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Chapter 1

Introduction

Nowadays, we are extremely used to understanding the world through data. The
news explain how the planet will change according to scientific evidence; social
media show us advertisements based on our likes and searches; and our smart-
phones provide us with an overview of our fitness health based on the number of
steps and hours of sleep we had in the day. These are just three examples among
hundreds that illustrate our interaction with modern life: heterogeneous data is
collected, some kind of math is used to aggregate it, and a conclusion is presented
to us. This thesis is about that kind of math.

Before delving into the specific context we study, let us take a moment to consider
the big picture. First, the data (or information) we gather. As mentioned, it
is heterogeneous. It may originate from sensors or human interactions, among
others. It may come from a single source or a collection of sources. It may
be certain or doubtful, coherent or not. Gathering raw information from the
world (instead of from a controlled environment like a scientific lab) opens the
door to collecting any kind of information, in any format, and with any level
of reliability. This leads to a daunting realization for a mathematician: we can
assume very little about the input of our problem. Second, the math used to
aggregate this data and provide a conclusion must rely on a solid theoretical
foundation. The reason is simple: most of the time, this math is invisible to users,
sometimes even untrackable for developers (so-called black boxes). Moreover, as
we mentioned, these processes are everywhere. So we must ensure that these
mistakes occur only exceptionally (and continue researching to avoid them). Last
but not least, the conclusion that the whole process presents will be perceived
as objective information because the data says it all. Therefore, we have an
additional argument to conduct theoretical research in information fusion.

1



2 Chapter 1. Introduction

In our case, we will not talk about information fusion in general. We will fo-
cus on merging pieces of evidence that can be represented as sets of elements
within a finite universe of elements. A piece of evidence will be understood as
an observation made or obtained from a source in the real world. For example,
imagine Player 1 is playing Guess Who? against Player 2. The solution universe
for Player 1 will be the collection of characters that are on their board, let us say
{Ami,Taylor,Gabe,Holly,Casey, Sally}. Now, if Player 1 asks, “Is this person
wearing a hat?” and Player 2 answers, “No”, Player 1 has a piece of evidence for
the set of characters that are not wearing a hat. If these characters are Taylor,
Gabe, Casey and Sally, this piece of evidence would be represented as

{Taylor,Gabe,Casey, Sally}

Therefore, we do not consider information such as text or images, at least not
without preprocessing it and representing it as sets of elements. In other words,
we represent evidence as sets of possible worlds. In epistemology this kind of
information is often called propositional evidence. That is why we talk about
combining evidence instead of information fusion.

As mentioned, we aim to aggregate heterogeneous evidence, so we will introduce
some “imperfections” in our representation. First, we will assume that our pieces
of evidence have some degree of uncertainty. We will represent the degree of
uncertainty of a piece of evidence by a number between 0 and 1. For instance,
imagine that Player 1 asks, “Is this person’s name typically feminine?”, Player
2 does not recognize all the names on the board and they are allowed to give a
certainty degree together with their yes/no answer. Then, if the answer is “No,
but my certainty degree is only 0.6”,

({Taylor,Gabe,Casey}, 0.6)

would represent an uncertain piece of evidence. We will also allow having partial
information. That is, if Player 2 tells Player 1 that the character is blonde with
a certainty of 0.75, Player 1 ignores which is the certainty for having a character
with black, brown, or red hair, only attending to the available evidence. Addi-
tionally, we will assume that the pieces of evidence can be mutually contradictory,
which we will represent as sets with empty intersections. For instance, a set of
pieces of evidence

{
({Ami,Taylor,Gabe}, 0.8), ({Holly,Casey, Sally}, 0.65)

}
is a valid input for the problem. With this game in mind only, this much flexibility
might seem unwarranted. But think about a legal case where the judge is trying
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to find a culprit or culprits of an infraction. It is perfectly possible to gather
mutually contradictory evidence from independent sources with apparently inco-
herent degrees of certainty—i.e., one source might provide evidence A and the
other the set complement (negation) of A with the same degree of certainty, e.g.,
0.8. Furthermore, this evidence will be partial. Partial evidence in this context
means that we may not have the information to decide for or against each indi-
vidual defendant. In particular, we know that in a court of law, to have evidence
of the innocence of one person does not mean to have evidence of the guilt of the
others. This is the kind of relationship between pieces of evidence that we will
have in our representation.

Apart from these permissive assumptions, we will make a restrictive one. We
assume that all the pieces of evidence come from independent sources. However,
we will point to related work that drops this restriction as well.

Once we have this uncertain, partial, and possibly mutually contradictory evi-
dence, our goal is to combine it and draw a conclusion based on it. In our case,
this conclusion will be computing degrees of belief. So we want Player 1 to be
able to answer the question “What is my degree of belief in ...?”, where the dots
can be replaced by any set of the game’s candidates—which we will call proposi-
tion. Wrapping up all this information, our informal research question is: How to
merge observations from the real world to draw conclusions that are guaranteed
to be consistent? Using more technical terms, this rephrases as

How to combine uncertain, partial and possibly mutually contradictory evidence
and compute degrees of belief based on it?

We will introduce two well-established mathematical frameworks that answer this
question, namely, Dempster-Shafer theory and topological models of evidence, in
Chapter 2. These frameworks are rather complementary, since the former is quan-
titative and the latter is purely qualitative. In Chapter 3 we will propose our own
solution, which aims to combine the strengths of both to provide a richer frame-
work. In particular, we define a model to compute the degree of belief based on
uncertain evidence, which counts on two parameters closely related to the topo-
logical models of evidence. By changing the values of these parameters, our belief
model can produce the same results as some well-known approaches—concretely
the two we take as base cases—as well as unexplored ones. As the subtitle of
this thesis claims, we will address this problem from a logic and a computational
complexity perspective. Chapter 4 is dedicated to the former. We will define an
epistemic logic with two modal operators that compare propositions, one accord-
ing to the certainty of the evidence supporting them and another according to
their degree of belief. We will give some initial steps to discover the generated
logic. The computational complexity of the problem is studied in Chapters 5
and 6. Chapter 5 is dedicated to understanding the computational complexity of



4 Chapter 1. Introduction

the proposed solutions. Chapter 6 presents a concrete algorithmic solution to ap-
ply the (main) combination tool of Dempster-Shafer theory in an efficient-enough
way in certain contexts.

This thesis is the result of analyzing our research question from different angles,
from its mathematical foundations to epistemic logic and computational com-
plexity. We hope it leads to interesting research lines and encourages further
collaborations.

Chapter Overview
Chapter 2: Background In this chapter, we clarify the scope of this thesis
and introduce the elements of Dempster-Shafer theory and topological models of
evidence that will serve as cornerstones of our work. In Sections 2.1 and 2.2,
readers can respectively familiarize themselves with Dempster-Shafer theory and
topological models of evidence within the context of their respective fields and
research questions. In Section 2.3, we highlight the similarities between these
frameworks and how they complement each other. We also establish a common
vocabulary for the rest of this thesis. We close the chapter with a clarification
table that compares our terminology with those of Dempster-Shafer theory and
topological models of evidence. Part of the content of this chapter is based on
the preliminaries section of the paper (Pinto Prieto et al., 2023).

Chapter 3: Multi-Layer Belief Model for Combining Uncertain Evi-
dence The focus of this chapter is to define a mathematical model that gen-
eralizes both Dempster-Shafer theory and topological models of evidence (under
some restrictions). As a result, we enrich both frameworks by adding quantita-
tive components to topological models of evidence and by introducing different
notions of evidence into Dempster-Shafer theory. We introduce this method to
combine uncertain evidence as the multi-layer belief model because it is defined
in three separate steps or layers. In Section 3.1, we define these three layers.
The first layer focuses on the sets that represent pieces of evidence; it is inti-
mately connected to topological models of evidence; and introduces the notion
of the evidential demand of the agent. That is, different agents may establish
different requirements for the available evidence to be admissible to support their
beliefs. The second layer aims to combine the degrees of uncertainty of the vari-
ous pieces of evidence. It is deeply inspired by Dempster-Shafer theory. The last
layer connects the previous two and finalizes the process of obtaining degrees of
belief. To do so, the agents can set a context parameter related to how reliable
the sources are. In Section 3.2, we prove that, by setting the evidential demand
and the context parameter in certain ways, the multi-layer belief model manages
to reproduce some combination rules of Dempster-Shafer theory and the belief



5

operator of topological models of evidence, as well as introduce new alternatives.
Section 3.3 presents a real-life scenario where the versatility of the multi-layer be-
lief model could be insightful. This chapter reproduces and extends the content
of the paper (Pinto Prieto et al., 2023).

Chapter 4: A Qualitative Logic for Evidence and Belief Comparison
This chapter is a first step towards developing a modal logic for the multi-layer
belief model. In particular, we propose a qualitative logic that explicitly com-
pares the strengths of beliefs and evidential support with respect to the certainty
of the available evidence. The latter is the novel component of this logic, so
we dedicate Section 4.2 to motivating and justifying our definition of a modal
operator that compares propositions according to the degree of certainty of the
evidential support they receive. In Section 4.3, we define the syntax, the formal
models, and the semantics of our logic. We also explore some of its validities and
invalidities. Section 4.4 is dedicated to presenting a real-life scenario where being
able to reason about evidence uncertainty and the resulting belief function could
be useful. The content of this chapter is based on an unpublished manuscript
co-authored with Aybüke Özgün (Pinto Prieto and Özgün, 2024).

Chapter 5: Computational Complexity of Belief based on Evidence
This chapter begins a systematic analysis of the computational complexity of
three problems: applying Dempster’s rule of combination (one of the combination
rules of Dempster-Shafer theory), obtaining the outcome of the belief operator de-
fined in topological models of evidence, and applying the multi-layer belief model.
Section 5.1 is based on the paper (Pinto Prieto and De Haan, 2022). It addresses
the problem of studying the computational complexity of Dempster’s rule of com-
bination under certain restrictions on the evidence. A relevant part of the chapter
explores how to use a known efficient algorithm to combine hierarchical uncertain
evidence to improve the complexity results of combining uncertain evidence in
general. In Section 5.2, we present an efficient algorithm to perform the belief
operator defined in topological models of evidence. Section 5.3 analyzes the com-
putational complexity of the multi-layer belief model in its most general form.
It is based on the computational complexity section of the paper (Pinto Prieto
et al., 2023). Finally, Section 5.4 shows a real-life scenario where understanding
the peculiarities of the computational complexity of applying Dempster’s rule of
combination may be advantageous.

Chapter 6: Knowledge Compilation for Combining Uncertain Evidence
In this chapter, we show how to compute the result of Dempster’s rule of combina-
tion (under some restrictions) by constructing a particular propositional logic for-
mula and performing weighted model counting on it with a suitable set of weights.
This computation possibly includes the intermediate step of using methods from
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the field of knowledge compilation to transform the formula into a format that
allows efficient application of weighted model counting. We start by introduc-
ing weighted model counting and (relevant notions from) knowledge compilation
in Section 6.1. Section 6.2 details how to compute this combination rule using
weighted model counting. Section 6.3 explains how to apply knowledge compi-
lation to split the whole computation into two phases: an off-line phase that
requires exponential time in the worst case and returns a reusable outcome, and
an on-line phase that efficiently computes the final result of the rule by using the
outcome of the previous step. In Section 6.4, we show how to use this method
to efficiently run both phases when the evidence has hierarchical structure. Sec-
tion 6.5 concludes with a real-life scenario that may benefit from using knowledge
compilation to combine uncertain evidence. The content of this chapter is based
on an unpublished manuscript co-authored with Ronald de Haan (Pinto Prieto
and De Haan, 2024).

Chapter 7: Conclusion This chapter summarizes the main contributions of
this thesis and lists some of the research directions that could follow from the
presented results. In this chapter, as well as in the previous ones, we assume
familiarity with the background introduced in Chapter 2.



Chapter 2

Background

The goal of this thesis is to delve into the problem of combining non-ideal evi-
dence, understanding non-ideal as uncertain, partial, and possibly mutually con-
tradictory. The ultimate objective of combining evidence is to draw robust con-
clusions from a body of evidence. Drawing these conclusions may involve sound
reasoning based on evidence, as may occur in science or justice; result in making
decisions, as may happen in autonomous agents or support software; or provide
explanations according to the available evidence, as may occur within administra-
tive processes, for example. Therefore, the possibilities for modeling and studying
this problem are vast and rooted in many different areas of study. For the spe-
cific case of uncertain evidence, we refer to (Halpern, 2017) and (Chaki, 2023).
They contain an overview of some consolidated approaches to combine uncertain
evidence and a collection of real-life applications for these methods.

In our case, we limit our scope to two concrete approaches, to some extent dis-
cussed in the previous books. One is Dempster-Shafer theory, a quantitative
framework that represents the more basic evidential information as sets of possi-
ble states. One of its particularities is that having evidence about a set of possible
states A does not provide information either about the subsets of A or about its
complement set. For a general overview of the development of this theory, we
refer to (Yager and Liu, 2008). The other approach is embedded in formal epis-
temology. In contrast with the frameworks presented in Halpern’s book, we will
consider topological models of evidence, a topological alternative to the uniform
evidence models of (Van Benthem and Pacuit, 2011). Topological spaces are
natural models to study evidence and belief, since the conceptual link between
them is conveniently captured by topological properties. We will focus on the
work of Baltag et al. (2022), that represents evidence both semantically, as sets

7



8 Chapter 2. Background

of possible states, and syntactically in the object language of the proposed logic.
For a general overview of this setting, we refer to (Özgün, 2017).

The reason for choosing these two approaches is, in short, that they are inde-
pendent but complementary, and therefore provide different perspectives on the
problem under study. In detail, this translates into the following four points:

1. Both Dempster-Shafer theory and topological models of evidence start by
considering a set of possible states S that constitutes the universe of possible
elements to be observed.

2. Dempster-Shafer theory models pieces of evidence in terms of subsets of S
and adds the notion of uncertainty by allocating some numerical values to
these sets.

3. Topological models of evidence also model pieces of evidence as subsets of
S, but without numbers or a notion of uncertainty.

4. Both Dempster-Shafer theory and topological models of evidence provide
tools for combining evidence with the objective of modeling belief based
on it. Dempster-Shafer theory achieves this by aggregating evidence along
three dimensions: two quantitative (the number of pieces of evidence and
the level of uncertainty) and one qualitative (consistency among pieces of
evidence, where two pieces are considered consistent when their set repre-
sentations have a non-empty intersection). In contrast, topological models
of evidence take a purely qualitative approach and do not consider the num-
ber of pieces of evidence or the level of uncertainty. However, they elaborate
on the qualitative dimension more finely, resulting in a strong notion of be-
lief based on evidence. On a rather abstract level, the notions of belief
these theories formalize are linked in the following sense: every proposition
believed according to topological models of evidence would also be believed
to some non-zero degree in the Dempster-Shafer context, but not neces-
sarily vice versa. This distinction arises because the topological models of
evidence defined in (Baltag et al., 2022) require consistency not only with
respect to the evidence but also with respect to the entire topology gener-
ated by this evidence. That is, the formal representation of these models
allows to be more demanding with the evidence and distinguish between
evidence—or direct observations—and justifications—or reasons to believe
in a proposition. From an intuitive point of view, this distinction implies
that not every piece of evidence immediately justifies belief; instead, being a
piece of justification requires coherence with the body of evidence to which
it belongs.

With this theoretical basis in mind, this thesis contributes to the study of com-
bining uncertain, partial, and possibly mutually contradictory evidence in the
following way:
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• We define a belief model that reproduces topological models of evidence and
Dempster-Shafer theory. In other words, we establish a common ground
among these approaches, allowing Dempster-Shafer theory to adopt the
notion of justification and providing topological models of evidence with a
representation of quantitative uncertainty.

• We explore a first attempt to define a qualitative modal logic for this belief
model. The goal of this logic is to compare degrees of beliefs and evidential
strenght according to the degrees of certainty of the evidence. This enables
to logically connect the input and output of the belief model we propose in
this work.

• We study the computational complexity of combining evidence by using
Dempster-Shafer methods, determining belief through topological models
of evidence, and applying our belief model. Although these computations
require exponential time in most cases, we identify some alternatives to
Dempster-Shafer methods and propose a polynomial-time algorithm for the
case of topological models of evidence.

• We propose a concrete algorithmic solution to eliminate the gap between
theory and practice in a particular but relevant case of Dempster-Shafer
theory.

In the remainder of the chapter, we introduce the terms and notation required
to follow the development of all these topics. In Section 2.1, we introduce the
relevant concepts of Dempster-Shafer theory for this thesis. In Section 2.2, we
define the notions from topological models of evidence that we will adopt. We
conclude with Section 2.3, where we establish a common vocabulary to discuss
both frameworks simultaneously.

2.1 Dempster-Shafer Theory
Shafer (1976) introduces a theoretical framework that provides tools for modeling
evidence that comes from different sources with varying degrees of uncertainty,
merging such evidence, and computing the degree of belief from it. This book
takes Dempster’s rule of combination defined in (Dempster, 1967) as one of its
cornerstone, and initiates the so-called Dempster-Shafer theory, or belief function
theory. In this section, we introduce the topic through a list of definitions and
some remarks about its strengths and limitations.

Let us assume that there is an agent that collects evidence from several indepen-
dent sources and aims to compute a degree of belief in a proposition based on the
collected evidence. Our challenge is to give a formal representation of all these
elements and define formal methods that connect evidence and degrees of belief.
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We start by defining the set that will determine the universe of elements relevant
to the agent.

Definition 2.1 (Frame of Discernment or Set of Possible States). We call a set
S that contains all the elements that may be observed by the sources frame of
discernment or set of possible states.

A set of possible states determines the propositions for which the agent can com-
pute degrees of belief and the potential evidence the agent can collect.

Definition 2.2 (Proposition). We call any subset P of S a proposition.

In this context, uncertain evidence is model as mass functions defined on the
power set of S. The agent will collect a mass function from each source. The
subsets of S that receive a positive value through one of these mass functions
are the pieces of evidence that the agent counts on. The value given by a mass
function represents the degree of certainty that the source has about that piece
of evidence. Additionally, the value that a mass function gives to the total set S
represents the degree of uncertainty that the source associates to that evidence
input. Since these mass functions are the input received by the agent, they are
called basic belief assignments.

Definition 2.3 (Basic Belief Assignment). Given a set of possible states S, a basic
belief assignment over the set S is a function m : 2S → [0, 1] such that m(∅) = 0
and ∑

A⊆Sm(A) = 1.

We reserve the term ‘basic belief assignment’ for those mass functions such
that m(∅) = 0, but we will also consider others that do not satisfy this prop-
erty.

Definition 2.4 (Focal Element and Proper Focal Element). Let S be a set of
possible states and m be a basic belief assignment. The subsets A ⊆ S for which
m(A) > 0 are called focal elements . In addition, if A ̸= S and m(A) > 0, we will
say that A is a proper focal element .

In some parts of this thesis, we will assume specific types of basic belief assign-
ments. For example,

• m is a non-dogmatic basic belief assignment if and only if m(S) > 0,

• m is a vacuous basic belief assignment if and only if m(S) = 1,

• m is a simple basic belief assignment if and only if there exists A ⊂ S such
that m(A) > 0 and m(S) = 1 −m(A), and
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• m is a dichotomous basic belief assignment if and only if there exists A ⊂ S
such that m(A) > 0, m(S \ A) > 0 and m(S) = 1 − (m(A) +m(S \ A)).

Note that a simple basic belief assignment has only two focal elements: the total
set S and a proper focal element. Similarly, a dichotomous basic belief assignment
has three focal elements: the total set S and two proper focal elements A and
S \ A.

Example 2.1 Basic Belief Assignments

Let S = {a, b, c} be a set of possible states. Let us assume that an agent
receives inputs from three independent sources. Source 1, 2 and 3 respectively
return mass functions m1 : 2S → [0, 1], m2 : 2S → [0, 1] , m3 : 2S → [0, 1] such
that

m1 : 2S → [0, 1]
{a, b} 7→ 0.2
{a, b, c} 7→ 0.8

m2 : 2S → [0, 1]
{b, c} 7→ 1

m3 : 2S → [0, 1]
{a} 7→ 0.2
{b, c} 7→ 0.7
{a, b, c} 7→ 0.1

Then, Source 1 provides evidence about {a, b} with an uncertainty degree of
0.8, Source 2 is fully certain about the input it is providing, and Source 3 is
uncertain about its input to degree 0.1. In addition, the agent has evidence
about propositions {a, b}, {b, c} and {a} with (possibly) different degrees of
certainty and from one or more sources.

This set representation of uncertain evidence is key for one of the main theoret-
ical advantages of this theory: modeling ignorance. Notice that attending only
to Source 1’s input, the agent of Example 2.1 does not have information about
proposition {c}, for example. And, according to Source 3, the agent has evi-
dence for {b, c} and its complement set {a}, but the weights associated to them
are independent from each other. Stated differently, to have evidence about a
proposition, it needs to be observed, independently of other observations. In this
case, Source 1 has observed {a, b}, while Source 3 has observed both {b, c} and
{a}—and Source 3 is more certain about the former observation than about the
latter. This means that using basic belief assignments to represent evidence not
only succeeds in modeling uncertain evidence, but also partial evidence and mu-
tually contradictory evidence. Next definitions clarify how this way of encoding
evidence can be used by the agent to obtain degrees of belief.
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Definition 2.5 (Belief Function). Given a set of possible states S, a belief func-
tion is a function Bel : 2S → [0, 1] such that

1. Bel(∅) = 0,

2. Bel(S) = 1, and

3. Bel
( ⋃ℓ

j=1 Aj
)

≥ ∑
∅≠I⊆{1,...,ℓ}(−1)|I|+1Bel

( ⋂
j∈I Aj

)
,

where Aj ⊆ S for all j ∈ {1, . . . , ℓ}.

As observed, the axiomatic definition of a belief function resembles that of prob-
ability functions. The only difference is that probability functions assume additi-
vity—i.e., the third condition of Definition 2.5 is an equality in the probabilistic
case. In probability theory, an extensively studied alternative to handle uncer-
tainty, a positive degree of belief for the proposition {a, b} implies a positive degree
of belief for {a} or {b}, due to the additivity axiom. Therefore, in a probabilistic
setting, it is not possible to believe in a proposition without believing in some of
its singletons. In addition, assuming a total set S = {a, b, c}, if the degree of be-
lief for {a, b} is positive and strictly less than 1, then the agent will believe in {c}
with positive degree, in particular, with degree 1−degree of belief in {a, b}. This
means that, in a probabilistic context, having information about one proposition
immediately derives information about others. This goes against the notion of
ignorance as we have introduced it. Let us see how basic belief assignments and
belief functions relate to conclude this discussion.

Definition 2.6 (Belief, Plausibility and Commonality for m). Let S be a set of
possible states, A,B ⊆ S, and m be a basic belief assignment. Then, we define
belief for m as

belm(B) =
∑
A⊆B

m(A).

Belief for m is a belief function (Shafer, 1976, p. 51). Additionally, we define two
other relevant functions associated with the notion of belief. We define plausibility
for m as

plaum(B) =
∑

A∩B ̸=∅
m(A)

and commonality for m as

comm(B) =
∑
B⊆C

m(C).

Note that we skip the subscript m when the associated basic belief assignment
is clear from context. More information about these functions can be found
in (Shafer, 1976).
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Now that we know how to go from basic belief assignments to a belief function,
we may say a last word about Example 2.1. In this example, the agent’s belief
for m1 is such that bel({a, b}) = 0.2 while bel({a}) = bel({b}) = bel({c}) = 0.
As we saw, without the relaxation of the additivity axiom in Definition 2.5 this
would not be possible. This characteristic is particularly useful in cases where
partial evidence plays an important role—for instance, in some medical diagnosis
scenarios (Verbert et al., 2017).

Up to here, we have introduced one of the strengths of this theory that makes it
relevant for us. We summarize it in the following paragraph.

Dempster-Shafer theory models uncertain, partial and potentially mutually
contradictory evidence through basic belief assignments m. From this evidence

encoded in m, this theory defines a function that returns degrees of belief for any
proposition.

The second part of this introduction to Dempster-Shafer theory focuses on how
to combine different sources of evidence, i.e., how to combine a collection of basic
belief assignments m1, . . . ,mℓ to obtain a belief function based on all of them.
We will introduce three different rules of combination. Let us start with the one
introduced by Dempster (1967).

Definition 2.7 (Dempster’s Rule of Combination or Normalized Conjunctive
Rule). Let m1 and m2 be basic belief assignments over the same set S of possible
states and A1, . . . , Ar and B1, . . . , Bs all subsets of S such that m1(Aj) > 0 and
m2(Bk) > 0, respectively. Moreover, suppose that ∑

Aj∩Bk=∅ m1(Aj)m2(Bk) < 1.
Then the following basic belief assignment m, also denoted by m1 ⊕ m2, is the
result of applying Dempster’s rule of combination to m1 and m2:

m1 ⊕ m2(C) =

0 if C = ∅,∑
Aj ∩Bk=C

m1(Aj)m2(Bk)

K
otherwise

where K is the normalization factor 1 − ∑
Aj∩Bk=∅ m1(Aj)m2(Bk).

In some cases, we call this rule normalized rule for abbreviation, and the resulting
basic belief assignment combined mass function for differentiation. This rule
provides the second strength of this theory that is of special interest to us. We
summarize it in the following sentence.

Dempster-Shafer theory provides combination rules that allow to merge
uncertain, partial and possibly mutually contradictory evidence from independent

sources, obtaining a combined body of evidence that may be used to obtain
degrees of belief for propositions.
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Although we have defined belief functions in general, the most applied side of this
theory focuses on a special version of them, the so-called support functions.

Definition 2.8 (Support Function). Let S be a set of possible states and
bel : 2S → [0, 1] be a belief function. If there are some basic belief assign-
ments m1, . . . ,mℓ such that bel is a belief function for (m1 ⊕ . . .⊕mℓ), then bel
is a support function.

If all the basic belief assignments m1, . . . ,mℓ are simple belief assignments—i.e.,
they each have a unique proper focal element—bel is said to be a separable support
function.

Dempster’s rule of combination performs in a satisfactory way in many situation,
as we can see in the already mentioned sources. Nevertheless, there are some
limitations recurrently remarked:

1. The straightforward implementation of this method takes exponential time
in general (Barnett, 1981; Orponen, 1990). We explore this issue in Chap-
ters 5 and 6.

2. The normalization factor of this rule has been controversial, with arguments
for and against in the literature (Haenni, 2005; Lefevre et al., 2002; Murphy,
2000; Pearl, 1990; Sentz and Ferson, 2002; Smets, 2007; Zadeh, 1986). All
these sources agree that highly conflicting evidence—those situations where
there are many focal elements from different basic belief assignments that do
not intersect with each other—deserves special attention. We will introduce
two other rules whose definitions are partially motivated by this discussion.

3. Dempster’s rule of combination is defined for independent sources of ev-
idence, which limits its application in many real-life scenarios. Denœux
(2008) analyzes this limitation and proposes a new family of combination
rules that overcome this problem. Cases of dependent sources of evidence
are out of the scope of this thesis.

The first alternative to Dempster’s rule of combination is defined in (Yager, 1987)
and received further support in (Smets and Kennes, 1994). This belief model has
been further justified in (Pichon and Denoeux, 2010). One characteristic of this
belief model is that it does not require the basic belief assignments m to assign 0
to the empty set. Actually, the value assigned to the empty set can be interpreted
as an estimation of the amount of conflict (Destercke and Burger, 2013). For the
sake of clarity, we will refer to this particular case of basic belief assignments as
general mass functions.
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Definition 2.9 (General Mass Functions). Given a set of possible states S,
a general mass function over the set S is a function m : 2S → [0, 1] such
that ∑

A⊆Sm(A) = 1.

Definition 2.10 (Belief for a General Mass Function). Let S be a set of possible
states, A,B ⊆ S, and m be a general mass function. Then, we define belief for
m as

bel(B) =


( ∑

A⊆Bm(A)
)

−m(∅) if B ̸= S,∑
A⊆Bm(A) otherwise.

Definition 2.11 (Transferable Rule of Combination or Unnormalized Conjunc-
tive Rule of Combination). Let m1 and m2 be general mass functions over the
same set S of possible states. Let A1, . . . , Ar and B1, . . . , Bs be all subsets of S
such that m1(Aj) > 0 and m2(Bk) > 0, respectively. Then the following general
mass function m, also denoted by m1 ⊞ m2, is the result of applying transferable
rule of combination to m1 and m2:

(m1 ⊞m2)(C) =
∑

A∩B=C
m1(A) ·m2(B).

Sometimes we will refer to this rule as unnormalized rule of combination for
brevity.

The second alternative for Dempster’s rule of combination that we will cover is
known as unnormalized disjunctive rule of combination or disjunctive rule of com-
bination for brevity. It was defined in (Dubois and Prade, 1986) and reinforced
in (Dubois and Prade, 1992; Smets, 1993). In this case as well, it is allowed for
the basic belief assignments to assign a positive value to the empty set, so we will
refer to them as general mass functions. As we can see in the following defini-
tion, the main difference compared to the previous rules is that we combine mass
functions according to the union of focal elements instead of their intersection.
The motivation for this change relies on the reliability of the sources: when using
the intersection we are assuming that all the sources are reliable, while choosing
the union implies that at least one source is reliable but we do not know which
one (Denœux, 2008).

Definition 2.12 (Unnormalized Disjunctive Rule of Combination). Let m1
and m2 be general mass functions over the same set S of possible states and
A1, . . . , Ar and B1, . . . , Bs all subsets of S such that m1(Aj) > 0 and m2(Bk) > 0,
respectively. Then the following general mass function m, denoted by m1 ⃝∪ m2
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as well, is the result of applying unnormalized disjunctive rule of combination
to m1 and m2:

(m1 ⃝∪ m2)(C) =
∑

A∪B=C
m1(A) ·m2(B).

Our (non-exhaustive) introduction to the Dempster-Shafer theory ends here. We
refer to the references provided in Chapter 1 and this section for further informa-
tion on this.

2.2 Topological Models of Evidence
Formal epistemology is a field of study that uses formal methods and tools from
mathematics and logic to study notions and issues of epistemological interest. The
main epistemological notions it investigates and that are of particular interest to
this dissertation are notions of evidence, justification and belief. Hintikka (1962)
defined a first epistemic modal logic for reasoning about these concepts using
standard possible states semantics based on Kripke structures. Van Benthem and
Pacuit (2011) introduce the notion of evidence as information that an agent may
gather but is potentially false or misleading, moving away from the definition
of evidence as factive evidence. This new interpretation of evidence opens the
door to considering more realistic evidence, such as partial or possibly mutually
contradictory evidence. The evidence models defined by Van Benthem and Pacuit
(2011) follows neighborhood semantics instead of relational semantics. This is
because neighborhood semantics allows the weakening of the assumptions about
the agent’s knowledge and belief and explicit representations of evidence, making
it a more flexible semantics for this context. We refer to (Pacuit, 2017) for a
detailed justification.

From the work of Van Benthem and Pacuit (2011), we are especially interested in
the uniform evidence model, which assigns the same set of pieces of evidence to
every possible state. In their words, this corresponds to working with agents who
are evidence-introspective, or agents who are fully aware of the available evidence
and its implications. These evidence models are reformulated in (Baltag et al.,
2022) by changing neighborhood semantics to topological semantics and modi-
fying their definition of belief. These changes kept both alternatives equivalent
in the finite case and brought some technical improvements in the infinite one
(see Example 1, Example 2 and Proposition 1 of (Baltag et al., 2022, Section
4)). While these improvements are not relevant for our particular case, the com-
bination of their definition of belief and topological semantics offers an explicit
connection among belief, a notion of justification and topological properties of
the evidence. In Section 2.3, we will see how this explicitness is particularly use-
ful for connecting epistemic evidence models and Dempster-Shafer theory. In the
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remainder of this section, we will list the technical concepts from (Baltag et al.,
2022) required to follow the rest of the thesis.

Let us assume that an agent possesses a collection of pieces of evidence and aims
to decide whether they believe in a certain proposition according to that evidence,
ensuring that their belief will be consistent regardless of the gathered evidence.
Our challenge here is to formalize these concepts and define an operator for belief
that meets this constraint. Note that we do not consider our evidence to be
uncertain in this case.

In this context, a set of possible states and a proposition follow definitions 2.1
and 2.2 as well. Additionally, a piece of evidence is represented as a subset of
S. Under our assumptions, the agent possesses a collection of pieces of evidence
named basic or direct evidence. This basic evidence may come from direct ob-
servation, measurements, testimony from others, and similar sources. They are
basic pieces of evidence in this sense. Notice that the gathered pieces of evidence
are not supposed to be independent, nor are their sources.

Definition 2.13 (Basic Evidence Frame). Let S be a set of possible states and E
be a non-empty subset of 2S such that ∅ ̸∈ E and S ∈ E . We call the tuple (S,E)
a basic evidence frame, and E set of basic pieces of evidence or basic evidence set.

Sometimes we refer to the elements of E simply as pieces of evidence for short.
Notice that the constraint S ∈ E ensures that tautologies are always evidence,
and ∅ ̸∈ E that contradictions are never evidence. The definition of belief that
we introduce later will clarify these restrictions.

From a basic evidence frame (S,E), an agent may derive some information that,
in this context, is known as combined evidence and evidence-based arguments.
We will introduce the formal definitions of these concepts through the notion of
topological space.

Definition 2.14 (Topological Space and Open Sets). A topological space is a pair
(S, τ), where S is a non-empty set and τ is a family of subsets of S such that
S, ∅ ∈ τ, and τ is closed under finite intersections and arbitrary unions. Given a
topological space (S, τ), the set S is called a space and the family τ is called a
topology on S. In addition, the elements of τ are called open sets or opens in the
space.

Onwards, we will identify our pieces of evidence as open sets of a topology. The
treatment of open sets as pieces of evidence dates back to (Troelstra and Van
Dalen, 1988) and is adopted from topological semantics for intuitionistic logic.
It moreover has applications in domain theory (Vickers, 1989) and formal learn-
ing theory (Kelly, 1996). Next definitions explains how to technically connect
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evidence and open sets. For further details on epistemic interpretations of topo-
logical spaces, we refer to (Özgün, 2017).

Definition 2.15 (Subbasis, Basis and Generated Topology). A topology τ on a
space S can also be generated from an arbitrary subset of 2S. Given any family
E ⊆ 2S of subsets of S, there exists a unique, smallest topology τE with E ⊆ τE
(Dugundji, 1965, Theorem 3.1, p. 65). The family τE consists of ∅, S, all finite
intersections of E , and all arbitrary unions of these finite intersections. E is called
a subbasis for τE and τE is said to be generated by E . We say that the closure
under finite intersections of E forms a topological basis for τE .

Definition 2.16 (Combined Evidence). Considering a basic evidence frame (S,
E), an element of the topological basis for τE generated by E is called combined
evidence. In other words, given a basic evidence frame (S,E), the set of combined
evidence is the set of finite intersections of members of E .

Definition 2.17 (Evidential Topology). Considering a basic evidence frame (S,
E), the topology τE generated by E is called the evidential topology.

Definition 2.18 (Evidential Support). Given a basic evidence frame (S,E), a
proposition P ⊆ S, and a piece of evidence E ∈ τE , E supports P if and only
if E ⊆ P . Alternatively, we will say E is evidential support for P if and only if
E ⊆ P .

Definition 2.19 (Evidence-Based Argument). Given a basic evidence frame
(S,E) and a proposition P ⊆ S, an evidence-based argument for P is an element
T ∈ τE \ {∅} such that T ⊆ P . Topologically, an evidence-based argument is just
a non-empty open set in a topology. We may say argument for short.

Topological models of evidence represent partial and mutually contradictory
evidence and can combine it to form a richer set of evidence-based information.

One of the goals of this approach is to define consistent belief based on pos-
sibly mutually contradictory and partial evidence. For topological models of
evidence, Baltag et al. (2022) define belief by using the notion of denseness, a
topological notion closely related to consistency.

Definition 2.20 (Denseness). Let (S, τ) be a topological space. A set P ⊆ S
is called dense in S (with respect to topology τ) if and only if P ∩ T ̸= ∅ for all
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T ∈ τ such that T ̸= ∅. When it is contextually clear, we call a set dense only
and avoid mention of the relevant space and its respective topology.

Given (S,E) a basic evidence frame and τE the corresponding evidential topology,
we sometimes say that P ⊆ S consistent with τE when P is a dense set with respect
to τE .

Definition 2.21 (Mutual consistency). Let (S,E) be a basic evidence frame and
τE be the corresponding evidential topology. We say that two pieces of evidence
E,E ′ ∈ τE are mutually consistent if E ∩ E ′ ̸= ∅, and mutually inconsistent
otherwise.

Notice that τE (as well as E) can host mutually inconsistent pieces of evidence,
since we did not impose any constraints on E to eliminate such cases.

Baltag et al. (2022) use this property of being dense in the set of possible states
with respect to a topology to establish their definition of evidence-based justifi-
cation. Justifications will be another fine-grained representation in topological
models of evidence to differentiate among various kinds of evidence, just as basic
evidence, combined evidence and arguments are.

Definition 2.22 (Evidence-Based Justification). Let (S,E) be a basic evidence
frame and τE be the topology generated by E . An evidence-based justification
or justification is a dense open subset of τE . A justification for P is an element
J ∈ τE \ {∅} such that J is dense in S with respect to τE and J ⊆ P .

Therefore, a justification is an argument that is consistent with any other argu-
ment based on the available evidence. This property entails that the agent always
has consistent beliefs, even when the belief is formed based on a set of possibly
mutually inconsistent pieces of evidence (Baltag et al., 2022). In Definition 2.23
we present two equivalent definitions of belief according to (Baltag et al., 2022,
Proposition 2).

Definition 2.23 (Justified Belief in Topological Models of Evidence). Let (S,E)
be a basic evidence frame and τE be the topology generated by E . A proposition
P ⊆ S is justified believed if and only if there is a justification for P in τE .
Equivalently, a proposition P ⊆ S is justified believed if and only if P includes
some dense open set.
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Example 2.2 From Basic Evidence to Justification

Let S = {a, b, c, d, e} be a set of possible states and E =
{
{a, b}, {b, c, d},

{d, e}
}

be a basic evidence set (the evidence directly gathered by the agent).
The following diagrams show the different sets that we can obtain from E
according to the previous definitions.

Basic Evidence/Subbasis

b, c, d

a, b d, e

Combined Evidence/Basis

b, c, d

a, b d, e

b d

Evidential Topology

a, b, c, d, e

a, b, d, ea, b, c, d b, c, d, e

b, c, da, b, d b, d, e

b, da, b d, e

b d

∅

Arguments/Non-empty Open Sets

a, b, c, d, e

a, b, d, ea, b, c, d b, c, d, e

b, c, da, b, d b, d, e

b, da, b d, e

b d

Justifications/Dense Open Sets

a, b, c, d, e

a, b, d, ea, b, c, d b, c, d, e

b, c, da, b, d b, d, e

b, d

Figure 2.1: Visual representation of the evidence-based sets defined in this
section. Each box represents a set formed by the elements enclosed in it.
Following the reading order, colored sets indicate that they were not included
in the previous structure. Pointed squares indicate that the current structure
is missing the corresponding set with respect to the previous one.



2.3. A Common Ground 21

As observed in the previous example, not every piece of evidence or argument
constitutes a piece of justification for agents’ beliefs. Underlying intuition here
is that an agent have high demands for what constitutes a justification for their
beliefs. In particular, observing something alone might not be good enough, the
agent also requires consistency with all the other observations they have made.

Topological models of evidence define consistent belief based on possibly partial
and contradictory evidence, due to the explicit differentiation between evidence

and justification.

From (Baltag et al., 2022; Özgün, 2017) and this brief introduction to topological
models of evidence, we can identify two limitations of this approach as a tool for
studying the problem addressed in this thesis:

1. Due to the purely qualitative nature of these models, it is not possible to
represent varying degree of certainty for each piece of evidence within the
model. The results in Chapters 3 and 4 serve as a first step towards a
quantitative extension of these epistemic models.

2. A computational complexity analysis of these particular models, as well
as an algorithmic method for combining evidence according to them in
practice, is missing in the literature. Section 5.2 shows partial results in
this direction.

2.3 A Common Ground
The preceding sections present Dempster-Shafer theory and topological models of
evidence as interesting frameworks to bring light to the problem of combining un-
certain, partial and possibly mutually contradictory evidence. The first challenge
we will address is to combine these approaches, aiming to provide a common (and
hopefully richer) framework. To this end, we first need a common vocabulary and
notation. We dedicate this section to this purpose, as well as to highlighting their
compatibility and complementary nature.

Firstly, we should note that the strategies employed by Dempster-Shafer theory
and topological models of evidence are notably similar:

1. They allow the agent to gather non-ideal evidence, understanding non-ideal
as uncertain, partial and possibly mutually contradictory evidence.

2. They provide us with a method for combining the available evidence and
get some extra information according to some features of that evidence.

3. They define a notion of evidence-based belief for the agent.
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Secondly, they use compatible representations of evidence. Specifically, they both
start with a set of possible states S and define pieces of evidence as subsets of
S. In both cases, the most basic information relies on these sets, not on the
singletons of S. Throughout this thesis, we assume that a set of possible states is
finite, reflecting our ultimate motivation of applying these constructs to real-life
scenarios.

Finally, Dempster-Shafer theory and topological models of evidence also differ in
some aspects. However, these distinctions are not inconvenient but rather make
them complementary. For instance, Dempster-Shafer theory accepts uncertain,
possibly partial and mutually contradictory evidence from independent sources.
Topological models of evidence, in contrast, accept possibly partial and mutually
contradictory evidence that may come from dependent sources. In our particular
case, we will bring the topological framework closer to Dempster-Shafer theory
by assuming independence between sources and defining quantitative evidence
frames. We will use these structures to represent uncertain evidence.

Definition 2.24 (Quantitative and Qualitative Evidence Frames). Let S be a set
of possible states, E be a non-empty subset of 2S such that ∅ ̸∈ E and S ̸∈ E , and
EQ be a nonempty subset of E × (0, 1) containing exactly one element for each
element of E . We call the tuple (S,EQ) a quantitative evidence frame, and EQ a
quantitative evidence set. Additionally, we will say that E is a qualitative evidence
set, and (S,E) is a qualitative evidence frame. Note that in topological models of
evidence (S,E) is called a basic evidence frame. We call it a qualitative evidence
frame from now on to emphasize the fact that this is part of a quantitative frame
without the quantitative component Q.

As before, we refer to P ⊆ S as a proposition, and we introduce the name
propositional content to specifically denote elements of E .

Definition 2.25 (Propositional Content). By propositional content of a piece
of evidence, we mean the information provided by a piece of evidence without
regard to how uncertain that piece of evidence is.

For any element (E, p) ∈ EQ, E represents the propositional content of the evi-
dence and p is its degree of certainty. Given a pair (E, p) ∈ EQ, the value 1 − p
represents the uncertainty of the given piece of evidence (and not the certainty
of S \ E). In this particular setting, we sometimes use “degree of certainty” and
“degree of uncertainty” of a piece of evidence interchangeably in our conceptual
explanations since the latter is fully determined by the value of the former p—once
we have one of the values, we have the other. In Dempster-Shafer terminology,
the set EQ can be interpreted as a set of non-dogmatic (nor vacuous) simple basic
belief assignments. Each element (E, p) ∈ EQ represents a non-dogmatic simple
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basic belief assignment m such that m(E) = p. We choose the open interval
(0, 1) to avoid considering exceptions in the following sections. However, this as-
sumption is not a significant limitation since the aim of the approach is to model
uncertainty. Note that this representation of the evidence does not include the
case of non-simple basic belief assignments—i.e., basic belief assignments with
more than one proper focal element.

We will use the term piece of evidence to refer to an element of E or an element
of EQ depending on the context. Notice that, contrary to the definition of basic
evidence frame of topological models of evidence, the total set S is not included
in E . We impose S ̸∈ E because, following Dempster-Shafer theory, the mass
values assigned to S will represent degrees of uncertainties about evidence, not
the degree of certainty in S (which is always 1). Another difference with respect
to the topological models of evidence of Baltag et al. (2022) is that we use the
term ‘evidence’ for basic pieces of evidence, while they use this word for what they
call combined evidence. A last note on terminology, when we stick to Dempster-
Shafer notation, we use the term ‘evidence body’ or ‘body of evidence’ to refer
to the collection of basic belief assignments. Baltag et al. (2022) use the words
‘body of evidence’ for a concrete formal structure that is not contemplated in this
thesis.

There are also differences in the combination method used by each approach.
Dempster-Shafer theory employs arithmetic rules that take into account three
characteristics of the evidence: the number of pieces of evidence (sum), the de-
gree of uncertainty of each piece of evidence (product), and the consistency among
pieces of evidence (intersection or union). In contrast, topological model of ev-
idence only consider the consistency among pieces of evidence. Besides these
differences, these approaches are compatible. On the one hand, topological mod-
els of evidence can be enriched by defining a quantitative version including the
other two features considered by Dempster-Shafer combination rules. On the
other hand, when applying the combination rules defined in Section 2.1, the focal
elements of the combined mass functions are always within the evidential topol-
ogy corresponding to the quantitative evidence set formed by the focal elements
of the basic belief assignments to combine.

Lastly, the definition and understanding of evidence-based belief differs in each
case, yet remains compatible. For example, considering dense open sets in Demp-
ster-Shafer theory may enhance robustness in cases of highly conflicting evidence.
Another benefit of combining both notions of belief is bringing topological models
of evidence closer to practical applications.

For the remaining definitions given in Section 2.2, we apply them to the quan-
titative evidence frame in general, except for ‘justifications’. We will relax their
definition to be special kinds of arguments that the agent uses to support their
beliefs and the form of such justifications depends on the agent’s evidential de-
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mands. Given a quantitative evidence frame (S,EQ), our ultimate goal is to define
a belief function in the sense of Definition 2.5 which admits as input not only a
body of possibly mutually inconsistent and uncertain evidence EQ but also the
evidential demands of the agent. We elaborate more on this in Chapter 3. Ad-
ditionally, we will also use the term ‘mass function’ to talk about mass functions
defined not necessarily for elements of 2S; in particular, we will define a mass
function for elements of 2E . Therefore, we keep in mind a more general definition
of mass functions.

Definition 2.26 (Mass Function Over a Set). Given a nonempty set X, a mass
function over the set X is a function m : 2X → [0, 1] such that ∑

A⊆X m(A) = 1.

Throughout this dissertation we use standard order-theoretic notions such as total
pre-order, minimal/maximal elements, minimum/maximum elements in an order,
etc. For all these definition we refer to (Roman, 2008).

Notational Conventions

Aiming to help the reader to follow the text smoothly, we have set a notation code.
Lowercase letters refer to possible states. Uppercase letters are used to specify
sets of possible states. When using the notation introduced in this section, we
will use E to represent basic pieces of evidence, T to represent the elements of
a topology, S to represent the set of all the possible states, and P to represent
a proposition. Sets of the previous sets are named in bold capital letters. Some
examples are E to specify any set of pieces of evidence and E to specify the set
of all the pieces of evidence. Finally, the subsets of 2E are denoted by blackboard
bold capital letters (such as M).

In Section 5.1 and Chapter 6 we will follow Dempster-Shafer notation, since the
results of those parts strictly belong to Dempster-Shafer framework. In those
cases, we will use F to talk about focal elements (including S when it applies)
and A, B or C to represent proper focal elements. In this context, we will name
sets of sets of possible states with a calligraphic capital letter. For instance, F is
used to name a set of focal elements. We also set a code for the subindexes. The
letter n is reserved to indicate the number of elements of S and the subindex i
to talk about numbers between 1 and n. The letter ℓ is reserved to indicate the
number of pieces of evidence or the number of basic belief assignments. We will
use the subindexes j and k to refer to numbers between 1 and ℓ. We conclude
the section with a clarification table of terms.
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This Thesis Dempster-Shafer Theory Topological Models of
Evidence

Uncertain, partial and
possibly mutually

contradictory evidence

Uncertain, partial and
possibly mutually

contradictory evidence

Partial and possibly mutually
contradictory evidence

Independent sources Independent sources Possibly dependent sources

Mutually contradictory ∼ inconsistent ∼ conflicting ∼ empty intersection

Set of possible states
S = {s1, . . . , si, . . . , sn} Frame of discernment Set of possible states

Proposition P ⊆ S Proposition Proposition

Quantitative evidence set
EQ =

{
(E1, p1), . . . ,

(Ej, pj), . . . , (Eℓ, pℓ)
}

Non-dogmatic simple basic
belief assignments
m1, . . . ,mj, . . . ,mℓ

Qualitative evidence set
E = {E1, . . . , Ej, . . . , Eℓ}

Proper focal elements of
simple basic belief

assignments A1, . . . , Aj, . . . , Aℓ

Basic evidence set without S

Evidence Body of evidence Basic evidence

Quantitative piece of
evidence (Ej, pj) ∈ EQ

Proper focal element of m and
its value through m

Uncertainty degree of
(Ej, pj) ∈ EQ: 1 − pj

If m simple basic belief
assignment with proper focal

element Ej, m(S)

Propositional content Ej
from (Ej, pj) ∈ EQ Focal element of m Basic piece of evidence

Mass function over S such
that m(∅) = 0 Basic belief assignment

To be defined in Chapter 3
Combined mass function

through conjunctive
combination rules

Combined evidence set

Topology generated by E Evidential topology

Argument Argument

Justification Justification is one particular
example

Degree of belief Support function Justified belief modal
operator

Table 2.1: Comparison of terms used in this thesis, Dempster-Shafer theory, and
topological models of evidence.





Chapter 3

Multi-Layer Belief Model for Combining
Uncertain Evidence

In the previous chapter, we explored several models that are used in the literature
to merge evidence and generate belief based on it. Each of these models focuses
on one feature of the evidence—uncertainty, inconsistency, etc.—and introduces
precise concepts and tools to successfully manage it. Therefore, having a single
tool kit to represent them all would undoubtedly be useful. That is the goal of this
chapter: defining a multi-layer framework that includes the different components
of the previously mentioned belief models and, consequently, that allows us to
switch from one to the other with the simplicity of changing parameters. To this
end, we will study separately the qualitative and the quantitative components
of these belief models. We will define a method that treats these components
individually and, afterward, puts them together. This explicit division facilitates
a further understanding of the represented belief models since we can see which
component is responsible for certain behaviors—the qualitative one, the quanti-
tative one, or the merging process. Overall, the multi-layer belief model can be
easily adapted to the situation, and, as we will see in Chapter 5, without an extra
cost in the computational complexity.

The remaining of this chapter is organized as follows. In Section 3.1, we introduce
the technical definition of the model consisting in three parts: the qualitative
layer, the quantitative layer, and the bridging layer. In Section 3.2, we explore the
mathematical properties of the model and we compare it with other well-known
belief models. In particular, we show that the multi-layer belief model manages
to represent the belief functions obtained by Dempster’s rule of combination and
the transferable belief model, as well as, to recover the notion of binary belief

27
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represented in the topological models of evidence. In addition, we outline how this
model can provide interesting alternatives to the disjunctive rule of combination
and the transferable belief model. In Section 3.3, we end the chapter by showing
an illustrative example to understand the value and the potential use of this
model.

3.1 The Model
In Chapter 2, we introduced the works that inspire the definition introduced in
this section, with (Shafer, 1976) and (Baltag et al., 2022) as cornerstones. With
the multi-layer belief model we aim to propose a method for measuring degrees
of beliefs for an agent that possesses possibly mutually contradictory, partial, and
uncertain pieces of evidence. We will do that by enriching our framework with
enough expressive power to represent ignorance and degrees of uncertainty, and to
differentiate among basic evidence, combined evidence, argument, and justification
according to Section 2.2. As a result, we will get a belief model adaptable to the
evidential demands of the agent and their context. We will detail what this means
later on.

As its name suggests, this belief model is built on three different layers that will in-
teract among them at the end of the process. The first layer, called the qualitative
layer, works with the propositional content of the basic pieces of evidence—i.e.,
elements of E—and identifies a set of justifications that represents the agent’s
evidential demands. This layer is inspired by the topological models of evidence
defined in Section 2.2. The second layer, called the quantitative layer, focuses
on combining the degrees of uncertainty about evidence. This layer is inspired
by the combination rules discussed in Section 2.1, but in this case, the combined
mass function is defined for sets of pieces of evidence, i.e., its domain is 2E . Since
our goal is to compute degrees of belief based on justifications—which are sets of
possible states—and the combined uncertainty values are assigned to sets of sets
of possible states instead, we need to transfer these values from the sets of sets of
possible states to sets of possible states. To this end, we define a last layer, called
the bridging layer, that connects the values of the mass function obtained in the
second layer to the justifications of the first one. As a result, we obtain a belief
function which is able to compute degrees of belief according to the evidential
demands of the agent and based on a possibly mutually contradictory, partial,
and uncertain body of evidence.

3.1.1 Qualitative Layer
The aim of this layer is to generate a set of justifications based on the available
evidence and the agent’s evidential demands. Following Definition 2.19, given a
qualitative evidence frame (S,E), the set τE\{∅} represents the set of arguments
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available to the agent. Any argument is a potential piece of justification for belief.
What will determine whether an argument is a justification are the conditions
that the agent requires for it to be convincing enough to base belief on. These
requirements that the agent imposes on the evidence are what we call evidential
demands. They are independent of the proposition for which the agent wants to
compute degree of belief and the uncertainty values the evidence may have. The
more restrictive these conditions are, the more cautious the agent is. For example,
a doctor would be more cautious evaluating diagnostic tests when prescribing a
medication with risky side effects than when prescribing low-risk medication.
Note that evidential demand refers to a constraint given by agents independently
of the sources of evidence. It should not be confused with agents’ degrees of trust
on the sources or with agents’ prior beliefs.

To distinguish arguments from justifications and formalize an agent’s evidential
demands, we use the notion of frame of justification. Given (S,E), a frame of
justification J is a subset of τE \ {∅}. Depending on the modelled situation,
one can think of natural constraints to impose on frames of justifications. For
example, we can think about frames of justification inspired by Dempster-Shafer
theory and the framework of topological models of evidence. Given a qualitative
evidence frame (S,E):

1. The Dempster-Shafer frame of justification , denoted by J DS, is the set
of all arguments, that is, J DS = τE\{∅}. This frame represents agents
with very low evidential demands. For these agents, having an argument
for proposition P among their evidence is enough to justify P , regardless,
e.g., whether the argument contradicts with the other available arguments.

2. The strong denseness frame of justification , denoted by J SD, is the set of
all arguments consistent with τE , that is, the set of all dense open sets in
S—see Definition 2.20. This frame represents agents with high evidential
demands. They form degrees of beliefs only based on arguments which
do not contradict with, i.e., cannot be refuted by, any other argument.
Consequently, they form degrees of belief only in those propositions that do
not contradict with any available argument. This notion of justification is
proposed by Baltag et al. (2016, 2022).

Given a qualitative evidence frame (S,E) and a proposition P , we say that T is
justification for P w.r.t. J if and only if T ⊆ P and T ∈ J . This perspective
on justification substantially differs from the understanding of justification in
traditional epistemology, where the main interest lies in defining the notion of
justification for belief, or answering the question “what justifies belief?”. Our use
of the term justification is more pragmatically motivated and it is simply intended
to discern an agent’s any evidence-based argument from the ones they actually
see fit to support their beliefs. The following example shows how different these
two frames of justification can look. For an example in context, see Section 3.3.
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Example 3.1 Frames of Justification

Let S = {a, b, c, d} and E =
{
{a, b}, {b, c}, {c, d}

}
be a set of possible states

and qualitative evidence set respectively.

a b c d

Figure 3.1: Representation of pieces of evidence by a Venn diagram.

According to the previous definitions, the Dempster-Shafer frame of justifica-
tion for qualitative evidence frame (S,E) is

J DS =
{
{a, b}, {b, c}, {c, d}, {b}, {c}, {a, b, c}, {b, c, d}, S

}
while the strong denseness frame of justification is

J SD =
{
{b, c}, {a, b, c}, {b, c, d}, S

}
.

Throughout this thesis, we will restrict our attention to Dempster-Shafer and
strong denseness frames of justification. However, it is significant to note that
these two frames are part of a larger family of frames of justification rooted in
the notion of denseness. While J DS does not require an argument A ∈ τE\{∅}
to be consistent with any other argument, J SD requires A to be consistent with
all of them. We can define “intermediate” consistency requirements as well. Let
us define the family of frames of justification

J Den(k) = {A ∈ τE \ {∅}|A ∩
⋂

E ̸= ∅ for all E ⊆ E such that |E| ≤ k},

where |E| is the number of elements in E. For each k, J Den(k) is formed by
those A ∈ τE\{∅} to be consistent with the intersection of every c-combination of
elements of E with c ≤ k. This way, as k increases, J Den(k) converges to J SD. We
name J Den(k) depth-k denseness frame of justification. For example, if we have
E = {E1, E2, E3}, the elements of J Den(1) will have non-empty intersections with
E1, E2 and E3. The elements of J Den(2) will will have non-empty intersections
with E1, E2, E3, E1 ∩E2, E1 ∩E3 and E2 ∩E3. The elements of J Den(3) will will
have non-empty intersections with E1, E2, E3, E1 ∩ E2, E1 ∩ E3, E2 ∩ E3 and
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E1 ∩ E2 ∩ E3. And J Den(3) is actually J SD for E . Attending to this definition,
agents could set their evidential demands on a scale of cautiousness related to the
consistency of their arguments. Needless to say, other families rooted in different
properties can be defined too. We leave the proper treatment of these other
frames of justification for future work.

3.1.2 Quantitative Layer
The aim of this layer is to combine the degrees of certainty of the basic pieces of
evidence via a mass function defined on the set of basic pieces of evidence E—see
Definition 2.26. This way we obtain certainty values for every combination of
pieces of evidence and these values sum up to one.

Let (S,EQ) be a quantitative evidence frame with ℓ pieces of evidence, i.e., EQ =
{(E1, p1), . . . , (Eℓ, pℓ)}. In Equation 3.1, we define a function δ : 2E → [0, 1] to
merge the certainty values pj for j = 1, . . . , ℓ.

δ(E) =
∏
Ej∈E

pj
∏
Ej /∈E

1 − pj (3.1)

This function is a mass function defined over E in accordance with Definition
2.26.

Proposition 3.1 Given a quantitative evidence frame (S,EQ), the function δ
defined in Equation (3.1) is a mass function over E.

Proof.

Given E ∈ 2E , the function δ is well-defined and the value δ(E) is between 0
and 1 for pj ∈ (0, 1) for all j = 1, . . . , ℓ. In addition, the total sum of δ(E)
for all E ∈ 2E is 1. Let Eλ be the subset of E formed by its first λ elements.
Now, let us apply induction on the number of pieces of evidence in EQ. For
λ = 1, 2E1 = {∅, {E1}} and∑
E∈2E1

δ(E) =
∏
Ej∈∅

pj
∏
Ej /∈∅

(1−pj) +
∏

Ej∈{E1}
pj

∏
Ej /∈{E1}

(1−pj) = 1−p1 +p1 = 1.

Let us assume that ∑
E⊆Eℓ−1 δ(E) = 1. Given ℓ pieces of evidence in E , let us

consider the partition 2Eℓ = 2Eℓ−1 ∪
{
E ∪ {Eℓ}|E ∈ 2Eℓ−1

}
of 2Eℓ . Then, by

the inductive hypothesis, the sum ∑
E∈2Eℓ δ(E) is equal to

∑
E∈2Eℓ−1

(
(1 − pℓ)

∏
Ej∈E

pj
∏
Ej /∈E

(1 − pj)
)

+
∑

E∈2Eℓ−1

(
pℓ

∏
Ej∈E

pj
∏
Ej /∈E

(1 − pj)
)
,
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which is equal to (1 − pℓ) · 1 + pℓ · 1 = 1.

Intuitively, the function δ distributes the degree of certainty of a piece of evidence
E ∈ E among all the possible occurrences of E in presence of other pieces of
evidence. To illustrate, consider a quantitative evidence frame (S,EQ) where
EQ = {(E1, p1), (E2, p2), (E3, p3)}. We then understand δ({E1, E2}) = p1 ·p2 ·(1−
p3) as the induced certainty of the proposition ‘at least E1 and E2 are true’ in the
context of having exactly three pieces of evidence. This intuition is supported
by the fact that, given a quantitative evidence frame (S,EQ) and δ defined as in
equation (3.1), we have, for every Ej ∈ E , that the total sum of δ(E) for E ⊆ E
such that Ej ∈ E is equal to pj.

Proposition 3.2 Given a quantitative evidence frame (S,EQ) and δ defined as
in equation (3.1), we have, for every Ej ∈ E, that∑

E⊆E:
Ej∈E

δ(E) = pj.

Proof.

Without loss of generality, let us prove the result for Ej = E1. First, let us
notice that

∑
E⊆E:
E1∈E

∑
δ(E) =

∑
E⊆E:
E1∈E

(
p1

∏
Ek∈E:
Ek ̸=E1

pk
∏

Ek /∈E:
Ek ̸=E1

(1 − pk)
)

In other words,

∑
E⊆E:
E1∈E

δ(E) = p1 ·
∑

E⊆E\{E1}

( ∏
Ek∈E

pk
∏

Ek /∈E,
Ek ̸=E1

(1 − pk)
)

(3.2)

Defining the set of evidence E ′ = E \ {E1}, we have that

∑
E⊆E ′

( ∏
Ek∈E

pk
∏

Ek /∈E,
Ek ̸=E1

(1 − pk)
)

=
∑
E⊆E ′

δ(E),

where δ is defined over E ′ now. By Proposition 3.1, ∑
E⊆E ′ δ(E) = 1 and

Equation (3.2) is equal to p1.

Nevertheless, it is easier to read δ as a system of certainty assignments rather
than trying to interpret each δ(E) epistemically, since it assigns values to every
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combination of pieces of evidence. It is merely a method to distribute the certainty
of a single piece of evidence to all the ways it can be observed in combination
with the other pieces of evidence. We will illustrate how this function works in
the following example.

Example 3.2 Function δ

Let S = {a, b, c, d} and EQ =
{
E1, E2, E3

}
be a set of possible states and quan-

titative evidence set, respectively, where E1 = ({a, b}, 0.6), E2 = ({b, c}, 0.8),
and E3 = ({c, d}, 0.7). The image of function δ applied on the quantitative
evidence frame (S,EQ) is:

δ(∅) = 0.02 δ({E1, E2}) = 0.14
δ({E1}) = 0.04 δ({E1, E3}) = 0.08
δ({E2}) = 0.10 δ({E2, E3}) = 0.22
δ({E3}) = 0.06 δ({E1, E2, E3}) = 0.34

Table 3.1: Image of the function δ for EQ = {E1, E2, E3}.

If we were to consider EQ =
{
E1, E2

}
with E1 = ({a, b}, 0.6), E2 = ({b, c}, 0.8)

instead, the image of function δ would be:

δ({∅}) = 0.08
δ({E1}) = 0.12
δ({E2}) = 0.32
δ({E1, E2}) = 0.48

Table 3.2: Image of the function δ for EQ = {E1, E2}.

So representing the certainty of evidence by the δ function enables us to cap-
ture the presence or absence of pieces of evidence before turning these certainty
values into belief—i.e., before taking into account other kinds of information
about the agent, such as the frame of justification, for example.

3.1.3 Bridging Layer
Having introduced the qualitative and quantitative layers, we can now connect
these two to calculate degrees of beliefs based on a quantitative evidence frame
(S,EQ) and a given frame of justification J . To this end, we start the section
by defining a family of functions to map 2E—the domain of the mass function δ
defined in equation (3.1)—to τE . Finally, we will define two mass functions, one
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with domain τE and another one with domain J , that will be used to compute
the degrees of belief our final model returns.

Evidence Allocation Functions

At this point, we have a set of justifications J and a merged measure of certainty
distributed over the elements of 2E . Our goal is to link the mass values defined
for the elements of 2E by δ to the elements of τE and, in turn, to the elements of
J . Mapping these two sets is not a trivial issue as there are many ways to do so.
For example, given two pieces of evidence E1 and E2 in E , the δ-value associated
with the set {E1, E2} could be mapped to different elements of τE depending on
the interpretation the agent gives to these values. A strict interpretation could
state that the agent assumes that every piece of evidence in the set {E1, E2}
contains the actual world, which would map {E1, E2} to E1 ∩ E2. Conversely, a
moderate interpretation could state that the agent assumes that at least one of
the elements of {E1, E2} contains the actual world, which would map {E1, E2}
to E1 ∪ E2. These interpretations depend on the context of the agent, as it is
the degree of reliability of the sources that will make the agent establish some
assumptions or others. We capture various ways of interpreting the mass values
provided by δ via evidence allocation functions.

Definition 3.1 (Set of evidence allocation functions). Let (S,E) be a qualitative
evidence frame. A set of evidence allocation functions F on (S,E) is a set of
functions from 2E to τE (the topology generated by E) such that for all f, g ∈ F:

1. f(∅) = S,

2. for all non-empty E ⊆ E , f(E) ∈ τE—the topology generated by E—and
it is dense in ∪E w.r.t. τE; or f(E) = ∅, and

3. for all E ⊆ E and every f , g in F, f(E) ⊆ g(E) or g(E) ⊆ f(E).

Note that since E ⊆ E , we have τE ⊆ τE—it follows by Definition 2.15.

In what follows, we assume that all evidence allocation functions are defined on
a qualitative evidence frame (S,E) with ℓ pieces of evidence and omit mention
of it. The first item of this definition preserves the notion of uncertainty since
in our context it is modeled by associating the value 1 − pj (for j = 1, . . . , ℓ)
with the total set. On the other hand, conditions 2 and 3 establish some minimal
rationality constraints. Condition 2 states that an evidence allocation function f
assigns E to an argument that is generated by E and that does not contradict
any other argument generated by E. So, an evidence allocation function does not
assign a set of evidence E to some argument that cannot be produced within E
or that is inconsistent with E. Condition 3 ensures that two agents with the same
set of evidence allocation functions will associate E with arguments such that one
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entails the other. In this sense, E cannot pull these agents in different directions
with respect to their evidence. Let us see three examples of these functions.

Proposition 3.3 Given a set of evidence allocation functions F and the function
i : 2E → τE such that

i(E) =
{∩E if E ̸= ∅,
S otherwise

the set F ∪ {i} is a set of evidence allocation functions.

Proof.

First, every element of F∪{i} maps the empty set to S by definition. Secondly,
recall that the topology τE is generated by the element of E by closing it
under finite intersections and arbitrary unions. This implies that i(E) ∈ τE
and i(E) = ∩E ⊆ T for all T ∈ τE\{∅}—i.e., i(E) is the smallest element
of τE. Consequently, i(E) is either the empty set or it is a dense element of
τE. In addition, given f ∈ F, f(E) ∈ τE—by Definition 3.1. So, if f(E) ̸= ∅,
then i(E) ⊆ f(E).

Proposition 3.4 Given a set of evidence allocation functions F and the function
u : 2E → τE such that

u(E) =
{∪E if E ̸= ∅,
S otherwise

the set F ∪ {u} is a set of evidence allocation functions.

Proof.

Conditions 1 and 3 of Definition 3.1 follows from similar arguments as in the
proof of Proposition 3.3. In addition, considering E ∈ 2E , the topology τE is
a set generated by the elements of E by closing it under finite intersections
and arbitrary unions. This implies that u(E) = ∪E is the largest element of
τE. Therefore, for all T ∈ τE \ {∅}, T ∩ u(E) = T ̸= ∅, meaning that u(E) is
also dense in ∪E w.r.t. τE.

If there exists a function f such that u(E) ⊂ f(E) or f(E) ⊂ i(E), then f
violates Condition 2 of Definition 3.1. Therefore, we infer the following corollary,
showing the boundaries of possible evidence allocation functions.

Corollary 3.1 Given a set of evidence allocation functions F, a function f ∈ F,
and E ∈ 2E , we have i(E) ⊆ f(E) ⊆ u(E).

For our last example, we need the following auxiliary lemma.
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Lemma 3.1 Let (S,E) be a qualitative evidence frame, E ∈ 2E , and dense(E)
be the set of dense elements of τE in ∪E. Then the order (dense(E),⊆) has a
minimum, i.e., there is an element M ∈ dense(E) such that M ⊆ T for every
T ∈ dense(E).

Proof.

Let M be the set of all A ∈ 2E such that (1) ∩A ̸= ∅, and (2) if A′ ∈ 2E and
A ⊂ A′, then ∩A′ = ∅. We will say that a set A ∈ 2E which satisfies (1)
and (2) is a maximal set with non-empty intersection. Then

min
(
(dense(E),⊆)

)
=

⋃
{∩A|A ∈ M}.

To simplify notation, let M :=
⋃

{∩A|A ∈ M}. First, M is in τE by the
definition of generated topology since every A ∈ M only contains elements
of E. In addition, M is dense w.r.t. τE. Any element T ∈ τE forms part
of a maximal set with non-empty intersection: if T has empty intersections
with all other elements of τE, then {T} is a maximal set with non-empty
intersection. Since M contains the intersections of all these maximal sets, in
particular, M ∩ T ̸= ∅.

Now, let us prove that M ⊆ T for every element T ∈ dense(E). Let A be
an arbitrary element of M and T an arbitrary element of dense(E). Since A
is a subset of E, ∩A ∈ τE. In addition, T being dense in τE implies that
T ∩∩A ̸= ∅. Let us take the subset of E formed by every element of E which
contains T ∩ ∩A. This set is non-empty since it includes at least A. If this
set contains a piece of evidence E ∈ E such that E ̸∈ A, then ∩A ∩ {E} is
non-empty and A does not satisfy the maximal finite intersection property.
Therefore, every piece of evidence E in E that contains T ∩ ∩A is in A. By
definition of topology generated by E, if every element in E that contains a
also contains b, then every element of τE that contains a contains b too. We
have shown that every element of E that contains T ∩∩A also contains ∩A.
So every element of τE that contains T ∩ ∩A, for example T , also contains
∩A. Hence M ⊆ T for any T ∈ dense(E), that is, M is the minimum of the
dense sets in τE with the subset relation.

Proposition 3.5 Given a set of evidence allocation functions F and the function
d : 2E → τE such that

d(E) =

min
(
(dense(E),⊆)

)
if E ̸= ∅,

S otherwise

the set F ∪ {d} is a set of evidence allocation functions.
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Proof.

The first two conditions of Definition 3.1 hold by definition. In addition, for
any f ∈ F, we know f(E) = ∅ or f(E) is dense w.r.t. τE. In the former case,
f(E) ⊆ d(E). In the latter one, d(E) ⊆ f(E) by Lemma 3.1.

Corollary 3.2 The set of functions F = {i, u, d} is a set of evidence allocation
functions.

As we mentioned earlier, evidence allocation functions can be understood as con-
textual parameters. Depending on the context, agents may prefer to place the
available information in weaker or stronger arguments—arguments which contain
more or fewer elements respectively—to avoid increasing the uncertainty of the
model—as it can happen by mapping elements of 2E to the total set S—, or to
avoid discarding information—as it can happen by mapping elements of 2E to the
empty set. In this regard, we have already seen that an agent who assumes that
every piece of evidence in the set {E1, E2} contains the actual world may use
function i; and that an agent who assumes that at least one piece of evidence in
the set {E1, E2} contains the actual world may use function u. Similarly, function
d would be a good option for those agents that assume that the actual world is
consistent with the strongest argument that E1 and E2 can produce together.
That is, if we have E1 = {a, b}, E2 = {b, c}, the strongest argument that E1 and
E2 can produce together is {b}. If we add E3 = {c, d}, the strongest argument
that E1, E2 and E3 can produce together is {b, c}. In terms of reliability, this
last case can be described as the combination of all sources is reliable. To foster
intuitions about this combined reliability, we can think about a coloured object
measured by three sensors: a red light sensor, a green light sensor and a blue
light sensor. Even if their measurements are correct, drawing conclusions based
only on one or two of the sensors will be incorrect in most cases.

Belief Functions

Now that we know how to link the power set of E and τE , let us define some
functions that will allow us to compute degrees of belief given a body of possi-
bly mutually inconsistent, partial and uncertain evidence as well as an agent’s
evidential demands.

Let (S,EQ) be a quantitative evidence frame and F a set of evidence allocation
functions. Then, we define the function δτ : F × 2S → [0, 1] as:

δτ(f, T ) =


∑

E:f(E)=T
δ(E) if T ∈ τE ,

0 otherwise.
(3.3)
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Fixing f ∈ F, δτ(f, ·) is a mass function over S since δ is a mass function over E .

By normalizing the previous function with respect to a frame of justification J ,
we define the function δJ : F × 2S → [0, 1] as:

δJ (f, A) =


δτ(f, A)∑

T∈J δτ(f, T ) if A ∈ J ,

0 otherwise.
(3.4)

The following result ensures that for every frame of justification J and every
evidence allocation function f , the function δJ (f, ·) can be used to obtain degrees
of belief additively.

Proposition 3.6 Given a quantitative evidence frame (S,EQ), a frame of jus-
tification J , and an evidence allocation function f ∈ F, the function δJ (f, ·)
defined in Equation (3.4) is a mass function over S such that δJ (f, ∅) = 0.

Proof.

The above fraction is well-defined for every non-dogmatic evidence set—that
is, for EQ = {(Ej, pj)}j=1,...,ℓ such that pj ̸= 1 for all j—since the set of possible
states S belongs to every frame of justification. In addition, δJ (f, ∅) = 0 since
∅ ̸∈ J for the definition of argument. Finally, the total sum of its values is
equal to 1 because δτ(f, ·) is a mass function over S.

At last, we can define the degree of belief for proposition P ⊆ S via a multi-layer
belief function given a quantitative evidence frame, a frame of justification, and
a set of evidence allocation functions.

Definition 3.2 (Multi-layer belief function). Let (S,EQ) be a quantitative evi-
dence frame, J a frame of justification and F a set of evidence allocation func-
tions. We call a function BelJ : F × 2S → [0, 1] defined as

BelJ (f, P ) =
∑
A⊆P

δJ (f, A)

a multi-layer belief function. When J and f are clear from context, we omit
mention of them and write Bel(P ).

Proposition 3.7 Given a quantitative evidence frame (S,EQ), a frame of justi-
fication J , and an evidence allocation function f , the function BelJ (f, ·) defined
in Definition 3.2 is a belief function according to Definition 2.5.
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Proof.

By Proposition 2.5 and Proposition 3.6, the function BelJ (f, ·) is a belief
function (Shafer, 1976, p. 51).

3.2 Relation to Other Belief Models
The multi-layer belief model aims to extend Dempster’s rule of combination and
topological models of evidence by adding features that their original settings do
not have. Specifically, it expands Dempster’s rule of combination by distinguish-
ing between evidence and justifications, and topological models of evidence by
representing degrees of certainty. In this section, we will demonstrate that this
model properly extends them, since both Dempster’s rule of combination and
topological models of evidence can be represented as multi-layer belief models.
Furthermore, we show that the multi-layer belief model also captures the transfer-
able belief model to some extent, and offers an alternative both to the transferable
belief model and the disjunctive rule of combination.

We start proving that, given a quantitative evidence frame (S,EQ) with ℓ pieces
of evidence, running the multi-layer belief model with Dempster-Shafer frame
of justification and evidence allocation function i, we obtain exactly the belief
function given by Dempster’s rule of combination.

Proposition 3.8 Let (S,EQ) be a quantitative evidence frame, ℓ the number of
elements in E, i : 2E → τE the evidence allocation function defined in Proposition
3.3, and J DS Dempster-Shafer frame of justification, that is, J DS = τE \ {∅}.
Let us consider the belief function BelJ DS (i, ·) : 2S → [0, 1] defined by the multi-
layer belief model and bel : 2S → [0, 1] a belief function obtained by applying
Dempster’s rule of combination to the basic belief assignments {mj|j = 1, . . . , ℓ}
such that mj(Ej) = pj, mj(S) = 1 − pj for every j = 1, . . . , ℓ. Then,

BelJ DS (i, P ) = bel(P )

for every P ⊆ S.

Proof.

Let us consider m = ⊕jmj. Given a proposition P ⊆ S, BelJ DS (i, P ) =∑
A⊆P δJ DS (i, A) and bel(P ) = ∑

A⊆P m(A). So let us prove that δJ DS (i, A) =
m(A) to prove the claim.

On the one hand, for A ∈ J DS

δJ DS (i, A) = δτ(i, A)∑
T∈J DS δτ(i, T ) (3.5)
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where J DS = τE \ {∅} and δτ(i, A) = ∑
∩E=A δ(E) with E ∈ 2E . On the

other hand,

m(A) =
∑

∩jAj=Am1(A1) · . . . ·mℓ(Aℓ)∑
∩jBj ̸=∅ m1(B1) · . . . ·mℓ(Bℓ)

. (3.6)

Let us see that ∑
∩jAj=Am1(A1) · . . . ·mℓ(Aℓ) = ∑

∩E=A δ(E).

The functions mj are basic belief assignments such that mj(A) ̸= 0 only when
A = Ej or A = S. Therefore,

∑
∩jAj=A

m1(A1) · . . . ·mℓ(Aℓ) =
∑

Aj∈{Ej ,S}:
∩jAj=A

m1(A1) · . . . ·mℓ(Aℓ).

Let us define a family of vectors b̄ of length k such that bj ∈ {Ej, S}. Then,
the previous formula is equal to

∑
b̄:∩jbj=A

m1(b1) · . . . ·mℓ(bℓ).

There is a one-to-one correspondence between the family of vectors b̄ and
2E . For example, we can define the function f : {Ej, S}ℓ → 2E such that
f(b̄) = {Ej|bj ̸= S}. This function is bijective and ∩bj = A if and only if
∩f(b̄) = A. This means that for every vector b̄ such that ∩bj = A there
exists exactly one E ∈ 2E such that ∩E = A. Consequently, the numerator
of equation (3.6) is equal to

∑
∩E=A

( ∏
Ej∈E

mj(Ej)
∏
Ej /∈E

mj(S)
)

=
∑

∩E=A

( ∏
Ej∈E

pj
∏
Ej /∈E

(1−pj)
)

=
∑

∩E=A

δ(E).

We also know that every Bj in the denominator of Equation (3.6) belongs to
{Ej, S}, so we can consider the same family of vectors b̄ and the one-to-one
correspondence between this family and 2E . If we unfold the definition of the
denominator of equation (3.5), we get:

∑
T∈J DS

δτ(i, T ) =
∑

T∈τE\{∅}

( ∑
∩E=T

δ(E)
)

=
∑

∩E ̸=∅

( ∏
Ej∈E

pj
∏
Ej /∈E

(1 − pj)
)

By applying the bijective function f that was defined above, this formula is
equal to
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∑
b̄:∩bj ̸=∅

m1(b1) · . . . ·mℓ(bℓ) =
∑

∩jBj ̸=∅

m1(B1) · . . . ·mℓ(Bℓ),

which proves our statement.

The multi-layer belief model can also return the same outcome as topological
models of evidence. In this case, we must consider the strong denseness frame
of justification and the minimum dense set allocation function d given in Propo-
sition 3.5. Notice that topological models of evidence is a qualitative approach,
so the only properties we will use of the pj values are that they are positive and
smaller than 1.

Proposition 3.9 Given a quantitative evidence frame (S,EQ), ℓ the number of
elements in E, and the evidence allocation function d : 2E → τE defined in Propo-
sition 3.5, let us consider BelJ SD(d, ·) : 2S → [0, 1] the belief function defined
by the multi-layer belief model; and B : 2S → {0, 1} a belief operator such that
B(P ) = 1 if and only if there exists D ∈ τE such that D ⊆ P and D ∩ T ̸= ∅ for
all T ∈ τE \ {∅}. Then,

B(P ) = 1 if and only if BelJ SD(d, P ) > 0
for every P ⊆ S.

Proof.

Let us prove the left to right direction. By definition, B(P ) = 1 if and only
if there exists D ∈ τE such that D ⊆ P and D ∩ T ̸= ∅ for all T ∈ τE \ {∅}.
That is if B(P ) = 1 then there is a set D contained in P which is in τE and is
dense in it. Therefore, d(E) ⊆ D since the topology generated by E is exactly
τE and the proof of Lemma 3.1 shows that d(E) is included in every element
of dense(E). Consequently,

BelJ SD(d, P ) =
∑
A⊆P

δJ SD(d,A) ≥ δJ SD(d, d(E))

And δJ SD(d, d(E)) > 0 if and only if d(E) ∈ J SD and δτ(d, d(E)) > 0. Both
conditions hold by definition: δτ(d, d(E)) = ∑

d(E)=d(E) δ(E) which is greater
or equal to δ(E) = p1 · . . . · pℓ > 0.

Now, let us see the right-left implication. If BelJ SD(d, P ) > 0 then there is a
set E ∈ 2E such that d(E) ⊆ P and d(E) ∈ J SD. This means that d(E) is a
dense element of τE , so there exists D ∈ τE such that D ⊆ P and D ∩ T ̸= ∅
for all T ∈ τE \ {∅}. This proves that B(P ) = 1.

These two previous results show that the multi-layer belief model is able to return
different belief functions based on the same body of evidence. Concretely, every
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combination of the (non-exhaustive) list of frames of justification and evidence
allocation functions presented in Section 3.1 will return a different belief function.
We call this property adaptability to the context. We assert that the multi-layer
belief model is adaptable to the context because it allows the agent to adjust
its parameters according to the current situation, without having to change the
model or the evidence. Let us explore other two examples.

A common alternative to Dempster’s rule of combination in the context of (par-
tially) non-reliable data sources is the disjunctive rule of combination—see Defi-
nition 2.12. This rule replicates Dempster’s rule of combination but replaces the
intersection by the union, and allows the empty set to have non-negative val-
ues. Therefore, it does not require normalization. A natural alternative to the
disjunctive rule of combination within the multi-layer belief model is to fix the
Dempster-Shafer frame of justification and the evidence allocation function u—
see Proposition 3.4. In the following example we will see that the disjunctive rule
and the multi-layer belief model for Dempster-Shafer frame of justification and
evidence allocation function u, BelJ DS (u, ·), are not equivalent, but both adhere
to the scenario where at least one of the sources is reliable.

Example 3.3 Alternative to Disjunctive Rule of Combination

Let S = {a, b, c, d} be a set of possible states and EQ = {E1, E2, E3} where
E1 = ({a, b}, 0.6), E2 = ({b, c}, 0.8) and E3 = ({c, d}, 0.7).

a b c d

Figure 3.2: Representation of uncertain pieces of evidence by a Venn diagram.
The size of the area represents the degree of certainty of the corresponding
piece of evidence.

Fixing J DS as frame of justification and u as evidence allocation function, we
obtain:

δJ DS (u, {a, b}) = 0.036 δJ DS (u, {a, b, c}) = 0.144
δJ DS (u, {b, c}) = 0.096 δJ DS (u, {b, c, d}) = 0.224
δJ DS (u, {c, d}) = 0.056 δJ DS (u, S) = 0.444
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If we apply the disjunctive rule of combination to this example, the output
would collapse to S since {a, b} ∪ {b, c} ∪ {c, d} = S. Since this rule allows to
associate non-zero values to the empty set, we can consider the following case
instead:

m1(∅) = 0.05, m1({a, b}) = 0.6, m1(S) = 0.35
m2(∅) = 0.05, m2({b, c}) = 0.8, m2(S) = 0.15
m3(∅) = 0.05, m3({c, d}) = 0.7, m3(S) = 0.25

Now, we obtain:

(m1 ⃝∪ m2 ⃝∪ m3)(∅) = 1.25 ·10−4 (m1 ⃝∪ m2 ⃝∪ m3)({a, b, c}) = 0.024
(m1 ⃝∪ m2 ⃝∪ m3)({a, b}) = 1.5 · 10−3 (m1 ⃝∪ m2 ⃝∪ m3)({b, c, d}) = 0.028
(m1 ⃝∪ m2 ⃝∪ m3)({b, c}) = 0.002 (m1 ⃝∪ m2 ⃝∪ m3)(S) = 0.943
(m1 ⃝∪ m2 ⃝∪ m3)({c, d}) = 1.75 ·10−3

By introducing small values for the empty set, we obtain non-zero values for
the same sets than applying δJ DS (u, ·). However, the combined values differ in
several magnitudes, despite keeping the same level of certainty for {a, b}, {b, c}
and {c, d} in the input. This is due to how these numbers are computed. For
example, δJ DS (u, {b, c}) = (1−p1) ·p2 ·(1−p3), while (m1 ⃝∪ m2 ⃝∪ m3)({b, c}) =
m1(∅)·m2({b, c})·m3(∅). As it can be observed, in the multi-layer case degrees
of belief are computed by multiplying the certainty or uncertainty values of
the available pieces of evidence. The degree of belief obtained by applying the
disjunctive rule of combination, however, also considers the value of the empty
set, which is interpreted as an estimation of the amount of conflict (Destercke
and Burger, 2013). The multi-layer belief model accepts that degrees of belief
must be based on justifications, but the empty set is never a justification.
This means that the multi-layer belief model is not able to reproduce the
disjunctive rule of combination. Nevertheless, BelJ DS (u, ·) is another option
to merge uncertain evidence in those contexts where the agent can only ensure
that at least one of the sources is reliable. We leave the study of advantages
and disadvantages of each option for future research.

Another frequent alternative to Dempster’s rule of combination is the unnormal-
ized rule of combination used in the transferable belief model (Definition 2.11).
This setting allows mass functions to attach a positive value to the empty set.
When computing belief based on these general mass functions, the value of the
empty set will be added to the degree of belief of the total set, guaranteeing that
the resulting function is a belief function without the need for normalization.
The most natural attempt to replicate this rule by using the multi-layer belief
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model consists of considering the Dempster-Shafer frame of justification with a
new allocation function t that we define in Proposition 3.10.

Proposition 3.10 Given a set of evidence allocation functions F and the function
t : 2E → τE such that

t(E) =
{∩E if E ̸= ∅, and ∩E ̸= ∅
S otherwise.

the set F ∪ {t} is a set of evidence allocation functions.

Proof.

To prove this, we will show that Definition 3.1 holds. By definition, we have
that the empty set is mapped to S by every element of F∪{t}. In addition, for
those non-empty E such that ∩E ̸= ∅, t(E) = i(E), and t(E) = S otherwise.
Therefore, t(E) is a dense element of the topology τE—by Proposition 3.3—
and t(E) ⊆ g(E) or g(E) ⊆ t(E) for every g ∈ F.

We will call this function transferable allocation function. Proposition 3.11 demon-
strates that the multi-layer belief model, set by the transferable allocation func-
tion and the Dempster-Shafer frame of justification, returns the same belief func-
tion as the transferable belief model.

Proposition 3.11 Let (S,EQ) be a quantitative evidence frame, ℓ the number
of elements in E, t : 2E → τE the transferable evidence allocation function de-
fined in Proposition 3.10, and J DS Dempster-Shafer frame of justification. Let
us consider the belief function BelJ DS (t, ·) : 2S → [0, 1] defined by the multi-layer
belief model and bel : 2S → [0, 1] a belief function obtained by applying the trans-
ferable belief model to the basic belief assignments {mj|j = 1, . . . , ℓ} such that
mj(Ej) = pj, mj(S) = 1 − pj for every j = 1, . . . , ℓ. Then,

BelJ DS (t, P ) = bel(P )

for every P ⊆ S.

Proof.

Let us consider m = ⊞jmj, where ⊞ represents the unnormalized rule of
combination. Given a proposition P ⊆ S, BelJ DS (t, P ) = ∑

A⊆P δJ DS (t, A).
However, bel(P ) is defined by cases, since the combined mass function m may
give positive value to the empty set, and this value is not added to bel(P )
when P ̸= ∅ and P ̸= S. In particular,
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bel(P ) =


0 if P = ∅,∑
∅≠A⊆P

m(A) if P ̸= ∅ and P ̸= S

1 if P = S.

Since Bel is a belief function, BelJ DS (t, ∅) = 0 and BelJ DS (t, S) = 1—for
Proposition 3.7. So we need to show that∑

A⊆P
δJ DS (t, A) =

∑
∅̸=A⊆P

m(A)

for P such that P ̸= ∅ and P ̸= S. Since δJ DS (t, ∅) = 0, this is equivalent to
prove that δJ DS (t, A) = m(A) for A ̸= ∅ and A ̸= S. By Definition 2.11, we
know that

m(A) =
∑

∩jAj=A

m1(A1) · . . . ·mℓ(Aℓ),

exactly as the numerator of Equation (3.6). As t(E) = i(E) when ∩E ̸= ∅,
the proof of Proposition 3.8 demonstrates thatm(A) = δτ(t, A). Remembering
that

δJ DS (t, A) = δτ(t, A)∑
T∈J DS δτ(t, T ) ,

this means that showing ∑
T∈J DS δτ(t, T ) = 1 would prove the result. Indeed,

the empty set is the only element of τ that is not contained in J DS, so∑
T∈J DS

δτ(t, T ) = 1 − δτ(t, ∅) = 1 −
∑

E:t(E)=∅
δ(E).

But t(E) is never the empty set, so δJ DS (t, A) = δτ(t, A) and the result holds.

This case differs to some extent from the representation of Dempster’s rule of
combination via the multi-layer belief model. When applying the multi-layer
belief model with Dempster-Shafer frame of justification and evidence allocation
function i, Dempster’s rule of combination is replicated both at m (basic belief
assignment) and bel (belief function) level. However, changing i for t replicates
the belief function associated with the transferable belief model, but it does not
replicate the unnormalized combination rule at the level of masses. This is because
the general mass functions may assign a positive value to the empty set, while the
empty set is never a justification, so δJ DS (f, ∅) = 0 for every evidence allocation
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function f . If we accept not to allocate positive weights to the empty set, we
have already defined an evidence allocation function that matches E ∈ 2E with
its intersection if it is not empty, and with something else otherwise: the function
d defined in Proposition 3.5. When a collection of pieces of evidence E ∈ 2E

is such that ∩E ̸= ∅, then i(E) = t(E) = d(E) = ∩E. In contrast, when
∩E = ∅, these three evidence allocation functions may return different images.
First, i(E) = ∅, which makes the normalization factor of Equation (3.4) different
from 1. Second, t(E) = S, which increases the value interpreted as uncertainty
of the model. Lastly, d(E) is the smallest dense set of the topology generated
by E with ∪E as a total set. This means that d(E) is never the empty set, so
there is not normalization in δJ DS (d, ∅), and d(E) is not necessarily the total set,
which minimizes the increase of uncertainty of the model. In the next example,
we compare the outcomes of BelJ DS (t, P ), BelJ DS (d, P ) and the unnormalized
rule of combination to see these differences.

Example 3.4 Alternative to Unnormalized Rule of Combination

Let S = {a, b, c, d} be a set of possible states and EQ = {E1, E2, E3} where
E1 = ({a, b}, 0.6), E2 = ({b, c}, 0.8) and E3 = ({c, d}, 0.7).

a b c d

Figure 3.3: Representation of uncertain pieces of evidence by a Venn diagram.
The size of the area represents the degree of certainty of the corresponding
piece of evidence.

Fixing J DS as frame of justification and t as evidence allocation function, we
obtain:

δJ DS (t, {a, b}) = 0.036 δJ DS (t, {b}) = 0.144
δJ DS (t, {b, c}) = 0.096 δJ DS (t, {c}) = 0.224
δJ DS (t, {c, d}) = 0.056 δJ DS (t, S) = 0.444

Now, replacing t by d, we obtain:
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δJ DS (d, {a, b}) = 0.036 δJ DS (d, {b}) = 0.144
δJ DS (d, {b, c}) = 0.432 δJ DS (d, {c}) = 0.224
δJ DS (d, {c, d}) = 0.056 δJ DS (d, S) = 0.108

Lastly, the unnormalized rule of combination returns these masses:

(m1 ⊞m2 ⊞m3)(∅) = 0.42 (m1⊞m2⊞m3)({b}) = 0.144
(m1⊞m2⊞m3)({a, b}) = 0.036 (m1⊞m2⊞m3)({c}) = 0.224
(m1⊞m2⊞m3)({b, c}) = 0.096 (m1 ⊞m2 ⊞m3)(S) = 0.024
(m1⊞m2⊞m3)({c, d}) = 0.056

As can be observed, while the transferable allocation function assigns a greater
value to the total set (0.444) and the unnormalized rule of combination splits
this value between the empty set (0.42) and the total set (0.024), the evidence
allocation function d manages to assign a part of this weight to a proper
subset of S, namely to {b, c} (δJ DS (d, {b, c}) = 0.432 vs. δJ DS (t, {b, c}) =
(m1 ⊞m2 ⊞m3)({b, c}) = 0.096).

These examples show how we can play with the different components of the
multi-layer belief model to obtain some well-known belief models and reasonable
alternatives. Although studying further cases is out of the scope of this thesis,
by modifying other elements of the multi-layer belief model, we could replicate
different families of belief models. For example, the family of belief functions
for dependent sources (Denœux, 2008), whose combination rules are based on
t-norms, could be replicated by defining a δ-function based on that t-norm.

We will further study the multi-layer belief model in Chapter 5, where we study
the computational complexity of this evidence combination method among oth-
ers. One open question that we leave for future research is the study of the
mathematical properties of the multi-layer belief model. This includes defining
combination and decombination of pieces of evidence within this context, and
determining whether these operations are commutative, associative and have a
unique neutral element. Another step towards the development of this model
would be generalizing its definition for sources that provide multiple pieces of
evidence. In Dempster-Shafer terminology, this means allowing basic belief as-
signments with more than two focal elements.

Throughout this chapter, we have defined a belief model that bridges Dempster-
Shafer theory and topological models of evidence. Our analysis has primarily
focused on the relationship between the multi-layer belief model and Dempster-
Shafer theory. However, this model also has the potential to enrich topological
models of evidence to handle uncertain evidence. This could be a valuable tool
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for research areas that intersects with topological models of evidence and uncer-
tainty problems, such as argumentation (Baroni et al., 2018; Hung, 2017; Shi
et al., 2017; Spaans and Doder, 2023), learning (Baltag et al., 2019a, 2019b;
Gierasimczuk, 2010; Kelly and Lin, 2021; Vargas Sandoval, 2020), and reasoning
under uncertainty (Corsi et al., 2023; Dubois et al., 2023; Flaminio et al., 2022;
Halpern, 2017). In the next chapter, we initiate a discussion about logics for
comparing strengths of beliefs based on uncertain evidence, aiming to define a
logic for the multi-layer belief model.

3.3 Use Case Scenario: Navigation
The multi-layer belief model stands out for its adaptability compared to the belief
models it is based on. By adaptability, we mean that the multi-layer belief model
has two parameters—frame of justification and evidence allocation function—that
allow it to merge evidence in different ways without needing a specific method
for each. In contrast, Dempster’s rule of combination and topological models of
evidence produce an output fully determined by the evidence input. Therefore,
using the multi-layer belief model is particularly relevant in cases where the same
digital system will, e.g., be exposed to different situations that require varying
levels of caution.

As an illustrative example, we propose the following situation: In 2022, a viral
video on the internet showed how the screen of a car in autopilot got confused
by the vehicle it was following: a horse-drawn carriage. On the screen, there was
a figure in constant change: a truck, a pedestrian, a car, a pedestrian behind a
car, an oncoming truck, etc. As mentioned, the system got confused. Navigation
systems like this one are a good example where adaptability, in our sense, is
crucial. The same car, with the same digital system, may consider different
evidential demands—being more or less strict with evidence to generate belief—
depending on whether it is in autopilot mode or assisting the driver.

Let us consider a concrete toy example. Suppose the sensors of the car system
gather the following quantitative evidence set:

({Human Silhouette}, 0.9)
({Two Back Wheels,Large Height}, 0.65)
({Two Back Wheels,Medium Width}, 0.7)

For simplicity, we denote Human Silhouette by HS, Two Back Wheels by 2BW ,
Large Height by LH, and Medium Width by MW . So let S = {HS, 2BW,LH,
MW} be a set of possible states, and EQ = {({HS}, 0.9), ({2BW,LH}, 0.65),
({2BW,MW}, 0.7)} be a quantitative evidence set.
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HS 2BW

LH

MW

Figure 3.4: Representation of uncertain pieces of evidence in the running example
by a Venn diagram. The size of the area represents the degree of certainty of the
corresponding piece of evidence.

The feature human silhouette may be included in the internal ontology for pedes-
trian, motorbike, or bike, but not for truck and car. Similarly, the features two
back wheels and large height together may belong to the ontology of truck, but
not to car. Conversely, two back wheels and medium width together point to a car.
Therefore, interpreting the gathered evidence all together is not straightforward.

Let us say that the car system uses the multi-layer belief model to identify what
is in front of it. First, it may calculate the δ function (see Table 3.3), since it is
independent of the parameter choice.

δ(∅) = 0.01

δ({{HS}}) = 0.09

δ({{2BW,LH}}) = 0.02

δ({{2BW,MW}}) = 0.02

δ({{HS}, {2BW,LH}}) = 0.18

δ({{HS}, {2BW,MW}}) = 0.22

δ({{2BW,LH}, {2BW,MW}}) = 0.05

δ({{HS}, {2BW,LH}, {2BW,MW}}) = 0.41

Table 3.3: Image of the δ function in the running example.

For illustrative purposes, let us explore different options for frames of justification
and evidence allocation functions to place the results in context later on. In



50 Chapter 3. Multi-Layer Belief Model for Combining Uncertain Evidence

Figure 3.5, we visually represent the elements of the Dempster-Shafer and strong
denseness frames of justification.

Dempster-Shafer frame of justification

HS, 2BW,LH,MW

2BW,LH,MWHS, 2BW,LH HS, 2BW,MW

HS, 2BW2BW,LH 2BW,MW

HS 2BW

Strong denseness frame of justification

HS, 2BW,LH,MW

HS, 2BW,LH HS, 2BW,MW

HS, 2BW

Figure 3.5: Visual representation of Dempster-Shafer and strong denseness frame
of justification of the running example. Each box represents a set formed by the
elements enclosed in it.

Table 3.4 collects the images of the evidence allocation functions i, u and d,
along with the corresponding value of δ(E) (showing how δ values distribute
after applying these evidence allocation functions).

E i(E) u(E) d(E) δ(E)

∅ S S S 0.01

{HS} {HS} {HS} {HS} 0.09

{2BW,LH} {2BW,LH} {2BW,LH} {2BW,LH} 0.02

{2BW,MW} {2BW,MW} {2BW,MW} {2BW,MW} 0.02

{HS}, {2BW,LH} ∅ {HS, 2BW,LH} {HS, 2BW,LH} 0.18

{HS}, {2BW,MW} ∅ {HS, 2BW,MW} {HS, 2BW,MW} 0.22

{2BW,LH}, {2BW,MW} {2BW} {2BW,LH,MW} {2BW} 0.05

{HS}, {2BW,LH}, {2BW,MW} ∅ S {HS, 2BW} 0.41

Table 3.4: Images of δ by the evidence allocation functions {i, u, d}.

With this data in mind, let us compare three outputs of the multi-layer belief
model: Dempster-Shafer frame of justification and intersection as evidence allo-
cation function (DS + i) (the agent considers every argument and assumes all
sources contain the correct element); Dempster-Shafer frame of justification and
minimum dense set as evidence allocation function (DS + d) (the agent con-
siders every argument and assumes a collection of sources contains the correct
element); and strong denseness frame of justification and minimum dense set as
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evidence allocation function (SD + d) (the agent considers only arguments consis-
tent with every other element of the evidential topology and assumes a collection
of sources contains the correct element). We will compare the resulting δJ and
belief functions with respect to the propositions: There is a pedestrian in front
of the car ({HS}); There is a truck in front of the car ({2BW,LH}); There is
a car in front of the car ({2BW,MW}); uncertainty of the model δJ (f, S); and
proposition with highest δJ value.

Tables 3.5 and 3.6 display the results of BelJ (f, ·) and δJ (f, ·) respectively, for
the corresponding frame of justification J and evidence allocation function f .

Proposition P BelJ DS (i, P ) BelJ DS (d, P ) BelJ SD (d, P )

Pedestrian {HS} 0.47 0.09 0

Truck {2BW, LH} 0.37 0.07 0

Car {2BW, MW} 0.37 0.07 0

Table 3.5: Degrees of belief according to the multi-layer belief model.

δJ Uncertainty δJ (f, S) Proposition with
higher δJ value δJ (f, P )

δJ DS (i, ·) 0.05 {HS} 0.47

δJ DS (d, ·) 0.01 {HS, 2BW} 0.41

δJ SD(d, ·) 0.12 {HS, 2BW} 0.5

Table 3.6: Values of δJ (f, ·) for corresponding J and f according to the multi-
layer belief model.

One critical situation in this context is confusing a pedestrian for a motor ve-
hicle or vice versa, as the required action may differ significantly. For instance,
mistaking a pedestrian walking on the road could lead to honking and slowing
down until stopping completely, potentially causing accidents if there is no actual
pedestrian (thus unexpected behaviour for other drivers). However, encountering
a truck ahead may simply require slowing down to maintain a safer distance.
In an open space as a city road, such mistake is totally plausible. Depending
on how the system is used (autonomous car, driven-assistance system, autopi-
lot, etc.), there may be a preference to minimize false positives or negatives. In
other words, one may prefer setting weaker evidential demands (Dempster-Shafer
frame of justification) or stronger ones (strong denseness frame). Consider the
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scenario of a horse-drawn carriage: if the car detects a pedestrian and the pro-
tocol mandates honking and stopping, in a car with driver assistance—where
the human driver observes the situation—honking could startle the horses and
unexpectedly stopping may cause an accident. Conversely, in an autonomous
car, failing to react to a potential pedestrian could be seen as negligent, possibly
leading to an accident as well. In Tables 3.5 and 3.6, we observe that the belief
model BelJ SD(d, ·) adjusts to the situation of the car with driven-assistance, as it
does not identify a pedestrian in this scenario regardless of the decision protocol
(BelJ SD(d, {HS}) = 0). On the other hand, BelJ DS (i, ·) or BelJ DS (d, ·) may per-
form better in an autonomous car context, as they assign some degree of belief to
the presence of a pedestrian (BelJ DS (i, {HS}) = 0.47, BelJ DS (d, {HS}) = 0.09),
with the reaction depending on the decision protocol.

Another advantage of obtaining different belief results based on the same δ func-
tion is the potential for discovering unexpected outcomes through comparative
exploration. In our example, we observe two models that assign higher weights
to a proposition not matching any known ontology: HS, 2BW . This discrepancy
could alert about the presence of an unknown object that intersects several ontolo-
gies (pedestrian, motorbike, car, truck, etc). Consequently, a suitable protocol
might involve a cautious response encompassing actions common to these inter-
secting ontologies, such as slowing down and maintaining a safe distance without
honking or stopping. Note that this serves merely as an illustrative example. It
has been inspired by a chat with Dr. Philip Xu who works on information fu-
sion for autonomous robots—some of his work related to Dempster-Shafer theory
in (Tong et al., 2019, 2021). Other scenarios where a digital system operates in
varied contexts, with specific preferences about avoiding false negatives or false
positives, may include software for medical diagnostics or legal support.



Chapter 4

A Qualitative Logic for Evidence and
Belief Comparison

In the previous chapter, we proposed a so-called multi-layer belief model for mea-
suring degrees of beliefs for an agent who possesses a body of possibly mutually
contradictory, partial, and uncertain pieces of evidence and whose evidential de-
mands may change depending on the context. Now, we take a first step towards
developing a modal logic for this belief model. In particular, in this chapter we
propose a qualitative logic for explicitly comparing (1) strengths of beliefs and
(2) evidential support with respect to degrees of certainty about evidence. To the
best of our knowledge, (2) is the novel component of the logic and formalized via
an order-lifting of a total pre-order on a set of uncertain evidence pieces. This
component is thus intended to compare propositions with respect to the degrees
of certainty of the sets of evidence pieces—rather than of individual evidence
pieces—supporting them. Therefore, our logic can be seen as a qualitative logic
for evidence and belief comparison.

The chapter is structured as follows. In Section 4.1, we discuss some works that
inspire and motivate ours. In Section 4.2, we introduce and justify an order lifting
for preference orders that preserves good properties when applied on uncertain
evidence. Section 4.3 presents our proposal for a qualitative logic to compare
strengths of evidence in terms of certainty and belief. We conclude the chapter
with Section 4.4, in which we present a real-world scenario that illustrates the
importance of reasoning about uncertain evidence and degrees of belief within
the same logical system.

53
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4.1 Context
Throughout this chapter, we will adopt the evidence representation established
in Section 2.3. Therefore, we assume that S is a finite set of possible states,
EQ is a quantitative evidence set, and (S,EQ) is a quantitative evidence frame.
In addition, we assume familiarity with the terms introduced in Chapter 3. In
particular, we will denote as Bel(·) the belief function obtained by applying the
multi-layer belief model with the Dempster-Shafer frame of justification and the
intersection evidence allocation function (denoted by BelJ DS (i, ·) in Chapter 3).
This belief function is exactly the belief function obtained by applying Dempster’s
rule of combination to a collection of simple basic belief assignments determined
by EQ (see Proposition 3.8).

The goal of this chapter is to define a qualitative logic that compares the strength
of belief and evidential support with respect to the certainty values of the avail-
able evidence. The former is inspired by (Harmanec and Hájek, 1994). This work
presents a qualitative belief logic (QBL) for comparing strengths of belief, where
belief is represented by a belief function (see Definition 2.5), but not necessarily
a belief function generated by combining specific pieces of evidence by a specific
combination method. We aim to use the logic of Harmanec and Hájek (1994) in
this respect. That is, we aim to provide a logic that reasons about the strength
of belief not only according to a given belief function, but according to the belief
function obtained by a given set of quantitative evidence. To this end, we equip
our formal models with EQ and Bel, defined as in the previous paragraph. As
a formal language, we use two binary modal operators. One to compare propo-
sitions with respect to their degrees of belief (equivalent to the one introduced
in (Harmanec and Hájek, 1994)); and one to compare propositions with respect
to the degrees of certainty of the evidence supporting them. Defining this second
modal operator is the challenge we address in this chapter. Consequently, we
will thoroughly discuss orders on E , 2E and 2S. For clarity, the reader can keep
in mind that we will use the following notation: Given a quantitative evidence
frame (S,EQ), we denote by (Q,≤) the order among certainty values that follows
the real order in the interval (0, 1), by (E ,≤e) the order among evidence pieces
derived from (Q,≤), by (2E ,⪯e) any order lifting from (E ,≤e), and by (2S,�e)
the order among propositions that we are aiming at and that will be based on
the previous ones.

Beyond the logic of Harmanec and Hájek (1994), there is a rather long tradition
linking modal logic and Dempster-Shafer theory of belief functions, as well as
modal logic and topological reasoning—the other cornerstone of the multi-layer
belief model. Our approach in this paper falls under both traditions and connects
to many such logics thereof. One of the most relevant works in modal logic that
understands evidence as possibly partial and mutually contradictory pieces of
information is (Van Benthem and Pacuit, 2011). This work has been developed
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further in (Van Benthem et al., 2012, 2014) and inspired the already discussed
topological models of evidence of (Baltag et al., 2022). This way of modeling
evidence, however, does not take into account the degrees of (un)certainty about
evidence: evidence possession is modelled in a binary manner; agents either have
or do not have evidence that support propositions. Modal logics that reason
about uncertain evidence or, specifically, about degrees of belief based on un-
certain evidence, can be found among the logics for belief functions. Starting
with (Ruspini, 1987), this line of research has tended to capture belief functions
in epistemic logic, resulting in multi-valued logics that are capable of represent-
ing graded belief. A recent proposal is (Dubois et al., 2023), where we can find a
concrete multi-valued logic for belief and an overview of the most relevant pub-
lications in this direction. Furthermore, if we look at other frameworks related
to belief and uncertainty, we find other comparison logics, such as those defined
in (Ghosh and De Jongh, 2013), which explicitly reason about different strengths
of belief, and (Ding et al., 2021), which presents a family of comparison logics for
the uncertainty framework of imprecise probabilities.

In our case, we chose the logic of Harmanec and Hájek (1994) (QBL) as a starting
point because its qualitative nature facilitates its connection to topological models
of evidence, a relevant property for the long-term goal of developing a modal logic
for the multi-layer belief model. As mentioned above, in this chapter we extend
QBL to reason not only about the strength of beliefs, but also about the certainty
degrees of evidential support. This logic contributes to the relevant literature in
two different ways. First, it opens the door to extending topological models of
evidence to a quantitative version that captures different degrees of certainty or
preferences among pieces of evidence. Second, it extends QBL by providing a
representation of basic evidence pieces that generate degrees of belief through
Dempster’s combination rule.

4.2 An Order Lifting for Uncertain Evidence
In our logic—to be formally defined in Section 4.3—we compare propositions
with respect to the degree of certainty of the evidential support they receive.
It is easy to compare basic pieces of evidence with respect to their degrees of
uncertainty: we simply order pieces of evidence according to certainty values
specified in EQ. That is, given a quantitative evidence frame (S,EQ) and pairs
(E, qE), (E ′, qE′) ∈ EQ, we define an order ≤e on E as follows:

E ≤e E
′ if and only if qE ≤ qE′ (order ≤e)

where ≤ is the standard total pre-order defined on (0, 1). We say E ′ certainty-
dominates E when E ≤e E ′. When qE < qE′ , we say E ′ strictly certainty-
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dominates E and denote it by E <e E
′. “Certainty-dominates” simply means “at

least as certain as”, we prefer the former reading as the latter leads to convoluted
readings of the comparison operators we later define over sets of propositions. It
is not difficult to see that (E ,≤e) forms a total pre-order (≤e is not necessarily a
partial order on E since it could be that qE = qE′ but E ̸= E ′).

In order to compare propositions with respect to the degree of certainty of the
evidential support they receive, we need to define an order on sets of pieces of
evidence that support propositions. To this end, we need to extend or lift the
order ≤e to an order ⪯e on 2E . We can then easily extend this order to an order
on 2S by simply linking sets of pieces of evidence to the propositions they support.

4.2.1 Egli-Milner Order for Uncertainty
In (Van Benthem et al., 2009), the authors present four immediate ways of lifting
a pre-order: ∀∀-, ∀∃-, ∃∀-, and ∃∃-liftings. We start our discussion by analyzing
the implications of these liftings of ≤e in our specific context. Our goal is to
identify the one that better captures our intention of comparing propositions
based (only) on the degree of certainty of their evidential support. Recall that we
assume a finite set of pieces of evidence E defined on a finite set of possible states
S. In addition, we represent degree of certainty of evidence as values within the
interval (0, 1), so they are linearly ordered and the corresponding pair (E ,≤e) is a
total pre-order, that is, a total, reflexive and transitive order—see, e.g., (Roman,
2008) for such standard definitions of order theory.

When defining a lifting (2E ,⪯e) for the total pre-order (E ,≤e), the following
definitions will be useful. For any E,E′ ∈ E :

1. If E ⪯e E
′ and E′ ⪯e E, then E ≡e E

′ and we say E and E′ are equally
certain.

2. If E ⪯e E
′ and E′ ̸⪯e E, then E ≺e E

′ and we say E′ strictly certainty-
dominates E.

3. If E ̸⪯e E
′ and E′ ̸⪯e E, then E?eE′ and we say E and E′ are incompa-

rable.

Additionally, when we have chosen the order lifting that best suits our purposes,
we will place the empty set at the bottom of the obtained order. So we will
discuss the four liftings presented in (Van Benthem et al., 2009) by excluding the
empty set.

∀∀-lifting If we define an evidence comparison order ⪯e on 2E \ {∅} as

E ⪯e E
′ if and only if ∀E ∈ E ∀E ′ ∈ E′ : E ≤e E

′,
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then it is not possible to compare some sets of evidence whose certainty-domination
is intuitively clear. In Figure 4.1 we visualize one of these cases. We observe that
∀∀-lifting gives the intuitive result in case (a): E′ strictly certainty-dominates E.
However, in case (b), ∀∀-lifting says that E and E′ are incomparable. Ideally, we
would like to be able to compare these not extreme cases of E and E′ depicted in
Figure 4.1.(b) and conclude that E ⪯e E

′, so this order lifting is too conservative
for our purposes.

0 1

(a) E ≺e E
′ w.r.t. ∀∀-lifting.

0 1

(b) E?eE′ w.r.t. ∀∀-lifting.

Figure 4.1: Brown segments represent the range of certainty values of the pieces
of evidence in E, so the vertical lines in the extremes represent the minimum and
maximum of these values. Purple segments represent the respective values for
E′.

∃∃-lifting If we define an evidence comparison order ⪯e on 2E \ {∅} as

E ⪯e E
′ if and only if ∃E ∈ E ∃E ′ ∈ E′ : E ≤e E

′,

then we would again obtain a counter-intuitive comparisons for the case depicted
in Figure 4.1.(b). As noted in Figure 4.2.(b), ∃∃-lifting establishes E ≡e E′ in
this case, which contradicts intuitions since every piece of evidence in E is strictly
certainty-dominated by some evidence in E′.

0 1

(a) E ≺e E
′ w.r.t. ∃∃-lifting.

0 1

(b) E ≡e E
′ w.r.t. ∃∃-lifting.

Figure 4.2: Brown segments represent the range of certainty values of the pieces
of evidence that support E, so the vertical lines in the extremes represent the
minimum and maximum of these values. Purple segments represent the respective
values for E′.

∀∃-lifting If we define an evidence comparison order ⪯e on 2E \ {∅} as

E ⪯e E
′ if and only if ∀E ∈ E ∃E ′ ∈ E′ : E ≤e E

′,

then we would again obtain counter-intuitive comparisons for some cases. In
Figure 4.3, we observe that this order lifting captures intuitions for cases (a) and
(b), but its answer for case (c) is not the expected one. In this case, ∀∃-lifting says
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that E′ strictly certainty-dominates E. However, E strictly certainty-dominates
some evidence in E′ as well, so stating E ≺e E

′ contradicts intuitions.

0 1

(a) E ≺e E
′ w.r.t.

∀∃-lifting.

0 1

(b) E ≺e E
′ w.r.t.

∀∃-lifting.

0 1

(c) E ≺e E
′ w.r.t.

∀∃-lifting.

Figure 4.3: Brown segments represent the range of certainty values of the pieces
of evidence that support E, so the vertical lines in the extremes represent the
minimum and maximum of these values. Purple segments represent the respective
values for E′.

∃∀-lifting If we define an evidence comparison order ⪯e on 2E \ {∅} as

E ⪯e E
′ if and only if ∃E ∈ E ∀E ′ ∈ E′ : E ≤e E

′,

then we are in a similar situation as in Figure 4.3 but concluding E′ ≺e E instead
of E ≺e E

′ in case (c). We draw similar conclusions.

Bi-directional liftings. All ∀∀-, ∀∃-, ∃∀-, ∃∃-liftings present some counter-
intuitive behavior in our context. In ∀∀- and ∃∃-liftings, the problem is intrinsic
to their definition. However, in ∀∃- and ∃∀-liftings, problems arise from the lack
of bi-directionallity. This can be solved by considering their bi-directional version,
that is, by combining these liftings with their reverse.

Definition 4.1 (∀∃ bi-directional lifting). Let (S,EQ) be a quantitative evidence
frame. We define the ∀∃ bi-directional lifting of (E ,≤e) as

E ⪯e E
′ if and only if (1) ∀E ∈ E ∃E ′ ∈ E′ : E ≤e E

′; and
(2) ∀E ′ ∈ E′ ∃E ∈ E : E ≤e E

′.

The order (2E ,⪯e) is called Egli-Milner order. In (Shi and Sun, 2021), the authors
study the logic of this order as a preference lifting. The authors of this paper
remark other uses of the Egli-Milner order in the literature, such as works on
domain theory (Plotkin, 1976), verisimilitude (Van Benthem, 1987; Brink, 1992)
or truthmaker semantics (Fine, 2017).

Definition 4.2 (∃∀ bi-directional lifting). Let (S,EQ) be a quantitative evidence
frame. We define the ∃∀ bi-directional lifting of (E ,≤e) as
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E ⪯e E
′ if and only if (1) ∃E ∈ E ∀E ′ ∈ E′ : E ≤e E

′; and
(2) ∃E ′ ∈ E′ ∀E ∈ E : E ≤e E

′.

In our particular context, where the evidence set E is finite and ≤e is a total
pre-order, ∀∃ bi-directional lifting and ∃∀ bi-directional lifting are equivalent.

Proposition 4.1 Let (S,EQ) be a quantitative evidence set such that S and E
are finite. Then, for all E,E′ ∈ 2E \ {∅}:

(1) ∀E ∈ E ∃E ′ ∈ E′ : E ≤e E
′; and

(2) ∀E ′ ∈ E′ ∃E ∈ E : E ≤e E
′

if and only if

(1′) ∃E ∈ E ∀E ′ ∈ E′ : E ≤e E
′; and

(2′) ∃E ′ ∈ E′ ∀E ∈ E : E ≤e E
′.

Proof.

Right-left direction is true in general, since (1′) implies (2) and (2′) implies
(1). To prove left-right direction, suppose that (1) and (2) are the case. Since
(E ,≤e) is a total pre-order on a finite set and, thus, E is finite, there is a
piece of evidence Emax ∈ E such that E ≤e Emax for all E ∈ E. By (1), we
also have that there is E ′ ∈ E′ such that Emax ≤e E

′. As ≤e is transitive,
we obtain that E ≤e E

′ for all E ∈ E. Hence, (2′) is satisfied. Similarly, the
finiteness and totality of (E ,≤e) also implies that there exists Emin ∈ E such
that Emin ≤e E for all E ∈ E. By (2), Emin ≤e E

′ for all E ′ ∈ E′, hence (1′)
is also satisfied.

In contexts where uncertainty is not represented by a total pre-order over a finite
space, further discussion is needed to differentiate these two order liftings and
their implications. In our case, we can use both definitions indistinguishably for
Proposition 4.1. We will stick to ∀∃ bi-directional lifting (or Egli-Milner order)
for the connections of this work with (Shi and Sun, 2021). In Definition 4.3, we
present our proposal for a certainty order among sets of pieces of evidence.

Definition 4.3 (Evidence Comparison Order (2E ,⪯e)). Given a finite quantita-
tive evidence frame (S,EQ), the evidence comparison order ⪯e on 2E is defined
as follows. For all E,E′ ∈ 2E :

1. ∅ ⪯e E, and

2. for all E ̸= ∅:
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E ⪯e E
′ if and only if (1) ∀E ∈ E ∃E ′ ∈ E′ : E ≤e E

′; and
(2) ∀E ′ ∈ E′ ∃E ∈ E : E ≤e E

′.

Observe that, restricted to non-empty sets of evidence pieces, ⪯e is the Egli-
Milner extension/lifting of ≤e on E . Given any E,E′ ∈ 2E : E ⪯e E′ says
that the evidence set E′ is at least as certain as E in the following sense: (1)
every piece of evidence in E is certainty-dominated by some piece of evidence
in E′, and (2) every piece of evidence in E′ certainty-dominates some piece of
evidence in E, with the caveat that the empty set is always the least certain.
We stipulate that the empty set is comparable according to the ordering ⪯e to
enable our logic to distinguish between propositions supported by some evidence
and those that are not. This creates a slight abuse of language, as the empty set
is not truly certainty-dominated by every set of evidence, but rather ‘evidence’-
dominated by every set of evidence, in the sense that any set E ∈ 2E \{∅} contains
more pieces of evidence than the empty set. Therefore, every non-empty set of
evidence dominates the empty set and, between two non-empty sets of evidence,
domination depends on the certainty degree of the available evidence.

0 1E ≺e E
′

0 1E ≺e E
′

0 1E ≺e E
′

0 1E ≺e E
′

0 1E?eE′
0 1E ≡e E

′

0 1E′ ≺e E

0 1E′ ≺e E

0 1E′ ≺e E

0 1E′ ≺e E

• E, • E′

Figure 4.4: Visualization of ⪯e. Brown segments represent the range of certainty
values of the pieces of evidence that support E, so the vertical lines in the ex-
tremes represent the minimum and maximum of these values. Purple segments
represent the respective values for E′.



4.2. An Order Lifting for Uncertain Evidence 61

We complete this definition by reminding the reader the shortcuts defined at the
beginning of this section. That is, E ≡e E

′ if and only if E ⪯e E
′ and E′ ⪯e E;

E ≺e E
′ if and only if E ⪯e E

′ and E′ ̸⪯e E; and E?eE′ if and only if E ̸⪯e E
′

and E′ ̸⪯e E. In Figure 4.4 we visually represent the behaviour of the ordering
⪯e.

4.2.2 Properties and Suitability
As an order on sets of pieces of evidence that compares sets of evidence pieces
according to their degrees of certainty, we proposed the lifting of (E ,≤e) given in
Definition 4.3. Now, we study the properties of this order. We also discuss how
appropriate these properties are in our context of uncertain evidence and belief
functions, justifying our choice.

Ordering properties

Proposition 4.2 Given a quantitative evidence frame (S,EQ), the ordered pair
(2E ,⪯e) defined as in Definition 4.3, and E,E′ ∈ 2E , we have:

1. The pair (2E ,⪯e) is a pre-order which is not necessarily total.

2. If E ⪯e ∅, then E = ∅.

3. ∅ is the unique minimal element of (2E ,⪯e).

4. E ⊆ E′ does not imply E ⪯e E
′ (i.e., ⪯e is not monotonic).

Proof.

1. It follows immediately by the definition of ⪯e that it is reflexive and
transitive. To see that ⪯e is not total, consider S = {a, b, c} and E ={
({a}, 0.2), ({b}, 0.1)({c}, 0.3)

}
, E =

{
{a}

}
and E′ =

{
{b}, {c}

}
. We

then have E ̸⪯e E′ since {b} ∈ E′ does not certainty-dominate any
element in E, violating Definition 4.3.2.(2). Moreover, E′ ̸⪯e E since
{c} ∈ E′ is not certainty-dominated by any element in E, violating
Definition 4.3.2.(1).

2. Suppose, toward contradiction, that E ⪯e ∅ and E ̸= ∅. The former, by
Definition 4.3.2.(1), means that for all E ∈ E, there is E ′ ∈ ∅ such that
E ≤e E

′, which cannot be the case as the empty set has no elements.
Therefore, if E ⪯e ∅, then E = ∅.

3. Item 2 and Definition 4.3.1 together guarantee that E ⪯e ∅ if and only
if E = ∅, thus, ∅ is the unique minimal element of (2E ,⪯e).
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4. Consider EQ = {({a}, 0.2), ({b}, 0.3), ({c}, 0.1)}, E = {{a}}, and E′ =
{{a}, {c}}. In this case, E ⊆ E′ but E ̸⪯e E

′, since {c} ∈ E′ violates
Definition 4.3.2.(2): it does not certainty-dominates any evidence in E.

From all these properties, we remark the fact of having the empty set as the
minimum of (2E ,⪯e). This implies that (1) the lack of evidence will not dominate
any set of pieces of evidence according to our ordering, and (2) we can identify the
propositions that are not supported by any evidence. Without Definition 4.3.1,
every E ∈ 2E \ {∅} would be incomparable to ∅. However, thanks to our current
definition of ⪯e, we can identify those propositions that are not supported by the
available evidence by Proposition 4.2.2.

We also highlight the non-monotonicity property described in Proposition 4.2.4.
According to the set representation of uncertainty used in Dempster-Shafer the-
ory, the order (E ,≤e) is non-monotonic. For example, given S = {a, b, c} and
E =

{
({a}, 0.7), ({a, b}, 0.2)

}
, {a} ⊆ {a, b} and {a, b} ≤e {a}. Therefore, non-

monotonicity for the order resulting from the lifting may be naturally accepted
in this context.

Order lifting properties So far, intuitions and order properties of ⪯e are
convenient for our context. Now, we discuss how good (2E ,⪯e) is as an order
lifting of (E ,≤e), and if we could get any better alternative. The classic works
of preference lifting present the following properties as desirable properties for an
order lifting (Barberà et al., 2004). In this part, we will use order extension as a
synonym of order lifting to match the terminology of the cited sources.

Definition 4.4 (Order Lifting Properties). Let (X,≤) be a total order over a
finite set and (2X ,⪯) an order lifting. We define the following properties.

(Extension rule) For all x1, x2 ∈ X, if x1 < x2 then {x1} ≺ {x2}.

(Extension Dominance) For all Y ⊆ X and all x ∈ X \Y , (1) if x < y for all
y ∈ Y then Y ∪ {x} ≺ Y , and (2) if y < x for all y ∈ Y then Y ≺ Y ∪ {x}.

(Extension Independence) For all Y1, Y2 ⊆ X and x ∈ X \ {Y1 ∪ Y2}, if
Y1 ≺ Y2 then Y1 ∪ {x} ⪯ Y2 ∪ {x}.

(Extension Strict Independence) For all Y1, Y2 ⊆ X and x ∈ X \ {Y1 ∪ Y2},
if Y1 ≺ Y2 then Y1 ∪ {x} ≺ Y2 ∪ {x}.

If we consider the restriction of the order (2E ,⪯e) to (2E \ {∅},⪯e) (so the Egli-
Milner order), we obtain an order lifting of (E ,≤e) equivalent to the order lifting
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min-max defined in the context of preference lifting in Social Choice (Maly, 2020).

Definition 4.5 (Min-max Extension). Given a total order (X,≤) over a finite
set and Y1, Y2 ⊆ X, we define the min-max extension (2X ,⪯) as

Y1 ⪯ Y2 if and only if max(Y1) ≤ max(Y2) and
min(Y1) ≤ min(Y2)

where max(Yi) ∈ Yi and min(Yi) ∈ Yi such that y′ ≤ max(Yi) and min(Yi) ≤ y′

for all y′ ∈ Yi, i ∈ {1, 2}. For any i ∈ {1, 2}, both elements max(Yi) and min(Yi)
exists for Yi finite.

Proposition 4.3 Given a finite quantitative evidence frame (S,EQ), the min-
max extension of (E ,≤e) is equivalent to (2E \ {∅},⪯e).

Proof.

Let E, E′ ∈ 2E \{∅}. If for all E ∈ E there exists E ′ ∈ E′ such that E ≤e E
′,

then there exists E ′ ∈ E′ such that max(E) ≤e E
′ ≤e max(E′). And, if for all

E ′ ∈ E′ there exists E ∈ E such that E ≤e E
′, then there exists E ∈ E such

that min(E) ≤e E ≤e min(E′). So Definition 4.3 implies min-max extension.
Conversely, if max(E) ≤e max(E′) then E ≤e max(E′) for every E ∈ E. And
if min(E) ≤e min(E′) then min(E) ≤e E

′ for every E ′ ∈ E′.

Min-max extension is a pre-order satisfying the extension rule, extension domi-
nance and extension independence, but not extension strict independence (Maly,
2020). For Proposition 4.3, we can extrapolate these properties to (2E \ {∅},⪯e).

Extension independence is a monotonicity rule, with respect to the certainty
values, that would be counter-intuitive to violate in our context. If ⪯e would not
satisfy extension independence then it could be the case that {E1} ⪯e {E2} but
{E2, E3} ⪯e {E1, E3}.

Something similar happens with violating the second statement of extension dom-
inance. We can think of the case where {E1} ⪯e {E2} but {E1, E2} ⪯e {E1}. It
is counter-intuitive to have more and more certain evidence in {E1, E2} and still
concluding that {E1} certainty-dominates it. The part of the principle that could
be a priori rejected is Condition (1). However, rejecting Condition (1) implies
that there will be cases where {E,E ′} ̸≺e {E} in spite of the fact that qE′ < qE.
Consequently, an order lifting of (E ,≤e) that does not satisfy dominance does
not necessarily order the elements of 2E according to the degrees of uncertainty
of the individual evidence pieces in E : in this particular case, the resulting order
⪯e seems to ignore the fact that the only extra element E ′ of {E,E ′} is strictly
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less certain than E. Therefore, extension dominance and independence are indis-
pensable properties for the comparison operator ⪯e for uncertain evidence.

This conclusion makes (2E ,⪯e) specially relevant for the impossibility Theo-
rems 4.1 and 4.2, and Proposition 4.4.

Theorem 4.1 (Kannai and Peleg, 1984). Let X be a set with strictly more
than five elements and ≤ a total order on X. Then there is no total pre-order on
2X that satisfies extension dominance and extension independence with respect to
≤.

Theorem 4.2 (Barberà and Pattanaik, 1984). Let X be a set with strictly more
than two elements and ≤ a total order on X. Then there is no binary relation
on 2X that satisfies extension dominance and extension strict independence with
respect to ≤.

Proposition 4.4 (Maly, 2020, Observation 3.1). Let X be a set and ≤ a
total order on X. Then every pre-order that satisfies extension dominance and
extension independence includes the min-max extension.

For Theorem 4.2, deciding to maintain extension dominance implies that we can
only aim for extension (non-strict) independence. Since dropping extension inde-
pendence is not an option in our context, Theorem 4.1 implies that any extension
of (E ,≤e) we work with will be a non-total pre-order. Therefore, Proposition 4.4
determines that any other extension of (E ,≤e) that preserves extension domi-
nance and extension independence will contain our order (2E ,⪯e). This makes
our proposal specially relevant for ordering sets of uncertain pieces of evidence.
In Proposition 4.5 we collect all the order lifting properties of (2E ,⪯e).

Proposition 4.5 The following holds for any finite (E ,≤e) and the corresponding
(2E ,⪯e) (as given in Definition 4.3):

1. (2E ,⪯e) satisfies the extension rule: for all E,E ′ ∈ E, if E <e E
′ then

{E} ≺e {E ′}.

2. (2E ,⪯e) satisfies extension dominance: for all E ⊆ E and all E ∈ E \ E:

(a) if E <e E
′ for all E ′ ∈ E, then E ∪ {E} ≺e E, and

(b) if E ′ <e E for all E ′ ∈ E, then E ≺e E ∪ {E}.

3. (2E ,⪯e) satisfies extension independence: for all E,E′ ⊆ E and E ∈ E \
E ∪ E′, if E ≺e E

′, then E ∪ {E} ⪯e E
′ ∪ {E}.

4. Every order extension (2E ,⪯) of (E ,≤e) such that (1) ∅ ⪯ E for every
E ∈ 2E , (2) satisfies extension dominance and (3) extension independence,
contains (2E ,⪯e).
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Proof.

Since the restriction (2E \ {∅},⪯e) is exactly the min-max extension of (E ,
≤e), all the statements hold for E ̸= ∅ (Maly, 2020). Including the empty set
as the minimum of the order does not conflict with these statements, so they
all hold for (2E ,⪯e) as well.

We propose (2E ,⪯e) as a natural and relevant order extension of (E ,≤e) to capture
uncertainty relations. Now, we will use (2E ,⪯e) to compare propositions with
respect to the degree of certainty of the evidential support they receive. Given a
qualitative evidence frame (S,EQ) and P ⊆ S, we define the basic evidence set
EP for P as EP = {E ∈ E : E ⊆ P}. The order ⪯e is then straightforwardly
extended to an order �e on 2S:

P �e Q if and only if EP ⪯e EQ. (order �e)

We will use this construction to compare propositions with respect to the degree
of evidential support they receive, so let us present the properties of (2S,�e) in
the following proposition.

Proposition 4.6 Given a quantitative evidence frame (S,EQ), the pair (2S,�e)
satisfies the following properties:

(Reflexivity) P �e P for all P ∈ 2S.

(Transitivity) If P1�eP2 and P2�eP3 then P1�eP3 for all P1, P2, P3 ∈ 2S.

(Minimum existence) ∅ is the unique minimal element of (2S,�e).

(Non-Monotonicity) P ⊆ Q does not imply P �e Q.

(Extension rule) For all E1, E2 ∈ E and P , Q ⊆ S such that EP = {E1}
and EQ = {E2}, if E1 <e E2 then P �e Q.

(Extension dominance) For all P ⊆ S and all E ∈ E \ EP : (1) if E <e E
′

for all E ′ ∈ EP , then for any Q ⊆ S such that EQ = EP ∪ {E}, Q�eP ; (2)
if E ′ <e E for all E ′ ∈ EP , then for any Q ⊆ S such that EQ = EP ∪ {E},
P �e Q.

(Extension independence) For all P , Q ⊆ S and E ∈ E\(EP∪EQ), if P�eQ
then for any P ′, Q′ ⊆ S such that EP ′ = EP ∪ {E} and EQ′ = EQ ∪ {E},
P ′ �e Q

′

Proof.

All these properties are inherited from the order (2E ,⪯e).
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4.3 The Logic
This section is dedicated to defining the logic for comparing strengths of evidence
and belief. We introduce its syntax and semantics, discuss the nature of the
modal operator for comparing uncertain evidence, and list some of its properties.
Subsequently, we will propose a preliminary set of valid principles and point to
important invalidities.

4.3.1 Syntax
We work with a binary modal language L with a countable set Prop of atomic
formulas, p, q, r, (p1, p2, . . . ), negation ¬, conjunction ∧, a binary evidence compar-
ison modality �e, a binary belief comparison modality �b and round parentheses
as auxiliary symbols. We use φ, ψ, χ (φ1, φ2, ...), as metavariables for formulas of
L. The well-formed formulas of our modal language L is given by the following
grammar in BNF form:

A,B := p | ¬A | (A ∧B)

φ, ψ := A | (A�e B) | (A�b B) | ¬φ | (φ ∧ ψ) | 2φ

where p ∈ Prop. We use → for the material conditional and ∨ for disjunction,
defined in the usual manner as ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) and ϕ → ψ := ¬ϕ ∨ ψ. We
denote the propositional constants for tautology and contradiction by ⊤ and ⊥,
respectively. We will follow the usual rules for the elimination of the parentheses.

Notice that the first line of the BNF form defines the language of classical proposi-
tional logic, denoted henceforth by LCPL. The comparison modalities �e and �b

in L are intended to compare only first-order evidence and beliefs, thus, connect
only the sentences in LCPL. The intended reading of the binary modalities are as
follows. We read φ�e ψ as “the evidence for ψ certainty-dominates the evidence
for φ;” and φ �b ψ as “belief in ψ is at least as strong as belief in φ,” following
(Ghosh and De Jongh, 2013). The analogous belief comparison operator φ � ψ
in (Harmanec and Hájek, 1994) is read as “ψ is at least as believable as φ” and
interpreted with respect to a belief function in the same way we interpret �b. We
here adopt the reading of the belief comparison operator ≽B of (Ghosh and De
Jongh, 2013) as we find it more intuitive and fitting to the formal interpretation
and intended meaning of �b. 2φ is the epistemic modality “It is a priori that
φ” and will be interpreted as the global modality.

We use the notation �e both in syntax and semantics. In syntax it represents the
evidence comparison modality. In semantics, we use it to interpret the evidence
comparison modality. We believe it will be clear from the context when �e is a
syntactic object as a component of L and when it is part the semantics.
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We introduce notations φ ≡e ψ := (φ �e ψ) ∧ (ψ �e φ) and φ ≡b ψ := (φ �b

ψ) ∧ (ψ �b φ) for equivalence of φ and ψ with respects to evidential support
and believability, respectively. We define the corresponding strong comparison
operators �e and �b, respectively as, φ �e ψ := (φ �e ψ) ∧ ¬(ψ �e φ) and
φ �b ψ := (φ �b ψ) ∧ ¬(ψ �b φ). We read φ �e ψ as “the evidence for ψ strictly
certainty-dominates the evidence for φ;” and φ �b ψ as “belief in ψ is strictly
stronger than belief in φ”.

4.3.2 Semantics
In this subsection we define the semantics of our logic and compare our models
with some of those proposed in relevant literature.

Definition 4.6 (Quantitative Evidence-Belief Models). A quantitative evidence-
belief model (or, in short, an e-b model) M = ⟨S,EQ,Bel, V ⟩ is a tuple, where

1. (S,EQ) is quantitative evidence frame,

2. Bel : 2S → [0, 1] is a belief function computed by the multi-layer belief model
with input EQ, Dempster-Shafer frame of justification and the intersection
as allocation function. In other words, Bel is the belief function obtained
from applying the Dempster’s rule of combination to the collection of basic
belief assignments mj such that Ej ∈ E is the only proper focal element of
mj and mj(Ej) = qj for every j ∈ {1, . . . , ℓ}. Recall that Bel is BelJ DS (i, ·)
from Chapter 3.

3. V : Prop → 2S is a standardly defined valuation map.

Our e-b models are a combination of the topological models of evidence of (Bal-
tag et al., 2022) and qualitative belief models of (Harmanec and Hájek, 1994).
Topological models of evidence are defined as M = ⟨S,E , τ, V ⟩, where S is a set
of possible states, E ⊆ 2S, τ is the tautology generated by E and V a valuation
map. Similarly to e-b models, these models provide an explicit representation
of evidence, as the set E represents a collection of partial and possibly mutually
contradictory evidence. In addition, both settings state ∅ ̸∈ E . One of the main
differences is that E in topological models of evidence always contains the total set
S, while in our context S ̸∈ E for its role representing uncertainty. More substan-
tially, topological models of evidence are purely qualitative, lacking quantitative
components such as Q and Bel. This means that topological models of evidence
do not represent uncertainty about evidence. As opposed to the topological ev-
idence models, e-b models do not have an explicit representation of evidential
topology, that is, an explicit representation of a set of combined evidence pieces
and arguments (although these can be generated from E).
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Qualitative belief models of (Harmanec and Hájek, 1994), on the other hand, are
defined as M = ⟨S,Bel, V ⟩, where S is a set of possible states, Bel is a belief
function and V a valuation function. They are similar to e-b models in that they
both have a representation of degrees of belief based on belief functions. The
main difference is that qualitative belief models do not include an explicit repre-
sentation of evidence, and the function Bel is not necessarily computed through
Dempster’s rule of combination or any other specific combination rule. In quali-
tative belief models, Bel is a generic belief function, whereas in e-b models, it is a
separable belief function. Our e-b models put together the topological models of
evidence of (Baltag et al., 2022) and qualitative belief models of (Harmanec and
Hájek, 1994) by enriching the former via components that represent degrees of
uncertainty about evidence and belief, and the latter by an explicit representation
of pieces of evidence.

To interpret the modality �e in the intended way, we use the pre-order that we
denoted by the same symbol �e in Equation order �e. The semantics |= for L
in e-b models is defined recursively as in Definition 4.7. The truth set of φ ∈ L
(or, the intension of φ) with respect to M is [[φ]]M := {s ∈ S : M, s |= φ},
namely, the set of all possible states that makes φ true. We omit the subscript
M in [[φ]]M when the model is contextually clear. To simplify notation, instead
of writing E [[φ]]M , we simply write Eφ when the model is clear from context and
call Eφ the evidence set for φ.

Definition 4.7 (Semantics for L (|=)). Given an e-b model M = ⟨S,EQ,Bel, V ⟩
and a state s ∈ S, the |=-semantics for the language L is defined recursively as:

M, s |= p if and only if s ∈ V (p)
M, s |= ¬φ if and only if not M, s |= φ
M, s |= φ ∧ ψ if and only if M, s |= φ and M, s |= ψ
M, s |= φ�e ψ if and only if Eφ �e Eψ

M, s |= φ�b ψ if and only if Bel([[φ]]) ≤ Bel([[ψ]])
M, s |= 2φ if and only if S ⊆ [[ψ]].

where p ∈ Prop.

The notions of logical consequence and validity are defined standardly as follows.
Given a Γ ⊆ L and φ ∈ L, we say that φ is a logical consequence of Γ, denoted
by Γ |= φ, if for all e-b models M = ⟨S,EQ,Bel, V ⟩ and all s ∈ S: if M, s |= ψ
for all ψ ∈ Γ, then M, s |= φ. For single-premise entailment, we write ψ |= φ
for {ψ} |= φ. As a special case, validity, |= φ, is truth at all states of all e-b
models (equivalently, it is entailment by the empty set of premises). φ is called
invalid, denoted by ̸|= φ, if it is not a validity, that is, if there is an e-b model
M = ⟨S,EQ,Bel, V ⟩ and a state s ∈ S such that M, s ̸|= φ (Blackburn et al.,
2001).
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While the semantics for the Booleans are standard, the semantic clause for the
belief comparison operator �b is the same as the one proposed in (Harmanec
and Hájek, 1994) (operator � in their notation). In light of Proposition 3.8,
the logic of the subfragment of L without �e (equivalently, having only �b as
a modal operator) includes the logic presented in (Harmanec and Hájek, 1994)
since the belief function Bel in an e-b model M = ⟨S,EQ,Bel, V ⟩ is not any belief
function as in the models of (Harmanec and Hájek, 1994), but it is, in particular,
a separable support function.

The novel bit of the logic is the evidence comparison operator �e and, there-
fore, it deserves further elaboration. According to our semantics, evidence for ψ
certainty-dominates the evidence for φ if and only if the evidence set for ψ is at
least as certain as the evidence set of φ, that is, either there is no evidence for
φ or (1) every piece of evidence for φ is certainty-dominated by some piece of
evidence for ψ, and (2) every piece of evidence for ψ certainty-dominates some
piece of evidence for φ.

In Section 4.2, we saw that this definition preserves the notion of certainty from
pieces of evidence in E to propositions in 2S through the extension dominance
property (Proposition 4.6). In addition, any comparison operator defined as an
order lifting of (E ,≤e) and satisfying extension dominance will include the rela-
tions established by �e. Therefore, the operator �e is a good comparison operator
for uncertain evidence, regardless of the combination method we use to compute
Bel.

The next part of the section is dedicated to exploring the behavior of this operator
and its belief counterpart �b. We also point to a few connections between the
two operators.

4.3.3 (In)Validities and Expressivity
In this section we provide a list of interesting validities of the proposed logic, have
a look at some important properties about evidence, belief, and their connection
that the language L can express. Finally, we also point to some common and
distinguishing features of the proposed framework and its close relatives such as
the logics of (Harmanec and Hájek, 1994), (Ghosh and De Jongh, 2013), and
(Baltag et al., 2022).

Properties of Belief Order (�b)

Proposition 4.7 The following principles are valid in all e-b models:

B1 φ�b φ

B2 (φ�b ψ) ∨ (ψ �b φ)

B3 ((φ�b ψ) ∧ (ψ �b χ)) → (φ�b χ)
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B4 ¬(⊤ �b ⊥)

B5 2(φ → ψ) → (φ�b ψ)

B6 (2(φ → ψ) ∧ 2¬(ψ ∧ χ) ∧ ¬(ψ �b φ)) → ¬((ψ ∨ χ) �b (φ ∨ χ))

B7 (2φ ∧ ¬2ψ) → ¬(φ�b ψ)

B8 (φ�b ψ) → 2(φ�b ψ)

B9 ¬(φ�b ψ) → 2¬(φ�b ψ)

Proof.

B1 follows from the fact that ([0, 1],≤) is a total order, thus, induces a reflexive
order on 2S.

B2 follows from the fact that ([0, 1],≤) is a total order, thus, induces a total
order on 2S.

B3 follows from the fact that ([0, 1],≤) is a total order, thus, induces a tran-
sitive order on 2S.

B4 follows from the properties of Bel such that Bel([[⊤]]) = 1 ̸≤ Bel([[⊥]]) = 0.

To prove B5, suppose M, s |= 2(φ → ψ). This means that [[φ]] ⊆ [[ψ]].
Therefore, for all E ∈ τE such that E ⊆ [[φ]], we have E ⊆ [[ψ]]. Therefore,
Bel([[φ]]) ≤ Bel([[ψ]]).

B6 follows from the axiom of partial monotonicity (A ⊆ B, B ∩ C = ∅ and
Bel(B) > Bel(A) implies Bel(B∪C) > Bel(A∪C)) for all belief functions Bel
used in (Wong et al., 1991) to characterize a belief function that fully agrees
with a preference relation. If M, s |= (2(φ → ψ)∧2¬(ψ∧χ)∧¬(ψ�bφ)), then
[[φ]] ⊆ [[ψ]], [[ψ]]∩[[χ]] = ∅ and Bel([[φ]]) < Bel([[ψ]]). By the partial monotonicity
axiom, this implies that Bel([[φ]] ∪ [[χ]]) < Bel([[ψ]] ∪ [[χ]]). Since [[φ ∨ χ]] =
[[φ]] ∪ [[χ]] and [[ψ ∨χ]] = [[ψ]] ∪ [[χ]], we conclude M, s |= ¬((ψ ∨χ)�b (φ∨χ)).

To prove B7, suppose M, s |= 2φ ∧ ¬2ψ. This means that S ⊆ [[φ]] and
S ̸⊆ [[ψ]]. The former entails that S = [[φ]]. As Bel(P ) ∈ [0, 1] for all P ⊆ S
and Bel(S) = 1, we obtain that Bel([[ψ]]) ≤ Bel([[φ]]) = 1. For our assumption
of qE ̸= 1 for every E ∈ E , Bel(P ) < 1 for every P such that [[P ]] ⊊ S.
Therefore, Bel([[ψ]]) < Bel([[φ]]) = 1 and M, s |= ¬(φ�b ψ).

Formulas B8 and B9 simply say that belief order is state independent.

These formulas describe the properties of �b as a total order defined according
to a belief function. Validities B2, B3,B4, B5, B6, B8 and B9 define the logic in
(Harmanec and Hájek, 1994) (although we interpret 2 differently). In addition,



4.3. The Logic 71

validities B1, B2, B3 and B5 are the axioms from the logic for comparing strength
of belief KD45−O of (Ghosh and De Jongh, 2013) that only include comparison
operator analogous to �b. Furthermore, validity B7 is inspired by the logic for
safe belief KD45 − OS defined in (Ghosh and De Jongh, 2013) (where their
2 operator is an S4 modality, rather than the global modal operator as in our
case). In our case, this formula is true only under our restriction on not accepting
dogmatic evidence, that is, our constraint on q ∈ Q being strictly lower than 1.
Similarly, validity B4 encodes non-triviliaty of E—i.e., E ̸= ∅—and validities B5
and B6 refers to the additive nature of Bel—as BelJ DS (i, P ) is the addition of
the masses δJ DS (i, P ′) of the subsets P ′ of P .

Properties of Evidence Order (�e)

Proposition 4.8 The following principles are valid in all e-b models:

E1 φ�e φ.

E2 ((φ�e ψ) ∧ (ψ �e χ)) → (φ�e χ).

E3 ⊥ �e φ

E4 ¬(⊤ �e ⊥).

E5 2(φ ↔ ψ) → (φ ≡e ψ)

E6 ((φ�e χ) ∧ (ψ �e χ) ∧ 2(φ → η) ∧ 2(η → ψ)) → (η �e χ)

E7 ((χ�e φ) ∧ (χ�e ψ) ∧ 2(φ → η) ∧ 2(η → ψ)) → (χ�e η)

Proof.

E1 follows from the fact that �e is a pre-order on 2E , thus, it is in particular
reflexive (Proposition 4.6).

E2 follows from the fact that �e is a pre-order on 2E , thus, it is in particular
transitive (Proposition 4.6).

E3 follows from the fact that ∅ �e E for all E ∈ 2E .

E4 follows from the fact that E ̸= ∅.

To prove E5, suppose M, s |= 2(φ ↔ ψ). This means that [[φ]] = [[ψ]]. The
latter means that Eφ = Eψ, thus, M, s |= (φ ≡e ψ).

To prove E6, suppose that M, s |= 2(φ → η) ∧ 2(η → ψ). This means
that [[φ]] ⊆ [[η]] ⊆ [[ψ]]. Therefore, min({qE : E ∈ [[ψ]]}) ≤ min({qE : E ∈
[[η]]}) ≤ min({qE : E ∈ [[φ]]}) and max({qE : E ∈ [[φ]]}) ≤ max({qE : E ∈
[[η]]}) ≤ max({qE : E ∈ [[ψ]]}). Now, suppose that M, s |= (φ�e χ) ∧ (ψ�e χ).
This means, following the min-max definition of �e (Definition 4.5), that
min({qE : E ∈ [[φ]]}) ≤ min({qE : E ∈ [[χ]]}) and max({qE : E ∈ [[ψ]]}) ≤
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max({qE : E ∈ [[χ]]}). Merging these two facts, we get that min({qE : E ∈
[[η]]}) ≤ min({qE : E ∈ [[χ]]}), max({qE : E ∈ [[η]]}) ≤ max({qE : E ∈ [[χ]]}),
thus, M, s |= η �e χ.

E7 follows from a similar reasoning as before, noticing that M, s |= (χ �e

φ) ∧ (χ �e ψ) implies that min({qE : E ∈ [[χ]]}) ≤ min({qE : E ∈ [[ψ]]}) and
max({qE : E ∈ [[χ]]}) ≤ max({qE : E ∈ [[φ]]}).

Validities E1 and E2 capture the order properties reflexivity and transitivity of
(2S,�e). Validities E3 and E4 are specific for evidence models, since they state
that the empty set is never evidentially supported and non-triviality of the evi-
dence set respectively. Validities E5, E6 and E7 come from the logic of convex
order in (Shi and Sun, 2021, p.1022). Validity E5 states that necessarily equiva-
lent propositions are supported by the evidence to equal degree. Notice that the
stronger principle 2(φ → ψ) → (φ�eψ) is not valid. This is because (2S,�e) is a
non-monotonic order (see Proposition 4.6 and proof of Proposition 4.2). Finally,
validities E6 and E7 bring some uniformity to the uncertainty comparison within
nested sets. These validities show that the smallest and biggest sets of a nested
chain of sets determine the upper and lower bounds for the certainty-dominance
of the intermediate sets.

Before we list the connecting principles, we state some of the important properties
our language can express:

¬(φ�b ⊥): φ is believed to some non-zero degree.

M, s |= ¬(φ�b ⊥) if and only if not (Bel([[φ]]) ≤ Bel([[⊥]]))
if and only if not (Bel([[φ]]) ≤ 0) ([[⊥]] = ∅,Bel(∅) = 0)
if and only if 0 < Bel([[φ]]) (≤ real order on [0, 1])

¬(φ�e ⊥): there is a basic piece of evidence for φ.

M, s |= ¬(φ�e ⊥) if and only if not (Eφ �e E⊥)
if and only if not (Eφ �e ∅) (E⊥ = ∅)
if and only if Eφ ̸= ∅ (Prop. 4.2.2 and Def.4.3.1)

Last formula is the modality E0 in (Baltag et al., 2022).

Connecting Principles

Proposition 4.9 The following principle is valid in all e-b models:

C1 ¬(φ�e ⊥) → ¬(φ�b ⊥)
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Proof.

C1 follows from the fact that 0 < qE < 1 for every E ∈ E implies that
δJ DS (i, E) > 0 for every E ∈ E and therefore BelJ DS (i, E) > 0.

Validity C1 means that whatever is supported by some evidence will be believed
to some non-zero degree by the agent. This is the case only for our restriction to
non-dogmatic evidence. If A ∈ E and qA = 1, then BelJ DS (i, B) = 0 for every
B ∩A = ∅. This connecting principle relates basic evidence and belief. However,
it does not establish a connection that reveals the combination rule that links EQ

and Bel in the model. The restriction of Bel to support functions is caught in
some invalidities of the models instead.

Important invalidities Proposition 4.10 The following principles are in-
valid in e-b models:

I1 ̸|= ¬(φ�b ⊥) → ¬(φ�e ⊥)

I2 ̸|= 2(φ → ψ) → (φ�e ψ)

I3 ̸|= ¬(φ�b ψ) → ¬(¬ψ �b ¬φ)

Proof.

To prove I1, consider the e-b model M = ⟨S,EQ,Bel, V ⟩ such that S =
{a, b, c}, EQ =

{
({a, b}, 0.7), ({b, c}, 0.6)

}
, and V (p) = {b}. It holds that

Bel([[p]]) > 0 but there is no E ∈ E such that E ⊆ {b}. Therefore, M, a ̸|=
¬(p�b ⊥) → ¬(p�e ⊥).

To prove I2, consider the e-b model M = ⟨S,EQ,Bel, V ⟩ such that such that
S = {a, b, c} and EQ =

{
({a}, 0.7), ({a, b}, 0.4)

}
, V (p) = {a} and V (q) =

{a, b}. Then, obviously M, a |= 2(p → q). However, M, a ̸|= p �e q since
{a, b} ∈ Eq and there is no E ∈ Ep such that E ≤e {a, b}.

To show I3, consider the previous model again. M, a |= ¬(p �b q), since
Bel({a, b}) = δJ DS (i, {a, b}) + δJ DS (i, {a}) > δJ DS (i, {a}) = Bel({a}). How-
ever, M, a ̸|= ¬(¬q �b ¬p), because Bel({c}) = Bel({b, c}) = 0.

Invalidity I1 means that believing in a proposition does not guarantee that the
agent possesses basic evidence supporting it. This belief may be supported by the
combined evidence obtained after running the multi-layer belief model. Therefore,
we cannot infer the existence of basic evidence from a strictly stronger belief.
Invalidity I2 comes from the non-monotonic nature of �e, which allows us to
differenciate certainty degrees beyond entailment (see discussion in Section 4.2).
Lastly, invalidity I3 remarks the non-probabilistic character of belief functions.
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This formula is an optional axiom for the logic KD45 − O of (Ghosh and De
Jongh, 2013). In our case this axiom is not valid because Bel may give values to
P and S \ P such that Bel(P ) + Bel(S \ P ) ̸= 1.

Deduction rules The following inference rules are validity preserving:

1. (MP) From φ → ψ, φ infer ψ.

2. Necessity of 2: From φ infer derives 2φ.

Comparison with reference logics Throughout this section, we have seen
connections and disagreements with the logics of reference presented in (Har-
manec and Hájek, 1994), (Shi and Sun, 2021) and (Ghosh and De Jongh, 2013).
Now, we conclude with a detailed discussion of the similarities and dissimilarities
of these logics with ours.

First, let us focus on the qualitative belief logic (QBL) of (Harmanec and Há-
jek, 1994). This logic shares the explicit comparison operator for belief, but it
is not expressive enough to reason about the evidence that support that belief.
As seen above, QBL is fully contained in ours, since it is defined by the validi-
ties B2, B3,B4, B5, B6, B8 and B9. Our main contributions with respect to QBL
is that the function Bel of QBL models is a belief function in general and not
necessarily a support function. Therefore, if this logic had a representation for
evidence, it would represent the basic belief assignments corresponding to Bel,
but not a collection of basic belief assignments to be combined. In that case, the
formula I1 would be valid with respect to evidence models of QBL, whereas it
is not valid in ours. In any case, a next step would be to strength our logic to
be able to capture the difference between basic and combined evidence in some
validities and eliminate our restriction to separable support functions.

Another reference logic for us is the logic of convex order (AC) defined in (Shi
and Sun, 2021). This logic has a comparison operator defined in terms of Egli-
Milner order, which links it to our operator �e. Their comparison operator is
neither connected to the notion of evidence nor linked to other modal operators
that may refer to belief. Despite the direct influence of Egli-Milner order in
both operators, our logic and the axiom system AC for logic of convex order
differ notably. One difference is that we impose the empty set as the minimum
of the order (2S,�e) (Definitions 4.3 and order �e). This makes axiom BT of
the axiom system AC—i.e., the axiom (⊥ �e φ) → (φ �e ⊥)—invalid in our
logic. For validity E3, we have ⊥ �e φ as a validity, but φ �e ⊥ is not satisfied
in those models M such that [[φ]]M ̸= ∅ . Another difference is that Shi and
Sun (2021) extend a preference order on S to 2S directly. However, we move
from an order on sets of possible states (E ,≤e) to an order of sets of these sets
(2E ,⪯e). From this order, we easily define an order on 2S based on the notion
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of evidential support for propositions, but this intermediate step introduce new
behaviours in the resulting logic. In particular, the axiom J+ of the axiom
system AC—i.e., ((φ �e ψ) ∧ (χ �e η)) → ((φ ∨ χ) �e (ψ ∨ η))—is not valid
in our logic. For example, let M = ⟨S,EQ,Bel, V ⟩ be a e-b- model such that
S = {a, b, c, d} and EQ =

{
({a, c}, 0.6), ({b}, 0.3), ({d}, 0.2)

}
, and V (p) = {a},

V (q) = {b}, V (r) = {c} and V (s) = {d}, we get that M |= (p �e q) ∧ (r �e s)
but M ̸|= (p ∨ r) �e (q ∨ s). The other four axioms of the system AC are the
validities E5, E2, E6 and E7.

The last logic we took as a reference is the KD45 − O logic defined in (Ghosh
and De Jongh, 2013). This logic defines a comparison operator for belief that
is read the same way as our �b (and intended to capture a similar notions of
strength of belief) and a unary modal operator B for belief. In our case, we could
introduce a unary belief operator as ¬(φ�b⊥) or by defining belief above certain
threshold. In addition, they also have the global modality in their logic (2 in
our notation, and U in theirs). The logic KD45 − O is defined by nine axioms.
Two of them establish introspection relations that we are not able to express
in our language. The other five, are all valid in our logic. They correspond to
validities B1, B2, B3, B5 and (¬(φ�b ⊥) ∧ (ψ�b ⊥)) → ¬(φ�b ψ), which follows
from B2 and B3. This means that, KD45 − O is formally not contained in our
logic, but the common and relevant part is contained both in our logic and QBL.

We conclude our analysis here, hoping that it serves as a first step in developing
a logic for comparing the strengths of evidence and belief based on e-b models.
While the presented logic contributes to the literature by establishing an explicit
link between uncertain evidence and its corresponding multi-layer belief functions,
some further work is needed to strengthen these links and to identify validities that
may change with respect to the parameterization of the multi-layer belief model.
Furthermore, the logic of e-b models can be enriched by introducing the notion of
justification or by making the language expressible enough to identify combined
evidence. We conclude this chapter with a use case scenario that highlights the
importance of reasoning about the different components involved in computing
belief functions, such as the degree of certainty of the evidence pieces, and thus
motivate this chapter from a different perspective.

4.4 Use Case Scenario: Science Communication
Explicitly reasoning about evidence certainty and the degree of belief that this
evidence generates has a clear theoretical benefit. A logic like the one presented
in this chapter allows us to identify mathematical properties to describe evidence
combination methods beyond a specific scenario. However, pursuing this research
line can also be supported by real-life motivations.
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The multi-layer belief model aggregates evidence according to its certainty values,
the number of pieces of evidence—since the degree of belief is defined as an
addition—and certain assumptions about justifications and evidence allocation
functions. Therefore, computing the final degree of belief takes into account
various relevant features of evidence, but can be also seen as a black box from the
final user’s point of view. In other words, we know that uncertainty, the number
of pieces of evidence, and consistency of the evidence are affecting the degree of
belief the multi-layer belief model assigns to propositions, but we do not know
which feature, if any, is affecting the result to what extent.

To illustrate how our logic may clarify some practical problems, let us consider
a situation where summarizing measures may streamline decision making, but
transparency is equally, if not more, important. The COVID-19 pandemic of
2020 showed that science-driven policies, together with science communication,
may represent one of these scenarios. During the pandemic, public health in-
stitutions had to make many exceptional decisions with a huge impact on the
population, based on partial and uncertain evidence. Furthermore, the effective-
ness of those decisions directly depended on public engagement, making not only
the recommendation itself but also its justification critically important.

Imagine it is December 2020, and the World Health Organization must make a
recommendation about vaccination for COVID-19. Let us say that the organiza-
tion counts on the following quantitative evidence set:

({No Symptoms}, 0.9)
({No Symptoms,Minor Symptoms}, 0.7)

({Severe Symptoms}, 0.2)

where {No Symptoms}, {No Symptoms,Minor Symptoms}, and {Severe Symp-
toms} respectively refer to evidence for ‘vaccination against COVID-19 prevents
all symptoms’, ‘vaccination against COVID-19 prevents severe symptoms’, and
‘vaccination against COVID-19 causes side effects with severe symptoms’. For
simplicity, we denote No Symptoms by NS, Minor Symptoms by MS, and Severe
Symptoms by SS. So let S = {NS,MS, SS} be a set of possible states, and
EQ =

{
({NS}, 0.9), ({NS,MS}, 0.7), ({SS}, 0.2)

}
be a quantitative evidence set.
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NS MS SS

Figure 4.5: Representation of uncertain pieces of evidence in the running example
by a Venn diagram. The size of the area represents the degree of certainty of the
corresponding piece of evidence.

In this scenario, the World Health Organization could aggregate their evidence
by applying Dempster’s rule of combination, obtaining Bel({NS,MS}) = 0.96
and Bel({SS}) = 0.01, and conclude that worldwide vaccination should be rec-
ommended. However, regardless of the theoretical soundness of this combination
method for evidence, stating that ‘this recommendation is supported by a 0.96
degree of belief’ is meaningless for the general population. Questions such as what
degree of belief means or how it is computed may trigger distrust among citizens.

Alternatively, assume that the World Health Organization has a model checker
for the logic introduced in this chapter. Let us imagine that this model checker
states that, for our particular S and EQ, the model M = ⟨S,EQ,Bel, V ⟩ satisfies
formula (4.1)—which reads as if ψ certainty-dominates φ then belief in ψ is at
least as strong as belief in φ—in every possible world. Then, their recommenda-
tion could be based solely on the existence of (public) evidence for vaccination (P
such that V (P ) = {NS,MS}) and its superior (consensus) certainty compared
to the existing evidence against vaccines (¬P ).

(φ�e ψ) → (φ�b ψ) (4.1)

This example is a trivial simplification of a realistic situation. We are considering
very small number of pieces of evidence, a propositional variable instead of a more
complex formula, and the model checker we refer to is far from being a practical
tool. However, it illustrates the benefit of reasoning about belief and one single
dimension that forms that belief—such as certainty of the evidence—within the
same logical system. As this example shows, there may be cases where agents
can make decisions and provide explanations based on a single, understandable
dimension while preserving a connection with a well-established belief measure
like Dempster’s rule of combination.

This relation between strength of evidence and strength of belief does not hold
in general. Because Bel is based on a sum of values, comparing evidence only in
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terms of its certainty does not explain the outcomes of Bel in all cases—many
uncertain evidence will eventually overtake the result of Bel(P ) even when P is
supported by highly certain evidence. For instance, consider a set of possible
states S = {a, b, 1, 2, 3, 4, 5, 6, 7, 8} and a quantitative set of uncertain evidence
EQ = {({a}, 0.7), ({b, 1}, 0.3), ({b, 2}, 0.3), ({b, 3}, 0.3), ({b, 4}, 0.3), ({b, 5}, 0.3),
({b, 6}, 0.3), ({b, 7}, 0.3), ({b, 8}, 0.3)}. Then, given P such that V (P ) = {a}
and Q such that V (Q) = {b}, Q �e P but P �b Q since Bel(P ) = 0.12 and
Bel(Q) = 0.66. Therefore, formula (4.1) is not a validity in our logic.

In summary, understanding the relationship between the order on propositions
generated by the certainty of evidence and degrees of belief may make compu-
tations more transparent and accessible in some cases. Additionally, a similar
benefit can be obtained by isolating other features involved in the computation of
degrees of belief, such as the consistency among pieces of evidence or the number
of pieces of evidence. This example is inspired by (Van der Bles et al., 2019),
where the authors present a formal communication of uncertainty based Bayes
theorem. Other areas where explicit logical connections between evidence and
belief may be useful are administrative processes that must preserve users’ infor-
mation rights or fake news management. In particular, fake news management
could benefit from the overtaking effect described earlier in the counterexample
against the validity of formula (4.1): if formula (4.1) is invalid, it may indicate
an accumulation of uncertain news.



Chapter 5

Computational Complexity of Belief
based on Evidence

In theoretical computer science research, expressivity and tractability are often
inversely proportional. This means that when a method provides a rich solu-
tion from a conceptual standpoint, it often requires considerable computational
resources. While sometimes perceived as a limitation, this situation can also en-
courage further study about the key aspects of the method, in order to discover
under which circumstances we can keep its precision without depleting our com-
putational resources. Combining uncertain evidence with the models explored in
this thesis is one example of this. Chapter 2 showed that Dempster-Shafer theory,
and consequently the multi-layer belief model, adequately represents uncertain
evidence and ignorance. However, a straightforward computation of degrees of
beliefs by using these methods requires exponential time in general. This chapter
is dedicated to delving into the computational complexity of these calculations.

The organization of the chapter is as follows. In Section 5.1, we demonstrate
that computing Dempster’s rule of combination is a #P-complete problem for
basic cases, which admits a fixed-parameter tractable algorithm for a suitable
parameter. In Section 5.2, we show that applying topological models of evidence
to determine belief in a proposition P given a body of evidence is solvable in
polynomial time. Note that in this case evidence is not uncertain. In Section 5.3,
we establish that the multi-layer belief model, which extends Dempster’s rule of
combination, remains #P-complete. Finally, in Section 5.4 we conclude with a
concrete example that illustrates the results of the chapter. For details on the
theory of computational complexity—and in particular with the complexity class
#P—we refer to the textbook by Arora and Barak (2009).

79
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5.1 Applying Dempster’s Rule of Combination
In (Orponen, 1990), it is proved that using Dempster’s rule of combination is #P-
complete. The class #P is a class of counting problems whose equivalent class
of decision problems contains the class NP. That is, if P̸=NP then Dempster’s
rule of combination cannot be computed in polynomial time in general (Arora
and Barak, 2009). Nevertheless, some results have been established on restricted
cases where evidence can be combined in a computationally efficient way (Barnett,
1981; Bergsten and Schubert, 1993; Shafer and Logan, 2008; Shafer et al., 1987).
Despite these efforts to understand the opportunities and limitations of applying
Dempster’s rule of combination, a structured computational complexity analysis
has been missing from the literature.

In the first part of this section, we address this gap by performing a structured
and detailed complexity analysis of using Dempster’s rule of combination. We
demonstrate that the problem remains #P-hard when combining basic belief as-
signments with a single proper focal element each. Additionally, we show that this
complexity also remains when the focal elements of the basic belief assignments
to be combined are nearly the entire set of possible states. In the second part,
we explore the utilization of one of those cases that admit polynomial-time algo-
rithms for combining arbitrary evidence. In particular, we base this exploration
on the algorithm proposed by Shafer and Logan (2008) to efficiently compute
Dempster’s rule of combination over a hierarchical set of evidence. We start our
exploration by giving a polynomial-time algorithm for deciding whether an ar-
bitrary body of evidence has a hierarchical structure, enabling the use of Shafer
and Logan (2008)’s algorithm. Next, we delve into the problem of extracting
hierarchical subsets from the body of evidence. This problem is NP-hard but
admits fixed-parameter tractable algorithm—where the parameter is the num-
ber of sets to delete. Finally, we generalize the algorithm of Shafer and Logan
(2008) to arbitrary sets, demonstrating that this generalized algorithm runs in
fixed-parameter tractable time when parameterized by a certain measure of how
similar to a hierarchy the body of evidence is.

In the remainder of the section, we will adopt Dempster-Shafer theory terminol-
ogy to facilitate its reading. Therefore, given a finite set of possible states S, what
we called quantitative evidence set EQ = {(E1,m1(E1)), . . . , (Eℓ,mℓ(Eℓ))} in the
previous chapters, will be now represented as a collection of basic belief assign-
ments m1, . . . ,mℓ with a single proper focal element E1, . . . , Eℓ, respectively. In
addition, if we do not restrict these basic belief assignments to be non-dogmatic,
mj(Ej) may be equal to 1. These cases are not considered in the definition of
quantitative evidence set provided in Chapter 2.

Throughout this section, we will also talk about collections of basic belief assign-
ments with two proper focal elements, one being the set complement of the other.
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We will call them dichotomous basic belief assignments. If we do not specify what
kind of input a computational problem accepts, this means that it accepts any
collection of basic belief assignments. The inputs of the computational problems
considered in this section are collections of basic belief assignments m1, . . . ,mℓ,
with or without further restrictions, that will be referred as evidence, pieces of
evidence or body of evidence. These inputs will be merged according to Demp-
ster’s rule of combination into m = ⊕ℓ

j=1 mj. To differentiate between the basic
belief assignments provided as input and the basic belief assignment obtained by
Dempster’s rule of combination, we will call the latter combined mass function.
Given a combined mass function m, we assume that the corresponding belief
function is computed following Definition 2.5. We refer to it as belief for m and
denote it by belm(·).

5.1.1 Computational Complexity Under Constraints
Orponen proved that computing beliefs based on the application of Dempster’s
rule of combination to arbitrary basic belief assignments is #P-hard by giving
a reduction from the well-known #SAT problem for conjunctive normal form
(CNF) formulas (Orponen, 1990). In this section, we will provide a complexity
analysis that builds forth on Orponen’s hardness result. In particular, we will
identify various restrictions under which the problem remains #P-hard, and we
will identify some restrictions that allow polynomial-time algorithms.

The hardness result of Orponen involves basic belief assignments with multiple
proper focal elements. So it could be the case that it does not apply to the case
where Dempster’s rule of combination is only applied to basic belief assignments
with a single proper focal element. We begin with showing that, in fact, com-
puting beliefs based on the application of Dempster’s rule of combination to this
kind of basic belief assignments is #P-hard.

The reduction that we give is very similar to the reduction given by Orponen
(1990, Theorem 3.1)—the main difference being that we take a restricted variant
of #SAT to reduce from. Nevertheless, we give a description of this reduction
to provide the basis for the various complexity results presented in this section
that are based on (variations of) this proof. Moreover, our presentation of the
correctness argument in the proof differs from that of Orponen, providing the
reader with another entry into understanding the argument.

We begin with laying out the precise statements of two computational problems
related to the application of Dempster’s rule of combination. The difference
between these two problems is whether the required output is (1) the combined
mass value m(A) or (2) the belief belm(A) for m.
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DRC-compute-mass
Input: A finite set of possible states S, basic belief assignments m1, . . . ,mℓ

over S, and a set A ⊆ S.
Output: m(A) = (⊕ℓ

j=1 mj)(A).

DRC-compute-belief
Input: A finite set of possible states S, basic belief assignments m1, . . . ,mℓ

over S, and a set A ⊆ S.
Output: belm(A) for m = ⊕ℓ

j=1 mj.

Both variants of the problem are #P-hard, even when m1, . . . ,mℓ only have one
proper focal element each.

Theorem 5.1 DRC-compute-mass is #P-complete. Moreover, #P-hardness
holds even when restricted to the case where m1, . . . ,mℓ have a single proper focal
element and |A| = 1.

Proof.

We show #P-hardness by providing a reduction from the #P-complete prob-
lem #Mon-SAT, which concerns counting the number of satisfying truth
assignments of a monotone propositional CNF formula (variables occur only
positively) (Valiant, 1979). We reiterate that this reduction is entirely similar
to the reduction used to show #P-hardness of DRC-compute-mass in gen-
eral (Orponen, 1990)—i.e., without the restriction to one proper focal element
per basic belief assignment.

Let φ = c1 ∧ . . . ∧ ck be a monotone propositional CNF formula over the
variables x1, . . . , xℓ. We define S = {1, . . . , k, ∗} and A = {∗}, and we
construct ℓ basic belief assignments m1, . . . ,mℓ with only one proper focal
element each. Each basic belief assignment mj has as single focal element
Tj = {∗} ∪ { i | clause ci does not contain literal xj} where:

mj(Tj) = mj(S) = 1/2, and
mj(B) = 0 for each B ∈ 2S \ {Tj, S}.

Now, let m = ⊕ℓ
j=1 mj. We will show that m(A) = m({∗}) = q2−ℓ, where q is

the number of satisfying truth assignments of φ. Firstly, observe that each mj

assigns non-zero mass only to sets that include ∗, and therefore there is no
sequence of sets in the Cartesian product A =×ℓ

j=1{Tj, S} that has an empty
intersection. As a result, we get that m(A) equals the sum of ∏ℓ

j=1 mj(Aj)
for all sequences (A1, . . . , Aℓ) ∈ A such that ⋂ℓ

j=1 Aj = {∗}. That is, for any
sequence (A1, . . . , Aℓ) ∈ A such that the intersection of all its elements is
{∗}, the product of the masses of its elements will be a summand of m(A).
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Moreover, for each sequence (A1, . . . , Aℓ) ∈ A, it holds that ∏ℓ
j=1 mj(Aj) =

2−ℓ.

Consider the following bijection σ between truth assignments α :
{x1, . . . , xℓ} → {0, 1} and sequences (A1, . . . , Aℓ) ∈ A, where for each α,
we let σ(α) = (A1, . . . , Aℓ) such that Aj = Tj if α(xj) = 1, and Aj = S
if α(xj) = 0.

It is not difficult to see that for each α : {x1, . . . , xℓ} → {0, 1} it holds that α
satisfies φ if and only if, for σ(α) = (A1, . . . , Aℓ) it holds that ⋂ℓ

j=1 Aj = {∗}.
This suffices to show that m(A) = q2−ℓ.

Note that in the proof of Theorem 5.1 we can define the basic belief assign-
ments mj with only a single proper focal element for the exact reason that φ is
monotone. If φ were not monotone, we would have to assign a non-zero mass
to the sets Fj = {∗} ∪ { i | clause ci does not contain literal ¬xj} to make the
reduction work, as in the original #P-hardness proof for DRC-compute-mass
(Orponen, 1990). Put differently, due to the fact that φ is monotone, we get
that Fj = S.

Corollary 5.1 DRC-compute-belief is #P-hard even when restricted to the
case where m1, . . . ,mℓ have a single proper focal element and |A| = 1.

It suffices to notice that for any singleton set A it holds that m(A) = belm(A).

Restricting our attention to basic belief assignments with one proper focal element
is not enough to guarantee that we can use Dempster’s rule of combination in
polynomial time. Now, we will consider two additional restrictions—both based
on additional constraints on the size of proper focal elements.

The first additional restriction that we consider is that the size of the proper focal
elements of the basic belief assignments are bounded by some fixed constant. This
restriction allows us to use Dempster’s rule of combination in polynomial time.

Proposition 5.1 Let c ∈ N be a fixed constant. DRC-compute-mass and
DRC-compute-belief can be computed in polynomial time if the basic belief
assignments m1, . . . ,mℓ only have proper focal elements of size ≤ c.

Proof.

The main idea behind this proof is the following. Whenever you combine two
basic belief assignments m1 and m2 whose proper focal elements are all of size
at most c by using Dempster’s rule of combination, the resulting combined
mass function assigns positive mass only to sets of size at most c. For any
set S of possible states of size n, the number of subsets of size at most c
is upper bounded by (n + 1)c—which is a polynomial. Therefore, one can
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compute the result of Dempster’s rule of combination in a brute force fashion
in polynomial time.

Restricting proper focal elements to be of bounded size corresponds to the re-
quirement that all basic belief assignments are highly informative—or in other
words, that each basic belief assignment assigns zero mass to all but a few possi-
bilities. Arguably, this occurs only in a very limited set of circumstances, limiting
the practical value of the tractability result of Proposition 5.1.

Another restriction, that is perhaps more promising for practical applications,
consists in restricting pieces of evidence to be of limited informativeness: allowing
only simple basic belief assignments whose proper focal element consists of S
with a constant number of possibilities removed. Unfortunately, this restriction
does not alleviate the computational intractability of using Dempster’s rule of
combination.

Proposition 5.2 Let c ≥ 3 be a fixed constant. DRC-compute-mass and
DRC-compute-belief are #P-hard even when restricted to the case where the
basic belief assignments m1, . . . ,mℓ all have a single proper focal element that is
of size ≥ |S| − c, and where |A| = 1.

Proof.

Similarly to the proof of Theorem 5.1, we adapt the reduction by Orponen
(1990). This time, we take as starting point for the reduction the restriction of
#Mon-SAT where each variable appears in at most 3 clauses. The problem
remains #P-complete under this restriction (Greenhill, 2000). The resulting
instance then has the property that each of m1, . . . ,mℓ has a single proper
focal element that is of size ≥ |S| − c, and that |A| = 1.

Nevertheless, as previously mentioned, there are some cases where it is possible
to avoid the worst-case computational complexity of using Dempster’s rule of
combination. We will focus on the algorithm of Shafer and Logan (2008) for
efficiently combining hierarchical evidence—i.e., basic belief assignments whose
focal elements together form a hierarchy—via Dempster’s rule of combination.
We will introduce this algorithm, and in Section 5.1.2 we will investigate how
to decide if this algorithm can be used to efficiently aggregate (a subset of) the
evidence in a given situation. Moreover, we will study a way to extend this
algorithm to arbitrary sets of evidence.

Definition 5.1 (Hierarchy). Let S be a finite set of possible states. A set
H = {A1, . . . , Aℓ} of focal elements Aj ⊆ S is a hierarchy over S if there exists a
tree where the root node is labelled with S, and all other nodes are labelled with
an element Aj ∈ H such that: (1) if a node labelled with Ak is the child of a node
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labelled with Aj, then Ak ⊆ Aj, and (2) if two nodes labelled with Aj and Ak
are siblings, then Aj ∩ Ak = ∅. In other words, a set H = {A1, . . . , Aℓ} ⊆ 2S is a
hierarchy if and only if for all Aj and Ak ∈ H it holds that: if Aj ∩Ak ̸= ∅, then
Ak ⊆ Aj or Aj ⊆ Ak.

Example 5.1 Hierarchy

Consider S = {a, b, c, d, e}. Then H = {A1, . . . , A6}, for A1 = {a, b, c},
A2 = {d, e}, A3 = {a, b}, A4 = {a}, A5 = {e} and A6 = {d}, is a hierarchy.

S

{a, b, c}

{a, b}

{a}

{d, e}

{d} {e}

Figure 5.1: Diagram representation of hierarchy H = {A1, . . . , A6}.

Theorem 5.2 (Shafer and Logan, 2008). Given a hierarchy H over a set
of possible states S and a collection of basic belief assignments m1, . . . ,mℓ with
one single proper focal element each such that it is either an element of H or
the set complement of one, then belm(A), belm(A), plaum(A) and plaum(A), for
m = ⊕ℓ

j=1 mj, can be computed in polynomial time for all A ∈ H.

The algorithm provided by Theorem 5.2 does not allow us to efficiently compute
the belief (or plausibility) of arbitrary sets A ⊆ S, but only of sets A ∈ H (or their
complements). Nevertheless, it is plausible to assume that if the available evidence
in a given application domain forms a hierarchy (as specified in Definition 5.1),
then sets P ⊆ S such that we are interested in knowing their degree of belief also
match this hierarchy. This is the case, for example, in the setting of diagnostic
reasoning in medicine, where hierarchical evidence naturally appears (Gordon
and Shortliffe, 2008).

5.1.2 Computational Complexity Identifying Hierarchies
In this subsection, we explore three possible approaches to take advantage of the
computational gain of applying Shafer and Logan (2008)’s algorithm for hier-
archical evidence. First, we prove that deciding whether an arbitrary body of
evidence forms a hierarchy is a tractable problem. We call this approach plac-
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ing all evidence in a hierarchy. Second, we study the problem of extracting a
hierarchy from an arbitrary body of evidence. We show that this problem is
fixed-parameter tractable for a suitable parameter. This part of the discussion is
titled placing as much evidence as possible in a hierarchy. Lastly, we propose a
fixed-parameter tractable algorithm to combine evidence according to Dempster’s
rule of combination. Our algorithm uses Shafer and Logan (2008)’s algorithm in
some intermediate steps. This result appears under the name of using hierarchical
structure in arbitrary bodies of evidence.

Placing All Evidence in a Hierarchy

Suppose that a researcher has performed different experiments that provide evi-
dence for various subsets of a set of possible states S and is interested in knowing
which elements of S have the most support according to it. It would be very
useful to know whether these focal elements form a hierarchy, in which case they
could use the Shafer-Logan algorithm (Theorem 5.2) to efficiently compute beliefs
based on the combination of all the evidence. This algorithm works for the case
where for each set A in the hierarchy a dichotomous basic belief assignment is
given—which assigns weight to A and to its complement S \ A. Therefore, we
take as starting point for this problem a set A with ℓ pairs of sets, each consisting
of a focal element and its set complement—one per each dichotomous basic belief
assignment. We will give a polynomial-time algorithm that decides, given a set
A of such pairs of sets, whether we can form a hierarchy H by taking exactly one
set from each pair—in which case we say that A admits a hierarchy—and that
computes what this hierarchy would look like.

Definition 5.2 (Conflict). We will say that there exists a conflict between two
focal elements Aj and Ak if Aj ̸⊆ Ak, Ak ̸⊆ Aj, and Aj ∩ Ak ̸= ∅.

We will denote such a conflict with Aj−⇀↽−Ak.

Theorem 5.3 Let S be a finite set of possible states. Given a set A =
{(Bj, Bj)}ℓj=1 of pairs, where for each 1 ≤ j ≤ ℓ, Bj and Bj = S \ Bj are
complementary sets over S, the following are equivalent:

(a) There exists a hierarchy H consisting of exactly one set from each pair in
A.

(b) There exists a set {A1, . . . , Aℓ} of focal elements formed by exactly one ele-
ment of each pair in A such that for each two distinct Aj, Ak ∈ {A1, . . . , Aℓ}
it holds that Aj −̸⇀↽−Ak.

(c) The following conjunctive normal form formula with disjunctions of two
literals (2CNF formula) φ = φ1 ∧φ2 over the variables x1, . . . , xℓ, y1, . . . , yℓ
is satisfiable. For each 1 ≤ j ≤ ℓ, let ν(Bj) = xj and ν(Bj) = yj. Then φ1
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consists of the clauses (ν(Bj) ∨ ν(Bj)) and (¬ν(Bj) ∨ ¬ν(Bj)) for each 1 ≤
j ≤ ℓ, and φ2 consists of the clauses (¬ν(Aj) ∨ ¬ν(Ak)) for each Aj ∈
{Bj, Bj} and Ak ∈ {Bk, Bk} such that Aj−⇀↽−Ak.

Proof.

One can straightforwardly show that (a) and (b) are equivalent by using Def-
initions 5.1 and 5.2.

We then show that (b) implies (c). Suppose that there is a set {A1, . . . , Aℓ}
of focal elements formed by exactly one element of each pair in A such that
for each two distinct Aj, Ak ∈ {A1, . . . , Aℓ} it holds that Aj −̸⇀↽−Ak. We then
define a truth assignment α that satisfies φ. For each 1 ≤ j ≤ ℓ, let α(xj) = 1
and α(yj) = 0 if Bj ∈ {A1, . . . , Aℓ} and let α(xj) = 0 and α(yj) = 1 if Bj ̸∈
{A1, . . . , Aℓ}. This assignment satisfies φ1 because for each 1 ≤ j ≤ ℓ there
is exactly one of Bj, Bj in the set {A1, . . . , Aℓ}. The clauses in φ2 are also
satisfied by α because there are no two distinct Aj, Ak ∈ {A1, . . . , Aℓ} such
that Aj−⇀↽−Ak.

Finally, we show that (c) implies (b). Take a truth assignment α that sat-
isfies φ. For each 1 ≤ j ≤ ℓ, we let Aj = Bj if α(xj) = 1 and Aj = Bj

if α(xj) = 0. Then {A1, . . . , Aℓ} contains exactly one element of each
pair in A. Now, to derive a contradiction, suppose that there were two
distinct Aj, Ak ∈ {A1, . . . , Aℓ} with Aj−⇀↽−Ak. Then φ would contain the
clause (¬ν(Aj) ∨ ¬ν(Ak)), and α(ν(Aj)) = α(ν(Ak)) = 1, and so α would
not satisfy φ, which contradicts our assumption. Therefore, we can conclude
that there are no two distinct Aj, Ak ∈ {A1, . . . , Aℓ} such that Aj−⇀↽−Ak.

In fact, the proof of Theorem 5.3 also shows that we can efficiently construct a
hierarchy H containing exactly one element from each pair in A from a truth
assignment for the 2CNF formula.

Corollary 5.2 Let S be a finite set of possible states and A be a set of focal
elements closed under complement. Moreover, let φ be the 2CNF formula de-
scribed in Theorem 5.3. Then from any assignment α that satisfies φ, we can
in polynomial time construct a hierarchy H containing exactly one element from
each pair in A.

Since one can in linear time decide whether a given 2CNF formula is satisfiable
(and if so, find a satisfying truth assignment) (Aspvall et al., 1979), we can in
polynomial time decide whether the pairs in A admit a hierarchy, and compute
such a hierarchy if this is the case.
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Placing As Much Evidence As Possible in a Hierarchy

Even if deciding whether a given set of evidence can all be placed in a single
hierarchy can be efficiently done, placing the evidence in an hierarchy is not
always possible. Therefore, we will study algorithms to form hierarchies that
accommodate much (but not all) of a given set A of evidence. Since we suppose
that we are given a set A with ℓ pairs (Bj, Bj) of sets—each consisting of a focal
element and its complement—if there is no single hierarchy in line with all of this
evidence, we can only obtain a hierarchy by selecting one set from some (but not
all) pairs (Bj, Bj).

One way to make such a selection is the following. We take the 2CNF formula φ
from Theorem 5.3, and adapt it into φ′ = φ′

1 ∧ φ2, where φ′
1 consists only of the

clauses (¬ν(Bj) ∨ ¬ν(Bj)). Then, any satisfying truth assignment for φ′ corre-
sponds to a hierarchy that fits a subset of the evidence. However, by taking this
crude approach, we have no influence on how much of the evidence is accommo-
dated by the resulting hierarchy—for example, one can satisfy φ′ by setting all
variables to false, which corresponds to the trivial, empty hierarchy.

We will start with distinguishing some structure in the set of conflicts between
focal elements that will turn out to be useful to develop algorithms for finding
(large) partial hierarchies. In the remainder, we will assume that a set A with ℓ
pairs Pj = (Bj, Bj) of complementary sets is given.

Definition 5.3 (Conflict between pairs of focal elements). Let P1 = (A1, A1)
and P2 = (A2, A2) be two different pairs of complementary sets. Moreover,
let r be the number of conflicts between the sets appearing in P1 and P2—that
is, r = |{(B1, B2) | B1 ∈ {A1, A1}, B2 ∈ {A2, A2}, B1 −⇀↽−B2}|. We then say that
there are r conflicts between P1 and P2, and we denote this by P1 −⇀↽−r P2. We
write P1 −⇀↽−P2 if P1 −⇀↽−r P2 for some r > 0. If P1 −⇀↽−1 P2, we say that there is a single
conflict and if P1 −⇀↽−4 P2, we say that there is a total conflict between P1 and P2.

Moreover, we define CA = {(Pj, Pk) | Pj, Pk ∈ A, Pj−⇀↽−Pk} and CA
r = {(Pj, Pk) |

Pj, Pk ∈ A, Pj−⇀↽−r Pk}.

By establishing that between any two pairs P1 and P2 of complementary focal
elements, there is either a single conflict or there is a total conflict, we can char-
acterize the existence of a hierarchy in terms of single conflicts.

Lemma 5.1 For each set of possible states S and each set A of pairs of comple-
mentary focal elements, CA = CA

1 ∪ CA
4 .
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Proof.

Let us see that two distinct pairs Pj = (Bj, Bj) and Pk = (Bk, Bk) of A have
at least one conflict. If Pj −̸⇀↽−Pk then Bj −̸⇀↽−Bk (1), Bj −̸⇀↽−Bk (2), Bj −̸⇀↽−Bk (3)
and Bj −̸⇀↽−Bk (4). For (1), at least one of these three conditions must hold:

(a) Bj ⊂ Bk,

(b) Bk ⊂ Bj or

(c) Bj ∩Bk = ∅.

If Bj ⊂ Bk, then Bk∩Bj ̸= ∅ since the inclusion is strict. In addition, Bk ̸⊂ Bj

and, if Bk ̸= S, Bj ̸⊂ Bk. Therefore, Bj−⇀↽−Bk, which contradicts (2).

A similar reasoning can show that if Bk ⊂ Bj, and Bj ̸= S, then Bj−⇀↽−Bk,
contradicting (3).

Finally, if Bj ∩Bk = ∅, then Bk ⊂ Bj and Bj ⊂ Bk, so Bj ̸⊂ Bk and Bk ̸⊂ Bj

respectively. Furthermore, as these inclusions are strict, Bj ∩ Bk ̸= ∅. This
means that Bj−⇀↽−Bk and contradicts (4).

Due to all of the above three conditions implies a contradiction, we can con-
clude that there is at least one conflict between elements of Pj and Pk.

Now, let us prove that if there is a conflict between Bj, Bk and
((Bj, Bj), (Bk, Bk)) ̸∈ CA

4 then Bj ∩ Bk = ∅, Bj ⊂ Bk and Bk ⊂ Bj, and
as a consequence, ((Bj, Bj), (Bk, Bk)) ∈ C1.

On the one hand, Bj ∩ Bk = ∅ implies Bj ⊂ Bk and Bk ⊂ Bj, since that
empty intersection implies that all the elements of Bj (respectively. Bk) are
contained in the complement of Bk (respectively Bj).

On the other hand, if Bj ∩ Bk ̸= ∅, then not only Bj has a conflict with Bk

but also (a) Bj has a conflict with Bk, (b) Bj has a conflict with Bk and (c)
Bj has a conflict with Bk.

(a) First, Bj−⇀↽−Bk implies Bj ̸⊂ Bk, so there is an element in Bj which
belong to Bk and Bj ∩ Bk ̸= ∅. Secondly, Bj ∩ Bk ̸= ∅ so Bj ̸⊂ Bk.
Finally, Bj ∩ Bk ̸= ∅, so there is an element in Bk which is not in Bj,
i.e., Bk ̸⊂ Bj.

(b) The conflict Bj−⇀↽−Bk also implies Bj ∩Bk ̸= ∅ so Bk ̸⊂ Bj. In addition,
Bj ∩Bk ̸= ∅ proves that Bj ̸⊂ Bk. Lastly, if Bj ∩Bk = ∅ then Bk ⊂ Bj

which is not possible since Bj−⇀↽−Bk.

(c) Since our hypotheses is that Bj ∩ Bk ̸= ∅, Bj ̸⊂ Bk and Bk ̸⊂ Bj for
Bk ̸⊂ Bj and Bj ̸⊂ Bk respectively.
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Therefore, if Bj−⇀↽−Bk then (Bj, Bj)−⇀↽−1 (Bk, Bk) or (Bj, Bj)−⇀↽−4 (Bk, Bk).

Proposition 5.3 Let S be a finite set of possible states, and let A be a set with
pairs Pj = (Bj, Bj) of complementary sets over S. Then there exists a hierarchy
containing exactly one of Bj and Bj for each pair Pj if and only if CA = CA

1 .

Proof.

Firstly, suppose that CA = CA
1 . We claim that the formula φ from Theorem 5.3

is satisfied by the following truth assignment α, which suffices to show the
existence of a suitable hierarchy. For each j, let α(xj) = 1 and α(yj) = 0
if |Bj| ≤ |Bj|, and let α(xj) = 0 and α(yj) = 1 otherwise.

Conversely, suppose that there exists a suitable hierarchy. Then the 2CNF
formula φ from Theorem 5.3 is satisfiable. We show that no pair (Pj, Pk)
can belong to CA

4 . To derive a contradiction, suppose that there are Pj =
(Bj, Bj) and Pk = (Bk, Bk) such that (Pj, Pk) ∈ CA

4 . Then, by construction, φ
would contain the following clauses: (ν(Bj) ∨ ν(Bj)), (¬ν(Bj) ∨ ¬ν(Bj)),
(ν(Bk) ∨ ν(Bk)), (¬ν(Bk) ∨ ¬ν(Bk)), (¬ν(Bj) ∨ ¬ν(Bk)), (¬ν(Bj) ∨ ¬ν(Bk)),
(¬ν(Bk) ∨ ¬ν(Bj)), and (¬ν(Bk) ∨ ¬ν(Bj)). Thus φ would be unsatisfiable,
which contradicts Theorem 5.3. By Lemma 5.3, we then know that CA = CA

1 .

Now, we study the problem of finding partial hierarchies—among a given set A
of pairs of complementary focal elements—that are as large as possible. In par-
ticular, we will show that this problem is closely related to the classical prob-
lem Vertex-Cover, that consists in deciding if a graph has a vertex cover
of a given size. Concretely, we show that there is a polynomial-time reduction
from Vertex-Cover to the problem of finding a partial hierarchy of a given
size—showing that the latter problem is NP-hard. We also show that there
is a polynomial-time reduction in the other direction—allowing fixed-parameter
tractable algorithms for Vertex-Cover to be employed for finding hierarchies.

We start with giving a formal definition for the decision problem of finding large
partial hierarchies, and showing that this problem is NP-complete.

Partial-Hierarchy
Input: A set S of possible states, a set A = {(Bj, Bj)}ℓj=1 of complemen-

tary pairs of focal elements over S, and a positive integer r ∈ N.
Question: Is there a hierarchy H ⊆ {Bj, Bj | 1 ≤ j ≤ ℓ} of size at least r,

such that H ∩ {Bj, Bj} ≤ 1 for each j?
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Theorem 5.4 Partial-Hierarchy is NP-complete.

Proof.

It is straightforward to show that the problem is in NP, and we omit further
details on this. To show NP-hardness, we give a reduction from Vertex-
Cover. Let G = (V,E) be an undirected graph with V = {v1, . . . , vℓ}, and
let t ∈ N. We construct an instance of Partial-Hierarchy. We let S =
{∗}∪V ∪E. Moreover, we define A = {(Bj, Bj)}ℓj=1 by letting Bj = {vj}∪{e ∈
E | vj ∈ e} and Bj = S \Bj. Finally, we let r = ℓ− t.

Then G has a vertex cover—i.e., a set of vertices such that every edge in the
graph is incident to at least one vertex in the set—of size t if and only if there is
a hierarchy H ⊆ {Bj, Bj | 1 ≤ j ≤ ℓ} of size r. In particular, for any C ⊆ V it
holds that C is a vertex cover of G if and only if AC = {(Bj, Bj) | vj ∈ V \C}
admits a hierarchy (in the sense of Theorem 5.3).

To show this, the following claim is central. For each vj, vk ∈ V such
that j ̸= k, if {vj, vk} ∈ E, then (Bj, Bj)−⇀↽−4 (Bk, Bk), and if {vj, vk} ̸∈ E,
then (Bj, Bj)−⇀↽−1 (Bk, Bj). The above correspondence between vertex covers C
of G and partial hierarchies AC is straightforward to show, using this claim
and Proposition 5.3.

Proposition 5.4 There is a polynomial-time reduction from Partial-Hier-
archy to Vertex-Cover that maps instances (S,A, t) to instances with r =
|A| − t.

Proof.

We describe the main lines of this reduction, and we omit a proof of
correctness—which is analogous to the proof of Theorem 5.4. Let S be a finite
set of possible states, A = {(Bj, Bj)}lj=1 a set of complementary pairs over S,
and t a positive integer. We construct G = (V,E) by letting V = {v1, . . . , vℓ}
and E = {{vj, vk} | (Bj, Bj)−⇀↽−4 (Bk, Bk)}. Then A and r form a yes-instance
for Partial-Hierarchy if and only if G has a vertex cover of size r = ℓ− t,
and solutions are in one-to-one correspondence.

The result of Proposition 5.4 shows that we can use fixed-parameter tractable
algorithms for Vertex-Cover to find partial hierarchies, and that such algo-
rithms can be expected to run efficiently in cases where we can obtain a hierarchy
from A by removing only few items. In particular, considering a set of possible
states of size n, we can find vertex covers of size r in time O(1.2738r + rn) (Chen
et al., 2010), which is a running time that is manageable whenever r = ℓ − t
is reasonably small. Additionally, one could employ approximation algorithms
for finding minimum-size vertex covers–see, e.g., (Arora and Barak, 2009)–to get
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partial hierarchies that approximate those of maximum size. This line of work
points to several interesting open problems. One example is to study how filtering
the original set of evidence–e.g., to get a hierarchy structure–affects the degree of
belief in a proposition when applying Dempster’s rule of combination.

Using Hierarchical Structure in Arbitrary Bodies of Evidence

We have studied the problem of determining in what situations–possibly after dis-
regarding some pieces of evidence–evidence is entirely aligned with a hierarchy.
Of course, there are also situations where it is not possible to obtain a hierar-
chy from a body of evidence–and where disregarding evidence is undesirable or
inappropriate. Now, we take some initial steps towards algorithmically using hi-
erarchical structure to combine evidence also in cases where the evidence is not
entirely in line with any hierarchy.

Specifically, we first introduce a measure of how much (of a particular type of)
hierarchical structure there is in any set A of focal elements. We then provide
an algorithm to compute the belief function corresponding to the combination of
a given evidence set–based on applying Dempster’s rule of combination to basic
belief assignments with a single proper focal element–that works efficiently when
there is a high degree of hierarchical structure in A.

The main idea behind this measure and the algorithm is as follows. Whenever
there are focal elements A1, A2 ∈ A that are conflicting—in the sense of Defi-
nition 5.3—we merge them together. We do this merging iteratively until there
are no conflicts remaining, and thus until we have a hierarchy. The algorithm,
roughly, works in a two-step fashion: (i) for all focal elements in the hierar-
chy that are the result of such a merging operation, we compute the combined
belief using a brute-force algorithm; (ii) we use the algorithm of Theorem 5.2
to combine these intermediate results—that involve the previously merged focal
elements—with the evidence for focal elements that are not the result of any
merging operation.

Step (i) of this algorithm takes exponential time, but this is only exponential in
the size of the merged focal elements. As the measure of the amount of hierarchical
structure in the set A of focal elements we take the size r of the largest focal
element resulting from this iterative merging process. The smaller this number r,
the more hierarchical structure the set A contains, and in fact, if A is already a
hierarchy, then r = 0. The running time of the algorithm then is 2r · poly(|x|),
where x denotes the size of the problem input. In other words, the algorithm runs
in fixed-parameter tractable time, when we consider as parameter the amount of
hierarchical structure.

Let us now work out this idea in more detail, and let us begin by introducing the
measure of the amount of hierarchical structure in any given set of focal elements.
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Definition 5.4 (Corresponding merged hierarchy). Let S be a finite set of possi-
ble states and A = {A1, . . . , Aℓ} a set of focal elements Aj ⊆ S. Then the merged
hierarchy HA corresponding to A is defined by the following procedure. Initially,
let Aorigin = A and Amerged = ∅, and then iteratively update (Aorigin,Amerged)
using the following rules until the rules no longer apply.

• If there are Aj, Ak ∈ Aorigin such that both (i) Aj ∩ Ak ̸= ∅ and (ii) nei-
ther Aj ⊆ Ak nor Ak ⊆ Aj, then replace Aorigin by Aorigin \ {Aj, Ak} and
add Aj ∪ Ak to Amerged.

• If there is some Aj ∈ Aorigin and some Ak ∈ Amerged such that both
(i) Aj ∩ Ak ̸= ∅ and (ii) Ak ̸⊆ Aj, then replace Aorigin by Aorigin \ {Aj}
and replace Amerged by Amerged \ {Ak} ∪ {Aj ∪ Ak}.

• If there are Aj, Ak ∈ Amerged such that Aj ∩ Ak ̸= ∅, then replace Amerged
by (Amerged \ {Aj, Ak}) ∪ {Aj ∪ Ak}.

Finally, let HA = Aorigin ∪ Amerged.

If A is already a hierarchy, then none of these rules ever applies, and thus HA = A.
No matter in which order you apply the rules in this iterative procedure, the result
does not change. In other words, for any A, the hierarchy HA is uniquely defined.

Proposition 5.5 For each set A of focal elements, the procedure in Defini-
tion 5.4 yields a unique HA, regardless of the order in which rules are applied.
Moreover, HA is a hierarchy, and for each A ∈ A there is some H ∈ HA such
that A ⊆ H.

Proof.

Each of the rules only merges sets, which directly gives us termination and
the property that for each A ∈ A there is some H ∈ HA such that A ⊆ H.
If the resulting HA were not a hierarchy, then one could still apply a rule,
which proves that HA must be a hierarchy. Uniqueness can be proved with
the observation that the effects of the rules only strictly increase the sets
in Amerged, and the preconditions of the rules are monotone—in the sense that
making sets in Amerged larger will not make a previously applicable rule not
applicable anymore.

Having the notion of corresponding merged hierarchies in place, we introduce the
level of merging needed to construct HA from A as a way to measure the amount
of hierarchical structure in A.

Definition 5.5 (Level of merging). Let S be a finite set of possible states and A =
{A1, . . . , Aℓ} a set of focal elements Aj ⊆ S. We define the level of merging
needed to construct the merged hierarchy HA from A to be r = maxA∈Amerged |A|,
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where Aorigin and Amerged are given by the procedure described in Definition 5.4.

The procedure described in Definition 5.4 gives us a polynomial-time algorithm
to compute both HA and r.

Proposition 5.6 For each A, we can in polynomial time compute its corre-
sponding hierarchy HA and compute the level r of merging needed to construct HA
from A.

Proof.

The procedure described in Definition 5.4 terminates in polynomial time and
produces HA and r.

Example 5.2 Merged Hierarchy

Consider S = {a, b, c, d, e} and A = {{a}, {a, b}, {b, c}, {a, b, c, d}, {d}, {e}}.
Then HA = {{a, b, c}, {a, b, c, d}, {d}, {e}} and the level r of merging needed
to construct HA from A is 3, as {a, b, c} is the largest element in the set Amerged
resulting from the procedure described in Definition 5.4.

S

{a, b, c, d}

{a, b}

{a}

{b, c} {d}

{e}
S

{a, b, c, d}

{a, b, c} {d}

{e}

Figure 5.2: Diagram representation of set A = {{a}, {a, b}, {b, c}, {d}, {e},
{a, b, c, d}} (left) and the hierarchy HA. The colored arrow represents the
process of constructing HA from A. The colored sets in A are the ones merged
during the process.

We now have everything in place to present our fixed-parameter tractable al-
gorithm that extends the result of Shafer and Logan (2008) (Theorem 5.2) to
arbitrary sets A of focal elements. We precede it with two lemmas necessary
for its proof. They can be established straightforwardly using the definition of
Dempster’s rule of combination.
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Lemma 5.2 Let S be a finite set of possible states, let m1,m2,m3 be basic belief
assignments over S, and let A ⊆ S be such that belm1(A)+m1(S) = 1, belm2(A)+
m2(S) = 1, and belm3(S \ A) + m3(S) = 1. Moreover, let m1,3 = m1 ⊕ m3 and
let m2,3 = m2 ⊕ m3. Then belm1,3(A) = belm2,3(A) and belm1,3(B) = belm2,3(B)
for each B ⊆ S \ A.

Lemma 5.3 Let S be a finite set of possible states, let m1,m2 be basic belief
assignments over S, and let A ⊆ S be such that belm1(A) + m1(S) = 1, and
belm2(S \A) +m2(S) = 1. Then belm1(B)/belm1(A) = belm1,2(B)/belm1,2(A) for
each B ⊆ A, where m1,2 = m1 ⊕m2.

Theorem 5.5 Let S be a finite set of possible states and let A = {A1, . . . , Aℓ} be
a set of focal elements Aj ⊆ S. Moreover, let HA be the hierarchy corresponding
to A, and let r be the level of merging needed to construct HA from A. Then, given
some basic belief assignments m1, . . . ,mℓ, with one single proper focal element
each, and assuming these focal elements are elements of A, for each A ∈ A we
can compute belm(A), belm(A), plaum(A) and plaum(A), for m = ⊕ℓ

j=1 mj, in
time 2r · poly(|x|) where x denotes the problem input.

Proof.

We describe how to compute belm(A). This procedure can be straightfor-
wardly modified to compute belm(A), plaum(A) and plaum(A) as well. We
may assume without loss of generality that, for each A ∈ A, there is exactly
one basic belief assignment among m1, . . . ,mℓ that has A as proper focal
element–call this basic belief assignment mA.

We will use the following procedure. Firstly, we construct HA, together
with Aorigin and Amerged, as described in Definition 5.4. Then, for each A ∈
Amerged, we use a brute-force approach to compute mA = ⊕

A′∈A,A′⊆AmA′ ,
and we construct the basic belief assignments m′

A with one proper focal ele-
ment A such that m′

A(A) = belmA
(A). Then we use Theorem 5.2, using mA

for each A ∈ Aorigin and m′
A for each A ∈ Amerged, to compute belm(H) for

each H ∈ HA. By Lemma 5.2, we can safely replace mA by m′
A in this com-

putation, for each A ∈ Amerged. What remains is to compute belm(A) for
each A ∈ A \ HA. Lemma 5.3 gives us a direct way to do this using values
that we have already computed.

The computation of m(A) and m′(A) for A ∈ Amerged can be done in
time 2r ·poly(|x|). Moreover, given m(A) and m′(A) for each A ∈ Amerged, the
remainder of the algorithm can be carried out in polynomial time.

The result of Theorem 5.5 provides a starting point for investigating how best to
algorithmically use hierarchical structure to combine arbitrary sets of evidence.
By itself, the result is restricted in various ways. Below, we discuss several sug-
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gestions for how to extend Theorem 5.5 to more general and practically useful
settings.

The algorithm of Theorem 5.5 can straightforwardly be adapted also to the case
where one additionally have basic belief assignments whose only focal element is
the complement of some A in the merged hierarchy HA–as is the case for Theo-
rem 5.2. Therefore, one might be able to compute belm(A) for some A ∈ A more
efficiently by constructing a set A′ ⊆ A such that for each focal element D of
a given basic belief assignment with a single focal element, either (1) HA′ con-
tains a set in Amerged that is a superset of D, or (2) D is the complement of
some set in HA′ . For example, take A = {{a, b}, {b, c}, {a, b, c, d}, {d, e}, {e}},
and suppose you have basic belief assignments with their only proper focal el-
ements in A. Then HA = {{a, b, c, d, e}}. However, you can also consider the
hierarchy H = {{a, b, c}, {a, b, c, d}, {e}} to use (the extended variant) of the al-
gorithm of Theorem 5.5 to compute belm(A) for sets A ∈ A, and this would be
more efficient. An interesting direction for future research would be to develop
(efficient) algorithms for finding a set A′ ⊆ A that enables the most efficient use
of the algorithm of Theorem 5.5.

Moreover, the given notion of a merged hierarchy HA corresponding to a set A
of focal elements may lead to merge (nearly) all sets contained in A in many
situations. In such situations, the algorithm of Theorem 5.5 would boil down
to combining all available evidence using a brute force algorithm. It would be
interesting to study more refined notions of distance to a hierarchy. One such
distance measure could be to count the number of steps needed to construct
a hierarchy H from an arbitrary set A of focal elements. To be effective, this
construction should be done by using operations on the sets in A that do not
require to use a brute force algorithm to deal with the resulting sets.

5.2 Applying Topological Models of Evidence
In the preceding section, we observed that combining uncertain pieces of evi-
dence using Dempster’s rule of combination requires exponential time if further
constraints are not applied. Now, we analyze the computational complexity of
topological models of evidence, the second method that serves as a foundation
of Chapter 3. In this case, combining evidence–not uncertain evidence–can be
accomplished in polynomial time. This section is dedicated to proving this state-
ment. We will begin with some definitions and two preliminary lemmas. Note
that we revert to the standard notation of this thesis, that is, given a set of pos-
sible states S, E = {E1, . . . , Eℓ} is a qualitative evidence set, where ∅ ≠ Ej ⊊ S
for every j ∈ {1, . . . , ℓ}.
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Definition 5.6 (Identical support relation). Let S be a finite set of possible
states and E a qualitative set of evidence. For all a, b ∈ S, we define the identical
support relation on S as

a ∼E b if and only if, for all E ∈ E , a ∈ E if and only if b ∈ E.

Lemma 5.4 The identical support relation ∼E is an equivalence relation.

Proof.

For every a, b, c ∈ S, it follows from ∼E ’s definition that a ∼E a, if a ∼E b
then b ∼E a, and if a ∼E b and b ∼E c then a ∼E c. Therefore, the relation
∼E is reflexive, symmetric and transitive.

We denote the quotient set of S with respect to ∼E as S/∼E. Given a ∈ S, [a]
denotes the equivalence class of a. Furthermore, we consider the set E ′ of subsets
of S/∼E such that E ′ = {[a] : a ∈ E} for all E ∈ E . Note that E and E ′ have the
same size.

Example 5.3 (Part 1) Quotient Set and E ′

Let us consider S = {a, a′, b, c, d, d′, e} and E =
{
{a, a′, b}, {b, c, d, d′},

{d, d′, e}
}
. Then, a ∼E a′, d ∼E d′ and S/∼E = {[a], [b], [c], [d], [e]}, where

[a] = {a, a′}, [b] = {b}, [c] = {c}, [d] = {d, d′}, [e] = {e}, and E ′ =
{
{[a], [b]},

{[b], [c], [d]}, {[d], [e]}
}
.

Lemma 5.5 The union of the singleton elements of the topology generated by E ′

is exactly the minimum dense open set in the topology.

Proof.

To recap, given a set of possible states S and a set E of subsets of S, the
topology generated by E is the smallest set closed under arbitrary unions and
finite intersections that contains every element of E , S and the empty set.
In addition, an element of the topology is said to be dense in the topology
if it has a non-empty intersection with every other non-empty element of it.
In Lemma 3.1, we saw that the set of all dense open sets in the generated
topology has a minimum element with respect to the subset relation ⊆. Let
us show that the minimum dense open set in the topology generated by E ′ is
equal to the union of the singleton elements of that topology.
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Let τE ′ be the relevant topology, M its minimum dense open set and U the
union of singleton elements of τE ′ . Let us see that M ⊆ U . Given [a] ∈ M ,
if [a] ̸∈ U then there is not a collection of elements of E ′ whose intersection
is equal to [a], i.e., [a] is not an element of the topology. Then, there exist
an element of the topology T such that {[a]} ⊂ T ⊆ M . Without loss of
generality, let us assume T = {[a], [b]} for certain b ∈ S. If there existed an
element T ′ of the topology such that [a] ∈ T ′ but [b] ̸∈ T ′, then T ′ ∩T = {[a]}
and {[a]} would belong to τE ′ . In addition, if there existed an element T ′′ of
the topology such that [b] ∈ T ′′ but [a] ̸∈ T ′′, then T ′′ ∩T = {[b]} would belong
to τE ′ and (M \T )∪{[b]} as well—if M \T ̸= ∅ then it comes from intersections
and unions of elements that do not contain [a]. We have seen that any element
of τE ′ containing [a] would also contain [b], so (M \ T ) ∪ {[b]} has non-empty
intersection with every element that contains [a], T ′′, and every other element
of the topology that does not contain [a] or [b]—for our assumption that M is
a dense open set in the topology. In other words, (M \T )∪{[b]} is a dense open
set in the topology. Since (M \ T ) ∪ {[b]} has strictly less elements than M ,
this contradicts our assumption that M is the minimum dense open set in τE ′ .
Therefore, [a] and [b] belong to the same elements of τE ′ and, consequently,
a and b belong to the same elements of E—i.e., a and b belong to the same
equivalence class of the relation ∼E . Then the element T = {[a], [b]} of τE ′

is actually T = {[a]}, so {[a]} is a singleton contained in τE ′ and [a] ∈ U as
desired. Conversely, U ⊆ M follows immediately, since M intersects every
element of the topology, every singleton element in particular.

Next, we define the decision problem we want to solve and present an algorithm
that solves it efficiently.

TOPOLOGICAL-BELIEF
Input: A set of possible states S, a qualitative evidence set E ⊆ 2S, and

a proposition P ⊆ S.
Question: B(P ) = 1? Where B(·) is the binary belief operator defined in

Proposition 3.9.

Theorem 5.6 Topological-Belief can be computed in polynomial time.

Proof.

Let S, E and P be the input described in Topological-Belief. By defini-
tion, B(P ) returns 1 if and only if there exists an element D of the topology
generated by E , τE , such that D ⊆ P and D∩T ̸= ∅ for all non-empty element
T of the topology τE . As before, we refer to the element of τE that is dense in
the topology and has the smallest cardinality among the elements of τE dense
in it as the minimum dense open set in τE .
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B(P ) returns 1 if and only if the minimum dense open set M in τE is contained
in P . The right-to-left direction is clear, since M ⊆ P means that P contains a
dense open set in the topology τE , and therefore B(P ) = 1. To prove the other
direction, notice that B(P ) = 1 implies that there exists an element D ∈ τE
which is dense in the topology such that D ⊆ P . Since M is the minimum
element of the set of all dense-open subsets of the generated topology with
respect to the subset relation ⊆, M is a subset of all dense open sets in τE
and, in particular, M ⊆ D. Therefore, we will present an efficient algorithm
to find the minimum dense open set in τE and to conclude whether B(P ) = 1
we only need to check whether M is contained in P .

The first step is computing S/∼E and E ′ according to the equivalence relation
∼E defined in Lemma 5.4. Considering n the size of S and ℓ the size of E , this
operation requires a number of steps proportional to n · ℓ. The second step
involves iterating over all possible singletons {[a]} of S/∼E and computing the
intersection of all the elements of E ′ that contains {[a]}. If this intersection
is {[a]}, we keep it. After iterating over the whole set S/∼E, we define M ′ as
the union of the elements we have kept. Finally, we define M as the union of
the elements of all equivalence classes contained in M ′, and we check whether
M ⊆ P .

The key part of proving that M is the minimum dense open set in τE , is to
prove that M ′ is the minimum dense open set in τE ′ . To this end, let us see
that by the process described in the preceding paragraph we get exactly all
the singletons of τE ′ . If {[a]} is an element of the relevant topology, then
there is a finite collection of elements of E ′ whose intersection is {[a]}, i.e.,
{E ′ ∈ E ′ : [a] ∈ E ′}. Therefore, if we take all the elements in E ′ that contain
{[a]}, in particular, we will take {E ′ ∈ E ′ : [a] ∈ E ′} and the intersection
of our selection will be {[a]} as well. On the other hand, if the intersection
of all the elements of E ′ that contain {[a]} is {[a]}, then there exists a finite
collection of elements whose intersection is {[a]} and this singletons belongs
to the topology. Now, applying Lemma 5.5 the result holds. Note that we are
iterating over the set of possible states and the set of pieces of evidence. If
we denote their sizes as n and ℓ, respectively, the number of steps required to
conclude this process is proportional to n · ℓ. Hence, B(P ) can be determined
in polynomial time.

Let us finish this section with a small example of the proposed algorithm.
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Example 5.3 (Part 2) Algorithm

Let S = {a, a′, b, c, d, d′, e} be a set of possible states and E ={
{a, a′, b}, {b, c, d, d′}, {d, d′, e}

}
be a qualitative set of evidence pieces. The

minimum dense open set in τE is {b, d, d′}, let us see how to compute it ap-
plying the process defined in the proof of Theorem 5.6.

Step 1: S/∼E = {[a], [b], [c], [d], [e]} and E ′ =
{
{[a], [b]}, {[b], [c], [d]}, {[d], [e]}

}
Step 2: For [a], ⋂ {

{[a], [b]}
}

= {[a], [b]} (dismissed)

For [b], ⋂ {
{[a], [b]}, {[b], [c], [d]}

}
= {[b]} (kept)

For [c], ⋂ {
{[b], [c], [d]}

}
= {[b], [c], [d]} (dismissed)

For [d], ⋂ {
{[b], [c], [d]}, {[d], [e]}

}
= {[d]} (kept)

For [e], ⋂ {
{[d], [e]}

}
= {[d], [e]} (dismissed)

Step 3: M ′ = {[b], [d]}
Step 4: M = {b, d, d′}

Now, for every P ⊆ S such that {b, d, d′} ⊆ P , B(P ) = 1.

5.3 Applying Multi-Layer Belief Model
After studying the computational complexity of Dempster’s rule of combination
and topological models of evidence, we wonder how complex the multi-layer be-
lief model is from a computational point of view. In this section, we will provide
a basic analysis of the computational complexity of computing degrees of belief
using this model. In particular, we will describe in precise terms what computa-
tional problem we consider, and provide some initial computational complexity
results that show that applying the multi-layer belief model does not increase the
computational complexity compared to applying Dempster’s rule of combination.

Throughout this section, we follow the notation introduced in Chapter 3, that
is, S represents a set of possible states, EQ = {(E1, p1), . . . , (Eℓ, pℓ)} represents
a quantitative evidence set, τE is the topology generated by the qualitative ev-
idence set E , J is a frame of justification, f : 2E → τE is an evidence alloca-
tion function, and δ(·), δτ(f, ·), δJ (f, ·) BelJ (f, ·) are the functions defined in
equations (3.1), (3.3), (3.4) and Definition 3.2 respectively. The following is the
description of the complexity problem we study in this section.
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Degree-of-Belief
Input: A set of possible states S, a quantitative evidence set EQ, a frame

of justification J , an evidence allocation function f and a propo-
sition P ∈ 2S.

Output: BelJ (f, P ).

J and the domain of the function f : 2E → τE are in general of size exponen-
tial in the size of S (and the other parts of the input). Therefore, whenever we
do not consider a fixed frame of justification or a fixed evidence allocation func-
tion, respectively, we assume that these functions are represented as (a suitable
specification of) a polynomial-time computable function.

Upper bound

We begin with an upper bound on the computational complexity of the prob-
lem Degree-of-Belief in its most general form–that is, when the frame of
justification and evidence allocation function are given as part of the input.

Proposition 5.7 Degree-of-Belief is in #P, if the frame of justification J
has a polynomial-time decidable characteristic function and if the evidence allo-
cation function f is polynomial-time computable, and both of these are given as
part of the input (specified in a suitable format).

Proof.

We will show that (a suitable variant of) Degree-of-Belief is in #P.
Degree-of-Belief returns fractions q ∈ Q, and the complexity class #P
concerns functions that return natural numbers. Therefore, in the remainder
of this proof, we specify a fraction q ∈ Q by two natural numbers n, d ∈ N
such that q = n/d. One can straightforwardly extend results for #P functions
that return natural numbers to #P functions that specify fractions in this
way. We omit further details of this in this proof.

We will show that the function BelJ (f, P ) is in #P in several steps. In par-
ticular, we will show that δ(E), δτ(f, T ) and δJ (f, A) are computable in #P,
using each result to establish the next result. Then, using these intermediate
results, we will show that BelJ (f, P ) is in #P. In order to do this, we will use
various closure properties of #P (Ogiwara and Hemachandra, 1993). These
closure properties can, as mentioned above, be straightforwardly extended to
#P functions that return fractions q = n/d (by specifying n and d).

Take an input consisting of a set S of possible states, a quantitative evidence
set EQ = {(E1, p1), . . . , (Eℓ, pℓ)} ⊆ 2S × (0, 1), a frame J of justification,
an evidence allocation function f : 2E → τE–where the frame of justifica-
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tion and the evidence allocation function are both given by suitably specified
polynomial-time computed functions – and a proposition P ∈ 2S.

Firstly, we show that δ(E) is in #P. Recall that δ(E) = ∏
Ej∈E pj

∏
Ej /∈E 1−pj.

Clearly, each pj and each (1−pj) is computable in #P, as they are given as part
of the input. Then, since #P is closed under multiplication (over a polynomial
number of #P functions), we get that δ(E) is in #P as well.

Next, let us turn to δτ(f, T ). Recall that δτ(f, T ) = ∑
E:f(E)=T δ(E) if T ∈ τE ,

and δτ(f, T ) = 0 otherwise. Consider the function δ′ such that δ′(E) = δ(E)
if f(E) = T and such that δ′(E) = 0 otherwise. Then, because f is a
polynomial-time computable function and because δ(E) is in #P, we know
that δ′ is also in #P. Moreover, whenever T ∈ τE , it holds that δτ(f, T ) =∑

E δ
′(E). Then, because f is a polynomial-time computable function, be-

cause δ′ is in #P, and because #P is closed under addition (over an expo-
nential number of #P functions), we can conclude that δτ(f, T ) is in #P as
well.

Next, consider δJ (f, A). Recall that δJ (f, A) = δτ (f,A)/
∑

T ∈J δτ (f,T ) if A ∈ J
and δJ (f, A) = 0 otherwise. Because #P is closed under addition (over an
exponential number of #P functions), by a similar argument as we used above,
because the characteristic function of J is polynomial-time computable, we
know that ∑

T∈J δτ(f, T ) is in #P. Then, because #P is closed under division
(of two #P functions), we can conclude that δJ (f, A) is in #P as well.

Finally, let us look at BelJ (f, P ). Recall that BelJ (f, P ) = ∑
A⊆P δJ (f, A).

Because #P is closed under addition (over an exponential number of #P
functions), by a similar argument as we used above, we can conclude
that BelJ (f, P ) is in #P. This concludes our proof that Degree-of-Belief
is in #P.

Lower bound

Next, we show that the upper bound of #P-membership is matched by a #P-
hardness lower bound, even for a particular case where we use a fixed frame of
justification and a fixed evidence allocation function. In fact, this is the case that
boils down to Dempster’s rule of combination (see Proposition 3.8)–which we can
use to straightforwardly establish #P-hardness.

Proposition 5.8 Degree-of-Belief is #P-hard, even when we require that
the frame of justification is J DS and that the evidence allocation function is the
function i as defined in Proposition 3.5.
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Proof.

Consider the case where the frame of justification is J DS and where the
evidence allocation function is the function i as defined in Proposition 3.5. We
will show that Degree-of-Belief is #P-hard, even under these restrictions.
By Proposition 3.8, we know that in this case, Degree-of-Belief boils
down to computing the belief Bel(P ) of a proposition P based on applying
Dempster’s rule of combination to a given set of basic belief assignments with
a single proper focal element each. This problem is #P-complete as shown by
Theorem 5.1, and thus #P-hardness of Degree-of-Belief follows directly.

From this we can conclude that the problem in its most general form is #P-
complete.

Corollary 5.3 Degree-of-Belief is #P-complete.

5.4 Use Case Scenario: Medical Diagnosis
Shafer and Logan (2008)’s algorithm for efficiently combining hierarchical evi-
dence via Dempster’s rule of combination is motivated by the medical applications
that can accept hierarchical evidence as Gordon and Shortliffe (2008) pointed out.
Taking this as a starting point, let us consider a situation where we may not have a
hierarchical evidence structure by default, but we may still have near hierarchical
evidence and we can take advantage of the results of Section 5.1.2.

Continuing with the theme of medical diagnosis, we can think of cases of patients
with an unusual medical history that does not follow the expected differential di-
agnosis to the letter—e.g., an apparently clear infection that is negative on every
single specific test for bacteria, viruses, parasites or fungi. Another complica-
tion could be to have a medical history that requires the interaction of several
teams, such as neurologists, immunologists, microbiologists and dermatologists.
Unexpected test results or complex multidisciplinary symptoms may benefit from
diagnostic support software that can compare the analysis results of the current
patient with historical data and provide evidence of different causes with some
degree of certainty. If this software is equipped with tools that execute the re-
sults presented in Sections 5.1.2 and 5.2, it can be used to efficiently compute
belief in specific causes and help practitioners to efficiently test hypotheses and
make early diagnoses. There are cases where these unexpected and multi-factorial
symptoms are extremely severe and doctors have to find a solution against time.
Especially in these cases, it is impossible to simply run all existing tests: there
are time, resource and sample limitations. Therefore, focusing the search on one
main hypothesis and not other can make all the difference.
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Imagine a patient who comes to the emergency department with a very high
fever for the last 72 hours. During the initial exploration and routine tests,
the practitioner observes respiratory symptoms. Markers of inflammation are
very high. However, every culture and PCR is negative, i.e. the specific tests
for bacteria and viruses are negative. During the intake interview, the patient
reported that he had eaten a bad snack the day before the appearance of the fever.
In addition, the patient reported that he had been exposed to animals in the last
few days. After a few days in hospital, the patient also presents neurological
symptoms.

After running this case through our hypothetical diagnosis support software, we
get the following set of possible states and basic belief assignments: The fever de-
termines the set of possible states S = {Bacterium,Virus,Autoimmune Disease,
Parasite, Intoxication}, summarized by S = {B, V,A, P, I}. Respiratory symp-
toms and positive tests provide the basic belief assignment

m1(X) =


0.9 if X = {B, V },
0.1 if X = S,

0 otherwise.

Markers of inflammation provide the basic belief assignment

m2(X) =


0.95 if X = {B, V,A, P},
0.05 if X = S,

0 otherwise.

Patient’s information about ingesting a spoiled food provides

m3(X) =


0.2 if X = {I},
0.8 if X = S,

0 otherwise.

Patient’s information about exposure to animals provides

m4(X) =


0.1 if X = {P},
0.9 if X = S,

0 otherwise.
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Finally, the results of neurological tests provide

m5(X) =


0.85 if X = {V,A},
0.1 if X = S,

0 otherwise.

Our support software will reject the Shafer and Logan (2008)’s algorithm
because Theorem 5.3 concludes that the available body of evidence does
not form a hierarchy. We can see this by applying Theorem 5.3.(b): In
our example, A =

{
({B, V,A, P}, {I}), ({B, V }, {A,P, I}), ({V,A}, {B,P, I}),

({P}, {B, V,A, I})
}

and ({B, V }, {A,P, I})−⇀↽−4 ({V,A}, {B,P, I}), so Theorem 5.3
does not hold.

S

{B, V,A, P, I}

{B, V } {V,A} {P}

{I}

Figure 5.3: Diagram representation of the focal elements involved in the example.
The colored sets are the conflicting ones.

Next, our support system may try to use Proposition 5.4 to extract the largest
hierarchies from the available evidence. In this case, we can obtain a hierarchy by
simply removing one element. We can get the hierarchy shown in Figure 5.4.(a)
or the hierarchy shown in Figure 5.4.(b).

S

{B, V,A, P, I}

{B, V } {P}

{I}

(a)

S

{B, V,A, P, I}

{V,A} {P}

{I}

(b)

Figure 5.4: Diagram representation of the largest hierarchies within the available
focal elements.
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However, in both cases we remove very certain evidence that may be the key
to solving the problem. Therefore, the use of Theorem 5.5 may be an interest-
ing alternative, as it computes the exact value of the degree of belief based on
Dempster’s rule of combination by reducing the computation time compared to
the straightforward algorithm. For this example, the merged hierarchy is the one
shown in Figure 5.5 with level of merging 3. The algorithm described in the proof
of Theorem 5.5 would merge two basic belief assignments by brute force and that
combined belief function with the remaining ones by applying Shafer and Logan
(2008)’s algorithm.

S

{B, V,A, P, I}

{B, V,A} {P}

{I}

Figure 5.5: Diagram representation of the merged hierarchy obtained by applying
Theorem 5.5 to the example.

Needless to say, this scenario is a toy example intended to show how alterna-
tive computations of generally computationally costly methods, such as applying
Dempster’s rule of combination, can be useful. This is particularly true when
the conceptual and material complexity of the problem makes the additional re-
search and engineering they require worthwhile (compared to less expressive but
more efficient methods). As we have said throughout this chapter, our results are
initial steps in a promising line of research, but they themselves have room for
improvement. For instance, knowing the degree of belief of the sets collected in
Figure 5.5 does not give too valuable information to the doctors: the strongest
belief among the most specific leaves of the diagram is for {B, V,A}, which only
excludes pieces of evidence with very low certainty from the search.

Another result of this chapter that may apply to this scenario is Theorem 5.6,
i.e., the application of the algorithm described for Topological-Belief. In this
particular case, the algorithm does not allow uncertainty values, so we will only
consider the evidence that comes from positive tests. That is, E = {{B, V,A, P},
{B, V }, {V,A}}. The above mentioned algorithm would return {Virus} as the
strongest proposition with higher belief and consistent with all available evidence.
This answer may suggest to the doctors that a virus could be the cause of the
illness and therefore deepen the search in that direction. Again, in most cases,
doctors will not need this external help to reach these conclusions, but in very
complex cases with a lot of (and not always consistent) pieces of evidence, this
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kind of solution may be relevant to refine the search. Some recent papers on the
application of Dempster-Shafer theory to medical diagnosis are (Atitallah et al.,
2022; Herawati and Eviyanti, 2021; Kusuma and Nas, 2023).





Chapter 6

Knowledge Compilation for Combining
Uncertain Evidence

Up to this point, we have studied the problem of combining uncertain evidence
from different perspectives. We have introduced a belief model (the multi-layer
belief model) that combines the strengths of two established and independent
models for belief based on evidence (Dempster-Shafer theory of belief functions
and topological models of evidence). Additionally, we have explored how to use
these belief models to define a qualitative logic for uncertain evidence and be-
lief comparison, demonstrating once again their strong theoretical foundations.
We have also delved into the computational limitations and possibilities for im-
plementing these models in real-world scenarios. Building on this direction, the
upcoming chapter is dedicated to presenting a practical computational approach
to compute Dempster’s rule of combination and its unnormalized version defined
for the transferable belief model. We focus on these two rules for the significant
body of work developed around their applications. Nevertheless, in the context
of this thesis, this chapter serves as an example of the potential real-world appli-
cations of the discussed belief models, despite their computational complexity.

Our proposal in this chapter is to use weighted model counting and knowledge
compilation to compute Dempster’s rule of combination and the rule of combina-
tion of the transferable belief model. The general idea is to define a propositional
formula φ that allows us to apply weighted model counting and obtain the out-
come of the two mentioned rules. Needless to say, this operation does not improve
the computational complexity of the problem, however, φ can be compiled into a
particular circuit representation that enables weighted model counting to be car-
ried out efficiently. That is, by compiling φ into this circuit once—and paying an

109
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expensive computational cost—we can efficiently compute the degree of belief for
any proposition, even after the uncertainties change. The initial compilation only
depends on the pieces of evidence we expect to have. That is, if we expect to re-
ceive (or not receive) evidence about the sets E1, E2 and E3 with a variable degree
of certainty, we only need to consider E1, E2 and E3 in the initial compilation.
After that, if we get the evidence pieces (E1, 0.6) and (E2, 0.3), both Dempster’s
rule of combination and the combination rule of the transferable belief model can
be computed in polynomial time. In contrast, if we get an unexpected piece of
evidence (E4, 0.7) we would need to start the process all over again, including the
compilation step.

The chapter is organized as follows. Section 6.1 is dedicated to introducing some
preliminaries necessary to follow the rest of the content. In Section 6.2, we intro-
duce the formula φ and the weights necessary for implementing the combination
rules through weighted model counting. Following this, in Section 6.3, we de-
fine the knowledge compilation approach that will permit the efficient execution
of weighted model counting. Moving forward, Section 6.4 shows how applying
knowledge compilation ensures polynomial time computations, including the com-
pilation step, for hierarchical evidence. Finally, in Section 6.5, we conclude the
chapter with an example illustrating how this approach could enhance overall per-
formance compared to straightforward application of the mentioned combination
rules.

6.1 Preliminaries
Given the focus of this chapter, we will adhere to Dempster-Shafer notation.
Consequently, for a finite set of possible states S, we will represent the available
evidence as a collection of basic belief assignments m1, . . . ,mℓ. As we saw in
Chapter 2, the transferable belief model permits these mass functions to assign
positive values to the empty set. For clarity, we will refer to these as mass func-
tions instead of basic belief assignments when appropriate. Additionally, we will
refer to Dempster’s rule of combination and its unnormalized version by normal-
ized rule of combination and the unnormalized rule of combination, respectively,
in order to clarify their relationship. We recap their respective definitions in
equations (6.1) and (6.2).

(m1 ⊕m2)(A) =


0 if A = ∅,
1
K

∑
B∩C=A

m1(B) ·m2(C) otherwise (6.1)

where K = ∑
B∩C ̸=∅ m1(B) ·m2(C).
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(m1 ⊞m2)(A) =
∑

B∩C=A
m1(B) ·m2(C) (6.2)

6.1.1 Weighted Model Counting
In order to introduce weighted model counting, we briefly recap the main notions
for propositional logic, and the notation that we will use. Take a countably
infinite set of propositional variables. We will typically use x, y, z (possibly with
indices) to denote propositional variables. Propositional formulas φ are built
using propositional variables, the constants for tautology (⊤) and contradiction
(⊥), and the logical connectives ¬, ∧, ∨, →, and ↔. Literals are propositional
variables x or their negation ¬x.

The semantics of propositional logic are given by truth assignments. Let φ be a
propositional formula. Then Var(φ) denotes the set of propositional variables that
occur in φ. A truth assignment α : Var(φ) → {0, 1} assigns to each propositional
variable occurring in φ a truth value—either 0 (for false), or 1 (for true). Truth of
a propositional formula φ under a truth assignment α is defined in the usual way,
based on the (classical) truth tables of the logical connectives. When α makes φ
true, we write α |= φ and we will say that the truth assignment α satisfies φ.
We will often focus on propositional logic formulas in conjunctive normal form
(CNF)—that is, formulas that consist of a conjunction of disjunctions of literals.
Note that every propositional formula is logically and provably equivalent to a
formula in CNF (Ebbinghaus et al., 2018).

Assuming the previous notation, we define weighted model counting as a par-
ticular computation that takes as input a weight function over literals and a
representation of a Boolean function, and computes the weighted sum of all truth
assignments satisfying the Boolean function. Let φ be a propositional formula
(or another representation of a Boolean function) over a set X of propositional
variables. Let Lit(·) be a function over propositional variables that returns their
literals and w : Lit(X) → R be a weight function that assigns to each literal
over X a value. Then weighted model counting for φ and w refers to computing
the following number WMC(φ,w):

WMC(φ,w) =
∑

α:X→{0,1}
α|=φ

∏
ℓ∈Lit(X)
α(l)=1

w(ℓ). (6.3)

6.1.2 Knowledge Compilation
The main idea of the field of knowledge compilation is to study different represen-
tation languages—e.g., for Boolean functions—and how a one-time computation-
ally expensive translation (called compilation) from one language to another can
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be offset by repeated gains in efficiency when performing various queries or op-
erations on the compiled representation (as opposed to performing these queries
or transformations on the original representation). In order to investigate this
for the class of Boolean functions, various representation languages have been
investigated. A query refers to asking a particular question about the Boolean
function—e.g., to ask whether the function is satisfiable—, and a transformation
refers to taking one or more Boolean functions and transforming them into an-
other function—e.g., taking the conjunction of two functions. Useful aspects to
study for these representation languages, for the purposes of knowledge compi-
lation, include (1) the computational complexity of queries and transformations,
and (2) the relative succinctness of the various languages. For an overview of
basic results about knowledge compilation for Boolean functions, we refer to the
seminal paper by Darwiche and Marquis (2002). All terms introduced in the
remaining of this section can be also found in this source.

Many representation languages used in knowledge compilation are based on
Boolean circuits. A Boolean circuit consists of a direct acyclic graph with a
single node that has out-degree 0 (the output node), where the leaves are anno-
tated with propositional variables, and the internal nodes are annotated with a
Boolean connective (such that the in-degree of the node is appropriate for the
connective). Truth of a Boolean circuit under a truth assignment is defined by
recursively assigning each node with a truth value. The leaves are assigned to the
truth value specified by the truth assignment, and the truth value of the internal
nodes is determined by the Boolean connective and the truth values assigned to
the children of the node. The truth of the circuit is then the truth value of the
output node. A Boolean circuit is in Negation Normal Form (NNF) if all negation
nodes have a leaf node as child.

A class of Boolean circuits that we will refer to in this paper is the class of DNNF
circuits. A DNNF circuit is a Boolean circuit in NNF that has the property of
decomposability. A circuit is decomposable if for each conjunction node N it
holds that for each two distinct child-nodes N1, N2 of N , the variables appearing
in (the subcircuits under) N1 and N2 are disjoint. For DNNF circuits, weighted
model counting can be computed in polynomial time (Kimmig et al., 2017).

An operation on representations of Boolean functions that is of interest in the
area of knowledge compilation, and in particular for results in this chapter, is
that of conditioning. Let φ be a representation of a Boolean function f on some
variables X, and let α be a truth assignment to some subset Y ⊆ X of variables.
Then the result of conditioning φ on α is the representation of another Boolean
function g on the variables X \ Y , such that for each truth assignment β to the
variables in X \ Y it holds that β satisfies g if and only if α and β combined
satisfy f . Intuitively, conditioning φ on α corresponds to the Boolean function
obtained from φ by assigning truth values according to α. We say that a class of
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Boolean circuits supports conditioning (in polynomial time) if given a circuit N
in the class and a partial truth assignment α, we can compute, in polynomial
time, a circuit M that is the result of conditioning N on α. For example, the
class of DNNF circuits satisfies conditioning (Darwiche and Marquis, 2002).

6.2 Combining Uncertain Evidence with
Weighted Model Counting

In this section, we show how to implement the normalized and unnormalized rules
of combination (equations (6.1) and (6.2), respectively) using weighted model
counting. First, we define a propositional formula φ and a weight function w on
the literals for the variables of φ. Then, we establish a one-to-one correspondence
between the truth assignments that satisfy φ—after substituting some variables
by propositional constants—and the focal elements involved in Equation (6.2).
This correspondence enables us to define an alternative method for computing
the combined mass function obtained by the unnormalized rule of combination,
which can be extended to the normalized case. In Chapter 2, we discussed how
to compute belief, plausibility, and commonality functions from a combined mass
function. Alternatively, this method allows us to compute belief and commonality
functions directly, without the need to compute the combined mass function as
an intermediate step.

Premise 6.1 Let S = {s1, . . . , sn} be a set of possible states, C be a subset
of S and m1, . . . ,mℓ be a collection of mass functions with a single proper focal
element Aj ⊂ S for every j ∈ {1, . . . , ℓ}. Note that these mass functions have a
maximum of two focal elements: Aj and S.

Now, let us consider a set of variables V = {yj|j ∈ {1, . . . , ℓ}} ∪ {zi|i ∈
{1, . . . , n}} ∪ {xj,i|j ∈ {1, . . . , ℓ}, i ∈ {1, . . . , n}} and the following propositional
formula:

φ =
∧

j∈{1,...,ℓ}

((
yj →

( ∧
si∈Aj

xj,i ∧
∧

si ̸∈Aj

¬xj,i
))

(6.4)

∧
(

¬yj →
∧
si∈S

xj,i

))
(6.5)

∧
∧

i∈{1,...,n}

((
zi →

∧
j

xj,i

)
(6.6)

∧
(

¬zi →
∨
j

¬xj,i
))

(6.7)
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This formula φ has one variable zi for each element of S, one variable yj for every
proper focal element of the available mass functions, and one variable xj,i for
each pair (A, s) where A is the proper focal element of one of the available mass
functions and s ∈ S.

Finally, let us define a weight function w : L → [0, 1] such that for every l ∈ L
literal of a variable in V :

w(l) =


mj(Aj) if l = yj for some j ∈ {1, . . . , ℓ},
1 −mj(Aj) if l = ¬yj for some j ∈ {1, . . . , ℓ},
1 otherwise.

(6.8)

Example 6.1 (Part 1) Formula φ and Weight Function

Assume S = {a, b, c} and let m1 and m2 be defined as:

m1(A) =


0.7 if A = {a, b},
0.3 if A = S,

0 otherwise.

m2(B) =


0.45 if B = {b, c},
0.55 if B = S,

0 otherwise.

Then, V = {y1, y2, z1, z2, z3, x1,1, x1,2, x1,3, x2,1, x2,2, x2,3}, where y1 and y2 cor-
respond to m1 and m2 respectively, and z1, z2 and z3 correspond to a, b, c
respectively as well. In this context,

φ = (y1 → x1,1 ∧ x1,2 ∧ ¬x1,3) ∧ (¬y1 → x1,1 ∧ x1,2 ∧ x1,3)
∧ (y2 → ¬x2,1 ∧ x2,2 ∧ x2,3) ∧ (¬y2 → x2,1 ∧ x2,2 ∧ x2,3)
∧ (z1 → x1,1 ∧ x2,1) ∧ (¬z1 → ¬x1,1 ∨ ¬x2,1)
∧ (z2 → x1,2 ∧ x2,2) ∧ (¬z2 → ¬x1,2 ∨ ¬x2,2)
∧ (z3 → x1,3 ∧ x2,3) ∧ (¬z3 → ¬x1,3 ∨ ¬x2,3)

The corresponding weight function would be:
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w(l) =



0.7 if l = y1,

0.3 if l = ¬y1,

0.45 if l = y2,

0.55 if l = ¬y2,

1 otherwise.

Considering the weight function w and some restrictions on the truth assignments
for φ, WMC(φ,w) returns the same combination of m1, . . . ,mℓ as equations (6.2)
and (6.1), as well as the belief and commonality functions associated to them.
The remainder of this section consists of a list of results that prove the previous
statement.

Proposition 6.1 Assuming Premise 6.1, let us consider:

• FC to be the collection of ℓ-tuples (F1, . . . , Fℓ) such that, for every 1 ≤ j ≤ ℓ,
Fj is a focal element of mj and ⋂

Fj = C;

• φC-MASS to be the formula φ when zi is substituted by ⊤ if si ∈ C for every
i ∈ {1, . . . , n} and by ⊥ otherwise;

• AC to be the collection of truth assignments that satisfy φC-MASS.

Then, there is a one-to-one correspondence between FC and AC.

Proof.

Let us define a function g : FC → AC such that g
(
(F1, . . . , Fℓ)

)
=

α : Var(φC-MASS) → {0, 1} and

α(yj) = 1 if and only if Fj ̸= S,

α(xj,i) = 1 if and only if si ∈ Fj.

By an abuse of notation, we denote α(x) = 1 as x = 1 when g
(
(F1, . . . , Fℓ)

)
is fixed.

First, let us see the function g gives a truth assignment. Given a tuple
(F1, . . . , Fℓ) ∈ FC , its image by g is a truth assignment for φC-MASS since
it maps a single value in {0, 1} to every variable in φC-MASS. In addition,
g

(
(F1, . . . , Fℓ)

)
⊨ φC-MASS. The formula φC-MASS is a conjunction of four

types of clauses. The clauses of the first type (Equation (6.4)), are false if
and only if yj = 1 and there exists xj,i = 0 with si ∈ Aj or xj,i = 1 with
si ̸∈ Aj. Fixing an arbitrary j ∈ {1, . . . , ℓ}, yj = 1 implies Fj ̸= S for g’s
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definition. For Premise 6.1, if mj has a single focal element different from S,
then Fj = Aj. Hence, the definition of g rephrases as xj,i = 0 if and only if
si ̸∈ Aj. Since this holds for every j, g

(
(F1, . . . , Fℓ)

)
satisfies all clauses of this

type. The clauses of the second type (Equation (6.5)) are false if and only if
yj = 0 and there exists xj,i = 0 for that j. But according to the definition of
g, yj = 0 implies xj,i = 1 for every i ∈ {1, . . . , n} since every si is an element
of S. So g

(
(F1, . . . , Fℓ)

)
also satisfies these clauses. The clauses of the third

type of clauses (Equation (6.6)), adjusted to φC-MASS, are false if and only if
xj,i = 0 for some j ∈ {1, . . . , ℓ} and some i ∈ {1, . . . , n} such that si ∈ C.
However, if si ∈ C, then si ∈ Fj for every j ∈ {1, . . . , ℓ} since ⋂

Fj = C
by definition of FC . Following the definition of g, this implies that xj,i = 1
for every j ∈ {1, . . . , ℓ}. Since we are considering an arbitrary index i, this
is true for every i ∈ {1, . . . , n}. Finally, a clause of the last type (Equation
(6.7)), adjusted to φC-MASS, is false if and only if there exists i ∈ {1, . . . , n}
such that si ̸∈ C and xj,i = 1 for every j ∈ {1, . . . , ℓ}. Since ⋂

Fj = C, if
si ̸∈ C then there is a j ∈ {1, . . . , ℓ} such that si ̸∈ Fj. So xj,i = 0 according
to the definition of g. Therefore, for every i ∈ {1, . . . , n} such that si ̸∈ C

there exists at least one j ∈ {1, . . . , ℓ} such that xj,i = 0, and g
(
(F1, . . . , Fℓ)

)
satisfies the clause. In summary, g

(
(F1, . . . , Fℓ)

)
is a truth assignment that

satisfies φC-MASS for every (F1, . . . , Fℓ) ∈ FC .

Now, let us prove that the function g is bijective. Let us assume that there
are two ℓ-tuples (F1, . . . , Fℓ) and (G1, . . . , Gℓ) such that g

(
(F1, . . . , Fℓ)

)
=

g
(
(G1, . . . , Gℓ)

)
. Fixing j ∈ {1, . . . , ℓ}, if yj = 0 then Fj = Gj = S. Other-

wise, Fj = Gj = Aj since mj has a unique proper focal element. Therefore,
(F1, . . . , Fℓ) = (G1, . . . , Gℓ) and g is an injective function. To show that g is
surjective, let us consider α to be a truth assignment for φC-MASS such that
α ∈ AC . Let us define an ℓ-tuple (F1, . . . , Fℓ) such that Fj = Aj if α(yj) = 1
and Fj = S otherwise. Then, (F1, . . . , Fℓ) ∈ FC and g

(
F1, . . . , Fℓ)

)
= α as

we will prove next. To see that (F1, . . . , Fℓ) ∈ FC it is enough to notice that
given si ∈ ⋂

Fj, if si ̸∈ C then there exists a j such that xj,i = 0, what leads to
contradiction with clauses (6.4) or (6.5). So ⋂

Fj ⊆ C. In addition, if si ∈ C,
then for definition of Fj, mj, and clauses (6.4) and (6.6), si ∈ Fj for every
j ∈ {1, . . . , ℓ}. Therefore, C = ⋂

Fj and (F1, . . . , Fℓ) ∈ FC . By definition of
g, g

(
F1, . . . , Fℓ)

)
is exactly α.

The previous paragraphs show that the function g is well-defined and bijective,
demonstrating that there exists a one-to-one correspondence between the col-
lections of focal elements whose intersection is C and the collections of truth
assignments that satisfy φC-MASS.
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Proposition 6.2 Assuming Premise 6.1, let us consider:

• FC to be the collection of ℓ-tuples (F1, . . . , Fℓ) such that Fj is a focal element
of mj for every j ∈ {1, . . . , ℓ} and ⋂

Fj ⊆ C;

• φC-BEL to be the formula φ when zi is substituted by ⊥ if si ̸∈ C for every
i ∈ {1, . . . , n};

• AC to be the collection of truth assignments that satisfy φC-BEL.

Then, there is a one-to-one correspondence between FC and AC.

Proof.

Let us define a function g : FC → AC such that g
(
(F1, . . . , Fℓ)

)
=

α : Var(φC-BEL) → {0, 1} and


α(zi) = 1 if and only if si ∈ ⋂

Fj,

α(yj) = 1 if and only if Fj ̸= S,

α(xj,i) = 1 if and only if si ∈ Fj.

As before, we denote α(x) = 1 as x = 1 when g
(
(F1, . . . , Fℓ)

)
is fixed.

Note that FC is now larger than in Proposition 6.1 because each (F1, . . . , Fℓ) ∈
FC is required to be a subset of C, rather than equal to it. Similarly, the
current set AC contains the set of truth assignments from Proposition 6.1.
Now, we only fix the variables zi linked to si ̸∈ C, whereas previously, we fixed
all the variables zi. This also explains why we define the image of variables zi
when defining g.

To prove that g gives a truth assignment in this case, we can follow the same
reasoning that in the proof of Proposition 6.1 except for the clauses of the third
(Equation (6.6)) and the forth (Equation (6.7)) type. The former clauses are
false when for some i ∈ {1, . . . , n}, zi = 1 and there exists j ∈ {1, . . . , ℓ}
such that xj,i = 0. However, if zi = 1 then si ∈ ⋂

Fj. So si ∈ Fj for every
Fj ∈ (F1, . . . , Fℓ) and xj,i = 1 for every j ∈ {1, . . . , ℓ}. The later clauses,
adjusted to φC-BEL, are false when for some i ∈ {1, . . . , n}, zi = 0 and xj,i = 1
for every j ∈ {1, . . . , ℓ} or when si ̸∈ C and xj,i = 1 for every j ∈ {1, . . . , ℓ}. If
zi = 0, then si ̸∈ ⋂

Fj. Therefore, there exist j ∈ {1, . . . , ℓ} such that si ̸∈ Fj.
By definition of g, xj,i = 0 for those indices. If si ̸∈ C and xj,i = 1 for every
j, then si ∈ Fj for every j by definition of g. Hence si ∈ ⋂

Fj, but ⋂
Fj ⊆ C,

which leads to a contradiction. In conclusion, the image of (F1, . . . , Fℓ) under
g makes the last type of clauses true, and consequently φC-BEL as well.
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A similar reasoning as in the proof of Proposition 6.1 shows that this g is bi-
jective. Therefore, we conclude that there exists a one-to-one correspondence
between the collections of focal elements whose intersection is contained in C
and the collections of truth assignments that satisfy φC-BEL.

Proposition 6.3 Assuming Premise 6.1, let us consider:

• FC to be the collection of ℓ-tuples (F1, . . . , Fℓ) such that Fj is a focal element
of mj for every j ∈ {1, . . . , ℓ} and C ⊆ ⋂

Fj;

• φC-COM to be the formula φ when zi is substituted by ⊤ if si ∈ C for every
i ∈ {1, . . . , n};

• AC to be the collection of truth assignments that satisfy φC-COM.

Then, there is a one-to-one correspondence between FC and AC.

Proof.

This proof follows from proposing the same function g as a bijection between
FC and AC as in Proposition 6.2. The difference between φC-BEL and φC-COM
lies in the substitution of zi by ⊥ when si ̸∈ C in the former, whereas we
substitute zi by ⊤ when si ∈ C in the later. Therefore, to prove that g gives a
truth assignment in this case, we only need to check the clauses of types three
(Equation (6.6)) and four (Equation (6.7)).

A clause of type three, adjusted to φC-COM, is false if and only if zi = 1 and
there exists a j ∈ {1, . . . , ℓ} such that xj,i = 0, or if si ∈ C and there exists
a j ∈ {1, . . . , ℓ} such that xj,i = 0. If zi = 1, then si ∈ ⋂

Fj, so si ∈ Fj
for every j and xj,i = 1 by the definition of g. If si ∈ C and xj,i = 0,
then si ̸∈ ⋂

Fj. However, C ⊆ ⋂
Fj and si ∈ C, leading to a contradiction.

Following a similar reasoning, clauses of type four are false if and only if zi = 0
and xj,i = 1 for every j ∈ {1, . . . , ℓ}, but the definition of g implies that if
zi = 0, then si ̸∈ ⋂

Fj, so there exists at least one Fj such that si ̸∈ Fj and
xj,i = 0.

Once again, the proof for the bijection in Proposition 6.1 can be applied to this
case. We conclude that there exists a one-to-one correspondence between the
collections of focal elements whose intersection contains C and the collections
of truth assignments that satisfy φC-COM.

Theorem 6.1 Assuming Premise 6.1, ⊞j∈{1,...,ℓ} mj(C), bel⊞(C) and com⊞(C)
can be computed by weighted model counting.
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Proof.

Let us start by proving the result for ⊞j∈{1,...,ℓ} mj(C). Considering the weight
function w defined in Equation (6.8), the propositional formula φC-MASS de-
fined as in Proposition 6.1 and X the set of propositional variables in φC-MASS,
the weighted counting model (Equation (6.3)) establishes that

WMC(φC-MASS, w) =
∑

α:X→{0,1}
α|=φC-MASS

∏
ℓ∈Lit(X)
α(l)=1

w(ℓ).

For definition of our particular weight function, this translates into

WMC(φC-MASS, w) =
∑

α:X→{0,1}
α|=φC-MASS

( ∏
j∈{1,...,ℓ}
α(yj)=1

mj(Aj)
∏

j∈{1,...,ℓ}
α(¬yj)=1

(1 −mj(yj))
)
.

In Proposition 6.1 it was proved that every truth assignment α for φC-MASS
that makes it true is uniquely mapped to a tuple (F1, . . . , Fℓ) such that each
Fj is a focal element of mj with j ∈ {1, . . . , ℓ} and ⋂

Fj = C. Function g
defined in the proof of that proposition describes the relation between the
images by α and the elements of the ℓ-tuple. Attending to this, the previous
formula can be written as

WMC(φC-MASS, w) =
∑

(F1,...,Fℓ)s.t.⋂
Fj=C

( ∏
j∈{1,...,ℓ}
Fj=Aj

mj(Aj)
∏

j∈{1,...,ℓ}
Fj=S

(1 −mj(Aj))
)
.

Since every mj has a single proper focal element, (1 − mj(Aj)) = mj(S), so
we conclude

WMC(φC-MASS, w) =
∑

(F1,...,Fℓ)s.t.⋂
Fj=C

∏
mj(Fj).

That is, WMC(φC-MASS, w) = ⊞j∈{1,...,ℓ} mj(C) for every C ⊆ S.

With a similar reasoning we conclude that WMC(φC-COM, w) = com⊞(C) for
every C ⊆ S.

For belief, following a similar reasoning we conclude that
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WMC(φS-BEL, w) = bel⊞(S) = 1,

WMC(φ∅-BEL, w) =
(
m1 ⊞ · · · ⊞mℓ

)
(∅),

and for C ⊂ S—strictly contained—,

WMC(φC-BEL, w) = bel⊞(C) +
(
m1 ⊞ · · · ⊞mℓ

)
(∅).

Therefore, for C ⊂ S, WMC(φC-BEL, w) −WMC(φ∅-BEL, w) = bel⊞(C).

Example 6.1 (Part 2) Weighted Model Counting for Evidence

In the previous example we set S = {a, b, c} and m1 and m2:

m1(A) =


0.7 if A = {a, b},
0.3 if A = S,

0 otherwise.

m2(B) =


0.45 if B = {b, c},
0.55 if B = S,

0 otherwise.

We saw that V = {y1, y2, z1, z2, z3, x1,1, x1,2, x1,3, x2,1, x2,2, x2,3}, where y1 and
y2 correspond to m1 and m2 respectively, and z1, z2 and z3 corresponds to a,
b, c respectively as well.

Fixing C = {b}, φS-MASS is:

(y1 → x1,1 ∧ x1,2 ∧ ¬x1,3) ∧ (¬y1 → x1,1 ∧ x1,2 ∧ x1,3)
∧ (y2 → ¬x2,1 ∧ x2,2 ∧ x2,3) ∧ (¬y2 → x2,1 ∧ x2,2 ∧ x2,3)
∧ (¬x1,1 ∨ ¬x2,1) ∧ (x1,2 ∧ x2,2) ∧ (¬x1,3 ∨ ¬x2,3)

There exists only one truth assignment that satisfies this formula,
α : Var(φS-MASS) → {0, 1} such that α(x) = 1 if and only if x ∈
{y1, y2, x1,1, x1,2, x2,2, x2,3}. Therefore,

WMC(φC-MASS, w) = m1({a, b}) ·m2({b, c}) = (m1 ⊞m2)(C).



6.2. Combining Uncertain Evidence with Weighted Model Counting 121

Fixing C = {a, b}, φS-BEL is:

(y1 → x1,1 ∧ x1,2 ∧ ¬x1,3) ∧ (¬y1 → x1,1 ∧ x1,2 ∧ x1,3)
∧ (y2 → ¬x2,1 ∧ x2,2 ∧ x2,3) ∧ (¬y2 → x2,1 ∧ x2,2 ∧ x2,3)
∧ (z1 → x1,1 ∧ x2,1) ∧ (¬z1 → ¬x1,1 ∨ ¬x2,1)
∧ (z2 → x1,2 ∧ x2,2) ∧ (¬z2 → ¬x1,2 ∨ ¬x2,2)
∧ (¬x1,3 ∨ ¬x2,3)

There exists two truth assignments that satisfies this formula, α1 :
Var(φS-BEL) → {0, 1} such that α1(x) = 1 if and only if x ∈
{y1, z1, z2, x1,1, x1,2, x2,1x2,2, x2,3}; and α2 : Var(φS-BEL) → {0, 1} such that
α1(x) = 1 if and only if x ∈ {y1, y2, z2, x1,1, x1,2, x2,2, x2,3}. Therefore,

WMC(φC-BEL, w) = m1({a, b}) ·m2(S) +m1({a, b}) ·m2({b, c}) = bel⊞(C).

Finally, fixing C = {a}, φS-COM is:

(y1 → x1,1 ∧ x1,2 ∧ ¬x1,3) ∧ (¬y1 → x1,1 ∧ x1,2 ∧ x1,3)
∧ (y2 → ¬x2,1 ∧ x2,2 ∧ x2,3) ∧ (¬y2 → x2,1 ∧ x2,2 ∧ x2,3)
∧ (x1,1 ∧ x2,1)
∧ (z2 → x1,2 ∧ x2,2) ∧ (¬z2 → ¬x1,2 ∨ ¬x2,2)
∧ (z3 → x1,3 ∧ x2,3) ∧ (¬z3 → ¬x1,3 ∨ ¬x2,3)

There exists two truth assignments that satisfies this formula, α1 :
Var(φS-COM) → {0, 1} such that α1(x) = 1 if and only if x ∈
{y1, z1, z2, x1,1, x1,2, x2,1x2,2, x2,3}; and α2 : Var(φS-COM) → {0, 1} such that
α1(x) = 1 if and only if x ∈ {z1, z2, z3, x1,1, x1,2, x1,3, x2,1, x2,2, x2,3}. Therefore,

WMC(φC-COM, w) = m1({a, b}) ·m2(S) +m1(S) ·m2({b, c}) = com⊞(C).

Corollary 6.1 Assuming Premise 6.1, ⊕j∈{1,...,ℓ} mj(C), bel⊕(C) and com⊕(C)
can be computed by weighted model counting.

Proof.

It is enough to notice that

(m1 ⊕m2)(A) =

0 if A = ∅,
(m1⊞m2)(A)

1−(m1⊞m2)(∅) otherwise
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and take into account Definition 2.6 to conclude that the result follows from
Theorem 6.1. In particular, for C ̸= S, bel⊕(C) = (1 − (m1 ⊞ m2)(∅))−1 ·
bel⊞(C) and, for C ̸= ∅, com⊕(C) = (1 − (m1 ⊞m2)(∅))−1 · com⊞(C).

6.3 Applying Knowledge Compilation
In the previous section, we have shown how merging evidence, and answering
queries about the belief function based on the combined evidence, can be carried
out by performing weighted model counting on a given propositional formula,
with weights that reflect the uncertainty of the evidence. In this section, we will
show how the framework of knowledge compilation can be employed to manage
the computational cost of (the repeated use of) weighted model counting for arbi-
trary formulas. In particular, we will indicate what target knowledge compilation
languages can be used, and under what conditions using knowledge compilation
could be a promising approach.

The main reasons for why the method of knowledge compilation makes sense are
captured in the following observations.

Observation 6.1 The construction of the propositional formula φ in Section 6.2
depends only on the focal elements of the mass functions m1, . . . ,mℓ, and not on
the mass values.

Observation 6.2 The propositional formula φ defined in Section 6.2 can be used
to efficiently compute combined mass, belief and commonality numbers for given
evidence pieces, assuming that the operations of conditioning and weighted model
counting can be done efficiently.

In Section 6.2, we proved that by substituting certain variables in φ with the
propositional constants tautology and contradiction, we can efficiently compute
the combined mass. This process is equivalent to conditioning φ on α, where
α(x) = 1 for variables substituted by tautology and α(x) = 0 for variables sub-
stituted by contradiction.

Another important observation that helps outline in what scenarios we can sen-
sibly use the method of knowledge compilation is the following.

Observation 6.3 The method outlined in Section 6.2 also works for mass func-
tions mj where the focal element Aj gets assigned zero mass—i.e., mj(Aj) = 0
and mj(S) = 1. Technically, in this case Aj would not be a focal element, but by
a slight abuse of terminology we say that in this case we can still associate mj

with the focal element Aj.

Putting together these observations, we can phrase the general method of using
knowledge compilation for combining uncertain evidence as follows.
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Approach 6.1 Let L be a (complete) representation language for Boolean func-
tions that has the properties that (1) conditioning can be computed in polynomial-
time for L and (2) weighted model counting for statements L ∈ L can be computed
in polynomial time.

Take a situation where we do not (yet) have concrete pieces of evidence, but where
we know the set S = {s1, . . . , sn} of possible states and where we know a set of
focal elements A1, . . . , Aℓ such that all evidence pieces have one such Aj as focal
element.

Then we can construct the formula φ as described in Section 6.2 for the focal
elements A1, . . . , Aℓ, and compile φ into a statement L ∈ L. This compilation is
a one-time, (potentially) computationally expensive operation. After compilation,
we can use L to combine any set of uncertain evidence pieces over focal elements
included in A1, . . . , Aℓ in polynomial time and query the mass, belief and com-
monality numbers (of the combined evidence) for arbitrary propositions P ⊆ S in
polynomial time. Here polynomial time is measured in the size of L and the size
of the representation of the evidence pieces.

One representation language L that satisfies the required properties is that of
Boolean DNNF circuits. In fact, there are off-the-shelf compilation algorithms
available to compile (arbitrary) propositional formulas into DNNF circuits.

Approach 6.1 has various strengths, but also several limitations. We will briefly
reflect on both the advantages and disadvantages of the approach.

The most prominent advantage of the approach is that once we have performed
the compilation phase—after having decided on the set S of states and the (pos-
sible) focal elements A1, . . . , Aℓ—all further operations and queries can be done
efficiently. For example, we can add evidence (any set among A1, . . . , Aℓ) or
change the weight of previous evidence, and (re-)compute the combined mass,
belief or commonality functions efficiently.

In other words, it works very well in circumstances where the set of possible
evidence pieces is known beforehand, and where the actual evidence changes
frequently. Think, for example, of a setting where there is a fixed set of sensors—
each able to provide uncertain evidence for a fixed focal element—and where over
time the values that these sensors provide change.

In particular, we can change previously used weights to zero, which efficiently
allows us to forget previously considered evidence. This can be very beneficial in
settings where the degree of conflict between evidence pieces gets very high, and
where one wants to decrease this degree of conflict by disregarding some previously
obtained pieces of evidence. Our approach allows for efficiently finding out which
previously considered evidence leads to a maximum decrease in degree of conflict
when forgotten.
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Another advantage of our approach is that it is independent of the exact choice
of target compilation language. It works with any compilation language that
supports conditioning and weighted model counting in polynomial time. This
choice in compilation language allows one to experiment with which one is the
most effective for any given set of (possible) focal elements that are relevant in a
particular application. Moreover, the bulk of the computational difficulty is dealt
with by the compilation algorithms. By using off-the-shelf, optimized compila-
tion algorithms, we can use their efficiency and engineering without reinventing
the wheel. In fact, our approach will benefit from future improvements in compi-
lation algorithms, so our approach will perform better as research on knowledge
compilation advances.

Our approach also has some limitations. Firstly, and most prominently, there is
no guarantee on the running time of the compilation phase—and on the size of
the result of the compilation. This means that compilation could take exponential
time, and that the result is of exponential size. This would constitute a significant
obstacle towards practical feasibility. To put this in perspective, such hurdles are
unavoidable (under widely believed complexity-theoretic assumptions), because
the problem of computing belief according to the assumed rules of combination
is computationally intractable—for the normalized rule, this is a #P-complete
problem (Theorem 5.1).

Another important limitation is that in order for our approach to work, one has to
decide on the (possible) focal elements A1, . . . , Aℓ beforehand, before one carries
out the compilation phase. This means that in settings where it is unclear before-
hand what types of evidence will become available later in time, our approach is
not well-suited.

Lastly, our approach only works for mass functions with a single proper focal
element. In principle, our approach can be adapted to non-simple support func-
tions as well, but this would require additional research, and it might provide an
additional burden on the compilation algorithms.

6.4 Hierarchical Evidence: An Efficient Case
We have shown that computing the normalized and unnormalized rules of com-
bination is compilable to P , meaning that they can be computed in two steps: a
generic off-line phase that requires exponential time, and a specific on-line phase
that requires polynomial time. In particular, we can construct a DNNF circuit in
exponential time based on certain potential focal elements. Subsequently, we can
efficiently solve queries, such as bel⊕(C), in polynomial time for specific uncertain
evidence.
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When the type of evidence that will be collected is known from the design phase,
this approach has an advantage over computing bel⊕(C) using equations (6.1) or
(6.2), as these computations would require exponential time for each query. How-
ever, there are specific algorithms to compute these combination rules when the
evidence satisfies some specific constraints (Barnett, 1981; Bergsten and Schubert,
1993; Shafer and Logan, 2008; Shafer et al., 1987). In Chapter 5 we explored the
case for hierarchical evidence (Shafer and Logan, 2008). Now, we show that Ap-
proach 6.1 can be also implemented in polynomial time for this specific structure
of evidence.

To prove it, we will first define a linear order < among all the focal elements
introduced in the input. This order will allow us to define an order among the
propositional variables V introduced in Section 6.2, and build an ordered binary
decision diagram (OBDD<)—which is a specific type of DNNF circuit. Next,
we will propose an OBDD< sentence equivalent to the propositional formula φ
defined in Section 6.2. Finally, we will show that building this diagram requires a
polynomial number of steps. This confirms that translating φ into such OBDD<

sentences and applying weighted model counting efficiently solves the problem of
merging evidence using the normalized and unnormalized rules of combination.

Premise 6.2 Let S = {s1, . . . , sn} be a set of possible states, m1, . . . ,mℓ be a
collection of mass functions with a single proper focal element Aj ⊂ S for every
j ∈ {1, . . . , ℓ}, and F be the set of the proper focal elements of the previous mass
functions. Let us assume that the set F ∪ {S} is a hierarchy. That is, for all Fj
and Fk in F ∪ {S} it holds that: if Fj ∩ Fk ̸= ∅, then Fj ⊆ Fk or Fk ⊆ Fj.

Example 6.2 (Part 1) Hierarchy of Focal Elements

Let S = {a, b, c, d} be a set of possible states and m1, m2, m3 and m4 be four
mass functions such that

m1({a}) = 0.6 m1(S) = 0.4
m2({c}) = 0.4 m2(S) = 0.6
m3({a, b}) = 0.8 m3(S) = 0.2
m4({a, b, c}) = 0.5 m4(S) = 0.5

Then, the set F =
{
{a}, {c}, {a, b}, {a, b, c}

}
∪ {S} is a hierarchy.
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S

{a, b, c}

{a, b}

{a}

{c}

Figure 6.1: Hierarchy example.

As we mentioned previously, we will start by defining which kind of order among
the proper focal elements of F we need.

Definition 6.1 (Valid Order (F , <)). Assuming Premise 6.2, an order < is valid
over the set F ∪ {S} if and only if, for every j, k ∈ {1, . . . , ℓ}, Fj ⊂ Fk implies
Fj < Fk.

Example 6.2 (Part 2) Valid Order among Focal Elements

Following the previous example, if we rename the elements of F as A1 = {a},
A2 = {a, b}, A3 = {c} and A4 = {a, b, c}, and we order them according to
their index as in Equation (6.9), then (F , <) is a valid order.

{a} < {a, b} < {c} < {a, b, c} (6.9)

However, if we rename the elements of F as A1 = {a}, A2 = {a, b}, A3 =
{a, b, c} and A4 = {c} instead, (F , <′) is not a valid order as we can see in
Equation (6.10).

{a} <′ {a, b} <′ {a, b, c} <′ {c} (6.10)
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S

A4

A2

A1

A3

Figure 6.2: Hierarchy of focal
elements in a valid order cor-
responding to Equation (6.9). We
can see that the index of a child is
always lower than the index of its
parent.

S

A3

A2

A1

A4

Figure 6.3: Hierarchy of focal ele-
ments in an invalid order corre-
sponding to Equation (6.10). We
can see that the index of A4 is
greater than the index of its par-
ent.

Our goal is to create an OBDD< sentence that is equivalent to the proposi-
tional formula φ defined in Section 6.2. A sentence of the compilation language
OBDD< is an ordered binary decision diagram. A binary decision diagram is
a directed, acyclic graph with a single root node (i.e., with no incoming edges),
where (i) each leaf node is labelled with 1 or 0, (ii) each non-leaf node is la-
belled with a propositional variable, and (iii) each non-leaf node has exactly two
outgoing edges (one corresponding to 0 and one corresponding to 1). (Such a di-
agram can be interpreted as a representation of a Boolean function in the natural
way, i.e., for each truth assignment, following the corresponding path through the
graph, leading to the outcome of the function.) A binary decision diagram is said
to be ordered if the propositional variables are ordered such that for every par-
ent node, its child nodes have variables that are smaller than the variable at the
parent node according to a predefined ordering. This compilation language can
be seen as a proper subset of DNNF (Darwiche and Marquis, 2002), so weighted
model counting can be efficiently applied to its sentences (Kimmig et al., 2017).

To achieve our goal, we define an order over the set of variables of φ, V , based on
the previous notion of a valid order. This will enable us to construct the desired
OBDD<.

Definition 6.2 ((V , <)). Assuming Premise 6.2, let V = {yj|j ∈ {1, . . . , ℓ}} ∪
{zi|i ∈ {1, . . . , n}} ∪ {xj,i|j ∈ {1, . . . , ℓ}, i ∈ {1, . . . , n}} be a set of propositional
variables and < a linear order on V such that:
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1. (F , <) is a valid order, that is, < orders the indexes in {1, . . . , j, . . . , ℓ}
forming a valid order according to Definition 6.1.

2. Fixing j ∈ {1, . . . , ℓ}, < orders the propositional variables in {xj,i|j ∈
{1, . . . , ℓ}, i ∈ {1, . . . , n}} satisfying si < si′ for every si ∈ Aj and every
si′ ̸∈ Aj.

3. The order among propositional variables in {zi|i ∈ {1, . . . , n}} is arbitrary
but fixed.

4. For every j ∈ {1, . . . , ℓ} and every i ∈ {1, . . . , n}, yj < zi and xj,i < zi.

5. For every j, j′ ∈ {1, . . . , ℓ} and every i ∈ {1, . . . , n}, if j < j′ then yj < yj′

and xj,i < yj′ .

By taking σj : S → S to be a permutation on the elements of S for each j ∈
{1, . . . , ℓ+ 1}, the previous order would look like this:

y1 < x1,σ1(1) < · · · < x1,σ1(∗1) < · · · < x1,σ1(n) <

y2 < x2,σ2(1) < · · · < x2,σ2(∗2) < · · · < x2,σ2(n) <

. . .

yj < xj,σj(1) < · · · < xj,σj(∗j) < · · · < xj,σj(n) <

. . .

yℓ < xℓ,σℓ(1) < · · · < xℓ,σℓ(∗ℓ) < · · · < xℓ,σℓ(n) <

zσℓ+1(1) < · · · < zσℓ+1(i) < · · · < zσℓ+1(n)

where for each j ∈ {1, . . . , ℓ}, ∗j represents the last element s ∈ S such that
s ∈ Aj according to the linear order <, i.e., if xj,i < xj,∗j

< xj,i′ then si, s∗j
∈ Aj

but si′ ̸∈ Aj. By abuse of notation, we will avoid the sub-index of ∗j wherever j
is clear by context. We will do so with the sub-index of σj.

Example 6.2 (Part 3) (V,<)

Considering (F , <) from the previous example and renaming the possible
states as s1 = a, s2 = b, s3 = c and s4 = d, the ordered set (V , <) looks
like this:

y1 < x1,1 < x1,2 < x1,3 < x1,4 <

y2 < x2,1 < x2,2 < x2,3 < x2,4 <

y3 < x3,3 < x3,1 < x3,2 < x3,4 <

y4 < x4,1 < x4,2 < x4,3 < x4,4 <

z1 < z2 < z3 < z4
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Now, we are ready to define our proposal of the OBDD< sentence equivalent
to φ. To do this, we will start by defining a collection of partial branches and
sub-diagrams of ordered binary decision diagrams that will be used to build our
OBDD< sentence. For clarity, we will define these partial branches and sub-
diagrams using visuals.

Definition 6.3 (Partial branches and sub-diagrams of OBDD<). Given (V , <)
as in Definition 6.2, we define:

• The sub-diagram Z, where zσℓ+1(i) ∈ S is true if and only if, for all j ∈
{1, . . . , ℓ}, xj,σℓ+1(i) is true in the branch from node y1 to node Z (y1 →∗ Z):

zσℓ+1(1)

0

0
zσℓ+1(∗)

0

0
zσℓ+1(n)

01
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• The partial branch Xtrue
j,i . Note that sσj(n) is never in Aj, for every j < ℓ+1:

xj,σj(1)

0

0
xj,σj(∗)

0

0
xj,σj(n)

0

• The partial branch X false
j,i . Note that false arrows lead to 0 for every xj,σj(i)

in this case:

xj,σj(1)

0

0
xj,σj(∗)

0

0
xj,σj(n)

0
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• The sub-diagram Dj,0 for 1 ≤ j < ℓ following (V , <) order:

yj

Xtrue
j,i X false

j,i

Dj+1,j 0 Dj+1,0

• The sub-diagram Dj,k for 1 ≤ j < ℓ, 1 ≤ k ≤ ℓ following (V , <) order, and
Ak ⊆ Aj:

yj

Xtrue
j,i X false

j,i

Dj+1,k 0 Dj+1,k

• The sub-diagram Dj,k for 1 ≤ j < ℓ, 1 ≤ k ≤ ℓ following (V , <) order, and
Aj ∩ Ak = ∅. Note that in this case, Z ends on 1 if and only if zi is false
for every i ∈ {1, . . . , n}. This is because the k index is updated after Dk,0
when yk is true, therefore, at this point of the diagram both yj and yk are
true and Aj ∩ Ak = ∅:

yj

Xtrue
j,i X false

j,i

Z 0 Dj+1,k

• The sub-diagram Dℓ+1,k: sub-diagram Z.

• The sub-diagram Dℓ+1,0: sub-diagram Z.

Definition 6.4 (OBDD< sentence). Assuming Premise 6.2, when applying Def-
inition 6.3 starting by D1,0, we obtain the OBDD< sentence that we claim is
equivalent to φ.
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Before proving this statement, let us see how the OBDD< sentence for our run-
ning example would look like.

Example 6.2 (Part 4) OBDD< sentence

In Figure 6.4, we find the partial branches and sub-diagrams corresponding to
the running example. For clarification, we specify indexes i ∈ {1, . . . , n} with
the corresponding element sσj(i), i.e, a, b, c or d, instead of the corresponding
natural numbers. The OBDD< sentence of this example represented in terms
of sub-diagrams is displayed in figures 6.5 and 6.6.

za

0zb

0zc

0zd

01

(a) Z for branch
D1,0 → D2,1 99K
D3,1 → Z.

x1,a

0x1,b

0x1,c

0x1,d

0

(b) Xtrue
1,i

x1,a

0 x1,b

0 x1,c

0 x1,d

0

(c) X false
1,i

x2,a

0x2,b

0x2,c

0x2,d

0

(d) Xtrue
2,i

x2,a

0 x2,b

0 x2,c

0 x2,d

0

(e) X false
2,i

x3,c

0x3,a

0x3,b

0x3,d

0

(f) Xtrue
3,i
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x3,c

0 x3,a

0 x3,b

0 x3,d

0

(g) X false
3,i

x2,a

0x2,b

0x2,c

0x2,d

0

(h) Xtrue
4,i

x4,a

0 x4,b

0 x4,c

0 x4,d

0

(i) X false
4,i

Figure 6.4: Partial branches and sub-diagrams of the OBDD< sentence of the
running example.

D1,0

D2,1 D2,0

D3,1 D3,2 D3,0

Z D4,1 Z D4,2 D4,3 D4,0

D5,1

Z

D5,2

Z

D5,3

Z

D5,4

Z

D5,0

Z

Figure 6.5: Partial branches of the OBDD< sentence of the running example.
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y1

x1,a

x1,b

x1,c

x1,d

x1,a

x1,b

x1,c

x1,d

y2

x2,a

x2,b

x2,c

x2,d

x2,a

x2,b

x2,c

x2,d

y2

x2,a

x2,b

x2,c

x2,d

x2,a

x2,b

x2,c

x2,d

y3

x3,c

x3,a

x3,b

x3,d

x3,c

x3,a

x3,b

x3,d

y3

x3,c

x3,a

x3,b

x3,d

x3,c

x3,a

x3,b

x3,d

y3

x3,c

x3,a

x3,b

x3,d

x3,c

x3,a

x3,b

x3,d

y3

x3,c

x3,a

x3,b

x3,d

x3,c

x3,a

x3,b

x3,d

za

zb

zc

zd

1

y4

x4,a

x4,b

x4,c

x4,d

za

zb

zc

zd

1

x4,a

x4,b

x4,c

x4,d

za

zb

zc

zd

1

za

zb

zc

zd

1

y4

x4,a

x4,b

x4,c

x4,d

za

zb

zc

zd

1

x4,a

x4,b

x4,c

x4,d

za

zb

zc

zd

1

y4

x4,a

x4,b

x4,c

x4,d

za

zb

zc

zd

1

x4,a

x4,b

x4,c

x4,d

za

zb

zc

zd

1

y4

x4,a

x4,b

x4,c

x4,d

za

zb

zc

zd

1

x4,a

x4,b

x4,c

x4,d

za

zb

zc

zd

1

y4

x4,a

x4,b

x4,c

x4,d

za

zb

zc

zd

1

x4,a

x4,b

x4,c

x4,d

za

zb

zc

zd

1

y4

x4,a

x4,b

x4,c

x4,d

za

zb

zc

zd

1

x4,a

x4,b

x4,c

x4,d

za

zb

zc

zd

1

Figure 6.6: OBDD< sentence of the running example. Missing arrows lead
to 0 .
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Proposition 6.4 Assuming Premise 6.2, the OBDD< sentence defined above is
equivalent to φ.

Proof.

Note that given the set F , φ and our OBDD< sentence share the same propo-
sitional variables. Now, let us see that given a truth assignment α for our
OBDD< sentence, α satisfies φ too. According to the definition of the sub-
diagram Z (see Definition 6.3), α makes zi true if and only if such truth
assignment makes xi,j true for every j ∈ {1, . . . , ℓ} that has been seen before
in the branch. There are two possible situations. Either Z occurs after seeing
all yj, or Z occurs within a Dj,k where Aj ∩ Ak = ∅. The former, ensures
by definition that clauses 6.6 and 6.7 of φ are satisfied. The later, implies
that both yj and yk are true in the branch, by definition of the corresponding
sub-diagram. Since Aj and Ak do not share elements, there is at least one xj,i
that is false in the branch, and therefore every zi is false in it. This ensures
that clauses 6.6 and 6.7 of φ are satisfied in this case as well. The definition
of Xtrue

j,i and X false
j,i (see Definition 6.3) make α to satisfy clauses 6.4 and 6.5

of φ, hence α is a truth assignment for φ.

To prove the opposite direction, we need to show that given a truth assignment
α of φ, there exists a branch y1 →∗ Z that gives the same truth values to
the propositional variables as α. Since every variable yj is connected to the
variable yj+1, either if the former is true or false, we can build a branch
following the truth values assigned by α. This branch will end in Z, and
therefore in 1, since the only way to finish in 0 is contradicting α for some of
the variables xj,i or zi.

Corollary 6.2 Assuming Premise 6.2 and C ⊆ S, ⊕j∈{1,...,ℓ} mj(C) and
⊞j∈{1,...,ℓ} mj(C) can be computed in polynomial time.

Proof.

Proposition 6.4 and Approach 6.1 prove that by applying weighted model
counting to the OBDD< sentence defined in this section, we compute
⊕j∈{1,...,ℓ} mj(C) and ⊞j∈{1,...,ℓ} mj(C) in polynomial time. However, we need
to prove that this OBDD< sentence can be built in a polynomial number of
steps in order to claim that we can efficiently compute ⊕j∈{1,...,ℓ} mj(C) and
⊞j∈{1,...,ℓ} mj(C) from the input. Considering n the number of elements of S
and ℓ the number of mass functions described in Premise 6.2, this OBDD<

sentence involves p(ℓ) sub-diagrams Dj,k and each of them contains p(n)
nodes—where p(x) represents a polynomial of variable x. Therefore, the pro-
posed OBDD< sentence can be constructed in a polynomial number of steps.



136 Chapter 6. Knowledge Compilation for Combining Uncertain Evidence

In summary, Approach 6.1 for L = OBDD is an alternative to Shafer and Logan’s
algorithm for implementing the normalized rule of combination on hierarchies.
One difference with respect to their algorithm is that they consider dichotomous
basic belief assignments, whereas our solution is restricted to simple basic belief
assignments. In another respect, this approach extends Shafer and Logan’s al-
gorithm since it is also valid for the unnormalized rule of combination, and the
query bel⊕(·) can be implemented for any P ⊆ S. Shafer and Logan’s algorithm,
in contrast, is defined only for P included in the hierarchy.

6.5 Use Case Scenario: Air Traffic Control
The solution presented in this chapter for combining uncertain evidence by apply-
ing Dempster’s rule of combination, or its unnormalized version, is particularly
relevant when

1. The use case scenario has a design phase and an execution phase—e.g.,
programming a vacuum cleaner robot vs. using a vacuum cleaner robot at
home.

2. The focal elements of the potentially collected basic belief assignments are
known from the design phase—e.g., a vacuum cleaner robot is programmed
to detect walls and obstacles and nothing else.

3. Each piece of evidence is associated with a degree of certainty—e.g., the
vacuum cleaner robot can collect information about ‘there is a wall here’
with 80% certainty, even though it could be a wardrobe or something else.

4. Each source—e.g., sensors, output of deep learning algorithms, human re-
ports, etc.—provides a piece of evidence.

5. The execution phase is performed several independent times—e.g., each
time we use the vacuum cleaner robot.

6. There may be corrections to the original input that require us to forget
some of the collected evidence—e.g., modifying the vacuum cleaner robot’s
room map to forget the evidence ‘there is a carpet’ because there is just a
different type of floor.

Items 3 and 4 refer to modelling the problem with Dempster-Shafer theory and
the constraint of only allowing simple basic belief assignments. Items 1 and 2 are
specific constraints of the approach described in this chapter. Items 5 and 6 are
scenarios that may particularly benefit from the proposed solution.

As the vacuum cleaner robot example suggests, we can find suitable scenarios by
thinking about situations that require merging information from different sensors
(and possibly other sources). For example, let us consider an air traffic situation.
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Imagine a group of air traffic controllers at an international airport monitoring
incoming flights. Suppose the air traffic control support system is equipped with
the DNNF circuit described in this chapter for focal elements determined by the
variables of interest for air traffic controllers. Assume they collect information on

(a) potential landing anomalies due to weather conditions,

(b) potential landing anomalies due to deviation from the optimum glide path,

(c) potential landing anomalies for historical data,

(d) potential landing anomalies for runway condition,

(e) potential landing anomalies for pilot warnings.

Let S = {Severe Weather,Runway Sub-optimal Condition,Fail Flight Control
Sensors, Sub-optimal Pilot Performance} be a set of possible states. We will
summarize it as S = {W,R, F, P} (W for weather, R for runway, F for flight
and P for pilot). The previous information is then translated into the fol-
lowing potential focal elements: Item (a) provides evidence for anomalies for
bad weather conditions and sub-normal runway conditions (since weather condi-
tions affect the state of the runway). We will denote it by {W,R}. Item (b)
provides evidence for anomalies due to an issue in the flight control sensors
or due to the pilot performance. We will denote it as {F, P}. Let us say
that item (c) shows a correlation between landing anomalies with the set
{Runway Sub-optimal Condition,Fail Flight Control Sensors}, which is evidence
for {R,F}. Item (d) refers to evidence coming from runway inspections and we
will formalize it as evidence for {R}. Finally, item (e) refers to evidence coming
from pilot reports and we will formalize it as evidence for {P}.

According to these potential focal elements, the programmers of the air traffic
control support system had to consider the propositional formula

φ = (y(a) → (x(a),W ∧ x(a),R ∧ ¬x(a),F ∧ ¬x(a),P ))
∧ (¬y(a) → (x(a),W ∧ x(a),R ∧ x(a),F ) ∧ x(a),P ))
∧ (y(b) → (x(b),F ∧ x(b),P ∧ ¬x(b),W ∧ ¬x(b),R))
∧ (¬y(b) → (x(b),F ∧ x(b),P ∧ x(b),W ) ∧ x(b),R))
∧ (y(c) → (x(c),R ∧ x(c),F ∧ ¬x(c),W ∧ ¬x(c),P ))
∧ (¬y(c) → (x(c),R ∧ x(c),F ∧ x(c),W ) ∧ x(c),P ))
∧ (y(d) → (x(d),R ∧ ¬x(d),W ∧ ¬x(d),F ∧ ¬x(d),P ))
∧ (¬y(d) → (x(d),R ∧ x(d),R ∧ x(d),W ∧ x(d),F ) ∧ x(d),P ))
∧ (y(e) → (x(e),P ∧ ¬x(e),W ∧ ¬x(e),R) ∧ ¬x(e),F ))
∧ (¬y(e) → (x(e),P ∧ x(e),W ∧ x(e),R)¬x(e),F ))
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∧ (zW → (x(a),W ∧ x(b),W ∧ x(c),W ∧ x(d),W ∧ x(e),W ))
∧ (¬zW → (¬x(a),W ∨ ¬x(b),W ∨ ¬x(c),W ∨ ¬x(d),W ∨ ¬x(d),W ))
∧ (zR → (x(a),R ∧ x(b),R ∧ x(c),R ∧ x(d),R ∧ x(e),R))
∧ (¬zR → (¬x(a),R ∨ ¬x(b),R ∨ ¬x(c),R ∨ ¬x(d),R ∨ ¬x(d),R))
∧ (zF → (x(a),F ∧ x(b),F ∧ x(c),F ∧ x(d),F ∧ x(e),F ))
∧ (¬zF → (¬x(a),F ∨ ¬x(b),F ∨ ¬x(c),F ∨ ¬x(d),F ∨ ¬x(d),F ))
∧ (zP → (x(a),P ∧ x(b),P ∧ x(c),P ∧ x(d),P ∧ x(e),P ))
∧ (¬zP → (¬x(a),P ∨ ¬x(b),P ∨ ¬x(c),P ∨ ¬x(d),P ∨ ¬x(d),P ))

where the variables corresponds to the focal elements determined by items (a),
(b), (c), (d), and (e) and the elements of S = {W,R, F, P}. From this formula,
by using some suitable coding package to translate propositional formulas into a
DNNF circuit, the air traffic control support software would be ready to receive
input for specific cases.

Let us imagine there is a flight scheduled to land during a period of changing
weather conditions, and the air traffic control support system collects the follow-
ing basic belief assignments:

m1(A) =


0.75 if A = {W,R},
0.25 if A = S,

0 otherwise.

m2(B) =


0.6 if B = {F, P},
0.4 if B = S,

0 otherwise.

m2(C) =


0.8 if C = {R,F},
0.2 if C = S,

0 otherwise.
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W R F P

Figure 6.7: Representation of the example’s input by a Venn diagram. The size of
the area represents the degree of certainty of the corresponding piece of evidence.

The corresponding weight function for this input would be:

w(l) =



0.75 if l = y(a),

0.25 if l = ¬y(a),

0.6 if l = y(b),

0.4 if l = ¬y(b),

0.8 if l = y(c),

0.2 if l = ¬y(c),

1 otherwise.

Now, by running weighted model counting on the available DNNF circuit ac-
cording to the previous weights, air traffic controllers can quickly compute the
degree of belief for propositions of interest. For example, they may be interested
in the degree of belief for ‘anomaly due to sub-optimal runway condition’, repre-
sented by the set {R}, to suggest diverting the flight. Or in the combined mass
function of ‘anomaly due to sub-optimal runway condition or failure in the flight
control sensors’, represented by {R,F} to plan an emergency landing. Another
proposition of interest might be ‘anomaly due to sub-optimal runway condition
or sub-optimal pilot performance’, represented by {R,P} to ask the pilot to turn
around and try again. In the current example, these values are bel({R}) = 0.43,
m({R,F}) = 0, 8 and m({R,P}) = 0.43, respectively.

The described example satisfies all the conditions from 1 to 6, which have been
introduced as ideal conditions for using this method. For instance, the same
DNNF circuit can be used for different flights or for the same flight at different
times, since the evidence potentially collected corresponds to the same variables.
Additionally, last minute changes in the evidence can be made. For example,
if the weather service calls to say that the expected storm will be delayed for
an hour, the basic belief assignment m1 with focal element {W,R} must be for-
gotten. There are various approaches to forget evidence in the Dempster-Shafer
context (Kramosil, 1999; Pinto Prieto et al., 2024; Xiaojing et al., 2022), due to
the straightforward approach leading to exponential time computations (Smets,
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1995). In our case, we can do this efficiently by running a query for a new weight
function, in this case

w(l) =



0.6 if l = y(b),

0.4 if l = ¬y(b),

0.8 if l = y(c),

0.2 if l = ¬y(c),

1 otherwise.

This example is inspired by (Garcia et al., 2024), where the authors apply
Dempster-Shafer theory to study real air traffic data. Other areas that could
benefit from this approach for similar reasons as the current example are appli-
cations of the Internet of Things (Hamda et al., 2023) and intrusion detection
systems (Qiu et al., 2022).



Chapter 7

Conclusion

Throughout this dissertation, we have studied the problem of combining evi-
dence that may be partial, mutually contradictory, and with varying degrees of
certainty. During this process, we have defined new mathematical, computational
and conceptual tools that enhance our understanding of the subject. We summa-
rize the highlights of these contributions here, along with a list of future research
directions.

Chapter 2: Background Apart from introducing the required elements of
Dempster-Shafer theory and topological models of evidence to follow this disser-
tation, in this chapter we presented:

1. A theoretical motivation for combining these two frameworks. The key
points are that both frameworks use set representation of evidence; aim
to compute belief based on evidence; and introduce an intermediate step
between the basic evidence and belief, consisting of generating combined
evidence.

2. A discussion on how these two frameworks complement each other. We
highlight that Dempster-Shafer theory includes quantitative elements, such
as the degree of uncertainty associated with the evidence pieces and graded
belief. In contrast, topological models of evidence are purely qualitative.
However, topological models of evidence define more fine-grained epistemic
concepts, such as argument and justification, that may be beneficial for
Dempster-Shafer mathematical methods as well.

3. A common vocabulary that allows us to integrate elements from both frame-
works into one. In particular, we define S as a set of possible states,

141
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EQ = (E1, p1), . . . , (Eℓ, pℓ) as a set of uncertain evidence, where Ej ⊂ S
represents a piece of evidence for every 1 ≤ j ≤ ℓ and pj represents its
degree of certainty.

Although this chapter did not present research results itself, the aforementioned
comparison may serve as a trailhead for other connections between these two
frameworks beyond the ones explored in this work.

Chapter 3: Multi-Layer Belief Model for Combining Uncertain Evi-
dence In this chapter, we developed a new method to compute belief functions
(in the Dempster-Shafer sense) that integrates notions from topological models
of evidence. Our main contributions on this topic were:

1. Defining a belief model that (i) takes inputs also valid for Dempster-Shafer
framework, (ii) generates a belief function in the Dempster-Shafer sense,
and (iii) adds parameters to obtain different evidence combinations without
the need for switching frameworks or interpretations.

2. Splitting the model into quantitative, qualitative, and bridging components,
making their roles explicit. This allows modifications to one layer without
compromising the theoretical foundation of the others.

3. Introducing the notion of evidential demand of the agent. This compo-
nent is represented by the concept of justification, which is inspired by the
homonymous concept from topological models of evidence. This evidential
demand allows distinguishing between the basic evidence accessible to the
agent, the arguments supported by this evidence—similarly to topological
models of evidence—and the arguments considered convincing enough to
generate beliefs of the agent. In our case, we determine justifications by
taking into account consistency requirements.

4. Introducing the notion of evidence allocation functions. This element cap-
tures the agent’s interpretation of having pieces of evidence from different
sources simultaneously. The formal definition of these functions is tied to
consistency.

5. Introducing the minimum dense set function as an alternative to intersection
and union to combine evidence.

6. Showing that, under the restriction of having one piece of evidence per
source, the multi-layer belief model can reproduce Dempster’s rule of com-
bination, the belief operator of topological models of evidence, and the belief
function obtained by the transferable belief model.

7. Proposing two new combination rules. One generated by the multi-layer
belief model with Dempster-Shafer frame of justification and union as evi-
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dence allocation function. Another one generated by the multi-layer belief
model with Dempster-Shafer frame of justification and the minimum dense
set function as evidence allocation function. In terms of interpretation, the
former can be seen as an alternative to the disjunctive rule of combination
(Definition 2.12), and the latter to the unnormalized conjunctive rule of the
transferable belief model (Definition 2.11).

These results extend to various research lines:

a) A natural extension would be to define this model for basic belief assign-
ments with arbitrary numbers of focal elements.

b) Additionally, defining a way to add new pieces of evidence or remove old ones
without rerunning the whole process from scratch would be valuable. If this
is possible, it would be interesting to study the mathematical properties,
such as commutativity, associativity, and the existence of a unique neutral
element, and compare them with those of other combination rules (Sentz
and Ferson, 2002).

c) New frames of justification could be explored. For example, by relaxing the
requirement of denseness, such as allowing an element of the topology to
intersect the basic evidence but not their intersections (and progressively
adding layers of intersections until reaching the strong denseness frame of
justification). Another approach could be to require the elements of the
topology to intersect almost all the elements of the topology, adapting the
term “almost all” as necessary. Alternatively, frames of justification could
be defined according to a different notion rather than consistency, or on top
of consistency, such as requiring large intersections (adapting what “large”
means).

d) The δ function can also be modified to capture other families of combination
rules. For example, those defined by Denœux (2008) for dependent sources.

e) The established link between the multi-layer belief model and topological
models of evidence can also be used to define a quantitative version of
topological models of evidence, by introducing graded belief and graded
certainty.

Chapter 4: A Qualitative Logic for Evidence and Belief Comparison
In this chapter, we proposed a qualitative logic to compare the strength of belief
and evidential support according to evidence certainty. Our main contributions
in this regard are:

1. Defining an order among propositions based on the certainty degree of their
evidential support. This order only considers certainty values; there are no
additional pieces of evidence or set operations such as intersection or union
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involved. This is achieved by defining an order-lifting from the natural order
among the pieces of evidence according to their certainty value.

2. Justifying the suitability of such certainty order among propositions and
connection with Egli-Milner order (Shi et al., 2017) and min-max exten-
sion (Maly, 2020) in the finite case.

3. Proposing a qualitative logic that connects evidence and belief based on
quantitative models. Notice that the graded belief represented in the models
corresponds to the degree of belief obtained by applying a combination
method such as Dempster’s rule of combination.

4. Collecting validities and invalidities of this logic.

5. A comparison with three naturally related logics, defined in (Ghosh and De
Jongh, 2013; Harmanec and Hájek, 1994; Shi et al., 2017). We show that
our logic contains the qualitative belief logic of Harmanec and Hájek (1994),
partially contains the KD45 −O logic of Ghosh and De Jongh (2013), and
is strictly different from the logic for convex order of Shi et al. (2017).

Given the exploratory nature of this chapter, the next steps would serve to further
consolidate the listed results:

a) Finding a complete axiomatization of the defined logic.

b) Establishing stronger connections, if they exist, between evidential and be-
lief operators.

c) Identifying validities that determine the exact parameter setting (selected
frame of justification and evidence allocation function) of the multi-layer
belief model. That is, defining more specific models and understanding the
differences between the respective logics.

d) Introducing some notion of justification in the logic and evaluating how the
logic changes.

Chapter 5: In this chapter, we initiated a systematic computational complexity
analysis for Dempster’s rule of combination and the multi-layer belief model. Our
main contributions are:

1. Finding that restricting the evidence to basic belief assignments with a
single proper focal element still makes the problem of applying Dempster’s
rule of combination #P-complete, even when computing the degree of belief
for a singleton. The only restriction that makes the problem polynomial is
when basic belief assignments have proper focal elements of size smaller
than or equal to c, which is too restrictive in practice.
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2. Proposing three ways for combining arbitrary evidence by using the algo-
rithm defined in (Shafer and Logan, 2008) for efficiently applying Demp-
ster’s rule of combination on hierarchical evidence. The first method in-
volves assessing whether an arbitrary evidence set is hierarchical, which
can be done in polynomial time, and applying Shafer and Logan’s algo-
rithm if it is. The second method covers filtering an arbitrary body of
evidence to obtain the largest hierarchy contained in it, which is a fixed-
parameter tractable problem for a suitable parameter. The third method is
an algorithm that merges arbitrary evidence by using Shafer and Logan’s
algorithm in some key parts and is fixed-parameter tractable.

3. Defining an efficient algorithm to compute the outcome of the belief operator
of topological models of evidence.

4. Showing that applying the multi-layer belief model in its most general
form—i.e., without specific restrictions on frame of justification or evidence
allocation function—is a #P-complete problem. In other words, the expres-
sivity that this method adds for combining evidence, compared to Demp-
ster’s rule of combination, does not increase its computational complexity.

These results could be extended by:

a) Further developing the fixed-parameter alternatives to compute Dempster’s
rule of combination. Our study initiates a promising exploration, yet there
is room to identify better parameters.

b) Implementing the proposed algorithm for the belief operator of topological
models of evidence and studying its performance in applications. Note that
this operator is Boolean and the evidence of the input has all the same
certainty.

c) Analyzing the computational complexity of the multi-layer belief model
in specific cases beyond Dempster’s rule of combination and topological
models of evidence. Exploring fixed-parameter tractable alternatives, as
with Dempster’s rule.

Chapter 6: Knowledge Compilation for Combining Uncertain Evidence
This chapter presented a concrete algorithmic solution to bring Dempster’s rule
of combination to real-life applications without incurring the cost of its intrinsic
computational complexity (in suitable contexts). Our key contributions include:

1. Defining a propositional formula that establishes an equivalence between
Dempster’s rule of combination (and its unnormalized version) for simple
basic belief assignments and weighted model counting.
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2. Identifying compilation languages known for answering weighted model
counting queries in polynomial time, and concluding that Dempster’s rule
of combination (and its unnormalized version) can be computed efficiently
after a suitable compilation to one of these languages.

3. Finding an OBDD< representation that makes the whole process, including
the compilation part, efficient when the evidence has hierarchical structure.

Although the results of this chapter are somewhat conclusive, they could be
extended by applying these techniques in practical situations and comparing their
convenience with respect to other alternatives, both in terms of algorithm and
theoretical framework.

In summary, this research has elucidated to some extent the problem of combining
uncertain evidence, emphasizing both its logical and computational complexity
aspects. With this dissertation, we aim to contribute not only to a better under-
standing of this problem, but also to inspire further research.
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Samenvatting

Deze dissertatie gaat in op de uitdaging van het combineren van onzeker, gedeel-
telijk en mogelijkerwijs onderling tegenstrijdig bewijs, met een focus op logica
en computationele complexiteit. In deze context wordt bewijs gerepresenteerd
door een deelverzameling van een verzameling met mogelijkheden; onzekerheid
door waarden tussen 0 en 1; gedeeltelijkheid door onwetendheid over deelverza-
melingen die niet als bewijs worden gepresenteerd, en onderlinge tegenstrijdigheid
door een lege doorsnede. Het hoofdprobleem is (1) hoe zulk bewijs gecombineerd
kkan worden om een genormaliseerd geheel te krijgen waar de zekerheidswaarden
samen opgeteld 1 opleveren. Een relevante uitbreiding is (2) om graden van geloof
te berekenen, gebaseerd op dit gecombineerde bewijs. We verkennen problemen
(1) en (2) via drie verschillende aanpakken.

Ten eerste bestuderen we formele methoden die (1) en (2) aanpakken. In
Hoofdstuk 2 introduceren we wat oplossingen uit Dempster-Shafer-theorie—dat
gebaseerd is op het verruimen van axioma’s uit de waarschijnlijkheidsleer—
en topologische modellen van bewijs—modellen voor epistemische logica die
gebaseerd zijn op topologische semantiek. We stellen een gemeenschappelijk vo-
cabulair vast tussen beide kaders, en gebruiken ze als de basis voor onze oplossing
voor (1) en (2), dat we uitwerken in Hoofdstuk 3.

Ten tweede presenteren we een modale logica, in Hoofdstuk 4, om proposities
te vergelijken in termen van (a) hun graad van geloof (op basis van het model
uit Hoofdstuk 3), en (b) de zekerheid van hun bewijskrachtige ondersteuning.
De syntaxis van de logica bevat een binaire modale operator voor elke soort
vergelijking. De semantiek van de logica maakt gebruik van volgordeverheffingen
om (b) te interpreteren.
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Ten slotte analyseren we de computationele complexiteit van (1) en (2). In Hoofd-
stuk 5 richten we ons op de oplossing voor (1) die Dempsters combinatieregel heet,
op de geloofsoperator van topologische modellen van bewijs, en op de formele
methode die we ontwikkelden in Hoofdstuk 3. In Hoofdstuk 6 leggen we voor
om kenniscompilatietechnieken te gebruiken om Dempsters combinatieregel te
berekenen.



Abstract

This dissertation addresses the challenge of combining uncertain, partial and
possibly mutually contradictory evidence with a focus on logic and computational
complexity. In this context, evidence is represented as a subset of a universe;
uncertainty as values between 0 and 1; partiality as ignorance about subsets that
are not presented as evidence; and mutual contradiction as empty intersection.
The main problem is (1) to combine such evidence to obtain a normalized body
of evidence, where certainty values sum up to 1. A relevant extension is (2) to
compute degrees of belief based on that combined evidence. We explore problems
(1) and (2) via three different approaches.

First, we study formal methods that address (1) and (2). In Chapter 2, we
introduce some solutions from Dempster-Shafer theory—that relaxes probability
axioms—and topological models of evidence—models for epistemic logic based on
topological semantics. We establish a common vocabulary between both frame-
works and use them as the basis of our solution for (1) and (2), developed in
Chapter 3.

Second, we present a modal logic in Chapter 4 to compare propositions in terms
of (a) their degree of belief based on Chapter 3, and (b) the certainty of their
evidential support. Syntactically, it includes a binary modal operator for each
type of comparison. Semantically, we make use of order liftings to interpret (b).

Lastly, we analyze the computational complexity of (1) and (2). In Chapter 5,
we focus on the solution for (1) named Dempster’s rule of combination, the belief
operator of topological models of evidence, and the formal method developed in
Chapter 3. In Chapter 6, we propose applying knowledge compilation techniques
to compute Dempster’s rule of combination.
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