
DYNAMIC DATA STRUCTURES

ON MULTIPLE STORAGE MEDIA

Michiel Smid

November 1989

Contents

I Introduction 5

1 Outline of the thesis 7

2 Preliminaries: Data structures and searching problems 15

2.1 Introduction.................-.2.02008- 15

2.2. Binary search trees--.---0+0200- 19

2.3 Range trees2--2.-000000- 24

2.4 Decomposable searching problems 30

2.5 Order decomposable set problems 34

2.6 Storage and computation models 37

II Maintaining range trees in secondary mem-
ory Al

3 Introduction 43

3.1 The partitioning problem. 43

3.2 Storage considerations-.4. 45

4 Partitions of 2-dimensional range trees 47

4.1 Restricted partitions-..-...-.. 48

4.2 Changing range trees to make them partitionable 56

4.3 A partition in which updates pass through 3 parts... . 59

4.4 k-divided range trees-.--000.4. 64

5 Partitions of d-dimensional range trees 79

5.1 Restricted partitions of d-dimensional range trees 79

1

2 Contents

5.2 d-dimensional reduced range trees 82

5.3 d-dimensional k-divided range trees 90

6 The lower bounds 107

6.1 Lower bounds for binary search trees 108

6.2 Weight estimates for range trees. 113

6.2.1 2-dimensional range trees. 113

6.2.2 d-dimensional range trees 115

6.3 Lower bounds for restricted partitions. 121

6.4 Lower bounds for general partitions 127

7 Summary and concluding remarks 133

III The reconstruction problem for dynamic data
structures 139

8 The reconstruction problem 141

8.1 Introduction.0. 02.0002 ee eee 141

8.2 The general framework 143

8.3 Some basic solutions20-. 146

8.3.1 <A low storage shadow administration 146

8.3.2 Other basic solutions 151

9 General approaches 155

9.1 Order decomposable set problems 155

9.2 Decomposable searching problems 158

9.3 A general technique..............-...---. 162
9.3.1 Introduction.02. 162

9.3.2 An amortized solution 163

9.3.3 A worst-case solution. 166

10 A union-find data structure 175

10.1 Introduction...0.0........2.0.004 175

10.2 A variant of Blum’s structure 177

10.3 An improved data structure 180

10.4 An efficient shadow administration 182

Contents 3

11 Another approach: deferred data structuring 187

11.1 The static deferred binary search tree. 188

11.2 Three dynamic solutions 190

11.3 Applications to the reconstruction problem 196

12 Summary and concluding remarks 199

IV Maintaining dynamic data structures in a
network 205

13 The multiple representation problem 207

13.1 Introduction...0.2..002.0.0004 207

13.2 The general framework 209

13.3 An example: binary search trees. 211

14 General approaches 215

14.1 Order decomposable set problems 215

14.2 Decomposable searching problems 216

14.3 A general technique................-..-.-. 225

14.3.1 Introduction.0008. 225

14.3.2 A fixed size solution 227

14.3.3 An amortized solution 229

14.3.4 A worst-case solution. 230

14.4 Examples-.-.2.-2. 02000. 234

14.4.1 Binary search trees-.-0-0-- 234

14.4.2 Range trees02-.000. 236

15 Summary and concluding remarks 241

Bibliography 245

Contents

Part I

Introduction

Chapter 1

Outline of the thesis

The theory of data structures and algorithms is concerned with the

design and analysis of structures that solve searching problems. In a

searching problem, we have to answer a question (also called a query)

about an object with respect to a given set of objects. A data structure

for such a searching problem stores the objects in such a way that

queries can be answered efficiently. The design of data structures has

received considerable attention.

A large part of the research is focussed on designing structures that

are stored in the main memory of a computer, on which all standard

computations can be performed, and which is usually modeled as a

Random Access Machine (RAM). The memory of a RAM consists of
an array, the entries of which can store pieces of information, such as

names, integers, pointers, etc. Each such array entry can be accessed

at constant cost, provided the address of the entry is known. The main

problem is to structure the relations of the basic pieces of information

in a small amount of space, such that queries can be answered fast.

Until about 1979, many of the main memory data structures that

were designed were static, i.e., it was not possible to insert and delete

objects. Exceptions were data structures that can handle dictionary op-

erations. The oldest are the AVL-trees, introduced in 1962 by Adel’son-

Vel’skii and Landis [1]. In these trees one can search, insert and delete
objects in a number of steps that is logarithmic in the number of objects

that are stored in the tree. Other examples are B-trees, introduced in

1972 by Bayer and McCreight [4] and BB[a]-trees, introduced in 1973

7

8 1. Outline of the thesis

by Nievergelt and Reingold [37]. These classes of trees also allow search,
insert and delete operations to be performed in logarithmic time. In

1975, Van Emde Boas Trees [62, 63] were designed. These trees can
store integers from a fixed universe [0,...,u— 1], such that the opera-

tions search, insert and delete can be performed in O(log log u) time.

In 1979, the research on general dynamization techniques was ini-

tiated by Bentley [5]. This research consists of designing techniques
to transform static data structures into dynamic structures, i.e., struc-

tures that do allow insertions and deletions of objects. Many techniques

are available nowadays that can be applied to large classes of searching

problems. As an example, there exists a general theory to dynamize

data structures that solve so-called decomposable searching problems.

In a decomposable searching problem, the answer to a query with re-

spect to a set of objects can be obtained by merging the partial answers

to the query with respect to a partition of this set. Any static data

structure that solves a searching problem satisfying this general con-

straint, can be turned into a dynamic structure. The reader is referred

to Overmars [42] for a detailed account of dynamization techniques.

In this thesis, we study three alternative ways of storing and main-

taining dynamic data structures.

In Part II, we consider the problem of maintaining a specific dy-

namic data structure—a range tree—in secondary memory. This prob-

lem often occurs in database applications, where data structures are

too large to be stored in main memory, and therefore have to be stored

in secondary memory.

Secondary memory is modeled as an array that is divided into

blocks. In secondary memory, no computing is possible, and the only

allowed operations are to replace a block by another one and to add

a new block. All computations take place in main memory, and the

blocks that store information that is needed during a computation are

transported to main memory. If a block is changed during an operation,

it is transported back to secondary memory. For each block we need

in a computation, we have to access secondary memory, which takes a

considerable amount of time in practice.

Therefore, the main problem is to partition the data structure into

parts of a small size, such that each operation needs information from

only a few parts. Then, by storing each part of the partition in one

block in secondary memory, we can perform operations at the cost of

only a few disk accesses and a small amount of data transport.

In the past, considerable research has been devoted to the design

of secondary memory data structures. The best-known example is the

B-tree, that was mentioned already. (B-trees have also applications

aS main memory data structure. They were designed, however, for

secondary memory applications.) If a B-tree stores n objects, and if it

is stored in blocks of size m, the operations search, insert and delete

can be performed at the cost of O(logn/logm) accesses to secondary
memory in the worst case.

The approach we take here—take a known data structure that was

designed for main memory, and investigate how it can be partitioned as

efficiently as possible—is relatively new. In some sense, a B-tree can be

seen as a partitioned binary search tree. The problem of partitioning

priority search trees was investigated by Icking, Klein and Ottmann [27]

and Blankenagel and Giiting [10]. The partitioning of range trees has
not been studied before.

In most studies that have appeared so far, it is assumed that the

objects are represented by only one data structure that is stored either

in main memory or in secondary memory, and all operations are per-

formed on this one structure. In many situations, however, we need

to represent the data more than once—possibly on different storage

media—and have a multiple representation of the data.

In Part III, we consider one such multiple representation problem:

The reconstruction problem. After a system crash, or as a result of er-

rors in software, a data structure that is stored in main memory can be

destroyed. Another case, in which a main memory structure can be de-

stroyed, is the regular termination of an application program that uses

the structure. In case of an application that is executed on a system

that is also used by other persons, the copy of a data structure in main

memory will be destroyed between two runs of the application program.

In both cases—system crash or regular termination—the data structure

has to be reconstructed from the information stored in secondary mem-

ory. This information is called the shadow administration. So besides

the data structure in main memory, we represent the data in a shadow

10 1. Outline of the thesis

administration that is stored in secondary memory.

This leads to the problem of designing for a given searching problem,

a dynamic data structure that solves this searching problem, together

with a shadow administration from which the data structure can be

reconstructed in case of calamity.

This shadow administration does not have to support the same op-

erations as the main memory data structure. Only insertions and dele-

tions have to be performed, whereas on the main structure itself also

queries are carried out. Furthermore, we only require that the shadow

administration contains enough information that makes it possible to

reconstruct the main structure.

The reconstruction problem first appeared in a paper by Torenvliet

and van Emde Boas [61], where the reconstruction and optimization
of trie hashing functions are investigated. No other studies concerning

this problem have appeared. Therefore, Part III is the first general

study concerning this subject.

Another case where data is represented more than once is considered

in Part [V. When we have a network of processors, each having its own

memory, there are situations in which each processor holds its own copy

of a particular data structure. Updates have to be made in all copies.

When the time for an update is high this is an unfavorable situation.

In this situation, we are better off dedicating one processor the task

of maintaining the data structure and broadcasting the actual changes

to the other processors. Again we have a situation in which there is a

multiple representation of the data. One data structure should allow

for updates, and a set of other structures answer queries. Of course, the

query data structures must be structured in such a way that they can

perform updates, but they get the update in a kind of “preprocessed”

form that is easier to handle. The structure that performs the updates

is called the central structure, whereas the other structures are called

the client structures.

This multiple representation problem is related to the reconstruction

problem. In both cases, there is one structure on which updates are

performed. After this update, the other structures that are stored on

other media are updated. This is done by transporting data to these

other structures. The actual update procedure for the other structures

11

is somewhat different for both problems. A shadow administration

is stored in secondary memory, where it is only possible to replace

complete blocks by other ones. The client structures, however, are

stored in processors on which computing is possible. This makes it

possible to replace much smaller pieces of information than just blocks

of some predetermined size.

The problems are in some sense “dual” to each other: In the recon-

struction problem there is a main structure on which queries and up-

dates are performed. After an update has been carried out in this main

structure, information is transported to secondary memory, where the

shadow administration is updated. In this shadow structure no queries

are performed. In the other multiple representation problem, there is a

central structure on which only updates are performed. After this cen-

tral structure is updated, data is transported to the client structures

that makes it possible to update them. These client structures are also

used for query answering.

Again, the multiple representation problem of Part IV has not been

studied before. So Part IV contains the first general study concerning

this problem.

Solutions to the three problems that are studied in this thesis have

applications in the following areas:

e The theory of data bases.

e Computational geometry. Since in this area often data structures

are used requiring more than linear space, it is sometimes possible

to improve asymptotically upon the storage requirements.

e Paging dynamic data structures. Part II is completely devoted to

this application. The techniques developed there can be applied

to many other data structures as well. Furthermore, techniques

to maintain shadow administrations in secondary memory can

sometimes be used in case the data structure is only stored in

secondary memory.

e Parallel implementations of data structures. Techniques to par-

tition a data structure can sometimes be used to implement the

12 1. Outline of the thesis

structure on a parallel machine. See [24], where the parallel im-
plementation of partitioned range trees is investigated.

e Multiprocessing. A system in which several processors at distinct

times execute distinct tasks, and communicate through message

passing, might be even more sensitive to crashes than a unipro-

cessor system. To protect a computation against failure of pro-

cessors, checkpoints are built in on several places of the com-

putation. If a checkpoint is reached, the complete state of all

processors, and their interconnection pattern, is transported to

secondary memory. If the system crashes, the computation can

be continued at the last reached checkpoint. It is clear that much

time and space can be saved by efficiently storing the information

from each processor.

e Storing dynamic data structures in write-once memories. The

results of the problem of designing efficient client structures give

insight in which parts of data structures are actually changed

when performing updates.

This text is organized as follows. In Chapter 2, we briefly review

the basic concepts of data structures and searching problems. We recall

binary search trees, range trees, and some important classes of searching

problems. We also introduce the models of main memory and secondary

memory.

The rest of the thesis consists of three parts, that can be read inde-

pendently of each other. Each of these parts contains a final chapter,

giving a summary of the most important results of that part.

In Part II, we consider the problem of partitioning a range tree into

parts of a small size, such that each query and update needs informa-

tion from only a small number of parts. We give many partitions of

range trees, thereby obtaining a number of trade-offs between the num-

ber of disk accesses versus the amount of information that has to be

transported. We consider two types of partitions. The first type—the

restricted partitions—can easily be extended to many other data struc-

tures that have the structure of an augmented binary search tree. The

second type is much more complicated, but yields better trade-offs. We

13

first consider 2-dimensional range trees. Later, all results are extended

to arbitrary dimensions. Finally, we prove several lower bounds for par-

titions of range trees. For the restricted partitions, these lower bounds

coincide with the best upper bounds.

In Part III, we study the reconstruction problem. We give a realistic

general framework that we use to describe solutions to this problem. We

study how to structure the shadow administration for different types

of query problems, such as order decomposable set problems and de-

composable searching problems. For some types of query problems, the

shadow administration can be of an asymptotically smaller size than

the main data structure itself, and the data structure can be recon-

structed from this shadow administration in an amount of time that is

smaller than the time needed to build the data structure from scratch.

We also give a general technique, in which we transport with each

update only the changes in the shadow administration to secondary

memory. To reconstruct the data structure, we then perform the changes

of the most recent updates to get the up-to-date shadow administra-

tion. Then we reconstruct the data structure. By sending with the

changes also the positions where these changes have to be carried out,

we avoid that we have to search the positions of the pieces of infor-

mation in the shadow administration that have to be updated. This

technique gives very fast maintainable shadow administrations, and it

is especially useful in case an update changes only a small part of the

shadow structure.

Next we study a specific searching problem, the Union-Find prob-

lem. We design an efficient main memory data structure for this prob-

lem, having a lower worst-case single operation complexity than the

best previously known structure. This structure depends on a param-

eter k, and for many values of k it is optimal in the very general class

of data structures solving the union-find problem, as introduced by

Blum [12]. This new data structure is designed in such a way that a
copy of it can efficiently be maintained in secondary memory. Note

that this structure is interesting in its own right.

Finally, we apply the recent idea of deferred data structuring—due

to Karp, Motwani and Raghavan [28, 35|—to the reconstruction prob-
lem. Here, a data structure is built “on-the-fly” during query and

update operations. With each operation, those parts of the data struc-

14 1. Outline of the thesis

ture that do not exist, but that are needed, are built. These parts

can then be used for future operations. Karp et al. only give static

deferred structures, and they ask for dynamic structures. It is shown

that using well-known dynamization techniques, it is often possible to

design dynamic deferred data structures. Again, the results are inter-

esting in their own right, and have applications in other areas besides

the reconstruction problem.

We use dynamic deferred data structures to get a new approach

for solving the reconstruction problem. In this approach, we do not

require that the data structure is completely reconstructed before we

proceed with query answering and performing updates. After a crash,

we transport the shadow administration—that stores only the objects

that are represented by the data structure—to main memory, and we

immediately proceed with performing operations. The data structure

is reconstructed in a deferred way.

In Part IV, we investigate the problem of designing efficient central

and client structures. We give a general framework in which we de-

scribe solutions to this problem. As for the reconstruction problem, we

give general techniques for order decomposable set problems and de-

composable searching problems. It is shown that, after “preprocessing”

an update by the central structure, the clients can often perform the

update more efficiently. Also, in some situations the client structures

can be of a smaller size than the central structure.

Finally, we give a general technique that is related to the general

technique of Part III. In this technique, we send with an update only

those parts of the client structure that have been changed. Again, in

order to avoid searching in the client structures the positions where the

structure has to be changed, we also send these positions. This leads

to very fast maintainable client structures. We give classes of binary

search trees and range trees, the client versions of which can be updated

asymptotically faster than the central versions.

Chapter 2

Preliminaries: Data

structures and searching

problems

2.1 Introduction

In this chapter, we recall the basic concepts of data structures and

searching problems. This chapter is not meant as a general introduction

to these topics; we only recall the most important concepts that are

used in this thesis. Readers who are not familiar with the material can

find a more thorough introduction to data structures in Aho, Hopcroft

and Ullman [2, 3], Knuth [30], Mehlhorn [32, 33] and Wirth [67]. For
a general introduction to searching problems, the reader can consult

Mehlhorn [33], Overmars [42] and Wiedermann [64].
Data structures are meant for storing sets of objects in such a way

that questions (also called queries) about these objects can be answered

efficiently. Often, the kind of questions that are asked is fixed. In this

case, we want to structure the objects such that these specific queries

can be handled in an efficient way. In this thesis we only consider

data structures from this latter point of view. The kind of queries that

are asked about the objects is called a searching problem. 'To be more

precise:

Definition 2.1.1 Let T,, Tj and 73 be sets of objects. A searching

15

16 2. Data structures and searching problems

problem is a mapping PR: T, x P(T2) > T3.

In this definition, P(T) denotes the power set of To, i.e., the set of
all subsets of T>.

For example, in the member searching problem, we are given a finite

set V and a query object qg, and we have to decide whether or not q¢

is an element of V. In this case T; = To, T3 = {true, false}, and

PR(,V) = (a € V).
Another example is the orthogonal range searching problem, which

is a central object of study throughout this thesis. Here, we are given

a finite set V of points in the d-dimensional space, and an axis-parallel

hyperrectangle g = ((#1 : yi],-.-,[%a@ : Ya]), and we are asked to deter-
mine all points p = (p1,..., pq) in V, such that v7, < pi < yW,...,%a <
Da < Ya, i-e., all points of V that are in the hyperrectangle gq. In this

case, T; is the set of all axis-parallel hyperrectangles, 7) is the set of all

points in the d-dimensional space, Tz = P(T>), and PR(qg, V) = (qnV).
In the convex hull searching problem, we are given a finite set V of

points in the d-dimensional real vector space, and a query point qg, and

we have to find out whether or not q is inside the convex hull of V. Here,

the convex hull of V is the (unique) smallest convex set that contains
V. Now T; and T> both are the set of all points in d-dimensional space,

T; = {true, false}, and PR(q,V) = (¢ € conv(V)), where conv(V)
denotes the convex hull of V.

Finally, in the nearest neighbor searching problem, we are given a

finite set V of points in the plane, and a query point qg, and we have to

find a point of V that is nearest to q with respect to a given distance.

In this case, T,, T> and 73 are the set of all points in the plane, and

PR(q, V) = a nearest neighbor of g in V.

Given a finite set V in P(T2), a solution to the searching problem

PR consists of a data structure DS’, representing V, such that queries

(ie., PR(q,V) for q in T,) can be computed efficiently. If the set V
is given beforehand and does not change, the data structure is called

static. The structure is called dynamic, if it is possible to insert and

delete objects. If only insertions are possible, the structure is called

semi-dynamic. Insertions and deletions are called updates.

The Random Access Machine: In this text we take the Ran-

2.1. Introduction 17

dom Access Machine (RAM) with real arithmetic as our machine model.
(See e.g. [2].) The memory of a RAM consists of an array, the entries
of which have unique addresses. The contents of such an array entry

can be obtained at constant cost, provided its address, i.e., its index,

is known. Data structures are composed of “indivisible pieces of in-

formation”, such as pointers, names, integers, etc. We assume—as is

customary in the theory of algorithms and data structures—that such

a piece of information has size one. Each piece of information can be

stored in one entry of main memory. We consider a pointer to be an

index of an array entry.

On a RAM, the functions addition, subtraction, multiplication and

division can be computed in constant time. If functions like logarithms,

floor and ceiling functions are needed, we can compute the values that

are needed during the preprocessing of the data structure and store

them in tables, using the four basic operations. The time and space

needed to compute and store these values are in general subsumed by

the time and space required to build and store the data structure itself.

The Pointer Machine: In Chapter 10, we design a data struc-

ture that can be implemented on a weaker model of main memory, the

Pointer Machine, due to Tarjan [58]. In this model, the above standard
functions can also be computed in constant time. The memory of a

Pointer Machine consists of a collection of nodes that contain the infor-

mation. These nodes can be linked by pointers. The difference with a

RAM is that on a Pointer Machine, no direct addressing is possible. If

the algorithm is in some node of the memory, and if it wants to access

another node, it has to follow pointers until it reaches that node. As an

example, if a set of objects is stored in sorted order in an array, we can

not perform binary search in an efficient way. The only way to capture

binary search efficiently, is to store the objects in a binary search tree,

and to link the nodes by pointers. For more details about the Pointer

Machine, see [58].

The complexity of a data structure DS’, that stores a set of cardi-

nality n, is given by the following functions:

e Pps(n): the preprocessing time, which is the time needed to build
DS.

18 2. Data structures and searching problems

Spgs(n): the amount of space needed to store DS.

Qps(n): the time needed to answer a query in DS.

Ipg(n): the time needed to insert an object into DS. (In case DS
is a (semi-)dynamic data structure.)

Dpgs(n): the time needed to delete an object from DS. (In case
DS is a dynamic data structure.)

e If the insertion and deletion times are equal, we denote the com-

mon update time by Ups(n).

If the data structure DS is clear from the context, we just write

P(n), S(n), Q(n), I(n), D(n) and U(n) for these complexity measures.

All complexity measures are expressed in terms of words, which is

customary in the theory of data structures and algorithms. These com-

plexity measures are worst-case complexities, unless stated otherwise,

in which case they are amortized complexities. Consider an initially

empty data structure. Suppose we perform a sequence of n updates in

this structure. Let these updates be chosen such that the total time

T(n) for performing them is maximal among all sequences of n up-
dates. Then the amortized update time of the data structure is defined

as T(n)/n.

To estimate the complexities we use the following notations. Let

f(n) and g(n) be two positive functions, defined on the positive integers.

e f(n) = O(g(n)) if there is a constant c > 0 and an integer no,
such that for each n > no, we have f(n) < cg(n).

e f(n) = Q(g(n)) if there is a constant c > 0 and an integer no,
such that for each n > no, we have f(n) > cg(n).

e f(n) = O(g(n)) if there are constants c, > 0 and cy > 0, and an
integer no, such that for each n > no we have c, g(n) < f(n) <

C2 g(n).

e f(n) = o(g(n)) if limp f(n)/g(n) = 0.

2.2. Binary search trees 19

There exists another definition of 2: f(n) = Q(g(n)) if there is a
constant c > 0, such that f(n) > cg(n) for infinitely many values of n.
Our definition, however, has the advantage that the following relation

holds:

O(F(n))/Q(g(n)) = OF (n)/9(n)).
This relation is often used in the proofs of amortized complexity bounds.

We assume that all complexity measures are non-decreasing and

smooth. Here, a positive function f(n) is called smooth if f(O(n)) =
O(f(n)). We further assume that the functions S(n)/n and P(n)/n are
non-decreasing. In all applications we encounter, these assumptions are

satisfied.

To finish this section, we introduce some notations. First, loga-

rithms, and powers of logarithms, are written in the usual way, i.e.,

we write logn, (logn)?, etc. (Unless stated otherwise, all logarithms
are to the base two.) The k-th iterated logarithm is defined and
denoted as follows. If k = 0, then (log)°n = n. If k > 1, then
(log)'n = log ((log)**n). The function log* n is defined by log*n =

min{k > 1|(log)*n < 1}.

2.2 Binary search trees

The reader is assumed to be familiar with the basic terminology from

graph theory. (See e.g. [2, 3].) Many data structures we encounter
contain binary search trees as substructures. A binary tree is a rooted

tree, in which each node has either zero or two sons. The link between

a node and its son is called an edge. Nodes without sons are called

leaves, whereas nodes that do have sons are called internal nodes. The

two sons of an internal node v are called left son and right son. The

node v itself is called the father of the two sons. If v is a node of a

binary tree, we define the subtree of v as the tree having v as its root

and that contains all nodes—including v—that can be reached from v

by following edges to sons. The height of a binary tree is defined as

the number of edges in the longest root-to-leaf path. A binary tree

consists of levels, where a level is the set of all nodes that are at the

same distance to the root of the tree. Here the distance of two nodes is

20 2. Data structures and searching problems

defined as the number of edges on the path that connects these nodes.

The levels of a binary tree are numbered according to their distance to

the root of the tree. So the root itself is at level 0, the sons of the roots

are at level 1, etc.

A binary tree that stores a set of objects is called a node search

tree, if the objects are stored in the nodes of the tree—one object in

each node—in such a way that for each internal node v it holds that

all objects in the left subtree of v are smaller than the object stored

in v, and all objects in the right subtree of v are larger than that of v,

according to some order.

In this thesis, binary trees are almost always used as leaf search

trees. That is, if we use a binary tree to represent a set of objects, we

store these objects in the leaves of the tree, such that for each internal

node v, all objects in the left subtree of v are smaller than those in

the right subtree of v. Internal nodes of the tree contain information

to guide searches. (For example, we can store in each internal node

the maximal element in its left subtree.) It can be shown by induction
on the number of leaves, that a binary tree with n leaves has exactly

2n — 1 nodes.

Binary search trees are used to solve the member searching problem.

In order to search for an object q, we follow a path in the tree starting at

the root. In each node on this path, we compare q with the information

stored at that node, and we decide whether the search is finished—in

case we have found q or end in a leaf—or proceeds to the left or to

the right son. The complexity of this search procedure depends on the

height of the tree. Since the height of a binary search tree storing n

objects is at least logarithmic in n, the best we can hope for is a search

complexity of O(logn). In the static case, we can build a perfectly

balanced binary search tree, which is a binary tree in which for each

internal node v, the number of leaves in the two subtrees of v differ by

at most one. Such trees have logarithmic height, and, hence, member

queries can be performed in O(logn) time.
An insertion or deletion of an object p in a leaf search tree is per-

formed by first searching for p. This search ends in a leaf v. In case of

an insertion, we give v two new sons, one son containing p, the other

containing the object that was stored in v. We also update the search

information that is stored at the nodes on the path to v. In case of a

2.2. Binary search trees 21

deletion, let w be the other son of v’s father. Then we delete the two

leaves v and w, and we store the object that was stored in w in its

father. Again, we update the search information of the nodes on the

search path. The complexity of this update procedure is proportional

to the height of the tree.

The problem is how to maintain a logarithmic height after objects

have been inserted and deleted in the tree. In 1962, Adel’son-Velskii and

Landis introduced the class of AVI-trees, as they are called now. These

trees satisfy the constraint that for each internal node v, the left and

right subtrees of v have heights that differ by at most one. They showed

that the logarithmic height of these trees can be maintained by local

restructuring techniques—the so-called single and double rotations—

along the search path. Each such rotation takes O(1) time. Therefore,
using AVL-trees, member queries, insertions and deletions all can be

carried out in O(logn) time. For details, see [1, 30, 67].
Later, many other classes of binary search trees were introduced,

in which these three operations can be carried out in logarithmic time.

Two of these classes have properties that are particularly useful for our

purposes. The first one are the BB[a]-trees, introduced by Nievergelt

and Reingold [37] in 1973.

Definition 2.2.1 Let a be a real number, 0 < a < 1/2. A binary tree

is called a BB/a/-tree, if for each internal node v, the number of leaves
in the left subtree of v divided by the number of leaves in the entire

subtree of v lies in between @ and 1 — a.

Nodes that contain only a small number of leaves in their subtree

do not have to satisfy this balance condition, except in case of Theo-

rem 2.2.1 below, where all nodes should satisfy the condition. Obvi-

ously, in a BB[a]-tree the same balance condition holds for the right
subtree of each internal node. The following theorem is due to Blum

and Mehlhorn [13].

Theorem 2.2.1 Let 2/11 <a<1-—/2/2. A BB/aj-tree for a set of
n objects has size O(n) and can be built in O(nlogn) time. If we have
the objects in sorted order, the tree can be built in O(n) time. In this
tree, member queries can be performed in O(logn) time. Insertions and

22 2. Data structures and searching problems

deletions can be performed in O(log n) time in the worst case, where the

tree is rebalanced by means of single and double rotations.

There is another way to maintain BB/a]-trees. This technique—the
partial rebuilding technique of Lueker [31|—gives an amortized update

complexity of O(log).

Suppose we want to insert or delete object p in the leaf search

BBjia]-tree T. Then we search for p, and we perform the update. Next

we walk back to the root of J, and we find the highest node v that

does not satisfy the balance condition of Definition 2.2.1 anymore. We

rebalance the tree by rebuilding the entire subtree of v as a perfectly

balanced tree. Clearly, if v is high in the tree, this takes a lot of time.

For example, if v is the root of T, the update takes O(n) time. In this
case, however, it takes Q(n) updates before we again have to rebuild the

entire tree. In this way, the amortized update complexity is bounded

by O(logn). To prove this, we need the following lemma.

Lemma 2.2.1 Let v be a node in a BB/aJ-tree that is in perfect bal-
ance. Let ny be the number of leaves in the subtree of v at the moment

it gets out of balance. Then there have been at least (1 — 2a)ny — 2
updates in the subtree of v.

Proof. The proof given here is taken from Overmars [42]. Let nj,, nj,
and nj,, be the number of leaves in the subtree of v, the left son of v
and the right son of v, respectively, at the moment that v is in perfect

balance. Assume that nj, < nj. Clearly, the fastest way for node v
to get out of balance, is by deleting objects from its left subtree, and

by inserting objects into its right subtree. Suppose N; insertions have

been carried out in the right subtree of v, and Ng deletions in the left

subtree of v, at the moment that v gets out of balance. Let n, resp.

Ny be the number of leaves in the subtree of v resp. the left son of v,

at the moment v gets out of balance. Then n, = nj, + N; — Ng and

Nw = Nj, — Na = |nl,/2| — Na. Since at this moment node v is out of

balance, we have nj,/n, < a. It follows that

! n − N; + Na n n
any > Mw =>] —-Na2 > -1-Na= 0

2.2. Binary search trees 23

Hence any > ny/2— N;/2+ Na/2—1-— Na = ny/2 — (Ni + Na)/2-1,
or, equivalently, N; + Ng > (1 — 2a)ny — 2, ie., at least (1 — 2a)n, — 2
updates have been carried out. 0

Theorem 2.2.2 Jf in a leaf search BB/aJ-tree, updates are performed

by means of the partial rebuilding technique, the amortized time for an

update is bounded by O(logn).

Proof. Let U(n) denote this amortized update complexity for a BB[a]-
tree with n leaves. To perform an update, we start at the root of the

tree, and we decide whether we proceed to the left or to the right

son. If the entire tree is not rebuilt, we spend O(1) time in the root.
Otherwise, we spend O(n) time to rebuild the tree, since we have the
objects already in sorted order. By Lemma 2.2.1, this rebuilding has to

be done at most once every 2(n) updates. It follows that the amortized
time due to our visit to the root is bounded by O(1). The amortized
time we spend in the subtree in which the update proceeds, is bounded

by U((1 — a)n), since this subtree has at most (1 — a)n leaves. Hence
U(n) < O(1)+U((1—a)n), from which it follows that U(n) = O(logn).
O

BBja]-trees have properties that make them useful in many applica-

tions. One of the most important properties is the fact that the above

partial rebuilding technique can be applied. This fact is fundamental in

the next section, where we use these trees as building blocks for range

trees. Also, in Chapter 11 these trees turn out to be particularly useful.

BBjia]-trees have as a disadvantage, however, that if they are main-
tained by means of rotations, Q(logn) rotations may be necessary in

one single update. The next class of balanced binary search trees, in-

troduced by Olivié [38, 39, 40], has the interesting property that they

can be maintained in logarithmic time using at most a constant number

of rotations. (See also Guibas and Sedgewick [23] and Tarjan [59].) In
fact, this class is the only known class of binary search trees that has

this property.

Definition 2.2.2 Let @ be a real number, 0 < a < 1. A binary tree

is called an aBB-tree, if for each internal node v, the length s, of the

24 2. Data structures and searching problems

shortest path from v to a leaf and the length J, of the longest path from

vu to a leaf satisfy s,/l, > aif l, > 1/(1—a), and s, > l, —1 otherwise.

The proof of the following theorem can be found in [38, 39, 40].

Theorem 2.2.3 An aBB-tree for a set of n objects has size O(n) and

can be built in O(nlogn) time. If we have the objects in sorted order,

the tree can be built in O(n) time. In this tree, member queries can
be performed in O(logn) time. If 0 < a < 1/2, insertions can be
performed in O(logn) time at the cost of at most 2 rotations. If a =

1/2, deletions can be performed in O(logn) time at the cost of at most
3 rotations. If a = 1/3, deletions can be performed in O(logn) time at
the cost of at most 4 rotations.

2.3 Range trees

We mentioned the orthogonal range searching problem already in Sec-

tion 2.1. Since the largest part of this thesis is concerned with this

problem, we give a formal definition. Apparently, Knuth [30] was the
first who mentioned the problem:

Definition 2.3.1 Let V be a set of points in d-dimensional space, and

let ({r1 : yi], [x2 : yol,---,[%a : yal) be some hyperrectangle. The or-
thogonal range searching problem asks for all points p = (p1, po, ..-, Da)

in V, such that 2; < pi < y1,%2 < po < Yyo,---,La < Pa S Ya-

The range searching problem has applications in e.g. computer graph-

ics and database design. As an example, consider a salary administra-

tion, in which the information for each registered person includes age

and salary. We can view each person as a point in 2-dimensional space,

with as first coordinate the age, and as second coordinate the salary.

Then a question like “give all persons with age between 20 and 25,

having a salary between $ 30,000 and $ 35,000 a year” is an example
of a range query.

In 1973, Knuth wrote on page 554 of his Volume 3:

“No really nice data structures seem to be available for such

orthogonal range queries.”

2.3. Range trees 25

Since then, many data structures have been proposed to solve the

problem. For a survey of the state of the art concerning the range

searching problem, up to 1979, see Bentley and Friedman [7]. More

recent data structures, besides range trees, can be found in Edelsbrun-

ner [18], Chazelle [15] and Overmars [43].
The structure we consider for the orthogonal range searching prob-

lem is the range tree, introduced by Bentley [5] and Lueker [31]. See
also Willard and Lueker [66].

In this section, we use binary trees as leaf search trees, i.e., the

objects are stored in sorted order in the leaves. As usual, internal

nodes contain information to guide searches in the tree. These binary

trees are the building blocks of range trees.

Definition 2.3.2 Let V be a finite subset of the d-dimensional real

vector space. A d-dimensional range tree T, representing the set V, is

defined as follows.

1. If d=1, then T is a binary search tree, containing the elements

of V in sorted order in its leaves.

2. If d > 1, then T consists of a binary tree, called the main tree,

which contains in its leaves the elements of V, ordered according

to their first coordinates. Each internal node w of this main tree

contains (a pointer to) an associated structure, which is a (d—1)-
dimensional range tree for those elements of V that are in the

subtree rooted at w, taking only the second to d-th coordinate

into account.

For convenience, we assume that no two points in the set V are the

same in some coordinate. All results in this text can be proved if this

assumption is not satisfied. Then the details become, however, more

tedious.

Let T be a range tree, representing the set V, and let w be a node

of T (w is a node of the main tree, or of an associated structure, or of

an associated structure of an associated structure, etc.). Let Vi, be the

set of those points of V that are in the subtree of w. Then node w is

said to represent the set Vy.

For example, a 2-dimensional range tree for a set V consists of a

binary tree, containing in its leaves the points of V ordered according

26 2. Data structures and searching problems

J A
Figure 2.1: A two-dimensional range tree

to their x-coordinates. For any internal node w of this tree, let V,, be

the subset of V represented by w. Then node w contains (a pointer

to) a binary tree, representing the set V,,, ordered according to their

y-coordinates. See Figure 2.1.

The query algorithm: Orthogonal range queries are solved as

follows. We first consider the one-dimensional case. Let [x1 : y:] be
a query interval. Then we search in the binary tree with both x; and

yi. Assume w.l.o.g. that 2, < y,. We have to report all leaves that

lie between the paths to x; and y,. Let u be that node in the tree for

which x, lies in the left subtree of u, and y, lies in the right subtree of

u. Then for each node v 4 u on the path from u to x,, for which the

search proceeds to the left son of v, we report the leaves in the right

subtree of v. Similarly, for each node w ¥ u on the path from wu to y,,

for which the search proceeds to the right son of w, we report the leaves

in the left subtree of w. Finally, we check the two leaves in which the

paths end.

2.3. Range trees 27

Now let d > 1 and let ([x%1 : y:], [xe : yol,---, [a : yal) be a query
rectangle. Then we begin by searching with both x, and y, in the main

tree. Assume w.l.o.g. that 7, < y,. Let u be that node in the main

tree for which x, lies in the left subtree of u, and y, lies in the right

subtree of u. Then we have to perform a range query with the last

d — 1 coordinates on all points that lie between x, and y; in the main

tree. It is not difficult to see that it is sufficient to perform recursively a

(d—1)-dimensional range query in the associated structure of the right
son of each node v ¥ u on the path from u to x, for which the search

proceeds to the left son of v, and in the associated structure of the left

son of each node w # u on the path from u to y; for which the search

proceeds to the right son of w. We also have to check the points in the

two leaves of the main tree in which the paths end. The answer to the

entire query is the union of the answers of these partial queries. Note

that each point in the query rectangle is reported exactly once.

Range queries with one or more of the intervals being half-infinite or

infinite are also possible. For example, let ([x1 : 00], [%2 : yo],---,[Va:
Ya|) be a half-infinite rectangle. Then we search with x, in the main
tree. For each node v in the main tree for which the search proceeds

to the left son, we perform a (d — 1)-dimensional range query in the
associated structure of the right son of v. As another example, if 7; =

—oo and y, = oo, then we perform a (d — 1)-dimensional range query
in the associated structure of the root of the main tree.

Suppose we want to insert or delete a point p in the range tree.

Then we search with the first coordinate of p in the main tree to lo-

cate its position among the leaves, and we insert or delete p in all the

associated structures we encounter on our search path. If these asso-

ciated structures are one-dimensional range trees, we apply the usual

insertion/deletion algorithm for binary trees; otherwise we use the same

procedure recursively. Next, we insert or delete p among the leaves of

the main tree.

These query and update algorithms may take a lot of time, since

all trees that are involved may become very unbalanced. By using

BBlia]-trees, however, the query time and the amortized update time

are low.

28 2. Data structures and searching problems

Definition 2.3.3 A BB/a/-range tree is a range tree, in which all bi-
nary trees are BB[a]-trees.

The building algorithm: Let V be aset of n points in d-dimensional

space. To build a range tree for V, we order the points of V according

to their d-th coordinates.

Let d > 1. We build a perfectly balanced (d— 1)-dimensional range
tree for the set V, taking only the second to d-th coordinate into ac-

count. This range tree becomes the associated structure of the root of

the main tree of the final structure. Next, we divide the set V in two

subsets V,; and V2 of equal size, such that the first coordinates of the

points in V, are less than those in Vj. This splitting is done in such a

way that the points in both sets V,; and V2 remain ordered according

to their last coordinates. Then we build recursively two d-dimensional

range trees for the sets V,; and Vo.

The update algorithm: To update a BB[a]-range tree, we use
Lueker’s partial rebuilding technique. See Section 2.2. Suppose point

p has to be inserted or deleted in the range tree. Then we search with

the first coordinate of p in the main tree to locate its position among

the leaves. During this search, we insert or delete p in all associated

structures we encounter on the search path. If these associated struc-

tures are one-dimensional range trees, we use the update algorithm for

BBja]-trees that uses rotations, see [13] or Section 2.2; otherwise we
use the same procedure recursively. Then we insert or delete p among

the leaves of the main tree, and we walk back to the root. During this

walk, we locate the highest node v that is out of balance, i.e., does

not satisfy the balance condition of Definition 2.2.1 anymore. Then we

rebalance at node v by rebuilding the entire structure rooted at v as a

perfectly balanced range tree.

Just as in Section 2.2, if in this update algorithm node v is the root

of the main tree, we have to rebuild the entire range tree. We saw

in Lemma 2.2.1, however, that in this case Q(n) updates must occur
before we again have to rebuild the entire structure.

The following theorem—due to Lueker [31]—gives the complexity
of a BB[a]-range tree. Since range trees occur so often in the rest of

2.3. Range trees 29

this thesis, and since it is important for the reader to understand this

data structure, we include a proof of the theorem.

Theorem 2.3.1 A d-dimensional BB/a]-range tree for a set of n points,

can be built in O(nlogn+n(logn)4) time, and requires O(n(log n)**)
space. Using this tree, orthogonal range queries can be solved in O((logn)4+

t) time, where t is the number of reported answers. Insertions and dele-

tions in this tree can be performed in amortized time O((logn)*).

Proof. We first prove the bound on the building time. Let V be

a set of n points in d-dimensional space. It takes O(nlogn) time to
order the points of V according to their d-th coordinates. Let P(n, d)
be the time to build a perfectly balanced d-dimensional range tree for

nm points, that are ordered according to their last coordinates. Then

P(n,1) = O(n). Let d > 1. The building of the associated structure of
the root of the main tree takes P(n,d— 1) time. Using a linear time
median algorithm (see [11, 49]), the splitting of the set V in two equal
sized subsets V; and V2 can be done in O(n) time. This splitting can

be done such that the points in both sets V; and V2 remain ordered

according to their last coordinates. Finally, it takes 2 P(n/2, d) time to
build two d-dimensional range trees for the sets V; and Vo.

We have proved that P(n, d) = 2 P(n/2,d)+ P(n,d—1)+ O(n) for
d> 1. It follows that P(n, d) = O(n(logn)4'). This proves the bound
on the building time. The bound on the size of the data structure can

be proved in a similar way.

The bound on the query time follows by induction on d, since in

the above described query algorithm, the paths in the main tree give

rise to O(logn) (d — 1)-dimensional range queries. A one-dimensional
range query takes O(logn + t) time, since the height of a BB[a]-tree
is bounded by O(logn). We saw already that each point in the query
rectangle is reported exactly once.

Let U(n, d) be the amortized update time in a d-dimensional BB[a]-
range tree for a set of n points. Then, by Theorem 2.2.1, U(n,1) =

O(logn), even in the worst case. Let d > 1. To perform an update,
we start in the root of the main tree and we update its associated

structure. This takes, amortized, U(n,d — 1) time. Then we repeat

the same procedure for the appropriate son of the root, which is the

30 2. Data structures and searching problems

root of a d-dimensional BB[a]-range tree for at most (1 — a)n points.
Therefore, this takes, amortized, at most U((1—a)n, d) time. If the root
of the main tree gets out of balance, we rebuild the entire tree, which

takes O(n(logn)4—') time. According to Lemma 2.2.1, this happens at
most once every Q(n) updates. So this rebuilding adds O((logn)*‘)
to the amortized update time. We have proved that for d > 1

U(n,d) < U(n,d —1) + U((1 — a)n, d) + O((logn)*").

It follows that U(n,d) = O((logn)4). O

In fact, Willard and Lueker [66] have shown that insertions and
deletions can even be performed in time O((logn)) in the worst case,
but their method is very complicated and highly unpractical.

2.4 Decomposable searching problems

There is a special class of searching problems that has been studied

extensively by several authors, and that we will consider several times.

These problems—the decomposable searching problems—were intro-

duced by Bentley [5]. In fact, Bentley’s paper can be marked as the
beginning of the research in general dynamization techniques.

For decomposable searching problems, a query for a set of objects

can be answered by merging the answers for a partition of the set. It

turns out that the most interesting results can be obtained for searching

problems where two answers can be merged in constant time.

Definition 2.4.1 A searching problem PR : T, x P(T2) — T3 is called
decomposable, if there is a function 0 : T3 x 73 + 73, such that for any

partition V = AUB of any finite subset V of To, and for any query

object g in T,, we have

PR(q,V) = O(PR(q, A), PRG, B)),

where the function 0 can be computed in constant time.

For example, the member searching problem is decomposable with

O =v. Also the orthogonal range searching problem is decomposable

2.4. Decomposable searching problems 31

with 0 = U. Note that, since we require the sets A and B to be disjoint,

we can take in this latter problem the union of PR(q, A) and PR(q, B)
in constant time. (Here we assume that the points that satisfy the query

may be reported in any order. So we can represent the answer e.g. in

a list. Clearly, two such lists can be merged in constant time.) The

convex hull searching problem is not decomposable, since knowledge

whether or not q is inside the convex hulls of A and B does not always

tell us the position of g with respect to the convex hull of AU B.

As mentioned already, decomposable searching problems have been

studied extensively. A number of techniques have been developed to

design efficient dynamic data structures for these problems, especially

in the case where only insertions are performed. See Bentley [5], Bent-

ley and Saxe [8], and Overmars [42]. The main idea in these techniques
is to partition the set of objects into subsets, and then to store each

subset in a static data structure. In the resulting semi-dynamic data

structure, queries are answered by querying the static structures sepa-

rately, and by combining the answers using the function O. Insertions

are performed by rebuilding some small static structures together with

the inserted object.

The logarithmic method: In this section we consider one dy-

namization technique, the logarithmic method, due to Bentley. Let DS

be a static data structure for the decomposable searching problem PR.

As usual, we assume that Sps(n)/n an Ppg(n)/n are non-decreasing.
Let V be a set of n objects, for which we want to solve the problem

PR. Write n in the binary number system, i.e., n = 7; a;2¢ , where

a; € {0,1}. Then partition the set V into subsets Vo, V,, Vo, etc., such

that either V; is empty or |V;| = 2°. (So |V;| = a;2°, i > 0.)
Our semi-dynamic data structure DS’ is obtained by storing each

non-empty set V; in a static structure DS; of type DS.

An insertion of an object p is performed as follows. Let 7 be the

smallest index for which a; = 0. Then we discard the structures DS;
for 0 <7 <i—1. Next we build a new structure DS; out of V; :=

YUVLU...UVj_1U {p}, and we set Vo :-= Vi =... := Vit := 0. Note
that this new DS; indeed represents 2* objects.

To perform a query in the structure DS’, we query each structure

DS; separately, and we combine all partial answers using the function

32 2. Data structures and searching problems

The complexity of this structure DS’ is given in the following the-

orem. The proof can be found in [5, 8, 42]. See also Section 9.2 and
Bezem and van Leeuwen [9].

Theorem 2.4.1 The performances of the data structure DS' are given

by:

1. The storage is bounded by O(Spg(n)).

2. The query time is bounded by O(Qps(n)) if Qns(n)/n* ts non-
decreasing for some € > 0, and O(Qps(n) x logn) otherwise.

3. The amortized insertion time is bounded by O(Pps(n)/n) if Pos(n)/n't¢
is non-decreasing for some € > 0, and O((Pps(n)/n) x logn) oth-
erwise.

The logarithmic method transforms a static data structure into a

semi-dynamic one, i.e., a structure that only allows insertions. If we

restrict ourselves to a subclass of the decomposable searching prob-

lems, it is possible to transform static structures into fully dynamic

ones. Roughly speaking, we restrict ourselves to decomposable search-

ing problems where the function 0 has an inverse, that can also be

computed in constant time. This class of problems was introduced by

Bentley and Saxe [8]. See also [42].

Definition 2.4.2 A decomposable searching problem PR : T, x P(Th) >
T3 is called a decomposable counting problem, if there is a function

A : T3 x Tz; — T3, such that for any finite subset V of To, for any

subset A of V, and for any query object q in T;, we have

PR(q,V \ A) = A(PR(q,V), PR(q, A)),

where the function A can be computed in constant time.

Most counting variants of decomposable searching problems are de-

composable counting problems. For example, in the two-dimensional

orthogonal range counting problem, we are given a finite set V of points

2.4. Decomposable searching problems 33

in the plane, and an axis-parallel rectangle qg = ([z1 : y:|,[%2 : ye),
and we are asked to compute the number of points of V that are in the

rectangle g. This problem is clearly a decomposable searching problem.

It is also a decomposable counting problem, since the number of points

of V \ A that are in the rectangle q is equal to the number of points of

V in q minus the number of points of A in q.

The dynamic data structure: For decomposable counting prob-

lems we can design a fully dynamic data structure as follows. Given a

static structure for the problem, we can apply the logarithmic method—

or any other dynamization technique—to obtain a semi-dynamic struc-

ture. Now the dynamic data structure consists of two semi-dynamic

structures DS; and DS». Initially, DS, stores all objects that are

present, and DS'y is empty. New objects are inserted into DS,, whereas

a deletion is performed by inserting the object that is to be deleted into

DS. If the structure DS. becomes too large, we completely rebuild the

structures, by building a new DS, storing all objects that are present

at that moment, and by initializing an empty DS»2. A query is solved

by querying the two structures DS, and DS», and by “subtracting” the

two obtained answers from each other, using the function A.

The complexity of the resulting dynamic data structure is given in

the following theorem, the proof of which can be found in [8, 42].

Theorem 2.4.2 Given a semi-dynamic data structure DS for the de-

composable counting problem PR, there exists a fully dynamic structure

solving PR, with performances:

1. The storage is bounded by O(Sps(n)).

2. The query time is bounded by O(Qps(n)).

3. The insertion time is bounded by O(Ips(n)).

4. The amortized deletion time is bounded by O(Ipg(n)+Pps(n)/n).

34 2. Data structures and searching problems

2.5 Order decomposable set problems

We next consider another subclass of the searching problems. In a set

problem we are given a set of objects, and we are asked some question

about this set. To be more precise, if 7, and T are sets of objects, then

a set problem is a mapping PR: P(T,) — Ty. We can consider this as

a searching problem by introducing a dummy query object q.

For example, in the convex hull problem, we are given a finite set

V of points in the d-dimensional euclidean space, and we are asked

to compute the convex hull of V. Here 7; is the set of all points in

d-dimensional space, and 7> is the set of all convex polytopes.

In this section we want to solve the problem of maintaining the

answer to a set problem under insertions and deletions of objects. We

restrict ourselves to set problems, the answers of which can be merged

efficiently. That is, once the answers for two separated “halves” of a set

are known, the answer for the entire set can be obtained fast. For such

a class of set problems, we maintain the answer for the entire set, by

decomposing the set into subsets, and by maintaining the answers for

these subsets. These set problems were introduced by Overmars [41,

42]. See also Gowda [20] and Gowda and Kirkpatrick [21].

Definition 2.5.1 A set problem PR : P(T,) — To is called M(n)-
order decomposable, if there is an order ORD on T;, and a function

O: Ty x Ty — To, such that for any set V = {p, < po <... < pn},

ordered according to ORD, and for any i, 1 <i <n, we have

PR({pi,---,Pn}) = O(PR({p1,.--, pit), PR({ pis, ---,Pn})),

where the function O takes M(n) time to compute.

For example, Preparata and Hong [46] showed that the three-dimensional
convex hull problem is O(n)-order decomposable, where ORD is the or-

der according to x-coordinate.

Clearly, by using the divide-and-conquer technique, we can compute

the answer to an M(n)-order decomposable set problem in O(ORD(n)+
R(n)) time, where ORD(n) is the time needed to order the n objects
according to ORD, and R(n) = O(X°8" 2* M(n/2°)) is the solution of
the recurrence R(n) = 2 R(n/2) + M(n).

2.5. Order decomposable set problems 35

A dynamic data structure: Let PR be an M(n)-order decom-
posable set problem. We shortly recall a dynamic data structure solving

PR, the details of which are given in [41, 42]. Let V be a set of cardinal-
ity n, for which we want to maintain the answer to PR. For simplicity

we assume here that the answer PR(V) takes O(M(n)) space to store.
(In [41, 42] it is shown that this assumption is not essential).

Let f(n) be a smooth integer function, such that 1 < f(n) < n.
We first order the elements of the set V according to ORD. Let V =

{pi < po <...< pn} be the resulting set. Now partition V into subsets

Vi = {pi,---, Pein) }, Vo = {Penis +--+» P2p(n)}, etc. The dynamic data

structure consists of the following.

e Each set V; is stored in a balanced binary search tree 7;. Let 1;

be the root of 7;. These roots are ordered according to r; < ro <

Tg. <....

e The roots of the trees J; are stored in the leaves of a perfectly

balanced binary search tree T. Each node v of T contains the

following additional information. Suppose the subtree of T with

root v has 7;,Ti41,---,7; as its leaves. Then node v contains the

answer to the set problem PR for the set Vj; UVj,1U...UV;. Node

uv also contains information to guide searches in the tree.

In particular, the root of T contains the answer to PR for the entire

set V.

Update algorithm: An insertion of an object p is performed as

follows. We walk down tree T to find the appropriate root r;, and we

insert p in the tree T;. Then we rebuild the answer PR(V;), and we
walk back to the root of T. For each node v we encounter during this

walk, we copy the answers stored in the left and right sons of v, and

we merge these copies using the function 0. The resulting answer is

stored in v. The deletion procedure is similar.

Initially, the set V contains n elements, and each subset V;—except

the “last” one—contains f(n) elements. As soon as at least one set V;
contains either f(n)/2 or 2f(n) elements—as a result of insertions and
deletions—we rebuild the entire data structure. Note that we rebuild

the data structure at most once every 02(f(n)) updates.

36 2. Data structures and searching problems

Before we state the results, we introduce the following functions

M'(n), M"(n) and R(n):

tox(n/f(n)) ⋅
M'(n) = 2’ M(n/2"),

i=0
log(n/f(n))

M"(n) = yy M(n/2'),

R(n) = 2 2M (n/2").

The functions M'(n) and M"(n) satisfy:

Olni (Fn) ©) if M(n) = O(n‘) for some 0 < € <1,
M'(n) = O(M(n)) if M(n)/n'* is non-decreasing for some € > 0,

O(M(n) log(n/f(n))) if M(n)/n is non-decreasing.

M"(n) = O(M(n)) if M(n)/n* is non-decreasing for some € > 0,
~ | O(M(n) log(n/f(n))) if M(n) is non-decreasing.

The function R(n) is the solution of the recurrence R(n) = 2 R(n/2)+
M(n), and satisfies:

O(M(n)) if M(n)/n*** is non-decreasing for some € > 0,
O(n) if M(n) = O(n‘) for some 0 < € <1,

Rin) = {2
O(M(n) logn) if M(n)/n is non-decreasing.

Note that we have not covered here all possibilities for the function

M(n). The functions M(n) that give rise to especially efficient solutions
to the problems in Parts III and IV, however, satisfy one of the above

constraints.

The proof of the following theorem can be found in [41, 42].

Theorem 2.5.1 Let f(n) be a smooth integer function, such that 1 <

f(n) <n. For an M(n)-order decomposable set problem, there exists a
dynamic data structure, with performances:

1. S(n) = O(n+ M'(n)).

2. P(n) = O(nlogn + (n/f(n)) x R(F(n)) + M"(n)).

2.6. Storage and computation models 37

3. Q(n) = O(1).

4. U(n) = O(logn+ R(f(n)) + M"(n) + P(n)/f(n)), amortized.

A very interesting subclass are the O(n)-order decomposable set
problems. Taking f(n) = [n/logn], the above theorem leads to the
following corollary.

Corollary 2.5.1 For an O(n)-order decomposable set problem, there

exists a dynamic data structure, with performances:

2. P(n) = O(nlogn)

3. Q(n) = O(1)

4. U(n) = O(n), amortized.

Examples of O(n)-order decomposable set problems are computing

the three-dimensional convex hull of a set of n points, see Preparata

and Hong [46]; finding the intersection of a set of n halfspaces in three

dimensions, see Brown [14]; and computing the view of a set of n line

segments in the plane from some fixed direction, see Edelsbrunner,

Overmars and Wood [19].

2.6 Storage and computation models

Until now, we assumed that there is only one storage medium in which

all computations take place, and in which the data structures are stored.

This one medium is called main memory. Most studies in the area

of data structures consider this case. There are many applications,

however, in which the data structure is too large to be stored in main

memory. Then, the structures have to be stored in secondary memory.

Also in case of the reconstruction problem, we have to store information

in secondary memory.

Before we introduce our model of secondary memory, we say some-

thing more about main memory. All computations take place in main

memory, which is modeled as a Random Access Machine (RAM). (See

38 2. Data structures and searching problems

Section 2.1.) As we saw already, the memory of a RAM consists of an

array, the entries of which have unique indices. The contents of such

an array entry can be obtained at constant cost, provided its address,

i.e., its index, is known.

We express the complexity of a computation in main memory in

computing time, which is the usual measure—in terms of words—to

express the length of a computation. (In the theory of algorithms

and data structures it is customary to express complexities in terms

of words, not in terms of bits.)

Next we introduce our second storage medium: Secondary memory.

The model of secondary memory we consider is the Indexed Sequential

Model. Just as in case of a RAM, the memory consists of an array.

Now, this array is divided into blocks of a fixed size. This block-size

can be chosen arbitrary. Each such block has a unique address, and

there is the ability of direct block access: It is possible to access a block

directly, provided its address is known.

A data structure is stored in secondary memory by distributing it

over a number of blocks of a predetermined size. In secondary memory

no computing is possible. Therefore, to perform an operation—a query

or an update—on a data structure, we send information from secondary

memory to main memory, where computing is possible, and vice versa.

The following update operations are possible in secondary memory:

e We can replace a block by another block, or a number of (physi-

cally) consecutive blocks by at most the same number of blocks.

e We can add a new block, or a number of new blocks, at the end

of the file.

Hence, we can only update complete blocks. It is also possible to trans-

port (complete) blocks from secondary memory to main memory. To
transport a block to secondary memory, we have to know the address

where the block will be stored. Similarly, a block can be transported

to main memory only if its address in secondary memory is known.

We express the complexity of an operation in secondary memory

by two quantities. In practice, these two quantities dominate the time

for the operation. The first one—which is in general the most time

2.6. Storage and computation models 39

consuming—is the number of disk accesses—also called seeks—that has

to be done: For each segment of consecutive blocks we transport, we

have to do one disk access. Hence, we can transport the entire data

structure in one disk access to secondary memory, provided we store

the structure in consecutive blocks. Also, it takes one disk access to

transport a structure that is stored in secondary memory in consecutive

blocks, to main memory. In this latter case, it is sufficient to know the

address—in secondary memory—of the first block of the segment that

stores the structure: We transport all blocks “to the right” of this

first block, in which some information is stored. (Here we assume that
blocks that do not contain information of the structure, are empty.)

The second quantity is the transport time: We assume that an

amount of n data can be transported in O(n) transport time from
main memory to secondary memory, and vice versa. In general the

constants in this estimate for the transport time are incomparable to

the constants in computing time.

We already said that in practice the time for one disk access is high.

In order to get an impression, for a typical standard computer, one disk

access takes about 15 milliseconds, whereas data transport between

main and secondary memory is performed at a rate of 3 Mbyte per

second. Therefore it is essential to limit the number of disk accesses as

much as possible.

40 2. Data structures and searching problems

Part II

Maintaining range trees in

secondary memory

41

Chapter 3

Introduction

3.1 The partitioning problem

In this part of the thesis we study the problem of storing and maintain-

ing range trees in secondary memory. If a data structure is too large to

be stored in main memory, it has to be stored in secondary memory (a

situation that very often occurs in databases). In Section 2.6 we saw
that a data structure is stored in secondary memory by partitioning

it into a number of parts, and by distributing the parts over blocks of

some predetermined size. In order to answer queries and to perform

updates, parts of the data structure that are needed in the operation—

since operations can be viewed as paths in the data structure, we say

that the operation “passes through these parts” —are transported from

secondary memory to main memory, and vice versa. Since the complex-

ity of an operation is expressed by the number of disk accesses and by

the amount of data that is transported, it is necessary to partition the

data structure into parts, such that queries and updates pass through

only a small number of parts, each of which has small size. This leads

to the following definition.

Definition 3.1.1 A partition of a dynamic data structure, represent-

ing a set of n points, is called an (f(n), g(n), A(n))-partition, if:

1. Each part has size at most f(n).

43

44 3. Introduction

2. There are O(S(n)/f(n)) parts, where S'(n) is the amount of space
required to store the data structure.

3. Each query passes through at most g(n) parts.

4. The amortized number of parts through which an update passes

is at most A(n).

Note that it follows from 1, that the number of parts is Q(S(n)/f(n)).
The relation of this definition to the above should be clear. It states,

that we can store the data structure in secondary memory—which we

model as the Indexed Sequential Model, see Section 2.6—such that a

query requires at most g(n) disk accesses and f(n) x g(n) data trans-
port. Also, an update takes—amortized—at most h(n) disk accesses

and f(n) x h(n) data transport.

We study partition schemes for range trees. See Section 2.3 for the

definition and the query and update algorithms for this data structure.

The reader should understand this data structure thoroughly, before

reading the rest of this part. In Chapters 4 and 5, we give several

efficiently maintainable classes of range trees that can be partitioned in

various ways. This gives a number of trade-offs between the number of

disk accesses and the amount of memory that has to be transported. In

each section, we change the balance condition of range trees somewhat,

in order that the partition of that section can be maintained in an

efficient way. The structure of the range tree, however, remains present.

In Chapter 6 we prove lower bounds for partitions of range trees.

These lower bounds are proved for any range tree, in particular we do

not require the trees to be balanced. Also, the lower bounds apply to

any range tree (rather than to some tree) in the class of range trees.

Therefore the lower bounds not only apply to worst-case bounds, but

also to amortized bounds.

Since this part contains many theorems, we give a summary of the

most important results in Chapter 7.

Considerable research has been done in the area of secondary mem-

ory data structures. The best-known examples are the B-trees (see

3.2. Storage considerations 45

Bayer and McCreight [4], Comer [17]), which form a class of data struc-
tures that are designed for storing one-dimensional objects. In some

sense, a B-tree can be seen as a partitioned binary search tree.

Another example is the class of Grid Files (see Nievergelt et al. [36],
Hinrichs [25, 26]), which is a secondary memory structure for solving
orthogonal range queries. The main advantage of our methods, com-

pared to the grid files, is that we always have a worst-case upper bound

on the number of disk accesses for a query in terms of the number of

points and the number of reported answers. In a grid file, however, a

range query can access each block in secondary memory without finding

a single answer. (This will, however, not be the case in most practi-

cal situations.) Also, for our methods, the number of disk accesses
for an update can always be bounded as a function of the number of

points. If updates are performed in a grid file as described in [25], this

is not possible, although this number will be small for most practical

situations.

The idea we consider here, namely of taking a known data struc-

ture (although we make some small modifications) that was designed
primarily for main memory, and investigating how it can be partitioned

as efficiently as possible, is relatively new. As we said already, a B-

tree is in some sense a partitioned binary tree. The partitioning of

range trees has not been studied before. Other partitioned data struc-

tures, in particular priority search trees, are given in Icking, Klein and

Ottmann [27] and Blankenagel and Giiting [10].

3.2 Storage considerations

Before we start with our study of partitions, we consider the amount of

space used in secondary memory by the partitioned data structure. It

might seem that this is exactly the same amount as if the data structure

were stored in main memory, but this is not true. When a part of the

partition is changed during an update, the new part has to replace the

old part in secondary memory. This new part only fits in the old space,

if its size is not larger. But sizes of parts grow when n—the number of

objects represented by the data structure—grows. When the part does

not fit in the same block in secondary memory, we either have to find a

46 3. Introduction

new block for it, or we have to split it. The first solution creates gaps in

the file and, hence, increases the amount of space in secondary memory.

The second solution increases the number of disk accesses necessary to

write the part, something we clearly want to avoid.

To solve this problem, we reserve larger blocks for storing parts

than is actually necessary. In this way, the block has enough room to

store the part, even when it grows. To be more precise, consider an

(f(n), 9(n), h(n))-partition of a dynamic data structure. We assume
that f(n) issmooth and non-decreasing. Now suppose at some moment,

at which the set represented by the data structure contains no objects,

we rebuild the entire data structure in secondary memory. Rather than

using blocks of size f(no), we use blocks of size f(2no). As a result,
as long as n—the current number of objects—is at most 2n9, parts

still fit in their blocks. At the moment when n = 27no, we rebuild

the entire data structure in secondary memory. When n becomes very

small, because of a large number of deletions, the amount of storage in

secondary memory becomes too large. To avoid this, we also rebuild

the entire structure when n < no/2.

Theorem 3.2.1 The partitioned data structure can be stored in sec-

ondary memory, using O(S(n)) storage, without increasing the amor-
tized update costs—t.e. disk accesses and data transport—in order of

magnitude.

Proof. The number of parts is bounded by O(S(n)/f(n)). Each
part requires f(2n9) < f(4n) = O(f(n)) storage. The storage bound
follows. When the entire structure has to be rebuilt, there must have

been (no) updates. Clearly, the costs for rebuilding a structure for n

objects are never larger than the costs that are required for n insertions.

As n = O(ng), the amortized update costs are never increased by more

than a constant factor. O

Chapter 4

Partitions of 2-dimensional

range trees

In this chapter, we design various partition schemes for classes of bal-

anced two-dimensional range trees, that are all based on BB/a]-range
trees. We consider two types of partitions. The first type are the so-

called restricted partitions. In a restricted partition, only the main tree

is partitioned into parts, whereas associated structures are never sub-

divided. In such a partition, a node of the main tree and its associated

structure are contained in the same part. In a restricted partition of a

two-dimensional range tree, parts have size Q(n), since the associated

structure of the root of the main tree has size Q.(n). The second type of
partitions are those in which also associated structures are partitioned

into parts.

First, we give some trivial partitions of a two-dimensional BBia]-
range tree. By storing the entire tree as one part, we get an (O(n logn), 1, 1)-

partition. In the other extreme case, each node (either of the main tree,

or of an associated structure) forms a part on its own. This gives an
(O(1), O((logn)? + t), O((logn)*))-partition, where ¢ is the number
of answers to the query. Finally, we can put each level of the main

tree, together with its associated structures, in one part, leading to

an (O(n), O(logn), O(log n))-partition. Note that if n is too large, so
that main memory cannot contain O(nlogn) data, the first partition

is not a solution to our problem. However, if main memory can con-

tain O(n log n) data, the third partition is worse than the first one: We

47

48 4. Partitions of 2-dimensional range trees

still have to transport an amount of O(nlogn) data, and this requires
O(log n) disk accesses rather than one.

4.1 Restricted partitions

In this section we consider restricted partitions of two-dimensional

range trees. Although we give in later sections more efficient parti-

tions, it is useful to consider these restricted partitions, because these

partitions are a lot easier to implement. Also, the techniques developed

here apply to other data structures. In fact, any data structure that

has the form of an augmented binary tree, with some reasonable prop-

erties of the query and update algorithms, can be partitioned in the

way described in this section. Examples of such structures are segment

trees (see e.g. Preparata and Shamos [47]), structures solving set prob-
lems like maintaining a convex hull, maintaining a Voronoi diagram,

etc. (see Section 2.5), and structures for adding range restrictions to
searching problems (see e.g. Bentley [5], Willard and Lueker [66]).

First we give a restricted (O(n), O(log log n), O(log log n))-partition
of a slightly modified BB[a]-range tree. (Later, we improve this par-
tition considerably. We include it here, however, to introduce the

ideas.) The idea is as follows. Suppose we have a perfectly balanced

range tree. Cut the main tree at level loglogn. Each level, together

with its associated structures, above level loglogn forms a part. Each

such part has size O(n): The associated structures on a fixed level
are binary trees for subsets of the n points represented by the entire

data structure, and each of these n points is in exactly one such bi-

nary tree. This gives us O(loglogn) parts, each of size O(n). Each
subtree having its root at level loglogn, is a two-dimensional range

tree, representing O(n/logn) points. Hence such a subtree has size

O((n/logn) x log(n/logn)) = O(n) and, hence, it can form a part.
This gives us O(logn) parts, each of size O(n). So in total we have
O(logn) parts of size O(n), provided the tree is perfectly balanced.
However, as soon as we insert or delete points, the tree is not perfectly

balanced anymore. In fact, the number of points represented by a sub-

tree having its root at level loglogn can become Q((1 — a)!°8!°8" x n).

4.1. Restricted partitions 49

Hence such a subtree may have size 0((1— a)!°8!°8" x nlogn), which is
too large to form a part, since 0 < a < 1/2. Of course, we can cut the

main tree at a level > loglogn. Then, however, the number of subtrees

having their root at this level, and hence the number of parts, becomes

too large.

In order to avoid that subtrees having their root at level log log n,

become too large, we modify the definition of range trees somewhat.

Let V be a set of n points in the plane. We suppose that the points

of V = {p, < po < pgs < ... < pp} are ordered according to their

z-coordinates. Partition V into subsets V; = {p1,p2,---,Pnn)}, V2 =

{Ph(n)+1)-++sPan(n)}, etc., where h(n) = [n/logn].

Definition 4.1.1 A modified range tree, representing the set V, is de-

fined as follows.

1. Each set V; is stored in a two-dimensional BB|a]-range tree T;. In
the root of T; we do not store an associated structure. Let r; be the

root of T;. The roots are ordered according to r, < 72 < 173 <....

2. The roots r; are stored in the leaves of a perfectly balanced bi-

nary tree T. Let v be any node of 7, representing the roots

Ti, Titi,---,7; (v may be a leaf of T). Then v contains an as-
sociated structure, which is a BB[a]-tree, representing the set

V,; UVi4i1 U...U Vj, ordered according to their y-coordinates.

Note that the associated structures of the roots r; are stored only

once, whereas the roots r; themselves are stored twice. This implies

that the structure of a range tree is not changed, only the balance

conditions are different.

Query and update algorithms: In a modified range tree, range

queries are solved in the same way as in ordinary range trees. An

insertion or deletion of a point p is performed as follows. First we

walk down tree 7, to find the appropriate root r;. During this walk we

insert or delete p in all associated structures we encounter on our search

path. Then we insert or delete p in 7;, using the update algorithm for

BBia]-range trees.

50 4. Partitions of 2-dimensional range trees

Suppose at the moment we build this structure, the set V contains n

points. Then each set V; (except for the “last” one) contains [n/logn]
points. As soon as at least one set V; contains either [n/logn]/2 or
2[n/logn] points, we rebuild the entire data structure.

Theorem 4.1.1 A modified range tree, representing n points, can be

built in O(nlogn) time, and takes O(nlogn) space to store. Range
queries can be solved, using this tree, in O((logn)? + t) time, where t
is the number of reported answers. Insertions and deletions in this tree

can be performed in amortized time O((logn)?).

Proof. The bounds for the size, the building time and the query time

can be proved in the same way as in Theorem 2.3.1. If the entire data

structure is not rebuilt, an update takes amortized O((logn)*) time,
since each set V; contains O(n/logn) points. The data structure is
rebuilt at most once every 2(n/logn) updates. Since this rebuilding
takes O(nlogn) time, this adds O((logn)”) to the amortized update
time. O

Hence the modified range tree has (asymptotically) the same com-

plexity as a BB/a]-range tree.

Theorem 4.1.2 For a modified range tree, there exists an (O(n), log log n+
O(1), loglogn + O(1))-partition.

Proof. Each tree T; represents O(n/logn) points. So it has size O(n)
and, hence, it can form a part. This gives us O(logn) parts. Each
level of the tree 7, together with its associated structures, forms a

part, again of size O(n). Since tree T is perfectly balanced, it has

height loglogn + O(1). So this gives us loglogn+O(1) parts. A query
passes through all levels of T, and through at most 2 trees T; (since we

store associated structures in the leaves of T). Hence it passes through
log logn+O(1) parts. An update passes through log logn+O(1) parts,
if we do not have to rebuild the data structure. If we have to rebuild the

structure, O(log) parts are involved. Since this has to be done at most
once every (.(n/ log n) updates, the amortized number of parts through
which an update passes is at most loglogn + O(1) + O((logn)?/n) =
loglogn + O(1). O

4.1. Restricted partitions 51

Theorem 4.1.3 For a modified range tree, there exists an (O(n log log n), 3, 2+

0(1))-partition.

Proof. The tree T, together with its associated structures, forms

a part on its own, of size O(nloglogn). Furthermore, we put sets of

[log log n] trees T; together in one part. A query passes through at most

3 parts: The part containing tree T, and at most 2 parts containing

trees T; (again we use the fact that we also store associated structures in
the leaves of T). An update passes through exactly 2 parts, if the data

structure is not rebuilt. Since rebuilding of the structure has to be done

at most once every 2(n/logn) updates, and since O(log n/ log log n)
parts are involved in this rebuilding, the amortized number of parts
through which an update passes is 2+ o(1). O

Next we improve Theorem 4.1.2 considerably. We need the following

lemma. Recall our notation (log)*n for the k-th iterated logarithm, and

the definition of the function log* n. See Section 2.1.

Lemma 4.1.1 Let the integer sequence (ax) be given by ap = 0, dx41 =
2% + a,, fork > 0. Let n and d be integers, such that d = loglogn +

O(1). (We assume that n is sufficiently large.) Let m = min{i > Ola; >
d}. Then m < log*n+ O(1).

Proof. We prove by induction on 7 that

(log)'d > dm—i-1 for i=1,2,...,m—3. (4.1)

By definition of m, we have d > am_, = 2%-? + Am_2 > 2%-?. Hence

(log)'d = logd > am_2. Now let 1 < i < m— 3, and suppose that
(log)'d > am—j-1. Then

(log)'d > Qm—¢—1 = 2°-*? + G_y_g > BIM-*-?.

Since @m_—;-2 > 0, we have (log)'d > 1. Hence (log)’*'d exists, and
(log)'t'd > @m_j—2, which proves (4.1).

Now take i = m — 3 in (4.1). Then (log)™-3d > ay = 3, and
hence (log)™-2d > log3 > 1. By the definition of log* d, it follows
that m — 2 < log*d. Then, by using the relations log*(N + O(1)) =
log* N + O(1), and log* N = 1 + log*(log N), we get

m — 2 < log* d = log* (log logn + O(1)) = log* n + O(1).

52 4. Partitions of 2-dimensional range trees

We want to partition a modified range tree into parts of size O(n).
Since each tree T; has size O(n), it can form a part on its own.

We are left with the tree T and its associated structures. We first

sketch how these structures are partitioned. The root of T, together

with its associated structure, forms a part. This removes the top level of

T. Now consider the two sons v and w of the root. Look at the subtree

consisting of v and its two sons. It takes, together with its associated

structures, O(n) storage and, hence, can form a part. Similarly for w.

This removes two more levels of 7; so we are left with 8 sons. For each

son u, we make a part consisting of the subtree with root u, of depth

8, where the depth of a tree equals the number of levels. This subtree,

of course with its associated structures, uses O(n) space. We now have
removed 11 levels. So we are left with 2'! sons. For each son, we take

a subtree of depth 2'!, with associated structures, which takes O(n)

storage. Next we are left with 2?" +1! sons, etc. The reader should note
that the tree T is (and remains) perfectly balanced. So a node on level
i indeed represents O(n/2*) points (cf. the discussion at the beginning
of this section). We describe the above more precisely.

The partition: Each tree 7; forms a part on its own. Let ap = 0

and ag4, = 2% + a, for k > 0. Let d be the height of tree T,, and

let m = min{i > 0|a; > d}. The tree T and its associated structures
are partitioned as follows. For each k,0 < k < m-—1, there are 2%

parts. Each such part is a subtree of 7’, together with its associated

structures, having its root at level ax, of depth 2%.

Theorem 4.1.4 For a modified range tree, there exists an (O(n), 4log* n+

O(1), log*n + O(1))-partition.

Proof. We saw already that each tree T; has size O(n). Furthermore,
there are O(logn) such trees. Since the tree T is perfectly balanced,

we have d = loglogn + O(1). The tree T is partitioned into

m-1
- Qek — O(2%™-1) _ O(2) _ O(2!8losn +01) _ O(log n)

k=0

4.1. Restricted partitions 53

parts. Each such part is a subtree of 7’, together with its associated

structures, having its root at level az, of depth 2°*. Since this root

represents n/2°* points, such a part has size O(n).
Now let ([x1 : y1], [2 : ye]) be a query rectangle, and consider the

path in T' from the root to x,. Look at a node v through which this

path passes, and let II be the part of the partition containing this node.

If this path proceeds to the left son, we have to search the associated

structure of the right son of v. If v is not at the bottom level of II,

these left and right sons are also contained in II. Otherwise, these two

sons are contained in two different parts. So, since the number of parts

through which this left path passes is m, the left path of the query

passes through at most 2m + 1 parts (2m parts in tree T, and one

part containing a tree T;). Hence the number of parts through which a

query passes is at most 4m+2. It follows from Lemma 4.1.1, that m <

log*n+O(1). Therefore, a query passes through at most 4 log* n+O(1)
parts. Finally, an update passes through m < log*n + O(1) parts of T
and through one part containing a tree 7;, if we do not have to rebuild

the data structure. If we take the cost of rebuilding into account, we

see that—amortized—log* n + O(1) + O((logn)?/n) = log*n + O(1)
parts are involved in an update. O

This result means that we can query and maintain a modified range

tree, stored in secondary memory, by transporting O(log* n) parts of
size O(n). Observe that although log* n goes to infinity as n does, for

all practical values of n, we have log* n < 5. In fact, log*n < 5 for all
n < 265536,

Next, we generalize Theorem 4.1.3. Again we change the definition

of range trees.

Definition 4.1.2 Let V = {p, < po <...< pp} bea set of n points in

the plane, ordered according to their x-coordinates. A k-fold modified

range tree is defined as follows.

1. For k = 1, a 1-fold modified range tree is a BB/a]-range tree.

2. Let k > 1,m = [n(log)*n/(log)*-'n]. Partition the set V into
subsets Vi = {p1, Po,---, Pm}, V2 = {Pm+41;---;Pom}, etc. Then a

54 4. Partitions of 2-dimensional range trees

k-fold modified range tree consists of the following. Each set V;

is stored in a (k —1)-fold modified range tree T;. In the root of T;
we do not store an associated structure. Let r; be the root of Tj.

These roots are ordered according to r; < rg < 73 < We store

these roots in a perfectly balanced binary leaf search tree T’. Let

v be any node of T, representing the roots 7;, ri41,...,7; (v may

be a leaf of T). Then v contains an associated structure, which
is a BB[a]-tree for the set V; U Vi41 U...U Vj, ordered according
to their y-coordinates.

Query and update algorithms: In the above definition, the

structure of a range tree is not changed, only the balance conditions

are different. Therefore, the query algorithm in a k-fold modified range

tree is similar to that of an ordinary range tree. An insertion or dele-

tion of a point p is performed as follows. If k = 1, we use the update

algorithm for BB[a]-range trees. Let k > 1. First we walk down tree
T, to find the appropriate root r;. During this walk we insert or delete

p in all associated structures we encounter on the search path. Then

we insert or delete p in T;, using the update algorithm for a (k — 1)-

fold modified range tree. In order to keep the structure balanced, we

completely rebuild it as soon as at least one set V; contains either m/2

or 2m points.

The following theorem shows that a k-fold modified range tree has

the same performances as a BB[a]-range tree.

Theorem 4.1.5 A k-fold modified range tree, representing n points,

can be built in O(nlogn) time, and takes O(nlogn) space to store. In
this tree, range queries can be solved in O((logn)? + t) time, where t
is the number of reported answers. Insertions and deletions in this tree

can be performed in amortized time O((logn)?).

Proof. The proof is by induction on k. For k = 1, the theorem

follows from Theorem 2.3.1. So let k > 1, and suppose the theorem

is proved for k — 1. Each tree T; has size O(mlogm), where m =
[n (log)*n/(log)*—!n]. Since there are O((log)*~'n/(log)*n) such trees,
they take together an amount of space bounded by

) = o(ntogn), (log)*—!n
O (m logm (log)En

4.1. Restricted partitions 55

Each level of tree T, together with its associated structures, has size

O(n). Since T has height

(log)*-!n

(log)*n

this tree, together with its associated structures, has size O(n(log)*n).
Hence the entire data structure has size O(n logn). The bounds on the
building time and the query time can be proved in an analogous way.

If the entire data structure is not rebuilt after an update, the given

procedure takes, amortized, O((log)*n x logn+ (log m)*) = O((logn)?)
time. Since the structure has to be rebuilt at most once every 2(m)
updates, and since this rebuilding takes O(n logn) time, it follows that

the amortized update time of the k-fold modified range tree is bounded

by O((logn)?). O

O(tox(n/m}) =O (Ios)) = 0(008)*n),

The partition of a k-fold modified range tree: If k = 1, the

entire data structure forms a part on its own. Let k > 1. Each tree

T; is a (Kk — 1)-fold modified range tree. We partition each such tree T;
recursively into parts. Finally, the tree T, together with its associated

structures, forms one part of the partition.

Theorem 4.1.6 For a k-fold modified range tree, representing a set of

n points, there exists an (O(n(log)*n), 2k — 1,k + o(1))-partition.

Proof. Again, the proof is by induction on k. For k = 1, the claim is

obvious. So let k > 1, and suppose the theorem is proved for k—1. We

saw in the proof of Theorem 4.1.5, that the tree J, together with its

associated structures, has size O(n(log)*n). So this part of the partition
has the correct size. Each tree T; is a (Kk — 1)-fold modified range
tree, representing O(m) points, where m = [n (log)*n/(log)*-!n]. By
the induction hypothesis, this tree 7; is partitioned into parts of size

O(m(log)*-!m) = O(n(log)*n), such that each query passes through at
most 2(k—1)—1 parts, and each update passes, amortized, through at

most (k—1)+o(1) parts. Hence the entire data structure is partitioned
into parts of size O(n(log)*n). An update in a k-fold modified range tree
passes, amortized, through & + o(1) parts, if we do not have to rebuild

the structure. Since the structure is rebuilt at most once every 2(m)

56 4. Partitions of 2-dimensional range trees

updates, and since in that case O(logn/(log)*n) parts are involved in
the update, it follows that each update passes, amortized, through at

most k+0(1)+O/((logn/(log)*n)/m) = k+o0(1) parts. We are left with
the bound on the number of parts through which a query passes. Let

h(k) be the maximal number of parts through which the “left path”
of a query in a k-fold modified range tree passes. Then h(1) = 1 and
h(k) <1+h(k —1) for k > 1, since we also store associated structures
in the leaves of T. Hence h(k) < k. It follows that a query in the data
structure passes through at most 2h(k) — 1 < 2k—1 parts: h(k) parts
for the left path, h(k) for the right path, —1 since we counted the top
part of the tree twice. This proves the theorem. 0

Note that the value of k should be less than or equal to log* n,

since otherwise (log)*n < 0, or is not even defined. Hence in practical
situations, we have k < 5.

4.2 Changing range trees to make them

partitionable

The best restricted partition into parts of size O(n) we have seen so
far, is the (O(n), O(log* n), O(log* n))-partition of Theorem 4.1.4. Al-
though we prove in Theorem 6.3.1 that this is optimal for restricted

partitions of normal range trees, we will show now that, making some

slight changes, the bounds can be improved.

Let V = {pi < po <...< pn} be a set of n points in the plane, or-

dered according to their z-coordinates. We partition the set V into

subsets Vi = {p1,---,Pnin)}, Vo = {Pn(n)+1,--->Pan(n)}, etc., where
h(n) = [n/logn].

Definition 4.2.1 A reduced range tree representing the set V consists

of the following.

1. Each set V; is stored in a two-dimensional BB/a]-range tree T;.
Let r; be the root of Tj.

2. These roots r; are stored in the leaves of a perfectly balanced

binary tree T.

4.2. Reduced range trees 57

So in a reduced range tree, nodes that are high in the main tree (i.e.,

nodes representing many points) do not have an associated structure.

Query and update algorithms: To perform a query with range

([r1 : yi], [v2 : yo]), we do the following. We search with x; and y; in tree
T for the appropriate roots, say r; and r;. If7 = 7, we perform a query,

with the rectangle ([x1 : yi], [v2 : ye]), in the range tree T;. Otherwise,
if i < j, we perform queries, with the strip ([21 : co], [%2 : yo]) in tree T;,
and with ([—00 : yz], [%2 : ya]) in tree T;. Furthermore, we perform one-
dimensional range queries, with query interval [22 : yo] in the associated

structures of the roots of the trees Tj41,..., 7-1.

An insertion or deletion of a point p is performed as follows. First,

we walk down tree T, to find the appropriate root r;, and we insert

or delete p in the tree T;, using the update algorithm for BB[a]-range
trees. Just as for modified range trees, we completely rebuild the data

structure as soon as one set V; contains either [n/logn]/2 or 2[n/logn]
points.

Theorem 4.2.1 A reduced range tree, representing a set of n points,

can be built in O(nlogn) time, and takes O(nlogn) space to store. In
this tree, range queries can be solved in O((logn)? + t) time, where t
is the number of reported answers. Insertions and deletions in this tree

can be performed in amortized time O((logn)’).

Proof. The bounds on the building time, the space requirement and

the update time can be proved in the same way as for BB[a]-range
trees (cf. Theorem 2.3.1). Consider the query algorithm for reduced
range trees as described above. The time to find the roots r; and 1; is

proportional to the height of tree T, which is O(loglogn). If i = j, we
have to query the tree T;, which takes O((log(n/ log n))*) = O((logn)?)
time. If i < j, we query the trees T; and T;, which takes O((logn)”)
time. Furthermore, the one-dimensional range queries in the associated

structures of the roots of Tj41,...,Tj-1 take O(logn x log(n/ logn)) =
O((logn)”) time, since there are O(log) such associated structures,
and each has a query time of O(log(n/logn)). Of course we have to
add O(t) to the total query time for reporting the answers. This proves

the theorem. 0

58 4. Partitions of 2-dimensional range trees

It follows that we have a new data structure for the orthogonal

range searching problem, having the same performances as a BBia]-

range tree. We show that this new data structure can be partitioned

efficiently.

The partition of a reduced range tree: We put the tree T,

together with the associated structures of the roots of the trees T; in

one part. Furthermore, each tree 7;, without the associated structure

of its root, forms one part of the partition.

Theorem 4.2.2 For a reduced range tree, there exists an (O(n), 3,2+
0(1))-partition.

Proof. The part that contains T and the associated structures of the

roots of the trees T;, has size O(logn + logn x (n/logn)) = O(n). It is
clear that each JT; without the associated structure of its root has size

O(n). There are O(logn) such trees. Clearly, a query passes through at
most 3 parts. Also, if the data structure is not rebuilt, an update passes

through exactly 2 parts. If the structure is rebuilt, which happens

at most once every 20(n/logn) updates, O(logn) parts are involved.
Hence an update passes, amortized, through at most 2+ o0(1) parts of

the partition. 0

Remark. We prove in Theorem 6.3.1 that if a two-dimensional range

tree is partitioned, in the restricted sense, such that each update passes

through at most 2 parts, there must be a part of size Q(nloglogn).

This is not in conflict with the partition of Theorem 4.2.2: A reduced

range tree does not have the structure of a range tree, and therefore

the lower bound does not apply. (Strictly speaking, the partition of

Theorem 4.2.2 is not even restricted, since the associated structure of

the root of JT; is not contained in the same part as the root itself. How-

ever, the data structure can easily be adapted such that the partition

is restricted.)

4.3. (g(n),h(n))-range trees 59

4.3. A partition in which updates pass through

3 parts

We now look at general partitions that also allow splitting associated

structures. As a result we can reduce the size of the parts to be asymp-

totically less than n. Unfortunately, this makes the number of visited

parts for a query dependent on t, the number of answers.

Definition 4.3.1 Let g(n) and h(n) be integer functions, such that
1 < g(n) < nl < A(n) < n, and g(n) x A(n) > n/logn. Let
V = {p, < po <... < py} be a set of n points in the plane, ordered

according to their z-coordinates. We partition the set V into subsets

Vi = {P1,---,Po(n)}, Vo = {Pg(n)+15 +++» Peg(n)}, etc. Order the points of
V according to their y-coordinates. Let V = {q@ <q <... <q} be

the resulting set. We partition this set into subsets W, = {q1,.--, dniny},

Wo = {Gn(n)+1) +--+» Qan(n)}, etc. A (g(n), h(n))-range tree is defined as
follows.

1. Each set V; is stored in a two-dimensional BB/a]-range tree T;.
Let r; be the root of Tj.

2. These roots are stored in the leaves of a perfectly balanced bi-

nary tree T. Let v be any node of 7, representing the roots

Tis Tit1)---,7j- Then v represents the set Vj; = VjUVi41U...UVj.

Let Iy = {k|Vi; 7 W, #0}. Node v contains an associated struc-
ture, representing the set Vi;, having the following form. There

is a top tree T’, which is a BB[a]-tree, containing the set I, in
its leaves. Furthermore, each leaf k of this top tree, contains a

BBia]-tree T/,, containing in its leaves the points of V;;M We,
ordered according to their y-coordinates.

In this definition, the condition g(n) x h(n) > n/logn is to assure
that the data structure has size O(n logn). Observe that the associated
structure of a node v of the tree T contains the points of Uez, (Vij

W,) = Viz, ordered according to their y-coordinates. Also, for such a

node v, we have |J,| = O(n/h(n)). If r is the root of tree T, the set J,
contains all values of indices for which there is a set W;,. Therefore, the

60 4. Partitions of 2-dimensional range trees

Figure 4.1: A (g(n), h(n))-range tree. T,,...,Tn/g(n) are 2-dimensional
BBla]-range trees, the other trees are binary trees.

4.3. (g(n),h(n))-range trees 61

top tree T” associated with the root is, and remains, perfectly balanced.

See Figure 4.1 for a pictorial representation of a (g(n), h(n))-range tree.

Query and update algorithms: Since (g(n),h(n))-range trees
have the same structure as ordinary range trees, the query algorithm

for this data structure will be clear.

An insertion or deletion of a point p is performed as follows. First

we walk down tree T, to find the appropriate root r;. During this walk,

we have to update all associated structures we encounter on the search

path. The first associated structure we encounter is that of the root r

of T. We search in its top tree T/, to find the set W;, in which p has

to be inserted or deleted. Then we update the corresponding tree T/,.
Now for each node v # r of T, that is on our search path, we do the

following. We search in the top tree T) for k. (We know the value of

1. Suppose that & is present in this top tree. Then we insert or

delete p in the tree T/,. If T/,, becomes empty, we delete k from
the top tree T).

2. Otherwise, k is not present in the top tree. (Then, point p is

not present in the data structure, and therefore the update is an

insertion: If » was present, then k was present in the top tree

T,. If we had to delete the point p, we would have noticed that

it is not present during the update of the associated structure of

the root r, and the update procedure would have stopped.) In

this case, we insert k into the top tree, together with a tree T/,
containing p.

Finally, point p is inserted or deleted in the appropriate range tree T;,

using the update algorithm for BB[a|-range trees.
In order to keep the data structure balanced, we completely rebuild

it as soon as one set V; contains either g(n)/2 or 2g(n) points, or as
soon as one set W; contains either h(n)/2 or 2h(n) points.

Theorem 4.3.1 Let g(n) and h(n) be as before. A (g(n), h(n))-range
tree, representing n points, can be built in O(nlogn) time, and takes

O(nlogn) space to store. Using this tree, range queries can be solved

62 4. Partitions of 2-dimensional range trees

in O((logn)? + t) time, where t is the number of reported answers.
Insertions and deletions in this tree can be performed in amortized time

O((logn)? + (nlogn)/ min(g(n), h(n))).

Proof. Each tree T; represents O(g(n)) points. Hence it has size
O(g(n) log g(n)). Since there are O(n/g(n)) such trees, they take to-
gether O(n log g(n)) space. The tree T takes O(n/g(n)) space. Each
top tree T/, where v is a node of T, has size O(n/h(n)). Hence
all top trees together have size O((n/g(n)) x (n/h(n))). Consider a
fixed level of T. The trees T’, of the associated structures on this
level together represent the set V, and, hence, they have size O(n).

Since T has height O(log(n/g(n))), all these trees T/, together take
O(nlog(n/g(n))) space. Hence the size of the entire data structure is
bounded by

O(n log g(n))+O((n/g(n)) x (n/h(n)))+O(n log(n/g(n))) = O(n logn),

since g(n) x h(n) > n/logn. The bound on the building time can be
proved in an analogous way.

In each associated structure of a node in tree JT, one-dimensional

range queries can be solved in O(log(n/h(n)) + log h(n)) = O(logn)
time. One-dimensional range queries in an associated structure of a

tree T; take O(log g(n)) = O(logn) time. To solve a two-dimensional
range query, we have to solve O(log n) one-dimensional range queries in
associated structures. It follows that the query time of the data struc-

ture is bounded by O((logn)? +t). We are left with the update time.
Suppose the data structure is not rebuilt. The update of range tree T;

takes amortized O((log g(n))”) time, and only one such tree has to be
updated. Furthermore, the update of an associated structure in T takes

O(log n) time. Since O(log(n/g(n))) such associated structures are up-
dated, the total update time is bounded by O((log g(n))? + logn x
log(n/g(n))) = O((logn)?). Every Q(min(g(n), h(n))) updates, the
data structure is rebuilt at most once. Therefore, the amortized update

time of the data structure is bounded by O((logn)?+(n log n)/ min(g(n), h(n))).
This proves the theorem. 0

The partition: We partition a (g(n), h(n))-range tree as follows.
Each tree T; forms a part on its own. Next we put the tree T together

4.3. (g(n),h(n))-range trees 63

with all top trees T/ in one part of the partition. Finally, for each fixed

k, the trees T/,, where v ranges over all nodes in T, are put together

in one part. (Use Figure 4.1 to get an impression of this partition.)

Theorem 4.3.2 A (g(n), h(n))-range tree, representing a set of n points,
can be partitioned into parts of size O(f(n)), where

f(n) = max (g(n) log g(n), (n/g(n)) x (n/h(n)), h(n) log(n/g(n))) ,

such that a query passes through at most 5+ O(t/h(n)) parts, where t
is the number of reported answers, and the amortized number of parts

through which an update passes is at most 3 + O((nlogn)/(f(n) x

min(g(n), h(n)))).

Proof. Each tree T; forms a part of size O(g(n) log g(n)). This gives us
O(n/g(n)) parts. The tree T has size O(n/g(n)). There are O(n/g(n))
top trees, and each of them has size O(n/h(n)). So the part of the par-
tition containing T and all top trees has size O(n/g(n)) +O((n/g(n)) x
(n/h(n))) = O((n/g(n)) x (n/h(n))). Take a fixed k. All trees Ty,,
where v ranges over the nodes in 7’, form one part. Consider a level of

T. Let v1, U2,.-.,Um be the nodes on this level. The trees T).,,..-,T),.%

together represent the set W;, which has size O(h(n)). So for this fixed
k, all trees T/, together have size O(h(n) log(n/g(n))), since tree T has
height O(log(n/g(n))). Since there are O(n/h(n)) possible values for
k, this gives us O(n/h(n)) parts, each of size O(h(n) log(n/g(n))).

To summarize, we have O(n/g(n)) parts of size O(g(n) log g(n)),
one part of size O((n/g(n)) x (n/h(n))), and O(n/h(n)) parts of size
O(h(n) log(n/g(n))). Then, in order to get the desired partition, we
merge parts into O((nlogn)/f(n)) new parts of size O(f(n)).

Now consider an insertion or a deletion of a point, such that the data

structure is not rebuilt. Let W; be the set in which the point is inserted

or deleted. Then this update passes through exactly three parts: The

part containing T and the top trees; the part containing the trees T/,;

and a part containing the appropriate range tree 7;. If the structure

is rebuilt, O((nlogn)/f(n)) parts are involved in the update. Since
this has to be done at most once every ((min(g(n), h(n))) updates, it
follows that the amortized number of parts through which an update

passes is at most 3+O((nlogn)/f(n) x 1/ min(g(n), h(n))). The bound

64 4. Partitions of 2-dimensional range trees

on the number of parts through which a query passes can be proved in

a similar way. 0

Now we choose the functions g(n) and h(n) such that the sizes of
the parts are minimal.

Corollary 4.3.1 Let g(n) = h(n) = [n?/3/(logn)*/3]. Ina (g(n), h(n))-
range tree, updates can be performed in amortized time O(n 3x (log n)4/ 3).

This range tree can be partitioned into parts of size O((nlogn)?/*), such
that a query passes through at most 5 + O(t x (logn)'/3/n?/3) parts,
where t is the number of answers to the query, and the amortized num-

ber of parts through which an update passes is at most 3 + o(1).

The partition in this corollary is the best result for partitions in

which an update passes through at most 3 parts.

4.4 k-divided range trees

We now generalize the (g(n), h(n))-range tree of the preceding section,
to get a class of range trees that can be partitioned such that queries

and updates visit a constant number of parts.

Range trees in this new class are composed of k-divided binary trees,

which are defined as follows.

Definition 4.4.1 Let k be a positive integer, and let V = {p, < po <

. < Pn} be an ordered set of n objects. A k-divided binary tree,

representing the set V, is defined as follows.

1. For k = 1, a 1-divided binary tree is a BB[a]-tree, containing the
elements of V in sorted order in its leaves.

2. Let k > 1, and let m = [n*/@+) /(logn)/@+]. Partition V
into subsets Vi = {p1,.--, Pm}, V2 = {Pmit,---,Pam}, etc. A k-
divided binary tree consists of the following. Each set V; is stored

in a (k — 1)-divided binary tree B;. The roots of the trees B; are
stored in sorted order in the leaves of a perfectly balanced binary

tree B.

4.4. k-divided range trees 65

Figure 4.2: A 4-divided binary tree.

Definition 4.4.2 Consider a k-divided binary tree T representing a

set V. This tree contains i-divided subtrees for 1 <i< k. Ifi > 1,

each such 7-divided subtree contains a top tree, which is a binary tree

storing the leaves of its (i — 1)-divided subtrees. Such a top tree is
called a tree-part. The BB[a]-subtrees of T that contain the objects of
V —these are 1-divided binary trees—are called bottom-parts.

See Figure 4.2 for a pictorial representation of a 4-divided binary

tree. In this figure, C, D; and E; are tree-parts, and the 1-divided

binary tree F; is a bottom-part. Note that a 1-divided binary tree does

not contains tree-parts.

Update algorithm: An update in a k-divided binary tree is per-

formed as follows. If & = 1, we use the update algorithm for BB[a]-trees
that uses rotations. Let k > 1. To update a k-divided binary tree, we

walk down tree B to find the appropriate (k — 1)-divided binary tree
B; where the update has to be carried out. Then we perform the up-

date in this tree B;, using the same algorithm recursively. If this tree

B,;—which initially has m = [n*/@+) /(logn)/+)] leaves—has either
m/2 or 2m leaves, we rebuild the entire k-divided binary tree.

66 4. Partitions of 2-dimensional range trees

Lemma 4.4.1 A k-divided binary tree representing a set of n elements

has size O(n) and can be built in O(n) time if we have the n elements
in sorted order. The tree has a height bounded by O(logn).

Proof. The proof is trivial. 0

Lemma 4.4.2 Consider a k-divided binary tree T for a set of n ele-

ments. Let i be an integer, 1<i< k. Each i-divided subtree of T has

Size

re) (m/e) / (log ny h-O/R+)) ∙

∫∣∣∁⋗↥↗∽∁∣⊔⊺≖∂∊−⊉⊄⇈⇩∣∃⇁↗↴∁⇂⋅⋝⋅⋝∅∎∅∂

⊝ ((n log n) e+) ⋅

Each bottom-part has size

6) (n?/** /(log ny& Die) ∙

Each path in T from the root to a leaf passes through exactly k — 1

tree-parts and one bottom-part.

Proof. Let m; = n)/@+) /(logn)@—9/@+D_ The proof of the sizes
of the i-divided subtrees is by induction on 7. For i = k, the claim is

obvious. Let 1 <i < k, and suppose that each (i + 1)-divided subtree
of T has size O(m,41). Let T’ be such an (4+ 1)-divided subtree. Then
by definition, T’ contains i-divided subtrees, each of which has size

3) (min (+2) / (log mini)! 2) = O(m,).

Hence the claim is true for 7, since each i-divided subtree is a subtree

of some (i + 1)-divided subtree.
It is clear that each root-to-leaf path in T passes through k — 1

tree-parts and one bottom-part. Each tree-part is the top tree of an

i-divided binary tree for some 1 <1 < k. The size of such a tree-part is

O(m;/m_1) = O((nlogn)/@+). Finally, each bottom-part has size

O(m1) = O(n7/**9) /(logn)® W/E). O

4.4. k-divided range trees 67

Definition 4.4.3 Let & be a positive integer. Let V = {p, < po <

... < pn} be a set of n points in the plane, ordered according to their

x-coordinates. A k-divided range tree, representing the set V, is defined

as follows. For k = 1, a 1-divided range tree is a BB[a]-range tree.
Let k > 1, m = [n*/@+) /(ogn)/@+)]. Partition V into subsets
Vi, = {p1,---,Dm}, V2 = {Pmit,---)Pam}, etc. A k-divided range tree

for the set V consists of the following.

1. Each set V; is stored in a (& — 1)-divided range tree T;. Let r; be
the root of Tj.

2. These roots r; are stored in the leaves of a perfectly balanced

binary tree J. Let r be the root of T.

3. The root r of T contains an associated structure, which is a k-

divided binary tree, representing the points of V, ordered accord-

ing to their y-coordinates. Let T/ be the part of this associated
structure without the bottom-parts. So T/ consists of all tree-
parts of the associated structure of r.

4. Let w be any node of T, w # r, and let V, be the set of points

represented by w. Then w contains an associated structure having

the following form. The upper part is a copy of T/. Each leaf

of this copy contains a pointer to a BB/a]-tree that contains in

its leaves the—possibly none—points of V,, that “belong there”,

ordered according to their y-coordinates. So the entire associated

structure of w contains the set V,, in its leaves, ordered according

to their y-coordinates.

Finally, each node of any associated structure contains the following

extra information:

e Two mark bits which state whether the left and right subtree

contain points of V;

e Two extra pointers, one for the left, and one for the right subtree.

One extra pointer points to the (unique) first node in the left
subtree for which both subtrees contain points of V, or else (if

no such node exists) to the only point of V in the left subtree. If

68 4. Partitions of 2-dimensional range trees

there are no points of V at all in the left subtree, the pointer is

not used. The other extra pointer has the same meaning for the

right subtree.

(End of definition.)

Note that a k-divided range tree contains a main tree as usual,

which is a k-divided binary tree. In Figure 4.3, a 4-divided range tree

is sketched. The highest tree-parts in all associated structures of nodes

in T—denoted here by C—are identical (except for the mark bits and
the extra pointers). Also, for fixed 7, all tree-parts D; in all associated

structures of nodes in T are identical. The same holds for the tree-

parts E; for fixed j. The points that are contained in the BB[a]-tree
F/ in the associated structure of w form a subset of the points that
are stored in the bottom-part F;. This BB[a]-tree F/ may be empty,
whereas the bottom-part F; is not empty. In this figure, T1,...,Tn/m

are (k — 1)-divided range trees.
Let v be any internal node in an associated structure, and let w be its

left son. If the extra information (the mark bits and the extra pointers)
of node w is known, then we can compute the extra information for the

left subtree of v in constant time. A similar remark holds if w is the

right son of v. Hence, the extra information for an associated structure

can be computed in a bottom-up fashion.

For k = 2, we nearly get the (g(n), h(n))-range tree of the preceding
section. The difference is that in a 2-divided range tree, the upper parts

of associated structures are identical, whereas in a (g(n), h(n))-range
tree this is not necessarily the case.

Definition 4.4.4 Consider a k-divided range tree.

1. The BBial]-subtrees of an associated structure that contain the
points are called bottom-parts. The upper part T; of an associated

structure (i.e. the tree without the bottom-parts) consists of tree-
parts, which are defined as in Definition 4.4.2.

2. Two tree-parts (or bottom-parts) of two associated structures are
located at the same position, if the paths for reaching these parts

are identical. In other words, when the same left-right decisions

are taken in each associated structure in reaching the parts.

4.4. k-divided range trees 69

Figure 4.3: A 4-divided range tree.

70 4. Partitions of 2-dimensional range trees

So in Figure 4.3, the subtrees F; and F/ are bottom-parts, whereas

C’, D, and E; are tree-parts. The two tree-parts E;—one in the associ-

ated structure of r, and the other in the associated structure of w—are

located at the same position.

Building algorithm: A k-divided range tree is built as follows. If

k = 1, we use the standard building algorithm for BB[a]-range trees.
Let k > 1. We first order the n points to both coordinates. This takes

O(nlogn) time. Then we build recursively the (& — 1)-divided range
trees T},...,Tn/m for sets of m points, where m = [n*/*+) /(logn)/ A+),
Next, we build the tree T, in which we store the roots of these (& — 1)-
divided range trees. Then we build the associated structure of the root

r of T, and we copy the part T/, that does not contain the bottom-

parts, O(n/m) times. Each copy becomes an associated structure. We
complete such an associated structure, by traversing it and adding the

bottom-parts containing the points that belong there, and setting the

extra pointers and mark bits.

Lemma 4.4.3 A k-divided range tree for a set of n points can be built

in O(nlogn) time and takes O(nlogn) space to store.

Proof. We prove the bound on the building time, by induction on k.

For k = 1, the lemma is obvious. So let & > 1, and suppose that a

(& — 1)-divided range tree can be built in O(nlogn) time. We build
the k-divided range tree as described above. It takes O(n logn) time to
order the n points to both coordinates. By the induction hypothesis,

the building of the (k — 1)-divided range trees T,,...,Tn/m takes an
amount of time bounded by O((n/m) x mlogm) = O(nlogn). Clearly,
the tree T can be built in O(n/m) time. The size of T/ is equal to the
size of the entire associated structure of r—which is O(n)—divided by
the size of a bottom-part. Hence it follows from Lemma 4.4.2 that this

part T’ has size O((nlogn)“-/@+). Therefore, the time to build the
associated structure of r and copying T; O(n/m) times is bounded by

O (n + (n/m) x (nlog nj &-D/e+)) = O(n).

(Note that therefore the total size of these copies is bounded by O((n/m) x
(nlogn)*-)/(*+1)) — O(n).) The completing of each copy to an asso-
ciated structure takes in total O(n) time for all associated structures of

4.4. k-divided range trees 71

a fixed level of T’, since we have the points ordered according to their

y-coordinates. Since there are O(log(n/m)) levels in T, the total time
for completing all associated structures of T is bounded by O(n logn).
This proves the bound on the building time. The bound on the size

can be proved in a similar way. 0

Update algorithm: If k = 1, we use the update algorithm for

BBia]-range trees.

Let k > 1. An insertion or deletion of a point in a k-divided range

tree is performed as follows. We walk down tree T’,, to find the appro-

priate (k — 1)-divided range tree T; where the update has to be carried
out. During this walk we have to update all associated structures we

encounter. The update in the associated structure of the root r of T is

performed by using the update algorithm for k-divided binary trees.

First suppose that no rebuilding operation is necessary in the asso-

ciated structure of the root r of T. (Here, a rotation in a bottom-part
is not considered to be a rebuilding operation.) Then the other associ-
ated structures along the search path in T are updated in the standard

way, and no rebuilding operations are carried out. In each associated

structure, we adjust the extra information—the mark bits and the extra

pointers—by walking backwards the path to the leaf where the point

is inserted or deleted. To adjust this extra information, constant time

is needed for each node on the path. Also, in case a rotation is carried

out—in a bottom-part—the extra information of the nodes involved

can be updated in constant time.

Otherwise, if a rebuilding operation is necessary, an i-divided sub-

tree of the associated structure of r is rebuilt, for some 7. We re-

peat this rebuilding in all associated structures of T. More precisely,

let T/ be the upper part of the new i-divided subtree, i.e., the tree

without the bottom-parts. Then we copy T; O(n/m) times, where
m = [n*/®+ /(logn)/(@+]. In each associated structure of T we re-
place the old subtree by a copy of T/, and we complete each copy by

traversing it and adding the bottom-parts containing the points, and

setting the extra pointers and mark bits.

Finally, we perform the update in the appropriate (k — 1)-divided
range tree 7;, using the same algorithm recursively. If this tree T;—

which initially represents m points—represents either m/2 or 2m points,

72 4. Partitions of 2-dimensional range trees

we rebuild the entire k-divided range tree.

Lemma 4.4.4 In ak-divided range tree, representing a set of n points,

insertions and deletions can be performed in amortized time O(n (k+1) x
(log n)*+2)/(+0),

Proof. The proof is by induction on k. For k = 1, the lemma is

obvious. So let k > 1, and suppose that an update in a (k — 1)-divided
range tree takes, amortized, O(n'/* x (logn)*+)/*) time.

In the above update algorithm, the update of the (k — 1)-divided
range tree T; takes—by the induction hypothesis—amortized

O (mi/* x (logm)*+)/*) —O (nery) x (log n)(*+2)/+2))

time. The entire k-divided range tree is rebuilt at most once every

Q(m) updates. So this rebuilding adds

O ((nlogn)/m) =O (ner) x (log n)(®+2)/(6+1))

to the amortized update time.

We are left with the update time for the associated structures of

T. If no rebuilding is done, these associated structures are updated in

O((log n)?) time.
Otherwise, in the associated structure of the root r of T, an i-divided

subtree is rebuilt, for some 7. We repeat this in all other associated

structures of T’, as described above. Note that 1 < i < k, since we never

rebuild a 1-divided subtree. The upper part T/ has a size which is equal

to the size of an i-divided subtree divided by the size of a bottom-part.

Hence, by Lemma 4.4.2, this upper part has size O((nlogn)@Y)/@t0).,
Therefore, the time needed to build the i-divided subtree and copying

the upper part O(n/m) times is bounded by

= 0 (nb [Clog ny 9/9),
where the leftmost term is the size of the 7-divided subtree. It takes an

amount of O(n@+)/@+ /(logn)*—9/(F+1)) time to complete the associ-
ated structures of the nodes on a fixed level of 7’, since by Lemma 4.4.2,

4.4. k-divided range trees 73

an i-divided subtree contains O(n@+)/('+D /(logn)@—9/+1)) points,
and each of these points is contained in exactly one associated struc-

ture. (Note that all O(n/m) copies of T/ can indeed be traversed in
O(n Y/ME+1) /(logn)@-9/4+D) time.) Since tree T has O(log(n/m))
levels, the total amount of time to complete all associated structures of

T is bounded by

O (nO) /(log nye ieH)) x log(n/m)) =O ((n log njOrDie+)) ⋅

So the total time to rebuild the associated structures—for this value of

i—is bounded by

=O ((n log nO)) ⋅ (4.2)

(Hence the total size of all changed parts of the associated structures
of T is also bounded by O((nlogn)“+)/(+1)).)

An i-divided subtree is rebuilt at most once every Q(ni/@t /(log n)@-+Y/k+))
updates: The subtree is rebuilt if an (i — 1)-divided subtree gets out
of balance. So the rebuilding for this value of i adds O(n/(@+) x
(log n)+?)/@+0) to the amortized update time.

This can happen for k — 1 values of 1. Therefore, the amortized up-

date time for the associated structures of T is bounded by O(n/(@+)) x
(log n)*+2)/(k+D). since k is a constant.

We have proved that the amortized update time for the entire k-

divided range tree is bounded by O(n/(+) x (log n)(@#2)/@+)).

Query algorithm: The query algorithm for a k-divided range tree

is as follows. Let ([x1 : y:], [22 : ye]) be a query rectangle. Note that
the k-divided range tree contains a main tree as in the ordinary case.

1. Perform a range query in the main tree with [z, : y;], as in the
ordinary case, and select the associated structures to be queried.

2. For each associated structure selected in step 1, perform a one-

dimensional range query with [22 : ye| as follows: Follow the paths
to Z and yo, and select the subtrees in which the answers must

lie. For every selected subtree, if it does not contain points, do

74 4. Partitions of 2-dimensional range trees

nothing. Otherwise, report the points it contains by following the

extra pointers. (We know from the mark bits whether a subtree
contains points.)

Lemma 4.4.5 In a k-divided range tree, representing a set of n points,

range queries can be solved in O((logn)?+t) time, where t is the number
of reported answers.

Proof. The first step of the above query algorithm selects O(logn)

associated structures and takes O(logn) time. The first part of the
second step takes O(logn) time for each associated structure. This
gives a total time of O((logn)*). The second part of the second step
guarantees that each visited node that is not on the path to xo or yp

gives an extra answer to the query. More precisely, if ¢ is the number of

answers to the query, it can be shown that at most ¢— 1 internal nodes

are visited that are not on the path to x or yo. Hence, the second part

of the second step visits at most 2¢ — 1 nodes. It follows that the total

query time is bounded by O((logn)? +t). O

Theorem 4.4.1 A k-divided range tree for a set of n points can be

built in O(nlogn) time and takes O(nlogn) space to store. Using this
tree, range queries can be solved in O((logn)* +t) time, where t is the
number of reported answers. Insertions and deletions can be performed

in amortized time O(n/(+)) x (log n)(@+2)/@+)).,

Proof. The proof follows from Lemmas 4.4.3, 4.4.4 and 4.4.5. O

The partition: We partition the k-divided range tree as follows.

A 1-divided range tree forms one part on its own.

Let k > 1. Then we partition the (k — 1)-divided range trees T;
recursively. We are left with the tree-part T’ of the main tree and its

associated structures. We store the tree-parts of all associated struc-

tures of the tree-part T, that are located at the same position, in one

part of the partition. (See Definition 4.4.4 for the notion “located at

the same position”.) Also, the bottom-parts of all associated struc-

tures of JT, that are located at the same position, are stored in one

part of the partition. Finally, we put the tree-part T itself in that part

4.4. k-divided range trees 75

of the partition that contains the highest tree-parts of the associated

structures.

So, in Figure 4.3, all tree-parts C of all associated structures of T,

together with T itself, are put in one part of the partition. Let i be

fixed. Then all tree-parts D; of all associated structures of T, form one

part of the partition. Similarly, for fixed j, all tree-parts E; form one

part of the partition. For fixed /, all bottom-parts Fj, F/, etc. of all

associated structures of T are stored in one part of the partition. The

trees T,,...,Tn/m are partitioned recursively.

Lemma 4.4.6 If a k-divided range tree is partitioned as described above,

each part has size O((nlogn)?/@+0),

Proof. For k = 1, the lemma is obvious, since a 1-divided range tree

is a BBia]-range tree. So let k > 1, and suppose the lemma is proved

for k — 1. Each (k — 1)-divided range tree T; represents O(m) points,
where m = [n*/(+1) /(logn)'/@+]. By the induction hypothesis, such
a tree T; is partitioned into parts of size

C) ((m logm)*/*) =O ((n log n)2le+0)) ⋅

⊡∂∁↥↥↓∁↧⊲⊖⊖−↧≻∂↥⊲↿⊒↥∐⋮⊐↘∣∁−⊂∐⋁↥≺↥⊖≺↥↥⇁∂∐≝⊖↓∁↥⇁⊖⊖↥↥∂⊟⊟↥∅⊖⊝≼≼∏↥⊙≝∪⊃↕∕∩⊽⊹↕⋟⊃⋅
(This follows from Lemma 4.4.2.) Since we store O(n/m) tree-parts of
associated structures of T’ that are located at the same position in one

part of the partition, such a part has size

S) ((n/m) x (nlog n) V+) =O ((n log n)2le+0)) ⋅

The part of the partition that contains the tree-part T has an additional

number of O(n/m) nodes. So this part still has size @((n log n)?/At»).
Now consider a part of the partition that contains those bottom-

parts of all associated structures of tree-part T, that are located at

the same position. By Lemma 4.4.2, the bottom-part of the associated

structure of the root of T contains O(n?/“+ /(logn)%-)/+1)) points.
The bottom-parts of all associated structures of a fixed level of T, that

are located at the same position, together contain the same points.

Hence the part of the partition containing these bottom-parts has size

S) (log(n/m) x n2/(F+) I(log n)&D/e+)) ~@e ((n log n)2/(6+1)) .

76 4. Partitions of 2-dimensional range trees

since there are O(log(n/m)) levels in T. Hence the lemma is true for
k. 0

Remark. We see that all parts in the partition have asymptotically

the same size. This explains our choice [n*/@+ /(logn)/4@+)] for the
integer m in Definitions 4.4.1 and 4.4.3.

Lemma 4.4.7 Each update in a k-divided range tree, partitioned as

described above, passes, amortized, through at most k(k + 1)/2 + o(1)

parts of the partition. Here, o(1) is to be interpreted for n > co.

Proof. For k = 1, the lemma is obvious, since a 1-divided range tree

forms one part on its own. Let k > 1 and suppose the lemma is proved

for k — 1.

First suppose that we perform an update such that the entire k-

divided range tree is not rebuilt, and that no rebuilding operation

is necessary in the associated structure of the root of JT, except for

possible rotations in a bottom-part of this associated structure. By

Lemma 4.4.2, this update passes through k — 1 tree-parts and one

bottom-part of the associated structure of the root of T. Note that

a rotation takes place within one bottom-part, so no extra tree- or

bottom-parts are involved. The important observation is this: If the

update passes through a tree-part T’ of the associated structure of the

root of T, this update passes through the tree-parts of other associated

structures, that are located at the same position as T’, and all these

tree-parts are stored in the same part of the partition. The same is true

for a bottom-part of the associated structure of the root of T. Since the

tree T itself is stored in the same part as the highest tree-parts of the

associated structures, it follows that the update of T and its associated

structures passes through exactly k parts of the partition. By the induc-

tion hypothesis, the update visits, amortized, at most k(k —1)/2+0(1)
parts in a (k —1)-divided range tree T;. So if no rebuilding is necessary,
the update passes, amortized, through at most k(k + 1)/2 + o(1) parts
of the partition.

The entire k-divided range tree is rebuilt at most once every 2.(m)
updates: As soon as a tree T; represents m/2 or 2m points, where m =

[n*/+0 /(logn)/+]. In such a rebuilding operation, O((nlogn)*—)/@+))

4.4. k-divided range trees 77

parts of the partition are involved, since by Lemma 4.4.6 all parts

have size O((nlogn)?/+)), It follows that this rebuilding operation
adds O((n log n)*—Y)/(*+) /m) = o(1) to the amortized number of parts
through which the update passes.

Finally, consider the case, where the associated structure of the

root of T' gets out of balance. Suppose that an i-divided subtree B is

rebuilt, for some 1 < i < k. This rebuilding is repeated in all other

associated structures of T. The tree-parts and bottom-parts of these

other associated structures that are involved, are stored in the same

parts of the partition as the tree- and bottom-parts of the subtree

B. All tree-parts and bottom-parts that are involved in this rebuilding

operation, together have size O((n log n)+)/@+) (see Equation (4.2)),
and they are partitioned into parts of size @((nlogn)?/“t»). Hence
there are O((nlogn)—)/+) parts of the partition involved in this
rebuilding operation. Since this rebuilding is done at most once every

O(n +) (log n)@-+4/E+1)) updates—an (i—1)-divided subtree must
get out of balance—this adds o(1) to the amortized number of parts
visited in an update. This can happen for k — 1 values of 7. Since k

is a constant, rebuilding of the associated structures adds o(1) to the
number of visited parts. This completes the proof. O

Lemma 4.4.8 A query in a k-divided range tree, partitioned as de-

scribed above, passes through at most 2k? —2k+2t parts of the partition,

where t is the number of answers to the query.

Proof. Let g(k) denote the number of parts of the partition through
which a query passes in a k-divided range tree, and let h(k) denote

this number for a query with the first interval being half-infinite. We

do not count here the number of reported answers. Then g(1) = 1,
and g(k) < 2k —1+2h(k —1) for k > 1. Also, A(1) = 1, and
h(k) < 2k-—1+h(k—1) for k > 1. It follows that h(k) < k?, and hence
g(k) < 2k? —2k +1.

The subtrees to be reported together contain ¢ points, thus at most

t — 1 internal nodes not on the query-paths are needed to reach the

t leafs containing these t answers. (See the query algorithm and the

proof of Theorem 4.4.1.) It is possible that all these points and internal

nodes are situated in different parts of the partition. The number of

78 4. Partitions of 2-dimensional range trees

parts through which a query passes therefore is at most g(k) +2t—1 <

2k? — 2k + 2t. O

By combining Lemmas 4.4.6, 4.4.7 and 4.4.8, we get the final result.

Theorem 4.4.2 For a k-divided range tree, there exists a partition into

parts of size O((nlogn)?/*+)), such that an update passes, amortized,
through at most k(k +1)/2+ (1) parts, and a query passes through at

most 2k? —2k+ 2t parts, where t is the number of answers to the query.

The term o(1) is valid for n > oo.

Of course, if the number of answers to a query is about n, it is not

possible that O(n) parts of the partition are needed, since the partition

contains only O((nlogn)*—)/@+)) parts.

Remark. Consider again a k-divided range tree. In our definition,

several associated structures are stored twice. For example, in Def-

inition 4.4.3, we store an associated structure in the root 7; of the

(& — 1)-divided range tree T;. This associated structure is also stored
in a leaf of the tree-part T. To guarantee the upper bound for the

number of parts visited in a query, this latter associated structure is

needed. The associated structures in the roots of the i-divided range

subtrees for 1 < i < k can be removed. Then the results of Theo-

rems 4.4.1 and 4.4.2 still hold. In fact, we have done the same already

in Definitions 4.1.1 and 4.1.2.

Chapter 5

Partitions of d-dimensional

range trees

5.1 Restricted partitions of d-dimensional

range trees

The restricted partitions of Section 4.1 can easily be generalized to the

multi-dimensional case, as we show now. In a restricted partition of a

multi-dimensional range tree, only the main tree is partitioned. Just as

in the two-dimensional case, a node of the main tree and its associated

structure are contained in the same part. Since the associated structure

of the root of the main tree—a (d—1)-dimensional range tree—has size
O(n(log n)4-?), as will be shown in Subsection 6.2.2, this implies that
in a restricted partition there is a part of size Q(n(logn)*).

First, we define modified d-dimensional range trees. Let V = {p, <

po <... < pn} be a set of n points in d-dimensional space, ordered

according to their first coordinates. We split this set into subsets V; =

{P1, ⋅⋅⋅ ∂⇪∣↴↸∏⋟∱≯ Vo = {Ph(n)+15 ⋅⋅⋅ ≯⊈∃⊋∣↴↸∏⊃∱∂ etc., where h(n) = [n/ log n|.

Definition 5.1.1 A modified d-dimensional range tree, representing

the set V, is defined as follows.

1. Each set V; is stored in a d-dimensional BB[a]-range tree T;. Let
r; be the root of J;. In the roots r; we do not store associated

structures.

79

80 5. Partitions of d-dimensional range trees

2. The roots r; are stored in the leaves of a perfectly balanced bi-

nary tree T. Let v be any node of 7, representing the roots

Tis Titi,---,7j- Then v contains an associated structure, which is

a (d—1)-dimensional BB/a]-range tree for the set VjUVi41U. . .UV;,
taking only the last d — 1 coordinates into account.

The query and update algorithms of a modified d-dimensional range

tree are similar to those in the two-dimensional case. Again, we com-

pletely rebuild the structure as soon as one set V; contains either [n/logn]/2
or 2[n/logn] points. The next theorem shows that this modified range
tree has the same complexity as a BB[a]-range tree.

Theorem 5.1.1 A modified d-dimensional range tree, representing n

points, can be built in O(n(logn)*!) time, and takes O(n(logn)*!)
space to store. In this tree, range queries can be solved in O((logn)? +

t) time, where t is the number of reported answers. Insertions and

deletions in this tree can be performed in amortized time O((logn)*).

Proof. The proof is the same as in the two-dimensional case. Now

rebuilding of the structure takes O(n(logn)*') time, and has to be
done at most once every Q(n/logn) updates. O

It will be clear that Theorems 4.1.2 and 4.1.4 generalize to the

following ones (the proofs are the same).

Theorem 5.1.2 For a modified d-dimensional range tree, representing

n points, there exists an (O(n(logn)4-”), loglogn + O(1), loglogn +
O(1))-partition.

Theorem 5.1.3 For a modified d-dimensional range tree, representing

n points, there exists an (O(n(logn)4-?), 4log* n+O(1), log* n+ O(1))-
partition.

Next, we define k-fold modified d-dimensional range trees.

Definition 5.1.2 Let V = {p; < po < ... < py} be a set of n points

in d-dimensional space, ordered according to their first coordinates. A

k-fold modified d-dimensional range tree is defined as follows.

5.1. Restricted partitions 81

1. For k = 1, a 1-fold modified d-dimensional range tree is a BB[a]-
range tree for the set V.

2. Let k > 1,m = [n(log)*n/(log)*-'n]. Partition the set V into
subsets V; = {p1,..-, Pm}, V2 = {Pm4i;---; Pam}, etc. Then a k-
fold modified d-dimensional range tree consists of the following.

Each set V; is stored in a (k — 1)-fold modified d-dimensional
range tree 7;. In the root of 7T;, we do not store an associated

structure. Let r; be the root of J;. We store these roots in the

leaves of a perfectly balanced binary tree T. Let v be any node

of T, representing the roots 7;,Ti41,-.-,7;- Then v contains an

associated structure, which is a (d — 1)-dimensional BB[a]-range
tree for the set V; UVj,, U...U Vj, taking only the last d—1
coordinates into account.

Also in this case, the query and update algorithms are similar to

those in Section 4.1. We rebuild the data structure as soon as one set

VY, contains either m/2 or 2m points.

Theorem 5.1.4 A k-fold modified d-dimensional range tree, represent-

ing a set of n points, can be built in O(n(logn)*) time, and takes
O(n(logn)4-') space to store. In this tree, range queries can be solved
in O((logn)4 +t) time, where t is the number of reported answers. In-
sertions and deletions in this tree can be performed in amortized time

O((logn)?).

Proof. The proof is the same as that of Theorem 4.1.5. 0

Hence the k-fold modified d-dimensional range tree has the same

complexity as a BB/a]-range tree.

Theorem 5.1.5 Let k be a positive integer. For a k-fold modified

d-dimensional range tree, there exists an (O(n(logn)4-?(log)*n), 2k —
1,k + o(1))-partition.

Proof. The proof is the same as that of Theorem 4.1.6. 0

82 5. Partitions of d-dimensional range trees

5.2 d-dimensional reduced range trees

The reduced range tree, which we defined in Section 4.2 for the two-

dimensional case, can be generalized in two ways.

The first generalization is straightforward: Sets V; of cardinality

O(n/ log n) are stored in d-dimensional BB/a]-range trees, and the roots
of these trees are stored in a perfectly balanced binary tree. See Def-

inition 4.2.1 for the notation. In exactly the same way as in The-

orem 4.2.1, it follows that this data structure has the same perfor-

mances as a BB[a]-range tree. Also, Theorem 4.2.2 generalizes to an
(O(n(log n)**), 3, 2+0(1))-partition. The details are left to the reader.

We now give the other generalization, leading to a partition into

parts of size O(n). Suppose we split the set V into subsets V; of car-

dinality O(n/(logn)?-!). Then we store each V; in a d-dimensional
BBia]-range tree T;. The roots r; of these T;’s are stored in a bi-
nary tree T that contains no associated structures. This leads to an

(O(n), 3,2 + o(1))-partition, in exactly the same way as above. The
query time, however, becomes

O [dosnt x (le (ca=)) | = O((logn)?4-2).

We can avoid this high query time, by storing associated structures in

every log log n-th level in T. These associated structures may sometimes

be too large to be put in one part of the partition. In that case we also

split up these structures. We formalize this idea.

Definition 5.2.1 Let & and d be integers, where k > —1, d > 1 and

k<d. Let V = {p, < po < ... < py} be a set of n points in

d-dimensional space, ordered according to their first coordinates. A

d-dimensional k-reduced range tree, representing the set V is defined as

follows.

1. A d-dimensional (—1)-reduced range tree is empty.

2. A d-dimensional 0-reduced range tree is a d-dimensional BB[a]-
range tree for the set V.

5.2. d-dimensional reduced range trees 83

3. Let k > 1. We partition the set V into subsets V; = {p1,..-, Priny},
V2 = {Pn(n)+1)--->Pan(n)}, etc., where h(n) = [n/logn]. Then a
d-dimensional k-reduced range tree has the following structure.

(a) Each set V; is stored in a d-dimensional (k—1)-reduced range
tree Tj.

(b) The roots r; of these trees T; are stored in the leaves of a
perfectly balanced binary tree T.

(c) Each root r; contains an associated structure T/, which is a
(d — 1)-dimensional (& — 2)-reduced range tree, representing
the set V;, taking only the last d—1 coordinates into account.

Definition 5.2.2 A d-dimensional reduced range tree is a d-dimensional

(d — 1)-reduced range tree.

In Figure 5.1, a 4-dimensional reduced range tree is sketched. Nodes

at the highest 3 log log n levels of the main tree do not contain associated

structures, except those at level loglogn, which contain 3-dimensional

1-reduced range trees; and those at level 2loglogn, which contain 3-

dimensional BB[a]-range trees. Below level 3loglogn, the structure is
the same as for BB/a]-range trees. All binary trees BT in this figure
have size < logn, but still Q(logn). Hence their height is ~ loglogn.

Update algorithm: An update in a d-dimensional k-reduced range

tree B is performed as follows. If k = —1, nothing is done. If k =

0, we use the update algorithm for BBla]-range trees. If k > 1 we

search in T for the T; and T/ we have to update. Then we perform

the update in T; and T/ using the same algorithm recursively. If after

the update T;—which initially represents [n/logn]| points—represents
either [n/logn]/2 or 2[n/logn] points, we completely rebuild B.

Query algorithm: A query in a d-dimensional k-reduced range

tree, with query rectangle ((1 : yi],..-, [Za : ya]) is solved as follows. If
k; = —1, nothing has to be done. If k = 0, we use the query algorithm

for an ordinary range tree.

If k > 1, we do the following. Search with x; and y, in TJ’. We then

find roots r; and r;. Ift = 7 we perform a query with ([xz1 : y:],..-,[%a:

yal) in T;. Otherwise, if i <j, we

84 5. Partitions of d-dimensional range trees

RT(3)

Figure 5.1: A 4-dimensional reduced range tree. BT denotes a binary

tree of height ~ loglogn, RT(d) a d-dimensional BB[a]-range tree.

5.2. d-dimensional reduced range trees 85

1. perform a query with ([1 : co], [Ze : yol,---, [va : yal) in Ty;

2. perform a query with ([—00 : y\], [to : yol,---, (a: yal) in Tj;

3. (a) if k > 1, perform queries with ([x2 : yo],.-.,[%a : yal) in the
trees T/ for alli< 1 <j;

(b) if k = 1, perform queries with ({%2 : yol,..-,[%a : ya]) in
the associated structures of the roots of the trees T; for all

i<I< j. (Since k = 1, these associated structures are

BBia]-range trees.)

To answer a query with the half-infinite rectangle ([x%1 : oo], [zo :
y2|,---5[%a : Yal), we find the root r; corresponding to x,;. Then we
perform step 1 of the above algorithm. Finally, we perform step 3 for

all 1 > i.

Theorem 5.2.1 A d-dimensional reduced range tree, representing n

points, can be built in O(n(logn)*!) time and takes O(n(logn)**)
space to store. Using this tree, range queries can be solved in O((logn)¢+

t) time, t being the number of reported answers. Insertions and dele-

tions in this tree can be performed in amortized time O((logn)*).

Proof. The bounds on the building time and the space requirements

are obvious, since a reduced range tree is just a BBja]-range tree with
omission of some of the associated structures. Whether or not an as-

sociated structure has to be omitted can be decided in O(1) time. The
proof of the amortized update time is similar to that of the ordinary

case.

Let Q(d, k,n) be the worst-case query time for a d-dimensional k-

reduced range tree, representing n points. We do not count in Q(d, k,n)

the number of reported answers. Let R(d, k,n) be the worst-case query

time for the same tree, for a query rectangle with the first interval

being half-infinite (as in steps 1 and 2 of the above query algorithm).

Again we do not count the number of answers. Then it follows from

the above algorithm, the correctness of which can be seen easily, that

86 5. Partitions of d-dimensional range trees

the following recurrence holds:

Q(d,0,n) = O((logn)*),
Q(d,1,n) < cloglogn + 2 R(d,0,n/logn)

+ logn x O((log(n/logn))**),
cloglogn + 2R(d,k —1,n/logn)
+ logn x Q(d—1,k — 2,n/logn),

Q(d, k,n) IA

for some constant c. Here, the first term on the right hand side of

the last inequality is the time to find r; and r;; the second term is the

time for steps 1 and 2; and the third term is the time for step 3. (At

most logn queries are involved in this third step.) Since a query with a

rectangle, one of its intervals being half-infinite, is a special instance of

an orthogonal range query (e.g. in step 1 of the above query algorithm,

we can choose y; sufficiently large), we have R(d,k,n) < Q(d,k,n).
Hence

Q(d,1,n) < cloglogn+2Q(d,0,n/logn) + logn x O((log(n/logn))4~')

= O((logn)*),

and fork > 1

Q(d,k,n) < cloglogn+2Q(d,k—1,n/logn)

+ logn x Q(d—1,k — 2,n/logn)

< 2Q(d,k—1,n/logn) + 2 logn x Q(d—-1,k — 2,n/logn),

if n is sufficiently large. It can be shown that there are constants c;
such that Q(j,k,n) < cj4*(logn)J. Hence the query time for a d-
dimensional reduced range tree is bounded above by Q(d,d —1,n) <

cq44-1 (log n)4 = O((logn)*). Of course, we have to add the number of
reported answers. 0

The partition: We inductively partition a d-dimensional k-reduced

range tree. A d-dimensional (—1)-reduced range tree is empty, so it

need not be stored. A d-dimensional 0-reduced range tree forms one

part on its own.

Let k > 1. A d-dimensional k-reduced range tree is partitioned as

follows: We store the tree J’ in one “special” part, that is going to

5.2. d-dimensional reduced range trees 87

contain all trees, the nodes of which do not have associated structures.

Then we partition each T; and T} recursively. (To put it another way,

each 0-reduced range tree forms a part on its own. The rest of the data

structure is contained in the “special part” .)

So in Figure 5.1, all binary trees BT are stored in the “special” part

of the partition. Each of the structures RT(3) and RT(4) forms a part
of the partition on its own.

Lemma 5.2.1 Jf a d-dimensional reduced range tree is partitioned as

described above, each part has size O(n).

Proof. The d-dimensional reduced range tree for a set of n points

consists of various d,-dimensional k-reduced range trees. It is easy to

prove by induction that such a d,-dimensional k-reduced range tree

represents O(n/(logn)“~*—!) points. In particular, a d,-dimensional
0-reduced range tree, which is just an ordinary d,-dimensional BBj[al-
range tree, represents O(n/(logn)“~—') points, and hence it has size
O(n). Hence each part of the partition storing a 0-reduced range tree
has size O(n).

It remains to prove that our “special” part has size O(n). Let
g(d, k,n) be the size of this part for a d-dimensional k-reduced range

tree. Then g(d, —1,n) = 0, g(d,0,n) = 0, and fork > 1

g(d,k,n) < logn+logn x g(d,k —1,n/logn)

+logn x g(d—1,k — 2,n/logn).

It follows that the size of our “special” part, which is g(d,d—1,n), is
bounded by O((logn)4') = O(n). This proves the lemma. O

Lemma 5.2.2 The amortized number of parts through which an update

passes in a d-dimensional reduced range tree, partitioned as described

above, is at most

a(S) 4 + o(1),(n > oo).

88 5. Partitions of d-dimensional range trees

Proof. Suppose we have to perform an update in a d-dimensional k-

reduced range tree. The algorithm we use has been given above. Note

that if no rebuilding has to be done, the number of parts visited in an

update in a d-dimensional k-reduced range tree only depends on the

value of k.

Let s, be the number of parts of the partition, and a, the num-

ber of 0-reduced range trees, through which an update passes in a

d-dimensional k-reduced range tree, in case no rebuilding is necessary.

Then sz, = a, +1, a9 = 1, ay = 1, and ag = ag_; + ag_2 if k > 2.

It follows that sg_,, the number of parts we visit when updating a d-

dimensional reduced range tree, is equal to the d-th Fibonacci number

plus one, which is equal to (see (22, page 286])

1 /1+V5\" 3 (4°) +3).

Now we have to charge the costs we make when rebuilding the tree.

Suppose we have to rebuild a d,-dimensional k-reduced range tree B,

where k > 0. Let t, be the number of parts of the partition, and b; the

number of 0-reduced range trees that are involved. Then ¢, = by + 1,

bo = 1, b; < logn, and b, < logn x (bg_1 + bp_2) if k > 2. It follows

that t, = O((logn)*). Let m be the number of points represented by
B. We saw already that m = O(n/(logn)"—-*-'). Now B has to be
rebuilt at most once every 2.(m/logm) updates. Dividing the number
of visited parts for rebuilding among these Q(m/logm) updates gives
us O((logn)“/n) = O((logn)4/n) parts per update. An update can
be assigned costs from every reduced range tree on the search path for

this update. Let c, be the number of (non-empty) reduced range trees
we encounter on a search path for an update in a k-reduced range tree.

Then cy = 1, c; = 2, and for k > 2, cg = 1+cy_1+cp_2. Hence c < 2*.
So we have to charge every update in a d-dimensional reduced range

tree for an extra cg_; x O((log n)4/n) = o(1) visited parts for rebuilding.
This proves the lemma. 0

Lemma 5.2.3 When performing a query in a d-dimensional reduced

range tree, partitioned as described above, we visit at most 1+24(log n) [(d-1)/2]

parts.

5.2. d-dimensional reduced range trees 89

Proof. Let 5; be the number of 0-reduced range trees needed for a

query in a k-reduced range tree. Let Ry, be the number of 0-reduced

range trees needed for a query with the first interval half-infinite. The

total number of parts of the partition that are needed to perform a

query on a d-dimensional reduced range tree is thus Sg_; +1. We

then have the following recurrences: Sp = 1, S,; < 2+ logn, and

Sy < 2R,_1+log nx S,_2 if k > 2. Furthermore, Rp = 1, Ry < 1+logn,

and Ry < Ry_1 +logn x S,_»2 if k > 2. It follows that for k > 2,

k—2
Ry < (1+logn) +logn x S° S;,

i=0

and hence

k-3
Sp < 2+ 2logn + 2logn x > S;+logn x Sy_». (5.1)

i=0

iFrom this it can be shown that S, < 2*+!(logn)!*/?1. Hence a query
visits at most Sg_14+1 < 2%(logn)!(/?! +1 parts of the partition.

Combining Lemmas 5.2.1, 5.2.2 and 5.2.3 gives the final result.

Theorem 5.2.2 For a d-dimensional reduced range tree, there exists a

partition into parts of size O(n), such that an update passes, amortized,

through at most

1 (itvsy\" 3
V5\ 2 2

parts, and a query passes through at most

+ 0(1), (n + oo)

1+ 24(log n)!(4-1)/21

parts.

Remark. We can improve the factor (logn)!4-))/21 to (log n) (4-1/2! ,
What we need is S; = 3 and R, = 2 in the proof of Lemma 5.2.3. This

is not true for the partition given above, but it is not hard to change the

partition slightly such that S; = 3 and R; = 2 hold: We just partition

90 5. Partitions of d-dimensional range trees

the 1-reduced range trees in the same way as the 2-dimensional reduced

range trees of Section 4.2.

Remark. The number of visited parts for a query can be high, as the

above theorem shows, but in practice this will seldom be the case. The

number of visited parts is namely strongly dependent on the number

of answers in the first coordinate. When for example the number of

answers in the first coordinate is < n/(logn)*', only two parts are
visited: The “special” part, and exactly one part containing a 0-reduced

range tree. In fact, (5.1) is an equality only if the two search paths

pass through the outermost T;’s. So (5.1) is an equality only when the

number of answers in the first coordinate is > n — 2n/(logn)*!.

5.3 d-dimensional k-divided range trees

The d-dimensional k-divided range tree generalizes its two-dimensional

counterpart. Again, these range trees are composed of divided binary

trees, defined as follows.

Definition 5.3.1 Let s > 1 and k > 1 be integers, and let V = {p, <
Po <...< Pn} be an ordered set of n objects. An (s, k)-divided binary
tree, representing the set V, is defined as follows.

1. For k = 1, an (s, 1)-divided binary tree is a BB[a]-tree, containing
the elements of V in sorted order in its leaves.

2. Let k > 1, and let m = [n{*ts—2)/l+s—D / (log n)-D/ets-)) 1
Partition V into subsets Vi = {p1,..-,; Dm}, V2 = {Pm41,--->Pam};
etc. An (s,k)-divided binary tree consists of the following. Each
set V; is stored in an (s, k—1)-divided binary tree B;. The roots of
the trees B; are stored in sorted order in the leaves of a perfectly

balanced binary tree B.

Definition 5.3.2 Consider an (s, k)-divided binary tree T representing
aset V. This tree contains (s,7)-divided subtrees for 1 <i < k. Ifi > 1,
each such (s,7)-divided subtree contains a top tree, which is a binary

tree storing the leaves of its (s,i— 1)-divided subtrees. Such a top tree

5.3. d-dimensional k-divided range trees 91

is called a tree-part. The BB/a]-subtrees of T that contain the objects
of V—these are (s, 1)-divided binary trees—are called bottom-parts.

Note that (s, k)-divided binary trees have the same structure as the
k-divided binary trees of Definition 4.4.1. The difference is in the choice

of the integer m. The reason for the choice of m will become clear in

the rest of this section.

Update algorithm: The update algorithm for an (s, k)-divided
binary tree is similar to that of a k-divided binary tree. If k = 1, we

use the update algorithm for BB/a]-trees that uses rotations. If k > 1,
we walk down tree B to find the appropriate (s, & — 1)-divided binary
tree B; where the update has to be carried out. Then we perform the
update in this tree B;, using the same algorithm recursively. If this

tree B;—which initially has m = [n*+8-2)/+8—)) /(log n)@-D/(e+s—-))]
leaves—has either m/2 or 2m leaves, we rebuild the entire (s, k)-divided
binary tree.

Clearly, an (s, k)-divided binary tree for a set of n objects has size

O(n), can be built in O(n) time if we have the n objects in sorted order,
and has a height that is bounded by O(logn).

Lemma 5.3.1 Consider an (s,k)-divided binary tree T for a set of n

elements. Let i be an integer, 1 <i<k. Each (s,1)-divided subtree of

T has size

e (n@ts-YKEtS—) Jog njG-D&) (+51) ∙

∫∣∣∁⋗↥↗∽∁∣⊔⊺≖∂∊−⊉⊄⇈⇩∣∃⇁↗↴∁⇂⋅⋝⋅⋝∅∎∅∂

⊝ ≼∏↕∕≺∣⊽⊹≋⋝−↥≻ x (log nj@-DIets—1)) ∙

Each bottom-part has size

ra) (nsi(Rrs-}) / (log njO-VRD/e+s~1)) ∙

Each path in T from the root to a leaf passes through exactly k — 1

tree-parts and one bottom-part.

92 5. Partitions of d-dimensional range trees

Proof. The proof is the same as that of Lemma 4.4.2. 0

Now we define the multi-dimensional k-divided range tree.

Definition 5.3.3 Let s,d and k be integers, such that 1 < d < s

and k& > 1. Let V = {p, < po < ... < py} be a set of n points in

d-dimensional space, ordered according to their first coordinates. A d-

dimensional (s,k)-divided range tree, representing the set V, is defined

as follows.

For k = 1, a d-dimensional (s, 1)-divided range tree is a d-dimensional
BBJa]-range tree. This tree is also called a bottom-part, in accordance
with Definition 5.3.2.

For d = 1, a 1-dimensional (s,k)-divided range tree is an (s, k)-
divided binary tree. This tree consists of tree-parts and bottom-parts

as defined in Definition 5.3.2.

Let k > 2, d > 2, m = [n(*+8-2)/+s-) /(logn)@-D/@+s-D]_ Par-
tition V into subsets Vi = {p1,..-,Dm}, V2 = {Pm41,---,Pom}, ete.
A d-dimensional (s, k)-divided range tree for the set V consists of the
following.

1. Each set V; is stored in a d-dimensional (s, & — 1)-divided range
tree TJ;. For this tree 7;, the notions of tree-parts and bottom-

parts are recursively defined. Let r; be the root of 7;.

2. These roots r; are stored in the leaves of a perfectly balanced

binary tree T’. This tree T is called a tree-part. Let r be the root

of T.

3. This root r contains an associated structure, which is a (d — 1)-
dimensional (s, &)-divided range tree, representing the points of

V, taking only the last d — 1 coordinates into account. For this

associated structure, the notions of tree-parts and bottom-parts

are again recursively defined. Let T/ be the upper part of this

associated structure, i.e., the tree without the bottom-parts. So

T, consists of all tree-parts of the associated structure of r.

4. Let w be any node of T, w # r, and let V, be the set of points

represented by w. Then w contains an associated structure, hav-

ing the following form. The upper part is a copy of T/. This copy

5.3. d-dimensional k-divided range trees 93

is completed by adding to each leaf a BB[a]-range tree of the

appropriate dimension, that stores the—possibly none—points

of V, that “belong there”. These BB/a]-range trees are called
bottom-parts.

Each node in a 1-dimensional (s, k)-divided range tree contains

e two mark bits which state whether the left and right subtree con-

tain points of V;

e two extra pointers, one for the left, and one for the right subtree.

One such extra pointer points to the first node in the left subtree

for which both subtrees contain points of V, or else (if no such

node exists) to the only point of V in the left subtree. If there

are no points of V at all in the left subtree, the pointer is not

used. The other extra pointer has the same meaning for the right

subtree.

(End of definition.)

So a d-dimensional (s, k)-divided range tree contains bottom-parts
as subtrees. Each such bottom-part is a d'-dimensional BB[a]-range
tree for some 1 < d’ < d. The range tree without the bottom-parts

consists of tree-parts, which are (one-dimensional) binary trees, and

which are defined as in Definition 5.3.2.

Definition 5.3.4 Let d > 1 and k > 1 be integers. A d-dimensional

k-divided range tree is a d-dimensional (d, k)-divided range tree.

Definition 5.3.5 Consider a d-dimensional (s, k)-divided range tree.
Two tree-parts (or bottom-parts) of two associated structures are lo-
cated at the same position, if the paths for reaching these parts are

identical. In other words, when the same left-right decisions are taken

in each associated structure in reaching the parts.

Lemma 5.3.2 Consider a d-dimensional (s, k)-divided range tree, rep-

resenting a set of n points. Let T’ be the upper part of this range tree,

i.e., the range tree without the bottom-parts. If k > 2, the size of T’ is

bounded by

ra) (ni&re2)/ers—) x (log njODEraeA/ets-V)

94 5. Partitions of d-dimensional range trees

Proof. Let R(n, d,s, k) be the size of the upper part of a d-dimensional

(s,k)-divided range tree for a set of n points. Then R(n,d,s,1) = 0,
since an (s,1)-divided range tree does not have an upper part. For

d= 1 and k > 2, the size of the upper part is proportional to the size

of the binary tree divided by the size of a bottom-part. Hence it follows

from Lemma 5.3.1, that

R(n,1,s,k) =0 (n&-D/ers—) x (log n)& VEDI kts)

Now let d > 2 and k > 2. Then we have the following recurrence

relation, which is explained below:

R(n, d, s,k) = O(n/m)+O(n/m) x R(m, d, s, k—-1)+O(n/m) x R(n, d—-1, s, k),

where m = [n*+s-2)/(k+s—}) /(log n)(s-Y/(+s-)]_ Here, the term O(n/m)
is the size of the tree T that contains the roots of the d-dimensional

(s,k — 1)-divided range trees T;. The upper part in each such range

tree T; has size R(m,d,s,k — 1). This explains the term O(n/m) x
R(m,d,s,k — 1). Finally, the upper parts of all associated structures

of nodes in J—all these upper parts are identical—together have size

O(n/m) x R(n,d —1,s,k). From this recurrence relation, the lemma
can be proved by induction. 0

Lemma 5.3.3 A d-dimensional (s, k)-divided range tree, representing

a set of n points, has size O(n(logn)*-!) and can be built in O(n(log n)4-")
time.

Proof. For k = 1, the lemma clearly holds. For k > 2, the size of a

d-dimensional (s, k)-divided range tree is equal to the sum of the size of
the upper part and the total size of all bottom-parts. By Lemma 5.3.2,

the upper part has size

O (nD) x (log n)@ DEEMED) — o(n),

since d < s. All bottom-parts together can never be larger than a d-

dimensional BB[a]-range tree for a set of n points. Therefore the size of
a d-dimensional (s, k)-divided range tree is bounded by O(n(logn)**).
The bound on the building time can be proved in a similar way as in
Lemma 4.4.3. 0

5.3. d-dimensional k-divided range trees 95

Update algorithm: An update in a d-dimensional (s, k)-divided
range tree is performed as follows. If & = 1, we use the update algorithm

for BBia]-range trees. If d = 1, we use the algorithm for (s, k)-divided
binary trees.

Let k > 2, d > 2, and m = [n{*+8-2)/(F+8-)) /(Jog n) Diets) 7
Then we walk down tree T, to find the appropriate d-dimensional (s, k—

1)-divided range tree T; where the update has to be carried out. Then
we update this tree T;, using the same algorithm recursively. As soon

as one such tree J; represents either m/2 or 2m points, we rebuild the

entire d-dimensional (s, /)-divided range tree.
During the walk in T, we have to update all associated structures

we encounter. The update in the associated structure of the root r of

T is performed by using the same algorithm recursively for (d — 1)-
dimensional (s, k)-divided range trees. If this associated structure is a
1-dimensional structure, we use the update algorithm for (s, /)-divided

binary trees.

First suppose that no rebuilding operation is necessary in the asso-

ciated structure of the root r of T. (Except for perhaps a rebuilding

in a bottom-part. Note that a bottom-part in this associated structure

is a d'-dimensional BBla]-range tree for some 1 < d’ < d.) Then the
other associated structures along the search path in T are updated in

the standard way, and no rebuilding operations are carried out (again,

except for perhaps a rebuilding in a bottom-part). Of course, we also

adjust the extra information—the mark bits and the extra pointers—in

each associated structure.

Otherwise, if a rebuilding operation is necessary, a d'-dimensional

(s,i)-divided range subtree of the associated structure of r is rebuilt,
for some 1 < d' < dand 1 <i<k. We repeat this rebuilding in all

associated structures of T. More precisely, let T/ be the upper part

of the new d'-dimensional (s, 7)-divided range subtree, i.e., the subtree

without the bottom-parts. Then we copy T; O(n/m) times. In each
associated structure of T we replace the old subtree by a copy of T/, and

we complete each copy by traversing it and adding the bottom-parts

containing the points, and setting the extra pointers and mark bits.

Lemma 5.3.4 In a d-dimensional (s, k)-divided range tree, represent-

ing a set of n points, insertions and deletions can be performed in amor-

96 5. Partitions of d-dimensional range trees

tized time
O (n&re—d) x (logn)* Mt O-W/Ets—))

Proof. Let U(n, d,s, k) be the amortized update time of a d-dimensional

(s, k)-divided range tree for a set of n points. Then for k = 1, U(n,d,s,1) =
O((logn)*). For d= 1 and k > 2, the following recurrence relation fol-
lows easily from the update algorithm for (s, k)-divided binary trees:

U(n,1,s,k) < O(log(n/m)) + U(m, 1, s,k — 1) + O(n/m).

Let k > 2, d> 2, and m= [n*+s-2)/+s-)) /(log n)\V/@ts-)]. Tt
takes O(log(n/m)) time to find the appropriate d-dimensional (s, k —
1)-divided range tree T;. The update of this T; takes, amortized,

U(m, d,s,k — 1) time. If one such tree T; represents either m/2 or 2m
points, we rebuild the entire d-dimensional (s, k)-divided range tree.

Since this happens at most once every 2(m) updates, this rebuilding

adds O(n(logn)4-!/m) to the amortized update time.
Now consider the update of the associated structures of T. As we

saw in the update algorithm, if no rebuilding operation is necessary

in the associated structure of the root r of T, the other associated

structures along the search path in T are updated in the standard

way. To adjust the extra information—the mark bits and the extra

pointers—only O(1) time is needed for each node on the path to the
point to be inserted or deleted. In this case, we spend, amortized,

O((logn)¢) time in the associated structures of T.
Now assume that a rebuilding operation is necessary. Then a d’-

dimensional (s,7)-divided range subtree of the associated structure of
r is rebuilt, for some 1 < d’ < dand 1 <i < k. We repeat this

rebuilding in all associated structures of 7’, as indicated in the update

algorithm. In this case, we spend an amount of time that is bounded by

the following expression, which is explained below (we use the notation

of the proof of Lemma 5.3.2):

O(n/m) x R(nj, d’, s,i) + O(log(n/m)) x O(n;(log nj)*~),

where n, is the number of points represented by the (s, i)-divided range

tree. (The n,’s are given in Lemma 5.3.1.) Here, the first term is

the amount of time needed to build the upper part T/ and to copy it

5.3. d-dimensional k-divided range trees 97

O(n/m) times. The second term is the total amount of time needed to
add the bottom-parts to the copies of T/: At each level of T, all new

bottom-parts together represent n; points, and all these bottom-parts

together can never be larger than a d’-dimensional BB[a]-range tree
for a set of n; points. This explains the above expression. Since this

rebuilding happens at most once every 0(n;_1) updates—an (s,i— 1)-
divided range tree must get out of balance—this case adds

O (n/m) x R(ni, d', 8,)/m:1 + log(n/m) x nj(logni)**/ni-1)

-O (ni/(ero—D) x (log ny He-D/(e+9-D)

=O (ni/(Rrs-)) x (log nye e-D/ets—1))

to the amortized update time. This can happen for d — 1 values of d'

and k — 1 values of 7. Since d and k are constants, rebuilding of the

associated structures of T’ adds

O (ners) x (log n)* H+ -D/Ets-1))

to the amortized update time.

We have proved that

U(n,d,s,k) < U(m,d,s,k—1)+O(n(logn)**/m) + O((logn)*)
+O (ners) x (log ne e-D/ets—1)) ;

iFrom the given recurrence relations, the lemma can be proved by

induction. O

Query algorithm: The query algorithm is similar to the one in the

two-dimensional case. Let ([x1 : yi],..-,[%a: ya]) be a query rectangle.

1. Perform a range query in the main tree with [z, : y;], as in the
ordinary case, and select the associated structures to be queried.

2. For each associated structure selected in step 1, perform recur-

sively a (d — 1)-dimensional range query with ([%2 : ya],..., [ra :

yal).

98 5. Partitions of d-dimensional range trees

3. Queries in one-dimensional structures are performed by following

the paths to 7g and yq and selecting the subtrees in which the

answers must lie. For every selected subtree, if it does not con-

tain points, do nothing. Otherwise, report the points it contains

by following the extra pointers. (We know from the mark bits

whether a subtree contains points.)

Lemma 5.3.5 In a d-dimensional (s, k)-divided range tree, represent-

ing a set of n points, range queries can be performed in O((logn)4 + t)
time, where t is the number of reported answers.

Proof. From the given algorithm, the bound on the query time can be

proved in the same way as in Lemma 4.4.5. O

Theorem 5.3.1 A d-dimensional k-divided range tree for a set of n

points can be built in O(n(logn)*") time and takes O(n(logn)**)
space to store. In this tree, range queries can be solved in O((logn)?+t)
time, where t is the number of reported answers. Insertions and dele-

tions can be performed in amortized time O(n¥ +4 x (log n)(F VET k+a-D))

Proof. The proof follows from Lemmas 5.3.3, 5.3.4 and 5.3.5. Take

s=din Lemma 5.3.4. O

The partition: We partition the d-dimensional (s, k)-divided range
tree into two types of parts. The first type only contains tree-parts,

whereas the second type only contains bottom-parts.

A d-dimensional (s,1)-divided range tree forms one part in the
partition—a bottom-part—on its own. A 1-dimensional (s, k)-divided
range tree is an (s,k)-divided binary tree, and consists of tree-parts

and bottom-parts. Each such tree- or bottom-part forms one part in

the partition.

Let d > 2 and k > 2. Then we partition the d-dimensional (s, k—1)-
divided range trees 7; recursively into parts containing only tree-parts,

and parts containing only bottom-parts. Each such part forms a part

in the final partition.

Next consider the associated structure of the root r of the highest

tree-part T' of the main tree. We partition this associated structure

5.3. d-dimensional k-divided range trees 99

into parts containing only tree-parts, and parts containing only bottom-

parts. Let T/ be the upper part of this associated structure, i.e., the

tree without the bottom-parts. The upper parts of the other associated

structures of nodes in T are copies of T/, and these are partitioned in

the same way, into parts containing only tree-parts. For each part II in

the partition of T/, we store the copies of II from all other associated

structures of T in one part of the final partition. The tree-part T itself

is put in that part of the partition that contains the highest tree-parts

of the associated structures. Similarly, for each part II’ in the partition

of the associated structure of r, that contains only bottom-parts: Put

the bottom-parts of all associated structures of T, that are located at

the same positions as the bottom-parts in II’, in one part of the final

partition.

Lemma 5.3.6 Jf a d-dimensional (s, k)-divided range tree, where k >
2, is partitioned as described above, each part that contains only tree-

parts has size

6) (nviers-t) x (log njseDiers-))

Proof. For k = 2, the lemma follows from Lemma 5.3.2, since a par-

tition of a d-dimensional (s,2)-divided range tree contains only one
part that contains only tree-parts, namely the upper part. For d = 1,

the lemma follows from Lemma 5.3.1. So let d > 2 and k > 3, and

suppose the lemma is proved for smaller values of d and k. Consider

a d-dimensional (s, k)-divided range tree. This range tree contains d-
dimensional (s, k — 1)-divided range trees T; representing O(m) points,
where m = [n(*+8—2)/(k+8—1) (log n)@—)/(+s-D]_ By the induction hy-
pothesis, each such tree T; is partitioned into parts—containing only

tree-parts—of size

e (ma/(e+s-2) x (log myers) -@e@ (nd/@ts-) x (log n)io-D/le+s-1))

Each such part forms a part in the final partition. Again by the in-

duction hypothesis, the associated structure of the root of T, which

is a (d — 1)-dimensional (s, k)-divided range tree, is partitioned into
parts—that contain only tree-parts—of size

6) (nit Dies) x (log nye VODs)

100 5. Partitions of d-dimensional range trees

Since we store O(n/m) such parts—one for each associated structure
of T—in one part of the final partition, this latter part has size

@ (nfl) (logn)*e-D/ED) |

The part of the partition that contains the tree-part T has an additional

number of @(n/m) nodes. So this part still has size O(n4/(@+s-) x
(log n)4s-D/R+s-1))

Lemma 5.3.7 If ad-dimensional (s, k)-divided range tree is partitioned

as described above, each part that contains only bottom-parts has size

6) (ns/ers-1) x (log nyo OVE EFS) ;

Proof. For k = 1, the lemma is obvious, since an (s, 1)-divided range

tree forms a part in the partition—a bottom-part—on its own. For

d = 1, the lemma follows from Lemma 5.3.1. Let d > 2 and k > 2, and

suppose the lemma is proved for smaller values of d and k. Consider a d-

dimensional (s, k)-divided range tree. This tree contains d-dimensional
(s, k—1)-divided range trees T; representing O(m) points. By the induc-
tion hypothesis, each such tree T; is partitioned into parts—containing

only bottom-parts—of size

6) (mses?) x (log m)o OVE Di(k+s-))

= 3) (nite) x (log nyo VED)) .

Each such part forms a part in the final partition. Again by the induc-

tion hypothesis, the associated structure of the root of T is partitioned

into parts—that contain only bottom-parts—of size

e (ns/ers-}) x (log nyo? OVE DES) ;

Consider such a part II’. We add to II’, the bottom-parts of all asso-

ciated structures of JT, that are located at the same positions as the

bottom-parts in II’. These bottom-parts of the associated structures of

a fixed level of T, together contain the same points as II’, and therefore

their total size—for this level—is proportional to the size of II’. Hence,

5.3. d-dimensional k-divided range trees 101

since T consists of O(log(n/m)) levels, the part of the final partition
containing these bottom-parts has size

O(log(n/m)) x © (noite x (log nj 2-6 -DE-H/te+s-))

—@O (no/ets—D x (log nyt ODE Dts-D)

O

Lemma 5.3.8 Let s > 2 andk > 1. Each update in a d-dimensional

(s,k)-divided range tree, partitioned as described above, passes, amor-

tized, through at most

(Ste>*) +00, (n + 00)

parts of the partition.

Proof. Let f(n,d,s,k) be the amortized number of parts through
which an update passes in a d-dimensional (s, k)-divided range tree,

representing a set of n points. Then for k = 1, we have f(n,d,s,1) =1.

Let d= 1 and k > 2. If no rebuilding operation is necessary (except

for possible rotations in a bottom-part), an update in an (s, k)-divided
binary tree passes through exactly k — 1 tree-parts, and one bottom-

part. Hence in this case, the update passes through k parts of the

partition. Note that if a rotation is carried out in a bottom-part, no

extra tree- or bottom-parts are needed. If an (s,7)-divided subtree is
rebuilt, for some 1 < 7 < k, the number of tree-parts that are involved

is bounded by the size of the upper part of this (s,7)-divided subtree

divided by the size of a tree-part. This upper part has size R(nj, 1, s, 7),
where we use the notation of Lemma 5.3.2, and where n; is the number

of points represented by the (s,7)-divided subtree. So by Lemmas 5.3.1

and 5.3.2, the number of tree-parts that are involved in this rebuilding,

is bounded by

O (nli-2e+8-2) / (log n)(@-DEB/ets—D)

Similarly, the number of bottom-parts that are involved is bounded by

the size of the (s,i)-divided subtree divided by the size of a bottom-
part. By Lemma 5.3.1, this number is bounded by

O (n&-Diets—1) x (log n)&-VED/Ers-)) ;

102 5. Partitions of d-dimensional range trees

Since an (s,%)-divided subtree is rebuilt at most once every

Q (nits-2/E+5—D /(log nyO-VEHV/(R+s—1))

updates—an (s,i — 1)-divided subtree must get out of balance—this
rebuilding adds o(1) to the amortized number of parts that are visited.
(Here we have used that s > 2.) This can happen for & — 1 values of i.

Since k is a constant, rebuilding of the tree adds o(1) to the amortized
number of visited parts. We have proved that f(n,1,s,k) =k+ (1).

Let d > 2 and k > 2. An update passes, amortized, through

f(m, d,s, k — 1) parts of the partition in one d-dimensional (s, k — 1)-
divided range tree T;, where m = [n*+8—2)/(k+8—) / (log n)@—D/(ets-) 1,
The entire range tree is rebuilt at most once every (Q.(m) updates—as
soon as a d-dimensional (s, k — 1)-divided range tree T; gets out of bal-
ance. In this rebuilding, we visit a number of parts in the partition

containing only tree-parts, that is bounded by R(n, d,s, k) divided by
the size of a part of the partition that contains only tree-parts. (Again,

we use the notation of Lemma 5.3.2.) Similarly, we visit a number of

parts in the partition that contain only bottom-parts, that is bounded

by the size of the entire range tree divided by the size of a part of the

partition that contains only bottom-parts. From this it follows (after

some calculations) that the rebuilding of the entire range tree adds

o(1) to the amortized number of visited parts. Finally, the update of

the associated structures of nodes in T passes, amortized, through at

most f(n,d—1,s,k) parts of the partition, because the tree-parts and

bottom-parts of the associated structures that are visited, are stored in

the same parts of the partition as the tree-parts and bottom-parts of

the associated structure of the root of T that are visited in the update.

It follows that

f(n,d,s,k) = f(m,d,s,k —1) + f(n,d—1,s,k) + o(1).
iFrom this recurrence relation the proof can be completed by induction.
O

Lemma 5.3.9 Each query in a d-dimensional (s, k)-divided range tree,

partitioned as described above, passes through at most

d −−⋅ − ∑≼∁∅⊹∣∣⋮−↕↕ ∅⋉∣⇩↕∙↥⋗⊹⊋≴−↕

i=0

5.3. d-dimensional k-divided range trees 103

parts of the partition, where t is the number of answers to the query.

Proof. Let g(d, k) denote the maximal number of parts of the partition
through which a query passes in a d-dimensional (s,)-divided range

tree, and let h(d, k) denote this number for a query with the first interval

being half-infinite. We do not count in g(d,k) and A(d, k) the number
of parts that we have to visit for reporting the answers. Just as in the

previous lemma, the number of visited parts does not depend on n and

s (if n is sufficiently large).
In the same way as in the two-dimensional case, we may have to

visit 2 — 1 parts for reporting the ¢ answers. Therefore, the number

of parts through which the complete query passes is bounded above

by g(d,k) + 2t— 1. So it remains to prove that g(d,k) is equal to the
summation in the statement of the lemma.

We have g(1,k) = 2k —1 for k > 1; g(d,1) = 1 for d > 1; and

g(d,k) =2h(d,k —1)+ g(d—1,k) for d > 2 and k > 2. (5.2)

Also, h(1,k) =k for k > 1; h(d,1) = 1 for d > 1; and

h(d,k) = h(d,k —1) + g(d—1,k) for d > 2 and k > 2. (5.3)

Subtract twice Equation (5.3) from Equation (5.2). This gives 2 h(d, k) =
g(d, k)+g(d—1,k). Substitute this latter equation, with k replaced by
k —1, in Equation (5.2). Then we get

g(d, k) = g(d,k-—1) + 9(d—1,k) + 9(d—-1,k—-1) ford > 2 and k > 3.
(5.4)

In fact, Equation (5.4) also holds for d > 2 and k = 2, as can easily be
verified from Equations (5.2) and (5.3).

We transform this recurrence relation into a more symmetric one.

(In this way, we decrease the amount of work needed to solve the recur-

rence relation.) Define f(0,k) = 1 for k > 0, and f(d,k) = g(d,k +1)
ford >1 and k> 0. Then

f(0,k) = 1, ifk>0,

f(d,0) = 1, ifd>0,
f(d,k) = f(d,k—1) + f(d—1,k) + f(d—1,k—1), ifd>1andk>1.

104 5. Partitions of d-dimensional range trees

Using the theory of generating functions (see e.g. Graham, Knuth and

Patashnik [22]), or using counting techniques due to Monier [34], it can
be shown that

4 (d+k-—i k
Fak) =¥(7 ‘yCE).

i=0

Since g(d, k) = f(d,k —1), the proof is complete. 0

Remark. The recurrence relation for f(d,é) and its solution in the
form of the above summation do not occur in standard books, such as

[22, 48]. So it seems that no closed form exists. On page 32 of [48], the
following formula appears:

Cn) EG)C%)
This formula—which would imply a closed solution to our summation—

is, however, incorrect. The correct form is

Cn) EG) Cn")
By combining Lemmas 5.3.6, 5.3.7, 5.3.8 and 5.3.9 we get the final

result. (Take s = d in these lemmas.)

Theorem 5.3.2 Let d > 2 and k > 1. A d-dimensional k-divided

range tree, representing a set of n points, can be partitioned into parts

of size
ra) (naeray x (log n jhe Dieta))

such that the amortized number of parts through which an update passes

is at most

k+d—-1 _tia d-1 (;) +o) = Fe +0 (k),

and the number of parts through which a query passes is at most

d : d
d+k—-—1-i k-1 _ 2 d d-1 > (h_1)(;)+a-1= 5 +2t+0 (kt),

5.3. d-dimensional k-divided range trees 105

where t is the number of answers to the query. The asymptotic approx-

imations are valid for fixed d and large k. That is, the constants in the

terms O(k*") depend on d, but not on k.

Remark. All results of this section are valid if d = s = 1, except for

Lemma 5.3.8. If we apply the technique of this section with d = s = 1,

we get a partition of a binary tree into parts of size @(n'/*), such that an

update passes, amortized, through at most ck parts, for some constant

c > 1. The structure of this partitioned tree is similar to a B-tree (see
[4, 17]), which can be seen, in some sense, as a clever implementation
of a (1, &)-divided binary tree.

106 5. Partitions of d-dimensional range trees

Chapter 6

The lower bounds

In the previous chapters, several partition schemes were given for range

trees, obtaining different trade-offs between the size of the parts and the

number of parts through which queries and updates pass. In the present

chapter we study lower bounds for partitions. To be more precise,

suppose we have a partition of a range tree into parts of size at most

f(n). Then we want a worst-case lower bound—in terms of f(n)—on
the number of parts through which an update passes. Similarly, given

a partition such that each update passes through at most h(n) parts,

we want a lower bound—in terms of h(n)—for the maximal size of any
part. We do not consider queries here. With some work, however, all

lower bounds of this chapter can be extended to the case of queries.

We prove the lower bounds for a more general form of partitions

than we used so far. That is, all lower bounds also apply for partitions

where parts have different size. In particular, we do not require that a

partition into parts of size at most f(n) contains O(S(n)/f(n)) parts,
as we did until now.

Also, we prove the lower bounds for arbitrary range trees. We do

not require trees to be balanced. See Section 2.3, where we introduced

this general class of range trees. Therefore, the bounds also apply if

we for example would use AVL-trees as underlying structure; choos-

ing different balance conditions will not help in improving the bounds.

Furthermore, the lower bounds apply to any individual range tree, not

just to some smartly created ones. This implies that the bounds are

not only worst-case lower bounds, but also amortized lower bounds.

107

108 6. The lower bounds

We consider two types of partitions of range trees. The first type

are the restricted partitions. Recall that a partition of a d-dimensional

range tree, where d > 1, is called restricted, if only the main tree

is partitioned, whereas associated structures are not subdivided. In

such a restricted partition, a node of the main tree and its associated

structure are contained in the same part. The second type of partitions

we consider, are those in which also associated structures are divided

into parts.

In this chapter, we define the size of a part in a partition as the

number of nodes it contains. Of course, the size of a part together

with the information stored in its nodes—such as pointers, search and

balance information—is proportional to our notion of size.

For completeness, we recall our notion of the set of points that are

represented by a node in a range tree. Consider a range tree, repre-

senting the set V. Let w be a node in this structure (w is a node of the
main tree, or of an associated structure, or of an associated structure

of an associated structure, etc.). Let V,, be the set of all points of V
that are in the subtree of w. Then node w represents the set V,,.

6.1 Lower bounds for binary search trees

In order to give an introduction to the ideas that are used in the proofs

of the lower bounds, we first give a lower bound for partitions of one-

dimensional range trees. Note that a one-dimensional range tree is just

a binary tree. We need the following two lemmas.

Lemma 6.1.1 For any non-negative integer k, we have

(k/e)* < kl < k*,

where e is the basis of the natural logarithm.

Proof. The proof follows from a straightforward calculation. O

The following lemma will also be used later in the chapter.

Lemma 6.1.2 Let T be a binary tree, having at least n leaves. Let V

be a subset of the leaves, of cardinality n. Let m > 1 be a real number.

6.1. Lower bounds for binary search trees 109

Then the number of nodes in T, that represent at least m points of V,

is at least n/m — 1.

Proof. The proof is by induction on n. If 1 <n < [ml], then there are
no nodes representing at least m points of V, so the number of such

nodes is 0, which is at least n/m —1. If n = [m], then the root of T
represents at least m points of V. So the total number of nodes in T,

that represent at least m points of V, is at least 1, which is at least

n/m—1. Now let n > [m], and suppose the lemma is proved for smaller
values of n. Let v be a node of T that represents the entire set V, such

that the left son of v represents n; points of V, where 1 < nj <n-—1.

(u need not be the root of T, since it is possible that the left or right son

of the root represents the entire set V.) By the induction hypothesis,

the number of nodes in the left subtree of v, that represent at least

m points of V, is at least n1/m— 1. Similarly, the right subtree of v

contains at least (n —n,)/m-—1 nodes, that represent at least m points
of V. Finally, node v itself represents at least m points of V. It follows

that the total number of nodes in 7, that represent at least m points

of V, is at least (n1/m — 1) + ((n—11)/m—1)+1=n/m-—1. This
proves the lemma. O

If we take for T’ a balanced binary tree, we see that this bound is

tight (except for constant factors). Lemma 6.1.2 enables us to prove
our first lower bound. Clearly, for a binary tree from a class of O(log n)-
maintainable trees—e.g. a BB[a]-tree—there exists a partition into
parts of constant size, such that each update passes through O(logn)

parts: Put each node in a separate part. Therefore, it is sufficient to

consider partitions of binary trees in which an update passes through

at most h(n) parts, for some function h(n) < logn.

Theorem 6.1.1 Let h(n) be an integer function, such that 1 < h(n) <
logn. Let T be a binary leaf search tree representing n points. Suppose

the tree T is partitioned into parts, such that each update passes through

at most h(n) parts. Then there is a part of size at least

ve) —y on —f pVrn) 4
h(n) €or

110 6. The lower bounds

Proof. We write k = h(n). Let m; = 3()*/* for 0 <i < k. We first
show that the m,’s are at least 1. Clearly, mp =n > 1.

Let 0<i<k/2. Then, by using Lemma 6.1.1,

. k 4 .

m; = nil (ey > ni-ilk (+) > mn (2).

i! ei €

Since i < k/2 < (logn)/2, it follows that \/n > 2*, and hence m; >
(4/e)' > 1.

Let k/2<i<k-—1. Again using Lemma 6.1.1, we get

= 1)(— > /kK> i yllk > 1. Ma Ot) (Ga) <TR ha gh es

Since m, = 1, it follows that for k/2<i<k—-1:

My = Miz1 > Miz. >... > M = 1.

We have proved that m; > 1 for0<i<k.

Let P; be the following property:

vu; is anode in T, that represents at least m, points. IIo, I, ..., I;

is a sequence of 7+ 1 different parts of the partition. Each

update in 7, that passes through v;, passes through IIo, Iy,.. . , H;.

Now execute the following algorithm:

Uo := the root of T;

IIp := the part of the partition that contains vp;

4:= 0;

QED := false;

{ property P; holds }
while i 4 k A not QED

do { property P; holds }

Let V be the set of all nodes in the subtree of v; that represent

at least m;,1 points;

ifV Cc Uso I,

then QED := true

6.1. Lower bounds for binary search trees 111

else v4.1 := a node in V \ Ui Ij;
Il,,1 := the part of the partition that contains v,;+1;

{ property P;,, holds }
t:=t4+1

{ property P; holds }
fi

od.

First note that this algorithm terminates. Also, it is not difficult to

see that the algorithm correctly maintains property F;.

Suppose that after the algorithm is completed, QED has the value

false. Then we must have i = k. Also property P, holds. So we have a

node vz; that represents at least m, = 1 point, and we have a sequence

IIo, 1l,,..., 0, of k + 1 different parts of the partition, such that each

update through node vz passes through these k+1 parts. But this is a

contradiction, because each update in the tree passes through at most

k parts.

Therefore, after the algorithm is completed, QED has the value

true. Hence there is an 1, 0 < 1 < k—1, such that P, holds, and

all nodes in the subtree of v;, that represent at least m,+41 points, are

contained in Uso II;. By Lemma 6.1.2 — which may be applied since

mi+1 > 1 — there are at least m;/mj;+4, — 1 such nodes. It follows that

| Ui-o Tj] = Khao [Lj] = mi/miz. — 1. Hence there is a part in the
partition of size at least

1 Sinj>t (1) -(2)"- 4 (2)
+1 7 itl mis AR! i+17 \k!

The approximation (%)'/* ~ €n1/* follows from Stirling’s formula.
This proves the theorem. 0

Consider again the proof of Theorem 6.1.1. We started with a se-

quence ™mo,..., Mx of real numbers, such that mp = n, and m,; > 1 for

all 7. Then we showed that the partition contains a part of size at least

ai (mi/mins — 1) for some 0 <i < k—1. Since i can take any value
between 0 and & —1, it follows that the partition contains a part of size

112 6. The lower bounds

at least

1 1 1 −
⋯↥∐≹≞−↕≖− ≼≞−↕⊃≖− (= -1) − (= L -1)}. (6.1)

my 2 \me 3 \ms3 k\ me

Clearly the proof remains valid for any such sequence mo, M1, ..., Mx-

(Note that the condition m; > 1 is important, since otherwise Lemma 6.1.2

may not be applied. Also, the condition mp = n is necessary to make

property Po hold after the initialization of the algorithm.) Therefore

it might be possible that for some other choice of the numbers mj, a

better lower bound follows. We show that this is not the case. That

is, the value of (6.1) is at most (%)'/*, for any sequence of real num-
bers Mm) = n,m, > 1,mM_q > 1,...,my, > 1. Take such a sequence

mMo,---, Mz. There are two possibilities.

(i) There is an i, 0 < 1 < k —1, such that m < m(E)ive and
Misi > a (E)GD/k Then (+1)! n

1 Mj; < (2),

i+1 Mist ~ \k!

Lk and hence the value of (6.1) is at most (#4)

(ii) Otherwise, for each 1, 0 < i < k—1, we have that if m; <
n(REi/k then mii < arp (EON. Since m) =n < 2 (HL)O/R it

<
1.

i! SG

follows that m, < 2(#)1/*
∣− ⋅

↗≂⊽−↕↧≻⋮∁⋚⋟↻≆ ↕⋝∕∣⊖≖⋯↗≂≤
e conclude that

1 Mp1 < 1 oon k! mo (ay

km —~k(R-1!\n ~ le)?

hence the value of (6.1) is bounded above by (#)!/*.

—
 E
a

—

a
a

n (kt) 2/k , and hence mz < 5 (=) [Ro Mga1
(YAIR = 1. Since m,; > 1, we have m, =

=

Remark. At the end of Section 5.3 we saw that there exists a class

of balanced binary search trees that can be partitioned into parts of

size O(n‘/*), such that the amortized number of parts through which
an updates passes is bounded by O(k). Therefore, the lower bound

of Theorem 6.1.1 is tight (except for constant factors) for constant
functions h(n).

6.2. Weight estimates for range trees 113

6.2 Weight estimates for range trees

6.2.1 2-dimensional range trees

Before we can prove our lower bounds, we need some lemmas that count

the number of nodes in range trees satisfying some constraints. These

counting lemmas are proved by induction on the dimension d. In this

subsection we prove the basis for the inductive proofs, the case d = 2.

Lemma 6.2.1 Let r > 1 be a real number, and let n > 229 be an

integer. Let f(x) be a convex function for x» <x <n—2Xo. Then for
all x, % <“2%<n—2Xo, we have

f(a) + f(n— 2) 2 2 f(n/2).

Proof. Let x9 <x <n—-— 2p. Then

f(n/2) = f(a/2+ (n— 2)/2) < f(x)/2+ f(n— 2)/2,

by the convexity of f(x). 0

Lemma 6.2.2 Let m > 1 be a real number, and let U(n) be a function
satisfying

U(n) > 0 for 1<n<|m|,

U(n) > n+ natin (U(r) +U(n—m)| for n> |m|+1.

Then U(n) > nlog(n/m) for n>1.

Proof. Suppose 1 < n < |m|. Then U(n) > 0 > nlog(n/m), since
log(n/m) < 0. So let n > |m| +1, and suppose the lemma is proved
for smaller values of n. Let n, be an integer, such that 1 <n, <n-1.

(Note that n > 2, hence such an integer n; exists.) By the induction
hypothesis, we have

U(n1) + U(n — n1) > m log(ni/m) + (n — n1) log((n — m1) /m).

Then, applying Lemma 6.2.1, with f(z) = xlog(z/m) and xp = 1, we
get

U(m1) + U(n — n1) > 2 (n/2) log(n/2m) = nlog(n/m) — n.

114 6. The lower bounds

Since n, was arbitrary, it follows that

U(n) >n+ min [U(ni) + U(n—n1)] > nlog(n/m).
l<ni<n-1

Now we are ready to prove the main results of this subsection.

Lemma 6.2.3 Let T be a binary tree with n leaves. Let m > 1 be a

real number. For each node v of T, let the weight wt(v) of vu be the

number of leaves in its subtree. Then

>> wt(v) > nlog(n/m).
v:wt(v)>m

Proof. Let U(n) denote the sum Dy .wt(y)>m Wt(v). (Strictly speaking
we should define U(n) to be the minimum of the expressions Dy .we(v)>m Wt(v)
over all binary trees having n leaves.) If 1 < n < |m|, then of course
U(n) > 0. So let n > |m| +1. The root of T has weight n, which is at
least m. Let n, be the number of leaves in the left subtree of the root

of T. Then 1 < ny < n—1, and

U(n) >n+U(m)+U(n-—m) >n+ min lm) + U(n —1n1)).
mi=l,....n—

It follows from Lemma 6.2.2, that U(n) > nlog(n/m). O

Corollary 6.2.1 A two-dimensional range tree, representing n points,

has size at least nlogn.

Proof. This follows immediately from the above lemma, by taking T

the main tree of the range tree, and m= 1. O

The next lemma generalizes Lemma 6.1.2 to the two-dimensional

case.

Lemma 6.2.4 Let T be a two-dimensional range tree, representing at

least n points. Let V be a subset of these points, of cardinality n. Let

m > 1 be a real number. Then the total number of nodes in T (in
the main tree, or in an associated structure) that represent at least m

points of V, is at least (n/m) log(n/m).

6.2. Weight estimates for range trees 115

Proof. Let W(n) be the number of nodes in T, that represent at least
m points of V. (Also here we should define W(n) to be the minimum
of all these numbers over all range trees and all sets V of cardinality

n.) If1<n< |m|], then W(n) > 0. Let n > |m| +1. Just as in the
proof of Lemma 6.1.2, let v be a node in the main tree that represents

the entire set V, such that the left son of v represents n, points of V,

where 1 < ny <n-—1. By Lemma 6.1.2, the associated structure of uv

contains at least n/m — 1 nodes, that represent at least m points of V.

Also node v itself represents at least m points of V. Hence

W(n) 2 (n/m—1)+1+W(m) + W(n—m)
> n/mt+ , min [W(n) +W(n—-n;)).
~ i=1,.

It follows that the function U(n) = m x W(n) satisfies:

U(n) > 0 for 1<n<|m|,

U(n) > n +) min [U(m) +U(n—1,)| for n> |m| +1.
y=1

Then by Lemma 6.2.2, U(n) = m x W(n) > nlog(n/m), and hence

W(n) 2 (n/m) log(n/m).

6.2.2 d-dimensional range trees

We generalize the counting lemmas of the preceding subsection to the

multi-dimensional case.

Lemma 6.2.5 (Bernoulli’s inequality) Let d be a non-negative in-

teger, and let h > 1 be a real number. Then

(h — 1)4 > ht— dhe.

Proof. Induction on d. 0

Lemma 6.2.6 Letm > 1 be a real number, and let d > 2 be an integer.

Suppose the function U(n) satisfies

U(n) > 0 for l<n<|m|j,

U(n) > n(log(n/m))*?+ min (Ur) +U(n—m)] for n> |m]| +1.
ni=l,....n—

Then U(n) > 4n(log(n/m))** for n> [mj +1.

116 6. The lower bounds

Proof. Let n be an integer such that |m| +1 <n < 2m. (Such an
integer n exists.) Then U(n) > n(log(n/m))*? > +n (log(n/m))*?,
since 0 < log(n/m) <1<d. So let n > 2m, and suppose the lemma is
proved for smaller values of n. Let 1 <n; <n-—1. Since n > 2m, we

have n; > |m|+1 or n—n, > |m|+1. There are three possible cases.
(i) Suppose n, > |m| +1 and n—n, > |m| +1. Then by the

induction hypothesis,

n (log ny + U(n1) + U(n — n1)

d-2 4 d-1 − d-1

m d m d m

{apply Lemma 6.2.1 with f(x) =x (log(x/m))*' and ap =m}
n \ 4-2 1 nm \@1

> log — =n (log — > n (lot) + Gn (lors)
n \ 4-2 1 n d-1

=n (log *) +—=n (log −− 1) {apply Lemma 6.2.5}
m d m

1 low qt] loo d—2

= gn (ver) +n (eee)
1

IV

(ii) Suppose n; > |m| +1 and n—1n, < |m]. Then, again by the
induction hypothesis,

n (log ny + U(n1) + U(n — 11)

n 1 n ,\¢1
> n (log ”) + q@ (log “) {apply ny > n—m}

n\t2 1 n ,\4-1 ny n
> — − − log — ly — >— > 1 2 eet) hee=m (oe) fms > Bom

n d—2 1 n d-1

> n flog = (n—m) (log > n(log) +5 0—m) (loss)
n d—2 1 d—1

=n (log ~) + r (n —m) (log −− 1) {apply Lemma 6.2.5}
m

6.2. Weight estimates for range trees 117

n\4-2 J n\@1 n\4-2
log — −− log — — (d—1) (log—

" (108 *) + a (” m) (10s *) (d) (log) |

(lo ny + Et m- eB ho *) (to ny
Oe d d dm Sm

1

d
1 n d-1

i” (los) ;

IV

IV

since

+m hog ~ >oim ” mam (1 7) 20 em —d d dm a) ="

(iii) Otherwise, ny < |m| and n—n, > |m|+1. Then in the same
way as in case (ii), we find

d—2 d-1
n (log *) + U(n) + U(n-— 1m) = an (log *) ⋅

It follows from (i), (ii) and (iii), that for n > 2m

U(n) > n (log) + min [U(m) + U(n—m)]
mi=l,....n—

1 d—1

= i” (los)
oO

Lemma 6.2.7 Consider a d-dimensional range tree (d > 2), repre-
senting a set of n points. Let m > 1 be a real number. For each node

vu of the main tree, the weight wt(v) of v is defined as the total number
of leaves in the associated structure of v. (Here we count the leaves in

the main tree of the associated structure, in associated structures of the

associated structure, etc.) Then

> wt(v) > an (logn)*2log(n/m) if n> |m] +1.
v:u represents >m points

This summation runs over all nodes v in the main tree of the d-dimensional

range tree, such that v represents at least m points.

118 6. The lower bounds

Proof. The case d = 2 is proved already in Lemma 6.2.3. So let d > 3,

and suppose the lemma is proved for smaller values of d. Let W(n)

denote the sum to be estimated. Then W(n) > 0 forl1 <n < |m]. Let
n > |m|+1. The root of the main tree represents at least m points. To
estimate the weight of the root, we have to count the total number of

leaves in its associated structure. By the induction hypothesis (applied

for d—1 and m = 1), this weight is at least 7 yn(logn)**. Let nj
be the number of points represented by the left son of the root of the

main tree. Then 1 <n; <n-— 1. Hence

2
W(n) 2 (d _ i! n (log nt? + W(n1) + Win = m1)

= a pi” (log) + _iain_[W(m) +W(n — m)I,

for n > |m| +1. Now let

H(n) = 0 for 1<n< |m|j,

(d—1)! (log(n/m))*? _ (d-1)! (: _ logm
2 (log n)4-? 2 logn

d-2
for n> |m] +1.

If1<n< |m|], then H(n) x W(n) > 0. Let n > |m| +1. Then, since
H(n) > 0 and since H(n) is non-decreasing,

H(n) x W(n)

> n(log(n/m))*? + iin _ [A (n) x W(m) + H(n) x W(n— m1)

> n(log(n/m))*? + iain [H(m) x W(m) + (nm) x W(n—m)].

It follows from Lemma 6.2.6, that

1
H(n)xW(n) >on (log(n/m))*" for n> |m]| +1,

and hence

W(n) > an (log n)* log(n/m) for n> |m| +1.

6.2. Weight estimates for range trees 119

Note that the bound in Lemma 6.2.7 is tight (except for constant
factors): Equality is obtained if all binary trees involved are balanced.

Now apply this lemma, with m = 1. Then we get the following corol-

lary.

Corollary 6.2.2 A d-dimensional range tree (d > 2), representing n
points, has size at least n(logn)*'.

Lemma 6.2.8 Consider a d-dimensional range tree (d > 2), represent-
ing at least n points. Let V be a subset of these points, of cardinality

n. Letm > 1 be a real number, such that n > |m|+1. Then the total
number of nodes in the range tree (in the main tree, or in an associated

structure, or in an associated structure of an associated structure, etc.),

that represent at least m points of V, is at least

5 (log(n/m))*
Proof. For d = 2, the claim follows from Lemma 6.2.4. Let d > 3, and

suppose the lemma is proved for smaller values of d. Let W(n) be the

total number of nodes in the range tree, that represent at least m points

of V. If1 <n < [mJ], then W(n) > 0. Letn > |m]|+1. Let v bea node
in the main tree, that represents the entire set V, such that the left son

of v represents n; points of V, where 1 < n, < n—1. (v need not be

the root of the main tree, since it is possible that the left or right son of

the root represents the entire set V.) By the induction hypothesis, the

associated structure of v contains at least 77 way (n/m) (log(n/m))*”

nodes, that represent at least m points of V. Hence for n > |m| +1,

Wn) > Gaappe Mowln/m))? + amin [W(m) + W(n ma)
Then it follows from Lemma 6.2.6, that

W(n) > (log(n/m))*", for n>|m| +1.
n

Im S
|

vo

By taking all binary trees balanced, we see that the bound of this

lemma is tight, except for constant factors.

120 6. The lower bounds

Lemma 6.2.9 Letn > 1 be an integer, and let B > 4 be a real number.

Let a, = 0 and ayy, = a; + Bi2% fori > 1. Let k = min{i > lai, >

logn}, and let a= B(1+2'*9). Then k > 2 log*n+ 4 — 2 log* a.

Proof. We first prove that

a; > log(1 + Bi) for i > 2. (6.2)

For i = 2, we have ag = 8 > log(1 +28). So suppose that a; >
log(1+7) for some i > 2. Then aj41 = a; + 812% > 812% > Bi(1+ Gi) >
B(i+1) > log(1+ 6(i+1)). This proves (6.2).

Now let i > 2. Then aj41 = a; + Bi2% < 2% + Bi2% = (1+ Bi)2%.
It follows from (6.2) that

log aj41 < 2a; for 7 > 2. (6.3)

We have to prove that k > 2log*n + 3 — 2log*a. Assume that
k < 2log*n + 3 — 2log* a. We show that

(log)"+39n < ag41-9; fori =0,1,...,|(K — 1)/2|. (6.4)

(Note that (log)“+99n exists for 0 < i < |(k — 1)/2|, since by our
assumption on k, it holds that 1+ 3i < 1+ 3|(k —1)/2| < log* n.)

By definition of k, (6.4) holds for i = 0. So let 0 <i < |(K—3)/2|,
and suppose that (log)¢+8n < a,41~9;. Then by applying (6.3), we
get

(log)CT!)n < log ag 41-24 < 2 ag-2i-

Hence

(log) +9) n, < 1+loga,_y {apply (6.3)}

< 14+ 2ap-2j-1

< 3 ap_ai-1-

Therefore

(log)O ROM n < log 3 + log a,—2i-1 < an—2i-1,

since G,_2i-1 > G2 = 6 > 4. This proves (6.4).

6.3. Lower bounds for restricted partitions 121

Now take i = |(K — 1)/2| in (6.4). Then

(log) O+3LA-D/2)) 7 < a3 = 8+ 262% =a.

Taking log* a times logarithms, we get

(log) "°8" a+1+3|(k—-1)/2])y < (log) "8" 2) oy <1.

(Note that (log)“°8" ¢+1+3\(*—1)/2I)n exists, since log*a + 1+ 3|[(k —
1)/2| < log*n by our assumption on k.) However, since we assumed
that k < 2 log* n+3—# log* a, we have log* a+1+3|(k—1)/2] < log*n,
and hence

(log) (8 oH+810-D/2n, > 4.

So we have a contradiction. 0

6.3. Lower bounds for restricted partitions

In this section we prove two tight lower bounds for restricted partitions

of range trees. Recall that in a restricted partition, a node of the main

tree and its associated structure are contained in the same part. It

follows from Corollary 6.2.2, that in such a partition of a d-dimensional

range tree, there is a part of size at least CZ @ayn(log n)t?,

Theorem 6.3.1 Consider a d-dimensional range tree (d > 2), rep-
resenting n points, where (d — 2)loglogn < $logn. Let c be a con-
stant, c > . Suppose the range tree is partitioned —in the restricted

e 2
(d-1)! a]

sense—into — of size at most cn (logn Then there is an up-

date that passes through at least 2log*n + 3 — 2log* a parts, where
a=cdl(14+2't#),

Proof. Let T be the main tree. Let a, = 0 and a;4, = a; + cd! 2%

fori > 1. Let k = min{i > 1|a;,,; > logn}. We construct a sequence
U1, U2,---, Ug Of nodes in T, as follows. (For each such node 2%, let I;

be the part of the partition that contains v;.) Let v, be the root of

T. Then v, represents at least n/2*! points. Now let 1 <i < k, and

suppose v;,..., 0; are chosen, in 7 different parts, such that v; represents

at least n/2% points. Consider all nodes in the subtree of T with root

122 6. The lower bounds

u;, that represent at least n/2%+! points. These nodes, together with

their associated structures, have size at least °y.» represents >m points(1 +

wt(v)). Here wt(v) is the total number of leaves in the associated
structure of node v, m = n/2%+, and the summation runs over all

nodes v in the subtree of J’ with root v;, that represent at least m

points. By Lemma 6.2.7, this sum is

i [ae (8 [g5])” em
2n n \4-2 4 15 9a Tl oa (Iog =) cdli2

d-2
= 2cin (log =) {apply logn > aj41 > 2%}

n \??

> 2cin (le;
og n

IV

= 2cin(logn—loglogn)*?
1 d-2

= 2cin(loglogn)*? (oe − i {apply Lemma 6.2.5}

IV

logn *? logn *? . d-2|f _-o 0" — (d— 2) | —_—__— 2 cin (loglogn) (ee) (d—2) (oe) |

1 log n ~ > 2cin(loglogn)*™ x 5 (soe)
= cin(logn)??.

Here the last inequality follows from the assumption that (d—2) loglogn <

slogn. (Note that since 1 <i < k, we have m = n/2%+' > 1, and

n nm n n
pan th Soa tl=gatisigtisn [mJ +1<m+1l=

Hence Lemma 6.2.7 can be applied.)
Now since | Ui_, II| < cin (logn)*®, it follows that there is a node

Ui41 in the subtree of T with root v;, that represents at least n/2%+!

points, and that is not contained in Us II.

This procedure gives us nodes w1,...,v,% in k& different parts, such

that vj41 is in the subtree of v;, for i = 1,2,...,4 — 1. An update in

6.3. Lower bounds for restricted partitions 123

the range tree, that passes through node vz, passes through at least k

parts of the partition. It follows from Lemma 6.2.9, that k > 2 log* n+
3 — glog*a. O

Remark. In Theorem 5.1.3, it is shown, that there exists an effi-

ciently maintainable class of d-dimensional range trees, that can be

partitioned—in the restricted sense—into parts of size O(n(logn)*”),
such that each update passes, amortized, through at most log* n+O(1)

parts. Since the lower bound of Theorem 6.3.1 is valid for any individ-

ual range tree, not just for some range tree, this theorem also gives a

lower bound on the amortized number of parts through which an up-

date passes. Therefore, the lower bound is tight, except for constant

factors.

In the next theorem we consider the opposite point of view: We give

a lower bound on the maximal size of any part, if each update passes

through at most h(n) parts, for some integer function h(n).
We saw already that in a restricted partition of a d-dimensional

range tree, there is a part—the part containing the associated structure

of the root of the main tree—of size Q(n(logn)?-2). Since there exists
a class of efficiently maintainable d-dimensional range trees that can be

partitioned—in the restricted sense—into parts of size O(n(logn)*),
such that each update passes, amortized, through at most log* n+O(1)

parts, it is sufficient to consider restricted partitions where updates visit

at most h(n) parts, for some function h(n) < log* n.

Theorem 6.3.2 Let h(n) be an integer function, such that 1 < h(n) <
log*n. Let T be a d-dimensional range tree (d > 2), representing n
points, and suppose that (log)*™n > 8 and (d— 1) loglogn < $logn.
Suppose T is partitioned, in the restricted sense, into parts such that

each update passes through at most h(n) parts. Then there is a part of
size at least Ll

so 1 d—2 l h(n) ; 5 7 (logn)* (log)n
Proof. We write k = h(n). Let m; = (i + 1)n(log)*n/(log)*-n for
0<i<k. Note that the iterated logarithms exist since 1 < k < log* n.

Then

mp = (k +1) (log)*n > 16,

124 6. The lower bounds

and for0<i<k-1,

(log)*-*-!n, m _ i+1 (log)**'n_ 1 S9

2 (log)t-n ~ ? Mist %t+2 (log)*-n
2

since for N = (log)*~*n, we have 2" /N > 4. (Note that N > (log)*n >
8.) It follows that all m,’s are at least 1, and that mj; > 2mj41 >

Mitt +1 > [mip] +1.

Let P; be the following property:

vu; is a node in the main tree of T,, that represents at least m;

points. Ho, Iy,..., I; is a sequence of i+ 1 different parts

of the partition. Each update in T’, that passes through u;,

passes through Ilo, Iy,..., Tj.

Now execute the following algorithm:

Up := the root of the main tree;

IIp := the part of the partition that contains vp;

4:= 0;

QED := false;

{ property P; holds }
while 1 4 k A not QED
do { property P; holds }

Let V be the set of all nodes in the main tree below v;, that represent

at least m;,1 points;

ifV Cc Uso I,

then QED := true

else vj: := a node in V \ U}_o Ij;
Il,,1 := the part of the partition that contains v;+1;

{ property P;,, holds }
t:=t4+1

{ property P; holds }
fi

od.

It is not difficult to see that the algorithm correctly maintains prop-

erty P;.

6.3. Lower bounds for restricted partitions 125

Suppose that after the algorithm is completed, QED has the value

false. Then we must have i = k. Also property Py holds. So we have

a node vu, in the main tree, that represents at least m; points, and we

have a sequence IIo, Il,,..., II, of +1 different parts of the partition,

such that each update through node vz passes through these k+1 parts.

But this is a contradiction, because each update passes through at most

k parts.

Therefore, after the algorithm is completed, QED has the value

true. Hence there is an 7, 0 <i < k—1, such that P; holds, and all

nodes in the main tree below v; that represent at least m,+,1 points, are

contained in Uj-0 II;. By Lemma 6.2.7, all these nodes, together with

their associated structures—and hence Uj_» I1;—have size at least

2 −
a (log m;)*~* log(m;/mi41)-

(Since mj41 > 1 and m; > |mi4i1] + 1, Lemma 6.2.7 may be applied.
Note that we apply Lemma 6.2.7 to the tree having v; as its root, which

is a d-dimensional range tree, representing at least m; points.) It follows

that there is a part in our partition of size at least

1 |’ 1 2 −
∅⋅⊹−↕ ∣⋮∟⋮↲⊖ ∏∃⋅∣≥ imam (log m;)*~? log(m;/m41).

It remains to prove that this latter expression is at least

11
san (log n)*? (log)*n.

We have

og)*n
logm, = log (+n)

+« (maa)
lo ”

6 logn

= logn-—loglogn.

IV

IV

126 6. The lower bounds

It follows that

(logm,)*? > (logn—loglogn)*?

> (logn)*? — (d— 2)(logn)** log log n
1

2 9 (log ne,

since we assumed that jlogn > (d— 1)loglogn > (d — 2) loglogn.
Furthermore,

i+1 (log)*-*1n

i+2 (log)*-in
1(1 k-i-1 log (2 fos”
2 (log)*-'n

= (log)*-'n — (log)F-**'n —1
1 .

2 5 log)" 'n,

log(mi/miz1) = og (
IV

since for N = (log)*-*n > (log)*n > 8, we have N — log N —1> N/2.
Hence

1 2 −
maid m, (log m,)4 2 log(m;/mi41)

1 2 1 a2 1 k-i
2 jg. aa (log n) 3 (log) n

11
= 97" (log n)*~? (log)*n.

This proves the theorem. 0

Remark. We saw in Theorem 5.1.5, that there exists a class of effi-

ciently maintainable d-dimensional range trees, that can be partitioned—

in the restricted sense—into parts of size O(n(logn)*?(log)*n), such
that each update passes, amortized, through at most & + o(1) parts.

If the amortized number of parts through which an update passes is

at most k, there must be a single update that passes through at most

k parts. Therefore, Theorem 6.3.2 also applies for amortized bounds.

Hence, the lower bound in Theorem 6.3.2 is tight for constant functions

h(n).

6.4. Lower bounds for general partitions 127

6.4 Lower bounds for general partitions

We give two lower bounds for general partitions of range trees. The first

bound is proved is by induction, whereas the second bound is proved in

a similar way as the lower bound in Theorem 6.1.1. The second bound

gives a better result. We include the first bound, however, to illustrate

the proof-technique.

In order to be able to give an inductive proof, we prove a more

general result.

Theorem 6.4.1 Let k be a positive integer. Consider a d-dimensional

range tree, that is partitioned into parts, such that the following holds.

There is a subset V of the points that are represented by the range tree,

where |\V| =n > 2". Each update that visits a leaf that contains a point

of V, passes through at most k parts of the partition. Then there is a

part of size at least

1 1 k-2 1 d-1 _

als) (g) m/* (osm).
Proof. Suppose k = 1. Then all nodes that represent at least one point

of V, are contained in the same part of the partition. By Lemma 6.2.8,

with m = 1, this part has size at least 4n(logn)4~'. Let k > 1, and
suppose the theorem is proved for & — 1. Consider a d-dimensional

range tree, that satisfies the assumptions of the theorem (for value k).
Let II be the part of the partition that contains the root of the main

tree. There are two possible cases.

(i) There is a node y in the range tree, that represents at least
n*-)/F points of V, that is not contained in part II. (y may be a node of
the main tree, or of an associated structure, or of an associated structure

of an associated structure, etc.) Then we merge part II and the part

containing y together into a new part. Let V’ be the intersection of

V and the set of points that are represented by y. This gives us a

d-dimensional range tree, that is partitioned into parts such that the

following holds. There is a subset V’ of the points that are represented

by the range tree, where |V’| > n(-)/* > 2-1. Each update that
visits a leaf that contains a point of V’, passes through at most k — 1

128 6. The lower bounds

parts of this new partition. By the induction hypothesis, there is a part

in this new partition, of size at least

(a) (ea) Yow toy)
1 1 k-3 1 d—1 _

=als) (q) nos.
It follows that in our original partition, there is a part of size at least

1 1 k-2 1 d-1 _

als) (gz) m/* omy.
(ii) Otherwise, all nodes y in the range tree, that represent at least

n&-)/k points of V, are contained in part II. By Lemma 6.2.8, there
are at least

2 on n dt 2 /1\%" 44 di
dl nk—b/k (log (=a) =5(;) nl (logn)

such nodes y. (Note that n@-)/* > 1, and since n > 2*, we have
n> Ank-V/k > |n@-Y/*| 4.1. Hence Lemma 6.2.8 can be applied.) It
follows that part II has size at least

y) 1 d-1 7 1 1 k-2 1 d-1 _

a(z) m*dowm*> a (5) (Gg) mi doen.
This finishes the proof. 0

Corollary 6.4.1 Let h(n) be an integer function, such that 1 < h(n) <
logn. Consider a d-dimensional range tree (d > 2), representing n
points. Suppose the range tree is partitioned such that each update

passes through at most h(n) parts. Then there is a part of size at least

lvl h(n)—-2 1 d-1 ,
tft ft /W(n) (1 d-1
d! (5) (aa) ne (log)

Proof. This follows from Theorem 6.4.1, by taking V the set of all

points that are represented by the range tree, and k = h(n). Note that

Theorem 6.4.1 remains valid if k depends on n. O

We now prove the other lower bound that improves the bound of

Corollary 6.4.1.

6.4. Lower bounds for general partitions 129

Theorem 6.4.2 Let h(n) be an integer function, such that 1 < h(n) <
logn. Let T be a d-dimensional range tree (d > 2), representing n
points. Suppose this range tree is partitioned into parts, such that each

update passes through at most h(n) parts. Then there is a part of size

at least
d

2 (2) 11/h) dog ny,
d! \ h(n)

Proof. We write k = h(n). Let m; = n'~/* for 0 <i<k. Let P; be
the following property:

V; is a subset of the set of points represented by T. Vj;

has cardinality at least m;. Ip, Il,,..., II; is a sequence of

i+ 1 different parts of the partition. Each update in T,

that visits a leaf that contains a point of V;, passes through

IIo, ,,..., Hj.

Now execute the following algorithm:

4:=0;

Vo
IIo

:= the set of all points that are represented by the range tree;

:= the part of the partition that contains the root of the main tree;

QED := false;

{ property P; holds }
while 1 4 k A not QED
do

od.

{ property P; holds }
Let W be the set of all nodes that represent at least m,;+,1 points of V;;

if W C US_o I;
then QED := true

else w := a node in W \ Uj—o II;
Vi41 ‘= the set of all points in V;, that are represented by w;

Il,,1 := the part of the partition that contains w;

{ property P;,, holds }
t:=t4+1

{ property P; holds }

130 6. The lower bounds

Note that the algorithm correctly maintains property P;. In this

algorithm, the V;’s are sets of points that are represented by the data

structure, whereas the set W is a set of nodes. These are nodes in the

main tree, or in an associated structure, or in an associated structure

of an associated structure, etc.

Suppose that after the algorithm is completed, QED has the value

false. Then we must have i = k. Also property Py holds. So we

have a set V; of points of cardinality at least m, = 1, and a sequence

IIo, 1l,,..., 0, of k + 1 different parts of the partition, such that each

update that visits a leaf that contains a point of V;, passes through

these k + 1 parts. This is a contradiction, because each update passes

through at most & parts of the partition.

Therefore, after the algorithm is completed, QED has the value

true. Hence there is an 1, 0 < 1 < k—1, such that P, holds, and

all nodes that represent at least m,,; points of V;, are contained in

Uj—o Hj. Since |V;| > mj, it follows from Lemma 6.2.8 that there are at
least 4 (mj/mi+1) (log(m:/mi41))** such nodes. (Note that m1 > 1,
and that |mj41|+1 < 2miyi < mj, since k < logn. Hence Lemma 6.2.8

may be applied.) Hence

This proves that there is a part of size at least

i d-1
1 ‘ 1 2 i —|UN) > <-> (log

a+1, i+1d! Mist Mist

1

j=0

y) 1 d-1 _

=a" (z) (logn)™
2 /1\4 −
a (=) ni/k (log n)4 IV IV

This finishes the proof. 0

Consider again the proof of Theorem 6.4.2. We started with a se-

quence ™o,...,™, of real numbers such that mp = n, m; > 1 and

6.4. Lower bounds for general partitions 131

m; > |mi4i| +1 for all i. Then it was shown that the partition con-
tains a part of size at least

d-1
— x - mi log mi ,
db tt+1 mit M41

for some 1, 0 <i < k—1. Since 7 can take any value between 0 and

k — 1, there is a part of size at least (we omit the factor 4)

. | Mo mo*+ 1m m\t 1 mp1 Mp-1\41
min { — (log) =— (log mt) peeege (log) .

mM, mM, 2 me Mo k me Mr
(6.5)

Just as in Section 6.1, it might be possible to improve the lower bound in

Theorem 6.4.2 by taking another sequence mo,...,™m,. We shall show

that in this way the lower bound can only be improved by a constant

factor, where this constant depends on d, but not on nm and not on

k. More precisely, we shall prove that for any sequence mo,..., mx of

positive real numbers, where mp = n, m; > 1 and m,; > m,4, for all 2,

the value of (6.5) is at most

1 d

e(1+loge)*" (=) n/® (logn)4.

Take such a sequence mo,..., ms. There are two possibilities.

(i) There is an 7, 0 < i < k—1, such that m; < ne)i/s and
Mit > (Z)@D/*. Then, by using Lemma 6.1.1, n

G+)!

mj n\Ve Ci
< 1)\(—) < 1) =n ma 2 et) (a) <4) Er,

and hence (note that log(m;/mj+1) > 0, since mj > m,+1)

d-1 . d—1

∙ ↕⊺∪↗∅⋅ log mi < ok (log (= ent)
+1 mizi Mitt k k

< anil (log (e n/t))e ⋅

↕−↕⊖∐∁⊖↓∁↥↥⊖∇∂↕∐⊖⊙⊔∊⋅∂⋟↥⊟∂↓∁↕∐⊙⊟↓∁≣∏↕∕∣≎↻⊙≝≼⊖⊓↕∕∣⊖↣⊄−↧⋅

132 6. The lower bounds

(ii) Otherwise, for each i, 0 < i < k —1, we have that if mj <

o(#)/* then miz1 < ati (#)+D/*. In the same way as in Section 6.1,

it follows that m,_1 < ale ae = k(&)'/* < en'/* and that
n

Mz = 1. Hence, since log mz_; > 0,

Bi (lon) < Env (oe (ems)
Again we conclude that the value of (6.5) is at most £ n'/* (log(en!/*))41,

Now since

(log (c nifk))e = (log n'/k 4+ log ee

d-1

= (log nile) (+ oe)

< (log nile (1+ loge)*",

—where the inequality follows from the fact that logn'/* > 1 or, equiv-

alently, k < logn—it follows that the value of (6.5) is at most

d
€ i/k 1/k\\e} aif 1/k d-1 a (log (en)) < e(1 + loge) ;) ™ (logn)*~,

which proves our claim.

Chapter 7

Summary and concluding

remarks

We have studied the problem of partitioning range trees, such that

queries and updates pass through only a small number of parts. This

enables us to store range trees in secondary memory and to query and

maintain them efficiently. This is useful in large scale applications,

where the data structure is too large to be stored in main memory.

Because the reader might be overwhelmed by the many theorems of

this part of the thesis, we give in this chapter a summary of the most

important results.

Recall that a balanced range tree storing a set of n points in d-

dimensional space, has size O(n(logn)*!). A partition of such a range
tree is called an (f(n), g(n), h(n))-partition, if

1. each part has size at most f(n);

2. there are O(S(n)/f(n)) parts, where S(n) is the size of the data
structure;

3. each query passes through at most g(n) parts;

4. the amortized number of parts through which an update passes

is at most h(n).

We have considered two types of partitions. The first type are the

restricted partitions. These have been studied in Sections 4.1, 5.1 and

133

134 7. Summary and concluding remarks

6.3. For such partitions, we have proved lower bounds that match with

the best upper bounds. The best results are:

1. An (O(n(logn)4~?), 4 log* n + O(1), log* n + O(1))-partition, see
Theorems 4.1.4 and 5.1.3. This partition is optimal, see Theo-

rem 6.3.1.

2. An (O(n(logn)*?(log)*n), 2k — 1, k + o(1))-partition, see Theo-
rems 4.1.6 and 5.1.5. Here, & is a fixed parameter. This partition

is optimal, see Theorem 6.3.2.

General partitions have been studied in Sections 4.3, 4.4, 5.3 and

6.4. In Theorem 5.3.2, the most general result is given, which is a

partition into parts of size

re) (neta) x (log n)te-Hi(+a-1)) .

such that the amortized number of parts through which an update

passes is at most

k+d—-1 _ tia d-1 (1) +o) = Gat +0 (A),

and the number of parts through which a query passes is at most

d −−⋅ − jd

e (oR *) (AP?) pari Fete are o(H),
i=0 ⋅

where ¢ is the number of answers to the query. Here, k is a fixed

parameter. The asymptotic terms O(k*~') are valid for fixed d and
k > c.

The best lower bound for general partitions is given in Theorem 6.4.2,

which states that if we partition a range tree into parts, such that each

update passes through at most h(n) parts, there must be a part of size

at least ;

2 (2) 11/6) dog nyt,
d! \ h(n)

In Sections 4.2 and 5.2 we have shown, that it is useful to change

range trees, to get new data structures for the range searching problem,

135

for which more efficient (restricted) partitions exist. These new struc-
tures have the same performances as ordinary balanced range trees.

In the two-dimensional case, this leads to a data structure—of size

O(nlogn)—for which an (O(n), 3, 2 + o(1))-partition exists. See The-
orem 4.2.2. The general result is given in Theorem 5.2.2: A partition

of a d-dimensional structure of size O(n(logn)*~!), into parts of size
O(n), such that an update passes, amortized, through at most

Clee
parts, and a query passes through at most

+ o(1), (n + oo)

1+ 24(log n)!(4-0)/21

parts. (This latter bound is very pessimistic. See the remark after

Theorem 4.2.2.)

Note that the lower bounds do not apply for these new structures,

since they do not have the form of a range tree. (Several of the associ-
ated structures are omitted.)

In all partitions, we have used asymptotic estimates to express the

size of the parts, whereas in the lower bounds we have also given the

constant factors. Of course, it is possible to compute the constant

factors in the estimates of the size of the parts. The details, however,

become very tedious. Furthermore, such computations will not give

additional insight in the nature of the partition schemes.

Note that in most lower bounds, the constant factor 1/d! appears.

Therefore, one might think that for large values of d, these bounds are

not very useful. Monier [34], however, has shown that the constant
factors that occur in the complexity of algorithms that use Bentley’s

multi-dimensional divide-and-conquer technique—and range trees in-

deed use this technique—are proportional to 1/(d— 1)!.

We finish this chapter with some open problems and directions for

future research.

For the general partitions, the upper and lower bounds are still

reasonably far apart. In the two-dimensional case, the best result is

136 7. Summary and concluding remarks

a partition into parts of size O((nlogn)?/“t), such that an update
passes, amortized, through at most k(k + 1)/2 + o(1) parts, and a
query passes through at most 2k? — 2k + 2t parts, if ¢ is the number of

answers. (See Theorem 4.4.2.) Compare this to the best lower bound—
see Theorem 6.4.2—which says that if a two-dimensional range tree is

partitioned such that each update passes through at most k(k + 1)/2
parts, there must be a part of size Q(n?/@@+)) x logn). It would be
interesting to close the gap between these bounds. Another interesting

problem is to decrease in the just mentioned partition the term 2¢ in

the number of visited parts for a query. In this partition, all reported

answers can be situated in different parts. Maybe it is possible to dis-

tribute the points over parts, of size say f(n), such that only O(t/f(n))
parts are needed to report ¢ answers. In fact, Corollary 4.3.1 shows that

for k = 2, this is indeed possible.

We mentioned already that the techniques for restricted partitions

of Sections 4.1 and 5.1, also apply to many more data structures having

the form of an augmented binary tree, with some reasonable proper-

ties of the query and update algorithms. Examples are segment trees

(see [47]), structures solving order decomposable set problems (see Sec-
tion 2.5), and structures for adding range restrictions to searching prob-

lems (see [5, 66]). An interesting direction for research is to identify
the basic properties such structures should have, in order that the tech-

niques apply. In this way, it might be possible to design partitions for

a (maybe very general) class of data structures.

A more general problem is to design partition techniques for other

data structures, or for special classes of data structures. For many data

structures that are based on tree structures, the techniques presented

here will be applicable. So data structures that are not based on trees

seem especially interesting.

We saw one application of the partitioning problem: Solutions can

be applied for maintaining the structure in secondary memory in case

it is too large to be stored in main memory. The partitions as we

considered them can also be applied to the reconstruction problem of

Part III. There, we can maintain a copy of the data structure—which

itself is stored in main memory—in secondary memory. In this way we

can reconstruct the structure in case the information in main memory

is destroyed. Another application is in the area of parallel algorithms.

137

Here we partition a data structure into parts, and we distribute the

parts among a number of processors. Clearly, this leads again to the

partitioning problem. In this application, however, the partition should

satisfy other constraints, since we want the amount of parallelism to

be as large as possible. So one could study this type of partitioning

problems for different kinds of data structures. In [24], the idea of
using a partitioned range tree on a parallel computer is already ap-

plied. Finally, one could search for other applications of partitioned

data structures.

Bibliographic comments

The partitioning problem as studied here was posed to the author in

1986 by Mark Overmars. Chapters 3-5 are based on joint work with

Mark Overmars, Mark de Berg and Marc van Kreveld, see [44, 45].
Sections 4.4 and 5.3 are more polished versions of the corresponding

sections in [45]. Chapter 6 is based on work with Mark Overmars, see
[44, 50, 53]. The proofs of Theorems 6.1.1, 6.3.2 and 6.4.2 have been

simplified by Peter van Emde Boas.

138 7. Summary and concluding remarks

Part III

The reconstruction problem

for dynamic data structures

139

Chapter 8

The reconstruction problem

8.1 Introduction

In this part we study the reconstruction problem for dynamic data

structures, which is a special instance of the general problem of main-

taining multiple representations of data structures. In the reconstruc-

tion problem, we have to design for a given searching problem, a dy-

namic data structure solving this searching problem, together with a

shadow administration from which the data structure can be recon-

structed in case of calamity. This shadow administration is stored in

secondary memory, whereas the data structure itself is stored in main

memory.

In this way, we have a multiple representation of the data. There is

one data structure—stored in main memory—that stores the data, and

on which queries and updates are performed. In secondary memory the

data is represented by a shadow administration on which only updates

are performed. We study how to organize this shadow administration

for several types of searching problems, what type of information has

to be stored in the shadow administration such that the data structure

can be reconstructed fast, and how to update it efficiently.

Clearly, we can solve the reconstruction problem by maintaining

in secondary memory a copy of the data structure. Therefore, the

techniques of Part II can be used here. We will see, however, that

there are much more efficient techniques to solve the reconstruction

141

142 8. The reconstruction problem

problem. In fact, we have added more degrees of freedom, compared

to the problem in Part II: The shadow administration should be a

structure from which the original data structure can be reconstructed;

it does not have to be an exact copy of this structure. Moreover, no

queries have to be performed on it. Therefore, we can design a shadow

administration that can be maintained—in secondary memory—more

efficiently than the copy of the data structure. In this way, we get

for example a very efficiently maintainable shadow administration for

a two-dimensional range tree. (See Theorem 9.3.3.)

The reconstruction problem first appeared in a paper by Torenvliet

and van Emde Boas [61]. In this paper, the reconstruction and opti-
mization of trie hashing functions are investigated. No other papers

concerning the reconstruction problem have appeared.

In the next section, we introduce a general framework in which we

describe solutions to the reconstruction problem. We use the Random

Access Machine as our model of main memory. For secondary memory,

we take the Indexed Sequential Model, as described in Section 2.6. In

Section 8.3, we give some basic solutions to the reconstruction problem.

In Chapter 9, we give some general techniques that apply to large

classes of searching problems.

In Chapter 10, we consider a particular searching problem: The

union-find problem. We design an efficient main memory data struc-

ture, that has a worst-case single operation complexity that is lower

than the best previously known complexity. This new structure is de-

signed in such a way that a copy of it can efficiently be maintained in

secondary memory.

In Chapter 11 we apply the ideas of deferred data structuring—

due to Karp, Motwani and Raghavan [28, 35]—to the reconstruction

problem. We first show that static deferred data structures can often

be dynamized using well-known techniques. Then we use the dynamic

deferred structures to get a new approach for solving the reconstruction

problem.

Note that Chapters 10 and 11 contain results that are also interest-

ing in other areas besides the reconstruction problem.

In Chapter 12, we give a summary of the most important results.

8.2. The general framework 143

8.2 The general framework

To study and analyze solutions to the reconstruction problem, we use

the following conceptual model. We remark here that this is not the

best way of implementing the techniques. Our approach is easy to

analyze and does not increase the complexity in order of magnitude.

We store the following information:

e DS is a dynamic data structure, stored in main memory.

e SH isa shadow administration, from which the data structure DS

can be reconstructed. This shadow administration is also stored

in main memory.

e In secondary memory, we store a copy CSH of the shadow ad-

ministration SH.

e Finally, there is extra information INF, that is used to update

the shadow administration SH and its copy CSH. This extra

information is not needed to reconstruct the data structure, and,

hence, it may be destroyed in a system crash. Therefore, it is

only stored in main memory.

In practice SH often is not necessary and changes can be made

immediately in CSH. The distinction between SH and CSH makes it

easier to estimate time bounds.

Let DS be a dynamic data structure, and let SH, CSH and INF

be the corresponding additional structures. To perform an update we

carry out the following steps:

1. The data structure DS is updated.

2. The structures SH and INF are updated.

3. The copy CSH in secondary memory is updated.

Steps 1 and 2 take place in main memory. Therefore, all standard

operations are allowed for these two steps of the update procedure. The

complexity of these steps is expressed in computing time.

144 8. The reconstruction problem

In step 3, data in secondary memory has to be updated. The struc-

ture CSH is distributed over a number of blocks in secondary memory.

After the update of SH we know which parts of CSH have to be up-

dated. We update CSH by replacing all blocks in which some informa-

tion has to be changed by the corresponding updated parts of SH. The

complexity of this operation is given by the number of disk accesses

that has to be done; the amount of transport time, which is propor-

tional to the amount of data that is transported; and the amount of

computing time needed to collect the information that is transported.

This computing time is at least proportional to the transport time.

After a system crash, or as a result of program errors, the contents

of main memory (i.e., DS, SH and INF) will be destroyed. To re-
construct the structures, we transport the copy CSH of the shadow

administration to main memory. This copy takes over the role of the

destroyed shadow administration SH. Then we reconstruct from SH

the structures DS and INF. After the reconstruction, we proceed with

query answering and performing updates.

The reconstruction procedure takes a number of disk accesses, O(S.csy(n))
transport time, where Scgyz(n) is the size of CSH, and an amount of
computing time.

In most cases, the copy CSH of the shadow administration is stored

in secondary memory in consecutive blocks, always starting at the same

block. This block is called block 0. We assume that the system knows

the address of block 0; it is not destroyed in a system crash. Then,

the number of disk accesses in the reconstruction procedure is equal to

one. (In Section 9.3, we have a situation where CSH does not always
start at the same block, and where the number of disk accesses for

reconstruction is greater than one.)

An important issue in the reconstruction procedure is how we store

the copy CSH in main memory. Note that data structures contain

pointers, which we consider to be indices of memory locations. In or-

der to guarantee that these pointers “point” to the correct objects, each

indivisible piece of information of CSH should be stored in exactly the

same location in main memory as its corresponding piece of SH was,

before the information was destroyed. In general, this is not possible,

8.2. The general framework 145

because the crash may also have destroyed physical parts of main mem-

ory where the information was stored. In this case, we can of course

store the information in another part of main memory, in such a way

that all addresses are shifted by the same amount.

We assume for simplicity, however, that a crash only destroys the

pieces of information; the memory locations themselves are not de-

stroyed. Hence these locations can be used after the crash to store

information again.

We store in secondary memory with each piece of information of

CSH, the address of its corresponding piece in main memory. In this

way, the size of the structure CSH is at most twice as large as the

size of SH. Note that now the structure CSH is not an exact copy,

since it contains more information. To reconstruct the structures, we

transport CSH to main memory, and we store the information in the

same positions as SH was, using the addresses. Then all pointers indeed

have the correct meaning, and we can reconstruct DS and INF. It

follows that the computing time needed to reconstruct the structures is

Q(Scsz(n)), since in main memory an amount of Scsy(n) information
has to be written in the correct positions.

We have introduced a multiple representation of the data: The set

of objects for which we want to solve the given searching problem is rep-

resented by several cooperating structures, each having its own task.

The data structure DS has to maintain the set of objects, in order

that queries can be performed on it. Hence, on DS, all operations (i.e.,

queries, insertions and deletions) are performed. On the structures SH,

CSH and INF, only insertions and deletions are carried out. The struc-

ture INF is used to update SH and CSH. The structure SH is used to

update CSH. Finally, the task of CSH is to maintain information to

reconstruct the other structures.

In this part of the thesis, we use the following notations to denote

the complexity of the structures. For the data structure DS, we use

the usual notations P(n), S(n), Q(n), I(n), D(n) and U(n) without
subscripts. See Section 2.1. The complexity of the additional structures

SH, CSH and INF is denoted by:

e S’(n): the total amount of space required by the additional struc-

146 8. The reconstruction problem

tures.

e P,(n), P:(n) and P.(n): the number of disk accesses (seeks), the
transport time and the computing time, respectively, needed to

build the additional structures.

e I,(n), I,(n) and I,(n): the number of disk accesses, the transport
time and the computing time, respectively, needed to insert an

object into the additional structures.

e D,(n), D,(n) and D,(n): the number of disk accesses, the trans-
port time and the computing time, respectively, needed to delete

an object from the additional structures.

e If the insert and delete complexity measures are equal, we denote

the common update complexity by U,(n), U:(n) and U,(n).

e F,(n), Ri(n) and R,(n): the number of disk accesses, the trans-
port time and the computing time, respectively, needed to recon-

struct the structures DS, SH and INF from the structure CSH

that is stored in secondary memory.

Note that P,(n) = O(Sesx(n)), Ri(n) = O(Sesu(n)) P.(n) =

Q(Sesu(n)) Re(n) = Q(Scsu(n)), Ie(n) = OUe(n)) and D-(n) = Q(D,(n)).
If the copy CSH is stored in consecutive blocks, then P,(n) = 1.

We assume that all these complexity measures are smooth and non-

decreasing. We also assume that S’(n)/n, P.(n)/n and R,(n)/n are
non-decreasing.

8.3. Some basic solutions

8.3.1 <A low storage shadow administration

Let DS be a dynamic data structure, representing a set V of n objects.

We assume that the set V is a subset from some ordered universe.

Clearly, if we keep in secondary memory the objects of the set V, we

have enough information to reconstruct the data structure DS.

Let V = {p. < po <...< pp} be the ordered set of objects. Divide

secondary memory in blocks, such that each block can contain b objects.

8.3. Some basic solutions 147

We partition V into subsets V, = {p1,..-, Dojo}, Vo = {Poa4is-++> Pots

etc.

The shadow administration: The structure SH consists of a

linked list, containing the objects of V in sorted order. Each node

in this list contains a pointer to its successor. The structure CSH is a

copy of SH. We store CSH in secondary memory in consecutive blocks,

starting at block 0: Each sublist containing a V; is stored in one block.

Note that a pointer in CSH “points” to a successor in main memory.

So in secondary memory, the pointers in CSH have no meaning. With

each indivisible piece of information of CSH, we store the address of

the corresponding piece of SH. Finally, we store in main memory at

the end of each sublist that contains a V;, the address in secondary

memory of the block containing this sublist, and we maintain in main

memory the address of the block at the end of the file.

The structure INF is a balanced leaf search tree, containing in its

leaves the elements of V in sorted order. Each leaf of this tree—storing,

say, object p—contains a pointer to object p in the list SH.

The insert algorithm: Suppose object p is to be inserted into the

set V. Then we insert p into the tree INF. This gives us the position in

SH where p has to be inserted. Next p is inserted in the list SH. Let V;

be the subset of V into which p is inserted. There are two possibilities.

(i) After the insertion, the set V; contains less than b objects. In

this case, we replace the block in secondary memory, containing the old

V;, by a block containing the updated V;, together with their addresses

in main memory. (We know the address of this block, by walking to

the end of the sublist that contains V;.) Also, we add in INF the
information about the position of p in SH. If p is at the end of its

sublist, we store in this sublist—in main memory—the address of the

block in secondary memory that contains the copy of this sublist. If p

is at the beginning of its sublist, we replace in secondary memory the

predecessor block of V;—the address of which we find by searching in

INF the predecessor q of p, and by following the pointer to q in the

list SH—by a block storing the same information, except that the last

object of the sublist contains a pointer—which is an address in main

memory—to p.

148 8. The reconstruction problem

(ii) After the insertion, V; contains 6 objects. Then we split V; in
two subsets Vj, and Vj2, both of cardinality b/2, such that the objects

in Vj, are less than those in Vj2. We store the part of the list containing

Vj, in the block containing the old V;. The part of the list containing Vj2

is stored in a new block at the end of the file. (We know the address
of the end of the file.) Then, the addresses in secondary memory of

the blocks containing V;, and Vj2 are inserted at the end of the (main

memory) sublists V;,; and Vj2. We also maintain in main memory the

address of the new block at the end of the file. Again if p is the first

element of V;,, we replace the predecessor block of V;; by a block storing

the same information, except that the last object of the sublist contains

a pointer to p.

The delete algorithm: Suppose object p is to be deleted from the

set V. Then we delete p from the tree INF. This gives us the position

in SH where p has to be deleted. Next we delete p from the list SH.

Let i be the index of the subset from which p is deleted. Again there

are two possibilities.

(i) After the deletion, V; contains more than b/4 objects. Then we
proceed in a similar way as we did in case (i) of the insert algorithm.

(ii) After the deletion, V; contains < b/4 elements. First suppose
that V; does not contain the smallest elements of V. Then there is a

predecessor sublist V;_1. In this case we merge V;_; and V; into a new

subset V;, and the old Vj_; is discarded. If the resulting V; contains

at least b objects, we split it in two equal sized sets V;_1 and V;. The

part of the list containing V;_, resp. V; is stored in secondary memory

in the block containing the old V;_, resp. V;. (Using the tree INF,

we can find the address of the block containing the old Vj;_,.) If the
resulting V; contains less than b elements, we store the list containing

V; in secondary memory in the block containing the old V;. In order

to avoid gaps in secondary memory, the block at the end of the file

is moved to the block containing the old V;_,. Of course, information

about the new addresses of the moved blocks is inserted in the list SH,

and we store in main memory the address of the new block that is at

the end of the file. Note that if p was the first element of the sublist,

its predecessor—say g—was in V;_;. Hence no extra disk access is

necessary for giving g a pointer to its new successor. If V; contains the

8.3. Some basic solutions 149

smallest elements of V, we merge V; and V;,, and proceed in a similar

way.

The reconstruction algorithm: To reconstruct the structures,

we transport CSH to main memory. We use the addresses stored in

CSH to store the information in the same positions as it was in the

destroyed list SH. Then C'SH can take over the role of the destroyed

SH, and we build the data structure DS and the tree INF from the

objects in the ordered list.

Theorem 8.3.1 Let DS be a data structure that can be built from an

ordered set of n objects in P,(n) time. There exists a shadow adminis-
tration for DS, with performances:

1. S'(n) = O(n).

2. U,(n) < 3, Uz(n) = O(b) and U.(n) = O(logn +6), where b is the
number of points that can be stored in one block.

8 R,(n) =1, R(n) = O(n) and R.(n) = O(n+ P,(n)).

Proof. It is clear that the total amount of space required by the

additional structures SH, CSH and INF is bounded by O(n).
The insert algorithm takes O(log n) computing time for the insertion

of p into the structures INF and SH. It takes O(logn + b) computing
time to find the addresses of the blocks in secondary memory that have

to be updated. The update of the structure in secondary memory takes

at most 3 disk accesses, an amount of O(b) computing time, and at

most 3 blocks of data transport. Note that in most cases only one disk

access and one block of data transport are necessary. The complexity

of a deletion follows in the same way.

The reconstruction algorithm takes one disk access, O(n) transport
time and O(n + P,(n)) computing time. Here, the number of disk
accesses is equal to one, because the copy C'SH is stored in consecutive

blocks, always starting at block 0. Note that we assume that the system

knows the address of block 0; this address will not be destroyed. O

This technique is especially efficient if the preprocessing algorithm

of the data structure DS consists of two phases. In the first phase we

150 8. The reconstruction problem

order the objects in O(nlogn) time. Then, in the second phase, the
actual building of the structure is done. For such data structures, we

save O(nlogn) computing time in the reconstruction algorithm.
As an example, consider the case where DS is a range tree with a

slack parameter, as introduced by Mehlhorn [33].

Definition 8.3.1 Let & be a positive integer, and let V be a set of n

points in the plane. A range tree with slack parameter k, representing

the set V, consists of the following. There is a BB[a|-tree T that
contains in its leaves the elements of V, ordered according to their z-

coordinates. Each node v of JT, that has a distance to the root of T

which is a multiple of k, contains (a pointer to) a BB[a]-tree, that stores
in its leaves the subset of V represented by node v, ordered according

to their y-coordinates.

Note that the BB[a]-range tree as introduced in Section 2.3 is in
fact a range tree with slack parameter one. The complexity of these

more general range trees is given in the following theorem.

Theorem 8.3.2 A range tree with slack parameter k, representing a

set V of n points in the plane, has performances:

1. S(n) = O((nlogn)/k).

2. P(n) = O(nlogn) + O((nlogn)/k) = O(nlogn). Here the first
term is the time required to order the points of V according to their

y-coordinates, whereas the second term is the actual building time

of the structure.

3. The amortized update time is bounded by O((logn)?).

4. Orthogonal range queries can be solved in time O((log n)?2*/k+t),
where t is the number of reported answers.

Proof. The tree T has size O(n). There are O((logn)/k) levels in T,
the nodes of which contain associated structures. For each of these lev-
els, the associated structures on that level together have size O(n). It
follows that the entire data structure has size O((n logn)/k). The proof
of the building time follows in a similar way as in Section 2.3. A range

8.3. Some basic solutions 151

tree with a slack parameter is a BB/a]-range tree where several associ-
ated structures are omitted. Therefore, the amortized update time for

this type of range trees cannot be larger than that of a normal range

tree. Hence, the bound on the update time follows from Section 2.3.

The proof of the query time can be found in [33]. 0

It follows from this theorem, that by maintaining in secondary mem-

ory the points of the set V ordered according to their y-coordinates, we

save O(nlogn) computing time in reconstructing the data structure.

Therefore, we take for the range tree the shadow administration given

above.

Theorem 8.3.3 For a range tree with slack parameter k, there exists

a shadow administration with performances:

1. S'(n) = O(n).

2. U,(n) < 3, U,(n) = O(b) and U.(n) = O(logn +), where b is the
number of points that can be stored in one block.

3. R,(n) =1, R,(n) = O(n) and R.(n) = O((nlogn)/k).

Proof. This follows from Theorems 8.3.2 and 8.3.1. O

Take for example the slack parameter & = [loglogn]. Then the

range tree has size S(n) = O((nlogn)/loglogn), whereas the shadow
administration has size only O(n). So the size of the additional struc-
tures is asymptotically less than that of the data structure itself. Also,

reconstruction of the range tree takes O((n log n)/ log log n) computing
time, which is asymptotically less than the preprocessing time of the

range tree.

8.3.2 Other basic solutions

Let DS be a dynamic data structure of size S(n). We can solve the
reconstruction problem by maintaining in secondary memory a copy of

DS. In that case we do not need the structures SH and INF, and CSH

is a copy of DS. We partition the structure DS into a number of parts.

Then, CSH is stored in secondary memory by putting the copy of each

152 8. The reconstruction problem

part of the partition in one block. With each piece of information, we

store in secondary memory the address of the corresponding piece in

main memory. In main memory, we record for each part of the parti-

tion the address of the block in secondary memory containing its copy.

After an update of the data structure DS, the copy CSH is updated

by replacing all parts of the partition in which some information has

changed. Obviously, the complexity of an update heavily depends on

the way the structure DS is partitioned.

Reconstruction of the data structure DS takes one disk access and

O(S(n)) transport and computing time: We only have to transport the
structure CSH to main memory and put the information in the correct

positions.

This way of solving the reconstruction problem is studied further in

Chapter 10, where a copy of a Union-Find data structure is stored in

secondary memory. The techniques of Part II, where we investigated

the problem of maintaining a range tree in secondary memory, also

apply here.

Another basic solution is the following. Let DS be a dynamic data

structure of size S(n), having an update time U(n). Let CSH consist of
a copy of DS. Again, we do not need the structures SH and INF. We

store the copy C'SH in secondary memory in a number of consecutive

blocks, starting at block 0. With each piece of information, we store

in secondary memory the address of the corresponding piece in main

memory. Let n be the initial number of objects that are represented

by DS.

The update algorithm: An insertion or deletion of an object

p is performed in the main memory structure DS. Then we store p,

together with information whether it has to be inserted or deleted, in

secondary memory in a block of constant size at the end of the file. So

the structure CSH itself is not affected.

After S(n)/U(n) updates have been performed in this way, we trans-
port a copy of the up-to-date data structure DS to secondary memory,

where it replaces the old information. (The old copy CSH and the se-

quence of S(n)/U(n) updates are discarded.) Then we proceed in the
same way, now with a sequence of S(m)/U(m) updates, where m is the

8.3. Some basic solutions 153

number of objects at this moment.

The reconstruction algorithm: To reconstruct the data struc-

ture DS, we transport the information to main memory, and we store

the structure CSH in the correct positions. Then we perform the se-

quence of at most S(n)/U(n) updates to make the structure up-to-date.

Theorem 8.3.4 Let DS be a dynamic data structure of size S(n), hav-
ing an update time U(n). There exists a shadow administration for DS,
with performances:

1. S'(n) = O(S(n)).

2. U,(n) = 1, and the amortized values of U;(n) and U.(n) are both
bounded by O(U(n)).

3. R,(n) =1, R(n) = O(S(n)) and R,(n) = O(S(n)).

Proof. We first prove that S(n) < n x U(n): The data structure
DS can be built by performing n insertions into an initially empty

structure. In this way we spend an amount of time that is bounded

above by U(1) + U(2) +---+U(n) < nx U(n). (This inequality holds
because we assume our complexity measures to be non-decreasing.)

During these insertions we have built a structure of size S(n), and,
hence, we have spent at least S(n) time. Therefore, S(n) <n x U(n).

The given update procedure of the shadow administration takes one

disk access, and an amortized transport and computing time that are

bounded by

S(m)
o(+ aH

Clearly, m < n+ S(n)/U(n). We saw that S(n) < n x U(n).
Therefore, m < 2n. Since we assume our complexity measures to be

smooth, we have S(m)/S(n) = O(1). Hence, the amortized transport
and computing time of the shadow administration are both bounded

by O(U(n)).
The size of the shadow administration is bounded by O(S(n)) for

the structure CSH, and O(S(n)/U(n)) for the sequence of updates. So
in total, we need O(S(n)) space in secondary memory.

154 8. The reconstruction problem

The reconstruction algorithm takes one disk access, O(S(n)) trans-
port time and an amount of computing time. To store the informa-

tion in the correct positions takes O(S(n)) computing time. The fi-
nal updates take an amount of computing time that is bounded by

(S(n)/U(n)) x U(n'), where n’ is the maximal number of objects that
are represented by DS during these updates. In the same way as above,

we have n’ < 2n. Since our complexity measures are smooth, the final

updates take O(S(n)) computing time. Hence the amount of computing
time in the complete reconstruction algorithm is bounded by O(S(n)).
O

In this theorem, the update time bounds are amortized. It is possi-

ble to turn these bounds into worst-case bounds. Then, the number of

disk accesses for an update increases to 2. We do not prove this here,

because in Section 9.3 we give a general worst-case technique that gives

an even better result.

Chapter 9

General approaches

9.1 Order decomposable set problems

For the data structures solving order decomposable set problems, as

defined in Section 2.5, efficient shadow administrations can be con-

structed.

Let PR be an M(n)-order decomposable set problem, and let V be
a set of cardinality n, for which we want to solve PR. As in Section 2.5,

we assume that the answer PR(V) takes O(M(n)) space to store. (In
the examples we consider, this is indeed the case. The assumption is,

however, not crucial. See [41, 42].)
Let f(n) be a smooth integer function, such that 1 < f(n) < n.

Partition the ordered set V = {pi < po <... < Dn} into subsets Vi =

{P1,---5Pr(n)}, Vo = {Pp(n)415-- +1 Pag(n)}, etc. Let DS be the dynamic
data structure of Section 2.5 that maintains the answer PR(V). Recall
that we store each set V; in a binary search tree 7;. The roots of the

T;’s are stored in the leaves of a binary search tree T. Each node v of

T stores the answer to PR for the subset of V represented by v.

Consider this structure DS. Clearly, if we have all trees 7; and all

answers PR(V;), we can build the rest of the data structure DS very
fast: We only have to merge the answers to obtain the tree T with

the partial answers in its nodes. This leads to the following shadow

administration.

The shadow administration: The structure CSH consists of the

155

156 9. General approaches

trees T;, and the answers PR(V;) to the set problem PR for the subsets
V;. Since the shadow administration consists only of parts of the data

structure DS itself, we do not need the structures SH and INF. We

reserve in secondary memory consecutive blocks, starting at block 0,

such that each block can contain one answer PR(V;) and one tree T;,
together with information about their positions in main memory, for a

set V; of cardinality at most 2f(n). Then we store in each such block
an answer PR(V;) and the corresponding tree T;. In the data structure
DS' itself, we store in each leaf of the tree T—the leaves contain the

roots of the trees T;—the address of the block in secondary memory

that contains the corresponding structures T; and PR(V;).

The update algorithm: If after an update the data structure is

not rebuilt, only one tree T; and one answer PR(V;) will have changed
and, hence, have to be transported to secondary memory. Note that

we know from the update of the data structure, which 7; and which

PR(V;,) are changed. Also we know the position in secondary mem-
ory where these changed structures have to be written. Otherwise, if

the data structure is rebuilt, we just transport the entire new shadow

administration to secondary memory.

The reconstruction algorithm: To reconstruct the data struc-

ture, we transport the shadow administration to main memory, and we

put all information in the correct positions. Then we rebuild the tree

T that stores the partial answers in its nodes, by merging the partial

answers in a bottom-up fashion: For each node v, we copy the answers

stored in its two sons, and we merge them to obtain the answer for v.

This leads to the following theorem. See Section 2.5 for the nota-

tions.

Theorem 9.1.1 Let f(n) be a smooth integer function, 1 < f(n) <n.
For the data structure DS, solving an M(n)-order decomposable set

problem, there exists a shadow administration, with performances:

1. S'(n) = O(n + (n/f(n)) x M(F(n))).

2. U;(n) = 1 and the amortized values of U.(n) and U;,(n) are both

bounded by O(f(n)+M(f(n))+n/f(n)+(n/(F(n))?) x M(f(n))).

9.1. Order decomposable set problems 157

8 R.(n) = 1, Ri(n) = O(n + (n/f(n)) x M(f(n))) and R,(n) =

O(n + M'(n)).

Proof. The trees T; together have size O(n). Because of our assump-
tion, the answers PR(V;) together have size O((n/f(n)) x M(f(n))).
This proves the bound on S"(n).

If the data structure is not rebuilt, only one tree J; and one answer

PR(V;) are transported to secondary memory in an update. These two

structures T; and PR(V;) are stored in one block. So in that case,
the update of the shadow administration takes one disk access and

O(f(n)+M(f(n))) transport and computing time. If the data structure
is rebuilt, the entire file in secondary memory is also rebuilt. This takes

one disk access and O(S’(n)) transport and computing time. This
happens, however, at most once every 2(f(n)) updates. This leads to
the bounds on the amortized update time.

Consider the reconstruction algorithm. It takes one disk access and

O(S'(n)) transport and computing time to transport the shadow ad-
ministration to main memory, and to put all information in the correct

positions. The rebuilding of the tree T together with its partial answers

takes O(M'(n)) computing time. Since (n/f(n)) x M(f(n)) < M'(n),
the reconstruction computing time is bounded by O(S’(n) + M’(n)) =
O(n+ M'(n)). O

Now consider an O(n)-order decomposable set problem. Let f(n) =
[n/logn]. Then, by Corollary 2.5.1, there exists a dynamic data
structure for this problem, with performances S(n) = O(nloglogn),
P(n) = O(nlogn), Q(n) = O(1), and U(n) = O(n), where the latter
bound is amortized. Theorem 9.1.1 leads to

Theorem 9.1.2 For the data structure solving an O(n)-order decom-
posable set problem, there exists a shadow administration with perfor-

mances:

1. S'(n) = O(n).

2. U,(n) = 1 and the amortized values of U.(n) and U;,(n) are both
bounded by O(n/logn).

3. R,(n) =1, R,(n) = O(n) and R.(n) = O(nloglog n).

158 9. General approaches

So again we have an example where the size of the shadow admin-

istration is asymptotically less than that of the data structure itself.

Also, the reconstruction computing time is asymptotically less than

the building time of the data structure.

An example of an O(n)-order decomposable set problems is the 3-
dimensional convex hull problem: Two 3-dimensional convex hulls that

are separated by a plane can be merged in linear time. See Preparata

and Hong [46]. References to other examples have been given in Sec-
tion 2.5.

9.2 Decomposable searching problems

As mentioned already in Section 2.4, there exist several techniques

to dynamize static data structures that solve decomposable searching

problems. Many of these techniques can be generalized to shadow ad-

ministrations. We illustrate this by Bentley’s logarithmic method, that

was given in Section 2.4. In [56], other generalized techniques can be
found.

Let DS be a static data structure for the decomposable searching

problem PR. Let SH, CSH and INF form a shadow administration for

DS. Note that we assume that S(n)/n, S’(n)/n, P.(n)/n and R,(n)/n
are non-decreasing. Also we assume that the structure SH is not par-

titioned into parts. The reason for this latter assumption will be clear

later.

The logarithmic method: Let V be a set of n objects, for which

we want to solve the problem PR. As in Section 2.4, we write n in the

binary number system, i.e., n = Yjs9 a;2", where a; € {0,1}. Then we

partition the set V into subsets Vo, Vi, Vo, etc., such that either V; is

empty or |V;| = 2°.
Our semi-dynamic data structure DS’ consists of static structures

DS; of type DS, one for each non-empty set V;. The insert algorithm

and the complexity of DS’ are given in Section 2.4.

The shadow administration we make for this semi-dynamic data

structure DS’ looks as follows. For each non-empty set V; we make a

shadow administration SH;, CSH; and INF ;. The structures CSH; are

9.2. Decomposable searching problems 159

stored in secondary memory in consecutive blocks, starting at block 0,

in decreasing size. That is, the file in secondary memory contains (in

this order) the copy CSH; representing the largest non-empty set Vj,

then the copy CSH; representing the second largest non-empty set Vj,

etc. At the end of the file, the copy CSH; representing the smallest

non-empty set Vj; is stored. As usual, we store in secondary memory

with each piece of information the address of the corresponding piece

in main memory. Also we store in main memory for each structure SH;

the address of the beginning of its copy CSH;.

The insert algorithm of the shadow administration: Suppose

we insert object p into the set V. Let 7 be the minimal index for which

a; = 0. We discard the structures SH; and INF; for 7 =0,1,...,7—1.

Let Vi = VoUVYU...U V1 U {pp}; Vo = Me... = Vin c= 0.
Note that |V;| = 2°. We build additional structures SH; and INF;
for this new set V;. Then we transport a copy CSH; of the resulting

structure SH;, together with the main memory addresses, to secondary

memory. This copy is stored in the blocks containing the copies for the

old sets Vo, Vi, ..., Vj-1-—which are stored at the end of the file—and

in some new blocks at the end of the file. (Since we transport a copy

of the entire structure SH; to secondary memory, there is no reason to

partition it into parts. This explains why we assumed that the shadow

administration SH is not partitioned.)

The reconstruction algorithm: To reconstruct the structures,

we transport the copies CSH; to main memory, and we store the infor-

mation in the correct positions. Then each copy C'SH; takes over the

role of the destroyed SH;, and we reconstruct the structures DS; and

INF;.

The following theorem gives the complexity of the shadow admin-

istration for DS". In this theorem, S’(n), P.(n) and R,(n) denote the
complexity of the structures SH, CSH and INF.

Theorem 9.2.1 For the semi-dynamic data structure DS", solving a

decomposable searching problem, there exists a shadow administration,

with performances:

160 9. General approaches

1. The storage is bounded by O(S'(n)).

2. An insertion takes one disk access; an amortized transport time of

O(S'(n)/n) if S'(n)/n!*¢ is non-decreasing for some € > 0, and
O((S'(n)/n) x log n) otherwise; and an amortized computing time
of O(P.(n)/n) tf P.(n)/n't* is non-decreasing for some € > 0, and
O((P.(n)/n) x log n) otherwise.

3. Reconstruction takes one disk access, O(S'(n)) transport time,
and O(R,(n)) computing time.

Proof. The storage required by the additional structures is bounded

by

i>0
O (= ay 0) =O (= a2! s/n) = O(S"(n));

since we assumed that S’(n)/n is non-decreasing. Reconstruction takes

one disk access, O(S"(n)) transport time, and 59 a;R,(2') = O(R-(n))
computing time. So we are left with the insertion time. The given insert

algorithm takes one disk access, O(S’(2')) transport time and O(P,(2'))
computing time, for some integer 7, 0 <7 < logn. We derive an upper

bound on the amortized insert complexity.

Suppose we start with an empty set V, and consider a sequence of

n insertions. Let n; be the number of times that additional structures

for a set of cardinality 2¢ are built. Each object is built at most once in

a structure representing 2’ objects. (With an insertion, an object in set

V;, 0 <j <i, moves to V;, which has a higher index). Hence 2'n; < n.
So the total transport time required for these n insertions is bounded

by

O (s ny sa) =O (> > sia ⋅

We have proved that the amortized transport time for an insertion

is bounded by O(37°3" $"(2*)/2°). {From this it is easy to prove the
bounds claimed in the theorem. In the same way, it can be shown

that the amortized computing time for an insertion is bounded by

O(28)" P.(2*)/2). This completes the proof. O

9.2. Decomposable searching problems 161

As an illustration of the logarithmic method, let PR be the or-

thogonal range searching problem in the plane, which is indeed de-

composable. In Theorem 8.3.2, we saw that there is a data struc-

ture DS for this problem—a range tree with slack parameter kK—with

performances P(n) = O(nlogn), S(n) = O((nlogn)/k) and Q(n) =
O((logn)?2*/k). Now apply Theorem 2.4.1. Then we get a semi-
dynamic data structure DS", with performances S(n) = O((nlogn)/k),
Q(n) = O((logn)32*/k), and I(n) = O((logn)?), where the latter
bound is amortized.

The shadow administration SH for the data structure DS consists of

an array that contains the points represented by DS ordered according

to their y-coordinates. The copy CSH of the structure SH is stored in

secondary memory as one part. We do not use a structure INF.

The complexity of these additional structures is given by S’(n) =
O(n), P.(n) = O(nlogn) and R,(n) = O((nlogn)/k), where the bound
for R.(n) follows from Theorem 8.3.2.

Now apply Theorem 9.2.1. Note that if we build a shadow admin-

istration of size 2° after an insertion, we merge sorted arrays of size

2°,2',...,2*-1. This merging can be done in O(2*) time. Therefore,
we may apply Theorem 9.2.1 with P.(n) = O(n). This leads to the
following theorem.

Theorem 9.2.2 For the semi-dynamic data structure DS", solving the

orthogonal range searching problem in the plane, there exists a shadow

administration, with performances:

1. The storage is bounded by O(n).

2. An insertion takes one disk access, and an amortized transport

and computing time of O(logn).

3. Reconstruction takes one disk access, O(n) transport time and
O((nlogn)/k) computing time.

Note that in this example, the data structure DS" is less efficient

than the dynamic version of the range tree (see Theorem 8.3.2): The
query time increases by a factor logn. Also, no deletions are possible.

The usefulness of the logarithmic method, however, is in the complex-

ity of the shadow administration: An insertion requires only one disk

162 9. General approaches

access, and an amortized transport and computing time of O(logn).

Compare this to Theorem 8.3.3, where an insertion can cost 3 disk

accesses, but only O(1) transport time.

9.3. A general technique

9.3.1 Introduction

Let DS be a dynamic data structure of size Sn), having an update time
U(n). In Subsection 8.3.2, we gave a technique, in which we transport

with an update the object, together with information whether it con-

cerns an insertion or a deletion, to secondary memory. After S(n)/U(n)
updates, we transport a copy of the up-to-date data structure to sec-

ondary memory. In this way, the shadow administration is updated

at the cost of one disk access and an amortized amount of O(U(n))
transport and computing time.

Let C(n) denote the amount of data that is changed in DS in an
update. Then clearly, C(n) < U(n). In this section, we reduce the
update transport time of the shadow administration to O(C(n)). The
idea is to transport with each update the (at most) C(n) changed entries
in the data structure DS, together with their addresses, to secondary

memory. These changed entries and their positions are stored in one

block at the end of the file. To reconstruct the data structure DS,

we transport the file from secondary memory to main memory, and we

perform the most recent updates. Since we know the positions of the

entries that have to be changed in these updates, together with the

updated entries themselves, each update can be performed in O(C(n))
time.

This is the main idea of the general technique of this section. In

order to get a more general result, we apply this idea to the shadow

administration SH, instead of to DS.

Let DS be a dynamic data structure and let SH and INF be some

corresponding shadow administration. We denote the size of SH by

SsH(n), the size of INF by Siyr(n), the total update computing time
of SH and INF by U,(n), and the computing time needed to reconstruct

9.3. A general technique 163

the structures DS and INF from SH by R,(n). Let C(n) be the amount
of data that is changed in an update in SH. We assume that all these

complexity measures are smooth and non-decreasing.

We show how to implement these structures, such that the entire

shadow administration can be updated in two disk accesses, O(U.(n))
computing time and O(C(n)) transport time. These bounds are worst-
case bounds. Also, the total size of the additional structures is bounded

by O(Ssz(n) + Srvr(n)), and reconstruction takes three disk accesses,
O(Ssx(n)) transport time, and O(R.(n)) computing time. This result
is obtained in two steps. We first give an amortized solution. Then we

turn the amortized bounds into worst-case bounds.

We need the following lemma.

Lemma 9.3.1 The complexity measures introduced above satisfy

1. C(n) < U,(n).

2. Ssu(n) <n x C(n).

Proof. To update SH, we spend at most U,(n) time. In this update,
the amount of data that is changed can never be greater than U,(n).
Therefore, C(n) < U.(n). We can build the structure SH, by perform-
ing n insertions into an initially empty structure. In this way, the total

size of the changes is at most C(1) + C(2) +---+ C(n) <n x C(n).
During these insertions, we have built a structure of size Ssy(n), and
hence an amount of at least Sg7(n) data is changed. This proves that
Ssu(n) <n x C(n). O

9.3.2 An amortized solution

The structures: Let m be the initial number of objects represented by

the data structure DS. We store DS and the corresponding additional

structures SH and INF in main memory. In secondary memory we

store—in consecutive blocks, starting at block 0—the copy CSH of SH.

This copy CSH contains with each piece of information the address of

the corresponding piece in main memory. We also store in secondary

memory an initially empty list UF. (UF stands for update file.) This

list is positioned in the block “next to” CSH.

164 9. General approaches

The update algorithm: Consider a sequence of Sigz(m)/(2C(m))
updates. Each update in this sequence is performed, in main mem-

ory, on the structures DS, SH and INF. After an update of the

structure SH, we send the addresses of all changed entries of SH, to-

gether with the new contents of these entries, to secondary memory.

These changes—of total size O(C(n)), where n is the current number
of objects—are stored in a new block at the end of the list UF. The

structure CSH is not affected during the updates.

After S's7(m)/(2C(m)) updates have been performed in this way, we
transport a copy—that is called CSH again—of the up-to-date struc-

ture SH, together with the addresses in main memory, to secondary

memory. This copy CSH is stored in consecutive blocks, starting at

block 0, and it replaces the old structures CSH and UF. If the size

of the new copy CSH is less than the total size of the old CSH and

UF, we make the blocks at the end of the file, that contain the old

information, empty. We also initialize in secondary memory an empty

list UF in the block “next to” the new CSH. Then we continue in the

same way, now with a sequence of Ssy(m’')/(2C(m’)) updates, where
m’ is the number of objects at this moment.

The reconstruction algorithm: To reconstruct the structures,

we transport CSH and UF to main memory, where we store CSH

in the correct locations using the addresses. Then pointers in CSH

indeed “point” to the correct objects. Next we carry out the at most

Ssu(m)/(2C(m)) updates using the list UF. (This list gives us the
addresses of the entries in CSH that have to be changed, and the new

contents of these entries.) After these updates, the resulting structure

CSH contains the up-to-date shadow administration. Hence it can take

over the role of SH. Finally, we reconstruct from SH the structures DS

and INF. Then all information is reconstructed, and we can proceed

with answering queries and performing updates.

Theorem 9.3.1 Let SH and INF be a shadow administration for the

dynamic data structure DS, with complexity Ssy(n), Sinr(n), U-(n),
R.(n) and C(n). We can implement these structures such that the
resulting shadow administration

1. has size O(Ssy(n) + Sivr(n)),

9.3. A general technique 165

2. can be updated in one disk access, an amortized computing time

of O(U.(n)), and an amortized transport time of O(C(n)).

The structures DS, SH and INF can be reconstructed in one disk ac-

cess, O(Ssx(n)) transport time and O(Ssy(n)+R,(n)) computing time.

Proof. First note that all information in secondary memory is stored

in consecutive blocks, always starting at block 0. In particular, there

are no gaps. Therefore, the amount of space used in secondary mem-

ory is proportional to the total size of the structures CSH and UF.

The size of CSH, together with the corresponding addresses in main

memory, is equal to O(S'sy(m)), where m is the number of objects at
the beginning of the sequence of updates. During this sequence, n—

the current number of objects—satisfies n < m+ Ssy(m)/(2C(m)).
It follows from Lemma 9.3.1, that n < 3m/2. Similarly, n > m/2,
and hence n = O(m). Since our complexity measures are assumed to
be smooth, we have C(n) = O(C(m)). Hence in each update we add
O(C(n)) = O(C(m)) data to the list UF. It follows that the size of UF
is bounded by (Ssz(m)/(2C(m))) x O(C(m)) = O(Ssx(m)). There-
fore, the total amount of space used in secondary memory is bounded

by O(Ssx(m)) = O(Ssx(n)). The amount of space used in main mem-
ory by the shadow administration is bounded by Ssy(n) + Sivr(n).
This proves the bound on the space complexity.

It follows from the given algorithm that the number of disk accesses

in an update is equal to one. The amortized transport time for an

update is bounded by

O(Ssu(m'))
Ssu(m)/(2C(m))

O (com + = O(C(n)),

where m’ is the number of objects at the end of the sequence of updates.

(Note that n = O(m) = O(m’).) Similarly, the amortized computing
time for an update is bounded by

O(Ssu(m’))
Ssu(m)/(2C(m))

Here we have used Lemma 9.3.1.

O (ao + = O(U,(n) + C(m)) = O(U,(n)).

166 9. General approaches

In the reconstruction algorithm, it takes one disk access and O(Ssz(n))
transport time and computing time to transport CSH and UF to main

memory and to store CSH in the correct positions. Each update from

the list UF takes O(C(m)) computing time. It follows that all updates
from UF together take an amount of computing time that is bounded

by O((Ssux(m)/C(m)) x C(m)) = O(Ssxy(m)). Finally, it takes R.(n)
computing time to reconstruct the structures DS and INF from the

up-to-date structure C'SH. Hence, the entire reconstruction algorithm

takes one disk access, O(S'sy(n)) transport time and O(Ssy(n)+R,(n))
computing time. O

9.3.3. A worst-case solution

In this subsection, we assume that the update computing time U,(n)

of the structures SH and INF, and the amount of data C(n) that is
changed in SH are worst-case bounds. We turn the amortized bounds

of the preceding subsection into worst-case bounds. The idea is to

spread out the transport of the copy of SH over a number of updates.

The technique is related to the global rebuilding technique given in

Overmars [42].

The structures: Let m be the number of objects that are initially

represented by the data structure DS. We store in main memory, the

structure DS and two copies of each of the corresponding additional

structures SH and INF. We denote these copies by SH,, INF,, SH»2

and INF». In secondary memory we store—in consecutive blocks, start-

ing at the block “next to” block 0—a copy CSH, of the structure SH.

Of course, this copy CS'H, contains with each piece of information the

address of the corresponding piece in main memory. In block 0, we

store the addresses of the first and the last block of the segment that

contains CS'H,. Initially, all structures are up-to-date. We initialize in

main memory an empty list L.

To initialize the process, we perform an initial stage, that consists

of the first S'sz(m)/(2C(m)) updates. This stage is split in two parts.
Part 1 of the initial stage: This part consists of the first Sy (m)/(4C(m))

updates. These updates are performed on the structures DS, SH, and

9.3. A general technique 167

INF. With each update, we store the object, together with informa-

tion whether it concerns an insertion or a deletion, at the end of the

(main memory) list L.
Furthermore, with each update, we do the following. First, we col-

lect the changed entries in SH,, together with their addresses. These

changed entries become a part of the update file UF. Next consider

the structure SH». This structure has size Ss7(m). Now with this
update we collect a part of SH», together with their addresses, of size

SsH (m)

Ssu(m)/(4C(m))
This part becomes a part of the copy CSH»2. We transport to secondary

memory, the part of UF, and the part of CSH». These parts are stored

in two consecutive blocks at the end of the file. We also replace block

0 by a new block 0 containing the addresses of the first and the last

block of the file. Note that during these updates, the structures SH»

and INF» cannot be affected. Also, after this part of the initial stage,

the entire copy CS'H» has been transported to secondary memory.

After Part 1: After the first part of this initial stage, main memory

contains an up-to-date data structure DS, up-to-date structures SH,

and INF), a list L of the updates performed so far, and structures SH»

and INF» that store the objects that were present Sigz(m)/(4C(m))
updates ago. Secondary memory contains structures CSH, and CSH»2

that store the objects that were present S'sz(m)/(4C(m)) updates ago,
and a list UF, of the changes of the Ssq(m)/(4C(m)) most recently
performed updates. The structure C'SH, is stored in consecutive blocks.

The structures UF, and CSHp2 are also stored in consecutive blocks,

but mixed up together.

Part 2 of the initial stage: This part consists of the final Sg4(m)/(4C(m))
updates. We perform these updates on the structures DS, SH, and

INF,. In order to make the structures SH» and INF» up-to-date, we

perform with each update, two updates from the list LZ. Then we re-

move these two updates from L, and we add the actual update at the

end of it. (Note that the updates have to be performed in chronological

order, since one object can be inserted and deleted several times.)

Also, with each update, we do the following. Again we collect the

changed entries in SH,, together with their addresses. These changed

= O(C(m)).

168 9. General approaches

entries become a part of UF,. We also collect the changed entries—

that are caused by two updates—in SH», together with their addresses.

These changes become a part of the update file UF. We transport to

secondary memory, the part of UF, and the part of UF2. Again, these

parts are stored in two consecutive blocks at the end of the file. Finally,

we update block 0.

After Part 2: After the second part of this initial stage, main

memory contains up-to-date structures DS, SH,, INF,, SH2 and INF»,

and an empty list L. Secondary memory contains structures CSH, and

CSH> that store the objects that were present before the initial stage,

and lists UF, and UF», that contain the changes that were made in

SH, and SH» during the initial stage. The structure CSH, is stored in

consecutive blocks. The structure CSH» and the first half of UF, are

stored mixed up in consecutive blocks. Also, the structure UF, and

the second half of UF are stored in consecutive blocks, again mixed

up.

The reconstruction algorithm: During the initial stage, recon-

struction can be done as follows. We transport all information—that is

stored in consecutive blocks, starting at the block next to block 0—to

main memory. (During the initial stage, we do not need block 0.) We

discard the structures CSH» and UF». We store CS, in the correct

positions in main memory, and we perform the most recent updates,

using the list UF,. Then C'SH, is up-to-date, and it takes over the role

of the destroyed SH,. Next, we reconstruct the information as it was

before the initial stage. That is, we make a copy SH2 of SH, and we

reconstruct the structures DS, INF, and INF». Finally, we transport

a copy of SH,, together with the addresses of the pieces of information,

to secondary memory. We store this copy again in consecutive blocks,

starting at the block next to block 0. In block 0, we store the addresses

of the first and the last block of the segment that store the copy of

SH,. Then all necessary information is reconstructed, and we are in

the same situation as before the initial stage. Now we can proceed

answering queries and performing updates.

After the initial stage: After this initial stage, we “discard” in

secondary memory the structure CSH,, that is stored in consecutive

9.3. A general technique 169

blocks at the beginning of the file. We do this by transporting to

secondary memory a new block 0, that stores the addresses of the new

first block of the file—which is the first block that stores information

from CSH»2—and the last block of the file. (The address of the last
block does not change.) Then, the structure UF, has no use anymore.

We do not, however, discard this update file UF, that is stored mixed

up with CSH» and UF». {From now on we write UF’, for this structure,

in order to distinguish it from the new structure UF, that is made in

the sequel. Note that at this moment the structures CSH». and UF»

contain enough information to reconstruct the other structures.

Now the periodic process of updating can start. The process is

similar to the initial stage.

Before the regular stage: At the start we have in main memory

up-to-date structures DS, SH,, INF,, SH2 and INF», and an empty

list ZL. Secondary memory contains a structure CSH» that stores the

objects that were present Ssz(m)/(2C(m)) updates ago, and lists UF’,
and UF, that contain the changes that were made in SH, and SH»

during the most recent Sig7(m)/(2C(m)) updates. The structure CSH»2
and the first half of UF‘, are stored mixed up in consecutive blocks.
Also, the structure UF, and the second half of UF, are stored mixed
up in consecutive blocks.

Let mo be the number of objects that are represented by DS at this

moment. Consider a sequence of S'gz(mo)/(2C(mo)) updates. Again,
we split this sequence in two stages.

Part 1 of the regular stage: The first Ssgz(7mp)/(4C(mo)) up-
dates are performed as follows. Each update is carried out on the

structures DS, SH» and INF2. With each update, we store the ob-

ject, together with information whether it concerns an insertion or a

deletion, at the end of the list L.

Also, with each update we collect the changed entries in SH», to-

gether with their addresses. These changed entries become a part of

UF >. We collect a part of SH,, together with their addresses, of size

Ssu(mpo)

Ssu(mo)/(4C(mo))

This part becomes a part of the copy CSH,. We transport to secondary

= O(C(m)).

170 9. General approaches

memory, the part of UF, and the part of CSH,. These parts are stored

in two consecutive blocks at the end of the file. We also replace block 0

by a new block 0 containing the addresses of the first and the last block

of the file. The entire copy C'SH, is transported to secondary memory,

during the first part of the regular stage.

After Part 1: After the first part of the regular stage, main mem-

ory contains up-to-date structures DS, SH» and INF%, a list L of the

updates of Part 1, and structures SH, and INF, that store the ob-

jects that were present at the beginning of Part 1. Secondary memory

contains a structure CSH» that stores the objects that were present

Ssu(m)/(2C(m)) + Ssu(mo)/(4C(mo)) updates ago, a structure CSH,
storing the objects that were present Ss (mo)/(4C(mo)) updates ago, a
list UF’, that stores information that is irrelevant now, and a list UF 2 of
the changes of the Sigx(m)/(2C(m)) + S'isx(mo)/(4C(mo)) most recent
updates. The structure CSH» and the first half of UF’, are stored mixed
up in consecutive blocks. The changes of the first Ss47(m)/(2C(m))
updates in UF, and the second half of UF are stored mixed up in
consecutive blocks. Finally, the structure CSH, and the rest of UF»,

are stored mixed up in consecutive blocks.

Part 2 of the regular stage: Part 2 consists of the final Ss (mo) /(4C(mo))
updates. These updates are performed in the same way as in Part 2

of the initial stage. (Interchange the indices 1 and 2.) The changes in
SH, are stored in secondary memory in the update file UF.

After Part 2: After this second part of the regular stage, main

memory contains up-to-date structures DS, SH,, INF,, SH2 and INF»,

and an empty list ZL. Secondary memory contains a structure CSH2

that stores the objects that were present Ssq(m)/(2C(m))+Ssx(mo)/(2C (mo))
updates ago, a corresponding list UF’, that stores the changes of these

updates, a structure CSH, storing the objects that were present Ssx (mo) /(2C(mo))
updates ago, a corresponding list UF, that stores the changes of these

updates, and finally an old list UF. The structures CSH», UF’, and
the first piece of UF'g are stored mixed up in consecutive blocks. The

structure CSH, and the second piece of UF» are stored mixed up in

consecutive blocks. Also, the structure UF, and the final piece of UF,

are stored mixed up in consecutive blocks.

The reconstruction algorithm: During this regular stage, re-

9.3. A general technique 171

construction can be done from the structures CSH» and UFo2, in a

similar way as during the initial stage. We first transport block 0 to

main memory. Then we know the addresses of the segment of blocks in

which the information is stored. We now transport this information to

main memory, and we reconstruct the information as it was before the

initial stage. After reconstruction, we transport a copy CSA, of SH,

together with the addresses of the pieces of information, to secondary

memory. We store this copy again in consecutive blocks, starting at

the block next to block 0. In block 0, we store the addresses of the first

and the last block of the segment that stores the copy CSH,.

After the regular stage: After the regular stage, we “discard”

in secondary memory the structures UF’, CSH» and the first piece of

UF >. Again, this is done by transporting to secondary memory a new

block 0, that stores the addresses of the new first block of the file—

which is the first block that stores information from CSH,—and the

last block of the file. (The address of this last block has not changed.)
Note that all “discarded” structures are stored in consecutive blocks, at

the front of the file, so this does not lead to gaps in secondary memory.

We end with in main memory up-to-date structures DS, SH,, INF 1,

SH» and INF», and an empty list L. Secondary memory contains a

structure CSH,, that contains the objects that were present S's (mo) /(2C (mo))
updates ago, and lists UF; and UF 2 that contain the changes that were

made in SH, and SH» during the most recent Ssy(mo)/(2C(mpo)) up-
dates. The structure CSH, and the first half of UF’ are stored mixed

up in consecutive blocks. Also, the structure UF, and the rest of UF 2

are stored mixed up in consecutive blocks.

It follows that we are in the same situation as before Part 1 of the

regular stage. Therefore, we can proceed performing updates in the

same way, now with a sequence of length S'sq(m’)/(2C(m’)), where
m' is the number of objects at this moment. (Of course, we have to

interchange the indices 1 and 2.)

Since we only add information at the end of the file in secondary

memory, and since we only remove information from the front of this

file, all structures in secondary memory are stored in consecutive blocks.

There are no gaps. Of course, if the structures are “moved too far to the

172 9. General approaches

right”, we can add information at the front, and remove information

from the end of the file. Note that we do not really remove informa-

tion in secondary memory, since the information remains stored in the

blocks. We can, however, use these blocks again, since they contain

information that is not needed for reconstruction. Block 0 contains

the necessary information where the current shadow administration is

stored. It follows that the amount of space we use in secondary mem-

ory is proportional to the total size of all blocks that store the current

shadow administration.

Theorem 9.3.2 Let SH and INF be a shadow administration for the

dynamic data structure DS, with complexity Ssy(n), Sinr(n), U-(n),
R.(n) and C(n). We can implement these structures such that the
resulting shadow administration

1. has size O(Ssy(n) + Sivr(n)),

2. can be updated in two disk accesses, O(U.(n)) computing time and
O(C(n)) transport time in the worst case.

The structures DS, SH and INF can be reconstructed in three disk

accesses, O(Ssx(n)) transport time and O(Ssy(n) + R-(n)) computing
time.

Proof. The theorem can be proved by carefully checking the given

algorithms. In the same way as in Subsection 9.3.2, it can be shown

that the integers n, m and mp satisfy n = O(m) = O(mpo). Note that
two disk accesses are required for an update: One for updating block

0, and one for transporting the two blocks to the end of the file. Also,

three disk accesses are required for reconstruction: One disk access for

block 0, one for the shadow administration, and one for transporting

the new shadow administration back to secondary memory. 0

We illustrate this theorem with an example. In Section 10.4, we will

see another example.

Consider a range tree with slack parameter k. See Definition 8.3.1.

As we saw in Theorem 8.3.2, in such a range tree, representing n

points in the plane, range queries can be solved in O((logn)?2*/k +

9.3. A general technique 173

t) time, if t is the number of reported answers. The structure has
size O((nlogn)/k), and can be built in O(nlogn + (nlogn)/k) time.
Here the first term is the time to sort the n points according to their

y-coordinates, whereas the second term is the actual building time.

Therefore, just as in Subsection 8.3.1, let the structure SH consist of a

list that contains the n points ordered according to their y-coordinates.

The structure INF consists of a balanced binary tree, that stores the

points in its leaves, also ordered according to their y-coordinates. Each

leaf of this tree contains a pointer to the corresponding point in the list.

The complexity of this shadow administration is given by Ssy(n) =
O(n), Sivr(n) = O(n), U-(n) = O(logn) and R,(n) = O((nlogn)/k).
Since an update changes only a constant amount of data in the sorted

list SH, we have C(n) = O(1). Now apply Theorem 9.3.2 to get:

Theorem 9.3.3 For a range tree with slack parameter k, there exists

a shadow administration

1. of size O(n).

2. that can be updated in two disk accesses, O(logn) computing time
and O(1) transport time in the worst case.

3. from which the range tree can be reconstructed in three disk ac-

cesses, O(n) transport time and O((nlogn)/k) computing time.

Compare this result to Theorems 8.3.3 and 9.2.2. In Theorem 8.3.3,

an update can take 3 disk accesses, whereas in Theorem 9.2.2, only

insertions are possible, at the cost of one disk access and an amortized

amount of O(logn) transport and computing time.

174 9. General approaches

Chapter 10

A union-find data structure

10.1 Introduction

Until now we have seen several techniques that apply to arbitrary

searching problems or to classes of searching problems that satisfy some

constraints. In this chapter we consider a specific problem, the Union-

Find Problem, and we design an efficient main memory data structure

for it. This structure is designed in such a way that a copy of it can

efficiently be maintained in secondary memory.

The Union-Find Problem is one of the basic problems in the theory

of algorithms and data structures. In this problem we are given a

collection of n disjoint sets Vi, V2,...,Vn, each containing one single

element, and we have to carry out a sequence of operations of the

following two types:

1. UNION(A, B,C): combine the two disjoint sets A and B into a
new set named C’.

2. FIND(x): compute the name of the (unique) set that contains x.

We require that the operations are carried out on-line, i.e. each

operation has to be completed before the next is known.

The union-find problem has many applications, and many algo-

rithms use the problem in some way as a subroutine. Examples are

algorithms for computing minimum spanning trees, solving an off-line

175

176 10. A union-find data structure

minimum problem, computing depths in trees and determining the

equivalence of finite automata. (See [2].)
The problem has received considerable attention. Tarjan showed in

[57] that a sequence of m UNION and FIND operations can be car-
ried out in total time O(ma(m+ n,n) +n) using O(n) space, where
a is a functional inverse of Ackermann’s function, which is a very, very

slow growing function. Furthermore, he introduced in [58] a machine
model—the Pointer Machine, see also Section 2.6—on which all known

important algorithms solving the union-find problem can be imple-

mented. Tarjan showed that on a Pointer Machine, any algorithm for

the union-find problem needs Q(ma(m-+n,n) +n) time for performing
m UNION and FIND operations. (See also [60].)

In this chapter we are interested in the single-operation time com-

plexity of the union-find problem. Until recently, only algorithms were

known having single-operation complexity Q(logn). That is, there is
always either a UNION or a FIND operation that needs Q(logn) time.
In [12], Blum gives a data structure of size O(n), in which each UNION
operation can be performed in O(k+log, n) time, and each FIND oper-

ation in O(log, 7) time. Here k is a parameter, possibly depending on n.

Blum also gives the following very general class B of data structures—

containing all implementations on Tarjan’s Pointer Machine:

The class G: Data structure in class B are linked structures that

are considered as directed graphs. The algorithms that use these data

structures for solving the union-find problem should satisfy the follow-

ing constraints.

1. For each set and for each element, there is exactly one node in the

data structure that contains the name of this set or the element.

2. The data structure can be partitioned into subgraphs, such that

each subgraph corresponds to a current set. There are no edges

between two such different subgraphs.

3. To perform an operation FIND(x), the algorithm obtains the
node v that contains x. The algorithm follows paths in the graph,

until it reaches the node that contains the name of the correspond-

ing set.

10.2. A variant of Blum’s structure 177

4. To perform a UNION or a FIND operation, the algorithm may

insert or delete any edge, as long as rule 2 is satisfied.

For structures in class B, the following theorem holds. For a proof,

the reader is referred to [12].

Theorem 10.1.1 (Blum) Let DS be any data structure from the class
B. Suppose that every UNION operation can be performed in O(k)
time. Then there is a FIND operation that needs time

Q logn

logk + loglogn } ©

As a corollary of this theorem we see that for each data structure

in class Bb, there is always either a UNJON or a FIND operation that

takes O(log n/ log log n) time.
We will first give a variant of Blum’s structure, having the same

complexity. That is, we give a structure of size O(n), in which each
UNION resp. FIND operation takes O(k + log, n) resp. O(log, 7) time.
Next, we adapt this structure such that each UNION operation can be

carried out in O(k) time, whereas the size of the structure and the time
for a FIND operation remain the same. This structure is in Blum’s

class B. Hence it follows from Theorem 10.1.1 that this structure is

optimal—in class B—if k = Q((logn)*) for some ¢€ > 0.
The improved data structure consists of a number of trees—each

set is stored in one such tree—and has the property that fora UNION

operation we only have to visit the roots of two trees, together with

their—at most k—direct descendants. Furthermore, a FIND opera-

tion does not change the structure. This property implies that we can

efficiently maintain a copy of the data structure in secondary memory.

10.2 A variant of Blum’s structure

Let V be a set of nm elements for which we want to solve the union-

find problem. That is, we want to maintain a partition of V under a

sequence of UNION and FIND operations, where initially each set in

the partition contains exactly one element. We store each set in the

partition in a UF (k)-tree, defined as follows.

178 10. A union-find data structure

Definition 10.2.1 Let & be an integer, 2< k <n. A tree T is called

a UF (k)-tree, if

1. the root of T has at most & sons,

2. each node in T has either 0 or more than & grandsons (a grandson

of a node v is a son of the son of v),

3. all leaves of T are at the same level.

As mentioned already, we store each set A in the partition of V ina

separate UF (k)-tree. The elements of A are stored in the leaves of the

tree. In the root, we store the name of the set, the height of the tree,

and the number of its sons. Each non-root node contains a pointer to

its father. Finally, the root of the tree contains a pointer to each of its

sons, and a pointer to an (arbitrary) leaf. Note that the root contains

at most k + 1 pointers. A UF (k)-tree storing a set of cardinality one,
has two nodes, a root and one leaf.

The Find-algorithm: To perform an operation FIND (a), we get
at constant cost the leaf containing element z+. Then we follow father-

pointers until we reach the root of the tree, where we read the name of

the set containing 2.

The Union-algorithm: To perform the operation UNION(A, B,C),

we get at constant cost the root r resp. s of the tree containing the set

A resp. B. We distinguish three cases.

Case 1. The trees containing A and B have equal height, and the

total number of sons of r and s is < k.

Assume w.l.o.g. that the number of sons of s is less than or equal to

the number of sons of r. We change the father-pointers from all sons of

$ into pointers to r, and we store in r pointers to its new sons. Next we

discard the root s, together with all its information. Finally, we adapt

in r the number of its sons and the name of the set.

Case 2. The trees containing A and B have equal height, and the

total number of sons of r and s is > k.

In this case we create a new root t. In this new root, we store two

pointers to r and s; a pointer to a leaf of the new tree (we can take

the corresponding pointer stored in r); the name of the new set C; the

10.2. A variant of Blum’s structure 179

height of the new tree, which is one more than the corresponding value

stored in r; and the number of sons, which is 2. In the old roots r and

s we discard all information, and we add pointers to their new father t.

Case 3. The trees containing A and B have unequal height.

Assume w.l.o.g. that the tree of B has smaller height than the tree

of A. We find in the tree of A a node v such that the subtree of v

has the same height as the tree of B. This node v can be found by

following the pointer from r to a leaf, and then by walking up in the

tree. Then we change the father-pointers from all sons of s into pointers

to v. (This guarantees that all leaves remain at the same level.) We
discard the root s, together with all its information. Finally, we adapt

the name of the set stored in r. Note that the height of the tree and

the number of sons of r does not change.

Theorem 10.2.1 Let k and n be integers, such that2<k <n. Using

UF (k)-trees, the union-find problem on n elements can be solved, such
that

1. each UNION takes O(k + log, n) time,

2. each FIND takes O(log, n) time,

3. the data structure has size O(n).

Proof. The time needed to perform a FIND operation is bounded

above by the height of a UF (k)-tree. It follows from Definition 10.2.1
that if level i in a UF (k)-tree contains any nodes, it contains at least
klt/2] of them. (Here the root is at level 0.) Since such a tree has
at most n leaves, its height is at most 1+ 2[log,n]. Hence a FIND
operation takes O(log, n) time in the worst case.

It is easy to see that the given UNJON-algorithm correctly main-

tains UF (k)-trees. Note that we can determine in constant time in
which of the three cases we are, since all relevant information for decid-

ing this is stored in the roots. Case 1 resp. 2 of the UNION-algorithm

takes O(k) resp. O(1) time in the worst case. In Case 3, it takes
O(log, 7) time to find the node v, whereas the rest of this case can
be carried out in O(k) time.

The size of a UF (k)-tree is linear in the number of its leaves, which
shows that the entire data structure has size O(n). O

180 10. A union-find data structure

10.3. An improved data structure

We saw in Section 10.2, that it takes O(k + log, 7) time to perform a
UNION operation on UF (k)-trees. In this time bound, the O(log, n)
term is due to the fact that in Case 3, we have to search the node v, the

subtree of which has the same height as the tree containing B. Clearly,

if we take instead of v an arbitrary son of the root of the tree of A, the

time for each UNION operation will be bounded by O(k). It remains
to prove then, however, that the heights of the trees do not increase.

Definition 10.3.1 Let & be an integer, 2<k <n. A tree T is called

an IUF(k)-tree (where the J stands for improved), if

1. the root of T has at most & sons,

2. each node in T has either 0 or more than k grandsons.

Again, we store each set A in the partition of V in a separate

IUF(k)-tree. The elements of A are stored in the leaves of the tree.
In the root, we store the name of the set, the height of the tree, and

the number of its sons. Also each non-root node contains a pointer to

its father, and the root contains pointers to all its sons. (Now we do
not need a pointer from the root to a leaf.)

Note that Definition 10.3.1 does not imply anymore that the heights

of these trees are bounded above by 1 + 2/log, 7], since the leaves do
not have to be positioned at the same level. The trees that are made by

the UNION-algorithm to be described below, however, do have heights

bounded by 1+ 2/log, n].

The FIND-algorithm for JUF(k)-trees is the same as for UF (k)-
trees.

The Union-algorithm: The operation UNION (A, B,C) is per-

formed as follows. Let r resp. s be the root of the tree containing the

set A resp. B. As before, we distinguish three cases.

Case 1’. The trees containing A and B have equal height, and the

total number of sons of r and s is < k. This case is handled in the same

way as Case 1 of Section 10.2.

10.3. An improved data structure 181

Case 2’. The trees containing A and B have equal height, and the

total number of sons of r and s is > k. This case is handled as Case 2

of Section 10.2.

Case 3’. The trees containing A and B have unequal height. As-

sume w.l.o.g. that the tree of B has smaller height than the tree of

A. Let v be an arbitrary son of r. Then we change the father-pointers

from all sons of s into pointers to v. The root s, together with all its

information, is discarded. Also, we adapt the name of the set stored in

r.

First note that the given algorithm correctly maintains [UF (k)-
trees. Furthermore, each UNION operation takes O(k) time, since in

Case 3’, the node v can be found in constant time. Also, the size of the

data structure is still bounded by O(n).

It remains to prove that the heights of the JUF(k)-trees, that are
made by the given UNJON-algorithm, are bounded by O(log, n). It
suffices to prove that an JUF(k)-tree has the same height as the corre-
sponding UF (k)-tree that stores the same set.

Suppose we are given a collection of n disjoint sets S1,So,..., Sn,

each containing one single element, and consider a sequence of UNION

and FIND operations. Let UF be the data structure, consisting of

UF (k)-trees, if we perform these operations according to the algorithm

of Section 10.2. Furthermore, let [UF be the data structure consisting

of IUF(k)-trees, where the operations are carried out as described in
the current section.

So if Uj-z Ai is a partition of the n elements at some moment in the

sequence of operations, there are two data structures. First, there is a

structure UF = {T;|i € I}, where each T; is a UF (k)-tree storing the
set A;. Also, there is a structure JUF = {T/|i € I}, where each T; is an
IUF (k)-tree storing A;. Now each UNION operation is performed—in
parallel—on both UF and IUF. (The purpose for doing this is to prove

the upper bound on the heights of [UF (k)-trees.)

Lemma 10.3.1 At each moment, the trees T; and T; have the same

height, and the roots of these trees have the same number of sons. To

perform a UNION operation, if we are in Case j for the structure UF,

we are in Case j’ for IUF, for j = 1, 2,3.

182 10. A union-find data structure

Proof. Initially, each tree T; and Tj contains two nodes, one root and

one leaf. Hence at the beginning the statement is true.

Then the lemma can easily be proved, using the following observa-

tion. Whether we are in Case 1, 2 or 3 of the UNION-algorithm for

the structure UF, depends only on the heights of the trees and on the

number of sons of the corresponding roots. The same holds for the

structure JUF. By checking the UNIJON-algorithms, it follows that a

UNION operation leaves the statement in the lemma invariant. 0

Theorem 10.3.1 Let k and n be integers, such that2<k <n. Using

IUF (k)-trees, the union-find problem on n elements can be solved, such
that

1. each UNION takes O(k) time,

2. each FIND takes O(log, n) time,

3. the data structure has size O(n).

Proof. We have seen already that a UNION operation takes O(k)
time, and that the size of the data structure is bounded by O(n). It
follows from Lemma, 10.3.1 and the proof of Theorem 10.2.1, that the

height of an [UF (k)-tree, made by the given UNION-algorithm, is at
most 1 + 2/log,n]. Hence each FIND operation takes O(log, n) time.
O

It is clear that the data structure JUF is contained in Blum’s class

B. Therefore, Theorems 10.1.1 and 10.3.1 yield the following corollary.

Corollary 10.3.1 The data structure of Theorem 10.3.1 is optimal in

Blum’s class B of structures for the union-find problem, for all values

of k satisfying k = O((logn)*) for some € > 0.

10.4 An efficient shadow administration

In this section we show how we can efficiently maintain a copy of the

data structure JUF of Theorem 10.3.1 in secondary memory.

10.4. An efficient shadow administration 183

First, we want to remark that the data structure JUF can be imple-

mented on a Pointer Machine. (See Section 2.6.) On a Pointer Machine,
no addressing of memory locations is possible. Therefore, to implement

this structure together with a copy in secondary memory, as we do now,

we need a Random Access Machine as main memory, because we have

to maintain in secondary memory the addresses of the entries in main

memory in which the information is stored.

We store a copy of the data structure JUF in secondary memory

as follows. We reserve a number of consecutive blocks of some prede-

termined size (see below), and we distribute the structure over these
blocks. Together with each indivisible piece of information we store

in secondary memory the address of the corresponding piece in main

memory, as usual.

Since the root of an JUF(k)-tree has at most & sons, the total size
of this root together with all its sons and all the information stored

in these nodes (i.e., pointers, name of the set, height of the tree and

number of sons), and all their addresses in main memory, is bounded

above by ck for some constant c. Also, there is a constant c’ such

that the size of the entire data structure JUF, together with all their

addresses, is at most c’n.

We reserve in secondary memory |(c’n)/(ck)] consecutive blocks of
size 2ck, starting at block 0. The copy of the data structure JUF will

be stored in these blocks. We call a block free if at least half of the

block is empty. The following lemma can easily be proved.

Lemma 10.4.1 Among the reserved blocks, there is always at least one

free block.

Initially we have n trees, each of them having one root and one leaf.

We store these trees in main memory. Copies of the trees are distributed

over the reserved blocks. For each tree, the root and its son, together

of course with their positions in main memory, are stored in the same

block. We store in main memory in the root of each tree, the address

of the block in secondary memory that contains the copy of this root.

Finally, we maintain in main memory a stack containing the addresses

of the free blocks. By Lemma 10.4.1, this stack is never empty. The

stack will only be used for updating the structure in secondary memory;

it is not used for reconstructing the data structure. Therefore it may be

184 10. A union-find data structure

destroyed in a crash. Note that the amount of space in main memory

remains bounded by O(n).
Since a FIND operation does not change the data structure, such

an operation does not affect the shadow administration.

A UNION operation is first performed on the structure in main

memory according to the algorithm of Section 10.3. Then the shadow

administration in secondary memory is updated. We take care that at

each moment the following holds:

Invariant: For each UF (k)-tree, the root and all its sons,
together with all the information stored in these nodes, and

all their positions in main memory, are stored in the same

block in secondary memory.

Clearly, this invariant holds initially. (In the sequel we shall not state

each time explicitly that if we put information in a block, we also store

with it its position in main memory. It is clear how this can be done.)

The Union-algorithm: The operation UNION (A, B,C) is per-

formed as follows. Let r resp. s be the root of the tree containing the

set A resp. B.

Case 1’. The trees containing A and B have equal height, and the

total number of sons of r and s is < k.

Assume w.l.o.g. that the number of sons of s is less than or equal to

the number of sons of r. In the block containing r we remove this root

and all its sons. (Note that we can read the address of this block in

the root r that is stored in main memory.) If this block becomes free,

we put its address on the stack. In the block containing s we do the

same. Next we take the address of a free block from the stack, and in

that block we add the root, together with its sons, of the new tree. If

this block remains free we put its address back on the stack. In main

memory, we store in the root of the new tree, the address of the block

containing its copy.

Case 2’. The trees containing A and B have equal height, and the

total number of sons of r and s is > k.

In the block containing r we remove this root, together with all the

information stored in it. If the block becomes free, we put its address

on the stack. In the block containing s we do the same. Then we add

10.4. An efficient shadow administration 185

the new root, together with its sons r and s and all the information

that these three nodes contain, to a free block, the address of which we

take from the stack. If this block remains free its address is put back

on the stack. In main memory we store in the new root the address of

the block containing its copy.

Case 3’. The trees containing A and B have unequal height.

Assume w.l.o.g. that the tree of B has smaller height than the tree

of A. In the block containing r we change the name of the set from A

to C. In the block containing s, we change the pointers of the sons of

s, and we remove the root s together with all its information. If this

block becomes free we put its address on the stack.

If we want to reconstruct the data structure JUF, we transport the

entire file to main memory, and we rebuild the stack of free blocks. Then

each indivisible piece of information of the data structure is stored in

the array location where it was before the information was destroyed.

This guarantees that each pointer “points” to the correct position in

main memory. This reconstruction algorithm takes one disk access and

an amount of O(n) transport time and computing time.
The following theorem summarizes the result.

Theorem 10.4.1 Let k and n be integers, such that2<k <n. For

the data structure of Theorem 10.3.1, solving the union-find problem

on n elements, there exists a shadow administration

1. of size O(n),

2. that can be maintained after a UNION operation at the cost of at

most three disk accesses, O(k) computing time and O(k) transport
time.

The data structure can be reconstructed at the cost of one disk access,

O(n) transport time and O(n) computing time.

Proof. The proof follows from the above discussion. 0

Remark. In the above shadow administration, a UNION operation

requires three disk accesses. Since each UNION operation takes O(k)
time, it is clear that such an operation changes only an amount of

186 10. A union-find data structure

O(k) data in the structure. Therefore, we can apply Theorem 9.3.2, to

get a shadow administration with the same complexity as that of the

above theorem, except that a UNION operation requires only two disk

accesses and reconstruction requires three disk accesses. The shadow

administration of Theorem 10.4.1, however, is easier to implement.

Chapter 11

Another approach: deferred

data structuring

In the solutions we have seen so far for the reconstruction problem, we

first completely rebuild the data structure DS and the corresponding

structures SH and INF, after a crash. Then we proceed with query

answering and performing updates. Hence, if the reconstruction time is

high, it takes a lot of time before we can proceed again. To avoid this

problem, we introduce another approach to the reconstruction prob-

lem. The idea is to maintain in secondary memory the objects that are

represented by the data structure DS. If we want to reconstruct this

data structure, we transport the objects to main memory. Then we

immediately continue with answering queries and performing updates.

The data structure is built “on-the-fly” during these operations. With

each operation, those parts of the data structure that do not exist at

that moment, but that are needed in the operation, are built. These

parts can then be used for future operations.

This technique of building a data structure is due to Karp, Motwani

and Raghavan [28, 35], who call it deferred data structuring, although

they do not apply this technique to the reconstruction problem. Their

motivation to design deferred data structures is to solve a sequence of

queries, where the length of the sequence is not known. They only give

static deferred data structures. The design of deferred data structures

for dynamic data sets in which insertions and deletions are allowed

concurrently with queries is stated as an open problem.

187

188 11. Deferred data structuring

In this chapter, we show that it is often possible to design dynamic

deferred data structures by using well-known dynamization techniques.

The ideas are illustrated by considering dynamic deferred structures for

the member searching problem. We show that deferred binary search

trees—if properly chosen—can be maintained as in the ordinary case,

i.e., by means of rotations. This observation was made, independently,

by Ching and Mehlhorn [16]. We also adapt Lueker’s partial rebuilding
technique, to get another maintenance algorithm for deferred search

trees. Finally, we give a trivial solution, based on the ideas of decom-

posable searching problems and global rebuilding. See Overmars [42]
for the notion of global rebuilding.

In Section 11.3, we show how deferred data structures can be used

to solve the reconstruction problem.

11.1 The static deferred binary search tree

We first recall the static solution of [28] for the member searching prob-
lem.

Let V be aset of n objects drawn from some totally ordered universe

U. We are asked to perform—on-line—a sequence of member queries.

In each such query we get an object q of U, and we have to decide

whether or not gE V.

The algorithm that answers these queries builds a binary search

tree as follows. (In this section, we store the objects in the nodes of the

tree.) Initially there is only the root, containing the set V. Consider

the first query g. We compute the median m of V, and store it in the

root. Then we make two new nodes u and v. Node u will be the left

son of the root, and we store in it all objects of V that are smaller than

m. Similarly, v will be the right son of the root, and we store in it the

objects of V that are larger than m. Then we compare the query object

q with m. If q =m we know that q € V, and we stop. Suppose gq < m.

Then we proceed in the same way with node u. That is, we find the

median of all objects stored in u, we store this median in u, we give

u two sons with the appropriate objects, and we compare q with the

new median. This procedure is repeated until we either find a node in

which the “local” median is equal to qg, in which case we are finished,

11.1. The static deferred binary search tree 189

or end in a node storing only one object not equal to qg, in which case

we know that q ZV.
The first query takes O(n + n/2+n/4+---) = O(n) time, since in

each node we have to find a median, which takes linear time [11, 49].
During this first query, however, we have built some structure that can

be used for future queries: In the second query, we have to perform

only one comparison in the root to decide whether we have to proceed

to the left or right son. In fact, in any node we visit that is visited

already before, we spend only one comparison.

This is the general principle in deferred data structuring: If we do

a lot of work to answer one query, we do it in such a way that we can

take advantage from it in future queries.

We now describe the algorithm in more detail. (The notations we
introduce here are used in the rest of the chapter.) Each node v in the
structure contains a list L(v) of objects, two variables N(v) and key(v),
and two pointers. Some of these values may be undefined. The value

of N(v) is equal to the number of objects that are stored in the subtree
with root v. The meaning of the other variables will be clear from the

algorithms below. (Strictly speaking, the variable N(v) is not needed
in the static case.)

Initialization: At the start of the algorithm there is one node, the

root r. The list L(r) stores all objects of V. (This list is not sorted.)
The value of N(r) is equal to n, which is the cardinality of V, and the
value of key(r) is undefined.

Expand: Let v be a node having an undefined variable key(v). In
this case, the list L(v) will contain at least 2 objects, and the value
of N(v) will be equal to |Z(v)|. The operation expand is performed as
follows:

First we compute the median m of L(v), and we determine the sets
V, = {x € L(v)|x < m} and V2 = {x € L(v)|z > m}. Then we set
key(v) := m and L(v) := @. Next we make two new nodes 2; and vp.
Node v, will be the left son of v, so we store in v a pointer to v,. If

|Vi| > 1, we set L(v1) := Vi, N(vi) := [Vil and key(v1) := undefined.
If |Vi| = 1, we set L(v,) := 0, N(v,) := 1 and key(v,) := s, where s
is the (only) object of Vi. (Of course, if Vi = 0, we do not create the
node v;.) Similarly for v2.

190 11. Deferred data structuring

Answering one query: Let qg be a query object, i.e., we want

to know whether or not g € V. Then we start at the root, and we

follow the appropriate path in the deferred tree, by comparing q with

the values of key in the nodes we encounter. If one of these key values

is equal to q we know that q € V and we are finished.

If we encounter a node v having an undefined variable key(v), we
expand node v, as described above. Then we proceed our query by

comparing q with the value of key(v). If ¢ = key(v), we know that
q € V, and we can stop. Otherwise, if g < key(v), we expand the left
son of v, and we continue in the same way. If this left son does not

exist, we know that q ¢ V. Similarly, if g > key(v).

The following theorem gives the complexity of the algorithm. For a

proof, see [28] or Section 11.2. (The proof in Section 11.2 is a general-
ization of the proof in [28] to the dynamic case.)

Theorem 11.1.1 A sequence of k member queries in a set of n objects

can be solved in total time O(nlogk) if k <n, and O((n +k) logn) if
k>n.

In [28], it is shown that this theorem gives an optimal result: The
number of comparisons needed to perform & member queries in a set

of size n is O((n + k) x logmin(n, k)). In fact, this lower bound even
holds in the off-line case, i.e., in case the queries are known in advance.

11.2 Three dynamic solutions

We only consider sequences of at most n queries, insertions and dele-

tions. Clearly, this suffices, since after n operations we will have spent

already Q(nlogn) time. Therefore, in the n-th operation, we can build
a complete data structure—in O(nlogn) time—and continue in the
standard non-deferred way.

Consider the deferred tree of the preceding section. At some point

in the sequence of queries, the structure consists of a number of nodes.

Take such a node v.

11.2. Three dynamic solutions 191

Suppose key(v) is defined. Then the list L(v) is empty, the value of
N(v) is equal to the number of objects that are stored in the subtree
with root v, and the value of key(v) is equal to the median of the objects

stored in this subtree.

If key(v) is undefined, node v contains a list L(v) storing a subset of
V—those objects that “belong” in the subtree of v—and the variable

N(v) has the value |L(v)|, which is at least two.

An insertion algorithm: Suppose we have to insert an object 2.

Then we start searching for x in the deferred tree, using the key values

stored in the encountered nodes. In each node v we encounter, we

increase the value of N(v) by one, since the object x has to be inserted

in the subtree of v.

If we end in a leaf, we insert x in the standard way, by creating a

new node for it, and we set the variables L, N and key to their correct

values. (A node v in the deferred tree is called a leaf if N(v) = 1. So
a node that is not expanded—such a node does not have any sons—is

not a leaf.) Note that if x is already present in the deferred tree, we

will have encountered it. In that case, we have to decrease the values

of the increased N(v)’s by one.

Otherwise, we reach a node w with an undefined key value. Since we

have to check whether x is already present in the structure, we have to

walk along the list L(w). (The list L(w) is not sorted!) If x is present,
we decrease the increased N(v)’s. Otherwise, if x is a new object, we

add it to the list, and increase N(w) by one. Note that this will take
O(|L(w)|) time. Hence a number of such insertions would take a lot
of time. Then, our general principle—if we do a lot of work, we do

it in such a way that it saves work in future operations—is violated.

Therefore, after we have checked whether x is a new object, and—in

case it is—after we have added z to the list L(w), we expand node w.

So if we again have to insert an object in the subtree of w, the time for

this insertion will be halved.

Of course, we have to take care that the deferred tree remains bal-

anced. We will consider this problem below.

A deletion algorithm: A deletion of object x is performed in a

similar way. We start searching for 2.

192 11. Deferred data structuring

First suppose we find a node v with key(v) = x. Then we search in
the left subtree of v for the maximal object y. We know the path that

leads to this maximal object. If we end in a leaf, we interchange x and

y, i.e., we set key(v) := y, and the key value of the leaf is set to x. Then

we delete this leaf in the standard way. During the search we decrease

the N values in all nodes we encounter by one. If we do not end in

a leaf during our search for y, we reach a node w with an undefined

key value. Then we remove y from the list L(w), we set key(v) := y,
and we expand node w. Just as in the insertion algorithm, if we again

have to delete an object in the subtree of w, the time for this deletion

is halved.

If we do not encounter a node v with key(v) = x during our search
for x, we might reach a node v with an undefined key value. If x is

present in the deferred tree, it is stored in the list L(v). So we delete x
from this list, and we expand node v.

Note that if x is not present in the tree we will find this out. (In
that case, we have to adjust the changed N values.)

We are left with the problem of keeping the deferred tree balanced.

There are various types of balanced binary search trees that can be

maintained after insertions and deletions. The oldest are the AVL-

trees, see Section 2.2. The balance condition for these trees depends on

the exact heights of subtrees. Since in our deferred tree several subtrees

are not complete during the sequence of operations, their exact heights

will not be known. So AVL-trees do not seem appropriate for deferred

trees.

We have seen, however, the class of BB[a]-trees, for which the bal-
ance criterion depends only on the size of its subtrees. For our deferred

trees, the size of each subtree—whether it has been completely built

already or not—is known at each moment: It is stored in the variable

N(v).

Balancing by means of rotations: Our deferred search tree will

be a BB[a]-tree. That is, for each internal node v for which the value
of key(v) is defined, we require that a < N(w)/N(v) <1—a, where
is the left son of v.

Updates are performed as described above. After the insertion or

11.2. Three dynamic solutions 193

deletion, we walk back to the root of the deferred tree. Each node

we encounter that does not satisfy the balance condition is rebalanced

by rotations, as described in [13]. If a node is involved in a rotation
that does not “exist”, i.e., its key-value is undefined, we first expand

it. Therefore, the time for rebalancing after one single update can be

O(n). However, as was to be expected, future updates—and queries—

take advantage from this.

Theorem 11.2.1 A sequence of k <n member queries, insertions and

deletions in a set of initially n objects can be performed in total time

O(n log k).

Proof. Let f(n,k) denote the total time to perform a sequence of k

member queries and updates in a set of initially n objects, with the

above algorithms. By Lemma 2.2.1, there is a constant c such that

the root of the deferred tree cannot get out of balance in a sequence

of < cn updates. (The root was in perfect balance at the moment it

was expanded, since we always split the list along the median. Hence,

Lemma 2.2.1 can be applied.) So in a sequence of k < cn queries

and updates, the root of the tree is expanded exactly once. The total

time we spend in the root in such a sequence is therefore bounded by

O(n +k) = O(n). If k, operations are performed in the left subtree,
we spend an amount of time there bounded by f(n/2, k1), since the left
subtree initially contains n/2 objects. Similarly, we spend an amount

of f(n/2,k — ky) time in the right subtree. It follows that

f(n,k) < max, {f(n/2, ki) + f(n/2,k-—ki)}+an ifk <cn,

for some constant c,.

Each query or update takes O(m) time if m is the number of objects.

Therefore, a sequence of & operations takes O(k(n+k)) time, since the
number of objects is always < n+ k. It follows that

f(n,k) < ek? ifk > en,

for some constant Co.

It can easily be shown by induction that f(n,k) = O(nlogk + k?).
So a sequence of k < ,/n queries and updates takes O(n log k) time.

194 11. Deferred data structuring

After ,/n operations, we have spent already Q(nlogn) time. There-
fore, we build in the \/n-th operation a binary tree for the objects that

are present at this moment. So the ,/n-th operation takes O(n logn)
time. The future operations are performed in this complete structure

in the standard non-deferred way. This proves the theorem. 0

The partial dismantling technique: There is another technique

to achieve the result of Theorem 11.2.1. It is a generalization of Lueker’s

partial rebuilding technique. (See Section 2.2.) This generalized tech-

nique can also be applied to dynamize other deferred data structures;

for example in case the technique that uses rotations does not apply.

We adapt the partial rebuilding technique to deferred data struc-

tures. Again the data structure is a deferred BB[a]-tree. Updates are
performed as described above. Now, rebalancing is carried out as fol-

lows. After the insertion or deletion, we walk back to the root of the

deferred tree to find the highest node v that is out of balance. Then we

dismantle the subtree with root v. That is, we collect all objects that

are stored in this subtree, and put them in the list L(v). Furthermore,
we set key(v) := undefined. (The value of N(v) is already equal to
|L(v)|.) Finally we discard all nodes below v.

Such a dismantling operation takes O(N(v)) time. Note that by
Lemma 2.2.1, there must have been > (1 — 2a)N, — 2 updates since v
was expanded. (Node v was in perfect balance at the moment it was
expanded, since we always split the list L(v) along the median. Hence,

Lemma 2.2.1 can be applied.)

Let g(n, &) denote the total time to perform a sequence of & member

queries, insertions and deletions in a set of initially n objects, using the

partial dismantling technique. Then in exactly the same way as in the

proof of Theorem 11.2.1, it can be shown that there exist constants c,

Cc, and cy, such that

maxo<n,<6{9(n/2, ki) + g(n/2,k — ki)} + ein if k < en,

g(nk) s ok? if k > on.

It follows that g(n,k) = O(nlogk + k), and hence a sequence of
k < ./n queries and updates takes O(n log k) time.

11.2. Three dynamic solutions 195

After \/n operations, we have spent already Q(nlogn) time. Then,
we build—in O(nlogn) time—a binary tree for the objects that are
present at this moment, and we proceed with the operations in the

standard way.

This gives an alternative proof of Theorem 11.2.1.

A third solution: Finally, we give yet another proof of Theo-

rem 11.2.1. The method is based on the ideas of decomposable search-

ing problems and global rebuilding [42]. Again, this technique can also

be applied for other searching problems; for example in case the previ-

ous two solutions are not applicable.

We maintain two structures M and J. The main structure M is

a Static deferred binary search tree in which we store the n objects

that are initially present. Each node v in this deferred tree for which

the key-value is defined, also has a boolean variable b(v), which says

whether or not key(v) is present. The structure J is an ordinary—i.e.,
non-deferred—balanced binary search tree, in which we store all new

points. Initially, J is empty.

Suppose we have to insert object x. Then we do a member query in

the deferred tree M. If we find x, say in node v, we set b(v) := true.
Otherwise, we insert x in J in the standard way.

A deletion of object x is performed as follows. First we do a member

query in the deferred tree M. If we find x, say in node v, we set

b(v) := false. So we do not delete x, we only “cross it out”. If we do
not find x in M, we delete it from the tree J in the standard way.

To perform a query 2, we first query the deferred tree M. If we find

x, say in node v, we infer from b(v) whether or not z is present. If we

do not find x, we perform a member query in the tree J.

Suppose we perform a sequence of k < n operations in this way. In

the tree M we perform k queries. By Theorem 11.1.1, the total time

we spend there is bounded by O(nlogk). In the tree J we perform
a sequence of at most k queries and updates. Each such operation

takes O(logk) time, since J stores at most k objects. Hence we spend

O(klogk) time in the tree J. It follows that the total time for k <n
operations is bounded by O(nlogk + klogk) = O(nlogk). This yields
a third proof of Theorem 11.2.1.

196 11. Deferred data structuring

11.3. Applications to the reconstruction prob-

lem

We now apply the technique of deferred data structuring to the recon-

struction problem. Let DS be a dynamic data structure representing

a set V of n objects. Suppose that the structure DS can be built in a

deferred way. We take for DS a shadow administration that stores the

objects of V in sorted order.

So let SH be a sorted list that stores the objects of the set V. Let

INF be a balanced binary search tree that contains the objects of V

in sorted order in its leaves. Each leaf—storing say object p—contains

a pointer to object p in the list SH. By Theorem 9.3.2, this shadow

administration can be implemented in O(n) space, such that an update
takes O(log n) computing time, two disk accesses, and O(1) transport
time.

Suppose all information in main memory is destroyed. Then we

transport the structures from secondary memory to main memory, we

make the sorted list up-to-date, and we transport the resulting structure

to secondary memory, as described in Subsection 9.3.3. This takes three

disk accesses, O(n) transport time and O(n) computing time.

At this moment, main memory contains the objects in sorted or-

der. We immediately proceed with answering queries and performing

updates, in a deferred way. Therefore, the first operations take a lot

of time, but the operations will be executed faster and faster the more

operations are performed. The data structure DS will be reconstructed

gradually during the operations. Note that we now start with the ob-

jects in sorted order; in the preceding sections, we started with an

unsorted set of objects.

As an illustration, consider the dominance counting problem. Here

we are given a set V of n points in the d-dimensional real vector space.

For a given query point q in d-dimensional space, we have to report

the number of points in V that are dominated by q, i.e., the number of

points p in V, such that p; < qi, po < qo,---,Pa < Qa-

It was shown by Bentley [6], that for this problem a (static) data
structure exists of size O(n(logn)*~), that can be built in O(n(log n)4-!)

11.3. Applications to the reconstruction problem 197

time, and in which dominance queries can be solved in O((logn)?)
time. By using Lueker’s partial rebuilding technique, this structure can

be dynamized such that updates can be performed in amortized time

O((logn)4). (In fact, this structure is almost identical to the range tree
of Section 2.3.)

Karp, Motwani and Raghavan showed in [28] that a static deferred
version of this structure exists, such that a sequence of k < n dominance

queries can be solved in O(n(log k)4"! + k(logn)4) time, if the points
are ordered according to one of their coordinates.

It is straightforward to give a dynamic deferred solution for the

dominance counting problem. This can be done e.g. by applying the

partial dismantling technique to the static structure in [28]. In fact,
then the update algorithm for the dynamic deferred structure is almost

the same as the one in Section 2.3. One can also apply a dynamization

technique for decomposable counting problems that is similar to the

third solution of Section 11.2 (see [8, 42]). Because these dynamization
techniques are well-known, we leave the details to the reader. The

result is expressed in the following theorem.

Theorem 11.3.1 A sequence of k < n dominance counting queries,

insertions and deletions in a set of initially n points in d-dimensional

space, initially ordered according to one of their coordinates, can be

performed in total time O(n(log k)*' + k(log n)4).

If we apply the techniques from the previous section, then we build

after \/n operations a complete data structure—in O(n(log n)*‘) time—
and we proceed in the non-deferred way. Since we have spent already

an amount of Q(n(logn)*') time after these ./n operations, this does
not increase the total time for the entire sequence of operations. The

/n-th operation, however, takes a lot of time. We can get rid of this

expensive operation, by building the complete data structure during

the first ,/n operations. With each operation, we count the number of

steps we spend in the deferred data structure. Then we spend the same

number of steps in building the complete structure. It follows that af-

ter these \/n operations, the non-deferred structure is completely built.

Then we use this structure for future operations; the deferred structure

is discarded.

198 11. Deferred data structuring

So we have a dynamic deferred data structure for the dominance

counting problem. Now take as a shadow administration the points

represented by the structure, ordered according to one of their coor-

dinates. Then after a crash, we reconstruct the ordered list of points,

as described above, in three disk accesses, O(n) transport time and

O(n) computing time. Then we immediately proceed with performing

operations in the deferred way. Of course, with each update, we also

maintain the shadow administration. Note that in this new approach,

the first operation takes O(n) time. The data structure will become,
however, more complete, and the operations will be executed faster and

faster the more operations are performed. In fact, by Theorem 11.3.1,

we can perform O(n/logn) operations in O(n(logn)4*) time.
Using the old approach, in which we completely reconstruct the

data structure before we proceed with query answering and performing

updates, it takes O(n(logn)4~') computing time before we can proceed,
since the data structure has size O(n(logn)?"'). Then the first n/logn
operations also take O(n(log n)?') time, because each operation takes,
amortized, O((logn)*) time.

Hence, in the approach of the current section, the first n/logn

operations take the same amount of time as we would have needed

in the old approach. In this new approach, however, we do not have

to wait O(n(logn)4-') time before we can start with the operations.
(Also in the ./n-th operation, we do not have to wait O(n(logn)4*)
time until the non-deferred structure is built.)

Chapter 12

Summary and concluding

remarks

We have studied the reconstruction problem for dynamic data struc-

tures: Given a searching problem, design a dynamic data structure solv-

ing this problem, together with a shadow administration from which

the data structure can be reconstructed. By storing this shadow admin-

istration in secondary memory, we are able to reconstruct the original

data structure in case the information in main memory is destroyed.

We have given several techniques that can be used for large classes of

searching problems. We give a summary of the most important results.

In Subsection 8.3.1, we have shown that we can maintain an ordered

set of n objects in secondary memory, at the cost of 3 disk accesses,

O(logn+b) computing time and O(b) transport time per update. Here,
b is the number of objects that can be stored in one block in secondary

memory. We applied this technique to a range tree with slack parameter

k, which is a data structure of size O((n logn)/k) that takes O(n logn)
time to build. The result is a shadow administration of size O(n), such
that the range tree can be reconstructed at the cost of one disk access,

O(n) transport time and O((nlogn)/k) computing time.
In Section 9.1, we have given a general technique for order decom-

posable set problems. Especially interesting are the O(n)-order decom-

posable set problems. For such problems, the dynamic data structure

has size O(n loglogn) and it can be built in O(nlogn) time. We have
given a shadow administration of size O(n), from which the data struc-

199

200 12. Summary and concluding remarks

ture can be reconstructed in one disk access, O(n) transport time and
O(n log log n) computing time. For this shadow administration, an up-

date takes one disk access and an amortized amount of O(n/logn)
transport and computing time.

In Section 9.2, we have applied Bentley’s logarithmic method to

shadow administrations. The result is Theorem 9.2.1:

Suppose we are given a (static) data structure and a correspond-

ing shadow administration for a decomposable searching problem. The

complexity of the shadow administration is denoted by S’(n), P.(n) and
R.(n). The logarithmic method gives a semi-dynamic data structure
with a corresponding shadow administration. This shadow administra-

tion has size O(S'(n)), and the data structure can be reconstructed from
it in one disk access, O(S’(n)) transport time, and O(R,(n)) comput-
ing time. An insertion takes one disk access; an amortized transport

time of O(S’(n)/n) if S’(n)/n't* is non-decreasing for some € > 0,
and O((S'(n)/n) x logn) otherwise; and an amortized computing time
of O(P.(n)/n) if P.(n)/n'** is non-decreasing for some € > 0, and
O((P.(n)/n) x logn) otherwise.

This result means that a given shadow administration can be dy-

namized, such that the resulting shadow administration is (asymptot-

ically) of the same size, and has the same reconstruction complexity.

This new shadow administration, however, has an easy and efficient

insert algorithm.

We have given only one of the many known dynamization tech-

niques. In [56], other techniques are given to design shadow administra-

tions for the data structures solving decomposable searching problems.

In Section 9.3, we have given a general technique to implement

any shadow administration in secondary memory. The main result is

Theorem 9.3.2: Let DS be a dynamic data structure and let SH and

INF be a corresponding shadow administration. Let U.(n) be the total
update computing time of SH and INF, let R,(n) be the computing
time needed to reconstruct the structures DS and INF from SH, and

let C(n) be the amount of data that is changed in an update in SH.
We have shown that we can implement these structures such that the

resulting shadow administration has size O(Sg7(n)+Szwr(n)), and can
be updated in two disk accesses, O(U.(n)) computing time and O(C(n))
transport time in the worst case. The structures DS, SH and INF can

201

be reconstructed in three disk accesses, O(Ssy(n)) transport time and
O(Ssx(n) + R-(n)) computing time.

So this result gives an efficient implementation of any shadow ad-

ministration. Especially the update algorithm is interesting: it takes

only two disk accesses and a small amount of transport time, even in

the worst case.

In Chapter 10 we have studied the union-find problem. We have de-

signed a structure of size O(n), in which each UNION takes O(k) time,
and each FIND takes O(log, 7) time. A copy of this data structure
can be maintained in secondary memory using O(n) space, such that

reconstruction takes one disk access and O(n) transport and computing
time. This copy can be maintained after a UNION operation at the

cost of at most three disk accesses and O(k) transport and computing
time. A FIND operation does not change the structure and, hence, the

copy does not have to be updated after such an operation.

This data structure nicely illustrates how shadow administrations

can be implemented. It also shows that the copy in secondary memory

is stored in such a way that all pieces of information are mixed up to-

gether. For example, the pointers of the main memory structure do not

have any meaning in secondary memory. This does not matter, since

we only require that the shadow administration contains information

from which the original main memory structure can be reconstructed.

Note that the structure of Chapter 10 can be implemented on a Pointer

Machine. If we store the structure, however, together with a copy in

secondary memory, the main memory structure must be implemented

on a RAM, since we need to store in secondary memory the addresses

of the information in main memory. Furthermore, the structure cannot

be applied in the scenario of Part II, where we assumed that the struc-

ture does not fit in main memory. The reason is that in this case, the

pointers must have a meaning in secondary memory. The maintenance

of the correct meaning of these pointers will take a lot of disk accesses.

Finally, in Chapter 11, we have applied known dynamization tech-

niques to static deferred data structures. We have proved in Sec-

tion 11.2, that a sequence of k < n member queries, insertions and

deletions in a set of initially n objects can be performed in O(n log k)

time, which is optimal. In fact, we have given three techniques that

achieve this result. These techniques can also be applied to dynamize

202 12. Summary and concluding remarks

other static deferred structures. Dynamic deferred data structures lead

to another approach to the reconstruction problem. In this approach

we maintain in secondary memory the objects represented by the data

structure. After a crash, we transport these objects to main memory,

and we immediately continue with query answering and performing up-

dates. The data structure is reconstructed “on-the fly” in a deferred

way.

We finish this part with some directions for future research.

A first direction is to search for other general solutions, to study

other classes of searching problems, and to design other techniques for

decomposable searching problems. Also, it would be interesting to have

more examples of shadow administrations for specific data structures.

For example, in order to apply the general technique of Section 9.3,

shadow administrations are needed for which C'(n)—the amount of data
that is changed in an update—is small.

Another direction is to perform sets of updates, instead of perform-

ing each update separately. Again one can study special classes of

searching problems, or design general techniques.

A very important problem, that we have not considered at all, is

the following optimization problem. In the reconstruction problem, we

reconstruct the data structure in most cases exactly as it was before

the information was destroyed. The optimization problem is to recon-

struct the structure in such a way that it is “more balanced” than

the destroyed structure was. For example, in case of a range tree, we

maintain in secondary memory the points represented by the tree. (See

Subsection 8.3.1.) The range tree is reconstructed by building it from
these points. Of course, this tree is rebuilt as a perfectly balanced tree.

So after reconstruction, the data structure is—in general—more bal-

anced than it was before the information was destroyed. An interesting

research direction is to study this optimization problem. Again, general

techniques may exist, and special classes of searching problems may ad-

mit efficient solutions. An example of a solution to this problem for trie

hashing functions is given in Torenvliet and van Emde Boas [61].

203

Bibliographic comments

The reconstruction problem was first posed by Leen Torenvliet and Pe-

ter van Emde Boas in [61]. They suggested to initiate a systematic

study for solutions to this problem. The results of Chapters 8 and 9

are based on joint work with Leen Torenvliet, Peter van Emde Boas

and Mark Overmars, see [55, 56]. The worst-case solution of Subsec-
tion 9.3.3 is new. Chapter 10 is based on [51], and Chapter 11 on [52].
The first technique of Section 11.2 was discovered independently by

Yu-Tai Ching and Kurt Mehlhorn, see [16]. Section 11.3 is new.

204 12. Summary and concluding remarks

Part IV

Maintaining dynamic data

structures in a network

205

Chapter 13

The multiple representation

problem

13.1 Introduction

In Part III we have studied a special instance of the general problem

of maintaining multiple representations of dynamic data structures. In

the present part, we consider a related problem, namely the problem

of maintaining a number of copies of a data structure in a network of

processors.

Assume we have a network of processors, each having its own mem-

ory. Each processor holds its own copy of a particular data struc-

ture. Changes to the data structure have to be made in all copies. To

avoid that each processor spends a lot of time in updating its copy, we

dedicate one processor the task of maintaining the data structure and

broadcasting the actual changes to the other processors. So we have

a multiple representation of the data structure. One data structure

that should allow for updates, and a set of other structures that an-

swer queries. Of course, the query data structures must be structured

in such a way that they can perform updates, but they get the up-

date in a kind of “preprocessed” form that is easier to handle. The one

structure that performs the updates will be called the central structure.

The other structures that allow for queries are the client structures. We

study how to organize the central structure for different types of query

207

208 13. The multiple representation problem

problems, how to structure the client structures, and what type of in-

formation has to be sent from the central structure to the clients. It will

be shown that, after “preprocessing” an update by the central struc-

ture, the clients can often perform the update more efficiently. Also,

in some situations the client structures can be smaller than the central

structure.

This multiple representation problem is related to the reconstruction

problem. In fact, they are “dual” to each other. In the reconstruction

problem there is one memory—main memory—in which queries and up-

dates are performed. After an update in main memory, information is

transported to another memory—which is secondary memory. Then in

secondary memory, the relevant parts of the structure are updated. In

secondary memory, no queries are performed. In the multiple represen-

tation problem of the present part, there is one storage medium—the

central processor—in which only updates are performed. After this

central update, we transport data to other storage media—the clients.

Each client then updates its own structure. These client structures are

also used for query answering.

An example of a practical instance in which this framework can be

applied is a “Star Network”. Here the central processor is the main

computer; it holds the central data structure, and is connected to all

other processors. Often, these other processors, that contain the client

structures, are somewhat limited in capacity. Clearly, it is desirable in

such situations to utilize the power of the central processor as much as

possible.

Besides possible practical applications, the results give the insight

that sometimes parts of data structures are only necessary for perform-

ing updates and, hence, can be removed in the client structures. The

results also show what portions of data structures are actually changed

when performing updates. This might have applications in storing dy-

namic data structures in write-once memories, such as optical disks.

In the next section, we give the general framework we use to de-

scribe solutions for this multiple representation problem, and we in-

troduce complexity measures to express the efficiency of solutions. In

Section 13.3, we study binary trees as our first example where the client

structures store less information than the central structure.

In Chapter 14, we consider general techniques that are applicable

13.2. The general framework 209

to order decomposable set problems and decomposable searching prob-

lems. We also give a technique that applies to any data structure. This

general technique is especially efficient for data structures in which an

update changes only a small part of the structure.

In Chapter 15 we give a summary of the most interesting results.

13.2 The general framework

In this section we give a precise statement of our problem, and we

introduce a framework in which solutions to the problem are given. We

also give complexity measures to express the efficiency of the solutions.

e There is a network of processors, the clients, each having its own

memory. Each of these clients contains the same data structure

DS—the client structure—and uses it to solve queries.

e One of the processors contains a central structure DS".

We assume that all processors are Random Access Machines. Up-

dates have to be performed in all the client structures. Such an update

is performed as follows. We first perform the update in the central

structure DS’. During this update we (hopefully) obtain information
that makes it possible to update the client structures more efficiently

than by just directly updating them. Then we send information about

the update through the network to the clients, and using this informa-

tion each client updates its structure DS. We express the complexity of

an update of the client structures by the number of words transported

to each client, and by the amount of computing time that the client

structure needs to perform the update.

Just as in Part III, we have introduced a multiple representation of

the data. We have a number of copies of the same data structure DS.

Furthermore, there is a data structure DS’, that is used to “preprocess”

updates, so that the client structures DS can be updated efficiently. On

the client structures, queries and preprocessed updates are performed,

whereas on the central structure only updates are carried out. We

will see that the client structure and the central structure need not be

identical. Therefore we use different notations for these structures.

210 13. The multiple representation problem

The complexity of the client structure DS is expressed by the follow-

ing functions (n is the number of objects represented by the structure):

e S(n): the amount of space needed to store the structure DS.

e Q(n): the time required to answer a query using DS.

e F(n): the amount of data (which we consider in terms of words)
transported to DS' in an update.

e G(n): the amount of computing time needed to update DS, using

the information received from the central structure.

We assume that G(n) = Q(F (n)), which is reasonable, since a client
receives an amount of F'(n) data, and it has to store it somewhere.
Note that we express F'(n) in terms of words. In Section 13.3, however,
we express F’(n) in terms of bits. In this chapter, we never use the
building time of the client structure DS. Therefore, we do not introduce

a notation for it.

The complexity of the central structure DS’ is given by the usual

measures, and they are denoted by:

e S’(n): the amount of space used by DS".

e P'(n): the time needed to build DS’ from scratch.

I'(n): the time needed to insert an object into DS’.

D'(n): the time needed to delete an object from DS".

if the insertion and deletion times are equal, we denote this com-

mon update time by U'(n).

(There is no query time here, because queries are not performed on the

central structure.)
The problem investigated in this part of the thesis is the following.

We are given a searching problem. The main goal is to design a client

structure DS for this searching problem, such that when an update

is given in some preprocessed form, this update can be performed ef-

ficiently. Ideally, the size of this preprocessed form and the time to

13.3. An example: binary search trees 211

perform the update using this information (i.e., the values of F'(n) and
G(n)) are much smaller than the time needed to perform the update
directly in the structure. A second goal is to design a central struc-

ture DS’ in which the updates can be preprocessed efficiently. We shall

emphasize, however, the design of the client structure DS.

13.3. An example: binary search trees

Suppose that the client structures have to solve the member searching

problem. An efficient dynamic data structure for this problem is a

balanced binary search tree, e.g. an AVL-tree, or a BB[a]-tree. Such a
tree allows member queries and insertions/deletions to be performed in

O(log n) time, if n is the number of objects stored in the tree. Internal
nodes of these trees contain balance information. For example, in an

AVL-tree each internal node contains the difference of the heights of its

left and right subtrees (which is —1, 0 or 1). If an object is inserted
in or deleted from the tree, all nodes that do not satisfy the balance

condition anymore are computed, and then by a local restructuring

technique—mostly single and double rotations—balance is restored for

these nodes. Clearly, this balance information is only used to update

the tree; to perform member queries, this information is superfluous.

So take a class of balanced binary search trees, that can be main-

tained by means of single and double rotations. We consider these trees

as leaf search trees, i.e., the objects are stored in the leaves. Let T’ be

a tree in this class, and let T be a copy of T’ without the balance infor-

mation in its nodes. The tree J” will be the central structure, and the

tree T will be the client structure. Clearly, the tree T’ contains enough

information to allow member queries to be carried out in logarithmic

time.

The update algorithm: Suppose an object p is to be inserted

or deleted in the client structures. Then we first insert or delete p in

the central structure T’. This gives us a path in 7’, from the root to

an appropriate leaf, along which rotations have been (possibly) carried
out. We encode this path by a string s = (11, 61, re, be,..., TR, dg), where
k is the length of the path. Starting at the root of the tree, r; contains

212 13. The multiple representation problem

information whether a left single rotation, a right single rotation, etc.

has to be carried out, or that no restructuring operation is necessary;

b; tells whether the next node on the path lies to the left or to the

right of the root; rp tells what kind of rotation has to be carried out for

the second node of the path, and by says in which direction the path

proceeds, and so on. Note that O(k) = O(logn) bits are sufficient to
represent the string s. Now we send to each client structure the object

p together with information whether it has to be inserted or deleted,

and the string s. Using p and s, the client structures J are updated.

Note that we know exactly which path in T' we have to walk down, and

where on this path restructuring operations have to be carried out. So

we do not have to decide in each node—by means of a comparison of

p with the value stored in this node—in which direction to proceed.

Hence this will save for each client structure O(logn) comparisons in
the update procedure.

The complexity: The complexity of this solution is as follows.

The central structure has size O(n), and an update takes O(log 7) time.
Each client structure has also size O(n). In this last bound, however,
the constant factor will be smaller. Member queries can be solved in

the client structures in O(log) time. To perform an update, an object
p and a bitstring s of length O(logn) are sent to the client structures,
and for each of these structures O(logn) computing time is needed to
update it. Again the constant factor is smaller than in the update time

of the central structure.

So at the cost of a slight increase in the amount of data that is

transported to the client structures—by sending an additional string of

O(logn) bits—we have decreased the constant factors in the complex-
ity bounds for the client structures, compared to the constants in the

bounds of the central structure.

The client structures can be used for solving other searching prob-

lems. Examples are the one-dimensional range searching problem,

where we are given a range [a : bj, and we have to report all objects ly-
ing in this range. Such a range query can be answered, without needing

balance information at the nodes, in O(logn + t) time, where ¢ is the
number of points in the range. Another example is the one-dimensional

13.3. An example: binary search trees 213

nearest neighbor searching problem. Here we are given an object p, and

we have to report the object in the tree that is closest to p. Clearly,

such a query can be answered, again without using balance information

at the client structures, in O(logn) time.

214 13. The multiple representation problem

Chapter 14

General approaches

14.1 Order decomposable set problems

In Section 2.5, we defined the class of order decomposable set prob-

lems. Recall that a set problem PR: P(T,) — Tp is called M(n)-order
decomposable, if there is an order ORD on T;, such that for any set

V = {pi < po <... < pn}, ordered according to ORD, and for any 2,

1<i<n, the answer PR(V) can be computed from PR({pi,..., pi})
and PR({pisi,---,Pn}) in M(n) time.

Let PR be an M(n)-order decomposable set problem, and let V
be a set of cardinality n for which we want to maintain the answer to

PR. In Section 2.5, we gave a dynamic data structure that maintains

this answer. The data structure presented there has the property that

just a small part of the structure is used for answering a query—the

answer to the problem is stored in the root of the tree that contains

the elements of V—whereas the rest of the structure is only used to

update this answer efficiently.

Therefore, we take for the client structures, the answer PR(V) to the
set problem for the entire set V, and we take for the central structure,

the fully dynamic data structure. Updates are first performed on the

central structure. Then we replace each old client structure by the new

answer to the set problem. The result is given in the following theorem.

(The notations used are the same as in Section 13.2.)

Theorem 14.1.1 For an M(n)-order decomposable set problem, there

215

216 14. General approaches

exists a client structure, that maintains the answer to the set problem,

with complexity

1. S(n) = O(PR(n)).

2. F(n) = O(PR(n)).

3. G(n) = O(PR(n)).

Here PR(n) is the size of the answer to the set problem for a set of n

objects.

Proof. The proof follows from the above discussion. O

It follows from Theorems 2.5.1 and 14.1.1, that for many values of

M(n), the client structures have asymptotically lower complexity than
the central structure. For example, for any O(n)-order decomposable
set problem, the central structure has size O(n loglogn), whereas the
client structures have size only O(n). Examples of such set problems
are given in Section 2.5.

14.2 Decomposable searching problems

In this section we consider decomposable searching problems, that were

introduced in Section 2.4. Recall that a searching problem PR: T, x

P(T>) — T3 is called decomposable, if there is a function 0 : T3 x T3 >

7T3, such that for any partition V = AUB of any subset V of 75, and for

any query object xz in T,, we have PR(x,V) = O(PR(z, A), PR(a, B)),
where the function 0 can be computed in constant time.

Let PR be a decomposable searching problem, and let DS be a

dynamic data structure solving PR. We consider the case in which only

insertions are performed. Let S(n) be the size of the structure DS, and
let Q(n) be the query time of DS. We assume that S(n)/n and Q(n)
are non-decreasing, and that S(n) and Q(n) are smooth functions.

The multiple representation: To maintain a multiple represen-

tation for PR we proceed in the following way. Let the client structure

14.2. Decomposable searching problems 217

consist of the structure DS, together with a list of objects. The cen-

tral structure consists of a copy of the structure DS. In order to avoid

confusion, we denote this central structure by DS".

Initially, the list of objects in the client structure is empty, and the

structures DS and DS" are up-to-date. Let n be the initial number of

objects.

The insert algorithm: Consider an insertion of an object p. First

we insert p in the central structure DS’. If p is already present, then

nothing has to be done. (In this case the client structures do not have
to know that anything happened.) If p is a new object, we send it to

the clients, and each client adds it to its list. After Q(n) objects are
inserted in this way—hence each client structure contains a list of Q(n)
objects—a copy of the central structure—which is up-to-date—is sent

to the clients. Each old client structure is then replaced by this new

structure, and the list of objects is initialized again as an empty list. If

m is the number of objects that are present after these Q(n) insertions,
we repeat this procedure, now with a sequence of Q(m) insertions.

The query algorithm: Queries are solved in a client structure

as follows. First we query the data structure DS. Next we query the

at most Q(n) objects in the list of most recently inserted objects, by
considering each of them separately. Then all answers obtained are

merged using the function O. (Note that all objects in the list are

different, and are not present in the client data structure DS.)

Theorem 14.2.1 Let DS be a data structure for a decomposable search-

ing problem PR, of size S(n) and query time Q(n). There exists a client
structure solving PR, with performances:

1. The size of the client structure is bounded by O(S(n)).

2. F(n) = O(S(n)/Q(n)), amortized, for an insertion.

3. G(n) = O(S(n)/Q(n)), amortized, for an insertion.

4. The query time of the client structure is bounded by O(Q(n)).

Proof. The client structure consists of a copy of the data structure DS

as it is at the beginning of a sequence of insertions, together with a list

218 14. General approaches

containing the (at most @Q(n)) insertions performed so far. Insertions
and queries are carried out as described above. The size of the client

structure is bounded by the size of DS and by the number of objects in

the list. Let N be the number of objects that are currently present, and

let n be the number of objects that were present at the beginning of the

sequence of insertions. Then the size of the client structure is bounded

by O(S(n) + Q(n)) = O(S(N)). Because for a decomposable searching
problem obviously Q(n) = O(n), and since S(n)/n is non-decreasing,
we have Q(n) = O(S(n)). Finally, since n < N < n+ Q(n) = O(n),
and since S(n) is smooth, the bound on the space complexity follows.
In a sequence of Q(n) insertions, the total amount of data that is trans-
ported to a client structure, is bounded by O(Q(n) + S(n)) = O(S(n)).
Hence the amortized amount of data that is transported for an inser-

tion is O(S(n)/Q(n)). The total computing time for Q(n) insertions
into a client structure, is also bounded by O(Q(n) + S(n)), since a
new object can be inserted to the list in constant time, and since it

takes O(S(n)) time to receive and write a data structure of size S(n).
Hence G(n) = O(S(n)/Q(n)), amortized, for an insertion. Finally, the
query time of the client structure is bounded by O(Q(n)), because the
structure DS can be queried in Q(n) time, and using the definition of a
decomposable searching problem, the objects in the list can be queried

in O(Q(n)) time. O

The client structure in this theorem is, of course, not very efficient.

The given dynamization technique, however, is a first step towards a

more powerful technique that will be worked out later in this section.

In the above theorem, the insert complexity for the client structures

is an amortized complexity. We show now how these bounds can be

turned into worst-case bounds. The idea is to spread out the trans-

portation of the large data structure over a number of insertions. In

the sequel we assume that if object p is to be inserted, it is not present

yet. (As we saw already, if the object is present, the client structures

do not have to know that anything happened.)

The multiple representation: The client structure consists of

a data structure DS, and two lists of objects. The central structure

consists of a copy of the structure DS—which we denote again by DS’—

14.2. Decomposable searching problems 219

and one list of objects.

The insert algorithm: Let k be the initial number of objects.

Then the client structure contains an up-to-date data structure DS and

the two lists are empty. The central structure contains an up-to-date

structure DS’ and an empty list.
The initial stage: During Q(k) insertions, we add the new objects

to one of the lists of the client structures. (Each time we add it to
the same list.) Furthermore, all these insertions are performed in the

central structure DS’.
Hence after these Q(k) insertions, the client structure consists of

a data structure DS, representing the k objects that were initially

present, a list of the Q(k) most recently inserted objects, and an empty
list. The central structure consists of an up-to-date structure DS’, and

an empty list.

Now the periodic process of insertions can start. Let n = k+Q(k),

i.e., n is the number of objects that are currently present. Consider a

sequence of Q(n) insertions.
Part 1 of the regular stage: During the first Q(n)/2 insertions,

we add the new objects to the initially empty lists of the client struc-

tures, and we send the central structure DS’ to the clients: Each update

we send a part of DS" of size O(S(n)/Q(n)). Then, after these Q(n)/2
insertions, each client structure contains a data structure DS’, and a

list of the Q(n)/2 most recently inserted objects. Now we replace the
old client structure DS by the structure DS’, and we set the old list

of Q(k) inserted objects to the empty list. (We denote the new client
structure again by DS.) In the central structure we add the Q(n)/2
new objects to the list. Note that the central structure DS’ cannot be

affected during these insertions.

Part 2 of the regular stage: The final Q(n)/2 insertions are per-
formed as follows. The new objects are added to the non-empty list of

the client structure. In the central structure, we perform in each update

the current one, and one update from the list of updates. (Note that

the order in which we perform the updates in the central structure does

not matter, since all updates are insertions. If, however, deletions were

also possible, the updates had to be carried out in chronological order.

See Subsection 14.3.4.) Afterwards the list of the central structure is

220 14. General approaches

set to the empty list.

After Part 2: After the entire sequence of Q(n) updates, the client
structure contains a data structure DS storing the n objects that were

present Q(n) insertions ago, a list of the Q(n) most recently inserted
objects, and an empty list. The central structure consists of an up-

to-date structure DS’ and an empty list. Hence we are in the same

situation as Q(n) updates ago, and we can continue in a similar manner.

The query algorithm: Queries in a client structure are solved,

by querying the data structure DS, and by walking along the two lists

of objects. Then using the function 0, the answers are merged to get

the final answer to the query.

Theorem 14.2.2 Let DS be a data structure for a decomposable search-

ing problem PR with worst-case complexity S(n), I(n) and Q(n). There
exists a client structure solving PR, with performances:

1. The size of the client structure is bounded by O(S(n)).

2. F(n) = O(S(n)/Q(n)) in the worst case, for an insertion.

3. G(n) = O(S(n)/Q(n)) in the worst case, for an insertion.

4. The query time of the client structure is bounded by O(Q(n)).

Furthermore, the size and the insertion time of the central structure are

bounded by O(S(n)) and O(I(n)).

Proof. It follows from the above discussion that in each insertion
we send an amount of O(S(n)/Q(n)) + O(1) = O(S(n)/Q(n)) data,
and for each client structure we have to spend O(S(n)/Q(n)) + O(1) =
O(S(n)/Q(n)) time to receive and write this data. Hence both F(n)
and G(n) are bounded by O(S(n)/Q(n)) in the worst case. Also, the
size and the query time of the client structure are bounded by O(S(n))
and O(Q(n)). Clearly, the performances for the central structure are
increased by at most a constant factor. 0

There are more powerful techniques to get efficient solutions for

decomposable searching problems. We can for example consider se-

quences of more than Q(n) insertions. Then the most recently inserted

14.2. Decomposable searching problems 221

objects are stored in a small data structure, to ensure that the query

time remains bounded by O(Q(n)). In this way the values of F'(n) and
G(n) can be decreased. This idea is worked out below.

Let PR be a decomposable searching problem, and let DS be a

dynamic data structure solving PR. The size and the query time of DS

are denoted by S(n) and Q(n). As before, we assume that S(n)/n and
Q(n) are non-decreasing, and that S(n) and Q(n) are smooth.

The multiple representation: Let f(n) be an integer function,
such that Q(n) < f(n) <n. The client structure consists of two data
structures DS, and DS», and a list of objects. The central structure

contains copies of the structures DS, and DS», which we denote by

DS", and DS‘.

Initially, the structures DS, and DS‘, and the lists in the client

structures, are empty. The structures DS» and DS‘, store the n objects

that are present at this moment.

The insert algorithm: Consider a sequence of f(n) —1 insertions.
We insert the new objects in the central data structure DS. In the
client structure we add the new objects to the list. Every Q(n)-th
insertion, the central structure DS’, as it is that moment is sent to
the client structure, where it replaces the structure DS, (of course we

denote this new structure by DS,), and the list of objects is set to the

empty list. Hence during these f(n) — 1 insertions, the client structure
consists of a list of at most Q(n) objects, and of two data structures
DS, and DS»2, where the structure DS, represents at most f(n) objects.

At each moment, the objects represented by these three structures form

a partition of all the objects that are present at that moment.

In the f(n)-th insertion, we build a new structure DS, storing all
objects that are present at this moment, and send it to the clients,

where it becomes the new DSy. Also, the structures DS,, DS‘, and

all lists are made empty. If m is the number of present objects at

this moment we repeat this procedure, now with a sequence of f(m)
insertions.

It is easy to see that, using this technique, the size and the query

time of the client structure remain bounded by O(S(n)) and O(Q(n)).

222 14. General approaches

Furthermore, the amortized values of F'\(n) and G(n) are both bounded

by O(S(f(n))/Q(n) + S(n)/f(n)).
We generalize this solution as follows.

The generalized multiple representation: Let k be a positive

integer, and let f;(n) be integer functions, for 1 = 0,1,...,4, such

that Q(n) = fo(n) < film) < foln) < ... < fealm) < fir) =
n. Then the client structure contains a collection of data structures

DS;, 1 = 1,2,...,k, and a list of at most Q(n) objects. The central
structure contains copies of the structures DS';, which are denoted by

DS',, i = 1,2,...,k. Each DS; and each DS‘, will represent at most
fi(n) objects. Initially, all structures DS1,...,DS,_1, DS',...,DS,_4
and all lists are empty. The structures DS, and DS‘, store the n objects

that are present at this moment.

The insert algorithm: Consider a sequence of f,-1() insertions.
In the j-th insertion, do the following. If there is an i, 0 <<1< k—-1,

such that 7 = 0 mod f;(n), determine the maximal such i. Then build
a new structure DS',,,, storing all objects that were present in the old

central structures DS',,..., D5%,,,, and add it to the central structure.
Also, the old central structures DS},..., DS; are made empty. Next,
send this new structure DS’, 41 to the clients, where it replaces the old

DSi41. (We denote this new client structure again by DS;,;.) Finally,
all client structures DS,,..., DS; and the lists are made empty. If there

is no 7 such that 7 = 0 mod fj(n), add the new object to the list of the
client structures, and insert the new object in the central structure

DS‘.

It is not difficult to see, that for each i, the structures DS; and DS,

indeed represent at most f;(n) objects, and that the list in the client
structure contains at most Q(n) objects. Also, each DS, is sent to the
clients at most once every f;_1(n) insertions.

After these f,_1(n) insertions, all structures DS,,..., DS,_1, DS, ..
and all lists, are empty again, and the structures DS, and DS‘, store

the objects that are present at this moment. (Note that in the f,_1(n)-
th insertion, the maximal value of 7 in the above update procedure is

k — 1.) So we can proceed in the same way, now with a sequence of

fr_-i(m) insertions, where m is the current number of objects.

DS,

14.2. Decomposable searching problems 223

In this way the amortized values of F(n) and G(n) are bounded
above by

S(filn)) , S(faln)) , —_, SUfe-a(n)_, 8)
Qin) film) fea(n) fe-a(n)’

Since we assumed that S(n)/n is non-decreasing, it follows that this
sum is bounded above by

S(n) (film) | Alm), fer) n
© (85 fi(n) Om):

Now take f;(n) = [ni/ k(Q(n))i-¥/ el. Then the amortized values of F'(n)
and G(n) are bounded above by

In a similar way as before these amortized bounds can be turned into

worst-case bounds. The result is expressed in the following theorem,

the proof of which is left to the reader.

+ +.

Theorem 14.2.3 Let DS be a data structure for a decomposable search-

ing problem PR with complexity S(n) and Q(n). Then for each positive
integer k there exists a client structure solving PR, with performances:

1. The size of the client structure is bounded by O(S(n)).

2. F(n) = O(k x (S(n)/n) x (n/Q(n))*) in the worst case, for an
insertion.

3. G(n) = O(k x (S(n)/n) x (n/Q(n))'/*) in the worst case, for an
insertion.

4. The query time of the client structure is bounded by O(k x Q(n)).

We illustrate this result with an example. In the nearest neighbor

searching problem, we are given a set V of n points in the plane, and a

query point p, and we are asked to find a point in V that is closest to p

224 14. General approaches

with respect to the euclidean distance. Clearly, this problem is decom-

posable. There exists a data structure for this problem of size O(n) such
that queries can be solved in O(logn) time, see e.g. Kirkpatrick [29].

If we apply for example the logarithmic method to this structure,

see Section 2.4, we get a semi-dynamic structure of size O(n), having a
query-time of O((logn)?), in which points can be inserted in amortized
O((logn)?) time.

Applying Theorem 14.2.3 to Kirkpatrick’s structure, however, we

obtain:

Theorem 14.2.4 Let k be a positive integer. For the nearest neigh-

bor searching problem in the plane, there exists a client structure, with

performances:

1. The size of the client structure is bounded by O(n).

2. F(n) = O(k x (n/logn)/*) in the worst case, for an insertion.

3. G(n) = O(k x (n/logn)'/*) in the worst case, for an insertion.

4. The query time of the client structure is bounded by O(k x logn).

It is clear that the techniques presented in this section only allow

insertions to be carried out. In some cases, however, deletions are also

possible. For example, deletions can be handled if we restrict ourselves

to a subclass of the decomposable searching problems, the decomposable

counting problems. See Section 2.4 for the definition and for a sketch

of a dynamic data structure solving these problems.

For these decomposable counting problems, the following analogue

of Theorem 14.2.3 can be proved.

Theorem 14.2.5 Let DS be a data structure for a decomposable count-

ing problem PR with complexity S(n) and Q(n). Then for each positive
integer k there exists a fully dynamic client structure solving PR, with

performances:

1. The size of the client structure is bounded by O(S(n)).

2. F(n) = O(k x (S(n)/n) x (n/Q(n))*) in the worst case.

8. G(n) = O(k x (S(n)/n) x (n/Q(n))/*) in the worst case.

4. The query time of the client structure is bounded by O(k x Q(n)).

14.3. A general technique 225

14.3. A general technique

14.3.1 Introduction

We present a general technique that is similar to the general technique

of Section 9.3.

Consider again our strategy with respect to the member searching

problem of Section 13.3. In this solution, in each update we send a

string of O(log n) bits to the client structures, where the string contains
an encoding of the path to the node where the update is carried out,

together with information about what kind of rotations have to be

performed. In order to update the client structure, we follow the path,

insert or delete the object, and perform the rotations. Clearly, this

procedure takes O(logn) time. If we consider, however, how many
nodes in the tree are changed in this update, we see that O(1) of them
are changed due to the insertion or deletion, and the rest of them are

changed due to rotations. Therefore, if O(1) rotations are carried out,
only O(1) nodes of the tree are changed. (Note that a client structure
does not contain balance information.) So if we could avoid to walk
down the path, it could be possible to update the client structure in

only O(1) time.

The solution is to send to the client structures the inserted or deleted

object, together with the positions in the tree where changes—and what

kind of changes—have to be carried out. Since there are binary trees

that can be maintained in logarithmic time with only O(1) rotations in
the worst case (see Theorem 2.2.3), this will give us a solution where
the client structures can be maintained in constant time.

This is the main idea behind the general technique that will be

worked out in this section. We will achieve our result in a number of

steps. First we give a solution in case the data structures do not exceed

some given size. Next we extend this solution to a general one having a

low amortized complexity. Then we turn these amortized bounds into

worst-case bounds.

Let PR be a searching problem, and let DS resp. DS" be the corre-

sponding client structure resp. central structure. The performances of

DS are denoted by S(n) and Q(n), and those of DS’ by S'(n), P’(n)

226 14. General approaches

and U’(n) (see Section 13.2 for these notations). We assume that DS is
a substructure of DS’. That is, DS is a part of DS’, containing enough
information such that queries can be solved fast. For example, if DS’

is a balanced binary tree, then we can take DS, the tree without the

balance information at the nodes. Updates are performed as before.

That is, first the central structure DS’ is updated, then information is

sent to the client structures, and finally the client structures DS are

updated. Let C(n) denote the amount of data that is changed in the
client structure DS in an update. We assume that all these complexity

measures are non-decreasing and smooth.

We transform this multiple representation into another one, such

that each transformed client structure has size O(S(n)), update com-
plexity F(n) = O(C(n)) and G(n) = O(C(n)), and in which queries can
be solved in O(Q(n)) time. In each update, we only send the changes
of the client structure DS. In order to avoid searching for the positions

in the client structure where the changes have to be carried out, we also

send these positions. Therefore, we implement the data structures as

arrays. (The processors are Random Access Machines, the memories of

which are modeled as arrays. Hence we can indeed implement the data

structures as arrays.) We take care that each part of DS is stored in
the same position in all processors. If such a part has to be changed,

we send the index in the array where this part is stored, together with

the updated part. Then, in each client structure, we can find in con-

stant time the position where the change has to be carried out. Note

that data structures contain pointers, which we consider to be indices

of array entries. By storing parts of DS in each processor in the same

positions, these pointers indeed “point” to the correct objects.

The implementation will be described more precisely in the next

subsection. We finish this subsection with the following lemma.

Lemma 14.3.1 The complexity measures introduced above satisfy:

1. S(n) < S'(n).

2. S'(n)/n = O(U"(n)).

3. P'(n)/n = O(U"(n)).

4. S(n)/n = O(C(n)).

14.3. A general technique 227

Proof. Since DS is a substructure of DS’, we have S(n) < S’(n). We
can build the structure DS’ by performing n insertions into an initially

empty structure, which takes at most U’(1) + U’(2)+---+U'(n) <
n x U'(n) time. During these n insertions we have built a structure of
size S’(n), and hence we have spent at least S’(n) time. This proves
that S’(n) = O(n x U'(n)). The proof of P’(n) = O(n x U'(n)) is
similar. In the same way we can build the structure DS. The total

amount of data that has changed during n insertions, is at most C'(1) +
C(2) +---+C(n) <n x C(n). Since at the end there is a structure of
size S(n), it follows that S(n) = O(n x C(n)). O

14.3.2 A fixed size solution

Let N be an integer that denotes the maximal number of objects that

can be represented by our data structures. We use in this subsection—

and in the following ones—the notations introduced in Subsection 14.3.1.

We have a client structure DS and a central structure DS’, and we

want to implement these structures as arrays. These data structures are

composed of “indivisible pieces of information” of constant size, such

as pointers, integers, etc. Each such indivisible piece will be stored

in one array location. Since the data structures represent at most N

objects, we take a client array A of S(N) entries, containing DS, and
a central array A’ of S'(N) entries, containing DS’. If n is the current
number of objects, S(n) entries of the client array and S’(n) entries of
the central array are occupied. We assume that the first S(V) entries of
the central array are identical to those of the client array. (If we assume

that our data structures only contain fixed size records, this can always

be achieved. Otherwise, if variable sized records are allowed, we can

split these into fixed size records, and apply the techniques developed

here.) Finally, we introduce two stacks FE and FE’ of free entries.
In FE we store those indices of the first S(N) entries of the client
array A, that are unoccupied. Similarly, the stack FE’ contains those

indices of the last S’(N) — S(N) entries of the central array A’ that
are unoccupied. The purpose of these stacks is to perform our own

memory management. Note that by maintaining the client array in

the first S(N) entries of the central array A’, we guarantee that the
client array A can be stored in S(N) consecutive memory locations in

228 14. General approaches

a client processor. Hence the amount of space used by the client array

is S(N). (If we did not store the information in consecutive locations,
there would have been gaps in the client’s memory.)

The multiple representation: The transformed client structure

consists of the array A. The transformed central structure consists of

the array A’ and the stacks FE and FE’.

The update algorithm: Suppose we want to insert or delete an

object. We assume that there is space in the arrays for a new object.

Then we first perform this update in the central structure. If we need

new entries, we take them from the appropriate stack FE or FE’, and

if entries become unoccupied, we put them on the stack where they

belong. Next we send to the clients, the indices of the entries in the ar-

ray A that are changed together with the new contents of these entries.

Using this information, each client structure is updated.

Note that the client structures do not need to contain the stack

FE of free array indices: The memory management of all processors is

arranged by the central structure. Hence we utilize the central processor

as much as possible.

At each moment the client structure is up-to-date and, hence, it can

be used to answer queries.

Theorem 14.3.1 Let DS be a client structure solving some searching

problem, with complexity S(n), Q(n) and C(n). Let DS’ be the corre-
sponding central structure, with complexity S'(n) and U'(n). We can
transform these structures into a multiple representation, such that each

client structure

1. has size O(S(N)),

2. has a query time bounded by O(Q(n)),

3. has F(n) = O(C(n)),

4. has G(n) = O(C(n)).

Here N is the maximal number of objects that can be represented by the

structures, and n is the current number of objects. Furthermore, the

14.3. A general technique 229

central structure has size O(S'(N)), and its update time is bounded by

O(U'(n)).

Proof. The size of the central structure is bounded by O(S'(N)) for
the array A’, and by O(|FE|+|FE'|) = O(S'(N)) for the stacks. Hence
the total size of the central structure is bounded by O(S'(N)). It is
clear that the update of the central structure takes O(U'(n)) time.
The client array can be updated in time proportional to the number

of changed entries. So in our notation we have F(n) = O(C(n)) and
G(n) = O(C(n)). The other bounds follow from the above discussion.
O

If we know in advance that the number of objects does not vary

too much, this will be an efficient solution. If, however, the number

of objects becomes too large—after a number of insertions—our arrays

will become too small. Similarly, after a number of deletions, a large

part of the arrays will become empty, and so the amount of space will

become too large. In these cases the solution, of course, is to rebuild

the structures.

14.3.3. An amortized solution

Suppose that the data structures initially represent n objects. We store

each structure in an array that can contain a data structure for 3n/2
objects. In this way there is space in the structures for n/2 insertions.

So in the notation of the preceding subsection, we take N = 3n/2. The

client structure consists of the array A of length S(N). The central
structure contains the array A’ of length S’(N), and the stacks FE
and FE’. The information is stored in these data structures as in the

previous subsection, and updates are performed in exactly the same

way. As soon as the number of objects becomes either n/2 or 3n/2, we
rebuild our data structures. That is, if m is the number of objects at

that moment, we build a new array A’ and new stacks FE and FE’,

that are large enough to contain a data structure for 3m/2 objects, and

we send the subarray containing the first S'(3m/2) entries of A’—this
subarray will be the new client structure A—to the clients, where this

new array replaces the old one. Then we proceed in the same way.

230 14. General approaches

Theorem 14.3.2 Let DS be a client structure solving some searching

problem, with complexity S(n), Q(n) and C(n). Let DS" be the corre-
sponding central structure, with complexity S'(n) and U'(n). We can
transform these structures into a multiple representation, such that each

client structure

1. has size O(S(n)),

2. has a query time bounded by O(Q(n)),

3. has F(n) = O(C(n)), amortized,

4. has G(n) = O(C(n)), amortized.

The central structure has size O(S'(n)), and its amortized update time
is bounded by O(U'(n)).

Proof. The bounds on the amount of space used by the structures

follow from Theorem 14.3.1, and from the fact that N—the maximal

number of objects that can be represented—and n—the current number

of objects—satisfy n = O(N). Clearly, the query time for a client
structure remains O(@Q(n)). Since the structures are rebuilt at most
once every n/2 updates, the amortized values of both F(n) and G(n)
are bounded by O(C(n)+S(n)/n), which is O(C(n)) by Lemma 14.3.1.
Rebuilding of the new central structure takes O(P’(n)) time for A’ and
O(S'(n)) time for the two stacks. So the amortized update time of the
central structure is bounded by O(U’(n) + P’(n)/n + S'(n)/n), which
is O(U'(n)) by Lemma 14.3.1. O

Remark. The rebuilding of the new central array A’ cannot be per-

formed by just walking along the old array and putting the entries into

a new one of size S’(3m/2): We have to take care that the pointers
keep their correct meaning. Therefore we charged in the above proof

O(P'(n)) time for this rebuilding, which is clearly an upper bound.

14.3.4 A worst-case solution

In this subsection we assume that the update time U’(n) of the central
structure and the amount of data C(n) that an update changes in the

14.3. A general technique 231

client structure are worst-case bounds. We show how the amortized

bounds of the preceding section can be made into worst-case bounds.

The idea is to spread out the construction of the new structures over

a number of updates. The technique is related to the global rebuilding

technique given in Overmars [42]. See also Subsection 9.3.3.

The client structure: Let m be the number of objects initially

represented by the data structures. Let / be an integer, such that

3m/2 <1 < 3m. We first describe the update algorithm for the client

structure; later we consider the central structure. The client structure

consists of the array A of length S(J), as before.

The update algorithm: Consider a sequence of m/2 updates.

(Note that the array A has space for at least m/2 new objects.) We
split this sequence into 3 stages.

First stage: The first stage consists of the first m/4 updates. These
are performed as before. That is, the changes of the client structures,

together with the positions in the array A where the changes have to be

carried out, are sent to them, and using the received information, each

client structure is updated. So after the first stage, the client structures

are up-to-date.

Let mo be the number of objects that are present after the first

stage, and let Jo = 27m. (We use lp to estimate the number of objects

that are present after the third stage.)

Second stage: The second stage consists of the next m/8 updates.
These updates are performed as in the first stage. Also, a new client

array Ag is built in the central computer during the first m/16 updates

of this second stage. This array has length S(lo), and it stores the
client data structure as it was after the first stage. (Later we shall
describe how the central processor builds this new array; we now just

assume that it is there.) This new array is sent to the clients during

the last m/16 updates of the second stage. In each update we send an

amount of O(S(lo)/m) = O(S(m)/m), which is bounded by O(C(m))
by Lemma 14.3.1.

After the second stage, the client structure consists of an up-to-date

array A and an array Ag, containing the client structure as it was after

the first stage. We also assume that the central structure contains a

232 14. General approaches

list of the updates in the second stage, i.e., a list containing the m/8

objects, and for each object information whether it has to be inserted

or deleted.

Third stage: This stage consists of the final m/8 updates. These

updates are carried out for the up-to-date client array A, as before. In

order to make the new array Ag up-to-date, we perform on this array

with each update, two updates from the list of updates from the second

stage. (Note that these updates have to be performed in chronological

order, since the same object can be inserted and deleted several times!)
Then we remove the two updates we just carried out from the (front of
the) list, and the actual update is added at the end of the list.

After this third stage, the client array Ap is up-to-date, and the old

array A is discarded.

So we end with a client structure consisting of an array Ao of length

S(Io). Let n be the number of objects that are represented by the
structures at this moment. If we can show that 3n/2 < Ip < 3n, then

we are in the same situation as the one we started with, and hence we

can proceed in the same way.

At the beginning the data structures represented m objects, and

after the first m/4 updates there were mg objects. It follows that

—m <mMpo < —m.
40 - °=4

After the third stage, i.e., after another m/4 updates, there are n ob-

jects. Hence

Mo — GM SNS mM + FM.

Clearly, m and n are related by

3

It follows that

3 1 3 3 3 3
= = − >= − ⋮− − >= lo = 2m 50 + 50 2 5mMo + gm 5 (Mo + a7) 2 5M

and 1

lo = 2mo < 2(n + 7m) < 2n+n = 3n,

14.3. A general technique 233

which shows that we are indeed in the same situation as at our starting

point.

The central structure: The central structure consists of two

copies of each of the structures A’, FE and FE’, and one copy of a

list L (we use the notations of the preceding subsection). All m/2 up-
dates are carried out on one of A’, FE and FE’. Hence at each moment

the central structure contains an up-to-date data structure. In the sec-

ond stage, in each update we add the object together with information

whether it has to be inserted or deleted, to the list L.

It remains to describe what happens to the other structures A’, FE

and FE’. In the first stage, the updates are performed on these struc-

tures as usual. During the first m/16 updates of the second stage we

convert them into new structures Aj, FEo and FEj. Here Aj is an
array of length S’(/o) that will contain the data structure as it is at the
beginning of the second stage, and FE» and FE; are the corresponding

stacks of free entries in this new array. This converting can be per-

formed in O(P'(lo) + S"(lo)) = O(P'(m) + S'(m)) = O(P'(m)) time.
In each of the m/16 updates we do an amount of O(P’(m)/m) of this
converting. It follows from Lemma 14.3.1 that the update time for the

central structure remains O(U'(n) + P’(m)/m) = O(U'(n)), where n is
the current number of present objects.

During the next m/16 updates of the second stage, the first S(Io)
entries of the array Aj—which contain the new client array Ap—are

sent to the clients, as described above. Also, the structures Aj, FE»

and FE are copied; each update we do an amount of O(S'(m)/m) =
O(U'(m)) = O(U'(n)) work. During the third stage, we perform with
each update, two updates from the list L, on both copies of each of

the structures Aj, FEo and FE 9, and we add the actual update at

the end of L. (Again, note that the updates have to be carried out in

chronological order.) After this third stage, the structures A’, FE and

FE’ are discarded. We end with two copies of each of the structures

o» FEo and FE). Hence we are in the same situation as before the
first stage.

Before we summarize the result, note that a client structure contains

at any moment an up-to-date data structure, that can be used to answer

234 14. General approaches

queries.

Theorem 14.3.3 Let DS be a client structure solving some searching

problem, with worst-case complexity S(n), Q(n) and C(n). Let DS" be
the corresponding central structure, with worst-case complexity S'(n)

and U'(n). We can transform these structures into a multiple represen-
tation, such that each client structure

1. has size O(S(n)),

2. has a query time bounded by O(Q(n)),

3. has F(n) = O(C(n)), in the worst case,

4. has G(n) = O(C(n)), in the worst case.

The central structure has size O(S'(n)), and its worst-case update time
is bounded by O(U'(n)).

Proof. The size of the central structure is bounded by O(S"(n) +n) =
O(S'(n)), where the O(n) term is due to the list of updates. The rest
of the proof follows from the above discussion. O

We have proved that we can bound the update time for the client

structures by O(C(n)), which is the size of the changes in the structure.
Hence our goal is to design structures for searching problems for which

C(n) is small. It is not important whether the changes can be found
efficiently (although this would make the amount of work on the central

structure small). In the next section, we give two examples of such

structures.

14.4 Examples

14.4.1 Binary search trees

Most classes of balanced binary search trees, such as AVL-trees, BB[a]-
trees, etc., have the property that in an update Q(log n) rotations might
be necessary to rebalance them. Hence for such trees, an update can

change Q(logn) nodes. In Section 2.2, however, we defined Olivié’s

14.4. Examples 235

class of aBB-trees. These trees have the interesting property that they

can be maintained in logarithmic time, by at most a constant number

of rotations, if a € {1/2,1/3}. See Theorem 2.2.3.
So let T be an aBB-tree, where a € {1/2, 1/3}, without the balance

information at the nodes. Suppose T contains a set of n objects in its

nodes. In this tree, member queries can be solved in O(logn) time. By
the above mentioned result of Olivié, we can maintain JT’ by means of

O(1) rotations. Hence an update changes only O(1) nodes in T. (Note
that if the tree would contain balance information, an update would

change Q(logn) nodes, since then the balance information would have
to be updated.) Applying Theorem 14.3.3, we get:

Theorem 14.4.1 For solving the member searching problem, there ex-

ists a client structure with complexity:

The central structure has size O(n), and can be maintained in O(log n)
time.

In the solution given above, we stored the objects in the nodes of the

tree. We have seen applications, however, in which we store the objects

in sorted order in the leaves. Then, in order to be able to search in

the tree, we have to store information in the internal nodes to guide

these searches. (In each node we must decide in some way whether
we proceed to the left or to the right son.) Suppose we store in each

node the maximal element in its subtree. Clearly, we can use this

information to solve member queries in time proportional to the height

of the tree. If we now delete the maximal element in the tree, then

in each node on the rightmost path, the search information has to be

changed. Therefore, if the tree is balanced, an update changes O(log n)

nodes. So we have to be careful regarding the “search information”

that is stored in the internal nodes.

236 14. General approaches

Suppose now that we store in each internal node v, the maximal

element in the left subtree of v. Note that this maximal element is

stored in the unique leaf that is reached by making one step to the left

in node v, followed by a maximal number (possibly none) of steps to
the right. It is not difficult to prove that in this case an update changes

O(1) nodes, if we do not rebalance the tree: The search information in
a node is changed iff the maximal element in its left subtree is changed.

(Note that this is an interesting result on its own. In fact, I have not
seen this observation anywhere in the literature.)

So let J’ be an aBB-tree, containing a set of n elements in sorted

order in its leaves, without balance information. Each internal node

contains the maximal element in its left subtree. Then, in 7 mem-

ber queries can be solved using the search information of the internal

nodes in O(logn) time. Now let a € {1/2,1/3}. Then it follows from
the above that an update changes only O(1) nodes in T. Applying
Theorem 14.3.3, we obtain:

Theorem 14.4.2 For solving the member searching problem, we can

take for the client structures a leaf search tree, having complexity:

The central structure has size O(n), and can be maintained in O(log n)
time.

14.4.2 Range trees

The orthogonal range searching problem, and an efficient data structure

solving this problem—the range tree—were studied already extensively

in this thesis. In the following definition we modify the balance condi-

tions of these range trees somewhat.

14.4. Examples 237

Definition 14.4.1 Let V be a set of points in the d-dimensional eu-

clidean space. A d-dimensional (a, a’)-range tree T, representing the
set V, is defined as follows.

1. If d = 1, then T is an aBB-tree, containing the points of V in

sorted order in its leaves.

2. Ifd > 1, then T consists of a BB[a’]-tree, called the main tree,
containing in its leaves the points of V, ordered according to

their first coordinates. Each node v of this main tree contains an

associated structure, which is a (d — 1)-dimensional (a, a’)-range
tree for those points of V that are in the subtree rooted at v,

taking only the second to d-th coordinate into account.

So in this notion of range trees there are two kind of binary trees.

The trees representing points in multi-dimensional space belong to the

class of BB[a’]-trees, and the trees representing one-dimensional points

belong to the class of aBB-trees. All trees are used as leaf search trees.

The update algorithm: The update algorithm for these (a, a’)-
range trees is similar to the one in Section 2.3. In fact, only rebalancing

is done in a different way. Consider a d-dimensional (a, a’)-range tree,
and suppose we want to insert or delete a point p. Then we search with

the first coordinate of p in the main tree to locate its position among

the leaves, and we insert or delete p in all the associated structures we

encounter on our search path. (If these associated structures are one-
dimensional range trees, we apply the update algorithm for aBB-trees

using rotations; otherwise we use the same procedure recursively.) Next

we insert or delete p among the leaves in the main tree, and we walk

back to the root. During this walk, we rebalance the main tree: Each

node that is out of balance is rebalanced by means of rotations. Note

that we have to rebuild the associated structures of the nodes that are

involved in these rotations, and this will take a lot of time when these

structures are large. It turns out, however, that the amortized update

time is low.

The following theorem gives the complexity of (a, a’)-range trees.
For a proof for the bound on the amortized update time, see Willard

238 14. General approaches

and Lueker [66]. The other bounds follow in the same way as in Theo-
rem 2.3.1.

Theorem 14.4.3 A d-dimensional (a, a’)-range tree, representing n

points, has size O(n(logn)*'), and can be built in O(n(logn)4) time.
In this tree, updates can be performed in amortized time O((logn)*),
and orthogonal range queries can be solved in O((logn)? + t) time,
where t is the number of reported answers, without using the balance

information stored at the nodes.

Consider a d-dimensional (a, a’)-range tree for a set of n points,
without the balance information. We store in internal nodes of the

trees search information as in Subsection 14.4.1. We take for the one-

dimensional structures aBB-trees with a € {1/2,1/3}. Let C(n,d)
denote the amortized number of nodes that an update changes in the

range tree.

Lemma 14.4.1 For a proper choice of a’, we have C(n, d) = O((logn)4-").

Proof. We have seen in Subsection 14.4.1 already that C(n,1) = O(1).
Let d > 1. To perform an update we start in the root of the main tree,

and we update its associated structure. This changes, amortized, at

most C(n,d— 1) nodes. Then we repeat the same procedure for the
appropriate son of the root, which is the root of a range tree for at most

(1—a’)n points. Hence this changes, amortized, at most C'((1—a’)n, d)
nodes. If the root of the main tree gets out of balance, we perform a

rotation and, hence, we have to rebuild the associated structures of

the sons of the root. Since these associated structures are (d — 1)-
dimensional (a, a’)-range trees, this changes O(n(logn)**) nodes. It
was shown by Blum and Mehlhorn [13] that for a proper choice of a!
the root of the main tree gets out of balance at most once every ((n)
updates. Hence the amortized number of nodes that are changed due

to our visit to the root of the main tree is bounded by O((logn)*”).
It follows that C(n, d) satisfies the following recurrence:

C(n,d) < C(n,d—1) + C((1 — a’)n, d) + O((logn)*”).

This proves the lemma. 0

14.4. Examples 239

So we have a class of range trees that can be maintained in amortized

time O((logn)?), whereas in the structures without balance informa-
tion an update changes, amortized, only O((logn)4-') nodes. Applying
Theorem 14.3.2 leads to:

Theorem 14.4.4 For solving the orthogonal range searching problem,

there exists a client structure with complexity:

240 14. General approaches

Chapter 15

Summary and concluding

remarks

We have studied the problem of maintaining a number of copies of a

dynamic data structure in a network of processors. In order to avoid

that each processor spends a lot of time in updating its copy, we first

“preprocess” the update in a central structure. Then we broadcast

information about the update to the processors, and, using this infor-

mation, each of these processors updates its structure.

The most interesting results are as follows.

For each order decomposable set problem PR, there exists a client

structure of size O(PR(n)), that can be maintained at the cost of
O(PR(n)) transport and computing time. Here, PR(n) is the size of
the answer for a set of n objects. The maintenance of the answer is

completely arranged by the central structure. See Section 14.1.

In Section 14.2 we have given techniques for decomposable searching

problems. The most general result is Theorem 14.2.3: Suppose we are

given a data structure for a decomposable searching problem PR of size

S(n) and query time Q(n). Then for each positive integer k there is
a client structure solving PR, of size O(S(n)) having a query time of
O(k x Q(n)). Insertions into this client structure can be performed at
the cost of O(k x (S(n)/n) x (n/Q(n))‘/*) transport and computing
time.

So this technique gives a client structure of the same size as the

structure we started with, having asymptotically the same query time

241

242 15. Summary and concluding remarks

(if k is a constant). This new client structure, however, has a fast insert
algorithm.

In Section 14.3 we have given a technique that applies to any data

structure: Suppose we have a client structure DS of size S(n), having
a query time Q(n). Let C(n) be the amount of data that an update
changes in DS. Then we can transform this structure into another client

structure of size O(S(n)), having a query time O(Q(n)), that can be up-
dated in O(C(n)) transport and computing time. See Theorem 14.3.3.
An interesting application of this result is given in Subsection 14.4.2.

Here, we show that we can maintain a class of d-dimensional range trees,

such that the central structure needs O((logn)*) time for an update,
whereas the client structure can be updated in O((logn)4~') transport
and computing time.

Note that most of the techniques of this part share ideas with those

given for the reconstruction problem. Especially the general techniques

of Sections 9.3 and 14.3 are strongly related to each other.

There remain several interesting directions for future research.

Just as in case of the reconstruction problem, other general solutions

may be possible. Other classes of searching problems can be studied,

and other techniques for decomposable searching problems can be de-

signed. Again, more examples are needed of specific data structures.

For example, (client versions of) data structures are wanted for which
C(n)—the amount of data that is changed in an update—is small.

One can also investigate the idea of performing sets of updates, in-

stead of performing each update separately. Special classes of searching

problems and general techniques may exist.

Finally, a very general research direction is to study other multiple

representation problems. For example, what should be done if the client

structures do not necessarily have to represent the same set of objects?

We have seen that the problems of Parts III and IV are related, and

that many solutions to these problems are based on the same ideas. So

one could investigate multiple representations in a more general setting.

243

Bibliographic comments

The problem of maintaining dynamic data structures in a network was

posed to the author in 1986 by Mark Overmars. The results of this

part are based on joint work with Mark Overmars, Leen Torenvliet and

Peter van Emde Boas, see [54, 55].

244 15. Summary and concluding remarks

Bibliography

[1] G.M. Adel’son-Vel’skii and E.M. Landis. An algorithm for the or-
ganization of information. Soviet Math. Dokl. 3 (1962), pp. 1259-
1262.

[2] A.V. Aho, J.E. Hopcroft and J.D. Ullman. The Design and Analy-
sis of Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[3] A.V. Aho, J.E. Hopcroft and J.D. Ullman. Data Structures and
Algorithms. Addison-Wesley, Reading, MA, 1983.

[4] R. Bayer and E.M. McCreight. Organisation and maintenance of
large ordered indexes. Acta Informatica 1 (1972), pp. 173-189.

[5] J.L. Bentley. Decomposable searching problems. Inform. Proc. Lett.

8 (1979), pp. 244-251.

[6] J.L. Bentley. Multidimensional divide and conquer. Comm. of the
ACM 28 (1980), pp. 214-229.

[7] J.L. Bentley and J.R. Friedman. Data structures for range search-

ing. Computing Surveys 11 (1979), pp. 397-409.

[8] J.L. Bentley and J.B. Saxe. Decomposable searching problems I:

static to dynamic transformations. J. of Algorithms 1 (1980), pp.

301-358.

[9] M. Bezem and J. van Leeuwen. On estimating the complexity of
logarithmic decompositions. Inform. Proc. Lett. 26 (1987/88), pp.
321-324.

245

246 Bibliography

[10] G. Blankenagel and R.H. Giiting. XP-trees: externe priority search
trees. Forschungsbericht 260, Abteilung Informatik, Universitat

Dortmund, 1988.

[11] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest and R.E. Tarjan.
Time bounds for selection. J. Comput. System Sci. 7 (1973), pp.
448-461.

[12] N. Blum. On the single-operation worst-case time complexity of

the disjoint set union problem. SIAM J. Comput. 15 (1986), pp.
1021-1024.

[13] N. Blum and K. Mehlhorn. On the average number of rebalancing

operations in weight-balanced trees. Theor. Comp. Sci. 11 (1980),

pp. 303-320.

[14] K.Q. Brown. Geometric transforms for fast geometric algorithms.

Techn. Report CMU-CS-80-101, Department of Computer Science,

Carnegie-Mellon University, 1980.

[15] B. Chazelle. A functional approach to data structures and its use
in multidimensional searching. SIAM J. Comput. 17 (1988), pp.
427-462.

[16] Y.T. Ching and K. Mehlhorn. Dynamic deferred data structuring.
To appear in: Inform. Proc. Lett.

[17] D. Comer. The ubiquitous B-tree. Computing Surveys 11 (1979),
pp. 121-137.

[18] H. Edelsbrunner. A note on dynamic range searching. Bull. of the
EATCS 15 (1981), pp. 34-40.

[19] H. Edelsbrunner, M.H. Overmars and D. Wood. Graphics in flat-
land: a case study. In: F.P. Preparata (ed.), Advances in Com-
puting Research, Vol. 1, Computational Geometry, J.A.I. Press,

London, 1983, pp. 35-59.

[20] 1.G. Gowda. Dynamic problems in computational geometry. M.Sc.

Thesis, Department of Computer Science, University of British

Columbia, 1980.

Bibliography 247

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

I.G. Gowda and D.G. Kirkpatrick. Exploiting linear merging and

extra storage in the maintenance of fully dynamic geometric data

structures. Proc. 19-th Annual Allerton Conf. on Communication,

Control and Computing, 1980, pp. 1-10.

R.L. Graham, D.E. Knuth and O. Patashnik. Concrete Mathemat-

ics. Addison-Wesley, Reading, MA, 1989.

L.J. Guibas and R. Sedgewick. A dichromatic framework for bal-

anced trees. Proc. 19-th Annual IEEE Symp. on Foundations of

Computer Science, 1978, pp. 8-21.

P.H. Hartel, M.H.M. Smid, L. Torenvliet and W.G. Vree. A par-

allel functional implementation of range queries. ITLI Prepublica-

tion Series CT-89-05, Departments of Mathematics and Computer

Science, University of Amsterdam, 1989. To appear in: Proc. Com-

puting Science in the Netherlands, 1989.

K. Hinrichs. The grid file system: implementation and case studies

of applications. Ph.D. Thesis, ETH Ziirich, 1985.

K. Hinrichs. Implementation of the grid file: design concepts and

experience. BIT 25 (1985), pp. 569-592.

Ch. Icking, R. Klein and Th. Ottmann. Priority search trees in

secondary memory. Proc. WG’87, Lecture Notes in Computer Sci-

ence, Vol. 314, Springer-Verlag, Berlin, 1988, pp. 84-93.

R.M. Karp, R. Motwani and P. Raghavan. Deferred data structur-

ing. SIAM J. Comput. 17 (1988), pp. 883-902.

D.G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J.

Comput. 12 (1983), pp. 28-35.

D.E. Knuth. The Art of Computer Programming, Volume 3: Sort-

ing and Searching. Addison-Wesley, Reading, MA, 1973.

G.S. Lueker. A data structure for orthogonal range queries. Proc.

19-th Annual IEEE Symp. on Foundations of Computer Science,

1978, pp. 28-34.

248 Bibliography

[32] K. Mehlhorn. Data Structures and Algorithms, Volume 1: Sorting
and Searching. Springer-Verlag, Berlin, 1984.

[33] K. Mehlhorn. Data Structures and Algorithms, Volume 3: Multi-
Dimensional Searching and Computational Geometry. Springer-

Verlag, Berlin, 1984.

[34] L. Monier. Combinatorial solutions of multidimensional divide-
and-conquer recurrences. J. of Algorithms 1 (1980), pp. 60-74.

[35] R. Motwani and P. Raghavan. Deferred data structuring: query-
driven preprocessing for geometric search problems. Proc. 2-nd An-

nual ACM Symp. on Computational Geometry, 1986, pp. 303-312.

[36] J. Nievergelt, H. Hinterberger and K.C. Sevcik. The grid file:
an adaptable, symmetric multikey file structure. ACM ‘Trans.

Database Systems 9 (1984), pp. 38-71.

[37] J. Nievergelt and E.M. Reingold. Binary search trees of bounded
balance. SIAM J. Comput. 2 (1973), pp. 33-43.

[38] H.J. Olivié. A study of balanced binary trees and balanced one-

two trees. Ph.D. Thesis, Department of Mathematics, University

of Antwerp, 1980.

[39] H.J. Olivié. On a-balanced binary search trees. Proc. 5-th GI-

Conference, Lecture Notes in Computer Science, Vol. 104,

Springer-Verlag, Berlin, 1981, pp. 98-108.

[40] H.J. Olivié. A new class of balanced trees: half balanced binary

search trees. RAIRO Informatique Théorique 16 (1982), pp. 51-
71.

[41] M.H. Overmars. Dynamization of order decomposable set problems.

J. of Algorithms 2 (1981), pp. 245-260.

[42] M.H. Overmars. The Design of Dynamic Data Structures. Lec-
ture Notes in Computer Science, Vol. 156, Springer-Verlag, Berlin,

1983.

Bibliography 249

[43] M.H. Overmars. Efficient data structures for range searching on a

grid. J. of Algorithms 9 (1988), pp. 254-275.

[44] M.H. Overmars and M.H.M. Smid. Maintaining range trees in sec-
ondary memory. Proc. 5-th Annual STACS, Lecture Notes in Com-

puter Science, Vol. 294, Springer-Verlag, Berlin, 1988, pp. 38-51.

[45] M.H. Overmars, M.H.M. Smid, M.T. de Berg and M.J. van Krev-
eld. Maintaining range trees in secondary memory, part I: parti-

tions. Report FVI-87-14, Department of Computer Science, Uni-

versity of Amsterdam, 1987. To appear in: Acta Informatica.

[46] F.P. Preparata and S.J. Hong. Convex hulls of finite sets of points
in two and three dimensions. Comm. of the ACM 20 (1977), pp.

87-93.

[47] F.P. Preparata and M.I. Shamos. Computational Geometry, an
Introduction. Springer-Verlag, New York, 1985.

[48] J. Riordan. Combinatorial Identities. John Wiley & Sons, New
York, 1968.

[49] A.M. Schénhage, M. Paterson and N. Pippenger. Finding the me-
dian. J. Comput. System Sci. 13 (1976), pp. 184-199.

[50] M.H.M. Smid. General lower bounds for the partitioning of range

trees. ITLI Prepublication Series CT-88-02, Departments of Math-

ematics and Computer Science, University of Amsterdam, 1988.

[51] M.H.M. Smid. A data structure for the union-find problem hav-
ing good single-operation complexity. ITLI Prepublication Series

CT-88-06, Departments of Mathematics and Computer Science,

University of Amsterdam, 1988.

[52] M.H.M. Smid. Dynamic deferred data structures. ITLI Prepublica-
tion Series CT-89-01, Departments of Mathematics and Computer

Science, University of Amsterdam, 1989. To appear in: Inform.

Proc. Lett.

250 Bibliography

[53] M.H.M. Smid and M.H. Overmars. Maintaining range trees in sec-
ondary memory, part I: lower bounds. Report FVI-87-15, Depart-

ment of Computer Science, University of Amsterdam, 1987. To

appear in: Acta Informatica.

[54] M.H.M. Smid, M.H. Overmars, L. Torenvliet and P. van Emde
Boas. Maintaining multiple representations of dynamic data struc-

tures. ITLI Prepublication Series CT-88-03, Departments of Math-

ematics and Computer Science, University of Amsterdam, 1988. To

appear in: Information and Computation.

[55] M.H.M. Smid, M.H. Overmars, L. Torenvliet and P. van Emde
Boas. Multiple representations of dynamic data structures. In:

G.X. Ritter (ed.), Information Processing 89, Proc. IFIP 11-th
World Computer Congress, Elsevier Science Publishers, Amster-

dam, 1989, pp. 437-442.

[56] M.H.M. Smid, L. Torenvliet, P. van Emde Boas and M.H. Over-
mars. Two models for the reconstruction problem for dynamic data

structures. J. Inform. Process. Cybernet. EIK 25 (1989), pp. 131-
155.

[57| R.E. Tarjan. Efficiency of a good but not linear set union algorithm.

J. of the ACM 22 (1975), pp. 215-225.

[58] R.E. Tarjan. A class of algorithms which require nonlinear time

to maintain disjoint sets. J. Comput. System Sci. 18 (1979), pp.

110-127.

[59] R.E. Tarjan. Updating a balanced search tree in O(1) rotations.
Inform. Proc. Lett. 16 (1983), pp. 253-257.

[60] R.E. Tarjan and J. van Leeuwen. Worst-case analysis of set union

algorithms. J. of the ACM 31 (1984), pp. 245-281.

[61] L. Torenvliet and P. van Emde Boas. The reconstruction and opti-
mization of trie hashing functions. Proc. 9-th International Conf.

on Very Large Databases, 1983, pp. 142-156.

Bibliography 251

[62] P. van Emde Boas. Preserving order in a forest in less than log-

arithmic time and linear space. Inform. Proc. Lett. 6 (1977), pp.

80-82.

[63] P. van Emde Boas, R. Kaas and E. Zijlstra. Design and imple-
mentation of an efficient priority queue. Math. Systems Theory

10 (1977), pp. 99-127.

[64] J. Wiedermann. Searching Algorithms. Teubner Texte zur Mathe-
matik, Band 99, Teubner Verlagsgesellschaft, Leipzig, 1987.

[65] D.E. Willard. New data structures for orthogonal range queries.

SIAM J. Comput. 14 (1985), pp. 232-253.

[66] D.E. Willard and G.S. Lueker. Adding range restriction capability
to dynamic data structures. J. of the ACM 32 (1985), pp. 597-617.

[67] N. Wirth. Algorithms + Data Structures = Programs. Prentice-
Hall, Englewood Cliffs, 1976.

