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Abstract

This project explores predicate evaluation for the FastLanes file format within
the framework of cascaded encoding, which encodes the data in multiple layers to
achieve higher compression ratios. Predicate pushdown is an optimisation tech-
nique that accelerates selective queries by applying filters directly within the data
scanning process, thus reducing the volume of data entering the query execution
pipeline. While predicate pushdown was widely studied for single-layer encodings,
it was not examined in the context of cascaded encodings. Evaluating predicates
on data with multi-layer cascades introduces new challenges, such as determining
whether to fully decode the data before filtering or to apply filters on partially de-
coded data. Furthermore, previous works do not utilise data parallelism to its full
extent, missing a critical opportunity for performance improvement of predicate
evaluation. We address these gaps by developing a fast and portable predicate
pushdown technique that functions across multiple architectures without requir-
ing platform-specific implementations. We introduce a data-parallel method for
predicate evaluation that stores results in a bitmap with a specific layout, en-
abling rapid evaluation across multiple columns. In addition, we demonstrate
that certain encodings can be partially decompressed and evaluated, avoiding
full decompression and increasing efficiency.
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Chapter 1

Introduction

FastLanes is an open-source project that seeks to enhance big data file formats
such as Parquet and ORC by addressing two key needs: the rise of new workloads,
particularly machine learning data engineering pipelines, and the potential for sig-
nificantly improved compression and access speeds on current workloads. There
are two main types of compression: general-purpose and lightweight. General-
purpose compression, like Snappy or Zstd, can handle arbitrary data types and
achieve high compression ratios at the expense of decompression speed. In con-
trast, lightweight compression methods focus on specific patterns in the data and
are faster, making them particularly useful for modern databases where quick
access to data is essential. In [9], authors describe how to make the decoding of
popular lightweight compression schemes (Dictionary Encoding (DICT), Frame of
Reference (FOR), Delta Encoding (DELTA), and Run-Length Encoding (RLE))
even faster through better data parallelism. This raises the logical question: is it
possible to compress data further without relying on general-purpose compres-
sion, which introduces significant decompression overhead?

The FastLanes project addresses this challenge by implementing cascaded en-
codings [14]. It involves applying multiple lightweight compression schemes in se-
quence to the same data, effectively encoding data recursively. For example, con-
sider a string column in a database: first, DICT replaces each unique string with
an integer code, transforming [‘Sales’, ‘Sales’, ‘Marketing’, ‘Sales’,
‘Engineering’, ‘Engineering’, ‘Engineering’, ‘Marketing’] into [0, 0,
1, 0, 2, 2, 2, 1, 0]. These integer codes may then exhibit patterns, such as
consecutive repetitions, which can be further compressed using RLE, resulting
in [(0,2), (1,1), (0,1), (2,3), (1,1)]. By layering compression schemes
in this manner, each method targets specific patterns or redundancies in the
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data, improving overall compression ratios while maintaining fast decompression
speed. Since cascaded encoding relies on both the input and output of each com-
pression layer being sequences of values, it cannot be applied to general-purpose
compression.

Pushed-down predicate evaluation, also known as predicate pushdown, is a
query optimisation technique that involves applying filters early on (pushing them
down). Our project focuses on applying these filters while scanning the data,
which is the earliest opportunity to do so. For example, consider the SQL query:

SELECT e.name
FROM Employees e
JOIN Departments d ON e.department_id = d.department_id
WHERE e.age > 30 AND d.department_name = ‘Engineering’;

Without predicate pushdown, the system could scan the entire Employees and
Departments tables, perform the join on all records, and then apply the filters,
resulting in the processing of numerous unnecessary records. Conversely, with
predicate pushdown, the filter conditions e.age > 30 and d.department_name
= ‘Engineering’ are applied when reading the data, ensuring that only relevant
records are retrieved and joined. This is critical for selective queries, where studies
have shown it can yield up to an eightfold speedup [13].

Predicate pushdown has been extensively studied for single-layer encodings
[13, 18, 22, 25, 26, 33, 34]. However, modern compression schemes often involve
multiple layers, and to our knowledge, no study has focused on techniques appli-
cable to cascaded encodings. Evaluating predicates on data encoded with multi-
layer cascades is more complex, raising previously unaddressed questions. Namely,
should we decode all the layers of the cascaded encoding before applying a filter,
or would applying the filter on partially decoded data be faster? Moreover, previ-
ous works do not utilise data parallelism to its full extent for predicate evaluation,
thereby missing a critical opportunity for performance improvement. Our work
fills this gap by developing a predicate pushdown technique for FastLanes that is
both fast and portable, meaning it can run across various architectures without
the need for multiple platform-specific implementations, making the codebase
simple to maintain and extend.

Our main contribution is a data-parallel predicate evaluation method, which
we achieve by storing the results in a selection bitmap with a specific layout.
This approach enables rapid predicate evaluation across multiple columns. When
the number of columns is four, our method outperforms the current state of the
art across all data widths, providing up to a 1.85x speedup in evaluation, with

2



performance gains increasing as the number of columns grows. Additionally, we
demonstrated that instead of fully decompressing cascaded encodings, certain
encodings can be decompressed to an intermediate representation and evaluated
directly, achieving up to a 40.81x speedup over full decompression and evaluation.

As such, in this thesis, we answer three research questions:

1. Can we develop data-parallel predicate evaluation methods that are both
fast and portable across various hardware architectures without resorting
to multiple platform-specific implementations?

2. How can we efficiently perform predicate evaluation on data compressed
with cascaded encoding without fully decompressing the data?

3. Which selection data structure – selection bitmap, selection byte map, se-
lection vector, or reverse selection vector – is most suitable for efficient
predicate evaluation, considering factors such as data parallelism, selectiv-
ity, and performance trade-offs?

We start Chapter 2 by introducing the two types of compression: lightweight
and general-purpose. We examine their strengths, focusing on lightweight schemes
relevant to this thesis. We explain cascaded encoding, a technique used in Fast-
Lanes, where multiple such schemes are applied recursively to increase compres-
sion ratios. Chapter 3 explores the FastLanes file format. We introduce Single
Instruction, Multiple Data (SIMD) and discuss FastLanes’ virtual 1024-bit SIMD
register, Interleaved and Unified Transposed Layouts and [de]compression. Chap-
ter 4 examines predicate pushdown, reviewing existing optimisation techniques
and identifying the challenges of adapting them to FastLanes. Chapter 5 explores
the most efficient methods for predicate evaluation in FastLanes on decompressed
data. Chapter 6 presents algorithms for predicate evaluation on partially com-
pressed data. We benchmark these algorithms against ones that operate on fully
decompressed data to determine whether compressed execution offers better per-
formance. In Chapter 7, we summarise our findings and propose possible direc-
tions for future research. In addition, we include Appendix A, where we present
the devices and settings used in the benchmarks, and Appendix B, where we
include the developed algorithms omitted in the main body of text.
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Part I

Background
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Chapter 2

Compression

There are two main types of compression: general-purpose and lightweight. General-
purpose compression methods can handle arbitrary data types and achieve high
compression ratios at the expense of [de]compression speed. Lightweight com-
pression methods are faster and focus on specific patterns in the data, making
them useful for modern databases where quick access to the data is essential. In
this chapter, we review both, focusing on lightweight compression schemes rele-
vant to the thesis. We also look at cascaded encoding, where several lightweight
compression schemes are applied on top of each other to improve compression
ratios.

2.1 General-Purpose Compression
General-purpose compression consists of algorithms that can compress data with-
out requiring knowledge about its specific data type [21, 37]. They work on a
stream of bytes allowing compression of any data. Such algorithms usually ex-
ploit repeating patterns and can achieve relatively high compression ratios [23].
This flexibility and good compression ratios make it widely used.

However, general-purpose compression methods have relatively slow [de]compression
speed [9, 23]. Since they compress large data blocks containing many vectors, ac-
cessing a specific record requires decompressing the entire block. Usually, they
are large and exceed the Central Processing Unit (CPU) cache capacity, requiring
them to be loaded into main memory, fully decompressed, and stored before exe-
cuting queries on individual vectors. In contrast, decompressing data one vector
at a time allows each vector to fit into the cache, enabling immediate decom-
pression and query execution [38]. Therefore, general-purpose compression is less
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effective for systems that require quick access to individual data records, as it in-
volves additional overhead from loading large blocks into memory, decompressing
them, and then processing each vector sequentially.

2.2 Light-Weight Compression
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(a) Unencoded data.
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(b) Dictionary Encoding (DICT).
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(c) Run-Length Encoding (RLE).
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(d) Frame of Reference (FOR).
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(e) Delta Encoding (DELTA).
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(f) Cascaded encoding (FOR + DICT).

Figure 2.1: Unencoded data and how it is compressed by lightweight compression schemes.

The demand for faster [de]compression led to the development of lightweight com-
pression schemes such as DICT, FOR, DELTA, and RLE [9]. Lightweight com-
pression exploits specific data type patterns and achieves better [de]compression
times. This makes it well-suited for modern database systems, where the speed
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of data retrieval is often a priority [35]. As a result, some columnar storage
formats leverage it by default. For example, Parquet uses RLE or DICT with
bit-packing on dictionary codes. Additionally, unlike general-purpose compres-
sion, lightweight schemes compress the actual data rather than blocks of bytes,
enabling random access to the data. Until recently, lightweight compression was
often associated with lower compression ratios compared to general-purpose com-
pression. However, with the emergence of cascade encoding [14], this trend has
changed [9, 23]. In this section, we review lightweight compression schemes rele-
vant to our work and the concept of cascaded encoding.

2.2.1 Bit-packing

Bit-packing is a compression method that reduces the number of bits used to
represent values. Typically, fixed-width data types like 32-bit integers use all 32
bits, even when numbers are small. Bit-packing compresses the data by using only
the minimum number of bits required, which is particularly effective for datasets
with small ranges. For example, if the largest value in the dataset is 3, only 2 bits
are needed to represent all values: 00 for 0, 01 for 1, 10 for 2, and 11 for 3.

2.2.2 Dictionary Encoding

Dictionary Encoding (DICT) is useful when the data contains a small number
of unique values [32]. It builds a dictionary where each unique value is mapped
to a smaller integer key. During compression, original data entries are replaced
with related keys, and decompression restores the original data by looking up
the dictionary values. This method works best when data contains a small set of
frequently repeated values. On the other hand, if there are few repeated values,
the dictionary can become as large as the raw data, taking up more space than
before encoding. For better compression, we can assign shorter keys to values
occurring more frequently and compress the integer values in DICT using bit-
packing.

2.2.3 Run-Length Encoding

Run-Length Encoding (RLE) is useful when data contains consecutive repetitions
of the same values [30]. Instead of storing each occurrence of a repeated value,
RLE compresses the data by recording the value once and the number of times
it repeats consecutively. RLE is particularly useful in columnar databases where
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values of the same type are stored together, increasing the likelihood of repeated
runs and enabling better compression results.

2.2.4 Frame of Reference

Frame of Reference (FOR) works by selecting the minimum value in the data as
a reference point and then subtracting this reference from all other values [19].
The result is a set of smaller integers. These smaller numbers require fewer bits
to be represented and can be bit-packed for more efficient storage.

2.2.5 Delta Encoding

Delta Encoding (DELTA) stores the differences between consecutive values in-
stead of the original ones [28]. If the data consists of numbers close to each other,
the differences (or deltas) between them are small. When we apply bit-packing,
these small deltas take up less space, leading to better compression.

We reconstruct the original values during decompression by adding each delta
to the preceding value. While this process is simple, it introduces a dependency:
we cannot decode a value without knowing the one before it. Random access to
any value in the compressed data is not possible, as we might need to decode
multiple preceding values first. There are variations of DELTA that allow faster
[de]compression by utilising SIMD [9, 24, 36].

2.2.6 Cascaded Encoding

Cascaded encoding is a technique where multiple lightweight compression schemes
are applied in sequence to achieve better compression ratios [14]. For example,
a string column might first be compressed using DICT to replace strings with
integer codes, and then consecutive repeating codes can be further compressed by
RLE. This layered approach allows each scheme to focus on a particular pattern,
increasing the overall compression. Since cascaded encoding relies on both input
and output being sequences of values, it cannot be applied to general-purpose
compression. Additionally, not all combinations of schemes are equally effective.

In some cases, encodings must be combined to achieve compression (for ex-
ample, FOR is only helpful if we subsequently apply bit-packing). Kernel fusion
can optimise this by merging the encoding steps of two schemes into a single
function, eliminating unnecessary data transfer operations. Both BtrBlocks and
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FastLanes use this optimisation and demonstrate that cascading achieves com-
pression ratios comparable to general-purpose compression without the significant
[de]compression overhead [23, 27].

2.2.7 Patched Encoding

Standard encoding techniques often apply uniformly across all values, which can
be inefficient when there are outliers in the data distribution. These rare entries
can inflate the size of encoding structures like dictionaries, requiring more bits for
representation and reducing compression efficiency. To address this issue, Patched
Encoding, or simply patching, is employed. Patching involves storing outlier values
separately as uncompressed exceptions, allowing the main encoding, like DICT,
to remain compact by focusing on the common values. There are patched versions
of DICT, FOR and DELTA [24, 38].
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Chapter 3

The FastLanes File Format

In big data processing, efficient storage formats are crucial for performance and
scalability. Parquet and ORC are columnar storage formats widely used for stor-
ing large datasets, designed in 2013 and 2016, respectively. However, both the
hardware landscape and workload requirements have evolved significantly since
their inception [35]. The evolution has exposed several limitations in them that
newer file formats like BtrBlocks [23] and FastLanes [9, 10] address.

FastLanes is a novel file format designed to enhance data compression ratios
and [de]compression speed while maintaining portability across different hardware
architectures. In their initial paper [9], the authors show how FastLanes leverages
fully data-parallel encodings implemented using portable scalar code that can be
auto-vectorised. Subsequent research demonstrates how FastLanes benefits from
Graphics Processing Unit (GPU) data processing by allowing more data to fit
into GPU memory and enabling faster computation [10]. Tests on Nvidia GPUs
showed that queries executed on data compressed using FastLanes can run up to
twice as fast compared to uncompressed data, without the slowdowns previously
observed with GPU decompression.

As data parallelism is central to FastLanes, understanding Single Instruction,
Multiple Data (SIMD) is essential. Therefore, we begin this chapter by explaining
the concepts of SIMD, which provides the foundation for the data-parallel tech-
niques employed by FastLanes. We then delve into the key aspects of FastLanes’
[de]compression methods relevant to our work.
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3.1 Single Instruction, Multiple Data (SIMD)
Modern CPUs often include Single Instruction, Multiple Data (SIMD) capabili-
ties to exploit data-level parallelism. SIMD allows a single instruction to perform
operations on multiple data points simultaneously, significantly enhancing com-
putational efficiency for certain tasks. This section explores the concepts of SIMD
and discusses two methods of leveraging it: scalar code with auto-vectorisation
and the use of intrinsics.

3.1.1 Scalar Code and Auto-Vectorisation

Algorithm 1 Example of auto-vectorisable algorithm.

1 void equality(uint8_t* in, uint8_t* out , uint8_t filter) {
2 for (uint16_t i = 0; i < 1024; i++) {
3 out[i] = in[i] == filter;
4 }
5 }

Auto-vectorisation is a compiler feature that automatically transforms regular
scalar code, which operates on one element at a time, into vectorised code using
SIMD instructions [2]. The term vectorisation originates from the fact that SIMD
instructions operate on vectors of data. Individual elements within these vectors
are of fixed length and are typically referred to as lanes. Different CPUs support
different SIMD Instruction Set Architectures (ISAs):

• Neon introduced 128-bit SIMD registers for the ARM architecture.

• Streaming SIMD Extensions (SIMD) introduced 128-bit xmm registers for
the x86 architecture.

• Advanced Vector Extensions (AVX) and its successor AVX2 expanded the
x86 SIMD capabilities to 256-bit ymm registers. AVX-512 further expanded
this to 512-bit zmm registers. For example, AVX2 allows operating on eight
32-bit integers simultaneously, while AVX-512 doubles that capacity.

Newer processors introduce extended instruction sets that add new capabilities
while using the same registers. For example, AVX-512, released with Intel’s Sky-
lake microarchitecture, includes instructions like VPCOMPRESSD and VPCOM-
PRESSQ [7, 8], which compress sparse-packed 32-bit and 64-bit integer values,
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respectively, into dense memory or registers based on a mask. A later exten-
sion of AVX-512, known as Vector Bit Manipulation Instructions 2 or VBMI2
and introduced with Intel’s Ice Lake microarchitecture, added instructions like
VPCOMPRESSB and VPCOMPRESSW [6], extending compressed write capa-
bilities to smaller data types (8-bit and 16-bit integers, respectively).

Algorithm 1 demonstrates a simple predicate evaluation where we check each
element of the input array against a filter and store the result in the output
array. Specifically, the i-th element of the output is assigned 1 if the i-th ele-
ment of the input satisfies the equality, and 0 otherwise. A modern compiler with
auto-vectorisation enabled can transform this loop to use SIMD instructions,
processing multiple elements per iteration. Although the overall computational
complexity remains O(n) since we still need to process all n elements, vectorisa-
tion reduces the constant factor by handling several elements at once, which can
significantly speed up execution in practical applications.

Auto-vectorisation works best when loops have a predictable structure with a
known number of iterations and no data dependencies between iterations. Data
dependencies occur when the outcome of one iteration depends on the results
of previous iterations, preventing simultaneous execution of multiple iterations.
However, compilers do not always succeed in auto-vectorising code, especially
when it includes complex control flow like branching (if-else statements).

3.1.2 Intrinsics

Algorithm 2 Example of an algorithm using AVX2 intrinsics.

1 void equality(uint8_t* in, uint8_t* out , uint8_t filter) {
2 __m256i fltr_vec = _mm256_set1_epi8(filter);
3 __m256i one_vec = _mm256_set1_epi8 (1);
4

5 for (size_t i = 0; i + 32 <= 1024; i += 32) {
6 __m256i in_vec = _mm256_loadu_si256 (( __m256i *)(in+i));
7 __m256i cmp_vec = _mm256_cmpeq_epi8(in_vec , fltr_vec);
8 __m256i result = _mm256_and_si256(cmp_vec , one_vec);
9 _mm256_storeu_si256 (( __m256i *)(out + i), result);

10 }
11 }

Even when code is clean, the compiler might not generate the most optimal SIMD
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instructions. For instance, the Clang 18.1.0 compiler may not generate the com-
pressed write instructions described earlier, even when they could improve per-
formance [5]. This means that relying solely on the compiler’s auto-vectorisation
might not always yield the best results.

In such cases, manual intervention might be necessary, such as rewriting the
code using intrinsics. Intrinsics are special functions provided by the compiler
that map directly to specific SIMD instructions [1, 4]. They give programmers
more control but reduce portability as the code becomes tied to specific hardware
instruction sets. Consider Algorithm 2, an analogue of Algorithm 1 that uses
AVX2 intrinsics instead of relying on auto-vectorisation. While it is possible to
write separate implementations for each ISA, this reduces the maintainability of
the code and adds technical debt as new instruction sets will inevitably emerge.

3.2 FastLanes Compression
FastLanes file format employs advanced storage and compression techniques. In
this section, we discuss the key aspects of these methods.

3.2.1 Interleaved and Unified Transposed Layouts

Bit-packing is a component of many lightweight compression schemes. In horizon-
tal bit-packing, data is stored consecutively, with bits of adjacent values tightly
packed together. However, this layout hinders the efficient use of SIMD instruc-
tions because adjacent values end up in the same lane of the SIMD registers.
Since each lane operates on a single value, adjacent values in the same lane pre-
vent parallel processing and require additional instructions to be moved.

FastLanes addresses this issue by separating the logical table format that ap-
plications expect from the physical data storage format. On the physical level, the
data is not stored consecutively but rearranged into an order that allows faster
[de]compression. However, the application still perceives the data in the original,
consecutive order. This separation between the logical and physical formats en-
sures that applications can benefit from improved performance without needing
to handle the complexities of the underlying data storage arrangements.

To achieve this, FastLanes introduces the Interleaved Layout, which defines
the order in which bit-packed data is stored. After bit-packing, rather than stor-
ing consecutive bit-packed data with indexes 0, 1, 2, ..., FastLanes rearranges
the data so that each lane contains non-adjacent values, allowing for efficient
parallel operations without the need for extra data movement instructions. The
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2.4 The Unified Transposed Layout
In our Transposed Layout, the order of the tuples depends on𝑇 . This
creates a problem for database scans: relational tables consist of
multiple columns and different columns will have different widths.
However, when we reorder tuples, we should use the same order
for all columns, because a scan needs to create a consistent stream
of tuples.4 Figure 5 shows that when we apply the reordering from
Figure 4d to a data type of half the width, there is not enough
independent work for the thinner type. In our example, the wide
data-type was 32-bits such that 4 values fit a 128-bits SIMD register.
So when putting a column of 16-bits integers in that order, we see
that we only can take advantage of four lanes, instead of 8. In this
case, the problem can be solved by just using a different ordering,
shown in Figure 6a-c, that works well with columns of both widths.

Our Unified Transposed Layout provides a generic solution to
this problem for all lane-widths. The basic building block are trans-
posed tiles of 8x16 values. We have eight such tiles for each vector
of 1024 tuples. For the widest 64-bits type, each row in the tile is
one FLMM1024 register, making it a suitable format to process one
tile-at-a-time: for DELTA decoding, the 8 rows are processed using
8 FLMM1024 ADD<64>. In case of 32-bits values, however, one row
occupies half a register, so we need to group two independently
processable tiles together in one register. This is done by taking the
lower half of tiles 0-7 and placing them to the left, arriving at 4 rows
of 2 tiles. This process repeats for 16-bits and 8-bits, arriving at a
single row of 8 tiles in the 04261357 ordering (blue). The complete
value ordering for all 1024 tuples is shown in green.

One can ask if 04261357 is the only ordering (starting at 0) that
is suitable for DELTA decoding. We want to start at 0, because for
64-bits values we compute on data from one tile at-a-time, starting
at tile 0; and for 64-bits data, the header thus holds bases for tile 0
only (see Figure 6a-b with base values in yellow). Beyond starting at
0, the second desirable property is that for processing tiles in SIMD
operations, we need the subsequent operations to touch directly
subsequent tile numbers in the same SIMD lane position.

Now the proof. Considering 16-bits values, where four tiles fit
the SIMD register width, and given that 0 is first; we see that 1 must
be in fourth position (as it must be subsequent in 0xxx→1xxx). In
fact, the only way to get subsequent numbers in the two halves of
the ordering is to have all even numbers first, and the odd numbers
later. Now, considering 32-bits data types, where data from two tiles
is processed at-a-time, the ordering should start with 04. Because, if
we would start with 02, then after 02→13, the next SIMD operation
should be on 24, but tile 2 was already processed. The other even
choice 06 runs out of work, as after 06→17 there is no tile 8. As the
first pair is 04, the third pair must be 15, and this fixes the second
pair to 26 and the final pair to 37; so we arrive at 04261537 as the
only ordering with the desired properties. Figure 6e shows that for
8-bits types, DELTA decoding processes: bases → 04261537 (drawn,
as all layouts, right-to-left in our Figures). For 16-bits types the
processing order is: bases → 0426 → 1537. For 32-bits it is: bases
→ 04 → 15 → 26 → 37. For 64-bits: bases → 0 → 1 → .. → 7.

4Even if a query processor would be able to work with column vectors that each have
a different value order, e.g., by accompanying each with their own selection vector
that restores order; this would likely carry performance penalties due to the indirect
memory access needed and reduce the applicability of our format to systems that could
do this. Therefore we enforce the ability to retrieve all column data in the same order.

FastLanes-RLE. Value sequences get Run Length Encoded in clas-
sic RLE as (value,length) tuples. Decoding requires two nested loops:
one that iterates over the tuples, and inside, one that iterates over
length; while writing out the value-s. A loop is by definition scalar,
and the inner loop will suffer from branch mispredictions on short
lengths. The best SIMD acceleration so far for RLE works when
run-lengths are large, such that the uncompressed run is very sig-
nificantly larger than the SIMD register. In this case, one can set
all lanes of a SIMD register to the constant value, and reduce the
amount of STORE instructions by the amount of lanes [7].

We propose a new scheme called Fastlanes-RLE, that maps RLE
to DELTA and supports storage reordered in the Unified Transposed
Layout. It targets systems like Velox [20] and DuckDB [25], that
prefer to represent decoded RLE as compact in-flight Dictionary
vectors; rather than full/eager decompressed vectors. The twist
here is that the Dictionary is the Run Value vector from RLE, and
hence may contain duplicates. The Index Vector monotonically
increases by one, whenever a new run starts. FastLanes-RLE uses
16-bit indexes for vectors with many short runs and 8-bits otherwise.
These Index Vectors are DELTA encoded using only 1-bit per value.
Base storage in the 8-bit case can use 3-bit bit-packing, adding .375
bits of storage per value, making the compression ratio better than
classic RLE, up to average run-lengths of 12. For longer average
run-lengths, we should use 0-bit DELTA encoding, that memsets
the Index Vector to 0, and where the 1-s are inserted by an exception
mechanism (we will cover such mechanisms in follow-up work).
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Figure 7: FastLanes-RLE: a fast and compact encoding scheme
targeting in-flight partially compressed vectors [20, 33]

.

2138

Figure 3.1: FastLanes-RLE: a fast and compact encoding
scheme targeting in-flight partially compressed vectors [9].

Interleaved Layout is designed for a virtual 1024-bit SIMD register – a size that
does not currently exist in CPUs – making it future-proof. Layouts optimised
for larger registers can be mapped to smaller registers using multiple narrower
SIMD instructions [20]. The implementation uses scalar code that relies on the
compiler’s auto-vectorisation to utilise the widest available SIMD registers, en-
suring adaptability to future hardware without sacrificing portability.

In addition to the Interleaved Layout, FastLanes introduces the Unified Trans-
posed Layout, which is another method of storing data to enable efficient SIMD
decoding for lightweight compression schemes with data dependencies, such as
DELTA. This layout rearranges the data so that each SIMD instruction oper-
ates on a batch of independent values, eliminating data dependencies within the

14



batch. This allows for efficient parallel processing regardless of the SIMD width.
Consider FastLanes-RLE, a new flavour of RLE introduced by FastLanes and

depicted in Figure 3.1. Traditional RLE is difficult to vectorise due to data depen-
dencies within the encoded data. FastLanes-RLE transforms RLE into a combi-
nation of DICT and DELTA that is compatible with Unified Transposed Layout.
Instead of storing pairs of run values and lengths, FastLanes stores run values
in a dictionary and encodes their positions using DELTA. This method allows
RLE to benefit from SIMD parallelism, making its decoding times in most sce-
narios many times faster compared to both standard and SIMD-optimised RLE
schemes.

3.2.2 Cascaded Encoding in FastLanes

Both FastLanes and BtrBlocks use cascaded encoding but differ in their approach
and implementation [9, 23]. Unlike BtrBlocks, which recursively compresses entire
column chunks of 64,000 values, FastLanes operates on smaller vectors of 1,024
elements. This approach allows FastLanes to fully decode data at a much smaller
granularity, enabling vectorised execution. Smaller vectors fit within the CPU’s
L1 and L2 caches and are processed immediately, which minimises their spilling
into slower Random Access Memory (RAM) during query processing.

Another difference lies in their bit-packing strategies. BtrBlocks’ bit-packing
is based on the SSE, which creates performance bottlenecks, as SSE’s 128-bit
lanes do not leverage the full potential of modern CPUs. In contrast, FastLanes
adopts an Interleaved Layout that supports the widest ISAs currently available
and will automatically support wider ISAs as they are developed, significantly
improving [de]compression speeds.

Furthermore, BtrBlocks selects the optimal compression scheme for each col-
umn chunk by compressing a small subset of the data with all available lightweight
compression schemes. The scheme that achieves the highest compression ratio on
the sample is then applied to the entire column chunk. This process is repeated
if the output is in a compressible format, up to a user-defined recursion depth,
resulting in arbitrary cascade structures. In contrast, FastLanes provides prede-
fined cascaded encodings (39 at the time of writing). Having a fixed number of
schemes is beneficial during decompression, as it allows for optimisations tailored
to these specific combinations, which we discuss in the next section.
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3.3 FastLanes Decompression
The FastLanes file format follows the principle of compressed execution. That is,
instead of fully decoding the data, FastLanes, whenever possible, partially de-
codes the data into a state that query engines can use. We refer to such partially
decoded data states intermediate representations. This design decision offers mul-
tiple benefits. Firstly, full decompression is more costly in terms of computation
and time. Secondly, running queries on encoded data may be faster because (1)
encoded data may be of a thinner data type, allowing simultaneous processing of
more values in SIMD registers and (2) compression schemes like RLE condense
many values, enabling to process them together.

For most of the available encoding schemes, FastLanes has an appropriate
intermediate representation, made possible because the schemes are predefined
rather than recursively created at runtime. In Section 6, we explore predicate
evaluation algorithms for these intermediate representations and quantify the
impact of compressed execution on the speed of running filter queries. This section
explores the intermediate representations currently available in FastLanes.

3.3.1 Dictionary Encoding

FastLanes uses two variations of Dictionary Encoding (DICT) as intermediate
representations: the standard DICT and the frequency DICT, where more fre-
quent values are assigned shorter keys. To fully decompress this intermediate
representation, it is sufficient to iterate over the data and map each entry to
its corresponding value in the dictionary. For clarity, we refer to this process as
flattening.

3.3.2 Run-Length Encoding

The RLE intermediate representation differs from both standard RLE and FastLanes-
RLE. It resembles FastLanes-RLE, but without DELTA applied to the index
vector. If we ignore the DELTA encoded vector in Figure 3.1b, we get the RLE
intermediate representation. Upon closer inspection, we see that this representa-
tion is similar to DICT, but with the key difference that run values may repeat
if they are not consecutive in the data, whereas in DICT, each value is unique.
Thus, full decompression is analogous to DICT: flatten the index vector with the
run values.
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3.3.3 Dictionary + Run-Length Encodings
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Figure 3.2: DICT + RLE intermediate representation and two ways to decode one layer of it.

This intermediate representation combines DICT and RLE. As described in the
previous section, RLE produces run values that may have non-unique entries. In
this representation, these run values are further encoded using DICT.

There are two efficient ways to fully decode this representation. The first
method is to flatten the dictionary with the run values, resulting in the RLE
intermediate representation, which can then be decoded as described earlier. The
second option is to decode the RLE component first by flattening the index vector
and run values. This leaves us with the standard DICT, which is one flattening
away from being fully decoded. Both approaches are illustrated in Figure 3.2.
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Chapter 4

Predicate Pushdown

Predicate pushdown is a query optimisation technique that involves applying fil-
ters early on (pushing them down). Our project focuses on applying these filters
while scanning the data, which is the earliest opportunity to do so. For example,
consider the SQL query:

SELECT e.name
FROM Employees e
JOIN Departments d ON e.department_id = d.department_id
WHERE e.age > 30 AND d.department_name = ‘Engineering’;

Without predicate pushdown, the system could scan the entire Employees and
Departments tables, perform the join on all records, and then apply the filters,
resulting in the processing of numerous unnecessary records. Conversely, with
predicate pushdown, the filter conditions e.age > 30 and d.department_name
= ‘Engineering’ are applied when reading the data, ensuring that only rele-
vant records are retrieved and joined. This early filtering reduces the volume of
data entering the expensive stages of the query execution pipeline, such as joins,
thereby enhancing overall query performance. Predicate pushdown is essential for
achieving good performance in benchmarks like TPC-H [11, 17].

While predicate pushdown has been researched for single-layer encodings
[13, 18, 22, 25, 26, 33, 34], to our knowledge, its integration with cascaded en-
codings has not been explored. Their multi-layer nature makes applying filters
without fully decompressing the data first challenging. Moreover, while some
techniques employ data parallelism, they typically do so with limited efficiency
or restricted hardware support. For instance, [25] introduces selection pushdown,
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which evaluates predicates directly on bit-packed data and only decodes the val-
ues selected. This method works well in Parquet, where query time in benchmarks
is dominated by decoding [25]. However, this assumption may no longer apply
with FastLanes, where decoding is much faster. Furthermore, it works only on
horizontally bit-packed data, which FastLanes avoids in favour of interleaved bit-
packing for faster decompression [9]. Applying selection pushdown to interleaved
bit-packing is still to be researched, and even if feasible, it would require PEXT
and PDEP instructions, which are exclusive to x86 architecture and are slow on
some CPUs [3].

Developing data-parallel predicate pushdown techniques compatible with cas-
caded encodings is critical for the success of FastLanes. Solving this challenge not
only enhances the performance of FastLanes but also addresses a research gap
crucial for the file formats of the future. In this section, we review existing opti-
misation techniques relevant to our work.

4.1 SIMD in Predicate Pushdown
The idea of using SIMD to accelerate predicate evaluation is not new. [22, 33, 34]
propose loading bit-packed data into SIMD registers, performing bit-unpacking
directly in the registers, and then evaluating the predicate – eliminating the need
to store the unpacked data before evaluation. [22] demonstrates how this on-
the-fly bit-unpacking can benefit predicate evaluation for data encoded in RLE,
DICT, and DELTA. However, these approaches depend on specific ISAs and
intrinsics, which makes them neither portable nor future-proof. [13] introduces
the use of a selection byte mask to record selections, allowing predicate evaluation
on many values in parallel using scalar code. We explore this idea further in the
next section.
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4.2 Selection Data Structure
When running predicate evaluation, such as determining which entries in a vector
are smaller than 3, we need to record which elements satisfy the predicate. Several
data structures can handle this, each with its own advantages.
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Figure 4.1: Visual representation of different selection data structures as a result of applying < 3
filter on a 0, 1, ..., 1023 vector. As shown, selection bitmap and byte map always take up 128 and
1024 bytes of memory, while the [reverse] selection vector may require up to 2048 bytes.

4.2.1 Selection Vector

A selection vector holds the indices of elements that meet the selection criteria.
This approach is particularly efficient when only a few elements satisfy the pred-
icate [29]. In scenarios with multiple columns, if only a few elements meet the
condition after filtering one column, the selection vector allows us to process the
next column more efficiently. Instead of evaluating every value in the next col-
umn, we can focus only on the elements whose indices are stored in the selection
vector, as the others will not be selected in any case. For example, in FastLanes,
which processes vectors of 1,024 values, if only one element satisfies the predicate
in the first column, we can skip evaluating the remaining 1,023 values in the
subsequent column, knowing they are not selected.
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Algorithm 3 Example of a predicate evaluation algorithm that uses a selection
vector. in is the data to be scanned and out is the selection vector. The algorithm
contains a data dependency on the size variable, preventing auto-vectorisation.

1 void equality(uint8_t* in, uint16_t* out , uint8_t filter) {
2 uint16_t size = 0;
3 for (uint16_t i = 0; i < 1024; i++) {
4 out[size] = i;
5 size += (in[i] == filter);
6 }
7 }

Predicate evaluation with a selection vector does not vectorise. SIMD oper-
ates on multiple elements simultaneously, but when multiple entries satisfy the
predicate, it becomes impossible to update the vector with their indices. Each
time an index is added to the selection vector, its size must be incremented to ac-
commodate the next value at the tail of the array, creating a dependency. While
retrieving the data that the selection vector points to could be done in SIMD
registers by using Gather/Scatter instructions, these instructions are known to
be slow [36].

4.2.2 Selection Byte Map

This method creates a byte map, where each byte represents whether the cor-
responding value in the data vector satisfies the predicate (with 1 indicating
satisfaction and 0 otherwise). For a data element at index i, the predicate result
is recorded in the i-th byte of the byte map. Unlike the selection vector, this
approach avoids dependencies, allowing SIMD parallelism, which is why [13] use
it to implement predicate pushdown in Parquet. However, since the byte map
only needs to store 0 or 1, it effectively uses just a single bit per byte, resulting
in the underutilisation of memory space.

4.2.3 Selection Bitmap

In this approach, each input vector element is associated with a bit in a bitmap.
This method is identical to the selection byte map but packs the values together,
using eight times less space. It retains the benefits of the byte map, but packing
the bits may introduce some overhead.
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Another advantage of the bitmap is that merging the selection of two columns
is a simple AND operation over 1,024 bits. This is not possible with a selection
vector at all, while a selection byte map would require eight times more computa-
tion, needing to AND 8,192 bits as each byte is the result of a single evaluation.

4.2.4 Reverse Selection Vector

Recall that selection vectors are efficient when only a few elements satisfy the
predicate. Now, imagine that most elements are selected. In this case, it would
be more efficient to record the unselected elements instead. For example, if we
have a data vector [0, 1, . . . , 1023] and the filter operation is x > 0, the selection
vector would store [1, 2, . . . , 1023], while the reverse selection vector would only
store [0], the index of the unselected element. It shares strengths and weaknesses
with the selection vector but is more space-efficient for over 50% selectivity.

4.2.5 Adaptive Approach

While we can benchmark whether a bitmap or byte map is a more efficient selec-
tion data structure, the map approaches and the [reverse] selection vector each
perform better in different scenarios. The map methods are generally effective,
while the latter excels in low selectivity. Therefore, we propose an adaptive ap-
proach where the appropriate data structure is chosen based on the context [31].
We provide more details about this in Section 5.3.

4.3 Dictionary Optimisation
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range predicate against constant values to a range predicate against dictionary codes. One possi-
ble solution would be to find partially sorted regions of the dictionary, split the original predicate
into multiple smaller ones, and map them to one another.

There is however a more universal and simpler approach, which leverages the fact that the
dictionary is in fact a complete representation of the value domain of a column in a row group.
Instead of evaluating the predicates on each value or code, we evaluate the predicates against the
dictionary itself to produce a dictionary mask. This mask contains binary values for each dictionary
code representing whether a code satisfies the predicates or not. Now we only have to evaluate
all the predicates on the dictionary once, and simply reference the produced mask when copying
the codes into the IDs vector to determine whether a value should be selected or not (see Figure
3.5 below).
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FIGURE 3.5: Example of how a dictionary mask is used to evaluate a predicate on a
vector of dictionary codes

Given that dictionary codes are just integer values ranging from 0 to the number of dictionary
elements minus one, the underlying datastructure for such a mask can simply be a byte array. To
reference the mask, we can simply index it with the current dictionary code:

1 for (int i = 0; i < vectorSize; i++) {
2 selectionMask[i] &= dictionaryMask[ids[i]];
3 nulls[i] |= selectionMask[i] ^ 0x1;
4 }

LISTING 3.6: Evaluating predicates on dictionary codes using a byte array
dictionary mask

When the dictionary contains 64 entries or less, we tried to optimize this further by not storing
the mask as a byte array, but simply as a single 64-bit integer where the location of a bit corre-
sponds to the dictionary code. Given a dictionary code, we can get the value of the corresponding
bit using bitwise operations as such:

1 for (int i = 0; i < vectorSize; i++) {
2 selectionMask[i] &= (dictionaryBitmask >> ids[i]) & 0x1;
3 nulls[i] |= selectionMask[i] ^ 0x1;
4 }

LISTING 3.7: Evaluating predicates on dictionary codes using dictionary
bitmask

Figure 4.2: Example of how the dictionary optimisation works [13].
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Suppose we have data encoded in DICT. The simplest way to perform predicate
evaluation is to decode the data and evaluate the predicate on the unencoded
values. [13] propose the following optimisation. Since the dictionary contains all
the values present in the data without repetition, we can run predicate evaluation
directly on the dictionary to produce a dictionary mask : a data structure where at
index i, we have 1 if the value at index i in the dictionary satisfies the predicate,
and 0 otherwise. Then, we map the index vector to the dictionary mask instead
of the dictionary itself. The benefit of this approach is that when the dictionary
is small, we evaluate fewer values. The downside is that since we do not know the
size of the dictionary at compile time, the predicate evaluation of the dictionary
does not vectorise.

4.4 Other Optimisations

4.4.1 Min/Max Skipping

Min/Max Skipping is an optimisation technique that uses min/max metadata to
avoid unnecessary predicate evaluations. For example, consider a column contain-
ing numbers up to 10 and a filter condition x = 11. By checking the maximum
value of the column in metadata, we can immediately determine that no values
satisfy the predicate without evaluating each element [13].

Typically, min/max statistics is maintained at the granularity of data blocks.
If it indicates that no values satisfy the predicate, evaluation of the entire block
can be skipped. This technique is highly effective when data is well-blocked,
meaning similar data is grouped within the same chunk. Effective blocking reduces
the need for predicate evaluations, saving compute time and I/O operations [16].
However, implementing min/max skipping becomes challenging when multiple
columns are involved, as a single-column sort key is less effective. [15] demonstrate
that by recording user queries in Amazon Redshift and creating a list of expected
filters, data can be partitioned based on their eligibility for these filters. This
approach can achieve up to an 85% reduction in end-to-end workload runtime
and up to 100x faster performance on individual queries.

Our work focuses on predicate evaluation at the granularity of a single vector
(1,024 elements). Currently, FastLanes does not record min/max statistics at this
level, meaning this technique is irrelevant to our work.
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4.4.2 Pruning Optimisation

Pruning optimisation reduces the amount of data processed by eliminating ele-
ments that do not meet certain predicate criteria early in the evaluation process.
Two notable methods in this area are BitWeaving [26] and ByteSlice [18]. These
approaches reorganise the bits of multiple values in a radix-like fashion: corre-
sponding bit positions across different values are stored contiguously in memory.
This layout enables fast predicate evaluations by SIMD parallelism.

BitWeaving introduces two distinct bit-packed layouts: horizontal and verti-
cal. The first is optimised for efficient lookup operations and does not benefit from
pruning optimisation, unlike the second layout, which has fast filter scanning at
the expense of slower lookups. ByteSlice builds on these concepts by applying
bit-level separation on a byte-by-byte basis rather than bit-by-bit, achieving a
balance between fast lookups and efficient filter scans.

For instance, consider vertical bit-packing, which stores the first bits of mul-
tiple values followed by the second bits. If we apply a filter such as x = 256 on
uint8_t data and observe that all first bits are 0, we can immediately conclude
that none of the values satisfy the predicate. This allows us to skip evaluating
the remaining bits, as it is evident that all numbers are below 256. This short-
circuiting reduces the time needed to evaluate predicates by avoiding unnecessary
bit evaluations. However, both BitWeaving and ByteSlice do not provide efficient
decompression mechanisms. That is why FastLanes does not organise data in
such a way, making pruning optimisation impossible.
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Chapter 5

Predicate Evaluation on
Uncompressed Data

Efficient predicate evaluation is critical in database systems, especially with large
datasets. A fundamental question arises: can we develop data-parallel predicate
evaluation methods that are both fast and portable across various hardware ar-
chitectures without resorting to multiple platform-specific implementations? Addi-
tionally, we must know which selection data structure – selection bitmap, selection
byte map, selection vector, or reverse selection vector – is most suitable for effi-
cient predicate evaluation, considering factors such as data parallelism, selectivity,
and performance trade-offs. This chapter explores these research questions by de-
veloping fully data-parallel predicate evaluation algorithms auto-vectorisable by
the compiler to utilise the widest available SIMD registers. While our work is
within the context of FastLanes, a file format that employs cascaded encoding,
the methods we develop apply to decompressed data beyond this system.

Evaluating predicates on data compressed with cascaded encoding presents
three options. First, we can fully decompress the data before applying the predi-
cate. This approach, while straightforward, may not be performance-efficient due
to large decompression overhead [25]. However, this could suit FastLanes, where
decoding is fast. The second option is to partially decompress the data. For multi-
layer cascaded encodings, this involves decoding some, but not all, cascade layers,
avoiding the overhead of complete decompression. The third option is to evaluate
predicates directly on the compressed data, which requires specialised algorithms
for each encoding (currently, FastLanes has 39) and is left for future work. Data-
parallel predicate pushdown was explored before, but with limited efficiency [13],
restricted hardware support [25], or applied to data stored in layouts tailored for
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predicate pushdown [18, 26]. Thus, our goal is to develop predicate evaluation
algorithms that are efficient and portable across different hardware architectures
without relying on specialised data layouts or platform-specific implementations.

We structure this chapter as follows. In Section 5.1, we describe different
data-parallel predicate evaluation algorithms when the selection data structure
is a bitmap and benchmark them. We compare the results to the algorithm that
uses the selection byte map [13]. In Section 5.2, we explain how to obtain a single
selection bitmap when evaluating multiple predicates or columns and present the
main disadvantage of the byte map – the speed of merging multiple selections.
Section 5.3 examines the speed of predicate evaluation algorithms that use a selec-
tion vector. We observe that with low selectivity, predicate evaluation algorithms
that utilise the selection vector are faster than those using a selection bitmap.
We explain how to quickly convert a bitmap to a selection vector and benchmark
whether switching from a selection bitmap to a selection vector is advantageous
when selectivity drops below a certain threshold.

All the algorithms presented use the equality predicate and are easily adapt-
able to other predicates. The trends we observe in the benchmarks with equality
will hold with other predicates, as changing a predicate alters only a few assembly
instructions responsible for the comparison, affecting all the algorithms similarly.
We explain the benchmark devices and settings in Appendix A and include mis-
cellaneous algorithms in Appendix B. In the next chapter, we focus on predicate
evaluation on semi-compressed data, building on the methods we develop here.

5.1 Predicate Evaluation Algorithms

Algorithm 4 The equality evaluation algorithm using selection byte map [13]. The
__restrict qualifiers indicate that the input vector and output byte map do not overlap
in memory, allowing optimised memory access. The template parameter T allows the
algorithm to support different data types, enabling vector widths from 8 to 64 bits.

1 template <typename T>
2 void naive(T* __restrict vec , uint8_t* __restrict bytemap , T

filter) {
3 for (uint16_t i = 0; i < 1024; i++) {
4 bytemap[i] = vec[i] == filter;
5 }
6 }
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Our goal is to evaluate predicates on vectors containing 1,024 values using data
parallelism on SIMD and record the result in a bitmap. The data can consist of
8, 16, 32, or 64-bit unsigned integers. Even though the algorithms differ, their
core idea remains the same: load a batch of data into the SIMD register, compare
the values against the filter in each lane, and generate a mask of 0s and 1s based
on whether each value satisfies the predicate. Finally, the mask needs to be bit-
packed to produce a bitmap.

Since the query execution engine ultimately receives a selection vector con-
structed from the selection bitmap, the exact order of values within the bitmap is
not critical as long as we have a fast method to convert the bitmap into a selection
vector, which we describe in Section 5.3. We leverage this flexibility to choose a
bitmap order ideally suited for data-parallel evaluations and develop a method
that quickly transforms it into a selection vector. However, the order must remain
consistent across all data widths to allow us to merge the bitmaps from columns
containing different data types. It is important to note that bitmaps consisting
of 128x uint8_t, 64x uint16_t, 32x uint32_t, or 16x uint64_t elements are all
equivalent as they all represent 1,024 bits.

Our bitmap algorithms will be compared to Algorithm 4 used for predicate
pushdown in Parquet [13]. It stores each result in a byte rather than a bit.

5.1.1 Scalar: raw

The raw algorithm partitions the 1,024-element vector into eight segments, as
indicated by 128*0, ..., 128*7 in Algorithm 5. In scalar execution, each itera-
tion processes one element from each segment. However, for 8-bit data when the
algorithm is vectorised using a virtual 1,024-bit SIMD register, the src = *(vec
+ 128 * 0 + i) loads 128 consecutive 8-bit values starting from position 0. This
pattern repeats at positions 128, 256, ..., 896, allowing the processing of 128
values per iteration.

The bitmap stores results in an interleaved order: the first vector’s results are
at indices 0, 8, 16, ..., 1016, the second at 1, 9, 17, ..., 1017, and so
on, as shown in Figure 5.1. Consequently, the bitmap represents predicate eval-
uation results in the sequence: 0, 128, 256, 384, 512, 640, 768, 896, 1,
129, 257, 385, 513, 641, 769, 897, ..., 895, 1023. This layout allows data-
parallel predicate evaluation.

However, the algorithm is more complex with wider data types. For example,
with uint16_t, only 64 values from a segment can fit into the 1,024-bit SIMD
register, thus dividing each segment into two blocks. As a result, a second pass
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Algorithm 5 The raw algorithm for equality evaluation. vec is the input vector
containing data to be evaluated, filter is the value used for equality testing,
bitmap is the array where the results are stored, and sizeof(T) is the size of the
type T in bytes.

1 template <typename T>
2 void raw(T* __restrict vec , uint8_t* __restrict bitmap , T

filter) {
3

4 constexpr int lanes = 128 / sizeof(T);
5 uint8_t tmp {0}, equality_result {0};
6 T src;
7

8 for (int j = 0; j < sizeof(T); j++) {
9 for (int i = j * lanes; i < (j + 1) * lanes; i++) {

10 src = *(vec + 128 * 0 + i);
11 equality_result = (src == filter);
12 tmp = equality_result;
13

14 src = *(vec + 128 * 1 + i);
15 equality_result = (src == filter);
16 tmp |= equality_result << 1;
17

18 src = *(vec + 128 * 2 + i);
19 equality_result = (src == filter);
20 tmp |= equality_result << 2;

. . .

38 src = *(vec + 128 * 7 + i);
39 equality_result = (src == filter);
40 tmp |= equality_result << 7;
41

42 *( bitmap + i) = tmp;
43 }
44 }
45 }
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Figure 5.1: Data-parallel evaluation of “= 42” on 8-bit data using a selection bitmap.
Evaluation 1 demonstrates the first SIMD evaluation acting on the first segment of the
data and how the result maps to the bitmap. Evaluation 2 shows the same but with
the next segment. Each segment consists of 128 consecutive values.

through all segments is required to handle the remaining values, as illustrated
in line 8 of the algorithm. This limitation arises because we cannot process each
block chronologically: even-indexed blocks affect bitmap[i], while odd-indexed
blocks affect bitmap[i + 64]. This non-uniformity is bad for SIMD execution.
Thus we process all first blocks across segments, then all second blocks.

Additionally, with 16-bit data, evaluation occurs in 16-bit lanes, but the re-
sults are stored in an 8-bit bitmap. Such misalignment hinders performance.
Ideally, for 16-bit data, the vector should be divided into 16 segments with 64
elements instead of 8 segments with 128 elements. The order of results in the
bitmap would then follow a pattern of 0, 64, 128, ..., 960, 1, 65, ...,
961, ..., 1023. This allows processing every segment in chronological order.

30



However, this method produces a separate bitmap layout for each data width.
Maintaining the same bitmap layout across all data types allows us to merge

the bitmaps from different columns without the overhead of converting between
different orders. Since FastLanes utilises compressed execution, we expect most
evaluations to involve narrow data types. Thus, we choose the optimal order for
uint8_t data. In the next chapter, we will explore predicate evaluation on DICT
without decompression, allowing us to evaluate uint8_t or uint16_t instead of
wider data types.

This design is future-proof, as it anticipates the availability of 1,024-bit SIMD
registers. The implementation is also backwards-compatible: for existing SIMD
widths, such as 512-bit AVX-512 and 256-bit AVX2, the compiler will load 64 and
32 values, and for 128-bit Neon or SSE, it will load 16 values per iteration. Thus, it
utilises the widest available SIMD registers without requiring architecture-specific
code.

5.1.2 Scalar: native

Algorithm 6 The native algorithm for equality evaluation.

1 template <typename T>
2 void native(T* __restrict vec , T* __restrict bitmap , T

filter) {
3 for (size_t i = 0; i < 128; i++) {
4 for (size_t j = 0; j < 8; j++) {
5 bitmap[i] |= static_cast <T>((vec[i + j * 128] ==

filter)) << j;
6 }
7 }
8 }

The native algorithm aligns the bitmap’s width with the data width, avoiding
situations where the bitmap occupies only part of the SIMD lane. However, for
all data widths other than uint8_t, only the rightmost 8 bits of each bitmap[i]
are filled, while the remaining bits on the left remain zero. If this method proves
faster than others, it could be used for single-column predicates where merging
selections is not required.
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5.1.3 Scalar: mem

Algorithm 7 The mem algorithm for equality evaluation. The unaligned mem
algorithm is similar, but on line 3, it uses uint8_t instead of T, and omits the
static_cast on lines 7 and 12.

1 template <typename T>
2 void mem(T* __restrict vec , uint8_t* __restrict bitmap , T

filter) {
3 T res [128] = {0};
4

5 for (size_t i = 0; i < 128; i++) {
6 for (size_t j = 0; j < 8; j++) {
7 res[i] |= static_cast <T>((vec[i + j * 128] ==

filter)) << j;
8 }
9 }

10

11 for (size_t i = 0; i < 128; i++) {
12 bitmap[i] = static_cast <uint8_t >(res[i]);
13 }
14 }

The mem algorithm follows the same principle as the native approach: the bitmap
occupies the entire width of the lane. However, mem algorithm stores the result
with trailing zeros in a temporary array and later removes them by casting each
bitmap block from the width of the data down to 8 bits.

To see if such alignment is beneficial, we have also developed an unaligned
version of this algorithm, where SIMD computations are not driven by the data
width and interact with a bitmap represented by uint8_t elements.

5.1.4 Scalar: or

The idea behind the or algorithm is similar to the aligned mem approach. How-
ever, instead of downcasting the temporary bitmap to remove trailing zeros, we
bit-pack the useful values before writing them to the final bitmap. Bit-packing is
written in an auto-vectorisable way to maximise performance.
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Algorithm 8 The or algorithm for equality evaluation.

1 template <typename T>
2 void or(T* __restrict vec , T* __restrict bitmap , T filter) {
3 T res [128] = {0};
4

5 for (size_t i = 0; i < 128; i++) {
6 for (size_t j = 0; j < 8; j++) {
7 res[i] |= static_cast <T>((vec[i+j*128] == filter)) << j;
8 }
9 }

10

11 for (size_t j = 0; j < 128 / sizeof(T); j++) {
12 T tmp = 0;
13 for (size_t i = 0; i < sizeof(T); i++) {
14 tmp |= res[i + j * sizeof(T)] << (i * 8);
15 }
16 bitmap[j] = tmp;
17 }
18 }

5.1.5 Intrinsics

We implemented two algorithms using AVX-512 intrinsics to assess potential
performance gains over scalar auto-vectorised code. The overall idea is similar to
the raw algorithm: load consecutive data from each of the eight segments and
compare it with the filter to produce a mask. For uint8_t, uint16_t, uint32_t,
and uint64_t, the masks contain 64, 32, 16, and 8 values. Next, we map the
results from each block into the bitmap layout described earlier. For this, we
generate a vector where each mask element is assigned a specific value (e.g.,
0x01, 0x02, ..., 0x80) if the mask is active, and 0x00 otherwise. This process is
repeated for each segment, with each segment setting its respective bit (segment
1 sets 0x01, segment 2 sets 0x02, and so on, up to segment 8 setting 0x80).

We combine the results using bitwise OR operations. For 8-bit data, the com-
bined result represents which elements satisfy the predicate and we can store the
result and proceed to the next iteration, as seen in Algorithm 12. However, with
wider data types, only the first 8 bits of each lane are useful. For example, with
uint32_t, at the end of the iteration, each lane will contain 8 bits of the actual
results followed by 24 trailing zeros. We need to eliminate them.
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Algorithm 9 The AVX-512 intrinsics algorithm to evaluate “=” on 32-bit data.

1 void avx512_32(uint32_t* __restrict vec , uint8_t* __restrict
bitmap , uint32_t filter) {

2

3 __m512i fltr_vec = _mm512_set1_epi32 (* reinterpret_cast <
int32_t *>(& filter));

4

5 for (int j = 0; j < 4; j++) {
6 for (int i = j * 32; i < (j + 1) * 32; i += 16) {
7 __m512i src0 = _mm512_loadu_si512(vec + 128 * 0 + i);
8 __m512i src1 = _mm512_loadu_si512(vec + 128 * 1 + i);

. . .

14 __m512i src7 = _mm512_loadu_si512(vec + 128 * 7 + i);
15 __mmask16 cmp0 = _mm512_cmpeq_epi32_mask(src0 , fltr_vec);
16 __mmask16 cmp1 = _mm512_cmpeq_epi32_mask(src1 , fltr_vec);

. . .

23 __mmask16 cmp7 = _mm512_cmpeq_epi32_mask(src7 , fltr_vec);
24

25 __m512i result = _mm512_maskz_set1_epi32(cmp0 , 0x01) |
26 _mm512_maskz_set1_epi32(cmp1 , 0x02) |
27 _mm512_maskz_set1_epi32(cmp2 , 0x04) |
28 _mm512_maskz_set1_epi32(cmp3 , 0x08) |
29 _mm512_maskz_set1_epi32(cmp4 , 0x10) |
30 _mm512_maskz_set1_epi32(cmp5 , 0x20) |
31 _mm512_maskz_set1_epi32(cmp6 , 0x40) |
32 _mm512_maskz_set1_epi32(cmp7 , 0x80);
33

34 // Option 1: truncate and save
35 __m128i packed_result = _mm512_cvtepi32_epi8(result);
36 _mm_mask_storeu_epi8(bitmap + i, 0xFFFF , packed_result);
37

38 // Option 2: compress store
39 // __mmask64 mask = 0x1111111111111111ULL;
40 // _mm512_mask_compressstoreu_epi8 ((void*)(bitmap + i),

mask , result);
41 }
42 }
43 }
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Thus, algorithms that evaluate uint16_t – uint64_t data also include steps
to remove the zeroes. For this, we employ two different strategies. In the first one,
we use truncation to downsize the lanes to 8 bits, effectively moving from the 512-
bit zmm register to a 128-bit xmm register. Since the trailing zeros are at the end of
each lane, this achieves the desired effect, and the resulting lanes only contain the
data. The second variant involves saving only the bits we want in memory using
compress store instructions. Specifically, we want to store the first 8 bits from
each lane. On AVX-512, there are two such instructions for integers: VPCOMPRESSD
and VPCOMPRESSB. The former allows us to select which 4-byte blocks to store –
this is too large for our purposes. The latter provides finer granularity, allowing
us to select a byte. Since we want to save the first 8 bits from each lane, we use
VPCOMPRESSB, passing a mask that selects the lane’s first byte.

5.1.6 Results
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Figure 5.2: Speed comparison of mem and unaligned mem algorithms.

Firstly, we conducted microbenchmarks to compare the performance of the two
variants of mem algorithm. As shown in Figure 5.2, the aligned version consis-
tently outperforms the unaligned version on SSE, AVX2, and AVX-512 ISAs.
Conversely, the unaligned version is faster across all data widths on Neon. Thus,
the former is more robust, and in the subsequent benchmarks, we only present
the results of the aligned mem algorithm.

Figure 5.3 presents the benchmark results for all algorithms across different
data widths. As expected, narrower data types result in faster predicate evalua-
tions.

35



A
V

X
2

S
S

E

A
V

X
2

S
S

E

A
V

X
-5

12

A
V

X
2

S
S

E

N
eo

n

va
lu

es
 / 

cy
cl

e

0

20

40

60

Coffee Lake Coffee Lake Zen 2 Zen 2 Skylake Skylake Skylake M1

uint8_t (native) uint8_t (raw) uint8_t (byte map)

(a) uint8_t

A
V

X
2

S
S

E

A
V

X
2

S
S

E

A
V

X
-5

12

A
V

X
2

S
S

E

N
eo

n

va
lu

es
 / 

cy
cl

e

0

10

20

30

40

Coffee Lake Coffee Lake Zen 2 Zen 2 Skylake Skylake Skylake M1

uint16_t (native) uint16_t (raw) uint16_t (byte map) uint16_t (mem) uint16_t (or)

(b) uint16_t

A
V

X
2

S
S

E

A
V

X
2

S
S

E

A
V

X
-5

12

A
V

X
2

S
S

E

N
eo

n

va
lu

es
 / 

cy
cl

e

0

5

10

15

Coffee Lake Coffee Lake Zen 2 Zen 2 Skylake Skylake Skylake M1

uint32_t (native) uint32_t (raw) uint32_t (byte map) uint32_t (mem) uint32_t (or)

(c) uint32_t

A
V

X
2

S
S

E

A
V

X
2

S
S

E

A
V

X
-5

12

A
V

X
2

S
S

E

N
eo

n

va
lu

es
 / 

cy
cl

e

0

2

4

6

8

Coffee Lake Coffee Lake Zen 2 Zen 2 Skylake Skylake Skylake M1

uint64_t (native) uint64_t (raw) uint64_t (byte map) uint64_t (mem) uint64_t (or)

(d) uint64_t

Figure 5.3: The speed of predicate evaluation algorithms across different microarchitectures and ISAs.
Each subfigure presents results on a distinct data type.

36



When using uint8_t data, all algorithms perform similarly on SSE. On AVX2,
the raw algorithm shows a clear advantage over the native algorithm, with the
byte map approach trailing in third place. On AVX-512 and Neon, the byte
map method is the fastest, followed by the raw algorithm and then the native
algorithm. However, on Neon, the speed differences between these algorithms are
relatively small. For wider data types, the performance varies depending on the
architecture and the ISA in use. On Neon, the raw and byte map algorithms
perform exceptionally well, the latter being slightly faster. On SSE and AVX2,
the native algorithm is the fastest in most cases.

Since we aim for portability and future-proofness, our recommendations focus
on the most advanced ISAs: AVX-512 and Neon. Among the bitmap algorithms,
the raw algorithm is consistently robust across these architectures. Therefore, it
is our algorithm of choice. While the byte map approach demonstrates strong
performance, it consumes more space and requires significantly more time to
merge selections of multiple columns – a trade-off we explore further in Section
5.2.
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Figure 5.4: Performance comparison of various predicate evaluation algorithms,
including intrinsics algorithms, across different data widths on AVX-512.

Regarding the intrinsics algorithm, as shown in Figure 5.4, it performs slightly
worse than the raw algorithm on 8-bit data. For other data widths, the intrinsics
algorithm using truncation offers performance still slightly inferior to the raw
algorithm. In contrast, the intrinsics algorithm that employs compress store in-
structions is significantly slower than all other methods. We suspect this is due to
the high latency of the compress store instruction [4]. Therefore, we recommend
opting for the more portable solution – the auto-vectorised raw algorithm.
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5.2 Merge optimisation

Algorithm 10 Bitwise AND of two 1024-bit bitmaps. The result is stored in
main bitmap.

1 template <typename T>
2 void bitmap_and(T* __restrict main , T* __restrict other) {
3 constexpr size_t N = 128 / sizeof(T);
4 for (size_t i = 0; i < N; ++i) {
5 main[i] &= other[i];
6 }
7 }

A selective query may contain multiple conditions on the same or across dif-
ferent columns. These conditions could be combined using conjunctions, disjunc-
tions, or negations. Our goal is to support all these operations effectively. Sup-
porting negation is straightforward: evaluate everything within the NOT (...)
expression and flip all the bits in the resulting bitmap. For conjunctions like A
AND B, we evaluate both predicates separately and then apply the bitwise AND op-
eration to merge the two bitmaps. Disjunctions are handled using negation and
conjunction operations, leveraging De Morgan’s law, which allows us to transform
A OR B into NOT (NOT A AND NOT B) [25].
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The implementation of AND of two bitmaps is trivial and can be seen in Algo-
rithm 10. Since 1,024 bits can be represented as 128x uint8_t, 64x uint16_t, 32x
uint32_t, or 16x uint64_t elements (and we can switch between these represen-
tations in C++ with no overhead), we can have four versions of the algorithm.
Figure 5.5 shows that merging selection bitmap is much faster than byte map.
On AVX-512 and Neon, the bitmap merging is 10.5x and 4.6x faster, respectively.

Although the byte map algorithm for predicate evaluation is often faster than
the bitmap approach, the significant difference in the speed of merging two selec-
tions means that as we evaluate more columns, the latter becomes faster (when
combining the speed of vector evaluation and result merging). We calculated the
minimum number of columns from which the evaluation is faster with the bitmap
and quantified the speedup, presenting them in Tables 5.1 and 5.2, respectively.

Table 5.1: Minimum number of columns where bitmap evaluation outperforms byte map
evaluation for different data widths in bits on AVX-512 and Neon ISAs.

Data Width AVX-512 Neon

8 2 2
16 4 2
32 3 2
64 3 2

Table 5.2: X-fold speedup achieved by bitmap over byte map evaluation for different data
widths in bits on AVX-512 and Neon ISAs, with performance gains highlighted in grey.

(a) AVX-512 Performance Boost

Columns Data Width

8 16 32 64

2 1.53 0.86 0.99 0.98
4 1.85 1.01 1.08 1.02
8 2.00 1.09 1.13 1.05
16 2.07 1.13 1.15 1.06

(b) Neon Performance Boost

Columns Data Width

8 16 32 64

2 1.29 1.08 1.12 1.01
4 1.45 1.18 1.19 1.04
8 1.53 1.24 1.22 1.06
16 1.57 1.26 1.23 1.07
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5.3 Low Selectivity Optimisation
As we mentioned in Section 4, the selection vector is likely fast for predicate
evaluation at low selectivities, whereas the selection bitmap offers consistently
good performance. Recognising that no single method is universally superior,
we propose an adaptive approach that dynamically chooses the most efficient
representation based on the current selectivity [31]. Consider a scenario where
we evaluate a predicate on two columns. In the first column, only one element is
selected. If we continue evaluating the second column using a bitmap, we disregard
this information and evaluate all the values, leading to avoidable computation.
However, when using a selection vector, we can focus exclusively on the selected
index, knowing that only one element can meet the condition. Motivated by this,
we propose the following procedure:

1. Initialise an empty bitmap to store the results of the predicate evaluations.

2. Perform predicate evaluation using the raw algorithm.

3. After evaluating N columns, compute the selectivity of the bitmap by util-
ising the popcnt instruction to count the number of set bits.

4. If the calculated selectivity falls below M , convert the bitmap to a selection
vector for subsequent evaluations. Otherwise, return to step 3.

The N (number of evaluations after which to measure selectivity) can be
determined at run-time using micro adaptivity [31]. Since the rate at which selec-
tivity decreases after each evaluation depends on the data and queries, we cannot
provide a single value that would be effective in all scenarios.

To efficiently convert a selection bitmap into a selection vector, we use Algo-
rithm 15, which leverages precomputed lookup tables, storing the number of set
bits in each possible byte value and the positions of those set bits. By iterating
over each byte in the bitmap, we use these tables to quickly identify the indices
of elements that satisfy the predicate, avoiding examining each bit individually.
As a result, we have a selection vector containing all the indices of selected ele-
ments. We benchmarked this algorithm and presented the results in Figure 5.6.
The performance is robust across all architectures and ISAs.

As noted above, the point after which we need to measure selectivity de-
pends on the queries and data. However, we can determine at which selectivity it
becomes advantageous to convert the bitmap into a selection vector (M). Specif-
ically, we consider a situation where we have measured the bitmap’s selectivity,
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Figure 5.6: The speed of converting a bitmap into a selection vector across
various architectures and ISAs.

have additional columns to process, and want to understand whether converting
the bitmap into a selection vector will accelerate subsequent evaluations (con-
sidering the time required for this conversion). To determine this, we conducted
benchmarks where, for each bitmap selectivity, we measured the time taken to
convert to a selection vector and perform an equality evaluation, compared to the
time taken for a subsequent evaluation on the bitmap without this conversion.

The results are shown in Figure 5.7. As expected, the selection vector outper-
forms the bitmap at low selectivities. To simplify the analysis, we present Table
5.3, indicating the selectivity thresholds below which converting to a selection
vector yields a speedup. Additionally, for AVX-512 and Neon, we made Table
5.4, showing the extent to which conversion and evaluation on the vector is faster
than evaluation on the bitmap for all selectivities that offer a performance boost.

As we can see, the wider the data, the higher the threshold at which switching
to a selection vector is optimal. This is because evaluating wider data types
in SIMD is slower than narrower ones, as seen in Section 5.1.6. Nevertheless,
we observe speedups for all data widths, architectures and ISAs. For AVX-512
and Neon, our main targets, a speedup occurs when 9 and 18 or fewer elements
are selected. Selecting 18 elements out of 1,024 corresponds to a selectivity of
1.8%. Since such low selectivities will occur rarely and significant speedups are
present only when the selectivity is even lower, we decided not to complicate the
FastLanes implementation and avoid incorporating this optimisation.

The reverse selection vector is designed to optimise the space efficiency of the
regular selection vector for selectivities greater than 50%. However, our findings
indicate that the regular selection vector is only a viable option for predicate eval-
uation at selectivities far below this threshold. Consequently, the reverse selection
vector is not suitable for fast predicate evaluation.
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Figure 5.7: Benchmark results for low selectivity optimisation across different CPU architectures. Solid lines
represent the speed of converting to a selection vector and doing a predicate evaluation across various data
widths, while the dashed lines show the speed of predicate evaluation on a bitmap without switching.
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Table 5.3: Number of selected elements out of 1,024 at or below which converting to a selection vector results in
a performance improvement across various architectures, ISAs, and data widths.

Architecture ISA uint8_t uint16_t uint32_t uint64_t

Coffee Lake AVX2 1 5 14 44
SSE 3 9 26 60

Zen 2 AVX2 1 7 17 41
SSE 3 9 23 58

Skylake
AVX-512 1 3 5 9
AVX2 1 7 17 46
SSE 3 12 27 71

M1 Neon 3 6 9 18

Table 5.4: Performance improvement of converting to a selection vector, including the time needed for conversion,
over a bitmap across varying data widths and numbers of selected values (out of 1,024) on AVX-512 and Neon ISAs.
The values represent the X-fold speedup achieved by the optimised approach, with values indicating an increase in
performance highlighted in grey.

(a) AVX-512 Performance Boost

Selected Data Width (bits)

Values 64 32 16 8

1 10.10 5.10 3.09 1.47
2 5.39 2.72 1.67 0.78
3 3.62 1.84 1.13 0.53
4 2.76 1.39 0.85 0.40
5 2.17 1.10 0.68 0.32
6 1.83 0.86 0.56 0.27
7 1.57 0.75 0.49 0.23
8 1.38 0.65 0.39 0.18
9 1.21 0.61 0.38 0.18

(b) Neon Performance Boost

Selected Data Width

Values 64 32 16 8

1 18.71 10.26 5.73 4.36
2 9.76 5.33 2.98 2.26
3 6.60 3.60 2.01 1.53
4 4.99 2.72 1.52 1.15
5 3.93 2.14 1.20 0.91
6 3.30 1.80 1.00 0.76
7 2.84 1.55 0.86 0.66
8 2.49 1.36 0.76 0.58
9 2.20 1.08 0.60 0.46
10 1.81 0.96 0.53 0.42
11 1.62 0.88 0.50 0.38
12 1.49 0.82 0.46 0.34
13 1.38 0.77 0.43 0.32
14 1.30 0.72 0.40 0.30
15 1.23 0.67 0.38 0.28
16 1.16 0.64 0.36 0.27
17 1.10 0.60 0.33 0.25
18 1.01 0.57 0.32 0.24
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5.4 Discussion
We presented a bitmap layout that allows data-parallel predicate evaluation and
four scalar algorithms that exploit it and auto-vectorise to use the widest SIMD
registers available. After benchmarking, we concluded that the raw algorithm is
the most suitable for FastLanes due to its robust performance with AVX-512
and Neon ISAs. The bitmap order we propose is optimised for 8-bit data. While
we could have chosen an order that performs better with other data widths,
we anticipate that our algorithm will mainly operate on semi-compressed data
with narrow data types. In future work, it would be interesting to explore the
other bitmap orders described in Section 5.1. This would involve assessing the
performance of algorithms that use them and determining how we can switch
orders for it to stay uniform across columns with varying data widths. However,
we hypothesise that this approach will be less effective than our current proposal,
with the overhead of mapping between bitmap orders being a bottleneck.

We also developed two types of algorithms using AVX-512 intrinsics. Our
benchmarks revealed that the performance of the intrinsics algorithm using trun-
cation is comparable to the scalar raw algorithm, whereas the version employing
compressed store instructions is considerably slower. Consequently, we conclude
we are not sacrificing much performance-wise by using portable scalar code for
predicate evaluation.

We compared the raw algorithm with one that writes results into a byte
map and observed that, in many cases, the byte map approach is faster, though
the difference is not significant. Next, we discussed handling selective queries
with multiple conditions. We proposed evaluating each condition separately and
combining the results using AND operations on the 1,024 bits. We found that
merging byte maps is very slow – to the extent that, when dealing with multiple
columns, using a bitmap becomes faster (and the more columns involved, the
greater the advantage).

Next, we explored the possibility of transitioning from a selection bitmap
to a selection vector when selectivity is low. When evaluating a new column
using a selection vector, we can evaluate the values at the previously selected
indices, skipping the rest. In contrast, with the selection bitmap, we would need
to evaluate the entire column and then merge the old and new selections. We
demonstrated a method that converts a selection bitmap to a selection vector and
benchmarked it, confirming its high efficiency. We also conducted benchmarks to
determine whether switching to a selection vector for evaluation is faster and
indeed found that this approach leads to speedup at low selectivities. However,
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the speedups start to occur only at marginally low selectivities of 1.8%, with
significant gains at even lower values. Since these scenarios are rare, we decided
not to complicate the FastLanes implementation by adding this optimisation. The
reverse selection vector is designed to optimise the space efficiency of the regular
selection vector for selectivities greater than 50%, and our findings indicate that
the regular selection vector is only a viable option for predicate evaluation at
selectivities far below this threshold. Considering this and the earlier results with
the byte map, we concluded that FastLanes should use a bitmap as the selection
data structure.
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Chapter 6

Predicate Evaluation on
Semi-Compressed Data

When performing predicate evaluation on data compressed with cascaded en-
coding, a fundamental question arises: How can we efficiently perform predicate
evaluation on data compressed with cascaded encoding without fully decompress-
ing the data? This approach is advantageous because decoding some layers of
the cascade is faster than decoding all of them. Encodings that result from such
partial decompression but contain sufficient detail for query execution we call in-
termediate representations. An intermediate representation can be any lightweight
compression scheme that lacks data dependencies. For example, although we do
not consider it in this thesis, FOR can function as an intermediate representation
because it allows independent access to each data element. In contrast, DELTA
cannot, as it introduces data dependencies.

In this chapter, we explore whether predicate evaluation can be performed
more efficiently by decompressing some, but not all, layers of the cascade or if
complete decompression followed by evaluation remains the optimal strategy. Our
work proves that such optimisations on data compressed with cascaded encoding
are feasible.

We focus on DICT, RLE, and their combination because they are widely used
[9] and, at the time of writing, were implemented as representations in FastLanes.
When decompressing data, FastLanes stops at these semi-compressed states when
possible rather than fully decoding. In the previous chapter, we recommended the
raw algorithm for predicate evaluation on uncompressed data and thus use it as
a baseline for predicate evaluation in this chapter.
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6.1 Dictionary Encoding
In DICT, the data is represented by a dictionary array containing all unique
values and an index vector that points to these values, as shown in Figure 2.1.
Elements in the dictionary can vary in width, up to 64 bits, while the index array
uses 8-bit indices if there are 256 or fewer unique values or 16-bit otherwise. If
the dictionary array contains 8-bit data, it can have at most 256 unique values,
meaning the index array will also contain 8-bit indices. Thus, we note two things:
(1) the data in the index array is always of equal or smaller width than that
in the dictionary and the decompressed vector, and (2) dictionary encoding is
typically applied where the column contains relatively few unique values. With
these factors in mind, we propose an optimisation for this encoding. For equality
predicate, the optimisation is as follows:

1. If the dictionary contains fewer than N elements, proceed; otherwise, fully
decompress the data for standard evaluation.

2. Iterate over the dictionary array to locate the index of the element matching
the filter. If no match is found, return an empty bitmap and halt.

3. Perform a standard equality evaluation on the index array, using the index
identified in the previous step as the filter.

In step two, we iterate over all elements in the dictionary, which, for large
dictionaries, may slow down the process enough that complete decompression
before predicate evaluation would be faster. Hence, in step one, we check the
dictionary size and only proceed if it is below a threshold N , which we determine
in benchmarks. If no value in the dictionary matches the filter in step two, we
can safely return a bitmap filled with zeros, which indicates that the value is
absent in the data. In step three, once we find the index pointing to the value
for which we are evaluating equality, we can directly search for this index in
the index array, bypassing decompression. While full decompression would later
require evaluation on potentially wide data, this approach allows us to perform
predicate evaluation on a uint8_t or uint16_t index array, which, as established
in Section 5.1, is faster.

For the ̸= predicate, we can apply the same approach as for =, simply invert-
ing all bits in the resulting bitmap. However, <, >, ≤ and ≥ present a challenge
because multiple entries in the dictionary array might meet the condition, and
these entries are not stored in any particular order. This means the indices satisfy-
ing the predicate could be dispersed irregularly throughout the dictionary. With a
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sorted dictionary array, we could isolate a contiguous range of indices that match
the condition and perform a single, efficient range-based evaluation on the index
array. With an unsorted dictionary, however, we instead need to conduct a series
of equality checks on the index array – one for each dictionary entry that meets
the predicate. This approach requires multiple evaluations and the merging of the
intermediate bitmaps to evaluate a single predicate, which, given that FastLanes
already supports efficient decompression and evaluation, would likely negate any
potential gains. Currently, FastLanes supports only unsorted dictionaries. How-
ever, optimisation for additional predicates would become feasible once sorted
dictionaries are implemented. For this reason, we focus solely on = and ̸=, where
the optimisation provides performance improvements without added complexity,
while other predicates remain as future work.

To determine the optimal threshold N for step one and quantify the speedup
our optimisation provides, we benchmarked performance across dictionary sizes
up to 1,024. We implemented the worst-case scenario, where the last element in
the dictionary matches the filter, to ensure that the filter is evaluated against all
dictionary elements. In practice, the process is likely to be faster, as a matching
element could be found before the dictionary’s end, allowing us to proceed to the
next step early. Additionally, if the value is absent from the dictionary, we could
immediately return an empty bitmap without further evaluating the index array.

Moreover, in our benchmark, we evaluated only a single vector compressed

Algorithm 11 Optimised equality evaluation algorithm for the DICT interme-
diate representation. The T and U specify the data type of the dictionary and
index arrays, respectively. The algorithm identifies the element in the dictionary
array that matches the filter value and conducts a predicate evaluation on the
index array using this element’s index as the new filter.

1 template <typename T, typename U>
2 void dict_optimisation(U* __restrict idx_arr , T* __restrict

dict , uint8_t* __restrict bitmap , T filter , U dic_sz) {
3 for (U i = 0; i < dic_sz; i++) {
4 if (dict[i] == filter) {
5 raw(idx_arr , bitmap , i);
6 return;
7 }
8 }
9 }
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with DICT, whereas in FastLanes, DICT is applied over a row group potentially
containing multiple vectors, all sharing the same dictionary array. This means
that the cost of evaluating the dictionary is incurred just once for the entire
row group. As a result, after evaluating the dictionary, we can perform predicate
evaluation on the uint8_t or uint16_t index arrays of all vectors within the
row group rather than on decompressed wide data for each vector individually.
This amplifies the performance benefits of our method over full decompression,
especially for wider data types, as it reduces the decompression overhead and
leverages faster evaluation on narrower data types across multiple vectors.

This optimisation is detailed in Algorithm 11, while benchmark results are
depicted in Figure 6.1. When the optimised algorithm line (solid) lies above the
non-optimised one (dashed), the optimisation offers a speedup. The intersection
point indicates the dictionary size at which both versions perform equally. For
convenience, Table 6.1 summarises the dictionary sizes at or below which our
algorithm outperforms complete decompression and evaluation – these serve as
our recommended values for N .

Table 6.1 shows that the threshold N is consistently large, reaching the max-
imum value tested (1,024) in 15 of the 32 cases. In practical terms, the number
of elements in the dictionary may be even larger, given that the dictionary ap-
plies to a row group rather than individual data vectors. Table 6.2 illustrates the
performance gains achieved by employing this optimisation over full decompres-
sion and evaluation for AVX-512 and Neon ISAs. Notably, the speedup remains
substantial even with larger dictionary sizes. For instance, when the dictionary
comprises 256 elements or fewer, the optimisation provides a speedup of 2x or
greater, and when it contains 64 elements or fewer, the speedup surpasses 7x. This
optimisation is highly effective, and we recommend avoiding full decompression
when N is at or below the established thresholds. Considering DICT encoding is
applied when the number of unique elements in the row group is small, resulting
in small dictionary arrays, we expect this optimisation to provide a significant
performance boost.
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Figure 6.1: Performance of predicate evaluation on dictionary-encoded data across four microarchitectures. Solid lines indicate
the speed of predicate evaluation on compressed data (optimised), while dashed lines illustrate the speed when data is fully
decompressed before evaluation (non-optimised).
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Table 6.1: Dictionary sizes at or below which doing predicate evaluation without decompressing
DICT intermediate representation is faster across various microarchitectures, ISAs, and data widths.

Architecture ISA uint8_t uint16_t uint32_t uint64_t

Coffee Lake AVX2 889 889 889 1024
SSE 366 457 720 1024

Zen 2 AVX2 812 897 1024 1024
SSE 1024 1024 1024 1024

Skylake
AVX-512 1024 1024 600 756
AVX2 542 605 787 1024
SSE 785 901 1024 1024

M1 Neon 985 1020 1024 1024

Table 6.2: Performance gains of predicate evaluation on compressed DICT over full decompression and evaluation
across different dictionary sizes and data widths on AVX-512 and Neon ISAs. The values represent the X-fold speedup
achieved by the optimised approach, with values indicating an increase in performance highlighted in grey.

Dictionary Size AVX-512 Performance Boost Neon Performance Boost

uint64_t uint32_t uint16_t uint8_t uint64_t uint32_t uint16_t uint8_t

1 27.23 21.91 40.81 40.07 24.73 22.36 21.09 20.47
64 9.09 7.31 13.63 13.38 12.23 11.05 10.43 10.12
128 4.68 3.77 7.02 6.89 6.81 6.16 5.81 5.64
192 3.39 2.73 5.09 4.99 4.84 4.37 4.12 4.00
256 2.66 2.14 3.99 3.92 3.51 3.17 2.99 2.90
320 2.20 1.77 3.30 3.24 3.01 2.72 2.56 2.49
384 1.87 1.50 2.80 2.75 2.63 2.38 2.24 2.18
448 1.63 1.31 2.44 2.39 2.34 2.11 1.99 1.94
512 1.44 1.16 2.16 2.12 2.10 1.90 1.79 1.74
576 1.29 1.04 1.93 1.90 1.91 1.73 1.63 1.58
640 1.17 0.94 1.76 1.72 1.75 1.59 1.49 1.45
704 1.07 0.86 1.60 1.58 1.62 1.46 1.38 1.34
768 0.99 0.79 1.48 1.45 1.50 1.36 1.28 1.24
832 0.91 0.74 1.37 1.34 1.40 1.27 1.20 1.16
896 0.85 0.69 1.28 1.25 1.31 1.19 1.12 1.09
960 0.80 0.64 1.20 1.17 1.24 1.12 1.05 1.02
1024 0.75 0.60 1.12 1.10 1.17 1.06 1.00 0.97
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6.2 Run-Length Encoding
As we noted in Section 3.3.2, the RLE intermediate representation is similar to
DICT. In both cases, an index vector points to indices in another array: the run
values array and dictionary array for RLE and DICT, respectively. The difference
is that all values in the dictionary array are unique, whereas values in the run
values array can repeat if they are non-consecutive. Because of this, we cannot
apply the optimisation from the previous section, for the same reason that makes
it unsuitable for <, >, ≤ and ≥ predicates (i.e. evaluating on the dictionary could
yield multiple satisfying elements).

Instead of applying the same optimisation as in the DICT case, we could use
an adaptive approach. If the run values array is smaller than some threshold, we
could scan it to identify the indices where values satisfy the predicate. If only one
such index exists, we have a scenario similar to DICT and can evaluate the narrow
index vector searching for that index. If there are a few indices, we can run the
equality evaluation once for each index and then combine the resulting bitmaps
with a bitwise OR. However, if many values match, this approach requires many
evaluations and bitmap merges, which may be slower than simply decompressing
the entire RLE representation and evaluating the uncompressed data once.

This strategy involves a trade-off: we must initially scan the run values array
to discover the number of matches, incurring overhead even if we end up fully
decompressing. To address this, we could train a model that would predict how
many run values would be selected [31]. If it predicts many matches, we fully
decompress. If it predicts a few matches, we proceed with the partial evaluation
and merging steps. We leave this adaptive strategy as a direction for future work.

6.3 Dictionary + Run-Length Encodings
As discussed in Section 3.3.3 and illustrated in Figure 3.2, this intermediate
representation can be decompressed into both DICT and RLE intermediate rep-
resentations through a single flattening operation. Since we have an optimisation
for DICT but not for RLE, we compare decompressing to DICT and applying
the DICT-optimised evaluation described in the previous section against fully
decompressing and applying predicate evaluation on the decompressed data.

The comparison results are shown in Figure 6.2. For ease of analysis, we
also created Table 6.3, which indicates the dictionary sizes at or below which
evaluation with this optimisation is faster than complete decompression followed
by evaluation. Table 6.4 presents the performance improvements achieved by
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decompressing to DICT and evaluating on semi-compressed data, compared to
full decompression and subsequent evaluation on AVX-512 and Neon.

The thresholds for dictionary sizes at which this optimisation provides a
speedup are similar to those of DICT on all architectures except Coffee Lake.
Meanwhile, in Table 6.4, we see that for AVX-512 and Neon, the speedup is
present but more modest than with DICT alone in Table 6.2. Here, the best
speedup we can expect is up to 2.15x faster than full decompression.

We explain this result as follows. At the beginning of our method, as with
full decompression, the data is decoded into the DICT format. Subsequently,
everything proceeds as with the DICT intermediate representation: either we use
the optimisation from Algorithm 11, or the data is further decompressed and
then evaluated. Essentially, it is the same process as in the previous section, but
with additional time spent decompressing from DICT + RLE to DICT. This
extra decompression step dilutes the speedup, so the results in Tables 6.1 and
6.3 are similar. Regarding Coffee Lake, as we discuss in Appendix A, the device
suffers from throttling, leading to volatile results. The speedup for DICT + RLE
is more modest than for DICT alone for the same reason: we added the same
decompression time layer to both variants, which reduced the relative speedup
because

x

y
<

x+ c

y + c

for any positive x, y, and c. In this context, x and y represent the time of opti-
mised evaluation on DICT and evaluation via decompression, respectively, while
c is the time taken to decompress from DICT + RLE to DICT. Therefore, we rec-
ommend always decompressing DICT + RLE into DICT first and then applying
the optimisation for the DICT intermediate representation with the thresholds
indicated in the previous section.
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Figure 6.2: Performance of predicate evaluation on DICT + RLE data across four different microarchitectures. Solid lines
represent the speed of predicate evaluation on compressed data (optimised), while dashed lines show the speed when data is
decompressed before evaluation (non-optimised).
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Table 6.3: Dictionary sizes at or below which doing predicate evaluation on DICT + RLE by
decompressing it to DICT intermediate representation and evaluating on it is faster than full
decompression with subsequent evaluation across various microarchitectures, ISAs, and data
widths.

Architecture ISA uint8_t uint16_t uint32_t uint64_t

Coffee Lake AVX2 111 111 363 757
SSE 311 311 311 718

Zen 2 AVX2 844 947 1024 1024
SSE 957 1024 1024 1024

Skylake
AVX-512 1020 1024 523 661
AVX2 638 741 950 1024
SSE 920 1024 1024 1024

M1 Neon 791 825 771 903

Table 6.4: Performance gains of decompressing DICT + RLE intermediate representation into DICT and then
performing predicate evaluation on compressed DICT over full decompression and evaluation across different
dictionary sizes and data widths on AVX-512 and Neon ISAs. The values represent the X-fold speedup achieved
by the optimised approach, with values indicating an increase in performance highlighted in grey.

Dictionary Size AVX-512 Performance Boost Neon Performance Boost

uint64_t uint32_t uint16_t uint8_t uint64_t uint32_t uint16_t uint8_t

1 1.64 1.51 2.00 1.98 2.15 2.00 2.06 2.03
64 1.57 1.44 1.91 1.89 2.01 1.87 1.93 1.89
128 1.47 1.35 1.79 1.77 1.86 1.73 1.78 1.75
192 1.39 1.28 1.69 1.68 1.71 1.59 1.64 1.61
256 1.30 1.20 1.59 1.57 1.51 1.41 1.45 1.42
320 1.24 1.15 1.51 1.50 1.44 1.34 1.38 1.36
384 1.19 1.09 1.45 1.44 1.38 1.28 1.32 1.29
448 1.14 1.05 1.39 1.37 1.31 1.22 1.26 1.24
512 1.09 1.01 1.33 1.32 1.26 1.17 1.21 1.19
576 1.05 0.97 1.28 1.27 1.21 1.12 1.16 1.14
640 1.01 0.93 1.23 1.22 1.16 1.08 1.11 1.09
704 0.98 0.90 1.19 1.18 1.12 1.04 1.07 1.05
768 0.94 0.87 1.15 1.14 1.08 1.00 1.03 1.01
832 0.91 0.84 1.11 1.10 1.04 0.97 1.00 0.98
896 0.88 0.81 1.07 1.06 1.00 0.93 0.96 0.94
960 0.85 0.79 1.04 1.03 0.97 0.90 0.93 0.91
1024 0.83 0.76 1.01 1.00 0.94 0.87 0.90 0.88
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6.4 Discussion
We explored predicate evaluation on semi-compressed data. For DICT, we pro-
vided an algorithm capable of evaluating data without decompression for the =
and ̸= predicates. We explained why such optimisation is impractical in FastLanes
with other predicates at the moment of writing and why it is only effective when
the dictionary size is small. To find the thresholds below which it should be used,
we conducted benchmarks and identified the dictionary sizes required to achieve
speedups across different microarchitectures and ISAs. The minimum size we ob-
served was 366, which is large given that dictionaries are typically used when data
has few unique values. We also quantified the speedup obtained with AVX-512
and Neon ISAs with different dictionary sizes. Evaluating compressed DICT data
is at least 7 times faster when the dictionary contains 64 elements or fewer and
at least 3 times faster when it contains 128 elements or fewer, compared to full
decompression followed by evaluation. Since we considered only the scenario with
a single vector of data, while a dictionary may contain values from a row group
comprising many vectors, the actual speedup could be even greater. Therefore,
our favourable results represent a lower bound on the potential speedup.

We then examined the RLE intermediate representation, noting that its run
values array resembles the dictionary array in DICT, but where values can repeat
if they are non-consecutive. Due to this property, we cannot apply an optimisation
similar to that used for DICT. We discussed the idea of an adaptive approach to
optimrise RLE evaluations based on match counts in the run values array, leaving
its implementation for future work. Then, we discussed the combined DICT +
RLE intermediate representation. We demonstrated the speedup achievable by
decompressing it into DICT and then applying our optimisation. This approach is
faster than full decompression followed by evaluation because full decompression
would involve decompressing RLE regardless, which the results of our benchmarks
support. We observed that while there is a speedup, it is not as substantial as
with DICT alone. We recommend decompressing DICT + RLE into DICT and
then applying the optimisation if the dictionary array size is below the thresholds
that we found.
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Chapter 7

Discussion and Future Work

At the beginning of this thesis, we established three research questions. Let us
reflect on each of them.

Can we develop data-parallel predicate evaluation methods that are both fast
and portable across various hardware architectures without resorting to multiple
platform-specific implementations? As we have demonstrated, the answer to this
question is affirmative. We implemented and benchmarked four algorithms that
utilise the widest available SIMD registers. We achieved data parallelism pri-
marily by observing that, at runtime, the specific order in which we store the
results in the selection bitmap does not matter. We leveraged this flexibility to
our advantage and developed fully data-parallel algorithms.

Additionally, we implemented two algorithms using AVX-512 intrinsics and
showed that employing platform-specific implementations yielded no performance
gains over our best scalar algorithm. Therefore, it is possible to create fast and
portable data-parallel predicate evaluation methods without relying on multiple
platform-specific implementations.

Which selection data structure – selection bitmap, selection byte map, selec-
tion vector, or reverse selection vector – is most suitable for efficient predicate
evaluation, considering factors such as data parallelism, selectivity, and perfor-
mance trade-offs? The efficiency of predicate evaluation algorithms depends on
the selection data structure used. We demonstrated that when evaluating a single
column, the data-parallel algorithm using a byte map yields the fastest results,
closely followed by the data-parallel bitmap algorithm. Selection and reverse se-
lection vectors are not competitive in this context because their algorithms are
not data-parallel.

When evaluating multiple columns, we need to merge the results from each
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column for both byte maps and bitmaps. We found that merging bitmaps is signif-
icantly faster because it requires performing an AND operation on 1,024 elements,
whereas merging byte maps involves processing eight times more data. The dif-
ference is substantial enough that the bitmap becomes the preferred option in
scenarios involving more than one column. Moreover, as the number of columns
increases, the efficiency advantage of the bitmap over the byte map increases.

The selection vector outperforms other methods only at low selectivities (when
very few or nearly all elements are selected). For instance, if, after evaluating some
columns, we find that only a single element at the index x is selected, then when
evaluating the next column, we only need to check whether the element at index
x meets the predicate. This short-circuit evaluation is not possible with other
selection data structures. For this reason, we proposed using a selection bitmap
by default and converting the bitmap into a selection vector when selectivity falls
below a certain threshold. To facilitate this, we developed and benchmarked a
highly efficient method that uses lookup tables for this conversion. Our bench-
marks indicated that the threshold at which it becomes advantageous to switch
to a selection vector is at a selectivity of 1.8%, with significant speedups at even
lower selectivities. However, since such scenarios are rare, we decided not to in-
clude this optimisation in FastLanes to avoid complicating the implementation.
The same consideration applies to the reverse selection vector – it is designed
to optimise the space efficiency of the regular selection vector for selectivities
greater than 50%, and our findings indicate that the regular selection vector is
only a viable option at far lower selectivities. Therefore, the answer to this ques-
tion is that the selection bitmap is the most suitable data structure for efficient
predicate evaluation in FastLanes. These conclusions only apply to numeric data
and may change if we consider string columns. Since evaluating string predicates
is more expensive, the ability to short-circuit evaluation with a selection vector
could become more valuable.

How can we efficiently perform predicate evaluation on data compressed with
cascaded encoding without fully decompressing the data? We demonstrated that
with multi-layer cascaded encoding, it is possible to avoid fully decompressing the
data by retaining one layer of lightweight compression and performing evaluation
directly on it. Specifically, we showed that if we can decompress the data encoded
in many layers to the DICT, a widely used lightweight encoding scheme [12],
we can perform predicate evaluation on it. We devised an algorithm capable of
evaluating equality and inequality predicates on data in DICT and demonstrated
that when our dictionary contains 64 elements or fewer, we achieve a speedup of
7x or more compared to complete decompression.
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Furthermore, we showed that if it is possible to decompress data into a DICT
+ RLE format, resulting from compressing data with RLE and then applying
DICT on the run values, we can still decompress such data into the DICT format
and then apply our optimisation on the dictionary to achieve a speedup, even
though the first layer of the cascade is RLE and the second is DICT.

Therefore, we conclude that efficient predicate evaluation on data compressed
with cascaded encoding can be achieved by partially decompressing the data to
a one-layer encoding scheme like DICT and performing evaluation directly on it,
thereby avoiding the overhead of full decompression.

All our results were obtained using the unsigned integer data type and ap-
ply to standard integers too. Our work can be extended to double data with
additional effort, as it has additional encoding schemes. Developing specialised
predicate evaluation algorithms for fully compressed data in the most commonly
used compression schemes would also be beneficial. For instance, the most pop-
ular compression method in FastLanes for integers is FOR + DICT. We think it
is possible to implement an algorithm that performs evaluation directly on this
format, and it will likely be faster than decompressing to the DICT intermediate
representation and then evaluating. Additionally, the optimisation for DICT dis-
cussed in Chapter 5 could yield even greater speedups for strings, which in many
systems are compressed using DICT and on which evaluation is slow [12].
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Appendix A

Benchmarking Environment

Table A.1: Devices and configurations used in the benchmarks, including architecture, SIMD
extensions, core and thread counts, and base/turbo frequencies.

Processor Architecture SIMD Extensions Cores / Threads Base / Turbo (GHz)

Xeon W-2145 Skylake SSE4.2, AVX2, AVX-512 8 / 16 3.7 / 4.5
EPYC 7402 Zen 2 SSE4.2, AVX2 24 / 48 2.8 / 3.35
i7-8750H Coffee Lake SSE4.2, AVX2 6 / 12 2.2 / 4.1
M1 M1 Neon 8 / 8 3.2 / 3.2

The benchmark results integrate into the narrative of this thesis. This section
describes the devices and configurations used in our benchmarks. Table A.1 lists the
devices, their clock frequencies, and the ISAs utilised. We compiled the code using
Clang version 18.1.0. When leveraging the latest ISA available on each device, we
used the compiler flag -march=native. When downgrading to AVX2 or SSE, we
used -mavx2 and -mno-avx -msse4.2, respectively. Therefore, whenever we refer to
results produced with AVX-512 or Neon ISAs, we are referencing the Intel Xeon
W-2145 and Apple M1 devices, respectively. An exception applies to the benchmark
results, shown in Figure 5.4. Since the VPCOMPRESSB instruction used in one of the
intrinsics algorithms is not available on the previously mentioned devices, all the
results presented in that Figure were obtained using AMD Ryzen 9 7900, built on
the Zen 4 architecture, operating at 3.7 GHz.

The device based on Coffee Lake is a 2018 MacBook that experiences thermal
throttling. As a result, the benchmarks shown in Figures 5.7, 6.1 and 6.2 display
volatility, especially when compared to results from other [micro]architectures. Since
the general performance trends are still observable and throttling may also occur for
end-users, we decided to include these results for their practical relevance.
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Appendix B

Algorithms

In this Appendix, we present algorithms that are not included in the main body of
the text. Algorithms 12, 13 and 14 are AVX-512 intrinsics algorithms for equality
evaluation on uint8_t, uint16_t, and uint64_t data, respectively. As described
in Section 5.1.5, immediately after evaluation, Algorithm 12 stores the data be-
cause it is already in the required layout. Algorithms 13 and 14, unlike Algorithm
12, contain unnecessary bits in each lane. Therefore, at the end of these algo-
rithms, we extract the relevant data from the lanes. We employ the truncation
method but also have a commented-out variant that uses compress stores, as de-
tailed in Section 5.3. Algorithm 9 presented in the same Section implements such
approach for uint32_t data.

Algorithm 15 is designed to efficiently convert a selection bitmap into a se-
lection vector using precomputed lookup tables. We describe its operation and
benchmark it in Section 5.3.
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Algorithm 12 The AVX-512 intrinsics algorithm to evaluate “=” on 8-bit data.

1 void avx512_8(uint8_t* __restrict vec , uint8_t* __restrict
bitmap , uint8_t filter) {

2

3 __m512i fltr_vec = _mm512_set1_epi8 (* reinterpret_cast <
int8_t *>(& filter));

4

5 for (int i = 0; i < 128; i += 64) {
6 __m512i src0 = _mm512_loadu_si512(vec + 128 * 0 + i);
7 __m512i src1 = _mm512_loadu_si512(vec + 128 * 1 + i);
8 __m512i src2 = _mm512_loadu_si512(vec + 128 * 2 + i);
9 __m512i src3 = _mm512_loadu_si512(vec + 128 * 3 + i);

10 __m512i src4 = _mm512_loadu_si512(vec + 128 * 4 + i);
11 __m512i src5 = _mm512_loadu_si512(vec + 128 * 5 + i);
12 __m512i src6 = _mm512_loadu_si512(vec + 128 * 6 + i);
13 __m512i src7 = _mm512_loadu_si512(vec + 128 * 7 + i);
14

15 __mmask64 cmp0 = _mm512_cmpeq_epi8_mask(src0 , fltr_vec);
16 __mmask64 cmp1 = _mm512_cmpeq_epi8_mask(src1 , fltr_vec);
17 __mmask64 cmp2 = _mm512_cmpeq_epi8_mask(src2 , fltr_vec);
18 __mmask64 cmp3 = _mm512_cmpeq_epi8_mask(src3 , fltr_vec);
19 __mmask64 cmp4 = _mm512_cmpeq_epi8_mask(src4 , fltr_vec);
20 __mmask64 cmp5 = _mm512_cmpeq_epi8_mask(src5 , fltr_vec);
21 __mmask64 cmp6 = _mm512_cmpeq_epi8_mask(src6 , fltr_vec);
22 __mmask64 cmp7 = _mm512_cmpeq_epi8_mask(src7 , fltr_vec);
23

24 __m512i result = _mm512_maskz_set1_epi8(cmp0 , 0x01) |
25 _mm512_maskz_set1_epi8(cmp1 , 0x02) |
26 _mm512_maskz_set1_epi8(cmp2 , 0x04) |
27 _mm512_maskz_set1_epi8(cmp3 , 0x08) |
28 _mm512_maskz_set1_epi8(cmp4 , 0x10) |
29 _mm512_maskz_set1_epi8(cmp5 , 0x20) |
30 _mm512_maskz_set1_epi8(cmp6 , 0x40) |
31 _mm512_maskz_set1_epi8(cmp7 , 0x80);
32

33 _mm512_storeu_si512(bitmap + i, result);
34 }
35 }
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Algorithm 13 The AVX-512 intrinsics algorithm to evaluate “=” on 16-bit data.

1 void avx512_16(uint16_t* __restrict vec , uint8_t* __restrict
bitmap , uint16_t filter) {

2

3 __m512i fltr_vec = _mm512_set1_epi16 (* reinterpret_cast <
int16_t *>(& filter));

4

5 for (int j = 0; j < 2; j++) {
6 for (int i = j * 64; i < (j + 1) * 64; i += 32) {
7 __m512i src0 = _mm512_loadu_si512(vec + 128 * 0 + i);
8 __m512i src1 = _mm512_loadu_si512(vec + 128 * 1 + i);

. . .

14 __m512i src7 = _mm512_loadu_si512(vec + 128 * 7 + i);
15

16 __mmask32 cmp0 = _mm512_cmpeq_epi16_mask(src0 , fltr_vec);
17 __mmask32 cmp1 = _mm512_cmpeq_epi16_mask(src1 , fltr_vec);

. . .

23 __mmask32 cmp7 = _mm512_cmpeq_epi16_mask(src7 , fltr_vec);
24

25 __m512i result = _mm512_maskz_set1_epi16(cmp0 , 0x01) |
26 _mm512_maskz_set1_epi16(cmp1 , 0x02) |
27 _mm512_maskz_set1_epi16(cmp2 , 0x04) |
28 _mm512_maskz_set1_epi16(cmp3 , 0x08) |
29 _mm512_maskz_set1_epi16(cmp4 , 0x10) |
30 _mm512_maskz_set1_epi16(cmp5 , 0x20) |
31 _mm512_maskz_set1_epi16(cmp6 , 0x40) |
32 _mm512_maskz_set1_epi16(cmp7 , 0x80);
33

34

35 // Option 1: truncate and save
36 __m256i packed_result = _mm512_cvtepi16_epi8(result);
37 _mm256_mask_storeu_epi8(bitmap + i, 0xFFFFFFFF ,

packed_result);
38

39 // Option 2: compress store
40 // __mmask64 mask = 0x5555555555555555ULL;
41 // _mm512_mask_compressstoreu_epi8 ((void*)(bitmap + i),

mask , result);
42 }
43 }
44 }



Algorithm 14 The AVX-512 intrinsics algorithm to evaluate “=” on 64-bit data.

1 void avx512_64(uint64_t* __restrict vec , uint8_t* __restrict
bitmap , uint64_t filter) {

2

3 __m512i fltr_vec = _mm512_set1_epi64 (* reinterpret_cast <
int64_t *>(& filter));

4

5 for (int j = 0; j < 8; j++) {
6 for (int i = j * 16; i < (j + 1) * 16; i += 8) {
7 __m512i src0 = _mm512_loadu_si512(vec + 128 * 0 + i);
8 __m512i src1 = _mm512_loadu_si512(vec + 128 * 1 + i);

. . .

14 __m512i src7 = _mm512_loadu_si512(vec + 128 * 7 + i);
15

16 __mmask8 cmp0 = _mm512_cmpeq_epi64_mask(src0 , fltr_vec);
17 __mmask8 cmp1 = _mm512_cmpeq_epi64_mask(src1 , fltr_vec);

. . .

23 __mmask8 cmp7 = _mm512_cmpeq_epi64_mask(src7 , fltr_vec);
24 __m512i result = _mm512_maskz_set1_epi64(cmp0 , 0x01) |
25 _mm512_maskz_set1_epi64(cmp1 , 0x02) |
26 _mm512_maskz_set1_epi64(cmp2 , 0x04) |
27 _mm512_maskz_set1_epi64(cmp3 , 0x08) |
28 _mm512_maskz_set1_epi64(cmp4 , 0x10) |
29 _mm512_maskz_set1_epi64(cmp5 , 0x20) |
30 _mm512_maskz_set1_epi64(cmp6 , 0x40) |
31 _mm512_maskz_set1_epi64(cmp7 , 0x80);
32

33 // Option 1: truncate and save
34 __m128i packed_result = _mm512_cvtepi64_epi8(result);
35 _mm_mask_storeu_epi8(bitmap + i, 0xFF , packed_result);
36

37 // Option 2: compress store
38 // __mmask64 mask = 0x0101010101010101ULL;
39 // _mm512_mask_compressstoreu_epi8 ((void*)(bitmap + i),

mask , result);
40 }
41 }
42 }



Algorithm 15 This algorithm transforms a bitmap into a selection vector by
iterating over each byte, using the LENGTHS array to count set bits, and retrieving
corresponding indices from the INDICES array. It then fills the selection_vector
with these indices and updates the total selection size.

1 static constexpr uint8_t LENGTHS [256] {
2 0, 1, 1, 2, ..., 7, 8,
3 };
4

5 static constexpr uint16_t INDICES [256 * 8] {
6 0, 0, 0, 0, 0, 0, 0, 0, // 0b0
7 0, 0, 0, 0, 0, 0, 0, 0, // 0b1
8 128, 0, 0, 0, 0, 0, 0, 0, // 0b10
9 0, 128, 0, 0, 0, 0, 0, 0, // 0b11

. . .

1027 128, 256, 384, 512, 640, 768, 896, 0, // 0b11111110
1028 0, 128, 256, 384, 512, 640, 768, 896, // 0b11111111
1029 };
1030

1031 uint16_t bitmap_to_selection_vector(uint8_t* __restrict
bitmap , uint16_t* __restrict selection_vector) {

1032

1033 uint16_t selection_vector_size {0};
1034

1035 for (uint16_t col_idx {0}; col_idx < 128; ++ col_idx) {
1036 const uint8_t offset = bitmap[col_idx ];
1037 const uint8_t length = LENGTHS[offset ];
1038 const uint16_t* indices_p = INDICES + (8 * offset);
1039

1040 for (size_t row_idx {0}; row_idx < 8; ++ row_idx) {
1041 uint16_t index = indices_p[row_idx ];
1042 uint16_t right_index = index + col_idx;
1043 selection_vector[row_idx] = right_index;
1044 }
1045

1046 selection_vector = selection_vector + length;
1047 selection_vector_size += length;
1048 };
1049

1050 return selection_vector_size;
1051 }
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