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Abstract

In this document, we �rst develop a general framework to lift the pushout-product axioms
in classical homotopy theory to the structured context of algebraic weak factorisation
systems. The outcome is a notion of an algebraic monoidal model category. Within this
framework, we are able to formulate and prove a structured analogue of Joyal-Tierney
calculus, with the help of which we put an algebraic monoidal structure on e�ective Kan
�brations.

E�ective Kan �bration is a new notion of �bration introduced in [63], in order to
develop a constructive model of homotopy type theory on simplicial sets. In the second
part of this document, we show there is a path category structure on the full subcategory
of e�ective Kan �brations over any object, using the algebraic monoidal structure con-
structed earlider. This brings us closer to showing the existence of a full model structure.
Finally, we also identify a key semantic property, which we refer to as Moore equivalence
extension. Based on the results in this document, we are able to show that if simplicial sets
satisfy this property, then there exists a full algebraic monoidal model category structure
for e�ective Kan �brations.
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Chapter 1

Introduction

1.1 Background on Homotopy Type Theory
Martin-Löf type theory, henceforth MLTT, was initially formulated as a formal system
to lay the foundation for constructive mathematics [45]. As its name indicates, it is a
system of types, which we intuitively think of as collections of things. Each type can have
terms, which we think of as elements belonging to that collection. The formal calculus
of type theory is then a calculus about collections and their elements, within which we
can express usual mathematical statements; see [33] or [58].

In contrast to set-theoretic foundation of mathematics, MLTT is not built upon some
prior notion of logic. On the contrary, MLTT subsumes �rst-order intuitionistic logic by
interpreting propositions as (some) types; see the exposition [70]. Intuitively, a proposition
can be identi�ed as some type, whose terms are regarded as its proofs. For various type
theories, there is a precise sense in which terms of a type could be identi�ed as proofs
of a logical statement in natural deduction style. This correspondence is often called
the Curry-Howard isomorphism [55]. As mentioned, another intuition for types is that
they are certain collections, and terms of types will be elements of these collections. The
crucial point is that MLTT provides a uniform calculus of propositions with their proofs,
and mathematical objects with their elements.

A notable di�erence between the two approaches is the treatment of equality. In a
set-theoretic foundation, if two sets X, Y are constructed, the equality proposition X = Y

will be an external statement in the underlying �rst-order logic. In particular, X = Y does
not belong to the domain of discourse of the set-theoretic foundation. In other words,
X = Y cannot be regarded as a set. Correspondingly, the deduction pricinples concerning
equality statements are not speci�ed by set theory itself, but are speci�ed as structural
rules in the underlying logic [24].
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On the other hand, under the philosophy of propositions as types, equalities in MLTT
are not treated as external predicates in the underlying logic, but as types. More precisely,
given two terms of the same type a, b ∶ A, there will be an equality type a =A b, whose
terms we now think of as proofs of the statement a is equal to b. This way, equality
statements are internalised in MLTT. The deduction principles of equality, say re�exivity,
symmetry, and transitivity, also follows from the calculus of equality types within MLTT.1

When �rst formulated by Per Martin-Löf, it wasn’t clear how di�erent the two ap-
proaches are. Related to this is the problem of uniqueness of equality proofs in MLTT: For
any type A and terms a, b ∶ A, given two proofs that a and b are equal, viz. given two
terms p, q ∶ a =A b, is it the case that p, q themselves must be equal, in the sense that we
can �nd an element r ∶ p =a=Ab q? Notice that this problem does not even make sense in
the foundational approach based on �rst-order logic, since we are not able to state within
the theory whether two proofs in this meta-theory are equal or not.

The intuition is that, if the principle of uniqueness of equality proofs holds, then our
intuition for types in MLTT could be brought much closer to sets in the usual foundation
of mathematics: We only need to worry about whether there exists a proof of a =A b and
do not need to distinguish di�erent proofs of equality, since any two such terms will be
equal again, and thus will behave the same from the perspective of MLTT.

However, in the 1990s, Hofmann and Streicher established a negative answer to this
in [31], by providing a groupoid model of MLTT. In this model, types are interpreted
as groupoids. Closed terms of the type are interpreted as points in this groupoid, and
identity proofs between closed terms are modelled as paths between the two points, i.e.
morphisms in this groupoid. In particular, there could be distinct parallel arrows between
two points in a groupoid, thus there could be multiple distinct proofs of a single equality
type in this model.

This opened up the possibility of a homotopical interpretation of MLTT. The authors
already conjectured in the loc. cit. that there could be a model of MLTT using higher
groupoids, viz. homotopy types. Furthermore, foreshadowing the later development of
homotopy type theory, they already realised that the groupoid model satis�es the socalled
universe extensionality property, which is nothing more than the now famous univalence
principle [69] restricted to 1-types.

The �rst full higher categorical model of equality types was constructed by Awodey
and Warren in the paper [4], where they showed that Quillen model categories [46] can

1To be more precise, there is also a notion of external equality in MLTT, usual referred to as de�nitional
equality. Given a, b ∶ A, the statement that a, b are de�nitionally equal, denoted as a ≡ b, is also an external
statement and is not represented as a type. However, a ≡ b in general is strictly stronger than the fact that
equality type a =A b has a term. The mathematical equalities we intend to formalise and reason about in
type theory are still represented by the internal equality types.
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be used to build models of equality types in MLTT. Later, [64] and [41] showed that the
equality types in MLTT equip any type with the structure of a weak !-groupoid. Around
the same time, Voevodsky was independently developing a system called homotopical
�-calculus, and sketched an interpretation of this system in simplicial sets [68]. These
works established an important link between type theory, homotopy theory, and higher
category theory, where homotopy type theory was born. The above mentioned works also
suggest that a more correct intuition about types in MLTT is that they represent certain
spaces, rather than discrete collections of elements (cf. [54]).

Homotopy type theory, henceforth HoTT, is an extension of MLTT, with higher induc-
tive types and the univalence axiom added. Higher inductive types allow one to perform
internally in the type theory many constructions in classical homotopy theory, including
cell complexes, homotopy colimits, truncations, etc.; see [42, 19].

The univalence principle mainly concerns the behaviour of equality type of universes
in MLTT. In hindsight, if types are interpreted as spaces, or even as discrete sets, it should
not be too surprising that the equality type for two such entities may possess non-trivial
structures. Suppose MLTT is augmented with a universe U, whose terms A, B ∶ U we
think of as types. In mathematical practice, the most useful understanding of the equality
type A =U B is not the strict equality in Frege’s sense [22]. Rather, we view A, B as the
same object when they are isomorphic or equivalent in some way. From this perspective,
it seems natural that the type A =U B may have multiple terms, since there can be more
than one way two mathematical objects are equivalent. Univalence principle says exactly
that the equality types A =U B is characterised by the type of equivalences between A

and B in a precise sense (cf. [69]).
From this perspective, the univalence axiom can also be viewed as an internalisation of

the invariance principle: All properties de�nable in the type system are invariant under
type equivalence; see [2]. Thus, HoTT provides a foundation for (higher) mathematics
that is coherent with structuralism’s philosophy, i.e. equivalent mathematical objects
should never be distinguished.

1.2 The Problem of Computational Interpretation
As mentioned, MLTT was initially developped by Per Martin-Löf as a foundation for
constructive mathematics. In particular, this system is itself computationally adequate,
in the sense that it enjoys normalisation: Any well-typed term of MLTT has a normal
form, and the normal form can be e�ectively computed from the term itself. Moreover,
the normal forms of terms of base types like Nat or Bool are what we expect, i.e. natural
numbers s⋯ s0 or booleans t, f. This property is often referred to as canonicity of type
theory.
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However, due to the fact that univalence is added as an axiom to MLTT in HoTT,
the plain type system of HoTT looses this form of computational adequacy. Roughly
speaking, an axiom in type theory is introduced as an additional term u of a special type.
However, the mere existence of u does not tell one how to compute with it. If we write
down a term of type Nat using u, when we compute this term we would get stuck at
evaluating u and cannot proceed, thus canonicity will be violated.

A related problem is that the original model of HoTT based on the Kan-Quillen model
structure on simplicial sets developped by Voevodsky, later presented in [37], is not con-
structive. As already described in [4], dependent types will be modelled as �brations in a
model category, and the �brations in the Kan-Quillen model structure on simplicial sets
are Kan �brations.2. However, it is observed in [9] that one key semantic fact in build-
ing this model, that Kan �brations are closed under pushforward along Kan �brations, is
not constructively provable. This property is equivalent to the socalled Frobenius prop-
erty of Kan �brations; see e.g. [65, 23, 63]. In the categorical semantics of type theory,
pushforwards are used to model dependent products of types. Thus, this result means
that if we model dependent types as Kan �brations in the usual sense, then we cannot
constructively prove that dependent types are closed under dependent products in this
model.

Afterwards, the research on models of HoTT advanced quickly. At this point, we al-
ready know that all (∞, 1)-toposes provide semantics for HoTT, thus HoTT can be used
as an internal language of (∞, 1)-toposes [53].3 However, the proof of this result is again
based on simplicial homotopy theory, and in particular relies on classical reasoning in-
cluding using the axiom of choice.

One response to the problem of a computational understanding of HoTT is the so-
called cubical approach. By working with cubical sets rather than simplicial sets, people
have successfully shown the existence of a model structure, and built a model of HoTT.
Furthermore, the semantic development of cubical sets has inspired the construction of
a cubical type theory, within which univalence follows as a theorem, rather than being a
postulate; see e.g. [7, 18, 1]. In particular, people have successfully shown that cubical
type theory enjoys canonicity [20, 32] and normalisation [56].

However, these results are not fully satisfactory. For one thing, cubical type theory
introduces new syntactic features such as interval types and face formulas extending the
ordinary syntax of HoTT. This makes it harder to serve as an internal language for all
∞-toposes. In particular, at this point there are no corresponding results stating that all
∞-toposes can model cubical type theory. Furthermore, most of the cubical models con-
structed in the literature do not even represent the ∞-topos of ∞-groupoids classically;

2For an introduction to the Kan-Quillen model structure in simplicial homotopy theory, see e.g. [25].
3See [43] for the notion of (∞, 1)-toposes.
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for more details see [14].
Thus, we would still like to �nd a more general method of modelling HoTT construc-

tively, which can be applied to simplicial sets at least. This computational understanding
then has the potential for HoTT to bene�t from the rich structure of homotopy theory
and higher category theory.

One of the guiding principle of a constructive approach is to work with structures
on maps, rather than treating them as properties. As shown in [23], one way to solve
the mentioned failure of Kan �brations being closed under pushforward constructively
is to de�ne a new notion of uniform Kan �bration, which coincides with the usual Kan
�brations classically. A uniform Kan �bration structure on a map assigns diagonal lifts
against a class of lifting problems in a suitably compatible way. In particular, in the loc.
cit. the authors are able to show constructively that uniform Kan �brations satisfy the
Frobenius property.

One key technical tool for carrying out this structured approach towards constructive
model categories is the notion of an algebraic weak factorisaion system [27, 12, 11]. This
notion “structuralises” the ordinary notion of weak factorisation systems, which are basic
constituents of model structures. Based on this, there is a notion of an algebraic model
category [47] that replaces the usual notion of a model category in the structured context.

To model the full system of HoTT, we also require that the algebraic model structure
supports further features. For instance, to support universes in type theory, one needs to
construct a universal �bration that classi�es all small �brations. The only known con-
struction of such a universal �bration is due to Hofmann and Streicher [30], and it can
only be applied when the �bration structure is local; see e.g. [63, Ch 2.]; an early de�ni-
tion also appeared in [53]. As mentioned, one can show constructively that uniform Kan
�brations satisfy Frobenius. Though the notion of uniform Kan �bration in [23] solves
the problem raised in [9], this �bration structure is not local. A proof due to Sattler can
be found in [63, App. D]. This suggests that uniform Kan �brations cannot be used to
build a full model of HoTT, either.

In this work, we tackle this problem based on the approach proposed in [63]. In par-
ticular, in loc. cit., the authors describe a new structure of Kan �brations, called e�ective
Kan �brations, and have shown constructively that e�ective Kan �brations satisfy Frobe-
nius. Another nice feature of this approach is that the notion of e�ective Kan �brations
does not depend on a particular presheaf model. Instead, it is de�ned abstractly on a
variety of categories equipped with certain structures. The result that e�ective Kan �-
brations satisfy Frobenius is proven in this abstract framework, which implies it can be
applied to any situation where the axioms involved are satis�ed.

The book [63] also contains a detailed discussion of the corresponding notion e�ective
Kan �bration in simplicial sets. In particular, it proves that in simplicial sets, e�ective Kan
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�bration is a local notion of �bration structure. Furthermore, it is also classically correct,
in the sense that any Kan �bration in the usual sense can be equipped with the structure
of an e�ective Kan �bration if we use classical logic. Thus, this notion of an e�ective
Kan �bration has the potential to serve as the basis for a constructive model of HoTT on
simplicial sets.

Thus, the broader context and the underlying motivation behind this work is to ap-
proach the construction of an algebraic model structure using the notion of e�ective Kan
�bration, so that it can be realised as a genuine constructive model of MLTT and HoTT.
We will discuss the main contributions of this work in more detail in the next section.

1.3 Main Contributions
This document can be roughly divided in two parts. The �rst part lifts certain impor-
tant techniques in classical homotopy theory to the structured context. This enriches
the toolbox available for developing homotopy theory with algebraic weak factorisation
systems. Building upon this, the second part of this document will show that the full
subcategory of e�ective Kan �brant objects over any object can be equipped with a path
category structure. This will be an intermediate step which brings us closer to a full
model structure. We will now discuss these two parts in more detail below.

1.3.1 Algebraic Monoidal Model Structures
One important fact about the classical Kan-Quillen model structure on simplicial sets is
that it is monoidal w.r.t. Cartesian product. More concretely, this means that the pushout-
product of two co�brations is again a co�bration, and the pushout-product of co�brations
with trivial co�brations are trivial �brations. These are usually referred to as pushout-
product axioms in the context of monoidal and enriched model categories; see [46] or [43].

From the works of Cisinski [16, 17], it becomes clear that the pushout-product ax-
ioms are extremely useful in the construction of a model structure. In particular, the
mentioned pushout-product axioms help one to characterise weak equivalences between
�brant objects as certain homotopy equivalences. The latter is usually much easier to
describe than the former. Thus, our �rst task is to study more closely how to express the
pushout-product axioms structurally, and de�ne an algebraic notion of monoidal model
category.

Our approach is inspired by an unpublished note of Benno van den Berg and John
Bourke [61], which uses n-fold categories. To motivate this choice, recall that in an al-
gebraic weak factorisation system, the two classes of maps are in fact described by dou-
ble categories; see Chapter 3. Thus, when expressing for instance that co�brations are
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closed under pushout-product, we are in fact seeking a functor, which when given two
maps equipped with co�bration structures, produces another co�bration structure on
the pushout-product of the two underlying maps. This assignment should respect the
double category structure on co�brations, which means it should be functorial for both
horizontal morphisms and vertical compositions between co�brations.

However, the horizontal and vertical compatibility on both of the inputting co�bra-
tions together makes the functoriality involved to be higher dimensional. Concretely, it
means that we must have a proper framework that can describe how the resulting co�bra-
tion structure of the pushout-product functorially depends on the vertical and horizontal
morphisms of both of the inputs. Also see the beginning of Chapter 4.

It turns out that the general theory of strict n-fold categories describes such a situation
exactly. Concretely, n-fold categories are the n-fold iterations of the internal category
construction over Set. In particular, 0-fold categories are simply sets; 1-fold categories
are ordinary categories; and 2-fold categories are double categories. In Chapter 2, we will
develop a presheaf model of general n-fold categories, for any n ∈ ℕ ∪ {∞}.

Before formulating a structured version of pushout-product axiom in Chapter 4, we
will brie�y recall the framework of algebraic weak factorisation systems in Chapter 3.
We also take the chance to introduce the main examples we will be concerned with, viz.
e�ective Kan �bration and other related notions de�ned in [63]. The majority of the con-
tents in this chapter can either be found in the literature of algebraic weak factorisation
systems [27, 12, 11], or in the book [63].

Chapter 4 contains one of the main results of this work. The unpublished note [61]
has stated the possibility to realise the structured pushout-product axioms as morphisms
in a certainmulticategory of algebraic weak factorisation system. The construction of this
multicategory is carefully given in Section 4.2. In fact, our version will be a modi�cation
of the proposed one in the loc. cit., which makes it simultaneously more general and
easier to work with.

The additional generality also allows us to further develop a structured formalism of
Joyal-Tierney calculus, a result that expresses the fundamental duality between pushout-
product and its dual notion, which is usually referred to as pullback-exponential in ho-
motopy theory (cf. [36]). Practically, Joyal-Tierney calculus is a symbolic calculus that
facilitates the computation of iterated lifting problems. Section 4.3 describes how the
duality expressed in Joyal-Tierney calculus manifests itself in this structured context.

Based on this framework, the culmination of Chapter 4 is the notion of an algebraic
monoidal model category. A version of this notion has also been considered by Riehl
in [48]. However, as also felt by the authors of the unpublished note [61], the version
given in the loc. cit. is too weak since the description of pushout-product axioms there
does not involve functoriality of vertical compositions. In Section 4.4, we will provide

9



our axiomatisation of this concept using monoids and bimodules in the multicategory
constructed in Section 4.3. As a bonus, we will also show that the structured Joyal-Tierney
calculus can be used to give equivalent formulations of such algebraic structures, either
by considering pushout-products or pullback-exponentials.

As a major application, in Chapter 5 we will construct an algebraic monoidal structure
for e�ective Kan �brations and other related algebraic weak factorisation systems.

1.3.2 Path Category Structures on E�ective Kan Fibrations
The notion of a path category is introduced in [66], and is a slight strenghening of the
notion of a category of �brant objects à la Brown [13]. In particular, if all objects in a model
category are co�brant, as in the Kan-Quillen model structure on simplicial sets, then the
full subcategory of �brant objects will be an example of a path category. Similar to the
framework of category of �brant objects, many familiar notions and results in homotopy
theory can already be formulated in the context of path categories.

Moreover, path categories are more closely connected to the syntax of type theory. It
is shown in [59] that the syntactic category of any type theory with propositional equality
types can be equipped with the structure of a path category; on the other hand, any path
category can serve as a model of type theory with propositional equality types.4 It is also
observed in [60] that univalence can also be formulated for path categories. Thus, the
notion of a path category is a good intermediate step that bridges the syntactic side of
type theory and the semantic side of model categories.

In the section part of this document, we will �rst show in Chapter 6 that the full sub-
category of (e�ective) Kan �brations over another object can be equipped with a path
category structure. As mentioned, through the work of Cisinski, the monoidal struc-
ture developed in Chapter 5 will be extremely useful here. The homotopical techniques
involved of proving this result is largely inspired Cisinski’s work [17] and another un-
published note of Benno van den Berg and Eric Faber [62].

As also suggested in [62], to extend the above result to a full algebraic model structure
for e�ective Kan �brations, one possible approach is to follow the argument given in [52].
We carefully examine such an approach in Chapter 7. The main contribution there is that,
in Section 7.2, we have identi�ed a single key property, which we call Moore equivalence
extension, such that if it holds for e�ective Kan �brations, we will then be able to show
the existence of a full algebraic monoidal model structure.

4Propositional equality types are weaker than the usual equality types appearing in HoTT, in that its
computational rule does not hold de�nitionally, but only propositionally, i.e. is witnessed by another term
in a higher equality type.
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Chapter 2

Formal Theory of n-Fold Categories

As already discussed in Section 1.3, to properly develop the pushout-product axioms in
the structured context, we need a language that can formulate the compositional struc-
tures of n-fold categories.1

Intuitively, an n-fold category contains a collection of objects with morphisms in
n di�erent dimensions. It also speci�es higher dimensional morphisms forming squares,
cubes, etc., among the arrows in di�erent dimensions, with strict compositional operators
that “past” these (higher) cubes together.

As mentioned in the Introduction, formally n-fold categories are speci�ed as the n-
fold iteration of the internal category construction, which is originally due to Ehres-
mann [21]. However, this inductive formulation makes it harder to use in practice.

Given the intuition above, in this chapter we develop the formal theory of n-fold
categories via presheaf models, based on a version of cubical sets. We call them D-cubical
sets, short for dimensional cubical sets, where we emphasis the cubical operations are book
keeping tools for di�erent dimensions. The name is to distinguish it from the various
other cubical sets used in homotopy theory and cubical type theory, which are arguably
more topologically minded.

In Section 2.1 we will introduce the underlying site ℂ of D-cubical sets, which we
call the shape category of D-cubes. In fact, there is a family of such categories, each cor-
responding to a selection of di�erent dimensions. We will show that the (opposite) cat-
egory of D-cubes form an elegant Reedy category. D-cubical sets are thus de�ned as
copresheaves on ℂ, and can be viewed as a collection of higher dimensional cubes with
speci�ed faces and degeneracies.

Section 2.2 provides the de�nition of n-fold categories via D-cubical sets. The de�ni-
tion there makes it clear that n-fold categories are D-cubical sets equipped with further

1Besides explicitly mentioning, all n-fold categories in this document are assumed to be strict.
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compositional data, which means we can glue cubes together with correct boundaries.
It turns out that the presheaf description of n-fold categories given in this section is es-
sentially the same as that given in [26, Ch. 6]. However, we furthermore provide the
correctness proof of this presheaf model, in the sense that we show the category of n-
fold categories thus de�ned is equivalent to the n-fold iteration of the internal category
construction in Set.

Finally, at the end of this chapter, Section 2.3 will de�ne a notion of n-fold structures,
which is simply an n+1-fold category with one special dimension. This notion will be
the basis of Chapter 4 where we de�ne the structured version of pushout-product axioms
and de�ne algebraic monoidal model categories.

2.1 D-Cubical Sets
Let us de�ne the category ℂ of the shape category of D-cubes, short for the category of
cube dimensions. Let V = {v1, v2,⋯} be a countably in�nite set of variable names, which
we refer to as dimensions.2 We will also use x, y, z,⋯ as meta-variables for these variable
names.
De�nition 2.1. The shape category of D-cubes ℂ is de�ned as follows:

• Its objects are �nite subsets of V ;

• Morphisms f ∶ I → J in ℂ are functions f ∶ I → J ∪ {0, 1},3 where for any x ∈ I
we have f (x) ∈ {x, 0, 1}. ◊

The composition of morphisms in ℂ is given as follows: For any two maps f ∶ I → J

and g ∶ J → K , the composite map

gf ∶ I → K

sends x ∈ I to x , if f (x) = x and g(x) = x . Otherwise, as long as f (x) = i or g(x) = i,
then gf (x) = i. The identity on I simply takes any x ∈ I to itself. It is easy to see that the
composition is associative and unitary.

For any I ∈ ℂ and any x ∈ I , let us denote the subset I −{x} as I x . Then there are two
canonical face maps �x

0
, �

x

1
∶ I → I

x in ℂ as follows,

�
x

0
(y) =

{

y y ≠ x

0 y = x

2For the constructively minded readers: Formally, V should be viewed as a copy of ℕ, so that it is also
decidable, i.e. has decidable equality. This justi�es the use of case distinctions in the following texts.

3We assume that the variable names in V signifying dimensions are disjoint from {0, 1}.

12



�
x

1
(y) =

{

y y ≠ x

1 y = x

More generally, given a map f ∶ I → J in ℂ, we say it is face map on x ∈ I if f (x) = 0 or
f (x) = 1. There is also a canonical degeneracy map �x ∶ I x → I ,

�
x
(y) = y.

Similarly, we say a map f ∶ I → J is a degeneracy map if f (x) = x for all x ∈ I . The
�rst observation is that these two classes of maps generate the entire shape category ℂ

of D-cubes:

Lemma 2.2. Morphisms in ℂ are generated by d0, d1, � under the following equations:

• For any x ∈ I ,
�
x

0
�
x
= 1, �

x

1
�
x
= 1,

• For any x ≠ y ∈ I ,
�
y

0
�
x
= �

x
�
y

0
, �

y

1
�
x
= �

x
�
y

1
.

• For any x ≠ y ∈ I ,
�
x

i
�
y

j
= �

y

j
�
x

i
, �

x
�
y
= �

y
�
x
.

for any i, j ∈ {0, 1}.

Proof. It is easy to verify the correctness of the above equations. Furthermore, for any
f ∶ I → J in ℂ, it has a unique factorisation as follows,

I I
f

J
� �

where I f is the subset of I consisting of those elements x that f (x) = x . Here d can be
realised as a composite of �x

i
and similarly � can be realised as a composite of �y . This

concludes the proof.

In the homotopy theory of diagrams in a model category, one useful notion is that of
a Reedy structures:

De�nition 2.3. A Reedy category R is a category equipped with two wide subcategories
R+,R−, and a total ordering |−| ∶ Ob(R)→ ℕ on objects called degree, such that:

• Every non-identity map in R+ (R−) increases (reduces) degrees strictly;

13



• Every map in R factors uniquely as a map in R− followed by one in R+. ◊

For further references on the importance of Reedy structures, see [50, 49]. We can
indeed put a Reedy structure on ℂ:

• For any I ∈ ℂ, its degree |I | is de�ned as the cardinality of I .

• The two family of classes ℂ−,ℂ+ can be de�ned as composites of face maps and
degeneracy maps, respectively.

We have also shown in Lemma 2.2 that any morphism f ∶ I → J in ℂ can be uniquely
factored as

I I
f

J
� �

where now � ∈ ℂ− and � ∈ ℂ+. In fact, the Reedy structure on (the opposite of) ℂ turns
out to also be elegant (cf. [6]), which means that every cospan of maps in ℂ+ has an
absolute pullback in ℂ+. However, since we will not use this result in the future, we do
not include a proof here.

More generally, for any I ∈ ℂ, there is a full subcategory of ℂ, denoted as ℂI , whose
objects are subsets of I . For n ∈ ℕ, we also denote Vn as the subset of V consisting of
those elements {v1,⋯ , vn}, and we use ℂn to denote ℂVn

. It is easy to see that the elegant
Reedy structure on ℂ is also inherited in these full subcategories.

From an external perspective, the shape category ℂI only depends on the degree of I :

Lemma 2.4. For any I , J , there is an isomorphism ℂI ≅ ℂJ i� |I | = |J |.

Proof. Evidently, any isomorphism ℂI ≅ ℂJ is induced by an isomorphism I ≅ J .

This implies that in the formulation of n-fold categories in the next section, we only
need to consider categories of the form ℂn. However, the categories ℂI for an arbitrary
�nite set I ⊆ V are still useful, as we will see.

A D-cubical set is nothing but a copresheaf on the shape category of D-cubes:

De�nition 2.5. A D-cubical set is a copresheaf on ℂ. The category of D-cubical sets will
be denoted as cSet. Similarly, the category of copresheaves on ℂI will be denoted as cSetI ,
whose objects will be called I -truncated D-cubical sets, or simply an I -D-cubical set. ◊

As mentioned, we think of elements in V as dimensions. Intuitively, given any cubical
set X ∶ ℂ → Set and any I ∈ ℂ, we can view XI as the set of higher cubes extending in
dimensions in I , or simply I -cubes. For instance, X∅ is the set of objects, X{x} is the set of
arrows along dimension x , and X{x,y} is the set of squares along dimension x, y, etc..

14



The action of the face maps and degeneracies maps in ℂ gives the boundary and
degeneracies of the cubes, respectively. For example, given any x ∈ I , the induced maps

�
x

0
, �

x

1
∶ XI → XI x

takes any I -cube to the two one dimensional lower faces along dimension x . Similarly,
the degeneracy

�
x
∶ XI x → XI

takes any I x-cube to the degenerate I -cube, whose extension along dimension x is intu-
itively trivial. This way, the notion of D-cubical sets provides a convenient framework
for de�ning n-fold categories, which is the task of the next section.

2.2 n-Fold Categories
To simultaneously work with n-fold categories for all n ∈ ℕ and also possibly for n = ∞,
from now on we assume n to be an element in the augmented natural numbers ℕ =

ℕ ∪ {∞}. We have de�ned the category ℂn for n ∈ ℕ, and we take ℂ∞ to mean ℂ itself.
Similarly, we have the category of n-trucated D-cubical sets cSetn, where now n ∈ ℕ,
with cSet∞ standing for cSet.

As mentioned at the end of the previous section, for any n-D-cubical set

A ∶ ℂn → Set,

we think of AI as the set of higher cubes along dimensions in I . Furthermore, for any
I ∈ ℂn and x ∈ I , we have a re�exive pair

AI AI
x

�
x

0

�
x

1

�

which takes faces and degeneracies of higher cubes. Given any higher cube a ∈ AI , we
also write

a ∶ b →x c

to mean that
�
x

0
a = b, �

x

1
a = c.

An n-fold category is such an n-D-cubical set with additional compositional data, such
that we can compose higher cubes with correct boundary conditions:
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De�nition 2.6. An n-fold category A, for any n ∈ ℕ, is an object in cSetn

A ∶ ℂn → Set,

such that for any I ∈ ℂn and x ∈ I there is a map

�
x
∶ AI ×A

I
x
AI → AI ,

where the domain is the pullback of �x
0

and �x
1
,

AI ×A
I
x
AI = AI �

x

1

×�x
0

AI .

Given a, b ∈ AI , we say they are composible along dimension x , if

�
x

1
a = �

x

0
b.

For such a, b, we also write b ◦x a for �x (a, b). These composition operators are subject to
the following requirements:

• Unitary along any dimension: For any a ∶ a0 →x a1 in AI ,

a ◦x �
x
a0 = a = �

x
a1 ◦x a.

• Associativity along any dimension: For a, b, c ∈ AI composible along dimension x ,

c ◦x (b ◦x a) = (c ◦x b) ◦x a.

• Naturality: For any f ∶ I → J such that f x = x ,

AI ×A
I
x
AI AI

AJ ×A
J
x
AJ AJ

�
x

f ×f f

�
x

In equation, for any composible a, b ∈ AI along dimension x , we have

f (b ◦x a) = f (b) ◦x f (a).

• Interchange: For any x ≠ y ∈ I and a, b, c, d ∈ AI such that a, c and b, d are com-
posible along dimension x , and a, b, c, d are composible along dimension y ,

(d ◦x b) ◦y (c ◦x a) = (d ◦y c) ◦x (b ◦x a). ◊
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The notion of an n-fold functor between n-fold categories now is straight forward:

De�nition 2.7. An n-fold functor between two n-fold categories

F ∶ A → B

is a natural transformation F ∶ A → B in cSetn which preserves all the compositions:
For any I ∈ ℂn and x ∈ I , for any a, b ∈ AI composible along dimension x ,

F (b ◦x a) = F (b) ◦x F (a). ◊

Notice that since in De�nition 2.6, identities are modelled via degeneracies, naturality
of F already ensures that it preserves identities, thus we only need to additional specify
it preserves the composition operator.

We will writeCatn for the category of n-fold categories. Under De�nitions 2.6 and 2.7,
it is not hard to verify directly that Cat0 ≅ Set and Cat

1
≅ Cat. Going one dimension up,

Cat
2 is the category of double categories; see e.g. [21, 26].
As mentioned, for n ∈ ℕ, our notion of n-fold categories should be correct, in the

sense that Catn+1 should be the category of internal categories in Cat
n. To prove this, the

following auxiliary notion turns out to be useful:

De�nition 2.8. An I -restricted n-fold category A is the same as an n-fold category, but
with composition restricted to dimensions �x only for those x ∈ I . ◊

Similarly, when we talk about m-restricted n-fold categories for m ≤ n, we mean Vm-
restricted n-fold categories. The category of I -restricted n-fold categories will be denoted
as Catn

I
. By de�nition,

Cat
n

∅
≅ cSetn, Cat

n

n
≅ Cat

n
.

For any left exact category C, viz. categories with �nite limits, there is a notion of
internal categories; see e.g. [34, Ch. B1]. Concretely, an internal category A in C is a
diagram as follows,

A1 t×sA1 A1 A0

�
s

t

e

satisfying the algebraic de�nition of being a category. In fact, there is a 2-functor

Cat(−) ∶ Lex → Lex,

taking a left exact category to its category of internal categories. To show

Cat
n+1

≅ Cat(Cat
n
),
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we intend to prove the following more general fact that for any x ∈ I

Cat
n

I
≅ Cat(Cat

n−1

I
x ),

We �rst observe the following fact on the level of sites:

Lemma 2.9. For any I ∈ ℂ and x ∈ I , we have

ℂI ≅ ℂI
x × ℂ1.

Proof. For convenience, we rename the objects and arrows in ℂ1 as follows,

1 0

)0

)1

e

For any J ∈ ℂI , we identify J as the pair (J x , i)where J x = J if x ∉ J , and in that case i = 0;
otherwise, J x as previously de�ned is the set J − {x}, and in this case i = 1. This gives us
a functor

ℂI → ℂI
x × ℂ1,

where on morphisms, we have for any y ≠ x ∈ I ,

d
y

i
↦ (d

y

i
, 1), �

y
↦ (�

y
, 1),

while for x , we have
�
x

i
↦ (1, )i), �

x
↦ (1, e).

Verify that this gives us an isomorphism between categories is straightforward.

The category ℂ1 is the evidently classifying category of re�exive graphs, in the sense
that if Graph

r
(−) denotes the 2-functor

Graph
r
(−) ∶ Cat → Cat,

which takes the category of internal re�exive graphs in any category, then we have a
natural isomorphism

Graph
r
(C) ≅ [ℂ, C],

for any category C, where the latter is the functor category from ℂ to C.
The above result then �rstly means we have the following:

Lemma 2.10. For any I ∈ ℂ and x ∈ I , we have

cSetI ≅ Graph
r
(cSetI x ).
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Proof. By Lemma 2.9, we have

cSetI ≅ [ℂI , Set] ≅ [ℂI
x × ℂ1, Set] ≅ [ℂ1, cSetI x ] ≅ Graph

r
(cSetI x ).

The �nal isomorphism is due to the fact that ℂ1 is exactly the classifying category for
re�exive graphs.

We can describe more clearly what is the constructed isomorphism between cSetI and
Graph

r
(cSetI x ). Given any re�exive graph in cSetI x as follows,

A1 A0

)0

)1

e

the associated I -D-cubical set A has components

AJ =

{

A0,J x ∉ J

A1,J x x ∈ J

It has evident face maps dy
i

for y ∈ I x . For x itself, the face maps for any J ∋ x is given by

�
x

i
= a ↦ )ia ∶ AJ = A1,J x → A0,J x = AJ

x ,

for i = 0, 1; similarly, for J x ∈ ℂI , the degeneracy map on x is given by

�
x
= a ↦ ea ∶ AJ

x = A0,J x → A1,J x = AJ .

Naturality of )0, )1 and e makes sure that these face and degeneracy maps in the x-
dimension interacts well with the other dimension, thus provides a well-de�ned I -D-
cubical set.

With this set up, now we can show:

Proposition 2.11. For any n ∈ ℕ, I ∈ ℂn and x ∈ I , we have

Cat
n

I
≅ Cat(Cat

n−1

I
x ).

Proof. Consider an internal category in Cat
n−1

I
x ,

A1 ×A0
A1 A1 A0

m

)0

)1

e

By the forgetful functor Catn−1
I
x → cSetn−1, we get a re�exive graph in cSetn−1, which as

we have shown corresponds to some A ∈ cSetn. We put a I -restricted n-fold category
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structure on A. Note that for any y ≠ x ∈ I and J ∌ x in ℂI , AJ = A0,J , thus we already
have a multiplication coming from A0,

�
y
= �

y

0
∶ AJ ×A

J
y
AJ = A0,J ×A

0,J
y
A0,J → A0,J = AJ .

For those J ∋ x in ℂI , we also have a corresponding multiplication comming from A1,

�
y
= �

y

1
∶ AJ ×A

J
y
AJ = A1,J x ×A

1,J
x,y
A1,J x → A1,J x = AJ .

Finally, for the composition along dimension x , for any J ∋ x we use the multiplication
m ∶ A1 ×A0

A1 → A1 to construct the multiplication

�
x
= mJ

x ∶ AJ ×A
J
x
AJ = A1,J x ×A0,J

x A1,J x → A1,J x = AJ .

This newly de�ned composition along dimension x is evidently associative since m is; it
is also unitary, because the degeneracy in dimension x in A by construction is given by e;
�nally, naturality of m ensures that �x satis�es interchange with other dimensions.

Corollary 2.12. For any n ∈ ℕ and I ∈ ℂn, CatnI is complete and Cartesian closed.

Proof. It is well-known that the category of internal categories in any complete and
Cartesian closed category is again complete and Cartesian closed.

Corollary 2.13. For any n ∈ ℕ, we have

Cat
n+1

≅ Cat(Cat
n
).

In particular,
Cat

n
≅ Cat

n
(Set).

Proof. This follows from Proposition 2.11, by realising

Cat
n+1

≅ Cat
n+1

n+1
≅ Cat(Cat

n

n
) ≅ Cat(Cat

n
).

Unfolding this n times gives us Catn ≅ Cat
n
(Set).

2.3 n-Fold Structures
As mentioned in Chapter 1, our primary use for the theory of n-fold categories is to de-
scribe structure of morphisms on an ordinary category, and express their compositional
properties. Thus, we would like to have a notion that treats n-fold categories more like
higher dimensional structures on an ordinary category. This consideration leads us to
de�ne the following notion:
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De�nition 2.14. For any n ∈ ℕ, an n-dimensional structure is an n+1-fold category
A, where one dimension is assumed to be horizontal, while the other n dimensions are
assumed to be vertical. ◊

For convenience, when we think of n-dimensional structures, we always assume the
horizontal dimension is to be labelled by a special variable name v0, which is outside V ,
so that the above de�nition honestly applies also to the case when n = ∞.

In an n-dimensional structure, we always think of the horizontal dimension as the
arrows in the underlying category, where this structure lives. More generally, given
an n-dimensional structure A, considered as an n+1-fold category on the variable set
{v0,⋯ , vn}, for any I ⊆ Vn = {v1,⋯ , vn} we may construct a category AI as follows: Its
objects are I -D-cubes in AI , while a morphism from b to c in AI

a ∶ b →0 c

is a cube a ∈ AI∪{v0}
, with the two faces on 0-dimension given by x, y respectively. Com-

position is provided by the 0-dimension composition operator. This construction in fact
gives us the structure of an ℂn-category

A− ∶ ℂn → Cat,

where for any f ∶ I → J in ℂn we have a functor

f ∶ AI → AJ

simply sending any a ∈ AI to f a ∈ AJ .
From this, we can de�ne the underlying category |A| of an n-dimensional structure A

as the evaluation on ∅, when viewed as an object in [ℂn,Cat]. Concretely, objects of |A|

are simply objects of A, viz. A∅; morphisms of |A| are arrows in dimension 0.
To better describe this forgetful functor, we de�ne a 2-category of n-dimensional

structures as a subcategory of [ℂn,Cat] which is full on 2-cells:

De�nition 2.15. The 2-category of n-dimensional structures, denoted as Strn, has ob-
jects as n-dimensional structures, 1-cells as n+1-fold functors, and 2-cells inherited from
[ℂn,Cat]. ◊

Concretely, a morphism between n-fold structures is simply an n+1-fold functor

F ∶ A → B.

which in particular, induces a morphism in [ℂn,Cat],

F− ∶ A− → B−.
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A 2-cell between two such morphisms F , G is a 2-cell in [ℂn,Cat], consisting of natural
transformations for any I ∈ ℂn

'I ∶ FI → GI ,

which are compatible with actions in ℂn: For any f ∶ I → J in ℂn, we require the
following diagram to commute,

AI AJ

BI BJ

FI GI

f

f

GJFJ
'I 'J

The fact that we have realised the 2-category Strn as a sub 2-category of [ℂn,Cat]

gives us many ways to extract information from it. For instance, for any I ⊆ Vn, there is
a corresponding composite as follows,

Strn [ℂn,Cat] Cat
evI

where we denote this composite as

|−|
I
∶ Strn → Cat.

If I = ∅, we simply write |−|, and if I = Vn, we write |−|
n
. This way, for any n-dimensional

structure A, it can be viewed as a structure on higher cubes on the underlying category
|A|, where this forgetful functor forgets all the vertical dimensions in A. The n-forgetful
functor |A|

n
does not forget the structure on all the higher cubes, but it forgets all the

composition structure on vertical directions.
In fact, the construction Str− gives us a pseudo ℕ-graded monoid of 2-categories; for

the precise notion of a graded monoid w.r.t. another commutative monoid, see e.g. [38,
Ch. 2].

Proposition 2.16. Str− gives us a pseudoℕ-graded monoid, such that there are 2-functors

− ⊗ − ∶ Strn × Strm → Strn+m,

and a unit
1 ∶ 1 → Str0,

which is associative and unitary in the obvious sense.
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Proof. Given any A ∈ Strn and B ∈ Strm, for convenience let us assume that B is de�ned
on the dimensions {v0}∪V ′

m
where V ′

m
= {vn+1,⋯ , vn+m}.4 Then the tensor product A⊗B

as an n+m-fold category can be described as follows: For any I ⊆ Vn+m, we have

(A ⊗ B)I ∶= AI∩Vn
× BI∩V

′

m

.

In other words, an I ∪ J -cube in A ⊗ B with I ⊆ Vn and J ⊆ V
′

m
simply consists of an

I -cube in A and an J -cube in B; similarly, a horizontal morphism between them is again
a pair of horizontal morphisms in A and in B. The composition operators of A ⊗B are
thus inherited from A and B in obvious ways.

The unit 1 ∈ Str0 is simply the singleton set, which is evident that it is the unit. The
pseudo associativity of ⊗ is inherited from that of the Cartesian product.

According to Proposition 2.16, the underlying category of A ⊗B is simply the Carte-
sian product of the underlying category of A and and that of B,

|A ⊗ B| ≅ |A| × |B| .

Thus, we think of the tensor product A⊗B as a way of combining an n-structure and an
m-structure on two categories to an n+m-structure on their product. However, the �rst
n dimensions and the last m dimensions have no interactions in this n+m-structure.

Since our aim is to use the notion of n-dimensional structures to describe structure
of morphisms on an ordinary category, one important class of examples of higher di-
mensional structures will be the plain structure of commutative cubes in an ordinary
category:

Example 2.17. For any n ∈ ℕ there is an associated n-dimensional structure, which we
denote as cuben(C). It su�ces to note that for any I ⊆ Vn, the category cuben(C)I is
de�ned as follows,

cuben(C)I ≅ [2
I
, C],

where 2
I is the functor category from the discrete set I to the classifying category of

arrows 2 = {0 < 1}. A functor 2I → C is exactly a commutative higher cube in C, and the
horizontal morphisms between these are simply given by natural transformations. The
composition operators of the higher cubes are evident. Concretely for low dimensions,
cube0(C) can be identi�ed as C itself, while cube1(C) is the double category of arrows and
commutative squares in C.

As mentioned, the tensor product of two higher dimensional structures can be viewed
as a structure over the Cartesian product of the underlying categories. In the case of

4Whenm = ∞, we simply take V ′
m

to be {vn+1,⋯}; if both n,m = ∞, we simply take two disjoint in�nite
sets in Vn .
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higher structure of commutative cubes for categories, given any categories C,D, the
tensor product thus embeds in the following way,

cuben(C) ⊗ cubem(D)� cuben+m(C × D).

The image of the tensor product in cuben+m(C × D) consists of those n+m-dimensional
cubes whose edges are constant on D along the �rst n dimensions, and constant on C
along the last m dimensions. ◊

The content in this chapter will be used extensively in Chapter 4, where we give a
structured treatment of the pushout-product axioms and de�ne algebraic monoidal model
categories. However, to be able to simultaneously apply these concepts to the primary
examples we have in mind, in the next chapter we �rst brie�y recall the framework of
algebraic weak factorisation systems, and then discuss the example of e�ective Kan �-
brations and various other related structures.
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Chapter 3

Lifting Structures and Algebraic Weak
Factorisation Systems

In this chapter we brie�y recall the notion of lifting structures and algebraic weak fac-
torisation systems. Most of the contents on these topics are not new, and can be found
in [12, 27, 11], or the �rst part of the book [63]. However, to make this document self-
contained, and to form a narrative that makes the various de�nitions seem more natural
to the readers, we have included these contents here for sake of readability.

For the unstructured notion, a weak factorisation system, or WFS, on a category C
consists of two classes of maps (L,R), satisfying the following conditions:

• Any map in L lifts against any map in R;

• Any morphism in C factors as a morphism in L followed by a morphism in R.

• L,R are closed under retracts.
The three axioms can be viewed as the axiom of lifting, that of factorisation, and that of
retract; see e.g. [49, 10] for more. In the structured context, the �rst two conditions are
algebraised, while the third axiom is dropped.

Section 3.1 will introduce the algebraisation of the lifting axiom. In particular, we
describe how the lifting condition is replaced by the algebraic notion of lifting operators,
which in turn can be viewed as structures on maps in a category. In this section we will
also introduce special classes of structures on a category C, which we refer to as left and
right structures. We will show that the lifting structures are always of these forms. The
notions of left and right structures are fundamental to our discussion in the next chapter.

In Section 3.2 we will introduce the algebraisation of the factorisation axiom, and
de�ne the notion of an algebraic weak factorisation system. There we will also discuss
the di�erent roles played by the retract axiom in the structured and unstructured context.
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Finally, Section 3.3 will list some of the important examples we intend to study in the
remaining part of this document, including the notion of e�ective Kan �brations. As men-
tioned in the Introduction, these examples are introduced and studied in the book [63],
but we also include them here for completeness.

3.1 Lifting Structures
Let C be a category with �nite limits and �nite colimits. Recall from Section 2.2 that we
use cube1(C) to denote the double category of arrows of C. A structure on arrows of C
can thus be easily described as a double functor

L → cube1(C).

In particular, given any map f ∶ X → Y in C, an L-structure on f is a vertical arrow �

in L over f . The fact that L is a double category over cube1(C) signi�es that there is a
notion of horizontal morphisms of L-structures over squares in C, and that L-structures
can be vertically composed.

To better understand the situation, recall from Section 2.3 that for any n-structure,
there is a notion of n-forgetful functor |−|

n
. In this context, for the double category

cube1(C), its image under the 1-forgetful functor is the category of arrows in C,

|cube1(C)|1 = C→
.

Similarly, any double categoryL over cube1(C), applying |−|
1

gives us an ordinary functor

L → C→
,

where L is the category of L-structures on morphisms of C with horizontal maps. Thus,
the di�erence between L and L is that the former also records how L-structures can be
vertically composed. For us, all of the examples considerred in this document will be
concrete in the following sense:

De�nition 3.1. We say L → cube1(C) is a concrete structure over C, if its image under
the 1-forgetful functor

L → C→

is faithful. ◊

By de�nition, the functor L → C→ being faithful simply means that it is a property,
rather than additional data, that whether a square in C is a morphism between two L-
structures.
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Besides being concrete, for the majority of structures arising in the context of homo-
topy theory, they satisfy additional closure properties w.r.t. pushouts or pullbacks. This
leads us to de�ne the following notions of left and right structures on a category:

De�nition 3.2. A left structure on C is a concrete structure L over cube1(C) that is
furthermore discretely op�bred: For any vertical arrow � in L over f , and for any pushout
a ∶ f → g in C, there exists a unique horizontal morphism a∗ ∶ � → a∗� in L over a,
indicated as follows,

� a∗�

∙ ∙

∙ ∙

a∗

f g

y

a

Similarly, a right structure on C is a concrete structure ℝ over cube1(C) that is discretely
�bred, which means it has unique lifts against pullback squares in C. ◊

Now if L is a left structure over C, then the corresponding 1-category L can be
described as a copresheaf

L ∶ C→

coCart
→ Set,

where C→

coCart
is the category of arrows in C with morphisms being pushout squares.

For any morhpism f , L(f ) will be the set of L-structures over f . Functoriality of L is
guaranteed by the uniqueness of lifts against pushout squares. Similarly, given a right
structure ℝ on C, its underlying category R can be described as a presheaf

R ∶ (C→

Cart
)
op

→ Set.

The importance of the notion of left and right structures lies in the fact that the canon-
ical structures arising from the algebraisation of lifting conditions will be of these forms.
Let us �rst recall the notion of lifting condition in the usual unstructured context:

De�nition 3.3. Given any maps i ∶ A → B and f ∶ X → Y in C, we say i has the left
lifting property against f , or equivalently f has the right lifting property against i, denoted
as i t f , if for any solid square as follows,

A X

B Y

i

u

f

v

there exists a diagonal lift indicated as above. ◊
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Given De�nition 3.3, for any class of maps L on a category C, one usually de�ne the
right lifting class R generated by L as follows,

R = { f ∣ ∀i ∈ L. i t f }.

We also say that R is co�brantly generated by L. Completely dually, given R, there is also
an associated left lifting class of R, which is �brantly generated by R.

To algebraise this notion in the structured context, we not only care about the propo-
sition that for any i ∈ L, i t f , but speci�c lifting operators that assigns f diagonal lifts to
any lifting problem against a morphism i ∈ L, preferrably in a certain compatible way.
This leads to the following de�nition:
De�nition 3.4. Let L be a category over the category of arrows C→. The category Lt

of right lifting structures w.r.t. L is a category over C→ as follows:
• An Lt-structure on a map f ∶ X → Y is a right lifting operator against L, such

that given any commutative diagram with an L-structure � on i,

A X

B Y

i

u

f

v

'(�)[u,v]

' assigns a diagonal lift '(�)[u, v] indicated as above. If it is evident which square
we are talking about, we also simply write '(�). We require ' to be compatible
with horizontal morphisms between L-structures: For any morphism � ∶ �

′
→ �

of L-structures over the square a ∶ i′ → i in C, we have

A
′

A X

B
′

B Y

i
′

i f
'(�

′
)

'(�)

• A morphism � ∶ (f , ') → (g,  ) between two Lt-maps is a commutative square
in C, such that for any L-map structure � on i ∶ A → B, their corresponding lifts
make the following diagram commute,

A X Z

B Y W

i f g
'(�)  (�)

The identity and composition of morphisms between Lt-structures is simply the
identity and composition of squares in C. ◊
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Completely dually, given any category R over C→, we can also de�ne a category tR
over C→ of left lifting structures w.r.t. R, whose objects are arrows in C equipped with
left lifting operators against R that are compatible with horizontal morphisms in R, and
whose morphisms are squares in C compatible with the lifts.

Based on De�nition 3.4, we can furthermore de�ne the right and left lifting structures
w.r.t. a double category over cube1(C):

De�nition 3.5. Let L be a double category over cube1(C). The double category L
t of

right lifting structures over cube1(C) is given as follows:

• An L
t-structure on a map f ∶ X → Y is similarly a right lifting operator ' against

L-structures, that besides being compatible with the horizontal morphisms in L, we
also require the following vertical compatibility: For L-structures � on i ∶ A → B

and � on j ∶ B → C with the following diagram in C,

A X

B

C Y

f

i

j

u

v

'(�)

'(�)

we require that the map obtained by �rst li�ng against � then lifting against �
coincides with the lift against the vertical composite � ∙ � on ji. In equation form,
this means

'(�)['(�)[u, vj], v] = '(� ∙ �)[u, v].

• A horizontal morphism � ∶ (f , ') → (g,  ) between two L
t-maps is similarly

de�ned as a commutative square that are compatible with the lifting structures.

• There is also vertical composition on L
t-structures. Given ' on f ∶ X → Y and

 on g ∶ Y → Z , we de�ne the vertical composition  ∙ ' on gf as the following
lifting operator,

A X

Y

B Z

u

i

f

g

'(�)[u, (�)]

 (�)[f u,v]

v
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In other words, we have that

( ∙ ')(�)[u, v] = '(�)[u,  (�)[f u, v]]. ◊

It can be directly veri�ed that the vertical composition of two L
t-structures is well-

de�ned, thus Lt is a well-de�ned double category over cube1(C); see [11], also [63, Ch.
2.2]. Completely dually, for any double category ℝ over cube1(C), we can also de�ne a
double category tℝ of left lifting structures against ℝ.

Remark 3.6. De�nition 3.4 and 3.5 have introduced an overloading of notations, i.e. the
lifting structures for both 1-categories and double categories are denoted by the same
operators (−)t and t(−), even though they are distinct constructions in separate cases.
We believe though such a choice will not introduce confusion, since it will be clear from
the contexts whether we apply them to a 1-category or a double category. ◊

Terminology 3.7. If R ≅ Lt or ℝ ≅ L
t, we say R,ℝ are co�brantly generated by the

category L or the double category L, respectively. Dually, if L ≅ tR or L ≅
t
ℝ, we say

L,L are �brantly generated by the category R or the double category ℝ.1 ◊

As mentioned, the right and left lifting structures against a double category are typical
examples of left and right structures over a category:

Lemma 3.8. For any double category L over cube1(C), Lt is a right structure on C. Dually,
for any double category ℝ over cube1(C), tℝ is a left structure on C.

Proof. From De�nition 3.5, it is easy to see that Lt is concrete over cube1(C). Suppose
g in C is equipped with a right lifting structure  against L, and let f be a pullback of
g. For any lifting problem of f against an L-map � on i, we may de�ne the lift ' on f as
follows,

A X Z

B Y W

i

y
f g

'(�)  (�)

Here  (�) is induced by  , while '(�) is induced by the universal property of the pull-
back. Since the induced lift '(�) is unique, it is straight foward to verify that ' is a
well-de�ned lifting structure on f . Dually, tℝ also forms a right structure on C.

1Our choice of symbols here will be clear when we describe algebraic weak factorisation systems in
Section 3.2.
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In fact, the construction given in De�nition 3.5 is functorial. Recall from Section 2.2
that we use Cat

2 to denote the category of double categories. The operator L ↦ L
t

forms a functor
(−)
t
∶ (Cat

2
/cube1(C))

op
→ Cat

2
/cube1(C).

Similarly, ℝ ↦
t
ℝ can be viewed as a functor as follows,

t
(−) ∶ Cat

2
/cube1(C)→ (Cat

2
/cube1(C))

op
.

It is shown in [11] that these two functors are adjoint to each other:

Proposition 3.9. There is an adjunction as follows,

(Cat
2
/cube1(C))op Cat

2
/cube1(C)

(−)
t

t
(−)

⊣

Applying the 1-forgetful functor, there is a similar adjunction on the level of ordinary
categories:

Corollary 3.10. There is also an adjunction on the level of 1-categories,

(Cat/C→
)
op

Cat/C→

(−)
t

t
(−)

⊣

3.2 Algebraic Weak Factorisation System
Recall from the start of this chapter that a WFS on C consists of two classes of maps
L,R satisfying the axioms of lifting, factorisation, and retracts. The previous section
successfully algebraises the lifting axiom, now we proceed to algebraise the factorisation
axiom.

What we want ultimately is a structured notion of lifting operators and factorisations,
where the two interact nicely with each other. Most of the content of this section could
be found in [12] or [11]. We include them here for the sake of readability.

To algebraise the notion of factorisation, we start with the following notion:

De�nition 3.11. A functorial factorisation on C is a section of the composition functor

C→

dom×cod C→
→ C→

. ◊
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Concretely, a functorial factorisation consists of three functors

L, R ∶ C→
→ C→

, E ∶ C→
→ C,

such that for any f ∶ X → Y , they produces a factorisation of f as follows,

X Ef Y

Lf Rf

Functoriality of L, R, E implies that, given any square in C

X Y

U V

f

u v

g

viewed as a morphism (u, v) ∶ f → g in C→, the functorial factorisation produces a
diagram as follows,

X Ef Y

U Eg V

Lf

u
E(u,v)

Rf

v

Lg Rg

Notice that due to the nature of functorial factorisation, the two functors L and R

are automatically copointed � ∶ L → 1 and pointed � ∶ 1 → R, respectively. For any
morphism f , the component of � and � on f are give as follows,

X X

Ef Y

Lf f

Rf

X Ef

Y Y

f

Lf

Rf

This way, we may look at the (co)algebras for the (co)pointed functors:

Terminology 3.12. We use (L, �)-coalgebras to denote the coalgebras for the copointed
functor (L, �). The category of (L, �)-coalgebras will be denoted as L, and we also use
L-structures to refer to (L, �)-coalgebras. Similarly, (R, �)-algebras are algebras for the
pointed functor (R, �), and the category of (R, �)-algebras will be denoted as R. ◊
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One reason we are interested in (L, �)-coalgebras and (R, �)-algebras is that, the data
of these allows us to construct certain lifting operators between the two. For instance, by
de�nition, an (L, �)-coalgebra structure on i ∶ A → B and an (R, �)-algebra structure on
f ∶ X → Y are exactly given by diagonal lifts as follows,

A Ei

B B

i

Li

Ri�

X X

Ef Y

Lf f'

Rf

In fact, the above two diagonal lifts are in a certain sense universal for functorial factori-
sation, since they can be used to construct solutions for any lifting problems against i
and f :

Lemma 3.13. Given a functorial factorisation (L, R, E) on C, if i ∈ L and f ∈ R, then for
any lifting problem of i against f as follows,

A X

B Y

i

u

f

v

we can explicitly construct a diagonal lift, verifying that i t f .

Proof. Using the functorial factorisation and the fact that i is an (L, �)-coalgebra and f is
an (R, �)-algebra, we construct the diagonal lift as follows,

X X

A Ei Ef Y

B B

i

Li

Ri�

E(u,v)

Lf

Rf

f�

v

u

In other words, the diagonal lift can be chosen as

�E(u, v)� ∶ B → X.

Thus, for a functorial factorisation (L, R, E) on C, we do have that for any i equipped
with an L-structure and f with an R-structure, i t f holds. In fact, we can say more on
the level of structures:
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Lemma 3.14. Suppose (L, R, E) is a functorial factorisation on C. The diagonal lift given
in Lemma 3.13 can be promoted to functors over C→ as follows,

R → L
t
, L → R

t
.

Proof. Straight forward veri�cation.

The pair (L,R) turns out to also satisfy the retract axiom, in the sense that if i is
equipped with an L-structure and j is a retract of i in the arrow category C→, then j can
also be equipped with an L-structure.

To this end, the only di�erence between the two structures (L,R) on C with a genuine
WFS is that, in the functorial factorisation for any morphism f ∶ X → Y as follows,

X Ef Y

Lf Rf

the two maps Lf and Rf are not equipped with explicit (L, �)-coalgebra and (R, �)-algebra
structures.

One evident enrichment of the structure of a functorial factorisation on C that canon-
ically equips Lf with an L-structure and Rf with an R-structure is when (L, �) can be ex-
tended to a comonad and (R, �) can be extended to a monad. This is one of the reasons
that motivates [27] to introduce the notion of a natural weak factorisation system:

De�nition 3.15. A natural weak factorisation system, or NWFS, on C is a functorial
factorisation (L, R, E) on C such that there are natural transformations � ∶ L → LL and
� ∶ RR → R making (L, �, �) a comonad, and (R, �, �) a monad. ◊

Similar to the case for the (co)algebra of the (co)pointed functors, we have the follow-
ing terminologies:

Terminology 3.16. Given a NWFS (L, �, �) and (R, �, �) on C, we use L-coalgebras to
denote the coalgebras for the comonad (L, �, �). The category of L-coalgebras will be
denoted as L. Similarly, R-algebras are algebras for the monad (R, �, �), and the category
of R-algebras will be denoted as R. ◊

As an easy consequence, we have the following result:

Proposition 3.17. For any NWFS (L, �, �) and (R, �, �) on C, the pair (L,R) consists of a
WFS on C.

Proof. As mentioned, the only thing missing is for Lf and Rf to be equipped with an L-
structure and an R-structure, respectively. This is solved for NWFS, since Lf has a cofree
L-coalgebra structure, and Rf has a free R-algebra structure.
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Terminology 3.18. For any NWFS with comonad (L, �, �) and monad (R, �, �), we will
call the pair (L,R) the underlying WFS of this NWFS, justi�ed by Proposition 3.17. ◊

Notice that there are evident inclusion functors L ⊆ L and R ⊆ R over C→, thus by
Corollary 3.10 we have induced inclusions

L
t
→ Lt, t

R →
tR.

The importance of the classes of (co)algebras lies in the following theorem:

Theorem 3.19. For any NWFS (L, �, �) and (R, �, �) on C, if we compose the functors in
Lemma 3.14 with the inclusions Lt ⊆ Lt and tR ⊆

tR, we get isomorphisms of structures
over C→:

R ≅ Lt, L ≅
tR.

Proof. See [12, Sec. 2.7].

However, the problem now is that the two classes L and R are not closed under
retracts anymore. It is indeed the case that any map equipped with an L-structure can be
written as a retract of a map equipped with an L-structure, viz. the cofree L-coalgebra
generated by L. Similarly for R. Thus, in the context of an NWFS, we may view the WFS
(L,R) as the retract closure of the pair (L,R). However, if we retreat to the unstructured
context, we do have the following result:

Corollary 3.20. Given a NWFS (L, �, �) and (R, �, �) on C, the following are equivalent
(similarly for the dual statements):

• For any i equipped with an L-structure, i t f ;

• f can be equipped with an L
t-structure;

• f can be equipped with an Lt-structure;

• f can be equipped with an R-structure;

Proof. We have already shown the equivalence for the last three conditions. For the
equivalence of the �rst conditions with the others, we only need to notice that to be an
R-map it su�ces to have diagonal lift w.r.t. a single L-map, viz. Lf .

Though the framework of natural weak factorisation systems allows us to algebraise
the notion of left and right classes of maps in a weak factorisation system and obtain
isomorphisms between structures as Theorem 3.19 states, there are still two defects we
would like to improve.
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One important point the current framework fails to explicate is that in a WFS, the
left and right classes of maps are also closed under composition, which follows from the
axioms of a WFS; see e.g. the corresponding sections in [29]. However, such composition
operations are not algebraised in the structured categories of (co)algebras L or R.

Secondly, the isomorphisms we get in Theorem 3.19 are Lt ≅ R and tR ≅ L, which
is asymmetric since they relate the lifting structures of (co)algebras with (co)algberas of
the (co)pointed functors.

It turns out that to account for composition of left and right classes of maps and
to restore balance, a single solution su�ces, i.e. to construct certain double categories of
(co)algebras. This can be very elegantly achieved if we assume an additional distributivity
law between the comonad L and the monad R in the framework of an algebraic weak
factorisation system:

De�nition 3.21. An algebraic weak factorisation system, or an AWFS, is a NWFS (L, �, �)
and (R, �, �) on C satisfying the following property: There is a canonical natural trans-
formation LR → RL such that for any f , its component is given by the following square

Ef ELf

ERf Ef

LR
f

�f

RL
f

�f

We require this to form a distributivity law between the comonad L and the monad R.
Equivalently, this is to require the following equation (cf. [63, Prop. 2.4]):

�f �f = �Lf
E(�f , �f )�Rf

. ◊

It is shown in [12] that in an AWFS, we can de�ne vertical compositions of L-coalgebras
and R-algebras, so that they naturally form two double categories, which will be denoted
as L,ℝ, respectively. In particular, the underlying categories of L,ℝ will be L,R, respec-
tively. From now on, we will use the pair (L,ℝ) to denote an AWFS on a category C.
This solves our �rst problem, i.e. now we also have a fully algebraic description of the
composition structures.

Furthermore, we have the following result, which is a balanced isomorphism between
the structures of coalgebras and algebras:

Theorem 3.22. For an AWFS (L,ℝ) on C, there are isomorphisms

L
t
≅ ℝ,

t
ℝ ≅ L,

which are transposes to each other under the adjunction described in Proposition 3.9.
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Proof. See [12, Prop. 20].

From Theorem 3.22 and under Lemma 3.8, it follows that the left class L in an AWFS
is always a left structure on C, because it is isomorphic to tℝ over cube1(C). Similarly,
the right class ℝ will always be a right structure on C.

There is also a notion of morphisms of AWFSs, which is important for the de�nition of
algebraic model structures; see Section 4.23. However, a direct formulation of morphisms
between AWFS is somewhat complicated. Here we follow [11, Prop. 9] and use the
following result to equivalently characterise morphisms between AWFSs:

Proposition 3.23. A morphism between two AWFSs (ℂ0,F0) → (ℂ1,F1) is equivalently
described as

• a double functor of the left structures ℂ0 → ℂ1 over cube1(C);

• a double functor of the right structures F1 → F0 over cube1(C).

3.3 Examples ofAlgebraicWeakFactorisation Systems
In this section we brie�y recall various AWFSs described in the book [63], which will
be the main focus of the second part of this document. We work with an underlying
category C with �nite limits, �nite colimits, and is locally Cartesian closed.

3.3.1 Co�brations and E�ective Trivial Fibrations
The notion of dominance was �rst introduced in [51] for toposes. A dominance Σ on C
is a family of monomorphisms satisfying the following properties:

• Σ is closed under isomorphisms, composition, and pullbacks.

• There is a Σ-classi�er ⊤ ∶ 1 → Σ, which is the terminal object of the category
Cart(Σ), with objects asΣ-maps and morphisms as Cartesian squares between them.

For us, we will assume the additional property that

• Σ is closed under �nite unions.

In concrete examples, e.g. in simplicial sets, the choice of a dominance structure will be a
class of monomorphisms that supports some form of classical reasoning in a constructive
context; see e.g. [63, Ch. 8].
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Given a dominance Σ on C, there exists an explicit construction of an AWFS (Σ,T)
on C. For any map f ∶ X → Y , we have the following factorisation

X Ef = ∑
y∶Y

∑
�∶Σ

X
�

y
Y

Lf Rf

where Ef is Σ-partial map classi�er into X over Y . For more detailed description of the
(co)monad structures of this AWFS, we refer the readers to [12, Sec. 4.4] and [63, Ch. 3].

For us, the most important feature of this AWFS (Σ,T) on C is that we have a very
explicit description of the double category of coalgebras:

• Σ-coalgebra structure is propositional, i.e. a map can be equipped with a Σ-structure
i� it belongs to Σ; see [63, Prop. 3.2].

• The vertical composition of Σ-maps are simply composition of maps in Σ. A hori-
zontal morphism of Σ-maps is a pullback square; see [63, Lem. 3.1].

• Σ is closed under retracts; see [63, Lem. 4.2].

This completely determines the double category of Σ-coalgebras. Even nicer, since Σ
is closed under retracts, the coalgebras for the comonad and the coalgebras for the co-
pointed functor for this AWFS coincide.

This way, the right class for this AWFS is also completely determined as T ≅ Σ
t by

Theorem 3.22. For the class T of algebras of the pointed functor, by Theorem 3.19 we
also have T ≅ Σ

t, where now Σ is viewed as the underlying category of Σ-maps. The
underlying WFS for this AWFS is simply given by (Σ,T).

From now on, we introduce the following terminology for this AWFS:

Terminology 3.24. We say a morphism is a co�bration i� it belongs to Σ. A morphism
equipped with a T-structure will be referred to as an e�ective trivial �bration. A mor-
phism in T will simply be denoted as a trivial �bration. ◊

3.3.2 HDRs and Naïve Fibrations
Now assume C is also equipped with a symmetric Moore structure. Concretely, it consists
of the following data:

• There is a pullback-preserving endo-functor M on C, taking every object X to its
Moore path object MX .
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• There are natural transformations r ∶ 1 → M , s, t ∶ M → 1, � ∶ M t×sM → M ,
and � ∶ M → M , making every object X in C an internal †-category with object
of arrows MX .2

• There is a connection Γ ∶ M → MM making (M, s, Γ) a comonad,

• There is also a strength � making M a strong Cartesian comonad.3

These data are further required to satisfy some additional conditions, which for the con-
venience of the readers we have recorded in Appendi A. For more discussions on the
relevance of these axioms, we refer the readers to [63, App. A.1].

Furthermore, it is shown in [63, Ch. 4] that such a Moore structure also induces an
AWFS (ℍ,ℕ) on C. For any map f ∶ X → Y , the functorial factorisation is obtained as
follows,

X MY t×fX Y

⟨rf ,1⟩ s�MY

Similar to the case of the AWFS from the dominance structure, in this case we can also
completely characterise the left class ℍ, or its retract closure H. Recall that in the sym-
metric Moore structure we have a comonad (M, s, Γ), and we use (M, s)-coalgebras and
M-coalgebras to refer to the coalgebras for the copointed functor (M, s) and the comonad
(M, Γ, s), respectively. We have the following general characterisations:

Proposition 3.25. The categories H and H are equivalent over cod ∶ C→
→ C to the

category of (M, s)-coalgebras and M-coalgebras, respectively.

Proof. See [63, Prop. 4.4].

An important consequence of Proposition 3.25 is that both the categories H and H

now have pullbacks:

Corollary 3.26. The categories H and H have pullbacks.

Proof. This is due to the fact that M preserves pullbacks, thus the forgetful functor from
the category of (M, s)-coalgebras and M-coalgebras to C creates pullbacks.

2A †-category E is a category equipped with an involutive, identity-on-object functor † ∶ Eop → E;
see e.g.[28, Ch. 2.3].

3For the notion of strength of monads, see e.g. [39].

39



It is also instructive to look at the relationship between H and Σ. It is observed in [63,
Lem. 4.1] that for any ) ∶ A → B in ℍ, or in fact in H, the following will be a pullback

A B

B MB

)

)

H

r

From the assumption on the symmetric Moore structure, r is always co�brant. It follows
that ) is also a co�bration. It is also observed in [63, Prop. 4.5] that, under the assumption
of r being a Cartesian natural transformation, horizontal morphisms in ℍ and in H are
always pullback squares. This implies the following result:
Proposition 3.27. There is a morphism of AWFSs on C as follows

(ℍ,ℕ)→ (Σ,T).

Proof. By Proposition 3.23, it su�ces to give a double functor for the two left structures
ℍ → Σ over cube1(C). This is evident, since the structure Σ is propositional.

We now introduce terminology for referring to maps in the left and right classes of
this AWFS:
Terminology 3.28. Morphisms equipped with ℍ-structures are called hyperdeformation
retracts, or HDRs in short. For maps in the retract closure H, we simply denote them as
Hdrs. For the right class, we will call ℕ-maps e�ective naïve �brations, and maps in N

simply as naïve �brations. ◊

One consequence of Proposition 3.27 is that there will also be a morphism of right
structures T → ℕ, which means every e�ective trivial �bration is also an e�ective naïve
�bration. The central notion of e�ective Kan �bration is an intermediate structure be-
tween them, and will be the focus of next subsection.

3.3.3 E�ective Kan Fibrations
As described in [63, Ch. 6], e�ective Kan �brations are co�brantly generated by mould
squares. These are essentially Cartesian co�brations between HDRs:
De�nition 3.29. A mould square is a square as follows,

A B

C D

)a

i j

)c
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where i, j are co�brations and )a, )c are HDRs, and the square is a Cartesian map of HDRs,
which means it is a morphism of HDRs and both of the following squares are pullbacks,

A B A

C D C

)a

i j

�a

i

)c
�c

Here �a, �c are the retracts of )a, )c induced by the HDR structure (cf. [63, Ch 4.2]). ◊

One important type of mould squares comes from squares spanned by a co�bration
and an HDR:

Lemma 3.30. Suppose i ∶ A → B is a co�bration and ) ∶ C → D is an HDR, then the
following square is a mould square,

A × C A × D

B × C B × D

A×)

i×C i×D

B×)

Proof. From Corollary 3.26 we know that the product of two HDRs are again HDRs, thus
the two horizontal arrows are HDRs. We also know that co�brations are closed under
pullbacks, thus the vertical maps are co�brations. It is also easy to see that this square
consists of a Cartesian morphism of HDRs.

The lifting problem associated to a mould square is formulated as follows. For any
given map f ∶ X → Y , a lifting problem against a mould square is indicated as the solid
part of the diagram below,

A B X

C D Y

)a

i j

u

f

)c

d

v

'

And we say this lifting problem has a solution if there exists a dashed arrow ' as above
making everything commute.

In essence, we think of mould squares as a representation for its co�bre arrow, a notion
we will be discussing in Chapter 4; see De�nition 4.5. For the mould square above, the
co�bre arrow of it is simply the universally induced arrow from the pushout of B and C
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along A into D. It is easy to see that the above lifting problem is equivalent to the one
below,

B +A C X

D Y

[j,)c ]

[u,d]

f

v

'

which is the more familiar way of formulating lifting problems as discussed in Section 3.1.
In fact, one of the motivation for de�ning mould squares is to better formulate lifting

structures w.r.t. the pushout-products of co�brations and HDRs, which are co�bre arrows
of those mould squares given in Lemma 3.30 (cf. [63, Ch. 6]). The advantage of using
the notion of mould squares is that they have several natural composition structures that
allow us to easily de�ne compatibility conditions.

We start with a description of the category M of mould squares. From Corollary 3.26
we know that HDRs can be pulled back along morphisms of HDRs. As a direct conse-
quence, it is easy to see that mould squares can also be pulled back along morphisms of
HDRs, resulting cubes of the following form,

A B

A
′

B
′

C D

C
′

D
′

)a

j

i

i
′

j
′

)
′

c

)c

)
′

a

where the top and bottom faces are morphisms of HDRs, and all the faces are Cartesian.
To be more concrete, we can de�ne a category M of mould squares, with objects being
mould squares and morphisms being cubes as shown above. It can indeed be viewed as
a category over C→, associating each mould square to its co�bre arrow as follows,

A B B +A C

C D D

↦

)a

i

)c

j [j,)c ]

We thus de�ne the notion of Kan �brations as co�brantly generated by this category:

42



De�nition 3.31. A Kan �bration is a map f equipped with a right lifting structure w.r.t.
the category M. The category of Kan �brations will be denoted as F, with F ≅ Mt. ◊

Remark 3.32. In the classical homotopy theory for simplicial sets, the term “Kan �bra-
tion” denotes those maps that have the right lifting property against all horn inclusions
(cf. [25]). Our notion of Kan �bration when specialised to simplicial sets is closely related
to this de�nition, and indeed coincide assuming classical logic [63, Ch. 12]. ◊

We think of F as the retract closure of the e�ective structure that we are going to
de�ne in a moment. Notice that this view is compatible with Proposition 3.19, where we
think of M as a category of generating e�ective trivial co�brations.

For the e�ective structure, notice that mould squares can be composed in two direc-
tions, viz. horizontal and vertical, which are inherited from the vertical compositions of
HDRs and co�brations, respectively. It is also straight forward to see that the horizontal
and vertical compositions of mould squares are again mould squares. An e�ective Kan
�bration is thus a lifting structure against mould squares, with compatibility conditions
in these three dimensions:

De�nition 3.33. We say a Kan �bration f ∶ X → Y is an e�ective Kan �bration if its
lifting structure against mould squares is furthermore compatible with horizontal and
vertical compositions of mould squares. ◊

From De�nition 3.5, it is not hard to specify what exactly are these compatibility
conditions, and we refer the readers to [63, Sec. 6.1] for a more detailed description. The
crucial thing for us is that the notion of e�ective Kan �brations again organise themselves
as a right structure F on C. Based on F, we can also de�ne its corresponding left class:

De�nition 3.34. We say a map is a trivial co�bration if it is equipped with an tF-
structure, where F is the underlying category of e�ective Kan �brations. Similarly, we
say a map is an e�ective trivial co�bration if it is equipped with an tF-structure. ◊

The category of trivial co�brations will be denoted as C, with C ≅
tF. The double

category of e�ective trivial co�brations will be denoted as ℂ, with ℂ ≅
t
F. In particular,

if a map arise as the co�bre arrow of a mould square, then by De�nition 3.31 we know
that it is an e�ective trivial co�bration.

Notice that, HDRs in fact embeds into mould squares, and mould squares embeds into
Σ. From any HDR )a ∶ A → B, we may form a mould square as follows,

∅ ∅

A B
)a

43



A lifting solution against )a is indeed equivalent to a lifting solution against this mould
square. It is easy to see that the above construction extends to a functor H → M, which
suggests that there will be a morphism F → N under the adjunction in Corollary 3.10.
Furthermore, the vertical compatibility condition of lifting against HDRs translates to
the horizontal compatibility of lifts against mould squares, thus we similarly have a mor-
phism of right structures F → ℕ.

On the other hand, by the assumption on the dominance, co�brations are closed un-
der �nite unions. Due to the fact that HDRs are also co�brations established in Proposi-
tion 3.27, it follows that there is a functor M → Σ over C→, which again induces a map
T → F. Similarly we can show that this extends to right structures T → F. For more
details see [63, Sec. 6.1].

Currently from an axiomatic perspective, we do not know whether there is a general
method of constructing an AWFS on (ℂ,F). However, at least concerning the primary
application of this framework on simplicial sets, we know that the corresponding right
class of e�ective Kan �brations is co�brantly generated by a small, in fact countable,
double category [63, Ch. 12], [5]. Hence, it is hopeful to adapt the small object argument
for double categorical co�brant generation described in [12] to this case, and obtain a
constructive argument for the existence of an AWFS. But this goal is quite orthogonal to
the objective of this document, and we will not try to answer it here.
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Chapter 4

Algebraic Monoidal Model Structures

This chapter contains the main contribution of the �rst part of this document, in which
we provide a structured approach towards pushout-product axioms, and obtain a no-
tion of an algebraic monoidal model category. Recall the de�nition of ordinary pushout-
products of two maps i ∶ A → B and m ∶ X → Y in a category C with a monoidal
product ⊗, which is given by the co�bre arrow of the following square,

A ⊗ X A ⊗ Y

B ⊗ X B ⊗ Y

A⊗m

i⊗X i⊗Y

B⊗m

where we recall from Section 3.3.3 that the co�bre arrow denotes the following uniquely
induced map

B ⊗ X +A⊗X A ⊗ Y → B ⊗ Y .

Now the pushout-product axioms in its most general form says that if i has structure C0,
m has structure C1, then the induced co�bre arrow has structure C2, for some left classes
of maps C0,C1,C2 in some WFSs.

From a structural perspective, after the discussion in Chapter 3 of AWFSs, these struc-
tures should all be understood as certain left structures over C, with explicit notion of
vertical compositions and horizontal morphisms. Furthermore, the pushout-product ax-
ioms should also be understood as certain functorial operators, that transform ℂ0-maps
and ℂ1-maps to ℂ2-structures on the co�bre arrow of the associated square.

While discussing mould squares and e�ective Kan �brations in Section 3.3.3, we have
noticed that for such co�bre arrows, the best way to formulate its functorial property is to
stay on the level of squares. Intuitively, if we understand the ℂ2-structure on the co�bre
arrow as a structure on this square, then it makes sense to say whether this ℂ2-structure
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depends functorially on the vertical and horizontal morphisms of ℂ0 and ℂ1-maps, since
all of them induce evident horizontal and vertical maps of squares. This observation
makes it clear that we would like to study structures on higher cubes, which is the main
reason we have introduced the framework of n-fold categories in Chapter 2. Furthermore,
it is evident that each edge of a square generated by pushout-products are constant on all
but one dimensions, which suggests that the graded monoidal structure of n-structures
we have de�ned in Section 2.3 will also be of use.

In Section 4.1 we will make this notion of structures on higher cubes as structures
on their co�bre arrows precise. Based on this, in Section 4.2, we will introduce a Grpd-
enriched multicategory of left structures, such that the pushout-product axioms can now
be realised as certain multimorphisms. Intuitively, the multicategory structure arises be-
cause the pushout-product axiom takes two structures on arrows to a single structure on
squares.

In Section 4.3, we describe the structured version of Joyal-Tierney calculus, which
will be useful for the later part of this document. Finally, based on all the previous devel-
opment within this chapter, Section 4.4 arives at a notion of algebraic monoidal model
categories, and give several equivalent characterisations for it using the structured Joyal-
Tierney calculus.

4.1 Cubes and Co�bre Arrows
To describe the abstract shape of higher cubes and their co�bre arrows, it turns out that
the category Δ+ is quite useful. Δ+ can be seen as the skeletal category of �nite linear or-
ders, whose objects are �nite ordinals n ∈ ℕ, and morphisms aremonotone maps between
them.

Δ+ has a universal property: It is the free monoidal category with a monoid. The
monoidal structure ⊗ on Δ+ is the ordinal sum, i.e. n ⊗ m = n + m. The reason we
write ⊗ rather than + for the ordinal sum is that this is not a braided monoidal structure.
The monoid in Δ+ is given by the diagram

0 1 2 = 1 ⊗ 1

The maps are unique because 1 is the terminal object in Δ+. It can be easily seen that all
the maps in Δ+ are generated by the above unit and multiplication maps, which are face
and degeneracies, under the monoidal structure.

Now inCat equipped with the Cartesian monoidal structure, there is a monoid (2, ∧, 1)
on the linear order 2 = {0 < 1} with multiplication being conjunction. This gives us a
strict monoidal functor

B ∶ Δ+ → Cat,
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taking n ∈ Δ+ to 2n. The action on morphisms are completely induced by the conjunction
monoid structure on 2. Concretely, for the i-th face map di ∶ n → n + 1 the action

B(di) ∶ 2
n
→ 2

n+1

is given by inserting the element 1 at the i-th place, if we view elements in 2
n as sequences

of length n. For the i-th degeneracy map si ∶ n + 1→ n

B(si) ∶ 2
n+1

→ 2
n
,

the action takes the conjunction of the i-th and i+1-th place.
Using the functor B ∶ Δ+ → Cat we have constructed above, there is an associated

nerve construction (cf. [44]):
NB ∶ Cat → CatΔ+ ,

where CatΔ+
is de�ned to be the functor category [Δop+ ,Cat], and the nerve is given by

NB(C) ∶= Cat(B(−), C).

In particular, for any n ∈ ℕ, the nerve (NB C)n is the category of n-cubes in C, which is
the image of the n-fold structure cuben(C) under the n-forgetful functor; see Section 2.3.
However, the di�erence here is that this nerve NB(C) is not indexed by ℂ, but by Δ+, and
the action on morphisms between these cube categories is di�erent. For concreteness,
we look at examples at lower dimensions:

Example 4.1. By de�nition, for n = 0, 1 we have

(NB C)0 ≅ C, (NB C)1 ≅ C→
,

where C→ is the category of arrows in C. The functor B takes the map 0 → 1 in Δ+ to
the inclusion functor ∧0 ∶ 1 → 2 as follows,

∙

∙ ∙

By precomposing with this functor, the action on the nerve

∧
∗

0
∶ C→

≅ (NB C)1 → (NB C)0 ≅ C

takes any morphism f in C to its codomain,

∧
∗

0
≅ cod ∶ C→

→ C. ◊
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Example 4.2. By de�nition, for n = 2 we have

(NB C)2 ≅ C□
,

where C□ is the category of commutative squares in C. Notice that the functor B takes
the multiplication 2→ 1 inΔ+ to the conjunction functor ∧ ∶ 2×2 → 2 inCat represented
by the following diagram,

∙ ∙ ∙

∙ ∙ ∙

By precomposing with this functor, the action on the nerve

∧
∗
∶ C→

≅ (NB C)1 → (NB C)2 ≅ C□

takes any morphism f in C to the following square,

∙ ∙ ∙

∙ ∙ ∙

f ↦ f

f

As one can see, this does not send a morphism to the degenerate square, hence is di�erent
from the D-cubical acions described in Section 2.3. ◊

As mentioned, for any f ∶ n → m in Δ+ the action on the nerve is given by precom-
position with B(f ),

(NB C)m ≅ Cat(2
m
, C) Cat(2

n
, C) ≅ (NB C)n.

B(f )
∗

If C has �nite colimits, these precomposition functors will have left adjoints, given by left
Kan extensions (cf. [44, 49]). This way, for �nitely cocomplete C there is also an associated
augmented (pseudo) cosimplicial object in Cat, again sending n to (NB C)n while sending
f ∶ n → m to the left Kan extension

B(f )! ∶ (NB C)n → (NB C)m.

Again, let us look at some examples in low dimensions:

Example 4.3. As shown in Example 4.1, the precomposition acts as follows,

∧
∗

0
≅ cod ∶ C→

→ C,
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where now its left Kan extension

∧0,! ∶ C → C→

takes any object X to the map ∅→ X . ◊

Example 4.4. As shown in Example 4.2, on the multiplication map of the universal
monoid in Δ+ we have the following adjunction between C□ and C→

∧! ⊣ ∧
∗
,

where now the left Kan extension ∧! takes any square in C to its co�bre arrow (!):

A B B +A C

C D D

f

g u ↦ [u,v]

v

More generally, for the n-fold multiplication map ∧n ∶ n → 1, the precomposition and
left Kan extension adjunction gives us

∧n,! ∶ (NB C)n → C→
∶ ∧

∗

n
,

where the left adjoint forgets the terminal object in 2
n and takes the colimit of the remain-

ing diagram, and maps it to the uniquely induced map from the colimit to the original
terminal object. ◊

Although already appeared multiple times, here we give the o�cial de�nition of the
co�bre arrow of a general higher cube:

De�nition 4.5. For any higher cube in a �nitely cocomplete category C, viz. a functor
2
n
→ C in (NB C)n, we denote the image of it under ∧n,! as its co�bre arrow. ◊

This way, we can easily specify the idea that for any structure of L-maps on a cate-
gory C, an L-structure on a higher cube can be de�ned as an L-structure on its co�bre
arrow:

De�nition 4.6. Given a category L over C→, the category of L-co�bre n-cubes, denoted
as cofn(L), is de�ned as the following strict pullback

cofn(L) L

(NB C)n (NB C)1 ≅ C→

∧n,!

y
◊
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By de�nition, an object in cofn(L) is consists of an n-cube and an L-structure on the
co�bre arrow of this n-cube. Morphisms between them are simply horizontal morphisms
of n-cubes, with an associated horizontal morphisms of L-structures on their co�bre
arrows.

However, currectly cofn(L) is still an ordinary category. If L is the category of coal-
gebras coming from an AWFS (L,ℝ), we would like to furthermore de�ne full vertical
compositions on higher cubes with compatible compositions on co�bre arrows to obtain
an n-structure on C, such that cofn(L) becomes its image under the n-forgetful functor.

It turns out that this works more generally for all discretely op�bred structures over
C; see De�nition 3.2.

Theorem 4.7. If L is induced from a left structure L over cube1(C) under the 1-forgetful
functor, then the above category cofn(L) of L-co�bre n-cubes can be promoted to an n-fold
structure cofn(L) of L-co�bre n-cubes which lives over cuben(C),

cofn(L)→ cuben(C),

and whose image under |−|
n
is given by

cofn(L)→ (NB C)n.

Proof. To makes cofn(L) into an n-fold structure over cuben(C), we need to construct
the vertical composition on each dimension. We explicitly construct the composition
operator for the case of n = 2, which is in most cases what we actually need. The proof
for higher dimensions is completely analogous.

Suppose now we have the following composible 2-cubes

A C E

B D F

a b

with L-structures � on B +A C → D and � on D +C E → F . We need to de�ne an
L-structure on the pushout-product of the composed square (A, B, E, F ). The crucial ob-
servation is that we have the following diagram,

B +A C B +A E

D D +C E F

c

y
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with the left square a pushout. Let us use c to denote this pushout, thus by assumption
c∗� will be an L-structure on B +A E → D +C E, since L is discretely op�bred over C.
Then we can de�ne the L-structure on the total pushout-product B+AE → F to be � ∙c∗� ,
the vertical composition of the L-structure on B +A E → D +C E with D +C E → F . The
composition operator on the other dimension is completely similar.

The veri�cation of unity, associativity and naturality are all straight forward, and we
leave them for the readers. Here we explicitly verify the interchange law of the composi-
tion operators, which is less trivial. Suppose we have four composible L-co�bre squares
as follows,

A C E

B D F

U V W

a b

u v

with L-structures �, �, �, � on the co�bre arrows of a, b, u, v, respectively. The two ways
of composing the L-structures on the co�bre arrows, either by �rst composing to the
right then downwards, or �rst downwards and then to the right, can be summarised in
the following commuting diagram,

B +A C B +A E

U +A C U +A E

D D +C E F

U +B D U +B D +C E U +B F

V V +C E V +D F

c

e d

f

g

ℎ i

Concretely, if we �rst compose to the right and then downwards, the L-structure on the
co�bre arrow of the total square is given by

� ∙ (iℎ)∗� ∙ (g ∙ d)∗(� ∙ c∗�) = � ∙ i∗ℎ∗� ∙ g∗� ∙ d∗c∗�.
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On the other hand, if we �rst compose downwards and the to the right, the L-structure
we get is given by

� ∙ (i ∙ g)∗� ∙ (ℎ ∙ f )∗ ∙ (� ∙ e∗�) = � ∙ i∗g∗� ∙ ℎ∗� ∙ f∗e∗�.

Due to the commutativity of the diagram above and uniqueness of coCartesian lifts,

f∗e∗� = d∗c∗�,

and also
i∗ℎ∗� ∙ g∗� = ℎ∗� ∙ i∗g∗�.

Thus, the interchange law holds, and we have a genuine 2-structure on C.

Suppose C also has �nite limits, then we can also talk about left structures on the
opposite category Cop, which we think of as right structures on C. In this case, the asso-
ciated left Kan extension functor

(Cop
)
□
→ (Cop

)
→

when interpreted in C, acts on squares in C as follows,

A B A

C D B ×D C

f

g u ↦ ⟨f ,g⟩

v

In other words, it takes a square to its �bred arrow. More generally, completely dual to
De�nition 4.5, the associated �bred arrow of a higher cube is the uniquely induced map
from the initial vertex to the �nite limit of the remaining diagram.

Given a right structure ℝ → cube1(C), from Theorem 4.7 we also have an n-structure
fibn(ℝ) of n-�bre ℝ-cubes, by formally viewing it as follows,

fibn(ℝ)
op
≅ cofn(ℝ

op
).

Here we treat ℝop as a left structure on Cop. Such a construction allows us to also talk
about right structures on C via left structures on Cop.
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4.2 The Multicategory of Left Structures
Theorem 4.7 which associates an n-dimension structure ofL-co�bre n-cubes on C for any
left structure L allows us to further de�ne a Grpd-enriched multicategory LStr of all left
structures; for the notion of multicategories, see e.g. [40]. Here Grpd is the category of
groupoids. But before that, we �rst de�ne a Grpd-enriched multicategory ℝex of �nitely
cocomplete categories.
De�nition 4.8. The Grpd-enriched multicategory ℝex consists of the following data:

• An object is a �nitely cocomplete category;

• A morphism F ∶ (C1,⋯ , Cn)→ C0 in ℝex is a functor
F ∶ C1 ×⋯ × Cn → C0,

such that it is preserves �nite colimits on each entry;1

• A 2-cell between two morphisms � ∶ F ≅ G ∶ (C1,⋯ , Cn) → C0 is simply a
natural isomorphism between the underlying functors. ◊

In this case, the composition of multimorphisms and the Grpd-enrichment in ℝex

are evidently inherited from the Cartesian product structure of the 2-category of �nitely
cocomplete categories. The Grpd-enriched multicategory LStr will be a multicategory
over ℝex. Concretely, it is de�ned as follows:
De�nition 4.9. The Grpd-enriched multicategory of left structures LStr consists of the
following data:

• An object over a �nitely cocomplete category C is a left structure L on C;

• A morphism (L1,⋯ ,Ln)→ L0 over a functor
F ∶ C1 ×⋯ × Cn → C0,

is a lift of morphisms of n-structures as follows,

L1 ⊗⋯ ⊗ Ln cofn(L0)

cube1(C1) ⊗⋯ ⊗ cube1(Cn)

cuben(C1 ×⋯ × Cn) cuben(C0)

F̂

cuben(F )

1Notice that by de�nition, a morphism ()→ C is simply specifying an arbitrary object in C, since the
condition that it preserves �nite colimits on each entry of the empty list is trivially satis�ed.
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Here the morphism

cube1(C1) ⊗⋯ ⊗ cube1(Cn)→ cuben(C1 ×⋯ × Cn)

is described as in Example 2.17.

• A natural isomorphism F ≅ G in ℝex consists of a 2-cell in LStr i� the L0-structures
assigned by F̂ and Ĝ coincide under this natural isomorphism. ◊

Let us discuss more closely what the de�nition of 2-cells in LStr means. Notice that
given any F ∶ C1×⋯× Cn → C0, the co�bre arrow construction induces a corresponding
functor

F̂ ∶ C→

1
×⋯ × C→

n
→ C0,

where for any {fi ∈ C→

i
}
1≤i≤n

, F̂ (f1,⋯ , fn) is the co�bre arrow of the cube spanned by
(Ff1,⋯ , F fn), which we call the F -pushout-product of f1,⋯ , fn. If we have a natural iso-
morphism F ≅ G, it also induces one on the level of pushout-product. For this natural
isomorphism to be a 2-cell inLStr, we require for any �i ∈ Li over fi , the twoL0-structures
F̂ (�1,⋯ , �n) and Ĝ(�1,⋯ , �n) coincide under the isomorphism F̂ (f1,⋯ , fn) ≅ Ĝ(f1,⋯ , fn).
Notice that this makes sense because as discussed in Section 3.1, the underlying category
L0 of L0 can be viewed as a copresheaf on C→

0
, and copresheaves preserve isomorphisms.

After we have shown that LStr is a well-de�ned Grpd-enriched multicategory, the
forgetful functor |−| ∶ Strn → Cat will also induce

|−| ∶ LStr → ℝex.

This de�nition on LStr makes it faithful on 2-cells. On the other hand, we also have
a multifunctor the other way around, taking any �nitely cocomplete category C to its
trivial structure cube1(C),

cube1(−) ∶ ℝex → LStr,

which exhibits ℝex as a retract of LStr. For any morphism in ℝex

F ∶ (C1,⋯ , Cn)→ C0,

the induced lifted morphism between n-structures

F̂ ∶ cube1(C1) ⊗⋯ ⊗ cube1(Cn)→ cofn(cube1(C0)),

simply takes a tuple of arrows (f1,⋯ , fn) to their F -pushout-product F̂ (f1,⋯ , fn).
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Terminology 4.10. For left structures L0,⋯ ,Ln on �nitely cocomplete C0,⋯ , Cn, we
use LStr(L1,⋯ ,Ln;L0) to denote the category of morphisms of type (L1,⋯ ,Ln) → L0 in
LStr. Given any morphism F ∶ C1×⋯× Cn → C0 in ℝex, we also use LStrF (L1,⋯ ,Ln;L0)

to denote the �bre over F , viz. the set of morphisms in LStr over F . ◊

To de�ne the compositions in LStr, one useful observation is the following:

Lemma 4.11. Given any morphism of n-structures

F̂ ∶ L1 ⊗⋯ ⊗ Ln → L0

over a functor in ℝex,
F ∶ C1 ×⋯ × Cn → C0,

F̂ preserves coCartesian lifts on each entry.

Proof. Suppose we have an Li-structure �i over fi in Ci for all 1 ≤ i ≤ n. Suppose we also
have a coCartesian square a ∶ fj → f

′

j
for some j. Let C, C ′ be the n-cube in C1 ×⋯ × Cn

spanned by f1,⋯ , fj ,⋯ , fn and f1,⋯ , f
′

j
,⋯ , fn, respectively. Here a can also be viewed as

a coCartesian horizontal morphism a ∶ C → C
′. Now by de�nition, F̂ (�1,⋯ , �j ,⋯ , �n),

F (�1,⋯ , a∗�j ,⋯ , �n) are L0-structures on the co�bre arrows g, g′ of the cube F (C), F (C ′
),

respectively. Since F preserves �nite colimits on each entry, F (a) ∶ g → g
′ is a pushout.

By uniqueness of coCartesian lifts for L0, we must have that

F (a)∗F̂ (�1,⋯ , �j ,⋯ , �n) = F̂ (�1,⋯ , a∗�j , �n).

Using this observation, we can properly de�ne the composition of multimorphisms
in LStr, and establish that it is a well-de�ned multicategory:

Theorem 4.12. There is a composition operator that makes the data in De�nition 4.9 a
well-de�ned Grpd-enriched multicategory.

Proof. The identity is easy to describe, since by construction we have

cof1(L) = L,

thus the identity is simply represented by identity on L. For the composition, the crucial
observation is that, for an morphism over the functor F

(L1,⋯ ,Ln)→ L0,
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it also induces a morphim of r-structures for any r = r1 +⋯ + rn as follows,

cofr1
(L1) ⊗⋯ ⊗ cofrn

(Ln) cofr (L0)

cuber1
(C1) ⊗⋯ ⊗ cubern

(Cn)

cuber (C1 ×⋯ × Cn) cuber (C0)

F̂

cuber (F )

The r-morphism F̂ acts as follows. Suppose we have an ri-cube Ci in Ci with an Li-
structure �i on its co�bre arrow fi , for all 1 ≤ i ≤ n. LetC denote the corresponding r-cube
on C1 × ⋯ × C0 spanned by C1,⋯ , Cn; similarly, let D denote the n-cube on C1 × ⋯ × C0

spanned by f1,⋯ , fn. F preserving �nite colimits on each entry implies that the co�bre
arrow of the r-cube F (C) coincides with the co�bre arrow of the n-cube F (D). This way, we
can simply use F̂ (�1,⋯ , �n) to de�ne the above functor on r-structures. To show that this
operator preserves vertical composition on each dimension, we only need to notice that
from Theorem 4.7 we know that the co�bre arrows of vertical composition of cubes are
simply vertical compositions of coCartesian lifts of co�bre arrows of individual cubes. By
de�nition the original morphism F̂ ∶ L1⊗⋯⊗Ln → L0 preserves vertical composition, and
by Lemma 4.11 it also preserves coCartesian lifts. Thus, the generalised F̂ also preserves
vertical composition.

Now given any morphism

F ∶ (L1,⋯ ,Ln)→ L0

and any family of morphisms

Gi ∶ (Li,1,⋯ ,Li,mi
)→ Li ,

for all 1 ≤ i ≤ n, their multicomposition

(G1,⋯ , Gn) ◦ F ∶ (L1,1,⋯ ,L1,m1
,⋯ ,Ln,1,⋯ ,Ln,mn

)→ L0

is given by the following composition on higher structures,

L1,1 ⊗⋯ ⊗ Ln,mn
cofm1

(L1) ⊗⋯ ⊗ cofmn
(Ln) cofm1+⋯+mn

(L0).
Ĝ1⊗⋯⊗Ĝn F̂

where now F̂ is induced by F as stated before. Verifying unity and associativity is straight
forward, and the Grpd-enrichment is easily seen to be inherited from ℝex.
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Remark 4.13. Notice that the two multicategories LStr and ℝex are in fact symmetric,
since it is easy to observe that both the Cartesian product of categories and the monoidal
product ⊗ on higher structures are symmetric. ◊

To see more concretely what will be a morphism in LStr, consider the case for n = 2.
Suppose we have a certain monoidal product on C which preserves �nite colimits on
each entry

⊗ ∶ C × C → C.

For any i ∶ A → B, j ∶ C → D ∈ C, the square in C × C spanned by i, j is mapped to
the following square in C,

A ⊗ C B ⊗ C

A ⊗ D B ⊗ D

i⊗C

A⊗j B⊗j

i⊗D

and the lift ⊗̂ takes i, j to the co�bre arrow of this square, which is exactly the usually
de�ned pushout-product of i, j as below

i⊗̂j ∶ A ⊗ D +A⊗C B ⊗ C → B ⊗ D.

Let L0,L1,L2 be left structures on C. A morphism in LStr over this monoidal product

⊗ ∶ (L1,L2)→ L0

now requires a morphism between 2-structures

⊗̂ ∶ L1 ⊗ L2 → cof2(L0),

making the following diagram commute,

L ⊗M cof2(ℕ)

cube2(C × C) cube2(C)

⊗̂

cube2(⊗)

By our discussion previously, the functor ⊗̂ takes any L1-structure �1 on i ∶ A → B and
any L2-structure �2 on j ∶ C → D, and assigns an L0-structure �1⊗̂�2 on the co�bre
arrow of the pushout-product i⊗̂j,

i⊗̂j ∶ A ⊗ D +A⊗C B ⊗ C → B ⊗ D.
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This shows that the multicategory LStr successfully describes the structure we want to
capture: The existence of such a morphism in LStr over ⊗ is exactly a structured way
of expressing the fact the pushout-product of an L1-map with an L2-map gives us an
L0-map.

The structural aspects means that, the morphism on higher structures

⊗̂ ∶ L1 ⊗ L2 → cof2(L0)

now need to respect both horizontal morphisms and vertical compositions of L1-maps
and L2-maps. For the horizontal direction, suppose we have a morphism � ∶ �1 → �

′

1

of L1-maps over the square a ∶ i → i
′. Functoriality of ⊗̂ for the horizontal map � then

implies that we have a morphism of L0-structures

�⊗̂�2 ∶ �1⊗̂�2 → �
′

1
⊗̂�2,

over the induced square a⊗̂j ∶ i⊗̂j → i
′
⊗̂j between the pushout-products. Similarly, this

also applies to horizontal morphisms for the second entry.
The more subtle condition is for vertical compositions. Suppose we have another L1-

structure � ′
1

on a map k ∶ B → E where we can vertically compose to get an L1-structure
�
′

1
∙ �1 on ki. Then ⊗̂ preserving this vertical composition means that the L0-structure

�
′

1
∙ �1⊗̂�2 on ki⊗̂j should agree with the composition in cof2(L0) we have de�ned in

Theorem 4.7. Recall once again that the latter is obtained by the following composite,

A ⊗ D +A⊗C B ⊗ C A ⊗ D +A⊗C E ⊗ C

B ⊗ D B ⊗ D +B⊗C E ⊗ C E ⊗ D

a

Thus, preserving vertical composition of L1-maps means that we have

�
′

1
⊗̂�2 ∙ a∗(�1⊗̂�2) = (�

′

1
∙ �1)⊗̂�2.

Preserving vertical compositions of L2-maps is completely similar.
As a �rst example, we can already see quite easily that the structuralised pushout-

product axiom now holds for the co�bration structure we have de�ned in Section 3.3.1:

Example 4.14. Recall that given any dominance Σ on a �nitely complete, �nitely co-
complete and locally Cartesian closed category C, there is an induced propositional left
structure Σ on C consisting of co�brations. In the structured context, the fact that co�-
brations are closed under pushout-products is expressed by the existence of a morphism
in LStr as follows

(Σ,Σ)→ Σ,
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over the Cartesian product on C. By de�nition, such a morphism sends a pair of co�bra-
tions i ∶ A → B and j ∶ C → D to a co�bration structure on their pushout-product

i⊗̂j ∶ A × D +A×C B × C → B × D.

This is indeed also a co�bration, because by assumption maps in Σ maps are closed un-
der pullback and unions. Since Σ is a propositional left structure, such an assignment
automatically preserves horizontal and vertical compositions, which means it is a well-
de�ned morphism. ◊

We will discuss more less trivial examples in Chapter 5 for the various other structures
we have de�ned in Section 3.3, after we discuss the structured version of Joyal-Tierney
calculus in the next section.

At the end of this section, we also discuss the relationship between the structured
version of pushout-product axioms as morphisms in LStr and the usual unstructured
version. Recall from Section 3.2 that given any AWFS (L,ℝ), its underlying WFS is given
by (L,R). It is then easy to observe that the structured pushout-product axiom implies
the usual version on the underlying WFSs:

Proposition 4.15. Suppose we have a morphism in LStr

F ∶ (L1,⋯ ,Ln)→ L0

If we use Li to denote the retract closure of Li-maps for any i ≤ n, then we still have that the
F -pushout-product of (fi)1≤i≤n with fi ∈ Li belongs to L0.

Proof. Recall that the generalised F -pushout-product can be realised as a functor

F̂ ∶ C→

1
×⋯ × C→

n
→ C→

0
.

Now suppose we are given morphisms fi ∈ Li for all 1 ≤ i ≤ n. By de�nition, we can �nd
gi such that there exists an Li-structure �i on gi , and fi is a retract of gi . By assumption
F̂ (�1,⋯ , �n) is an L0-structure on F̂ (g1,⋯ , gn). By functoriality of F̂ , notice that F̂ (f1,⋯ , fn)

is again a retract of F̂ (g1,⋯ , gn), which implies that the former belongs to L0.

4.3 Structured Joyal-Tierney Calculus
As already mentioned in the Introduction, Joyal-Tierney calculus is one of the most basic
techniques for homotopy theory. Dual to the notion of pushout-product, there is a notion
of pullback-exponentials. The starting point of the Joyal-Tierney calculus is that given
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any monoidal product ⊗ on C with a right closure [−, −], for any morphisms i ∶ A → B,
j ∶ C → D, and k ∶ E → F in C we have

i⊗̂j t k ⇔ i t exp(j, k),

where exp(j, k) is the pullback-exponential of j, k,

exp(j, k) ∶ [D, E]→ [C, E] ×[C,F ] [D, F ].

In other words, it is the �bred arrow of the following square in C,

[D, E] [C, E]

[D, F ] [C, F ]

From the discussion at the end of Section 4.1, this can also be seen as the co�bre arrow of
the dual square in Cop.

Inspired by [15], in this section we will formulate a general version of Joyal-Tierney
calculus for n-ary functors as certain action of a cyclic group on the multicategory LStr of
left structures. Given any C0, C1,⋯ , Cn in ℝex, with C0, C1 also admitting �nite limits.
Consider any morphism in ℝex as follows,

F ∶ C1 ×⋯ × Cn → C0.

We say it has a right closure if there exists another morphism in ℝex

G ∶ C2 ×⋯ × Cn × Cop

0
→ Cop

1
,

such that for any ci ∈ Ci for all i ≤ n, there is an isomorphism

C0(F (c1,⋯ , cn), c0) ≅ C1(c1, G(c2,⋯ , cn, c0)),

natural in all entries. Notice that we need C0, C1 to have �nite limits to recognise G as a
valid morphism in ℝex.

According to the discussion at the end of last section, they also induce two functors

F̂ ∶ C
→

1
×⋯ × C

→

n
→ C

→

0
,

Ĝ ∶ C
→

2
×⋯ × C

→

n
× (C

op

0
)
→

→ (C
op

1
)
→

As mentioned, F̂ is the generalised F -pushout-product. More interestingly is what Ĝ
does: As mentioned, co�bre arrows in Cop

1
can be viewed as �bred arrows in C1. Thus,
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Ĝ assigns the �bred arrow of the cube spanned by (f2,⋯ , fn, f0), which can be viewed as
generalised G-pullback-exponential. The upshot is that, if G is a right closure of F , then
on the level of arrow categories we again have an adjunction

C→

0
(F̂ (f1,⋯ , fn), f0) ≅ C→

1
(f1, Ĝ(f2,⋯ , fn, f0)).

This is usually called the Leibniz adjunction.
On the level of strucutres, recall from Section 3.1 that if C is �nitely complete and

�nitely cocomplete, then for any left structure L over cube1(C), there is an induced right
lifting structure L

t on C. Thus equivalently, it can be viewed as a left structure on Cop,
which will be denoted as L◦, viz. L◦

= (L
t
)
op.

The structured version of Joyal-Tierney calculus can now be stated as follows:

Theorem 4.16. If a morphism F in ℝex

F ∶ C1 ×⋯ × Cn → C0

has a right closureG, then for any left structuresLi on Ci for i ≤ n, there will be a canonically
induced function (recall Terminology 4.10)

LStrF (L1,⋯ ,Ln;L0)→ LStrG(L2,⋯ ,Ln,L
◦

0
;L

◦

1
).

Proof. We provide a detailed proof in the case of n = 2, which covers all the applications
we care about in practice. The proof with more parameters is completely similar.

We view a two variable functor as a tensor

− ⊗ − ∶ C1 × C2 → C0,

which has a right closure
[−, −] ∶ C2 × Cop

0
→ Cop

1
.

Suppose now we are given a morphism in LStr over this product ⊗,

⊗ ∶ (L1,L2)→ L0.

We need to construct a new morphism

exp
r
∶ (L2,L

◦

0
)→ L

◦

1

over the right closure [−, −]. For any L2-structure � on j ∶ C → D and any right lifting
structure ' against L0 on f ∶ X → Y , we construct a right lifting structure ̂exp

r
(�, ')

against L1 on their pullback-exponential

̂exp
r
(j, f ) ∶ [D, X ]→ [C, X ] ×[C,Y ] [D, Y ].
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Concretely, given any L1-structure � on i ∶ A → B and a square

A [D, X ]

B [C, X ] ×[C,Y ] [D, Y ]

i ̂exp
r
(j,f )

by the Leibniz adjunction we have a corresponding solid square

A ⊗ D +A⊗C B ⊗ C X

B ⊗ D Y

i⊗̂j f'(�⊗̂�)

Now �⊗̂� by assumption is an L0-structure on the pushout-product i⊗̂j, thus the right
lifting structure ' on f against L0 produces a lift as shown above. By transposing along
the Leibniz adjunction again, we get a lift ̃'(�⊗̂�) of exp

r
(i, f ) against i. In equation form,

̂exp
r
(�, ')(�) =

̃
'(�⊗̂�).

We �rst need to show that the above construction of the lifting operator ̂exp
r
(�, ') is

compatible with horizontal and vertical composition of L1-maps, thus is a well-de�ned
L
◦

1
-structure on f . For horizontal compatibility, suppose we are in the situation

A
′

A [D, X ]

B
′

B [C, X ] ×[C,Y ] [D, Y ]

i
′

i ̂exp
r
(j,f )

where on the left is a square a ∶ i′ → i underlying a horizontal morphism of L1-maps

� ∶ �
′
→ �.

Then for the dual diagram

A
′
⊗ D +A′⊗C B

′
⊗ C A ⊗ D +A⊗C B ⊗ C X

B
′
⊗ D B ⊗ D Y

i
′
⊗̂j i⊗̂j f'(�

′
⊗̂�)

'(�⊗̂�)
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by functoriality of ⊗̂ on the �rst entry, we also get a morphism of L0-maps

�⊗̂� ∶ �
′
⊗̂� → �⊗̂�

over the induced horizontal square a⊗̂j. Hence, horizontal compatibility of the lifting
structure ' on f makes sure the above two lifts are compatible, hence so are the two lifts
in the dual diagram for ̂exp

r
(j, f ).

For vertical compatibility, suppose we have composible L1-maps i0 ∶ A → B0 and
i1 ∶ B0 → B1 with L1-structures �0, �1 on them, respectively. Consider the following
lifting diagram,

A [D, X ]

B0

B1 [C, X ] ×[C,Y ] [D, Y ]

i0

m

̂exp
r
(j,f )

i1

̂exp
r
(�,')(�0)[m,⟨u,v⟩i1]

⟨u,v⟩

̂exp
r
(�,')(�1)[ ̂exp

r
(�,')(�0),⟨u,v⟩]

Vertical compatibility requires us to show that

̂exp
r
(�, ')(�1)[ ̂exp

r
(�, ')(�0), ⟨u, v⟩] = ̂exp

r
(�, ')(�1 ∙ �0)[m, ⟨u, v⟩].

To this end, we consider its dual diagram,

A ⊗ D +A⊗C B0 ⊗ C A ⊗ D +A⊗C B1 ⊗ C X

B0 ⊗ D B0 ⊗ D +B0⊗C
B1 ⊗ C

B1 ⊗ D Y

i0⊗j y

i1⊗̂j

ũ

[m̃,ṽ]

f

'(�0⊗̂�)

['(�0⊗̂�),ṽ]

'(�1⊗̂�)

The fact that ⊗̂ preserves vertical composition for L1-maps implies that

(�1 ∙ �0)⊗̂� = (�1⊗̂�) ∙ a∗(�0⊗̂�),

where a is the pushout square on the top left. By horizontal compatibility of ', the lift
against a∗(i0⊗̂j), viz. the middle top arrow, is induced by pushout,

'(a∗(�0⊗̂�)) = ['(�0⊗̂�), ṽ].
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This way, we have that

'((�1 ∙ �0)⊗̂�)[[m̃, ṽ], ũ] = '((�1⊗̂�) ∙ a∗(�0⊗̂�))[[m̃, ṽ], ũ]

= '(�1⊗̂�)['(a∗(�0⊗̂�)), ũ]

= '(�1⊗̂�)[['(�0⊗̂�), ṽ], ũ]

As mentioned, the �rst equality is by ⊗̂ preserving vertical composition, and the second
holds by vertical compatibility of '. This concludes the proof that ̂exp

r
(�, ') is a well-

de�ned right lifting structure on ̂exp
r
(j, f ).

Furthermore, we need to verify that ̂exp
r

is a morphism between 2-structures, which
means it preserves horizontal and vertical compositions of both entries. For the horizon-
tal direction, suppose we have a horizontal morphism of L2-maps

� ∶ � → �
′

over the square b ∶ j → j
′. To show the induced square

exp
r
(j
′
, b) ∶ exp

r
(j
′
, f )→ exp

r
(j, f )

underlies a morphism between right lifting structures against L1, suppose we have a
lifting problem against an L1-structure � on i ∶ A → B as follows,

A [D
′
, X ] [D, X ]

B [C
′
, X ] ×[C′,Y ] [D

′
, Y ] [C, X ] ×[C,Y ] [D, Y ]

i ̂exp
r
(j
′
,f ) exp

r
(j,f )

̂exp
r
(�
′
,')(�)

̂exp
r
(�,')(�)

By construction the lifting solutions are induced by

A ⊗ D +A⊗C B ⊗ C A ⊗ D
′
+A⊗C′ B ⊗ C

′
X

B ⊗ D B ⊗ D
′

Y

i⊗̂j i⊗̂j
′ f

'(�⊗̂�)
'(�⊗̂�

′
)

which by functoriality of ⊗̂ in the second entry, the left square underlies a morphism �⊗̂�

of L0-maps. Thus the two lifts are compatible due to horizontal compatibility of ', which
also implies that the two dual lifts ̂exp

r
(�, ')(�) and ̂exp

r
(�

′
, ')(�) are also compatible.

Similarly, if we have a horizontal morphism of right lifting structures against L0,

(f , ')→ (f
′
, '

′
),
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then again consider a lifting against an L1-map as follows,

A [D, X ] [D, X
′
]

B [C, X ] ×[C,Y ] [D, Y ] [C, X
′
] ×[C,Y ′] [D, Y

′
]

i ̂exp
r
(j,f ) ̂exp

r
(j,f

′
)

̂exp
r
(�,')(�)

̂exp
r
(�,'

′
)(�)

The Leibniz adjunction produces

A ⊗ D +A⊗C B ⊗ C X X
′

B ⊗ D B ⊗ D
′

Y

i⊗̂j f f
′

'(�⊗̂�)

'
′
(�⊗̂�)

The fact that f → f
′ is a morphism between the two corresopnding right lifting struc-

tures implies the above two lifts are compatible, thus so are the two dual lifts for the
pullback-exponentials.

Now for vertical compatibility. Consider a vertical composition of L2-maps as follows

C D E
j0 j1

with L2-structures �0, �1 on them, respectively. Recall that the vertical composition of
pullback exponentials is provided by the following diagram,

[E, X ] [D, X ] ×[D,Y ] [E, Y ] [D, X ]

[C, X ] ×[C,Y ] [E, Y ] [C, X ] ×[C,Y ] [D, Y ]

̂exp
r
(j0,f )

y

̂exp
r
(j1,f )

Now consider the following lifting problem against an L1-structure � on i,

A [E, X ]

[D, X ] ×[D,Y ] [E, Y ] [D, X ]

B [C, X ] ×[C,Y ] [E, Y ] [C, X ] ×[C,Y ] [D, Y ]

̂exp
r
(j0,f )

̂exp
r
(j1,f )

i

m

⟨u,v⟩

̂exp
r
(�0,')(�)

⟨ ̂exp
r
(�0,')(�),v⟩

̂exp
r
(�1,')(�)
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The vertical compatibility requires us to show that
̂exp

r
(�1 ∙ �0, ')(�) = ̂exp

r
(�1, ')(�)[m, ⟨ ̂exp

r
(�0, ')(�), v⟩].

Now consider the dual diagram as follows,

A ⊗ D +A⊗C B ⊗ C A ⊗ E +A⊗C B ⊗ C X

B ⊗ D A ⊗ E +A⊗C B ⊗ D

B ⊗ E Y

i⊗̂j0 y

i⊗̂j1

ũ

f

'(�⊗̂�0)

['(�⊗̂�0),m̃]

'(�⊗̂�1)

Notice that the left part of the diagram is the vertical composition of the two pushout-
products. Denote the top left pushout to be a, then by the fact that ⊗̂ preserves vertical
comopsition of L2-maps, we have that

�⊗̂(�1 ∙ �0) = (�⊗̂�1) ∙ a∗(�⊗̂�0).

Hence, we have the following computation,
'(�⊗̂(�1 ∙ �0)) = '(�⊗̂�1 ∙ a∗�⊗̂�0)

= '(�⊗̂�1)['(a∗�⊗̂�0), ũ]

= '(�⊗̂�1)[['(�⊗̂�0), m̃], ũ]

Again, the second holds by vertical compatibility of ', and the third holds by the hori-
zontal compatibility of '. Hence, our construction ̂exp

r
preserves vertical composition

of L2-maps.
Now similarly, for the vertical composition of L◦

0
-structures, consider two right lifting

structures
X Y Z

(f ,') (g, )

The vertical composition of the two pullback-exponentials ̂exp
r
(j, f ) and ̂exp

r
(j, g) is again

obtained by �rst pullback ̂exp
r
(j, g) and then vertically compose with ̂exp

r
(j, f ). For any

lifting situation against an L1-map � on i ∶ A → B,

A [D, X ]

[C, X ] ×[C,Z ] [D, Y ] [D, Y ]

B [C, X ] ×[C,Z ] [D, Z ] [C, Y ] ×[C,Z ] [D, Z ]

i

̂exp
r
(j,f )

m

⟨u,v⟩

̂exp
r
(j,g)

̂exp
r
(�,')(�)

⟨u, ̂exp
r
(�, )(�)⟩

̂exp
r
(�, )(�)
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consider its dual diagram as follows,

A ⊗ D +A⊗C B ⊗ C X

Y

B ⊗ D Z

i⊗̂j

[m̃,ũ]

f

g

ṽ

 (�⊗̂�)

'(�⊗̂�)

This way, by how vertical composition of right lifting structures are de�ned, we have

( ∙ ')(�⊗̂�) = '(�⊗̂�)[[m̃, ũ],  (�⊗̂�)],

which also implies the vertical compatibility of the dual diagram. Hence, ̂exp
r

also pre-
serves vertical composition of L◦

0
-maps. This way, ̂exp

r
is a well-de�ned morphism be-

tween 2-structures.

Completely dually, we say an morphism F in ℝex

F ∶ C1 ×⋯ × Cn → C0

has a left closure if there is another morphism in ℝex

H ∶ Cop

0
× C1 ×⋯ × Cn−1 → Cop

n
,

such that for any ci in Ci for i ≤ n, we have an isomorphism

C0(F (c1,⋯ , cn), c0) ≅ Cn(cn, H (c0,⋯ , cn−1)).

Now we have implicitly assumed that C0 and Cn also have �nite limits. By essentially
the same proof as Theorem 4.16, we record the following result:

Theorem 4.17. If F in ℝex

F ∶ C1 ×⋯ × Cn → C0

has a left closureH , then for any left structures L0,⋯ ,Ln over C0,⋯ , Cn, we have a function

LStrF (L1,⋯ ,Ln;L0)→ LStrH (L
◦

0
,L1,⋯ ,Ln−1;L

◦

n
).
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With slightly stronger assumptions, combining Theorem 4.16 and 4.17 we can get
a stronger result. Recall from Proposition 3.9 that the operation of taking the left and
right lifting structures are adjoint to each other. This in particular means that for any left
structure L over cube1(C), there will be a canonical morphism of left structures

L → (L
◦
)
◦
,

over the identity functor on C.

De�nition 4.18. We say a left structure L on C is complete if the canonical morphism

L → (L
◦
)
◦

is an isomorphism. Similarly we can de�ne complete right structures. ◊

Corollary 4.19. If L1,L0 are two complete left structures, then for any functor F with a
right closure G, the map constructed in Theorem 4.16

LStrF (L1,⋯ ,Ln;L0) ≅ LStrG(L2,⋯ ,Ln,L
◦

0
;L

◦

1
)

will be an isomorphism.

Proof. We simply notice that if G is a right closure of F , then F will be a left closure of G:
For any ci in Ci for i ≤ n, we have natural isomorphisms

Cop

1
(G(c2,⋯ , cn, c0), c1) ≅ Cop

0
(c0, F (c1,⋯ , cn)).

This way, by Theorem 4.17 we have another morphism

LStrG(L2,⋯ ,Ln,L
◦

0
;L

◦

1
)→ LStrF ((L

◦

1
)
◦
,⋯ ,Ln; (L

◦

0
)
◦
).

If both L0 and L1 are complete, then this is gives us a map

LStrG(L2,⋯ ,Ln,L
◦

0
;L

◦

1
)→ LStrF (L1,⋯ ,Ln;L0).

We can directly verify this map is the inverse of the map given in Theorem 4.16. Again
we provide the proof for the binary case, and the generalisation to multiple parameters
is straight forward. Suppose we have a morphism

⊗ ∶ (L1,L2)→ L0,

over ⊗ ∶ C1 × C2 → C0 with a right closure [−, −], whose induced map under Joyal-
Tierney calculus is given by

exp
r
∶ (L2,L

◦

0
)→ L

◦

1
.
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By viewing ⊗ as a left closure of [−, −], this again induces a morphism

⊠ ∶ ((L
◦

1
)
◦
,L2)→ (L

◦

0
)
◦
.

Concretely, given any left lifting operator � against Lt
1

on i ∶ A → B and any L2-
structure � on j ∶ C → D, we get a left lifting operator �⊠̂� against Lt

0
on their pushout-

product,
i⊗̂j ∶ B ⊗ C +A⊗C A ⊗ D → B ⊗ D.

By construction, for any f ∶ X → Y with an L
t
0
-structure ', the lifting �⊠̂�(')

B ⊗ C +A⊗C A ⊗ D X

B ⊗ D Y

i⊗̂j f�⊠̂�(')

is induced by the transposed diagram

A [D, X ]

B [C, X ] ×[C,Y ] [D, Y ]

i ̂exp
r
(j,f )

�( ̂exp
r
(�,'))

Now since L1 is complete, we can simultaneously view � as a genuine L1 structure, which
means that the transpose of the above lift by construction is given as

B ⊗ C +A⊗C A ⊗ D X

B ⊗ D Y

i⊗̂j f'(�⊗̂�)

It follows that the two lifts
�⊠̂�(') = '(�⊗̂�).

Thus, under the completeness isomorphism of L0, we indeed have

�⊠̂� = �⊗̂�.

The other direction is similar.

The above results corresponds to the usual application of Joyal-Tierney calculus: Sup-
pose we have three WFSs (Ci , Fi) for i = 0, 1, 2, and suppose we have shown that the
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pushout-product of C1 with C2 is a map in C0, then we can automatically conclude that
the pullback-exponential of a ℂ2-map with an F0-map gives us an F1-map.

At the end, let us describe a �rst easy application of the structured Joyal-Tierney
calculus as follows. More serious examples and applications will be discussed in length
in Chapter 5.

Example 4.20. As Example 4.4 shows, if we have a dominance structure Σ on C, then
we have a morphism in LStr

(Σ,Σ)→ Σ

over the Cartesian product on C. Furthermore, since Σ is a propositional structure, this
morphism is unique. By Corollary 4.19 and Theorem 3.22 for AWFSs, this uniquely de-
termines another morphism in LStr

(Σ,T
op
)→ T

op
,

now over the internal hom on C. Notice that by Proposition 4.15, the existence of such a
morphism implies the unstructured version, viz. the pullback-exponential of co�brations
w.r.t. trivial �brations is also a trivial �bration, which in classical homotopy theory is
indeed a consequence of the Joyal-Tierney calculus. However, the isomorphism stated in
Corollary 4.19 provides much more information in the structured context. ◊

4.4 Algebraic Monoidal Model Categories
Based on previous developments in this chapter, in this section we will arive at a notion
of an algebraic monoidal model category. Before giving the de�nition, we �rst describe
what is a monoidal model category in the usual unstructured setting. We start by de�ning
a model structure on a category:

De�nition 4.21. A model structure on a category C consists of three classes of maps
(C, F,W) called co�brations, �brations, and weak equivalences respectively, such that

• (C, F ∩W) and (C ∩W, F) form two WFSs on C;

• W contains all isomorphisms and has the 2-out-of-3 property, i.e. given composible
maps f , g, is two of the maps in f , g, f g belong to W, then so is the third. ◊

For a model structure, maps in C,C ∩ W are referred to as co�brations and trivial
co�brations, respectively; similarly, maps in F, F ∩W are called �brations and trivial �-
brations. Now following [46], a model category C is simply a �nite complete and �nitely

70



cocomplete category equipped with a model structure.2 Also notice that it is a standard
observation in homotopy theory that the model structure, if exists, is completely deter-
mined by the two WFSs (C, F ∩W) and (C ∩W, F); see e.g. [35]. Thus, in the future we
may also refer to two WFSs on a category to form a model structure.

A model category is furthermore monoidal, if C has a monoidal product which inter-
acts with the two WFSs in a compatible way:

De�nition 4.22. A model structure (C, F,W) on C is monoidal w.r.t. a monoidal struc-
ture (I , ⊗), if the following conditions hold:

• Unitary: The monoidal unit is co�brant, i.e. the unique map ∅→ I belongs to C.3

• Pushout-products: Maps in C are closed under pushout-products; maps in C ∩W

are closed under pushout-products with maps in C on both sides. ◊

Notice that we can split De�nition 4.22 as separate conditions on C and C ∩W: For
C, it requires that I is co�brant and co�brations being closed under pushout-products;
For C ∩W, it further requires that maps in C ∩W are closed under pushout-product w.r.t.
maps in C. In our structured approach, we will treat these two conditions separately.

We �rst de�ne the notion of a monoidal left structure:

De�nition 4.23. A monoidal left structure L on C consists of morphisms

� ∶ ()→ L, ⊗ ∶ (L,L)→ L,

making it a pseudo monoid in the Grpd-enriched multi-category LStr. ◊

We refer the readers to [57, 67] for the notion of pseudo monoids. Roughly speaking,
they are objects with unit and multiplication maps equipped with explicit unitors and
associators, satisfying similar equations as that of a monoidal category (cf. [44]). As
mentioned in Remark 4.13, the multicategory LStr is symmetric, thus there is a notion of
pseudo symmetric monoids in LStr

To better understand De�nition 4.23, we can also unfold the data of a monoidal left
structure on C. First notice that, as mentioned we have a forgetful multifunctor

|−| ∶ LStr → ℝex.

2In some modern references on homotopy theory, people may require the stronger axiom that the
underlying category should admit all small limits and colimits.

3In some literature [43] one requires an even weaker condition, which says that there exists a co�brant
replacement I ′ of I , such that the induced map I ′ ⊗ X → X for any X is a weak equivalence.
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It follows that a pseudo monoid in LStr also induces one in ℝex. This means exactly that
if the followings are the underlying morphisms of � and ⊗ in ℝex,

I ∶ ()→ C, ⊗ ∶ C × C → C,

then (C, I , ⊗) will be a monoidal category, where the monoidal product preserves �nite
colimits on both sides. Based on this, we may describe more concretely what is required
for a left structure L to be monoidal over it:

• � assigns an L-structure on the map ∅ → I , i.e. making I an L-object, and ⊗

requires a functor over cube2(⊗) as below

⊗̂ ∶ L ⊗ L → cof2(L),

that for any L-maps f , g, it assigns an L-structure on the pushout-product f ⊗̂g,
which is compatible with the double categorical structures of L.

• For the unitors on C to be unitors on LStr, by de�nition this means that given any
L-map f ∶ X → Y , the pushout-product of the two maps assigned by ⊗̂

f ⊗̂I ∶ ∅ ⊗ Y +∅⊗X I ⊗ X ≅ X → I ⊗ Y ≅ Y ,

I ⊗̂f ∶ X ⊗ I +X⊗∅ Y ⊗ ∅ ≅ X → Y ⊗ I ≅ Y ,

coincide with the L-structure on f , modulo the unitors for I .4

• For the associator on C to be an associator in LStr, given three maps f ∶ X0 → X1,
g ∶ Y0 → Y1 and ℎ ∶ Z0 → Z1 in C, modulo the associators of the monoidal
structure and obtain a cube spanned by f , g, ℎ as follows,

X0 ⊗ Y0 ⊗ Z1 X0 ⊗ Y1 ⊗ Z1

X0 ⊗ Y0 ⊗ Z0 X0 ⊗ Y1 ⊗ Z0

X1 ⊗ Y0 ⊗ Z1 X1 ⊗ Y1 ⊗ Z1

X1 ⊗ Y0 ⊗ Z0 X1 ⊗ Y1 ⊗ Z0

X0⊗g⊗Z1

f ⊗Y0⊗Z1

f ⊗Y1⊗Z1

X0⊗Y0⊗ℎ

X0⊗g⊗Z0

f ⊗Y0⊗Z0

X0⊗Y1⊗ℎ

f ⊗Y1⊗Z0

X1⊗g⊗Z1

X1⊗Y0⊗ℎ

X1⊗g⊗Z0

X1⊗Y1⊗ℎ

4Notice that since ⊗ preserves �nite colimits on each entry, we do have that ∅ ⊗ X ≅ ∅ ≅ X ⊗ ∅, thus
the above isomorphisms do hold.
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if we �rst assign L-structures on X0 ⊗ (g⊗̂ℎ) and X1 ⊗ (g⊗̂ℎ), and then apply ⊗̂ again
to the following square5

X0 ⊗ (Y0 ⊗ Z1 +Y0⊗Z0
Y1 ⊗ Z0) X0 ⊗ Y1 ⊗ Z1

X1 ⊗ (Y0 ⊗ Z1 +Y0⊗Z0
Y1 ⊗ Z0) X1 ⊗ Y1 ⊗ Z1

X0⊗(g⊗̂ℎ)

f ⊗Y1⊗Z0

X1⊗(g⊗̂ℎ)

which results in an L-structure on f ⊗̂g⊗̂ℎ, or if we �rst assign L-structures on
(f ⊗̂g) ⊗ Z0 and (f ⊗̂g) ⊗ Z1, and then apply ⊗ again to the following square

(X1 ⊗ Y0 +X0⊗Y0
X0 ⊗ Y1) ⊗ Z0 X1 ⊗ Y1 ⊗ Z0

(X1 ⊗ Y0 +X0⊗Y0
X0 ⊗ Y1) ⊗ Z1 X1 ⊗ Y1 ⊗ Z1

(f ⊗̂g)⊗Z0

f ⊗Y1⊗Z0

(f ⊗̂g)⊗Z1

which results in another L-structure on f ⊗̂g⊗̂ℎ, the two structures would coincide,
modulo the associators on ⊗.

For a symmetric pseudo monoid, we further require that for any L-structures �, � on
f , g, the associated L-structures �⊗̂� and �⊗̂� coincide up to the canonical isomorphism
f ⊗̂g ≅ g⊗̂f .

Again, for an easy example, the dominance structure on a category is always monoidal
w.r.t. the Cartesian products:

Example 4.24. Suppose there is a dominance structure Σ on C. From Example 4.14 we
already know that there is a map (Σ,Σ) → Σ over the Cartesian product on C. The
Cartesian product is indeed a monoidal structure. For the unit, recall from Section 3.3.1
that any object by assumption is co�brant, thus there is a unique Σ-structure on the unit
1 of the Cartesian product. Finally, the existence of unitors, associators and symmetric
braidings are trivial for Σ, because it is propositional, thus any diagram with codomain Σ
commutes, if the underlying diagram inℝex commutes. This also implies that the monoid
Σ is also symmetric. ◊

The �rst condition of a monoidal model category on co�brations thus is lifted to the
data of a monoidal left structure. The second condition on trivial co�brations, i.e. they

5Notice that the top horizontal arrow represents the co�bre arrow of the top face of the cube above; we
can write it this way because by assumption ⊗ preserves �nite colimits on each variable.
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are closed under pushout-product over co�brations, is naturally lifted to actions of this
monoid. In other words, given a monoidal object in LStr, we can talk about a module over
this monoid. Since the axiom requires C ∩W to be closed under pushout-products of C
on both sides, we in fact will consider a bimodule structure. However, for us, we do not
consider arbitrary modules, since we want this action to lie over the monoidal product
on C. We call these the monoidal bimodules:

De�nition 4.25. Given any monoidal left structure (L, �, ⊗) over the monoidal structure
(I , ⊗) on C, a monoidal bimodule of L is a left structure M on C with a both a left and a
right L-action in LStr

� ∶ (L,M)→ M, � ∶ (M,L)→ M,

both over the monoidal product ⊗ on C, making it a pseudo bimodule of L in LStr. In
particular, this means that they are pseudo modules respectively, such that the associators
on ⊗ makes the following a 2-cell in LStr,

(L,M,L) (M,L)

(L,M) M

(� ,1)

≅(1,� ) �

�

◊

Intuitively, the L-actions on a monoidal bimodule M express structurally the fact that
the pushout-product of an M-map with an L-map on both sides is again an M-map. If
the monoid L is symmetric, then the notion of a left and right module, and thus that of a
bimodule, coincide.

At this point, we already have all the elements to de�ne algebraic monoidal model
categories. Recall from [47] we already have a notion of an algebraic model structure:

De�nition 4.26. An algebraic model structure on a category C consists of two AWFSs
(ℂ0,F0) and (ℂ1,F1), such that

• There is a morphism of AWFSs (ℂ1,F1)→ (ℂ0,F0) (cf. Proposition 3.23);

• The underlying WFSs (C0, F0) and (C1, F1) form a model structure on C. ◊

Based on this, we may de�ne what is furthermore an algebraic monoidal model struc-
ture on a monoidal category:

De�nition 4.27. An algebraic monoidal structure on a monoidal category (C, I , ⊗) con-
sists of two AWFSs (ℂ0,F0), (ℂ1,F1) and a morphism (ℂ1,F1)→ (ℂ0,F0), such that

74



• ℂ0 is a monoidal left structure over ⊗;

• ℂ1 is a monoidal bimodule on ℂ0.

• ℂ1 → ℂ0 is a morphism of monoidal bimodules.6

We say this is an algebraic monoidal model structure if the two AWFSs also form an alge-
braic model structure on C. ◊

Remark 4.28. As mentioned in the Introduction, Riehl in [48] also gives a notion of what
she calls a monoidal algebraic model structure, again based on De�nition 4.26. However,
the monoidal structure de�ned there is weaker than our de�nition in two aspects. Firstly,
the pushout-product axioms are realised as functor between the underlying 1-categories
of the left classes of the AWFSs, thus only accounts for the functoriality of the horizontal
morphisms. For us, the monoidal actions are formulated as morphisms in LStr, thus we
also account for the functoriality of vertical compositions. Secondly, the de�nition given
in loc. cit. does not include the monoid and module axioms, either, which means there
are no unity and associativity laws. ◊

An immediate question to ask is that what structures will be possessed by the cor-
responding right classes of an algebraic monoidal model structure on C. Suppose the
monoidal product ⊗ is right closed, with closure [−, −]. Then already from the structured
Joyal-Tierney calculus we have described in Theorem 4.16, the algebraic monoidal model
structure would furthermore imply the existence of the following morphisms in LStr,

(ℂ0,F
op

0
)→ F

op

0
, (ℂ1,F

op

1
)→ F

op

0
, (ℂ0,F

op

1
)→ F

op

1
.

Thus, on the structured level we already have: (1) Pullback-exponentials of co�brations
against trivial �brations will be trivial �brations; (2) Pullback-exponentials of trivial co�-
brations against �brations will be trivial �brations; (3) Pullback-exponentials of co�bra-
tions agianst �brations will be �brations.

However, the monoidal structures on the left classes actually says more, since besides
the morphisms of monoidal product and monoidal actions, we also have unity and asso-
ciativity laws. To account for this on the side of right structures, we de�ne a notion of
an exponential module:

De�nition 4.29. Suppose we have a monoidal left structure (L, �, ⊗) over a monoidal
category (C, I , ⊗). If the monoidal product has a right closure [−, −], then an exponential
left L-module is a right structure ℝ on C with an action

� ∶ (L,ℝ
op
)→ ℝ

op
,

6Notice that any pseudo monoid is canonically a pseudo bimodule over itself.
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over the right closure [−, −], making ℝ
op a left L-module in LStr. ◊

Again, if the pseudo monoid L is symmetric, then the two notions coincide. Let us
unfold what the above de�nition amounts to. Suppose ⊗ is right closed, and there is a left
L-action on ℝ

op in LStr

� ∶ (L,ℝ
op
)→ ℝ

op
.

It takes an ℝ-structure on f ∶ X → Y and an L-structure on i ∶ A → B, and assigns an
ℝ-structure on the pullback exponential of the two morphism

̂exp
r
(i, f ) ∶ [B, Y ]→ [A, Y ] ×[A,X ] [B, X ]

that is again compatible with the vertical composition on both sides. Notice that for any
A, B, C in C, we indeed have a canonical natural isomorphism

[A ⊗ B, C] ≅ [A, [B, C]],

which means that the following diagram commute in ℝex,

(C, C, Cop
) (C, Cop

)

(C, Cop
) Cop

(1,[−,−])

(⊗,1) [−,−]

[−,−]

The associativity of the exponential left L-module is thus over the above diagram in ℝex.
Based on the structured Joyal-Tierney calculus, the following result implies that we can
equivalently using right structures to describe monoidal modules:

Lemma 4.30. Given a monoidal left structure L over the monoidal category (C, I , ⊗) with
a right closure [−, −]. For any complete left structure M (cf. De�nition 4.18), given a right
action over L

� ∶ (M,L)→ M,

it makesM a monoidal right L-module i� the action

� ∶ (L,M
◦
)→ M

◦

induced by Theorem 4.16 makesMt an exponential left L-module.

Proof. Suppose � makes M a monoidal L-module. It means that for any M-structure �
on i, L-structures �,  on j, k, the two M-structures ̂

� (�, �⊗̂ ) and ̂
� (
̂
� (�, �),  ) coincide

on i⊗̂j⊗̂k, modulo the associators.
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Recall Theorem 4.16. Given any L-structure � on j and M
t-structure ' on f , the

M
t-structure �̂(�, ') on ̂exp

r
(j, f ) lifts against any M-structure � on i

�̂(�, ')(�) =
̃
'(
̂
� (�, �)).

Now given L-structures �,  on j, k and M
t-structure ' on f , for any lifting problem

against an M-structure � on i, we have

�̂(�, �̂( , '))(�) =
̃

�̂( , ')(
̂
� (�, �)) =

̃
'(
̂
� (
̂
� (�, �),  ))

=
̃

'(
̂
� (�, �⊗̂ )) = �̂(�⊗̂ , ')(�)

The �rst, second, and the last equalities are simply due to construction of � ; the third
equality holds since � is a module action. This shows that � makes Mt an exponential
left module. The other way arround is completely similar.

Thus, the upshot of Lemma 4.30 is that when the monoidal product ⊗ is right closed,
the notion of an exponential left module can be equivalently used to characterise monoidal
right modules. To account for the other side, we assume the monoidal product also has
a left closure ⟨−, −⟩. Notice that by the formulation in Section 4.3, the left closure will be
a functor

⟨−, −⟩ ∶ Cop
× C → Cop

,

such that for any A, B, C in C, we have

C(A ⊗ B, C) ≅ C(B, ⟨C, A⟩).

This notation slightly di�ers from the usual notation for exponentials, since we write
⟨C, A⟩ instead of ⟨A, C⟩. The reason we write it this way is due to the fact that, as
mentioned, the Joyal-Tierney calculus given in Section 4.3 can essentially be viewed as
describing a cyclic action on LStr; see also [15]. As we will see, preserving the order
between inputs will make the combinatorics involved correct.

Based on a left closure, one can similarly de�ne the notion of an exponential left L-
module, which will be a right structure ℝ with an action

� ∶ (ℝ
op
,L)→ ℝ

op
,

over ⟨−, −⟩. We again have the following result:

Lemma 4.31. Given a monoidal left structure L over the monoidal category (C, I , ⊗) with
a left closure ⟨−, −⟩. For any complete left structureM, given a left action over L

� ∶ (L,M)→ M,
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it makesM a monoidal left L-module i� the action

� ∶ (M
◦
,L)→ M

◦

induced by Theorem 4.17 makesMt an exponential right L-module.

Proof. Completely similar to the proof of Lemma 4.30.

Now to account for monoidal bimodules, we need to furthermore combine the actions
of left and right exponential modules, and arrive at the notion of an exponential bimodule:

De�nition 4.32. Let L be a monoidal left structure over (C, I , ⊗), which is both left and
right closed. Now a right structure ℝ on C is called an exponential bimodule, if it is
equipped with an exponential left L-module structure

� ∶ (L,ℝ
op
)→ ℝ

op

over the right closure [−, −], and an exponential right L-module structure

� ∶ (ℝ
op
,L)→ ℝ

op

over the left closure ⟨−, −⟩. Furthermore, they become a bimodule over L as follows,

(L,ℝ
op
,L) (ℝ

op
,L)

(L,ℝ
op
) ℝ

op

(�,1)

≅(1,�) �

�

◊

Again, notice that for any A, B, C in C, we have a canonical natural isomorphism

⟨[A, B], C⟩ ≅ [A, ⟨B, C⟩].

This can be easily shown by the following sequence of natural isomorphisms,

C(D, ⟨[A, B], C⟩) ≅ C(C ⊗ D, [A, B]) ≅ C(C ⊗ D ⊗ A, B)

≅ C(D ⊗ A, ⟨B, C⟩) ≅ C(D, [A, ⟨B, C⟩])

Hence, the above compatibility condition of the exponential bimodule is over the follow-
ing diagram in ℝex,

(C, Cop
, C) (Cop

, C)

(C, Cop
) Cop

([−,−],1)

(1,⟨−,−⟩) ⟨−,−⟩

[−,−]
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If we do not write the left closure ⟨−, −⟩ the way above, the above isomorphism will
necessarily involve certain commutators of the Cartesian products. The upshot is the
following result:

Theorem 4.33. Suppose L is a monoidal left structure over the monoidal category (C, I , ⊗).
Suppose ⊗ has both a left and right closure. Then given any complete left structureM and a
left and right monoidal module structure onM,

� ∶ (L,M)→ M, � ∶ (M,L)→ M,

they form a monoidal bimodule i� the induced left and right exponential modules given by
Lemma 4.30 and 4.31

� ∶ (M
◦
,L)→ M

◦
, � ∶ (L,M

◦
)→ M

◦
,

form an exponential bimodule onM
t.

Proof. Suppose M under � and � is a monoidal bimodule, which means that for any L-
structures �, � on i, k and M-structure  on j, we have

̂
� (
̂
� (�,  ), �) =

̂
� (�,

̂
� ( , �)),

over i⊗̂j⊗̂k, module the associator of ⊗. Now given L-structures �, � on i, k and an M
t-

structure ' on f , from the constructions in Theorem 4.16 and 4.17 we have that for any
M-structure  on j,

�̂(', �)( ) =
̃
'(
̂
� (�,  )), �̂(�, ')( ) =

̃
'(
̂
� ( , �)).

Thus, we have the following computation,

�̂(�̂(�, '), �)( ) =
̃

�̂(�, ')(
̂
� (�,  )) =

̃̃

'(
̂
� (
̂
� (�,  ), �))

=

̃̃

'(
̂
� (�,

̂
� ( , �))) =

̃
�̂(', �)(

̂
� ( , �))

= �̂(�, �̂(', �))( )

It thus follows that �, � do makes Mt an exponential bimodule. The other way arround
is completely similar, assuming M is complete.

The upshot of Theorem 4.33 is that if the monoidal structure for the underlying cat-
egory is biclosed, then the second condition in De�nition 4.27 of an algebraic monoidal
structure can be equivalently described asF1 being an exponential bimodule of the monoid
ℂ0. This observation will be the basis of how we assign an algebraic monoidal structure
for e�ective Kan �brations in Chapter 5.
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Chapter 5

Algebraic Monoidal Structure for
E�ective Kan Fibrations

In this chapter we describe an algebraic monoidal structure for e�ective Kan �brations.
We again work within a category C satisfying the same assumptions as in Section 3.3, i.e.
C is �nitely complete, �nitely cocomplete, locally Cartesian closed, and equipped with a
dominance and symmetric Moore structure.

Recall that in Example 4.24, we have seen that the left structure of co�brations Σ
indeed forms a symmetric monoid. Thus, provided the e�ective co�brations and e�ective
Kan �brations described in Section 3.3.3 do form an AWFS (ℂ,F), to construct an algebraic
monoidal structure for these AWFSs as in De�nition 4.27 we need to further equip ℂ with
a Σ-bimodule structure.

However, there is no explicit description of e�ective trivial co�brations other than
that it is the left lifting class for e�ective Kan �brations. Thus, we use Theorem 4.33 and
describe an exponential bimodule structure on e�ective Kan �brations F w.r.t. Σ instead.
Since Σ is symmetric, it actually su�ces to describe a left or right exponential module
structure. The upshot is that, if we do have an AWFS (ℂ,F) for e�ective Kan �brations,
then the two AWFSs (Σ,T) and (ℂ,F) will be an algebraic monoidal structure on C.

Also recall from Section 3.3 that we also have an auxiliary AWFS (ℍ,ℕ) of HDRs and
e�ective naïve �brations. In Section 3.3.3 we have seen that the underlying category H
of HDRs embeds into the category M of mould squares, the latter of which co�brantly
generate the retract closure F of e�ective Kan �brations. Thus, ℍ should be viewed as a
special class of e�ective trivial co�brations. From Section 4.4 we know that if (Σ,T) and
(ℂ,F) form an algebraic monoidal structure, then there would be a morphism in LStr

(ℂ,F
op
)→ T.

over the exponential in C. However, since we do not have an explicit description of ℂ,
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we instead construct a morphism

(ℍ,F
op
)→ T,

which is the main task of Section 5.1.
Section 5.2 proceed to construct a morphism

(Σ,F
op
)→ F

op
,

again over the exponential in C. Section 5.3 will verify that this action does make F an
exponential module over Σ, thus achieving our desired goal that (Σ,T) and (ℂ,F) has an
algebraic monoidal structure, provided (ℂ,F) forms an AWFS.

As mentioned in the Introduction, the pushout-product axioms are quite useful for
homotopy theory. The various actions constructed in this chapter will also be applied in
Chapter 6 when we describe path category structures for e�ective Kan �brations.

5.1 Action of HDR on E�ective Kan Fibration
In this section, we show that there exists a morphism in LStr

(ℍ,F
op
)→ T

op
,

over the exponential in C. This is the structured version of the fact that pullback-
exponential of HDRs against e�ective Kan �brations gives us e�ective trivial �brations.
We �rst describe how to construct the e�ective trivial �bration structure on the pullback
exponential:

Lemma 5.1. If ) ∶ C → D is an HDR and f ∶ X → Y is an e�ective Kan �bration, then
their pullback-exponential

̂exp(), f ) ∶ [D, X ]→ [C, X ] ×[C,Y ] [D, Y ]

can be equipped with an e�ective trivial �bration structure.

Proof. Consider a lifting diagram where i ∶ A → B is a co�bration,

A [D, X ]

B [C, X ] ×[C,Y ] [D, Y ]

i

m

̂exp(),f )

⟨u,v⟩

81



We may write its dual diagram in the style of mould square as follows,

A × C A × D X

B × C B × D Y

i×C

A×)

i×D

m̃

f

B×)

ũ

ṽ

'

Now notice that the left square is indeed a mould square, thus a lift ' exists. Then the
transpose '̃ of ' provides the lift to the original diagram.

For horizontal compatibility, suppose we have a morphism between co�brations, i.e.
a pullback square, in a lifting problem as follows,

A A
′

[D, X ]

B B
′

[C, X ] ×[C,Y ] [D, Y ]

i i
′

̂exp(),f )'̃ '̃
′

The two lifts are induced by the following dual diagram,

A × C A × D

A
′
× C A

′
× D X

B × C B × D

B
′
× C A

′
× D Y

f'
′

'

The compatibility of ' and '′ follows from the perpendicular compatibility of f .
For the vertical compatibility, consider the following situation,

A [D, X ]

B

B
′

[C, X ] ×[C,Y ] [D, Y ]

i

m

̂exp(),f )

i
′

'̃

⟨u,v⟩

'̃
′
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Dually, the two lifts are induced by

A × C A × D X

B × C B × D

B
′
× C B

′
× D Y

'

'
′

Thus the vertical compatibility of the two original lifts follows from the vertical com-
patibility of f . This implies that ̂exp(), f ) has a well-de�ned e�ective trivial �bration
structure.

Now we verify that this construction produces the correct structural morphism:

Proposition 5.2. Lemma 5.1 can be promoted to a morphism in LStr

(ℍ,F
op
)→ T

op

over the exponential in C.

Proof. We need to verify that the construction in Lemma 5.1 respects the horizontal and
vertical compositions of ℍ, F and T. For the horizontal functoriality of HDRs, suppose
we have a morphism between HDRs,

a ∶ ) → )
′
.

We need to show that the induced square

[D
′
, X ] [D, X ]

[C
′
, X ] ×[C′,Y ] [D

′
, Y ] [C, X ] ×[C,Y ] [D, Y ]

̂exp()
′
,f ) ̂exp(),f )

consists of a morphism between e�ective trivial �brations. To this end, given any co�-
bration i ∶ A → B, consider the following lifting problem

A [D
′
, X ] [D, X ]

B [C
′
, X ] ×[C′,Y ] [D

′
, Y ] [C, X ] ×[C,Y ] [D, Y ]

i ̂exp()
′
,f ) ̂exp(),f )

'̃
′

'̃
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which is dual to the situation below

A × C A × D

A × C
′

A × D
′

X

B × C B × D

B × C
′

B × D
′

Y

f'
′

'

Notice that the cube on the left is a morphism of mould squares. This follows from the fact
that i ∶ A → B is a co�bration, and the morphism a ∶ ) → )

′ between the two HDRs is
a pullback square. Hence, the compatibility of '̃ and '̃′ follows from the perpendicular
compatibility of f .

For the horizontal functoriality of e�ective Kan �brations, suppose we have a mor-
phism

b ∶ f → g

between two e�ective Kan �brations. Again, we need to verify that the following square

[D, X ] [D,W ]

[C, X ] ×[C,Y ] [D, Y ] [C,W ] ×[C,Z ] [D, Z ]

̂exp(),f ) ̂exp(),g)

constitutes a morphism between e�ective trivial �brations. To this end, again given a
co�bration i ∶ A → B, consider the following lifts,

A [D, X ] [D,W ]

B [C, X ] ×[C,Y ] [D, Y ] [C,W ] ×[C,Z ] [D, Z ]

i ̂exp(),f ) ̂exp(),g)
'̃

̃
 

The dual diagram gives us

A × C A × D X W

B × C B × D Y Z

f g'
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where now the compatibility of ',  follows from the fact that b ∶ f → g is a morphism
between e�ective Kan �brations. Hence, the original two lifts are also compatible.

Finally, we need to verify vertical compatibility. Suppose now we have vertical com-
position of HDRs

C D E
)0 )1

we need to verify that the T-structure we have constructed on ̂exp()1)0, f ) agrees with
the one induced by the following diagram,

[E, X ] [D, X ] ×[D,Y ] [E, Y ] [D, X ]

[C, X ] ×[C,Y ] [E, Y ] [C, X ] ×[C,Y ] [D, Y ]

̂exp()0,f )

y

̂exp()1,f )

Consider then a lifting problem against a co�bration i ∶ A → B as follows,

A [E, X ]

[D, X ] ×[D,Y ] [E, Y ] [D, X ]

B [C, X ] ×[C,Y ] [E, Y ] [C, X ] ×[C,Y ] [D, Y ]

̂exp()0,f )

̂exp()1,f )

⟨u,v⟩

'̃0⟨'̃0,v⟩

'̃1

This then transposes to the following diagram,

A × C A × D A × E X

B × C B × D B × E Y
v

f
ũ

'0

'1

Now by horizontal compatibility of f , if we �rst lift against the left mould square to
obtain '0 and then lift against right mould square to obtain '1, this coincides with the lift
against the composite mould square. This implies our construction is compatible with
the vertical composition of HDRs.

Now for the vertical composition of e�ective Kan �brations, suppose we have another
e�ective Kan �bration g ∶ Y → Z . Again, we need to contemplate on the lifting problem
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for the following diagram,

A [D, X ]

[C, X ] ×[C,Y ] [D, Y ] [D, Y ]

B [C, X ] ×[C,Z ] [D, Z ] [C, Y ] ×[C,Z ] [D, Z ]

i

̂exp(),f )

̂exp(),g)

⟨u,v⟩

̃
 

⟨u,
̃
 ⟩

'̃

Take its dual, we get
A × C A × D X

Y

B × C B × D Z
v

f

g

u

 

'

By the de�nition of vertical composition of e�ective Kan �brations, the lift obtained by
�rst lifting for g and then lifting for f coincides with the single lifting for the composite
e�ective Kan �bration. This implies the vertical compatibility of vertical composition
with e�ective Kan �brations.

5.2 Action of Co�bration on E�ective Kan Fibration
In this section, we show the structured version of the statement that e�ective Kan �bra-
tions are closed under pullback-exponential w.r.t. e�ective co�brations. In other words,
we will explicitly construct a morphism in LStr

(Σ,F
op
)→ F

op
,

again over the exponential in C. As a �rst step, let us observe the following fact:

Lemma 5.3. Mould squares are closed under pushout-products w.r.t. co�brations, i.e. if the
following is a mould square,

C D

C
′

D
′

)c

j j
′

)
c
′
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and j ∶ A → B is a co�bration, then the following is also a mould square,

C × B +C×A C
′
× A D × B +D×A D

′
× A

C
′
× B D

′
× B

j⊗̂i

[)c×B,)c′
×A]

j
′
⊗̂i

)
c
′×B

Proof. We know that co�brations are closed under pushout-products, thus j⊗̂i and j
′
⊗̂i

are also co�brations. Also, we know from Corollary 3.26 that the category of HDRs has
pullbacks, thus the two horizontal morphisms are also HDRs.

Using this, we can explicitly construct an e�ective Kan �bration on the pullback-
exponential of e�ective Kan �brations w.r.t. co�brations:

Lemma 5.4. If i ∶ A � B is a co�bration and f ∶ X → Y is an e�ective Kan �bration,
then their pullback-exponential

̂exp(i, f ) ∶ [B, X ]→ [A, X ] ×[A,Y ] [B, Y ]

is also an e�ective Kan �bration.

Proof. Consider any lifting problem against a mould square as follows,

C D [B, X ]

C
′

D
′

[A, X ] ×[A,X ] [B, Y ]

̂exp(i,f )

By the Leibniz adjunction, this transposes to a lifting problem as follows,

C × B +C×A C
′
× A D × B +D×A D

′
× A X

f

C
′
× B D

′
× B Y

'

The left hand square is again a mould square by Lemma 5.3, hence the e�ective Kan
�bration structure on f induces a lift ' as above, which transposes to a lift '̃ to the orig-
inal diagram. We need to verify that compatibilities for the constructed lifting operation
against mould squares.
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For the perpendicular direction, suppose we have a pullback cube of mould squares,

E F

C D [B, X ]

E
′

F
′

C
′

D
′

[A, X ] ×[A,Y ] [B, Y ]

̂exp(i,f )

̃
 

'̃

the two lifts are induced by the following transposed diagram,

E × B +E×A E
′
× A F × B +F×A F

′
× A

C × B +C×A C
′
× A D × B +D×A D

′
× A X

E
′
× B F

′
× B

C
′
× B D

′
× B Y

f

 

'

Notice that the left square is a again a pullback cube of mould squares, thus the compati-
bility of ' and  follows from the perpendicular compatibility of f . This implies that the
two transposed lifts '̃, ̃ are also compatible.

Now for the horizontal direction, suppose we have a lifting diagram as follows,

C D E [B, X ]

C
′

D
′

E
′

[A, X ] ×[A,Y ] [B, Y ]

̂exp(i,f )'̃ ̃
 

where the two lifts are induced by the following dual diagram,

C × B +C×A C
′
× A D × B +D×A D

′
× A E × B +E×A E

′
× A X

C
′
× B D

′
× B E

′
× B Y

f'  
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This way, the horizontal compatibility for ̂exp(i, f ) follows from that of f .
Finally, for the vertical direction, suppose we are given a lifting situation as below,

C D [B, X ]

C
′

D
′

C
′′

D
′′

[B, X ] ×[A,X ] [A, Y ]

j
′

m

̂exp(i,f )

'̃

k
′

⟨u,v⟩

'̃
′

By construction, the two step lifting comes from the following diagram,

C × B +C×A C
′′
× A D × B +D×A D

′′
× A X

C × B +C×A C
′
× A D × B +D×A D

′
× A

C
′
× B +C′×A C

′′
× A D

′
× B +C′×A D

′′
× A

C
′
× B D

′
× B

C
′′
× B D

′′
× B Y

[m̃,ṽ]

f

[',ṽ]

'

'
′

Now notice that the mould square of the pushout-product of the vertically composed
mould square w.r.t. i is the vertical composition of the two mould squares at the back in
this diagram. Furthermore, the cube is both a pushout and a pullback for mould squares,
thus the lift against the back of the cube is completely determined by the lift of the front
of the cube. This way, the compatibility now follows from the perpendicular and vertical
compatibility of f .

Finally, we show that the above construction exhibits a morphism in LStr:

Proposition 5.5. Lemma 5.4 can be promoted to a morphism

(Σ,F
op
)→ F

op

in LStr over the exponential in C.
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Proof. We �rst need to verify the functoriality of the horizontal direction. Suppose we
have a morphism between co�brations, i.e. a pullback square

a ∶ i → i
′
,

we need to verify the following will be a morphism of e�ective Kan �brations,

[B
′
, X ] [B, X ]

[A
′
, X ] ×[A′,Y ] [B

′
, Y ] [A, X ] ×[A,Y ] [B, Y ]

̂exp(i,f )̂exp(i
′
,f )

To this end, suppose we have a lifting problem against a mould square as follows,

C D [B
′
, X ] [B, X ]

C
′

D
′

[A
′
, X ] ×[A′,Y ] [B

′
, Y ] [A, X ] ×[A,Y ] [B, Y ]

̂exp(i,f )̂exp(i
′
,f )

'̃
′

'̃

By construction, the two lifts are induced by the following dual diagram,

C × B +C×A C
′
× A D × B +D×A D

′
× A

C × B
′
+C×A′ C

′
× A

′
D × B

′
+D×A′ D

′
× A

′
X

C
′
× B D

′
× B

C
′
× B

′
D
′
× B

′
Y

f

'

'
′

Since a ∶ i → i
′ is a pullback, the left cube will be a pullback of mould squares. Thus the

compatibility of ' and '′ follows from the perpenducilar compatibility of f .
Suppose now we have a morphism between e�ective Kan �brations b ∶ f → g.

Similarly, we need to show that the following diagram will also be a morphism of e�ective
Kan �brations,

[B, X ] [B,W ]

[A, X ] ×[A,Y ] [B, Y ] [A,W ] ×[A,Z ] [B, Z ]

̂exp(i,g)̂exp(i,f )
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To this end, suppose we are given a lifting problem against a mould square,

C D [B, X ] [B,W ]

C
′

D
′

[A, X ] ×[A,Y ] [B, Y ] [A,W ] ×[A,Z ] [B, Z ]

̂exp(i,g)̂exp(i,f )'̃

̃
 

The two lifts are induced by the following diagram,

C × B +C×A C
′
× A D × B +D×A D

′
× A X W

C
′
× B D

′
× B Y Z

gf
'

 

now the compatibility follows from the fact that the square f → g is a morphism between
e�ective Kan �brations.

To show the construction of M preserves the vertical composition of co�brations,
suppose we are given composible co�brations i ∶ A → B and j ∶ B → C . The vertical
composition of the two pullback exponentials is induced by the following diagram,

[C, X ] [B, X ] ×[B,Y ] [C, Y ] [B, X ]

[A, X ] ×[A,Y ] [C, Y ] [A, X ] ×[A,Y ] [B, Y ]

̂exp(i,f )

y

̂exp(j,f )

Now given a mould square, by the vertical composition of e�ective Kan �brations, the
lift is determined by two steps as follows,

D E [C, X ]

[B, X ] ×[B,Y ] [C, Y ] [B, X ]

D
′

E
′

[A, X ] ×[A,Y ] [C, Y ] [A, X ] ×[A,Y ] [B, Y ]

w

⟨u,v⟩

d

⟨l,v⟩

m

l

The �rst lift l is determined by the dual diagram

D × B +D×A D
′
× A E × B +E×A E

′
× A X

D
′
× B E

′
× B Y

f

ṽ|B

[w̃ |B ,ũ]

̃
d |B

̃
l
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and the �nal lift m is determined by

D × C ∪ D
′
× B E × C ∪ E

′
× B X

D
′
× C E

′
× C Y

f

ṽ

[w̃,
̃
l]

̃
d

m̃

On the other hand, if we directly think about the lift against the composite ̂exp(ji, f ),
the dual diagram will look as follows,

D × B +D×A D
′
× A E × B +E×A E

′
× A

D × C +D×A D
′
× A E × C +E×A E

′
× A X

D
′
× B E

′
× B

D × C +D×B D
′
× B E × C +E×B E

′
× B

D
′
× C E

′
× C Y

f

[w̃,ũ]

̃
d

̃
l

[w̃,
̃
l]

ṽ

m̃

Notice that the front composite square is the dual lifting diagram we would like to think
about. We have decomposed it into two composite mould square, where the top cube is
both a pushout and pullback of mould squares. This way, by the vertical and perpendic-
ular compatibility of f , it follows that the lifting of the composite front square indeed
coincides with m̃, thus this implies M is compatible with vertical composition of co�bra-
tions.

Finally, for the vertical composition of e�ective Kan �brations, suppose we are given
two composible efective Kan �brations g ∶ Y → Z and f ∶ X → Y . The vertical
composite of ̂exp(i, g) with ̂exp(i, f ) is again given by the following composite of the F-
structure as follows,

[B, X ] [A, X ] ×[A,Y ] [B, Y ] [B, Y ]

[A, X ] ×[A,Z ] [B, Z ] [A, Y ] ×[A,Z ] [B, Z ]

̂exp(i,g)

̂exp(i,f )

y

92



Now given any lifting problem against a mould square, the lift of the above composite is
given as follows,

C D [B, X ]

[A, X ] ×[A,Y ] [B, Y ] [B, Y ]

C
′

D
′

[A, X ] ×[A,Z ] [B, Z ] [A, Y ] ×[A,Z ] [B, Z ]

y

w

⟨u,v⟩

d

⟨l,v⟩

l

m

If we transpose this using the Leibniz adjunction, we realise that it amounts to the fol-
lowing diagram,

C × B +C×A C
′
× A D × B +D×A D

′
× A X

Y

C
′
× B D

′
× B Z

g

f

[w̃,ṽ]

ũ

̃
d

̃
l

m̃

By how vertical composition of e�ective Kan �brations is de�ned, the exactly corre-
sponds to the transpose of the e�ective Kan �bration on ̂exp(i, gf ).

5.3 E�ective Kan Fibration as an Exponential Module
Finally, we need to verify that our construction of the pullback-exponential of e�ective
Kan �brations w.r.t. co�brations is also compatible with the monoid structure on co�-
brations we have given in Example 4.24.

Proposition 5.6. The morphism

(Σ,F
op
)→ F

op

exhibits F as an exponential module for the monoid Σ in LStr.

Proof. Suppose we have two co�brations i ∶ A � B and j ∶ C � D and an e�ective
Kan �bration f ∶ Y → X . If we �rst tensor together i, j producing the co�bration

i⊗̂j ∶ A × D ∪ B × C � B × D,
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and then produces the pullback-exponential e�ective Kan �bration ̂exp(i⊗̂j, f ), its lift
against a mould square

E F [B × D, Y ]

E
′

F
′

[A × D ∪ B × C, Y ] ×[A×D∪B×C,X ] [B × D, X ]

is determined by the transpose indicated as below,

E × B × D ∪ E
′
× A × D ∪ E

′
× B × C F × B × D ∪ F

′
× A × D ∪ F

′
× B × C Y

E
′
× B × D F

′
× B × D X

On the other hand, if we �rst produce the e�ective Kan �bration ̂exp(j, f ), and then
apply the construction again to obtain the e�ective Kan �bration ̂exp(i, ̂exp(j, f )), accord-
ing to the proof of Lemma 5.4, the lift of ̂exp(i, ̂exp(j, f )) against the same mould square
�rst transports to the diagram below,

E × B ∪ E
′
× A F × B ∪ F

′
× A [D, Y ]

E
′
× B F

′
× B [C, Y ] ×[C,X ] [D, X ]

and then transports again, which amounts to the same diagram as above. This way, the
two way of constructing the e�ective Kan �bration structure coincide along the isomor-
phism ̂exp(i⊗̂j, f ) ≅ ̂exp(i, ̂exp(j, f )), which exhibits F as a monoidal module over the
co�bration left structure Σ.

Theorem 5.7. If (ℂ,F) forms an AWFS on C, then the two AWFSs (Σ,T) and (ℂ,F) is an
algebraic monoidal structure on C.

Proof. Combining Example 4.24, Proposition 5.6, and Theorem 4.33. The fact that the
morphism (ℂ,F)→ (Σ,T) is a bimodule morphism is again trivial, due to the fact that Σ
is a propositional left structure.
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Chapter 6

Path Category Structures for E�ective
Kan Fibrations

As mentioned in the Introduction, our ultimate goal is to construct an algebraic monoidal
model category using the notion of e�ective Kan �brations, which can be applied to
simplicial sets. In the previous chapter, we have established in Theorem 5.7 that, provided
the pair of left and right structures (ℂ,F) form an AWFS, the two AWFSs (Σ,T) and (ℂ,F)
has an algebraic monoidal structure on C.

Given De�nition 4.27, the other main property we would want is that (Σ,T) and (ℂ,F)
will form an algebraic model structure. Recall from De�nition 4.26 that they form an al-
gebraic model structure i� there is a morphism (ℂ,F)→ (Σ,T) of AWFSs and the under-
lying WFSs of them form a model structure. Given Proposition 3.23, to give a morphism
between the two AWFSs, it su�ces to give a morphism T → F, which we do have by the
discussion in Section 3.3.3. Thus, the two results missing are:

• (ℂ,F) form an AWFS;

• The two underlying WFSs (Σ,T) and (C, F) form a model structure.
As commented at the end of Section 3.3.3, the two goals seem to be quite independent

from each other, and the remaining part of this document mainly concerns the second
problem. One consequence is that, from now on our focus will be the retract closures of
the various left and right structures we have introduced so far on C. Let us comment from
the very beginning that, though now we work with these retract closures, the results we
have obtained in Chapter 5 are still applicable here by Proposition 4.15. For instance, the
morphism (ℍ,F

op
)→ T

op inLStrwe have constructed in Proposition 5.2 also implies that
the pullback-exponential of an Hdr against a Kan �bration gives us a trivial �bration.1 In

1Recall from Section 3.3.2 that we call retract closures of HDRs as Hdrs.
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the remaining part of this document, for simplicity we will no longer explicitly refer to
Proposition 4.15, and trust the readers to implicitly understand this point.

In this chapter, we will establish an intermediate step towards the construction of a
full model structure. We will show that, given any object A in C, the full subcategory
of Kan �brations over A, which will be denoted as CF(A), has a path category structure.
Furthermore, these path category structures will be stable under reindexing functors in-
duced by any morphism f ∶ B → A in C. One nice thing about this intermediate step is
that, unlike a full model structure, the result here does not depend on the existence of an
AWFS (ℂ,F) or even a WFS (C, F).

As mentioned in the Introduction, the notion of a path category introduced in [66]
is a slight strengthening of the notion of a category of �brant objects à la Brown [13]. It
is a framework that can formalise many homotopy theoretic notions and results and has
a close connection with the syntax of type theory. More precisely, path categories can
serve as models for type theories with propositional equality types, and the syntactic cat-
egory of any type theory with propositional equality type has a canonical path category
structure [59]. It is also observed in [60] that we can formulate the notion of homotopy n-
types and univalent �brations in the framework of path categories, thus making it a nice
intermediate environment to investigate the relationship between syntax of type theory
and semantics of model structures.

In particular, for any model category where all objects are co�brant, it will indeed
be the case that the full subcategory of �brations over an arbitrary object has a path
category structure, which is stable under reindexing. Thus, the result in this chapter is a
necessary consequence of a full model structure for e�ective Kan �brations, and in fact
helps us achieving this (cf. Chapter 7).

Concretely, a path category is a category equipped with two class of maps called
�brations and weak equivalences, which satisfy certain axioms. We will review the notion
of a path category in Section 6.3. For the category CF(A), �brations will of course be Kan
�brations. We will realise weak equivalences as homotopy equivalences de�ned w.r.t. a
cylinder object. This will be the topic of Section 6.1.

Section 6.2 establishes how Kan �brations and homotopy equivalences interact in
CF(A). In particular, we will show that a map in CF(A) is a trivial �bration, i.e. it belongs
to T, i� it is a Kan �bration and a relative homotopy equivalence. Using this, in Section 6.3
we put a path category structure on CF(A), and show it is stable under reindexing.

6.1 Cylinder Object and Homotopy Equivalence
As mentioned earlier, the weak equivalences in CF(A)will be realised as homotopy equiv-
alences. To obtain a good notion of homotopy, we consider e�ective cylinders:
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De�nition 6.1. An e�ective cylinder in C is an internal semi-lattice (I, ∨, )0, )1), satisfying
the following additional properties:

• Each end-point inclusion is an HDR )i ∶ 1→ I for i = 0, 1;

• The coproduct of two end-points is a co�bration [)0, )1] ∶ 1 + 1→ I. ◊

From now on, we will assume our category C is equipped with a chosen e�ective
cylinder I in the sense of De�nition 6.1. The disjunction operator ∨ on I will sometimes
also be referred to as a connection (cf. [8]).

The existence of I also naturally induces an e�ective cylinder in each slice category
C/A for any A ∈ C, by taking the image of I under the pullback functor A∗. We use
IA to denote this corresponding cylinder in C/A, whose underlying object is simply the
projection I × A → A.

De�nition 6.2. Given two maps f , g ∶ X → Y over an arbitrary object A in C, a
homotopy H relative to A between them is a map in C/A

H ∶ IA ×A X → Y ,

which is equivalently a map H ∶ I × X → Y over A, such that

H)0 = f , H)1 = g.

In this case, we denote H ∶ f ∼A g. We also say that f , g are homotopic relative to A,
denoted as f ∼A g, if there exists such a homotopy between them. ◊

One important fact about homotopy is that it will be a congruence on maps between
�brant objects:

Lemma 6.3. The relative homotopy relation ∼A is a congruence on CF(A).

Proof. Suppose X → A and Y → A are Kan �brations. We �rst show that the relation
∼A will be an equivalence relation on the hom set C/A(X, Y ). Re�exivity is trivial, since
for any f ∶ X → Y we have have a homotopy Rf ∶ f ∼ f de�ned by

Rf = f ◦ �X ∶ I × X → Y .

For symmetricity, suppose we have a homotopy H ∶ f ∼A g. By assumption of the
cylinder object in De�nition 6.1, m = [)0, )1] ∶ Y + Y → I × Y will be a co�bration,
because co�brations are closed under pullbacks. We also know from assumption that
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)0 ∶ 1→ I is an HDR. Thus from Lemma 3.30, the following pushout-product will be the
co�bre arrow of a mould square

m⊗̂)0 ∶ ⊏ ×Y = (I × {0} ∪ {0} × I ∪ {1} × I) × Y → I × I × Y .

This way, the following diagram has a diagonal lift,

⊏ ×Y X

I × I × Y A

Rf ∪H∪Rf

m⊗̂)0 K

We then look at the homotopy L = K (I × )1). From the diagram above, we have that

L)0 = H)1 = g, L)1 = Rf )1 = f .

Hence, L ∶ g ∼A f , thus the homotopy relation is symmetric.
Similarly for transitivity, suppose we have H ∶ f ∼A g and K ∶ g ∼A ℎ with f , g, ℎ ∶

Y → X . Consider the lifting
⊏ ×Y X

I × I × Y A

H∪Rf ∪K

m⊗̂)0 L

This way, de�ning M = L(I × )1), again we have M ∶ f ∼A ℎ. Hence, ∼A is an equivalence
relation. Homotopy relation being closed under compositions is standard.

Based on the notion of a homotopy, we can de�ne the notion of homotopy equiva-
lence, which as mentioned will be the class of weak equivalences in the path category
structure we are going to construct:

De�nition 6.4. A map f ∶ X → Y over A is a homotopy equivalence if there is g ∶ Y →

X over A which is inverse to f up to homotopy H ∶ gf ∼A 1X and K ∶ f g ∼A 1Y . It is a
strong homotopy equivalence if the two homotopies can be chosen coherently as follows,

I × X X

I × Y Y

H

I×f f

K

For such f , we way it is a strong deformation retract if H can be chosen as �X ; similarly,
f is a strong codeformation retract if K can be chosen to be �Y . ◊
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Remark 6.5. Notice that the notion of a strong codeformation retract is absolute, in the
sense that if f ∶ X → Y is a strong codeformation retract in C, then when viewed as a
morphism in any slice category C/A, it will still be a strong codeformation retract. This
holds because if f lives over A, then the homotopy H must also live over A. ◊

One immediate consequence of homotopy relation being a congruence is that homo-
topy equivalences are closed under composition and satisfy 2-out-of-6:

Corollary 6.6. Homotopy equivalences in CF(A) are closed under compositions.

Proof. Suppose f , g are composible homotopy equivalences in CF(A) with homotopy in-
verses u, v, respectively. Then the homotopy inverse of gf can be chosen as uv, and by
Lemma 6.3 that homotopy equivalence is a congruence, we have

uvgf ∼A uf ∼A 1, gf uv ∼A gv ∼A 1.

This implies that uv is the homotopy inverse of gf , thus homotopy equivalences are closd
under compositions.

Corollary 6.7. Homotopy equivalences in CF(A) are closed under homotopies.

Proof. Suppose f is a homotopy equivalence and f ∼A g. Suppose u is the homotopy
inverse of f , and again by Lemma 6.3, we have

gu ∼A f u ∼A 1, ug ∼A uf ∼A 1.

Hence, u is also a homotopy inverse of g.

Corollary 6.8. Homotopy equivalences in CF(A) satisfy 2-out-of-6.

Proof. Suppose we have f , g, ℎ in CF(A), where both gf and ℎg are homotopy equiva-
lences. Explicitly, we have u, v that

ugf ∼A 1, gf u ∼A 1, vℎg ∼A 1, ℎgv ∼A 1.

We �rst show that ℎgf is a homotopy equivalence with inverse ugv:

ugvℎgf ∼A ugf ∼A 1, ℎgf ugv ∼A ℎgv ∼A 1.

Secondly, we know that
f ∼ vℎgf ,

and both ℎgf and v are homotopy equivalences. By Corollary 6.6, so is vℎgf , and by
Corollary 6.7, f will also be a homotopy equivalence. Similarly we can show ℎ is also a
homotopy equivalence.
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6.2 Trivial Fibrations and Homotopy Equivalences
Our main goal in this section is to show that, in CF(A), a map is a trivial �bration T i�
it is a Kan �bration and a relative homotopy equivalence. We start with the left to right
direction. Firstly, we observe that trivial �brations have sections:

Lemma 6.9. If f ∶ X → Y is a trivial �bration, then it has a section.

Proof. Recall from Section 3.3.1 that any object Y in C will be co�brant, in the sense
that the map 0 → Y is a co�bration. Thus, f being a trivial �bration implies that the
following lifting problem has a solution (cf. Corollary 3.20)

0 X

Y Y

fs

Lemma 6.10. If f ∶ X → Y is a trivial �bration, then it is a strong codeformation retract.

Proof. From Lemma 6.9 we already know that f has a section s. Now consider the fol-
lowing lifting problem,

X + X X

I × X Y

[)0,)1]

[sf ,1]

fH

f �X

By our assumption for the e�ective cylinder object, the left vertical map is a co�bration,
thus the lift H exists. It follows that H ∶ sf ∼ 1Y . We observe that f �Y = �X (I × f ), which
implies that the following diagram commute,

I × Y Y

I × X X

H

I×f f

�X

By Remark 6.5, Lemma 6.10 implies that any trivial �bration in CF(A)will be a relative
homotopy equivalence, because the notion of strong codeformation retract is absolute.

On the other hand, we also want to show the converse for Kan �brations. In other
words, we intend to show that if a Kan �bration in CF(A) is also a relative homotopy
equivalence, then it is also a trivial �bration. To this end, the following characterisation
of strong homotopy equivalences will be useful:
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Lemma 6.11. For any map f ∶ X → Y , let �f ∶ ̂exp()0, f )→ f be the following square

[I, X ] X

X ×Y [I, Y ] Y

ev1

̂exp()0,f )
f

ev1◦�[I,Y ]

where ev1 = [)1, X ] is the exponential of )1 ∶ 1→ I against X , and similarly for Y . Then f
is a strong homotopy equivalence i� �f has a section.

Proof. By de�nition, a section of �f is a diagram as follows,

X [I, X ] X

Y X ×Y [I, Y ] Y

K

f

ev1

̂exp()0,f )
f

⟨s,H⟩ ev1◦�[I,Y ]

Let K̃ , H̃ be the transpose of K, H , respectively. After inspection, the data of the above
retract is equivalent to a map s ∶ Y → X and a pair of homotopies

K̃ ∶ sf ∼ 1, H̃ ∶ f s ∼ 1,

such that we have
f K = H (I × f ).

This exactly says that f is a strong homotopy equivalence with homotopy inverse s.

Using this characterisation, we have:

Proposition 6.12. If a Kan �bration is also a strong homotopy equivalence, then it is a
trivial �bration.

Proof. Suppose the Kan �bration f is a strong homotopy equivalence. By Lemma 6.11 it
is a retract of ̂exp()0, f ). Since )0 is an HDR and f is a Kan �bration, by Proposition 5.2,
̂exp()0, f ) will be a trivial �bration. Now f being a retract of ̂exp()0, f ) also implies that f

will be a trivial �bration as well.

Given this, our remaining goal is to show that for any Kan �bration in CF(A), if it is a
relative homotopy equivalence, then it is also a strong homotopy equivalence. We start
with the following observation:

101



Lemma 6.13. Let f ∶ Y → X be a Kan �bration over A with a section g ∶ X → Y up to
homotopy K ∶ f g ∼A 1X . Then we can �nd an actual section s of f such that g ∼A s.

Proof. Since f is a Kan �bration and )0 ∶ X → I × X is an HDR, the following diagram
has a diagonal lift

X Y

I × X X

)0

g

f

K

L

We then may de�ne s to be L)1. The commutativity above implies that s will be a section
of f . Furthermore, since K is a homotopy over A, the above diagram also lies over A,
which implies L ∶ g ∼A s.

Now if we start with a section s of a Kan �bration f such that s is the relative homo-
topical inverse of f , then f will actually be a strong codeformation retract:

Lemma 6.14. If f ∶ Y → X over A is a Kan �bration with a section s and a homotopy
H ∶ sf ∼A 1Y , then f is a strong codeformation retract.

Proof. We need to modify the homotopy H so that it commutes with the projection map.
Consider the following diagram over A,

⊏ ×Y Y

I × I × Y X

H∪sf H∪�Y

m⊗̂)0 fK

f H (∨×1Y )

Here ∨ ∶ I × I → I is the connection on the cylinder I we have assumed to exists in
De�nition 6.1. Notice that since f s = 1, the outer square commutes because we have
f sf H = f H . Thus, the diagonal lift K exists, and we may look at the homotopy M =

K (I × )1) ∶ sf ∼A 1Y . The following diagram commutes,

I × Y Y

I × X X

I×f

M

f

�X

because by the above factorisation we have

fM = f K (I × )1) = f H (∨ × 1Y )(I × )1) = �X (I × f ).

Hence, f is a strong codeformation retract.
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We can combine the above two results as follows:

Lemma 6.15. In CF(A), if f ∶ Y → X is a Kan �bration and a homotopy equivalence
relative to A, then it is a strong codeformation retract.

Proof. Suppose f is a homotopy equivalence relative to A, then it has a section g up to
homotopy over A. From Lemma 6.13, it has an actual section s with a homotopy g ∼A s.
Now since the homotopy relation is a congruence by Lemma 6.3, f s ∼A f g ∼A 1 as well.
Now we apply Lemma 6.14, and it follows that f is a strong codeformation retract.

Proposition 6.16. In CF(A), a map is a trivial �bration i� it is a Kan �bration and a
homotopy equivalence relative to A.

Proof. Combine Lemma 6.10, Lemma 6.15 with Proposition 6.12.

6.3 A Path Category Structure for Kan Fibrant Objects
In this section we construct a path category structure on CF(A), whcih is stable under
reindexing. Recall from [66] that a path category is a category C equipped with two
classes of maps, called �brations and weak equivalences. If a map is both a �bration and
a weak equivalence, we call it an acyclic �bration. For any object, we say it is (acyclic)
�brant if the unique map to the terminal object is a(n acyclic) �bration.

The two classes of maps in a path category are subject to the following conditions:

1. Fibrations are closed under composition.

2. Pullback of a �bration along any map exists and is again a �bration.

3. Pullback of an acyclic �bration is again an acyclic �bration.

4. Weak equivalences satisfy 2-out-of-6.

5. Isomorphisms are acyclic �brations and every acyclic �bration has a section.

6. Any object has a path object.

7. Every object is �brant.

For us, �brations in CF(A) will simply be Kan �brations, and weak equivalences will
be homotopy equivalences relative to A. With such choices, we already know that all
the conditions but 6 are satis�ed. 1 and 2 follow from the fact that Kan �brations, being
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the retract closure of a right structure F on C, are closed under pullback and composi-
tion. 3 and 5 follows from our characterisation in the previous section. In particular, by
Proposition 6.16, acyclic �brations in CF(A) are exactly trivial �brations, thus they will
be closed under pullback, and any trivial �bration has a section by Lemma 6.9. 4 holds
by Corollary 6.8. 7 holds by our construction of the category CF(A).

Hence, the remaining axiom to check is that any object in CF(A) has a path object:

De�nition 6.17. Suppose a category C has two classes of maps called �brations and
weak equivalences. For any object X in C, a path object on X is a factorisation of the
diagonal

X PX X × X
⟨d

0
,d
1
⟩

such that X → PX is a weak equivalence, and ⟨d
0
, d

1
⟩ is a �bration. ◊

For CF(A), we will choose the path object to be the relative function space [IA, X ]A,
which is the exponential of IA and X in the slice C/A. The factorisation is easy to de�ne,

X [IA, X ]A X ×A X
cX ⟨ev0,ev1⟩

where cX is the transpose of the projection �X ∶ IA ×A X → X . We �rst show that cX is a
homotopy equivalence relative to A:

Lemma 6.18. For any X in CF(A), the constant map

cX ∶ X → [IA, X ]A,

is a homotopy equivalence relative to A.

Proof. We may take its homotopy inverse to be ev1 ∶ [IA, X ]A → X . Notice that cX is a
retract of ev1, thus we only need to construct the homotopy for the other way. Using the
semi-lattice structure of the e�ective cylinder I, the following is a map over A,

K = ev(∨A × 1) ∶ IA ×A IA ×A [IA, X ]A → X.

In the internal logic, given any i, j ∶ IA and any p ∶ [IA, X ]A, we have

K (i, j, p) = p(i ∨A j).

In particular, if i = 0, then K0(j, p) = p(j), while if i = 1, then K1(j, p) = p(1). It then
follows that the transpose K̃ ∶ IA ×A [IA, X ]A → [IA, X ]A given by

K̃ (i, p) = �j.K (i, j, p)

can be viewed as a homotopy K̃ ∶ 1 ∼A cXev1.
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Now the remaining thing to show is that the pairing of the evaluation maps

⟨ev0, ev1⟩ ∶ [IA, X ]A → X ×A X

is a Kan �bration.

Lemma 6.19. For any object X in CF(A),

⟨ev0, ev1⟩ ∶ [IA, X ]A → X ×A X

is a Kan �bration, where both ev0, ev1 are trivial �brations.

Proof. By assumption, [)0, )1] ∶ 1 + 1 → I is a co�bration. Since x ∶ X → A by
assumption is a Kan �bration, by Proposition 5.5 the following pullback exponential will
also be a Kan �bration,

̂exp([)0, )1], x) = ⟨[I, x], ⟨ev0, ev1⟩⟩ ∶ [I, X ]→ [I, A] ×A×A (X × X ).

Now notice that the following is a pullback square,

[IA, X ]A [I, X ]

X ×A X [I, A] ×A×A (X × X )

⟨ev0,ev1⟩ ⟨[I,x],⟨ev0,ev1⟩⟩

⟨x̃�X ,1⟩

which implies that the map

⟨ev0, ev1⟩ ∶ [IA, X ]A → X ×A X

will in fact be a Kan �bration.
Similarly, by Proposition 5.2, since )i ∶ 1 → I is an HDR for i = 0, 1 and X → A is a

Kan �bration, the pullback-exponential

̂exp()i , x) = ⟨[I, x], evi⟩ ∶ [I, X ]→ [I, A] ×A X

will be a trivial �bration. Now again we have a pullback square as below,

[IA, X ]A [I, X ]

X [I, A] ×A X

evi ⟨[I,x],evi⟩

⟨x̃�X ,1⟩

Hence, evi ∶ [IA, X ]A → X is an e�ective trivial �bration for any i = 0, 1.
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Corollary 6.20. For any object X in CF(A), the factorisation

X [IA, X ]A X ×A X
cX ⟨ev0,ev1⟩

exhibits [IA, X ]A as the path object of X in CF(A).

Proof. Combine Lemma 6.18 and Lemma 6.19.

To this end, we have veri�ed that Kan �brations and homotopy equivalences relative
to A on CF(A) satisfy all the axioms of being a path category. We record this as the
following theorem:

Theorem 6.21. For any object A, CF(A) has a path category structure with �brations being
Kan �brations and weak equivalences being homotopy equivalences relative to A. Further-
more, for any morphism f ∶ A → B in C, the corresponding reindexing functor

f
∗
∶ CF(B)→ CF(A)

preserves �brations and weak equivalences.

Proof. As mentioned, we have veri�ed that Kan �brations and homotopy equivalences
relative to A satisfy all the axioms for a path category structure. Now for the pullback
functor f ∗ ∶ CF(B) → CF(A) induced by any morphism f ∶ A → B, evidently it pre-
serves �brations, since Kan �brations are closed under pullback. It also preserves weak
equivalences, because the e�ective cylinder object we have chosen are stable under pull-
back f ∗(IB) ≅ IA.

Remark 6.22. In this chapter we have chosen the �bration structure to be Kan �brations,
rather than e�ective Kan �brations. Our motivation for such a choice has been clearly
stated at the beginning of this chapter. However, using the techniques developed in this
chapter, one can show that the category CF(A) of e�ective Kan �brations over an arbitrary
object A also has a path category structure, with �brations being e�ective Kan �brations
and weak equivalences again being homotopy equivalences relative toA. The only caveat
is that, Proposition 6.16 no longer holds. In general, a trivial �bration will not be an
e�ective Kan �bration. On the other hand, it is also unclear how to eqiup an e�ective
trivial �bration structure on an e�ective Kan �bration which is also a relative homotopy
equivalence. ◊
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Chapter 7

Towards an Algebraic Monoidal
Model Structure

In this chapter, we continue our journey from Chapter 6 to construct a model structure
on the full category C. Our strategy of constructing a model structure on C follows [52].
Based on the approach in loc. cit., in Section 7.1 we will identify the two key properties
we need to show C is an algebraic monoidal model category: (1) (ℂ,F) forms an AWFS,
as mentioned; and (2) Kan �brations have the socalled extension property along trivial
co�brations.

As mentioned at the beginning of Chapter 6, this document will not treat (1). Sec-
tion 7.2 will look more closely at the extension property stated in (2), and show that it
crucially depends on a notion of Moore equivalence extension which will be introduced
there. The �nal section thus has singled out a single property central to future investi-
gations on constructive model structure based on e�ective Kan �brations.

7.1 Towards a Full Algebraic Model Structure
In this section we explore the possibilities of extending the model structure we have
constructed in the previous section on �brant objects to a full model structure on the
total category. In fact, what we want is an algebraic monoidal model structure on C.

As mentioned multiple times, the immediate obstacle we face is that we do not have
a general method of constructing an AWFS (ℂ,F) for e�ective Kan �brations on C. For
now, we simply take the following working assumption:

Assumption 7.1. The e�ective trivial co�brations and e�ective Kan �brations form an
AWFS (ℂ,F) on C.
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As already discussed at the beginning of Chapter 6, under Assumption 7.1, the re-
maining obstacle is to show that the two underlying WFSs (Σ,T) and (C, F) form a model
structure on C. In this section, we follow the strategy in [52], and we intend to identify
the key property for this to hold.

Notice that if the two WFSs (Σ,T) and (C, F) do form a model structure, then the
class of weak equivalences will be determined by them. One possible de�nition of weak
equivalences from two WFSs is as follows:

De�nition 7.2. A morphism f in C is a weak equivalence, i.e. f ∈W, i� f can be factored
as a trivial co�bration followed by a trivial �bration. ◊

The crucial consequence of De�nition 7.2 is that it makes the following result true:

Lemma 7.3. W ∩ Σ = C, and W ∩ F = T.

Proof. See e.g. [52, Lem. 2.1].

Remark 7.4. One can also verify that the above weak equivalences will be a sound exten-
sion of the path category structure we have constructed in Section 6.3, in the sense that
weak equivalences between Kan �brant objects are precisely homotopy equivalences.
The crucial fact is that a co�bration between Kan �brant objects is a trivial co�bration
i� it is also a homotopy equivalence, which can be shown via a dual argument as in
Section 6.2. For space limitations, we leave out the argument here. ◊

By De�nition 4.21, it remains to show that weak equivalences satisfy 2-out-of-3. The
paper [52] has identi�ed a family of su�cient conditions to ensure this:

Proposition 7.5. Given two WFSs (Σ,T) and (C, F) on a category C. If the following con-
ditions hold, then they form a model structure on C with weak equivalences as in De�ni-
tion 7.2:

• C equipped with (Σ,T) and (C, F) has the span property.

• Trivial �brations satisfy 2-out-of-3 relative to Kan �brations.

• Trivial �brations and Kan �brations extend along trivial co�brations.

• (C, F) has the Frobenius property.

Proof. See Theorem 2.8 of [52].

We will de�ne the notions mentioned above below, and try to prove them for the two
WFSs (Σ,T) and (C, F) we have on C. We start with the socalled span property:
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De�nition 7.6 (Span Property). Two WFSs (C0, F0) and (C1, F1) on C has the span prop-
erty if for any C1-maps i, j and F1-map f , if j = f i, then f also belongs to F0. ◊

For us, the span property does hold:

Lemma 7.7. C equipped with (Σ,T) and (C, F) has the span property.

Proof. Suppose we have a diagram as below

A

X Y

i j

f

where i, j ∈ C and f ∈ F. By Lemma 6.11 and Proposition 5.2, to show f ∈ T, it su�ces
to show that f is a strong homotopy equivalence. First notice that f has a section s as
indicated as follows,

A X

Y Y

j

i

fs

Then consider the following lifting problem,

A [I, X ]

X (X × X ) ×Y×Y [I, Y ]

i ̂exp([)0,)1],f )

⟨⟨sf ,1⟩,
̃
f �X ⟩

ĩ�A

H

By Proposition 5.5, the right vertical map will again be a Kan �bration. Thus, the diag-
onal lift H exists, whose transpose H̃ ∶ I × X → X by construction makes f a strong
codeformation retract.

We move on to discuss the second property stated in Proposition 7.5:

De�nition 7.8. When equipped with two WFSs (C0, F0) and (C1, F1), we say F0 satis�es
2-out-of-3 relative to F1, if for any F1-maps p, q, r with r = qp, if two of them belong to F0,
then so is the third. ◊

Again, we can show that the above property indeed holds for our model on C:

Lemma 7.9. Trivial �brations in C satis�es 2-out-of-3 relative to Kan �brations in C.
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Proof. The same proof of [52, Lem. 4.5] can be applied here.

The extension property is de�ned as follows:

De�nition 7.10 (Extension). A class of maps R extends along a class of maps L, if when-
ever we are given a solid diagram as follows,

∙ ∙

∙ ∙

∈R ∈R

∈L

y

it can be completed in the above way as a pullback. ◊

For trivial �brations, we indeed can show they extend along trivial co�brations:

Lemma 7.11. Trivial �brations extend along trivial co�brations in C.

Proof. Consider a trivial co�bration i and a trivial �bration f ,

X Y

A B
i

f i∗f

j

y

Here i∗f is the pushforward of f along i. Since i is a monomorphism, the above square will
be a pullback. Now since co�brations are closed under pullbacks, it follows that trivial
�brations will be closed under pushforward along any morphism. This means that i∗f
will also be a trivial �bration.

The Frobenius property is de�ned as follows:

De�nition 7.12 (Frobenius). We say a WFS (L,R) has the Frobenius property if L is stable
under pullback along maps in R. ◊

As mentioned in the Introduction, one of the nice properties of the notion of e�ective
Kan �brations is that, we can show constructively e�ective Kan �brations are closed
under pushforward along e�ective Kan �brations [63, Ch. 7]. Under Assumption 7.1, this
implies that e�ective trivial co�brations will be closed under pullback along e�ective Kan
�brations, i.e. the AWFS (ℂ,F) has the Frobenius property.

To show the underlying WFS (C, F) has the Frobenius property, we observe that gen-
erally for any AWFS (L,ℝ), if it satis�es Frobenius, then so does its underlying WFS. We
start with the following observation:
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Lemma 7.13. If an AWFS (L,ℝ) on C has the Frobenius property, i.e. L-maps is closed
under pullback along ℝ-maps, then L-maps is also closed under pullback along ℝ-maps.

Proof. Consider the following diagram,

D B

C A

W Z

X Y
f

s0

r0

i

y

l

q

s1

r1

j

g

t0

u0

y

ℎ

t1

u1

k

y

where f in ℝ and i in L, where i arises as a retract of the L-map j. In the above diagram,
g is the pullback of f along r0, thus is again in ℝ. Now by Frobenius of the AWFS (L,ℝ),
the pullback k of j along g will be in L. This makes l a retract of k, thus l will be in L.

Using this, we can show the following result:

Lemma 7.14. If an AWFS (L,ℝ) has the Frobenius property, then so does its underlying
WFS (L,R).

Proof. Consider a pullback diagram with A → B belongs to L and E → B belongs to R

as shown below. Now since we have an AWFS (L,ℝ), E � B will be a retract of the free
R-algebra

C A

D A

E B

F B

f

i

g

j

R

L

r

i

k

ℎ

p

s

y

y

Now since R is an ℝ-map, by Lemma 7.13 D → F belongs to L. Since f r = R, we have
that D → F is also the pullback of A → B, hence on the left square p is also a pullback
of r . Now by the universal property of pullback, we have a uniquely induced map

s = ⟨Lj, 1⟩ ∶ C → D,
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which is well-de�ned because rLj = j. Now this implies that j is also a retract of k, thus
j also belongs to L.

Corollary 7.15. In C, the WFS (C, F) has the Frobenius property.

Proof. This follows from Lemma 7.14 and the fact that e�ective Kan �brations are closed
under pushforward along e�ective Kan �brations as shown in [63, Ch. 7].

Now combine all the results above, the only missing hypothesis from Proposition 7.5
is the extension property of Kan �brations:

Proposition 7.16. Under Assumption 7.1, if Kan �brations extend along trivial co�bra-
tions, then (Σ,T) and (ℂ,F) form an algebraic monoidal model structure on C.

Proof. Combining Proposition 7.5, Lemma 7.7, Lemma 7.9, Lemma 7.11, and Corollary 7.15,
if Kan �brations extend along trivial co�brations, then (Σ,T) and (C, F) will be a model
structure on C. By De�nition 4.26, the two AWFSs (Σ,T) and (ℂ,F) do form an alge-
braic model structure, since as mentioned we have a morphism between the AWFSs
(ℂ,F) → (Σ,T). Then Theorem 5.7 implies that we further have an algebraic monoidal
model category.

Hence, the crucial property is to show that Kan �brations extend along trivial co�-
brations. We will provide a more detailed analysis of this problem in the next section.

7.2 Extension Property of E�ective Kan Fibrations
In this section we propose a strategy to show Kan �brations extend along trivial co�bra-
tions. As in [52], whether this holds crucially depends on a certain equivalence extension
property. In loc. cit., the equivalence relation involved is homotopy equivalence. This is
related to how the �bration structure is de�ned there. For Kan �brations as de�ned in
Section 3.3.3, it turns out the equivalence relation involved will be Moore equivalence in
a suitable sense. The argument in this section will necessarily involve more deeply the
symmetric Moore structure on C, which we again refer the readers to Appendix A.

As a �rst observation, we note that the problem can be reduced to that of showing
Kan �brations extension along generating trivial co�brations:

Lemma 7.17. The class of co�brations that Kan �brations extend along is closed under
coproducts, pushouts, trans�nite compositions and retracts.

Proof. See [52, Lem. 7.5].
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Thus for us, we need to show that Kan �brations extend along the co�bre arrow of
any mould square (cf. Section 3.3.3). More concretely, suppose we have a mould square

A B

C D

)a

i j

)c

and if we have a Kan �bration over B+AC , we should be able to construct a Kan �bration
over D whose pullback along B +A C → D is X . We can also reformulate this question
more natively on mould squares: Given any mould square as above, with a Kan �bration
XB over B and a Kan �bration XC over C such that they pullback to the same Kan �bration
XA over A, then there exists another Kan �bration X → D which pullbacks to XB, XC

along j, )c , respectively.
Based on this reformulation, our �rst task in this section is to turn this property as

a property of extension of Hdrs. One starting point is the observation that Kan �brations
do extend along HDRs. In fact more generally, any right class of maps extend along any
map with a retract:

Lemma 7.18. If R is stable under pullback, then they extend along any split mono.

Proof. Suppose we have a split mono i ∶ A → B with retract j ∶ B → A. Now suppose
we have an R-map f ∶ X → A. Consider the following diagram,

X B ×A X X

A B A

⟨if ,1⟩ l

f

j

f

i

g

yy

where g is the pullback of f along j. Since both the outer square and the right square are
pullbacks, so is the left square. Now since R-maps are closed under pullbacks, g will also
be an R-map. This way, the left square exhibits g as the extension of f along i.

In particular, Lemma 7.18 implies that Kan �brations extend along Hdrs, since Hdrs
have explicit retracts. This suggests that when given an extension problem against a
mould square as stated before, we can �rst extend XC along the HDR )c ∶ C → D and
obtain a Kan �bration Y over D, such that XC → Y is an Hdr. The caveat is that when
we pullback Y along j, j∗Y , the result may not be isomorphic to XB. But they will always
be Moore equivalent in a suitable sense, as we will show below.

Notice that if we have an Hdr ) ∶ A → B and a Kan �bration X over B, there will be
an Hdr structure on X as well, making the morphism X → B a morphism of Hdrs:
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Lemma 7.19. If )a ∶ A → B is an Hdr and f ∶ X → B is a Kan �bration, then in the
following pullback square,

XA X

A B

fA

)x

f

)a

y

)x is also an Hdr, and the square is a morphism of Hdrs.

Proof. This follows from the Frobenius construction given in [63, Prop. 5.2]. The loc. cit.
shows that if f is an e�ective Kan �bration and )a is an HDR, then )x is also an HDR and
the morphism will be a morphism of HDRs. It is easy to see that the same argument also
applies to the case where f is simply a Kan �bration and )a is an Hdr.

Now if Y is obtained by extending a Kan �bration X overA along the Hdr )a ∶ A → B

as in Lemma 7.18, the induced morphism of Hdrs as in Lemma 7.19 will furthermore be
Cartesian, because by construction Y is the pullback of X along �a.

The upshot is that, given an Hdr )a ∶ A → B, if we have a Kan �bration f ∶ X → B,
and let XA be the Kan �bration over A obtained by pulling back X along )a, the Kan
�bration X and the extension Y of XA along )a as in Lemma 7.18 will be Moore equivalent
over B, in a suitable sense. Recall from Proposition 3.25 the category of Hdrs is equivalent
to the category of (M, s)-coalgebras, thus we will identify them freely.

De�nition 7.20. Given an Hdr B and Kan �brations X, Y over B, we say a morphism
f ∶ X → Y over B is a Moore equivalence over B, if �rstly it is a morphism of Hdrs, and
there is another morphism g ∶ Y → X , such that the induced Hdr structures on X, Y

HX ∶ X → MX, HY ∶ Y → MY,

serve as Moore homotopies HX ∶ 1 ∼ gf and HY ∶ 1 ∼ f g, respectively.1 ◊

Remark 7.21. It turns out that Moore equivalences interact nicely with Kan �brations
and trivial �brations. Given a Kan �bration f ∶ X → Y between Kan �brant objects, by
de�nition it is a Moore equivalence i� the following diagram is a retract,

X MX X

Y X ×Y MY Y

f

HX

⟨t,Mf ⟩

s

f

⟨g,HY ⟩
s◦�MY

1We do not assume g to also live over B. In fact, from our de�nition, it cannot be.
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By [63, Cor. 11.1], f is a Kan �bration in simplicial sets i� ⟨t, Mf ⟩ ∶ MX → X ×Y MY is
a trivial �bration. Thus, if f is a Moore equivalence, then it is also a trivial �bration. ◊

One immediate consequence of two Kan �brations X, Y being Moore equivalent over
an Hdr B is that, their pullbacks along )a ∶ A → B do coincide:

Lemma 7.22. Suppose we have two Kan �brations X, Y over an Hdr )a ∶ A → B. If we
have a Moore equivalence f ∶ X → Y over B, then we have fA ∶ XA ≅ YA over A, where fA
is the pullback of f along )a.

Proof. In the internal logic, we know that

XA = { x ∶ X ∣ HX (x) = rx }, YA = { y ∶ Y ∣ HY (y) = ry },

since the following are pullback squares (cf. [63, Lem. 4.1]),

XA X

X MX

)x

)x

HX

r

YA Y

Y MY

)y

)y

HY

r

We can thus directly construct an inverse gA ∶ YA → XA as follows: For any y ∶ YA,

gA(y) = �xg)yy.

Now given any x ∶ XA we have

gAfA(x) = �xg)yfA(x) = �xgf )xx.

Since we know that HX ∶ 1 ∼ gf and that HX ()xx) = r()xx), it follows that

gf )xx = )xx,

thus we do have gAfA(x) = �x)xx = x .
On the other hand, given any y ∶ YA, we have

fAgA(y) = fA�xg)yy = �yf g)yy.

Again, since HY ∶ 1 ∼ f g and HY ()yy) = r()yy), it follows that

fAgA(y) = �y)yy = y.

This concludes the proof.
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As mentioned, one typical example of a Moore equivalence over an Hdr comes from
the following situation:

Lemma 7.23. Suppose we have an Hdr )a ∶ A → B and a Kan �bration f ∶ X → B. Let
XA be the pullback of X along )a. Let Y be a Kan �bration over B obtained via extending
XA along )a as in Lemma 7.18, then the following comparision map

⟨f , �x⟩ ∶ X → Y = B ×A XA

with be a Moore equivalence between X, Y over B.

Proof. It is easy to see that the comparison map is a morphism of Hdrs. Recall the Hdr
structure on Y

HY ∶ Y = B ×A XA → MY ≅ MB ×MA MXA

simply takes any (b, x) ∶ Y = B ×A XA to the following path,

HY (b, x) = (HB(b), �(x, |HB(b)|)),

Now given any x ∶ X , by construction we have that

M⟨f , �x⟩HX (x) = ⟨MfHX (x), M�xHX (x)⟩ = ⟨HB(f x), �(�xx, |HX (x)|)⟩

= ⟨HB(f x), �(�xx, |HB(f x)|)⟩ = HY⟨f x, �xx⟩

The second and third equalities hold due to the fact that f ∶ X → B is a morphism of
Hdrs. The inverse map is easy to de�ne as follows,

)x�XA ∶ Y = B ×A XA → X.

To show that they form a Moore equivalence between X and Y over B, we need to further
verify that indeed we have

HX ∶ 1 ∼ )x�XA
◦ ⟨f , �x⟩, HY ∶ 1 ∼ ⟨f , �x⟩ ◦ )x�XA

.

On one hand, given any x ∶ X , by de�nition we have

)x�XA
◦ ⟨f , �x⟩(x) = )x�x (x),

thus we do have HX ∶ 1 ∼ )x�XA ◦ ⟨f , �x⟩. On the other hand, for any (b, x) ∶ B ×AXA = Y ,

⟨f , �x⟩ ◦ )x�XA
(b, x) = ⟨f )xx, �x)xx⟩ = ⟨)a�ab, x⟩.

The �nal equality is due to the fact that by assumption, fAx = �ab. Thus, we indeed have

HY (b, x) ∶ (b, x) ∼ ()a�ab, x).

This implies that HY ∶ 1 ∼ ⟨f , �x⟩ ◦ )x�XA . This concludes the proof.
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Now consider a mould square as follows,

A B A

C D C

)a

i j

�a

i

)c
�c

y y

Suppose we have Kan �brations fC ∶ XC → C and fB ∶ XB → B which are pulled back to
the same map fA ∶ XA → A. Let the extension of XC along )c ∶ C → D as constructed
in Lemma 7.18 be g ∶ Y → D, and let gB ∶ YB → B be the pullback of Y along j. Notice
that the following is a pullback,

YB XA

B A

gB fA

�a

y

This is because we have

�
∗

a
XA ≅ �

∗

a
i
∗
XC ≅ j

∗
�
∗

c
XC ≅ j

∗
Y ≅ YB.

Thus, by Lemma 7.23, YB and XB will be Moore equivalent over A. Given such a situation,
it is natural to de�ne the following Moore equivalence extension property:

De�nition 7.24. We say Kan �brations satisfy the Moore equivalence extension property
if the following holds: Given any Cartesian co�brant morphism of Hdr B → D, in other
words a mould square, and given any Kan �brations X, Y which are Moore equivalent
over B

XB X

YB Y

B D

∼ ∼

y

y

then for any Kan �bration Y over D whose pullback along B → D is YB, we can extend
XB along B → D to a Kan �bration X over D as well as shown above, such that X and Y
are Moore equivalent over D. ◊

It is easy to see that if the Moore equivalence extension property holds for Kan �bra-
tions, then Kan �brations do extend along trivial co�brations:
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Proposition 7.25. If Kan �brations in C have the Moore equivalence extension property,
then Kan �brations extend along trivial co�brations.

Proof. As mentioned, by Lemma 7.17 we only need to show that Kan �brations extend
along co�bre arrows of mould squares. Suppose we have a mould square as follows,

A B

C D

)a

i j

)c

with Kan �brations XC over C and XB over B which are pulled back to the same Kan
�bration XA over A. We need to �nd a Kan �bration X over D which coincide with XB

and XC when restricted along B, C , respectively.
To this end, let us �rst extend XC along the HDR C → D as in Lemma 7.18 and get

a Kan �bration Y over D. By the discussion before De�nition 7.24, the restriction of Y
to YB over B can be equivalently seen as the extension of XA along )a as indicated by
Lemma 7.18. Now Lemma 7.23 implies that YB and XB will be Moore equivalent over
B. By the Moore equivalence extension property, we can �nd a Kan �bration X over D
which is Moore equivalent to Y over D, and whose restriction on B coincide with XB. By
Lemma 7.22, X and Y have the same restriction along C → D, which also implies that X
restricted to C will be XC . Thus, X will be our desired extension.

At this point, we have reduced the problem of constructing an algebraic monoidal
model structure on C to the problem of showing Kan �brations have the Moore equiva-
lence extension property (modulo the problem of constructing an AWFS (ℂ,F), of course).
We comment at the end that, from the perspective of building a model of HoTT, a ver-
sion of equivalence extension property is closely related to the �brancy of the universe;
see e.g. [3]. This means that trying to show the Moore equivalence extension property
for Kan �brations, either abstractly in an axiomatic setting, or concretely in the speci�c
example of simplicial sets, should be the focus of future investigations.
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Chapter 8

Conclusion and Future Work

In this document, we have de�ned and used the framework of n-fold categories to con-
struct a Grpd-enriched multicategory LStr of left structures, whose morphisms repre-
sent generalised pushout-product axioms in the structured context. We have also lifted
the important technique of Joyal-Tierney calculus in homotopy theory to the structured
context, as certain cyclic action on morphisms in LStr. This makes LStr a convenient
environment for formulating and investigating general relationships between di�erent
structures of morphisms.

The �rst main result of this document is an axiomatisation of an algebraic monoidal
model category, which improves the existing notion stated in the literature [48]. Fur-
thermore, we have shown that the primary example of our concern, viz. the e�ective
Kan �brations and e�ective trivial �brations introduced in [63], can be equipped with an
algebraic monoidal structure, using the structured Joyal-Tierney calculus.

Based on these results, we are able to construct a stable family of path category struc-
tures on categories of Kan �brations over arbitrary objects. We have also carefully ex-
amined how the strategy of showing a full model category structure given in [52] can
be applied for e�ective Kan �brations. We have identi�ed a key property called Moore
equivalence extension, such that if it holds, then we can show the existence of an alge-
braic monoidal model structure for e�ective Kan �brations. Of course, this relies on the
assumption that e�ective Kan �bration is part of an AWFS.

As mentioned earlier, it seems the problem of constructing an AWFS for e�ective Kan
�brations, at least in the concrete example of simplicial sets, is solvable. Thus, the focus
for future work is to �rst investigate whether the Moore equivalence extension property
holds, especially for simplicial sets. Upon successfully obtaining such a full algebraic
monoidal model category, we can proceed to construct a full model of HoTT, working
towards a constructive interpretation of the univalence axiom.
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Appendix A

Symmetric Moore Structure

In this section we discuss the axioms of a symmetric Moore structure on a category C. We
assume C is a category having �nite limits and �nite colimits, and is locally Cartesian
closed.

A.1 Internal †-Category Structure
A symmetric Moore structure on C �rst consists of a pullback-preserving endo-functor
M , taking each object X in C to its Moore path object MX . Given f ∶ X → Y , the map
Mf ∶ MX → MY maps a path in X along f to a path in Y .

For MX to be deserving the name of a path object, we require it to equip naturally
for each X in C a structure of an internal †-category,1

MX t×sMX MX MX

MX

�
s

t

r

�

where all the maps r , s, t , � , � are natural. The †-structure � , or the symmetry, can sim-
ply be viewed as providing an internal functor from the category (X,MX, r , s, t, �) to its
opposite. For more detailed discussion on †-categories, see e.g. [28, Ch. 2.3].

We further require the following additional conditions for these structures:

• We impose that �, r should be Cartesian natural transformations.
1For basic notions of internal categories, see e.g. [34, Ch. B2].
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• When C is also equipped with a dominance Σ, we require that all components of r
also lie in Σ.

The two conditions ensures that there is a morphism of AWFSs from the one induced by
the symmetric More structure (see Section 3.3.2) to the one induced by the dominance
structure (see Section 3.3.1).

Notationwise, for any p ∶ MX , we use p ∶ x0 → x1 to indicate sp = x0 and tp = x1.
Given another q ∶ x1 → x2, we simply use the juxtaposition pq to denote their composite
�(p, q). In the second path space MMX , there will be two composition structures. If two
paths between paths a ∶ p → q and b ∶ q → u agree on the boundary, they can
be composed as ab via �(a, b). Diagramatically, we denote it as the following horizontal
composition:

∙ ∙ ∙

∙ ∙ ∙

p uq⇒a ⇒b

On the other hand, there is also a vertical composition provided by M� as follows: If two
a, a

′ they agree on the vertical boundary, viz. Mt(a) = Ms(a
′
), as indicated by the diagram

below,
∙ ∙

∙ ∙

∙ ∙

p q⇒a

p
′

q
′

⇒a
′

then we may apply M� via the natural isomorphism

� ∶ MMX Mt×MsMMX ≅ M(MX t×sMX ),

which exists since M preserves pullback. We denote the vertical composition of a and a′
as a ∙ a′, and concretely it is given by

a ∙ a
′
= M�.�(a, a

′
).

A.2 Path Length and Constant Path
We think of M1 as the object of path length. For any X , the unique map X → 1 induces a
function MX → M1, which we think of as taking a path in X to its associate path length.
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For this reason, we write this map as |−|. Cartesianness of r implies that the following
diagram is a pullback,

X MX

1 M1

r

|−|

r

which means that a path in MX is trivial i� its length is trivial.
Besides trivial paths, for any path length we would also want to construct a constant

path of this length. This is recorded in the structure of a strength (cf. [39]), which is a
natural family of maps

�X ∶ X ×M1→ MX,

taking a point x in X and a path length to the associated constant path on x of the same
length. In particular, this means we have

X ×M1 MX

M1

�M1

�

|−|

or in other words, for any x ∶ X and  ∶ M1 we have

|�(x,  )| =  .

Furthermore, to make sure the image of � is indeed the constant path on a point, and that
the path length composes in the right way, we require the following equations to hold,

s�(x,  ) = t�(x,  ) = x, ��(x,  ) = �(x,  ), �(x, r) = rx , �(x,  )�(x, � ) = �(x, � ).

In the usual de�nition of a strength of a functor, we usually require a natural family
of maps of the following type,

�X,Y ∶ X ×MY → M(X × Y ).

However, since M preserves pullback, these are constructible from the � given above.
Notice that we have

M(X × Y ) ≅ MX ×M1 MY.

This means that we can de�ne

�X,Y (x, p) = (�(x, |p|), p).

It is easy to verify that these induced maps �X,Y indeed form a strength in the usual sense,
and also works well with the internal †-category structure. For the details, we refer the
readers to [65].
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A.3 Connection
Furthermore, to obtain a good theory of �bration from the path functor M , we assume
there is a contraction operator, which is a map Γ ∶ M → MM . Intuitively, we think of
Γ as taking a path p and producing a higher path Γp that contracts p along itself, or in
diagramatic form as follows,

x1

x0 x1p

p

⇒Γp

To describe this algebraically, we impose the following conditions. Firstly, w.r.t. s, we
should have that for any p ∶ MX ,

sΓp = p = Ms(Γp),

which means Γ satis�es the two counit laws w.r.t. s. These two equalities represent the
fact that the source of the contraction Γp is p, and that if we project under M using s, we
obtain p again. Simiarly, w.r.t. t , we require for any p ∶ MX ,

tΓp = rtp , Mt(Γp) = �(tp, |p|).

These two equations encode that the target of the contraction Γp is the trivial path r , and
the contraction is constant on the target.

Besides the above conditions, we furthermore require that (M, Γ, s) forms a comonad.
The additional coassociativity law means that for any p ∶ MX ,

ΓΓp = MΓ.Γp.

Diagramatically, this means that the two ways of constructing the following higher con-
traction,

x1 x1

x0 x1p

p

p

one by using Γ on the 2-dimensional path Γp, and the other by mapping Γp along MΓ,
are equivalent. Similarly, we also impose that the contraction of a constant path itself is
induced by the strength of the contraction of path lengths,

Γ�(p,  ) = M�(�(x, Γ )).
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Finally, we also require the connection Γ to be compatible with the internal†-category
structure. For the identities, we require that the contraction applied to trivial paths results
in trivial paths as wel,

Γr = rr .

For the composition �, we impose the following distributivity law: For any p ∶ x0 → x1

and q ∶ x1 → x2 in MX ,
Γ(pq) = (Γp ∙ �(q, |p|))Γq.

In diagramatic form, it says that the following two ways of constructing the contraction
on the composite path pq are equivalent,

x2 x2

x1 x1 x2

x0 x1 x2 x0 x1 x2

p

q

p q

q

p

p q

q

⇒�(q,|p|)=

⇒Γ(pq)

⇒Γp ⇒Γq

Finally, for the symmetry � , notice that we can de�ne a new contraction operator

Γ
∗
= �M.M�.Γ.� ,

but now w.r.t. to the dual Moore structure (M, t, s, r , �
op
). We require that (M, Γ

∗
, t) is also

a strong comonad.
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