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Abstract. We examine a variety of dialogue protocols, taking inspiration from two
fields: natural language dialogue modelling and multiagent systems. In communica-
tive interaction, one can identify different features that may increase the complexity
of the dialogue structure. This motivates a hierarchy of abstract models for protocols
that takes as a starting point protocols based on deterministic finite automata. From
there, we proceed by looking at particular examples that justify either an enrichment
or a restriction of the initial model.
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1. Introduction

If we look at a corpus of real human-human dialogues, we find evidence
of frequently reoccurring sequences of utterance types. For instance,
questions are followed by answers and proposals are usually either ac-
cepted, rejected, or countered. These interaction patterns have inspired
a line of research whose object of description is, broadly speaking, the
rule-governed behaviour exhibited by dialogue interaction.

Interaction patterns are often modelled by means of communica-
tion protocols, i.e. public conventions that specify the range of possible
follow-ups available to the participating agents. The focus of this paper
is on the formal properties of such communication protocols. We ex-
amine a variety of protocols, taking inspiration from two fields: natural
language dialogue modelling and multiagent systems. In the former
case, protocols serve as an abstraction of dialogue structure, character-
ising what are the preferred continuations at a given point in a dialogue.
In the case of multiagent systems, protocols are used to govern the
interaction between autonomous software agents. Without first fixing
an agent communication language and specifying a clear set of rules
determining what an agent may “say” in a given situation, designing
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agents that manage to communicate successfully would not be feasible
in practice.

As we shall see, in dialogue interaction one can identify several fea-
tures that have an impact on the complexity of the dialogue structure.
In our approach, this variety of phenomena motivates a hierarchy of
abstract models for protocols that is based on the expressive power of
well-known machine models from the theory of computation. We do not
claim that our classification subsumes the full range of protocols one can
find in the literature; instead the hierarchy is intended as a classification
that captures the relevant distinguishing features of different dialogue
phenomena.

In the next section, we elaborate further on the notion of communi-
cation protocol. As the starting point of our hierarchy, in Section 3, we
take protocols that can be modelled by deterministic finite automata.
¿From there, we proceed by looking at particular examples that justify
either an enrichment or a restriction of the initial model. Our first
example, at the beginning of Section 4, shows how to augment the basic
model by a stack component to be able to represent protocols that can
handle embedded dialogues. This kind of enrichment is then generalised
to a class of protocols with memory. The subsequent sections analyse
further instances of this class of protocols. After discussing the stack-
based model in more detail in Section 5, we introduce protocols with a
stack of sets in Section 6 to also account for compound moves within
a single turn. Section 7 discusses protocols augmented with a simple
set, which allow us to represent the kind of blackboard architecture
used, for instance, in argumentation systems. The final example for our
protocols with memory are the protocols equipped with a list presented
in Section 8, which allow for an explicit representation of the dialogue
history. A restriction of the basic automata-based model which allows
for a simple logic-based representation of protocols is given in Section 9.
Finally, our conclusions are presented in Section 10.

2. Communication Protocols

In communication modelling, it is common to distinguish between two
main traditions: on the one hand, classical Artificial Intelligence ap-
proaches, inspired by ideas that originated in analytical philosophy,
are built on general models of rational agency, emphasising the role
that mental attitudes such as knowledge, belief, desire and intention
play in conversational behaviour. This is the perspective adopted by
plan-based approaches, most prototypically the BDI (Beliefs, Desires
and Intentions) framework (see e.g. Cohen and Levesque (1990), Grosz
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and Sidner (1990), or Sadek (1991)). On the other hand, one can iden-
tify a parallel line of research, that follows the work of philosophers
like Lewis (1979) and Stalnaker (1978), and that instead of focusing
on the intentional attitudes of the interacting agents and the plans
that guide their contributions highlights the public and conventional
aspects of communication. Under this perspective, a dialogue can be
seen as a conversational scoreboard that keeps track of the state of the
conversation.

A particular tendency within this latter tradition is the one inspired
by the notion of dialogue game (Hamblin, 1970; Carlson, 1983) and the
related concept of adjacency pair (Schegloff and Sacks, 1973; Levinson,
1983; Clark, 1996). The underlying idea here is that each participant’s
contribution determines a set of preferred options for follow-up in the
dialogue. As stated already in the introduction, this relies on the
evidence that conversations are composed of frequently reoccurring
sequences of utterance types, such as questions being followed by an-
swers and assertions being either acknowledged, discussed or elaborated
upon. Communication protocols can then be seen as formal constructs
modelling the public conventions behind these interaction patterns.

In multiagent systems, the use of conventional protocols has re-
cently been put forward by a number of authors (Singh, 1998; Pitt
and Mamdani, 1999a; Colombetti, 2000; Jones and Parent, 2004). This
stands in marked contrast to the BDI or so-called mentalistic approach
mentioned above, where the appropriateness or legality of a dialogue
contribution is explained in terms of the mental attitudes of the agents
participating in a dialogue (Cohen and Levesque, 1990; FIPA, 2002).

Conventional protocols have been shown to be a powerful descrip-
tive and explanatory means of formalising the rules of encounter that
characterise coherent interaction both in natural language dialogue, as
well as in dialogue between autonomous software agents. In the case
of multiagent systems involving autonomous software agents, proto-
cols are simpler and typically more rigid, i.e. they describe the set of
allowed or legal dialogue continuations. In natural language dialogue,
on the other hand, protocols should be understood as characterising
the range of preferred or less-marked follow-ups in particular dialogue
situations. As such they do not restrict what counts as coherent in a
general sense, but rather formalise in simple terms a range of (possibly
ranked) unmarked follow-ups that reflects the expectations of the dia-
logue participants. In this sense, the violation of a protocol can also be
informative, as it can be seen, for instance, as signalling a topic or task
change. Thus, while in multiagent systems protocols are prescriptive
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constructs, in natural language dialogue they tend to be descriptive
and can therefore be evaluated in terms of their coverage of the data.1

It is worth pointing out that protocols need to be distinguished from
strategies. While each dialogue participant may be equipped with their
own strategy determining their actual responses, a protocol is a social
concept common to all participants. That is, protocols are concerned
with shared conventions, and as such can be thought of as part of the
general dialogical competence of speakers. The notion of strategy on
the other hand is a private one, and in this respect it is clear that
a dialogue participant’s strategy is shaped by the epistemic notions
at the core of plan-based approaches. Protocols, in contrast, are not
meant to determine what to say next, although of course they can be
used to guide that decision process by specifying a range of possible
next actions, or those actions with the highest probability.

For the dialogues that we consider in this paper, utterances are
assumed to occur sequentially. This is a relatively common assumption
in natural language dialogue modelling, whereas multiagent systems
research has also tried to address concurrent communication. Also, we
will mostly be concerned with dialogues involving two participants.2

3. Protocols as Finite Automata

Deterministic finite automata (DFAs) have been widely used to repre-
sent communication protocols, in particular in the area of multiagent
systems (Parsons et al., 1998; Pitt and Mamdani, 1999b), although
their use is also very common within the spoken natural language
community (Bohlin et al., 1999). In this section, starting from a couple
of simple examples, we introduce this class of DFA-based protocols
and show how to define the central concept of possible follow-up with
respect to this model. Most of the other protocol models discussed
in subsequent sections are based on the basic model of DFA-based
protocols.

1 In this respect it is also worth mentioning statistical approaches, like e.g. Taylor
et al. (1998) or Wright et al. (1999), that extract structural patterns from real
data and then model protocols by assigning probabilities to the different options for
follow-up. Although this is certainly an interesting perspective, the present approach
abstracts from the possibility of statistically ranking allowed continuations.

2 Some initial ideas on protocols for natural language dialogue involving multiple
participants may be found in (Ginzburg and Fernández, 2005b).
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Figure 1. Continuous update protocol from (Pitt and Mamdani, 1999b)

3.1. Some Examples

Pitt and Mamdani (1999b) give several examples for automata-based
protocols. One of them, the continuous update protocol, specifies a class
of dialogues between two agents A and B where A continuously updates
B on the value of some proposition. Figure 1 provides an intuitive
description of this protocol. Here, c is an expression in some suitable
content language which is used to encode the actual information trans-
mitted by A. For this particular protocol, the value of c is intended
not to be relevant; any inform move uttered by agent A will take us
from state 0 to state 1, whatever the content of the transmitted piece
of information may be.

The notion of what constitutes a legal dialogue conforming to the
above protocol is intuitively clear. At the time a new dialogue starts,
for instance, an inform move uttered by agent A would be the only
legal utterance. Immediately after A has informed B, the latter can
either choose to acknowledge that fact or it may decide to end the
dialogue. However, it would be illegal for A to continue the dialogue
with another inform move unless it has received an acknowledgement
from B first, and so forth.

Several spoken dialogue systems also use DFA-based models to de-
termine the course of well-formed conversations. One of them is the
SRI-Autoroute system (Lewin, 1998), which is based on Conversational
Game Theory (Power, 1979). In this system finite automata are used
to model games that represent the conversational rules governing ex-
changes. Figure 2 shows a graphical representation of a confirmation
game given by Lewin (1998). This automaton characterises what the
system (A) can expect from the user (B) in an interaction where
A asks B for confirmation of some utterance. In this situation the
user is expected to reply either affirmatively with a reply yes move or
negatively with a reply no move. Alternatively, the user may correct
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Figure 2. Confirmation game from (Lewin, 1998)

the hypothesis of the system by a reply mod move, in which case the
confirmation game starts again.

An example for a more sophisticated DFA-based protocol would
be the finite state model of grounding proposed by Traum (1994).
This protocol provides constraints on possible grounding act sequences,
allowing for a fine-grained monitoring of the grounding status of an
utterance.

3.2. DFA-based Protocols

The type of protocols discussed in our examples above will provide
the starting point for our proposed classification of communication
protocols. We are now going to define the class of DFA-based protocols,
i.e. the class of protocols that can be defined in terms of a DFA. Our
definition amounts to a simple re-wording of the usual definition of a
DFA (Hopcroft et al., 2001; Lewis and Papadimitriou, 1998) using a
terminology appropriate for the description of dialogue protocols.

DEFINITION 1 (DFA-based protocol). A DFA-based protocol is a
quintuple 〈Q, q0, F,L, δ〉, consisting of a finite set of dialogue states
Q, including an initial state q0 ∈ Q and a set of final states F ⊆ Q, a
communication language L, and a transition function δ : Q× L → Q.

The elements of the communication language L are utterances and are
constructed from a finite set A of agents (or dialogue participants), a
finite set M of dialogue moves (or illocutionary acts), and a content
language C. We assume that every utterance has the structure i : m(c)
with i ∈ A, m ∈ M, and c ∈ C. In general, at the level of describing
abstract models for dialogue protocols rather than concrete instances
of these models, we do not put any restrictions on the content language
C, i.e. utterances of the form i : m(c) cover any type of utterance. Our
chosen representation merely singles out the name of the speaker and
the type of the dialogue move. As the types of dialogues we are going
to consider typically only involve two participants we may think of A
as the set {A,B}.
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When talking about DFAs in general (i.e. not just in the context
of protocols), we would refer to L as an input alphabet rather than a
communication language. The input alphabet is usually defined as a
finite set (Hopcroft et al., 2001). This may seem at odds with our set
of utterances L which, intuitively (at least in the context of natural
language), could be infinite. While this may indeed be the case, we can
always group utterances into a finite number of equivalence classes with
respect to the effect they have on the state transition function δ. For
any given input state, there are only a finite number of output states
the system could move to. Typically, in the context of communication
protocols, these equivalence classes are determined by the dialogue
moves in M, which is a finite set.

Representing protocols as DFAs allows for a simple formalisation of
the notion of possible follow-up at a given point in a dialogue:

DEFINITION 2 (Possible follow-up). Given the current dialogue state
q, an utterance u constitutes a possible follow-up of the dialogue iff there
exists a state q′ ∈ Q such that δ(q, u) = q′ holds.

Before a dialogue starts we are in the initial state q0. The dialogue state
then gets updated whenever an utterance is performed, following the
transition function δ. A complete dialogue conforms to a given protocol
iff it is accepted by the DFA, i.e. iff each utterance in the dialogue is a
possible follow-up and the final utterance leads to a final state in F .

In the context of multiagent systems, where protocols have a pre-
scriptive function, possible follow-ups may also be interpreted as legal
follow-ups. We will use the latter term when appropriate.

4. Protocols with Memory

In this section, we are going to see a first example for a dialogue feature
that cannot be modelled by a simple DFA-based protocol in a satisfac-
tory manner. As we shall see, this observation gives rise to an extension
of our basic model, which involves adding a memory component. This
component allows us to store utterances (or abstractions thereof) that
may affect the range of possible follow-ups later on in the dialogue.

This section describes the extended model in general, while subse-
quent sections discuss specific instances of the general model and their
applications in detail.
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4.1. Protocols that Allow for Subdialogues

In natural language dialogue it is not uncommon to find embedded pairs
of questions and answers, where a sequence of questions is followed by a
sequence of answers, which answer the questions in reverse order. This
is exemplified in the following dialogue, taken from Levinson (1983):

(1) A: May I have a bottle of Mich? [Q1]
(2) B: Are you twenty one? [Q2]
(3) A: No. [A2]
(4) B: No. [A1]

The next example shows that deeper embeddings are also possible:

(1) A: Who should we invite? [Q1]
(2) B: Should we invite Bill? [Q2]
(3) A: Which Bill? [Q3]
(4) B: Jack’s brother. [A3]
(5) A: Oh, yes. [A2]
(6) B: OK, then we should invite Gill as well. [A1]

Replying to a question with another question (2) and asking for clari-
fication (3) are very common phenomena in natural language dialogue,
especially in information-oriented interaction. A protocol characterising
this kind of dialogues would, at the very least, have to be able to keep
track of the number of questions asked so that the number of answers
can be matched against it. If the number of questions is not bounded,
this would require an unlimited amount of memory to be able to store
that number. This is not possible with DFA-based protocols, because
DFAs have a limited amount of memory, encoded by the fixed set of
states of the automaton.

Thus, the presence of embedded subdialogues (or insertion sequences
in the terminology of Levinson (1983)) creates a structure that calls
for an enrichment of the DFA-based model. This can be modelled by
adding a stack to a DFA. In the example above, questions would get
pushed onto the stack, to be then popped by their respective answers.
We are going to discuss this abstract model for dialogue protocols in
detail in Section 5. As is well-known, the machine model of a DFA
together with a stack corresponds to a pushdown automaton (Hopcroft
et al., 2001; Lewis and Papadimitriou, 1998).
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4.2. Adding a Memory Component to the Basic Model

Storing questions in the manner suggested above is an example for an
abstraction from the full dialogue history. We only keep those parts of
the history that are relevant to the choice of future follow-ups, and we
do so in a convenient format. For embedded question-answer sequences,
an appropriate format seems to be that of a stack.

DFAs are abstract machines with a limited amount of memory.
Adding a (finite) stack amounts to enriching the automaton with an
unlimited memory component. Modelling this memory as a stack is
just one of many options. Besides stacks, we may consider a variety of
abstract data types (ADTs) such as, for instance, queues, sets or lists
(Aho et al., 1983).3 We call the set of objects that can be stored in
memory the memory alphabet (which may or may not be identical to
the communication language). Every ADT comes with a set of basic
operations (push(x) and pop in the case of a stack) and functions (top
to return the top element on a stack, for example). A configuration of
a memory component is an instance of the ADT used to model that
memory component. For example, in the case of a set, a configuration
would be a subset of the memory alphabet, while for a stack it would be
a string of elements of that alphabet. The visible part of a configuration
is the part that can be checked using the available ADT functions. In
the case of a stack, for instance, only the topmost element is visible. In
the case of a set, on the other hand, all elements are visible.

For any given ADT, we can define a class of protocols with memory
based on that ADT as follows:

DEFINITION 3 (Protocol with memory). A protocol with memory
based on a given ADT is a sextuple 〈Q, q0, F,L,L′, δ〉, consisting of
a finite set of dialogue states Q, including an initial state q0 and a set
of final states F ⊆ Q, a communication language L, a memory alphabet
L′, and a transition function δ : Q× Γ× L → Q× Γ, where Γ denotes
the set of all possible configurations of the memory component.

There are two restrictions on δ. Firstly, the definition of δ may only
refer to the visible part of the input configuration, and it has to be
implementable in terms of the available ADT operations. Secondly, δ
has to be representable in terms of a finite subset of (Q×Γ×L)× (Q×

3 The use of ADTs plays an important role in the definition of the information
state in implemented dialogue systems following the information-state approach to
dialogue modelling, developed in the TRINDI project (Larsson and Traum, 2000).
For a list of some ADTs useful for dialogue management in such computational
systems see e.g. Traum et al. (1999), Larsson (2002), and Bos et al. (2003).
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Γ).4 The latter means that, as for the communication language, even if
the memory alphabet may be infinite to begin with, from an abstract
point of view, we only need to distinguish a finite number of equivalence
classes of elements of the alphabet when modelling the automaton.

Our definition of what constitutes a possible follow-up at a given
point during a dialogue for this extended model is very similar to the
case of DFA-based protocols:

DEFINITION 4 (Possible follow-up). Given the current dialogue state
q and the current configuration of the memory component x, an utter-
ance u constitutes a possible follow-up of the dialogue iff there exist a
state q′ ∈ Q and a configuration x′ ∈ Γ such that δ(q, x, u) = (q′, x′).

As before, a complete dialogue conforms to a given protocol with mem-
ory iff it is accepted by the automaton in question, i.e. iff each and every
utterance is a possible follow-up and the last utterance takes us to one
of the final states in F .

In the following sections, we are going to discuss several choices for
ADTs as memory components enriching the basic DFA-based model,
which are required to account for different dialogue phenomena.

5. Protocols with a Stack

As we have seen at the beginning of Section 4, not all dialogue struc-
tures are satisfactorily captured by a protocol with a machine model
that corresponds to a simple DFA. In particular, we have argued that
the phenomenon of embedded subdialogues can be modelled by adding
a finite stack to a DFA-based protocol. A stack allows us to store
arbitrarily large amounts of information that are accessible in a last-
in-first-out (LIFO) manner. Such information can be manipulated by
means of the function top, which returns the top element on the stack,
and the operations push(x), which pushes element x onto the stack,
and pop, which removes the top element from the stack. In this section,
we are going to discuss the model of a DFA-based protocol enriched
with a stack component in more detail and give a couple of examples
for relevant dialogue phenomena.

4 These restrictions are in line with the standard definition of a pushdown au-
tomaton (Lewis and Papadimitriou, 1998), which is the prototypical example of an
automaton with an explicit memory component.
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5.1. Questions Under Discussion and More

An example of a structuring mechanism able to handle embedded
question-answer sequences is Ginzburg’s qud (questions under discus-
sion) (Ginzburg, 1996; Ginzburg, 2006). This is a storage device that
nicely accounts for the fact that, although several issues can be relevant
at a particular stage in a dialogue, they are usually ranked in terms of
relative salience. Simplifying a little, in Ginzburg’s approach questions
get introduced into qud and get downdated once they are answered.
The assertion of a proposition p also introduces a question into qud,
namely whether(p). Typically, this question would get downdated from
qud once p is acknowledged.5

In Ginzburg’s theory, the qud plays a central role in determining
the possible responses to a given utterance, the general assumption
being that the turn-holder will address the top element in qud. In
the context of embedded question-answer sequences, the last question
asked becomes the most salient question under discussion, which will
be the first one to be answered. Thus, a stack seems the appropriate
ADT to characterise Ginzburg’s qud. Several dialogue systems, like for
instance GoDiS (Larsson et al., 2000; Larsson, 2002), have indeed im-
plemented the qud model as a stack. We are going to discuss Ginzburg’s
framework further in Section 6.

Besides questions under discussion, other aspects relevant to dia-
logue management can be successfully modelled with a stack. A clear
example are discourse obligations (Traum and Allen, 1994; Matheson
et al., 2000), which constitute a structuring mechanism similar to qud.
The main idea of the approach is that some utterance types impose
obligations on the addressee to respond to these utterances. The as-
sumption is then that dialogue participants will always try to address
the topmost element on their obligation stack. Another notion that can
be (and indeed usually is) modelled by means of a stack is the agenda
of actions to be performed by an agent (Traum et al., 1999). Again, the
assumption is that an agent will always try to perform the action on top
of its agenda. In general terms, thus, any repository of information that
requires only limited accessibility related to recency—corresponding to
the LIFO property of stacks—can in principle be modelled by this kind
of datatype.

5 A protocol for inquiry-oriented dialogues based on this framework has also been
formalised using first-order dynamic logic (Fernández, 2003). This suggests, more
generally, that it is possible to specify our protocols, including the ADT operations
on the memory component, in logical terms.
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5.2. Expressive Power

As pointed out earlier already, a DFA together with a stack corresponds
to a pushdown automaton. As is well known, pushdown automata are
strictly more powerful than DFAs (Lewis and Papadimitriou, 1998). In
our context this means the following:

FACT 1. The class of dialogues conforming to protocols with a
stack strictly includes the class of dialogues conforming to DFA-based
protocols.

It may also be interesting to use protocols with more than one stack.
Kreutel and Matheson (1999) and Traum (2003), for instance, propose
to use a stack of obligations together with a stack of questions under
discussion. It is important to note though that adding a second stack
to a protocol with a stack would (again) increase expressive power,
because a pushdown automaton with two stacks is equivalent to a Tur-
ing machine, which is strictly more powerful than a simple pushdown
automaton (Lewis and Papadimitriou, 1998).

While these observations regarding the expressive power of different
protocol models are easy exercises from a computation-theoretic point
of view, we do believe that they offer an interesting and novel per-
spective on dialogue modelling. The type of abstract machine that is
(usually implicitly) encoded when specifying a particular agent interac-
tion protocol or dialogue management system is certainly one relevant
dimension according to which we can classify the complexity of such
a system. Of course, it is also clear that not every protocol with, say,
two stacks will fully exploit the power of Turing machines. Indeed, a
“simple” Turing machine may be far less complex that a “complicated”
pushdown automaton.

6. Protocols with a Stack of Sets

In Section 4, we have considered a dialogue where several questions
are posed in sequence. There we have argued that in these cases it
seems reasonable to use a protocol where the last question asked takes
precedence (i.e. it is the first one to be addressed), and that such a
protocol can be modelled by a pushdown automaton. In this section,
we are going to discuss a generalisation of this model, which makes
accessibility more flexible.
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6.1. Successive Queries by the same Speaker

As some authors have noticed (Asher, 1998; Ginzburg, 2006), when
successive queries are asked by a single speaker, the simple kind of
protocol discussed in the previous section would not always account
correctly for the data. This is illustrated by the following example
(adapted from Asher (1998)):

(1) A: Where were you on the 15th? [Q1]
(2) A: Do you remember talking to anyone after the incident? [Q2]

(3) B: I didn’t talk to anyone. [A2]
(4) B: I was at home. [A1]

(3’) B: I was at home. [A1]
(4’) B: I didn’t talk to anyone. [A2]

Dialogues such as the one above show that when two or more ques-
tions are uttered in succession by the same speaker, the respondent
is sometimes allowed to answer them in any order. In such dialogues,
the questions under discussion are in what has been called a coordinate
structure (Asher, 1998), with none of them taking precedence over the
others. When this is the case, a protocol based on a DFA plus a stack
would not be appropriate to handle this phenomenon.

Larsson (2002) gives some examples that point in the same direction.
As he notes, assuming that the questions in the following dialogue are
organised as a stack “suggests a very unintuitive interpretation of B’s
answer, where 10:30 is the time when B is coming back and 11:30 is
the time when B is leaving”.

(1) A: When are you leaving? [Q1]
(2) A: When are you coming back? [Q2]
(3) B: Ten thirty and eleven thirty. [A?] & [A?]

In fact, although in Section 5 we have proposed to represent the qud as
a stack, in Ginzburg’s model the questions currently under discussion
form a partially ordered set. This order indicates what conversational
precedence different questions take over each other. It should be noted,
however, that the proposed model does not actually make use of the
full expressive power of a partially ordered set. This is so because new
questions can only be added at the top, either strictly above the cur-
rently most salient question, or next to it. Also, questions can only be
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deleted from the top; we do not have access to elements further down
the order (Ginzburg, 2006).

In terms of our hierarchy of protocols with memory, such an ar-
chitecture can be modelled using a DFA together with a finite stack
of sets. The questions under discussion that currently have maximal
conversational precedence are those in the top set of the stack. Now,
adding a new question strictly above the currently maximal ones corre-
sponds to pushing a singular set containing only that question onto the
stack. To add a new question next to the currently maximal questions,
on the other hand, we first pop the top set off the stack, then insert
the new question into that set, and then push the new set back onto
the stack. To delete a question (with maximal precedence), we first pop
the top set off the stack, then delete that question from the set, and
finally push the remaining set back onto the stack—unless that set is
empty (i.e. unless there has been only a single maximal question). A
delete operation will fail in case the question given as a parameter is
not a member of the top set.

Larsson (2002) proposes to model qud as an open-stack, i.e. a struc-
ture that retains the stack order but possesses set-like properties. For
instance, as a set, an open stack cannot contain repeated elements.
This makes push(x) a complex operation that involves first checking
whether x is a member of the open-stack; in the affirmative case, x is
deleted prior to being pushed on the top position. Even though non-
topmost elements can be accessed and deleted, questions can only be
added at the top. Contrary to our stack of sets, however, this model
cannot account for bunches of elements that are “at the same level”
while being ordered with respect to other elements. As will be shown
(for sets) in Section 7, the expressive power of the open-stack model is
not higher than that of a DFA.

6.2. Choosing the Right Operation: Push or Insert?

An interesting issue is what causes a question to be inserted into the top
set of the stack or, alternatively, to be pushed onto the currently max-
imal set. A simple hypothesis we could make is that the first operation
takes place when successive queries are posed within a single turn (as in
the examples above), while the second one is executed when a different
speaker replies to a question with another question (as in the examples
in Section 4). The following dialogue, taken from Ginzburg (2006),
however, suggests that successive querying within a single turn does
not always imply that the questions enjoy equal status:
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(1) A: Who will you be inviting? [Q1]
(2) A: And why? [Q2]
(3) B: Mary and Bill, I guess. [A1]
(4) A: Aha. [Ack]
(5) B: Yeah, (because) they are very undemanding folks. [A2]

Notice that here the first question asked seems to take precedence over
the last one—only after the first question is answered does the second
question get addressed. Although a reply along the lines of “I’d like to
have a quiet dinner, so Mary and Bill I guess” would also be possible,
the order of answers in the dialogue above seems to be the least marked
option in this situation.6 This suggests that the order in qud is not
determined solely by conventional means (i.e. in terms of the order of
occurrence in the dialogue or the speakers of the questions), but is also
guided by semantic relations that may hold between its elements. This
is of course noted by Asher (1998) and Ginzburg (2006), who explicate
the differences in terms of the relations that are said to hold between
the questions: coordination in case questions can be answered in any
order, and query-extension in case they are more naturally answered
in the order in which they have been posed.7

There is not much to say about this from the abstract point of
view we take here, besides noting that complex relations between the
elements of the content language C would have to be encoded as part
of the definition of the transition function δ.

6.3. Expressive Power

It turns out that, from a computational point of view, the model of a
DFA enriched with a stack of sets is in fact not more expressive than
that of a pushdown automaton (with a simple stack):

FACT 2. The class of dialogues conforming to protocols with a stack is
the same as the class of dialogues conforming to protocols with a stack
of sets.

6 In early work, Ginzburg uses examples like this to motivate a modification of his
qud-update protocol, namely the addition of a new operation (“+qud-flip”), which
pushes a question under the maximal element in QUD, i.e. between the topmost
element and the rest of the stack. In the abstract model proposed here this would
correspond to first popping the top element off the stack, then pushing the new
question, and finally pushing the former top element back onto the stack.

7 Since the early work of Mann and Thomson (1987), a lot of attention has been
paid to characterising the nature of discourse relations, i.e. coherence relations that
hold between adjacent sentences, mostly in text/monologue (see e.g. Asher (1993)),
but more recently also in dialogue (Asher and Lascarides, 1998).
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16 Raquel Fernández and Ulle Endriss

This may be seen by considering that, given a DFA with a stack of
sets using the memory alphabet L′, we can construct a pushdown
automaton that uses the power-set of L′ as its memory alphabet and
that accepts the same inputs as the original automaton.

An alternative way of constructing a pushdown automaton that is
equivalent to a given DFA with a stack of sets would be to extend the
memory alphabet by a special “separator” symbol. Now all elements in
the stack between two separators would be considered a set. Each state
in the original DFA would have to be replaced with a sub-automaton
to simulate checking for membership and deleting elements from the
top set.

In either case, our simulation would result in an exponential blow-
up of the model, either with respect to the memory alphabet or with
respect to the number of states. Therefore, in practice, the model of a
DFA-based protocol with a stack of sets may often be preferred over
protocols with a simple stack.

7. Protocols with a Set

So far we have seen abstract models for protocols that are related to
different degrees of recency, namely protocols that make use of a stack
or a stack of sets. Sometimes, however, determining what constitutes
an appropriate follow-up with respect to a protocol can be related to
aspects that are independent from the order in which inputs have been
received. To account for this, as a further instance of the general model
of protocols with memory, we are going to discuss DFA-based protocols
extended with a set.

The ADT operations available when working with a memory com-
ponent structured as a set are insert(x) to insert element x into the
set and delete(x) to remove it again. The central function available is
member(x) to test whether x can be found in the set (Aho et al., 1983).

7.1. The Blackboard Architecture

An example of an order-independent model is the so-called blackboard
architecture, which has been used in the context of multiagent sys-
tems to formalise protocols inspired by work on argumentation in
dialogue modelling. Argumentation-based protocols have been used to
model different types of dialogues (such as negotiation dialogues or
persuasion dialogues) between software agents (Amgoud et al., 2000).
Central to this approach is the notion of a commitment store, due to
Hamblin (1970).
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For example, asserting a proposition amounts to placing that propo-
sition into one’s commitment store. A retract move would then be
considered legal only if the corresponding proposition can be found in
the agent’s commitment store (and would itself cause the respective
proposition to be deleted again). Similarly, to model the rule that
an agent may only challenge a proposition that has previously been
asserted by its opponent, we may stipulate that a challenge move is
only legal in a situation where the proposition that is being challenged
has previously been added to the commitment store.

This kind of blackboard architecture may be modelled in terms of a
DFA-based protocol together with a finite set (or possibly one set for
each agent). Any utterances that may affect the legality of utterances
later on in a dialogue would be stored in this set. In particular, this
kind of architecture requires us to abstract from the order in which
utterances occur. We can only keep track of the fact that a given
utterance either has or has not been uttered in the past.

Besides modelling argumentation-based dialogue, another applica-
tion of this model would be agent interaction protocols involving social
commitments (Singh, 1998; Colombetti, 2000). An example, taken from
Singh (1998), would be that an agent, if asked for a price quote by
different agents, must always reply with the same quote. This social
commitment may be modelled by storing the first price quote in the set
component (possibly together with the query and the time of the first
query). Any subsequent reply to a price quote may then be checked
against the contents of the set to detect potential violations of the
protocol.

A final example for the use of a set component in a protocol is
the set of facts, which is a further component of the information
state as modelled in Ginzburg’s theory (besides qud). This is a set
the elements of which do not represent the commitments or beliefs of
agents, but rather what has been established for the sake of the con-
versation (Ginzburg, 1996). One may want to design protocols where,
for instance, questions are only appropriate follow-ups whenever their
answers are not members of the set of facts.

7.2. Expressive Power

It is interesting to note that adding a set to a DFA does in fact not in-
crease expressive power, because the range of all possible configurations
of the set component could be encoded into a larger DFA:

FACT 3. The class of dialogues conforming to DFA-based protocols is
the same as the class of dialogues conforming to protocols with a set.
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This is the case, because we are working with a finite memory al-
phabet.8 The set of possible configurations of the blackboard is the
power-set of the memory alphabet, i.e. it is also finite. We can therefore
transform the original DFA by introducing a new state for every pair of
an original state and a configuration of the blackboard. If we arrange
the transition function accordingly, we obtain a new DFA (without
explicit memory component) that corresponds to the same protocol as
the original automaton. However, such a construction would result in
an exponential blow-up of the set of states; that is, in practice, a black-
board architecture can have great advantages over a simple DFA-based
protocol.

In the literature on argumentation systems, each agent is usually
equipped with its own commitment store. Again, while this is a conve-
nient means of representation, working with a DFA with more than one
set does also not increase the expressive power of the model, because the
range of all possible configurations of the memory components could
be encoded explicitly within a larger DFA.

8. Protocols with a List

Besides stacks and sets, another important ADT is the list data type.
Like a stack, a list can be used to store a string of elements of the mem-
ory alphabet, but, while a stack only allows access to its top element,
in a list all elements are visible and can be manipulated. The most
important ADT operations for lists are insert(i, x) to insert element x
at position i and delete(i) to remove the element stored at position i
from memory, while the function retrieve(i) can be used to check the
value of that element (Aho et al., 1983).

In this section, we briefly discuss possible applications for protocols
based on DFAs enriched with a list component and comment on the
expressive power of this abstract model.

8.1. Explicit Representation of the Dialogue History

Systems providing access to (parts of) the dialogue history explicitly
in order to check the legality of an utterance may be modelled as DFA-
based protocols together with a finite list (by appending utterances to
the end of the list as they occur in the dialogue). This architecture

8 As discussed in Section 4, even if the memory alphabet, e.g. the set of all
possible utterances, is assumed to be infinite, it can be reduced to a finite number
of equivalence classes with respect to the effect an utterance has on the course of
the dialogue.
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allows us to keep track of relevant utterances and the order in which
they occur. In particular, a list-based representation enables us to ac-
cess any of the elements stored in memory at any time, and not just,
say, the element inserted last (as for stacks).

An architecture of this sort has been used by Ginzburg and
Fernández (2005a) to account for acceptance moves in multi-party di-
alogue, where the asserter of a proposition p can consider p accepted
by the audience only when it has been accepted by all addressees.
This is modelled by means of a list of moves that keeps track of the
utterances that occur in the dialogue. A proposition p is considered
accepted if moves contains an assert(p) move followed by acceptance
moves by all addressees participating in the dialogue. Thus we need
to access several moves stored in memory, and to make sure that the
assertion occurs prior to the acceptances we also need to keep track of
the order in which moves occur.

Protocols with a list are the most powerful protocol model we have
discussed, because they allow us to record the full dialogue history,
which—in principle—should always make it possible to specify any
conditions pertaining to the legality of an utterance. In fact, this is
precisely the thesis underlying the conventionalist approach to com-
munication protocols (in multiagent systems research): what is legal
may only depend on publicly observable facts (Singh, 1998).

Of course, in computational terms, this model is also the most costly
one. Storing the entire dialogue history may not always be feasible.
Also, simply storing the history without making suitable abstractions
(as in our previous examples) will often be too rich a mechanism for
designing concise protocols.

8.2. Expressive Power

The machine model of a DFA enriched with a finite list is equivalent
to a Turing machine (Hopcroft et al., 2001; Lewis and Papadimitriou,
1998). This follows immediately from the fact that the list can be used
to store the tape, while the DFA can be used to implement the control
component of a Turing machine. An alternative way of showing this
equivalence would be to build on the fact that a list can be used
to encode two stacks and, as mentioned earlier already, a pushdown
automaton with two stacks is equivalent to a Turing machine. It follows
that protocols with a list are strictly more expressive than protocols
with a stack (and thereby also than simple DFA-based protocols):

FACT 4. The class of dialogues conforming to protocols with a list
strictly includes the class of dialogues conforming to protocols with a
stack.
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As a final remark, it is well known that Turing machines with multiple
tapes can be simulated by a single-tape Turing machine (Lewis and
Papadimitriou, 1998). Therefore, working with a protocol with several
list components would not increase expressive power any further.

9. Shallow Protocols

So far we have concentrated on enriching the basic model of DFA-based
protocols to cater for a variety of complex dialogue phenomena. Where
such phenomena are not present, we may usefully restrict the model
rather than extend it.

Recently, a class of so-called shallow protocols has been introduced
in the context of multiagent systems (Endriss et al., 2003). A shal-
low protocol is a protocol where the legality of an utterance can be
determined on the sole basis of the previous utterance in the dialogue.

9.1. Shallow Rules and Conformance Checking

For example, to express that any proposal by agent A must be followed
by either an acceptance, a rejection, or a counter proposal by agent
B, we may use the following shallow rule (omitting descriptions of the
content of an utterance for simplicity):

A: propose → ◦ (B: accept ∨ B: reject ∨ B: counter)

Here we use the next-operator ◦, familiar from linear temporal logic
(Goldblatt, 1992), to refer to the next turn in the dialogue.9

In general, a shallow rule is of the form u → ◦(u1 ∨ · · · ∨ un), where
u as well as u1, . . . , un are utterances. This rule expresses that any of
the utterances on the righthand side constitutes a legal continuation
of a dialogue where the latest utterance has been u. In addition, we
require a special symbol to indicate the start of a dialogue (to be able
to provide a rule of the above form specifying the range of legal initial
utterances). There are a number of requirements a set of shallow rules
forming a protocol need to meet. Notably, there can only be (at most)
one rule for any “trigger” u. For full details we refer to Endriss et
al. (2003).

While such an approach to representing protocols may seem some-
what simplistic, it nevertheless applies to a wide range of protocols
proposed in the literature (some of which are mentioned below). Specif-
ically, it can be of particular interest in the area of multiagent systems.

9 Refer to Endriss (2005) for a discussion of the representation of dialogue
protocols using temporal logic.
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As shown by Endriss et al. (2003), it is possible to check a priori
whether a given agent will behave in conformance to a given shal-
low protocol by inspecting the agent’s specification, rather than just
observing an actual dialogue at runtime. This is the case, at least, in
the sense of the agent being guaranteed not to utter anything illegal;
guaranteeing that an agent actually utters anything at all turns out to
be somewhat more difficult a problem. The ability to check conformance
to a protocol not only at runtime, i.e. while a dialogue is actually taking
place, but also before entering into an interaction with other agents,
allows system designers to build more successful software agents which,
for example, may be able to avoid penalties associated with behaviour
that is deemed illegal according to the social interaction protocol in
place.

9.2. Shallow Protocols as Automata

Shallow protocols may be understood either in terms of reactive rules
of the kind given above or as restricted DFA-based protocols.

DEFINITION 5 (Shallow protocol). A DFA-based protocol is shallow
iff the value of the transition function δ is always uniquely identifiable
given only its second argument (the utterance).

Thus in a shallow protocol, to determine the state we will end up in
given an utterance u, we do not need to know the state we come from. A
shallow rule tells us that, regardless of that state, whenever utterance u
on the lefthand side of the rule takes place, we end up in a state whose
possible outgoing utterances are those given on the righthand side of
the rule. The protocol shown in Figure 2 representing the confirmation
game proposed by Lewin (1998), for instance, is a clear example for a
shallow protocol, because each utterance is only used to label a single
transition.

A non-shallow protocol would be a DFA where two edges with the
same label point to two different states. For example, it is common for
spoken dialogue systems to include a protocol that allows the system
to ask the user to repeat their input at most, say, three times in case of
recognition problems. If the problem persists after the third repetition,
the system would terminate the interaction and possibly pass on to a
human operator. This change of behaviour after the third repetition
cannot be modelled by means of a shallow protocol.

In principle, it is always possible to turn a DFA-based protocol into
a shallow protocol by renaming any duplicate transitions. In fact, many
of the simpler DFA-based protocols to be found in the multiagent
systems literature happen to be shallow or could at least be made
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shallow by renaming only a very small number of transitions (besides
Lewin (1998), examples include the protocols proposed by Parsons et
al. (1998) and Pitt and Mamdani (1999b)). In such cases, it seems
advantageous to use the simpler model of shallow protocols in the first
place.

9.3. Expressive Power

In a context where the renaming of utterances labelling problematic
transitions is not acceptable, however, shallow protocols really do
determine a proper subclass to DFA-based protocols.

FACT 5. The class of dialogues conforming to DFA-based protocols
strictly includes the class of dialogues conforming to shallow protocols.

While there is no standard machine model that corresponds to the
class of shallow protocols, we can nevertheless characterise it in terms
of the type of grammar that could generate a dialogue following a
shallow protocol. Recall that the regular languages, which are the lan-
guages accepted by DFAs, are the languages generated by right-linear
grammars (Lewis and Papadimitriou, 1998). A context-free grammar
is called right-linear iff the righthand side of every rule in the grammar
consists of any number of terminal symbols followed by at most one
non-terminal. In fact, for any regular language there exists a right-
linear grammar generating that language where there is also at most
one terminal symbol in any rule. To characterise shallow protocols, we
have to impose an additional restriction on the structure of admissible
grammar rules.

DEFINITION 6 (Shallow-right-linear grammar). A context-free gram-
mar is shallow-right-linear iff (i) every rule is of the form A → bB or
A → b, where A and B are non-terminal symbols and b is a terminal
symbol; and (ii) for every terminal symbol b there is a unique context in
which it may appear: either b only appears on its own or it only appears
with a unique non-terminal symbol B (that is, as bB).

The first part of this definition characterises right-linear grammars,
while the second part encapsulates the shallowness condition. Now the
languages generated by shallow-right-linear grammars over the alpha-
bet given by a communication language L are precisely the strings
of utterances that correspond to legal dialogues according to shallow
protocols.
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Table I. Abstract models of dialogue protocols

Abstract model Examples

Shallow rules
(⊂ DFA)

− simple communication protocols in multiagent
systems (Endriss et al., 2003)

Finite automaton
(DFA)

− simple communication protocols in multiagent
systems (Pitt and Mamdani, 1999b)

− conversational games (Lewin, 1998)

− finite-state model of grounding (Traum, 1994)

DFA + set
(= DFA)

− commitment store in argumentation
(Hamblin, 1970; Amgoud et al., 2000)

− social commitments in multiagent systems
(Singh, 1998; Colombetti, 2000)

− commonly accepted facts (Ginzburg, 1996)

DFA + stack
(= pushdown automaton)

− (simplified) questions under discussion
(Ginzburg, 1996)

− (some models of) discourse obligations
(Kreutel and Matheson, 1999)

DFA + stack of sets
(= pushdown automaton)

− questions under discussion (Ginzburg, 1996)

DFA + list
(= Turing machine)

− explicit representation of dialogue history

− moves in multi-party dialogue
(Ginzburg and Fernández, 2005a)

10. Conclusion

In this paper, we have analysed a variety of interesting features of
dialogue as they occur either in natural language interaction or in the
context of multiagent systems. These features have given rise to a num-
ber of different abstract models for dialogue protocols. These protocols
are based on the machine model of a deterministic finite automaton,
which we have further enriched with memory components modelled
as different abstract data types. In one case, we have also seen that a
restriction of the basic model can have useful applications. Table I gives
an overview of the various protocol models we have discussed, together
with a selection of representative examples.

We should emphasise that our protocols with memory are abstract
models that are intended to capture characteristic features of particular
classes of dialogues. In most cases, the full power of the theoretical
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model will not be necessary to account for actual human-human dia-
logues. For instance, pushdown automata, which we have used to model
the phenomenon of subdialogues, are only strictly more expressive than
simple DFAs if the size of the stack is not bounded. However, one may
argue that humans will hardly ever use more than a relatively small
number of levels of embeddings. In the case of communicating software
agents this bound may be higher, but for practical purposes it seems
still very reasonable to work with an upper bound on the number of
elements that can be stored in the stack. For all the ADTs that we have
discussed in this paper, if the number of elements that can be stored is
bounded, then a DFA equipped with a respective memory component
is no more expressive than a simple DFA. We stress that this does
not disqualify the idea of working with memory-enriched protocols,
however. A simple DFA together with an ADT that structures relevant
information in an appropriate manner can be much more useful, from
both a practical and a theoretical point of view, than a single large and
possibly rather cumbersome DFA.

With this paper, we hope to have been able to point out interesting
connections between issues in dialogue modelling on the one hand, and
well-known machine models from the theory of computation on the
other. There is a variety of possible avenues of future research in this
area, maybe the most obvious being to try to identify further dialogue
phenomena that require protocol models not covered by our work so
far. Another interesting issue is the interaction between protocols and
other aspects of dialogue modelling. For instance, the choice of a partic-
ular protocol model may restrict the possible dialogue strategies. Vice
versa, the need for a particular strategy may influence the data type
used to model the protocol. This is an exciting area of research that
requires a strong interdisciplinary approach. The relevant disciplines
include applied logic (specification theory), linguistics (dialogue mod-
elling), theoretical computer science (automata theory), and artificial
intelligence (multiagent systems).
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