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Chapter 1

Introduction

Cryptography is the art of keeping information private. This is especially handy
and desirable if the information is exchanged over the Internet, but also when
paying with your debit card instead of by cash.

To achieve privacy, we use encryption: before sending our data, we use an
algorithm that transforms the data into a random-looking string of ones and zeros
using a secret key. Upon receipt, this random-looking string can be decrypted to
recover the message we sent. The most efficient way to encrypt data is by an
algorithm that uses the same secret key to encrypt and decrypt the data, this is
called symmetric cryptography.

In many situations, we need encryption when communicating with somebody
we have never met before (think of a new vendor on the internet, or even visiting
a new website). For this, we use asymmetric cryptography, also known as public-
key cryptography. In public-key cryptography, everybody has two keys: a private
key, which is kept secret at all times, and a public key, which everyone can see.
The public key can be used by anyone to encrypt a message, but only the person
holding the secret key (that is, the intended recipient) can decrypt the message.

The ElGamal protocol. A fundamental public-key cryptography protocol is
the Diffie–Hellman key exchange [DH76], which we will return to in Section 4.1.1.
For now, we will take as an example the ElGamal encryption protocol [ElG84].
Suppose Anouk wishes to make it possible for others to contact them. Anouk
selects a prime p, which defines a finite group ((Z/pZ)×, ·), a generating ele-
ment g ∈ (Z/pZ)×, and a random exponent a ∈ {1, . . . , p − 1} that will be the
secret key. Anouk’s public key will be ga, computed mod p (the public key should
also include p and g). If Bas wants to send a message m ∈ (Z/pZ)× to Anouk,
then Bas can generate a random b ∈ {1, . . . , p− 1}, compute gb mod p, and send
to Anouk (gb, (ga)b ·m). Anouk can decrypt the encrypted message from (c1, c2)
by computing c2 · c−a1 .

One property we certainly wish for is that nobody can impersonate either

3



4 Chapter 1. Introduction

of the communicating parties: that nobody who only holds the public key can
recover the secret key. More formally, upon seeing ga, it should be hard to
recover a. This is the discrete logarithm problem (DLP). However, recovering
the secret key is not the only way the protocol might be attacked: rather than
recovering the secret key, an attacker might simply wish to recover the contents
of the message.

The ElGamal protocol is secure by definition (technically, IND-CPA secure) if
nobody can guess which message m was encrypted just by looking at the cipher-
text. More precisely, if Bas sends either message m0 or m1, it should be hard for
an attacker (without the secret key) to determine which message was encrypted.

Suppose we can guess thatm0 was the encrypted message. Then c2·m−1
0 = gab,

and c2 ·m−1
1 looks like a random element in (Z/pZ)×, and vice versa if m1 is the

message Bas sent. Therefore, a successful attacker can distinguish between tuples
of the form (g, ga, gb, gab) and (g, ga, gb, h) where h is just a random element.
Efficiently distinguishing between these tuples is the decisional Diffie–Hellman
problem (abbreviated DDH).

DDH is a stronger cryptographic assumption than DLP: if DDH is hard, then
DLP also is hard. In the group (Z/pZ)×, the DDH problem is in fact known to
be easy, and there is a very elegant distinguisher (see Example 4.1.5). We can
replace the group (Z/pZ)× by any cyclic group G with generator g.

We stress that the hardness of the DLP or DDH problem are not a prop-
erty of the group, but of the computational representation (how the elements
and the group law are represented). For instance, the groups (Z/(p − 1)Z,+)
and ((Z/pZ)×, ·) are both cyclic groups of order p − 1, but the DLP problem
is trivial in the former and believed to be hard in the latter. Indeed, the bi-
jection a 7→ ga for some fixed g is easy to compute one way, but difficult to
invert (this is exactly the DLP problem). For practical choices for computational
representations see the recommended groups and sizes in [CSA18].

However, DLP in (Z/pZ)× is only hard if we assume a classical model of
computation: that the eavesdropper who wants to know Bas’s message to Anouk
does not have a quantum computer. On a large-scale quantum computer, Shor’s
algorithm [Sho99] could be used to break all of the major public-key cryptography
protocols we use nowadays.

Post-quantum cryptography. The answer to this threat is quantum-safe
cryptography, also called post-quantum cryptography, which develops public-key
cryptography protocols that we believe to be secure even against attackers with
quantum computers. With billions of devices currently connected to the internet,
changing the encryption protocols in practice is a major undertaking. At the time
of writing in 2024, the cryptographic community has largely reached consensus
on which new protocols to use, and various government agencies are in various
stages of preparing standards : real-world implementations of these protocols that
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have been tested extensively to fine tune the parameters and avoid as many bugs
as possible. See for instance the NIST PQC standardization effort [AAC+22] or
the BSI recommendations [Fed22].

Most post-quantum protocols are based on hard computational problems in
one of the following five areas: lattices, codes, multivariate, hash, or isogenies.
The focus of this thesis is on isogeny-based cryptography. While it is admittedly
not a frontrunner for cryptographic solutions, studying isogenies is interesting to
have more variety in the computational assumptions we can use.

Isogeny-based cryptography. Isogenies are maps between elliptic curves,
which are certain abelian algebraic groups. Isogenies have remarkable algebraic
properties and structure (which we explore in Chapter 2), we can also think of
them as relations between elliptic curves. This allows us to define isogeny graphs :
the vertices are elliptic curves, and there is an edge between two elliptic curves
if they are isogenous. To make isogeny graphs finite, we restrict ourselves to el-
liptic curves defined over a finite field Fq, identify isomorphic elliptic curves, and
consider isogenies of specific degree.

Protocols based on computational assumptions related to isogenies are called
isogeny-based protocols. Such protocols are slower than other post-quantum pro-
tocols (and in particular, lattice-based protocols), but can offer other benefits:
small key sizes, non-interactive key exchange, or extra structure that allows us to
build advanced cryptographic protocols. Some isogeny-based protocols are:

• key exchange: SIDH [JD11, DJP14, SIK17];

• non-interactive key-exchange CRS and CSIDH [Cou06, RS06, CLM+18];

• signatures: SeaSign and CSI-FiSh [DG19, BKV19], GPS signatures [GPS17]
and SQISign [DKL+20];

• hash functions [CLG09];

• threshold schemes [DM20];

• oblivious transfer [ADMP20, LGD21].

The same abundance of structure has led to many successful breaks of some of
the aforementioned protocols. Most protocols in the SIDH family [JD11, SIK17]
were completely broken in an astonishing way [CD23, MM22, Rob23]. The new
protocols, such as SQISign [DKL+20], have only been studied for a couple of
years and need to build up public confidence. We stress that different choices of
isogeny graphs lead to vastly different computational assumptions, so breaking
one protocol does not break all isogeny-based protocols.
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CSIDH. One family of isogeny-based protocols that was completely unaffected
by the series of SIDH breaks in 2022, is the Commutative Supersingular Isogeny
Diffie–Hellman (CSIDH) family of protocols [CLM+18]. This framework was
first introduced by [Cou06, RS06] (the CRS protocol), extended by [DKS18], and
brought to cryptographically competitive speeds by [CLM+18].

Abstractly, the CRS and CSIDH protocols are based on group actions. As-
sume that a finite abelian group G acts on a finite non-empty set X freely and
transitively: denoting the group action by ⋆, then for any x, y ∈ X there exists a
unique g ∈ G with y = g ⋆x. By selecting a base point x ∈ X, there is a bijection
of sets G→ X given as g 7→ g ⋆ x.

Cryptographic group actions assume that the computation of g 7→ g ⋆ x is
efficient but the inverse is hard (starting from some element y ∈ X and computing
a g ∈ G such that y = g ⋆ x). Before we considered different computational
representations of a finite cyclic group of a fixed size and the DLP was easy in one
and believed hard in another. Here we have a set in bijection with a finite abelian
group, but the lack of an efficiently computable mapping y ∈ X 7→ g ∈ G means
that operations or problems which are easy in the group (such as composing two
elements) are impossible in the set (it is not equipped with any further structure).
In particular, it is hard to take two elements of the form a⋆x and b⋆x, and produce
the “composition” (ab) ⋆ x.

Group-action based protocols replace the generator g in the Diffie–Hellman
paradigm with some base point x ∈ X and the exponentiation with the group
action: Anouk and Bas’s secrets would be a, b ∈ G, public keys a ⋆ x, respec-
tively b ⋆ x, and the shared secret a ⋆ (b ⋆ x) = b ⋆ (a ⋆ x) = (ab) ⋆ x (more details
in Section 4.1.2). The computation is performed efficiently by acting by elements
of the group G, but the public keys and other elements are set elements with no
other structure. Working with the set elements (and not the group elements) is
believed to hide the group structure so that Shor’s algorithm no longer applies,
and so it is believed that the analogues of the DLP problem are hard.

In CRS and CSIDH, the group G is the class group Cl(O) of an imaginary
quadratic order O, and the set X is the set of isomorphism classes of elliptic
curves over Fq with complex multiplication (CM) by O with fixed trace. Acting
by a general element a ∈ G is in general very costly. In CSIDH, one chooses a set
of elements l1, . . . , ln ∈ G such that the action by each of these can be evaluated
cheaply, and only acts by elements of the form

∏
1≤i≤n l

ei
i . Elements are therefore

represented by exponent vectors (e1, . . . , en) ∈ Zn. Exponent vectors are chosen
from some finite key space K ⊂ Zn, which is a part of the parameters of the
protocol. The original protocol chose key spaces Km = {−m, . . .m}n for some m
but many other choices have been proposed since (see Section 4.3.4).

The shape of the key space has a big influence on the efficiency of the proto-
col. Especially so if we consider constant-time implementations: algorithms for
computing the group action a ⋆ E such that the running time does not depend
on the secret key a. A priori, the running time of computing the group action
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by li depends on i. Very simplistically, looking at the running time of the group
action would reveal how many times each li was used, but this is the secret key!

Organization of this thesis

In this thesis, we study cryptographic problems relating to the protocol CSIDH.
The topics we discuss range from cryptanalyzing some of the computational as-
sumptions, to fast constant-time implementations, to studying security while
giving an attacker physical access to the device that is running a CSIDH key
exchange. We also study isogeny graphs in general.

This thesis includes two background chapters and four chapters based on pub-
lished work [ACL+23, CSV20, BBC+21, BKL+23]. We organize the material as
follows: Chapter 2 contains background on elliptic curves, isogenies, and isogeny
graphs, focusing primarily on the mathematical backgrounds of isogeny-based
cryptography. Then we continue with Chapter 3 studying supersingular isogeny
graphs, based on the paper [ACL+23].

Afterwards, we leave the general world of isogeny graphs, and focus on the
isogeny protocol CSIDH [CLM+18]. We start with a self-contained and detailed
discussion of the protocol in Chapter 4, discussing the general framework, param-
eter choices, and implementations, to set the stage for the remaining chapters.

Chapters 5 to 7 are based on the papers [CSV20, BBC+21, BKL+23], deal-
ing with different aspects of the CSIDH protocol: analyzing some of the hard
problems underlying CSIDH (variants of the decisional Diffie–Hellman problem),
implementing CSIDH in constant time (not leaking information about secrets via
the timing of the computation), and developing a fault attack on CSIDH (roughly
speaking an attack on a physical device running the CSIDH protocol).

Below we give more details on what is included in the chapters based on the
papers [ACL+23, CSV20, CSV22a, BBC+21, BKL+23].

Adventures in Supersingularland. In Chapter 3, we take a look at super-
singular isogeny graphs in general. This chapter is based on the paper Adventures
in Supersingularland [ACL+23], which is joint work with Sarah Arpin, Catalina
Camacho-Navarro, Kristin Lauter, Joelle Lim, Kristina Nelson, and Travis Scholl.
Isogeny graphs have as vertices (isomorphism classes of) elliptic curves, and as
edges (equivalence classes of) isogenies between elliptic curves. We look at the su-
persingular isogeny graph Gℓ(Fp) of supersingular elliptic curves over Fp, together
with isogenies over Fp of degree ℓ (defined in Definition 2.6.3). We know many
of the graph properties of the graph: it is connected, ℓ + 1-regular, Ramanujan,
with short diameter (we collect these statements in Proposition 2.6.7).

We ask a number of previously unexplored questions about the properties that
are specific to supersingular elliptic curves. The vertices in Gℓ(Fp) that correspond
to j-invariants in the subfield Fp were studied by Delfs and Galbraith [DG16] in
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the context of a path-finding algorithm. Their algorithm finds a path to a vertex
in Fp and reduces the problem to finding a path among vertices in Fp, for which
subexponential quantum algorithms are known [BJS14]. We study not just the
vertices but the subgraph S ⊂ Gℓ(Fp) induced by the Fp-vertices, which we call
the spine. The graph S is intimately linked to the graph Gℓ(Fp) of curves defined
over Fp, together with degree-ℓ isogenies over Fp. We prove that the graph S is
formed from Gℓ(Fp) by a sequence of steps we call stacking, folding, and attaching.
The main result is that the structure of S is very close to that obtained by
identifying the Fp2-equivalent edges and vertices in Gℓ(Fp) and we determine a
full list of the subtle differences. This gives new structural understanding of the
Fp-vertices within the graph Gℓ(Fp).

There is an involution on Gℓ(Fp) induced by the Frobenius map x 7→ xp, which
we call the mirror symmetry. Note that the fixed vertices of the mirror symmetry
are exactly the vertices of S. We study the paths in the graph Gℓ(Fp) that are
fixed under this involution, and in particular experiment with the shortest such
paths: pairs of ℓ-isogenous conjugate j-invariants. We collect experimental data
on the distribution of these paths, and also on the diameter of the graph Gℓ(Fp).

In all our experiments, there is a clear bias depending on the congruence class
of the prime p mod 12, and we propose explanations based on the shape of S. Our
results help understand the properties of the Gℓ(Fp) beyond the general graph
properties listed above.

Breaking the Decisional Diffie–Hellman assumption. Chapter 5 is based
on the joint work with Frederik Vercauteren and Wouter Castryck, Breaking
the decisional Diffie-Hellman problem for class group actions using genus the-
ory [CSV20], and the extended version in [CSV22a].

In Chapter 5, we study the group-action analogue for the DDH problem for
CRS and CSIDH: distinguishing tuples of the form (x, a ⋆ x, b ⋆ x, ab ⋆ x) from
tuples of elements (x, a ⋆ x, b ⋆ x, c ⋆ x) for a, b, c ∈ G random. The group G is the
class group Cl(O) of some imaginary quadratic order O.

Very little is known about the structure of the group Cl(O): even computing
its order in practical instances is a highly non-trivial task [HM89, BKV19]. Pre-
viously it was assumed that the group structure of Cl(O) (such as the possible
existence of small subgroups) was sufficiently hidden in the group action and did
not influence the hardness of the computational problems.

We show that this assumption is not true, and that the hardness of the DDH
problem is related to the 2-part of the class group Cl(O). This 2-part is further
described by genus theory, which goes back to Gauss, and relates to ramified
primes in the order O. Each ramified prime m induces an assigned quadratic
character χ on Cl(O), and we show how to evaluate the character χ(a) from a
pair of elliptic curves E,E ′/Fq satisfying E ′ = a ⋆ E.

We compute this character using the Tate pairing on E and E ′, and a discrete
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logarithm computation in the group of m-th roots of unity in Fq. Because the
discrete logarithm computation is only efficient if m is small, we break the DDH
problem efficiently whenever there exists a non-trivial assigned character for a
small prime m dividing the discriminant O: a prime m satisfying m = O(log q).

Our attack approach works for both ordinary curves over Fq for q arbitrary
and supersingular curves over Fp for p prime. In the ordinary case, there is a
suitable non-trivial character for a density 1 set of quadratic orders O. In the
supersingular case, however, non-trivial characters only exist for p ≡ 1 (mod 4),
so the attack does not impact the CSIDH scheme, which uses p ≡ 3 (mod 4).

CTIDH: constant-time CSIDH. Chapter 6 is based on the paper CTIDH:
constant-time CSIDH [BBC+21], which is joint work with Gustavo Banegas,
Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange, Michael Meyer,
and Benjamin Smith. In this paper, we develop a new keyspace for CSIDH and
a new algorithm for constant-time evaluation of the CSIDH group action a ⋆ E.
Used separately, the new algorithm and the new key space do not produce faster
implementations, but together they produce speed records.

Recall that in CSIDH, we restrict to acting by select group elements l1, . . . , ln.
In the CTIDH key space, we split these elements into batches. Say one batch
includes elements l1, . . . lj, we then bound the 1-norm of the slice of the secret
vector (e1, . . . , ej). Using n batches is the CSIDH key space; using one batch was
studied in [BLMP19] but the overhead is massive, and in [NOTT23] but only for
variable-time computation.

In the CTIDH algorithm, we use the same code (which we describe below)
to evaluate the action by each of the elements in the same batch. In [BLMP19],
the authors noted that the isogeny evaluation has a Matryoshka doll structure:
the code for computing an ℓ-isogeny includes all the computation to compute
ℓ′-isogenies for any ℓ′ < ℓ. We extend this to the faster

√
élu formulas [BDLS20].

If the isogeny degrees are of similar size, the overhead from using Matryoshka-like
code is very small.

Combined, we split the primes into batches of roughly the same size, and use
the Matryoskha-isogeny algorithm (implemented in constant time) to compute
the isogeny evaluation per batch. So the Matryoskha-isogeny does not reveal
information on the particular prime within a batch. The batching key space
allows for smaller entries in the secret vectors, just as in [NOTT23]. Therefore,
we also save on the number of isogenies we need to compute. To achieve constant
time, we compute the same number of isogenies per batch. This number is public
and depends on the choice of batches, so again does not reveal information about
the exponent vector, that is, the secret.

The resulting CTIDH-512 protocol is almost twice as fast as the previous
constant-time implementations of CSIDH-512. We also give larger parameter
sets, and a greedy algorithm to look for (locally optimal) batch configurations.
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Disorientation fault attacks on CSIDH. The final Chapter 7 is based on
the paper Disorientation faults in CSIDH [BKL+23], which is joint work with
Gustavo Banegas, Juliane Krämer, Tanja Lange, Michael Meyer, Lorenz Panny,
Krijn Reijnders, and Monika Trimoska. In this chapter, we design a fault attack on
the CSIDH family of protocols. Our attack is different from other fault attacks
on isogeny protocols in that it does not attack a particular implementation of
CSIDH protocols, but is more general and affects most implementations. For
most implementations, the attack would only require a couple hundred successful
fault injections.

The fault attack assumes the following scenario: the attacker has (physical)
access to a device computing the group action E 7→ a ⋆E for a fixed secret key a,
and is able to induce a fault (error) in the computation. Implementations of
isogeny group-action protocols compute the action in rounds : in every round,
the algorithm selects a certain subset S ⊂ {1, . . . n} and an orientation s = ±1
fixed for the round, and the action by

∏
i∈S l

s
i is computed. A disorientation

attack assumes we are able to flip this orientation, and that instead the action
by

∏
i∈S l

−s
i is computed.

The faulted curve differs from a ⋆ E by the action of t =
∏

i∈S l
2s
i . But the

set S depends on the secret key a and the round in which it was computed (and
possibly previous rounds), and this depends on the secret a. We reconstruct the
whole secret a from collecting faulted curves from different rounds and finding
the corresponding sets S. To achieve this in practice, we optimize the strategy
and also develop meet-in-the-middle software pubcrawl to find the connecting
element t. We show that the recovery is practical for CSIDH-512 and even more
efficient for CTIDH-512, and discuss other implementations.

We also discuss more realistic scenarios in which one does not recover the
faulted curve directly, but a hash of it: the output is passed through a key-
derivation function. We show that our attack can be mounted in this situation as
well. Moreover, we take advantage of the quadratic twisting property of isogenies
to allow for efficient precomputation.

Finally, we discuss countermeasures to previous fault attacks, and give new
lightweight countermeasures.



Chapter 2

Background on isogeny graphs

In this section, we set the stage for isogeny graphs. We discuss the theory of el-
liptic curves over finite fields, isogenies, endomorphism rings, and isogeny graphs.

Details on group actions in isogeny-based cryptography, the CSIDH family of
protocols, implementation and engineering aspects, are treated in Chapter 4.

A comprehensive reference for elliptic curves and isogenies is [Sil09], which
contains all the proofs for Sections 2.1 and 2.2; Section 2.3 is based on [Wat69];
for complex multiplication theory in Section 2.4 the most complete resource is
[Cox89]; for isogeny volcanoes in Section 2.5 one can consult the original source
[Koh96] or the approach via modular polynomials by [Sut13b]. Section 2.6 is
partially based on the introduction to [ACL+23].

11
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2.1 Elliptic curves

Let p be a prime, n ∈ N a positive integer and set q = pn. Denote by Fq a finite
field with q elements, and choose an algebraic closure Fp ⊂ Fq ⊂ Fq. Assume
throughout that p > 3.

Definition 2.1.1 (Elliptic curve). An elliptic curve E over a finite field Fq is an
algebraic curve given by the projective closure of the affine curve with equation

E : y2 = x3 + ax+ b, a, b ∈ Fq, 4a3 + 27b2 ̸= 0. (2.1)

When we want to emphasize that E is defined over Fq, we write E/Fq. The
elliptic curve E can be given an abelian group structure such that the projective
point (0 : 1 : 0), called the point at infinity∞E, is the neutral element. The usual
group structure on E is called the tangent-and-chord law [Sil09, III.3].

The points of E are pairs P = (xP , yP ) ∈ (Fq)2 satisfying the equation (2.1),
together with the point at infinity. The geometric definition of the group law is:

P +Q+R =∞E ←→ P,Q,R lie on a line;

and can also be given by algebraic formulas that only depend on the coefficients
of the defining equation of E. The group law can be computed very efficiently:
if P = (xP , yP ) and Q = (xQ, yQ) are points on E, then we can compute the
coordinates of the point R = (xR, yR) using simple algebraic formulas. As an
example, in the generic case xP ̸= xQ, the coordinate xR is given as

xR =

(
yP − yQ
xP − xQ

)2

− xP − xQ. (2.2)

Rational points. The subgroup of rational points E(Fq) is given by the point
at infinity ∞E and points (x, y) of E with both coordinates in Fq. Since the
group law (see Equation (2.2)) is given by formulas in the coordinates of the
points and a, b ∈ Fq, the set of rational points forms a subgroup of E.

The subgroup of rational points E(Fq) is a finite group. More can be said:

Theorem 2.1.2 (Hasse-Weil). The number of rational points of E/Fq satis-
fies #E(Fq) = q + 1− t for some integer t such that |t| ≤ 2

√
q.

The integer t from Theorem 2.1.2 has a recurring role throughout the chapter.

Definition 2.1.3 (Trace of Frobenius). The trace of Frobenius is the integer t
satisfying #E(Fq) = q + 1− t.

Determining the number of points of E/Fq is equivalent to computing the
trace of Frobenius. This can be done very fast (in polynomial time in log p), for
instance using the SEA algorithm [Sch95].
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Figure 2.1: Rational points of E : y2 = x3+x+2 over F37. There are 40 rational
points, including ∞E (not shown). Points with diamond shape (5, 13), (15, 5)
and (28, 2) lie on the same line L : −11x+ 14y + 16 and thus sum to ∞ on E.

Further, there is a simple recurrence formula for the number of points over an
extension [Sil09, V, Exercise 5.13]: if tn = qn + 1−#E(Fqn) and t0 = 2, then

tn+2 = t1 · tn+1 − qtn. (2.3)

Definition 2.1.4. Let E/Fq be an elliptic curve with q + 1− t points.

• If p ∤ t then E is called ordinary,

• if p | t then E is called supersingular.

Change of coordinates. Any elliptic curve E/Fq admits different models:
different equations that describe the same algebraic group, and which can be
obtained by a change of coordinates. The short Weierstrass model (2.1) is the
simplest model one encounters in mathematics; in cryptography, other models,
such as the Montgomery curves (see Definition 4.2.5) are more popular.

For simplicity, let us only define the change of coordinates for short Weierstrass
models (2.1): any change of coordinates is a map

(x, y) 7→ (u2x, u3y) for some u ∈ Fq. (2.4)

It is easily seen that this transformation takes the equation y2 = x3 + ax+ b into
another short Weierstrass equation y2 = x3 + au−4x+ bu−6.

Elliptic curves that differ by a change of coordinates are called isomorphic; if
this change of coordinates can be defined over Fqn , they are said to be isomorphic
over Fqn . A change of coordinates as in Equation (2.4) is an isomorphism over Fqn
if and only if u ∈ Fqn . An isomorphism φ : E → E is called an automorphism.

The following quantity is always preserved by the coordinate changes in (2.4):
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Definition 2.1.5. For an elliptic curve E : y2 = x3 + ax+ b, the j-invariant is

j(E) = 1728
4a3

4a3 + 27b2
.

The j-invariant is an Fq-isomorphism invariant; an elliptic curve E is isomor-
phic to an elliptic curve E ′/F for any field F such that j(E) ∈ F [Sil09, III.1,
Prop. 1.4]. Curves that are Fq-isomorphic but not Fq-isomorphic are called twists.

Example 2.1.6 (Twists). Let d be a non-square in Fq and E/Fq be an elliptic
curve given by y2 = x3 + ax + b. Then Ẽ : y2 = x3 + d2ax + d3b is a twist of E.
The curves E and Ẽ are isomorphic over Fq2 by setting u = 1√

d
in Equation (2.4).

Remark 2.1.7. There are many equivalent definitions of supersingularity, see
[Sil09, V.3, Thm. 3.1]. Those make it easier to see that being ordinary or su-
persingular is a property of the j-invariant. So, we talk about supersingular (or
ordinary) j-invariants in Fq. All supersingular j-invariants already lie in Fp2 :
there are therefore only finitely many. The number of supersingular j-invariants
can be given as a simple formula in p and is about p/12 [Sil09, V.4].

2.2 Isogenies

Definition 2.2.1. Let E,E ′/Fq be elliptic curves. An isogeny φ : E → E ′ is a
non-constant Fq-morphism of algebraic curves satisfying φ(∞E) =∞E′ .

Equivalently, an isogeny φ : E −→ E ′ is an Fq-rational map of the form

(x, y) 7−→ (f(x), y · g(x)) (2.5)

for some rational functions f, g ∈ Fq(x). Any isogeny is a group homomorphism
of the elliptic curves E and E ′ as algebraic groups [Sil09][III, Theorem 4.8]. Note
that our definition restricts isogenies to be defined over the same field Fq as the
curves E and E ′. We choose for this restriction as those are the only isogenies
we will encounter in this thesis.

The degree of the isogeny φ is its degree as a morphism, and hence is multi-
plicative for composition of isogenies. The isogeny is separable if degφ = #kerφ;
if p | degφ, it may be that #kerφ < degφ, and such isogenies are inseparable.
Isogenies of degree 1 are isomorphisms.

Example 2.2.2. An isogeny over F37 of degree 5, visualized in Figure 2.2:

φ : E : y2 = x3 + x+ 2 −→ E ′ : y2 = x3 + 31x+ 4

(x, y) 7−→
(
x5 + 8x4 + 3x3 + 3x2 + 3x+ 14

x4 + 8x3 + 9x2 + 9x+ 3
, y · g(x)

)
.

The function g(x) is ommitted for brevity. The kernel of this isogeny is
kerφ = {∞E} ∪ {(x, y) : x2 + 4x+ 15 = 0} = {∞E, (8,±2) , (25,±1)} .
Since the degree is equal to the size of the kernel, this isogeny is separable.



2.2. Isogenies 15

Figure 2.2: Points on E(F37). The points in the kernel of φ from Example 2.2.2
are labelled with diamonds.

Separable isogenies have the following factorization property: if φ : E → E ′

and ψ : E → E ′′ are isogenies such that kerφ ⊃ kerψ, then there exists an
isogeny ρ : E ′′ → E ′ such that φ = ρ ◦ ψ.

E E ′

E ′′

φ

ψ ρ
(2.6)

Hence, separable isogenies are determined by their kernel, up to post-composition
with an isomorphism. Conversely, for any subgroup G ⊂ E, there exists an
isogeny φ : E → E ′ with kernel kerφ = G.

Inseparable isogenies enjoy a similar factorization property: if pr is the in-
separability degree of φ as a rational map E → E ′, then φ = ψ ◦ πrp where the

isogeny ψ is separable and πp : E → E(p) is the Frobenius map (x, y) 7→ (xp, yp).
We admit to a small abuse of notation as the power πrp is in fact a composition of

several isogenies between possibly different curves E → E(p) → E(p2) · · · → E(pr).
We will return to Frobenius in Definition 2.3.2.

The kernel kerφ is clearly a subgroup of E, and can be defined over the same
field as the isogeny φ; in the form Equation (2.5), the kernel can be defined by the
(radical of the) denominator of the function f(x). Vélu’s [Vél71], Kohel’s [Koh96]
or
√
élu [BDLS20] formulas are the most popular formulas to compute rational

maps of φ from a description of the kernel kerφ. More details on these formulas
are in Section 4.3.2. For now, we note that evaluating an isogeny using Vélu’s
formulas requires O(degφ) multiplications in the field over which the points in
kerφ are defined. This is in general an extension of large degree. Therefore, we
strive to select parameters such that also the points in the kernel of the isogenies
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are defined over Fp2 (or very small extensions).
Finding isogenies of elliptic curves is the foundational problem of isogeny-

based cryptography. Certifying existence amounts to point counting:

Theorem 2.2.3 (Tate). Elliptic curves E and E ′ over Fq are isogenous over Fq
if and only if they have the same number of points, i.e.,

trπE = trπE′ .

The isogeny path-finding problem, in its most basic form, is the following:

Remark 2.2.4 (Isogeny path finding). Given two isogenous elliptic curves E
and E ′ defined over Fq, find any isogeny φ : E → E ′.

For supersingular elliptic curves, the isogeny-path finding problem is equiva-
lent to that of computing their endomorphism rings [KLPT14, Wes22]. Endomor-
phism rings (Section 2.3) play a big role in studying isogenies of elliptic curves
(see Sections 2.4.1 and 2.5).

2.2.1 Torsion

The most basic isogenies are the scalar multiplication maps.

Example 2.2.5. Let E/Fq : y2 = x3 + ax + b. Multiplication by n for n ∈ Z is
denoted [n] : E → E and sends P 7→ [n]P . If n ̸= 0, this is an isogeny because
the group law is defined algebraically and over Fq. The degree is deg[n] = n2.

• Multiplication by 2 is a degree-4 map:

[2] : (x, y) 7→
(
x4 − 2ax2 − 8bx+ a2

4(x3 + ax+ b)
, y · g(x)

)
,

omitting the description of g(x) for brevity. Looking at the denominators,
we can read off the kernel ker([2]) = E[2] = {(x, y) : x3+ax+b = 0}∪{∞E}.

• Multiplication by 3 is a degree-9 map (lot denotes lower-order terms):

[3] : (x, y) 7→
(

x9 + lot

(3x4 + 6ax2 + bx− a2)2
, y · g(x)

)
.

Definition 2.2.6 (n-torsion). The kernel of the multiplication by n map is called
the n-torsion and is denoted as E[n]. We further set E[n∞] = ∪k∈N>0E[n

k].

The points of E[n] may have coordinates in a large extension of Fq; the sub-
group of rational n-torsion is denoted by E(Fq)[n] = {P ∈ E(Fq) : [n]P =∞E}.
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For E/Fq, the structure of E[n] is well-understood using E[ab] ∼= E[a]× E[b]
if (a, b) = 1, and using [Sil09, III., Cor. 6.4.]:

E[n] ∼=


Z/nZ× Z/nZ, if p ∤ n;
Z/peZ, if n = pe and p ∤ t;
1 if n = pe and p | t.

From this, we can further deduce:

Corollary 2.2.7. For any q and any E/Fq, there exist integers d1 | d2 s.t.

E(Fq) ∼= Z/d1 × Z/d2.

Proof. For any n, we have E(Fq)[n] ⊂ E[n]. Now take n = #E(Fq).

We will re-derive this statement – and more – as a consequence of Lenstra’s
theorem on endomorphism rings Theorem 2.3.6: for supersingular elliptic curves
in Example 2.3.7 and for ordinary curves in Section 2.5.3.

Finally, we set

E(Fq)[n∞] = E(Fq) ∩ E[n∞]. (2.7)

As we will see in Section 2.5, the structure of the torsion groups E(Fq)[n∞] is
very tightly bound to the properties of n-isogenies of E.

2.2.2 Dual isogenies

Proposition 2.2.8 ([Sil09, III.6, Theorem 6.1]). For any isogeny φ : E → E ′,
there exist an isogeny φ̂ : E ′ → E with

φ̂ ◦ φ = [degφ].

Definition 2.2.9. The isogeny φ̂ from Proposition 2.2.8 is called the dual isogeny.

Proof. In the separable case, the following (almost identical) proofs of Proposi-
tion 2.2.8 are useful. Since #kerφ = degφ, we have kerφ ⊂ E[degφ], and:

• the isogeny [degφ] factors through the isogeny φ, from which we immedi-
ately obtain that φ̂ is again Fq-rational;

• if E[degφ] = ⟨P,Q⟩ is generated by two points P,Q, precomposing the
isogeny ψ : E ′ → E ′′ with kernel ⟨φ(P ), φ(Q)⟩ with φ we obtain an isogeny
with kernel E[degφ], and therefore there exists an isogeny ρ : E ′′ → E such
that ρ ◦ψ ◦φ = [degφ], and we can set φ̂ = ρ ◦ψ; from which we obtain an
explicit description of the kernel of a dual isogeny.
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Note that the dual isogeny has the same degree since deg([degφ]) = (degφ)2.

Definition 2.2.10. Let N ∈ Z be coprime to p. An isogeny φ : E → E ′ is called:

1. cyclic, if kerφ is a cyclic subgroup of E;

2. an N-isogeny, if it is cyclic of degree N .

Lemma 2.2.11. The dual φ̂ of an N-isogeny φ is again an N-isogeny.

Proof. As the dual isogeny has the same degree, we only need to check that the
kernel of φ̂ is cyclic. As φ is cyclic, the kernel of φ̂ is generated by some P ∈ E[N ].
Let Q be a point on E such that ⟨P,Q⟩ = E[N ]. The dual isogeny φ̂ has kernel
ker φ̂ = ⟨φ(P ), φ(Q)⟩ = ⟨φ(Q)⟩ as φ(P ) =∞E′ , and the claim follows.

If ℓ is a prime, any isogeny of degree ℓ is cyclic.

2.2.3 Equivalent isogenies

Finally, we focus on a small discrepancy which makes the definitions of all isogeny
graphs rather complicated. Being isogenous is a symmetric relation thanks to the
existence of dual isogenies, so we would like to identify isogenies with their duals.
At the same time, we wish to view isogenies as objects defined by their kernels, and
post-composing with an automorphism of the target curve clearly does not change
the kernel of the isogeny (we return to this in Section 2.6). But combining these
two identifications causes a minor headache for curves with extra automorphisms.

Definition 2.2.12 (Equivalent isogenies). Two separable isogenies φ : E → E ′

and ψ : E → E ′′ with E ′ ∼= E ′′ are equivalent if φ = ρ ◦ ψ for some ρ : E ′′ → E ′

of degree 1. We write φ ∼ ψ.

Equivalent isogenies have the same kernel, and the target curves are isomor-
phic. But looking at the identification of isogenies with their duals, the symmetric
relation is broken for elliptic curves with j-invariants j = 0 and j = 1728:

Example 2.2.13 (Automorphisms.). If we precompose an isogeny φ : E → E ′

with an automorphism ρ of E, then we obtain an equivalent dual isogeny:

φ̂ ◦ ρ = ρ̂ ◦ φ̂ ∼ φ̂

Elliptic curves E with j(E) ̸= 0, 1728 satisfy Aut(E) = {±1}. Precomposing
with either of these automorphisms does not change the kernel of an isogeny,
and so φ ∼ φ ◦ ρ under Definition 2.2.12. Therefore, the mapping identifying an
isogeny with its dual is one-to-one. However:
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1. The elliptic curves with j(E) = 1728 admit an automorphism of order 4.
In the model E1728/Fq : y2 = x3 + x and with i =

√
−1 ∈ Fq, such an

automorphism is given as ι : (x, y) 7→ (−x, iy).
Therefore, if i ∈ Fq, then there are twice as many inequivalent isogenies
from E1728 than there are inequivalent isogenies with E1728 as target. This
happens whenever Fq ⊃ Fp2 or whenever p ≡ 1 mod 4.

2. The elliptic curves with j(E) = 0 admit an automorphism of order 6. In the
model E/Fq : y2 = x3 + 1 and with ζ6 ∈ Fq satisfying ζ36 = −1 a primitive
6-th root of unity, such an automorphism is given as ω : (x, y) 7→ (x, ζ6y).

Therefore, if ζ ∈ Fq, then there are three times as many inequivalent iso-
genies from E than there are inequivalent isogenies with E as target. This
happens whenever Fq ⊃ Fp2 or whenever p ≡ 1 mod 3.

Remark 2.2.14 (Identifying edges in isogeny graphs.). In the following sections,
we will define many different isogeny graphs, and all will require us to choose
some identification of equivalent isogenies. To agree with the definition via roots
of modular polynomials in Section 2.6.1, we will use Definition 2.2.12.

2.3 Endomorphism rings

Definition 2.3.1. An endomorphism of E is an isogeny φ : E → E or the zero
map [0] : E → E.

The zero map [0] is not an isogeny (because it is a constant morphism) but we
promote the zero map to an endomorphism so that the set of all endomorphisms
of E has a ring structure. The addition on endomorphisms is given pointwise
and multiplication is the composition of isogenies. Because we insisted that an
isogeny needs to be defined over the field of definition of E, that is, over Fq, our
endomorphisms form the rational endomorphism ring

EndFq(E) = {isogenies φ : E → E over Fq} ∪ {0}. (2.8)

Studying the ring EndFq(E) is natural in isogeny-based cryptography, but E
may admit further endomorphisms when considered as a curve over some exten-
sion field. We will see an example of this in Example 2.3.8. Considering E as
an elliptic curve E/Fq, its endomorphism ring is denoted by End(E) and will in
general not play a role in our discussion.

Beyond the scalar multiplication maps, one endomorphism which is always
present is the Frobenius endomorphism.

Definition 2.3.2. The Frobenius endomorphism for E/Fq is the isogeny

πq : E −→ E

(x, y) 7−→ (xq, yq).
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The Frobenius endomorphism depends on the field of definition of E and is
an isogeny of degree deg π = q. If q is clear form the context, we write simply π.

Proposition 2.3.3 (Rational points). A point P ∈ E is defined over Fqn if and
only if πn(P ) = P . That is, the groups E(Fqn) are precisely the kernels of πn−1.

Theorem 2.3.4 ([Sil09, V., Thm. 2.3.1.]). Let E/Fq be an elliptic curve and
write #E(Fq) = q + 1− t. The Frobenius endomorphim π = πE satisfies

π2 − [t]π + [q] = 0 in EndFq(E).

Therefore, we can identify the Frobenius with an algebraic integer that is a
root of the polynomial x2 − tx + q. This explains why the value t from Defini-
tion 2.1.3 is called the trace of Frobenius: it agrees with the usual notion of trace
of an algebraic number. From Theorem 2.1.2, |t| ≤ 2

√
q, and so t2 − 4q ≤ 0.

Theorem 2.3.5 (Waterhouse [Wat69]). Let E/Fq be an elliptic curve and con-
sider its rational endomorphism ring EndFq(E). There are only two possibilities:

1. If t2 − 4q < 0 then Q(π) is an imaginary quadratic field and

EndFq(E) ↪→ Q(π) = Q(
√
t2 − 4q)

as an order O containing Z[π].

2. If t2 − 4q = 0 then π = ±√q = ±pn/2 and

EndFq(E) ↪→ Bp,∞

as a maximal order O in a quaternion algebra Bp,∞ ramified at p and ∞.

Elliptic curves satisfying End(E) = O forO an order in an imaginary quadratic
field are said to have complex multiplication (CM) by O.

There is a very tight connection between the group structure of E(Fq) and
the endomorphism ring of E/Fq.

Theorem 2.3.6 (Lenstra [Len96, Theorem 1]). Let E/Fq be an elliptic curve,
let π = πE be the Frobenius of E, and let O = EndFq(E). Then

1. If π ̸∈ Z, then E(Fqn) ∼= O/(πn − 1).

2. If π ∈ Z, then E(Fqn) ∼= Z/(πn − 1)⊕ Z/(πn − 1).

Example 2.3.7 (Supersingular curves over Fp). Let E/Fp be supersingular, and
let t be its trace. The only t with |t| ≤ 2

√
p such that p | t is t = 0 (since we

assume p ≥ 5). Therefore, we are in the first case of Theorem 2.3.5.
We can identify the Frobenius with π =

√
−p and so the endomorphism ring

is either Z[
√
−p] or Z[1+

√
−p

2
], as no other orders contain Z[

√
−p].
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The group of rational points on E is either cyclic E(Fp) ∼= Z/(p+1)Z or cyclic
except for the 2-torsion: Z/2Z×Z/(p+1

2
)Z. One can distinguish between the two,

following [DG16]: if π−1
2
∈ EndFp , then [2] divides π − 1 in the endomorphism

ring, which happens if and only if E[2] ⊂ E(Fp). A more general case will be
discussed in Section 2.5.3.

Further, we consider the base change E/Fp2 and denote its new trace t2. From
Equation (2.3), we see that t2 = 02 − 2p = −2p, so t22 − 4q = 0, and we are in
the second case of Theorem 2.3.5. We note that Frobenius then acts as a root
of x2 + 2px + p2 = (x + p)2, that is, as the scalar π = [−p]. Combining with
Theorem 2.3.6, we see that

E(Fp2) ∼= Z/(−p− 1)× Z/(−p− 1) = Z/(p+ 1)× Z/(p+ 1) (2.9)

Example 2.3.8. We give examples for the various cases in Theorem 2.3.5.

1. The elliptic curve E/F31 given by E : y2 = x3 + x + 4: by counting points
(in our favorite computer algebra system), we deduce

#E(F31) = 26 = 1− 6 + 31,

so t = 6 and t2 − 4q = −88 ̸= 0. The Frobenius satisfies π2 − 6π + 31 = 0,
so π = 3 ±

√
−22. Therefore, EndF31(E) is an order in Q(π) = Q(

√
−22)

containing Z[π] = Z[
√
−22]. But Z[

√
−22] is already maximal, so

EndF31(E) = Z[
√
−22].

2. The elliptic curve E/F31 given by E : y2 = x3 − x: counting points gives

#E(F31) = 32 = 1 + 0 + 31

and so t = 0 and t2−4q ̸= 0. So EndF31(E) is an order in Q(π) = Q(
√
−31)

containing Z[
√
−31].

Because E[2] = {(x, y) : x3 − x = 0} ∪ {∞E}, we see that all of E[2] is
defined over F31, and because of factorization of isogenies, [2] | π − 1.
Therefore, there exist ω ∈ EndF31(E) with ω = π−1

2
, corresponding to the

algebraic element −1+
√
−31

2
. As the order Z

[
−1+

√
−31

2

]
is already maximal,

EndF31(E)
∼= Z

[
1 +
√
−31

2

]
.

3. The elliptic curve E/F312 given by E : y2 = x3 − x: counting points we get

#E(F312) = 1024,
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and so t = −62 = −2 · 31 = −2 · √q, and t2− 4q = 0. From Theorem 2.3.5,
we see that EndF312

(E) is a maximal order in the quaternion algebra B31,∞.
One can show that it is isomorphic to the maximal order

EndF312
(E) ∼= Z+ Zi+ Z

1 + j

2
+ Z

i+ ij

2
,

with i2 = −1 and j2 = −31 and ij = −ji.

2.4 Complex multiplication theory

Assume now that we are in the first case of Theorem 2.3.5: let E be an elliptic
curve over Fq with q+1− t points and assume that t2−4q ̸= 0, so EndFq(E) = O
is an order in an imaginary quadratic field Q(π) and O contains Z[π]. This
assumption covers all ordinary elliptic curves, and all supersingular elliptic curves
over Fpk with k odd. For the latter, the most interesting case is that of E/Fp.

2.4.1 The group action

Isogenous curves have the same number of points (Theorem 2.2.3), hence the same
trace, but not necessarily the same endomorphism ring. Isogenies that preserve
the endomorphism ring come from invertible ideals in O. Proofs for the claims
in this section can be found in [Koh96] or [Wat69].

For any (nonzero) ideal a ⊂ O we can define a finite subgroup

E[a] = ∩α∈a kerα.

Definition 2.4.1. Let a be an ideal of O. The isogeny corresponding to a,
denoted by φa : E → E/E[a], is the separable isogeny with ker(φa) = E[a].

If we do not impose the condition that φa be separable, the isogeny with ker-
nel E[a] is only defined up to post-composition with purely inseparable isogenies.

Example 2.4.2. Take a prime ℓ and l = (ℓ, π− 1) ⊂ O. We want to identify the
isogeny corresponding to l. So we need to intersect

• ker[ℓ] = E[ℓ] the subgroup of ℓ-torsion points,

• and ker(π − 1) = {P : π(P ) = P} = {(x, y) : xq = x and yq = y} = E(Fq)
the group of rational points.

So E[l] = E[ℓ] ∩ E(Fq) = E(Fq)[ℓ], that is, the Fq-points in the ℓ-torsion. As
abelian groups, E[ℓ] ∼= Z/ℓZ× Z/ℓZ. So the action of l = (ℓ, π − 1) is given as:

1. If E(Fq)[ℓ] = E[ℓ], then φl is multiplication by ℓ,
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2. if E(Fq)[ℓ] = ⟨P ⟩, then φl is the ℓ-isogeny with kernel generated by any
rational ℓ-torsion point P ,

3. if E(Fq)[ℓ] = {∞E}, then φl is the identity.

For an invertible ideal a whose norm is not divisible by the characteristic p,
the degree of the isogeny is degφa = N(a).

Proposition 2.4.3. If a ⊂ O is an invertible ideal, then E/E[a] has the same
endomorphism ring O and trace t as E.

If a and b are in the same class in Cl(O), then

E/E[a] ∼= E/E[b] over Fq.

Denote

Eℓℓq(O, t) = { elliptic curves E/Fq : EndFq(E)
∼= O and tr(π) = t }/ ∼=Fq .

Away from j-invariants 0 and 1728, the curves in the set Eℓℓq(O, t) for t ̸= 0 can
be represented by j-invariants: the quadratic twist Ẽ has trace tr(Ẽ) = − tr(E),
so we have Ẽ ∈ Eℓℓq(O,−t). For j = 0 or j = 1728, there may be non-isomorphic
twists with the same trace. In the supersingular case over Fp, the twist of a
supersingular elliptic curve is again supersingular, so we represent Eℓℓp(O, 0) by
specific models of curves, for instance Montgomery models (Definition 4.2.5).

Theorem 2.4.4 (The CM group action). Let O be an imaginary quadratic or-
der and let p be a prime that is not inert in O. Assume further that t is such
that Eℓℓq(O, t) is non-empty.

For any E,E ′ ∈ Eℓℓq(O, t) there exists a unique class [a] ∈ Cl(O) such that

E ′ = [a] ⋆ E.

The group Cl(O) acts on Eℓℓq(O, t) freely and transitively by ([a], E) 7→ [a] ⋆ E.

This theorem is essentially due to Deuring [Deu41], our exposition follows
Waterhouse [Wat69, Thm. 4.5]. See also [Sch] for a discussion of the results.
The restriction to p not being inert comes from [Sch, Thm. 4.5]; it is a rare care
that only happens for supersingular curves for small p. In CSIDH (Chapter 4)
the order we are most interested in is Z[

√
−p], in which p is ramified.

2.4.2 CM graph

From now on, assume that the action of Cl(O) on Eℓℓq(O, t) is free and transitive.
Such actions are also called regular.

Suppose that ℓ ∤ t2− 4q and factor x2− tx+ q = (x− λ)(x− µ) mod ℓ, which
means that the two prime ideals above ℓ in O are (ℓ, π − λ) and (ℓ, π − µ).
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Now examine the repeated action of the ideal l = (ℓ, π − λ) on Eℓℓq(O, t).
Since the ideal is split and has norm ℓ, the action corresponds to a sequence of
ℓ-isogenies. If n is the order of [l] in Cl(O), then [ln] = [O] is principal and

E
l−→ [l] ⋆ E

l−→ [l] ⋆ ([l] ⋆ E) = [l2] ⋆ E
l−→ . . .

l−→ [ln] ⋆ E = E,

so the repeated action by l cycles back to E after n steps.

Remark 2.4.5. Because [l · l] = [(ℓ)] is principal, acting by [l] is the same as
traversing the cycle in the “opposite” direction.

From the main theorem of CM (Theorem 2.4.4) we immediately get:

Corollary 2.4.6. The isogeny graph obtained by taking the curves Eℓℓq(O, t) as
vertices and edges if and only if E2 = [l] ⋆ E1, is a union of cycles. The length of
each cycle is the order of l in Cl(O).

Note that we can make the graph undirected thanks to Remark 2.4.5. We
also consider a similar graph for several split ideals l1, . . . , ln lying above pairwise
different primes ℓ1, . . . , ℓn.

Definition 2.4.7. Fix the field Fq, trace t and order O and split ideals l1, . . . , ln
lying above pairwise different primes ℓ1, . . . , ℓn. Define the following graph G:

• the set of vertices is Eℓℓq(O, t);

• there is an undirected edge between [E1] and [E2] with label ℓi if and only
if E2 = [li] ⋆ E1.

Remark 2.4.8 (Expander graphs.). The graph G will be the conceptual basis for
the CSIDH key exchange [CLM+18], which we will study in Chapter 4. Under
the Generalized Riemann Hypothesis, the graph G defined in Definition 2.4.7 is
an expander graph [JMV09]: roughly speaking, random walks of relatively short
length have endpoints that are close to the uniform distribution on the vertices.

We reformulate this property in a simplified version for the action by ideals: If
the ideals li are chosen as all prime ideals in O lying above primes ℓi < log(|∆O|)c
for some c, then random walks in the graph G of length t = Õ(log |∆|) yield
nearly uniformly random elements in Eℓℓq(O, t).

2.5 Isogeny volcanoes

This section is partially based on the background section of [CSV20] and [Sut13b].
The kernel of an ℓ-isogeny is a subgroup of size ℓ. However, we have

E[ℓ] ∼= Z/ℓZ× Z/ℓZ,
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and so there are ℓ+ 1 different subgroups of size ℓ in E[ℓ], each of them defining
an ℓ-isogeny over some field. So, there are up to ℓ+1 isogenies of degree ℓ defined
over Fq. We saw in Section 2.4.2 that at most 2 of them correspond to invertible
ideals in EndFq(E). In this section, we study the remaining isogenies. We will
always mean inequivalent isogenies in the sense of Section 2.2.3.

2.5.1 Isogenies and conductors

Consider an isogeny φ : E → E ′ of degree ℓ. Isogenous elliptic curves have
the same trace (by Theorem 2.2.3), and so πE and π′

E are both roots of the same
polynomial x2−tx+q. Write O = EndFq(E) and O′ = EndFq(E

′). Then they can

both be identified with orders in the same quadratic field Q(π) = Q
√
t2 − 4q).

Both orders contain Z[π].
The isogeny φ can be used to explain how the two orders O and O′ relate

to each other. But first, we need a bit more information on imaginary quadratic
orders, for which the reader is encouraged to consult the exposition in Kohel’s
thesis [Koh96, Chapter 4].

All orders O in an imaginary quadratic field K are suborders of the maxi-
mal order OK with discriminant ∆K . For any order O, there exists a positive
integer f(O) ∈ N, called the conductor of O, such that ∆O = f 2∆K and

O = Z+ fOK .

From this description it is easy to see that, O ⊂ O′ if and only if f(O′) | f(O).
Therefore, the lattice of suborders of OK (with lattice assuming its “other” stan-
dard meaning, a partially ordered set in which every pair of elements has a unique
supremum) is anti-isomorphic to the lattice of positive integers, with divisibility.

Theorem 2.5.1 ([Koh96, Prop. 21]). Let E,E ′/Fq be elliptic curves. Suppose
there exists an ℓ-isogeny φ : E → E ′, and denote the Fq-rational endomorphism
rings of E and E ′ by O and O′, respectively. Then

1. either O = O′, in which case φ is called horizontal;

2. or [O : O′] = ℓ, in which case φ is called descending;

3. or [O′ : O] = ℓ, in which case φ is called ascending.

Note that a dual of an ascending isogeny is a descending isogeny, and vice
versa. One can only have an ascending isogeny if ℓ | f(O), that is, if the prime
ideal above ℓ is singular (that is, not invertible).

Proof. For any α′ ∈ O′, the isogeny φ̂ ◦α1 ◦φ is an endomorphism of E, so there
is a homomorphism of rings ιφ : O′ → O⊗Q as:

α′ ∈ O′ 7→ 1

degφ
· φ̂ ◦ α ◦ φ ∈ O ⊗Q (2.10)
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By construction, since degφ = ℓ, we have ℓι(O′) ⊂ O.We can identify ι(O′) with
its image in O ⊗ Q ∼= Q(

√
t2 − 4q); from now on we suppress writing ι. The

situation is symmetric (replacing φ with φ̂), so we obtain ℓO ⊂ O′, which implies

Z+ ℓ2O ⊂ Z+ ℓO′ ⊂ O.

Finally, we compare the conductors we get f(O) | ℓf(O′) and f(O′) | ℓf(O).

Remark 2.5.2 (Horizontal isogenies). Horizontal isogenies are precisely those
given by the class group action ([Koh96, Prop. 22], who cites Deuring [Deu41]).

2.5.2 Isogeny volcanoes

Theorem 2.5.1 shows that isogenies stratify elliptic curves, based on their endo-
morphism ring. So we consider all the elliptic curves with the same trace

Eℓℓ(t) = {E/Fq : trE = t}/ ∼=Fq (2.11)

=
⋃

O⊃Z[π]

Eℓℓq(O, t) (2.12)

Definition 2.5.3 (ℓ-isogeny “ordinary” graph). Let t be an integer, let Fq be a
finite field, and suppose that Eℓℓ(t) is non-empty. We define a graph Gq,ℓ(t):

1. the vertices are given by curves in Eℓℓ(t),

2. there is a (directed) edge between vertices represented by curves E and E ′

for every ℓ-isogeny between E and E ′.

We can make the graph undirected by identifying isogenies with their duals
everywhere except at vertices with j-invariants 0 and 1728, see the discussion
in Section 2.2.3. In the rest of the section, we restrict to the components not
containing these curves, and remark on the general case in Remark 2.5.6. Denote
by valℓ(n) the ℓ-adic valuation of n ∈ Z, that is, the largest power of ℓ dividing n.

Theorem 2.5.4 ([Koh96, Prop. 23]). Let V be any connected component of Gq,ℓ(t)
that does not contain curves with j-invariant = 1728 or j = 0. Then V is an
isogeny volcano: there exists an integer h such that we can partition V into dis-
joint sets V = V0 ⊔ V1 ⊔ · · · ⊔ Vh such that

• the subgraph induced by vertices in Vh is a cycle, and is called the surface,

• the vertices in V0 are called the floor,

• isogenies from surface to floor are descending,

• isogenies from floor to surface are ascending,
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• the subgraph of Vi for i ̸= h has no edges,

• if i < h, every Ei ∈ Vi has exactly one neighbor Ei+1 ∈ Vi+1,

• for i ̸= 0: every Ei ∈ Vi has ℓ+ 1 neighbors.

Moreover, the level of the volcano determines the endomorphism ring:

• the elliptic curves on level i all have the same endomorphism ring Oi, with
discriminant ∆Oi

= ℓ2(h−i)∆Oh
,

• the endomorphism ring Oh of the elliptic curves on the surface Vh is locally
maximal at ℓ: if ℓ is odd then ℓ2 ∤ ∆Oh

, while if ℓ = 2 and 4 | ∆Oh

then ∆Oh
/4 ≡ 2, 3 mod 4,

• the endomorphism ring O0 of the elliptic curves on the floor V0 satisfies
valℓ(∆O0) = valℓ(t

2 − 4q).

In particular, if ℓ is odd then h = ⌊1
2
valℓ(t

2 − 4q)⌋, while if ℓ = 2 then h may
be 1 less than this value. Therefore, for a tall volcano, a large power of ℓ needs to
divide the discriminant ∆π. The set Vh is called the surface (or the rim, or the
crater), the set V0 is called the floor. Note that some authors flip the labelling so
that V0 is the surface and talk about the depth of the volcano instead.

Note that the only horizontal isogenies are permitted at the surface of the
isogeny volcano. Indeed, after any descending isogeny, the primes above ℓ are no
longer invertible, and we cannot have horizontal isogenies by Remark 2.5.2.

V2

V1

V0

Figure 2.3: A 3-volcano from [CSV20]: height h = 2, together with its levels.
This corresponds to the case where the prime 3 splits in Oh, into two norm 3
prime ideals whose ideal-classes (which are each other’s inverses) have order 5.

Example 2.5.5 (Supersingular volcanoes). The supersingular volcanoes over Fp
were first studied by Delfs and Galbraith [DG16]. Such volcanoes are rather
modest. We always have ∆Z[π] = −p or −4p. So, for ℓ ̸= 2 we obtain disjoint
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Figure 2.4: Aerial view of the volcanoes of 2-isogenies of G2(F431).

cycles as in Section 2.4.2, for ℓ = 2 we obtain volcanoes of level at most 2. We
denote these graphs Gℓ(Fp), and will continue studying them in Chapter 3.

In Example 2.5.5, the curves on the surface admit 3 different 2-isogenies de-
fined over Fp. Since a 2-isogeny is rational if and only if its kernel point is rational,
the curves on the surface have full 2-torsion, and the curves on the floor only one
rational 2-torsion point. From Example 2.3.7, we see that they also have different
endomorphism rings: the isogenies from the surface are descending.

Remark 2.5.6. If j = 0 or j = 1728 do appear in V , then Theorem 2.5.4
remains “sufficiently valid” for our purposes; the only difference is that Gq,m(t)
may become directed, see Section 2.2.3. The endomorphism rings of the curves
with j-invariant 0 or 1728 have trivial class groups, so this remark only affects
suborders of (certain) number fields having class number 1. Such suborders are
usually not considered in isogeny-based cryptography, although they make an
appearance in the recent OSIDH protocol due to Colò and Kohel [CK20] and the
signature scheme SCALLOP [DFK+23].

2.5.3 Level structure

The last piece of information we need is how the levels of the volcano impact the
level structure of the elliptic curves: we will study the torsion groups Ei(Fq)[ℓ∞]
for any Ei ∈ Vi. All elliptic curves E ∈ Eℓℓ(t) satisfy #E(Fq) = 1 + q − t, so
setting v = valℓ(1− t+ q), we see that

Ei(Fq)[ℓ∞] = Z/ℓv1Z× Z/ℓv2Z with v1 + v2 = v.

First, let us note some general facts. We know that as groups

E(Fq) ∼= Z/n1Z× Z/n2Z

with n1 | n2 (see Corollary 2.2.7). Since the product n1n2 = 1− t+ q is fixed, we
deduce that we only need to determine the largest n1 such that E[n1] ⊂ E(Fq).

One restriction comes from the Weil pairing (for details, see [Sil09, III.8]):
if E[n] ⊂ E(Fq) then Fq contains a non-trivial n-th root of unity and so n | q− 1.
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Curves on the floor. First, we examine the curves E with endomorphism
ring O = Z[π]. Since this is the smallest order allowed, they are clearly all on the
floor of their respective volcanoes as no descending isogenies are possible.

Looking at the possible shape of the volcanoes, and noting that at most 2
isogenies can be non-descending, we deduce immediately that for odd ℓ, all curves
on the floor of any volcano have cyclic torsion

E0(Fq)[ℓ∞] = Z/ℓvZ.

An alternative reasoning is by using Theorem 2.3.6: we have the map

Z[π]→ Z/(1− t+ q)Z
π 7→ 1

which is a well-defined homomorphism of rings and factors through Z[π]/(π − 1)
since π2 − tπ + q 7→ 1 − t + q = 0 (remember that Z[π] ∼= Z[x]/(x2 − tx + q)).
Comparing the sizes we get that the group of rational points

E(Fq) ∼= Z[π]/(π − 1) ∼= Z/(1− t+ q)Z

is cyclic of size 1− t+ q. Therefore, E(Fq)[ℓ∞] = (Z/(1− t+ q)Z)ℓ = Z/ℓvZ.

Other levels. For other levels of the volcano, a similar direct homomorphism
of rings quickly becomes rather daunting.

Instead, we again use the trick of factoring isogenies from Equation (2.6) (in
the same way as in Example 2.3.7): for any n, we have E[n] ⊂ E(Fq) if and only
if π−1

n
∈ End(E). The following description is mentioned in [Koh96], we follow

the proof due to Wittmann [Wit01].
Write OK = Z[ω] for some generator ω. Since Z[π] ⊂ OK with conductor f

then Z[π] ⊂ Z+ fOK , and so we can write π = a+ fω for some integer a.
The order of conductor g is the order O = Z+ gOK = Z[gω]. Rewriting

π − 1

n
=
a− 1 + fω

n
=
a− 1

n
+
f

n
ω =

a− 1

n
+
f/g

n
(gω)

we see that π−1
n
∈ Og if and only if n | a−1 and n | f/g. The largest such integer

is clearly n1 = gcd(a− 1, f/g).
We conclude that for the elliptic curve with End(E) = O of conductor g | f ,

the group structure is E(Fq) ∼= Z/n1Z× Z/n2Z with n1 | n2 and:

n1 = gcd(a− 1, f/g), (2.13)

n1 | q − 1. (2.14)

Notice that a only depends on the choice of ω, and is therefore independent of
the level i. However, from Theorem 2.5.4, we see that curves on the same level of
the same volcano have the same conductor, and hence the same torsion groups.



30 Chapter 2. Background on isogeny graphs

Further, Equation (2.13) implies that as we go up the volcano, we are allowing
higher powers of ℓ in n1, because the ratio of conductors f/g increases. We explain
this further in Example 2.5.7; the general case is treated in Theorem 5.4.1 and is
due to [Len96], [MMS+06, Cor. 1] for m = 2 and [MST+07, Thm. 3] for m odd.

Example 2.5.7. Assume that the curves on the floor have End(E0) = Z[π] and
conductor f , assume that ℓ is odd, and that v = valℓ(1−t+q) is even. On the floor,
the ℓ∞-torsion is cyclic. Then, one step up from the floor, the quotient f/g = ℓ
is divisible by ℓ, so if ℓ | a− 1, we get full ℓ-torsion. Continuing up the volcano,
the torsion continues to “balance” itself, see Example 2.5.7.

level conductor group structure conditions
floor, i = 0 f Z/ℓvZ
i = 1 f/ℓ Z/ℓv−1Z× Z/ℓZ
i = 2 f/ℓ2 Z/ℓv−2Z× Z/ℓ2Z

...
i f/ℓi Z/ℓv−iZ× Z/ℓiZ i ≤ v/2

Z/ℓv/2Z× Z/ℓv/2Z i ≥ v/2
...

surface, i = h f = 1 Z/ℓv/2Z× Z/ℓv/2Z

Table 2.1: Group structure of elliptic curves on a volcano assuming curves in V0
have endomorphism ring Z[π], the prime ℓ is odd and v = valℓ(1− t+ q) is even.

Finally, we note that the constant a determining the torsion is not a mysterious
quantity. From [Koh96], we see that we can choose a = t/2 if ∆K ≡ 0 mod 4
and a = t−f

2
otherwise. Assume now that a = t/2 and ℓ is odd and remember

that v = valℓ(1− t+ q) and ℓ2h | f 2 | ∆π = t2 − 4q. We compute directly

(a− 1)2 =
t2 − 4t+ 4

2
=
t2 − 4q

2
+

4(1− t+ q)

2

and so the ℓ-adic valuation of a−1 connects the valuation of the number of points
and the height of the volcano since valℓ(a− 1) ≥ 1

2
min{2h+ valℓ(∆K), v}.

Remark 2.5.8 (Orientations). Còlo and Kohel [CK20] introduce the volcano
structure for supersingular elliptic curves over Fp2 . For such curves, the endo-
morphism ring End(E) is a maximal order in a quaternion algebra Bp,∞. As
any element in End(E) is quadratic, End(E) contains many imaginary quadratic
suborders O ⊂ End(E). Moreover, any imaginary quadratic order O can be
embedded into End(E) in multiple ways.

For an imaginary quadratic order O with field of fractions K, a field embed-
ding ι : K → Bp,∞ such that ι(O) ⊂ End(E) is called an orientation of E by O.
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An orientation ι is called primitive if ι(O) = ι(K) ∩ End(E). Suppose (E, ι)
and (E ′, ι′) are oriented by the same quadratic order O. An isogeny φ : E → E ′

induces an orientation φ∗(ι) on E
′ via α 7→ 1

ℓ
φ◦ι(α)◦φ̂. We say that the isogeny φ

is oriented if ι′ = φ∗(ι).
Onuki [Onu21] showed that under some mild conditions, the ideal class group

of O acts on the set of elliptic curves primitively oriented by O (up to isomor-
phisms and Galois conjugacy), and that this action is free and transitive.

Moreover, if we consider oriented isogenies, the suborders of O allow for a
similar volcano structure, but the volcanoes are infinite in this case.

2.6 Supersingular isogeny graphs

In this section, we restrict ourselves to the second case of Theorem 2.3.5: super-
singular elliptic curves for which the endomorphism ring is a maximal order in
a quaternion algebra. We will restrict ourselves to Fq = Fp2 : all supersingular
elliptic curves admit a model over Fp2 (c.f. Remark 2.1.7).

We will not use the same tools as those used to study CM theory (Section 2.4.1,
focusing on ideals in the endomorphism ring) or volcanoes (Section 2.5, focusing
on the conductors, or torsion structure). We will study supersingular isogeny
graphs from the viewpoint of modular polynomials.

This section is partially based on the background sections of [ACL+23].

2.6.1 Isogeny graphs

Defining modular polynomials is outside of the scope of this thesis; instead, we
will use the fact that they relate isogenies and j-invariants:

Theorem 2.6.1 (Modular polynomials). For any integer N , there exists a poly-
nomial ΦN(X, Y ) ∈ Z[X, Y ] with the following property:

For E,E ′ elliptic curves, there exists a cyclic N-isogeny φ : E → E ′

if and only if ΦN(j(E), j(E
′)) = 0.

Clearly, Theorem 2.6.1 does not determine modular polynomials uniquely. For
a proper definition see [Sil94, II., 6.3]. The polynomial ΦN from this definition is
called the N -th modular polynomial. The miracle of the modular polynomials is
the subtle detail that the same modular polynomial ΦN governs the isogenies of
all elliptic curves, irrespective of the defining field.

The modular polynomial ΦN is symmetric in X and Y . If N = ℓ is prime, the
degree of Φℓ inX and Y is ℓ+1. The modular polynomial Φℓ can be constructed in
time Õ(ℓ3) [Sut13a] and have been computed for N > 60000 in [BOS16, BLS11];
for N < 1000 they can be accessed as an online database [Sut].
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The coefficients of modular polynomials grow for prime ℓ as 2Õ(ℓ), already the
largest coefficient of Φ2(X, Y ) requires 48 bits to store:

Φ2(X, Y ) =−X2Y 2 +X3 + 1488X2Y + 1488XY 2 + Y 3 − 162000X2

+ 40773375XY − 162000Y 2 + 8748000000X + 8748000000Y

− 157464000000000 (2.15)

For ℓ = 97, the largest coefficients requires 5476 bits. The largest coefficient in
database [Sut], for ℓ = 997, requires 76672 bits to write down [BS, Table 1].

Remark 2.6.2 (Multiple isogenies). The modular polynomial counts isogenies
in the following way: for any elliptic curve E with j = j(E), the roots of the
polynomial ΦN(j, Y ) =

∏N
i=0(Y − ji), counted with multiplicity, correspond to

inequivalent (cf. Section 2.2.3) cyclic N -isogenies from E to Ei with j(Ei) = ji,
counted with multiplicity.

Note that for j(E) a supersingular j-invariant, the polynomial ΦN(j(E), Y )
splits completely over Fp2 .

Now we are ready for the main definition of this section:

Definition 2.6.3 (Supersingular ℓ-isogeny graph). Let ℓ be a prime, and let V
be the set of supersingular j-invariants in Fp2 . The graph Gℓ(Fp) has vertex set V ,
and there is a directed edge from vertex j to j′ for every root j′ of the modular
polynomial Φℓ(j, Y ), considered with multiplicity.

As before, we can make this graph undirected at all vertices away from the
j-invariants j = 0, 1728. These j-invariants are only supersingular if p ≡ 2 mod 3
and p ≡ 3 mod 4, respectively. For simplicity, we assume that we are in this
undirected case p ≡ 1 mod 12.

Definition 2.6.4 (Adjacency matrix). For a (possibly directed) graph G with
vertices V = {v1, . . . , vn}, the adjacency matrix A is the matrix A = (aij) indexed
by i, j = 1, . . . , n with ai,j = number of edges from vi to vj.

Many properties of the graph are easily read off from the adjacency matrix.
If G is undirected, the adjacency matrix is symmetric. The graph G has no loops
if and only if tr(A) = 0. If G is k-regular then k is the largest eigenvalue of A; the
multiplicity of k as an eigenvalue is the number of connected components of G.

Formally, a path of length n in a graph G is a sequence of vertices and edges

(v0, e1, v1, . . . , en, vn)

where vi ∈ V for i = 0, . . . , n are vertices, ej ∈ E for j = 1, . . . , n are edges, and
every edge ei is an edge between vertices vi and vi+1. Such a path is called a path
between v0 and vn of length n; for simplicity, we will mostly consider paths as
lists of vertices (v0, . . . , vn).
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We call a path non-backtracking if for any 1 ≤ j < n we have ei ̸= ei+1, that
is, if we do not immediately use the same edge to return to the previous vertex. In
the isogeny world, walking back on an edge corresponds to taking a dual isogeny,
so the non-backtracking walks correspond to cyclic isogenies.

Proposition 2.6.5 (Walks in G). Let G be a k-regular graph with adjacency
matrix A. Consider the matrix Ar = (αri,j). Then αri,j is equal to the number of
paths of length r from vertex vi to vertex vj.

The number of non-backtracking paths from vi to vj of length r is given by the
entries βri,j in Br = (βri,j) defined recursively by B1 = 1 and B2 = A2 − kI and

Br+1 = B1Br − (k − 1)Br−1.

Proof. In the context of isogenies, see for instance [Ste22].

Specializing with k = ℓ+ 1, we recognize the same recurrence relation for the
trace formula from Equation (2.3). This is not a coincidence but discussing the
ubiquity of Hecke operators in number theory is out of the scope of this thesis.

Example 2.6.6. The author admits to being guilty of the following transgres-
sion of common sense: when showing examples, one might plot for instance the
graph G2(F661) like Figure 2.5.

Figure 2.5: Supersingular isogeny graph G2(F661).

Since 601 ≡ 1 (mod 12), the graph is 3-regular at all vertices, which is possible
to verify with some effort, but very little else can be seen in this representation.
We use pixel graphs instead (Figure 2.6): in the adjacency matrix A, each en-
try ai,j corresponds to a pixel at position (i, j), and this pixel is black if ai,j > 0.

The matrices Br give the number of non-backtracking paths of length t be-
tween the i-th and j-th vertex in G. Instead of plotting the graph for matrices Br,
we plot them for B̃r =

∑r
ρ=1Bρ, which count the number of non-backtracking

paths of length at most r. An example of such graphs for G2(F601) is in Figure 2.7.
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Figure 2.6: Pixel graph for the matrix A.

The pixel graph for B̃6 is almost all black; all the pixel graph B̃r for r ≥ 7
are full black (and so are for Br with r ≥ 9). The diameter (the maximum of
the lengths of the shortest paths among any two vertices) of G2(F661) is δ = 7.
The example shows that the graphs have fairly short diameters; using different
values αi,j to show the number of paths between vertices vi and vj could be used
to visualize the rapid mixing property (cf. Remark 2.6.8.

In Example 2.6.6, we saw that the graph G2(F661) has small diameter δ = 7,
compared to the number of vertices #V = ⌊p−1

12
⌋ = 50. This is a property shared

by all isogeny graphs and will be one of the topics we study in Chapter 3.
We conclude the section by stating some of the properties of the graph Gℓ(Fp).

For simplicity, we only state them for p ≡ 1 mod 12; however, most of the claims
can be extended to the cases p ̸≡ 1 mod 12 ([BCC+23, Sec. 3.3].)

Proposition 2.6.7 (Properties of the isogeny graphs). Let p ≡ 1 mod 12, and
let ℓ ̸= p be a prime. Consider the graph Gℓ(Fp):

1. The graph is a (ℓ+ 1)-regular undirected graph and has ⌊p−1
12
⌋ vertices.

2. The graph is connected.

3. The diameter of the graph

δ = min
j1 ̸=j2
{length of the shortest path between j1, j2}

satisfies δ = O(log p), where the constant is independent of ℓ.

4. The graph is Ramanujan: the second largest eigenvalue λ of its adjacency
matrix A is bounded by |λ| ≤ 2

√
ℓ.
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(a) The pixel graph for B̃2 (b) The pixel graph for B̃3

(c) The pixel graph for B̃5 (d) The pixel graph for B̃6

Figure 2.7: Pixel graphs for G2(F601) and the matrices B̃2, B̃3, B̃5, B̃6.

Proof. The number of supersingular j-invariants can be computed as in [Sil09,
Section V.4]. For connectedness, note that an even stronger claim is true: for any
two elliptic curves E1 and E2 and a large enough n with (p, n) = 1, there exists
an isogeny E1 → E2 of degree n (see [Koh96, Cor. 77]). Setting n = ℓe for e large
enough gives the claim. The claim about the diameter is [Koh96, Thm. 79], the
Ramanujan property follows from [Mes86].

Remark 2.6.8 (Expander graphs). Ramanujan graphs are expander graphs (cf.
Remark 2.4.8). Supersingular isogeny graphs are therefore another example of
graphs with rapid mixing property : the endpoints of random walks of sufficient
length (about logℓ p) are close to being uniformly distributed in the graph Gℓ(Fp).

This claim holds even for p ̸≡ 1 mod 12; the stationary distribution of the
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random walk is the distribution in which all the elliptic curves are further weighed
by the size of their automorphism groups 1/#Aut(E), see [BCC+23, Sec. 3.3].

2.6.2 Isogeny graphs in isogeny-based cryptography

The graphs Gℓ(Fp) are examples of expander graps. In cryptography, they are
typically used as follows: the public parameters are a prime p and a starting
curve E0. The secret is a description of a path in an isogeny graph, and the
public information is the endpoint of this path.

We note that there are isogeny schemes that do not use the graph Gℓ(Fp):
for instance group-action based protocols like CSIDH [CLM+18]. These will be
discussed in depth in Chapter 4.

CGL hash function. The first protocol to use the graphs Gℓ(Fp) was the CGL
hash function [CLG09]. For concreteness, take ℓ = 2, then hashing a binary
string x corresponds to choosing a path in the 3-regular graph G2(Fp2): beyond
the initial step in the path, at any step i there are two isogenies that give a non-
backtracking path, and one can deterministically select one of these depending
on the i-th bit.

Pre-image resistance of the CGL hash function is equivalent to the path-
finding problem: given an elliptic curve EA, find a path from E0 to EA (possibly of
given length). Collision registance is related to finding cycles in the graph G2(Fp2).
While finding cycles in isogeny graphs is a hard problem, it is possible in specific
instances, so the basic version of the CGL hash function is insecure [EHL+a].

SIDH. Until 2022, the fastest isogeny key-exchange scheme was SIDH [JD11], in
particular in its optimized instantiation SIKE [SIK17]. In the language of isogeny
graphs, Anouk and Bas would agree on a prime p of the shape p = 2a3b − 1, and
a starting supersingular curve E0. Anouk would then take a random point RA of
order 2a in E0(Fp2), and compute the 2a-isogeny φA : E0 → EA = E/⟨RA⟩ as a
sequence of a-many 2-isogenies. Bas would symmetrically compute an 3b-isogeny
described by some point RB.

However, to allow the continuation of the Diffie–Hellman like key exchange,
Bas needed to be able to compute the isogeny with kernel φA(RB) from EA. This
was achieved by Anouk revealing the images of a generating set P3, Q3 for E0[3

b].
The belief was that this did not leak too much information about Anouk’s isogeny.

This belief was proven wrong in 2022 by a sudden break by Castryck and
Decru [CD23], followed independently by Maine and Martindale [MM22], and
built upon by Robert [Rob23]. All these attacks use the images of the torsion
points under the secret isogeny to reconstruct the whole isogeny.

The break has also lead to the new framework of evaluating large-degree iso-
genies [Rob22a] via embedding them into isogenies of higher-dimensional abelian
varieties, and other applications [Rob22b].
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SQISign Among the most recent schemes in isogeny-based cryptography is the
signature scheme SQISign [DKL+20]. In this scheme, isogenies are selected by
considering suitable ideals in the endomorphism ring End(E) inside the quater-
nion algebra Bp,∞. Discussing this scheme is outside of scope for this thesis; we
note that its security is not affected by the insecurity of SIDH.

Parameters and choices. In cryptography, rather than working with j-inva-
riants, we prefer working with particular models of curves. For supersingular
elliptic curves over Fp2 , the only possibilities for the trace are t = 0,±p,±2p.

Waterhouse [Wat69] shows that trace t = ±2p is equivalent to all the endo-
morphisms of the elliptic curves being defined over Fp2 . The trace t = 0 (resp.
traces t = ±p) correspond to quartic (resp. sextic) twists of the elliptic curves
with j-invariant j = 1728 (resp. j = 0), and the resulting isogeny graphs have
been described completely in [AAM19, Sec. 4]. We will focus on the case t = ±2p.

Since the difference in sign of the trace corresponds to twisting the curves,
we will further only focus on t = −2p. In this case, Frobenius is a root of the
polynomial x2 + 2px+ p2, and hence acts as a scalar π = [−p].

As we saw in Example 2.3.7, base-changing a supersingular curve E/Fp to
a curve E/Fp2 produces an elliptic curve with trace t = −2p, without having
to change the model. For instance, protocols which require a starting curve
can make use of the curve E0 : y2 = x3 + x with j-invariant j(E) = 1728,
which is supersingular for p ≡ 3 mod 4. This is one of the main reasons why
we prefer to start from trace −2p and not the analogous (twist component) with
trace t = 2p. The graphs corresponding to the traces t = ∓2p were studied in
depth in [AAM19].

Assuming the trace is t = −2p, Frobenius acts as the scalar [−p], and all
isogenies are necessarily defined over Fp2 . However, from Lenstra’s Theorem
2.3.6, we see that the group structure is E(Fp2) ∼= Z

(p+1)Z ×
Z

(p+1)Z ; and so for any

n-torsion we get: the group E(Fp2)[n] is either trivial or isomorphic to Z/n×Z/n.
In isogeny-based cryptography, we like to put ourselves in the second case: we

choose n | p+1, so that all the n-torsion points are already defined over Fp2 . For
instance, SIDH [JD11, DJP14] uses p = 2a3b · f − 1 for some large integers a, b
and a small integer f , typically f = 1. The protocol uses 2a- and 3b-isogenies;
their kernels can be represented by one point in Fp2 and they can be evaluated
efficiently as a-many (resp. b-many) 2-isogenies (resp. 3-isogenies).

Remark 2.6.9 (Working with twists). Costello [Cos20] noticed that we can in
fact work in both the components with trace t = ∓2p, the twist component
allowing us to compute isogenies from twists Ẽ. The twist has #Ẽ(Fp2) = (p−1)2
points, and so we can compute isogenies of degrees | p − 1 as rational isogenies,
which is significantly cheaper than passing to extension fields and finding their
kernels there. Since then, isogeny protocols using supersingular isogeny graphs
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over Fp2 have taken advantage of primes for which p2 − 1 has suitable smooth
factors, see for instance [DKL+20].



Chapter 3

Adventures in Supersingularland

This chapter is based on the paper Adventures in Supersingularland [ACL+23],
which is joint work with Sarah Arpin, Catalina Camacho-Navarro, Kristin Lauter,
Joelle Lim, Kristina Nelson, and Travis Scholl and was published in Experimental
Mathematics.

The introduction is new, and the background sections are omitted as they
have largely been discussed in Section 2.6. The rest of the paper is edited for
style and typographical adjustments. The definition of the “mirror involution”
has been moved into Section 3.4. The section on related work has been expanded
with a short discussion of subsequent work on some of the problems studied in
this chapter, and is presented in Section 3.8.

39
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3.1 Introduction

In this chapter, and in the paper on which this chapter is based [ACL+23], the
main object of interest is the supersingular isogeny graph Gℓ(Fp) defined in Def-
inition 2.6.3. The vertices of this graph are the j-invariants of supersingular
elliptic curves, and the edges between j-invariants j1, j2 describe the vanishing
of Φℓ(j1, j2); counted with multiplicity, they correspond to the isogenies between
any two elliptic curves with j-invariants j1 and j2.

Some of the “global” properties of the graph Gℓ(Fp) were given in Proposi-
tion 2.6.7. However, in this chapter, we are interested in studying the properties
that make the graph – or some of its vertices – special, in a broad sense.

We start with a warm-up section Section 3.2 on the j-invariants that admit the
simplest irregularities: where the graph cannot be made undirected (j = 0, 1728),
which vertices admit loops, and which vertices admit double edges.

We encounter a more interesting subset of vertices of Gℓ(Fp) in Section 3.3:
the set of Fp-rational vertices. We call the induced subgraph by these vertices the
spine S. The motivation behind studying the spine S is manifold: an attack by
Delfs and Galbraith [DG16] on the path-finding problem in Gℓ(Fp) uses navigat-
ing to this set to find isogenies between supersingular elliptic curves (navigating
means finding a path in the graph). Further, many isogeny-based protocols use
an elliptic curve in Fp as a starting curve in the protocol.

We relate the spine S to the Fp-rational graph Gℓ(Fp) from Example 2.5.5.
First studied in [DG16], we know that for ℓ odd, this graph is a union of cycles;
for ℓ = 2 it is a union of volcanoes. This structure describes isogenies defined
over Fp, and thus cannot disappear when we identify quadratic twists and pass
to S ⊂ Gℓ(Fp). The main results Section 3.3 are that S is formed from Gℓ(Fp)
via three possible operations: stacking of components with the same j-invariants,
folding a component in half, and attaching components with double edges. This is
shown in Theorem 3.3.16 for ℓ > 2 and in Theorem 3.3.27 for ℓ = 2. We conclude
that S is far from a random subgraph of Gℓ(Fp) because of the inherited volcanic
structure, but this structure is remarkably preserved in the Gℓ(Fp).

Another aspect making Gℓ(Fp) special is the following mirror involution: the
Frobenius map j 7→ jp swaps elliptic curves with Fp2-conjugate j-invariants, and
fixes the spine S. In Section 3.4, we are in particular interested in paths in the
graph fixed by the mirror symmetry; and also study the shortest such paths: pairs
of conjugate vertices that are ℓ-isogenous (Section 3.5).

We also experiment with isogeny graphs for small p and compute their diam-
eters in Section 3.6. Throughout the experimental Sections 3.4 to 3.6, we notice
different behavior depending on p mod 12.

Finally we include a discussion of related work in Section 3.8, including an
analogous section from [ACL+23].

The code and data acompanying this article can be accessed via
https://github.com/krstnmnlsn/Adventures-in-Supersingularland-Data.

https://github.com/krstnmnlsn/Adventures-in-Supersingularland-Data
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Notation and background. Assume that p is a prime p ≥ 5 and ℓ is a prime.
We allow ℓ = 2, however, the cases ℓ = 2 and ℓ odd are mostly treated separately
throughout the chapter. We assume ℓ ̸= p.

In this chapter only, we will denote by Ej an elliptic curve with j-invariant j.
We label the vertices of Gℓ(Fp) (Definition 2.6.3) with j-invariants, but sometimes
it is more convenient to talk about elliptic curves. By definition, every edge [j, j′]
corresponds to an ℓ-isogeny Ej → Ej′ for any fixed choice of Ej and Ej′ .

3.2 Special j-invariants

First, we discuss j-invariants with special properties: j-invariants with extra
automorphisms and then on j-invariants that are contained in very short cycles
in Gℓ(Fp): self-loops and cycles of length 2 (double edges).

Automorphisms. First, j = 1728 and j = 0 correspond to curves with extra
automorphisms, which make the graph Gℓ(Fp) a priori directed since the in- and
out-degrees of the vertices are different (for details, see Section 2.2.3).

Loops. Loops in Gℓ(Fp) are easily read off from the factorization of Φℓ(X,X):
a vertex represented by a j-invariant j admits a loop if and only if Φℓ(j, j) = 0.
For ℓ = 2, factoring over Z the polynomial Φ2(X, Y ) from (2.15) we get:

Φ2(X,X) = −(X + 3375)2(X − 1728)(X − 8000). (3.1)

Therefore, loops in G2(Fp) can happen at j = −3375 (two loops), j = 1728
(one loop, see Example 3.3.5) and j = 8000 (one loop). These j-invariants need
not be supersingular for a particular prime p.

Double edges. The following lemma describes double edges in the ℓ-isogeny
graph (and note that these edges may in fact exist with higher multiplicity in the
graph). This lemma appliesmutatis mutandis to ordinary curves, replacing Gℓ(Fp)
by the ℓ-isogeny graph of ordinary elliptic curves.

Lemma 3.2.1 (Double edges). If there is a double edge between j-invariants j1, j2
in the ℓ-isogeny graph Gℓ(Fp), then j1 and j2 are both roots of the polynomial

Resℓ(X) := Res

(
Φℓ(X, Y ),

d

dY
Φℓ(X, Y ); Y

)
. (3.2)

The degree of Resℓ(X) is bounded by 2ℓ · (2ℓ− 1).

Proof. Suppose that j1 and j2 are two vertices in the ℓ-isogeny graph connected
with a double edge. As a polynomial in Y , factor Φℓ(j1, Y ) = (Y − j2)2 · g(j1, Y )
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with some g(j1, Y ) ∈ Fp[Y ]. The derivative d
dY

Φℓ(j1, Y ) with respect to Y also
vanishes at Y = j2. So the polynomials Φℓ(X, Y ) and d

dY
Φℓ(X, Y ) share the

root X = j1, and so by definition j1 is a root of the resultant Resℓ(X). This
argument is also true for j2, so j2 is also a root of Resℓ(X).

The total degree of Φℓ(X, Y ) is 2ℓ, the total degree of d
dY

Φℓ(X, Y ) is 2ℓ − 1.
Since the resultant of two polynomials P (X, Y ) and Q(X, Y ) of total degrees d
and e generically has degree d · e, the number of j-invariants that admit a double
edge is bounded from above by 2ℓ · (2ℓ− 1).

Example 3.2.2 (Double edges for ℓ = 2). We factor Res2(X) over Z:

Res2(X) = −22 ·X2 ·(X−1728)·(X+3375)2 ·(X2+191025X−121287375)2 (3.3)

Therefore, any double edge in G2(Fp) can only appear between j-invariants from
this list: 0, 1728,−3375 or a root of X2 + 191025X − 121287375.

By factoring Φ2(j,X) for these values, we can for instance see that j = 0 is
the only j-invariant that admits a triple edge in G2(Fp).

Remark 3.2.3 (Short cycles and tightness of the bound). The bound on the
degree in Lemma 3.2.1 is not tight. For example for ℓ = 2, the bound is 12
whereas the polynomial has degree 9. A sharper estimate could be obtained as
a sum of class numbers using an approach from [CLG09], which showed that
this is a congruence condition on p. A double edge in Gℓ(Fp) gives a cycle of
length 2 in the same graph. A short cycle of length n corresponds to an element
of norm ℓn in the endomorphism rings of the curves whose j-invariants form
this cycle. For instance, a double edge in G2(Fp) gives a non-trivial quadratic
element of norm 4 in End(Ej). The only imaginary quadratic fields that contain
an element of norm 4 are Q(

√
−3),Q(

√
−1),Q(

√
−7) and Q(

√
−15). The factors

of Res2(X) are precisely the Hilbert class polynomials for these fields, and the
roots are supersingular j-invariants if and only if p is inert in that field. Thus
the degree of Res2(X) can be bounded by the sum of the class numbers of these
imaginary quadratic fields. For any given ℓ, there are at most 2ℓ such imaginary
quadratic fields possible, all with discriminant bounded by 4ℓ2. One can get a
sharper bound by summing class numbers of these quadratic fields.

3.3 Structure of the Fp-subgraph: the spine S
Definition 3.3.1 (Spine). The spine is the subgraph S of Gℓ(Fp) induced by the
vertices whose j-invariants lie in Fp and all edges between them in Gℓ(Fp).

Many of the edges do correspond to isogenies defined over Fp but there may be
edges only defined over Fp. In Section 3.3, we determine all such possible edges,
and the size, shape, and number of connected components of S depending on the
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class number of Q(
√
−p). We also give some experimental data on the distance

of connected components of S in Gℓ(Fp) in Section 3.3.6.
In this section, we assume that all elliptic curves are supersingular.

3.3.1 Structure of the Fp-Graph Gℓ(Fp)

We start the section by discussing the isogeny graph Gℓ(Fp) due to [DG16], which
we discussed in Example 2.5.5. The two vertices in Gℓ(Fp) with j-invariant a
are labelled va, wa; the vertex va, resp. wa lies on the connected component V ,
resp.W . Note that V andW are not necessarily distinct. The vertex correspond-
ing to a in S is denoted by a.

For visualization, we label the vertices of the graph Gℓ(Fp) only by j-invariants.

Remark 3.3.2. We highlight the differences between S and Gℓ(Fp):

• S has half as many vertices as Gℓ(Fp), since the vertices in S are considered
up to Fp-isomorphism and up to Fp-isomorphism in the graph Gℓ(Fp).

• S can have edges between j-invariants previously not connected in Gℓ(Fp).
However, we will show in Lemma 3.3.12 that this is a fairly rare occurrence.

An equivalent definition of supersingularity for elliptic curves over Fp was
pointed out by [DG16]: E/Fp is supersingular if and only if Z[

√
−p] ⊂ EndFp(E).

In the volcano terminology (Section 2.5), the curves on the surface of the volcano,
resp. floor, are those satisfying EndFp(E) = OK , resp. EndFp(E) = Z[

√
−p].

For p ≡ 1 mod 4, the surface and floor coincide.
Recall the notation from Theorem 2.5.1: an isogeny φ : E → E ′ is horizon-

tal if EndFp(E)
∼= EndFp(E

′), otherwise, we call the isogeny vertical (that is,
the isogeny is ascending or descending). The following theorem shows that the
connected components of Gℓ(Fp) are volcanoes:

Theorem 3.3.3 ([DG16, Thm. 2.7]). Let p > 3 and ℓ ̸= p be primes.

1. For ℓ > 2, there are no vertical isogenies. If
(−p
ℓ

)
= 1, then there are two

horizontal ℓ-isogenies from each vertex and beyond this no other ℓ-isogenies.
Hence every connected component of Gℓ(Fp) is a cycle.

2. p ≡ 1 (mod 4): all curves E satisfy EndFp(E) = Z[
√
−p], so there is one

level in Gℓ(Fp). For ℓ = 2: from each vertex there is one outgoing 2-isogeny.

There are h(−4p) vertices on the surface (which coincides with the floor).

3. p ≡ 3 (mod 4): there are two levels in Gℓ(Fp): surface and floor. For ℓ = 2:

(a) If p ≡ 7 (mod 8): there is exactly one vertical isogeny from any vertex
on the surface to the floor, vertices on the surface admit two horizontal
isogenies. There are no horizontal isogenies on the floor.

There are h(−p) vertices on the floor and h(−p) vertices on the surface.
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(b) If p ≡ 3 (mod 8): from every vertex on the surface, there are three
vertical isogenies to the floor. There are no horizontal isogenies. There
are 3 · h(−p) vertices on the floor and h(−p) vertices on the surface.

Let K = Q(
√
−p), p be a prime above ℓ = 2 in OK , and h = #Cl(OK) the

class number of K. Let n be the order of p in Cl(OK). The surface of any volcano
in G2(Fp) is a cycle of precisely n vertices. There are h/n connected components
(volcanoes) in G2(Fp), the index of ⟨p⟩ in Cl(OK).

In Figure 3.1a, we see the graph G2(Fp) for p = 431 (case 3.a of Theorem 3.3.3).
The vertices are labelled by j-invariants of each curve. Each component is a
volcano, with an inner ring of surface curves and the outer vertices all being
curves on the floor. The class number of Q(

√
−431) is 3 · 7 = 21 and the orders

of the two primes above 2 are 7.

Lemma 3.3.4 ([DG16]). Let p > 5 and E/Fp be a supersingular elliptic curve.

Then EndFp(E) = Z
[
1+

√
−p

2

]
if and only if E[2] ⊂ E(Fp).

Note that for p ≡ 1 (mod 4), the ring Z
[
1+

√
−p

2

]
is not an order of OK , so no

supersingular elliptic curves in Fp have their full 2-torsion defined over Fp.
The following corollary will be essential in our discussion in Section 3.3.5.

Example 3.3.5 (The j-invariant 1728 is both on the surface and on the floor).
Suppose p ≡ 3 (mod 4). Consider the isogeny φ : y2 = x3 − x→ y2 = x3 + 4x

(x, y) 7→
(
x2 + x+ 2

x+ 1
, y · x

2 + 2x− 1

x2 + 2x+ 1

)
.

Comparing the 2-torsion, we see that φ is a vertical 2-isogeny with kernel (0, 0)
of non-Fp-isomorphic elliptic curves with j-invariant 1728.

This is the only example of a vertical isogeny between twists:

Corollary 3.3.6. Let p > 3 be a prime, let E/Fp be an elliptic curve. Assume
that j(E) ̸= 1728 and let Ẽ be its quadratic twist. Then EndFp(E)

∼= EndFp(Ẽ).

Proof. Suppose E : y2 = x3+ax+b. Then Ẽ : y2 = x3+d2ax+d3b is a quadratic
twist of E, where d is a quadratic non-residue. The isomorphism over Fp is given
as (x, y) 7→

(
x
d
, y

d
√
d

)
. So E[2] ⊂ E(Fp) if and only if Ẽ[2] ⊂ Ẽ(Fp).

Notice that in Example 3.3.5, we have d = 2
√
−1 ̸∈ Fp, so the curve y2 = x3−x

is a quartic twist of y2 = x3 + 4x.

Corollary 3.3.7. If j ̸= 1728, then the two distinct vertices corresponding to the
j-invariant j ∈ Fp are either both on the floor or on the surface of Gℓ(Fp).

Another proof of this statement can be found in the appendix of [Kan89] and
is obtained by a careful examination of Hilbert polynomials of discriminant −p
and −4p, considered modulo p.
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3.3.2 Passing from the graph Gℓ(Fp) to the spine S ⊂ Gℓ(Fp)

We can obtain the spine S from the graph Gℓ(Fp) in the following two steps:

1. Identify the vertices with the same j-invariant: these two vertices of Gℓ(Fp)
glue to a single vertex on Gℓ(Fp). Identify equivalent edges.

2. Add the edges from Gℓ(Fp) between vertices in Fp corresponding to isogenies
which are defined over Fp \ Fp.

The graph Gℓ(Fp) is not a subgraph of S, however, distinct edges from the
same vertex in Gℓ(Fp) correspond to distinct edges in Gℓ(Fp):

Lemma 3.3.8. Let E be an elliptic curve with j(E) /∈ {0, 1728} defined over Fp
(with p ≥ 5). Suppose that there are two ℓ-isogenies from E defined over Fp.
Then they are equivalent over Fp if and only if they are equivalent over Fp.

Proof. If the isogenies are equivalent over Fp via a pair of Fp-isomorphisms, then
they are equivalent over Fp as well.

Let ϕ1 : E → E ′ and ϕ2 : E → E ′ be two isogenies that are equivalent over Fp.
We show that they are equivalent over Fp. By assumption, there exist (over Fp)
isomorphisms ρ : E → E and ρ′ : E ′ → E ′ such ρ′ ◦ ϕ1 = ϕ2 ◦ ρ. We know that
the kernel of the map ρ′ ◦ ϕ1 is kerϕ1. Therefore, the kernel of the map ϕ2 ◦ ρ
is also kerϕ1. This means that ρ(ker(ϕ1)) = kerϕ2. By the hypothesis on j(E),
we have AutFp(E) = AutFp

(E) = {±1}, and since [±1] kerϕ1 = kerϕ1, it follows
that kerϕ1 = kerϕ2.

Lemma 3.3.8 for ℓ = 2 gives the following corollary.

Corollary 3.3.9. If an elliptic curve E with j-invariant j in Fp has 3 neighbors
with j-invariants j1, j2 and j3 (not necessarily distinct), then the 3 neighbors of j
in G2(Fp) have j-invariants j1, j2 and j3.

Example 3.3.10. (ℓ = 2). If the vertex va has neighbors vb, vc, vd in G2(Fp)
(with b, c, d not necessarily distinct), then the neighbors of a in G2(Fp) are b, c, d.

As there are at most 2 neighbors of any vertex in Gℓ(Fp) for ℓ > 2, the
above corollary does not generalize. However, if the neighbors of va, wa have j-
invariants b, c, d, e, then there are (not necessarily distinct) edges [a, b], [a, c], [a, d]
and [a, e] in Gℓ(Fp). In Lemma 3.3.15, we will show that typically {b, c} = {d, e}
and explain how to find j-invariants a for which this property fails.

Passing from Gℓ(Fp) to the spine S, the following can happen (and we will
show that the list of events is complete):

Definition 3.3.11. Let V and W be connected components of Gℓ(Fp).

1. We say that the components V and W stack if, when we relabel the ver-
tices va by the j-invariant a, they are the same graph.
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2. We say that the component V folds if V contains vertices corresponding
to both quadratic twists of every j-invariant on V . The term is meant
to invoke what happens to this component when the quadratic twists are
identified in Gℓ(Fp).

3. Two connected components V and W of Gℓ(Fp) become attached by a new
edge in Gℓ(Fp) if there is a new edge [a, b] ∈ Gℓ(Fp) corresponding to an
isogeny between vertices va ∈ V and wb ∈ W that is not defined over Fp.

4. (for ℓ > 2) We say that components V andW attach along the j-invariant a
if they both contain a vertex with j-invariant a and the j-invariants of
neighbors of va in V and the neighbors of wa inW are not equal as multisets.

Examples of the first three of the four above are given by Figure 3.1. An
example of attachment along a j-invariant can be seen in Figures 3.2 and 3.3. We
will show that attachment along the j-invariant for ℓ = 2 cannot happen in Corol-
lary 3.3.22, however, the j-invariant 1728 is the only possible j-invariant for which
the two vertices in G2(Fp) do not have the same neighbor set (Proposition 3.3.20),
however these vertices are already connected by an edge.

We now begin analyzing the ‘new’ edges in S: the edges that do not come from
isogenies defined over Fp. Let us look at Figure 3.1 again: the edges in S between
vertices corresponding to j-invariants 150 and 189 in G2(Fp) do not correspond to
isogenies defined over Fp. Also, the vertex 4 (and note 4 ≡ 1728 (mod 431)) on
the floor of G2(Fp) has no edge j-invariant 19, but there is an edge [4, 19] ∈ G2(Fp)
coming from the two isogenies from vertex 4 on the surface. Lemma 3.3.8 gives
us a double edge [4, 19] ∈ G2(Fp). This not a coincidence:

Lemma 3.3.12 (One new isogeny implies two new isogenies). Let va, vb ∈ Gℓ(Fp)
correspond to Fp-elliptic curves Ea and Eb with j-invariants a, b with a ̸= 1728, 0.
Assume that there is no edge [va, vb] ∈ Gℓ(Fp), but [a, b] ∈ Gℓ(Fp). Then there are
two isogenies defined between Ea → Eb which are inequivalent over Fp and hence
a double edge [a, b] ∈ Gℓ(Fp).

Proof. We know that there is an ℓ-isogeny ϕ : Ea → E to some elliptic curve E
with j-invariant b. Since j(E) = b, then E is isomorphic to Eb over Fp2 . Compos-
ing with this isomorphism, we obtain an ℓ-isogeny ψ : Ea → Eb. But ψ cannot
be defined over Fp, since we assumed there was no edge [va, vb] ∈ Gℓ(Fp).

The kernel of ψ is not defined over Fp (otherwise ψ would be defined over Fp),
so the p-power Frobenius map Frob : Fp → Fp does not preserve kerψ. There is
an isogeny from Ea with kernel ψFrob. This isogeny has degree ℓ since ψFrob has
order ℓ and it is not equivalent to ψ. Using Vélu’s formulae [Vél71], we obtain
the rational maps for defining ψFrob. In particular, the j-invariant of the target
of ψFrob is necessarily Frob(b) = b. Hence, there are two inequivalent isogenies
between Ea and Eb and hence two edges [a, b] ∈ Gℓ(Fp).
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(a) The graph G2(Fp) for p = 431

(b) The spine S ⊂ G2(Fp) for p = 431.

Figure 3.1: Stacking, folding and attaching by an edge for p = 431 and ℓ = 2.
The leftmost component of the graph G2(Fp) folds, the other two components
stack, and the vertices 189 and 150 get attached by a double edge.

50 17 28 67 0

68 68

50 17 28 67 0

(a) The graph G3(Fp) for p = 83

50 68 17 28 67 0

(b) The spine S ⊂ G3(Fp) for p = 83.

Figure 3.2: Attachment along a j-invariant for p = 83 and ℓ = 3. The two con-
nected components of G3(Fp) are attached along j = 68 = 1728 mod 83. There
are two outgoing double edges from j = 1728 but because of the extra automor-
phisms, these edges are identified in the undirected graph.
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The corollary below explains why for both attachment by a new edge (cf.
Figures 3.1 and 3.3) and along a j-invariant (cf. Figure 3.2), we see double edges.

Corollary 3.3.13. Attachment of components by a new edge from va to wb forces
a double edge [a, b] in Gℓ(Fp). Attachment along the j-invariant j implies a double
edge from j in Gℓ(Fp).

Proof. In the first case, we are adding an edge between va and wb that is not
defined over Fp and we can apply Lemma 3.3.12. In the second case, assume
there is a neighbor vb of vj such that wb is not a neighbor of wj. Applying
Lemma 3.3.12 to the Fp isogeny from wj to vb.

Because we display the isogeny graphs undirected, the resulting graphs are
not regular at the vertices corresponding to j = 1728 and j = 0.

3.3.3 The spine for ℓ > 2

For this section, we consider the spine S for ℓ > 2. In this case, there are no
vertical isogenies, hence the graph Gℓ(Fp) is a union of disjoint cycles: the cycles of

vertices corresponding to curves either only with endomorphism ring Z
[
1+

√
−p

2

]
,

or only with endomorphism ring Z[
√
−p]. The main tool for understanding the

spine will be the neighbor Lemma 3.3.15, in which we show that the vertices va
and wa have neighbors with the same j-invariants, provided a ̸= 1728. If the
neighbors have different j-invariants, we would get attachment along a vertex
and this situation we solve in Proposition 3.3.14. Using the information about
the shape of the graph Gℓ(Fp) and the neighbor lemma, we can completely describe
the spine S in Theorem 3.3.16.

We will avoid the case when the graph Gℓ(Fp) is just a disjoint union of vertices
(i.e., when there are no isogenies defined over Fp) by assuming ℓ is split in Z[

√
−p].

If one assumes that p ≡ −1 (mod ℓ), then ℓ|#E(Fp) = p + 1 and there are Fp-
rational points of order ℓ. We will also assume that the class number Cl(Z[

√
−p])

is odd, which is equivalent to p ≡ 3 (mod 4).

Proposition 3.3.14 (Attachment along a vertex). Let p and ℓ be primes satisfy-
ing ℓ4 < 1

4
p. Let j be a j-invariant such that attachment along a vertex happens.

Then j = 1728, the two neighbors in Gℓ(Fp) of v1728 have the same j-invariant
and the neighbors of w1728 have the same j-invariant.

The proof below uses the properties of the Fp-endomorphism ring End(E) as a
maximal order in a quaternion algebra. For references see [Koh96, Kan89, Ibu82].

Proof. We first show that j corresponds to a curve with automorphism group
larger than {±1}, so j = 1728 or 0. Then we show that j = 0 cannot happen.

Let E be a supersingular elliptic curve over Fp2 , then End(E) is a maximal
order in a quaternion algebra (cf. Theorem 2.3.5). Every element α ∈ End(E)\Q
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generates a quadratic number field Q(α). From [Kan89, Theorem 2’], if O,O′ are
maximal quadratic orders lying in different imaginary quadratic fields that embed
to End(E) then discO · discO′ ≥ 4p.

Suppose now that we have attachment at a vertex j. Let va, vb be the neigh-
bors of vj and let wc, wd be the neighbors of wj, with a ̸∈ {c, d}. Then, by
Corollary 3.3.13, there is a double edge from [a, j] ∈ Gℓ(Fp) and, by symmetry,
a double edge from either c or d. Assume it is from c. Any double edge gives a
non-trivial element of norm ℓ2 in End(E). Let α denote the cycle arising from
the double edge at a, and γ the cycle arising from the double edge at c.

Suppose that α and γ generate different quadratic number fields. Then we
compute that ℓ2 = nrd(α) ≥ 1

4
discZ[α] ≥ 1

4
disc(Q(α)) and we obtain a similar

statement for γ. Using Kaneko’s theorem we deduce that

ℓ2 · ℓ2 = nrdα · nrd β ≥ 1

16
disc(Q(α)) · disc(Q(γ)) ≥ 1

4
p,

which is impossible for ℓ4 < 1
4
p. So α and γ generate the same field, say K.

Let OK be the ring of integers in K. By uniqueness of ideal factorization:

(α)(α) = (ℓ2) = (γ)(γ) = (ℓ)2 =


(ℓ)2 if ℓ is inert,

l4 if ℓ is ramified,

(ll)2 if ℓ splits.

Since α ̸∈ Q, ℓ cannot be inert. If ℓ is ramified, we see: (α) = (γ) = l2 and
therefore α = uγ for some unit u ∈ OK . It is not possible that α = ±γ, so
necessarily {±1} ⊊ Aut(E).

If ℓ splits, suppose without loss of generality that (α) = l2. Then either

(γ) = l2 −→ γ = u · α

or (γ) = l
2 −→ γ = u · α

for some unit u ∈ OK . Again OK has non-trivial units and {±1} ⊊ Aut(E).
Curves with automorphism group larger than {±1} correspond to j = 0, 1728.

Suppose j(E0) = 0. If there is an isogeny from an elliptic curve E0 to an elliptic
curve Ea with j-invariant a, there have to be at least three distinct isogenies
from E0 to Ea: precompose the first one with ζ3, ζ

2
3 ∈ End(E0). However, suppose

that there were three edges from 0 to a. By symmetry, there would be three
edges from 0 to c in Gℓ(Fp). By combining these edges, we would have 6 cycles
from j = 0 of length 2. But even in Z[ζ3], up to sign (±), there are not enough
different elements of norm ℓ2.

Hence attachment along a vertex can only happen for j = 1728.

Lemma 3.3.15 (The neighbor lemma). Suppose ℓ > 2. Let a ̸= 1728 and suppose
that va, wa are the two vertices in Gℓ(Fp) corresponding to elliptic curves with j-
invariant a. If the neighbors of va have j-invariants b, c, then then neighbors of wa
have j-invariants b, c.
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Proof. Let wd, we be the neighbors of wa in Gℓ(Fp). If {d, e} ̸= {b, c}, then there
is attachment along the j-invariant a, which is only possible for j = 1728. Hence
the neighbors of va and wa have the same j-invariants.

Recall that the attachment of components by a new edge implies a double
edge by Corollary 3.3.13. The main result of this section is the following one.

Theorem 3.3.16 (Stacking, folding and attaching for ℓ > 2). Let p be a prime
and let ℓ be such that the order of the prime l above ℓ in the class group Cl(−p)
of Q(

√
−p) is odd. While passing from Gℓ(Fp) to S, the following happens:

1. the components containing 1728 fold and get attached along j = 1728; this
only happens if p ≡ 3 (mod 4);

2. all other components stack;

3. the number of new edges is bounded by degResℓ(X) and there are at most
n vertices at which a new edge is added, where n is the number of distinct
roots of Resℓ(X).

Note that the conditions on p and ℓ are always satisfied when p ≡ 3 (mod 4)
and p ≡ −1 (mod ℓ), which is the most cryptographically relevant application.

Proof. We will pass from Gℓ(Fp) to S in two steps: first, we identify the j-
invariants and equivalent edges in Gℓ(Fp), and after discussing what happens
with the components of Gℓ(Fp), we add the new edges in Gℓ(Fp).

We showed in Lemma 3.3.15 that for a ̸= 1728, the vertices va and wa have
the same neighbors.

Suppose there is a component V that does not stack. This either means that
there is a vertex va whose neighbors are different than those of wa. But in this
case a is an attaching j-invariant and so a = 1728, which we treat later.

Or, there is a j-invariant a such that both the vertices va, wa are in the com-
ponent V . But V is a cycle with odd number of vertices. The vertices va, wa
divide the cycle in two halves. Choose either half H. Look at the neighbors of va
and wa. If they have the same j-invariant b, replace a with b and continue along
the halves of the cycle, until either of the following happens:

(i) the vertices va and wa are neighbors in Gℓ(Fp) and hence will induce a loop
in Gℓ(Fp). Note that then the number of vertices in H is necessarily even.

(ii) The only neighbor of va and wa is a vertex vj with j-invariant j. This
is necessarily an attaching j-invariant as the neighbors of wj cannot have
j-invariants a. Hence j = 1728. This also means that #H is odd.
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(iii) The neighbor vb of va has j-invariant b and the neighbor wc of wa has j-
invariant c, for b ̸= c. Then either the other neighbor of wa is wb or a is
an attaching j-invariant (and a = 1728). Suppose a is not an attaching
j-invariant. Continuing along the whole cycle V in the direction of the
edge [va, vb], and symmetrically in the direction of [wa, wb], we reach a point
at which the neighbor of some vc is not a neighbor of the wc. This happens
when the cycle has an odd number of vertices since two identical paths would
give us a cycle of even length. Here we also obtain an attaching j-invariant.

The cases above actually cover every possibility: if we are in case (Step i), the
half H has an even number of vertices, and then V \ H ∪ {va, wa} necessarily
has an odd number of vertices and since the neighbors of va, wa have to have the
same j-invariant, we are in case (Step ii).

Let us remark that the last case (Step iii) shows that the isogenies between
twists go ‘in the other direction’: if one walks on the cycle V in the direction of
the edge [va, vb], one will encounter an edge [wb, wa], not an edge [wa, wb].

We now discuss what happens with the components that contain 1728. We
know that there are two components V and W containing j-invariant 1728.
Let va ∈ V be on the surface and let wa ∈ W be on the floor. We have shown in
Proposition 3.3.14 that both v1728 and w1728 have two neighbors with the same
j-invariant. We show that both the components fold.

Starting at the vertex v1728 ∈ V , we know that its neighbors va, wa have
the same j-invariant by Proposition 3.3.14. Start walking away from v1728. By
Lemma 3.3.15, the neighbors of the vertices va, wa that are different from v1728
have the same j-invariants. Since the cycle contains an odd number of vertices,
one finally arrives at a pair of vertices vb, wb with same j-invariant b, which are
connected by an ℓ-isogeny. The same proofs holds for W .

Finally, after adding new edges that are only defined over Fp, some components
can get attached. But we proved in Corollary 3.3.13 that an attachment by a new
edge from j to j′ means a double edge [j, j′] ∈ Gℓ(Fp). Hence j and j′ are both
roots of Resℓ(X) by Lemma 3.2.1, which has degree bounded by 2ℓ · (2ℓ− 1).

Remark 3.3.17 (The ‘other side’ of 1728). We showed that the only component
for which attachment by a vertex can happen are the two components contain-
ing 1728, moreover these components fold. This means that the neighbors of v1728
have the same j-invariant, their neighbors as well and if we continue walking along
both sides, we will ultimately meet ‘opposite of’ v1728 at a pair of conjugate j-
invariants. See Figure 3.3a. Conversely, any such pair of conjugate j-invariants
needs to be ‘opposite’ of a vertex with j-invariant 1728.

Since posting the first version of our article which did not fully explain these
ideas, Castryck, Panny and Vercauteren posted a preprint [CPV] that arrives at
the same conclusion using more highbrow tools. Their approach identifies the
‘opposite’ j-invariant as a certain CM j-invariant.
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As noted Corollary 3.3.13, attachments imply double edges. To find vertices
with attachment, we can use Lemma 3.2.1. Conversely, if we want a prime p with
no attachments, we can find a congruence condition on p such that none of the
roots if Resℓ(X) are supersingular j-invariants.

3.3.4 The spine for ℓ = 3.

In this section, we describe the spine S for ℓ = 3 by means of stacking, folding
and attaching behavior for ℓ = 3. The case ℓ = 3 is interesting, because of the use
of G3(Fp) in SIDH and SIKE (and analogously, the case ℓ = 2 will be discussed
in Section 3.3.5). Since the starting vertex for these protocols is typically taken
in Fp, understanding the spine is important for understanding where the Fp j-
invariants are located in the graph Fp.

We start with factoring over Z the polynomial Res3(x) introduced in (3.2):

Res3(x) = (−1) · 33 · x2 · (x− 8000)2 · (x− 1728)2 · (x+ 32768)2

· (x2 − 52250000x+ 12167000000)2 · (x2 − 1264000x− 681472000)2

· (x2 + 117964800x− 134217728000)2.

The factors are Hilbert class polynomials for ∆ = −3,−8,−4,−11,−32,−20,−35.
We see that there are at most 10 vertices at which a double edge can occur.

Some of the double edges come from loops: We find the self loops by factoring

Φ3(x, x) = (−1) · x · (x− 54000) · (x− 8000)2 · (x+ 32768)2.

At j = 8000 and j = −32768, there are 2 loops and no attachment at the vertices.

Example 3.3.18 (Vertices with loops). In this example, we determine the G3(Fp)
neighbors of j = 0, 8000, 54000 and −32768. This is done by factoring Φ3(j, x):

1. j = 0: Factor Φ3(0, x) = x · (x+ 12288000)3. The isogeny v0, w0 is defined
over Fp: the factor x has multiplicity 1, so it is not a double-edge. The
neighbors of v0 are w0 and v−12288000 and the neighbors of w0 are w−12288000

and v0. Hence there cannot be attaching edges.

Figure 3.4: The graph G3(Fp) for p = 179. We see that the neighbors of vertices
with j-invariant 0 both have j-invariant −12288000 mod 179 = 171.
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2. j = 54000: There is one self-3-isogeny which arises from a 3-isogeny ψ
between quadratic twists with j = 54000. Factoring ϕ3(54000, x) we can
check that the j-invariant 54000 does not admit a double edge.

3. j = 8000: we have (x − 8000)2|Φ3(8000, x) and there is a double loop
from j = 8000 in G3(Fp). For large p, both cannot occur over Fp because
there are no double edges in G3(Fp); if one of them came from a Fp2-isogeny,
we use Lemma 3.3.12 to get a third loop.

4. j = −32768: again, (x + 32768)2|Φ3(−32768, x). Repeating the argument
for j = 8000, the self loops cannot come from isogenies over Fp.

Theorem 3.3.19 is a specialization of Theorem 3.3.16. As we are interested in
the cryptographic applications, we restrict to the case p ≡ 3 (mod 4). Then the
class numbers h(−p) and h(−4p) = 3 · h(−p) are both odd. Together with our
assumption p ≡ 2 (mod 3), we have p ≡ 11 (mod 12).

Theorem 3.3.19 (Stacking, folding and attaching for ℓ = 3). Let p be prime and
assume p ≡ 11 (mod 12). When passing from G3(Fp) to the spine S ⊂ G3(Fp),

1. all components that do not contain 0 or 54000 stack,

2. there are two distinct connected components V and W that contain a j-
invariant 1728, one of them contains both vertices with j-invariant 0 and
the other one both vertices with j-invariant 54000. V and W fold and get
attached at the j-invariant 1728.

3. At most 8 vertices admit new edges, attaching at most 4 pairs of components
by a new edge.

Proof. This follows from Theorem 3.3.16. In Example 3.3.18, we showed that
the possible opposite vertices have j-invariants 0 and 54000. For p ≡ 3 (mod 4),
there are two components containing 1728: by Example 3.3.5, one of the vertices
corresponding to 1728 is on the floor, the other one is on the surface, so they are
on different components of G3(Fp). One of these vertices is on the same component
of G3(Fp) as the vertices with j-invariant 0 and the other on a component with
both vertices with j-invariant 54000. The rest are the factors of Res3(x).

3.3.5 The spine for ℓ = 2

In this section, we describe the spine S for ℓ = 2. The added difficulty are vertical
isogenies. We describe how the components of G2(Fp) form S ⊂ G2(Fp) in a way
analogous to ℓ > 2 (see Theorem 3.3.27). We determine whether attachment can
happen for p ≡ 1 (mod 4) and p ≡ 3 (mod 8) (see Corollary 3.3.28) and we give
experimental data on p ≡ 7 (mod 8). Delfs and Galbraith [DG16] described the
possible shapes for G2(Fp), which we record in Table 3.1.
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p mod 8 EndFp(E) Shape of connected components G2(Fp)
p ≡ 1 (mod 4) Z[

√
−p] horizontal edges between two vertices

(Figure 3.5a).

p ≡ 3 (mod 8) Z[
√
−p],Z

[
1+

√
−p

2

]
claws : one vertex on the surface con-
nected by vertical isogenies to three
vertices on the floor (Figure 3.5b.)

p ≡ 7 (mod 8) Z[
√
−p],Z

[
1+

√
−p

2

]
2-level volcanoes : surface is a cycle, any
vertex on the surface admits one verti-
cal isogeny to the floor. No horizontal
isogenies on the floor (Figure 3.1a.)

Table 3.1: Shape of Gℓ(Fp) for ℓ = 2.

54 72 0 99

54 72 0 99

(a) Horizontal edges in G2(Fp)
for p = 113.

50 50 68

17 28 0 17 28 0 68 67 67

(b) Claws in G2(Fp) for p = 83.

Figure 3.5: Possible shapes for G2(Fp) for p ≡ 1 (mod 4) (left) and p ≡ 3 (mod 8).

We form the graph S from G2(Fp) in two steps: first identify vertices with the
same j-invariant and their edges, then add new edges. We will show that:

1. Two vertices with the same j-invariant also have the same j-invariants as
neighbors (Proposition 3.3.20). This will imply that only stacking and fold-
ing is possible in Theorem 3.3.27.

2. At most one component folds, and for p ≡ 3 (mod 4) this is the component
containing j = 1728 (Proposition 3.3.24).

3. Attaching of components by a new edge happens between at most one pair
of vertices, and those vertices are roots of the Hilbert class polynomial of
Q(
√
−15) (Proposition 3.3.23).

We begin with some results on the neighbors of vertices with the same j-
invariant. From Corollary 3.3.6, we know that quadratic twists lie on the same
level in the volcano. More is true:

Proposition 3.3.20. Let j be a supersingular j-invariant and let vj and wj be
the two corresponding vertices in G2(Fp). If j ̸= 1728, then two vertices with the
same j-invariants have the same neighbors, that is:
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1. If p ≡ 1 (mod 4) and the neighbor of vj is vj′, then the neighbor of wj is wj′.

2. If p ≡ 3 (mod 4) and if

(a) the vertices vj and wj are both on the floor, then vj and wj are each
connected to a vertex with j-invariant j′,

(b) the vertices vj and wj are both on the surface. Then vj has 3 neighbors
with distinct j-invariants a, b, c and wj has three neighbors with the
same distinct j-invariants a, b, c.

Proof. 1. For p ≡ 1 (mod 4), any connected component of G2(Fp) is an edge.
If vj and wj lie on the same component, the result follows. Otherwise, the
result can be obtained by contradiction and an application of Lemma 3.3.12.

2. If p ≡ 3 (mod 4), Corollary 3.3.7 gives vj, wj are either both on the surface
or both on the floor of their respective components.

If they are both on the surfaces of their respective components, then they
each have three neighbors: one on the floor and two on the surface. The
j-invariants of the neighbors of vj match the j-invariants of the neighbors
of wj. Any collision of these j-invariants contradicts the fact that there are
no cycles of length 2: for p ≡ 3 (mod 4), the class number h(−p) is odd.
If they are both on the floors of their respective components, they each has
one neighbor on the surface. The j-invariants of these neighbors must be
the same, otherwise we arrive at a contradiction via Lemma 3.3.12.

Corollary 3.3.21 (Isogenies for twists). Let ϕ : E → E ′ be an Fp-isogeny of
degree 2 and assume j(E), j(E ′) ̸= 1728. Then, there is an 2-isogeny over Fp
between the quadratic twists Ẽ → Ẽ ′.

Corollary 3.3.22 (Attachment along a j-invariant for ℓ = 2). Attachment along
a j-invariant cannot happen for ℓ = 2.

We already know that attaching two components by a new edge would imply
a double edge (Corollary 3.3.13).

Proposition 3.3.23 (Possible attachment by a double edge). Attachment by an
edge can only happen between vertices whose j-invariants are Fp-roots of

f(X) = X2 + 191025X − 121287375

provided these are supersingular Fp j-invariants not equal to −3375, 1728 or 0.

Proof. By Lemma 3.2.1 and Corollary 3.3.13, any such attaching j-invariants need
to be roots of Res2(X). Examining the neighbors of j = 0, 1728 and −3375, we see
that they do not admit new edges coming from isogenies not defined over Fp.
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Proposition 3.3.24 (The component of j = 1728 folds). Let p ≡ 3 (mod 4) be
prime. The connected component V ∈ G2(Fp) containing the vertices correspond-
ing to j = 1728 is symmetric over a reflection passing through the vertices v1728
lying on the surface of V and w1728 lying on the floor of V . In particular, the
component V folds when we pass from G2(Fp) to S.

To understand this symmetry, picture the surface of the component V as a
perfect circle with equidistant vertices and all the edges to the floor are perpen-
dicular to the surface. Then V is symmetric with respect to the line extending the
edge [v1728, w1728]. See the leftmost component in Figure 3.1a. This symmetry has
already mentioned in Remark 5 of [CLM+18], albeit without proof or reference.

Proof. 1. Case p ≡ 3 (mod 8). V is a claw (see Figure 3.5b) and the proof of
Proposition 3.3.23 shows that there is one 2-isogeny down from the surface
vertex corresponding to j = 1728 to each vertex with j-invariant 287496
and the other vertex corresponding j-invariant 1728. The claw V is clearly
symmetric and folds as described.

2. Case p ≡ 7 (mod 8). In this case, h(−p) is odd. We assume that h(−p) > 1
(otherwise we are in the claw situation discussed above).

Then v = v287496 and w = vt287496 are both on the surface, see Figure 3.6.
By Proposition 3.3.20, their neighbors have j-invariants 1728, a, b. Say the
neighbors of v are va, vb and the neighbors of w are wa, wb. Assume that va is
on the floor. Since a ̸= 1728, Corollary 3.3.7 tells us wa is also on the floor.
Thus, both vb and wb are on the surface and the symmetry is preserved.

wb vb

287496 287496

wa 1728 va

1728

Figure 3.6: Symmetry around j = 1728.

Remark 3.3.25. In Proposition 3.3.24 for p ≡ 7 (mod 8), the opposite ver-
tices vc, wc from j = 1728 necessarily induce a loop in G2(Fp). Since vc, wc are
on the surface of G2(Fp), we conclude that c = 8000 (see Section 3.2). So there
always is an Fp-rational 2-power isogeny between any two supersingular elliptic
curves with j-invariants 1728 and 8000.

Corollary 3.3.26 (Folding). Suppose V ⊂ G2(Fp) is a component which folds
when passing from G2(Fp) to S ⊂ G2(Fp).

1. If p ≡ 1 (mod 4), then V is an edge between vertices with j-invariant 8000.
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2. If p ≡ 3 (mod 4), then V contains both the vertices with j = 1728.

Proof. 1. If p ≡ 1 (mod 4), then V is an edge: [va, vb]. Folding happens if and
only if a = b, resulting in a self-2-isogeny in Gℓ(Fp). For p ≡ 1 (mod 4),
the only vertices with self-2-isogenies are j = −3375, 8000, when these j-
invariants are supersingular (see Section 3.2).

For j = 8000, there is a 2-isogeny from the curve with j-invariant 8000 given
by E : y2 = x3− 4320x− 96768 to its twist Ẽ : y2 = x3− 17280x− 774144.
The j-invariant j = 8000 is only supersingular for p ≡ 5 (mod 8), so 2 is a
nonsquare modulo p and Ẽ is a quadratic twist (with d = 2).

For j = −3375, there are two self-loops in G2(Fp), and at least one of them
not defined over Fp. Applying Lemma 3.3.12 to this loop, w neither of
these loops are defined over Fp and folding does not happen for the edge
containing −3375.

2. If p ≡ 3 (mod 4), let V be a component that folds. The surface has h(−p)
vertices and this class number is odd. We assume that V folds, so every
vertex in it gets identified with the vertex corresponding to its twist. By
Corollary 3.3.7, for j ̸= 1728, the two vertices are either both on the surface
or both on the floor. Since there are odd number of vertices on the surface,
there cannot only be pairs of twists on the surface, so V must contain the
two vertices with j = 1728, one on the floor and the other on the surface.

We are now ready to prove the main theorem describing the spine S for ℓ = 2:

Theorem 3.3.27 (Stacking, folding and attaching). For ℓ = 2, only stacking,
folding or at most 1 attachment by a new edge are possible. No attachments at a
j-invariant are possible.

Proof. First, let p ≡ 1 (mod 4). The components of G2(Fp) are edges. Corol-
lary 3.3.26 shows that the edge containing the two vertices with j-invariant 8000
folds (if 8000 is a supersingular j-invariant for p, i.e. p ≡ 5 (mod 8)). For
the other edges, Proposition 3.3.20 says that for any edge [va, vb] ∈ G2(Fp) the
twists wa, wb also give an edge [wa, wb] ∈ G2(Fp). Moreover, Proposition 3.3.23
gives that there is at most 1 attachment among these edges.

For p ≡ 3 (mod 4), take any component V of G2(Fp) and any vertex va on
the surface of V , a ̸= 1728. Choose a neighbor vb of va. Continue along the
surface in the direction of the edge [va, vb] and consider the sequence j-invariants
of neighbors V = {ai} until we reach a vertex with j-invariant a. Similarly, on the
componentW containing the edge wa, wb, consider the sequence of j-invariants of
the neighbors W = {bi} until we reach a vertex with j-invariant a (every surface
is a cycle, so this will happen in finitely many steps). We have the following
possible outcomes:
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1. For some i, we find that ai ̸= bi. So the curve i steps away from va on V has a
different neighbor than its twist, which is i away from wa. But this can only
happen for bi = 1728 and hence the component folds by Proposition 3.3.24.

2. The sequences are equal, but V stops at the twist wa andW stopped at the
curve va. Then va, wa are on the same component V and the cycle on the
surface has length 2 · length(V). As h(−p) is odd, this is not possible.

3. The sequences V andW are the same: upon replacing the labels of vertices
by the j-invariants, the graphs are identical, and the two components stack.

Finally, Proposition 3.3.23 implies that at most one attachment is possible.

To conclude this section, we study the possible attachments given by the
roots of f(X) = X2 + 191025X − 121287375. Because the polynomial f(X) is
the Hilbert class polynomial of Q(

√
−15), its roots in Fp give a supersingular

j-invariant if and only if
(

−15
p

)
= −1. The discriminant of f(X) is 36 ·53 ·74 ·132,

so there is a root in Fp if and only if p ≡ ±1 (mod 5). Taken together, the roots
of f(X) are j-invariants of a supersingular elliptic curves defined over Fp if and
only if p ≡ 1, 11, 24 or 59 (mod 60).

Corollary 3.3.28. Suppose that p ̸≡ 7 (mod 8) and j and j′ are distinct roots
of f(X) = X2 + 191025X − 121287375 in Fp. The new edge [j, j′] ∈ Gℓ(Fp) is an
attaching edge.

Proof. First, let p ≡ 1 (mod 4). The G2(Fp) components are horizontal edges.
Suppose that the j-invariant j admits a double edge [j, j′] ∈ Gℓ(Fp) that it is not
an attaching edge, i.e., there is an edge [vj, vj′ ] in G2(Fp). By Lemma 3.3.12, there
is then a triple edge [j, j]. This is only possible if j = 0. For j or j′ to be equal
to 0, we would need X to be a factor of f(X). Since 121287375 = 36 · 53 · 113, as
soon as p > 11, attachment happens whenever it can.

Next, let p ≡ 3 (mod 4). The components of G2(Fp) are claws. If the double
edge is not between two different components, then vj and vj′ are on the same
claw (for some choice of the twists). Assume, j ̸= 1728, they both lie on the floor.

Let va be the unique surface vertex of V (see Figure 3.7).
j

b a

j′

Figure 3.7: The double edge from j to j′.

This gives two distinct loops in G2(Fp) of length 3, and two endomorphisms
of norm 8 in EndFp

(Ej).
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To check for the existence of such an endomorphism, we check whether the
roots of f(X) can simultaneously be the roots of the modular polynomial Φ8(X,X).
Taking the resultant Res(f(X),Φ8(X,X)) we get

(−1) · 372 · 536 · 748 · 1134 · 1324 · 3710 · 412 · 438 · 592 · 71 · 892 · 1012.

For primes p > 101, this will be nonzero, and there is no such a loop in G2(Fp),
hence attachment happens. In the factorization of the resultant, there is one prime
p ≡ 11, 59 (mod 60) and 3 (mod 4). For p = 11, we only have one connected
component of G2(Fp), for p = 59, attachment happens.

This means that attachment happens whenever it can happen for p ̸≡ 7
(mod 8); moreover, the two roots are distinct if p > 101.

In the case p ≡ 7 (mod 8), not all attachments that can happen necessarily
do. We checked this for all primes p ≡ 7 (mod 8) between 50000 and 100000
such that the primes above 2 do not generate the class group (otherwise S is
already connected). There are 217 such primes, and for 41 of them the attachment
happens. But there are 12 primes for which the attachment can happen but there
is no attachment. For instance, for p = 53639, the two roots of f(X) are j = 30505
and j = 46665. There are two elliptic curves with these j-invariants on the same
component of G2(Fp) which are 48 edges apart.

The number of components in the spine for ℓ = 2. Finally, we give the
number of connected components of S and the number of connected components
in G2(Fp). By Theorem 3.3.27, we know at most one component of S folds, and
at most two components are attached by a new edge.

The number of vertices in S can be determined from [Cox89]

#S =


1
2
h(−4p) if p ≡ 1 (mod 4)

h(−p) if p ≡ 7 (mod 8)

2h(−p) if p ≡ 3 (mod 8).

where h(d) is the class number of the imaginary quadratic field Q(
√
d). Using

standard estimates for class numbers, one typically approximates h(d) ≈
√
|d|.

prime mod 8 shape of G2(Fp) #S ≈ #(S-Components)
1 mod 4 edges 1

2
h(−4p) 1

4
h(−4p)

3 mod 8 claw 2h(−p) 1
4
· 2h(−p) = 1

2
h(−p)

7 mod 8 volcanoes h(−p) 1
2n
· h(−p)

Table 3.2: Size and shape of the spine, depending on primes modulo 8, the
integer n denotes the order of any prime above 2 in Cl(OK).
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3.3.6 Distances between the components of the S ⊂ G2(Fp)

In Sections 3.3.3 and 3.3.5, we described how the spine S is formed by passing
from Gℓ(Fp) to Gℓ(Fp). In principle, one can then describe the shape and connect-
edness of S based on the knowledge of Gℓ(Fp) and congruence conditions on p. A
natural question is how the spine S sits inside the graph Gℓ(Fp). We study this
question for ℓ = 2.

For primes p ≡ 1 (mod 4), the subgraph is given by single edges, with a
possibility of an isolated vertex and one component of size 4 (Section 3.3.2). We
expect the distances between components of the graph to behave like the distances
between random vertices of the graph. To investigate if the Fp-components are
somehow distinguished, we compare the distances between Fp-components with
the distances between random vertices of the graph: In Figure 3.8, we compare
these distances for 254 primes with p ≡ 1 (mod 4) from 10253 to 65437. The
primes were chosen to be spaced with a gap of at least 200.

In Figure 3.8, we sample the distances between 100 pairs of random points
on the graph. The vertical axis represents the difference [(average distance of Fp-
components) − (average distance between 100 random pairs of points)]. For this
range of primes, the average distances between Fp-components ranged between
8.20 and 10.95. The average distances between pairs of randomly chosen vertices
ranged between 7.82 and 10.85. These differences are mostly positive: The av-
erage distances between components is slightly larger than distance between two
random points in G2(Fp) (around 3.6% larger).

Figure 3.8: Comparing average distances between random vertices in G2(Fp) and
between connected components of S ⊂ G2(Fp). On the horizontal axis, we have
primes p ≡ 1 (mod 4). The height of each point represents (avg. distance be-
tween Fp-components) - (avg. distance between 100 random points of G2(Fp)).

For p ≡ 7 (mod 8), the graph G2(Fp) is a union of 2-level volcanoes, each
with h(−p) vertices on the surface and h(−p) vertices on the floor. The size of the
surface of any volcano is the order of the prime above 2 in the class group Cl(OK).
If a prime above 2 generates the class group, G2(Fp) is connected and so is S. The
converse is not true, as it is possible for S to become connected via attaching.
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In this case, we again compare the distances between Fp-components and the
distances between random vertices. For p ∈ [50000, 100000], there are 217 primes
for which a prime p2 above 2 does not generate the class group; for 12 of these
primes, the spine S is nonetheless connected. For 57 of those primes, there were
exactly two connected components with distance less than or equal to 6.

The graphs have between 5400 and 8300 vertices and diameter between 14
and 16. For 2-isogeny graphs of this size, the average distance between two
random vertices is around 9 (∼ 0.6× diameter). This number grows slowly (for
primes p ≈ 500000, the average distance between two random vertices is ∼ 0.7×
diameter) and we expect it to converge to the diameter. We also computed the
average of the mean distances between connected components of S ⊂ G2(Fp) for
these primes. The mean is 4.3395, with standard deviation 1.1092 (maximum
7.000 and minimum 2.333).

3.4 Conjugate vertices, distances, and the spine

If j is a supersingular j-invariant, so is its Fp2-conjugate jp. Because modular
polynomials have integer coefficients, if j and j′ satisfy Φℓ(j, j

′) = 0 then also

Φℓ(j
p, (j′)p) = (Φℓ(j, j

′))p = 0.

This means that for any edge [j, j′] ∈ Gℓ(Fp), there is a mirror edge [jp, (j′)p].
This leads to the idea of a mirror involution on Gℓ(Fp):

Definition 3.4.1. The mirror involution on Gℓ(Fp) is the map defined by sending
the vertex represented by j ∈ Fp2 to the vertex represented by jp.

A vertex j ∈ Gℓ(Fp) is fixed under the mirror involution if and only if j ∈ Fp.

Definition 3.4.2. We say that a path (j0, j1, j2, . . . , jn−1, jn) in the graph Gℓ(Fp)
is a mirror path if it is invariant under the mirror involution.

There exists at least one mirror path between any two conjugate j-invariants:
it suffices to find a path from one j-invariant, say j0, to an Fp j-invariant and
then conjugate this path. Mirror paths either pass through a Fp-vertex j

(j0, j1, · · · , jn, j, jpn, · · · , j
p
1 , j

p
0),

or through a pair of conjugate j-invariants:

(j0, j1, · · · , jn, jpn, · · · , j
p
1 , j

p
0).

The existence of mirror paths (see Definition 3.4.2) in Gℓ(Fp) motivates us to
question their length in relation to the diameter of the graph. Delfs and Galbraith
[DG16] show that if one navigates to the spine S, one can solve the path finding
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problem in subexponential time using the quantum algorithm in [BJS14]. This
leads naturally to the question of how the spine S sits in the full ℓ-isogeny graph.
In Section 3.4.1 we study the distance between Galois conjugate pairs of vertices,
that is, pairs of j-invariants of the form j, jp. Our data suggest these vertices are
closer to each other than a random pair of vertices in G2(Fp). In Section 3.4.2 we
test how often the shortest path between two conjugate vertices goes through the
spine S (contains a j-invariant in Fp). We find conjugate vertices are more likely
than a random pair of vertices to be connected by a shortest path through S.
Finally, we examine the question of navigating to S by considering the distance
between arbitrary vertices and S in Section 3.4.3.

3.4.1 Distance between conjugate pairs

Isogeny-based cryptosystems such as cryptographic hash functions and key ex-
change algorithms rely on the difficulty of computing paths (routing) in the su-
persingular graph Gℓ(Fp). Our experiments with ℓ = 2 show that two random
conjugate vertices are closer than two random vertices. These shorter distances
may indicate that it is computationally easier to find paths between conjugate
vertices, when compared with random graph vertices. We analyze the differences
between these distances in this section, using the following experimental prac-
tices: Given prime p, we constructed the graph G2(Fp). Then we computed the
distances dist(j1, j2) between all pairs of (Fp2 \Fp)-vertices j1, j2 ∈ G2(Fp). These
values were organized into two lists:

Cp = [dist(j, jp) : j ∈ Fp2 \ Fp]
Ap = [dist(j1, j2) : j1, j2 ∈ Fp2 \ Fp].

We call the pairs from Cp conjugate pairs and pairs from Ap arbitrary pairs.

The distributions Cp and Ap for p = 19489 are shown in Figure 3.9. For
a larger prime, it is too costly to iterate over all vertices. Instead, we took a
random sample of 1000 conjugate and arbitrary pairs. The data collected for the
prime p = 1000003 is shown in Figure 3.10. We see different distributions for the
conjugate pair distances compared with the arbitrary pair distances. Conjugate
pairs are more likely to be closer than arbitrary pairs. This is likely related to the
fact that the neighbors of curves with conjugate j-invariants are also conjugate,
as discussed in Section 3.4.

In Figure 3.10, we see a clear bias towards paths of odd length (that is, paths
with an odd number of edges). This is due to the fact that conjugate j-invariants
often admit a shortest path that is a mirror path (Definition 3.4.2). These paths
do not usually go through the spine S, so they have an even number of vertices
and an odd number of edges. This topic is studied further in Section 3.4.2.
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Figure 3.9: Histogram of distances measured between conjugate pairs and arbi-
trary pairs of vertices not in Fp for the prime p = 19489.

Figure 3.10: Histogram of distances between 1000 randomly sampled pairs of
arbitrary and conjugate vertices for the prime p = 1000003.

3.4.2 How often do shortest paths go through the spine

We consider the question of how easy it is to navigate to the spine S. Delfs
and Galbraith [DG16] use L-isogenies to navigate to the spine S, where L is a
set of small primes. We study the situation when L = {2}. Any path from j
to a vertex j in the spine S can be mirrored to obtain a path of equal length
from j to jp, and hence a path between j and jp passing through the spine. This
construction motivates the following definition:

Definition 3.4.3. A pair of vertices are opposite if there exists a shortest path
between them that passes through the Fp spine.

Experimental methods. We used built-in functions of Sage [The24] to per-
form our computations. We tested how often a shortest path between two con-
jugate vertices went through the spine S. Shortest paths are not necessarily
unique, so it is not enough to compute a shortest path and check whether it
passes through the spine. Instead, to verify whether a pair j1, j2 is opposite, we
run over all vertices in j ∈ Fp and check whether there is a j such that

dist(j1, j2) = dist(j1, j) + dist(j, j2).
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For smaller primes (< 5000) we computed the proportions for all pairs of ver-
tices in Fp2\Fp. For larger primes, we randomly selected 1000 pairs of points j1, j2
in Fp2\Fp and checked whether each of the pairs (j1, j2), (j1, j

p
1) were opposite.

Conjugate pairs vs arbitrary pairs. For each prime p ranging between 50000
and 100000, we sampled data from 1000 random conjugate pairs of vertices and
1000 pairs of arbitrary vertices. We computed the proportions of conjugate pairs
which are opposite and the proportions of arbitrary pairs which are opposite.
This data is displayed in Figure 3.11.

Figure 3.11: Proportions of opposite vertex pairs; x-axis represents primes. The
data are for a random sample of 1000 pairs of conjugate and arbitrary pairs.

Our data suggest conjugate vertices are more likely to be opposite than ar-
bitrary vertices and that this bias increases with p. For the primes displayed in
Figure 3.11, conjugate pairs are more than four times as likely to be opposite,
compared with arbitrary pairs. For p ∈ [1000, 5000] (not displayed), conjugate
pairs are approximately twice as likely to be opposite than random pairs.

The graph Gℓ(Fp) can be symmetrically constructed from S by adding edges
and mirror edges at once, leading one to suspect S to be central to the graph.
However, we have found the shortest paths between arbitrary pairs of vertices are
less likely to pass through the spine, contradicting that perspective.

Varying the residue class of p. In this section, we consider only arbitrary
pairs of vertices, and we study the overall connectivity of the graph by looking at
the proportions of opposite arbitrary vertices, for primes p in different congruence
classes modulo 8. See Figure 3.12.

In this data, we have computed for each prime p a random sample of 1000
arbitrary pairs of vertices and checked how many are opposite. Then, we take
this number and divide by 1000 · |S|, to account for differences in the numbers
of Fp vertices for these primes. We have sorted the data by primes p mod 8 and
displayed it in the graphs in Figure 3.12. Our results suggest that the size and
connectedness of the spine S affect the proportion of opposite pairs:

1. Size of S: Shortest paths are more likely to pass through S if it is larger. For
this reason, we divide the proportions of opposite arbitrary pairs of vertices
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Figure 3.12: The horizontal axes of these figures are primes. The heights are
proportions of 1000 pairs of arbitrary opposite vertices, normalized by |S|.

by |S| in Figure 3.12. The normalized proportions still differ modulo 8,
indicating another factor is at play, possibly the connectedness of S.

2. Connectedness: When S is less connected, pairs are more likely to have
shortest paths through it. The spine is the least connected when p ≡ 1
(mod 4), and most connected when p ≡ 7 (mod 8) (Table 3.2). This could
explain the difference in proportions when normalized by the size of S.
For example, for p1 = 19991 (p1 ≡ 7 (mod 8), S is connected, |S| = 199)
and p2 = 19993 (p ≡ 1 (mod 4), S is maximally disconnected, |S| = 30),
we would expect 199/30 > 6 times more opposite pairs in the p1 case. But
out of 1000 arbitrary pairs, only 266 pairs were opposite for p1 compared
to 112 pairs for p2.

To further study whether differences occurring in the normalized proportions
of vertices which are opposite for p mod 8 were due to the connectedness of S, we
took a random subgraph of the same size as S and obtained the proportion of pairs
of arbitrary vertices with a shortest path passing through the random subgraph.
We took the average over 10 random subgraphs for each prime between 1000 and
5000. The data, in Figure 3.13, show less distinction mod 8 compared to the data
in Figure 3.12. This suggests that the connectedness of S is a dominant factor
affecting the normalized proportion of opposite pairs of vertices.

3.4.3 Distance to spine

Distance to the spine versus a random subgraph. For two fixed primes
we study how the spine fits into the graph, and compare this with a randomly
selected subgraph. Specifically, we compare a random vertex’s distance to the
spine, with a random vertex’s distance to a random subgraph of the same size
as the spine. We observe that if the spine is connected, then the distance to
the spine seems greater than the distance to a random subgraph. This agrees
with the intuition that a small connected subgraph (|S| ≈ O(

√
p)) will be further

from most vertices than a random subgraph, which will have many connected
components uniformly distributed throughout the graph.
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Figure 3.13: Normalized proportion of pairs with a shortest path through the
specified subgraph, as p varies.

We studied the distances for p = 19991 and p = 19993. For p = 19991, the
subgraph S is connected, and for p = 19993, S is maximally disconnected (see
[DG16]). For each value of p, we constructed the graph G2(Fp), the spine S0 := S,
and chose several random subgraphs S1, . . . , Sn. We define the distance between
a vertex j and a subgraph Si to be

dist(j, Si) = min{dist(j, j′) : j′ ∈ Si}.

We computed lists di = [dist(j, Si) : j ∈ G2(Fp)] to measure how dispersed Si is
in G2(Fp). Histograms of the distributions of the di are given in Figure 3.14.

The significant difference between the two primes shown in Figure 3.14 can
also be explained by the number of vertices in S. Since G2(Fp) is a 3-regular
graph, for a random vertex j, there are at most 3 · 2d−1 vertices of distance d
away from j (and this limit is achieved if there are no collisions on the paths
leaving j). If G2(Fp) has N vertices and H is a random subgraph withM vertices,
then the expected distance to H from a random vertex should be ≈ log2(N/M).
For p = 19991, |S| = 199, so we expect the average distance to S to be 3.06.
For p = 19993, |S| = 30, so we expect the average distance to S to be 5.80.

When maximally disconnected, the distances to the spine were similar to that
of a random subgraph. However, when the spine is connected, the distances are
slightly longer. This shows that modeling the spine as a random subgraph may
lead to an underestimate of the distances.

Comparison across primes p. In order to compare the distances to S across
different primes and account for the expected average distance based on the size
of S we consider normalized distances as follows:

dp = (average distance to S for prime p)/ log2(|G2(Fp)|/|S|)
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Figure 3.14: Distances to the spine S contrasted with distances to a random
subgraph R of the same size. The spine S is connected for p = 19991 and a union
of disconnected edges for p = 19993.

Recall that log2(|G2(Fp)|/|S|) is the expected distance to the spine from a random
vertex. We observed that the average distances were lower than the expected
distance based on the connectedness of S. There are also clear differences in
the distributions of dp when considering residue classes of p modulo 8. This is
shown in Figure 3.15. In particular, the data mod 8 match our findings on the
proportion of opposite pairs, see Figure 3.12.

The different behavior of dp for the different congruence classes mod8 can be
explained by the size of the spine. If |S| is large, we will need fewer steps to reach
the spine from a random vertex v. Hence, when counting the paths of length
d from v, we will encounter less backtracking and the estimate is more precise.
Looking at Figure 3.16, we see that for p ≡ 7 (mod 8), the size of the spine is
the largest, and for p ≡ 1 (mod 4), the size of the spine is the smallest.

We tested this in a fixed congruence class: for primes p with p ≡ 7 (mod 8)
and p ∈ [15 000, 20 000], the mean distance to the spine is 4.040 with standard
deviation σ = 0.413 if |S| < 100 and mean 3.007 with σ = 0.335 if |S| > 100.

3.5 When are conjugates ℓ-isogenous?

In Section 3.4.2 we studied paths between conjugate j-invariants in G2(Fp) that
go through the spine S. If j and jp happen to be 2-isogenous, then that is the
shortest path between them and this path does not pass through S. This leads
us to the natural question:

Question 3.5.1. How often are conjugate j-invariants in Fp2 \ Fp ℓ-isogenous?
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Figure 3.15: Normalized average distances dp to the spine S, as prime p varies on
the horizontal axes.

Figure 3.16: Size of the spine as prime p varies on the horizontal axes.

3.5.1 Experimental data: 2-isogenies

We collected data on supersingular j-invariants for all primes 5 ≤ p ≤ 100193 (a
total of 9605 primes). For each p, we determined all of the Fp2 \ Fp j-invariants
and counted those that are also 2-isogenous to their conjugates.

With a few exceptions, all of the proportions computed are positive and
strictly less than 1. The small primes (roughly p < 5000) have a wide range of
proportions, between 0 and 1. This is expected due to the small number of points
on their Gℓ(Fp) graphs. For example: there are some primes p such that all of the
pairs of conjugates are 2-isogenous. On the other hand, if Gℓ(Fp)\Gℓ(Fp) = ∅ this
proportion is trivially zero. This happens only for 15 small primes, namely those
dividing the order of the Monster group [Ogg75]. Notably, the only examples of p
for which the proportion is zero, but not trivially zero, are p = 101, 131.

To avoid small prime phenomena, we focused on analyzing the data we col-
lected for 10007 ≤ p ≤ 100193, a total of 8378 primes. The graph of proportions
for these data can be found in Figure 3.17. We found that the mean proportion
in the data is 0.032780 with standard deviation of 0.019134.

We then sorted the data by congruence conditions to look for patterns. The
biggest difference appeared when we re-sorted the data according to the congru-
ence class of the primes modulo 12. The primes in this range are fairly evenly
distributed into the congruence classes modulo 12, as one can see in Table 3.3.
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Figure 3.17: Proportion of 2-isogenous conjugate pairs in G2(Fp) for primes in
range 10007 ≤ p ≤ 100193.

p mod 12 1 mod 12 5 mod 12 7 mod 12 11 mod 12
Total # of primes: 2079 2104 2101 2094
Mean: 0.043551 0.021969 0.043375 0.022244
Standard Deviation: 0.019815 0.010206 0.020140 0.010512

Table 3.3: Proportions of 2-isogenous conjugates, 10007 ≤ p ≤ 100193

Primes modulo 12. In Table 3.3, we summarize the differences between the
congruence classes modulo 12. Note the similar, higher means for p ≡ 1, 7
(mod 12) and the similar, lower means for p ≡ 5, 11 (mod 12). These distri-
butions are skewed according to the congruence class, as we can also see from the
graph in Figure 3.17b. There appears to be a correlation between primes p ≡ 1, 7
(mod 12) and between primes p ≡ 5, 11 (mod 12). A two-sample t-test confirms
correlation at the 99.8% level.

3.5.2 Experimental data: 3-isogenies

We collected data on the supersingular for all the primes 5 ≤ p ≤ 100193 (a
total of 9,605 primes) and computed the proportion of conjugate pairs that are
also 3-isogenous. We present these data in the same format as the 2-isogeny data
presented in Section 3.5.1.

Once again, we observe some small prime phenomena (proportions of 1 and 0
for p small). However, in the 3-isogeny case we do not have nontrivial examples of
primes p for which the proportion of 3-isogenous conjugates is 0. On the contrary,
if there exist conjugate j-invariants in Fp2 \ Fp, then there is at least one pair of
3-isogenous conjugates. (Recall that the two counterexamples to this statement
in the 2-isogeny case were p = 101, 131.)

To avoid small prime phenomena, we again focused on analyzing the data
we collected for 10007 ≤ p ≤ 100193, a total of 8378 primes. The graph of
proportions for these data can be found in Figure 3.18. In this collection of data,
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for primes 10007 ≤ p ≤ 100193, we found there to be a mean proportion of
3-isogenous conjugate pairs of 0.047306, with standard deviation of 0.026568.
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Figure 3.18: Proportion of 3-isogenous conjugate pairs in G2(Fp) for primes in
range 10007 ≤ p ≤ 100193.

As in the 2-isogeny case, we again sorted the data by congruence conditions
to look for patterns. The biggest difference appeared when we re-sorted the data
according to the congruence class of the primes modulo 12.

Primes modulo 12. In Table 3.4, we report the data for different congruence
classes modulo 12. Note the similar and higher means for p ≡ 1, 5 (mod 12)
and the similar and lower means for p ≡ 7, 11 (mod 12), as we can also observe
in Figure 3.18b. There appears to be a correlation between p ≡ 1, 5 (mod 12)
and between primes p ≡ 7, 11 (mod 12). A two-sample t-test confirms these
correlations at the 99.8% level.

p mod 12 1 mod 12 5 mod 12 7 mod 12 11 mod 12
# of primes: 2079 2104 2101 2094
Mean: 0.058526 0.059034 0.035620 0.036107
standard deviation: 0.029488 0.029729 0.016369 0.016706

Table 3.4: Proportions of 3-isogenous conjugates for 10007 ≤ p ≤ 100193.

3.5.3 Further questions

Our experimental data suggest that, at least for ℓ = 2, 3 and with the exception
of a few small primes, the proportion of conjugate pairs that are ℓ-isogenous
is a small positive number. In particular, all of the primes p ̸= 101, 131 with
supersingular j-invariants in Fp2 \ Fp observed have at least one such pair. This
motivates the following two questions:

Question 3.5.2. For p > 131, is there always at least one pair of ℓ-isogenous
conjugate j-invariants on Gℓ(Fp)?
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Question 3.5.3. For large p, is there a nontrivial lower and/or upper bound for
the proportion of ℓ-isogenous conjugate j-invariants on Gℓ(Fp)?

A partial answer to Question 3.5.3 is in [CLG09, Lem. 6]: for p ≡ 1 (mod 12),
the set of j-invariants that are ℓ-isogenoues to their conjugates is of size

√
ℓÕ(
√
p),

which yields an upper bound. We discuss later results (such as [EHL+b] and
[CS22]) in Section 3.8.

We note that this bound does not explain the significant difference in the aver-
age of the proportion of ℓ-isogenous conjugate pairs when we vary the congruence
class of p modulo 12. This prompts us to formulate the question:

Question 3.5.4. How does the proportion of ℓ-isogenous conjugate j-invariants
on Gℓ(Fp) relate to the conjugacy class of p mod 12?

Remark 3.5.5. We can also consider ℓ-isogenous conjugate pairs of j-invariants
in the context of the modular curve X0(ℓ). In [Ogg75], Ogg defined X0(ℓ)

+, the
Atkin-Lehner quotient of X0(ℓ) by the Fricke involution. If two conjugate Fp2 \Fp
j-invariants j, jp are ℓ-isogenous, then (j, jp) is a point of X0(ℓ). The image
of (j, jp) under the quotient map is an Fp-rational point of X0(ℓ)

+. Conversely,
any Fp-rational point of X0(ℓ)

+ whose preimage in X0(ℓ) contains a non-Fp point
corresponds to an ℓ-isogenous conjugate pair j, j2. Intersecting with the super-
singular locus, we have an alternative description of the set of Fp2 \Fp ℓ-isogenous
conjugate pairs in the Supersingular Isogeny Graph.

3.6 Diameter

Sardari [Sar18] estimated the diameters of k-regular LPS [LPS88] Ramanujan
graphs and random Cayley graphs with n vertices to be asymptotically 4

3
·logk−1(n),

resp. logk−1(n). We present data on the diameters of the supersingular 2-isogeny
graphs, which are 3-regular on approximately p/12 vertices.

For p ≡ 3 (mod 4), the supersingular j-invariant 1728 is 2-isogenous to only
one other curve. This isolated position in the graph may lead to longer diameters.

We can see a lower bound log2
(⌊

p
12

⌋)
− log2(3)+1 on the diameter as follows.

Starting from a random vertex and taking a walk of length n, the walk reaches at
most 3 ·2n−1 vertices as endpoints (exactly that number if there are no collisions).
Since there are

⌊
p
12

⌋
+ϵ vertices in the graph, with ϵ = 0, 1, 2, the diameter cannot

be less that the smallest n0 such that 3 · 2n0−1 + 1 ≥
⌊
p
12

⌋
+ ϵ.

We collected graph data for the diameters of the supersingular 2-isogeny
graphs G2(Fp) for 4600 primes p. We used the built-in Sage ”diameter” func-
tion [The24] on the graphs. The implementation can be found in the walk.sage
worksheet available on our github repository. We collected diameters of G2(Fp)
in batches for ranges of primes. The smallest prime we have data for is p = 1009
and the largest is p = 9501511. This data is displayed in Figure 3.19.
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Figure 3.19: Diameter of G2(Fp) for 4600 primes p with 1009 ≤ p ≤ 9501511 with
y = log2(p/12) + 1 + log2(12) (dashed), y = 4/3 log2(p/12) + 1 (solid) and the
proven lower bound y = log2(p/12)− log2(3) + 1 (dotted).

The shifted (4/3) log2(p/12) graph (a solid line) increases too steeply for larger
primes. This could suggest that the 2-isogeny graph diameters may be more like
random Cayley graphs, i.e. with distribution closer to log2(p/12). Diameters for
larger primes would be needed to make a conclusion, but our algorithm would
not be able to find those in a reasonable amount of time.

For this reason, we study lower bounds on the diameter: We chose j = 0 as
the starting vertex and in every step, we added the neighbors of all the known
vertices until we reach all the vertices. This algorithm gives a lower bound for
the diameter of Gℓ(Fp), and we were able to reach larger primes p, shown in
Figure 3.20. The dashed curve y = log2(p/12) + log2(12) + 1 no longer fits the
data (Figure 3.20b). We chose primes p ≡ 23 (mod 24): we chose p ≡ 7 (mod 8)
so that the spine S has the same structure and approximate size (see Table 3.2).

We tried fitting the curves log2(p/12) + α and 4/3 log2(12) + β with the best
constants α, β and as a first approximation we tried minimizing the sum of squares
of distances to these curves, yielding α ≈ 4.8168 and β ≈ −1.3356.
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(a) α = log2(12) + 1, β = 1.
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(b) α ≈ 4.8168 and β ≈ −1.3356

Figure 3.20: Lower bounds on the diameter δ of G2(Fp) for p ≡ 23 (mod 24)
with 1020431 < p < 15201671 (a total of 431 primes), along with the graphs of
y = log2(p/12) + α (dashed) and y = 4/3 log2(p/12) + β (solid).
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Diameter for different classes of primes modulo 12. We investigated
the behavior of the diameter as p varies modulo 12. We found a slight, but
noticeable, bias: Primes p ≡ 5, 11 (mod 12) tend to have a 2-isogeny graph of
larger diameter compared with primes p ≡ 1, 7 (mod 12). This is visible in
Figures 3.21a and 3.21b. In Figure 3.21b, the diameters tend to be slightly larger
than the graph of y = log2(p/12) + log2(12) + 1, whereas those in Figure 3.21a
tend to be more evenly distributed above and below y = log2(p/12)+log2(12)+1.
Table 3.5 supports the visible bias.
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(a) p ≡ 1, 7 (mod 12)
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(b) p ≡ 5, 11 (mod 12)

Figure 3.21: Diameters of 2-isogeny graph over Fp for different congruence classes
of the prime p, shown with y = log2(p/12) + log2(12) + 1

average δ for 100, 000 < p < 300, 000 average δ for 300, 000 < p < 500, 000
1 mod 12 17.22 5 mod 12 17.88 1 mod 12 18.40 5 mod 12 18.92
7 mod 12 17.73 11 mod 12 17.99 7 mod 12 18.82 11 mod 12 19.10

Table 3.5: Average diameters sorted by primes modulo 12. The first data set
contains around 100 primes per class, the latter between 10 to 17 primes.

3.7 Conclusions

We determined how the connected components of Gℓ(Fp) merge together to give
the spine S ⊂ Gℓ(Fp). For any specific ℓ and any p, one can determine the
resulting shape explicitly if one knows the structure of the class group Cl(OK).

For ℓ = 2, we summarize the biases we observed in our heuristic data, for
the different congruence classes of p mod 12. The data suggest the following,
although more careful analysis is needed to confirm:

• p ≡ 1 mod 12:

– smaller 2-isogeny graph diameters,
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– larger number of spinal components,

– larger proportion of 2-isogenous conjugate pairs,

• p ≡ 11 mod 12:

– larger 2-isogeny graph diameters,

– smaller number of spinal components,

– smaller proportion of 2-isogenous conjugate pairs.

3.8 Related work

Adj, Ahmadi and Menezes [AAM19] were the first to study the fine structure
of the graph Gℓ(Fp). They showed that the graph Gℓ(Fp2 ,−2p) of supersingular
elliptic curves and isogenies over Fp2 with trace t = −2p is isomorphic as a graph
to Gℓ(Fp). Our approach in the current paper also studies a subclass of curves and
the paths passing through these curves. After our preprint [ACL+19], a related
approach was introduced by Boneh and Love [LB20] to study the subgraph of su-
persingular curves with small non-integer endomorphisms. Small endomorphisms
can be used to efficiently compute isogenies between the special curves.

Shortly after our work was first posted [ACL+19], Castryk, Panny, and Ver-
cauteren posted a paper on rational isogenies [CPV]. Their work gives an algo-
rithm for computing an ideal to connect two supersingular elliptic curves over Fp
which have the same Fp-endomorphism ring. Their focus on Fp-curves is parallel
to our results regarding the structure of the Fp isogeny graphs Gℓ(Fp) and S.

More recently, Eisenträger et al. [EHL+b] gave a cycle finding algorithm to
compute endomorphism rings of supersingular elliptic curves. A key part of their
algorithm involves finding j-invariants that are ℓ-isogenous to their conjugates.
[EHL+b] provided an answer regarding the lower bound in Question 3.5.3, and
thus also for Question 3.5.2. They proved that the cardinality of the set of ℓ-
isogenoues conjugate j-invariants is larger than C

√
p

log log p
, for some constant C

depending on ℓ (assuming GRH). Both proofs assume that ℓ < p/4. Chenu and
Smith [CS22] show that the ℓ-isogenoeus conjugate j-invariants are oriented by
the order Z[

√
−ℓp], in the sense of Remark 2.5.8.

The relationship between LPS graph and Gℓ(Fp) was also studied in [CFL+].
Florit and Finol [FF20] constructed a dababase of supersingular isogeny graphs

for primes up to 30, 000 and for small ℓ ∈ {2, 3, 5, 7, 11}, complementing some of
the questions we investigated in this paper.





Chapter 4

Background on CSIDH

Starting from this chapter, we leave behind the theory of supersingular isogeny
graphs over Fp2 , and study the theory of supersingular elliptic curves over Fp. In
particular, we focus on the CSIDH scheme [CLM+18].

CSIDH is the main contender of the isogeny group-action schemes. It is based
on the CRS framework [Cou06, RS06] and the modern instantiation thereof by
[DKS18]. CSIDH was the first procotol that made group-action isogeny-based
protocols potentially interesting for practical use.

We first define the general framework of constructing cryptographic schemes
from group actions in Section 4.1. Then we specialize to the specific situation
of CSIDH in Section 4.2. We explain the relevant parameter choices, and lastly
discuss the implementation of the CSIDH scheme in Section 4.3.

This chapter is based on the background sections of [BBC+21, BKL+23],
which are part of this thesis in Chapters 6 and 7. The background sections
from these two papers have significant overlap: both are concerned with comput-
ing the CSIDH group action efficiently. The shared parts are consolidated into
Sections 4.2 and 4.3 and are provided with further expository details.

77



78 Chapter 4. Background on CSIDH

4.1 Group action in cryptography

In this section, we start from the Diffie–Hellman protocol (Section 4.1.1) and build
up to the group-action based Diffie–Hellman protocols (Section 4.1.2), defining
and examining the main hard problems underlying its security. We also explain
how to obtain an instantiation of this framework from the class group action on
elliptic curves with CM (Section 4.1.3). This is only a high-level overview, the
practical choices are discussed in depth in Section 4.2.

The goal of this section is to give an intuitive understanding of the crypto-
graphic assumptions relevant for later chapters. Proper definitions can be found
in any provable-security based cryptography textbook, such as [Gol00] or [KL07].

4.1.1 Diffie–Hellman key exchange

We start with an overview of the Diffie–Hellman key exchange [DH76], which is
“...both literally and figuratively, at the foundation of public-key cryptogra-
phy” [Smi18].

The Diffie–Hellman key exchange is the following protocol for two parties –
Anouk and Bas – who try to agree on a shared secret while communicating on
an open channel.

Anouk and Bas agree on a prime p and a generator g of the multiplicative
group of (Z/pZ)×. Anouk then chooses their own secret a ∈ Z/(p − 1)Z, and
computes the power ga, which is their public key pkA. The value skA is kept by
Anouk in private. Bas chooses their own secret b ∈ Z/(p − 1)Z, and computes
the power gb, so Bas has a secret-public key pair (skB, pkB) = (b, gb). Remember
that all the exponentiations are done mod p.

Anouk and Bas exchange their public keys over the insecure channel. Anouk
can compute pkskAB = (gb)a mod p. Bas can compute pkskBA = (ga)b mod p. They
both arrive at the same shared key gab mod p.

The protocol extends naturally to any finite cyclic group G of size q with
generator g, and we assume we are in this situation for the rest of the section.

Computational Diffie–Hellman problem. For the protocol to be secure in
an intuitive sense, any attacker eavesdropping on the channel should not be able
to obtain the shared key (this is called the one-wayness). The transcript of the
conversation is the prime p, the choice of g, and the values pkA = ga and pkB = gb.
We would like to say that any eavesdropper cannot compute the shared key gab;
however, this is impossible. An attacker can always use brute force and compute
all possible values gx and identify a, b, upon which computing gab is easy.

The brute-force attack (in the worst case) requires going through all the q
possible values for a and b. If the group G is large, this will be computationally
infeasible. We can therefore make it “hard” for the attacker by choosing a large G.
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From now on, we assume that attackers are efficient: an efficient algorithm is
a randomized algorithm that runs in polynomial time in the size of the input. In
the context of the Diffie–Hellman key exchange, the input is not the group G, but
the transcript, which consists of a description of the group G and some elements
in G. This can be represented in O(log2 q) bits. Therefore, an efficient attacker
can only perform O(logc(q)) operations for some constant c. This rules out brute-
force attacks as those require Ω(q) operations.

Note also that for any fixed a, b, computing gab from ga and gb is easy. The
values a and b therefore need to be chosen randomly.

Definition 4.1.1. Let G be a group of order q and let g be a generator. We
say that the Computational Diffie–Hellman problem (CDH) problem is hard in
the group G if there is no efficient algorithm to compute gab from ga and gb

for a, b ∈ Z/qZ random.

Remark 4.1.2 (Negligible success probability). We rephrase the hardness of the
CDH problem using negligible functions: The CDH problem in the group G is
hard if any efficient algorithm A with input (G, q, g, ga, gb) and output h ∈ G
succeeds in outputting h = gab with only negligible probability negl(log q).

The formal definition of a negligible function negl can be found in [Gol00,
Def. 1.3.5]; however, the definition is far less enlightening than the name. Since
our functions are functions in the size of the input (that is, in log q), an example
of a negligible function is 2− log q = 1/q (guessing at random), an example of a
non-negligible function is 1

log q
(exponentially better than guessing at random).

Discrete logarithm. In the scenario above, the attacker succeeds if they can
compute the shared key gab ∈ G. An even stronger attacker might be able to
determine the secret keys skA or skB from the public keys pkA, resp. pkB.

Definition 4.1.3. The Discrete logarithm problem (DLP) problem in the groupG
is said to be hard if there is no efficient algorithm to compute a, given (G, q, g, ga)
for a ∈ Z/qZ random.

Clearly an attacker who can solve the DLP can solve the CDH problem. In
cryptanalysis, it is usually the DLP problem that is studied. There are groups
in which these problems are equivalent but also groups in which the DLP is
considered hard while the CDH is easy [MW00].

Decisional Diffie–Hellman problem. Anouk and Bas perform the key ex-
change not only to share a secret among them, but to use this secret in other
protocols. Consider the following ElGamal encryption protocol, in which the
shared secret is masking the message. Anouk wants to send a message m ∈ G to
Bas. Anouk takes the public key pkB = gb of Bas, generates a new y ∈ Z/qZ, and
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sends Bas the pair (c1, c2) = (gy, (gb)y ·m). Bas can then decrypt the message by
taking the tuple (c1, c2) and their secret key skB = b and compute c2 · (cb1)−1 = m.

Despite all the incredible literary works of art humanity has created, most
human communication is fairly mundane and repetitive. Assume therefore that
there is only a small set of possible messages: for simplicity, say, m ∈ {1, h}
for h ∈ G random. Therefore, an attacker seeing the pair (c1, c2) on the channel,
can see that c2 = gby or c2 = gby · h. In the first case, it is the shared key for gb

and gy, in the second case, it is a random element in G. Any attacker that can
distinguish between the two can determine which message Anouk was sending.

This leads to the definition of the Decisional Diffie–Hellman problem (DDH):

Definition 4.1.4. We say that the Decisional Diffie–Hellman problem (DDH)
problem is hard in G if any attacker seeing (G, q, g, ga, gb, h) for a, b ∈ Z/qZ
random and for which h = gab with probability 1/2 and h ∈ G uniformly random
otherwise, can decide whether h = gab with probability at most 1/2+ negl(log q).

The success probability 1/2 + negl intuitively means “not significantly better
than a random guess”. A tuple of the shape (ga, gb, gab) is called a DDH tuple or
DDH sample. The DDH problem is therefore to distinguish between DDH tuples
and tuples of random elements.

Example 4.1.5 (Easy DDH). The DDH problem is not hard for (Z/pZ)× (c.f.
Section 4.1.1). To see this, we use the Legendre symbol(

x

p

)
=

{
1, if x is a square mod p,

−1, if x is a not a square mod p.
(4.1)

For a generator g ∈ (Z/pZ)× and any a, we have
(
ga

p

)
=

(
g
p

)a
= (−1)a. We

denote the resulting quadratic character by χ (as we will do in Chapter 5):

χ(x) =

(
x

p

)
. (4.2)

The quadratic character χ(ga) = χ(g)a is clearly determined by the parity of the
exponent a. We emphasize that we do not have access to the exponents a, b, but
only the group elements ga, gb.

In the DDH problem, we need to decide whether in the tuple (ga, gb, h) the
element h is random or h = gab. We observe that χ(gab) = (−1)ab, but note that
we do not immediately have the correct gab at our disposal. We can, however,
deduce the correct value of χ(gab) from χ(ga) and χ(gb).

First, assume that χ(ga) = χ(gb) = −1 (the exponents are odd). Then we
always have χ(gab) = −1 (“odd times odd equals odd”). In all other cases, at
least one of the exponents is even, and ab is even, so we always have χ(gab) = 1.
In either of these cases, if h is random, then χ(h) has the correct value only half
of the time. This leads to a distinguisher with success probability 3/4, which is
noticeably bigger than 1/2.
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Note that this attack can be avoided if we restrict to the subgroup of quadratic
residues in (Z/pZ)×: the Legendre character is trivial there. If we choose p such
that p = 2r + 1 for some prime r, then DDH is believed hard in the subgroup of
quadratic residues.

Remark 4.1.6 (Practical hardness). Hidden constants in asymptotic statements
can make a big difference in practice. A cryptographic problem is considered
hard in practice if the adversary A with running time bounded by 2128 can break
the problem with probability at most 2−128 (we say the problem has 128 bits of
security). Based on our current understanding of the practical hardness of CDH
and discrete log, we use elliptic curves over finite fields with at least p ≈ 2256,
or subgroups of size at least q = 2256 in a finite field Fp with p ≳ 23072 (see for
instance [CSA18]).

Other notions of security. The discussion above considers passive security
only in a very limiting model: the adversary can listen to the conversation between
Anouk and Bas on an open channel, but cannot interfere in their communication.
The key exchange also requires an authenticated channel, in which Anouk and
Bas are talking to each other: the adversary cannot try to impersonate one of the
players. Neither is the attacker nefariously trying to obtain the secret key of the
other party by other means.

In Chapters 6 and 7 we study security of schemes in a very different model:
we study the security of the specific implementations of cryptographic schemes.
In Chapter 6 we assume the attacker can time Anouk’s computation and try to
deduce information about Anouk’s secret; in Chapter 7 we assume physical access
to Anouk’s device so that the attacker can induce errors in Anouk’s computation
and try to recover Anouk’s secret key.

Quantum easiness. The DLP in finite fields or elliptic curves is considered
sufficiently hard to be used in practice, however, it can be solved efficiently using
a large-scale quantum computer. Shor’s algorithm [Sho99] solves the problem in
quantum polynomial time and requiring a polynomial number of qubits.

4.1.2 Group actions in cryptography

Shor’s algorithm crucially uses the fact that we can efficiently compose group
elements in G. In an attempt to hide the group structure, one can generalize the
Diffie–Hellman key agreement to group actions.

The following construction is due to Couveignes [Cou06] and Rostovtstev and
Stolbunov [RS06]. First, we need a (left) group action. Let G be a group and
let X be a set. A group action of G on X is a map ⋆ : G×X → X satisfying the
following conditions:

• the identity 1 ∈ G acts trivially, that is, 1 ⋆ x = x for all x ∈ X;
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• the action respects the group operation: for any g, h ∈ G and x ∈ X we
have g ⋆ (h ⋆ x) = (gh) ⋆ x.

Usually we assume that G and X are finite; in the following, we will always
assume that G is abelian and that X is non-empty.

We call the action free if for all g ∈ G and x ∈ X the property g ⋆ x = x
implies g = 1 ∈ G. We call the group action transitive if for any x, y ∈ X there
exists g ∈ G such that y = g ⋆ x. The action is called regular if it is free and
transitive; in a regular group action, for any x, y ∈ X there exists a unique g ∈ G
such that y = g ⋆ x. If the action of G on X is regular, upon fixing any base
point x ∈ X we obtain a bijection of sets G→ X via g 7→ g ⋆ x, and we call X a
homogeneous space for G (with the group action by G implicit and fixed).

Example 4.1.7 (Affine spaces). In mathematics, a familiar example of a homo-
geneous space is an affine space A that is acted on by (the additive group) of its
underlying vector space V by translations.

To make the group action interesting cryptographically, we require several
more properties. Some of these are already in [Cou06]; the definition of an effective
group action was formalized in [ADMP20, Def. 3.4]. An effective group action
is a group action such that there exist efficient algorithms for the operations
we typically wish to perform. For the operations in the group G, we require
efficient algorithms for: testing whether a bit-string represents an element in G,
testing equality of elements in G, sampling (typically uniformly random) elements
from G, and composition and inversion of elements. For the set X, we again
require efficient testing for membership and for computing an efficient unique
representative. And, of course, computing the action g ⋆ x is required to be
efficient for any g ∈ G and x ∈ X.

Generalizing the Diffie–Hellman key agreement protocol to group actions is
immediate [Cou06, RS06]: Anouk and Bas agree on an abelian group G, a ho-
mogeneous space X for G, and a base point x ∈ X. Anouk’s secret is a random
element a ∈ G, and the corresponding public key is a⋆x. Bas’s secret is a random
element b ∈ G, and the public key is b ⋆ x. Upon exchanging public keys, both
Anouk and Bas can compute the shared value a ⋆ (b ⋆ x) = ab ⋆ x = b ⋆ (a ⋆ x).
The equality relies on the fact that G is abelian.

The following two definitions, aptly named with the affine space example in
mind, are analogues of the discrete logarithm problem and the computational
Diffie–Hellman problem, respectively. For brevity, we suppress the description of
the group action as input to the algorithms in the following definitions.

Definition 4.1.8 (Vectorization). The vectorization problem is hard if there is
no efficient algorithm that on input (x, y), for x, y ∈ X random elements, outputs
an element a ∈ G satisfying y = a ⋆ x.
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Definition 4.1.9 (Parallelization). The parallelization problem is hard if there is
no efficient algorithm that on input the tuple (x, a ⋆ x, y), for x, y ∈ X and a ∈ G
random, outputs z ∈ X satisfying z = a ⋆ y.

In the example of an affine space A being acted on by its underlying vector
space, the parallelization problem is to translate the point y by a vector a parallel
to the vector given x and a⋆x. In general, it is the analogue of the CDH problem:
note that by regularity, we can write y = b⋆x for some b ∈ G. The parallelization
problem then asks for z = a ⋆ y = (ab) ⋆ x.

A homogeneous space X for G for which the vectorization and parallelization
problems are hard is called a hard homogeneous space [Cou06].

As in the discussion of the ElGamal protocol, we might wish for an analogue
of the decisional Diffie–Hellman problem. This problem was called parallel testing
by Couveignes but this name is not widely used.

In [CSV20], the following problem is called DDH-CGA to emphasize it is the
DDH problem in the group action setting, or more specifically in the context of
CRS/CSIDH. We will use the shorter version DDH from now on as we will only
talk about the computational assumptions in the group-action setting, and no
confusion should arise.

Definition 4.1.10 (Decisional Diffie–Hellman). The Decisional Diffie–Hellman
problem for the group action of G on X is hard if there is no efficient algo-
rithm distinguishing the following scenarios, each happening with probability 1/2:
for x ∈ X and a, b ∈ G random,

1. in the tuple (x, a ⋆ x, b ⋆ x, y), the point y = (ab) ⋆ x;

2. in the tuple (x, a ⋆ x, b ⋆ x, y), the point y ∈ X is random.

4.1.3 Isogeny-based group action

Couveignes [Cou06] and Rostovtsev and Stolbunov [RS06] independently pro-
posed an instantiation of a group-action framework discussed in Section 4.1.2
based on the complex multiplication theory (cf. Section 2.4.1). The protocol is
now known as the CRS protocol.

Fix a finite field Fq, an imaginary quadratic order O and a trace t and assume
that the set X = Eℓℓq(O, t) is not empty. The group G = Cl(O) is the class group
of the order O and by Theorem 2.4.4 acts regularly on the set Eℓℓq(O, t).

The action Cl(O) × Eℓℓq(O, t) → Eℓℓq(O, t) is computed via isogenies: to
compute the action of some ideal class [a] on E ∈ Eℓℓq(O, t), represent the class [a]
by some ideal a ⊂ O and compute the isogeny E → E/E[a]. Then

[a] ⋆ E = E/E[a].
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This is a well-defined abelian group action by Section 2.4.1 and it is believed
that Eℓℓq(O, t) is a hard homogeneous space for Cl(O) [Cou06, RS06, CLM+18]

Before discussing the particular choices for q, t andO in Section 4.2, we quickly
include some notes on the security of these schemes. We primarily focus on the
hardness of the vectorization problem (cf. Definition 4.1.8).

Remark 4.1.11 (Classical security). The best classical attack on the vectoriza-
tion problem is a meet-in-the-middle attack running in O(

√
|∆O|); a low-memory

version was developed for the supersingular case in [DG16] and runs in O( 4
√
p),

as in this case we have ∆O = O(
√
p).

In practice, secret keys are restricted to a subset of Cl(O); to prevent the
meet-in-the-middle attack it is typically chosen to have size ≈ 2256 for 128 bits of
security. We discuss choices for keyspaces in Section 4.3.4.

Remark 4.1.12 (Quantum security). Childs, Jao, and Soukharev [CJS14] showed
that vectorization is an instance of the hidden-subgroup problem. This problem
can be solved using Kuperberg’s algorithm with L√

p(1/2) calls to a quantum
oracle with

L√
p(1/2) = elog

1/2(
√
p) log log1/2(

√
p)+o(1).

For concrete parameters, the number of oracle calls was further analyzed in [BS20]
and [Pei20]; [BLMP19] analyzes the costs per oracle call in number of quantum
operations. Combining these results shows that breaking CSIDH-512 requires
around 260 qubit operations on perfect qubits, i.e., not taking into account the
overhead for quantum error correction. The paper [CCJR22] extends the quantum
analysis and suggest the smallest parameters should 4096-bit primes.

Implementation papers such as CTIDH [BBC+21] use the CSIDH-512 prime
for comparison purposes and also offer larger parameters. Likewise, we use the
CSIDH-512 parameters for concrete examples.

SIDH attacks do not impact the security of CSIDH. We emphasize that
CSIDH, its variants, and the protocols based on the CSIDH group action are not
affected by the recent attacks that break the isogeny-based scheme SIDH [CD23,
MM22, Rob23]. These attacks exploit specific auxiliary information which is
revealed in SIDH but does not exist in CSIDH.

4.2 CSIDH setup

In Section 4.1.3, we discussed the group action of Cl(O) on Eℓℓq(O, t). In this sec-
tion, we explain what choices of q,O, t are made in the scheme CSIDH [CLM+18]
so that the group action can be computed efficiently.
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4.2.1 Choosing group elements to act by

Acting by large norm ideals in O means having to compute large-degree isoge-
nies, which is expensive in general. To counter this, Couveignes [Cou06] suggests
computing the group structure of Cl(O) using a factor basis of ideal classes rep-
resented by ideals l1, . . . , ln of small norm. However, computing the class group is
still very expensive. The record computation of a 512-bit class group in CSI-FiSh
[BKV19] shows that analogous computations for larger parameters are currently
impractical. Computing class groups will become possible with a large-scale quan-
tum computer, leading to more efficient instantiations. Some joke that this makes
the CRS construction a truly post-quantum protocol.

Should one prefer not to wait for the arrival of large-scale quantum computers
to instantiate the scheme, one can avoid computing the class group altogether, and
act only by the subgroup G = ⟨l1, . . . , ln⟩ ⊂ Cl(O). This leads to the definition
of a restricted efficient group action (REGA) framework [Cou06, ADMP20].

Restricting the action to only acting by combinations of elements l1, . . . , ln
induces an action of Zn on Eℓℓq(O, t). A vector (e1, . . . , en) ∈ Zn acts on an
elliptic curve E ∈ Eℓℓq(O, t) as

E 7→ (le11 . . . lenn ) ⋆ E.

Here, negative exponents ej < 0 are interpreted as acting by the ideal l−1
j a total

of |ej|-times. Since the action of Cl(O) on Eℓℓq(O, t) is commutative, the order
in which the action of the various lj is computed is irrelevant. This leads to an
interesting space for optimization, see Section 4.3.3.

From now on, the secret keys are given by the exponent vectors (e1, . . . , en).
If the starting curve E0 is fixed, the curve EA = (le11 . . . lenn ) ⋆E0 corresponding to
this secret key is referred to in the later chapters as the public key.

Remark 4.2.1. In the restricted group action framework, we no longer have a
way of generating uniformly random elements a ∈ Cl(O). Even if we do know
the relation lattice of the elements li, being able to evaluate the action by a
uniformly random element currently requires solving (an approximate) closest
vector problem in the relations lattice [BKV19, ADMP20], which is not known
to be possible efficiently (in polynomial time) [Pan23].

This is not an issue for key exchange, however, other cryptographic protocols
(such as digital signatures) do require uniform elements. A polynomial-time so-
lution for digital signatures is the SeaSign protocol [DG19]; a polynomial-time
algorithm to evaluate the group action is given by the Clapotis protocol [PR23],

“ Of course, ‘polynomial-time’ and ‘practical’ are not the same thing.” [Gal23]

Picking degrees. De Feo, Kieffer, and Smith [DKS18] note that computing
the action by l is significantly more efficient if E[l] is contained in E(Fqk) for
some small extension degree k. Instead of acting by all ideals of small norm, they
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use primes ℓi for which the action is the cheapest to compute. The most efficient
way to compute the isogeny steps is using Vélu’s formulas or analogues (see
Section 4.3.2), which requires computing the points in the kernel of the isogeny.

De Feo, Kieffer, and Smith select a suitable large prime characteristics p and
spend thousands of (CPU) hours searching for curves E that admit many rational
points over Fpk for k ∈ {1, 2}. This makes the resulting CRS protocol efficient in
the mathematician’s sense: public-key generation can be computed in less than 10
minutes without optimization.

Example 4.2.2 ([DKS18, Secs. 4 and 6]). One parameter set is using ordinary
elliptic curves over a prime field Fp and trace t such that p+1± t (the cardinality
of the curve or its twist) is divisible by the following primes

ℓ ∈ {3, 5, 7, 11, 13, 17, 103, 523, 821, 947, 1723}. (4.3)

There are further torsion points defined over small extensions (k ≤ 9), producing
a total of 25 primes for which the isogenies can be evaluated rather cheaply. The
corresponding isogeny steps are called the Vélu steps.

To obtain a large enough keyspace, they include the computation of isogeny
steps for a further 29 primes 23 ≤ ℓj ≤ 359, for which the isogeny steps need to
be evaluated as the so-called Elkies steps (see [DKS18, Algs. 3 and 4]), which are
orders of magnitude slower than Vélu’s formulas.

The largest permissible exponent ej varies per degree ℓj: cheaper steps are
performed more often: ej ≤ 409 for the Vélu steps (4.3), and ej ≤ 20 for the Elkies
steps (in fact, most of these satisfy ej ≤ 2). See Remark 4.3.10 for intuition as
to why it is often better to include more expensive steps rather than increase
exponents for the cheaper steps.

Remark 4.2.3. A different instantiation of the group action was given by the
SCALLOP signature scheme [DFK+23]. The rough idea is to put oneself in a sit-
uation in which the structure of the class group is known and favorable for com-
putation, bypassing the computational complexity of CSI-FiSh. This is achieved
by using oriented supersingular elliptic curves over Fp2 , as in Remark 2.5.8.

Since the class number of an order of conductor f is given by

h(O) = h(OK)f
[O∗

K : O∗]

∏
p|f

(
1−

(
∆OK

p

)
1

p

)
, (4.4)

one can obtain favorable parameter sets by setting OK = Z[i], choosing a prime p
such that p2 − 1 has a large smooth factor (to be able to evaluate small-degree

isogenies efficiently), and the conductor f a large prime such that f −
(

−1
f

)
(determining the class number) is as smooth as possible.
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4.2.2 CSIDH primes

To make the CRS protocol practical even in the cryptographic sense, Castryck,
Langle, Martindale, Panny and Renes in CSIDH [CLM+18] note that for super-
singular curves over Fp, the group order is p+ 1. Therefore, searching for curves
with a favorable number of points reduces to searching for a suitable prime. In
CSIDH, one chooses primes of the form p = 4 ·ℓ1 · · · · ·ℓn−1 and the non-maximal
order O = Z[

√
−p]. Assuming further that p ≡ 3 mod 8 yields further benefits in

simplicity and efficiency.

Example 4.2.4. CSIDH-512 [CLM+18] uses the p ≡ 3 (mod 8) defined by:

p+ 1 = 4 · 3 · 5 · . . . · 373 · 587.

Therefore, ℓ1 = 3, . . . , ℓ74 = 587, so we have 74 different small primes ℓ at our
disposal. The original keyspace is chosen as K = {−5, . . . , 5}74, so in expectation
we have to compute about 3 isogenies per degree. In practice we use different
keyspaces (Section 4.3.4).

One reason for the choice of p ≡ 3 mod 4 is that the curve E0 : y
2 = x3+x with

j-invariant 1728 is supersingular over Fp, and has endomorphism ring Z[
√
−p]:

There is only one non-trivial point of order 2 defined over Fp, so π−1
2
̸∈ End(E0).

Another reason is that all elliptic curves in the Cl(Z[
√
−p])-orbit of E0 can

be represented by Montgomery models:

Definition 4.2.5 (Montgomery form). For any A ∈ Fq\{−2, 2}, the elliptic
curve EA in Montgomery form is given by the equation

EA : y2 = x3 + Ax2 + x. (4.5)

We call A the Montgomery coefficient of EA.

The condition A ̸= ±2 guarantees that the cubic x3 +Ax2 + x does not have
repeated roots. Montgomery curves allow for computing with x-only arithmetic
for scalar multiplication using the Montgomery ladder, computing isogenies, and
compress the information about the curve E into a single element in Fq. Details
on the arithmetic of Montgomery curves can be found, for instance, in [CS18].

Clearly not all curves admit a Montgomery form (for instance, because the
point (0, 0) is a rational 2-torsion point on EA). Fortunately, curves in the orbit
of E0 admit a unique Montgomery form:

Proposition 4.2.6 ([CLM+18, Proposition 8]). Assume that p ≡ 3 (mod 8)
and E/Fp be supersingular. Then EndFp = Z[

√
−p] if and only if E is isomorphic

over Fp to the curve EA : y2 = x3 + Ax2 + x. If such an A exists, it is unique.
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From now on, we restrict to the case p ≡ 3 (mod 8). Montgomery curves give
us unique representatives for the classes in Eℓℓp(Z[

√
−p], 0), and we write

E = Eℓℓp(Z[
√
−p], 0) = {EA/Fp : EA supersingular}.

We also write M = {A : EA ∈ E} for the set of Montgomery coefficients (in
particular, in Chapter 6).

Example 4.2.7 (Twists). For A ̸= 0, the quadratic twist of EA ∈ E is E−A ∈ E .
They are isomorphic over Fp2 via the map (x, y) 7→ (−x, iy) for any i with i2 = −1.

For the curve E0 : y2 = x3 + x the quadratic twist Ẽ0 : y2 = x3 − x does
not admit a Montgomery form. One reason is because it has full 2-torsion and
therefore the endomorphism ring is EndFp(Ẽ0) ∼= Z[

√
−p−1
2

], which means it cannot
admit a Montgomery form by Proposition 4.2.6.

Since E0 (which is the curve with j(E0) = 1728) is the only j-invariant for
which the quadratic twist of EA does not lie in E . We conclude that #E is odd.
This result is classical; it is a consequence for instance of genus theory, which
describes the 2-part of the class group (cf. Section 5.3.1).

Remark 4.2.8 (Other possible choices). We note several other parameter choices
for schemes that extend the CSIDH protocol.

CSURF [CD20] uses supersingular elliptic curves over Fp with p ≡ 7 mod 8,

the maximal order O = Z
[
1+

√
−p

2

]
, with the smallest p chosen as

p+ 1 = 8 · 32 · . . . · 3̂47 · . . . · 3̂59 · . . . · 389.

CSURF can no longer rely on Montgomery models, but the authors prove that
even in this setting there is a convenient model for the curves.

Summary. In CSIDH, one chooses E = Eℓℓp(Z[
√
−p], 0) the set of supersingular

elliptic curves with endomorphism ring Z[
√
−p]. Taking a prime p ≡ 3 (mod 8)

allows for representing the curves in E by a Montgomery coefficient.
Further, the prime p is chosen such that #E(Fp) = p + 1 is divisible by

many small primes, so there exist rational points of small order. Recall that
this is desirable as a rational ℓ-torsion point generates the kernel of the isogeny
corresponding to the action by a split ideal l = (ℓ, π − 1) (see Example 2.4.2).

Moreover, for A ̸= 0, the quadratic twist of EA ∈ E is E−A ∈ E . All these
favorable properties are exploited when computing the action of Cl(Z[

√
−p]) on E .

4.3 Algorithmic aspects

In this section, we discuss some of the algorithmic aspects of computing the
CSIDH group action. From now on, we focus on the evaluation of the action

(le11 · · · lenn ) ∗ E
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for a vector (e1, . . . , en) ∈ K ⊂ Zn, and the related choices of K.
First, we discuss how to determine the correct kernels of the isogenies corre-

sponding to the action by a single l±1, then how to compute such an isogeny and
amortize some of the costs by computing several isogenies from one torsion point,
using strategies. Finally, we discuss how the choice of the keyspace influences the
resulting efficiency of the scheme.

4.3.1 Determining the kernel of the isogenies

Assume that ℓ is an odd prime such that ℓ | p+ 1 and ℓ2 ∤ p+ 1 (as is the case in
CSIDH). First we compute how to evaluate the action by the ideals l = (ℓ, π− 1)
and l−1 = (ℓ, π + 1). We call such action an isogeny step, taking us from the
domain curve EA to some new curve EA′ .

In Chapter 7, we call the action by l a positive step and the action by l−1

a negative step (leaving the degree of the isogeny implicit). As the notation
suggests, a negative and a positive step of the same degree cancel each other, see
Remark 2.4.5. Any point generating the kernel of a positive (negative) isogeny
step is said to have positive (negative) orientation; we also say that the point
is positive (resp. negative). In Chapter 7, we denote the orientation of a point
by s, interpreted as ±1. We stress that this terminology is CSIDH-specific: the
discussion below crucially relies on the ideal (ℓ) factoring as (ℓ, π − 1)(ℓ, π + 1).
This means that the eigenvalues of Frobenius at ℓ are ±1.

Positive steps. The action by l = (ℓ, π − 1) is easy. Example 2.4.2 and our
assumptions on ℓ imply that EA(Fp)[ℓ] is cyclic of order ℓ, and so the kernel E[l] is
generated by any point P ∈ E(Fp) of order ℓ. Therefore l ⋆ EA = EA′ = EA/⟨P ⟩.

Negative steps. To compute the action by l−1 = (ℓ, π+1), we note that E[l−1]
consists of points of order ℓ in E(Fp) on which Frobenius acts as π(P ) = −P.

Fix i ∈ Fp2 with i2 = −1. For any generator P of E[l−1], write P = (x, iy) for
some x, y ∈ Fp. We can compute the action of π directly (using p ≡ 3 mod 4):

π(P ) = (xp, (iy)p) = (xp,−iyp) (4.6)

−P = (x,−iy). (4.7)

Comparing (4.6) and (4.7), we conclude that x, y ∈ Fp. So, the kernel E[l−1] of
the negative step is generated by an ℓ-torsion point in E(Fp2) with x-coordinate
in Fp and y-coordinate in Fp2 \ Fp.

This is another reason why we use Montgomery curves and x-only arithmetic:
even when computing negative isogeny steps, the x-coordinates are still in Fp.
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Sampling points of order ℓ. No efficient way is known to deterministically
generate points of order ℓ in EA(Fp). However, the following Las Vegas algorithm
is popular for its simplicity and efficiency: sample a uniformly random point P ,
and compute Q := [(p+1)/ℓ]P . Since P is uniformly random in a cyclic group of
order p+1, the point Q has order ℓ with probability 1−1/ℓ. With probability 1/ℓ,
we get Q =∞. Retry until Q ̸=∞.

To sample a point of order ℓ in ẼA(Fp), we can use the following property:

Proposition 4.3.1. Fix i ∈ Fp2 with i2 = −1. Define the twist group

ẼA(Fp) = {(x, iy) ∈ EA(Fp2) : x, y ∈ Fp} ∪ {∞EA
}

Then ẼA(Fp) is the image of E−A(Fp) under the isomorphism (x, y) 7→ (−x, iy).
In particular, ẼA(Fp) is closed under addition on EA.

We use the same notation Ẽ for the twist of E and the image of the rational
points of Ẽ in E(Fp2). The points in Ẽ(Fp) are often thought of as lying on the
twist (through the isomorphism above).

Corollary 4.3.2. All positive points are in EA(Fp) and all negative points lie in
the twist group ẼA(Fp).

Therefore, to sample a negative point of order ℓ, we use an analogous Las
Vegas algorithm as when sampling positive points: sample a uniformly random
point P ∈ ẼA(Fp), and compute Q := [(p + 1)/ℓ]P . The same analysis holds:
since P is uniformly random in a cyclic group of order p + 1, the point Q has
order ℓ with probability 1− 1/ℓ.

Remark 4.3.3 (Determining orientation). On a Montgomery curve EA, a point
in EA with x-coordinate x ∈ F∗

p is oriented positively if x3 + Ax2 + x is a square
in Fp and negatively otherwise; the orientation of points of order > 2 therefore
agrees with the Legendre symbol of x3 + Ax2 + x in Fp.

Many state-of-the-art implementations (especially those using 2-point strate-
gies, cf. Section 4.3.3) use the Elligator 2 map [BHKL13] to sample points both
in EA(Fp) and ẼA(Fp).

Remark 4.3.4 (Mapping points). The isogeny φ : EA → l ⋆ EA maps the points
of order ℓ on EA to the point of ∞ on l ⋆ EA (as those precisely generate the
kernel of this isogeny). More interestingly, the points of order ℓ in ẼA(Fp) are
mapped to points of order ℓ in the twist group of l ⋆ EA.

This is easily seen from the definition of negative steps: the ℓ-torsion in the
twist group l ⋆ EA is the kernel of the negative step, but the ℓ-torsions in EA(Fp)
and ẼA(Fp) jointly generate the ℓ-torsion in EA(Fp2). To finish, use the explicit
description of the kernel of the dual isogeny (proof of Proposition 2.2.8).

One can summarize this as: positive steps map negative points to negative
points, and by symmetry, negative steps map positive points to positive points.
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Remark 4.3.5 (Twisting). Another way to compute negative isogenies is by
using the following quadratic twisting trick, popularized in particular by [LGD21]:

l−1 ⋆ EA = ˜(l ⋆ E−A).

Therefore, to compute the negative step from EA is the same as computing a
positive step from its quadratic twist E−A, and twisting.

4.3.2 Computing one isogeny

We have identified the kernels of the isogenies we want to compute (we have
computed their kernels in Section 4.3.1), but we still need formulas to compute the
target curve EA′ of such an isogeny, and to evaluate the isogeny on points (which
is essential to evaluating multiple isogeny steps efficiently, see Section 4.3.3).

As noted before, isogeny-based cryptography predominantly uses x-only arith-
metic. The central computational task is therefore the following:

Definition 4.3.6 (xISOG). Let EA/Fq be an elliptic curve and let P ∈ E be a
point of order ℓ with x-coordinate in Fq. Let φ : EA → EA′ = EA/⟨P ⟩. The
computational task xISOG is to:

1. compute the target curve EA′ , specifically its Montgomery coefficient;

2. for a possibly empty list of points (Qi) ∈ E with x-coordinates in Fq,
compute the x-coordinate of φ(Qi).

Typically, one computes the image of zero, one, or two points, see Section 4.3.3.

Vélu’s formulas. Vélu’s formulas [Vél71] are one of the main algorithms for
xISOG: to compute both A′ and evaluate φ(Q) on any point. Vélu’s formulas
require O(ℓ) multiplications in Fq.

The main computational task is to evaluate a kernel polynomial

hS(X) =
∏
s∈S

(X − x([s]P )) (4.8)

for S = {1, 2, 3, . . . , (ℓ−1)/2}. All the arithmetic is done only using x-coordinates.

Algorithms to compute Vélu’s formulas evaluate the product hS(X) by first
computing x(P ), x([2]P ), . . . , x([(ℓ−1)/2]P ) and then evaluating the product (4.8).
This costs O(ℓ) field multiplications: computing A′ costs about 4ℓ field multipli-
cations, computing the image of a point costs about 2ℓ multiplications.
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√
élu. For isogenies of degree ℓ ≳ 89,

√
élu1 [BDLS20] provide a significant

speedup by using a baby-step-giant-step strategy. The main computational task
is to evaluate a similar polynomial as in (4.8), for a different set S.

In
√
élu, the set S = {1, 3, 5, . . . , ℓ − 2} is split into a “box” U + V and

“leftover” setW such that S = (U+V )∪W . The product corresponding to U+V
is computed as the resultant of hU(X) and a polynomial related to hV (X), which
leads to a quadratic speedup. Computing the whole hS(X) is then finished by
multiplying by the product hW (X). See [BDLS20] for details. For each ℓ, one
chooses U and V to minimize the total cost. Asymptotically,

√
élu uses Õ(

√
ℓ)

field multiplications.
Once can view

√
élu as a generalization of Vélu’s formulas; indeed, these are

recovered for U and V empty. This choice is optimal for small primes. For primes
around ℓ = 89, the

√
élu formulas typically achieve better performance, though

the exact cutoff depends on lower-level arithmetic.

Remark 4.3.7. Both for Vélu’s and
√
élu formulas, choosing a different kernel

generator P ′ produces the same isogenies, not just isomorphic target curves.

Other formulas. For small degree isogenies, radical isogenies [CDV20] provide
a significant speedup over Vélu’s formulas. Other notable formulas for computing
isogenies are Kohel’s formulas [Koh96], which are very useful if the kernel points
are defined over extension fields. In this case, one also can work with irrational
factors of the kernel polynomials [EPSV23] or use the Frobenius action [BGDS23].
A novel way of computing isogenies of elliptic curves by embedding them in higher
dimensional isogenies was given by Robert [Rob22a].

4.3.3 Strategies

In Section 4.3.1, we saw that kernel points can be probabilistically computed by
sampling a random point T , and computing [(p + 1)/ℓ]T to obtain a point of
order ℓ. Once we obtain such a point, we use Vélu’s formulas (or other means,
see Section 4.3.2) to compute the isogeny.

However, this scalar multiplication is very costly. In practice, if p has 512 bits,
so (p+1)/ℓ has almost 512 bits, so such a scalar multiplication costs thousands of
field multiplications. We can amortize this cost by computing a series of isogenies
after sampling one point on the initial curve, and mapping it through isogenies.

Example 4.3.8 (Pushing points through). In the CSIDH setting, let Q be a
point of order ℓ1ℓ2 on EA, and set R1 = [ℓ2]Q. Then R1 is a point of order ℓ1,
and the image R2 = φ(Q) under ϕ : EA → EA/⟨R1⟩ has order ℓ2 on EA/⟨R1⟩.

So we can trade two large scalar multiplications for one large scalar multipli-
cation (preparing the point Q as [(p+1)/(ℓ1ℓ2)]P ), one small scalar multiplication
(preparing R1 = [ℓ2]Q) and one isogeny evaluation (computing R2 = φ(Q)).

1Pronounced “square-root Vélu”.
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Definition 4.3.9 (Informal, following [DJP14]). A strategy is a method that
computes a given series of isogenies. It specifies the degrees of the isogenies eval-
uated, the order in which they are evaluated, and, for each kernel point, whether
it is obtained by a scalar multiplication of a random point (called sampling) or
using an isogeny evaluation (called pushing the point through).

Multiplicative strategy. A simple multiplicative strategy was used in the al-
gorithm of [CLM+18] and successors [BLMP19, MR18], see Algorithm 1.

Algorithm 1 Multiplicative strategy for evaluating CSIDH group action

Input: A ∈ Fp and a list of integers (e1, . . . , en).
Output: B ∈ Fp such that

∏
[li]

ei ∗ EA = EB
1: while some ei ̸= 0 do
2: Sample a random x ∈ Fp, defining a point P .
3: Set s← IsSquare(x3 + Ax2 + x).
4: Let S = {i | ei ̸= 0, sign(ei) = s}. Restart at Step 2 if S is empty.
5: Let k ←

∏
i∈S ℓi and compute Q← [p+1

k
]P .

6: for each i ∈ S do
7: Set k ← k/ℓi and compute R← [k]Q. If R =∞, skip this i.
8: Compute ϕ : EA → EB with kernel ⟨R⟩.
9: Set A← B, Q← ϕ(Q), and ei ← ei − s.
10: return A.

The computation starts with a copy of the secret key v = (e1, . . . , en). In
each round, we sample a random point P and determine its orientation s. in
Step 3. The function IsSquare determines s by taking as input the non-zero
value z = x3 + Ax2 + x, and computing the Legendre symbol of z. The output
is always interpreted as ±1. Many implementations simply compute s ← z

p−1
2 .

Then we attempt to compute all isogeny steps with orientation s: steps with
index S = {i : sign(ei) = s}. Denote by k =

∏
i∈S ℓi. We first compute one large

scalar computation Q = [p+1
k
]P and, as in Example 4.3.8, use smaller scalar mul-

tiplications and isogeny evaluations to obtain kernel points at successive isogeny
steps (possibly skipping some steps in Algorithm 1; we call this missing torsion
in Chapter 7). At the end of each round, we update the vector v at each index
that the isogeny computation succeeded. We proceed until v = (0, . . . , 0).

The scalar multiplications reduce in length at each step; processing the isoge-
nies in decreasing order reduces the total cost [MR18].

SIMBA. In the multiplicative strategy for CSIDH (Algorithm 1), in every
round we compute all isogeny steps we can. However, one can achieve a significant
speedup with by Splitting Isogenies into Multiple Batches (SIMBA) [MCR19].
SIMBA partitions the set of isogeny degrees {ℓ1, . . . , ℓn} into M batches, which
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are called prides (the word batch we reserve for CTIDH, see Chapter 6). One
round of computation computes the isogeny steps in one such pride.

In SIMBA-M , the i-th pride consists simply of all the isogeny steps with
index i, i +M, i + 2M, . . . Moreover, only keys with ei > 0 are allowed, so we
always evaluate isogenies in the positive direction and the prides are fixed during
the computation. The scalar k in Algorithm 1 is replaced with ℓi · ℓi+M · . . . ,
which is typically much smaller than the k for the multiplicative strategy. As
a result, the first scalar multiplication is much more expensive, but the latter
multiplications in Algorithm 1 are all significantly cheaper.

1-point, 2-point strategies. In Algorithm 1, we sample a point and compute
a sequence isogenies in the same direction. This approach is called the 1-point
approach. One can also sample two points per round: one positive, and one
negative, and compute an isogeny step for each i [OAYT19]. Both points need to
be pushed through the isogeny in Algorithm 1. All constant-time implementations
(see Section 4.3.4) use the 2-point approach, e.g., [BBC+21, CCJR22]. Other
strategies (such as [CR22]) require pushing through even more points.

Optimal strategies. For SIDH, it is possible to find optimal strategies which
minimize the computational cost [DJP14]. However, in CSIDH, there are many
more possibilites for which steps we combine into a strategy, the isogeny steps
have pairwise different degrees, and some isogeny steps may fail because we sam-
pled a random point of order not divisible by that degree. This leads to many
more possible combinations [CR22]; imposing certain assumptions one can obtain
conditionally optimal strategies [HLKA20]. For instance, one can generalize the
SIMBA approach with point-pushing within prides as in [HLKA20]. However, the
performance of such approaches for constant-time computations does not lead to
significant speedups [CR22].

4.3.4 Key spaces and constant-time implementations

Finally, we discuss the choice of the key space K ⊂ Zn. Recall that the secret
key is a vector (e1, . . . , en) ∈ Zn, representing the action by (le11 . . . lenn ) ⋆ E. The
choice of K has a massive impact on efficiency, and different security properties.
Next we discuss the concept of constant-time implementations, and discuss the
key spaces that have been used in such implementations. This section is based
on the introduction to [BBC+21].

First, one requirement is that the key space is large enough to prevent brute-
force attacks, and, given the algebraic properties of the group action, to also
prevent meet-in-the-middle attacks. Conventionally, we take #K ≥ 22λ for secu-
rity 2λ. Some authors have argued that smaller key spaces suffice, see [CCJR22].

Original CSIDH [CLM+18] uses the key space Km = {−m, . . . ,m}n ⊂ Zn.
For CSIDH-512, we have n = 74 and m = 5. Using different bounds mi for each i
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can improve speed (as suggesteed in [CLM+18, Rmk. 14] and shown in [MCR19]).
The key space Km :=

∏n
i=1{−mi, . . . ,mi} has size #Km =

∏n
i=1(2mi + 1); by

small abuse of notation we denote by m the vector (m1, . . . ,mn).

Remark 4.3.10 (Shape of the key space). In general, it is more efficient to have
more different isogeny degrees with smaller exponents: on average, we expect to
compute fewer isogenies. Take as example the key space K = {−2,−1, 0,−1, 2}3.
In expectation (as a rough approximation of variable-time computation), we
would compute 6/5 isogenies per index, so a total of 3 · 6/5 = 3.6 isogenies.
A key space with the same size (#K = 125) with just one isogeny degree would
be K′ = {−62, . . . , 62}, for which we would expect to compute ≈ 31 isogenies.

For practical protocols, secure implementations need to be in constant time:
not leaking information about the secret via the time the computation takes. In
the CSIDH algorithm, a private key (e1, . . . , en) requires us to compute |ei| isoge-
nies of degree ℓi (regardless of the strategy), so the running time depends directly
on the secret key. For CSIDH, various approaches have been proposed [MCR19,
OAYT19, CCC+19, HLKA20, CR22, ACR23, CCJR22].

Defining constant time. Algorithms computing the isogeny group action are
usually randomized (due to sampling points, see Section 4.3.1). In a randomized
algorithm, each run depends on the random bits generated inside the algorithm.
So a randomized algorithm computes a function from inputs to distributions over
outputs. Similarly, the time taken by an algorithm is a function from inputs to
distributions of times. Constant time means that the distribution of algorithm
time for input imatches the distribution of algorithm time for input i′. If the input
is a CSIDH curve and a private key, and the output is the result of the CSIDH
action, then the algorithm time provides no information about the private key,
and provides no information about the output.

Note that this does not mean that the time is deterministic. Deterministic
time algorithms to evaluate the CSIDH group action (for instance [BLMP19],
which was for quantum analysis and not for efficiency) are inefficient and not
necesssary for stopping timing attacks.

To ensure the algorithm is constant time, it is necessary to avoid data flow
from the secret inputs to branches and array indices. In practice, one must also
take into account lower-level instructions such as variable-time division, or swaps.

Approaches to constant-time. The first to study constant-time implemen-
tations for CSIDH were Meyer, Campos and Reith [MCR19]. If we use strategies
that evaluate positive and negative steps separately, the action by (5, 5, 5..., 5)
would require very different time to evaluate than the action by (5,−5, . . . , 5,−5),
which is problematic for achieving constant-time behavior. They introduce the
shifted key space K+

m = {0, . . . , 2mi}n, and always compute 2mi isogenies, dis-
carding the dummy isogenies beyond ei steps. The dummy isogenies can be used
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for computation that facilitates later steps in the algorithm. Nevertheless, this
approach essentially doubles the cost of variable-time computing the group action
for all keys. Finally, note that we have #K+

m =
∏n

i=1(mi + 1).
This slowdown was partially mitigated by applying the “2-point strategy” to

the key space Km by [OAYT19]. They evaluate mi isogeny steps for each i, but
each iteration is about 1/3 more expensive because of extra point evaluations. A
dummy-free variant of the 2-point approach was proposed in [CCC+19], requiring
roughly twice as many isogenies, but useful when protecting against fault attacks.

A different key space combining constant-time requirements and balancing
cost was introduced in CTIDH [BBC+21], and will be studied in Chapter 6.

Remark 4.3.11. The dummy-free implementations [CCC+19, CR22, ACR23]
replace pairs of dummy ℓi-isogenies by pairs of isogenies that effectively cancel
each other. This approach requires fixing the parity of each exponent, so to reach
the same key space size as before, it suffers a slowdown of factor 2.

Dummy-free implementations are interesting because they mitigate certain
fault attacks (subject of study in Chapter 7), such as skipping isogenies: if the
skipped isogeny was a dummy one, the result of the computation is still correct,
which can be used to infer information about the secret key.



Chapter 5

Breaking DDH for class group actions

This chapter is based on the paper Breaking the decisional Diffie-Hellman prob-
lem for class group actions using genus theory [CSV20], and is joint work with
Frederik Vercauteren and Wouter Castryck. The extended version of this work
was published in [CSV22a].

The introduction and background sections have been shortened; the discus-
sion of isogeny volcanoes has been mostly treated in Section 2.5. We also omit
the discussion of higher dimensional abelian varieties [CSV22a, Sec. 6] and only
mention it briefly in a short section on follow-up work in Section 5.8. The rest of
the article has been edited mostly for typographical consistency.
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5.1 Introduction

In this chapter, we turn our attention to the decisional Diffie–Hellman assumption
(Definition 4.1.10), in particular for the group action of the class group Cl(O) of
an imaginary quadratic order O on Eℓℓq(O, t) for some q and t. Very little is
known about the structure of Cl(O), and it was previously assumed that the
structure is “sufficiently hidden” by the group action and cannot be exploited.

However, the 2-torsion part of Cl(O) can be described by genus theory [Cox89,
I.§3& II.§7]: for every odd prime mi | ∆O, there is an assigned quadratic char-
acter χi that can be computed in time polynomial in the size of m. Depending
on ∆O, there may be up to 2 additional assigned characters. Any non-trivial
assigned character can be used to break the DDH assumption in the group Cl(O)
similar to Example 4.1.5.

In Section 5.4, we show that if a ⊂ O has norm N(a) coprime to m, the
character χm is non-trivial, and the curves E,E ′ ∈ Eℓℓq(O, t) satisfy E ′ = a ⋆ E,
we can compute χm([a]) from the elliptic curves E and E ′. Our approach relies
on computing Tate pairings and walking to the floor of isogeny volcanoes, and
so computes χi in time exponential in the size of mi. However, heuristically,
we expect that ∆O admits a small factor mi such that χi is non-trivial and
so heuristically, our attack works in polynomial time for a density 1 subset of
quadratic orders. This is because Cl(O)[2] is only trivial in the case that ∆O = −q
or ∆O = −4q with q ≡ 3 mod 4. We discuss a version of the attack that does not
walk to the floor in Section 5.9.

For supersingular elliptic curves over Fp with p ≡ 1 mod 4 (Section 5.5), there
is always a suitable non-trivial character. The resulting attack only requires a
few exponentiations in Fp. We stress that this case does not apply to CSIDH,
which uses p ≡ 3 mod 4.

In Section 5.6 we analyze the impact on the DDH problem for class group ac-
tions, report on our implementation of the attack, and propose countermeasures.
Section 5.7 concludes the main body and provides avenues for further research.
In Section 5.8, we discuss some of the follow-up work that has been done since
the publication of [CSV20].

5.2 High level overview of the attack

We first explain the attack in a simple (yet very general) setting. Fixing a base
curve E, the class group action ⋆ gives us a representation of Cl(O) on the
set X = Eℓℓq(O, t) by mapping a class [a] to E ′ = [a] ⋆ E. For every odd prime
divisor m of the discriminant ∆O, genus theory provides a character

χ : Cl(O)→ {±1} : [a] 7→
(
N(a)

m

)
,
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where
( ·
·

)
denotes the Legendre symbol and the representative a of the class [a]

is chosen such that its norm N(a) is coprime to m. The goal is to compute χ([a])
given only the pair (E,E ′).

Let φ : E → E ′ denote the isogeny corresponding to a, then N(a) = deg(φ),
so to compute χ, it suffices to determine deg(φ) mod m, up to non-zero squares
in Z/mZ. Assume we know a tuple (P,Q) ∈ E2 with P ∈ E[m] and the corre-
sponding tuple (φ(P ), φ(Q)) ∈ E ′2, computing deg(φ) mod m is easy thanks to
the compatibility of the reduced m-Tate pairing Tm:

Tm(φ(P ), φ(Q)) = Tm(P,Q)
deg(φ) .

If the pairing is non-trivial, both sides will be primitive m-th roots of unity, so
computing discrete logs gives deg(φ) mod m.

In practice, of course, we are not given such corresponding tuples (P,Q)
and (φ(P ), φ(Q)). The only information we really have about φ is that it is
an Fq-rational isogeny of degree coprime to m. However, there exist many other
isogenies between E and E ′: namely one for every a′ representative of [a]. So
even if we can recover information on deg(φ) = N(a), it needs to be information
that is constant for the whole class [a].

If E(Fq) has a unique subgroup of order m, then E ′(Fq) similarly has such a
unique subgroup, and furthermore, φ(E(Fq)[m]) = E ′(Fq)[m]. If we let P be a
generator of E(Fq)[m] and P ′ a generator of E ′(Fq)[m], then we know there exists
some k ∈ [1,m − 1] such that φ(P ) = kP ′. Note however, that if we assume we
know a point Q and its image φ(Q) (but not the image of P under φ), we do not
learn anything since the values Tm(kP

′, φ(Q)) = Tm(P
′, φ(Q))k run through the

whole of µm for k = 1, . . . ,m− 1 and we do not know k.
The main insight now is that we do not need to recover deg(φ) exactly but

only up to squares, so if we could recover k2 deg(φ) then it is clear we can still
compute χ([a]). This hints at a possible solution as long as Q is somehow derived
from P and that the same unknown scalar k can be used to compensate for the
difference not only between φ(P ) and P ′, but also between φ(Q) and Q′. Indeed,
computing Tm(P

′, Q′) would then recover the correct value up to a square in the
exponent, namely Tm(P,Q)

deg(φ)k2 . The simplest choice clearly is to take Q = P
and Q′ = P ′.

We do not recover the exact value deg(φ) = N(a) mod m, but the value only
up to squares. With the observation before that we can only recover a value that
is constant among all the representatives of [a], we see that we are computing
a quadratic character Cl(O) → {±1}. All such well-defined characters are de-
scribed by genus theory. Therefore, there is only hope of achieving this if m | ∆O
is a ramified prime, and the resulting quadratic character is non-trivial.

If there is no Fq-rational m2-torsion, we show that the self-pairings Tm(P, P )
and Tm(P

′, P ′) are non-trivial. This feature is specific to the Tate pairing. In
the more general case of v = valm(#E(Fq)) > 1, we first walk down to the floor
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of the m-isogeny volcano reaching a curve E0 with E0(Fq)[m∞] = Z/(mv), and
then choose points P and P ′ of order m and corresponding points Q and Q′ of
order mv satisfying mv−1Q = P and mv−1Q′ = P ′. Note that also in this case,
the same unknown scalar k will compensate for both differences.

To sum up, we use the Tate pairing of certain points to obtain information
on degφ (up to squares modm). By genus theory, we see that we are actu-
ally computing the assigned characters χ of Cl(O) directly from curves E,E ′

in Eℓℓq(O, t), denote it by χ(E,E ′).
Whenever the characters are non-trivial, their multiplicative property allows

us to break DDH in Eℓℓq(O, t): in the tuple (E, [a]⋆E, [b]⋆E,E ′), if E ′ = [ab]⋆E,
then χ(E ′, [b] ⋆ E) = χ([a]) = χ([a] ⋆ E,E), which we can compute. If E ′ is a
random curve and χ is non-trivial, this only happens half of the time.

5.3 Background

In this chapter, instead of ℓ we will use the letter m to denote a prime m ̸= p.
This is because the notation is more classical for character theory.

5.3.1 Genus theory

Genus theory studies which natural numbers arise as norms of ideals in a given
ideal class of an imaginary quadratic order O. It shows that this question is
governed by the coset of Cl(O)2, the subgroup of squares inside Cl(O), to which
the ideal class belongs. This section summarizes parts of [Cox89, I.§3& II.§7].

Let m1 < m2 < . . . < mr be the odd factors of ∆O. If ∆O ≡ 1 mod 4 then

χi : (Z/∆OZ)∗ → {±1} : a 7→
(
a

mi

)
(for i = 1, . . . , r)

are called the assigned characters of O. If ∆O = −4n ≡ 0 mod 4, then we extend
this list with δ if n ≡ 1, 4, 5 mod 8, with ϵ if n ≡ 6 mod 8, with δϵ if n ≡ 2 mod 8,
and with both δ and ϵ if n ≡ 0 mod 8. Here

δ : a 7→ (−1)(a−1)/2 and ϵ : a 7→ (−1)(a2−1)/8.

If n ≡ 3, 7 mod 8 then the list is not extended.
Let µ ∈ {r, r + 1, r + 2} denote the total number of assigned characters and

consider the map Ψ : (Z/∆OZ)∗ → {±1}µ having these assigned characters as
its components. Then Ψ is surjective and its kernel H consists precisely of those
integers that are coprime with (and that are considered modulo) ∆O and arise as
norms of non-zero principal ideals of O. This leads to a chain of maps

Φ : Cl(O) −→ (Z/∆OZ)∗

H

∼=−→ {±1}µ,
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where the first map sends an ideal class [a] to the norm of a (it is always possible
to choose a representant of norm coprime with ∆O) and the second map is induced
by Ψ. Genus theory tells us that kerΦ = Cl(O)2; the cosets of Cl(O)2 inside Cl(O)
are called genera, with Cl(O)2 itself being referred to as the principal genus.

Remark 5.3.1. By abuse of notation, we can and will also view χ1, χ2, . . . , χr, δ, ϵ
as morphisms Cl(O) → {±1}, obtained by composing Φ with projection on the
corresponding coordinate.

It can be shown that the image of Φ is a subgroup of {±1}µ having index 2,
so that the cardinality of Cl(O)/Cl(O)2 ∼= Cl(O)[2] equals 2µ−1. More precisely,
if we write ∆O = −2ab with b = me1

1 m
e2
2 · · ·mer

r , then this is accounted for by

χe11 · χe22 · · ·χerr · δ
b+1
2

mod 2 · ϵa mod 2, (5.1)

which is non-trivial when viewed on (Z/∆OZ)∗, but becomes trivial when viewed
on Cl(O). For example, if ∆O is squarefree and congruent to 1 mod 4, then the
image of Φ consists of those tuples in {±1}r whose coordinates multiply to 1.

Our main goal is to break the DDH assumption in Eℓℓq(O, t). To do this, we
compute the assigned characters χ: on input two elliptic curves E,E ′ ∈ Eℓℓq(O, t)
that are connected by a secret ideal class [a] ∈ Cl(O), we will describe how to
compute χ(E,E ′) := χ([a]). Note that to break the DDH assumption, it suffices
to compute the most convenient choice of character χ.

Example 5.3.2. In Section 5.5, we will study supersingular elliptic curves defined
over Fp with p ≡ 1 mod 4. HereO = Z[

√
−p] has discriminant−4p, thus there are

two assigned characters: the character δ and the Legendre character χ associated
with p. But Equation (5.1) tells us that χ([a]) = δ([a]) and also that χ and δ
are necessarily non-trivial characters of Cl(O). So it suffices to compute δ([a]),
which as we will see can be done very efficiently.

5.3.2 The Tate pairing on elliptic curves

We recall the main properties of the Tate pairing. For more details see [BSS05,
IX]. The (reduced) Tate pairing Tm is defined as

Tm : E(Fqk)[m]× E(Fqk)/mE(Fqk)→ µm : (P,Q) 7→ fm,P (D)(q
k−1)/m ,

where k is the embedding degree (i.e. the smallest extension degree k with the
property that µm ⊂ F∗

qk
); the function fm,P a so-called Miller function, i.e.

an Fqk-rational function with divisor (fm,P ) = m(P )−m(∞); D an Fqk-rational
divisor equivalent to (Q) − (∞) coprime to the support of (fm,P ). If the Miller
function fm,P is normalized, then the pairing can be computed for Q ̸= P

as Tm(P,Q) = fm,P (Q)
(qk−1)/m.

The reduced Tate pairing Tm has the following properties:
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1. Bilinearity: Tm(P,Q1 + Q2) = Tm(P,Q1)Tm(P,Q2) and Tm(P1 + P2, Q) =
Tm(P1, Q)Tm(P2, Q).

2. Non-degeneracy: for all P ∈ E(Fqk)[m] with P ̸= ∞, there exists a point
Q ∈ E(Fqk)/mE(Fqk) such that Tm(P,Q) ̸= 1. Similarly, for all Q ∈ E(Fqk)
with Q ̸∈ mE(Fqk), there exists a P ∈ E(Fqk)[m] with Tm(P,Q) ̸= 1.

3. Compatibility: let φ be an Fq-rational isogeny, then

Tm(φ(P ), φ(Q)) = Tm(P,Q)
deg(φ).

4. Galois invariance: let σ ∈ Gal(Fq/Fq) then Tm(σ(P ), σ(Q)) = σ(Tm(P,Q)).

5.4 Characters for ordinary curves

Recall that Eℓℓq(t) is the set of Fq-isomorphism classes of elliptic curves over Fq
with trace of Frobenius t. We always assume that Eℓℓq(t) is non-empty. The
m-isogeny graph Gq,m(t) (see Definition 2.5.3) has as vertices Eℓℓq(t). The edges
are m-isogenies, up to equivalence as in Section 2.2.3. The connected components
of Gq,m(t) are isogeny volcanoes. For more details, see Section 2.5.

Let O be an imaginary quadratic order with discriminant ∆O. Then the
set Eℓℓq(O, t) consists of elliptic curves over Fq with CM byO, up to Fq-equivalence.
The class group Cl(O) acts regularly on Eℓℓq(O, t).

We want to compute the assigned character χi with modulus mi | ∆O an odd
prime. Suppose that we are in the ordinary case. Then we have mi ∤ q, since
otherwise mi | ∆O | t2 − 4q would imply that gcd(t, q) ̸= 1, contradicting that E
is ordinary. By extending the base field if needed, we can assume without loss of
generality that valm(#E(Fq)) ≥ 1.

Theorem 5.4.1. Consider an m-isogeny volcano of height h of ordinary elliptic
curves over a finite field Fq, and let N be their (common) number of Fq-rational
points. Assume v = valm(N) ≥ 1. Let E be a curve on level i.

• If v is odd and 0 ≤ i ≤ h, or if v is even and E is a curve on level
0 ≤ i ≤ v/2, then E(Fq)[m∞] ∼= Z/mv−iZ× Z/miZ.

• If v is even v/2 ≤ i ≤ h, then E(Fq)[m∞] ∼= Z/mv/2Z× Z/mv/2Z.

(Note that the latter range may be empty, i.e. one may have h < v/2.)

Proof. This is implicitly contained in [Len96]; see also [MMS+06, Cor. 1] form = 2
and [MST+07, Thm. 3] for m odd.
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It is easy to verify whether a given curve E/Fq is on the floor of its volcano.
Indeed, for λ random points P ∈ E(Fq) one simply tests whether (N/m)P =∞E.
As soon as one point fails the test, we know that E is on the floor. If all points
pass the test, we are on the floor with probability 1/mλ. Given such a verification
method, a few random walks allow one to find a shortest path down to the floor,
see e.g. the algorithm FindShortestPathToFloor in [Sut13b]. Note that this
is considerably easier than navigating the volcano in a fully controlled way, see
again [Sut13b] and the references therein.1

Once we are on the floor, with a curve E0, the natural generalization of the
case v = 1 is to compute the m-Tate pairing Tm(P,Q) with ord(P ) = m and Q
any point with ord(Q) = mv satisfying mv−1Q = P . The following theorem
applied to n = 1 shows that the m-Tate pairing is non-trivial and, for a fixed P ,
independent of the choice of Q. Note that we indeed have m | q − 1: if we
write N = #E0(Fq), then m | t2 − 4q = (q − 1)2 − 2(q + 1)N +N2.

Theorem 5.4.2. Let E0/Fq be an ordinary elliptic curve and let m be a prime
number. Assume that mn|(q − 1) for n ≥ 1 and that

E0(Fq)[m∞] ∼= Z/mvZ

for some v ≥ n. Then for any P,Q with ord(P ) = mn and ord(Q) = mv, the
reduced Tate pairing Tmn(P,Q) is a primitive mn-th root of unity. For a fixed P ,
the pairing Tmn(P, ·) is constant for all Q with ord(Q) = mv and mv−nQ = P .

Proof. Assume for the sake of contradiction that Tmn(P,Q) is not a primitive mn-
th root of unity, then Tmn(P,Q) ∈ µmn−1 , and in particular

1 = Tmn(P,Q)m
n−1

= Tmn(mn−1P,Q) .

Since P has order mn, the point mn−1P is not the identity element ∞. Since Q
generates E0(Fq)[m∞], we conclude that Tmn(mn−1P, ·) is degenerate on the whole
of E0(Fq)/mnE0(Fq), which contradicts the non-degeneracy of the Tate pairing.
Thus we conclude that Tmn(P,Q) is a primitive mn-th root of unity (alterna-
tively and more directly, this follows from the perfectness of the Tate pairing,
see [Bru11]). The solutions to mv−nX = P are given by Q+R with ord(R)|mv−n.
But then R ∈ mnE0(Fq) and so Tmn(P,R) = 1, which shows that Tmn(P,Q) is
independent of the choice of Q.

5.4.1 Computing the characters χi

Let χ be an assigned character χi associated with an odd prime divisor m = mi

of ∆O. As before, we let φ : E → E ′ denote the isogeny corresponding to a of

degree deg(φ) = N(a). Recall that the goal is to compute χ([a]) =
(

N(a)
m

)
.

1In the context of this paper, it is worth highlighting the work of Ionica and Joux [IJ13] on
this topic, who use the Tate pairing as an auxiliary tool for travelling through the volcano.
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Since End(E) = End(E ′) (c.f. Remark 2.5.2), the curves E and E ′ are on the
same level of their respective m-isogeny volcanoes. By taking the same number
of steps down from E and E ′ to the floor on these volcanoes, we end up with two
respective elliptic curves E0, E

′
0 in Eℓℓq(O0, t), where O0 ⊂ O is a suborder having

discriminant ∆O0 = m2s∆O, with s the number of steps taken to reach the floor.

Since both curves E0 and E ′
0 are now on the floor, we can choose non-trivial

points P ∈ E0[m](Fq) and P ′ ∈ E ′
0[m](Fq), and points Q,Q′ of order exactly mv

satisfying mv−1Q = P and mv−1Q′ = P ′. As the class group Cl(O0) acts transi-
tively on Eℓℓq(O0, t), there exists an invertible ideal b ⊂ O0 such that

E ′
0 = [b] ⋆ E0,

where by [Cox89, Cor. 7.17] it can be assumed that N(b) is coprime with ∆O0 ,
hence coprime with m. Let φ0 : E0 → E ′

0 denote the corresponding degree N(b)
isogeny. Then there exists a k ∈ {1, . . . ,m − 1} with kφ0(P ) = P ′. Clearly, the
point kφ0(Q) also has order mv and satisfies mv−1X = P ′. From Theorem 5.4.2
and the compatibility of the Tate pairing, it then follows:

Tm(P
′, Q′) = Tm(kφ0(P ), kφ0(Q)) = Tm(P,Q)

k2 deg(φ0),

and thus (
N(b)

m

)
=

(
deg(φ0)

m

)
=

(
logTm(P,Q) Tm(P

′, Q′)

m

)
.

We now show that this in fact equals χ([a]). Indeed, since N(b) is coprime
with ∆O0 , from [Cox89, Prop. 7.20] we see that the ideal bO ⊂ O is invertible
and again has norm N(b). From the second paragraph of the proof of [Sut13b,
Lem. 6] we see that E ′ = [bO] ⋆ E, and because the action of Cl(O) on Eℓℓq(O, t)
is free we conclude that [bO] = [a]. Summing up, we can compute

χ([a]) = χ([bO]) =
(
N(bO)
m

)
=

(
N(b)

m

)
=

(
logTm(P,Q) Tm(P

′, Q′)

m

)
.

Note that, in particular, this outcome is independent of the choice of the walks
to the floor of the isogeny volcano.

Remark 5.4.3. In the appendix we provide an alternative (but more complex)
proof that shows it is not needed to walk all the way down to the floor. However,
since the height of the volcano is about 1

2
valm(t

2 − 4q) (see Theorem 2.5.4), the
volcanoes cannot be very high (in the worst case a logarithmic number of levels),
so walking to the floor of the volcano is efficient. Furthemore, for odd m, the
probability of the volcano having height zero is roughly 1− 1/m.
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5.4.2 Computing the characters δ, δϵ and ϵ

For ∆O = −4n, genus theory (Section 5.3.1) may give extra characters δ, ϵ or δϵ
depending on n mod 8. Recall that these characters are defined as

δ : [a] 7→ (−1)(N(a)−1)/2 and ϵ : [a] 7→ (−1)(N(a)2−1)/8 ,

where the ideal a is chosen to have odd norm. Determining the value of δ is
equivalent to computing N(a) mod 4. If both δ and ϵ exist (i.e. n ≡ 0 mod 8),
determining both character values is equivalent to computing N(a) mod 8.

For m = 2, the previous approach using Theorem 5.4.2 with n = 1 remains
valid, but only determines N(a) mod 2, which is known beforehand since the norm
is odd. The solution is to use a 4-pairing (i.e. n = 2) to derive δ and an 8-pairing
(i.e. n = 3) in the case both δ and ϵ exist.

Character δ. The character δ exists when n ≡ 0, 1, 4, 5 mod 8. By taking a
field extension if needed, we can assume without loss of generality that 4 | (q−1)
and v = val2(#E(Fq)) ≥ 2. As before, by walking down the volcano we reach a
curve E0 on the floor (and similarly E ′

0) satisfying E0(Fq)[2∞] = Z/2vZ. We can
use Theorem 5.4.2 for m = 2 and n = 2 along with the compatibility of the Tate
pairing: if b is an ideal connecting E0 and E ′

0, we can compute the exact value

N(b) mod 4 = logT4(P,Q) T4(P
′, Q′) (5.2)

for appropriately chosen points P,Q ∈ E0(Fq)[2∞] and P ′, Q′ ∈ E ′
0(Fq)[2∞]. In-

deed, recall that the points P ′ and Q′ are only determined by P and Q up to a
scalar k ∈ (Z/(4))∗, i.e. k ≡ 1, 3 mod 4, and so k2 ≡ 1 mod 4.

As before, we can show that [bO] = [a], where we can assume N(bO) = N(b),
so we find that

δ([a]) = δ([bO]) = (−1)(N(bO)−1)/2 = (−1)(logT4(P,Q) T4(P
′,Q′)−1)/2 ,

or, equivalently, we find that N(a) mod 4 equals (5.2).

Characters δϵ and ϵ. Recall that the character δϵ exists when n ≡ 0, 2 mod 8
and the character ϵ exists when n ≡ 0, 6 mod 8. Again, by taking a field extension
if needed, we can assume without loss of generality that v = val2(#E(Fq)) ≥ 3
and that 8 | (q − 1). Notice that, if δ and ϵ do not exist simultaneously, then
we are necessarily on the surface of the 2-volcano, hence it takes at least one
step to go to curves E0 and E ′

0 on the floor. During this step the discriminant
becomes multiplied by a factor of 4. Hence, on the floor, we are certain that both
characters exist.

Applying Theorem 5.4.2 for m = 2 and n = 3 together with the compatibility
of the Tate pairing, and using the fact that for k odd we have k2 ≡ 1 mod 8, we
know that the norm of an ideal b connecting E0 and E ′

0 satisfies

N(b) mod 8 = logT8(P,Q) T8(P
′, Q′) , (5.3)
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for appropriately chosen points P,Q ∈ E0(Fq)[2∞] and P ′, Q′ ∈ E ′
0(Fq)[2∞]. The

same reasoning as before gives [bO] = [a], where N(bO) = N(b), hence we find

ϵ([a]) = ϵ([bO]) = (−1)(N(bO)2−1)/8 = (−1)((logT8(P,Q) T8(P
′,Q′))2−1)/8 ,

and similarly for δϵ.
We stress that, in general, we cannot conclude that N(a) mod 8 equals (5.3).

E.g., if n ≡ 6 mod 8, in the presence of ϵ but in the absence of δ, an ideal class
containing ideals of norm 1 mod 8 will also contain ideals of norm 7 mod 8. It
is during the first step down the volcano that the congruence classes become
separated.

5.5 Characters for supersingular curves

We now turn our attention to supersingular elliptic curves over prime fields Fp
with p > 3. Recall that any such curve E/Fp has exactly p + 1 rational points
and its Frobenius satisfies π2 + p = 0, therefore O = EndFp(E) has discriminant

∆O =

{
−4p if p ≡ 1 mod 4,
−p or − 4p if p ≡ 3 mod 4.

From genus theory, we see that Cl(O) has non-trivial 2-torsion only in the former
case. So we will restrict our attention to p ≡ 1 mod 4, in which case O = Z[

√
−p].

There are two assigned characters: the Legendre character associated with p,
and δ. From the character relation (5.1) (see also Example 5.3.2), we see that
these coincide on Cl(O), therefore it suffices to compute δ. As supersingular ellip-
tic curves over Fp2 no longer have a volcano structure (see Section 2.6), we cannot
apply the strategy of “extending the base field and going down the volcano”.

Instead, we can compute δ directly on the input curves, i.e. not involving
vertical isogenies. This is handled by the following theorem, which can be used
to compute δ in many ordinary cases, too. The proof is entirely self-contained,
although its flavour is similar to that of Section 5.4.

Theorem 5.5.1. Let q ≡ 1 mod 4 be a prime power and let E,E ′/Fq be elliptic
curves with endomorphism ring O and trace t ≡ 0 mod 4, connected by an ideal
class [a] ∈ Cl(O). Then δ is an assigned character of O, and if we write

E : y2 = x3 + ax2 + bx resp. E ′ : y2 = x3 + a′x2 + b′x (5.4)

then δ([a]) = (b′/b)(q−1)/4.

Proof. As t ≡ 0 mod 4, we have #E(Fq) = #E ′(Fq) = q + 1− t ≡ 2 mod 4, and
therefore both curves contain a unique rational point of order 2. When positioned
at (0, 0), we indeed obtain models of the form Equation (5.4). Notice that b(q−1)/4
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does not depend on the specific choice of such a model: it is easy to check that
the only freedom left is scaling a by u2 and b by u4 for some u ∈ F∗

q. Of course,

the same remark applies to b′(q−1)/4.
On E, the points (x0, y0) doubling to P = (0, 0) satisfy the condition

3x20 + 2ax0 + b

2y0
=
y0
x0
,

which can be rewritten as x0(x
2
0 − b) = 0. Therefore these points are(√

b,±
√
b(a+ 2

√
b)

)
and

(
−
√
b,±

√
b(a− 2

√
b)

)
, (5.5)

from which we see that b is a non-square. Indeed, if we would have
√
b ∈ Fq, then

one of a±2
√
b would be a square in Fq because their product a2−4b is not (since

there is only one Fq-rational point of order 2). This would imply the existence
of an Fq-rational point of order 4, contradicting #E(Fq) ≡ 2 mod 4. The same
reasoning shows that b′ is a non-square.

Pick a representative a of [a] of norm coprime to 2q. It suffices to show that

(−b′)(q−1)/4 =
(
(−b)(q−1)/4

)N(a)
(5.6)

(the reason for including the minus signs, which cancel out, will become apparent
soon). Indeed, both sides are primitive 4th roots of unity, whose ratio is either 1
or −1 depending on whether N(a) ≡ 1 mod 4 or N(a) ≡ 3 mod 4, as wanted.

Let φ : E → E ′ be the isogeny corresponding to a. Note that φ(P ) = P ′

because φ is defined over Fq. From Equation (5.5), using that b is a non-square,
we see that we can characterize −b as x(Q) · x(πq(Q)), where Q denotes any of
the four halves of P . Similarly, −b′ equals x(Q′) · x(πq(Q′)), with Q′ any of the
four halves of P ′ = (0, 0) ∈ E ′. In particular, since φ(Q) is a half of φ(P ) = P ′,
we have −b′ = x(φ(Q)) · x(πq(φ(Q))).

Remark 5.5.2. Observe that x is the normalized Miller function f2,P , hence

(−b)(q−1)/4 = (x(Q) · x(πq(Q)))(q−1)/4 =
(
f2,P (Q)

1+q
)(q−1)/4

= f2,P (Q)
q2−1

4 ,

and similarly for (−b′)(q−1)/4, so proving Equation (5.6) amounts to proving a
compatibility rule for a non-fully reduced 2-Tate pairing.

Denote by±K1,±K2, . . . ,±K(N(a)−1)/2 the non-trivial points in kerφ, say with

x-coordinates x1, x2, . . . , x(N(a)−1)/2 ∈ Fq. Besides P itself, the points mapping
to P ′ are P ±K1, P ±K2, . . . , P ±K(N(a)−1)/2, and an easy calculation shows that
the x-coordinates of these points are b/x1, b/x2, . . . , b/x(N(a)−1)/2. This implies
that the function

x

(N(a)−1)/2∏
i=1

x− b
xi

x− xi

2
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viewed on E has the same divisor as x ◦ φ, therefore both functions are propor-
tional. To determine the constant involved, we can assume that our curve E ′

is obtained through an application of Vélu’s formulae [Vél71], composed with a
translation along the x-axis that positions P ′ at (0, 0). From [DF10, Rmk. 8.1]
we then see that x ◦ φ = g(x)/h(x) with

h(x) =

(N(a)−1)/2∏
i=1

(x− xi)2

and with g(x) a polynomial of degree N(a) with leading coefficient

N(a)− 3(N(a)− 1) + 2(N(a)− 1) = 1.

So the involved constant is just 1, i.e. equality holds. We then compute

−b′ = x(φ(Q)) · x(πq(φ(Q)))
= (x ◦ φ)(Q) · (x ◦ φ)(πq(Q))

= −b

(N(a)−1)/2∏
i=1

(
√
b− b

xi
)(−
√
b− b

xi
)

(
√
b− xi)(−

√
b− xi)

2

=
(−b)N(a)(∏(N(a)−1)/2
i=1 xi

)4 ,

and Equation (5.6) follows by raising both sides to the power (q − 1)/4.

5.6 Impact on DDH and countermeasures

5.6.1 Impact on DDH for class group actions

It is clear that any non-trivial character χ (or δ, ϵ, δϵ) can be used to probabilis-
tically determine whether a sample (E(1) = [a] ⋆ E,E(2) = [b] ⋆ E,E(3)) is a true
Diffie-Hellman sample, i.e. whether E(3) = [a · b] ⋆ E or not. For instance, one
could compute χ([a]) in two different ways, namely as χ(E,E(1)) and compare
with χ(E(2), E(3)). Similarly, one could compute χ([b]) in two ways, as χ(E,E(2))
as well as χ(E(1), E(3)). If the sample is not a true Diffie–Hellman sample this
will be detected with probability 1/2. In many cases we have more than one char-
acter available, so if we assume that s < µ linearly independent characters are
computable (see below for the complexity of a single character), this probability
increases to 1− 1/2s.
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Supersingular curves. For supersingular curves over Fp with p ≡ 1 mod 4,
the character δ exists and is always non-trivial (see Example 5.3.2). As shown in
Section 5.5, computing this character requires computing a 2-torsion point, one
inversion and one exponentiation in Fp, so in this case, DDH can be broken in
time O(log p ·Mp) with Mp the cost of a multiplication in Fp.

Ordinary curves. For ordinary curves, we will order the characters (if they
exist) according to complexity: δ, ϵ, δϵ, χmi

for i = 1, . . . , r. From genus theory,
it follows that at most one of the µ characters is trivial (since #Cl(O)[2] = 2µ−1),
so if the easiest-to-compute character is trivial, we immediately conclude that the
second easiest to compute character is non-trivial. To determine the complexity,
assume that m is an odd prime divisor of ∆O. To apply our attack, we first find
the smallest extension Fqk such that valm(#E(Fqk)) ≥ 1. Since m | ∆O | t2 − 4q,
the matrix of Frobenius on E[m] is of the form(

λ 1
0 λ

)
or

(
λ 0
0 λ

)
,

with λ2 ≡ q mod m. In both cases, for k = ord(λ) ∈ (Z/mZ)∗, we conclude
that valm(#E(Fqk)) ≥ 1. Furthermore, since the determinant of the k-th power
equals qk ≡ λ2k ≡ 1 mod m, we conclude that µm ⊂ Fqk and thus the m-Tate
pairing is defined over Fqk . We see that in the worst case, we have k = m − 1.
Computing the m-Tate pairing requires O(logm · Mqk) which is O(m1+ε · Mq)
assuming fast polynomial arithmetic and using k < m. The cost of walking down
the volcano [Sut13b] over Fqk in the worst case is given by O(h ·(m3+ε · log q) ·Mq)
assuming fast polynomial arithmetic (and k < m − 1), with h a bound on the
height of the volcano. Once we reached the floor of the volcano, we need to solve
the equation mv−1Q = P , with P an m-torsion point, and v = valm(#E(Fqk)).
This can be computed deterministically using division polynomials, or probabilis-
tically as follows: generate a point Q1 of order mv, and compute P1 = mv−1Q1.
Since we are on the floor, E(Fq)[m] is cyclic, so there exists a k with P = kP1.
Then Q = kQ1 is a solution. This randomized approach can be done in expected
time O(m3+ε · log q ·Mq).

As remarked before, we note that in the majority of cases (with probability
roughly 1− 1/m), the height of the m-volcano is zero and the complexity of the
attack is solely determined by the computation of the Tate pairing.

Computing the exact coset modulo Cl(O)2. Genus theory shows that the
intersection of the kernels of the assigned characters is exactly Cl(O)2. Thanks to
the class group relation (5.1), we are allowed to omit one character. If all remain-
ing characters have a manageable complexity then, given two elliptic curves E
and [a] ⋆ E, this allows to determine completely the coset of Cl(O)2 inside Cl(O)
to which the connecting ideal class [a] belongs. In general, we can determine
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which coset of C ⊃ Cl(O)2 contains [a], where C denotes the intersection of the
kernels of the characters whose computation is feasible.

As an application, one can reduce the vectorization problem for Cl(O) to that
for C. Indeed, one simply chooses an ideal class [b] in the same coset as [a], so
that [a · b] ∈ C, and one considers the vectorization problem associated with E
and [a·b]⋆E = [b]⋆([a]⋆E). After finding [a·b], one recovers [a] as [b]−1·[a·b]. In the
optimal case where C = Cl(O)2, this reduces the group size by a factor 2µ−1. We
emphasize that this reduction is classical; quantumly, such a reduction follows
from earlier work due to Friedl, Ivanyos, Magniez, Santha and Sen [FIM+14],
see [CDEL21, §2] for a more detailed discussion.

5.6.2 Implementation results

We implemented our attack in the Magma computer algebra system [BCP97] and
the resulting code is given in the GitHub repository [CSV22b].

The main functions are ComputeEvenCharacters, ComputeOddCharacter and
ComputeSupersingularDelta. We also use a very simple randomized method to
walk to the floor of the volcano in the function ToFloor. A more efficient approach
can be found in [Sut13b].

To illustrate the code, we apply it to an example from [DKS18, Section 4],

which we discussed in Example 4.2.2. In particular, let p = 7

(∏
2≤ℓ≤380
ℓ prime

ℓ

)
− 1

and consider the elliptic curve E : y2 = x3 + Ax2 + x with

A =108613385046492803838599501407729470077036464083728

319343246605668887327977789321424882535651456036725

91944602210571423767689240032829444439469242521864171 ,

then End(E) is the maximal order and E is on the surface of a volcano of height 2.
The discriminant is of the form −4n with n ≡ 2 mod 8, so we will be able to
compute the character δϵ.

The code first computes a random isogeny of degree 523 (easy to compute
since it is rational), to obtain the “challenge” E ′ = [a] ⋆ E. After going to a
degree 2 extension, it then descends the volcano to the floor, and on the floor, it
computes both δ as well as ϵ, from which it derives that δϵ(E,E ′) = 1, which is
consistent with the fact that δϵ([a]) = δϵ(523) = 1.

5.6.3 Countermeasures

Since the attack crucially relies on the existence of 2-torsion in Cl(O), the simplest
countermeasure is to restrict to a setting where Cl(O)[2] is trivial, e.g. supersin-
gular elliptic curves over Fp with p ≡ 3 mod 4. This corresponds precisely to the
CSIDH setting [CLM+18], so our attack does not impact CSIDH.



5.7. Conclusion 111

Another standard approach is to work with co-factors: since all characters
become trivial on Cl(O)2 we can simply restrict to elements which are squares,
i.e. in the Diffie-Hellman protocol one would sample [a]2 and [b]2.

Warning. We advise to be much more cautious than simply squaring. Genus
theory gives the structure of Cl(O)[2], but one can also derive the structure of
the 2-Sylow subgroup Cl(O)[2∞] using an algorithm going back to Gauss and
analyzed in detail by Bosma and Stevenhagen [BS96]. Although our attack is
currently not refined enough to also exploit this extra information, we expect
that a generalization of our attack will be able to do so. As such, instead of
simply squaring, we advise to use as co-factor an upper bound on the exponent
of the 2-Sylow subgroup.

5.7 Conclusion

We showed how the characters defined by genus theory for the class group Cl(O)
can be computed from the group action of Cl(O) on Eℓℓq(O, t), knowing only the
equations of two elliptic curves E and E ′ = [a]⋆E, for an unknown ideal class [a].
For a character χ associated to the prime divisor m | ∆O, the complexity is expo-
nential in the size of m, and it is thus efficiently computable only for smallish m.
However, since only one such character is required to break DDH for class group
actions, we conclude that for a subset of density 1 of ordinary curves, and for all
supersingular curves over Fp with p ≡ 1 mod 4, DDH (without appropriate coun-
termeasures) is broken. Note that CSIDH [CLM+18] is not affected as it relies
on supersingular elliptic curves over Fp with p ≡ 3 mod 4. We have also shown
that the main ideas behind these results can be used to tackle related questions
on abelian varieties of arbitrary dimension. Our current results however, are only
the first tiny steps towards a proper and full generalization, which is the subject
of future research.

The main, quite surprising, insight of this paper is that the structure of the
class group Cl(O) does actually matter, and cannot be assumed to be fully hidden
when represented as Eℓℓq(O, t) under the class group action ⋆, not even classically.
Philosophically, one might argue that this is inherently caused by the fact that
the structure of Cl(O)[2] is easily computable. As such, it is imperative to analyze
two cases which also give partial information about the class group Cl(O):

• As already mentioned in Section 7.9, the algorithm by Bosma and Steven-
hagen [BS96] determines the structure of the 2-Sylow group Cl(O)[2∞]. Can
our attack be extended to take this extra information into account?

• The class number formula expressing the class number of a suborder O in
terms of the class number of the maximal orderOK and the conductor f (see
Equation (4.4)) can be used to derive certain prime factors of h(O) without
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knowing h(OK). For instance, in the case of CSIDH with p ≡ 3 mod 8
where O = Z[

√
−p], the above formula implies that h(O) is divisible by 3.

Can an attack be devised where such factors are exploited?

Finally, we note that in most settings the exact structure of Cl(O) is unknown,
so the usual approach of restricting to a large prime order subgroup does not ap-
ply. As a precaution, we therefore advise to work with supersingular curves E/Fp
with p ≡ 3 mod 4, such that End(E) = OK , i.e. restrict to curves on the surface
as was done in the recent CSURF construction [CD20].

5.8 Follow-up work

This attack has since been generalized to several new situations.

Higher dimensions. The extended version [CSV22a] shows that the central
idea of the attack naturally generalizes to principally polarized abelian varieties
of any dimension. However, it is unclear what the correct generalization of the
DDH problem should be in the higher dimensions. [CSV22a] shows that one
can still use the reduced Tate pairing to determine the length of the chain of
secret Richelot isogenies between Jacobians of genus-2 curves (with appropriate
torsion).

Oriented curves. The recent results of Castryck, Houben, Vercauteren, and
Wesolowski [CHVW22] showed that the attack extends to supersingular elliptic
curves oriented by an imaginary quadratic order O.

Their approach uses the Weil pairing (which is always self-trivial), and so
instead pair the point P with its image under a distortion map, i.e. an endomor-
phism σ such that σ(P ) is not a multiple of P . This approach works for almost
all imaginary quadratic orders with even class number.

Breaking weak instances of CDH Further work by Castryck, Houben, Merz,
Mula, van Buuren, and Vercauteren [CHM+23] use generalizations of the Weil and
Tate pairings to identify weak instances of the CDH assumption. In the best case,
their attack is polynomial time. Their approach also generalizes and simplifies
the alternative approach in Section 5.9.

5.9 Appendix: Not walking to the floor

In Section 5.4, our approach to computing χ(E,E ′) was to take an arbitrary
walk to the floor of the respective m-isogeny volcanoes of E and E ′. In fact, one
can stop walking down as soon as one reaches a level where the m∞-torsion is
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sufficiently unbalanced. For this, we modify Theorem 5.4.2 (for n = 1), which is
likely to admit further generalizations. Here, we should mention recent follow-up
work [CHVW22], which shows that one can avoid walking to the floor by resorting
to the Weil pairing instead of the Tate pairing (although this approach may come
with extra costs [CHVW22, §4]).

Theorem 5.9.1. Let E/Fq be an ordinary elliptic curve and let m | q − 1 be a
prime. Assume that E is not located on the crater of its m-volcano and that

E(Fq)[m∞] ∼= Z/mrZ× Z/msZ

for some r > s+1. Let P ∈ E(Fq)[m] \ {∞} be such that there exists Q ∈ E(Fq)
for which mr−1Q = P . Then the reduced Tate pairing

Tm(P, ·) : E(Fq)/mE(Fq)→ µm : X 7→ Tm(P,X) (5.7)

is trivial if and only if X belongs to E[ms] mod mE(Fq). In particular, Tm(P,Q)
is a primitive m-th root of unity which, for a fixed P , does not depend on the
choice of Q.

Proof. The assumption m | (q−1) implies that µm ⊂ Fq. As explained in [BSS05,
IX.7.1], the kernel of Tm(P, ·) is a codimension 1 subspace of E(Fq)/mE(Fq), when
viewed as a vector space over Fm. Therefore it suffices to prove that Tm(P, ·) is
trivial on E[ms] mod mE(Fq), because the latter space indeed has codimension 1.
More precisely, it has dimension 0 if s = 0 and dimension 1 if s ≥ 1.

Since we are not on the crater, we know from Theorem 5.4.1 that there
exists an elliptic curve E ′/Fq and an Fq-rational m-isogeny φ : E ′ → E such
that E ′(Fq)[m∞] ∼= Z/(mr−1)× Z/(ms+1). We note:

• we have E[ms] ⊂ φ(E ′[ms+1]) ⊂ φ(E ′(Fq)), hence each X ∈ E[ms] can be
written as φ(X ′) for some X ′ ∈ E ′(Fq).

• The kernel of the dual isogeny φ̂ : E → E ′ equals ⟨P ⟩; otherwise E ′ would
admit Fq-rational mr-torsion. So P is the image of a P ′ ∈ E ′[m] ⊂ E ′(Fq).

We conclude that

Tm(P,X) = Tm(φ(P
′), φ(X ′)) = Tm(P

′, X ′)deg(φ) = Tm(P
′, X ′)m = 1,

as wanted.





Chapter 6

CTIDH: constant-time CSIDH

This chapter is based on the paper CTIDH: faster constant-time CSIDH [BBC+21],
co-authored with Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung
Chou, Tanja Lange, Michael Meyer, and Benjamin Smith (CHES 2021).

The introduction is new, and the background section is omitted as the relevant
details have been treated in Chapters 2 and 4. Two original sections [BBC+21,
Sec. 7.4 and 8] have been shortened and the appendices have been omitted. The
remaining sections have been edited for style and typographical consistency.
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6.1 Contributions of CTIDH

This paper introduces a new key space for CSIDH, and a new constant-time
algorithm to evaluate the CSIDH group action. The new key space is not useful
by itself—it slows down previous constant-time algorithms—and similarly the
new constant-time algorithm is not useful for previous key spaces; but there is a
synergy between the key space and the algorithm, and using both of them together
produces a large improvement in the performance of constant-time CSIDH.

Assume that one is using 6 primes and allows at most 6 isogeny computations,
with each li exponent being nonnegative. The standard key space (Section 4.3.4)
chooses (e1, e2, . . . , e6) ∈ K1 = {0, 1}6, giving 26 = 64 keys.

The new key space groups the primes into batches of three primes, and allows
up to 3 isogenies per batch. More conceretely, choose (e1, e2, . . . , e6) ∈ [0, 3]6 with
the condition that e1 + e2 + e3 ≤ 3 and e4 + e5 + e6 ≤ 3, giving 202 = 400 keys.

Putting each prime into its own batch is the standard key space. The opposite
extreme of all primes in 1 giant batch is also not new: putting a bound on the
1-norm of the key vector is the best tradeoff between the number of isogenies and
the size of the key space [NOTT23]. In the above example, 1 giant batch of six
primes under the condition e1 + . . . e6 ≤ 6 gives 924 keys for 6 isogenies.

However, we also want to make the implementation constant-time. Because
the key spaces above have different sizes, we will estimate the cost as the number
of isogenies per bit of the key space. One giant batch would require 6 isogenies
per degree, that is, 36 isogenies per less than 10 bits. The intermediate example
would require 18 isogenies for 8.6 bits of key space. The standard key space is the
clear winner in this (small) example, requiring 6 isogenies per 6 keys (requiring
larger-sized key spaces reduces the benefits).

In CTIDH, we give a new algorithm for computing the isogeny steps for all
primes in the batch in constant time, using the same sequence of operations.
In the example above, CTIDH only computes 3 isogenies per batch, and a to-
tal of 6 isogenies per 8.64 bits of key space. We achieve this by generalizing
the Matryoshka-doll structure of Vélu’s formulas [BLMP19] to

√
élu formulas

from [BDLS20]. In the process, we also resolve the issue of isogeny computation
failing with probability dependent on the degree (because of sampling torsion).

Moreover, we optimize the batches such that the new constant-time isogeny
evaluation does not incur such a massive overhead as in [BLMP19]. For compa-
rability we report CSIDH-512 speeds, setting records in multiplications and in
cycles for complete constant-time software. For applications that want higher
security levels (see Remark 4.1.12), our software also supports larger sizes.

We formalize the concept of rounds in computing isogenies as atomic blocks
(Section 6.3), and discuss how to compute them in constant time (Section 6.4).
The question of optimally selecting batches and bounds for a fixed key space size
is discussed in Section 6.5. Our software high-ctidh is discussed in Section 6.6
and its performance is compared to other implementations in Section 6.7.
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6.2 Batching and key spaces

The main conceptual novelty in CTIDH is the organization of primes and isogenies
in batches. We generalize the example from the introduction to define a new
batch-oriented key space.

Batching primes. In CTIDH, the sequence of primes (ℓ1, . . . , ℓn) is partitioned
into a series of batches : subsequences of consecutive primes. Let 0 < B ≤ n be the
number of batches; we represent the sequence of the batch sizes by an integer vec-
tor N = (N1, . . . , NB) ∈ ZB>0 with

∑B
i=1Ni = n. We relabel the primes in batches

as: (ℓ1,1, . . . , ℓ1,N1) := (ℓ1, . . . , ℓN1), (ℓ2,1, . . . , ℓ2,N2) := (ℓN1+1, . . . , ℓN1+N2), . . . ,
(ℓB,1, . . . , ℓB,NB

) := (ℓn−NB+1, . . . , ℓn). If ℓi,j corresponds to ℓk, then we also
write li,j for lk and ei,j for ek.

Example 6.2.1. Say we have n = 6 primes, (ℓ1, . . . , ℓ6). If we take B = 3
and N = (3, 2, 1), then (ℓ1,1, ℓ1,2, ℓ1,3) = (ℓ1, ℓ2, ℓ3), (ℓ2,1, ℓ2,2) = (ℓ4, ℓ5), and
finally (ℓ3,1) = (ℓ6).

Batching isogenies. Consider the i-th batch of primes (ℓi,1, . . . , ℓi,Ni
). Rather

than setting a bound mi,j ≥ |ei,j| for the number of ℓi,j-isogenies for each individ-

ual index 1 ≤ j ≤ Ni, we set a bound mi ≥
∑Ni

j=1 |ei,j| and compute mi isogenies
from the batch (ℓi,1, . . . , ℓi,Ni

). This looks analogous to the use of dummy oper-
ations in the previous constant-time algorithms, but it gives a larger key space
per isogeny computed because of the ambiguity between the degrees in a batch.
Moreover, we will show in Section 6.4.2 that it is possible to evaluate any isogeny
within one batch in the same constant time.

Extreme batching choices correspond to well-known approaches to the group
action evaluation: one prime per batch (B = n and N = (1, . . . , 1)) was con-
sidered in [CLM+18]; one n-prime batch (B = 1 and N = (n)) is considered in
[BLMP19] for the quantum oracle evaluation and in [NOTT23] as a speedup for
CSIDH. The intermediate cases are new, and, as we will show, faster.

The new key space. For N ∈ ZB>0 and m ∈ ZB≥0, we define

KN,m :=
{
(e1, . . . , en) ∈ Zn |

∑Ni

j=1 |ei,j| ≤ mi for 1 ≤ i ≤ B
}
.

We may see KN,m as a generalization of Km.

Lemma 6.2.2. We have

#KN,m =
B∏
i=1

Φ(Ni,mi) , where Φ(x, y) =

min{x,y}∑
k=0

(
x

k

)
2k
(
y

k

)
counts the vectors in Zx with 1-norm at most y.
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Proof. The size of the key space is the product of the sizes for each batch.
In Φ(x, y) there are k nonzero entries in the x positions and there are

(
x
k

)
ways to

determine which entries are nonzero. For each of the nonzero entries there are 2
ways to choose the sign. The vector of partial sums over these k nonzero entries
has k different integers in [1, y] and each vector uniquely matches one assignment
of partial sums. There are

(
y
k

)
ways to pick k different integers in [1, y].

6.3 Isogeny atomic blocks

In this section we define atomic blocks (AB) as formalizations of the concept
of rounds in isogeny computations, subroutines that have been widely used be-
fore but never formally defined. Algorithms computing the isogeny group action
typically proceed as follows: in the first round, the algorithm chooses a series
of degrees for which isogenies still need to be computed, and then uses a strat-
egy (Section 4.3.3) to compute a sequence of isogenies of those degrees. The
next round chooses a possibly different series of degrees, and computes another
sequence of steps. Atomic blocks formalize rounds to constant-time computation.

Square-free ABs generalize the approach we take when evaluating the CSIDH
group action with the traditional key spaces Km and K+

m as in Algorithm 2, as we
always evaluate one isogeny per degree. Restricted square-free ABs are used to
evaluate the group action using the batching idea with keys in KN,m; with details
in Algorithm 3. We postpone the explicit construction of ABs to Section 6.4.

6.3.1 Square-free atomic blocks

In this section we formalize how constant-time implementations combine isogeny
computations after sampling one, respectively two points, and explain why this
top layer of the algorithms is independent of the secret key. The lower layer of ef-
ficiently computing these blocks in constant-time will be described in Section 6.4.

Definition 6.3.1. Let R ⊆ {−1, 0, 1} and let I = (I1, . . . , Ik) ∈ Zk such that
1 ≤ I1 < I2 < · · · < Ik ≤ n. A square-free atomic block of length k is a
probabilistic algorithm αR,I with inputs A ∈M and ϵ ∈ Rk output A′ ∈M and

f ∈ {0, 1}k such that EA′ = (
∏

i l
fi·ϵi
Ii

)⋆EA, satisfying the following two properties:

1. there is a function σ such that, for each (A, ϵ), the distribution of f , given
that (A′, f) is returned by αR,I on input (A, ϵ), is σ(R, I), and

2. there is a function τ such that, for each (A, ϵ) and each f , the distribution
of the time taken by αR,I , given that (A′, f) is returned by αR,I on input
(A, ϵ), is τ(R, I, f).

That is, a square-free AB outputs a Montgomery coefficient of the new curve,
together with a vector f describing which isogeny computations succeeded.
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We want constant-time algorithms. If the atomic blocks are already constant-
time, this is easier to achieve: we can evaluate the group action on input e ∈ K
and A ∈ M using a sequence of square-free AB calls (A′, f) ← αR,I(A, ϵ). If in
each step the choice of R and I are independent of e, the algorithm does not leak
information about e through timing.

This is illustrated by Algorithm 2, which expresses the constant-time group
action from [OAYT19] using a sequence of square-free ABs with R = {−1, 0, 1}
to evaluate the action for keys in Km. The choices of R and I are independent
of e for each AB αR,I , and all other steps can be easily made constant-time. The
choice of I in Line 3 may vary between different executions, due to the varying
failure vectors f of previously evaluated ABs. However this only depends on the
initial choice of mi, and is independent of e.

Algorithm 2 Replacing the inner loop of [OAYT19, Algorithm 3] with any
square-free AB with R = {−1, 0, 1}. Keys are in Km for m = (m1, . . . ,mn).

Input: A ∈M, e = (e1, . . . , en) ∈ Km
Output: A′ with EA′ = (

∏
i l
ei
i ) ⋆ EA

1: (µ1, . . . , µn)← (m1, . . . ,mn)
2: while (µ1, . . . , µn) ̸= (0, . . . , 0) do
3: Set I = (I1, . . . , Ik) s.t. I1 < · · · < Ik and {I1, . . . , Ik} = {i | µi > 0}
4: for 1 ≤ i ≤ k do
5: ϵi ← Sign(eIi) ▷ 1 if eIi > 0; 0 if eIi = 0; -1 if eIi < 0

6: (A, f)← αR,I(A, (ϵ1, . . . , ϵk)) ▷ Square-free AB
7: for 1 ≤ i ≤ k do
8: (µIi , eIi)← (µIi − fi, eIi − ϵi · fi)
9: return A.

Remark 6.3.2. The constant-time group action from [MCR19] can also be ex-
pressed simply in terms of ABs. The algorithm is extremely similar to Algo-
rithm 2, using K+

m in place of Km and R = {0, 1} in place of {−1, 0, 1}. Line 5
can be simplified to ϵi ← 1 if eIi ̸= 0, or 0 if eIi = 0.

Remark 6.3.3. The distribution of the vector f depends on how the atomic
blocks are constructed. In [MCR19] and [OAYT19], Pr(fi = 0) = 1/ℓIi for all i.
In [CCJR22], f is always (1, 1, . . . , 1).

6.3.2 Restricted square-free atomic blocks

Restricted square-free ABs are generalizations of square-free ABs to the context
of batching. We further require that the that the new atomic blocks do not leak
information on which of the primes from a batch we have chosen.
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Definition 6.3.4. Let R ⊆ {−1, 0, 1}, B ≥ 1, and I = (I1, . . . , Ik) ∈ Zk such
that 1 ≤ I1 < I2 < · · · < Ik ≤ B. A restricted square-free atomic block of length k
is a probabilistic algorithm βR,I taking as input A ∈ M, ϵ ∈ Rk, and J ∈ Zk
with 1 ≤ Ji ≤ NIi for all 1 ≤ i ≤ k, and returning A′ ∈ M and f ∈ {0, 1}k such
that EA′ = (

∏
i l
fi·ϵi
Ii,Ji

) ⋆ EA, satisfying the following two properties:

1. there is a function σ such that, for each (A, ϵ, J), the distribution of f , given
that (A′, f) is returned by βR,I on input (A, ϵ, J), is σ(R, I); and

2. there is a function τ such that, for each (A, ϵ, J) and each f , the distribution
of the time taken by βR,I , given that (A′, f) is returned by βR,I on input
(A, ϵ, J), is τ(R, I, f).

Algorithm 3 uses restricted square-free ABs with R = {−1, 0, 1} to compute
group actions for keys in KN,m, generalizing Algorithm 2.

Algorithm 3 A constant-time group action for keys in KN,m based on restricted
square-free ABs with R = {−1, 0, 1} with parameters N , m, B.

Input: A ∈M, e = (e1, . . . , en) ∈ KN,m
Output: A′ with EA′ = (

∏
i l
ei
i ) ⋆ EA

1: (µ1, . . . , µB)← (m1, . . . ,mB)
2: while (µ1, . . . , µB) ̸= (0, . . . , 0) do
3: Let I = (I1, . . . , Ik) s.t. I1 < · · · < Ik and {I1, . . . , Ik} = {i | µi > 0}
4: for 1 ≤ i ≤ k do
5: if there exists j such that eIi,j ̸= 0 then
6: Ji ← some such j
7: else
8: Ji ← any element of {1, . . . , NIi}
9: ϵi ← Sign(eIi,Ji) ▷ 1 if eIi,Ji > 0; 0 if eIi,Ji = 0; −1 if eIi,Ji < 0

10: (A, f)← βR,I(A, (ϵ1, . . . , ϵk), J) ▷ Restricted square-free AB
11: for 1 ≤ i ≤ k do
12: (µIi , eIi,Ji)← (µIi − fi, eIi,Ji − ϵi · fi)
13: return A

6.4 Evaluating atomic blocks in constant time

Now we introduce the algorithm used in CTIDH to realize the restricted square-
free atomic blocks βR,I from Section 6.3. Throughout the section, R = {−1, 0, 1}.

We start with recasting the inner loop of [OAYT19, Algorithm 3] as a real-
ization of the square-free atomic block αR,I . We first present the algorithm in
a simpler variable-time form (Algorithm 4) and then explain the small changes
needed to eliminate timing leaks, obtaining αR,I .
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Section 6.4.2 presents our new algorithm to realize βR,I . The extra challenge
here is to hide which prime is being used within each batch. Again we begin by
presenting a simpler variable-time algorithm (Algorithm 5) and then explain how
to eliminate timing leaks.

6.4.1 Square-free atomic blocks for isogeny evaluation

Algorithm 4 translates the inner loop of [OAYT19, Algorithm 3] to the AB frame-
work. The inputs are A ∈ M and ϵ ∈ {−1, 0, 1}k. The goal is to compute k
isogenies of degrees ℓI1 , . . . , ℓIk , but some of these computations may fail. The
outputs are a vector f ∈ {0, 1}k recording which of the computations succeeded,
and A′ such that (

∏
i l
fi·ϵi
Ii

) ⋆ EA = EA′ .
The algorithm uses the 2-point approach with dummy isogenies. It uses two

subroutines:

• UniformRandomPoints takes A ∈ M, and returns a uniform random pair
of points (T0, T1), with T0 ∈ EA(Fp) and T1 ∈ ẼA(Fp); i.e., T0 is a uniform
random element of EA(Fp), and T1, independent of T0, is a uniform random
element of ẼA(Fp).

• Isogeny takes A ∈ M, a point P in EA(Fp2) with x-coordinate in Fp
generating the kernel of an ℓIj -isogeny φ : EA → EA′ = EA/⟨P ⟩, and a
tuple of points (Q1, . . . , Qt), and returns A′ and (φ(Q1), . . . , φ(Qt)).

Remark 6.4.1. Algorithm 4 uses a multiplicative strategy, but it can easily
be modified to use a SIMBA or point-pushing strategy, which is much more
efficient in general [OAYT19, CR22]. The isogeny algorithm can be Vélu or√
élu, whichever is more efficient for the given degree.

Eliminating timing leaks. The following standard modifications to Algo-
rithm 4 produce an algorithm meeting the definition of a square-free atomic block
(Definition 6.3.1).

Observe first that fj = 1 if and only if the prime ℓIj divides the order of the
current Ts. This is equivalent to ℓIj dividing the order of the initially sampled
point Ts (since Ts has been modified only by multiplication by scalars that are
not divisible by ℓIj , and by isogenies of degrees not divisible by ℓIj). This has
probability 1 − 1/ℓIj , since the initial Ts is a uniform random point in a cyclic
group of size p+1. These probabilities are independent across j, since (T0, T1) is
a uniform random pair of points.

So the distribution of the f vector has position j set with probability 1−1/ℓIj ,
independently across j. This is a function purely of I, independent of (A, ϵ),
as required. What follows are algorithm modifications to ensure that the time
distribution is a function purely of (I, f); these modifications do not affect f .
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Algorithm 4 Inner loop of [OAYT19, Algorithm 3].
Parameters k ∈ Z, R = {−1, 0, 1}, I ∈ Zk≥0

Input: A ∈M, ϵ ∈ {−1, 0, 1}k
Output: A′ ∈M, f ∈ {0, 1}k
1: (T0, T1)← UniformRandomPoints(A) ▷ T0 ∈ EA, T1 ∈ E−A
2: (T0, T1)← ([r]T0, [r]T1) where r = 4

∏
i ̸∈I ℓi

3: r′ ←
∏

i∈I ℓi
4: for j = k down to 1 do
5: r′ ← r′/ℓIj
6: s← SignBit(ϵj) ▷ 1 if ϵj < 0, otherwise 0
7: P ← [r′]Ts
8: if P ̸=∞ then ▷ branch without secret information
9: fj ← 1
10: (A′, (T ′

0, T
′
1))← Isogeny(A,P, (T0, T1), Ij)

11: if ϵj ̸= 0 then ▷ branch with secret information
12: (A, T0, T1)← (A′, T ′

0, T
′
1)

13: else
14: Ts ← [ℓIj ]Ts

15: else
16: fj ← 0

17: T1−s ← [ℓIj ]T1−s

18: return A, f

Step 7, taking T0 if s = 0 or T1 if s = 1, is replaced with a constant-time point
selection: e.g., taking the bitwise XOR T0⊕T1, then ANDing each bit with s, and
then XORing the result with T0. Similar comments apply to the subsequent uses
of Ts and T1−s. It is simplest to merge all of these selections into a constant-time
swap of T0, T1 when s = 1, followed by a constant-time swap back at the bottom
of the loop. The adjacent swaps at the bottom of one loop and the top of the next
loop can be merged, analogous merging is standard in constant-time versions of
the Montgomery ladder for scalar multiplication.

Step 11 determines whether an actual isogeny or a dummy isogeny has to be
computed. The conditional assignment to (A, T0, T1) in the first case is replaced
with unconditional constant-time point selection. The conditional operation in
the second case is replaced with an unconditional operation, multiplying Ts by ℓIj
in both cases. This changes the point Ts in the first case, but does not change the
order of Ts (since the isogeny has already removed ℓIj from the order of Ts in the
first case), and all that matters for the algorithm is the order. One can perform the
multiplication by ℓIj within a dummy isogeny computation [MCR19, OAYT19].

The branch in Step 8 is determined by public information fj. The isogeny
computation inside Isogeny takes constant time with standard algorithms; at a
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lower level, arithmetic in Fp is handled by constant-time subroutines. The com-
putation of UniformRandomPoints takes variable time with standard algorithms,
but the time distribution is independent of the input curve.

The total time is the sum for initialization (UniformRandomPoints, compu-
tation of r and r′, initial scalar multiplication), fj computation (division, scalar
multiplications, selection), and computations when fj = 1 (Isogeny, scalar mul-
tiplication, selection). This sum is a function of (I, f), independent of (A, ϵ).

6.4.2 Restricted square-free atomic blocks

We now consider the more difficult goal of hiding which isogeny is being computed
within each batch. We present first the high-level algorithm (Algorithm 5), then
discuss the PointAccept and MatryoshkaIsogeny subroutines, and finally the
algorithm modifications to meet Definition 6.3.4.

The inputs to Algorithm 5 are A ∈M, ϵ ∈ {−1, 0, 1}k, and J ∈ Zk. The goal
is to compute k isogenies of degrees ℓI1,J1 , . . . , ℓIk,Jk . The outputs are A′ ∈ M
and f ∈ {0, 1}k such that (

∏
i l
fi·ϵi
Ii,Ji

) ⋆ EA = EA′ .
Like Algorithm 4, Algorithm 5 uses a 2-point approach and dummy isogenies.

It uses the following subroutines:

• UniformRandomPoints is as before.

• PointAccept replaces the check P ̸=∞ to prevent timing leakage. It takes
a point P and Ij, Jj ∈ Z such that P either has order ℓIj ,Jj or 1, and outputs
either 0 or 1, under the condition that the output is 0 whenever P =∞.

• MatryoshkaIsogeny replaces Isogeny from Algorithm 4. There is an extra
input Jj indicating the secret position within a batch.

Note that the output of PointAccept can be 0 when P ̸= ∞, so we add a
multiplication by ℓIj ,Jj in Step 14 to make sure we continue the loop with points
of expected order.

PointAccept. Step 8 of Algorithm 5 computes a potential kernel point P .
The probability that P = ∞ is 1/ℓIj ,Jj , which depends on Jj. For the batch
(ℓIj ,1, . . . , ℓIj ,NIj

), PointAccept artificially increases this probability to 1/ℓIj ,1,

independent of ℓIj ,Jj by tossing a coin with success probability

γ =
ℓIj ,Jj · (ℓIj ,1 − 1)

ℓIj ,1 · (ℓIj ,Jj − 1)

and only returns fj = 1 if P ̸=∞ and the coin toss is successful. The probability
that the output is 1 is then γ · (1 − 1/ℓIj ,Jj) = 1 − 1/ℓIj ,1 which is independent
of Jj (note that ℓIj ,1 is the smallest prime in the batch).
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Algorithm 5 The CTIDH inner loop. Parameters k ∈ Z, R = {−1, 0, 1}, I ∈ Zk≥0

Input: A ∈M, ϵ ∈ {−1, 0, 1}k, J ∈ Zk>0

Output: A′ ∈M, f ∈ {0, 1}k
1: (T0, T1)← UniformRandomPoints(A) ▷ T0 ∈ EA, T1 ∈ E−A
2: (T0, T1)← ([r]T0, [r]T1) where r = 4

∏
i ̸∈I

∏
1≤j≤Ni

ℓi,j
3: (T0, T1)← ([r̃]T0, [r̃]T1) where r̃ =

∏
i∈I

∏
1≤j≤Ni,j ̸=Ji ℓi,j ▷ hide selection

4: r′ ←
∏

i∈I ℓi,Ji ▷ hide selection
5: for doj = k down to 1
6: r′ ← r′/ℓIj ,Jj ▷ hide ℓIj ,Jj , batch is public
7: s← SignBit(ϵj) ▷ 1 if ϵj < 0, otherwise 0
8: P ← [r′]Ts ▷ hide ℓIj ,Jj , batch is public
9: fj ← PointAccept(P, Ij, Jj)
10: if fj = 1 then ▷ this branch is on public information
11: (A′, (T ′

0, T
′
1))← MatryoshkaIsogenyA,P, T0, T1, Ij, Jj)

12: if ϵj ̸= 0 then ▷ branch with secret information
13: (A, T0, T1)← (A′, T ′

0, T
′
1)

14: (T0, T1)← ([ℓIj ,Jj ]T0, [ℓIj ,Jj ]T1) ▷ hide selection

15: return A, f

MatryoshkaIsogeny. The function MatryoshkaIsogeny replaces the Isogeny

computation. It takes as input the Montgomery coefficient of a curve EA, a
batch (ℓi,1, . . . , ℓi,Ni

), an isogeny index j within the batch, a point P of order ℓi,j
generating the kernel of an isogeny φ : EA → EA/⟨P ⟩ = EA′ , and a tuple of
points (Q1, . . . , Qt), and returns A′ and (φ(Q1), . . . , φ(Qt)). MatryoshkaIsogeny
is computed with cost independent of j.

From Vélu’s formulas, [BLMP19] computed any ℓi-isogeny for ℓi ≤ ℓ us-
ing the computation of an ℓ-isogeny and masking. Recall that the first step of
computing Vélu’s formulas is to compute x(P ), x([2]P ), . . . , x([(ℓ− 1)/2]P ), and
their product (Equation (4.8)). This includes the computation for all ℓi < ℓ,
reminiscent of a Matryoshka-doll [BLMP19].

In CTIDH, we specialize the
√
élu formulas so as to obtain a Matryoshka-doll

structure. We define the sets U and V (Section 4.3.2), as the optimal choices for
the smallest degree in the batch: i.e., ℓi,1. The leftover set W is chosen to make
the formulas work even for the largest prime ℓi,Ni

in the batch. The baby-step
giant-step part of the algorithm stays unchanged; while we iterate through W we
save the intermediate results corresponding to all degrees ℓi,j in the batch. In the
final step, we select the result for the degree that we wanted to compute.

The sets U and V have size ≈
√
ℓi,1. If all the primes in the batch are of

similar size, the optimal choices of Ui and Vi for each i are close to U and V and
the Matryoshka-like formulas are close in performance to the optimal formulas.
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Eliminating timing leaks. We now describe how to modify Algorithm 5 to
meet the definition of a restricted square-free atomic block (Definition 6.3.4).

We begin with the distribution of f . For each input (A, ϵ, J), the distribution
has fj set with probability 1 − 1/ℓIj ,1 independently across j. This distribution
is a function purely of I, independent of (A, ϵ, J), as required. What remains is
to ensure that the time distribution is a function purely of (I, f).

There are secret scalars r̃, r′, and ℓIj ,Jj used in various scalar multiplications
in Steps 3, 8, and 14. Standard integer-arithmetic algorithms that dynamically
suppress leading zero bits are replaced by constant-time algorithms that always
use the maximum number of bits, and variable-time scalar-multiplication algo-
rithms are replaced by a constant-time Montgomery ladder, as in [BLMP19]. It
is straightforward to compute an upper bound on each scalar in Algorithm 5. See
Section 6.6 for faster alternatives.

Isogenies using MatryoshkaIsogeny can be computed in time that depends
only on the batch, not on the selection of a prime within the batch. Everything
else is as in Section 6.4.1: the distribution of UniformRandomPoints timings is
independent of the inputs, Step 8 uses constant-time selection, the branch in
Step 12 is replaced by constant-time selection, and the branch in Step 10 does
not need to be modified.

6.5 Strategies and parameters for CTIDH

The optimization process for previous constant-time algorithms for CSIDH has
two levels. The bottom level tries to minimize the cost of each AB, for example
by optimizing

√
élu parameters and searching for a choice of strategy. The top

level searches for exponent bounds m = (m1, . . . ,mn) that minimize the total
cost subject to the key space size, modeling the cost of ABs by a cost function.

Optimizing CTIDH is more complicated. There is a new top level, searching
for a choice of batch sizes N = (N1, . . . , NB). Batch sizes influence the success
chance and cost of an AB at the bottom level as the discussion in Section 6.4.2
shows. Batches also influence the total cost of any particular choice of 1-norm
bounds m = (m1, . . . ,mB) at the middle level. The size of the key space depends
on both N and m; see Lemma 6.2.2.

We describe a reasonably efficient method to search for CTIDH parameters.

Strategies for CTIDH. We save time at the lowest level of the search by
using multiplicative strategies. As in previous papers, it would be easy to adapt
Algorithm 5 to use other strategies, but this is unlikely to produce large benefits.

Seen from a high level, evaluating ABs multiplicatively in CTIDH has a similar
effect to SIMBA strategies for previous algorithms. For example, SIMBA-N1 for
traditional batch sizes (1, . . . , 1) limits each AB to at most n/N1 isogenies (if n
is divisible by N1), in order to save multiplicative effort. Now consider CTIDH
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where all B batches have size N1, i.e., N = (N1, . . . , N1). Each CTIDH AB then
computes at most B = n/N1 isogenies, again saving multiplicative effort.

One could split a CTIDH AB into further SIMBA prides, but [MCR19] al-
ready shows that most of the benefit of SIMBA comes from putting some cap on
the number of isogenies in an AB; the exact choice of cap is relatively unimpor-
tant. One could also try to optimize point-pushing strategies as an alternative
to multiplicative strategies, as an alternative to SIMBA, or within each SIMBA
pride, but the searches in [HLKA20] and [CR22] suggest that optimizing these
strategies saves at most a small percentage in the number of multiplications, while
incurring overhead for managing additional points.

Cost functions for CTIDH. The search through various CTIDH batching
configuration vectors N and 1-norm bound vectors m tries to minimize a cost
function C(N,m), a model of the cost of a group-action evaluation. The numerical
search examples later in this section use the following cost function: the average
number of multiplications (counting squarings as multiplications) used by the
CTIDH algorithms, including the speedups described in Section 6.6.

One way to compute this function is to statistically approximate it: run the
software from Section 6.6 many times, inspect the multiplication counter built
into the software, and take the average over many experiments. A more efficient
way to compute the same function with the same accuracy is with a simulator
that skips the multiplications but still counts how many there are. Our simulator,
written in Python, is about 50 times faster than the software from Section 6.6.

However, using a statistical approximation raises concerns about the impact
of statistical variations. So, instead of using the software or the simulator, we
directly compute the average cost of the first AB, the average cost of the second
AB, etc., stopping when the probability of needing any further AB is below 10−9.

Batch b, with smallest prime ℓb,1, has success probability 1− 1/ℓb,1 from each
AB, so the chance qb of reaching mb successes within R ABs is the sum of the co-
efficients of xmb , xmb+1, . . . in the polynomial (1/ℓb,1+(1−1/ℓb,1)x)

R. Batches are
independent, so q1q2 · · · qB is the probability of not needing any further AB. Note
that multiplying the polynomial (1/ℓb,1 + (1− 1/ℓb,1)x)

R by 1/ℓb,1 + (1− 1/ℓb,1)x
for each increase in R is more efficient than computing binomial coefficients.

Computing the cost of an AB (times the probability that the AB occurs) is
more complicated. Splitting the analysis into 2B cases—e.g., one case, occurring
with probability (1 − q1)(1 − q2) · · · (1 − qB), is that all B batches still remain
to be done—might be workable, since B is not very large and one can skip cases
that occur with very low probability. We instead take the following approach.
Fix b. The probability that batch b is in the AB is 1 − qb; the probability that
batch a is in the AB for exactly j values a < b is the coefficient of xj in the
polynomial

∏
a<b(qa + (1 − qa)x); the probability that batch c is in the AB for

exactly k values c > b is the coefficient of xk in
∏

c>b(qc + (1 − qc)x). There
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are O(B2) possibilities for (j, k); each possibility determines the total number of
batches in the AB and the position of b in the AB, assuming b is in the AB. For
the AB algorithms considered here, this is enough information to determine the
contribution of batch b to the cost of the AB. Our Python implementation of
this approach has similar cost to 100 runs of the simulator, depending on B.

We also explored various simpler possibilities for cost functions. A determin-
istic model of ABs is easier to compute and simulates real costs reasonably well,
leading to parameters whose observed costs were consistently within 10% of the
best costs we found via the cost function defined above.

Optimizing the 1-norm bounds. Given a fixed configuration N of B batches,
we use a greedy algorithm as in [CR22] to search for a 1-norm bound vector m:

1. Choose an initial m = (m1, . . . ,mB) such that KN,m is large enough, and
set Cmin ← C(N,m).

2. For each i in {1, . . . , B}, do the following:

(a) Set m̃← (m1, . . . ,mi−1,mi − 1,mi+1, . . . ,mB).

(b) If KN,m̃ is large enough, set (m,Cmin)← (m̃, C(N, m̃)).

(c) Else, set m̃′ ← m̃, and for each j ̸= i in {1, . . . , B} do the following:

i. Set m̃← (m̃′
1, . . . , m̃

′
j−1, m̃

′
j + 1, m̃′

j+1, . . . , m̃
′
B).

ii. If KN,m̃ is too small, recursively go to Step 2(c).

iii. Else, if C(N, m̃) < Cmin, set (m,Cmin)← (m̃, C(N, m̃)).

3. If Cmin was updated in Step 2, then repeat Step 2.

4. Return (m,Cmin).

This algorithm applies small changes to the bound vector m at each step,
reducing one entry while possibly increasing others. Obviously, this finds only
a locally optimal m with respect to these changes and the initial choice of m in
Step 1; different choices generally produce different results.

One way to choose an initial m is to try (1, 1, . . . , 1), then (2, 2, . . . , 2), etc.,
stopping when KN,m is large enough. Another approach, is to start from the
best m found for the parent N below, and merely increase the first component
of m until KN,m is large enough; usually at most one increase is needed.

The algorithm involves at least B(B − 1) evaluations of the cost function for
the final pass through Step 2, and possibly many more if there are many recursive
calls or many improvements to m, but usually these are small effects.
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Optimizing the prime batches. We optimize N via a similar greedy al-
gorithm, using the algorithm above as a subroutine. For a fixed number of
batches B, we proceed as follows:

1. Choose an initial N = (N1, . . . , NB) with
∑

iNi = n, and let (m,Cmin) be
the output of the algorithm above applied to N .

2. For each i ∈ {1, . . . , B}, do the following:

(a) Set Ñ i ← (N1, . . . , Ni−1, Ni − 1, Ni+1, . . . , NB).

(b) For each j ̸= i in {1, . . . , B},
i. Set Ñ i,j ← (Ñ i

1, . . . , Ñ
i
j−1, Ñ

i
j + 1, Ñ i

j+1, . . . , Ñ
i
B).

ii. Let (m̃, C̃) be the output of the algorithm above applied to N i,j.

iii. If C̃ < Cmin, then update (N,m,Cmin)← (Ñ i,j, m̃, C̃).

3. If Cmin was updated in Step 2, then repeat Step 2.

4. Return N , m, and Cmin.

This algorithm also finds only a local optimum with respect to these changes,
and with respect to the initial choice of N in Step 1. Our experiments took an
initial choice for N such that z ≤ N1 ≤ · · · ≤ NB ≤ z + 1 for some z ∈ Z. One
can also omit one or more large primes ℓj by taking each Nj = 1 and mj = 0.

Within the full two-layer greedy algorithm, each N considered at the upper
layer involves B(B−1) calls to the lower layer, the optimization of 1-norm bounds.
Recall that each call to the lower layer involves at least B(B − 1) evaluations of
the cost function. Overall there are nearly B4 evaluations of the cost function.

Numerical examples. Table 6.1 shows examples of outputs of the above search.
For each B, the “N”/“m” column shows the final (N,m) found, and the “cost”
column shows the cost function for that (N,m), to two digits after the decimal
point. The full table can be found in [BBC+21, Table 1]

For the search, we used a server with two 64-core AMD EPYC 7742 CPUs,
but limited each search to 32 cores running in parallel. We parallelized only the
upper layer of the search; often fewer than 32 cores were used since some calls to
the lower layer were slower than others. For each B, “wall” shows the seconds of
real time used for the search, and “CPU” shows the total seconds of CPU time
(across all cores, user time plus system time) used for the search.

6.6 Constant-time software for the action

We have built a self-contained high-performance software package, high-ctidh,
that includes implementations of all of the operations needed by CSIDH users for
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B wall cost N
CPU m

6 13.29 583256.02 10 11 12 12 15 14
150.29 19 31 31 32 32 30

9 138.65 485052.29 5 7 8 8 8 7 10 12 9
2763.28 14 22 23 23 23 23 24 24 13

13 2301.94 445054.10 3 4 4 6 6 6 7 7 8 7 7 8 1
55252.51 10 16 17 18 18 18 18 18 18 18 17 14 1

14 6509 437985.55 2 3 4 4 5 5 6 7 7 8 8 6 8 1
161371.00 10 14 16 17 17 17 18 18 18 18 18 13 13 1

15 8341 440201.56 3 4 3 4 4 5 5 5 6 6 6 7 7 8 1
211336.80 9 14 15 15 16 16 16 16 16 16 16 16 15 13 1

Table 6.1: Results of searches for CTIDH parameters with at least 2256 keys for
the CSIDH-512 prime. Details in text. Batching with smallest cost is in bold.

whichever parameter set is selected: constant-time key generation, constant-time
computation of the CSIDH action, and validation of (claimed) public keys. The
package uses the CTIDH key space and CTIDH algorithms to set new cycle-count
records for constant-time CSIDH.

The high-ctidh source code is in C, with assembly language for field arith-
metic. Beyond the performance benefits, using low-level languages is helpful for
ensuring constant-time behavior, as explained below. Measuring the performance
of a full C implementation also resolves the concerns raised by using multiplica-
tions as a predictor of performance, such as concerns that some subroutines could
be difficult to handle in constant time and that improved multiplication counts
could be outweighed by overhead.

The software is freely available at http://ctidh.isogeny.org/. This section
describes the software. Section 6.7 reports the software speeds and compares with
previous implementations.

Processor selection and field arithmetic. The original CSIDH paper re-
ported clock cycles for variable-time CSIDH-512 software on an Intel Skylake
CPU core. Skylake is also the most common CPU choice in followup papers on
CSIDH software speed. We similarly focus on Skylake to maximize comparability.

The original csidh-20180826 software [CLM+18] included a small assembly-
language library for Intel chips (Broadwell and newer) to perform arithmetic mod-
ulo the CSIDH-512 prime. The same library has been copied, with minor tweaks
and generalizations to other primes, into various subsequent software packages,
including high-ctidh. Code above the field-arithmetic level, decomposing isoge-
nies into multiplications etc., are written in C, so porting the software to another
CPU is mainly a matter of writing an efficient Montgomery multiplier for that

http://ctidh.isogeny.org/


130 Chapter 6. CTIDH: constant-time CSIDH

CPU. Beware that each CPU will have different cycle counts, and possibly a
different ranking of algorithmic choices.

The velusqrt-asm software from [BDLS20] includes an adaptation of the
same library to CSIDH-1024. The sqale-csidh-velusqrt software [CCJR22]
includes adaptations to larger sizes, all automatically generated by a code gen-
erator that takes p as input. The high-ctidh package includes a similar code
generator, with some small improvements in the details: for example, we use
less arithmetic for conditional subtraction, and we avoid cmov instructions with
memory operands out of concern that they could have data-dependent timings.

6.6.1 Computing one isogeny

The middle layer of high-ctidh computes an ℓ-isogeny for one prime ℓ; it also
includes auxiliary functions such as multiplying by the scalar ℓ. We built this
layer as follows. We started with the xISOG function in velusqrt-asm. As
in csidh-20180826, this function takes a curve and a point P of order ℓ, and
returns the corresponding ℓ-isogenous curve. It also takes a point T , and returns
the image of that point under the isogeny.

We extended the function interface to take lower and upper bounds on ℓ—
the smallest and largest prime in the batch containing ℓ—and we modified the
software to take time depending only on these bounds, not on the secret ℓ. The
Matryoshka-doll structure of the computation (see Section 6.4.2) meant that very
little code had to change. Each loop to ℓ is replaced by a loop to the upper
bound, with constant-time conditional selection of the results relevant to ℓ; and ℓ
is replaced by the lower bound as input to the

√
élu parameter selection. An

upper bound was used the same way in [BLMP19]; the use of the lower bound
for a Matryoshka-doll

√
élu is new here.

We reused the
√
élu parameter-tuning mechanisms from velusqrt-asm. These

automatic mechanisms offer the option of tuning for multiplication counts or
cycles. Since most CSIDH-related papers report multiplication counts while fewer
report cycles, we chose to tune for multiplication counts for comparability.

We made more changes to incorporate known optimizations, including an
observation from [BLMP19] regarding the applicability of multiexponentiation,
and an observation from [ACR23] regarding reciprocal polynomials. Computing
a 587-isogeny and pushing a point through takes 2108 multiplications in this
software (counting squarings as multiplications); for comparison, [ACR23] took
3.4% more, and velusqrt-asm took 8.9% more.

More importantly for the high-level algorithms, we extended the interface to
allow an array of points T to be pushed through the isogeny—e.g., two or zero
points rather than one. We also incorporated shorter differential addition chains,
as in [CCC+19], for scalar multiplications, and standard addition chains for the
constant-time exponentiation inside Legendre-symbol computation.

There would be marginal speedups from tuning the
√
élu parameters for each
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number of points separately. The parameters (6, 3) for 0 points (instead of (0, 0))
saves 2 out of 328 multiplications for ℓ = 79; further 2 out of 344 multiplications
for ℓ = 83; and 8 out of 368 multiplications for ℓ = 89. Parameter adjustments
also save 3 multiplications for 0 points for each ℓ ∈ {557, 587, 613}. However, we
did not find such speedups for most primes, and we did not find such speedups
for the much more common case of 2 points.

6.6.2 Computing the action

The top layer of high-ctidh is new, and includes the core CTIDH algorithms.
The key space is KN,m, allowing any vector with 1-norm at most m1 for the
first N1 primes, 1-norm at most m2 for the first N2 primes, etc. Constant-time
generation of a length-Ni vector of 1-norm at most mi works as follows:

• Generate Ni +mi uniform random b-bit integers.

• Set the bottom bit of each of the first Ni integers, and clear the bottom bit
of each of the last mi integers.

• Sort the integers. (We reused constant-time sorting software from [Ber18].)

• If any adjacent integers are the same outside the bottom bit, start over.
(Otherwise the integers were distinct outside the bottom bit, so sorting
them applies a uniform random permutation.)

• Extract the bottom bit at each position. (This is a uniform random bit
string of length Ni +mi with exactly Ni bits set.)

• Consider the entries as integers. Add the first entry to the second, then add
the resulting second entry to the third, etc. (Now there are maybe some 0s,
then at least one 1, then at least one 2, and so on through at least one Ni.)

• Count, in constant time, the number e0 of 0, the number e1 of 1, and so on
through the number eNi−1 of Ni− 1. (These add up to at most Ni+mi− 1,
since the number of Ni was not included. Each of e1, . . . , eNi−1 is positive,
and e0 is nonnegative.)

• Subtract 1 from each of e1, . . . , eNi−1. (Now e0, . . . , eNi−1 is a uniform ran-
dom string of Ni nonnegative integers with sum at most mi.)

• Generate a uniform random Ni-bit string s0, . . . , sNi−1.

• Compute, in constant time, whether any j has sj = 1 and ej = 0. If so,
start over.

• Replace each ej with −ej if sj = 1.
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The two rejection steps in this algorithm are independent of the secrets produced
as output. The first rejection step is very unlikely to occur when b is chosen so
that 2b is larger than (Ni+mi)

2. The second rejection step occurs more frequently.
Sign variations for vectors of Hamming weight k contribute 2k by Lemma 6.2.2
and thus the rejection correctly happens more frequently for smaller k.

In the case Ni > mi, high-ctidh saves time by skipping (in constant time)
the sj = 1 rejection test for the first Ni−mi values of j having ej = 0. There are
always at least Ni −mi such values of j. This increases each acceptance chance
by a factor 2Ni−mi , preserving uniformity of the final output.

Once a private key is generated, the action is computed by restricted square-
free ABs. As in Section 6.3, the first AB handles one prime per batch, the next
AB handles one prime per batch that might have something left to do, etc.

Within each AB, Elligator 2 [BHKL13] (see also [BBC+21, Appendix B]) is
used twice to generate two independent points. We first generate points with
Elligator on the first curve EA and select the point with the same orientation
as the first isogeny. Then we push the point through and use Elligator again to
generate two points with Elligator on the second curve EA′ and select the point
of opposite orientation. Both choices are secret. Both points (T0, T1) are pushed
through subsequent isogenies as in Algorithm 5; no points are pushed through
the last isogeny and only one point is pushed through the isogeny before that.
The AB thus pushes through 1, 2, 2, 2, . . . , 2, 2, 2, 1, 0 points.

The software permutes the b ≤ B batches in every AB to use primes in the
following order: ℓb−1, ℓb−3, ℓb−4, . . . , ℓ1, ℓb−2, ℓb. Each AB selects one prime from
each batch in the block and tries to compute an isogeny of total degree D, the
product of the selected primes; D = r′ in Algorithm 5. Each point is multiplied
by 4 and all primes outside D immediately after being generated by Elligator, so
that the order of the point divides D. There are two types of primes outside D
(compare Steps 2 and 3 of Algorithm 5):

• The batches in the AB are public. Primes outside these batches are publicly
outside D.

• Primes that are inside the batches in the AB, but that are not the secretly
selected prime per batch, are secretly outside D.

For scalar multiplication by a product of secret primes, [BLMP19] uses a Mont-
gomery ladder, with the number of ladder steps determined by the maximum
possible product. For public primes, [CCC+19] does better using a precom-
puted differential addition chain for each prime. Our high-ctidh software also
uses these chains for secret primes, taking care to handle the incompleteness of
differential-addition formulas and to do everything in constant time. The primes
in a batch usually vary slightly in chain length, so the software always runs to
the maximum length.
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Each ℓ-isogeny then clears ℓ from the order of the point that was used to
compute the isogeny. As in line 14 of Algorithm 5, the software multiplies the
point by ℓ anyway (again using a constant-time differential addition chain), just
in case this was a dummy isogeny, i.e., there was secretly nothing left to do in the
batch. This extra scalar multiplication could be merged with the isogeny compu-
tation, but the

√
élu structure seems to make this somewhat more complicated

than in [MCR19], and the extra scalar multiplication accounts for only about 3%
of the CSIDH-512 computation. The other point is also multiplied by ℓ.

An AB successfully handling a batch is a public event, visible in timing: it
means that a (real or dummy) ℓ-isogeny is computed for some ℓ in the batch,
publicly decreasing the maximum 1-norm of the batch. This event occurs with
probability 1 − 1/ℓi,1, where ℓi,1 is the smallest prime in the batch containing ℓ.
As in Section 6.4.2, this is achieved artificially inflating the failure probability of
computing the ℓ-isogeny by using a γ-biased coin toss for γ = (1−1/ℓi,1)/(1−1/ℓ).

One obvious way to generate a γ-biased coin is to (1) generate a uniform
random integer modulo ℓi,1(ℓ− 1) and (2) compute whether the integer is smaller
than ℓ(ℓi,1−1). The second step is easy to do in constant time. For the first step,
the software generates a uniform random 256-bit integer and, in constant time,
reduces that modulo ℓi,1(ℓ − 1); the resulting distribution is indistinguishable
from uniform. One could instead use rejection sampling to compute a uniform
random integer modulo ℓi,1M , where M is the least common multiple of ℓ − 1
across primes ℓ in the batch, and then reduce the integer modulo ℓi,1(ℓ − 1), to
obtain an exactly uniform distribution; the reason to useM here rather than just
one ℓ− 1 is to avoid having the secret ℓ influence the rejection probability.

6.6.3 Automated constant-time verification

We claim that the CTIDH algorithm is constant time, and base our claim on
reviewing the mathematical properties of the new algorithm, reviewing each new
line of the code in high-ctidh, and every line of the reused code. These analy-
ses were done entirely by hand. For extra assurance, we designated an internal
auditor to use the automated tool valgrind to verify the constant-time claims.

The standard tool valgrind [NS07] runs a specified binary, watching each
instruction for memory errors—in particular, branches and array indices derived
from undefined data. If secret data in cryptographic software is marked as un-
defined then simply running valgrind will automatically check whether there is
any data flow from secrets to branches and array indices; see, e.g., [Lan10]. See
also [Jan21] for a survey of related tools.

Because valgrind works at the binary level, this analysis includes any opti-
mizations that might have been introduced by the compiler. A compiler change
could generate a different binary with timing leaks, but valgrind is fast enough to
be systematically run on all compiled cryptographic software before deployment.

The auditor wrote a simple checkct program using high-ctidh to perform
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a full CSIDH key exchange; this is included in the high-ctidh package. For ex-
ample, running valgrind ./checkct512default (performing a full CSIDH-512
key exchange) takes under 30 seconds on a 3GHz Skylake core, The underlying
randombytes function marks all of its output as undefined, so valgrind is check-
ing for any possible data flow from randomness to branches or to array indices.
For each size, valgrind completes successfully, indicating that there is no such
data flow. For more details, see [BBC+21, Sec. 7.4].

6.7 Software speeds

This section reports various measurements of the high-ctidh software from Sec-
tion 6.6, and compares with previous speeds for constant-time CSIDH. For a full
discussion of the performance of CTIDH, see [BBC+21, Sec. 8]

We use the standard notationM for multiplications not including squarings, S
for squarings, and a for additions including subtractions. One common metric in
the literature is (M,S, a) = (1, 1, 0), counting the total number of multiplications
while ignoring the costs of addition and ignoring possible squaring speedups.
Another common metric is (M,S, a) = (1, 0.8, 0.05).

We performed a = 16383 group action computations for each of c = 65 private
keys (as in [BDLS20]) and recorded the cycle count, a total multiplication count,
and the total number of squarings, and of additions (including subtractions).
Experiments were run on a single core on a 3GHz Intel Xeon E3-1220 v5 (Skylake)
CPU with Turbo Boost disabled. This CPU does not support hyperthreading.

6.7.1 CTIDH parameters

We discuss the parameters CTIDH-512, CTIDH-1024, and CTIDH-511, the per-
formance of which can be found in Table 6.2.

Example 6.7.1 (CTIDH-512). This parameter set uses the CSIDH-512 prime,
see Example 4.2.4, and we change the key space to KN,m. The best parameters
we have found were (N,m) shown for B = 14 in Table 6.1. For this (N,m), the
keyspace KN,m has ≈ 2256.009 keys. It uses B = 14 batches and the largest mi

in m is mi = 18.

Our cost calculator claimed that one group action for CTIDH-512 would re-
quire approximately 437986 multiplications on average; Table 6.2 reports costs
as 438006 (resp. 438762) multiplications, depending on the metric for (M,S, a).

Example 6.7.2 (CTIDH-1024). We use the CSIDH-1024 prime, and define a new
key space KN,m. The best parameters we found are batch sizes (N,m) with 23
batches of size 2, 3, 5, 4, 6, 6, 6, 6, 6, 7, 7, 7, 6, 7, 7, 5, 6, 5, 10, 3, 10, 5, 1, with the fol-
lowing bounds m = (2, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 3, 6, 2, 6, 2, 0). Note
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that the last 0 indicates that it is the most efficient to not include the computa-
tion by the largest prime. There are approximately 2256.066 keys.

We see from Table 6.2 that the average number of multiplications 375683,
resp. 382432 is smaller for CTIDH-1024 than CTIDH-512. Note that CTIDH-
1024 uses a large prime, which, unsurprisingly, makes each mutliplication slower.
This is similar to [ACR23, Tables 1 and 2]. The reason is that even though the
cofactors are larger, the larger list of primes ℓ1, . . . ℓn also means that we can use
smaller exponents for the same key space.

Example 6.7.3 (CTIDH-511). To understand the effect of changing the size of
the keyspace, we define a key space for the CSIDH-512 prime with key space of
size 2220, as in the software from [CCJR22].

The key space KN,m uses 15 batches of size 2, 3, 4, 4, 5, 5, 5, 5, 5, 7, 7, 8, 7, 6, 1,
with bounds m = (6, 9, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 8, 6, 1). There are ap-
proximately 2220.004 keys.

This results in a significant speedup of requiring 310945 (resp. 311852) mul-
tiplications, see Table 6.2.

We also note that generating the secret key, as in Section 6.6.2 typically costs
under 1 million cycles, which is a negligible cost compared to generating the
corresponding public key.

6.7.2 Comparisons

There have been several previous speed reports for constant-time CSIDH [MCR19,
OAYT19, CCC+19, HLKA20, CR22, ACR23, CCJR22]. A parameter set of the
CSIDH-512 prime with a key space of 2256 vectors is almost always included,
and for this size the lowest multiplication count we have found in the litera-
ture is 789000: this is from [ACR23, Table 1, “hvelu”, “OAYT-style”], which
reports 624000M+ 165000S+ 893000a. All Skylake cycle counts we have found
are above 200 million. The high-ctidh speeds are much faster, and have the
added feature of constant-time verification using valgrind.

Sometimes the latest software speeds are not fully reflected in the relevant
papers, so we downloaded the latest versions of csidh_withstrategies (dated
July 2020) from [CR22] and sqale-csidh-velusqrt (dated December 2020)
from [CCJR22], and ran their benchmarking tools—with one modification to
change the number of experiments (“its”) from 1024 to 65536—on the same
Skylake machine that we had used for measuring high-ctidh. Some care is re-
quired in comparisons, for at least three reasons: first, some tools report the
time for an action plus key validation; second, different benchmarking frame-
works could be measuring different things (e.g., our impression is that the costs
of Elligator were omitted from the multiplication counts reported in [ACR23]);
third, the 512-bit parameters in sqale-csidh-velusqrt use a key space of size
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only 2220, as noted above. Note that for CSIDH-1024 there is even more variation
in the literature in the size of key space; e.g., the original CSIDH-1024 software
from [CLM+18] used 5130 > 2300 keys.

The csidh_withstrategies tools, using parameters
BITLENGTH_OF_P=512 TYPE=WITHDUMMY_2 APPROACH=STRATEGY,
reported averages of 218.42 million clock cycles (standard deviation σ = 3.39
million), 691231a (σ = 12554), 189377S (σ = 4450), and 665876M (σ = 7888); in
other words, 855253 multiplications, or 851939 counting (M,S, a) = (1, 0.8, 0.05).

The sqale-csidh-velusqrt tools, using BITS=512 STYLE=wd2, reported av-
erages of 190.921 million cycles (σ = 4.32 million), 626000a (σ = 13000), 128000S
(σ = 5000), and 447000M (σ = 9000); i.e., 575000 multiplications. For compar-
ison, high-ctidh takes 89.11 million cycles (310945 multiplications) as noted
above, plus 4.09 million cycles for validation.

Finally, Table 6.2 summarizes the measurements listed above for high-ctidh,
for the software from [CR22], and for the software from [CCJR22]; the mea-
surements stated in [OAYT19, CCC+19, HLKA20, ACR23] for the software in
those papers; and the measurements in [CCC+19] for the software in [MCR19].
For [HLKA20] the reported processor is an Intel Core i7-7500k, which is Kaby
Lake rather than Skylake, but Kaby Lake cycle counts generally match Skylake
cycle counts. The table omits cycle counts for [ACR23], which used Python,
and [OAYT19], which used C but had measurements affected by an unknown
amount of Turbo Boost.
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Chapter 7

Disorientation faults in CSIDH

This chapter is based on the paper Disorientation faults in CSIDH [BKL+23],
joint work with Gustavo Banegas, Juliane Krämer, Tanja Lange, Michael Meyer,
Lorenz Panny, Krijn Reijnders, and Monika Trimoska.

The introduction has been modified, and the background section is omitted
as the relevant details have been treated in Chapters 2 and 4. The remaining
sections have been edited for style and typographical consistency.
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7.1 Introduction

Recall that in CSIDH, the secrets are the number and orientation of isogeny steps
we need to perform. Thus, the control flow of a straightforward implementation
is directly related to the secret key, which complicates side-channel resistant im-
plementations [BLMP19, MR18, MCR19, HLKA20, BBC+21, CMRS22].

We analyze the behavior of existing CSIDH implementations under a new
class of attacks that we call disorientation faults. These faults occur when the
attacker alters the orientation of a point used during the computation of a ⋆ E0.
The effect of such an error is that a subset of the secret-dependent isogeny steps
will be performed in the opposite direction, resulting in an incorrect, faulty curve.

Any faulty curve differs from the correct public key by isogeny steps that
depend on the secret key. Therefore, by finding paths between faulty curves and
the public key leaks information on the key, and having enough faulty curves
allows us to recover the full secret key.

To simplify exposition in Section 7.4, we first assume access to a device (e.g.,
a hardware security module providing a CSIDH accelerator) that applies a secret
key to a given public key (i.e., computing the shared key in CSIDH) and returns
the result. We also discuss in Section 7.7 a hashed version of the attack where
faulty outputs are not revealed as-is, but passed through a key-derivation function
first, as is commonly done for a Diffie–Hellman-style key exchange, and made
available to the attacker only indirectly, e.g., as a MAC (message authentication
code) under the derived key.

Part of the tooling for the post-processing stage of our attack is a somewhat
optimized meet-in-the-middle path-finding program for the CSIDH isogeny graph,
dubbed pubcrawl (Section 7.6). Applying expensive but feasible precomputation
can speed up post-processing for all attack variants and is particularly beneficial
to the hashed version of the attack. We also use the quadratic twisting trick to
reduce this cost in Section 7.8.

Our attack is general enough that it applies to most implementations of
CSIDH, and we give details in Section 7.5. We also provide a set of general
lightweight countermeasures in Section 7.9.

7.2 Fault attacks

Fault attacks. In a side-channel attack, an attacker uses passive observations of
physical leakage (such as timing differences, electromagnetic emissions, or power
consumption) during the computation to infer secret information. Another class
of physical attacks are fault-injection (fault) attacks : By actively manipulating
the execution environment of a secure device (e.g. by altering the characteristics
of the power supply, or by exposing the device to electromagnetic radiation), the
attacker aims to trigger an error during the execution of sensitive computations
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and later infer secret information from the now incorrect, faulty outputs.
Two major classes of faults are instruction skips and variable modifications.

Well-timed skips of processor instructions can have far-reaching consequences,
e.g., omitting a security check entirely, or failing to erase secrets which sub-
sequently leak into the output. Variable modifications may reach from simply
randomized CPU registers to precisely targeted single-bit flips. They cause the
software to operate on unexpected values, which (especially in a cryptographic
context) may lead to exploitable behavior. In practice, the difficulty of injecting
a particular kind of fault (or combination of multiple faults) depends on various
parameters; generally speaking, less targeted faults are easier.

Fault attacks on isogeny schemes. Prior works investigating fault attacks
on isogeny-based cryptography mostly target specific variants or implementations
of schemes. Loop-abort faults on the SIDH cryptosystem [GW17], discussed for
CSIDH in [CKM+20], lead to leakage of an intermediate value of the computa-
tion rather than the final result. Replacing torsion points with other points in
SIDH [TDEP21, Ti17] can be used to recover the secret keys; faulting intermedi-
ate curves in SIDH [ACMR22] to learn if secret isogeny paths lead over subfield
curves can also leak information on secret keys. But the two latter attacks cannot
be mounted against CSIDH due to the structural and mathematical differences
between SIDH and CSIDH.

Specifically for CSIDH, one can modify memory locations and observe if this
changes the resulting shared secret [CKM21]. A different attack avenue is to
target dummy computations in CSIDH [CKM+20, LH21].

7.3 Attack scenario and fault model

Throughout, we assume physical access to some hardware device containing an
unknown CSIDH private key a. In the basic version of the attack, we suppose
that the device provides an interface to input an elliptic curve EA and receive
back the result EB = a ⋆ EA (the result of applying a to the public key EA as in
the second step of the key exchange). For concreteness, we mostly refer to the
computation of the CSIDH group action as described in Algorithm 1.

We use the notation of Section 4.2, and all the elliptic curves we encounter
are assumed to be CSIDH curves : supersingular elliptic curves over Fp in Mont-
gomery form.

Remark 7.3.1. Diffie–Hellman-style key agreements typically hash the shared
secret to derive symmetric key material, instead of directly outputting curves as in
our scenario. Our attacks are still applicable in this hashed version of the attack,
although the complexity for post-processing steps from Section 7.4 will increase
significantly. To simplify exposition, we postpone this discussion to Section 7.7.
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We assume that the attacker is able to trigger an error during the computation
of the orientation of a point in a specific round of the CSIDH algorithm: whenever
a point P with orientation s ∈ {−1, 1} is sampled during the algorithm, we can
flip the orientation s 7→ −s as shown below. This leads to some isogenies being
computed in the opposite direction throughout the round. The effect of this flip
will be explored in Section 7.4.

Square check. Recall that the orientation of a point P is computed in Algo-
rithm 1 in Step 3. The function IsSquare determines s by taking as input the
non-zero value z = x3 + Ax2 + x, and computing the Legendre symbol of z.

A successful fault injection in the computation z ← x3+Ax2+x, by skipping
an instruction or changing the value randomly, ensures random input to IsSquare
and so in about half of the cases the output will be flipped by s 7→ −s. In the
other half of the cases, the output of IsSquare remains s. The attacker knows
the outcome of the non-faulty computation (i.e. the shared key) so can discard
those outputs and continue with those where the orientation has been flipped.

Remark 7.3.2. There are other ways to flip the orientation s. For example, one
can inject a fault into x after s has been computed. The analysis and attack
of Sections 7.4 and 7.5 apply to all possible ways to flip s, independent of the
actual fault injection. The countermeasures introduced in Section 7.9 prevent all
possible ways to flip s that we know of.

In general, faulting the Legendre symbol computation in IsSquare leads to
a random Fp-value as output instead of ±1. The interpretation of this result
depends on the implementation. E.g., the CSIDH implementation from [CLM+18]
interprets the output as boolean value by setting s = 1 if the result is +1, and −1
otherwise. In this case, faults mostly flip from positive to negative orientation.
Thus, faulting the computation of z is superior in our attack setting.

Elligator. On input of a random value, Elligator 2 [BHKL13] computes two
points P and P ′ of opposite orientations. An IsSquare check is used to determine
the orientation of P . If P has positive orientation, we set P+ ← P and P− ← P ′.
Otherwise, set P+ ← P ′ and P− ← P . A fault to this IsSquare check flips the
assignments to P+ and P−; hence, the orientation of both points is flipped.

So all steps computed using either of these points are in the wrong direction.
A notable exception is CTIDH, which uses two independent calls to Elligator to
produce points. Our attack nonetheless extends to this case (Section 7.5.2).

7.4 Exploiting orientation flips

In Section 7.3, we defined an attack scenario that allows us to flip the orientation s
in Algorithm 1 in Line 3, without changing the point P . Then, in Line 4, the
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incorrect set S ′ is chosen: steps with direction s, which is the opposite direction
to the point P . This means that all the steps in S ′ will be performed in the
opposite direction. It is more convenient to select the set S first and talk about
the orientation of the point, or just the point P being flipped.

We assume that we can always successfully flip the orientation in a specific
round r, while the rest of the computation is performed correctly. We also assume
access to the result of the faulty evaluation, which is a faulty curve Et ̸= a ⋆ EA.

Organization of the section. We first study the effect of orientation flips for
full-order points in Sections 7.4.1 and 7.4.2, and then discuss the effects of failing
to generate points of full order in Sections 7.4.3 and 7.4.4. We organize the faulty
curves into components according to their orientation and round in Section 7.4.5
and study the distance of components from different rounds in Section 7.4.6. In
Section 7.4.7, we combine the information to recover the secret key a.

7.4.1 Implications of flipping the orientation of a point

Assume first that all points have full order, so no steps are skipped in Line 7.
In the round we fault, we are evaluating the group action by an element

∏
i∈S li.

Suppose we generate a negatively oriented point P , but flip its orientation. This
does not change the point (still negatively oriented), but if we use P to evaluate
the steps in what we believe is the positive direction, we will in fact compute
the steps in the negative direction: the action by

∏
i∈S l

−1
i instead. Similarly for

flipping positive orientation to negative.
If the rest of the computation is performed correctly and we only faulted the

computation of the steps in S with direction s, then the resulting curve differs
from the correct output EB by twice as many steps in the opposite direction −s
(if we step left by accident, we need to take two steps right to correct for it). We
call S the missing set of Et, and the faulted curve satisfies

Et =
∏
i∈S

l−2s
i ⋆ EB.

Definition 7.4.1. We define the distance between E and E ′ to be the minimal
size d = |S| of S ⊂ {1, . . . , n} such that E ′ =

∏
i∈S l

±2
i ⋆E (and, for completeness,

set distance to ∞ if no such S exists).

If Et is a faulty curve, then the distance Et and EB counts the number of
flipped isogeny steps.

Positive and negative primes. Suppose a is given by the exponent vector (ei).
We define the set of positive primes L+ := {i | ei > 0} to be the set of positive
isogeny steps, negative primes L− := {i | ei < 0} to be the set of negative isogeny
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steps, and neutral primes L0 := {i | ei = 0}. In 1-point strategies, in each round
we compute steps with the same orientation, so any missing set S satisfies S ⊂ L+

or S ⊂ L−. However, in 2-point strategies, the sets S may contain positive and
negative primes. We use the terminology ‘flipping a batch’ when we refer to
the effect of an orientation flip to the primes being performed: when we flip the
orientation s of a negative point from negative to positive, the final result has
performed a batch of positive primes in the negative direction.

Example 7.4.2. Assume we flip the orientation s 7→ −s of the first point P in
Algorithm 1. Then S contains exactly those i such that |ei| ≥ 1 and sign(ei) = −s.
Therefore, we have S = L−s.

7.4.2 Faulty curves and full-order points

We continue to assume that all points have full order and analyze which faulty
curves we obtain by flipping the orientation in round r.

When using 1-point strategies (cf. Section 4.3.3), the computation in round r
depends on the previous rounds. This is because we sample 1 point per round,
and only perform isogenies in the direction of that point. So the set S in round r
depends on the previous rounds with the same orientation.

We will call a round positive (resp. negative) if steps were performed for
positive (resp. negative) primes. Note that if the round was faulted, the steps were
performed in the opposite direction, if not, the steps were computed correctly.

In a 2-point strategy, we sample points of both orientations and compute
isogenies in both directions. If the points have full order, the round-r computation
and the set S do not depend on the previous round but only the secret key.

Notation. Let + and − denote the positive and negative orientation, respec-
tively. For a 1-point strategy, we encode the choices of orientations by a sequence
of ±. We denote the round r in which we flip the orientation of a point by paren-
theses (·). We truncate the sequence at the moment of the fault because the
rest of the computation is computed correctly. Hence, ++(−) means a computa-
tion starting with the following three rounds: the first two rounds were positive,
the third one was a negative round with a flipped orientation, so the steps were
computed for the negative primes, but in the positive direction.

For a flip of orientation in the second round, there are four possible scenarios:

+(+). Two positive rounds, but the second positive batch of primes was flipped
and we took the steps in negative direction instead.

+(−). One positive round, one negative batch flipped to the positive direction.

−(+). One negative round, one positive batch flipped to the negative direction.

−(−). Two negative rounds, the second negative batch flipped to positive.
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All four cases are equally likely to appear for 1-point strategies, but result in
different faulty curves. Since the computation only depends on previous rounds
with the same orientation, the case +(−) is the same as (−) and + + (−): in
all three, the orientation of the point was flipped the first time a negative round
occurred. However, the cases +(+) and−(+) are different: the latter is equivalent
to (+). For example, in CSIDH, the set S for (+) is {i | ei ≥ 1}, and the set S ′

for +(+) is {i | ei ≥ 2}, differing exactly at the primes for which ei = 1.

Example 7.4.3 (CSIDH). Suppose we use 4 primes L = {3, 5, 7, 11} and a secret
key (1,−2,−1, 3). The case +(−) takes us to a faulty curve that is two {5, 7}-
isogenies away from the desired curve, whereas the case −(−) results in a curve
two 5-isogenies away.

Definition 7.4.4. Let Er,+ be the faulty curve produced in by a sequence of
rounds +· · ·+(+) of length r, and Er,− the curve produced by sequence−· · ·−(−).
We call the curves Er,± effective round-r curves.

For a 2-point strategy, all faulty curves from round r are effective round-r
curves. For 1-point strategies, effective round-r curves can be produced from
other sequences as well, e.g. +(−) produces the effective round 1 curve E1,−

and ++−−+(−) produces an effective round-3 curve E3,−. To get an effective
round-r sample Er,+ from a round n, the last sign in the sequence must be (+),
and the sequence must contain a total of r pluses.

Lemma 7.4.1. Assume we use a 1-point strategy. The probability to get an
effective round-r sample if we successfully flip in round n is equal to

(
n−1
r−1

)
· 1
2n−1 .

Definition 7.4.5. We define the set Sr,s as the missing set of the effective round-r
curve with orientation s, i.e., EB =

∏
i∈Sr,s l2si ⋆ Er,s.

For example in CSIDH, the sets S1,± were already discussed in Example 7.4.2
and in general, Sr,+ = {i | ei ≥ r} and Sr,− = {i | ei ≤ −r}.

7.4.3 Missing torsion

In Section 7.4.2, we worked under the unrealistic assumption that all points we
encounter have full order. In this section, we relax this condition somewhat: we
assume that every point had full order (and hence all isogenies were computed)
up until round r, but the point P generated in round r potentially has smaller
order. We call this the missing torsion case. The remaining case of non-full order
points in earlier rounds will be concluded in Section 7.4.4.

For concreteness, we assume that we are computing the CSIDH group action
using Algorithm 1 and derive concrete expressions for the probability of obtaining
specific faulty curves. For other implementations, the analysis is analogous.
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Missing torsion. Let P be a point of order N | p + 1. We say that P is
missing ℓ (in its order) if ℓ ∤ N . The missing torsion of a point P is the collection
of primes that are missing from its order. As such, it describes which isogeny
steps cannot be computed from (suitable powers, or isogeny images of) P .

We say that the computation of an isogeny step failed in a given round if the
computation of that step was skipped, e.g. in Line 7 in Algorithm 1.

Round-r faulty curves. For simplicity, assume that we are in round r, in the
case +· · ·+(+), and that none of the isogeny computations in the previous rounds
failed. In round r, we want to compute the positive steps, sampling a point P .
(As this is the faulted round, P is a negative point.)

If the point P has full order, we obtain the curve Er,+ at the end of the
computation, which differs from EB exactly at primes contained in Sr,+. If,
however, the point P does not have full order, a subset St ⊂ Sr,+ of steps will be
computed, leading to a different faulty curve Et. By construction, the curve Et
is related to EB via EB =

∏
i∈St

l2i ⋆ Et. We see that St differs frm Sr,+ exactly
by the primes in Sr,+ missing in the order of P .

Assume we repeat this scenario in T runs, leading to different sampled points P
and possibly different faulty curves Et. Let n(Et) be the number of times the
curve Et occurs among the T samples. As Pt is a randomly sampled point, its
order is divisible by ℓi with probability ℓi−1

ℓi
. Same analysis works for negative

rounds. So we can calculate the probability we obtain a given Et.

Proposition 7.4.2. Let Pt be a random point of orientation s. The probability
that we obtain a curve Et =

∏
i∈St

l−2s
i ⋆ EB is exactly

pt =
∏
i∈St

ℓi − 1

ℓi
·

∏
i∈Sr,s\St

1

ℓi
. (7.1)

Proof. The probability of obtaining Et is equal to the probability that the order
of the point Pt is divisible by all the primes in St and not divisible by all the
primes in Sr,s \ St. The first happens with probability

∏
i∈St

ℓi−1
ℓi

; the second is

an independent event happening with probability
∏

i∈Sr,s\St

1
ℓ
.

The expected number of appearances n(Et) of Et in T runs is n(Et) ≈ pt · T .
Since ℓi−1

ℓi
≥ 1

ℓi
for all ℓi, the probability pt is maximal when St = Sr,s. We denote

this probability by pr,s. Hence, the curve that is likely to appear the most in this
scenario over enough samples, is the curve Er,s which we defined as precisely that
curve with missing set Sr,s.

Corollary 7.4.3. The curves Er,+ and Er,− have the highest probability to appear
among the effective round-r faulty curves.

As a consequence, the largest two values n(E) of all effective round-r curves
are most likely n(Er,+) and n(Er,−).
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Example 7.4.6 (CSIDH). Take the set S1,+ = {i | ei ≥ 1} and let p1,+ denote the
probability that a random point P has order divisible by all primes in S1,+. This
probability depends on the secret key (ei), but can be approximated if we collect
enough faulty curves. Moreover, if e1 ̸= 0, then ℓ1 = 3 dominates either p1,+

or p1,− through the relatively small probability of 2/3 that P has order divisible
by 3. Thus, if the largest pile of faulty curves is E1,±, we expect S1,± not to
contain 1. For instance, if e1 is positive, then p1,− is larger than p1,+ and we
expect n(E1,−) to be larger than n(E1,+). In this case, we would expect to see
another faulty curve Et with n(Et) half the size of n(E

1,+); the curve Et has almost
full missing set S1,+, but does not miss the 3-isogeny. That is, St = S1,+ \ {1},
with probability pt :=

1
ℓ1
· ℓ1
ℓ1−1
· p1,+ = 1

2
· p1,+.

We can generalize Example 7.4.6 for any two faulty curves Et and Et′ that
are effective round-r samples of the same orientation:

Corollary 7.4.4. Let Et and Et′ both be effective round-r samples with the same
orientation s and missing torsion sets St and St′. Let S∆ denote the difference in
sets St and St′, i.e., S∆ = (St \St′)∪ (St′ \St). Then Et and Et′ are distance |S∆|
apart, by Et =

(∏
i∈St′\St

l2si ·
∏

i∈St\St′
l−2s
i

)
⋆ Et′ . In particular, any effective

round-r curve Et with orientation s is close to Er,s: since St ⊂ Sr,s, S∆ is small.

Example 7.4.7. Consider CSIDH with primes L = {3, 5, . . . }. Assume that in
one faulted run, the first positive point Pt1 misses 3-torison, while in another
run the first positive point Pt2 misses 5-torsion. The faulty curves Et1 and Et2
differ from E1,+ by two 3-isogenies and two 5-isogenies, respectively, and are at
distance 2 from each other. The two samples Et1 and Et2 therefore show that
both 1 and 2 are in S+ and show that e1 ≥ 1 and e2 ≥ 1.

7.4.4 Torsion noise

Orthogonally to Section 7.4.3, we now examine the case that missing torsion
occurred in an earlier round than the round we are faulting.

Example 7.4.8 (CSIDH). Suppose that e1 = 1 and that in the first positive
round, the point generated in Line 2 of Algorithm 1 had order not divisible by ℓ1,
but all other points have full order. Thus, the ℓ1-isogeny attempt fails in the
first positive step. Consider now the second positive round. From Section 7.4.2,
we would expect to be computing steps in S2,+ = {i | ei ≥ 2}. Since no ℓ1-
isogeny was computed in the first round, it will be attempted in this second
positive round. If we now fault the second positive point, we obtain a faulty
curve that is also missing ℓ1, that is, Et = l−2

1 ⋆ E2,+. Unlike the faulty curves
from Section 7.4.3, the positively oriented isogeny goes from Et towards E

2,+.
Note that if we had e1 = 2, a fault in round 2 would still result in the curve E2,+,
because the set S2,+ contains ℓ1 already, and so the missed ℓ1-isogeny from round 1
will be computed in later rounds.
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We call the phenomenon observed in Example 7.4.8 torsion noise. Torsion
noise happens when we fault the computation in round r and flip the orientation
of an ℓi-isogeny for which |ei| < r.

Torsion noise is rarer than missing torsion but can still happen: the isogeny
computation needs to fail and the fault must come when we are “catching up”
with the computation. For CSIDH, torsion noise can only happen if r > |ei| and
the computation of the ℓi-isogeny failed in at least r − |ei| rounds. Torsion noise
is unlikely for large ℓi because the probability that an isogeny fails is about 1/ℓi.

For small primes, such as ℓi ∈ {3, 5, 7}, we observe a lot of torsion noise.
This can slightly affect the results as described in Section 7.4.3, but has no major
impact on the results in general. Concretely, torsion noise may make it impossible
to determine the correct ei for the small primes given only a few faulted curves.
Nevertheless, their exact values can be brute-forced at the end of the attack.

Remark 7.4.9 (Orientation of torsion noise). Faulty curves affected by torsion
noise require contrarily oriented isogenies to the curves Er,s than the remaining
faulty curves. Therefore, if torsion noise happens and we find a path from such a
curve Et → Er,s, then we can infer not just the orientation of the primes in this
path, but often also bound the corresponding exponents ei.

7.4.5 Connecting curves from the same round

Suppose we have a set of effective round-r faulty curves with the same orientation
s, and suppose r and s are fixed. In Corollary 7.4.4, we show that such curves are
close to each other. In particular, for most curves Et, the path from Et to E

r,s uses
only degrees contained in the set Sr,s, and the only exception comes from torsion
noise. Finding short paths among faulty curves gives us information about Sr,s,
and hence about the secret key.

Definition 7.4.10. Let {Et} be a set of of effective round-r faulty curves with
orientation s. The component Gr,s is a graph with vertices {Et}. There is and
edge between two curves if they have distance 1. We label the edges by the ℓi
corresponding to the two ℓi-isogeny steps.

We sparsify the graph Gr,s and think of it as a tree with Er,s as the root. If
we do not have enough faulty curves {Et}, it may not be possible to connect all
the curves with only one double-step. For convenience, we assume that we have
enough curves. In practice, we find short paths from Et to E

r,s and include in
the graph Gr,s all the intermediate curves.

Starting from a set of faulty curves, it is easy to build the graphs Gr,s. We
can identify the roots of these graphs Er,s as the most frequent faulty curves
(Corollary 7.4.3). The distance from the root to any round-r faulty curve with
the same orientation is small (cf. Corollary 7.4.4). Therefore, we can find the
edges by applying short walks in the isogeny graph.
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Secret information. The edges of Gr,s give information on Sr,s: An effective
round-r faulty curve Et with torsion set St ⊂ Sr,s is connected to the root by a
path with labels Sr,s \ St. Therefore, any labels in in the graph Gr,s determine
primes with orientation s. The direction of the edge matters: the orientation
of Er,+ → Et is positive; and that of Er,− → Et is negative. Torsion noise has
precisely the opposite direction of the edges (see Remark 7.4.9), and so any such
label ℓi is included in Sr

′,s for some r′ < r.

Sorting round-r samples. Suppose we have a set of round-r faulty curves {Et},
but we do not have information about the orientation yet. We can again use Corol-
lary 7.4.3 to find the root of the graph; then we take small isogeny steps until
we have two connected components G1, G2. It is easy to determine the direction
of the edges given enough samples; ignoring torsion noise, the positively oriented
root will have outgoing edges.

In summary, we try to move curves Et from a pile of unconnected samples
to one of the two graphs by finding collisions with one of the nodes in Gr,+

resp. Gr,−. The degrees of such edges reveal information on Sr,+ and Sr,−: An
edge with label i in Gr,+ implies i ∈ Sr,+, and analogously for Gr,− and Sr,−.
Figure 7.1 summarizes the process, where, e.g., Er,+ → E7 shows missing torsion
and E8 → Er,+ is an example of torsion noise.

E2 E10

E1 E1 E1

E1

E9 E9 E9 E9

E5 E5 E5

E5

E4 E4

E4

ℓ2

E4

E8 E8 E8

E8

E6 E6 E6

E6

E7 E7

E7

ℓ1

E7

E3 E3

E3

ℓ3

E3

Er,+ Er,+ Er,+

Er,− Er,− Er,−

Gr,+

Gr,−

Cor. 7.4.3 Cor. 7.4.4 Exhaust

Figure 7.1: Building up the component graphs of faulty curves.

7.4.6 Connecting the components Gr,s

Now, we explain how to connect the components Gr,s for different rounds r. The
distance of these components is related to the sets Sr,±. We show that it is
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computationally feasible to connect the components via a meet-in-the-middle ap-
proach. Connecting two components reveals significant knowledge on the sets Sr,+

and Sr,−, and connecting all components is enough to infer a ( Section 7.4.7).

Notation. We defined the distance of two faulty curves in Definition 7.4.1.
The distance between the graphs Gr,s and Gr′,s′ is the minimum of distances
of Et ∈ Gr,s and Et′ ∈ Gr′,s′ . This distance is always at most the distance of the
root curves Er,s and Er′,s′ .

We will try to find isogeny paths between two components via meet-in-the-
middle approach (more details in Section 7.6). Roughly, we start performing
short sequences of isogeny steps (two steps per degree) from each component,
until we reach a collision. We call support the set of isogeny degres we use in
this neighborhood search. The MITM search is infeasible for large distances and
so the support will be changed adaptively. If we decide that a prime ℓi cannot
be used in a path connecting G and G′ (for instance, because of orientation, or
because it is connecting other components), we filter ℓi out of the support.

Connecting two components. We start with the usual example of CSIDH,
computed using Algorithm 1. The difference between the sets S1,+ and S2,+ is
precisely S∆ = {i : ei = 1}. So, we have E2,+ =

∏
i∈S∆

l2i ⋆E
1,+. Clearly this gives

a path between the components G1,+ and G2,+ (for illustration, see the example
of CSIDH-512 in Figure 7.2).

In the general case, if we find an isogeny between two components, sa Gr,+

and Gr′,+, we can compute the isogeny between the two roots Er,+ and Er′,+.
The degree of this isogeny Er,+ → Er′,+ describes precisely the difference between
the sets Sr,+ and Sr

′,+. In other CSIDH-variants, such sets are not necessarily
nested, but connecting all components still reveals ei as Section 7.4.7 will show.
In general, we connect two subgraphs by a distributed meet-in-the-middle search
which finds the shortest connection first.

Distance between connected components. The distance between any two
components Gr,+ and Gr′,+ is equivalent to finding the set difference of Sr,+

and Sr
′,+. It depends heavily on the implementation, as these sets are deter-

mined by the key a and the evaluation of this key. In CSIDH-512, the difference
between Sr,+ and S(r+1),+ is the set of indices with ei = r, which on average
is of size 74

11
≈ 6.7. In practice, this distance roughly varies between 0 and 15.

Note that upon finding any connection, we reduce the support for further con-
nection finding, so it is possible to find connections between components with
larger distances as well. See Section 7.6 for more details on how we connect these
components in practice.
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7.4.7 Revealing the private key

So far, we showed how connecting different components Gr,+ and Gr′,+ reveals
information on the difference between the sets Sr,+ and Sr

′,+. In this section, we
show that when all components are connected, we can derive the secret a. This
wraps up Section 7.4: Starting with disorientations in certain rounds r, we derive
the secret a from the resulting graph structure, assuming enough samples.

By connecting the graphs of all rounds together with the curve EB, we learn
the difference between the sets Sr,+ and S(r+1),+ for all rounds r (as well as for Sr,−

and S(r+1),−). A single isogeny from some Gr,+ to EB = a⋆EA then recovers Sr,+

for this round r: Such an isogeny gives us an isogeny from Er,+ =
∏

i∈Sr,+ l−2
i ⋆EB

to EB, whose degree shows us exactly those ℓi ∈ Sr,+. From a connection between
the components Gr,+ and Gr′,+, we learn the difference in sets Sr,+ and Sr

′,+.
From Sr,+, we can then deduce Sr

′,+. Therefore, if all graphs Gr,+ for different r
are connected, and we have at least one isogeny from a node to EB, we learn the
sets Sr,+ for all rounds r (and equivalently for Sr,−). From the knowledge of all
sets Sr,+ and Sr,− we then learn a = (ei): the sign of ei follows from observing
in which of the sets Sr,+ or Sr,− the respective ℓi appears, and |ei| equals the
number of times of these appearances.

In practice however, due to missing torsion and torsion noise, connecting all
components may not give us the correct sets Sr,+ resp. Sr,−. In such a case, one
can either gather more samples to gain more information, or try to brute-force
the difference. In practice, we find that the actual set Sr,+ as derived from a and
the set S̃r,+ derived from our attack (leading to some a′) always have a small
distance. A simple meet-in-the-middle search between a′ ⋆ EA and a ⋆ EA then
quickly reveals the errors caused by missing torsion and torsion noise.

7.4.8 Complexity of recovering the secret a

The full approach of this section can be summarized as follows:

1. Gather enough effective round-r samples Et per round r, using Lemma 7.4.1.

2. Build up the components Gr,+ and Gr,− using Corollaries 7.4.3 and 7.4.4.

3. Connect components to learn the difference in sets Sr,+ and Sr
′,+.

4. Compute the sets Sr,+ and Sr,− for every round and recover a.

The overall complexity depends on the number of samples per round, but is in
general dominated by Step 3. For Step 2, nodes are in most cases relatively close
to the root Er,+ or to an already connected node Et, as shown in Corollary 7.4.4.

For Step 3, components are usually further apart than nodes from Step 2.
In general, the distance between components Gr,+ and Gr′,+ depends heavily on
the specific design choices of an implementation. In a usual meet-in-the-middle
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approach, where n is size of the support and d is the distance between Gr,+

and Gr′,+, the complexity of finding a connection is O(
(
n
d/2

)
) isogeny-step com-

putations. Note that we can use previous knowledge from building components
or finding small-distance connections between other components to reduce the
search space and thus minimize n for subsequent connections. We analyze this in
detail for specific implementations in Section 7.5.

7.5 Case studies: CSIDH and CTIDH

We described the general strategy in four steps in Section 7.4.8, but the execution
depends on the actual implementation. We discuss the case of CSIDH-512 in Sec-
tion 7.5.1, CTIDH-512 in Section 7.5.2, and we analyze other implementations
in Section 7.5.3.

For concreteness, we assume we are faulting the computation of EB = a ⋆ E0.

7.5.1 Breaking CSIDH-512

We recalled the parameters of CSIDH-512 in Example 4.2.4. It uses 74 primes ℓi,
and the secret keys are sampled from [−5, 5]74. For any k ∈ [−5, 5], we expect
about 1

11
· 74 exponents ei = k; this count obeys a binomial distribution with

parameters (74, 1/11). We expect to see about 5
11
· 74 ≈ 33.6 positive and neg-

ative primes each, and about 1
11
· 74 ≈ 6.7 neutral primes. The group action is

evaluated as in Algorithm 1, using a 1-point strategy. Upon sampling a point
with orientation s, we set S = {i | ei ̸= 0, sign(ei) = s}.

Now, we specialize the four steps to secret-key recover defined in Section 7.4.8.

Building components Gr,+ and Gr,−. Step 2 of the attack works exactly as
described in Section 7.4.5. If Et and Et′ are effective samples from the same round
with the same orientation, their distance is small (Corollary 7.4.4). Using round
information and frequency of faulty curves, we identify the 10 root curves Er,±

for r = 1, . . . , 5, and explore all paths of small length from those 10 curves, or
grow the neighborhoods via a meet-in-the-middle approach, e.g., using pubcrawl

(Section 7.6). We perform this neighborhood search on all of the sampled curves
until we have 10 connected graphs Gr,± for r ∈ {1, . . . , 5}, as in Figure 7.1. This
step is almost effortless: most curves are distance 1 or 2 away from the root Er,s.

The degrees of the isogenies corresponding to the new edges in Gr,± reveal
information on the sets Sr,±, in particular on the orientation of primes, which
can be used to reduce the search space when connecting the components Gr,±.

Filter-and-break it, until you make it. Step 3 is the most computationally
intensive step, as it connects the 10 components Gr,± and EB into a single large
connected component. We argue that it is practical for CSIDH-512.
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For this, we examine the gaps between Gr,s and Gr+1,s (setting G6,± = EB) as
in Figure 7.2. Clearly they are given by Sr,s \ Sr+1,s (note that S6,± = ∅). Since
there are 10 gaps and 74 primes, at least one pair Er,s and Er+1,s has distance at
most 7, and the shortest paths between components are at most that long. As we
expect about 7 exponent ei = 0, we expect to find curves of distance at most 6.
Such gaps are easily found using a meet-in-the-middle search, see Section 7.6.

EB

S5,+

S5,−

G1,+

G1,−

G2,+

G2,−

G3,+

G3,−

G4,+

G4,−

G5,+

G5,−

S4,+ \ S5,+

S4,− \ S5,−

S3,+ \ S4,+

S3,− \ S4,−

S2,+ \ S3,+

S2,− \ S3,−

S1,+ \ S2,+

S1,− \ S2,−

Figure 7.2: Large connected component associated to an attack on CSIDH-512.

We start by learning the orientation of the components. First we identify G1,±

and look at the direction of the edges. Effective round-1 samples do not have
torsion noise, so the root E1,+ has only outgoing edges, whereas the root E1,−

has only incoming edges. The labels of the edges of G1,+ must be positive primes,
and all components with a matching label are also positive.

Next, all the labels that appear as degrees of edges in positive componentsGr,+

for any r are necessarily positive. Finally, positively oriented components can only
be connected by positive primes, so we can remove from the support all the primes
that we know are negative. Similarly for negative orientations.

Then we start the meet-in-the-middle search connecting components with the
same orientation. Any label i appears in at most one connection, so every time
we find a connection, we filter the connecting primes from the support. This
reduces the support and we can perform the MITM search for larger distances.

Recovering the secret key. From the connected components, we recover all
of the sets Sr,± and we compute the secret key as described in Section 7.4.7.

Example 7.5.1 (Toy CSIDH-103). Figure 7.3 shows the resulting connected
graph for a toy version of CSIDH using Algorithm 1 with the first n = 21 odd
primes and private keys in {−3, . . . ,+3}n. Each round was faulted 10 times.

The distances between the components are very small and hence connecting
paths are readily found. We sparsify the graph to plot it as a spanning tree;
the edges correspond to positive steps of the degree indicated by the label. This
graph comes from the secret key

(−1,+1,+2,+3,−2,+3,+2,+3,+1,+2,−3,−3,+2,+3,−2,−3,−2,+2,+1,−3, 0).
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Figure 7.3: Example isogeny graph of faulty curves obtained from attacking the
fictitious CSIDH-103 implementation from Example 7.5.1. An edge labeled i
denotes the isogeny step li. The EB curve and the root faulty curves Er,s are ren-
dered in black (from left to right: E1,+, E2,+, E3,+, EB, E

3,−, E2,−, E1,−), other
faulty curves appearing in the dataset are gray, and white circles are “intermedi-
ate” curves discovered while connecting the components. The primes appearing
on the connecting path between Ei,± and Ei+1,± are exactly the primes appear-
ing i times with orientation ±. For example, the primes indexed by 2, 9, 19
appearing between E1,+ and E2,+ have exponent +1 in the secret key.

Required number of samples. Recovering the full secret exponent vector in
CSIDH-512 equates to computing the sets Sr,+ and Sr,− for r ∈ {1, . . . , 5}. Recall
that to compute these sets we need to build a connected component including
subcomponents Gr,+ and Gr,− for r ∈ {1, . . . , 5}, and EB (the one-node-graph
consisting of just the public key). We build the components Gr,+ and Gr,− by
acquiring enough effective round-r samples.

Let Tr be the number of effective round-r samples and let T =
∑
Tr. A first

approach is to inject in round r until the probability is high enough that we have
enough effective round-r samples.

For CSIDH-512, we take T1 = 16, T2 = 16, T3 = 32, T4 = 64 and T5 = 128,
so that T = 256. From Lemma 7.4.1, we then 4 round-5 samples per orientation
and the probability that we do not get any of the elements of G5,± is about 1.7%.

This strategy can be improved upon. Notice that we need round-5 samples,
and so in any case we need T5 rather large (in comparison to Ti with i < 5) to
ensure we get such samples. But gathering samples from round 5 already gives
us many samples from rounds before. Using Lemma 7.4.1 with T5 = 128, we get
on average 8 effective round-1 samples, 32 effective round-2 samples, 48 effective
round-3 samples, 32 effective round-4 samples and 8 effective round-5 samples.
In general, attacking different rounds offers different tradeoffs: attacking round 9
maximizes getting effective round-5 samples, but getting a round-1 sample in
round 9 is unlikely. Faulting round 1 has the benefits that all faulty curves are
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effective round-1 curves, making them easy to detect in later rounds; that no
torsion noise appears; and that missing torsion quickly allows to determine the
orientation of the small primes, reducing the search space for connecting the com-
ponents. Finally, note that gathering T faulty samples requires approximately 2T
fault injections, since, half of the faults are expected to flip the orientation.

7.5.2 Breaking CTIDH-512

CTIDH-512 [BBC+21] uses 14 batches with bounds mi ≤ 18, requiring at least
18 rounds (see Example 6.7.1). Due to some computations failing, in practice
we may need up to around 22 rounds. In every round, we compute one isogeny
per batch; using a 2-point strategy, we compute isogenies in both positive and
negative direction. So, all round-r samples are effective round-r samples.

CTIDH uses two independent calls to Elligator-2 map to sample two points
of opposite orientation. We will always assume that we inject a fault into only
one of these two Elligator calls (as in Section 7.3). Hence, we again always obtain
either positively or negatively oriented samples.

Different rounds for CTIDH-512. Per round, CTIDH performs one ℓi,j per
batch Bi. Within a batch, the primes ℓi,j are ordered in ascending order: if the first
batch is B1 = {3, 5} and the exponents (2,−4), then we first compute 2 rounds
of 3-isogenies in the positive direction, followed by 4 rounds of 5-isogenies in
the negative direction. We can visualize this as a queue [3+, 3+, 5−, 5−, 5−, 5−]
(padded on the right with dummy isogenies for the remaining rounds up to m1).

Therefore, the sets Sr,± contain precisely the r-th prime in the queue for the
batch Bi. With 14 batches and an equal chance for either orientation, we expect
that each Sr,± will contain about 7 primes, and only one prime per batch.

The small number of batches and the ordering of primes within the batches
make CTIDH especially easy to break using our disorientation attack.

Components for CTIDH-512. We again construct the graphs Gr,s from
enough samples. In CTIDH, the failure probability of each isogeny computa-
tion is constant per batch and equal to the probability of failure for the smallest
prime in the batch (to hide which ℓi,j step was computed); this slightly increases
the chance of missing torsion and torsion noise.

The distance of the root curves Er,s to the curve EB is bounded by the number
of batches. Per round r, the sum of the distances of Er,± to EB is at most 14, so
we again expeect the distance to be about 7.

The distance between two graphs Gr,s and G(r+1),s is often much smaller.
We focus on positive orientation (the negative case is analogous). The distance
between Gr,+ to G(r+1),+ is given by the set difference of Sr,+ and S(r+1),+. If these
sets are disjoint and all primes in round r and r + 1 are positive, the distance
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is 28, but we expect significant overlap: The set difference contains the indices i
such that either the last ℓi-isogeny is computed in round r or the first ℓi-isogeny
is computed in round r+1. Note that these replacements need not come in pairs.
In the first case, the prime ℓi is replaced by the next isogeny ℓj from the same
batch only if ℓj is also positive. In the second case, the prime ℓi might have
followed a negative prime that preceded it in the batch.

Therefore, given Sr,+, one can very quickly determine S(r+1),+ by leaving out
some ℓi’s or including subsequent primes from the same batch. In practice, this
step is very easy. Finding one connection EB → Er,+ determines some set Sr,+,
which can be used to quickly find other sets Sr

′,+. This approach naturally also
works going backwards, to the set S(r−1),+.

Directed meet-in-the-middle. Using a meet-in-the-middle approach, we com-
pute the neighborhood of EB and all the roots Er,± (or components Gr,±) of dis-
tance 4. This connects EB to all the curves at distance at most 8. Disregarding
orientation and information on batches, if we have N curves that we want to con-
nect, the naive search requires about 2 ·

(
74
4

)
·N ≈ 221 ·N isogenies. The actual

search space is much smaller as we never use two primes from the same batch.

Moreover, isogenies in batches are in ascending order. So, if in round r we see
that the 3rd prime from batch Bi was used, none of the rounds r′ > r involves the
first two prime, and none of the rounds r′ < r can use the later primes from the
batch for that direction. Late rounds typically contain many dummy isogenies
and the faulty curves are especially close to the public key. We expect to rapidly
recover Sr,± for the late round curves.

Required number of samples. In CTIDH, we can choose to inject a fault
into the first call of Elligator or the second one. We do not see a clear benefit of
prioritizing either call. Unlike for CSIDH and 1-point strategies, there is no clear
benefit from targeting a specific round. Assume we perform c successful faults
per round per Elligator call, expecting to get samples for both orientations per
round. As CTIDH-512 performs 18 rounds (in practice typically up to 22 because
of isogeny steps failing), we require T = 18 ·2 · c successful flips. It seems possible
to take c = 1 and hence T = 36 (or up to T = 44) samples.

With just one sample per round r (and per orientation s), the torsion effects
will be significant and we will often not be able to recover Sr,s precisely. Let S̃r,s

denote the index set recovered for round r and sign s. We can correct for some of
these errors, looking at S̃r

′,± for rounds r′ close to r. Consider only primes from
the same batch B, then the following can happen:

• No prime from B is contained in either S̃r,+ or S̃r,−: all primes from B are
done or missing torsion must have happened. We can examine the primes
from the batch B which occur in neighboring rounds S̃(r±1),± and use the
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ordering in the batch to obtain guesses on which steps should have been
computed if any.

• One prime from B is contained in S̃r,+ ∪ S̃r,−: we fix no errors.

• Two primes from B are contained in S̃r,+∪ S̃r,−: the smaller one must have
come from torsion noise in a previous round and can be removed.

Remark 7.5.2. It is possible to skip certain rounds to reduce the number of
samples, and recover the missing sets Sr,s using information from the neighboring
rounds. We did not perform the analysis as to which rounds can be skipped, we
feel that already two successful faults per round are low enough.

Even a partial attack (obtaining information only from a few rounds) reveals
a lot about the secret key thanks to the batches being ordered, and can reduce
the search space for the secret key significantly. One may also select the rounds
to attack adaptively, based on the information recovered from Sr,s.

7.5.3 Other variants of CSIDH

Finally, we discuss some of the other implementations of CSIDH. We discuss
SIMBA [MCR19], dummy-free implementations [CCC+19, CR22, ACR23], and
SQALE [CCJR22]. All of these use IsSquare checks for point sampling and are
vulnerable to our attack.

SIMBA. Implementations using SIMBA [MCR19] can be attacked similarly to
CSIDH (cf. Section 7.5.1). SIMBA-M divides the primes intoM prides (batches),
so in each round we only compute ⌈n/M⌉. So, as in CTIDH, fewer isogenies are
computed per round, and the distances between the components Gr,s are smaller.

Dummy-free CSIDH. The dummy-free implementations [CCC+19, CR22,
ACR23] replace pairs of dummy ℓi-isogenies by pairs of isogeny steps that cancel
each other, c.f. Remark 4.3.11. However, in these implementations, the isogenies
start in the correct direction, and we learn |ei| from disorientation faults if we
identify the first round in which li is applied in the opposite direction. Therefore,
once we learn the sets Sr,+ and Sr,−, we can determine ei precisely.

It suffices to only attack every second round: It is clear that each prime will
have the same orientation in the third round as in the second round, in the fifth
and fourth, et cetera. Due to the bounds used in [ACR23], large degree ℓi do not
show up in later rounds, which decreases the meet-in-the-middle complexity of
connecting the components Gr,+ and G(r+1),+ for later rounds r.
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SQALE. SQALE [CCJR22] only uses exponent bounds ei ∈ {−1, 1}. To get a
large enough key space, more primes ℓi are needed; the smallest instance uses 221
primes. SQALE uses a 2-point strategy and only requires one round (keeping in
mind the isogeny computation may fail and require further rounds).

Set S+ = S1,+ = {i | ei = 1} and S− = S1,− = {i | ei = −1}. If the sampled
points in round 1 have full order, the round 1 faulty curves are either:

• the ‘twist’ of EB: all the directions will be flipped (if both points are
flipped),

• or the curve E+ = (
∏

S+ l−2
i ) ⋆ EB, if the positive point was flipped,

• or the curve E− = (
∏

S− l2i ) ⋆ EB, if the negative point was flipped.

As |S+| ≈ |S−| ≈ n/2 > 110, we will not be able to find an isogeny to either of
these curves using a brute-force or a meet-in-the-middle approach.

However, SQALE samples points randomly, and some of the isogeny compu-
tation will fail, producing faulty curves close to E± (and curves with the same
orientation will be close to each other, as in Section 7.4.5). Getting enough faulty
curves allows the attacker to get the orientation of all the primes ℓi, and the ori-
entation of the primes is exactly the secret key in SQALE. We note that [CR22]
in another context proposes to include points of full order into the system param-
eters and public keys such that missing torsion and torsion noise do not occur. If
this is used for SQALE, our attack would not apply.

7.6 The pubcrawl tool

The post-processing stage of our attack requires reconstructing the graph of con-
necting isogenies between the faulty CSIDH outputs. We solve this problem by
a meet-in-the-middle neighborhood search in the isogeny graph, which is suffi-
ciently practical for the cases we considered. Here we report on implementation
details and performance results for our pubcrawl software.1

This software is intentionally kept fully generic with no restrictions specific to
the fault-attack scenario we are considering, so that it may hopefully be usable
for other applications requiring neighborhood searches in CSIDH in the future.

Algorithm. pubcrawl implements a straightforward meet-in-the-middle graph
search: Grow isogeny trees from each input node simultaneously and check for
collisions; repeat until there is only one connected component left. The set of
admissible isogeny degrees (“support”) is configurable, as are the directions of the

1The pubcrawl software is available at https://yx7.cc/code/pubcrawl/

pubcrawl-latest.tar.xz. The name refers to crawl ing the graph of public keys, and a
tour taking in several pubs or drinking places, with one or more drinks at each.

https://yx7.cc/code/pubcrawl/pubcrawl-latest.tar.xz
https://yx7.cc/code/pubcrawl/pubcrawl-latest.tar.xz
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isogeny steps (“sign”, denoting orientation of the steps), the maximum number
of isogeny steps to take from each target curve before giving up (“distance”), and
the number of prime-degree isogenies done per graph-search step (“multiplicity”,
to allow for restricting the search to square-degree isogenies).

Size of search space. The number of vectors in Zn of 1-norm ≤ m can be
computed [CS97, § 3] as Gn(m) =

∑m
k=0

(
n
k

)(
m−k+n

n

)
. Similarly, the number of

vectors in Zn≥0 of 1-norm ≤ m equals Hn(m) =
∑m

k=0

(
k+n−1
n−1

)
.

Implementation. The tool is written in C++ using modern standard library
features, most importantly hashmaps and threading. It incorporates the latest
version of the original CSIDH software as a library to provide the low-level isogeny
computations. Public-key validation is skipped to save time. The shared data
structures (work queue and lookup table) are protected by a simple mutex; more
advanced techniques were not necessary in our experiments.

The overwhelming majority of the cost comes from computing isogeny steps
in a breadth-first manner, which parallelizes perfectly. Hence, both time and
memory scale almost exactly linearly with the number of nodes visited by the
algorithm.

Concretely, on a server with two Intel Xeon Gold 6136 processors (offering a
total of 24 hyperthreaded Skylake cores) using GCC 11.2.0, we found that each
isogeny step took between 0.6 and 0.8 core milliseconds, depending on the degree.
Memory consumption grew at a rate of ≈ 250 bytes per node visited, although
this quantity can vary significantly with the data structure internals. Example
estimates are given in Table 7.1. The pubcrawl approach could be undoubtedly
sped up, for instance by using strategies to compute multiple steps.

Table 7.1: Example cost estimates per target curve for various pubcrawl in-
stances, assuming each isogeny step takes 0.7 milliseconds and consumes 250
bytes. For example, an isogeny walk of length up to 10 between two given curves
can be recovered using approximately 10 core days and 300 gigabytes of RAM.

sign |support| distance cardinality of search space core time memory
both 74 ≤ 4 20,549,801 ≈ 224.29 4.0 h 5.1GB
both 74 ≤ 5 612,825,229 ≈ 229.19 5.0 d 153.2GB
both 74 ≤ 6 15,235,618,021 ≈ 233.83 123.4 d 3.8TB
both 74 ≤ 7 324,826,290,929 ≈ 238.24 7.2 y 81.2TB
one 74 ≤ 4 1,426,425 ≈ 220.44 16.6min 356.6MB
one 74 ≤ 5 22,537,515 ≈ 224.43 4.4 h 5.6GB
one 74 ≤ 6 300,500,200 ≈ 228.16 2.4 d 75.1GB
one 74 ≤ 7 3,477,216,600 ≈ 231.70 28.2 d 869.3GB
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7.7 Hashed version

The attacker-observable output in Diffie–Hellman-style key agreements is not the
shared elliptic curve, but a certain derived value (cf. Remark 7.3.1). Typically,
the shared elliptic curve is used to compute a key k using a key derivation function,
which is further used for symmetric key cryptography. So we cannot expect to
obtain (the Montgomery coefficient of) a faulty curve Et but only a derived value
such as k = SHA-256(Et) or MACk(str) for some known fixed string str.

The attack strategies from Section 7.4 and Section 7.5 exploit the connections
between the various faulty curves, but when we are only given a derived value,
we are unable to apply isogenies. Our attack still extends to this more realistic
setting as long as the observable value is computed deterministically from Et and
collisions do not occur. For simplicity, we call the observable values of the faulty
curves E the hash H(E). We assume that we can derive H(E) for a given E, but
that we cannot recover E given only H(E).

As we cannot apply isogenies to the hashes, we must adapt the strategy
from Section 7.4. We can no longer generate the neighborhood graphs, nor find
connecting paths between these graphs, and it is harder to learn the orientation of
primes, which helped reduce the support when applying pubcrawl. But from the
frequency analysis (Corollary 7.4.3), we can still identify the two most frequent
new hashes h1, h2 per round as the probable hashes of H(Er,±).

Example 7.7.1 (CSIDH). When faulting the first point, the two most common
hashed values are our best guesses for the hashes of E1,±. Considering faults in
the second point, we guess H(E2,±) to be the most common hashes that have not
appeared in round 1. Similarly for later points.

To recover E given a hash H(E), we run a one-sided pubcrawl search starting
from EB, where we hash all the curves we reach along the way, until we find a
curve that hashes to H(E). In practice, we run pubcrawl with one orientation
(or both, in parallel) until we recognize H(Er,±). Having identified Er,±, we can
then run a small neighborhood search around Er,± to identify the hashes of the
faulty curves Et close to E

r,±. In contrast to the unhashed version, in the hashed
version we can only recover the faulty curves Et by a one-sided search from a
known curve E, instead of a meet-in-the-middle attack. In particular, the only
known curve at the beginning of the attack is EB.

Example 7.7.2 (CSIDH-512). The curves E5,± have the smallest distance to EB
(cf. Section 7.5.1). Starting from the public key EB, we thus first search the paths
to the curves E5,±. We do this by growing two neighborhoods (with positive and
negative orientation) from EB. While the expected distance of the faulty curves
is ≈ 7, it can be a lot larger. But such distances are rare: both E5,± having
distance larger than 10 has probability ≈ 0.3%. Hence, we do expect to find a
connection to at least one of the curves E5,± within distance 10, meaning that we
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expect the first connection to cost no more than 2
∑10

i=0

(
74
i

)
≈ 240.6 isogeny step

evaluations (and likely less). Once we identify the orientation of some primes,
the support for pubcrawl becomes smaller and the search is more efficient.

Example 7.7.3 (CTIDH-512). In CTIDH, in the worst case the distance from
EB to any Er,± is 14 (one prime per batch, all with the same orientation) and
the average distance is 7 (Section 7.5.2). Thus, in a hashed variant, if we launch
pubcrawl in both directions up to a distance 7, we are likely to already identify
many hashesH(Et) and can recover Et. We then crawl around these Et to identify
the other faulty curves. When we recover all Et, we proceed as in Section 7.5.2.

Summary. In the hashed version, the main difference compared to the approach
in Section 7.5 is that we can no longer mount meet-in-the-middle attacks between
faulty curves, but we must always perform a one-way search from a given curve
to a hash. Hence, we do not get the square-root speedup from meeting in the
middle. Despite this increase in cost, this does not mean we cannot attack a
hashed version. Although the brute-force search required to recover Er,± given
only H(Er,±) can get very expensive, especially for CSIDH over large fields Fp,
such a search always remains cheaper than the security level, as we only need to
cover the gaps between all Er,± and EB.

7.8 Twisting and precomputing

In this section, we use quadratic twists and precomputation to significantly speed
up obtaining the private key a given enough samples Et, which is especially
helpful for the “hashed” version described in Section 7.7. The attack target is a
public key EB = a ⋆ E0. Previously (Section 7.3), we attacked the computation
of a ⋆ E0. In this section, we will use the quadratic twist E−B as the input curve
(Example 4.2.7). Since E−B = a−1 ⋆ E0 by Remark 4.3.5, applying a to it gives
back the curve E0. Faulting this computation therefore produces a faulty curve
close to the fixed curve E0. We refer to this attack variant as using the twist.

Moreover, twisting induces a symmetry around the curve E0. This can be
used to speed up pubcrawl: starting from E0, if we reach Et by a sequence of
steps, then the opposite steps reach E−t. So we can check two curves at once. By
precomputing a set C of curves of distance at most d to E0, a faulty curve Et at
distance d′ ≤ d from E0 can immediately be identified via a table lookup. And C
can be precomputed once and for all, independent of the target instance. The
symmetry of E−t and Et reduces storage by half.

Finally, this twisting attack cannot be prevented by simply refusing to apply
the secret a to such a curve: An attacker can just as easily pick a random masking
value z and feed z ⋆ E−B to the target device. The faulty curves Et can then
be moved back to the neighborhood of E0 by computing z−1 ⋆ Et at some cost
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per Et, or the attacker can precompute curves around z ⋆ E0. The latter breaks
the symmetry of Et and E−t and does not achieve the full speedup or storage
reduction, but retains the main benefits.

Twisting CTIDH. The twisting attack is at its most powerful for CTIDH.
As noted before, the sets Sr,± are small in every round for CTIDH. The crucial
observation is that in each round and for each orientation, we use at most one
prime per batch (ignoring torsion noise, see Section 7.4.4). For a faulty curve Et,
the path Et → E0 includes only steps with the same orientation and uses at most
one prime per batch. With batches of size Ni, the total number of possible paths
per orientation is

∏
i(Ni + 1), which is about 235.5 for CTIDH-512.

It is possible to precompute all possible faulty curves that can appear from
orientation flips from any possible secret key a. Extrapolating the performance
of pubcrawl (Section 7.6), this precomputation should take no more than a few
core years. The resulting lookup table occupies ≈ 3.4TB when encoded naively,
but can be compressed to less than 250GB using techniques from [UV21, § 4.3].

Twisting CSIDH. For this speed-up to be effective, the distance d we use
to compute C must be at least as large as the smallest |Sr,±|. Otherwise, no
faulty curves end up within C. For CSIDH, the smallest such sets are Srmax,±

for the largest exponent rmax allowed by the keyspace (Section 4.3.4); e.g. for
CSIDH-512, as always Srmax,± = S5,± with expected size ≈ 7. Precomputing C
for d ≤ 7 creates a set containing

∑7
i=0

(
74
i

)
≈ 231 curves. Such a precomputation

will identify S5,± quickly by considering a small neighborhood of the curves E5,±.
Note that for all the earlier rounds r < rmax, the sets Sr,s include Srmax,s.

Therefore, if we have Srmax,s for some s, we can shift all the faulty curves by
two steps for every degree in Srmax,s. This trick is particularly useful for larger r
as eventually many isogenies need to be applied in the shifts and we will have
identified the orientation of enough primes so that the search space for pubcrawl
becomes small enough to be faster.

Twisting in the hashed version. Precomputation extends to the hashed
version from Section 7.7: we precompute C ′ which instead of Et includes H(Et)
for all Et in the neighborhood of E0. Again, this works directly for attacking a
hashed version of CTIDH and the effective round-rmax curves in CSIDH. To use
precomputation for different rounds, one can replace the starting curve E−B by
the shift by the part of the secret key that is known (per orientation). This has
the same effect as above: shifting all the curves Et with the same orientation
closer towards E0, hopefully so that the hash H(Et) are already in our database.

Summary. The benefit of using the twist with precomputation is largest for
the hashed versions: we need a brute force search from E0 in any case, and so we
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would use on average as many steps per round as the precomputation takes. For
the non-hashed versions, the expensive precomputation competes with meet-in-
the-middle attacks running in square root time. This means that in the hashed
version we do not need to amortize the precomputation cost over many targets
and have a clear tradeoff between memory and having to recompute the same
neighborhood searches all over again and again.

7.9 Countermeasures

In this section, we present countermeasures against disorientation fault attacks
from Section 7.3. We first review previous fault attacks on CSIDH and their
countermeasures, as well as their influence on our attack in Section 7.9.1. We then
discuss new countermeasures for one-point sampling from CSIDH and Elligator
in Section 7.9.2, and estimate the costs of the countermeasures in Section 7.9.3.

7.9.1 Previous fault attacks and countermeasures

One way to recover secret keys is to target dummy isogenies [CKM+20, LH21].
Although these attacks are implementation-specific, the proposed counter-

measures impact our attack too. Typically, real isogenies are computed prior
to dummy isogenies, but the order of real and dummy isogenies can be random-
ized [CKM+20, LH21] with essentially no computational overhead. When applied
to dummy-based implementations, e.g., from [MCR19, OAYT19], this random-
ization means dummy isogenies can appear in different rounds for each run, which
makes the definitions of the curves Er,± almost obsolete. However, we can instead
simply collect many faulted round-1 samples. Each faulty curve Et reveals a dif-
ferent set St due to the randomization, and with enough samples, a statistical
analysis will quickly reveal all the ei,j just from the number of appearances among
the sets St, again recovering the secret key.

Adapted to CTIDH, there are two possible variants of this randomization
countermeasure: One could either keep the queue of real isogenies per batch as
described above, but insert dummy isogenies randomly instead of at the end of the
queue, or fully randomize the order of isogeny computations per batch including
the dummy operations. In the first case, faulting round r if a dummy isogeny is
computed in batch batchi means that no prime from this batch appears in the
missing set. This effect is the same as missing torsion and thus our attack remains
feasible. The net effect matches increased failure probabilities pi and the larger
neighborhoods simplify finding orientations. Note also that pi is inflated more for
batches with more dummy isogenies. In the second case when the entire queue
is randomized, the same arguments as for CSIDH apply, and we can recover the
secret key from statistical information with round-1 samples only.

Many fault attacks produce invalid intermediate values. In [CKM+20] some



164 Chapter 7. Disorientation faults in CSIDH

low-level protections for dummy isogenies to detect fault injections are proposed.
This approach does not prevent our disorientation attack, and is orthogonal to
our proposed countermeasures. Its performance overhead for the CSIDH-512
implementation from [OAYT19] is reported to be 7%.

Faulting memory locations can identify dummy isogenies [CKM21]. In ad-
dition to the countermeasures above, the authors recommend using dummy-free
implementations when concerned about fault attacks, with a roughly twofold
slowdown [CCC+19]. However, as described in Section 7.5.3, dummy-free imple-
mentations are vulnerable to disorientation faults too.

Lastly, [CKM+20] reports that its fault attack theoretically could lead to dis-
orientation of a point. Although the probability for this to happen is shown to
be negligible, the authors propose to counter this attack vector by checking the
field of definition of each isogeny kernel generator. This is rather expensive, with
an overhead of roughly 30% for the implementation from [OAYT19], but also
complicates the disorientation faults proposed in this work. We further discuss
this in Section 7.9.2. We note that our countermeasures are significantly cheaper,
but do not prevent the theoretical fault effect from [CKM+20].

7.9.2 Protecting square checks against fault attacks

The attack described in Section 7.3 can be applied to all implementations of
CSIDH that use a call to IsSquare to determine the orientations of the involved
point(s). The output of IsSquare is always interpreted as s = 1 or s = −1, and
there is no obvious way of reusing parts of the computation to verify that the
output is indeed related to the x-coordinate of the respective point. For instance,
faulting the computation of the Legendre-input z = x3 + Ax2 + x results in a
square check for a point unrelated to the actual x-coordinate in use, and yields a
fault success probability of 50%.

Repeating square checks. One way to reduce the attacker’s chances for a
successful fault is to add redundant computations and repeat IsSquare k times.
In principle, this means that the attacker has to fault all k executions success-
fully, hence reducing the overall fault success probability to 1/2k. However, if an
attacker manages to reliably fault the computation of z or the Legendre symbol
computation or to skip instructions related to the redundant computations, they
might be able to circumvent this countermeasure.

Repeated square checks have been proposed for a different fault attack scenario
[CKM+20]. There, IsSquare is used to verify the correct orientation for each
point that generates an isogeny kernel. However, this countermeasure significantly
impacts the performance of CSIDH, and could be bypassed as above.

Using y-coordinates. In CSIDH, the y-coordinate determines the orientation
of a point. So, another simple countermeasure relying on redundant computation
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is to work with both x- and y-coordinates. We can then easily recognize the
orientation of each point. But this leads again to a significant performance loss
due to having to keep y-coordinates during all point multiplications and isogeny
evaluations. We expect that this countermeasure is significantly more expensive
than repeating IsSquare k times for reasonable choices of k.

Using pseudo y-coordinates. We propose a more efficient countermeasure:
compute pseudo y-coordinates after sampling points. We sample a random x-
coordinate and set z = x3 + Ax2 + x. If z is a square in Fp, we can compute the
corresponding y-coordinate ỹ ∈ Fp through the exponentiation ỹ =

√
z = z(p+1)/4,

and hence ỹ2 = z. Conversely, if z is a non-square in Fp, the same exponentiation
outputs ỹ ∈ Fp such that ỹ2 = −z. Thus, as an alternative to IsSquare, we can
determine the orientation of the sampled point by computing z = x3+Ax2+x, and
the pseudo y-coordinate ỹ = z(p+1)/4. If ỹ2 = z, the point is positive, if ỹ2 = −z,
it is negative. If neither of these cases applies, i.e., ỹ2 ̸= ±z, a fault must have
occurred during the exponentiation, and we reject the point.

This method may seem equivalent to computing the sign s using IsSquare

as it does not verify that z has been computed correctly from x. But having
an output value ỹ ∈ Fp instead of the IsSquare output −1 or 1 allows for a
much stronger verification step in order to mitigate fault attacks on the point
orientation. We present the details of the original CSIDH algorithm including
this countermeasure in Algorithm 6.

Algorithm 6 Evaluation of CSIDH group action with countermeasure

Input: A ∈ Fp and a list of integers (e1, . . . , en).
Output: B ∈ Fp such that

∏
[li]

ei ⋆ EA = EB
1: while some ei ̸= 0 do
2: Sample a random x ∈ Fp, defining a point P .
3: Set z ← x3 + Ax2 + x, ỹ ← z(p+1)/4.
4: Set s← 1 if ỹ2 = z, s← −1 if ỹ2 = −z, s← 0 otherwise.
5: Let S = {i | ei ̸= 0, sign(ei) = s}. Restart with new x if S is empty.
6: Let k ←

∏
i∈S ℓi and compute Q′ = (XQ′ : ZQ′)← [p+1

k
]P .

7: Compute z′ ← x3 + Ax2 + x.
8: Set XQ ← s · z′ ·XQ′ , ZQ ← ỹ2 · ZQ′ .
9: Set Q = (XQ : ZQ).
10: for each i ∈ S do
11: Set k ← k/ℓi and compute R← [k]Q. If R =∞, skip this i.
12: Compute ϕ : EA → EB with kernel ⟨R⟩.
13: Set A← B, Q← ϕ(Q), and ei ← ei − s.
14: return A.

Steps 3 and 4 of Algorithm 6 describe our method to determine s without
using IsSquare. In order to verify the correctness of these computations, we add
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a verification step. First, we recompute z via z′ = x3 + Ax2 + x, and in case of
a correct execution, we have z = z′. Thus, we have s · z′ = ỹ2, which we can use
as verification of the correctness of the computations of s, z, z′, and ỹ. If this
were implemented through a simple check, an attacker might be able to skip this
check through fault injection. Hence, we perform the equality check through the
multiplications XQ = s · z′ ·XQ′ and ZQ = ỹ2 · ZQ′ , and initialize Q = (XQ : ZQ)
only afterwards, in order to prevent an attacker from skipping Step 8. If s ·z′ = ỹ2

holds as expected, this is merely a change of the projective representation of Q′,
and thus leaves the point and its order unchanged. However, if s · z′ ̸= ỹ2, this
changes the x-coordinate XQ/ZQ of Q to a random value corresponding to a
point of different order. If Q does not have the required order before entering the
isogeny loop, the isogeny computation will produce random outputs in Fp that
do not represent supersingular elliptic curves with overwhelming probability. We
can either output this random Fp-value, or detect it through a supersingularity
check (see [CLM+18, BGS22], or a cheaper procedure [CKM+20]) at the end of
the algorithm and abort. The attacker gains no information in both cases.

A simple way to outmaneuver the verification is to perform the same fault
in the computation of z and z′, such that z = z′, but z ̸= x3 + Ax2 + x. We
recommend computing z′ using a different algorithm and a different sequence
of operations, so that there are no simple faults that can be repeated in both
computations that result in z = z′.

The attacker may still fault the computation of s in Step 4 of Algorithm 6.
However, this will now also flip the x-coordinate of Q to −x, which in general
results in a point of random order, leading to invalid outputs. The only known
exception is the curve E0 : y

2 = x3 + x: In this case, flipping the x-coordinate
corresponds to a distortion map taking Q to a point of the same order on the
quadratic twist. Thus, for E0, flipping the sign s additionally results in actually
changing the orientation of Q, so these two errors effectively cancel each other
in Algorithm 6 and the resulting curve is the correct output curve after all.

Protecting Elligator. Recall from Section 7.3 that two-point variants of
CSIDH, including CTIDH, use the Elligator map for two points simultaneously,
which requires an execution of IsSquare in order to correctly allocate the sam-
pled points to P+ and P−.

We adapt the pseudo y-coordinate technique from Section 7.9.2: we deter-
mine orientations and verify their correctness by applying this countermeasure
for both P+ and P− separately. We dub this version of the Elligator sampling
Elligreator. Faulting the computations of the x-coordinates of the two points
within Elligator (as in [CCC+19, Algorithm 3]) is also prevented by Elligreator.

In CTIDH, each round performs two Elligator samplings, and throws away
one point respectively. Nevertheless, it is not known a priori which of the two
points has the required orientation, so Elligreator needs to check both points
anyway in order to find the point of correct orientation.
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On the one hand, adding dummy computations, in this case sampling points
but directly discarding some of them, might lead to different vulnerabilities such
as safe-error attacks. On the other hand, sampling both points directly with
Elligreator at the beginning of each round (at the cost of one additional
isogeny evaluation) may lead to correlations between the sampled points, as ar-
gued in [BBC+21]. It is unclear which approach should be favored.

7.9.3 Implementation costs

Implementing this countermeasure is straightforward. While IsSquare requires
an exponentiation by (p − 1)/2, our pseudo y-coordinate approach replaces this
exponent by (p+ 1)/4, which leads to roughly the same cost. (Note that neither
has particularly low Hamming weight.) Furthermore, we require a handful of
extra operations for computing z′, XQ, and ZQ in Steps 7 and 8 of Algorithm 6.
For the computation of z′ we used a different algorithm than is used for the
computation of z, incurring a small additional cost, for the reason discussed
above. Therefore, using this countermeasure in a 1-point variant of CSIDH will
essentially not be noticeable in terms of performance, since the extra operations
are negligible in comparison to the overall cost of the CSIDH action.

In 2-point variants, we use Elligreator, which requires two exponentiations
instead of one. Thus, the countermeasure is expected to add a more significant but
still relatively small overhead. CTIDH uses two calls to Elligreator per round,
and both executions contain two pseudo-y checks respectively. For CTIDH-512,
we estimate the cost as follows: the exponentiation by (p − 1)/2 costs 602 mul-
tiplications, including squarings [BBC+21]. As CTIDH-512 requires roughly 20
rounds per run, we add two additional exponentiations by (p + 1)/4 per round,
and these have almost the same cost of 602 multiplications, the overhead is ap-
proximately 2 · 20 · 602 = 24080 multiplications. Ignoring the negligible amount
of further multiplications we introduce, this comes on top of a CTIDH-512 group
action, which takes 438006 multiplications on average. Thus, we expect the total
overhead of our countermeasure to be roughly 5.5% in CTIDH-512.
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jamin Smith. Stronger and Faster Side-Channel Protections for
CSIDH. In Peter Schwabe and Nicolas Thériault, editors, LAT-
INCRYPT 2019, volume 11774 of Lecture Notes in Computer Sci-
ence, pages 173–193. Springer, 2019. https://doi.org/10.1007/

https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-17656-3_15
http://dx.doi.org/10.1090/S0025-5718-2011-02508-1
http://dx.doi.org/10.1016/j.jnt.2015.07.002
http://dx.doi.org/10.1016/j.jnt.2015.07.002
http://www.numdam.org/articles/10.5802/jtnb.764/
http://www.numdam.org/articles/10.5802/jtnb.764/
https://doi.org/10.1007/s11139-010-9231-8
https://www.jstor.org/stable/43974214
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/978-3-030-30530-7_9


Bibliography 173

978-3-030-30530-7_9. (Cited on pages 95, 96, 130, 132, 135, 136,
137, 157, 164, and 166.)
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ear Vélu quantum-resistant isogeny action with low exponents. In
Journal of Cryptographic Engineering, volume 12, pages 349–368.
Springer, 2022. https://doi.org/10.1007/s13389-021-00271-w.
(Cited on pages 84, 94, 95, 119, 130, 135, 136, 137, 157, and 158.)

[CD20] Wouter Castryck and Thomas Decru. CSIDH on the surface. In
Jintai Ding and Jean-Pierre Tillich, editors, PQCrypto 2020, volume
12100 of Lecture Notes in Computer Science, pages 111–129. Springer,
2020. https://doi.org/10.1007/978-3-030-44223-1_7. (Cited
on pages 88 and 112.)

[CD23] Wouter Castryck and Thomas Decru. An Efficient Key Recov-
ery Attack on SIDH. In Carmit Hazay and Martijn Stam, edi-
tors, EUROCRYPT 2023, pages 423–447. Springer, 2023. https:

//doi.org/10.1007/978-3-031-30589-4_15. (Cited on pages 5,
36, and 84.)

[CDEL21] Wouter Castryck, Ann Dooms, Carlo Emerencia, and Alexander
Lemmens. A fusion algorithm for solving the hidden shift problem
in finite abelian groups. In Jung Hee Cheon and Jean-Pierre Tillich,
editors, PQCrypto 2021, volume 12841 of Lecture Notes in Computer
Science, pages 133–153. Springer, 2021. https://doi.org/10.1007/
978-3-030-81293-5_8. (Cited on page 110.)

[CDV20] Wouter Castryck, Thomas Decru, and Frederik Vercauteren. Radical
isogenies. In Shiho Moriai and HuaxiongWang, editors, ASIACRYPT
2020, pages 493–519. Springer, 2020. https://doi.org/10.1007/

978-3-030-64834-3_17. (Cited on page 92.)

[CFL+] Anamaria Costache, Brooke Feigon, Kristin Lauter, Maike Massierer,
and Anna Puskás. Ramanujan Graphs in Cryptography. In Jen-
nifer S. Balakrishnan, Amanda Folsom, Matilde Laĺın, and Michelle
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[FIM+14] Katalin Friedl, Gábor Ivanyos, Frédéric Magniez, Miklos Santha, and
Pranab Sen. Hidden translation and translating coset in quantum
computing. In SIAM J. Comput., volume 43, pages 1–24, 2014.
https://doi.org/10.1137/130907203. (Cited on page 110.)

[Gal23] Steven Galbraith. Some comments on the CSIDH group ac-
tion. https://ellipticnews.wordpress.com/2023/05/15/

some-comments-on-the-csidh-group-action/, 2023. Accessed:
2024-03-12. (Cited on page 85.)

[Gol00] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cam-
bridge University Press, USA, 2000. https://doi.org/10.1017/

CBO9780511546891. (Cited on pages 78 and 79.)

[GPS17] Steven D. Galbraith, Christophe Petit, and Javier Silva. Identi-
fication Protocols and Signature Schemes Based on Supersingular
Isogeny Problems. In Tsuyoshi Takagi and Thomas Peyrin, editors,
ASIACRYPT 2017, pages 3–33. Springer International Publishing,
2017. https://doi.org/10.1007/978-3-319-70694-8_1. (Cited
on page 5.)

https://doi.org/10.2140/obs.2020.4.215
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/3-540-39568-7_2
https://ia.cr/2023/106
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Brochure/quantum-safe-cryptography
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Brochure/quantum-safe-cryptography
https://doi.org/10.5281/zenodo.4304044
https://doi.org/10.5281/zenodo.4304044
https://doi.org/10.1137/130907203
https://ellipticnews.wordpress.com/2023/05/15/some-comments-on-the-csidh-group-action/
https://ellipticnews.wordpress.com/2023/05/15/some-comments-on-the-csidh-group-action/
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1007/978-3-319-70694-8_1


Bibliography 179
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[TDEP21] Élise Tasso, Luca De Feo, Nadia El Mrabet, and Simon Pontié. Re-
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[Vél71] Jacques Vélu. Isogénies entre courbes elliptiques. In Comptes Rendus
de l’Académie des Sciences de Paris, volume 273(A)4, pages 238–
241, 1971. https://gallica.bnf.fr/ark:/12148/bpt6k56191248/
f52.item. (Cited on pages 15, 46, 91, and 108.)

[Wat69] William C. Waterhouse. Abelian varieties over finite fields. In An-
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Samenvatting

Ik ben van de generatie die opgegroeid is met de smartphone. Dat kleine dingetje
is al bijna 20 jaar in mijn hand geweest en is voor mij de meest belangrijke bron
van communicatie met de wereld. Niet alleen om te praten met mijn familie en
vrienden, maar tegenwoordig doe ik bijna alles op mijn telefoontje.

Toen ik een bankrekening ging aanvragen, ging ik nog naar de bank in de
buurt van mijn huis, maar die locatie is al jaren gesloten en alles regel ik via
de app. De overheid in Nederland maakt gebruik van DigiD, dus alles wat de
overheid met mij wil gebeurt over het Internet. En hoewel mijn eerste belasting-
ervaring met het legendarische papieren M-formulier van 80 pagina’s was, heb
ik al mijn verdere belastingaangiften online kunnen indienen, en zou niet meer
weten hoe ik het anders zou doen.

Het is bijna onmogelijk om met de online wereld los te breken, en we zijn
gedwongen om al onze zaken online te regelen. We hebben daarvoor bescherming
nodig, niet alleen voor privacy, maar ook tegen misbruik en inmenging door
kwaadwillende actoren. Ik vertrouwde dat de werknemers in het gebouw van
marmer echt bij de bank werkten, en dat ze mijn financiële zaken mochten be-
handelen. Wanneer ik met mijn familie in de tuin aan het praten ben, kan ik
rondkijken en beslissen of ik de intieme details van mijn leven wil delen, of er
iemand ongewenst aan het luisteren is.

Wanneer ik verbonden ben met het internet, wil ik dezelfde garanties. Ik
wil dat mijn communicatie versleuteld is: extra beschermd zodat niemand mijn
berichten kan lezen (of sterker nog, manipuleren). Dit is gedaan met algoritmes
die zorgvuldig zijn gemaakt in het vakgebied van cryptografie.

Versleuteling is zoiets als jouw data opslaan in een veilige kluis. Alleen de
correcte toegangscode kan het kluisje openen, en zonder de code krijgt niemand de
kluis open, zelfs als men dynamiet gebruikt. Een cryptografische kluis is gemaakt
van wiskundig materiaal, en dynamiet is alles wat computers kunnen doen. We
hebben een goed begrip van wat soort wiskundige materialen we kunnen gebruiken
zodat alle dynamiet ter wereld onze kluis niet kan beschadigen.
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Misschien denk je nu: maar dit geldt niet alleen voor de smartphone, cryp-
tografie is nodig voor alle electronische communicatie. Maar de smartphone is
voor mij een voorbeeld van technologie die 50 jaar geleden alleen de droom van
visionairen was, 30 jaar geleden een vrij onpraktische curiositeit was, maar sinds-
dien zo enorm technisch verbeterd is dat het onze hele wereld heeft veranderd.

Een andere soort technologie die zelfs meer effect op onze samenleving zou
kunnen hebben is kwantumcomputing. Deze term verwijst naar een nieuw type
computers die de gebruikelijke 1’s en 0’s van klassieke computers op een andere
manier zouden kunnen manipuleren. Maar we kennen al sommige effecten die
kwantumcomputing zou hebben. Tegenwoordig wordt er massaal gëınvesteerd
om dit soort technologie werkelijkheid te maken.

Het slechte nieuws is dat als de kwantum computers daadwerkelijk zouden
bestaan, onze huidige cryptografie niet voldoende zou zijn. In de analogie van
een kluis, zouden kwantum computers geen krachtiger dynamiet zijn, maar een
totaal nieuwe stof. En daarmee kunnen wij de allersterkste kluizen openmaken.

Post-kwantum cryptografie houdt zich bezig met nieuwe wiskundige proble-
men die ons zouden helpen met het bouwen van kwantum-veilige kluizen. Tegen-
woordig zijn de cryptografen bezig met het voorbereiden van nieuwe kluizen: we
hebben mogelijke nieuwe materialen bepaald (bijvoorbeeld roosters en hashfunc-
ties) en bereiden nu de beste ontwerpen voor (die dan door overheden en ver-
schillende bureaus worden gestandaardiseerd). Wanneer dat klaar is, moeten we
nog de nieuwe kluizen uitgebreid testen en zorgen dat ze wijdverspreid gebruikt
worden. Al deze taken vereisen veel inspanning.

Maar we moeten meer materialen blijven onderzoeken. Dit is omdat verschil-
lende mensen verschillende behoeften hebben voor de afmetingen van hun kluizen
(cryptografische protocollen). En omdat er altijd de kans is dat een nieuwe cryp-
tografische aanval (ander soort dynamiet) onze kluizen kan verzwakken.

In dit proefschrift richten wij ons op één soort materiaal, isogenieën van ellip-
tische krommen. We kunnen denken aan elliptische krommen als simpele knopen
(met rijke algebräısche structuur), en een isogenie is een zijde (een lijntje) tussen
twee knopen, gelabeld door een vast priemgetal ℓ (de graad van de isogenie). De
ontstane grafen van isogeniën kunnen verschillende structuren hebben:
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De graaf aan de linkerkant is een voorbeeld van een vulkaan van isogenieën:
een reguliere, symmetrische graaf. De graaf aan de rechterkant heeft geen van de
symmetrieën, en heeft de bijzondere rapid-mixing eigenschap dat als je met een
knoop begint en 7 willekeurige stappen zet, je bij elke andere knoop in de graaf
met ongeveer gelijke kans uitkomt. Dit is duidelijk niet waar aan de linkerkant.

Cryptografen hebben protocollen gemaakt van beiden. Aan de rechterkant,
als je twee willekeurige knopen kiest, is het vinden van een verbindende route in
de graaf vermoedelijk moeilijk. In de praktijk heeft de graaf niet 50 knopen maar
ongeveer 2256. Een route zoeken in dat soort graaf is zoals een route zoeken in
een bos op een maanloze nacht: je ziet de knopen in jouw buurt, maar niet het
hele bos. Een van de hoofdstukken van dit proefschrift gaat over dit soort grafen
en hun wiskundige eigenschappen.

De grafen aan de linkerkant kunnen we ook gebruiken in de cryptografie.
We kunnen meerdere zulke grafen maken met dezelfde elliptische krommen voor
priemgetallen ℓ = 3, 5, 7, . . . Meestal zien deze eruit als een cykel (zonder de
uitstekende zijden). En voor elk priemgetal is de volgorde van de knopen anders.
Dus, we kunnen een paar stappen nemen in de graaf voor ℓ = 3, daarna switchen
naar de graaf voor ℓ = 5, nemen hier een paar stappen, enzovoort voor een
aantal priemgetallen. Verrassend genoeg heeft de resulterende route dezelfde
eigenschappen als de graaf aan de rechterkant: met een klein aantal stappen (een
paar honderd) kunnen we alle knopen bereiken (alle 2256 knopen). Protocollen
gebaseerd op dit soort constructie zijn de focus van dit proefschrift.

Een van de protocollen die we zo grofweg hebben beschreven is CSIDH (“sea-
side”) van Castryck, Lange, Martindale, Panny, en Renes (2018). We nemen hun
bouwtekening voor de kluis en bestuderen die van meerdere kanten.

Ten eerste bestuderen we sommige van de wiskundige problemen die ze ge-
bruiken: namelijk het decisional Diffie-Hellman problem (DDH). We vinden dat
het CSIDH protocol veilig is, maar identificeren een verrassende eigenschap in
gerelateerde protocollen, en veel gevallen waarin het DDH probleem niet moeilijk
is. Vervolgens bestuderen wij implementaties: we implementeren het protocol op
een manier dat de timing van de berekening niets zegt over de geheimen gebruikt
in het protocol. Dit is een essentiële eigenschap voor cryptografische protocollen
in de praktijk; onze software, CTIDH (uitgesproken zoals “sea tide”), is het snel-
ste onder constant-time implementaties van CSIDH.

Uiteindelijk bestuderen wij de fysieke veiligheid van de kluis: we stellen ons
voor dat iemand toegang heeft tot een apparaat dat het protocool uitvoert, en
goed getimede fouten kan forceren. We laten zien dat fouten die de richting van de
stappen veranderen (met de klok mee of tegen de klok in aan de linkerkant) te veel
informatie lekken, die we dan kunnen gebruiken om het geheim te reconstrueren.

Grafen van isogeniën zijn een mogelijk materiaal voor het bouwen van post-
quantum kluizen. Dit proefschrift verdiept het inzicht in zowel de wiskundige
veronderstellingen (het materiaal) als de implementatie (hoe de kluis gebouwd
zal worden).





Summary

I come from a generation that grew up with the smartphone. The small gadget
has been in my hand for almost 20 years, and has been my primary source of
communication with the world. Not just talking to my family and friends, but
my affairs are increasingly handled through my phone.

I opened my bank account by walking into the branch office near my home,
but that office is long gone and all my finances are handled via the app. The
government in the Netherlands also uses an electronic identity, so any official
business the government wants with me happens over the internet. And while
my first tax experience in the Netherlands was with the legendary 80-page paper
M-form, all my other tax returns were handled electronically, and I would not
know how to do my civic duty any other way.

In a world in which it is impossible to disconnect and we are forced to handle
all our matters online, we need protections for our privacy, as well as protection
against abuse and interference by malicious actors. I trusted that the workers in
the marble building of my bank were truly authorized to handle my finances, and
what we arranged was to remain my private matter. When I talk to my family
sitting in the garden, I can look around and decide whether I can share intimate
details of my life or whether somebody is listening.

When I am connected to the internet, I want the same guarantees. I want my
communication to be encrypted : protected with an extra coating that guarantees
that nobody else can read (or even stronger protections, so nobody can manipu-
late) my messages. This extra layer is achieved via carefully crafted algorithms.
And figuring out what these algorithms should be is the art of cryptography.

One might think of cryptography as putting our information in a strong safe.
The correct combination will open the safe, but without the correct code, neither
a sledgehammer nor dynamite will help you see what is inside. The cryptographic
safe is built from mathematical problems, and the dynamite is anything computers
can do. We know what mathematical material to use to build our safes so that
there is not enough dynamite in the world to damage it.
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You might think: all this is not unique to the smartphone, we need cryptogra-
phy for any kind of electronic communication. But the smartphone, to me, is an
example of technology that was dreamt of by visionaries 50 years ago, only existed
as a barely-practical curiosity 30 years ago, underwent a massive technological
boost and by now has changed the world we live in.

Another such novel technology that could have even more impact on our lives
is quantum computing. This term refers to a new kind of computers that will
use different ways to manipulate the ones and zeros that classical computers use.
And we already know what some of the impact of quantum computing would
be – bringing about many exciting possibilities. Massive amounts of both public
and private money are being spent on making this technology real.

The bad news is that should quantum computers become real technology,
our current cryptography will not be enough. In the safe analogy, quantum
computers would not add extra potency to the dynamite already out there, but
rather produce a new substance. Armed with this new substance, we would see
the strongest safes opening before our eyes.

Post-quantum cryptography is the search for new mathematical problems that
will help us build quantum-safe safes. Currently, the cryptographic community
is working on preparing the new safes: we have identified potential material (for
instance lattices and hash functions) and are in the process of choosing the best
designs (standardized by various government agencies and accepted widely by the
community). When that is done, we need to test the new safes, and make sure
they are deployed widely. All of these tasks require significant effort.

But we continue to explore more materials. This is because different people
have different requirements for the size and shape of their safes (cryptographic
protocols). And because there is always the chance that new attack avenues
(different dynamite, or better algorithms) might weaken our preferred safe.

In this thesis, we focus on a particular material, isogenies of elliptic curves.
We can abstract elliptic curves as simple dots (with extremely rich algebraic
structure), and an isogeny is an edge (line segment) connecting two dots, with
labels some fixed prime ℓ (the degree of the connecting isogeny). The resulting
isogeny graphs can have very different structure:
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The graph on the left is an example of an isogeny volcano: a regular and
symmetric graph. The graph on the right exhibits none of this symmetry, and
even has the special rapid mixing property that if we start with one dot, then
walk following 7 edges at random, will reach any other dot in the graph with
roughly the same probability. This does not work for the graph on the left.

Cryptographers have built protocols from either of the situations. On the
right hand side, if we select two random vertices, finding a path between them
in the graph is believed to be a hard problem. In practice, the graph will not
have 50 vertices as displayed, but the order of 2256. Finding a path in the graph
is like finding a path in a forest on a moonless night: we can see the neighboring
vertices, but not the whole area. One of the chapters of this thesis is devoted to
studying these graphs and their mathematical properties.

The graphs on the left can also be turned into cryptographic protocols. We can
construct these graphs for the same set of elliptic curves for primes ℓ = 3, 5, 7, . . . .
In most cases, these graphs look like cycles (without the edges sticking out). And
for each different prime, the order of the vertices on the cycle will be very different.
Hence, one can take a few steps in the graph for ℓ = 3, jump to the graph for ℓ = 5,
take a few steps there, and repeat this for a number of primes. Miraculously, the
resulting walk will have the same properties as in the graph on the right: we will
be able to reach any elliptic curve with just a few steps (a few hundred steps,
which is very small compared to having 2256 vertices). Protocols based on this
construction are the main focus of this thesis.

One instantiation of the setup so roughly described above is the cryptographic
protocol CSIDH (pronounced like “seaside”) by Castryck, Lange, Martindale,
Panny, and Renes (2018). We take their schematics for a safe, and study them
from several sides.

First, we examine the hardness of the mathematical problems they base their
protocol on: namely the decisional Diffie–Hellman problem (DDH). We find that
the CSIDH protocol is secure, but identify a surprising structure in related pro-
tocols, and find many instances in which the DDH problem is not hard.

Next, we consider implementation security: we implement the protocol in a
way such that the timing of the computation does not reveal any information
about the secrets. This is an essential requirement for cryptographic protocols in
practice; our software, which we call CTIDH (pronounced “sea tide”), produces
record speeds among the constant-time implementations of CSIDH.

Finally, we consider the physical security of the safe: we suppose somebody
has access to a device running the computation, and is able to insert a well-timed
error in the computation. We show that errors that flip the direction of the step
(clockwise or counterclockwise in the cycle on the left) leak too much information,
which can be used to reconstruct the secret.

Isogeny graphs are one possible material from which to build post-quantum
safes. This thesis deepens the understanding of both the mathematical assump-
tions (the material) and the implementation (how the safe should be built).





Curriculum Vitae
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