆
∨L

Γ ⇒ φu, ψu,∆

Γ ⇒ φ ∨ ψu,∆
∨R

Γ, φ→ ψu ⇒ φu,∆ Γ, ψu ⇒ ∆

Γ, φ→ ψu ⇒ ∆
→L

Γ, φu ⇒ ψu

Γ ⇒ φ→ ψu,∆
→R

Γ, φu,□□∗φu ⇒ ∆

Γ,□∗φu ⇒ ∆
□∗L

Γ ⇒ φu,∆ Γ ⇒ □□∗φa,∆

Γ ⇒ □∗φa,∆
□∗R

Γ ⇒ ∆u

Γ ⇒ ∆
u

Γ ⇒ φf ,∆

Γ ⇒ φu,∆
f

Γ ⇒ φa

Π,□Γ ⇒ □φa,Σ
□

Table 1
The rules of the calculus IM

Note that the rules →R and □ have single-conclusion premises and all other
rules are invertible in the sense that the conclusion is valid if and only if all
premises are. We therefore refer to □ and →R as the non-invertible rules and
the other rules as invertible. For each rule, the distinguished formula in the
conclusion is called principal and the distinguished formula(s) in the premises
are called its residual(s). For example, for →L the principal formula is φ→ ψu

and its residuals are φ → ψu, φu and ψu. For the rule □, all formulas in the
conclusion are principal and each formula in the premise is the residual of its
corresponding principal formula (formulas in Σ and Π have no residuals). In
every rule application, any formula that is neither principal nor residual is
called a side formula.

The condition that sequents have at most one formula in focus imposes
restrictions on rule applications, as is illustrated by the following lemma.

Lemma 3.2 If in an instance of □∗R the principal formula is in focus, then the
left premise has no formula in focus.

In the following we introduce a non-wellfounded and a cyclic proof sys-
tem based on the rules of IM. We remark that the annotations are not vital
for the non-wellfounded system; it is possible to define a sound and complete
non-wellfounded proof system based on the rules of IM without annotations. 5

5 For such a system the global soundness condition on infinite branches is formulated in a
different way than presented here using formula traces.
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However, the annotations are required to guarantee soundness of the cyclic
system.

3.1 Non-wellfounded calculus nIM

A derivation in nIM of a sequent σ is a finite or infinite tree whose nodes are
labelled by sequents according to the rules of IM and whose root is labelled by
σ. We read derivations ‘upwards’, so that the premise of a rule is considered
to be a successor of the conclusion. Given a derivation π, a path through π is
a finite or infinite sequence of nodes ρ = ρ0, ρ1, ρ2, . . . of π such that for each
index i the node ρi+1 (if it exists) is a direct successor of ρi. A path is maximal
if it ends in a leaf or is infinite. A maximal path starting at the root is also
called a branch. We will often tacitly identify a node in a derivation with the
sequent labelling it and thereby paths with sequences of sequents.

Definition 3.3 A nIM-proof of a sequent Γ ⇒ ∆ is a derivation in nIM of
Γ ⇒ ∆, such that every leaf is labelled by an axiom and every infinite branch ρ
has a good suffix ρ′: every sequent in ρ′ has a formula in focus and ρ′ contains
infinitely many applications of □∗R where the principal formula is in focus.

Lemma 3.4 Every good suffix contains infinitely many applications of □.

3.2 Cyclic calculus cIM

A derivation in cIM of a sequent σ is a nIM-derivation of σ that is finite.

Definition 3.5 A path ρ in a cIM-derivation is successful if the following hold.

(i) Every sequent in ρ has a formula in focus.

(ii) The path ρ passes through at least one instance of □∗R where the principal
formula is in focus.

Given a cIM-derivation π, a pair of nodes (u, v) of π is called a repetition
if there exists a path from u to v and both nodes are labelled by the same
sequent. A repetition (u, v) is successful if the path from u to v is successful.

Definition 3.6 A cIM-proof of a sequent Γ ⇒ ∆ is a derivation π in cIM, such
that every leaf l of π is either labelled by an axiom or there exists a node c(l)
in π such that (c(l), l) is a successful repetition.

We analogously define single-conclusion derivations and proofs in nIM and
cIM, where instead of the multi-conclusion rules of IM we use their standard
single-conclusion version, in which every sequent Γ ⇒ ∆ satisfies |∆| ≤ 1 (see
the appendix for an explicit definition).

4 Soundness

This section establishes soundness of cIM with respect to bi-relational models.
The proof closely follows the soundness proof of [18] and makes essential use
of the focus annotations. Proofs in this section are deferred to the appendix.

Let σ be a sequent that has a formula in focus, i.e., ∆σ contains a formula of
the form □j□∗φf for j ∈ {0, 1}. Denote by σ(n) the sequent Γσ ⇒ ∆σ,□

j□nφu,
i.e., the sequent expanding the right side of σ by formula □j□nφu.
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Lemma 4.1 If σ has a formula in focus and is invalid, then there exists a
natural number n such that σ(n) is invalid.

As a consequence, every invalid sequent σ with a formula in focus can be
associated a measure:

µ(σ) := min{n ∈ ω | σ(n) is invalid}.
Lemma 4.2 Suppose

σ1 · · · σn
σ r

is a rule instance of IM. If σ is invalid, then there is an i such that σi is invalid.
If both σ and σi have a formula in focus then, moreover,

µ(σi) ≤ µ(σ),

where the inequality is strict if r = □∗R and the principal formula is in focus.

From these two lemmas, global soundness of cIM is easily established.

Theorem 4.3 If there is a cIM-proof of a sequent σ, then σ is valid over the
class of bi-relational models.

The above result also implies that cIM is sound for the class of functional
models and the class of triangle models. In addition, soundness of the single-
conclusion version of cIM follows, as any single-conclusion proof induces a multi-
conclusion proof via weakening.

5 Completeness

We now turn our attention to completeness of the cyclic calculus with respect to
triangle and functional models. The argument proceeds in two steps. First, we
set up a general framework for completeness via proof-search games, from which
completeness of the ill-founded calculus nIM can be deduced. We then show
how to transform an arbitrary nIM-proof into single-conclusion one, and lastly
how to transform a (single-conclusion) nIM-proof into a (single-conclusion) cIM-
proof.

5.1 Proof-search games

Each sequent σ will be associated a proof-search tree which will form the arena
of a two-player game between Prover, whose winning strategies establish proofs
of σ, and Refuter, whose winning strategies describe countermodels for σ. Com-
pleteness becomes a corollary of determinacy of the game.

A proof-search tree for σ is built by applying rules bottom-up to σ. The
invertible rules are applied first until a saturated sequent is obtained.

Definition 5.1 A sequent Γ ⇒ ∆ is saturated if the following hold.

(i) If φ ∧ ψu ∈ Γ, then φu ∈ Γ and ψu ∈ Γ.

(ii) If φ ∨ ψu ∈ Γ, then φu ∈ Γ or ψu ∈ Γ.

(iii) If φ→ ψu ∈ Γ, then φu ∈ ∆ or ψu ∈ Γ.
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(iv) If □∗φu ∈ Γ, then φu ∈ Γ and □□∗φu ∈ Γ.

(v) If φ ∧ ψu ∈ ∆, then φa ∈ ∆ or ψu ∈ ∆.

(vi) If φ ∨ ψu ∈ ∆, then φa, ψa ∈ ∆.

(vii) If □∗φa ∈ ∆, then φu ∈ ∆ or □□∗φa ∈ ∆.

Given a sequent σ, a formula occurring in σ is said to be saturated if σ satisfies
the corresponding clause above for that formula.

As we are working with set sequents, formulas can simultaneously function
as principal and as side formulas. We call an application of a rule preserving
if the principal formula(s) is also a side formula. For example, an application
of □∗L as depicted in Table 1 is preserving if □∗φu ∈ Γ.

The particular form of the proof-search tree depends on the kind of coun-
termodel one wants to obtain from a refutation. In a general form suitable for
our needs, proof-search trees have the following structure.

Definition 5.2 Fix some inference rule C and a sequent σ. A proof-search tree
(with choice rule C) for σ is a finite or infinite tree T whose nodes are labelled
by sequents according to C and the invertible logical rules of IM such that:

(i) The root is labelled by Γσ ⇒ ∆σ;

(ii) Every invertible rule is applied preservingly;

(iii) No invertible rule is applied to a sequent in which the principal formula is
already saturated;

(iv) A node is a leaf if and only if it is labelled by an axiom or by a saturated
sequent to which the C-rule cannot be applied;

(v) The C-rule is only applied to saturated sequents.

Each completeness proof we present will be relative to a suitable choice rule C.
Note that every sequent σ has a proof-search tree. Due to property (ii),

every sequent can be saturated by finitely many invertible rule applications.
By property (iii), we then obtain the following result.

Lemma 5.3 Every infinite branch of a proof-search tree contains infinitely
many applications of C.

Given a proof-search tree T with choice rule C for a sequent σ, a game G(T,C)
can be defined between players ‘Prover’ and ‘Refuter’ where a play corresponds
to a branch in T : reading upwards, invertible rules represent a choice of admis-
sible moves for Refuter and the C-rule represents a choice of moves for Prover.
Prover wins a play ρ if and only if ρ is finite and ends in an axiom, or ρ is
infinite and has a good suffix. All other plays are won by Refuter. A winning
strategy for Refuter then corresponds to a refutation of σ.

Definition 5.4 A refutation of a sequent σ is a subtree S of a proof-search
tree T for σ satisfying the following properties.

(i) S contains the root of T .

(ii) No leaf is an axiom.
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(iii) No infinite branch of S has a good suffix.

(iv) If S contains a node u that is labelled by the conclusion of a C-application,
then S contains all direct successors of u in T .

(v) If S contains a node u that is labelled by the conclusion of any other rule
than C, then S contains exactly one direct successor of u in T .

Whereas a winning strategy for Refuter corresponds to a refutation of σ, a
winning strategy for Prover should correspond to a proof of σ; it must be
checked that this is indeed the case for a particular choice for C.

It is routine to check that the set of winning plays in G(T,C) for each player
is Borel, and so it follows from Martin’s determinacy theorem [13] that every
sequent has a refutation or a proof. Thus, in order to prove completeness, the
key result to obtain is that a refutation induces a countermodel. To show this,
we will make use of the following ‘canonical’ model construction.

Definition 5.5 Let σ be a sequent and let S be a refutation of σ. The canon-
ical model based on S is the model MS = (W,≤, R, V ) defined as follows.

(i) W = S/∼, where s ∼ t iff there exists a path between s and t in which no
instance of the C-rule occurs.

(ii) ≤ is the reflexive, transitive closure of the relation ≤0 ⊆W ×W given by

w ≤0 v iff there exist s ∈ w and t ∈ v such that s is the conclusion and

t a left premise of the same C-rule instance.

(iii) R ⊆W ×W is such that

wRv iff there exist s ∈ w and t ∈ v such that s is the conclusion and

t is a right premise of the same C-rule instance.

(iv) V : w 7→ Γw ∩ Prop where Γw is the left side of the sequent labelling the
unique node in w that is the conclusion of a C-rule application.

5.2 Completeness of nIM with respect to triangle models

To show completeness of nIM with respect to triangle models, we consider the
following choice rule.

Π,□Γ, φu
0 ⇒ ψu

0 · · · Π,□Γ, φu
l ⇒ ψu

l Γ ⇒ χb0
1 · · · Γ ⇒ χbm

m

Π,□Γ ⇒ {(φi → ψi)
u}li=0, {□χ

ai
i }mi=0,Σ

Ct

where the annotations bi are equal to f whenever the underlying formula χi is a
□∗-formula, and equal to u otherwise. Moreover, we require that Π∪Σ contains
no □-formulas and that Σ contains no →-formulas. We call the premises of the
form Γ ⇒ χbi

i the right premises and the other premises the left premises.
The following lemma is a direct consequence of the definition of the winning

conditions and the form of Ct.

Lemma 5.6 If T is a proof-search tree for σ with choice rule Ct, then a winning
strategy for Prover in G(T,Ct) corresponds to a proof of σ.
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Proposition 5.7 If a sequent has a refutation with choice rule Ct, then it is
falsified in a triangle model.

Proof. Let T be a proof-search tree for σ and let S be a subtree of T that is
a refutation of σ. Let MS = (W,≤, R, V ) be the canonical model based on S,
and let M = (W,≤, (≤;R), V ) be the induced triangle model.

Let φ be a formula. By induction on the logical complexity of φ, we simul-
taneously prove that for any w ∈ W we have (a) M,w |= φ if φ ∈ Γ−

w and (b)
M,w ̸|= φ if φ ∈ ∆−

w . The proof relies on the fact that the sequent Γw ⇒ ∆w

is saturated, since it is the conclusion of a Ct-application. We only treat the
connectives → and □∗. Recall that, for triangle models, we can simply use the
classical truth conditions for the modalities.

The case of →. (a). If φ→ ψ ∈ Γ−
w and v ≥ w, then by definition of Ct and

the fact that invertible rules are applied preservingly, we have φ → ψ ∈ Γ−
v .

So by saturation and the induction hypothesis (IH), we have M, v |= ψ or
M,v ̸|= φ, so we obtain M,w |= φ → ψ. (b). If φ → ψ ∈ ∆w, then by
construction of ≤ there exists a v ≥0 w such that φ ∈ Γ−

v and ψ ∈ ∆−
v . So by

the IH, we obtain M,v |= φ and M, v ̸|= ψ, so M,w ̸|= φ→ ψ.
The case of □∗. (a). Let □∗φ ∈ Γ−

w and wR∗v. Saturation implies that
□□∗φ ∈ Γ−

w , so by definition of Ct and the fact that invertible rules are applied
preservingly, we have □□∗φ ∈ Γ−

u for all u ≥ w. This means that □∗φ ∈ Γ−
s if

wRs. Iterating the argument, we find that □∗φ ∈ Γ−
v . Saturation then gives

φ ∈ Γ−
v , so M,v |= φ by the IH. (b). If □∗φ ∈ ∆−

w , then saturation implies
φ ∈ ∆−

w or □□∗φ ∈ ∆−
w . Suppose, for contradiction, that for all wR∗v we

have φ /∈ ∆−
v . Let s ∈ w be the last node in w, i.e., s is the conclusion of

a Ct-application. Then we can define an infinite path ρ in S starting from s
as follows: at each Ct-application, we pick the right premise that has □∗φf as
consequent. Note that saturation and the fact that no wR∗v satisfies φ ∈ ∆−

v

implies that this is always possible. The path ρ then forms a good suffix of the
infinite branch of S in which it is contained, contradicting that S is a refutation.
So there must be some wR∗v with φ ∈ ∆−

v , and thus M,v ̸|= φ by the IH. We
conclude that M,w ̸|= □∗φ.

We conclude that the root of M falsifies the sequent σ. 2

Corollary 5.8 The calculus nIM is complete for IMt.

5.3 Completeness of nIM with respect to functional models

When constructing the proof-search tree for IMf , we have to ensure that the
induced countermodel will be functional. This means that, when we reach
a saturated sequent of the form Γ ⇒ □χ1, . . . ,□χm,∆ we can only pick one
χi that will be falsified in the (unique) modal successor. This problem can be
solved by adding in extra intuitionistic successors, so that the remaining χi can
be falsified at their modal successor. To keep track of which right □-formula has
to be ‘taken care of’ at a particular step, the proof-search tree will be labelled
by indexed sequents Γ ⇒k ∆, that is, sequents equipped with a natural number
k that we call the index of the sequent.
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Definition 5.9 An indexed proof-search tree for a sequent σ consists of an
enumeration χ0, χ1, . . . , χn of formulas in □−1Cl(σ) := {χ | □χ ∈ Cl(σ)} and a
finite or infinite tree T whose nodes are labelled by indexed sequents such that:

(i) T is a proof-search tree for σ with choice rule 6

{Π,□Γ, φu
i ⇒0 ψ

u
i }li=0 Γτ ⇒(k+1)m ∆τ Γ ⇒0 χ

a
ik

Π,□Γ ⇒k {φi → ψu
i }li=0, {□χ

ai
ij
}mj=0,Σ

Cf

where τ is the sequent labelling the conclusion, and a equals f if χik is a
□∗-formula and equals u otherwise. We require that i0 < i1 < · · · < im,
k < m and (k + 1)m denotes k + 1 modulo m. Moreover, Π ∪ Σ contains
no □-formulas and Σ contains no →-formulas. Note that the premise
Γτ ⇒(k+1)m ∆τ differs from the conclusion only in the index. We call the
rightmost premise the right premise and the others left premises.

(ii) Invertible rule applications leave the index of a sequent unchanged.

Lemma 5.10 If T is a proof-search tree for σ with choice rule Cf , then a
winning strategy for Prover in G(T,Cf) corresponds to a proof of σ.

Proposition 5.11 If a sequent has a (indexed) refutation with C-rule Cf , then
it has a functional countermodel.

Proof. Let σ be a sequent and T be a proof-search tree based on some enu-
meration χ1, . . . , χn of □−1Cl(σ). Let S be a subtree of T that is an indexed
refutation of σ and let M = (W,≤, R, V ) be the canonical model based on S.
Note, R is functional, as every Cf -rule application has only one right premise.

Let φ be a formula. By induction on the logical complexity of φ, we simul-
taneously prove that for any w ∈ W we have (a) M,w |= φ if φ ∈ Γ−

w and (b)
M,w ̸|= φ if φ ∈ ∆−

w . We only treat the connective □.
(a). If □φ ∈ Γ−

w and w ≤ vRu then, by definition of the Cf -rule and the
fact that invertible rules are applied preservingly, φ ∈ Γ−

u . The IH then implies
M,u |= φ, so M,w |= □φ.

(b). Let □φ ∈ ∆−
w . As σw is the conclusion of the Cf -rule, it must be of

the form Π,□Γ ⇒k {φi → ψi}li=0, {□χij}mj=0,Σ with φ = χip for some p. Now,
by construction of ≤ and the rule Cf , it follows that there exists a v ≥ w such
that σv is equal to Π,□Γ ⇒p {φi → ψi}li=0, {□χij}mj=0,Σ. So, by construction
of R, there exists a u with vRu and χip ∈ ∆−

u . The IH then implies M,u ̸|= φ,
so M,w ̸|= □φ.

We conclude that the root of M falsifies the sequent σ. 2

Corollary 5.12 nIM is complete for IMf .

6 Strictly speaking, we only defined proof-search trees for ‘plain’ sequents, that is, sequents
without an index. However, if we extend the syntax by allowing formulas of the form k with
k ∈ ω, then we can simply define an indexed sequent Γ ⇒k ∆ as the plain sequents k,Γ ⇒ ∆.
We prefer the former notation as it highlights the specific role of the index k.
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5.4 Completeness of the cyclic calculus

With completeness of the ill-founded calculus to hand, we are ready to prove
completeness of the cyclic calculus and its single-conclusion version. We first
show that our use of multi-conclusion sequents is not a real restriction.

Lemma 5.13 If a single-conclusion sequent σ has a nIM-proof, then it has a
single-conclusion nIM-proof.

Proof. Given any nIM-proof π, let its trunk πtr be the derivation obtained from
π by cutting off each branch after the lowest application of→R, □, ⊥ or id. As π
is a proof, note that πtr must be finite. Working top-down, each sequent in πtr
will be replaced by a single-conclusion one. The first rule instances will be of
type →R, □, ⊥ or id, which are straightforward to treat; the premises are single-
conclusion by definition, and if, for example, the conclusion is Π,□Γ ⇒ □φa,∆
with □φa principal, replace it by Π,□Γ ⇒ □φa. Now consider a highest sequent
Γ ⇒ ∆ in πtr with |∆| > 1. This will occur as the conclusion of a (possibly
incorrect) rule instance

σ1 · · · σn
Γ ⇒ ∆

r

with single-conclusion premises. Then, either (1) there exists a δ ∈ ∆ such that

σ1 · · · σn
Γ ⇒ δ

r

is a correct instance of r, or (2) there is a premise σi such that ∆σi ⊆ ∆. We
treat r = →L as an exemplary case. If the conclusion is Γ′, φ → ψu ⇒ ∆ with
φ → ψu principal, then the premises are of the form Γ′, φ → ψu ⇒ χa and
Γ′, ψu ⇒ ζb. If χa = φu, we pick δ = ζb. Otherwise, we must have χa ∈ ∆.

Property (1) means that Γ ⇒ ∆ can be replaced by Γ ⇒ δ, whereas (2)
means that the node labelled by Γ ⇒ ∆ can simply be deleted. Iterating this,
we then obtain a single-conclusion derivation πsc

tr such that replacing the trunk
πtr by πsc

tr in π yields a nIM-proof π′. By construction, if π proves the sequent
Γ ⇒ ∆ then π′ proves Γ ⇒ δ for some δ ∈ ∆.

Now let π be an nIM-proof of σ. Given a node s in π, we let ↑s denote
the nIM-proof induced by the upset of s in π. We define a sequence (πi)i<ω of
finite, single-conclusion derivations as follows. Let π0 be πsc

tr , and given πi, let
πi+1 be the result of replacing each leaf s in πi by the derivation (↑s)sctr . It is
then easy to see that the limit π′ of this construction gives a single-conclusion
nIM-derivation of σ. Moreover, π′ is a proof, as Lemma 3.4 and the fact that
□ has a single-conclusion premise ensures that good suffixes are preserved. 2

Theorem 5.14 If a sequent σ has a (single-conclusion) nIM-proof, then it has
a (single-conclusion) cIM-proof.

Proof. Let π be a (single-conclusion) nIM-proof of σ. First note that π contains
only finitely many sequents, as each such sequent only contains formulas in the
finite set Cl(σ). Now let π′ be the derivation obtained from π by cutting off
each branch after the first successful repeat (if it exists). We prove that π′ is
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finite. Suppose, for contradiction, that it is not. By König’s lemma, π′ then
has an infinite branch ρ. Then ρ is also an infinite branch of the proof π, and
thus it must have a good suffix ρ′. However, as ρ′ contains only finitely many
sequents, it follows that ρ′ must contain a successful repeat. This contradicts
that ρ is an infinite branch of π′. Thus π′ is a (single-conclusion) cIM-proof.2

From soundness of cIM (Theorem 4.3) and the two completeness results
(Corollary 5.8 and 5.12) for nIM, we then obtain the following result.

Corollary 5.15 The calculus cIM and its single-conclusion version are sound
and complete for IMK, IMt and IMf . In particular, we have IMK = IMf = IMt.

6 Discussion

We close the paper by summarising some natural adaptions of the system cIM
and possible interpretations of the language LIM.

6.1 Intuitionistic temporal logic

The system cIM can be adapted to a sound and complete system cIMs with
respect to serial models and total functional models. 7 The modal rule □ is
replaced by the rule:

Γ ⇒ ∆0

Π,□Γ ⇒ □∆,Σ
□s

where ∆0 ⊆ ∆ and |∆0| ≤ 1. As in Section 5.3, completeness of the non-
wellfounded calculus with respect to total functional frames is shown by proof-
search on indexed sequents. The choice rule Cf is adapted so as to allow a
right premise with an empty consequent in case the conclusion contains no
□-formula. As a result, each world in the induced canonical model necessarily
has a modal successor, so the obtained countermodel will be total functional.

Completeness for total functional models induces an interpretation of the
language LIM as an intuitionistic version of linear-time temporal logic (LTL).
For each world w, the unique modal successor R(w) may be interpreted as
its temporal successor. The modal operator □ is interpreted as the ‘next’
operator X and the master modality □∗ as the ‘henceforth’ operator. In contrast
to classical LTL, the evaluation of a formula Xφ at world w does not depend
solely on R(w), but also on R(v) for all worlds v ≥ w. As we have no confluence
condition on ≤ and R, classical temporal tautologies such as X(φ ∨ ψ) →
(Xφ∨Xψ) do not hold in this setting. The obtained temporal logic is therefore
weaker than those considered in [4,1].

6.2 Intuitionistic common knowledge

Jäger and Marti introduce an intuitionistic version of common knowledge logic
in [10] employing a polymodal extension of the language LIM with finitely many
box operators □0, . . . ,□n. The formula □iφ is read as agent i knows φ and □∗φ as
φ is common knowledge. This language is interpreted over triangle models with

7 We call a model (W,≤, R, V ) serial if the relation R is serial and total functional if R is
both serial and functional.
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a modal relation for each i ≤ n. Jäger and Marti present a finitary calculus
for this logic based on an induction rule, which is complete for the class of
triangle models and can be extended to complete calculi for reflexive models
and S4-models. The proof of completeness, however, makes essential use of the
cut rule, and a cut-elimination theorem is not given.

The calculus cIM can be adapted to the polymodal language by incorporat-
ing rules

Γ ⇒ φ

Π,□iΓ ⇒ □iφ
a,∆

□i

for each i ≤ n, and appropriate modification of the rules for □∗. The resulting
system cIMp is easily shown to be sound and complete with respect to (poly-
modal) triangle models using the presented methods and appropriate adaption
of the choice rule Ct. Moreover, cIMp (and, as it happens, cIM) can be extended
to account for reflexive and for S4-models. For reflexive models we add for each
i the rule □T

i below to cIMp, and for S4-models we additionally replace the rules
□i by □S4

i :
Γ, φ⇒ ∆

Γ,□iφ⇒ ∆
□T
i

□iΓ ⇒ φ

Π,□iΓ ⇒ □iφ,Σ
□S4
i

To establish completeness, the choice rule Ct needs only be adapted for S4-
models, which is given by simply replacing Γ by □iΓ in the right premises of
(the polymodal) Ct. As cIMp and its extensions are cut-free and analytic, they
may be considered an improvement of Jäger and Marti’s work. Whether cIMp

can be adapted to account for S5-models is unknown to us.

6.3 Future work

We have presented cyclic calculi for intuitionistic modal logic with □ and the
master modality □∗. Two natural directions for further research are to extend
the language by diamonds, or to allow for more fixed point operators. Concern-
ing the former, note that □ and ♢ are not interdefinable in the intuitionistic
setting. As a result, obtaining monotonicity in the presence of diamond op-
erators requires other confluence conditions that are less robust than triangle
confluence with respect to proof-search. It seems that more complex calculi
are needed in this case, such as a nested or labelled calculi [20,8,5]. With re-
spect to adding more fixed points, the current work seems to generalise more
readily. A natural candidate in this regard is intuitionistic modal logic with □

and arbitrary least and fixed points. As triangle confluence still suffices in this
general case, proof-search can be carried out in a similar fashion as done here.

Another open question is the complexity of the validity-checking problem
for IMK. We conjecture that the validity problem has an EXPTIME upper
bound and suspect that a similar approach as taken in [18] works: translate
the calculus cIM into a parity game with a constant number of priorities. As
such a game can be decided in polynomial time in the size of the arena (due to
the fact that the number of priorities is constant [9]), and the size of the arena
is exponential in the size of the formula (by analiticity of cIM), an exponential
upper bound follows. Whether the lower bound is also exponential is unclear.
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Appendix

A The single-conclusion calculus

Γ, φu ⇒ φa id
Γ,⊥u ⇒ ∆

⊥

Γ, φu, ψu ⇒ ∆

Γ, φ ∧ ψu ⇒ ∆
∧L

Γ ⇒ φu Γ ⇒ ψu

Γ ⇒ φ ∧ ψu ∧R

Γ, φu ⇒ ∆ Γ, ψu ⇒ ∆

Γ, φ ∨ ψu ⇒ ∆
∨L

Γ ⇒ φu
i

Γ ⇒ φ0 ∨ φu
1
∨iR

Γ, φ→ ψu ⇒ φu Γ, ψu ⇒ ∆

Γ, φ→ ψu ⇒ ∆
→L

Γ, φu ⇒ ψu

Γ ⇒ φ→ ψu →R

Γ, φu,□□∗φu ⇒ ∆

Γ,□∗φu ⇒ ∆
□∗L

Γ ⇒ φu Γ ⇒ □□∗φa

Γ ⇒ □∗φa □∗R

Γ ⇒ ∆u

Γ ⇒ ∆
u

Γ ⇒ φf

Γ ⇒ φu f

Γ ⇒ φa

Π,□Γ ⇒ □φa □

Table A.1
The single-conclusion version of IM, where |∆| ≤ 1.

B Soundness of the cyclic calculus

We present the omitted proofs from Section 4.

Lemma B.1 If the conclusion of a rule instance r of IM is invalid, then there
exists a premise of r that is invalid.

Proof. Straightforward by inspection of the rules. 2

Lemma B.2 If σ has a formula in focus and is invalid, then there exists a
natural number n such that σ(n) is invalid.

Proof. Let σ be an invalid sequent with a formula in focus. Then there exists a
formula □j□∗φf ∈ ∆σ for j ∈ {0, 1}, and a pointed model (M,w) withM,w ̸|= σ.
So in particular M,w ̸|= □j□∗φ. If j = 0, then there exists a world v with wR̃∗v
and M,v ̸|= φ. Since ≤ is reflexive there are worlds u0, . . . , u2n such that
u0 = w, u2n = v and for all 0 ≤ i < 2n holds that if i is even, then ui ≤ ui+1

and if i i odd, then uiRui+1. Therefore wR̃nv, implying that M,w ̸|= □nφ.
If j = 1, then there is a world v with wR̃v and M,v ̸|= □∗φ. By the previous
case we have that M,v ̸|= □nφ for some n. Hence M,w ̸|= □□nφ. Therefore
M,w ̸|= σ(n) for some natural number n. 2
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Lemma B.3 Suppose
σ1 · · · σn

σ r

is a rule instance of IM. If σ is invalid, then there is an i such that σi is invalid.
If both σ and σi have a formula in focus then, moreover,

µ(σi) ≤ µ(σ),

where the inequality is strict if r = □∗R and the principal formula is in focus.

Proof. By Lemma B.1 it suffices to only consider the case where both the
conclusion and at least one premise have a formula in focus. We first treat the
case that the formula in focus is not principal. Then r /∈ {→R,□}, as this would
contradict the existence of a premise with a focused formula. By inspection of
the rules, note that then every premise must have a formula in focus, and so
the following is a correct rule instance of r.

σ1(µ(σ)) · · · σn(µ(σ))

σ(µ(σ))
r

By Lemma B.1, since σ(µ(σ)) is invalid, there exists a premise σi(µ(σ)) that
is invalid. Hence σi is invalid and µ(σi) ≤ µ(σ).

Now suppose that the formula in focus is principal in r. Then r = □∗R or
r = □. In the first case, σ is of the form Γ ⇒ □∗φf ,∆ with premises σ1 and σ2
given by Γ ⇒ φu,∆ and Γ ⇒ □□∗φf ,∆, respectively. As there exists a pointed
model (M,w) that falsifies σ(µ(σ)), w has an intuitionistic successor v such
that M,v |= Γ and M,v ̸|= □∗φ ∨ □µ(σ)φ ∨

∨
∆−. If µ(σ) = 0, then M,v ̸|= φ,

so (M,v) falsifies the left premise σ1. By Lemma 3.2, σ1 does not have a
formula in focus, and so the statement of the lemma holds. If µ(σ) > 0, then
M,v ̸|= □□µ(σ)−1φ. Hence (M, v) falsifies σ2(µ(σ)− 1). So σ2 is invalid and we
have µ(σ2) < µ(σ).

In the second case, the conclusion σ is of the form Π,□Γ ⇒ □□∗φf ,Σ and the
single premise σ1 of the form Γ ⇒ □∗φf . Note that invalidity of σ(µ(σ)) implies
the invalidity of

∧
Γ− → □µ(σ)φ, which in turn implies invalidity of σ1(µ(σ)).

So σ1 is invalid and we have µ(σ1) ≤ µ(σ). 2

Theorem B.4 (Global soundness) If there is a cIM-proof of a sequent σ,
then σ is valid over the class of bi-relational models.

Proof. Let π be a cIM-proof of σ and suppose for contradiction that σ is
invalid. By repeatedly applying Lemma B.3 we obtain a path of invalid sequents

ρ = σ1, σ2 . . . , σn

through π such that σ = σ1 and σn is a leaf. As σn cannot be an axiom and
π is a proof, there exists some σi such that (σi, σn) is a successful repetition.
Then the path from σi to σn always has a formula in focus and passes through
at least one instance of □∗R in which the formula in focus is principal. Hence,
by construction, we have µ(σn) < µ(σi), contradicting that σn = σi. 2



18 Intuitionistic Master Modality

References

[1] Afshari, B., L. Grotenhuis, G. E. Leigh and L. Zenger, Ill-founded proof systems for
intuitionistic linear-time temporal logic, Automated Reasoning with Analytic Tableaux
and Related Methods 14278 (2023), pp. 223–241.

[2] Balbiani, P., J. Boudou, M. Diéguez and D. Fernández-Duque, Intuitionistic linear
temporal logics, ACM Trans. Comput. Logic 21 (2019).

[3] Boudou, J., M. Diéguez and D. Fernández-Duque, A decidable intuitionistic temporal
logic, in: V. Goranko and M. Dam, editors, 26th EACSL Annual Conference on
Computer Science Logic (CSL 2017), Leibniz International Proceedings in Informatics
(LIPIcs) 82 (2017), pp. 14:1–14:17.

[4] Boudou, J., M. Diéguez and D. Fernández-Duque, Complete intuitionistic temporal logics
for topological dynamics, Journal of Symbolic Logic 87 (2022), pp. 995–1022.

[5] Das, A. and S. Marin, On intuitionistic diamonds (and lack thereof), in: International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods,
Springer, 2023, pp. 283–301.

[6] Demri, S., V. Goranko and M. Lange, “Temporal Logics in Computer Science:
Finite-State Systems,” Cambridge Tracts in Theoretical Computer Science, Cambridge
University Press, 2016.

[7] Fernández-Duque, D., The intuitionistic temporal logic of dynamical systems, Logical
Methods in Computer Science 14 (2018).

[8] Girlando, M., R. Kuznets, S. Marin, M. Morales and L. Straßburger, Intuitionistic S4 is
decidable, in: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), IEEE, 2023, pp. 1–13.
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