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Chapter 1

Introduction

1.1 Introduction

The fundamental idea of quantum cryptography is to use a generalization of
the Heisenberg uncertainty principle to our advantage in building cryptography
schemes that are based on the most fundamental level of physics. To explain
how we leverage the principles of quantum mechanics with the development of
cryptographic schemes, we start with a brief history of quantum mechanics.

One of the greatest scientific advances in recent history has been in the field
of quantum mechanics. Before the early 1900s, the field of physics was based on
classical mechanics. Classical mechanics allowed us to understand and predict
physical phenomena at a macroscopic level. Physical models were deterministic
and continuous, such as Maxwell’s equations for electric and magnetic fields.
It was in 1900, when Max Planck introduced the theory of the quantization of
energy, that quantum theory was born. Einstein further built upon this and used
Planck’s theory to explain the photoelectric effect.

A problem that remained open for all this time was the wave-particle duality
concept. In the 17th century, Newton’s belief was that light was a particle,
while Huygens believed that light was a wave. The interference experiments by
Thomas Young in 1801 validated that light was in fact a wave, and for the rest
of the 19th century this was the common belief. However, Planck’s quantization
idea, combined with Einstein’s explanation of the photoelectric effect, suggested
that light also had particle-like properties. By then, it was understood that light
could sometimes behave as a wave and sometimes as a particle. In 1924 Louis
de Broglie proposed that this also goes the other way: particles, like electrons
or protons, could also be seen as waves. Building on de Broglie’s wave-particle
duality proposal, Erwin Schrödinger developed the wave equation for electron
motion, known as the Schrödinger equation.

The description of elementary particles as waves is counterintuitive to how
people previously thought about particles. Intuitively, people often see, and draw,

1



2 Chapter 1. Introduction

particles as some sort of very small dot, fully localized at a certain position. This
is actually not correct. In general, the position of a particle is not precisely
defined; instead, there is only a probability that a particle is in a certain location.
A particle is represented as an amplitude wave throughout the space. It is only
when we measure the position of a particle that it becomes localized to a specific
position in space, where the probabilities of measuring a particle in a certain
location correspond to the norm of the amplitude.

A direct consequence of the particle-wave duality is Heisenberg’s uncertainty
principle. Just like the position of a particle is a wave with some amplitudes in
space, its momentum is also a wave in its momentum space. The proposal of de
Broglie relates the position x of a particle to its momentum p via a Fourier trans-
form. Heisenberg showed that one cannot know both the position and momentum
of a particle with perfect accuracy at the same time. When you measure the lo-
cation of a particle, you localize it in space, which fundamentally increases the
uncertainty in the momentum space. It is exactly this fundamental relationship
that will be of importance in this thesis and which allows us to use the very fun-
damental properties of quantum mechanics to construct cryptographic protocols
that have capabilities beyond what we could construct with classical mechanics!

Formally, we say that the momentum and position operators do not commute,
and the order in which you apply these operators on a quantum system matters.
This uncertainty principle was later generalized to any pair of non-commuting
observables. In other words, if two observables do not commute, we can never
learn both measurement outcomes of a single quantum system at the same time.
This property is intrinsically related to the fundamental concept of no-cloning.
The no-cloning principle states that it is impossible to create an exact copy of
an arbitrary unknown quantum state. It can be derived from the linear structure
of quantum mechanics and the fact that the allowed transformations are unitary
operators on the Hilbert space the quantum state lives in. One can also see
that if we could clone a quantum state, we could afterward measure the position
of one and the momentum of the other, thus violating Heisenberg’s uncertainty
principle.

The fundamental idea of quantum cryptography is to actually harness the
no-cloning theorem and use its inherent nonclassical properties for the purpose
of performing cryptographic tasks. Around 1970 (but published in 1983 [Wie83Wie83])
Stephen Wiesner wrote the first paper on this concept that would become a huge
influence and essentially start the field of quantum information theory. Wiesner
proposed a scheme for quantum money, which would be physically impossible
to clone, thus not allowing any forgeries. In the scheme, each bank note has a
serial number s, and a quantum state consisting of n qubits. The qubits are
two-state quantum systems encoded as eigenstates of one of two possible sets
of non-commuting observables, with only the bank knowing which set is used.
For example, consider the polarization of a photon. In this case, the observables
correspond to measurements made in a specific polarization basis, which affects
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the photon’s state accordingly. If we encode photons either in a {0◦, 90◦} polar-
ization basis or in a {45◦, 135◦} basis, they are encoded in two possible sets of
non-commuting observables. The bank keeps a ledger of all the serial numbers
and the corresponding encoding of the quantum systems. If someone wants to
check if a note is real, this person can go to the bank and ask them to verify the
note. The bank then measures all the quantum systems in the correct basis, and
checks if the measurement outcomes correspond to the ledger. Security against
forgery now comes from the fact that these quantum systems cannot be copied
without knowing the basis.

The work of Wiesner was the foundation on which the BB84 quantum key dis-
tribution protocol by Bennett and Brassard was based [BB14BB14]. Key distribution
is a fundamental task in cryptography, it consists of two parties, often called Alice
and Bob, who need to share a secret key when they did not have one previously.
In the BB84 protocol, Alice sends quantum states to Bob, similar to the states in
Wiesner’s quantum money scheme. On a high level, the idea behind the security
of the protocol is that no attacker can intercept and read out the messages sent
by Alice without disturbing the quantum system, and Alice and Bob can detect
whether anyone tried to disturb the quantum messages, thus detecting attackers.
Moreover, the no-cloning theorem prevents an attacker from copying the qubits
for later measurement.

A necessary component to implement the BB84 protocol is a publicly authen-
ticated channel between Alice and Bob. This ensures that while the information
exchange is public, both Alice and Bob can be certain that the messages are
indeed from one another and not from an attacker. If they did not have such a
channel, there could be a so-called man-in-the-middle attack, where an attacker
pretends to be Bob to Alice. In this way, the attacker could learn the secret key
that Alice would establish with Bob. This raises the question: Is there a way to
verify that a message from Alice actually originated from Alice?

One way to increase the assurance of the authentication of a message is to
verify the location of the sender. If Alice knows Bob’s supposed location, and she
knows that a message came from this location, this at least gives her some more
confidence that the message also came from Bob. The idea of using somebody’s
geographical location as a cryptographic credential is known as position-based
cryptography. We might be interested in sending messages that can only be read
at a certain location. Or, as mentioned before, it can be useful to know that a
message that you expect comes from some party, also comes from the location of
this party. If, for example, someone calls for a taxi, we would like to be sure that
the person is at his claimed location. This task is known as position verification,
and is the central topic of this thesis.

The setup of position verification is as follows. Suppose that there is some
prover P who has to convince a coalition of verifiers V0, . . . , Vk, placed in space
around P , that he is present at a specific location. According to Einstein’s theory
of relativity, information cannot be transmitted faster than the speed of light. If
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V0 P V1

V0 V1

x

f(x, y)

time

y

f(x, y)

position

Figure 1.1: Space-time diagram of a position verification protocol. The prover
P is placed in the middle between two verifiers V0, V1. The verifiers send inputs
x, y, for example two random strings, and ask the prover to answer f(x, y) for
some function known to everybody. All messages are sent with the speed of light.
Afterwards the verifiers check if they received the answers on time.

the verifiers send some message to the prover and ask him to send it back and
this takes time t, the verifiers know for sure that the prover is no further than
c · t away (where c is the speed of light). This is the idea behind the technique of
distance bounding, which was introduced in [BC93BC93]. An intuitive implementation
of a distance bounding protocol involves each verifier sending a random string to
the prover at the speed of light and asking the prover to return the message. By
measuring how long it takes for the messages to return, each verifier can establish
a bound on the distance. By combining all the distance bounds, the verifiers
can determine the position of P . However, this protocol is not secure as there
is a simple attack. A coalition of attackers placed between the verifiers and the
claimed location of P can intercept the messages, store them for a moment, and
send them back to the verifiers. In this way, they satisfy the task of the verifier
and convince them that there was someone at the location P even though it is
empty.

An immediate improvement to the above protocol would be to have the an-
swers of P depend on all the received messages. Consider the 1-dimensional case,
where two verifiers are on a line, and assume for simplicity that the prover P is
placed in the middle. Then, both verifiers send a random string x, y, respectively,
and ask the prover to compute some publicly known function f(x, y), and send
the answer back to the, as shown in Figure 1.11.1.

This approach is again not secure, a coalition of attackers not at the claimed
location of P , but placed in between each verifier and this location, can intercept
the inputs x, y, send the inputs to each other, compute f(x, y), and send back
the correct answer in time to the verifiers, as shown in Figure 1.21.2.



1.1. Introduction 5

V0 A P V1B

x

x y

y

V0 V1

x y

f(x, y)f(x, y)

time

position

Figure 1.2: Space-time diagram of an attack on the protocol in Figure 1.11.1. Two
attackers A,B placed between the verifiers and the prover, intercept the messages,
copy them and send them over, then compute f(x, y) and answer on time.

Different types of position verification protocols have been designed in the
classical world, but these will all be insecure; the work by Chandran, Goyal,
Moriart, and Ostrovsky [CGMO09CGMO09] showed an impossibility result in the classical
world for any position-based cryptography protocol that does not have extra
assumptions. Intuitively, this is due to the attack described in Figure 1.21.2, a
coalition of attackers can always copy and share their inputs between each other.
This brings up the idea of using quantum information. Since it is impossible to
copy a general quantum state, it immediately follows that attacks that merely
copy the inputs are not possible.

The possibility of using quantum information was first considered by Kent in
2002, where it was referred to as quantum tagging. In 2006 a U.S. patent was
granted to Kent, Beausoleil, Munro, and Spiller for a quantum tagging protocol
[BKMS06BKMS06]. Subsequent work in the scientific literature only appeared later in
2010 [KMS11KMS11]. The addition of quantum information was also done by Chan-
dran, Fehr, Goyal, Moriart, and Ostrovsky [CFG+10CFG+10], which includes some of
the authors of the earlier classical impossibility results, and independent work by
Malaney [Mal10Mal10].

Interestingly, it later turned out that these proposed protocols were also not
secure. In fact, it turns out that none of these protocols can be uncondition-
ally secure as a general impossibility result of Buhrman, Chandran, Fehr, Gelles,
Goyal, Ostrovsky, and Schaffner [BCF+14BCF+14] showed. This impossibility construc-
tion utilized quantum entanglement between the attackers to achieve any given
task, at the cost of a doubly exponential amount of entanglement relative to the
input sizes. This was later improved by Beigi and König to a single exponential
amount [BK11BK11], using new ideas from port-based teleportation [IH09IH09].

Thus, there are no unconditionally-secure quantum position-verification pro-
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tocols. However, from a practical point of view, not all is lost. The exponential
upper bound for a general attack is still astronomically large for only a relatively
small input. So the question has changed to whether we can prove that this expo-
nential upper bound is actually tight, or get a bound that is still hard to achieve
in practice. So far, the best-known lower bounds on the amount of entanglement
are linear. In this thesis, we will give another example of a protocol with linear
lower bounds.

Another central topic in this thesis is the actual implementation of a quantum
position verification (QPV) protocol. When we consider a realistic setting, we
have to deal with many extra nuances. For example, the easiest and most stable
way to send quantum information from the verifiers to the prover would be by
using photons via an optical fiber. However, the speed of light in an optical fiber
is only roughly 2/3 of the speed of light through free space. This is something
that a coalition of colluding attackers could exploit, but, realistically, free-space
communication of photons over large distances is very challenging. Secondly,
most photons will not even arrive at the prover! In a good optical fiber the
typical attenuation rate per km would be around 0.2 dB (or 4.6%) [SJ09SJ09], thus
over longer distances a large fraction of photons will never arrive. As we shall
see later, this opens up a whole new way for attackers to attack the protocol.
Third, the operations an honest prover has to do must not take too long to
implement because if the task takes too long, the uncertainty of its position to
the verifiers grows. Developing solutions for the second problem is be one of the
most important points in this thesis. We will also highlight its importance with
the following example.

1.2 Introduction to the QPVf
BB84 protocol

The QPVf
BB84 protocol is a variation of the QPVBB84 protocol. In the QPVBB84

protocol two verifiers V0, V1 decide on a basis to encode their input, either the
computational basis |0⟩ , |1⟩, or the Hadamard basis |+⟩ = 1√

2
(|0⟩+ |1⟩),

|−⟩ = 1√
2
(|0⟩ − |1⟩). Then V0 sends one of these two states, which we can denote

by Hθ |a⟩ with a, θ ∈ {0, 1}. Verifier V1 sends the basis information θ to the prover
P , so that he receives both inputs at the same time. Prover P then measures
his quantum input in the basis specified by the message of V1, and sends his
measurement outcome a to both verifiers. All messages are sent with the speed of
light, and the verifiers finally check if the answers were correct and sent on time.
This protocol was proven to be secure against unentangled attackers who are only
allowed to send classical messages to each other in the work of Buhrman et al.
[BCF+14BCF+14], later the security was extended to also include quantum communication
and parallel repetition but without pre-shared entanglement by Tomamichel, Fehr,
Kaniewski, and Wehner [TFKW13TFKW13].
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V0 P V1

V0 V1

Hf(x,y)|a⟩, x

a

time

y

a

position

Figure 1.3: Space-time diagram of the QPVf
BB84 position verification protocol

for some boolean function f . The prover P is placed in the middle between
two verifiers V0, V1. Verifier V1 sends a classical string y. V0 sends a classical
string x and one of the four BB84 states, encoded in the basis determined by the
function value f(x, y). The prover P computes the function value f(x, y), and
sends back his answer to the verifiers. All messages are sent with the speed of
light. Afterwards the verifiers check if the answer is correct and if they received
it on time.

This protocol can be easily broken by a coalition of attackers placed between
the verifiers and P , with access to pre-shared entanglement. Two attackers Alice
and Bob only need a single EPR pair to successfully attack the protocol. The
attack goes as follows:

• Alice teleports her quantum input to Bob, getting two bits from the tele-
portation measurement.

• Bob measures his local qubit in the basis specified by his input and gets
some measurement outcome.

• Both players send their measurement outcomes to each other after which
they can both answer perfectly correct and on time.

We will see why this attack works correctly. First, Alice gets some input state
Hθ |a⟩, then she teleports the state and gets teleportation measurement outcomes
b1, b2. Bob then holds the state Xb1Zb2Hθ |a⟩. Note that X |0⟩ = |1⟩ , X |1⟩ = |0⟩,
X |+⟩ = |+⟩ , X |−⟩ = − |−⟩, and similarly Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩, Z |+⟩ =
|−⟩ , Z |+⟩ = |−⟩. In other words, the Pauli X gate leaves the states in the
Hadamard basis invariant up to a global phase, while it flips the states in the
computational basis. The Pauli Z gate flips the states in the Hadamard basis and
leaves the computational basis states invariant. Since Bob measures in the correct
basis θ, his answer will be either correct or flipped depending on the teleportation
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measurement outcome. After the exchange of the measurement outcomes between
Alice and Bob, they have all the information to determine the answer a and they
respond to the verifiers on time.

An improvement to this protocol is the so-called QPVf
BB84 protocol, where

instead of sending the basis from one side, the basis information comes from the
joint messages from the verifiers. We introduce some boolean function f that
takes as input two n-bit strings x, y, and whose function value f(x, y) determines
the basis in which the prover has to measure. Depending on the complexity of
the function f , this protocol is secure against attackers restricted to a limited
amount of entanglement [BCS22BCS22]. For a random function, the attackers need at
least n/2 − 5 EPR pairs to successfully attack the protocol11, and for an explicit
function such as the inner product, the attackers need at least log(n)/2− 5 EPR
pairs22 or need to apply at least n quantum gates or measurements [ACCM24ACCM24].
Furthermore, the protocol remains secure if the input quantum information is
sent beforehand, which is an advantage in a practical setting where the quantum
information must be sent beforehand to account for the speed of light in fiber-
optic cables.

Although such linear bounds are still far away from exponential bounds, an
important advantage of this protocol is that the required entanglement scales
with the size of the classical messages. Since sending larger classical messages
is much easier compared to storing more EPR pairs, we can still argue for some
practical security. However, a major drawback of this protocol is that it is broken
in regimes with loss higher than 50%. As mentioned before, in a realistic setting
one will deal with losses, and with an attenuation rate of 0.2 dB/km, the loss
rate will exceed 50% already after around 15 km. And then we also get an
extra loss on top of that from every mirror, beam splitter, etc. Therefore, the
verifiers do not expect the prover to answer most of the rounds. The attackers
can use this to their advantage; Alice can intercept the message close to the
verifier, then guess a basis to measure in. Alice then sends her measurement
outcome to Bob, and Bob sends the basis information to Alice. When Alice’s
guess was correct both attackers reply, otherwise they simply declare a loss. This
perfectly breaks the protocol! Work by Qi and Siopsis [QS15QS15] works around this
by introducing a decoy-state method that uses coherent states as quantum inputs
sent with different intensities. Another way to circumvent this is to introduce
multiple bases to tolerate higher loss rates [Spe16bSpe16b, ES23ES23], but this does not
allow full loss tolerance. The work of Lim, Xu, Siopsis, Chitambar, Evans, and
Qi [LXS+16LXS+16] circumvents this issue by designing a protocol whose inputs are
purely classical and able to show full loss tolerance against attackers restricted to
classical communication. Therefore, a central question in this thesis is:

1This lower bound is still in sharp contrast to the best known attack that uses an exponential
amount of entanglement

2Again there is still an exponential gap between this lower bound and the best known attack
that uses a linear amount of entanglement.
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Can we design quantum position verification protocols that are easy to
implement, resistant against photon loss, and secure against entanglement?

1.3 Chapter Overview

The results in this thesis revolve around two central topics. First, we discuss the
problem of dealing with loss in QPV protocols. We introduce a new protocol
and prove it is loss-tolerant, even in a parallel setting, against classical attackers.
Additionally, we prove new separations between QPV security models, attackers
that are allowed to communicate quantum messages can break certain protocols
that are provably secure against classical attackers. We also investigate the role of
loss in this quantum communication setting. Finally, we propose a modification
that makes the QPVf

BB84 protocol loss-tolerant paving the way for practically
secure, implementable protocols.

Secondly, we show that certain known QPV protocols can be related to clas-
sical analogues, and we discuss some (surprising) implications of this relationship.

In Chapter 2 we introduce some terminology and background to the ba-
sics of quantum computation and quantum information. We show how to tele-
port an unknown quantum state via a teleportation procedure. We introduce
the SWAP test, which is the optimal measurement that distinguishes two either
equal or orthogonal quantum states. Finally, we provide a general introduction
to semidefinite programming, including an example of how to find an optimal
POVM measurement for a state distinguishing task, where the measurements
have a positive partial transpose (PPT).

In Chapter 3 we propose a new protocol QPVSWAP fully loss-tolerant against
classical attackers. The honest prover has to implement a SWAP test to deter-
mine the overlap between his input states. Similarly to the work by Lim et al.
[LXS+16LXS+16], all the inputs to the prover are quantum states. We show that the
protocol has several desirable properties. By formulating the optimal attack as
an SDP, which we solve analytically, we give optimal bounds on the success prob-
ability of attackers and show that the protocol obeys strong parallel repetition.
Furthermore, we propose an easy experimental setup for the protocol, and argue
that such an implementation is realistic in practice. One of its advantages is a
passive setup for the prover P , whose measurement remains the same in every
round and consists only of a 50/50 beamsplitter and two photon detectors.

In Chapter 4 we extend the security model of QPV protocols and investi-
gate the security of protocols when we allow the attackers a simultaneous round
of quantum communication when they do not pre-share entanglement. We give a
separating example of a QPV protocol provably secure against attackers restricted
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to classical communication and no pre-shared entanglement, but the protocol can
be trivially broken if the attackers have access to a quantum channel between
them. We then show that any protocol secure against classical communication
can be transformed into a protocol secure against quantum communication. We
further show, using arguments based on the monogamy of entanglement, that the
task of Bell state discrimination cannot be done with only local operations and a
single round of simultaneous quantum communication, not even probabilistically
(when we allow attackers to say loss sometimes), making this the first fully loss-
tolerant QPV task secure against quantum communication attacks. Furthermore,
we show that the techniques used to prove security of the Bell discrimination task
also imply security of the SWAP test protocol from Chapter 3 against attackers
allowed to use quantum communication.

In Chapter 5 we modify the usual structure of QPV protocols and prove that
this modification makes the potentially high transmission loss between the veri-
fiers and the prover security-irrelevant for a class of protocols that includes the
QPVf

BB84 protocol. This modification, which involves photon presence detection,
a small time delay at the prover, and a commitment to play before proceeding,
reduces the overall loss rate to just the prover’s laboratory. The adapted protocol
c-QPVf

BB84 then becomes a practically feasible QPV protocol with strong secu-
rity guarantees, even against attackers using adaptive strategies. As the loss rate
between the verifiers and the prover is mainly dictated by the distance between
them, secure QPV over longer distances becomes possible. We also show possi-
ble feasible implementations of the required photon presence detection, making
c-QPVf

BB84 a protocol that solves all major practical issues in QPV. It is secure
against slow quantum communication and loss, and the prover’s operations are
relatively simple, since he only needs to manipulate a single qubit and make a
classical computation.

In Chapter 6 we invert the picture, and consider the task of non-local quan-
tum computation (NLQC), which corresponds to the operations of the attackers in
a QPV protocol. We connect NLQC to the wider context of information-theoretic
cryptography by relating it to a number of other cryptographic primitives. We
show that one special case of NLQC, known as f -routing, is equivalent to the
quantum analogue of the conditional disclosure of secrets (CDS) primitive, where
by equivalent we mean that a protocol for one task gives a protocol for the other
with only small overhead in resource costs. We further consider another special
case of position verification, which we call coherent function evaluation (CFE),
and show that CFE protocols induce similarly efficient protocols for the private
simultaneous message passing (PSM) scenario. By relating position-verification
to these cryptographic primitives, a number of results in the information-theoretic
cryptography literature give new implications for NLQC, and vice versa. These
include the first sub-exponential upper bounds on the worst case cost of f -routing
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of 2O(
√
n logn) entanglement, the first example of an efficient f -routing strategy for

a problem believed to be outside P/poly, linear lower bounds on quantum re-
sources for CDS in the quantum setting, linear lower bounds on communication
cost of CFE, and efficient protocols for CDS in the quantum setting for functions
that can be computed with quantum circuits of low T depth.





Chapter 2
Preliminaries

We introduce some basic terminology and some background into the basics of
quantum computation and quantum information. We show how to teleport an
unknown quantum state via a teleportation procedure. We introduce the SWAP
test, which is the optimal measurement that distinguishes two either equal or
orthogonal quantum states. We give a general introduction to semidefinite pro-
gramming, with an example on how to find an optimal POVM measurement for a
state distinguishing task, where the measurements have positive partial transpose
(PPT).

13
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2.1 Notation and Terminology
We will start with some definitions that we will use throughout this thesis. We
write N for the set of natural numbers, R for the real numbers, and C for the
complex numbers. We write [n] to refer to the set {1, 2, 3, . . . , n}. Bits b are
integers that are either 0 or 1, these are often taken from F2, such that the
addition of two bits corresponds to taking the XOR. We write {0, 1}n for the set
of all n-bit strings. For a string x ∈ {0, 1}n we write xi to denote its i-th bit, and
|x| denotes its Hamming weight, which is the number of 1’s in the string. For two
strings x, y ∈ {0, 1}n we write x ⊕ y for their element-wise XOR, and x · y for
their inner product

∑n
i=1 xi · yi which is often taken mod 2.

For two real vectors v, w ∈ Rn we write ⟨v, w⟩ := vTw for the inner product,
where T denotes the transpose. For two complex vectors v, w ∈ Cn, the inner
product is written as v†w, where † denotes the conjugate transpose. A matrix
M ∈ Cn×n is Hermitian if M † = M . And a matrix is positive semidefinite (psd)
if it is Hermitian and all its eigenvalues are non-negative. The notation M ⪰ 0
indicates that M is positive semidefinite. For two matrices M,N we write M ⪰ N
if M −N ⪰ 0.

Often we are interested in the asymptotic behavior of functions. Let f, g be
two functions from N to N, to analyze its asymptotic behavior we use the big O
notation defined as follows:

f(n) = O(g(n)) ⇔ ∃ c,N ≥ 0 such that ∀n > N : f(n) ≤ cg(n). (2.1)

Similarly we define big Ω notation for lower bounds:

f(n) = Ω(g(n)) ⇔ ∃ c,N ≥ 0 such that ∀n > N : f(n) ≥ cg(n), (2.2)

or equivalently

f(n) = Ω(g(n)) ⇔ g(n) = O(f(n)). (2.3)

When f(n) = Θ(g(n)) we have both f(n) = O(g(n)) and f(n) = Ω(g(n)).

2.2 Quantum Information
We will introduce some basic concepts in quantum computing that we use in this
thesis. For a more complete background on the subject, we refer the reader to
the well-known textbook by Nielsen and Chuang [NC10NC10] and the lecture notes by
de Wolf [Wol19Wol19].

2.2.1 Quantum States

In this thesis, we will only consider quantum systems of finite dimensions. We
will write vectors in bra-ket notation, as introduced by Dirac. For a ψ ∈ Cd we
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write

|ψ⟩ =


ψ1

ψ2
...
ψd

, (2.4)

which is called a ket. The bra is the complex conjugate of a vector:

⟨ψ| =
(
ψ∗1 ψ∗2 . . . ψ∗d

)
, (2.5)

where ∗ denotes the complex conjugate. The advantage of Dirac notation is that
the inner product between two vectors can be written as ⟨ψ|ϕ⟩, as a shorthand
for ⟨ψ| |ϕ⟩.

We can also write a vector as a sum of unit vectors that span Cd denoted by
|0⟩ , . . . , |d− 1⟩, where |i⟩ denotes the unit vector of dimension d with a single 1
in position i. These unit vectors are also known as the computational basis. A
pure quantum state |ϕ⟩ of a quantum system in dimension d is a vector of unit
length, which we denote as:

|ϕ⟩ =
d−1∑
i=0

αi |i⟩ . (2.6)

Here, αi ∈ C are called amplitudes, since the vector is of unit length, we must
have

∑d
i=0 |αi|2 = 1. When there is more than one nonzero αi we call such a sum

over quantum states a superposition.
Often we just consider qubits which are quantum states in C2. We can write

any pure one-qubit state |ψ⟩ as a superposition over the two computational basis
vectors:

|ψ⟩ = α |0⟩+ β |1⟩ , where α, β ∈ C and |α|2 + |β|2 = 1, (2.7)

and the computational basis states are defined as:

|0⟩ =
(
1

0

)
, |1⟩ =

(
0

1

)
. (2.8)

When we combine two quantum systems, their joint system is a vector that is
an element of the tensor product of the original spaces. So, if we take one vector
|ϕ⟩ ∈ Cd1 and one vector |ψ⟩ ∈ Cd2 , their joint system is a vector in Cd1d2 and in
Dirac notation we write this as |ϕ⟩ ⊗ |ψ⟩ or sometimes simply |ϕ⟩ |ψ⟩.

The simplest example would be to take a two-qubit system. A pure quantum
state in a two-qubit system can be described by a vector in C4, with computational
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basis states.

|0⟩ ⊗ |0⟩ = |00⟩ =


1
0
0
0

, |0⟩ ⊗ |1⟩ = |01⟩ =


0
1
0
0

, (2.9)

|1⟩ ⊗ |0⟩ = |10⟩ =


0
0
1
0

, |1⟩ ⊗ |1⟩ = |11⟩ =


0
0
0
1

. (2.10)

A state in the joint space of two quantum systems that can be written as a tensor
product of two states in the original systems, such as the basis states described
above, are called separable states. States that cannot be written as a product
state are called entangled states. A well-known example of an entangled state is
the EPR-state, named after Einstein, Podolski and Rosen who wrote a famous
paper on the properties of entanglement [EPR35EPR35]:

1√
2
(|00⟩+ |11⟩). (2.11)

2.2.2 Measurements

Importantly, if we have some quantum state |ϕ⟩ that is in a superposition, we
cannot access the exact values in the superposition. Instead, we get measurement
outcomes with some probability distribution according to Born’s rule, which says
that the probability density of finding a quantum system in a given state is
proportional to the square of the amplitude of that state. Thus, if we have
some quantum state as in Equation 2.62.6, we can get a measurement outcome ‘i’
with probability |αi|2. Afterwards, the quantum system will collapse from the
superposition |ϕ⟩ to just the quantum state |i⟩. This measurement corresponds
to a projective measurement onto the computational basis, but we can extend
this notion of measurement.

A projective measurement is described by a collection of projectors
{P1, . . . , Pm} that sum up to identity and project to subspaces {V1, . . . , Vm} re-
spectively. Since the projectors sum up to identity they must be pairwise orthog-
onal, and thus the spaces they project to must be orthogonal to each other as
well. Any state |ϕ⟩ in the entire space can then be decomposed as a superposition
over these subspaces as follows:

|ϕ⟩ =
m∑
i=1

|ϕi⟩ , (2.12)
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where we have |ϕi⟩ = Pi |ϕ⟩, i.e. the projection of the state to that subspace.
By Born’s rule, we then find that the probability to get outcome i is its square
amplitude ∥Pi |ϕ⟩ ∥2. Afterwards the state collapses to this subspace, but, as the
post-measurement state is a valid quantum state, we normalize the state Pi|ϕ⟩

∥Pi|ϕ⟩∥ .

As an example, suppose we measure the state |ϕ⟩ = 1√
3
|0⟩ +

√
2
3
|1⟩ in the

computational basis. Then our projectors are simply

{|0⟩⟨0| , |1⟩⟨1|} =

{(
1 0
0 0

)
,

(
0 0
0 1

)}
, (2.13)

which indeed sum to identity. Then the probability to have outcome 0 is:∥∥∥∥∥|0⟩⟨0| ( 1√
3
|0⟩+

√
2

3
|1⟩)
∥∥∥∥∥
2

=

∥∥∥∥ 1√
3

∥∥∥∥2 = 1

3
, (2.14)

with post-measurement state |0⟩.
We can also apply a computational-basis measurement to one system, but

leave the rest of the system intact. For example, we can measure the first qubit
in the EPR-state from Equation 2.112.11, while leaving the second state invariant.
Our set of projectors is then:

{|0⟩⟨0| ⊗ 1, |1⟩⟨1| ⊗ 1}. (2.15)

Both projectors again add up to identity. When we apply the measurement to
1√
2
(|00⟩+|11⟩), we see that we get with equal probability 1

2
measurement outcome

0 or 1. The quantum states to which we collapse are |00⟩ and |11⟩, respectively.
Projective measurements are not the most general measurement we can apply.

The most general type of measurement is the so-called POVM measurement which
stands for positive operator valued measurement. A POVM is a collection of
positive semidefinite matrices E1, . . . , Em that sum up to identity. The probability
of getting measurement outcome i after measuring some state |ϕ⟩ corresponds to
⟨ϕ|Ei |ϕ⟩ = Tr[Ei |ϕ⟩ ⟨ϕ|]. Note that in the last equation, by the cyclicity of
the trace, we can multiply |ϕ⟩ by any complex phase eiθ and it will cancel out.
Because of this, we often say that states are equivalent up to a global phase, since
this phase does not change the probabilities of the measurements.

2.2.3 Unitaries and Gates

Besides measurements, which are non-linear and collapse the state, by the postu-
lates of quantum mechanics we can evolve quantum systems by a unitary trans-
formation. We write U for such a unitary matrix, and write U |ϕ⟩ when we apply
U to some state |ϕ⟩. The outcome of this transformation U |ϕ⟩ = |ψ⟩ will also
be a quantum state as its norm remains unchanged. Since U is unitary, we have
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U †U = 1, and U † |ψ⟩ = |ϕ⟩. Note that, by linearity, if we know how U transforms
all the computational basis states, we know how U transforms any state.

For the qubit case there is a commonly used set of unitaries called the Pauli
matrices which are also represented by 1, X, Y, Z:

σ0 := 1 :=

(
1 0
0 1

)
σ1 := X :=

(
0 1
1 0

)
(2.16)

σ2 := Y :=

(
0 −i
i 0

)
σ3 := Z :=

(
1 0
0 −1

)
. (2.17)

The Pauli matrices have some similarities to the classical operations we can do
to bits, but the operations are now reversible. The X gate flips the computational
basis states |0⟩ and |1⟩, and the Z gate adds a −1 phase to the |1⟩ state but leaves
the |0⟩ state invariant.

We often call unitaries on a single qubit or two qubits a gate. Another impor-
tant single-qubit gate is the Hadamard gate which sends the computational basis
states to a superposition over the two:

H :=
1√
2

(
1 1
1 −1

)
. (2.18)

The Hadamard is its own inverse, and sends |0⟩ to H |0⟩ = 1√
2
(|0⟩ + |1⟩), which

is often denoted by the |+⟩, and sends |1⟩ to H |1⟩ = 1√
2
(|0⟩− |1⟩), which is often

denoted by |−⟩. We write |0n⟩ for the all-zero n-qubit state, and when we apply
a Hadamard gate to each individual qubit we get a superposition over all possible
computational basis states in the C2n dimensional space:

H⊗n |0n⟩ = 1√
2n

∑
s∈{0,1}n

|s⟩ . (2.19)

An important 2-qubit gate is the CNOT operation. The CNOT is a controlled-
X gate, controlled on the first qubit it applies a X gate to the second qubit:

CNOT |0⟩ |b⟩ = |0⟩ |b⟩ (2.20)
CNOT |1⟩ |b⟩ = |1⟩ |1⊕ b⟩ , (2.21)

as a matrix the CNOT looks as follows:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

. (2.22)

We can use the combination of the Hadamard gate and the CNOT gate to con-
struct the EPR-state mentioned in Equation 2.112.11. In what follows, we give a
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|0⟩ H

|0⟩

circuit that maps the |00⟩ input to the 1√
2
(|00⟩+ |11⟩) state: A circuit should be

read from left to right. Each wire represents a qubit, the qubits here are initial-
ized in the |0⟩ state, then a Hadamard gate is applied to the first qubit. When no
gate is applied on a wire, we can imagine the identity matrix is applied to that
qubit. After which a CNOT gate controlled to the first qubit is applied. After
the Hadamard the state looks as follows:

(H ⊗ 1) |00⟩ = 1√
2
(|00⟩+ |10⟩),

then a CNOT is applied:

CNOT
1√
2
(|00⟩+ |10⟩) = 1√

2
(|00⟩+ |11⟩).

As a result of the fact that operations have to be unitary we also have that
there cannot exist a general operation that copies a general quantum state. This
is known as the no-cloning theorem and is an important result in the area of
cryptography. The statement is easy to prove and we will show it by contradiction.
Assume that there is some unitary U that can copy any state |ϕ⟩ into some second
register, so we have ∀ |ϕ⟩ : U |ϕ⟩ |0⟩ = |ϕ⟩ |ϕ⟩. Then we have on the computational
basis inputs

U |0⟩ |0⟩ = |0⟩ |0⟩ , (2.23)

and similarly

U |1⟩ |0⟩ = |1⟩ |1⟩ . (2.24)

When we apply U to the state |+⟩ = 1√
2
(|0⟩+ |1⟩) |0⟩ we get

U
1√
2
(|0⟩+ |1⟩) |0⟩ = 1√

2
(|0⟩+ |1⟩) 1√

2
(|0⟩+ |1⟩)

=
1

2
(|00⟩+ |01⟩+ |10⟩+ |11⟩) = |++⟩ . (2.25)

However, by linearity we should also get:

U
1√
2
(|0⟩+ |1⟩) |0⟩ = 1√

2
(U |0⟩ |0⟩+ |1⟩ |0⟩) = 1√

2
(|00⟩+ |11⟩), (2.26)

which is not equal to |++⟩. So we get a contradiction and conclude that such a
unitary U cannot exist.
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2.3 Teleportation
As we have mentioned before, the EPR-state 1√

2
(|00⟩ + |11⟩) cannot be written

as a tensor product of two single qubit states, thus the state is entangled. After
generating this state, we can separate these two qubits, but they will remain
entangled. An important protocol that makes use of the entanglement in these
EPR-states is quantum teleportation [BBC+93BBC+93]. We will show that it is possible
to send a quantum state from one location to another using an EPR-state whose
qubits are at each location, and by only communicating two bits of classical
information.

Say Alice is at one location and Bob at the other, and Alice wants to send a
general qubit |ϕ⟩ = α |0⟩+β |1⟩ to Bob. They share an EPR-state 1√

2
(|0⟩A |0⟩B +

|1⟩A |1⟩B), where the indices A,B denote which qubits Alice and Bob hold, re-
spectively.

First consider the following four states, also known as the Bell states, one of
which is the EPR-state:

|Φ+⟩ := 1√
2
(|00⟩+ |11⟩), |Φ−⟩ := 1√

2
(|00⟩ − |11⟩), (2.27)

|Ψ+⟩ := 1√
2
(|01⟩+ |10⟩), |Ψ−⟩ := 1√

2
(|01⟩ − |10⟩). (2.28)

These states are also known as the Bell basis as they are orthogonal to each other
and span the entire two-qubit C4 space. What is also interesting is that we can
transform any Bell state into another by applying local Pauli gates, for example,
|Ψ+⟩ = (1⊗X) |Φ+⟩. We can also measure in this Bell basis, which we call a Bell
state measurement. One can verify that the quantum circuit mentioned above not
only sends the |00⟩ state to |Φ+⟩, but also sends the other computational basis
states to a Bell state. Thus, when we want to perform a Bell state measurement,
we can apply the reverse of this circuit and measure in the computational basis.

Now we have the tools to state the teleportation protocol. We start with the
following state:

1√
2
(|00⟩AB + |11⟩AB)(α |0⟩Q + β |1⟩Q)

=
1√
2
(α |00⟩AQ |0⟩B + β |01⟩AQ |0⟩B + α |10⟩AQ |1⟩B + β |11⟩AQ |1⟩B), (2.29)

where Q indicates the qubit that Alice wants to teleport to Bob. First we write
Alice’s qubits into the Bell basis and we get:

1

2

((
|Φ+⟩AQ + |Φ−⟩AQ

)
α |0⟩B +

(
|Ψ+⟩AQ + |Ψ−⟩AQ

)
β |0⟩B

+
(
|Ψ+⟩AQ − |Ψ−⟩AQ

)
α |1⟩B +

(
|Φ+⟩AQ − |Φ−⟩AQ

)
β |1⟩B

)
. (2.30)



2.4. Mixed States 21

Then we can group the Bell state on the AQ subsytems together to get:
1

2

(
|Φ+⟩AQ (α |0⟩B + β |1⟩B) + |Φ−⟩AQ (α |0⟩B − β |1⟩B)

|Ψ+⟩AQ (β |0⟩B + α |1⟩B) + |Ψ−⟩AQ (β |0⟩B − α |1⟩B)
)
. (2.31)

Now Alice applies the map that sends the Bell states to the computational basis
on her two-qubits, and we get:

1

2

(
|00⟩AQ (α |0⟩B + β |1⟩B) + |01⟩AQ (α |0⟩B − β |1⟩B)

|10⟩AQ (β |0⟩B + α |1⟩B) + |11⟩AQ (β |0⟩B − α |1⟩B)
)
. (2.32)

Now see what happens if Alice measures the AQ subsystem, that she holds, in the
computational basis. She will get one of the four computational basis states as a
measurement outcome with equal probability. Note that if Alice’s measurement
outcome was 00, that in the post-measurement state Bob holds the qubit Q
that Alice wanted to teleport! In fact, for all possible measurement outcomes
(a, b) ∈ {0, 1}2 for Alice, there is a mapping consisting of Pauli gatesXaZb for Bob
that maps his local qubit to the qubit Q that Alice initially held. Thus, if Alice
sends over her measurement outcome of two bits to Bob, he can perfectly recover
the qubit Q that Alice held, and indeed Alice has teleported her state to Bob.
Note that the pre-shared EPR pair is consumed in the process, and after Alice’s
measurement there is no entanglement left. Since we can transform the Bell states
into each other using only local Pauli gates, any other pre-shared Bell state instead
of the |Φ+⟩ state would also have sufficed to perform the teleportation protocol.

2.4 Mixed States
So far we have only considered the so-called pure quantum states which are rep-
resented by a vector of unit length. In some settings, especially in quantum
cryptography, we consider so-called mixed quantum states which are a probabil-
ity distribution over pure states. A mixed state is represented by a matrix called
a density matrix, which is a trace 1 positive semidefinite matrix. For example, if
we have the mixture of with probability 3

4
the state |0⟩ and with probability 1

4

the state |1⟩ we can write the density matrix ρ as:

3

4
|0⟩⟨0|+ 1

4
|1⟩⟨1| . (2.33)

In general, if for i ∈ [r] we get the state |ϕi⟩ with probability pi then we have an
ensemble of pure states {pi, |ϕi⟩}, with density matrix:

ρ =
r∑

i=1

pi |ϕi⟩⟨ϕi| . (2.34)
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The density matrix of a pure state |ϕ⟩ is simply the rank 1 matrix |ϕ⟩⟨ϕ|. Unitary
operations on a density matrix ρ transform the state from ρ to UρU †. We can
also apply a POVM {E1, . . . , Em}, and the probability of getting measurement
outcome i ∈ [m] is Tr[Eiρ].

Distance measures and inequalities

Two density matrices can be similar, and it is useful to define a notion of
overlap between two states. The Fidelity does this. Let D(HA) be the set of
density matrices on the Hilbert space HA. Given two density matrices ρ, σ ∈
D(HA), define the fidelity,

F (ρ, σ) ≡
(
Tr

(√√
ρ σ

√
ρ

))2

. (2.35)

The reason we use this definition instead of, e.g. Tr[ρσ], is that we want the
fidelity of a state with itself to be 1, and Tr[ρ2] =

∑r
i=1 p

2
i does not capture this!

The fidelity is related to the one norm distance ||ρ − σ||1 by the Fuchs-van de
Graaf inequalities [FvdG99FvdG99],

1−
√
F (ρ, σ) ≤ 1

2
||ρ− σ||1 ≤

√
1− F (ρ, σ). (2.36)

2.4.1 Quantum one-time pad

The formalism of mixed states also allows us to define a useful procedure in quan-
tum cryptography called the Quantum one-time pad [AMTW00AMTW00]. The quantum
one-time pad uses classical randomness to conceal quantum information. To un-
derstand this, suppose that Alice wishes to give Bob a quantum system B, but
wants Bob to only obtain B if he also knows a classical key k. Suppose that B
consists of qubits, Alice can do this by applying a random Pauli string P k

B. If
Bob does not know k, B is hidden to him since

1

2|k|

∑
k

P k
BρABP

k
B = ρA ⊗ 1B

dB
, (2.37)

where the index k ranges over all choices of Pauli strings. On the other hand, if
Bob knows k he can undo the Pauli string and recover the B system.

2.5 The SWAP test

The SWAP test was first introduced in [BBD+97BBD+97, BCWW01BCWW01] for quantum finger-
printing as a useful tool to determine whether two unknown states are identical
or not. The quantum circuit of the SWAP test is depicted in Figure 2.12.1.
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|0〉

|φ〉

|ψ〉

measureH H!

SWAP

Figure 1: Circuit to test if |φ〉 = |ψ〉 or |〈φ|ψ〉| ≤ δ

The error probability of the test can be reduced to any ε > 0 by setting the fingerprint of
x ∈ {0, 1}n to |hx〉⊗k for a suitable k ∈ O(log(1/ε)). From such fingerprints, the referee can
independently perform the test in Figure 1 k times, resulting in an error probability below ε. In
this case, the length of each fingerprint is O((log n)(log(1/ε)).

It is worth considering what goes wrong if one tries to simulate the above quantum protocol
using classical mixtures in place of quantum superpositions. In such a protocol, Alice and Bob send
(i, Ei(x)) and (j, Ej(y)) respectively to the referee for independent random uniformly distributed
i, j ∈ {1, 2, . . . ,m}. If it should happen that i = j then the referee can make a statistical inference
about whether or not x = y. But i = j occurs with probability only O(1/n)—and the ability of
the referee to make an inference when i %= j seems difficult. For many error-correcting codes, no
inference whatsoever about x = y is possible when i %= j and the lower bound in [NS96] implies that
no error-correcting code enables inferences to be made when i %= j with error probability bounded
below 1. The distinguishing test in Figure 1 can be viewed as a quantum operation which has no
analogous classical probabilistic counterpart.

Our quantum protocol for equality in the simultaneous message model uses O(log n)-qubit
fingerprints for any constant error probability. Is it possible to use fewer qubits? In fact, without
a shared key, Ω(log n)-qubit fingerprints are necessary. This is because any k-qubit quantum state
can be specified within exponential precision with O(k2k) classical bits. Therefore the existence of a
k-qubit quantum protocol implies the existence of an O(k2k)-bit (deterministic) classical protocol.
From this we can infer that k ∈ Ω(log n).

3 Sets of pairwise-distinguishable states in low-dimensional spaces

In Section 2, we employed a particular classical error-correcting code to construct a set of 2n

quantum states with pairwise inner products below δ in absolute value. Here, we consider the
question of how few qubits are sufficient for this to be accomplished for an arbitrarily small δ > 0.
We show that log n + O(log(1/δ)) qubits are sufficient. While this gives somewhat better bounds
than the Justesen codes discussed in Section 2, unfortunately we only have a nonconstructive proof
of this fact. The proof follows.

Suppose d ≥ 4n
δ2 log e . Then we claim there are 2n unit vectors in Rd with pairwise inner product

at most δ in absolute value. Consider two random vectors in v,w in {+1,−1}d/
√

d. Suppose
v and w agree in d′ coordinates and disagree in d − d′ coordinates, then their inner product is
〈v|w〉 = (2d′ − d)/d. Using a Chernoff bound [AS92, Corollary A.2] we have

Pr[|〈v|w〉| > δ] = Pr[|2d′ − d| > δd] ≤ 2e−δ2d/2.

4

Figure 2.1: The SWAP test, taken from [BCWW01BCWW01]. H denotes the Hadamard
gate.

Before the final measurement, the state can be written as:

(H ⊗ 1)c-SWAP(H ⊗ 1) |0⟩ |ϕ⟩ |ψ⟩ =
1

2
|0⟩ (|ϕ⟩ |ψ⟩+ |ψ⟩ |ϕ⟩) + 1

2
|1⟩ (|ϕ⟩ |ψ⟩ − |ψ⟩ |ϕ⟩). (2.38)

When the first qubit gets measured in the computational basis we get the out-
comes ‘0’ or ‘1’ with the following probabilities:

P[0] =
1 + |⟨ψ|ϕ⟩|2

2
and P[1] =

1− |⟨ψ|ϕ⟩|2
2

. (2.39)

The output distribution only depends on the overlap |⟨ψ|ϕ⟩| between the input
states. A notable special case is when |ϕ⟩ = |ψ⟩ and the SWAP operation has no
effect, so we get P[0] = 1. Another advantage of the SWAP test is that it is easily
implemented experimentally with a single beam splitter and two photon detectors
[JAC04JAC04, GECP13GECP13]. Its flexibility regarding input states and the simplicity of its
experimental realization make it a good candidate for a practical implementation
of QPV.

We can also apply the SWAP test to entangled inputs. When we apply the
SWAP test to the Bell states in Equation 2.272.27, we see that the three Bell states
|Φ+⟩ , |Φ−⟩ , |Ψ+⟩ always have measurement outcome 0, since they remain invari-
ant under the SWAP operator. Contrarily, the |Ψ−⟩ state always has measure-
ment outcome 1, since it gets an overall minus phase under the SWAP operator.
The space of 2-qubit states can be split into a symmetric subspace spanned by
|Φ+⟩ , |Φ−⟩ , |Ψ+⟩, and an antisymmetric subspace spanned by just |Ψ−⟩.

2.6 Semidefinite Programming

Semidefinite programming is a powerful technique that allows us to efficiently
solve optimization problems numerically, but can also be useful from an analytical
point of view. SDPs have many use cases, but we will use them in the application
to quantum information theory to find optimal POVM measurements [Eld03Eld03].
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A semidefinite program (SDP) is a constrained optimization problem where
we optimize over a positive semidefinite matrix X, where the objective and con-
straints are linear in the entries of X. We use the definition and follow some
derivations from [Wat18Wat18]:

2.6.1. Definition. A semidefinite program is a triple (Φ, A,B), where

1. Φ ∈ T (X ,Y) is a Hermiticity-preserving linear map, and

2. A ∈ Herm(X ) and B ∈ Herm(Y) are Hermitian operators,

for Euclidean spaces X ,Y . Two optimization problems are associated to this
triple, a primal and dual:

Primal Problem
maximize: ⟨A,X⟩
subject to: Φ(X) = B

X ∈ Pos(X ).

Dual Problem
minimize: ⟨B, Y ⟩

subject to: Φ∗(Y ) ⪰ A

Y ∈ Herm(Y).

Here, the inner product is defined as ⟨A,X⟩ = Tr[A†X]. Φ∗ represents the adjoint
operator of Φ, namely the unique map that satisfies ⟨Φ∗(Y ), X⟩ = ⟨Y,Φ(X)⟩. And
we say that some matrix A ⪰ B, when A−B is positive semidefinite.

An operator X ∈ Pos(X ) is primal feasible if it satisfies Φ(X) ≤ B, and
similarly an operator Y ∈ Herm(Y) is feasible if Φ∗(Y ) ⪰ A. We can define two
sets of all feasible operators:

A = {X ∈ Pos(X ) such that Φ(X) ≤ B}
B = {Y ∈ Herm(Y) such that Φ∗(Y ) ⪰ A}.

The optimal primal and dual value are defined as:

α = sup
X∈A

⟨A,X⟩ (2.40)

β = inf
Y ∈B

⟨B, Y ⟩, (2.41)

respectively. If there are no feasible solutions to either the primal or dual, we
write α = −∞ or β = ∞.

The primal and dual problems have the property that they are related via
the concept of duality. There are two concepts of duality, one being weak duality
which holds for any SDP and says:

2.6.2. Proposition (Weak Duality). For every semidefinite program (Φ, A,B)
it necessarily holds that α ≤ β.
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As α is the supremum over all feasible solutions, this implies that every feasible
solution to the primal problem gives a lower bound to the optimal value β and
therefore β ≤ ⟨B, Y ⟩ for any feasible Y . Every feasible solution to the dual
problem gives an upper bound to ⟨A,X⟩ ≤ α for any feasible X. This implies
that if you can find feasible operators X, Y such that ⟨A,X⟩ = ⟨B, Y ⟩, then
it must be that α = β and we find an optimal solution to our maximization
problem. Normally, showing optimality of a solution for a certain optimization
problem can be difficult or even impossible, but in this case we are immediately
done if we find feasible solutions to the primal and dual problems that are equal.

Definition 2.6.12.6.1 can be extended to also include inequality constraints as fol-
lows [Wat18Wat18]:

Primal Problem
maximize: ⟨A,X⟩
subject to: Φ1(X) = B1

Φ2(X) ≤ B2

X ∈ Pos(X ).

Dual Problem
minimize: ⟨B1, Y1⟩+ ⟨B2, Y2⟩

subject to: Φ∗1(Y1) + Φ∗2(Y2) ⪰ A

Y1 ∈ Herm(Y)

Y2 ∈ Pos(Y).

2.6.3. Example (Finding optimal PPT Measurement Operators).
As mentioned before, one can use SDPs to find optimal POVM measurements. In
this example we will use the SDP formalism to find optimal POVM measurements
that have the extra restriction that they have Positive Partial-Transpose (PPT). A
partial transpose over two subsystems A,B of some larger system ZAB transposes
the B part. We say an operator has positive partial transpose if ZTB

AB ⪰ 0. The
Peres–Horodecki criterion tells us that if a quantum state has positive partial
transpose, then it must be separable [Per96Per96, Hor97Hor97]. Similarly, the set of all
operators that have positive partial transpose is a superset of all operators that
are separable, which is a superset of all LOCC operators.

We will now give an example of an SDP for finding an optimal POVM mea-
surement that discriminates between two inputs ρ0, ρ1 that are sent with equal
probability 1/2, where the POVM elements have to be PPT over some partition
A,B of our quantum inputs.

Primal Problem

maximize:
1

2
Tr[Π0ρ0 +Π1ρ1]

subject to: Π0 +Π1 = 1AB

Πk ∈ PPT(A : B), k ∈ {0, 1}
Πk ⪰ 0, k ∈ {0, 1}

We can write this in the standard form of Definition 2.6.12.6.1 by defining the following
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block matrices:

X =

(
Π0 0
0 Π1

)
, A =

1

2

(
ρ0 0
0 ρ1

)
. (2.42)

Note that if X ⪰ 0 we have both Π0 ⪰ 0 and Π1 ⪰ 0. We take Φ1(M) =
∑

iMi

to be the map that sums the diagonal blocks, and we take Φ2(M) to be the map
that sends every block to minus their partial transpose, then

Φ2(X) =

(
−ΠTB

0 0

0 −ΠTB
1

)
. (2.43)

Then if Φ2(X) ⪯ 0 we have ΠTB
0 ⪰ 0 and ΠTB

1 ⪰ 0. The map Φ1 is clearly
a Hermiticity-preserving linear map, as we must have that all the blocks are
Hermitian if the input is Hermitian. Map Φ2 is linear, and to see it is Hermiticity-
preserving note that for any Hermitian matrix (CTB)† = (C†)TB = CTB . We thus
get the following primal and corresponding dual:

Primal Problem
maximize: ⟨A,X⟩
subject to: Φ1(X) = 1

Φ2(X) ≤ 0

X ∈ Pos(X ).

Dual Problem
minimize: Tr[Y1]

subject to: Φ∗1(Y1) + Φ∗2(Y2) ⪰ A

Y1 ∈ Herm(Y)

Y2 ∈ Pos(Y).

The adjoint operator of summing the diagonal blocks is multiplication with
the identity-matrix, and the adjoint of the partial transpose is itself. We write

Y2 as a block matrix
(
Q00 Q01

Q10 Q11

)
. Then we can rewrite the first constraint to:

Φ∗1(Y1) + Φ∗2(Y2) ⪰ A⇔(
Y1 0
0 Y1

)
−
(
QTB

00 QTB
01

QTB
10 QTB

11

)
⪰ 1

2

(
ρ0 0
0 ρ1

)
⇔(

Y1 0
0 Y1

)
−
(
QTB

00 QTB
01

QTB
10 QTB

11

)
− 1

2

(
ρ0 0
0 ρ1

)
⪰ 0. (2.44)

If a block matrix is positive semidefinite, then it is also positive semidefinite if its
off-diagonal blocks are set to zero. Taking the optimal solution Y1, Y2, we then
see that if we set the off-diagonal blocks of Y2 to zero, the first constraint is still
satisfied and the solution does not change. The final constraint is also satisfied

since if
(
Q00 Q01

Q10 Q11

)
⪰ 0, then we also have

(
Q00 0
0 Q11

)
⪰ 0. As the objective

does not depend on Y2, we see that Y2 with its off-diagonal blocks set to zero
is also an optimal solution. This means we can also optimize over the smaller
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set of matrices Y2 that have off-diagonal blocks set to zero. Thus we can further
simplify our dual to get:

Dual Problem
minimize: Tr[Y ]

subject to: Y −QTB
i − ρi/2 ⪰ 0, for i ∈ {0, 1}

Y ∈ Herm(Y)

Qi ∈ Pos(Y), for i ∈ {0, 1}.

A particular nice property about the dual in this form is that we can try to
find Qi for every i individually. Since any feasible solution to the dual problem
upper bounds the optimal primal value, we get upper bounds to the optimal
state-discrimination probability over all POVM measurements that have positive
partial transpose. Sometimes, our intuition says that a particular measurement is
clearly optimal, but there is no way to actually prove this. In this SDP framework,
if you want to show that some POVM measurement (which is a feasible solution to
the primal) is optimal, you just need to find a single feasible solution to the dual
that has the same value, and you are done. SDPs can also be solved numerically,
and numerical solvers can show (numerical) optimality by finding feasible primal
and dual solutions.





Chapter 3
SWAP Test Protocol and PPT Attackers

Loss of inputs can be detrimental to the security of quantum position verification
(QPV) protocols, as it may allow attackers to not answer on all played rounds,
but only on those they perform well on. In this chapter, we study loss-tolerant
QPV protocols. We propose a new fully loss-tolerant protocol QPVSWAP, based
on the SWAP test, with several desirable properties. The task of the protocol,
which could be implemented using only a single beam splitter and two detectors,
is to estimate the overlap between two input states. By formulating possible
attacks as a semidefinite program (SDP), we prove full loss tolerance against un-
entangled attackers restricted to local operations and classical communication,
and show that the attack probability decays exponentially under parallel repe-
tition of rounds. Furthermore, we propose an easy experimental setup for the
protocol, and argue that such an implementation is realistic in practice.

This chapter is based on the paper “Towards practical and error-robust quan-
tum position verification” by Rene Allerstorfer, Harry Buhrman, Florian Speel-
man, and Philip Verduyn Lunel [ABSV22bABSV22b].

29
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3.1 Introduction
When we consider the implementation for a position verification protocol, there
are two major things to consider. Firstly, we would like the protocol to be secure
in some security model. Secondly, we want to be able to actually implement
the protocol experimentally. Since we know that any protocol can be broken if
a coalition of attackers pre-shares enough entanglement. A natural question is
therefore whether some QPV protocols can be proven secure against attackers
that share a limited amount of entanglement or even none at all. Since it is hard
to generate entanglement, it is already interesting to study whether protocols
are secure against adversaries that are very limited in their access to pre-shared
entangled states.

For instance, the QPVBB84 protocol [KMS11KMS11], inspired by the BB84 quantum
key-distribution protocol, involves only a single qubit sent by VA, in the state |0⟩,
|1⟩, |+⟩, or |−⟩, and the choice of basis sent by VB. Even though this protocol
is insecure against attackers sharing a single EPR pair [LL11LL11], security can be
proven against unentangled attackers [BCF+14BCF+14], so that Θ(n) entanglement is
required to break the n-fold parallel repetition [TFKW13TFKW13, RG15RG15]. At the current
technological level, such protocols are interesting to analyze and would already
give a super-classical level of security if implemented in practice.

Additionally, other protocols have been proposed [KMS11KMS11, CL15CL15, Unr14Unr14,
BCS22BCS22], that combine classical and quantum information in interesting ways,
sometimes requiring intricate methods to attack [BFSS13BFSS13, Spe16aSpe16a, OCCG20OCCG20].

Unfortunately, implementing many of the mentioned protocols would run into
large obstacles: the quantum information involved would have to be sent at the
speed of light, i.e., using photons, and in realistic experimental setups, a large
fraction of photons will be lost and errors occur. Compensating for this in the
most natural way, by ignoring rounds whenever the prover claims that a photon
was lost in transmission, lets attackers break these protocols because they are
not fully loss-tolerant. For example, in the QPVBB84 attackers can simply guess
the basis, and if they guess wrong, they declare a loss. This perfectly breaks the
protocol with only a loss rate of 50%.

A second important point is that the operations of the honest prover should
be easily implementable. Ideally, we wish for his operations to be almost instanta-
neous. In our contribution, we study loss-tolerant QPV by presenting a new fully
loss-tolerant protocol where the quantum operations of the prover are completely
passive, making his operations very fast. We give a comprehensive security anal-
ysis in the theoretical setting showing that the protocol is secure against a limited
amount of entanglement and propose an experimental setup that lies within the
reach of current technology.

Loss tolerance in QPV. Throughout, we will use η as rate of transmission,
i.e., the probability that an quantum message arrives in realistic protocols. We



3.1. Introduction 31

will distinguish two types of loss tolerance that we might require schemes to
satisfy.

The first, partial loss tolerance, refers to a protocol that is secure for some
values η ≥ ηthreshold, meaning that the honest parties have a maximum level
of allowed loss. Security is only guaranteed in a situation where a high enough
fraction of the rounds are played. If significantly more photons than this threshold
are lost, then the protocol will have to abort. Examples of partial loss-tolerant
schemes are extensions of QPVBB84 to more bases [QS15QS15, Spe16bSpe16b], that are secure
against unentangled attackers in an environment with some loss.11

Full loss tolerance is achieved when a protocol is secure, irrespective of the
loss rate. In particular, the protocol stays secure when conditioning on those
rounds where the prover replied, fully ignoring rounds where a photon is lost.
The protocol by Lim, Xu, Siopsis, Chitambar, Evans, and Qi [QLL+15QLL+15, LXS+16LXS+16],
the first fully loss-tolerant protocol, consists of VA and VB both sending a qubit,
and having the prover perform a Bell measurement on both, broadcasting the
measurement outcome. This protocol is secure against unentangled attackers, no
matter the loss rate.

In this Chapter we advance the study of loss-tolerant QPV with the following
results:

• We present a new fully loss-tolerant protocol: QPVSWAP, which is based
on the SWAP test [BCWW01BCWW01]. The new protocol compares favorably to
Lim et al.’s protocol [LXS+16LXS+16] in terms of ease of implementation using
linear optics, by requiring only a single, non-polarizing beam splitter –
the Hong-Ou-Mandel effect can be viewed as equivalent to the SWAP test
[JAC04JAC04, GECP13GECP13] so that, physically speaking, our protocol is based on
two-photon interference.22

• We prove fully loss-tolerant security by formulating possible attacks as a
semi-definite program (SDP), and show that the protocol is secure against
unentangled attackers who can communicate only classically.

Additionally, we show that the attack probability decays exponentially un-
der parallel repetition: when attackers respond to a size-k subset out of n
parallel rounds, pretending photon loss on the other inputs, their proba-
bility of a successful attack still decays exponentially in k. Such a parallel
repetition is not known for the protocol of [LXS+16LXS+16], and this is the first
parallel repetition theorem for fully loss-tolerant QPV. We obtain this re-
sult by constructing an SDP formulation of the n-fold parallel repetition

1This notion will be satisfied to a small level even by schemes that are not designed to be
loss tolerant, simply by having some error-robustness. The basic QPVBB84 scheme can directly
be seen to be partially loss tolerant for loss below 1

2 − 1
2
√
2
, and the simplest attack that uses

loss only works when the loss is above 1
2 .

2The protocol uses two input photons, one generated by each verifier.



32 Chapter 3. SWAP Test Protocol and PPT Attackers

of the problem, constructing a dual of this SDP for variable n, and then
finding a point in the generalized dual problem.

• We show that the SWAP test can be perfectly simulated with local opera-
tions and one round of classical communication if one maximally entangled
state is pre-shared. Hence O(n) EPR pairs are sufficient for an entangle-
ment attack on our n-round protocol. We also show that at least ∼ 0.065n
EPR pairs are necessary.

• Furthermore we propose an experimental setup using beam splitters and
photon detectors. We distinguish between two different detector setups.
In the one case we use photon number resolving detectors, which allow to
have a higher precision because we can discard rounds in which one pho-
ton was lost more easily. In a practical scenario, these detectors might be
too difficult to implement. Therefore, we also propose a setup with two
additional beam splitters and four click/no-click detectors, which achieves
partial number resolution and is more readily available and easier to imple-
ment.

3.2 The QPVSWAP protocol
We denote parties in QPV protocols by letters A, B, etc. and their quantum
registers as A1 · · ·An, B1 · · ·Bn and so on, respectively. Sometimes we may refer
to “all registers party X holds” just by X, giving expression like Pos(A ⊗ B), for
example. The partial transposition of an operator P with respect to B is denoted
by P TB . The set of PPT-measurements33 on two subsystems held by parties A and
B, respectively, is PPT(A : B). We define the protocol QPVSWAP, depicted in the
space-time diagram in Figure 3.13.1, as follows.

1. Verifiers VA and VB agree on two uniformly Haar random qubits |ψ⟩ , |ϕ⟩
such that they are either equal or orthogonal (up to some global phase)
with equal probability 1

2
. Then VA prepares the state |ψ⟩ and VB prepares

|ϕ⟩. Each verifier sends their state to P such that they arrive there simul-
taneously.

2. The honest party P applies the SWAP test, see Preliminaries 2.52.5, on the
two quantum inputs as soon as they arrive at P. This yields an output bit
z ∈ {0, 1,∅}, indicating P’s measurement result or possibly a “loss” event.
Then P immediately sends z to both verifiers VA and VB.

3. The verifiers check if they receive an answer in time and compare what they
received. If they got different bits, or if at least one of their bits arrived too

3I.e. sets of positive semi-definite operators adding up to the identity, whose partial trans-
poses are positive semi-definite as well.
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early/late, they abort and reject. Otherwise both verifiers add z to their
lists of answers.

4. After having completed some number of rounds with a conclusive answer
z ∈ {0, 1}, sequentially or in parallel, the verifiers stop sending inputs, check
if the rate of ∅ symbols is close enough to what is expected from P (they
can estimate some answer rate 1− η that is expected), discard any rounds
with answer ∅ and proceed to check if the sets of conclusive answers to see
if the answers correspond to those that one can expect from the SWAP test.

5. Only if they have received the same answer in time in every single round and
if the answers correspond to the statistics of the SWAP test, they accept.
Otherwise, they reject.

t

x

a

|ψ⟩

VA

a

|ϕ⟩

VBP

(a) Point of view of honest prover.

t

x

a

|ψ⟩

VA

b

|ϕ⟩

VBA P B

(b) Point of view from attackers.

Figure 3.1: Space-time diagram of the QPVSWAP protocol. In the figure on the
left, the situation without any attackers is shown, both messages from the verifiers
are sent to P. In the figure on the right, the situation is shown with attackers
that intercept the messages. We assume that all information, quantum (—)
and classical (- - -), travels at the speed of light. For graphical simplicity, we
have placed P exactly in the middle of VA and VB (which is not necessary for
the purposes of QPV). The attackers, who are not at position P, would like to
convince the verifiers that they are at P. Note that to have any chance of winning,
attackers need to produce a = b.

In essence the task in this protocol is to estimate the overlap of the input states.
This is independent of the dimension or nature of the input states, making the
protocol very flexible. To attack this protocol, it is evident that there need to be
at least two attackers due to the timing constraint. A coalition of attackers has to
position at least one party A between VA and P and one party B between P and
VB. Since the SWAP test is a joint operation on two quantum states, spatially
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separated attackers cannot apply the SWAP test, unless they have access to pre-
shared entanglement. We will show that if the inputs are qubit states, a single
round of the SWAP test can be attacked with a single EPR pair.

Although there exists a perfect attack that uses entanglement, from a practical
perspective, it is still hard for attackers to prepare and distribute entanglement.
It is relatively much easier for the verifiers to play a round of the Swap test
protocol than for attackers to attack a round with an EPR pair. As the verifiers
just need to send random quantum states, and do not need any quantum memory.
Therefore, the case where the attackers have no pre-shared entanglement and are
restricted to classical communication is still interesting.

To assess the security of this protocol we will consider the single-round security
of the protocol as well as the parallel repetition setting. One could expand on
the notion of security and perform a full statistical analysis of the answers as was
done in [ABSV22bABSV22b], in which the distribution of the answers of an honest prover
and attacker was compared, but this goes beyond the scope of this chapter. At
its core, its security relies on the single round being secure, which we will focus
on here.

When we take two Haar random qubits that are either equal or orthogonal
we can write the joint density matrix nicely as projectors to the symmetric and
antisymmetric subspaces {Πsym,Πasym} [Wat18Wat18]. As a convention, we write ρ0 for
the equal inputs, and ρ1 for the orthogonal inputs. We see that if the verifiers
take two equal Haar random states, they are taking a uniform state from the
symmetric subspace:

ρ0 =

∫
(U ⊗ U) |ψψ⟩ ⟨ψψ| (U ⊗ U)† dµ(U) =

Πsym

3
, (3.1)

here the division by 3 is the dimension of the symmetric subspace for qubits,
which is spanned by the three symmetric Bell states {|Φ+⟩ , |Φ−⟩ , |Ψ+⟩}. When
we take two states |ψ⟩ , |ϕ⟩ that are orthogonal (|⟨ψ|ϕ⟩ = 0), then we see that the
state has both a symmetric part and an antisymmetric part:

ρ1 =

∫
(U ⊗ U) |ψϕ⟩ ⟨ψϕ| (U ⊗ U)† dµ(U) =

1

2

Πsym

3
+

Πasym

2
, (3.2)

where the antisymmetric subspace for qubits is just spanned by the antisymmetric
Bell state |Ψ−⟩.

One can see that the two different inputs ρ0, ρ1 are not orthogonal to each
other, thus they cannot be distinguished perfectly. The measurement that has
the highest probability to distinguish the two inputs, when they are sent with
equal probability 1

2
, is the SWAP test, which succeeds with overall probability 3

4
.

When we do not send both inputs with equal probability one can show that for
most input distributions the SWAP test is still optimal, unless we start sending
orthogonal states with such high probability that the overall best strategy is just
to always output ‘unequal’ [BGLW24BGLW24].
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3.2.1 Entanglement Attack

Before we show security of the protocol against unentangled attackers, we show
that one can actually attack the protocol perfectly using a single EPR pair.
Firstly, note that the symmetric and antisymmetric space for qubits are spanned
by the four Bell states. The three symmetric Bell states {|Φ+⟩ , |Φ−⟩ , |Ψ+⟩}
span the symmetric subspace, and the antisymmetric Bell state {|Ψ−⟩} spans
the antisymmetric subspace. As the SWAP test distinguished the symmetric and
antisymmetric subspaces, one can the measurement outcome of a Bell state mea-
surement to the measurement outcome of the SWAP test, simply by answering
‘symmetric’ whenever the measurement outcome was a symmetric Bell state, and
‘antisymmetric’ otherwise.

Two attackers can apply a Bell state measurement using only a single EPR
pair; therefore, the SWAP test also takes one EPR pair. Two attackers A,B who
receive as an input one of the four Bell states can apply a Bell state measurement
as follows:

• We can write any Bell state as a combination of Pauli operators on a single
local qubit. Thus, the input state of the attackers can be written as (1 ⊗
XaZb) |Φ+⟩AB, (a, b) ∈ {0, 1}. Here, the attackers task is to answer a, b to
the verifiers using a single round of communication, as these bits determine
the input Bell state.

• Attacker A teleports her qubit to B using their shared EPR pair. B re-
ceives the qubit of A but with some Pauli gates applied, determined by the
measurement outcome (a∗, b∗) of A. Then B holds the state

(1⊗Xa∗Zb∗XaZb) |Φ+⟩B = −(1⊗Xa∗⊕aZb∗⊕b) |Φ+⟩B , (3.3)

where we have used that XZ = −ZX. This global phase does not affect
the measurement outcome of the state.

• Then B applies a Bell state measurement to his qubits and learns a∗ ⊕ a
and b∗ ⊕ b. Since A knows a∗ and b∗, both attackers forward their (clas-
sical) measurement outcome bits to each other using their single round of
simultaneous communication. Both attackers can now determine a, b, which
corresponds to the Bell state they received as an input, and they answer on
time correctly to both verifiers.

3.2.2 Security of QPVSWAP Protocol

In this setting, there is the notion of a correct answer. We will show that there is
a finite gap in the success probability of testing for equality between adversaries
restricted to LOCC operations and an honest prover who can apply entangling
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measurements. Extending this single-round protocol to n rounds played in par-
allel, we will also show that the best strategy for adversaries is to simply apply
the optimal single round strategy to every round individually, which shows strong
parallel repetition for QPVSWAP. Furthermore, we show that in both cases there is
no advantage for the attackers if they have the ability to declare loss on rounds,
i.e. the probability of success conditioned on answering is independent of loss.
The security of the protocol lies in the fact that an honest prover at his claimed
position can apply entangling operations to the two incoming qubits and has a
strictly higher probability of answering the question correctly than spatially sep-
arated adversaries who are restricted to single round LOCC operations. The loss-
tolerant property of the protocol intuitively comes from the fact that all inputs
are quantum and there is no way to guess any classical information beforehand.

In general, the operation that has the highest probability of generating the
correct answer is the SWAP test [BBD+97BBD+97, BCWW01BCWW01], and it gives a success
probability:

psucc(SWAP test) = 3/4. (3.4)

We will show that the best strategy for LOCC adversaries gives at most a success
probability of pmax

succ(LOCC) = 2/3. Since attackers return only a classical bit and
they discard their post-measurement state, the most general type of measurement
the attackers perform is a positive-operator-valued measure (POVM). The attack-
ers’ success probability for a given admissible POVM strategy Π = {Π0,Π1} is
then given by

psucc(Π) :=
1

2
Tr[Π0ρ0 +Π1ρ1]. (3.5)

Maximizing over all two-qubit LOCC measurements ΠLOCC would give us the best
probability of success of the attackers. However, characterizing and maximizing
over LOCC strategies is a mathematically complex task. We follow the method
used in [LXS+16LXS+16], and maximize our problem over the set of all positive partial
transpose (PPT) operations. Since PPT measurements are a proper superset
of LOCC measurements, any maximal success probability optimized over PPT
measurements immediately upper bounds the success probability of all LOCC
measurements. Furthermore, the PPT condition can be represented by a set of
linear and positive semidefinite conditions [Cos13Cos13] which enables us to write down
the maximization problem as a semidefinite program (SDP) [VB96VB96]. SDPs always
fulfill weak duality which means that any feasible solution to the dual problem
upper bounds any feasible solution to the primal problem. This allows us to find
exact solutions to the optimization problem if the values of the primal problem
and dual problem coincide. In our case, the SDP that maximizes the best attack



3.2. The QPVSWAP protocol 37

is as follows:

Primal Problem

maximize:
1

2
Tr[Π0ρ0 +Π1ρ1]

subject to: Π0 +Π1 = 122

Πk ∈ PPT(A : B), k ∈ {0, 1}
Πk ⪰ 0 k ∈ {0, 1}

Dual Problem
minimize: Tr[Y ]

subject to: Y −QTB
i − ρi/2 ⪰ 0, i ∈ {0, 1}

Y ∈ Herm(A⊗ B)

Qi ∈ Pos(A⊗ B), i ∈ {0, 1}.

The primal problem implies a lower bound and the dual problem an upper bound
to pmax

succ(Π
PPT). We find an exact optimal solution to the SDP of 2/3 (see Appendix

for the analytic solutions 3.A.13.A.1), giving an upper bound of the success probability
optimized over all LOCC measurements of

pmax
succ(Π

LOCC) ≤ 2

3
. (3.6)

The input states ρ0 and ρ1 have the exact same mixed state matrices as the
result of uniformly choosing a mutually unbiased basis and sending either equal
or orthogonal states (from the chosen basis) to P. This indicates an optimal
LOCC strategy. Assume the incoming qubits are encoded in MUB b, and that
the attackers choose a random MUB b′, measure both incoming qubits in the
basis b′, send the measurement outcome to each other, and return equal if the
measurement outcomes are equal and unequal otherwise. Then their probability
of success is exactly 2/3:

P(success) = P(b′ = b)P(success|b′ = b) + P(b′ ̸= b)P(success|b′ ̸= b)

=
1

3
· 1 + 2

3
· 1
2
=

2

3
.

This attack strategy uses only local measurements and a single round of commu-
nication, so it is a valid single-round LOCC operation. Thus, we find that the
upper bound in (3.63.6) over LOCC measurements is in fact a tight bound attained
by LOCC.

We have shown that the probability of success for identifying if the given inputs
were equal or not for the QPVSWAP(0, 1) protocol is strictly lower for attackers
restricted to LOCC measurements than for an honest verifier who can apply
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entangling operations (2/3 versus 3/4 respectively). Over sequential multi-round
protocols, where we only perform a new run of the protocol after the previous is
finished, the verifiers can increase the precision of detecting LOCC attackers.

3.2.3 Strong Parallel Repetition of QPVn
SWAP

Another desirable property is whether we can extend the single-round protocol to
a general n-round parallel protocol, where the verifiers send n qubits from both
sides to form the density matrix ρs = ρs0 ⊗ ρs1 ⊗ · · · ⊗ ρsn−1 for s ∈ {0, 1}n. Note
that the security does not follow naively from the single-round security proof,
since attackers can now, in principle, take blocks of inputs and apply entangling
operations on them. We will prove that for the QPVSWAP protocol strong parallel
repetition does indeed hold, i.e. the probability of success of winning n rounds
decreases as (2/3)n, implying that the best strategy for attackers is to simply
attack each round individually. Again we can write down the problem as an SDP
optimization task, where we optimize over all PPT operations on the 2n qubits
the attackers receive.

Primal Problem

maximize:
1

2n

∑
s∈{0,1}n

Tr[Πsρs]

subject to:
∑

s∈{0,1}n
Πs = 122n

Πs ∈ PPT(A : B), s ∈ {0, 1}n
Πs ⪰ 0, for s ∈ {0, 1}n

Dual Problem
minimize: Tr[Y ]

subject to: Y −QTB
s − ρs/2

n ⪰ 0, s ∈ {0, 1}n
Y ∈ Herm(A⊗ B)

Qs ∈ Pos(A⊗ B).

In Appendix 3.A.23.A.2 we find an explicit analytical solution to the dual problem.
The solution is non-trivial and depends on the specifics of the QPVSWAP protocol,
so it does not generalize naturally to strong parallel repetition results for other
protocols. The solution yields a value of (2/3)n, which bounds the probability
of success under LOCC measurements by (2/3)n. A feasible solution to the pri-
mal problem is to fill in the single-round solution n times, and this has success
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probability (2/3)n. Since this strategy coincides with the previously mentioned
single-round LOCC measurement applied to each of the individual rounds of ρsi ,
we find that the upper bound of (2/3)n is again attained by a LOCC measurement
and tight. Thus, we show strong parallel repetition for the QPVSWAP protocol
against attackers restricted to LOCC operations.

Strong parallel repetition is a useful result for the practical implementation
of QPV protocols. First of all, it implies that when playing multiple rounds we
don’t have to wait until a single round is finished, thus simplifying the timing
constraints of multiple rounds, and it allows the verifiers to not have to wait till
the first round is over before starting the next. Secondly, it implies a linear lower
bound on the entanglement adversaries need to attack the protocol perfectly. To
get this lower bound, we use an argument already mentioned in Lemma V.3 in
[BK11BK11]. This lemma relates the probability that the verifiers accept the total
set of answers over n rounds, εsucc(τAB), of the attackers as sufficient with some
pre-shared entangled state τAB to the probability of accepting attackers without
pre-shared entanglement as follows:

εsucc(τAB) ≤ dim(A)dim(B)εsucc(∅), (3.7)

where ∅ signifies the absence of entanglement. The idea behind the lemma is
that a pre-shared entangled state could be replaced by a maximally mixed state,
which has some overlap with the original state. For example, an EPR pair has
overlap 1

4
with the maximally entangled state. Thus, if there exists an attack that

uses very little entanglement, then one would also perform well with just shared
randomness and no pre-shared entanglement.

Over n rounds the verifiers will send on average n/2 rounds with equal inputs,
and n/2 rounds with orthogonal inputs. The honest prover will always answer
correctly on the equal inputs and will be correct with prob 1

2
on the unequal

inputs. We know that over all n rounds the attackers have a probability of being
correct of (2/3)n. If the attackers have to be correct with probability 1

2
half the

time on all unequal inputs, they can only be correct on the equal inputs with
probability at most (5

6
)n/2. Since the honest prover is correct on all these rounds

the attackers need to be as well if they want to fool the verifiers they need to
answer all equal rounds correctly. Suppose that the verifiers pre-share m EPR
pairs, then the lemma gives:

εsucc(τAB) ≤ 22m
(
5

6

)n
2

. (3.8)

It follows that, in expectation,

εsucc(τAB) < 1 as long as m <
1

4
log

(
4

3

)
n ≈ 0.065n. (3.9)

Thus, to break O(n) rounds in parallel one also needs at least O(n) pre-shared
EPR pairs. Since we know of an attack that attacks a single round using a single
EPR pair the O(n) pre-shared EPR pairs is actually tight.



40 Chapter 3. SWAP Test Protocol and PPT Attackers

3.2.4 Loss-Tolerance of QPVn
SWAP Protocol

In the previous section we have shown that the QPVSWAP protocol is secure against
attackers restricted to LOCC attackers in the case where attackers have to answer
in every round. However, in practice an honest prover will only answer on a
fraction of the rounds played due to channel loss and imperfect measurements.
In order to prove security against any coalition of attackers in the setting with
channel loss, we must assume that attackers will never suffer any loss when they
attack a protocol44. When classical information is sent, such as in the QPVBB84

protocol [KMS11KMS11, BCF+14BCF+14], attackers may guess the classical information that is
being sent. If they guess incorrectly, they discard the round and declare a loss
(∅), if they guess correctly, they can continue and successfully attack the protocol
since the classical information is known to both attackers after communication.
If the loss rate is high enough, attackers can hide their incorrect guesses in the
loss declarations and the verifiers cannot distinguish the attackers from an honest
prover. Note that in order to pretend a loss without being detected, attackers
must declare a loss with equal probability on every input. To prove loss tolerance,
we can incorporate loss in the SDP setting and show that the optimal solution of
the SDP is independent of the loss, similar to the method in [LXS+16LXS+16].

We can relatively straightforwardly add the condition that attackers must
mimic a certain loss rate (1− η) on all inputs. We will show that in the parallel
repetition case psucc is independent of η when attackers either answer conclusively
on all 2n inputs or don’t answer at all. We formulate an SDP to maximize the
probability of success conditioned on a conclusive answer pmax

succ(n, η) in the n-round
parallel repetition case (n = 1 corresponds to the previously studied single-round

4They could position themselves very close to the verifiers and have perfect communication
channels, for example.
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protocol).

Primal Problem

maximize:
1

2nη

∑
s∈{0,1}n

Tr[Π̃sρs]

subject to:

 ∑
s∈{0,1}n

Π̃s

+ Π̃∅ = 122n

Tr[Π̃∅ρs] = 1− η, s ∈ {0, 1}n

Π̃s ∈ PPT(A : B), s ∈ {0, 1}n ∪∅
Πs ⪰ 0, for s ∈ {0, 1}n
Dual Problem

minimize:
Tr[Ỹ ]− (1− η)γ

η

subject to: Ỹ − Q̃TB
s − ρs/2

n ⪰ 0, s ∈ {0, 1}n

22n(Ỹ − Q̃TB
∅ )− γ122n ⪰ 0

Ỹ ∈ Herm(A⊗ B)

Q̃s ∈ Pos(A⊗ B), s ∈ {0, 1}n ∪∅
γ ∈ R.

From the analysis in Appendix 3.A.33.A.3, we see that the solution of the SDP is
again (2/3)n, independent of η, upper bounding the attackers restricted to LOCC
measurements. The strategy in which attackers apply with probability η the
regular n-round parallel repetition attack and with probability (1 − η) discard
everything again has conditional success probability (2/3)n so the bound is tight.
By Proposition 3.2.13.2.1, we have that QPVn

SWAP is tolerant against loss on any subset
of rounds, establishing full loss tolerance.

We show in the following proposition that the property that psucc remains
independent of η when declaring a loss on either all rounds or none implies that
psucc is also independent of η when declaring a loss on any subset of rounds is
allowed.

3.2.1. Proposition. Any multi-round QPV protocol that fulfills strong parallel
repetition security against adversaries restricted to LOCC operations and is tol-
erant against declaring loss on all n rounds, is also tolerant against declaring loss
on any subset of rounds.

Proof:
Suppose we have a secure n-round QPV protocol with strong parallel repetition.
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Then the n-round success probability for attackers is pn = pn1 for some single
round probability p1. Suppose we perform n rounds and we allow adversaries to
only answer on k rounds and to declare a loss on the remaining (n−k) rounds, and
suppose that there is some attacking strategy S restricted to LOCC measurements
that has a probability pS > pk1 of being correct on this subset. We will show
that this leads to a contradiction. Consider a protocol like the k-round protocol
QPVk

SWAP, which is secure and loss tolerant on all rounds by assumption and has
success probability pk = pk1. Since individual rounds are product states, attackers
may create n − k independent extra rounds locally of which they can forget the
answer. This creates an n-round protocol. The attackers can now apply their
strategy S. With probability 1/

(
n
k

)
they get an answer on their initial k rounds

that is correct with success probability pS. And with probability 1− 1/
(
n
k

)
they

receive the wrong subset of k rounds, in which case the attackers declare a loss (on
all rounds). This defines an LOCC attack with a conditional winning probability
pS > pk1 and loss rate of 1 − 1/

(
n
k

)
, which contradicts our assumption that the

maximal success probability of being correct on the k-round protocol is pk1 for
any loss. Therefore, for any subset of k rounds out of the total of n rounds, the
maximal success probability pk on this subset is pk1. 2

3.3 Practical considerations of QPVSWAP

The SWAP test has been shown to be equivalent to the Hong-Ou-Mandel (HOM)
interference measurement [HOM87HOM87] with just one 50/50 beam splitter and two
photon detectors [JAC04JAC04, GECP13GECP13]. We call this the BS setup, as only a single
beam splitter is used. If the photons bunch into one detector arm, the answer
shall be “0”, if both detectors register a click it shall be “1”. However, for click/no-
click detectors there is a problem with this simple setup, as signal loss can convert
“1” answers to “0” answers. For high loss rates, one would always get pβ(0) ≈ 1,
irrespective of the overlap and even without further equipment errors because
most of the time only one state will arrive. Hence, the BS setup will be insecure
unless one uses number-resolution (NR) detectors. With these, single clicks at
one detector get filtered out instead of delivering a wrong answer. NR detectors
also filter out k > 2 click events so that the ideal SWAP test distribution of is
fairly well preserved, even with experimental errors. Creating true NR detectors
is an active field of research, but at the moment they are still at an early stage and
somewhat hard to operate [CHE+21CHE+21, ESM+21ESM+21]. We therefore suggest using two
further beam splitters and four click/no-click detectors to achieve probabilistic
NR. We call this the 3BS setup, as depicted in Figure 3.23.2.

We define the following decision rules for the honest prover (for one detection
window, corresponding to a round of the protocol):

(BS) Answer “0” if D1 xor D2 clicks, answer “1” if (D1, D2) click, answer “∅” if
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<latexit sha1_base64="e1a9ihmXwNwitWN8FSlbh9n/Sco=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkRFU8FPXisaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6wmV5rF8NOME/YgOJA85o8ZKD7e9aq9UdivuDGSZeDkpQ456r/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx26oScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7QheIsvL5NmteJdVNz783LtOo+jAMdwAmfgwSXU4A7q0AAGA3iGV3hzhPPivDsf89YVJ585gj9wPn8AvSuNag==</latexit>

D2

<latexit sha1_base64="AlDA7SoAiTjqICq+6xkIZH0+zwE=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZki2mXRjcuK9gHtUDJppg3NJGOSKZSh3+HGhSJu/Rh3/o3pdBbaeiBwOOde7skJYs60cd1vZ219Y3Nru7BT3N3bPzgsHR23tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPx7dxvT6jSTIpHM42pH+GhYCEj2FjJ70XYjHSY3jzM+l6/VHYrbga0SryclCFHo1/66g0kSSIqDOFY667nxsZPsTKMcDor9hJNY0zGeEi7lgocUe2nWegZOrfKAIVS2ScMytTfGymOtJ5GgZ3MQi57c/E/r5uYsOanTMSJoYIsDoUJR0aieQNowBQlhk8twUQxmxWREVaYGNtT0ZbgLX95lbSqFe+qUr2/LNdreR0FOIUzuAAPrqEOd9CAJhB4gmd4hTdn4rw4787HYnTNyXdO4A+czx+Ys5H1</latexit>

BS1

<latexit sha1_base64="AlDA7SoAiTjqICq+6xkIZH0+zwE=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZki2mXRjcuK9gHtUDJppg3NJGOSKZSh3+HGhSJu/Rh3/o3pdBbaeiBwOOde7skJYs60cd1vZ219Y3Nru7BT3N3bPzgsHR23tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPx7dxvT6jSTIpHM42pH+GhYCEj2FjJ70XYjHSY3jzM+l6/VHYrbga0SryclCFHo1/66g0kSSIqDOFY667nxsZPsTKMcDor9hJNY0zGeEi7lgocUe2nWegZOrfKAIVS2ScMytTfGymOtJ5GgZ3MQi57c/E/r5uYsOanTMSJoYIsDoUJR0aieQNowBQlhk8twUQxmxWREVaYGNtT0ZbgLX95lbSqFe+qUr2/LNdreR0FOIUzuAAPrqEOd9CAJhB4gmd4hTdn4rw4787HYnTNyXdO4A+czx+Ys5H1</latexit>

BS1

Figure 3.2: The detection setups BS (left) and 3BS (right). The beam splitters
are (R, T ) and non-polarizing. Unless otherwise specified, the detectors Di are
conventional single-photon click/no-click detectors.

no click occurs.

(3BS) Answer “0” if two clicks in one arm after BS1 are detected ((D1, D2) or
(D3, D4)), answer “1” if two clicks in different arms are detected ((D1, D3),
(D1, D4), (D2, D3) or (D2, D4)), else answer “∅”.

This means that in the 3BS setup we post-select entirely on 2-click events, giving
us weak NR, but only with some probability.

In practice, no qubit or channel is perfect and we need to check under which
conditions our protocol remains secure. To analyze the security in an experimental
setting, the following quantities of the setup are of importance:

• Each verifier holds an imperfect single-photon source, characterized by the
probability that at least one photon is emitted ηsource = P(n > 0), the bright-
ness B = P(n = 1) and the accidental pair production rate ppair = P(n = 2),
where n is the number of single photons. Accidental pair productions can
make the protocol less secure.

• A communication channel between each verifier and the prover with a trans-
mittance (at the prover) of ηBS

55. We assume that both channels from VA to
P and from VB to P have the same transmittance. Even though our protocol
is secure against loss, one still needs to have enough conclusive rounds.

• The prover uses imperfect beam splitters with reflectance (amplitude) R
and transmittance (amplitude) T as well as single-photon detectors char-
acterized by a detection efficiency ηdet (including loss between BS1 and the
detectors, as well as an imperfect intrinsic detection efficiency, per detector)
and a dark count rate pdark (per detector).

5The beam splitter at P is where quantum interference between the incoming photons hap-
pens.
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• The final parameter is the overlap β between the input states at the prover.
Assuming that the equipment of both verifiers is identical, we can regard
the photons leaving the sources as indistinguishable except in the degree
of freedom we use to encode our quantum states in. One simple example
would be the photon polarization degree of freedom, such that β = |⟨ψ|ϕ⟩|
for polarization qubits |ψ⟩ and |ϕ⟩. In practice, it may happen that a
protocol round is started with a target overlap β, but the communication
channel disturbs it to some β̃ = β + δ with error |δ| > 0.

A detailed further analysis goes beyond the scope of this chapter, but can be found
in [ABSV22bABSV22b]. With the considerations mentioned above, we conclude that an
experimental implementation of QPVSWAP is possible with current technologies.

3.4 Discussion

We constructed and analyzed a new quantum position verification protocol,
QPVSWAP, and showed that it possesses several desirable properties. The protocol
is easy to implement for an honest prover, whose setup consists only of a single
beam splitter. It was shown that it is fully loss tolerant against LOCC attackers
with no pre-shared entanglement, that it can be attacked with n pre-shared EPR
pairs and that at least ∼ 0.065n pre-shared EPR pairs are necessary in the β ∈
{0, 1} case. Ideally, we would have protocols that require a lot more entanglement
to perfectly attack. However, we do not know of any QPV protocol that provably
needs more than a linear amount of entanglement. In that sense, the SWAP test
protocol is among the best protocols we have, especially considering it’s among
the easiest implementable protocols.

Moreover, the protocol fulfills strong parallel repetition when the attackers
don’t pre-share any entanglement and retains the loss tolerance even if all rounds
are run in parallel. In addition, the flexibility and simplicity of the SWAP test,
both theoretically and experimentally, make it an excellent candidate for practi-
cal QPV. However, we only prove security against attackers restricted to classical
communication, which raises the question if a round of simultaneous quantum
communication can be beneficial to the attackers. We will investigate this ques-
tion in the next chapter and show that while quantum communication can help
some protocols, the QPVSWAP protocol will remain secure.

3.A Appendices

3.A.1 Optimal PPT Measurements for QPVSWAP Protocol

We prove the upper bound of the success probability of answering the protocol
correctly for adversaries restricted to PPT operations in equation (3.63.6). For
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simplification, we will refer to the equal case as the 0 case and unequal as the 1
case. The idea of the proof is to find analytical feasible solutions to the primal and
dual problems of the SDP. In general, a feasible solution to the primal problem
defines a lower bound to the maximization value, whereas a feasible solution to
the dual problem defines an upper bound. This is the property of weak duality,
which holds for any SDP [VB96VB96]. In all of our further proofs we find feasible
primal values and dual values that coincide and thus our solutions are optimal
and we have strong duality.

From the density matrices we see that there is no difference between picking
two random equal states or picking two equal states in a random mutually un-
biased basis, see ρ0. Similarly, picking two random orthogonal states or picking
two orthogonal mutually unbiased basis (MUB) states is equal, see ρ1. These
become66

ρ0 =
1

6


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

, ρ1 =
1

6


1 0 0 0
0 2 −1 0
0 −1 2 0
0 0 0 1

.
It is useful to note that both density matrices ρ0, ρ1 are a mixture of unentangled
states and thereby unentangled. Thus, by the Peres-Horodecki separability cri-
terion, the partial transpose of ρ0 and ρ1 are positive semidefinite [Sim00Sim00]. The
optimization over all strategies of the single round protocol is written as follows
in an SDP:

Primal Problem

maximize:
1

2
Tr[Π0ρ0 +Π1ρ1]

subject to: Π0 +Π1 = 122

Πk ∈ PPT(A : B), k ∈ {0, 1}
Πk ⪰ 0, for k ∈ {0, 1}
Dual Problem

minimize: Tr[Y ]

subject to: Y −QTB
i − ρi/2 ⪰ 0, i ∈ {0, 1}

Y ∈ Herm(A⊗ B)

Qi ∈ Pos(A,B), i ∈ {0, 1}.

6Note that this is a slight change of notation with respect to the main text, where we used
ρβ for overlap β. Here, ρ0 denotes the mixed state of sending identical states and ρ1 denotes
the one sending orthogonal states.
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A feasible solution for the primal problem is

Π0 =
1

3


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

, Π1 =
1

3


1 0 0 0
0 2 −1 0
0 −1 2 0
0 0 0 1

,
with solution 1

2
Tr[Π0ρ0 + Π1ρ1] = 2/3. These measurement projectors corre-

spond to attackers choosing a random MUB to measure in and returning 0 if the
measurement outcomes were equal and 1 otherwise, which is also a single-round
LOCC strategy, and thus the PPT constraint is fulfilled. Indeed:

1

3
(|00⟩ ⟨00|+ |11⟩ ⟨11|+ |++⟩ ⟨++|+ |−−⟩ ⟨−−|

+ |i+i+⟩ ⟨i+i+|+ |i−i−⟩ ⟨i−i−|) = Π0,

1

3
(|10⟩ ⟨10|+ |01⟩ ⟨01|+ |−+⟩ ⟨−+|+ |+−⟩ ⟨+−|

+ |i−i+⟩ ⟨i−i+|+ |i+i−⟩ ⟨i+i−|) = Π1.

A feasible solution to the dual problem is:

Y =
14

6
, Q0 = 0 ⪰ 0, Q1 =

14

6
− ρTB

1

2
=

1

12


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 =
1

6
|Φ+⟩ ⟨Φ+| ⪰ 0.

Which adhere to the constraints in the dual problem:

Y −QTB
0 − ρ0

2
=
14

6
− ρ0

2
=

1

12


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 =
1

6
|Ψ−⟩ ⟨Ψ−| ⪰ 0

Y −QTB
1 − ρ1

2
=
14

6
−
(
14

6
− ρ1

2

)
− ρ1

2
= 0 ⪰ 0.

Since also Y ∈ Herm(A ⊗ B) we get a feasible solution for the dual with value
Tr[Y ] = 2

3
. Thus, we have a feasible solution of the primal and dual problem that

both give the same value, so we conclude that the maximal probability of success
for attackers under the PPT restriction is 2/3.

3.A.2 Optimal PPT Measurements for QPVn
SWAP Protocol

We will prove that the optimal probability of success for attackers in the n-round
parallel repetition case is (2/3)n. The SDP of the n-round parallel repetition
protocol is given by:
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Primal Problem

maximize:
1

2n

∑
s∈{0,1}n

Tr[Πsρs]

subject to:
∑

s∈{0,1}n
Πs = 122n

Πs ∈ PPT(A : B), s ∈ {0, 1}n
Πs ⪰ 0, for s ∈ {0, 1}n
Dual Problem

minimize: Tr[Y ]

subject to: Y −QTB
s − ρs/2

n ⪰ 0, s ∈ {0, 1}n
Y ∈ Herm(A⊗ B)

Qs ∈ Pos(A⊗ B).

Here s is a bit string of length n, where si denotes the inputs of the i-th round,
i.e.

ρs = ρs0 ⊗ · · · ⊗ ρsn−1 . (3.10)

Repeating the strategy of the single round protocol gives a feasible solution
for the primal problem with success probability (2/3)n. A feasible solution to the
dual problem would yield an upper bound to the problem, but requires finding
a general solution for the matrices Y,Qs. We will give a general solution which
is based on the educated guess that we can set Y to be the identity matrix with
some proper normalization

Y =
122n

22n

(
2

3

)n

=
122n

6n
, such that Tr[Y ] =

(
2

3

)n

. (3.11)

We will construct a general feasible solution for Qs for any string s ∈ {0, 1}n from
QT (s) where T (s) is the reversed sorted version of s.

First, we show a general solution for the s = 0n and s = 1n strings. A solution
for the all-0 input case is Q0n = 0 ⪰ 0. The first constraint for s = 0n in the dual
problem of the SDP then reduces to

122n

6n
− ρ⊗n0

2n
. (3.12)

The eigenvectors of ρ0 are the four Bell states {|Φ+⟩ , |Φ−⟩ , |Ψ+⟩ , |Ψ−⟩}, with
respective eigenvalues {1/3, 1/3, 1/3, 0}, one can check this by hand. But this
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can also be seen from the fact that ρ0 corresponds to a random symmetric state,
and the symmetric subspace is spanned by the symmetric Bell states.

Then the eigenvalues of ρ⊗n
0

2n
are 1/6n or 0. Thus, the eigenvalues of (3.123.12) are

either 0 or 1/6n and (3.123.12) is positive, since it is also Hermitian.
For the s = 1n case we get the following.

Q1n =
122n

6n
− (ρTB

1 )⊗n

2n
,

is feasible. The eigenvectors of ρTB
1 are again the Bell states, with respective

eigenvalues {0, 1/3, 1/3, 1/3}. The eigenvectors of Q1n are all combinations of
tensor products of the four Bell states. If one of these states is the |Φ+⟩ state, the
corresponding eigenvalue of Q1n is (1

6
)n, otherwise the corresponding eigenvalue

is 0. Since Q1n is also Hermitian and has only non-negative eigenvalues Q1n ⪰ 0,
as desired. The corresponding constraint in the dual problem of the SDP reduces
to

122n

6n
−
(
122n

6n
− ρ⊗n1

2n

)
− ρ⊗n1

2n
= 0 ⪰ 0.

We see that for the inputs s = 0n and s = 1n for any n the values of the primal
and dual coincide and the optimal probability of success is (2/3)n.

The idea is now to use induction to get optimality of sorted strings, we note
that we can add a ‘0’ round to a valid solution via a tensor product. Suppose we
have a valid solution Qs for some s ∈ {0, 1}n, thus

Y −QTB
s − ρs/2

n ⪰ 0. (3.13)

And to this n-round protocol we add an extra round of equal inputs, so the input
is now ρs ⊗ ρ0. We will show that

Qs,0 = Qs ⊗ ρTB
0 /2, (3.14)

is a valid solution for the (n + 1)-round SDP. As ρTB
0 ⪰ 0 and Qs ⪰ 0 (by

assumption), we have Qs,0 ⪰ 0. Rewriting the first dual constraint we get

122n+2

6n+1
−QTB

s,0 −
ρs ⊗ ρ0
2n+1

=
122n+2

6n+1
−QTB

s ⊗ ρ0
2

− ρs ⊗ ρ0
2n+1

=
122n

6n
⊗ 14

6
−QTB

s ⊗ ρ0
2

− ρs ⊗ ρ0
2n+1

=
122n

6n
⊗ ρ0 + ρ1

3
−QTB

s ⊗ ρ0
2

− ρs ⊗ ρ0
2n+1

=

(
122n

6n
−QTB

s − ρs
2n

)
⊗ ρ0

2︸ ︷︷ ︸
A

+
122n

6n
⊗
(
2ρ1 − ρ0

6

)
︸ ︷︷ ︸

B

.
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We see that part A is a tensor product of two positive semi-definite matrices,
our starting point in (3.133.13) and ρ0/2, so A is also positive semi-definite. Part
B is Hermitian, and we can compute its eigenvalues explicitly. The eigenvectors
of 2ρ1−ρ0

6
are again the Bell states with respective eigenvalues {0, 0, 0, 1/6}, so

part B is positive semi-definite. Since sums of positive semi-definite matrices are
positive semi-definite the whole constraint is positive semi-definite. Since for any
number of rounds n we have a feasible solution for the s = 1n case, by repeatedly
adding the equal case, we can repeat the previous steps to get a feasible solution
for any reversed sorted string 1n0k for all n, k, namely

Q1n0k = Q1n ⊗ (ρTB
0 )⊗k

2k
. (3.15)

Now take some string s ∈ {0, 1}n, and let Ps be a unitary consisting only of 2-
qubit SWAP operations that reverse sorts the n-rounds, such that PsρsP

†
s = ρT (s),

and P †s = Ps.

We can now write down the general solution of Qs using the corresponding
map Ps applied to the sorted version. Let Qs = (PsQ

TB

T (s)Ps)
TB , using the fact that

P is a unitary matrix we then get for the corresponding constraint in the dual
SDP:

Y −QTB
s − ρs/2

n ⪰ 0 ⇔ Ps(Y −QTB
s − ρs/2

n)Ps ⪰ 0

⇔ Y − PsQ
TB
s Ps − ρT (s)/2

n ⪰ 0

⇔ Y − Ps((PsQ
TB

T (s)Ps)
TB)TBPs − ρT (s)/2

n ⪰ 0

⇔ Y − Ps(PsQ
TB

T (s)Ps)Ps − ρT (s)/2
n ⪰ 0

⇔ Y −QTB

T (s) − ρT (s)/2
n ⪰ 0.

Here, the last expression is positive semi-definite by (3.153.15). Thus we see that
the first constraint in the dual problem of the n-round SDP for any string s is
positive semi-definite for any combination of rounds.

The final step is to show that Qs = (PsQ
TB

T (s)Ps)
TB is positive. Note that Ps

permutes both registers held by A and B of the states together, since it consists
only of 2-qubit SWAP operations. The action is thus independent of the partial
transpose on the second party B. We therefore have Qs = PsQT (s)Ps. Now, since
Ps is unitary and QT (s) is positive semi-definite we have that Qs is positive semi-
definite.

We have shown that all the constraints in the dual problem of the n-round
SDP are satisfied by our constructed Qs matrices, thus we have a feasible solution
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to the dual problem with value Tr[Y ] = (2/3)n, which is equal to the primal value
and is attainable by a LOCC strategy. This shows that the best attacking strategy
for adversaries restricted to LOCC operations playing n rounds in parallel is to
simply apply the single-round strategy n times in parallel.

3.A.3 Optimal PPT Measurements for loss-tolerant
QPVn

SWAP Protocol

We shall now modify the solution to the parallel repetition case in Appendix
3.A.23.A.2 to give a solution to the maximization of conditional success probability
under LOCC restrictions. We will optimize the probability of being correct con-
ditioned on answering. The SDP for the lossy n round parallel repetition protocol
in which attackers either answer on all rounds or on none is given as:

Primal Problem

maximize:
1

2nη

∑
s∈{0,1}n

Tr[Π̃sρs]

subject to:

 ∑
s∈{0,1}n

Π̃s

+ Π̃∅ = 122n

Tr[Π̃∅ρs] = 1− η, s ∈ {0, 1}n

Π̃s ∈ PPT(A : B), s ∈ {0, 1}n ∪∅
Πs ⪰ 0, for s ∈ {0, 1}n
Dual Problem

minimize:
Tr[Ỹ ]− (1− η)γ

η

subject to: Ỹ − Q̃TB
s − ρs/2

n ⪰ 0, s ∈ {0, 1}n

22n(Ỹ − Q̃TB
∅ )− γ122n ⪰ 0

Ỹ ∈ Herm(A⊗ B)

Q̃s ∈ Pos(A⊗ B), s ∈ {0, 1}n ∪∅
γ ∈ R.

Here η is the transmission rate and Tr[Π̃∅ρs] = 1−η is the condition that attackers
can only say loss with equal probability on every input. We suspect our protocol
is loss-tolerant, thus we want the solution to be independent of η. It turns out
multiplying the POVM elements by η and picking Π̃∅ accordingly, i.e. Π̃s = ηΠs

for every s ∈ {0, 1}n and Π̃∅ = (1− η)122n gives a feasible solution for the primal
problem with solution (2/3)n.
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For the dual problem, we pick

Ỹ =
122n

6n
, Q̃s = Qs Q̃∅ = 0, γ = (2/3)n, (3.16)

then trivially Y ∈ Herm(A ⊗ B), Q̃s ∈ Pos(A ⊗ B), γ ∈ R and the first condition
remains satisfied since we have not changed Y,Qs in Appendix 3.A.23.A.2. The second
constraint becomes

22n(Ỹ − Q̃TB
∅ )− γ122n = 122n

2n

3n
− (2/3)n122n = 0 ⪰ 0. (3.17)

So, all constraints in the dual are satisfied. We thus get an upper bound of

Tr[Ỹ ]− (1− η)γ

η
=

(2/3)n − (1− η)(2/3)n

η
=
η(2/3)n

η
= (2/3)n. (3.18)

Thus, we finally have pmax
succ,n(η) = (2/3)n for any η ∈ (0, 1]. Together with Propo-

sition 3.2.13.2.1 in the main text, this gives full loss tolerance for the n-round parallel
repetition of our protocol.





Chapter 4
Quantum Communication Attacks and

Loss

In the previous chapter, we restricted the attackers to only have access to a clas-
sical communication channel. In this chapter, we investigate the setting of having
a quantum communication channel but no quantum memory to store pre-shared
entanglement. We investigate the relation between quantum communication and
loss in attacks on Quantum Position Verification (QPV) schemes. From a prac-
tical point of view this setting is still relevant because while a quantum commu-
nication channel allows attackers to pre-share entanglement, actually storing the
entanglement in a quantum memory is still a hard task. From a theoretical point
of view, it is interesting whether there can even be an advantage of quantum
communication over classical communication. We start by presenting a protocol
that is provably secure against attackers restricted to classical communication
and no pre-shared entanglement, but can be trivially broken if the attackers have
access to a quantum channel between them. We then show that any protocol
secure against classical communication can be transformed into a protocol secure
against quantum communication. We further show, using arguments based on
the monogamy of entanglement, that the task of Bell state discrimination cannot
be done locally with a single round of quantum communication, not even proba-
bilistically (when we allow attackers to say loss sometimes), making this the first
fully loss-tolerant QPV task secure against quantum communication attacks. We
also show that we can use similar techniques to prove the same properties for the
QPVSWAP protocol of Chapter 33. Finally, we observe that any multi-round QPV
protocol can be attacked with a linear amount of entanglement if the loss is high
enough.

This chapter is based on the papers “On the Role of Quantum Communica-
tion and Loss in Attacks on Quantum Position Verification” by Rene Allerstorfer,
Harry Buhrman, Florian Speelman and Philip Verduyn Lunel [ABSV22aABSV22a] and
“Monogamy of highly symmetric states” by Rene Allerstorfer, Matthias Chri-
standl, Dmitry Grinko, Ion Nechita, Maris Ozols, Denis Rochette and Philip
Verduyn Lunel [ACG+23ACG+23].

53
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4.1 Introduction

In this chapter we dive deeper into the role of quantum communication with-
out pre-shared entanglement in Quantum Position Verification (QPV) schemes,
expanding on the security results presented in the previous chapter. From a prac-
tical point of view, not allowing the attackers to pre-share entanglement is still
interesting, because even though attackers might be able to send quantum com-
munication to each other, having access to a stable quantum memory is a much
harder task. Secondly, it is also possible for attackers to run out of pre-shared
entanglement, thus understanding how well they can attack the protocol with
just quantum messages remains of interest. Finally, from a theoretical point of
view, it is also interesting to learn what exactly the power is of using a single
round of simultaneous quantum communication over classical communication.

Some works [BRSW11BRSW11, TFKW13TFKW13, BFSS13BFSS13, BCS22BCS22] attempt to lower bound
the pre-shared entanglement required from attackers that are allowed a round of
simultaneous quantum communication, while other results, such as [BK11BK11, RG15RG15,
QS15QS15, QLL+15QLL+15, LXS+16LXS+16, GC20GC20, OCCG20OCCG20] assume attackers that are restricted
to communicate only classically.

Even though quantum communication can potentially be simulated by tele-
portation, it is not immediately clear how to compare bounds between these two
settings, especially in case where the exact size of the lower bound is of interest.
The simplest version of this question can be asked for unentangled attackers: If
a (quantum-question, classical-reply) QPV protocol is secure against unentan-
gled attackers that communicate classically, is that protocol also secure against
unentangled attackers that are allowed to use quantum communication?

To that end, we present the following results:

• First, we answer the above question in the negative: We construct a pro-
tocol that is provably secure against unentangled attackers that can use
classical communication, but can be broken by a single round of simultane-
ous quantum communication. This shows that some care has to be taken
when interpreting results that restrict to classical messages only.

• Interestingly, we are additionally able to show that our counter-example
is in some sense artificial: Given a protocol that is secure against classical
messages, but insecure when quantum communication is allowed, it is always
possible to transform this protocol into one that is secure when quantum
communication is allowed.

This new protocol can be constructed from the given protocol by applying
local maps to the messages from the verifiers VA, VB, without having to
modify the output predicate. Our proof for this statement involves a recur-
sive argument, where we view the states after quantum communication of
a successful attack as the input messages to two new protocols. We then
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recursively consider an increasing number of new possible protocols and use
emergent classicality [QR21QR21] to show that a secure protocol of the required
form has to exist.

• We proceed by considering the task of Bell state discrimination11 and prove
that this task cannot be done perfectly with only local operations and one
round of simultaneous (quantum) communication. The proof relies on new
arguments based on the monogamy of entanglement. We consider a purified
version of this task in the QPV setting (delaying the honest measurement to
the end of the protocol) and show that the squashed entanglement [CW04CW04]
of the state ρVAVB

, on which the honest Bell measurement is applied to, is
upper bounded by Esq(VA : VB)ρ ≤ 1/2. Hence attackers won’t be able to
perfectly predict the honest result. To get an explicit upper bound on the
attack success probability with quantum communication pqc

succ we use the
hashing bound from [DW05DW05] which lower bounds the squashed entangle-
ment, allowing us to upper bound a parameter that leads to pqc

succ ≤ 0.926.
We further improve this bound to pqc

succ ≤ ln(2) via a different argument
based on a state-existence argument. We show that the existence of good
attack implies the existence of certain states. We then show in what regime
these states can exist by means of an SDP, which in turn bounds the success
probability.

• Even though the method based on the squashed entanglement measure gives
a worse bound, it can be more generally applied. Using a reduction argu-
ment we further show that for the QPVSWAP protocol any attack that uses
only quantum communication and no pre-shared entanglement cannot have
a success probability higher than pqc

succ ≤ 0.7315.

• We additionally show that even in the lossy scenario it remains that pqc
succ(η) <

1 for any transmission rate 0 < η ≤ 1. This makes the task of Bell state
discrimination, and by implication the QPV protocol based on the SWAP
test in the previous chapter, the first fully loss-tolerant QPV protocol that
remains secure in the setting where attackers are allowed quantum commu-
nication.

Finally, we present a result relating loss tolerance and entanglement attacks
in QPV:

• We observe that, in a setting with loss, any multi-round QPV protocol
can be broken with only a linear amount of pre-shared entanglement if the
loss rate is high enough. In that sense, creating a fully loss-tolerant QPV
protocol which requires superlinear entanglement (in the number of qubits
involved) is impossible. This follows directly from a simple observation: if

1Where the input is a randomly chosen Bell state.



56 Chapter 4. Quantum Communication Attacks and Loss

there is no limit to the loss, the adversaries can attempt quantum telepor-
tation and guess the teleportation corrections, claiming ‘loss’ if the guess
is incorrect. In the next chapter we will see that not all is lost, and by
changing the structure of the QPV protocol slightly we can get protocols
that are secure when there are classical inputs.

The aspects of loss and quantum communication are practically very rele-
vant, since in realistic settings loss rates will be high and, although attackers are
restricted to only one round of simultaneous communication due to the timing
constraints of QPV, they could in principle be able to communicate quantum
messages and this might give them an advantage.

The structure of the chapter is as follows. In Section 4.2.14.2.1 we present the
first QPV protocol that is provably secure against attackers restricted to quan-
tum communication but broken by a single round of quantum communication.
However, in Section 4.2.24.2.2, we show that any protocol insecure against quantum
communication, but secure against classical communication, can be transformed
into a protocol secure against quantum communication. In Section 4.2.34.2.3 we show
that the task of Bell state discrimination is secure against attackers who are
allowed to use quantum communication by giving two different approaches to
compute upper bounds on the success probability of attacking this protocol, in
Section 4.2.54.2.5 thereafter we show security for QPVSWAP. Extending on this re-
sult in Section 4.2.44.2.4 we also show that this protocol is strictly secure if we allow
attackers to also say loss in addition to quantum communication. With strictly
secure, we mean that psucces < 1, so a perfect attack does not exist. We show that
both results can be extended to also show security against quantum communica-
tion for the SWAP-test, also in a lossy setting. Finally, in Section 4.2.64.2.6 we make
the observation that allowing loss for pre-shared entangled attackers allows any
protocol with high enough loss rate to be broken with linear entanglement.

4.2 QPV and quantum communication

For simplicity, we treat the one-dimensional case here, where all parties are lo-
cated on a line. The time needed to implement local operations is considered
negligibly short compared to the time span of the entire protocol. In order to
verify the position of an untrusted party P, two trusted and spatially separated
verifiers VA,VB send quantum inputs to P from each side and ask them to apply
a specific quantum operation. P has to apply the operation and respond imme-
diately. In the end, the verifiers check if they received an answer in time and
consistent with the input and the demanded task. The attack model is as follows.
Attackers trying to break the protocol are not located at P but want to convince
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the verifiers that they are. Two attackers22 A,B can position themselves between
VA,P and VB,P, respectively, and intercept the inputs, act locally, communicate
one message to each other, and then act locally again before they have to commit
to answers τA, τB. They hence have to simulate the honest quantum operation us-
ing only local actions and 1 round of simultaneous communication. This situation
is depicted in Figure 4.14.1.

t

x

τ
A

ρA

VA

τB

ρ
B

VBA P B

Figure 4.1: Space-time diagram of a general QPV protocol. We assume all in-
formation travels at the speed of light. For graphical simplicity we have put P
exactly in the middle of VA and VB (which is not necessary). The attackers, not
being at position P, would like to convince the verifiers that they are at P by sim-
ulating the honest operation via local operations and one round of simultaneous
communication.

4.2.1 A protocol for which quantum communication gives
an advantage over LOCC

A natural question one might ask is whether there is any advantage for attackers
in QPV protocols if they are allowed to perform local operations and simultaneous
quantum communication (LOSQC) instead of classical communication. In what
follows, we will construct an explicit example of a QPV protocol with classical
outputs where there is a finite gap in the success probability for LOSQC strategies
over LOCC strategies, thus separating both classes.

First, consider the protocol where two verifiers both send half of either one
randomly picked symmetric Bell state {|Φ+⟩ , |Φ−⟩ , |Ψ+⟩} or the antisymmetric
Bell state |Ψ−⟩, and ask an honest prover whether the entangled state they have
sent is symmetric or antisymmetric. An honest prover who can apply entangling
operations can answer this question with success probability 1 by applying a
SWAP test [BCWW01BCWW01] on the state. From the analysis of the corresponding SDP
optimized over PPT measurements it turns out that the best LOCC strategy is

2The scenario of more attackers can be reduced to the one described above. Indeed, the
attackers closest to P could simply simulate all the other attackers themselves.
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upper bounded by 5/6 (see Appendix 4.A.14.A.1). The LOCC strategy of measuring
both qubits in the computational basis and answering the XOR of the outcomes
attains this success probability, so the upper bound over PPT measurements is
attained by a LOCC measurement.

Now suppose the verifiers send two parallel rounds of the previous protocol
under the condition that the two rounds are either both a random symmetric
Bell state or they are both an antisymmetric Bell state, and we ask the prover
whether the input consisted of two symmetric or two antisymmetric states. An
honest prover who can apply entangling operations can still solve this protocol
with success probability 1 by applying a SWAP-test to one of the two pairs. Now
note that attackers who have access to a quantum channel can send half of their
input state to each other such that both attackers locally end up with a Bell
state which they can perfectly determine. Thus, attackers restricted to quantum
communication without pre-shared entanglement can attack this protocol per-
fectly. Interestingly, it turns out that this is not possible for attackers restricted
to classical communication.

From the analysis of the SDP it turns out that the upper bound for two
attackers restricted to PPT measurements is 17/18, cf. Appendix 4.A.14.A.1. Again,
there is a LOCC strategy that makes this bound tight, namely measuring both
pairs in the computational basis and only answering “antisymmetric” if both pairs
have unequal measurement outcomes and respond “symmetric” otherwise. This
strategy is always correct on antisymmetric inputs. And it is only incorrect
on symmetric inputs if both times the state |Ψ+⟩ was sent, this happens with
probability 1/18, so the total probability of success of the LOCC protocol becomes
17/18. By incorporating loss in the SDP program as done in [LXS+16LXS+16] and the
previous chapter, we also find that this protocol is loss-tolerant.

Thus, we have constructed a QPV protocol where the probability of success
for attackers restricted to single-round LOCC measurements is strictly lower than
attackers restricted to LOSQC measurements. This shows that there can be
an advantage for quantum communication over classical communication, and it
could be important in the analysis of the security of QPV protocols. However, it
is clear that our construction is not a very good protocol as there is redundant
information given to the attackers, and sending just one of the two symmetric or
antisymmetric states would give a seemingly better protocol.

4.2.2 Splitting Scheme

Our separating example had some redundancy in it, in the sense that the correct
answer was present more than once. In this section, we present a procedure that
distills a QPV protocol secure against attackers using a single round of simultane-
ous quantum communication from the existence of a QPV protocol that is secure
against adversaries restricted to LOCC operations. We will use the fact that the
existence of a perfect quantum communication attack on a QPV protocol gener-
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ates two new QPV protocols, which, when applied recursively, ultimately leads
to the existence of a QPV protocol that is secure against adversaries restricted to
LOCC and cannot be perfectly attacked by adversaries using quantum commu-
nication. Morally, this recursion removes the redundancy of the correct answer
in the original protocol.

Take any QPV protocol in which two verifiers VA,VB send states ρA, ρB and
ask for the outcome of, say, some entangling measurement on the joint state
ρAB. Suppose the protocol is secure against adversaries restricted to LOCC, i.e.,
there is a finite gap in the probability of success between an honest prover and
adversaries restricted to LOCC operations, but also assume that the protocol can
be broken perfectly by adversaries using quantum communication. In the most
general setting, the actions of the adversaries are as follows:

• Adversaries A,B receive ρA, ρB respectively as input states.

• Apply some local channel A(ρA) = σA1A2 , B(ρB) = σB1B2 .

• Send some share of their local outcome to the other adversary.

• Apply a measurement on the new local states σA1B1 and σA2B2 .

• Send the measurement outcome to their respective verifiers.

Now note that both σA1 , σB1 and σA2 , σB2 can be used as input states to define
two new QPV protocols, where the measurement an honest prover needs to apply
is equal to the measurement the attackers would apply in the quantum commu-
nication attack in the original protocol. Then the probability of success for the
honest verifier in the newly defined protocol is the probability of success of the
adversaries using quantum communication in the previous protocol, which we
assumed to be perfect.

Note that any LOCC attack on one of these newly arising protocols was al-
ready a valid LOCC attack in the previous protocol with the inputs ρA and ρB.
The attackers can simply apply the local channels A,B, discard the state they
don’t use, and apply their attack. Also note that if the input states ρA, ρB were
product states, the input states in the newly created protocol are also product
states. We have therefore split the QPV protocol into two new protocols using
only the existence of a perfect quantum communication attack.

Now there are two options for the newly defined protocols:

• There does not exist a perfect attack using quantum communication for at
least one of the two new QPV protocols, in which case we have shown the
existence of a QPV protocol that is safe against adversaries using quantum
communication and we are done.
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Figure 4.2: Visual representation of splitting into two new QPV proto-
cols from the existence of a quantum communication attack on a single
QPV protocol. Two attackers A,B receive inputs ρA, ρB and apply some
channel A(ρA) = σA1A2 ,B(ρB) = σB1B2 and send parts of their outcome
to the other party. This procedure defines two new QPV protocols. If
again there exists a perfect quantum communication attack for both new
protocols, then by the same argument we can define 4 new QPV proto-
cols, and so on.

• For both protocols, there exists a perfect attack using quantum communica-
tion. In which case we can apply our previous argument to generate 4 new
QPV protocols. See Figure 4.24.2 for a visual representation of this splitting
argument.

The previous options are true for all QPV protocols that arise after splitting,
and we wish to show the existence of a QPV protocol safe against quantum
communication. We therefore suppose that all of the induced QPV protocols
after splitting n times can be attacked perfectly using quantum communication
for any n ≥ 2.

Note that the input states sent from verifier VA in the induced QPV proto-
cols after splitting only depend on the previous input states sent from VA and
vice-versa for the input states from VB. We can write this action as channels
ΛA

n : D(A) → D(A1 ⊗ · · · ⊗ A2n), mapping ρA 7→ σA1 ... A2n
, and ΛB

n : D(B) →
D(B1 ⊗ · · · ⊗ B2n), mapping ρB 7→ σB1 ... B2n

. The idea of this proof is that the
reduced states σAi

and σBi
become approximately classical, and that attackers

could immediately measure their incoming states and share the classical mea-
surement outcome instead of sending some quantum message. This would lead
to a contradiction since the success probability of this procedure would be upper
bounded by the LOCC bound of the original QPV protocol, while at the same
time, by assumption, this attack should become approximately close to a perfect
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one. To be more precise, we use Theorem 4.2.14.2.1 on the emergent classicality of
channels from [QR21QR21].

4.2.1. Theorem (Qi-Ranard). Consider a quantum channel Λ : D(A) → D(B1⊗
...⊗ Bn). For output subsets R ⊂ {B1, ..., Bn}, let ΛR ≡ TrR̄ ◦Λ : D(A) → D(R)
denote the reduced channel onto R, obtained by tracing out the complement R̄.
Then for any |Q|, |R| ∈ {1, ..., n}, there exists a measurement, described by a
positive-operator valued measure (POVM) {Mα}, and an “excluded” output sub-
set Q ⊂ {B1, ..., Bn} of size |Q|, such that for all output subsets R of size |R|,
disjoint from Q, we have

∥ΛR − ER∥⋄ ≤ d3A

√
2 ln(dA)

|R|
|Q| , (4.1)

using a measure-and-prepare channel

ER(X) :=
∑
α

Tr(MαX)σα
R, (4.2)

for some states {σα
R}α on R, where dA = dim(A) and ∥...∥⋄ is the diamond norm

on channels. The measurement {Mα} does not depend on the choice of R, while
the prepared states σα

R may depend on R.

Applying the theorem and setting the size of the excluded output set for
both channels ΛA

n ,Λ
B
n to |QA| = |QB| = 2n−1 − 1, we have, by the pigeonhole

principle, that for some index i ∈ {1, . . . , 2n} both output sets Ai, Bi must be
in the sets disjoint from QA and QB. Setting the size of the reduced channels
to |RA| = |RB| = 1, we see that in both cases the reduced channel TrR̄ ◦ΛA/B

n

converges to a measure-and-prepare channel in the number of splittings n for any
output:

∥TrR̄A/B
◦ΛA/B

n − ERA/B
∥⋄ ≤ 8

√
2 ln(dA/B)

2n−1 − 1
. (4.3)

The theorem implies that the reduced channels that maps the input states ρA 7→
σAi

and ρB 7→ σBi
become approximately close to measure-and-prepare chan-

nels. Crucially, the measurements {MA/B
α } in the respective measure-and-prepare

channels do not depend on the choice of R. This gives rise to an LOCC attack
in the original QPV protocol from which we started. Two attackers A,B sim-
ply apply the local measure-and-prepare channels ERA

, ERB
and exchange the

classical measurement outcomes α1, α2. Both attackers then know the state∑
α1
pα1σ

α1
Ai

⊗∑α2
pα2σ

α2
Bi

which is arbitrarily close to σAi
⊗ σBi

in n. Since for
any QPV protocol the POVM measurement that the honest verifier has to apply
is publicly known, both attackers can calculate the probability distribution of the
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answers of an honest prover. Using shared randomness to generate an equal an-
swer both attackers can now mimic the probability of success of an honest verifier
arbitrarily well.

This LOCC attack allows attackers to answer correctly with a probability of
success that converges to the honest probability of success in the number of split-
tings n. By assumption n can be arbitrarily large and thus the attackers have
an LOCC attack that performs arbitrarily well. However, since for our protocol
at the start there is a finite gap between the LOCC probability of success and
the honest probability of success, we have a contradiction and conclude that at
some level in the recursion there must exist a QPV protocol that cannot be at-
tacked perfectly. That protocol must then be safe against unentangled adversaries
restricted to quantum communication arises.

4.2.3 Security of QPVBell against quantum communication

In this section, we give the first example of a classically loss-tolerant QPV pro-
tocol that is secure against attackers restricted to quantum communication. Fur-
thermore, we will show that there is no perfect attack with loss in the quantum
communication setting for this protocol, making it the first example of a protocol
that is secure against lossy quantum communication attacks with no pre-shared
entanglement.

The protocol we investigate is the Bell state discrimination problem. Two
verifiers send as inputs the respective qubits of one of the four Bell states
{|Φ+⟩ , |Φ−⟩ , |Ψ+⟩ , |Ψ−⟩} and ask the prover which Bell state he receives. An
honest prover can answer this task perfectly by doing a Bell measurement. With
an SDP and a similar analysis as in the previous chapter, we can show that
this protocol is secure and loss-tolerant against attackers restricted to classical
communication. An optimal attacking strategy turns out to measure the qubits
in the computational basis, which distinguishes {|Φ+⟩ , |Φ−⟩} from {|Ψ+⟩ , |Ψ−⟩}
and then to guess one of the two Bell states as an answer. This has success
probability 1/2.

To analyze security against attackers restricted to quantum communication,
we look at the protocol in the following equivalent purified way.

• The inputs of the protocol will be half of a maximally entangled state
1√
2
(|00⟩ + |11⟩)VAPA

and 1√
2
(|00⟩ + |11⟩)VBPB

. Where the other half is kept
by the verifier. This is visualized in Figure 4.34.3.

• The honest prover has to do a Bell state measurement. This measurement
now acts as an entanglement swapping operation, where the entanglement
between the verifiers and the prover gets swapped to entanglement between
the two verifiers, and entanglement between the two qubits the prover holds.
The measurement outcome of the prover will be one of the four Bell states



4.2. QPV and quantum communication 63

VA VB

A B

(a) Original protocol

VA VB

A B

(b) Equivalent protocol

Figure 4.3: By Equation 4.44.4 these two settings are equivalent. On registers A,
B a Bell measurement is supposed to happen. In Figure 4.3a4.3a the verifier knows
which Bell state they send beforehand, in Figure 4.3b4.3b a Bell state is swapped into
the registers VA,VB. The players need to simulate this as well as possible.

with equal probability, and determines which Bell state the verifiers hold.
The prover then sends his classical measurement outcome i to the verifiers.

• The verifiers check whether the entanglement swapping operation was suc-
cessful by applying a Bell measurement on their joint state, and check
whether their measurement outcome is the same as the answer of the prover.
The probability of successfully attacking the protocol now corresponds to
the verifiers having the correct Bell state as their measurement outcome, av-
eraged over all possible Bell states, i.e. psucc =

1
4

∑3
i=0Tr[|Belli⟩ ⟨Belli| ρiVAVB

].

Note that from the point of prover nothing changes from the original Bell state
discrimination protocol. The honest prover still needs to perform a Bell state
measurement on his incoming qubits and send his measurement outcome to both
verifiers.

To see that the operation of the prover swaps entanglement to the registers
of the verifiers, note the following relation:

|Φ+⟩VA,PA
|Φ+⟩PB ,VB

=
1

2

(
|Φ+⟩VA,VB

|Φ+⟩PA,PB
+ |Φ−⟩VA,VB

|Φ−⟩PA,PB

+ |Ψ+⟩VA,VB
|Ψ+⟩PA,PB

+ |Ψ−⟩VA,VB
|Ψ−⟩PA,PB

)
. (4.4)

We see that when P applies a Bell state measurement to his local systems PA, PB

(as is his task in the protocol), the post-measurement state between the two
verifiers will collapse to one of the four Bell states, and the measurement outcome
of P determines which one.

The idea to show security against quantum communication is that by refor-
mulating the QPVBell protocol as an entanglement swapping protocol we can use
the monogamy of entanglement property between the qubits that remain at the
verifiers and the quantum systems attackers create. Furthermore, while it is hard
to say anything about the quantum systems attackers might send to each other,
the states the verifiers keep are always under their control.

As stated in Section 4.2.24.2.2 the most general quantum communication attack
is for attackers A,B to split their inputs into two quantum systems A1, A2 and
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B1, B2, respectively. They hold on to one and forward the other system to the
other attacker. After the quantum communication round, the attackers A,B
locally hold the reduced states ρA1 ⊗ ρB1 and ρA2 ⊗ ρB2 , respectively. Note that
while the A1 subsystem is in a product state with the B1 subsystem, the A1

and A2 subsystems can be as entangled as the attackers like. As there is no
more further communication, for a quantum attack to be successful in generating
entanglement between the two verifiers, it is sufficient to look only at one of the
two attackers’ quantum systems locally33. We will use this fact in our proof to
show that they cannot perform this task perfectly using quantum communication.
The idea behind the proof is that VA cannot be sufficiently entangled to both
subsystems A1, A2 at the same time. But both joint subsystems A1B1 and A2B2

individually must be sufficient to attack the protocol, as both attackers need to
answer correctly.

VA

eA1
≤1/2

eA2

A1

VB

eB1

eB2

B1

A2B2

(a) Entanglement structure when
attackers measure and commit to an
answer. W.l.o.g. eA1 ≤ 1/2.

VA

A1

VB

B1

eVAVB
≤1/2

(b) Measuring A1B1 and sending the
result to VA is an LOCC operation on
VA(A1B1VB).

Figure 4.4: Illustration of the argument based on monogamy of entanglement to
bound the entanglement eVAVB

≤ 1/2 as described in the main text. Tracing out
A2B2, attacker A can only swap eVAVB

≤ 1/2 ebits to VAVB.

As an entanglement measure we will use the squashed entanglement. This
measure satisfies several properties useful for our analysis, such as monotonicity
under LOCC operations, general monogamy with no restrictions on the size of the
quantum registers, and it is lower bounded by distillable entanglement [CW04CW04].
Consider the sketch of the entanglement structure between all quantum registers
in Figure 4.44.4. By monogamy, we have that

0 ≤ Esq(VA : A1)ρ + Esq(VA : A2)ρ ≤ Esq(VA : A)ρ = Esq(|Φ+⟩ ⟨Φ+|) = 1. (4.5)

Suppose without loss of generality that Esq(VA : A1)ρ ≤ Esq(VA : A2)ρ, then the
inequality implies that Esq(VA : A1)ρ ≤ 1/2. Let Φ be the LOCC operation (on
VA(A1B1VB)) of measuring the ρA1B1 register and sending the classical measure-
ment result to VA. Using that squashed entanglement is monotone under LOCC

3Attackers have to act in a coordinated way in QPV, but in particular each attacker also
needs to have a local success probability at least as big as the global one.
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we get the following:

Esq(VA : VB)Φ(ρ) ≤ Esq(VA : A1B1VB)Φ(ρ)

≤ Esq(VA : A1B1VB)ρ

= Esq(VA : A1) ≤ 1/2. (4.6)

Thus, the squashed entanglement between the two verifiers after any attack using
quantum communication is upper bounded by 1/2. Recall that for an attack
to be successful, the verifiers must share the same Bell state on their registers
ρVAVB

as the answer i they receive from the attackers in this case single. Since
Esq(|Bi⟩ ⟨Bi|) = 1 it is immediately clear that psucc =

∑
i Tr[|Bi⟩ ⟨Bi| ρiVAVB

]/4 < 1
and no perfect attack is possible.

Ideally, we want psucc not only to be strictly smaller than 1, but also to be
smaller than 1 by some finite gap. In what follows, we will show that Esq(VA :
VB) ≤ 1/2 implies psucc ≤ 0.926, which implies security against quantum com-
munication. Our proof uses the hashing bound from [DW05DW05], which lowers the
squashed entanglement [CW04CW04]. The inequality states that for any quantum state
ρAB,

S(B)ρ − S(AB)ρ ≤ Esq(A : B)ρ, (4.7)

where ρB = TrA[ρAB], and S is the von Neumann entropy.
The idea of this proof is to apply the Werner twirling channel W , where

we integrate over the final two-qubit state between the verifiers. This channel
leaves the antisymmetric (qubit) state invariant and projects the remaining part
to the symmetric subspace. Furthermore, this channel is an LOCC channel and
by monotonicity of the squashed entanglement under LOCC operations, we have

1/2 ≥ Esq(VA : VB)Φ(ρ) ≥ Esq(VA : VB)W(Φ(ρ)). (4.8)

The resulting state W(Φ(ρ)VAVB
) can then be written as a mixture of the antisym-

metric Bell state with the maximally mixed state characterized by some α > 0,
that is,

W(Φ(ρ)VAVB
) = α |Ψ−⟩⟨Ψ−|+ (1− α)

14

4
. (4.9)

A property of Bell states is that they can be locally transformed into one another.
Therefore, verifiers can always locally change the Bell state that they receive as
an answer from the honest prover to the antisymmetric Bell state. Therefore, any
successful attack can be characterized by the probability of having measurement
outcome |Ψ−⟩ on W(ρVAVB

). Combining the entanglement bound (4.84.8) with the
hashing bound (4.74.7) we get the following numerical bound on α:

1/2 ≥ Esq(VA : VB)W(Φ(ρ))

≥ S(B)W(Φ(ρ)) − S(AB)W(Φ(ρ))

= 1− S(AB)W(Φ(ρ))

⇐⇒ α ≤ 0.902. (4.10)
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The probability of success is now upper bounded as follows

psucc = Tr
[
|Ψ−⟩⟨Ψ−|Φ(ρ)VAVB

]
= F(|Ψ−⟩⟨Ψ−| ,Φ(ρ)VAVB

)

≤ F(W(|Ψ−⟩⟨Ψ−|),W(Φ(ρ)VAVB
))

= Tr
[
|Ψ−⟩⟨Ψ−|W(ρVAVB

)
]
= α +

1− α

4
≤ 0.926, (4.11)

where we have used the data process inequality for the fidelity in the first in-
equality. This concludes our proof and shows that there is a finite gap between
the optimal attack attackers restricted to quantum communication can do and
what an honest prover can do. We suspect that this gap can be made even larger,
the upper bound that we find arises only due to restrictions on the A1 part, the
B1 part could be unchanged from the input state of B. So, our bound gives an
expression for the maximal probability if you split the A part into two parts but
get the full B part. Also, we have not yet made use of the fact that both attackers
have to answer equally. In the following section, we try to improve the bound
using a different approach making use of both the A1 and the A2 part.

An improved bound via a state existence argument

We will connect the existence of good strategies for Bell state discrimination
using a single round of simultaneous quantum communication to the existence of
a cyclic graph state whose value pW depends on the probability psucc of correctly
distinguishing the Bell state. To make this connection, we again consider an
equivalent setting in which we purify the local inputs.

The verifiers locally generate an EPR pair, keep half of the pair locally, and
send the other half as the input to the players. The task for A,B does not change,
they need to perform a Bell State measurement and answer their outcome to the
verifiers, who check if the answer they receive matches their local state. From the
point of view of A,B nothing changes if the verifiers measure their local qubits
before receiving an answer, or even before sending the qubits to A,B (which
was our regular setting). Therefore, the probability that the verifiers have the
same measurement outcome as the answer they receive in this purified setting is
exactly the probability psucc with which A,B can distinguish the Bell states in
the non-purified protocol. The settings are in this sense equivalent.

Consider the state the verifiers hold in the purified picture after receiving the
answers from A,B, but before they apply a Bell state measurement to check if
the answer is correct. We know that this state has overlap psucc with the Bell
state that corresponds to the answer they received. We can now do the following:

1. Apply a local Pauli operation that maps the answer they received to the
antisymmetric Bell state.

2. Apply the same Haar random single-qubit unitary to both qubits, i.e. a
Werner twirling channel.
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Then, the state that we end up with is again a Werner state:

p |Ψ−⟩⟨Ψ−|+ (1− p)

(
14

4
− |Ψ−⟩⟨Ψ−|

)
, (4.12)

where p is the parameter corresponding to the probability psucc of successfully
distinguishing the Bell states under quantum communication.

In its most general form, two players A,B will apply some map on their local
inputs with two output registers, one that they keep and one that they send on
to the other player. As we have established, the task of players A,B is to swap
entanglement into the registers of VA, VB. Crucially, in the task of Bell state dis-
crimination it is clear that the answer of only a single player suffices to distinguish
the correct state since both players have to answer correctly. Conversely, this im-
plies that only a single final operation at one of the players swaps an entangled
state with overlap p to some Bell state into the registers of the verifiers.

VA

A1

VB

B1

VC

C2A2

B2

C1

(a) After the round of communication.

VA VB

VC

(b) Entanglement structure between
the verifiers after final operations on
A1, B1 and A2, C2.

Figure 4.5: Entanglement structure including a third hypothetical verifier VC
and player C who applies the same operation as B to his input. After the fi-
nal measurement operation entanglement will be swapped to the shared state of
the verifiers. We have omitted the entanglement structure with the individual
registers here.

Now consider the situation in which there is a third verifier VC , who behaves
exactly like VB, and we consider a third player C who applies the same quantum
map as B on the input he receives from VC . As a thought experiment, we now
apply the same final operation on the A2, C2 register as would have been applied
on the A2, B2 register. In Figure 4.5a4.5a we see the entanglement structure visualized
after the communication round, but before the final operations. After the final
operations, we get the structure as in Figure 4.5b4.5b. By the previous argument, the
reduced states on VA, VB and VA, VC now both have overlap psucc with some Bell
state that corresponds to the answer the players get. Note that these Bell states
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do not have to be equal. By applying a local Pauli gate on the qubits of VB and VC
we can bring both the two-qubit states between VAVB and VAVC to corresponding
to the antisymmetric Bell state |Ψ−⟩. We can apply a Werner Twirling Channel
on the joint state of the verifiers to end up with a line graph state with 3 vertices,
where the reduced 2-qubit states are of the form as in Equation 4.124.12, where the
parameter p for the reduced states on adjacent pairs of qubits is equal to psucc.

We can extend the above argument by introducing more hypothetical verifiers,
and combining them in the same way, to get a line graph state of odd length with
any amount of vertices, where all the 2-qubit states on the line have overlap
psucc with a specific Bell state (as the attack is successful whenever the verifiers
measure the Bell state that corresponds to the answer they receive). On a line we
can apply Pauli gates to the individual qubits such that all the 2-qubit states have
overlap with the antisymmetric |Ψ−⟩ state. A way to do this is to simply start at
the left side of the graph and look what Bell state the first edge is supposed to
be, and apply the Pauli gate on the right-hand qubit of the edge that brings this
Bell state to the antisymmetric state |Ψ−⟩. Then the neighboring edge also gets
mapped to another Bell state, but we can do the same procedure and map it to
|Ψ−⟩ by applying a Pauli gate to the qubit on the right. Keep on doing this until
you reach the other side of the chain, now the final Pauli gate only fixes the last
edge, and what we end up with is a line graph state where all the neighboring
qubits have overlap psucc with |Ψ−⟩. This leads to the following proposition that
relates strategies that use quantum communication to the existence of states:

4.2.2. Proposition. If there exists a strategy using a single round of simultane-
ous quantum communication for the task of Bell state discrimination, where the
Bell states are picked uniformly at random, that succeeds with probability psucc,
then there exists a line graph state of any length n of qubits, such that all neigh-
boring pairs of qubits are in Werner states with parameter p = psucc.

We now end up at a fundamental question of what psucc are even possible for
such a line graph state. Clearly psucc = 1 is not possible due to monogamy of
entanglement, but what range is possible? This problem can again be formulated
as an SDP where we define a graph G = (V,E), and we write Πe := Π ⊗ 1ē for
the operators that are only applied to a single edge e.

Primal Problem
max

ρ
p

subject to: ∀e ∈ E : Tr[Πasym
e ρ] = p

Tr[ρ] = 1

ρ ⪰ 0.
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The corresponding dual problem is:

Dual Problem

min λmax

(∑
e∈E

xeΠ
asym
e

)
subject to:

∑
e∈E

xe = 1.

Here, xe are real numbers that have the restriction that they sum up to 1, and
λmax denotes the largest eigenvalue of the operator. By weak duality any feasible
solution to the dual problem upper bounds the primal problem and thus psucc.
In general, for projectors to the antisymmetric subspace we can write Πasym =
1−SWAP

2
. Thus for the objective function in the Dual Problem we can write:

λmax

(∑
e∈E

xeΠ
asym
e

)
= λmax

(∑
e∈E

xe
1e − SWAPe

2

)

=
1

2
+

1

2
λmax

(
−
∑
e∈E

xeSWAPe

)

=
1

2
− 1

2
λmin

(∑
e∈E

xeSWAPe

)
. (4.13)

For qubits we can write the SWAP operator between two systems i, j as a sum
of the same Pauli operators applied on both systems SWAPi,j =

1
2
(1i⊗1j +Xi⊗

Xj + Yi ⊗ Yj + Zi ⊗ Zj). Filling this into the above equation we get:

1

2
− 1

2
λmin

(∑
e∈E

xe
2
(1e1 ⊗ 1e1 +Xe1 ⊗Xe2 + Ye1 ⊗ Ye2 + Ze1 ⊗ Ze2)

)

=
1

4
− 1

2
λmin

(∑
e∈E

xe
2
(Xe1 ⊗Xe2 + Ye1 ⊗ Ye2 + Ze1 ⊗ Ze2)

)
. (4.14)

By weak duality we have that psucc is less or equal to Equation 4.144.14 above for any
feasible input on the line graph. Consider the feasible input on a line graph of
length n where all the weights xe are equal, then we get the following.

psucc ≤
1

4
− 1

2
λmin

(
1

2(n− 1)

n∑
i=1

(Xi ⊗Xi+1 + Yi ⊗ Yi+1 + Zi ⊗ Zi+1)

)
. (4.15)

The operator whose minimal eigenvalue we seek is actually equal to the Hamilto-
nian of the well known spin 1/2 Heisenberg XXX model, and one can compute its
spectrum using the Bethe Ansatz [Fad96Fad96]. The bound of psucc can be computed



70 Chapter 4. Quantum Communication Attacks and Loss

with an SDP solver for the line graph and decreases for larger values of n. Taking
the limit of n → ∞ the value of p for the line coincides with the value for the
infinite circle graph [ABB+87ABB+87, Equation (2.50)], of which exact analytic solutions
are known [Fad96Fad96]. The minimal eigenvalue converges to the ground state energy
per site which converges to 1/2−2 ln(2). Plugging this into Equation 4.154.15 we get
the following corollary.

4.2.3. Corollary. The success probability of discriminating Bell states psucc
using a single round of simultaneous quantum communication is upper bounded
by the value ln(2) ≈ 0.69. In particular, the attack success probability of QPVBell

with no pre-shared entanglement is bounded by the same value.

4.2.4 Lossy Quantum Communication Attack on QPVBell

In the previous part we considered attacks where attackers were allowed to use
quantum communication but were not allowed to answer loss. Allowing attackers
to also answer loss would be the most general setting for attackers who cannot pre-
share entanglement. Unfortunately, our previous proof does not hold in the lossy
case, since the operations attackers can apply to their local quantum registers after
quantum communication are not LOCC operations (between the local attacker
registers and the corresponding verifier) if attackers are allowed to postselect, but
rather SLOCC. Thus, the monotonicity of the squashed entanglement no longer
holds. Similarly, the measurement outcome can be alternating inconclusive when
we try our state existence approach, thus getting no usable bounds. However, we
still prove that there cannot be a perfect lossy quantum communication attack
on the Bell state discrimination protocol, i.e. psucc(η) < 1 for any transmission
rate η ∈ (0, 1].

VA

A1

VB

B1

VC

C2A2

B2

C1

Figure 4.6: Entanglement structure including a third hypothetical verifier VC and
attacker C who applies an isometry WC→C1C2 to his hypothetical input.

The argument goes as follows. Suppose there is a perfect lossy quantum
communication attack, then for any loss rate, there must be some moment where
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both attackers decide to play. Condition on this event taking place, and consider
the moment before both attackers measure their quantum systems. Suppose we
now perform the measurement on the A1B1 quantum system, then by assumption
we must get some Bell state i (indicating the correct one) as a measurement
outcome with probability 1, thus generating a maximally entangled state between
the verifiers VA, VB. Now consider the possibility of another verifier VC who also
sends as an input a half of an EPR pair, and some attacker C who applies the
exact same splitting operation on her input as attacker B (see figure 4.64.6), thus
locally ρB2 = ρC2 . By definition of a QPV protocol the measurement outcome we
get from A2, B2 will be i with probability 1.

What would now happen if we apply the measurement of the attackers on
the A2, C2 system? If this measurement is conclusive, then it must be correct
with probability 1, thus creating a maximally entangled state between VA, VC ,
which would violate monogamy of entanglement since VA is already maximally
entangled with VB. We conclude that the only possible measurement outcome on
the A2, C2 system is an inconclusive ‘∅’ outcome.

There are now two options for the state ρA2B2 , it can be either a product
state or not. If it is a product state, it is indistinguishable from ρA2 ⊗ ρC2 , which
cannot be since the same measurement outcome on the A2, C2 systems will always
be inconclusive, while on the A2, B2 systems it will be conclusive.

Suppose ρA2B2 is not a product state. Then again, the measurement on ρA2B2

will always be conclusive, while the measurement on ρA2C2 = ρA2⊗ρC2 = ρA2⊗ρB2

will always be inconclusive. Using this fact, we can perfectly distinguish the
state ρA2B2 from ρA2 ⊗ ρB2 , by simply applying the measurement an attacker
would apply. However, the states ρA2B2 and ρA2 ⊗ ρB2 are never orthogonal to
each other, thus there can be no procedure that perfectly discriminates the two
quantum states without saying loss. This contradicts our findings, because the
above is a hypothetical procedure that perfectly distinguishes the two quantum
states.

We conclude that our assumption of a perfect lossy quantum communication
attack must be wrong, which proves our claim. Thus we see that in general
the QPVBell cannot be perfectly attacked by unentangled attackers, which is the
strongest statement we can make if we require attackers to not pre-share any
entanglement. This argument cannot be extended to a finite gap in the attacking
probability because of the subtlety that the measurements on ρA1B1 and ρA2C2 can
be correlated. If attackers are allowed to make some errors, then the measure-
ments on these states can be correlated such that they can be both conclusive but
the measurement on ρA2C2 will then just be wrong, so monogamy of entanglement
may not be violated.
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4.2.5 Security of QPVSWAP against quantum communica-
tion

Our technique to show security against quantum communication by considering
the protocol in a purified setting and then analyzing the entanglement structure
does not immediately allows us to show bounds on the QPVSWAP protocol. As
in this protocol the inputs are either equal or orthogonal product states, the
answers of the attackers imply that the verifiers will hold two states that are
either orthogonal or equal to each other. These states are not entangled, thus
if we follow the reasoning and purify the inputs, the task of the attackers is to
swap either an equal or orthogonal state between the two verifiers, which is not
prohibited by any entanglement inequalities. However, we can reduce attacks
on the QPVSWAP protocol to attacks on a similar protocol where some inputs are
entangled states, with similar success probabilities. We then show that for certain
success probabilities such attacks do not exist, implying security with a finite gap
of the QPVSWAP against attackers with access to quantum communication, but
no pre-shared entanglement.

Suppose we have an attack on the QPVSWAP protocol that has a success prob-
ability of 3/4− α, where α ≥ 0 is some value that indicates how close our attack
is to the optimal success probability of 3/4. We write {Πqc

= ,Π
qc
̸=} for the attackers

POVM elements that attain this value. Write ρ=, ρ̸= for the density matrices of
the input qubits that are either equal or orthogonal in some uniformly random
basis. Then we can write for the success probability:

psucc =
1

2

(
Tr[Πqc

=ρ=] + Tr[Πqc
̸=ρ ̸=]

)
=

3

4
− α. (4.16)

From Equation 3.23.2 we know that we can write ρ=, ρ̸= as a linear combination of
projectors to the symmetric and antisymmetric subspace:

ρ= =
Πsym

3
, ρ ̸= =

1

2

(
Πsym

3
+ Πasym

)
. (4.17)

Then Equation 4.164.16 becomes:

1

2
Tr

[
Πqc

=

(
Πsym

3

)]
+

1

2
Tr

[
Πqc
̸=
1

2

(
Πsym

3
+ Πasym

)]
=

3

4
− α. (4.18)

Multiplying both sides by 2, and using that Πqc
= +Πqc

̸= = 1, we can rewrite this to

Tr

[
Πqc

=

(
Πsym

3

)]
+

1

2
Tr

[
(1− Πqc

= )

(
Πsym

3

)]
+

1

2
Tr
[
Πqc
̸= (Πasym)

]
=

3

2
− 2α

⇔ 1

2
Tr

[
Πqc

=

(
Πsym

3

)]
+

1

2
Tr
[
Πqc
̸= (Πasym)

]
= 1− 2α. (4.19)
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For qubits we have Πasym = |Ψ−⟩⟨Ψ−|. So, one can interpret the last equation
as the probability of success of the POVM defined by the optimal attack on
the QPVSWAP protocol, where one gets either a random symmetric state with
probability 1

2
, or the antisymmetric state with probability 1

2
. Thus, if an attack

with probability 3/4 − α exists, then we can also attack this new protocol with
probability 1− 2α.

For this new protocol, we can use our technique of showing upper bounds by
purifying the protocol and analyzing the entanglement structure, as we did in
Section 4.2.34.2.3. When we purify the inputs, and the attackers apply their measure-
ment, they should answer half of the time ‘symmetric’ or ‘antisymmetric’. From
Equation 4.44.4 we see again that if the attackers need to swap the respective state
into the registers of the verifiers. As a symmetric state does not have to be entan-
gled, this is possible for the attackers to do, but whenever the attackers answer
‘antisymmetric’ they need to swap the |Ψ−⟩ to the registers of the verifiers. The
success probability of this task is upper bounded by 0.926 as in Equation 4.114.11.
Thus, the overall probability of success of the induced protocol is upper bounded
by 1/2 + 1/2 · 0.926 = 0.963. And we get a bound on psucc in Equation 4.164.16:

1− 2α ≤ 0.963 ⇔ psucc =
3

4
− α ≤ 0.7315. (4.20)

This implies that the best attack on the QPVSWAP protocol if we allow the at-
tackers to have quantum communication but no pre-shared entanglement cannot
be higher than 0.7315.

Security against lossy quantum communication for QPVSWAP

The proof in Section 4.2.44.2.4 of security of the Bell state measurement for any
transmission rate against unentangled attackers with access to quantum commu-
nication can also be reduced to the security of the QPVn

SWAP protocol with the
same attack model.

As we have seen in Equation 4.194.19, if a success probability of 3/4 can be
achieved for attacking the SWAP test, then there is also a strategy that perfectly
answers another protocol, where the inputs are either a random symmetric state
or the antisymmetric state. In particular, this allows one to perfectly distinguish
|Ψ−⟩ from the other Bell states. We will show that if the SWAP test could be
implemented perfectly with local actions and one round of quantum communica-
tion for some 0 < η ≤ 1, then so could the Bell measurement with some different
η′ < η, contradicting our result in 4.2.44.2.4, thus implying that there exists no perfect
lossy attack of the SWAP test.

4.2.4. Proposition. QPVSWAP cannot be perfectly attacked if attackers A, B
can use quantum communication between them, regardless of the loss rate 1− η,
for any η ∈ (0, 1].
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Proof:
Assume there is a procedure, using only local actions and one round of simultane-
ous quantum communication, perfectly simulating {Πsym,Πa-sym} with probability
0 < η ≤ 1. Then, conditioned on their procedure giving a conclusive result (which
happens with probability η), attackers A,B could apply the following to attack
QPVBell with a Bell measurement at P and an input chosen uniformly at random
from {|Φ+⟩ , |Φ−⟩ , |Ψ+⟩ , |Ψ−⟩}:

• Whenever their procedure returns “anti-symmetric”, return |Ψ−⟩

• Whenever it returns “symmetric”, return the loss symbol ∅

However, this would be suspicious, because the only conclusive answers would
be |Ψ−⟩. In order to achieve P(∅ |Bi) = 1 − η for all Bell states |Bi⟩ and
P(Bi | concl.) = 1/4, as the honest P would do in QPVBell, they could apply
1A ⊗ (XaZb)B with a, b ∈ {0, 1} chosen uniformly at random in each round as
soon as they receive the inputs. This just transfers the input to a different Bell
state. If they adjust their responses to

• When this procedure returns “anti-symmetric”, answer 1A ⊗ (ZbXa)B |Ψ−⟩

• When it returns “symmetric”, answer the loss symbol ∅

They achieve P(∅ |Bi) = 1− η as well as P(Bi | concl.) = 1/4 and whenever they
do answer conclusively, they will be correct (by assumption). But this would
give them a perfect attack on QPVBell with some play rate η′ < η (because they
throw away the “symmetric” measurement results). This contradicts the fact that
psucc(η) < 1 for all η in QPVBell. 2

4.2.6 Considerations on loss tolerance in QPV

Ideally, for QPV to become feasible, one would like to have a protocol that is
fully loss tolerant, secure against attackers being able to pre-share a bounded
amount of entanglement and to use quantum communication between them. So
far, there has been no such protocol. Here we give a no-go result, based on a simple
observation. We show that no such protocol can exist that fulfills all three of the
above properties. However, not all is lost for two reasons. In practice, one may
be able to achieve good enough partial loss tolerance, for example by increasing
the quantum input dimension or the number of possible quantum operations P
can apply. Secondly, as we will see in Chapter 5, we can construct a modification
of the regular QPV protocol where we introduce a commitment round for the
prover, rendering lossy attacks irrelevant for a certain class of protocols.
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For simplicity, consider the following quite-general two-verifier QPV protocol44:

• Verifiers VA,VB send dA, dB dimensional quantum inputs, respectively, to
P. They also send classical information x, y (of any size), respectively.

• P computes a function f(x, y) and, based on that result, applies a quantum
operation Qf(x,y) to the inputs. This yields two outputs, one intended for VA

and one for VB. These outputs are forwarded to the corresponding verifier.

• The verifiers check if what they received matches the specific honest protocol
and that the responses arrived in time.

We will denote this as QPV(dA, dB, f) and the protocol will be repeated for n
rounds, either sequentially or in parallel. Now let k := | Im(f)| be the number of
possible quantum operations to be applied by the prover. It turns out that there
always exists a perfect attack consuming at most O(n log d) (qubit) EPR pairs,
where d = max{dA, dB}, as long as the loss is high enough. We make this precise
in the following statement.

4.2.5. Proposition. Let d = max{dA, dB} and k = | Im(f)|. Any n-round
QPV(dA, dB, f) protocol can be attacked with O(n log(d)) EPR pairs if the fraction
η of rounds that is used for security analysis fulfills η ≤ 1

kd2
.

Proof:
Without loss of generality, let attacker A receive classical input x. As soon as
A receives his quantum input, quantum teleportation [BBC+93BBC+93] can be used to
teleport the state to B (consuming a d = max{dA, dB} dimensional maximally
entangled state55), after which A sends to B which teleportation corrections were
to apply and the classical information x. With probability p00 = 1/d2 there are no
teleportation corrections to apply, in which case B holds both input states locally
and before the honest party P would have received them. B can guess the value of
f(x, y) and immediately apply the operation P was asked to apply, send the part
(e.g. a subsystem or a measurement result) that VA is supposed to receive to A
and keep the part that VB is supposed to receive. With probability 1/k attacker B
guesses the value of f(x, y) correctly. If the quantum state picked up teleportation
corrections in the first place or if it turns out that B guessed f(x, y) wrongly (of
which both get to know as soon as they receive the communication from the other
attacker), the attackers deny to answer and both send the corresponding loss
symbol ‘∅’. If there were no corrections to apply and B guessed f(x, y) correctly,
both send their respective parts that the verifiers are supposed to receive to them.

4The result that follows can be straightforwardly generalized to m verifiers, for which a
general attack would be to teleport all quantum inputs to one fixed attacker, who then performs
the guessing attack. In that case, the probability that teleportation does not need corrections
is much lower, i.e. 1/d2(m−1).

5Attackers do not know the dimension of their local inputs a priori.
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As they are only required to answer η ≤ 1
kd2

of all rounds, they can simply choose
those perfect rounds without teleportation corrections and a correct guess for
f(x, y). Applying this strategy in each round costs them n log d (qubit) EPR
pairs. 2

The statement shines light on another facet of loss tolerance – the attacker’s
ability to post-select on a “correct” guess after communication. They can always
do that, if they pre-share entanglement, by simply guessing the teleportation cor-
rections. In protocols with quantum input from one side and classical information
determining the action of P, like [KMS11KMS11, CL15CL15, Unr14Unr14, JKPPG21JKPPG21, BCS22BCS22], at-
tackers can, even without pre-shared entanglement, do this post-selection simply
by first guessing f(x, y), then applying the operation Qf(x,y) on the quantum
input and communicating x, y to each other so that both attackers know if the
initial guess was correct or not. This is captured in the above bound, identifying
all-classical input from one side with d = 1. In that sense, QPV protocols that
contain classical input cannot be fully loss-tolerant. It is now also clearer why
the protocol in [LXS+16LXS+16] and our QPVSWAP [ABSV22bABSV22b] are fully loss-tolerant if
attackers do not pre-share any entanglement. Without shared entanglement, the
attackers simply have no way of ever knowing if their guess was correct because
there is no information about it leaving the verifiers.

We see that for this structure of QPV protocols, there cannot exist a fully loss-
tolerant QPV protocol if the loss is high enough. However, in the next chapter we
show that there is actually a way around Proposition 4.2.54.2.5 by slightly altering the
structure of a QPV protocol. We will introduce a so-called commitment round,
where the attackers have to commit to receiving the quantum information before
they receive the classical information that determines, for example, the basis they
have to measure in. By forcing attackers to commit, they cannot hide their wrong
guesses in the loss answers.

4.3 Discussion

In this chapter, we gave an explicit example of the first QPV protocol in which
there is an advantage for attackers who share no entanglement to use quantum
communication over classical communication. The protocol depends on deter-
mining whether two states were either both symmetric or both antisymmetric.
The probability of success under LOCC operations was analytically shown to be
equal to 17/18, while attackers with access to quantum communication could
attack this protocol perfectly with a single round of simultaneous quantum com-
munication. This suggests that the role of quantum communication may be more
important than previously thought.

Diving into the idea that there can be an advantage in using quantum com-
munication over classical communication, we also showed that this separation
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between quantum communication and classical communication was somewhat
constructed. The existence of a quantum communication attack on a protocol
that is safe against attackers restricted to classical communication implies the
existence of a similar protocol that is safe against quantum communication. In
order to prove this, we showed that for every quantum communication attack,
two new QPV protocols arise. By repeating this argument whenever there was a
quantum communication attack, we used the theorem of emergent classicality of
channels from [QR21QR21] to show that the quantum inputs become approximately
classical, which in turn implies the existence of a classical communication attack
on the original protocol which violated the assumption of the original being se-
cure against classical communication. Thus, ultimately showing that somewhere
in the recursion there must have been a protocol that was secure against attackers
allowed to use a single round of simultaneous quantum communication.

Setting out to find an explicit example of a protocol that is safe against quan-
tum communication, we prove that the task of Bell state discrimination cannot
have a higher success probability than ln(2) = 0.6931... when two attackers are
restricted to local operations and a single round of quantum communication. This
is higher than the optimal success probability of 1/2 for attackers restricted to
classical communication. We suspect that the quantum communication bound to
be lower than ln(2), but have been unable to make the bound tighter. This is the
first example of a protocol that is fully loss-tolerant against classical communica-
tion and stays secure against attackers using quantum communication.

The previous statement immediately brings up the question whether the pro-
tocol is also safe against attackers allowed to use quantum communication and
allowed to say loss. We answer this question in the affirmative and prove that
there cannot be a strategy that perfectly distinguishes all Bell states. However,
we only find a strict inequality, i.e. that pqc

succ(η) < 1 for any transmission rate
η ∈ (0, 1]. An interesting follow-up question is whether we can make this bound
into a finite gap, just as with the case where the attackers were not allowed to
say loss but could use quantum communication. Nevertheless, this is the first ex-
ample of a QPV protocol that remains fully loss tolerant and secure even in the
quantum communication setting. This is of interest since it is the most general
setting in the case where we do not allow attackers to pre-share entanglement.

We find that our techniques also allow us to give bounds on the success prob-
ability of attacking the QPVSWAP from the previous chapter with quantum com-
munication. By reducing an attack on QPVSWAP to an attack on a protocol in
which some inputs are entangled, we apply our technique of purifying the inputs
and looking at the entanglement structure to bound the success probability to
0.7315, which is also still higher than the best classical attack of 2/3. One could
improve this bound via the route of a state existence argument again, which re-
quires getting solutions the optimization of maximizing the overlap of reduced
two-qubit states where the pairs of qubits have to be either highly symmetric
or antisymmetric. We also find that there exists no perfect lossy attack using
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quantum communication on QPVSWAP, by proving that if such an attack exists,
there exists an even lossier attack on QPVBell.

Extending on the idea of incorporating loss in different settings for attackers,
we note that in order for QPV to become feasible, not only do we want our
protocols to be loss-tolerant against quantum communication, but we also want
our protocols to be loss-tolerant against some amount of pre-shared entanglement
among the attackers. However, we show that any QPV protocol can be attacked
by only a linear amount of entanglement in this setting, given that the loss is high
enough. This is based on the simple observation that in such a scenario attackers
can post-select on those rounds in which the attempted quantum teleportation
did not incur teleportation corrections.
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4.A Appendices

4.A.1 Optimal PPT Measurements for QPVSym/Antisym

In this section, we will solve the SDP program that optimizes the probability
of success for two adversaries restricted to LOCC operations of discriminating a
random symmetric state from the antisymmetric state. The SDP formulation of
this protocol is as follows:

Primal Problem

maximize:
1

2
Tr[Π0ρ0 +Π1ρ1]

subject to: Π0 +Π1 = 122

Πk ∈ PPT(A : B), k ∈ {0, 1}
Πi ⪰ 0, for i ∈ {0, 1}
Dual Problem

minimize: Tr[Y ]

subject to: Y −QTB
i − ρi/2 ⪰ 0, i ∈ {0, 1}

Y ∈ Herm(A⊗ B)

Qi ∈ Pos(A,B), i ∈ {0, 1}.

Where we write ρ0 for ρsym and ρ1 for ρantisym whose respective density matrices
are:

ρ0 =
1

6


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

, ρ1 =
1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

.
A feasible solution for the primal problem, is to measure both states in the

computational basis and answer the XOR of the measurement outcomes, so Π0 =
|00⟩⟨00|+ |11⟩⟨11| ,Π1 = |01⟩⟨01|+ |10⟩⟨10|. This strategy has success probability
1
2
Tr[Π0ρ0 +Π1ρ1] = 5/6. A feasible solution to the corresponding dual is:

Y =


1
6

0 0 0
0 1

4
− 1

12
0

0 − 1
12

1
4

0
0 0 0 1

6

, Q0 = 0, Q1 =
1

6


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 =
1

3
|Φ+⟩ ⟨Φ+| .

Y is hermitian, Q0, Q1 are both positive, Y − QTB
0 − ρ0/2 = 1/6 |Ψ−⟩⟨Ψ−| ⪰ 0,

and Y − QTB
1 − ρ1/2 = 0 ⪰ 0. Thus, Y is feasible to the dual problem and
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Tr[Y ] = 5/6 is a lower bound of the success probability of the protocol optimized
over all PPT measurements. We see that these feasible solutions for the primal
and dual problem are equal, thus we know that the value is optimal over all PPT
measurements. So the highest probability of success for adversaries restricted
to LOCC operations is 5/6, which can also be attained by the measurement de-
scribed in the primal problem.

Now for the protocol where we double the input rounds, but restrict the inputs
to be either both symmetric or antisymmetric states, we will show that there is
no perfect LOCC attack. The corresponding SDP that optimizes over all PPT
strategies looks as follows:

Primal Problem

maximize:
1

2
Tr[Π0(ρ0 ⊗ ρ0) + Π1(ρ1 ⊗ ρ1)]

subject to: Π0 +Π1 = 124

Πk ∈ PPT(A : B), k ∈ {0, 1}
Πi ⪰ 0, for i ∈ {0, 1}
Dual Problem

minimize: Tr[Y ]

subject to: Y −QTB
i − (ρi ⊗ ρi)/2 ⪰ 0, i ∈ {0, 1}

Y ∈ Herm(A⊗ B)

Qi ∈ Pos(A,B), i ∈ {0, 1}.

We will show that the following is a feasible solution to the dual

Y =
1

18
(9(ρ0 ⊗ ρ0) + 8(ρ1 ⊗ ρ1)), Q0 = 0 ⪰ 0,

Q1 =
1

18

(
(3ρTB

0 ⊗ 3ρTB
0 )− (ρTB

1 ⊗ ρTB
1 )
)
.

Note that in contrast to the optimizations for QPVn
SWAP protocols, the matrix Y is

not equal to the identity matrix with some factor, but nevertheless it is Hermitian.
The eigenvectors of 3ρTB

0 and ρTB
1 are the 4 Bell states {|Φ+⟩ , |Φ−⟩ , |Ψ+⟩ , |Ψ−⟩}

with eigenvalues {3/2, 1/2, 1/2, 1/2} and {−1/2, 1/2, 1/2, 1/2} respectively. We
see for any of the 16 possible eigenvectors of Q1 that the corresponding eigenvalues
will be 0, 1

9
or 1

18
. We conclude that Q1 ⪰ 0 since all its eigenvalues are non-

negative and it is Hermitian (the partial transpose maps Hermitian matrices to
Hermitian matrices).



4.A. Appendices 81

For Q0 the first constraint in the dual problem becomes:

Y −QTB
0 − (ρ0 ⊗ ρ0)

2
=

1

18
(9(ρ0 ⊗ ρ0) + 8(ρ1 ⊗ ρ1))−

(ρ0 ⊗ ρ0)

2

=
4

9
(ρ1 ⊗ ρ1) ⪰ 0.

And for Q1 we get:

Y −QTB
1 − (ρ1 ⊗ ρ1)

2
=

1

18
(9(ρ0 ⊗ ρ0) + 8(ρ1 ⊗ ρ1))

− 1

18
(9(ρ0 ⊗ ρ0)− (ρ1 ⊗ ρ1))−

(ρ1 ⊗ ρ1)

2
= 0 ⪰ 0.

Thus we have shown that all conditions in the dual problem are met, and we get
an upper bound on the success probability over all PPT measurements of

Tr[Y ] = Tr

[
1

18
(9(ρ0 ⊗ ρ0) + 8(ρ1 ⊗ ρ1))

]
=

17

18
.

There is an LOCC strategy that attains this upper bound, namely applying the
single-round strategy twice, where we only answer asymmetric if both pairs have
unequal measurement. This strategy is correct on all input states except when
as an input twice the |Ψ+⟩ input is sent. This happens with probability 1/18.
Thus, the best attack for adversaries restricted to LOCC operations has success
probability 17

18
, in contrast to adversaries who may use quantum communication

for whom there is a perfect attack with success probability 1 by simply swapping
the second register and applying the SWAP test locally.





Chapter 5
Full Loss Tolerance via Commitment

Rounds

Signal loss poses a significant threat to the security of quantum cryptography
when the chosen protocol lacks loss-tolerance. In quantum position verification
(QPV) protocols, even relatively small loss rates can compromise security. The
goal is thus to find protocols that remain secure under practically achievable
loss rates. In this chapter, we modify the usual structure of QPV protocols and
prove that this modification makes the potentially high transmission loss between
the verifiers and the prover security-irrelevant for a class of protocols that in-
cludes a practically interesting candidate protocol inspired by the BB84 protocol
(QPVf

BB84). This modification, which involves photon presence detection, a small
time delay at the prover, and a commitment to play before proceeding, reduces
the overall loss rate (for security purposes) to just the prover’s laboratory. The
adapted protocol c-QPVf

BB84 then becomes a practically-feasible QPV protocol
with strong security guarantees, even against attackers using adaptive strategies.
As the loss rate between the verifiers and the prover is mainly dictated by the
distance between them, secure QPV over longer distances becomes possible. We
also show possible implementations of the required photon presence detection,
making c-QPVf

BB84 a protocol that solves all major practical issues in QPV. Fi-
nally, we discuss experimental aspects and give parameter estimations.

This chapter is based on the paper “Making Existing Quantum Position Ver-
ification Protocols Secure Against Arbitrary Transmission Loss” by Rene Aller-
storfer, Andreas Bluhm, Harry Buhrman, Matthias Christandl, Llorenç Escolà-
Farràs, Florian Speelman, and Philip Verduyn Lunel [ABB+23ABB+23].

83
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5.1 Introduction

To practically implement a QPV protocol in a realistic setting, several crucial
properties must be taken into consideration. Firstly, the protocol must be se-
cure against attackers with access to quantum communication and restricted to
a reasonable amount of entanglement. Secondly, it must be secure against slow
quantum information. This is a point that we have not yet discussed, but qubits
in a fiber-optic cable will only travel at typically 2/3 of the speed of light. Third,
the operations of the honest prover have to be reasonably simple that he can
apply them fast enough. Lastly, the protocol must be secure against loss. As we
have seen before, some protocols are completely insecure if the loss rates are high
enough.

As any QPV protocol can be attacked using an exponential amount of entan-
glement, we know that unconditionally secure protocols for QPV are impossible.
Therefore, the aim has shifted to proving practical security of QPV protocols.
Since it is hard to generate and maintain entanglement, it would suffice to find
protocols that require an unrealistically large amount of entanglement for an at-
tack, thereby achieving information-theoretic security in practice. Therefore, the
main interest at present is to consider security against bounded attackers. For
example, the QPVSWAP introduced in Chapter 33, while not being secure against
slow quantum communication, has some desirable properties. The protocol is very
easy to implement for an honest prover, and when executed in parallel attack-
ers need to pre-share an amount of entanglement that scales with the number
of rounds. In practice, the fact that the entanglement needed scales with the
amount of rounds played in parallel is not a very strong security guarantee since
the number of qubits the honest prover also scales with the number of rounds.
Ideally, we would like to find protocols where the honest prover has to manipu-
late a small quantum system, while the attackers need to pre-share a very large
entangled state, i.e., many EPR pairs.

Significant progress towards solving these properties was made in [BCS22BCS22],
with a different version of the protocol, QPVf

BB84. Here, the basis in which
the honest prover needs to apply his measurement is determined by a classical
function f depending on two n-bit input strings x, y. In the paper, the authors
prove security against Ω(n) entangled pairs pre-shared by the attackers for a
random function f . Note that in this protocol there is only a single qubit, but
the required quantum resources for an attack scale at least linearly in the classical
information sent. For an honest prover, it is much easier to do some computation
on classical inputs than on quantum inputs. It has the additional advantage
of being secure even with slowly traveling qubits such as, for example, qubits
sent over optical fiber, where the transmission speed is 2/3 the speed of light.
Moreover, in a future quantum network it will likely often be the case that there
is no direct link between the verifiers and the prover wanting to run a QPV
protocol, underscoring the need for protocols that can deal with slow quantum
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information. Other protocols combining classical and quantum information can
be found in [KMS11KMS11, CL15CL15, Unr14Unr14, JKPPG21JKPPG21, QS15QS15, AER+23AER+23]. Attacks for such
protocols have also been analyzed in [BFSS13BFSS13, Spe16aSpe16a, OCCG20OCCG20].

Although the protocol QPVf
BB84 is also resistant against small amounts of

noise and loss as shown in [BCS22BCS22, ES23ES23], none of the above protocols is proved
secure under conditions consistent with current technologies, where the main
source of error is photon loss. Using optical fiber, photon transmission decays
exponentially in the distance and at some point almost all photons will be lost.
This can compromise security in QPV protocols that are not loss tolerant, and
immediately makes QPVf

BB84 insecure in basically any practical setting. This is a
major downside of QPVf

BB84, since apart from this issue it has the most desirable
properties of all known proposed protocols.

A common approach to deal with photon loss is to disregard rounds in which
the prover claims that a photon was lost during transmission. Regrettably, this
approach renders these protocols vulnerable to attackers since the attacks can take
advantage of the photon loss by claiming the photon was lost if they risk being
detected. Recent progress toward addressing this major obstacle to protocols that
can be implemented on current devices has been made in [ABSV22bABSV22b, ABSV22aABSV22a],
where fully loss-tolerant protocols were studied. However, these protocols were
found to be vulnerable against simple entanglement-based attacks. Even though
loss is not an issue in [LLQ22LLQ22] as all the communication is classical, their protocol
requires a large quantum computer at the prover to prepare the states used in
it and therefore is not viable in the near-term. So far, a protocol has been
lacking that is both provably secure against realistic attacks while still being
implementable with current technologies.

In this chapter, we focus on the design of such a practically-feasible and secure
QPV protocol. We introduce a structural modification to QPV where, instead of
the verifiers sending the information to the prover such that all information arrives
at the same time, the quantum information shall arrive slightly before the classical
information. The prover confirms the reception of the quantum information, and
commits to playing, after which he receives the classical information to complete
the task. In this way, for every QPV protocol P, we define its committing version
c-P.

Consider a secure QPV protocol P with classical prover responses, which re-
mains secure when played in sequential repetition and in which the honest quan-
tum information is allowed to travel slowly (like QPVf

BB84). This implies that
the protocol is state-independent, in the sense that the attackers can replace the
input state with any other quantum state. Then our main result states that for
every such QPV protocol P, its committing version c-P inherits the security of P,
while becoming fully loss tolerant against transmission loss. Denoting by ηV the
transmission rate from the verifiers to the prover and by ηP the one within the
prover’s laboratory (between committing and receiving the classical information),
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we informally state our main result, Theorem 5.4.105.4.10, as follows:

5.1.1. Theorem (Informal). The success probability of attacking c-P (with both
ηV and ηP ) reduces to the probability of attacking P (with only ηP ):

P[attack c-PηV ,ηP ] ≤ P[attackPηP ] + (1− 2c̃)8
√
ε+ 2c̃, (5.1)

where ε and c̃ are parameters that can be made arbitrarily small by running more
rounds.

This means that the potentially very high loss between the verifiers and the
prover, 1 − ηV , becomes irrelevant to security in c-PηV ,ηP and only the much
smaller loss at the prover’s laboratory, 1− ηP , matters. And for sufficiently high
values of ηP we often have security guarantees, e.g. for QPVf

BB84 [BCS22BCS22, ES23ES23].
In theory, for an ideal prover, c-PηV ,ηP becomes fully loss-tolerant.

If we demand perfect coordination in commitments for all possible inputs,
which is expected from the honest prover, this will correspond to ε = c̃ = 0.
Then our result reduces to

P[attack c-PηV ,ηP ] = P[attackPηP ], (5.2)

as the other direction P[attackPηP ] ≤ P[attack c-PηV ,ηP ] is simple to see11. The
above theorem allows for ε ̸= 0 ̸= c̃ in attack strategies to make our argument
robust, as very small values of ε (relative to the number of committed rounds)
or c̃ (relative to the 22n input pairs x, y) could in principle help attackers, while
leaving them undetected.

Applying our results to QPVf
BB84, we show that quantum position verification

is possible even if the loss is arbitrarily high, the (constant-sized) quantum infor-
mation is arbitrarily slow, and attackers pre-share some entanglement (bounded
in the classical message length n). The question of a super-linear lower bound on
the required resources for a quantum attack still remains open.

Finally, we study two possible ways of implementing the non-demolition pho-
ton presence detection step of our protocol: true photon presence detection as
demonstrated in [NFLR21NFLR21] as a potential long-term solution, and a simplified
photon presence detection based on a partial Bell measurement [MMWZ96MMWZ96] at
the prover that is technologically feasible today. In the latter, the honest prover
essentially teleports the input state of the protocol to himself and concludes the
presence of that state based on a conclusive click pattern in the partial Bell mea-
surement, in which case the quantum state got teleported and can be further
acted on by the prover (e.g. by a polarization measurement). We note that for
the committing version of QPVf

BB84, c-QPVf
BB84, no active feedforward for the

teleportation corrections is required, as they predictably alter the subsequent
1The attackers can just pre-agree to commit with a rate ηV and use the strategy of PηP

to
produce the answers for c-PηV ,ηP

.
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measurement outcome and thus can be classically corrected by the prover post-
measurement. We identify the experimental requirements at the prover as: being
able to generate an EPR pair, to do a partial Bell measurement, to store the
teleported quantum state in a short delay loop until the classical input informa-
tion (x, y) arrives, and the ability to perform the protocol measurement based on
(x, y). The latter should be possible fast enough such that the protocol rounds
can be run with high frequency (say, MHz or ideally GHz). To that end, we
argue that with top equipment MHz rate is possible already and GHz rate feasi-
ble in principle. Practically, also the signal-to-noise ratio of the photon presence
detection is an important figure of merit that is relevant for the security of the
protocol, which we discuss further in the experimental section of the paper. We
argue that with state-of-the-art equipment our protocol can remain within its
secure regime, even in practice.22

In summary, our main result holds more generally, but applied to QPVf
BB84 we

provide a new QPV protocol, c-QPVf
BB84, that is a practically-feasible QPV pro-

tocol with decent security guarantees in the most general setting, even in practice.
This opens the way for a first experimental demonstration of quantum position
verification.

5.2 Introduction to the QPVf
BB84 Protocol

All proposed QPV protocols rely on both relativistic constraints and the laws of
quantum mechanics for their security. The QPV literature usually focuses on the
one-dimensional case, so verifying the position of a prover P on a line, as it makes
the analysis easier and the main ideas generalize to higher dimensions.

The usual general setting for a 1-dimensional QPV protocol is the following:
two verifiers V0 and V1, placed on the left and right of P , send quantum and/or
classical messages to P at the speed of light. P has to pass a challenge and
respond correctly to them with a signal at the speed of light as well. The verifiers
have perfectly synchronized clocks and if any of them receives an inconsistent
answer or if the timing of the answers is not as expected from the honest prover,
they abort the protocol33.

We will mainly focus on one type of QPV protocol, QPVf
BB84 [BCS22BCS22]. This

protocol is well studied, easy to implement and the lower bounds on the required
quantum resources to attack them scale linearly in the classical input size. How-
ever, it is not sufficiently loss-tolerant for practical purposes. In this work, we set
out to solve this problem.

5.2.1. Remark. We describe the QPVf
BB84 protocol in its purified version, where

2As the numbers will strongly depend on the actual experimental setup of a demonstration,
we only give estimations.

3The time consumed by the prover to perform the task is assumed to be negligible relative
to the total protocol time
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a verifier sends half of an EPR pair instead of a single qubit, as they would do
in its prepare-and-measure version. Both versions are equivalent, but we use the
purified version for our proof analysis.

5.2.2. Definition. (QPVf
BB84 protocol [BCS22BCS22, ES23ES23]). Let n ∈ N, and con-

sider a 2n-bit boolean function f : {0, 1}n × {0, 1}n → {0, 1}. A round of the
QPVf

BB84 protocol is described as follows.

1. V0 prepares the EPR pair |Φ+⟩ = (|00⟩ + |11⟩)/
√
2 and sends one qubit

Q of |Φ+⟩ and x ∈ {0, 1}n to P and V1 sends y ∈ {0, 1}n to P such that
all information arrives at P simultaneously. The classical information is
required to travel at the speed of light, the quantum information can be
sent arbitrarily slowly.

2. Immediately, P measures Q in the basis f(x, y)44 and broadcasts his outcome
a ∈ {0, 1} to V0 and V1. If the photon is lost, he sends ‘⊥’.

3. The verifiers measure the qubit they kept in the basis f(x, y), getting out-
come v ∈ {0, 1}. They accept if a = v and a arrives on time. They record
‘photon loss’ if they both receive ‘⊥’ on time. If either the answers do not
arrive on time or are different, the verifiers abort.

In the end, the verifiers accept the location of the prover P if after multiple
repetitions of single rounds they receive answers that are consistent with their
known experimental parameters, i.e. if the number of ‘photon loss’ answers is
consistent with the transmission rate η, and the number of wrong answers is
consistent with the error in the experimental set-up.

General structure of an attack on QPVf
BB84

In a general attack on the QPVf
BB84 protocol, Alice and Bob act as follows.

1. The attackers prepare a joint (possibly entangled) quantum state.

2. Alice intercepts the quantum information sent from V0 and performs an
arbitrary quantum channel. She keeps a part of the resulting state and
sends the rest to Bob. Denote by ρ their joint state at this stage (before
communication).

3. Alice and Bob intercept x and y, make a copy and send it to the other
attacker, respectively. Then both can apply local quantum channels de-
pending on x (at Alice) and y (at Bob) to ρ. Each can keep part of the
resulting local state and send the other part to their fellow attacker.

4Usually, the two bases correspond to the computational and the Hadamard basis, justi-
fying the nomenclature of QPVf

BB84. If m basis choices are possible, the range of f will be
{0, 1, . . . ,m− 1}.
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V0 P V1···
···

a

time

Qx ∈ {0, 1}n y ∈ {0, 1}n

a

position

Figure 5.1: Schematic representation of the QPVf
BB84 protocol. Undulated lines

represent quantum information, whereas straight lines represent classical infor-
mation. The slowly traveling quantum system Q originated from V0 in the past.

4. Upon receiving the information sent by the other party, each attacker can
locally apply an arbitrary POVM depending on (x, y) to obtain classical
answers, which will be sent to V0 and V1, respectively.

If there is loss in the protocol, the attackers need to mimic the transmission rate
of the prover.

Known properties of QPVf
BB84

Neglecting photon loss, QPVf
BB84 was proven to be secure [BCS22BCS22] even if attack-

ers pre-share a linear amount of qubits in the size of the classical information
n. The main advantage of this protocol is that it only requires sending a single
qubit, whereas adversaries using an increasing amount of entanglement can be
combated solely by increasing the number of classical bits used in the protocol.
In addition, QPVf

BB84 has the advantage that the quantum information can travel
arbitrarily slowly. However, photon loss constitutes a major problem. Consider
the following easy-to-perform attack, where Alice makes a random guess for the
value of f(x, y) and just measures in the guessed basis and broadcasts the result
to Bob. Both attackers intercept the classical information, make a copy and send
it to their fellow attacker. After one round of simultaneous communication, each
can compute f(x, y) and both know if the initial guess was correct. If so, they
send the outcome of the measurement, which is correct, to the verifiers. Other-
wise, they claim that no photon arrived. Alice’s basis guess will be correct half
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of the time (or 1/m of the time for more basis choices), and therefore, if the
transmission rate is such that η ≤ 1

2
(or 1/m, respectively), the attackers will be

correct whenever they answer, and thus break the protocol.
In [ES23ES23], the range 1/2 < η ≤ 1 was studied for QPVf

BB84, and it was shown
that the protocol remains secure for attackers who pre-share a linear amount of
entanglement in n and arbitrary slow quantum information. However, η > 1

2
is

only attainable for short distances. A way to bypass this, first shown indepen-
dently in [QS15QS15] and [Spe16bSpe16b, Chapter 5], can be achieved by encoding the qubit
Q in more bases than just the computational and Hadamard bases. In the first
case, Q is encoded in a uniformly random basis in the Bloch sphere, and security
holds for reasonably high loss if the quantum information is sent at the speed
of light and the attackers do not pre-share entanglement. Following the second
approach, where Q is encoded in m bases in the Bloch sphere, [ES23ES23] showed via
semidefinite programming (whose size depends on m) that one can improve the
loss tolerance by increasing m, while preserving security against attackers who
pre-share a linear amount of entanglement in n and arbitrary slow quantum infor-
mation. The specific cases of m = 3, 5 were worked out, showing that the protocol
remains secure, preserving the other two properties, if up to 70% of the photons
are lost, making slightly larger distances than with two bases still feasible.

In the next sections, we show how to make QPV for longer distances possible
by slightly modifying the structure of the previously known protocols. This opens
up a feasible route to the first experimental demonstration of a QPV protocol that
captures security against the three major problems that the field faces: bounded
attackers, photon loss (for large distances), and slow quantum information.

5.3 QPV with a commitment

One of the major issues in practical quantum cryptography is the transmission
loss between the interacting parties. In the context of QPV, a high loss between
the verifiers and the prover can compromise security if the QPV protocol is not
loss tolerant. Most QPV protocols are not loss tolerant, and those that are have
other drawbacks, most notably being broken by an entanglement attack using
only one pre-shared EPR pair [LXS+16LXS+16, ABSV22bABSV22b] or requiring a large quantum
computer at the prover and computational assumptions [LLQ22LLQ22].

To overcome this, we introduce the following modification to the structure of
a certain class of QPV protocols. Let PηV ,ηP be a QPV protocol with the verifiers
sending quantum and classical information and the prover sending classical an-
swers, where ηV is the transmission rate between the verifiers and the prover, and
ηP is the transmission rate in the prover’s laboratory. We define its committing
version (or protocol with commitment), denoted by c-PηV ,ηP , by introducing a
small time delay δ > 0 between the arrival time of the quantum information and
the classical information at the prover. When the quantum information arrives



5.3. QPV with a commitment 91

at P , he is required to commit to play (c = 1) or not to play (c = 0) the round.
Only the c = 1 rounds are later analyzed for security purposes. We will show that
introducing this step will eliminate the relevance of the transmission rate ηV from
the verifiers to the prover for security. We prove that only the (potentially small)
loss in the prover’s laboratory ηP will count now because of this post-selection on
“committed” rounds.

This trick can be applied to a class of QPV protocol that fulfills the neces-
sary criteria of our proof. For concreteness and because it is practically most
interesting, we will focus on the case PηV ,ηP = QPVf

BB84, where we denote by
c-QPVf

BB84 the protocol with commitment.

5.3.1 The protocol c-QPVf
BB84

The committing version of QPVf
BB84 is described as follows. Again, we describe

the protocol in its purified form, whereas in practice it might be simpler to im-
plement its prepare-and-measure version.

5.3.1. Definition. Let n ∈ N, and consider a 2n-bit boolean function f :
{0, 1}n × {0, 1}n → {0, 1}. A round of the QPVf

BB84 protocol with commitment,
denoted by c-QPVf

BB84, is described as follows.

1. V0 prepares the EPR pair |Φ+⟩ = (|00⟩ + |11⟩)/
√
2 and sends one qubit Q

and x ∈ {0, 1}n to P and V1 sends y ∈ {0, 1}n to P such that x, y arrive a
time δ > 0 after Q at P . The classical information is required to travel at
the speed of light, the quantum information can be sent arbitrarily slowly.

2. If the prover receives Q, he immediately confirms that and broadcasts the
commitment bit c = 1. Otherwise, he broadcasts c = 0.

3. If c = 1, P measures Q in the basis f(x, y)55 as soon as x, y arrive and
broadcasts his outcome a to V0 and V1. If the photon is lost in the time δ
or during the measurement, he sends ‘⊥’.

4. The verifiers collect (c, a) and V0 measures the qubit he kept in basis f(x, y),
getting result v. If c = 0 they ignore the round. If c = 1 they check whether
a = v. If c, a arrived at their appropriate times and a = v, they accept.
They record ‘photon loss’ if they both receive ‘⊥’ on time. If any of the
answers do not arrive on time or are different the verifiers abort.

5Again, for more basis choices, the range of f would become {0, 1, . . . ,m− 1}.
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V0 P V1···
···

δ

c c

a a

ηP

position

time

Qx ∈ {0, 1}n y ∈ {0, 1}n

Figure 5.2: Schematic representation of the c-QPVf
BB84 protocol. Undulated lines

represent quantum information, straight lines represent classical information. The
slowly traveling quantum system Q originated from V0 in the past. The novel
aspects are the time delay δ > 0 at the prover and the prover commitment
c ∈ {0, 1}. We show that for the security of this protocol, the transmission ηV
becomes irrelevant.

5.4 Security of QPV with commitment

The most general attack on a 1-dimensional QPV protocol is to place an adversary,
who we will call Alice, between V0 and the position where the prover should be and
another adversary, who we will call Bob, between the supposed prover location
and V1. It is easy to see that having more than two adversaries in a 1-dimensional
setting does not improve an attack. A general attack on a QPV protocol PηV ,ηP

in which the verifiers send quantum and classical information and the prover
responds with classical answers proceeds as follows. Before the protocol, the
attackers prepare a joint (entangled) quantum state σ. Then, Alice and Bob
intercept the information sent from their closest verifier, they make a copy and
broadcast the classical information to their fellow attacker, and they perform a
quantum operation on the intercepted quantum information, keep a register and
send another register to the other attacker. After one round of simultaneous
communication, they both perform a POVM to obtain a classical answer, and
they send it to their closest verifier, respectively.

Denote by x and y the classical information sent from V0 and V1, respectively.
Without loss of generality, consider them to be n-bit strings, and we assume
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that they are uniformly distributed. Denote by ω(x,y) the quantum state after
communication, to which attackers apply the POVM. Fix a partition into systems
AAcomBBcom, where ‘com’ denotes the subsystems that will be communicated.
We can write the attackers two-outcome POVMs as {ΠA,(x,y)

ABcom
,1 − Π

A,(x,y)
ABcom

} and
{ΠB,(x,y)

AcomB ,1−Π
B,(x,y)
AcomB} respectively, where we can assume without loss of generality

that the first outcome corresponds to the correct answer. Then, the probability
that the attackers give the correct answers can be written as

P[attack PηV ,ηP ] =
1

22n

∑
x,y

Tr
[(

Π
A,(x,y)
ABcom

⊗ Π
B,(x,y)
BAcom

)
ω
(x,y)
AAcomBBcom

]
. (5.3)

Note that attackers need to mimic the loss rate of the honest prover, so the rate
of ⊥ responses must be 1−ηV ηP , with ηV ηP being the total transmission between
the verifiers and the prover (including his equipment).

5.4.1. Definition. (State-independent protocol). We say that a QPV protocol
P is state-independent if the protocol remains secure independently of the state
σ that the attackers pre-share at the start of the protocol 66.

QPVf
BB84 is a state-independent protocol, since it remains secure for any σ

whose dimension is linearly bounded (in n) [BCS22BCS22].

General structure of an attack on c-P

In a general attack for a c-QPV protocol, Alice and Bob act as follows.

1. The attackers prepare a joint (possibly entangled) quantum state.

2. Alice and Bob intercept the quantum information sent from their closest
verifier and each of them performs an arbitrary quantum channel. Both
keep a part of their resulting state and send the rest to their fellow attacker.
Denote by ρ their joint state at this stage (before communication).

3. Alice and Bob intercept x and y, make a copy and send it to the other
attacker, respectively. Due to relativistic constraints, they have to commit
before they receive the classical information from the other party. The most
general thing they can do is to use local quantum instruments {IA

cA|x}cA∈{0,1}
and {IB

cB |y}cB∈{0,1} on their registers of ρ to determine the commitments cA
and cB, respectively. Denote Ixy

1 = IA
1|x⊗IB

1|y. To proceed with the protocol,
the attackers will use the state post-selected on commitments cA = 1 and
cB = 1, denoted by Ĩxy

1 (ρ) = Ixy
1 (ρ)/Tr[Ixy

1 (ρ)]. Alice can send a share of
her state to Bob and vice versa.

6As long as this state does not allow for a perfect attack, for example due to sufficiently
large pre-shared entanglement, of course. In the regime where security can be shown, it is
independent of the adversarial input state.
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4. Upon receiving the information sent by the other party, each attacker can
again locally apply an arbitrary quantum channel depending on (x, y), fol-
lowed by local POVMs on the state they share to obtain classical answers,
which will be sent to V0 and V1, respectively, if cA = 1 and cB = 1. Sim-
ilarly to before, define a partition AAcomBBcom and denote the final state
on which they measure by ωI1,(x,y).

The attack structure is depicted in Figure 5.35.3. Then the probability that the
attackers will answer the correct values to the verifiers is given by

P[attack c-PηV ,ηP ] =
1

22n

∑
x,y

Tr
[(

Π
A,(x,y)
ABcom

⊗ Π
B,(x,y)
BAcom

)
ω
I1,(x,y)
AAcomBBcom

]
. (5.4)

Here the attackers need to mimic the transmission rate of the prover’s laboratory
ηP in the rounds they commit to play.

V0

time

A B V1

ρ

Ĩxy
1 (ρ)

IA
cA|x IB

cB |y

position

{ΠA,(x,y)
ABcom

,1− Π
A,(x,y)
ABcom

} {ΠB,(x,y)
AcomB ,1− Π

B,(x,y)
AcomB}

cA cB
ωI1,(x,y)

Figure 5.3: Schematic representation of a general attack on a c-QPV protocol,
where straight lines represent classical information, and undulated lines represent
quantum information, including x and y.

5.4.1 Security proof

We now move on to prove the security of c-QPV. The idea is to reduce the se-
curity of a protocol with commitment c-PηV ,ηP to that of the underlying protocol
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without commitment PηP and (much larger) transmission rate ηP with ηV becom-
ing irrelevant. The intuition is as follows. If we can show that the post-commit
state ρxy (cf. eq. (5.135.13)) can be replaced by a constant state τ independent of
(x, y), then the commitment phase does not help the attackers much. Now note
that if the underlying protocol PηP remains secure for any adversarial input state
that is independent of (x, y), the attackers find themselves in the same situation
as attacking PηP (with input τ) when they attack c-PηV ,ηP . This is because the
post-commit state ρxy can be replaced by τ . Then, the success probability of
attacking c-PηV ,ηP should be close to that of attacking PηP .

Hence, the task is to show that ||ρxy − ρx
′y′||1 is small for any x, y, x′, y′. To

do so, we can invoke the gentle measurement lemma and the fact that we need
to have cA = cB. Consider classical inputs x, y. Imagine that, say, Alice ap-
plies her instrument a tiny bit before Bob77. Then Alice’s outcome cA ∈ {0, 1}
completely fixes Bob’s outcome cB for any input y on his side. Thus, by the
gentle measurement lemma, the instrument on Bob’s side cannot disturb this
post-commit-at-Alice state he acts on. But that state only depends on x, so ρxy
can only depend on x. Since Alice’s and Bob’s operations commute, the same
argument can be run with Bob instead of Alice applying the instrument first,
showing that ρxy cannot depend on y either. Both must be true simultaneously,
and therefore all post-commit states ρxy are actually independent of (x, y), or
equivalently, close to some fixed state τ . But then the attackers find themselves
in the exact same situation as attacking PηP with input τ . The security of the
underlying PηP then guarantees security of c-PηV ,ηP . We also relax the require-
ment of cA = cB to hold only approximately for most input pairs (x, y) and show
that the argument is robust.

One subtlety is that the gentle measurement lemma only holds for POVMs,
but in our setting Alice and Bob act with arbitrary quantum instruments. So
in order to be able to use it as described above, we need to decompose their
instruments into measurements followed by a channel. This is precisely what
Lemma 5.4.45.4.4 does.

We continue by stating the lemmas used in our argument. First, the well-
known gentle measurement lemma, stating that if a measurement identifies a
state with high probability, then it cannot disturb the state by too much.

5.4.2. Lemma. (Gentle Measurement Lemma [Win99Win99]) Let ρ be a quantum state
and {M,1 −M} be a two-outcome measurement. If Tr[Mρ] ≥ 1 − ε, then the
post-measurement state

ρ′ =

√
Mρ

√
M

Tr[Mρ]
(5.5)

7Their measurements commute, since they act on separate registers.
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of measuring M fulfills

||ρ− ρ′||1 ≤ 2
√
ε. (5.6)

The following lemma, stating that any quantum instrument can be decomposed
into a measurement followed by a quantum channel turns out to be a crucial
ingredient in our proof. We include a short proof, with background on the Kraus
representation.

5.4.3. Lemma. (Kraus representation [Kra71Kra71]). A linear map Φ is completely
positive and trace non-increasing if and only if there exist bounded operators
{Ki}ri=1 such that for all density operators ρ,

Φ(ρ) =
r∑

i=1

KiρK
†
i , (5.7)

with
∑r

i=1K
†
iKi ≤ I, where r is the Kraus rank. Moreover, Φ is trace-preserving,

i.e. a quantum channel, if and only if
∑r

i=1K
†
iKi = 1.

Let Ω be a finite outcome set. A quantum instrument I is a set of completely
positive linear maps {Ii}i∈Ω such that

∑
i∈Ω Ii is trace preserving. Given the

quantum state ρ ∈ S(H), the probability of obtaining outcome i is given by
Tr[Ii(ρ)] and the sub-normalized output state upon outcome i is Ii(ρ).

5.4.4. Lemma. (E.g. Thm 7.2 in [Hay16Hay16]) Let I = {Ii}i∈Ω be an instrument, and
{Mi}i its corresponding POVM, i.e. I†i (1) = Mi. Then, for every i ∈ Ω, there
exists a quantum channel (CPTP map) Ei such that

Ii(ρ) = Ei
(√

Miρ
√
Mi

)
. (5.8)

Proof:
Let {Kj}j be a Kraus decomposition of Ii, whose existence is guaranteed by
Lemma 5.4.35.4.3. Since

Tr[Ii(ρ)] = Tr

[∑
j

KjρK
†
j

]
= Tr

[
ρ
∑
j

K†jKj

]
= Tr[ρMi], (5.9)

for any state ρ, we have Mi =
∑

j K
†
jKj. Denote the pseudo-inverse of

√
Mi

by (
√
Mi)

− and let P be the projection onto the support of
√
Mi, i.e. P =√

Mi

(√
Mi

)−. Then note that∑
j

(√
Mi

)−
K†jKj

(√
Mi

)−
=
(√

Mi

)−
Mi

(√
Mi

)−
= P †P = P. (5.10)
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Hence, if we add 1 − P on both sides, we obtain a full Kraus decomposition{
Kj(

√
Mi)

−,1− P
}
j

of a map, call it Ei, that adds up to the identity. Thus,
by Lemma 5.4.35.4.3, Ei is completely positive and trace preserving, i.e. a quantum
channel. Finally, we see that

Ei
(√

Miρ
√
Mi

)
= (1− P )

√
Miρ

√
Mi(1− P )

+
∑
j

Kj(
√
Mi)

−√Miρ
√
Mi(

√
Mi)

−K†j

=
∑
j

KjρK
†
j = Ii(ρ), (5.11)

as desired. The last equation follows from the fact that (1 − P )
√
Mi =

√
Mi −√

Mi(
√
Mi
−
)
√
Mi = 0, which is one of the defining properties of the pseudo-

inverse and that KjP = Kj. This follows through Mi =
∑

j K
†
jKj, which implies

that ker(Mi) ⊆ ker(Kj) for all j. In other words, supp(Kj) ⊆ supp(Mi) =
supp(

√
Mi) for all j, and P projects onto the latter. Hence KjP = Kj. 2

Combining the Stinespring dilation with Lemma 5.4.45.4.4 allows us to see the op-
erations of the attackers after the commit measurement as a unitary in a larger
space, and yields the following decomposition of quantum instruments.

5.4.5. Corollary. Let I = {Ii}i∈Ω be an instrument, and {Mi}i∈Ω its corre-
sponding POVM. Then, for every i ∈ Ω, there exists an environment Hilbert space
HE and a unitary Ui on H⊗HE such that

Ii(ρ) = TrE

[
Ui

(√
Miρ

√
Mi ⊗ |0⟩⟨0|E

)
U †i

]
, (5.12)

for all ρ ∈ B(H),

In the case of a commit round of a QPV protocol, the subscript denotes
whether the attackers commit (i = 1) or not commit (i = 0). The unitary
Ui in eq. (5.125.12) is the unitary corresponding to a Stinespring dilation of the
channel Ei appearing in Lemma 5.4.45.4.4. We denote the POVMs corresponding to
the instruments {IA

cA|x}cA and {IB
cB |y}cB of Alice and Bob by {Mx

A,1−Mx
A} and

{My
B,1−My

B}, respectively. Here, the POVM elements Mx
A and My

B correspond
to the measurement outcome ‘commit’ (cA = 1 and cB = 1). We denote the post-
measurement state corresponding to Alice and Bob committing to a particular
input x, y by:

ρxy :=

(√
Mx

A ⊗
√
My

B

)
ρ
(√

Mx
A ⊗

√
My

B

)
Tr[(Mx

A ⊗My
B)ρ]

. (5.13)

The observation is now that no two post-commitment states can differ too much
from each other by Lemma 5.4.25.4.2. This is due to the fact that both players have to
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output the same commitment, at least with high probability to not be detected.
This will be the case for any two inputs x, y and x′, y′. The following lemma
relates the closeness of states to the probability of answering different commits,
given that one party commits.

5.4.6. Lemma. (Paths Between Strings) Assume that for inputs (x, y), (x′, y)
and (x′, y′) in {0, 1}2n the probability that one party does not commit, given that
the other party commits, is upper bounded by some ε > 0. Then,

∥ρxy − ρx
′y′∥1 ≤ 8

√
ε. (5.14)

Proof:
Consider the attackers Alice and Bob performing the most general attack de-
scribed above and the POVMs {Mx

A,1 − Mx
A} and {My

B,1 − My
B} as defined

above. We write

ρx,(·) =
(
√
Mx

A ⊗ 1B) ρ (
√
Mx

A ⊗ 1B)

Tr[(Mx
A ⊗ 1B)ρ]

, ρ(·),y =
(1A ⊗

√
My

B) ρ (1A ⊗
√
My

B)

Tr[(1A ⊗My
B)ρ]

,

(5.15)
for the post measurement states corresponding to only Alice or Bob committing
before applying the quantum channel. By assumption, we have:

Tr
[
((1A ⊗ (1−My

B))ρ
x,(·)] ≤ ε, Tr

[
((1−Mx

A)⊗ 1B)ρ
(·),y] ≤ ε. (5.16)

Similarly for the input (x′, y) and (x′, y′) we get:

Tr
[
(1A ⊗ (1−My

B))ρ
x′,(·)

]
≤ ε, Tr

[(
(1−Mx′

A )⊗ 1B

)
ρ(·),y

]
≤ ε, (5.17)

Tr
[(
1A ⊗ (1−My′

B )
)
ρx

′,(·)
]
≤ ε, Tr

[(
(1−Mx′

A )⊗ 1B

)
ρ(·),y

′
]
≤ ε. (5.18)

Therefore, by Lemma 5.4.25.4.2 (Gentle Measurement Lemma) we get the following
inequalities:

∥ρ(·),y − ρxy∥1 ≤ 2
√
ε, ∥ρ(·),y − ρx

′y∥1 ≤ 2
√
ε,

∥ρx′,(·) − ρx
′y∥1 ≤ 2

√
ε, ∥ρx′,(·) − ρx

′y′∥1 ≤ 2
√
ε.

(5.19)

Now we get for the trace distance between the two density matrices:

∥ρx′y′ − ρxy∥1 = ∥ρx′y′ − ρx
′,(·) + ρx

′,(·) − ρx
′y + ρx

′y − ρ(·),y + ρ(·),y − ρxy∥1
≤ ∥ρx′y′ − ρx

′,(·)∥1 + ∥ρx′,(·) − ρx
′y∥1 + ∥ρx′y − ρ(·),y∥1 + ∥ρ(·),y − ρxy∥1

≤ 8
√
ε,

(5.20)

where we used the triangle inequality and eq. (5.195.19). 2
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Note that if the probability of answering different commits on the inputs (x′, y)
was small, we would get the same inequality between ρxy and ρx′y′ .

In general, an honest prover will never answer different commit bits back to
the verifiers. Thus, one could argue that the probability of answering ‘no commit’
when the other party answers ‘commit’ should be zero. In that case, by Lemma
5.4.65.4.6, we see that all post-commit states are equal, and thus independent of x, y.
Then, the quantum instrument that Alice and Bob apply adds no extra power,
and their actions are contained in the actions they could do in attacking a state-
independent protocol (cf. Definition 5.4.15.4.1). And the probability to attack the
protocol successfully on rounds in which the attackers commit is equal to the
original protocol. This is summarized in the following corollary:

5.4.7. Corollary. If we demand perfect coordination for the commitments in
attack strategies, then for any state-independent quantum position verification P
its version with commitment c-P becomes fully loss tolerant against transmission
loss. That is,

P[attack c-PηV ,ηP ] = P[attackPηP ]. (5.21)

Thus protocols like QPVf
BB84 now become secure against transmission loss.

However, one can argue setting the probability to answer ‘no commit’ given
that the other party answers ‘commit’ to zero is too restrictive. Also, when this
probability is sufficiently low, with high probability the attackers will not get
detected by answering different commitments. But it could be that this strategy
outperforms the original attack strategy. This stronger setting is not always con-
sidered in QPV protocols, but is nonetheless relevant. We will show that allowing
for this does not help the attackers much, and we can still show security. We give a
continuity statement on the probability of attacking successfully, showing that the
protocols with a commitment round are close to the original protocol depending
on the probability of answering different commitments. Again, the proof strategy
is to show that the post-commit states must be close to each other, depending
on the probability of committing differently, given that one party commits (the
rounds in which no-one commits are discarded).

The statement of Lemma 5.4.65.4.6 can be pictured as a connection problem in a
graph. The local inputs x, y are represented as vertices in a bipartite graph, and
we connect two vertices x, y if the probability that the two parties send different
commitments is upper bounded by ε as in the proof of the above lemma. Then for
two pairs of inputs x, y and x′, y′ (i.e. edges in the graph) ∥ρxy − ρx

′y′∥1 ≤ 8
√
ε, if

there is an edge in the graph that connects either x′, y or x, y′. This is represented
in Figure 5.45.4.

Importantly, the statement of Lemma 5.4.65.4.6 only holds if the probability of
committing different commit bits, given that one party commits, is upper bounded
by ε for all three pairs of strings. However, this is not something the verifiers can
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x′

x

y′

y

Figure 5.4: Graphical representation of converting the pair (x, y) (red) to (x′, y′)
(green) via (x′, y) (orange). Vertices on the left correspond to possible inputs x,
on the right to possible inputs y. A connection between two strings means that
the probability of committing differently on this input is smaller than ε.

enforce to be true for every pair of strings. The verifiers can only check for the
rounds that they play whether the commitments are equal, but given that there
are 22n possible inputs, they cannot get the commit statistics for all of them.

It could be that allowing the attackers to commit differently on a subset of
strings can outperform attackers that have to behave well on all strings. Since
this subset is unknown to the verifiers (as it is part of the attack strategy), the
probability to detect a wrong commit can be made as small as the relative size
of the subset to the total set.

We can intuitively visualize the problem of committing differently via the com-
plete bipartite graph in Figure 5.45.4. In the figure, two vertices are connected if the
probability of answering different commitments is upper bounded by ε. Allowing
attackers to answer different commits with a higher probability is equivalent to
removing certain edges in this graph.

We still have a bipartite graph, but not all edges are connected. What we are
now interested in is how many edges can still be reached within two steps from
some other edge. It turns out that even if we allow attackers to commit differently
with a probability higher than ε on a constant fraction of edges, there will be an
edge that will be connected to at least a constant fraction of other edges in two
steps (as used in Lemma 5.4.65.4.6).

5.4.8. Lemma (Edge Removal). Consider a complete bipartite graph whose in-
dependent sets are of equal size 2n. After removing a constant fraction c̃ ≤ 1

2
of

edges, there exists an edge such that the number of edges that can be reached from
this edge in two steps is at least (1− 2c̃)22n.
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Proof:
The number of edges of a complete bipartite graph with 2n nodes in its inde-
pendent sets is 22n, as there are 2n edges for any vertex. Now suppose that we
remove c̃ · 22n of these edges. Then, there must be a vertex l on the left with at
least (1 − c̃)2n connecting edges. Let one of these edges be your starting edge.
Now consider all the vertices on the right that are connected to l. Before we
removed any edges, there were 2n edges connecting each of these vertices to the
left. However, we removed c̃ · 22n of these edges, so the number of edges going
back is now at least (1− c̃) ·22n− c̃ ·22n = (1−2c̃)22n. Thus, there are (1−2c̃)22n

edges that can be reached in two steps from the starting edge. 2

Now, let us divide the set of all possible inputs into one set where the probability
of not committing, given that the other party commits, is lower than ε and its
complement. We write

Σε := {x, y | Tr
[
(1⊗ (1−My

B))ρ
x,(.)
]
≤ ε ∧ Tr

[
(1−Mx

A)⊗ 1)ρ(.),y
]
≤ ε},

(5.22)
which can also be written in terms of conditional probabilities

Σε = {x, y | P[cB = 0 | cA = 1, xA, yB] ≤ ε ∧ P[cA = 0 | cB = 1, xA, yB] ≤ ε},
(5.23)

where the subscript A,B denote that the information about the strings x, y is
only known to player A or B and not both. Using this definition we can show
the following.

5.4.9. Lemma. If |Σc
ε| ≤ c̃22n, then there is a pair (x∗, y∗) such that there exist

at least (1− 2c̃)22n pairs (x′, y′) ∈ Σε fulfilling

∥ρx∗y∗ − ρx
′y′∥1 ≤ 8

√
ε. (5.24)

Proof:
|Σc

ε| ≤ c̃22n, so at most there are a fraction of c̃ edges removed from the complete
bipartite graph. By Lemma 5.4.85.4.8 there is a pair (x∗, y∗) from which there are at
least (1 − 2c̃)22n edges connected in two steps. Applying Lemma 5.4.65.4.6 gives the
desired statement. 2

We can now formulate a statement about the security of a protocol with a
commit round added on top of a regular protocol. This is useful because it does
not give attackers the opportunity to use the option of answering ‘loss’ very often
anymore and raises the effective transmission of the protocol from ηV ηP to the
usually much larger ηP . The latter may be large enough to protect against lossy
attacks that arise in e.g. f -BB84 QPV protocols. On the other hand, it opens
up a new possible attack. Attackers can now try to apply some transformation
on their state and answer ‘no commit’ when this transformation fails. However,
they still need to answer the same commitment to both verifiers. In the following
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theorem we show that this action cannot help them much. Because the attackers
need to give the same commit bit with very high probability, the size of Σc

ε will be
small relative to all possible inputs. Then a large number of post-commit states
will be close to a fixed post-commit state independent of x, y by Lemma 5.4.95.4.9.
We can now bound the probability of success of the protocol with commitment,
because the post-commit state can be replaced by one fixed post-commit state
independent of x, y. Thus, the attackers find themselves in the same situation as
in the underlying protocol. Any underlying protocol that remains secure for any
(constant) adversarial input state as in Definition 5.4.15.4.1, thus has a corresponding
commitment-protocol with the same security guarantee (up to a small overhead).
We make this precise in the following theorem. Note that a particular protocol
with the properties considered is QPVf

BB84 [BCS22BCS22].

5.4.10. Theorem. Let P be a quantum position verification protocol in which the
verifiers send classical and quantum information and the prover responds with
classical answers. Suppose that for its version with commitment, c-P, we have
|Σc

ε| ≤ c̃22n for some ε ≤ 1/64. If P is state-independent (cf. Definition 5.4.15.4.1)
then, on the rounds the attackers play, the following bound on the probability of
attackers answering correctly to c-P holds:

P[attack c-PηV ,ηP ] ≤ P[attackPηP ] + (1− 2c̃)8
√
ε+ 2c̃. (5.25)

Proof:
Both attackers need to generate a commitment bit (cA, cB) and send it to the
verifiers. The most general operation two attackers can do to generate these bits
is a quantum instrument. By Lemma 5.4.45.4.4 we can split the quantum instrument
into a measurement followed by a quantum channel. Here, the measurement out-
come corresponds to the commitment bit the attackers generate and the quantum
channel corresponds to the operation they further perform, possibly depending
on their inputs (x, y). We want to upper bound the attacking probability in the
case that both attackers commit to playing (i.e. cA = cB = 1, we denote this in
the subscript of the instrument). Using the Stinespring dilation theorem we can
dilate these quantum channels to unitaries over some larger quantum system, and
we get the following for the (renormalized) post-instrument state the attackers
hold if they both commit to playing:
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Ĩxy
1 (ρ) =

Ixy
1 (ρ)

Tr[Ixy
1 (ρ)]

=
Exy
1

((√
Mx

A ⊗
√
My

B

)
ρ
(√

My
B ⊗

√
Mx

A

))
Tr[(Mx

A ⊗My
B)ρ]

= Exy
1 (ρxy)

= TrE
[
Uxy(ρxy ⊗ |0⟩⟨0|E)Uxy†]. (5.26)

By assumption |Σc
ε| ≤ c̃22n, so we can invoke Lemma 5.4.95.4.9, which says that

there must be a reference pair (x∗, y∗) ∈ Σε such that there are at least (1−2c̃)22n

other pairs (x, y) ∈ Σε fulfilling:

∥ρx∗y∗ − ρxy∥1 ≤ 8
√
ε. (5.27)

Combining both results, we get that when we apply some quantum channel de-
pending on (x, y) on both post-measurement states, the outputs are still close.
This follows straightforwardly from the data processing inequality for the 1-norm:

∥Exy
1 (ρxy)− Exy

1 (ρx∗y∗)∥1 ≤ ∥ρxy − ρx∗y∗∥1
≤ 8

√
ε. (5.28)

We define Λ
(x,y)
ε to be the set of all quantum states close to some reference state

ρxy:

Λ(x,y)
ε =

{
(x′, y′) ∈ Σε : ∥ρxy − ρx

′y′∥1 ≤ 8
√
ε
}
, (5.29)

and write Λε := Λ
(x∗,y∗)
ε for the remainder of this proof. By the previous argument,

we have |Λε| ≥ (1− 2c̃)22n, and |Λc
ε| ≤ 2c̃ 22n.

After creating the commitment bit both attackers exchange a quantum system
and apply some measurement on this. Fix a partition into systems AAcomBBcom,
where ‘com’ denotes the subsystems that will be communicated. We can write the
attackers two-outcome POVMs as {ΠA,(x,y)

ABcom
,1−Π

A,(x,y)
ABcom

} and {ΠB,(x,y)
AcomB ,1−Π

B,(x,y)
AcomB}

respectively, where we can assume without loss of generality that the first outcome
corresponds to the correct answer.

Now we have all the ingredients to upper bound the attacking probability
of a round in which both attackers committed. For simplicity, denote the final
operation of the attackers by Π

A,(x,y)
ABcom

⊗ Π
B,(x,y)
AcomB = Πxy. Then
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P[attack c-PηV ,ηP ] =
1

22n

∑
(x,y)

Tr
[
ΠxyĨxy

1 (ρ)
]

=
1

22n

∑
(x,y)∈Λε

Tr[ΠxyExy
1 (ρxy)] +

1

22n
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(x,y)∈Λc

ε

Tr[ΠxyExy
1 (ρxy)]
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22n
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(x,y)∈Λε

Tr[Πxy(Exy
1 (ρxy)− Exy

1 (ρx∗y∗) + Exy
1 (ρx∗y∗))] +
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22n
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22n
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Tr[Πxy(Exy
1 (ρxy)− Exy

1 (ρx∗y∗))]

+
1

22n
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Tr[ΠxyExy
1 (ρx∗y∗))] +

|Λc
ε|

22n

≤ 1

22n
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(x,y)∈Λε

∥Πxy∥∞∥Exy
1 (ρxy)− Exy

1 (ρx∗y∗)∥1

+
1

22n

∑
(x,y)∈Λε

Tr[ΠxyExy
1 (ρx∗y∗))] +

|Λc
ε|

22n

≤ |Λε|
22n

8
√
ε+

|Λc
ε|

22n
+

1

22n

∑
(x,y)∈Λε

Tr[ΠxyExy
1 (ρx∗y∗))]

≤ |Λc
ε|

22n
(1− 8

√
ε) + 8

√
ε+ P[attackPηP ]

≤ P[attackPηP ] + (1− 2c̃)8
√
ε+ 2c̃, (5.30)

where we used the triangle inequality, Hölder’s inequality for Schatten norms
[Wat18Wat18], and that (1−8

√
ε) ≥ 0. The fact that 1

22n

∑
(x,y)∈Λε

Tr[ΠxyExy
1 (ρx∗y∗))] ≤

P[attackPηP ] follows from the assumption that the protocol is secure against any
input state and the fact that Uxy = Ux ⊗ Uy as Ixy

1 = IA
1|x ⊗ IB

1|y. We can
neglect this because local unitaries can be absorbed into the attack strategy on
the original protocol PηV ,ηP . 2

The idea is now to estimate ε and c̃ to show that, over an increasing number
of rounds, P[attack c-PηV ,ηP ] becomes increasingly closer to P[attackPηP ]. This
should follow from getting better and better estimates of ε as the verifiers continue
to see only equal commitments.
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5.4.2 Parameter estimation

Non-adaptive strategies

The above theorem gives us a way to bound the probability of success in any
lossy setting, which makes protocols with a commitment round ideal candidates
for practical implementation of QPV. The roles of ε and c̃ are important here.
Theoretically, if we set ε to 0, i.e. we never allow attackers to answer different
commits, we see that the attackers cannot apply any lossy attack! Thus, making
the protocol fully loss tolerant against transmission loss 1− ηV .

However, as we have shown before, we cannot set ε to be 0, since a small
ε might help the attackers, while still not being detected with high probability.
On the other hand, if we play a certain number of rounds in which we see a
sufficient amount of committing rounds but never see different commit bits being
sent, we can be quite certain that the probability of one party not committing
given that the other party commits is small. We want to estimate the conditional
probabilities:

P[cA = 0|cB = 1] =
1

22n

∑
x,y

P[cA = 0|cB = 1, xA, yB], (5.31)

P[cB = 0|cA = 1] =
1

22n

∑
x,y

P[cB = 0|cA = 1, xA, yB]. (5.32)

Intuitively, if we see a large number of rounds in which both parties commit
but we never see different commits, these probabilities should be small. Suppose
that we want to upper bound the maximum conditional probability of the two in
Eq. (5.315.31) by some value α > 0. Then we can do the following. We keep playing
until we get r

α
number of rounds in which both parties commit, where r is some

fixed constant. This takes an expected number r
α pcommit

of rounds, where pcommit

is the probability that the honest prover will commit.
Suppose that the attackers’ strategy is non-adaptive. Then, if we detect differ-

ent commit bits in one of these rounds we immediately abort, because an honest
prover would never send these. If the probability of answering different commit
bits would be larger than α, the probability to answer equal commit bits (and not
get detected) every round in which they commit would be smaller than (1−α)

r
α .

We will now lower bound the probability to detect attackers due to differ-
ing commits. Suppose that the maximum of the two probabilities in Eq. (5.315.31),
(5.325.32) is at least α and denote the events Ci

diff = {(ciA, ciB) = (0, 1) or (1, 0)},
Ci

eq = {(ciA, ciB) = (0, 0) or (1, 1)}, Ci
(1,1) = {(ciA, ciB) = (1, 1)} and Ci

̸=0 =

{(ciA, ciB) ̸= (0, 0)}. Then for i, j ∈ {1, . . . , r/α} attackers are detected due to
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differing commits with probability

P[detect attackers | commits ̸= (0, 0)]

= P[∃j with (cjA, c
j
B) = (0, 1) or (1, 0) | ∀i (ciA, c

i
B) ̸= (0, 0)]

= P[∃j with Cj
diff | ∀i Ci

̸=0]. (5.33)

Using the complementary probability and the fact that attackers act non-
adaptively, we can write

P[detect attackers | commits ̸= (0, 0)] = 1− P[∀i Ci
eq | ∀i Ci

̸=0]

= 1−
r/α∏
i=1

P[Ci
(1,1) |Ci

̸=0] = 1−
r/α∏
i=1

(
1− P[Ci

diff |Ci
̸=0]
)

≥ 1−
r/α∏
i=1

(
1−max{P[ciB = 0 | ciA = 1],P[ciA = 0 | ciB = 1]}

)
≥ 1−

r/α∏
i=1

(1− α) = 1− (1− α)r/α

≥ 1− e−αr/α = 1− e−r. (5.34)

In the second equality, we use that Ci
eq ∩ {Cj

̸=0∀j} = Ci
(1,1) = Ci

(1,1) ∩ Ci
̸=0 and

that the attacks are non-adaptive. The first inequality follows from the following
argument. Notice that the event {(ciA, ciB) ̸= (0, 0)} contains {ciA = 1 or ciB = 1}.
Consider the case of ciA = 1. Then we can write

P[Ci
diff | ciA = 1] =

P[(ciA, ciB) = (1, 0)]

P[(ciA, ciB) = (1, 0)] + P[(ciA, ciB) = (1, 1)]
, (5.35)

P[Ci
diff |Ci

̸=0] =
P[(ciA, ciB) = (1, 0)] + P[(ciA, ciB) = (0, 1)]

1− P[(ciA, ciB) = (0, 0)]
. (5.36)

Writing a = P[(ciA, ciB) = (0, 0)], b = P[(ciA, ciB) = (0, 1)], c = P[(ciA, ciB) = (1, 0)]
and d = P[(ciA, ciB) = (1, 1)] one can directly verify that c

c+d
≤ c+b

1−a given that
a+ b+ c+ d = 1. Thus,

P[Ci
diff |Ci

̸=0] ≥ P[Ci
diff | ciA = 1] = P[ciB = 0 | ciA = 1]. (5.37)

The case ciB = 1 works the same way. Hence,

P[Ci
diff |Ci

̸=0] ≥ max{P[ciB = 0 | ciA = 1],P[ciA = 0 | ciB = 1]}. (5.38)

We see that if the probability to commit differently was higher than α we would
detect attackers in the r

α
committed rounds with a probability exponentially close
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to 1 in r. When we pick r = 20, we have P[detect attackers | commits ̸= (0, 0)] ≥
1− 10−9. And, if we do not see any different commit bits in r

α
rounds we can say

with very high probability that the probabilities in Eq. (5.315.31), (5.325.32) are upper
bounded by α. The more rounds we run, the smaller we can make α (with high
probability), thus controlling the role of ε in Theorem 5.4.105.4.10.

For the theorem to be of any use, we also need to control the dependence on
c̃ (which comes from |Σc

α| ≤ c̃22n). Intuitively, if the set Σc
α is large, we know

that a large part of this set must be close to α in order for the average over all
probabilities to still be α. Then, if we look at, for example, Σc

2α, we expect the
set to be much smaller. We can make this intuition precise. Suppose that we
play k 20

α
number of rounds for some value α that we fix beforehand. Then by

the previous argument we can assume with high probability that max{P[cA =
0|cB = 1], P[cB = 0|cA = 1]} ≤ α

k
. Then consider the set Σc

α. In the worst case,
all the values in this set are very close to α and, in order for the average to be
α
k
, we get that the maximal size is |Σc

α| ≤ 2
k
22n. Indeed, from the condition that

max{P[cA = 0|cB = 1], P[cB = 0|cA = 1]} ≤ α
k

it follows that in the worst case
both probabilities are equal to α/k and have non-zero values on disjoint pairs of
(x, y). More formally, from the definition of Σα we know that either P[cA = 0|cB =
1, x, y] ≥ α for at least |Σc

α|/2 pairs (x, y) in Σc
α or P[cB = 0|cA = 1, x, y] ≥ α for

at least |Σc
α|/2 pairs (x, y) in Σc

α. Let us assume without loss of generality that
we are in the former case. We estimate

α

k
≥ 1

22n

∑
x,y

P[cA = 0|cB = 1, xA, yB]

≥ 1

22n

∑
(x,y)∈Σc

α

P[cA = 0|cB = 1, xA, yB]

≥ 1

22n
|Σc

α|
2
α. (5.39)

Thus, we can set c̃ = 2
k
. For simplicity of the final statement, note that we have

the freedom to pick α as we like. Picking α to be of the size 1
16k2

we get a clean
inequality statement with a single variable that can be set by the verifiers. Notice
that α ≤ 1/64 implies k ≥ 2, but of course k should be chosen much larger to
suppress the additive term 6/k. Plugging this into Theorem 5.4.105.4.10 we get the
following corollary for the attacking probability of a single round of the protocol:

5.4.11. Corollary. Consider a quantum position verification protocol P, with
the properties described as in Theorem 5.4.105.4.10 and security under sequential repe-
tition. Let k ≥ 2 and suppose we play its version with commitment c-P until we
have 320k3 rounds in which both parties commit. This takes an expected number
of rounds 320k3/pcommit. If attackers use a non-adaptive strategy, then either the
attackers are detected with probability bigger than 1− 10−9 by means of a differ-
ent commitment, or we have the following bound on the probability of attacking a
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single round c-P depending only on k:

P[attack c-PηV ,ηP ] ≤ P[attackPηP ] +

(
1− 4

k

)
8
√
α +

4

k

≤ P[attackPηP ] +
6

k
. (5.40)

Thus, by running more rounds of the protocol we can get the probability of
successfully attacking the protocol to be arbitrarily close to the attacking proba-
bility in a setting with no photon loss between the verifiers and the prover. What
is also important to emphasize is that there is no overhead in the procedure to
obtain bounds in Corollary 5.4.115.4.11, since the task of committing is separate from
the rounds themselves. Each round the verifiers play gives a better bound for the
probability of attack for all the previous rounds played.

Adaptive strategies:

The above proof assumed that attackers use the same strategy in each round.
But in general, they could use adaptive strategies, adjusting it each round to
how they responded before. We will now provide a bound for this most general
scenario. Firstly, note that the statement of Theorem 5.4.105.4.10 can also be made for
the adaptive setting. In an adaptive strategy, the measurement that determines
whether the attackers will commit or not, given that the other party committed,
can now depend on the information of the previous rounds. This may change the
underlying probability of events. However, the proof already considers arbitrary
distributions of commitments, thus we replace ε by its round-dependent version
εi. The attackers may replace the quantum state by some state that depends on
the information of the previous rounds, but by the state-independent property
this should not change the probability of successfully attacking the protocol.
Therefore, we get the following corollary on the probability of attacking a specific
round i:

5.4.12. Corollary. Consider a quantum position verification protocol P, with
the properties described as in Theorem 5.4.105.4.10 and security under sequential rep-
etition. Suppose that for its version with commitment, c-P, for a given round i
we have |Σc

εi
| ≤ c̃i2

2n for some εi ≤ 1/64. If P is state-independent (cf. Defini-
tion 5.4.15.4.1) then, if the attackers play, the following bound on the probability of
attackers answering correctly on the i-th round of c-P holds:

P[attack c-PηV ,ηP ] ≤ P[attackPηP ] + (1− 2c̃i)8
√
εi + 2c̃i. (5.41)

The problem is now to estimate the value of εi, which we cannot estimate
for every i since it can change adaptively from round to round. We will show
that if we run sufficiently many rounds, and never see different commits by the
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attackers, then at least a large fraction of all the εi must have been sufficiently
low.

We can make a similar argument as in the non-adaptive case, carefully includ-
ing that attackers can now condition on the past in each round. We will use the
general property that

P[A1, . . . , An] = P[A1]P[A2 |A1] · · · P[An |A1, . . . , An−1], (5.42)

for any events A1, . . . , An. Consider running r rounds with commitments
(cA, cB) ̸= (0, 0). Let i, j ∈ {1, . . . , r}. Then we can bound the probability of
being detected due to differing commits as follows,

P[detect attackers | commits ̸= (0, 0)] = 1− P[∀i Ci
eq | ∀i Ci

̸=0]

= 1− P[∀i Ci
(1,1) | ∀i Ci

̸=0]. (5.43)

Then Eq. (5.435.43) can be written as

P[det. attackers|commits ̸= (0, 0)] = 1− P[C1
(1,1), . . . , C

r
(1,1) |C1

̸=0, . . . , C
r
̸=0].

After using Eq. (5.425.42) and noting that Ci
(1,1) ∩Ci

̸=0 = Ci
(1,1) for any i, this can be

rewritten as

P[detect attackers | commits ̸= (0, 0)]

= 1−
r∏

i=1

P
[
Ci

(1,1)

∣∣∣C1
(1,1), . . . , C

i−1
(1,1), C

i
̸=0, . . . , C

r
̸=0

]
= 1−

r∏
i=1

(
1− P

[
Ci

diff

∣∣∣C1
(1,1), . . . , C

i−1
(1,1), C

i
̸=0, . . . , C

r
̸=0

])
. (5.44)

We can then consider the equations analogous to Eq. (5.355.35), (5.365.36), but with
all the extra events for rounds 1, . . . , i − 1, i + 1, . . . , r in the conditioning part.
Again, labeling these probabilities analogously with ai, bi, ci, di (cf. Eq. (5.355.35),
(5.365.36)) we obtain the inequality ci

ci+di
≤ ci+bi

pi−ai , where now

pi = P
[
C1

(1,1), . . . , C
i−1
(1,1), C

i
any, C

i+1
̸=0 , . . . , C

r
̸=0

]
, (5.45)

with Ci
any = {(ciA, ciB) = (0, 0) or (0, 1) or (1, 0) or (1, 1)}. The inequality can be

verified under the condition that ai + bi + ci + di = pi. This shows

P[Ci
diff |C1

(1,1), . . . , C
i−1
(1,1), C

i
̸=0, . . . , C

r
̸=0]

≥ P
[
Ci

diff

∣∣∣C1
(1,1), . . . , C

i−1
(1,1), {ciA = 1}, Ci+1

̸=0 , . . . , C
r
̸=0

]
= P

[
ciB = 0

∣∣∣C1
(1,1), . . . , C

i−1
(1,1), {ciA = 1}, Ci+1

̸=0 , . . . , C
r
̸=0

]
. (5.46)
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The same inequality holds for the case with A and B swapped, as before. Thus:

P[detect attackers | commits ̸= (0, 0)] ≥

1−
r∏

i=1

(
1−max

{
P[ciB = 0 |C1

(1,1), . . . , C
i−1
(1,1), {ciA = 1}, Ci+1

̸=0 , . . . , C
r
̸=0],

P[ciA = 0 |C1
(1,1), . . . , C

i−1
(1,1), {ciB = 1}, Ci+1

̸=0 , . . . , C
r
̸=0]
})
. (5.47)

Define εi to be the maximum in Eq. (5.475.47). This quantity can be interpreted
as follows. In the i-th round adaptive attackers have the information that in all
previous rounds they committed and that they committed equally, otherwise they
would have already been caught. They also know that they have to keep playing
until they have reached the desired number of non-(0, 0) commits.

Now there are two cases, either the probability in Eq. (5.475.47) is ≥ 1 − δ with
some security parameter δ > 0, in which case the verifiers catch an attack with
high probability by means of a different commit cA ̸= cB showing up, or it is
≤ 1− δ. In the latter case, we still need to bound the attack success probability.
Note that then

1−
r∏

i=1

(1− εi) ≤ 1− δ.

We can rewrite the condition as

0 < δ ≤
r∏

i=1

(1− εi) ≤ e−
∑r

i=1 εi .

Equivalently,
∑r

i=1 εi ≤ ln(1/δ). Next, we will need the following lemma, saying
that under such a constraint there must be enough “good” rounds with εi not too
large.

5.4.13. Lemma. Let
∑r

j=1 εj ≤ α. Then for any 0 < q < 1 such that qr ∈ N,
there exists a subset R ⊂ {1, . . . , r} of size |R| = qr such that for all εj with
j ∈ R we have εj ≤ α

(1−q)r .

Proof:
Assume that you cannot find qr elements εj with εj ≤ α

(1−q)r , given
∑r

j=1 εj ≤ α.
Then there would be at least (1 − q)r elements fulfilling εj >

α
(1−q)r . But then∑r

j=1 εj > α, a contradiction. Thus, we must be able to find qr such elements
and let R be the set of those. 2

That is, for a fraction q of the r rounds, we have a round-independent upper
bound on the εi of those rounds, namely εi ≤ ln(1/δ)

(1−q)r for i ∈ R.
Therefore, a similar argument as in the proof for Corollary 5.4.115.4.11 can be run

to argue that c̃i ≤ 2/k for some constant k, while running k times the number
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of rounds r. Hence, for a fraction q of the r rounds, we have by Corollary 5.4.125.4.12
that

P[attack c-PηV ,ηP in round i ∈ R] ≤ P[attackPηP ] +

(
1− 4

k

)
8

√
ln(1/δ)

(1− q)r
+

4

k
,

(5.48)

while kr rounds are run (similar to Corollary 5.4.115.4.11). We are free to pick
(δ, q, k, r). Pick, for example, δ = e−20 ≤ 3 ·10−9, q = 1− 1

k
, and r = 320k3. Then

P[attack c-PηV ,ηP in round i ∈ R] ≤ P[attackPηP ] +

(
1− 4

k

)
8

√
20

r/k
+

4

k

≤ P[attackPηP ] +
6

k
, (5.49)

to obtain a similar bound as in Corollary 5.4.115.4.11, while in total we play until we
hit kr = 320k4 rounds in which both parties committed. This takes an expected
number of rounds 320k4/pcommit. In the end, the verifiers may choose k, which will
determine the number of rounds they have to run in order to guarantee Eq. (5.495.49)
on a large fraction 1− 1/k of rounds. Again, the condition εi ≤ 1/64 necessitates
k ≥ 2, but k shall be chosen much larger to suppress the additive term 6/k (while
still keeping the number of necessary rounds manageable). We summarize our
findings in the following corollary.

5.4.14. Corollary. Consider a quantum position verification protocol P, with
the properties described as in Theorem 5.4.105.4.10 and security under sequential rep-
etition. Let k ≥ 2 and suppose we play its version with commitment c-P until
we have 320k4 rounds in which both attackers commit. This takes an expected
number of rounds 320k4/pcommit. We call this protocol c-Pseq. Then either the
attackers are detected with a probability bigger than 1 − 3 · 10−9 by means of a
different commitment, or there is a set R of size 1 − 1/k times the number of
rounds such that

P[attack c-Pseq
ηV ,ηP

in round i] ≤ P[attackPηP ] +
6

k
, (5.50)

for all i ∈ R.

5.5 QPV with commitment in practice
For our protocol with commitment, the honest prover needs a device detecting
the presence of the input quantum state88 without destroying it, i.e. a photon

8We will focus on photonic qubits.
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presence detector, also known as quantum non-demolition (QND) measurement.
We will consider two feasible solutions to this. What is important for the security
of c-QPV is how much loss and error this introduces in the prover’s setup. The
main goal of c-QPV is to make the (large) transmission loss between the verifiers
and the prover irrelevant for security.

Transmission in the prover laboratory

The relevant transmission rate for security is the one in the prover’s laboratory
(ηP ). It strongly depends on the actual setup used, so we will only give rough
estimates of ηP . Note that

ηP = P[photon measured | presence detected]

=
P[photon measured ∧ presence detected]

P[presence detected]
. (5.51)

The presence of a photon is concluded either due to the photon being present
and detected (ηV η

QND
det ) or due to a dark count in the presence detection (pQND

dc ).
Given that the photon is heralded, successful measurement happens if

• either the photon survived the presence detection (ηsurv) and was not lost
before measuring it (ηequip) and the measurement detector registered it (ηdet)
or

• (the measurement detector registered a dark count (pdc) when the photon
did not survive the presence detection or was lost before measurement)
or (the measurement detector registered a dark count when the presence
detection also registered a dark count).

We absorb all losses after the presence detection into one term that denotes the
efficiency of the photon measurement ηmeas = ηdetηequipηsurv. Using the above
reasoning, we can write the probabilities in Eq. (5.515.51) as99

ηP =
(ηmeas + pdc)ηV η

QND
det + pdcp

QND
dc

ηV η
QND
det + pQND

dc

. (5.52)

Notice that1010

if ηV ≪ pQND
dc : ηP ∼ pdc. (5.53)

9For the event of a dark count it is implicit that the input photon was not detected. In
our notation, factors of 1− ηmeas or 1− ηV η

QND
det are included in the corresponding dark count

variable.
10pdc is negligible compared to the other term, so we neglect the second term in the bracket

of eq. (5.525.52) for eq. (5.535.53).
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If the probability that a photon enters the presence detector (ηV ) is much smaller
than the dark count rate pQND

dc then most photon presence detection events, and
thus c = 1 commitments, will be due to dark counts! Then the (e.g. polarization)
measurement on the photon will not give a click most of the time, making ηP
very small. In the limit ηV → 0 we obtain ηP → pdc as expected. Single-photon
detectors routinely achieve pdc ∼ 10−7 or similar per detection window [Had09Had09].
For such small ηP the usual lossy attack of guessing the provers’ measurement
setting (with probability 1/m) still works because in practice we would not be
able to use a high enough number of measurement settingsm such that ηP > 1/m.
So, introducing the commitment step would not help when ηV ≪ pQND

dc .
Let us write ηV = γpQND

dc for some constant factor γ. We define the signal-to-
noise ratio of the presence detection as

SNRQND(γ) =
ηV η

QND
det

ηV η
QND
det + pQND

dc

=
γηQND

det

γηQND
det + 1

. (5.54)

We have already argued that in the case ηV ≪ pQND
dc our proposal is useless. Let

us therefore focus on the case where ηV is at least the order of magnitude of pQND
dc ,

corresponding to γ ≥ 1. Then, using that pdc is usually negligibly small compared
to the other quantities, we can simplify ηP as follows:

ηP ∼ SNRQND(γ)ηmeas. (5.55)

The condition that the input transmission must be greater than pQND
dc will limit

the distance between the verifiers and the prover. This, however, is not a charac-
teristic of our protocol – it is an issue for any quantum communication protocol,
as any protocol fails if most signals are noise originating from dark counts.

Distance between verifiers and prover

The transmission law for optical fibers reads η = 10−αL/10 [SJ09SJ09], where α is the
attenuation of the fiber in dB/km and L is the fiber length in km. A standard
value for current optical fibers is α = 0.2 dB/km [SJ09SJ09], with the most sophisti-
cated achieving α = 0.14 dB/km [HTS+18HTS+18]. We can solve for L and insert ηV in
terms of the presence-detection dark count rate to obtain

L = −10

α
log10

(
γpQND

dc

)
. (5.56)

Rate of the protocol

There are several processes that we would like to do at a high rate in our pro-
tocol: generating single photons, modulating their polarization state, generating
EPR pairs, fast switching between measurement settings depending on f(x, y),
and detecting single photons. State-of-the-art equipment is able to achieve the
following rates (order of magnitude) today or in the near future:
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• Single photon generation: MHz, in principle up to GHz [MSSM20MSSM20]

• Polarization modulation: up to GHz [LLX+19LLX+19]

• EPR state generation: up to GHz, depending on pump laser power [LVSL18LVSL18,
APS+21APS+21],

• Switching: up to THz [CHW+17CHW+17]

• Single photon detector count rate: up to GHz [Had09Had09]

Therefore, we expect our protocol can be run at least at MHz rate, and po-
tentially at GHz rate with top equipment, albeit we acknowledge that it may be
challenging to run all these processes at high rates simultaneously. The achievable
rate of a setup will strongly depend on the equipment/architectures used, thus we
only state current maximally achievable values here and refer to the cited articles
and reviews for more details. The rate of the protocol will determine the time that
is needed to reach the required number of rounds, as stated in Corollary 5.4.145.4.14.

The total number of rounds R that we expect to run to get r = 320k4 rounds
with commitment to play (c = 1) is R = 320k4/pcommit. If the protocol is run at
frequency ν, then the expected protocol duration tPc in seconds is therefore

tPc =
320k4

pcommitν
. (5.57)

Given a choice of security parameter k, a probability to commit pcommit from the
prover1111 and an achievable protocol frequency ν, one can then estimate how long
it takes to run the protocol with the security guarantee given in Corollary 5.4.145.4.14.

5.5.1 True photon presence detection

Recently, a breakthrough paper [NFLR21NFLR21] demonstrated true non-destructive de-
tection of photonic qubits. To do so, they prepare a 87Rb atom in an optical cavity
in the superposition state |+⟩ = (|0⟩+ |1⟩)/

√
2, where |0⟩ and |1⟩ denote certain

energetic states of the atom. The optical cavity is tuned such that a photon
cannot enter the cavity if the atom is in state |0⟩, but is allowed to enter if the
state is |1⟩. In that case, it gets reflected from one wall before leaving the cavity
again, acquiring a π/2 phase shift. This interaction adds a phase to the com-
bined photon-atom state, i.e. |ψphoton⟩ |1⟩ 7→ − |ψphoton⟩ |1⟩, changing the atom
state from |+⟩ to |−⟩. Then a rotation is applied, mapping the atomic state
|+⟩ 7→ |1⟩ and |−⟩ 7→ |0⟩, after which it is measured. If the result is 0 there was
a photon interacting with the atom, if the result is 1 there was not. This mea-
surement thus heralds the presence of a photon in the output mode of the optical

11Which would just be ηV , if the prover had perfect equipment.
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cavity, which can be sent to a polarization measurement for example. [NFLR21NFLR21]
achieves the following relevant experimental parameters for their photon presence
detector, which we can expect to improve in the future:

Photon in output mode given heralding (ηsurv): ∼ 25-55%,

Dark count rate (pQND
dc ): ∼ 3%,

Fidelity of photon in output mode: ∼ 96%.

(5.58)

Note that ηsurv depends on the dark count rate and was measured using weak
coherent light in [NFLR21NFLR21] rather than true single photons. We take the stated
range from their Figure 3b.

Although this technology is currently unusable for c-QPV due to the high
dark count rate (relative to realistic ηV over longer distances), we can expect
the parameters to improve significantly in the future. A true photon presence
detector such as this could therefore be a clean and viable long-term solution for
c-QPV.

5.5.2 Simplified presence detection via partial Bell mea-
surement

For the near term, we consider a simplified photon presence detection based on a
partial linear-optical Bell measurement. Essentially, the prover has to prepare a
Bell state and teleport the input state to himself when it arrives. A conclusive1212

Bell measurement (BSM) heralds the presence of the input state, after which
the prover briefly stores it until he receives the classical information x, y and
measures it with the appropriate setting based on x, y. Note that we do not
require a full Bell measurement. Even just discriminating 1 out of 4 Bell states
via interference at one beam splitter would be enough. The scheme in Figure 5.55.5
[Wei94Wei94, BM95BM95, MMWZ96MMWZ96] can distinguish 2 out of 4 Bell states, doubling the
efficiency, while only using linear-optical equipment. Importantly, this scheme
has first been demonstrated a long time ago [MMWZ96MMWZ96] and is experimentally
feasible today.

First, note that any losses or inconclusive click patterns in the BSM itself will
simply reduce the transmission rate ηV . This will jeopardize security only if it
makes ηV so small that dark counts take over. Moreover, it may be that the
teleportation corrections do not need to be actively applied but can be classically
calculated and corrected, as is the case when they just flip the measurement result
predictably like in c-QPVf

BB84 for example. So then only a partial, linear-optical
BSM and (very short) storage of the other EPR qubit would be experimentally
required.

12We will define which click patterns count as successful further in Figure 5.55.5.
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Figure 5.5: Schematically a partial Bell measurement can be implemented via a
50/50 beam splitter (BS), two polarization beam splitters (PBS) and four single
photon detectors (Di). An input state |Ψ−⟩ triggers one detector in each arm
(D1, D3 or D2, D4), |Ψ+⟩ triggers two detectors in one arm (D1, D2 or D3, D4)
and the states |Φ+⟩, |Φ−⟩ could trigger any, but just one, detector. So one can
only conclusively distinguish |Ψ−⟩ and |Ψ+⟩, giving an efficiency of at most 50%,
which is optimal for linear optics [CL01CL01]. Any click patterns other than the ones
corresponding to |Ψ±⟩ are deemed as “no-detection” events.

If we assume that the honest prover can generate entanglement when he ex-
pects the verifiers’ input to arrive, then most of the time there will be one photon
(the one from the EPR pair) going into the BSM setup, and only one dark count
is needed for a false positive event. The relevant photon presence detection dark
count rate would then be just the one of a conventional single photon detector,
i.e. pQND

dc ∼ pdc. The presence-detection efficiency ηQND
det for such a BSM would

be the efficiency of detecting both photons if they are present, i.e. ηQND
det = η2det.

Moreover, the value of ηmeas = ηdetηequipηsurv depends on the equipment post-
presence-detection, but is certainly upper bounded by ηdet. So we have an upper
bound of

ηP ∼ SNRQND(γ)ηmeas ≤
γη3det

γη2det + 1
. (5.59)

Easy-to-use single-photon detectors have detection efficiencies of up to 20-65%
[Had09Had09], and the most sophisticated detectors reach up to 98%1313 [RNN+20RNN+20].
In reality, there will also be losses pre-measurement, making the true value in
Eq. (5.595.59) smaller than the upper bound. If these can be kept small enough,
however, the true value of ηP will be close to the upper bound in Eq. (5.595.59)
and secure c-QPV becomes possible if this value is large enough to prevent lossy
attacks1414.

13Note that detection efficiencies always depend on the wavelength of the photons used.
14Meaning higher than the basis guessing probability 1/m or higher than the values obtained

in [ES23ES23] for c-QPVf
BB84, for example.
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With regard to the distance L between the verifiers and the prover, we can use
Eq. (5.565.56) to get an estimate of what kinds of distances become possible for QPV
with our proposal. As mentioned, with this setup pQND

dc ∼ pdc ∼ 10−7. Moreover,
ηV should be at least one (preferably more) order of magnitude larger than pQND

dc

to obtain a decent signal-to-noise ratio, say γ ≳ 10. This yields via Eq. (5.565.56)
that

L ≲ 400 km (5.60)

for the distance between the verifiers and the prover. We summarize our findings
in the following remark.

5.5.1. Remark. c-QPV makes a class of previously not loss-tolerant QPV pro-
tocols, with QPVf

BB84 as a prime example, loss-tolerant even in practice as long
as both the signal-to-noise ratio of the photon presence detection SNRQND and the
efficiency of the prover measurement ηmeas are sufficiently high such that ηP is
high enough to prevent lossy attacks1515. The signal-to-noise ratio SNRQND depends
on the transmission ηV between the verifiers and the prover, the dark count rate
pQND
dc , and the detection efficiency ηQND

det . This ultimately limits the maximal dis-
tance between the verifiers and the prover1616. The experimental requirements of
our proposal in the prover laboratory are:

• The prover needs to be able to generate an EPR pair on demand

• Photon presence detection, e.g. via a partial BSM (like the scheme in Fig-
ure 5.55.5)

• A short delay loop so the prover can store the teleported qubit until the
classical information x, y arrives. This time delay should be made as short
as possible.

• The prover needs to be able to do the measurement depending on x, y and
should be able to quickly switch between different measurements based on
the value of f(x, y).

The verifiers need to be able to generate and modulate single-photon states (e.g.
polarization) with high frequency.

All requirements are practically feasible, or within reach, with state-of-the-art
equipment.

15For example as studied in [ES23ES23] for QPVf
BB84, which carries over to our c-QPVf

BB84.
16To much larger distances than previously possible for QPV, however.
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5.6 Discussion
The three major roadblocks for practically implementable and secure QPV are:
entangled attackers, slow honest quantum communication, and signal loss. On
top of that, the honest protocol must be experimentally feasible. So far, no QPV
protocol has been able to deal with all of these issues. Our work presents the first
such protocol: c-QPVf

BB84. This opens up a feasible route to the first experimental
demonstration of a QPV protocol that remains secure in a practical setting over
long distances. We propose two options to do the required non-demolition photon
presence detection: a clean and viable long-term solution [NFLR21NFLR21], assuming
the non-destructive detector parameters will improve in the future, and a simpler
near-term solution via a partial Bell state measurement [MMWZ96MMWZ96] that can be
implemented with just a few linear-optical components and conventional click/no-
click single photon detectors. Given a sufficiently low dark-count rate in the
photon-presence detection and sufficiently low loss in the prover’s laboratory,
secure QPV can be achieved in principle. c-QPVf

BB84 has two further major
advantages: the quantum resources required for an attack scale in the classical
input size (which can easily be made very large) and in case the prover uses
the partial Bell measurement for photon presence detection, he does not need
to actively apply any teleportation corrections, but can passively calculate and
correct them instead, as they predictably flip the measurement outcome. By
analyzing the rounds in which both attackers commit, we find that when we run
enough rounds attacking the committing version of the protocols becomes as hard
as the underlying protocol. It would be interesting if we can use the fact that it
is also difficult for attackers to always answer equally on ‘no commit’ rounds in
the analysis to get better bounds on the number of rounds we have to run. We
argue that all the experimental requirements are, in principle, feasible and that in
principle our protocol can be run at high rates. These properties taken together
make c-QPVf

BB84 the first QPV protocol that can successfully deal with all the
major practical issues of QPV.

Our result is not limited to QPVf
BB84 per se, but can be applied to any QPV

protocol that shares the same structure as QPVf
BB84 and remains secure if the

input state is replaced by any adversarial input state that does not depend on the
classical input information x, y. It would be interesting to investigate whether
our modification, introducing a prover commitment to play, can find application
for other types of QPV protocols, or whether it can make other security models,
such as the random oracle model [Unr14Unr14], loss tolerant.



Chapter 6
Relating NLQC to Information-Theoretic

Cryptography

Non-local quantum computation (NLQC) is a cheating strategy for position-
verification schemes, and has appeared in the context of the AdS/CFT corre-
spondence. Here, we connect NLQC to the wider context of information-theoretic
cryptography by relating it to a number of other cryptographic primitives. We
show that one special case of NLQC, known as f -routing, is equivalent to the
quantum analogue of the conditional disclosure of secrets (CDS) primitive, where
by equivalent we mean that a protocol for one task gives a protocol for the other
with only small overhead in resource costs. We further consider another special
case of position-verification, which we call coherent function evaluation (CFE),
and show CFE protocols induce similarly efficient protocols for the private si-
multaneous message passing (PSM) scenario. By relating position-verification to
these cryptographic primitives, a number of results in the information-theoretic
cryptography literature give new implications for NLQC, and vice versa. These
include the first sub-exponential upper bounds on the worst case cost of f -routing
of 2O(

√
n logn) entanglement, the first example of an efficient f -routing strategy for

a problem believed to be outside P/poly, linear lower bounds on quantum re-
sources for CDS in the quantum setting, linear lower bounds on communication
cost of CFE, and efficient protocols for CDS in the quantum setting for functions
that can be computed with quantum circuits of low T depth.

This chapter is based on the paper “Relating non-local quantum computation
to information theoretic cryptography” by Rene Allerstorfer, Harry Buhrman,
Alex May, Florian Speelman and Philip Verduyn Lunel [ABM+24ABM+24].

119
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6.1 Introduction

In the previous chapters, we have discussed many aspects of position-verification
scenarios. Position verification may be of interest as a goal in itself, or may serve
as an authentication mechanism for use towards further cryptographic goals. In
this chapter, we will again consider a coalition of attackers that have to ap-
ply some task, but the question is now not what protocols they can break, but
more what the power of their model with some amount of entanglement is. This
non-adversarial setting is non-local quantum computation. A non-local quantum
computation replaces local actions within a designated spacetime region with ac-
tions outside that region along with entanglement shared across it. The basic
setting is shown in Figure 6.16.1.

U

(a)

VL VR

WRWL

(b)

Figure 6.1: (a) Circuit diagram showing the local implementation of a unitary
in terms of a unitary U. In position-verification, an honest prover implements
the required unitary in this form. (b) Circuit diagram showing the non-local
implementation of a unitary U. VL, VR, WL, and WR are quantum channels.
The lower, bent wire represents an entangled state. In position-verification, a
dishonest prover must use a circuit of this form to implement a required unitary.

Non-local quantum computation has also been understood to arise naturally
in the context of quantum gravity [May19May19, DC22DC22, MX24MX24], in particular within
the context of the AdS/CFT correspondence. There, a higher-dimensional the-
ory with gravity is given an equivalent description without gravity. In these two
descriptions, processes that occur as local interactions in the higher-dimensional
theory are reproduced in the dual, lower-dimensional description as non-local
computations. This connection has led to consequences for the gravitational
theory [MPS20MPS20, MSY22MSY22], and discussion around consequences for non-local com-
putation [May22May22].

By definition, the bounds on the entanglement needed to attack the protocol
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Figure 6.2: (a) A conditional disclosure of secrets (CDS) protocol. In the classical
setting, Alice and Bob share randomness, but do not communicate. They receive
inputs x and y, respectively. Alice additionally holds a secret s. They send
messages to the referee. The protocol is correct if the referee can recover s from
the messages if and only of f(x, y) = 1. In the quantum setting, the randomness
may be replaced by entanglement, and the messages and secret can be quantum.
(b) A private simultaneous message protocol (PSM). Again Alice and Bob do not
communicate, but share randomness. They hold the inputs x and y, respectively.
The referee should be able to learn f(x, y) but nothing else about (x, y). In the
quantum setting, randomness is replaced with entanglement, and messages can
be quantum.

correspond to the entanglement needed in a non-local computation. As a re-
minder from the previous chapters, we have linear lower bounds on entanglement
[TFKW13TFKW13], and exponential upper bounds [BK11BK11], with only a little known in
between. For a special case of a non-local computation known as f -routing, where
each instance is defined by a classical Boolean function f , the entanglement cost
has been upper bounded by the size of span program computing f [CM23CM23], so
that the class ModkL/poly11 can be achieved efficiently.22 For general unitaries,
Clifford unitaries can be implemented with linear entanglement, and circuits with
T depth of log n can be implemented with polynomial entanglement [Spe16aSpe16a].

In this chapter, we prove connections between two well-studied cryptographic
primitives, conditional disclosure of secrets (CDS) [GIKM00GIKM00] and private simulta-
neous message passing (PSM) [IK97IK97], and non-local quantum computation. These
primitives are studied in the context of information-theoretic cryptography, in

1This class is reviewed in Section 6.4.16.4.1. It is inside of NC2, the class of functions computed
by (log(n))2 depth circuits.

2This builds on earlier work [BFSS13BFSS13] achieving the class L.
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particular in their relationship to secure multiparty computation [AIR01AIR01, IKP10IKP10],
private information retrieval [GIKM00GIKM00], secret sharing [AA20AA20], and other cryp-
tographic goals [BKN18BKN18]. We illustrate their functionality in Figure 6.26.2. Both
settings generally involve k parties along with a referee, but in this chapter we
focus on the k = 2 case, which is the setting we relate to non-local computation.
In CDS, two non-communicating parties, Alice and Bob, receive inputs x and y,
respectively. Alice additionally holds a secret s. Alice and Bob compute messages
m0(x, s, r) and m1(y, r) based on their inputs and shared randomness, which are
then sent to the referee. The referee should be able to recover the secret s if and
only if f(x, y) = 1. PSM is a similar setting. There, Alice and Bob have inputs x
and y along with shared randomness. They send messages m0(x, r) and m1(y, r)
to the referee. The referee should be able to compute f(x, y) from the messages,
but not learn anything else about the inputs (x, y) than is implied by the value
of f(x, y). We give formal definitions of both primitives in Section 6.2.26.2.2.

To relate these primitives to non-local computation, we first show that the nat-
ural quantum generalization of CDS, which we denote as conditional disclosure
of quantum secrets (CDQS), is equivalent to the f -routing task. More specifi-
cally, protocols for CDQS induce similarly efficient protocols for f -routing, and
vice versa. Further, we show that classical CDS protocols induce similarly effi-
cient quantum protocols. We also introduce a special case of non-local quantum
computation known as a coherent function evaluation (CFE), which we show is
closely related to the PSM model: efficient CFE protocols induce efficient PSM
protocols using quantum resources (PSQM). We also give a weak converse that
shows good PSQM protocols induce CFE protocols that succeed with constant
(independent of the input size) probability.33 The status of the relationship among
these primitives is shown in Figure 6.36.3.

Our results relate position-verification to the wider setting of information-
theoretic cryptography. This provides a partial explanation of the difficulty of
finding better upper and lower bounds in non-local computation, since we now
see that doing so would resolve other long-standing questions in cryptography44.
In a positive direction, we use results in NLQC to give new results on CDS and
PSM, and vice versa. Our key results are,

• Sub-exponential upper bounds on entanglement cost in f -routing for an
arbitrary function (Corollary 6.7.36.7.3)

• Efficient CDQS and f -routing protocols for the quadratic residuosity prob-
lem, the first problem not known to be in P/poly with an efficient non-local
computation protocol (Corollaries 6.6.56.6.5 and 6.6.66.6.6)

These results represent significant changes in our understanding of the efficiency
3We only prove this in the exact setting, while all other implications allow for small errors

in correctness and small security leakage.
4For example lower bounds on f -routing give lower bounds on (classical) CDS.
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Figure 6.3: Implications among primitives: an arrow from X to Y says that a
protocol for X implies a protocol for Y with the same efficiencies (up to constant
overheads). All implications shown in blue hold in the robust setting where we
allow small errors and leakages. The dashed red line indicates that a perfect
PSQM protocol that succeeds with high probability implies a CFE protocol that
succeeds with constant probability. The subset symbol ⊂ indicates that f -routing
and CFE are special cases of NLQC. Primitive abbreviations (DRE, PSM, ...) and
theorem numbers link to relevant proofs or definitions.
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of f -routing protocols. Previously, the best upper bounds for arbitrary func-
tions were exponential, and the highest complexity functions with known efficient
schemes were in ModkL/poly.

From our connections between CDS, PSM, and NLQC, we also obtain a num-
ber of other implications,

• Linear lower bounds on communication complexity in CFE (Corollary 6.5.26.5.2)

• Linear lower bounds on entanglement in CDQS and PSQM for random
functions (Corollaries 6.5.46.5.4 and 6.5.56.5.5), and logarithmic lower bounds on
entanglement for the inner product function (Corollary 6.5.76.5.7 and 6.5.86.5.8)

• An entanglement efficient protocol for CDQS and PSQM when the target
function f can be evaluated by a quantum circuit with low T -depth (Corol-
laries 6.6.116.6.11 and 6.6.136.6.13)

More broadly our results take position-verification from being an ‘island’ in the
space of cryptographic primitives, with no known classical analogues or connec-
tions to other more standard notions, to being richly connected to a web of in-
terrelated primitives, which themselves are related to central goals in information-
theoretic cryptography. We hope these results lead to new perspectives on position-
verification, and new perspectives in the study of CDS, PSM and related prim-
itives. In particular a number of classical results on CDS and PSM may find
natural quantum extensions in the context of NLQC. In the discussion, we com-
ment on some cases where quantum analogues in the NLQC setting of classical
cryptographic results are not yet known.

Outline of this Chapter

In Section 6.26.2, we present some relevant background. Section 6.2.16.2.1 gives a
summary of the quantum information tools that we exploit. Section 6.2.26.2.2 sum-
marizes the various cryptographic primitives that we study and relate. Section
6.2.36.2.3 gives the relations already known among these primitives.

In Section 6.36.3, we prove new relationships among our set of cryptographic
primitives. The full set of connections is presented as Figure 6.36.3. The rela-
tionships between CDS and CDQS, CDQS and f -routing, CFE and PSQM, and
CDQS and PSQM are new to the best of our knowledge.

In Section 6.46.4, we summarize the known results on the complexity of efficiently
achievable functions in the PSQM, CDQS, and f -routing settings. The status of
the complexity of efficiently achievable functions in the general case is not too
changed by our results: existing CDS protocols give f -routing protocols, but in
the existing literature on both f -routing and CDS the most efficient protocols
have a cost like (log p) · SPp(f) where SP (f) denotes the minimal size of a span
program over Zp computing f [GIKM00GIKM00, CM23CM23].

Sections 6.56.5 and 6.66.6 spell out the implications for non-local computation and
its special cases that follow from known results in CDS and PSM, and conversely
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the implications for CDS and PSM that follow from known results in non-local
computation. In Section 6.56.5 we give new lower bounds that follow in this way.
In Section 6.66.6 we give new upper bounds for a collection of problems, one of the
most important being a function believed to be outside of P/poly for which an
efficient f -routing protocol exists. In Section 6.76.7 we include the most significant
implication that follows from the connections we find, which is a sub-exponential
upper bound on f -routing for arbitrary functions. Relating to this construction,
we find that super-polynomial lower bounds on f -routing schemes are tied to
open problems in computational complexity.

Section 6.86.8 concludes with some discussion and open problems, in particular
commenting on connections to quantum gravity and to some results in the clas-
sical cryptography literature that may have quantum analogues relevant to the
NLQC setting.

6.2 Background

6.2.1 Tools from quantum information theory

In this section, we briefly recall some standard tools of quantum information
theory. We follow the conventions of [Wil13Wil13], where an overview of these tools
and further references can also be found.

We define the diamond norm distance, which is a distance measure on the
space of quantum channels.

6.2.1. Definition. Let NB→C ,MB→C : L(HA) → L(HB) be quantum chan-
nels. The diamond norm distance is defined by

||NB→C −MB→C ||⋄ = sup
d

max
ρAdB

||NB→C(ΨAdB)−MB→C(ΨAdB)||1, (6.1)

where ρAdB ∈ D(HAd
⊗HB) and HAd

is a d dimensional Hilbert space.

The diamond norm distance has an operational interpretation in terms of the
maximal probability of distinguishing quantum channels [KSV02KSV02, Wil13Wil13].

Decoupling and recovery

The basic idea underlying the connection between CDS and f -routing that
we will give is the notion of decoupling and complementary recovery. To develop
this, consider a quantum channel NB→C : L(HB) → L(HC). We would like
to understand when this channel has an (approximate) inverse. Consider any
unitary extension of the channel, call it VBE′→CE, which satisfies

NB→C(·) = TrE(VBE′→CE ·V†BE′→CE). (6.2)
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A classic result [SW02bSW02b, SW02aSW02a] says that if we input a maximally entangled
state |Ψ+⟩AB and find that I(A : E)N (Ψ+) is small, say less than ϵ, then there
exists an inverse channel N−1

B→C which works well in the sense that the fidelity

F (Ψ+,N−1
B→C ◦NB→C(Ψ

+)) ≥ 1−√
ϵ. (6.3)

The inverse channel is succeeding when acting on the maximally entangled state,
which can also be understood as acting correctly in an averaged (over input states)
sense.

We will make use of a stronger notion of decoupling, which shows that a worst-
case notion of decoupling implies the existence of an inverse channel that always
succeeds. The theorem was proved in [KSW08bKSW08b].

6.2.2. Theorem. Let NA→B : L(HA) → L(HB) be a quantum channel, and let
N c

A→E be the complementary channel. Let SA→E be a completely depolarizing
channel, which traces out the input and replaces it with a fixed state σE. Then
we have that

1

4
inf

DB→A

||DB→A ◦NA→B − IA→A||2⋄ ≤ ||N c
A→E − SA→E||⋄

≤ 2 inf
DB→A

||DB→A ◦NA→B − IA→A||1/2⋄ , (6.4)

where the infimum is over all quantum channels DB→A.

6.2.2 Definitions of the primitives

In this section, we give the definitions of each of the primitives that we discuss in
this chapter. Note that we focus on information-theoretic definitions of security.
In all cases there are meaningful versions of these primitives with computational
security, but we have not explored their connections to non-local computation.

Conditional disclosure of secrets

We first define the classical CDS setting, which we also illustrate in Figure
6.2a6.2a.

6.2.3. Definition. A conditional disclosure of secrets (CDS) task is de-
fined by a choice of function f : {0, 1}2n → {0, 1}. The scheme involves inputs
x ∈ {0, 1}n given to Alice, and inputs y ∈ {0, 1}n given to Bob. Alice and Bob
share a random string r ∈ R. Additionally, Alice holds a string s drawn from the
distribution S, which we call the secret. Alice sends message m0(x, s, r) to the
referee, and Bob sends message m1(y, r). We require the following two conditions
on a CDS protocol.

• ϵ-correct: There exists a decoding function D(m0, x,m1, y) such that

∀s ∈ S, ∀ (x, y) ∈ X × Y s.t. f(x, y) = 1, Pr
r←R

[D(m0, x,m1, y) = s] ≥ 1− ϵ.

(6.5)
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• δ-secure: There exists a simulator producing a distribution Sim on the
random variable M =M0M1 such that

∀s ∈ S, ∀ (x, y) ∈ X × Y s.t. f(x, y) = 0, ||SimM |xy − PM |xys||1 ≤ δ.

(6.6)

Notice that in our definition of CDS we have imposed that the secret be held
only by Alice. We can easily transform protocols that succeed with the secret
held on both sides to one where the secret is held only on one side. This is a
standard remark about CDS, though we do not know a reference where this is
shown in the imperfect setting, so we give a simple proof of this fact here.

6.2.4. Remark. A CDS task in which s is initially held by Alice and Bob can
be turned into one where only Alice holds s at the cost of |s| shared random bits,
and |s| bits of communication. If the CDS protocol is ϵ-correct and δ-secure, the
one-sided protocol will be ϵ-correct and O(

√
δ) secure.

Proof:
To see this, suppose that we have a perfectly correct and secure CDS protocol
which works when s is held on both sides. Then run this protocol on a randomly
chosen s′, and have Alice send s′ ⊕ s to the referee. Only Alice needs to know s
to run this protocol.

Suppose that our initial CDS protocol is ϵ-correct and δ-secure. Then the new
CDS will also be ϵ-correct, since s can be computed deterministically from s′ and
the bit s̃ = s ⊕ s′. To understand security, note that δ-security of the original
protocol implies

||PS′M − PS′PM ||1 ≤ δ. (6.7)

Using this, PSS̃ = PSPS̃ (from the properties of the one-time pad), and that S
and M are independent conditioned on S̃, we have

||PSS̃M − PSPS̃PM ||1 = ||PS|S̃MPS̃M − PSPS̃PM ||1
= ||PS|S̃PS̃M − PSPS̃PM ||1
≤ ||PS|S̃PS̃PM − PSPS̃PM ||1 + δ

= ||PSS̃PM − PSPS̃PM ||1 + δ

= δ, (6.8)

which is exactly δ security of the one-sided CDS protocol. 2

Finally, we remark that a CDS for secret s1 and a CDS for secret s2 can be
run in parallel using fresh randomness while maintaining security and correctness
of each CDS scheme. To see this, call the message for the first CDS M1 and the
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message for the second CDS M2. If we consider how much the referee can learn
about the secret s1, message M2 does not reveal anything, because it depends
only on the randomness r2, the inputs (which the referee knows already as part of
the CDS for s1), and s2. All of these variables are already known by the referee
as part of the CDS for s1, or are uncorrelated with s1. More succinctly, the
distribution on s1 is independent of M2 when conditioning on XY , so revealing
M2 does not help the referee learn s1, given that they already know XY , or in
notation

PM1M2|xys = PM1|xys1PM2|xys2 . (6.9)

A similar statement establishes security of the CDS hiding s2 in the presence of
message M1.

As a consequence of the above comments, the CDS hiding secret s = (s1, s2)
given by running the CDS for each secret in parallel has good security and cor-
rectness, as we capture in the next lemma.55

6.2.5. Lemma. Suppose we have a CDS for function f which is ϵ-correct and
δ-secure, hides k bits and uses r bits of randomness and c bits of communication.
Then we can build a CDS for function f that hides mk bits, is mϵ correct and
mδ secure and which uses mr bits of randomness and mc bits of communication.

Proof:
The strategy is to repeat the CDS protocol that hides k bits m times in parallel.
To understand the correctness of the new protocol, notice that on 1 instances the
probability of the referee guessing si correctly is at least 1−ϵ, so their probability
of guessing all m strings si correctly is at least (1−ϵ)m ≥ (1−mk). To understand
security, we define a simulator for the composed protocol by taking the product
of the distributions for a single instance of the protocol,

SimM1...Mm|xy ≡ SimM1|xy...SimMm|xy. (6.10)

We also note that, using fresh randomness for each instance of the CDS, we can
extend Equation 6.96.9 to

PM1...Mm|xys = PM1|xys1 ...PMm|xysm . (6.11)

Then by repeated application of the triangle inequality, and using security of each
instance of the CDS, we have that on 0 instances

||SimM1...Mm|xy − PM1...Mm|xys||1 = ||SimM1|xy...SimMm|xy − PM1|xys1 ...PMm|xys||1
≤ mδ,

as claimed. 2
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Figure 6.4: (a) Illustration of a CDQS protocol. Alice and Bob share an entangled
resource state, illustrated as the solid curved line. Alice receives the classical
string x ∈ {0, 1}n as input, and a quantum system Q, which we take to be
maximally entangled with a reference R. Bob receives input y ∈ {0, 1}n. Alice
and Bob prepare quantum systems M0 and M1, which they pass to the referee.
The protocol is correct if when f(x, y) = 1 the map from Q to M0M1 can be
reversed, and secure when for f(x, y) = 0 the M =M0M1 system is independent
of the input state on Q. See definition 6.2.66.2.6. (b) A PSQM protocol. Again Alice
and Bob share an entangled resource state. Alice receives input x ∈ {0, 1}n, Bob
receives input y ∈ {0, 1}n. Alice and Bob prepare quantum systems M0 and M1,
which they pass to the referee. The protocol succeeds if the referee can determine
f(x, y), but the system M = M0M1 otherwise reveals nothing about the inputs
x, y. See definition 6.2.86.2.8.
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Conditional disclosure of quantum secrets

To the best of our knowledge the quantum analogue of the CDS model has not
been studied explicitly in the literature.66 We give a definition here which features
quantum resources and a quantum secret. The CDQS primitive is illustrated in
Figure 6.4a6.4a.

6.2.6. Definition. A conditional disclosure of quantum secrets (CDQS)
task is defined by a choice of function f : {0, 1}2n → {0, 1}, and a dQ dimensional
Hilbert space HQ which holds the secret. The task involves inputs x ∈ {0, 1}n
and system Q given to Alice, and input y ∈ {0, 1}n given to Bob. Alice sends
message system M0 to the referee, and Bob sends message system M1. Label the
combined message systems as M = M0M1. Label the quantum channel defined
by Alice and Bob’s combined actions N xy

Q→M . We put the following two conditions
on a CDQS protocol.

• ϵ-correct: There exists a channel Dx,y
M→Q, called the decoder, such that

∀(x, y) ∈ X × Y s.t. f(x, y) = 1, ||Dx,y
M→Q ◦N x,y

Q→M − IQ→Q||⋄ ≤ ϵ.

(6.12)

• δ-secure: There exists a quantum channel Sx,y
∅→M , called the simulator,

such that

∀(x, y) ∈ X × Y s.t. f(x, y) = 0, ||Sx,y
∅→M ◦ TrQ−N x,y

Q→M ||⋄ ≤ δ. (6.13)

The notions of ϵ-correctness and δ-security given here closely mimic the classical
ones. In words, the correctness condition says that when f(x, y) = 1 the referee
can reverse the effect of Alice and Bob’s actions on the Q system. The security
condition says that when f(x, y) = 0 the system M seen by the referee is close to
one that they could have prepared with no access to Q.

In our definition of CDQS, we require that a quantum system Q be taken as
the secret, and allow the use of quantum resources. Another quantum variant
of CDS we could have defined would allow quantum resources but restrict to a
classical secret. We could call this CDQS’. This variant is in fact equivalent to the
above definition. This follows from our proof below that classical CDS protocols
gives quantum CDS protocols, which is easily modified to show a CDQS’ gives
CDQS with similar resources. Then one can observe that a CDQS protocol can
be modified to a CDQS’ protocol by choosing the secret to be a state in a chosen
basis. Together, these observations give that CDQS’ and CDQS are equivalent.

Private simultaneous message passing
5This is a simple, but weak, method of obtaining a CDS for a long secret from CDS for a

short secret. It will suffice for our purposes, but see [AARV21AARV21, AA20AA20] for improved results.
6It has been studied in an indirect way, since (as we show later) it is equivalent to f -routing.
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Next, we move on to discuss another basic cryptographic primitive of interest
in this chapter, which is private simultaneous message passing. This primitive is
illustrated in Figure 6.2b6.2b.

6.2.7. Definition. A private simultaneous message (PSM) task is defined
by a choice of function f : X×Y → Z. The inputs to the task are n-bit strings x
and y given to Alice and Bob, respectively. Alice then sends a message m0(x, r)
to the referee, and Bob sends message m1(y, r). From these inputs, the referee
prepares an output bit z. We require that the task be completed in a way that
satisfies the following two properties.

• ϵ-correctness: There exists a decoder Dec such that

∀(x, y) ∈ X × Y, Pr[Dec(m0,m1) = f(x, y)] ≥ 1− ϵ. (6.14)

• δ-security: There exists a simulator producing a distribution Sim on the
random variable M =M0M1 such that

∀(x, y) ∈ X × Y, ||SimM |f(x,y) − PM |xy||1 ≤ δ. (6.15)

Stated differently, the distribution of the message systems is δ-close to one
that depends only on the function value, for every choice of x, y.

In PSM we can allow the function f to take Boolean or other values. For
instance, we can take f to be a natural number valued and defined by a counting
problem. Another comment is that PSM protocols can be run in parallel, in the
sense that ϵ-correct and δ-secure protocols for f1(x, y) and f2(x, y) can be run
together to give a 2ϵ-correct and 2δ-secure protocol for the function f(x, y) =
(f1(x, y), f2(x, y)). This is straightforward to show from the security definition.

Private simultaneous quantum message passing (PSQM)

As with CDS, there is a natural quantum version of PSM. In this case, the
functionality of the protocol is unchanged, but the allowed resources are now
quantum mechanical. A PSQM protocol is shown in Figure 6.6a6.6a.

6.2.8. Definition. A private simultaneous quantum message (PSQM) task is
defined by a choice of function f : X × Y → Z. The inputs to the task are n-bit
strings x and y given to Alice and Bob, respectively, each of which are chosen
independently and at random. Alice then sends a quantum message system M0

to the referee, and Bob sends a quantum message system M1. From the combined
message system M = M0M1, the referee prepares an output bit z. We require
that the task be completed in a way that satisfies the following two properties.
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• ϵ-correctness: There exists a decoding map VM→ZM̃ such that ∀(x, y) ∈
X × Y : ∣∣∣∣∣∣TrM̃(VM→ZM̃ρM(x, y)V†

M→ZM̃
)− |fxy⟩⟨fxy|Z

∣∣∣∣∣∣
1
≤ ϵ. (6.16)

where ρM(x, y) is the density matrix on M produced on inputs x, y.

• δ-security: There exists a simulator, which is a quantum channel SZ→M(·),
such that ∀(x, y) ∈ X × Y :∣∣∣∣ρM(x, y)− SZ→M(|fxy⟩⟨fxy|Z)

∣∣∣∣
1
≤ δ. (6.17)

Stated differently, the state of the message systems is δ-close to one that
depends only on the function value, for every choice of input.

Just like in the classical case, PSQM protocols can be run in parallel with
only small relaxations in security and correctness.

Decomposable randomized encodings

A related primitive, which we shall make briefer use of, is the notion of a
decomposable randomized encoding. We recall some definitions given in [CPS13CPS13].

6.2.9. Definition. Let X, Y, Ŷ , R be finite sets and let f : X1 × ...×Xn → Y .
A function f̂ : X ×R → Ŷ is an ϵ-correct and δ-private randomized encoding
for f if it satisfies

• ϵ-correctness: There exists a function Dec called a decoder such that for
every x ∈ X and r ∈ R we have

Pr[Dec(f̂(x, r)) = f(x)] ≥ 1− ϵ. (6.18)

• δ-privacy: There exists a randomized function, called a simulator, produc-
ing the random variable Sim such that

||SimŶ |Y − PŶ |X ||1 ≤ δ. (6.19)

6.2.10. Definition. A decomposable randomized encoding (DRE) for a
function f : X1 × ...×Xn → Y is a randomized encoding of f that has the form

f̂(x1, ..., xn; r) = (f̂1(x1, r), ..., f̂n(xn, r)). (6.20)

A DRE is ϵ-correct and δ-secure under the same conditions as a randomized
encoding, given above.
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We will in fact only use that certain randomized encodings are decomposable
across a single splitting of the inputs. That is we are interested in functions
f : X × Y → Z and need the randomized encoding to take the form

f̂(x, y; r) = (f̂1(x, r), f̂2(y, r)). (6.21)

In this setting we will say f(x, y) has a randomized encoding decomposable across
X × Y .

Non-local computation

Finally, we come to the notion of a non-local computation, which was first
studied in the context of cheating strategies for position-verification tasks. The
general setting is shown in Figure 6.16.1. A non-local computation takes the form
shown in Figure 6.1b6.1b, with the goal being to simulate the action of a local unitary
(Figure 6.1a6.1a).

We will not give a formal definition of a fully general NLQC here but instead
focus on two special cases. The first, f -routing, was introduced in [KMS11KMS11] and
studied further in [BFSS13BFSS13]. It has been especially well studied in the non-local
computation literature because it is of interest in developing practical position-
verification schemes. We will also see that it is closely related to the CDQS
primitive.77

6.2.11. Definition. An f-routing task is defined by a choice of Boolean func-
tion f : {0, 1}2n → {0, 1}, and a d dimensional Hilbert space HQ. Inputs
x ∈ {0, 1}n and system Q are given to Alice, and input y ∈ {0, 1}n is given
to Bob. Alice and Bob exchange one round of communication, with the com-
bined systems received or kept by Bob labeled M and the systems received or
kept by Alice labeled M ′. Label the combined actions of Alice and Bob in the first
round as N x,y

Q→MM ′ . The f -routing task is completed ϵ-correctly if there exists a
channel Dx,y

M→Q such that,

∀(x, y) ∈ X × Y s.t. f(x, y) = 1, ||Dx,y
M→Q ◦ TrM ′ ◦N x,y

Q→MM ′ − IQ→Q||⋄ ≤ ϵ,

(6.22)

and there exists a channel Dx,y
M ′→Q such that

∀(x, y) ∈ X × Y s.t. f(x, y) = 0, ||Dx,y
M ′→Q ◦ TrM ◦N x,y

Q→MM ′ − IQ→Q||⋄ ≤ ϵ.

(6.23)

In words, Bob can recover Q if f(x, y) = 1 and Alice can recover Q if f(x, y) = 0.
7Our definition here gives a particular notion of an ϵ-correct f -routing scheme, which requires

the protocol route an arbitrary quantum state correctly. Other definitions [BCS22BCS22] require
correct action on only the maximally entangled state. For inputs of a fixed size, these are
equivalent.
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The second special case that we study is coherent function evaluation. We
introduce this as the special case of NLQC that implies the PSQM primitive,
as we show below. In addition, it is similar to non-local computations studied
in [JKPPG21JKPPG21], which used Banach space techniques to study lower bounds on
quantum resources in these non-local computations.

6.2.12. Definition. A coherent function evaluation (CFE) task is defined
by a choice of a Boolean function f : {0, 1}2n → {0, 1}. The task is to implement
the isometry

Vf =
∑
xy

|xy⟩Z′ |fxy⟩Z ⟨x|X ⟨y|Y , (6.24)

in the non-local form of Figure 6.1b6.1b. We say that a CFE protocol is ϵ-correct
if the diamond norm distance between Vf and the implemented channel is not
larger than ϵ.

Secret sharing

An important tool throughout cryptography, and in particular in our context,
is the notion of a secret-sharing scheme. We introduce this next.

6.2.13. Definition. A secret sharing scheme S is a map from a domain K
and randomness R to variables S1, ..., Sn, here called shares. Let A be a subset
of the Si, SA the distribution on the shares A, and A a set of subsets of the Si.
Then a scheme S realizes the access structure A with ϵ-correctness if, for each
subset of shares A ∈ A there exists a decoding map DA : A→ K such that

∀s ∈ K, Pr[DA(SA) = s] ≥ 1− ϵ. (6.25)

A scheme S is δ-secure if, whenever U /∈ A, there exists a map that produces a
distribution Sim on U such that

||SimU − SU |K ||1 ≤ δ. (6.26)

If ϵ = δ = 0 we say that the scheme S is perfect.

The access structure of a secret scheme can be specified as a set of subsets of
shares, as in the above definition, or equivalently in terms of an indicator func-
tion. The indicator function is defined by

fI(x) =

{
1 if {Si : xi = 1} ∈ A,
0 otherwise.

(6.27)

We can observe that if A ∈ A then necessarily A ∪ Si ∈ A. This follows because
if we can reconstruct the secret from A, we can also reconstruct it from a larger
set. This means that valid indicator functions will always be monotone.
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The garden hose game

The garden hose game [BFSS13BFSS13] is a model of communication complexity
defined, informally, as follows. Alice and Bob are neighbors and wish to compute
a function f(x, y), where Alice holds the input x and Bob the input y. They have
a set of m pipes that run through their fence and connect the two yards. Alice
has a tap, which she can connect to any of the pipe openings on her side of the
fence. Alice and Bob additionally have hoses, which they can use to connect the
ends of the pipes on the same side of the fence. Their strategy is to choose how
to connect the tap to the pipes, and connect pipes to each other with hoses, in a
way that depends on their respective inputs. Then, Alice turns on the tap. Alice
and Bob win the garden hose game if the water spills on Alice’s side of the fence
when f(x, y) = 0, and on Bob’s side of the fence when f(x, y) = 1. For a formal
definition of the garden-hose game, we refer the reader to [BFSS13BFSS13].

The garden hose game gives an interesting notion of the communication com-
plexity of a function, which we formalize next.

6.2.14. Definition. The garden-hose complexity of a function f : {0, 1}n ×
{0, 1}n → {0, 1} is the minimal number of pipes needed to complete the garden
hose game for the function f(x, y) deterministically.

All functions can be computed in the garden hose game. To see why, observe
that for any f(x, y) Alice and Bob can carry out the following strategy. They
prepare 2n+1 pipes, which we label as {pi, p′i}ni=1. Upon receiving input x, Alice
connects her tap to pipe px. Bob connects pipe pi to p′i whenever f(i, y) = 0,
and leaves it open otherwise. Upon turning on the tap, the water flows through
pipe px, then back to Alice if f(x, y) = 0 and spills on the right otherwise, as
needed. A sightly smarter strategy lowers the worst case garden-hose complexity
to 2n + 1. See [BFSS13BFSS13].

Other related primitives

Each of the primitives discussed above is, in turn, related to others in various
ways. Reviewing these further connections is beyond the scope of this chapter.
Instead, we have included in our discussion only new connections among primi-
tives, or primitives for which we have found that the connection to NLQC gives
a new result on NLQC, or for which NLQC implies a new result on the primitive.
We briefly mention, however, some settings with natural relationships to the ones
discussed here; our list and references are not exhaustive. CDS and PSM are re-
lated to zero-knowledge proofs [AR17AR17], secret sharing [ABNP20ABNP20], communication
complexity [AV21AV21], private information retrieval [IK97IK97], and secure multiparty
computation [IK97IK97]. A useful review of these primitives and the broader con-
text of information-theoretic cryptography is given in [Ben20Ben20]. Quantum secret
sharing was related to f -routing in [CM23CM23]. All of these connections may be
interesting to revisit in the quantum setting, and in light of the connection to
non-local computation and position-verification.
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6.2.3 Existing relations among primitives

SS gives CDS

In [GIKM00GIKM00], the authors upper bound the randomness complexity of a CDS
scheme in terms of the size of a secret sharing scheme whose access structure is
related to f . We recall their result next, narrowing their result to the two-player
case for simplicity.

6.2.15. Theorem. Let fM : {0, 1}m × {0, 1}m → {0, 1} be a monotone Boolean
function and let f : {0, 1}n × {0, 1}n → {0, 1} be a projection of fM , that is
f(x, y) = fM(g1(x), g2(y)). Let S be a perfect secret sharing scheme realizing
the access structure fM , in which the total share size is c, and let s denote a
secret (from the domain of S) which is known to all players. Then there exists a
CDS protocol for disclosing s subject to the condition f with randomness c, and a
(perhaps different) protocol with communication complexity bounded above by c.

The protocol which establishes this theorem is, heuristically, the following. We
start by illustrating the case where f = fM is already a monotone function, and
so can be realized as the indicator function of some secret sharing scheme S. Then
the protocol is as follows. Without loss of generality, take Alice and Bob to both
hold the secret s (see Remark 6.2.46.2.4). To carry out the protocol, both parties
prepare a secret sharing scheme S which has indicator function fM , using their
shared randomness as the randomness R needed to prepare the scheme. Then,
Alice sends those shares Si to the referee for which xi = 1, and Bob sends those
shares Si+n for which yi = 1. Then if fM(x, y) = 1, following this local rule,
they will have collectively sent an authorized set of shares, and the referee can
reconstruct the secret s. If fM(x, y) = 0, they will have sent an unauthorized
set of shares and the referee cannot learn the secret. To extend this to non-
monotone functions, Alice and Bob first locally compute g1 and g2 respectively,
and then perform the same secret sharing protocol now with bits of g1(x) or g2(y)
controlling which shares are sent to the referee. Notice that the communication
complexity is at most the total size of the shares of the secret sharing scheme.

To see the protocol that gives an upper bound for the randomness complexity88,
we now have only Alice prepare the shares of the secret sharing scheme. For
shares i ≤ n, she sends share Si if xi = 1 as before. For shares i > n, she sends
Si ⊕ ri, where the XOR is taken bitwise with a random string ri of length |Si|.
Bob then sends ri iff yi = 1. Notice that the randomness complexity now is at
most

∑
i ri ≤

∑
i |Si|, which is just the size of the scheme. The communication

complexity is now somewhat larger, but is bounded by twice the size.
We can also generalize the above theorem to the case of approximate secret

sharing schemes. In particular, if we use an approximate secret sharing scheme
in the second of the protocols above, we find that an ϵ-correct and δ-secure secret

8This protocol is not given in [GIKM00GIKM00], but is a straightforward extension of their idea.
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sharing scheme of size c for an indicator function fI leads to an ϵ-correct and
δ-secure CDS for the same function, using randomness complexity c. A similar
observation holds for the protocol bounding the communication complexity. We
collect these observations as the following remark.

6.2.16. Remark. Let fM : {0, 1}m × {0, 1}m → {0, 1} be a monotone Boolean
function and let f : {0, 1}n × {0, 1}n → {0, 1} be a projection of fM , that is,
f(x, y) = fM(g1(x), g2(y)). Let S be a ϵ-correct and δ-secure secret sharing scheme
realizing the access structure fM , in which the total share size is c, and let s denote
a secret (from the domain of S) which is known to all players. Then there exists
an ϵ-correct and δ-secure CDS protocol disclosing s subject to the condition f
with randomness c, and a (perhaps different) ϵ-correct and δ-secure protocol with
communication complexity bounded above by c.

DRE gives PSM

See for example [CPS13CPS13] for the connection between DRE and PSM. We give
a robust version of this connection as the next theorem.

6.2.17. Theorem. Suppose that f : X × Y → Z has an ϵ-correct and δ-secure
decomposable randomized encoding using nR bits of randomness, and nM message
bits. Then there is a ϵ-correct and δ-secure PSM protocol for f that uses the same
amount of randomness and message bits.

Proof:
Let the DRE for f be

f̂(x, y; r) = (f̂X(x, r), f̂Y (y, r)). (6.28)

To implement the PSM protocol, Alice prepares f̂X(x, r) and sends this to the
referee, while Bob prepares f̂Y (y, r) and sends this to the referee. The referee then
uses the decoder for the DRE to determine f(x). Noticing that the conditions on
the DRE and PSM are in fact exactly the same under these identifications, we
have that the PSM is also ϵ-correct and δ-secure. 2

Notice that a PSM for f also gives a randomized encoding for the function f ,
albeit one that is decomposable across a particular splitting of the input bits into
X ×Y , and not necessarily decomposable bitwise, as required in the definition of
a DRE.

PSM gives CDS

Next, we relate the PSM and CDS primitives. See for example [GIKM00GIKM00,
AR17AR17].
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6.2.18. Theorem. Suppose that a ϵ-correct and δ-private PSM protocol exists for
f(x, y) using messages of at most nM bits and no more than nE shared random
bits. Then a CDS protocol using nM+1 bits of message and nE random bits exists
which is ϵ-correct and O(δ log dR) private, and hides one bit.

Proof:
We wish to carry out the CDS task using the given PSM protocol. First, we note
that by adding one bit of randomness we can assume s is held by both Alice and
Bob. This is because of remark 6.2.46.2.4.

Next, we show that given the PSM protocol for f there is a similarly efficient
PSM for the function f(x, y) ∧ s, with s held on both sides. To show this, first
consider the case where f(x, y) is a constant function. Then Alice and Bob can
follow a fixed strategy (reveal s or not), and we are done. Thus we assume
f(x, y) is non-constant, and choose any input values for which it is 0 and label
them (x∗, y∗). Run the PSM on inputs x′ = sx+(1−s)x∗ and y′ = sy+(1−s)y∗.
Then notice that f(x′, y′) = f(x, y) ∧ s.

To see ϵ-correctness, we have the referee output the outcome of the modified
PSM protocol as their guess for the secret s. Then their success probability
conditioned on f(x, y) = 1 is exactly 1− ϵ, so the CDS protocol is 1− ϵ correct.

Next, consider security. Let the distribution of values of f(x, y) be F , the
distribution of values of f(x′, y′) be F ′, and the distributions of x′ and y′ be X ′
and Y ′, respectively. Security of the original PSM protocol implies

||SimM |F ′ − PM |X′Y ′ ||1 ≤ δ. (6.29)

Then notice that because X ′Y ′ are determined by XY S, we have PM |X′Y ′ =
PM |XY S. Next, restrict to the distributions where f(x, y) = 0, leading to

||SimM |F ′=0 − PM |XY S||1 ≤ δ, (6.30)

which is δ security of the CDS. 2

PSM gives PSQM

Next, we prove that a protocol for PSM also gives a protocol for PSQM.
This might seem trivial, since the quantum resources available in the PSQM can
simulate the classical resources used in the PSM, but establishing security requires
that we show that the classical security definition is strong enough to enforce the
quantum security definition. As far as we are aware this is not written in the
literature (but see [KN21KN21] for the introduction of PSQM), but it is straightforward
enough that we include it in this section.

6.2.19. Theorem. Suppose we have a PSM protocol which is ϵ-correct and δ-
secure. Then we can construct a PSQM protocol which is 2

√
ϵ correct and δ-

secure.
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Proof:
Correctness of the PSM protocol implies that there exists a decoder Dec(m0,m1)
such that

∀(x, y) ∈ X × Y Pr[Dec(m0,m1) = f(x, y)] ≥ 1− ϵ, (6.31)

where the probability is over choices of the random string r. In quantum notation,
we have that the message system is described by the density matrix

ρM(x, y) =
∑
m

p(m|x, y) |m⟩⟨m| , (6.32)

and can write the output of the decoder as

DM→Z(ρM(x, y)) =
∑
m

p(m|x, y) |D(m)⟩⟨D(m)| . (6.33)

Then notice that

F (DM→Z(ρM(x, y)), |fxy⟩) =
∑
m

p(m|x, y)| ⟨D(m)⟩ fxy|2 ≥ 1− ϵ, (6.34)

where the last line follows because we see the fidelity is exactly the guessing
probability, which is bounded from below by the classical correctness definition.
Using the Fuchs-van de Graaf inequalities, we get

||DM→Z(ρM(x, y))− |fxy⟩⟨fxy| ||1 ≤ 2
√
ϵ, (6.35)

as needed.
Next recall security of the PSM means that there exists a simulator which

takes in f(x, y) and produces output distribution Sim on the message system
such that

∀(x, y) ∈ X × Y, ||SimM |f(x,y) − PM |xy||1 ≤ δ. (6.36)

To obtain security of the PSQM, we need to upgrade this simulator to a quantum
channel. In particular if the simulator is defined by the conditional probability
distribution p(m|f), define the Kraus operators

Sm,f =
√
p(m|f) |m⟩⟨f | . (6.37)

Calling the corresponding simulator channel S, we have that

||S(|fxy⟩⟨fxy|)− ρM(x, y)||1 = ||SimM |f(x,y) − PM |xy||1 ≤ δ, (6.38)

so we have exactly δ security of the PSQM. 2

GH gives f-routing

In [BFSS13BFSS13], the following statement is shown.
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6.2.20. Theorem. The number of EPR pairs needed to implement an f -routing
protocol for a function f is upper bounded by the garden-hose complexity of f .

We will not reproduce a careful proof of this, but it is easy to see: each
pipe in the garden hose protocol is replaced with an EPR pair in the f-routing
strategy. Connecting pipes corresponds to measuring pairs of systems in the Bell
basis. Doing so, the input system Q will end up recorded into the Hilbert space
corresponding to spilling end of one of the pipes. Pauli corrections appear on this
state, but the one round of communication in the f -routing strategy can be used
to communicate all the measurement outcomes and then undo the corresponding
corrections.

6.3 New relations among primitives

This section begins our study of the relationships among the cryptographic prim-
itives introduced in Section 6.2.26.2.2.

6.3.1 Garden hose strategies give CDS

We point out that the garden hose game defines strategies for CDS.

6.3.1. Theorem. The garden-hose complexity of a function f(x, y) upper bounds
the CDS cost,

CDS(f) ≤ GH(f). (6.39)

Proof:
To show this, we construct a CDS protocol given a garden-hose protocol that uses
a number of shared random bits equal to the number of pipes in the garden hose
protocol.

Label the set of pipes used in the garden hose game pi with the tap labeled
p0, the connections on Alice’s side by Cx = {(pi, pj)}, and the connections on
Bob’s side by Cy = {(pi, pj)}. Note that because no hose can be connected to two
pipes, each pi appears in Cx at most once, and in Cy at most once. Correctness
of the garden hose protocol means that for all (x, y), there is a path from the tap
to the side labeled by f(x, y).

To turn this into a CDS protocol, we proceed as follows. Each pipe pi, i > 0,
becomes a shared random bit held by Alice and Bob. The secret s corresponds
to the tap p0. For each connection in Cx, say (pi, pj), Alice computes cij = pi⊕pj
and sends this to the referee. Bob does the same for each connection in Cy.
Finally, Bob sends each shared random bit pk not appearing in any connection in
Cy to the referee. In contrast, Alice’s unused random bits are kept hidden from
the referee.
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To see why this is correct and secure, consider the chain of connection bits
cikik+1

= pik ⊕ pik+1
, where pi0 = s is the secret. If the chain is of length 0, this

corresponds to an unconnected tap in the garden-hose picture, so that f(x, y) = 0
and the water spills on the left. In the CDS protocol, the secret, being an un-
XOR’d bit, is not sent to the referee, so that the referee cannot learn the secret,
as needed. Now suppose the chain has length > 1. Then ci0i1 = s ⊕ pi1 is sent
to the referee, and no other bits which are computed from s are sent, so that the
referee learns s if and only if they learn pi1 . Continuing in this way down the
chain of connection bits, we see that the referee learns s if and only if they learn
pim , the final random bit (corresponding to the final pipe in the waters path).
But then pim is not used to compute any other bits (by virtue of being at the end
of the chain), and is sent if and only if it is unused on the right. But it is unused
on the right if and only if the corresponding pipe spills on the right, which by our
assumption of correctness of the garden hose strategy is if and only if f(x, y) = 1.
2

6.3.2 Classical CDS gives quantum CDS

In this section, we observe that a classical CDS scheme immediately gives a
quantum CDS scheme, via a use of the one-time pad.

6.3.2. Theorem. An ϵ-correct and δ-secure CDS protocol hiding 2n bits and
using nM bits of message and nE bits of randomness gives a CDQS protocol which
hides n qubits, is 2

√
ϵ correct and δ-secure using nM classical bits of message plus

n qubits of message, and nE classical bits of randomness.

Proof:
Let the quantum system to be hidden in the CDQS be labeled Q. The basic idea
is to use the CDS protocol to hide the key of a one-time pad applied to the system
Q. The encoded system Q is sent to the referee. The one-time pad key, call it s,
consists of 2 log dQ bits, which we choose independently and at random and hide
in the CDS. The channel applied by Alice and Bob’s combined actions is then

N xy
Q→QM(·) = 1

2|s|

∑
m,s

P s
Q(·)P s

Q ⊗ pm|xys |m⟩⟨m|M . (6.40)

We first study correctness. To do this, we recall that correctness of the classical
CDS guarantees the existence of a decoder which produces an outcome which is
equal to the secret value with probability 1 − ϵ. In quantum notation, we can
describe this channel as

DecxyM→S(·) =
∑
m,s′

ps′|mxy |s′⟩S ⟨m|M · |m⟩M ⟨s′|S . (6.41)
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The correctness condition for CDS states that, for (x, y) ∈ f−1(1) this produces
a guess s′ which agrees with the secret s, or more precisely,

F

(
Decxy(

∑
m

pm|sxy |m⟩⟨m|), |s⟩⟨s|
)

≥ 1− ϵ. (6.42)

Relating this to the trace distance via the Fuchs-van de Graaf inequalities, this
becomes,

∑
s′

(∑
m

ps′|mxypm|sxy − δs′|s

)
≤ 2

√
ϵ, (6.43)

where δs|s′ = 1 if s = s′ and is zero otherwise. We will use this statement in
establishing correctness of the CDQS.

Define the decoding channel for the CDQS by combining the classical decoder
with a conditional application of P s′

Q , then a trace over the register S holding the
secret, so that our decoder is

Dxy
QM→Q(·) =

∑
m,s′

ps′|mxyP
s′

Q ⊗ ⟨m|M · P s′

Q ⊗ |m⟩M . (6.44)

We need to bound the diamond norm ||Dxy
QM→Q ◦N xy

Q→M ′ −IQ→Q||⋄ from above.
From the definition of the diamond norm and the channels Dxy

QM→Q,N
xy
Q→M ′ , this

is

||DQM→Q ◦N xy
Q→M ′ − IQ→Q||⋄

= sup
n

max
ΨRnQ

|| 1

2|s|

∑
m,s,s′

ps′|mxypm|sxyP
s+s′

Q ΨRnQP
s+s′

Q −ΨRnQ||1

= sup
n

max
ΨRnQ

|| 1

2|s|

∑
m,s,s′

ps′|mxypm|sxyP
s+s′

Q ΨRnQP
s+s′

Q

− 1

2|s|

∑
s,s′

δs|s′P
s+s′

Q ΨRnQP
s+s′

Q ||1

=
1

2|s|

∑
s,s′

(
∑
m

ps′|mxypm|sxy − δs′|s) sup
n

max
ΨRnQ

||P s+s′

Q ΨRnQP
s+s′

Q ||1

=
1

2|s|

∑
s,s′

(
∑
m

ps′|mxypm|sxy − δs′|s)

≤ 2
√
ϵ. (6.45)

where we used Equation 6.436.43 in the last line, which recall held for all (x, y) ∈
f−1(1).
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To establish security of the CDQS, we define the simulator channel as99

Sxy
∅→MQ =

IQ

dQ
⊗
∑
m

SimM |xy |m⟩⟨m|M . (6.46)

We need to show Sxy
∅→MQ◦TrQ is close to the channel 6.406.40 in diamond norm for all

(x, y) ∈ f−1(0). This follows from security of the CDQS and a simple calculation.
Start with the definition of the diamond norm,

||Sxy
∅→MQ ◦ TrQ −NQ→QM ||⋄

= sup
n

max
ΨRnQ

||Sxy
∅→MQ ◦ TrQ(ΨRnQ)−N xy

Q→QM(ΨRnQ)||1

= sup
n

max
ΨRnQ

||ΨRn ⊗ IQ

dQ
⊗
∑
m

Simm|xy |m⟩⟨m|M

− 1

2|s|

∑
m,s

P s
QΨRnQP

s
Q ⊗ pm|xys |m⟩⟨m|M ||1

= sup
n

max
ΨRnQ

|| 1

2|s|

∑
m,s

P s
QΨRnQP

s
Q ⊗ Simm|xy |m⟩⟨m|M

− 1

2|s|

∑
m,s

P s
QΨRnQP

s
Q ⊗ pm|xys |m⟩⟨m|M ||1, (6.47)

where we used that

ΨRn ⊗ I
dQ

=
1

2|s|

∑
s

P s
QΨRnQP

s
Q. (6.48)

To bound our remaining expression, we take the sum over s out of the trace
distance and find

||Sxy
∅→MQ ◦ TrQ−NQ→QM ||⋄

=
1

2|s|

∑
s

||(P s
QΨRnQP

s
Q)⊗

(∑
m

Simm|xy |m⟩⟨m|M −
∑
m

pm|xys |m⟩⟨m|M

)
||1

=
1

2|s|

∑
s

||SimM |xys − pM |xys||1 ≤ δ. (6.49)

where the last inequality is coming from security of the classical CDS. 2

9Notice a potential confusion around the notation here: M is the message system of the
CDS, M ′ =MQ is the message system of the CDQS.
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Figure 6.5: Corresponding CDQS (left) and f -routing (right) protocols. To define
the CDQS protocol from the f -routing protocol, we have Alice and Bob trace out
systems M ′

0 and M ′
1. Systems M0 and M1 are sent to the referee rather than to

Bob. To define the f -routing protocol from the CDQS, purify the local channels
N L and NR to isometries VL and VR. Send the original outputs of the channel
to Bob on the right, and the purifying systems to Alice on the left. We adopt the
notation M =M0M1 and M ′ =M ′

0M
′
1.

6.3.3 Equivalence of f-routing and CDQS

Our main claim of this section is that the CDQS and f -routing scenarios are
equivalent, in that a protocol for one induces a protocol for the other using similar
resources. The basic idea underlying the equivalence, and labeling of the various
subsystems used in the proof, is illustrated in Figure 6.56.5.

6.3.3. Theorem. A ϵ-correct f -routing protocol that routes n qubits implies the
existence of a ϵ-correct and δ = 2

√
ϵ-secure CDQS protocol that hides n qubits

using the same entangled resource state and the same message size. A ϵ-correct
and δ-secure CDQS protocol hiding secret Q using a nE qubit resource state nM

qubit messages implies the existence of a max{ϵ, 2
√
δ}-correct f -routing protocol

that routes system Q using nE qubits of resource state and 4(nM + nE) qubits of
message.

Proof:
Begin by considering an f -routing protocol. Figure 6.56.5 establishes the subsystem
labels we will use here. We will first show that an f -routing protocol is easily
modified to construct a CDQS protocol. To do so, we send systems M0 and
M1 that Bob would receive in the second round of the f -routing protocol to the
referee of the CDQS protocol. Then, if f(x, y) = 1, ϵ-correctness of the f -routing
scheme is immediately ϵ-correctness of the CDQS.
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To show secrecy of the CDQS protocol, we first establish some notation. We
label the channel realized by the first round operations of Alice and Bob NQ→MM ′ ,
and let VQ→MM ′E be an isometric extension of this channel. By correctness in
0 instances of the f -routing scheme, we have that there exists a channel Dxy

M ′→Q

such that

||Dxy
M ′→Q ◦ [TrM ◦N x,y

Q→M ′M ]− IQ||⋄
= ||Dxy

M ′→Q ◦ [TrME(V
xy
Q→MM ′E ·Vxy

Q→MM ′E)]− IQ||⋄ ≤ ϵ.

Then the decoupling Theorem 6.2.26.2.2 tells us that there exists a completely depo-
larizing channel SQ→ME such that

||TrM ′(Vxy
Q→MM ′E ·Vxy

Q→MM ′E)− Sxy
Q→ME||⋄ ≤ 2

√
ϵ. (6.50)

Adding a trace over part of the outputs of channels can only make the channels
less distinguishable, and hence the diamond norm smaller, so that

||TrM ′E(V
xy
Q→MM ′E ·Vxy

Q→MM ′E)− Sxy
Q→M ||⋄ ≤ 2

√
ϵ, (6.51)

but this is just

||N xy
Q→M − Sxy

Q→M ||⋄ ≤ 2
√
ϵ, (6.52)

which is exactly 2
√
ϵ-security of the CDQS. Note that the CDQS protocol defined

by the f -routing protocol uses the same entangled resource state and no more
communication.

Now suppose we have a CDQS protocol which is ϵ-correct and δ-secure. Then
to build the f -routing protocol, purify the channels Alice and Bob perform to
isometries, and send the original message systems of the CDQS to Bob and their
purifications to Alice. Then, by ϵ-correctness of the CDQS protocol, we immedi-
ately have ϵ-correctness of the f -routing protocol when f(x, y) = 1.

Next, consider the case where f(x, y) = 0. Then security of the CDQS implies
that there exists a simulator channel Sxy

∅→M such that

||Sxy
∅→M ◦ TrQ−N xy

Q→M ||⋄ ≤ δ. (6.53)

We will again apply the decoupling theorem. Notice that now, because of how
we have defined the f -routing protocol, the map from Q to MM ′ is isometric, so
(N xy)cQ→M = (N xy)Q→M ′ . Then the decoupling theorem implies the existence of
a decoding channel Dxy

M ′→Q such that

||Dxy
M ′→Q ◦ (N xy)cQ→M ′ − IQ||⋄ ≤

√
4||Sxy

∅→M ◦ TrQ −N xy
Q→M || ≤ 2

√
δ, (6.54)

which gives 2
√
δ correctness on 0 instances. The protocol is then

max{2
√
δ, ϵ}-correct.
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To see how the communication in the resulting f -routing protocol is related
to the communication in the original CDQS protocol, we can use that a channel
NA→B can always be purified by an isometry VA→BC where dC ≤ dAdB. Let
CDQS have messages that each consist of at most nM qubits, and use an nE

qubit resource system on systems LR. Then the most general possible protocol
is defined by families of channels

{N x
L→M0

}, {N y
R→M1

}, (6.55)

applied on the left and right respectively. We define purifications of these,

{Vx
L→M0M ′

0
}, {Vy

R→M1M ′
1
}. (6.56)

We see that the message sizes are now at most nM +nE qubits, so the total size of
the communication is at most 4(nM + nE). The entangled resource system used
in the f -routing protocol is identical to the one used in the CDQS. 2

Explicit reconstruction procedure:

It is perhaps counterintuitive that the f -routing protocol built from the CDQS
protocol succeeds in the case when f(x, y) = 0. This is implied by the general
physics of decoupling as captured by Theorem 6.2.26.2.2, but for intuition we give a
more explicit description in a special case here.

Let us suppose the CDQS protocol is perfectly correct, and works in the
following way. Assume that the quantum secret is a single qubit and is stored in
system Q. To hide the quantum state on Q, Alice applies the one-time pad using
a classical string s = (s1, s2) as key. Explicitly she has applied

|s1, s2⟩A |ψ⟩Q → |s1, s2⟩A (i)s1·s2Xs1Zs2 |ψ⟩Q . (6.57)

A message system M is sent to Bob, which reveals the key if and only if f(x, y) =
1. The system A must be sent to Alice on the left. The full state of the message
systems then has the form

1

2

∑
s1,s2,mL,mR

p(mL,mR|x, y, s) |mL⟩M ′ |s1, s2⟩A (i)s1·s2Xs1Zs2 |ψ⟩Q |mR⟩M . (6.58)

Suppose we are in the case where f(x, y) = 0. Then, by security, the state on M
is independent of s. We can trace it out and the M ′ system out and obtain the
pure state

1

2

∑
s1,s2

|s1, s2⟩A (i)s1·s2Xs1Zs2 |ψ⟩Q . (6.59)
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The claim is that Alice can recover the state on Q from the A system. To do this,
she maps |s1, s2⟩ to the Bell basis, obtaining

1

2
(III + IXX + IZZ + IY Y ) |Ψ+⟩A1A2

|ψ⟩Q . (6.60)

Then notice that

1

2
(IA2IQ +XA2XQ + ZA2ZQ + YA2YQ) = SWAPA2Q, (6.61)

so that mapping A1A2 into the Bell basis actually swaps the state on Q into A2,
so that Alice recovers the state on Q.

6.3.4 PSQM gives CDQS

Analogous to the observation that PSM gives CDS, we can also show that PSQM
gives CDQS.

6.3.4. Theorem. Suppose that a ϵ-correct and δ-private PSQM protocol exists
for f(x, y) ∈ {0, 1} using messages of at most nM bits and an entangled state
of no more than nE qubits. Then there exists a CDQS protocol hiding one qubit
using nM +1 bits of message and nE qubits of entangled state, which is 2ϵ correct
and δ private.

Proof:
If the function f(x, y) is constant then the CDQS protocol is trivial, so we assume
without loss of generality that f(x, y) is non-constant.

Given the PSQM protocol, we build a CDQS protocol as follows. We introduce
two random shared bits, which we call s = (s1, s2), which are held by Alice and
Bob. Alice and Bob also pre-agree on a pair of inputs (x, y) where f(x, y) = 0,
call them (x∗, y∗), which exist because f is non-constant by assumption. Upon
receiving inputs x, y Alice and Bob compute

x′i = six+ (1− si)x∗,

y′i = siy + (1− si)y∗, (6.62)

for i = 1, 2. They run the PSQM protocol for f on inputs (x1, y1) and (x2, y2) in
parallel. Note that following the remark made after definition 6.2.86.2.8, the PSQM
for F (x, y, s) = (f(x1, y1), f(x2, y2)) is 2ϵ correct and 2δ secure. Notice that

f(x′i, y
′
i) = f(x, y) ∧ si. (6.63)

This means that by running the PSM for f(x′i, y′i), the referee will learn si when
f(x, y) = 1. In the CDQS protocol, we have Alice act on the quantum secret Q
with the one-time pad using the key s = (s1, s2). Then the referee will be able to
undo the one-time pad when f(x, y) = 1 (and so they know s), but not otherwise.
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Next, we establish correctness more carefully. First, note that the encoding
channel for the CDQS defined by the above protocol is

N xy
Q→MQ(·) =

1

2|s|

∑
s

P s
Q · P s

Q ⊗ ρM(x, y, s), (6.64)

where ρM is the state of the message systems prepared by the PSQM. Correctness
of the CDQS requires we establish the existence of a channel which approximately
inverts this. Note that by 2ϵ-correctness of the PSQM, we have that there exists
a channel VM→Z such that

||VM→Z(ρM(x, y, s))− |F ′⟩⟨F ′|Z ||1 ≤ 2ϵ, (6.65)

where we defined F ′ = (f(x′1, y
′
1), f(x

′
2, y
′
2)). We define our decoding channel

to apply VM→Z , measure the Z system, then apply a Pauli conditioned on the
outcome,

DMQ→Q(·) =
∑
F

P F
Q ⊗ ⟨F |Z VM→Z(·) |F ⟩Z ⊗ P F

Q . (6.66)

We claim this is an approximate inverse to N xy
Q→MQ. Using the definitions of

N xy
Q→MQ, DMQ→Q and the diamond norm, we obtain the following.

||DMQ→Q ◦N xy
Q→MQ − IQ||⋄ = sup

n
max
ΨRnQ

|| 1

2|s|

∑
s,F

P s+F
Q ΨRnQP

s+F
Q

⊗ ⟨F |Z VM→M̄Z(ρM(x, y, s)) |F ⟩Z −ΨRnQ||1
≤ 2ϵ+ sup

n
max
ΨRnQ

|| 1

2|s|

∑
s,F

P s+F
Q ΨRnQP

s+F
Q ⊗ ⟨F |Z |F ′⟩⟨F ′| |F ⟩Z −ΨRnQ||1.

where we replaced the VM→M̄Z(ρM(x, y)) with |F ′⟩⟨F ′| at the expense of the
added 2ϵ, which is justified by Equation 6.656.65. Continuing, we can see that
the second term is actually zero, since (from Equation 6.636.63) F ′ is just s when
f(x1, y1) = f(x2, y2) = 1, which removes the Pauli’s and so the full diamond norm
is bounded by 2ϵ.

Next, we study the security of the CDQS protocol. Recall that security of the
PSQM implies that there exists a channel SZ→M such that

||ρM(x, y, s)− SZ→M(|F ′⟩⟨F ′|)||1 ≤ δ. (6.67)

In the definition of security for CDQS, we need to show the existence of a channel
S ′x,y∅→M such that S ′x,y∅→M ◦TrQ is close to the action of the protocol N xy

Q→MQ. We
define

S ′x,y∅→MQ = SZ→M(|F ′⟩⟨F ′|)⊗ IQ

dQ
, (6.68)
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Figure 6.6: Corresponding PSQM (left) and CFE (right) protocols, with labelings
of the subsystems involved shown.

then consider,

||S ′x,y∅→MQ ◦ TrQ −N xy
Q→MQ||⋄

= sup
n

max
ΨRnQ

||IQ

dQ
⊗ SZ→M(|F ′⟩⟨F ′|)

− 1

2|s|

∑
s

P s
QΨ

RnQP s
Q ⊗ ρM(x, y, s)||1

≤ sup
n

max
ΨRnQ

||IQ

dQ
⊗ SZ→M(|F ′⟩⟨F ′|)

− 1

2|s|

∑
s

P s
QΨ

RnQP s
Q ⊗ SZ→M(|F ′⟩⟨F ′|)||1 + δ

= δ,

where we used 6.676.67 in the inequality. This is δ-security of the CDQS. 2

6.3.5 CFE gives PSQM and weak converse

Finally, we relate coherent function evaluation to PSQM. Note that the relation-
ship is only that good CFE protocols give good PSQM protocols, although a weak
converse also exists, as we describe.

6.3.5. Theorem. A ϵ-correct CFE protocol for the function f using nE EPR
pairs and messages of nM qubits implies the existence of a ϵ-correct and

√
ϵ-

secure PSQM protocol for the same function, using nE EPR pairs and no more
than nM message qubits.
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Proof:
We define the PSQM protocol from the CFE protocol as follows. The PSQM
protocol uses the same resource state as the CFE, Alice applies the bottom left
operation of the CFE, Bob applies the bottom right operation of the CFE, and
they send the systems that would reach the top right of the CFE protocol to the
referee, which we call the M systems. To produce their output, the referee applies
the top-right operation from the CFE. See Figure 6.66.6 for labels of the relevant
subsystems.

Correctness of the CFE protocol means that we have

||F(·)F† −NXY→Z′Z ||⋄ ≤ ϵ, (6.69)

where N is the channel applied by our CFE protocol and F denotes the CFE
isometry to be implemented. Applying these channels to the input |x⟩X |y⟩Y and
using the definition of the diamond norm distance, we obtain

|| |xy⟩⟨xy|Z′ ⊗ |fxy⟩⟨fxy|Z − ρZ′Z(x, y)||1 ≤ ϵ. (6.70)

Tracing out the Z ′ system and using that the one-norm distance decreases under
the partial trace, we obtain ϵ-correctness of the PSQM.

Next, we study the security of the PSQM. We start again from the correctness
of the CFE protocol. To simplify our notation, we define the channels (see also
figure 6.66.6)

FXY→Z′Z(·) = F(·)F†,
WL

M→ZM̃
(·) = WR

M→ZM̃
(·)(WR

M→ZM̃
)†

WR
M ′→Z′M̃ ′(·) = WL

M ′→Z′M̃ ′(·)(WL
M ′→Z′M̃ ′)

†

WMM ′→ZM̃Z′M̃ ′ = WL
M ′→ZM̃ ′ ⊗WR

M→ZM̃

VXY→MM ′(·) =
VR

Y C→M ′
1M1

⊗VL
XC′→M0M ′

0
(· ⊗ΨCC′)(VR

Y C→M ′
1M1

⊗VL
XC′→M0M ′

0
)†.

Then we note that the CFE protocol can be decomposed into two steps, and
rewrite the statement of correctness,

||FXY→Z′Z(·)− TrM̃M̃ ′(WMM ′→ZM̃Z′M̃ ′) ◦ (VXY→MM ′)||⋄ ≤ ϵ.

Next, we will use that Stinespring dilations of channels can be chosen to be close
if the initial channels are close [KSW08aKSW08a]. In particular, we have

||T1 − T2||⋄√
||T1||⋄ +

√
||T2||⋄

≤ inf
V1,V2

||V1 − V2||op ≤
√

||T1 − T2||⋄, (6.71)

where the infimum is over all dilations Vi of Ti. Noting that F is already isometric,
we have that its dilations must consist of adding a state preparation channel,
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which we label P∅→E. Furthermore, all dilations are related by a partial isometry
on the auxiliary space, so the dilations of the TrM̃M̃ ′ W◦V channel can be written
in the form

UXY→ZZ′E = IM̃M̃ ′→E ◦ (WMM ′→ZM̃Z′M̃ ′) ◦ (VXY→MM ′). (6.72)

Then using the upper bound in 6.716.71, we have

||FXY→Z′Z ⊗P∅→E − IM̃M̃ ′→E ◦WMM ′→ZM̃Z′M̃ ′ ◦ VXY→MM ′||op ≤
√
ϵ. (6.73)

Next, we will exploit the lower bound in 6.716.71 to translate this to an upper bound
on the diamond norm of these isometries. To do this, note that from 6.716.71 we have

||V1 − V2||⋄√
||V1||⋄ +

√
||V2||⋄

≤ inf
P1,P2

||V1 ⊗ P1 − V2 ⊗ P2||op ≤ ||V1 − V2||op. (6.74)

Using this in Equation 6.736.73, we obtain

||FXY→Z′Z ⊗P∅→E − IM̃M̃ ′→E ◦WMM ′→ZM̃Z′M̃ ′ ◦ VXY→MM ′||⋄ ≤ 2
√
ϵ. (6.75)

Next, apply I†
M̃M̃ ′→E

to both terms, which cannot increase the diamond norm,
and obtain

||FXY→Z′Z ⊗P∅→M̃M̃ ′ −WMM ′→ZM̃Z′M̃ ′ ◦ VXY→MM ′ ||⋄ ≤ 2
√
ϵ. (6.76)

Apply W†
MM ′→ZM̃Z′M̃ ′ to both terms to obtain

||W†
MM ′→ZM̃Z′M̃ ′ ◦ (FXY→Z′Z ⊗P∅→M̃M̃ ′)− VXY→MM ′||⋄ ≤ 2

√
ϵ. (6.77)

Then, apply these channels to the input |xy⟩XY and call the output of the protocol
on the M system ρM(x, y), and trace out the M̃ ′ system,

||TrM ′ W†
MM ′→ZM̃Z′M̃ ′ ◦FXY→Z′Z(|xy⟩⟨xy|)⊗ ψM̃M̃ ′ − ρM(x, y)||1 ≤ 2

√
ϵ.

Simplifying the state on the left using

WMM ′→ZM̃Z′M̃ ′ = WL
M→ZM̃

⊗WR
M ′→Z′M̃ ′

FXY→Z′Z(|xy⟩⟨xy|) = |fxy⟩⟨fxy|Z ⊗ |xy⟩⟨xy|Z′ , (6.78)

we obtain

||WR†
M→M̃Z

(|fxy⟩⟨fxy| ⊗ σM̃)− ρM(x, y)||1 ≤ 2
√
ϵ, (6.79)

which is 2
√
ϵ security of the PSQM protocol, where WR†

M→M̃Z
along with the state

preparation of σM̃ defines the simulator channel. 2

Next, we give a weak converse to the above theorem, which shows that a
good PSQM protocol implies the existence of a CFE protocol that succeeds with
constant probability when acted on the maximally entangled state. Note that
this falls short of bounding the diamond norm. We show this only in the exact
setting, though a robust version might also exist. We are also limited to the case
where the function outputs a single bit.
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6.3.6. Theorem. Suppose there exists a perfectly correct and perfectly secure
PSQM protocol for the function f : X × Y → Z with Z ∈ {0, 1} using nM bits of
communication and nE qubits of entangled resource system. Then there is a CFE
protocol that implements a channel Ṽf

XY→Z′Z such that

F (Ṽf
XY→Z′Z(Ψ

+
RXY ),V

f
XY→Z′Z(Ψ

+)RXY (V
f
XY→Z′Z)

†) ≥ 1

2
, (6.80)

and which uses nE qubits of entangled resource state and nM + nE + 2n qubits of
communication, where n is the input size.

Proof:
By security of the PSQM protocol, we have that when given input |xy⟩ the
protocol produces a reduced state ρM(x, y) of the form

ρM(x, y) = SZ→M(|fxy⟩⟨fxy|) = σ
fxy
M . (6.81)

As part of the CFE protocol that we define, we make a copy of the inputs |x⟩X |y⟩Y
and send this copy in a system labeled Z ′ to the left. The overall state of the
message system then is,

|xy⟩⟨xy|Z′ ⊗ σ
fxy
M . (6.82)

Now consider purifying the channels used in the PSQM protocol, and sending the
purifying systems (call them M̃ ′) to the left. Then the message system becomes

|Ψxy⟩Z′M̃ ′M = |xy⟩Z′

∑
k

√
λkfxy |ψk

fxy⟩M̃ ′ |ψk
fxy⟩M , (6.83)

where we used that the reduced density matrix on M depends only on fxy to
enforce that the Schmidt coefficients and Schmidt vectors on M can depend only
on fxy.

Next, we consider adding to the protocol a unitary

UZ′M̃ ′ =
∑
x,y,k

αfxy |xy⟩⟨xy|Z′ ⊗ |k⟩⟨ψk
fxy |M̃ ′ , (6.84)

where the αfxy are phases, |αfxy |2 = 1. We will later determine how to choose
these phases. This means we produce the state

UZ′M̃ ′ |Ψxy⟩Z′M̃ ′M = |xy⟩Z′

∑
k

αfxy

√
λkfxy |k⟩M̃ ′ |ψk

fxy⟩M . (6.85)

We would like to exploit the correctness of the PSQM protocol to show this state
can be made, using an operation on M , to have large overlap with the correct
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output for the CFE protocol, which here is |xy⟩Z′ |fxy⟩Z . Looking at the reduced
state on M again, we have

σM =
∑
k

λkfxy |ψk
fxy⟩⟨ψk

fxy |M . (6.86)

From correctness we have that there exists a map VM→M̃Z such that∑
k

λkfxy TrM̃(VM→M̃Z |ψk
fxy⟩⟨ψk

fxy |M V†
M→M̃Z

) = |fxy⟩⟨fxy|Z , (6.87)

which is only solved if, for all k,

VM→M̃Z |ψk
fxy⟩M = βk

fxy |fxy⟩Z |ψ̃k
fxy⟩M̃ . (6.88)

with βk
fxy

being pure phases, |βk
fxy

|2 = 1. Returning to the form 6.856.85, we can now
add an application of VM→ZM̃ as the top-right element of our CFE protocol and
we see that we produce the state

VM→M̃ZUZ′M̃ ′ |Ψxy⟩Z′M̃ ′M = αfxy |xy⟩Z′ |fxy⟩Z
∑
k

βk
fxy

√
λkfxy |k⟩M̃ ′ |ψ̃k

fxy⟩M̃

= αfxy |xy⟩Z′ |fxy⟩Z |Φfxy⟩M̃ ′M̃
. (6.89)

By linearity, if we perform the same protocol on the state |Ψ+⟩RXY we produce
the output

|Ψ′f⟩RZ′ZM̃ ′M̃
=

1√
dR

∑
xy

αfxy |xy⟩R |xy⟩Z′ |fxy⟩Z |Φfxy⟩M̃ ′M̃
. (6.90)

We would like to compute the fidelity of the state produced by our protocol on
RZ ′Z with the correct one when acted on the maximally entangled state. Note
that the correct output state would be

|Ψf⟩ =
1√
dR

∑
xy

|xy⟩R |xy⟩Z′ |fxy⟩Z . (6.91)

Computing the fidelity of this with the partial state of |Ψ′f⟩ on RZ ′Z, we find

F (Ψf , σ) = ⟨Ψf |σRZ′Z |Ψf⟩ =
1

d2R

∑
xy,x′y′

α∗fxyαfx′y′
⟨Φfxy⟩Φfx′y′

. (6.92)

Now, we can see how we should choose the phases αfxy that enter through our
choice of the unitary U. We should choose the phases such that this sum is lower
bounded, which we can achieve by setting

α0 = 1,

α1 =
⟨Φ1⟩Φ0

| ⟨Φ1⟩Φ0|
. (6.93)
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This ensures that the terms in the sum where fxy ̸= fx′y′ are positive, so we bound
them below by zero and obtain

F (Ψf , σ) ≥
1

d2R

∑
fxy

∑
xyx′y′:

fxy=fx′y′

1


=

1

d2R

∑
fxy

N2
fxy ≥ 1

2
, (6.94)

where Nm is the number of inputs that lead to fxy = m. This gives the needed
lower bound.

To understand the resource consumption of the protocol constructed above,
note that it uses the same resource state, and so nE qubits of the entangled
resource system still exist. Considering the message sizes, notice that in purifying
the channels used in the PSQM protocol we need no more than nE + n qubits in
the auxiliary system, and then we added an additional copy of the input sent to
the left, so we use at most nE + 2n+ nM qubit messages. 2

6.4 Complexity of efficiently achievable functions

The set of implications summarized in Figure 6.36.3 imply efficient protocols for one
primitive imply efficient protocols for many others. In this section, we briefly
summarize what is known about the efficiently achievable functions in various
settings, and how they compare across various primitives.

6.4.1 Relevant complexity measures

An important model of computation we will discuss is the modulo-p branching
program. These are computational models with close relationships to various
non-uniform complexity classes sitting inside of NC.

6.4.1. Definition. A branching program is a tuple BP = (G, ϕ, s, t0, t1)
where,

• G = (V,E) is a directed acyclic graph,

• ϕ is a function from edges in E to either a value “yes” or a tuple (b, i) for b
a bit and i ∈ {1, ..., n},

• s, t0, t1 are vertices from V .



6.4. Complexity of efficiently achievable functions 155

Given an n-bit string x as input, the branching program specifies a subgraph of
G labeled Gx according to the following rule. If for e ∈ E we have ϕ(e) = (b, j)
with xj = b, or if ϕ(e) =“yes”, then e is included in Gx. We define a function
acc(x) as the number of paths s → t1 in the graph Gx, and a function rej(x) as
the number of paths from s to t0 in Gx.

6.4.2. Definition. The size of a branching program is defined as the number
of vertices in V . We label the minimal-sized branching program computing f as
BP (f).

We say a branching program is deterministic if the out degree of every vertex
in every Gx is at most 1, and non-deterministic otherwise. The function f(x)
computed by a deterministic or non-deterministic branching program is defined
such that f(x) = 1 iff acc(x) > 0. A Boolean modulo-p branching program
computes the function f(x) defined such that f(x) = 1 iff acc(x) ̸= 0 mod p. We
label the minimal size of a mod p branching program computing f by BPp(f).

The class of functions with polynomial sized modulo-p branching programs is
defined below.

6.4.3. Definition. The complexity class ModpL/poly is defined as those Boolean
function families {fn} which have polynomial (in n) sized modulo-p branching
programs.

The uniform complexity class ModpL can be defined similarly in terms of log-
space uniform branching programs, or given an equivalent definition in terms of
Turing machines [BDHM92BDHM92]. Another relevant complexity class, also based on
branching programs, is the following.

6.4.4. Definition. The class C=L/poly (read as “equality L”) is defined as those
Boolean function families {fn} which can be decided in the following way. We
consider a branching program of polynomial (in n) size. If acc(x) = rej(x),
output 1 and otherwise output 0.

A related notion of complexity that we will need is that of a span program,
defined initially in [KW93KW93].

6.4.5. Definition. A span program over a field Zp consists of a triple S =
(M,ϕ, t), where M is a d × e matrix with entries in Zp, ϕ is a map from rows
of M , labeled ri, to pairs (k, εi), with k ∈ {1, ..., n} and εi ∈ {0, 1}, and t is a
non-zero vector of length e with entries in Zp. A span program S computes a
function f : {0, 1}n → {0, 1} as follows. Given an input string z of n bits, if the
vector t is in span({ri : ∃j, ϕ(ri) = (j, zj)}), then output 1. Otherwise, output 0.

6.4.6. Definition. The size of a span program is defined as d, the number of
rows in M . We denote the minimal size of a span program over Zp that computes
f by SPp(f).
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The size of a span program that computes {fn} and of a branching program
computing the same function family are related by the following theorem, noted
in [KW93KW93] to follow from techniques in [BDHM92BDHM92].

6.4.7. Theorem. For every prime p, ModpL consists of those function families
with polynomial-sized span programs over Zp.

Thus, the size of span programs and of arithmetic branching programs are related
polynomially, and in fact [BG99BG99]1010

SPp(f) ≤ 2BPp(f). (6.95)

We will never be interested in constant factor differences, so we can take that
span programs are always smaller than modulo-p branching programs.

An important notion for us will be that of pre-processing. We will consider
functions f : {0, 1}n × {0, 1}n → {0, 1}, and we are interested in the complexity
of computing f(x, y) after allowing for arbitrary functions to be applied to x and
y separately. We give the following definition.

6.4.8. Definition. A local part of f(x, y) : {0, 1}n × {0, 1}n → {0, 1} is any
function F such that there exist functions α : {0, 1}n → {0, 1}mα , β : {0, 1}n →
{0, 1}mβ such that f(x, y) = F (α(x), β(y)).

We say that the complexity after pre-processing (with respect to some measure
of complexity) of a function f(x, y) is the minimal complexity of any local part
of f(x, y). More concretely, for span and branching program size, we define the
following pre-processed complexity measures.

6.4.9. Definition. The pre-processed branching program complexity is
defined as

BPp,(2)(f) = min
F,α,β

{BPp(F ) : f(x, y) = F (α(x), β(y))}, (6.96)

6.4.10. Definition. The pre-processed span program complexity is de-
fined as

SPp,(2)(f) = min
F,α,β

{SPp(F ) : f(x, y) = F (α(x), β(y))}, (6.97)

The pre-processed branching and span program complexities are related polyno-
mially, because the non pre-processed complexities are.

We define the following pre-processed complexity classes.

10Note that this statement is given in [BG99BG99] in terms of arithmetic branching programs,
which are a generalization of modulo-p branching programs (and so are at least as powerful).
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6.4.11. Definition. The complexity classModkL(2) is defined as those functions
f : {0, 1}n × {0, 1}n → {0, 1} with a local part that can be computed with a
polynomial size (in n) modulo-p branching program.

6.4.12. Definition. The complexity class C=L(2) is defined as those functions
f : {0, 1}n × {0, 1}n → {0, 1} with a local part that can be computed according
to the following procedure. We consider a branching program of polynomial (in
n) size. If acc(x) = rej(x), output 1 and otherwise output 0.

We can analogously define the complexity class P(2) as those families of function
families which have a poly-time computable local part.

6.4.2 Efficiency of protocols for PSM, CDS, and related
primitives

PSM and PSQM protocols

The largest class of functions for which efficient PSM protocols have been
constructed are those with polynomial-sized modulo-p branching programs. The
following theorem was proven in [IK97IK97].

6.4.13. Theorem. [IK ’97] Let p be a prime, and let BP = (G, ϕ, s, t0, t1)
be a Boolean modulo-p branching program of size a(n) computing a local part
of f . Then there exists a PSM protocol for f with randomness complexity and
communication complexity both O(a(n)2 log p).

Note that the original statement of this theorem considers f rather than its lo-
cal part, but the extension is trivial. An immediate consequence of this theo-
rem, along with the implications summarized in Figure 6.36.3, is that CDS, PSQM,
CDQS, and f -routing can all be achieved with the randomness and communica-
tion complexity given in the same way, up to constant factor overheads.

To better understand the implications of this theorem, it is helpful to un-
derstand which complexity classes can be achieved efficiently. Fixing p, those
functions with polynomial-sized branching programs are exactly the class ModpL.
Running the PSM protocol on the local part, we can therefore achieve the class
ModpL(2) efficiently as a PSM. We can also choose p adaptively and, doing so,
achieve the class C=L(2). This is shown in [IK97IK97]. It is also interesting to find a
complexity class that contains all the functions where (log p)BPp(f) can be made
polynomial. The smallest class that we can show contains all such functions is
L#L, which we state as the following remark.

6.4.14. Remark. Every function family {fn} for which (log p) ·BPp(fn) is poly-
nomial in n for some choice of p is contained in the class L#L/poly.
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Proof:
By assumption, there is a polynomial-sized branching program, call it BP and
denote its size by s, whose number of accepting paths counted mod p is non-zero
if f(x) = 1, and 0 otherwise. Further, the choice of p needed must have log p be
polynomial. Our algorithm for computing f in L#L is as follows. We take our
advice string to be a description of the branching program BP. We give BP along
with the input x to the #L oracle, and it will return the number of accepting
paths of this program, call it N . Notice that N < 2s, since there must be no
more accepting paths then there are subsets of vertices in BP. This means that
the output of the oracle consists of at most a polynomial-sized string. We then
subtract p from N repeatedly until it reaches a number less than p. Since p also
consists of a polynomial number of bits, this can be done in log space. 2

To relate L#L to more familiar classes, we can note that it is contained inside
of DET which is in turn contained inside of NC, where NC is the class of functions
computed by poly-logarithmic depth circuits.

Notice that from Theorem 6.2.196.2.19 the result of Theorem 6.4.136.4.13 carries over
immediately to the setting of PSQM. We move on to understand the implications
of Theorem 6.4.136.4.13 for the CDS, CDQS, and f -routing primitives below.

CDS protocols

From Theorem 6.4.136.4.13 and because PSM protocols give CDS protocols (see
Theorem 6.2.186.2.18), we obtain the following corollary.

6.4.15. Theorem. Let p be a prime, and let BP = (G, ϕ, s, t0, t1) be a Boolean
modulo-p branching program of size a(n) computing f . Then there exists a CDS
protocol for f with randomness complexity and communication complexity both
O(a(n)2 log p).

Note that the implication from PSM to CDS was already known, so this impli-
cation was already clear. Recently, this scaling was improved to linear in the
branching program size [IW14IW14].

We can compare this with the most efficient CDS constructions in the litera-
ture. A CDS protocol based on secret sharing schemes was given in [GIKM00GIKM00].
They prove the following theorem1111.

6.4.16. Theorem. [GIKM ’98] Let hM : {0, 1}n → {0, 1} be a monotone
Boolean function, and let h : {0, 1}n → {0, 1} be a projection of hM ; that is,
h(y1, ..., yn) = hM(g1, ..., gM), where each gi is a function of a single variable yi.
Let S be a secret sharing scheme realizing the access structure hM , in which the

11The cost here being c + |s| while the cost in the reference [GIKM00GIKM00] being c is due to
our defining the CDS to have the secret held on only one side, rather than on both as is the
convention in [GIKM00GIKM00].
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total share size is c, and let s be a secret that can be hidden in S. Then there ex-
ists a protocol P for disclosing s subject to the condition h whose communication
and randomness complexity are bounded by c+ |s|.
Using the span program based constructions of secret sharing schemes [KW93KW93],
this upper bounds the CDS cost of f by the minimal size of a monotone span
program computing any projection of f , call it fM . If the span program is over
the field Zp, the cost is (log p) ·mSP (fM). In [CM23CM23] (see Lemma 5) it is shown
that the size of a span program computing the projection fM is the same as the
size of a (non-monotone) span program computing f , up to a constant additive
term. This leads to the following corollary.

6.4.17. Corollary. The randomness and communication complexity to per-
form CDS on the function f is at most O(log p · SPp(f)), where SPp(f) is the
size of any span program over Zp computing f .

Notice that this is quite similar to Corollary 6.4.156.4.15. Because the span program
size and branching program size are related by Equation 6.956.95, the secret sharing
based construction for CDS is always more efficient than the branching program
based approach inherited from PSM.

Another protocol based on dependency programs [PS96PS96] was given in [AR17AR17].
Because dependency programs are always larger than span programs (see [PS96PS96],
Lemma 3.6)1212, the span program based construction remains the most efficient.

CDQS and f-routing protocols

Notice that efficient CDQS protocols are given by both efficient CDS proto-
cols (Theorem 6.3.26.3.2) and by PSQM protocols (Theorem 6.3.46.3.4). Further, from
Theorem 6.3.36.3.3 we have that efficient CDQS leads to efficient f -routing. These
implications lead to the following theorem.

6.4.18. Theorem. The randomness and communication complexity to perform
CDQS or f -routing on the function f is at most O(log p · SPp(f)).

Since it had not previously been studied in the literature, this gives the largest
known class of functions that can be implemented efficiently for CDQS.

We can compare Theorem 6.4.186.4.18 with the most efficient protocols known for
f -routing. In [CM23CM23], the authors proved an upper bound of O(log p ·SPp(f)) on
communication and entanglement complexity of f -routing, exactly matching the
result inherited from classical CDS. It is also interesting to note that the protocol
given in [CM23CM23] that achieves this bound is a close quantum analogue of the CDS
protocol devised in the classical setting in [GIKM00GIKM00]: both protocols are based
on storing the secret in a secret sharing scheme and sending or not sending shares
based on the value of bits of the input.

12This is true when considering binary inputs, which we do here. The construction in [AR17AR17]
extends to non-binary inputs, and in that setting there may be polynomial overheads.
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6.5 New lower bounds

6.5.1 Linear lower bounds on CFE

We have the following theorem from [KN21KN21].

6.5.1. Theorem. [KN 2021] For a (1−o(1)) fraction of functions fn : {0, 1}n×
{0, 1}n → {0, 1}, the communication complexity of two-party PSQM protocols
with shared randomness for fn is at least 3n− 2 log n−O(1).

In Theorem 6.3.56.3.5, which shows CFE→PSQM, we could replace the shared entan-
glement in the CFE protocol and obtain a PSQM protocol that only uses shared
randomness. In fact, the theorem gives that the resulting PSQM uses the same
distributed resource state as the CFE. From this, Theorem 6.5.16.5.1 above gives the
following.

6.5.2. Corollary. For a (1−o(1)) fraction of functions fn : {0, 1}n×{0, 1}n →
{0, 1}, the communication complexity of coherent function evaluation protocols
with shared randomness for fn is at least 3n− 2 log n−O(1).

Note that we would expect no amount of shared random bits to suffice for a CFE,
and instead for entangled states to be required. Thus, the consequence of this
theorem is very weak in the CFE context.

6.5.2 Linear lower bounds on CDQS

We have the following theorem from [BCS22BCS22].

6.5.3. Theorem. [BCS 2022, random function]. Let n ≥ 10. Assume that
the inputs x, y ∈ {0, 1}n are chosen at random. Then there exists a function
f : X × Y → Z with X, Y ∈ {0, 1}n, Z ∈ {0, 1} such that, if the number q of
qubits each of the attackers controls satisfies

q ≤ n/2− 5, (6.98)

then the attackers are caught with probability at least 2 × 10−2. Moreover, a
uniformly random function will have this property, except with exponentially small
probability.

Combining this result with Theorem 6.3.36.3.3, we find the following result for
CDQS.

6.5.4. Corollary. There exists a function f : X×Y → Z with X, Y ∈ {0, 1}n,
Z ∈ {0, 1} such that a CDQS protocol which is ϵ-correct and δ-secure for f with
max{ϵ,

√
δ} < 2×10−2 requires Alice and Bob to have a quantum resource system

consisting of at least n/2− 5 qubits. Moreover, a uniformly random function will
have this property, except with exponentially small probability.
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Now applying Theorem 6.3.46.3.4 we obtain the following linear lower bound on the
dimension of the resource system in PSQM. Note that previously a 2n−O(log n)
linear lower bound on communication complexity was known, but no bound on
shared entanglement was previously known.

6.5.5. Corollary. There exists a function f : X × Y → Z with X, Y ∈
{0, 1}n, Z ∈ {0, 1} such that a ϵ-correct and δ-secure PSQM protocol for f with
max{2ϵ,

√
2δ} < 2× 10−2 requires Alice and Bob to have a quantum resource sys-

tem consisting of at least n/2− 5 qubits. Moreover, a uniformly random function
will have this property, except with exponentially small probability.

In the same paper [BCS22BCS22], the authors prove the following bound for the
inner product function.

6.5.6. Theorem. [BCS 2022, Inner product] Let n ≥ 10. Assume that the
inputs x, y ∈ {0, 1}n are chosen at random. Then if the number q of qubits each
of the attackers controls satisfies

q ≤ 1

2
log n− 5, (6.99)

then the attackers are caught with probability at least 2× 10−2 when the function
f is chosen to be the inner product function.

This immediately leads to two corollaries analogous to the above, but now with
a logarithmic bound and a random function replaced with the inner product.

6.5.7. Corollary. A CDQS protocol for the inner product function on strings
of length n which is ϵ-correct and δ-secure with max{ϵ,

√
δ} < 2 × 10−2 requires

Alice and Bob to have a quantum resource system consisting of at least 1
2
log n−5

qubits.

6.5.8. Corollary. A PSQM protocol for the inner product function on strings
of length n which is ϵ-correct and δ-secure with max{2ϵ,

√
2δ} < 2×10−2 requires

Alice and Bob to have a quantum resource system consisting of at least 1
2
log n−5

qubits.

6.6 New protocols

6.6.1 f-routing for problems outside P/poly

As discussed in Section 6.46.4, all general constructions of CDS and PSM only
efficiently implement functions inside of the class (L#L)(2). As we now discuss,
there is a special function which is believed to be outside of P but which has an
efficient CDS, CDQS, and f -routing protocol. This function is known to be at
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least as hard as the quadratic residuosity problem modulo a composite of unknown
factorization. This efficient protocol is inherited from Remark 6.2.166.2.16, which shows
that efficient secret sharing schemes give efficient CDS protocols, along with a
non-linear secret sharing scheme constructed in [BI05BI05]. A less strong, but also
interesting construction of a function outside of L#L with an efficient PSM, CDS,
CDQS, and f -routing scheme is based on a DRE for the quadratic residuosity
problem modulo a prime. This function is inside of P but believed to be outside
of NC.

We give the two constructions below.

f-routing for a problem outside P from non-linear secret sharing

We define the computational problem that will interest us here.

6.6.1. Definition. The quadratic residuosity problem QR(u, v) is defined
as follows.

• Input: Two integers u and v of n bits.

• Output: 1 if gcd(u, v) = 1 and there exists an r such that u = r2 mod v,
and 0 otherwise.

The quadratic residuosity function is believed to be outside of P/poly. It’s hard-
ness is the basis of a well-studied public-key cryptosystem [GM19GM19], and other
cryptographic constructions [Coc01Coc01, BBS86BBS86].

For linear secret sharing schemes, it is known that efficient schemes have
complexity in the class ModkL when the scheme is defined over the field Zk for k
prime. Thus, the connection from secret sharing to CDS to CDQS and f -routing
reproduces the known class of functions that can be efficiently implemented in
the f -routing setting.

Beyond linear schemes, [BI05BI05] constructed secret sharing schemes with indi-
cator functions that have complexity outside of P . Their scheme realizes the
following access structure.

6.6.2. Definition. NQRn is an access structure on n = 4m parties for m an
integer. We label the 4m shares by W b

i and U b
j with b ∈ {0, 1} and j ∈ {1, ...,m}.

Given two bit strings1313 w, u each of length m, we associate a subset Bw,u of size
2m according to

Bw,u = {Wwi
i : 1 ≤ i ≤ m} ∪ {Uui

i : 1 ≤ i ≤ m}. (6.100)

The access structure NQRn is then defined by its minimal authorized sets, which
are

13To do modular arithmetic with w, u numbers in {0, . . . , 2m−1} are associated to the strings
w, u.
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• {W 0
i ,W

1
i } for any 1 ≤ i ≤ m

• {U0
i , U

1
i } for any 1 ≤ i ≤ m

• Bw,u for w, u such that u ̸= 0, 1 and QR(w, u) = 0, so that w is not a
quadratic residue modulo u.

• Bw,u=0 for w ̸= 1.

Evaluating the indicator function for this access structure is at least as hard as
solving the quadratic residuosity problem. To see this, notice that we can reduce
computing QR(u,w) to evaluating fI as follows. From the string w of length m,
define the two strings w̃, w̃′ according to

w̃i =

{
1 if wi = 1,

0 otherwise,
(6.101)

w̃′i =

{
1 if wi = 0,

0 otherwise,
(6.102)

We similarly define ũ and ũ′, and then notice that

QR(w, u) = ¬fI(w̃, w̃′, ũ, ũ′). (6.103)

Since computing w̃, w̃′, ũ, ũ′ from (w, u) can be done efficiently, computing fI is
not harder than computing QR(w, u).

Despite the indicator function being of high complexity, there exists an effi-
cient secret sharing scheme for the access structure NQRn. This is given in the
following theorem.

6.6.3. Theorem. [BI 2005] There exists an ϵ secure and δ private secret shar-
ing scheme for the access structure NQRn storing a single bit secret with security
parameter k, and

• share size O(k2 + km),

• correctness ϵ = 2−k,

• security1414 δ = k/2k.
14Note that our security definition in terms of a simulator is different from the definition in

[BI05BI05], but it is straightforward to show their security definition with value δ implies ours with
the same δ.
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We refer the reader to [BI05BI05] for the construction of this scheme.
In the context of these distributed cryptographic tasks, we are interested in

functions which remain of high complexity even when allowing for pre-processing.
Thus, we would like to construct functions outside of P(2), perhaps starting with
NQR. For a function to be a likely candidate to be outside P(2), we need to ensure
pre-processing is as unhelpful as possible. We suggest the following function

NQR4m,(2)(x, y) = NQR4m(x⊕ y). (6.104)

Then, since Alice see’s only x and Bob see’s only y, pre-processing seems no
better than advice, so we expect that NQR4m,(2) is outside P(2) if we have that
NQR4m is outside P/poly, as we commented above is believed. We state this as
the following assumption.

6.6.4. Conjecture. The function NQR4m,(2)(x, y) is outside of P(2).

Next, we claim that there is an efficient CDS scheme for NQR4m,(2)(x, y). To see
this, we have Alice, following remark 6.2.166.2.16, prepare the scheme in Theorem 6.6.36.6.3
with access structure NQR4m(z). Then she takes share Si to be the secret which
will be conditionally disclosed in a scheme on the XOR function with inputs xi
and yi. Correctly implementing each of these CDS schemes for the shares Si is
easily seen to now correctly implement the larger scheme with access structure
NQR(2),4m. This CDS can be performed using O(|Si|) randomness, so the total
needed randomness is still given by the size of the secret sharing scheme.

From this construction for CDS and Theorem 6.3.26.3.2 we obtain the following.

6.6.5. Corollary. Assuming conjecture 6.6.46.6.4, there exists a function outside
of P(2) with n input bits and hiding one (qu)bit for which CDS and CDQS can be
performed ϵ = 2−k correctly and δ = k2−k securely with O(k2 + kn) shared bits of
randomness.

From Theorem 6.3.36.3.3, we then obtain the following consequence for f -routing.

6.6.6. Corollary. Assuming conjecture 6.6.46.6.4, there exists a function outside of
P(2) with n input bits and hiding one (qu)bit for which f-routing can be performed
ϵ = O(k2−k) correctly with O(k2 + kn) shared entangled pairs.

f-routing for a problem outside NC from DRE

Next, we construct a CDS scheme for a lower complexity function, albeit one
that is still outside of NC, via a second route that begins with a decomposable
randomized encoding.1515 The computational problem that will interest us is again
quadratic residuosity, but this time where the modulus is taken over a prime.

15Another route for a construction of an f -routing scheme for a problem outside NC but
inside P, and which is exact, is to begin with (exact) non-linear secret sharing scheme given
in [BI05BI05]. We have chosen to use a route beginning with DRE to illustrate that interesting
connection.
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6.6.7. Definition. The quadratic residuosity problem over Zp is defined
as follows.

• Input: An integer a of n bits and prime p, also of n bits.

• Output: 1 if a = b2 mod p for some b, and 0 otherwise.

While this problem is not known to be within NC, it is easily placed inside of P
by recalling the Euler criterion, which states that

a
p−1
2 = 1 mod p, (6.105)

if and only if a is a square. Given this, modular exponentiation can be used to
determine whether a is a square in polynomial time. Note that if we pose the
same problem but with the prime p replaced by a composite number, the resulting
problem is thought to be outside of P [Kal11Kal11]. We focus on the prime case here.
See [BI05BI05] for a related discussion of the complexity of the quadratic residuosity
functions considered over a field Zp for p prime.

The quadratic residuosity problem over primes admits a simple randomized
encoding scheme. In particular, take

a→ r2a, (6.106)

for r a randomly chosen integer in Zp. To understand why this is a randomized
encoding, notice that QR(a) = QR(r2a), so we can compute the result of the
function defined by the residuosity problem from the encoded output correctly,
by (in this particular case) simply computing the original function, since r2a is
a quadratic residue if a is. Next, to show security, one needs to show that if a
is a quadratic residue, then r2a is randomly distributed over all those integers
ã in Zp which also are, and if a is not a quadratic residue then r2 is uniformly
distributed over all those ã which are also not. This amounts to showing that if
a and ã both are (or both are not) quadratic residues, then there is a unique r
such that r2a = ã. This follows because the product of two residues is a residue,
and the product of two non-residues is a residue.

We can further extend this to a decomposable randomized encoding as follows
[BHI+20BHI+20]. Use the encoding

ai → air
22i−1 + si =: yi, (6.107)

for si, r drawn independently and at random from Zp for all but the last si, which
we set so that

∑
i si = 0. Then to decode use

QR

(∑
i

yi

)
= QR(r2a) = QR(a). (6.108)
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To see security, we assume that a, ã are two integers with the same quadratic
residue, and then show that there is a choice of r, si which makes the bits of a
look like the bits of ã. This means we need to solve

ai2
i−1 = ãi2

i−1r2 + si, (6.109)

subject also to
∑

i si = 0. It is easy to see we can do this taking as an assumption
the same thing we used in the earlier case, that if a, ã have the same quadratic
residue then there is a r such that a = r2ã.

Given the existence of a decomposable randomized encoding scheme for the
quadratic residue problem, we immediately obtain a PSM for this problem as
noted above: Alice and Bob simply send the randomized encodings of their input
bits to the referee, who runs the decoding procedure. This was already observed
in [IK97IK97]. This in turn implies an efficient CDS, CDQS, and f -routing scheme
for f(x) = QR(x). We collect these observations as the following remark.

6.6.8. Remark. Consider an n-bit string z and split its bits into arbitrary sub-
sets S and Sc. Let the bits from S define a string zS and a bit from Sc define a
string zSc . Then the function f(zS, zSc) = QR(z) has perfectly correct PSM and
CDS schemes that use poly(n) bits of randomness.

We can also use Theorems 6.3.26.3.2 and 6.3.36.3.3 to upgrade these to quantum schemes,
giving the following corollary.

6.6.9. Corollary. Consider an n-bit string z and split its bits into arbitrary
subsets S and Sc. Let the bits from S define a string zS, and a bit from Sc define
a string zSc. Then the function f(zS, zSc) = QR(z) have perfectly correct PSQM
and CDQS schemes that use poly(n) EPR pairs as a resource state.

Ideally, one would show that, assuming QR(z) is outside of NC implies f(zS, zSc)
is outside of NC(2) but we are unable to do so. Nonetheless, this constructs a
second problem not known to be in NC(2) with an efficient f -routing scheme, al-
though this one is inside of P. Another comment is that this problem has an exact
scheme, while the construction in the previous section outside of P is approximate.

6.6.2 Efficient PSQM and CDQS for low T-depth circuits

In [Spe16aSpe16a], a protocol is given that performs a unitary UAB non-locally with
entanglement cost that depends on the circuit decomposition of UAB. In partic-
ular, we write UAB in terms of a Clifford + T gate set, and obtain the following
two upper bounds on entanglement cost.

6.6.10. Theorem. Any n qubit Clifford + T quantum circuit C which has at
most k T -gates can be implemented non-locally using O(n2k) EPR pairs. Fur-
thermore, if C has T -depth d then there is a protocol to implement C non-locally
using O((68n)d) EPR pairs.
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A0

A1

x

U

y

Figure 6.7: The circuit implementing the unitary U′. The unitary U computes
f(x, y) on it’s last wire with high fidelity. System A0 is initially maximally en-
tangled with reference R. At the end of the circuit, R with be highly entangled
with system Af(x,y).

From Theorems 6.4.186.4.18 and 6.3.56.3.5, these results lead to upper bounds on entan-
glement cost in implementing CDQS, f -routing, and PSQM. These upper bounds
depend on the number of T gates needed to compute f(x, y) with a quantum cir-
cuit. We first discuss the CDQS setting.

6.6.11. Corollary. Suppose that a function f(x, y) can be evaluated with prob-
ability 1−ϵ by a Clifford + T circuit with T -count k and T -depth d. Then there is
a 2ϵ-correct f -routing protocol for the function f(x, y) that uses at most O(n2k)
EPR pairs, or at most O((68n)d+5) EPR pairs, whichever is smaller.

Proof:
Let U be the unitary that computes f . Recall that this means a measurement
in the computational basis on the first qubit of the output of U returns f(x, y)
with probability 1− ϵ. Writing the state

U |x, y⟩ =
∑

i2,...,in

α0,i2,...,in |0⟩ |i2, ..., in⟩+
∑

i2,...,in

α1,i2,...,in |1⟩ |i2, ..., in⟩

= α0 |ψ0⟩+ α1 |ψ1⟩ , (6.110)

we have that |αf(x,y)|2 ≥ 1− ϵ.
Now consider modifying the circuit that implements U by adding two ancilla

qubits A0A1 and a controlled SWAP gate, where we control on the first output
qubit of U. We show this as a quantum circuit in Figure 6.76.7. The controlled
SWAP gate can be implemented with 7 T -gates arranged in 5 layers (see, e.g.
[KC18KC18]). Thus, our new circuit has T -depth at most d + 5 and T -count at most
k + 7. We call the unitary U composed with the controlled swap gate U′.

To implement the f -routing protocol, we implement U′ non-locally with A0X
held on the left and A1Y held on the right. Initially A0 is in the maximally
entangled state with the reference system R. Because U′ can be implemented
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with k+7 T -gates and T -depth of d+5, Theorem 6.6.106.6.10 gives that this takes no
more than O(n2k) EPR pairs, or at most O((68n)d+5) EPR pairs, whichever is
smaller. Then we claim that at the end of the protocol that the Af(x,y) system is
nearly maximally entangled with R.

To see this, notice that the state of the RA0A1XY after the unitary plus
controlled swap have been applied is

α0 |Ψ+⟩RA0
|0⟩A1

|ψ0⟩XY + α1 |Ψ+⟩RA1
|0⟩A0

|ψ1⟩XY , (6.111)

where ψ0 and ψ1 are orthogonal states as a consequence of unitarity of U. We
take the decoding channel to be the trace over the A1−f(x,y)XY system, followed
by a relabeling of Af(x,y) as Q. This produces the state

ρRQ = |αf(x,y)|2Ψ+
RQ + |α1−f(x,y)|2

I
dR

⊗ |0⟩⟨0|Q . (6.112)

Then we can calculate the fidelity

F (Ψ+, ρRQ) ≥ |αf(x,y)|2 ≥ 1− 2ϵ, (6.113)

so that the f -routing protocol is 2ϵ correct, as needed. 2

From Theorem 6.4.186.4.18, this also leads to a similar upper bound for CDQS.

6.6.12. Corollary. Suppose that a function f(x, y) can be evaluated with prob-
ability 1− ϵ by a Clifford + T circuit with T -count k and T -depth d. Then there
is a 2ϵ-correct and

√
ϵ log dQ secure CDQS protocol for the function f(x, y) that

uses at most O(n2k) EPR pairs, or at most O((68n)dn5) EPR pairs, whichever
is smaller.

Proof:
Immediate from Theorem 6.3.36.3.3. 2

Next, we apply Theorem 6.6.106.6.10 to give a class of functions for which PSQM
can be efficiently performed.

6.6.13. Corollary. Suppose that the isometry

Vf =
∑
xy

|xy⟩Z′ |fxy⟩Z ⟨x|X ⟨y|Y (6.114)

can be implemented with closeness ϵ (according to the diamond norm distance)
with a Clifford + T circuit with T -count k and T -depth d. Then there exists a
PSQM protocol for f(x, y) which is ϵ-correct and

√
ϵ-secure that uses at most

O(n2k) EPR pairs, or at most O((68n)dn5) EPR pairs, whichever is smaller.

Proof:
Follows immediately from Theorems 6.3.56.3.5 and 6.6.106.6.10 taken together. 2
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6.7 Sub-exponential protocols for f-routing on ar-
bitrary functions

In a surprising breakthrough, [LVW17LVW17] showed that CDS can be performed for any
function using sub-exponential communication and randomness. We summarize
their result as the following theorem.

6.7.1. Theorem. [LVW 2017] Every function f : {0, 1}n × {0, 1}n → {0, 1}
has a CDS protocol for single bit secrets using 2O(

√
n logn) bits of randomness and

2O(
√
n logn) bits of communication.

Combining this with Theorem 6.3.26.3.2 we obtain the following corollary.

6.7.2. Corollary. There exist CDQS protocols with perfect correctness and se-
crecy for every function f : {0, 1}n × {0, 1}n → {0, 1} using 2O(

√
n logn) bits of

randomness and 2O(
√
n logn) bits of communication, along with a single qubit of

communication.

Proof:
Recall that CDS protocols for secrets s1, s2 can be run in parallel if using fresh
randomness for each instance (see the paragraph after remark 6.2.46.2.4). Thus, we
can create a CDS hiding two bits of secret while still using 2O(

√
n logn) randomness

and communication, and then apply Theorem 6.3.26.3.2 to see that we can perform
CDQS on a single qubit. 2

From this, Theorem 6.3.36.3.3 leads to the following.

6.7.3. Corollary. There exists a perfectly correct f -routing protocol for every
function f : {0, 1}n × {0, 1}n → {0, 1} using 2O(

√
n logn) qubits of resource system

and 2O(
√
n logn) qubits of message.

Proof:
Immediate from Corollary 6.7.26.7.2 and Theorem 6.3.36.3.3. 2

Before moving on, we will dive deeper into the subexponential construction
in [LVW17LVW17]. Where does the sub-exponential advantage come from and can we
use it for other tasks?

The construction begins with a reduction from a CDS protocol for a general
function f(x, y) to a particular function, which we denote as INDEX(x,Dy). It
takes as input Alice’s input x and the database

Dy = {f(x′, y) |x′ ∈ {0, 1}n}. (6.115)

The INDEX function simply outputs the value in the database at index x, notice
that:

f(x, y) = INDEX(x,Dy) = Dy[x]. (6.116)
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This means in particular that a good CDS protocol for the index function will
lead to a good CDS protocol for all functions.

The construction of a CDS for INDEX begins with a connection to the
cryptographic task of private information retrieval (PIR). In a PIR task, a client
interacts with several non-communicating servers to retrieve an item with label
x from a database D, call the item D[x]. Security of the PIR requires that the
databases cannot determine the label x. This primitive has long been noted to
be related to CDS, and in fact CDS was first defined in the context of studying
PIR schemes [GIKM00GIKM00]. While it is not known whether all PIR schemes induce
CDS schemes, techniques used in PIR constructions have led to CDS schemes.
Theorem 6.7.16.7.1 was proven by applying tools from a sub-exponential PIR scheme
presented in [DG16DG16] to construct a CDS.

The construction in [DG16DG16] is based on the existence of large matching vector
families (MVF). They define MVF as follows:

6.7.4. Definition (MVF). Let S ⊂ Zm \ {0}, and let F = (U ,V), where U =
{u1, . . . ,uk} and V = {v1, . . . ,vk} are lists of k vectors ui,vi ∈ Zd

m. Then F is
called an S-MVF over Zd

m of size k and dimension d if ∀i, j we have:

⟨ui,vi⟩ = 0

⟨ui,vj⟩ ∈ S, if i ̸= j.

Of interest is how large k can be for vectors chosen in a given vector space
Zd

k. For our application, we are interested in constructing MVF where k should
be as large as possible while |S|,m, d are small. One can show that if m is
a prime that the size k of an MVF can only be polynomially larger than the
dimension [Gop19Gop19]. However, if m is a composite number, we can obtain much
better constructions. In [Gro00Gro00], the authors constructed an MVF over Zd

6 of
size k, where d = 2O(

√
log k log log k). In the construction of [LVW17LVW17], the amount of

randomness and communication needed scales with the dimension of the MVF,
whose size is equal to the size of the database in 6.1156.115. For a general CDS with
n-bit inputs the database has size |Dy| = 2n, so the dimension is d = 2O(

√
n logn),

as in Theorem 6.7.16.7.1.
The construction of the MVF in [Gro00Gro00] is based on a polynomial representa-

tion of ORn mod m, defined as:

6.7.5. Definition. Let x ∈ {0, 1}n, a polynomial p(x1, . . . , xn) represents ORn

mod m if:

p(x1, . . . , xn) ≡ 0 mod m if and only if x = 0n. (6.117)

When m is a prime, the degree of p scales with n. To see this, note that, by
Fermat’s Little Theorem, p(x)m−1 is exactly equal to the OR mod m function.
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As every function has a unique representation as a multilinear polynomial, we
must have the following:

p(x)m−1 = 1−
n∏

i=1

(1− xi) mod m, (6.118)

as the right hand side computes the ORn mod m function. Therefore, deg(p) ≥
n/(m− 1).

However, when m is a composite, constructions of a much lower degree are
possible. The best known construction has degree O( t

√
n) for such polynomials,

where t is the number of distinct prime factors of m [BBR94BBR94].
The following lemma from [Gop19Gop19] relates the degree of polynomials that com-

pute ORn mod m directly to the existence of a certain dimension by constructing
vectors whose length corresponds to the number of monomials in the polynomial.

6.7.6. Lemma. Suppose p(x1, . . . , xn) is a polynomial representation of ORn mod
m of degree r. Then, there exists an MVF over Zd

m of size k = 2n and dimension
d =

(
n+r
r

)
.

Proof:
Consider a matrix M whose rows and columns are indexed by strings x, y ∈
{0, 1}n. Let the matrix entries Mxy be p(x ⊕ y) mod m = p(x1 ⊕ y1, . . . , xn ⊕
yn) mod m. As xi ⊕ yi = xi + yi − 2xiyi, p(x ⊕ y) is a polynomial of degree r
in variables x and y. Thus, we can write as p(x ⊕ y) =

∑
α:|α|≤r x

αqα(y), where
qα(y) is some polynomial in y with degree at most r. Now, M is a matrix with
0’s on the diagonal and non-zero elements off diagonal. Note that its entries
Mxy =

∑
α:|α|≤r x

αqα(y) can be written as an inner product between the vector
ux = (xα)α:|α|≤r and vy = (qα(y))α:|α|≤r. These vectors have the properties of an
MVF and their dimension d is equal to the number of monomials in p, which is(
n+r
r

)
. 2

This recovers a subexponential construction of the m = 6 case, as
(
n+O(

√
n)

O(
√
n)

)
=

2O(
√
n logn). The subexponential CDS construction relies on m = 6, and cannot

be extended to use MVF over larger rings with more prime factors.
Little is known about lower bounds on the degree of a polynomial representa-

tion of ORn mod m. The best lower bound is Ω((log n)
1

t−1 ), where t is the number
of distinct prime factors of m [TMB98TMB98], which is a huge gap compared to the best
known upper bound of O( t

√
n). Suppose that this lower bound can be attained,

then it implies by the above lemma that for m = 6 there exists MVF of size
k = 2n and dimension d = 2O(log(n)2). This would immediately imply the exis-
tence of a CDS that uses 2O(log(n)2) bits of randomness and communication by the
construction of [LVW17LVW17]. And, by Corollary 6.7.36.7.3, there will exist an f -routing
protocol for every function that uses only 2O(log(n)2) qubits of communication and
for the resource system.
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The contrapositive of this argument is now an interesting connection be-
tween open questions in NLQC and computational complexity. We see that
lower bounds on the necessary resource system of an f -routing protocol imply
lower bounds on the degree of the polynomial representation of the ORn mod 6
function. For both problems, we do not know what bounds to expect. For a
long time, it was expected that exponential resource systems would be necessary
for f -routing schemes. If we can show lower bounds that are better than the
2O(log(n)2) = nO(log(n)) qubits of the resource system, we improve the best known
lower bound of O(log(n)) for the degree of the polynomial representation of ORn

mod 6.

6.8 Discussion

Collapse of CDQS and PSQM complexity with PR boxes

A Popescu-Rohrlich box is a hypothetical device, shared by distant parties
Alice and Bob, which allows them to satisfy the CHSH game with probability
one. More concretely, given input x on Alice’s side and input y on Bob’s side,
the device returns a to Alice and b to Bob such that a ⊕ b = x ∧ y. Broadbent
[Bro16Bro16] showed that if Alice and Bob share PR boxes, they can implement any
unitary as a non-local computation using only linear entanglement and a linear
number of uses of a PR box. This can be seen as a quantum analogue of a similar
collapse that occurs in the setting of classical communication complexity [VD13VD13].
Because efficient non-local computation protocols lead, via Theorems 6.3.36.3.3 and
6.3.56.3.5, to efficient CDQS and PSQM protocols, Broadbent’s result similarly leads
to a collapse to linear cost for PSQM and CDQS.

In fact, an even stronger collapse follows for CDQS, PSQM and f -routing by
applying the result of [VD13VD13] showing the collapse of classical communication
complexity in the presence of PR boxes. In particular, PR boxes can be used to
reduce computing f(x, y) with x held by Alice and y held by Bob to computing
α+β, with α computed from x plus the output of PR box uses, and β computed
from y along with PR box uses.1616 In the CDS or PSM settings, we need only
to execute CDS or PSM on the function g(α, β) = α + β with the inputs being
single bits. This can be done with O(1) randomness. Using Theorems 6.3.26.3.2 and
6.2.196.2.19, CDQS can then be done with O(1) EPR pairs and PSQM with O(1) shared
random bits. We can further note that from Theorem 6.3.36.3.3 this means f -routing
can be performed for arbitrary functions using only O(1) EPR pairs when given
access to PR boxes.

Connections to quantum gravity and holography

16See [KKLR11KKLR11] for results on the number of PR box uses necessary. Note that in our setting,
we can use the PR boxes sequentially if desired.
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In the study of quantum gravity the holographic principle [Hoo93Hoo93, Sus95Sus95] as-
serts that gravity in d dimensions should have an alternative quantum mechanical
description in just d − 1 dimensions. This principle is realized manifestly in the
context of the AdS/CFT correspondence [Mal99Mal99, Wit98Wit98]. In [May19May19], hologra-
phy and the AdS/CFT correspondence was related to non-local quantum com-
putation. In particular, they argued local interactions in the higher-dimensional
gravity picture are reproduced as non-local quantum computations in the lower-
dimensional quantum mechanical picture. As a consequence, computations in
the presence of gravity may be constrained by limits on entanglement in the dual
quantum mechanical picture [May22May22], or interactions in the gravity picture may
imply more computations can be performed non-locally than we have so far found
protocols for.

In this chapter, we see that as a consequence of their connections to NLQC,
CDQS and PSQM are also related to holography. One can also realize CDQS
and PSQM protocols directly in holography, using connections similar to the
one in [May19May19] or the more recent [MX24MX24]. This implies that, as with NLQC,
constraints on CDQS and PSQM correspond to constraints on bulk interactions.
Conversely, the holographic picture has been argued [MPS20MPS20, May22May22] to suggest
that a larger class of unitaries than is currently known should have efficient non-
local implementations. Importantly, the connection between CDQS and PSQM
is so far limited to the 2 input player case, which is also the case that ties to
NLQC. It may be possible to explore a connection between CDQS and PSQM to
holography that is realized more directly, not via NLQC, which could extend the
connection to settings with many input players.

Recalling [May22May22], it was argued that the holographic connection suggests
that at least unitaries in BQP should be implementable non-locally. From this
perspective, it is interesting that, from the connection to secret sharing, we now
have at least one function outside of P but inside of BQP with an efficient non-
local implementation.

Quantum analogues of recent classical results

Non-local quantum computation was previously thought to have no (non-
trivial) classical analogue: taking the inputs and outputs of a computation to be
classical, one can immediately perform the computation in the non-local form of
figure 6.1b6.1b without use of shared randomness.1717 The connections pointed out in
this chapter give non-trivial classical analogues of non-local computation: CDQS
is equivalent to a special case of NLQC, and has a non-trivial classical version
(CDS), and similarly to PSM.

Traditionally, classical analogues are a source of techniques and conjectures
in the quantum setting. Taking this perspective on CDS and CDQS, two recent

17This amounts to a special case of the impossibility result [CGMO09CGMO09]. To see why it is true,
consider copying the inputs x and y where they are received and forwarding a copy across the
communication channel.
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results in the CDS literature are natural candidates to revisit in the quantum
setting.

First, in [AV21AV21], the authors relate CDS to various communication complexity
scenarios. In particular, they consider the communication complexity class AM cc,
defined as follows. Alice and Bob hold inputs x and y and share randomness
r, while a referee holds (x, y). The referee will send Alice and Bob a proof
p = p(x, y, r) that both Alice and Bob should accept when f(x, y) = 1, and both
should reject if f(x, y) = 0. AM cc(f) is the minimal length of the needed proof,
and AM cc is the class of functions for which the proof can be taken to be of
polylogarithmic length. Relating this to CDS, they show that for some constant
c > 0,

CDS(f) ≥ (max{AM cc(f), coAM cc(f)})c − polylog(n), (6.119)

where CDS(f) is the communication complexity of a CDS protocol for f (allowing
for imperfect correctness and imperfect security), and a similar bound differing
only by constant factors exists for randomness complexity. Unfortunately, there
are no explicit functions known to be outside AM cc ∩ coAM cc, but nevertheless
Equation 6.1196.119 is an intriguing result. A natural question is whether a similar in-
equality holds when considering CDQS and quantum communication complexity
classes.

Second, related work [AR17AR17] studied the relationship between zero-knowledge
proofs and both CDS and PSM. The starting point is a zero-knowledge variant
of the class AM cc discussed above, where an additional requirement is imposed
that the proof p not reveal anything about (x, y). This is referred to as the
class ZAM cc. The authors of [AR17AR17] found that a PSM protocol with perfect
correctness and privacy leads to a similarly efficient ZAM protocol, and that a
ZAM protocol (which may be approximate) leads to a similarly efficient CDS
protocol. Again, it is natural to ask for a quantum analogue of these results.

Classical analogues of further non-local computations

In this chapter, we relate two special cases of non-local quantum computation
— f -routing and coherent function evaluation — to other cryptographic tasks,
CDQS and PSQM. One aspect of these relationships we have emphasized is that
while non-local computation naively becomes trivial when considered classically1818,
PSQM and CDQS have natural classical variants. This raises the question as to
whether NLQC generally has a good classical analogue, perhaps one exploiting
the same communication pattern as CDS and PSM, and employing an appropri-
ate secrecy condition. Less ambitiously, we can also ask about classical analogues
of other commonly studied non-local quantum computation schemes. One com-
monly studied non-local computation that we have not considered here is the

18In particular we have in mind that a non-local computation with only classical inputs can
always be implemented without pre-distributed resources [CGMO09CGMO09].
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BB84 task [BCF+14BCF+14, TFKW13TFKW13], and its extension to f -BB84 [BCS22BCS22, EFS23EFS23]. It
would be interesting to understand if f -BB84 is related to a classical primitive.
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Abstract

This thesis explores position-based quantum cryptography zooming in on the task
of position verification. In position verification, the idea is to use an individual’s
geographical location as a cryptographic credential. Practically, such protocols
can authenticate that a message originated from a specific location or ensure that
messages can only be read at a certain location.

In a position-verification protocol, the limitations imposed by the speed of
light, as described by special relativity, are used to verify that a party is at their
claimed location. This task has been shown to be impossible to implement using
only classical information. Initially, the hope was that using quantum informa-
tion we could construct secure quantum position verification (QPV) protocols.
However, it has been shown that any QPV protocol can be broken by attackers
that use an amount of entanglement exponential in the input size.

Thus, unconditionally-secure quantum position-verification protocols do not
exist. However, from a practical point of view, not all is lost. The exponential
upper bound for a general attack is still astronomically large for only a relatively
small input. Thus, we can still hope for practically secure QPV protocols. This
raises the problem of designing protocols that are secure in a practical setting.
An important problem that immediately arises is that of signal loss. Signal loss
can be detrimental as it allows attackers to only answer on a subset of rounds.

We propose a new protocol, QPVSWAP, which is fully loss-tolerant against clas-
sical attackers. The task of the protocol, which could be implemented using only
a single beam splitter and two detectors, is to estimate the overlap between two
input states. By formulating the optimal attack as a semidefinite program (SDP),
which we solve analytically, we give optimal bounds on the success probability of
attackers and show that the protocol obeys strong parallel repetition.

We then construct the first known example of a QPV protocol that is provably
secure against unentangled attackers restricted to classical communication, but
can be perfectly attacked by local operations and a single round of simultaneous
quantum communication, indicating that allowing for quantum communication
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may break security. We then show that any protocol secure against classical
communication can be transformed into a protocol secure against quantum com-
munication. We further show, using arguments based on the monogamy of en-
tanglement, that the task of Bell state discrimination cannot be done with only
local operations and a single round of simultaneous quantum communication, not
even when attackers are allowed to declare a loss, making this the first fully loss-
tolerant QPV task secure against quantum communication attacks. We also show
that the security of the Bell state discrimination protocol implies similar security
for the QPVSWAP.

An interesting QPV candidate is the QPVf
BB84 protocol, which is a QPV proto-

col that consists of a single qubit input with classical n-bit strings that determine
the measurement basis in which the qubit has to be measured. This protocol has
the desirable property that the entanglement needed to attack the protocol scales
with the size of the classical information. However, the protocol can be trivially
broken for loss rates higher than 50%. We propose a modified structure of QPV
protocols by introducing a commitment to play before proceeding, and prove that
this modification makes the potentially high transmission loss between the veri-
fiers and the prover security-irrelevant for a class of protocols that includes the
QPVf

BB84 protocol. The adapted protocol c-QPVf
BB84 then becomes a practically

feasible QPV protocol with strong security guarantees, even against attackers
using adaptive strategies. As the loss rate between the verifiers and the prover
is mainly dictated by the distance between them, secure QPV over longer dis-
tances becomes possible. We also show possible feasible implementations of the
required photon presence detection, making c-QPVf

BB84 a protocol that solves all
major practical issues in QPV. It is secure against slow quantum communication
and loss, and the prover’s operations are relatively simple, since he only needs to
manipulate a single qubit and make a classical computation.

We then invert the picture, and consider the task of non-local quantum com-
putation (NLQC), which corresponds to the operations of the attackers in a QPV
protocol. We connect NLQC to the wider context of information-theoretic cryp-
tography by relating it to a number of other cryptographic primitives. We show
that one special case of NLQC, known as f -routing, is equivalent to the quantum
analogue of the conditional disclosure of secrets (CDS) primitive, where by equiv-
alent we mean that a protocol for one task gives a protocol for the other with
only small overhead in resource costs. We further consider another special case
of position verification, which we call coherent function evaluation (CFE), and
show that CFE protocols induce similarly efficient protocols for the private si-
multaneous message passing (PSM) scenario. By relating position-verification to
these cryptographic primitives, a number of results in the information-theoretic
cryptography literature give new implications for NLQC, and vice versa. These
include the first sub-exponential upper bounds on the worst case cost of f -routing
of 2O(

√
n logn) entanglement, the first example of an efficient f -routing strategy for

a problem believed to be outside P/poly, linear lower bounds on quantum re-
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sources for CDS in the quantum setting, linear lower bounds on communication
cost of CFE, and efficient protocols for CDS in the quantum setting for functions
that can be computed with quantum circuits of low T depth.





Samenvatting

Dit proefschrift onderzoekt positiegebaseerde quantumcryptografie, met een fo-
cus op de taak van positieverificatie. Bij positieverificatie is het idee om de
geografische locatie van een individu te gebruiken als een cryptografisch bewijs.
In de praktijk kunnen dergelijke protocollen verifiëren dat een bericht afkomstig
is van een specifieke locatie, of ervoor zorgen dat berichten alleen op een bepaalde
locatie gelezen kunnen worden.

In een positieverificatieprotocol worden de beperkingen die worden opgelegd
door de lichtsnelheid, zoals beschreven door de speciale relativiteitstheorie, ge-
bruikt om te verifiëren dat een partij zich op de geclaimde locatie bevindt. Het
is gebleken dat deze taak onmogelijk te implementeren is met alleen klassieke
informatie. Aanvankelijk was de hoop dat we met behulp van quantuminformatie
veilige quantum positieverificatie (QPV) protocollen zouden kunnen construeren.
Echter, onderzoek heeft laten zien dat elk QPV-protocol kwetsbaar is voor aan-
vallers die een hoeveelheid quantumverstrengeling gebruiken die exponentieel is
in de grootte van de input.

Onvoorwaardelijk veilige quantum positieverificatieprotocollen bestaan dus
niet. Maar, vanuit een praktisch oogpunt is nog niet alles verloren. De expo-
nentiële bovengrens voor een algemene aanval is nog steeds astronomisch groot,
zelfs bij een relatief kleine input. Daarom kunnen we nog steeds hopen op
praktisch veilige QPV-protocollen. Dit roept het probleem op van het ontwer-
pen van protocollen die veilig zijn in een praktische omgeving. Een belangrijk
probleem dat hier onmiddellijk opduikt, is dat van signaalverlies. Signaalverlies
kan schadelijk zijn omdat het aanvallers in staat stelt slechts in een subset van
de rondes te antwoorden.

Wij stellen een nieuw protocol voor, genaamd QPVSWAP, dat volledig ver-
liesveilig is voor klassieke aanvallers. De taak van het protocol, dat kan worden
geïmplementeerd met slechts een enkele straalsplitser en twee detectoren, is om
de overlap tussen twee inputtoestanden te schatten. Door de optimale aanval te
formuleren als een SDP, die we analytisch oplossen, geven we optimale grenzen

193



194 Samenvatting

aan voor de succeskans van aanvallers, en tonen we aan dat het protocol aan
sterke parallelle herhaling voldoet.

We construeren vervolgens het eerste bekende voorbeeld van een QPV-protocol
dat aantoonbaar veilig is tegen niet-verstrengelde aanvallers die beperkt zijn tot
klassieke communicatie, maar dat perfect kan worden aangevallen door lokale
operaties en een enkele ronde van gelijktijdige quantuminformatie, wat aangeeft
dat het toestaan van quantuminformatie de veiligheid van het protocol kan breken.
Vervolgens tonen we aan dat elk protocol dat veilig is tegen klassieke communi-
catie kan worden omgezet in een protocol dat veilig is tegen quantuminformatie.
Verder tonen we aan, met behulp van argumenten gebaseerd op de monogamie
van verstrengeling, dat de taak van het onderscheiden van Bell toestanden niet
kan worden uitgevoerd met alleen lokale operaties en een enkele ronde van geli-
jktijdige quantumcommunicatie, zelfs niet wanneer aanvallers een verlies mogen
claimen, waardoor dit de eerste volledig verlies-tolerante QPV-taak is die veilig
is tegen quantuminformatie-aanvallen. We tonen ook aan dat de beveiliging van
het protocol wat de Bell toestanden onderscheidt een vergelijkbare mate van vei-
ligheid impliceert voor QPVSWAP.

Een interessante QPV-kandidaat is het QPVf
BB84protocol, een QPV-protocol

dat bestaat uit een enkele qubit-input met klassieke n-bit inputstrings die de ba-
sis bepalen waarin de qubit moet worden gemeten. Dit protocol heeft de gewen-
ste eigenschap dat de verstrengeling die nodig is om het protocol aan te vallen,
schaalt met de grootte van de klassieke informatie. Echter, het protocol kan
op triviale wijze worden doorbroken bij verliespercentages hoger dan 50%. Wij
stellen een aanpassing in de structuur van QPV-protocollen voor door een toezeg-
ging tot deelname in te voeren voordat men verder gaat, en bewijzen dat deze
aanpassing het potentieel hoge transmissieverlies tussen de verifiers en de prover
beveiligingsirrelevant maakt voor een klasse protocollen die het QPVf

BB84 pro-
tocol bevat. Het aangepaste protocol c-QPVf

BB84wordt dan een praktisch haal-
baar QPV-protocol met sterke beveiligingsgaranties, zelfs tegen aanvallers die
adaptieve strategieën gebruiken. Aangezien het verliespercentage tussen de veri-
fiers en de prover voornamelijk wordt bepaald door de afstand tussen hen, wordt
veilige QPV over langere afstanden mogelijk. We tonen ook mogelijke haalbare
implementaties van de vereiste aanwezigheidsdetectie van een foton, waardoor
c-QPVf

BB84een protocol wordt dat alle belangrijke praktische problemen in QPV
oplost. Het is veilig tegen langzame quantuminformatie en verlies, en de operaties
van de prover zijn relatief eenvoudig, aangezien hij alleen een enkele qubit hoeft
te manipuleren en een klassieke berekening hoeft uit te voeren.

We draaien vervolgens het perspectief om en beschouwen de taak van niet-
lokale quantumcomputatie (NLQC), wat overeenkomt met de operaties van de
aanvallers in een QPV-protocol. We verbinden NLQC met de bredere context
van informatie-theoretische cryptografie door het te relateren aan een aantal an-
dere cryptografische basistaken. We laten zien dat een speciaal geval van NLQC,
bekend als f -routing, equivalent is aan de quantum-versie van de
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voorwaardelijke onthulling van geheimen (CDS) taak, waarbij equivalent betekent
dat een protocol voor de ene taak een protocol voor de andere taak oplevert
met slechts een kleine overhead in resourcekosten. We beschouwen verder een
ander speciaal geval van positieverificatie, dat we coherente functie-evaluering
(CFE) noemen, en tonen aan dat CFE-protocollen op vergelijkbare wijze effi-
ciënte protocollen induceren voor het scenario van private gelijktijdige berich-
tuitwisseling (PSM). Door positieverificatie te relateren aan deze cryptografis-
che primitieve taken, geven een aantal resultaten in de informatie-theoretische
cryptografie nieuwe implicaties voor NLQC, en vice versa. Deze omvatten de
eerste sub-exponentiële bovengrenzen op de ergste gevalskosten van f -routing
van 2O(

√
n logn) verstrengelde deeltjes, het eerste voorbeeld van een efficiënte f -

routing strategie voor een probleem waarvan men denkt dat het buiten P/poly
ligt, lineaire ondergrenzen voor quantumresources voor CDS in de quantumset-
ting, lineaire ondergrenzen voor de communicatiekosten van CFE, en efficiënte
protocollen voor CDS in de quantumsetting voor functies die kunnen worden
berekend met quantumcircuits van beperkte T -diepte.
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