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Chapter 1 

Outline of the thesis 

The theory of data structures and algorithms is concerned with the 

design and analysis of structures that solve searching problems. In a 

searching problem, we have to answer a question (also called a query) 

about an object with respect to a given set of objects. A data structure 

for such a searching problem stores the objects in such a way that 

queries can be answered efficiently. The design of data structures has 

received considerable attention. 

A large part of the research is focussed on designing structures that 

are stored in the main memory of a computer, on which all standard 

computations can be performed, and which is usually modeled as a 

Random Access Machine (RAM). The memory of a RAM consists of 
an array, the entries of which can store pieces of information, such as 

names, integers, pointers, etc. Each such array entry can be accessed 

at constant cost, provided the address of the entry is known. The main 

problem is to structure the relations of the basic pieces of information 

in a small amount of space, such that queries can be answered fast. 

Until about 1979, many of the main memory data structures that 

were designed were static, i.e., it was not possible to insert and delete 

objects. Exceptions were data structures that can handle dictionary op- 

erations. The oldest are the AVL-trees, introduced in 1962 by Adel’son- 

Vel’skii and Landis [1]. In these trees one can search, insert and delete 
objects in a number of steps that is logarithmic in the number of objects 

that are stored in the tree. Other examples are B-trees, introduced in 

1972 by Bayer and McCreight [4] and BB[a]-trees, introduced in 1973 
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8 1. Outline of the thesis 

by Nievergelt and Reingold [37]. These classes of trees also allow search, 
insert and delete operations to be performed in logarithmic time. In 

1975, Van Emde Boas Trees [62, 63] were designed. These trees can 
store integers from a fixed universe [0,...,u— 1], such that the opera- 

tions search, insert and delete can be performed in O(log log u) time. 

In 1979, the research on general dynamization techniques was ini- 

tiated by Bentley [5]. This research consists of designing techniques 
to transform static data structures into dynamic structures, i.e., struc- 

tures that do allow insertions and deletions of objects. Many techniques 

are available nowadays that can be applied to large classes of searching 

problems. As an example, there exists a general theory to dynamize 

data structures that solve so-called decomposable searching problems. 

In a decomposable searching problem, the answer to a query with re- 

spect to a set of objects can be obtained by merging the partial answers 

to the query with respect to a partition of this set. Any static data 

structure that solves a searching problem satisfying this general con- 

straint, can be turned into a dynamic structure. The reader is referred 

to Overmars [42] for a detailed account of dynamization techniques. 

In this thesis, we study three alternative ways of storing and main- 

taining dynamic data structures. 

In Part II, we consider the problem of maintaining a specific dy- 

namic data structure—a range tree—in secondary memory. This prob- 

lem often occurs in database applications, where data structures are 

too large to be stored in main memory, and therefore have to be stored 

in secondary memory. 

Secondary memory is modeled as an array that is divided into 

blocks. In secondary memory, no computing is possible, and the only 

allowed operations are to replace a block by another one and to add 

a new block. All computations take place in main memory, and the 

blocks that store information that is needed during a computation are 

transported to main memory. If a block is changed during an operation, 

it is transported back to secondary memory. For each block we need 

in a computation, we have to access secondary memory, which takes a 

considerable amount of time in practice. 

Therefore, the main problem is to partition the data structure into 

parts of a small size, such that each operation needs information from



only a few parts. Then, by storing each part of the partition in one 

block in secondary memory, we can perform operations at the cost of 

only a few disk accesses and a small amount of data transport. 

In the past, considerable research has been devoted to the design 

of secondary memory data structures. The best-known example is the 

B-tree, that was mentioned already. (B-trees have also applications 

aS main memory data structure. They were designed, however, for 

secondary memory applications.) If a B-tree stores n objects, and if it 

is stored in blocks of size m, the operations search, insert and delete 

can be performed at the cost of O(logn/logm) accesses to secondary 
memory in the worst case. 

The approach we take here—take a known data structure that was 

designed for main memory, and investigate how it can be partitioned as 

efficiently as possible—is relatively new. In some sense, a B-tree can be 

seen as a partitioned binary search tree. The problem of partitioning 

priority search trees was investigated by Icking, Klein and Ottmann [27] 

and Blankenagel and Giiting [10]. The partitioning of range trees has 
not been studied before. 

In most studies that have appeared so far, it is assumed that the 

objects are represented by only one data structure that is stored either 

in main memory or in secondary memory, and all operations are per- 

formed on this one structure. In many situations, however, we need 

to represent the data more than once—possibly on different storage 

media—and have a multiple representation of the data. 

In Part III, we consider one such multiple representation problem: 

The reconstruction problem. After a system crash, or as a result of er- 

rors in software, a data structure that is stored in main memory can be 

destroyed. Another case, in which a main memory structure can be de- 

stroyed, is the regular termination of an application program that uses 

the structure. In case of an application that is executed on a system 

that is also used by other persons, the copy of a data structure in main 

memory will be destroyed between two runs of the application program. 

In both cases—system crash or regular termination—the data structure 

has to be reconstructed from the information stored in secondary mem- 

ory. This information is called the shadow administration. So besides 

the data structure in main memory, we represent the data in a shadow
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administration that is stored in secondary memory. 

This leads to the problem of designing for a given searching problem, 

a dynamic data structure that solves this searching problem, together 

with a shadow administration from which the data structure can be 

reconstructed in case of calamity. 

This shadow administration does not have to support the same op- 

erations as the main memory data structure. Only insertions and dele- 

tions have to be performed, whereas on the main structure itself also 

queries are carried out. Furthermore, we only require that the shadow 

administration contains enough information that makes it possible to 

reconstruct the main structure. 

The reconstruction problem first appeared in a paper by Torenvliet 

and van Emde Boas [61], where the reconstruction and optimization 
of trie hashing functions are investigated. No other studies concerning 

this problem have appeared. Therefore, Part III is the first general 

study concerning this subject. 

Another case where data is represented more than once is considered 

in Part [V. When we have a network of processors, each having its own 

memory, there are situations in which each processor holds its own copy 

of a particular data structure. Updates have to be made in all copies. 

When the time for an update is high this is an unfavorable situation. 

In this situation, we are better off dedicating one processor the task 

of maintaining the data structure and broadcasting the actual changes 

to the other processors. Again we have a situation in which there is a 

multiple representation of the data. One data structure should allow 

for updates, and a set of other structures answer queries. Of course, the 

query data structures must be structured in such a way that they can 

perform updates, but they get the update in a kind of “preprocessed” 

form that is easier to handle. The structure that performs the updates 

is called the central structure, whereas the other structures are called 

the client structures. 

This multiple representation problem is related to the reconstruction 

problem. In both cases, there is one structure on which updates are 

performed. After this update, the other structures that are stored on 

other media are updated. This is done by transporting data to these 

other structures. The actual update procedure for the other structures
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is somewhat different for both problems. A shadow administration 

is stored in secondary memory, where it is only possible to replace 

complete blocks by other ones. The client structures, however, are 

stored in processors on which computing is possible. This makes it 

possible to replace much smaller pieces of information than just blocks 

of some predetermined size. 

The problems are in some sense “dual” to each other: In the recon- 

struction problem there is a main structure on which queries and up- 

dates are performed. After an update has been carried out in this main 

structure, information is transported to secondary memory, where the 

shadow administration is updated. In this shadow structure no queries 

are performed. In the other multiple representation problem, there is a 

central structure on which only updates are performed. After this cen- 

tral structure is updated, data is transported to the client structures 

that makes it possible to update them. These client structures are also 

used for query answering. 

Again, the multiple representation problem of Part IV has not been 

studied before. So Part IV contains the first general study concerning 

this problem. 

Solutions to the three problems that are studied in this thesis have 

applications in the following areas: 

e The theory of data bases. 

e Computational geometry. Since in this area often data structures 

are used requiring more than linear space, it is sometimes possible 

to improve asymptotically upon the storage requirements. 

e Paging dynamic data structures. Part II is completely devoted to 

this application. The techniques developed there can be applied 

to many other data structures as well. Furthermore, techniques 

to maintain shadow administrations in secondary memory can 

sometimes be used in case the data structure is only stored in 

secondary memory. 

e Parallel implementations of data structures. Techniques to par- 

tition a data structure can sometimes be used to implement the
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structure on a parallel machine. See [24], where the parallel im- 
plementation of partitioned range trees is investigated. 

e Multiprocessing. A system in which several processors at distinct 

times execute distinct tasks, and communicate through message 

passing, might be even more sensitive to crashes than a unipro- 

cessor system. To protect a computation against failure of pro- 

cessors, checkpoints are built in on several places of the com- 

putation. If a checkpoint is reached, the complete state of all 

processors, and their interconnection pattern, is transported to 

secondary memory. If the system crashes, the computation can 

be continued at the last reached checkpoint. It is clear that much 

time and space can be saved by efficiently storing the information 

from each processor. 

e Storing dynamic data structures in write-once memories. The 

results of the problem of designing efficient client structures give 

insight in which parts of data structures are actually changed 

when performing updates. 

This text is organized as follows. In Chapter 2, we briefly review 

the basic concepts of data structures and searching problems. We recall 

binary search trees, range trees, and some important classes of searching 

problems. We also introduce the models of main memory and secondary 

memory. 

The rest of the thesis consists of three parts, that can be read inde- 

pendently of each other. Each of these parts contains a final chapter, 

giving a summary of the most important results of that part. 

In Part II, we consider the problem of partitioning a range tree into 

parts of a small size, such that each query and update needs informa- 

tion from only a small number of parts. We give many partitions of 

range trees, thereby obtaining a number of trade-offs between the num- 

ber of disk accesses versus the amount of information that has to be 

transported. We consider two types of partitions. The first type—the 

restricted partitions—can easily be extended to many other data struc- 

tures that have the structure of an augmented binary search tree. The 

second type is much more complicated, but yields better trade-offs. We
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first consider 2-dimensional range trees. Later, all results are extended 

to arbitrary dimensions. Finally, we prove several lower bounds for par- 

titions of range trees. For the restricted partitions, these lower bounds 

coincide with the best upper bounds. 

In Part III, we study the reconstruction problem. We give a realistic 

general framework that we use to describe solutions to this problem. We 

study how to structure the shadow administration for different types 

of query problems, such as order decomposable set problems and de- 

composable searching problems. For some types of query problems, the 

shadow administration can be of an asymptotically smaller size than 

the main data structure itself, and the data structure can be recon- 

structed from this shadow administration in an amount of time that is 

smaller than the time needed to build the data structure from scratch. 

We also give a general technique, in which we transport with each 

update only the changes in the shadow administration to secondary 

memory. To reconstruct the data structure, we then perform the changes 

of the most recent updates to get the up-to-date shadow administra- 

tion. Then we reconstruct the data structure. By sending with the 

changes also the positions where these changes have to be carried out, 

we avoid that we have to search the positions of the pieces of infor- 

mation in the shadow administration that have to be updated. This 

technique gives very fast maintainable shadow administrations, and it 

is especially useful in case an update changes only a small part of the 

shadow structure. 

Next we study a specific searching problem, the Union-Find prob- 

lem. We design an efficient main memory data structure for this prob- 

lem, having a lower worst-case single operation complexity than the 

best previously known structure. This structure depends on a param- 

eter k, and for many values of k it is optimal in the very general class 

of data structures solving the union-find problem, as introduced by 

Blum [12]. This new data structure is designed in such a way that a 
copy of it can efficiently be maintained in secondary memory. Note 

that this structure is interesting in its own right. 

Finally, we apply the recent idea of deferred data structuring—due 

to Karp, Motwani and Raghavan [28, 35|—to the reconstruction prob- 
lem. Here, a data structure is built “on-the-fly” during query and 

update operations. With each operation, those parts of the data struc-
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ture that do not exist, but that are needed, are built. These parts 

can then be used for future operations. Karp et al. only give static 

deferred structures, and they ask for dynamic structures. It is shown 

that using well-known dynamization techniques, it is often possible to 

design dynamic deferred data structures. Again, the results are inter- 

esting in their own right, and have applications in other areas besides 

the reconstruction problem. 

We use dynamic deferred data structures to get a new approach 

for solving the reconstruction problem. In this approach, we do not 

require that the data structure is completely reconstructed before we 

proceed with query answering and performing updates. After a crash, 

we transport the shadow administration—that stores only the objects 

that are represented by the data structure—to main memory, and we 

immediately proceed with performing operations. The data structure 

is reconstructed in a deferred way. 

In Part IV, we investigate the problem of designing efficient central 

and client structures. We give a general framework in which we de- 

scribe solutions to this problem. As for the reconstruction problem, we 

give general techniques for order decomposable set problems and de- 

composable searching problems. It is shown that, after “preprocessing” 

an update by the central structure, the clients can often perform the 

update more efficiently. Also, in some situations the client structures 

can be of a smaller size than the central structure. 

Finally, we give a general technique that is related to the general 

technique of Part III. In this technique, we send with an update only 

those parts of the client structure that have been changed. Again, in 

order to avoid searching in the client structures the positions where the 

structure has to be changed, we also send these positions. This leads 

to very fast maintainable client structures. We give classes of binary 

search trees and range trees, the client versions of which can be updated 

asymptotically faster than the central versions.



Chapter 2 

Preliminaries: Data 

structures and searching 

problems 

2.1 Introduction 

In this chapter, we recall the basic concepts of data structures and 

searching problems. This chapter is not meant as a general introduction 

to these topics; we only recall the most important concepts that are 

used in this thesis. Readers who are not familiar with the material can 

find a more thorough introduction to data structures in Aho, Hopcroft 

and Ullman [2, 3], Knuth [30], Mehlhorn [32, 33] and Wirth [67]. For 
a general introduction to searching problems, the reader can consult 

Mehlhorn [33], Overmars [42] and Wiedermann [64]. 
Data structures are meant for storing sets of objects in such a way 

that questions (also called queries) about these objects can be answered 

efficiently. Often, the kind of questions that are asked is fixed. In this 

case, we want to structure the objects such that these specific queries 

can be handled in an efficient way. In this thesis we only consider 

data structures from this latter point of view. The kind of queries that 

are asked about the objects is called a searching problem. 'To be more 

precise: 

Definition 2.1.1 Let T,, Tj and 73 be sets of objects. A searching 
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16 2. Data structures and searching problems 

problem is a mapping PR: T, x P(T2) > T3. 

In this definition, P(T) denotes the power set of To, i.e., the set of 
all subsets of T>. 

For example, in the member searching problem, we are given a finite 

set V and a query object qg, and we have to decide whether or not q¢ 

is an element of V. In this case T; = To, T3 = {true, false}, and 

PR(,V) = (a € V). 
Another example is the orthogonal range searching problem, which 

is a central object of study throughout this thesis. Here, we are given 

a finite set V of points in the d-dimensional space, and an axis-parallel 

hyperrectangle g = ((#1 : yi],-.-,[%a@ : Ya]), and we are asked to deter- 
mine all points p = (p1,..., pq) in V, such that v7, < pi < yW,...,%a < 
Da < Ya, i-e., all points of V that are in the hyperrectangle gq. In this 

case, T; is the set of all axis-parallel hyperrectangles, 7) is the set of all 

points in the d-dimensional space, Tz = P(T>), and PR(qg, V) = (qnV). 
In the convex hull searching problem, we are given a finite set V of 

points in the d-dimensional real vector space, and a query point qg, and 

we have to find out whether or not q is inside the convex hull of V. Here, 

the convex hull of V is the (unique) smallest convex set that contains 
V. Now T; and T> both are the set of all points in d-dimensional space, 

T; = {true, false}, and PR(q,V) = (¢ € conv(V)), where conv(V) 
denotes the convex hull of V. 

Finally, in the nearest neighbor searching problem, we are given a 

finite set V of points in the plane, and a query point qg, and we have to 

find a point of V that is nearest to q with respect to a given distance. 

In this case, T,, T> and 73 are the set of all points in the plane, and 

PR(q, V) = a nearest neighbor of g in V. 

Given a finite set V in P(T2), a solution to the searching problem 

PR consists of a data structure DS’, representing V, such that queries 

(ie., PR(q,V) for q in T,) can be computed efficiently. If the set V 
is given beforehand and does not change, the data structure is called 

static. The structure is called dynamic, if it is possible to insert and 

delete objects. If only insertions are possible, the structure is called 

semi-dynamic. Insertions and deletions are called updates. 

The Random Access Machine: In this text we take the Ran-
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dom Access Machine (RAM) with real arithmetic as our machine model. 
(See e.g. [2].) The memory of a RAM consists of an array, the entries 
of which have unique addresses. The contents of such an array entry 

can be obtained at constant cost, provided its address, i.e., its index, 

is known. Data structures are composed of “indivisible pieces of in- 

formation”, such as pointers, names, integers, etc. We assume—as is 

customary in the theory of algorithms and data structures—that such 

a piece of information has size one. Each piece of information can be 

stored in one entry of main memory. We consider a pointer to be an 

index of an array entry. 

On a RAM, the functions addition, subtraction, multiplication and 

division can be computed in constant time. If functions like logarithms, 

floor and ceiling functions are needed, we can compute the values that 

are needed during the preprocessing of the data structure and store 

them in tables, using the four basic operations. The time and space 

needed to compute and store these values are in general subsumed by 

the time and space required to build and store the data structure itself. 

The Pointer Machine: In Chapter 10, we design a data struc- 

ture that can be implemented on a weaker model of main memory, the 

Pointer Machine, due to Tarjan [58]. In this model, the above standard 
functions can also be computed in constant time. The memory of a 

Pointer Machine consists of a collection of nodes that contain the infor- 

mation. These nodes can be linked by pointers. The difference with a 

RAM is that on a Pointer Machine, no direct addressing is possible. If 

the algorithm is in some node of the memory, and if it wants to access 

another node, it has to follow pointers until it reaches that node. As an 

example, if a set of objects is stored in sorted order in an array, we can 

not perform binary search in an efficient way. The only way to capture 

binary search efficiently, is to store the objects in a binary search tree, 

and to link the nodes by pointers. For more details about the Pointer 

Machine, see [58]. 

The complexity of a data structure DS’, that stores a set of cardi- 

nality n, is given by the following functions: 

e Pps(n): the preprocessing time, which is the time needed to build 
DS.
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Spgs(n): the amount of space needed to store DS. 

Qps(n): the time needed to answer a query in DS. 

Ipg(n): the time needed to insert an object into DS. (In case DS 
is a (semi-)dynamic data structure.) 

Dpgs(n): the time needed to delete an object from DS. (In case 
DS is a dynamic data structure.) 

e If the insertion and deletion times are equal, we denote the com- 

mon update time by Ups(n). 

If the data structure DS is clear from the context, we just write 

P(n), S(n), Q(n), I(n), D(n) and U(n) for these complexity measures. 

All complexity measures are expressed in terms of words, which is 

customary in the theory of data structures and algorithms. These com- 

plexity measures are worst-case complexities, unless stated otherwise, 

in which case they are amortized complexities. Consider an initially 

empty data structure. Suppose we perform a sequence of n updates in 

this structure. Let these updates be chosen such that the total time 

T(n) for performing them is maximal among all sequences of n up- 
dates. Then the amortized update time of the data structure is defined 

as T(n)/n. 

To estimate the complexities we use the following notations. Let 

f(n) and g(n) be two positive functions, defined on the positive integers. 

e f(n) = O(g(n)) if there is a constant c > 0 and an integer no, 
such that for each n > no, we have f(n) < cg(n). 

e f(n) = Q(g(n)) if there is a constant c > 0 and an integer no, 
such that for each n > no, we have f(n) > cg(n). 

e f(n) = O(g(n)) if there are constants c, > 0 and cy > 0, and an 
integer no, such that for each n > no we have c, g(n) < f(n) < 

C2 g(n). 

e f(n) = o(g(n)) if limp f(n)/g(n) = 0.
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There exists another definition of 2: f(n) = Q(g(n)) if there is a 
constant c > 0, such that f(n) > cg(n) for infinitely many values of n. 
Our definition, however, has the advantage that the following relation 

holds: 

O(F(n))/Q(g(n)) = OF (n)/9(n)). 
This relation is often used in the proofs of amortized complexity bounds. 

We assume that all complexity measures are non-decreasing and 

smooth. Here, a positive function f(n) is called smooth if f(O(n)) = 
O(f(n)). We further assume that the functions S(n)/n and P(n)/n are 
non-decreasing. In all applications we encounter, these assumptions are 

satisfied. 

To finish this section, we introduce some notations. First, loga- 

rithms, and powers of logarithms, are written in the usual way, i.e., 

we write logn, (logn)?, etc. (Unless stated otherwise, all logarithms 
are to the base two.) The k-th iterated logarithm is defined and 
denoted as follows. If k = 0, then (log)°n = n. If k > 1, then 
(log)'n = log ((log)**n). The function log* n is defined by log*n = 

min{k > 1|(log)*n < 1}. 

2.2 Binary search trees 

The reader is assumed to be familiar with the basic terminology from 

graph theory. (See e.g. [2, 3].) Many data structures we encounter 
contain binary search trees as substructures. A binary tree is a rooted 

tree, in which each node has either zero or two sons. The link between 

a node and its son is called an edge. Nodes without sons are called 

leaves, whereas nodes that do have sons are called internal nodes. The 

two sons of an internal node v are called left son and right son. The 

node v itself is called the father of the two sons. If v is a node of a 

binary tree, we define the subtree of v as the tree having v as its root 

and that contains all nodes—including v—that can be reached from v 

by following edges to sons. The height of a binary tree is defined as 

the number of edges in the longest root-to-leaf path. A binary tree 

consists of levels, where a level is the set of all nodes that are at the 

same distance to the root of the tree. Here the distance of two nodes is
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defined as the number of edges on the path that connects these nodes. 

The levels of a binary tree are numbered according to their distance to 

the root of the tree. So the root itself is at level 0, the sons of the roots 

are at level 1, etc. 

A binary tree that stores a set of objects is called a node search 

tree, if the objects are stored in the nodes of the tree—one object in 

each node—in such a way that for each internal node v it holds that 

all objects in the left subtree of v are smaller than the object stored 

in v, and all objects in the right subtree of v are larger than that of v, 

according to some order. 

In this thesis, binary trees are almost always used as leaf search 

trees. That is, if we use a binary tree to represent a set of objects, we 

store these objects in the leaves of the tree, such that for each internal 

node v, all objects in the left subtree of v are smaller than those in 

the right subtree of v. Internal nodes of the tree contain information 

to guide searches. (For example, we can store in each internal node 

the maximal element in its left subtree.) It can be shown by induction 
on the number of leaves, that a binary tree with n leaves has exactly 

2n — 1 nodes. 

Binary search trees are used to solve the member searching problem. 

In order to search for an object q, we follow a path in the tree starting at 

the root. In each node on this path, we compare q with the information 

stored at that node, and we decide whether the search is finished—in 

case we have found q or end in a leaf—or proceeds to the left or to 

the right son. The complexity of this search procedure depends on the 

height of the tree. Since the height of a binary search tree storing n 

objects is at least logarithmic in n, the best we can hope for is a search 

complexity of O(logn). In the static case, we can build a perfectly 

balanced binary search tree, which is a binary tree in which for each 

internal node v, the number of leaves in the two subtrees of v differ by 

at most one. Such trees have logarithmic height, and, hence, member 

queries can be performed in O(logn) time. 
An insertion or deletion of an object p in a leaf search tree is per- 

formed by first searching for p. This search ends in a leaf v. In case of 

an insertion, we give v two new sons, one son containing p, the other 

containing the object that was stored in v. We also update the search 

information that is stored at the nodes on the path to v. In case of a
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deletion, let w be the other son of v’s father. Then we delete the two 

leaves v and w, and we store the object that was stored in w in its 

father. Again, we update the search information of the nodes on the 

search path. The complexity of this update procedure is proportional 

to the height of the tree. 

The problem is how to maintain a logarithmic height after objects 

have been inserted and deleted in the tree. In 1962, Adel’son-Velskii and 

Landis introduced the class of AVI-trees, as they are called now. These 

trees satisfy the constraint that for each internal node v, the left and 

right subtrees of v have heights that differ by at most one. They showed 

that the logarithmic height of these trees can be maintained by local 

restructuring techniques—the so-called single and double rotations— 

along the search path. Each such rotation takes O(1) time. Therefore, 
using AVL-trees, member queries, insertions and deletions all can be 

carried out in O(logn) time. For details, see [1, 30, 67]. 
Later, many other classes of binary search trees were introduced, 

in which these three operations can be carried out in logarithmic time. 

Two of these classes have properties that are particularly useful for our 

purposes. The first one are the BB[a]-trees, introduced by Nievergelt 

and Reingold [37] in 1973. 

Definition 2.2.1 Let a be a real number, 0 < a < 1/2. A binary tree 

is called a BB/a/-tree, if for each internal node v, the number of leaves 
in the left subtree of v divided by the number of leaves in the entire 

subtree of v lies in between @ and 1 — a. 

Nodes that contain only a small number of leaves in their subtree 

do not have to satisfy this balance condition, except in case of Theo- 

rem 2.2.1 below, where all nodes should satisfy the condition. Obvi- 

ously, in a BB[a]-tree the same balance condition holds for the right 
subtree of each internal node. The following theorem is due to Blum 

and Mehlhorn [13]. 

Theorem 2.2.1 Let 2/11 <a<1-—/2/2. A BB/aj-tree for a set of 
n objects has size O(n) and can be built in O(nlogn) time. If we have 
the objects in sorted order, the tree can be built in O(n) time. In this 
tree, member queries can be performed in O(logn) time. Insertions and
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deletions can be performed in O(log n) time in the worst case, where the 

tree is rebalanced by means of single and double rotations. 

There is another way to maintain BB/a]-trees. This technique—the 
partial rebuilding technique of Lueker [31|—gives an amortized update 

complexity of O(log). 

Suppose we want to insert or delete object p in the leaf search 

BBjia]-tree T. Then we search for p, and we perform the update. Next 

we walk back to the root of J, and we find the highest node v that 

does not satisfy the balance condition of Definition 2.2.1 anymore. We 

rebalance the tree by rebuilding the entire subtree of v as a perfectly 

balanced tree. Clearly, if v is high in the tree, this takes a lot of time. 

For example, if v is the root of T, the update takes O(n) time. In this 
case, however, it takes Q(n) updates before we again have to rebuild the 

entire tree. In this way, the amortized update complexity is bounded 

by O(logn). To prove this, we need the following lemma. 

Lemma 2.2.1 Let v be a node in a BB/aJ-tree that is in perfect bal- 
ance. Let ny be the number of leaves in the subtree of v at the moment 

it gets out of balance. Then there have been at least (1 — 2a)ny — 2 
updates in the subtree of v. 

Proof. The proof given here is taken from Overmars [42]. Let nj,, nj, 
and nj,, be the number of leaves in the subtree of v, the left son of v 
and the right son of v, respectively, at the moment that v is in perfect 

balance. Assume that nj, < nj. Clearly, the fastest way for node v 
to get out of balance, is by deleting objects from its left subtree, and 

by inserting objects into its right subtree. Suppose N; insertions have 

been carried out in the right subtree of v, and Ng deletions in the left 

subtree of v, at the moment that v gets out of balance. Let n, resp. 

Ny be the number of leaves in the subtree of v resp. the left son of v, 

at the moment v gets out of balance. Then n, = nj, + N; — Ng and 

Nw = Nj, — Na = |nl,/2| — Na. Since at this moment node v is out of 

balance, we have nj,/n, < a. It follows that 

! n − N; + Na n n 
any > Mw =>] —-Na2 > -1-Na= 0
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Hence any > ny/2— N;/2+ Na/2—1-— Na = ny/2 — (Ni + Na)/2-1, 
or, equivalently, N; + Ng > (1 — 2a)ny — 2, ie., at least (1 — 2a)n, — 2 
updates have been carried out. 0 

Theorem 2.2.2 Jf in a leaf search BB/aJ-tree, updates are performed 

by means of the partial rebuilding technique, the amortized time for an 

update is bounded by O(logn). 

Proof. Let U(n) denote this amortized update complexity for a BB[a]- 
tree with n leaves. To perform an update, we start at the root of the 

tree, and we decide whether we proceed to the left or to the right 

son. If the entire tree is not rebuilt, we spend O(1) time in the root. 
Otherwise, we spend O(n) time to rebuild the tree, since we have the 
objects already in sorted order. By Lemma 2.2.1, this rebuilding has to 

be done at most once every 2(n) updates. It follows that the amortized 
time due to our visit to the root is bounded by O(1). The amortized 
time we spend in the subtree in which the update proceeds, is bounded 

by U((1 — a)n), since this subtree has at most (1 — a)n leaves. Hence 
U(n) < O(1)+U((1—a)n), from which it follows that U(n) = O(logn). 
O 

BBja]-trees have properties that make them useful in many applica- 

tions. One of the most important properties is the fact that the above 

partial rebuilding technique can be applied. This fact is fundamental in 

the next section, where we use these trees as building blocks for range 

trees. Also, in Chapter 11 these trees turn out to be particularly useful. 

BBjia]-trees have as a disadvantage, however, that if they are main- 
tained by means of rotations, Q(logn) rotations may be necessary in 

one single update. The next class of balanced binary search trees, in- 

troduced by Olivié [38, 39, 40], has the interesting property that they 

can be maintained in logarithmic time using at most a constant number 

of rotations. (See also Guibas and Sedgewick [23] and Tarjan [59].) In 
fact, this class is the only known class of binary search trees that has 

this property. 

Definition 2.2.2 Let @ be a real number, 0 < a < 1. A binary tree 

is called an aBB-tree, if for each internal node v, the length s, of the
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shortest path from v to a leaf and the length J, of the longest path from 

vu to a leaf satisfy s,/l, > aif l, > 1/(1—a), and s, > l, —1 otherwise. 

The proof of the following theorem can be found in [38, 39, 40]. 

Theorem 2.2.3 An aBB-tree for a set of n objects has size O(n) and 

can be built in O(nlogn) time. If we have the objects in sorted order, 

the tree can be built in O(n) time. In this tree, member queries can 
be performed in O(logn) time. If 0 < a < 1/2, insertions can be 
performed in O(logn) time at the cost of at most 2 rotations. If a = 

1/2, deletions can be performed in O(logn) time at the cost of at most 
3 rotations. If a = 1/3, deletions can be performed in O(logn) time at 
the cost of at most 4 rotations. 

2.3 Range trees 

We mentioned the orthogonal range searching problem already in Sec- 

tion 2.1. Since the largest part of this thesis is concerned with this 

problem, we give a formal definition. Apparently, Knuth [30] was the 
first who mentioned the problem: 

Definition 2.3.1 Let V be a set of points in d-dimensional space, and 

let ({r1 : yi], [x2 : yol,---,[%a : yal) be some hyperrectangle. The or- 
thogonal range searching problem asks for all points p = (p1, po, ..-, Da) 

in V, such that 2; < pi < y1,%2 < po < Yyo,---,La < Pa S Ya- 

The range searching problem has applications in e.g. computer graph- 

ics and database design. As an example, consider a salary administra- 

tion, in which the information for each registered person includes age 

and salary. We can view each person as a point in 2-dimensional space, 

with as first coordinate the age, and as second coordinate the salary. 

Then a question like “give all persons with age between 20 and 25, 

having a salary between $ 30,000 and $ 35,000 a year” is an example 
of a range query. 

In 1973, Knuth wrote on page 554 of his Volume 3: 

“No really nice data structures seem to be available for such 

orthogonal range queries.”
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Since then, many data structures have been proposed to solve the 

problem. For a survey of the state of the art concerning the range 

searching problem, up to 1979, see Bentley and Friedman [7]. More 

recent data structures, besides range trees, can be found in Edelsbrun- 

ner [18], Chazelle [15] and Overmars [43]. 
The structure we consider for the orthogonal range searching prob- 

lem is the range tree, introduced by Bentley [5] and Lueker [31]. See 
also Willard and Lueker [66]. 

In this section, we use binary trees as leaf search trees, i.e., the 

objects are stored in sorted order in the leaves. As usual, internal 

nodes contain information to guide searches in the tree. These binary 

trees are the building blocks of range trees. 

Definition 2.3.2 Let V be a finite subset of the d-dimensional real 

vector space. A d-dimensional range tree T, representing the set V, is 

defined as follows. 

1. If d=1, then T is a binary search tree, containing the elements 

of V in sorted order in its leaves. 

2. If d > 1, then T consists of a binary tree, called the main tree, 

which contains in its leaves the elements of V, ordered according 

to their first coordinates. Each internal node w of this main tree 

contains (a pointer to) an associated structure, which is a (d—1)- 
dimensional range tree for those elements of V that are in the 

subtree rooted at w, taking only the second to d-th coordinate 

into account. 

For convenience, we assume that no two points in the set V are the 

same in some coordinate. All results in this text can be proved if this 

assumption is not satisfied. Then the details become, however, more 

tedious. 

Let T be a range tree, representing the set V, and let w be a node 

of T (w is a node of the main tree, or of an associated structure, or of 

an associated structure of an associated structure, etc.). Let Vi, be the 

set of those points of V that are in the subtree of w. Then node w is 

said to represent the set Vy. 

For example, a 2-dimensional range tree for a set V consists of a 

binary tree, containing in its leaves the points of V ordered according
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J A 
Figure 2.1: A two-dimensional range tree 

to their x-coordinates. For any internal node w of this tree, let V,, be 

the subset of V represented by w. Then node w contains (a pointer 

to) a binary tree, representing the set V,,, ordered according to their 

y-coordinates. See Figure 2.1. 

The query algorithm: Orthogonal range queries are solved as 

follows. We first consider the one-dimensional case. Let [x1 : y:] be 
a query interval. Then we search in the binary tree with both x; and 

yi. Assume w.l.o.g. that 2, < y,. We have to report all leaves that 

lie between the paths to x; and y,. Let u be that node in the tree for 

which x, lies in the left subtree of u, and y, lies in the right subtree of 

u. Then for each node v 4 u on the path from u to x,, for which the 

search proceeds to the left son of v, we report the leaves in the right 

subtree of v. Similarly, for each node w ¥ u on the path from wu to y,, 

for which the search proceeds to the right son of w, we report the leaves 

in the left subtree of w. Finally, we check the two leaves in which the 

paths end.
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Now let d > 1 and let ([x%1 : y:], [xe : yol,---, [a : yal) be a query 
rectangle. Then we begin by searching with both x, and y, in the main 

tree. Assume w.l.o.g. that 7, < y,. Let u be that node in the main 

tree for which x, lies in the left subtree of u, and y, lies in the right 

subtree of u. Then we have to perform a range query with the last 

d — 1 coordinates on all points that lie between x, and y; in the main 

tree. It is not difficult to see that it is sufficient to perform recursively a 

(d—1)-dimensional range query in the associated structure of the right 
son of each node v ¥ u on the path from u to x, for which the search 

proceeds to the left son of v, and in the associated structure of the left 

son of each node w # u on the path from u to y; for which the search 

proceeds to the right son of w. We also have to check the points in the 

two leaves of the main tree in which the paths end. The answer to the 

entire query is the union of the answers of these partial queries. Note 

that each point in the query rectangle is reported exactly once. 

Range queries with one or more of the intervals being half-infinite or 

infinite are also possible. For example, let ([x1 : 00], [%2 : yo],---,[Va: 
Ya|) be a half-infinite rectangle. Then we search with x, in the main 
tree. For each node v in the main tree for which the search proceeds 

to the left son, we perform a (d — 1)-dimensional range query in the 
associated structure of the right son of v. As another example, if 7; = 

—oo and y, = oo, then we perform a (d — 1)-dimensional range query 
in the associated structure of the root of the main tree. 

Suppose we want to insert or delete a point p in the range tree. 

Then we search with the first coordinate of p in the main tree to lo- 

cate its position among the leaves, and we insert or delete p in all the 

associated structures we encounter on our search path. If these asso- 

ciated structures are one-dimensional range trees, we apply the usual 

insertion/deletion algorithm for binary trees; otherwise we use the same 

procedure recursively. Next, we insert or delete p among the leaves of 

the main tree. 

These query and update algorithms may take a lot of time, since 

all trees that are involved may become very unbalanced. By using 

BBlia]-trees, however, the query time and the amortized update time 

are low.
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Definition 2.3.3 A BB/a/-range tree is a range tree, in which all bi- 
nary trees are BB[a]-trees. 

The building algorithm: Let V be aset of n points in d-dimensional 

space. To build a range tree for V, we order the points of V according 

to their d-th coordinates. 

Let d > 1. We build a perfectly balanced (d— 1)-dimensional range 
tree for the set V, taking only the second to d-th coordinate into ac- 

count. This range tree becomes the associated structure of the root of 

the main tree of the final structure. Next, we divide the set V in two 

subsets V,; and V2 of equal size, such that the first coordinates of the 

points in V, are less than those in Vj. This splitting is done in such a 

way that the points in both sets V,; and V2 remain ordered according 

to their last coordinates. Then we build recursively two d-dimensional 

range trees for the sets V,; and Vo. 

The update algorithm: To update a BB[a]-range tree, we use 
Lueker’s partial rebuilding technique. See Section 2.2. Suppose point 

p has to be inserted or deleted in the range tree. Then we search with 

the first coordinate of p in the main tree to locate its position among 

the leaves. During this search, we insert or delete p in all associated 

structures we encounter on the search path. If these associated struc- 

tures are one-dimensional range trees, we use the update algorithm for 

BBja]-trees that uses rotations, see [13] or Section 2.2; otherwise we 
use the same procedure recursively. Then we insert or delete p among 

the leaves of the main tree, and we walk back to the root. During this 

walk, we locate the highest node v that is out of balance, i.e., does 

not satisfy the balance condition of Definition 2.2.1 anymore. Then we 

rebalance at node v by rebuilding the entire structure rooted at v as a 

perfectly balanced range tree. 

Just as in Section 2.2, if in this update algorithm node v is the root 

of the main tree, we have to rebuild the entire range tree. We saw 

in Lemma 2.2.1, however, that in this case Q(n) updates must occur 
before we again have to rebuild the entire structure. 

The following theorem—due to Lueker [31]—gives the complexity 
of a BB[a]-range tree. Since range trees occur so often in the rest of
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this thesis, and since it is important for the reader to understand this 

data structure, we include a proof of the theorem. 

Theorem 2.3.1 A d-dimensional BB/a]-range tree for a set of n points, 

can be built in O(nlogn+n(logn)4) time, and requires O(n(log n)**) 
space. Using this tree, orthogonal range queries can be solved in O((logn)4+ 

t) time, where t is the number of reported answers. Insertions and dele- 

tions in this tree can be performed in amortized time O((logn)*). 

Proof. We first prove the bound on the building time. Let V be 

a set of n points in d-dimensional space. It takes O(nlogn) time to 
order the points of V according to their d-th coordinates. Let P(n, d) 
be the time to build a perfectly balanced d-dimensional range tree for 

nm points, that are ordered according to their last coordinates. Then 

P(n,1) = O(n). Let d > 1. The building of the associated structure of 
the root of the main tree takes P(n,d— 1) time. Using a linear time 
median algorithm (see [11, 49]), the splitting of the set V in two equal 
sized subsets V; and V2 can be done in O(n) time. This splitting can 

be done such that the points in both sets V; and V2 remain ordered 

according to their last coordinates. Finally, it takes 2 P(n/2, d) time to 
build two d-dimensional range trees for the sets V; and Vo. 

We have proved that P(n, d) = 2 P(n/2,d)+ P(n,d—1)+ O(n) for 
d> 1. It follows that P(n, d) = O(n(logn)4'). This proves the bound 
on the building time. The bound on the size of the data structure can 

be proved in a similar way. 

The bound on the query time follows by induction on d, since in 

the above described query algorithm, the paths in the main tree give 

rise to O(logn) (d — 1)-dimensional range queries. A one-dimensional 
range query takes O(logn + t) time, since the height of a BB[a]-tree 
is bounded by O(logn). We saw already that each point in the query 
rectangle is reported exactly once. 

Let U(n, d) be the amortized update time in a d-dimensional BB[a]- 
range tree for a set of n points. Then, by Theorem 2.2.1, U(n,1) = 

O(logn), even in the worst case. Let d > 1. To perform an update, 
we start in the root of the main tree and we update its associated 

structure. This takes, amortized, U(n,d — 1) time. Then we repeat 

the same procedure for the appropriate son of the root, which is the
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root of a d-dimensional BB[a]-range tree for at most (1 — a)n points. 
Therefore, this takes, amortized, at most U((1—a)n, d) time. If the root 
of the main tree gets out of balance, we rebuild the entire tree, which 

takes O(n(logn)4—') time. According to Lemma 2.2.1, this happens at 
most once every Q(n) updates. So this rebuilding adds O((logn)*‘) 
to the amortized update time. We have proved that for d > 1 

U(n,d) < U(n,d —1) + U((1 — a)n, d) + O((logn)*"). 

It follows that U(n,d) = O((logn)4). O 

In fact, Willard and Lueker [66] have shown that insertions and 
deletions can even be performed in time O((logn)) in the worst case, 
but their method is very complicated and highly unpractical. 

2.4 Decomposable searching problems 

There is a special class of searching problems that has been studied 

extensively by several authors, and that we will consider several times. 

These problems—the decomposable searching problems—were intro- 

duced by Bentley [5]. In fact, Bentley’s paper can be marked as the 
beginning of the research in general dynamization techniques. 

For decomposable searching problems, a query for a set of objects 

can be answered by merging the answers for a partition of the set. It 

turns out that the most interesting results can be obtained for searching 

problems where two answers can be merged in constant time. 

Definition 2.4.1 A searching problem PR : T, x P(T2) — T3 is called 
decomposable, if there is a function 0 : T3 x 73 + 73, such that for any 

partition V = AUB of any finite subset V of To, and for any query 

object g in T,, we have 

PR(q,V) = O(PR(q, A), PRG, B)), 

where the function 0 can be computed in constant time. 

For example, the member searching problem is decomposable with 

O =v. Also the orthogonal range searching problem is decomposable
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with 0 = U. Note that, since we require the sets A and B to be disjoint, 

we can take in this latter problem the union of PR(q, A) and PR(q, B) 
in constant time. (Here we assume that the points that satisfy the query 

may be reported in any order. So we can represent the answer e.g. in 

a list. Clearly, two such lists can be merged in constant time.) The 

convex hull searching problem is not decomposable, since knowledge 

whether or not q is inside the convex hulls of A and B does not always 

tell us the position of g with respect to the convex hull of AU B. 

As mentioned already, decomposable searching problems have been 

studied extensively. A number of techniques have been developed to 

design efficient dynamic data structures for these problems, especially 

in the case where only insertions are performed. See Bentley [5], Bent- 

ley and Saxe [8], and Overmars [42]. The main idea in these techniques 
is to partition the set of objects into subsets, and then to store each 

subset in a static data structure. In the resulting semi-dynamic data 

structure, queries are answered by querying the static structures sepa- 

rately, and by combining the answers using the function O. Insertions 

are performed by rebuilding some small static structures together with 

the inserted object. 

The logarithmic method: In this section we consider one dy- 

namization technique, the logarithmic method, due to Bentley. Let DS 

be a static data structure for the decomposable searching problem PR. 

As usual, we assume that Sps(n)/n an Ppg(n)/n are non-decreasing. 
Let V be a set of n objects, for which we want to solve the problem 

PR. Write n in the binary number system, i.e., n = 7; a;2¢ , where 

a; € {0,1}. Then partition the set V into subsets Vo, V,, Vo, etc., such 

that either V; is empty or |V;| = 2°. (So |V;| = a;2°, i > 0.) 
Our semi-dynamic data structure DS’ is obtained by storing each 

non-empty set V; in a static structure DS; of type DS. 

An insertion of an object p is performed as follows. Let 7 be the 

smallest index for which a; = 0. Then we discard the structures DS; 
for 0 <7 <i—1. Next we build a new structure DS; out of V; := 

YUVLU...UVj_1U {p}, and we set Vo :-= Vi =... := Vit := 0. Note 
that this new DS; indeed represents 2* objects. 

To perform a query in the structure DS’, we query each structure 

DS; separately, and we combine all partial answers using the function
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The complexity of this structure DS’ is given in the following the- 

orem. The proof can be found in [5, 8, 42]. See also Section 9.2 and 
Bezem and van Leeuwen [9]. 

Theorem 2.4.1 The performances of the data structure DS' are given 

by: 

1. The storage is bounded by O(Spg(n)). 

2. The query time is bounded by O(Qps(n)) if Qns(n)/n* ts non- 
decreasing for some € > 0, and O(Qps(n) x logn) otherwise. 

3. The amortized insertion time is bounded by O(Pps(n)/n) if Pos(n)/n't¢ 
is non-decreasing for some € > 0, and O((Pps(n)/n) x logn) oth- 
erwise. 

The logarithmic method transforms a static data structure into a 

semi-dynamic one, i.e., a structure that only allows insertions. If we 

restrict ourselves to a subclass of the decomposable searching prob- 

lems, it is possible to transform static structures into fully dynamic 

ones. Roughly speaking, we restrict ourselves to decomposable search- 

ing problems where the function 0 has an inverse, that can also be 

computed in constant time. This class of problems was introduced by 

Bentley and Saxe [8]. See also [42]. 

Definition 2.4.2 A decomposable searching problem PR : T, x P(Th) > 
T3 is called a decomposable counting problem, if there is a function 

A : T3 x Tz; — T3, such that for any finite subset V of To, for any 

subset A of V, and for any query object q in T;, we have 

PR(q,V \ A) = A(PR(q,V), PR(q, A)), 

where the function A can be computed in constant time. 

Most counting variants of decomposable searching problems are de- 

composable counting problems. For example, in the two-dimensional 

orthogonal range counting problem, we are given a finite set V of points
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in the plane, and an axis-parallel rectangle qg = ([z1 : y:|,[%2 : ye), 
and we are asked to compute the number of points of V that are in the 

rectangle g. This problem is clearly a decomposable searching problem. 

It is also a decomposable counting problem, since the number of points 

of V \ A that are in the rectangle q is equal to the number of points of 

V in q minus the number of points of A in q. 

The dynamic data structure: For decomposable counting prob- 

lems we can design a fully dynamic data structure as follows. Given a 

static structure for the problem, we can apply the logarithmic method— 

or any other dynamization technique—to obtain a semi-dynamic struc- 

ture. Now the dynamic data structure consists of two semi-dynamic 

structures DS; and DS». Initially, DS, stores all objects that are 

present, and DS'y is empty. New objects are inserted into DS,, whereas 

a deletion is performed by inserting the object that is to be deleted into 

DS. If the structure DS. becomes too large, we completely rebuild the 

structures, by building a new DS, storing all objects that are present 

at that moment, and by initializing an empty DS»2. A query is solved 

by querying the two structures DS, and DS», and by “subtracting” the 

two obtained answers from each other, using the function A. 

The complexity of the resulting dynamic data structure is given in 

the following theorem, the proof of which can be found in [8, 42]. 

Theorem 2.4.2 Given a semi-dynamic data structure DS for the de- 

composable counting problem PR, there exists a fully dynamic structure 

solving PR, with performances: 

1. The storage is bounded by O(Sps(n)). 

2. The query time is bounded by O(Qps(n)). 

3. The insertion time is bounded by O(Ips(n)). 

4. The amortized deletion time is bounded by O(Ipg(n)+Pps(n)/n).
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2.5 Order decomposable set problems 

We next consider another subclass of the searching problems. In a set 

problem we are given a set of objects, and we are asked some question 

about this set. To be more precise, if 7, and T are sets of objects, then 

a set problem is a mapping PR: P(T,) — Ty. We can consider this as 

a searching problem by introducing a dummy query object q. 

For example, in the convex hull problem, we are given a finite set 

V of points in the d-dimensional euclidean space, and we are asked 

to compute the convex hull of V. Here 7; is the set of all points in 

d-dimensional space, and 7> is the set of all convex polytopes. 

In this section we want to solve the problem of maintaining the 

answer to a set problem under insertions and deletions of objects. We 

restrict ourselves to set problems, the answers of which can be merged 

efficiently. That is, once the answers for two separated “halves” of a set 

are known, the answer for the entire set can be obtained fast. For such 

a class of set problems, we maintain the answer for the entire set, by 

decomposing the set into subsets, and by maintaining the answers for 

these subsets. These set problems were introduced by Overmars [41, 

42]. See also Gowda [20] and Gowda and Kirkpatrick [21]. 

Definition 2.5.1 A set problem PR : P(T,) — To is called M(n)- 
order decomposable, if there is an order ORD on T;, and a function 

O: Ty x Ty — To, such that for any set V = {p, < po <... < pn}, 

ordered according to ORD, and for any i, 1 <i <n, we have 

PR({pi,---,Pn}) = O(PR({p1,.--, pit), PR({ pis, ---,Pn})), 

where the function O takes M(n) time to compute. 

For example, Preparata and Hong [46] showed that the three-dimensional 
convex hull problem is O(n)-order decomposable, where ORD is the or- 

der according to x-coordinate. 

Clearly, by using the divide-and-conquer technique, we can compute 

the answer to an M(n)-order decomposable set problem in O(ORD(n)+ 
R(n)) time, where ORD(n) is the time needed to order the n objects 
according to ORD, and R(n) = O(X°8" 2* M(n/2°)) is the solution of 
the recurrence R(n) = 2 R(n/2) + M(n).
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A dynamic data structure: Let PR be an M(n)-order decom- 
posable set problem. We shortly recall a dynamic data structure solving 

PR, the details of which are given in [41, 42]. Let V be a set of cardinal- 
ity n, for which we want to maintain the answer to PR. For simplicity 

we assume here that the answer PR(V) takes O(M(n)) space to store. 
(In [41, 42] it is shown that this assumption is not essential). 

Let f(n) be a smooth integer function, such that 1 < f(n) < n. 
We first order the elements of the set V according to ORD. Let V = 

{pi < po <...< pn} be the resulting set. Now partition V into subsets 

Vi = {pi,---, Pein) }, Vo = {Penis +--+» P2p(n)}, etc. The dynamic data 

structure consists of the following. 

e Each set V; is stored in a balanced binary search tree 7;. Let 1; 

be the root of 7;. These roots are ordered according to r; < ro < 

Tg. <.... 

e The roots of the trees J; are stored in the leaves of a perfectly 

balanced binary search tree T. Each node v of T contains the 

following additional information. Suppose the subtree of T with 

root v has 7;,Ti41,---,7; as its leaves. Then node v contains the 

answer to the set problem PR for the set Vj; UVj,1U...UV;. Node 

uv also contains information to guide searches in the tree. 

In particular, the root of T contains the answer to PR for the entire 

set V. 

Update algorithm: An insertion of an object p is performed as 

follows. We walk down tree T to find the appropriate root r;, and we 

insert p in the tree T;. Then we rebuild the answer PR(V;), and we 
walk back to the root of T. For each node v we encounter during this 

walk, we copy the answers stored in the left and right sons of v, and 

we merge these copies using the function 0. The resulting answer is 

stored in v. The deletion procedure is similar. 

Initially, the set V contains n elements, and each subset V;—except 

the “last” one—contains f(n) elements. As soon as at least one set V; 
contains either f(n)/2 or 2f(n) elements—as a result of insertions and 
deletions—we rebuild the entire data structure. Note that we rebuild 

the data structure at most once every 02(f(n)) updates.
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Before we state the results, we introduce the following functions 

M'(n), M"(n) and R(n): 

tox(n/f(n)) ⋅ 
M'(n) = 2’ M(n/2"), 

i=0 
log(n/f(n)) 

M"(n) = yy M(n/2'), 

R(n) = 2 2M (n/2"). 

The functions M'(n) and M"(n) satisfy: 

Olni (Fn) ©) if M(n) = O(n‘) for some 0 < € <1, 
M'(n) = O(M(n)) if M(n)/n'* is non-decreasing for some € > 0, 

O(M(n) log(n/f(n))) if M(n)/n is non-decreasing. 

M"(n) = O(M(n)) if M(n)/n* is non-decreasing for some € > 0, 
~ | O(M(n) log(n/f(n))) if M(n) is non-decreasing. 

The function R(n) is the solution of the recurrence R(n) = 2 R(n/2)+ 
M(n), and satisfies: 

O(M(n)) if M(n)/n*** is non-decreasing for some € > 0, 
O(n) if M(n) = O(n‘) for some 0 < € <1, 

Rin) = {2 
O(M(n) logn) if M(n)/n is non-decreasing. 

Note that we have not covered here all possibilities for the function 

M(n). The functions M(n) that give rise to especially efficient solutions 
to the problems in Parts III and IV, however, satisfy one of the above 

constraints. 

The proof of the following theorem can be found in [41, 42]. 

Theorem 2.5.1 Let f(n) be a smooth integer function, such that 1 < 

f(n) <n. For an M(n)-order decomposable set problem, there exists a 
dynamic data structure, with performances: 

1. S(n) = O(n+ M'(n)). 

2. P(n) = O(nlogn + (n/f(n)) x R(F(n)) + M"(n)).
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3. Q(n) = O(1). 

4. U(n) = O(logn+ R(f(n)) + M"(n) + P(n)/f(n)), amortized. 

A very interesting subclass are the O(n)-order decomposable set 
problems. Taking f(n) = [n/logn], the above theorem leads to the 
following corollary. 

Corollary 2.5.1 For an O(n)-order decomposable set problem, there 

exists a dynamic data structure, with performances: 

2. P(n) = O(nlogn) 

3. Q(n) = O(1) 

4. U(n) = O(n), amortized. 

Examples of O(n)-order decomposable set problems are computing 

the three-dimensional convex hull of a set of n points, see Preparata 

and Hong [46]; finding the intersection of a set of n halfspaces in three 

dimensions, see Brown [14]; and computing the view of a set of n line 

segments in the plane from some fixed direction, see Edelsbrunner, 

Overmars and Wood [19]. 

2.6 Storage and computation models 

Until now, we assumed that there is only one storage medium in which 

all computations take place, and in which the data structures are stored. 

This one medium is called main memory. Most studies in the area 

of data structures consider this case. There are many applications, 

however, in which the data structure is too large to be stored in main 

memory. Then, the structures have to be stored in secondary memory. 

Also in case of the reconstruction problem, we have to store information 

in secondary memory. 

Before we introduce our model of secondary memory, we say some- 

thing more about main memory. All computations take place in main 

memory, which is modeled as a Random Access Machine (RAM). (See
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Section 2.1.) As we saw already, the memory of a RAM consists of an 

array, the entries of which have unique indices. The contents of such 

an array entry can be obtained at constant cost, provided its address, 

i.e., its index, is known. 

We express the complexity of a computation in main memory in 

computing time, which is the usual measure—in terms of words—to 

express the length of a computation. (In the theory of algorithms 

and data structures it is customary to express complexities in terms 

of words, not in terms of bits.) 

Next we introduce our second storage medium: Secondary memory. 

The model of secondary memory we consider is the Indexed Sequential 

Model. Just as in case of a RAM, the memory consists of an array. 

Now, this array is divided into blocks of a fixed size. This block-size 

can be chosen arbitrary. Each such block has a unique address, and 

there is the ability of direct block access: It is possible to access a block 

directly, provided its address is known. 

A data structure is stored in secondary memory by distributing it 

over a number of blocks of a predetermined size. In secondary memory 

no computing is possible. Therefore, to perform an operation—a query 

or an update—on a data structure, we send information from secondary 

memory to main memory, where computing is possible, and vice versa. 

The following update operations are possible in secondary memory: 

e We can replace a block by another block, or a number of (physi- 

cally) consecutive blocks by at most the same number of blocks. 

e We can add a new block, or a number of new blocks, at the end 

of the file. 

Hence, we can only update complete blocks. It is also possible to trans- 

port (complete) blocks from secondary memory to main memory. To 
transport a block to secondary memory, we have to know the address 

where the block will be stored. Similarly, a block can be transported 

to main memory only if its address in secondary memory is known. 

We express the complexity of an operation in secondary memory 

by two quantities. In practice, these two quantities dominate the time 

for the operation. The first one—which is in general the most time
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consuming—is the number of disk accesses—also called seeks—that has 

to be done: For each segment of consecutive blocks we transport, we 

have to do one disk access. Hence, we can transport the entire data 

structure in one disk access to secondary memory, provided we store 

the structure in consecutive blocks. Also, it takes one disk access to 

transport a structure that is stored in secondary memory in consecutive 

blocks, to main memory. In this latter case, it is sufficient to know the 

address—in secondary memory—of the first block of the segment that 

stores the structure: We transport all blocks “to the right” of this 

first block, in which some information is stored. (Here we assume that 
blocks that do not contain information of the structure, are empty.) 

The second quantity is the transport time: We assume that an 

amount of n data can be transported in O(n) transport time from 
main memory to secondary memory, and vice versa. In general the 

constants in this estimate for the transport time are incomparable to 

the constants in computing time. 

We already said that in practice the time for one disk access is high. 

In order to get an impression, for a typical standard computer, one disk 

access takes about 15 milliseconds, whereas data transport between 

main and secondary memory is performed at a rate of 3 Mbyte per 

second. Therefore it is essential to limit the number of disk accesses as 

much as possible.
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Chapter 3 

Introduction 

3.1 The partitioning problem 

In this part of the thesis we study the problem of storing and maintain- 

ing range trees in secondary memory. If a data structure is too large to 

be stored in main memory, it has to be stored in secondary memory (a 

situation that very often occurs in databases). In Section 2.6 we saw 
that a data structure is stored in secondary memory by partitioning 

it into a number of parts, and by distributing the parts over blocks of 

some predetermined size. In order to answer queries and to perform 

updates, parts of the data structure that are needed in the operation— 

since operations can be viewed as paths in the data structure, we say 

that the operation “passes through these parts” —are transported from 

secondary memory to main memory, and vice versa. Since the complex- 

ity of an operation is expressed by the number of disk accesses and by 

the amount of data that is transported, it is necessary to partition the 

data structure into parts, such that queries and updates pass through 

only a small number of parts, each of which has small size. This leads 

to the following definition. 

Definition 3.1.1 A partition of a dynamic data structure, represent- 

ing a set of n points, is called an (f(n), g(n), A(n))-partition, if: 

1. Each part has size at most f(n). 

43
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2. There are O(S(n)/f(n)) parts, where S'(n) is the amount of space 
required to store the data structure. 

3. Each query passes through at most g(n) parts. 

4. The amortized number of parts through which an update passes 

is at most A(n). 

Note that it follows from 1, that the number of parts is Q(S(n)/f(n)). 
The relation of this definition to the above should be clear. It states, 

that we can store the data structure in secondary memory—which we 

model as the Indexed Sequential Model, see Section 2.6—such that a 

query requires at most g(n) disk accesses and f(n) x g(n) data trans- 
port. Also, an update takes—amortized—at most h(n) disk accesses 

and f(n) x h(n) data transport. 

We study partition schemes for range trees. See Section 2.3 for the 

definition and the query and update algorithms for this data structure. 

The reader should understand this data structure thoroughly, before 

reading the rest of this part. In Chapters 4 and 5, we give several 

efficiently maintainable classes of range trees that can be partitioned in 

various ways. This gives a number of trade-offs between the number of 

disk accesses and the amount of memory that has to be transported. In 

each section, we change the balance condition of range trees somewhat, 

in order that the partition of that section can be maintained in an 

efficient way. The structure of the range tree, however, remains present. 

In Chapter 6 we prove lower bounds for partitions of range trees. 

These lower bounds are proved for any range tree, in particular we do 

not require the trees to be balanced. Also, the lower bounds apply to 

any range tree (rather than to some tree) in the class of range trees. 

Therefore the lower bounds not only apply to worst-case bounds, but 

also to amortized bounds. 

Since this part contains many theorems, we give a summary of the 

most important results in Chapter 7. 

Considerable research has been done in the area of secondary mem- 

ory data structures. The best-known examples are the B-trees (see
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Bayer and McCreight [4], Comer [17]), which form a class of data struc- 
tures that are designed for storing one-dimensional objects. In some 

sense, a B-tree can be seen as a partitioned binary search tree. 

Another example is the class of Grid Files (see Nievergelt et al. [36], 
Hinrichs [25, 26]), which is a secondary memory structure for solving 
orthogonal range queries. The main advantage of our methods, com- 

pared to the grid files, is that we always have a worst-case upper bound 

on the number of disk accesses for a query in terms of the number of 

points and the number of reported answers. In a grid file, however, a 

range query can access each block in secondary memory without finding 

a single answer. (This will, however, not be the case in most practi- 

cal situations.) Also, for our methods, the number of disk accesses 
for an update can always be bounded as a function of the number of 

points. If updates are performed in a grid file as described in [25], this 

is not possible, although this number will be small for most practical 

situations. 

The idea we consider here, namely of taking a known data struc- 

ture (although we make some small modifications) that was designed 
primarily for main memory, and investigating how it can be partitioned 

as efficiently as possible, is relatively new. As we said already, a B- 

tree is in some sense a partitioned binary tree. The partitioning of 

range trees has not been studied before. Other partitioned data struc- 

tures, in particular priority search trees, are given in Icking, Klein and 

Ottmann [27] and Blankenagel and Giiting [10]. 

3.2 Storage considerations 

Before we start with our study of partitions, we consider the amount of 

space used in secondary memory by the partitioned data structure. It 

might seem that this is exactly the same amount as if the data structure 

were stored in main memory, but this is not true. When a part of the 

partition is changed during an update, the new part has to replace the 

old part in secondary memory. This new part only fits in the old space, 

if its size is not larger. But sizes of parts grow when n—the number of 

objects represented by the data structure—grows. When the part does 

not fit in the same block in secondary memory, we either have to find a
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new block for it, or we have to split it. The first solution creates gaps in 

the file and, hence, increases the amount of space in secondary memory. 

The second solution increases the number of disk accesses necessary to 

write the part, something we clearly want to avoid. 

To solve this problem, we reserve larger blocks for storing parts 

than is actually necessary. In this way, the block has enough room to 

store the part, even when it grows. To be more precise, consider an 

(f(n), 9(n), h(n))-partition of a dynamic data structure. We assume 
that f(n) issmooth and non-decreasing. Now suppose at some moment, 

at which the set represented by the data structure contains no objects, 

we rebuild the entire data structure in secondary memory. Rather than 

using blocks of size f(no), we use blocks of size f(2no). As a result, 
as long as n—the current number of objects—is at most 2n9, parts 

still fit in their blocks. At the moment when n = 27no, we rebuild 

the entire data structure in secondary memory. When n becomes very 

small, because of a large number of deletions, the amount of storage in 

secondary memory becomes too large. To avoid this, we also rebuild 

the entire structure when n < no/2. 

Theorem 3.2.1 The partitioned data structure can be stored in sec- 

ondary memory, using O(S(n)) storage, without increasing the amor- 
tized update costs—t.e. disk accesses and data transport—in order of 

magnitude. 

Proof. The number of parts is bounded by O(S(n)/f(n)). Each 
part requires f(2n9) < f(4n) = O(f(n)) storage. The storage bound 
follows. When the entire structure has to be rebuilt, there must have 

been (no) updates. Clearly, the costs for rebuilding a structure for n 

objects are never larger than the costs that are required for n insertions. 

As n = O(ng), the amortized update costs are never increased by more 

than a constant factor. O
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Partitions of 2-dimensional 

range trees 

In this chapter, we design various partition schemes for classes of bal- 

anced two-dimensional range trees, that are all based on BB/a]-range 
trees. We consider two types of partitions. The first type are the so- 

called restricted partitions. In a restricted partition, only the main tree 

is partitioned into parts, whereas associated structures are never sub- 

divided. In such a partition, a node of the main tree and its associated 

structure are contained in the same part. In a restricted partition of a 

two-dimensional range tree, parts have size Q(n), since the associated 

structure of the root of the main tree has size Q.(n). The second type of 
partitions are those in which also associated structures are partitioned 

into parts. 

First, we give some trivial partitions of a two-dimensional BBia]- 
range tree. By storing the entire tree as one part, we get an (O(n logn), 1, 1)- 

partition. In the other extreme case, each node (either of the main tree, 

or of an associated structure) forms a part on its own. This gives an 
(O(1), O((logn)? + t), O((logn)*))-partition, where ¢ is the number 
of answers to the query. Finally, we can put each level of the main 

tree, together with its associated structures, in one part, leading to 

an (O(n), O(logn), O(log n))-partition. Note that if n is too large, so 
that main memory cannot contain O(nlogn) data, the first partition 

is not a solution to our problem. However, if main memory can con- 

tain O(n log n) data, the third partition is worse than the first one: We 
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still have to transport an amount of O(nlogn) data, and this requires 
O(log n) disk accesses rather than one. 

4.1 Restricted partitions 

In this section we consider restricted partitions of two-dimensional 

range trees. Although we give in later sections more efficient parti- 

tions, it is useful to consider these restricted partitions, because these 

partitions are a lot easier to implement. Also, the techniques developed 

here apply to other data structures. In fact, any data structure that 

has the form of an augmented binary tree, with some reasonable prop- 

erties of the query and update algorithms, can be partitioned in the 

way described in this section. Examples of such structures are segment 

trees (see e.g. Preparata and Shamos [47]), structures solving set prob- 
lems like maintaining a convex hull, maintaining a Voronoi diagram, 

etc. (see Section 2.5), and structures for adding range restrictions to 
searching problems (see e.g. Bentley [5], Willard and Lueker [66]). 

First we give a restricted (O(n), O(log log n), O(log log n))-partition 
of a slightly modified BB[a]-range tree. (Later, we improve this par- 
tition considerably. We include it here, however, to introduce the 

ideas.) The idea is as follows. Suppose we have a perfectly balanced 

range tree. Cut the main tree at level loglogn. Each level, together 

with its associated structures, above level loglogn forms a part. Each 

such part has size O(n): The associated structures on a fixed level 
are binary trees for subsets of the n points represented by the entire 

data structure, and each of these n points is in exactly one such bi- 

nary tree. This gives us O(loglogn) parts, each of size O(n). Each 
subtree having its root at level loglogn, is a two-dimensional range 

tree, representing O(n/logn) points. Hence such a subtree has size 

O((n/logn) x log(n/logn)) = O(n) and, hence, it can form a part. 
This gives us O(logn) parts, each of size O(n). So in total we have 
O(logn) parts of size O(n), provided the tree is perfectly balanced. 
However, as soon as we insert or delete points, the tree is not perfectly 

balanced anymore. In fact, the number of points represented by a sub- 

tree having its root at level loglogn can become Q((1 — a)!°8!°8" x n).
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Hence such a subtree may have size 0((1— a)!°8!°8" x nlogn), which is 
too large to form a part, since 0 < a < 1/2. Of course, we can cut the 

main tree at a level > loglogn. Then, however, the number of subtrees 

having their root at this level, and hence the number of parts, becomes 

too large. 

In order to avoid that subtrees having their root at level log log n, 

become too large, we modify the definition of range trees somewhat. 

Let V be a set of n points in the plane. We suppose that the points 

of V = {p, < po < pgs < ... < pp} are ordered according to their 

z-coordinates. Partition V into subsets V; = {p1,p2,---,Pnn)}, V2 = 

{Ph(n)+1)-++sPan(n)}, etc., where h(n) = [n/logn]. 

Definition 4.1.1 A modified range tree, representing the set V, is de- 

fined as follows. 

1. Each set V; is stored in a two-dimensional BB|a]-range tree T;. In 
the root of T; we do not store an associated structure. Let r; be the 

root of T;. The roots are ordered according to r, < 72 < 173 <.... 

2. The roots r; are stored in the leaves of a perfectly balanced bi- 

nary tree T. Let v be any node of 7, representing the roots 

Ti, Titi,---,7; (v may be a leaf of T). Then v contains an as- 
sociated structure, which is a BB[a]-tree, representing the set 

V,; UVi4i1 U...U Vj, ordered according to their y-coordinates. 

Note that the associated structures of the roots r; are stored only 

once, whereas the roots r; themselves are stored twice. This implies 

that the structure of a range tree is not changed, only the balance 

conditions are different. 

Query and update algorithms: In a modified range tree, range 

queries are solved in the same way as in ordinary range trees. An 

insertion or deletion of a point p is performed as follows. First we 

walk down tree 7, to find the appropriate root r;. During this walk we 

insert or delete p in all associated structures we encounter on our search 

path. Then we insert or delete p in 7;, using the update algorithm for 

BBia]-range trees.
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Suppose at the moment we build this structure, the set V contains n 

points. Then each set V; (except for the “last” one) contains [n/logn] 
points. As soon as at least one set V; contains either [n/logn]/2 or 
2[n/logn] points, we rebuild the entire data structure. 

Theorem 4.1.1 A modified range tree, representing n points, can be 

built in O(nlogn) time, and takes O(nlogn) space to store. Range 
queries can be solved, using this tree, in O((logn)? + t) time, where t 
is the number of reported answers. Insertions and deletions in this tree 

can be performed in amortized time O((logn)?). 

Proof. The bounds for the size, the building time and the query time 

can be proved in the same way as in Theorem 2.3.1. If the entire data 

structure is not rebuilt, an update takes amortized O((logn)*) time, 
since each set V; contains O(n/logn) points. The data structure is 
rebuilt at most once every 2(n/logn) updates. Since this rebuilding 
takes O(nlogn) time, this adds O((logn)”) to the amortized update 
time. O 

Hence the modified range tree has (asymptotically) the same com- 

plexity as a BB/a]-range tree. 

Theorem 4.1.2 For a modified range tree, there exists an (O(n), log log n+ 
O(1), loglogn + O(1))-partition. 

Proof. Each tree T; represents O(n/logn) points. So it has size O(n) 
and, hence, it can form a part. This gives us O(logn) parts. Each 
level of the tree 7, together with its associated structures, forms a 

part, again of size O(n). Since tree T is perfectly balanced, it has 

height loglogn + O(1). So this gives us loglogn+O(1) parts. A query 
passes through all levels of T, and through at most 2 trees T; (since we 

store associated structures in the leaves of T). Hence it passes through 
log logn+O(1) parts. An update passes through log logn+O(1) parts, 
if we do not have to rebuild the data structure. If we have to rebuild the 

structure, O(log) parts are involved. Since this has to be done at most 
once every (.(n/ log n) updates, the amortized number of parts through 
which an update passes is at most loglogn + O(1) + O((logn)?/n) = 
loglogn + O(1). O
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Theorem 4.1.3 For a modified range tree, there exists an (O(n log log n), 3, 2+ 

0(1))-partition. 

Proof. The tree T, together with its associated structures, forms 

a part on its own, of size O(nloglogn). Furthermore, we put sets of 

[log log n] trees T; together in one part. A query passes through at most 

3 parts: The part containing tree T, and at most 2 parts containing 

trees T; (again we use the fact that we also store associated structures in 
the leaves of T). An update passes through exactly 2 parts, if the data 

structure is not rebuilt. Since rebuilding of the structure has to be done 

at most once every 2(n/logn) updates, and since O(log n/ log log n) 
parts are involved in this rebuilding, the amortized number of parts 
through which an update passes is 2+ o(1). O 

Next we improve Theorem 4.1.2 considerably. We need the following 

lemma. Recall our notation (log)*n for the k-th iterated logarithm, and 

the definition of the function log* n. See Section 2.1. 

Lemma 4.1.1 Let the integer sequence (ax) be given by ap = 0, dx41 = 
2% + a,, fork > 0. Let n and d be integers, such that d = loglogn + 

O(1). (We assume that n is sufficiently large.) Let m = min{i > Ola; > 
d}. Then m < log*n+ O(1). 

Proof. We prove by induction on 7 that 

(log)'d > dm—i-1 for i=1,2,...,m—3. (4.1) 

By definition of m, we have d > am_, = 2%-? + Am_2 > 2%-?. Hence 

(log)'d = logd > am_2. Now let 1 < i < m— 3, and suppose that 
(log)'d > am—j-1. Then 

(log)'d > Qm—¢—1 = 2°-*? + G_y_g > BIM-*-?. 

Since @m_—;-2 > 0, we have (log)'d > 1. Hence (log)’*'d exists, and 
(log)'t'd > @m_j—2, which proves (4.1). 

Now take i = m — 3 in (4.1). Then (log)™-3d > ay = 3, and 
hence (log)™-2d > log3 > 1. By the definition of log* d, it follows 
that m — 2 < log*d. Then, by using the relations log*(N + O(1)) = 
log* N + O(1), and log* N = 1 + log*(log N), we get 

m — 2 < log* d = log* (log logn + O(1)) = log* n + O(1).
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We want to partition a modified range tree into parts of size O(n). 
Since each tree T; has size O(n), it can form a part on its own. 

We are left with the tree T and its associated structures. We first 

sketch how these structures are partitioned. The root of T, together 

with its associated structure, forms a part. This removes the top level of 

T. Now consider the two sons v and w of the root. Look at the subtree 

consisting of v and its two sons. It takes, together with its associated 

structures, O(n) storage and, hence, can form a part. Similarly for w. 

This removes two more levels of 7; so we are left with 8 sons. For each 

son u, we make a part consisting of the subtree with root u, of depth 

8, where the depth of a tree equals the number of levels. This subtree, 

of course with its associated structures, uses O(n) space. We now have 
removed 11 levels. So we are left with 2'! sons. For each son, we take 

a subtree of depth 2'!, with associated structures, which takes O(n) 

storage. Next we are left with 2?" +1! sons, etc. The reader should note 
that the tree T is (and remains) perfectly balanced. So a node on level 
i indeed represents O(n/2*) points (cf. the discussion at the beginning 
of this section). We describe the above more precisely. 

The partition: Each tree 7; forms a part on its own. Let ap = 0 

and ag4, = 2% + a, for k > 0. Let d be the height of tree T,, and 

let m = min{i > 0|a; > d}. The tree T and its associated structures 
are partitioned as follows. For each k,0 < k < m-—1, there are 2% 

parts. Each such part is a subtree of 7’, together with its associated 

structures, having its root at level ax, of depth 2%. 

Theorem 4.1.4 For a modified range tree, there exists an (O(n), 4log* n+ 

O(1), log*n + O(1))-partition. 

Proof. We saw already that each tree T; has size O(n). Furthermore, 
there are O(logn) such trees. Since the tree T is perfectly balanced, 

we have d = loglogn + O(1). The tree T is partitioned into 

m-1 
- Qek — O(2%™-1) _ O(2) _ O(2!8losn +01) _ O(log n) 

k=0
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parts. Each such part is a subtree of 7’, together with its associated 

structures, having its root at level az, of depth 2°*. Since this root 

represents n/2°* points, such a part has size O(n). 
Now let ([x1 : y1], [2 : ye]) be a query rectangle, and consider the 

path in T' from the root to x,. Look at a node v through which this 

path passes, and let II be the part of the partition containing this node. 

If this path proceeds to the left son, we have to search the associated 

structure of the right son of v. If v is not at the bottom level of II, 

these left and right sons are also contained in II. Otherwise, these two 

sons are contained in two different parts. So, since the number of parts 

through which this left path passes is m, the left path of the query 

passes through at most 2m + 1 parts (2m parts in tree T, and one 

part containing a tree T;). Hence the number of parts through which a 

query passes is at most 4m+2. It follows from Lemma 4.1.1, that m < 

log*n+O(1). Therefore, a query passes through at most 4 log* n+O(1) 
parts. Finally, an update passes through m < log*n + O(1) parts of T 
and through one part containing a tree 7;, if we do not have to rebuild 

the data structure. If we take the cost of rebuilding into account, we 

see that—amortized—log* n + O(1) + O((logn)?/n) = log*n + O(1) 
parts are involved in an update. O 

This result means that we can query and maintain a modified range 

tree, stored in secondary memory, by transporting O(log* n) parts of 
size O(n). Observe that although log* n goes to infinity as n does, for 

all practical values of n, we have log* n < 5. In fact, log*n < 5 for all 
n < 265536, 

Next, we generalize Theorem 4.1.3. Again we change the definition 

of range trees. 

Definition 4.1.2 Let V = {p, < po <...< pp} bea set of n points in 

the plane, ordered according to their x-coordinates. A k-fold modified 

range tree is defined as follows. 

1. For k = 1, a 1-fold modified range tree is a BB/a]-range tree. 

2. Let k > 1,m = [n(log)*n/(log)*-'n]. Partition the set V into 
subsets Vi = {p1, Po,---, Pm}, V2 = {Pm+41;---;Pom}, etc. Then a
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k-fold modified range tree consists of the following. Each set V; 

is stored in a (k —1)-fold modified range tree T;. In the root of T; 
we do not store an associated structure. Let r; be the root of Tj. 

These roots are ordered according to r; < rg < 73 < .... We store 

these roots in a perfectly balanced binary leaf search tree T’. Let 

v be any node of T, representing the roots 7;, ri41,...,7; (v may 

be a leaf of T). Then v contains an associated structure, which 
is a BB[a]-tree for the set V; U Vi41 U...U Vj, ordered according 
to their y-coordinates. 

Query and update algorithms: In the above definition, the 

structure of a range tree is not changed, only the balance conditions 

are different. Therefore, the query algorithm in a k-fold modified range 

tree is similar to that of an ordinary range tree. An insertion or dele- 

tion of a point p is performed as follows. If k = 1, we use the update 

algorithm for BB[a]-range trees. Let k > 1. First we walk down tree 
T, to find the appropriate root r;. During this walk we insert or delete 

p in all associated structures we encounter on the search path. Then 

we insert or delete p in T;, using the update algorithm for a (k — 1)- 

fold modified range tree. In order to keep the structure balanced, we 

completely rebuild it as soon as at least one set V; contains either m/2 

or 2m points. 

The following theorem shows that a k-fold modified range tree has 

the same performances as a BB[a]-range tree. 

Theorem 4.1.5 A k-fold modified range tree, representing n points, 

can be built in O(nlogn) time, and takes O(nlogn) space to store. In 
this tree, range queries can be solved in O((logn)? + t) time, where t 
is the number of reported answers. Insertions and deletions in this tree 

can be performed in amortized time O((logn)?). 

Proof. The proof is by induction on k. For k = 1, the theorem 

follows from Theorem 2.3.1. So let k > 1, and suppose the theorem 

is proved for k — 1. Each tree T; has size O(mlogm), where m = 
[n (log)*n/(log)*—!n]. Since there are O((log)*~'n/(log)*n) such trees, 
they take together an amount of space bounded by 

) = o(ntogn), (log)*—!n 
O (m logm (log)En
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Each level of tree T, together with its associated structures, has size 

O(n). Since T has height 

(log)*-!n 

(log)*n 

this tree, together with its associated structures, has size O(n(log)*n). 
Hence the entire data structure has size O(n logn). The bounds on the 
building time and the query time can be proved in an analogous way. 

If the entire data structure is not rebuilt after an update, the given 

procedure takes, amortized, O((log)*n x logn+ (log m)*) = O((logn)?) 
time. Since the structure has to be rebuilt at most once every 2(m) 
updates, and since this rebuilding takes O(n logn) time, it follows that 

the amortized update time of the k-fold modified range tree is bounded 

by O((logn)?). O 

O(tox(n/m}) =O (Ios )) = 0(008)*n), 

The partition of a k-fold modified range tree: If k = 1, the 

entire data structure forms a part on its own. Let k > 1. Each tree 

T; is a (Kk — 1)-fold modified range tree. We partition each such tree T; 
recursively into parts. Finally, the tree T, together with its associated 

structures, forms one part of the partition. 

Theorem 4.1.6 For a k-fold modified range tree, representing a set of 

n points, there exists an (O(n(log)*n), 2k — 1,k + o(1))-partition. 

Proof. Again, the proof is by induction on k. For k = 1, the claim is 

obvious. So let k > 1, and suppose the theorem is proved for k—1. We 

saw in the proof of Theorem 4.1.5, that the tree J, together with its 

associated structures, has size O(n(log)*n). So this part of the partition 
has the correct size. Each tree T; is a (Kk — 1)-fold modified range 
tree, representing O(m) points, where m = [n (log)*n/(log)*-!n]. By 
the induction hypothesis, this tree 7; is partitioned into parts of size 

O(m(log)*-!m) = O(n(log)*n), such that each query passes through at 
most 2(k—1)—1 parts, and each update passes, amortized, through at 

most (k—1)+o(1) parts. Hence the entire data structure is partitioned 
into parts of size O(n(log)*n). An update in a k-fold modified range tree 
passes, amortized, through & + o(1) parts, if we do not have to rebuild 

the structure. Since the structure is rebuilt at most once every 2(m)
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updates, and since in that case O(logn/(log)*n) parts are involved in 
the update, it follows that each update passes, amortized, through at 

most k+0(1)+O/((logn/(log)*n)/m) = k+o0(1) parts. We are left with 
the bound on the number of parts through which a query passes. Let 

h(k) be the maximal number of parts through which the “left path” 
of a query in a k-fold modified range tree passes. Then h(1) = 1 and 
h(k) <1+h(k —1) for k > 1, since we also store associated structures 
in the leaves of T. Hence h(k) < k. It follows that a query in the data 
structure passes through at most 2h(k) — 1 < 2k—1 parts: h(k) parts 
for the left path, h(k) for the right path, —1 since we counted the top 
part of the tree twice. This proves the theorem. 0 

Note that the value of k should be less than or equal to log* n, 

since otherwise (log)*n < 0, or is not even defined. Hence in practical 
situations, we have k < 5. 

4.2 Changing range trees to make them 

partitionable 

The best restricted partition into parts of size O(n) we have seen so 
far, is the (O(n), O(log* n), O(log* n))-partition of Theorem 4.1.4. Al- 
though we prove in Theorem 6.3.1 that this is optimal for restricted 

partitions of normal range trees, we will show now that, making some 

slight changes, the bounds can be improved. 

Let V = {pi < po <...< pn} be a set of n points in the plane, or- 

dered according to their z-coordinates. We partition the set V into 

subsets Vi = {p1,---,Pnin)}, Vo = {Pn(n)+1,--->Pan(n)}, etc., where 
h(n) = [n/logn]. 

Definition 4.2.1 A reduced range tree representing the set V consists 

of the following. 

1. Each set V; is stored in a two-dimensional BB/a]-range tree T;. 
Let r; be the root of Tj. 

2. These roots r; are stored in the leaves of a perfectly balanced 

binary tree T.
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So in a reduced range tree, nodes that are high in the main tree (i.e., 

nodes representing many points) do not have an associated structure. 

Query and update algorithms: To perform a query with range 

([r1 : yi], [v2 : yo]), we do the following. We search with x; and y; in tree 
T for the appropriate roots, say r; and r;. If7 = 7, we perform a query, 

with the rectangle ([x1 : yi], [v2 : ye]), in the range tree T;. Otherwise, 
if i < j, we perform queries, with the strip ([21 : co], [%2 : yo]) in tree T;, 
and with ([—00 : yz], [%2 : ya]) in tree T;. Furthermore, we perform one- 
dimensional range queries, with query interval [22 : yo] in the associated 

structures of the roots of the trees Tj41,..., 7-1. 

An insertion or deletion of a point p is performed as follows. First, 

we walk down tree T, to find the appropriate root r;, and we insert 

or delete p in the tree T;, using the update algorithm for BB[a]-range 
trees. Just as for modified range trees, we completely rebuild the data 

structure as soon as one set V; contains either [n/logn]/2 or 2[n/logn] 
points. 

Theorem 4.2.1 A reduced range tree, representing a set of n points, 

can be built in O(nlogn) time, and takes O(nlogn) space to store. In 
this tree, range queries can be solved in O((logn)? + t) time, where t 
is the number of reported answers. Insertions and deletions in this tree 

can be performed in amortized time O((logn)’). 

Proof. The bounds on the building time, the space requirement and 

the update time can be proved in the same way as for BB[a]-range 
trees (cf. Theorem 2.3.1). Consider the query algorithm for reduced 
range trees as described above. The time to find the roots r; and 1; is 

proportional to the height of tree T, which is O(loglogn). If i = j, we 
have to query the tree T;, which takes O((log(n/ log n))*) = O((logn)?) 
time. If i < j, we query the trees T; and T;, which takes O((logn)”) 
time. Furthermore, the one-dimensional range queries in the associated 

structures of the roots of Tj41,...,Tj-1 take O(logn x log(n/ logn)) = 
O((logn)”) time, since there are O(log) such associated structures, 
and each has a query time of O(log(n/logn)). Of course we have to 
add O(t) to the total query time for reporting the answers. This proves 

the theorem. 0
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It follows that we have a new data structure for the orthogonal 

range searching problem, having the same performances as a BBia]- 

range tree. We show that this new data structure can be partitioned 

efficiently. 

The partition of a reduced range tree: We put the tree T, 

together with the associated structures of the roots of the trees T; in 

one part. Furthermore, each tree 7;, without the associated structure 

of its root, forms one part of the partition. 

Theorem 4.2.2 For a reduced range tree, there exists an (O(n), 3,2+ 
0(1))-partition. 

Proof. The part that contains T and the associated structures of the 

roots of the trees T;, has size O(logn + logn x (n/logn)) = O(n). It is 
clear that each JT; without the associated structure of its root has size 

O(n). There are O(logn) such trees. Clearly, a query passes through at 
most 3 parts. Also, if the data structure is not rebuilt, an update passes 

through exactly 2 parts. If the structure is rebuilt, which happens 

at most once every 20(n/logn) updates, O(logn) parts are involved. 
Hence an update passes, amortized, through at most 2+ o0(1) parts of 

the partition. 0 

Remark. We prove in Theorem 6.3.1 that if a two-dimensional range 

tree is partitioned, in the restricted sense, such that each update passes 

through at most 2 parts, there must be a part of size Q(nloglogn). 

This is not in conflict with the partition of Theorem 4.2.2: A reduced 

range tree does not have the structure of a range tree, and therefore 

the lower bound does not apply. (Strictly speaking, the partition of 

Theorem 4.2.2 is not even restricted, since the associated structure of 

the root of JT; is not contained in the same part as the root itself. How- 

ever, the data structure can easily be adapted such that the partition 

is restricted.)
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4.3. A partition in which updates pass through 

3 parts 

We now look at general partitions that also allow splitting associated 

structures. As a result we can reduce the size of the parts to be asymp- 

totically less than n. Unfortunately, this makes the number of visited 

parts for a query dependent on t, the number of answers. 

Definition 4.3.1 Let g(n) and h(n) be integer functions, such that 
1 < g(n) < nl < A(n) < n, and g(n) x A(n) > n/logn. Let 
V = {p, < po <... < py} be a set of n points in the plane, ordered 

according to their z-coordinates. We partition the set V into subsets 

Vi = {P1,---,Po(n)}, Vo = {Pg(n)+15 +++» Peg(n)}, etc. Order the points of 
V according to their y-coordinates. Let V = {q@ <q <... <q} be 

the resulting set. We partition this set into subsets W, = {q1,.--, dniny}, 

Wo = {Gn(n)+1) +--+» Qan(n)}, etc. A (g(n), h(n))-range tree is defined as 
follows. 

1. Each set V; is stored in a two-dimensional BB/a]-range tree T;. 
Let r; be the root of Tj. 

2. These roots are stored in the leaves of a perfectly balanced bi- 

nary tree T. Let v be any node of 7, representing the roots 

Tis Tit1)---,7j- Then v represents the set Vj; = VjUVi41U...UVj. 

Let Iy = {k|Vi; 7 W, #0}. Node v contains an associated struc- 
ture, representing the set Vi;, having the following form. There 

is a top tree T’, which is a BB[a]-tree, containing the set I, in 
its leaves. Furthermore, each leaf k of this top tree, contains a 

BBia]-tree T/,, containing in its leaves the points of V;;M We, 
ordered according to their y-coordinates. 

In this definition, the condition g(n) x h(n) > n/logn is to assure 
that the data structure has size O(n logn). Observe that the associated 
structure of a node v of the tree T contains the points of Uez, (Vij 

W,) = Viz, ordered according to their y-coordinates. Also, for such a 

node v, we have |J,| = O(n/h(n)). If r is the root of tree T, the set J, 
contains all values of indices for which there is a set W;,. Therefore, the
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Figure 4.1: A (g(n), h(n))-range tree. T,,...,Tn/g(n) are 2-dimensional 
BBla]-range trees, the other trees are binary trees.
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top tree T” associated with the root is, and remains, perfectly balanced. 

See Figure 4.1 for a pictorial representation of a (g(n), h(n))-range tree. 

Query and update algorithms: Since (g(n),h(n))-range trees 
have the same structure as ordinary range trees, the query algorithm 

for this data structure will be clear. 

An insertion or deletion of a point p is performed as follows. First 

we walk down tree T, to find the appropriate root r;. During this walk, 

we have to update all associated structures we encounter on the search 

path. The first associated structure we encounter is that of the root r 

of T. We search in its top tree T/, to find the set W;, in which p has 

to be inserted or deleted. Then we update the corresponding tree T/,. 
Now for each node v # r of T, that is on our search path, we do the 

following. We search in the top tree T) for k. (We know the value of 

1. Suppose that & is present in this top tree. Then we insert or 

delete p in the tree T/,. If T/,, becomes empty, we delete k from 
the top tree T). 

2. Otherwise, k is not present in the top tree. (Then, point p is 

not present in the data structure, and therefore the update is an 

insertion: If » was present, then k was present in the top tree 

T,. If we had to delete the point p, we would have noticed that 

it is not present during the update of the associated structure of 

the root r, and the update procedure would have stopped.) In 

this case, we insert k into the top tree, together with a tree T/, 
containing p. 

Finally, point p is inserted or deleted in the appropriate range tree T;, 

using the update algorithm for BB[a|-range trees. 
In order to keep the data structure balanced, we completely rebuild 

it as soon as one set V; contains either g(n)/2 or 2g(n) points, or as 
soon as one set W; contains either h(n)/2 or 2h(n) points. 

Theorem 4.3.1 Let g(n) and h(n) be as before. A (g(n), h(n))-range 
tree, representing n points, can be built in O(nlogn) time, and takes 

O(nlogn) space to store. Using this tree, range queries can be solved
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in O((logn)? + t) time, where t is the number of reported answers. 
Insertions and deletions in this tree can be performed in amortized time 

O((logn)? + (nlogn)/ min(g(n), h(n))). 

Proof. Each tree T; represents O(g(n)) points. Hence it has size 
O(g(n) log g(n)). Since there are O(n/g(n)) such trees, they take to- 
gether O(n log g(n)) space. The tree T takes O(n/g(n)) space. Each 
top tree T/, where v is a node of T, has size O(n/h(n)). Hence 
all top trees together have size O((n/g(n)) x (n/h(n))). Consider a 
fixed level of T. The trees T’, of the associated structures on this 
level together represent the set V, and, hence, they have size O(n). 

Since T has height O(log(n/g(n))), all these trees T/, together take 
O(nlog(n/g(n))) space. Hence the size of the entire data structure is 
bounded by 

O(n log g(n))+O((n/g(n)) x (n/h(n)))+O(n log(n/g(n))) = O(n logn), 

since g(n) x h(n) > n/logn. The bound on the building time can be 
proved in an analogous way. 

In each associated structure of a node in tree JT, one-dimensional 

range queries can be solved in O(log(n/h(n)) + log h(n)) = O(logn) 
time. One-dimensional range queries in an associated structure of a 

tree T; take O(log g(n)) = O(logn) time. To solve a two-dimensional 
range query, we have to solve O(log n) one-dimensional range queries in 
associated structures. It follows that the query time of the data struc- 

ture is bounded by O((logn)? +t). We are left with the update time. 
Suppose the data structure is not rebuilt. The update of range tree T; 

takes amortized O((log g(n))”) time, and only one such tree has to be 
updated. Furthermore, the update of an associated structure in T takes 

O(log n) time. Since O(log(n/g(n))) such associated structures are up- 
dated, the total update time is bounded by O((log g(n))? + logn x 
log(n/g(n))) = O((logn)?). Every Q(min(g(n), h(n))) updates, the 
data structure is rebuilt at most once. Therefore, the amortized update 

time of the data structure is bounded by O((logn)?+(n log n)/ min(g(n), h(n))). 
This proves the theorem. 0 

The partition: We partition a (g(n), h(n))-range tree as follows. 
Each tree T; forms a part on its own. Next we put the tree T together
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with all top trees T/ in one part of the partition. Finally, for each fixed 

k, the trees T/,, where v ranges over all nodes in T, are put together 

in one part. (Use Figure 4.1 to get an impression of this partition.) 

Theorem 4.3.2 A (g(n), h(n))-range tree, representing a set of n points, 
can be partitioned into parts of size O(f(n)), where 

f(n) = max (g(n) log g(n), (n/g(n)) x (n/h(n)), h(n) log(n/g(n))) , 

such that a query passes through at most 5+ O(t/h(n)) parts, where t 
is the number of reported answers, and the amortized number of parts 

through which an update passes is at most 3 + O((nlogn)/(f(n) x 

min(g(n), h(n)))). 

Proof. Each tree T; forms a part of size O(g(n) log g(n)). This gives us 
O(n/g(n)) parts. The tree T has size O(n/g(n)). There are O(n/g(n)) 
top trees, and each of them has size O(n/h(n)). So the part of the par- 
tition containing T and all top trees has size O(n/g(n)) +O((n/g(n)) x 
(n/h(n))) = O((n/g(n)) x (n/h(n))). Take a fixed k. All trees Ty,, 
where v ranges over the nodes in 7’, form one part. Consider a level of 

T. Let v1, U2,.-.,Um be the nodes on this level. The trees T).,,..-,T),.% 

together represent the set W;, which has size O(h(n)). So for this fixed 
k, all trees T/, together have size O(h(n) log(n/g(n))), since tree T has 
height O(log(n/g(n))). Since there are O(n/h(n)) possible values for 
k, this gives us O(n/h(n)) parts, each of size O(h(n) log(n/g(n))). 

To summarize, we have O(n/g(n)) parts of size O(g(n) log g(n)), 
one part of size O((n/g(n)) x (n/h(n))), and O(n/h(n)) parts of size 
O(h(n) log(n/g(n))). Then, in order to get the desired partition, we 
merge parts into O((nlogn)/f(n)) new parts of size O(f(n)). 

Now consider an insertion or a deletion of a point, such that the data 

structure is not rebuilt. Let W; be the set in which the point is inserted 

or deleted. Then this update passes through exactly three parts: The 

part containing T and the top trees; the part containing the trees T/,; 

and a part containing the appropriate range tree 7;. If the structure 

is rebuilt, O((nlogn)/f(n)) parts are involved in the update. Since 
this has to be done at most once every ((min(g(n), h(n))) updates, it 
follows that the amortized number of parts through which an update 

passes is at most 3+O((nlogn)/f(n) x 1/ min(g(n), h(n))). The bound



64 4. Partitions of 2-dimensional range trees 

on the number of parts through which a query passes can be proved in 

a similar way. 0 

Now we choose the functions g(n) and h(n) such that the sizes of 
the parts are minimal. 

Corollary 4.3.1 Let g(n) = h(n) = [n?/3/(logn)*/3]. Ina (g(n), h(n))- 
range tree, updates can be performed in amortized time O(n 3x (log n)4/ 3). 

This range tree can be partitioned into parts of size O((nlogn)?/*), such 
that a query passes through at most 5 + O(t x (logn)'/3/n?/3) parts, 
where t is the number of answers to the query, and the amortized num- 

ber of parts through which an update passes is at most 3 + o(1). 

The partition in this corollary is the best result for partitions in 

which an update passes through at most 3 parts. 

4.4 k-divided range trees 

We now generalize the (g(n), h(n))-range tree of the preceding section, 
to get a class of range trees that can be partitioned such that queries 

and updates visit a constant number of parts. 

Range trees in this new class are composed of k-divided binary trees, 

which are defined as follows. 

Definition 4.4.1 Let k be a positive integer, and let V = {p, < po < 

. < Pn} be an ordered set of n objects. A k-divided binary tree, 

representing the set V, is defined as follows. 

1. For k = 1, a 1-divided binary tree is a BB[a]-tree, containing the 
elements of V in sorted order in its leaves. 

2. Let k > 1, and let m = [n*/@+) /(logn)/@+]. Partition V 
into subsets Vi = {p1,.--, Pm}, V2 = {Pmit,---,Pam}, etc. A k- 
divided binary tree consists of the following. Each set V; is stored 

in a (k — 1)-divided binary tree B;. The roots of the trees B; are 
stored in sorted order in the leaves of a perfectly balanced binary 

tree B.
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Figure 4.2: A 4-divided binary tree. 

Definition 4.4.2 Consider a k-divided binary tree T representing a 

set V. This tree contains i-divided subtrees for 1 <i< k. Ifi > 1, 

each such 7-divided subtree contains a top tree, which is a binary tree 

storing the leaves of its (i — 1)-divided subtrees. Such a top tree is 
called a tree-part. The BB[a]-subtrees of T that contain the objects of 
V —these are 1-divided binary trees—are called bottom-parts. 

See Figure 4.2 for a pictorial representation of a 4-divided binary 

tree. In this figure, C, D; and E; are tree-parts, and the 1-divided 

binary tree F; is a bottom-part. Note that a 1-divided binary tree does 

not contains tree-parts. 

Update algorithm: An update in a k-divided binary tree is per- 

formed as follows. If & = 1, we use the update algorithm for BB[a]-trees 
that uses rotations. Let k > 1. To update a k-divided binary tree, we 

walk down tree B to find the appropriate (k — 1)-divided binary tree 
B; where the update has to be carried out. Then we perform the up- 

date in this tree B;, using the same algorithm recursively. If this tree 

B,;—which initially has m = [n*/@+) /(logn)/+)] leaves—has either 
m/2 or 2m leaves, we rebuild the entire k-divided binary tree.
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Lemma 4.4.1 A k-divided binary tree representing a set of n elements 

has size O(n) and can be built in O(n) time if we have the n elements 
in sorted order. The tree has a height bounded by O(logn). 

Proof. The proof is trivial. 0 

Lemma 4.4.2 Consider a k-divided binary tree T for a set of n ele- 

ments. Let i be an integer, 1<i< k. Each i-divided subtree of T has 

Size 

re) (m/e) / (log ny h-O/R+)) ∙ 

∫∣∣∁⋗↥↗∽∁∣⊔⊺≖∂∊−⊉⊄⇈⇩∣∃⇁↗↴∁⇂⋅⋝⋅⋝∅∎∅∂ 

⊝ ((n log n) e+) ⋅ 

Each bottom-part has size 

6) (n?/** /(log ny& Die) ∙ 

Each path in T from the root to a leaf passes through exactly k — 1 

tree-parts and one bottom-part. 

Proof. Let m; = n)/@+) /(logn)@—9/@+D_ The proof of the sizes 
of the i-divided subtrees is by induction on 7. For i = k, the claim is 

obvious. Let 1 <i < k, and suppose that each (i + 1)-divided subtree 
of T has size O(m,41). Let T’ be such an (4+ 1)-divided subtree. Then 
by definition, T’ contains i-divided subtrees, each of which has size 

3) (min (+2) / (log mini)! 2) = O(m,). 

Hence the claim is true for 7, since each i-divided subtree is a subtree 

of some (i + 1)-divided subtree. 
It is clear that each root-to-leaf path in T passes through k — 1 

tree-parts and one bottom-part. Each tree-part is the top tree of an 

i-divided binary tree for some 1 <1 < k. The size of such a tree-part is 

O(m;/m_1) = O((nlogn)/@+). Finally, each bottom-part has size 

O(m1) = O(n7/**9) /(logn)® W/E). O
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Definition 4.4.3 Let & be a positive integer. Let V = {p, < po < 

... < pn} be a set of n points in the plane, ordered according to their 

x-coordinates. A k-divided range tree, representing the set V, is defined 

as follows. For k = 1, a 1-divided range tree is a BB[a]-range tree. 
Let k > 1, m = [n*/@+) /(ogn)/@+)]. Partition V into subsets 
Vi, = {p1,---,Dm}, V2 = {Pmit,---)Pam}, etc. A k-divided range tree 

for the set V consists of the following. 

1. Each set V; is stored in a (& — 1)-divided range tree T;. Let r; be 
the root of Tj. 

2. These roots r; are stored in the leaves of a perfectly balanced 

binary tree J. Let r be the root of T. 

3. The root r of T contains an associated structure, which is a k- 

divided binary tree, representing the points of V, ordered accord- 

ing to their y-coordinates. Let T/ be the part of this associated 
structure without the bottom-parts. So T/ consists of all tree- 
parts of the associated structure of r. 

4. Let w be any node of T, w # r, and let V, be the set of points 

represented by w. Then w contains an associated structure having 

the following form. The upper part is a copy of T/. Each leaf 

of this copy contains a pointer to a BB/a]-tree that contains in 

its leaves the—possibly none—points of V,, that “belong there”, 

ordered according to their y-coordinates. So the entire associated 

structure of w contains the set V,, in its leaves, ordered according 

to their y-coordinates. 

Finally, each node of any associated structure contains the following 

extra information: 

e Two mark bits which state whether the left and right subtree 

contain points of V; 

e Two extra pointers, one for the left, and one for the right subtree. 

One extra pointer points to the (unique) first node in the left 
subtree for which both subtrees contain points of V, or else (if 

no such node exists) to the only point of V in the left subtree. If
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there are no points of V at all in the left subtree, the pointer is 

not used. The other extra pointer has the same meaning for the 

right subtree. 

(End of definition.) 

Note that a k-divided range tree contains a main tree as usual, 

which is a k-divided binary tree. In Figure 4.3, a 4-divided range tree 

is sketched. The highest tree-parts in all associated structures of nodes 

in T—denoted here by C—are identical (except for the mark bits and 
the extra pointers). Also, for fixed 7, all tree-parts D; in all associated 

structures of nodes in T are identical. The same holds for the tree- 

parts E; for fixed j. The points that are contained in the BB[a]-tree 
F/ in the associated structure of w form a subset of the points that 
are stored in the bottom-part F;. This BB[a]-tree F/ may be empty, 
whereas the bottom-part F; is not empty. In this figure, T1,...,Tn/m 

are (k — 1)-divided range trees. 
Let v be any internal node in an associated structure, and let w be its 

left son. If the extra information (the mark bits and the extra pointers) 
of node w is known, then we can compute the extra information for the 

left subtree of v in constant time. A similar remark holds if w is the 

right son of v. Hence, the extra information for an associated structure 

can be computed in a bottom-up fashion. 

For k = 2, we nearly get the (g(n), h(n))-range tree of the preceding 
section. The difference is that in a 2-divided range tree, the upper parts 

of associated structures are identical, whereas in a (g(n), h(n))-range 
tree this is not necessarily the case. 

Definition 4.4.4 Consider a k-divided range tree. 

1. The BBial]-subtrees of an associated structure that contain the 
points are called bottom-parts. The upper part T; of an associated 

structure (i.e. the tree without the bottom-parts) consists of tree- 
parts, which are defined as in Definition 4.4.2. 

2. Two tree-parts (or bottom-parts) of two associated structures are 
located at the same position, if the paths for reaching these parts 

are identical. In other words, when the same left-right decisions 

are taken in each associated structure in reaching the parts.



4.4. k-divided range trees 69 

Figure 4.3: A 4-divided range tree.
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So in Figure 4.3, the subtrees F; and F/ are bottom-parts, whereas 

C’, D, and E; are tree-parts. The two tree-parts E;—one in the associ- 

ated structure of r, and the other in the associated structure of w—are 

located at the same position. 

Building algorithm: A k-divided range tree is built as follows. If 

k = 1, we use the standard building algorithm for BB[a]-range trees. 
Let k > 1. We first order the n points to both coordinates. This takes 

O(nlogn) time. Then we build recursively the (& — 1)-divided range 
trees T},...,Tn/m for sets of m points, where m = [n*/*+) /(logn)/ A+), 
Next, we build the tree T, in which we store the roots of these (& — 1)- 
divided range trees. Then we build the associated structure of the root 

r of T, and we copy the part T/, that does not contain the bottom- 

parts, O(n/m) times. Each copy becomes an associated structure. We 
complete such an associated structure, by traversing it and adding the 

bottom-parts containing the points that belong there, and setting the 

extra pointers and mark bits. 

Lemma 4.4.3 A k-divided range tree for a set of n points can be built 

in O(nlogn) time and takes O(nlogn) space to store. 

Proof. We prove the bound on the building time, by induction on k. 

For k = 1, the lemma is obvious. So let & > 1, and suppose that a 

(& — 1)-divided range tree can be built in O(nlogn) time. We build 
the k-divided range tree as described above. It takes O(n logn) time to 
order the n points to both coordinates. By the induction hypothesis, 

the building of the (k — 1)-divided range trees T,,...,Tn/m takes an 
amount of time bounded by O((n/m) x mlogm) = O(nlogn). Clearly, 
the tree T can be built in O(n/m) time. The size of T/ is equal to the 
size of the entire associated structure of r—which is O(n)—divided by 
the size of a bottom-part. Hence it follows from Lemma 4.4.2 that this 

part T’ has size O((nlogn)“-/@+). Therefore, the time to build the 
associated structure of r and copying T; O(n/m) times is bounded by 

O (n + (n/m) x (nlog nj &-D/e+)) = O(n). 

(Note that therefore the total size of these copies is bounded by O((n/m) x 
(nlogn)*-)/(*+1)) — O(n).) The completing of each copy to an asso- 
ciated structure takes in total O(n) time for all associated structures of



4.4. k-divided range trees 71 

a fixed level of T’, since we have the points ordered according to their 

y-coordinates. Since there are O(log(n/m)) levels in T, the total time 
for completing all associated structures of T is bounded by O(n logn). 
This proves the bound on the building time. The bound on the size 

can be proved in a similar way. 0 

Update algorithm: If k = 1, we use the update algorithm for 

BBia]-range trees. 

Let k > 1. An insertion or deletion of a point in a k-divided range 

tree is performed as follows. We walk down tree T’,, to find the appro- 

priate (k — 1)-divided range tree T; where the update has to be carried 
out. During this walk we have to update all associated structures we 

encounter. The update in the associated structure of the root r of T is 

performed by using the update algorithm for k-divided binary trees. 

First suppose that no rebuilding operation is necessary in the asso- 

ciated structure of the root r of T. (Here, a rotation in a bottom-part 
is not considered to be a rebuilding operation.) Then the other associ- 
ated structures along the search path in T are updated in the standard 

way, and no rebuilding operations are carried out. In each associated 

structure, we adjust the extra information—the mark bits and the extra 

pointers—by walking backwards the path to the leaf where the point 

is inserted or deleted. To adjust this extra information, constant time 

is needed for each node on the path. Also, in case a rotation is carried 

out—in a bottom-part—the extra information of the nodes involved 

can be updated in constant time. 

Otherwise, if a rebuilding operation is necessary, an i-divided sub- 

tree of the associated structure of r is rebuilt, for some 7. We re- 

peat this rebuilding in all associated structures of T. More precisely, 

let T/ be the upper part of the new i-divided subtree, i.e., the tree 

without the bottom-parts. Then we copy T; O(n/m) times, where 
m = [n*/®+ /(logn)/(@+]. In each associated structure of T we re- 
place the old subtree by a copy of T/, and we complete each copy by 

traversing it and adding the bottom-parts containing the points, and 

setting the extra pointers and mark bits. 

Finally, we perform the update in the appropriate (k — 1)-divided 
range tree 7;, using the same algorithm recursively. If this tree T;— 

which initially represents m points—represents either m/2 or 2m points,
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we rebuild the entire k-divided range tree. 

Lemma 4.4.4 In ak-divided range tree, representing a set of n points, 

insertions and deletions can be performed in amortized time O(n (k+1) x 
(log n)*+2)/(+0), 

Proof. The proof is by induction on k. For k = 1, the lemma is 

obvious. So let k > 1, and suppose that an update in a (k — 1)-divided 
range tree takes, amortized, O(n'/* x (logn)*+)/*) time. 

In the above update algorithm, the update of the (k — 1)-divided 
range tree T; takes—by the induction hypothesis—amortized 

O (mi/* x (logm)*+)/*) —O (nery) x (log n)(*+2)/+2)) 

time. The entire k-divided range tree is rebuilt at most once every 

Q(m) updates. So this rebuilding adds 

O ((nlogn)/m) =O (ner) x (log n)(®+2)/(6+1)) 

to the amortized update time. 

We are left with the update time for the associated structures of 

T. If no rebuilding is done, these associated structures are updated in 

O((log n)?) time. 
Otherwise, in the associated structure of the root r of T, an i-divided 

subtree is rebuilt, for some 7. We repeat this in all other associated 

structures of T’, as described above. Note that 1 < i < k, since we never 

rebuild a 1-divided subtree. The upper part T/ has a size which is equal 

to the size of an i-divided subtree divided by the size of a bottom-part. 

Hence, by Lemma 4.4.2, this upper part has size O((nlogn)@Y)/@t0)., 
Therefore, the time needed to build the i-divided subtree and copying 

the upper part O(n/m) times is bounded by 

= 0 (nb [Clog ny 9/9), 
where the leftmost term is the size of the 7-divided subtree. It takes an 

amount of O(n@+)/@+ /(logn)*—9/(F+1)) time to complete the associ- 
ated structures of the nodes on a fixed level of 7’, since by Lemma 4.4.2,
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an i-divided subtree contains O(n@+)/('+D /(logn)@—9/+1)) points, 
and each of these points is contained in exactly one associated struc- 

ture. (Note that all O(n/m) copies of T/ can indeed be traversed in 
O(n Y/ME+1) /(logn)@-9/4+D) time.) Since tree T has O(log(n/m)) 
levels, the total amount of time to complete all associated structures of 

T is bounded by 

O (nO) /(log nye ieH)) x log(n/m)) =O ((n log njOrDie+)) ⋅ 

So the total time to rebuild the associated structures—for this value of 

i—is bounded by 

=O ((n log nO) ) ⋅ (4.2) 

(Hence the total size of all changed parts of the associated structures 
of T is also bounded by O((nlogn)“+)/(+1)).) 

An i-divided subtree is rebuilt at most once every Q(ni/@t /(log n)@-+Y/k+)) 
updates: The subtree is rebuilt if an (i — 1)-divided subtree gets out 
of balance. So the rebuilding for this value of i adds O(n/(@+) x 
(log n)+?)/@+0) to the amortized update time. 

This can happen for k — 1 values of 1. Therefore, the amortized up- 

date time for the associated structures of T is bounded by O(n/(@+)) x 
(log n)*+2)/(k+D). since k is a constant. 

We have proved that the amortized update time for the entire k- 

divided range tree is bounded by O(n/(+) x (log n)(@#2)/@+)). 

Query algorithm: The query algorithm for a k-divided range tree 

is as follows. Let ([x1 : y:], [22 : ye]) be a query rectangle. Note that 
the k-divided range tree contains a main tree as in the ordinary case. 

1. Perform a range query in the main tree with [z, : y;], as in the 
ordinary case, and select the associated structures to be queried. 

2. For each associated structure selected in step 1, perform a one- 

dimensional range query with [22 : ye| as follows: Follow the paths 
to Z and yo, and select the subtrees in which the answers must 

lie. For every selected subtree, if it does not contain points, do
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nothing. Otherwise, report the points it contains by following the 

extra pointers. (We know from the mark bits whether a subtree 
contains points.) 

Lemma 4.4.5 In a k-divided range tree, representing a set of n points, 

range queries can be solved in O((logn)?+t) time, where t is the number 
of reported answers. 

Proof. The first step of the above query algorithm selects O(logn) 

associated structures and takes O(logn) time. The first part of the 
second step takes O(logn) time for each associated structure. This 
gives a total time of O((logn)*). The second part of the second step 
guarantees that each visited node that is not on the path to xo or yp 

gives an extra answer to the query. More precisely, if ¢ is the number of 

answers to the query, it can be shown that at most ¢— 1 internal nodes 

are visited that are not on the path to x or yo. Hence, the second part 

of the second step visits at most 2¢ — 1 nodes. It follows that the total 

query time is bounded by O((logn)? +t). O 

Theorem 4.4.1 A k-divided range tree for a set of n points can be 

built in O(nlogn) time and takes O(nlogn) space to store. Using this 
tree, range queries can be solved in O((logn)* +t) time, where t is the 
number of reported answers. Insertions and deletions can be performed 

in amortized time O(n/(+)) x (log n)(@+2)/@+))., 

Proof. The proof follows from Lemmas 4.4.3, 4.4.4 and 4.4.5. O 

The partition: We partition the k-divided range tree as follows. 

A 1-divided range tree forms one part on its own. 

Let k > 1. Then we partition the (k — 1)-divided range trees T; 
recursively. We are left with the tree-part T’ of the main tree and its 

associated structures. We store the tree-parts of all associated struc- 

tures of the tree-part T, that are located at the same position, in one 

part of the partition. (See Definition 4.4.4 for the notion “located at 

the same position”.) Also, the bottom-parts of all associated struc- 

tures of JT, that are located at the same position, are stored in one 

part of the partition. Finally, we put the tree-part T itself in that part
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of the partition that contains the highest tree-parts of the associated 

structures. 

So, in Figure 4.3, all tree-parts C of all associated structures of T, 

together with T itself, are put in one part of the partition. Let i be 

fixed. Then all tree-parts D; of all associated structures of T, form one 

part of the partition. Similarly, for fixed j, all tree-parts E; form one 

part of the partition. For fixed /, all bottom-parts Fj, F/, etc. of all 

associated structures of T are stored in one part of the partition. The 

trees T,,...,Tn/m are partitioned recursively. 

Lemma 4.4.6 If a k-divided range tree is partitioned as described above, 

each part has size O((nlogn)?/@+0), 

Proof. For k = 1, the lemma is obvious, since a 1-divided range tree 

is a BBia]-range tree. So let k > 1, and suppose the lemma is proved 

for k — 1. Each (k — 1)-divided range tree T; represents O(m) points, 
where m = [n*/(+1) /(logn)'/@+]. By the induction hypothesis, such 
a tree T; is partitioned into parts of size 

C) ((m logm)*/*) =O ((n log n)2le+0)) ⋅ 

⊡∂∁↥↥↓∁↧⊲⊖⊖−↧≻∂↥⊲↿⊒↥∐⋮⊐↘∣∁−⊂∐⋁↥≺↥⊖≺↥↥⇁∂∐≝⊖↓∁↥⇁⊖⊖↥↥∂⊟⊟↥∅⊖⊝≼≼∏↥⊙≝∪⊃↕∕∩⊽⊹↕⋟⊃⋅ 
(This follows from Lemma 4.4.2.) Since we store O(n/m) tree-parts of 
associated structures of T’ that are located at the same position in one 

part of the partition, such a part has size 

S) ((n/m) x (nlog n) V+) =O ((n log n)2le+0)) ⋅ 

The part of the partition that contains the tree-part T has an additional 

number of O(n/m) nodes. So this part still has size @((n log n)?/At»). 
Now consider a part of the partition that contains those bottom- 

parts of all associated structures of tree-part T, that are located at 

the same position. By Lemma 4.4.2, the bottom-part of the associated 

structure of the root of T contains O(n?/“+ /(logn)%-)/+1)) points. 
The bottom-parts of all associated structures of a fixed level of T, that 

are located at the same position, together contain the same points. 

Hence the part of the partition containing these bottom-parts has size 

S) (log(n/m) x n2/(F+) I(log n)&D/e+)) ~@e ((n log n)2/(6+1)) .
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since there are O(log(n/m)) levels in T. Hence the lemma is true for 
k. 0 

Remark. We see that all parts in the partition have asymptotically 

the same size. This explains our choice [n*/@+ /(logn)/4@+)] for the 
integer m in Definitions 4.4.1 and 4.4.3. 

Lemma 4.4.7 Each update in a k-divided range tree, partitioned as 

described above, passes, amortized, through at most k(k + 1)/2 + o(1) 

parts of the partition. Here, o(1) is to be interpreted for n > co. 

Proof. For k = 1, the lemma is obvious, since a 1-divided range tree 

forms one part on its own. Let k > 1 and suppose the lemma is proved 

for k — 1. 

First suppose that we perform an update such that the entire k- 

divided range tree is not rebuilt, and that no rebuilding operation 

is necessary in the associated structure of the root of JT, except for 

possible rotations in a bottom-part of this associated structure. By 

Lemma 4.4.2, this update passes through k — 1 tree-parts and one 

bottom-part of the associated structure of the root of T. Note that 

a rotation takes place within one bottom-part, so no extra tree- or 

bottom-parts are involved. The important observation is this: If the 

update passes through a tree-part T’ of the associated structure of the 

root of T, this update passes through the tree-parts of other associated 

structures, that are located at the same position as T’, and all these 

tree-parts are stored in the same part of the partition. The same is true 

for a bottom-part of the associated structure of the root of T. Since the 

tree T itself is stored in the same part as the highest tree-parts of the 

associated structures, it follows that the update of T and its associated 

structures passes through exactly k parts of the partition. By the induc- 

tion hypothesis, the update visits, amortized, at most k(k —1)/2+0(1) 
parts in a (k —1)-divided range tree T;. So if no rebuilding is necessary, 
the update passes, amortized, through at most k(k + 1)/2 + o(1) parts 
of the partition. 

The entire k-divided range tree is rebuilt at most once every 2.(m) 
updates: As soon as a tree T; represents m/2 or 2m points, where m = 

[n*/+0 /(logn)/+]. In such a rebuilding operation, O((nlogn)*—)/@+))
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parts of the partition are involved, since by Lemma 4.4.6 all parts 

have size O((nlogn)?/+)), It follows that this rebuilding operation 
adds O((n log n)*—Y)/(*+) /m) = o(1) to the amortized number of parts 
through which the update passes. 

Finally, consider the case, where the associated structure of the 

root of T' gets out of balance. Suppose that an i-divided subtree B is 

rebuilt, for some 1 < i < k. This rebuilding is repeated in all other 

associated structures of T. The tree-parts and bottom-parts of these 

other associated structures that are involved, are stored in the same 

parts of the partition as the tree- and bottom-parts of the subtree 

B. All tree-parts and bottom-parts that are involved in this rebuilding 

operation, together have size O((n log n)+)/@+ ) (see Equation (4.2)), 
and they are partitioned into parts of size @((nlogn)?/“t»). Hence 
there are O((nlogn)—)/+) parts of the partition involved in this 
rebuilding operation. Since this rebuilding is done at most once every 

O(n +) (log n)@-+4/E+1)) updates—an (i—1)-divided subtree must 
get out of balance—this adds o(1) to the amortized number of parts 
visited in an update. This can happen for k — 1 values of 7. Since k 

is a constant, rebuilding of the associated structures adds o(1) to the 
number of visited parts. This completes the proof. O 

Lemma 4.4.8 A query in a k-divided range tree, partitioned as de- 

scribed above, passes through at most 2k? —2k+2t parts of the partition, 

where t is the number of answers to the query. 

Proof. Let g(k) denote the number of parts of the partition through 
which a query passes in a k-divided range tree, and let h(k) denote 

this number for a query with the first interval being half-infinite. We 

do not count here the number of reported answers. Then g(1) = 1, 
and g(k) < 2k —1+2h(k —1) for k > 1. Also, A(1) = 1, and 
h(k) < 2k-—1+h(k—1) for k > 1. It follows that h(k) < k?, and hence 
g(k) < 2k? —2k +1. 

The subtrees to be reported together contain ¢ points, thus at most 

t — 1 internal nodes not on the query-paths are needed to reach the 

t leafs containing these t answers. (See the query algorithm and the 

proof of Theorem 4.4.1.) It is possible that all these points and internal 

nodes are situated in different parts of the partition. The number of
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parts through which a query passes therefore is at most g(k) +2t—1 < 

2k? — 2k + 2t. O 

By combining Lemmas 4.4.6, 4.4.7 and 4.4.8, we get the final result. 

Theorem 4.4.2 For a k-divided range tree, there exists a partition into 

parts of size O((nlogn)?/*+)), such that an update passes, amortized, 
through at most k(k +1)/2+ (1) parts, and a query passes through at 

most 2k? —2k+ 2t parts, where t is the number of answers to the query. 

The term o(1) is valid for n > oo. 

Of course, if the number of answers to a query is about n, it is not 

possible that O(n) parts of the partition are needed, since the partition 

contains only O((nlogn)*—)/@+)) parts. 

Remark. Consider again a k-divided range tree. In our definition, 

several associated structures are stored twice. For example, in Def- 

inition 4.4.3, we store an associated structure in the root 7; of the 

(& — 1)-divided range tree T;. This associated structure is also stored 
in a leaf of the tree-part T. To guarantee the upper bound for the 

number of parts visited in a query, this latter associated structure is 

needed. The associated structures in the roots of the i-divided range 

subtrees for 1 < i < k can be removed. Then the results of Theo- 

rems 4.4.1 and 4.4.2 still hold. In fact, we have done the same already 

in Definitions 4.1.1 and 4.1.2.



Chapter 5 

Partitions of d-dimensional 

range trees 

5.1 Restricted partitions of d-dimensional 

range trees 

The restricted partitions of Section 4.1 can easily be generalized to the 

multi-dimensional case, as we show now. In a restricted partition of a 

multi-dimensional range tree, only the main tree is partitioned. Just as 

in the two-dimensional case, a node of the main tree and its associated 

structure are contained in the same part. Since the associated structure 

of the root of the main tree—a (d—1)-dimensional range tree—has size 
O(n(log n)4-?), as will be shown in Subsection 6.2.2, this implies that 
in a restricted partition there is a part of size Q(n(logn)*). 

First, we define modified d-dimensional range trees. Let V = {p, < 

po <... < pn} be a set of n points in d-dimensional space, ordered 

according to their first coordinates. We split this set into subsets V; = 

{P1, ⋅⋅⋅ ∂⇪∣↴↸∏⋟∱≯ Vo = {Ph(n)+15 ⋅⋅⋅ ≯⊈∃⊋∣↴↸∏⊃∱∂ etc., where h(n) = [n/ log n|. 

Definition 5.1.1 A modified d-dimensional range tree, representing 

the set V, is defined as follows. 

1. Each set V; is stored in a d-dimensional BB[a]-range tree T;. Let 
r; be the root of J;. In the roots r; we do not store associated 

structures. 

79
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2. The roots r; are stored in the leaves of a perfectly balanced bi- 

nary tree T. Let v be any node of 7, representing the roots 

Tis Titi,---,7j- Then v contains an associated structure, which is 

a (d—1)-dimensional BB/a]-range tree for the set VjUVi41U. . .UV;, 
taking only the last d — 1 coordinates into account. 

The query and update algorithms of a modified d-dimensional range 

tree are similar to those in the two-dimensional case. Again, we com- 

pletely rebuild the structure as soon as one set V; contains either [n/logn]/2 
or 2[n/logn] points. The next theorem shows that this modified range 
tree has the same complexity as a BB[a]-range tree. 

Theorem 5.1.1 A modified d-dimensional range tree, representing n 

points, can be built in O(n(logn)*!) time, and takes O(n(logn)*!) 
space to store. In this tree, range queries can be solved in O((logn)? + 

t) time, where t is the number of reported answers. Insertions and 

deletions in this tree can be performed in amortized time O((logn)*). 

Proof. The proof is the same as in the two-dimensional case. Now 

rebuilding of the structure takes O(n(logn)*') time, and has to be 
done at most once every Q(n/logn) updates. O 

It will be clear that Theorems 4.1.2 and 4.1.4 generalize to the 

following ones (the proofs are the same). 

Theorem 5.1.2 For a modified d-dimensional range tree, representing 

n points, there exists an (O(n(logn)4-”), loglogn + O(1), loglogn + 
O(1))-partition. 

Theorem 5.1.3 For a modified d-dimensional range tree, representing 

n points, there exists an (O(n(logn)4-?), 4log* n+O(1), log* n+ O(1))- 
partition. 

Next, we define k-fold modified d-dimensional range trees. 

Definition 5.1.2 Let V = {p; < po < ... < py} be a set of n points 

in d-dimensional space, ordered according to their first coordinates. A 

k-fold modified d-dimensional range tree is defined as follows.



5.1. Restricted partitions 81 

1. For k = 1, a 1-fold modified d-dimensional range tree is a BB[a]- 
range tree for the set V. 

2. Let k > 1,m = [n(log)*n/(log)*-'n]. Partition the set V into 
subsets V; = {p1,..-, Pm}, V2 = {Pm4i;---; Pam}, etc. Then a k- 
fold modified d-dimensional range tree consists of the following. 

Each set V; is stored in a (k — 1)-fold modified d-dimensional 
range tree 7;. In the root of 7T;, we do not store an associated 

structure. Let r; be the root of J;. We store these roots in the 

leaves of a perfectly balanced binary tree T. Let v be any node 

of T, representing the roots 7;,Ti41,-.-,7;- Then v contains an 

associated structure, which is a (d — 1)-dimensional BB[a]-range 
tree for the set V; UVj,, U...U Vj, taking only the last d—1 
coordinates into account. 

Also in this case, the query and update algorithms are similar to 

those in Section 4.1. We rebuild the data structure as soon as one set 

VY, contains either m/2 or 2m points. 

Theorem 5.1.4 A k-fold modified d-dimensional range tree, represent- 

ing a set of n points, can be built in O(n(logn)*) time, and takes 
O(n(logn)4-') space to store. In this tree, range queries can be solved 
in O((logn)4 +t) time, where t is the number of reported answers. In- 
sertions and deletions in this tree can be performed in amortized time 

O((logn)?). 

Proof. The proof is the same as that of Theorem 4.1.5. 0 

Hence the k-fold modified d-dimensional range tree has the same 

complexity as a BB/a]-range tree. 

Theorem 5.1.5 Let k be a positive integer. For a k-fold modified 

d-dimensional range tree, there exists an (O(n(logn)4-?(log)*n), 2k — 
1,k + o(1))-partition. 

Proof. The proof is the same as that of Theorem 4.1.6. 0
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5.2 d-dimensional reduced range trees 

The reduced range tree, which we defined in Section 4.2 for the two- 

dimensional case, can be generalized in two ways. 

The first generalization is straightforward: Sets V; of cardinality 

O(n/ log n) are stored in d-dimensional BB/a]-range trees, and the roots 
of these trees are stored in a perfectly balanced binary tree. See Def- 

inition 4.2.1 for the notation. In exactly the same way as in The- 

orem 4.2.1, it follows that this data structure has the same perfor- 

mances as a BB[a]-range tree. Also, Theorem 4.2.2 generalizes to an 
(O(n(log n)**), 3, 2+0(1))-partition. The details are left to the reader. 

We now give the other generalization, leading to a partition into 

parts of size O(n). Suppose we split the set V into subsets V; of car- 

dinality O(n/(logn)?-!). Then we store each V; in a d-dimensional 
BBia]-range tree T;. The roots r; of these T;’s are stored in a bi- 
nary tree T that contains no associated structures. This leads to an 

(O(n), 3,2 + o(1))-partition, in exactly the same way as above. The 
query time, however, becomes 

O [dosnt x (le (ca=)) | = O((logn)?4-2). 

We can avoid this high query time, by storing associated structures in 

every log log n-th level in T. These associated structures may sometimes 

be too large to be put in one part of the partition. In that case we also 

split up these structures. We formalize this idea. 

Definition 5.2.1 Let & and d be integers, where k > —1, d > 1 and 

k<d. Let V = {p, < po < ... < py} be a set of n points in 

d-dimensional space, ordered according to their first coordinates. A 

d-dimensional k-reduced range tree, representing the set V is defined as 

follows. 

1. A d-dimensional (—1)-reduced range tree is empty. 

2. A d-dimensional 0-reduced range tree is a d-dimensional BB[a]- 
range tree for the set V.
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3. Let k > 1. We partition the set V into subsets V; = {p1,..-, Priny}, 
V2 = {Pn(n)+1)--->Pan(n)}, etc., where h(n) = [n/logn]. Then a 
d-dimensional k-reduced range tree has the following structure. 

(a) Each set V; is stored in a d-dimensional (k—1)-reduced range 
tree Tj. 

(b) The roots r; of these trees T; are stored in the leaves of a 
perfectly balanced binary tree T. 

(c) Each root r; contains an associated structure T/, which is a 
(d — 1)-dimensional (& — 2)-reduced range tree, representing 
the set V;, taking only the last d—1 coordinates into account. 

Definition 5.2.2 A d-dimensional reduced range tree is a d-dimensional 

(d — 1)-reduced range tree. 

In Figure 5.1, a 4-dimensional reduced range tree is sketched. Nodes 

at the highest 3 log log n levels of the main tree do not contain associated 

structures, except those at level loglogn, which contain 3-dimensional 

1-reduced range trees; and those at level 2loglogn, which contain 3- 

dimensional BB[a]-range trees. Below level 3loglogn, the structure is 
the same as for BB/a]-range trees. All binary trees BT in this figure 
have size < logn, but still Q(logn). Hence their height is ~ loglogn. 

Update algorithm: An update in a d-dimensional k-reduced range 

tree B is performed as follows. If k = —1, nothing is done. If k = 

0, we use the update algorithm for BBla]-range trees. If k > 1 we 

search in T for the T; and T/ we have to update. Then we perform 

the update in T; and T/ using the same algorithm recursively. If after 

the update T;—which initially represents [n/logn]| points—represents 
either [n/logn]/2 or 2[n/logn] points, we completely rebuild B. 

Query algorithm: A query in a d-dimensional k-reduced range 

tree, with query rectangle ((1 : yi],..-, [Za : ya]) is solved as follows. If 
k; = —1, nothing has to be done. If k = 0, we use the query algorithm 

for an ordinary range tree. 

If k > 1, we do the following. Search with x; and y, in TJ’. We then 

find roots r; and r;. Ift = 7 we perform a query with ([xz1 : y:],..-,[%a: 

yal) in T;. Otherwise, if i <j, we
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RT(3) 

Figure 5.1: A 4-dimensional reduced range tree. BT denotes a binary 

tree of height ~ loglogn, RT(d) a d-dimensional BB[a]-range tree.
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1. perform a query with ([1 : co], [Ze : yol,---, [va : yal) in Ty; 

2. perform a query with ([—00 : y\], [to : yol,---, (a: yal) in Tj; 

3. (a) if k > 1, perform queries with ([x2 : yo],.-.,[%a : yal) in the 
trees T/ for alli< 1 <j; 

(b) if k = 1, perform queries with ({%2 : yol,..-,[%a : ya]) in 
the associated structures of the roots of the trees T; for all 

i<I< j. (Since k = 1, these associated structures are 

BBia]-range trees.) 

To answer a query with the half-infinite rectangle ([x%1 : oo], [zo : 
y2|,---5[%a : Yal), we find the root r; corresponding to x,;. Then we 
perform step 1 of the above algorithm. Finally, we perform step 3 for 

all 1 > i. 

Theorem 5.2.1 A d-dimensional reduced range tree, representing n 

points, can be built in O(n(logn)*!) time and takes O(n(logn)**) 
space to store. Using this tree, range queries can be solved in O((logn)¢+ 

t) time, t being the number of reported answers. Insertions and dele- 

tions in this tree can be performed in amortized time O((logn)*). 

Proof. The bounds on the building time and the space requirements 

are obvious, since a reduced range tree is just a BBja]-range tree with 
omission of some of the associated structures. Whether or not an as- 

sociated structure has to be omitted can be decided in O(1) time. The 
proof of the amortized update time is similar to that of the ordinary 

case. 

Let Q(d, k,n) be the worst-case query time for a d-dimensional k- 

reduced range tree, representing n points. We do not count in Q(d, k,n) 

the number of reported answers. Let R(d, k,n) be the worst-case query 

time for the same tree, for a query rectangle with the first interval 

being half-infinite (as in steps 1 and 2 of the above query algorithm). 

Again we do not count the number of answers. Then it follows from 

the above algorithm, the correctness of which can be seen easily, that
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the following recurrence holds: 

Q(d,0,n) = O((logn)*), 
Q(d,1,n) < cloglogn + 2 R(d,0,n/logn) 

+ logn x O((log(n/logn))**), 
cloglogn + 2R(d,k —1,n/logn) 
+ logn x Q(d—1,k — 2,n/logn), 

Q(d, k,n) IA
 

for some constant c. Here, the first term on the right hand side of 

the last inequality is the time to find r; and r;; the second term is the 

time for steps 1 and 2; and the third term is the time for step 3. (At 

most logn queries are involved in this third step.) Since a query with a 

rectangle, one of its intervals being half-infinite, is a special instance of 

an orthogonal range query (e.g. in step 1 of the above query algorithm, 

we can choose y; sufficiently large), we have R(d,k,n) < Q(d,k,n). 
Hence 

Q(d,1,n) < cloglogn+2Q(d,0,n/logn) + logn x O((log(n/logn))4~') 

= O((logn)*), 

and fork > 1 

Q(d,k,n) < cloglogn+2Q(d,k—1,n/logn) 

+ logn x Q(d—1,k — 2,n/logn) 

< 2Q(d,k—1,n/logn) + 2 logn x Q(d—-1,k — 2,n/logn), 

if n is sufficiently large. It can be shown that there are constants c; 
such that Q(j,k,n) < cj4*(logn)J. Hence the query time for a d- 
dimensional reduced range tree is bounded above by Q(d,d —1,n) < 

cq44-1 (log n)4 = O((logn)*). Of course, we have to add the number of 
reported answers. 0 

The partition: We inductively partition a d-dimensional k-reduced 

range tree. A d-dimensional (—1)-reduced range tree is empty, so it 

need not be stored. A d-dimensional 0-reduced range tree forms one 

part on its own. 

Let k > 1. A d-dimensional k-reduced range tree is partitioned as 

follows: We store the tree J’ in one “special” part, that is going to



5.2. d-dimensional reduced range trees 87 

contain all trees, the nodes of which do not have associated structures. 

Then we partition each T; and T} recursively. (To put it another way, 

each 0-reduced range tree forms a part on its own. The rest of the data 

structure is contained in the “special part” .) 

So in Figure 5.1, all binary trees BT are stored in the “special” part 

of the partition. Each of the structures RT(3) and RT(4) forms a part 
of the partition on its own. 

Lemma 5.2.1 Jf a d-dimensional reduced range tree is partitioned as 

described above, each part has size O(n). 

Proof. The d-dimensional reduced range tree for a set of n points 

consists of various d,-dimensional k-reduced range trees. It is easy to 

prove by induction that such a d,-dimensional k-reduced range tree 

represents O(n/(logn)“~*—!) points. In particular, a d,-dimensional 
0-reduced range tree, which is just an ordinary d,-dimensional BBj[al- 
range tree, represents O(n/(logn)“~—') points, and hence it has size 
O(n). Hence each part of the partition storing a 0-reduced range tree 
has size O(n). 

It remains to prove that our “special” part has size O(n). Let 
g(d, k,n) be the size of this part for a d-dimensional k-reduced range 

tree. Then g(d, —1,n) = 0, g(d,0,n) = 0, and fork > 1 

g(d,k,n) < logn+logn x g(d,k —1,n/logn) 

+logn x g(d—1,k — 2,n/logn). 

It follows that the size of our “special” part, which is g(d,d—1,n), is 
bounded by O((logn)4') = O(n). This proves the lemma. O 

Lemma 5.2.2 The amortized number of parts through which an update 

passes in a d-dimensional reduced range tree, partitioned as described 

above, is at most 

a(S) 4 + o(1),(n > oo). 
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Proof. Suppose we have to perform an update in a d-dimensional k- 

reduced range tree. The algorithm we use has been given above. Note 

that if no rebuilding has to be done, the number of parts visited in an 

update in a d-dimensional k-reduced range tree only depends on the 

value of k. 

Let s, be the number of parts of the partition, and a, the num- 

ber of 0-reduced range trees, through which an update passes in a 

d-dimensional k-reduced range tree, in case no rebuilding is necessary. 

Then sz, = a, +1, a9 = 1, ay = 1, and ag = ag_; + ag_2 if k > 2. 

It follows that sg_,, the number of parts we visit when updating a d- 

dimensional reduced range tree, is equal to the d-th Fibonacci number 

plus one, which is equal to (see (22, page 286]) 

1 /1+V5\" 3 (4°) +3). 

Now we have to charge the costs we make when rebuilding the tree. 

Suppose we have to rebuild a d,-dimensional k-reduced range tree B, 

where k > 0. Let t, be the number of parts of the partition, and b; the 

number of 0-reduced range trees that are involved. Then ¢, = by + 1, 

bo = 1, b; < logn, and b, < logn x (bg_1 + bp_2) if k > 2. It follows 

that t, = O((logn)*). Let m be the number of points represented by 
B. We saw already that m = O(n/(logn)"—-*-'). Now B has to be 
rebuilt at most once every 2.(m/logm) updates. Dividing the number 
of visited parts for rebuilding among these Q(m/logm) updates gives 
us O((logn)“/n) = O((logn)4/n) parts per update. An update can 
be assigned costs from every reduced range tree on the search path for 

this update. Let c, be the number of (non-empty) reduced range trees 
we encounter on a search path for an update in a k-reduced range tree. 

Then cy = 1, c; = 2, and for k > 2, cg = 1+cy_1+cp_2. Hence c < 2*. 
So we have to charge every update in a d-dimensional reduced range 

tree for an extra cg_; x O((log n)4/n) = o(1) visited parts for rebuilding. 
This proves the lemma. 0 

Lemma 5.2.3 When performing a query in a d-dimensional reduced 

range tree, partitioned as described above, we visit at most 1+24(log n) [(d-1)/2] 

parts.
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Proof. Let 5; be the number of 0-reduced range trees needed for a 

query in a k-reduced range tree. Let Ry, be the number of 0-reduced 

range trees needed for a query with the first interval half-infinite. The 

total number of parts of the partition that are needed to perform a 

query on a d-dimensional reduced range tree is thus Sg_; +1. We 

then have the following recurrences: Sp = 1, S,; < 2+ logn, and 

Sy < 2R,_1+log nx S,_2 if k > 2. Furthermore, Rp = 1, Ry < 1+logn, 

and Ry < Ry_1 +logn x S,_»2 if k > 2. It follows that for k > 2, 

k—2 
Ry < (1+logn) +logn x S° S;, 

i=0 

and hence 

k-3 
Sp < 2+ 2logn + 2logn x > S;+logn x Sy_». (5.1) 

i=0 

iFrom this it can be shown that S, < 2*+!(logn)!*/?1. Hence a query 
visits at most Sg_14+1 < 2%(logn)!(/?! +1 parts of the partition. 

Combining Lemmas 5.2.1, 5.2.2 and 5.2.3 gives the final result. 

Theorem 5.2.2 For a d-dimensional reduced range tree, there exists a 

partition into parts of size O(n), such that an update passes, amortized, 

through at most 

1 (itvsy\" 3 
V5\ 2 2 

parts, and a query passes through at most 

+ 0(1), (n + oo) 

1+ 24(log n)!(4-1)/21 

parts. 

Remark. We can improve the factor (logn)!4-))/21 to (log n) (4-1/2! , 
What we need is S; = 3 and R, = 2 in the proof of Lemma 5.2.3. This 

is not true for the partition given above, but it is not hard to change the 

partition slightly such that S; = 3 and R; = 2 hold: We just partition
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the 1-reduced range trees in the same way as the 2-dimensional reduced 

range trees of Section 4.2. 

Remark. The number of visited parts for a query can be high, as the 

above theorem shows, but in practice this will seldom be the case. The 

number of visited parts is namely strongly dependent on the number 

of answers in the first coordinate. When for example the number of 

answers in the first coordinate is < n/(logn)*', only two parts are 
visited: The “special” part, and exactly one part containing a 0-reduced 

range tree. In fact, (5.1) is an equality only if the two search paths 

pass through the outermost T;’s. So (5.1) is an equality only when the 

number of answers in the first coordinate is > n — 2n/(logn)*!. 

5.3 d-dimensional k-divided range trees 

The d-dimensional k-divided range tree generalizes its two-dimensional 

counterpart. Again, these range trees are composed of divided binary 

trees, defined as follows. 

Definition 5.3.1 Let s > 1 and k > 1 be integers, and let V = {p, < 
Po <...< Pn} be an ordered set of n objects. An (s, k)-divided binary 
tree, representing the set V, is defined as follows. 

1. For k = 1, an (s, 1)-divided binary tree is a BB[a]-tree, containing 
the elements of V in sorted order in its leaves. 

2. Let k > 1, and let m = [n{*ts—2)/l+s—D / (log n)-D/ets-)) 1 
Partition V into subsets Vi = {p1,..-,; Dm}, V2 = {Pm41,--->Pam}; 
etc. An (s,k)-divided binary tree consists of the following. Each 
set V; is stored in an (s, k—1)-divided binary tree B;. The roots of 
the trees B; are stored in sorted order in the leaves of a perfectly 

balanced binary tree B. 

Definition 5.3.2 Consider an (s, k)-divided binary tree T representing 
aset V. This tree contains (s,7)-divided subtrees for 1 <i < k. Ifi > 1, 
each such (s,7)-divided subtree contains a top tree, which is a binary 

tree storing the leaves of its (s,i— 1)-divided subtrees. Such a top tree
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is called a tree-part. The BB/a]-subtrees of T that contain the objects 
of V—these are (s, 1)-divided binary trees—are called bottom-parts. 

Note that (s, k)-divided binary trees have the same structure as the 
k-divided binary trees of Definition 4.4.1. The difference is in the choice 

of the integer m. The reason for the choice of m will become clear in 

the rest of this section. 

Update algorithm: The update algorithm for an (s, k)-divided 
binary tree is similar to that of a k-divided binary tree. If k = 1, we 

use the update algorithm for BB/a]-trees that uses rotations. If k > 1, 
we walk down tree B to find the appropriate (s, & — 1)-divided binary 
tree B; where the update has to be carried out. Then we perform the 
update in this tree B;, using the same algorithm recursively. If this 

tree B;—which initially has m = [n*+8-2)/+8—)) /(log n)@-D/(e+s—-))] 
leaves—has either m/2 or 2m leaves, we rebuild the entire (s, k)-divided 
binary tree. 

Clearly, an (s, k)-divided binary tree for a set of n objects has size 

O(n), can be built in O(n) time if we have the n objects in sorted order, 
and has a height that is bounded by O(logn). 

Lemma 5.3.1 Consider an (s,k)-divided binary tree T for a set of n 

elements. Let i be an integer, 1 <i<k. Each (s,1)-divided subtree of 

T has size 

e (n@ts-YKEtS—) Jog njG-D&) (+51) ∙ 

∫∣∣∁⋗↥↗∽∁∣⊔⊺≖∂∊−⊉⊄⇈⇩∣∃⇁↗↴∁⇂⋅⋝⋅⋝∅∎∅∂ 

⊝ ≼∏↕∕≺∣⊽⊹≋⋝−↥≻ x (log nj@-DIets—1)) ∙ 

Each bottom-part has size 

ra) (nsi(Rrs-}) / (log njO-VRD/e+s~1)) ∙ 

Each path in T from the root to a leaf passes through exactly k — 1 

tree-parts and one bottom-part.
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Proof. The proof is the same as that of Lemma 4.4.2. 0 

Now we define the multi-dimensional k-divided range tree. 

Definition 5.3.3 Let s,d and k be integers, such that 1 < d < s 

and k& > 1. Let V = {p, < po < ... < py} be a set of n points in 

d-dimensional space, ordered according to their first coordinates. A d- 

dimensional (s,k)-divided range tree, representing the set V, is defined 

as follows. 

For k = 1, a d-dimensional (s, 1)-divided range tree is a d-dimensional 
BBJa]-range tree. This tree is also called a bottom-part, in accordance 
with Definition 5.3.2. 

For d = 1, a 1-dimensional (s,k)-divided range tree is an (s, k)- 
divided binary tree. This tree consists of tree-parts and bottom-parts 

as defined in Definition 5.3.2. 

Let k > 2, d > 2, m = [n(*+8-2)/+s-) /(logn)@-D/@+s-D]_ Par- 
tition V into subsets Vi = {p1,..-,Dm}, V2 = {Pm41,---,Pom}, ete. 
A d-dimensional (s, k)-divided range tree for the set V consists of the 
following. 

1. Each set V; is stored in a d-dimensional (s, & — 1)-divided range 
tree TJ;. For this tree 7;, the notions of tree-parts and bottom- 

parts are recursively defined. Let r; be the root of 7;. 

2. These roots r; are stored in the leaves of a perfectly balanced 

binary tree T’. This tree T is called a tree-part. Let r be the root 

of T. 

3. This root r contains an associated structure, which is a (d — 1)- 
dimensional (s, &)-divided range tree, representing the points of 

V, taking only the last d — 1 coordinates into account. For this 

associated structure, the notions of tree-parts and bottom-parts 

are again recursively defined. Let T/ be the upper part of this 

associated structure, i.e., the tree without the bottom-parts. So 

T, consists of all tree-parts of the associated structure of r. 

4. Let w be any node of T, w # r, and let V, be the set of points 

represented by w. Then w contains an associated structure, hav- 

ing the following form. The upper part is a copy of T/. This copy
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is completed by adding to each leaf a BB[a]-range tree of the 

appropriate dimension, that stores the—possibly none—points 

of V, that “belong there”. These BB/a]-range trees are called 
bottom-parts. 

Each node in a 1-dimensional (s, k)-divided range tree contains 

e two mark bits which state whether the left and right subtree con- 

tain points of V; 

e two extra pointers, one for the left, and one for the right subtree. 

One such extra pointer points to the first node in the left subtree 

for which both subtrees contain points of V, or else (if no such 

node exists) to the only point of V in the left subtree. If there 

are no points of V at all in the left subtree, the pointer is not 

used. The other extra pointer has the same meaning for the right 

subtree. 

(End of definition.) 

So a d-dimensional (s, k)-divided range tree contains bottom-parts 
as subtrees. Each such bottom-part is a d'-dimensional BB[a]-range 
tree for some 1 < d’ < d. The range tree without the bottom-parts 

consists of tree-parts, which are (one-dimensional) binary trees, and 

which are defined as in Definition 5.3.2. 

Definition 5.3.4 Let d > 1 and k > 1 be integers. A d-dimensional 

k-divided range tree is a d-dimensional (d, k)-divided range tree. 

Definition 5.3.5 Consider a d-dimensional (s, k)-divided range tree. 
Two tree-parts (or bottom-parts) of two associated structures are lo- 
cated at the same position, if the paths for reaching these parts are 

identical. In other words, when the same left-right decisions are taken 

in each associated structure in reaching the parts. 

Lemma 5.3.2 Consider a d-dimensional (s, k)-divided range tree, rep- 

resenting a set of n points. Let T’ be the upper part of this range tree, 

i.e., the range tree without the bottom-parts. If k > 2, the size of T’ is 

bounded by 

ra) (ni&re2)/ers—) x (log njODEraeA/ets-V)
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Proof. Let R(n, d,s, k) be the size of the upper part of a d-dimensional 

(s,k)-divided range tree for a set of n points. Then R(n,d,s,1) = 0, 
since an (s,1)-divided range tree does not have an upper part. For 

d= 1 and k > 2, the size of the upper part is proportional to the size 

of the binary tree divided by the size of a bottom-part. Hence it follows 

from Lemma 5.3.1, that 

R(n,1,s,k) =0 (n&-D/ers—) x (log n)& VEDI kts) 

Now let d > 2 and k > 2. Then we have the following recurrence 

relation, which is explained below: 

R(n, d, s,k) = O(n/m)+O(n/m) x R(m, d, s, k—-1)+O(n/m) x R(n, d—-1, s, k), 

where m = [n*+s-2)/(k+s—}) /(log n)(s-Y/(+s-)]_ Here, the term O(n/m) 
is the size of the tree T that contains the roots of the d-dimensional 

(s,k — 1)-divided range trees T;. The upper part in each such range 

tree T; has size R(m,d,s,k — 1). This explains the term O(n/m) x 
R(m,d,s,k — 1). Finally, the upper parts of all associated structures 

of nodes in J—all these upper parts are identical—together have size 

O(n/m) x R(n,d —1,s,k). From this recurrence relation, the lemma 
can be proved by induction. 0 

Lemma 5.3.3 A d-dimensional (s, k)-divided range tree, representing 

a set of n points, has size O(n(logn)*-!) and can be built in O(n(log n)4-") 
time. 

Proof. For k = 1, the lemma clearly holds. For k > 2, the size of a 

d-dimensional (s, k)-divided range tree is equal to the sum of the size of 
the upper part and the total size of all bottom-parts. By Lemma 5.3.2, 

the upper part has size 

O (nD) x (log n)@ DEEMED) — o(n), 

since d < s. All bottom-parts together can never be larger than a d- 

dimensional BB[a]-range tree for a set of n points. Therefore the size of 
a d-dimensional (s, k)-divided range tree is bounded by O(n(logn)**). 
The bound on the building time can be proved in a similar way as in 
Lemma 4.4.3. 0
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Update algorithm: An update in a d-dimensional (s, k)-divided 
range tree is performed as follows. If & = 1, we use the update algorithm 

for BBia]-range trees. If d = 1, we use the algorithm for (s, k)-divided 
binary trees. 

Let k > 2, d > 2, and m = [n{*+8-2)/(F+8-)) /(Jog n) Diets) 7 
Then we walk down tree T, to find the appropriate d-dimensional (s, k— 

1)-divided range tree T; where the update has to be carried out. Then 
we update this tree T;, using the same algorithm recursively. As soon 

as one such tree J; represents either m/2 or 2m points, we rebuild the 

entire d-dimensional (s, /)-divided range tree. 
During the walk in T, we have to update all associated structures 

we encounter. The update in the associated structure of the root r of 

T is performed by using the same algorithm recursively for (d — 1)- 
dimensional (s, k)-divided range trees. If this associated structure is a 
1-dimensional structure, we use the update algorithm for (s, /)-divided 

binary trees. 

First suppose that no rebuilding operation is necessary in the asso- 

ciated structure of the root r of T. (Except for perhaps a rebuilding 

in a bottom-part. Note that a bottom-part in this associated structure 

is a d'-dimensional BBla]-range tree for some 1 < d’ < d.) Then the 
other associated structures along the search path in T are updated in 

the standard way, and no rebuilding operations are carried out (again, 

except for perhaps a rebuilding in a bottom-part). Of course, we also 

adjust the extra information—the mark bits and the extra pointers—in 

each associated structure. 

Otherwise, if a rebuilding operation is necessary, a d'-dimensional 

(s,i)-divided range subtree of the associated structure of r is rebuilt, 
for some 1 < d' < dand 1 <i<k. We repeat this rebuilding in all 

associated structures of T. More precisely, let T/ be the upper part 

of the new d'-dimensional (s, 7)-divided range subtree, i.e., the subtree 

without the bottom-parts. Then we copy T; O(n/m) times. In each 
associated structure of T we replace the old subtree by a copy of T/, and 

we complete each copy by traversing it and adding the bottom-parts 

containing the points, and setting the extra pointers and mark bits. 

Lemma 5.3.4 In a d-dimensional (s, k)-divided range tree, represent- 

ing a set of n points, insertions and deletions can be performed in amor-
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tized time 
O (n&re—d) x (logn)* Mt O-W/Ets—)) 

Proof. Let U(n, d,s, k) be the amortized update time of a d-dimensional 

(s, k)-divided range tree for a set of n points. Then for k = 1, U(n,d,s,1) = 
O((logn)*). For d= 1 and k > 2, the following recurrence relation fol- 
lows easily from the update algorithm for (s, k)-divided binary trees: 

U(n,1,s,k) < O(log(n/m)) + U(m, 1, s,k — 1) + O(n/m). 

Let k > 2, d> 2, and m= [n*+s-2)/+s-)) /(log n)\V/@ts-)]. Tt 
takes O(log(n/m)) time to find the appropriate d-dimensional (s, k — 
1)-divided range tree T;. The update of this T; takes, amortized, 

U(m, d,s,k — 1) time. If one such tree T; represents either m/2 or 2m 
points, we rebuild the entire d-dimensional (s, k)-divided range tree. 

Since this happens at most once every 2(m) updates, this rebuilding 

adds O(n(logn)4-!/m) to the amortized update time. 
Now consider the update of the associated structures of T. As we 

saw in the update algorithm, if no rebuilding operation is necessary 

in the associated structure of the root r of T, the other associated 

structures along the search path in T are updated in the standard 

way. To adjust the extra information—the mark bits and the extra 

pointers—only O(1) time is needed for each node on the path to the 
point to be inserted or deleted. In this case, we spend, amortized, 

O((logn)¢) time in the associated structures of T. 
Now assume that a rebuilding operation is necessary. Then a d’- 

dimensional (s,7)-divided range subtree of the associated structure of 
r is rebuilt, for some 1 < d’ < dand 1 <i < k. We repeat this 

rebuilding in all associated structures of 7’, as indicated in the update 

algorithm. In this case, we spend an amount of time that is bounded by 

the following expression, which is explained below (we use the notation 

of the proof of Lemma 5.3.2): 

O(n/m) x R(nj, d’, s,i) + O(log(n/m)) x O(n;(log nj)*~), 

where n, is the number of points represented by the (s, i)-divided range 

tree. (The n,’s are given in Lemma 5.3.1.) Here, the first term is 

the amount of time needed to build the upper part T/ and to copy it
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O(n/m) times. The second term is the total amount of time needed to 
add the bottom-parts to the copies of T/: At each level of T, all new 

bottom-parts together represent n; points, and all these bottom-parts 

together can never be larger than a d’-dimensional BB[a]-range tree 
for a set of n; points. This explains the above expression. Since this 

rebuilding happens at most once every 0(n;_1) updates—an (s,i— 1)- 
divided range tree must get out of balance—this case adds 

O (n/m) x R(ni, d', 8,)/m:1 + log(n/m) x nj(logni)**/ni-1) 

-O (ni/(ero—D) x (log ny He-D/(e+9-D) 

=O (ni/(Rrs-)) x (log nye e-D/ets—1)) 

to the amortized update time. This can happen for d — 1 values of d' 

and k — 1 values of 7. Since d and k are constants, rebuilding of the 

associated structures of T’ adds 

O (ners) x (log n)* H+ -D/Ets-1)) 

to the amortized update time. 

We have proved that 

U(n,d,s,k) < U(m,d,s,k—1)+O(n(logn)**/m) + O((logn)*) 
+O (ners) x (log ne e-D/ets—1)) ; 

iFrom the given recurrence relations, the lemma can be proved by 

induction. O 

Query algorithm: The query algorithm is similar to the one in the 

two-dimensional case. Let ([x1 : yi],..-,[%a: ya]) be a query rectangle. 

1. Perform a range query in the main tree with [z, : y;], as in the 
ordinary case, and select the associated structures to be queried. 

2. For each associated structure selected in step 1, perform recur- 

sively a (d — 1)-dimensional range query with ([%2 : ya],..., [ra : 

yal).
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3. Queries in one-dimensional structures are performed by following 

the paths to 7g and yq and selecting the subtrees in which the 

answers must lie. For every selected subtree, if it does not con- 

tain points, do nothing. Otherwise, report the points it contains 

by following the extra pointers. (We know from the mark bits 

whether a subtree contains points.) 

Lemma 5.3.5 In a d-dimensional (s, k)-divided range tree, represent- 

ing a set of n points, range queries can be performed in O((logn)4 + t) 
time, where t is the number of reported answers. 

Proof. From the given algorithm, the bound on the query time can be 

proved in the same way as in Lemma 4.4.5. O 

Theorem 5.3.1 A d-dimensional k-divided range tree for a set of n 

points can be built in O(n(logn)*") time and takes O(n(logn)**) 
space to store. In this tree, range queries can be solved in O((logn)?+t) 
time, where t is the number of reported answers. Insertions and dele- 

tions can be performed in amortized time O(n¥ +4 x (log n)(F VET k+a-D)) 

Proof. The proof follows from Lemmas 5.3.3, 5.3.4 and 5.3.5. Take 

s=din Lemma 5.3.4. O 

The partition: We partition the d-dimensional (s, k)-divided range 
tree into two types of parts. The first type only contains tree-parts, 

whereas the second type only contains bottom-parts. 

A d-dimensional (s,1)-divided range tree forms one part in the 
partition—a bottom-part—on its own. A 1-dimensional (s, k)-divided 
range tree is an (s,k)-divided binary tree, and consists of tree-parts 

and bottom-parts. Each such tree- or bottom-part forms one part in 

the partition. 

Let d > 2 and k > 2. Then we partition the d-dimensional (s, k—1)- 
divided range trees 7; recursively into parts containing only tree-parts, 

and parts containing only bottom-parts. Each such part forms a part 

in the final partition. 

Next consider the associated structure of the root r of the highest 

tree-part T' of the main tree. We partition this associated structure
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into parts containing only tree-parts, and parts containing only bottom- 

parts. Let T/ be the upper part of this associated structure, i.e., the 

tree without the bottom-parts. The upper parts of the other associated 

structures of nodes in T are copies of T/, and these are partitioned in 

the same way, into parts containing only tree-parts. For each part II in 

the partition of T/, we store the copies of II from all other associated 

structures of T in one part of the final partition. The tree-part T itself 

is put in that part of the partition that contains the highest tree-parts 

of the associated structures. Similarly, for each part II’ in the partition 

of the associated structure of r, that contains only bottom-parts: Put 

the bottom-parts of all associated structures of T, that are located at 

the same positions as the bottom-parts in II’, in one part of the final 

partition. 

Lemma 5.3.6 Jf a d-dimensional (s, k)-divided range tree, where k > 
2, is partitioned as described above, each part that contains only tree- 

parts has size 

6) (nviers-t) x (log njseDiers-)) 

Proof. For k = 2, the lemma follows from Lemma 5.3.2, since a par- 

tition of a d-dimensional (s,2)-divided range tree contains only one 
part that contains only tree-parts, namely the upper part. For d = 1, 

the lemma follows from Lemma 5.3.1. So let d > 2 and k > 3, and 

suppose the lemma is proved for smaller values of d and k. Consider 

a d-dimensional (s, k)-divided range tree. This range tree contains d- 
dimensional (s, k — 1)-divided range trees T; representing O(m) points, 
where m = [n(*+8—2)/(k+8—1) (log n)@—)/(+s-D]_ By the induction hy- 
pothesis, each such tree T; is partitioned into parts—containing only 

tree-parts—of size 

e (ma/(e+s-2) x (log myers) -@e@ (nd/@ts-) x (log n)io-D/le+s-1)) 

Each such part forms a part in the final partition. Again by the in- 

duction hypothesis, the associated structure of the root of T, which 

is a (d — 1)-dimensional (s, k)-divided range tree, is partitioned into 
parts—that contain only tree-parts—of size 

6) (nit Dies) x (log nye VODs)



100 5. Partitions of d-dimensional range trees 

Since we store O(n/m) such parts—one for each associated structure 
of T—in one part of the final partition, this latter part has size 

@ (nfl)  (logn)*e-D/ED) | 

The part of the partition that contains the tree-part T has an additional 

number of @(n/m) nodes. So this part still has size O(n4/(@+s-) x 
(log n)4s-D/R+s-1)) 

Lemma 5.3.7 If ad-dimensional (s, k)-divided range tree is partitioned 

as described above, each part that contains only bottom-parts has size 

6) (ns/ers-1) x (log nyo OVE EFS) ; 

Proof. For k = 1, the lemma is obvious, since an (s, 1)-divided range 

tree forms a part in the partition—a bottom-part—on its own. For 

d = 1, the lemma follows from Lemma 5.3.1. Let d > 2 and k > 2, and 

suppose the lemma is proved for smaller values of d and k. Consider a d- 

dimensional (s, k)-divided range tree. This tree contains d-dimensional 
(s, k—1)-divided range trees T; representing O(m) points. By the induc- 
tion hypothesis, each such tree T; is partitioned into parts—containing 

only bottom-parts—of size 

6) (mses?) x (log m)o OVE Di(k+s-)) 

= 3) (nite) x (log nyo VED) ) . 

Each such part forms a part in the final partition. Again by the induc- 

tion hypothesis, the associated structure of the root of T is partitioned 

into parts—that contain only bottom-parts—of size 

e (ns/ers-}) x (log nyo? OVE DES) ; 

Consider such a part II’. We add to II’, the bottom-parts of all asso- 

ciated structures of JT, that are located at the same positions as the 

bottom-parts in II’. These bottom-parts of the associated structures of 

a fixed level of T, together contain the same points as II’, and therefore 

their total size—for this level—is proportional to the size of II’. Hence,
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since T consists of O(log(n/m)) levels, the part of the final partition 
containing these bottom-parts has size 

O(log(n/m)) x © (noite x (log nj 2-6 -DE-H/te+s-)) 

—@O (no/ets—D x (log nyt ODE Dts-D) 

O 

Lemma 5.3.8 Let s > 2 andk > 1. Each update in a d-dimensional 

(s,k)-divided range tree, partitioned as described above, passes, amor- 

tized, through at most 

(Ste>* ) +00, (n + 00) 

parts of the partition. 

Proof. Let f(n,d,s,k) be the amortized number of parts through 
which an update passes in a d-dimensional (s, k)-divided range tree, 

representing a set of n points. Then for k = 1, we have f(n,d,s,1) =1. 

Let d= 1 and k > 2. If no rebuilding operation is necessary (except 

for possible rotations in a bottom-part), an update in an (s, k)-divided 
binary tree passes through exactly k — 1 tree-parts, and one bottom- 

part. Hence in this case, the update passes through k parts of the 

partition. Note that if a rotation is carried out in a bottom-part, no 

extra tree- or bottom-parts are needed. If an (s,7)-divided subtree is 
rebuilt, for some 1 < 7 < k, the number of tree-parts that are involved 

is bounded by the size of the upper part of this (s,7)-divided subtree 

divided by the size of a tree-part. This upper part has size R(nj, 1, s, 7), 
where we use the notation of Lemma 5.3.2, and where n; is the number 

of points represented by the (s,7)-divided subtree. So by Lemmas 5.3.1 

and 5.3.2, the number of tree-parts that are involved in this rebuilding, 

is bounded by 

O (nli-2e+8-2) / (log n)(@-DEB/ets—D) 

Similarly, the number of bottom-parts that are involved is bounded by 

the size of the (s,i)-divided subtree divided by the size of a bottom- 
part. By Lemma 5.3.1, this number is bounded by 

O (n&-Diets—1) x (log n)&-VED/Ers-)) ;
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Since an (s,%)-divided subtree is rebuilt at most once every 

Q (nits-2/E+5—D /(log nyO-VEHV/(R+s—1)) 

updates—an (s,i — 1)-divided subtree must get out of balance—this 
rebuilding adds o(1) to the amortized number of parts that are visited. 
(Here we have used that s > 2.) This can happen for & — 1 values of i. 

Since k is a constant, rebuilding of the tree adds o(1) to the amortized 
number of visited parts. We have proved that f(n,1,s,k) =k+ (1). 

Let d > 2 and k > 2. An update passes, amortized, through 

f(m, d,s, k — 1) parts of the partition in one d-dimensional (s, k — 1)- 
divided range tree T;, where m = [n*+8—2)/(k+8—) / (log n)@—D/(ets-) 1, 
The entire range tree is rebuilt at most once every (Q.(m) updates—as 
soon as a d-dimensional (s, k — 1)-divided range tree T; gets out of bal- 
ance. In this rebuilding, we visit a number of parts in the partition 

containing only tree-parts, that is bounded by R(n, d,s, k) divided by 
the size of a part of the partition that contains only tree-parts. (Again, 

we use the notation of Lemma 5.3.2.) Similarly, we visit a number of 

parts in the partition that contain only bottom-parts, that is bounded 

by the size of the entire range tree divided by the size of a part of the 

partition that contains only bottom-parts. From this it follows (after 

some calculations) that the rebuilding of the entire range tree adds 

o(1) to the amortized number of visited parts. Finally, the update of 

the associated structures of nodes in T passes, amortized, through at 

most f(n,d—1,s,k) parts of the partition, because the tree-parts and 

bottom-parts of the associated structures that are visited, are stored in 

the same parts of the partition as the tree-parts and bottom-parts of 

the associated structure of the root of T that are visited in the update. 

It follows that 

f(n,d,s,k) = f(m,d,s,k —1) + f(n,d—1,s,k) + o(1). 
iFrom this recurrence relation the proof can be completed by induction. 
O 

Lemma 5.3.9 Each query in a d-dimensional (s, k)-divided range tree, 

partitioned as described above, passes through at most 

d −−⋅ − ∑≼∁∅⊹∣∣⋮−↕↕ ∅⋉∣⇩↕∙↥⋗⊹⊋≴−↕ 

i=0
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parts of the partition, where t is the number of answers to the query. 

Proof. Let g(d, k) denote the maximal number of parts of the partition 
through which a query passes in a d-dimensional (s, )-divided range 

tree, and let h(d, k) denote this number for a query with the first interval 

being half-infinite. We do not count in g(d,k) and A(d, k) the number 
of parts that we have to visit for reporting the answers. Just as in the 

previous lemma, the number of visited parts does not depend on n and 

s (if n is sufficiently large). 
In the same way as in the two-dimensional case, we may have to 

visit 2 — 1 parts for reporting the ¢ answers. Therefore, the number 

of parts through which the complete query passes is bounded above 

by g(d,k) + 2t— 1. So it remains to prove that g(d,k) is equal to the 
summation in the statement of the lemma. 

We have g(1,k) = 2k —1 for k > 1; g(d,1) = 1 for d > 1; and 

g(d,k) =2h(d,k —1)+ g(d—1,k) for d > 2 and k > 2. (5.2) 

Also, h(1,k) =k for k > 1; h(d,1) = 1 for d > 1; and 

h(d,k) = h(d,k —1) + g(d—1,k) for d > 2 and k > 2. (5.3) 

Subtract twice Equation (5.3) from Equation (5.2). This gives 2 h(d, k) = 
g(d, k)+g(d—1,k). Substitute this latter equation, with k replaced by 
k —1, in Equation (5.2). Then we get 

g(d, k) = g(d,k-—1) + 9(d—1,k) + 9(d—-1,k—-1) ford > 2 and k > 3. 
(5.4) 

In fact, Equation (5.4) also holds for d > 2 and k = 2, as can easily be 
verified from Equations (5.2) and (5.3). 

We transform this recurrence relation into a more symmetric one. 

(In this way, we decrease the amount of work needed to solve the recur- 

rence relation.) Define f(0,k) = 1 for k > 0, and f(d,k) = g(d,k +1) 
ford >1 and k> 0. Then 

f(0,k) = 1, ifk>0, 

f(d,0) = 1, ifd>0, 
f(d,k) = f(d,k—1) + f(d—1,k) + f(d—1,k—1), ifd>1andk>1.
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Using the theory of generating functions (see e.g. Graham, Knuth and 

Patashnik [22]), or using counting techniques due to Monier [34], it can 
be shown that 

4 (d+k-—i k 
Fak) =¥( 7 ‘yCE). 

i=0 

Since g(d, k) = f(d,k —1), the proof is complete. 0 

Remark. The recurrence relation for f(d,é) and its solution in the 
form of the above summation do not occur in standard books, such as 

[22, 48]. So it seems that no closed form exists. On page 32 of [48], the 
following formula appears: 

Cn) EG )C%) 
This formula—which would imply a closed solution to our summation— 

is, however, incorrect. The correct form is 

Cn) EG ) Cn") 
By combining Lemmas 5.3.6, 5.3.7, 5.3.8 and 5.3.9 we get the final 

result. (Take s = d in these lemmas.) 

Theorem 5.3.2 Let d > 2 and k > 1. A d-dimensional k-divided 

range tree, representing a set of n points, can be partitioned into parts 

of size 
ra) (naeray x (log n jhe Dieta) ) 

such that the amortized number of parts through which an update passes 

is at most 

k+d—-1 _tia d-1 ( ; ) +o) = Fe +0 (k ), 

and the number of parts through which a query passes is at most 

d : d 
d+k—-—1-i k-1 _ 2 d d-1 > ( h_1 )( ; )+a-1= 5 +2t+0 (kt),



5.3. d-dimensional k-divided range trees 105 

where t is the number of answers to the query. The asymptotic approx- 

imations are valid for fixed d and large k. That is, the constants in the 

terms O(k*") depend on d, but not on k. 

Remark. All results of this section are valid if d = s = 1, except for 

Lemma 5.3.8. If we apply the technique of this section with d = s = 1, 

we get a partition of a binary tree into parts of size @(n'/*), such that an 

update passes, amortized, through at most ck parts, for some constant 

c > 1. The structure of this partitioned tree is similar to a B-tree (see 
[4, 17]), which can be seen, in some sense, as a clever implementation 
of a (1, &)-divided binary tree.
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Chapter 6 

The lower bounds 

In the previous chapters, several partition schemes were given for range 

trees, obtaining different trade-offs between the size of the parts and the 

number of parts through which queries and updates pass. In the present 

chapter we study lower bounds for partitions. To be more precise, 

suppose we have a partition of a range tree into parts of size at most 

f(n). Then we want a worst-case lower bound—in terms of f(n)—on 
the number of parts through which an update passes. Similarly, given 

a partition such that each update passes through at most h(n) parts, 

we want a lower bound—in terms of h(n)—for the maximal size of any 
part. We do not consider queries here. With some work, however, all 

lower bounds of this chapter can be extended to the case of queries. 

We prove the lower bounds for a more general form of partitions 

than we used so far. That is, all lower bounds also apply for partitions 

where parts have different size. In particular, we do not require that a 

partition into parts of size at most f(n) contains O(S(n)/f(n)) parts, 
as we did until now. 

Also, we prove the lower bounds for arbitrary range trees. We do 

not require trees to be balanced. See Section 2.3, where we introduced 

this general class of range trees. Therefore, the bounds also apply if 

we for example would use AVL-trees as underlying structure; choos- 

ing different balance conditions will not help in improving the bounds. 

Furthermore, the lower bounds apply to any individual range tree, not 

just to some smartly created ones. This implies that the bounds are 

not only worst-case lower bounds, but also amortized lower bounds. 

107
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We consider two types of partitions of range trees. The first type 

are the restricted partitions. Recall that a partition of a d-dimensional 

range tree, where d > 1, is called restricted, if only the main tree 

is partitioned, whereas associated structures are not subdivided. In 

such a restricted partition, a node of the main tree and its associated 

structure are contained in the same part. The second type of partitions 

we consider, are those in which also associated structures are divided 

into parts. 

In this chapter, we define the size of a part in a partition as the 

number of nodes it contains. Of course, the size of a part together 

with the information stored in its nodes—such as pointers, search and 

balance information—is proportional to our notion of size. 

For completeness, we recall our notion of the set of points that are 

represented by a node in a range tree. Consider a range tree, repre- 

senting the set V. Let w be a node in this structure (w is a node of the 
main tree, or of an associated structure, or of an associated structure 

of an associated structure, etc.). Let V,, be the set of all points of V 
that are in the subtree of w. Then node w represents the set V,,. 

6.1 Lower bounds for binary search trees 

In order to give an introduction to the ideas that are used in the proofs 

of the lower bounds, we first give a lower bound for partitions of one- 

dimensional range trees. Note that a one-dimensional range tree is just 

a binary tree. We need the following two lemmas. 

Lemma 6.1.1 For any non-negative integer k, we have 

(k/e)* < kl < k*, 

where e is the basis of the natural logarithm. 

Proof. The proof follows from a straightforward calculation. O 

The following lemma will also be used later in the chapter. 

Lemma 6.1.2 Let T be a binary tree, having at least n leaves. Let V 

be a subset of the leaves, of cardinality n. Let m > 1 be a real number.



6.1. Lower bounds for binary search trees 109 

Then the number of nodes in T, that represent at least m points of V, 

is at least n/m — 1. 

Proof. The proof is by induction on n. If 1 <n < [ml], then there are 
no nodes representing at least m points of V, so the number of such 

nodes is 0, which is at least n/m —1. If n = [m], then the root of T 
represents at least m points of V. So the total number of nodes in T, 

that represent at least m points of V, is at least 1, which is at least 

n/m—1. Now let n > [m], and suppose the lemma is proved for smaller 
values of n. Let v be a node of T that represents the entire set V, such 

that the left son of v represents n; points of V, where 1 < nj <n-—1. 

(u need not be the root of T, since it is possible that the left or right son 

of the root represents the entire set V.) By the induction hypothesis, 

the number of nodes in the left subtree of v, that represent at least 

m points of V, is at least n1/m— 1. Similarly, the right subtree of v 

contains at least (n —n,)/m-—1 nodes, that represent at least m points 
of V. Finally, node v itself represents at least m points of V. It follows 

that the total number of nodes in 7, that represent at least m points 

of V, is at least (n1/m — 1) + ((n—11)/m—1)+1=n/m-—1. This 
proves the lemma. O 

If we take for T’ a balanced binary tree, we see that this bound is 

tight (except for constant factors). Lemma 6.1.2 enables us to prove 
our first lower bound. Clearly, for a binary tree from a class of O(log n)- 
maintainable trees—e.g. a BB[a]-tree—there exists a partition into 
parts of constant size, such that each update passes through O(logn) 

parts: Put each node in a separate part. Therefore, it is sufficient to 

consider partitions of binary trees in which an update passes through 

at most h(n) parts, for some function h(n) < logn. 

Theorem 6.1.1 Let h(n) be an integer function, such that 1 < h(n) < 
logn. Let T be a binary leaf search tree representing n points. Suppose 

the tree T is partitioned into parts, such that each update passes through 

at most h(n) parts. Then there is a part of size at least 

ve) —y on —f  pVrn) 4 
h(n) €or
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Proof. We write k = h(n). Let m; = 3()*/* for 0 <i < k. We first 
show that the m,’s are at least 1. Clearly, mp =n > 1. 

Let 0<i<k/2. Then, by using Lemma 6.1.1, 

. k 4 . 

m; = nil (ey > ni-ilk (+) > mn (2). 

i! ei € 

Since i < k/2 < (logn)/2, it follows that \/n > 2*, and hence m; > 
(4/e)' > 1. 

Let k/2<i<k-—1. Again using Lemma 6.1.1, we get 

= 1)(— > /kK> i yllk > 1. Ma Ot ) (Ga) <TR ha gh es 

Since m, = 1, it follows that for k/2<i<k—-1: 

My = Miz1 > Miz. >... > M = 1. 

We have proved that m; > 1 for0<i<k. 

Let P; be the following property: 

vu; is anode in T, that represents at least m, points. IIo, I, ..., I; 

is a sequence of 7+ 1 different parts of the partition. Each 

update in 7, that passes through v;, passes through IIo, Iy,.. . , H;. 

Now execute the following algorithm: 

Uo := the root of T; 

IIp := the part of the partition that contains vp; 

4:= 0; 

QED := false; 

{ property P; holds } 
while i 4 k A not QED 

do { property P; holds } 

Let V be the set of all nodes in the subtree of v; that represent 

at least m;,1 points; 

ifV Cc Uso I, 

then QED := true
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else v4.1 := a node in V \ Ui Ij; 
Il,,1 := the part of the partition that contains v,;+1; 

{ property P;,, holds } 
t:=t4+1 

{ property P; holds } 
fi 

od. 

First note that this algorithm terminates. Also, it is not difficult to 

see that the algorithm correctly maintains property F;. 

Suppose that after the algorithm is completed, QED has the value 

false. Then we must have i = k. Also property P, holds. So we have a 

node vz; that represents at least m, = 1 point, and we have a sequence 

IIo, 1l,,..., 0, of k + 1 different parts of the partition, such that each 

update through node vz passes through these k+1 parts. But this is a 

contradiction, because each update in the tree passes through at most 

k parts. 

Therefore, after the algorithm is completed, QED has the value 

true. Hence there is an 1, 0 < 1 < k—1, such that P, holds, and 

all nodes in the subtree of v;, that represent at least m,+41 points, are 

contained in Uso II;. By Lemma 6.1.2 — which may be applied since 

mi+1 > 1 — there are at least m;/mj;+4, — 1 such nodes. It follows that 

| Ui-o Tj] = Khao [Lj] = mi/miz. — 1. Hence there is a part in the 
partition of size at least 

1 Sinj>t (1) -(2)"- 4 (2) 
+1 7 itl mis AR! i+17 \k! 

The approximation (%)'/* ~ €n1/* follows from Stirling’s formula. 
This proves the theorem. 0 

Consider again the proof of Theorem 6.1.1. We started with a se- 

quence ™mo,..., Mx of real numbers, such that mp = n, and m,; > 1 for 

all 7. Then we showed that the partition contains a part of size at least 

ai (mi/mins — 1) for some 0 <i < k—1. Since i can take any value 
between 0 and & —1, it follows that the partition contains a part of size
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at least 

1 1 1 − 
⋯↥∐≹≞−↕≖− ≼≞−↕⊃≖− (= -1) − (= L -1)}. (6.1) 

my 2 \me 3 \ms3 k\ me 

Clearly the proof remains valid for any such sequence mo, M1, ..., Mx- 

(Note that the condition m; > 1 is important, since otherwise Lemma 6.1.2 

may not be applied. Also, the condition mp = n is necessary to make 

property Po hold after the initialization of the algorithm.) Therefore 

it might be possible that for some other choice of the numbers mj, a 

better lower bound follows. We show that this is not the case. That 

is, the value of (6.1) is at most (%)'/*, for any sequence of real num- 
bers Mm) = n,m, > 1,mM_q > 1,...,my, > 1. Take such a sequence 

mMo,---, Mz. There are two possibilities. 

(i) There is an i, 0 < 1 < k —1, such that m < m(E)ive and 
Misi > a (E)GD/k Then (+1)! n 

1 Mj; < (2), 

i+1 Mist ~ \k! 

Lk and hence the value of (6.1) is at most (#4) 

(ii) Otherwise, for each 1, 0 < i < k—1, we have that if m; < 
n(REi/k then mii < arp (EON. Since m) =n < 2 (HL)O/R it 

< 
1. 

i! SG 

follows that m, < 2(#)1/* 
∣− ⋅ 

↗≂⊽−↕↧≻⋮∁⋚⋟↻≆ ↕⋝∕∣⊖≖⋯↗≂≤ 
e conclude that 

1 Mp1 < 1 oon k! mo (ay 

km —~k(R-1!\n ~ le)? 

hence the value of (6.1) is bounded above by (#)!/*. 

—
 E
a
 

—
 

a
a
 

n (kt) 2/k , and hence mz < 5 (=) [Ro Mga1 
(YAIR = 1. Since m,; > 1, we have m, = 

=
 

Remark. At the end of Section 5.3 we saw that there exists a class 

of balanced binary search trees that can be partitioned into parts of 

size O(n‘/*), such that the amortized number of parts through which 
an updates passes is bounded by O(k). Therefore, the lower bound 

of Theorem 6.1.1 is tight (except for constant factors) for constant 
functions h(n).
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6.2 Weight estimates for range trees 

6.2.1 2-dimensional range trees 

Before we can prove our lower bounds, we need some lemmas that count 

the number of nodes in range trees satisfying some constraints. These 

counting lemmas are proved by induction on the dimension d. In this 

subsection we prove the basis for the inductive proofs, the case d = 2. 

Lemma 6.2.1 Let r > 1 be a real number, and let n > 229 be an 

integer. Let f(x) be a convex function for x» <x <n—2Xo. Then for 
all x, % <“2%<n—2Xo, we have 

f(a) + f(n— 2) 2 2 f(n/2). 

Proof. Let x9 <x <n—-— 2p. Then 

f(n/2) = f(a/2+ (n— 2)/2) < f(x)/2+ f(n— 2)/2, 

by the convexity of f(x). 0 

Lemma 6.2.2 Let m > 1 be a real number, and let U(n) be a function 
satisfying 

U(n) > 0 for 1<n<|m|, 

U(n) > n+ natin (U(r) +U(n—m)| for n> |m|+1. 

Then U(n) > nlog(n/m) for n>1. 

Proof. Suppose 1 < n < |m|. Then U(n) > 0 > nlog(n/m), since 
log(n/m) < 0. So let n > |m| +1, and suppose the lemma is proved 
for smaller values of n. Let n, be an integer, such that 1 <n, <n-1. 

(Note that n > 2, hence such an integer n; exists.) By the induction 
hypothesis, we have 

U(n1) + U(n — n1) > m log(ni/m) + (n — n1) log((n — m1) /m). 

Then, applying Lemma 6.2.1, with f(z) = xlog(z/m) and xp = 1, we 
get 

U(m1) + U(n — n1) > 2 (n/2) log(n/2m) = nlog(n/m) — n.
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Since n, was arbitrary, it follows that 

U(n) >n+ min [U(ni) + U(n—n1)] > nlog(n/m). 
l<ni<n-1 

Now we are ready to prove the main results of this subsection. 

Lemma 6.2.3 Let T be a binary tree with n leaves. Let m > 1 be a 

real number. For each node v of T, let the weight wt(v) of vu be the 

number of leaves in its subtree. Then 

>> wt(v) > nlog(n/m). 
v:wt(v)>m 

Proof. Let U(n) denote the sum Dy .wt(y)>m Wt(v). (Strictly speaking 
we should define U(n) to be the minimum of the expressions Dy .we(v)>m Wt(v) 
over all binary trees having n leaves.) If 1 < n < |m|, then of course 
U(n) > 0. So let n > |m| +1. The root of T has weight n, which is at 
least m. Let n, be the number of leaves in the left subtree of the root 

of T. Then 1 < ny < n—1, and 

U(n) >n+U(m)+U(n-—m) >n+ min lm) + U(n —1n1)). 
mi=l,....n— 

It follows from Lemma 6.2.2, that U(n) > nlog(n/m). O 

Corollary 6.2.1 A two-dimensional range tree, representing n points, 

has size at least nlogn. 

Proof. This follows immediately from the above lemma, by taking T 

the main tree of the range tree, and m= 1. O 

The next lemma generalizes Lemma 6.1.2 to the two-dimensional 

case. 

Lemma 6.2.4 Let T be a two-dimensional range tree, representing at 

least n points. Let V be a subset of these points, of cardinality n. Let 

m > 1 be a real number. Then the total number of nodes in T (in 
the main tree, or in an associated structure) that represent at least m 

points of V, is at least (n/m) log(n/m).
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Proof. Let W(n) be the number of nodes in T, that represent at least 
m points of V. (Also here we should define W(n) to be the minimum 
of all these numbers over all range trees and all sets V of cardinality 

n.) If1<n< |m|], then W(n) > 0. Let n > |m| +1. Just as in the 
proof of Lemma 6.1.2, let v be a node in the main tree that represents 

the entire set V, such that the left son of v represents n, points of V, 

where 1 < ny <n-—1. By Lemma 6.1.2, the associated structure of uv 

contains at least n/m — 1 nodes, that represent at least m points of V. 

Also node v itself represents at least m points of V. Hence 

W(n) 2 (n/m—1)+1+W(m) + W(n—m) 
> n/mt+ , min [W(n) +W(n—-n;)). 
~ i=1,. 

It follows that the function U(n) = m x W(n) satisfies: 

U(n) > 0 for 1<n<|m|, 

U(n) > n +) min [U(m) +U(n—1,)| for n> |m| +1. 
y=1 

Then by Lemma 6.2.2, U(n) = m x W(n) > nlog(n/m), and hence 

W(n) 2 (n/m) log(n/m). 

6.2.2 d-dimensional range trees 

We generalize the counting lemmas of the preceding subsection to the 

multi-dimensional case. 

Lemma 6.2.5 (Bernoulli’s inequality) Let d be a non-negative in- 

teger, and let h > 1 be a real number. Then 

(h — 1)4 > ht— dhe. 

Proof. Induction on d. 0 

Lemma 6.2.6 Letm > 1 be a real number, and let d > 2 be an integer. 

Suppose the function U(n) satisfies 

U(n) > 0 for l<n<|m|j, 

U(n) > n(log(n/m))*?+ min (Ur) +U(n—m)] for n> |m]| +1. 
ni=l,....n— 

Then U(n) > 4n(log(n/m))** for n> [mj +1.
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Proof. Let n be an integer such that |m| +1 <n < 2m. (Such an 
integer n exists.) Then U(n) > n(log(n/m))*? > +n (log(n/m))*?, 
since 0 < log(n/m) <1<d. So let n > 2m, and suppose the lemma is 
proved for smaller values of n. Let 1 <n; <n-—1. Since n > 2m, we 

have n; > |m|+1 or n—n, > |m|+1. There are three possible cases. 
(i) Suppose n, > |m| +1 and n—n, > |m| +1. Then by the 

induction hypothesis, 

n (log ny + U(n1) + U(n — n1) 

d-2 4 d-1 − d-1 

m d m d m 

{apply Lemma 6.2.1 with f(x) =x (log(x/m))*' and ap =m} 
n \ 4-2 1 nm \@1 

> log — =n (log — > n (lot) + Gn (lors) 
n \ 4-2 1 n d-1 

=n (log *) +—=n (log −− 1) {apply Lemma 6.2.5} 
m d m 

1 low qt] loo d—2 

= gn (ver) +n (eee) 
1 

IV
 

(ii) Suppose n; > |m| +1 and n—1n, < |m]. Then, again by the 
induction hypothesis, 

n (log ny + U(n1) + U(n — 11) 

n 1 n ,\¢1 
> n (log ”) + q@ (log “) {apply ny > n—m} 

n\t2 1 n ,\4-1 ny n 
> — − − log — ly — >— > 1 2 eet) hee=m (oe) fms > Bom 

n d—2 1 n d-1 

> n flog = (n—m) (log > n(log) +5 0—m) (loss) 
n d—2 1 d—1 

=n (log ~) + r (n —m) (log −− 1) {apply Lemma 6.2.5} 
m
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n\4-2 J n\@1 n\4-2 
log — −− log — — (d—1) (log— 

" (108 *) + a (” m) (10s *) (d ) (log) | 

(lo ny + Et m- eB ho *) (to ny 
Oe d d dm Sm 

1 

d 
1 n d-1 

i” (los) ; 

IV
 

IV
 

since 

+m hog ~ >oim ” mam (1 7) 20 em —d d dm a) =" 

(iii) Otherwise, ny < |m| and n—n, > |m|+1. Then in the same 
way as in case (ii), we find 

d—2 d-1 
n (log *) + U(n) + U(n-— 1m) = an (log *) ⋅ 

It follows from (i), (ii) and (iii), that for n > 2m 

U(n) > n (log) + min [U(m) + U(n—m)] 
mi=l,....n— 

1 d—1 

= i” (los) 
oO 

Lemma 6.2.7 Consider a d-dimensional range tree (d > 2), repre- 
senting a set of n points. Let m > 1 be a real number. For each node 

vu of the main tree, the weight wt(v) of v is defined as the total number 
of leaves in the associated structure of v. (Here we count the leaves in 

the main tree of the associated structure, in associated structures of the 

associated structure, etc.) Then 

> wt(v) > an (logn)*2log(n/m) if n> |m] +1. 
v:u represents >m points 

This summation runs over all nodes v in the main tree of the d-dimensional 

range tree, such that v represents at least m points.
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Proof. The case d = 2 is proved already in Lemma 6.2.3. So let d > 3, 

and suppose the lemma is proved for smaller values of d. Let W(n) 

denote the sum to be estimated. Then W(n) > 0 forl1 <n < |m]. Let 
n > |m|+1. The root of the main tree represents at least m points. To 
estimate the weight of the root, we have to count the total number of 

leaves in its associated structure. By the induction hypothesis (applied 

for d—1 and m = 1), this weight is at least 7 yn(logn)**. Let nj 
be the number of points represented by the left son of the root of the 

main tree. Then 1 <n; <n-— 1. Hence 

2 
W(n) 2 (d _ i! n (log nt? + W(n1) + Win = m1) 

= a pi” (log) + _iain_[W(m) +W(n — m)I, 

for n > |m| +1. Now let 

H(n) = 0 for 1<n< |m|j, 

(d—1)! (log(n/m))*? _ (d-1)! (: _ logm 
2 (log n)4-? 2 logn 

d-2 
for n> |m] +1. 

If1<n< |m|], then H(n) x W(n) > 0. Let n > |m| +1. Then, since 
H(n) > 0 and since H(n) is non-decreasing, 

H(n) x W(n) 

> n(log(n/m))*? + iin _ [A (n) x W(m) + H(n) x W(n— m1) 

> n(log(n/m))*? + iain [H(m) x W(m) + (nm) x W(n—m)]. 

It follows from Lemma 6.2.6, that 

1 
H(n)xW(n) >on (log(n/m))*" for n> |m]| +1, 

and hence 

W(n) > an (log n)* log(n/m) for n> |m| +1.
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Note that the bound in Lemma 6.2.7 is tight (except for constant 
factors): Equality is obtained if all binary trees involved are balanced. 

Now apply this lemma, with m = 1. Then we get the following corol- 

lary. 

Corollary 6.2.2 A d-dimensional range tree (d > 2), representing n 
points, has size at least n(logn)*'. 

Lemma 6.2.8 Consider a d-dimensional range tree (d > 2), represent- 
ing at least n points. Let V be a subset of these points, of cardinality 

n. Letm > 1 be a real number, such that n > |m|+1. Then the total 
number of nodes in the range tree (in the main tree, or in an associated 

structure, or in an associated structure of an associated structure, etc. ), 

that represent at least m points of V, is at least 

5 (log(n/m))* 
Proof. For d = 2, the claim follows from Lemma 6.2.4. Let d > 3, and 

suppose the lemma is proved for smaller values of d. Let W(n) be the 

total number of nodes in the range tree, that represent at least m points 

of V. If1 <n < [mJ], then W(n) > 0. Letn > |m]|+1. Let v bea node 
in the main tree, that represents the entire set V, such that the left son 

of v represents n; points of V, where 1 < n, < n—1. (v need not be 

the root of the main tree, since it is possible that the left or right son of 

the root represents the entire set V.) By the induction hypothesis, the 

associated structure of v contains at least 77 way (n/m) (log(n/m))*” 

nodes, that represent at least m points of V. Hence for n > |m| +1, 

Wn) > Gaappe Mowln/m))? + amin [W(m) + W(n ma) 
Then it follows from Lemma 6.2.6, that 

W(n) > (log(n/m))*", for n>|m| +1. 
n 

Im S
|
 

vo
 

By taking all binary trees balanced, we see that the bound of this 

lemma is tight, except for constant factors.
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Lemma 6.2.9 Letn > 1 be an integer, and let B > 4 be a real number. 

Let a, = 0 and ayy, = a; + Bi2% fori > 1. Let k = min{i > lai, > 

logn}, and let a= B(1+2'*9). Then k > 2 log*n+ 4 — 2 log* a. 

Proof. We first prove that 

a; > log(1 + Bi) for i > 2. (6.2) 

For i = 2, we have ag = 8 > log(1 +28). So suppose that a; > 
log(1+7) for some i > 2. Then aj41 = a; + 812% > 812% > Bi(1+ Gi) > 
B(i+1) > log(1+ 6(i+1)). This proves (6.2). 

Now let i > 2. Then aj41 = a; + Bi2% < 2% + Bi2% = (1+ Bi)2%. 
It follows from (6.2) that 

log aj41 < 2a; for 7 > 2. (6.3) 

We have to prove that k > 2log*n + 3 — 2log*a. Assume that 
k < 2log*n + 3 — 2log* a. We show that 

(log)"+39n < ag41-9; fori =0,1,...,|(K — 1)/2|. (6.4) 

(Note that (log)“+99n exists for 0 < i < |(k — 1)/2|, since by our 
assumption on k, it holds that 1+ 3i < 1+ 3|(k —1)/2| < log* n.) 

By definition of k, (6.4) holds for i = 0. So let 0 <i < |(K—3)/2|, 
and suppose that (log)¢+8n < a,41~9;. Then by applying (6.3), we 
get 

(log)CT!)n < log ag 41-24 < 2 ag-2i- 

Hence 

(log) +9) n, < 1+loga,_y {apply (6.3)} 

< 14+ 2ap-2j-1 

< 3 ap_ai-1- 

Therefore 

(log)O ROM n < log 3 + log a,—2i-1 < an—2i-1, 

since G,_2i-1 > G2 = 6 > 4. This proves (6.4).
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Now take i = |(K — 1)/2| in (6.4). Then 

(log) O+3LA-D/2)) 7 < a3 = 8+ 262% =a. 

Taking log* a times logarithms, we get 

(log) "°8" a+1+3|(k—-1)/2])y < (log) "8" 2) oy <1. 

(Note that (log)“°8" ¢+1+3\(*—1)/2I)n exists, since log*a + 1+ 3|[(k — 
1)/2| < log*n by our assumption on k.) However, since we assumed 
that k < 2 log* n+3—# log* a, we have log* a+1+3|(k—1)/2] < log*n, 
and hence 

(log) (8 oH+810-D/2n, > 4. 

So we have a contradiction. 0 

6.3. Lower bounds for restricted partitions 

In this section we prove two tight lower bounds for restricted partitions 

of range trees. Recall that in a restricted partition, a node of the main 

tree and its associated structure are contained in the same part. It 

follows from Corollary 6.2.2, that in such a partition of a d-dimensional 

range tree, there is a part of size at least CZ @ayn(log n)t?, 

Theorem 6.3.1 Consider a d-dimensional range tree (d > 2), rep- 
resenting n points, where (d — 2)loglogn < $logn. Let c be a con- 
stant, c > . Suppose the range tree is partitioned —in the restricted 

e 2 
(d-1)! a] 

sense—into — of size at most cn (logn Then there is an up- 

date that passes through at least 2log*n + 3 — 2log* a parts, where 
a=cdl(14+2't#), 

Proof. Let T be the main tree. Let a, = 0 and a;4, = a; + cd! 2% 

fori > 1. Let k = min{i > 1|a;,,; > logn}. We construct a sequence 
U1, U2,---, Ug Of nodes in T, as follows. (For each such node 2%, let I; 

be the part of the partition that contains v;.) Let v, be the root of 

T. Then v, represents at least n/2*! points. Now let 1 <i < k, and 

suppose v;,..., 0; are chosen, in 7 different parts, such that v; represents 

at least n/2% points. Consider all nodes in the subtree of T with root
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u;, that represent at least n/2%+! points. These nodes, together with 

their associated structures, have size at least °y.» represents >m points(1 + 

wt(v)). Here wt(v) is the total number of leaves in the associated 
structure of node v, m = n/2%+, and the summation runs over all 

nodes v in the subtree of J’ with root v;, that represent at least m 

points. By Lemma 6.2.7, this sum is 

i [ae (8 [g5])” em 
2n n \4-2 4 15 9a Tl oa (Iog =) cdli2 

d-2 
= 2cin (log =) {apply logn > aj41 > 2%} 

n \?? 

> 2cin (le; 
og n 

IV
 

= 2cin(logn—loglogn)*? 
1 d-2 

= 2cin(loglogn)*? (oe − i {apply Lemma 6.2.5} 

IV
 

logn \*? logn \*? . d-2|f _-o 0" — (d— 2) | —_—__— 2 cin (loglogn) (ee) (d—2) (oe) | 

1 log n ~ > 2cin(loglogn)*™ x 5 (soe) 
= cin(logn)??. 

Here the last inequality follows from the assumption that (d—2) loglogn < 

slogn. (Note that since 1 <i < k, we have m = n/2%+' > 1, and 

n nm n n 
pan th Soa tl=gatisigtisn [mJ +1<m+1l= 

Hence Lemma 6.2.7 can be applied.) 
Now since | Ui_, II| < cin (logn)*®, it follows that there is a node 

Ui41 in the subtree of T with root v;, that represents at least n/2%+! 

points, and that is not contained in Us II. 

This procedure gives us nodes w1,...,v,% in k& different parts, such 

that vj41 is in the subtree of v;, for i = 1,2,...,4 — 1. An update in
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the range tree, that passes through node vz, passes through at least k 

parts of the partition. It follows from Lemma 6.2.9, that k > 2 log* n+ 
3 — glog*a. O 

Remark. In Theorem 5.1.3, it is shown, that there exists an effi- 

ciently maintainable class of d-dimensional range trees, that can be 

partitioned—in the restricted sense—into parts of size O(n(logn)*”), 
such that each update passes, amortized, through at most log* n+O(1) 

parts. Since the lower bound of Theorem 6.3.1 is valid for any individ- 

ual range tree, not just for some range tree, this theorem also gives a 

lower bound on the amortized number of parts through which an up- 

date passes. Therefore, the lower bound is tight, except for constant 

factors. 

In the next theorem we consider the opposite point of view: We give 

a lower bound on the maximal size of any part, if each update passes 

through at most h(n) parts, for some integer function h(n). 
We saw already that in a restricted partition of a d-dimensional 

range tree, there is a part—the part containing the associated structure 

of the root of the main tree—of size Q(n(logn)?-2). Since there exists 
a class of efficiently maintainable d-dimensional range trees that can be 

partitioned—in the restricted sense—into parts of size O(n(logn)*), 
such that each update passes, amortized, through at most log* n+O(1) 

parts, it is sufficient to consider restricted partitions where updates visit 

at most h(n) parts, for some function h(n) < log* n. 

Theorem 6.3.2 Let h(n) be an integer function, such that 1 < h(n) < 
log*n. Let T be a d-dimensional range tree (d > 2), representing n 
points, and suppose that (log)*™n > 8 and (d— 1) loglogn < $logn. 
Suppose T is partitioned, in the restricted sense, into parts such that 

each update passes through at most h(n) parts. Then there is a part of 
size at least Ll 

so 1 d—2 l h(n) ; 5 7 (logn)* (log)n 
Proof. We write k = h(n). Let m; = (i + 1)n(log)*n/(log)*-n for 
0<i<k. Note that the iterated logarithms exist since 1 < k < log* n. 

Then 

mp = (k +1) (log)*n > 16,
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and for0<i<k-1, 

(log)*-*-!n, m _ i+1 (log)**'n_ 1 S9 

2 (log)t-n ~ ? Mist %t+2 (log)*-n 
2 

since for N = (log)*~*n, we have 2" /N > 4. (Note that N > (log)*n > 
8.) It follows that all m,’s are at least 1, and that mj; > 2mj41 > 

Mitt +1 > [mip] +1. 

Let P; be the following property: 

vu; is a node in the main tree of T,, that represents at least m; 

points. Ho, Iy,..., I; is a sequence of i+ 1 different parts 

of the partition. Each update in T’, that passes through u;, 

passes through Ilo, Iy,..., Tj. 

Now execute the following algorithm: 

Up := the root of the main tree; 

IIp := the part of the partition that contains vp; 

4:= 0; 

QED := false; 

{ property P; holds } 
while 1 4 k A not QED 
do { property P; holds } 

Let V be the set of all nodes in the main tree below v;, that represent 

at least m;,1 points; 

ifV Cc Uso I, 

then QED := true 

else vj: := a node in V \ U}_o Ij; 
Il,,1 := the part of the partition that contains v;+1; 

{ property P;,, holds } 
t:=t4+1 

{ property P; holds } 
fi 

od. 

It is not difficult to see that the algorithm correctly maintains prop- 

erty P;.
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Suppose that after the algorithm is completed, QED has the value 

false. Then we must have i = k. Also property Py holds. So we have 

a node vu, in the main tree, that represents at least m; points, and we 

have a sequence IIo, Il,,..., II, of +1 different parts of the partition, 

such that each update through node vz passes through these k+1 parts. 

But this is a contradiction, because each update passes through at most 

k parts. 

Therefore, after the algorithm is completed, QED has the value 

true. Hence there is an 7, 0 <i < k—1, such that P; holds, and all 

nodes in the main tree below v; that represent at least m,+,1 points, are 

contained in Uj-0 II;. By Lemma 6.2.7, all these nodes, together with 

their associated structures—and hence Uj_» I1;—have size at least 

2 − 
a (log m;)*~* log(m;/mi41)- 

(Since mj41 > 1 and m; > |mi4i1] + 1, Lemma 6.2.7 may be applied. 
Note that we apply Lemma 6.2.7 to the tree having v; as its root, which 

is a d-dimensional range tree, representing at least m; points.) It follows 

that there is a part in our partition of size at least 

1 |’ 1 2 − 
∅⋅⊹−↕ ∣⋮∟⋮↲⊖ ∏∃⋅∣≥ imam (log m;)*~? log(m;/m41). 

It remains to prove that this latter expression is at least 

11 
san (log n)*? (log)*n. 

We have 

og)*n 
logm, = log (+n) 

+« (maa) 
lo ” 

6 logn 

= logn-—loglogn. 

IV
 

IV
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It follows that 

(logm,)*? > (logn—loglogn)*? 

> (logn)*? — (d— 2)(logn)** log log n 
1 

2 9 (log ne, 

since we assumed that jlogn > (d— 1)loglogn > (d — 2) loglogn. 
Furthermore, 

i+1 (log)*-*1n 

i+2 (log)*-in 
1(1 k-i-1 log (2 fos” 
2 (log)*-'n 

= (log)*-'n — (log)F-**'n —1 
1 . 

2 5 log)" 'n, 

log(mi/miz1) = og ( 
IV

 

since for N = (log)*-*n > (log)*n > 8, we have N — log N —1> N/2. 
Hence 

1 2 − 
maid m, (log m,)4 2 log(m;/mi41) 

1 2 1 a2 1 k-i 
2 jg. aa (log n) 3 (log) n 

11 
= 97" (log n)*~? (log)*n. 

This proves the theorem. 0 

Remark. We saw in Theorem 5.1.5, that there exists a class of effi- 

ciently maintainable d-dimensional range trees, that can be partitioned— 

in the restricted sense—into parts of size O(n(logn)*?(log)*n), such 
that each update passes, amortized, through at most & + o(1) parts. 

If the amortized number of parts through which an update passes is 

at most k, there must be a single update that passes through at most 

k parts. Therefore, Theorem 6.3.2 also applies for amortized bounds. 

Hence, the lower bound in Theorem 6.3.2 is tight for constant functions 

h(n).
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6.4 Lower bounds for general partitions 

We give two lower bounds for general partitions of range trees. The first 

bound is proved is by induction, whereas the second bound is proved in 

a similar way as the lower bound in Theorem 6.1.1. The second bound 

gives a better result. We include the first bound, however, to illustrate 

the proof-technique. 

In order to be able to give an inductive proof, we prove a more 

general result. 

Theorem 6.4.1 Let k be a positive integer. Consider a d-dimensional 

range tree, that is partitioned into parts, such that the following holds. 

There is a subset V of the points that are represented by the range tree, 

where |\V| =n > 2". Each update that visits a leaf that contains a point 

of V, passes through at most k parts of the partition. Then there is a 

part of size at least 

1 1 k-2 1 d-1 _ 

als) (g) m/* (osm). 
Proof. Suppose k = 1. Then all nodes that represent at least one point 

of V, are contained in the same part of the partition. By Lemma 6.2.8, 

with m = 1, this part has size at least 4n(logn)4~'. Let k > 1, and 
suppose the theorem is proved for & — 1. Consider a d-dimensional 

range tree, that satisfies the assumptions of the theorem (for value k). 
Let II be the part of the partition that contains the root of the main 

tree. There are two possible cases. 

(i) There is a node y in the range tree, that represents at least 
n*-)/F points of V, that is not contained in part II. (y may be a node of 
the main tree, or of an associated structure, or of an associated structure 

of an associated structure, etc.) Then we merge part II and the part 

containing y together into a new part. Let V’ be the intersection of 

V and the set of points that are represented by y. This gives us a 

d-dimensional range tree, that is partitioned into parts such that the 

following holds. There is a subset V’ of the points that are represented 

by the range tree, where |V’| > n(-)/* > 2-1. Each update that 
visits a leaf that contains a point of V’, passes through at most k — 1
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parts of this new partition. By the induction hypothesis, there is a part 

in this new partition, of size at least 

(a) (ea) Yow toy) 
1 1 k-3 1 d—1 _ 

=als) (q) nos. 
It follows that in our original partition, there is a part of size at least 

1 1 k-2 1 d-1 _ 

als) (gz) m/* omy. 
(ii) Otherwise, all nodes y in the range tree, that represent at least 

n&-)/k points of V, are contained in part II. By Lemma 6.2.8, there 
are at least 

2 on n dt 2 /1\%" 44 di 
dl nk—b/k (log (=a) =5(;) nl (logn) 

such nodes y. (Note that n@-)/* > 1, and since n > 2*, we have 
n> Ank-V/k > |n@-Y/*| 4.1. Hence Lemma 6.2.8 can be applied.) It 
follows that part II has size at least 

y) 1 d-1 7 1 1 k-2 1 d-1 _ 

a(z) m*dowm*> a (5) (Gg) mi doen. 
This finishes the proof. 0 

Corollary 6.4.1 Let h(n) be an integer function, such that 1 < h(n) < 
logn. Consider a d-dimensional range tree (d > 2), representing n 
points. Suppose the range tree is partitioned such that each update 

passes through at most h(n) parts. Then there is a part of size at least 

lvl h(n)—-2 1 d-1 , 
tft ft /W(n) (1 d-1 
d! (5) (aa) ne (log) 

Proof. This follows from Theorem 6.4.1, by taking V the set of all 

points that are represented by the range tree, and k = h(n). Note that 

Theorem 6.4.1 remains valid if k depends on n. O 

We now prove the other lower bound that improves the bound of 

Corollary 6.4.1.
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Theorem 6.4.2 Let h(n) be an integer function, such that 1 < h(n) < 
logn. Let T be a d-dimensional range tree (d > 2), representing n 
points. Suppose this range tree is partitioned into parts, such that each 

update passes through at most h(n) parts. Then there is a part of size 

at least 
d 

2 (2) 11/h) dog ny, 
d! \ h(n) 

Proof. We write k = h(n). Let m; = n'~/* for 0 <i<k. Let P; be 
the following property: 

V; is a subset of the set of points represented by T. Vj; 

has cardinality at least m;. Ip, Il,,..., II; is a sequence of 

i+ 1 different parts of the partition. Each update in T, 

that visits a leaf that contains a point of V;, passes through 

IIo, ,,..., Hj. 

Now execute the following algorithm: 

4:=0; 

Vo 
IIo 

:= the set of all points that are represented by the range tree; 

:= the part of the partition that contains the root of the main tree; 

QED := false; 

{ property P; holds } 
while 1 4 k A not QED 
do 

od. 

{ property P; holds } 
Let W be the set of all nodes that represent at least m,;+,1 points of V;; 

if W C US_o I; 
then QED := true 

else w := a node in W \ Uj—o II; 
Vi41 ‘= the set of all points in V;, that are represented by w; 

Il,,1 := the part of the partition that contains w; 

{ property P;,, holds } 
t:=t4+1 

{ property P; holds }
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Note that the algorithm correctly maintains property P;. In this 

algorithm, the V;’s are sets of points that are represented by the data 

structure, whereas the set W is a set of nodes. These are nodes in the 

main tree, or in an associated structure, or in an associated structure 

of an associated structure, etc. 

Suppose that after the algorithm is completed, QED has the value 

false. Then we must have i = k. Also property Py holds. So we 

have a set V; of points of cardinality at least m, = 1, and a sequence 

IIo, 1l,,..., 0, of k + 1 different parts of the partition, such that each 

update that visits a leaf that contains a point of V;, passes through 

these k + 1 parts. This is a contradiction, because each update passes 

through at most & parts of the partition. 

Therefore, after the algorithm is completed, QED has the value 

true. Hence there is an 1, 0 < 1 < k—1, such that P, holds, and 

all nodes that represent at least m,,; points of V;, are contained in 

Uj—o Hj. Since |V;| > mj, it follows from Lemma 6.2.8 that there are at 
least 4 (mj/mi+1) (log(m:/mi41))** such nodes. (Note that m1 > 1, 
and that |mj41|+1 < 2miyi < mj, since k < logn. Hence Lemma 6.2.8 

may be applied.) Hence 

This proves that there is a part of size at least 

i d-1 
1 ‘ 1 2 i —|UN) > <-> (log 

a+1, i+1d! Mist Mist 

1 

j=0 

y) 1 d-1 _ 

=a" (z) (logn)™ 
2 /1\4 − 
a (=) ni/k (log n)4 IV IV

 

This finishes the proof. 0 

Consider again the proof of Theorem 6.4.2. We started with a se- 

quence ™o,...,™, of real numbers such that mp = n, m; > 1 and
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m; > |mi4i| +1 for all i. Then it was shown that the partition con- 
tains a part of size at least 

d-1 
— x - mi log mi , 
db tt+1 mit M41 

for some 1, 0 <i < k—1. Since 7 can take any value between 0 and 

k — 1, there is a part of size at least (we omit the factor 4) 

. | Mo mo\*+ 1m m\t 1 mp1 Mp-1\41 
min { — (log ) =— (log mt) peeege (log ) . 

mM, mM, 2 me Mo k me Mr 
(6.5) 

Just as in Section 6.1, it might be possible to improve the lower bound in 

Theorem 6.4.2 by taking another sequence mo,...,™m,. We shall show 

that in this way the lower bound can only be improved by a constant 

factor, where this constant depends on d, but not on nm and not on 

k. More precisely, we shall prove that for any sequence mo,..., mx of 

positive real numbers, where mp = n, m; > 1 and m,; > m,4, for all 2, 

the value of (6.5) is at most 

1 d 

e(1+loge)*" (=) n/® (logn)4. 

Take such a sequence mo,..., ms. There are two possibilities. 

(i) There is an 7, 0 < i < k—1, such that m; < ne )i/s and 
Mit > (Z)@D/*. Then, by using Lemma 6.1.1, n 

G+)! 

mj n\Ve Ci 
< 1)\(—) < 1) =n ma 2 et ) (a) <4) Er, 

and hence (note that log(m;/mj+1) > 0, since mj > m,+1) 

d-1 . d—1 

∙ ↕⊺∪↗∅⋅ log mi < ok (log (= ent) 
+1 mizi Mitt k k 

< anil (log (e n/t) )e ⋅ 

↕−↕⊖∐∁⊖↓∁↥↥⊖∇∂↕∐⊖⊙⊔∊⋅∂⋟↥⊟∂↓∁↕∐⊙⊟↓∁≣∏↕∕∣≎↻⊙≝≼⊖⊓↕∕∣⊖↣⊄−↧⋅
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(ii) Otherwise, for each i, 0 < i < k —1, we have that if mj < 

o(#)/* then miz1 < ati (#)+D/*. In the same way as in Section 6.1, 

it follows that m,_1 < ale ae = k(&)'/* < en'/* and that 
n 

Mz = 1. Hence, since log mz_; > 0, 

Bi (lon) < Env (oe (ems) 
Again we conclude that the value of (6.5) is at most £ n'/* (log(en!/*))41, 

Now since 

(log (c nifk))e = (log n'/k 4+ log ee 

d-1 

= (log nile) ( + oe ) 

< (log nile (1+ loge)*", 

—where the inequality follows from the fact that logn'/* > 1 or, equiv- 

alently, k < logn—it follows that the value of (6.5) is at most 

d 
€ i/k 1/k\\e} aif 1/k d-1 a (log (en )) < e(1 + loge) ;) ™ (logn)*~, 

which proves our claim.



Chapter 7 

Summary and concluding 

remarks 

We have studied the problem of partitioning range trees, such that 

queries and updates pass through only a small number of parts. This 

enables us to store range trees in secondary memory and to query and 

maintain them efficiently. This is useful in large scale applications, 

where the data structure is too large to be stored in main memory. 

Because the reader might be overwhelmed by the many theorems of 

this part of the thesis, we give in this chapter a summary of the most 

important results. 

Recall that a balanced range tree storing a set of n points in d- 

dimensional space, has size O(n(logn)*!). A partition of such a range 
tree is called an (f(n), g(n), h(n))-partition, if 

1. each part has size at most f(n); 

2. there are O(S(n)/f(n)) parts, where S(n) is the size of the data 
structure; 

3. each query passes through at most g(n) parts; 

4. the amortized number of parts through which an update passes 

is at most h(n). 

We have considered two types of partitions. The first type are the 

restricted partitions. These have been studied in Sections 4.1, 5.1 and 

133
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6.3. For such partitions, we have proved lower bounds that match with 

the best upper bounds. The best results are: 

1. An (O(n(logn)4~?), 4 log* n + O(1), log* n + O(1))-partition, see 
Theorems 4.1.4 and 5.1.3. This partition is optimal, see Theo- 

rem 6.3.1. 

2. An (O(n(logn)*?(log)*n), 2k — 1, k + o(1))-partition, see Theo- 
rems 4.1.6 and 5.1.5. Here, & is a fixed parameter. This partition 

is optimal, see Theorem 6.3.2. 

General partitions have been studied in Sections 4.3, 4.4, 5.3 and 

6.4. In Theorem 5.3.2, the most general result is given, which is a 

partition into parts of size 

re) (neta) x (log n)te-Hi(+a-1)) . 

such that the amortized number of parts through which an update 

passes is at most 

k+d—-1 _ tia d-1 ( 1 ) +o) = Gat +0 (A ), 

and the number of parts through which a query passes is at most 

d −−⋅ − jd 

e (oR *) (AP? ) pari Fete are o(H), 
i=0 ⋅ 

where ¢ is the number of answers to the query. Here, k is a fixed 

parameter. The asymptotic terms O(k*~') are valid for fixed d and 
k > c. 

The best lower bound for general partitions is given in Theorem 6.4.2, 

which states that if we partition a range tree into parts, such that each 

update passes through at most h(n) parts, there must be a part of size 

at least ; 

2 (2) 11/6) dog nyt, 
d! \ h(n) 

In Sections 4.2 and 5.2 we have shown, that it is useful to change 

range trees, to get new data structures for the range searching problem,
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for which more efficient (restricted) partitions exist. These new struc- 
tures have the same performances as ordinary balanced range trees. 

In the two-dimensional case, this leads to a data structure—of size 

O(nlogn)—for which an (O(n), 3, 2 + o(1))-partition exists. See The- 
orem 4.2.2. The general result is given in Theorem 5.2.2: A partition 

of a d-dimensional structure of size O(n(logn)*~!), into parts of size 
O(n), such that an update passes, amortized, through at most 

Clee 
parts, and a query passes through at most 

+ o(1), (n + oo) 

1+ 24(log n)!(4-0)/21 

parts. (This latter bound is very pessimistic. See the remark after 

Theorem 4.2.2.) 

Note that the lower bounds do not apply for these new structures, 

since they do not have the form of a range tree. (Several of the associ- 
ated structures are omitted.) 

In all partitions, we have used asymptotic estimates to express the 

size of the parts, whereas in the lower bounds we have also given the 

constant factors. Of course, it is possible to compute the constant 

factors in the estimates of the size of the parts. The details, however, 

become very tedious. Furthermore, such computations will not give 

additional insight in the nature of the partition schemes. 

Note that in most lower bounds, the constant factor 1/d! appears. 

Therefore, one might think that for large values of d, these bounds are 

not very useful. Monier [34], however, has shown that the constant 
factors that occur in the complexity of algorithms that use Bentley’s 

multi-dimensional divide-and-conquer technique—and range trees in- 

deed use this technique—are proportional to 1/(d— 1)!. 

We finish this chapter with some open problems and directions for 

future research. 

For the general partitions, the upper and lower bounds are still 

reasonably far apart. In the two-dimensional case, the best result is
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a partition into parts of size O((nlogn)?/“t), such that an update 
passes, amortized, through at most k(k + 1)/2 + o(1) parts, and a 
query passes through at most 2k? — 2k + 2t parts, if ¢ is the number of 

answers. (See Theorem 4.4.2.) Compare this to the best lower bound— 
see Theorem 6.4.2—which says that if a two-dimensional range tree is 

partitioned such that each update passes through at most k(k + 1)/2 
parts, there must be a part of size Q(n?/@@+)) x logn). It would be 
interesting to close the gap between these bounds. Another interesting 

problem is to decrease in the just mentioned partition the term 2¢ in 

the number of visited parts for a query. In this partition, all reported 

answers can be situated in different parts. Maybe it is possible to dis- 

tribute the points over parts, of size say f(n), such that only O(t/f(n)) 
parts are needed to report ¢ answers. In fact, Corollary 4.3.1 shows that 

for k = 2, this is indeed possible. 

We mentioned already that the techniques for restricted partitions 

of Sections 4.1 and 5.1, also apply to many more data structures having 

the form of an augmented binary tree, with some reasonable proper- 

ties of the query and update algorithms. Examples are segment trees 

(see [47]), structures solving order decomposable set problems (see Sec- 
tion 2.5), and structures for adding range restrictions to searching prob- 

lems (see [5, 66]). An interesting direction for research is to identify 
the basic properties such structures should have, in order that the tech- 

niques apply. In this way, it might be possible to design partitions for 

a (maybe very general) class of data structures. 

A more general problem is to design partition techniques for other 

data structures, or for special classes of data structures. For many data 

structures that are based on tree structures, the techniques presented 

here will be applicable. So data structures that are not based on trees 

seem especially interesting. 

We saw one application of the partitioning problem: Solutions can 

be applied for maintaining the structure in secondary memory in case 

it is too large to be stored in main memory. The partitions as we 

considered them can also be applied to the reconstruction problem of 

Part III. There, we can maintain a copy of the data structure—which 

itself is stored in main memory—in secondary memory. In this way we 

can reconstruct the structure in case the information in main memory 

is destroyed. Another application is in the area of parallel algorithms.
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Here we partition a data structure into parts, and we distribute the 

parts among a number of processors. Clearly, this leads again to the 

partitioning problem. In this application, however, the partition should 

satisfy other constraints, since we want the amount of parallelism to 

be as large as possible. So one could study this type of partitioning 

problems for different kinds of data structures. In [24], the idea of 
using a partitioned range tree on a parallel computer is already ap- 

plied. Finally, one could search for other applications of partitioned 

data structures. 
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Chapter 8 

The reconstruction problem 

8.1 Introduction 

In this part we study the reconstruction problem for dynamic data 

structures, which is a special instance of the general problem of main- 

taining multiple representations of data structures. In the reconstruc- 

tion problem, we have to design for a given searching problem, a dy- 

namic data structure solving this searching problem, together with a 

shadow administration from which the data structure can be recon- 

structed in case of calamity. This shadow administration is stored in 

secondary memory, whereas the data structure itself is stored in main 

memory. 

In this way, we have a multiple representation of the data. There is 

one data structure—stored in main memory—that stores the data, and 

on which queries and updates are performed. In secondary memory the 

data is represented by a shadow administration on which only updates 

are performed. We study how to organize this shadow administration 

for several types of searching problems, what type of information has 

to be stored in the shadow administration such that the data structure 

can be reconstructed fast, and how to update it efficiently. 

Clearly, we can solve the reconstruction problem by maintaining 

in secondary memory a copy of the data structure. Therefore, the 

techniques of Part II can be used here. We will see, however, that 

there are much more efficient techniques to solve the reconstruction 
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problem. In fact, we have added more degrees of freedom, compared 

to the problem in Part II: The shadow administration should be a 

structure from which the original data structure can be reconstructed; 

it does not have to be an exact copy of this structure. Moreover, no 

queries have to be performed on it. Therefore, we can design a shadow 

administration that can be maintained—in secondary memory—more 

efficiently than the copy of the data structure. In this way, we get 

for example a very efficiently maintainable shadow administration for 

a two-dimensional range tree. (See Theorem 9.3.3.) 

The reconstruction problem first appeared in a paper by Torenvliet 

and van Emde Boas [61]. In this paper, the reconstruction and opti- 
mization of trie hashing functions are investigated. No other papers 

concerning the reconstruction problem have appeared. 

In the next section, we introduce a general framework in which we 

describe solutions to the reconstruction problem. We use the Random 

Access Machine as our model of main memory. For secondary memory, 

we take the Indexed Sequential Model, as described in Section 2.6. In 

Section 8.3, we give some basic solutions to the reconstruction problem. 

In Chapter 9, we give some general techniques that apply to large 

classes of searching problems. 

In Chapter 10, we consider a particular searching problem: The 

union-find problem. We design an efficient main memory data struc- 

ture, that has a worst-case single operation complexity that is lower 

than the best previously known complexity. This new structure is de- 

signed in such a way that a copy of it can efficiently be maintained in 

secondary memory. 

In Chapter 11 we apply the ideas of deferred data structuring— 

due to Karp, Motwani and Raghavan [28, 35]—to the reconstruction 

problem. We first show that static deferred data structures can often 

be dynamized using well-known techniques. Then we use the dynamic 

deferred structures to get a new approach for solving the reconstruction 

problem. 

Note that Chapters 10 and 11 contain results that are also interest- 

ing in other areas besides the reconstruction problem. 

In Chapter 12, we give a summary of the most important results.
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8.2 The general framework 

To study and analyze solutions to the reconstruction problem, we use 

the following conceptual model. We remark here that this is not the 

best way of implementing the techniques. Our approach is easy to 

analyze and does not increase the complexity in order of magnitude. 

We store the following information: 

e DS is a dynamic data structure, stored in main memory. 

e SH isa shadow administration, from which the data structure DS 

can be reconstructed. This shadow administration is also stored 

in main memory. 

e In secondary memory, we store a copy CSH of the shadow ad- 

ministration SH. 

e Finally, there is extra information INF, that is used to update 

the shadow administration SH and its copy CSH. This extra 

information is not needed to reconstruct the data structure, and, 

hence, it may be destroyed in a system crash. Therefore, it is 

only stored in main memory. 

In practice SH often is not necessary and changes can be made 

immediately in CSH. The distinction between SH and CSH makes it 

easier to estimate time bounds. 

Let DS be a dynamic data structure, and let SH, CSH and INF 

be the corresponding additional structures. To perform an update we 

carry out the following steps: 

1. The data structure DS is updated. 

2. The structures SH and INF are updated. 

3. The copy CSH in secondary memory is updated. 

Steps 1 and 2 take place in main memory. Therefore, all standard 

operations are allowed for these two steps of the update procedure. The 

complexity of these steps is expressed in computing time.
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In step 3, data in secondary memory has to be updated. The struc- 

ture CSH is distributed over a number of blocks in secondary memory. 

After the update of SH we know which parts of CSH have to be up- 

dated. We update CSH by replacing all blocks in which some informa- 

tion has to be changed by the corresponding updated parts of SH. The 

complexity of this operation is given by the number of disk accesses 

that has to be done; the amount of transport time, which is propor- 

tional to the amount of data that is transported; and the amount of 

computing time needed to collect the information that is transported. 

This computing time is at least proportional to the transport time. 

After a system crash, or as a result of program errors, the contents 

of main memory (i.e., DS, SH and INF) will be destroyed. To re- 
construct the structures, we transport the copy CSH of the shadow 

administration to main memory. This copy takes over the role of the 

destroyed shadow administration SH. Then we reconstruct from SH 

the structures DS and INF. After the reconstruction, we proceed with 

query answering and performing updates. 

The reconstruction procedure takes a number of disk accesses, O(S.csy(n)) 
transport time, where Scgyz(n) is the size of CSH, and an amount of 
computing time. 

In most cases, the copy CSH of the shadow administration is stored 

in secondary memory in consecutive blocks, always starting at the same 

block. This block is called block 0. We assume that the system knows 

the address of block 0; it is not destroyed in a system crash. Then, 

the number of disk accesses in the reconstruction procedure is equal to 

one. (In Section 9.3, we have a situation where CSH does not always 
start at the same block, and where the number of disk accesses for 

reconstruction is greater than one.) 

An important issue in the reconstruction procedure is how we store 

the copy CSH in main memory. Note that data structures contain 

pointers, which we consider to be indices of memory locations. In or- 

der to guarantee that these pointers “point” to the correct objects, each 

indivisible piece of information of CSH should be stored in exactly the 

same location in main memory as its corresponding piece of SH was, 

before the information was destroyed. In general, this is not possible,
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because the crash may also have destroyed physical parts of main mem- 

ory where the information was stored. In this case, we can of course 

store the information in another part of main memory, in such a way 

that all addresses are shifted by the same amount. 

We assume for simplicity, however, that a crash only destroys the 

pieces of information; the memory locations themselves are not de- 

stroyed. Hence these locations can be used after the crash to store 

information again. 

We store in secondary memory with each piece of information of 

CSH, the address of its corresponding piece in main memory. In this 

way, the size of the structure CSH is at most twice as large as the 

size of SH. Note that now the structure CSH is not an exact copy, 

since it contains more information. To reconstruct the structures, we 

transport CSH to main memory, and we store the information in the 

same positions as SH was, using the addresses. Then all pointers indeed 

have the correct meaning, and we can reconstruct DS and INF. It 

follows that the computing time needed to reconstruct the structures is 

Q(Scsz(n)), since in main memory an amount of Scsy(n) information 
has to be written in the correct positions. 

We have introduced a multiple representation of the data: The set 

of objects for which we want to solve the given searching problem is rep- 

resented by several cooperating structures, each having its own task. 

The data structure DS has to maintain the set of objects, in order 

that queries can be performed on it. Hence, on DS, all operations (i.e., 

queries, insertions and deletions) are performed. On the structures SH, 

CSH and INF, only insertions and deletions are carried out. The struc- 

ture INF is used to update SH and CSH. The structure SH is used to 

update CSH. Finally, the task of CSH is to maintain information to 

reconstruct the other structures. 

In this part of the thesis, we use the following notations to denote 

the complexity of the structures. For the data structure DS, we use 

the usual notations P(n), S(n), Q(n), I(n), D(n) and U(n) without 
subscripts. See Section 2.1. The complexity of the additional structures 

SH, CSH and INF is denoted by: 

e S’(n): the total amount of space required by the additional struc-



146 8. The reconstruction problem 

tures. 

e P,(n), P:(n) and P.(n): the number of disk accesses (seeks), the 
transport time and the computing time, respectively, needed to 

build the additional structures. 

e I,(n), I,(n) and I,(n): the number of disk accesses, the transport 
time and the computing time, respectively, needed to insert an 

object into the additional structures. 

e D,(n), D,(n) and D,(n): the number of disk accesses, the trans- 
port time and the computing time, respectively, needed to delete 

an object from the additional structures. 

e If the insert and delete complexity measures are equal, we denote 

the common update complexity by U,(n), U:(n) and U,(n). 

e F,(n), Ri(n) and R,(n): the number of disk accesses, the trans- 
port time and the computing time, respectively, needed to recon- 

struct the structures DS, SH and INF from the structure CSH 

that is stored in secondary memory. 

Note that P,(n) = O(Sesx(n)), Ri(n) = O(Sesu(n)) P.(n) = 

Q(Sesu(n)) Re(n) = Q(Scsu(n)), Ie(n) = OUe(n)) and D-(n) = Q(D,(n)). 
If the copy CSH is stored in consecutive blocks, then P,(n) = 1. 

We assume that all these complexity measures are smooth and non- 

decreasing. We also assume that S’(n)/n, P.(n)/n and R,(n)/n are 
non-decreasing. 

8.3. Some basic solutions 

8.3.1 <A low storage shadow administration 

Let DS be a dynamic data structure, representing a set V of n objects. 

We assume that the set V is a subset from some ordered universe. 

Clearly, if we keep in secondary memory the objects of the set V, we 

have enough information to reconstruct the data structure DS. 

Let V = {p. < po <...< pp} be the ordered set of objects. Divide 

secondary memory in blocks, such that each block can contain b objects.
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We partition V into subsets V, = {p1,..-, Dojo}, Vo = {Poa4is-++> Pots 

etc. 

The shadow administration: The structure SH consists of a 

linked list, containing the objects of V in sorted order. Each node 

in this list contains a pointer to its successor. The structure CSH is a 

copy of SH. We store CSH in secondary memory in consecutive blocks, 

starting at block 0: Each sublist containing a V; is stored in one block. 

Note that a pointer in CSH “points” to a successor in main memory. 

So in secondary memory, the pointers in CSH have no meaning. With 

each indivisible piece of information of CSH, we store the address of 

the corresponding piece of SH. Finally, we store in main memory at 

the end of each sublist that contains a V;, the address in secondary 

memory of the block containing this sublist, and we maintain in main 

memory the address of the block at the end of the file. 

The structure INF is a balanced leaf search tree, containing in its 

leaves the elements of V in sorted order. Each leaf of this tree—storing, 

say, object p—contains a pointer to object p in the list SH. 

The insert algorithm: Suppose object p is to be inserted into the 

set V. Then we insert p into the tree INF. This gives us the position in 

SH where p has to be inserted. Next p is inserted in the list SH. Let V; 

be the subset of V into which p is inserted. There are two possibilities. 

(i) After the insertion, the set V; contains less than b objects. In 

this case, we replace the block in secondary memory, containing the old 

V;, by a block containing the updated V;, together with their addresses 

in main memory. (We know the address of this block, by walking to 

the end of the sublist that contains V;.) Also, we add in INF the 
information about the position of p in SH. If p is at the end of its 

sublist, we store in this sublist—in main memory—the address of the 

block in secondary memory that contains the copy of this sublist. If p 

is at the beginning of its sublist, we replace in secondary memory the 

predecessor block of V;—the address of which we find by searching in 

INF the predecessor q of p, and by following the pointer to q in the 

list SH—by a block storing the same information, except that the last 

object of the sublist contains a pointer—which is an address in main 

memory—to p.
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(ii) After the insertion, V; contains 6 objects. Then we split V; in 
two subsets Vj, and Vj2, both of cardinality b/2, such that the objects 

in Vj, are less than those in Vj2. We store the part of the list containing 

Vj, in the block containing the old V;. The part of the list containing Vj2 

is stored in a new block at the end of the file. (We know the address 
of the end of the file.) Then, the addresses in secondary memory of 

the blocks containing V;, and Vj2 are inserted at the end of the (main 

memory) sublists V;,; and Vj2. We also maintain in main memory the 

address of the new block at the end of the file. Again if p is the first 

element of V;,, we replace the predecessor block of V;; by a block storing 

the same information, except that the last object of the sublist contains 

a pointer to p. 

The delete algorithm: Suppose object p is to be deleted from the 

set V. Then we delete p from the tree INF. This gives us the position 

in SH where p has to be deleted. Next we delete p from the list SH. 

Let i be the index of the subset from which p is deleted. Again there 

are two possibilities. 

(i) After the deletion, V; contains more than b/4 objects. Then we 
proceed in a similar way as we did in case (i) of the insert algorithm. 

(ii) After the deletion, V; contains < b/4 elements. First suppose 
that V; does not contain the smallest elements of V. Then there is a 

predecessor sublist V;_1. In this case we merge V;_; and V; into a new 

subset V;, and the old Vj_; is discarded. If the resulting V; contains 

at least b objects, we split it in two equal sized sets V;_1 and V;. The 

part of the list containing V;_, resp. V; is stored in secondary memory 

in the block containing the old V;_, resp. V;. (Using the tree INF, 

we can find the address of the block containing the old Vj;_,.) If the 
resulting V; contains less than b elements, we store the list containing 

V; in secondary memory in the block containing the old V;. In order 

to avoid gaps in secondary memory, the block at the end of the file 

is moved to the block containing the old V;_,. Of course, information 

about the new addresses of the moved blocks is inserted in the list SH, 

and we store in main memory the address of the new block that is at 

the end of the file. Note that if p was the first element of the sublist, 

its predecessor—say g—was in V;_;. Hence no extra disk access is 

necessary for giving g a pointer to its new successor. If V; contains the
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smallest elements of V, we merge V; and V;,, and proceed in a similar 

way. 

The reconstruction algorithm: To reconstruct the structures, 

we transport CSH to main memory. We use the addresses stored in 

CSH to store the information in the same positions as it was in the 

destroyed list SH. Then C'SH can take over the role of the destroyed 

SH, and we build the data structure DS and the tree INF from the 

objects in the ordered list. 

Theorem 8.3.1 Let DS be a data structure that can be built from an 

ordered set of n objects in P,(n) time. There exists a shadow adminis- 
tration for DS, with performances: 

1. S'(n) = O(n). 

2. U,(n) < 3, Uz(n) = O(b) and U.(n) = O(logn +6), where b is the 
number of points that can be stored in one block. 

8 R,(n) =1, R(n) = O(n) and R.(n) = O(n+ P,(n)). 

Proof. It is clear that the total amount of space required by the 

additional structures SH, CSH and INF is bounded by O(n). 
The insert algorithm takes O(log n) computing time for the insertion 

of p into the structures INF and SH. It takes O(logn + b) computing 
time to find the addresses of the blocks in secondary memory that have 

to be updated. The update of the structure in secondary memory takes 

at most 3 disk accesses, an amount of O(b) computing time, and at 

most 3 blocks of data transport. Note that in most cases only one disk 

access and one block of data transport are necessary. The complexity 

of a deletion follows in the same way. 

The reconstruction algorithm takes one disk access, O(n) transport 
time and O(n + P,(n)) computing time. Here, the number of disk 
accesses is equal to one, because the copy C'SH is stored in consecutive 

blocks, always starting at block 0. Note that we assume that the system 

knows the address of block 0; this address will not be destroyed. O 

This technique is especially efficient if the preprocessing algorithm 

of the data structure DS consists of two phases. In the first phase we
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order the objects in O(nlogn) time. Then, in the second phase, the 
actual building of the structure is done. For such data structures, we 

save O(nlogn) computing time in the reconstruction algorithm. 
As an example, consider the case where DS is a range tree with a 

slack parameter, as introduced by Mehlhorn [33]. 

Definition 8.3.1 Let & be a positive integer, and let V be a set of n 

points in the plane. A range tree with slack parameter k, representing 

the set V, consists of the following. There is a BB[a|-tree T that 
contains in its leaves the elements of V, ordered according to their z- 

coordinates. Each node v of JT, that has a distance to the root of T 

which is a multiple of k, contains (a pointer to) a BB[a]-tree, that stores 
in its leaves the subset of V represented by node v, ordered according 

to their y-coordinates. 

Note that the BB[a]-range tree as introduced in Section 2.3 is in 
fact a range tree with slack parameter one. The complexity of these 

more general range trees is given in the following theorem. 

Theorem 8.3.2 A range tree with slack parameter k, representing a 

set V of n points in the plane, has performances: 

1. S(n) = O((nlogn)/k). 

2. P(n) = O(nlogn) + O((nlogn)/k) = O(nlogn). Here the first 
term is the time required to order the points of V according to their 

y-coordinates, whereas the second term is the actual building time 

of the structure. 

3. The amortized update time is bounded by O((logn)?). 

4. Orthogonal range queries can be solved in time O((log n)?2*/k+t), 
where t is the number of reported answers. 

Proof. The tree T has size O(n). There are O((logn)/k) levels in T, 
the nodes of which contain associated structures. For each of these lev- 
els, the associated structures on that level together have size O(n). It 
follows that the entire data structure has size O((n logn)/k). The proof 
of the building time follows in a similar way as in Section 2.3. A range
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tree with a slack parameter is a BB/a]-range tree where several associ- 
ated structures are omitted. Therefore, the amortized update time for 

this type of range trees cannot be larger than that of a normal range 

tree. Hence, the bound on the update time follows from Section 2.3. 

The proof of the query time can be found in [33]. 0 

It follows from this theorem, that by maintaining in secondary mem- 

ory the points of the set V ordered according to their y-coordinates, we 

save O(nlogn) computing time in reconstructing the data structure. 

Therefore, we take for the range tree the shadow administration given 

above. 

Theorem 8.3.3 For a range tree with slack parameter k, there exists 

a shadow administration with performances: 

1. S'(n) = O(n). 

2. U,(n) < 3, U,(n) = O(b) and U.(n) = O(logn +), where b is the 
number of points that can be stored in one block. 

3. R,(n) =1, R,(n) = O(n) and R.(n) = O((nlogn)/k). 

Proof. This follows from Theorems 8.3.2 and 8.3.1. O 

Take for example the slack parameter & = [loglogn]. Then the 

range tree has size S(n) = O((nlogn)/loglogn), whereas the shadow 
administration has size only O(n). So the size of the additional struc- 
tures is asymptotically less than that of the data structure itself. Also, 

reconstruction of the range tree takes O((n log n)/ log log n) computing 
time, which is asymptotically less than the preprocessing time of the 

range tree. 

8.3.2 Other basic solutions 

Let DS be a dynamic data structure of size S(n). We can solve the 
reconstruction problem by maintaining in secondary memory a copy of 

DS. In that case we do not need the structures SH and INF, and CSH 

is a copy of DS. We partition the structure DS into a number of parts. 

Then, CSH is stored in secondary memory by putting the copy of each
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part of the partition in one block. With each piece of information, we 

store in secondary memory the address of the corresponding piece in 

main memory. In main memory, we record for each part of the parti- 

tion the address of the block in secondary memory containing its copy. 

After an update of the data structure DS, the copy CSH is updated 

by replacing all parts of the partition in which some information has 

changed. Obviously, the complexity of an update heavily depends on 

the way the structure DS is partitioned. 

Reconstruction of the data structure DS takes one disk access and 

O(S(n)) transport and computing time: We only have to transport the 
structure CSH to main memory and put the information in the correct 

positions. 

This way of solving the reconstruction problem is studied further in 

Chapter 10, where a copy of a Union-Find data structure is stored in 

secondary memory. The techniques of Part II, where we investigated 

the problem of maintaining a range tree in secondary memory, also 

apply here. 

Another basic solution is the following. Let DS be a dynamic data 

structure of size S(n), having an update time U(n). Let CSH consist of 
a copy of DS. Again, we do not need the structures SH and INF. We 

store the copy C'SH in secondary memory in a number of consecutive 

blocks, starting at block 0. With each piece of information, we store 

in secondary memory the address of the corresponding piece in main 

memory. Let n be the initial number of objects that are represented 

by DS. 

The update algorithm: An insertion or deletion of an object 

p is performed in the main memory structure DS. Then we store p, 

together with information whether it has to be inserted or deleted, in 

secondary memory in a block of constant size at the end of the file. So 

the structure CSH itself is not affected. 

After S(n)/U(n) updates have been performed in this way, we trans- 
port a copy of the up-to-date data structure DS to secondary memory, 

where it replaces the old information. (The old copy CSH and the se- 

quence of S(n)/U(n) updates are discarded.) Then we proceed in the 
same way, now with a sequence of S(m)/U(m) updates, where m is the
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number of objects at this moment. 

The reconstruction algorithm: To reconstruct the data struc- 

ture DS, we transport the information to main memory, and we store 

the structure CSH in the correct positions. Then we perform the se- 

quence of at most S(n)/U(n) updates to make the structure up-to-date. 

Theorem 8.3.4 Let DS be a dynamic data structure of size S(n), hav- 
ing an update time U(n). There exists a shadow administration for DS, 
with performances: 

1. S'(n) = O(S(n)). 

2. U,(n) = 1, and the amortized values of U;(n) and U.(n) are both 
bounded by O(U(n)). 

3. R,(n) =1, R(n) = O(S(n)) and R,(n) = O(S(n)). 

Proof. We first prove that S(n) < n x U(n): The data structure 
DS can be built by performing n insertions into an initially empty 

structure. In this way we spend an amount of time that is bounded 

above by U(1) + U(2) +---+U(n) < nx U(n). (This inequality holds 
because we assume our complexity measures to be non-decreasing.) 

During these insertions we have built a structure of size S(n), and, 
hence, we have spent at least S(n) time. Therefore, S(n) <n x U(n). 

The given update procedure of the shadow administration takes one 

disk access, and an amortized transport and computing time that are 

bounded by 

S(m) 
o(+ aH 

Clearly, m < n+ S(n)/U(n). We saw that S(n) < n x U(n). 
Therefore, m < 2n. Since we assume our complexity measures to be 

smooth, we have S(m)/S(n) = O(1). Hence, the amortized transport 
and computing time of the shadow administration are both bounded 

by O(U(n)). 
The size of the shadow administration is bounded by O(S(n)) for 

the structure CSH, and O(S(n)/U(n)) for the sequence of updates. So 
in total, we need O(S(n)) space in secondary memory.
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The reconstruction algorithm takes one disk access, O(S(n)) trans- 
port time and an amount of computing time. To store the informa- 

tion in the correct positions takes O(S(n)) computing time. The fi- 
nal updates take an amount of computing time that is bounded by 

(S(n)/U(n)) x U(n'), where n’ is the maximal number of objects that 
are represented by DS during these updates. In the same way as above, 

we have n’ < 2n. Since our complexity measures are smooth, the final 

updates take O(S(n)) computing time. Hence the amount of computing 
time in the complete reconstruction algorithm is bounded by O(S(n)). 
O 

In this theorem, the update time bounds are amortized. It is possi- 

ble to turn these bounds into worst-case bounds. Then, the number of 

disk accesses for an update increases to 2. We do not prove this here, 

because in Section 9.3 we give a general worst-case technique that gives 

an even better result.
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General approaches 

9.1 Order decomposable set problems 

For the data structures solving order decomposable set problems, as 

defined in Section 2.5, efficient shadow administrations can be con- 

structed. 

Let PR be an M(n)-order decomposable set problem, and let V be 
a set of cardinality n, for which we want to solve PR. As in Section 2.5, 

we assume that the answer PR(V) takes O(M(n)) space to store. (In 
the examples we consider, this is indeed the case. The assumption is, 

however, not crucial. See [41, 42].) 
Let f(n) be a smooth integer function, such that 1 < f(n) < n. 

Partition the ordered set V = {pi < po <... < Dn} into subsets Vi = 

{P1,---5Pr(n)}, Vo = {Pp(n)415-- +1 Pag(n)}, etc. Let DS be the dynamic 
data structure of Section 2.5 that maintains the answer PR(V). Recall 
that we store each set V; in a binary search tree 7;. The roots of the 

T;’s are stored in the leaves of a binary search tree T. Each node v of 

T stores the answer to PR for the subset of V represented by v. 

Consider this structure DS. Clearly, if we have all trees 7; and all 

answers PR(V;), we can build the rest of the data structure DS very 
fast: We only have to merge the answers to obtain the tree T with 

the partial answers in its nodes. This leads to the following shadow 

administration. 

The shadow administration: The structure CSH consists of the 
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trees T;, and the answers PR(V;) to the set problem PR for the subsets 
V;. Since the shadow administration consists only of parts of the data 

structure DS itself, we do not need the structures SH and INF. We 

reserve in secondary memory consecutive blocks, starting at block 0, 

such that each block can contain one answer PR(V;) and one tree T;, 
together with information about their positions in main memory, for a 

set V; of cardinality at most 2f(n). Then we store in each such block 
an answer PR(V;) and the corresponding tree T;. In the data structure 
DS' itself, we store in each leaf of the tree T—the leaves contain the 

roots of the trees T;—the address of the block in secondary memory 

that contains the corresponding structures T; and PR(V;). 

The update algorithm: If after an update the data structure is 

not rebuilt, only one tree T; and one answer PR(V;) will have changed 
and, hence, have to be transported to secondary memory. Note that 

we know from the update of the data structure, which 7; and which 

PR(V;,) are changed. Also we know the position in secondary mem- 
ory where these changed structures have to be written. Otherwise, if 

the data structure is rebuilt, we just transport the entire new shadow 

administration to secondary memory. 

The reconstruction algorithm: To reconstruct the data struc- 

ture, we transport the shadow administration to main memory, and we 

put all information in the correct positions. Then we rebuild the tree 

T that stores the partial answers in its nodes, by merging the partial 

answers in a bottom-up fashion: For each node v, we copy the answers 

stored in its two sons, and we merge them to obtain the answer for v. 

This leads to the following theorem. See Section 2.5 for the nota- 

tions. 

Theorem 9.1.1 Let f(n) be a smooth integer function, 1 < f(n) <n. 
For the data structure DS, solving an M(n)-order decomposable set 

problem, there exists a shadow administration, with performances: 

1. S'(n) = O(n + (n/f(n)) x M(F(n))). 

2. U;(n) = 1 and the amortized values of U.(n) and U;,(n) are both 

bounded by O(f(n)+M(f(n))+n/f(n)+(n/(F(n))?) x M(f(n))).
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8 R.(n) = 1, Ri(n) = O(n + (n/f(n)) x M(f(n))) and R,(n) = 

O(n + M'(n)). 

Proof. The trees T; together have size O(n). Because of our assump- 
tion, the answers PR(V;) together have size O((n/f(n)) x M(f(n))). 
This proves the bound on S"(n). 

If the data structure is not rebuilt, only one tree J; and one answer 

PR(V;) are transported to secondary memory in an update. These two 

structures T; and PR(V;) are stored in one block. So in that case, 
the update of the shadow administration takes one disk access and 

O(f(n)+M(f(n))) transport and computing time. If the data structure 
is rebuilt, the entire file in secondary memory is also rebuilt. This takes 

one disk access and O(S’(n)) transport and computing time. This 
happens, however, at most once every 2(f(n)) updates. This leads to 
the bounds on the amortized update time. 

Consider the reconstruction algorithm. It takes one disk access and 

O(S'(n)) transport and computing time to transport the shadow ad- 
ministration to main memory, and to put all information in the correct 

positions. The rebuilding of the tree T together with its partial answers 

takes O(M'(n)) computing time. Since (n/f(n)) x M(f(n)) < M'(n), 
the reconstruction computing time is bounded by O(S’(n) + M’(n)) = 
O(n+ M'(n)). O 

Now consider an O(n)-order decomposable set problem. Let f(n) = 
[n/logn]. Then, by Corollary 2.5.1, there exists a dynamic data 
structure for this problem, with performances S(n) = O(nloglogn), 
P(n) = O(nlogn), Q(n) = O(1), and U(n) = O(n), where the latter 
bound is amortized. Theorem 9.1.1 leads to 

Theorem 9.1.2 For the data structure solving an O(n)-order decom- 
posable set problem, there exists a shadow administration with perfor- 

mances: 

1. S'(n) = O(n). 

2. U,(n) = 1 and the amortized values of U.(n) and U;,(n) are both 
bounded by O(n/logn). 

3. R,(n) =1, R,(n) = O(n) and R.(n) = O(nloglog n).
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So again we have an example where the size of the shadow admin- 

istration is asymptotically less than that of the data structure itself. 

Also, the reconstruction computing time is asymptotically less than 

the building time of the data structure. 

An example of an O(n)-order decomposable set problems is the 3- 
dimensional convex hull problem: Two 3-dimensional convex hulls that 

are separated by a plane can be merged in linear time. See Preparata 

and Hong [46]. References to other examples have been given in Sec- 
tion 2.5. 

9.2 Decomposable searching problems 

As mentioned already in Section 2.4, there exist several techniques 

to dynamize static data structures that solve decomposable searching 

problems. Many of these techniques can be generalized to shadow ad- 

ministrations. We illustrate this by Bentley’s logarithmic method, that 

was given in Section 2.4. In [56], other generalized techniques can be 
found. 

Let DS be a static data structure for the decomposable searching 

problem PR. Let SH, CSH and INF form a shadow administration for 

DS. Note that we assume that S(n)/n, S’(n)/n, P.(n)/n and R,(n)/n 
are non-decreasing. Also we assume that the structure SH is not par- 

titioned into parts. The reason for this latter assumption will be clear 

later. 

The logarithmic method: Let V be a set of n objects, for which 

we want to solve the problem PR. As in Section 2.4, we write n in the 

binary number system, i.e., n = Yjs9 a;2", where a; € {0,1}. Then we 

partition the set V into subsets Vo, Vi, Vo, etc., such that either V; is 

empty or |V;| = 2°. 
Our semi-dynamic data structure DS’ consists of static structures 

DS; of type DS, one for each non-empty set V;. The insert algorithm 

and the complexity of DS’ are given in Section 2.4. 

The shadow administration we make for this semi-dynamic data 

structure DS’ looks as follows. For each non-empty set V; we make a 

shadow administration SH;, CSH; and INF ;. The structures CSH; are
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stored in secondary memory in consecutive blocks, starting at block 0, 

in decreasing size. That is, the file in secondary memory contains (in 

this order) the copy CSH; representing the largest non-empty set Vj, 

then the copy CSH; representing the second largest non-empty set Vj, 

etc. At the end of the file, the copy CSH; representing the smallest 

non-empty set Vj; is stored. As usual, we store in secondary memory 

with each piece of information the address of the corresponding piece 

in main memory. Also we store in main memory for each structure SH; 

the address of the beginning of its copy CSH;. 

The insert algorithm of the shadow administration: Suppose 

we insert object p into the set V. Let 7 be the minimal index for which 

a; = 0. We discard the structures SH; and INF; for 7 =0,1,...,7—1. 

Let Vi = VoUVYU...U V1 U {pp}; Vo = Me... = Vin c= 0. 
Note that |V;| = 2°. We build additional structures SH; and INF; 
for this new set V;. Then we transport a copy CSH; of the resulting 

structure SH;, together with the main memory addresses, to secondary 

memory. This copy is stored in the blocks containing the copies for the 

old sets Vo, Vi, ..., Vj-1-—which are stored at the end of the file—and 

in some new blocks at the end of the file. (Since we transport a copy 

of the entire structure SH; to secondary memory, there is no reason to 

partition it into parts. This explains why we assumed that the shadow 

administration SH is not partitioned.) 

The reconstruction algorithm: To reconstruct the structures, 

we transport the copies CSH; to main memory, and we store the infor- 

mation in the correct positions. Then each copy C'SH; takes over the 

role of the destroyed SH;, and we reconstruct the structures DS; and 

INF;. 

The following theorem gives the complexity of the shadow admin- 

istration for DS". In this theorem, S’(n), P.(n) and R,(n) denote the 
complexity of the structures SH, CSH and INF. 

Theorem 9.2.1 For the semi-dynamic data structure DS", solving a 

decomposable searching problem, there exists a shadow administration, 

with performances:
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1. The storage is bounded by O(S'(n)). 

2. An insertion takes one disk access; an amortized transport time of 

O(S'(n)/n) if S'(n)/n!*¢ is non-decreasing for some € > 0, and 
O((S'(n)/n) x log n) otherwise; and an amortized computing time 
of O(P.(n)/n) tf P.(n)/n't* is non-decreasing for some € > 0, and 
O((P.(n)/n) x log n) otherwise. 

3. Reconstruction takes one disk access, O(S'(n)) transport time, 
and O(R,(n)) computing time. 

Proof. The storage required by the additional structures is bounded 

by 

i>0 
O (= ay 0) =O (= a2! s/n) = O(S"(n)); 

since we assumed that S’(n)/n is non-decreasing. Reconstruction takes 

one disk access, O(S"(n)) transport time, and 59 a;R,(2') = O(R-(n)) 
computing time. So we are left with the insertion time. The given insert 

algorithm takes one disk access, O(S’(2')) transport time and O(P,(2')) 
computing time, for some integer 7, 0 <7 < logn. We derive an upper 

bound on the amortized insert complexity. 

Suppose we start with an empty set V, and consider a sequence of 

n insertions. Let n; be the number of times that additional structures 

for a set of cardinality 2¢ are built. Each object is built at most once in 

a structure representing 2’ objects. (With an insertion, an object in set 

V;, 0 <j <i, moves to V;, which has a higher index). Hence 2'n; < n. 
So the total transport time required for these n insertions is bounded 

by 

O (s ny sa) =O (> > sia ⋅ 

We have proved that the amortized transport time for an insertion 

is bounded by O(37°3" $"(2*)/2°). {From this it is easy to prove the 
bounds claimed in the theorem. In the same way, it can be shown 

that the amortized computing time for an insertion is bounded by 

O( 28)" P.(2*)/2). This completes the proof. O
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As an illustration of the logarithmic method, let PR be the or- 

thogonal range searching problem in the plane, which is indeed de- 

composable. In Theorem 8.3.2, we saw that there is a data struc- 

ture DS for this problem—a range tree with slack parameter kK—with 

performances P(n) = O(nlogn), S(n) = O((nlogn)/k) and Q(n) = 
O((logn)?2*/k). Now apply Theorem 2.4.1. Then we get a semi- 
dynamic data structure DS", with performances S(n) = O((nlogn)/k), 
Q(n) = O((logn)32*/k), and I(n) = O((logn)?), where the latter 
bound is amortized. 

The shadow administration SH for the data structure DS consists of 

an array that contains the points represented by DS ordered according 

to their y-coordinates. The copy CSH of the structure SH is stored in 

secondary memory as one part. We do not use a structure INF. 

The complexity of these additional structures is given by S’(n) = 
O(n), P.(n) = O(nlogn) and R,(n) = O((nlogn)/k), where the bound 
for R.(n) follows from Theorem 8.3.2. 

Now apply Theorem 9.2.1. Note that if we build a shadow admin- 

istration of size 2° after an insertion, we merge sorted arrays of size 

2°,2',...,2*-1. This merging can be done in O(2*) time. Therefore, 
we may apply Theorem 9.2.1 with P.(n) = O(n). This leads to the 
following theorem. 

Theorem 9.2.2 For the semi-dynamic data structure DS", solving the 

orthogonal range searching problem in the plane, there exists a shadow 

administration, with performances: 

1. The storage is bounded by O(n). 

2. An insertion takes one disk access, and an amortized transport 

and computing time of O(logn). 

3. Reconstruction takes one disk access, O(n) transport time and 
O((nlogn)/k) computing time. 

Note that in this example, the data structure DS" is less efficient 

than the dynamic version of the range tree (see Theorem 8.3.2): The 
query time increases by a factor logn. Also, no deletions are possible. 

The usefulness of the logarithmic method, however, is in the complex- 

ity of the shadow administration: An insertion requires only one disk
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access, and an amortized transport and computing time of O(logn). 

Compare this to Theorem 8.3.3, where an insertion can cost 3 disk 

accesses, but only O(1) transport time. 

9.3. A general technique 

9.3.1 Introduction 

Let DS be a dynamic data structure of size Sn), having an update time 
U(n). In Subsection 8.3.2, we gave a technique, in which we transport 

with an update the object, together with information whether it con- 

cerns an insertion or a deletion, to secondary memory. After S(n)/U(n) 
updates, we transport a copy of the up-to-date data structure to sec- 

ondary memory. In this way, the shadow administration is updated 

at the cost of one disk access and an amortized amount of O(U(n)) 
transport and computing time. 

Let C(n) denote the amount of data that is changed in DS in an 
update. Then clearly, C(n) < U(n). In this section, we reduce the 
update transport time of the shadow administration to O(C(n)). The 
idea is to transport with each update the (at most) C(n) changed entries 
in the data structure DS, together with their addresses, to secondary 

memory. These changed entries and their positions are stored in one 

block at the end of the file. To reconstruct the data structure DS, 

we transport the file from secondary memory to main memory, and we 

perform the most recent updates. Since we know the positions of the 

entries that have to be changed in these updates, together with the 

updated entries themselves, each update can be performed in O(C(n)) 
time. 

This is the main idea of the general technique of this section. In 

order to get a more general result, we apply this idea to the shadow 

administration SH, instead of to DS. 

Let DS be a dynamic data structure and let SH and INF be some 

corresponding shadow administration. We denote the size of SH by 

SsH(n), the size of INF by Siyr(n), the total update computing time 
of SH and INF by U,(n), and the computing time needed to reconstruct



9.3. A general technique 163 

the structures DS and INF from SH by R,(n). Let C(n) be the amount 
of data that is changed in an update in SH. We assume that all these 

complexity measures are smooth and non-decreasing. 

We show how to implement these structures, such that the entire 

shadow administration can be updated in two disk accesses, O(U.(n)) 
computing time and O(C(n)) transport time. These bounds are worst- 
case bounds. Also, the total size of the additional structures is bounded 

by O(Ssz(n) + Srvr(n)), and reconstruction takes three disk accesses, 
O(Ssx(n)) transport time, and O(R.(n)) computing time. This result 
is obtained in two steps. We first give an amortized solution. Then we 

turn the amortized bounds into worst-case bounds. 

We need the following lemma. 

Lemma 9.3.1 The complexity measures introduced above satisfy 

1. C(n) < U,(n). 

2. Ssu(n) <n x C(n). 

Proof. To update SH, we spend at most U,(n) time. In this update, 
the amount of data that is changed can never be greater than U,(n). 
Therefore, C(n) < U.(n). We can build the structure SH, by perform- 
ing n insertions into an initially empty structure. In this way, the total 

size of the changes is at most C(1) + C(2) +---+ C(n) <n x C(n). 
During these insertions, we have built a structure of size Ssy(n), and 
hence an amount of at least Sg7(n) data is changed. This proves that 
Ssu(n) <n x C(n). O 

9.3.2 An amortized solution 

The structures: Let m be the initial number of objects represented by 

the data structure DS. We store DS and the corresponding additional 

structures SH and INF in main memory. In secondary memory we 

store—in consecutive blocks, starting at block 0—the copy CSH of SH. 

This copy CSH contains with each piece of information the address of 

the corresponding piece in main memory. We also store in secondary 

memory an initially empty list UF. (UF stands for update file.) This 

list is positioned in the block “next to” CSH.
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The update algorithm: Consider a sequence of Sigz(m)/(2C(m)) 
updates. Each update in this sequence is performed, in main mem- 

ory, on the structures DS, SH and INF. After an update of the 

structure SH, we send the addresses of all changed entries of SH, to- 

gether with the new contents of these entries, to secondary memory. 

These changes—of total size O(C(n)), where n is the current number 
of objects—are stored in a new block at the end of the list UF. The 

structure CSH is not affected during the updates. 

After S's7(m)/(2C(m)) updates have been performed in this way, we 
transport a copy—that is called CSH again—of the up-to-date struc- 

ture SH, together with the addresses in main memory, to secondary 

memory. This copy CSH is stored in consecutive blocks, starting at 

block 0, and it replaces the old structures CSH and UF. If the size 

of the new copy CSH is less than the total size of the old CSH and 

UF, we make the blocks at the end of the file, that contain the old 

information, empty. We also initialize in secondary memory an empty 

list UF in the block “next to” the new CSH. Then we continue in the 

same way, now with a sequence of Ssy(m’')/(2C(m’)) updates, where 
m’ is the number of objects at this moment. 

The reconstruction algorithm: To reconstruct the structures, 

we transport CSH and UF to main memory, where we store CSH 

in the correct locations using the addresses. Then pointers in CSH 

indeed “point” to the correct objects. Next we carry out the at most 

Ssu(m)/(2C(m)) updates using the list UF. (This list gives us the 
addresses of the entries in CSH that have to be changed, and the new 

contents of these entries.) After these updates, the resulting structure 

CSH contains the up-to-date shadow administration. Hence it can take 

over the role of SH. Finally, we reconstruct from SH the structures DS 

and INF. Then all information is reconstructed, and we can proceed 

with answering queries and performing updates. 

Theorem 9.3.1 Let SH and INF be a shadow administration for the 

dynamic data structure DS, with complexity Ssy(n), Sinr(n), U-(n), 
R.(n) and C(n). We can implement these structures such that the 
resulting shadow administration 

1. has size O(Ssy(n) + Sivr(n)),
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2. can be updated in one disk access, an amortized computing time 

of O(U.(n)), and an amortized transport time of O(C(n)). 

The structures DS, SH and INF can be reconstructed in one disk ac- 

cess, O(Ssx(n)) transport time and O(Ssy(n)+R,(n)) computing time. 

Proof. First note that all information in secondary memory is stored 

in consecutive blocks, always starting at block 0. In particular, there 

are no gaps. Therefore, the amount of space used in secondary mem- 

ory is proportional to the total size of the structures CSH and UF. 

The size of CSH, together with the corresponding addresses in main 

memory, is equal to O(S'sy(m)), where m is the number of objects at 
the beginning of the sequence of updates. During this sequence, n— 

the current number of objects—satisfies n < m+ Ssy(m)/(2C(m)). 
It follows from Lemma 9.3.1, that n < 3m/2. Similarly, n > m/2, 
and hence n = O(m). Since our complexity measures are assumed to 
be smooth, we have C(n) = O(C(m)). Hence in each update we add 
O(C(n)) = O(C(m)) data to the list UF. It follows that the size of UF 
is bounded by (Ssz(m)/(2C(m))) x O(C(m)) = O(Ssx(m)). There- 
fore, the total amount of space used in secondary memory is bounded 

by O(Ssx(m)) = O(Ssx(n)). The amount of space used in main mem- 
ory by the shadow administration is bounded by Ssy(n) + Sivr(n). 
This proves the bound on the space complexity. 

It follows from the given algorithm that the number of disk accesses 

in an update is equal to one. The amortized transport time for an 

update is bounded by 

O(Ssu(m')) 
Ssu(m)/(2C(m)) 

O (com + = O(C(n)), 

where m’ is the number of objects at the end of the sequence of updates. 

(Note that n = O(m) = O(m’).) Similarly, the amortized computing 
time for an update is bounded by 

O(Ssu(m’)) 
Ssu(m)/(2C(m)) 

Here we have used Lemma 9.3.1. 

O (ao + = O(U,(n) + C(m)) = O(U,(n)).
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In the reconstruction algorithm, it takes one disk access and O(Ssz(n)) 
transport time and computing time to transport CSH and UF to main 

memory and to store CSH in the correct positions. Each update from 

the list UF takes O(C(m)) computing time. It follows that all updates 
from UF together take an amount of computing time that is bounded 

by O((Ssux(m)/C(m)) x C(m)) = O(Ssxy(m)). Finally, it takes R.(n) 
computing time to reconstruct the structures DS and INF from the 

up-to-date structure C'SH. Hence, the entire reconstruction algorithm 

takes one disk access, O(S'sy(n)) transport time and O(Ssy(n)+R,(n)) 
computing time. O 

9.3.3. A worst-case solution 

In this subsection, we assume that the update computing time U,(n) 

of the structures SH and INF, and the amount of data C(n) that is 
changed in SH are worst-case bounds. We turn the amortized bounds 

of the preceding subsection into worst-case bounds. The idea is to 

spread out the transport of the copy of SH over a number of updates. 

The technique is related to the global rebuilding technique given in 

Overmars [42]. 

The structures: Let m be the number of objects that are initially 

represented by the data structure DS. We store in main memory, the 

structure DS and two copies of each of the corresponding additional 

structures SH and INF. We denote these copies by SH,, INF,, SH»2 

and INF». In secondary memory we store—in consecutive blocks, start- 

ing at the block “next to” block 0—a copy CSH, of the structure SH. 

Of course, this copy CS'H, contains with each piece of information the 

address of the corresponding piece in main memory. In block 0, we 

store the addresses of the first and the last block of the segment that 

contains CS'H,. Initially, all structures are up-to-date. We initialize in 

main memory an empty list L. 

To initialize the process, we perform an initial stage, that consists 

of the first S'sz(m)/(2C(m)) updates. This stage is split in two parts. 
Part 1 of the initial stage: This part consists of the first Sy (m)/(4C(m)) 

updates. These updates are performed on the structures DS, SH, and
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INF. With each update, we store the object, together with informa- 

tion whether it concerns an insertion or a deletion, at the end of the 

(main memory) list L. 
Furthermore, with each update, we do the following. First, we col- 

lect the changed entries in SH,, together with their addresses. These 

changed entries become a part of the update file UF. Next consider 

the structure SH». This structure has size Ss7(m). Now with this 
update we collect a part of SH», together with their addresses, of size 

SsH (m) 

Ssu(m)/(4C(m)) 
This part becomes a part of the copy CSH»2. We transport to secondary 

memory, the part of UF, and the part of CSH». These parts are stored 

in two consecutive blocks at the end of the file. We also replace block 

0 by a new block 0 containing the addresses of the first and the last 

block of the file. Note that during these updates, the structures SH» 

and INF» cannot be affected. Also, after this part of the initial stage, 

the entire copy CS'H» has been transported to secondary memory. 

After Part 1: After the first part of this initial stage, main memory 

contains an up-to-date data structure DS, up-to-date structures SH, 

and INF), a list L of the updates performed so far, and structures SH» 

and INF» that store the objects that were present Sigz(m)/(4C(m)) 
updates ago. Secondary memory contains structures CSH, and CSH»2 

that store the objects that were present S'sz(m)/(4C(m)) updates ago, 
and a list UF, of the changes of the Ssq(m)/(4C(m)) most recently 
performed updates. The structure C'SH, is stored in consecutive blocks. 

The structures UF, and CSHp2 are also stored in consecutive blocks, 

but mixed up together. 

Part 2 of the initial stage: This part consists of the final Sg4(m)/(4C(m)) 
updates. We perform these updates on the structures DS, SH, and 

INF,. In order to make the structures SH» and INF» up-to-date, we 

perform with each update, two updates from the list LZ. Then we re- 

move these two updates from L, and we add the actual update at the 

end of it. (Note that the updates have to be performed in chronological 

order, since one object can be inserted and deleted several times.) 

Also, with each update, we do the following. Again we collect the 

changed entries in SH,, together with their addresses. These changed 

= O(C(m)).
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entries become a part of UF,. We also collect the changed entries— 

that are caused by two updates—in SH», together with their addresses. 

These changes become a part of the update file UF. We transport to 

secondary memory, the part of UF, and the part of UF2. Again, these 

parts are stored in two consecutive blocks at the end of the file. Finally, 

we update block 0. 

After Part 2: After the second part of this initial stage, main 

memory contains up-to-date structures DS, SH,, INF,, SH2 and INF», 

and an empty list L. Secondary memory contains structures CSH, and 

CSH> that store the objects that were present before the initial stage, 

and lists UF, and UF», that contain the changes that were made in 

SH, and SH» during the initial stage. The structure CSH, is stored in 

consecutive blocks. The structure CSH» and the first half of UF, are 

stored mixed up in consecutive blocks. Also, the structure UF, and 

the second half of UF are stored in consecutive blocks, again mixed 

up. 

The reconstruction algorithm: During the initial stage, recon- 

struction can be done as follows. We transport all information—that is 

stored in consecutive blocks, starting at the block next to block 0—to 

main memory. (During the initial stage, we do not need block 0.) We 

discard the structures CSH» and UF». We store CS, in the correct 

positions in main memory, and we perform the most recent updates, 

using the list UF,. Then C'SH, is up-to-date, and it takes over the role 

of the destroyed SH,. Next, we reconstruct the information as it was 

before the initial stage. That is, we make a copy SH2 of SH, and we 

reconstruct the structures DS, INF, and INF». Finally, we transport 

a copy of SH,, together with the addresses of the pieces of information, 

to secondary memory. We store this copy again in consecutive blocks, 

starting at the block next to block 0. In block 0, we store the addresses 

of the first and the last block of the segment that store the copy of 

SH,. Then all necessary information is reconstructed, and we are in 

the same situation as before the initial stage. Now we can proceed 

answering queries and performing updates. 

After the initial stage: After this initial stage, we “discard” in 

secondary memory the structure CSH,, that is stored in consecutive
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blocks at the beginning of the file. We do this by transporting to 

secondary memory a new block 0, that stores the addresses of the new 

first block of the file—which is the first block that stores information 

from CSH»2—and the last block of the file. (The address of the last 
block does not change.) Then, the structure UF, has no use anymore. 

We do not, however, discard this update file UF, that is stored mixed 

up with CSH» and UF». {From now on we write UF’, for this structure, 

in order to distinguish it from the new structure UF, that is made in 

the sequel. Note that at this moment the structures CSH». and UF» 

contain enough information to reconstruct the other structures. 

Now the periodic process of updating can start. The process is 

similar to the initial stage. 

Before the regular stage: At the start we have in main memory 

up-to-date structures DS, SH,, INF,, SH2 and INF», and an empty 

list ZL. Secondary memory contains a structure CSH» that stores the 

objects that were present Ssz(m)/(2C(m)) updates ago, and lists UF’, 
and UF, that contain the changes that were made in SH, and SH» 

during the most recent Sig7(m)/(2C(m)) updates. The structure CSH»2 
and the first half of UF‘, are stored mixed up in consecutive blocks. 
Also, the structure UF, and the second half of UF, are stored mixed 
up in consecutive blocks. 

Let mo be the number of objects that are represented by DS at this 

moment. Consider a sequence of S'gz(mo)/(2C(mo)) updates. Again, 
we split this sequence in two stages. 

Part 1 of the regular stage: The first Ssgz(7mp)/(4C(mo)) up- 
dates are performed as follows. Each update is carried out on the 

structures DS, SH» and INF2. With each update, we store the ob- 

ject, together with information whether it concerns an insertion or a 

deletion, at the end of the list L. 

Also, with each update we collect the changed entries in SH», to- 

gether with their addresses. These changed entries become a part of 

UF >. We collect a part of SH,, together with their addresses, of size 

Ssu(mpo) 

Ssu(mo)/(4C(mo)) 

This part becomes a part of the copy CSH,. We transport to secondary 

= O(C(m)).
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memory, the part of UF, and the part of CSH,. These parts are stored 

in two consecutive blocks at the end of the file. We also replace block 0 

by a new block 0 containing the addresses of the first and the last block 

of the file. The entire copy C'SH, is transported to secondary memory, 

during the first part of the regular stage. 

After Part 1: After the first part of the regular stage, main mem- 

ory contains up-to-date structures DS, SH» and INF%, a list L of the 

updates of Part 1, and structures SH, and INF, that store the ob- 

jects that were present at the beginning of Part 1. Secondary memory 

contains a structure CSH» that stores the objects that were present 

Ssu(m)/(2C(m)) + Ssu(mo)/(4C(mo)) updates ago, a structure CSH, 
storing the objects that were present Ss (mo)/(4C(mo)) updates ago, a 
list UF’, that stores information that is irrelevant now, and a list UF 2 of 
the changes of the Sigx(m)/(2C(m)) + S'isx(mo)/(4C(mo)) most recent 
updates. The structure CSH» and the first half of UF’, are stored mixed 
up in consecutive blocks. The changes of the first Ss47(m)/(2C(m)) 
updates in UF, and the second half of UF are stored mixed up in 
consecutive blocks. Finally, the structure CSH, and the rest of UF», 

are stored mixed up in consecutive blocks. 

Part 2 of the regular stage: Part 2 consists of the final Ss (mo) /(4C(mo)) 
updates. These updates are performed in the same way as in Part 2 

of the initial stage. (Interchange the indices 1 and 2.) The changes in 
SH, are stored in secondary memory in the update file UF. 

After Part 2: After this second part of the regular stage, main 

memory contains up-to-date structures DS, SH,, INF,, SH2 and INF», 

and an empty list ZL. Secondary memory contains a structure CSH2 

that stores the objects that were present Ssq(m)/(2C(m))+Ssx(mo)/(2C (mo)) 
updates ago, a corresponding list UF’, that stores the changes of these 

updates, a structure CSH, storing the objects that were present Ssx (mo) /(2C(mo)) 
updates ago, a corresponding list UF, that stores the changes of these 

updates, and finally an old list UF. The structures CSH», UF’, and 
the first piece of UF'g are stored mixed up in consecutive blocks. The 

structure CSH, and the second piece of UF» are stored mixed up in 

consecutive blocks. Also, the structure UF, and the final piece of UF, 

are stored mixed up in consecutive blocks. 

The reconstruction algorithm: During this regular stage, re-
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construction can be done from the structures CSH» and UFo2, in a 

similar way as during the initial stage. We first transport block 0 to 

main memory. Then we know the addresses of the segment of blocks in 

which the information is stored. We now transport this information to 

main memory, and we reconstruct the information as it was before the 

initial stage. After reconstruction, we transport a copy CSA, of SH, 

together with the addresses of the pieces of information, to secondary 

memory. We store this copy again in consecutive blocks, starting at 

the block next to block 0. In block 0, we store the addresses of the first 

and the last block of the segment that stores the copy CSH,. 

After the regular stage: After the regular stage, we “discard” 

in secondary memory the structures UF’, CSH» and the first piece of 

UF >. Again, this is done by transporting to secondary memory a new 

block 0, that stores the addresses of the new first block of the file— 

which is the first block that stores information from CSH,—and the 

last block of the file. (The address of this last block has not changed.) 
Note that all “discarded” structures are stored in consecutive blocks, at 

the front of the file, so this does not lead to gaps in secondary memory. 

We end with in main memory up-to-date structures DS, SH,, INF 1, 

SH» and INF», and an empty list L. Secondary memory contains a 

structure CSH,, that contains the objects that were present S's (mo) /(2C (mo)) 
updates ago, and lists UF; and UF 2 that contain the changes that were 

made in SH, and SH» during the most recent Ssy(mo)/(2C(mpo)) up- 
dates. The structure CSH, and the first half of UF’ are stored mixed 

up in consecutive blocks. Also, the structure UF, and the rest of UF 2 

are stored mixed up in consecutive blocks. 

It follows that we are in the same situation as before Part 1 of the 

regular stage. Therefore, we can proceed performing updates in the 

same way, now with a sequence of length S'sq(m’)/(2C(m’)), where 
m' is the number of objects at this moment. (Of course, we have to 

interchange the indices 1 and 2.) 

Since we only add information at the end of the file in secondary 

memory, and since we only remove information from the front of this 

file, all structures in secondary memory are stored in consecutive blocks. 

There are no gaps. Of course, if the structures are “moved too far to the
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right”, we can add information at the front, and remove information 

from the end of the file. Note that we do not really remove informa- 

tion in secondary memory, since the information remains stored in the 

blocks. We can, however, use these blocks again, since they contain 

information that is not needed for reconstruction. Block 0 contains 

the necessary information where the current shadow administration is 

stored. It follows that the amount of space we use in secondary mem- 

ory is proportional to the total size of all blocks that store the current 

shadow administration. 

Theorem 9.3.2 Let SH and INF be a shadow administration for the 

dynamic data structure DS, with complexity Ssy(n), Sinr(n), U-(n), 
R.(n) and C(n). We can implement these structures such that the 
resulting shadow administration 

1. has size O(Ssy(n) + Sivr(n)), 

2. can be updated in two disk accesses, O(U.(n)) computing time and 
O(C(n)) transport time in the worst case. 

The structures DS, SH and INF can be reconstructed in three disk 

accesses, O(Ssx(n)) transport time and O(Ssy(n) + R-(n)) computing 
time. 

Proof. The theorem can be proved by carefully checking the given 

algorithms. In the same way as in Subsection 9.3.2, it can be shown 

that the integers n, m and mp satisfy n = O(m) = O(mpo). Note that 
two disk accesses are required for an update: One for updating block 

0, and one for transporting the two blocks to the end of the file. Also, 

three disk accesses are required for reconstruction: One disk access for 

block 0, one for the shadow administration, and one for transporting 

the new shadow administration back to secondary memory. 0 

We illustrate this theorem with an example. In Section 10.4, we will 

see another example. 

Consider a range tree with slack parameter k. See Definition 8.3.1. 

As we saw in Theorem 8.3.2, in such a range tree, representing n 

points in the plane, range queries can be solved in O((logn)?2*/k +
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t) time, if t is the number of reported answers. The structure has 
size O((nlogn)/k), and can be built in O(nlogn + (nlogn)/k) time. 
Here the first term is the time to sort the n points according to their 

y-coordinates, whereas the second term is the actual building time. 

Therefore, just as in Subsection 8.3.1, let the structure SH consist of a 

list that contains the n points ordered according to their y-coordinates. 

The structure INF consists of a balanced binary tree, that stores the 

points in its leaves, also ordered according to their y-coordinates. Each 

leaf of this tree contains a pointer to the corresponding point in the list. 

The complexity of this shadow administration is given by Ssy(n) = 
O(n), Sivr(n) = O(n), U-(n) = O(logn) and R,(n) = O((nlogn)/k). 
Since an update changes only a constant amount of data in the sorted 

list SH, we have C(n) = O(1). Now apply Theorem 9.3.2 to get: 

Theorem 9.3.3 For a range tree with slack parameter k, there exists 

a shadow administration 

1. of size O(n). 

2. that can be updated in two disk accesses, O(logn) computing time 
and O(1) transport time in the worst case. 

3. from which the range tree can be reconstructed in three disk ac- 

cesses, O(n) transport time and O((nlogn)/k) computing time. 

Compare this result to Theorems 8.3.3 and 9.2.2. In Theorem 8.3.3, 

an update can take 3 disk accesses, whereas in Theorem 9.2.2, only 

insertions are possible, at the cost of one disk access and an amortized 

amount of O(logn) transport and computing time.
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Chapter 10 

A union-find data structure 

10.1 Introduction 

Until now we have seen several techniques that apply to arbitrary 

searching problems or to classes of searching problems that satisfy some 

constraints. In this chapter we consider a specific problem, the Union- 

Find Problem, and we design an efficient main memory data structure 

for it. This structure is designed in such a way that a copy of it can 

efficiently be maintained in secondary memory. 

The Union-Find Problem is one of the basic problems in the theory 

of algorithms and data structures. In this problem we are given a 

collection of n disjoint sets Vi, V2,...,Vn, each containing one single 

element, and we have to carry out a sequence of operations of the 

following two types: 

1. UNION(A, B,C): combine the two disjoint sets A and B into a 
new set named C’. 

2. FIND(x): compute the name of the (unique) set that contains x. 

We require that the operations are carried out on-line, i.e. each 

operation has to be completed before the next is known. 

The union-find problem has many applications, and many algo- 

rithms use the problem in some way as a subroutine. Examples are 

algorithms for computing minimum spanning trees, solving an off-line 

175
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minimum problem, computing depths in trees and determining the 

equivalence of finite automata. (See [2].) 
The problem has received considerable attention. Tarjan showed in 

[57] that a sequence of m UNION and FIND operations can be car- 
ried out in total time O(ma(m+ n,n) +n) using O(n) space, where 
a is a functional inverse of Ackermann’s function, which is a very, very 

slow growing function. Furthermore, he introduced in [58] a machine 
model—the Pointer Machine, see also Section 2.6—on which all known 

important algorithms solving the union-find problem can be imple- 

mented. Tarjan showed that on a Pointer Machine, any algorithm for 

the union-find problem needs Q(ma(m-+n,n) +n) time for performing 
m UNION and FIND operations. (See also [60].) 

In this chapter we are interested in the single-operation time com- 

plexity of the union-find problem. Until recently, only algorithms were 

known having single-operation complexity Q(logn). That is, there is 
always either a UNION or a FIND operation that needs Q(logn) time. 
In [12], Blum gives a data structure of size O(n), in which each UNION 
operation can be performed in O(k+log, n) time, and each FIND oper- 

ation in O(log, 7) time. Here k is a parameter, possibly depending on n. 

Blum also gives the following very general class B of data structures— 

containing all implementations on Tarjan’s Pointer Machine: 

The class G: Data structure in class B are linked structures that 

are considered as directed graphs. The algorithms that use these data 

structures for solving the union-find problem should satisfy the follow- 

ing constraints. 

1. For each set and for each element, there is exactly one node in the 

data structure that contains the name of this set or the element. 

2. The data structure can be partitioned into subgraphs, such that 

each subgraph corresponds to a current set. There are no edges 

between two such different subgraphs. 

3. To perform an operation FIND(x), the algorithm obtains the 
node v that contains x. The algorithm follows paths in the graph, 

until it reaches the node that contains the name of the correspond- 

ing set.
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4. To perform a UNION or a FIND operation, the algorithm may 

insert or delete any edge, as long as rule 2 is satisfied. 

For structures in class B, the following theorem holds. For a proof, 

the reader is referred to [12]. 

Theorem 10.1.1 (Blum) Let DS be any data structure from the class 
B. Suppose that every UNION operation can be performed in O(k) 
time. Then there is a FIND operation that needs time 

Q logn 

logk + loglogn } © 

As a corollary of this theorem we see that for each data structure 

in class Bb, there is always either a UNJON or a FIND operation that 

takes O(log n/ log log n) time. 
We will first give a variant of Blum’s structure, having the same 

complexity. That is, we give a structure of size O(n), in which each 
UNION resp. FIND operation takes O(k + log, n) resp. O(log, 7) time. 
Next, we adapt this structure such that each UNION operation can be 

carried out in O(k) time, whereas the size of the structure and the time 
for a FIND operation remain the same. This structure is in Blum’s 

class B. Hence it follows from Theorem 10.1.1 that this structure is 

optimal—in class B—if k = Q((logn)*) for some ¢€ > 0. 
The improved data structure consists of a number of trees—each 

set is stored in one such tree—and has the property that fora UNION 

operation we only have to visit the roots of two trees, together with 

their—at most k—direct descendants. Furthermore, a FIND opera- 

tion does not change the structure. This property implies that we can 

efficiently maintain a copy of the data structure in secondary memory. 

10.2 A variant of Blum’s structure 

Let V be a set of nm elements for which we want to solve the union- 

find problem. That is, we want to maintain a partition of V under a 

sequence of UNION and FIND operations, where initially each set in 

the partition contains exactly one element. We store each set in the 

partition in a UF (k)-tree, defined as follows.
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Definition 10.2.1 Let & be an integer, 2< k <n. A tree T is called 

a UF (k)-tree, if 

1. the root of T has at most & sons, 

2. each node in T has either 0 or more than & grandsons (a grandson 

of a node v is a son of the son of v), 

3. all leaves of T are at the same level. 

As mentioned already, we store each set A in the partition of V ina 

separate UF (k)-tree. The elements of A are stored in the leaves of the 

tree. In the root, we store the name of the set, the height of the tree, 

and the number of its sons. Each non-root node contains a pointer to 

its father. Finally, the root of the tree contains a pointer to each of its 

sons, and a pointer to an (arbitrary) leaf. Note that the root contains 

at most k + 1 pointers. A UF (k)-tree storing a set of cardinality one, 
has two nodes, a root and one leaf. 

The Find-algorithm: To perform an operation FIND (a), we get 
at constant cost the leaf containing element z+. Then we follow father- 

pointers until we reach the root of the tree, where we read the name of 

the set containing 2. 

The Union-algorithm: To perform the operation UNION(A, B,C), 

we get at constant cost the root r resp. s of the tree containing the set 

A resp. B. We distinguish three cases. 

Case 1. The trees containing A and B have equal height, and the 

total number of sons of r and s is < k. 

Assume w.l.o.g. that the number of sons of s is less than or equal to 

the number of sons of r. We change the father-pointers from all sons of 

$ into pointers to r, and we store in r pointers to its new sons. Next we 

discard the root s, together with all its information. Finally, we adapt 

in r the number of its sons and the name of the set. 

Case 2. The trees containing A and B have equal height, and the 

total number of sons of r and s is > k. 

In this case we create a new root t. In this new root, we store two 

pointers to r and s; a pointer to a leaf of the new tree (we can take 

the corresponding pointer stored in r); the name of the new set C; the
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height of the new tree, which is one more than the corresponding value 

stored in r; and the number of sons, which is 2. In the old roots r and 

s we discard all information, and we add pointers to their new father t. 

Case 3. The trees containing A and B have unequal height. 

Assume w.l.o.g. that the tree of B has smaller height than the tree 

of A. We find in the tree of A a node v such that the subtree of v 

has the same height as the tree of B. This node v can be found by 

following the pointer from r to a leaf, and then by walking up in the 

tree. Then we change the father-pointers from all sons of s into pointers 

to v. (This guarantees that all leaves remain at the same level.) We 
discard the root s, together with all its information. Finally, we adapt 

the name of the set stored in r. Note that the height of the tree and 

the number of sons of r does not change. 

Theorem 10.2.1 Let k and n be integers, such that2<k <n. Using 

UF (k)-trees, the union-find problem on n elements can be solved, such 
that 

1. each UNION takes O(k + log, n) time, 

2. each FIND takes O(log, n) time, 

3. the data structure has size O(n). 

Proof. The time needed to perform a FIND operation is bounded 

above by the height of a UF (k)-tree. It follows from Definition 10.2.1 
that if level i in a UF (k)-tree contains any nodes, it contains at least 
klt/2] of them. (Here the root is at level 0.) Since such a tree has 
at most n leaves, its height is at most 1+ 2[log,n]. Hence a FIND 
operation takes O(log, n) time in the worst case. 

It is easy to see that the given UNJON-algorithm correctly main- 

tains UF (k)-trees. Note that we can determine in constant time in 
which of the three cases we are, since all relevant information for decid- 

ing this is stored in the roots. Case 1 resp. 2 of the UNION-algorithm 

takes O(k) resp. O(1) time in the worst case. In Case 3, it takes 
O(log, 7) time to find the node v, whereas the rest of this case can 
be carried out in O(k) time. 

The size of a UF (k)-tree is linear in the number of its leaves, which 
shows that the entire data structure has size O(n). O
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10.3. An improved data structure 

We saw in Section 10.2, that it takes O(k + log, 7) time to perform a 
UNION operation on UF (k)-trees. In this time bound, the O(log, n) 
term is due to the fact that in Case 3, we have to search the node v, the 

subtree of which has the same height as the tree containing B. Clearly, 

if we take instead of v an arbitrary son of the root of the tree of A, the 

time for each UNION operation will be bounded by O(k). It remains 
to prove then, however, that the heights of the trees do not increase. 

Definition 10.3.1 Let & be an integer, 2<k <n. A tree T is called 

an IUF(k)-tree (where the J stands for improved), if 

1. the root of T has at most & sons, 

2. each node in T has either 0 or more than k grandsons. 

Again, we store each set A in the partition of V in a separate 

IUF(k)-tree. The elements of A are stored in the leaves of the tree. 
In the root, we store the name of the set, the height of the tree, and 

the number of its sons. Also each non-root node contains a pointer to 

its father, and the root contains pointers to all its sons. (Now we do 
not need a pointer from the root to a leaf.) 

Note that Definition 10.3.1 does not imply anymore that the heights 

of these trees are bounded above by 1 + 2/log, 7], since the leaves do 
not have to be positioned at the same level. The trees that are made by 

the UNION-algorithm to be described below, however, do have heights 

bounded by 1+ 2/log, n]. 

The FIND-algorithm for JUF(k)-trees is the same as for UF (k)- 
trees. 

The Union-algorithm: The operation UNION (A, B,C) is per- 

formed as follows. Let r resp. s be the root of the tree containing the 

set A resp. B. As before, we distinguish three cases. 

Case 1’. The trees containing A and B have equal height, and the 

total number of sons of r and s is < k. This case is handled in the same 

way as Case 1 of Section 10.2.
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Case 2’. The trees containing A and B have equal height, and the 

total number of sons of r and s is > k. This case is handled as Case 2 

of Section 10.2. 

Case 3’. The trees containing A and B have unequal height. As- 

sume w.l.o.g. that the tree of B has smaller height than the tree of 

A. Let v be an arbitrary son of r. Then we change the father-pointers 

from all sons of s into pointers to v. The root s, together with all its 

information, is discarded. Also, we adapt the name of the set stored in 

r. 

First note that the given algorithm correctly maintains [UF (k)- 
trees. Furthermore, each UNION operation takes O(k) time, since in 

Case 3’, the node v can be found in constant time. Also, the size of the 

data structure is still bounded by O(n). 

It remains to prove that the heights of the JUF(k)-trees, that are 
made by the given UNJON-algorithm, are bounded by O(log, n). It 
suffices to prove that an JUF(k)-tree has the same height as the corre- 
sponding UF (k)-tree that stores the same set. 

Suppose we are given a collection of n disjoint sets S1,So,..., Sn, 

each containing one single element, and consider a sequence of UNION 

and FIND operations. Let UF be the data structure, consisting of 

UF (k)-trees, if we perform these operations according to the algorithm 

of Section 10.2. Furthermore, let [UF be the data structure consisting 

of IUF(k)-trees, where the operations are carried out as described in 
the current section. 

So if Uj-z Ai is a partition of the n elements at some moment in the 

sequence of operations, there are two data structures. First, there is a 

structure UF = {T;|i € I}, where each T; is a UF (k)-tree storing the 
set A;. Also, there is a structure JUF = {T/|i € I}, where each T; is an 
IUF (k)-tree storing A;. Now each UNION operation is performed—in 
parallel—on both UF and IUF. (The purpose for doing this is to prove 

the upper bound on the heights of [UF (k)-trees.) 

Lemma 10.3.1 At each moment, the trees T; and T; have the same 

height, and the roots of these trees have the same number of sons. To 

perform a UNION operation, if we are in Case j for the structure UF, 

we are in Case j’ for IUF, for j = 1, 2,3.
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Proof. Initially, each tree T; and Tj contains two nodes, one root and 

one leaf. Hence at the beginning the statement is true. 

Then the lemma can easily be proved, using the following observa- 

tion. Whether we are in Case 1, 2 or 3 of the UNION-algorithm for 

the structure UF, depends only on the heights of the trees and on the 

number of sons of the corresponding roots. The same holds for the 

structure JUF. By checking the UNIJON-algorithms, it follows that a 

UNION operation leaves the statement in the lemma invariant. 0 

Theorem 10.3.1 Let k and n be integers, such that2<k <n. Using 

IUF (k)-trees, the union-find problem on n elements can be solved, such 
that 

1. each UNION takes O(k) time, 

2. each FIND takes O(log, n) time, 

3. the data structure has size O(n). 

Proof. We have seen already that a UNION operation takes O(k) 
time, and that the size of the data structure is bounded by O(n). It 
follows from Lemma, 10.3.1 and the proof of Theorem 10.2.1, that the 

height of an [UF (k)-tree, made by the given UNION-algorithm, is at 
most 1 + 2/log,n]. Hence each FIND operation takes O(log, n) time. 
O 

It is clear that the data structure JUF is contained in Blum’s class 

B. Therefore, Theorems 10.1.1 and 10.3.1 yield the following corollary. 

Corollary 10.3.1 The data structure of Theorem 10.3.1 is optimal in 

Blum’s class B of structures for the union-find problem, for all values 

of k satisfying k = O((logn)*) for some € > 0. 

10.4 An efficient shadow administration 

In this section we show how we can efficiently maintain a copy of the 

data structure JUF of Theorem 10.3.1 in secondary memory.
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First, we want to remark that the data structure JUF can be imple- 

mented on a Pointer Machine. (See Section 2.6.) On a Pointer Machine, 
no addressing of memory locations is possible. Therefore, to implement 

this structure together with a copy in secondary memory, as we do now, 

we need a Random Access Machine as main memory, because we have 

to maintain in secondary memory the addresses of the entries in main 

memory in which the information is stored. 

We store a copy of the data structure JUF in secondary memory 

as follows. We reserve a number of consecutive blocks of some prede- 

termined size (see below), and we distribute the structure over these 
blocks. Together with each indivisible piece of information we store 

in secondary memory the address of the corresponding piece in main 

memory, as usual. 

Since the root of an JUF(k)-tree has at most & sons, the total size 
of this root together with all its sons and all the information stored 

in these nodes (i.e., pointers, name of the set, height of the tree and 

number of sons), and all their addresses in main memory, is bounded 

above by ck for some constant c. Also, there is a constant c’ such 

that the size of the entire data structure JUF, together with all their 

addresses, is at most c’n. 

We reserve in secondary memory |(c’n)/(ck)] consecutive blocks of 
size 2ck, starting at block 0. The copy of the data structure JUF will 

be stored in these blocks. We call a block free if at least half of the 

block is empty. The following lemma can easily be proved. 

Lemma 10.4.1 Among the reserved blocks, there is always at least one 

free block. 

Initially we have n trees, each of them having one root and one leaf. 

We store these trees in main memory. Copies of the trees are distributed 

over the reserved blocks. For each tree, the root and its son, together 

of course with their positions in main memory, are stored in the same 

block. We store in main memory in the root of each tree, the address 

of the block in secondary memory that contains the copy of this root. 

Finally, we maintain in main memory a stack containing the addresses 

of the free blocks. By Lemma 10.4.1, this stack is never empty. The 

stack will only be used for updating the structure in secondary memory; 

it is not used for reconstructing the data structure. Therefore it may be
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destroyed in a crash. Note that the amount of space in main memory 

remains bounded by O(n). 
Since a FIND operation does not change the data structure, such 

an operation does not affect the shadow administration. 

A UNION operation is first performed on the structure in main 

memory according to the algorithm of Section 10.3. Then the shadow 

administration in secondary memory is updated. We take care that at 

each moment the following holds: 

Invariant: For each UF (k)-tree, the root and all its sons, 
together with all the information stored in these nodes, and 

all their positions in main memory, are stored in the same 

block in secondary memory. 

Clearly, this invariant holds initially. (In the sequel we shall not state 

each time explicitly that if we put information in a block, we also store 

with it its position in main memory. It is clear how this can be done.) 

The Union-algorithm: The operation UNION (A, B,C) is per- 

formed as follows. Let r resp. s be the root of the tree containing the 

set A resp. B. 

Case 1’. The trees containing A and B have equal height, and the 

total number of sons of r and s is < k. 

Assume w.l.o.g. that the number of sons of s is less than or equal to 

the number of sons of r. In the block containing r we remove this root 

and all its sons. (Note that we can read the address of this block in 

the root r that is stored in main memory.) If this block becomes free, 

we put its address on the stack. In the block containing s we do the 

same. Next we take the address of a free block from the stack, and in 

that block we add the root, together with its sons, of the new tree. If 

this block remains free we put its address back on the stack. In main 

memory, we store in the root of the new tree, the address of the block 

containing its copy. 

Case 2’. The trees containing A and B have equal height, and the 

total number of sons of r and s is > k. 

In the block containing r we remove this root, together with all the 

information stored in it. If the block becomes free, we put its address 

on the stack. In the block containing s we do the same. Then we add
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the new root, together with its sons r and s and all the information 

that these three nodes contain, to a free block, the address of which we 

take from the stack. If this block remains free its address is put back 

on the stack. In main memory we store in the new root the address of 

the block containing its copy. 

Case 3’. The trees containing A and B have unequal height. 

Assume w.l.o.g. that the tree of B has smaller height than the tree 

of A. In the block containing r we change the name of the set from A 

to C. In the block containing s, we change the pointers of the sons of 

s, and we remove the root s together with all its information. If this 

block becomes free we put its address on the stack. 

If we want to reconstruct the data structure JUF, we transport the 

entire file to main memory, and we rebuild the stack of free blocks. Then 

each indivisible piece of information of the data structure is stored in 

the array location where it was before the information was destroyed. 

This guarantees that each pointer “points” to the correct position in 

main memory. This reconstruction algorithm takes one disk access and 

an amount of O(n) transport time and computing time. 
The following theorem summarizes the result. 

Theorem 10.4.1 Let k and n be integers, such that2<k <n. For 

the data structure of Theorem 10.3.1, solving the union-find problem 

on n elements, there exists a shadow administration 

1. of size O(n), 

2. that can be maintained after a UNION operation at the cost of at 

most three disk accesses, O(k) computing time and O(k) transport 
time. 

The data structure can be reconstructed at the cost of one disk access, 

O(n) transport time and O(n) computing time. 

Proof. The proof follows from the above discussion. 0 

Remark. In the above shadow administration, a UNION operation 

requires three disk accesses. Since each UNION operation takes O(k) 
time, it is clear that such an operation changes only an amount of
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O(k) data in the structure. Therefore, we can apply Theorem 9.3.2, to 

get a shadow administration with the same complexity as that of the 

above theorem, except that a UNION operation requires only two disk 

accesses and reconstruction requires three disk accesses. The shadow 

administration of Theorem 10.4.1, however, is easier to implement.



Chapter 11 

Another approach: deferred 

data structuring 

In the solutions we have seen so far for the reconstruction problem, we 

first completely rebuild the data structure DS and the corresponding 

structures SH and INF, after a crash. Then we proceed with query 

answering and performing updates. Hence, if the reconstruction time is 

high, it takes a lot of time before we can proceed again. To avoid this 

problem, we introduce another approach to the reconstruction prob- 

lem. The idea is to maintain in secondary memory the objects that are 

represented by the data structure DS. If we want to reconstruct this 

data structure, we transport the objects to main memory. Then we 

immediately continue with answering queries and performing updates. 

The data structure is built “on-the-fly” during these operations. With 

each operation, those parts of the data structure that do not exist at 

that moment, but that are needed in the operation, are built. These 

parts can then be used for future operations. 

This technique of building a data structure is due to Karp, Motwani 

and Raghavan [28, 35], who call it deferred data structuring, although 

they do not apply this technique to the reconstruction problem. Their 

motivation to design deferred data structures is to solve a sequence of 

queries, where the length of the sequence is not known. They only give 

static deferred data structures. The design of deferred data structures 

for dynamic data sets in which insertions and deletions are allowed 

concurrently with queries is stated as an open problem. 

187
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In this chapter, we show that it is often possible to design dynamic 

deferred data structures by using well-known dynamization techniques. 

The ideas are illustrated by considering dynamic deferred structures for 

the member searching problem. We show that deferred binary search 

trees—if properly chosen—can be maintained as in the ordinary case, 

i.e., by means of rotations. This observation was made, independently, 

by Ching and Mehlhorn [16]. We also adapt Lueker’s partial rebuilding 
technique, to get another maintenance algorithm for deferred search 

trees. Finally, we give a trivial solution, based on the ideas of decom- 

posable searching problems and global rebuilding. See Overmars [42] 
for the notion of global rebuilding. 

In Section 11.3, we show how deferred data structures can be used 

to solve the reconstruction problem. 

11.1 The static deferred binary search tree 

We first recall the static solution of [28] for the member searching prob- 
lem. 

Let V be aset of n objects drawn from some totally ordered universe 

U. We are asked to perform—on-line—a sequence of member queries. 

In each such query we get an object q of U, and we have to decide 

whether or not gE V. 

The algorithm that answers these queries builds a binary search 

tree as follows. (In this section, we store the objects in the nodes of the 

tree.) Initially there is only the root, containing the set V. Consider 

the first query g. We compute the median m of V, and store it in the 

root. Then we make two new nodes u and v. Node u will be the left 

son of the root, and we store in it all objects of V that are smaller than 

m. Similarly, v will be the right son of the root, and we store in it the 

objects of V that are larger than m. Then we compare the query object 

q with m. If q =m we know that q € V, and we stop. Suppose gq < m. 

Then we proceed in the same way with node u. That is, we find the 

median of all objects stored in u, we store this median in u, we give 

u two sons with the appropriate objects, and we compare q with the 

new median. This procedure is repeated until we either find a node in 

which the “local” median is equal to qg, in which case we are finished,
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or end in a node storing only one object not equal to qg, in which case 

we know that q ZV. 
The first query takes O(n + n/2+n/4+---) = O(n) time, since in 

each node we have to find a median, which takes linear time [11, 49]. 
During this first query, however, we have built some structure that can 

be used for future queries: In the second query, we have to perform 

only one comparison in the root to decide whether we have to proceed 

to the left or right son. In fact, in any node we visit that is visited 

already before, we spend only one comparison. 

This is the general principle in deferred data structuring: If we do 

a lot of work to answer one query, we do it in such a way that we can 

take advantage from it in future queries. 

We now describe the algorithm in more detail. (The notations we 
introduce here are used in the rest of the chapter.) Each node v in the 
structure contains a list L(v) of objects, two variables N(v) and key(v), 
and two pointers. Some of these values may be undefined. The value 

of N(v) is equal to the number of objects that are stored in the subtree 
with root v. The meaning of the other variables will be clear from the 

algorithms below. (Strictly speaking, the variable N(v) is not needed 
in the static case.) 

Initialization: At the start of the algorithm there is one node, the 

root r. The list L(r) stores all objects of V. (This list is not sorted.) 
The value of N(r) is equal to n, which is the cardinality of V, and the 
value of key(r) is undefined. 

Expand: Let v be a node having an undefined variable key(v). In 
this case, the list L(v) will contain at least 2 objects, and the value 
of N(v) will be equal to |Z(v)|. The operation expand is performed as 
follows: 

First we compute the median m of L(v), and we determine the sets 
V, = {x € L(v)|x < m} and V2 = {x € L(v)|z > m}. Then we set 
key(v) := m and L(v) := @. Next we make two new nodes 2; and vp. 
Node v, will be the left son of v, so we store in v a pointer to v,. If 

|Vi| > 1, we set L(v1) := Vi, N(vi) := [Vil and key(v1) := undefined. 
If |Vi| = 1, we set L(v,) := 0, N(v,) := 1 and key(v,) := s, where s 
is the (only) object of Vi. (Of course, if Vi = 0, we do not create the 
node v;.) Similarly for v2.
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Answering one query: Let qg be a query object, i.e., we want 

to know whether or not g € V. Then we start at the root, and we 

follow the appropriate path in the deferred tree, by comparing q with 

the values of key in the nodes we encounter. If one of these key values 

is equal to q we know that q € V and we are finished. 

If we encounter a node v having an undefined variable key(v), we 
expand node v, as described above. Then we proceed our query by 

comparing q with the value of key(v). If ¢ = key(v), we know that 
q € V, and we can stop. Otherwise, if g < key(v), we expand the left 
son of v, and we continue in the same way. If this left son does not 

exist, we know that q ¢ V. Similarly, if g > key(v). 

The following theorem gives the complexity of the algorithm. For a 

proof, see [28] or Section 11.2. (The proof in Section 11.2 is a general- 
ization of the proof in [28] to the dynamic case.) 

Theorem 11.1.1 A sequence of k member queries in a set of n objects 

can be solved in total time O(nlogk) if k <n, and O((n +k) logn) if 
k>n. 

In [28], it is shown that this theorem gives an optimal result: The 
number of comparisons needed to perform & member queries in a set 

of size n is O((n + k) x logmin(n, k)). In fact, this lower bound even 
holds in the off-line case, i.e., in case the queries are known in advance. 

11.2 Three dynamic solutions 

We only consider sequences of at most n queries, insertions and dele- 

tions. Clearly, this suffices, since after n operations we will have spent 

already Q(nlogn) time. Therefore, in the n-th operation, we can build 
a complete data structure—in O(nlogn) time—and continue in the 
standard non-deferred way. 

Consider the deferred tree of the preceding section. At some point 

in the sequence of queries, the structure consists of a number of nodes. 

Take such a node v.
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Suppose key(v) is defined. Then the list L(v) is empty, the value of 
N(v) is equal to the number of objects that are stored in the subtree 
with root v, and the value of key(v) is equal to the median of the objects 

stored in this subtree. 

If key(v) is undefined, node v contains a list L(v) storing a subset of 
V—those objects that “belong” in the subtree of v—and the variable 

N(v) has the value |L(v)|, which is at least two. 

An insertion algorithm: Suppose we have to insert an object 2. 

Then we start searching for x in the deferred tree, using the key values 

stored in the encountered nodes. In each node v we encounter, we 

increase the value of N(v) by one, since the object x has to be inserted 

in the subtree of v. 

If we end in a leaf, we insert x in the standard way, by creating a 

new node for it, and we set the variables L, N and key to their correct 

values. (A node v in the deferred tree is called a leaf if N(v) = 1. So 
a node that is not expanded—such a node does not have any sons—is 

not a leaf.) Note that if x is already present in the deferred tree, we 

will have encountered it. In that case, we have to decrease the values 

of the increased N(v)’s by one. 

Otherwise, we reach a node w with an undefined key value. Since we 

have to check whether x is already present in the structure, we have to 

walk along the list L(w). (The list L(w) is not sorted!) If x is present, 
we decrease the increased N(v)’s. Otherwise, if x is a new object, we 

add it to the list, and increase N(w) by one. Note that this will take 
O(|L(w)|) time. Hence a number of such insertions would take a lot 
of time. Then, our general principle—if we do a lot of work, we do 

it in such a way that it saves work in future operations—is violated. 

Therefore, after we have checked whether x is a new object, and—in 

case it is—after we have added z to the list L(w), we expand node w. 

So if we again have to insert an object in the subtree of w, the time for 

this insertion will be halved. 

Of course, we have to take care that the deferred tree remains bal- 

anced. We will consider this problem below. 

A deletion algorithm: A deletion of object x is performed in a 

similar way. We start searching for 2.
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First suppose we find a node v with key(v) = x. Then we search in 
the left subtree of v for the maximal object y. We know the path that 

leads to this maximal object. If we end in a leaf, we interchange x and 

y, i.e., we set key(v) := y, and the key value of the leaf is set to x. Then 

we delete this leaf in the standard way. During the search we decrease 

the N values in all nodes we encounter by one. If we do not end in 

a leaf during our search for y, we reach a node w with an undefined 

key value. Then we remove y from the list L(w), we set key(v) := y, 
and we expand node w. Just as in the insertion algorithm, if we again 

have to delete an object in the subtree of w, the time for this deletion 

is halved. 

If we do not encounter a node v with key(v) = x during our search 
for x, we might reach a node v with an undefined key value. If x is 

present in the deferred tree, it is stored in the list L(v). So we delete x 
from this list, and we expand node v. 

Note that if x is not present in the tree we will find this out. (In 
that case, we have to adjust the changed N values.) 

We are left with the problem of keeping the deferred tree balanced. 

There are various types of balanced binary search trees that can be 

maintained after insertions and deletions. The oldest are the AVL- 

trees, see Section 2.2. The balance condition for these trees depends on 

the exact heights of subtrees. Since in our deferred tree several subtrees 

are not complete during the sequence of operations, their exact heights 

will not be known. So AVL-trees do not seem appropriate for deferred 

trees. 

We have seen, however, the class of BB[a]-trees, for which the bal- 
ance criterion depends only on the size of its subtrees. For our deferred 

trees, the size of each subtree—whether it has been completely built 

already or not—is known at each moment: It is stored in the variable 

N(v). 

Balancing by means of rotations: Our deferred search tree will 

be a BB[a]-tree. That is, for each internal node v for which the value 
of key(v) is defined, we require that a < N(w)/N(v) <1—a, where 
is the left son of v. 

Updates are performed as described above. After the insertion or
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deletion, we walk back to the root of the deferred tree. Each node 

we encounter that does not satisfy the balance condition is rebalanced 

by rotations, as described in [13]. If a node is involved in a rotation 
that does not “exist”, i.e., its key-value is undefined, we first expand 

it. Therefore, the time for rebalancing after one single update can be 

O(n). However, as was to be expected, future updates—and queries— 

take advantage from this. 

Theorem 11.2.1 A sequence of k <n member queries, insertions and 

deletions in a set of initially n objects can be performed in total time 

O(n log k). 

Proof. Let f(n,k) denote the total time to perform a sequence of k 

member queries and updates in a set of initially n objects, with the 

above algorithms. By Lemma 2.2.1, there is a constant c such that 

the root of the deferred tree cannot get out of balance in a sequence 

of < cn updates. (The root was in perfect balance at the moment it 

was expanded, since we always split the list along the median. Hence, 

Lemma 2.2.1 can be applied.) So in a sequence of k < cn queries 

and updates, the root of the tree is expanded exactly once. The total 

time we spend in the root in such a sequence is therefore bounded by 

O(n +k) = O(n). If k, operations are performed in the left subtree, 
we spend an amount of time there bounded by f(n/2, k1), since the left 
subtree initially contains n/2 objects. Similarly, we spend an amount 

of f(n/2,k — ky) time in the right subtree. It follows that 

f(n,k) < max, {f(n/2, ki) + f(n/2,k-—ki)}+an ifk <cn, 

for some constant c,. 

Each query or update takes O(m) time if m is the number of objects. 

Therefore, a sequence of & operations takes O(k(n+k)) time, since the 
number of objects is always < n+ k. It follows that 

f(n,k) < ek? ifk > en, 

for some constant Co. 

It can easily be shown by induction that f(n,k) = O(nlogk + k?). 
So a sequence of k < ,/n queries and updates takes O(n log k) time.
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After ,/n operations, we have spent already Q(nlogn) time. There- 
fore, we build in the \/n-th operation a binary tree for the objects that 

are present at this moment. So the ,/n-th operation takes O(n logn) 
time. The future operations are performed in this complete structure 

in the standard non-deferred way. This proves the theorem. 0 

The partial dismantling technique: There is another technique 

to achieve the result of Theorem 11.2.1. It is a generalization of Lueker’s 

partial rebuilding technique. (See Section 2.2.) This generalized tech- 

nique can also be applied to dynamize other deferred data structures; 

for example in case the technique that uses rotations does not apply. 

We adapt the partial rebuilding technique to deferred data struc- 

tures. Again the data structure is a deferred BB[a]-tree. Updates are 
performed as described above. Now, rebalancing is carried out as fol- 

lows. After the insertion or deletion, we walk back to the root of the 

deferred tree to find the highest node v that is out of balance. Then we 

dismantle the subtree with root v. That is, we collect all objects that 

are stored in this subtree, and put them in the list L(v). Furthermore, 
we set key(v) := undefined. (The value of N(v) is already equal to 
|L(v)|.) Finally we discard all nodes below v. 

Such a dismantling operation takes O(N(v)) time. Note that by 
Lemma 2.2.1, there must have been > (1 — 2a)N, — 2 updates since v 
was expanded. (Node v was in perfect balance at the moment it was 
expanded, since we always split the list L(v) along the median. Hence, 

Lemma 2.2.1 can be applied.) 

Let g(n, &) denote the total time to perform a sequence of & member 

queries, insertions and deletions in a set of initially n objects, using the 

partial dismantling technique. Then in exactly the same way as in the 

proof of Theorem 11.2.1, it can be shown that there exist constants c, 

Cc, and cy, such that 

maxo<n,<6{9(n/2, ki) + g(n/2,k — ki)} + ein if k < en, 

g(nk) s ok? if k > on. 

It follows that g(n,k) = O(nlogk + k), and hence a sequence of 
k < ./n queries and updates takes O(n log k) time.
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After \/n operations, we have spent already Q(nlogn) time. Then, 
we build—in O(nlogn) time—a binary tree for the objects that are 
present at this moment, and we proceed with the operations in the 

standard way. 

This gives an alternative proof of Theorem 11.2.1. 

A third solution: Finally, we give yet another proof of Theo- 

rem 11.2.1. The method is based on the ideas of decomposable search- 

ing problems and global rebuilding [42]. Again, this technique can also 

be applied for other searching problems; for example in case the previ- 

ous two solutions are not applicable. 

We maintain two structures M and J. The main structure M is 

a Static deferred binary search tree in which we store the n objects 

that are initially present. Each node v in this deferred tree for which 

the key-value is defined, also has a boolean variable b(v), which says 

whether or not key(v) is present. The structure J is an ordinary—i.e., 
non-deferred—balanced binary search tree, in which we store all new 

points. Initially, J is empty. 

Suppose we have to insert object x. Then we do a member query in 

the deferred tree M. If we find x, say in node v, we set b(v) := true. 
Otherwise, we insert x in J in the standard way. 

A deletion of object x is performed as follows. First we do a member 

query in the deferred tree M. If we find x, say in node v, we set 

b(v) := false. So we do not delete x, we only “cross it out”. If we do 
not find x in M, we delete it from the tree J in the standard way. 

To perform a query 2, we first query the deferred tree M. If we find 

x, say in node v, we infer from b(v) whether or not z is present. If we 

do not find x, we perform a member query in the tree J. 

Suppose we perform a sequence of k < n operations in this way. In 

the tree M we perform k queries. By Theorem 11.1.1, the total time 

we spend there is bounded by O(nlogk). In the tree J we perform 
a sequence of at most k queries and updates. Each such operation 

takes O(logk) time, since J stores at most k objects. Hence we spend 

O(klogk) time in the tree J. It follows that the total time for k <n 
operations is bounded by O(nlogk + klogk) = O(nlogk). This yields 
a third proof of Theorem 11.2.1.
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11.3. Applications to the reconstruction prob- 

lem 

We now apply the technique of deferred data structuring to the recon- 

struction problem. Let DS be a dynamic data structure representing 

a set V of n objects. Suppose that the structure DS can be built in a 

deferred way. We take for DS a shadow administration that stores the 

objects of V in sorted order. 

So let SH be a sorted list that stores the objects of the set V. Let 

INF be a balanced binary search tree that contains the objects of V 

in sorted order in its leaves. Each leaf—storing say object p—contains 

a pointer to object p in the list SH. By Theorem 9.3.2, this shadow 

administration can be implemented in O(n) space, such that an update 
takes O(log n) computing time, two disk accesses, and O(1) transport 
time. 

Suppose all information in main memory is destroyed. Then we 

transport the structures from secondary memory to main memory, we 

make the sorted list up-to-date, and we transport the resulting structure 

to secondary memory, as described in Subsection 9.3.3. This takes three 

disk accesses, O(n) transport time and O(n) computing time. 

At this moment, main memory contains the objects in sorted or- 

der. We immediately proceed with answering queries and performing 

updates, in a deferred way. Therefore, the first operations take a lot 

of time, but the operations will be executed faster and faster the more 

operations are performed. The data structure DS will be reconstructed 

gradually during the operations. Note that we now start with the ob- 

jects in sorted order; in the preceding sections, we started with an 

unsorted set of objects. 

As an illustration, consider the dominance counting problem. Here 

we are given a set V of n points in the d-dimensional real vector space. 

For a given query point q in d-dimensional space, we have to report 

the number of points in V that are dominated by q, i.e., the number of 

points p in V, such that p; < qi, po < qo,---,Pa < Qa- 

It was shown by Bentley [6], that for this problem a (static) data 
structure exists of size O(n(logn)*~), that can be built in O(n(log n)4-!)
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time, and in which dominance queries can be solved in O((logn)?) 
time. By using Lueker’s partial rebuilding technique, this structure can 

be dynamized such that updates can be performed in amortized time 

O((logn)4). (In fact, this structure is almost identical to the range tree 
of Section 2.3.) 

Karp, Motwani and Raghavan showed in [28] that a static deferred 
version of this structure exists, such that a sequence of k < n dominance 

queries can be solved in O(n(log k)4"! + k(logn)4) time, if the points 
are ordered according to one of their coordinates. 

It is straightforward to give a dynamic deferred solution for the 

dominance counting problem. This can be done e.g. by applying the 

partial dismantling technique to the static structure in [28]. In fact, 
then the update algorithm for the dynamic deferred structure is almost 

the same as the one in Section 2.3. One can also apply a dynamization 

technique for decomposable counting problems that is similar to the 

third solution of Section 11.2 (see [8, 42]). Because these dynamization 
techniques are well-known, we leave the details to the reader. The 

result is expressed in the following theorem. 

Theorem 11.3.1 A sequence of k < n dominance counting queries, 

insertions and deletions in a set of initially n points in d-dimensional 

space, initially ordered according to one of their coordinates, can be 

performed in total time O(n(log k)*' + k(log n)4). 

If we apply the techniques from the previous section, then we build 

after \/n operations a complete data structure—in O(n(log n)*‘) time— 
and we proceed in the non-deferred way. Since we have spent already 

an amount of Q(n(logn)*') time after these ./n operations, this does 
not increase the total time for the entire sequence of operations. The 

/n-th operation, however, takes a lot of time. We can get rid of this 

expensive operation, by building the complete data structure during 

the first ,/n operations. With each operation, we count the number of 

steps we spend in the deferred data structure. Then we spend the same 

number of steps in building the complete structure. It follows that af- 

ter these \/n operations, the non-deferred structure is completely built. 

Then we use this structure for future operations; the deferred structure 

is discarded.
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So we have a dynamic deferred data structure for the dominance 

counting problem. Now take as a shadow administration the points 

represented by the structure, ordered according to one of their coor- 

dinates. Then after a crash, we reconstruct the ordered list of points, 

as described above, in three disk accesses, O(n) transport time and 

O(n) computing time. Then we immediately proceed with performing 

operations in the deferred way. Of course, with each update, we also 

maintain the shadow administration. Note that in this new approach, 

the first operation takes O(n) time. The data structure will become, 
however, more complete, and the operations will be executed faster and 

faster the more operations are performed. In fact, by Theorem 11.3.1, 

we can perform O(n/logn) operations in O(n(logn)4*) time. 
Using the old approach, in which we completely reconstruct the 

data structure before we proceed with query answering and performing 

updates, it takes O(n(logn)4~') computing time before we can proceed, 
since the data structure has size O(n(logn)?"'). Then the first n/logn 
operations also take O(n(log n)?') time, because each operation takes, 
amortized, O((logn)*) time. 

Hence, in the approach of the current section, the first n/logn 

operations take the same amount of time as we would have needed 

in the old approach. In this new approach, however, we do not have 

to wait O(n(logn)4-') time before we can start with the operations. 
(Also in the ./n-th operation, we do not have to wait O(n(logn)4*) 
time until the non-deferred structure is built.)



Chapter 12 

Summary and concluding 

remarks 

We have studied the reconstruction problem for dynamic data struc- 

tures: Given a searching problem, design a dynamic data structure solv- 

ing this problem, together with a shadow administration from which 

the data structure can be reconstructed. By storing this shadow admin- 

istration in secondary memory, we are able to reconstruct the original 

data structure in case the information in main memory is destroyed. 

We have given several techniques that can be used for large classes of 

searching problems. We give a summary of the most important results. 

In Subsection 8.3.1, we have shown that we can maintain an ordered 

set of n objects in secondary memory, at the cost of 3 disk accesses, 

O(logn+b) computing time and O(b) transport time per update. Here, 
b is the number of objects that can be stored in one block in secondary 

memory. We applied this technique to a range tree with slack parameter 

k, which is a data structure of size O((n logn)/k) that takes O(n logn) 
time to build. The result is a shadow administration of size O(n), such 
that the range tree can be reconstructed at the cost of one disk access, 

O(n) transport time and O((nlogn)/k) computing time. 
In Section 9.1, we have given a general technique for order decom- 

posable set problems. Especially interesting are the O(n)-order decom- 

posable set problems. For such problems, the dynamic data structure 

has size O(n loglogn) and it can be built in O(nlogn) time. We have 
given a shadow administration of size O(n), from which the data struc- 
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ture can be reconstructed in one disk access, O(n) transport time and 
O(n log log n) computing time. For this shadow administration, an up- 

date takes one disk access and an amortized amount of O(n/logn) 
transport and computing time. 

In Section 9.2, we have applied Bentley’s logarithmic method to 

shadow administrations. The result is Theorem 9.2.1: 

Suppose we are given a (static) data structure and a correspond- 

ing shadow administration for a decomposable searching problem. The 

complexity of the shadow administration is denoted by S’(n), P.(n) and 
R.(n). The logarithmic method gives a semi-dynamic data structure 
with a corresponding shadow administration. This shadow administra- 

tion has size O(S'(n)), and the data structure can be reconstructed from 
it in one disk access, O(S’(n)) transport time, and O(R,(n)) comput- 
ing time. An insertion takes one disk access; an amortized transport 

time of O(S’(n)/n) if S’(n)/n't* is non-decreasing for some € > 0, 
and O((S'(n)/n) x logn) otherwise; and an amortized computing time 
of O(P.(n)/n) if P.(n)/n'** is non-decreasing for some € > 0, and 
O((P.(n)/n) x logn) otherwise. 

This result means that a given shadow administration can be dy- 

namized, such that the resulting shadow administration is (asymptot- 

ically) of the same size, and has the same reconstruction complexity. 

This new shadow administration, however, has an easy and efficient 

insert algorithm. 

We have given only one of the many known dynamization tech- 

niques. In [56], other techniques are given to design shadow administra- 

tions for the data structures solving decomposable searching problems. 

In Section 9.3, we have given a general technique to implement 

any shadow administration in secondary memory. The main result is 

Theorem 9.3.2: Let DS be a dynamic data structure and let SH and 

INF be a corresponding shadow administration. Let U.(n) be the total 
update computing time of SH and INF, let R,(n) be the computing 
time needed to reconstruct the structures DS and INF from SH, and 

let C(n) be the amount of data that is changed in an update in SH. 
We have shown that we can implement these structures such that the 

resulting shadow administration has size O(Sg7(n)+Szwr(n)), and can 
be updated in two disk accesses, O(U.(n)) computing time and O(C(n)) 
transport time in the worst case. The structures DS, SH and INF can



201 

be reconstructed in three disk accesses, O(Ssy(n)) transport time and 
O(Ssx(n) + R-(n)) computing time. 

So this result gives an efficient implementation of any shadow ad- 

ministration. Especially the update algorithm is interesting: it takes 

only two disk accesses and a small amount of transport time, even in 

the worst case. 

In Chapter 10 we have studied the union-find problem. We have de- 

signed a structure of size O(n), in which each UNION takes O(k) time, 
and each FIND takes O(log, 7) time. A copy of this data structure 
can be maintained in secondary memory using O(n) space, such that 

reconstruction takes one disk access and O(n) transport and computing 
time. This copy can be maintained after a UNION operation at the 

cost of at most three disk accesses and O(k) transport and computing 
time. A FIND operation does not change the structure and, hence, the 

copy does not have to be updated after such an operation. 

This data structure nicely illustrates how shadow administrations 

can be implemented. It also shows that the copy in secondary memory 

is stored in such a way that all pieces of information are mixed up to- 

gether. For example, the pointers of the main memory structure do not 

have any meaning in secondary memory. This does not matter, since 

we only require that the shadow administration contains information 

from which the original main memory structure can be reconstructed. 

Note that the structure of Chapter 10 can be implemented on a Pointer 

Machine. If we store the structure, however, together with a copy in 

secondary memory, the main memory structure must be implemented 

on a RAM, since we need to store in secondary memory the addresses 

of the information in main memory. Furthermore, the structure cannot 

be applied in the scenario of Part II, where we assumed that the struc- 

ture does not fit in main memory. The reason is that in this case, the 

pointers must have a meaning in secondary memory. The maintenance 

of the correct meaning of these pointers will take a lot of disk accesses. 

Finally, in Chapter 11, we have applied known dynamization tech- 

niques to static deferred data structures. We have proved in Sec- 

tion 11.2, that a sequence of k < n member queries, insertions and 

deletions in a set of initially n objects can be performed in O(n log k) 

time, which is optimal. In fact, we have given three techniques that 

achieve this result. These techniques can also be applied to dynamize
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other static deferred structures. Dynamic deferred data structures lead 

to another approach to the reconstruction problem. In this approach 

we maintain in secondary memory the objects represented by the data 

structure. After a crash, we transport these objects to main memory, 

and we immediately continue with query answering and performing up- 

dates. The data structure is reconstructed “on-the fly” in a deferred 

way. 

We finish this part with some directions for future research. 

A first direction is to search for other general solutions, to study 

other classes of searching problems, and to design other techniques for 

decomposable searching problems. Also, it would be interesting to have 

more examples of shadow administrations for specific data structures. 

For example, in order to apply the general technique of Section 9.3, 

shadow administrations are needed for which C'(n)—the amount of data 
that is changed in an update—is small. 

Another direction is to perform sets of updates, instead of perform- 

ing each update separately. Again one can study special classes of 

searching problems, or design general techniques. 

A very important problem, that we have not considered at all, is 

the following optimization problem. In the reconstruction problem, we 

reconstruct the data structure in most cases exactly as it was before 

the information was destroyed. The optimization problem is to recon- 

struct the structure in such a way that it is “more balanced” than 

the destroyed structure was. For example, in case of a range tree, we 

maintain in secondary memory the points represented by the tree. (See 

Subsection 8.3.1.) The range tree is reconstructed by building it from 
these points. Of course, this tree is rebuilt as a perfectly balanced tree. 

So after reconstruction, the data structure is—in general—more bal- 

anced than it was before the information was destroyed. An interesting 

research direction is to study this optimization problem. Again, general 

techniques may exist, and special classes of searching problems may ad- 

mit efficient solutions. An example of a solution to this problem for trie 

hashing functions is given in Torenvliet and van Emde Boas [61].
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Part IV 

Maintaining dynamic data 

structures in a network 
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Chapter 13 

The multiple representation 

problem 

13.1 Introduction 

In Part III we have studied a special instance of the general problem 

of maintaining multiple representations of dynamic data structures. In 

the present part, we consider a related problem, namely the problem 

of maintaining a number of copies of a data structure in a network of 

processors. 

Assume we have a network of processors, each having its own mem- 

ory. Each processor holds its own copy of a particular data struc- 

ture. Changes to the data structure have to be made in all copies. To 

avoid that each processor spends a lot of time in updating its copy, we 

dedicate one processor the task of maintaining the data structure and 

broadcasting the actual changes to the other processors. So we have 

a multiple representation of the data structure. One data structure 

that should allow for updates, and a set of other structures that an- 

swer queries. Of course, the query data structures must be structured 

in such a way that they can perform updates, but they get the up- 

date in a kind of “preprocessed” form that is easier to handle. The one 

structure that performs the updates will be called the central structure. 

The other structures that allow for queries are the client structures. We 

study how to organize the central structure for different types of query 
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problems, how to structure the client structures, and what type of in- 

formation has to be sent from the central structure to the clients. It will 

be shown that, after “preprocessing” an update by the central struc- 

ture, the clients can often perform the update more efficiently. Also, 

in some situations the client structures can be smaller than the central 

structure. 

This multiple representation problem is related to the reconstruction 

problem. In fact, they are “dual” to each other. In the reconstruction 

problem there is one memory—main memory—in which queries and up- 

dates are performed. After an update in main memory, information is 

transported to another memory—which is secondary memory. Then in 

secondary memory, the relevant parts of the structure are updated. In 

secondary memory, no queries are performed. In the multiple represen- 

tation problem of the present part, there is one storage medium—the 

central processor—in which only updates are performed. After this 

central update, we transport data to other storage media—the clients. 

Each client then updates its own structure. These client structures are 

also used for query answering. 

An example of a practical instance in which this framework can be 

applied is a “Star Network”. Here the central processor is the main 

computer; it holds the central data structure, and is connected to all 

other processors. Often, these other processors, that contain the client 

structures, are somewhat limited in capacity. Clearly, it is desirable in 

such situations to utilize the power of the central processor as much as 

possible. 

Besides possible practical applications, the results give the insight 

that sometimes parts of data structures are only necessary for perform- 

ing updates and, hence, can be removed in the client structures. The 

results also show what portions of data structures are actually changed 

when performing updates. This might have applications in storing dy- 

namic data structures in write-once memories, such as optical disks. 

In the next section, we give the general framework we use to de- 

scribe solutions for this multiple representation problem, and we in- 

troduce complexity measures to express the efficiency of solutions. In 

Section 13.3, we study binary trees as our first example where the client 

structures store less information than the central structure. 

In Chapter 14, we consider general techniques that are applicable
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to order decomposable set problems and decomposable searching prob- 

lems. We also give a technique that applies to any data structure. This 

general technique is especially efficient for data structures in which an 

update changes only a small part of the structure. 

In Chapter 15 we give a summary of the most interesting results. 

13.2 The general framework 

In this section we give a precise statement of our problem, and we 

introduce a framework in which solutions to the problem are given. We 

also give complexity measures to express the efficiency of the solutions. 

e There is a network of processors, the clients, each having its own 

memory. Each of these clients contains the same data structure 

DS—the client structure—and uses it to solve queries. 

e One of the processors contains a central structure DS". 

We assume that all processors are Random Access Machines. Up- 

dates have to be performed in all the client structures. Such an update 

is performed as follows. We first perform the update in the central 

structure DS’. During this update we (hopefully) obtain information 
that makes it possible to update the client structures more efficiently 

than by just directly updating them. Then we send information about 

the update through the network to the clients, and using this informa- 

tion each client updates its structure DS. We express the complexity of 

an update of the client structures by the number of words transported 

to each client, and by the amount of computing time that the client 

structure needs to perform the update. 

Just as in Part III, we have introduced a multiple representation of 

the data. We have a number of copies of the same data structure DS. 

Furthermore, there is a data structure DS’, that is used to “preprocess” 

updates, so that the client structures DS can be updated efficiently. On 

the client structures, queries and preprocessed updates are performed, 

whereas on the central structure only updates are carried out. We 

will see that the client structure and the central structure need not be 

identical. Therefore we use different notations for these structures.
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The complexity of the client structure DS is expressed by the follow- 

ing functions (n is the number of objects represented by the structure): 

e S(n): the amount of space needed to store the structure DS. 

e Q(n): the time required to answer a query using DS. 

e F(n): the amount of data (which we consider in terms of words) 
transported to DS' in an update. 

e G(n): the amount of computing time needed to update DS, using 

the information received from the central structure. 

We assume that G(n) = Q(F (n)), which is reasonable, since a client 
receives an amount of F'(n) data, and it has to store it somewhere. 
Note that we express F'(n) in terms of words. In Section 13.3, however, 
we express F’(n) in terms of bits. In this chapter, we never use the 
building time of the client structure DS. Therefore, we do not introduce 

a notation for it. 

The complexity of the central structure DS’ is given by the usual 

measures, and they are denoted by: 

e S’(n): the amount of space used by DS". 

e P'(n): the time needed to build DS’ from scratch. 

I'(n): the time needed to insert an object into DS’. 

D'(n): the time needed to delete an object from DS". 

if the insertion and deletion times are equal, we denote this com- 

mon update time by U'(n). 

(There is no query time here, because queries are not performed on the 

central structure.) 
The problem investigated in this part of the thesis is the following. 

We are given a searching problem. The main goal is to design a client 

structure DS for this searching problem, such that when an update 

is given in some preprocessed form, this update can be performed ef- 

ficiently. Ideally, the size of this preprocessed form and the time to
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perform the update using this information (i.e., the values of F'(n) and 
G(n)) are much smaller than the time needed to perform the update 
directly in the structure. A second goal is to design a central struc- 

ture DS’ in which the updates can be preprocessed efficiently. We shall 

emphasize, however, the design of the client structure DS. 

13.3. An example: binary search trees 

Suppose that the client structures have to solve the member searching 

problem. An efficient dynamic data structure for this problem is a 

balanced binary search tree, e.g. an AVL-tree, or a BB[a]-tree. Such a 
tree allows member queries and insertions/deletions to be performed in 

O(log n) time, if n is the number of objects stored in the tree. Internal 
nodes of these trees contain balance information. For example, in an 

AVL-tree each internal node contains the difference of the heights of its 

left and right subtrees (which is —1, 0 or 1). If an object is inserted 
in or deleted from the tree, all nodes that do not satisfy the balance 

condition anymore are computed, and then by a local restructuring 

technique—mostly single and double rotations—balance is restored for 

these nodes. Clearly, this balance information is only used to update 

the tree; to perform member queries, this information is superfluous. 

So take a class of balanced binary search trees, that can be main- 

tained by means of single and double rotations. We consider these trees 

as leaf search trees, i.e., the objects are stored in the leaves. Let T’ be 

a tree in this class, and let T be a copy of T’ without the balance infor- 

mation in its nodes. The tree J” will be the central structure, and the 

tree T will be the client structure. Clearly, the tree T’ contains enough 

information to allow member queries to be carried out in logarithmic 

time. 

The update algorithm: Suppose an object p is to be inserted 

or deleted in the client structures. Then we first insert or delete p in 

the central structure T’. This gives us a path in 7’, from the root to 

an appropriate leaf, along which rotations have been (possibly) carried 
out. We encode this path by a string s = (11, 61, re, be,..., TR, dg), where 
k is the length of the path. Starting at the root of the tree, r; contains
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information whether a left single rotation, a right single rotation, etc. 

has to be carried out, or that no restructuring operation is necessary; 

b; tells whether the next node on the path lies to the left or to the 

right of the root; rp tells what kind of rotation has to be carried out for 

the second node of the path, and by says in which direction the path 

proceeds, and so on. Note that O(k) = O(logn) bits are sufficient to 
represent the string s. Now we send to each client structure the object 

p together with information whether it has to be inserted or deleted, 

and the string s. Using p and s, the client structures J are updated. 

Note that we know exactly which path in T' we have to walk down, and 

where on this path restructuring operations have to be carried out. So 

we do not have to decide in each node—by means of a comparison of 

p with the value stored in this node—in which direction to proceed. 

Hence this will save for each client structure O(logn) comparisons in 
the update procedure. 

The complexity: The complexity of this solution is as follows. 

The central structure has size O(n), and an update takes O(log 7) time. 
Each client structure has also size O(n). In this last bound, however, 
the constant factor will be smaller. Member queries can be solved in 

the client structures in O(log) time. To perform an update, an object 
p and a bitstring s of length O(logn) are sent to the client structures, 
and for each of these structures O(logn) computing time is needed to 
update it. Again the constant factor is smaller than in the update time 

of the central structure. 

So at the cost of a slight increase in the amount of data that is 

transported to the client structures—by sending an additional string of 

O(logn) bits—we have decreased the constant factors in the complex- 
ity bounds for the client structures, compared to the constants in the 

bounds of the central structure. 

The client structures can be used for solving other searching prob- 

lems. Examples are the one-dimensional range searching problem, 

where we are given a range [a : bj, and we have to report all objects ly- 
ing in this range. Such a range query can be answered, without needing 

balance information at the nodes, in O(logn + t) time, where ¢ is the 
number of points in the range. Another example is the one-dimensional
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nearest neighbor searching problem. Here we are given an object p, and 

we have to report the object in the tree that is closest to p. Clearly, 

such a query can be answered, again without using balance information 

at the client structures, in O(logn) time.
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Chapter 14 

General approaches 

14.1 Order decomposable set problems 

In Section 2.5, we defined the class of order decomposable set prob- 

lems. Recall that a set problem PR: P(T,) — Tp is called M(n)-order 
decomposable, if there is an order ORD on T;, such that for any set 

V = {pi < po <... < pn}, ordered according to ORD, and for any 2, 

1<i<n, the answer PR(V) can be computed from PR({pi,..., pi}) 
and PR({pisi,---,Pn}) in M(n) time. 

Let PR be an M(n)-order decomposable set problem, and let V 
be a set of cardinality n for which we want to maintain the answer to 

PR. In Section 2.5, we gave a dynamic data structure that maintains 

this answer. The data structure presented there has the property that 

just a small part of the structure is used for answering a query—the 

answer to the problem is stored in the root of the tree that contains 

the elements of V—whereas the rest of the structure is only used to 

update this answer efficiently. 

Therefore, we take for the client structures, the answer PR(V) to the 
set problem for the entire set V, and we take for the central structure, 

the fully dynamic data structure. Updates are first performed on the 

central structure. Then we replace each old client structure by the new 

answer to the set problem. The result is given in the following theorem. 

(The notations used are the same as in Section 13.2.) 

Theorem 14.1.1 For an M(n)-order decomposable set problem, there 
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exists a client structure, that maintains the answer to the set problem, 

with complexity 

1. S(n) = O(PR(n)). 

2. F(n) = O(PR(n)). 

3. G(n) = O(PR(n)). 

Here PR(n) is the size of the answer to the set problem for a set of n 

objects. 

Proof. The proof follows from the above discussion. O 

It follows from Theorems 2.5.1 and 14.1.1, that for many values of 

M(n), the client structures have asymptotically lower complexity than 
the central structure. For example, for any O(n)-order decomposable 
set problem, the central structure has size O(n loglogn), whereas the 
client structures have size only O(n). Examples of such set problems 
are given in Section 2.5. 

14.2 Decomposable searching problems 

In this section we consider decomposable searching problems, that were 

introduced in Section 2.4. Recall that a searching problem PR: T, x 

P(T>) — T3 is called decomposable, if there is a function 0 : T3 x T3 > 

7T3, such that for any partition V = AUB of any subset V of 75, and for 

any query object xz in T,, we have PR(x,V) = O(PR(z, A), PR(a, B)), 
where the function 0 can be computed in constant time. 

Let PR be a decomposable searching problem, and let DS be a 

dynamic data structure solving PR. We consider the case in which only 

insertions are performed. Let S(n) be the size of the structure DS, and 
let Q(n) be the query time of DS. We assume that S(n)/n and Q(n) 
are non-decreasing, and that S(n) and Q(n) are smooth functions. 

The multiple representation: To maintain a multiple represen- 

tation for PR we proceed in the following way. Let the client structure
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consist of the structure DS, together with a list of objects. The cen- 

tral structure consists of a copy of the structure DS. In order to avoid 

confusion, we denote this central structure by DS". 

Initially, the list of objects in the client structure is empty, and the 

structures DS and DS" are up-to-date. Let n be the initial number of 

objects. 

The insert algorithm: Consider an insertion of an object p. First 

we insert p in the central structure DS’. If p is already present, then 

nothing has to be done. (In this case the client structures do not have 
to know that anything happened.) If p is a new object, we send it to 

the clients, and each client adds it to its list. After Q(n) objects are 
inserted in this way—hence each client structure contains a list of Q(n) 
objects—a copy of the central structure—which is up-to-date—is sent 

to the clients. Each old client structure is then replaced by this new 

structure, and the list of objects is initialized again as an empty list. If 

m is the number of objects that are present after these Q(n) insertions, 
we repeat this procedure, now with a sequence of Q(m) insertions. 

The query algorithm: Queries are solved in a client structure 

as follows. First we query the data structure DS. Next we query the 

at most Q(n) objects in the list of most recently inserted objects, by 
considering each of them separately. Then all answers obtained are 

merged using the function O. (Note that all objects in the list are 

different, and are not present in the client data structure DS.) 

Theorem 14.2.1 Let DS be a data structure for a decomposable search- 

ing problem PR, of size S(n) and query time Q(n). There exists a client 
structure solving PR, with performances: 

1. The size of the client structure is bounded by O(S(n)). 

2. F(n) = O(S(n)/Q(n)), amortized, for an insertion. 

3. G(n) = O(S(n)/Q(n)), amortized, for an insertion. 

4. The query time of the client structure is bounded by O(Q(n)). 

Proof. The client structure consists of a copy of the data structure DS 

as it is at the beginning of a sequence of insertions, together with a list
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containing the (at most @Q(n)) insertions performed so far. Insertions 
and queries are carried out as described above. The size of the client 

structure is bounded by the size of DS and by the number of objects in 

the list. Let N be the number of objects that are currently present, and 

let n be the number of objects that were present at the beginning of the 

sequence of insertions. Then the size of the client structure is bounded 

by O(S(n) + Q(n)) = O(S(N)). Because for a decomposable searching 
problem obviously Q(n) = O(n), and since S(n)/n is non-decreasing, 
we have Q(n) = O(S(n)). Finally, since n < N < n+ Q(n) = O(n), 
and since S(n) is smooth, the bound on the space complexity follows. 
In a sequence of Q(n) insertions, the total amount of data that is trans- 
ported to a client structure, is bounded by O(Q(n) + S(n)) = O(S(n)). 
Hence the amortized amount of data that is transported for an inser- 

tion is O(S(n)/Q(n)). The total computing time for Q(n) insertions 
into a client structure, is also bounded by O(Q(n) + S(n)), since a 
new object can be inserted to the list in constant time, and since it 

takes O(S(n)) time to receive and write a data structure of size S(n). 
Hence G(n) = O(S(n)/Q(n)), amortized, for an insertion. Finally, the 
query time of the client structure is bounded by O(Q(n)), because the 
structure DS can be queried in Q(n) time, and using the definition of a 
decomposable searching problem, the objects in the list can be queried 

in O(Q(n)) time. O 

The client structure in this theorem is, of course, not very efficient. 

The given dynamization technique, however, is a first step towards a 

more powerful technique that will be worked out later in this section. 

In the above theorem, the insert complexity for the client structures 

is an amortized complexity. We show now how these bounds can be 

turned into worst-case bounds. The idea is to spread out the trans- 

portation of the large data structure over a number of insertions. In 

the sequel we assume that if object p is to be inserted, it is not present 

yet. (As we saw already, if the object is present, the client structures 

do not have to know that anything happened.) 

The multiple representation: The client structure consists of 

a data structure DS, and two lists of objects. The central structure 

consists of a copy of the structure DS—which we denote again by DS’—
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and one list of objects. 

The insert algorithm: Let k be the initial number of objects. 

Then the client structure contains an up-to-date data structure DS and 

the two lists are empty. The central structure contains an up-to-date 

structure DS’ and an empty list. 
The initial stage: During Q(k) insertions, we add the new objects 

to one of the lists of the client structures. (Each time we add it to 
the same list.) Furthermore, all these insertions are performed in the 

central structure DS’. 
Hence after these Q(k) insertions, the client structure consists of 

a data structure DS, representing the k objects that were initially 

present, a list of the Q(k) most recently inserted objects, and an empty 
list. The central structure consists of an up-to-date structure DS’, and 

an empty list. 

Now the periodic process of insertions can start. Let n = k+Q(k), 

i.e., n is the number of objects that are currently present. Consider a 

sequence of Q(n) insertions. 
Part 1 of the regular stage: During the first Q(n)/2 insertions, 

we add the new objects to the initially empty lists of the client struc- 

tures, and we send the central structure DS’ to the clients: Each update 

we send a part of DS" of size O(S(n)/Q(n)). Then, after these Q(n)/2 
insertions, each client structure contains a data structure DS’, and a 

list of the Q(n)/2 most recently inserted objects. Now we replace the 
old client structure DS by the structure DS’, and we set the old list 

of Q(k) inserted objects to the empty list. (We denote the new client 
structure again by DS.) In the central structure we add the Q(n)/2 
new objects to the list. Note that the central structure DS’ cannot be 

affected during these insertions. 

Part 2 of the regular stage: The final Q(n)/2 insertions are per- 
formed as follows. The new objects are added to the non-empty list of 

the client structure. In the central structure, we perform in each update 

the current one, and one update from the list of updates. (Note that 

the order in which we perform the updates in the central structure does 

not matter, since all updates are insertions. If, however, deletions were 

also possible, the updates had to be carried out in chronological order. 

See Subsection 14.3.4.) Afterwards the list of the central structure is
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set to the empty list. 

After Part 2: After the entire sequence of Q(n) updates, the client 
structure contains a data structure DS storing the n objects that were 

present Q(n) insertions ago, a list of the Q(n) most recently inserted 
objects, and an empty list. The central structure consists of an up- 

to-date structure DS’ and an empty list. Hence we are in the same 

situation as Q(n) updates ago, and we can continue in a similar manner. 

The query algorithm: Queries in a client structure are solved, 

by querying the data structure DS, and by walking along the two lists 

of objects. Then using the function 0, the answers are merged to get 

the final answer to the query. 

Theorem 14.2.2 Let DS be a data structure for a decomposable search- 

ing problem PR with worst-case complexity S(n), I(n) and Q(n). There 
exists a client structure solving PR, with performances: 

1. The size of the client structure is bounded by O(S(n)). 

2. F(n) = O(S(n)/Q(n)) in the worst case, for an insertion. 

3. G(n) = O(S(n)/Q(n)) in the worst case, for an insertion. 

4. The query time of the client structure is bounded by O(Q(n)). 

Furthermore, the size and the insertion time of the central structure are 

bounded by O(S(n)) and O(I(n)). 

Proof. It follows from the above discussion that in each insertion 
we send an amount of O(S(n)/Q(n)) + O(1) = O(S(n)/Q(n)) data, 
and for each client structure we have to spend O(S(n)/Q(n)) + O(1) = 
O(S(n)/Q(n)) time to receive and write this data. Hence both F(n) 
and G(n) are bounded by O(S(n)/Q(n)) in the worst case. Also, the 
size and the query time of the client structure are bounded by O(S(n)) 
and O(Q(n)). Clearly, the performances for the central structure are 
increased by at most a constant factor. 0 

There are more powerful techniques to get efficient solutions for 

decomposable searching problems. We can for example consider se- 

quences of more than Q(n) insertions. Then the most recently inserted
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objects are stored in a small data structure, to ensure that the query 

time remains bounded by O(Q(n)). In this way the values of F'(n) and 
G(n) can be decreased. This idea is worked out below. 

Let PR be a decomposable searching problem, and let DS be a 

dynamic data structure solving PR. The size and the query time of DS 

are denoted by S(n) and Q(n). As before, we assume that S(n)/n and 
Q(n) are non-decreasing, and that S(n) and Q(n) are smooth. 

The multiple representation: Let f(n) be an integer function, 
such that Q(n) < f(n) <n. The client structure consists of two data 
structures DS, and DS», and a list of objects. The central structure 

contains copies of the structures DS, and DS», which we denote by 

DS", and DS‘. 

Initially, the structures DS, and DS‘, and the lists in the client 

structures, are empty. The structures DS» and DS‘, store the n objects 

that are present at this moment. 

The insert algorithm: Consider a sequence of f(n) —1 insertions. 
We insert the new objects in the central data structure DS. In the 
client structure we add the new objects to the list. Every Q(n)-th 
insertion, the central structure DS’, as it is that moment is sent to 
the client structure, where it replaces the structure DS, (of course we 

denote this new structure by DS,), and the list of objects is set to the 

empty list. Hence during these f(n) — 1 insertions, the client structure 
consists of a list of at most Q(n) objects, and of two data structures 
DS, and DS»2, where the structure DS, represents at most f(n) objects. 

At each moment, the objects represented by these three structures form 

a partition of all the objects that are present at that moment. 

In the f(n)-th insertion, we build a new structure DS, storing all 
objects that are present at this moment, and send it to the clients, 

where it becomes the new DSy. Also, the structures DS,, DS‘, and 

all lists are made empty. If m is the number of present objects at 

this moment we repeat this procedure, now with a sequence of f(m) 
insertions. 

It is easy to see that, using this technique, the size and the query 

time of the client structure remain bounded by O(S(n)) and O(Q(n)).
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Furthermore, the amortized values of F'\(n) and G(n) are both bounded 

by O(S(f(n))/Q(n) + S(n)/f(n)). 
We generalize this solution as follows. 

The generalized multiple representation: Let k be a positive 

integer, and let f;(n) be integer functions, for 1 = 0,1,...,4, such 

that Q(n) = fo(n) < film) < foln) < ... < fealm) < fir) = 
n. Then the client structure contains a collection of data structures 

DS;, 1 = 1,2,...,k, and a list of at most Q(n) objects. The central 
structure contains copies of the structures DS';, which are denoted by 

DS',, i = 1,2,...,k. Each DS; and each DS‘, will represent at most 
fi(n) objects. Initially, all structures DS1,...,DS,_1, DS',...,DS,_4 
and all lists are empty. The structures DS, and DS‘, store the n objects 

that are present at this moment. 

The insert algorithm: Consider a sequence of f,-1() insertions. 
In the j-th insertion, do the following. If there is an i, 0 <<1< k—-1, 

such that 7 = 0 mod f;(n), determine the maximal such i. Then build 
a new structure DS',,,, storing all objects that were present in the old 

central structures DS',,..., D5%,,,, and add it to the central structure. 
Also, the old central structures DS},..., DS; are made empty. Next, 
send this new structure DS’, 41 to the clients, where it replaces the old 

DSi41. (We denote this new client structure again by DS;,;.) Finally, 
all client structures DS,,..., DS; and the lists are made empty. If there 

is no 7 such that 7 = 0 mod fj(n), add the new object to the list of the 
client structures, and insert the new object in the central structure 

DS‘. 

It is not difficult to see, that for each i, the structures DS; and DS, 

indeed represent at most f;(n) objects, and that the list in the client 
structure contains at most Q(n) objects. Also, each DS, is sent to the 
clients at most once every f;_1(n) insertions. 

After these f,_1(n) insertions, all structures DS,,..., DS,_1, DS, .. 
and all lists, are empty again, and the structures DS, and DS‘, store 

the objects that are present at this moment. (Note that in the f,_1(n)- 
th insertion, the maximal value of 7 in the above update procedure is 

k — 1.) So we can proceed in the same way, now with a sequence of 

fr_-i(m) insertions, where m is the current number of objects. 

DS,
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In this way the amortized values of F(n) and G(n) are bounded 
above by 

S(filn)) , S(faln)) , —_, SUfe-a(n)_, 8) 
Qin) film) fea(n)  fe-a(n)’ 

Since we assumed that S(n)/n is non-decreasing, it follows that this 
sum is bounded above by 

S(n) (film) | Alm), fer) n 
© (85 fi(n) Om): 

Now take f;(n) = [ni/ k(Q(n))i-¥/ el. Then the amortized values of F'(n) 
and G(n) are bounded above by 

In a similar way as before these amortized bounds can be turned into 

worst-case bounds. The result is expressed in the following theorem, 

the proof of which is left to the reader. 

+ +. 

Theorem 14.2.3 Let DS be a data structure for a decomposable search- 

ing problem PR with complexity S(n) and Q(n). Then for each positive 
integer k there exists a client structure solving PR, with performances: 

1. The size of the client structure is bounded by O(S(n)). 

2. F(n) = O(k x (S(n)/n) x (n/Q(n))*) in the worst case, for an 
insertion. 

3. G(n) = O(k x (S(n)/n) x (n/Q(n))'/*) in the worst case, for an 
insertion. 

4. The query time of the client structure is bounded by O(k x Q(n)). 

We illustrate this result with an example. In the nearest neighbor 

searching problem, we are given a set V of n points in the plane, and a 

query point p, and we are asked to find a point in V that is closest to p
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with respect to the euclidean distance. Clearly, this problem is decom- 

posable. There exists a data structure for this problem of size O(n) such 
that queries can be solved in O(logn) time, see e.g. Kirkpatrick [29]. 

If we apply for example the logarithmic method to this structure, 

see Section 2.4, we get a semi-dynamic structure of size O(n), having a 
query-time of O((logn)?), in which points can be inserted in amortized 
O((logn)?) time. 

Applying Theorem 14.2.3 to Kirkpatrick’s structure, however, we 

obtain: 

Theorem 14.2.4 Let k be a positive integer. For the nearest neigh- 

bor searching problem in the plane, there exists a client structure, with 

performances: 

1. The size of the client structure is bounded by O(n). 

2. F(n) = O(k x (n/logn)/*) in the worst case, for an insertion. 

3. G(n) = O(k x (n/logn)'/*) in the worst case, for an insertion. 

4. The query time of the client structure is bounded by O(k x logn). 

It is clear that the techniques presented in this section only allow 

insertions to be carried out. In some cases, however, deletions are also 

possible. For example, deletions can be handled if we restrict ourselves 

to a subclass of the decomposable searching problems, the decomposable 

counting problems. See Section 2.4 for the definition and for a sketch 

of a dynamic data structure solving these problems. 

For these decomposable counting problems, the following analogue 

of Theorem 14.2.3 can be proved. 

Theorem 14.2.5 Let DS be a data structure for a decomposable count- 

ing problem PR with complexity S(n) and Q(n). Then for each positive 
integer k there exists a fully dynamic client structure solving PR, with 

performances: 

1. The size of the client structure is bounded by O(S(n)). 

2. F(n) = O(k x (S(n)/n) x (n/Q(n))*) in the worst case. 

8. G(n) = O(k x (S(n)/n) x (n/Q(n))/*) in the worst case. 

4. The query time of the client structure is bounded by O(k x Q(n)).
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14.3. A general technique 

14.3.1 Introduction 

We present a general technique that is similar to the general technique 

of Section 9.3. 

Consider again our strategy with respect to the member searching 

problem of Section 13.3. In this solution, in each update we send a 

string of O(log n) bits to the client structures, where the string contains 
an encoding of the path to the node where the update is carried out, 

together with information about what kind of rotations have to be 

performed. In order to update the client structure, we follow the path, 

insert or delete the object, and perform the rotations. Clearly, this 

procedure takes O(logn) time. If we consider, however, how many 
nodes in the tree are changed in this update, we see that O(1) of them 
are changed due to the insertion or deletion, and the rest of them are 

changed due to rotations. Therefore, if O(1) rotations are carried out, 
only O(1) nodes of the tree are changed. (Note that a client structure 
does not contain balance information.) So if we could avoid to walk 
down the path, it could be possible to update the client structure in 

only O(1) time. 

The solution is to send to the client structures the inserted or deleted 

object, together with the positions in the tree where changes—and what 

kind of changes—have to be carried out. Since there are binary trees 

that can be maintained in logarithmic time with only O(1) rotations in 
the worst case (see Theorem 2.2.3), this will give us a solution where 
the client structures can be maintained in constant time. 

This is the main idea behind the general technique that will be 

worked out in this section. We will achieve our result in a number of 

steps. First we give a solution in case the data structures do not exceed 

some given size. Next we extend this solution to a general one having a 

low amortized complexity. Then we turn these amortized bounds into 

worst-case bounds. 

Let PR be a searching problem, and let DS resp. DS" be the corre- 

sponding client structure resp. central structure. The performances of 

DS are denoted by S(n) and Q(n), and those of DS’ by S'(n), P’(n)
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and U’(n) (see Section 13.2 for these notations). We assume that DS is 
a substructure of DS’. That is, DS is a part of DS’, containing enough 
information such that queries can be solved fast. For example, if DS’ 

is a balanced binary tree, then we can take DS, the tree without the 

balance information at the nodes. Updates are performed as before. 

That is, first the central structure DS’ is updated, then information is 

sent to the client structures, and finally the client structures DS are 

updated. Let C(n) denote the amount of data that is changed in the 
client structure DS in an update. We assume that all these complexity 

measures are non-decreasing and smooth. 

We transform this multiple representation into another one, such 

that each transformed client structure has size O(S(n)), update com- 
plexity F(n) = O(C(n)) and G(n) = O(C(n)), and in which queries can 
be solved in O(Q(n)) time. In each update, we only send the changes 
of the client structure DS. In order to avoid searching for the positions 

in the client structure where the changes have to be carried out, we also 

send these positions. Therefore, we implement the data structures as 

arrays. (The processors are Random Access Machines, the memories of 

which are modeled as arrays. Hence we can indeed implement the data 

structures as arrays.) We take care that each part of DS is stored in 
the same position in all processors. If such a part has to be changed, 

we send the index in the array where this part is stored, together with 

the updated part. Then, in each client structure, we can find in con- 

stant time the position where the change has to be carried out. Note 

that data structures contain pointers, which we consider to be indices 

of array entries. By storing parts of DS in each processor in the same 

positions, these pointers indeed “point” to the correct objects. 

The implementation will be described more precisely in the next 

subsection. We finish this subsection with the following lemma. 

Lemma 14.3.1 The complexity measures introduced above satisfy: 

1. S(n) < S'(n). 

2. S'(n)/n = O(U"(n)). 

3. P'(n)/n = O(U"(n)). 

4. S(n)/n = O(C(n)).
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Proof. Since DS is a substructure of DS’, we have S(n) < S’(n). We 
can build the structure DS’ by performing n insertions into an initially 

empty structure, which takes at most U’(1) + U’(2)+---+U'(n) < 
n x U'(n) time. During these n insertions we have built a structure of 
size S’(n), and hence we have spent at least S’(n) time. This proves 
that S’(n) = O(n x U'(n)). The proof of P’(n) = O(n x U'(n)) is 
similar. In the same way we can build the structure DS. The total 

amount of data that has changed during n insertions, is at most C'(1) + 
C(2) +---+C(n) <n x C(n). Since at the end there is a structure of 
size S(n), it follows that S(n) = O(n x C(n)). O 

14.3.2 A fixed size solution 

Let N be an integer that denotes the maximal number of objects that 

can be represented by our data structures. We use in this subsection— 

and in the following ones—the notations introduced in Subsection 14.3.1. 

We have a client structure DS and a central structure DS’, and we 

want to implement these structures as arrays. These data structures are 

composed of “indivisible pieces of information” of constant size, such 

as pointers, integers, etc. Each such indivisible piece will be stored 

in one array location. Since the data structures represent at most N 

objects, we take a client array A of S(N) entries, containing DS, and 
a central array A’ of S'(N) entries, containing DS’. If n is the current 
number of objects, S(n) entries of the client array and S’(n) entries of 
the central array are occupied. We assume that the first S(V) entries of 
the central array are identical to those of the client array. (If we assume 

that our data structures only contain fixed size records, this can always 

be achieved. Otherwise, if variable sized records are allowed, we can 

split these into fixed size records, and apply the techniques developed 

here.) Finally, we introduce two stacks FE and FE’ of free entries. 
In FE we store those indices of the first S(N) entries of the client 
array A, that are unoccupied. Similarly, the stack FE’ contains those 

indices of the last S’(N) — S(N) entries of the central array A’ that 
are unoccupied. The purpose of these stacks is to perform our own 

memory management. Note that by maintaining the client array in 

the first S(N) entries of the central array A’, we guarantee that the 
client array A can be stored in S(N) consecutive memory locations in
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a client processor. Hence the amount of space used by the client array 

is S(N). (If we did not store the information in consecutive locations, 
there would have been gaps in the client’s memory.) 

The multiple representation: The transformed client structure 

consists of the array A. The transformed central structure consists of 

the array A’ and the stacks FE and FE’. 

The update algorithm: Suppose we want to insert or delete an 

object. We assume that there is space in the arrays for a new object. 

Then we first perform this update in the central structure. If we need 

new entries, we take them from the appropriate stack FE or FE’, and 

if entries become unoccupied, we put them on the stack where they 

belong. Next we send to the clients, the indices of the entries in the ar- 

ray A that are changed together with the new contents of these entries. 

Using this information, each client structure is updated. 

Note that the client structures do not need to contain the stack 

FE of free array indices: The memory management of all processors is 

arranged by the central structure. Hence we utilize the central processor 

as much as possible. 

At each moment the client structure is up-to-date and, hence, it can 

be used to answer queries. 

Theorem 14.3.1 Let DS be a client structure solving some searching 

problem, with complexity S(n), Q(n) and C(n). Let DS’ be the corre- 
sponding central structure, with complexity S'(n) and U'(n). We can 
transform these structures into a multiple representation, such that each 

client structure 

1. has size O(S(N)), 

2. has a query time bounded by O(Q(n)), 

3. has F(n) = O(C(n)), 

4. has G(n) = O(C(n)). 

Here N is the maximal number of objects that can be represented by the 

structures, and n is the current number of objects. Furthermore, the
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central structure has size O(S'(N)), and its update time is bounded by 

O(U'(n)). 

Proof. The size of the central structure is bounded by O(S'(N)) for 
the array A’, and by O(|FE|+|FE'|) = O(S'(N)) for the stacks. Hence 
the total size of the central structure is bounded by O(S'(N)). It is 
clear that the update of the central structure takes O(U'(n)) time. 
The client array can be updated in time proportional to the number 

of changed entries. So in our notation we have F(n) = O(C(n)) and 
G(n) = O(C(n)). The other bounds follow from the above discussion. 
O 

If we know in advance that the number of objects does not vary 

too much, this will be an efficient solution. If, however, the number 

of objects becomes too large—after a number of insertions—our arrays 

will become too small. Similarly, after a number of deletions, a large 

part of the arrays will become empty, and so the amount of space will 

become too large. In these cases the solution, of course, is to rebuild 

the structures. 

14.3.3. An amortized solution 

Suppose that the data structures initially represent n objects. We store 

each structure in an array that can contain a data structure for 3n/2 
objects. In this way there is space in the structures for n/2 insertions. 

So in the notation of the preceding subsection, we take N = 3n/2. The 

client structure consists of the array A of length S(N). The central 
structure contains the array A’ of length S’(N), and the stacks FE 
and FE’. The information is stored in these data structures as in the 

previous subsection, and updates are performed in exactly the same 

way. As soon as the number of objects becomes either n/2 or 3n/2, we 
rebuild our data structures. That is, if m is the number of objects at 

that moment, we build a new array A’ and new stacks FE and FE’, 

that are large enough to contain a data structure for 3m/2 objects, and 

we send the subarray containing the first S'(3m/2) entries of A’—this 
subarray will be the new client structure A—to the clients, where this 

new array replaces the old one. Then we proceed in the same way.
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Theorem 14.3.2 Let DS be a client structure solving some searching 

problem, with complexity S(n), Q(n) and C(n). Let DS" be the corre- 
sponding central structure, with complexity S'(n) and U'(n). We can 
transform these structures into a multiple representation, such that each 

client structure 

1. has size O(S(n)), 

2. has a query time bounded by O(Q(n)), 

3. has F(n) = O(C(n)), amortized, 

4. has G(n) = O(C(n)), amortized. 

The central structure has size O(S'(n)), and its amortized update time 
is bounded by O(U'(n)). 

Proof. The bounds on the amount of space used by the structures 

follow from Theorem 14.3.1, and from the fact that N—the maximal 

number of objects that can be represented—and n—the current number 

of objects—satisfy n = O(N). Clearly, the query time for a client 
structure remains O(@Q(n)). Since the structures are rebuilt at most 
once every n/2 updates, the amortized values of both F(n) and G(n) 
are bounded by O(C(n)+S(n)/n), which is O(C(n)) by Lemma 14.3.1. 
Rebuilding of the new central structure takes O(P’(n)) time for A’ and 
O(S'(n)) time for the two stacks. So the amortized update time of the 
central structure is bounded by O(U’(n) + P’(n)/n + S'(n)/n), which 
is O(U'(n)) by Lemma 14.3.1. O 

Remark. The rebuilding of the new central array A’ cannot be per- 

formed by just walking along the old array and putting the entries into 

a new one of size S’(3m/2): We have to take care that the pointers 
keep their correct meaning. Therefore we charged in the above proof 

O(P'(n)) time for this rebuilding, which is clearly an upper bound. 

14.3.4 A worst-case solution 

In this subsection we assume that the update time U’(n) of the central 
structure and the amount of data C(n) that an update changes in the
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client structure are worst-case bounds. We show how the amortized 

bounds of the preceding section can be made into worst-case bounds. 

The idea is to spread out the construction of the new structures over 

a number of updates. The technique is related to the global rebuilding 

technique given in Overmars [42]. See also Subsection 9.3.3. 

The client structure: Let m be the number of objects initially 

represented by the data structures. Let / be an integer, such that 

3m/2 <1 < 3m. We first describe the update algorithm for the client 

structure; later we consider the central structure. The client structure 

consists of the array A of length S(J), as before. 

The update algorithm: Consider a sequence of m/2 updates. 

(Note that the array A has space for at least m/2 new objects.) We 
split this sequence into 3 stages. 

First stage: The first stage consists of the first m/4 updates. These 
are performed as before. That is, the changes of the client structures, 

together with the positions in the array A where the changes have to be 

carried out, are sent to them, and using the received information, each 

client structure is updated. So after the first stage, the client structures 

are up-to-date. 

Let mo be the number of objects that are present after the first 

stage, and let Jo = 27m. (We use lp to estimate the number of objects 

that are present after the third stage.) 

Second stage: The second stage consists of the next m/8 updates. 
These updates are performed as in the first stage. Also, a new client 

array Ag is built in the central computer during the first m/16 updates 

of this second stage. This array has length S(lo), and it stores the 
client data structure as it was after the first stage. (Later we shall 
describe how the central processor builds this new array; we now just 

assume that it is there.) This new array is sent to the clients during 

the last m/16 updates of the second stage. In each update we send an 

amount of O(S(lo)/m) = O(S(m)/m), which is bounded by O(C(m)) 
by Lemma 14.3.1. 

After the second stage, the client structure consists of an up-to-date 

array A and an array Ag, containing the client structure as it was after 

the first stage. We also assume that the central structure contains a



232 14. General approaches 

list of the updates in the second stage, i.e., a list containing the m/8 

objects, and for each object information whether it has to be inserted 

or deleted. 

Third stage: This stage consists of the final m/8 updates. These 

updates are carried out for the up-to-date client array A, as before. In 

order to make the new array Ag up-to-date, we perform on this array 

with each update, two updates from the list of updates from the second 

stage. (Note that these updates have to be performed in chronological 

order, since the same object can be inserted and deleted several times!) 
Then we remove the two updates we just carried out from the (front of 
the) list, and the actual update is added at the end of the list. 

After this third stage, the client array Ap is up-to-date, and the old 

array A is discarded. 

So we end with a client structure consisting of an array Ao of length 

S(Io). Let n be the number of objects that are represented by the 
structures at this moment. If we can show that 3n/2 < Ip < 3n, then 

we are in the same situation as the one we started with, and hence we 

can proceed in the same way. 

At the beginning the data structures represented m objects, and 

after the first m/4 updates there were mg objects. It follows that 

—m <mMpo < —m. 
40 -  °=4 

After the third stage, i.e., after another m/4 updates, there are n ob- 

jects. Hence 

Mo — GM SNS mM + FM. 

Clearly, m and n are related by 

3 

It follows that 

3 1 3 3 3 3 
= = − >= − ⋮− − >= lo = 2m 50 + 50 2 5mMo + gm 5 (Mo + a7) 2 5M 

and 1 

lo = 2mo < 2(n + 7m) < 2n+n = 3n,
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which shows that we are indeed in the same situation as at our starting 

point. 

The central structure: The central structure consists of two 

copies of each of the structures A’, FE and FE’, and one copy of a 

list L (we use the notations of the preceding subsection). All m/2 up- 
dates are carried out on one of A’, FE and FE’. Hence at each moment 

the central structure contains an up-to-date data structure. In the sec- 

ond stage, in each update we add the object together with information 

whether it has to be inserted or deleted, to the list L. 

It remains to describe what happens to the other structures A’, FE 

and FE’. In the first stage, the updates are performed on these struc- 

tures as usual. During the first m/16 updates of the second stage we 

convert them into new structures Aj, FEo and FEj. Here Aj is an 
array of length S’(/o) that will contain the data structure as it is at the 
beginning of the second stage, and FE» and FE; are the corresponding 

stacks of free entries in this new array. This converting can be per- 

formed in O(P'(lo) + S"(lo)) = O(P'(m) + S'(m)) = O(P'(m)) time. 
In each of the m/16 updates we do an amount of O(P’(m)/m) of this 
converting. It follows from Lemma 14.3.1 that the update time for the 

central structure remains O(U'(n) + P’(m)/m) = O(U'(n)), where n is 
the current number of present objects. 

During the next m/16 updates of the second stage, the first S(Io) 
entries of the array Aj—which contain the new client array Ap—are 

sent to the clients, as described above. Also, the structures Aj, FE» 

and FE are copied; each update we do an amount of O(S'(m)/m) = 
O(U'(m)) = O(U'(n)) work. During the third stage, we perform with 
each update, two updates from the list L, on both copies of each of 

the structures Aj, FEo and FE 9, and we add the actual update at 

the end of L. (Again, note that the updates have to be carried out in 

chronological order.) After this third stage, the structures A’, FE and 

FE’ are discarded. We end with two copies of each of the structures 

o» FEo and FE). Hence we are in the same situation as before the 
first stage. 

Before we summarize the result, note that a client structure contains 

at any moment an up-to-date data structure, that can be used to answer
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queries. 

Theorem 14.3.3 Let DS be a client structure solving some searching 

problem, with worst-case complexity S(n), Q(n) and C(n). Let DS" be 
the corresponding central structure, with worst-case complexity S'(n) 

and U'(n). We can transform these structures into a multiple represen- 
tation, such that each client structure 

1. has size O(S(n)), 

2. has a query time bounded by O(Q(n)), 

3. has F(n) = O(C(n)), in the worst case, 

4. has G(n) = O(C(n)), in the worst case. 

The central structure has size O(S'(n)), and its worst-case update time 
is bounded by O(U'(n)). 

Proof. The size of the central structure is bounded by O(S"(n) +n) = 
O(S'(n)), where the O(n) term is due to the list of updates. The rest 
of the proof follows from the above discussion. O 

We have proved that we can bound the update time for the client 

structures by O(C(n)), which is the size of the changes in the structure. 
Hence our goal is to design structures for searching problems for which 

C(n) is small. It is not important whether the changes can be found 
efficiently (although this would make the amount of work on the central 

structure small). In the next section, we give two examples of such 

structures. 

14.4 Examples 

14.4.1 Binary search trees 

Most classes of balanced binary search trees, such as AVL-trees, BB[a]- 
trees, etc., have the property that in an update Q(log n) rotations might 
be necessary to rebalance them. Hence for such trees, an update can 

change Q(logn) nodes. In Section 2.2, however, we defined Olivié’s
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class of aBB-trees. These trees have the interesting property that they 

can be maintained in logarithmic time, by at most a constant number 

of rotations, if a € {1/2,1/3}. See Theorem 2.2.3. 
So let T be an aBB-tree, where a € {1/2, 1/3}, without the balance 

information at the nodes. Suppose T contains a set of n objects in its 

nodes. In this tree, member queries can be solved in O(logn) time. By 
the above mentioned result of Olivié, we can maintain JT’ by means of 

O(1) rotations. Hence an update changes only O(1) nodes in T. (Note 
that if the tree would contain balance information, an update would 

change Q(logn) nodes, since then the balance information would have 
to be updated.) Applying Theorem 14.3.3, we get: 

Theorem 14.4.1 For solving the member searching problem, there ex- 

ists a client structure with complexity: 

The central structure has size O(n), and can be maintained in O(log n) 
time. 

In the solution given above, we stored the objects in the nodes of the 

tree. We have seen applications, however, in which we store the objects 

in sorted order in the leaves. Then, in order to be able to search in 

the tree, we have to store information in the internal nodes to guide 

these searches. (In each node we must decide in some way whether 
we proceed to the left or to the right son.) Suppose we store in each 

node the maximal element in its subtree. Clearly, we can use this 

information to solve member queries in time proportional to the height 

of the tree. If we now delete the maximal element in the tree, then 

in each node on the rightmost path, the search information has to be 

changed. Therefore, if the tree is balanced, an update changes O(log n) 

nodes. So we have to be careful regarding the “search information” 

that is stored in the internal nodes.



236 14. General approaches 

Suppose now that we store in each internal node v, the maximal 

element in the left subtree of v. Note that this maximal element is 

stored in the unique leaf that is reached by making one step to the left 

in node v, followed by a maximal number (possibly none) of steps to 
the right. It is not difficult to prove that in this case an update changes 

O(1) nodes, if we do not rebalance the tree: The search information in 
a node is changed iff the maximal element in its left subtree is changed. 

(Note that this is an interesting result on its own. In fact, I have not 
seen this observation anywhere in the literature.) 

So let J’ be an aBB-tree, containing a set of n elements in sorted 

order in its leaves, without balance information. Each internal node 

contains the maximal element in its left subtree. Then, in 7 mem- 

ber queries can be solved using the search information of the internal 

nodes in O(logn) time. Now let a € {1/2,1/3}. Then it follows from 
the above that an update changes only O(1) nodes in T. Applying 
Theorem 14.3.3, we obtain: 

Theorem 14.4.2 For solving the member searching problem, we can 

take for the client structures a leaf search tree, having complexity: 

The central structure has size O(n), and can be maintained in O(log n) 
time. 

14.4.2 Range trees 

The orthogonal range searching problem, and an efficient data structure 

solving this problem—the range tree—were studied already extensively 

in this thesis. In the following definition we modify the balance condi- 

tions of these range trees somewhat.
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Definition 14.4.1 Let V be a set of points in the d-dimensional eu- 

clidean space. A d-dimensional (a, a’)-range tree T, representing the 
set V, is defined as follows. 

1. If d = 1, then T is an aBB-tree, containing the points of V in 

sorted order in its leaves. 

2. Ifd > 1, then T consists of a BB[a’]-tree, called the main tree, 
containing in its leaves the points of V, ordered according to 

their first coordinates. Each node v of this main tree contains an 

associated structure, which is a (d — 1)-dimensional (a, a’)-range 
tree for those points of V that are in the subtree rooted at v, 

taking only the second to d-th coordinate into account. 

So in this notion of range trees there are two kind of binary trees. 

The trees representing points in multi-dimensional space belong to the 

class of BB[a’]-trees, and the trees representing one-dimensional points 

belong to the class of aBB-trees. All trees are used as leaf search trees. 

The update algorithm: The update algorithm for these (a, a’)- 
range trees is similar to the one in Section 2.3. In fact, only rebalancing 

is done in a different way. Consider a d-dimensional (a, a’)-range tree, 
and suppose we want to insert or delete a point p. Then we search with 

the first coordinate of p in the main tree to locate its position among 

the leaves, and we insert or delete p in all the associated structures we 

encounter on our search path. (If these associated structures are one- 
dimensional range trees, we apply the update algorithm for aBB-trees 

using rotations; otherwise we use the same procedure recursively.) Next 

we insert or delete p among the leaves in the main tree, and we walk 

back to the root. During this walk, we rebalance the main tree: Each 

node that is out of balance is rebalanced by means of rotations. Note 

that we have to rebuild the associated structures of the nodes that are 

involved in these rotations, and this will take a lot of time when these 

structures are large. It turns out, however, that the amortized update 

time is low. 

The following theorem gives the complexity of (a, a’)-range trees. 
For a proof for the bound on the amortized update time, see Willard
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and Lueker [66]. The other bounds follow in the same way as in Theo- 
rem 2.3.1. 

Theorem 14.4.3 A d-dimensional (a, a’)-range tree, representing n 

points, has size O(n(logn)*'), and can be built in O(n(logn)4) time. 
In this tree, updates can be performed in amortized time O((logn)*), 
and orthogonal range queries can be solved in O((logn)? + t) time, 
where t is the number of reported answers, without using the balance 

information stored at the nodes. 

Consider a d-dimensional (a, a’)-range tree for a set of n points, 
without the balance information. We store in internal nodes of the 

trees search information as in Subsection 14.4.1. We take for the one- 

dimensional structures aBB-trees with a € {1/2,1/3}. Let C(n,d) 
denote the amortized number of nodes that an update changes in the 

range tree. 

Lemma 14.4.1 For a proper choice of a’, we have C(n, d) = O((logn)4-"). 

Proof. We have seen in Subsection 14.4.1 already that C(n,1) = O(1). 
Let d > 1. To perform an update we start in the root of the main tree, 

and we update its associated structure. This changes, amortized, at 

most C(n,d— 1) nodes. Then we repeat the same procedure for the 
appropriate son of the root, which is the root of a range tree for at most 

(1—a’)n points. Hence this changes, amortized, at most C'((1—a’)n, d) 
nodes. If the root of the main tree gets out of balance, we perform a 

rotation and, hence, we have to rebuild the associated structures of 

the sons of the root. Since these associated structures are (d — 1)- 
dimensional (a, a’)-range trees, this changes O(n(logn)**) nodes. It 
was shown by Blum and Mehlhorn [13] that for a proper choice of a! 
the root of the main tree gets out of balance at most once every ((n) 
updates. Hence the amortized number of nodes that are changed due 

to our visit to the root of the main tree is bounded by O((logn)*”). 
It follows that C(n, d) satisfies the following recurrence: 

C(n,d) < C(n,d—1) + C((1 — a’)n, d) + O((logn)*”). 

This proves the lemma. 0
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So we have a class of range trees that can be maintained in amortized 

time O((logn)?), whereas in the structures without balance informa- 
tion an update changes, amortized, only O((logn)4-') nodes. Applying 
Theorem 14.3.2 leads to: 

Theorem 14.4.4 For solving the orthogonal range searching problem, 

there exists a client structure with complexity:
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Chapter 15 

Summary and concluding 

remarks 

We have studied the problem of maintaining a number of copies of a 

dynamic data structure in a network of processors. In order to avoid 

that each processor spends a lot of time in updating its copy, we first 

“preprocess” the update in a central structure. Then we broadcast 

information about the update to the processors, and, using this infor- 

mation, each of these processors updates its structure. 

The most interesting results are as follows. 

For each order decomposable set problem PR, there exists a client 

structure of size O(PR(n)), that can be maintained at the cost of 
O(PR(n)) transport and computing time. Here, PR(n) is the size of 
the answer for a set of n objects. The maintenance of the answer is 

completely arranged by the central structure. See Section 14.1. 

In Section 14.2 we have given techniques for decomposable searching 

problems. The most general result is Theorem 14.2.3: Suppose we are 

given a data structure for a decomposable searching problem PR of size 

S(n) and query time Q(n). Then for each positive integer k there is 
a client structure solving PR, of size O(S(n)) having a query time of 
O(k x Q(n)). Insertions into this client structure can be performed at 
the cost of O(k x (S(n)/n) x (n/Q(n))‘/*) transport and computing 
time. 

So this technique gives a client structure of the same size as the 

structure we started with, having asymptotically the same query time 

241
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(if k is a constant). This new client structure, however, has a fast insert 
algorithm. 

In Section 14.3 we have given a technique that applies to any data 

structure: Suppose we have a client structure DS of size S(n), having 
a query time Q(n). Let C(n) be the amount of data that an update 
changes in DS. Then we can transform this structure into another client 

structure of size O(S(n)), having a query time O(Q(n)), that can be up- 
dated in O(C(n)) transport and computing time. See Theorem 14.3.3. 
An interesting application of this result is given in Subsection 14.4.2. 

Here, we show that we can maintain a class of d-dimensional range trees, 

such that the central structure needs O((logn)*) time for an update, 
whereas the client structure can be updated in O((logn)4~') transport 
and computing time. 

Note that most of the techniques of this part share ideas with those 

given for the reconstruction problem. Especially the general techniques 

of Sections 9.3 and 14.3 are strongly related to each other. 

There remain several interesting directions for future research. 

Just as in case of the reconstruction problem, other general solutions 

may be possible. Other classes of searching problems can be studied, 

and other techniques for decomposable searching problems can be de- 

signed. Again, more examples are needed of specific data structures. 

For example, (client versions of) data structures are wanted for which 
C(n)—the amount of data that is changed in an update—is small. 

One can also investigate the idea of performing sets of updates, in- 

stead of performing each update separately. Special classes of searching 

problems and general techniques may exist. 

Finally, a very general research direction is to study other multiple 

representation problems. For example, what should be done if the client 

structures do not necessarily have to represent the same set of objects? 

We have seen that the problems of Parts III and IV are related, and 

that many solutions to these problems are based on the same ideas. So 

one could investigate multiple representations in a more general setting.
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