
An Exploration of Contraction Free Arithmetic

MSc Thesis (Afstudeerscriptie)

written by

Swapnil Ghosh
(born December 5, 2000 in Kolkata)

under the supervision of Lev Beklemishev, Daniyar Shamkanov and
Dick de Jongh, and submitted to the Examinations Board in partial

fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
May 22, 2024 Lev Beklemishev (Supervisor)

Daniyar Shamkanov (Supervisor)
Dick de Jongh (Supervisor)
Albert Visser
Bahareh Afshari
Benno van der Berg (chair)

Abstract

This thesis is a proof-theoretic study of Contraction Free Arithmetic (CFA). We
introduce CFA as a first order arithmetical theory based on a logic (GQC) which
is the multiplicative fragment of LK without the structural rules of contraction.
Our investigation starts by showing some basic properties of GQC, before pro-
ceeding to establish various properties of CFA. One such interesting property
of CFA is that the (omitted) additive connectives become definable in it. A
key characteristic of CFA is that it has the Induction Rule, for all formulas, in
place of the Induction Schema. We justify this by showing that the presence
of the induction schema would reintroduce contraction rules, and subsequently,
the arithmetic would collapse to PA. We proceed to establish that induction
schema restricted to ∆0 formulas hold for CFA and utilize this to show, among
other things, that any Π2 sentence provable in the arithmetical theory I∆0 is
also provable in CFA. This thesis culminates in the study of the computational
strength of CFA via provably recursive functions of CFA. We establish that
the class of provably recursive functions within CFA precisely coincides with
the class of primitive recursive functions. Consequently, the essential result of
the present work is that CFA not only expands the class of provably recursive
functions beyond those of I∆0, but also establishes its distinctiveness from PA.

Contents

1 Introduction 4
1.1 Substructural Logics . 4
1.2 Contraction and Paradoxes . 7
1.3 Contraction Free Logic . 10
1.4 Arithmetic in Contraction-free Logic 11
1.5 Overview of this thesis . 11

2 Contraction Free Logic 13
2.1 Grišhin Calculus . 13

2.1.1 Propositional Calculus . 13
2.1.2 Predicate Calculus . 21

2.2 Cut-Elimination in GQCG . 27
2.3 Deduction from hypotheses . 41

3 Contraction Free Arithmetic 47
3.1 The Formal System of CFA . 47
3.2 Additive Connectives . 50
3.3 Induction . 58

4 Provably Recursive Functions 75
4.1 Provably Recursive Functions . 75
4.2 Primitive Recursive Functions . 77
4.3 Classifying Provably Recursive Functions 82

4.3.1 CFA∞ . 82
4.3.2 Admissibility of Cut in CFA∞ 86
4.3.3 Embedding CFA in CFA∞ 91

5 Conclusion and Further Work 96

Bibliography 101

A Appendix A 104

2 CONTENTS

B Appendix B 108

C Acknowledgements 111

CONTENTS 3

INDEX OF NOTATIONS

⊗ Multiplicative Conjunction
∧ Additive Conjunction
⊕ Multiplicative Disjunction
∨ Additive Disjunction
→ Multiplicative Conditional
⊥ Falsum
⊤ Truth
∅ Empty Set

C(A) Complexity of formula A
LK Classical Logic
PA Peano Arithmetic
HA Heyting Arithmetic

GPC Grishin Propositional Calculus
GQC Grishin Quantified Calculus
I∆0 First Order Bounded Arithmetic

CFA Contraction Free Arithmetic
Natural Sum of Ordinals

1 | Introduction

This thesis studies arithmetic from a proof-theoretical perspective within the
framework of an underlying logic which does not enjoy contraction. The logic
falls under the class of logics called substructural logic. We begin by a brief
discussion of what substructural logics are.

1.1 Substructural Logics
Gerhard Gentzen introduced both Natural Deduction and Sequent Calculi in
his revolutionary doctoral dissertation titled Untersuchungen über das logische
SchlieSSen (translated into English as Investigations into Logical Deduction)
Gentzen [1935]. It is fitting to acknowledge that substructural logics trace their
origins back to this thesis, as Gentzen demonstrated in logic there are rules of
inference independent of any logical constants. To understand this concept, let
us examine his system of sequent calculus for Classical logic, denoted as LK:

Definition 1.1. (Variant of LK) The calculus LK for classical logic has the
following postulates.

Initial Sequents

A⇒ A

Structural Rules

Γ ⇒ ∆, A A,Π ⇒ Σ(Cut)
Γ,Π ⇒ ∆,Σ

Γ ⇒ ∆(WL)
A,Γ ⇒ ∆

Γ ⇒ ∆(WR)
Γ ⇒ ∆, A

A,A,Γ ⇒ ∆(CL)
A,Γ ⇒ ∆

Γ ⇒ ∆, A,A(CR)
Γ ⇒ ∆, A

1.1. SUBSTRUCTURAL LOGICS 5

Inference Rules

Γ ⇒ ∆, A(¬L) ¬A,Γ ⇒ ∆

A,Γ ⇒ ∆(¬R)
Γ ⇒ ∆,¬A

A,Γ ⇒ ∆(∧L)
A ∧B,Γ ⇒ ∆

Γ ⇒ ∆, A Γ ⇒ ∆, B(∧R)
Γ ⇒ ∆, A ∧B

A,Γ ⇒ ∆ B,Γ ⇒ ∆(∨L)
A ∨B,Γ ⇒ ∆

Γ ⇒ ∆, A(∨R)
Γ ⇒ ∆, A ∨B

Γ ⇒ ∆, A B,Π ⇒ Σ(→L)
A→ B,Γ,Π ⇒ ∆,Σ

A,Γ ⇒ ∆, B(→R)
Γ ⇒ ∆, A→ B

Γ ⇒ ∆, A(t)
(∃R)

Γ ⇒ ∆, ∃xA(x)
A(a),Γ ⇒ ∆

(∃L)
∃xA(x),Γ ⇒ ∆

Γ ⇒ ∆, A(a)
(∀R)

Γ ⇒ ∆, ∀xA(x)
A(t),Γ ⇒ ∆

(∀L)
∀xA(x),Γ ⇒ ∆

Where a (referred to as an eigenvariable) is a free variable that does not occur
freely in Γ∪∆∪∀xA(x), t represents any term, while Γ, ∆, and so forth, denote
multisets of formulas.

Structural rules (weakening, contraction or cut) are, as seen above, do not in-
volve any logical constant and instead operate directly on sequents. The term
"Substructural logics" is due to Schröder-Heister and Doen, who write, in the
introduction of their edited collection Substructural Logics: Our proposal is to
call logics that can be obtained in this manner, by restricting structural rules,
substructural logics.(Schroeder-Heister and Došen [1993], p.6). Although, sub-
structural logics are most naturally formalized via sequent calculus, it is also
possible to characterize them via axiomatic systems. In the next chapter, we
will do so in the particular case of a contraction free logic.

Remark 1.2. Definition 1.1 differs from Gentzen’s original formulation in that
it considers Γ,∆, and so forth, as multi-sets of formulas rather than sequences.
As a result, we exclude the structural rule of exchange, which allows for the
permutation of formulas within the sequences.

A priori one might assume the same rules for logical constants (¬,→,∧,∨) in
the logic whose structural rules we restrict, but it turns out that a weaker struc-
tural context may make classically equivalent constants split into nonequivalent
constants. To illustrate this point, let us consider the following alternative rules
for disjunction and conjunction:

6 1.1. SUBSTRUCTURAL LOGICS

A,B,Γ ⇒ ∆(∧L′)
A ∧B,Γ ⇒ ∆

Γ ⇒ ∆, A Π ⇒ Σ, B(∧R′)
Γ,Π ⇒ ∆,Σ, A ∧B

A,Γ ⇒ ∆ B,Π ⇒ Σ(∨L′)
A ∨B,Γ,Π ⇒ ∆,Σ

Γ ⇒ ∆, A,B(∨R′)
Γ ⇒ ∆, A ∨B

In the presence of the structural rules of weakening and contraction, these alter-
nate rules of disjunction and conjunction become derivable in LK. Conversely,
it is possible to derive the original rules of disjunction and conjunction (as in
definition 1.1) within the calculus where the alternative rules serve as primitives.
For instance, let’s see the equivalence between ∧L and ∧L′:

• ∧L is derivable given ∧L′ and the rest of LK (without ∧L of course):

A,Γ ⇒ ∆
(WL)

A,B,Γ ⇒ ∆
(∧L′)

A ∧B,Γ ⇒ ∆

• ∧L′ is derivable given ∧L and the rest of LK:

A,B,Γ ⇒ ∆
(∧L)

A ∧B,B,Γ ⇒ ∆
(∧L)

A ∧B,A ∧B,Γ ⇒ ∆
(CL)

A ∧B,Γ ⇒ ∆

In general, the inter-derivability can be summarised as follows:

∧ L′ WL−−→ ∧L CL−−→ ∧L′

∧R′ CL+CR−−−−−→ ∧R WL+WR−−−−−−→ ∧R′

∨ L′ CL+CR−−−−−→ ∨L WL+WR−−−−−−→ ∨L′

∨R′ WR−−→ ∨R CR−−→ ∨R′

Hence, during the study of substructural logics one has to be sensitive about
the choice of inference rules as well.
As can be observed, the proofs of equivalence between the logical constants rest
essentially on the presence of weakening and contraction. Without them, pre-
viously interchangeable rules can define distinct connectives. We refer to the
connectives defined using the former rules as additive, denoted by the symbols
∧ and ∨. In the literature, they are also known as "extensional" and "lattice-
theoretical". The connectives defined using the latter rules are termed multi-
plicative, and following Paoli [2002], we use the symbols ⊗ and ⊕ for conjunction

1.2. CONTRACTION AND PARADOXES 7

and disjunction, respectively (it is worth noting that in Girard’s Linear Logic
[Girard, 1987], the multiplicative conjunction and disjunction are denoted by
⊗ and `, respectively). Moreover, the additive rules are occasionally charac-
terized as context-dependent, as they can only be applied when the "contexts"
(side-formulas) of the premises are identical. In contrast, rules of the latter type
are described as context-free, as they do not need to abide by such a restriction.

Remark 1.3. Other interesting behaviour is observed when different combina-
tions of rules are considered. For instance, in the calculus LK, if we omit CL
and CR, and specify that conjunction is defined by ∧L′, ∧R, and disjunction
is defined by ∨L, ∨R′, we then regain both contraction rules (see Paoli [2002],
p.13). Consequently, we are ultimately left with unique disjunctive and conjunc-
tive connectives.

Numerous substructural logics have been thoroughly investigated to date, with
one of the most significant being Intuitionistic logic which, as identified by
Gentzen, can be formalized as the sequent calculus LJ. The classical sequent
calculus LK yields LJ with the structural restriction that there be at most one
formula in the succedent. Other explored substructural logics include Relevant
logics (which reject weakening), BCK logic (which rejects contraction), Linear
logic (which rejects both weakening and contraction), and the Lambek calculus
(which rejects not only weakening and contraction but also exchange).

1.2 Contraction and Paradoxes
In this section, we delve into the structural rule of contraction and its role in
certain paradoxes. In fact, in a way, the need to address paradoxes prompted
the study of contraction-less logics.

The structural rule of contraction is given by:

A,A,Γ ⇒ ∆(CL)
A,Γ ⇒ ∆

Γ ⇒ ∆, A,A(CR)
Γ ⇒ ∆, A

It is captured by the following in the principle (see Proposition 2.19), called the
law of absorption:

(A→ (A→ B)) → (A→ B)

Let us see how the seemingly innocuous contraction rule crops up in self-
referential paradoxes. First, we consider a truth theoretic paradox ,and then
we examine how it comes up in Naive Set Theory as the ubiquitous Russell’s
paradox.

8 1.2. CONTRACTION AND PARADOXES

Liar Paradox

The Liar Paradox generally refers to the class of truth-theoretic paradoxes in
which an argument is given to show how reasoning about a Liar sentence leads
to contradiction. The classic example of such a liar sentence is:

L := "This sentence is not true"

The common informal argument goes as follows: if L is true, then what it asserts
is true. However, if what L asserts is true, then L itself is false. On the other
hand, if L is false, then what it asserts must be false, but that would mean L is
true. Consequently, we end up with a contradiction.

Let us try to concentrate on the essential features of the argument and formalize
it (albeit in a rather loose manner). To begin with, the Liar paradox requires a
language containing a truth predicate satisfying Tarski’s T-Schema.

• Truth Predicate: Tr(A) ↔ A

Then, we require that the compound predicate ¬Tr has a fixed-point,
which we call the Liar sentence:

• Liar Sentence: L ⊢ ¬Tr(L) and ¬Tr(L) ⊢ L

Furthermore, we require some basic logical laws, which are given below.
As we have already seen how contraction can be implicit in additive con-
nectives (in particular, ∨L and ∧R), we will formulate the laws in terms
of multiplicative connectives.

• Logical Laws:

1. Excluded Middle: ⊢ A⊕ ¬A
2. Explosion: ¬A,A ⊢ B
3. Multiplicative Disjunction principle(⊕L): If A ⊢ C and B ⊢ C then
A⊕B ⊢ C,C

4. Multiplicative Adjunction(⊗R): If A ⊢ B and A ⊢ C then A,A ⊢
B ⊗ C

Given a system that satisfies these basic logical and linguistic properties, let us
see how contraction plays a role in generating the liar paradox. Consider the
following proof tree:

Tr(L) ⇒ L L⇒ ¬Tr(L)
(Cut)

Tr(L) ⇒ ¬Tr(L) Tr(L) ⇒ Tr(L)
(⊗R)

Tr(L), T r(L) ⇒ ¬Tr(L)⊗ Tr(L)
(CL)

Tr(L) ⇒ ¬Tr(L)⊗ Tr(L)

1.2. CONTRACTION AND PARADOXES 9

Similarly, we can get
¬Tr(L) ⇒ ¬Tr(L)⊗ Tr(L)

Using Disjunction principle,

Tr(L)⊕ ¬Tr(L) ⇒ ¬Tr(L)⊗ Tr(L),¬Tr(L)⊗ Tr(L)

Finally using LEM, cut and CR, we get

⇒ ¬Tr(L)⊗ Tr(L)

Hence, we see how contraction plays a crucial role in deriving the contradiction.
For more details, we refer the reader to Heck [2012].

Russell’s Paradox

Perhaps no other paradox has stimulated the development of logic as much as
Russell’s paradox. In essence, it states that in Naive set theory, one can define
a set C as the set containing all sets that are not members of themselves, i.e.,
C := {x : x /∈ x}. It can be concluded about C that C ∈ C ⇔ C /∈ C, which
would then lead to a contraction. Curry [1942] showed how a contradiction can
be reached using only contraction and cut:

Consider an arbitrary theory containing the unrestricted comprehension schema.
Let A be any sentence in the language of the theory. Let C := {x : (x ∈ x) →
A}. Then we have the following axiomatic proof.

1.C ∈ C → (C ∈ C → A) Comprehension
2.(C ∈ C → A) → C ∈ C Comprehension
3.(C ∈ C → (C ∈ C → A)) → (C ∈ C → A) Law of absorption
4.C ∈ C → A 1,3 Modus Ponens
5.C ∈ C 2,4 Modus Ponens
6.A 4,5 Modus Ponens

Hence, we see that since A was arbitrary, the presence of unrestricted compre-
hension, together with the laws of absorption and modus ponens, is sufficient to
render the theory trivial. Subsequently, in Grišin [1974], Grishin demonstrated
via cut-elimination that unrestricted comprehension can be consistently added
to a contraction-free predicate logic, thus showing that contraction is necessary
for the paradox.

The usual way out of Russell’s paradox was to stick to the underlying Classical
Logic [Mares and Paoli, 2014] and weaken the non-logical axioms of Naive set
theory, i.e, the axiom of comprehension (every predicate has an extension) and
the axiom of extensionality (sets with the same members are identical). Since

10 1.3. CONTRACTION FREE LOGIC

the principles of extensionality and comprehension seemed to encode all there is
to say about the notion of set, this was unsatisfying to some. Starting from late
1950s, Thoralf Skolem suggested the opposite way out, he proposed the adoption
of ukasiewicz’s infinite-valued logic [Skolem, 1963]. It is known that contraction
does not hold unconditionally in Lukasiewicz’s logics (Paoli [2002], chapters
2,4). However, a result by Grišin [1982] showed that on adding extensionality to
plain contraction-free logic gives back contraction. Hence, the resulting system
on adding comprehension becomes trivial. Thus, Lukasiewicz’s infinite-valued
logic, which is stronger than plain contraction-free logic, would be too strong to
do naive set theory.

1.3 Contraction Free Logic
The first logician to study the contraction-less fragment of classical logic seems
to be V.N. Grišhin [Grišin, 1974]. Grišhin formulated1 the logic BCK by re-
jecting contraction from Gentzen’s calculus LK. His reason to work with such
a logic was to evade set-theoretical paradoxes while keeping unrestricted com-
prehension (see Schroeder-Heister and Došen [1993], p.15). In Grišin [1974], he
showed via cut-elimination that unrestricted comprehension can be consistently
added to his BCK predicate logic and also concluded that BCK predicate logic
is decidable (Wang [1962], chapter IX, p. 228). In subsequent papers, Grishin
studied algebraic models of BCK logic, an analogue of Herbrand’s Theorem,
and the effect of adding both unrestricted comprehension and extensionality to
BCK logic [Grišin, 1976, 1979, 1982, 1983, 1985]. The effect is that we regain
classical logic and the paradoxes. Later on, Ono and Komori studied BCK logics
semantically, especially through Kripke-Style models [Ono and Komori, 1985].
In Ketonen and Weyhrauch [1984], Ketonen and Weyhrauch studied the purely
multiplicative fragment, via sequent calculus, of BCK, which they called Direct
Predicate Logic. They give a decision procedure for this fragment and also show
that the process is exponentially bounded. In fact, the logic Definition 2.23 we
work with is essentially this one, but we name the sequent formulation as GQCG

and its corresponding Hilbert style formulation as GQCH. Finally, Greg Restall,
in his doctoral thesis, considered various systems of contraction-less logics2 and
did not only a proof theoretic but also model theoretic study of his logics [Re-
stall, 1994]. He further considered various applications of his logics, such as on
information flow, linguistics, and also on paradoxes.
In literature, logics which reject contraction are also known as Affine logics.
Affine logics are closely associated with Linear logic, which differs from Affine
logic primarily by the lack of weakening. The term "Affine" was introduced by
Jean-Yves Girard, alluding to affine transformations in vector spaces.

1However, logicians had previously considered systems such as the purely implication frag-
ment of BCK. For example, see Tarski [1956].

2Of the various systems Restall considered in his dissertation, the multiplicative fragment
of the calculus CK is closest to the logic we consider. The difference being that the additive
fragment of CK includes the distributivity of additive connectives.

1.4. ARITHMETIC IN CONTRACTION-FREE LOGIC 11

1.4 Arithmetic in Contraction-free Logic
Martin Löb showed in Löb [1955] that any provability predicate satisfying the
minimal Hilbert-Bernays condition cannot satisfy ⊢ Pr(α) → α unless α is a
theorem of the arithmetic. The proof of this assertion relied crucially on an
application of contraction. Greg Restall (see Restall [1992] and Restall [1994])
noticed that contraction free arithmetic could potentially be used to tackle this
limitation in formal arithmetic. In Restall [1992], he considered ukasiewicz’s
infinite-valued logic, which neither has excluded middle nor Contraction, as a
basis for arithmetic and showed that this arithmetic collapses into Peano Arith-
metic. In Restall [1994](Chp 11), Restall studied various contraction free arith-
metics and established some basic properties showing that a lot of arithmetic
can be done even in the absence of contraction. He further provided an overview
of how arithmetization of syntax can be executed and subsequently showed how
Gödel’s first theorem would go through in his arithmetics3.

In [Beklemishev and Shamkanov, 2016], Lev Beklemishev and Daniyar Shamkanov
studied the second incompleteness theorem in an abstract setting. Their goal
was to carve out the basic conditions that a consequence relation would need to
satisfy in order for the second incompleteness theorem to go through. Inspired
by Grišhin’s result on consistency of contraction-free logic augmented with the
unrestricted comprehension principle, they wanted to see if contraction is a
requirement for the second incompleteness theorem. However, Shamkanov fig-
ured out that a weaker form of contraction suffices for the second incompleteness
theorem, in particular, left contraction for Σ1 (note that the provability pred-
icate is typically Σ1) formulas suffice. This discovery led to the inception of
contraction-free arithmetic, wherein left contraction for Σ1 formulas would be
upheld (refer to Proposition 3.43). However, the findings were not documented,
and thus, serving as an impetus for my thesis. It is relevant to note another
interesting finding in the same paper. They also demonstrated a propositional
contraction free logical system which satisfies Löb’s conditions for a □ operator
and in which Gödelian fixed point exists (i.e., a sentence p such that p↔ □¬p),
but the second incompleteness theorem fails , i.e, ⇒ ¬□⊥ is provable.

1.5 Overview of this thesis
Inspired by the discussions above, we were motivated to investigate the con-
sequence it would have on Arithmetic when we work with an underlying logic
which is contraction-free. In such a setting then, we would be able to precisely
understand the effects of removing contraction. We consider the purely multi-
plicative fragment of the calculus which results when we remove contraction from
Gentzen calculus LK. We base our arithmetic, which we name Contraction-Free

3We note that contraction free arithmetics being a subsystem of Peano Arithmetic would
inevitably have undecidable sentences.

12 1.5. OVERVIEW OF THIS THESIS

Arithmetic, on this logic. The reason for choosing such an underlying logic is
twofold. Firstly and most importantly, as we shall demonstrate in section 3.2,
the additive fragment becomes definable is our arithmetic. Secondly, from our
discussion in section 1.1 and 1.2, it can be understood that contraction is, in
a way, implicit in the additive connectives and hence, working with the multi-
plicative fragment will give us a clearer idea as to the number of times a formula
has been used in the premise of a deduction. Our objective is to investigate the
deductive strength of our arithmetic by studying its computational content. In
particular, we aim to classify the class of provably recursive functions in this
arithmetic.
Chapter 2 introduces our contraction-free logic in both sequent calculus and
Hilbert Style settings. After discussing some basic properties of this logic, we
proceed to show that the cut-rule is eliminable in our system. Then, we dis-
cuss some consequences of cut-elimination and demonstrate a weak version of
Herbrand’s Theorem. Finally, we discuss possible notions of deduction from
hypotheses and prove a deduction theorem for them.
Chapter 3 introduces contraction free arithmetic. We demonstrate several fun-
damental properties of our arithmetic and proceed to showcase the definability
of additive connectives in our language. In the last section, we provide a jus-
tification for our selection of the Induction Rule over the Induction Schema in
our axiomatization.The central result of this chapter is the derivability of ∆0-
induction schema in CFA. As a consequence of that, we establish that any Π2

formula which is provable in I�0 is also provable in CFA under a suitable for-
mula translation. Moreover, further consequences of ∆0-induction schema are
discussed.
Chapter 4 is dedicated to the study of the computational strength of CFA
through provably recursive functions. We start by showing that the primitive
recursive functions are provably recursive in CFA. In the last section, which may
be considered the key achievement of this thesis, we demonstrate that the class
of provably recursive functions coincides with the class of primitive recursive
functions. We achieve our result by demonstrating the admissibility of the cut
rule in an infinitary calculus capable of embedding CFA.
Chapter 5 delves into the conclusions that can be drawn from our work and it
also provides a list of interesting avenues for future research.
Appendix A mainly consists of some relevant definition which were not in-
cluded in the text and also mentions some well-known theorems.
Appendix B mainly consists of some proofs which were left out from the text
to maintain a smoother flow.

2 | Contraction Free Logic

In this chapter, we present an introduction to Contraction Free Logic, which
we name Grišhin Logic in honor of the Russian logician V.N. Grišhin. To start
with we introduce our propositional calculus, followed by the introduction of
our predicate calculus. After demonstrating some elementary properties of our
logic, we proceed to prove the cut-elimination theorem for first-order Grišhin
Logic. In the concluding section, we define two consequence relations in our
logic to capture deduction from hypotheses and prove some of their properties.

2.1 Grišhin Calculus
In this section, we initiate our basic proof-theoretic study of contraction free
logic. We study the purely multiplicative fragment of first-order predicate logic
in which we reject contraction. As a consequence, intuitively it entails that in
our logic, although the sequent A,A → B ⇒ B will be provable, the sequent
A, (A → B) ⊗ (A → C) ⇒ (B ⊗ C) will not be provable. This is because the
antecedent A needs to be used at most once in a proof of the former sequent
but necessarily twice in a proof of the latter sequent.

2.1.1 Propositional Calculus
In this subsection, which is is heavily inspired by Paoli [2002], we begin by
presenting our propositional logic through sequent calculus. After introducing
some preliminary notions, we go on to show which classical theorems are no
longer valid to get a better feel of our system. Following this, we present our
axiomatic Hilbert calculus and conclude the subsection by showing its equiva-
lence with the other formalization.

We abbreviate Grišhin Propositional Logic as GPC. Let us start by introducing
our language.

Definition 2.1. (LGPC) The propositional language of GPC consists of a denu-
merable set of propositional variables and a given number of connectives drawn
from the set LGPC = {→,⊥}. As usual we shall use p, q, . . . as metavariables

14 2.1. GRIŠHIN CALCULUS

for propositional variables. Formulas are constructed as usual and we will use
A,B, . . . metavariables for generic formulas.

Multisets are aggregates where the ordering of elements do not matter (unlike
for sequences) but their multiplicity is taken into account (unlike for sets). Note
that multisets can be rigorously defined (See, e.g., Troelstra [1992], p.2).

Definition 2.2. (Sequents) The basic expressions of the calculus are inferences
of the form Γ ⇒ ∆ (read: ∆ "is derivable from" Γ). Where Γ and ∆ are finite,
possibly empty, multisets of formulas of our language.

We now present our basic sequent calculus, which we name GPCG. Here, the
superscript G stands for Gentzen, after Gerhard Gentzen who first introduced
the formal system of sequent calculus in Gentzen [1935].

Definition 2.3. (GPCG) The sequent calculus GPC, defined over LGPC, has the
following postulates in sequent calculus.

Initial Sequents

A⇒ A

⊥ ⇒

Structural Rules
Γ ⇒ ∆, A A,Π ⇒ Σ(Cut)

Γ,Π ⇒ ∆,Σ

Γ ⇒ ∆(WL)
A,Γ ⇒ ∆

Γ ⇒ ∆(WR)
Γ ⇒ ∆, A

Inference Rules
Γ ⇒ ∆, A B,Π ⇒ Σ(→L)
A→ B,Γ,Π ⇒ ∆,Σ

A,Γ ⇒ ∆, B(→R)
Γ ⇒ ∆, A→ B

Remark 2.4. By taking Γ, ∆ in a sequent to be multisets instead of sequences
we ensure that GPCG covertly contains the structural rule of exchange. Hence,
we are allowed to perform arbitrary permutations both in the antecedent and in
the succedent of a sequent.

Definition 2.5. (Principal, auxiliary and side formulas) In all these rules,
the formula occurrences in Γ,Π,∆,Σ are called side formulas; the formula oc-
currence in the conclusion which is not a side formula is called principal, and
the formula occurrences in the premises which are not side formulas are called
auxiliary.

We now define formally, in the standard way, the central object of study in proof
theory : proofs.

2.1. GRIŠHIN CALCULUS 15

Definition 2.6. (Proof) A proof in GPCG is a finite labelled tree whose nodes
are labelled by sequents, in such a way that leaves are labelled by axioms and
each sequent at a node is obtained from sequents at immediate predecessor(s)
node(s) according to one of the rules of GPCG. We shall denote proofs by means
of metavariables D,D′, If D is a proof, a sub-tree D′ of D which is itself a
proof is called a sub-proof of D.
A sequent S is provable in GPCG (which is denoted as ⊢GPCG S) iff it labels the
root of some proof in GPCG (i.e., iff it is the end-sequent of such a proof).

We will often use lower case Greek alphabets, in particular π, to denote a
formal proof. Informally, we might also sometimes refer to a proof of a sequent
as "derivation" of a sequent. Next, we define the notion1 of "Height of a proof",
which serves to be a crucial anchor point when we reason about formal proofs.

Definition 2.7. (Height of proof) The height h(π) of a proof π is defined in-
ductively as follows:

1. Base Clause: If π consists of only one node, i.e, a node labelled by an
initial sequent then h(π) = 1.

2. Inductive Clause: If the last inference in π is a single premise rule, then
h(π) = h(π′) + 1 where π′ is the sub-proof obtained from π by removing
the root. Else if the last inference in π is a double premise rule, then
h(π) = max(h(π′), l(π′′)) + 1 where π′ and π′′ are the sub-proofs obtained
from π by removing the root.

We introduce the following well-known abbreviations in our language.

Definition 2.8. In the sequel, we frequently employ the following abbreviations:

• ¬A abbreviates A→ ⊥

• ⊤ abbreviates ¬⊥

• A⊕B abbreviates ¬A→ B

• A⊗B abbreviates ¬(¬A⊕ ¬B)

• Γ ⇔ ∆ as an abbreviation for Γ ⇒ ∆ and ∆ ⇒ Γ.

The following proposition justifies our starting with a minimal set of logical
constants (i.e, {→,⊥}) and introducing other ones as abbreviations.

1In literature, they are also know as depth or length of a proof.

16 2.1. GRIŠHIN CALCULUS

Proposition 2.9. The following rules are derivable in GPCG.

(⊤R) Γ ⇒ ∆,⊤

Γ ⇒ ∆, A(¬L) ¬A,Γ ⇒ ∆

A,Γ ⇒ ∆(¬R)
Γ ⇒ ∆,¬A

A,Γ ⇒ ∆ B,Π ⇒ Σ(⊕L)
A⊕B,Γ,Π ⇒ ∆,Σ

Γ ⇒ ∆, A,B(⊕R)
Γ ⇒ ∆, A⊕B

A,B,Γ ⇒ ∆(⊗L)
A⊗B,Γ ⇒ ∆

Γ ⇒ ∆, A Π ⇒ Σ, B(⊗R)
Γ,Π ⇒ ∆,Σ, A⊗B

We now present some useful theorems of GPCG, without proofs as they are
essentially the same as those in LK.

Proposition 2.10. The following sequents are provable in GPCG.

(i) ⇒ A→ A;

(ii) A→ (B → C) ⇒ B → (A→ C);

(iii) A→ B,B → C ⇒ A→ C;

(iv) A⊗ (B ⊗ C) ⇔ (A⊗B)⊗ C;

(v) A⊕ (B ⊕ C) ⇔ (A⊕B)⊕ C;

(vi) A⊕B ⇔ B ⊕A;

(vi)′ A⊗B ⇔ B ⊗A;

(vii) A,B ⇒ A⊗B;

(viii) A→ (B → C) ⇔ (A⊗B) → C;

(ix) A⇔ ¬¬A;

(x) A→ ¬B ⇒ B → ¬A;

(xi) A→ B ⇔ ¬A⊕B;

(xiv) ¬⊤ ⇔ ⊥;

(xv) A⊗⊤ ⇔ A

(xvi) A⊕⊥ ⇔ A.

The next few theorems are provable only because of the presence of weak-
ening:

2.1. GRIŠHIN CALCULUS 17

(xvii) A⇒ B → A

(xviii) A⇒ ¬A→ B

(xix) A⊗A⇒ A and A⇒ A⊕A

Definition 2.11. (Formula-translation of a sequent). If A1, .., An ⇒ B1, .., Bm

is a sequent, its formula translation is defined as follows:

t(A1, .., An ⇒ B1, .., Bm) :=

A1 ⊗ . . .⊗An → B1 ⊕ . . . Bm (n,m > 0)

¬(A1 ⊗ . . .⊗An) (n > 0,m = 0)

B1 ⊕ . . . Bm (n = 0,m > 0)

⊥ (n = 0,m = 0)

The above definition will come into play when we show the equivalence (see
Proposition 2.17) between GPCG and its corresponding Hilbert style system.
Now, we present the following proposition (without proof), which sheds light on
the rationale behind defining formula translation as we did.

Proposition 2.12.

⊢GPCG A1, .., An ⇒ B1, .., Bm iff ⊢GPCG ⇒ t(A1, .., An ⇒ B1, .., Bm)

To get a better understanding of the limitations of GPCG here, we present2 some
formulas which are theorems of classical propositional logic but fail in GPCG.

Proposition 2.13. (Non-Theorems of GPCG) The following sequents, which
are classically provable (i.e, in LK), are not provable in GPCG:

1. p→ (p→ r) ⇒ p→ r

2. p→ (q → r) ⇒ (p→ q) → (p→ r)

3. ⇒ ((p→ r) → p) → p

4. ¬p→ p⇒ p

Proof. Consider the following truth table:

→ 0 1/2 1
0 1 1 1

1/2 1/2 1 1
1 0 1/2 1

2The proposition is based on Proposition 2.13 of Paoli [2002].

18 2.1. GRIŠHIN CALCULUS

Given that ⊥ is always evaluated to 0. By inducting on the height of the proof,
one can demonstrate that if Γ ⇒ ∆ is provable in GPCG, then its formula trans-
lation t(Γ ⇒ ∆) evaluates to 1 (using the provided truth table), under any
assignment of values 0, 1/2, 1 to variables occurring in the sequent.

Now for the proposition:
In all parts : Assign p to 1/2, qto 1/2 and r to 0. In all these cases t(Γ ⇒ ∆) =
1/2. Hence, we can conclude that they are not theorems of GPCG.

We now present the corresponding Hilbert style calculus for GPCG. Subse-
quently, we show (Theorem 2.17) that the sequent calculus and the Hilbert
style calculus are equivalent.

Definition 2.14. (GPCH) The axiomatic calculus3 GPCH, defined over LGPC,
has the following postulates.

Axioms

(F1) A→ A

(F2) (A→ B) → ((B → C) → (A→ C))

(F3) (A→ (B → C)) → (B → (A→ C))

(F4) ((A→ ⊥) → ⊥) → A

(F5) (A→ (B → ⊥)) → (B → (A→ ⊥))

(F6) A→ (B → A)

Modus Ponens rule

A A→ B(MP) B

3The subscript ’H’, stands for Hilbert

2.1. GRIŠHIN CALCULUS 19

Definition 2.15. (Proof in GPCH) A proof in GPCH is a sequence B1, . . . , Bn

of well-formed formulas (wffs) such that, for each i, Bi is either an axiom of
GPCH or a direct consequence of some of the preceding wffs in the sequence by
virtue of modus ponens. A formula B is provable in GPCH (denoted as ⊢GPCH B)
if there exists a proof B1, . . . , Bn where B = Bn. Moreover, we refer to ”n” as
the length of proof of B.

In GPCH , as well, we introduce the same abbreviations as in Definition 2.8. In
addition, we use A↔ B as an abbreviation for (A→ B)⊗ (B → A).

Proposition 2.16. The following formulas are provable in GPCH.

(F7) (A→ B) ↔ (¬B → ¬A)

(F8) A⊗B ↔ ¬(¬A⊕ ¬B)

(F9) A⊕B ↔ (¬A→ B)

(F10) A⊕B ↔ B ⊕A

We are now in a position to demonstrate that GPCG and GPCH, despite their
entirely distinct presentations, are indeed equivalent in a specific sense.

Proposition 2.17. (Equivalence)

⊢GPCG Γ ⇒ ∆ iff ⊢GPCH t(Γ ⇒ ∆)

Proof.
Right to Left direction.
It is sufficient to show that if ⊢GPCH A then ⊢GPCG⇒ A. As then, if ⊢GPCH t(Γ ⇒
∆), we will also have ⊢GPCG⇒ t(Γ ⇒ ∆). Subsequently, by Proposition 2.12, we
will have that ⊢GPCG Γ ⇒ ∆.

In order to show that sufficient condition holds good we proceed by induction
on the length of the proof of A in GPCH.
First, we check for any axiom B of GPCH, that ⊢GPCG⇒ A. But Proposition
2.10, gives us what is required.
Then, we need to ensure that the rules of GPCH preserve such a property. I.e.,
we show in GPCG, that if ⇒ A and ⇒ A→ B then ⇒ B.

20 2.1. GRIŠHIN CALCULUS

Consider the following proof tree:

A⇒ A B ⇒ B(→L)
A→ B,A⇒ B

...
⇒ A→ B(Cut)

A⇒ B

...
⇒ A(Cut) ⇒ B

Left to Right direction.

We argue by induction on the structure of the proof of Γ ⇒ ∆ in GPCG.

Base Case. Γ ⇒ ∆ is an initial sequent, i.e, A ⇒ A or ⊥ ⇒. In that case
t(A ⇒ A) = A → A and t(⊥ ⇒) = ⊥ → ⊥, which are nothing but instances of
axiom F1 . Hence, ⊢GPCH t(Γ ⇒ ∆)

Inductive Case. Suppose Γ ⇒ ∆ has been derived by applying a rule of GPCG.
We need to approach the problem by dividing it into cases based on the rule
that was used to infer Γ ⇒ ∆. We will demonstrate the case of weakening (WL
and WR). The rest can be handled similarly.
Say Γ = A1, . . . , An and ∆ = B1, . . . Bm. Let γ:= A1 ⊗ .. ⊗ An and δ:=
B1 ⊕ ..⊕Bm. Then, observe that t(Γ ⇒ ∆) = γ → δ.

• WL. Suppose ⊢GPCH t(Γ ⇒ ∆), i.e., ⊢GPCH γ → δ. Then we have to show
that ⊢GPCH t(A,Γ ⇒ ∆) or, ⊢GPCH A⊗ γ → δ.
Proof:

1. γ → δ

2. ¬γ → (A→ ¬γ) (F6)
3. (A→ ¬γ) → (¬A⊕ ¬γ) (Abbr)
4. ¬γ → (¬A⊕ ¬γ) (2,3, F2 MP)
5. ¬(¬A⊕ ¬γ) → ¬¬γ (4,F7 MP)
6. A⊗ γ → γ (F4,F8,F2 MP)
7. A⊗ γ → δ (1,6, F2 MP)

• WR : Say ⊢GPCH t(Γ ⇒ ∆), i.e., ⊢GPCH γ → δ. Then we have to show that
⊢GPCH t(Γ ⇒ ∆, A) or, ⊢GPCH γ → δ ⊕A.

Proof:

1. γ → δ

2. δ → (¬A→ δ) (F6)
3. (¬A→ δ) → δ ⊕A (F9, F10, F2 MP)
4. δ → δ ⊕A (2,3, F2 MP)

2.1. GRIŠHIN CALCULUS 21

5. γ → δ ⊕A (1,4, F2 MP)

Then, by induction on the structure of proof of Γ ⇒ ∆, we will have that
GPCH ⊢ t(Γ ⇒ ∆)

Remark 2.18. (Weakening) In the inductive cases of WR and WL in the pre-
ceding proof, observe how the axiom (F6) played a crucial role to capture the
weakening rule. In fact, (F6) is the axiom that exactly corresponds to the weak-
ening rule of sequent calculus. To be precise, we have that GPCG − WR −
WL is equivalent to GPCH − (A → (A → B)) → (A → B). Henceforth, we will
occasionally refer to A→ (B → A) as ’weakening’.

As noted in Section [1.2], similar to weakening, we have a formula that corre-
sponds to the contraction rule in sequent calculus. This formula is (A→ (A→
B)) → (A→ B), and it is sometimes referred to as the Law of Absorption (see
Paoli [2002]). The following proposition will make things more precise.

Proposition 2.19. (Contraction)

GPCG + CR+ CL is equivalent to GPCH + (A→ (A→ B)) → (A→ B)

2.1.2 Predicate Calculus
In this subsection, we introduce Grišhin Quantified Calculus4 (GQC), as the
first-order extension of GPC. Following this, we will present some important
theorems of GQC that will be required later in our exploration. We begin by
providing the language for GQC.

Definition 2.20. The language LGQC of first-order Grišhin logic consists of
LGPC∪{∀} together with denumerable supply of variables, n-place predicate sym-
bols for all n ∈ N, symbols for n-ary functions for all n ∈ N and symbols for
0-ary functions (also called constants).

We will now introduce several standard concepts essential for constructing our
formal system.

Definition 2.21. (Terms and formulas)
The set of terms are defined inductively as follows:

• Any variable is a term.

• Any constant symbol is a term.

• If t1, . . . , tn are terms then f(t1, . . . , tn) is a term, where f is an n-ary
function symbol.

4We note that (GQC) is essentially the same as Direct Predicate Calculus introduced by
Ketonen and Weyhrauch [1984].

22 2.1. GRIŠHIN CALCULUS

• Nothing else is a term.

The set of formulas are defined inductively as follows:

• Atomic Formulas: ⊥ is a formula ; If t1, . . . , tn are terms, then P (t1, . . . , tn)
is a formula where P is an n-ary predicate symbol.

• If A and B are formulas, then A→ B is a formula.

• If A is a formula and x is a variable, then ∀xA(x) is also a formula.

• Nothing else is a formula.

If a formula has no occurrences of ∀x, for any variable x, then it is called
quantifier-free.

Definition 2.22. (Free and bound variables) We define inductively, for each
formula, what it means for x to occur free in A.

• For atomic A, x occurs free in A iff x occurs in A.

• x occurs free in A→ B iff x occurs free in A or in B.

• x occurs free in ∀zA if x occurs free in A and z ̸= x.

If an occurrence of x is not free in A, then that occurrence of x is said to be
bound.

We use the following metavariables for certain syntactic categories (though lo-
cally different conventions might be introduced) : x, y, z, . . . for bound variables;
a, b, . . . for free variables; f, g, h for arbitrary function symbols; c, d for constants;
t, s, r for terms.

Now we are in a position to introduce our predicate calculus.

Definition 2.23. (GQCG) The first-order Grišhin logic, denoted as GQCG and
axiomatized in sequent calculus, is defined as an extension of the propositional
system GPCG.That is, GQCG contains all inference and structural rules of GPCG

together with:

Initial Sequents

A⇒ A

where A is atomic

⊥ ⇒

2.1. GRIŠHIN CALCULUS 23

Inference Rules

Γ ⇒ ∆, A(a)
(∀R)

Γ ⇒ ∆, ∀xA(x)
A(t),Γ ⇒ ∆

(∀L)
∀xA(x),Γ ⇒ ∆

Where a (called eigenvariable) is a free variable and does not occur freely in
Γ ∪∆ ∪ {∀xA(x)}, and t is any term.

The concepts of Auxiliary, Side, Principal formulas, Proof, Proof Height are
adapted from Definitions 2.5, 2.6 and 2.7.

Proposition 2.24. (GQCG) Given any formula A, ⊢GQCG A⇒ A.

Proof. It is proved by induction on the structure of A.

Contrary to standard practice, we constructed our logical system using only
universal quantifiers. This choice simplifies the process of inductive reasoning
on the structure of formal proofs, as it reduces the number of cases we need to
consider. Furthermore, our selection does not significantly impact our study, as
evidenced by the following proposition.

Definition 2.25. (Abbreviation) ∃xA(x) is the abbreviation for ¬∀x¬A(x)

Proposition 2.26. (GQCG) The following rules can be derived:

Γ ⇒ ∆, A(t)
(∃R)

Γ ⇒ ∆, ∃xA(x)
A(a),Γ ⇒ ∆

(∃L)
∃xA(x),Γ ⇒ ∆

Where a (called eigenvariable) is a free variable and does not occur freely in
Γ ∪∆ ∪ {∀xA(x)}. And t is any term.

Remark 2.27. Though we might be a bit informal sometimes, formally, the
height of a proof depends only on → and ∀ rules, and not on the derived rules.

24 2.1. GRIŠHIN CALCULUS

We now introduce the corresponding Hilbert-style calculus.

Definition 2.28. (GQCH) The first order Grišhin logic, denoted as GQCH and
axiomatized in Hilbert system, is defined as an extension of the GPCH together
with :

Axioms

(P1) ∀xB(x) → B(t/x)
where B admits t for x (i.e., no free variable of t becomes bound in
B(t/x)).

(P2) ∀x(B → C) → (B → ∀xC)
where x is not free in B.

Rule

B(Generalization) ∀xB

Exactly like in the case of propositional logic, the sequent and Hilbert style
formulation of Grišhin logic is equivalent.

Proposition 2.29. (Equivalence)

⊢GQCG Γ ⇒ ∆ iff ⊢GQCH t(Γ ⇒ ∆)

Proof. Proof is analogous to Proposition 2.17.

In light of the discussion in Chapter 1 regarding the collapse of multiplicative
and additive connectives to a unique connective in the presence of contraction-
without worrying too much about the languagewe, roughly, observe the following
relation:

LK ≡ GQCG + CR+ CL

Next we give a sufficient and necessary condition for contraction to hold for a
formula.

Proposition 2.30. ⊢GQCG A⇒ A⊗A and ⊢GQCG A⊕A⇒ A iff left and right
contraction holds for A.

2.1. GRIŠHIN CALCULUS 25

Proof.
Right to Left direction. This is easy to see. We focus on the other direction.
Left to Right direction. The following proof trees shows how we can derive the
rule of contraction for A.
Left Contraction:

A⇒ A⊗A

A,A,Γ ⇒ ∆

A⊗A,Γ ⇒ ∆(Cut)
A,Γ ⇒ ∆

Right Contraction:

Γ ⇒ ∆, A,A

Γ ⇒ ∆, A⊕A A⊕A⇒ A(Cut)
Γ ⇒ ∆, A

We conclude our brief introduction to Grišhin logic by presenting some theorems
of GQCG that will prove useful for our subsequent study.

Proposition 2.31. (GQCG) Predicate theorems of Grišhin logic:

1. ⊢GQCG ∃x(B(x)⊗ C(x)) ⇒ ∃xB(x)⊗ ∃xC(x)

2. ⊢GQCG ∀xA(x)⊗ ∀xB(x) ⇒ ∀x(A(x)⊗B(x))

3. ⊢GQCG ∀x(P → Q) ⇒ ∃xP → ∃xQ

4. ⊢GQCG ∃x(P → Q) ⇒ ∀xP → ∃xQ

5. ⊢GQCG ∀x(A(x)⊕B(x)) ⇒ ∃xA(x)⊕ ∀xB(x)

6. ⊢GQCG ∀vP ⊗ ∃vQ⇒ ∃x(P (x)⊗Q(x))

7. ⊢GQCG ∀x∃yA(x, y)⊗ ∀x∃zB(x, z) ⇒ ∀x∃y∃z(A(x, y)⊗B(y, z))

Proof. 1. Consider the following proof tree.

B(x) ⇒ B(x)
(∃R)

B(x) ⇒ ∃xB(x)

C(x) ⇒ C(x)
(∃R)

C(x) ⇒ ∃xC(x)
(⊗R)

B(x), C(x) ⇒ ∃xB(x)⊗ ∃xC(x)
(⊗L)

B(x)⊗ C(x) ⇒ ∃xB(x)⊗ ∃xC(x)
(∃L)

∃x(B(x)⊗ C(x)) ⇒ ∃xB(x)⊗ ∃xC(x)

26 2.1. GRIŠHIN CALCULUS

2. Consider the following proof tree.

A(x) ⇒ A(x)
(∀L)

∀xA(x) ⇒ A(x)

A(x) ⇒ A(x)
(∀L)

∀xB(x) ⇒ B(x)
(⊗R,⊗L)

∀xA(x)⊗ ∀xB(x) ⇒ A(x)⊗B(x)
(∀R)

∀xA(x)⊗ ∀xB(x) ⇒ ∀x(A(x)⊗B(x))

3. Consider the following proof tree.

...
P (x) → Q(x), P (x) ⇒ Q(x)

(∀L)
∀x(P (x) → Q(x)), P (x) ⇒ Q(x)

(∃R)
∀x(P (x) → Q(x)), P (x) ⇒ ∃xQ(x)

(∃L)
∀x(P (x) → Q(x)), ∃xP (x) ⇒ ∃xQ(x)

4. Consider the following proof tree.

...
P (x) → Q(x), P (x) ⇒ Q(x)

(∃R)
P (x) → Q(x), P (x) ⇒ ∃xQ(x)

(∀L)
P (x) → Q(x), ∀xP (x) ⇒ ∃xQ(x)

(∃L)
∃x(P (x) → Q(x)), ∀xP (x) ⇒ ∃xQ(x)

5. Proposition 2.10 (xi) gives us A ⊕ B ⇔ ¬A → B. Now consider the
following proof tree.

...
∀x(A(x)⊕B(x)) ⇒ ∀x(¬A(x) → B(x))

...
∀x(¬A(x) → B(x)) ⇒ ∀x¬A(x) → ∀xB(x)

(cut)
∀x(A(x)⊕B(x)) ⇒ ∀x¬A(x) → ∀xB(x)

(abbr)
∀x(A(x)⊕B(x)) ⇒ ¬∀x¬A(x)⊕ ∀xB(x)

(abbr)
∀x(A(x)⊕B(x)) ⇒ ∃xA(x)⊕ ∀xB(x)

Moreover, as a corollary, we have that: ⊢GQCG ∀xB(x)⊕C ⇔ ∀x(B(x)⊕C)
where x does not occur in C.

6. It can be easily established that P → Q ⇔ ¬Q → ¬P . Given this, it is
easy to observe that ∀vP ⊗ ∃vQ⇒ ∃x(P (x)⊗Q(x)) follows from part 5.
Moreover, as a corollary, we have that: ∃xB(x)⊕ C ⇔ ∃x(B(x)⊕ C)

2.2. CUT-ELIMINATION IN GQCG 27

7. The proof of this is a bit long. Hence, we provide an outline of steps, from
which a proof tree can be directly constructed using multiple applications
of the cut rule. Each of the following sequents is provable in GQCG:

(a) ∀x∃yA(x, y)⊗ ∀x∃zB(x, z) ⇒ ∃yA(x, y)⊗ ∀x∃zB(x, z)

(b) ∃yA(x, y)⊗ ∀x∃zB(x, z) ⇒ ∃y(A(x, y)⊗ ∀x∃zB(x, z))

(c) ∃y(A(x, y)⊗ ∀x∃zB(x, z)) ⇒ ∃y(A(x, y)⊗ ∃zB(y, z))

(d) ∃y(A(x, y)⊗ ∃zB(y, z)) ⇒ ∃y∃z(A(x, y)⊗ ∃zB(y, z))

(e) ∃y∃z(A(x, y)⊗ ∃zB(y, z)) ⇒ ∀x∃y∃z(A(x, y)⊗ ∃zB(y, z))

Therefore, using cut multiple times we can construct a proof tree whose
root is labelled by ∀x∃yA(x, y)⊗∀x∃zB(x, z) ⇒ ∀x∃y∃z(A(x, y)⊗∃zB(y, z)).

2.2 Cut-Elimination in GQCG

In this section, we establish that the cut-rule can be eliminated from GQCG.
Cut elimination for a sequent calculus states that every sequent which has a
derivation also has a proof that does not make use of the cut rule. Intuitively,
an essential property of a proof which does not use cut is that it is not "round-
about", i.e., no concepts enter into the proof beyond those necessary for reaching
the final result (see Gentzen [1935]). As such proofs without cut possess the sub-
formula property (See Proposition 2.44) and this insight was used by Gentzen
to prove that LK is consistent5 (i.e., it cannot derive contradictions). He also
used the technique of cut-elimination to prove the consistency of PA6. Subse-
quently, the study of the cut rule has become one of the corner stones of proof
theory. For a comprehensive introduction to cut-elimination we refer the reader
to Troelstra and Schwichtenberg [2000].
Cut-elimination for contraction-free predicate logic, particularly in BCK logic,
was initially established by Grišhin in Grišin [1974] (in Russian). Subsequently,
others have examined cut-elimination in various contraction-free logics. No-
tably, Ketonen and Weyhrauch [1984] noted the validity of cut-elimination for
our logic, en route to proving the logic’s decidability. Indeed, in the absence
of contraction, cut-elimination proves to be simpler. The following proof we
present is our own and is adapted from Mancosu et al. [2021] and Paoli [2002].
We start by introducing some preliminary notions. To capture the number of
connectives occurring of in formula, we define the complexity of a formula as
follows.

5As a cut-free proof cannot derive the empty sequent, i.e., ∅ ⇒ ∅.
6However, it’s worth noting that cut cannot be eliminated from PA because of the presence

of the Induction Schema. Nonetheless, Gentzen found an ingenious way to overcome this
obstacle for his consistency proof.

28 2.2. CUT-ELIMINATION IN GQCG

Definition 2.32. (Complexity of a formula) The complexity C(A) of a formula
A is defined inductively as follows:

• Base Clause: If A is atomic or A = ⊥ then C(A)=0

• Inductive Clause:

– If A is of the form ∀xB(x) then C(A)=1+C(B)

– If A is of the form B → D then C(A)=C(B) + C(D) + 1

Cut-elimination heavily relies on the fact that certain proofs can be transformed
into proofs of the same end-sequent but in which a certain free variable is re-
placed by some other term. The following lemma on variable replacement will
be useful towards this end.

Proposition 2.33. (Variable Replacement) Suppose π(a) is a proof, t is a term
not containing any eigenvariables of π(a), and a is a free variable that is not
used as an eigenvariable of an inference in π(a). Then π(t), which results from
π(a) by replacing every occurrence of a by t, is a correct proof.

Proof. We show this by induction on the height of the proof π(a) with end-
sequent Γ ⇒ ∆.
Base Case. Height is 1, meaning that Γ ⇒ ∆ is an initial sequent. Then it
is either A ⇒ A or ⊥ ⇒. Moreover, since A[a/t] ⇒ A[a/t] is also an initial
sequent, we have that π(t) is also a correct proof.
Inductive Case. Say π(a) is a proof with proof height n(> 1). We analyse
by breaking up into cases based on the last rule that has been applied. For
instance, if the last rule applied is WL, then π(a) takes the following form:

...π1(a)
Γ′(a) ⇒ ∆(a)

(WL)
A(a),Γ′(a) ⇒ ∆(a)

where Γ′(a) = A(a),Γ′(a).

Now, since the proof π1(a) of Γ′(a) ⇒ ∆(a) is of height n − 1(< n) and by
assumption, a is a free variable that is not used as an eigenvariable of any infer-
ence in π1(a) and t does not contain an eigenvariable of π1(a). So the induction
hypothesis applies to π1(a). Hence, we have that π1(t) is a correct proof. Then
the following proof, i.e, π(t) is also correct.

...π1(t)
Γ′(t) ⇒ ∆(t)

(WL)
A(t),Γ′(t) ⇒ ∆(t)

2.2. CUT-ELIMINATION IN GQCG 29

Cases other than ∀R (which involve eigenvariable condition) can be worked out
similarly. Here, we show how to deal with ∀R.
Now say the last rule that has been applied is ∀R. Then π(a) has the following
form:

...
Γ(a) ⇒ ∆′(a), A(a, b)

(∀R)
Γ(a) ⇒ ∆′(a), ∀xA(a, x)

where ∆(a) = ∆′(a), ∀xA(a, x)

First, we note that the eigenvariable b is different from variable a as we as-
sumed a not to be used as an eigenvariable in π1(a) (in fact, the necessity of
the assumption is brought out in this step).
Say π1(a) is the proof of Γ′(a) ⇒ ∆(a), A(a, b). Since π1(a) is of height
n − 1(< n), inductive hypothesis applies to it and thus π1(t) is a proof of
Γ′(t) ⇒ ∆(t), A(t, b) . Furthermore, as Γ(a) ⇒ ∆′(a) and the term t does not
contain b, the eigenvariable condition is also satisfied and the following, i.e π(t),
proof is also correct

...
Γ(t) ⇒ ∆′(t), A(t, b)

(∀R)
Γ(t) ⇒ ∆′(t), ∀xA(t, x)

Then, by strong induction on the height of the proof, we have our required
result.

Corollary 2.34. Suppose a proof π ends in ∀R with eigenvariable a, contains
no other ∀R inference with eigenvariable a, and b is a variable not occurring
in π. Then the result of replacing a by b throughout π, is a proof of the same
end-sequent.

Proof. We consider the case when π ends in ∀R. Then π has the following form:

π1(a)
...

Γ ⇒ ∆, A(a)
(∀R)

Γ ⇒ ∆, ∀xA(x)

Call π1(a) the proof of the sequent Γ ⇒ ∆, A(a). As per our assumptions we
have that b does not occur in π1(a) and a is not an eigenvariable in π1(a). Also,
since a was the eigenvariable in π(a), it does not occur in Γ or ∆. Thus, we

30 2.2. CUT-ELIMINATION IN GQCG

can apply Proposition 2.33 to get the proof Γ ⇒ ∆, A(b). Furthermore, since b
does not occur in Γ or ∆, the eigenvariable condition is satisfied and we have
the following proof-

π1(b)
...

Γ ⇒ ∆, A(b)
(∀R)

Γ ⇒ ∆, ∀xA(x)

as required.

Definition 2.35. (Regular proof) A proof in GQCG is regular if every eigen-
variable is the eigenvariable of a single ∀R inference and occurs only above
(perhaps more than once) that one inference.

The notion of regular proofs becomes crucial when we want to transform proofs
with ∀ rules. Regular proofs help ensure that the eigenvariable condition re-
mains satisfied when we transform proofs.The next proposition demonstrates,
through the use of the Proposition on variable replacement, that any proof can
be transformed into a suitable regular proof.

Proposition 2.36. Every proof π can be transformed into a regular proof π′ of
the same end-sequent by replacing eigenvariables only.

Proof. We proceed by induction on the number of applications of the rule ∀R
in π in which the eigenvariable used occurs above it and as an eigenvariable of
another inference or in some place other than above it.
Base Case: If n is 0, then the proof is regular by definition.

Inductive Case: Say n > 0 then choose the ∀R inference with its conclusion
sequent having the least proof height (i.e, the top-most such node in the proof
π) such that its eigenvariable is used in another inference or occurs in some
place other than above it. Say the eigenvariable of this inference is a.
Consider the sub-proof π1 ending with this inference : It is a proof that ends in
∀R and contains no other eigenvariable inferences with eigenvariable a. Hence,
we apply Corollary 2.34 to replace the sub-proof π1 by π′

1 in which we replace
a everywhere in π1 by some free variable b not in π. In the resulting proof
the eigenvariables of other inferences have not been changed and so the number
of ∀R inferences in the resultant proof in which the eigenvariable used occurs
above it and as an eigenvariable of another inference or in some place other
than above it is less than n. Hence, induction hypothesis applies. Thus, by
mathematical induction we have our required result.

In the literature, there are various techniques for eliminating cuts from a proof
system (see Troelstra and Schwichtenberg [2000]). The strategy we employ

2.2. CUT-ELIMINATION IN GQCG 31

here is to remove the top-most cut from a proof, ensuring that the sub-proof
containing the top-most cut has no other occurrences of the cut-rule. Then, we
replace the transformed cut-free sub-proof back into the proof and repeat the
process (see Theorem 2.43). In order to make things precise, we require the
following definitions.

Definition 2.37. (Cut-proofs and Cut-free proofs) A proof π in GQCG is called
a cut-proof iff it contains just one application of Cut, whose conclusion is the
end-sequent(root) of the proof; it is called a cut-free proof iff it contains no
application of cut.

Definition 2.38. (Reducible proofs) A cut-proof π which can be transformed
into a proof with the same end-sequent in which cut has been not applied is said
to be reducible.

We now embark on our journey towards cut-elimination. The following lemma,
both straightforward and crucial, will give us a taste of what lies ahead.

Lemma 2.39. Suppose π is a cut-proof such that one of the premises of cut-rule
is an initial sequent. Then π is reducible.

Proof. Without loss of generality say the left premise of the cut rule is an initial
sequent (which means it cannot be ⊥ ⇒), then π has the following form:

A⇒ A

π1
...

A,Π ⇒ Σ(Cut)
A,Π ⇒ Σ

Then the cut-free proof π1 with the end-sequent A,Π ⇒ Σ is our required
cut-free proof. Thus, π is reducible.

Our strategy would be to inductively remove cuts from a proof. To achieve this,
we will require suitable notions upon which we can base our induction. This is
the objective of the following definition.

Definition 2.40. (Rank of a sequent in a cut-proof) Let π be a cut-proof whose
final inference is:

Γ ⇒ ∆, A A,Π ⇒ Σ(Cut)
Γ,Π ⇒ ∆,Σ

The rank of the sequent S in π is denoted by r(S) and is so defined:

• If S is not Γ,Π ⇒ ∆,Σ then r(S) is the height of the sub-proof π′ ending
with S;

• r(Γ,Π ⇒ ∆,Σ) = r(Γ ⇒ ∆, A) + r(A,Π ⇒ Σ)

32 2.2. CUT-ELIMINATION IN GQCG

Moreover, we define the cut-rank of the proof (abbreviated as r(π)) to be r(Γ,Π ⇒
∆,Σ).

Note that the cut-rank of a proof is at least 2.

As an abuse of notation, given a cut-proof π, by C(π) we mean the complexity7

of the cut-formula in π. Now, we introduce the following notion on which we
would induct on in Lemma 2.42.

Definition 2.41. A cut-proof π1 is said to be less complex than a cut-proof π2
iff either C(π1) < C(π2) or, C(π1) = C(π2) and r(π1) < r(π2).

We are now in a position to show how, by inductively arguing on complexity of
proofs, we can transform any (regular) cut-proof into a cut-free proof.

Lemma 2.42. (Main Lemma) Any regular cut-proof is reducible.

Proof. The proof of the Main Lemma is by double induction on the rank and
complexity of a cut-proof (i.e. how complex a proof is). With more weight given
to the complexity.

1. Base Case: Every regular proof π such that C(π)=0 and r(π) = 2 is
reducible:
As r(π) = 2 then both premises of the cut rule is an initial sequent. We
thus apply Lemma 2.39 to get the required result.

2. Inductive Case: Suppose every regular proof π′ which is less complex than
π (i.e, C(π′) < C(π) or d(π′) = d(π) and r(π′) < r(π)) is reducible, then
we show that π is reducible. We break it up into two parts:

[A] C(π) > 0 and r(π) = 2. Similarly to the base case, π is reducible.
[B] r(π) > 2. In this part, the argument is again divided into two cases:

(i) The rank of the right premises of the cut rule is 1. This case follows
directly from Lemma 2.39.

(ii) The rank of right premise of the cut rule is > 1. Furthermore, if the
rank of the left premise of the cut rule is 1 then we can again apply
Lemma 2.39, hence we only need to work out the case where the left
rank > 1.

Then π is of the following form:

π1
...

Γ ⇒ ∆, A

π2
...

A,Π ⇒ Σ(Cut)
Γ,Π ⇒ ∆,Σ

7For instance, in Definition 2.40, it would mean C(A).

2.2. CUT-ELIMINATION IN GQCG 33

where r(Γ ⇒ ∆, A) > 1 and r(A,Π ⇒ Σ) > 1

We divide it into cases based on the rule whose conclusion is the right
premise A,Π ⇒ Σ.

(a) WL

• Consider the case when the principal formula of WL is the cut formula
A. Then proof has the following form:

...
Γ ⇒ ∆, A

...
Π ⇒ Σ(WL)
A,Π ⇒ Σ(Cut)

Γ,Π ⇒ ∆,Σ

Then we have the following cut-free proof of Γ,Π ⇒ ∆,Σ :

...
Π ⇒ Σ(WL,WR)

Γ,Π ⇒ ∆,Σ

• Now consider the case when the principal formula of WL is not the
cut formula A. Then proof has the following form:

...
Γ ⇒ ∆, A

...
A,Π′ ⇒ Σ(WL)
A,C,Π′ ⇒ Σ(Cut)

Γ, C,Π′ ⇒ ∆,Σ

Which can be transformed into the following proof:

...
Γ ⇒ ∆, A

...
A,Π′ ⇒ Σ(Cut)

Γ,Π′ ⇒ ∆,Σ(WL)
Γ, C,Π′ ⇒ ∆,Σ

Now the sub-proof whose end-sequent is Γ,Π′ ⇒ ∆,Σ (i.e. the con-
clusion of the cut-rule) is a cut-proof and has cut-rank one lower than
π. Thus, this sub-proof is less complex than π. Subsequently, we ap-
ply the induction hypothesis to transform it into a cut-free proof.
Hence, π is reducible.

34 2.2. CUT-ELIMINATION IN GQCG

(b) WR

The proof will have the following form:

...
Γ ⇒ ∆, A

...
A,Π ⇒ Σ′

(WR)
A,Π ⇒ Σ′, C(Cut)

Γ,Π ⇒ ∆,Σ′, C

Which can be transformed into the following proof:

...
Γ ⇒ ∆, A

...
A,Π ⇒ Σ′

(Cut)
Γ,Π ⇒ ∆,Σ′

(WR)
Γ,Π ⇒ ∆,Σ′, C

Now since the sub-proof has cut-rank one lower than π, we apply the
induction hypothesis to transform it into a cut-free proof. Thus, π is re-
ducible.

(c) ∀L

• Consider the case when the principal formula of ∀L is the cut formula
∀xA(x). Then proof has the following form:

...
Γ ⇒ ∆, ∀xA(x)

...
A(t),Π ⇒ Σ

(∀L)
∀xA(x),Π ⇒ Σ

(Cut)
Γ,Π ⇒ ∆,Σ

Now since r(Γ ⇒ ∆, ∀xA) > 1 we can further distinguish cases
based on the last inference rule applied to get the left premise Γ ⇒
∆, ∀xA(x). The only interesting case to consider is when ∀xA(x) is
the principal formula of the rule. The only possibilities of that is the
∀R rule and the WR rule.
If the rule is WR then we have the following cut-free proof:

...
Γ ⇒ ∆(WL,WR)

Γ,Π ⇒ ∆,Σ

2.2. CUT-ELIMINATION IN GQCG 35

If the rule is ∀R then π has the following form:

π1(b)
...

Γ ⇒ ∆, A(b)
(∀R)

Γ ⇒ ∆, ∀xA(x)

...
A(t),Π ⇒ Σ

(∀L)
∀xA(x),Π ⇒ Σ

(Cut)
Γ,Π ⇒ ∆,Σ

Note that since π is a regular proof, the free variable b is not an
eigenvariable of the proof π1(b) and the term t does not contain any
eigenvariables of π and hence, also of π1(b). Thus by Proposition
2.33 we have that π1(t) is a proof with end-sequent Γ ⇒ ∆, A(t).
Then we have the following proof of Γ,Π ⇒ ∆,Σ which has cut-rank
less than r(π):

π1(t)
...

Γ ⇒ ∆, A(t)

...
A(t),Π ⇒ Σ

(Cut)
Γ,Π ⇒ ∆,Σ

Thus, we can apply the induction hypothesis to transform it into a
cut-free proof. Hence, π is reducible.

• Now consider the case when the principal formula of ∀L is not the
cut formula A. Then proof has the following form:

...
Γ ⇒ ∆, A

...
A,B(t),Π′ ⇒ Σ

(∀L)
∀xB(x),Π′ ⇒ Σ

(Cut)
Γ, ∀xB(x),Π′ ⇒ ∆,Σ

This can be transformed into the following proof:

...
Γ ⇒ ∆, A

...
A,B(t),Π′ ⇒ Σ

(Cut)
Γ, B(t),Π′ ⇒ ∆,Σ

(∀L)
Γ, ∀xB(x),Π′ ⇒ ∆,Σ

Now since the sub-proof has cut-rank one lower than π, we apply the
induction hypothesis to transform it into a cut-free proof. Thus, π is
reducible.

36 2.2. CUT-ELIMINATION IN GQCG

(d) ∀R.

The proof has the following form:

...
Γ ⇒ ∆, A

...
A,Π ⇒ Σ′, B(b)

(∀R)
A,Π ⇒ Σ′, ∀xB(x)

(Cut)
Γ,Π ⇒ ∆,Σ′, ∀xB(x)

Since π is a regular proof by assumption, the eigenvariable b does not not
occur in Γ or ∆. Hence, π can be transformed into the following proof :

...
Γ ⇒ ∆, A

...
A,Π ⇒ Σ′, B(b)

(Cut)
Γ,Π ⇒ ∆,Σ′, B(b)

(∀R)
Γ,Π ⇒ ∆,Σ′, ∀xB(x)

Now since its sub-proof has cut-rank one lower than π, we apply the
induction hypothesis to transform it into a cut-free proof. Thus, π is
reducible.
(e) → R
This case is dealt analogously to the WR case.

(f) → L

There are two possibilities:

• Consider the case when the principal formula of the → L rule is not
the cut formula. Then π has the following form:

...
Γ ⇒ ∆, A

...
A,Π1 ⇒ Σ1, C

...
D,Π2 ⇒ Σ2(→ L)

A,C → D,Π1,Π2 ⇒ Σ1,Σ2(Cut)
C → D,Γ,Π1,Π2 ⇒ ∆,Σ1,Σ2

This can be transformed into the following proof :

...
Γ ⇒ ∆, A

...
A,Π1 ⇒ Σ1, C(Cut)

Γ,Π1 ⇒ ∆,Σ1, C

...
D,Π2 ⇒ Σ2(→ L)

C → D,Γ,Π1,Π2 ⇒ ∆,Σ1,Σ2

2.2. CUT-ELIMINATION IN GQCG 37

Now since the sub-proof has cut-rank one lower than π, we apply the
induction hypothesis to transform it into a cut-free proof8. Thus, π
is reducible.

• Now consider the important case when the principal formula of the
→ L rule is the cut formula C → D. Then π has the following form:

...
Γ ⇒ ∆, C → D

...
Π1 ⇒ Σ1, C

...
D,Π2 ⇒ Σ2(→ L)

C → D,Π1,Π2 ⇒ Σ1,Σ2(Cut)
Γ,Π1,Π2 ⇒ ∆,Σ1,Σ2

Now since r(Γ ⇒ ∆, C → D) > 1 we can further distinguish cases
based on the last inference rule applied to get the left premise Γ ⇒
∆, C → D. The only interesting case to consider is when C → D
is the principal formula of the rule. The only possibilities of that is
the → R rule and the WR rule. If the rule is WR then we have the
following cut-free proof:

...
Γ ⇒ ∆(WL,WR)

Γ,Π1,Π2 ⇒ ∆,Σ1,Σ2

If the rule is → R then π has the following form:

...
C,Γ ⇒ ∆, D(→ R)

Γ ⇒ ∆, C → D

...
Π1 ⇒ Σ1, C

...
D,Π2 ⇒ Σ2(→ L)

C → D,Π1,Π2 ⇒ Σ1,Σ2(Cut)
Γ,Π1,Π2 ⇒ ∆,Σ1,Σ2

This can be transformed into the following proof in which both cuts
are of complexity lower than C(π).

...
C,Γ ⇒ ∆, D

...
Π1 ⇒ Σ1, C(Cut)

Γ,Π1 ⇒ ∆,Σ1, D

...
D,Π2 ⇒ Σ2(Cut)

Γ,Π1,Π2 ⇒ ∆,Σ1,Σ2

Now, we take that sub-proof whose end-sequent is the conclusion
of the upper cut. Since this sub-proof (which is a cut-proof) is less
complex than π, we apply the induction hypothesis to transform it
into a cut-free proof. Then, we apply the induction hypothesis again
on the thus obtained proof to get a cut-free proof of Γ,Π1,Π2 ⇒
∆,Σ1,Σ2. Hence, π is reducible.

8Note that the other possibility, when we instead have the sequent D,A,Π2 ⇒ Σ2 in π,
can also be dealt with similarly.

38 2.2. CUT-ELIMINATION IN GQCG

Since this exhausts all possible rules, we have our proof for [B].
Thus, from [A] and [B], we have our inductive case. Finally, by double
induction, we have that any regular proof is reducible.

Theorem 2.43. (Cut-Elimination in GQCG) The cut-rule is eliminable from
GQCG. That is, given any proof in GQCG it is possible to construct another
proof with the same end-sequent but that does not contain any cut.

Proof. Take any arbitrary proof in GQCG and using Proposition 2.36 modify the
proof to ensure that it is regular, call it π0.
Now we take the left-most and upper most application of cut in π0, and let
Π ⇒ Σ be its conclusion. Then the sub-proof π′

0 of π0 is a cut-proof. We
apply Lemma 2.42 to π′

0 to get a cut-free proof of Π ⇒ Σ. Replace π′
0 in

π0 with this cut-free proof. Call this new proof π1. Note that π1 has the
same end-sequent as π0 and has one less application of cut. By repeating this
procedure as many times as there are applications of cut in π0, we get the
required transformation.

We conclude this section with a brief remark on how cut-elimination differs in
the presence of contraction.

Remark 2.44. (Difference from classical cut-elimination)
The presence of contraction in logic significantly complicates cut-elimination
(c.f. Lemma 2.42). For instance, look at the following proof:

...
Π ⇒ Σ, A

...
Γ, A,A⇒ ∆(CL)
Γ, A⇒ ∆(Cut)

Γ,Π ⇒ ∆,Σ

If we attempt to push the cut upwards then we would like to have a transforma-
tion as follows

...
Π ⇒ Σ, A

...
Π ⇒ Σ, A

...
Γ, A,A⇒ ∆(Cut)

Π,Γ, A⇒ ∆(Cut)
Π,Π,Γ ⇒ ∆,Σ,Σ(CR,CL)

Π,Γ ⇒ ∆,Σ

But then, we see that this would not give a proof which is less complex. As the
complexity of the lowest cut need not be less. To solve this problem Gentzen
introduced his Mix rule which is a derivable generalization of the cut rule.

2.2. CUT-ELIMINATION IN GQCG 39

Γ ⇒ ∆ Π ⇒ Σ(Mix on A)
Γ,Π∗ ⇒ ∆∗,Σ

Where both ∆ and Π contain at least one occurrence of A, while ∆∗ and Π∗

contain none. Gentzen showed that the systems LK and LK − cut + mix prove
the same sequents and by eliminating mix from LK − cut+mix he achieved his
Hauptsatz. Furthermore, we note that the definition of rank of a cut-proof (c.f.
Definition 2.40) would need to be more involved in the presence of contraction.

Consequences of Cut-elimination
In this subsection, we briefly discuss some direct consequences of the cut-
elimination theorem. Let’s start with the following definition.

Definition 2.45. (Sub-formula) Given a formula A we define the set, Sub(A),
of sub-formulas of A inductively as follows:

• Base Clause: Sub(A) = {A} if A is atomic.

• Inductive Clause:
If A = C → B then Sub(C → B) = {C → B} ∪ Sub(C) ∪ Sub(B);
If A = ∀xB(x) then Sub(∀xB(x)) = {∀xB(x)}

∪
t∈terms Sub(B(x/t))

A proof π is said to have sub-formula property if any formula occurring in π is
a sub-formula of the formulas in the sequent at the root of π.
The following is perhaps one of the most important consequences of the cut-
elimination theorem.

Proposition 2.46. (Sub-formula property) Given any sequent Γ ⇒ ∆, if we
have that ⊢GQCG Γ ⇒ ∆ then there is a proof π of Γ ⇒ ∆ in GQCG which has
the sub-formula property.

Corollary 2.47. (Non-Theorems of GQCG) The following sequents, which
are classically provable (i.e, in LK), are not provable in GPCG:

• ∀x(A(x)⊗B(x)) ⇒ ∀xA(x)⊗ ∀xB(x).

• ∃xB(x)⊕ ∃xC(x) ⇒ ∃x(B(x)⊕ C(x))

• ⇒ ∃y∀x(P (y) → P (x))

Remark 2.48. From Corollary 2.47, it becomes evident that not all formulas
within GQC can be reduced to an equivalent prenex form, which stands in contrast
to classical logic.

On the other hand, the following sequents are provable in GPCG:

• ∀x(A(x)⊗B(x))⊗ ∀x(A(x)⊗B(x)) ⇒ ∀xA(x)⊗ ∀xB(x).

• ∃xB(x)⊕ ∃xC(x) ⇒ ∃x(B(x)⊕ C(x))⊕ ∃x(B(x)⊕ C(x))

• ∃y∀x(P (y) → P (x))⊕ ∃y∀x(P (y) → P (x))

40 2.2. CUT-ELIMINATION IN GQCG

Next we present, an intriguing corollary- a (weak) Herbrand theorem for GQC.
We also give a proof this time, to give a flavour of how such arguments looks
like.

Corollary 2.49. Given any formula A(x), suppose that ⊢GQCG ⇒ ∃xA(x) then
there is a term t, such that, ⊢GQCG ⇒ A(t).

Proof. If ⊢GQCG ⇒ ∃xA(x), then by the cut-elimination theorem there is a
cut-free proof π of ⇒ ∀x(A(x) → ⊥) → ⊥ in GQCG. Since this proof has the
sub-formula property, the only possibility for the last applied rule in π is → R.
Then π must have the following form:

...
∀x(A(x) → ⊥) ⇒ ⊥

(→ R)
⇒ ∀x(A(x) → ⊥) → ⊥

Hence, there is a cut-free proof of ∀x(A(x) → ⊥) ⇒ ⊥ in GQCG. Now, there
are two valid pathways through which ∀x(A(x) → ⊥) ⇒ ⊥ could be inferred:
either via WR or ∀L (since ⇒ ⊥ cannot be proved in GQCG, WL is not a valid
pathway).
Let’s take the case of ∀L. Then π must be of the following form:

...
A(t) → ⊥ ⇒ ⊥

(∀L)
∀x(A(x) → ⊥) ⇒ ⊥

(→ R)
⇒ ∀x(A(x) → ⊥) → ⊥

Hence, there is a cut-free proof of A(t) → ⊥ ⇒ ⊥ in GQCG. Again, there are
two valid pathways through which A(t) → ⊥ ⇒ ⊥ could be inferred: either via
WR or → L. Let’s take the case of → L. Then π must be of the following form:

...
⇒ A(t)

...
⊥ ⇒ ⊥

(→ L)
A(t) → ⊥ ⇒ ⊥

(∀L)
∀x(A(x) → ⊥) ⇒ ⊥

(→ R)
⇒ ∀x(A(x) → ⊥) → ⊥

Thus, we have that for some term t, ⊢GQCG ⇒ A(t).
Furthermore, reasoning similarly in the cases we have left out, the same conclu-
sion can be reached, i.e., for some term t, ⊢GQCG ⇒ A(t). Hence, we will have
what we require.

2.3. DEDUCTION FROM HYPOTHESES 41

Remark 2.50. In classical logic, LK, the above proposition famously fails. In-
stead, LK offers a weaker result (known as Herbrand’s Theorem): if we have
⊢LK⇒ ∃xA(x), then there exists a finite sequence of terms (ti)

n
i=1 such that

⊢ LK ⇒
∨n

i=1A(ti). This phenomenon arises precisely due to the presence of
CR in LK.

We conclude this section by mentioning an important observation made by
Ketonen and Weyhrauch in Ketonen and Weyhrauch [1984]: they extended the
scope of Corollary 2.48, establishing a suitable Herbrand’s theorem applicable
to any prenex formula. Additionally, they demonstrated that this theorem no
longer hold for formulas that are not in prenex form.

2.3 Deduction from hypotheses
In this section, we briefly discuss two notions of deduction from hypotheses-
External and Internal consequence9. This is particularly interesting in case of
substructural logics as the distinction between two notions of consequence breaks
down in case of Classical logic and in fact, this can be a potential source for
logical paradoxes (see Mares and Paoli [2014]). Thus, the study of consequence
is richer in case of contraction free logics. The sequent style formulations of
consequence has been adapted from Avron [1988].

External Consequence
We begin with the notion of consequence which is the standard way of capturing
when a formula can be deduced from a set of formulae (i.e. hypothesis). We
formulate it in Hilbert style axiomatization and then define an equivalent notion
in sequent calculus.

Definition 2.51. (Weak derivability from assumptions, GQCH) B is weakly
derivable from a set Γ (abbreviated as Γ ⊢e B) if there is a sequence B1, . . . , Bn

of well-formed formulas (wffs) such that, Bn = B and for each i, Bi is either an
axiom of GQCH , or is in Γ, or is a direct consequence of some of the preceding
wffs in the sequence by virtue of modus ponens or by generalization.

It is easy to observe that if ⊢GQCH A then ⊢e A.

Definition 2.52. (External Consequence, GQCG) We say that B is an external
consequence of a set Γ if and only if ⇒ B is provable in GQCG by adding, as
initial sequents, ⇒ A where A ∈ Γ.

The next proposition demonstrates the equivalence between the notion of weak
derivability and external consequence.

Proposition 2.53. Given a set of formulae Γ and a formula B, Γ ⊢e B iff B
is an external consequence of Γ.

9The propositional counterparts of notions presented in this section are by now well-
established (see Mares and Paoli [2014]).

42 2.3. DEDUCTION FROM HYPOTHESES

Proof.
Left to Right direction
Suppose Γ ⊢e B and say A1, . . . , An = B is a derivation of B. We proceed by
induction on the length of the sequence.
Base case n = 1. Then A1 = B, meaning B is either an axiom of GQCH or
B ∈ Γ. Using Proposition 2.29, in the former case, ⇒ B is provable in GQCG.
In the latter case since B ∈ Γ, ⇒ B is added as an initial sequent and thus is
provable. Hence, in either case, B is an external consequence of Γ.

Inductive case. Now assume the induction hypothesis holds for proofs of length
up to n, and consider the following derivation of B: A1, . . . , An+1 = B.
The important cases to address are when An+1 is a result of either modus ponens
(MP) or generalization (Gen).

MP We have that An = Ai → An+1 for some i < n. We have that Γ ⊢e Ai and
Γ ⊢e An, both having deductions of length less than or equal to n. Thus,
we apply the induction hypothesis and construct the following proof in
GQCG with assumptions from Γ.

...
⇒ Ai

...
⇒ Ai → An+1

Ai ⇒ Ai An+1 ⇒ An+1

Ai → An+1, Ai ⇒ An+1(cut)
Ai ⇒ An+1

⇒ An+1

Therefore, we have a proof of ⇒ An+1 in GQCG with assumptions from Γ.

Gen We have that An+1 = ∀xAn as an application of generalization. Then we
have Γ ⊢e An. We apply induction hypothesis and construct the following
proof tree in GQCG.

...
⇒ An(∀R) ⇒ ∀xAn

Therefore, we have a proof of ⇒ An+1 in GQCG with assumptions from Γ.

By induction on the length of deduction we are done.

Right to Left direction
We establish a more general result: if the sequent Π ⇒ ∆ is provable in GQCG

by adding initial sequents ⇒ A where A ∈ Γ, then Γ ⊢e t(Π ⇒ ∆) (refer to
definition 2.11). We proceed by induction on the structure of proofs in GQCG.

2.3. DEDUCTION FROM HYPOTHESES 43

Base Case. Π ⇒ ∆ is an initial sequent. Then we have the following possi-
bilities for Π ⇒ ∆ : B ⇒ B or, ⊥ ⇒ or, ⇒ A where A ∈ Γ. The first two
cases are dealt exactly in the same way as in Proposition 2.29 to show that
⊢GQCH t(Π ⇒ ∆) and subsequently, Γ ⊢e t(Π ⇒ ∆). Regarding the last one,
we note that since A ∈ Γ, it is derivable from Γ. Hence, we have Γ ⊢e t(Π ⇒ ∆).

Inductive Case. Then Π ⇒ ∆ has been arrived at by an application of a rule
of GQCG with additional initial sequents from Γ. This is dealt exactly as in the
inductive case of left to right direction of Theorem 2.29.
By induction on the structure of proofs in GQCG we are done.

One of the key ways to get a better understanding of consequence is to formu-
late and understand a suitable Deduction Theorem for it. A Deduction theorem
not only simplifies proofs but also provides a better understanding of how im-
plication works. In classical logic, we can demonstrate that if A is closed (i.e.,
A contains no free variables), then Γ, A ⊢ B if and only if Γ ⊢ A → B. This
is possible because classical logic, equipped with contraction, doesn’t require
tracking the number of times an assumption (such as A in this case) has been
used. We do not have that liberty in our system and thus, we need an alternative
deduction theorem. This is the content of the next proposition.
We let An be an abbreviation for A⊗ . . .⊗A (n times) and A0 := ⊤. Then we
get the following deduction theorem.

Proposition 2.54. (Deduction Theoreme) Γ, A ⊢e B iff Γ ⊢e An → B, for
some n ≥ 1, where A is a closed formula.

Proof.
Right to Left direction This is easy to see, so we focus on the converse.
Left to Right direction
Say Γ, A ⊢e B and thus say A1, . . . , An = B is a deduction. We prove the
proposition by induction on the length of the sequence.
Base Case. n = 1. Then A1 = B, i.e, B is an axiom of GQCH or, B = A
or, B ∈ Γ. In all these possibilities using the GQCH axioms A → A and
B → (A→ B) we will have that Γ ⊢e A→ B.

Now assume the induction hypothesis for deductions of length up to n and say
we have the following derivation of B: A1, . . . , An+1 = B.

Inductive Case. The important cases we need to deal with are when An+1 is a
result of MP or Gen.

MP We have that An = Ai → An+1 for some i < n. Now, from Γ, A ⊢e Ai and
Γ, A ⊢e An, by applying the induction hypothesis, we obtain, for some
positive integers p and q, Γ ⊢e Ap → Ai and Γ ⊢e Aq → (Ai → An+1).
Now utilizing the axiom P → (Q → R) → (Q → (P → R)) and modus
ponens, we deduce Γ ⊢e Ai → (Aq → An+1). Furthermore, using the
axiom (P → R) → ((R → Q) → (P → Q)) and Γ ⊢e Ap → Ai, modus

44 2.3. DEDUCTION FROM HYPOTHESES

ponens yields Γ ⊢e Ap → (Aq → An+1). Or equivalently, Γ ⊢e Ap ⊗Aq →
An+1, or simply Γ ⊢e Ap+q → An+1, as required.

Gen We have that An+1 = ∀xAn as a result of generalization. Consequently,
we have Γ, A ⊢e An. By applying the induction hypothesis, we obtain,
for some positive integer p, Γ ⊢e Ap → An. Since A is closed, so is Ap.
Therefore, employing the rule of generalization and the axiom ∀x(Ap →
An) → Ap → ∀xAn, we deduce Γ ⊢e Ap → ∀xAn using MP.

By induction on the length of deductions we have our required result.

Remark 2.55. We note that in classical logic we have p → (q → r) → ((p →
q) → (p → q)) as a theorem. Due to which, in the inductive case of MP, we
could reason as follows: From Γ ⊢ A → Ai and Γ ⊢ A → (Ai → An+1), we can
conclude Γ ⊢ A → An+1. This is why in classical logic we have Γ, A ⊢ B iff
Γ ⊢ A→ B.

Internal Consequence
In order to get a notion of derivability where we have the original deduction
theorem, we need a tighter notion. This is the content of this part.

Definition 2.56. (Internal Consequence, GQCG) We say that B is an internal
consequence of a multiset Γ if and only if Γ ⇒ B is provable in GQCG.

We adapt the following definition of derivability from Troelstra Troelstra [1992].

Definition 2.57. (Strong derivability from assumptions, GQCH) A strong deriva-
tion is a labeled tree D with leaves labeled by expressions of the form A ⊢ A,
where A is a formula of the language, or of the form ⊢ B, where B is an axiom
of GQCH. Concerning the labels of the other nodes of D, they are obtained by
the following rules (where Γ, ∆ are finite multisets of formulae):

Γ ⊢ A ∆ ⊢ A→ B(→ E)
Γ,∆ ⊢ B

⊢ A(Gen) ⊢ ∀xA

We shall say A is strongly derivable from Γ (abbreviated as Γ ⊢i B) if there is
a derivation whose root is labelled by Γ ⊢ A.

It is easy to observe that if ⊢GQCH A then ⊢i A.
The next proposition shows that the notion of strong derivability and internal
consequence coincide.

Proposition 2.58. Given a multi-set of formulae Γ and a formula B,

Γ ⊢i B iff ⊢GQCG Γ ⇒ B.

2.3. DEDUCTION FROM HYPOTHESES 45

Proof. Right to Left
Suppose Γ = A1, . . . , An, let γ := A1 ⊗ . . . An.
Since ⊢GQCG Γ ⇒ B we have from Proposition 2.29 that ⊢GQCH γ → B. Thus,
we have a strong derivation whose root is labelled with ⊢ γ → B. Now using the
GQCH theorem (P ⊗Q → R) → (P → (Q → R)) and (→ E) we can construct
a strong derivation of ⊢ A1 → (A2 ⊗ . . . An → B). Now consider the following
derivation:

...
⊢ A1 → (A2 ⊗ . . .⊗An → B) A1 ⊢ A1

(→ E)
A1 ⊢ (A2 ⊗ . . .⊗An → B)

We can repeat this process n times to eventually get a derivation whose root is
labelled by Γ ⊢ B. Thus, Γ ⊢i B.

Left to Right
We show this by induction on the structure of strong derivations. If the deriva-
tion only consists of a leaf then the root is labelled either by A ⊢ A where
A is any formula or, ⊢ B where B is an axiom of GQCH. But A ⇒ A is an
initial sequent of GQCG and ⇒ B from Proposition 2.29. Thus, we will have
⊢GQCG Γ ⇒ B.
Now, say the node labelled by Γ ⊢ B is obtained by one of the rules. We need
to show the following:

• Preservation under → E:
Say Γ ⇒ A and ∆ ⇒ A→ B is provable in GQCG. We need to show that
Γ,∆ ⇒ B. Consider the following proof tree in GQCG:

A⇒ A B ⇒ B(→L)
A→ B,A⇒ B

...
∆ ⇒ A→ B(Cut)

∆, A⇒ B

...
Γ ⇒ A(Cut)

Γ,∆ ⇒ B

Hence, Γ,∆ ⇒ B is also provable in GQCG.

• Preservation under Gen(eralization).
Say ⇒ B(x) is provable in GQCG. As the eigenvariable condition is clearly
satisfied, we apply the ∀R rule in GQCG to get that ⇒ ∀xB(x) is provable.

Thus, by induction on the structure of stroong derivations, we get that if Γ ⊢i A
then ⊢GQCG Γ ⇒ B.

Corollary 2.59. (Deduction Theoremi) If Γ, A ⊢i B then Γ ⊢i A→ B.

46 2.3. DEDUCTION FROM HYPOTHESES

Corollary 2.60. (Generalization) If Γ ⊢i B(x) and x is not free in any formula
in Γ, then Γ ⊢i ∀xB(x).

We conclude this section with some remarks on the relationship between internal
and external consequence.

Remark 2.61.

• It is easy to observe that by repeated applications of cut, if B is an internal
consequence of (a multiset) Γ then B is also an external consequence of Γ
(taken as a set).

• On the other hand the converse is not true: C ⊗ C is an external con-
sequence of {C} but not an internal consequence. Consider the following
proof tree in GQCG where ⇒ C has been added as an initial sequent.

C ⇒ C ⇒ C(⊗R)
C ⇒ C ⊗ C

• Classical logic cannot distinguish between internal and external conse-
quence. In the presence of weakening and contraction, an external conse-
quence is also an internal consequence.

3 | Contraction Free Arith-
metic

In this chapter, we introduce Contraction Free Arithmetic (CFA), utilizing first-
order Grišhin logic as its underlying framework. We demonstrate several funda-
mental properties of our arithmetic and proceed to showcase the definability of
additive connectives in our language. In section [3.3], we provide a justification
for our selection of the Induction Rule over the Induction Schema in our axiom-
atization. In the same section, we establish ∆0-Induction within our system.
As a consequence of that, we show that any Π2 formula which is provable in
I∆0 is also provable in CFA under a suitable formula translation. We conclude
the chapter by showing that left contraction for Σ1 formulas hold in CFA.

3.1 The Formal System of CFA
The language of Contraction-Free Arithmetic (CFA) is a first-order vocabulary,
given by,

LCFA := {0, S,+, ·,=}

where 0 is a constant symbol; S is an unary function symbol; (+), (·) are binary
function symbols ; = is a binary predicate symbol.

Definition 3.1. (CFAH) We define the Hilbert-style proof system for CFA
over the logic GQCH in the language LCFA as follows:

Axioms for Equality

1. ∀x(x = x).

2. ∀x⃗∀y⃗((x1 = y1 ⊗ . . .⊗ xn = yn) → f(x⃗) = f(y⃗)),
where f is any function symbol.

3. ∀x⃗∀y⃗((x1 = y1 ⊗ . . .⊗ xn = yn) → (R(x⃗) → R(y⃗))),
where R is any atomic formula.

48 3.1. THE FORMAL SYSTEM OF CFA

Axioms for Arithmetic

1. ∀x¬(S(x) = 0)

2. ∀x∀y(S(x) = S(y) → x = y)

3. ∀x(x+ 0 = x)

4. ∀x∀y(x+ S(y) = S(x+ y))

5. ∀x(x · 0 = 0)

6. ∀x∀y(x · S(y)) = x · y + x

Rule of Induction

ϕ(0) ∀y(ϕ(y) → ϕ(S(y)))
(IR)

∀x(ϕ(x))

Definition 3.2. (Proof) A proof in CFA is a sequence B1, . . . , Bn of well-
formed formulas (wffs) such that, for each i, Bi is either an axiom of CFA or a
direct consequence of some of the preceding wffs in the sequence by virtue of one
of the rules of inference of CFA. A formula B is provable in CFA (abbreviated
as CFAH ⊢ B) if there exists a proof B1, . . . , Bn where B = Bn.

Remark 3.3. In the presence of contraction, such as in LK, the rule of Induc-
tion and the Induction schema are equivalent. However, in its absence, while
the Induction schema entails the rule, the converse does not hold. We refer to
Section 3.3 for our justification for choosing the Induction rule.

We now give an sequent-style formulation of CFA.

Definition 3.4. (CFAG) We define the Sequent-style proof system for CFA
over the logic GQCG in the language LCFA as follows1:

• Initial sequents for Equality

1. ⇒ t = t

2. t1 = s1, . . . , tn = sn ⇒ f(t1, . . . , tn) = f(s1, . . . , sn).
Where f is any function symbol.

3. t1 = s1, . . . , tn = sn, R(t1, . . . , tn) ⇒ R(s1, . . . , sn).
Where R is any atomic formula.

• Initial sequents for Arithmetic

1. ⇒ ¬(S(s) = 0)

2. S(s) = S(t) ⇒ s = t

1G is after Gentzen

3.1. THE FORMAL SYSTEM OF CFA 49

3. ⇒ t+ 0 = t

4. ⇒ s+ S(t) = S(s+ t)

5. ⇒ s · 0 = 0

6. ⇒ s · S(t) = s · t+ s

• Rule of Induction2 (IR)

⇒ ϕ(0) ϕ(x) ⇒ ϕ(S(x))
(IR)

⇒ ϕ(t)

Definition 3.5. (Proof) A proof in CFA is a finite labelled tree whose nodes
are labelled by sequents, in such a way that leaves are labelled by initial sequents
of CFA and each sequent at a node is obtained from sequents at immediate
predecessor(s) node(s) according to one of the rules of CFA. We shall denote
proofs by means of metavariables D,D′, If D is a proof, a subtree D′ of D
which is itself a proof is called a subproof of D.
A sequent Γ ⇒ ∆ is provable in CFA (CFA ⊢GQCG Γ ⇒ ∆) iff it labels the root
of some proof in CFA (i.e. iff it is the end-sequent of such a proof).

Proposition 3.6. CFAG ⊢ Γ ⇒ ∆ iff CFAH ⊢ t(Γ ⇒ ∆).

Given the preceding proposition, henceforth, we will often just write CFA ⊢ for
CFAG ⊢ or CFAH ⊢, if the context allows us to do so.

Remark 3.7. The usual properties of addition and multiplication like commu-
tativity or distributivity can be readily established using the Induction rule, akin
to standard proofs utilizing the induction schema.

The standard model of CFA is a model with universe N = {0, 1, . . .} such that
all symbols have the usual interpretation. Further we say for any n ∈ N and n
is the abbreviation for the term S(S(..S(0)..)) (i.e. n occurrences of S) in the
language of CFA. We call the term n the nth numeral.

Definition 3.8. For abbreviation, we let y < x stand for ∃z(y+S(z) = x) and
y ≤ x for y < x⊕ y = x.

As usual, for any term t and variable x, ∃x ≤ t ϕ(x) and ∀x ≤ t ϕ(x) is an
abbreviation for ∃x(x ≤ t⊗ ϕ) and ∀x(x ≤ t → ϕ) respectively3. Furthermore,
we call the quantifiers occurring as (∃x ≤ t) or (∀x ≤ t) bounded.

Definition 3.9. (Arithmetic hierarchy) A formula is called a bounded formula
if it contains only bounded quantifiers. The set of bounded formulas is denoted
by ∆0. For n ≥ 0, the classes Σn and Πn of first order formulas are inductively
defined by:

2Note that its an implicit assumption that x does not occur in ϕ(0), otherwise the rule will
not be sound w.r.t. N

3By convention, x and t are distinct.

50 3.2. ADDITIVE CONNECTIVES

1. Σ0 = Π0 = ∆0

2. Σn+1 is the set of formulas of the form (∃x)A where A ∈ Πn.

3. Πn+1 is the set of formulas of the form (∀x)A where A ∈ Σn.

Remark 3.10.
Any formula ϕ that is equivalent to a Σn formula is informally also referred to
as a Σn formula. Similarly, for Πn formulas. Henceforth, we will work with
this informal usage.
At the same time, it’s important to note that unlike classical logic, where any for-
mula is equivalent to some formula in the arithmetical hierarchy, CFA presents
a different scenario. Here, the arithmetical hierarchy does not exhaust all for-
mulas in the language of CFA. This occurs because there are formulas in the
language of CFA that are not equivalent to any prenex formula.

Proposition 3.11. (CFA) Given a formula ϕ(x, y) with x, y as free variables,
the following sentences are provably equivalent:

1. ∃x∃yϕ(x, y)

2. ∃w(∃x ≤ w)(∃y ≤ w)ϕ(x, y), where w does not occur in ϕ.

Proof. We reason within CFA formalized in Hilbert style.
From (1) to (2) : For any a, b we have, ϕ(a, b) → (a ≤ (a + b) ⊗ b ≤ (a + b) ⊗
ϕ(a, b)). From which, by ∃−introduction we have, ϕ(a, b) → ∃x ≤ (a + b)∃y ≤
(a + b)ϕ(x, y). Applying ∃−introduction again, gives us ϕ(a, b) → ∃w(∃x ≤
w)(∃y ≤ w)ϕ(x, y). Now, ∃ elimination gives us, ∃x∃yϕ(x, y) → ∃w(∃x ≤
w)(∃y ≤ w)ϕ(x, y) as needed.
From (2) to (1) : Since w does not occur in ϕ, unpacking the abbreviations
involved in the bounded quantifiers is enough to show that ∃w(∃x ≤ w)(∃y ≤
w)ϕ(x, y) → ∃x∃yϕ(x, y)

Corollary 3.12. Any formula starting with n > 1 unbounded existential quan-
tifiers is provably equivalent to a formula starting with just a single unbounded
quantifier.

3.2 Additive Connectives
In this section, we demonstrate that, in a sense, the additive connectives become
definable in CFA. We establish this by demonstrating the stronger result that
the system of contraction-free arithmetic together with additive connectives is
equivalent to CFA (Theorem 3.18).
For our purposes, we introduce an extension CFA′ of CFA in the language L′

and in the present section, we mainly reason in sequent style.

Definition 3.13. (CFA′) Let L′ := LCFA∪{∧,∨}. CFA′ is the calculus defined
over CFA in the language L′ with the following additional rules of inference.

3.2. ADDITIVE CONNECTIVES 51

A,Γ ⇒ ∆(∧L)
A ∧B,Γ ⇒ ∆

Γ ⇒ ∆, A Γ ⇒ ∆, B(∧R)
Γ ⇒ ∆, A ∧B

A,Γ ⇒ ∆ B,Γ ⇒ ∆(∨L)
A ∨B,Γ ⇒ ∆

Γ ⇒ ∆, A(∨R)
Γ ⇒ ∆, A ∨B

We will demonstrate that these newly introduced connectives can be expressed
in terms of multiplicative connectives alone within CFA′. First, we present some
basic preliminary lemmas.

Lemma 3.14. (CFA)

(a) ⊤ → B ⇔ B

(b) ⊥ → B ⇔ ⊤

(c) 0 = 0 ⇔ ⊤

(d) If a is a numeral different from 0 then, a = 0 ⇔ ⊥.

(e) ⊤ → B ⊗⊥ → C ⇒ B

(f) B ∧ C ⇒ ⊥ → B ⊗⊤ → C

Proposition 3.15. (CFA′) Let B,C be any formula where x does not occur
free, then :

1. B ∧ C ⇔ ∀x(x = 0 → B ⊗ ¬(x = 0) → C)

2. B ∨ C ⇔ ∃x(x = 0 → B ⊗ ¬(x = 0) → C)

Proof.
1. "⇐"
With the help of Lemma 3.14, we have the following proof tree4.

...
0 = 0 → B ⊗ 0 ̸= 0 → C ⇒ B(∀L)

∀x(x = 0 → B ⊗ x ̸= 0 → C) ⇒ B

...
S(0) = 0 → B ⊗ S(0) ̸= 0 → C ⇒ C

(∀L)
∀x(x = 0 → B ⊗ x ̸= 0 → C) ⇒ C

(∧R)
∀x(x = 0 → B ⊗ x ̸= 0 → C) ⇒ B ∧ C

"⇒"

Let ϕ(x) := B∧C → (x = 0 → B⊗¬(x = 0) → C). We proceed with Induction
Rule on the formula ϕ.
Basis: Since ⇒ B ∧ C → B, it is easy to check that ϕ(0) is provable.

4Actually, the proofs are only a proof sketch from which formal proof trees can be directly
constructed.

52 3.2. ADDITIVE CONNECTIVES

Inductive Step: To show that ϕ(x) ⇒ ϕ(S(x)) is provable, consider the following
proof tree :

...
B ∧ C ⇒ (S(x) = 0 → B)⊗ (S(x) ̸= 0 → C)

(→ R)
⇒ B ∧ C → ((S(x) = 0 → B)⊗ (S(x) ̸= 0 → C))

(WL)
B ∧ C → ((x = 0 → B)⊗ (x ̸= 0 → C)) ⇒ B ∧ C → ((S(x) = 0 → B)⊗ (S(x) ̸= 0 → C))

Hence, we have that ϕ(x) ⇒ ϕ(S(x)) is provable.

Thus, by applying the Induction rule in CFA′ we get ⇒ ∀xϕ(x). Moreover, as
x is not free in B ∧ C, we get

B ∧ C ⇒ ∀x((x = 0 → B)⊗ (x ̸= 0 → C)).

2. The proof is similar to part 1. We refer to Appendix B.

Returning to our arithmetic CFA, we note that a similar phenomenon occurs:
∀x(x = 0 → A ⊗ ¬(x = 0) → B) and ∃x(x = 0 → A ⊗ ¬(x = 0) → B) behave
exactly like A ∧B and A ∨B respectively. That is to say,

Proposition 3.16. (CFA) The following rules are derivable :

1.

A,Γ ⇒ ∆

∀x(x = 0 → A⊗ ¬(x = 0) → B),Γ ⇒ ∆

Γ ⇒ ∆, A Γ ⇒ ∆, B

Γ ⇒ ∆, ∀x(x = 0 → A⊗ ¬(x = 0) → B)

2.

A,Γ ⇒ ∆ B,Γ ⇒ ∆

∃x(x = 0 → A⊗ ¬(x = 0) → B),Γ ⇒ ∆

Γ ⇒ ∆, A

Γ ⇒ ∆, ∃x(x = 0 → A⊗ ¬(x = 0) → B)

Proof. The proofs of these derivable rules have exactly the same flavor as those
in the previous proposition.

3.2. ADDITIVE CONNECTIVES 53

With Propositions 3.15 and 3.16 at hand, we are now almost ready to show the
equivalence. In order to formally capture what we mean by the systems CFA′

and CFA being equivalent, we first introduce the notion of formula translation.

Definition 3.17. (Formula translation) Let ϕ be any formula in the language
of CFA′. The formula translation ϕ∗ of ϕ, in the language of CFA is defined
inductively on the structure of ϕ.

• If ϕ is atomic then ϕ∗ := ϕ.

• If ϕ = A → B then ϕ∗ := A∗ → B∗; if ϕ = ∀x(B(x)) then ϕ∗ :=
∀x(B(x)∗).

• If ϕ = A∧B then ϕ∗ := ∀x((x = 0 → A∗)⊗ (x ̸= 0 → B∗)), where x does
not occur in ϕ.

• If ϕ = A∨B then ϕ∗ := ∃x((x = 0 → A∗)⊗ (x ̸= 0 → B∗)), where x does
not occur in ϕ.

We naturally extend the formula translation to multiset of formulae. If Γ is a
multiset, then Γ∗ is the multiset that contains only the translations of formulas
in Γ.

Theorem 3.18. (Equivalence) CFA′ ⊢ ⇒ ϕ iff CFA ⊢ ⇒ ϕ∗, where ϕ∗ is the
formula translation of ϕ into CFA.

Proof. We break the problem into the following claims.

Claim (i) CFA′ ⊢ ϕ∗ ⇒ ϕ.
We proceed with induction on the structure of ϕ. The basis is straightforward,
following directly from the definition of formula translation. For the inductive
steps, we will rely on both the definition of formula translation and Proposition
3.15. For instance, we work out the case where ϕ = A ∧ B : By our induction
hypothesis, we have CFA′ ⊢ A∗ ⇒ A and CFA′ ⊢ B∗ ⇒ B. Consequently, we
can derive the following sequent within CFA′:
∀x(x = 0 → A∗ ⊗ ¬(x = 0) → B∗) ⇒ ∀x(x = 0 → A⊗ ¬(x = 0) → B).
Now, utilizing Proposition 3.15 and the cut rule, we obtain:

CFA′ ⊢ ∀x(x = 0 → A∗ ⊗ ¬(x = 0) → B∗) ⇒ A ∧B

i.e. CFA′ ⊢ ϕ∗ ⇒ ϕ as required.

Claim (ii) If a sequent is provable in CFA′ then its translated sequent is prov-
able in CFA, i.e. if CFA′ ⊢ Γ ⇒ ∆ then CFA′ ⊢ Γ∗ ⇒ ∆∗.

We proceed by induction on the height of the proof of ⊢ Γ ⇒ ∆ in CFA′.
Base case: If the height of the proof is 0, then Γ ⇒ ∆ is an initial sequent of
CFA′. However, the initial sequents of CFA′ are exactly the initial sequents of
CFA. Furthermore, Γ∗ = Γ and ∆∗ = ∆. Thus, CFA ⊢ Γ∗ ⇒ ∆∗ as required.

54 3.2. ADDITIVE CONNECTIVES

Inductive Case: Suppose Γ ⇒ ∆ has a proof of height n (> 0) in CFA′. We
proceed by considering cases based on the last rule applied.

• Case → R .
Suppose A→ B is the principal formula. Then in CFA′ we have,

...
A,Γ ⇒ ∆′, B

(→ R)
Γ ⇒ A→ B,∆′

where ∆ = A→ B,∆′.
Now A,Γ ⇒ ∆′, B has a proof of height n− 1 in CFA′. By induction hy-
pothesis, we have, CFA ⊢ A∗,Γ∗ ⇒ ∆′∗, B∗. Then we obtain the following
proof in CFA:

...
A∗,Γ∗ ⇒ ∆′∗, B∗

(→ R)
Γ∗ ⇒ A∗ → B∗,∆′∗

Hence, CFA ⊢ Γ∗ ⇒ A∗ → B∗,∆′∗. According to our definition of formula
translation (A → B)∗ = A∗ → B∗. Therefore, CFA ⊢ Γ∗ ⇒ (A →
B)∗,∆′∗.

• Cases → L, ∀R, ∀L, IR.
Note that since (A → B)∗ = A∗ → B∗ and (∀xA(x))∗ = ∀x(A(x)∗). The
same strategy as in the previous case will apply.

• Case ∧L.
Suppose A ∧B is the principal formula. Then in CFA′ we have

...
A,Γ′ ⇒ ∆

(∧L)
A ∧B,Γ′ ⇒ ∆

Where Γ = A ∧B,Γ′

Now A,Γ′ ⇒ ∆ has a proof of height n−1 in CFA′. By induction hypoth-
esis we have, CFA ⊢ A∗,Γ′∗ ⇒ ∆∗. Then by Proposition 3.16,

CFA ⊢ ∀x(x = 0 → A∗ ⊗ ¬(x = 0) → B∗),Γ∗ ⇒ ∆∗

i.e.
CFA ⊢ (A ∧B)∗,Γ∗ ⇒ ∆∗

as required.

3.2. ADDITIVE CONNECTIVES 55

• Case ∧R.
Suppose A ∧B is the principal formula, then in CFA′ we have:

Γ ⇒ ∆′, A Γ ⇒ ∆′, B(∧R)
Γ ⇒ ∆′, A ∧B

where ∆ = ∆′, A ∧B.
Now Γ ⇒ ∆′, A and Γ ⇒ ∆′, B have a proof of height < n in CFA′. By
induction hypothesis we have, CFA ⊢ Γ′∗ ⇒ ∆′∗, A∗ and CFA ⊢ Γ′∗ ⇒
∆′∗, B∗. Then by Proposition 3.16,

CFA ⊢ Γ∗ ⇒ ∆∗, ∀x(x = 0 → A∗ ⊗ ¬(x = 0) → B∗)

i.e.
CFA ⊢ Γ∗ ⇒ ∆∗, (A ∧B)∗

as required.

• ∨R,∨L. They are analogous to the two preceding cases.

As these cases exhaust all possible inference rules, we conclude that CFA ⊢
Γ∗ ⇒ ∆∗. Thus, by strong induction on the height of proof we have our re-
quired result.

Now, given that CFA′ extends CFA, it directly follows from Claim (i) and (ii)
that CFA′ ⊢⇒ ϕ if and only if CFA ⊢⇒ ϕ∗.

Remark 3.19. Theorem [3.18] explains why adding additive connectives to CFA
will not influence our arithmetic in any way. Furthermore, it allows us to
introduce ∧,∨ in our language (as abbreviations) freely so that we can exploit
them to ease our treatment of the subject. Henceforth, A∧B and A∨B will be
treated as abbreviations for ∀x(x = 0 → A ⊗ ¬(x = 0) → B) and ∃x(x = 0 →
A⊗ ¬(x = 0) → B) respectively.

Remark 3.20. Given the previous remark, we are now in a position to uti-
lize theorems about non-contractive logics found in the literature. We will be
particularly interested in the sequent-style system LA and its equivalent Hilbert
system HA from Paoli [2002]. Essentially, LA is a propositional logic without
contraction, containing the usual rules of connectives, including additive ones.
In fact, all theorems of LA will be valid in CFA.

In the remainder of this section, we prove some useful results in CFA. To begin
with, we show that if a formula A in the language ofCFAsatisfies excluded middle
with additive connective , i.e. A∨¬A, then left and right contraction holds for
A.

Proposition 3.21. (CFA) Suppose we have CFA ⊢ ⇒ A ∨ ¬A then,

56 3.2. ADDITIVE CONNECTIVES

1. CFA ⊢ A⇒ A⊗A

2. CFA ⊢ A⊕A⇒ A

3. Left and Right contraction is admissible for A.

Proof.

1. Let C be an abbreviation for A → (A ⊗ A). Then following sequents are
provable in CFA5: (a) A→ C,¬A→ C ⇒ A∨¬A→ C; (b) ⇒ A→ C ;
(c) ⇒ ¬A→ C.
Using them we construct the following proof tree6:

...
A→ C,¬A→ C ⇒ A ∨ ¬A→ C

...
⇒ A→ C(Cut) ¬A→ C ⇒ A ∨ ¬A→ C

...
⇒ ¬A→ C(Cut) ⇒ A ∨ ¬A→ C

Since ⇒ A ∨ ¬A→ C, from Proposition 2.12, we have that A ∨ ¬A⇒ C.
Now consider the following proof tree.

...
A ∨ ¬A⇒ C

...
⇒ A ∨ ¬A(Cut) ⇒ C

Thus, we have CFA ⊢ A⇒ A⊗A.

2. Proposition 2.10.(ix) provides us with A ⇔ ¬¬A, from which it follows
that A ∨ ¬A ⇔ ¬A ∨ ¬¬A. Hence, based on our assumption, we have
¬A ∨ ¬¬A. Then, utilizing part 1, we deduce ⇒ ¬A→ ¬A⊗ ¬A.
Now consider the following proof tree:

...
⇒ ¬A→ ¬A⊗ ¬A

...
¬A→ ¬A⊗ ¬A⇒ ¬(¬A⊗ ¬A) → ¬¬A

(Cut)
⇒ ¬(¬A⊗ ¬A) → ¬¬A

Since ⇒ ¬(¬A⊗¬A) → ¬¬A, from Proposition 2.12 we have that ¬(¬A⊗
¬A) ⇒ A.
Now consider the following proof tree.

5For details, the reader can refer to Proposition 2.13 in Paoli [2002].
6This is actually only a proof sketch, from which a proof tree can be directly constructed

3.2. ADDITIVE CONNECTIVES 57

...
¬(¬A⊗ ¬A) ⇒ A

...
A⊕A⇒ ¬(¬A⊗ ¬A)

(Cut)
A⊕A⇒ A

Thus, we have CFA ⊢ A⊕A⇒ A.

3. Immediate from Proposition 2.30.

Now, we will provide some basic theorems in CFA that will be necessary for
future reference.

Proposition 3.22. (CFA) 7

1. A⊗ (B ∨ C) ⇔ (A⊗B) ∨ (A⊗ C)

2. (B ∧ ¬C) ∨ (¬B ∧ C) ∨ (¬B ∧ ¬C) ⇒ ¬(B ∧ C)

3. (B ⊗ ¬C) ∨ (¬B ⊗ C) ∨ (¬B ⊗ ¬C) ⇒ ¬(B ⊗ C)

4. y < x⇒ y < S(x)

5. Double Induction.

⇒ A(0, 0) ⇒ ∀xA(0, x) ⇒ ∀xA(x, 0) ⇒ ∀x∀y(A(x, y) → A(S(x), S(y)))
(DoubleInd)

⇒ ∀x∀yA(x, y)

We end this section by highlighting that while the additive connectives become
expressible in CFA, certain properties that hold for them in LK may not nec-
essarily hold in CFA in the absence of contraction. For instance, the following
are usually not the case in CFA,

• A→ (B → C) ⇒ A ∧B → C; this requires left contraction for A ∧ C.

• A→ B ⇒ ¬A ∨B; this requires right contraction for ¬A ∨B.

• A ∧ (A→ B) ⇒ B; this requires left contraction for A ∧ (A→ B).

• A ∧ (B ∨ C) ⇒ (A ∧B) ∨ (A ∧ C)

• (A ∨B) ∧ (A ∨ C) ⇒ A ∨ (B ∧ C)
7We direct the reader to Appendix B for proofs of certain parts of this proposition.

58 3.3. INDUCTION

3.3 Induction
In this section, we discuss Induction inside CFA. The study of Induction is
perhaps one of the most interesting aspects of arithmetic. In fact, a significant
portion of research in arithmetic consists of studying various systems of arith-
metic by restricting induction schema to specific levels arithmetical hierarchy.
In our axiomatization of CFA, we were careful to incorporate the Induction Rule
instead of the Induction schema. Near the end of this section (Proposition 3.35),
we justify our choice. The primary result of this section is the derivation of the
induction schema for bounded formulas in CFA (Theorem 3.32). Subsequently,
we show (Theorem 3.38) that any Π2 formula provable in the arithmetical the-
ory I∆0 become provable in CFA under a natural formula translation.

In order to establish that ∆0 induction schema is provable in CFA, we have
to go through some preliminary lemmas which involve establishing some basic
arithmetical results in CFA. Our initial focus is to show that atomic formulas
allow left and right contraction.

Definition 3.23. (Abbreviation) We abbreviate A ↔ B to mean (A → B) ⊗
(B → A).

Lemma 3.24. (CFA)

1. CFA ⊢ ⇒ ∀x(x = 0 ∨ ¬(x = 0))

2. CFA ⊢ ⇒ ∀y∀z∃x(y = z ↔ x = 0)

Proof.

1. Consider the following proof tree:

⇒ 0 = 0 ∨ ¬(0 = 0)

⇒ ¬(S(x) = 0)
∨R ⇒ (S(x) = 0) ∨ ¬(S(x) = 0)

(WL)
x = 0 ∨ ¬(x = 0) ⇒ (S(x) = 0) ∨ ¬(S(x) = 0)

(IR)
⇒ ∀x(x = 0 ∨ ¬(x = 0))

2. Let A(y, z) := ∃x(y = z ↔ x = 0). We demonstrate the lemma by em-
ploying double induction on A. To achieve this, we establish the following:

• ⇒ ∃x(0 = 0 ↔ x = 0)

⇒ (0 = 0 ↔ 0 = 0)
(∃R)

⇒ ∃x(0 = 0 ↔ x = 0)

3.3. INDUCTION 59

• ⇒ ∀y∃x(y = 0 ↔ x = 0).

Let a be any free variable and consider the following proof tree.

⇒ (a = 0 ↔ a = 0)
(∃R)

⇒ ∃x(a = 0 ↔ x = 0)
(∀R)

⇒ ∀y∃x(y = 0 ↔ x = 0)

• ⇒ ∀z∃x(0 = z ↔ x = 0).
Let a be any free variable and consider the following proof tree.

...
⇒ (0 = a↔ a = 0)

(∃R)
⇒ ∃x(0 = a↔ x = 0)

(∀R)
⇒ ∀z∃x(0 = z ↔ x = 0)

• ∀y∀z(∃x(y = z ↔ x = 0) → ∃x(S(y) = S(z) ↔ x = 0)).
Observe that a = b ⇔ S(a) = S(b) follows from the initial sequents
of arithmetic and equality. Now consider the following proof tree.

(a = b↔ x = 0) ⇒ (S(a) = S(b) ↔ x = 0)

...
∃x(a = b↔ x = 0) ⇒ ∃x(S(a) = S(b) ↔ x = 0)

(→ R)
⇒ ∃x(a = b↔ x = 0) → ∃x(S(a) = S(b) ↔ x = 0)

(∀R)
⇒ ∀y∀z(∃x(y = z ↔ x = 0) → ∃x(S(y) = S(z) ↔ x = 0))

Thus, we have established the necessary premise for double induction on
A. Therefore, through double induction, we obtain ⇒ ∀y∀z∃x(y = z ↔
x = 0).

Lemma 3.25. (CFA) If A is an atomic formula, then CFA ⊢ A ∨ ¬A and
subsequently, left and right contraction holds for A.

Proof. As A is an atomic formula, A is of the form t1 = t2. Without loss
of generality assume that x is does not occur in t1 = t2. We reason within
CFA formalized in Hilbert style. From Lemma 3.24.2 it follows that ⊢ ∃x((x =
0) ∨ ¬(x = 0) → (t1 = t2) ∨ ¬(t1 = t2)), and from Lemma 3.24.1 we have
⊢ ∀x(x = 0 ∨ ¬(x = 0)). Furthermore, from Proposition 2.31.4, if x is not free
in Y , we can derive ∃x(X → Y) → (∀xX → Y). Combining these results, we
obtain CFA ⊢ (t1 = t2) ∨ ¬(t1 = t2). Finally, Proposition 3.21 gives us that left
and right contraction holds for A.

60 3.3. INDUCTION

As a corollary of the preceding lemma, we demonstrate a very important prop-
erty of equality: terms that are equal can be substituted for each other in any
formula.

Corollary 3.26. (Properties of equality in CFA)

1. Equality is symmetric.

2. Equality is transitive.

3. For any formula A, t1 = s1, . . . , tn = sn, A(t1, . . . , tn) ⇒ A(s1, . . . , sn)

Proof.

• For proofs of equality being symmetric and transitive, we refer the reader
to Appendix B.

• We show it for n = 1, the general proof follows analogously. We proceed
by induction on the structure of A.
Base Case: A is atomic, then it follows from initial sequents of equality.
Inductive Case:
When A(y) := B(y) → C(y). First, observe that Lemma 3.25 guarantees
contraction for atomic formulas of the form ti = si. Now consider the
following proof tree, which is constructed using the induction hypothesis.

...
s1 = t1, B(s1) ⇒ B(t1)

...
t1 = s1, C(t1) ⇒ C(s1)

(→ L)
s1 = t1, t1 = s1, B(t1) → C(t1), B(s1) ⇒ C(s1)

(→ R)
s1 = t1, t1 = s1, B(t1) → C(t1) ⇒ B(s1) → C(s1)

...
t1 = s1 ⇒ s1 = t1(Cut)

t1 = s1, t1 = s1, B(t1) → C(t1) ⇒ B(s1) → C(s1)(CL)
t1 = s1, B(t1) → C(t1) ⇒ B(s1) → C(s1)

When A(y) := ∀xB(x, y). Consider the following proof tree, which is
constructed using the induction hypothesis.

...
t1 = s1, B(x, t1) ⇒ B(x, s1)(∀L)
t1 = s1, ∀xB(x, t1) ⇒ B(x, s1)(∀R)
t1 = s1, ∀xB(x, t1) ⇒ ∀xB(x, s1)

3.3. INDUCTION 61

Another important corollary, which will be key in our proofs later on, is that
the less-than predicate (which is a priori Σ1) is in fact equivalent to a bounded
formula, thus it can be assumed to be bounded.

Corollary 3.27. (CFA) y < x , i.e. ∃z(y + S(z) = x), is equivalent to the
bounded formula ∃z < x(y + S(z) = x).

Proof. It is easy to see that ∃z < x(y + S(z) = x) → ∃z(y + S(z) = x). We
prove the other direction.
Axioms of arithmetic and equality would give us (y + S(z) = x) → z < x.
Combining it with (y + S(z) = x) → (y + S(z) = x), we get

(y + S(z) = x)⊗ (y + S(z) = x) → (z < x)⊗ (y + S(z) = x)

Since we have contraction for atomic formulas, we have that (y + S(z) = x) →
(y + S(z) = x)⊗ (y + S(z) = x). Thus we get,

(y + S(z) = x) → (z < x)⊗ (y + S(z) = x)

Now ∃ introduction would give us,

(y + S(z) = x) → ∃z((z < x)⊗ (y + S(z) = x))

Finally, from ∃ elimination we have,

∃z(y + S(z) = x) → ∃z((z < x)⊗ (y + S(z) = x))

or,
∃z(y + S(z) = x) → ∃z < x(y + S(z) = x).

We can now demonstrate that contraction holds for ∆0.

Theorem 3.28. (CFA) For any ∆0 formula A, we have that CFA ⊢ A ∨ ¬A

Proof. We proceed by induction on the structure of A.

Base Case: This is Lemma 3.25.

Inductive Step: We break it up into the following cases8 and reason in CFA
formalized in Hilbert-style:

• A = ¬B. By the induction hypothesis, we have B ∨ ¬B. Combining this
with B ↔ ¬¬B, we derive ¬¬B∨¬B. Lastly, applying the commutativity
of ∨, we obtain ¬B ∨ ¬¬B.

8As A → B ⇔ ¬(A ⊗ ¬B) and ¬A ↔ A → ⊥, it is sufficient to work out the cases when
A = ¬B and A = B ⊗ C

62 3.3. INDUCTION

• A = B ⊗ C. By the induction hypothesis, we have B ∨ ¬B and C ∨ ¬C.
Combining them, we obtain (B ∨ ¬B) ⊗ (C ∨ ¬C). Now, applying the
distributivity (Proposition 3.22.1) of ⊗ over ∨, we arrive at (B ⊗ C) ∨
((B⊗¬C)∨ (¬B⊗C)∨ (¬B⊗¬C)). Finally, from Proposition 3.22.3, we
conclude (B ⊗ C) ∨ ¬(B ⊗ C).

• A = ∀y < zB(y) = ∀y(y < z → B(y)).
Let ϕ(z) = ∀y(y < z → B(y)) ∨ ¬∀y(y < z → B(y)). We will proceed
by applying CFA’s induction Rule on ϕ and establish that for any z, ϕ(z)
holds in CFA.

(1) To show ϕ(0).
For any y, we can easily derive y < 0 → B(y) from the axioms of arith-
metic. Generalization would then give us ∀y(y < 0 → B(y)). Since for
any formula A,B we have A → A ∨ B, we can finally derive ∀y(y < 0 →
B(y)) ∨ ¬∀y(y < 0 → B(y)). Thus, we have proved ϕ(0) in CFA.

(2) To show ∀x(ϕ(x) → ϕ(S(x))).
Our strategy is to first show that ∀y(y < x→ B(y)) → ϕ(S(x)) and then
show ¬∀y(y < x → B(y)) → ϕ(S(x)). Since for any formulas A, B and
C we have: If A → B and C → B, then (A ∨ C) → B. Thus, using
this we can derive ϕ(x) → ϕ(S(x)). Finally, generalization would give us
∀x(ϕ(x) → ϕ(S(x))).

To show ∀y(y < x → B(y)) → ϕ(S(x)). It suffices to demonstrate that
B(x)⊗ ∀y(y < x → B(y)) → ∀y(y < S(x) → B(y)) and ¬B(x)⊗ ∀y(y <
x → B(y)) → ¬∀y(y < S(x) → B(y)). As from these, we can derive
(B(x) ∨ ¬B(x))⊗ ∀y(y < x→ B(y)) → ¬∀y(y < S(x) → B(y)). Then by
induction hypothesis, we obtain B(x) ∨ ¬B(x), and subsequently, we can
conclude ∀y(y < x→ B(y)) → ¬∀y(y < S(x) → B(y)) as needed.

Note that from induction hypothesis, we have B(x) → B(x) ⊗ B(x) and
B(x)⊕B(x) → B(x). ...(i)

For B(x)⊗ ∀y(y < x→ B(y)) → ∀y(y < S(x) → B(y)). ...(ii)
Properties of equality gives us B(x) → (y = x → B(y)). Combining that
with (y < x → B(y)), we get (B(x) ⊗ (y < x → B(y))) → ((y = x →
B(y)))⊗ (y < x→ B(y))). In our logic, for any formulae L1, L2,M1,M2,
we have (L1 → M1) ⊗ (L2 → M2) → (L1 ⊕ L2 → M1 ⊕M2). Thus we
get, (y < x → B(y)) ⊗ B(x) → (y < x ⊕ y = x → B(y) ⊕ B(y)). Now
from (i), we deduce, (y < x → B(y)) ⊗ B(x) → (y ≤ x → B(y)). Gen-
eralization and properties of universal quantifier gives us ∀y((y < x →
B(y)) ⊗ B(x)) → ∀y(y ≤ x → B(y)). Since9 y does not occur freely in

9This assumption is safe to make, as otherwise, we can simply replace y in the formulation

3.3. INDUCTION 63

B(x), we get ∀y(y < x → B(y))⊗ B(x) → ∀y(y ≤ x → B(y)). Finally10,
as y < S(x) → y ≤ x, we get ∀y(y < x→ B(y))⊗B(x) → ∀y(y < S(x) →
B(y))., as required.

For ¬B(x)⊗ ∀y(y < x→ B(y)) → ¬∀y(y < S(x) → B(y)). ...(iii)
Axioms of universal quantifier gives us ∀y(y = x → B(y)) → (x =
x → B(x)). Since x = x follows from the axioms of arithmetic, we
get ∀y(y = x → B(y)) → B(x). Then contra-position would give us,
¬B(x) → ¬∀y(y = x → B(y)). From which we get ¬B(x) → ¬∀y(y <
S(x) → B(y)). Finally, weakening gives us ∀y(y < x→ B(y))⊗¬B(x) →
¬∀y(y < S(x) → B(y)).
Thus, from (ii) and (iii) we get ∀y(y < x→ B(y)) → ϕ(S(x)). (R1)
Now, we show that ¬∀y(y < x→ B(y)) → ϕ(S(x)).
From Proposition 3.22.4 we have for any variable y, that y < x→ y < S(x)
holds. Using axiom (F2) of our logic, we get (y < S(x) → B(y)) →
(y < x → B(y)). Generalization and properties of universal quantifier
gives us, ∀y(y < S(x) → B(y)) → ∀y(y < x → B(y)). Furthermore,
contra-position gives us ¬∀y(y < x → B(y)) → ¬∀y(y < S(x) → B(y)).
Finally as for any formula A,B we have A→ A∨B, we can conclude that
¬∀y(y < x→ B(y)) → ϕ(S(x)). (R2)
Therefore, from R1 and R2 we have ∀x(ϕ(x) → ϕ(S(x)). Now using
CFA’s Induction Rule on this and ϕ(0) we have our required result.

Corollary 3.29. If A is a ∆0 formula, then left and right contraction holds for
A.

Remark 3.30. Say we have that C,B are ∆0 formulas. Then it can be shown
that left and right contraction holds for C ∧ B and C ∨ B (See Appendix B).
Subsequently, we will have that C ∧B ⇔ C ⊗B and C ⊕B ⇔ C ⊕B.

We need an additional lemma, important for our proof of ∆0 induction, which
hinges on bounded formulas having contraction.

Lemma 3.31. (CFA) If A(x) is a bounded formula then,

1. (∀x ≤ yA(x))⊗A(y + 1) ↔ ∀x ≤ y + 1A(x).

2. ∀yA(y) ↔ ∀y(∀x < yA(x)) ↔ ∀y(∀x ≤ yA(x)).

Proof. Since A is bounded, from Theorem 3.28 we get that A(x) → A(x)⊗A(x)
and A(x)⊕A(x) → A(x).

of A with any variable that does not occur in B.
10Note that although y < S(x) → y ≤ x, we can not yet prove that y ≤ x → y < S(x). To

establish the latter we would need contraction for the ∆0 formula y < S(x), which we will
have once we have proven the theorem.

64 3.3. INDUCTION

1.
(Right to Left)
Clearly we have that

(∀x ≤ y + 1A(x))⊗ (∀x ≤ y + 1A(x)) → ∀x ≤ yA(x)⊗A(y + 1).

Now since ∀x ≤ y + 1A(x) is also a ∆0 formula we have,

(∀x ≤ y + 1A(x)) → ∀x ≤ yA(x)⊗A(y + 1).

(Left to Right)
From A(y + 1) → (x = y + 1 → A(x)) and (x ≤ y → A(x)) → (x ≤ y →
A(x)) we get,

(x ≤ y → A(x)⊗A(y + 1)) → ((x ≤ y → A(x))⊗ (x = y + 1 → A(x)))

We can further derive,

((x ≤ y → A(x))⊗A(y + 1)) → (x ≤ y ⊕ x = y + 1 → A(x)⊕A(x))

Since we have A(x)⊕A(x) → A(x) and x ≤ y ↔ x < y + 111, we get

(x ≤ y → A(x))⊗A(y + 1) → (x ≤ y + 1 → A(x))

Then generalization and properties of universal quantifiers would yield,

∀x ≤ yA(x)⊗A(y + 1) → ∀x ≤ y + 1A(x).

2. ∀yA(y) ↔ ∀y(∀x < yA(x)) is straightforward. For ∀y(∀x < yA(x)) ↔
∀y(∀x ≤ yA(x)), we just need to note that x ≤ y → x < y + 1, is a
consequence of x < y + 1 being a ∆0 formula.

Theorem 3.32. (∆0-Induction Schema) The Induction schema for bounded
formulas is derivable in CFA, i.e, if A(x) is any ∆0 formula then

CFA ⊢ A(0)⊗ ∀x(A(x) → A(S(x))) → ∀xA(x).

Proof. We have to show that given any ∆0 formula A, A(0) ⊗ ∀x(A(x) →
A(S(x))) → ∀xA(x) holds in CFA.
We reason within CFA formalized in Hilbert style. For our purposes we define
P (y) := A(0) ⊗ ∀x < y(A(x) → A(S(x))) → ∀x ≤ yA(x), which is a ∆0

formula. We will show that P (0) and ∀y(P (y) → P (S(y)) holds. Then we can
apply induction rule on P to derive ∀yP (y). From which we get,

A(0)⊗ ∀y(∀x < y(A(x) → A(S(x)))) → ∀y(∀x ≤ yA(x))

11As mentioned earlier, x ≤ y ↔ x < y + 1 is a consequence of having contraction for ∆0

formulas

3.3. INDUCTION 65

Finally, using Lemma 3.31.2 we will get,

A(0)⊗ ∀x(A(x) → A(S(x))) → ∀xA(x).

We proceed by showing the premises required for the induction rule.

1. P (0). This is direct.

2. ∀y(P (y) ⇒ P (y + 1)).
Let γ := P (y)⊗A(0)⊗ ∀x < y + 1(A(x) → A(S(x))). We show that

γ ⊗ γ ⊗ ∀x < y + 1(A(x) → A(S(x))) → ∀x ≤ yA(x)⊗A(y + 1).

Clearly, we have that γ → ∀x ≤ yA(x). (i)
Moreover, from ∀x ≤ yA(x) → A(y) and A(y) ⊗ ∀x < y + 1(A(x) →
A(S(x))) → A(y + 1) we can derive ∀x ≤ yA(x) ⊗ ∀x < y + 1(A(x) →
A(S(x))) → A(y+1). Finally, from (i) we will get γ⊗∀x < y+1(A(x) →
A(S(x))) → A(y + 1). (ii)

Thus, combining (i) and (ii), gives us

γ ⊗ γ ⊗ ∀x < y + 1(A(x) → A(S(x))) → ∀x ≤ yA(x)⊗A(y + 1).

Now as P,A and ∀x < y+1(A(x) → A(S(x))) are all ∆0 formulas, we use
Corollary 3.29 to derive,

P (y)⊗A(0)⊗ ∀x < y + 1(A(x) → A(S(x)) → ∀x ≤ yA(x)⊗A(y + 1).

Finally, we use Lemma 3.31.1 to conclude,

P (y)⊗A(0)⊗ ∀x < y + 1(A(x) → A(S(x)) → ∀x ≤ y + 1A(x)

or,
P (y) → P (y + 1)

or,
∀y(P (y) → P (y + 1)).

Remark 3.33. The proof of the above theorem indicates that if we had con-
traction for all formulas in the language of CFA, we would be able to derive the
Induction Schema.

Corollary 3.34. If A(x) is any ∆0 formula then

CFA ⊢ ∀x(A(0)⊗ ∀y < x(A(x) → A(S(x))) → A(x)).

66 3.3. INDUCTION

We are now in a position to appreciate why we chose to have the Induction Rule
over Induction Schema in our formulation of CFA. This is the content of our
next proposition.

Proposition 3.35. Call the Arithmetic which results from replacing the Induc-
tion Rule with Induction Schema in CFA as T. Then T is equivalent to classical
Peano Arithmetic (PA).

Proof. In order to prove the proposition we claim that it is sufficient to show
that contraction holds for all formulas in T - The presence of contraction in
T would entail that the additive and multiplicative connectives would collapse
into unique connectives (See section 1.1). Thus, we will be in a situation where
T and PA are based on the same arithmetical language. Now, in order to prove
the proposition we need to show that the theory of T and the theory of PA are
the same.
T is based on an underlying logic which is a fragment of Classical logic LK and
has the same non-logical axioms as PA, thus it is clearly a sub-theory of PA.
What remains to be shown is that PA is also a sub-theory of T. But in the
presence of contraction in T, all reasoning that we can do within PA can also
be done within T. Hence, we would have that PA is a sub-theory of T.

We start by noting that in T, for any formula B in its language, B → B ⊗ B
is provable. From which we will also be able to conclude ¬B → ¬B ⊗ ¬B and
hence B⊕B → B will also hold. Therefore, we will have that contraction holds
for B.
Let B be any formula in the language of T. Assume that x does not occur in B
and define A(x) := (x = 0 → ⊤)⊗ (x = 1 → B)⊗ (x = 2 → B ⊗B).

We reason within T.
First observe that A(0) ↔ ⊤, A(1) ↔ B and A(2) ↔ B ⊗ B. We also have
A(0)⊗ ∀x(A(x) → A(S(x))) → ∀xA(x). Consequently,

A(0)⊗ ∀x(A(x) → A(S(x))) → A(2)

is provable in T. Hence, in order to demonstrate B → B⊗B, it suffices to show
that B → A(0)⊗ ∀x(A(x) → A(S(x))) and A(2) → B ⊗B are provable.

• A(2) → B ⊗B. This is obvious since A(2) ↔ B ⊗B.

• B → A(0)⊗ ∀x(A(x) → A(S(x))).
Define ϕ(x) := B → (A(x) → A(S(x))). We will use Induction Schema
for ϕ to show ∀xϕ(x). Then, since x is not free in B, we will have
B → ∀x(A(x) → A(S(x))). Moreover, as A(0) ↔ ⊤, we will have
B → A(0)⊗ ∀x(A(x) → A(S(x))), as required.

To show ϕ(0).
ϕ(0) = B → (⊤ → B). From axiom (F6), ϕ(0) holds.

3.3. INDUCTION 67

To show ∀x(ϕ(x) → ϕ(S(x))).
For any formulas P,Q we have P → ((P → Q) → Q) in our logic. Also,
axioms of arithmetic gives us S2(x) = 2 → S(x) = 1. Together they yield,

S2(x) = 2 → ((S(x) = 1 → B) → B).

From which we get,

(B ⊗ S2(x) = 2⊗ (S(x) = 1 → B)) → B ⊗B

or,
B ⊗ (S(x) = 1 → B) → (S2(x) = 2 → B ⊗B)

...(E1)

Axioms of arithmetic ensure that ⊤ ↔ (S2(x) = 0 → ⊤) and ⊤ ↔
(S2(x) = 1 → B). Thus, from (E1) we have,

B ⊗ (S(x) = 1 → B) → A(S2(x)).

Further, from weakening (i.e. P → (Q→ P)) we get,

B⊗(S(x) = 0 → ⊤)⊗(S(x) = 1 → B)⊗(S(x) = 2 → B⊗B) → A(S2(x)).

or,
B ⊗A(x) → A(S2(x)).

or,
B → (A(x) → A(S2(x)))

or,
ϕ(S(x))

Another usage of weakening gives us,

ϕ(x) → ϕ(S(x))

Finally, generalization gives us,

∀x(ϕ(x) → ϕ(S(x))).

Now applying the induction schema for ϕ we have ∀xϕ(x).

Therefore, we conclude that that B → B ⊗B is provable in T.

We can summarize this roughly as: PA ≡ CFA−IR+IA. Thus, we can see how
taking induction Schema would make the study of contraction-free arithmetic
redundant.

68 3.3. INDUCTION

Remark 3.36. In the sequent-calculus formulation of CFA (Definition [3.4])
we took care to exclude side formulas from the Induction Rule. We did so as
having side formulas would imply the Induction Schema. To illustrate this point,
consider the following proof tree:

A(0) ⇒ A(0) ∀x(A(x) → A(S(x)) ⇒ ∀x(A(x) → A(S(x))
(IR with Side Formulas)

A(0), ∀x(A(x) → A(S(x)) ⇒ ∀xA(x)

Thus, the sequent A(0), ∀x(A(x) → A(S(x)) ⇒ ∀xA(x) would have been prov-
able.

Now we present an important corollary of Theorem 3.32. Namely, that any
Π2 formula provable in first-order bounded arithmetic (i.e., I∆0) is, in a way,
also provable in CFA. But first in order to make things precise, we introduce a
formula translation from the language of I∆0 to the language of CFA.

Definition 3.37. (Formula translation) Let ϕ be any formula in the language
of I�0. The formula translation ϕT in the language of CFA is defined inductively
on the structure of ϕ:

• If ϕ is atomic then ϕT := ϕ.

• If ϕ = A ∧B then ϕT := AT ⊗BT

• If ϕ = A→ B then ϕT := AT → BT

• If ϕ = ¬A then ϕT := ¬AT .

• If ϕ = ∀x(B(x)) then ϕT := ∀x(B(x)T) or, if ϕ = ∃x(B(x)) then ϕT :=
∃x(B(x)T)

Note that formula translation can be naturally extended to multi-set Γ of for-
mulae.

The formula translation essentially replaces all additive connectives in a formula
of I∆0 with the corresponding multiplicative connectives. Now, to establish that
any Π2 provable sentence in I∆0 is also provable in CFA, we first demonstrate
that any bounded formula provable in I∆0 is also provable in CFA. This step is
perhaps the most involved one in our proof. The proof relies crucially on two
factors: Firstly, on an application of cut-elimination theorem for LK; secondly,
the availability of contraction for bounded formulas in CFA.

Theorem 3.38. If for a bounded formula ϕ, we have that I∆0 ⊢ ϕ then CFA ⊢
ϕT .

Proof. We have I∆0 ⊢ ϕ. From which we get that for some finite multi-set Ω
containing instances of axioms of I∆0, LK ⊢ Ω ⇒ ϕ. Moreover, there is a cut-free
proof (say) π of Ω ⇒ ϕ in LK. Thus, by the sub-formula property, any formula in

3.3. INDUCTION 69

π is a sub-formula of Ω∪{ϕ}. Which means any formula in π is either bounded
or, a sub-formula of instances of the ∆0 induction schema. Now an instance12

of the ∆0 induction schema is of the form

∀x(A(0) ∧ ∀y < x(A(x) → A(S(x))) → A(x)).

This means that any unbounded formula in π is of the form: ..(SFs)

• ∀x(B(0) ∧ ∀y < x(B(x) → B(S(x))) → B(x)).

where B is a bounded formula.
Now let S′ denote the result of deleting from a sequent S, all sub-formulas of Ω
which are not bounded.
Claim: Given any sequent S in π, the corresponding sequent (S′)T is provable
in CFA.
We proceed by induction on the structure of π.
Base Case. Let S be a leaf of π, i.e., S is an initial sequent of LK. But since
initial sequents of LK and GQCG are the same, we have what we require.
Inductive Case. We break it up into cases based on the rule that has been
applied to get S.

(Weakening) We deal with WL, WR is analogous. Suppose the proof of S = A,Γ ⇒ ∆
in LK has the following form:

...
Γ ⇒ ∆(WL)
A,Γ ⇒ ∆

By induction hypothesis, CFA ⊢ (Γ′)T ⇒ (∆′)T . Now, if A is not bounded,
then ((A,Γ ⇒ ∆)′)T is nothing but ((Γ ⇒ ∆)′)T . Hence, (S′)T is provable
in CFA.
On the other hand, if A is bounded then consider the following proof tree
in CFA:

...
(Γ′)T ⇒ (∆′)T

(WL)
AT , (Γ′)T ⇒ (∆′)T

Thus, (S′)T is provable in CFA.

(Contraction) We deal with CL, CR is analogous. Suppose the proof of S = A,Γ ⇒ ∆
in LK has the following form:

12Usually, ∆0 induction schema is taken to be A(0) ∧ ∀x(A(x) → A(S(x))) → ∀xA(x), but
this has more quantifier alternations which is not suitable for our proof. Thus, we assume
that I∆0 is axiomatized by the given formulation of ∆0 induction.

70 3.3. INDUCTION

...
A,A,Γ ⇒ ∆

(CL)
A,Γ ⇒ ∆

By induction hypothesis, CFA ⊢ ((A,A,Γ)′)T ⇒ (∆′)T . Now, if A is not
bounded, then ((A,A,Γ)′)T ⇒ (∆′)T is the same as ((A,Γ)′)T ⇒ (∆′)T .
Hence, (S′)T is provable in CFA.
On the other hand, if A is bounded then so is AT . Which means, from
Corollary 3.29, we have contraction for A. Now consider the following
proof tree in CFA:

...
(A′)T , (A′)T , (Γ′)T ⇒ (∆′)T

(CL)
(A′)T , (Γ′)T ⇒ (∆′)T

Thus, (S′)T is provable in CFA.

(Implication)

(→ R). Suppose the proof of S = Γ ⇒ ∆, A→ B in LK has the following
form:

...
A,Γ ⇒ ∆, B

(→ R)
Γ ⇒ ∆, A→ B

By induction hypothesis, CFA ⊢ ((A,Γ)′)T ⇒ ((∆, B)′)T . Now, if A and
B are both bounded 13 or both unbounded, it is straightforward that
CFA ⊢ (S′)T .
On the other hand if A is bounded and B is unbounded, then A → B
is an unbounded formula. But then, it should be a sub-formula of some
instance of ∆0 induction axiom as per (SFs). Which is not possible. We
arrive at a similar contradiction when A is unbounded and B is bounded.

(→ L) Suppose the proof of S = A → B,Γ,Π ⇒ ∆,Σ in LK has the
following form:

...
Γ ⇒ ∆, A

...
B,Π ⇒ Σ(→L)

A→ B,Γ,Π ⇒ ∆,Σ
13Note that (A→ B)T = AT → BT

3.3. INDUCTION 71

By induction hypothesis, CFA ⊢ ((Γ)′)T ⇒ ((∆, A)′)T and CFA ⊢ ((B,Π)′)T ⇒
((Σ)′)T . Now, if A and B are both bounded then, it is straightforward to
see that CFA ⊢ (S′)T .

Now suppose one of them is unbounded, without loss of generality say it
is A. Then A → B is also unbounded. Moreover, ((Γ)′)T ⇒ ((∆, A)′)T

is nothing but ((Γ)′)T ⇒ ((∆)′)T , which is thus provable in CFA. Now
consider the following proof tree in CFA:

...
((Γ)′)T ⇒ ((∆)′)T

(WL,WR)
((Γ)′)T , ((Π)′)T ⇒ ((∆)′)T , ((Σ)′)T

Hence, CFA ⊢ (S′)T .

(Conjunction)
(∧R) Suppose the proof of S = Γ ⇒ ∆, A ∧ B in LK has the following
form:

...
Γ ⇒ ∆, A

...
Γ ⇒ ∆, B(∧R)

Γ ⇒ ∆, A ∧B

By induction hypothesis, CFA ⊢ ((Γ)′)T ⇒ ((∆, A)′)T and CFA ⊢ ((Γ)′)T ⇒
((∆, B)′)T . If both A and B are bounded, then it is straightforward to
see that CFA ⊢ (S′)T . Now suppose that at least one of A and B is un-
bounded. Without loss of generality say it is A, then ((Γ)′)T ⇒ ((∆, A)′)T

is nothing but ((Γ)′)T ⇒ ((∆)′)T . Moreover, as A ∧ B is also bounded,
((Γ)′)T ⇒ ((∆, A ∧ B)′)T is nothing but (Γ′)T ⇒ (∆′)T . Thus, CFA ⊢
(S′)T .

(∧L) Suppose the proof of S = A ∧ B,Γ ⇒ ∆ in LK has the following
form:

...
A,Γ ⇒ ∆

(∧L)
A ∧B,Γ ⇒ ∆

By induction hypothesis, CFA ⊢ ((A,Γ)′)T ⇒ ((∆)′)T . Now, say A and B
are both bounded then consider the following proof tree in CFA:

72 3.3. INDUCTION

...
AT , (Γ′)T ⇒ (∆′)T

(WL)
AT , BT , (Γ′)T ⇒ (∆′)T

(⊗L)
AT ⊗BT ,Γ ⇒ ∆

Thus14, we have that CFA ⊢ (S′)T . Now, if A is unbounded then A ∧ B
will also be unbounded. Moreover, ((A,Γ)′)T ⇒ (∆′)T will be nothing
but (Γ′)T ⇒ (∆′)T . Hence, we will also have that CFA ⊢ (S′)T .

Finally, let’s consider the scenario where A is bounded, while B is un-
bounded. In such a case, A ∧ B would also be unbounded. According to
(SFs), this means that A∧B has to be an instance of the given ∆0 induc-
tion schema. However, considering the form of A∧B, this is not possible.
Hence, the case when A is bounded and B is unbounded, is impossible.

(Disjunction)

The proof for disjunction rules are similar to conjunction rules.

(Negation)
The proof for negation rules are rather straightforward.

(Universal Quantifier)

(∀R) Suppose the proof of S = Γ ⇒ ∆, ∀xA(x) in LK has the following
form:

...
Γ ⇒ ∆, A(a)

(∀R)
Γ ⇒ ∆, ∀xA(x)

We will argue to demonstrate that this case is an impossibility. Suppose,
Γ ⇒ ∆, ∀xA(x) is a sequent in π. Since the end-sequent of π is Ω ⇒ ϕ
where ϕ is a bounded formula, at some point in the course of the proof
π, ∀xA(x) being unbounded needs to be moved to the antecedent. This
is only possible through the → L rule. But then for some formula B,
∀xA(x) → B will be the principle formula of that (→ L) rule. But an
unbounded formula of the form ∀xA(x) → B cannot be a sub-formula of
Ω ∪ {ϕ} according to SFs. Thus, this case is not possible.
(∀L) Suppose the proof of S = ∀xA(x),Γ ⇒ ∆ in LK has the following
form:

14Note that (A ∧B)T = AT ⊗BT

3.3. INDUCTION 73

...
A(t),Γ ⇒ ∆

(∀L)
∀xA(x),Γ ⇒ ∆

By induction hypothesis, CFA ⊢ A(t)T , (Γ′)T ⇒ (∆′)T . Moreover, since
∀xA(x) is an unbounded formula in π, it has to be an instance of the
induction schema. Given Corollary 3.34, we have that CFA ⊢⇒ A(t)T .
Now consider the following proof in CFA:

...
A(t)T , (Γ′)T ⇒ (∆′)T

...
⇒ A(t)T

(Cut)
(Γ′)T ⇒ (∆′)T

Thus, we have that CFA ⊢ (S′)T .

Conclusion: From the claim we get that since Ω ⇒ ϕ is also a sequent in π,
(Ω′)T ⇒ (ϕ)T is provable in CFA. Since the formula translation of any axiom of
I∆0 is derivable in CFA, using cut we get that ⇒ ϕT is provable in CFA.

Corollary 3.39. If ϕ(x) is a bounded formula such that I∆0 ⊢ ∀xϕ(x), then we
have that CFA ⊢ ∀xϕ(x)T .

Proof. The proof is a direct application of Theorem 3.38 and then, the induction
rule in CFA.

Corollary 3.40. If ϕ(x, y) is a bounded formula with no additional free vari-
ables, and we have that I∆0 ⊢ ∀x∃yϕ(x, y), then CFA ⊢ ∀x∃yϕ(x)T .

Proof. Suppose, I∆0 ⊢ ∀x∃yϕ(x, y). Then, according to Parikh’s Theorem (see
Parikh [1971]), there exists a term t(x) such that I∆0 ⊢ ∀x∃y < t(x)ϕ(x, y).
Since ∃y < t(x)ϕ(x, y) is a bounded formula, the preceding corollary implies that
CFA ⊢ ∀x∃y < t(x)ϕ(x, y). Moreover, Proposition 2.31.1 asserts that CFA ⊢
∀x∃y < t(x)ϕ(x, y) → ∀x∃yϕ(x, y). Therefore, we have CFA ⊢ ∀x∃yϕ(x, y), as
required.

Thus, any Π2 formula provable in I∆0 is also provable in CFA under a natural
formula translation.

Corollary 3.41. CFA is Σ1 complete with respect to N.

Proof. It follows from Corollary 3.40 and Σ1 completeness of I∆0.

We conclude this section by presenting another consequence of having contrac-
tion for ∆0 formulas.

74 3.3. INDUCTION

Proposition 3.42. (CFA) For any Σ1 formula A, CFA ⊢ A ⇒ A⊗ A, i.e, left
contraction is derivable for A.

Proof. Let A = ∃xB(x) where B(x) is ∆0. Since B(x) is ∆0, we have that
B(x) ⇒ B(x)⊗ B(x). We reason in CFA formalized in sequent style. Consider
the following proof tree:

...
B(x) ⇒ B(x)⊗B(x)

(∃R)
B(x) ⇒ ∃x(B(x)⊗B(x))

...
∃x(B(x)⊗B(x)) ⇒ ∃xB(x)⊗ ∃xB(x)

(cut)
B(x) ⇒ ∃xB(x)⊗ ∃xB(x)

(∃L)
∃xB(x) ⇒ ∃xB(x)⊗ ∃xB(x)

Thus, we conclude that for any Σ1 formula A, CFA ⊢ A⇒ A⊗A.

Remark 3.43. The above proposition holds crucial significance if we aim to
derive Gödel’s second incompleteness theorem for CFA. We refer the reader to
the Chapter 5 (Further work) for a brief discussion.

4 | Provably Recursive Func-
tions

In this chapter, we delve into a classic problem (Buss [1998]) in proof theory: the
classification of provably recursive functions. Firstly, we establish that primitive
recursive functions are provably total. Subsequently, we go on to show that in
fact, any provably recursive function of CFA is primitive recursive in contrast
to classical PA.

4.1 Provably Recursive Functions
What exactly are provably recursive functions, and why are we interested to
study them? Put simply, provably recursive functions are computable functions
whose behavior can be formally established within a system of arithmetic. Char-
acterizing this class of functions serves as a measure of the deductive strength
of that system of arithmetic. Without further ado lets define1them formally.

Definition 4.1. Let T be a subtheory of PA and f : Nk → N. The function is
provably recursive iff there is a Σ1 formula A(x1, .., xk, y) such that

1. A(n⃗,m) holds in N iff f(n⃗) = m for all naturals n⃗, m.

2. T ⊢ ∀x⃗∃!yA(x⃗, y)2

Then, we say that A represents f .

Intuition: If f is a provably recursive function of T, then the theory T should
prove that some Turing machine M which computes f , halts on all appropriate
inputs. This is because, A(x, y) can be taken to be a Σ1-formula expressing
there is a w which codes a halting M-computation with input x and output y.

Remark 4.2. Some direct consequences of Definition [4.1]
1For definitions of primitive recursive functions and recursive functions, we refer to the

Appendix A.
2∃!yA(y) is an abbreviation for ∃xA(x)⊗ ∀y∀z((A(y)⊗A(z)) → y = z)

76 4.1. PROVABLY RECURSIVE FUNCTIONS

• From Σ1 completeness (⇒) and Σ1 soundness (⇐) of T, we get that for
all naturals n⃗ and m, f(n⃗) = m⇔ T ⊢ A(n⃗,m).

• A classical result (c.f. Odifreddi [1992]) says that the recursively enumer-
able (r.e.) sets are exactly those subsets of Nk which are definable by a
Σ1 formula in N. Thus, in a theory T which is sound with respect to N,
any function which is provably recursive in T will have a r.e. graph due
to which the function will be (total) recursive3. Hence, provably recursive
functions of T can be thought of as those recursive functions whose totality
can be proven in T.

Remark 4.3. Further interesting points concerning provably recursive functions
of an arithmetical theory T which is Σ1 sound and r.e.

• A fundamental property of partial recursive functions is their ability to be
indexed effectively. This means that a one-to-one correspondence can be
established between non-negative integers and instructions for computing
partial recursive functions. Consequently, given an index, one can effec-
tively generate the corresponding instructions for computing the partial
recursive function, and conversely, given a set of instructions, one can
effectively determine its index. In contrast, the class of (total) recursive
functions cannot be indexed in this manner; this theorem stands as one of
the fundamental principles (See Odifreddi [1992]) of recursive function the-
ory. In light of this, a natural question arises: can we delineate a subclass
of (total) recursive functions which can be indexed effectively? Indeed, the
class of provably recursive functions of a recursively axiomatizable theory
constitutes such a proper subclass (See Fischer [1967]).

• Since the class of provably recursive functions of a theory can be effectively
indexed, it would admit computable diagonalization (consider D(n) :=
fn(n) + 1). Thus, the diagonal function is a concrete example of a to-
tal recursive function which cannot be a Provably recursive function.

• Say we have a recursive function f , which is not a provably recursive
function of a theory T. Then the statement that "function f is total" is an
example of a natural combinatorial statement which is true but unprovable
in T.

Thus, we see that the examination of provably recursive functions within an
arithmetical theory can offer valuable insights into its nature. It not only gives
a measure of its computational power; it also serves to delimit its mathematical
power in providing natural examples of true mathematical statements it can-
not prove. The classification of provably recursive functions of classical Peano
Arithmetic was first studied by Kreisel (Kreisel [1952]) with roots going back
to Ackermann (Ackermann [1940]). Kreisel showed that, roughly speaking, the
class of provably recursive functions of PA is exactly the class of functions that

3If f is a total function then f is recursive iff the graph of f is recursively enumerable.

4.2. PRIMITIVE RECURSIVE FUNCTIONS 77

is definable by recursions over standard well-orderings of the natural numbers
with order types less than ϵ0. In Kreisel [1958], he also showed that the same
class of functions can be proved to be total in the intuitionistic arithmetic of
Heyting. Let us now embark on the study of the provably recursive functions
of CFA.

4.2 Primitive Recursive Functions
In this section, we show that primitive recursive functions are provably total in
CFA. We begin with a brief word about coding of sequences in CFA.

Remark 4.4. In order to reason about primitive recursion inside CFA, it is
crucial to formally talk about finite sequences inside CFA. Consequently, it
becomes essential to devise a suitable encoding for sequences (see Appendix A
for definitions) and formulate its associated properties such as the n-th term of
a sequence. Thanks to Theorem 3.38, we would be able to replicate coding of
finite sequences as in Bounded Arithmetic (I∆0) without difficulty. We refer the
interested reader to Chapter 5 of Pudlák and Hájek [1993].4

In order to prove that primitive recursive functions are provably recursive in
CFA, we adapt the strategy used in arithmetical theories like EA+Σ1-IR which is
the theory we get when extending EA5 with the Induction rule over Σ1 formulas
(cf. Beklemishev [1997]). The central point of difference is in proving that
the class of provably recursive functions is closed under primitive recursion.
Firstly, we need to formulate the formula representing the function used to
define primitive recursion in a slightly different way, so as to ensure that the
formula is indeed Σ1. Secondly, we employ the Induction Rule instead of the
standard Σ1 induction schema, as seen in theories like PA, to prove the totality
of the function thus defined.

Theorem 4.5. (CFA) Any primitive recursive function f , is a provably recur-
sive function of CFA.

Proof. We prove this by induction on the generation of the primitive recursive
functions. Thus, we first need to show that the basic functions are provably
recursive. Subsequently, we show that the provably recursive nature of func-
tions is preserved under compositions and primitive recursion. We proceed in
the sequent calculus6.

4In particular, see Definition 3.5 and Definition 3.26, in Chapter 5 of the book.
5Which is a theory formulated in the language of PA where induction schema is restricted

to bounded formulas and additionally, it has an axiom stating 2x is total.
6Sequent calculus proofs in arithmetic often tend to be lengthy, as they require multiple

applications of cut. Therefore, typically only proof sketches are provided, from which a proof
tree can be easily constructed.

78 4.2. PRIMITIVE RECURSIVE FUNCTIONS

The Basic functions
They are λx.0, λx.x + 1 and λx1, . . . , xn.xi. These functions are easily seen
to provably recursive. For instance, consider the case of λx.x + 1. Take
A(x, y) := y = S(x).

• For totality consider the following proof tree:

⇒ S(x) = S(x)
(∃R)

⇒ ∃y(y = S(x))
(∀R)

⇒ ∀x∃y(y = S(x))

• For functionality consider the following proof tree:

y = S(x), z = S(x) ⇒ y = z
(⊗L)

(y = S(x)⊗ z = S(x)) ⇒ y = z
(→ R)

⇒ (y = S(x)⊗ z = S(x)) → y = z
(∀R)

⇒ ∀y∀z(y = S(x)⊗ z = S(x)) → y = z

Composition
Say F (x) = G(H1(x), ...Hm(x)). Suppose by induction hypothesis G and Hi

are provably recursive and are represented by ψ, χ1, .., χm respectively. Then
we show that F is represented by the formula-

ϕ(x, z) := ∃z1, ..∃zm(χ1(x, z1)⊗ ..⊗ χm(x, zm)⊗ ψ(z1, .., zm, z))

Since χi and ψ are all Σ1, we will be able to pull out all the existential quantifiers
outside and then from Proposition 3.11, we can deduce that ϕ is also Σ1. The
fact that ϕ defines the graph of F is straightforward, so we focus on proving
that ⇒ ∀x∃!yϕ(x, y).

• Totality: ⇒ ∀x∃zϕ(x, z)
We have that for all i ≤ m, ⇒ ∀x∃ziχi(x, zi) and ⇒ ∀x⃗∃zψ(x⃗, z). Apply-
ing Proposition 2.31.7, which states that ⇒ ∀x∃yA(x, y)⊗∀x∃zB(x, z) →
∀x∃y∃z(A(x, y)⊗B(y, z)), we obtain: ⇒ ∀x∃z∃z⃗i(

⊗m
i=1 χi(x, zi)⊗ψ(z1, .., zm, z))7,

which is nothing but ⇒ ∀x∃zϕ(x, z).

• Functionality: ⇒ ϕ(x, y1)⊗ ϕ(x, y2) → y1 = y2

Proposition 2.31.6, gives us P ⊗ ∃xQ(x) ⇒ ∃y(P ⊗ Q(y)), thus from
ϕ(x, y1)⊗ ϕ(x, y2) we obtain:

∃z⃗i(χ1(x, z1)..⊗χ1(x, zm)⊗ψ(z⃗i, y1)) ⊗ ∃k⃗i(χ1(x, k1)..⊗χ1(x, km)⊗ψ(k⃗i, y2))

⇒ ∃z⃗i∃k⃗i(χ1(x, z1)⊗χ1(x, k1) · · ·⊗χm(x, zm)⊗χm(x, km)⊗ψ(z⃗i, y1)⊗ψ(k⃗i, y2))
7⊗m

i=1 Ai is an abbreviation for A1 ⊗ . . .⊗Am

4.2. PRIMITIVE RECURSIVE FUNCTIONS 79

. . . (i)
Now using the functionality of Hi, i.e, ⇒ χi(x, zi) ⊗ χi(x, ki) → zi = ki
we get-

∃z⃗i∃k⃗i(χ1(x, z1)⊗ χ1(x, k1) · · · ⊗ χm(x, zm)⊗ χm(x, km)

⊗ ψ(z⃗i, y1)⊗ ψ(k⃗i, y2))⇒∃z⃗i∃k⃗i(
m⊗
i=1

(zi = ki)⊗ ψ(z⃗i, y1)⊗ ψ(k⃗i, y2))

. . . (ii)
Now the properties of (=) gives us,

∃z⃗i∃k⃗i(
m⊗
i=1

(zi = ki)⊗ψ(z⃗i, y1)⊗ψ(k⃗i, y2)) ⇒ ∃z⃗i∃k⃗i(ψ(k⃗i, y1)⊗ψ(k⃗i, y2))

. . . (iii)
Finally, we use the functionality of G, i.e, ⇒ ψ(k⃗i, y1)⊗ψ(k⃗i, y2) → y1 = y2
to get -

∃z⃗i∃k⃗i(ψ(k⃗i, y1)⊗ ψ(k⃗i, y2)) ⇒ y1 = y2

. . . (iv)

Therefore, three applications of cut on (i),(ii),(iii), and (iv) would yield,
⇒ ϕ(x, y1)⊗ ϕ(x, y2) → y1 = y2.

Primitive recursion
Suppose g(n, x) is defined by

g(0, x) = e(x)

g(n+ 1, x) = h(g(n, x), n, x)

Where e, h are provably recursive and represented by E(x, y) and H(z, n, x, y) =
∃vH0(v, z, n, x, y) with H0 being a bounded formula. Then we show that g is
represented by the following Σ1 formula8-

g(n, x) = y ↔ ϕ(n, x, y) := ∃s∃v ∈ Seq(E(x, (s)0)⊗∀i < nH0((v)i, (s)i, i, x, (s)i+1)⊗(s)n = y)

. . . (E1)
It is not difficult to see that ϕ indeed defines the graph of g. We focus on proving

8Which is an abbreviation for ϕ(n, x, y) := ∃s∃v(Seq(s) ⊗ Seq(v) ⊗ E(x, (s)0) ⊗ ∀i <
nH0((v)i, (s)i, i, x, (s)i+1)⊗ (s)n = y)

80 4.2. PRIMITIVE RECURSIVE FUNCTIONS

the totality and functionality of g in CFA.

Totality. It is shown using Induction Rule on ψ(i) := ∃y(g(i, x) = y).
Base Case To show ⇒ ∃y(g(0, x) = y), we use the totality of e in CFA.
Steps towards a proof:

1. Totality of e and that ⟨y⟩ is a sequence of length 1 gives us,
⇒ ∃y(E(x, y))⊗ ∀y(⟨y⟩)0 = y ⊗ Seq(⟨y⟩))

2. From Proposition 2.31.6 we have,
∃y(E(x, y)) ⊗ ∀y((⟨y⟩)0 = y ⊗ Seq(⟨y⟩)) ⇒ ∃y(E(x, y) ⊗ (⟨y⟩)0 = y ⊗
Seq(⟨y⟩))

3. ∃R rule on ⟨y⟩ gives us,
∃y(E(x, y)⊗ (⟨y⟩)0 = y ⊗ Seq(⟨y⟩)) ⇒ ∃y∃s(E(x, y)⊗ (s)0 = y ⊗ Seq(s))

4. Rules of equality and commutativity of ⊗ gives us,
∃y∃s(E(x, y)⊗ (s)0 = y⊗Seq(s)) ⇒ ∃y∃s(Seq(s)⊗E(x, (s)0)⊗ (s)0 = y)

5. Finally, from the definition of ϕ we have,
∃y∃s(Seq(s)⊗ E(x, (s)0)⊗ (s)0 = y) ⇒ ∃y(g(0, x) = y)

Therefore, multiple applications of (Cut) would yield ⇒ ψ(0).

Inductive Case To show ψ(n) ⇒ ψ(n+ 1)

The informal argument proceeds as follows: Let’s assume that g(n, x) = y, thus
yielding two sequences, denoted as s and v, of length n+ 1 and n respectively,
satisfying (E1). Our objective is to construct suitable sequences of length n+2
and n+1. Given that the function h is provably total, we can get a z such that
h(y, n, x) = z. Consequently, there exists a w such that H0(w, y, n, x, z) holds
true. Then append the element z to the end of sequence s, and w to the end of
sequence v, thereby obtaining the required sequences.

Let’s proceed to give a formal proof. Steps towards a proof:
Take s′′ = ⟨(s)0, .., (s)n, y⟩ and v′′ = ⟨(v)0, .., (v)n−1, v

′⟩.

1. Since
(∀i < nH0((v)i, (s)i, i, x, (s)i+1))⊗ (s)n = y1,H0(v

′, y1, n, x, y) ⇒
(∀i < n+ 1H0((v

′′)i, (s
′′)i, i, x, (s

′′)i+1))

we have,
Seq(s)⊗ Seq(v)⊗ E(x, (s)0)⊗ (∀i < nH0((v)i, (s)i, i, x, (s)i+1))⊗ (s)n =
y1,H0(v

′, y1, n, x, y) ⇒
Seq(s′′)⊗Seq(v′′)⊗E(x, (s′′)0)⊗(∀i < n+1H0((v

′′)i, (s
′′)i, i, x, (s

′′)i+1))⊗
(s′′)n+1 = y

2. Using (∃R) on y, s′′, v′′ we get,

4.2. PRIMITIVE RECURSIVE FUNCTIONS 81

E(x, (s′′)0)⊗ (∀i < n+ 1H0((v
′′)i, (s

′′)i, i, x, (s
′′)i+1))⊗ (s′′)n+1 = y ⇒

∃y∃s′′∃v′′ ∈ Seq(E(x, (s′′)0) ⊗ (∀i < n + 1H0((v
′′)i, (s

′′)i, i, x, (s)i+1)) ⊗
(s′′)n+1 = y)

3. As the succedent is nothing but ∃yg(n + 1, x) = y), applying (cut) on 1
and 2 we get,
Seq(s) ⊗ Seq(v) ⊗ E(x, (s)0) ⊗ (∀i < nH0((v)i, (s)i, i, (s)i+1)) ⊗ (s)n =
y1,H0(v

′, y1, n, x, y) ⇒ ∃yg(n+ 1, x) = y)

4. Using (∃L) rule on s, v and v′ we get,
∃s∃v ∈ Seq(E(x, (s)0)⊗(∀i < nH0((v)i, (s)i, i, (s)i+1))⊗(s)n = y1), ∃y∃v′(H0(v

′, y1, n, x, y)) ⇒
∃yg(n+ 1, x) = y)

5. Using the totality of h, i.e., ⇒ ∃y∃v′H0(v
′, y1, n, x, y) by cut we get,

∃s∃v ∈ Seq(E(x, (s)0)⊗ (∀i < nH0((v)i, (s)i, i, x, (s)i+1))⊗ (s)n = y1) ⇒
∃yg(n+ 1, x) = y)

6. Furthermore using (∃L) on y1 we get,
∃y∃s∃v ∈ Seq(E(x, (s)0)⊗(∀i < nH0((v)i, (s)i, i, x, (s)i+1))⊗(s)n = y) ⇒
∃yg(n+ 1, x) = y)

Thus, we get that ∃y(g(n, x) = y) ⇒ ∃y(g(n+ 1, x) = y) or, ψ(n) ⇒ ψ(n+ 1).

Now, the Induction Rule of CFA yields, ⇒ ∀n∃yg(n, x) = y. An application of
the ∀xR rule would give us, ⇒ ∀x∀n∃yg(n, x) = y, thus establishing the totality
of g in CFA.
Functionality of g. To show ⇒ ϕ(n, x, y1)⊗ ϕ(n, x, y2) → y1 = y2

Say ϕ(n, x, y) = ∃s∃vR(n, s, v, x, y). Suppose we haveR(n, s1, v1, x, y1)⊗R(n, s2, v2, x, y2),
then our aim is to establish ∀i ≤ n((s1)i = (s2)i). Once we establish that
∀i ≤ n((s1)i = (s2)i), it follows that (s1)n = (s2)n, hence y1 = y2.
Now, in order to establish ⇒ R(n, s1, v1, x, y1) ⊗ R(n, s2, v2, x, y2) → (∀i ≤
n((s1)i = (s2)i)), we apply Induction Rule on ψ(i) := R(n, s1, v1, x, y1) ⊗
R(n, s2, v2, x, y2) → (i ≤ n → (s1)i = (s2)i). The basis (⇒ ψ(0)) and the
induction step (ψ(x) ⇒ ψ(x+1)) would follow directly from the functionality of
e and h. Thus, we will get that R(n, s1, v1, x, y1)⊗R(n, s2, v2, x, y2) ⇒ y1 = y2.
Since sj , vj are free-variables, using (∃L) we get ⇒ ϕ(n, x, y1) ⊗ ϕ(n, x, y2) →
y1 = y2, as required

Remark 4.6. Usually g is represented by the following Σ1 formula:

g(n, x) = y ↔ ϕ(n, x, y) := ∃s ∈ Seq(E(x, (s)0)⊗∀i < nH((s)i, i, (s)i+1)⊗(s)n = y)

But in the absence of Σ1 collection principle9, this might not be equivalent to a
Σ1 formula in our arithmetic. Hence, we define it in as shown above.

9The Σ1 collection refers to the following axiom schema for Σ1 formulas : ∀u[(∀x ≤
u)∃yψ(x, y) → ∃v(∀x ≤ u)(∃y ≤ v)ψ(x, y)]

82 4.3. CLASSIFYING PROVABLY RECURSIVE FUNCTIONS

We conclude this section by emphasizing that merely containing ∆0 induction
is not sufficient for arithmetical theories to establish that primitive recursive
functions are provably recursive within it. For instance, in EA, provably recur-
sive functions are limited to elementary functions10 and the elementary func-
tions form a proper subset of primitive recursive functions (consider, super-
exponentiation function).

4.3 Classifying Provably Recursive Functions
In this section, we address the classification problem of provably recursive func-
tions in CFA. We demonstrate that the class of provably recursive functions
precisely corresponds to the class of primitive recursive functions. Our ap-
proach is inspired by Weiermann (c.f. Weiermann [2006]), who classified the
provably recursive functions of classical PA using certain operators that control
the witness information in derivations.

4.3.1 CFA∞

We will operate within a semi-formal infinitary Gentzen calculus denoted by
CFA∞, the design of which is based on the truth definition for the standard
model N. The defining feature of this system is an infinitary ω rule replacing
the ∀R rule. We show that the symmetric nature of the ω rule makes the cut-
rule admissible in CFA∞ and this will help us derive the induction rule for this
system. We start by formally defining the system.
We introduce CFA∞ in the language of CFA. The terms of CFA∞ are closed
terms of CFA and its formulas are the closed formulas of CFA. For each closed
term t in the language we have a standard interpretation val(t) called the value
of t. In particular, for n ∈ N we have that val(n) = n.

Definition 4.7. The infinitary proof system CFA∞, where Γ,∆,Π and Σ are
finite multisets of closed formulas, is defined by the following postulates:

Initial Sequents

Γ ⇒ ∆

Where, Γ contains a (under the standard interpretation) false atomic formula
or ∆ contains a true atomic formula.

Inference Rules:

Γ ⇒ ∆, A B,Π ⇒ Σ
(→ L)

A→ B,Γ,Π ⇒ ∆,Σ
10The class of elementary functions is the least set of functions containing the basic functions

and closed under composition and bounded minimization operators.

4.3. CLASSIFYING PROVABLY RECURSIVE FUNCTIONS 83

A,Γ ⇒ ∆, B
(→ R)

Γ ⇒ ∆, A→ B

Γ ⇒ A(0),∆ . . .Γ ⇒ A(n),∆ . . . (n ∈ N)
ωR

Γ ⇒ ∀xA(x),∆

A(k),Γ ⇒ ∆ (k ∈ N)
(∀L)

∀xA(x),Γ ⇒ ∆

Definition 4.8. A CFA∞ derivation D is a well-founded tree11 of sequents being
locally correct w.r.t the above axioms and rules, or:

1. The sequents at the top nodes of D are initial sequents,

2. Every other sequent is obtained from the sequent(s) immediately above it
by one of the rules.

Abbreviation: ⊢α Γ ⇒ ∆ abbreviates that there exists a CFA∞ derivation with
end-sequent Γ ⇒ ∆ with (ordinal) height ≤ α.

Remark 4.9. In CFA∞, height is defined conventionally (as described in Def-
inition 2.7), with the only distinction being that proof height increases by +1,
following ordinal addition. Additionally, the presence of the ω Rule necessitates
the utilization of well-orders (thus, the incorporation of ordinals) in general, as
the well-ordering of N alone would not be adequate.

Remark 4.10. Due to the absence of the Cut-Rule in CFA∞, it possesses the
subformula property. Although later, we will demonstrate that Cut is in fact
derivable in CFA∞.

The fact that the design of this calculus is modeled after the truth definition
for the standard model, becomes evident in the following proposition.

Proposition 4.11. (CFA∞) If for some α and Γ ⇒ ∆, ⊢α Γ ⇒ ∆ then there
is a ϕ ∈ Γ s.t. N ⊭ ϕ or, there is a ψ ∈ ∆ s.t. N ⊨ ψ.

Proof. Proof by transfinite induction on the height of the proof.

Corollary 4.12. If for some α and ϕ, ⊢α⇒ ϕ then N ⊨ ϕ.

Another significant feature of this calculus will be the incorporation of oper-
ator control via functions F : N → N which will control the computational
content of the derivations. This method of operator controlled derivations was
first introduced by Buchholz in Buchholz [1992] for ordinal analysis of strong
impredicative theories. In our context, operators are weakly increasing and in-
flationary (i.e, x ≤ f(x)) functions F . The underlying concept behind their use

11A well-founded tree is essentially a tree where starting from any node in the tree and
following the directed edges, one will eventually reach a leaf node in finite number of steps.

84 4.3. CLASSIFYING PROVABLY RECURSIVE FUNCTIONS

is quite straight forward, for instance, in the case of an existential introduction
A(k) ⊢ ∃xA(x), one keeps track of the existential witness by demanding that
k ≤ F (0). This requirement ensures that if we have a analytic (cut-free) deriva-
tion of F ⊢ ∃xA(x) then there is a k ≤ F (0) s.t. N ⊨ A[k]. The relation F ⊢
will be so set up that this crucial information on witnesses is conserved during
derivations.

Definition 4.13. (Skolem Operator/ Control Functions) A skolem operator is
a function F : N → N, such that if m ≤ n then F (m) ≤ F (n) (i.e, weakly
monotone) and m ≤ F (m) (i.e, inflationary).
Some notions related to skolem operators:

• Given a skolem operator F we define F [m1, ..,mn](x) := F (max(m1, . . . ,mn, x)).

• We say F ≤ G iff for all x, F (x) ≤ G(x)

Now we define the F ⊢α relation in a manner that guarantees if F ⊢α Γ ⇒ ∆,
then ⊢α Γ ⇒ ∆ holds within CFA∞.

Definition 4.14. We define the F ⊢α relation inductively, F ⊢α Γ ⇒ ∆ holds
iff

• Base Clause: (Ax) Γ contains a false atomic formula or ∆ contains a true
atomic formula.

• Inductive Clause:

(→ L) If there exists α1, α0 < α such that F ⊢α0 Γ1 ⇒ ∆1, ϕ and F ⊢α1

Γ2, ψ ⇒ ∆2 for some Γi,∆i s.t. Γ1,Γ2 = Γ\{ϕ→ ψ}12 and ∆1,∆2 =
∆. Or,

(→ R) If there exists α0 < α such that F ⊢α0 Γ, ϕ ⇒ ∆\{ϕ → ψ}, ψ and
∆1,∆2 = ∆. Or,

(∀L) If there exists α0 < α such that F ⊢α0 Γ\{∀xϕ(x)}, ϕ(k) ⇒ ∆ for
some k ≤ F (0). Or,

(ωR) If for all i there exists αi < α such that F [i] ⊢αi Γ ⇒ ϕ(i),∆′.

Lemma 4.15. (CFA∞) Given an ordinal α,

1. (Weakening) If F ⊢α Γ ⇒ ∆ and Γ ⊆ Γ′ , ∆ ⊆ ∆′, α ≤ α′, F ≤ G then
G ⊢α′

Γ′ ⇒ ∆′

2. If F ⊢α Γ, ϕ⇒ ∆ and ϕ is a true atomic formula then F ⊢α Γ ⇒ ∆

3. If F ⊢α Γ ⇒ ϕ,∆ and ϕ is a false atomic formula then F ⊢α Γ ⇒ ∆.
(Inversions)

4. If F ⊢α Γ ⇒ ϕ→ ψ,∆ then F ⊢α Γ, ϕ⇒ ψ,∆.
12Here, {ϕ → ψ} is treated as a multi-set. Also, as an example of multi-set subtraction, if

Γ1 = {A,A,B} and Γ2 = {A} then Γ1\Γ2 = {A,B}

4.3. CLASSIFYING PROVABLY RECURSIVE FUNCTIONS 85

5. If F ⊢α Γ ⇒ ∆, ∀xϕ(x) then for all i, F [i] ⊢α Γ ⇒ ∆, ϕ(i)

Proof.
(1) We proceed by transfinite induction on α, i.e, the height of the derivation.
Base Case: Say F ⊢0 Γ ⇒ ∆. Then Γ ⇒ ∆ is an initial sequent and so is
Γ′ ⇒ ∆′. Since F ≤ G, we have G ⊢α′

Γ′ ⇒ ∆′.
Inductive Case: Γ ⇒ ∆ is arrived at by an application of a rule of the calculus.
We only deal with the case of ∀ rules, the rest are straight forward.

• (ωR) Then we have that for all i, F [i] ⊢αi Γ ⇒ ϕ(i),∆\{∀xϕ(x)} and
for all i, αi < α. Since F [i] ≤ G[i] by induction hypothesis we have that
G[i] ⊢αi Γ′ ⇒ ϕ(i),∆′\{∀xϕ(x)} for all i, αi < α. Now since αi < α ≤ α′

by ωR rule we have that G ⊢α′
Γ′ ⇒ ∆′ .

• (∀L) Then we have for some k ≤ F (0) and α0 < α, F ⊢α0 Γ\{∀xϕ(x)}, ϕ(k) ⇒
∆. By induction hypothesis we have that G ⊢α0 Γ′\{∀xϕ(x)}, ϕ(k) ⇒ ∆′.
As α0 < α ≤ α′ and k ≤ F (0) ≤ G(0) by ∀L rule, G ⊢α′

Γ′ ⇒ ∆′.

Thus, by transfinite induction we have our proof.
(5) We proceed by transfinite induction on the height α.
Base Case: Then Γ ⇒ ∆ is an initial sequent. Since F ≤ F [i], an application
of Weakening yields F [i] ⊢α Γ ⇒ ∆, ϕ(i).
Inductive Case: F ⊢α Γ ⇒ ∆ is reached by applying a rule of the calculus. We
will focus on the case of the ω rule; for the other cases, a direct application of
the Induction Hypothesis leads to the conclusion.

• Then we have that for all i, there exists αi < α such that F [i] ⊢αi Γ ⇒
∆′, ϕ(i). But then F [i] ⊢α Γ ⇒ ∆′, ϕ(i) as required.

Thus, by transfinite induction we conclude our proof.
((2),(3),(4)) can similarly be proven using transfinite induction on α

Remark 4.16. Note that as a direct corollary to Weakening, we obtain that if
F ⊢α Γ ⇒ ∆ and F ≤ G, then G ⊢α Γ ⇒ ∆.

With the help of the previous lemma, the following proposition illustrates how
the Skolem operators keep track of existential witnesses during derivations in
CFA∞.

Proposition 4.17 (Witness control).

1. If F ⊢α ⇒ ∃xϕ(x) then there is a k ≤ F (0) s.t. N ⊨ ϕ(k)

2. If F ⊢α ⇒ ∀x∃yϕ(x, y) where ϕ then for all m there is n ≤ F (m) s.t.
N ⊨ ϕ[m,n]

86 4.3. CLASSIFYING PROVABLY RECURSIVE FUNCTIONS

Proof. 1. Suppose F ⊢α⇒ ∃xϕ(x), which means F ⊢α⇒ ∀x(ϕ(x) → ⊥) →
⊥. By lemma 4.15.4, we have F ⊢α ∀x(ϕ(x) → ⊥) ⇒ ⊥. Then, by Lemma
4.15.2, we obtain F ⊢α ∀x(ϕ(x) → ⊥) ⇒. Thus, the last rule applied to its
derivation must be ∀L, hence F ⊢α0 (ϕ(k) → ⊥) ⇒ for some k ≤ F (0) and
α0 < α. Finally, applying Proposition 4.11, we conclude N ⊨ ¬(ϕ(k) → ⊥)
or, N ⊨ ϕ(k), as required.

2. Suppose F ⊢α⇒ ∀x∃yϕ(x, y). Then, by Lemma 4.15.5, we infer that for
any m, F [m] ⊢α⇒ ∃yϕ(m, y). Consequently, according to part 1, there
exists an n ≤ F [m](0) = F (m) such that N ⊨ ϕ[m,n].

Remark 4.18. Proposition 4.17 plays a central role in our proof of classifica-
tion and provides insight into the subsequent steps. By establishing Proposition
4.17, we realize that any provably recursive function in CFA (assuming we can
embed CFA within CFA∞) will be bounded by a Skolem operator. Consequently,
if we can further characterize these Skolem operators, we can draw additional
conclusions about the provably recursive functions in CFA (see Proposition 4.35
and Lemma 4.36).

4.3.2 Admissibility of Cut in CFA∞

In this subsection, we demonstrate the admissibility of the Cut-Rule in CFA∞.
This is essential if we aim to replicate the reasoning conducted in CFA within
CFA∞. Importantly, we capture the effect on skolem operators during an appli-
cation of the (derived)cut-rule.

Proposition 4.19. If F and G are primitive recursive skolem operators13, then
so are the following:

• F [k] for any k ∈ N

• F ◦G

In order to capture the effect on control operators during an application of cut,
we define an operation on the control operators as follows.

Definition 4.20. Given skolem operators F and G and n ∈ N+, we define
An(F,G) recursively (where, A stands for ’Admissible’):

• A(F,G) = A1(F,G) = F ◦G

• An+1(F,G) = A(An(F,G), An(F,G))

Remark 4.21. The rationale behind defining such an operation on Skolem oper-
ators will become clear during the proof of the Cut-admissibility Theorem (The-
orem 4.28). The primary idea is that, given Skolem operators F and G we have
F,G ≤ F ◦G and importantly, if k ≤ G(0) then F [k] ≤ F ◦G.

13I.e, Skolem operators which are primitive recursive functions.

4.3. CLASSIFYING PROVABLY RECURSIVE FUNCTIONS 87

Proposition 4.22. If F and G are primitive recursive skolem operators then
for all n,m ∈ N+:

1. An(F,G) is a primitive recursive skolem operator.

2. An(F,G) = F ◦G . . . F ◦G where F ◦G is repeated 2n−1 times.

3. Am(An(F,G), An(F,G)) = An+m(F,G)

4. If n ≤ m then F,G ≤ An(F,G) ≤ Am(F,G)

5. If F1 ≤ F2 and G1 ≤ G2 then An(F1, G1) ≤ An(F2, G2).

6. If k ≤ G(0), then An(F [k], G) = An(F,G)

7. For all i, An(F,G[i]) = An(F,G)[i]

8. For all i, An(F [i], G[i]) = An(F,G)[i]

To keep track of the height of derivations, we define the following operation on
ordinals.

Definition 4.23. (Natural Sum) Let α = ωα1+. . .+ωαk and β = ωβ1+. . .+ωβk

be in CNF. Let γ1, . . . γk+l be α1, . . . , αk, β1, . . . , βk+l sorted in non-decreasing
order. Then

• The natural sum of α and β, α#β := ωγ1 + . . .+ ωγk .

Proposition 4.24. (Properties of natural sum)

1. Natural sum is commutative and associative.

2. If α < β then α#γ < β#γ.

Remark 4.25. These properties are not valid for the usual ordinal sum. It
is for this reason that when working with height of proofs in CFA∞ we instead
work with natural sum .

Lemma 4.26. If we have F ⊢α Γ ⇒ ∆, B and G ⊢β B,Π ⇒ Σ, with B being
an atomic formula, then it follows that A(F,G) ⊢max(α,β) Γ,Π ⇒ ∆,Σ.

Proof.
Since B is closed, we have two possibilities: either N ⊨ B or N ⊭ B. Conse-
quently, we consider two cases:

• If B ∈ True0
14: Applying Lemma 4.15.2 to G ⊢β B,Π ⇒ Σ yields G ⊢β

Π ⇒ Σ. Then, by applying weakening, we obtain A(F,G) ⊢max(α,β)

Γ,Π ⇒ ∆,Σ.
14Where, True0 is the set of true atomic formula (Of course, in the language of CFA∞) and

False0 is the set of false atomic formula

88 4.3. CLASSIFYING PROVABLY RECURSIVE FUNCTIONS

• If B ∈ False0: Utilizing Lemma 4.15.3 on F ⊢α Γ1 ⇒ ∆1, B gives F ⊢α

Γ1 ⇒ ∆1. By applying weakening again, we arrive at A(F,G) ⊢max(α,β)

Γ,Π ⇒ ∆,Σ.

Therefore, we conclude A(F,G) ⊢max(α,β) Γ,Π ⇒ ∆,Σ as required.

Lemma 4.27. Suppose F ⊢α Γ ⇒ ∆, B and G ⊢β B,Π ⇒ Σ, where either
α = 0 or β = 0 (i.e., one of them is an initial sequent). Then A(F,G) ⊢max(α,β)

Γ,Π ⇒ ∆,Σ.

Proof. Without loss of generality, let’s assume α = 0. Then we have two possi-
bilities based on whether B is a true atomic formula or not:

• If B ∈ True0: We apply Lemma 4.15.2 to G ⊢β B,Π ⇒ Σ and obtain
G ⊢β Π ⇒ Σ. Now, by applying weakening , we get A(F,G) ⊢max(α,β)

Γ,Π ⇒ ∆,Σ.

• If B /∈ True0: Then Γ ⇒ ∆ is an initial sequent. Hence, F ⊢0 Γ ⇒ ∆.
Now, by applying weakening, we obtain A(F,G) ⊢max(α,β) Γ,Π ⇒ ∆,Σ.

Thus, we have A(F,G) ⊢max(α,β) Γ,Π ⇒ ∆,Σ as required.

With the preceding Lemmas at hand, we proceed to prove the admissibility of
cut. Recall (see Definition 2.32) that C(B) denotes the complexity of a formula
B.

Theorem 4.28. (Admissibility of Cut, CFA∞) If F ⊢α Γ1 ⇒ ∆1, B and G ⊢β

B,Γ2 ⇒ ∆2 then AC(A)+1(F,G) ⊢γ Γ1,Γ2 ⇒ ∆1,∆2 for some γ > α, β

Proof. We begin with a primary induction on the complexity of B (i.e. C(B)),
accompanied by a subsidiary transfinite induction on α#β.
Base Case: When C(B) = 0, meaning B is an atomic formula. This is Lemma
4.26.
Inductive Case: Assume C(B) = n and that for all formulas of degree less
than n, the formula can be eliminated.
We proceed by a subsidiary induction on α#β,

• Base case. Let’s consider α#β = 0. We can then apply Lemma 4.27 to
obtain our desired result.

• Inductive Case.
By virtue of lemma 4.27, we assume that both α, β > 0. Then we divide
the problem into cases based on the rule whose conclusion is G ⊢β B,Γ2 ⇒
∆2.

4.3. CLASSIFYING PROVABLY RECURSIVE FUNCTIONS 89

1. ∀L
In this case, further two possibilities arise.
Firstly, let’s consider the case when the principal formula of the ∀L
rule is the cut formula B = ∀xD(x).
Then for some β0 < β and k ≤ G(0), we have G ⊢β0 D(k),Γ2 ⇒ ∆2,
i.e,

...
G ⊢β0 D(k),Γ2 ⇒ ∆2

(∀L)
G ⊢β ∀xD(x),Γ2 ⇒ ∆2

According to Lemma 4.15.5, we have F [k] ⊢α Γ1 ⇒ ∆1, D(k). Since
α#β0 < α#β, by applying the induction hypothesis on F [k] ⊢α Γ1 ⇒
∆1, D(k) andG ⊢β0 D(k),Γ2 ⇒ ∆2 we obtainAC(D(x))+1(F [k], G) ⊢γ

Γ1,Γ2 ⇒ ∆1,∆2 for some γ > α, β0. By applying Proposition
4.22.6, we obtain AC(D(x))+1(F,G) ⊢γ Γ1,Γ2 ⇒ ∆1,∆2. Therefore,
AC(B)+1(F,G) ⊢γ Γ1,Γ2 ⇒ ∆1,∆2.

Secondly, let’s consider the case when the principal formula of ∀L is
not the cut formula B. Suppose Γ2 = ∀xD(x),Γ′

2

Then for some β0 < β and k ≤ G(0), we have G ⊢β0 B,D(k),Γ′
2 ⇒

∆2, i.e,

...
G ⊢β0 B,D(k),Γ′

2 ⇒ ∆2
(∀L)

G ⊢β B, ∀xD(x),Γ2 ⇒ ∆2

Since α#β0 < α#β, by applying the induction hypothesis on F ⊢α

Γ1 ⇒ ∆1, B and G ⊢β0 B,D(k),Γ′
2 ⇒ ∆2, we have for some γ0 >

α, β0 that AC(B)+1(F,G) ⊢γ0 Γ1, D(k),Γ′
2 ⇒ ∆1,∆2. According to

Proposition 4.22.4, k ≤ G(0) ≤ AC(B)+1(F,G)(0), thus by applying
the ∀L rule on B(k), we obtain AC(B)+1(F,G) ⊢γ Γ1, ∀xB(x),Γ′

2 ⇒
∆1,∆2 where γ0 < γ.

2. ωR
Say ∆2 = ∆′

2, ∀xD(x). Then we have the following:

...
G[0] ⊢β0 B,Γ2 ⇒ ∆′

2, D(0)

...
G[1] ⊢β1 B,Γ2 ⇒ ∆′

2, D(1) . . .
(ωR)

G ⊢β B,Γ2 ⇒ ∆′
2, ∀xD(x)

where βi < β.
Then, for every i, by applying the Induction Hypothesis on G[i] ⊢βi

B,Γ2 ⇒ ∆′
2, D(i) and F ⊢α Γ1 ⇒ ∆1, B we obtainAC(B)+1(F,G[i]) ⊢γi

Γ1,Γ2 ⇒ ∆1,∆2, D(i) where γi > α, βi. From Proposition 4.9.7, we

90 4.3. CLASSIFYING PROVABLY RECURSIVE FUNCTIONS

deduce AC(B)+1(F,G)[i] ⊢γi Γ1,Γ2 ⇒ ∆1,∆
′
2, D(i). Now, by ap-

plying the ωR rule, we conclude that AC(B)+1(F,G) ⊢γ Γ1,Γ2 ⇒
∆1,∆

′
2, ∀xD(x), where for all i, γi < γ.

3. → R
Suppose we have the following:

...
G ⊢β0 B,Γ2, C ⇒ ∆′

2, D(→ R)
G ⊢β B,Γ2 ⇒ ∆2

Where, ∆2 = ∆′
2, C → D.

Applying the Induction Hypothesis to G ⊢β0 B,Γ2, C ⇒ ∆′
2, D

and F ⊢α Γ1 ⇒ ∆1, B we obtain AC(B)+1(F,G) ⊢γ0 Γ1,Γ2, C ⇒
∆1,∆

′
2, D for some γ0 > α, β0. An application of → R rule yields

AC(B)+1(F,G) ⊢γ Γ1,Γ2 ⇒ ∆1,∆
′
2, C → D where γ0 < γ.

4. → L
In this case as well, further two possibilities arise.
Firstly, the case when the principal formula of the → L rule is not
the cut formula: It’s a straightforward application of the (subsidiary)
induction hypothesis.

Secondly, now consider the important case when the principal for-
mula of the → L rule is the cut formula B = C → D.
Say we have the following:

...
G ⊢β0 Γ21 ⇒ ∆21, C

...
G ⊢β0 D,Γ22 ⇒ ∆22(→ L)

G ⊢β C → D,Γ2 ⇒ ∆2

Applying inversion (Lemma 4.15.4) to F ⊢α Γ1 ⇒ ∆1, C → D yields
F ⊢α Γ1, C ⇒ ∆1, D. Since α#β0 < α#β, applying the (sub-
sidiary) induction hypothesis to this and G ⊢β0 Γ21 ⇒ ∆21, C yields
AC(C)+1(F,G) ⊢γ0 Γ1,Γ21 ⇒ ∆1,∆21, D for some γ0 > α, β0.
Given that C(D) < C(C → D) = n, by the primary induction
hypothesis on AC(C)+1(F,G) ⊢γ0 Γ1,Γ21 ⇒ ∆1,∆21, D and G ⊢β0

D,Γ22 ⇒ ∆22, we obtainAC(D)+1(G,AC(C)+1(F,G)) ⊢γ Γ1,Γ21,Γ22 ⇒
∆1,∆21,∆22 for some γ > γ0, β0.
By Lemma 4.15.5 and weakening, we further deduce

AC(D)+1(AC(C)+1(F,G), AC(C)+1(F,G)) ⊢γ Γ1,Γ2 ⇒ ∆1,∆2

Again, since C(C) + 1 + C(D) + 1 = C(C → D) + 1 from Lemma
4.15.3, we obtain AC(C→D)+1(F,G) ⊢γ

0 Γ1,Γ2 ⇒ ∆1,∆2, as required.

Thus, by double induction we have our theorem.

4.3. CLASSIFYING PROVABLY RECURSIVE FUNCTIONS 91

Remark 4.29.

• For the above proof, the absence of contraction from CFA∞ was crucial.
In the corresponding infinitary calculus of PA which would need to have
contraction, for very similar reasons as in Remark 2.44, the argument
presented in Theorem 2.28 would not go through.

4.3.3 Embedding CFA in CFA∞

With Cut at our disposal, we can now proceed to embed CFA within CFA∞.
We start by establishing some preliminary lemmas.

Proposition 4.30. Let k ∈ N be a constant and F be a primitive recursive
Skolem operator. Then there exists a primitive recursive Skolem operator G
such that for all i ∈ N+ we have Ai·k+i(F, F)[i] ≤ G[i].

Proof. Define a function F ′ from F using primitive recursion as follows:

F ′(x, 0) = F (x)

F ′(x, n+ 1) = F (F ′(x, n))

Now, define G(x) := F ′(x, 2x·k+x). Clearly, G is itself primitive recursive.
Claim: For any i ∈ N, Ai·k+i(F, F)[i] ≤ G[i].
Without loss of generality, assume i ≤ x. As F is a Skolem operator, we have:

Ai·k+i(F, F)[i](x) = F 2i·k+i

(x) ≤ F 2x·k+x+1(x) = F ′(x, 2x·k+x) = G(x).

Lemma 4.31. Every bounded formula in CFA defines a primitive recursive
predicate, i.e., its characteristic function is primitive recursive.

Proof. We proceed by induction on the structure of a bounded formula in CFA.
Since primitive recursive predicates are easily seen to be closed under propo-
sitional connectives and bounded quantification, we only need to consider the
base case, i.e., when the formula is atomic.
Let the formula be t(x1, . . . , xn) = s(x1, . . . , xn). Then let the predicate defined
by the formula be X(m1, . . . ,mn) = 1 if and only if N ⊨ t(m1, . . . ,mn) =
s(m1, . . . ,mn). Now, since t and s are built up from primitive recursive functions
such as addition (+), multiplication (.), and successor (S), which are primitive
recursive functions, val(t(x1, . . . , xn)) and val(s(x1, . . . , xn)) are also primitive
recursive (since every polynomial is primitive recursive). Furthermore, since
equality (=) is also a primitive recursive predicate, we conclude that X is also
a primitive recursive predicate.

Lemma 4.32. Given a term t(x1, . . . , xn) in the language of CFA∞, the func-
tion f : Nn → N defined by f(x1, . . . , xn) = val(t(x1, . . . , xn)) is a weakly
monotone primitive recursive function, i.e., for any n⃗, m⃗ ∈ N where for all i,
ni ≤ mi, we have f(n⃗) ≤ f(m⃗).

92 4.3. CLASSIFYING PROVABLY RECURSIVE FUNCTIONS

Proof. We proceed by induction on the complexity of the build-up of the term
t. Note that the functions S, +, and × are all monotone.

Lemma 4.33. (CFA∞) Suppose F ⊢α Γ, ϕ(t) ⇒ ∆, and if val(t) = n where
n ∈ N, then F ⊢α Γ, ϕ(n) ⇒ ∆

Proof. Transfinite induction on α

We make some preliminary comments about the proof strategy. In order to
embed CFA within CFA∞-

• Firstly, we need to demonstrate that the initial sequents of CFA are deriv-
able in CFA∞, with derivations bounded by appropriate primitive recursive
Skolem operators. (Refer to Proposition 4.35 and Lemma 4.36 to know
the necessity of primitive recursion in this context.)

• Then we can argue inductively on the proof of a derivation in CFA.

• The critical step in this proof would be to show that the primitive re-
cursive nature of Skolem operators are preserved during Cut rule and the
Induction Rule. These are the junctures where we rely on applying the
theorem on Cut-admissibility. Moreover, the crucial scenario of the In-
duction rule, where repeated application of the cut-rule is necessary to
emulate induction within CFA∞, is solved with the aid of Propositions
4.15 and 4.30.

Theorem 4.34. (Embedding) If CFA ⊢ Γ(⃗a) ⇒ ∆(⃗a) then there exists a prim-
itive recursive operator F and an ordinal γ s.t for all m⃗, F [m1, . . . ,mn] ⊢γ

Γ(m⃗) ⇒ ∆(m⃗).

Proof. We proceed by induction on the proof of Γ(⃗a) ⇒ ∆(⃗a) in CFA.
Base Case: We have two possibilities-

• Γ(⃗a) ⇒ ∆(⃗a) is an initial sequent of GQCG. We take F (x) = x. Now,
if ⊥ = Γ(⃗a) we are done. Otherwise say it is A(x⃗) ⇒ A(x⃗) where A is
atomic. Then for any m⃗ either N ⊨ A(m⃗) or N ⊭ A(m⃗). In either case we
have that A(m⃗) ⇒ A(m⃗) is an initial sequent of CFA∞. Consequently, we
obtain F [m⃗] ⊢0 Γ(m⃗) ⇒ ∆(m⃗).

• Γ(⃗a) ⇒ ∆(⃗a) is an initial sequent of the arithmetic.
We consider CFA ⊢⇒ ¬(S(t(⃗a)) = 0) (the remainder can be argued for
analogously). Now given any m⃗ ∈ N, N ⊭ S(t(m⃗)) = 0. Thus, taking
F (x) = x we have that F [m⃗] ⊢0 S(t(m⃗)) = 0 ⇒ ⊥. Applying the → R
rule, we obtain F [m⃗] ⊢1⇒ (S(t(m⃗))) = 0 → ⊥) as needed.

Inductive Case: Γ(⃗a) ⇒ ∆(⃗a) is arrived at by an application of a rule of the
calculus CFA.

• (→ L), (→ R): Follows directly from Induction Hypothesis.

4.3. CLASSIFYING PROVABLY RECURSIVE FUNCTIONS 93

• (WL), (WR) : Follows from lemma [4.6.1] and the Induction Hypothesis.

• (Cut) : Say we have the following application of cut in CFA

Γ1(⃗a) ⇒ ∆1(⃗a), A(⃗a) A(⃗a),Γ2(⃗a) ⇒ ∆2(⃗a)(Cut)
Γ1(⃗a),Γ2(⃗a) ⇒ ∆1(⃗a),∆2(⃗a)

We apply Induction Hypothesis to get F [m⃗] ⊢γ1 Γ1(m⃗) ⇒ ∆1(m⃗), A(m⃗)
and G[m⃗] ⊢γ2 A(m⃗),Γ2(m⃗) ⇒ ∆2(m⃗). Then, according to Theorem 4.28,
we have AC(A)+1(F [m⃗], G[m⃗]) ⊢γ Γ1,Γ2 ⇒ ∆1,∆2. From Proposition
4.15.8, we have AC(A)+1(F,G)[m⃗] ⊢γ Γ1,Γ2 ⇒ ∆1,∆2. Additionally, from
Proposition 4.15.1, we know that AC(A)+1(F,G) is primitive recursive.

• (∀L) Suppose CFA ⊢ Γ(⃗a), ϕ(t(⃗a)) ⇒ ∆(⃗a). Then by the Induction hy-
pothesis we have in CFA∞ that there is a primitive recursive function F
such that for all m⃗ ∈ N, F [m1, ...,mn] ⊢γ Γ(m⃗), ϕ(t(m⃗)) ⇒ ∆(m⃗). Now
by Lemma 4.33 we have that F [m1, ...,mn] ⊢γ Γ(m⃗), ϕ(k) ⇒ ∆(m⃗), where
k = val(t(m⃗)).
We define F ′(x) := F (x) + val(t(x, . . . , x)). Finally, from lemma 4.32 we
have that k = val(t(m⃗)) ≤ t(max(m⃗), . . . ,max(m⃗)) ≤ F ′[m⃗](0). Then by
∀L rule we will get that F ′[m1, ...,mn] ⊢γ#1 Γ(m⃗), ∀xϕ(x) ⇒ ∆(m⃗).

• (∀R): Say CFA ⊢ Γ(⃗a) ⇒ ∆(⃗a), ϕ(⃗a, x) where x is not among a⃗. Then by
Induction hypothesis we have in CFA∞ that there is a primitive recursive
operator F1 such that for all m⃗, i ∈ N, F1[m1, ...,mn, i] ⊢γi Γ(m⃗) ⇒
∆(m⃗), ϕ(m⃗, i). Since F1[m1, ...,mn, i] = F1[m1, ...,mn][i] an application
of the ωR rule yields F [m1, ...,mn] ⊢γ

0 Γ(m⃗) ⇒ ∆(m⃗), ∀xϕ(m⃗, x), where
γi < γ.

• Inductive Rule: Say CFA ⊢⇒ ϕ(⃗a, 0) and CFA ⊢ ϕ(⃗a, x) ⇒ ϕ(⃗a, S(x)). By
induction hypothesis we have in CFA∞ that for some primitive recursive
operators F1 and F2, for all m⃗, i ∈ N, F1[m1, ...,mn] ⊢γ1⇒ ϕ(m⃗, 0) and
F2[m1, ...,mn, i] ⊢γ2 ϕ(m⃗, i) ⇒ ϕ(m⃗, S(i)).
Define F = F1 + F2. Then we will also have that F [m1, ...,mn] ⊢γ1⇒
ϕ(m⃗, 0) and F [m1, ...,mn, i] ⊢γ2 ϕ(m⃗, i) ⇒ ϕ(m⃗, S(i)).
Now applying the Cut-admissibility theorem repeatedly we get for every15

i > 0,

Ai.C(ϕ)+i(F, F)[m⃗][i] ⊢βi⇒ ϕ(m⃗, i)

Now, according to Proposition 4.30, we can construct a primitive recursive
Skolem operator G such that for all positive i, Ai.C(ϕ)+i(F, F)[i] ≤ G[i].

15For instance, when i = 1, a direct application of Theorem [4.13] gives us
AC(ϕ)+1(F, F)[m⃗][0] ⊢β1⇒ ϕ(m⃗, 1). Thus, weakening gives us AC(ϕ)+1(F, F)[m⃗][1] ⊢β1⇒
ϕ(m⃗, 1) as needed. An induction argument can easily generalize the result.

94 4.3. CLASSIFYING PROVABLY RECURSIVE FUNCTIONS

Consequently, we also have Ai.C(ϕ)+i(F, F)[m⃗][i] ≤ G[m⃗][i]. Therefore, by
weakening, we obtain for all i, G[m⃗][i] ⊢βi⇒ ϕ(m⃗, i).16

Finally, an application of the ωR rule would yield G[m⃗] ⊢β⇒ ∀xϕ(m⃗, x)
where βi < β. Since G is a primitive recursive skolem operator, we have
what we needed.

We are finally ready to classify the provably recursive functions. However,
before proceeding, we require a couple of additional results concerning primitive
recursion.

Proposition 4.35. Let F be a function satisfying the following conditions

1. The graph of F is primitive recursive.

2. F is bounded above by some primitive recursive function.

Then F is itself a primitive recursive function.

Proof. Let XF denote the primitive recursive characteristic function of the graph
of F , defined as follows:

XF (x, y) = 1 if F (x) = y

XF (x, y) = 0 otherwise

Given that F is bounded above by a primitive recursive function (say) G, and
since bounded search is primitive recursive, we can define a function F ′(x) as
follows:

F ′(x) = µy ≤ G(x)(XF (x, y) = 1)

This function F ′(x) is also primitive recursive. Moreover, note that F ′(x) essen-
tially represents F (x) for all x. Therefore, F is indeed primitive recursive.

Lemma 4.36. (CFA) If f is a provably recursive function in CFA, then it has
a primitive recursive graph.

Proof. Let f be a provably recursive function represented by the formula ∃zϕ(z, x, y),
where ϕ is a bounded formula. Subsequently, we have CFA ⊢ ∀x∃y∃zϕ(z, x, y).
By the embedding theorem (Theorem 4.34), there exists a primitive recursive
Skolem operator G such that G ⊢α⇒ ∀x∃y∃zϕ(z, x, y).
Following the argument in Proposition 4.17, we will have that for any m ∈
N there exists n0 ≤ G[m](0) = G(m) and α1 < α0, such that G[m] ⊢α1⇒
∃zϕ(z,m, n0). Further, by the same argument, there exists n1 ≤ G(m) and
α2 < α1, such that G[m] ⊢α2⇒ ϕ(n1,m, n0).
Thus, from Corollary 4.12, for all m, there exist n0, n1 ≤ G(m) such that
N ⊨ ϕ(n1,m, n0). . . . (i)

16Note that when i = 0, the way we define G in Proposition 4.30 ensures that F ≤ G and
F [m⃗] ≤ Am.C(ϕ)+m(F, F)[m⃗] ≤ G[m⃗][0].

4.3. CLASSIFYING PROVABLY RECURSIVE FUNCTIONS 95

Let Xϕ be the characteristic function of the primitive recursive predicate defined
by the bounded formula ϕ (Existence of which is guaranteed by Lemma 4.31).
Then, f(m) = n
iff N ⊨ ∃zϕ(z,m, n)
iff (from (i)) for some z ≤ G(m), N ⊨ ϕ(z,m, n)
iff for some z ≤ G(m), Xϕ(z,m, n) = 1.
Thus, we define the characteristic function Xf of f as follows:

Xf (m,n) = 1 if and only if ∃z ≤ G(m)(Xϕ(z,m, n) = 1)

Then, Xf is a primitive recursion function. It is because bounded quantification,
G and Xϕ are all primitive recursive.

Theorem 4.37. (CFA) f is a provably recursive function of CFA if and only if
f is a primitive recursive function.

Proof.
Right to Left direction. This follows from Theorem 4.5.
Left to Right direction. Let f be a provably recursive function of CFA, repre-
sented by a Σ1 formula ϕ(x, y) with x, y as the only free variables in ϕ.
We have CFA ⊢ ∀x∃yϕ(x, y). By the embedding theorem, in CFA∞, we have
G ⊢γ ∀x∃yϕ(x, y), for some primitive recursive Skolem operator G. An appli-
cation of Proposition 4.17 yields that for any m, there exists n ≤ G(m) such
that N ⊨ ϕ(m,n). Thus, for any m, we have f(m) ≤ G(m), indicating that f is
bounded by a primitive recursive function G.
Furthermore, from Lemma 4.36, we know that f has a primitive recursive graph.
Therefore, according to Proposition 4.35, f is a primitive recursive function.

Remark 4.38.

• While the proof of the theorem focuses on provably recursive functions of a
single variable, we note that through subsequent generalizations of Proposi-
tion 4.35, Lemma 4.36, and Proposition 4.17 (which are straightforward),
the proof can be directly extended to n-ary provably recursive functions.

• The theorem conclusively shows that CFA is distinct from PA because the
class of provably recursive functions of PA contains (total) recursive func-
tions which are not primitive recursive. For instance, the Ackermann
function17, is provably recursive in PA but is not a primitive recursive
function.

17For the definition, refer to Appendix A.

5 | Conclusion and Further
Work

Conclusion
In this thesis, we conducted a proof-theoretic study of Contraction Free Arith-
metic (CFA). We introduced a contraction free predicate logic (GQC), which is
essentially the multiplicative fragment of LK without contraction rules. After a
brief study of the logic, we defined the arithmetic over this logic. In Section 3.2,
we established that the additive connective (which were omitted) in fact become
derivable in CFA. Moreover, in our axiomatization of CFA, we were careful to
select the induction rule over the induction axiom, and we justified our claim in
Proposition 3.35, demonstrating that contraction-free arithmetic would collapse
to PA in the presence of the induction schema. Thus, it becomes plausible to
claim that our choice of the underlying logic and our particular axiomatization
provide the most natural framework to study the consequences of removing the
logical rule of contraction from arithmetic.
One of the key results (Theorem 3.32) established in this thesis is that the in-
duction schema for bounded formulas is derivable in CFA, which gives a lot of
impetus to our study. As a consequence of the presence of ∆0 induction schema,
we showed (Corollary 3.40) that any Π2 formula provable in the arithmetical
theory I∆0 is also provable in CFA under a natural formula translation. This
result makes the study of CFA much smoother, as it allows us to freely make
use of various known properties of I∆0.
This thesis culminated in the classification of provably recursive functions of
CFA, which serves to be an important measure of the deductive strength of an
arithmetical theory. In Section 4.2, we showed that primitive recursive func-
tions are provably recursive in CFA, thereby establishing that CFA surpasses
the capabilities of I∆0, which lacks the ability to verify the totality of all primi-
tive recursive functions. While, in Section 4.3, we established that any provably
recursive function in CFA is, in fact, primitive recursive. For our proof, we
embedded (theorem 4.34) CFA in an infinitary calculus CFA∞ in which deriva-
tions are controlled by certain operators (called skolem operators). The pivotal
step (Theorem 4.28) in our proof was demonstrating the admissibility of the
cut-rule in CFA∞, wherein we observed that the behavior of the Skolem oper-

97

ators remains favorable throughout cut-admissibility. We used these operators
to bound the provably recursive functions of CFA and thus, help us show that
any provable recursive function is primitive recursive (see Proposition 4.35 and
Lemma 4.36). Given that PA has provably recursive functions which are not
primitive recursive, we conclude that CFA constitutes a distinct arithmetical
theory from PA.

Further Work
Our work represents just the initial phase in the exploration of Contraction
Free Arithmetic. In this concluding subsection, we note some questions that we
would be interested to investigate next.

• An interesting direction of study would be to investigate the construc-
tive nature of CFA. It is inspired by certain properties it shares with HA.
Notably, in the underlying logic of CFA, akin to intuitionistic logic, the
provability of ⇒ ∃xA(x) implies the provability of ⇒ A(t) for some term t.
Furthermore, similar to CFA, the (additive) excluded middle for bounded
formulas holds in HA. Given the similarities, we would like to investigate,
in particular, whether disjunction property and numerical existence prop-
erty holds in CFA: A theory T is said to have the disjunction property, if
for any sentences A and B we have that T ⊢ A ∨ B, then we have that
either T ⊢ A or T ⊢ B holds; a theory T is said to have the numerical
existence property, if for any formula A(x) with no free variable other than
x, is we have that T ⊢ A ∨ B then we have that either T ⊢ ∃xA(x) then
there is a numeral n such that T ⊢ A(n) holds1.

• A natural progression for future research involves determining its position
relative to other arithmetic systems. In particular, we are interested in
CFA’s relation with systems of arithmetic which have the same class of
provably recursive functions (i.e. primitive recursive functions). For in-
stance, we are interested in CFA’s relation with PRA and IΣ1. To begin
with, we would be interested to see whether Π2 formulas provable in PRA
is also provable in CFA. Moreover, it is a well known result by Parson’s
that, IΣ1 is Π2-conservative over PRA. Then, this would also imply that
Π2 formulas provable in IΣ1 is also provable in CFA.

• Furthermore, we wish to rigorously establish Gödel’s Second Incomplete-
ness Theorem for CFA, which was not pursued due to time constraints.
In Section 3.3, we established that any Π2 sentence which is provable in
I∆0 would also be provable in CFA under a suitable formula translation.
Given that, akin to the case of I∆0, we would be able to execute arith-
metization of syntax in CFA. Moreover, we also have that CFA is Σ1

1Recall that, in CFA, A ∨ B ↔ ∃x((x = 0 → A) ⊗ (x ̸= 0 → B). Hence, if CFA has the
numerical existence property then it will also have the disjunction property.

98

complete. Furthermore, even though we have the induction rule instead
of the induction schema, we will be able to define a suitable Σ1 provabil-
ity predicate for CFA. In the same section, we also showed that our CFA
enjoys left contraction for Σ1 formulas. Building upon the insights from
the work done in Beklemishev and Shamkanov [2016], it appears feasible
to verify that CFA satisfies the constraints outlined in that paper for the
second incompleteness theorem. However, careful work needs to be done
to establish a fixed point lemma. Moreover, we need to ensure that our
modified provability predicate satisfies the Hilbert-Bernays conditions.

• Closely related to the study of second incompleteness theorem in CFA, is
the study of its Provability logic. The provability logic (say P) of an arith-
metical theory T is a propositional modal logic which captures the notion
of provability with its □ operator. To make things a bit more precise, we
define the notion of T − interpretation fT (ϕ) of a modal formula ϕ which
assigns to each propositional atom of modal logic a sentence of arithmetic,
and it also satisfies :

– fT (⊥) = ⊥;
– fT (A→ B) = fT (A) → fT (B);
– fT (□A) = ProvT (fT (A)). Where ProvT is the provability predicate

for T.

Further, we have the notion of arithmetical soundness and completeness:

– Arithmetical Soundness. Given any modal formula A and T− inter-
pretation fT , if P ⊢ A then T ⊢ fT (A).

– Arithmetical completeness. Given any modal formula A, if T ⊢ fT (A)
for any T− interpretation fT , then P ⊢ A.

Then, we say that P is the provability logic of an arithmetical theory T iff
P is arithmetically sound and complete with respect to T. The landmark
result in provability is R. Solovay’s arithmetical completeness theorem of
1976, where he showed that the modal logic GL is arithmetically complete
with respect to PA. Provability logic has played an important and vibrant
role in the study of the foundations of mathematics and mathematical logic
at large. For a thorough introduction, we direct the reader to Artemov
and Beklemishev [2004]. The provability logics of various classical sub-
systems of PA have been investigated, while, on the other hand, provability
logic of arithmetical theories based on non-classical logic has been under-
investigated. For instance, the provability logic of HA was established
(although it is not yet peer-reviewed) only recently in 2022 (see Mojtahedi
[2022]). There is an important result (see de Jongh et al. [1991]), in our
context, in the field of provability logics for (classical) sub-systems of PA

99

which says that GL is arithmetically sound and complete with respect to
an arithmetical theory T if the following conditions hold2:

1. T proves induction schema for ∆0 formulas, and T proves the totality
EXP 3.

2. T is a sound arithmetical theory.

Considering that CFA establishes the provability of the ∆0 induction
schema and that EXP is a primitive recursive function (thus, its totality
is provable in CFA), there arises a compelling possibility that GL serves as
the provability logic of CFA. However, it is important to carefully consider
the implications of removing contraction on this result. Hence, exploring
the provability logic of CFA could be an interesting research direction.

• The next direction of research would be an investigation of the reflection
principles of CFA. Reflection principles, in the context of a recursively
enumerable theory T, are formal schemata that assert the soundness of
T, meaning they state that ’every sentence provable in T is true’. More
precisely, if ProvT (x) denotes a Σ1 provability predicate for T, then the
(uniform) reflection principle for T is the schema:

∀x(ProvT (A(x)) → A(x))

for all formulas A(x). The schema is denoted by RFN(T). Partial re-
flection principles are derived by restricting the formula A to range over
specific sub-classes of T-formulas. Commonly, these classes are chosen
from the arithmetical hierarchy, such as Σn or Πn. The resulting partial
reflection principles are labeled as RFNΣn

(T) and RFNΠn
(T), respec-

tively. The following classical facts are well known :

1. RFNΣn(T) is equivalent toRFNΠn+1(T) over Elementary arithmetic(
EA) for n ≥ 1. Moreover, RFNΠ1(T) is equivalent to Con(T), the
consistency assertion for T (c.f. Smorynski [1977]).

2. PA ≡ EA + RFN(EA) or, in other words, an alternative axioma-
tization of PA over EA can be obtained by replacing the induction
schema with the full (uniform) reflection schema for EA.

3. Over EA, the induction schema for Σn formulas is equivalent to
RFNΣn−1

(T) (c.f.Leivant [1983]).

In Beklemishev [1997], Lev Beklemishev showed that fragments of arith-
metic axiomatized by various forms of induction rules can also be axioma-
tized in terms of reflection principles. For instance, consider the following

2It is yet unknown whether condition 1 gives a lower bound on the scope of provability
logic.

3EXP is the the Π1 formula expressing that for all x, its power 2x exists

100

progression of formal systems over EA:

EA0 = EA
EAn+1 = EAn + {RFNΣn

(EAn)}

EAω =
∪
n∈ω

EAn

Then, EAω ≡ EA + Σn-Induction Rule. In order words, the closure of EA
under the induction rule for Σn is equivalent to the ω iterated Σn reflec-
tion principle.
Considering the close link between induction rules and reflection schemas
in arithmetical theories with a classical base logic, and noting that CFA
is axiomatized with induction rules, it becomes intriguing to explore re-
flection principles for contraction-free arithmetic. Specifically, we aim to
investigate whether a similar relationship between contraction-free arith-
metics, axiomatized by restricted classes of induction rules, and reflection
principles can be established.

We conclude this thesis with the remark that further exploration of contraction-
free arithmetic will require a deeper comprehension of the classes of formulas
within this arithmetic. Since not all formulas are equivalent to some prenex
formula, we will encounter classes of formulas that are more diverse than those
provided by the arithmetical hierarchy.

Bibliography

Wilhelm Ackermann. Mann, zur widerspruchsfreiheit de. reinen Zahlentheorie,
Mathematische Annalen, 117, 1940.

Sergei Artemov and Lev Beklemishev. Provability logic. In D. Gabbay and
F. Guenthner, editors, Handbook of Philosophical Logic, volume 13, pages
229–403. Kluwer, Dordrecht, second edition, 2004.

Arnon Avron. The semantics and proof theory of linear logic. Theoretical Com-
puter Science, 57(2):161–184, 1988.

Lev Beklemishev. Induction rules, reflection principles, and provably recursive
functions. Annals of Pure and Applied Logic, 85(3):193–242, 1997.

Lev Beklemishev and Daniyar Shamkanov. Some abstract versions of gödel’s
second incompleteness theorem based on non-classical logics. LiberAlberti,
2016.

Wilfried Buchholz. A simplified version of local predicativity. Proof Theory: A
Selection of Papers from the Leeds Proof Theory Meeting 1990, pages 115–148,
1992.

Samuel R. Buss. First-order proof theory of arithmetic. In Handbook of Proof
Theory, Studies in Logic and the Foundations of Mathematics, chapter II.
Elsevier, 1998.

Haskell B. Curry. The inconsistency of certain formal logic. Journal of Symbolic
Logic, 7(3):115–117, 1942. doi: 10.2307/2269292.

Dick de Jongh, Frank Montagna, and M. Jumelet. On the proof of solovays
theorem. Studia Logica, 50(1):51–70, 1991.

Patrick C. Fischer. Theory of provable recursive functions. Journal of Symbolic
Logic, 32(2):270–270, 1967. doi: 10.2307/2271695.

Gerhard Gentzen. Untersuchungen über das logische schlieSSen i. Mathematis-
che Zeitschrift, 39:176–210, 1935.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101,
1987. ISSN 0304-3975.

102 BIBLIOGRAPHY

Vyacheslav N. Grišin. A nonstandard logic and its application to set theory (in
Russian). Studies in Formalized Languages and Nonclassical Logics, pages
135–171, 1974.

Vyacheslav N. Grišin. Algebraic semantics of logic without contractions (in
Russian). Studies in Set Theory and Nonclassical Logics, pages 247–264,
1976.

Vyacheslav N. Grišin. Herbrand’s theorem for logic without contractions (in
Russian). Studies in Nonclassical Logics and Set Theory, pages 316–329,
1979.

Vyacheslav N. Grišin. Predicate and Set-Theoretic Calculi Based on Logic With-
out Contractions. Izvestiya: Mathematics, 18(1):41–59, February 1982.

Vyacheslav N. Grišin. A generalization of the Ajdukiewicz-Lambek System (in
Russian). Studies in Nonclassical Logics and Formal Systems, pages 315–334,
1983.

Vyacheslav N. Grišin. The impossibility of defining the class of L0-algebras by
means of identities. Mat. Zametki, 38(5):641–651, 1985.

Richard G. Heck. A liar paradox. Thought: A Journal of Philosophy, 1(1):
36–40, 2012.

Jussi Ketonen and Richard Weyhrauch. A Decidable fragment of Predicate
Calculus, volume 32. North-Holland, 1984.

Georg Kreisel. On the interpretation of non-finitist proofspart ii. Journal of
Symbolic Logic, 17:43 – 58, 1952.

Georg Kreisel. Mathematical significance of consistency proofs. The Journal of
Symbolic Logic, 23(2):155–182, 1958. ISSN 00224812.

Daniel Leivant. The optimality of induction as an axiomatization of arithmetic.
The Journal of Symbolic Logic, 48(1):182–184, 1983.

Martin H. Löb. Solution of a problem of leon henkin. Source: The Journal of
Symbolic Logic, 20:115–118, 1955.

P. Mancosu, S. Galvan, and Richard Zach. An Introduction to Proof Theory:
Normalization, Cut-Elimination, and Consistency Proofs. OUP Oxford, 2021.
ISBN 9780192649294.

Edwin Mares and Francesco Paoli. Logical consequence and the paradoxes.
Journal of Philosophical Logic, 43:439–469, 2014. ISSN 15730433.

Mojtaba Mojtahedi. manuscript at arxiv, 2022. URL https://arxiv.org/abs/
2206.00445.

https://arxiv.org/abs/2206.00445
https://arxiv.org/abs/2206.00445

BIBLIOGRAPHY 103

Piergiorgio Odifreddi. Classical Recursion Theory: The Theory of Functions and
Sets of Natural Numbers. ISSN. Elsevier Science, 1992. ISBN 9780080886596.

Hiroakira Ono and Yuichi Komori. Logics without the contraction rule. Source:
The Journal of Symbolic Logic, 50:169–201, 1985.

Francesco Paoli. Substructural Logics: A Primer. Springer, Dordrecht, Nether-
land, 2002.

Rohit Parikh. Existence and feasibility in arithmetic. The Journal of Symbolic
Logic, 36(3):494–508, 1971.

Pavel Pudlák and Petr Hájek. The Metamathematics of First-Order Arithmetic.
Springer, Berlin, Heidelberg, 1993. ISBN 978-3-540-63648-9.

Greg Restall. Arithmetic and truth in ukasiewicz’s infinitely valued logic, 1992.

Greg Restall. On logics without contraction, phd thesis, the university of queens-
land, 1994.

Peter J. Schroeder-Heister and Kosta Došen. Substructural Logics. Oxford
science publications. Clarendon Press, 1993. ISBN 9780198537779.

Thoralf A. Skolem. Studies on the axiom of comprehension. Notre Dame Journal
of Formal Logic, 4(3):162–170, 1963.

Craig Smorynski. The incompleteness theorems. In Jon Barwise, editor, Hand-
book of Mathematical Logic, volume 90 of Studies in Logic and the Foundations
of Mathematics, pages 821–865. Elsevier, 1977.

Alfred Tarski. Logic, Semantics, Metamathematics. Clarendon Press, 1956.

Anne Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 2 edition,
2000.

Anne S. Troelstra. Lectures on Linear Logic. Center for the Study of Language
and Information Publications, 1992.

Hao Wang. A Survey of Mathematical Logic. Peking: Science Press, 1962.

Andreas Weiermann. Classifying the provably total functions of peano arith-
metic. Bulletin of Symbolic Logic, 12:177–190, 2006.

A | Appendix A

Appendix A mainly consists of some relevant definition which were not included
in the text and also mentions some well-known theorems.

Definition A.1. (Prenex formulas) A prenex formula is a formula of the form:

Q1x1 . . . QnxnB

where Qi is either ∀ or ∃ and the formula B is quantifier-free.

Remark A.2. A theorem of classical logic states that given any formula, we can
find another formula which is in prenex form and is equivalent to the original
formula. On the other hand, this does not hold in intuitionistic logic.

Definition A.3. (Primitive Recursion) A function f : Nk → N is said to
defined from g and h by primitive recursion if :

f(x⃗, 0) = g(x⃗)

f(x⃗, n+ 1) = h(f(x⃗, n), x⃗, n)

where x⃗ = x1, . . . , xm. We also allow m = 0, in which case g is interpreted as a
constant and f(n+ 1) is defined in terms of the previous value f(n).

Definition A.4. (Primitive Recursive Functions, Gödel) The class of primitive
recursive functions is the smallest class of functions :

1. Containing the initial functions.

0m(x⃗) = 0 (m-ary constant function zero)
S(n) = n+ 1 (Succesor Function)
Pm
i (x⃗) = xi (m-ary Projection Function)

2. Closed under composition,i.e, the schema that defines

f(x⃗) = h(g1(x⃗), . . . , gm(x⃗))

from given functions gi and h.

105

3. Closed under primitive recursion.

Definition A.5. (Partial Recursive Functions, Kleene) The class of recursive
functions is the smallest class of functions :

1. Containing the initial functions.

2. Closed under composition.

3. Closed under primitive recursion.

4. Closed under µ-recursion, i.e, the schema that defines

ϕ(x⃗) = µy[(∀z ≤ yψ(x⃗, z) ↓)⊗ ψ(x⃗, y) = 0]

from given function ψ

A (general) recursive (also called computable) function is a function which hap-
pens to be Total. Hence, any primitive recursive function is a recursive function.

Definition A.6. (Recursive Enumerable set) A set A ⊆ Nk is said to be recur-
sively enumerable if there is a recursive function f s.t. A := rng(f).

Definition A.7. (Ackermann function) Ackermann function, A, is a function
from N2 to N and is defined recursively in the following way:

A(0, n) = n+ 1

A(m+ 1, 0) = A(m, 1)

A(m+ 1, n+ 1) = A(m,A(m+ 1, n))

Remark A.8. In recursive function theory, the Ackermann function, is a rather
classic example of a total recursive function which is not primitive recursive.
Moreover, the Ackermann is a provably recursive function of PA.

Definition A.9. A coding of finite sequences consists of a primitive recur-
sive set Seq ⊂ N and primitive recursive functions:

1. Unary function lh; called the length of a sequence s.

2. Binary function memb; memb(s, i) is the i th member of s.

3. Binary function prolong; prolong(s, k) is the result of juxtaposing k with
s.

such that the following holds for each s, s′ ∈ Seq:

• lh(s) ≤ s and, for each i < lh(x), memb(s, i) < s

• there exists an empty sequence ε with lh(ε) = 0

• for each k ∈ N, if s′ = prolong(s, k) then lh(s′) = lh(s) + 1, for i < lh(s)
we have memb(s, i) = memb(s′, i) and for i = lh(s) we have memb(s′, i) =
k.

106

• if lh(s) ≤ lh(s′) and, for each i < lh(s), memb(s, i) ≤ memb(s′, i) then
s ≤ s′

• N− Seq is infinite

Remark A.10. We will informally write (s)i to mean the same number as
memb(s, i).

Theorem A.11. There is a ∆0 coding of finite sequences1.

Theorem A.12. Some useful primitive recursive functions concerning sequences.

1. For each n ≥ 1, there is an n-ary primitive recursive function associating
with each k0, .., kn−1 ∈ N the n-tuple ⟨k0, .., kn−1⟩, i.e. the sequence s of
length n such that, for each i < n, (s)i = ki.

2. Concatenation: For s, t ∈ Seq, s ⌢ t denotes the concatenation of s, t.

Definition A.13. (Σ1 completeness of a theory T) An arithmetical Theory T
is said to be Σ1 complete if for any Σ1 formula that holds true in N is provable
in T.

Definition A.14. (Σ1 soundness of a theory T) An arithmetical Theory T is
said to be Σ1 sound if any Σ1 formula provable in T is true in N .

Definition A.15. (Language L0) L0 is a first-order vocabulary order vocabu-
lary, given by,

L0 := {0, S,+, ·,=, <}

where 0 is a constant symbol; S is an unary function symbol; (+), (·) are binary
function symbols ; =,< are binary predicate symbols.

Definition A.16. (Parikh [1971]) (I∆0) I∆0 is the theory in the Language L0

over classical logic with the following axioms:

1. ¬(S(x) = 0)

2. (S(x) = S(y) → x = y)

3. ¬(x = 0) → ∃y(x = S(y))

4. x+ 0 = x

5. x+ S(y) = S(x+ y)

6. x · 0 = 0

7. x · S(y)) = x · y + x

8. x < y ↔ ∃z(x+ S(z) = y)

1See Chapter 5.3.(f) of Pudlák and Hájek [1993]

107

Together with the induction schema for bounded formulas. I.e. given any
bounded formula ϕ(x):

ϕ(0) ∧ ∀x(ϕ(x) → ϕ(S(x)) → ∀xϕ(x)

Remark A.17. Instead of the bounded induction schema taken in Definition
A.16, we can equivalently axiomatize I∆0 with the following form of bounded
induction schema:

∀x(A(0) ∧ ∀y < x(A(y) → A(S(y)) → A(x))

Remark A.18. I∆0 is also an IΣ0 in literature. For more details on I∆0 consult
Pudlák and Hájek [1993].

Proposition A.19. (I∆0) Given a formula ϕ in the language of I∆0, if we have
I∆0 ⊢ ϕ then there exists a finite set ∆ of formulas which contains instances of
the axioms of I∆0 such that there exists a cut-free proof of the sequent ∆ ⇒ ϕ
in LK.

Definition A.20. (PRA), PRA is an arithmetical theory axiomatized over I∆0

in a language that includes a function symbol for every primitive recursive func-
tion, along with their defining equations.

Definition A.21. (IΣ1) IΣ1 is the arithmetical theory axiomatized over I∆0

which contains in addition the induction schema for Σ1 formulas.

Definition A.22. (GL) Gödel-Löb logic (GL) is a modal logic which results
from adding Löb’s axiom to modal logic K. Where Löb’s axiom is the following
principle:

□(□p→ p) → □p.

Definition A.23. (Conservative Extension) A theory T′ is a conservative
extension of theory T, if all theorems of T are theorems of T′ and additionally,
all theorems of T′ in the language of T are also theorems of T.

B | Appendix B

Appendix B mainly consists of some proofs which were left out from the text
to maintain a smoother flow.

Proposition B.1. (CFA) If C,D are bounded formulas then it can be shown
that left and right contraction holds for B ∧ C and B ∨ C.

Proof. As C,D are bounded formulas we have from Theorem 3.28 that ⇒ C∨¬C
and ⇒ B ∨ ¬B. Now consider the following proof tree:

...
⇒ C ∨ ¬C

...
C ∨ ¬C,B ⇒ (B ∧ C) ∨ ¬C

(Cut)
B ⇒ (B ∧ C) ∨ ¬C

(∨R)
B ⇒ (B ∧ C) ∨ ¬B ∨ ¬C

...
¬B ⇒ (B ∧ C) ∨ ¬B ∨ ¬C

(∨L)
B ∨ ¬B ⇒ (B ∧ C) ∨ ¬B ∨ ¬C

...
⇒ B ∨ ¬B

(Cut)
⇒ (B ∧ C) ∨ ¬B ∨ ¬C
⇒ (B ∧ C) ∨ ¬(B ∧ C)

Thus, we will have that left and right contraction holds for B ∧C. Similarly, it
can be established for B ∨ C.

Proposition B.2. (CFA)

1. Double Induction:

⇒ A(0, 0) ⇒ ∀yA(0, y) ⇒ ∀xA(x, 0) ⇒ ∀x∀y(A(x, y) → A(S(x), S(y)))
(DoubleInd)

⇒ ∀x∀yA(x, y)

2. y < x⇒ y < S(x)

Proof. 1. Consider the following (partial) proof tree.

109

...
⇒ A(S(x), 0)

⇒ A(x, 0) → A(S(x), 0)

...
⇒ A(x, y) → A(S(x), S(y))

(IndRule)
⇒ ∀y(A(x, y) → A(S(x), S(y)))

...
⇒ ∀yA(x, y) → ∀yA(S(x), S(y))) ⇒ ∀yA(0, y)

(IndRule)
∀x∀yA(x, y)

2. Consider the following proof tree.

...
y + S(c) = x⇒ S(y + S(c)) = S(x)

...
⇒ y + S(S(c)) = S(y + S(c))

y + S(c) = x⇒ y + S(S(c)) = S(x)
(∃R)

y + S(c) = x⇒ ∃z(y + S(z) = S(x))
(∃L)

∃c(y + S(c) = x) ⇒ ∃z(y + S(z) = S(x))

y < x⇒ y < S(x)

Proposition B.3.

1. Equality is symmetric.

2. Equality is transitive.

Proof.

• Define a predicate P (x) := x = s. Now, consider the following proof tree.

...
s = t, P (s) ⇒ P (t)

s = t, s = s⇒ t = s ⇒ s = s(cut)
s = t⇒ t = s

• Define a predicate P (x) := x = r. Now, using part 1, we construct the
following proof tree.

...
t = s, P (t) ⇒ P (s)

...
s = t⇒ t = s

(cut)
s = t, P (t) ⇒ P (s)

110

Proposition B.4. (CFA′) Let B,C be any formula where x does not occur free,
then : B ∨ C ⇔ ∃x(x = 0 → B ⊗ ¬(x = 0) → C)

Proof. "⇒"
With the help of Lemma 3.14, we construct the following proof tree:

...
B ⇒ 0 = 0 → B ⊗ 0 ̸= 0 → C(∃R)

B ⇒ ∃x(x = 0 → B ⊗ x ̸= 0 → C)

...
C ⇒ S(0) = 0 → B ⊗ S(0) ̸= 0 → C

(∃R)
C ⇒ ∃x(x = 0 → B ⊗ x ̸= 0 → C)

(∨L)
B ∨ C ⇒ ∃x(x = 0 → B ⊗ x ̸= 0 → C)

"⇐"

Now let ϕ(x) := ((x = 0 → B) ⊗ (x ̸= 0 → C)) → B ∨ C, we proceed with
Induction rule on ϕ:

Basis.

...
(0 = 0 → B)⊗ (0 ̸= 0 → C) ⇒ B

(∨R)
(0 = 0 → B)⊗ (0 ̸= 0 → C) ⇒ B ∨ C

Hence, we have ⇒ ϕ(0)

Inductive step.

...
(S(x) = 0 → B)⊗ (S(x) ̸= 0 → C) ⇒ B ∨ C

(→ R,WL)
(x = 0 → B)⊗ (x ̸= 0 → C) → B ∨ C ⇒ (S(x) = 0 → B)⊗ (S(x) ̸= 0 → C) → B ∨ C

Hence, we have ϕ(x) ⇒ ϕ(S(x))

Thus, applying Induction rule in CFA′, we get that ⇒ ∀xϕ(x)
Further, as x is not free in B∨C and we have that ⇒ ∀x(P → Q) → ∃xP → Q,
we obtain ∃x((x = 0 → B)⊗ (x ̸= 0 → C)) → B ∨ C, as required.

C | Acknowledgements

First and foremost, to my supervisors – I thank you. For believing in me and
guiding me through my most interesting academic journey yet.

To Lev and Daniyar, it was truly a pleasure and a blessing to work under your
guidance. Your vision for the project and your patient nurturing of my research
interests were invaluable. Thank you for bearing with my shortcomings and
helping to overcome them. For understanding my vague mathematical doubts
better than I did myself or pinpointing exactly where I was stuck, and providing
me with the right path to explore. Even though our meetings were mainly over
Zoom, I will always cherish the deep discussions we had. My experience of
working in proof theory under your mentorship, which stoked the pure nature
of scientific curiosity in me, is a major reason why I plan to continue working
in this field of logic.

To Dick, who has been my focal point at the institute, from my first project on
intuitionism through to the completion of my thesis and later. More than just
a supervisor, he was more of a guardian during my time in Amsterdam, and it
was through him that I connected with Lev. His care and concern for each of
his students, even now – almost 20 years after his official retirement – is nothing
short of inspiring. I would always look forward to our weekly meeting, though
sometimes his sharpness could be a bit intimidating; often when he would tackle
a problem, he suddenly would become silent and deeply absorbed in thought,
and after some time, the solution often would emerge almost effortlessly. On
a different note when I feel lazy and consider taking public transport, thinking
about Dick’s commitment to biking (not only personal, but also his civic efforts
in making Amsterdam the bike-friendly city it is today) is (usually) enough to
make me reconsider.

To Nick, with whom I still have to play the deciding ping-pong game! His courses
on Modal logic and algebraic structures taught me not only about mathematical
methods in logic but gave us a nice example as to how to structure mathematical
courses. At this juncture, it is relevant to also mention the OC – the programme
committee of the MoL, of which I was privileged to be a part. Being a member
exposed me to intriguing ideas and complexities related to pedagogical struc-
tures. Our discussions towards improving the MoL helped me gain a deeper

112

understanding of the "meta" issues surrounding pedagogy.

To the ILLC office, especially Tugba and Ewout, not only for their valuable
administrative assistance but also for their friendly presence and engaging con-
versations.

To my colleagues at Spar Science Park (where I spent the most time after the
MoL room and Logic house 2.0), for the fun and of course, orange juice ;)

To Calcutta Logic Circle, and especially to Mihir Chakravorty, for warmly wel-
coming me into the wonderland of logic during my bachelor’s studies in Kolkata.
If not for coming across Smullyan’s The Gödelian Puzzle Book and subsequently,
the initial guidance I received from the members of the CLC, it is unlikely that
I would have pursued a path in logic.

To my grandparents and my father. Their self-less care and support created
the primary base for my studies. Just two months before submitting this thesis,
I lost my grandfather, who would have undoubtedly been the happiest and
proudest to witness the completion of my thesis. As I continue on my journey,
I will strive to carry with me the joy of mathematics and scholarship that he so
deeply revered.

Finally, and most importantly, to my friends who made Amsterdam, and es-
pecially the ILLC, a home – in many ways, the first place where I genuinely
felt a sense of belonging. My time as a MoL student was definitely a period
of significant challenges and growth, primarily fueled by the many beautifully
eccentric people in the ILLC community. To Arun, Dean, Evan, Hugh Mee,
Jeremy, Janek, Kalpok, Morgane, Paul, Patrick, Pluto, Rui, Shinchan, Tuva,
Wijnand – it is truly a privilege to be in your presence. To you and many more
not mentioned, I thank you all. It wouldn’t be an exaggeration to say that I
learnt more from you than I did in the courses and if I am closer to myself now,
it is because of your understanding, love, and most importantly, your craziness
:)

I conclude by acknowledging the influence of the poet Rabindranath Tagore
(after all, it’s blasphemous for a Bengali not to do so) in the development of my
conscience, and by quoting 1 him on something I came to understand gradually–

"A mind all logic is like a knife all blade. It makes the hand bleed
that uses it
If you shut your doors to all errors, truth will be shut out"

1Stray Birds, Rabindranath Tagore, 1916

	Introduction
	Substructural Logics
	Contraction and Paradoxes
	Contraction Free Logic
	Arithmetic in Contraction-free Logic
	Overview of this thesis

	Contraction Free Logic
	Grišhin Calculus
	Propositional Calculus
	Predicate Calculus

	Cut-Elimination in GQCG
	Deduction from hypotheses

	Contraction Free Arithmetic
	The Formal System of CFA
	Additive Connectives
	Induction

	Provably Recursive Functions
	Provably Recursive Functions
	Primitive Recursive Functions
	Classifying Provably Recursive Functions
	CFA
	Admissibility of Cut in CFA
	Embedding CFA in CFA

	Conclusion and Further Work
	Bibliography
	Appendix A
	Appendix B
	Acknowledgements

