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Abstract

Extending sequent calculus with further structure or language has been a fruitful approach in
structural proof theory for finding different cut-free complete proof systems. Finding translations
between these different calculi not only gives new completeness results, but also insights into how
these different calculi compare. While most research has gone into comparing systems that can be
seen as notational variants of each other, only some investigation has been done into systems that
are structurally different. Two such structurally different calculi exist for the intuitionistic modal
logic IK, namely the (simple) nested Maehara-style calculus, NIKm, and the bi-labelled semantic
calculus, labIK≤. Intuitionistic modal logics are modal logics whose modal free fragments are an
intuitionistic (propositional or predicate) logic, one of which is IK which is defined in the tradition
of Fischer Servi. In this thesis we will introduce intuitionistic modal logics together with their
Kripke semantics and some of its proof theory, before establishing an effective two way translation
between labIK≤ and NIKm. Constructing the translations relies on admissible and derivable rules
in these systems as well as constructing translatable derivations. The translations that we define
shed new light on the relationship between invertibility and back-tracking in proof search, including
how specifically these two systems compare to each other.
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Chapter 1

Introduction

The approach of structural proof theory to obtain more expressive proof systems by extending the
sequent formalism has been quite influential, especially for the proof theory of modal logic. Over
the last decades, this allowed proof theorists to implement innovative proof systems for various
logics. It also allowed for the introduction of calculi for logics for which no previous system existed;
for example, there exist cut-free complete systems for S5, but none of which use pure sequents.
Moreover, it also allows one to obtain alternative systems for the same logic which have different
properties than their original sequent calculus; consider for instance Fitting’s [21] and Gentzen’s [22]
calculus for IPL. Extending the structure or the language to gain a more expressive proof system
also enables one to define modular systems that can handle multiple logics at once by adding or
removing rules (e.g. modal logics of the S5 cube or intermediate logics).

Besides there being multiple styles of proof systems (for instance, natural deduction, tableaux,
or sequent calculus), there are also often different systems of the same style that are sound and
complete with respect to the same logic. We can, for instance find at least seven different pure
sequent systems for intuitionistic propositional logic (G1i−G5i, m-G3i and GKi, see [53]). This
multitude of systems is further exacerbated by the fact that we can also find different ways of
extending sequent calculus (for instance, hypersequents, nested sequents and labelled sequents).

As a tool for comparing these different proof systems, we can use effective translations, which
are algorithmically definable functions that transform proofs of one system into valid proofs of
another one. This lets us, for example, show completeness in a new way, and also compare systems
of different formalisms, like the tree-labelled and tree-hypersequent (or nested) formalism (see [11,
25]). It can also let us see how two different systems behave and transfer structural results that are
already established in one system to the other.

We will consider here the proof theory of the intuitionistic modal logic IK, which has been
established and developed in the 1980s and 90s as the intuitionistic variant of the logic K (see [18,
17, 45, 50]. Since then, a lot of systems have been developed for the logic.

In this thesis, we will establish two directions of a translation between two fundamentally differ-
ent calculi for IK; namely, the semantic calculus, labIK≤ (see [36]), and the simple nested calculus,
NIKm (see [31]). These two systems, although they are both based on sequent calculus, are fun-
damentally different because they are not mere notational variants of each other. While labIK≤
internalises the bi-relational structure of intuitionistic modal Kripke models, NIKm uses nestings
for modalities and gains its intuitionistic behaviour directly from its rules. Further, while labIK≤
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is fully invertible, meaning that the order of rule applications generally does not matter, there are
rules in NIKm which are not invertible. This makes the translation significantly more challeng-
ing than other translations. One issue is that not every proof is immediately translatable, so the
translation will also include an effective algorithm for reaching translatable proofs.

We begin this thesis by introducing the axiomatisation and semantics for IK together with
extensions of Horn-Scott-Lemmon axioms. We also discuss why IK can be considered to be the
intuitionistic variant of the classical modal logic K. After that, in chapter 3, we introduce the proof
theory of the logic by first considering three proof systems for intuitionistic propositional logic.
These systems include two pure sequent calculi and a semantic labelled system. Then, we extend
these systems towards two proof systems for IK and discuss some of their properties. Finally, in
chapter 4, we establish a translation between these two systems by using admissible rules and a
construction of derivations.
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Chapter 2

Intuitionistic Modal Logic

This chapter introduces the basic notions and definitions of intuitionistic modal logic. This in-
cludes the axiomatisation and semantics of the modal logic IK together with extensions, especially
extensions with Horn-Scott-Lemmon axioms. We will also discuss a few different variants of intu-
itionistic modal logic that historically precede IK, though most of them are still relevant nowadays,
and discuss shortly why IK can be seen as a good intuitionistic modal logic.

2.1 Preliminaries
Intuitionistic modal logics (IMLs) are generally those modal logics which are based on some intu-
itionistic logic. This includes usually intuitionistic propositional logic (IPL) or predicate logic (e.g.
intuitionistic first-order logic, see [30]). This means that, when taking the modal-free fragment of
an IML, one is always left with an intuitionistic logic. Due to their very high complexity, we will
not consider modal logics based on predicate logic.

Similar to classical modal logic, we might characterise the language of IML by adding some
modal operator to the propositional language of intuitionistic logic (e.g. □) and define the other
one as its dual (e.g. ♢ := ¬□¬). However, because we do not have double negation elimination, the
so-defined modality will not be the dual of the primitive modality. Thus, the logic differs depending
on which modality we choose as primitive unless we explicitly demand that they are dual to each
other (e.g. adding ¬♢¬A ⊃ □A as an explicit axiom). To keep the dependency open, we define
both modalities as primitives. Furthermore, we will see that it might be desirable for an IML to
have independent modalities.

Thus, we define our language of intuitionistic modal logic, which we will call L□♢, by the
following BNF grammar with a countable set of propositional atoms Φ = {p, q, r, ...} and the
constant symbol ⊥ for the always false sentence.

A ::= ⊥ | p | A ∧B | A ∨B | A ⊃ B | □A | ♢A

We define the usual abbreviations

¬A := A ⊃ ⊥ and ⊤ := ¬⊥,

as well as □nA and ♢nA for the formula A prefixed with a sequence of n boxes and diamonds
respectively (whereas □0A = ♢0A = A). Call the set of modal free formulas L. We distinguish
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intuitionistic implication from the classical one, by using ⊃ instead of →. We define (uniform)
formula substitution in the usual way.

Definition 2.1 (Formula Substitution). For a formula A from our language L□♢, we define the
substitution instance A[B/p] with B also being in the language and p ∈ Φ by replacing every occur-
rence of p in A with the formula B. If p does not occur in A, we have A[B/p] = A.

The condition that the modal-free fragment of the basic IML reduces to IPL still leaves a lot of
freedom for choosing a ”basic” IML. Here, the question is not so much on what is the one correct
IML, but rather what is an intuitionistic modal logic which has generally good properties such that
it can be considered a basic intuitionistic logic as well as the smallest normal modal logic. A first
natural candidate for such a role is to consider the ♢-free fragment of the modal language together
with the well-known axiom □(A ⊃ B) ⊃ (□A ⊃ □B) (K) which also defines the ”basic” classical
modal logic. This logic was introduced by Božić and Došen in 1984 and is now known as iK (see
[7]). To actually introduce a full modal logic by also considering ♢ as an active connective, one
can extend this system with further axioms that give it a more and more normal behaviour (as in
normal modal logic).1 Furthermore, we would want □ and ♢ to have at least some similarity in
their classical behaviour. The system one might get from that is the logic IK which was introduced
in the 1980s independently under three different axiomatisations ([16, 17, 45]).

In his PhD thesis, Alex Simpson discusses this question of what is (a good) intuitionistic modal
logic (see [50, Chapter 3.2]). The most important point he makes, which we also already mentioned,
is that any IML should be conservative over IPL. Another point we already touched upon is the
independence of the two modalities, □ and ♢, which Simpson also considers to be an important
feature of intuitionistic modal logic. The main reason being that, just like the other classical duals
(quantifiers and disjunction-conjunction), the modalities should be independent in intuitonistic
logic. This can also be supported by requiring that there should be some intuitionistic meaning
for the modalities. Simpson formalises this broad demand for intuitionistic meaning into, firstly,
requiring that the standard translation of an IML should be some fragment of intuitionistic first-
order logic and, secondly, by a natural deduction system that incorporates both aspects of how
the modalities usually behave and of how natural deduction for IPL works (no classical reductio ad
absurdum rule). Additionally, we would at least expect that an IML has the disjunction property
and would become a classical modal logic when adding the law of excluded middle. As Simpson
shows, all these conditions apply to IK and therefore support it as a good candidate for a ”basic”
IML.

2.2 Hilbert-Axiomatisation for Intuitionistic Modal Logic
Let us begin by introducing the aforementioned intuitionistic modal logic IK, standing for intuition-
istic K, which is defined by means of a Hilbert system as follows.

1One property of the (classical) non-normal modal logic E is that it falsifies the distributivity of ♢ over disjunction
(♢(A∨B) ⊃ (♢A∨♢B)). Classically this axiom follows from K, whereas it has to be added explicitly for intuitionistic
modal logic.
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Definition 2.2 (Syntactic Axiomatisation). The Hilbert-style axiomatisation of IK is defined by
the following axioms:

All intuitionistic propositional tautologies (IPL)
k1 : □(A ⊃ B) ⊃ (□A ⊃ □B)
k2 : □(A ⊃ B) ⊃ (♢A ⊃ ♢B)
k3 : ♢(A ∨B) ⊃ (♢A ∨ ♢B)
k4 : (♢A ⊃ □B) ⊃ □(A ⊃ B)
k5 : ¬♢⊥

And it is closed under the following rules:
(mp) From A ⊃ B and A infer B
(nec) From A infer □A

If a formula A is provable in IK, we write IK ⊢ A. If A ∈ L we can also write IPL ⊢ A.

For a Hilbert-style axiomatisation of intuitionistic logic, see [53, Definition 2.4.1], where IPL is
defined as the purely propositional part.

The logic consisting only of the additional modal axiom k1 is called iK, which we already
mentioned as the ♢-free fragment of some intuitionistic modal logic. We note, however, that this
does not imply that all intuitionistic modal logics between iK and IK prove the same□-only formulas,
as it even has been shown that the ♢-free fragments of iK and IK are distinct (see [12]). Adding k2
to iK and closing it under the given rules gives us the constructive modal logic CK. A first-order
variant of it was introduced in [19] as the very first intuitionistic modal logic. Further, adding k5
gives us the propositional fragment of the Constructive Concurrent Dynamic Logic (CCDL) from
Wijesekera (see [56]). The main difference between these systems and IK is that, as precursors, they
were mostly motivated by applications to computer science, including, for example, Curry-Howard
correspondence (see also [3]). This is also why those logics still have a strong relevance today,
though we will not touch upon them here any further.

Similar to how we can extend classical modal logic with further modal axioms, as well as
intuitionistic propositional logic with formulas to gain superintuitionistic logics (also known as
intermediate logics), we can do both for IML as well. We call those extensions, which form well
behaved theories: intuitionistic normal modal logics.

Definition 2.3 (Intuitionistic Normal Modal Logic). An intuitionistic normal modal logic L con-
tains formulas of the language L□♢ such that L ⊇ IK and L is closed under mp, nec and formula
substitution (from A infer A[B/p] for B ∈ L□♢).

Remark 2.4. When extending these logics to classical ones by adding the excluded middle prin-
ciple, we obtain a (classical) normal modal logic (see [6, Definition 1.42]), thus our naming is also
sensible.

Similar to how there are a lot of axioms which are classically equivalent to K, but which one has to
add explicitly for IK, the same phenomenon applies to modal extension axioms. For example, when
classically adding axiom 4 to the logic, it does not matter whether it is written as □A ⊃ □□A
or ♢♢A ⊃ ♢A. For IMLs, these formulas are nonequivalent. We include both formulations as
extension axioms. The axiom schemas for the S5-cube extensions for intuitionistic modal logic are
then defined as in the following table (figure 3.3.3).
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Axiom
D □A ⊃ ♢A
B (♢□A ⊃ A) ∧ (A ⊃ □♢A)
T (□A ⊃ A) ∧ (A ⊃ ♢A)
4 (□A ⊃ □□A) ∧ (♢♢A ⊃ ♢A)
5 (♢A ⊃ □♢A) ∧ (♢□A ⊃ □A)

Figure 2.2.1: Extension axioms for logics in the IS5 cube

The full set of logics that we can gain from adding any subset of these axioms to IK is represented
in figure 2.2.2. These logics between IK and IS5 constitute the so called ”classical” cube or simply
IS5 cube.

IK

IT ITB

IB

IK45

IK5

ID5

ID

ID4

IDB

ID45

IS4 IS5

IB5IK4

Figure 2.2.2: The IS5 cube

2.3 Semantics for Intuitionistic Modal Logic
Similar to how one can use Kripke models to either describe classical modal logics or for modelling
IPL and their superintuitionistic extensions, one can combine these notions into a single structure.
The idea was motivated by Fischer Servi (see [18]) by considering the Gödel translation of IPL into
S4, transforming IML into a bimodal logic.

Definition 2.5. A birelational model is a tuple ⟨W,≤, R, V ⟩ with a non-empty set W , a reflexive
and transitive relation ≤ ⊆ W×W , a relation R ⊆ W×W and a valuation function V : Φ → P(W )
with the following conditions.

Monotonicity: If x ∈ V (p) and x ≤ y then y ∈ V (p).
(F1): If xRy and y ≤ z then there is some z′ such that z′Rz and x ≤ z′.
(F2): If xRy and x ≤ z then there is some z′ such that zRz′ and y ≤ z′.

Another way the monotonicity condition is often written down is by demanding that V be
a monotone mapping from (W,≤) to (2Φ,⊆). This requires one to connect states and atomic
propositions to binary truth values for the truth condition. Under this distinction, both definitions
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are equivalent. The conditions (F1) and (F2) are also known respectively as the backward and
forward confluence condition (also see figure 2.3.1). While (F2) is necessary to obtain general
monotonicity (see lemma 2.8), (F1) helps make true axiom k4 of IK.2 We note that there is no
coherent labelling throughout the literature for the confluence rules; though most papers use the
same notation as here, whereas Simpson (see [50]) has the labels swapped (i.e. forward confluence
is named (F1) and backward is (F2)).

z′ z

x y
R

≤ ≤

R z z′

x y
R

≤ ≤

R

Figure 2.3.1: Backward and forward confluence condition

When talking about the relations of a birelational model, we define for any natural number
n ≥ 0 the relation xRny to mean that y is reachable in exactly n steps via R, whereas xR0y means
x = y.

Truth in the semantics is defined in the same way as for either modal and intuitionistic Kripke
models, except for the modality □, whose truth relies on both relations (≤ and R) and is equivalent
to ⊤ ⊃ ■A for a classical modality ■. This definition of the □ modality also enables monotonicity
to work.

Definition 2.6 (Truth in a state). The forcing relation ⊩ on a state w in a model M is defined
inductively on the complexity of formulas:

M, w ⊩ ⊥ never
M, w ⊩ p iff w ∈ V (p)
M, w ⊩ A ∧B iff M, w ⊩ A and M, w ⊩ B
M, w ⊩ A ∨B iff M, w ⊩ A or M, w ⊩ B
M, w ⊩ A ⊃ B iff for all v ∈ W : if w ≤ v and M, v ⊩ A then M, v ⊩ B
M, w ⊩ □A iff for all v, u ∈ W : if w ≤ v and vRu then M, u ⊩ A
M, w ⊩ ♢A iff there is a v ∈ W such that wRv and M, v ⊩ A

We say that a sentence A is true in a model M (written M |= A) iff M, w ⊩ A for all states w
in the model. As usual, a frame ⟨W,≤, R⟩ can be seen as a model without valuation. Truth in a
frame is defined as truth in any model based on that frame. As usual, ⊮ means that the state, the
model, or the frame does not make that formula valid.

Remark 2.7. If the relation R is empty for a bimodal model, definitions 2.5 and 2.6 give the exact
definition of a Kripke model for IPL. Similarly, if ≤ is trivial (only reflexive relations) the model
constitutes a Kripke model for the classical modal logic K.

Just like in intuitionistic Kripke models, in bimodal models the excluded middle principle is
invalidated by the negation relying on ≤. At the same time, we also have the following lemma,
reminiscent of the monotonicity condition for propositional atoms.

2Note that removing (F1) will not be equivalent to removing k4. See also [2].
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Lemma 2.8 (Monotonicity). If M, w ⊩ A and w ≤ v then M, v ⊩ A for A ∈ L□♢.

Proof. By induction on the complexity of A. The base case is just monotonicity of the valuation.
Non-trivial cases are A ⊃ B and □A by using transitivity of ≤ and ♢A by using (F2).

Just like for classical modal logic, there is a correspondence between modal extensions of IK
and frame conditions on the relations of the models. On the one hand, many well-known formula
extensions of the classical modal logic K correspond nicely to a first-order property of the R-relation
on frames. It is, on the other hand, a well known fact that there are many formula extensions in
modal logic that do only correspond to second-order definable properties; for example, the Löb
axiom □(□A → A) → □A corresponds to frames that are conversely well-founded. Additionally,
some classical modal logics do not even correspond to any class of frames (frame incompleteness)
and are only complete wrt. general frames.

For these reasons, we only consider a small and well behaved class of modal axioms: the so-called
Horn-Scott-Lemmon axioms (HSLs). They form a proper subclass of Scott-Lemmon axioms and
therefore have also a simple first-order correspondence. We consider here their two-sided versions
(meaning that we include both duals), which are classically equivalent. They are defined by the
following schema with n,m ∈ N.

ϕ(n,m) := (♢n□A ⊃ □mA) ∧ (♢mA ⊃ □n♢A)

As we will see, adding such a formula as an axiom to IK is equivalent to restricting the class of
frames under the condition: If xRny and xRmz then yRz. We refer to the set of all Horn-Scott-
Lemmon axioms simply as HSL. Notice that we make no usage of the ≤-relation, which is mainly
due to us using both classically equivalent versions of one-sided HSLs.

HSLs include many of the well-known modal formulas that have a first-order frame correspon-
dence, e.g. the axioms B, T , 4 and 5. We additionally consider the directedness axiom □A ⊃ ♢A
(D) with the seriality condition ∀x∃y(xRy) (equivalently one can use ♢⊤ as the axiom D). This
allows us to model all logics inside the classical cube. We refer to a subset of these axioms as
A ⊆ {D} ∪ HSL. The logic IK ⊕A is then defined as the logic IK together with the formulas from
A closed under necessitation and modus ponens. Because we are always introducing new axioms
as full schemata, these logics will also obey formula substitution and are therefore intuitionistic
normal modal logics. For the extensions in the IS5 cube, we use the better known names for these
logics, like in figure 2.2.2; e.g. IS4 = IK ⊕ {ϕ(0, 0), ϕ(0, 2)} and IKD5 = IK ⊕ {D,ϕ(1, 1)}.

To state completeness of the class of modal logics which are characterised by IK ⊕A, we define
models that satisfy the corresponding frame conditions.

Definition 2.9 (A-model). Let A ⊆ {D} ∪ HSL be a set of formulas. We call a model M an
A-model, if the following conditions are met:

1. D ∈ A: For all x there is some y s.t. xRy.

2. ϕ(n,m) ∈ A: If xRny and xRmz then yRz, for any x, y, z in M.

As a side note, we can reduce the frame conditions if at least one of the indices is zero, which
will also give us the usual formulation of frame conditions for frames of logic in the S5 cube (e.g.
reflexivity, transitivity and symmetry). This reformulation is simply done by considering that xR0y
means x = y and therefore simply replacing one variable for another.

This lets us formulate the most simple completeness for an infinite collection of logics.
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Axiom Frame condition
ϕ(0, 0) xRx
ϕ(n, 0) If xRny then yRx
ϕ(0,m) If xRmy then xRy

Figure 2.3.2: Frame conditions for HSLs with at least one index being zero

Theorem 2.10 (Soundness and Completeness). Let A ⊆ {D} ∪ HSL be a set of formulas, then
the logic IK ⊕ A is sound and complete wrt. the class of A-models, meaning that for any formula
A: IK ⊕A ⊢ A iff M ⊩ A for all A-models M.

Proof. Follows from Theorem 6.2.1 and Theorem 8.1.4 of [50].

An earlier completeness result had been obtained by Fischer Servi ten years earlier for some
of the intuitionistic modal logics in the classical cube [17]. A stronger result was also established
earlier in [45], where the authors consider a frame correspondence for Scott-Lemmon axioms instead
of its proper subset HSL. This correspondence, though, relies on a frame condition that uses both
relation of the frame and was not proved as it is only part of an abstract.
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Chapter 3

Proof Theory of Intuitionistic Modal
Logic

In this chapter, we will present a multitude of calculi for intuitionistic propositional logic and
calculi for intuitionistic modal logic. As it is common practice in modern proof theory, we will
solely consider calculi based on Gentzen’s sequent systems due to them being easy to analyse and
obeying proof search procedures that are often simpler than those of natural deduction or tableaux
systems. At first, we will look at three important proof systems for intuitionistic propositional logic,
which get introduced in section 3.2. These are the single succedent calculus introduced by Gentzen,
the Maehara-style multi succedent calculus and a labelled system. They will give us a vital basis for
understanding the systems in which we also handle modalities. In section 3.3, we consider calculi
for the previously introduced logic IK together with extensions of the Horn-Scott-Lemmon axioms.

3.1 Sequent Calculus
One of the most important types of calculi for proof theorists are so-called Gentzen systems. They
were originally introduced by Gentzen in 1935 (see [22]) and subsequently named after him. Most
modern G-systems are build on his initial calculi for classical and intuitionistic first-order logic,
which he called LK and LI (nowadays also known as G1c and G1i, denoting the first Gentzen
calculi).1 While K stands for klassisch (German for classical) and I for intuitionistic, the L in
LI and LK is an abbreviation for logistic, expressing the fact that these calculi do not rely on
the dependency of global assumptions. Contrastingly, natural deduction, for example, does often
heavily rely on temporary assumptions that are only later lifted at a certain point in the derivation
process.

Unlike other deductive systems, Gentzen calculi work on sequents instead of directly on formulas.
These are usually of the form Γ ⇒ ∆, where both Γ and ∆ are multisets of formulas (i.e. sets

1Often in papers and books, one reads LJ instead of LI. This is mainly due to Gentzen using the Sütterlin
handwriting for certain formulations, in which ”I ” looks like ” I ” (see [44, p.83]). Even in the original 1935 print
version of Genzten’s Untersuchungen über das logische Schließen (Investigations into Logical Deduction) the Sütterlin
I is printed as a J, which might have actually kick-started a lot of the mislabelling.
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which may contain some elements multiple times, or lists without any order).2 These multisets are
distinguished by an arrow ⇒, where formulas on the left side are part of the antecedent while the
one on the right are called succedent formulas. In classical logic, such a sequent can be interpreted
as a formula in the language:

fm(Γ ⇒ ∆) =
∧
A∈Γ

A →
∨

B∈∆

B

Such an interpretation also works for certain sequents in the intuitionistic case. This gives sequents
a very natural reading.

Making derivations on sequents, rather than on formulas, grants the sequent calculus the ability
to work locally. These rules are local in the sense that we do not have to look for other formulas
in the derivation except for the formulas inside the antecedent and succedent. The rules have thus
the simple form

S1, ...,Sn

C

with n = 0, 1, 2 and S1, ...,Sn,C referring to sequents. This allows us to define valid derivations for
any sequent system, which are also called proof trees or derivation trees. We will generally write S
to refer to two-sided sequents. A collection of rules is called a (proof) system or calculus.

Definition 3.1 (Derivation Tree). A proof tree T is a rooted tree whose nodes are sequents which
are connected via rule applications. We say that a proof tree is valid if every sequent has a number
of ancestors (0, 1 or 2) such that their syntax matches the form of one of the rules. Otherwise, the
tree is invalid.

We say a sequent S is provable in a system L, written as L ⊢ S, iff there is a valid proof tree
of L with S as the root of the tree. A formula A is provable in L, written L ⊢ A iff L ⊢ (⇒ A).

If a proof tree is invalid, we might distinguish two main cases: either, it has a mistake and there
is a connection between sequents that does not follow any possible rule application, or there are
sequents which is not introduced by a rule (not even a zero premise rule). These latter sequents
are called open leafs, as they might still be extendable in the derivation tree.

Initially, rule applications in a derivation tree were being thought of as a top-down procedure
to derive some formula from a set of chosen premises. Nowadays, the idea of rule application in
Gentzen calculus is closer to how the tableaux systems are being used, where one starts out with a
formula one wants to prove (or disprove) and does a proof search procedure. This gives us the two
notions of applying rules: upwards rule application always start with the conclusion, like in a proof
search, whereas downwards applications begin with axioms or premises and go to the conclusion.

We define the height of a proof tree h(T ) as the length of the longest branch of the tree from
the root to a leaf. If the derivation of a formula A is at least of height n, we say that A is n-
provable (⊢nA). One can also say that the formula is provable in n many steps, though that can
be misleading as there might be more steps (i.e. rule applications) due to branching.

2There are, especially in the more foundational texts, versions of sequent calculus which use lists or sets of
formulas. These formulations are usually equivalent.
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Besides the already mentioned feature of being local, sequent calculi are also more often than
not analytic, meaning that, as we progress in the proof tree, formulas become less and less complex.
This makes them an elegant and versatile formalism for proof-theoretic investigation, giving one
easy ways to characterise well-behaved systems. One of the features of a well-behaved system is the
admissibility of certain rules. Admissible rules can be thought of as rules one is ”allowed” to make
in a system without them being explicitly in the rule set. They are properly defined as follows.

Definition 3.2 (Admissible rules). A rule, with premises S1, ...,Sn and a conclusion C, is ad-
missible in a system L iff: If L ⊢ Si for all i, then L ⊢ C. A rule is height preserving admissible
(hp-admissible) iff: if every Si is n-provable, then C is also n-provable.

The most common admissible rules are called structural rules (see e.g. figure 3.2.4); this usually
excludes the cut rule, which has a special status among admissible rules. By allowing for cuts in
a derivation tree, one can emulate the rule of modus ponens of the Hilbert-style axiomatisation,
showing that the system is complete in a syntactic way. In G1 systems, some of the structural rules
occur explicitly and can therefore only be admitted insofar as they are already part of the rule set.

After Gentzen’s groundbreaking idea of utilising sequents, consecutive systems have been devel-
oped: most notably, systems of G2 and G3, which were developed later to absorb the structural rules
into the system, the latter being mainly attributed to works from Ketonen, Kleene and Ono (see
[28, 29, 42]). G3 systems are also inspired by Dragalin’s calculus (originally published in Russian
in 1979, see [13] for a translated reference), which is our system m-G3i (see section 3.2.2); he was
also the one to observe that the intuitionistic system G3i can be improved in terms of admissibility
of contraction by repeating the principal formula in ⊃L (see figure 3.2.1). G2 systems were merely
invented as didactic stepping stones towards G3 in [53].

A stronger notion of admissibility is eliminability, which means that not only can we add such
a rule to the whole calculus without changing it, but we can also remove it from a valid derivation
in a systematic way. One of the most important elimination results obtainable is the elimination of
the cut rule (cut-elimination). The explicit eliminability of cuts is especially important because of
its applications like interpolation or explicit definability (see [53, Chapter 4]).

As G3 systems are the most well behaved systems due to their many admissible structural rules,
they can be seen as the gold-standard of modern proof systems.

Besides sequent systems, there are also formulations using so-called one-sided sequents, first
introduced by Schütte in 1950 [49]. Such ”sequents” are in principle nothing more than simple
multi-sets of formulas, where every formula is a succedent formula. They allow applications for
classical calculi due to the usage of De-Morgan’s law and double negation elimination, which allows
one to write any formula in negation normal form, where the antecedent formulas occur negated
while succedent formulas occur as they are.

Intuitionistic calculi can be easily obtained from classical ones by only allowing for a single
succedent formula in sequents. Additionally, there are further systems for intuitionistic logic (G4i
and G5i) which can keep more formulas in the succedent. This is achieved by having multiple rules
for dealing with an implication on the left side of the sequent. An advantage these systems offer is
that they are not prone to backtracking; backtracking is the moment in proof search where one has
to go back in a derivation branch to change a rule application (for a formal definition see section
3.2.3). This might happen, for example, in G3i, when analysing a disjunction in the succedent and
only one of the disjuncts leads to a valid derivation. The systems we will consider from now on will
be purely propositional and based on the system G3i.
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3.2 Intuitionistic Propositional Logic
In this section, we will introduce a multitude of decision procedures for the logic IPL. These
include specifically the single succedent calculus, which is simply a restricted version of the classical
G3c calculus. We furthermore investigate a variant of intuitionistic sequent calculus where multiple
succedent formulas are allowed. Finally, we take a look at a semantic calculus for some intermediate
logics, which was introduced by Dyckhoff and Negri [15] which is a notational variant of Fitting’s
nested calculus (see [21]).

3.2.1 Single Succedent Calculus for IPL
As mentioned before, the usual way of creating an intuitionistic calculus from a classical one is
to restrict all sequents to single succedent sequents Γ ⇒ A. The rules for the main intuitionistic
Gentzen calculus, G3i, are given in figure 3.2.1 (see [53]). We call the set that is named Γ, possibly
together with the formula C, the context of the rule, which in our investigations will most often be
preserved in rule applications. The formulas that are not in the context, and to which the rules get
applied to, are called principal in the rule application.

In a way, single succedent3 calculi model a constructive way of reasoning by the succedent being
only dependent on antecedent formulas and never on other succedent formulas.

Ax
p,Γ ⇒ p

⊥
⊥,Γ ⇒ A

∧L
A,B,Γ ⇒ C

A ∧B,Γ ⇒ C
∧R

Γ ⇒ A Γ ⇒ B

Γ ⇒ A ∧B

∨L
A,Γ ⇒ C B,Γ ⇒ C

A ∨B,Γ ⇒ C
∨R

Γ ⇒ Ai

Γ ⇒ A0 ∨A1
(i ∈ {0, 1})

⊃L
A ⊃ B,Γ ⇒ A B,Γ ⇒ C

A ⊃ B,Γ ⇒ C
⊃R

A,Γ ⇒ B

Γ ⇒ A ⊃ B

Figure 3.2.1: Rules for G3i

Special admissible rules, which we can add to a system for free, are derivable rules. We call a
rule derivable if we can derive the conclusion in a valid proof tree where one takes the premises of
the rule as axioms. For example, the generalised axiom rule

Axg

Γ, A ⇒ A

3Sometimes these systems are also being referred to as single conclusion calculi, which is misleading as we often
mean the bottom sequent of a rule when referring to a conclusion.
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IPL ⊢ A ∀M : M ⊩ A

G3i ⊢ A

syntactic

completeness

semantic

completeness

Figure 3.2.2: Two ways of establishing completeness of G3i wrt. IPL

can be derived for any formula A which can be generally proven by induction on the complexity
of A. Derivable rules are also eliminable rules, because one can simply replacing the rule with the
specific derivation.

The following lemma shows that this system can be considered well-behaved.

Lemma 3.3 (Admissible Rules). The rules wk, sub, cL and cut (figure 3.2.4), restricted to their
single succedent form, are admissible in G3i. Furthermore, wk and cL are hp-admissible, while cut
is eliminable.

Proof. Lemmata 3.5.3, 3.5.5 and theorem 4.1.5 in [53]. For uniform substitution, one can do a
simple induction on the depth of the derivation and use the derivable rule Axg to substitute for
formulas in axiomatic sequents.

Note that all rules in figure 3.2.4 will generally look different for single succedent sequents.
Namely, we always have ∆ = ∅ and Π = {C} for some formula C. Also, recall definition 2.1 for
formula substitution.

There are usually two ways of proving completeness of a proof system with respect to a logic
(see figure 3.2.2). One can prove it semantically, by showing that if M ⊩ A for any intuitionistic
Kripke model M, then G3i ⊢ A. This is best done by proving the contrapositive, namely if G3i
⊬ A then there is some countermodel M ⊮ A. We will see such a strategy in section 3.2.3.

The other strategy to prove completeness is syntactically by first proving all axioms of the
Hilbert system and then using cut-admissibility to show that modus ponens is admissible, thus
the system is complete wrt. the Hilbert axiomatisation. This is done by showing that if ⇒A ⊃ B
(implying A⇒B) and ⇒A are derivable, then ⇒B is derivable via the cut rule.

Theorem 3.4 (Soundness and Completeness). The system G3i is sound and complete wrt. to IPL.
Formally we have for any formula A ∈ L: G3i ⊢ A iff IPL ⊢ A.

Proof. Follows from theorems 2.4.2, 3.3.1 and proposition 3.5.9 in [53].

Remark 3.5. Via the completeness of IPL wrt. their bi-relational models (theorem 2.10) we also
have G3i ⊢ A iff M ⊩ A for any model M.

Example 3.6 (Failure of excluded middle principle). The formula p∨¬p, which is classically valid
but not intuitionistically, can be written in our language as p ∨ (p ⊃ ⊥). Here are the two failed
proof trees that would be possible for this formula. They are considered to be failed due to their
leaves having no possible further rule application.
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⇒ p
∨R

⇒ p ∨ (p ⊃ ⊥)

p ⇒ ⊥
⊃ R

⇒ p ⊃ ⊥
∨R

⇒ p ∨ (p ⊃ ⊥)

3.2.2 Multi Succedent Sequent Calculus for IPL
Another less radical way to proof-theoretically model intuitionistic propositional logic is to restrict
only certain rules of the classical calculus to have single succedent sequents in their premise. One
of the most popular variants is obtained by taking the classical calculus and restricting the ⊃R rule
to a premise with a single succedent. We call this system m-G3i (see figure 3.2.3) named for the
multi conclusion version of G3i, which was first defined by Maehara in [34] as a Hilfskalkül (helping
calculus), which is closer to the classical system of G3c. This allowed for an easy McKinsey-Tarski-
like result of interpreting IPL as S4, essentially modelling intuitionistic logic in classical logic. This
is why any intuitionistic calculus with multi succedent sequents is also sometimes referred to as
a Maehara-style calculus. Here, the context of the rules is always the sequent Γ ⇒ ∆. Different
formalisms for m-G3i were also independently developed after Maehara, including by Curry [10],
and Beth and Fitting [5, 20]; a similar system was also considered by Gentzen himself (see [14,
Section 2.2], as well as [44] for a more detailed background).

The reason why m-G3i works as an intuitionistic proof system (and is actually closely related to
its historical predecessor) is that the only side changing rule that would allow us to actually utilise
multi-succedents is the rule ⊃R.

Ax
p,Γ ⇒ ∆, p

⊥
⊥,Γ ⇒ ∆

∧L
A,B,Γ ⇒ ∆

A ∧B,Γ ⇒ ∆
∧R

Γ ⇒ ∆, A Γ ⇒ ∆, B

Γ ⇒ ∆, A ∧B

∨L
A,Γ ⇒ ∆ B,Γ ⇒ ∆

A ∨B,Γ ⇒ ∆
∨R

Γ ⇒ ∆, A,B

Γ ⇒ ∆, A ∨B

⊃L
A ⊃ B,Γ ⇒ ∆, A B,Γ ⇒ ∆

A ⊃ B,Γ ⇒ ∆
⊃R

A,Γ ⇒ B

Γ ⇒ ∆, A ⊃ B

Figure 3.2.3: Rules for m-G3i

When considering a derivation in G3i, one can easily translate it into a m-G3i derivation by
weakening the respective rule applications of ∨R or ⊃L. The other direction was already obtained by
Maehara to gain completeness for his new system in [34]. It was achieved in two steps: Any sequent
of m-G3i can be transformed into a single-succedent by forming a disjunction of all succedent
formulas, and, in a second step, one can show the admissibility of all rules under this sequent
translation.
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Due to this strong similarity, it is no wonder that this system enjoys the same structural prop-
erties as G3i. So, Lemma 3.3 also applies to it, as well as the admissibility of right side contraction
of formulas cR (see figure 3.2.4). For the substitution rule, recall Definition 2.1.

Lemma 3.7 (Admissible Rules). The rules wk, sub and cL, cR (see figure 3.2.4) are hp-admissible,
and cut is eliminable in m-G3i.

Proof. The admissibility of wk, sub, cL and cR can be done by a straightforward induction on the
height of the derivation. For the elimination of cut see [53, Section 4.1.10].

wk
Γ ⇒ ∆

Σ,Γ ⇒ ∆,Π
sub

Γ ⇒ ∆

Γ[A/p] ⇒ ∆[A/p]

cL
Γ, A,A ⇒ ∆

Γ, A ⇒ ∆
cR

Γ ⇒ ∆, A,A

Γ ⇒ ∆, A

cut
Γ ⇒ ∆, A A,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π

Figure 3.2.4: Structural rules and the cut rule for m-G3i

Here again, there are different routes towards soundness and completeness. As discussed before,
an effective translation between G3i and m-G3i can be utilised, as well as a cut-elimination argu-
ment, from which we can gain syntactic completeness. In this case, we refer to the first completeness
proof for the equivalent Beth tableau system, which was done semantically.

Theorem 3.8 (Soundness and Completeness of m-G3i). The system m-G3i is sound and complete
with respect to IPL. Formally, m-G3i ⊢ A iff IPL ⊢ A for any A ∈ L.

Proof. Corollary 2.3 and theorem 4.1 of [20].

3.2.3 Labelled Sequent Calculus for IPL and Intermediate Logics
Extending on the sequent formalism for calculi to strengthen their expressibility has been a very
successful approach for structural proof theory in recent decades. The two main approaches include
extending the language or the structure of sequents. Enriching the structure can be done by
introducing nestings (trees of sequents), or allowing for hypersequents (lists of sequents).4 Besides
being useful for modal logics as they can emulate Kripke structures, nested sequents also have a
natural implementation for intuitionistic logic (see [21]).

The other common approach of extending sequent calculus by enriching the language employs
what might be called a semantic calculus. Originally, Kanger [26] had the idea of using what he

4As an example for a system that incorporates both nestings and hypersequents at once, see [11] which introduces
a modular proof system for non-normal modal logic.
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called ”spotted” formulas to obtain a cut-free calculus for classical S5 which ultimately evolved into
what is now known as the labelled formalism for a variety of logics (see [39, 54]).

The basic idea of labelled systems is to incorporate the semantics of the logic into the syntax of
the calculus. This makes normal modal logic and intuitionistic propositional logic a generally easy
setup for labelled deductive systems. First, we add a set of countable world labels WL = {x, y, z, ...}
(also sometimes referred to as variables) as well as some relation symbols (usually called R for
classical normal modal logic or ≤ for intuitionistic logic). Second, we define a labelled language
Llab over the original logical language L. In the case of IPL, we define labelled formulas as x : A
and x ≤ y for some A ∈ L and x, y ∈ WL. Labelled sequents have the form R,Γ ⇒ ∆, where R,Γ
and ∆ are all multisets of labelled formulas. R only contains formulas of the form x ≤ y (relational
formulas), while Γ and ∆ contain formulas in the form of x : A. We say that a label x occurs in
a sequent if there is some labelled formula x : A (or either x ≤ y or y ≤ x for relational formulas)
which can be found in the sequent.

This allows one to define a proof system for IPL, naturally corresponding to the semantics of
Kripke models. The proof system presented here (see figure 3.2.5) was introduced in [15]. Instead
of calling it G3I, as it is called in the paper, we give it the name labG3I to make the usage of labels
clear and reduce any confusion with G3i. Note that the rule ⊃R is a special one by requiring that
the variable y cannot occur in the conclusion of the rule. We call this condition that y must occur
fresh inside the premise. Here, a formula A is derivable in the system, i.e. labG3I ⊢ A, iff ⇒x : A
is derivable for any label x.

Ax
R, x ≤ y, x : p,Γ ⇒ ∆, y : p

⊥
R, x : ⊥,Γ ⇒ ∆

∧L
R, x : A, x : B,Γ ⇒ ∆

R, x : A ∧B,Γ ⇒ ∆
∧R

R,Γ ⇒ ∆, x : A R,Γ ⇒ ∆, x : B

R,Γ ⇒ ∆, x : A ∧B

∨L
R, x : A,Γ ⇒ ∆ R, x : B,Γ ⇒ ∆

R, x : A ∨B,Γ ⇒ ∆
∨R

R,Γ ⇒ ∆, x : A, x : B

R,Γ ⇒ ∆, x : A ∨B

⊃L
R, x ≤ y, x : A ⊃ B,Γ ⇒ ∆, y : A R, x ≤ y, x : A ⊃ B, y : B,Γ ⇒ ∆

R, x ≤ y, x : A ⊃ B,Γ ⇒ ∆

⊃R
R, x ≤ y, y : A,Γ ⇒ ∆, y : B

R,Γ ⇒ ∆, x : A ⊃ B
(y fresh)

Ref
R, x ≤ x,Γ ⇒ ∆

R,Γ ⇒ ∆
Trans

R, x ≤ z, x ≤ y, y ≤ z,Γ ⇒ ∆

R, x ≤ y, y ≤ z,Γ ⇒ ∆

Figure 3.2.5: Rules for labG3I

20



Lemma 3.9. The general axiom rule

Axg
R, x ≤ y,Γ, x : A ⇒ y : A,∆

is derivable in labG3I.

Proof. Lemma 2 in [15].

A crucial difference between all the previous intuitionistic calculi and labG3I is that all the rules
of the system are invertible.

Definition 3.10 (Rule Invertibility). A (proper) rule, with premises S1, ...,Sn (n ∈ {1, 2}) and a
conclusion C, is invertible in a system L iff: If the rule

C

Si

is admissible for any Si.

The invertibility of the rules of labG3I, especially of the rule ⊃R, follows immediately from the
fact that we do not lose any context (unlike for example in the same rule for m-G3i). Together the
admissibility of other structural rules is stated in the following proposition.

Proposition 3.11 (Admissibility in labG3I). The rules of weakening (wk), substitution ( subV ),
contraction (cL, cR, c≤) and cut (see figures 3.2.4 and 3.3.2) are admissible in labG3I. Also, all
rules are invertible.

Proof. Propositions 2.1 and 2.2 from [15].

The invertibility of rules also means that any rule can be applied without creating a wrong
branch in which one has to backtrack. It furthermore implies that rules might be permutated in a
derivation as long as they do not interfere with other rules that share the same principal formulas.
This allows one to obtain a more straightforward proof search algorithm, although the downside to
this is that such an algorithm has to incorporate loop checking procedures as we are able to apply
certain rules (⊃L, Ref , Trans) as often as we want. Thus, when considering an invalid formula,
we might end up applying the same rules over and over again without ever needing to stop.

Another strong feature of semantic calculi is that we can introduce extensions of our base logic
easily into our system. Naturally, this is interesting for frame definable classes of modal logics, but
it also allows us to describe intermediate (superintuitionistic) logics that extend IPL while not being
classical. For example, we can easily describe the Gödel–Dummett Logic (GD) which extend IPL
by the axiom schema (A ⊃ B)∨ (B ⊃ A) and corresponds to the class of strongly connected Kripke
models, i.e. satisfying the following frame property.

If x ≤ y and x ≤ z then y ≤ z or z ≤ y.

So, by just adding the following rule to labG3I, we will have obtained a system for GD.

R, x ≤ y, x ≤ z, y ≤ z,Γ ⇒ ∆ R, x ≤ y, x ≤ z, z ≤ y,Γ ⇒ ∆
GD

R, x ≤ y, x ≤ z,Γ ⇒ ∆
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This also works modularly, so we can emulate adding certain axioms to the logic by adding more
rules to the calculus. For more intermediate logics that are definable in this formalism see [15].

The rule of cut is also admissible in labG3I, so we gain the following syntactic completeness
result.

Theorem 3.12 (Soundness and Completeness of labG3I). The system labG3I is sound and complete
wrt. IPL, meaning that for any formula A ∈ L: labG3I ⊢ A iff IPL ⊢ A.

Proof. Soundness can be established by theorem 3.4 in [40].
For completeness, consider first that we can derive all schemata of the Hilbert axiomatisation

for IPL in labG3I, utilising the admissibilty of Axg. Here is one example case:
Axg

x ≤ y, y ≤ z, y : A, z : B ⇒ z : A
Axg

x ≤ y, y ≤ z, y : A, z : B ⇒ z : B
∧R

x ≤ y, y ≤ z, y : A, z : B ⇒ z : A ∧B
⊃R

x ≤ y, y : A ⇒ y : B ⊃ (A ∧B)
⊃R

⇒ x : A ⊃ (B ⊃ (A ∧B))

Now, via the admissibility of cut (proposition 3.11), we immediately gain completeness wrt. the
Hilbert axiomatisation.

A semantic calculus allows us to have an easy counter model construction, which also allows us to
gain completeness semantically, as discussed in the previous section. Such a semantic completeness
result has been formulated by Negri in [40] for some intermediate logics (extensions of IPL with
geometric implications). The result establishes completeness wrt. sequents, as simply opposed to
formulas, as any labelled sequent can be interpreted in a model. Another such completeness result
was obtained in [38] for classical modal logics inside the S5 cube. Consider the following example
for a failed proof in labG3I.

Example 3.13 (Countermodel construction from a failed proof of ¬p∨¬¬p). We use the following
rules for negation that are admissible in labG3I.

¬R
R, x ≤ y, y : A,Γ ⇒ ∆

R,Γ ⇒ ∆, x : ¬A
(y fresh) ¬L

R, x ≤ y, x : ¬A,Γ ⇒ ∆, y : A

R, x ≤ y, x : ¬A,Γ ⇒ ∆

Equivalently, one could apply the respective ⊃ rule and possibly ⊥ (note that any formula x : ⊥
in the succedent can be omitted).

One failed proof of this formula in labG3I can then be displayed as follows.
...

x ≤ y, x ≤ z, x ≤ x, y ≤ y, z ≤ z, y : p, z : ¬p ⇒ z : p
Ref

x ≤ y, x ≤ z, x ≤ x, z ≤ z, y : p, z : ¬p ⇒ z : p
Ref

x ≤ y, x ≤ z, z ≤ z, y : p, z : ¬p ⇒ z : p
¬L

x ≤ y, x ≤ z, z ≤ z, y : p, z : ¬p ⇒
Ref

x ≤ y, x ≤ z, y : p, z : ¬p ⇒
¬R

x ≤ y, y : p ⇒ x : ¬¬p
¬R⇒ x : ¬p, x : ¬¬p

∨R⇒ x : ¬p ∨ ¬¬p
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In the top sequent are no more rule applications available that would give us new formulas.
Therefore, continuing by using the algorithm presented in [40], we would get an infinite branch,
so we can read out the finite counter model from the topmost sequent: M = ⟨W,≤, V ⟩ with
W = {x, y, z}, ≤ = {(x, y), (x, z)}⋆ and V (p) = {y}, where ⋆ denotes the reflexive-transitive
closure.5 It should now be fairly easy to see that M, x ⊮ ¬p ∨ ¬¬p.

One thing in which labG3I works differently than usual sequent systems is the way the axiom
sequent is formulated. For example, in classical modal logic an initial sequent always contains
the same labelled atomic formula with the same label, as opposed to here, where we include the
≤ relation, such that the rule corresponds to the monotonicity condition in Kripke models (or the
translations of atoms into boxed atoms in the Gödel translation for S4). But what about an explicit
rule that allows us to move the truth of propositions into ≤-related states? As it turns out, this
rule which we write down as

monL
R, x ≤ y, x : p, y : p,Γ ⇒ ∆

R, x ≤ y, x : p,Γ ⇒ ∆

is indeed admissible for the system. The issue with including it explicitly, though, is that it would
cause problems for establishing cut-elimination, just like contraction which we have to admit first
before eliminating cuts. A similar rule

monR
R, x ≤ y,Γ ⇒ ∆, y : p, x : p

R,Γ ⇒ ∆, y : p

can be seen as the dual of monL and is also admissible (see lemma 3.15 where labG3I can be seen
as a modal-free case of labIK).

3.3 Intuitionistic Modal Logic
Proof systems for logics that are both intuitionistic and have modalities exist for as long as such
logics have been considered. The first occurrence of both was in 1948 in a paper by Fitch [19], where
he introduced an axiomatisation for a first-order modal logic based on the classical modal logic T.
Later, Prior introduced in [48] what he called MIPQ (also named MIPC), which is an intuitionistic
version of S5 and is the first logic falling under what we would now call ”proper” intuitionistic modal
logic. A decision procedure in the style of Gentzen was later developed by Minc in a Russian article
(see [51] for reference). Further systems for different logics include different intuitionistic versions
of S4 and S5 (see [41, 47]).

Many of these previous approaches, though, did not really take off or have much influence.
This is mainly due to their disagreement at the time on what is ”the” (main) intuitionistic modal
logic to consider. Another apparent issue is that finding a Gentzen-style system for IK, which we
showed is what comes closest to a basic intuitionistic modal logic, is at least non-trivial and maybe
even impossible, as far as we know.6 This makes Simpson’s approach of using a semantic calculus
in the style of Kanger (i.e. using labels to incorporate modalities) a milestone for proof theory of

5The fact that there is no labelled formula x : p occurring in the open leaf tells us that we have a free choice on
the evaluation for x.

6Notice, that Simpson’s calculus in [50] might not be considered Gentzen-style as it relies on additional relational
formulas. This also holds for the equivalent natural deduction system that is found in the same thesis.
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intuitionistic modal logic. Since then, a multitude of systems have been studied and introduced,
most of them based on some intuitionistic system from the previous section. We might, for instance,
combine the approaches we gathered for intuitionistic and modal calculi to gain systems that can
handle both things, modalities and being intuitionistic, at the same time. As an example, Simpson’s
calculus, from [50], is essentially obtained by taking G3i and adding relational labels. Similarly,
we will consider doing the same to labG3I, giving us what we call a fully labelled calculus. We
also include another recently introduced system in the style of Maehara’s calculus extended with
nestings.

3.3.1 Labelled Calculi
Similarly to how we used semantic terms for a calculus of IPL, we can incorporate the full semantics
of IK, namely bi-relational Kripke models, to obtain an analytic proof system for intuitionistic
modal logic. Such a system has been recently introduced by Marin, Morales, and Straßburger in
[36], where the authors also show completeness for IK with extensions of one-sided intuitionistic
Scott-Lemmon axioms. These axioms form a proper superset of HSL while still being contained in
the set of Scott-Lemmon axioms.

For the language of this fully labelled (or bi-labelled) system, labIK,7 we can simply extend the
language of labG3I with an additional relational symbol R. So, together with a set of world labels
WL and the logical language L□♢, we have labelled formulas x : A, xRy, and x ≤ y with x, y ∈ WL
and A ∈ L□♢. The rules are given in figure 3.3.1.

Notice that, besides adding modal rules that correspond to the respective truth conditions, we
also have to bake in the confluence conditions of the Kripke models with the rules F1 and F2.

Similar to formula substitution, we define a variable substitution Γ[x/y] for a multiset of labelled
formulas Γ by replacing the world label y in any formula in which it occurs by the world label x.

Now we are ready to state the major structural results of labIK.

Proposition 3.14. The general axiom schema

Axg
R, x ≤ y, x : A,Γ ⇒ ∆, y : A

is admissible in labIK.

Proof. See proposition 3.2 of [36].

Lemma 3.15 (Monotonicity). The rules monL, monR and mong
L (see figure 3.3.2) are admissible

in labIK.

Proof. Lemma 6.3 and proposition 3.1 in [36].

Notice that the general monotonicity rule also implies contraction for labelled formulas x : A,
via the use of Ref .

Lemma 3.16 (Weakening, Substitution and Contraction). The rules of weakening (wk), label sub-
stitution (subV ) and contraction for relational formulas ( cR and c≤) (see 3.3.2) are hp-admissible
in labIK.

7In [36] the system is called labIK≤.
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Initial Sequents

Ax
R, x ≤ y, x : p,Γ ⇒ ∆, y : p

⊥
R, x : ⊥,Γ ⇒ ∆

Rules for Connectives

∧L
R, x : A, x : B,Γ ⇒ ∆

R, x : A ∧B,Γ ⇒ ∆
∧R

R,Γ ⇒ ∆, x : A R,Γ ⇒ ∆, x : B

R,Γ ⇒ ∆, x : A ∧B

∨L
R, x : A,Γ ⇒ ∆ R, x : B,Γ ⇒ ∆

R, x : A ∨B,Γ ⇒ ∆
∨R

R,Γ ⇒ ∆, x : A, x : B

R,Γ ⇒ ∆, x : A ∨B

⊃L
R, x ≤ y, x : A ⊃ B,Γ ⇒ ∆, y : A R, x ≤ y, x : A ⊃ B, y : B,Γ ⇒ ∆

R, x ≤ y, x : A ⊃ B,Γ ⇒ ∆

⊃R
R, x ≤ y, y : A,Γ ⇒ ∆, y : B

R,Γ ⇒ ∆, x : A ⊃ B
(y fresh)

≤ is a Pre-Order

Ref
R, x ≤ x,Γ ⇒ ∆

R,Γ ⇒ ∆
Trans

R, x ≤ z, x ≤ y, y ≤ z,Γ ⇒ ∆

R, x ≤ y, y ≤ z,Γ ⇒ ∆

Modal Rules

□L
R, x ≤ y, yRz, x : □A, z : A,Γ ⇒ ∆

R, x ≤ y, yRz, x : □A,Γ ⇒ ∆

□R
R, x ≤ y, yRz,Γ ⇒ ∆, z : A

R,Γ ⇒ ∆, x : □A
(y, z fresh)

♢L
R, xRy, y : A,Γ ⇒ ∆

R, x : ♢A,Γ ⇒ ∆
(y fresh) ♢R

R, xRy,Γ ⇒ ∆, x : ♢A, y : A

R, xRy,Γ ⇒ ∆, x : ♢A

Confluence Rules

F1
R, xRy, y ≤ z, x ≤ u, uRz,Γ ⇒ ∆

R, xRy, y ≤ z,Γ ⇒ ∆
(u fresh)

F2
R, xRy, x ≤ z, y ≤ u, zRu,Γ ⇒ ∆

R, xRy, x ≤ z,Γ ⇒ ∆
(u fresh)

Figure 3.3.1: Rules for labIK
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wk
R,Γ ⇒ ∆

R,R′,Σ,Γ ⇒ ∆,Π
subV

R,Γ ⇒ ∆

R[x/y],Γ[x/y] ⇒ ∆[x/y]
†

monL
R, x ≤ y, x : p, y : p,Γ ⇒ ∆

R, x ≤ y, x : p,Γ ⇒ ∆
monR

R, x ≤ y,Γ ⇒ ∆, y : p, x : p

R, x ≤ y,Γ ⇒ ∆, y : p

mong
L

R, x ≤ y, x : A, y : A,Γ ⇒ ∆

R, x ≤ y, x : A,Γ ⇒ ∆

cR
R, xRy, xRy,Γ ⇒ ∆

R, xRy,Γ ⇒ ∆
c≤

R, x ≤ y, x ≤ y,Γ ⇒ ∆

R, x ≤ y,Γ ⇒ ∆

(†: x is not in R,Γ ⇒ ∆)

Figure 3.3.2: Structural rules for labIK

Proof. For the admissibility of wk see lemma 6.2 in [36]. Just like weakening, contraction also
follows immediately from the fact that all context formula are being upwards preserved.

For subV , we do a straightforward proof by induction on the height of the derivation. Consider
only rules that introduce new variables, as all other ones become trivial. We consider here only the
cases of □R and F2, as all others work in the same way or can at least be obtained with the steps
presented.
□R: Assume R,Γ ⇒ ∆, y : □A is provable in at least n steps with y : □A as the principal

formula going upwards in the proof. Then, R, yRu, u ≤ w,Γ ⇒ ∆, w : A is provable in n− 1 steps.
By induction hypothesis, we know that the label x does not occur in R, yRu, u ≤ w,Γ ⇒ ∆, w : A
and we can replace y with x in the whole sequent and leave it provable on the same number of
steps. Thus, R[x/y], xRu, u ≤ w,Γ[x/y] ⇒ ∆[x/y], w : A is provable in n − 1 steps. Applying □R
here, we get R[x/y],Γ[x/y] ⇒ ∆[x/y], x : □A after n steps.

F2: Assume R, xRy, y ≤ z,Γ ⇒ ∆ is provable in n steps and w does not occur in any other
formula of the sequent. Further assume that xRy and y ≤ z are principal. Then, R, xRy, y ≤
z, y ≤ u, zRu,Γ ⇒ ∆ is provable after n− 1 steps. By induction hypothesis and again applying F2,
the following are all provable after n steps:

R[w/x], wRy, y ≤ z,Γ[w/x] ⇒ ∆[w/x]

R[w/y], xRw,w ≤ z,Γ[w/y] ⇒ ∆[w/y]

R[w/z], xRy, y ≤ w,Γ[w/z] ⇒ ∆[w/z]

This covers all cases of substitution which cannot use the induction hypothesis trivially.

Besides these more common structural properties, the system of labIK has the following strong
property.

Lemma 3.17 (Invertibility). All rules of labIK are invertible.

Proof. Most rules can be shown to be invertible by simply using weakening (⊃L, □L, ♢R and the
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relational rules Ref , Trans, F1 and F2). For all other rules, it simply follows from the fact that
the context of sequents is always preserved and all relational formulas are unique, meaning that
some new formula x ≤ y or xRy gets only introduced if at least y is fresh. This makes all relational
formulas distinguishable from one another and therefore connects them to some unique labelled
formulas.

This lemma essentially allows us to apply rules in any order we want; unlike in m-G3i, where
one has to be careful with the order rules are being applied in (see also examples 4.13 and 4.29).

Extending the logic IK with the axioms from the same set of HSLs and axiom D, can be
easily achieved for labIK by adding a specific rule for every axiom (see figure 3.3.3). These rules
correspond directly to the frame conditions we discussed in chapter 2. Also, just like with the frame
conditions, the general rule reduces itself when one of the indices is zero by simply leaving out xR0u
and replacing u with x.

d
R, xRy,Γ ⇒ ∆

R,Γ ⇒ ∆
(y fresh) Sn,m

R, xRny, xRmz, yRz,Γ ⇒ ∆

R, xRny, xRmz,Γ ⇒ ∆

Figure 3.3.3: Extension rules for labIK(A)

Definition 3.18. The rules of labIK(A) are the rules of labIK together with the rule d iff D ∈ A
and Sn,m iff ϕ(n,m) ∈ A for any n,m ∈ N.

All the structural results we have obtained so far also hold for the general system labIK(A) as
proving them also for the additional rules becomes trivial since they only have relational formulas
as principal formulas.

Theorem 3.19 (Soundness and Completeness). The system labIK(A) is sound and complete wrt.
to IK ⊕A, i.e. labIK(A) ⊢ B iff IK ⊕A ⊢ B for any formula B ∈ L□♢.

Proof. Special case of theorem 7.2 of [36].

As previously mentioned, it is possible to show completeness via the semantic route and counter
model construction. Though, especially with the more complex bi-relational structures, it is harder
to formulate a terminating procedure which takes care of loop checking (all rules are invertible).
Such a completeness result was recently found by Girlando et al. in [24] for the logic IS4, which is
also the first decidability result for this logic, as well as for IK in [23].

3.3.2 Nested Calculi
Another successful approach to proof-theoretically emulate modalities, which some might think
as less controversial due to the omission of semantic terms, is the use of nested sequents, the
basic idea being that we can write sequents inside some nesting [Γ ⇒ ∆], thereby essentially
”modalizing” or ”boxing” whole sequents. This builds on the idea that we want to interpret sequents
as formulas; thus, sequents inside nestings can be classically interpreted as boxed formulas, like
fm([Γ ⇒ ∆]) = □(

∧
Γ →

∨
∆). We did not have this for labelled systems, as we cannot interpret
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relations and labels into modal formulas. However, the formula interpretation does not work or at
least works differently in non-classical systems. Here, we consider so called simple nested sequents,
meaning that we only have a single type of nesting. By using, for instance, two types of nestings
we could construct a notational variant of labIK, where the two nestings correspond to the two
relations R and ≤ (see also [43]).

Just like the labelled formalism, nested sequent calculus developed from different ideas that
preceded it. This includes for example the hypersequent calculus introduced by Avron [1], the
display calculus due to Belnap [4] and the idea of making deep inferences as done already by
Schütte [49].8 This is why nested sequent systems also get referred to as deep inference systems,
as they can be thought of as a version of display calculus in which one can apply rules inside
the nesting.9 Nested sequents were first introduced in their current form by Brünnler in [8] for
classical modal logic in the S5 cube. Nested sequents were also independently discovered by Bull
[9], Kashima [27] and Poggiolesi [46] under different formalisms. Here, we will consider a single-
and multi-succedent variant of Brünnler’s calculus, essentially weaving nestings into the systems
G3i and m-G3i, which were first presented in [52] and [31], respectively.

To have better readability, Brünnler uses one-sided sequents, in which all formulas can only
occur inside the succedent of the sequent. But, as discussed before, this relies on De-Morgan laws
which we do not have in intuitionism. Instead, systems based on intuitionistic logic often use
polarisations of formulas, A• and A◦, which indicates whether the formula is inside the antecedent
(•) or succedent (◦). Formulas polarised by ◦ are also called output formulas, while •-formulas
are called input formulas. Polarised sequents are solely a notational variant of ”proper” two-sided
sequents and serve solely the purpose of readability. Thus, polarised nested sequents, henceforth
called nested sequents, are constructed by the following grammar (see [31]).

Γ,∆ ::= ∅ | Γ, A• | Γ, A◦ | Γ, [∆]

Such sequents can be used for classical or intuitionistic multi-succedent calculi while, in most
intuitionistic calculi (e.g. [52]), single-output sequents with only one ◦-formula are needed. Observe
that all nested sequents will be of the form Γ, [∆1], ..., [∆n] where Γ is nesting free and ∆i is always
some sequent, possibly with nestings.

Definition 3.20 (Sequent Tree). For a nested sequent Γ we define its tree tr(Γ) inductively by
1. the multiset of all unnested formulas of Γ form the root of tr(Γ) and
2. for any [∆] occurring in Γ, tr(∆) occurs in the tree of Γ such that the root of tr(∆) is a child

node of Γ.

Example 3.21. The sequent □¬p•, [[♢p◦], [p•], p ∨ q◦] is a polarised nested sequent which could
also be written as □¬p ⇒ [⇒ p ∨ q, [⇒ ♢p], [p ⇒]]. It gets classically interpreted into the following
formula fm(□¬p•, [[♢p◦], [p•], p ∨ q◦]) = □¬p → □((p ∨ q) ∨ □¬p ∨ □♢p). The sequent tree looks

8For a survey of structural proof systems, like hypersequent or display calculi, see [55].
9A simple example of a (shallow) display calculus for modal tense logic can be found in [27].
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as follows.
□¬p•

p ∨ q◦

♢p◦ p•

Due to nested sequents essentially being trees of sequents, this nested formalism is equivalent to
the so-called tree-hypersequent formalism, where sequents are trees of basic sequents. It furthermore
has been shown for classical modal logic that nested sequent proofs translate constructively into
labelled ones, as long as the relational labels form a tree-like structure (see [25]).

To define a deep nested proof system, we have to introduce the concept of context and holes for
nested sequents to be able to apply rules anywhere in the sequent.

Definition 3.22 (Sequent Context). A sequent with a hole (context sequent), written as Γ{}, is a
nested sequent containing a hole {} as one of its elements and is inductively defined on the depth
of the hole depth(Γ{})

- Γ, {} is a context sequent with depth(Γ{}) = 0.
- If Π{} is a context sequent with depth(Π{}) = m then Σ, [Π{}] is a context sequent with

depth(Γ{}) = m+ 1.
We write Γ{∆} when replacing the hole in Γ{} by ∆, where ∆ is itself a (possibly nested) sequent.

If the hole is replaced by an empty sequent, we also write Γ{} instead of Γ{∅}.

Similar to two-sided sequents and their rules, the context is defined by the non-active formulas
in rule applications; that is usually the part outside of the hole. Besides that, context in a nested
sequent Γ{∆} can also refer to the hole-input, in this case ∆. We also allow for sequents with several
contexts, which we can define by reiterating the process of defining a context in a sequent with an
already existing context. When talking about the depth in a multi-context sequent, we will clarify
the meaning by explicitly stating which one has an empty input. For example, depth(Γ{}{∅}) asks
for the nesting depth of the first hole of Γ{}{}.

Because we are extending the multi-conclusion calculus m-G3i in which we sometimes lose
succedent formulas in rule applications, we define the output pruning for context sequents.

Definition 3.23 (Output Pruning). For a sequent with context Γ{}, we obtain the output pruning
Γ↓{} by removing all output formulas in Γ{}.

The inference rules for m-NIK (given in figure 3.3.4 and based on [31], where it is called NIKm)
are essentially the same as for m-G3i for the non-modal cases. Notice that, besides the ⊃◦ rule, we
have a second rule □◦ in which we get rid of output formulas. We also consider here a contraction
variant from [31], which means that some rules repeat their principal formulas. This corresponds
well to the labelled system labIK from the previous section. This also means that we can have
contraction (left and right) implicitly as admissible rules.

The structural properties of m-NIK are not as well explored as for other already more established
systems. Still, a few results are present in the currently only paper where it was introduced (see
[31]).

Proposition 3.24. The rule wk is hp-admissible and Axg is derivable in m-NIK.
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Initial Sequents

Ax
Γ{p•, p◦}

⊥
Γ{⊥•}

Rules for Connectives

∧• Γ{A•, B•}
Γ{A ∧B•}

∧◦Γ{A◦} Γ{B◦}
Γ{A ∧B◦}

∨•Γ{A•} Γ{B•}
Γ{A ∨B•}

∨◦ Γ{A◦, B◦}
Γ{A ∨B◦}

⊃•Γ{A ⊃ B•, A◦} Γ{A ⊃ B•, B•}
Γ{A ⊃ B•}

⊃◦Γ
↓{A•, B◦}

Γ{A ⊃ B◦}

Modal Rules

□•Γ{□A•, [∆, A•]}
Γ{□A•, [∆]}

□◦Γ
↓{[A◦]}

Γ{□A◦}
♢•

Γ{[A•]}
Γ{♢A•}

♢◦
Γ{♢A◦, [∆, A◦]}
Γ{♢A◦, [∆]}

Figure 3.3.4: Rules for m-NIK

Axg

Γ{A•, A◦}
wk

Γ{∅}
Γ{∆}

cut
Γ{A◦} Γ{A•}

Γ{∅}

Figure 3.3.5: General axiom, weakening and cut-rule for m-NIK

Proof. Lemma 3.11 in [31]. Derivability of Axg can be shown by induction on A. Consider □A and
A ⊃ B as key cases:

... I.H.
Γ↓{[A•, A◦]}

□•

Γ↓{□A•, [A◦]}
□◦

Γ{□A•,□A◦}

... I.H.
Γ↓{A ⊃ B•, A◦, A•, B◦}

... I.H.
Γ↓{A ⊃ B•, B•, A•, B◦}

⊃•

Γ↓{A ⊃ B•, A•, B◦}}
⊃◦

Γ{A ⊃ B•, A ⊃ B◦}

Extending nested systems is much less straightforward than for semantic calculi due to our
inability of accessing the nesting tree directly. This especially applies to general extensions with
sets of axioms like Scott-Lemmon. But what has been studied extensively for nested systems are
extensions of the S5 cube (see figure 2.2.2).

Definition 3.25. For a set of formulas A ⊆ {D,B, T, 4, 5} we call m-NIK(A) the system m-NIK
extended with the following rules (see figure 3.3.6).

d[ ] if D ∈ A,
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t◦ and t• if T ∈ A,
b◦ and b• if B ∈ A,
4◦ and 4• if 4 ∈ A, and
5◦ and 5• if 5 ∈ A.

d[ ]Γ{[ ]}
Γ{∅}

t◦
Γ{♢A◦, A◦}
Γ{♢A◦}

b◦Γ{[∆,♢A◦], A◦}
Γ{[∆,♢A◦]}

4◦
Γ{[∆,♢A◦],♢A◦}

Γ{[∆],♢A◦}
5◦

Γ{♢A◦}{♢A◦}
Γ{♢A◦}{∅}

†

t•
Γ{□A•, A•}
Γ{□A•}

b•Γ{[∆,□A•], A•}
Γ{[∆,□A•]}

4•
Γ{[∆,□A•],□A•}

Γ{[∆],□A•}
5•

Γ{□A•}{□A•}
Γ{□A•}{∅}

†

(† : depth(Γ{}{∅}) > 0)

Figure 3.3.6: Extension rules for m-NIK

Unlike most axioms, extending the logic with D can be done with a single rule, instead of having
a rule for each side of the sequent. This rule, it turns out, is even necessary if we want our system
to have contraction on the right as an admissible rule, as noted in [35]. Still, we can derive a
corresponding pair of rules that match the structure of the other ones. In the case of d◦, it looks
like the following, while the case for d• is similar.

Γ{♢A◦, [A◦]}
d◦

Γ{♢A◦}
⇝

Γ{♢A◦, [A◦]}
♢◦

Γ{♢A◦, [ ]}
d[ ]

Γ{♢A◦}

Brünnler noted in [8] that, though such a nested system is mostly extendable in a modular way,
it does not work out fully. He showed that his classical nested calculus extended with the rules for
T and 5 cannot prove axiom 4, though it follows from S5. To circumnavigate this issue, he showed
that it is enough to consider a 45-closed (also 45-complete) rule set.

Definition 3.26. Let A ⊆ {D,B, T, 4, 5}. A is called 45-closed if the following conditions are
fulfilled:

1. if IK ⊕A ⊢ 4 then 4 ∈ A
2. if IK ⊕A ⊢ 5 then 5 ∈ A.

This allows us to state the completeness theorem for the nested multi succedent calculus.

Theorem 3.27. For a 45-closed set A ⊆ {D,B, T, 4, 5} the calculus m-NIK(A) is sound and
complete wrt. the intuitionistic modal logic IK ⊕A.

Proof. Theorem 5.3 in [31] together with how 45-closure is defined.

Remark 3.28. The completeness part of the referenced theorem 5.3 ([31]) relies on a possibly
infinite counter model construction. It furthermore establishes soundness and completeness for the
provability of sequents and their interpretation in a model. Simple completeness wrt. formulas can
also be obtained via a more syntactic route.
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Corollary 3.29 (Cut admissibility). For some 45-closed A ⊆ {D,B, T, 4, 5} the rule cut is admis-
sible in m-NIK(A).

Proof. See corollary 5.22 in [31].
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Chapter 4

Proof Translations

In the following sections, we will introduce the general concept of effective translations for derivation
trees. Furthermore, we will discuss already established results for translations in modal logic; these
are often connecting labelled and nested formalisms. This includes the currently only existing
connection between calculi for intuitionistic modal logic. Finally, we will establish a new translation
between the multi-succedent nested system m-NIK and the bi-labelled calculus labIK, which we
introduced in the previous chapter.

4.1 Translations in General
When considering different calculi for the same class of logics, a natural question to ask is how these
systems relate to one another. We may, for example, ask which structural properties they have or
how complex their derivations are. One way to explicitly establish a relation is via a constructive
(or effective) proof translation.

If we have two different systems for the same logic, we naturally could transform a derivation of
one into a proof of the other system by simply doing proof search, but this is a very non-constructive
procedure that does not say anything about the structural relationship. We are therefore interested
in algorithmic transformations of derivations for which we can explicitly state a general procedure.

In the best case, these translations also allow us to keep structural properties and see, for exam-
ple, the limits of modularity for different calculi. A classic example for this is the relation between
labelled and nested systems for classical modal logic, which have been shown to be notational
variants of each other by Goré and Ramanayake in [25]. In their paper, Goré and Ramanayake
specifically limit themselves to tree-like labelled structures which correspond to the tree-like struc-
ture one obtains when reading out nested sequents. The paper mainly considers systems induced
by the translation. This means that they considered different systems for the same logic and simply
translate the respective rules to gain rules for the other formalism. They specifically compared
two systems for the provability logic GL, namely Negri’s labelled G3GL (see [39]) and Poggiolesi’s
tree-hypersequent calculus CSGL (see [46]). These were found to be almost equivalent, except that
G3GL does not necessarily rely on a tree structure; G3GL also relies on relational rules that create
new structure, while CSGL uses propagation rules which can move formulas along the structure.

The first result on modular translations between calculi for intuitonistic modal logic was obtained
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in [32]. There, Lyon relates the Simpson calculus to the nested single succedent calculus for the
class of logics covered by IK ⊕ A. Essentially, Simpson’s calculus L□♢(A) is the ≤-free version of
our labIK(A) together with restricting sequents to a single succedent formula. The nested system,
referred to as NIK(A), is obtained by restricting m-NIK(A) to single succedent sequents. For a
proper definition of these calculi, see the paper [32].

While the translation for derivations for the logic IK is almost trivial in light of the result from
Goré and Ramanayake in [25], the main point of interest in Lyon’s paper is the employment of the
structural refinement method. This allows one to formulate a general class of axiom extensions
(here Horn-Scott-Lemmon axioms) for the nested calculus. These rules are being extracted by the
propagation rules for the labelled system, which are equivalent to the extension rules while not
introducing new relational formulas. To formulate these propagation rules, Lyon relies on some
grammar theoretic concepts that help to identify the structure of a nested sequent.

In section 4.2, we formulate a constructive proof translation from derivations of m-NIK to
derivations of labIK. In section 4.3, we do something similar in the opposite direction, although
the translation, while being effective, requires additional work on the form of derivation trees. We
will first introduce two search procedures which will give us derivations that have the desired form
for translating them, so we can do the reverse translation in a final step. We omit any translations
from extensions of IK, although they should be easy to obtain by a similar method as in [32].

4.2 Translating from m-NIK to labIK
To define the full translation, we will make use of admissible rules in labIK (see figures 3.3.1 and
3.3.2). The broad idea of the translation is that we translate the tree-structure of nested sequents
into a tree of relational R formulas in the labelled formalism, as it is usual for such translations.
This makes the translation quite easy, as we only consider sequents without any ≤-formulas and
thus with a lot less structure.

For that we will define a few tools and concepts on the way. Let us first define the operator ⊗
(see also [25]), which can be seen as a kind of disjoint union for labelled sequents. It is defined for
any two labelled sequents as

(R,Γ ⇒ ∆)⊗ (R′,Σ ⇒ Π) = R,R′,Γ,Σ ⇒ ∆,Π.

We say that a labelled sequent R,Γ ⇒ ∆ is a subsequent of R′,Γ′ ⇒ ∆′, written (R,Γ ⇒ ∆) ⊆
(R′,Γ′ ⇒ ∆′), if we can write R′,Γ′ ⇒ ∆′ as a sequent union (R,Γ ⇒ ∆)⊗ (R′′,Σ ⇒ Π) for some
sequent R′′,Σ ⇒ Π.

Another helpful definition for making things more readable are polarised multisets Γ• and Γ◦,
where every formula in the set has the respective polarity (e.g. Γ• = {A• | A ∈ Γ}). We note that
every unnested sequent in m-NIK can be written in terms of two sets of different polarity, as an
unnested sequent is nothing more than a multiset of polarised formulas which are either succedent
or antecedent formulas. For example, the sequent p•,□p◦, p ⊃ q◦,¬q• can be divided into two
sets Γ•,∆◦ where Γ• = {p•,¬q•} and ∆◦ = {□p◦, p ⊃ q◦}; this is also reminiscent of the sequent
formulation Γ ⇒ ∆.

For the following definition, we use the labelling of a multiset of formulas Γ ⊆ L□♢ with a label
x as x : Γ, which is defined as the multiset {x : A | A ∈ Γ} containing all formulas from Γ labelled
with x.
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Definition 4.1 (From nested to labelled sequents). For a nested sequent Γ, we define its translation
into a fully labelled sequent by induction on nesting depth.

Lx(Γ•
1,Γ

◦
2) = x : Γ1 ⇒ x : Γ2

Lx(Γ•
1,Γ

◦
2, [∆1], ..., [∆n]) = (xRy1, ..., xRyn, x : Γ1 ⇒ x : Γ2) ⊗ (⊗n

i=1L
yi(∆i)) where all labels

x, y1, ..., yn are pairwise disjoint.

Notice that this translation has similarities with definition 3.20, where we already saw that a
nested sequent can be read out as a tree. As we will see soon, this will also be the case for their
labelled translations. To translate the rules of m-NIK, we would like to represent translations where
only a context is known, for which we need the following lemma.

Lemma 4.2. For any nested sequent Γ{∆} with some non-empty context ∆, one can always write
the labelled translation in the following form. Lx(Γ{∆}) = Lx(Γ{})⊗Ly(∆). Furthermore, we have
xRny ∈ Lx(Γ{}) with depth(Γ{}) = n.

Proof. By induction on the depth of the context depth(Γ{}) = n.
If n = 0, then Γ{∆} = Γ,∆ for some (possibly empty) multiset Γ. Observe then that for an

empty context we have Γ{} = Γ. So,

Lx(Γ{∆}) = Lx(Γ,∆)

= Lx(Γ•
1,Γ

◦
2,∆

•
1,∆

◦
2)

= x : Γ1, x : ∆1 ⇒ x : Γ2, x : ∆2

= (x : Γ1 ⇒ x : Γ2)⊗ (x : ∆1 ⇒ x : ∆2)

= Lx(Γ)⊗ Lx(∆)

= Lx(Γ{})⊕ Lx(∆)

with xR0x by equivalently x = x.
If the sequent ∆ occurs inside a nesting of some depth n > 0 inside Γ{∆}, we can rewrite the

sequent such that ∆ occurs explicitly nested in the sequent. We do this by first observing that the
sequent [∆,Σ] must occur in Γ{∆} for some (possibly empty) sequent Σ. Second, we can rewrite
Γ{∆} into a sequent with [∆,Σ] as the context; we call it Γ′{[∆,Σ]}. Because depth(Γ′{}) = n−1 <
n, we can use the induction hypothesis: Lx(Γ′{[∆,Σ]}) = Lx(Γ′{})⊗Ly([∆,Σ]) with depth(Γ′{}) =
n− 1 and xRn−1y ∈ Lx(Γ′{}). By definition, we have Ly([∆,Σ]) = (yRz ⇒)⊗ Lz(∆)⊗ Lz(Σ) for
some fresh label z. Therefore,

Lx(Γ{∆}) = Lx(Γ′{[∆,Σ]})
= Lx(Γ′{})⊗ (yRz ⇒)⊗ Lz(∆)⊗ Lz(Σ)

Reusing the induction hypothesis to gain Lx(Γ{}) = Lx(Γ′{[Σ]}) = Lx(Γ′{})⊗(yRz ⇒)⊗Lz(Σ) we
can replace terms to get Lx(Γ{∆}) = Lx(Γ{})⊗Lz(∆) with xRn−1yRz, so xRnz and depth(Γ{}) =
n.

Before we continue, we will introduce some notation which will be helpful when working with
label substitutions and the following lift lemma. We abbreviate a tuple of labels (x1, ..., xn) as x.
We further simplify working with labelled sequents by generally referring to them as S, therefore
also simplifying variable substitution from R[x/y],Γ[x/y] ⇒ ∆[x/y] to S[x/y]. We also allow for
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substituting multiple variables at once, which we will denote as S[x/y] where x and y have the same
size and where every xi ∈ x substitutes for yi ∈ y. Finally, we also need the concept of output
pruning for labelled sequents, which we will denote as S↓ and is simply defined as removing all
succedent formulas from S.

Another helpful concept is the one of layers, which occur in labelled sequents and refer to a set
of labels which are only connected through R relational formulas. They can structurally be thought
of as the tree-structure of nested sequents, as long as they are also tree-like. The following two
definitions have been taken from [23].

Definition 4.3 (Tree-Layer). For a labelled sequent R,Γ ⇒ ∆, let RR be the set of relational
formulas in R of the form xRy. We call R↔

R the reflexive transitive closure of RR ∪R−1
R . By R↔

R

being an equivalence relation, we define a layer L to be an equivalence class of R↔
R . We call L a

tree-layer, if it constitutes an irreflexive, anti-transitive and rooted tree.

If there is only a single equivalence class in R↔
R , we also call the sequent R,Γ ⇒ ∆ a single-layer

sequent, or tree-layer sequent if R↔
R is also a tree-layer. The label which is the root of a tree-layer

sequent R,Γ ⇒ ∆, is called root(R,Γ ⇒ ∆).

Definition 4.4 (Layered sequent). We say that a labelled sequent S is layered iff for any labels
x, y, x′, y′ occurring in S:

1. if xR↔
R y for x ̸= y, then x ≰ y and y ≰ x; and

2. if xR↔
R y, x′R↔

R y′ and x ≤ x′ for x ̸= x′, then y′ ≰ y.
For layers L1 and L2 in S, we define L1 ≤S L2 whenever there are labels x ∈ L1 and y ∈ L2 such
that x ≤ y. A layered sequent consisting only of tree-layers is called tree layered.

We will use the symbol R↔
R , just like R and ≤, to refer to a set of ordered pairs in the ”structure”

of relational labels. We also try to make the distinction between single-layer and layered sequents
clear by always hyphenating the former but not the latter.

Proposition 4.5. For any nested sequent Γ and any label x, Lx(Γ) is a tree-layer sequent.

Proof. Follows immediately from the definition of nested sequents and the translation Lx.

Proposition 4.6. Let T be a derivation of a layered sequent S in labIK, then every sequent in T
is a layered sequent.

Proof. Bottom-up induction on the height of T . S is layered. The only steps we have to consider
are rule applications where we introduce new structure and variables. In general, we only have to
consider the set of relational atoms R and how it changes for these rule applications.

⊃R : Assume R is layered. Then, R, x ≤ y is also layered for a y not occurring in R because
y cannot be R-related to any other label and therefore constitutes the first label of a new layer.
There is also no state z s.t. y ≤ z and y ̸= z, so condition 2 of definition 4.4 is fulfilled.

Ref : Follows immediately.
Trans: We assume some layered set of relational formulas R, x ≤ y, y ≤ z with x ̸= y ̸= z.

We can deduce that x ̸= z, because z must have been freshly introduced at some point in the
derivation, where x was already present. Further, we can say that y ≰ x, z ≰ y and z ≰ x, because
the rules of labIK work in such a way that fresh labels can only occur in the second argument of
≤ relational formulas. We show that R, x ≤ y, y ≤ z, x ≤ z is layered. Condition 1 is fulfilled
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immediately. To check that the added formula of x ≤ z does not break condition 2, we have to
see that there are no labels u, v with the following property: xR↔

R u, zR↔
R v and v ≤ u. This gives

some circle x ≤ y ≤ zR↔
R v ≤ uR↔

R x. And because every fresh label has to be introduced in the
second argument of ≤ relational formulas, this must be impossible. Thus, such labels u, v existing
is impossible.
♢L: Let R be the relation formulas of a layered sequent. Consider R, xRy with x ∈ R and

y /∈ R. Because y is fresh and there is no new ≤-formula, all conditions are fulfilled.
□R: Apply both arguments of ⊃R and ♢L.
F1: Say, that the relational formulas of the conclusion of F2, that is R, xRy, y ≤ z, is layered.
We show that R, xRy, y ≤ z, x ≤ u, uRz is layered for a fresh u. As only u is fresh, we only have

to check whether its relations to other labels satisfies the condition of definition 4.4. For condition
1, we know that u and z are related through R↔

R and therefore have to show that z and u are not
≤-related. This follows from u being fresh, so no other relational formula with u could have been
introduced. For condition 2, we have to consider xR↔

R y, uR↔
R z and x ≤ u. Thus, we need to show

that z ≰ y, which follows from the inductive hypothesis.
F2: Same as F1.

Corollary 4.7. Any sequents in a labIK derivation of a single formula sequent ⇒ x : A are layered
sequents.

Proof. ⇒ x : A is layered by R = ∅, so by proposition 4.6 the corollary follows.

For translating nested sequent proofs, it is important that we can duplicate layers in a derivation.
This is because, for some rules, the labelled calculus creates new layers, while nested sequents simply
keep their full structure. For example, after an application of □R in labIK, the relational set might
have the following structure.

• •

•

• • •

R

≤

R

R

R

In the nested system m-NIK the ”same” rule application of □◦ would result in a nested sequent
which has the following nesting-tree.

• •

• • •

Therefore, we would like to be able to copy all the structure we have in layers which are lower
with regards to ≤ into higher ones. This also includes the ”lifting” of antecedent formulas, which is
covered by the admissibility of mong

L. The rule which we will show is admissible in labIK is defined
as follows.
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Definition 4.8 (Lift Rule). For two tree-layer sequents S and S′ who do not share any labels and
with x occurring in S and y occurring in S′, we define the following rule.

lift
S↓ ⊗S′

[x/y]

(x ≤ y ⇒)⊗S⊗S′

As the next lemma will show, the rule lift is admissible in labIK. As an example, consider the
sequent x ≤ y, xRz, yRu, x : A ⇒ y : B, z : C, where we have S = (xRz, x : A ⇒ z : C) and
S′ = (⇒ y : B). In the following, we show on one side how the lifting rule gets upwards applied to
this sequent, while on the other side we have the rule F2.

xRz, xRu, x : A ⇒ x : B
lift

x ≤ y, xRz, yRu, x : A ⇒ y : B, z : C

x ≤ y, z ≤ z′, xRz, yRz′, yRu, x : A ⇒ y : B, z : C
F2

x ≤ y, xRz, yRu, x : A ⇒ y : B, z : C

See that the derivability of the sequent in the premise of lift also implies that the sequent
obtained from F2 is derivable. We can show this explicitly by giving the following derivation of
admissible rules.

xRz, xRu, x : A ⇒ x : B
subV

yRz′, yRu, y : A ⇒ y : B
wk

x ≤ y, z ≤ z′, xRz, yRz′, yRu, x : A, y : A ⇒ y : B, z : C
mong

L
x ≤ y, z ≤ z′, xRz, yRz′, yRu, x : A ⇒ y : B, z : C

We write a double line in a derivation tree to signal multiple rule applications of the same rule
in a row. Here, it is the rule subV , where we substitute y for x and z′ for z. By applying the rule
F2 in a final step, we would come back to the sequent we have considered at the start, namely the
conclusion of the lift rule.

This shows that, in this specific case, the rule is admissible in labIK. We can use a similar method
to show the admissibility of lift in general. Notice that, unlike in our example, most applications
of lift will correspond to multiple applications of the confluence rules F1 and F2.

Lemma 4.9. The rule lift is admissible in labIK.

Proof. We assume for the admissibility that the premise sequent is derivable in labIK, namely
S↓⊗S′

[x/y]. Define v = (v1, ..., vm) as the labels occurring in S, except for x, and w = (w1, ..., wm)
as a tuple of fresh labels wi. Furthermore, let RR be the set of R-formulas in S. We do the following
admissible steps that give us another derivable sequent in the consequent. Except for weakening,
where we can introduce all formulas at once, every rule application will happen multiple times in a
row. The steps using the general monotonicity rule mong

L is the most essential one. It deletes all non-
relational formulas in S↓

[y/x][w/v], which are all antecedent formulas. They all can be respectively
paired up with a formula from S s.t. they only have different labels, which are connected via some
≤-atom in x ≤ y.
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S↓ ⊗S′
[x/y]

subV

S↓
[y/x] ⊗S′

subV

S↓
[y/x][w/v] ⊗S′

wk
(v ≤ w, x ≤ y ⇒)⊗S↓

[y/x][w/v] ⊗S↓ ⊗S′

mong
L

(v ≤ w, x ≤ y ⇒)⊗ (R[y/x][w/v] ⇒)⊗S↓ ⊗S′

wk
(v ≤ w, x ≤ y ⇒)⊗ (R[y/x][w/v] ⇒)⊗S⊗S′

F1, F2
(x ≤ y ⇒)⊗S⊗S′

The last set of steps consists of applications of the confluence rules, F1 and F2, which we can
carefully apply: beginning at the root and leafs of the structure R[y/x][w/v], which only consists of
R relational formulas, we can delete all of the formulas in R[y/x][w/v] while retaining x ≤ y. This
will also delete all formulas in v ≤ w, giving us a derivation of (x ≤ y ⇒)⊗S⊗S′, showing that
the rule lift is admissible.

Remark 4.10. Notice that we do not require the premise of the lift rule to be a tree-layer sequent.
This would usually be granted by requiring that the root of the tree-layer sequent S′ is y, which
we can always assume for our purposes as there is no rule directly creating a backwards looking
R-atom.

Now, we are ready to proof the essential lemma for the translation.

Lemma 4.11. Call labIK+ the system obtained from labIK by adding the admissible rules monL,
subV and lift. Let

∆1, ...,∆n

Γ

be any rule from m-NIK with n = 0, 1, 2. Then, the corresponding rule

Lx(∆1), ...,L
x(∆n)

Lx(Γ)

is derivable in labIK+.

Proof. Ax: Γ = Γ{p•, p◦}
We know from lemma 4.2 that we can write the labelled sequent Lx(Γ{p•, p◦}) as Lx(Γ{}) ⊗
Ly(p•, p◦) = Lx(Γ{})⊗ (y : p ⇒ y : p). By the following derivation, it is shown that the translated
sequent is derivable.

Ax
Lx(Γ{})⊗ (y ≤ y, y : p ⇒ y : p)

Ref
Lx(Γ{})⊗ (y : p ⇒ y : p)
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⊥: Γ = Γ{⊥•}
Write Lx(Γ{⊥•}) = Lx(Γ{})⊕ (y : ⊥ ⇒), which is already an initial sequent in labIK.

∧•: Γ = Γ{A ∧B•} and ∆1 = Γ{A•, B•}
We translate these sequents as Lx(Γ{A ∧ B•}) = Lx(Γ{}) ⊗ (y : A ∧ B ⇒) and Lx(Γ{A•, B•}) =
Lx(Γ{})⊗ (y : A, y : B ⇒), related through the following derivation.

Lx(Γ{})⊗ (y : A, y : B ⇒)
∧L

Lx(Γ{})⊗ (y : A ∧B ⇒)

∧◦: Γ = Γ{A ∧B◦}, ∆1 = Γ{A◦} and ∆2 = Γ{B◦}
With translation by lemma 4.2 we can construct the following derivation.

Lx(Γ{})⊗ (⇒ y : A) Lx(Γ{})⊗ (⇒ y : B)
∧R

Lx(Γ{})⊗ (⇒ y : A ∧B)

For ∨• and ∨◦, the proofs work the same way as the previous two.

⊃•: Γ = Γ{A ⊃ B•}, ∆1 = Γ{A ⊃ B•, A◦} and ∆2 = Γ{A ⊃ B•, B•}
The translations are Lx(Γ{A ⊃ B•}) = Lx(Γ{}) ⊗ (y : A ⊃ B ⇒), Lx(Γ{A ⊃ B•, A◦}) =
Lx(Γ{}) ⊗ (y : A ⊃ B ⇒ y : A) and Lx(Γ{A ⊃ B•, B•}) = Lx(Γ{}) ⊗ (y : A ⊃ B, y : B ⇒). The
translated rule can then be derived by the following.

Lx(Γ{})⊗ (y : A ⊃ B ⇒ y : A)
wk

Lx(Γ{})⊗ (y ≤ y, y : A ⊃ B ⇒ y : A)

Lx(Γ{})⊗ (y : A ⊃ B, y : B ⇒)
wk

Lx(Γ{})⊗ (y ≤ y, y : A ⊃ B, y : B ⇒)
⊃L

Lx(Γ{})⊗ (y ≤ y, y : A ⊃ B ⇒)
Ref

Lx(Γ{})⊗ (y : A ⊃ B ⇒)

⊃◦: Γ = Γ{A ⊃ B◦} and ∆1 = Γ↓{A•, B◦}
The translated sequents are Lx(Γ{A ⊃ B◦}) = Lx(Γ{}) ⊗ (⇒ y : A ⊃ B) and Lx(Γ↓{A•, B◦}) =
Lx(Γ↓{})⊗ (y : A ⇒ y : B). Observe that Lx(Γ↓{}) only consists of antecedent formulas, meaning
we can utilise the lifting from lemma 4.9.

Lx(Γ↓{})⊗ (y : A ⇒ y : B)
lift

Lx(Γ{})⊗ (y ≤ y′ ⇒)⊗ (y′ : A ⇒ y′ : B)
⊃R

Lx(Γ{})⊗ (⇒ y : A ⊃ B)

□•: Γ = Γ{□A•, [∆]} and ∆1 = Γ{□A•, [∆, A•]}
First, observe that Ly(□A•, [∆]) = (yRz, y : □A ⇒) ⊗ Lz(∆). So, we can write the translated se-
quents as Lx(Γ{□A•, [∆, A•]}) = Lx(Γ{})⊗(yRz, y : □A, z : A ⇒)⊗Lz(∆) and Lx(Γ{□A•, [∆]}) =
Lx(Γ{})⊗ (yRz, y : □A ⇒)⊗ Lz(∆).
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Lx(Γ{})⊗ (yRz, y : □A, z : A ⇒)⊗ Lz(∆)
wk

Lx(Γ{})⊗ (yRz, y ≤ y, y : □A, z : A ⇒)⊗ Lz(∆)
□L

Lx(Γ{})⊗ (yRz, y ≤ y, y : □A ⇒)⊗ Lz(∆)
Ref

Lx(Γ{})⊗ (yRz, y : □A ⇒)⊗ Lz(∆)

□◦: Γ = Γ{□A◦} and ∆1 = Γ↓{[A◦]}
Again, using lemma 4.2 and lemma 4.9 we can write Lx(Γ{□A◦}) = Lx(Γ{}) ⊗ (⇒ y : □A) and
Lx(Γ↓{[A◦]}) = Lx(Γ↓{}) ⊗ (yRz ⇒ z : A) and translate the rule as follows. Notice that, by
definition of the translation, the variable z cannot occur in R.

Lx(Γ↓{})⊗ (yRz ⇒ z : A)
lift

Lx(Γ{})⊗ (y ≤ u ⇒)⊗ (uRz ⇒ z : A)
□R

Lx(Γ{})⊗ (⇒ y : □A)

Finally, showing the translation for ♢• and ♢◦ works just like the previous two cases, except
that we do not need any application of Ref and lift.

Theorem 4.12 (From m-NIK to labIK). For any sequent Γ, if m-NIK ⊢ Γ then labIK ⊢ Lx(Γ).
Furthermore, the translation is effective in that we can constructively translate the full derivation
into an admissible derivation for labIK using only rules of labIK+.

Proof. Use lemma 4.11 to construct a derivation of Lx(Γ) in labIK by induction on the height of
the proof. Because all rules of labIK+ are admissible in labIK, we have that Lx(Γ) is also derivable
in labIK.

Though the translation uses additional admissible rules, we conjecture that all of them would
be eliminable if one chooses to translate in a ”weaker” way. Firstly, one could translate the premise
and conclusion sequents of certain rules under different labels. Secondly, when allowing to weaken
the sequent already in the process of translating, we might not have to rely on weakening. Both
these steps rely on making Lx more versatile in that the choice of labels and weakened formulas
depends heavily on which rules are used on this sequent as well as from which ones it was obtained.
Instead, we could also include the admissible rules of wk, subV and lift as primitive rules of labIK
to gain a more satisfying proof translation.

4.3 Translating from labIK to m-NIK
This section presents a translation from labIK, the labelled sequent calculus presented in section
3.3.1, and m-NIK, which was presented in section 3.3.2. We will do the translation in two major
steps. At first, in subsection 4.3.1, we will define a proof search procedure that yields sequents of
a certain form, which we can translate into the nested formalism. The trouble with considering
arbitrary derivations in labIK for translating is that we have a lot more structure in sequents,
and the proof system labIK is also fully invertible, unlike m-NIK. This makes only certain rule
applications possible to translate properly. In a second step, subsection 4.3.2, we will define the
translation function for these specific sequents obtained from the algorithm, and show that we can
translate the rule into their respective counterpart of m-NIK.
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4.3.1 Algorithm for Linear Proofs
Let us first acknowledge the fact that bi-labelled sequents, which have two types of relations,
are generally not translatable into nested sequents. The latter only internalises the R-relation.
Therefore, bi-labelled sequents carry more information than nested ones. To reduce this information,
we only want to look at the topmost layer of the labelled sequent. This requires a labIK derivation
to have a certain form, if we want to translate it. One might either try to modify an existing tree
such that it displays the desired form. Alternatively, we can impose a certain proof search procedure
that will give us such a derivation. The latter approach is less constructive as it does not translate
derivations directly and therefore does not allow for any transferal of structural properties. At
the same time, this approach is simpler to handle as it only requires a sophisticated proof search
algorithm, instead of constructing a working procedure to edit an already-established derivation
tree. Here, we will focus on creating a specific derivation tree in labIK which has the right form to
be translated. To sketch the problem at hand, let us consider the following example.

Example 4.13. Consider the derivation of the sequent x : □(p ∧ q) ⇒ x : □p, x : q ⊃ p in labIK.
Ax

x ≤ y, x ≤ z, zRu, u ≤ u, x : □(p ∧ q), u : p, u : q, y : q ⇒ u : p, y : p
Ref

x ≤ y, x ≤ z, zRu, x : □(p ∧ q), u : p, u : q, y : q ⇒ u : p, y : p
∧L

x ≤ y, x ≤ z, zRu, x : □(p ∧ q), u : p ∧ q, y : q ⇒ u : p, y : p
□L

x ≤ y, x ≤ z, zRu, x : □(p ∧ q), y : q ⇒ u : p, y : p
□R

x ≤ y, x : □(p ∧ q), y : q ⇒ x : □p, y : p
⊃R

x : □(p ∧ q) ⇒ x : □p, x : q ⊃ p

Observe that the derivation does not rely on the application of ⊃R, as the initial sequent is formed
from states that do not rely on y. Similarly, if we would try to prove the corresponding sequent in
the nested calculus m-NIK, i.e. □(p ∧ q)•,□p◦, q ⊃ p◦, we would not gain a valid proof tree if we
applied ⊃◦ first. So, we would have to backtrack to apply □R instead.

As we will see, this translatability corresponds to labelled sequents keeping a certain form,
which we will call linearly layered. By proposition 4.6 and corollary 4.7, we already know that any
sequent that occurs in a derivation of a sequent of the form ⇒ x : A is layered. We also know from
proposition 6.7 in [24] that the relation ≤S between layers is always tree-like. Now, we want to
restrict this further so that ≤S is linear.

Definition 4.14 (Linearly layered sequents). A labelled sequent S is linearly layered, if it is tree
layered and the relation ≤S is non-branching (i.e. there are no layers L1, L2, L3 s.t. L1 ≤ L2,
L1 ≤S L3, L2 ≰S L3 and L3 ≰S L2).

If we have a linearly layered sequents, we are able to find ≤S-maximal (as well as a minimal)
layers in the sequent. We call Lmax (or Lmax(S) if we want to make it explicit which sequent it is
the maximum layer of) the set of labels that make up this layer. We will establish how to obtain
linear layeredness by working towards a proof search algorithm. At first, we will introduce some
general notions that are important to define the algorithm, then we introduce a primitive algorithm
that helps us proving that the final algorithm will actually terminate.

We rely on ideas from [23] for the proof search algorithm. Just like most proof search algorithms,
implementing it directly will usually exhaust the whole search space and therefore might create
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sequents that are non-linear and thus untranslatable. For instance, multiple applications of ⊃R
and □R in the same layer will create some branching in the structure of ≤S. To prevent such a
thing from happening, we shall rely on the single succession property (lemma 4.24) for labIK, which
will allow us to only choose one application of multiple possible ⊃R and □R on the same layer. To
be able to make this choice, a sequent has to be what we will call saturated. This property is also
called almost happy in [23], as almost all formulas have been analysed in such a sequent.

To make the notation easier for the next definition, we also use polarised formulas for labelled
sequents. It is clear where relational formulas appear in a labelled sequent S = (R,Γ ⇒ ∆), such
that we can just write xRy ∈ S, meaning xRy ∈ R. We would like to do the same for the other
labelled formulas, without having the need to refer to the antecedent or succedent set directly. We
therefore define x : A◦ as the formula x : A occurring in the succedent of a sequent and respectively
x : A• as the formula x : A occurring in the antecedent.

Definition 4.15 (Saturated Sequents). We call a sequent S saturated, if it satisfies the following
conditions for any labels x, y, z occurring in S:

1. The following formulas are not contained in S: x : A∧B◦, x : A∨B◦, x : A∧B•, x : A∨B•

and x : ♢A•.

2. If x : A ⊃ B• ∈ S, then for each x ≤ y ∈ S it holds that either y : A◦ ∈ S or y : B• ∈ S.

3. If x : □A• ∈ S, then for each x ≤ y, yRz ∈ S it holds that z : A• ∈ S.

4. If x : ♢A◦ ∈ S, then for each xRy ∈ S it holds that y : A◦ ∈ S.

To incorporate saturation as a part of our proof search procedure, we introduce the notion of
saturation tree.

Definition 4.16 (Saturation Tree). The saturation tree T of a sequent S is a derivation tree built
only of the rules ∧L, ∧R, ∨L, ∨R, ⊃L, □L, ♢L and ♢R, where all leaves are saturated and S is
the root of T . We call the leaves of T saturations of S.

See that the saturation tree always exists for any labelled sequent, as we can satisfy all conditions
of sequent saturation by applying respective rules. See also that, except for ♢L, all rule applications
of saturation will not introduce new labels. The process of saturation will always terminate, as we
only introduce finitely many new labels via ♢L. All other rules analyse formulas. Rules which can
be applied multiple times, ⊃L, □L and ♢R, are also only applied a finite amount of times, as there
are only finitely many labels. Finally, as there can only be finitely many relational formulas xRy,
condition 4 of definition 4.15 will be fulfilled after finitely many applications of ♢R.

One of the essential steps for our algorithm and for the ability to define the sequent translation
in the first place will the lifting of a labelled sequent (see [23]). Unlike the previously introduced
lift rule, this lifting is defined for any sequent and only uses the primitive rules of labIK.

Definition 4.17 (Lifting). Let S be a saturated tree layered sequent, and let L = {y1, ..., yn} be a
layer in S with x ∈ L. Let L̂ = {ŷ1, ..., ŷn} be a fresh set of labels. We define S↑x to be the sequent
containing for every i ∈ {1, ..., n}:

1. relational atom ŷi ≤ ŷi;

2. for every label w occurring in S: the relational atom w ≤ ŷi whenever w ≤ yi ∈ S;

43



3. for every i′ ∈ {1, ..., n}: the relational atom ŷiRŷi′ whenever yiRyi′ .

For some formula x : F ◦ ∈ S with F = A ⊃ B or F = □A, we define the lifting S↑x:F◦
as

follows:

- If F = A ⊃ B, then S↑x:A⊃B◦
= S↑x ⊗(x̂ : A ⇒ x̂ : B) with x ≤ x̂.

- If F = □A, then S↑x:□A◦
= S↑x ⊗(x̂Rz, z ≤ z ⇒ ẑ : A) with x ≤ x̂ and z fresh.

Note that, in principle, lifting can also be applied to any labelled sequent; for example, sequents
that are neither saturated nor tree layered. Just like for saturation, we can obtain the lifting tree
of a sequent, which we will write as a single rule application.

Definition 4.18 (Lifting Rule). The lifting rule for a formula x : F with F = A ⊃ B or F = □A
is defined as follows.

S⊗S↑x:F
liftingx:F

S

We note that the lifting rule is admissible in labIK, by construction. The rule can also be seen
as a generalisation of the rule lift (see definition 4.8) together with an application of weakening
and either ⊃R (F = A ⊃ B) or □R (F = □A).

Example 4.19. Consider the following (relationally saturated) sequent xRy, yRz, x ≤ x, y ≤ y, z ≤
z ⇒ y : □A whose relational structure we can represent as follows (we omit reflexive relational
formulas).

x y zR R

Let us apply the lifting rule to the sequent with F = □A. First, we essentially apply the rule □R
(also with Ref) to get the sequent xRy, yRz, x ≤ x, y ≤ y, z ≤ z, y ≤ ŷ, ŷRu, u ≤ u ⇒ u : A with
its relational structure:

u

ŷ

x y z

R

R

≤

R

Now, we simply compute the lifting over y, which can be done in a proof by using the relational
rules. The lifting itself gives us the sequent x̂ ≤ x̂, ŷ ≤ ŷ, ẑ ≤ ẑ, x ≤ x̂, y ≤ ŷ, z ≤ ẑ, x̂Rŷ, ŷRẑ ⇒.
So, together we obtain the sequent xRy, yRz, y ≤ ŷ, ŷRu, u ≤ u, x ≤ x, y ≤ y, z ≤ zx̂ ≤ x̂, ŷ ≤
ŷ, ẑ ≤ ẑ, x ≤ x̂, y ≤ ŷ, z ≤ ẑ, x̂Rŷ, ŷRẑ ⇒ u : A with the relational structure:
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u

x̂ ŷ ẑ

x y z

R

R

R

≤

R

≤

R

≤

Notice that the non-reflexive ≤ formulas (x ≤ x̂, y ≤ ŷ, z ≤ ẑ) come from condition 2 of definition
4.17 and the fact that we already had reflexive ≤ formulas x ≤ x, y ≤ y and z ≤ z.

We rely on the notion of redundant rules. These are rule applications in a derivation tree which
do not yield any new information and can be deleted in principle. They are defined as follows.

Definition 4.20 (Redundant Rules). A rule application in labIK

S1, ...,Sn

S

with n = 1, 2 is redundant, either if it introduces a labelled formula in some Si that was already in
S, or

- the rule is an instance of F1 and it introduces some x ≤ u, uRz in S1 while there are already
some x ≤ w,wRz in S; or

- the rule is an instance of F2 and it introduces some y ≤ u, zRu in S1 while there are already
some y ≤ v, zRv in S.

Besides the previously introduced formula saturation tree we also include relationally saturated
sequent solely for the purpose of the algorithm.

Definition 4.21 (Relationally Saturated Sequent). A sequent S is relationally saturated if it is
saturated and satisfies the following conditions for any labels x, y, z occurring in S:

1. x ≤ x ∈ S.

2. If x ≤ y, y ≤ z ∈ S then x ≤ z ∈ S.

3. If xRy, y ≤ z ∈ S then x ≤ u, uRz ∈ S for some label u.

4. If xRy, x ≤ z ∈ S then y ≤ u, zRu ∈ S for some label u.

Just like saturation, we can find a canonical way of defining a way to obtain a relationally
saturated sequent.

Definition 4.22 (Relational Saturation Tree). A relational saturation tree of a sequent is obtained
by iteratively applying non-redundant relational rules (Ref , Trans, F1 and F2) and computing the
saturation tree.

45



0. Given a sequent ⇒ x : A derivable in labIK, define T0 as the derivation tree consisting
only of the node x ≤ x ⇒ x : A.

1. Relationally saturate the leaves of Ti by computing their relational saturation trees.

2. If all leaves of Ti are initial sequents, terminate.

→ A proof of ⇒ x : A is obtained.

3. Otherwise, pick a non-axiomatic leaf sequent S′ in Ti. Apply any non-redundant rule
(⊃R or □R) to S′, and go back to step 1 (i 7→ i+ 1).

Figure 4.3.1: Proof search algorithm for labIK

See that the process of relational saturation will also terminate eventually, as we still do not
introduce new layers and all layers stay finite, so there is only a finite amount of rule applications.
This allows us to define a simple proof search procedure for labIK (see figure 4.3.1), to show that
it is enough to rely on linearly layered sequents.

As we can see, the algorithm does not include ”all” possible rule applications, as we could,
for instance, apply the rules of □L or F2 multiple times. All of these applications that are not
included in the proof search procedure will be redundant, though. Except for F1 and F2, all rules
will introduce formulas that already existed in the sequent, and therefore are unnecessary. The
confluence rules become redundant after some lifting because they have to introduce a fresh label
that has the exact same properties as another label that was introduced by lifting.

Lemma 4.23. The algorithm presented in figure 4.3.1 terminates for a sequent ⇒ x : A derivable
in labIK.

Proof. We can assume some derivation T of the sequent ⇒ x : A. We can observe that the
redundant rule applications in T can always be eliminated from a derivation. This is simply
because any redundant F1 and F2 rule will introduce a label that has the exact same properties as
an already existing one. All other redundant rules can be eliminated by definition and the fact that
contraction is admissible.

By limiting the search algorithm to non-redundant formulas, there will always be finite appli-
cations of those. Thus, eventually the algorithm includes all non-redundant rule applications of T .
It therefore creates a derivation that covers all necessary rules of T , which must be valid by rule
invertibility (lemma 3.17).

This algorithm is merely a first step towards an algorithm that will only yield linearly labelled
sequents. To show that this is possible, we show that it is enough to consider only one succedent
formula in a saturated sequent. The following lemma is similar to theorem 14 from [43], where a
multiset of nestings is shown to be derivable in a basic nested system iff some of these nestings is
derivable in the same system. This theorem also sparked also the idea for this lemma.

Lemma 4.24 (Single Succession). Let R,Γ ⇒ ∆ be a relationally saturated sequent appearing in
the proof search described in figure 4.3.2, then labIK ⊢ R,Γ ⇒ ∆ iff labIK ⊢ R,Γ ⇒ x : C for some
x : C ∈ ∆. We call x : C the single succedent of the sequent.
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Proof. (⇐) Follows trivially from the admissibility of weakening.
(⇒) We prove it by induction on the height of the derivation of R,Γ ⇒ ∆ under the algorithm

from figure 4.3.1. If it is an initial (relationally saturated) sequent with y : p as its principal
succedent formula, take y : p to be x : C. If the initial sequent is obtained from some formula u : ⊥
in the antecedent, let x : C be arbitrary. As we are considering a relationally saturated sequent,
we can assume that the sequent we are working with was obtained after step 1, so that we are in
an instance of step 3. Thus, we only need to consider applications of ⊃R and □R. After which we
need to saturate the sequent to obtain again a saturated sequent allowing us to use the inductive
hypothesis. Especially checking that the rule ⊃L does not cause any issues is important, as it can
introduce new succedent formulas from already existing ones.

Consider ⊃R as a rule application in step 3. So, assume a derivable and relationally saturated
sequent R,Γ ⇒ ∆, x : A ⊃ B s.t. the previous step was ⊃R with x : A ⊃ B principal. Then,
R, x ≤ y, y : A,Γ ⇒ ∆, y : B is provable with y not being in the original sequent.

In the algorithm, the sequent R, x ≤ y, y : A,Γ ⇒ ∆, y : B gets immediately saturated. In the
saturation, only those labels get introduced which are in the same layer as y (by ♢L), thus no new
layers are created in the process. We can therefore write any saturation of R, x ≤ y, y : A,Γ ⇒
∆, y : B as (R, x ≤ y,Γ ⇒ ∆) ⊗ Si with Si being a tree-layer sequent with root(Si) = y. This
gives us the following derivation tree.

(R, x ≤ y,Γ ⇒ ∆)⊗S1 ... (R, x ≤ y,Γ ⇒ ∆)⊗Sn

..

..

.
S

R, x ≤ y, y : A,Γ ⇒ ∆, y : B
⊃R

R,Γ ⇒ ∆, x : A ⊃ B

By induction hypothesis every (R, x ≤ y,Γ ⇒ ∆) ⊗ Si is also derivable with some labelled
formula zi : Ci occurring either in ∆ or in the succedent of Si. We consider two cases: Either all
zi : Ci occur in Si or there is some saturation, where zi : Ci ∈ ∆.

Consider zi : Ci ∈ ∆ for some saturation (R, x ≤ y,Γ ⇒ ∆) ⊗ Si. We first cover the case
of (R, x ≤ y,Γ ⇒ ∆) ⊗ Si being obtained by the rule ⊥ with the principal formula u : ⊥• ∈ Si

(u : ⊥• ∈ Γ is impossible as R,Γ ⇒ ∆, x : A ⊃ B would have been already an initial sequent).
Then, we can choose a different single succedent from Si, as it is an arbitrary choice in this case.
Note, that there must be at least some succedent formula in Si, as we have the succedent formula
y : B at the root of S and every upwards rule application that starts with a succedent formula must
also end with at least one succedent formula.

For the case that both zi : Ci ∈ ∆ and (R, x ≤ y,Γ ⇒ ∆) ⊗ Si was not obtained by ⊥, we
claim that the sequent R,Γ ⇒ zi : Ci is provable. This follows from the observation that the layer
of y (i.e. the maximum layer of the sequent, which is also the layer of Si) is not needed to generate
an initial sequent, if (R, x ≤ y,Γ ⇒ zi : Ci) ⊗S↓

i is provable. This follows from ∆ already being
saturated and thus, to make an axiomatic sequent, zi : Ci must create a new layer, which branches
away from the layer of y.

Consider zi : C◦
i ∈ Si for all i = 1, ..., n. Then, the sequent (R, x ≤ y,Γ ⇒ zi : Ci) ⊗ S↓

i is
derivable for every i. Note that formulas in ∆ are unnecessary for the saturation tree S, as the only
right side rule that repeats the principal formula is ♢R, which cannot be applied as only new R
formulas will be introduced in the fresh maximum layer. (This does not hold for antecedent rules.)
By weakening and zi : C◦

i ∈ Si, the sequent (R, x ≤ y,Γ ⇒) ⊗ Si is also derivable for every i.
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Inputting these sequents instead of (R, x ≤ y,Γ ⇒ ∆)⊗Si (i.e. deleting ∆) will yield the following
valid derivation.

(R, x ≤ y,Γ ⇒)⊗Si ... (R, x ≤ y,Γ ⇒)⊗Sn

..

..

.
S

R, x ≤ y, y : A,Γ ⇒ y : B
⊃R

R,Γ ⇒ x : A ⊃ B

This provides us with a sequent with x : A ⊃ B as the single succedent.

The case for the application of □R works similar to the previous one.

Remark 4.25. As follows from the proof, the single succedent will always be a formula of the form
x : A ⊃ B or x : □A if it is not an initial sequent.

This result about derivations in labIK tells us that it is enough to consider derivations of a
certain form, which only consists linearly layered sequents. We call such a derivation a linear proof.

Corollary 4.26. Every provable sequent ⇒ x : A in labIK has a linear proof.

Proof. Consider the derivation tree of ⇒ x : A obtained from the algorithm presented in figure
4.3.1. By lemma 4.24, after step 1 (relational saturation of all leaf sequents) we can always choose
one succedent formula for each leaf sequent, so that we are allowed to remove all other succedent
formulas. We only have to show that when new layers get introduced in the proof, we can prevent
a branching of layers. Taking □R as an example (⊃R works similarly), suppose that for some
saturated and derivable sequent R,Γ ⇒ ∆, x : □A, the sequent R,Γ ⇒ x : □A is derivable,
otherwise applying □R is unnecessary by the single succedent lemma. This gives us the sequent
R, x ≤ y, yRz,Γ ⇒ z : A. Saturating this sequent will only yield new formulas that are labelled with
either y or z as all other labels have been introduced before and were already saturated. Applying
non-redundant relational rules will also only introduce new labels in the new layer. Therefore, after
the relational saturation process, all succedent formulas are labelled with labels from the same layer
as y and z. So, when again in step 3 and applying □R (resp. ⊃R), the single succedent must be in
the newly created layer.

Starting with ⇒ x : A, i.e. x being in the maximum layer and x : A as a single succedent, all
□R (and ⊃R) will be applied to formulas in the maximum layer, thus always creating a linear, i.e.
non-branching, ≤S structure between layers.

To properly construct such a linear derivation, we again use lifting and saturation to define
another proof search algorithm (see figure 4.3.2). Just like the previous algorithm, we rely on
knowing that the sequent we start with is derivable. For a proper decision procedure for labIK
and labIS4 that can also find countermodels, we refer the reader to [23, 24]. The reason why it is
difficult to have a terminating procedure, also for false formulas, is due to the fact that we might
end up in certain loops. As mentioned previously, having full invertibility comes with the trade-off
of keeping a lot of formulas around, such that one might apply them as often as one likes. These
loops might not only give us actual duplicates of formulas, but might just create new labels that
are essentially the same as already established one (just like with F1 and F2 having a different
redundancy condition). This might happen indefinitely for unprovable formulas, such that one
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needs to incorporate a loop checking procedure that recognises when the formulas of fresh labels
are equivalent to already obtained formulas.

0. Given a sequent ⇒ x : A derivable in labIK, define T0 as the derivation tree consisting
only of the node x ≤ x ⇒ x : A.

1. Saturate the leaves of Ti by computing the saturation trees.

2. If all leaves of Ti are initial sequents, terminate.

→ A linear proof of ⇒ x : A is obtained.

3. Otherwise, pick a non-axiomatic leaf sequent S′ in Ti.

(a) If there is some succedent formula x : F for F = A ⊃ B or F = □A in S′ s.t.
x ∈ Lmax(S

′), choose some formula x : F with x ∈ Lmax(S
′). Compute the lifting

S⊗S↑x:F and go back to Step 1 (i 7→ i+ 1).

(b) Otherwise, backtrack to the last instance of Step 3a where one can choose a different
formula x : F that has not been tried before, and choose this formula instead.

Figure 4.3.2: Linear proof search algorithm for labIK

As we have seen in corollary 4.26 it can be enough to pick a succedent formula x : A ⊃ B or
x : □A that is labelled by a variable from the maximum layer of the sequent. This is also captured
by how the algorithm works and it essentially emulates the behaviour of the respective rules ⊃◦

and □◦ from the nested calculus m-NIK.

Proposition 4.27. For any sequent ⇒ A derivable in labIK, the algorithm presented in figure 4.3.2
always terminates.

Proof. Because we assume that the initial formula A is provable, there exists some finite number
of rule applications that constitute a valid derivation of the formula, i.e. the sequent ⇒ x : A.
Observe that due to saturation, the rules ∧L, ∧R, ∨L, ∨R and ♢L can be applied as much as
possible. Further, the rules ⊃L, Ref , Trans, □L, ♢R, F1 and F2 also get applied as long as
they do not become redundant. By corollary 4.26 it is enough to only include applications of ⊃R
and □R on the maximum layer, so the algorithm covers all necessary applications of ⊃R and □R
as well. Leaving out these unnecessary occurrences of ⊃R and □R as well as rule applications
that become impossible without them (i.e. rule applications relying on subformulas or variables
introduced by those rules), all rules from the original derivation occur in the derivation constructed
by the algorithm. This follows from invertibility of all rules. Therefore, any useful rule application
from the original proof will eventually occur in the derivation obtained by the algorithm.

Remark 4.28. The final derivation we obtain from the algorithm might have more rule applications
than necessary, due to saturation and lifting exhausting almost all of the search space.

By construction, the linear algorithm forms only linearly layered sequents, which can be trans-
lated into simple nested ones.

When showing the termination of the proof search algorithm, we made use of the fact that we
can ignore certain rule applications (especially ⊃R and □R rules) by using lemma 4.24. It seems
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as if it should also be possible to obtain a derivation satisfying our condition for linear sequents
directly by deleting the unnecessary rule applications. The issue with this approach is that it might
still need some careful tinkering with the original derivation, as we might end up in a situation
where we have two independent applications of ⊃R or □R before applying a branching (i.e. two
premise) rule, such that we require one application of ⊃R (or □R) for one branch and the other
application for the other branch. Consider, for instance, the following simple example.

Example 4.29. Consider the following derivation of the formula (□p ∨□q) ⊃ (□p ∨□q) in labIK
with R = {x ≤ y, y ≤ z, zRu, y ≤ z′, z′Ru′}.

Ax
R, u′ ≤ u′, y : □p, u′ : q ⇒ u : p, u′ : q

Ref
R, y : □q, u′ : q ⇒ u : p, u′ : q

□L
R, y : □q ⇒ u : p, u′ : q

Ax
R, u ≤ u, y : □p, u : p ⇒ u : p, u′ : q

Ref
R, y : □p, u : p ⇒ u : p, u′ : q

□L
R, y : □p ⇒ u : p, u′ : q

∨L
x ≤ y, y ≤ z, zRu, y ≤ z′, z′Ru′, y : □p ∨□q ⇒ u : p, u′ : q

□R
x ≤ y, y ≤ z, zRu, y : □p ∨□q ⇒ u : p, y : □q

□R
x ≤ y, y : □p ∨□q ⇒ y : □p, y : □q

∨R
x ≤ y, y : □p ∨□q ⇒ y : □p ∨□q

⊃R
⇒ x : (□p ∨□q) ⊃ (□p ∨□q)

As one can see, if we tried making any of the axiomatic sequents in the derivation linearly layered,
we would have to remove one application of the □R rule, which in turn would make the proof
invalid because the other leaf would be deleted with it. Instead, one could think of moving these
unnecessary rule applications into a later point of the branch where they are necessary. In this case,
we could postpone the first application of □R for after the branching rule ∨L and only apply it to
the right branch. A similar procedure could be done to the other application of □R, giving us a
derivation which is actually translatable into an m-NIK derivation.

Another approach that does not rely on a proof search algorithm would be to saturate every
sequent in an already given derivation tree. In the previous example, this would prevent applying
□R two times in a row. The disadvantage this approach might have is that, just like with the proof
search algorithms, we generally have much more rule application in our derivation than necessary.

4.3.2 Translation for Linearly Layered Sequents
To define the translation function that translates sequents of labIK into nested sequents, we first
consider only translating labelled sequents that do not contain any formula x ≤ y and are therefore
tree-layer sequents. We rely here on the translation function for classical tree-labelled and tree-
hypersequents from [25].

Definition 4.30 (Immediate Subtree). Let S be a tree-layered sequent with root(S) as its root.
An immediate subtree sequent S′ of S is defined as follows:

1. S′ ⊆ S,
2. if y = root(S′) and x = root(S), then xRy ∈ S,
3. If a label x occurs in S′ and xRy ∈ S, then y occurs in S′, and
4. For every label x occurring in S′, all formulas labelled with x in S must also occur in S′.

The set of immediate subtree sequents of a tree-layer sequent S is called subtr(S).
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To consider subtrees, as opposed to immediate subtrees, we relax condition 2 of the definition to
there being some path Rn from the root of the main sequent to the root of the subtree. Intuitively, a
subtree of a sequent corresponds to a downwards closed set of labels wrt. R, whereas an immediate
subtree has its root directly connected to the root of the tree-layer sequent.

For the following definition, we use the notation of subscript labels Γx for a set of labelled
formulas Γ to refer to all formulas x : A ∈ Γ that are labelled with the label x.

Definition 4.31 (From tree-layer to nesting). For a tree-layer sequent RR,Γ ⇒ ∆, we define its
nesting translation N′(RR,Γ ⇒ ∆) by induction on the size of RR.

If RR = ∅: N′(x : Γ ⇒ x : ∆) = Γ•,∆◦

If RR ̸= ∅: N′(RR,Γ ⇒ ∆) = Γ•
x,∆

◦
x, [N

′(S1)], ..., [N
′(Sn)] with {S1, ...,Sn} = subtr(RR,Γ ⇒

∆) and x = root(RR,Γ ⇒ ∆).

To translate a fully labelled tree layered sequent, we essentially want to translate only the
topmost layer while also including all necessary information from the lower layers. For this we also
define the sequent Smax which correspond roughly to the maximum layer Lmax of S, as this is also
where any further ⊃R or □R rule gets applied to in the algorithm. This allows one to reduce the
translation of a full tree layered sequent to definition 4.31.

Definition 4.32. Let S be a lifted sequent obtained in some derivation of the algorithm in figure
4.3.2 with its maximum layer Lmax. We define the maximum layer sequent Smax by the following
conditions: A label x occurs in Smax iff x ∈ Lmax, and if x : A•, x ≤ y ∈ S and y ∈ Lmax, then
y : A• ∈ Smax.

Recall for the following definition that linearly layered sequents are defined as always consisting
of layers that have a rooted tree structure, just like the sequents we would get from any labIK
derivation.

Definition 4.33 (From linearly layered to nesting). The nesting translation N(S) for a linearly
layered sequent S is defined as N′(Smax).

Note that the function N will only translate rules properly if the sequents in them are also
fully lifted. The maximum layer might, for example, not have all the structural information that
is below it due to some possible non-redundant F1 or F2 application. We therefore only consider
sequents that we obtain from the linear proof search algorithm. One could extend the definition of
translation into covering sequents that are not fully lifted (or structurally saturated) by including
the notion of lifting into it. This might be interesting for a more general result that does not rely
on proof search to translate bi-labelled sequents; so, as it does not contribute to our immediate goal
we leave it at that.

Just like with a lot of other translations that have been established before (see e.g. [25, 33]),
we would also like the translation functions to be conservative over the sequents, meaning that we
can go from one formalism to the other and back while still retaining the same sequent. One such
result is given by the following proposition.

Proposition 4.34. For any nested sequent Γ, N(Lx(Γ)) = Γ.

Proof. First, observe that S = Lx(Γ) will be a sequent containing only relational atoms that form
a tree on RR, thus a tree-layer sequent. Therefore, Smax = S. Second, see that every position of
a formula inside Γ can be uniquely determined by its position in the sequent tree (multi-sets are
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permutation invariant), which is structurally the same as RR. Thus, N(Lx(Γ)) not only has the
same nested form as Γ, but all formulas must occur at the same place as well, therefore proving the
proposition.

The reverse direction, namely that Lx(N(S)) = S for a bi-labelled sequent S, does not hold
for two reasons. Firstly, as per definition, most of the structure of S actually gets lost and is
unrecoverable as long as it has multiple layers. Secondly, the identity of labelled sequents relies
on labels being identical; this is not guaranteed. So, the only result we would get in the other
direction would be Lx(N(S)) = S[y/x] for a tree-layer sequent S and some x = (x, x1, ..., xn) and
y = (y, y1, ..., yn) with root(S) = y.

The following lemma will be useful for translating general labelled sequents into nested ones, just
like the context representation lemma 4.2 from the last section. This lemma allows us to consider
any layer in which there are antecedent formulas and show that these formulas also occur in the
topmost layer.

Lemma 4.35. Let S be a linearly layered sequent that has been obtained from the linear search
algorithm after step 2 (figure 4.3.2). Let S′ ⊆ S be a tree-layer sequent with x a tuple of labels
occurring in S′. Then, S′↓

[y/x] ⊆ Smax for some tuple of labels y with x ≤ y ∈ S.

Proof. If S′ is in the maximum layer of S, it is trivial with y = x.
If S′ is not in the maximum layer, it must be strictly contained in some other layer Lk as it

only contains R relational formulas.
Claim: We can always find a sequent S′↓

[z/x] ⊆ S with some labels z, s.t. it occurs in Lk+1, the
layer above Lk.

To prove the claim, consider that Lk ≤S Lk+1, so there are labels x ∈ Lk and z ∈ Lk+1 s.t.
x ≤ z ∈ S. For any u ∈ x: uR↔

R x, so by the lifting step and x ≤ z, there must be a set of labels z
in layer Lk+1 s.t. x ≤ z. Also, the R-relations between the labels of x are isomorphic to the ones in
z, as each label in x will have exactly one label in z and the R structure being preserves (condition
3 of lifting).

We can repeat this process until we reach the maximum layer. Via transitivity (condition 2 of
lifting), we have x ≤ y with x and z being structurally equivalent. For computing the maximum
layer sequent Smax, for all succedent formulas u : A• with u ∈ x and u ≤ v with v ∈ y there is
v : A• ∈ Smax.

In the following, we will show that translating each rule from labIK gives us the corresponding
rule in m-NIK, although with some small caveat: The initial sequent obtained from the rule Ax
might be translated into a nested sequent that is not an initial sequent. For example x ≤ y, y ≤
y, y ≤ z, y : p, z : p ⇒ y : p, z : q is an initial sequent in labIK, but its translation would be simply
p•, p•, q◦, as y /∈ Lmax. Practically, this is not a problem, as the sequent was already initial before y
got introduced, thus the algorithm we presented in figure 4.3.2 terminates before z gets introduced.
This gives us for example the sequent x ≤ y, y ≤ y, y : p ⇒ y : p, y : p ⊃ q, which translates via N
to p•, p◦, p ⊃ q◦, a conclusion of Ax.

Lemma 4.36. The translated rule

Ax
N(R, x ≤ y, x : p,Γ ⇒ ∆, y : p)
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with R, x ≤ y, x : p,Γ ⇒ ∆, y : p linearly layered, is derivable in m-NIK under the condition that
y ∈ Lmax.

Proof. As the first step for the translation, we fill the sequent to gain R,R′, x ≤ y, x : p,Γ ⇒
∆, y : p, where R′ contains formulas obtained from the rules Ref , Trans, F1 and F2. Compute
the maximum layer sequent: By x ≤ y, x : p• and y ∈ Lmax the maximum layer sequent contains
y : p• and y : p◦. The translated subsequent N(y : p ⇒ y : p) = p•, p◦ has to occur somewhere in
N(R, x ≤ y, x : p,Γ ⇒ ∆, y : p). Thus, N(R, x ≤ y, x : p,Γ ⇒ ∆, y : p) = Σ{p•, p◦} which is an
initial sequent in m-NIK.

Lemma 4.37. The translated rule
⊥

N(R, x : ⊥,Γ ⇒ ∆)

with R, x : ⊥,Γ ⇒ ∆ linearly layered, is derivable in m-NIK.

Proof. Call S = R, x : ⊥,Γ ⇒ ∆. By lemma 4.35 we can find some formula x′ : ⊥ ∈ Smax.
Therefore, we can write N(S) = N′(Smax) = Σ{⊥•} for some nested sequent Σ{} = N(R,Γ ⇒ ∆).
The nested sequent Σ{⊥•} can be obtained immediately in m-NIK by the rule ⊥.

After having translated the initial sequents of labIK, for which Ax might only yields an initial
sequent if it gets eagerly applied, we will also translate all the other rules like they occur in the
algorithm. Let us first consider only the rules that are part of the saturation, before we translate
the two lifting rules.

Lemma 4.38. For any rule application occurring in a saturation tree

S1, ...,Sn

S

with n = 1, 2 and S1, ...,Sn,S all being linearly layered, the translated rule

N(S1), ...,N(Sn)

N(S)

is derivable in m-NIK in one step.

Proof. ∧L: Consider some sequent S = R, x : A, x : B,Σ ⇒ Π By lemma 4.35 there is some label
x′ occurring in S s.t. x ≤ x′ ∈ S and x′ ∈ Lmax(S). So, the formulas x′ : A• and x′ : B• are in
Smax. Therefore, the formulas A•, B• must occur somewhere together in the nested sequent N(S),
letting us express this as N(S) = Γ{A•, B•} for some nested sequent Γ{} = N(R,Σ ⇒ Π). In the
same way, we can translate the sequent R, x : A∧B,Σ ⇒ Π into Γ{A∧B•}. We can connect these
translated sequents through the following derivation in m-NIK.

Γ{A•, B•}
∧•

Γ{A ∧B•}
∧R: Let S = R,Σ ⇒ Π, x : A ∧ B be the conclusion of the rule application. If x /∈ Lmax(S),

both the premise and the conclusion of the translated rule would become equal, as only succedent
formulas in the maximum layer will be translated. Thus, it would be a zero-step derivation. If
x ∈ Lmax, we also have x : A ∧ B◦ ∈ Smax, and therefore N(S) = N′(Smax) = Γ{A ∧ B◦}
with Γ{} = N(R,Σ ⇒ Π). For the same reason, we get N(R,Σ ⇒ Π, x : A) = Γ{A◦} and
N(R,Σ ⇒ Π, x : B) = Γ{B◦}. This translates the rule to the following m-NIK derivation.
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Γ{A◦} Γ{B◦}
∧◦

Γ{A ∧B◦}
The cases for ∨L and ∨R work in the same manner as the previous two.
⊃L: Consider the sequent S = R, x ≤ y, x : A ⊃ B,Σ ⇒ Π. Like before, we can use lemma 4.35

to find that there is some label x′ ∈ Lmax(S) with x ≤ x′ and x′ : A ⊃ B• ∈ Smax. Let us therefore
write the translation as N(S) = N′(Smax) = Γ{A ⊃ B•} with Γ{} = N(R, x ≤ y,Σ ⇒ Π). Assume
at first that y ̸= x′. Then, N(R, x ≤ y, x : A ⊃ B,Σ ⇒ Π, y : A) = N(R, x ≤ y, x : A ⊃ B,Σ ⇒
Π) = Γ{A ⊃ B•}, as succedent formulas only are being translated if they occur in the maximum
layer, which y cannot be, as it would otherwise constitute a branching of ≤. This gives us a zero-
step derivation (we can simply ignore the other premise). Assume for the other case that y = x′.
Now, both premises translate to N(R, x ≤ y, x : A ⊃ B,Σ ⇒ Π, y : A) = Γ{A ⊃ B•, A◦} and
N(R, x ≤ y, x : A ⊃ B, y : A,Σ ⇒ Π) = Γ{A ⊃ B•, B•}. The derivation connecting the translated
premises to the conclusion is the rule ⊃•.

Γ{A ⊃ B•, A◦} Γ{A ⊃ B•, B•}
⊃•

Γ{A ⊃ B•}
♢L: Let S = R, x : ♢A,Σ ⇒ Π be the conclusion of some ♢L application with x : ♢A as

principal formula. By lemma 4.35, there is some formula x′ : ♢A• ∈ Smax, allowing us to write the
translation as N(S) = N′(Smax) = Γ{♢A•} with Γ{} = N(R,Σ ⇒ Π). Considering the linearly
layered sequent S1 = R, xRy, y : A,Σ ⇒ Π as the premise of the rule, the sequent xRy, y : A ⇒ gets
translated to the nested sequent [A]. As y is fresh, we do not have to consider any other formulas
labelled with y that might occur inside the nesting. By lemma 4.35 and the same argument:
N(S1) = Γ{[A]}. The translated rule becomes the rule ♢• in m-NIK.

Γ{[A]}
♢•

Γ{♢A}
♢R: We consider S = R, xRy,Σ ⇒ Π, x : ♢A with x ∈ Lmax(S), as the derivation becomes

trivial in zero steps. So, xRy, x : ♢A◦ ∈ Smax ⊆ Smax. We might write the translation as
N(S) = N′(Smax) = Γ′{♢A◦} with Γ′{} = N(R, xRy,Σ ⇒ Π). But as we also want to translate the
relational formula xRy, it is better suited to also include the subtree sequent Sy with root(Sy) = y
explicitly in the translation. We therefore get N(S) = Γ{♢A◦, [N(Sy)]} with Γ{} = N(S−) and
S− ⊗Sy = R, xRy,Σ ⇒ Π. Translating S1 = R, xRy,Σ ⇒ Π, x : ♢A, y : A in the same way will
give us N(S1) = Γ{♢A◦, [A◦,N(Sy)]}. Letting N(Sy) = ∆, allows us to write the translated rule
as follows.

Γ{♢A◦, [A◦,∆]}
♢◦

Γ{♢A◦, [∆]}
The translations of □L can be obtained in a similar manner as the cases for ♢R and ⊃L.

In the following we consider the rule liftingx:F as a single rule application, as one cannot
properly translate sequents that are not fully lifted. As discussed before, we could define the
translation such that we might also translatesequents that are not fully structurally saturated
(non-redundant applications of Trans, F1 and F2). This would translate the relational rules (Ref ,
Trans, F1 and F2) into simple repetition rules. The same could also be done, for example, for the
saturation over ⊃L; this rule gets only translated to ⊃• if y ∈ Lmax for the principal formula x ≤ y.
This would be guaranteed by applying ⊃L to a formula A ⊃ B as long as it is not redundant.
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Lemma 4.39. Consider a saturated linearly layered sequent S occurring in the linear algorithm
(at step 3, figure 4.3.2) with x : F ◦ ∈ S, F = A ⊃ B or F = □A, and x ∈ Lmax(S), the translated
lifting rule

N(S⊗S↑x:F )
N(S)

is derivable in m-NIK in a single step.

Proof. Consider □R as the example case. Let S = R,Γ ⇒ ∆, x : □A a linearly layered sequent
with x ∈ Lmax(S). Then, S′ = R, x ≤ y, yRz,Γ ⇒ ∆, z : A is also linearly layered. By lifting
this sequent we essentially create a copy of Lmax(S) in the new maximum layer Lmax(S

′); we can
consider only the most recent maximum layer as it must also have been lifted or it is the only layer.
Let us write the translation of the conclusion as N(S) = Γ{□A◦} as x ∈ Lmax(S) holds. Then,
see that the only succedent formula in the maximum layer of S′ is z : A, so we loose all other
succedents, giving us N(S′) = Γ↓{[A◦]}. Observe that the nesting is due to the fresh z, which
was not due to the lifting of Lmax(S) into Lmax(S

′). Together, Γ{□A•} and Γ↓{[A◦]} form the
conclusion and premise of the m-NIK rule □◦.

The case for ⊃R works similarly.

Theorem 4.40 (From labIK to m-NIK). For any formula A ∈ L□♢, if labIK ⊢⇒ x : A then a
derivation tree for m-NIK ⊢ A◦ can be effectively obtained.

Proof. At first, we can construct a derivation tree of ⇒ x : A in labIK by the algorithm in figure
4.3.2, which will exist and will be valid by proposition 4.27. We further know that all sequents will
be linearly layered by construction of the derivation. Thus, we are able to translate all sequents in
the lifting tree (step 1) and after the lifting (step 3a) via N, giving us a valid derivation in m-NIK
via lemmata 4.36, 4.37, 4.38 and 4.39.

It is notable that this theorem is weaker than its counterpart, theorem 4.12, as we are not able
to translate proofs of full sequents. The theorem could be extended towards translating labelled
tree-layer sequents as these are the labelled sequents that can be translated fully back and forth
between N and Lx.

Both translation results together (theorems 4.12 and 4.40) also yield a new way of establishing
soundness and completeness. Not only do they give a different route of showing completeness wrt.
the logic IK, but they also show in a direct way that labIK and m-NIK are sound and complete wrt.
each other.

Corollary 4.41. For any formula A ∈ L□♢: m-NIK ⊢ A iff labIK ⊢ A. Also, for any nested
sequent Γ: m-NIK ⊢ Γ iff labIK ⊢ Lx(Γ).

Proof. Follows immediately from theorems 4.12 and 4.40, as well as proposition 4.34.

Another important corollary we can obtain from our result is that we can connect the purely
propositional parts of labIK and m-NIK, which are labG3I and m-G3i (see section 3.2).

Corollary 4.42. For any formula A ∈ L: If labG3I ⊢ A then a derivation tree of m-G3i ⊢ A
can be effectively obtained. If m-G3i ⊢ A then a derivation tree of labG3I ⊢ A can be effectively
obtained.
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Proof. Use theorems 4.12 and 4.40 and restrict all derivations to modal-free formulas A ∈ L.

A similar connection between purely classical modal calculi is not possible, as it would change
the rules of the system and not simply remove some. Such a result is essentially obtained in [25].

Finally, we want to point out the fact that these translations connect a fully invertible proof
system (labIK) to a system where backtracking might be needed (m-NIK). In light of how we
defined the proof search algorithm for linearly layered sequents (figure 4.3.2), we can say that
what corresponds to backtracking in m-NIK is nothing more than having and keeping formulas
together with some extra information (i.e. their labels and ≤ formulas). Such structural approaches
to omitting backtracking, especially in intuitionistic settings and proof search, have been around
already in different forms (see e.g. [37]). A similar comparison between nested and pure sequent
calculi has also been discussed recently in [43].
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Chapter 5

Conclusion and Future Work

Conclusion
In this thesis, we introduced effective translations between two proof systems for the logic IK. In
chapter 2, we first introduced the intuitionistic modal logic IK by its Hilbert axiomatisation and
its relational Kripke semantics and saw why it can be considered a good intuitionistic modal logic.
Then, in chapter 3, we looked at its proof theory, starting with different systems for intuitionistic
propositional logic and then adding modalities to gain our main calculi of interest. These are a
semantic bi-labelled calculus and a Maehara-style simple nested system, which we called labIK
and m-NIK respectively. In the main part of the thesis, chapter 4, we have constructed effective
translations between these systems. The first translation, from the simple nested formalism to the
bi-labelled one, could be obtained in a relatively simple manner. By interpreting the tree structure
of nestings as R-relational trees, we could simply obtain a well behaved labelled sequent on which
one can emulate the m-NIK rules by using (sometimes multiple) rule applications of labIK. The
reverse translation relied on a sophisticated search algorithm. This algorithm combines relational
rules with the ⊃R and □R rules to gain a new rule, lifting, which can be properly translated
into the corresponding nested rules. Another hurdle the search algorithm helped to overcome
was translating invertible rules into non-invertible ones by restricting the derivation to necessary
applications of ⊃R and □R. This also brings about a way to do proof search for m-NIK. Both
translations establish a new kind of completeness between labIK and m-NIK, as well as letting us
see how different these systems behave including the invertibility of rules.

Future Works
The next steps to take from here would be to incorporate extensions of IK; not only might one cover
the extensions of the IS5 cube, but one could also translate proofs for extensions with Horn-Scott-
Lemmon axioms, much like in the style of Lyon [32]. We expect this result to be easily obtainable
by implementing propagation rules in labIK, and thus obtaining a new set of extension rules for
m-NIK that is in virtue of the translation sound and complete wrt. to the logical extension.

Other variants of intuitionistic modal logic might be considered as well. This includes the so-
called logic FK which can be defined semantically by leaving out the backward confluence condition
in the definition of their Kripke models (see [2]). The only currently existing proof system for FK
is a bi-nested system, which corresponds well to our bi-labelled labIK without the rule F1. From
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this one could be able to obtain a new single nested system for FK by simply using the translation
N. This can also be done by restricting the lifting rule s.t. it does not contain the backward
confluence rule F1, and translating this rule to gain a proper rule for a new system which one might
call m-NFK. By construction and via the translation it would be immediate to get soundness and
completeness for this new system.

Another interesting direction to investigate is considering other systems for IK, namely the
Simpson calculus and its nested notational variant (see [32]) and connect, for example, the single
succedent nested calculus with m-NIK. While translating from the single succedent system, with
more invertible rules, into the multi succedent one is trivial due to weakening, the reverse might be
obtainable in a similar manner as the translation between G3i and m-G3i in [34].

Besides these more theoretical investigations, it could be interesting to implement these results
into a theorem prover. Not only might one want to implement the search algorithms presented
here, or a variant in the style of [23, 24] that can also find counter models, it could also be fruitful
to look at implementing the translations themselves.
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